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Abstract

Recent advances in the field of classical computing and quantum computing enable new
attacks on today’s public-key cryptography. Therefore, an essential goal of cybersecurity
research is to develop new, future-proof cybersecurity solutions.

Quantum key distribution (QKD) is a method to distribute symmetric digital cryptographic
keys between two users by using principles of quantum physics, enabling the information-
theoretically secure exchange of encrypted messages. Fundamental principles of quantum
physics ensure that the QKD users detect every attempt by a third party to obtain a copy of
the key. However, for many applications, secure connections between two users are insuffi-
cient, so larger networks for multiple users are required. On the way to the widespread
use of QKD, laboratory experiments under controllable environmental conditions are only
the first step, and tests under realistic operating conditions are required to demonstrate
the reliability of the systems.

Therefore, the goals of the research presented in this thesis are to develop a multi-user
QKD network, to demonstrate its reliability and flexibility in a field test, and to develop
detailed models of this system taking the relevant setup imperfections into account.

The multi-user QKD network is implemented as a star-shaped network with a central
quantum key hub (q-hub), enabling simultaneous and independent distribution of quantum
keys to multiple pairs of users with distances up to 100 km between the users. In contrast
to other QKD networks, the q-hub system uses a polarization-insensitive QKD protocol
based on quantum-entangled photon pairs in combination with wavelength demultiplexing
to enable robust key transmissions. Therefore, the q-hub system is well suited to implement
QKD networks in urban areas or for other applications where the optical fiber transmission
links are exposed to the weather or vibrations which may lead to polarization instabilities.

The first part of this thesis presents the implementation and performance evaluation of
a q-hub network with four users. The QKD receivers of the users are synchronized with
a precision better than 100 ps by using a new method for clock recovery from the arrival
times of the photons for which a patent is pending. The compactness and flexibility of the
QKD system required for real-world applications are proven in a field test at a facility of
the Deutsche Telekom company. This field test was the first field test of a multi-user QKD
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network based on the Bennett-Brassard-Mermin 1992 (BBM92) time bin QKD protocol.
Stable key distribution over more than three days is demonstrated for fiber lengths of more
than 100 km between two users, including 27 km of fiber deployed in the field. Dozens of
users could be readily connected to the network if the required number of QKD receivers
were built. Finally, a photonic integrated circuit is designed as a first step towards an even
more compact q-hub, and on-chip photon pair generation is demonstrated.

The second part of this thesis presents detailed numerical models of the q-hub system.
A new method for the time-dependent tomographic characterization of single-photon
detectors in terms of positive operator-valued measures (POVMs) is presented and applied
to characterize the detectors employed in the QKD system.

Furthermore, a general method for the photon-number-resolved simulation of multi-mode
quantum-optical setups with Gaussian states is developed. A key result is the derivation of
the generating function for the photon statistics, from which the photon number distribution
and its moments and factorial moments are computed by automatic differentiation. One
of the strengths of this simulation method is the flexibility to include effects from various
kinds of setup imperfections in simulations of quantum-optical setups.

Finally, a frequency-resolved simulation of the QKD system is developed by generalizing
the covariance formalism of Gaussian states to a continuum of frequencies. The simulation
results match the measurements to a high degree, allowing for a realistic prediction of
the setup performance. The simulation will enable performance optimizations and cost
reductions for the development of future QKD networks.
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Kurzfassung

Durch Fortschritte im Bereich der klassischen Computer und der Quantencomputer werden
neue Angriffe auf die heute genutzten Verfahren der asymmetrischen Kryptographie mög-
lich. Ein wichtiges Ziel der Cybersicherheitsforschung ist es daher, neue, zukunftsfähige
Sicherheitslösungen zu entwickeln.

Quantenschlüsselaustausch (eng.: quantum key distribution, kurz QKD) ist eine Methode
zur Verteilung symmetrischer digitaler kryptographischer Schlüssel zwischen zwei Nutzern
basierend auf Prinzipien der Quantenphysik, welche den informationstheoretisch sicheren
Austausch verschlüsselter Nachrichten ermöglicht. Grundlegende quantenphysikalische
Prinzipien gewährleisten, dass jeder Versuch eines Dritten, eine Kopie des Schlüssels zu
erhalten, von den QKD-Nutzern erkannt wird. Für viele Anwendungen sind sichere Ver-
bindungen zwischen zwei Nutzern nicht ausreichend und es werden stattdessen größere
QKD Netze für mehrere Nutzer benötigt. Auf dem Weg zu einem großflächigen Einsatz
von QKD sind Laborexperimente unter kontrollierbaren Umgebungsbedingungen immer
nur der erste Schritt. Tests der Systeme unter realistischen Betriebsbedingungen sind erfor-
derlich, um ihre Zuverlässigkeit unter realistischen Einsatzbedingungen zu demonstrieren.
Daher sind die Ziele der in dieser Arbeit vorgestellten Forschung die Entwicklung eines
Multi-User-QKD-Netzwerks, die Demonstration seiner Zuverlässigkeit und Flexibilität in
einem Feldtest und sowie die Entwicklung detaillierter Modelle dieses Systems, welche die
relevanten Imperfektionen des Aufbaus berücksichtigen.

Das Multi-User-QKD-Netzwerk wurde als sternförmiges Netzwerk mit einem zentralen
quantum key hub (q-hub) implementiert, der die gleichzeitige und unabhängige Verteilung
von Quantenschlüsseln an mehrere Nutzerpaare über optische Fasern über Distanzen bis
zu 100 km zwischen den Nutzern ermöglicht. Im Gegensatz zu anderen QKD-Netzwerken
verwendet das q-hub System ein polarisationsunabhängiges QKD-Protokoll basierend auf
quantenverschränkten Photonenpaaren in Kombination mit Wellenlängen-Demultiplexing,
um robuste Schlüsselübertragungen zu ermöglichen. Das q-hub System ist daher gut zur
Implementierung von QKD-Netzwerken in städtischen Gebieten oder für andere Anwen-
dungsszenarien geeignet, bei denen die Glasfaserübertragungsstrecken dem Wetter oder
Vibrationen ausgesetzt sind, was zu Polarisationsänderungen führen kann.
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Im ersten Teil dieser Arbeit wird die Implementierung eines QKD-Netzwerks mit vier
Nutzern vorgestellt und seine Leistungsfähigkeit evaluiert. Die QKD-Empfänger der Nutzer
werden mit Hilfe einer neuen Methode zur Taktrückgewinnung aus den Ankunftszeiten
der Photonen synchronisiert, wobei Genauigkeiten besser als 100 ps erzielt werden. Diese
Methode ist zum Patent eingereicht. Die Kompaktheit und Flexibilität des QKD-Systems
für reale Anwendungen wurden in einem Feldtest an einem Standort der Deutschen Tele-
kom demonstriert. Dieser Feldtest war der erste Feldtest eines Multi-User-QKD-Netzwerks,
das auf dem Bennett-Brassard-Mermin 1992 (BBM92) Time-Bin-QKD-Protokoll basiert.
Ein mehr als drei Tage dauernder stabiler Schlüsselaustausch über Glasfaserlängen von
mehr als 100 km zwischen zwei Nutzern wurde demonstriert. Von der Faserstrecke sind
ca. 27 km im Feld verlegt. Dutzende von Nutzern könnten ohne weiteres an das Netzwerk
angeschlossen werden, wenn die entsprechende Anzahl and QKD-Empfängern gebaut
würde. Als erster Schritt zu einem noch kompakteren q-hub wurde ein integrierter photoni-
scher Chip entworfen und die Erzeugung von Photonenpaaren mittels dieses Chips wurde
demonstriert.

Im zweiten Teil dieser Arbeit werden detaillierte numerische Modellierungen des q-hub
Systems vorgestellt. Eine neue Methode zur zeitabhängigen Detektortomographie mittels
sogenannter positive operator-valued measures (POVMs) wird vorgestellt und zur Charakte-
risierung der im QKD-System verwendeten Detektoren verwendet.

Darüber hinaus wird eine allgemeine Methode für die photonenzahlaufgelöste Simulation
von quantenoptischen Experimenten mit Gaußschen Multimode-Zuständen entwickelt. Ein
wesentliches Ergebnis ist die Herleitung der erzeugenden Funktion für die Photonenstatistik,
aus der die Photonenzahlverteilung sowie deren Momente und faktorielle Momente durch
sogenanntes automatisches Differenzieren berechnet werden. Eine der Stärken dieser
Simulationsmethode ist die Flexibilität, die es erlaubt, Effekte von verschiedenen Arten
von Imperfektionen bei der Simulation verschiedenster quantenoptischer Aufbauten zu
berücksichtigen.

Schließlich wird eine frequenzaufgelöste Simulation des QKD-Systems entwickelt, indem
der Kovarianzformalismus der Gaußschen Zustände auf ein Kontinuum von Frequenzen
verallgemeinert wird. Die Simulationsergebnisse stimmen in hohem Maße mit den Mes-
sungen überein und erlauben damit realistische Vorhersagen zur Leistungsfähigkeit des
Systems. Die Simulation wird die Optimierung der Leistungsfähigkeit und die Reduktion
der Kosten bei der Entwicklung zukünftiger QKD Systeme ermöglichen.
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Introduction

Quantum technologies are an active field of research. Two of the major research areas are
quantum computing and quantum communications. One of the most important goals of
quantum computing research is to use effects from quantum physics to solve mathemati-
cal problems that cannot be tackled efficiently with classical computers. Therefore, the
development of quantum computers has far-reaching consequences for complexity-based
cryptography, as it is used in today’s digital communication [1]. Considering the recent
advancements, quantum computers powerful enough to render large parts of nowadays’s
cryptography insecure are feasible within the next couple of years. The IT security com-
munity and national cybersecurity agencies such as the NSA in the United States [2], the
ANSSI [3] in France, the NCSC in the United Kingdom [4] or the Federal Office for Informa-
tion Security (BSI) in Germany [5] are therefore closely monitoring the advancements in
quantum computing and advise to prepare for a transition to quantum-secure cryptography.
The BSI works with the following timeline for risk assessment [5]:

“For high security systems, BSI acts on the working hypothesis that cryptographi-
cally relevant quantum computers will be available in the early 2030s.”

In a national security memorandum from May 2022, the White House calls for action [6]:

“To mitigate this risk, the United States must prioritize the timely and equitable
transition of cryptographic systems to quantum-resistant cryptography, with the
goal of mitigating as much of the quantum risk as is feasible by 2035.”

These statements corroborate that quantum-resistant cybersecurity solutions are urgently
required within the next decade.

Fortunately, quantum physics can also be used to re-establish security. Quantum key
distribution (QKD) is a subfield of quantum communications concerned with distributing
symmetric keys for encrypting digital messages. The security of QKD relies on fundamental
laws of quantum physics and information theory. The great advantage of QKD is that it
remains secure even when powerful quantum computers become available. Importantly,
QKD does not require quantum computing. Therefore, QKD can already be implemented
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before cryptographically relevant quantum computers become available. The general idea
of QKD is almost 40 years old and was introduced by Charles H. Bennett and Gilles Brassard,
who proposed the BB84 QKD protocol [7, 8]. Since these days, the field of QKD research has
consistently evolved. Today, numerous companies offer commercial QKD solutions [9–16].

One of the major directions in experimental QKD research has been the demonstra-
tion of increasingly higher key rates and increasingly longer transmission distances. Key
rates of more than 110 Mbit/s over a transmission distance of 10 km have recently been
demonstrated [17]. QKD over optical fibers with lengths of hundreds of kilometers has
been demonstrated using state-of-the-art QKD systems [18, 19], and the mark of 1000 km
transmission distance through optical fibers has been reached recently [20]. QKD over
thousands of kilometers has been demonstrated employing satellites [21, 22].

Another important research direction is the implementation of QKD networks for multiple
users. A common approach to realizing QKD networks is to use trusted nodes. Trusted
nodes are stations between the users where the keys are relayed and processed as classical
information. Therefore, network users must trust the operator of the node, because
he knows the keys. The world’s largest QKD network is located in China, connecting
Beijing, Shanghai, and other cities via trusted nodes to a 2000 km long backbone link
and including multiple metropolitan-area QKD networks [23]. A crucial disadvantage
of the trusted-node approach is that the users need to trust the network provider. To
achieve end-to-end quantum security between the users, trusted-node-free QKD networks
are required. Two of the most important topologies for such networks are ring-shaped
networks [24] and star-shaped networks [25–27]. In a ring-shaped network, all users are
connected via a single fiber ring. The quantum signals have to pass all users before they
are detected, which limits the scalability of this approach. In star-shaped networks, all
users are connected to a central element, which can be either the measurement station of
a measurement-device-independent QKD network [25] or the source of entangled photons
in an entanglement-based network [26, 27].

One of the major goals of the research presented in this thesis is to develop a quantum key
hub (q-hub), that is a central device allowing to connect more than two users to each other
in a QKD network with a star-shaped topology. Such networks could be used to connect
tens or hundreds of users in metropolitan areas, with possible applications in the healthcare
and financial sectors as well as for law enforcement and government organizations. An
important difference between the q-hub and trusted nodes in QKD networks is that two
users sharing a quantum key only need to trust each other but do not need to trust the
q-hub or other users in the q-hub network.
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Outline

This thesis contains both experimental results and results from numerical simulations of
the q-hub QKD network, which is the successor of an entanglement-based QKD system for
two users developed by Oleg Nikiforov during his Ph.D. [28]. The first part describes the
experimental realization of the network and its field test at a facility of Deutsche Telekom with
key transmissions over a fiber deployed underground. The second part presents theoretical
models and numerical simulations of the q-hub QKD system. For the simulation to correctly
reproduce the experiment, several parameters of the system need to be determined by
characterization experiments. Therefore, thorough characterizations of various parts of the
QKD system are presented.

Many results presented in this thesis have been obtained in close collaboration with stu-
dents working on their bachelor’s theses (refs. [B1–B7]) or master’s theses (refs. [M1–M9]).
Some of the following results have been published or are submitted for publication as
refs. [I–IX]). Two patents for inventions related to the q-hub system are pending.

Chapter 1 introduces the basic concepts of quantum key distribution and of photon pair
generation by spontaneous parametric down-conversion as well as properties of single
mode optical fibers that are relevant for the following chapters.

Chapter 2 describes the setup of the q-hub network, consisting of a source of quantum-
entangled photon pairs and four receivers for the QKD users. Characterizations of the
photon pair source are presented, and the requirements on the interferometers in the
receivers are derived. The timing synchronization of the receivers is achieved by recovering
the clock frequency of the photon pair source from the arrival times of the photons at the
receivers, and the performance of this method is analyzed. Two patents of O. Nikiforov,
E. Fitzke, and Th. Walther for the method to build and align fiber interferometers fast and
with high accuracy and of E. Fitzke and Th. Walther for the clock recovery method are
pending. An analysis of some of the photon spectra has been published in ref. [I]:

“Spectral characterization of SPDC-based single-photon sources for quantum key distri-
bution”, S. EULER, E. FITZKE, O. NIKIFOROV, D. HOFMANN, and TH. WALTHER,
The European Physical Journal Special Topics 230 1073-1080 (2021).
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Further details about the photon pair source of the q-hub will be published in ref. [VIII]:

“A flexible modular all-fiber based single-photon source for quantum key distribution in
a network”,
M. TIPPMANN, E. FITZKE, O. NIKIFOROV, P. KLEINPASS, T. DOLEJSKY, M. MENGLER, and
TH. WALTHER, Manuscript submitted for publication.

The complete q-hub QKD network has been published in ref. [II]:

“Scalable Network for Simultaneous Pairwise Quantum Key Distribution via
Entanglement-Based Time-Bin Coding”,
E. FITZKE, L. BIALOWONS, T. DOLEJSKY, M. TIPPMANN, O. NIKIFOROV, TH. WALTHER,
F. WISSEL, and M. GUNKEL, PRX Quantum 3 020341 (2022).

Chapter 3 presents results from the field test, for which the q-hub and the receiver modules
were placed at a facility of the Deutsche Telekom company in Darmstadt. Simultaneous
pairwise QKD between the users over a fiber deployed underground and over spooled fibers
in the laboratory was demonstrated for fiber lengths up to more than 100 km between two
users. A part of the results from the field test has been published in ref. [II]. Most of the
field test results have been published in ref. [V]:

“Flexible reconfigurable entanglement-based quantum key distribution network”,
T. DOLEJSKY, E. FITZKE, L. BIALOWONS, M. TIPPMANN, O. NIKIFOROV, and TH. WALTHER,
The European Physical Journal Special Topics (2023).

Chapter 4 presents first results of experiments with photonic integrated circuits for the
q-hub. Photon pairs are generated by spontaneous four-wave mixing in integrated microring
resonators. A setup for gigahertz-modulated Pound-Drever-Hall locking is developed to
stabilize the microring resonators to the laser frequency. Furthermore, a dedicated photonic
integrated circuit for photon pair generation is designed and tested.

Chapter 5 presents a thorough characterization of the single-photon avalanche detectors
of the QKD receivers. A new method for reconstructing time-dependent positive operator-
valued measures (POVMs) describing the detectors is introduced, adapting the weight of
the regularization term to the statistical quality of the data. Furthermore, a model from the
literature constructing theoretical time-dependent detectors POVM based on the detector
timing jitter distribution and dead time is compared to measurements. The results have
been published in ref. [III]:

“Time-dependent POVM reconstruction for single-photon avalanche photo diodes using
adaptive regularization”,
E. FITZKE, R. KREBS, T. HAASE, M. MENGLER, G. ALBER, and TH. WALTHER,
New Journal of Physics 24 023025 (2022).
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Chapter 6 presents a new method to simulate the photon statistics of multimode Gaussian
states as well as photon-added and photon-subtracted Gaussian states. The key results of
this chapter are the generating functions for the photon number distribution, moments,
and factorial moments. The method is applied to simulate the q-hub QKD system. The
simulated QKD performance is compared to measurements, and the simulation is used to
demonstrate the relevance of multi-photon-pair emission for the quantum bit error rate.
The simulation method has been published in ref. [VI]:

“Simulating the photon statistics of multimode Gaussian states by automatic differentia-
tion of generating functions”,
E. FITZKE, F. NIEDERSCHUH, and TH. WALTHER, APL Photonics 8 026106 (2022).

The application of the framework PyTorch [29] for the evaluation of the multivariate higher-
order derivatives of the generating functions is demonstrated in a technical report [IV]:

“Simulating the Photon Statistics of Gaussian States Employing Automatic Differentiation
from PyTorch”,
E. FITZKE, F. NIEDERSCHUH, and TH. WALTHER,
Technical Report, DOI: 10.26083/tuprints-00023061 (2022).

Chapter 7 presents a time- and frequency-resolved simulation of the q-hub QKD system.
The frequency resolution allows considering effects such as frequency-dependent losses
or chromatic dispersion in the fiber links. For the simulation, the covariance formalism of
Gaussian states is extended to a continuum of frequencies and times, and the relevant matrix
transformations of the covariance in the discrete-mode formalism are replaced by integral
operators. Systematic approximations for strongly entangled biphoton states, as they are
used in the q-hub QKD system, are derived, and error bounds for the approximations are
provided. The QKD system is modeled, and simulation results for the QKD performance
are compared to measurements. A manuscript presenting the results is to be submitted for
publication as ref. [VII]:

“Frequency-Resolved Simulations of Highly Entangled Biphoton States beyond the Single-
Pair Approximation”,
P. KLEINPASS, E. FITZKE, and TH. WALTHER, Manuscript to be submitted for publication.
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Part I

Development and Field Test of
a Multi-User QKD System
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1 Basic Concepts

Suppose two users want to exchange a digital message in such a way that no one else can
read it. In that case, they can use a symmetric encryption algorithm such as the Advanced
Encryption Standard (AES) to encrypt their message [30]. Furthermore, a symmetric
encryption method called one-time pad encryption exists, which has been proven to be
information-theoretically secure, meaning that it cannot be broken even with infinite
computational resources [31]. The one-time pad encryption requires that the users, who
are commonly called Alice and Bob, share the same secret key. The secret key must be
completely random, at least as long as the message, and it can be used only once [31].
Alice encrypts her plain text message to be sent to Bob symbol by symbol with the key, for
example, by using bitwise addition modulo two. She sends the resulting ciphertext to Bob,
who decrypts the message by subtracting the key from the ciphertext. If the eavesdropper
Eve can only obtain a copy of the ciphertext but not a copy of the key, Eve cannot decrypt
the message. In principle, Eve can try out all possible keys and subtract them from the
ciphertext. But as the key is random, the ciphertext is also random, such that Eve recovers
all possible plain text messages with equal probability. It is, therefore, impossible for Eve
to decide which of the recovered messages is the plain text Alice sent to Bob, meaning that
Eve cannot break the encryption. A disadvantage of the one-time pad is that individual
bits of the plain text can be easily reconstructed if the corresponding key bits are known.
Therefore, the BSI recommends using the one-time pad only in combination with different
algorithms [5].

In any case, symmetric encryption algorithms require that Alice and Bob share a digital,
identical secret key. To exchange such a key, Alice and Bob can use a protocol called Diffie-
Hellman key exchange. The security of the Diffie-Hellman method and of the widely used
RSA public-key cryptosystem relies on the assumption that computing the discrete logarithm
and prime factorizations of large enough numbers is unfeasible even with the most powerful
classical computers [32]. In 1994, Peter Shor proposed algorithms for solving both problems
efficiently on quantum computers, meaning that the run time of the algorithms grows not
significantly faster than a polynomial of the number of digits of the input [33, 34]. In
the limit of large input numbers, the runtime of these algorithms is significantly shorter
than for the best known algorithms for classical computers. Once quantum computers
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are advanced enough to run Shor’s algorithms for the input lengths used in cryptography,
protocols based on these mathematical problems will become insecure. Therefore, new
methods are required to replace cryptographic protocols based on the vulnerable methods.

The efforts to develop new, quantum-safe cryptography solutions can be grouped into two
approaches. The idea of the first approach, called post-quantum cryptography (PQC), is to
use different algorithms for cryptography based on mathematical problems that are believed
to be resistant to attacks with quantum computers. Several different PQC algorithms have
been proposed. Since 2016, the National Institute of Standards and Technology (NIST)
has been running a competition to select and standardize PQC algorithms [35]. PQC
is considered one of the most promising solutions to the security threat from quantum
computers [2–5]. However, establishing new cryptographic algorithms within a relatively
short time also comes at the risk that new, unexpected attack methods may soon be
discovered. Examples are attacks on the two candidate algorithms RAINBOW and SIKE
in late rounds of the NIST competition. Spectacular attacks on both algorithms were
discovered in 2022, allowing to break the encryption based on these algorithms within
a couple of hours of computing time on a laptop [36, 37].

1.1 Basic Principles of Quantum Key Distribution

Another possible solution to distributing symmetric keys to different users is quantum
key distribution (QKD). For QKD, Alice and Bob exchange quantum signals and derive
the key bits from the results of quantum-mechanical measurements of the transmitted
signal. Typically, light signals at the single photon level are used because they can be
transmitted with relatively low losses through optical fibers or via free-space links. The
reviews [31, 38–40] provide overviews of various aspects of QKD.

The Bennett and Brassard 1984 (BB84) QKD Protocol
In 1984, Bennett and Brassard developed the BB84 QKD protocol [7, 8]. It is one of the
most famous QKD protocols and well suitable to explain the general idea of QKD.

The classic BB84 QKD requires the following steps [7, 8, 31]: Alice prepares a quantum
bit represented by a photon in one of the four polarization states “horizontal”, “vertical”,
“diagonal” or “antidiagonal” and sends it to Bob. If Alice sends a horizontal or diagonal
photon, she notes a bit “0”. For the other two states, she notes a bit “1”. Bob’s receiver
consists of a polarizing beam splitter and two single-photon detectors labeled “0” and “1”
placed at its outputs. Horizontal photons are guided to detector 0, and vertical photons are
guided to detector 1. Bob notes down the bit value of the detector registering the photon.
Furthermore, he can rotate his setup by 45°, such that diagonal photons are guided to
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detector 0, and antidiagonal photons are guided to detector 1. Before he receives Alice’s
photon, Bob randomly decides whether he wants to measure the polarization state of the
incoming photon in the rectilinear ×-basis or whether he rotates his setup by 45° and to
measure the polarization in the diagonal ×-basis. Alice sends several photons to Bob, and
Bob decides for each photon individually and randomly in which basis he measures the
polarization. When he measures in the ×-basis, Bob always registers horizontal photons
in detector 0 and vertical photons in detector 1. When he measures in the ×-basis, he
always registers diagonal or antidiagonal photons in detector 0 or 1, respectively. However,
when Alice’s and Bob’s bases do not match, he randomly registers the photon in the first or
second detector with 50 % probability.

In the next step, called key sifting, Alice shares her bases choices with Bob over an
authenticated channel while keeping the bit values secret [7, 8, 31, 38, 40]. If her basis
matches Bob’s basis, they keep their bit, knowing that the bit values will be the same. If
they chose different bases, Bob’s bit value is random, and Alice and Bob discard their bit
values, which is called postselection.

A simple attack strategy for Eve, called intercept-resend attack, would be to intercept the
photon from Alice, measure the polarization, store the bit value, and send a new photon
with the same polarization to Bob [7, 8, 31, 38, 40]. However, Eve does not know in which
basis Alice prepared the photon and therefore measures and prepares the new photon in
the wrong basis with 50 % probability. As Alice and Bob only keep bits from photons where
they chose the same basis, a photon prepared by Eve in the wrong basis generates a random
bit value in Bob’s measurement station. Therefore, Eve’s attack leads with a probability of
25 % to a quantum bit error, that is a deviation of Alice’s and Bob’s key bit.

To check if Eve intercepted the photons, Alice and Bob compare after the QKD session
a random sample of 10 % of their key bits over an authenticated channel and calculate the
quantum bit error rate (QBER), given by the ratio of quantum bit errors to the total number
of sifted key bits [31, 38, 40]. The bits they compared are not secure anymore and are
therefore discarded. When the QBER is zero, Alice and Bob can be sure that Eve does not
know the key, and they can use the remaining bits to encrypt and exchange their message.
However, when Eve applies the intercept-resend strategy to all quantum bits, Alice and
Bob will observe a QBER of 25 % in their sample. The high QBER reveals the presence of
Eve to Alice and Bob, so they do not use the key to encrypt their message. They can try
to establish a new key in another QKD session, and if Eve again intercepts the photons,
this key cannot be either. Alice and Bob always notice when Eve intercepts the photons
because Eve inevitably introduces quantum bit errors. Therefore, the worst Eve can do is
to launch a denial-of-service attack, preventing a successful key exchange. However, she
can never obtain the key used to encrypt the message.
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Key Postprocessing: Error Correction and Privacy Amplification
After key sifting, Alice and Bob obtain bit strings a and b. In practice, these bit strings
generally differ due to detection noise or Eve’s interception of some bits. To obtain iden-
tical, error-free bit strings, Alice and Bob execute an error correction algorithm. Two
common algorithms are the Cascade algorithm [41, 42] and low-density parity-check (LDPC)
codes [43, 44]. Both approaches are fundamentally different: Cascade is an interactive
protocol requiring multiple rounds of message exchanges between Alice and Bob, while
LDPC is a forward error correction method requiring only a single round. LDPC codes
are also used, for example, for error correction in Wi-Fi communication [45]. In QKD,
LDPC codes can be used as follows [44]: Alice and Bob agree on a parity-check matrix G,
which is sparsely populated with ones and which is zero everywhere else. Alice computes
the checksum bit vector cA = Ga in modulo-2 arithmetics and a hash value hash(a) and
sends both to Bob. Bob computes cB = Gb and compares his checksum vector to Alice’s.
In general, when Alice’s and Bob’s bit strings are different, the checksum vectors cB and
cA are different. Bob then iteratively corrects the bits and updates cB until the checksum
vectors are identical [44]. To verify the successful reconstruction of the correct bit string,
he checks that hash(b) = hash(a).

Alice and Bob have to assume that all bit errors were caused by Eve, meaning Eve has
partial information about the key. Furthermore, Eve gained additional information about
the key from the checksum bits exchanged for the error correction. Therefore, Alice and Bob
have to distill a secure key from the corrected key such that Eve has almost no information
about the secure key [46]. For that, Alice and Bob must estimate, based on the number
of error bits and checksum bits, how much information Eve may have obtained about the
key. Then, they execute a procedure called privacy amplification, during which they apply
a suitable hash function to the corrected key to extract a shorter secure key [46]. The
more information Eve is assumed to possess about the key, the shorter the secure key after
privacy amplification. A commonly used hash function is the multiplication with a Toeplitz
matrix, which can be efficiently implemented by using the fast Fourier transformation [40].

Security of QKD
The example of the BB84 protocol and Eve’s intercept-resend attack well illustrates the
general idea of QKD, but the situation is more complicated in practice. For example, Eve
could intercept only some of the photons to keep the QBER low at the price of obtaining
less information about the key. Or Eve could create entangled photon pairs, send one of the
photons to Bob, and store the other photon in a quantum memory for a delayed analysis
after the key sifting in the correct basis. Formal security proofs exist for BB84 and other
QKD protocols, which provide upper bounds for the information Eve may obtain about the
key as a function of the observed QBER and the capabilities of Eve [47, 48]. Reference [49]
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provides a detailed overview of approaches to QKD security proofs. The most general type
of attacks considered in such proofs are called coherent attacks, which assume that Eve has
unlimited resources and can perform any possible operation based on classical physics or
quantum physics [40].

Theoretically, Alice and Bob can obtain a secure key from the BB894 protocol as long as
the QBER is below 11 % [50]. In practice, the achievable secure key rate depends not only
on the QBER but also on the efficiency of the error correction algorithms and the lengths of
the keys. Stronger error correction and privacy amplification lead to lower secure key rates,
such that the ratio of the secret key rate to the sifted key rate is lower when the QBER is
higher. In this thesis, the secure key rate rsec is calculated from the sifted key rate rsif and
the QBER q by [51]

rsec = rsif {1 − (1 + f ) [−q log2(q)− (1 − q) log2(1 − q)]} . (1.1)

Equation (1.1) does not take effects from the finite key lengths into account, but it uses
a conservative estimate of f = 1.5 for the reconciliation efficiency of the error correc-
tion [51]. Figure 1.1 shows the ratio of the rsec/rsif obtained from eq. (1.1) as a function of
the QBER. With f = 1.5, secure keys can be obtained for QBERs up to 8 %. For a relatively
low QBER of 1 %, the secure key rate is about 80 % of the sifted key rate, and for a QBER
of 4 % the ratio drops to 40 %. Therefore, QKD setups must be designed carefully, allowing
for low QBERs and high secure key rates. The dependency of the secure key rate on the
QBER ultimately limits the maximum transmission distance achievable with QKD systems:
the lower the photon rate arriving at the receiver, the higher the relative noise level and
the higher the QBER. If the distance is too long such that the QBER is too high, Alice and
Bob cannot establish secure keys.
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Figure 1.1: Ratio of the secure rate rsec to the sifted key rate rsif as a function of the QBER
according to eq. (1.1) for an ideal efficiency of the error correction f = 1 and for the conservative
value of f = 1.5 used to calculate the secure key rates in the experiments.
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The theoretical security of QKD systems can be impaired by hardware imper-
fections in practical systems. Especially single-photon detectors are vulnerable to
attacks [39, 40, 52, 53]. An overview of different attack strategies and countermeasures
can be found in refs. [39, 40]. In many of these attack strategies, Eve prepares special
light pulses and sends them into the receiver to manipulate it or to obtain information
about its inner state. In 2010, this strategy was used to hack commercially available QKD
systems [52].

A whole new family of protocols called measurement-device-independent QKD has been
developed to overcome the weaknesses of QKD introduced by detectors [40, 54]. However,
these protocols are, in principle, still vulnerable to attacks against the photon source.
Device-independent QKD protocols have been designed to avoid side channel attacks
against the quantum-optical devices, but they are challenging to implement, requiring high
overall transmission and detection efficiencies. So far, only key transmissions over very
short distances, up to a few hundred meters, could be realized [40, 55]. However, even
for device-independent QKD, further security threats remain. Insecure implementations of
the post-processing, for example, can make the protocol vulnerable to cache-side-channel
attacks [56]. Another example are so-called memory attacks. Assuming that Eve may have
manufactured the QKD system, she could integrate memories in the devices to which the
keys are copied. At a later time, the device could leak the stored keys to Eve over a classical
communication channel [57, 58].

In conclusion, it can be noted that from a theoretical point of view, QKD can provide
information-theoretic security based on fundamental laws of quantum physics [38–40, 47].
In comparison, the security of classical cryptography is based on assumptions about the
computational resources that are required to solve certain mathematical problems. An
advantage of QKD is that, in theory, its security is independent of mathematical and
technical advancements. However, side channels in QKD implementations can undermine
the security. Therefore, the BSI recommends to use QKD only in combination with classical
encryption methods and PQC [5].

1.2 The Bennett-Brassard-Mermin 1992 (BBM92) Time Bin QKD
Protocol

In entanglement-based QKD systems, a photon pair source (PPS) is placed in between the
users. The entangled photons are distributed to the users, which analyze the quantum
states using receiver modules. The multi-user QKD network developed in this thesis uses the
entanglement-based BBM92 QKD protocol. Therefore, this section describes this protocol
in detail.
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After Bennett, Brassard, and Mermin proposed the protocol in 1992 [59], the first imple-
mentations using time-bin entanglement followed a few years later [60, 61]. Afterwards,
the distribution of time-bin entangled photons was demonstrated for increasingly long
distances between the users up to 300 km [62–65]. Security proofs for the protocol were
derived in refs. [66, 67], and an attack strategy exploiting detector vulnerabilities was
presented in ref. [53]. The schematic setup for the protocol is shown in fig. 1.2 (a). A cen-
tral source of entangled photon pairs is set up to send one photon of each pair to Alice
and the other to Bob. Both users are equipped with receivers to measure the photon
state. The protocol works as follows [31]: In the photon pair source (PPS), laser pulses
are sent through an interferometer (IF) with arms of different lengths. The optical path
difference (OPD) of the IF is so large that the delay between the two halves of the pulse in
the arms is larger than the pulse duration. Therefore, the two half-pulses do not interfere
at the second beam splitter, such that double pulses with a delay and phase determined by

Bob

D0

D1

t mod trep

centralearly late

tt

Photon pair
generation

Pr
ob

ab
ili

ty

Arrival time distribution 

(a)

(b)

“0” “1”

Alice

D0

D1
t

t

Photon pair source

(s, s) (s, l) + (l, s) (l, l)

ϕP

ϕA

ϕB

Figure 1.2: Schematic setup for BBM92 QKD with time bins. (a) Setup consisting of a photon
pair source and two receivers for Alice and Bob. The pump pulses in the source and the photons
in the receivers travel through imbalanced interferometers with phases φP , φA, and φB. The
detectors at the receiver outputs are labeled with the bit values “0” and “1” for the phase basis.
(b) Arrival time histogram of the photons in one of the detectors, modulo the repetition time trep.
Photons arrive in three time bins “early”, “central” and “late”. The early time bin corresponds to
time basis bits “0” and the late time bin to time basis bits “1”.
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the OPD leave the IF. These double pulses pump a nonlinear optical process to generate
entangled photon pairs. The energy of the laser pulses is chosen such that the probability
of generating more than one photon pair per pulse is much less than one. Each photo
pair is split such that one photon is sent to Alice and the other photon is sent to Bob, for
example through optical fibers. Both users have a receiver consisting of one IF and two
single-photon detectors (SPDs), D0 and D1. The OPD of the IFs precisely matches the OPD
of the IF in the PPS. When one of the detectors registers a photon, it produces a count, that
is an electrical output pulse indicating the presence of the photon. Alice and Bob record
the times of their detector counts and the detector labels.

The arrival time distribution of the photons in each detector with respect to the emission
time of the laser pulse in the PPS consisting of three peaks is shown in fig. 1.2 (b). The early
peak is caused by photons traveling through the short IF arm when they were generated by
the pump pulse taking the short path in the PPS (s, s). Analogously, the late peak is caused
by photons traveling through the long IF arm when they were generated by the pump
pulse taking the long path in the PPS (l, l). The central peak contains as many photons
as the other two peaks combined. It is caused by photons from the (s, l) and (l, s) path
combinations, respectively.

The arrival time of each photon is assigned to one of three time bins: early, central,
and late, comprising the three peaks, respectively. During the key sifting, Alice and Bob
only reveal whether they detected their photons in one of the outer time bins or in the
central time bin. Pulse cycles in which Alice or Bob detected the photon in the central
time bin and the other one detected it in one of the outer time bins are discarded in the
postselection. The information in which detector and in which of the outer time bins
a photon was detected is kept secret.

Time Basis and Phase Basis

The photon arrival time constitutes the first basis of the QKD protocol. Alice and Bob assign
bit values to the early and late time bins, for example “0” for early and “1” for late photons.
When a photon pair is produced by the first pump pulse, Alice and Bob can detect their
photons either in the same time bin or in different time bins (early or central). However, it
is not possible for one of them to detect the photon in the late time bin. Analogously, when
the second pump pulse produces the photon pair, Alice and Bob cannot detect a photon in
the early time bin. When at most one photon pair is produced per pulse repetition, Alice
and Bob never detect their photons in an early-late combination. Therefore, in repetitions
in which they detect their photon in outer time bins, they know that they both detected the
photon either in the early or late time bin and the value “0” or “1” assigned to these time
bins is their shared key bit.
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The second basis of the QKD protocol is the phase basis. When Alice and Bob both detect
their photons in the central time bin, the labels of the detectors in which the photons are
detected are correlated due to a nonlocal two-photon interference effect called Franson
interference [31, 61, 62, 68]. The probability amplitudes of the biphoton wave packet
corresponding to the path combinations (s, l, l) and (l, s, s) in the pump IF and the receiver
IFs interfere at the outer beam splitters of the receiver IFs. For a setup without losses
and with perfect 50/50 beam splitters, the coincidence probability to obtain counts in
the central time bin (C) in the detectors i, j ∈ {0, 1} of Alice (A) and Bob (B) is given
by [60–62]

P(Ai,C, B j,C) =
1
16

�

1 + (−1)i+ j cos(φA + φB − φP)
�

. (1.2)

For φA + φB − φP = 2nπ with n ∈ Z, the probabilites P(A0,C, B0,C) = P(A1,C, B1,C) = 1/8
are maximal and P(A0,C, B1,C) = P(A1,C, B0,C) = 0 vanish. The sum of all four coincidence
probabilities in the central time bin is 1/4 because 50 % of all photon pairs are detected in
different bases such that they are postselected. Furthermore, 50 % of the remaining photon
pairs are detected in the time basis. Due to noise and imperfections in real setup, the QBER
is generally non-zero even when Eve is not present. The average QBER in the time basis,
QBERt, and in the phase basis, QBERp, are defined as

QBERt =
et

bt + et
and QBERp =

ep

bp + ep
. (1.3)

Here, bt and et are the numbers of correct bits and error bits in the time basis obtained
over some time interval, respectively, and bp and ep are the numbers of correct bits and
errors in the phase basis. The overall QBER is given by

QBER =
et + ep

bt + bp + et + ep
. (1.4)

1.3 Properties of Single-Mode Fibers

The QKD system described in this thesis consists of fiber-optical components, and the
photons are transmitted to the users through single-mode optical fiber links. Therefore,
some of the most relevant properties of optical single-mode fibers are briefly discussed.

Typically, optical fibers consist of SiO2 glass and are highly transparent for near-infrared
light [69]. Fibers for long-range telecommunication are designed such that they guide only
a single spatial mode in the desired wavelength range, and they are therefore called single-
mode (SM) fibers. The most widely used type of SM fiber is specified by the International
Telecommunication Union (ITU) in the recommendations ITU-T G.652 [70] and fibers
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following this recommendation are therefore often called (standard) single-mode fibers
(SMF). A widely-used SMF is the SMF-28 fiber from Corning. SMF-28 guides only a single-
mode for wavelengths longer than 1260 nm [71, 72]. Relevant parameters of this fiber are
listed in table 1.1.

A cross-section of an SMF is shown in fig. 1.3 (a). It consists of a circular core with
a diameter of 8.2 µm, embedded in a 125 µm diameter cladding with a slightly lower
refractive index [71]. Such fibers are often protected by a 250 µm diameter polymer
coating and embedded in further layers of different materials for mechanical protection.
Long-range telecommunication is typically realized in the optical C-band, with wavelengths
between 1530 and 1565 nm, because the attenuation is minimal in this wavelength range,
as shown in fig. 1.5. Frequency channels in the C-band are specified by the ITU dense
wavelength division multiplexing (DWDM) grid. The n-th channels center frequency is

Table 1.1: Properties of standard single-mode fiber at a wavelength of 1550 nm [69, 71–73].

Transmission losses ≤ 0.22 dB/km
Effective group index of refraction ng = 1.4682
Mode field diameter 10.4 µm
Polarization-mode dispersion coefficient ≤ 0.2 ps/

√
km

Chromatic dispersion D = 17 ps/(nm · km)
β = −21.7 ps2/km

Typical losses of fiber splices 0.05 to 0.2 dB
Typical losses of pluggable fiber connectors 0.2 to 1 dB

(a) (b)

slow
axis

fast
axis

Figure 1.4: Cross section of (a) standard
single-mode fiber with 8 µm core diameter
and 125µm cladding and (b) a polarization-
maintaining PANDA-fiber with two round
stress members embedded in the cladding.
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Figure 1.5: Spectral attenuation of standard
single-mode fiber. The figure was created
with data from ref. [28], showing the attenua-
tion of the QKD field test link (cf. section 3.1).
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given by fn = 193.1 THz + n∆ f , with typical channel widths ∆ f of 12.5, 25, 50, 100 or
200 GHz [74].

SMFs can be connected with relatively low losses, for example, with pluggable connectors,
or they can be joined permanently by splicing the fibers together. For that, the glass is
melted in an electrical arc, and the fibers are attached with the cores aligned. Deployed
fiber links often consist of multiple fiber sections, and the connections introduce additional
losses. Typical insertion losses are 0.2 to 1 dB for fiber connectors and 0.05 to 0.2 dB for
splices [73].

1.3.1 Polarization-Mode Dispersion and Polarization Stability

In general, SMFs do not preserve the polarization state of the transmitted light. Asymmetries
of the fiber core, internal mechanical tension, or external mechanical stress introduce a small
amount of birefringence. For some fixed wavelength, two orthogonal principal states of
polarization can be found which are not changed when launched into the birefringent
fiber and which travel with different speeds [75, 76]. This effect is called polarization-
mode dispersion (PMD), and the difference in the travel time of the two states is called
differential group delay. The birefringence changes over time for deployed fibers exposed
to temperature changes and varying mechanical stress. As a result, the polarization of
polarized light launched into an SMF is generally transformed into an unknown polarization
state. The birefringence introduced by effects such as bending, torsion, and applied pressure
is typically stronger than the intrinsical birefringence [69]. Therefore, a long deployed
fiber can be envisioned as the concatenation of multiple smaller segments, with randomly
distributed birefrigence [69, 75]. The polarization transformation and the differential
group delay are therefore given by probability distributions [77] and the expectation
value of the differential group delay scales proportionally with the square root of the fiber
lengths [69, 77, 78]. The proportionality constant is called PMD coefficient and for SMF
its values is less than 0.2 ps/

√
km [70]. This value is so small that for many QKD systems,

the elongation of the photon wave packets due to the differential group delay can be
neglected. However, environmental conditions can affect the birefringence and, thereby,
the polarization state in the fiber link, which is highly relevant for QKD.

Some QKD protocols, such as the BB84 QKD protocol explained in section 1.1, use
the polarization of the photons to encode the quantum bits, which has the advantage
that the polarization analyzers in the receivers are relatively robust and simple to set up.
For long-term operation, polarization-sensitive QKD systems require active polarization
stabilization to compensate for changing birefringence in the transmission fibers. Some
publications report relatively slow polarization changes in the fiber at the time scale of
hours to days [79–81], for example, when the transmission fibers are submarine fibers or
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when they are deployed underground [79, 82]. However, significantly faster polarization
changes have been observed for fiber links in urban areas [83]. The impact of polarization
variations on polarization-sensitive QKD systems was systematically analyzed in ref. [84]:
the required polarization tracking speed was measured to be in the range of multiple rad/s
for inter-city and aerial links. A field experiment with a 68 km long aerial fiber link showed
that polarization adjustments on the millisecond timescale are necessary for stable QKD
over this link [84].

One option to realize polarization realignment is to compensate for the polarization
change with polarization controllers such that the QBER is minimized. This method was
used recently to demonstrate QKD with polarization-entangled photons over a 248 km long
fiber link for over 110 hours [80]. When the QBER exceeded a threshold, an automatic
polarization realignment algorithm was used to scan polarization controllers to find a better
alignment, which took 57 min on average. In total, 25 % of the measurement time were
used for recalibrations.

An advantage of this method is that it does not require additional hardware, such as
alignment lasers. The key rate limits the minimum time required for a realignment because
a sufficient number of key bits and error bits need to be acquired to estimate the QBER in
each alignment step. The method is, therefore, limited to fiber links and QKD systems for
which the time between significant polarization changes is considerably longer than the
time it takes to complete the realignment. Other stabilization schemes that do not rely on
the QBER have been proposed, but they require additional components and increase the
complexity of the QKD system [85–87].

Impairments due to polarization instabilities are avoided when QKD protocols with phase-
or time-bin encoding are used, such as in the BBM92 protocol described in section 1.2.
Instead of polarization stabilization, such systems require phase stabilization of the IFs.
However, the IF phases are only sensitive to the local environment of the receivers and
unaffected by temperature changes or vibrations of the transmission links. The environ-
ments of the receivers are generally better controllable than the fiber links exposed to
environmental influences. Therefore, the QKD transmission with time bin QKD systems is
stable even when the fiber link is exposed to harsh environmental conditions. Due to these
advantages, a time bin QKD protocol was chosen for the q-hub system presented in this
thesis.

Polarization-Maintaining Fibers
Parts of the PPS are set up with special polarization-maintaining (PM) fibers, which are
designed such that they preserve the polarization state of linearly polarized light coupled
into the fiber in parallel to the slow axis or fast axis. Light polarized along the slow axis
travels slower through the fiber than light polarized along the fast axis, so cross-talk
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between the two polarization directions is minimized. The fast and slow axes are defined
by introducing a strong birefringence in a particular direction across the core during
the manufacturing process [69]. A common variant of PM fiber is the so-called PANDA
fiber, where stress-induced birefringence is generated by introducing two cylindrical stress
members consisting of a material with a different thermal expansion coefficient parallel to
the core [69]. The cross-section of a PANDA fiber is shown in fig. 1.3 (b).

1.3.2 Chromatic Dispersion

The field of a coherent optical pulse with an amplitude envelope A(t) varying slowly
compared to the period of the angular center frequency ω0 can be written as

α(t) = A(t) e−iω0 t . (1.5)

The complex spectra α̃(ω) = Ft[α(t)](ω) and Ã(ω) = Ft[A(t)](ω) of the wave packet
and its envelope are related by the shift rule of the Fourier transform (FT)1 (cf. eq. (A.6)):

α̃(ω) = Ft
�

A(t) e−iω0 t�(ω) = Ã(ω−ω0) (1.6)

The shape of the temporal power distribution of the wave packet is proportional to |α(t)|2
and the spectral power distribution is proportional to the spectral density |α̃(ω)|2.

When the wave packet travels through a medium such as an optical fiber, the field after
the medium can be expressed in the time domain by using the impulse response h(t) or in
the frequency domain by using the frequency response h̃(ω) = Ft[h(t)](ω) of the medium,
and both expressions are related by the convolution theorem (cf. eq. (A.11))2:

α̃out(ω) = h̃(ω)α̃(ω) and (1.7)

αout(t) =
1

√
2π
(α ∗ h)(t) =

1
√

2π

∫︂

α(τ)h(t − τ) dτ . (1.8)

The frequency response for the propagation through a medium such as a fiber of length L
is given by

h̃prop(ω) = eik(ω)L (1.9)

with the frequency-dependent wave number k(ω) = n(ω)ω/c0, the refractive index n(ω)
and the speed of light c0. For wave packets with a narrow bandwidth, it is usually sufficient

1The Fourier transform and the inverse Fourier transform are denoted by F and F−1. Multiple definitions of
the Fourier transform with different prefactors and sign conventions exist in the literature. The definitions
used in this thesis and some other mathematical relations are listed in appendix A.

2For integrals from −∞ to ∞ the bounds are omitted for brevity.
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to consider a Taylor expansion of the frequency-dependent wave number up to the quadratic
term around ω0 [69, 88]:

k(ω) = k0 +
∂ k
∂ω

|︁

|︁

|︁

ω0

(ω−ω0) +
1
2
∂ 2 k
∂ω2

|︁

|︁

|︁

ω0

(ω−ω0)2 +O
�

(ω−ω0)3
�

(1.10)

≈ k0 +
1
vg
Ω +

β

2
Ω2 (1.11)

Here, the abbreviation Ω = ω − ω0 is used, and the O(Ω3) term will be neglected in
the following. The quantity vg is the group velocity and β is the group velocity dispersion3.
These parameters are related to the frequency derivatives of the refractive index [69]:

1
vg
=

ng

c0
=

1
c0

�

n(ω) +ω
∂ n
∂ω

�

|︁

|︁

|︁

|︁

ω0

and β = −
λ2

0

2πc0
D =

1
c0

�

2
∂ n
∂ω
+ω

∂ 2 n
∂ω2

�|︁

|︁

|︁

|︁

ω0

(1.12)

For ∂ n/∂ω|ω0 ̸= 0, the group index ng and the group velocity are different from n(ω0) and
from the phase velocity c0/n(ω0). The center of the wave packet travels with vg through
the medium. The dependence of vg on the wavelength is called chromatic dispersion (CD)
and quantified by β . In optical fiber communications, often the dispersion parameter D
in units of ps/(nm · km) with an intuitive meaning is used instead of β: When two light
pulses with center frequencies separated by a small wavelength difference∆λ are launched
into an optical fiber of length L, they arrive at the end of the fiber with a time difference
of [69]

∆t = DL∆λ . (1.13)

Typical values for SMFs at 1550 nm are ng ≈ 1.47 and D = 17 ps/(nm · km). The sign
of D is positive, meaning that a wave packet at shorter wavelengths travels faster than
a wave packet at longer wavelengths, which is called anomalous dispersion [69]. Around
1310 nm, the dispersion parameter of SMF crosses zero and becomes negative for even
shorter wavelengths.

Effects of Chromatic Dispersion on a Traveling Wave Packet
The impulse response for the propagation through a medium with wave number k is
obtained by the inverse Fourier transformation (IFT) hprop(t) = F−1

ω {exp[ik(ω)L]}. Using

3In the literature, this value is often denoted β2, but here the index is dropped for brevity.
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the second-order approximation for k(ω) from eq. (1.11) and the complex Gaussian
integrals from eqs. (A.1) and (A.2) yields [89, 90]

hprop(t) =

⎧

⎨

⎩

exp[i(k0 L −ω0 t)]
√

2πδ(T ) for β = 0 and

exp[i(k0 L −ω0 t)]

⌜

⎷ i
β L

exp

�

− iT2

2β L

�

for β ̸= 0
(1.14)

with T = t − L/vg and the Dirac delta distribution δ(T ).
When β = 0, the pulse shape is unchanged by the propagation through the medium,

and the pulse is shifted by the time L/vg. For β ̸= 0, using the time-domain or the
frequency-domain approach from eqs. (1.7) and (1.8) yields

αout(t) = F−1
ω

�

h̃prop(ω)Fτ[α(τ)](ω)
�

(t)

= exp[i(k0 L −ω0 t)]F−1
Ω

�

exp
�

i
β L
2
Ω2
�

Fτ[A(τ)](Ω)
�

(T ) or (1.15)

αout(t) =
1

√
2π
(a ∗ hprop)(t)

= exp[i(k0 L −ω0 t)]

⌜

⎷ i
β L

exp

�

− iT2

2β L

�

Fτ
�

A(τ) exp

�

− iτ2

2β L

��

�

T
β L

�

(1.16)

An essential step in the derivation of eq. (1.16) is the separation of the square in the
exponential that is obtained by convolving eq. (1.14) with A(t) and recognizing the term
proportional to τT/(β L) as a FT with respect to τ, evaluated at T/β L. Equations (1.15)
and (1.16) both map A(t) to αout(t). They are analytically equivalent but conceptually
different. Equation (1.15) is the standard approach, requiring an FT of the pulse envelope,
the multiplication by the phase factor with quadratic Ω-dependence, and an IFT back into
the time domain. When β L is relatively large, the quadratic phase term in eq. (1.15)
oscillates rapidly. For a numerical computation using the fast Fourier transformation (FFT),
a fine frequency resolution is necessary to resolve these oscillations and avoid aliasing.

Andrianov’s Method for Computing the Shape of Wave Packets with Large Dispersion
Equation (1.16) requires, in contrast to eq. (1.15), only a single FT and its structure reveals
some additional properties of αout(t) in the limit of large dispersions. The exponential
with a quadratic argument in T shows that CD introduces a chirp, that is a dependence
∂ 2φ(t)/∂ t 2 ̸= 0 of the signal phase φ(t). Andrianov et al. recognized in ref. [91] that
evaluating eq. (1.16) by using the FFT can be computationally much more efficient than
evaluating eq. (1.15) when the dispersion is large. This approach to computing the wave
packet after a dispersive element will therefore be referred to as Andrianov’s method in the
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following. When the dispersion β L is large, the complex exponential in the FT is almost
constant over the times where A(t) is nonzero, such that the pulse shape attains the shape
of the spectral density of the initial pulse envelope, which is known as wavelength-to-time
mapping or frequency-to-time mapping [90, 92–95]:

Mapping of the spectral density to the time domain due to chromatic dispersion

|αout(t)|2 ∝
β L→∞

|︁

|︁

|︁

|︁

Ã

�

t − L/vg

β L

�|︁

|︁

|︁

|︁

2

. (1.17)

Equation (1.17) shows that large values of β L elongate the wave packet proportional to β L.
When Andrianov’s method is used, the FT in eq. (1.16) is evaluated at T/(β L), meaning
that the grid of time values scales automatically with the elongation.

The dispersion-induced elongation can be compensated by introducing dispersion-
compensating fibers (DCFs) into a fiber link [96]. When the values βDCF and LDCF of such
a fiber are chosen such that β L + βDCF LDCF = 0, the DCF compensates the dispersion
of the regular fiber, such that the pulses are not elongated. Figure 1.6 shows D for the
deployed fiber link used during the QKD field test and for two DCF modules. The values
for the fiber length and dispersion parameter were measured using an optical time-domain
reflectometer (OTDR)4 and a chromatic dispersion test set5.

To compute the shape of a dispersed wave packet numerically by using the FFT, A(t) is
discretized on an interval Iτ centered around τ = 0 with a resolution ∆τ. Of course, ∆τ
must be chosen small enough such that all relevant details of A(τ) are resolved, and Iτ
must be chosen large enough such that it covers the complete range where A(τ) attains
non-negligible values. Furthermore, by using the Nyquist-Shannon sampling theorem6,
a condition for ∆τ and Iτ can be derived which must be fulfilled to avoid aliasing from the
quadratic phase terms in the FTs. The phase between adjacent data points needs to be less
than π, which means that ∆τ and Iτ need to be chosen such that

Iτ∆τ

�

> |2πβ L| for the standard method (eq. (1.15)) and

< |2πβ L| for Andrianov’s method (eq. (1.16)).
(1.18)

A slightly different threshold is provided in ref. [91]. Due to eq. (1.18), one of the methods
may require much less discretization points and much less computational resources than the

4OTDR device: FTB-7400E from EXFO.
5Chromatic dispersion test set: FD440 from Perkin Elmer.
6The Nyquist-Shannon sampling theorem state that a signal with frequency components up to frequency f can
be reconstructed from samples of the signal when the sample spacing in time is 1/(2 f ) or less [97].
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Figure 1.6: Measured wavelength-dependent group velocity dispersion parameter D for the
SMF of the QKD field test link (cf. section 3.1) and for two dispersion compensation modules,
DCF30 and DCF60, compensating 30 or 60 km of SMF, respectively. The lengths of the DCFs
measured by OTDR were 3.1 km for DCF30 and 7.35 km for DCF60, assuming the same group
velocity as for SMF. The dashed line marks the value of D at a wavelength of 1550 nm.

other. The standard method is better suited when the dispersion is small, and Andrianov’s
method is better suited when the dispersion is large. Equation (1.18) does not take the
phase of Fτ[A(τ)](Ω) in eq. (1.15) or of A(τ) in eq. (1.16) into account, such that for
practical implementation, Iτ∆τ should not be chosen too close to |2πβ L|. Depending on
the values of β L, one method or the other is used in the simulations of the QKD system in
chapter 7 to compute dispersed entangled biphoton wave packets.

1.4 Spontaneous Parametric Down-Conversion

The central element of QKD network presented in this thesis is the quantum key hub com-
prising a source of entangled photon pairs and a wavelength-division demultiplexer (WDM).
The photon pairs are generated by spontaneous parametric down-conversion (SPDC). In
SPDC, a medium with an optical second-order nonlinear susceptibility χ(2) moderates
a three-wave mixing process in which a pump photon is spontaneously converted with low
probability into two photons called signal and idler [98]. Due to energy conservation, the
sum of the signal and idler photon energies equals the pump photon energy [98]:

Energy conservation in spontaneous parametric down-conversion

ℏωs

Signal energy

+ ℏωi

Idler energy

= ℏωp

Pump photon energy

(1.19)
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A SPDC process must therefore be pumped with light at 775 nm to obtain two photons
in the C-band at 1550 nm. In the simplest case, the production of photon pairs in one
signal mode and one idler mode is described by the operator Û = exp(−iĤ/ℏ) with
Ĥ = iχℏ âpâ†

s â†
i +H.c. [99]. The operator Ĥ converts one pump photon into a signal-idler

pair: Ĥ|1⟩p|0⟩s|0⟩i = iχℏ |0⟩p|1⟩s|1⟩i. Here, the coefficient χ incorporates all constants
determining the strengths of the interaction and depends on the properties of the nonlinear
medium. As the nonlinearity is typically small, the conversion probability is low, and strong
pump fields are required to generate a significant amount of photon pairs. Therefore, the
strong pump light can be assumed to be classical coherent laser light, allowing to replace
the annihilation operator by the pump field amplitude α. Writing αχ = r eiθ with r, θ ∈ R
yields the SPDC state [99, 100]

|ψ⟩TMSV = exp
�

r eiθ â†
s â†

i − r e−iθ âsâi

�

|0⟩ = 1
cosh r

∞
∑︂

n=0

(eiθ tanh r)n|ns⟩|ni⟩ . (1.20)

Here, |ns⟩ =
�

â†
s

�n|0⟩/
√

n and |ni⟩ =
�

â†
i

�n|0⟩/
√

n are the n-photon signal and idler Fock
states. The state is called two-mode squeezed vacuum (TMSV) state because it is similar
to the single-mode squeezed state exp

�

−χ â†2/2 + χ∗â2/2
�

|0⟩, but involves two different
modes for signals and idlers. In each term of the series expansion in eq. (1.20), the number
of the signal and idler photons are the same, meaning that zero to infinitely many signal-
idler pairs are produced with decreasing probability. The probability to find N photon pairs
in the state is given by [101]

p(n pairs) =
µn

p

(1 + µp)n+1
, (1.21)

with the mean photon pair number µp = sinh2(r). The photon pair probability distribution in
eq. (1.21) is the same probability distribution that describes the photon number distribution
of a single-mode thermal light source [99].

In entanglement-based QKD, the generation of multiple photon pairs can lead to quantum
bit errors when Alice and Bob detect photons from different pairs because these photons
are not entangled. The effect of the generation of two pairs on time-bin entanglement
experiments was analyzed in ref. [102]. The simulations of the q-hub system in chapters 6
and 7 consider effects from multi-photon-pair emission of all orders systematically.

Broadband SPDC
SPDC generally produces photon pairs in wave packets with a broader spectrum and some
spatial distribution. As the nonlinear crystals employed in the q-hub QKD system only
guide a single spatial mode, spatial dependencies are irrelevant. For the wave packets,
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wave packet creation operators and annihilation operators are introduced. A single photon
wave packet ξ, for example, can be described by the state |1ξ⟩ = â†

ξ
|0⟩. Assuming that the

bandwidth of the field excitation is much smaller than the optical center frequency, the
wave packet creation operator can be represented as [103, 104]

â†
ξ
=
∫︂

ξ(t)â†(t) d t =
∫︂

ξ̃(ω)â†(ω) dω . (1.22)

Here, â†(t) and â†(ω) describe the creation of a photon at time t or at frequency ω,
respectively. The functions ξ(t) and ξ̃(ω) are related by ξ̃(ω) = Ft[ξ(t)](ω) and similarly,
â†(t) and â†(ω) are related by [103]

â(t) = F−1
ω (â(ω))(t) =

1
√

2π

∫︂

â(ω) e−iωt dω and (1.23)

â†(t) =
�

F−1
ω

�∗�
â†(ω)

�

(t) =
1

√
2π

∫︂

â†(ω) eiωt dω (1.24)

with the commutators
�

â(t), â†(t ′)
�

= δ(t − t ′) and
�

â(ω), â†(ω′)
�

= δ(ω−ω′) [103].
Using these continuous-mode operators, a broadband SPDC state can be written as7 [98]

Broadband biphoton state generated by spontaneous parametric down-conversion

|ψSPDC⟩ = exp

�

χ

2

∫︂∫︂

ψ̃(ωs,ωi)â†(ωs)â†(ωi) dωs dωi − H.c.

�

|0⟩ (1.25)

= exp

�

χ

2

∫︂∫︂

ψ(ts, ti)â†(ts)â†(ti) d ts d ti − H.c.

�

|0⟩ (1.26)

with the biphoton wave packet ψ(ts, ti). It is convenient to absorb all constant amplitudes
into the real coefficient χ and complex phases into ψ̃ and to normalize the joint spectral
amplitude (JSA) ψ̃(ωs,ωi) = Fts,ti

�

ψ(ts, ti)
�

(ωs,ωi) to

∫︂∫︂

|︁

|︁ψ̃(ωs,ωi)
|︁

|︁

2
dωs dωi = 1 . (1.27)

7The derivation of eq. (1.25) involves multiple assumptions [98]: The pump is assumed to be classical
undepleted coherent light. The nonlinear medium is assumed to be lossless, much longer than the wavelengths,
and to have a frequency-independent nonlinear susceptibility. Effects from time ordering [105] are ignored.
The pump, signal, and idler fields are assumed to have a bandwidth much narrower than the optical center
frequency.
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First-Order Approximation of the Generated Biphoton State
When the SPDC interaction is weak, such that χ ≪ 1, the SPDC state can be approximated
by the first order expansion of eq. (1.25):

|ψSPDC⟩ ≈ |0⟩ + χ
2

∫︂∫︂

ψ̃(ωs,ωi)â
†
s (ωs)â

†
i (ωi) dωs dωi|0⟩ . (1.28)

To facilitate some of the following considerations, it is convenient to drop the vacuum part
and to consider only the wave packet containing exactly one photon pair,

|ψ⟩ =
∫︂∫︂

ψ̃(ωs,ωi)â
†
s (ωs)â

†
i (ωi) dωs dωi|0⟩ . (1.29)

For this state, the two-dimensional probability density to detect the signal and idler photons
at times ts and ti is given by |ψ(ts, ti)|2 and the joint spectral density is given by |ψ̃(ωs,ωi)|2.
The coefficient χ/2 has been dropped and the state is normalized to |⟨ψ|ψ⟩|2 = 1 according
to eq. (1.27). The probability to jointly detect the signal photon in time interval IA and the
idler photon in IB is given by

p[(signal in IA) ∩ (idler in IB)] =
∫︂

IA

∫︂

IB

|ψ(ts, ti)|2 d ts d ti . (1.30)

The probability density ps(ts) for the detection of a signal photon (and, analogously, for
an idler photon) at time ts and the spectral density Ss to detect it at the frequency ωs are
given by the marginal distributions

ps(ts) =
∫︂

|ψ(ts, ti)|2 d ti and Ss(ωs) =
∫︂

|ψ̃(ωs,ωi)|2 dωi . (1.31)

The JSA can be factored into the pump pulse spectrum α̃(ω) and the phase matching
function Φ̃ determined by the properties of the nonlinear medium [98]. Due to energy
conservation, signal and idler fields at ωs and ωi are produced by pump light at the sum
frequency ωp = ωs +ωi:

ψ̃(ωs,ωi) = Φ̃(ωs,ωi) α̃(ωs +ωi) (1.32)

For further considerations, it is convenient to normalize the pump pulse to
∫︂

|α̃(ω)|2 dω = 1 . (1.33)
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The Phase Matching Function
The shape of the phase-matching function depends on the properties of the nonlinear
medium. For a crystal waveguide of length L centered at z = 0 it is given by [106–108]

Φ̃(ωs,ωi) =
∫︂ L/2

−L/2

s(z) exp

�

i

∫︂ z

−L/2

∆k(ωs,ωi,ξ) dξ

�

dz . (1.34)

The function s(z) is proportional to the nonlinear susceptibility and the phase mismatch is

∆k(ωs,ωi,ξ) =
1
c0

�

np(ωs +ωi,ξ)(ωs +ωi)− ns(ωs,ξ)ωs − ni(ωi,ξ)ωi
�

. (1.35)

The subscripts “p”, “s”, and “i” indicate the refractive index of pump, signal, and idler.
When signal and idler photons are parallel polarized, ns(ω) and ni(ω) are equal.

The SPDC processes are distinguished based on the polarization of the photons. When
the photons are parallel polarized to the pump light, the process is called type-0 SPDC.
When they are orthogonally polarized to each other, the process is called type-II SPDC.

For a nonlinear susceptibility independent of z, the integral in eq. (1.34) becomes maxi-
mal for the frequencies where the phase matching condition ∆k = 0 is fulfilled, which is,
in general, the case at frequencies outside of the desired frequency range. To realize phase
matching at a specific frequency, the orientation of the susceptibility and thereby s(z) is
periodically inverted during the crystal manufacturing, which is called periodic poling. A pe-
riodic function s(z) can be written as a complex Fourier series s(z) =

∑︁M
m=−M sm e−i2πmz/Λ.

By choosing a poling period of Λ = 2π/∆k(2ω0,ω0,ω0), phase matching for m = 1 at
ωs = ωi = ω0 is achieved, such that ∆k − 2π/Λ ≈ 0 around these frequencies. For
different m, the phase matching condition ∆k = 0 is fulfilled at wavelengths far away
from the spectral region of interest, such that typically, only one term of the Fourier series
contributes. By including the periodic poling, eq. (1.34) becomes [106–108]

Φ̃(ωs,ωi) ∝
∫︂ L/2

−L/2

exp

�

−i

�

2πz
Λ

−
∫︂ z

−L/2

∆k(ωp,ωs,ωi,ξ) dξ

��

dz , (1.36)

which can be simplified for an ideal crystal with ∆k independent of z to8

Φ̃(ωs,ωi) ∝ sinc
��

∆k(ωs,ωi)
2

− π

Λ

�

L
�

. (1.37)

By using periodic poling, photon pairs around 1550 nm can be generated by type-0 SPDC
and type-II SPDC in periodically poled lithium niobate (PPLN) crystals.
8Following ref. [98], in this thesis the definition sinc(x) = sin(x)/x is used (cf. eq. (A.22)), in contrast to other
literature such as ref. [109] defining sinc(x) = sin(πx)/(πx).
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2 Development of a Multi-User QKD
Network with a Central Quantum Key Hub

One of the central research goals of this doctoral thesis is to develop a quantum key hub
(q-hub), which is the central element of a star-shaped multi-user QKD network comprising
a source of entangled photon pairs and a demultiplexer to distribute the photons to the
network users. The q-hub QKD system presented in this chapter is the successor of a QKD
system for two users, presented in the Ph.D. thesis of Oleg Nikiforov [28]. For the first
tests, a free-space photon pair source generating orthogonally polarized photons for the
two-user QKD system was realized in close collaboration with Oleg Nikiforov and Daniel
Hofmann during Hofmann’s master’s thesis [M1]. Experiments showed that a fiber-based
PPS would be more suitable for the q-hub because it would be more robust and more
flexible. Therefore, a fiber-based PPS was designed to meet the specific requirements
and laser safety regulations for the on-site field test of the q-hub network at a facility of
Deutsche Telekom. It was then realized with Oleg Nikiforov and Maximilian Tippmann
during Tippmann’s master’s thesis [M4].

Another major research challenge of the project was the development of the IFs required
to implement the time bin BBM92 QKD protocol. Setting up the IFs requires only a few
off-the-shelf fiber-optic components, but to achieve low QBERs, the OPDs of the IFs must
be precisely matched. The high requirements on the IF quality may be one reason why, so
far, the time bin BBM92 protocol has not been used to implement multi-user QKD networks.
A new method to build multiple IFs quickly and reliably has been developed. The IFs for
the two-user QKD system and the q-hub system were built using this method, and a patent
of O. Nikiforov, E. Fitzke, and Th. Walther for the method is pending.

An important advancement compared to the two-user system is the synchronization of
the QKD receiver clocks. While synchronization for the two-user system was achieved
by using electrical cables, for the q-hub system, a method using clock recovery from the
arrival time of the photons was developed. A patent of E. Fitzke and Th. Walther for the
clock-recovery method is pending.
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Section 2.1 describes the general concept of the q-hub and the realized setup consisting
of a PPS and a WDM in detail. The PPS comprises several in-house-made modules that can
be combined in different arrangements, providing flexibility for experiments.

Section 2.2 presents setups for measuring photon pair spectra: a dispersion-based spec-
trometer setup and a commercial grating spectrograph placed in a controlled environment,
allowing for cooling to 8 °C. A model is developed to explain the asymmetry of the type-II
spectra, enabling the reconstruction of the complex-valued spectrum required for the QKD
simulation in chapter 7. Furthermore, a model for calculating the generated photon pair
rate from measured photon timestamps is developed, taking into account effects from the
detector dead times, afterpulses, dark counts, and frequency-dependent losses. The model
is applied to determine the SPDC conversion efficiencies of the wavelength converters
employed in the q-hub.

In section 2.3, the requirements on the OPD accuracy and IF delays are calculated. The
optical setup of the in-house-made IFs is described.

Section 2.4 presents further parts of the QKD receivers, such as the timing acquisition
and the temperature-stabilized interferometer containers. A brief overview of the largely
automated network operation is provided.

Section 2.5 describes the synchronization of the receivers using a new method for clock
recovery from the arrival times of the photons. The stability of the receiver clocks is
analyzed, and the performance of the clock recovery is investigated.

Details about this PPS will be published in ref. [VIII]. The whole q-hub network and first
results of the field test are presented in publication [II].

2.1 Setup of the Quantum Key Hub

A star-shaped QKD network with a central q-hub is schematically shown in fig. 2.1 (a). The
q-hub enables simultaneous, pairwise, independent QKD in the network and implements the
BBM92 QKD protocol described in section 1.2. The essential element of the q-hub is a PPS
generating photon pairs with a spectrum much broader than the spectrum of the pump
light. The photon pairs are generated by SPDC, and the energy conservation condition from
eq. (1.19) ensures that the sum of the signal and idler frequencies ωs and ωi equals the
frequency ωp of the light pumping the SPDC process. This means that the frequencies of
each of the photons can vary in a wide range determined by the phase-matching bandwidth,
but the sum of the frequencies of both photons from a pair can only vary in the narrow
spectral range of the pump light. As a consequence, the frequencies of the photons are
anti-correlated. Multiple pairs of users can, therefore, be addressed by demultiplexing the
photon spectrum into multiple frequency channels and assigning channels with symmetric
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Figure 2.1: Concept of the quantum key hub (q-hub). (a) Star-shaped QKD network with four
users Alice, Bob, Charlie, and Diana receiving photon pairs from the q-hub through a quan-
tum channel. A classical channel enables communication for network management and key
postprocessing. (b) Distribution of photon pairs to the users using a wavelength-division
demultiplexer (WDM). Energy conservation ensures that the frequencies of signal and idler
photons are symmetric around the center frequency, such that Alice and Bob obtain a quantum
key and Charlie and Diana simultaneously obtain a different one.

spacing around the center frequency to pairs of users that want to exchange quantum keys
(cf. fig. 2.1 (b)) [110]. Using this principle, 2N users in N pairs can exchange quantum
keys simultaneously. The maximum number of usable channel pairs depends on the width
of the photon pair spectrum as well as the width and spacing of the WDM channels.

The distribution of quantum keys between all possible user combinations in star-shaped
QKD networks with more than two users have been realized by using wavelength-division
demultiplexers (WDM) and time-division demultiplexing [26, 111, 112]. Instead of using
fixed WDM channel configurations for such networks, the channel assigned can also be
switched dynamically based on the key demands in the network. Dynamic networks
have been demonstrated by combining a WDM with an optical switch [113] or by using
a wavelength-selective switch (WSS) as a WDM [27, 114, 115].
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A number of publications about entanglement-based multi-user QKD networks were
released in the same year as ref. [II], demonstrating that developing such networks is an
active field of research:

• A laboratory network with three users equipped with unbalanced Mach-Zehnder
IFs and a similar PPS as the one used in the q-hub was demonstrated in ref. [116].
The system uses a protocol with active basis choice in the receivers and requires
polarization re-adjustments for stable long-term operation.

• In ref. [117], entanglement distribution between four users and QKD between two
users are demonstrated with photon pairs generated in a microring resonator operated
in CW (continuous-wave) mode. The two bases are realized by setting up two IFs
for each user with different phases. To achieve long-term stability, laser light is
injected into the IFs, and the phases are adjusted with a control loop monitoring the
interference with a photodiode.

• A fully-connected network for 40 users using a QKD protocol based on chromatic
dispersion was presented in ref. [118]. The dispersive elements map the frequency
entanglement to the time domain [119, 120], such that the network is polarization-
insensitive and does not require IFs. QKD over a partially deployed fiber link using
this protocol was demonstrated in ref. [121].

Compared to other entanglement-based QKD systems, the q-hub network combines
several unique features. The field test presented in chapter 3 is the first field test of a QKD
system with four users using the time bin BBM92 protocol. An advantage of this protocol
is its insensitivity to polarization changes in the transmission fiber. The receiver modules
are kept very simple to improve the scalability of the number of users. Neither phase
shifters nor a classical interference signal are required for the phase stabilization of the
IFs, which is solely achieved by temperature adjustments minimizing the QBER [28]. The
synchronization of the receivers is achieved by clock recovery from the arrival time of the
photons, such that neither an additional synchronization channel nor particularly stable
local clocks nor synchronization to a GPS signal are required. Instead of a fully-connected
network, a reconfigurable network is implemented. The advantage of reconfigurable
networks is that the available resources can be efficiently used to generate keys between
the users based on the actual key demands.
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The network and the modules were designed according to the following criteria, taking
into account experiences from Nikiforov’s field test of the two-user QKD system [28]:

Flexibility During development, various experiments beyond the usual QKD operation were
necessary. Therefore, the software and hardware are designed to provide the required
flexibility. The PPS is designed such that the individual modules can be operated as
stand-alone devices. They can be used together for QKD but also individually or in
different arrangements for other experiments. Furthermore, future upgrades of the
PPS, enabling the implementation of different QKD protocols or photonic integrated
circuits for photon pair generation, are easily possible.

Robustness and Compactness The hardware was designed to enable stable QKD during
the field test in a server room of Deutsche Telekom. The optical setup was built
compactly using fiber components to avoid cleaning and re-aligning free-space optics
and meet space constraints known from the first field test.

Scalability Photon losses were minimized to enable high key rates and long transmission
distances. Although only four receivers were implemented, the q-hub was designed
so that a higher number of receivers can be connected.

Compatibility Whenever possible, cost-effective, off-the-shelf components were used to
maximize the compatibility with regular optical telecom networks. The center fre-
quency was aligned to the ITU-T DWDM grid [74], so commercial WDMs aligned to
this grid can be used to distribute the photons to the users. The receiver modules
and the PPS were built to fit into typical 19 inch wide electronics racks.

The general, simplified concept of the PPS of the q-hub is shown in fig. 2.2. Nearly Fourier-

CW laser EOAM Pump IF SHG SPDC

Pulse
 generator

Figure 2.2: Simplified concept of the photon pair source. An electro-optic amplitude modu-
lator (EOAM) shapes CW laser light into pulses, which are split into two half-pulses by the
pump interferometer (IF). The pulses are then frequency-doubled in a second-harmonic gener-
ation (SHG) stage. Photon pairs are generated by spontaneous parametric down-conversion
(SPDC). Polarization-maintaining (PM) fibers are shown in blue, and the single-mode (SM) fiber
behind the SPDC is shown in yellow.

29



limited laser pulses are created by sending CW laser light at the center frequency ω0

through an electro-optic amplitude modulator (EOAM). In the pump interferometer, the
pulses are split into two half-pulses with a fixed phase relation. Both halves of the pulse
pump a second-harmonic generation (SHG) process in a nonlinear optical crystal, doubling
the center frequency of the pulses to 2ω0. The SHG pulses are then sent into a second
nonlinear optical crystal to produce photon pairs by SPDC. This concept has the advantage
that widely available fiber components for light around 1550 nm can be used for all parts
of the setup except for the connection of the SHG and SPDC stages. Furthermore, using
components identical to those installed in the receiver IFs makes it easier to match the
OPD precisely to that of the receivers.

For the realization of the PPS according to this scheme, additional components such as
amplifiers and optical filters are required. To achieve maximum flexibility, the q-hub is
split up into different modules, each comprising all components required to realize one of
the core functionalities: a frequency-stabilized seed laser, two inhouse-made erbium-doped
fiber amplifiers (EDFAs), a pulse generation module, the pump IF, an SHG module, two
SPDC modules, and three different WDMs. The modules can be combined in different
configurations to realize various experiments. Three arrangements of the modules that are
used to generate time-bin entangled photon pairs via type-II SPDC are shown in fig. 2.3.
The first group of modules for generating the laser pump pulses is described in section 2.1.1.

Seed laser

EDFA-1

EDFA-2

Source IF

SHG

Type-II SPDC

Type-II 
configuration

Seed laser

Pulse generation

EDFA-2

Source IF

SHG

Type-0 SPDC

Type-0 
configuration

WDM

Seed laser

Pulse generation

EDFA-2

Source IF

⇵ Type-0 SPDC

Single-converter 
configuration

Filters

WDM

Li
gh

t p
ro

pa
ga

tio
n

Pulse generation

Figure 2.3:Module configuration of the photon pair source for three operation modes. Modules
represented by filled boxes can be integrated into a mounting frame for 19 inch wide electronics
racks (cf. fig. 2.4). In the single-converter configuration described in detail in section 3.2, the
type-0 SPDC module is extended by further components such that it generates SHG light in the
forward pass and photon pairs in the backward pass.
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Modules for photon pair generation and WDM are described in section 2.1.2. The source
interferometer is described together with the receiver interferometers in section 2.3.

A welded steel mounting frame with a height of four standard rack height units holds
the EDFAs, the pulse generation state, the SHG module and one of the SPDC modules
at a time. Two vertical rows of through-holes at the sides allow mounting the frame in
standard 19 inch wide electronics racks. The frame-mountable modules contain most of the
optics of the PPS. The module cases are constructed from black anodized aluminum plates.
The walls and the top covers are fixed by screws and can be easily removed. All optical
connectors are placed at the front panels (cf. fig. 2.4 (a)), and all electrical connections are
placed at the rear panels (cf. fig. 2.4 (b)). The EDFA modules and the pulse generation
module feature ventilation grids in the front panel and 80 mm fans installed at the rear
panels to provide ventilation and remove the heat generated inside the module boxes.
Dividing walls are installed inside the box for laser safety, preventing a direct line of sight
into the modules. Therefore, direct laser light cannot leave the box via the ventilation
openings. Both EDFA modules feature a key switch in the front panel connected to an
interlock circuit, so the laser drivers cannot be activated without the keys.

(b)

(a)

1 2

3
4

5

12

4

5
3

Modules:
 

1 EDFA-1
2 EDFA-2
3 Pulse generation
4 Type-II SPDC
5 SHG

Figure 2.4: Photon pair source consisting of multiple modules in a mounting frame for 19 inch
wide electronics rackswith a size of 48 cm× 18 cm× 44 cm (width× height× length). (a) Front
panels of the modules with connectors for optical fibers. (b) Rear panels with electrical
connections and fans.
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2.1.1 Laser Pulse Generation

Seed Laser
The seed laser for the PPS is a CW diode laser1 emitting approximately 25 mW linear
polarized light. The seed laser is always operated with a subsequent optical isolator
to protect it from possible reflections at subsequent components. The laser has a built-
in gas cell filled with the NIST standard reference material 2519a, hydrogen cyanide
H 13C 14N [122]. The laser wavelength is locked to an absorption line of the gas cell,
providing a precise frequency reference for the q-hub. The center frequency ν0, angular
center frequency ω0, and the corresponding center wavelength λ0 of the seed laser are

The center frequency of the q-hub QKD network

ω0 = 2πν0, ν0 = 193.350 171(5)THz , and λ0 = 1550.515 61(4) nm . (2.1)

The uncertainty of 5 MHz is determined by the accuracy of the frequency locking and by
the linewidth of 1 MHz. While the width of optical spectra, for example, for filters, is often
specified in nanometer, the ITU-T DWDM channels are specified in the frequency domain,
and a common channel width is 100 GHz [74]. A handy rule of thumb for conversions
between wavelength intervals and frequency intervals around 1550 nm is the following
scaling factor:

|︁

|︁

|︁

|︁

dλ(ν)
dν

|︁

|︁

|︁

ν0

|︁

|︁

|︁

|︁

≈ 0.80 nm
100 GHz

. (2.2)

Pulse Generation Module
The pulse generation module is shown in fig. 2.5. It contains a lithium-niobate-based
EOAM2, a fiber-optic beam splitter, and an electronic high-frequency amplifier3 amplifying
the modulation signal to the voltage of about 5.6 V required to switch the modulator from
the completely closed state to the completely open state. The specified bandwidths of the
modulator and the amplifier are 10 and 8 GHz.

The modulator must be aligned to completely block incoming light when no electrical
signal is applied to the high-frequency input. This is achieved by using a bias controller4

applying a constant voltage plus a small dither signal at a frequency of 1040 Hz to the
electrical bias input of the modulator. A fraction of 10 % of the light after the modulator is
split off by the beam splitter and fed into the optical input of the bias controller, and the

1Seed laser: Clarity NLL-1550-HP from Wavelength References, Inc.
2Electro-optic amplitude modulator: MXAN-LN-10 from iXblue.
3Electronic high-frequency amplifier: DR-DG-10-HO from iXblue.
4Modulator bias controller: MBC-DG-LAB-A1 from iXblue.
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Figure 2.5: Pulse generation module. (a) Photo of the module interior. (b) Scheme of the
components. The bias controller, the laboratory power supply, and the pulse generator are not
integrated into the module container (dashed line). BS – Beam splitter (10/90 tap coupler),
EOAM – Electro-optic amplitude modulator, HF-Amp. – High frequency amplifier. The numbers
indicate the location of the components in the container.

controller automatically locks the IF phase to zero by adjusting the bias voltage based on
the optical input signal. The optical input for the modulator and the two outputs of the tap
coupler are guided to connectors at the front panel. At the rear panel, the electronic signal
for the amplifier is supplied through an SMA connector, and the modulator bias voltage is
supplied through a BNC connector. The supply voltage for the high-frequency amplifier
and a constant voltage to control its gain are generated by an external laboratory power
supply5 and provided through a DE-9 D-sub connector.

Two pulse generators from Hewlett Packard are available to generate the electronic pulses
to be applied to the modulator: model HP 8131A for repetition frequencies up to 500 MHz
and pulse durations down to 380 ps and model HP 8133A for repetition frequencies between
33 MHz and 3 GHz and pulse durations between 150 ps and 10 ns. The clocks of the pulse
generators are relatively unstable, and therefore, the generators are triggered by a stable
clock generator6.

EDFA-1 Module
The EDFA-1 module is designed to amplify the seed laser light before it is chopped into
pulses by the pulse generation module. The EDFA is set up so that the seed and pump light
are co-propagating, minimizing the number of required components. The setup is shown
in fig. 2.6. It comprises a pump laser, a Faraday isolator, a wavelength combiner, 104 cm of
erbium-doped fiber, a pump filter, a bandpass filter, and a 1/99 beam splitter. The pump

5Laboratory power supply: 2231A-30-3 from Keithley.
6Clock Generator: CG635 from Stanford Research Systems.
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Figure 2.6: EDFA-1 module. (a) Photo of the module interior. (b) Scheme of the components.
Iso – Optical Isolator, λ-comb. – Wavelength combiner, P. filter – Pump filter, BPF – Band pass
filter, BS – Beam splitter (1/99 tap coupler). The doped amplifier fiber is shown in green.

laser diode7 emitting pump light at a wavelength of 976 nm is mounted on a laser driver8.
The Faraday isolator protects the pump laser from reflected light. Seed light at 1550 nm
and pump light are combined in the wavelength combiner into the core of the doped PM
fiber9 and remaining pump light is filtered out by the pump filter after the doped fiber. The
length of the doped fiber was optimized by repeatedly measuring the power at 1550 nm
and clipping a longer piece of the doped fiber until a maximum output power was reached.
The 6.5 nm wide bandpass filter suppresses light from amplified spontaneous emission (ASE)
around 1530 nm and the tap coupler splits off one percent of the output for the internal
power monitoring electronics.

The power monitoring electronics developed by Oleg Nikorov is described in detail
in ref. [M4]. It features a photodiode receiving a small fraction of the output power.
The electrical signal of the photodiode is amplified and low-pass filtered. When the
EDFA is seeded with CW light or pulses at Megahertz repetition rates, the voltage level is
proportional to the average optical output power of the module. This electrical signal is
directly accessible from outside the module via a BNC connector at the rear panel and can
be used as a feedback signal for output power stabilization. Furthermore, the voltage is
provided to a threshold detection circuit connected to the interlock of the laser driver. The
interlock is only released if the key in the module’s front panel is turned to activate the
driver. The photodiode detects optical powers above a certain threshold, indicating that
seed light is present. If the driver is running and the circuit notices a drop of the output

7Laser diode: 1999CVB from 3SP Technologies.
8Laser driver: CLD1015 from Thorlabs.
9Erbium-doped fiber: ESF-7/125 from Nufern.
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power below the threshold, the interlock is activated within less than 32 µs to prevent
damage to the EDFA, which could occur when the doped fiber is pumped but not seeded.

The front panel of the module provides fiber connections for the optical input and output.
The touchscreen display of the pump driver is integrated into the front panel. The rear panel
features a USB port allowing for remote control of the driver as well as two potentiometers
to adjust the photodiode amplifier gain and the interlock threshold value of the power
monitoring electronics.

Figure 2.7 (a) shows the output power as a function of the pump current. The maximum
output power at the highest pump current of 1471 mA is 173.8(87) mW. This power is well
above the 100 mW maximum allowed input power of the EOAM in the pulse generation
module, so the amplitude modulator’s input power range can be fully used.

A clean output spectrum of the EDFA is important to avoid the contamination of the
photon pair spectra with noise. The output spectrum is shown in fig. 2.7 (b), featuring only
the peak at the seed wavelength. The pump light at 976 nm and the ASE around 1530 nm
are suppressed by more than 70 dB.

EDFA-2 Module
The EDFA-2 module is designed to amplify the light pulses generated by the pulse generation
module. It contains an inhouse-made EDFA using the doped PM fiber and pump laser of the
same type as EDFA-1. A bidirectional configuration was chosen to optimize pulsed operation.
The EDFA-2 consists of a four-port optical circulator, a wavelength combiner, a pump laser
protected by an isolator, 82 cm of erbium-doped fiber, two fiber Bragg gratings (FBGs) and
a 1/99 beam splitter. The length of the doped fiber was optimized by repeatedly measuring
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Figure 2.7:Performance of EDFA-1when seededwith the seed laser (cf. section 2.1.1). (a) Output
power (left) and pump power (right) as a function of the pump driver current. (b) Optical output
spectrum showing a clean peak at the seed wavelength λ0.
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the power at 1550 nm, clipping the doped fiber, and splicing the FBG to the end until the
maximum output power was reached.

The setup of EDFA-2 is shown in fig. 2.8. The front and rear panels of the EDFA-2
module have the same connections as the EDFA-1 module. The seed light enters the EDFA-2
via the first port of a circulator and leaves it at the second port before it is combined
with the pump light in the wavelength combiner. In the first pass, seed and pump light
co-propagate along the doped fiber. The amplified light is then reflected by the FBG with
a reflection bandwidth of 50 GHz centered at λ0. Thereby, the spectrum is cleaned from
other unwanted wavelengths. The reflected light travels backward through the doped fiber
and is further amplified. The light re-enters the circulator and leaves it at port 3, where
a second FBG cleans the spectrum. One percent of the power leaving the circulator at
port 4 is split for the power monitoring electronics.

The pulse energy after the pulse generation module is limited by the maximum input
power of the EOAM. Amplifying these pulses to the desired output energy requires a high
gain, which comes at the price of stronger ASE. The advantage of the bidirectional design
is that the first FBG filters out the ASE light from the forward pass, and only the desired
light at 1550 nm is further amplified in the second pass before being filtered again. This
allows for a relatively high gain in combination with a high ASE suppression.

Figure 2.9 (a) shows the output power as a function of the pump driver current for
three different pulse repetition rates. The optical output power increases approximately
linearly with the current of the pump laser. An important figure characterizing EDFA-2 is
the maximum achievable peak power of the output pulses. The maximum peak powers
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Figure 2.8: EDFA-2 module. (a) Photo of the module interior. (b) Scheme of the components.
PM fibers are shown in blue, and the doped fiber is shown in green. BS – Beam splitter (1/99
tap coupler), FBG – Fiber Bragg grating, Iso – Optical Isolator, λ-comb. – Wavelength combiner,
Monitor – Power monitoring electronics.
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Figure 2.9: Performance of EDFA-2 when seeded with EDFA-1. (a) Average output power as
a function of the pump driver current for different repetition frequencies. (b) Output spectrum
at a pulse repetition frequency of 10MHz and at the maximal pump driver current of 1500mA.
The light is transmitted through an FBG attached to an additional circulator, suppressing the
seed wavelength by 28dB.

are 17.3 W at 10 MHz, 2.47 W at 100 MHz and 0.74 W at 300 MHz and pulse lengths of
roughly 400 ps. The maximum average input power for the wavelength converter in the
SHG module is 500 mW. The input peak power is kept below this value for pulsed operation
to avoid damaging the crystal. For typical repetition rates of 110 to 220 MHz at which
the PPS is operated for QKD, this means that peak powers close to the maximum input
power of the SHG module can be generated with EDFA-2, even when the insertion losses
introduced by the pump IF are taken into account.

Figure 2.9 (b) shows the output spectrum of EDFA-2. The ASE suppression in the main
output after the second FBG is so high that ASE was not directly measurable with the optical
spectrum analyzer. To estimate the suppression, a circulator with an FBG at the second
port was connected to the EDFA-2 output. The FBG reflected most of the light at the seed
wavelength, while the rest of the spectrum was transmitted to an optical spectrum analyzer.
Even at the lowest repetition frequency of 10 MHz and at the highest pump driver current
of 1500 mA, no ASE was measurable with a noise floor around −52 dB. The extinction
ratio of the pump light in transmission of the FBG was measured to 28 dB, such that the
ASE suppression in the main output can be estimated to be better than 80 dB.

SHG Module
The SHG module, shown in fig. 2.10, doubles the optical frequency of the pump light pulses
to a wavelength of 775 nm. The module contains a wavelength converter, a shortpass
filter removing remaining light at 1550 nm after the conversion, a 1/99 fiber beam splitter,
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Figure 2.10: SHG module. (a) Photo of the module interior. (b) Scheme of the components.
λ-converter – fiber-coupled type-0 nonlinear wavelength converter, BS – Beam splitter (1/99
tap coupler), Temp. ctrl. – Temperature controller, Monitor – Power monitoring electronics.

and power monitoring electronics. The wavelength converter10 contains a fiber-coupled
periodically-poled lithium niobate (PPLN) waveguide with a length of 34 mm and angle-cut
anti-reflection-coated end facets. The converter used in the SHG module is the one of two
identical models, and the other one is used in the type-0 SPDC module. The crystal is quasi-
phase matched for SHG from 1550 to 775 nm at a temperature of 43.5 °C. A thermistor and
a thermoelectric cooler (TEC) for temperature control are integrated into the wavelength
converter. The crystal temperature can be controlled by connecting an external temperature
controller11 to a D-sub connector at the rear panel of the SHG module. The shortpass filter
consists of two fiber spools with a diameter of 31 mm, around which more than 4 m of
PM fiber12 specified for 780 nm are wound. At this bending diameter, the light at 775 nm
is guided without significant loss, and the polarization is maintained, while light around
1550 nm is coupled out, experiencing high losses. In a test with two meters of such spooled
fiber, a suppression of more than 79 dB was observed for light at 1550 nm. Both fiber spools
are covered by black anodized aluminum hoods absorbing the out-coupled light. The 1/99
coupler splits off one percent of the SHG light for the power monitoring electronics, which
is similar to the electronics integrated into the EDFA modules. However, in the SHG module,
neither a key switch nor an interlock is implemented.

Figure 2.11 (a) shows the measured average SHG power as a function of the average
fundamental power at a repetition frequency of 100 MHz. The curve slightly deviates from
a purely quadratic dependency due to non-negligible pump depletion. Figure 2.11 (b)

10Wavelength converter (purchased in 2020): WH-0775-000-F-B-C from NTT Electronics.
11All three temperature controllers for the SHG module and the SPDC modules are TED200C from Thorlabs.
12PM fiber for 780 nm: PM 780-HP from Nufern.
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shows the pulse shape of the SHG pulses for different repetition frequencies, measured with
a fast photodetector13 and a broadband oscilloscope14. The pulses are almost rectangular,
but the falling edges show tails. Furthermore, although the width was always set to 400 ps,
the full width at half maximum (FWHM) depends non-monotonously on the repetition
frequency. This variation is also present in the fundamental pulses and can be attributed to
an imperfect realization of the desired pulse duration by the HP 8131A pulse generator.

2.1.2 Generation and Separation of Photon Pairs

Two SPDC modules were built to generate orthogonally or parallel polarized photon
pairs. Two arrayed-waveguide gratings (AWGs) and a wavelength-selective switch (WSS) are
available as WDMs.

Type-II SPDC Module
The type-II SPDC module is shown in fig. 2.12. It generates orthogonally polarized photon
pairs around the center frequency λ0 and separates the photons by their polarization. The
module contains a fiber-coupled wavelength converter, two longpass filters, a bandpass
filter, and a polarization beam splitter. The wavelength converter15 features a 24 mm long
PPLN crystal waveguide quasi-phase-matched for type-II SPDC from 775 to 1550 nm. This
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Figure 2.11: Performance of the SHG module. (a) Average second-harmonic output power
as a function of the average fundamental light power at a repetition frequency of 100MHz.
(b) SHG pulse shapes at different repetition frequencies for a set pulse width of 400ps. The
FWHM of the pulse varies between 381 ps at 100MHz over 418 ps at 10MHz up to 482ps at
300MHz.

13Photodetector module: New Focus 1454 from Newport with a rise time of 18.5 ps.
14Oscilloscope: MSO72004C from Tektronix with a bandwidth of 20 GHz.
15Type-II wavelength converter: WDC-K0775-P15P78AL0 from AdvR.
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Figure 2.12: Type-II SPDC module. (a) Photo of the module interior. (b) Scheme of the com-
ponents. λ-converter – fiber-coupled type-II nonlinear wavelength converter, LPF – Longpass
filter, BPF – 5nm Band pass filter, Pol. BS – Polarization beam splitter.

converter was used to generate photon pairs during Nikiforov’s field test of the two-user
QKD system [28]. Similar to the SHG module, the crystal temperature is controlled by
a temperature controller. The longpass filters remove the SHG light from the photon
pairs with a suppression of more than 60 dB per filter, and the bandpass filter suppresses
wavelengths outside of a 5 nm wide window around the center wavelength of the photon
pairs.

Type-0 SPDC Module
The type-0 SPDC module generates parallel polarized photon pairs with a broad spectrum.
The module contains a wavelength converter, two longpass filters, and a bandpass filter
transmitting only the optical C-band from 1525 to 1572 nm. Figure 2.13 shows the setup
of the module. The wavelength converter is the same model as in the SHG module16, and
the longpass filters are of the same type as those in the type-II SPDC module.

Wavelegth Division Demultiplexers
Three different WDMs are available for demultiplexing the type-0 SPDC spectrum: an AWG
with 96 channels and a channel width of 50 GHz, an AWG with 44 channels and a channel
width of 100 GHz, and a WSS with nine outputs. The channel width of the WSS can be set
between 6.25 GHz and the whole operating wavelength range in steps of 3.125 GHz.

Figure 2.14 shows the expected spectrum for the type-0 SPDC module, the spectrum
of the C-band filter, and the wavelength ranges accessible with the different WDMs. The
sinc2-shaped SPDC spectrum was calculated based on eq. (1.37) using the properties of
the type-0 wavelength converter. It is almost constant over the pass band of the C-band

16Wavelength converter (purchased in 2018): WH-0775-000-F-B-C from NTT Electronics.
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Figure 2.13: Type-0 SPDC module. (a) Photo of the module interior. (b) Scheme of the compo-
nents. LPF – Longpass filter, λ-converter – fiber-coupled type-0 nonlinear wavelength converter,
Temp. ctrl. – Temperature controller. For all measurements presented in this thesis, the C-band
filter was connected with fiber connectors. Afterwards, it was permanently spliced to the LPFs,
so the insertion loss observed in future experiments may be slightly lower.
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filter. The spectral ranges accessible with the WDMs are narrower than the spectra of the
wavelength converter and the C-band filter, so the bandwidth available for QKD is limited
by the WDMs. For signal photons produced in the light-colored frequency ranges, the
idler photon is already outside of the wavelength range of the WDM. This means only the
symmetric part (saturated bars in fig. 2.14) of the technically accessible frequency range
around ν0 can be used for QKD. With the current choice of ν0 (cf. eq. (2.1)), the practically
usable wavelength ranges around ν0 are ±1.65 THz for the 100 GHz AWG, ±2 THz for
the 50 GHz AWG and ±2.25 THz for the WSS. Theoretically, this enables QKD between
34 users with the 100 GHz AWG or between 78 users with the 50 GHz AWG. Although the
WSS has the widest usable spectral range, only nine users can be connected due to the
limited number of outputs. By shifting the center frequency to the center of the WDM
spectra, the number of users that can simultaneously be connected to the q-hub could be
slightly increased. However, because the filters and FBGs used in the different modules are
tailored to the center frequency, using a different center frequency would require different
components.

Figure 2.15 shows transmission spectra for typical channels of the WDMs. The relative
transmission at the top of the peak is for the AWGs lower than for the WSS, meaning that
the AWGs introduce higher losses, resulting in lower key rates. For the WSS, the edges
of the transmission peaks are very steep. In fact, the resolution of the optical spectrum
analyzer limits the measured slope for the WSS. In comparison, the spectra of the AWGs
have considerably shallower edges. At the base, the shapes of these peaks are broader than
the nominal channel width, meaning that adjacent AWG channels will show some spectral
cross-talk due to the overlapping foothills of the transmission peaks.

2.2 Characterization of the Photon Pair Source

In this section, the performance of the PPS is characterized. Section 2.2.1 presents the
methodology and results of conversion efficiency measurements for the SPDC modules.
Measured photon spectra for both SPDC modules are presented in section 2.2.2. Further
details about the performance of the PSS are presented in ref. [VIII].

2.2.1 Conversion Efficiency Measurements

The strength of SPDC fields depends on multiple parameters characterizing the nonlinear
crystal. The signal power is proportional to the pump power as well as to the squares
of the crystal length and of the coefficient of the nonlinear interaction [123]. Further
quantities determining the signal power, such as the exact effective cross-section area of the
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waveguide and the coupling losses into and out of the waveguide, are not precisely known
for the wavelength converters. However, a precise value for the efficiency of conversion
of SHG photons into photon pairs is required to calculate the mean photon pair number
per pulse µP for the simulations of the QKD system in chapters 6 and 7. Therefore, the
conversion efficiency was measured.

One way to quantify the conversion efficiency is to define the dimensionless parameter ε
as the probability that a SHG photon is converted into a photon pair. The produced photon
pair rate is then given by

Rpair = ε
PSHG

2ℏω0
, (2.3)

with the SHG pump power PSHG and the energy 2ℏω0 of the pump photons. To measure
Rpair, the crystal is pumped with a known SHG power, signal and idler photons are separated
and guided into two detectors, and Rpair is obtained from the coincidence rate of the signal
and idler counts. The type-II photon pairs are separated by using a polarization beam
splitter. The type-0 photons can be probabilistically separated by using a 50/50 beam
splitter, or they can be separated by using a WDM.

However, many photons are lost, and detector imperfections such as dark counts, the
dead time, and afterpulses (cf. chapter 5) further complicate the calculation of Rpair from
the measurements. The directly measurable data are the average SHG pump power and
the timestamps of the detector counts of the signal and idler detector, from which three
rates are calculated: the signal count rate rs, the idler count rate ri, and the coincidence
count rate R. The conversion efficiency ε and the unknown transmission probabilities
for signal and idler photons can be calculated from these values. A model has been
developed for this calculation, correcting for detector dark counts, afterpulses, and dead
times. The first version of the model was developed during the master’s thesis of Daniel
Hofmann [M1]. It was then extended to incorporate afterpulses, frequency-dependent
losses, and probabilistic separation of parallel polarized photon pairs during the master’s
thesis of Lucas Bialowons [M5]. An improved method to treat the detector dead time and
afterpulses by data postselection was integrated during the master’s thesis of Maximilian
Mengler [M8]. The model is described in detail in appendix B, where its correctness is
verified with simulated timestamps. The simulation also shows that all the considered
effects need to be taken into account in the efficiency calculation to obtain correct results.

For the conversion efficiency measurements, the SPDC modules were pumped with CW
laser light, and a beam splitter was inserted after the SHG module to split off ten percent
of the SHG power for monitoring PSHG. For the type-II measurement, the photon pairs
are separated with a polarization beam splitter. For the type-0 measurements, the central
region of the spectrum was selected with a 7 nm wide bandpass filter, and the photon pairs
were probabilistically split by a 50/50 beam splitter. Timestamp values from both detectors
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are saved over 120 seconds for several different SHG powers, and the conversion efficiency
model is applied to each measurement. The conversion efficiency and transmission values
are then obtained by averaging the results for the different SHG powers.

For the different converters, the calculated values for ε as well as ts and ti are tabulated
in table 2.1. For convenience, the conversion efficiency is given both in photon pairs per
SHG photon and in pairs per second per milliwatt SHG pump power. For QKD, not the
complete spectrum of the type-0 converter is used, but instead, narrower channels are
selected, and therefore, a spectral efficiency density εν per frequency interval is introduced.
The type-0 spectrum is so broad that the spectral density is essentially constant over the
typical channel width (cf. fig. 2.14), such that the efficiency for a specific channel width is
obtained by multiplying εν with the channel width. Assuming a channel width of 100 GHz,
the type-0 converters are roughly two orders of magnitude more efficient than the type-II
converter. As the wavelength converters in the SHG and type-0 SPDC modules are identical,
SPDC was tested with both converters. The converter purchased in 2018 was then selected
for the type-0 SPDC module due to its higher conversion efficiency density εν and lower
insertion losses. The converter purchased in 2020 was built into the SHG module.

Frequency-Dependent Losses in the WDMs
When WDMs are used for separating the photons, it is important to consider their frequency-
dependent transmission functions because they lead to correlations between the signal
and idler photons. This aspect is relevant for the crystal efficiency calculation and the
simulation of the QKD system in chapter 6.

It is convenient to split the transmission probabilities for signals and idlers into the
frequency-independent transmissions ts and ti and into ζs and ζi, which contain all

Table 2.1: SPDC performance of the wavelength converters. The type-0 converters are distin-
guished by the year in which they were purchased. The largest contribution to the uncertainty
of the efficiency is the coupling ratio of the beam splitter for tracking the SHG power, which
varies over time. The efficiency is given as ε for the type-II converter and as efficiency density
εν in the center of the spectrum for the type-0 converters.

Wavelength
converter

Efficiency in
pairs per

SHG photon

Efficiency in
pairs per

second per µW

Coupling
efficiencies

ts and ti

Type-II 7.6(4) × 10−10 3.0(2) × 103 28(1)%
Type-0 (2018) 6.7(7) × 10−10/GHz 2.6(3) × 103/GHz 36(4)%
Type-0 (2020) 4.3(4) × 10−10/GHz 1.7(2) × 103/GHz 34(3)%
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frequency-dependent losses. The total transmission probabilities through the WDM for
signal and idler photons are then tsζs and tiζi with

ζs =
1
∆I

∫︂

I

τs(ν0 + ν) dν and ζi =
1
∆I

∫︂

I

τi(ν0 − ν) dν . (2.4)

The functions τs(ν) and τi(ν) with 0 ≤ τs/i(ν) ≤ 1 and maxν∈I (τs/i(ν)) = 1 describe the
frequency dependence of the transmission. To take all transmitted photons into account,
the integration interval I = [Imin, Imax] with ν0 ≤ Imin ≤ Imax and width ∆I = Imax − Imin

must be chosen to be large enough such that the spectral regions where τs and τi attain
non-negligible values are entirely covered.

For strongly frequency-entangled photon pairs, the width of the pump light spectrum is
negligible compared to the width of the photon spectrum. The frequencies of signals and
idlers are anticorrelated due to energy conservation, such that νs = νp − νi (cf. eq. (1.19)).
Therefore, the average transmission probability for a photon pair with center frequency
ν0 = νp/2 is given by ts tiζpair with

ζpair =
1
∆I

∫︂

I

τs(ν0 + ν)τi(ν0 − ν) dν . (2.5)

In general, ζpair ̸= ζsζi, which means that the transmission probabilities for signals and
idlers are not independent. To quantify the correlation, it is convenient to define the spectral
correlation factor

c∆I =
ζpair

ζsζi
. (2.6)

For frequency-independent transmission losses, the factor becomes c∆I = 1. Table 2.2 lists
the values for ζpair, ζs/i and c∆I for the 100 GHz AWG and the WSS channels used in the
QKD field test. For the 7 nm wide bandpass filter used in the type-0 crystal conversion
efficiency measurements, c∆I = 1.38 is obtained for ∆I = 700 GHz. The values for c∆I for
the WDMs, WSS, and bandpass filter significantly deviate from one, which shows that the
correlation introduced by the frequency-dependent losses cannot be neglected. Taking c∆I

into account is therefore important to obtain correct results for the conversion efficiencies
and QKD simulations.

2.2.2 Photon Spectra

The spectra of the photon pairs are highly relevant for the QKD system. The type-0 photon
pairs are separated by WDMs, and the width of their spectrum determines, together with
the WDM channel width, the maximum number of user pairs that can be connected.
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Table 2.2: Spectral correlation factors and insertion losses for the 100GHz AWG and the WSS.
During the field test, Alice and Bob are connected to the WSS ports 5 and 2, and Charlie and
Diana are connected to 4 and 7 (cf. table 3.2).

WDM Ports ∆I c∆I ts, ti ζs, ζi

100GHz AWG C32, C35 150GHz 1.72 −3.5 dB −3.7 dB
WSS, 50GHz channels 5, 2 75GHz 1.48 −2.3 dB −2.4 dB
WSS, 25GHz channels 4, 7 50GHz 1.88 −3.7 dB −2.5 dB

Furthermore, for both type-0 and type-II photon pairs, the shape of the spectrum is relevant
because the broadening of the photon wave packets due to chromatic dispersion can lead
to quantum bit errors. Details about the type-II and type-0 photon spectra have been
published in refs. [I, VIII].

Expected Photon Spectra for Ideal SPDC Crystals
Figure 2.16 shows the type-II joint spectral density |ψ̃(ωs,ωi)|2 for an ideal 24 mm long
PPLN crystal. The bivariate phase matching function Φ̃(ωs,ωi) is almost constant across
the narrow stripe where |α̃(ωs +ωi)|2 attains non-negligible values. It can therefore be
approximated by the univariate function Φ̃(ωs −ωi) ≈ Φ̃(ωs,ωi), which allows to factorize
the JSA:

Factorization of the joint spectral amplitude in diagonal coordinates

ψ̃(ωs,ωi) ≈ α̃(ωs +ωi) Φ̃(ωs −ωi) . (2.7)

Working with eq. (2.7) is facilitated by introducing diagonal coordinates ω± and t±:

ω+ = ωs +ωi

ω− = ωs −ωi
⇔

ωs = (ω+ +ω−)/2

ωi = (ω+ −ω−)/2

|︁

|︁

|︁

|︁

t+ = ts + ti

t− = ts − ti
⇔

ts = (t+ + t−)/2

ti = (t+ − t−)/2
.

(2.8)

The photon spectra are the marginal distributions of the joint spectral density
|ψ̃(ωs,ωi)|2 = |Φ̃(ωs,ωi)|2|α̃(ωs +ωi)|2. To separate the contributions of the pump pulse
and phase matching function, the SPDC process can be pumped with a narrow CW laser,
such that |α(ω)|2 ≈ δ(ωs + ωi − 2ω0). Thereby, the spectral densities for signals and
idlers from eq. (1.31) become

Ss(ωs) =
|︁

|︁Φ̃[2(ωs −ω0)]
|︁

|︁

2
and Si(ωi) =

|︁

|︁Φ̃[2(ω0 −ωi)]
|︁

|︁

2
, (2.9)
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Figure 2.16: Joint spectral density |ψ̃(ωs,ωi)|2 for an ideal 24mm long type-II crystal phase-
matched at ω0, for a 400ps long rectangular pump pulse. The phase matching function
|Φ̃(ωs,ωi)|2 is calculated based on the refractive index data for lithium niobate from ref. [124].
The arrows in the plot of |ψ̃|2 indicate the directions of the diagonal coordinates ω+ and ω−.

such that measuring the photon spectrum directly yields the squared absolute value of the
phase-matching function. The spectral density of the signal and idler photons are the same
functions mirrored at ω0 due to energy conservation. By using eq. (1.37) and calculating
∆k via eq. (1.35) from refractive index data for lithium niobate from ref. [124], the photon
spectra expected for ideal crystals were calculated. Figure 2.17 shows the expected spectral
densities of the signal photons for the type-II and type-0 converters. Although the type-0
crystal is longer than the type-II crystal and both crystals consist of lithium niobate, the
type-0 spectrum is almost two orders of magnitude broader than the type-II spectrum.
This can be understood by considering the expansion of the phase mismatch ∆k from
eq. (1.35) around the center frequency [98]: When the pump light spectrum is so narrow
that the change of ∆k over the frequency interval of the pump light can be neglected, the
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Figure 2.17: Theoretical spectral densities of the signal photons from the PPLN crystals in the
SPDC modules with phase matching at λ0. The values for ∆k′ and ∆k′′ were calculated via
eq. (1.35) based on refractive index data for lithium niobate from ref. [124].

approximations ωp ≈ 2ω0, ωs = ω0 + Ω and ωi = ω0 − Ω yield the following expansion
of ∆k around ω0:

∆k(ωs,ωi) = ∆k(Ω) = ∆k0 +∆k′Ω +
∆k′′

2
Ω2 +O

�

Ω3� with (2.10)

∆k0 = ∆k(ω0,ω0) , ∆k′ =
�

∂ ki

∂ω
− ∂ ks

∂ω

�

|︁

|︁

|︁

|︁

ω0

and ∆k′′ =
�

∂ 2 ki

∂ω2
+
∂ 2 ks

∂ω2

�|︁

|︁

|︁

|︁

ω0

.

(2.11)

In the experiment, the temperatures of the converter crystals are tuned to achieve a precise
compensation of ∆k0 by the poling period Λ = 2π/∆k. For parallel polarized photons, the
term ∆k′ vanishes as well, such that the first contributing term is ∆k′′, leading to a broad
phase matching function [98]. The plots in fig. 2.17 show that truncating ∆k to the first
contributing order, that is, to ∆k′ for type-II SPDC and to ∆k′′ for type-0 SPDC, yields
an excellent approximation of the phase matching function calculated from the refractive
indices. Therefore, the photon spectrum expected for ideal crystals is shaped as sinc2(x)
for type-II SPDC and as sinc2(x2) for type-0 SPDC.

Two methods to measure the spectra were developed during the master’s thesis of Daniel
Hofmann [M1]. First, an insulated housing for a commercial single-photon spectrograph
was built, enabling operation at a lower temperature to improve the noise floor. Further-
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more, a single-photon spectrometer based on chromatic dispersion was developed. Both
methods were presented in publication [I] and are described below.

Spectrograph Setup for Measuring the SPDC Spectra
The spectrograph17 uses a grating with 600 lines per mm and an indium gallium arsenide
detector array18 with 512 pixels, achieving a resolution of 0.07 nm for wavelengths around
1550 nm. Internal thermoelectric coolers cool the detector array to −90 °C. The warm
side of the thermoelectric coolers requires water cooling. The manufacturer recommends
a coolant temperature of 10 °C to reach a low noise level. The laboratory at the university
is not air-conditioned, the humidity cannot be controlled, and the dew point is above 10 °C
during summer. To avoid water condensation inside the detector when cooling it to 10 °C,
the whole spectrograph setup is placed in a self-made insulating box constructed from
extruded polystyrene boards. The spectrograph setup inside the insulating box is shown
in fig. 2.18. Silica beads are placed inside the box to reduce the humidity of the air. An
air-coolant heat exchanger is integrated into the cooling circuit and placed inside the box,
such that the air inside the box is cooled as well to reduce the noise further. The coolant
temperature is set to 1 °C to avoid theformation of ice from condensed water, resulting in an
air temperature of about 8 °C inside the box. At this temperature, the noise background is
approximately four times lower than at an ambient temperature of 25 °C. The box features
a window made of transparent acrylic glass. It is covered by an insulating cover when the
box is cooled. Humidity and temperature inside the box are monitored with sensors. To

(a) (b)

Spectrograph
Detector array Computer

Chiller

SM fiber
input

1

1

2

2

3

4

Silica beads

4

Heat
Exchanger

3

Figure 2.18: Spectrograph setup. (a) View through the acrylic glass window into the insulating
box. (b) Schematic setup of the spectrograph inside the insulating box. The coolant circuit is
shown in light blue.

17Spectrograph: Shamrock 500i from Oxford Instruments.
18Detector array: iDus DU490A from Oxford Instruments.
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avoid condensation, Daniel Hofmann developed a LabVIEW program during his master’s
thesis for monitoring the conditions inside the box, restricting the coolant temperature
to values above the dew point [M1]. When the program detects a sudden increase in the
humidity at low temperatures, for example, due to a leak in the coolant circuit or because
the box is opened when cooled, it automatically shuts down the setup and disconnects the
line voltage to avoid any damage to the electronics of the spectrograph or detector array
due to water condensation.

The spectrum of the type-II module measured for multiple converter crystal temperatures
is shown in fig. 2.19. At a crystal temperature of 41.64 °C, the maxima for both polarization
directions are located at the center frequency. For lower temperatures, the photons polarized
along the slow axes of the PM fiber are shifted to longer wavelengths, and the photons
polarized along the fast axis are shifted to shorter wavelengths.

The temperature-dependent spectrum of the type-0 module was also measured with
the spectrograph and is shown in fig. 2.20. The spectrum splits into two peaks above
approximately 44.5 °C. At temperatures below 43 °C, the spectrum gets narrower and

Figure 2.19: Photon spectrum of the type-II
SPDC module for different converter crystal
temperatures. Tuning the temperature shifts
the peaks for the slow axis (right peak) and
fast (left peak) axis. The overall spectrum is
symmetric around the center wavelength λ0

(dashed line).
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Figure 2.20: Photon spectrum of the type-0
SPDC module for different crystal tempera-
tures. The asymmetry with respect to the
center wavelength λ0 is due to the drop in the
sensitivity of the detector for wavelengths
above 1600nm. The horizontal line marks
the temperature of 43.56 °C used for QKD.
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weaker because the phase matching is not optimal anymore. For the QKD experiments, the
type-0 module is operated at a crystal temperature of 43.56 °C.

Dispersion-Based Single-Photon Spectrometer
The setup of the spectrograph is rather large and not portable. To be able to measure
photon spectra during the QKD field test at the facility of Deutsche Telekom, a portable
single-photon spectrometer was implemented by using the dispersion-compensating fibers
and single-photon detectors. Similar setups have been presented in refs. [95, 125, 126].

Figure 2.21 shows the setup of the spectrometer. One photon of each pair is directly
detected as a herald, and the other photon is sent through the DCFs before being detected.
Due to the group velocity dispersion, the travel time of the idlers in the DCF depends on
their wavelength, so the arrival time difference distribution between signals and idlers
resembles the shape of the idler spectrum (cf. eq. (1.17)). To enhance the signal-to-noise
ratio, only those signal-idler coincidences are evaluated that are additionally coincident
with the trigger pulse of the PPS. The time axis can be directly converted into a wavelength
axis by using eq. (1.13). A double-pass variant of the spectrometer was set up as well to
enhance the spectral resolution. In this configuration, the DCF modules are connected via
a circulator, and a retroreflector is connected to the end, such that the idlers are reflected,
travel backward through the DCFs, and leave the circulator at the third port where they
are detected. The spectral resolution is determined by the timing resolution of the photon
detection limited by the detector timing jitter of approximately 200 to 300 ps (cf. sec-

(a) (b)

Time
controller

Pulse
 generator

DCF60

Photon
pair source

Time
controller

Pulse
 generator

Trigger

RR DCF30

DCF60DCF30

Photon
pair source

Trigger

Figure 2.21: Dispersion-based single-photon spectrometer using two dispersion compensation
fibers (DCFs) (cf. fig. 1.6) for compensating the dispersion in 30 and 60 km long SMFs. The
time controllers measure the times at which the single-photon detectors (SPDs) yield counts.
Sections 2.4 and 5.2 provide more details about the SPDs and time controllers. (a) Single-pass
configuration. (b) Double-pass configuration. RR – Retro reflector.
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tion 5.4). The resolution of the double-pass setup is below 0.1 nm, which is comparable to
the resolution of the spectrograph. Figure 2.22 shows that the spectra acquired with the
dispersion spectrometers match the spectrum acquired with the spectrograph.

Asymmetry of the Type-II Spectrum
The simulation of the QKD system in chapter 7 requires as an input the complex-valued
spectrum of the photons, which is then Fourier-transformed to the time domain. However,
only the squared absolute value of the amplitude is directly measured. Therefore, a model
describing the spectrum is required. The squared absolute value from the model can then
be fitted to the measured spectral density to determine the model parameters.

The type-II spectrum in fig. 2.22 shows a strong asymmetry of the side lobes and is
not well approximated by the sinc2-function expected for an ideal crystal (cf. eq. (1.37)).
Therefore, a different model describing the spectrum was developed.

The asymmetry is due to fabrication imperfections introducing small changes of the
phase mismatch ∆k along the waveguide [106, 127, 128]. To model this z-dependence,
the decoupling approximation [107, 108]

∆k(Ω, z) ≈ ∆k(Ω) + εk(z) (2.12)

is used, separating the uniform ∆k(Ω) from a small frequency-independent spatial pertur-
bation εk(z) [108]. By inserting the approximation into eq. (1.36) and writing the integral
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Figure 2.22: Type-II SPDC spectra measured with the dispersion-based single-photon spec-
trometer in single-pass and double-pass configuration and with the spectrograph. A fit of
eq. (2.14) over ε′k and ε′′k to the double-pass data is shown for comparison.
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over the crystal length as an FT of the phase term multiplied by a rectangle function
(cf. eq. (A.21)), the shape of the phase matching function becomes

Φ̃(Ω) ∝ Fz

�

exp

�

i

∫︂ z

−L/2

εk(ξ) dξ

�

rectL(z)

�

�

∆k(Ω)− 2π
Λ

�

. (2.13)

As the perturbation is small, it can be expanded around the crystal center up to the second
order as εk(ξ) = ε′kξ + ε

′′
kξ

2/2, with the constant order being absorbed into ∆k(Ω). Such
smooth variations of εk along the crystal can be caused, for example, by a variation of the
waveguide width [127]. The spectral density for the signal photons thereby becomes

|Φ̃(Ω)|2 ∝
|︁

|︁

|︁

|︁

Fz

�

exp

�

i
ε′k
2

z2 + i
ε′′k
6

z3

��

rectL(z)
|︁

|︁

|︁

|︁

2�

∆k(Ω)− 2π
Λ

�

. (2.14)

The term exp
�

iε′kz2/2
�

and the rectangle function are even functions in z such that their
FT is also even. Therefore, the lowest expansion order of εk that can lead to an asymmetry
of the spectrum is the z3-term. Figure 2.22 shows a fit of eq. (2.14) over ε′k and ε′′k to
the data measured with the double-pass dispersion spectrometer. It shows that the model
reproduces the measured spectral density. Therefore, the model is used in chapter 7 to
obtain the complex-valued type-II photon spectrum for the QKD simulation.

2.3 Interferometers

An advantage of phase-time-encoded quantum bits is that the key transmission is indepen-
dent of the polarization changes in the fiber link, so polarization control is not required.
However, because the photons can arrive with an arbitrary polarization at the receivers,
the IFs must allow for polarization-independent interference. They are therefore set up
in a Michelson configuration with two Faraday rotator mirrors (FRMs) consisting of 45°
Faraday rotators in front of retroreflectors, as shown in fig. 2.23. The photons enter the

Short arm

Long armD0 D1

Photons
Circulator Faraday rotator

Faraday rotator 
mirrors (FRMs)

Reflector

50/50 Beam splitter

Figure 2.23: Schematic setup of an imbalanced Michelson interferometer with FRMs.

53



IF through a circulator. This circulator guides photons returning from the IF to the first
Detector D0. Detector D1 is connected to the fourth port of the beam splitter.

An FRM maps an incoming linear polarization to the orthogonal linear polarization,
and it maps left- to right-circular polarization and vice versa [129, 130]. When light with
a particular polarization state is sent through a birefringent fiber and reflected by an FRM
such that it travels back through the same fiber, the resulting polarization state is always
orthogonal to the input state [129]. Thereby, a FRM compensates any reciprocal19 bire-
fringence in the fiber. Incoming photons experience different polarization transformations
when traveling forward through the IF arms, but after traveling back, the polarization of
the light returning from both arms is the same polarization, orthogonal to the input state.
As Michelson IFs with Faraday mirrors enable interference for arbitrary input polarizations,
they are used in various QKD setups, for example in refs. [60, 61, 112, 117, 133].

The pump IF is identical to the receiver IFs up to the circulator, which is polarization-
maintaining and optimized for higher optical input powers. Light launched into port 1
with linear polarization along the slow axis leaves port 3 polarized along the fast axis due
to the FRMs. A PM fiber with a 90° offset is spliced to port 3 to realign the polarization to
the slow axes.

The effect of the IFs can be visualized by considering the probability density of the
biphoton wave packet |ψIF(tA, tB)|2 after the receiver IFs, as shown in fig. 2.24 for the
detector combination A0-B0. For short fiber length, |ψIF(tA, tB)|2 is given by seven narrow
stripes and the shape of each stripe is determined by |ψ(tA, tB)|2. The probability in the
central-central time bin combinations is twice as high as in other time bin combinations
because the IF phases are aligned for constructive interference. If, for example, the delay
of Alice’s IF would not match the delay of the other two IFs, two narrow stripes with
a horizontal offset would appear in the central-central combination, and no two-photon
interference would be observed. Therefore, the width of the stripe is related to the required
accuracy of the optical path differences (OPDs) in the IFs.

For long fiber links, CD elongates the wave packet such that photons leak out of the
time bins. For very long fibers, the photons may leak into adjacent time bins, leading for
example in fig. 2.24 for LA = LB = 100 km to a nonzero detection probability of time basis
errors. Therefore, the width and the separation of the time bins must be chosen to avoid
photon leakage into adjacent time bins even for the maximum link length for which the
QKD system is designed. Based on these considerations, the required accuracy of the OPDs
and the choice of the IF delays are discussed in more detail in the following.

19A FRM does not compensate for non-reciprocal birefringence introduced by the Faraday effect [131, 132].
However, the Faraday effect in the IF fibers is negligible.
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Figure 2.24: Example of a probability density |ψIF(tA, tB)|2 after the IFs for the detector combi-
nation A0-B0 with different fiber link lengths LA and LB to Alice and Bob. The initial shape of the
pump pulse is given by a Gaussian pump pulse with a FWHM of 400ps and a sinc2-shaped
phase matching function for a 24mm long type-II PPLN crystal. The early (E), central (C), and
late (L) time bins are 2 ns wide, and the IF delay is 3 ns. The time bin combinations EE, CC, and
LL yield quantum key bits. Detections in the EL and LE time bin combinations yield errors in the
time basis, and detections in the combinations EC, LC, CE, and CL are postselected. In the com-
binations EL and LE, the probability density becomes nonzero for LA = LB = 100 km because
photons from the side lobes of the sinc2-shaped JSA leak into these time bin combinations.

2.3.1 Required Accuracy of the Optical Path Differences

The minimal QBERp is obtained when the OPDs in the IFs are precisely matched and
the phases are perfectly aligned. When the OPDs are different, imperfect two-photon
interference increases the QBERp. The minimal QBERp that can be obtained when the IF
phases are scanned over 2π, QBERp, min, depends on the accuracy of the OPDs in relation
to the shape of the biphoton wave packet ψ(tA, tB). A rule of thumb estimation for the
required accuracy is that the difference between the OPDs of different IFs should be much
smaller than the coherence length of the photons, enabling two-photon interference. For the
type-II photons, the coherence length Lc = c0τc can be directly calculated via the coherence
time τc from the measured spectrum by using eq. (A.15), which yields Lc = 0.88 mm. On
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the one hand, the deviation of the OPDs of different IFs must be much smaller than this
value to obtain a high two-photon interference contrast and a low QBERp, min. On the other
hand, this value provides a minimum for the OPD. The IF delay must be much larger than
τc such that single-photon interference in the IFs is suppressed.

A more precise estimate for the required OPD precision is needed to specify the required
accuracy for the building method because manufacturing the IFs with very precise OPDs
is technically challenging. Based on the required accuracy, the building method can be
optimized to be as simple and fast as possible so that higher numbers of receiver modules
can be built for large QKD networks with reasonable efforts. The required accuracy can be
obtained by considering the achievable QBERp, min as a function of the OPD mismatch.

Calculation of the Required OPD Accuracy for a Joint Spectral Amplitude Factorized
in Diagonal Coordinates
The factorization of the JSA in rotated coordinates from eq. (2.7) allows to express
QBERp, min in terms of the autocorrelation functions of α(t+) and Φ(t−). To simplify
this analysis and to isolate the QBER contribution caused by mismatched OPDs, the beam
splitters are assumed to be perfect 50/50 splitters. All losses and the chromatic dispersions
in the IFs are neglected, meaning that the expansion of k(ω) from eq. (1.11) is truncated
after the linear order in Ω for the interferometer fibers.

When a wave packet αfund(t) centered around the fundamental frequency ω0

is sent through the pump IF with OPD ∆LP, the field after the IF is given by
α̃fund(ω)

�

1 + ei∆LP(k0+Ω/vg)
�

/2, up to a phase reference factor for the short path
that is of no further relevance. After second-harmonic generation, the spectrum α̃(ω) of
the pump field guided into the SPDC crystal is centered around 2ω0, such that the field
can be expressed as α(t) = A(t) e−2iω0 t with a slowly varying envelope A(t). The JSA,
after transmission through the fiber links and receivers, is given by

ψ̃IF(ωs,ωi) =
1

4
√

2

∫︂∫︂

dωs dωi

Source interferometer
�

1 + ei[2k0∆LP+[ωs+ωi−2ω0]τP]
�

ψ̃(ωs,ωi)

α̃(ωs +ωi)Φ̃(ωs −ωi)

× ei[k(ωs)LA+k(ωi)LB]

Fiber links

�

1 + ei∆LA[k0+(ωs−ω0)/v]
�

Alice’s IF

�

1 + ei∆LB[k0+(ωi−ω0)/vg]
�

Bob’s IF

.

(2.15)

Here, the lengths of the fiber links to Alice and Bob are LA and LB, and the path length
differences of the IFs are ∆LA for Alice, ∆LB for Bob and ∆LP for the pump IF. The
probability P(A0,C, B0,C) of obtaining a coincident count in the detectors A0 and B0 in the
central time bin is given by the integral over the joint spectral density, taking only the path
combinations (s, l, l) and (l, s, s) (cf. section 1.2) into account. The expression can be
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evaluated in the rotated ω± coordinate system and depends on the deviation of Alice’s and
Bob’s path differences dA/B = ∆LB −∆LA and on the deviation of the path difference of
the pump IF from the mean of the receivers, dP = ∆LP − (∆LA +∆LB)/2:

P(A0,C, B0,C) =
1
16

Re

�

1 + exp(2ik0dP) g(1)A

�

dP

vg

�

g(1)
Φ

�

dA/B

2vg

��

. (2.16)

Here, g(1)
Φ

and g(1)A are the normalized autocorrelation functions (cf. eq. (A.12)) of Φ(t)
and A(t). The oscillation period of the complex exponential is π/k0, meaning that the
oscillation is much faster than variations in the autocorrelation functions. Therefore,
the autocorrelations can be assumed to be almost constant over one oscillation period.
QBERp, min is therefore approximately given by

QBERp, min(dP, dA/B) ≈
1
2

�

1 −
|︁

|︁

|︁

|︁

g(1)A

�
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vg

�

g(1)
Φ

�
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2vg

�|︁

|︁

|︁

|︁

�

. (2.17)

When the pump IF is aligned such that dP = 0, the dependence on dA/B is given by
QBERp, min(0, dA/B) =

�

1 −
|︁

|︁g(1)
Φ
[dA/B/(2vg)]

|︁

|︁

�

/2. When instead Alice’s and Bob’s IFs are
aligned to dA/B = 0, the dependence on dP is QBERp, min(dP, 0) =

�

1 −
|︁

|︁g(1)A (dP/vg)
|︁

|︁

�

/2.
Figure 2.25 shows the influence of the misalignments dA/B and dP on QBERp, min. Assuming
an ideal crystal of length L and a rectangular pump pulse of duration T , the autocorrelations
attain a triangular shape because A and Φ become rectangle functions. The QBERp, min then
simplifies to

QBERp, min(dP, 0) =
1
2

min

�|︁

|︁

|︁
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dP

T vg
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|︁
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, 1

�

and QBERp, min(0, dA/B) =
1
2
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2L∆k′vg
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|︁

|︁

, 1

�

.

(2.18)

The QKD system is operated in the range of low QBERs up to around 2 % displayed
in the inset plots of fig. 2.25. In this range, the curve for QBERp, min(dP, 0) calculated
from the measured data is much shallower than the curve for an ideal rectangle pulse,
which can be attributed to the limited data resolution. To obtain a QBERp, min below 1 %,
a deviation dP of less than 2 mm is acceptable according to the curve for an ideal pulse.
For |dP| > 100 mm, the curve calculated from the measured data slowly increases until
it reaches 50 % around |dP| ≈ 400 mm. This deviation from the ideal curve is due to the
relatively long tail of the falling edge of the pump pulse (cf. fig. 2.11 (b)) introducing
long-range correlations.

Although the measured crystal spectrum is not well approximated by a sinc2 function due
to its asymmetry, the curve for QBERp, min(0, dA/B) of an ideal crystal deviates only slightly
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Figure 2.25: Estimated QBERp, min due to OPD misalignment of the IFs. Left: Influence of the
pump IFmisalignment dP whenAlice’s and Bob’s OPDs arematched. The curve for themeasured
pump pulse shape was calculated for the pulse shape from fig. 2.11 with an FWHM of 418 ps.
Right: Influence of the pump IFmisalignment dA/B. The function g(1)Φ for themeasured spectrum
was calculated from the spectrograph data shown in fig. 2.22 via the Wiener-Khinchine theorem
and for the fit model from eq. (2.14). The curves for the ideal rectangular pump pulse and the
ideal crystal are given by eq. (2.18).

from the curves for the measured spectrum or for the fit model. In the inset, the kink in
the curve for the measured spectrum shows that the data resolution limits the accuracy in
this range. However, all three curves are relatively close together, showing that dAB should
not exceed 50 µm to keep QBERp, min below 1 %. It is important to note that the allowed
tolerance in the fiber lengths is only half of the deviations dP and dAB because the light
passes each fiber section twice in the Michelson configuration.

A multi-step building method was developed in close collaboration with Oleg Nikiforov
to build the IFs with an accuracy better than 25 µm. This method allows multiple IFs to
be built quickly and reproducibly with a precise OPD, which is an essential step towards
realizing larger QKD networks with tens or hundreds of users. The method was used to
build the IFs for the two-user QKD system and was further improved to build the IFs for the
q-hub QKD network. The interference quality was confirmed by setting up a QKD session
with a very low mean photon pair number to reduce the contribution of multi-photon-pair
emission to the QBER. QBERs below 0.5 % were observed, indicating a high interference
contrast [II]. At the time of submission of this thesis, a patent is pending on the building
method, so further details cannot be disclosed here.
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2.3.2 Choice of the Optical Path Difference Between Long and Short Arms

An important parameter that must be chosen before the IFs are built is the value for the
OPD between the long and short arms. The OPD determines the repetition cycle time.
Equally-spaced time bins are obtained when the pump pulse repetition time is chosen to
three times the time bin separation. On the one hand, short OPDs are generally preferred
because they allow operating the system at high pulse repetition rates. On the other hand,
the OPD must be chosen large enough such that the peaks in the arrival time histogram
(cf. fig. 1.2) of the photons are well separated. If the peaks overlap, photons are sometimes
assigned to the wrong time bin, resulting in additional quantum bit errors and reduced
secure key rate. The width of the peaks in the arrival time histogram depends on the
duration of the pump pulse, on the timing jitters of the pulse generation electronics, SPDs,
and timing electronics in the receivers, and on the elongation of the photon wave packets
due to CD in the fiber links. While the timing jitter distributions and pulse duration are
fixed, the wave packet elongation depends on the photon spectrum and the length of the
transmission link.

Elongation of the Photon Wave Packets Due to Chromatic Dispersion
In fig. 2.24, it was shown for an exemplary JSA how CD affects the shape of the wave
packet. For the QKD experiments, the range of dispersion values is the most important
where CD leads to an elongation of the distributions ps/i(ts/i) that is in the same order of
magnitude as the pump pulse duration. In this parameter range, most of the photons are
still detected within the time bins, but the elongation leads to a leakage of photons out
of the time bins. For even larger dispersions, the photons eventually leak into adjacent
time bins. When the wavelength of the photon sent to Alice is longer than the center
wavelength, the wavelength of the photon sent to Bob is automatically shorter than the
center wavelength. Around 1550 nm, the dispersion in the SMF is anomalous, meaning
that the photon sent to Alice travels slower than the photon sent to Bob. If the chromatic
dispersion is large, Alice may register the photon in the late time bin, while Bob registers it
in the early time bin, leading to an error bit in the time basis.

At the parameters used in the experiments, the phase matching function is much broader
than the spectrum of the pump pulse. Conversely, Φ(t) = F−1

ω

�

Φ̃(ω)
�

is shorter than the
duration of the pump pulse due to the uncertainty principle. Therefore, CD elongates Φ(t)
much more than the pulse envelope A(t).

The pulse shape |α(t)|2 determines the probability density for creating the photon pair.
For small dispersions β L, the arrival time distributions of the signal photons ps(ts) is
therefore determined by the pump pulse shape |α(t)|2. When the dispersion is larger, the
spectral density of the phase matching function is mapped to the time domain (cf. eq. (1.17)),
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such that the distribution relative to the time where the photon was created attains the
shape of |Φ̃(Ω)|2 in time. Neglecting the dispersion of the pump pulse, the resulting
probability density ps(ts) would become the convolution of |α(t)|2 and |Φ̃(Ω)|2.

To obtain a quantitative estimate for the elongation of the wave packets, ps(ts) can be
calculated. For simplicity, only a single time bin is considered, such that ps(ts) is given
by the marginal distribution of the joint spectral density (cf. eq. (1.31)) multiplied by the
phase factor for the propagation through fibers of lengths Ls and Li:

ps(ts) =
∫︂

|︁

|︁

|︁
F−1
ωs,ωi

�

α̃(ωs +ωi)Φ̃(ωs −ωi) ei[k(ωs)Ls+k(ωi)Ls](ts, ti)
�

|︁

|︁

|︁

2
d ti . (2.19)

The phase matching function is much broader than the pump pulse spectrum, such that
similar as in eq. (2.10), the approximation ωs +ωi ≈ 2ω0 can be used in the argument of
Φ̃ to approximate Φ̃(ωs −ωi) ≈ Φ̃[2(ωs −ω0)], which allows simplifying eq. (2.19) to

ps(ts) ≈
�

|α|2 ∗
|︁

|︁

|︁
F−1
ωs

�

Φ̃[2(ωs −ω0)] eik(ωs)Ls
�

|︁

|︁

|︁

2�

(ts) . (2.20)

Using the second-order approximation for k(Ω) from eq. (1.11) and eq. (1.17) yields

ps(ts) ≈
1

|β L|
�

|α|2 ∗
|︁

|︁Φ̃CD
|︁

|︁

2�(ts − Ls/vg) with Φ̃CD(t) = Φ̃
�

2t
β L

�

. (2.21)

Equation (2.21) is valid when the dispersion is so large that the factor exp[−iτ2/(2β L)]
appearing within the FT in Andrianov’s expression, eq. (1.16), is almost constant over the
range of τ values for which the IFT of Φ̃[2(ωs −ω0)] from eq. (2.20) attains non-negligible
values. Assuming that for a phase tolerance below ∆φ = 0.1 the phase term can be
neglected, the approximation is valid for the type-II crystal with Lcrystal = 24 mm for fiber
lengths longer than (Lcrystal/∆k′)2/(2|β |∆φ) ≈ 10 km. Therefore, eq. (2.21) can be used
to estimate the arrival time distribution for the fiber lengths used in the QKD field test.

Figure 2.26 (a) shows ps(ts) computed from eq. (2.21) for two different fiber lengths.
For the type-II photons, the side lobe of the spectrum introduces a pronounced foothill.
The base of the distribution is approximately 1.5 ns long for the fiber length of 26.8 km
used in the QKD field test and 3 ns long for a 50 km long fiber. This means that the time
bin separation necessary to avoid the leakage of photons into adjacent time bins for fiber
lengths up to 50 km is 3 ns. Figure 2.26 (b) shows measured arrival time distributions for
type-0 photons demultiplexed by the 100 GHz AWG. The distributions were measured by
connecting Bob via the DCFs to the source, introducing a dispersion equivalent to 30, 60, or
90 km of optical fiber, but with the opposite sign. The DCFs were chosen because the sign
of the dispersion is not important to investigate the magnitude of the elongation, and the
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losses are significantly lower than for the length of SMF with the same dispersion. Using
the DCFs instead of SMFs, therefore, improves the signal-to-noise ratio in the measurement.
It can be seen that the type-0 photons are not elongated as much as the type-II photons.
The reason is that the transmission spectrum of the 100 GHz AWG channels (cf. fig. 2.15)
is narrower and does not show side lobes.

The OPD of the IFs should be suitable for QKD with both type-0 and type-II photons.
The timing jitter distribution of the SPDs and timing electronics with a width of around
250 ps (cf. fig. 5.8) do not broaden the count distribution significantly. Based on these
considerations, the delay between the long and short IF paths and the resulting pulse
repetition frequency frep were chosen to

Interferometer delay and fundamental pulse repetition frequency of the q-hub system

T =
∆L
vg
= 3.03 ns and frep =

1
3T
= 110 MHz . (2.22)

The width of the time bins is set to 1 ns. For the q-hub system, five IFs with this delay were
built during Lucas Bialowons’s master’s thesis [M5] for the source and four receivers.
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Figure 2.26: Elongation of the photon arrival time distribution due to chromatic dispersion in
the transmission fibers. (a) Expected photon arrival time distribution p(t) for type-II photons
after typical fiber lengths used in the QKD field test. Without a transmission fiber, p(t) attains
the shape of the SHG pump pulse from fig. 2.11 (b). For the fiber lengths of 26.8 and 50 km, p(t)
is calculated according to eq. (2.21) by convolving the pump pulse with the photon spectrum
(cf. fig. 2.22 ). For better comparability, the distributions are shifted in time. (b) Measured arrival
time histogram p(t) for type-0 photons demultiplexed with the 100GHz AWG after traveling
through the DCFs, introducing a dispersion equivalent to 30, 60, and 90 km of SMF.
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2.4 QKD Receivers and Setup Operation

For QKD, the phase relation from eq. (1.2) must be fulfilled to observe two-photon interfer-
ence. To obtain a low QBERp, the phase of the IFs must be kept stable. In this section, the
requirements for the stability of phase and temperature are discussed, and the setup of the
receivers and the methods to meet these requirements are described.

Required Stability of Phase and Temperature
The phase of an IF depends on the optical path difference (OPD) n∆L with the refractive
index n and the path length difference ∆L. When the fiber is heated, it becomes longer
due to thermal expansion. Furthermore, its refractive index changes. Both effects lead to
a dependence of the phase on the temperature. The phase difference ∆φ at frequency ω
introduced by a small temperature change ∆T of the fibers depends on the derivatives of
n and ∆L with respect to the temperature:

∆φ = ∆T
ω

c0

∂

∂ T
n∆L = ω∆L∆T

�

1
c0

∂ n
∂ T
+

n
c0∆L

∂ ∆L
∂ T

�

. (2.23)

For SMF, the refractive index change c−1
0 ∂ n/∂ T ≈ 37 ps/(km · K) contributes much more

to the phase change than the thermal expansion n/(c0 L)× ∂ L/∂ T ≈ 2 ps/(km · K) [134].
The total temperature tuning coefficient is about [134–136]

1
c0 L

∂ nL
∂ T

≈ 40
ps

km · K
. (2.24)

The temperature sensitivity of the IFs calculated from eq. (2.23) thereby becomes
∂ φ/∂ T ≈ 9π/K. For perfect IFs, the maximal phase deviation that is allowed to keep
the QBERp below a certain threshold can be calculated from eqs. (1.2) and (1.3) by

∆φ = arccos(1 − 2 QBERp) . (2.25)

To keep QBERp below 1 %, the phase deviation must be kept below ∆φ = 0.2, meaning
that the temperature deviation needs to be kept below ∆T ≈ 7 mK.

In principle, multiple approaches can be used to keep the phases aligned. For example,
phase modulators [137] or tunable delay lines [138] can be inserted into one of the IF
arms, but these components would introduce additional insertion losses, leading to lower
key rates. Another option to adjust the phase is to use piezo-electric fiber stretchers to
apply a variable mechanical tension to the IF fibers for realigning the phases [61, 62, 133].
However, this approach requires an error signal, according to which the stretcher re-adjusts
the phase. Such an error signal could be provided, for example, by probing the IF phase
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with light at a different wavelength. Such an active stabilization would require additional
components and complicate the setup [62, 138]. These disadvantages can be avoided
by using the QBERp as an error signal for the stabilization. If the IF is exposed to fast
temperature variations and the key rate is low, the phase may already be misaligned before
a sufficient number of key bits and error bits have been obtained to calculate QBERp with
the required accuracy. Therefore, if the stabilization is based on the QBERp, the IFs need to
be stabilized in temperature to prevent fast phase fluctuations due to temperature changes.
The phases are then realigned to minimize the QBERp, which can be realized with a piezo
stretcher adjusting the path length of an IF arm or by slightly adjusting the IF temperature.
The latter approach has the advantage that temperature control is already implemented for
stabilization, so no additional components are needed. This approach has been chosen for
the QKD network because the reduction of the complexity of the receiver module benefits
the scalability of the multi-user QKD network.

Setup of the Receiver Modules
Each receiver consists of a fiber-optic IF in a temperature-controllable metal container, an
electronic temperature control unit (TCU), two single-photon detectors20 (SPDs) connected
to the IF outputs and a time controller21 (TC). The SPDs are characterized in detail in
chapter 5. The TCs register the detector counts with a resolution of approximately 13 ps22

and save a timestamp for each count. The timestamps are integers counting the picoseconds
since the last reset of the TC clock. A schematic setup of a receiver is shown in fig. 2.27 (a).
The TCUs and the design of the IF containers were developed by Oleg Nikiforov for the
two-user QKD system during his Ph.D. [28]. Although the two-user QKD system only
requires three TCUs for the two users and for the IF in the source, Nikiforov built a total of
five TCUs named Alice, Bob, Charlie, Diana and Source.

Each temperature-controllable IF container consists of an outer container made of alu-
minum and an inner container consisting of an aluminum ground plate and a copper cover
cap as shown in figs. 2.27 (b) and 2.27 (c). The outer container is covered by an insulating
silicone cap. The ground plate of the inner container is temperature-stabilized against the
ground plate of the outer container by four TECs. The ground plate of the outer container
is temperature-stabilized by four TECs against a copper plate acting as a thermal reservoir.
Two milled grooves in the ground plate of the inner container hold the Faraday rotator
mirrors and beam splitter of the IF. A recess in the ground plate and an inset plate are
prepared to hold fixtures for electro-optic phase modulators (EOPMs), which may be used in

20Single-photon detectors: ID220 from IDQuantique.
21Time controllers: ID900 Time Controller from ID Quantique.
22The distances between timestamps are not always multiples of 13 ps but follow a more complex scheme with

a super-cycle of 625 ps = 47 × 13 ps + 14 ps [B2].
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Figure 2.27: Setup of the QKD receivers. (a) Schematic setup. The interferometer consisting
of a 50/50 beam splitter (BS) and two Faraday rotator mirrors (FRMs) is installed in an inner
temperature stabilization container surrounded by an outer temperature stabilization container.
The container temperatures are adjusted by a temperature control unit (TCU) via thermoelectric
coolers (TECs). The photons are detected by two single-photon detectors D0 and D1, and the
detector counts are time-stamped by a time controller. (b) Photo of the receiver Eta, typically
used with the TCU Charlie. A green silicone cap covers the outer metal container to improve the
temperature stability. (c) Exploded view of the containers. Light gray – base plate, red – thermal
reservoir (copper base plate), green – TECs, violet — outer container, brown – ground plate and
copper cap of inner container, light blue – FRMs and (optional) phase modulator, gold – base
plate for phase modulator, blue-gray – fixtures for optical and electrical connections and fiber
protectors, black – fiber component tray for the circulator.
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future IFs for QKD protocols with active phase choice. Two further grooves for Faraday
rotator mirrors, another groove for a beam splitter, and threaded mounting holes have been
prepared. Thereby, in the future, a second IF with an EOPM can be easily installed in each
container together with the current IF. Thermistors sensing the container temperatures
and providing them to the control loops are positioned in holes in the ground plates of the
inner and outer container. Additional thermistors allow for monitoring the temperatures of
different parts of the inner and outer containers. The IF containers, fixtures for the optical
and electrical connections, and component trays holding the circulators are mounted on
aluminum base plates as shown in fig. 2.27 (b), fitting into 19 inch wide electronics racks.
The receivers are named according to the Greek alphabet Zeta, Eta, Theta, Iota and Kappa
for identification [M5].

Each TCU comprises a microcontroller board23 managing two proportional-integral (PI)
control loops controlling the temperature of the outer and inner metal container. The
settings can be adjusted manually via a display and a rotary encoder in the front panel of the
TCU or remotely via a USB connection. Figure 2.28 shows the front panel of the TCU Alice.
The temperature resolution of the control loops is 0.5 mK around room temperature, and
the specified long-term stability of the controller is 2 mK throughout one day [28]. The
temperature for the inner container is chosen to 0.5 K above the temperature of the outer
container, which itself is chosen to be a few kelvin above the room temperature. Thereby,
frequent switching between the heating and cooling operation of the TECs is avoided,
prolonging the lifetime of the TECs [139]. High-precision temperature measurements
showed that the container temperatures can be kept stable with a precision of 1 mK over
several hours when the room temperature changes only moderately [28, M5].

Figure 2.28: Front panel of the rack-mountable temperature control unit Alice with integrated
display, rotary encoder knob for manual operation and USB connection for remote control.

23Microcontroller board: Arduino Micro from Arduino.
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For the four users and for the q-hub, five new IF containers were built based on Nikiforov’s
design during the master’s thesis of Lucas Bialowons [M5]. Nikiforov showed that the
general design of the receivers is robust and achieves a temperature stability sufficient for
stable QKD [28] with the two-user QKD system. Therefore, only a few minor adjustments
were made compared to the containers of the two-user QKD system. The most relevant
changes are the new design for the ground plate of the outer container, improving the cable
management, and the change of the material for the ground plates for the inner and outer
container, simplifying manufacturing. In Nikiforov’s design, only the ground plate of the
inner container was present. For the new containers, the copper cover cap has been added,
completing the inner ground plate to an inner container to improve the phase stability of
the IFs further.

Setup Operation
For the QKD tests in the laboratory at the university and during the field test at the facility
of Deutsche Telekom, the q-hub and all receiver modules were located in one room. Fully
functional key postprocessing software was not yet available during the experiments.
Instead, the timestamps of all users were transferred from the TCs to one local computer for
processing. The key rates and QBERs were then derived by directly comparing the raw keys.
Large parts of the setup operation are automated to enable safe and robust QKD operation.
The structure of the software and the remote control of the PPS were developed during the
master’s thesis of Lucas Bialowons [M5]. The software is written in the Python programming
language and uses multiprocessing and multithreading to parallelize the data acquisition
and to avoid unnecessary idle times of the system. Fast functions from the NumPy package
and the Numba compiler are used to speed up time-consuming computations in the data
processing. The software controls the setup, including the PPS, all TCUs, TCs, and the clock
generator. It ensures that the devices are turned on in the correct order during startup.
When it detects a system malfunction during startup or measurement, it automatically
shuts down the system. The software processes the timestamps, reads and sets the IF
temperatures, reads the SHG power from a power meter receiving 10 % of the SHG light,
and logs the temperatures and pump powers. Furthermore, it features a control loop that
automatically stabilizes the SHG power by adjusting the EDFA-2 pump current based on
the reading of the SHG power. A graphical user interface shows diagrams of the key rates,
QBERs, and IF temperatures.

During a QKD session, the TCs continuously record the counts of the SPDs and transfer
blocks of timestamps every 4 seconds via Ethernet to the computer for evaluation. The
timestamps are split into runs of 90 seconds for further processing. To evaluate a run,
a clock recovery algorithm is applied to the timestamps of each receiver individually,
identifying and correcting the deviation of the receiver time to the source time as described
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in section 2.5. The timestamps are then sorted into the time bins, the key bits and bit errors
are obtained by matching the detection results of the users, and the sifted key rate, QBERp,
and QBERt are calculated.

Based on the QBERp from the current and previous runs, a phase adjustment algorithm
decides whether the IF temperatures need to be adjusted. The algorithm aims for a minimal
value of the correlation24. Due to noise and other imperfections, the QBERp will, in
practice, attain a value larger than zero even when the phases are perfectly aligned. To
avoid oscillations around the minimum, the phase adjustment algorithm does not aim for
QBERp = 0. Instead, it stops to adjust the phase when a value close to a slightly higher
target value calculated from QBERt is reached.

The duration of 90 seconds for a run was found to be the optimal time to update the
estimate of QBERp. When longer times are chosen, the phase can drift significantly during
a single run. When shorter times are chosen, the estimate of QBERp is not precise enough
to reliably determine if the phase needs to be adjusted because the number of error bits is
low and the statistical uncertainty is high. From the value of QBERp for a single run, it is
unclear if the temperature needs to be increased or decreased to optimize QBERp because
QBERp is a symmetric function of the phases around its minimum. Therefore, the algorithm
remembers the previous adjustments and considers them to determine the direction of the
required temperature change. The algorithm automatically corrects the decision in the
next run when it notices that the previous adjustment has led in the wrong direction.

2.5 Receiver Synchronization using Clock Recovery

For the evaluation of the quantum keys, the photon arrival times must be assigned to the
correct repetition cycle numbers and time bins. For that, the receiver modules need to be
synchronized. In general, the clocks of the receivers and the source run with different clock
frequencies, and there may be an initial timing offset. In the q-hub network, the q-hub
clock is considered the main clock to which the receivers are synchronized.

The time error TE(t) is the deviation of the time t indicating when a photon is detected
from the time tq at the q-hub clock when the photon pair was generated:

TE(t) = t − tq = ∆t0 +∆T (t) . (2.26)

24The insertion losses of the circulators (cf. fig. 2.27 (a)) reduce the detection probabilities of the D0 detectors
compared to the D1 detectors. When the phases are aligned to maximize the coincidence rates in the D0-D0

and D1-D1 combinations, these insertion losses lead to an imbalance between the zero and one bits in the
phase basis. Therefore, the anticorrelated D0-D1 and D1-D0 coincidences are used as key bits to reduce the
imbalance.
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The time error can be separated into the initial time deviation ∆t0 at the beginning of the
QKD session and the time-dependent deviation ∆T (t). The offset ∆t0 comprises constant
electronic and optical delays introduced by the fiber links, and ∆T (t) comprises varying
clock speeds in the q-hub and the receivers.

Even if the clocks themselves run with the same frequency, ∆T(t) can vary over time
due to environmental effects changing the optical path length of the fiber link. While fibers
deployed underground can be expected to have a relatively stable temperature, aerial fibers
are exposed to the weather, so their temperature may change rapidly. To make an example
demonstrating the relevance of the effect, a 50 km long aerial fiber is assumed to be heated
by the sun with a rate of 1 mK/s. The propagation delay would then change by 39 ps every
20 seconds according to eq. (2.24). After 10 min, the delay has changed by more than 1 ns,
which is more than the width of a time bin.

To keep the clocks synchronized, a method enabling sub-nanosecond precision is required.
Typical synchronization signals used for network communication, such as the network
time protocol (NTP), achieve millisecond precision [140], which is not precise enough
for this application. One option to realize the synchronization is to establish a dedicated
synchronization channel, for example, by sending optical signals through a parallel optical
fiber or by wavelength- or time-multiplexing of synchronization signals with the QKD
photons in the same fiber [141–145]. Another option is to set up a stable clock at each
receiver and synchronize these clocks to an external high-precision time reference such
as the GPS signal [146–148]. Using the White Rabbit protocol, sub-nanosecond timing
synchronization can also be achieved via Ethernet [149, 150]. For White Rabbit, special
White Rabbit switches and nodes are required. The synchronization of QKD systems based
on White Rabbit has been demonstrated in refs. [151–153].

A disadvantage of all these synchronization methods is that they require additional
resources, such as a dedicated channel or specialized hardware. They complicate the setup
or reduce the achievable key rate because they block time slots for frequency channels that
could otherwise be used for transmitting quantum bits.

The disadvantage can be overcome by using the photon arrival times for the synchro-
nization. A common method is to evaluate the cross-correlation of the arrival times of
entangled photons at two stations [154–156]. Another option to synchronize QKD systems
with non-entangled photons is to use clock recovery (CR) based on the arrival times of the
photons. Examples for such methods are a method for satellite-based QKD presented in
ref. [157] and the method Qubit4Sync [158, 159].

One of the design criteria for the QKD network is the scalability in the number of users,
which benefits from a simple hardware setup of the receivers. As CR is simply another step
in the processing of the timestamps and does not require additional hardware resources, it
was chosen as the synchronization method for the q-hub network. Therefore, a new efficient

68



method for CR from the photon arrival times was developed. In the following, a brief
analysis of the stability of the TC clocks is presented, requirements on the CR algorithm
are derived, and the performance of the method is discussed.

The clock synchronization is implemented in two steps. In the first step, each user
processes the timestamps from both detectors by the CR algorithm to obtain an estimate
∆T ′(t i) for the deviation for each timestamp t i . Subsequently, the users subtract ∆T ′(t i)
from their timestamps. In the second step, the constant offset between the timestamps
due to ∆t0 is corrected (cf. eq. (2.26)). Details of the method to estimate ∆T ′(t i) are not
presented because a patent on this method is pending.

Clock Stability of the Time Controllers
The requirements on the synchronization method depend on the stability of the clocks to
synchronize. Therefore, the clock stability of all four TCs was analyzed during the bachelor’s
thesis of Christian Schaub [B7]. For the measurement, a function generator25 was set up
to produce reference pulses with a frequency of 1 MHz and its clock was synchronized to
the 10 MHz reference of a stable rubidium frequency standard26. The pulses produced by
the function generator were sent into the TCs. The time error TE(t) was obtained as the
deviation of the n-th timestamp to the reference time of n µs. Figure 2.29 (a) shows the time
error as a function of the reference clock time. It scales almost linearly with the time, with
a rate between 1.04 µs/s for Diana and 1.35 µs/s for Charlie, meaning that the ID900 clock
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Figure 2.29: Clock stability of the time controllers. (a) Time error TE(t) as a function of the
rubidium reference clock time. (b) Time deviation (TDEV) as a function of the clock observation
interval. For comparison, the time resolution of the time controllers of 13 ps and a quadratic
dependence of the TDEV on τ are shown.

25Function generator: AFG3052C from Tektronix.
26Rubidium frequency standard: FE-5650A from FEI Communications, Inc.
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frequencies have a relative frequency offset of about 10−6 to the reference clock and of up
to 0.31 × 10−6 among each other. This deviation shows that synchronizing the receivers is
necessary even at short time scales. If Alice’s and Charlie’s clocks are not synchronized,
their clocks deviate after 3 ms by the time bin width of 1 ns. However, a linear increase of
TE(t) due to a constant frequency offset can be easily compensated in the data processing.
More important are the nonlinear contributions to the time error, which can be quantified
by the time deviation (TDEV)27 commonly used in telecommunications. It is related to
a modified version of the Allan variance often used in the field of clock frequency stability
analysis [160, 161]. The TDEV is insensitive to constant frequency offsets and scales with
the square of the observation time interval when a linear frequency drift dominates the
clock error [161]. Figure 2.29 (b) shows the TDEV as a function of the clock observation
interval for the TCs, computed with the Python library Allantools. The course of the TDEV
is similar for all TCs, indicating that the clocks are of similar quality. For time intervals
τ shorter than approximately 10 ms, the TDEV is almost constant and below the time
resolution of the TCs. It grows for τ between 10 and 100 ms almost quadratically with τ.
This means that the TDEV is limited for time intervals up to approximately 10 ms by the
time resolution of the measurement. For time intervals up to approximately 100 ms, it is
limited by the linear frequency drifts of the clocks.

Performance of the Clock Recovery Algorithm
Due to the statistical generation of photon pairs by SPDC and due to losses, the arrival of
photons at a receiver is a probabilistic process. Furthermore, dark counts and afterpulses
lead to detection noise. Therefore, deducing the q-hub clock time from a single count is
impossible. Instead, it is necessary to accumulate several counts to compute the estimate
∆T ′(t). The characterization of the clock stability in fig. 2.29 (b) showed that counts
can at least be accumulated over times in the order of magnitude of 10 ms before clock
instabilities become relevant and that for time intervals up to 100 ms the variation of∆T (t)
is mainly determined by smooth frequency drifts. To achieve stable CR based on these
values, the algorithm accepts two parameters Tacc and Tsm, indicating over which time
spans counts can be accumulated and over which time spans the clock frequency smoothly
drifts. The performance of the CR algorithm can be tuned by adjusting these parameters,

27The time deviation is given by TDEV(τ) = τσy(τ)/
√

3, with the modified Allan variance [160]

σ2
y(τ) =

1
2m2τ2(N − 3m + 1)
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The time interval is τ = mτ0, the sampling interval is τ0, the total number of samples is N , and the measured
times are x1, . . . , xN .
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and the optimal values are expected to be in the orders of magnitude of 10 and 100 ms,
respectively.

To assess the performance of the CR, a measurement was set up as shown in fig. 2.30 (a).
The photon source is operated with the default settings used during the QKD field test
(cf. table 3.1), and Bob’s receiver is connected via a 81.2 km long fiber. Additionally, the
function generator producing reference pulses with a frequency of 1 kHz is synced to the
10 MHz clock of the clock generator of the q-hub as shown in fig. 2.30 (a). The reference
pulses are sent into one of the TC inputs, producing the timestamps tref, i. They indicate
the reference times tq, i = n × 1 ms with n ∈ N. The course of ∆T ′(t) is reconstructed by
applying the CR algorithm to the photon timestamps and the corrected reference timestamps
tref, i −∆T ′(tref, i) are compared to the reference times tq, i .

The longer the transmission distance, the lower the photon rate arriving at a receiver
module. The CR algorithm becomes unstable for low photon rates when it cannot accurately
track the clock deviation. The most frequent type of instability is the erroneous slip by
one time bin separation of (3 frep)−1. Figure 2.30 (b) shows such a slip as a jump in the
difference between the estimate ∆T ′(t) and the actual deviation ∆T(t). When a slip
occurs during a QKD session, the QBERt suddenly jumps to high values, interrupting key
exchange.

Timestamps were acquired over one hour with the setup in fig. 2.30 (a) with a fiber
length of 81.2 km to Bob. To analyze the stability for lower count rates corresponding to
longer transmission fibers, the measured count rate was artificially reduced, and it was
analyzed if the estimate ∆T ′(t) exhibits a time bin slip. For that, random subsets of the
measured timestamps were selected according to the damping in a SMF of the considered
length, before the CR algorithm was applied. The random selection and analysis were
repeated 10 times. The CR is considered stable if no time bin slip occurred in any of the
10 repetitions. If at least one slip occurred, it is considered partly stable, and if none of the
repetitions was free of slips, it is considered unstable.

Figure 2.30 (c) shows that for values around Tacc ≈ 20 to 25 ms, the CR is stable for
transmission distances up to 120 km between the q-hub and one receiver or, equivalently, for
a sum of the count rates in both detectors D0 and D1 down to 2 kcps. The longest distance
between the q-hub and a user for which QKD was tested was 81.2 km (cf. chapter 3). This
means the CR algorithm works stably for the practically relevant range of transmission link
lengths. However, as the photon loss and the clock deviations are statistical processes, it is
nevertheless, in rare cases, possible that the clock recovery algorithm slips. To avoid the
abortion of the QKD session in these cases, automatic resynchronization is implemented
in the evaluation software. Sudden jumps in the QBERt from one run to the next one are
automatically detected. In the following run, a resynchronization is triggered, as executed
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Figure 2.30: Performance of the clock recovery (CR) algorithm, measured with Bob’s receiver
over one hour with the standard settings (cf. table 3.1). (a) Setup for the CR performance
evaluation. Bob is connected via 81.2 km of optical fiber. (b) Deviation∆T ′−∆T around a time
when the CR failed. The CR slips by one time bin separation of (3 frep)−1 = 1.517 ns. (c) Stability
of the clock recovery as a function of the count rate or distance and of Tacc with fixed Tsm =
200ms. (d) FWHM of the distribution ∆T ′ −∆T quantifying the precision of the CR, for fixed
Tacc = 25ms. In the colorless area, the clock recovery failed. The line ”min.” indicates for which
Tsm the minimum FWHM for a given count rate was reached.
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at the beginning of each QKD session. During the measurements presented in fig. 9 of
publication [II], the automatic resynchronization was triggered a few times. The stability
of the algorithm was then improved, and the performance results shown in fig. 2.30 (c)
were obtained with the improved algorithm fig. 2.30.

If the CR algorithm does not slip, the distribution of ∆T ′ −∆T will show a single peak
around t = 0. The second parameter∆Tsm mainly determines the width of the distribution
of ∆T ′ −∆T . The FWHM of the peak characterizes the precision of the estimate ∆T ′(t)
obtained from the algorithm. Figure 2.30 (d) shows the FWHM of the peak as a function of
the parameter Tsm. For each count rate, the minimum of the FWHM over Tsm is reached
for values of Tsm between 170 and 270 ms. When the best value of Tsm is chosen for each
rate, as indicated by the green line in fig. 2.30 (d), FWHMs between 61.7 ps for the lowest
count rate and 34.3 ps for the highest count rate are obtained. These values show that the
estimate ∆T ′ is very accurate. It is less than a factor of five worse than the resolution of
the TCs of 13 ps and a factor of 16 smaller than the time bin width of 1 ns. This means
that the broadening of the photon detection histograms in the time bins due to the limited
accuracy of the synchronization by CR can be neglected.

Clock Offset Correction Based on the Arrival Time Cross-Correlation
To compensate for constant delays in their timestamps lists after clock recovery, Alice and
Bob determine ∆TBA = ∆t0(Bob)−∆t0(Alice) and Bob subtracts it from his timestamps.
They obtain the time difference ∆TBA by computing the cross-correlation between their
corrected timestamps t i − ∆T ′(t i) for a fraction of the first run of a QKD session. The
calculation of ∆TBA requires that Alice sends her corrected timestamps to Bob so that he
can compute the cross-correlation with his timestamps. The timestamps sent by Alice are
then possibly known to Eve and can not be used to generate key bits anymore. However,
in general, the first few runs of a QKD session cannot be used to generate key bits anyway
because the IF phases still need to be aligned. Therefore, calculating ∆TBA does not reduce
the number of usable key bits.

An essential advantage of this synchronization scheme compared to schemes evaluating
the cross-correlations continuously, such as in refs. [155, 156], is that the cross-correlation
is only evaluated during the initial phase and the value ∆TBA is reused in subsequent runs.
Other algorithms achieving synchronization based on the arrival time of entangled photon
pairs by evaluating the cross-correlation continuously often require that a fraction of the
timestamps is sacrificed to calculate the cross-correlation. However, for some QKD protocols,
continuously tracking the cross-correlation can also be realized without sacrificing quantum
bits [162].
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Summary of Chapter 2

A quantum key hub (q-hub) consisting of a photon pair source and a wavelength-division
demultiplexer was developed, enabling simultaneous QKD between multiple pairs of users
in a star-shaped network without a trusted node. The photon pair source generates time-bin
entangled photon pairs for QKD based on the Bennett-Brassard-Mermin 1992 (BBM92)
protocol and was built to be modular and portable in anticipation of field testing the system.
Details about the photon pair source will be published in ref. [VIII], and details about
measurements of the photon spectra have been published in ref. [I].

Four receivers were built to demonstrate simultaneous pairwise QKD with four users Alice,
Bob, Charlie, and Diana via the q-hub. Calculations showed that the receiver interferometers
must be manufactured with an accuracy of the optical path differences of a few micrometers
to keep the quantum bit error rate in the phase basis low. A patent for a method to build
fiber-based interferometers quickly and simply with the required accuracy is pending.

A synchronization method based on clock recovery from the arrival times of the photons
was developed to synchronize the receiver clocks. The method only requires data processing
and no additional hardware. It enables a stable synchronization for distances up to 120 km
with an accuracy better than 100 ps for all tested fiber distances. A patent for the clock
recovery method is pending.

The whole q-hub QKD network is presented in ref. [II].
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3 Field Test of the Multi-User QKD System

One of the most important goals of the research presented in this thesis was to demonstrate
QKD with the q-hub network at a facility of Deutsche Telekom in Darmstadt over a fiber
link deployed underground. The field test of the system was the first demonstration of
a multi-user QKD network using the time bin BBM92 protocol. Alice is connected via the
deployed fiber link, and the other users are connected via spooled fibers. The goals of
the field test were to show that the hardware of the q-hub network is robust enough to
be operated in a typical telecom environment and to demonstrate the flexibility of the
network.

Results of QKD experiments at the Technical University of Darmstadt and first results
of the field test have been published in ref. [II]. Multiple further field test experiments
demonstrating the flexibility of the q-hub network have been published in ref. [V]. Most
of the results presented in this section were obtained during the master’s thesis of Till
Dolejsky [M6], and some were obtained during the master’s thesis of Lucas Bialowons [M5].

In section 3.1, the 27 km long deployed fiber link is characterized and the default settings
of the q-hub network for the field test are described. The PPS and the receivers are all
located in the same room. The optimal parameters for the dead times and efficiencies of
the detector and the optimal pump power are determined.

In section 3.2, the most important results of the field test are presented, and the versatility
of the q-hub QKD network is demonstrated in various experiments. The operation of the
system with twofold and fourfold time bin interlacing is demonstrated. The stability of the
system is proven in a long-term QKD session over more than three days and for fiber length
up to 108 km between two users. The scalability of the number of QKD users is tested with
three different WDMs. Furthermore, QKD is demonstrated between all combinations of
users, with dynamic switching of the user configurations, in sub-networks, and in a fully-
connected network. Finally, a modified setup of the PPS is tested using the same nonlinear
wavelength converter for SHG and SPDC.
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3.1 Field Test Preparations

Characterization of the Deployed Fiber Link
For the field test, the four receivers and the q-hub were set up at the facility of Deutsche
Telekom in the Heinrich-Hertz-Straße 3-7 building in Darmstadt. For the field test, Deutsche
Telekom granted access to two fibers deployed underground between Darmstadt and the
nearby village of Griesheim. The fibers are dark fibers, which means that Deutsche Telekom
does not send any other light signals through these fibers during the field test. In Griesheim,
the two fibers are connected to form a loop starting and ending in Darmstadt. This fiber
loop was already used for the field test of the QKD system for two users during Nikiforov’s
Ph.D. [28]. Figure 3.1 shows the approximate path of the fiber link. The total link length
measured by using a optical time-domain reflectometer (OTDR)1 is 26.8 km, and the overall
attenuation introduced by the link is 6.8 dB, corresponding to an average loss of 0.25 dB/km.
While the attenuation for SMF is typically below 0.22 dB/km (cf. table 1.1), for deployed
fiber cables up to 0.3 dB/km are allowed between 1530 to 1565 nm according to the ITU-T
specification G.652.D [70]. Therefore, the attenuation coefficient of the field test link can
be considered as typical for such a link.

Griesheim

Darmstadt

Figure 3.1: Approximate route of the deployed dark fibers between Darmstadt and Griesheim
before July 12, 2022 (Map source: Google Maps 2023). The total length of the link is 26.8 km,
introducing an attenuation of 6.8 dB. In July 2022, the link was rerouted in the city of Darmstadt
to allow for service work required by Deutsche Telekom. After the rerouting, the link length is
27.3 km and the attenuation is 7.0 dB.

1OTDR device: FTB-7400E from EXFO.
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Default Configuration of the Q-Hub Network

The default configuration of the q-hub network for the field test is shown in fig. 3.2. The
q-hub and all receivers are set up at the Deutsche Telekom facility in Darmstadt. Alice is
connected via the deployed fiber link, and the other receivers are connected via fiber spools.
The default settings of the q-hub and the receives are tabulated in tables 3.1 and 3.2. By
default, the WSS is used as WDM, the channel width is set to 50 GHz, and the channels
are configured for the connections Alice-Bob and Charlie-Diana. Clock recovery is used to
synchronize the receivers.

26.8 km
deployed

Photon 
pair

source
Alice

Bob

Charlie

Diana

50.4 km

20.5 km

9.6 km

Figure 3.2: Default setup for the field test.
The q-hub, receivers, and fiber spools for Bob,
Charlie and Diana are located at the facility
of Deutsche Telekom in Darmstadt.

Q-Hub Settings

Interferometer name Theta
IF temperature reading 29.65 °C
WSS channel width 50GHz
Average SHG power 60µW
Pulse repetition frequency 220MHz

Table 3.1: Default configuration of the q-hub
during the field test. The source is, by de-
fault, operated with twofold pulse interlacing
at a repetition frequency of 220MHz. The
default WDM is the WSS with 50GHz wide
channels.

Table 3.2: Default configuration of the receivers for the field test. The detector connected
to the third port of the circulator is D0, and the detector connected to the beam splitter is D1

(cf. fig. 2.27 (a)). The fiber to Alice is the deployed field test link (cf. fig. 3.1). The fiber lengths
and attenuation values were measured by OTDR. The temperature references are uncalibrated
because only temperature differences are relevant for the phase adjustments. The readings of
the TCUs may deviate up to a few kelvins from the actual temperatures of the IFs.

TCU IF temp.
reading

Receiver
name

WSS
port

Channel
center freq.

D0

SPD
D1

SPD
Fiber

length
Link
loss

Alice 30.00 °C Kappa 5 193.325THz 7 6 26.8 km −6.8 dB
Bob 31.64 °C Zeta 2 193.375THz 8 1 50.4 km −15.7 dB
Charlie 39.50 °C Eta 4 193.250THz 3 2 9.6 km −1.9 dB
Diana 35.76 °C Iota 7 193.550THz 5 4 20.5 km −3.9 dB
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Choice of the Detector Efficiency and Dead Time
The SPDs have a variable dead time and efficiency. The dead time can be set in the range
from 1 to 25 µs and the efficiency can be set to 10, 15, or 20 %. In general, the higher the
efficiency and the shorter the dead time, the higher the achievable key rate. However, these
settings come with a trade-off: Higher efficiencies lead to a higher afterpulse probability
and a higher dark count rate for the same dead time setting. The resulting unwanted noise
can be reduced by choosing higher values for the dead time. However, a long dead time
can significantly reduce the achievable key rate because it leads to a high probability that
the detector is deactivated when the next photon arrives. A detailed characterization of
these detector effects is presented in section 5.2. To choose suitable parameters for the
field test, QKD sessions were recorded for different combinations of the dead time and
efficiency. For the first measurement, Alice and Bob were directly connected to the source,
and for the second one, they were connected via the default fiber links. The measured
sifted key rates, the QBERt, and the resulting secure key rates calculated by using eq. (1.1)
are shown in fig. 3.3. Here, the QBERt instead of the total QBER was used to calculate the
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Figure 3.3: Sifted key rates, QBERt and secure key rates for different dead times and efficiency
settings of 10, 15, and 20%, measured at a source repetition frequency of 100MHz.
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secure key rate to remove the influence of the phase alignment, meaning that the QBERt is
used as an estimate for the total QBER. Due to the transmission losses, the sifted key rates
measured with fiber links are significantly lower than without the links. Without the links,
the maximum of the secure key rates is reached for an efficiency of 20 % and a dead time
of 5 µs. With the links, the maximum is reached at 10 µs, and the secure key rate obtained
for 5 µs is significantly lower. Based on these results, the settings were chosen to 10 µs
dead time and 20 % efficiency for all field test measurements.

Dead Time Postselection
The dead time affects not only the count rates but also the security of the key exchange.
A simple attack strategy for Eve would be to send intense light pulses between the time
bins into a receiver station [163]. Thereby, Eve can switch off one of the detectors in the
receiver so that she knows which detector is still active and can yield the next key bit. Such
attacks are impossible when only key bits derived from pulse cycles are accepted in which
all detectors are active. This postselection of key bits can easily be implemented in the
data processing software. If the difference between the count time of any detector and
the count generating the key bit is less than a threshold time given by the dead time of
τdead = 10 µs, the key bit is discarded.

To analyze the effect of the dead time postselection, three different methods were
implemented to evaluate the key bits: “None”, “All”, and “Others”. In mode “None”, no
dead time postselection is applied. In mode “All”, postselection is applied to all detectors.
A key bit or error bit is only kept when all detectors were active during the time span τdead

before the beginning of the first time bin of the pulse cycle. Mode “Others” is similar to
mode “All”, but only those detectors are considered for the postselection, which did not
yield the key bit or error bit. The idea behind this postselection mode is that a detector
may have already recovered from the dead time in a time slightly shorter than τdead, such
that it can register a photon yielding the key bit or error bit. The fact that the detector
registered a count implies that it was active, and the key bit does not need to be discarded,
although the time difference to the previous count of this detector is less than the specified
value of τdead.

Choice of the SHG Pump Power
An important parameter allowing the optimization of the secure key rate is the SHG pump
power. Figure 3.4 shows the sifted key rate and QBER of Alice and Bob as well as the
resulting secure key rate for 50 GHz wide AWG channels as a function of the average
pump power for the different dead time postselection methods. The secure key rate shows
a relatively flat maximum around 40 to 70 µW. As the slope towards higher pump powers is
shallower than towards lower pump powers, the value of 60 µW was chosen as the default
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Figure 3.4: Sifted key rates rsif, QBERt, and secure key rate rsec of Alice and Bob as a function
of the average SHG pump power for the default field test setup (cf. tables 3.1 and 3.2). The
upper horizontal axis shows the corresponding mean photon number per pulse µp. The data
are evaluated using three different methods: without considering the dead times (”None”),
checking if the time since the last count is longer than the dead time of 10 µs for all detectors
(”All”), and checking this condition only for the other detectors that have not registered a photon
in the pulse cycle yielding the key bit or error bit (”Others”). The lowermost plot shows the
ratios rsec(”All”)/rsec(”None”) and rsec(”Others”)/rsec(”None”).
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value for the field test. At this SHG power, the mean photon pair number over a frequency
interval ∆I = 75 GHz for 50 GHz wide WSS channels (cf. table 2.2) is µp = 0.053. The
dead time postselection reduces the sifted and secure key rates significantly. For pump
powers around 60 µW, the remaining fraction of key bits is about 60 % when only the
postselection for other detectors is applied, and it is even lower when the postselection is
applied to all detectors.

For the results presented in the next section, the dead time postselection is not applied
to keep the comparability to the results published in ref. [II], which were obtained before
the dead time postselection was implemented. The simulation results in chapter 7 are
compared to measured results with dead time postselection applied to all detectors.

3.2 Field Test Results

Repetition Cycle Interlacing
The IF delay of about 3 ns (cf. eq. (2.22)) was chosen such that the leakage of photons
into adjacent time bins due to chromatic dispersion is avoided, even when the relatively
broad type-II photons and long transmission links are used (cf. section 2.3.2). When type-0
photons are demultiplexed into 50 GHz wide channels or when the transmission links
are relatively short, the peaks in the photon arrival time histogram are relatively narrow.
Due to the comparatively long IF delay, no photons are registered in long time intervals
between the peaks. These time intervals can be used by interlacing repetition cycles,
enabling a more efficient key transmission. This concept of repetition cycle interlacing was
introduced by Nikiforov during his Ph.D. [28]. By setting up the electronic pulse generator
to create sequences of two electrical pulses with a time difference equal to half the IF delay,
Nikiforov interlaced the three time bins with a second triplet of arrival time peaks and time
bins. A similar interlacing of two repetition cycles can be achieved by doubling the pulse
repetition frequency [M5]. Compared to Nikiforov’s method, the time shift between the
two interlaced time bin triplets is not half of the IF delay but one and a half delays. An
advantage of this method is that it does not require electrical double-pulses and can be
implemented with any pulse generator capable of generating pulses at twice the repetition
frequency. By setting the repetition frequency to 2N times the fundamental repetition
frequency, 2N time bin triplets can be interlaced.

Table 3.3 shows the photon arrival histograms without interlacing, with twofold, and with
fourfold interlacing. For the fourfold interlacing, the pump pulse duration was shortened
from 300 to 160 ps and the time bin width was reduced from 1 to 0.5 ns. The CR parameters
Tacc and Tsm were optimized for each interlacing level. With fourfold interlacing, stable CR
was possible for fiber lengths up to around 50 km. For single- and double interlacing, the
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Table 3.3: Overview over the pump pulse interlacing measurements. The setup is operated
in the default configuration, with an average SHG power of 60µW and with 50GHz wide
WSS channels. The histograms show Charlie’s photon arrival time distribution. The maximal
stable fiber distance is the fiber length between the source and a receiver for which the clock
recovery (CR) works stably.
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Single/No interlacing

Repetition frequency 110MHz
Pulse duration 300ps
Time bin width 1 ns
CR parameter Tacc 45ms
CR parameter Tsm 350ms
Max. stable fiber distance ≈ 100 km
QBERt for Charlie-Diana 4.9(3)%
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Twofold interlacing

Repetition frequency 220MHz
Pulse duration 300ps
Time bin width 1 ns
CR parameter Tacc 25ms
CR parameter Tsm 200ms
Max. stable fiber distance ≈ 100 km
QBERt for Charlie-Diana 2.6(2)%
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Fourfold interlacing

Repetition frequency 440MHz
Pulse duration 160ps
Time bin width 0.5 ns
CR parameter Tacc 15ms
CR parameter Tsm 200ms
Max. stable fiber distance ≈ 50 km
QBERt for Charlie-Diana 1.3(1)%
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CR was stable for fiber lengths of up to approximately 100 km because the larger time bin
separation helps to avoid slips by one time bin (cf. fig. 2.30 (b)).

When the average pump power is doubled, and twofold interlacing is used, the sifted
key rate increases and the QBER remains approximately constant because the contribution
of multi-photon-pair emission to the QBER is unchanged. Conversely, if the pump power
is not changed, the sifted key rate will be approximately the same, and the lower mean
photon pair number per pulse µp results in a lower QBER. To demonstrate both effects,
two measurement series were set up. For the first series, the system was operated in the
default configuration with 60 µW average SHG power and with three different interlacing
levels. For the second series, the SHG power was scaled proportionally to the interlacing
level. The QBERs obtained from the first series are given in table 3.3. Each interlacing level
reduces the QBERt approximately by a factor of two, which shows that multi-photon-pair
emission significantly contributes to the QBER.

The results of the second measurement series are shown in fig. 3.5. The QBER is
approximately constant, but the key rate increases with the interlacing level. However, the
sifted key rate and the secure key rate do not scale proportionally with the SHG pump power
and interlacing level because with an increase of the count rate, the probability that the
detector is in the dead time when the next photon arrives scales up as well. Therefore, when
the fourfold pump power and fourfold nesting are used, the key rate is only approximately
twice as high as the key rate obtained without interlacing.

Long-Range and Long-Term QKD
An important performance indicator for QKD systems is the maximum distance over which
quantum keys can be distributed. Figure 3.6 shows a long-term measurement, demon-
strating the continuous, stable operation of the system over more than three days, with
a total fiber link length of 108 km between Alice and Bob. Alice was connected via the
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Figure 3.5: QKD performance between Alice and Bob in default configuration with different
pump pulse interlacing levels. The average SHG power was set to 30, 60, and 120µW for single,
twofold, and fourfold interlacing.
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Figure 3.6: Long-term QKD demonstration
with Bob connected via a 81.2 km long fiber.
The average SHGpowerwas 90µW, andChar-
lie’s and Diana’s WDM channel widths were
reduced to 25GHz. The data link connection
to the TCs was lost twice for a short time
(green intervals), and the connection was au-
tomatically re-established.
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Figure 3.7: QKD performance for different
channel pairs. Bob and Charlie were con-
nected via 50 and 10.5 km to test the 100GHz
AWG. The 50GHz AWG and the WSS were
tested with Alice and Bob in the default con-
figuration. The gaps at 300 and 1500GHz
in the curve for the 50GHz AWG are due to
defective fiber connectors.

deployed fiber, and Bob was connected via 81 km of spooled fiber. Charlie and Diana were
connected via their standard fiber links. The average SHG power was set to 90 µW, and the
WSS channel width was set to 50 GHz for Alice and Bob to facilitate the clock recovery. For
Charlie and Diana, the channel width was reduced to 25 GHz, resulting in a lower value
of µp, avoiding unnecessarily high QBERs due to multi-photon-pair emission. After the
initial phase-alignment, taking roughly 40 min, average secure key rates of 6(2) bit/s and
4.3(26) % QBER were measured between Alice and Bob and 102(11) bit/s and 2.4(5) %
QBER were measured between Charlie and Diana.

For the two-user system, the measurement time was limited to approximately 5 hours
due to frequent interruptions of the data transfer from the TCs to the computer [28]. To
achieve a more stable operation, the data communication between the computer and the
TCs was revised, enabling the operation of the q-hub network over more than three days.
However, the stability of these connections still needs improvement. The software operating
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the setup was implemented such that connections are automatically reestablished when
they are lost during a QKD session. During the long-term QKD session, the connection was
lost twice for a few runs.

Scalability of the Number of Users in the Q-Hub Network
From fig. 2.14, it is expected that the bandwidth of the photon pairs that can be used to
distribute quantum keys is limited by the WDMs. To demonstrate that the type-0 photon
pair spectrum is broad enough such that the entire wavelength range of the WDM can be
used, quantum keys were distributed with the three available WDMs for several different
wavelength channel pairs. The QKD results are shown in fig. 3.7. The key rates and QBERs
obtained with all WDMs vary slightly from channel to channel, but the whole bandwidth
of the WDMs can be used for QKD. This means that, if sufficiently many receiver modules
were available, up to 34 users could be readily connected to the q-hub via the 100 GHz
AWG, and 78 users could be connected via the 50 GHz AWG.

One of the major advantages of the q-hub network over fixed point-to-point connections
between the users is the possibility to reconfigure the combinations of users to which
keys are distributed. For the q-hub network, it is important to show that the OPD of all
receivers are matched so precisely that all combinations of users can exchange quantum
keys. Figure 3.8 shows the QKD performance for three measurements with different user
pairings, using the 100 GHz AWG as WDM. The QBERs are similar for all combinations,
indicating that all OPDs are well-matched. The key rates of different pairs differ due to the
individual link lengths.

The channel assignment of the AWGs is fixed, and manual reconfiguration is required to
change the user pairing in the network. For practical applications, a reconfigurable WDM
allowing the remote reconfiguration of the network based on the key demands would be
more desirable. One option to realize such a network would be to use an optical switch
after the AWG, enabling the routing of any AWG output channel to any fiber link. Switches
with port counts up to 576 outputs are commercially available [164].

Another option to realize reconfigurable QKD networks with the q-hub is to use a WSS
as WDM. Compared to the available AWGs, the tested WSS has a lower insertion loss.
It allows to freely choose the frequency channel center frequencies and to set channels
with a width as narrow as 6.25 GHz. QKD results for a measurement demonstrating
dynamic network reconfiguration with the WSS are shown in fig. 3.9. QKD sessions with
different user pairings are automatically executed in a sequence, with the WSS switching
the configurations every 6 hours. After switching, the phases are automatically optimized by
the alignment algorithm to minimize the QBERs of the new configuration. The alignment
typically takes less than 40 min and is completed faster when the phases are well pre-
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Figure 3.8: QKD performance for different combinations of users obtained with the 100GHz
AWG. Data were obtained over 20 runs, each taking 90 seconds. The standard deviation over
the 20 runs is represented by error bars. The SHG power was set to 30µW. The data were
acquired before the field test, and all users were connected via fiber spools with lengths slightly
different from the default configuration: Alice – 26.8 km, Bob – 50.0 km, Charlie – 10.5 km,
Diana – 20.6 km.

aligned. After the initial alignment, the algorithm stabilizes the QBERs at low values until
the user combinations are switched again.

The available WSS has only nine outputs, so four pairs of users can be connected at
most. An option to significantly extend the number of network users with WSSs is to set up
a cascade of two or more WSS layers, such that the photon pair spectrum is demultiplexed
to channel groups by a first WSS and is further demultiplexed into individual channels by
one WSS per channel group. WSSs with up to 35 ports are commercially available [165],
enabling a network with 352 = 1225 users with two WSS layers. If the frequency ranges and
channel widths of these WSSs are the same as for the WSS used in the field test, a bandwidth
of 4.5 THz of the photon pair spectrum can be used, corresponding to 720 users.

An important advantage of using a WSS in the first layer of such a network is that it
allows combining arbitrary frequency channels into a single fiber to a sub-network. The
WSSs of the second layer can be placed far apart from the q-hub, realizing local centers of
sub-networks, where the channel groups are then demultiplexed into individual channels.
The whole sub-network could then be connected to the q-hub via a single fiber. The concept
is shown in fig. 3.10.
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Figure 3.9: Dynamic q-hub network with automatic switching of the user combinations by
reconfiguring the WSS every six hours. The gray intervals indicate the time required for the
phase realignments after a channel reconfiguration.

Only a single WSS was available at the time of the field test, so a q-hub network with
two WSS layers could not be realized. Therefore, the WSS and two dense wavelength-
division multiplexing (DWDM) filters were used to demonstrate a network with cascaded
demultiplexing. The demultiplexing scheme is shown in fig. 3.11. Each DWDM filter
transmits light in a 200 GHz wide pass band into its first output and reflects the rest of the
spectrum into its second output. The WSS is configured such that each DWDM receives
two 100 GHz wide frequency channels. One channel is transmitted into the first output
because it is centered in the passband, and the other is reflected in the second output.
A two-hour QKD session with an average SHG power of 30 µW was set up. A secure key
rate of 17(5) bit/s was measured for Alice and Bob, and 14(2) bit/s were measured for
Charlie and Diana. The difference in the key rate is due to losses at Diana’s fiber connector.

Fully-Connected Q-Hub Network
The approaches to realize QKD networks with the q-hub discussed so far use wavelength
demultiplexing to distribute photon pairs to multiple users. Another option is to use
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Figure 3.10: Concept of a q-hub QKD network with two WSS layers and local sub-networks.
The WSS in the first layer splits the photon pair spectrum into channel groups. The WSSs in
the second layer separate the channel groups into individual channels.
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Figure 3.11: QKD experiment with two sub-networks. (a) Setup of the WDM network. The first
layer is implemented using the WSS, and the second layer uses DWDM filters. The deployed
fiber and the DWDM-1 are connected to port 1. A 50.4 km long spooled fiber and the DWDM-2
are connected to port 2. (b) Transmission spectra of the channels. Top: The WSS guides two
100GHz wide channels below the center frequency (dashed line) to port 1 and two channels
above the center frequency to port 2. The passbands of the DWDMs are 200GHz wide and are
centered over the inner WSS channels. Bottom: channels transmitted to the users.
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time-division demultiplexing or probabilistic demultiplexing. Time-division demultiplexing
can be realized, for example, by periodically switching to which users the photons are
sent [112]. Random splitting of the photon pairs can be used to distribute the photons
without requiring WDMs. Such a probabilistic distribution scheme has recently been used
in combination with WDMs to realize a fully-connected QKD-network with 40 users [118].

One option to realize a fully-connected four-user QKD network would be to replace the
WDM with a 1 × 2N beam splitter. In this configuration, the whole photon pair spectrum
would be used for QKD. The value of µp needs to be set so that the probability that more
than one photon pair is produced in any channel pair is much less than one to keep the
QBER low. Therefore, compared to the configuration with N separated user pairs, the
overall photon pair generation rate is a factor of N lower. A disadvantage of the probabilistic
splitting is that with probability 1/(2N) both photons are guided to the same user, such
that these pairs cannot be used to generate key bits.

Fully-connected networks can also be set up by sending multiple wavelength channels to
each user [26, 111, 118]. To realize such a fully-connected network with the four receivers,
the WSS was configured such that each user receives three frequency channels as shown in
fig. 3.12 (a). Each possible user combination is represented by a dedicated channel pair.
In the fully-connected network, all users compare their detection times. When two users
register counts in the same repetition cycle, they evaluate the key bit. When more than
two users register counts in the same cycle, the counts are discarded.

Simultaneous QKD between all user combinations requires that the phases of all IFs are
aligned according to eq. (1.2), fulfilling a set of equations simultaneously:

φx + φy − φP = 2nx,yπ for (x , y) ∈ {(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)}.
(3.1)

The phase alignment is more complex than for simultaneous pairwise QKD because all IF
phases are coupled via the source IF. Therefore, the phase adjustment algorithm would
need to estimate the misalignment of the individual IFs from the observed QBERs in all
user combinations to correct the misalignment of the individual IFs. This is challenging
because the phases of different IFs can be stable, or they can drift by different amounts
in the same or opposite directions. Furthermore, the number of error bits is typically low,
such that the QBER is only approximately known due to the statistical uncertainty. As the
QBER does not provide information about the direction of the phase misalignment, the
realignment during a QKD session becomes challenging.

For a proof-of-principle demonstration of a fully-connected network, the phases are
aligned before the QKD session starts, and the automatic phase realignment is turned off.
The initial alignment is obtained in a three-step method developed by Lucas Bialowons [M5]:
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Figure 3.12: Demonstration of QKD in a fully-connected network with four users. (a) Config-
uration of the 25GHz wide WSS channels. Different colors indicate the frequency channels
sent to different users. Each user is connected via 5.4 km of optical fiber to the q-hub. (b) QKD
results with 10 µW SHG power and twofold pulse interlacing. The IF temperatures were not
actively changed after the initial phase alignment phase (not shown).

1. The QBERp between Alice and Bob and the QBERp between Alice and Charlie are
minimized by tuning Bob’s and Charlie’s IFs. After this step, φB − φC = 2zBCπ with
zBC ∈ Z.

2. The QBERp between Bob and Charlie is minimized by tuning the source IF. After this
step, φP = 2zPπ with zP ∈ Z.

3. The QBERp between Alice and Bob, as well as between Charlie and Diana, are
minimized by tuning Alice’s and Diana’s IFs. After his step, φA−φB = 2zABπ, zAB ∈ Z
and φC − φD = 2zCDπ, zCD ∈ Z.

The second step does not change the condition after the first step, and the third step does
not change the condition of the phase of the pump IF from the second step. The second
step leaves the condition φB − φC = 2nBCπ unchanged, and together with the conditions
from step three, it follows that all other conditions from eq. (3.1) are fulfilled as well.

This alignment algorithm works under the assumption that all the phases that are not
actively adjusted do not change. As the optimization of the QBER for one pair of users
already takes up to 40 min (cf. fig. 3.9), the phases of the interferometers would need to
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be stable for 120 min. Due to influences from the environment, such as ambient room
temperature changes, this is a challenging requirement. To speed up the initial alignment,
each of the three steps was considered completed when the QBERp was below 5 % for two
consecutive runs.

After the initial alignment, the phase alignment algorithm normally used during QKD
sessions was deactivated, and keys were distributed for the next 45 min. The results are
shown in fig. 3.12. The secure key rates were for five out of the six combinations above zero
during the whole measurement time. For Alice and Diana, it was almost always nonzero.
The initial alignment of the combination Alice-Diana with a QBER around 7 % could have
been more optimal and results in a low secure key rate. However, after approximately
30 min, the curves in fig. 3.12 converge towards low QBERs and higher secure key rates
for all combinations. The performance of all key exchanges involving Diana improves,
especially for the combination Alice-Diana. Therefore, this trend is likely caused by a drift
of Diana’s phase in the direction minimizing the initial misalignment. However, this has
to be considered as a lucky coincidence. A method to realign the phases during the QKD
session would be necessary to achieve stable QKD for all user combinations reliably.

Operation of the Photon Pair Source with a Single Wavelength Converter
The SHG and the type-0 SPDC modules of the q-hub both contain identical type-0 wave-
length converters. The cost and complexity of the q-hub could be reduced if SHG and
SPDC could be achieved with only one of the converters. SHG and SPDC within the
same crystal have been reported in the literature, for example, for the generation of
polarization-entangled photon pairs [166–169]. To realize photon pair generation with
a single wavelength converter for the q-hub, the type-0 SPDC module was modified as
shown in fig. 3.13. The double pulses from the pump IF enter the converter via a circulator,
and the 1550 nm light behind the converter is filtered out by the coiled fiber. A 10/90
beam splitter is installed for SHG power monitoring, and a retroreflector then sends the
light back into the converter. The photon pairs are generated during the backward pass of
the SHG light through the converter, leave the circulator at the third port, and pass a pump
light filter consisting of a cascade of two DWDM filters and two FBGs with a suppression
of about 100 dB for the 1550 nm light. These filters are required to remove laser light
reflected at the input of the converter or transmitted from port 1 to port 3 of the circulator.

The QKD performance of the single-converter setup was compared to the performance of
the regular setup with two converters in a 20 hour long QKD session with 50 GHz wide WSS
channels for Alice and Bob. Due to the insertion losses of the pump light filter, the sifted
key rate with the single-converter setup is only about 63 % of the sifted key rate obtained
with the regular configuration. While the QBERt was almost identical, the QBERp was
with 4.3 % for the single-converter setup significantly higher than for the standard setup

91



RR

Circulator

1550 nm 775 nm
λ-converter

Temp.
ctrl.

Coiled fiber

out

10/90 BS

Monitor

From pump

Interferometer 10%

90%

DWDM FBG DWDM FBG BPF

Figure 3.13: Setup of the photon pair source operated with a single wavelength converter.
BS – Beam splitter, RR – Retroreflector, Temp. ctrl. – Temperature controller, FBG – Fiber
Bragg grating, Monitor – Power monitoring and stabilization electronics, DWDM – DWDM-filter,
BPF – C-band bandpass filter. PM fibers are shown in blue and SM fibers are shown in yellow.

with 3.0 %. The root cause for the higher QBERp is likely an increased phase instability in
the pump IF. The additional circulator, the retroreflector, and the double pass through the
10/90 beam splitter introduce additional losses for the laser light and SHG light, such that
a higher average power needs to be sent through the pump IF to generate a comparable µp.
Furthermore, much larger and more frequent adjustments of the EDFA-2 pump power by
the SHG power stabilization were observed. These adjustments probably result from SHG
power fluctuations caused by polarization instabilities introduced by the fiber connections.
The variations of the laser power passing the IF lead to variations of the power dissipated
in the IF and thereby to thermal phase instabilities of the pump IF .

Two QKD experiments confirmed that the high laser power passing through the IF is the
root cause of the higher QBERp in the single-converter setup. In the first experiment, the
mean SHG power was reduced, and the WSS channel width was increased accordingly. In
the second experiment, the same SHG power and WSS channel width were used as before,
but the EDFA-2 was placed after the pump IF. In both experiments, the power passing the
pump IF was significantly lower, and a lower QBERp was observed, approximately as high
as the QBERt. Two options exist to mitigate the problem of phase fluctuations in future
experiments: The fiber connectors can be replaced by spliced connections to reduce the
losses, and the order of EDFA-2 and the pump IF can be reversed to reduce the optical
power in the pump IF.
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Summary of Chapter 3

The successful operation of the q-hub QKD network was demonstrated in a field test at
a facility of Deutsche Telekom in Darmstadt. The fiber link to Alice was realized by using
a 27 km long fiber with an attenuation of 0.25 dB/km, which is a typical value for fibers
deployed underground. This field test was the first field test of a QKD network implementing
the Bennett-Brassard-Mermin 1992 (BBM92) time bin protocol with more than two users.
QKD over optical fibers with a total length of 108 km between two users for more than
three days was achieved. These results demonstrate the stability and reliability of the
hardware, the software, and the synchronization by clock recovery.

Various operation modes, such as repetition cycle interlacing, manual and automatic
switching of the user configurations, and the realization of sub-networks, were demon-
strated, showcasing the versatility of the system. Quantum keys were exchanged between
all possible combinations of receiver modules with similar performance, which proves the
accuracy and reliability of the method to build the interferometers. Simultaneous QKD
between all combinations of users in a fully-connected network was achieved for a short
time with pre-aligned interferometers and without phase realignments.

The number of users that can be connected to the q-hub is limited by the wavelength-
division demultiplexers and the number of receiver modules currently available. If the
appropriate number of receiver modules were built, up to 78 users in 39 fixed pairs could be
readily connected to the q-hub via the 50 GHz AWG. Hundreds of users could be connected
in a reconfigurable network if a wavelength-division demultiplexing structure with two
layers of wavelength-selective switches was used.

A selection of the field test results has been published in refs. [II, V].
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4 Towards a Photonic-Chip-Based Quantum
Key Hub

The size and cost of the quantum key hub could be significantly reduced by implementing
it with photonic chips, also called photonic integrated circuits (PICs). PICs would enable
the integration of the required optical functionalities in one chip or a small number of
connected chips with a size of a few square millimeters. Once a chip design has been
developed, multiple copies of chips with this design can be produced at a relatively low
cost. Further advantages of integrated optical circuits are that they are robust and that
spatial alignment of the integrated components is not required. Therefore, chip-based
components could pave the way for a broader deployment of QKD systems.

Two common materials for photonic chips are silicon nitride (Si3N4), often in combination
with silicon oxide (SiO2), as well as indium phosphide (InP). Si3N4 has a comparatively
high optical third-order nonlinearity and introduces relatively low losses [170], while InP
enables the implementation of active components such as lasers, photodiodes, and fast
modulators [171]. Photon pairs can be generated by spontaneous four-wave mixing (SFWM)
in Si3N4. In SFWM, two pump photons are converted into a signal photon and an idler
photon. In contrast to SPDC, for SFWM, the pump is in the same wavelength range as
the generated photon pairs. Therefore, narrow filters are required to separate the pump
light from the photon pairs. As the third-order nonlinearity is small, relatively high pump
powers are required.

QKD with PIC-based photon sources has been demonstrated in refs. [112, 117, 118, 172].
The required pump power is lower when the pump light and the photon pairs are
confined in a resonator. Therefore, SFWM is often realized in on-chip microring
resonators (MRRs) [172–174], where the photon pairs are generated at the resonance
frequencies of the MRR. QKD using the BBM92 protocol with photons generated in MRRs
has been demonstrated in ref. [117]. For the q-hub, each pair of resonances symmetric
around the center frequency can be used to distribute quantum keys to one pair of users.

To investigate SFWM in MRRs as an alternative to SPDC for generating photon pairs in the
q-hub, a PIC with a box-shaped Si3N4 waveguide manufactured by LioniX International BV
was borrowed from the research group led by Prof. Dr. Boller at the University of Twente.
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In this chapter, a setup for high-frequency Pound-Drever-Hall locking is presented, en-
abling the stabilization of MRR resonances to the pump light. Section 4.1 presents the
design of a dedicated PIC for generating photon pairs for the q-hub network. It integrates
spectral filters and the photon pair generation on a single PIC. In section 4.2, the on-chip
filters are tested, and photon pair generation is demonstrated.

High-Frequency Pound-Drever-Hall Locking for Microring Resonators
The borrowed PIC features multiple straight bus waveguides, each coupled to a single MRR
as shown in fig. 4.1 (a). As the PIC was not packaged, a setup for coupling light from optical
fibers to the chip and from the PIC into fibers by using lensed fibers was realized during
the master’s thesis of Jakob Kaltwasser [M2]. Precise alignment of the lensed fibers to the
chip facets with sub-micrometer precision is realized with mechanical and piezo-based
translation stages.

To generate photon pairs by cavity-enhanced SFWM on the PIC, the MRR must be tuned
into resonance with the pump light by applying a current across an on-chip heating element
above the MRR. Ideally, the coupling coefficient between the ring and bus waveguide
matches the round trip losses in the ring, such that the ring is critically coupled, and the
pump light is completely dissipated in the ring, leading to the maximal pump light intensity
in the resonator. As the volume of the ring waveguide is small, the dissipated power can
lead to a significant temperature change of the waveguide, changing its optical path length
and thereby detuning the resonance. To achieve a stable operation for pump powers up
to a few milliwatts, a resonance locking scheme based on the Pound-Drever-Hall (PDH)
technique [178, 179] was realized during the master’s thesis of Florian Vogel [M9].

(a)

Bus waveguide

Circulating
light

Microring resonator
(b)

in through

adddrop

Ring

IF-1

IF-2

Figure 4.1: Schemes of microring resonators for photon pair generation. (a) Single ring coupled
to a buswaveguide. (b) Dual imbalancedMach-Zehnder interferometer ring (DIMITRI) [175–177].
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A challenge for implementing the PDH scheme was the wide free spectral range of the
MRRs of up to 180 GHz and the corresponding large resonance line widths of a few hundred
megahertz. For PDH locking, phase modulation is applied to the laser light, generating
sidebands outside the resonance. Due to large resonance line widths, a modulation fre-
quency in the low gigahertz range is necessary. PDH locking is a common technique, and
PDH locking of MRR at gigahertz frequencies has been reported in ref. [180]. However,
no commercial solution for the locking circuit was available for such high modulation
frequencies. Therefore, the locking setup for testing the PIC was built from individual
components as shown in fig. 4.2. The spectrum of a CW laser1 at 1550.5 nm is cleaned by
two FBGs with 30 GHz wide reflection bands and the power is adjusted with a VOA. A phase

CW laser

VOA
Circulator

FBG

FB
G

EOPM
𝜑 DWDM FBG DWDM FBG

PD

Heater

Signal
Generator

out

Mixer
Current
source

VCR

Lowpass
+ PID

Pump 
light

PIC
L. fiber

L.  fiber

BPF

BPF

Figure 4.2: Setup for photon pair generation in microring resonators using Pound-Drever-Hall
locking. The application for the unpackaged chip is shown, but the setup is also used for
locking resonators on the packaged chip. FBG – Fiber Bragg grating with 30GHz wide pass
band, VOA – Variabel optical attenuator, EOPM– Electro-optic phasemodulator, PIC – Photonic
integrated circuit, L. fiber – Lensed fiber, DWDM – Dense wavelength-division multiplexing
filter, PD – Photodiode, VCR – Voltage-controlled resistor, PID – proportional-integral-derivative
controller, BPF – Bandpass filter. The zoomed inset shows one of the MRRs on the PIC to
which light is coupled by a lensed fiber. The ring round trip phase is controlled by adjusting the
current flowing through a heating element above the ring waveguide. Optical PM fibers are
shown in blue, and SM fibers are shown in yellow. The cascade of DWDMs and FBGs is the
same one used in the single-converter setup of the PPS (cf. fig. 3.13).

1Laser diode: QDFBLD-1550-100 from QPhotonics, mounted on a CLD1015 laser driver from Thorlabs.
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modulation is applied with an EOPM driven by a bandpass-filtered sine signal generated
by a signal generator2. A lensed fiber couples the light into the bus waveguide. Another
lensed fiber collects the light transmitted through the waveguide. A 100 GHz wide DWDM
filter separates the photon pairs from the remaining pump light, which is detected by an
AC-coupled amplified photo diode3 with a bandwidth of 2 GHz. The generated photon
pairs are further cleaned from the remaining pump light by two FBGs and another DWDM.

The photodiode voltage is mixed in a double-balanced mixer4 with the signal from the
second output of the signal generator, which is a phase-shifted copy of the signal driving the
EOPM. The mixer output is analyzed by a single-board computer5 with analog input and
output channels with a bandwidth of 60 MHz. The board is operated as a lowpass filter and
digital proportional-integral-derivative (PID) controller by using the pyRPL software [181]. It
provides an analog signal to an in-house-made circuit board on which a voltage-controlled
resistor is implemented. A multi-channel current source6 provides a constant current
flowing through the heating element on the PIC, controlling the ring round trip phase. The
heating element and the voltage-controlled resistor are connected in parallel.

When the MRR resonance shifts relative to the laser frequency, the PDH error signal
changes, which the PID controller detects. The controller delivers a variable voltage to the
voltage-controlled resistor, thereby changing its resistance such that the current flowing
through the heating element changes, leading to a change of the ring round trip phase.
The PID parameters are set up so the control loop stabilizes the ring to the laser frequency.

Using this setup, the generation of photon pairs with the borrowed PIC was demonstrated.
However, coupling light to and from the PIC with lensed fibers introduces high losses and
requires careful alignment, such that the optical part of this setup is not very robust and is,
therefore, not optimal for the q-hub.

4.1 Design of a Photonic Integrated Circuit for the Q-Hub

To overcome the shortcomings of the borrowed PIC, a dedicated PIC was designed, inte-
grating multiple functionalities required for the q-hub. The PIC was again manufactured
by Lionix but with asymmetric double-stripe waveguides of the TriPleX™ platform instead
of box waveguides [170, 182]. Photon pair production in a 6.5 cm long double-stripe
waveguide on this platform was demonstrated in ref. [183], and the on-chip generation of

2Signal generator: SynthHD v2 RF from Windfreak Technologies.
3Photo diode: WL-PD2GA from Wieserlabs.
4Mixer: ZLW-11H+ from Minicircuits.
5Single-board computer: STEMlab 125-14 from Red Pitaya.
6Multi-channel current source: XPOW-40AX-CCvCV-U from nicslab.
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time-bin entangled photon pairs in such waveguides was reported in refs. [184, 185]. For
this waveguide design, Lionix offers PIC packaging, attaching fibers to the waveguides.

The PIC was designed to implement three important functionalities that are essential
for the q-hub system: the cleaning of the pump laser light from the Raman background
produced in the optical fibers, the generation of photon pairs in MRRs, and the separation
of the photon pairs from remaining pump light. All functionalities can be realized with
combinations of waveguides and couplers forming IFs and ring resonators that are phase-
tunable by applying currents to heating elements.

An important design consideration was that the tolerances of the losses in the waveguides
and the tolerances of the coupling coefficients are much higher than for standard fiber
components. For an MRR to be critically coupled, the internal losses must match the
coupling coefficient. Therefore, multiple MRRs were placed on the PIC with slightly
different coupling coefficients to increase the probability that at least one is matched
well. For redundancy, four different photon generation lines A to D with slightly different
parameters are implemented on the PIC. Each line consists of a Raman filter block, a photon
generation block, and a pump filter block. Each block consists of multiple resonators, as
shown in fig. 4.3. A single test ring coupled to a bus waveguide without any filters is also
integrated for testing purposes.

The layout was optimized to suppress scattering from pump light photons into waveguides
guiding photon pairs. Furthermore, the geometric arrangement was optimized to minimize
the thermal cross-talk between heating elements of different phase-sensitive elements.
Thermally decoupling these elements facilitates phase alignment when operating the PIC.

Implemented Microrings Resonators for Photon Pair Generation
Two different MRR designs were implemented for photon pair generation: single-bus
MRRs and dual-bus MRRs coupled to two imbalanced Mach-Zehnder IFs (cf. fig. 4.1 (b)).
As there exists so far no established abbreviation for this design in the literature, it will
be called dual imbalanced Mach-Zehnder interferometer ring (DIMITRI) in the following.
Photon pair production in DIMITRIs has been demonstrated in refs. [175–177]. The IFs
act as wavelength-selective couplers and improve the photon pair generation in two ways:
first, the photon pairs are directly separated from the pump light because they leave the
DIMITRI through a different waveguide. Second, they can be used to improve the extraction
efficiency of the photons [175, 176]. For that, the OPD of the IFs is chosen such that their
FSR is twice as large as that of the ring. For the DIMITRIs on the PIC, the ring FSR is chosen
to be 50 GHz and the FSRs of the IFs are 100 GHz, to be in line with the ITU-T DWDM
grid [74]. The group index of the waveguides is n = 1.77 [182], such that an MRR with
an FSR of 50 GHz has a diameter of approximately 1.08 mm.
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Figure 4.3: Layout of the photonic integrated circuit (PIC) with four independent photon gener-
ation lines (A to D). The dimensions are 8mm × 32mm. (a) Arrangements of waveguides are
grouped in functional blocks (colored areas). The left and right facets each provide 32 optical
ports coupled to optical fibers. Eight ports are reserved for the package alignment and cannot
be used to implement functions on the PIC. (b) Arrangement of the electrical layer with leads
and heating elements on top of the waveguides. The electrical current is provided via 80
contact pads in the top row and bottom row and leaves the chip via 22 larger ground pads.

The phase of IF-1 (cf. fig. 4.1 (b)) is adjusted such that coupling for the pump light from
the input to the ring is maximal, and the phase of IF-2 is chosen such that the coupling of the
pump light from the ring into the drop port is minimal. Photon pairs are generated in the
ring at resonances with a distance of multiples of 50 GHz to the pump frequency. Photons
generated with a frequency difference that is an even multiple of 50 GHz are coupled out
by IF-1 into the through port, together with some pump light. Photons generated with
a frequency difference to the pump frequency that is an odd multiple of 50 GHz are coupled
out by IF-2 into the drop port. If IF-2 worked perfectly, no pump light would be coupled to
the drop port, resulting in a pure photon pair spectrum. The maximum of the coincidence
rate from photon pair generation is obtained when the coupling of IF-1 is chosen such that
the ring is critically coupled and the coupling for IF-2 is chosen twice as strong [176]. The
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probability for a generated photon to be coupled out into the drop port is then twice as
high as the probability that it is dissipated in the ring.

The waveguide propagation losses and the coupling between the bus waveguides and
rings or DIMITRIs are subject to manufacturing tolerances. Therefore, multiple rings or
DIMITRIs are chained up in each photon generation line to improve the chance that for
at least one of the MRRs the coupling coefficients and losses match well. The coupling
coefficients are designed with slight variations from MRR to MRR. Line A, B, and C each
feature five DIMITRIs, and line D features six regular rings coupled to a bus waveguide.
For photon pair generation, only one MRR per line is tuned in resonance with the pump
light. Future PIC designs could also use simultaneous coherent photon pair generation in
a series of MRRs [186].

Implemented Filters
Raman scattering in the optical fibers is one of the major sources of background noise for
setups using SFWM in MRRs for photon pair generation [174, 187]. Two on-chip Raman
filters were implemented to remove the Raman noise from the pump light before it enters
the MRRs generating photon pairs. For lines A and B, filters consisting of two or three
serially coupled rings are implemented. An optical switch implemented by a tunable IF
allows to use either of the Raman filter blocks with lines A or B. In lines C and D, dedicated
three-stage Raman filters are used. The ring round trip phases are tuned so that the pump
light is resonant in all three rings and transmitted. The ring FSRs are chosen to be slightly
different, such that the Vernier effect extends the FSR of the filter considerably. Light
at resonances of the first ring is blocked by the second and third ring, light resonant in
the second ring is blocked by the first and third ring, etc. The ring FSRs and coupling
coefficients were designed to sufficiently suppress the Raman noise for a broad frequency
range. Furthermore, by using methods from ref. [188], they were optimized so that the
top of the transmission peak is flat, allowing a stable transmission of the pump light
even when the rings are slightly detuned. For the optimizations, the frequency response
functions of the coupled MRR filters were derived similarly as in ref. [189] by using Masons’
rule [190–193] to simulate the transmission spectrum. In contrast to transfer-matrix-
based methods [194, 195], which are particularly well suited for numerical investigations,
Masons’s rule and similar newer, more efficient methods [196, 197] enable the derivation
of the analytical expression for frequency response of moderately complex linear systems
such as coupled ring filters or DIMITRIs with little efforts.

Two different types of pump light filter blocks are implemented. The first type consists
of four dual-bus MRRs with an FSR of 100 GHz. They are tuned in resonance with the
pump light and transmit it into other waveguides, while photon pairs are off-resonant and,
therefore, remain in the main bus waveguide. The second type of pump filter block consists
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of a series of four imbalanced Mach-Zehnder IFs with an FSR of 100 GHz. For filtering, the
IF phases are adjusted to transmit the photon pairs through all IFs while the pump light is
directed to other waveguides. For lines A and B, another such IF is installed so that for
each line, it can be chosen if the ring filter block or the IF filter block is used to filter out
the pump light. The pump filter block of line C consists of three rings and one IF, and that
of line D consists of four rings.

4.2 On-Chip Photon Pair Generation

Four copies of the dedicated PIC described above were ordered from Lionix to increase the
probability that at least some of the MRRs are almost critically coupled. Figure 4.4 shows
photos of one of the packaged PICs and a microscope image where waveguides, heaters,
and leads are visible. Due to limited time, only one of the PICs was tested extensively during
the master’s thesis of Maximilian Mengler [M8]. The PIC was placed in an enlarged version
of the IF containers for optimal thermal stability, and a TCU controlled the temperature.

Photon pair generation was tested with different MRRs. Without PDH locking, the MRRs
cannot be tuned stably into resonance for pump powers above about 5 mW. However, with
PDH locking, the MRRs are stable even for the highest tested pump power of 15 mW.

The phases of the Raman filters and pump filters are aligned by applying constant currents
to the heaters with a 40-channel current source7 and the PDH locking setup was used to

(a) (b)

Figure 4.4: Photos of the dedicated photonic integrated circuit (PIC). (a) Packaged chip with
optical fiber connections from left and right and flat band cables for the electrical connections
from top and bottom. (b) Microscope image of a part of the PIC.

7Multi-channel current source: XPOW-40AX-CCvCV-U from nicslab.

102



stabilize the MRR generating the photon pairs. After the PIC, the cascade of DWDMs and
FBGs used in the single-converter PPS experiment (cf. fig. 3.13) was connected to improve
the pump light suppression. The 100 GHz AWG was used as WDM.

To demonstrate photon pair generation, the PIC was then pumped with 10 ns long laser
pulses at a repetition frequency of 10 MHz and the timestamps of photons in the AWG
channels with 450 GHz separation to the center frequency were acquired.

Figure 4.5 shows the crosscorrelation of the timestamps from a test of DIMITRI-2 in line A,
normalized to a maximum value of 100 %. Small peaks are visible every 100 ns, indicating
the correlation of photons from different pulse cycles. The peaks are triangular because
the pulse shape is almost rectangular, and the crosscorrelation of two rectangle functions is
a triangle. On top of the central triangle, a high 0.7 ns wide peak is visible, indicating the
presence of photon pairs generated by SFWM. The coincidence-to-accidental ratio (CAR) can
be used to roughly quantify the quality of the photon pair generation, disregarding detector
imperfections such as dark counts. It is given by the ratio of coincidences measured with
correlated photons from pairs divided by the accidental coincidences, meaning that it is
the ratio of the height of the crosscorrelation peak at t = 0 to the height of the side peaks.
Figure 4.5 shows that the CAR decreases for higher pump powers. For an average pump
power of 0.5 mW, the CAR is around 80. The value can be compared to ref. [117], where
CARs in the range of 60 to 150 were observed for the photon pairs generated by SFWM
in a Si3N4 MRR at the same peak power. The quality of these photon pairs in ref. [117]
was sufficient to demonstrate QKD, and it is therefore be expected that QKD will also be
possible with the PIC designed for the q-hub.
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Figure 4.5: Crosscorrelation of signal and idler photons generated by DIMITRI-2 in photon
generation line A with 450GHz separation to the center frequency. The PIC was pumped with
10 ns long pulses at a repetition frequency of 10MHz. The time resolution is 100 ps. The inset
shows the central peak due to photon pairs on top of the triangular background from accidental
coincidences.
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However, the photon pair generation did not work as well as expected. Although photon
pairs are generated, attempts to determine the conversion efficiency showed that the photon
pairs are contaminated with much more noise than the photon pairs from the PPS generated
by SPDC. To investigate this noise, the output spectra of the PIC were measured with the
spectrograph (cf. section 2.2.2). The filter cascade of DWDMs and FBGs was installed after
the chip to remove all laser light left after the on-chip pump filters. Figure 4.6 shows the
spectra of line D with all MRRs detuned so that the pump light is not resonant. For some of
the shown curves, the on-chip Raman filters were bypassed, or the pump light filter rings
were detuned. Without Raman and pump filters, a broad Raman background is visible at
both sides of the center frequency, with periodic dips due to ring resonances. The large
central dip is caused by the external pump filter cascade suppressing all light in a frequency
range of ±50 GHz around the center frequency.

When either the Raman filters or the pump filters are used, the Raman background is
reduced but still present. The Raman filters only remove the background generated in the
fibers before the PIC. If the remaining pump light is not directly removed on the chip by the
pump filters, it generates further Raman photons in the fibers after the chip. The fact that
a non-negligible Raman background is still present when only the Raman filters are used
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Figure 4.6: Spectra of photon generation line D with different on-chip filters, measured with the
spectrograph. All microring resonators for photon generation were tuned out of resonance.
The photonic integrated circuit was pumped with 10 ns long pulses at a repetition frequency of
10MHz with an average power of 10mW. The dashed lines show the frequency pair for which
the crosscorrelation shown in fig. 4.5 was measured.
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demonstrates the necessity of the on-chip pump filters. When Raman and pump filters are
used, the Raman background is almost completely removed, as expected. These results
show that the filters work as expected and demonstrate the advantage of on-chip spectral
filters for reducing Raman noise.

In the wavelength range of ±2 nm around the center frequency, multiple high peaks with
a spacing of 50 GHz are visible. They are almost independent of the filter configuration.
Scans of the pump power showed that the height of these peaks scales linearly with the
pump power. The rate of photon pairs generated by SFWM would scale quadratically with
the pump power. Therefore, it can be concluded that the main contribution of the peaks
comes from a noise process and not from photon pairs. If the noise were generated before
the PIC, it would be reduced by the Raman filters, and if it were generated in the fibers after
the chip, it would be reduced when the pump filters remove the pump light. Therefore, it
can be concluded that the noise is generated on the PIC itself.

In principle, multiple processes can lead to such noise. Brillouin scattering in Si3N4 has
a gain maximum at a frequency shift of approximately 11 GHz [198], which is one order
of magnitude less than the frequency shift of the observed noise. Raman scattering in
Si3N4 is typically only relevant for larger frequency shifts of several terahertz [199, 200].
Therefore, Brillouin and Raman scattering as the noise source seem unlikely. The Si3N4

waveguides are embedded in SiO2, such that the background from this material should
match the background from the optical fibers. The background generated in the fibers is
visible in fig. 4.6, and it shows a minimum around the center frequency, such that the noise
is probably also not generated in the SiO2 of the chip. Three of the four copies of the PIC
have been shown to generate the noise, and the fourth PIC has not been tested. So far, the
root cause of the noise could not be identified.

The CD in the asymmetric double-stripe waveguides is relatively strong, leading to a non-
constant frequency spacing of the resonances. As energy conservation only allows the
generation of photon pairs at frequencies symmetric around ν0, photon pair generation
is restricted to a few resonances around the center frequency, limiting the number of
users that could be connected to a q-hub with a PPS based on such a PIC. Therefore, the
above-mentioned noise is particularly relevant because it affects the innermost five to six
resonance pairs.

Next Steps Towards a Photonic-Chip-Based Quantum Key Hub
For future PIC designs, waveguides with lower CD would be desirable such that photon
pairs for higher numbers of users can be generated. Further experiments are required to
quantify the actual impact on the QKD performance. As the measured CARs are comparable
to those reported in ref. [117], it is well possible that despite the noise, the quality of the
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photon pairs is sufficient to demonstrate QKD. Therefore, an essential next step towards
a PIC-based q-hub is a test of QKD with photons generated by SFWM on the PIC.

Identifying the source of the noise and preventing its generation in future PIC generations
is desirable. Future PICs for the q-hub could also directly integrate WDMs, for example,
based on IF trees [201]. Furthermore, laser pulse generation at 1550 nm could be realized
using InP-based PICs. As many applications benefit from combining the advantages of
the different platforms, commercial suppliers offer hybrid integration of different PICs
such as InP and Si3N4 [202]. The receivers could also use PIC-based IFs with long delays,
as demonstrated in refs. [63–65, 184, 185]. Ultimately, the complete q-hub QKD system
could be realized using PICs, paving the way for the cost-efficient production of a larger
number of such systems for deployment in a wide range of applications.

Summary of Chapter 4

The generation of photon pairs for the q-hub by spontaneous four-wave mixing in silicon
nitride microring resonators (MRRs) on photonic integrated circuits (PICs) was tested. A setup
for coupling light from optical fibers to an unpackaged chip and from the chip into optical
fibers was developed. The setup was used to generate photon pairs with a PIC borrowed
from Prof. Dr. Boller’s research group at the University of Twente. The setup was then
extended to enable gigahertz-modulated Pound-Drever-Hall stabilization of the microring
resonances to the pump laser frequency.

Based on the experiences with the borrowed chip, a dedicated PIC was designed. It
combines MRRs for photon pair generation with spectral filters for cleaning the pump
light from Raman noise and with filters separating the generated photon pairs from the
pump light. Two types of MRR designs for photon pair generation are implemented: rings
coupled to a bus waveguide and MRRs consisting of a ring coupled to two imbalanced
interferometers. This latter design should enable better suppression of the pump light in
the photon pair spectrum and higher photon pair extraction efficiencies.

Four copies of the packaged PIC were ordered, and one was tested. Using the Pound-
Drever-Hall stabilization, the MRRs could be kept stably in resonance with the pump light,
even for the highest tested pump power of 15 mW. Crosscorrelation measurements showed
that photon pairs are generated. Unfortunately, their spectrum is contaminated with strong
noise of unknown origin. From a comparison of the measured coincidence-to-accidental
ratios to values reported in the literature, it is feasible that the quality of the photon pairs
may nevertheless be sufficient to demonstrate QKD. Further experiments are required to
identify the origin of the noise and to quantify its impact on the performance of the QKD
system.
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Part II

Modeling and Simulations
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5 Detector Characterization and
Reconstruction of Positive
Operator-Valued Measures

Detector side channels can impair the security of QKD systems, and detailed knowledge
about the single-photon detectors (SPDs) benefits the security. Furthermore, thorough
detector characterizations are required for developing accurate simulation models of QKD
systems. This chapter presents a detailed analysis of the SPDs used in the q-hub system.

Section 5.1 introduces the setup for the SPD characterization. An early version of the
experimental setup was realized during the bachelor’s thesis of Philipp Kleinpaß [B2] and
it was further improved during the bachelor’s thesis of Maximilian Mengler [B4].

Section 5.2 presents the measured values for dark count rates, dead times, and afterpulses,
which are used for modeling the detectors in the simulations in chapters 6 and 7.

The measurement results obtained from a quantum detector can be described in terms
of positive operator-valued measures (POVMs) characterizing the detector. In the context
of detector POVMs, the time dependence of the detection process is rarely considered.
An exception is a time-dependent model for POVMs of non-photon-number-resolving (non-
PNR) detectors proposed by Gouzien et al., which includes dead time and timing jitter
into the POVM model [203]. The concept of time-dependent detector tomography is
introduced to narrow this gap between theory and experiment. Section 5.3 presents time-
dependent and time-independent detector POVMs reconstructed from the data obtained in
the characterization measurements. In addition, the detection efficiencies are calculated,
showing that the detectors are slightly more efficient than specified by the manufacturer.

In section 5.4, the predictions of the timing jitter POVM model from ref. [203] are
compared to measurements, showing that time-dependent detector tomography can reveal
information about effects in SPDs that are not included in the POVM model from ref. [203].

The research presented in sections 5.3 and 5.4 was published in ref. [III]. These in-
vestigations were carried out in close collaboration with Robin Krebs, Thorsten Haase,
and Prof. Dr. Gernot Alber from the Theoretical Quantum Physics research group at the
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Technical University of Darmstadt. Robin Krebs developed and benchmarked an adaptive
regularization method for the POVM reconstruction and worked on the test of the timing
jitter model during his bachelor’s thesis [B3] under the supervision of Prof. Dr. Gernot Alber
and Thorsten Haase.

5.1 Setup for Detector Characterization

The setup for the detector characterization is shown schematically in fig. 5.1. Light from
a CW laser1 with a center wavelength of about 1550.52 nm is chopped into pulses by two
cascaded electro-optic amplitude modulators (EOAMs)2, attenuated to the single-photon
level by one manual and one electronically adjustable variable optical attenuator (VOA)3

and sent into the SPD under test. The laser and the fibers are polarization-maintaining.
However, the inputs of the SPDs are multi-mode fibers that do not preserve the polarization,
such that the polarization state arriving at the photodiode of the SPD is unknown.

The SPD is connected to one input channel of a time controller (TC), and the trigger
output of the dual-channel pulse generator4 driving the EOAMs is connected to another
input. The timestamps recorded in this trigger channel provide a time reference relative to
which the photon detection times are measured. The pulse generator is set up such that

CW Laser EOAM

Pulse
 generator

EOAM

Bias 
controller

Power
supply

VOA

Power
supply

VOA

Time
controller

SPD 
under test

Trigger

Figure 5.1: Setup for detector characterization. EOAM – Electro-optic amplitude modulator,
VOA – Variable optical attenuator. PM fiber is shown in blue. The detector input is a multi-mode
fiber (orange). The bias of the second EOAM and the attenuation of the second VOA are
controlled by voltages provided by laboratory power supplies.

1Laser diode: QDFBLD-1550-100 from QPhotonics mounted on a CLD1015 laser driver from Thorlabs.
2Amplitude modulators: MXAN-LN-10 (low loss) and MXER-LN-10 (high extinction ratio) from iXblue.
3Electronic variable optical attenuator: V1550PA from Thorlabs.
4Pulse generator: HP 8131A from Hewlett Packard.
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the first EOAM shapes pulses with an FWHM duration of 0.24 ns and the second modulator
is opened for a window of ±5 ns around the passage time of the light pulse from the first
modulator. Therefore, the first modulator determines the pulse shape, and the second
modulator increases the extinction ratio between pulses outside the ±5 ns window. Thereby,
photons leaking between the pulses through the first modulator are further suppressed to
increase the signal-to-noise ratio. The repetition rate was set to 10 kHz such that the time
between pulses is with 100 µs much longer than effects from the dead time and afterpulses.
Correlations between subsequent pulses are thereby suppressed such that the detections
from different pulses are independent. The first EOAM is stabilized by a bias controller
(cf. section 2.1.1). The second EOAM receives a pulsed optical input with a low average
optical input power such that it cannot be stabilized with a bias controller. Instead, before
starting a measurement, its bias voltage is swept and readjusted to the value that minimizes
the rate of photons leaking between pulses through the modulators.

5.2 Measurements of Dark Counts, Dead Times, and Afterpulses

The SPDs are free-running single-photon avalanche diodes5, meaning that they are
(non-PNR) detectors producing an electronic pulse (a count) whenever they detect one
or multiple photons. Single-photon avalanche diodes are essentially reverse-biased
p-n junctions operated in Geiger mode [204]. When an incident photon creates an
electron-hole pair, the charge carriers are accelerated in the electric field across the
junction. The applied voltage is so high that the charge carriers gain enough energy so that
they can create further pairs of charge carriers. Thereby, an avalanche of charge carriers
is started, producing a macroscopic current indicating the detection of a photon [204].
Then, the bias voltage is lowered below the breakdown voltage for some time to stop the
avalanche before the bias is again increased above the breakdown voltage such that the
next photon can be detected. This detection mechanism causes some effects that ideal
single-photon detectors would not show. Besides the non-unity detection efficiency, the
dark counts, dead times, and afterpulses are the most important effects.

Dark Count Rates
Dark counts are counts that are registered, although no photons were present. They occur
when spontaneously generated charge carriers lead to avalanches [204]. To minimize this
effect, the photodiodes of the ID220 SPDs are cooled down to approximately −50 °C by
thermo-electric coolers. Dark counts are unwanted detection noise leading to quantum bit
errors, so low dark count rates are desirable.

5Single-photon detectors: ID220 from IDQuantique.
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The SPDs allow to choose between three different settings for the detection efficiencies of
10, 15, and 20 %, corresponding to different bias voltages. Furthermore, the dead times can
be set between 1 and 25 µs. In general, a high detection efficiency and a short dead time
are desirable to detect as many photons as possible. But the settings come with a trade-off:
on the one hand, setting higher efficiencies leads to higher dark count rates and afterpulse
probabilities for a given dead time. On the other hand, longer dead times reduce the dark
count rate and the probability that the detector is active when the next photon arrives.

The dark count rates were measured for all eight detectors of the q-hub network at
several different combinations of the dead times and efficiencies. Figure 5.2 (a) shows the
dark count rate of SPD-2 as an example. At short dead times, the dark count rate is much
higher than for longer dead times, especially for the highest detection efficiency of 20 %.
This means that for QKD, a combination of settings needs to be chosen for which both the
detection efficiency and the noise from dark counts and afterpulses are acceptable. The
optimal settings used for all QKD experiments are 20 % efficiency and 10 µs dead time
(cf. fig. 3.3). Figure 5.3 shows the measured dark count rates for all detectors at these
settings.
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Figure 5.2: Detailed characterization of SPD-2. (a) Dark count rates and afterpulse probabilities
pap for different dead times and set efficiencies. (b) Histogram of time to the next count after
a count originating from a pulse for SPD-2, calculated from the POVM tomography data for the
highest mean photon number µ = 50 acquired over 10min. The settings from top to bottom
are 5, 10, and 15 µs dead time with set efficiencies η of 10, 15, and 20%. The integral of the area
between the exponential fit (green) and the histogram (violet) is the afterpulse probability pap.
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Figure 5.3: Dead times, dark count rates and afterpulse probabilities for all eight SPDs operated
at 20% set efficiency and 10 µs set dead time. The circles in the left diagram mark the rising
edge of the autocorrelation, and the left end of the bar marks the shortest observed dead time.

Dead Times
After a count, the detector is automatically deactivated for a dead time τdead, during which
no further counts can be registered until the detector is activated again. As photons arriving
during the dead time cannot be detected, the dead time reduces the effective detection
efficiency. This effect can be quantified by comparing the count rate r ′ of a detector with
dead time to the count rate r of an identical detector without dead time. For the detector
with dead time, pon is the probability that the detector is active (not in the dead time) at
a certain point in time. Each count contributing to rate r of the detector without dead
time occurs with probability pon at a time when the detector with dead time is active,
meaning that pon = r ′/r. The fraction of the measurement time during which the detector
is deactivated is given by r ′τdead, such that

pon = 1 − r ′τdead . (5.1)

By combining eq. (5.1) with pon = r ′/r from above, r can be calculated by [205]

r =
r ′

1 − r ′τdead
. (5.2)

The count rate reduction due to the dead time is non-negligible at the parameters where
the QKD system is operated. For example, when Alice is connected to the PPS via the
deployed fiber link (cf. fig. 3.1), the count rates of her detectors are in the range of 30 kcps.
The detectors are operated with a dead time of 10 µs, such that pon = 0.7.

To quantify how accurately the set dead time represents the actual dead time in practice,
the detectors were illuminated with dim laser light. The dead time was extracted from
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the autocorrelation function of the recorded timestamps. The autocorrelation is zero for
times below the dead time. It steeply increases at the dead time and approaches a constant
plateau value for long times. Figure 5.3 shows the measured dead times for all SPDs. The
measured dead times of all detectors match the set dead time except for SPD-2, which has
a slightly shorter dead time.

Afterpulse Probabilities
Charge carriers from an avalanche can be trapped in the photodiode. Another avalanche
can be triggered, although no photons are present, when these carriers are released after the
dead time when the diode is biased again. Such detector counts are called afterpulses [204].
Afterpulses are another type of undesired detection noise.

To measure the afterpulse probability, the second EOAM was removed from the setup
shown in fig. 5.1 to avoid the necessity of the calibration runs and to speed up the mea-
surement. Afterpulses were measured for all eight detectors at the different set efficiencies
and for different set dead times. For the three setting combinations at which data for the
POVM reconstruction were acquired, the afterpulse probability can similarly be calculated
from the data acquired for the POVM reconstruction.

To calculate the afterpulse probability, only those counts that are coincident with the
electronic trigger pulse within a short window around the maximum of the count histogram
are selected. These counts are very likely caused by photons from the light pulses. Then,
the time differences between these and the following counts are calculated and collected
into a histogram. As an example, the histograms of SPD-2 calculated from the data acquired
for the POVM reconstruction are shown in fig. 5.2 (b). Values at time differences up to the
pulse repetition time of 100 µs are due to dark counts or afterpulses. For an ideal detector
with a constant dark count rate and without afterpulses and dead time, the dark counts
would follow a homogeneous Poisson process with a constant rate λ. The histogram of
times to the next dark count would then follow an exponential distribution pλ(t) = λ e−λt .
For a detector with dead time, the histogram would be zero up to the dead time, where
the exponential decay would start. However, in the measured histogram, an additional
maximum in the count probability is visible, on top of the exponential decay, directly
after the dead time. These counts are caused by afterpulses. An exponential fit for times
between 40 to 100 µs is extrapolated to earlier times, showing the afterpulses (filled areas
in fig. 5.2 (b)). The afterpulse probability pap is the sum of the counts in this area divided
by the total number of counts in the histogram. The uncertainty of pap comes from choosing
the fit range for the exponential decay. On the one hand, if the left bound of the fit range is
too low, the tail of the afterpulse distribution distorts the fit, and the calculated afterpulse
probability is too low. On the other hand, if the fit range starts too far apart from the
afterpulses, the uncertainty in the extrapolation is high. The values and uncertainties
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in fig. 5.2 (b) were therefore calculated from two fits, starting from 30 and 50 µs and
taking the mean. The afterpulse probabilities for all detectors are shown in fig. 5.3. The
uncertainties for these values, calculated from the values acquired without the second
EOAM, are larger than in fig. 5.2 (b). Without the second EOAM, the laser photons leaking
through the first modulator cause a higher continuous photon flux, leading to a faster decay
rate in the histogram, which increases the uncertainty of the fit.

5.3 Tomographic Reconstruction of POVMs

Two fundamentally different approaches to detailed descriptions of quantum detectors have
been discussed in the literature: detailed modeling of all effects relevant to the detection
process, and detector tomography. The first approach requires a thorough analysis of
the relevant effects and inner workings of the detector. In contrast, the second approach
makes only a few assumptions and reconstructs the measurement operator of the quantum
detector from tomographic measurements with probe states [206–208].

In section 5.3.1, the POVM formalism and the concept of detector tomography for phase-
insensitive detectors are briefly introduced. The time-dependent POVMs of the detectors
are presented in section 5.3.2, and the detection efficiencies of the detectors are calculated.
Section 5.3.3 presents the time-dependent POVMs.

5.3.1 Basic Principle of POVM Tomography for Phase-Insensitive Detectors

A quantum measurement is described by a set of measurement operators {M̂ i}, with i
labeling the different measurement results. When a quantum state ρ̂ is measured, result i
is obtained with probability pi(ρ̂). The state after a measurement yielding result i is ρ̂′

i,
given by [209]

ρ̂′
i =

M̂ iρ̂M̂
†
i

pi(ρ̂)
and pi(ρ̂) = ⟨Π̂ i⟩ = tr(Π̂ iρ̂) with Π̂ i = M̂

†
i M̂ i . (5.3)

When only the probabilities pi(ρ̂) are of interest, the explicit measurement operators Mi

are not needed to describe the measurement and the operators Π̂ i are sufficient. From
pi(ρ̂) ≥ 0, it follows that the Π̂ i are Hermitian, positive semi-definite operators. The set
{Π̂ i} is called a positive operator-valued measure (POVM) and the operators Π̂ i are called
POVM elements [209]. From

∑︁

i pi(ρ̂) = 1 it follows their completeness relation

∑︂

i

Π̂ i = 1̂ . (5.4)
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The SPDs used in the QKD system are single-photon avalanche diodes with no external
phase reference. This means their representation in the optical phase space is rotationally
symmetric around the origin, and the POVM elements are diagonal in the photon number
basis [207, 208, 210]:

Π̂ i =
∞
∑︂

k=0

Θki|k⟩⟨k| . (5.5)

The coefficients Θki can be collected into the matrix Θ for convenience.
When detection results for a tomographically complete set of input states, that is a set of

states spanning the input Hilbert space of the detector, are available, the POVM itself can
be reconstructed from the measurement results6 [207, 208, 210].

Most realizations of quantum detector tomography focus on single-mode input
states [208]. Examples are tomographic measurements and POVM reconstructions for
avalanche photo diodes [207, 211], superconducting nanostrip detectors [212], transition
edge sensors [213], time-multiplexed superconducting detectors [214], photon-number
resolving detectors [215–217] and phase-sensitive detectors [218–220].

Attenuated laser light is much easier to produce in the laboratory than photon number
states. From a practical point of view, it is, therefore, more convenient to perform the
tomography in the (overcomplete) basis of coherent states |α⟩ than directly in the Fock
basis [207, 208, 210]. The detection probabilities for the coherent states |α j⟩ are

pi(α j ,Θ) =
∑︂

k

C jkΘki with C jk = |⟨α j|k⟩|2 = e−µ j
µk

j

k!
and µ j = |α j|2 . (5.6)

In principle, photon numbers k and mean photon numbers µ j up to infinity need to
be taken into account, but for practical numerical implementations, both values need
to be truncated at some values kmax and jmax. Furthermore, the probabilities pi(α j ,Θ)
are not directly available from the experiment. Instead, they are approximated by the
count frequency obtained by repeatedly sending light pulses into the detector. When the
state |α⟩ is sent N(α j) times, n(α j) counts are observed and the probabilities pi(α j ,Θ) are
approximated by the count frequency fi(α j) = ni(α j)/Ni(α j), which are collected into
the matrix F . After switching into the dead time, the detector is considered active when
a time longer than the set dead time plus two microseconds has passed since the last count.
Equation (5.6) can then be approximated with the measured count frequencies and written
in matrix notation as [207, 208]

Fjmax×imax = C jmax×(kmax+1)Θ(kmax+1)×imax , (5.7)

6The title of ref. [207] felicitously describes the tomography of detector POVMs as “Measuring Measurement”.
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with C having kmax + 1 columns for |0⟩ to |kmax⟩. The POVM elements are obtained by
solving eq. (5.7) for Θ. In general, C is not a square matrix, such that it is not invertible,
and eq. (5.7) cannot be solved directly. However, solutions can be found by minimizing
∥F − CΘ∥F

7 [207, 208]. To obtain meaningful results, the numerical optimization needs
to be regularized [221], for example, by adding a quadratic regularization term [207, 208]

r
∑︂

k,i

(Θk+1,i − Θk,i)2 , (5.8)

with a regularization coefficient r. Regularization is required to avoid that noise in the
measurements leads to irregularities in the reconstructed POVMs [207], but it biases the
optimization. Therefore, r must be chosen to obtain an acceptable trade-off between
well-behaved and unduly biased optimization results. One possible solution is to scan r
over a range of values and to select a value for which a smooth distribution of POVM values
is obtained, which is relatively insensitive to changes of r [207, 208].

For time-dependent tomography, the statistical data quality, given by the number of
recorded counts per time bin, varies as a function of the time bin. This would require
a manually chosen individual regularization coefficient for each time bin, which is incon-
venient. A more systematic approach proposed by Robin Krebs in his bachelor’s thesis is
to adapt the strength of the regularization parameter to the data quality by considering
the regularization term as a Bayesian prior distribution in a maximum-likelihood opti-
mization [B3]. Based on these considerations, an adaptive expression for r was derived
that decreases when N(α j) grows, taking into account that higher numbers of repetitions
yield more reliable statistics. This adaptive expression for r is one of the major results in
ref. [III]. The importance of the regularization term and the disadvantages of static regu-
larization terms independent of the statistical measurement uncertainty are demonstrated
in a benchmarking of different regularization techniques presented in ref. [III].

Using the adaptive coefficient r, the objective function to be minimized for each time
bin individually becomes

S(θ ) = ∥( f − Cθ )∥2
2 + r

∑︂

k

(θk+1 − θk)2 with r = k2
max max

j

�

f (α j)[1 − f (α j)]
N(α j)

�

.

(5.9)
The detailed derivation of the expression for r is presented in ref. [III]. For the non-PNR
detectors, it is sufficient to consider only the “no-count” POVM elements

Π̂no count = θ0|0⟩⟨0| . (5.10)

7The Frobenius norm of some matrix M is given by ∥M∥F =
�∑︁

i, j |Mi j |2
�1/2

.
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The element for a count is simply given by Π̂count = 1̂− Π̂no count. Therefore i = imax = 1,
such that the matrices F and Θ from eq. (5.7) become vectors f and θ in eq. (5.9).

5.3.2 Time-Independent POVMs

The detection efficiency of the SPDs can be deduced from the time-independent POVMs.
Data to reconstruct these POVMs were acquired with the setup described in section 5.1.
The total mean photon number per pulse µ was scanned from 0 to µmax = 50 in steps
of 2, and counts were recorded over 10 min measurement time per µ value. The values for
f (α j) are obtained by summing up the counts occurring in a 8 ns wide window around
the pulse center and dividing the number by the number of laser pulses. Only those pulse
cycles and counts are considered in which the detector is not in the dead time.

For the POVM reconstruction, a value for kmax must be chosen. It should be higher
than µmax because a coherent state with mean photon number µmax has significant con-
tributions from photon number states with k > µmax. If kmax is chosen too low, the
reconstructed POVM will show artifacts from the cutoff. For the implementation, the value
kmax ≈ µmax + 2

√
µmax ≈ 65, that is µmax plus two standard deviations of the Poisson

distribution, was chosen, such that C jmaxkmax ≤ 1 %.
To reconstruct the time-independent POVMs, eq. (5.9) was minimized numerically over θ .

To facilitate the convergence of the minimization and to avoid numerical artifacts, the
gradient of eq. (5.9) was implemented explicitly.

The time-independent POVMs were reconstructed for all eight SPDs at the different setting
combinations. As an example, the measured no-count probabilities and the reconstructed
POVM for SPD-2 are shown in fig. 5.4. For an ideal detector with efficiency η, the expected
“no-count” probabilities for k incident photons and for a coherent state |α⟩ are given by

pno count
�

|k⟩
�

= ⟨k|π̂no count|k⟩ = (1 − η)k and pno count
�

|α⟩
�

= ⟨α|π̂no count|α⟩ = e−ηµ.
(5.11)

The measured “no-count” probabilities match the expectation for an ideal detector. An
exponential fit to the data in fig. 5.4 (a) yields the efficiency η = 16.9 %. However, for
values above µ = 30, the logarithmic plot shows that the “no-count” probability approaches
a plateau of around 2.7 × 10−3, meaning that the detector does not yield a count with this
small probability even when µ is further increased. A similar effect can be observed for the
reconstructed “no-count” POVMs in fig. 5.4 (b). Here, the curves for an ideal detector were
calculated with the fitted efficiency η = 16.9 % from fig. 5.4 (a).

Detection Efficiency
One of the most important figures characterizing an SPD is the detection efficiency η.
One option to derive η from the measured data is to extract it from the exponential fit

118



(a)

0 10 20 30 40 50
Mean photon number 

0.00

0.25

0.50

0.75

1.00

p n
oc

ou
nt

Measured
Fit:  = 0.169

100

10 1

10 2

10 3

p n
oc

ou
nt

(b)

0 25 50
Photon number k

0.00

0.25

0.50

0.75

1.00

N
o-

co
un

t P
O

VM
 (1

-
k) Reconstr.

Ideal POVM
100

10 1

10 2

10 3

10 4

10 5 N
o-

co
un

t P
O

VM
 (1

-
k)

Figure 5.4: Time-independent tomography of SPD-2 for η = 15% and τdead = 10 µs compared
to an ideal detector (cf. eq. (5.11)). (a) Measured no-count probability for coherent wave
packets with mean photon numbers µ and expectation pno count(|α⟩) = e−µ for an ideal detector.
(b) Reconstructed no-count POVMs and expectation pno count(k photons) = (1 − η)k. Both
diagrams show the data in linear (left axis) and logarithmic (right axis) scale .

to pno count(|α⟩). Another option is to take the POVM element for one photon. Figure 5.5
shows the values obtained by using both methods for all eight8 detectors. Additionally,
the POVM values θ1 obtained with a 100 times stronger regularization are shown. The
measurement uncertainties are dominated by the accuracy to which µ is known. Systematic
relative uncertainties of the values of 5 % are introduced by the photodetector used for
the power calibration, and another 10 % are introduced by loss variations in the fiber-fiber
connections in the setup. The variation between repeated measurements of the same
detector was 8 %.

The efficiency values match the nominal set values and are generally slightly higher.
Remarkably, reasonable POVMs are even obtained with the much larger regularization
coefficient, and the efficiencies obtained this way are closer to the values obtained from the
exponential fit for most detectors. A similar insensitivity to the regularization coefficient
has been observed in ref. [207], indicating that using eq. (5.9) to calculate the adaptive
regularization parameter should be understood as a rule-of-thumb and larger or smaller
values may also lead to reasonable results.

8In ref. [III], efficiencies for only seven detectors are shown because SPD-5 was under repair when the data
were measured. The data for SPD-5 were acquired after the detector returned from repair.
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Figure 5.6: Time-dependent count probability
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5.3.3 Time-Dependent POVMs

The time resolution of the measured data allows to reconstruct the time-dependent POVMs
characterizing the temporal distribution of the detector counts. The probe pulse shape and
the resulting count histograms are shown in fig. 5.6 for a number of µ values. The count
distribution becomes higher and narrower for increasing values of µ, and the maximum
shifts to earlier times. At µ = 50, the distribution is even narrower than the probe pulse.
This effect is a consequence of the dead time. For pulses with high µ, a photon is with high
probability detected early within the pulse, and due to the dead time, the further photons
in this pulse cannot be detected. This effect is expected to become relevant for µ values
above ηµ ≈ 1 when a detector without dead time would often register multiple photons
per pulse. The complete measured count distributions are shown in fig. 5.7 (a). The count
distributions from fig. 5.6 are horizontal crosssections through this distribution.

To systematically include the time dependence into POVMs, eq. (5.5) is naturally extended
to a probability density pcount(t, ρ̂) = tr

�

ρ̂Π̂count(t)
�

. A time-dependent POVM can then
be written as [III]

π̂count(t) = T
∞
∑︂

k=0

∫︂

Rk

pcount, k(t,τk)|τk⟩⟨τk| dτk with |τk⟩ =
k
⨂︂

j=1

â†(τ j)|0⟩ , (5.12)

with the arrival times τk = {τ1, ...,τk} of k photons at the detector. Time ordering
τ1 < τ2 < · · · < τk is ensured by the time ordering operator T . The probability density
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Figure 5.7: Time-dependent tomography of SPD-2 for η = 15% and τdead =10 µs. (a) Measured
count probability as a function of the mean photon number µ of the probe pulse. (b) Count
POVMs reconstructed by using adaptive regularization.

pcount, k(t,τk) describes how likely it is that a state with k photons at times τ1, . . . ,τk

causes a count in the time interval [t, t + d t]. For a time interval I , the POVM is again
time-independent and given by Π̂ I , count =

∫︁

I
π̂count(t) d t [203].

For the numerical POVM reconstruction it is convenient to split the integral in eq. (5.12)
into time bins of width ∆t for i = 1, . . . , imax, such that the POVM consists of imax + 1
elements, one for a count in each time bin and one for no count in any time bin. By
restricting the general time-dependent POVM from eq. (5.12) to the particular probe
pulse shape shown in fig. 5.6, the time-dependent POVM can be expressed as in eq. (5.5),
where a count in a specific time bin represents one detection result i. The time-dependent
POVMs were then reconstructed by minimizing eq. (5.9) for each time bin individually
with optimization bounds, ensuring physically reasonable results between 0 and 1. The
reconstructed time-dependent POVMs are shown in fig. 5.7 (b). Similar to the count
probabilities, the maximum of the distribution shifts for higher values of k to earlier times.

5.4 Test of a Timing Jitter Model

In ref. [203], Gouzien et al. proposed a POVM model for non-PNR detectors with dead time
that is a special case of eq. (5.12), meaning that it assumes a specific function pcount, k(t,τk)
in eq. (5.12). As discussed above, due to the dead time, only the first of multiple possible
counts that a pulse could cause is registered. The model from ref. [203] formalizes this
effect. In the following, the measured data will be used to check the validity of the model
for the tested SPDs.
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The model assumes that the detectors have an intrinsic timing jitter distribution J(T ),
such that J(t−τ) d t is the probability that a single photon arriving at τ yields a count in the
interval [t, t + d t]. Causality is ensured by J(T < 0) = 0. Further model assumptions are
that the detector is deactivated directly after the first count and that it remains in the dead
time for the rest of the pulse duration. The probability pcount(t,τk) in the time-dependent
POVM eq. (5.12) thereby becomes [203]

pcount(t,τk) =
k
∑︂

j=1

p1(t,τ j)
k
∏︂

l=1
l ̸= j

p1,not(t,τl) . (5.13)

Here, p1(t,τ) = ηJ(t −τ) and p1,not(t,τ) = 1−η
∫︁ t
τ

J(t ′−τ) d t ′ are the probabilities
that a single photon at τ causes a count at t and that a single photon has not caused a count
up to time t, respectively [203]. Equation (5.13) is the sum of the probabilities for each
of the k photons to be the first photon to cause a count at t and that none of the other
photons has caused a count before τ j .

The count probability density pwp for a continuous-mode probe pulse wave packet
predicted by this model can be compared to the time-dependent tomographic data. The
formal derivation presented in the appendix of ref. [III] yields

pwp(t) = − ∂
∂ t

exp

�

−
∫︂ t

−∞
λ(t ′) d t ′

�

with λ(t) = η
�

J ∗ |α|2
�

(t) . (5.14)

This equation is the probability density of the time to the first count for an inhomogeneous
Poisson process with a time-dependent count rate λ(t). This rate is given by the time-
dependent photon flux |α(t)|2 of the probe pulse (cf. fig. 5.6) convolved with the detector
jitter distribution J(t). The reason for this structure can also be understood intuitively:
independent detections of photons from a coherent wave packet yield a Poisson process,
which is modified by the jitter distribution. A detector without dead time could register
multiple counts per pulse, but a detector with dead time registers only the first of these
counts. Therefore, pwp(t) is given by the time to the first count of the Poisson process.
The detector count distribution according to the model is completely characterized by
the count rate λ(t), from which the jitter distribution can be obtained by deconvolution.
To reconstruct λ(t) the cumulative rate Λ(t) =

∫︁ t
−∞ λ(t

′) d t ′ is defined. Integrating

eq. (5.14) and using Λ(t → −∞) = 0 yields
∫︁ t
−∞ pwp(t ′) d t ′ = 1 − e−Λ(t), such that

Λ(t) = − ln
�

1 −
∫︁ t
−∞ pwp(t ′) d t ′

�

. Differentiation yields the expression

λ(t) =
dΛ(t)

dt
= − d

dt
ln

�

1 −
∫︂ t

−∞
pwp(t ′) d t ′

�

=
pwp(t)

1 −
∫︁ t
−∞ pwp(t ′) d t ′

. (5.15)
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Calculating λ(t) by eq. (5.15) only requires the measured count distribution pwp(t) and
requires neither knowledge about the detector efficiency η nor about the mean photon
number µ. For the numerical deconvolution, the normalized discrete pulse shape I with
Ii = |α(t i)|2/µ and the normalized discrete count rate λ = λi = λ(t i)/(ηµ) are defined.
By introducing the Toeplitz matrix T constructed from I , the discrete convolution becomes
λ = (I ∗ J) = T J . To deconvolve J from λ, ∥λ− T J∥2

2 was minimized over J . Writing the
discrete convolution as a multiplication by a Toeplitz matrix enables the implementation
of the gradient ∇J∥λ − T J∥2

2 = 2TT(T J − λ), which facilitates the convergence of the
minimization. To obtain meaningful and smooth results, the optimization constraint Ji ≥ 0
for all i and a regularization term

∑︁

i(Ji+1 − Ji)2 penalizing strong variations of the first
derivative, weighted by a regularization coefficient, was added. Therefore, the resulting
objective function to be minimized is very similar to eq. (5.9).

Figure 5.8 shows the normalized discrete count rate λ and the discrete jitter distribution
J obtained by deconvolution of the pulse shape for SPD-2. The count rate varies as
a function of µ, shifting the maximum towards earlier times, and the same effect is visible
in the deconvolved jitter distribution. The width of the jitter distribution at the base is
approximately 500 ps. A very similar course was observed for the other detectors. Although
the jitter rate model from ref. [203] includes the effect of the maximum shifting to earlier
times due to the dead time as discussed in section 5.3.3, at least a part of the observed
shift is not explained by the model. One possible reason is that the model assumes the
independence of the count rate and jitter distribution of µ, which may not be the case.
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Figure 5.8: Count rates according to the jitter rate model from ref. [203] for SPD-2 operated
at η = 15% set efficiency and τdead = 10 µs dead time. (a) Normalized discrete count rate λ
calculated from themeasured data via eq. (5.15). (b) Normalized jitter distribution J(T ) obtained
by deconvolving the probe pulse shape from λ.
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In ref. [III], a rigorous statistical analysis of the validity of the jitter rate model compared
to the measured time-dependent POVM is presented. It confirms that the jitter rate model
is insufficient to describe the time-dependent count distribution of the tested detectors
completely.

A possible root cause for the deviation could be the violation of the assumption that
photons are registered independently, which is implied by the multiplication of the prob-
abilities in eq. (5.13). In the tested SPDs, photons trigger electron avalanches, and an
electric count pulse is emitted when the avalanche current reaches a certain threshold level.
The timing jitter distribution of such detectors is mainly determined by the distribution of
charge carrier transit times in the absorption region and by the distribution of the avalanche
build-up time in the multiplication region [222]. This means that avalanches triggered
by multiple photons can add up, such that the current threshold is reached faster than
for independent detections of the photons. Therefore, this effect is expected to shift the
maximum of the distribution to earlier times, more than predicted by the jitter rate model.

Summary of Chapter 5

In this chapter, the single-photon detectors employed in the q-hub QKD system were
thoroughly analyzed. All eight detectors were characterized by sending coherent probe
pulses with a known mean photon number into the detectors and recording the times of
the detector counts. The dark count rates, dead times, and afterpulse probabilities were
calculated from these data. The results are used to model the detectors in the simulations
presented in chapters 6 and 7. Time-independent positive operator-valued measures (POVMs)
for the detectors were reconstructed from which the detection efficiencies were derived, and
time-dependent POVMs were reconstructed from the time-dependent count distributions.
For that, a new method was developed to adapt the coefficient determining the strength of
the regularization to the statistical quality of the measured data.

Furthermore, the measured time-dependent count probabilities were compared to the
predictions of a POVM model from the literature, taking into account the detector dead
time and timing jitter. The observed deviations of the data from the model predictions are
likely due to the violation of a model assumption. This example shows that measuring time-
dependent detector POVMs can reveal additional information about effects in a detector
that simplifying models do not consider. The results of this chapter were published in
ref. [III].
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6 Simulating the Photon Statistics of
Multi-Mode Gaussian States by Automatic
Differentiation of Generating Functions

This chapter summarizes the most important results of publication [VI], in which a new
photon-number-resolved method for simulating quantum-optical setups is presented and
applied to simulate the multi-user QKD network. In contrast to the simulation presented in
chapter 7, this QKD simulation does not resolve the photon spectrum, significantly simplify-
ing the implementation. The simulation method consists of three steps: modeling the setup
using the covariance formalism, constructing a generating function for the photon statistics,
and using automatic differentiation (AD) software to retrieve the photon statistics from
the generating function. The method enables computing the photon number distribution,
cumulative probabilities, moments, and factorial moments of the photon statistics for the
relevant class of optical quantum states called Gaussian states (GSs). Furthermore, relevant
effects in real setups, such as noise, non-unity detection efficiencies, and the simultaneous
detection of multiple modes by the same detector, are easily incorporated. This versatility is
the most crucial strength of the method. It comes at the price of requiring more computing
resources than highly optimized algorithms for computing photon number distributions.

A simulation of the q-hub network not capable of resolving the photon statistics was imple-
mented by Florian Niederschuh during his bachelor’s thesis [B5]. Afterwards, the method
to simulate the photon statistics was developed. Functionalities to simulate photon-number-
resolved (PNR) detection were implemented by Florian Niederschuh for the demonstration
of the simulation method in publication [VI]. An implementation example using the PyTorch
framework has been published in the technical report ref. [IV].

Section 6.1 briefly reviews generating functions for probability distributions and the
covariance formalism. In section 6.2, the generating functions for the photon statistics of
multi-mode GSs are derived. Alternative methods to compute photon number distributions
are discussed. In section 6.3, the method is applied to simulate the multi-user QKD network.
The simulation results for quantum key rates and QBERs agree with measurements, showing
that the simulation describes the q-hub network accurately.
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6.1 Basic Mathematical Tools

This section reviews essential mathematical tools for simulating the q-hub system.

Generating functions allow to represent the probability distribution of sums of random
variables efficiently. They are widely used in various disciplines, such as combinatorics,
probability theory, and engineering. Their mathematical properties and applications are
extensively discussed in the literature, such as refs. [223, 224]. The most relevant properties
of generating functions are briefly introduced in section 6.1.1. These properties are the
reason for the great flexibility of the simulation method presented in this chapter. They
enable considering detection noise and the joint detection of multiple modes in the same
detector in a straightforward way.

Gaussian states (GSs) are quantum states generated by Hamiltonians with a linear or
quadratic dependence on the creation and annihilation operators. Many of the most
common photonic quantum states are GSs, such as the vacuum state, coherent states,
squeezed states, two-mode squeezed vacuum, or thermal states. Furthermore, common
elements in optical setups, such as beam splitters, phase shifters, or losses, are described
by transformations mapping GSs to other GSs. GSs are characterized by a covariance
matrix and a displacement vector, which carry the complete information about the photon
statistics of the states. The covariance formalism is therefore well suited for theoretical
investigations and has been extensively discussed in the context of quantum information
in various publications [100, 225–228]. The formalism is also well-suited for practical
simulations of GSs in complex optical setups because the required matrix operations
representing state transformations can be efficiently implemented in software. In ref. [101],
the use of the formalism for simulations of quantum-optical setups with non-PNR detectors
is demonstrated, and in ref. [229], the formalism is advocated as a general framework
for multi-mode Gaussian quantum optics. The most relevant features of the covariance
formalism are summarized in section 6.1.2.
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6.1.1 Generating Functions for Probability Distributions

A generating function is a device somewhat similar to a bag. Instead of
carrying many little objects detachedly, which could be embarrassing, we
put them all in a bag, and then we have only one object to carry, the bag.

George Pólya, 1954
in: Mathematics and Plausible Reasoning, Volume I., Chapter VI. [230]

Generating functions compactly represent an infinite sequence of numbers as the coeffi-
cients of a power series in some parameter y . For a discrete random variable N attaining
non-negative integer values n ∈ N0, the probabilities p(N = n) are such a sequence of
numbers. They can be collected by interpreting them as the coefficients of a power series
called the probability-generating function (PGF) [224]:

h(y) =
∞
∑︂

n=0

p(N = n)yn =



yN� . (6.1)

The probabilities can be retrieved from a given PGF by repeatedly differentiating it and
evaluating it at y = 0 [224]:

p(n) =
1
n!

dn

dy n h(y)
|︁

|︁

|︁

y=0
. (6.2)

Similarly, the mean value of the distribution can be obtained by [224]

⟨N⟩ =
∞
∑︂

n=0

p(n) n =
d h(y)

dy

|︁

|︁

|︁

y=1
. (6.3)

Related functions generate further quantities characterizing the probability distribution:

The cumulative probabilites p(N ≤ n) are generated by h(y)/(1 − y) [224], which can be
shown by using the geometric series (cf. eq. (A.17)):

h(y)
1 − y

=
∞
∑︂

n=0

p(N = n)yn
∞
∑︂

k=0

yk , (6.4)

p(N ≤ n) =
n
∑︂

k=0

p(k) =
1
n!

dn

dy n

h(y)
1 − y

|︁

|︁

|︁

y=0
. (6.5)
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The moments M(k,µ) =



(N − µ)k
�

of the probability distribution are generated by the
moment-generating function [224] related to the exponential series (cf. eq. (A.16)):

M(µ, y) =



e(N−µ)y� =
∞
∑︂

n=0

p(n) e(n−µ)y =
∞
∑︂

k=0

yk

k!




(N − µ)k
�

, (6.6)

M(k,µ) =
dk

dy k
M(µ, y)

|︁

|︁

|︁

y=0
. (6.7)

The two most important types of moments are the raw moments ⟨N k⟩ and the central
moments




(N − ⟨N⟩)k
�

. An important example for the central moments is the vari-
ance σ2 =




(N − ⟨N⟩)2
�

. Closely related to the moment-generating function is the
characteristic function

χ(y) = M(0, iy) =



eiyN� . (6.8)

The falling factorial moments n(k) = ⟨N(k)⟩ = ⟨N(N − 1) · · · (N − k + 1)⟩ [231–233] are
generated by




(1 + y)N
�

, which can be shown by using the binomial theorem from
eq. (A.18):

h(1 + y) =
∞
∑︂

n=0

p(n)(1 + y)n =
∞
∑︂

n=0

p(n)
n
∑︂

k=0

yk

�

n
k

�

=
∞
∑︂

k=0

yk

k!
⟨N(k)⟩ , (6.9)

n(k) =
dk

dy k
h(1 + y)

|︁

|︁

|︁

y=0
. (6.10)

The rising factorial moments n(k) =



N (k)
�

= ⟨(N + 1) · · · (N + k)⟩ [234, 235] are gener-
ated by the rising-factorial moment-generating function R(y) related to the negative
binomial series (cf. eq. (A.19)):

R(y) =
∞
∑︂

k=0

yk

k!

∞
∑︂

n=0

p(n)
(n + k)!

n!
=

∞
∑︂

n=0

p(n)
(1 − y)n+1

=
1

1 − y




(1 − y)−N� ,

(6.11)

n(k) =
dk

dy k
R(y)

|︁

|︁

|︁

y=0
. (6.12)

Expressing multivariate probability distributions by multivariate generating functions is
straightforward. For example, the PGF h(y1, y2) =

∑︁

n1,n2
p(n1, n2)y

n1
1 yn2

2 generates the
bivariate probability distribution p(n1, n2).

One of the most important strengths of generating functions is the efficient way to
represent the probability distribution of a sum of random variables. For two random
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variables N1 and N2 with probability distributions p1(N1 = n1) and p2(N2 = n2), the sum
of the random variables follows the probability distribution

p(N1 + N2 = n) =
n
∑︂

m=0

p2(m)p1(n − m) . (6.13)

This probability distribution is the convolution of the individual probability distributions.
Its PGF can be rewritten by using Cauchy’s product formula as [223, 224]

h(y) =
∞
∑︂

n=0

n
∑︂

m=0

ymp2(m)yn−mp1(n − m) =

� ∞
∑︂

k=0

ykp1(k)

�� ∞
∑︂

l=0

y l p2(l)

�

= h1(y) h2(y) .

(6.14)
This means the PGF for a sum of random variables is the product of the PGFs of the individual
random variables. Similarly, the moment and rising-factorial moment-generating functions
for a sum of random variables are the products of the individual generating functions. For
the cumulative probabilities and rising factorial moments of a sum of random variables,
the product of the power series is multiplied by the prefactor 1/(1 − y) only once, not for
each of the individual generating functions.

6.1.2 The Covariance Formalism of Gaussian States

A photonic state with S orthogonal modes can be described by introducing S pairs of
creation and annihilation operators â†

s and âs for s = 1 . . . S with commutator relations
[âi , â†

j] = δi j . Based on âs and â†
s , the quadrature operators

x̂ s =
1
√

2

�

âs + â†
s

�

and p̂s =
1

i
√

2

�

âs − â†
s

�

(6.15)

can be defined. It is convenient to collect the operators into vectors:

â = (â1, . . . , âS)
T , â† = (â†

1, . . . , â†
S) , x̂ = ( x̂1, . . . , x̂S)T , p̂ = (p̂1, . . . , p̂S)

T .
(6.16)

For the sake of a more compact notation, these are combined into even larger vectors1

â =
�

â
(â†)T

�

and q̂ =
�

x̂
p̂

�

. (6.17)

1In this notation, the Hermitian adjoint of a vector is obtained by transposing the outer vector
and taking the Hermitian adjoint of the elements. For example, the Hermitian adjoint of â is
â† = (â†, âT) = (â†

1 , . . . , â†
S , â1, . . . , âS).
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The relation between the â-basis and the q̂-basis from eq. (6.15) can thereby be written as

q̂ = Ωâ with Ω =
1
√

2

�

1 1

−i1 i1

�

. (6.18)

The basis-changing 2 × 2 blockmatrix Ω is unitary, with 1 denoting the S × S identity.

The characteristic function2 of an operator Ô for x̂ and p̂ depends on 2S real arguments
collected into the vector ξT =

�

ξTx ,ξTp
�

= (ξx1 . . .ξxS ,ξp1 . . .ξpS ):

χÔ(ξ) = tr
�

Ô exp
�

iξTq̂
��

. (6.19)

The expectation values of an operator Ô with respect to a state ρ̂ can be calculated by inte-
grating the product of the characteristic functions of the state and the operator [100, 101]:

⟨Ô⟩ = tr
�

ρ̂Ô
�

=
1
(2π)S

∫︂

R2S

χρ̂(ξ)χÔ(−ξ) dξ . (6.20)

Gaussian states (GSs) are states with a Gaussian characteristic function [100, 101, 226–228]

χρ̂(ξ) = tr
�

ρ̂ exp
�

iξTq̂
��

= exp
�

−1
4
ξTΓ (q)ξ + iξTd(q)

�

. (6.21)

The 2S×2S matrix Γ (q) is real and symmetric and d(q) is a real vector with 2S components.
The connection between the moment-generating function and the characteristic function
(cf. eqs. (6.6) and (6.8)) can be used to obtain the first- and second-order moments of the
quadrature operators from derivatives of χρ̂(ξ) =




exp
�

iξTq̂
��

:

1
i

d
dξ j

χρ̂(ξ)
|︁

|︁

|︁

ξ=0
= ⟨q̂ j⟩ and

1
i2

d2

dξ j dξk
χρ̂(ξ)

|︁

|︁

|︁

ξ=0
=

1
2




q̂ j q̂k + q̂kq̂ j
�

. (6.22)

Evaluating the derivatives for the characteristic function of a GS from eq. (6.21) shows
that Γ (q) and d(q) are related to the first- and second-order moments of the quadrature
operators [100, 226–228]:

Γ
(q)
i j = ⟨q̂i q̂ j + q̂ j q̂i⟩ − 2⟨q̂i⟩⟨q̂ j⟩ and d(q)i = ⟨q̂i⟩ . (6.23)

Due to these relations, Γ (q) and d(q) are called covariance matrix and displacement vector.
From eq. (6.23) it follows that the total photon number µ of the state is given by

µ =
∑︂

s




â†
s âs
�

=
1
4

tr
�

Γ (q) − 1
�

+
1
2

dTd . (6.24)

2The (quantum) characteristic function of an operator shares some similarities with the (classical) characteristic
function of a probability distribution from eq. (6.8).
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The definition of Γ (q) and d(q) from eq. (6.23) follows refs. [100, 101, 228]. Other
conventions are to arrange x and p in alternating order [225–227] or to scale Γ by a factor
of 1/2 [227, 236, 237]. Instead of considering Γ (q) and d(q) in the q̂-basis, they can also
be represented in the complex â-basis [228], indicated by dropping the superscript:

Γ = Ω†Γ (q)Ω and d = Ω†d(q) . (6.25)

In the real basis, Γ (q) is real, symmetric and positive definite. In the complex basis, Γ is
complex and Hermitian [228]. Working with the real- or complex-valued representation
may be convenient depending on the specific application. The photon-number-resolved
simulation method presented in this chapter mostly uses the real-valued representation,
while the simulation in chapter 7 uses the complex-valued representation.

When the interaction describing the state is given by unitary operations Û1,2 = e−iĤ1,2 ,
with Ĥ1 having a linear or Ĥ2 having a quadratic dependence on â and â†, Ĥ1 and Ĥ2 can
be written in matrix notation as [228]

Ĥ1 = ihTâ with h =
�

−α∗

α

�

and Ĥ2 =
1
2
â†H â with H =

�

X Y
Y∗ X∗

�

.

(6.26)
Here, Y = YT and X = X† ensure that H is Hermitian [228]. Applying Û1,2 transforms the
k-th element of â according to [228]

Û
†
1âkÛ1 = (â + Jh)k and Û

†
2âkÛ2 = (Sâ)k , with (6.27)

S = e−iKH , J =
�

0 1

−1 0

�

, and K =
�

1 0
0 −1

�

. (6.28)

Applying a unitary transformation to a state ρ̂ such that the state after the transformation
is ρ̂′ = Ûρ̂Û

†
changes the characteristic function to

χρ̂′(ξ) = tr
�

Ûρ̂Û
†

exp
�

iξTq̂
�

�

= tr
h

ρ̂ exp
�

i
∑︂

j,k
ξ jΩ jkÛ

†
âkÛ

�i

. (6.29)

Using eq. (6.27) yields the transformations for the characteristic function:

ρ̂′ = Û1ρ̂Û
†
1 ⇒ χρ̂′(ξ) = χ(ξ) exp(iξTΩJh) , (6.30)

ρ̂′ = Û2ρ̂Û
†
2 ⇒ χρ̂′(ξ) = χρ̂

�

(S(q))Tξ
�

with S(q) = ΩSΩ† . (6.31)

Applying eqs. (6.30) and (6.31) to the Gaussian characteristic function shows that unitary
operations are represented by simple matrix transformations of Γ and d [100, 226–228]:

ρ̂′ = Û1ρ̂Û
†
1 ⇒ Γ ′ = Γ , d ′ = d + Jh ,

Γ ′(q) = Γ (q) , d ′(q) = d(q) + ΩJh ,
(6.32)
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ρ̂′ = Û2ρ̂Û
†
2 ⇒ Γ ′ = SΓS† , d ′ = Sd ,

Γ ′(q) = S(q)Γ (q)(S(q))T , d(q) = S(q)d(q) .
(6.33)

The matrix S(q) is symplectic with respect to J , meaning that S(q)J(S(q))T = J and S is
symplectic with respect to K , meaning that SKS† = K [228]. An overview of applications
of symplectic matrices in quantum mechanics and optics can be found in ref. [238].

When a state transformation preserves the total mean photon number of the system,
it is called a passive transformation. For passive transformations S is unitary and S(q) is
orthogonal [228].

The expressions for the covariance matrices and displacement vectors of the most common
GSs and the transformation matrices for the most important transformations of GSs can
be found in the literature [100, 101, 225–228] and some are listed in appendix C. They
constitute a versatile kit of building blocks allowing to model even complex optical setups
simply and systematically: First, Γ and d are determined for the initial state. Then the
Hamiltonians transforming the state in each step are written in the form of eq. (6.26)
and the transformation matrices S are calculated from eq. (6.28) or are taken from the
literature. Afterwards, eqs. (6.32) and (6.33) are used to update Γ and d. The required
matrix operations can be easily implemented with software packages such as NumPy [239]
and PyTorch [29].

6.2 Generating Functions for the Photon Statistics

One of the most important results of publication [VI] is a generating function for the
photon statistics of GSs in terms of Γ (q) and d(q). Variations of this generating function
allow calculating the photon number distribution, cumulative probabilities, moments, and
factorial moments of GSs. In section 6.2.1, the derivation of these expressions is presented,
together with expressions for the matrix elements in the Fock basis and coherent state
basis.

6.2.1 Derivation of Generating Functions for the Photon Statistics

Assuming independent detection of photons with efficiency η from a single-mode quantum
state, the probability to detect n photons is, by analogy to Mandel’s formula [240], given
by [235, 241–243]:

p(n) =


:
(ηN̂)n

n!
e−ηN̂ :

·

. (6.34)

Here, N̂ = â†â is the photon number operator. The colons : : indicate the normal order,
meaning that between the colons, the operators are sorted in such a way that all creation
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operators are placed left of all annihilation operators. By inserting eq. (6.34) into eq. (6.1),
the PGF of the photon number distribution (PND) can be written as h(y) = ⟨ĥ(y)⟩, with the
generating operator ĥ(y). Such generating operators are common in theoretical literature
about photon detection [235, 241–243]. Julian Nauth, who worked on an early version
of the q-hub simulation during his master’s thesis ref. [M3], showed in ref. [244] how the
operator ĥ(y) can be used to calculate the PND of biphoton states in terms of the covariance
matrix.

By using eq. (6.34), the following generating operators for probabilities, moments, and
factorial moments are obtained3:

h(y) =
∞
∑︂

n=0

yn


:
(ηN̂)n

n!
e−ηN̂ :

·

=



:e(y−1)ηN̂ :
�

= ⟨ĥ(y)⟩ , (6.35)

M(µ, y) =
∞
∑︂

n=0

e(n−µ)y


:
(ηN̂)n

n!
e−ηN̂ :

·

=



e−yµ :exp
�

(ey − 1)ηN̂
�

:
�

= ⟨M̂(µ, y)⟩ ,

(6.36)

R(y) =
∞
∑︂

n=0



:
(ηN̂)n e−ηN̂

n!(1 − y)n+1
:
·

=


1
1 − y

:exp
�

ηyN̂
1 − y

�

:
·

= ⟨R̂(y)⟩ . (6.37)

The structure of R̂(y) is known from the generating function of the Laguerre polynomi-
als Lk(x) (cf. eq. (A.20)) and the rising factorial moments can therefore be written as
n(k) = n! ⟨:Lk(−ηN̂):⟩ [245].

As discussed in section 6.1.1, the generating function of a sum of random variables
is the product of the individual generating functions. Thereby, noise in the detection
process can be taken into account. When the photon statistics of the noise is given by
a Poissonian distribution pnoise = e−ννn/n! with noise parameter ν, its PGF is given by
hnoise(y) = e(y−1)ν. The generating operators, including Poissonian noise, become

ĥ(ν, y) = exp[ν(y − 1)] ĥ(y) , (6.38)

M̂(ν,µ, y) = exp[ν(ey − 1)] M̂(µ, y) , and (6.39)

R̂(ν, y) = exp
�

νy
1 − y

�

R̂(y) . (6.40)

Noise processes with different statistics can similarly be considered by multiplying the
generating operators with the respective generating functions. Various kinds of detection
noise can thereby easily be included in the simulation.
3The notation with angle brackets for classical expectations values of probability distributions should not be
confused with the notation for the quantum expectation values of operators ⟨Ô⟩. For example, the PGF of
any probability distribution and, therefore, also the PGF of the PND is given by h(y) = ⟨yN ⟩ (cf. eq. (6.1)).
However, only for the PND from eq. (6.35) it holds h(y) =




:e(y−1)ηN̂ :
�

.
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The generating operators in eqs. (6.35) to (6.37) all involve operators of the type
ĝ0[w(y)] = :exp

�

−w(y) â†â
�

: with different functions w(y). The derivation of ⟨ ĝ0(w)⟩ in
terms of the covariance matrix and displacement vector is the central step in deriving the
generating functions for the photon statistics. For example, an expression for the PND is
obtained, taking into account the detector efficiency η and noise ν. The generating operator
yields a theoretical model for the POVM element Π̂N=n for the detection of n photons:
Combining eq. (6.2) and eq. (6.38) yields4

p(n) = ⟨Π̂N=n⟩ with Π̂N=n =
1
n!

dn

dy n eν(y−1) ĝ0[(1 − y)η]
|︁

|︁

|︁

y=0
. (6.41)

By introducing two further parameters u and v, the more general operator

ĝ[u, v, w(y)] = :exp
�

uâ + vâ† − w(y) â†â
�

: (6.42)

is obtained, enabling the calculation of density matrix elements [231] ⟨α|ρ̂|γ⟩ and ⟨n|ρ̂|m⟩
for coherent states |α⟩ and |β⟩ and photon number states |n⟩ and |m⟩, as shown in ref. [VI].

Derivation of the Characteristic Function of the Single-Mode Generating Operator
The next step in deriving the generating function for the photon statistics of multi-mode GSs
is to derive the single-mode generating function G(u, v, w) = ⟨ ĝ(u, v, w)⟩. The expectation
value is given by the integral over the product of the characteristic functions of the state and
the operator (cf. eq. (6.20)). As the characteristic function of a Gaussian state is directly
given by Γ and d, all that is left to do is to calculate χ ĝ(ξ).

By using the Baker-Campbell-Haussdorf formula (cf. eq. (A.29)) and cyclic permutation
of the trace, χ ĝ(ξ) can be obtained from the trace over an operator in normal order,

χ ĝ(ξ) = tr
�

ĝ exp
�

i(ξx x̂ + ξp p̂)
��

= exp

�

ξ2
x + ξ

2
p

4

�

tr
�

exp
�

dâ†� ĝ exp
�

câ
��

, (6.43)

with c = (iξx + ξp)/
√

2 and d = (iξx − ξp)/
√

2. Inserting the completeness relation
1̂ = π−1

∫︁

C|α⟩⟨α| d
2α [235] into the optical equivalence theorem eq. (A.30) yields

tr
�

F(â†, â)
�

=
1
π

∫︂

C
F(α∗,α) d2α (6.44)

4Note that eq. (6.41) describes a theoretical model for the POVM, assuming that photon detection is described
by eq. (6.34). Whether a real detector is well described by this model could be checked by a detector
tomography measurement (cf. chapter 5).
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for a normally-ordered function of creation and annihilation operators F(â†, â). This allows
to calculate tr

�

edâ† ĝ ecâ
�

= π−1
∫︁

C edα∗ euα+vα∗−w|α|2 ecα d2α by separating the real and
imaginary parts of α = a + ib and evaluating two Gaussian integrals by using eq. (A.2):

tr
�

edâ† ĝ ecâ� =
1
π

∫︂

R
e(d+v+c+u)a−wa2

da

∫︂

R
ei(c+u−d−v)b−wb2

db =
1
w

e(d+v)(c+u)/w .

(6.45)
By collecting ξx and ξp into ξ = (ξx ,ξp)T, this simplifies eq. (6.43) to

χ ĝ(ξ) =
1
w

exp
�

−1
2

2 − w
2w

ξTξ− iξTζ +
uv
w

�

with ζ =
�

ζx

ζp

�

=
1

w
√

2

�

−(u + v)
i(v − u)

�

.

(6.46)

Derivation of the Generating Function for Multi-Mode Gaussian States
Equation (6.46) can easily be generalized to multiple modes labeled by s = 1 . . . S. The
characteristic functions of the individual modes are independent and can be combined to5

χ ĝ(ξ) = exp
�

−1
2
ξTA⊕2ξ− iξTζ(q) + Z

� S
∏︂

s=1

1
ws

. (6.47)

Here, ξT = (ξTx ,ξTp) and ζT = (ζTx , ζTp) each comprise 2S components, Z =
∑︁

s usvs/ws,
and A = diag

�

(2 − w1)/w1, · · · , (2 − wS)/wS
�

/2.
Inserting eq. (6.47) and the characteristic function for a Gaussian state from eq. (6.21)

into G(u, v , w ) = (2π)−S
∫︁

R2S χρ̂(ξ)χ ĝ(−ξ) dξ from eq. (6.20) yields6

Generating function for the photon statistics and matrix elements of Gaussian states

G(u, v , w ) =
1

√
detΛ

exp
�

−1
2

zTΛ−1W z + Z
�

(6.48)

Here, the following abbreviations are used: W = diag⊕2(w ), z = d(q) + ζ, and

Λ =
1
2

WΓ (q) + WA⊕2 = 1 +
1
2

W
�

Γ (q) − 1
�

. (6.49)

5Here the notation A⊕2 = A ⊕ A =
�

A 0
0 A

�

is used.

6The integral G(u, v , w ) =

�

(2π)S
S
∏︂

s=1

ws

�−1 ∫︂

R2S

exp
�

−1
2
ξT
�

1
2
Γ (q) + A⊕2

�

ξ + iξTz(q) + Z
�

dξ is solved by

using eq. (A.3) and
∏︁

s ws =
p

det(W) is then absorbed into det
�

Γ (q)/2 + A⊕2
�

det(W) = det(Λ).
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Expressions for Probabilities and Moments
The probabilities and moments of the multivariate photon statistics are retrieved from
eq. (6.48) by repeated differentiation. For that, eqs. (6.38) to (6.40) are generalized
by introducing D differentiation parameters y1, . . . , yD for detectors d = 1, . . . , D, each
detecting Md modes with additional Poissonian noise νd . The total number of modes
is S =

∑︁

d Md and the modes are indexed by s enumerating md = 1d , . . . , Md for all
D detectors in the order 11, 21, . . . , M1, 12, . . . M2, . . . . . . MD. At this point, it is convenient
to use a multi-index notation: For tuples x and k, the abbreviation

∏︁

i xki
i = x k is

used, such that w−1 =
∏︁

s w−1
s . The factorials and derivatives are compactly noted as

n! =
∏︁

d(nd !) and ∂ n
y =

∏︁

d ∂
nd /∂ (yd)nd . Using these abbreviations, the final expressions

for the multivariate probabilities and moments yield

Generating-function-based expressions for the photon statistics of Gaussian states

p(n,ν,η) = ⟨Π̂N=n⟩ =
1
n!
∂ n

y exp

� D
∑︂

d=1

(yd − 1)νd

�

G0(w )
|︁

|︁

|︁

|︁

y=0

with ws = ηmd (1 − yd) , (6.50)

p(N ≤ n,ν,η) = ⟨Π̂N≤n⟩ =
1
n!
∂ n

y (1 − y)−1 exp

� D
∑︂

d=1

(yd − 1)νd

�

G0(w )
|︁

|︁

|︁

|︁

y=0

with ws = ηmd (1 − yd) , (6.51)

M(µ, k,ν,η) = ⟨(N̂ − µ)k⟩ = ∂ k
y exp

� D
∑︂

d=1

(eyd − 1)νd − µd yd

�

G0(w )
|︁

|︁

|︁

|︁

y=0

with ws = ηmd (1 − eyd ) , (6.52)

n(k)(ν,η) =
¬∏︂

d
N̂ d(kd )

¶

= ∂ k
y exp

� D
∑︂

d=1

ydνd

�

G0(w )
|︁

|︁

|︁

y=0

with ws = −ηmd yd , and (6.53)

n(k)(ν,η) =
¬∏︂

d
N̂
(kd )
d

¶

= ∂ k
y (1 − y)−1 exp

� D
∑︂

d=1

νd yd

1 − yd

�

G0(w )
|︁

|︁

|︁

|︁

y=0

with ws =
ηmd yd

yd − 1
. (6.54)
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These equations connect the covariance formalism and the photon statistics. Therefore,
they are the central element of the proposed simulation method and one of the major results
of publication [VI]. They allow calculating the PND, cumulative probabilities, moments,
and factorial moments of the photon statistics by evaluating repeated derivatives of the
generating function G0(w ) = G(0, 0, w ). Noise processes with different statistics could be
considered by multiplication with the corresponding generating functions.

Similarly, multivariate extensions for matrix elements in the photon number basis and
coherent state basis are obtained as demonstrated in ref. [VI]. For multi-mode Fock states
|n⟩ and |m⟩ and multi-mode coherent states |α⟩ and |β⟩ the expressions are [VI]

⟨α|ρ̂|β⟩ = e−(|α|
2+|β |2)/2G(α∗,β , 1) and (6.55)

⟨n|ρ̂|m⟩ = (−1)l
√

n!m!
∂ l

w ∂
∆n
u ∂ ∆m

v G(u, v , w )
|︁

|︁

|︁

|︁

u=0
v=0
w=1

. (6.56)

Here, l is given by ls = min(ns, ms) and the abbreviations ∆n = n − l and ∆m = m − l
are used. By setting l = 0 in eq. (6.56), an equation derived in ref. [246] is obtained.
The advantage of eq. (6.56) over this expression is that for each mode, only max(ns, ms)
instead of ns + ms derivatives are required. This facilitates the numerical evaluation of the
derivatives, especially when |ns − ms| is relatively small.

The POVM elements from eqs. (6.48) and (6.51) enable easy modeling of more com-
plex detections. Examples are the probability to detect nA photons in detector A and
nB photons in detector B given by ⟨Π̂NA=nAΠ̂NB=nB⟩, the probability for n1 or n2 photons
in the same detector given by ⟨Π̂N=n1 or N=n2⟩ = ⟨Π̂N=n1 + Π̂N=n2⟩ for n1 ̸= n2 and the
probabilities to detect any photon number except for n or for more than n photons given
by ⟨Π̂N ̸=n⟩ = ⟨1̂− Π̂N=n⟩ and ⟨Π̂N>n⟩ = ⟨1̂− Π̂N≤n⟩. Such operators were used for
example in refs. [101, 229] to obtain the count probabilities of non-PNR detectors from the
vacuum probability by calculating ⟨Π̂N>0⟩ = ⟨1̂− Π̂N=0⟩. Similar operators will be used
in section 6.3 to model the non-PNR detectors in the QKD system. The POVM operators
from eqs. (6.48) and (6.51) enable setting up such combined detection operators for PNR
detection as well. This is best illustrated with an example: The probability to not detect
nA photons in detector A and to detect more than nB photons in detector B is given by




(1̂− Π̂NA=nA)(1̂− Π̂NB≤nB)
�

= 1 − ⟨Π̂NA=nA⟩ − ⟨Π̂NB≤nB⟩ + ⟨Π̂NA=nAΠ̂NB≤nB⟩ (6.57)

= 1 − 1
nA!

∂ nA

∂ yA
nA

GA

|︁

|︁

|︁

yA=0
− 1

nB!
∂ nB

∂ yB
nB

GB

1 − yB

|︁

|︁

|︁

yB=0
+

1
nA!nB!

∂ nA+nB

∂ yA
nA ∂ yB

nB

GAB

1 − yB

|︁

|︁

|︁ yA=0
yB=0

.

(6.58)
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Here, GA, GB, and GAB are the functions G(0, 0, w ) with w as in eqs. (6.48) and (6.51),
where only the rows and columns entering detector A, B or both detectors are kept in d,
W and Λ.

Extension of the Simulation Method to Non-Gaussian States
The expressions presented above allow calculating the matrix elements and the photon statis-
tics only for GSs. However, the method can be extended to further classes of non-Gaussian
states obtained from GSs by PNR detection [247]. Furthermore, states called photon-added
and photon-subtracted GSs [234],

ρ̂+k =
â†kρ̂âk

tr
�

â†kρ̂âk�
and ρ̂−k =

âk ρ̂â†k

tr
�

âkρ̂â†k�
, (6.59)

can be simulated. The addition or subtraction of photons can have non-trivial effects on
the photon statistics. For example, photon subtraction from a thermal state increases the
mean photon number of the state [234, 248]. The expressions for matrix elements of
multi-mode photon-added and multi-mode photon-subtracted GSs are derived in ref. [VI].
The resulting expressions are [VI]

tr
�

ρ̂−k ĝ0(w )
�

=
(−1)k

m(k)
∂ k

w G0(w ) and (6.60)

tr
�

ρ̂+k ĝ0(w )
�

=
1

m(k)
∂ k

r G0(w ′)
∏︂

s

1
1 − rs(1 − ws)

|︁

|︁

|︁

r=0
. (6.61)

Here, G0 is the generating function of the underlying GS. The elements of w ′ are given
by w′

s = 1 − [(1 − ws)−1 − rs]−1 and the coefficients are given by the factorial moments
m(k) = n(k)(ν = 0,η = 1) and m(k) = n(k)(ν = 0,η = 1). The photon statistics of the
photon-added and photon-subtracted GSs are obtained by replacing G0(w ) = tr[ρ̂ ĝ0(w )]
in eqs. (6.50) to (6.54) by the expressions from eqs. (6.60) and (6.61). Thereby, all the
quantities characterizing the photon statistics of multi-mode photon-added and multi-mode
photon-subtracted GSs can also be obtained by repeated differentiation.

6.2.2 Implementation and Discussion of the Simulation Method

To compute the photon statistics from the generating functions, the multivariate
higher-order derivatives can be evaluated, for example, by using automatic differentia-
tion (AD) [249, 250]. The mathematical operations required to compute the function are
automatically tracked by the AD software down to the level of elementary operations
such as addition, multiplication, or the evaluation of sin(x). To evaluate the derivative,

138



the AD software applies the well-known differentiation rules for these operations and
combines them via the chain rule to the derivative of the function. For example, instead
of approximating sin(x) numerically, the AD software uses the fact that the derivative
of sin(x) is given by cos(x) and evaluates cos(x) in the derivative computation. In
contrast to finite-difference approximations, the accuracy of AD is therefore only limited
by the working precision. In machine learning, AD is used for training artificial neural
networks [251], and therefore popular machine learning libraries such as TensorFlow [252]
and PyTorch [29, 253] provide AD functionalities. As machine learning is gaining more
and more attention, these software libraries are consistently extended.

To differentiate the generating functions in ref. [VI], PyTorch 1.11.0 was used in a very
basic configuration. The option for acceleration by using the graphics processing unit (GPU)
was not chosen, and the only changed setting was the numerical precision, which was
increased from the default value of float32 to float64. PyTorch is an up-to-date software
framework with several advantages for differentiating the generating functions. Using
PyTorch, implementing eqs. (6.50) to (6.54) in software to compute the photon statistics
requires relatively little effort. PyTorch provides many functions for linear algebra, for
example, to compute inverse matrices, determinants, or products of matrices and vectors,
such that the multivariate higher-order derivatives can be implemented with only six lines
of Python code, as demonstrated in ref. [IV].

Generating functions for the photon statistics are treated in textbooks such as
refs. [233, 235, 245] and were applied for numerical calculations of the PND produced by
multiple two-mode squeezers [254, 255]. Nevertheless, AD of generating functions has
rarely been applied for practical numerical simulations. One possible reason may be that
evaluating the higher-order derivatives requires resource-intensive computations. While AD
of the generating functions is a very convenient method to compute the photon statistics,
other methods perform better. The computational resources required to evaluate the
expressions increase with the order of the derivatives and the size of Γ and d. Tests showed
that the computing time increases approximately by a factor of three for each additional
photon number [VI]. For example, the computation of p(n = 11) for a single-mode
state on a regular desktop computer already took several minutes and required multiple
Gigabytes of memory. The computation of p(n1 = 0, n2 = 6) for a 1024 × 1024 covariance
matrix representing 256 two-mode squeezers took less than 13 seconds [VI]. These
numbers show that the computations require many numerical computations at higher
photon numbers. To investigate if the results are still numerically accurate, values obtained
from analytical formulas for simple Gaussian states were compared to the values obtained
by AD in ref. [VI]. The comparison showed that the precision of the results from AD is
very high even when the higher-order derivatives require a large number of numerical
operations [VI].
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Discussion of Alternative Methods to Compute the Photon Statistics
Besides AD, other options to evaluate the derivatives of the generating functions exist. One
option is to use finite-difference approximations [229]. However, this method can quickly
accumulate numerical inaccuracies. Another method uses the fact that generating functions
are convergent power series. For example, probabilities can be retrieved from a PGF by
approximating Cauchy’s integral formula on a circle γ in the complex plane around the
origin [256]:

h(y) =
∞
∑︂

n=0

p(n) yn ⇒ p(n) =
1

2πi

∮︂

γ

h(z)
zn+1

dz . (6.62)

The integral is then approximated numerically [257]. This method used the fact that the
probabilities are non-negative and sum up to

∑︁∞
n=0 p(n) = 1, such that the PGF converges

at least for y on the complex unit disk. The method has also been extended to multivariate
PGFs and moment-generating functions [258–260] and is discussed in detail in ref. [261].

Another approach to calculate the PND from Γ and d yields the formula [236, 237]
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, (6.63)

with A =
�

0 1S

1S 0

�

(12S −Λ−1
1 ) and αT = (α1, . . . ,αS ,α∗1, . . . ,α∗S). Here, Λ1 = (Γ + 1)/2

is the matrix Λ from eq. (6.49) with W set to 1. For a practical evaluation, eq. (6.63) has
some disadvantages compared to the formula for the PGF from eq. (6.50). It requires the
evaluation of twice as many derivatives as the PND, and the detection efficiency is not
directly incorporated. Most importantly, it is not a regular generating function because it
requires two derivatives per photon number. Therefore, it is not directly possible to use
this expression to model the joint detection of multiple modes in one detector or to model
noise by multiplying it with the noise PGF. The exponential function to be differentiated in
eq. (6.63) generates the multivariate Hermite polynomials, and the PND can therefore be
expressed in terms of these polynomials [262–264]. However, the resulting expressions
are seldom used for practical computations because evaluating them for higher photon
numbers is complicated [265–267].

The task of finding the PND of a GS or the count distribution of non-PNR detectors is
known as Gaussian boson sampling (GBS). The computational complexity of GBS has been
theoretically investigated in the context of quantum computing [236, 237, 268–274] and
GBS experiments have been realized experimentally to pursue the demonstration of the
computational advantage of quantum computers over classical computers [275–277]. In
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GBS research, often, a different method to compute the PND is considered. The expressions
involve the Hafnian and loop Hafnian function for PNR detectors and the Torontonian and
loop Torontonian function for non-PNR detectors [236, 271, 273, 278, 279]. For example,
for GSs with d = 0, the PND is obtained from the Hafnian function haf(AS)7 as

p(n) =
haf(AS)

n!
√

detΛ1
, (6.65)

where A and Λ1 are the same matrices as in eq. (6.63) and AS is derived from A by repeating
rows and columns, depending on the number of photons to be detected in a particular
mode [236, 237, 271]. The fact that the PNDs p(n) of GSs without displacement can be
calculated from eqs. (6.50) and (6.65) shows that haf(AS) and the generating function for
the PND are related, and the relation is called the Hafnian master theorem [281].

Evaluating Hafnian-type functions with state-of-the-art algorithms scales with O(N32N/2)
for N detected photons [273], and even faster methods have recently been developed [274].
This means the runtime scales exponentially with the number of photons, similar as it
was observed for differentiating the PGF with PyTorch. However, the scaling factor per
additional photon of the specialized algorithms for evaluating Hafnians is lower than with
the general-purpose tool PyTorch. Algorithms to evaluate Hafnians and for other GBS-related
computations are available from the software library The Walrus [282]. After ref. [VI] was
released, a method to compute the moments of the PND via the Hafnian approach was
presented in ref. [283], and the computation speed is compared to the generating function
approach from ref. [VI], showing a significant advantage of the Hafnian method.

An expression for the PND of GSs with d = 0 that is similar to the PGF from eq. (6.50)
was derived in ref. [229]:

p(n) =
(−1)n
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y det
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1 +
1
2

diag⊕2(w )(Γ − 1) diag⊕2(w )
�−1/2|︁

|︁

|︁

y=1
with ws =

√
y j .

(6.66)
For the derivation of this formula, each PNR detector was formally replaced by a multiport
beamsplitter with non-PNR detectors at the outputs, and the number of counts in the
non-PNR detectors was considered. The derivation used the formula for the calculation
of the count probability of non-PNR detectors and is led by the intuition that by taking

7 The Hafnian of a 2n × 2n matrix B is given by [273, 278, 280]

haf(B) =
∑︂

M∈PMP(2n)

∏︂

(i, j)∈M

Bi j , (6.64)

where PMP(2n) is the set of perfect matchings, that is the set of partitions of {1, 2, . . . , 2n} into subsets of size 2.
For example, PMP(4) = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} and haf(B4×4) = B1,2B3,4 + B1,3B2,4 + B1,4B2,3.
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the limit of a beam splitter with infinitely many outputs, the probability that multiple
photons end up in the same non-PNR detector vanishes. In contrast to eq. (6.50), noise,
detection efficiencies, and states with d ̸= 0 are not covered by eq. (6.66). The authors of
ref. [229] pointed out that an advantage of eq. (6.66) over the Hafnian formulas is that
the size of the covariance scales only linearly with the number of frequency modes, but
the number of required derivatives is not changed. In contrast, the Hafnian method does
not distinguish between spatial and frequency modes. To model the joint detection of
multiple frequencies, Hafnians for all different detection patterns over these modes must be
calculated and combined [229]. The expressions of the photon statistics from eqs. (6.50)
to (6.54) share this advantage with eq. (6.66). In chapter 7, this advantage is taken to the
limit to formulate expressions for the photon statistics in terms of a continuum of frequency
modes.

6.3 QKD Simulation without Frequency Resolution

The relatively simple matrix operations of the covariance formalism allow modeling even
of complex quantum-optical setups with moderate efforts. To demonstrate the method, the
q-hub QKD system was simulated, including all relevant imperfections of the setup [VI].
The only aspect not included is the spectrum of the photon pairs because considering it
requires some additional efforts. Therefore, a separate, frequency-resolved simulation of
the QKD system is presented in chapter 7.

6.3.1 Simulation Model of the QKD Setup

The setup of the simulated QKD system is shown in fig. 6.1 (a). The key exchanges of
different user pairs are independent, such that only two users of the QKD system are
considered in the model. The simulation includes various kinds of imperfections: The
detectors are modeled as non-PNR detectors with efficiencies η < 1, and the dead times,
dark counts, and afterpulses are taken into account. The mean photon pair numbers
generated by the first and the second half of the pump pulse are not precisely the same
because the splitting ratios of the beam splitters in the pump IF are not exactly 50 %, and
because the losses in the IF arms are different. Due to the frequency-dependent losses in the
WDM, the transmission probability for a photon pair is not the product of the transmission
probabilities of the individual photons. The transmission links introduce significant losses.
For the receiver IFs, splitting ratios deviating from 50 % and unbalanced losses in the IF
arms are also considered. Furthermore, the interference at the beam splitters is not perfect
due to polarization misalignment of the Faraday mirrors, leading to imperfect interference
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Figure 6.1: Simulated setup of the QKD system. (a) Schematic setup of the PPS and the
receivers. Mach-Zehnder IFs are shown for clarity, but Michelson IFs are used in practice.
Losses aremodeled by introducing beamsplitters coupling out a fraction of the light. L – Losses,
φ – Interferometer phases, κ – Beam splitter coupling coefficients, ξ – Mode mismatch
parameters, A0. . . B1 – Detectors. (b) Unfolded setup for the simulation. The time bins are
represented by separate modes and by introducing individual detectors for each time bin. The
state after SPDC is given by two TMSV states for the two halves of the pump pulse. The
squeezing parameters χS and χL are determined by the phase, losses, and beam splitter ratios
of the IF in the source. The mode mismatch model from ref. [101] shown in fig. 6.2 is used to
consider imperfect interference at the beam splitters.

in the central time bin. The mode mismatch is considered by using a model from ref. [101]
shown in fig. 6.2.

To represent the different time bins, the setup is unfolded as shown in fig. 6.1 (b). Each
physical detector is split up into three virtual detectors for the three time bins. The phases
and the imperfect interference affect only the central time bin. For the early and late time
bin, the phase is irrelevant and therefore omitted, and the mode mismatch of the beam
splitters is not considered.

Modeling the setup in the covariance formalism is straightforward, although the setup
is complex. Only four building blocks are necessary: the covariance matrix of TMSV and
the transformations of the covariance matrix representing losses, phase shifters, and beam
splitters. The transformations are listed in appendix C. The covariance matrix of the final
state contains 20 modes: Two times four modes represent detection in the early and late
time bins in the four detectors, and three times four modes are required for the central
time bin due to the mode mismatch. The joint detection of three modes per detector is
a practical example where the ability of the generating-function-based simulation method
to describe the joint detection of multiple modes efficiently is helpful.
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Figure 6.2: Scheme of the mode mismatch model proposed by Takeoka et al. in ref. [101].
(a) The beam splitter with coupling coefficient κ is modeled by decomposing the input modes
X and Y into an interfering part (violet) and two non-interfering parts (green and brown). (b) The
decomposition ismodeled by introducing two additional mismatch beam splitters with coupling
ratios ξ splitting off the non-interferingmismatchmodes. Each detector receives twomismatch
modes and the interfering part of the main mode.

Values for the propagation losses in the fibers, insertion losses of the fiber-optical com-
ponents, and interference visibilities of the IFs were measured. Depending on the user
combination to be simulated, the parameters for the specific receivers were then used in
the simulation. The values for the mode mismatch parameters were calculated from the
interference visibilities [M5]. The detection efficiencies, dark count rates, and afterpulse
probabilities were obtained from the detector characterization presented in section 5.2.

Modeling the Non-PNR Detection in Three Time Bins
In the QKD experiment, non-PNR detectors are used, which can discern only vacuum and
non-vacuum. For detectors without dead time, the measurement operators are given by
the complement of the projection to vacuum (cf. eq. (5.10)) as Π̂count = 1̂− Π̂N=0. Using
eqs. (6.48) and (6.50) and taking into account that d = 0 for the TMSV states in the
simulation, the expectation value of a detection operator for the modes M becomes

p(count in modes M) = ⟨1̂− Π̂NM=0⟩ = 1 − e−ν
Ç

detΛ(q)M

. (6.67)

Here, Λ(q)M only contains the rows and columns of Λ(q) representing the modes entering
this particular detector, and the differentiation parameter is set to y = 0.

The noise parameter ν depends on the afterpulse probability and dark count rate. It can
be derived by considering the detection in any of the three time bins for a detector without
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dead time. For a time bin of width ∆T , the noise parameter is given by νtime bin = rnoise∆T
with the noise rate rnoise. The noise rate is given by8

rnoise = rdark

Dark count
rate

+ (α− 1)
Photon rate

frep µM

Afterpulse rate
from photons

, (6.68)

with the afterpulse factor α = 1+ pap/(1− pap) depending on the afterpulse probability pap

(cf. eq. (B.7)). The mean photon number per repetition cycle in the modes M entering the
detector is given by µM = tr(Γ (q)M − 1)/4 (cf. eq. (6.24)), and Γ (q)M is the final covariance
to which the transformation representing detection losses was already applied by using
eq. (C.8).

The noise rate in eq. (6.68) describes counts uncorrelated to the photon arrival time
distribution, but afterpulses are correlated to the preceding clicks. However, the dead time
and the afterpulse distribution extend over time scales in the order of magnitude of 10 µs
(cf. fig. 5.2 (b)), which is about three orders of magnitude longer than the repetition cycle
time of 10 ns. Therefore, at the time scale of one pulse repetition, the afterpulses can be
assumed to contribute to the uncorrelated background.

For the derivation of key rates and QBERs, count operators such as in eq. (6.67) can be
combined, as demonstrated in eq. (6.58). In the experiment, the detector POVMs have
four exclusive detection results: a count in the early (E), central (C), or late (L) time bin
or no count (no). Furthermore, due to the dead time, the detectors are only sensitive
to incoming photons with a certain probability pon (cf. eq. (5.1)). Therefore, the POVM
elements are given by

Π̂E = pon1̂C,L
�

1̂E − Π̂NE=0
�

, Π̂L = ponΠ̂NE,C=0
�

1̂L − Π̂NL=0
�

,

Π̂C = pon1̂LΠ̂NE=0
�

1̂C − Π̂NC=0
�

, and Π̂no = poff1̂ + ponΠ̂N=0 ,
(6.69)

with poff = 1 − pon and the completeness relation 1̂ = Π̂E + Π̂C + Π̂L + Π̂no (cf. eq. (5.4)).
Here, the abbreviation NE,C,L = N indicates all time bins together. Due to the dead time,
a count in the early or central time bin deactivates the detector for the subsequent time
bins, which is represented by the operators Π̂NE=0 in Π̂C and Π̂NE,C=0 in Π̂L. For the security
of the key exchange, it is recommended that participants obtaining counts in both detectors
in the same repetition randomly assign one of the values [40, 284], but this functionality

8In ref. [VI], a slightly different approach is used to calculate rnoise. In eq. (6.68), rdark is the measured dark
count rate, which includes the afterpulses of noise counts. In ref. [VII], the dark count rate is defined without
these afterpulses, leading to a different expression for the noise rate yielding the same result.
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is currently neither implemented in the data evaluation nor in the simulation. Instead,
only those repetitions are used for key generation where one of Alice’s and one of Bob’s
detectors yield counts, but none of the others.

The probability for a joint detection between detectors A0 in time bin i and B0 in time
bin j with i, j ∈ {E, C , L}, and no count in the other detectors, for example, is given by

pA0,i ,B0, j = ⟨Π̂A0,i Π̂B0, j Π̂A1,noΠ̂B1,no⟩ . (6.70)

Equation (6.70) assumes that the probabilities pon for different detectors are independent,
such that the probability for multiple detectors to be active is the product of their individual
probabilities pon. This assumption is approximately correct when the coincidence rate is
much lower than the individual count rates. If a significant fraction of the counts occurs
in coincidence, the detectors are often simultaneously deactivated and activated, and the
probabilities for them to be active at a given time are not independent anymore. For the
QKD system, the individual count rates are orders of magnitude higher than the coincidence
rates due to transmission losses and detection efficiencies, such that the independence of
the probabilities pon is approximately fulfilled.

Each detection operator in eq. (6.70) consists of two terms (cf. eq. (6.67)), such that
expanding eq. (6.70) yields 16 terms. The expression can be simplified by approximating

Π̂no = Π̂N=0 + poff(1̂− Π̂N=0) ≈ Π̂N=0 . (6.71)

This approximation is justified when poff ≪ 1 and Π̂N=0 ≈ 1̂, which is the case when the
count probability itself is low. By using eq. (6.71), the number of terms from eq. (6.70) is
reduced from 16 to four. The count probability for a joint detection between A0,E and B0,L ,
for example, becomes

pcount(A0,E ,B0,L) ≈ pA0,on pB0,on exp(−νB0,E,C − νA1 − νB1)

×

⎛

⎝

1
r

detΛ(q)B0,E,CA1B1

−
exp(−νA0,E)

r

detΛ(q)A0,EB0,E,CA1B1

−
exp(−νB0,L)
r

detΛ(q)B0A1B1

+
exp(−νA0,E − νB0,L)
r

detΛ(q)A0,EB0A1B1

⎞

⎠ .

(6.72)

Equation (6.72) and the corresponding probabilities for other combinations of detectors
and time bins are implemented in the simulation.

Corrections of the Photon Statistics
To obtain correct results from the simulation, the photon statistics of the PPS must be rep-
resented correctly. For a single TMSV state, the photon pair statistics follow a Bose-Einstein
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distribution (cf. eq. (1.21)), whereas the photon pair distribution produced by infinitely
many independent two-mode squeezers is a Poissonian distribution (cf. eq. (7.5)) [254].
The importance of the photon statistics becomes evident when the probabilities for produc-
ing one and two photon pairs are compared. For low values of µp, the quantum key rate is
mainly determined by the pulses containing one photon pair. The ratio of the probability to
obtain one photon pair given a Bose-Einstein distribution divided by the probability for one
photon pair from a Poisson distribution is approximately 0.95 at µp = 0.05 where the QKD
system is operated, such that the raw key rate is approximately the same. However, the
probability of obtaining two photon pairs determines the contribution of multi-photon-pair
effects to the QBER. The ratio between the probabilities for two pairs is approximately 1.8,
meaning that this QBER contribution differs significantly for the two statistics. The photon
pair distribution of the state produced by the PPS is between these two extreme cases. The
exact pair statistics depend on the joint spectral amplitude of the photon pairs and will
be considered in more detail in section 7.1. The Schmidt number can be used to quantify
the number of effectively contributing two-mode squeezers. As shown in section 7.1, the
Schmidt number for the photon pairs used in the q-hub system is about 60. This number is
only a rough estimation. However, the pair statistics are almost Poissonian at such high
Schmidt numbers. To accurately represent the probabilities for the emission of one and two
photon pairs, it is a sufficiently good approximation to assume 60 equally strong two-mode
squeezers. For a direct implementation, 60 pairs of TMSV states would have to be set up,
and the dimension of all matrices in the covariance matrix formalism would be scaled by
this factor, resulting in much higher computing times. However, the covariance matrix
would be block-diagonal as the same beam splitters, phase shifts, and losses are applied to
all squeezers. Therefore, the evaluation is simplified by computing only one of these blocks
and applying the rule for block determinants when the determinants for the detection
probabilities are calculated (cf. eqs. (6.67) and (6.72)), meaning that the determinant of
the block is raised to the power of 60.

Another correction of the photon statistics needs to be introduced to take into account
the frequency-dependent insertion loss of the WDM. In section 2.2.1, it was discussed
that the average transmission probability for a photon pair through the WDM is not the
product of the average transmission probabilities for the individual photons. However,
using the covariance formalism without frequency resolution implies that the transmission
probability for a photon pair is automatically the product of the transmission probabilities
for the individual photons. Therefore, the spectral correlation factor c∆I from eq. (2.6) can
not be taken into account directly. To obtain at least approximately correct correlations, the
values for µp, ηs, and ηi can be transformed to new values µ′p, η′s, and η′i. As the photon
pair statistics in the experiment is almost Poissonian, Poissonian statistics are assumed to
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simplify the derivation, such that the probability for the production of one photon pair is
µp e−µp . To derive the transformation, the probabilities for the detection of a signal, an
idler, and both photons from a pair are required to be equal for the original and transformed
values of µp, ηs, and ηi. The transformed values are obtained by solving the following
equations for the generation and transmission probabilities:

Transformed Original

Signal µ′p e−µ
′
pη′s = µp e−µpηs , (6.73)

Idler µ′p e−µ
′
pη′i = µp e−µpηi , (6.74)

Pair µ′p e−µ
′
pη′sη

′
i = µp e−µpηsηic∆I . (6.75)

For the transformed quantities, the pair transmission probability is simply the product of
the signal and idler transmissions. In contrast, for the original quantities, it includes the
spectral correlation factor c∆I . The equations lead to the conditions

η′s = c∆Iηs , η′i = c∆Iηi , and µ′p e−µ
′
p =

µp e−µp

c∆I
. (6.76)

Using the transformed parameters η′s, η
′
i, and µ′p in the simulation, therefore, yields at least

in the leading order, for the generation of one photon pair, the correct relation between
the individual transmission probabilities and the pair transmission probabilities. When
µp ≪ 1, such that µ′p ≈ µp/c∆I , the probabilities for the transmission of higher numbers of
photons or photons pairs are at least approximately correct. For example, the probability
for the generation and transmission of two pairs is given by

µ′2p

2
e−µ

′
pη′2s η

′2
i =

µ′2p

2
e−µp c3

∆Iη
2
sη

2
i ≈

µ2
p

2
e−µp c2

∆Iη
2
sη

2
i , (6.77)

which is approximately the probability of observing two photon pairs when the initial
parameters and c∆I are used. The same approximation works for the probability for the
production of higher numbers of photon pairs, using µ′np ≈ µn

p/c
n
∆I .

6.3.2 Simulation Results

Simulation of Quantum Key Rates and QBERs
The sifted key rates and QBERs are obtained by simulating the joint detection probabilities
for the different combinations of detectors and time bins and multiplying them with
the source repetition rate. In the experiment, the QBERp is not entirely stable due to
temperature fluctuations in the IFs, and this effect is not considered in the simulation.
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Therefore, only the QBERt is compared to the experimental values. Figure 6.3 shows the
simulation results along with values measured for different combinations of QKD users
that were presented in fig. 7 of publication [II]9. The simulated key rates and the QBERs
match the measurements. The key rate decreases with increasing transmission distances
due to the insertion losses of the fiber links. The variations in the QBERt are mainly caused
by the variation in the dark count rates and afterpulse probabilities. The simulated sifted
key rate and the QBERt are slightly lower than the measured values. A possible reason for
the difference is that µp is underestimated.
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Figure 6.3: Simulated and measured sifted
key rates and QBERs in the time basis for
different transmission distances in the QKD
network. The combination of users Alice (A),
Bob (B), Charlie (C), and Diana (D) is indicated
at the top. The error bars for the measured
data indicate the standard deviation. For the
simulation, the uncertainty is given by a vari-
ation of µp of ±10%.
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of 5, 13, 24, and 55%.

9The simulation results presented in fig. 6 and fig. 7 of publication [VI] are slightly different from the results
shown in figs. 6.3 and 6.4. Here, an improved value for the crystal efficiency according to ref. [VIII] is used to
calculate µ, a Schmidt number of 60 instead of 100 is assumed, and the calculation of the noise parameter
was revised. Furthermore, in ref. [VI], only the key rate was rescaled by c∆I to correct for the correlation
introduced by the frequency-dependent losses in the WDM instead of rescaling µ, ηs, and ηi.
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Analysis of the Contribution of Two-Pair Emissions to Bit Errors in the Time Basis
On the one hand, quantum bit errors in the time basis are observed in some repetitions
where multiple photon pairs are generated. On the other hand, not all errors in the
time basis are caused by multiple-photon-pair production. The ability of the simulation
to calculate detection probabilities for individual photon numbers allows to analyze the
contribution of multi-photon-pair emission to the quantum bit error rate. Specifically, it
allows to answer the following question: Given that a time basis error is observed, what is
the probability that a certain number of photon pairs was produced in this repetition?

To simplify the analysis, only time basis errors consisting of the count combination
A0,E, B0,L are considered. The probability that f photon pairs were produced by the first
half-pulse and s pairs were produced by the second half-pulse, given that a time basis error
A0,E, B0,L is observed, can be calculated by using Bayes’ theorem eq. (A.28):

p[( f ∩ s) | (A0,E ∩ B0,L)] =
p[(A0,E ∩ B0,L) | ( f ∩ s)]

p(A0,E ∩ B0,L)
p( f ∩ s) . (6.78)

Here, p( f ∩ s) is the probability that f photon pairs were produced by the first half-pulse
and s pairs were produced by the second half-pulse. The emission probabilities of the two
halves are independent of each other, such that p( f ∩ s) = p( f )p(s). The values for p( f )
and p(s) are obtained by simulating the probability of finding f or s photons directly after
the SPDC, respectively. The probability p(A0,E ∩ B0,L), is simulated as before. Neglecting
the effect that due to the dead time a detection in an earlier time bin of the same repetition
prevents detections in the later time bins, p[(A0,E ∩ B0,L)|( f ∩ s)] = p(A0,E| f )p(B0,L|s)
can be factorized into the independent probabilities p(A0,E| f ) and p(B0,L| f ). They can
be derived by tracing the path of a photon through the setup and calculating the total
transmissions TA0,E and TB0,L from the SPDC to the detectors:

p(A0,E | 1) =
�

1 − e−νA0,E (1 − TA0,E)
�

pon,A0,E , (6.79)

p(B0,L | 1) =
�

1 − e−νB0,L (1 − TB0,L )
�

pon,B0,L . (6.80)

Similarly, the probabilities p(A0,E | 0) and p(B0,L | 0) are nonzero due to noise counts and
are obtained by setting TA0,E = TB0,L = 0 in eqs. (6.79) and (6.80).

Figure 6.4 shows p[( f ∩s) | (A0,E∩B0,L)] for different combinations of f and s as a function
of µ. For µ < 10−3, the largest contribution to count combinations A0,E, B0,L is due to
noise counts, for which f = s = 0. The combinations f = 1, s = 0 and f = 0, s = 1 are
due to one noise count and one photon. They are at least partially relevant in the range of
10−4 < µ < 1. The two curves are different because the fiber link lengths and dark count
rates for Alice and Bob are different. For µ > 0.1, effects from two or more photon pairs
produced by the first or second half of the pump pulse become relevant. In the experiment,
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the QKD system is operated at µ = 0.053, where 55 % of the time basis errors occur when
one photon pair is produced by each half of the two pump pulses. It can be concluded that
multi-photon-pair effects are one of the most relevant sources of quantum bit errors.

Summary of Chapter 6

A new method to simulate the photon number distribution, moments, and factorial moments
of multi-mode Gaussian states by automatic differentiation of generating functions was
presented and published in ref. [VI]. The simulation method consists of two steps: First,
the setup is modeled using the covariance formalism. Then, the covariance matrix and
displacement vector of the final state are inserted into the generating functions, from which
the photon statistics are obtained by automatic differentiation.

The method requires more computational resources than highly optimized algorithms
for computing the photon number distribution based on the evaluation of Hafnian-type
functions. Therefore, it is best suited for simulations where low photon numbers or moments
of the photon statistics are of interest. The strength of the simulation lies in its flexibility,
allowing to easily include imperfections such as noise and the detection of multiple modes
in the same detector.

A simulation of the multi-user QKD system was implemented. Automatic differentiation
is implemented by using the pyTorch framework. The application of pyTorch for this task
is demonstrated in the technical report ref. [IV]. The simulated quantum key rates and
quantum bit error rates (QBERs) are in agreement with measured values. The photon-
number-resolved simulation was used to analyze the contribution of multi-photon-pair
emission to the QBER in the time basis. The results showed that multi-photon-pair emission
is the dominant source of quantum bit errors in the time basis.
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7 Frequency-Resolved Simulation of the
Q-Hub QKD System

The simulation results in section 6.3.2 showed that multi-photon-pair emission is the
dominant source of quantum bit errors in the time basis. However, the simulation presented
in section 6.3 does not consider the spectra of the photons. When the photon spectra are
broad and the fiber transmission links are long, the chromatic dispersion (CD) in the fiber
links can lead to the leakage of photons into adjacent time bins, which increases the QBER
and decreases the achievable secure key rates.

In this chapter, a simulation of the q-hub system including all effects from the previous
simulation and the effects from chromatic dispersion is presented. To combine the frequency
resolution and the ability to simulate effects from the photon statistics, the covariance
formalism of Gaussian states described in section 6.1.2 needs to be extended to represent
the photon spectra. In the covariance formalism, separate modes are represented by
columns and rows of the covariance matrix. Therefore, the strong frequency entanglement
of the photons in the q-hub QKD system poses a challenge for the numerical simulation.
Simulation methods resorting to a fine discretization of the frequency space require more
computational resources for photon pairs with stronger frequency entanglement. The
photon pairs used in the q-hub system are so strongly entangled that a direct discretization
of the frequency space would require resource-intensive computations in the simulation.
For even stronger entanglement, realizing simulations on a desktop computer using this
approach would become impractical.

Early efforts to simulate the q-hub QKD system were undertaken in collaboration with
Julian Nauth during his master’s thesis [M3] under the supervision of Alexander Sauer and
Prof. Dr. Gernot Alber from the Theoretical Quantum Physics research group. Nauth later
extended these methods and published them in ref. [244].

Furthermore, mathematical methods to efficiently simulate the q-hub system or other
quantum-optical setups with strongly entangled biphoton states were developed during
the master’s thesis of Philipp Kleinpaß [M7]. The methods and results presented in this
chapter are based on these results and will be submitted for publication as ref. [VII].
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In section 7.1, the Schmidt decomposition is reviewed as a tool relating the joint spectral
amplitude to the photon statistics of the SPDC state.

In section 7.2, the covariance formalism is extended to Gaussian states with a continuum
of modes in the frequency domain. The matrix operations modeling state transformations in
the covariance formalism become integral operators in the continuous limit. The practically
relevant consequences for the calculations are discussed.

The continuous-mode extension of the covariance formalism facilitates the transformation
to the time domain. Furthermore, it is well compatible with the formulation of the photon
statistics in terms of generating functions presented in chapter 6 because the number of
derivatives in these expressions is independent of the number of modes per detector. This is
an essential advantage of the generating-function-based method compared to the Hafnian-
based approach of computing the photon statistics. Computing the Hafnian function
requires that discrete matrix rows and columns represent each mode individually. An
extension of Hafnian-based method to a continuum of modes is yet to be developed.

Section 7.3 describes the frequency-resolved modeling of the q-hub system in detail.
Operations affecting discrete degrees of freedom are separated from the continuous repre-
sentation of time and frequency, enabling simplifications of the expressions.

Section 7.4 presents approximations facilitating the computation of detection probabilities
for strongly entangled biphoton states. The approximations are given in terms of expansions
yielding the Poissonian photon statistics of a maximally entangled state when truncated after
the leading order. The expressions allow to improve the accuracy of the approximations
systematically by evaluating the expansions to higher orders.

In section 7.5, simulation results for the QKD performance are presented and compared
to measurements, showing excellent agreement. Furthermore, the impact of CD on the
QBERt is analyzed for photon pairs from type-II SPDC.

7.1 Schmidt Decomposition of the Joint Spectral Amplitude

To describe the quantum state generated by broadband SPDC, the unitary operator

ÛSPDC = exp

�

χ

2

∫︂∫︂

ψ̃(ωs,ωi)â
†
s(ωs)â

†
i (ωi) dωs dωi − H.c.

�

, (7.1)

with the joint spectral amplitude (JSA) ψ̃(ωs,ωi), is applied to vacuum (cf. eq. (1.25)).
For the calculations in sections 2.3.1 and 2.3.2, only the first-order expansion of the state
from eq. (1.28) comprising at most one photon pair was used, neglecting effects from
multi-photon-pair emission. The approximation that at most one photon pair is generated
is common in the literature and used, for example, in refs. [119, 285–289]. Sometimes,
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approximations taking the production of up to two photon pairs are used [290, 291]. For
the two-photon interference in time-bin entanglement experiments, the influence of the
two-pair component was analyzed in ref. [102]. In this chapter, the complete photon
statistics are considered.

Due to the non-negligible width of the pump pulse spectrum, the production of photon
pairs at different frequencies is not independent. Therefore, the photon statistics depend
on the shape of the JSA. It is convenient to decouple the different contributions, so that
the SPDC state is given by a tensor product of M independent two-mode squeezed vacuum
(TMSV) states [254, 292] with different amplitudes χσk/2:

|ψSPDC⟩ =
M−1
⨂︂

k=0

exp
�χσk

2
Â
†
k B̂

†
k

�

|0⟩ . (7.2)

The wave packet creation operators are defined1 similar as in eq. (1.22) [254, 286, 292]:

Â
†
k =

∫︂

ũk(ωs)â
†
s(ωs) dωs and B̂

†
k =

∫︂

ṽ∗k(ωi)â
†
i (ωi) dωi . (7.3)

Here, {ũk(ωs)} and {ṽk(ωi)} are sets of orthonormal basis functions, fulfilling
∫︂

ũi(ωs)ũ∗
j (ωs) dωs = δi j and

∫︂

ṽ i(ωi)ṽ∗j (ωi) dωi = δi j , (7.4)

such that the wave packet operators commute with [Âi , Â
†
j] = [B̂i , B̂

†
j] = δi j. The k-th

two-mode squeezer generates photon pairs with signal and idler wave packet shapes given
by uk and v∗k , respectively. The photon statistics of the complete state are given by the joint
statistics of all these two-mode squeezers and depend on the distribution of the parameters
σk [254, 255]. While the photon pair statistics of one two-mode squeezer resembles the
photon statistics of a thermal state, in the limit of infinitely many equally strong squeezers,
the photon pair distribution becomes a Poissonian distribution [254]. The PND in the
limit of infinitely many equally strong squeezers can be derived by considering the PGFs.
The PGF of the thermal distribution is ⟨yN ⟩ = [(1 − y tanh2 r) cosh2 r]−1 (cf. eq. (1.21)).
When the total mean photon pair number µp is equally distributed over M squeezers,
the squeezing amplitude of each squeezer becomes rM = [arsinh(µp/M)]1/2. The PGF
for M such squeezers is the product of all M of these generating functions. Taking the

1It is convenient to use the complex conjugate function ṽ∗
k (ω

′) instead of ṽk(ω′) in eq. (7.3) to later facilitate
the notation using integral operators.
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limit M → ∞, expanding the coefficient of y up to the linear order in µp and using
ex = limM→∞(1 + x/M)M yields

lim
M→∞

��

1 − y tanh2 rM
�

cosh2 rM
�−M

= lim
M→∞

�

1 + (1 − y)µp/M
�−M = e(y−1)µp , (7.5)

which is the PGF of the Poisson distribution [254].
Depending on the exact shape of the JSA, the photon statistics is in between the two

limiting cases of thermal statistics and the Poissonian statistics. It can be calculated
numerically by differentiating the probability-generating function when the distribution of
the σk is known [254]. To find the σk as well as the basis functions, the JSA is expressed
as a weighted sum of products of functions ũk(ωs) and ṽ∗k(ωi), which is called a Schmidt
decomposition [254, 286, 292–295]:

ψ̃(ωs,ωi) =
∑︂

k

σkũk(ωs)ṽ∗k(ωi) . (7.6)

By convention, the real non-negative Schmidt coefficients σk ≥ 0 are sorted in decreasing
order σ0 ≥ σ1 ≥ . . . . The functions ũk(ωs) and ṽ∗k(ωi) and the wave packets with the
respective shapes are called left Schmidt modes and right Schmidt modes. From the normal-
ization

∫︁∫︁

|ψ̃(ωs,ωi)|2 dωs dωi = 1 if follows
∑︁

k σ
2
k = 1. The crucial difference between

the Schmidt decomposition and a regular expansion of ψ̃(ωs,ωi) in a two-dimensional
orthonormal basis is that the summation runs only over a single index. The Schmidt
decomposition can be considered as the continuous analog of the singular value decomposi-
tion (SVD)2 of matrices [255].

The Schmidt decomposition is useful to quantify the frequency entanglement of the
signal and idler photons by the Schmidt number [254, 255]

K =
1

∑︁

k σ
4
k

. (7.7)

The Schmidt number can be regarded as an effective number of contributing Schmidt
modes. The more Schmidt modes contribute, the larger the Schmidt number and the

2Every rectangular complex matrix M can be decomposed into a product of two unitary matrices U and V and
a diagonal matrix Σ as M = UΣV†, which is called a singular value decomposition [296]. The columns ui

of U are called left-singular vectors and the columns v j of V are called right-singular vectors. The elements
σk ≥ 0 of Σ are uniquely determined and called singular values. The SVD can thereby be expressed as
M =

∑︁

k σkuk v†
k . Each summand is a matrix of the same shape as M , which is the outer product of a left-

singular and a right-singular vector, weighted by the singular value. One way to compute the SVD is to
diagonalize MM† = UΣ2U† and M†M = VΣ2V† [296]: The eigenvectors are the columns of U and V
respectively, and the eigenvalues are the squared singular values.
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stronger the frequency entanglement between the photons. If, for example, all Schmidt
coefficients are zero except for σ0 = 1, then K = 1 and the state

|ψ⟩ =
∫︂∫︂

ψ̃(ωs,ωi)|ωs,ωi⟩ dωs dωi =
∫︂

ũ0(ωs)â
†
s(ωs)|0⟩ dωs ⊗

∫︂

ṽ∗0(ωi)â
†
i (ωi)|0⟩ dωi

(7.8)
is separable and not frequency-entangled at all.

Analytical Schmidt Decomposition of a Two-Dimensional Gaussian Rotated by 45°
For a two-dimensional Gaussian JSA, the Schmidt decomposition can be calculated an-
alytically [255, 297]. For the strongly entangled SPDC states used in the q-hub system,
the JSA is a narrow antidiagonal stripe (cf. fig. 2.16) and can be roughly approximated
as a Gaussian rotated by 45° with respect to the signal-idler coordinate system. For such
a Gaussian with standard deviation s− in ω−-direction and s+ < s− in ω+-direction, the
expressions from refs. [255, 297] can be simplified, yielding the Schmidt decomposition

ũk(ωs) =
1
√

g
φk

�

ωs

g

�

, ṽ∗k(ωi) =
[sgn(1 − r)]k

√
g

φk

�

ωi

g

�

and σk =
2
√

r
1 + r

|︁

|︁

|︁

|︁

1 − r
1 + r

|︁

|︁

|︁

|︁

k

,

(7.9)
with the normalized Hermite functions φk(x) = (2kk!

√
π)−1/2 e−x2/2Hk(x) comprising the

Hermite polynomial Hk(x) as well as the aspect ratio r = s−/s+ and the geometric mean
g =

√
s+s− of the standard deviations. The Schmidt number of the 2D-Gaussian becomes

K =
1
2

�

r +
1
r

�

. (7.10)

As an example, the Schmidt decomposition for a Gaussian with an aspect ratio of r = 8
is shown in fig. 7.1 (a). The JSA and first three Schmidt modes in both directions are
shown in the top row, along with the distribution of the first Schmidt coefficients. Infinitely
many Schmidt components contribute, and the Schmidt coefficients decrease exponentially
(cf. eq. (7.9)). The Schmidt number according to eq. (7.10) is K = 4.0625. Although
the Schmidt number is close to four, the approximation by the leading four components
shown in fig. 7.1 (b) only roughly resembles the JSA. More components are needed to
obtain a better approximation. Although the JSA is typically not a 2D Gaussian, these
results can provide an intuition of how the Schmidt decomposition of a JSA with a high
aspect ratio between the ω− and ω+ directions would approximately look like. The aspect
ratio r can be estimated from the width of the pump pulse spectrum and of the phase
matching function, and an order-of-magnitude estimation of the Schmidt number becomes
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Figure 7.1: Schmidt decomposition of a 45° rotated Gaussian with aspect ratio r = s−/s+ = 8,
resulting in a Schmidt number of K = 4.0625. (a) The JSA ψ̃(ωs,ωi) (left) is the sumof products
of Schmidt modes, weighted with the Schmidt coefficients. The first three Schmidt modes
and coefficients according to eq. (7.9) are shown. (b) Approximation of the JSA as the sum
of the first four contributions of the Schmidt decomposition. Each term is factorized in the
signal-idler coordinate system. Infinitely many terms are required to represent the JSA exactly.

possible by using eq. (7.10). For the JSA from fig. 2.16, the aspect ratio of the FWHMs is
approximately 120, and by using eq. (7.10), it can be estimated that at least 60 Schmidt
modes are required to obtain a fair approximation. However, fig. 7.1 (b) showed that
a good approximation may require more components.

Numerical Computation of the Schmidt Decomposition

For JSAs other than the 2D Gaussian, finding an analytical Schmidt decomposition is
non-trivial [255]. Especially when the JSA is obtained from measurements, the Schmidt
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decomposition needs to be computed numerically. One possible approach is to expand
ψ̃(ωs,ωi) in two sets of orthonormal functions {õ(1)i (ωs)} and {õ(2)j (ωi)} as [294]

ψ̃(ωs,ωi) =
∑︂

i, j

Ei j õ(1)i (ωs) õ(2)j (ωi) , (7.11)

with expansion coefficients Ei j =
∫︁∫︁

ψ̃(ωs,ωi) õ∗(1)i (ωs) õ∗(2)j (ωi) dωs dωi. Then, the
coefficient matrix E is numerically decomposed into its SVD representation E = UΣV†

and inserting the component-wise expression Ei j =
∑︁

k σkUikV ∗
jk into eq. (7.11) yields the

Schmidt decomposition [255, 294]

ψ̃(ωs,ωi) =
∑︂

k

σk

�

∑︂

i
Uik õ(1)i (ωs)

�

=ũk(ωs)

�

∑︂

j
V ∗

jk õ(2)j (ωi)
�

=ṽ∗k (ωi)

= (ũ0(ωs), ũ1(ωs), . . . )

=ũT(ωs)

⎛

⎜

⎝

σ0 0 0
0 σ1 0

0 0
. . .

⎞

⎟

⎠

=Σ

⎛

⎜

⎝

ṽ∗0(ωi)
ṽ∗1(ωi)

...

⎞

⎟

⎠

=ṽ∗(ωi)

= ũT(ωs)Σ ṽ∗(ωi) . (7.12)

For JSAs with a high Schmidt number, the direct numerical implementation of the orthogo-
nal basis expansion can be numerically challenging. In the example of the 2D Gaussian
function, the Schmidt modes are the Hermite functions (cf. eq. (7.9)). The Hermite
functions are also suitable as basis functions for the expansion [294], but they exhibit
an increasing number of oscillations with increasing order. The numerical evaluation of
the integral of the JSA with such oscillatory functions required to obtain the expansion
coefficients Ei j can lead to convergence issues [255].

Another approach to calculating the Schmidt decomposition completely avoids the
evaluation of integrals. For the computation, the JSA is discretized on a frequency grid with
a resolution fine enough to resolve all relevant details, the discrete values are collected into
a matrix Ψ̃ , and the SVD Ψ̃ = UΣV† is computed directly [255]. The columns of U and the
rows of V† are discrete approximations of the Schmidt modes, and the Schmidt coefficients
are the singular values in Σ. When the JSA is very narrow, it attains non-negligible values
only on a narrow diagonal stripe in ω−-direction and Ψ̃ can be represented by a sparse
matrix which attains non-negligible values only on a few counter-diagonals. Solvers such
as the PROPACK sparse SVD solver [298] can efficiently compute SVDs of sparse matrices
by avoiding the operation with zero entries [255].
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However, even computing the sparse matrix SVD may become infeasible in the limit of
very strong entanglement. But in this limit, the photon statistics approaches Poissonian
statistics, and the actual distribution of the Schmidt coefficients obtained from the SVD
becomes less relevant. Therefore, an expansion for the limit of high entanglement yielding
Poissonian photon statistics plus small corrections will be presented in section 7.4 to simplify
the numerical evaluation of the detection probabilities.

7.2 Derivation of the Continuous-Mode Covariance for SPDC
Photons

The first step for the simulation of the QKD system is to derive the covariance matrix of the
biphoton state produced by SPDC. One option to take into account the spectral degree of
freedom is to replace the elements of the vectors â = (â1, . . . , âS)

T and â† = (â†
1, . . . , â†

S)
from eq. (6.16) by a vector of creation and annihilation operators for N different frequency
modes [229]:

â = (â1,ω1
, â1,ω2

, . . . , â1,ωN
, â2,ω1

, â2,ω2
, . . . . . . âS,ωN

)T and

â† = (â†
1,ω1

, â†
1,ω2

, . . . , â†
1,ωN

, â†
2,ω1

, â†
2,ω2

, . . . . . . â†
S,ωN
) .

(7.13)

The 2S × 2S covariance matrix for S spatial degrees of freedom would thereby become
a 2SN×2SN matrix, which may be quite large. For example, in the QKD system, 4 detectors
each receive 3 modes representing the mode mismatch at the beam splitter by the mode
mismatch model from ref. [101] (cf. fig. 6.2). Assuming that at least 20 discretization
points over the narrow stripe of the JSA are required and taking the aspect ratio of the JSA
of approximately 120 into account, the number of required discrete frequency modes can
be roughly estimated to be 2400. This means that the covariance matrix would be a square
matrix of dimension 57600, and storing the whole matrix in float64 precision would require
26.5 GB of memory. Less memory is required when the data are stored in a sparse matrix
format, but, nevertheless, handling such large arrays with a desktop computer is rather
inconvenient. For even stronger frequency entanglement, or when a finer resolution is used,
the covariance matrices become even larger and the computations become impractical.

Continuous-Mode Limit of the Covariance Formalism
Therefore, instead of discretizing the JSA in the frequency domain, it is more convenient to
derive the expressions for the detection probabilities for continuous spectra. For that, the
covariance formalism needs to be extended to a continuum of modes for frequencies and
times. This continuous formulation also facilitates the conversion of the JSA to the time
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domain by the inverse Fourier transformation (IFT). The IFT attains a particularly simple
form when the complex representation of the covariance is used. Therefore, the complex
variant of the covariance, Γ , (cf. eq. (6.25)) will be used in this chapter.

Much less literature is available about continuous-mode GSs than about discrete-mode
GSs. Therefore, its practical application will be discussed in detail. A formal discussion of
some mathematical properties of continuous-mode GSs can be found in ref. [299].

From a practical point of view, it is often sufficient to think of operations with continuous-
mode GSs as if they were described with the discrete operators from eq. (7.13) and to
replace summations representing matrix multiplications by integrals3. When ψ̃(ωs,ωi)
is discretized on a fine frequency grid, it becomes the matrix Ψ̃ . The continuous analog
of the product of Ψ̃ with some other matrix M̃ is the application of a Hilbert-Schmidt
integral operator Ψ̃ on the Hilbert space L2 of square-integrable functions to another such
operator M̃ . The integral operators are represented by the kernel functions ψ̃(ω,ω′)4 and
m̃(ω,ω′):

Analogy of integral operators as continuous limit of matrix multiplications

(Ψ̃ M̃)nm =
∑︂

l

Ψ̃nl M̃ lm

Discrete: matrix multiplication

⇔ (Ψ̃ M̃)(ω,ω′) =
∫︂

ψ̃(ω, w)m̃(w,ω′) dw

Continuous: integral operators

. (7.14)

The kernel of the transposed operator Ψ̃T is ψ̃(ω′,ω), obtained by swapping the arguments,
and the kernel of Ψ̃† is ψ̃

∗
(ω′,ω), respectively. Products of block matrices containing

integral operator blocks are evaluated as regular matrix operations on the level of the block
structure and as integral operators for the individual blocks.

To derive the covariance of the SPDC state ÛSPDC|0⟩, the unitary operator

ÛSPDC = e−iĤSPDC , with ĤSPDC = â†HSPDCâ/2 and â† =
�

â†, âT� (cf. eq. (6.26)), is

compared to ÛSPDC = exp
�

χ
∫︁∫︁

ψ̃(ω,ω′)â†
s(ω)â

†
i (ω

′) dω dω′/2 − H.c.
�

from eq. (7.1).

3A notable exception to this rule is the SVD. The Schmidt decomposition as its continuous analog still contains
a discrete summation over the singular values.

4For the integral kernels, the signal and frequency ωs andωi will not always be the first and second arguments,
respectively. Therefore, the notation ω and ω′ for the first and second argument is used.
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The matrices HSPDC for parallel (∥) polarized photons from type-0 SPDC and for
orthogonal (⊥) polarized photons from type-II SPDC are given by

H̃∥ = iχ

�

â(ω′) â†(ω′)
0 Ψ̃∥ â†(ω)

−Ψ̃∗
∥ 0 â(ω)

�

and (7.15)

H̃⊥ =
iχ
2

⎛

⎜

⎜

⎜

⎝

âs(ω′) âi(ω
′) â†

s (ω′) â†
i (ω

′)
0 0 0 Ψ̃⊥ â†

s (ω)
0 0 Ψ̃

T
⊥ 0 â†

i (ω)
0 −Ψ̃∗

⊥ 0 0 âs(ω)
−Ψ̃†

⊥ 0 0 0 âi(ω)

⎞

⎟

⎟

⎟

⎠

. (7.16)

The JSA blocks in H̃ are linear integral operators with kernel functions ψ̃ and the kernels
of the vectors containing the creation and annihilation operators in the continuous picture
are â

†
⊥(ω) =

�

â†
s(ω), â†

i (ω), âs(ω), âi(ω)
�

and â
†
∥(ω) =

�

â†(ω), â(ω)
�

. The annotations
in eqs. (7.15) and (7.16) show which JSA operators are combined with which creation and
annihilation operators. For example, for parallel polarized photons, ĤSPDC is given by

ĤSPDC =
â†HSPDCâ

2
=

iχ
2

∫︂∫︂

�

â†(ω), â(ω)
�

�

0 ψ̃(ω,ω′)
−ψ̃∗

(ω,ω′) 0

��

â(ω′)
â†(ω′)

�

dω dω′

=
iχ
2

∫︂∫︂

ψ̃(ω,ω′)â†(ω)â†(ω′) dω dω′ + H.c. . (7.17)

For parallel polarized photons, signals and idlers cannot be distinguished by their polariza-
tion as it is the case for type-II photons. Therefore, H̃∥ consists only of two nonzero blocks

instead of four, and the JSA operator is symmetric, meaning that Ψ̃∥ = Ψ̃
T
∥.

Covariance of the SPDC State
The initial state before the SPDC is vacuum, represented by the covariance Γ̃ = 1. The
covariance after SPDC according to eq. (6.28) is given by Γ̃ = S̃1S̃

† = e−2iKH̃ , resulting in

Γ̃⊥ = exp

⎡

⎢

⎢

⎢

⎣

χ

⎛

⎜

⎜

⎜

⎝

0 0 0 Ψ̃⊥

0 0 Ψ̃
T
⊥ 0

0 Ψ̃
∗
⊥ 0 0

Ψ̃
†
⊥ 0 0 0

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

and Γ̃ ∥ = exp

�

2χ

�

0 Ψ̃∥

Ψ̃
†
∥ 0

��

. (7.18)
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The block-antidiagonal structure of the matrix allows to separate the power series expan-
sion of the exponential into two contributions: Odd powers of H̃ are block-antidiagonal
and even powers are block-diagonal, leading for example for Γ̃ ∥ to

Γ̃ ∥ =
∞
∑︂

n=0

(2χ)2n

(2n)!

�

(Ψ̃Ψ̃†)n 0

0 (Ψ̃†
Ψ̃)n

�

+
∞
∑︂

n=0

(2χ)2n+1

(2n + 1)!

�

0 (Ψ̃Ψ̃†)nΨ̃
(Ψ̃†
Ψ̃)nΨ̃† 0

�

. (7.19)

To evaluate the series, the integral operator Ψ̃ is represented by its Schmidt decomposition5:

Ψ̃ =
∑︂

k

σk|ũk⟩⟨ṽk| = (|ũ0⟩, |ũ1⟩, . . . )

=ũ

⎛

⎜

⎝

σ0 0 0
0 σ1 0

0 0
. . .

⎞

⎟

⎠

=Σ

⎛

⎜

⎝

⟨ṽ0|
⟨ṽ1|

...

⎞

⎟

⎠

=ṽ†

= ũΣṽ† . (7.20)

This allows to express the products of the JSA operators compactly by Ψ̃Ψ̃† = ũΣ2ũ† and
Ψ̃
†
Ψ̃ = ṽΣ2ṽ†, such that the series expansion of the covariance matrices become

Γ̃⊥ =

⎛

⎜

⎜

⎝

ũ cosh(χΣ)ũ† 0 0 ũ sinh(χΣ)ṽ†

0 ṽ∗ cosh(χΣ)ṽT ṽ∗ sinh(χΣ)ũT 0
0 ũ∗ sinh(χΣ)ṽT ũ∗ cosh(χΣ)ũT 0

ṽ sinh(χΣ)ũ† 0 0 ṽ cosh(χΣ)ṽ†

⎞

⎟

⎟

⎠

and (7.21)

Γ̃ ∥ =
�

ũ cosh(2χΣ)ũ† ũ sinh(2χΣ)ṽ†

ṽ sinh(2χΣ)ũ† ṽ cosh(2χΣ)ṽ†

�

. (7.22)

7.3 State Transformations by the QKD Setup

The setup consists of single-mode fibers and waveguides, so the simulation does not consider
spatial modes. Polarization effects are irrelevant for the QKD protocol, and the elongation
of the wave packets due to polarization-mode dispersion in the fiber links is negligible
(cf. section 1.3.1). Therefore, the polarization is not modeled.

Separation of Parallel Polarized Photons by Wavelength Demultiplexing
A wavelength-division demultiplexer (WDM) separates the parallel polarized photons, and the
frequency channels are chosen not to overlap, which can be used to distinguish the photons
similar as in the case of the type-II SPDC. The wavelength separation into non-overlapping

5The Dirac notation |ũk⟩ and ⟨ṽk| is here used with the usual meaning for square-integrable functions. For
example the inner product is given by ⟨ũ j |ũk⟩ =

∫︁

ũ∗
j (ω)ũk(ω) dω.
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frequency channels is modeled by applying projection matrices P̃AB = (P̃A ⊕ P̃B)⊕2,
transforming the covariance to Γ̃ ∥ → P̃ABΓ̃ ∥P̃AB. The projection operators P̃A and P̃B

select the frequencies sent to Alice and Bob, respectively. Their kernels are given by
P̃(ω,ω′) = δ(ω −ω′) rect∆I(ω −ωc), selecting frequencies in an interval of width ∆I
around the center frequencies ωc of the channels.

Figure 7.2 schematically shows the selected frequency channels for a narrow JSA. The
direction of the stripe is antidiagonal for odd iterations of JSAs and diagonal for even
iterations of JSAs. When the width of the stripe is ∆+ in ω+ direction, ψ̃(ω,ω′) is only
non-negligible for |ωs +ωi − 2ω0| < ∆+/2. The kernel containing n products of ψ̃,

ψ̃
(n)
(ω1,ωn+1) =

∫︂

Rn−1

ψ̃(ω1,ω2)ψ̃
∗
(ω3,ω2)ψ̃(ω3,ω4) . . . dω2 . . . dωn , (7.23)

is only nonzero if the arguments of all JSAs are within the narrow stripes, requiring
|ω j + ω j+1 − 2ω0| < ∆+/2 for j = 1 . . . n + 1. For a JSA with a stripe of width ∆+ in
ω+-direction, the width of the stripe of a term with n iterations of Ψ̃ is therefore bounded
by n∆+. When ∆+ is much smaller than the separation of the frequency channels, apply-

𝜔

𝜔′

𝜔

𝜔′

𝜔

𝜔′

. . . 

!Ѱ!Ѱ†!Ѱ!Ѱ !Ѱ!Ѱ†

2Δ+

√2
Δ+

√2
3Δ+

√2

#PB #PA

#PB

#PA

#PB #PA

#PB

#PA

#PB #PA

#PB

#PA

Figure 7.2: Schematic visualization of the iterated integral operators Ψ̃ . The JSA ψ̃(ω,ω′)
attains non-negligible values only on a narrow anti-diagonal stripe of width ∆+ in ω+-direction,
appearing as width∆+/

√
2 in the signal-idler coordinate system. The termswith an odd number

of JSAs, such as Ψ̃ or Ψ̃Ψ̃†
Ψ̃ , attain non-negligible values only on narrow anti-diagonal stripes

and terms with an even number of JSAs are non-negligible only on diagonal stripes. The
width of the stripe for n iterated JSAs is n∆+/

√
2. By applying the projector P̃A ⊕ P̃B, the

frequency channels A and B (light gray) are selected. Applying the projector from both sides
selects four squares (dark gray). When ∆+ is much smaller than the channel separation, non-
negligible values (in black squares) are obtained only for the projections of AB and BA channel
combinations for odd iterations as well as for AA and BB projections for even iterations. The
other projections yield zero (cf. eq. (7.24)).
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ing P̃AB to the leading orders of the series expansion in eq. (7.19) will yield nonzero values
only for the AB and BA channel combinations for terms with odd iterations. Analogously,
nonzero values for the AA and BB combinations are only obtained for terms with even or-
ders of JSAs. The other combinations of the projection operators select frequency intervals
that are outside of the band, yielding zero:

0 ≈ P̃A(Ψ̃
†
Ψ̃)nP̃B = P̃B(Ψ̃

†
Ψ̃)nP̃A = P̃A(Ψ̃Ψ̃

†)nP̃B = P̃B(Ψ̃Ψ̃
†)nP̃A ,

0 ≈ P̃A(Ψ̃
†
Ψ̃)nΨ̃†P̃A = P̃B(Ψ̃

†
Ψ̃)nΨ̃†P̃B = P̃A(Ψ̃Ψ̃

†)nΨ̃P̃A = P̃B(Ψ̃Ψ̃
†)nΨ̃P̃B .

(7.24)

By using the symmetry Ψ̃ = Ψ̃T for type-0 photons and defining the operators

ũA = (P̃A ⊕ 0)ũ , ũB = (0⊕P̃B)ũ , ṽA = (P̃A ⊕ 0)ṽ , and ṽB = (0⊕P̃B)ṽ , (7.25)

the covariance matrix for parallel photons after the projection to the frequency channels
attains a similar structure as Γ̃⊥ in eq. (7.21):

Γ̃ ∥ ≈

⎛

⎜

⎜

⎝

ũA cosh(2χΣ)ũ†A 0 0 ũA sinh(2χΣ)ṽ†B
0 ṽ∗B cosh(2χΣ)ṽTB ṽ∗B sinh(2χΣ)ũTA 0
0 ũ∗A sinh(2χΣ)ṽTB ũ∗A cosh(2χΣ)ũTA 0

ṽB sinh(2χΣ)ũ†A 0 0 ṽB cosh(2χΣ)ṽ†B

⎞

⎟

⎟

⎠

.

(7.26)
The projections in eq. (7.24) are only zero for low orders for which the stripe has not

reached a width covering the other two projection intervals (cf. fig. 7.2). The approximation
in eq. (7.26) is therefore only valid when such a width is reached only for high, negligible
expansion orders of the cosh and sinh functions.

Reordering of the Covariance
The detection probabilities finally calculated in the simulation are given by expressions
involving determinants such as det

�

1 + W(Γ (q) − 1)/2
�

(cf. eq. (6.48)). Here, Γ (q) is
the covariance represented in time domain. The diagonal matrix W = diag⊕2(w ) with
ws = ηmd (1 − yd) contains the differentiation parameters yd . Applying the transformation
Ω from eq. (6.18) to switch between the real and complex representation of the covariance
does not change the determinant because Ω is unitary. Therefore, the determinant can also
be computed directly from the complex covariance Γ by

det(1 + WZ) with (7.27)

Z =
1
2
(Γ − 1) . (7.28)
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However, the usual notion of a matrix determinant breaks down in the continuous
mode limit. The determinant is nevertheless well-defined because Z is a trace class opera-
tor6 [300, 301]. The trace of a trace class operator T : [a, b]→ [a, b] with Kernel function
t(x , y) is given by the direct continuous analog of the matrix trace:

tr(T ) =
∫︂ b

a

t(x , x) dx . (7.29)

The trace of Z is related to the total mean photon number of the state (cf. eq. (6.24)) by

µ =
1
2

tr(Z) . (7.30)

The expressions in the time domain and in the frequency domain can be simplified by
rearranging the order of the creation and annihilation operators:

â† =
�

â†
s , â†

i , âs, âi

�

→ â† =
�

â†
s , âi, âs, â†

i

�

. (7.31)

The reordering is a unitary transformation7 and therefore it does not change the determi-
nant. Knowing that the final expression for the detection probabilities in the time domain
depend on det(1 + WZ) and that Z and Z̃ are related by the Fourier transformation and
projections, the reordering can already be applied in the frequency domain:

det
�

1 + WZ̃
�

= det

�

1 + W

�

Θ̃ 0
0 Θ̃

∗

��

= |det
�

1 + diag(w )Θ̃
�

|2 . (7.32)

The matrix of operators Θ̃ is obtained by swapping the second and the last rows and
columns of Γ̃⊥ and Γ̃ ∥ from eqs. (7.21) and (7.26):

Θ̃ =
1
2

�

âA(ω
′) â†

B(ω
′)

ũ[cosh(X)− 1]ũ† ũ sinh(X)ṽ† â†
A(ω)

ṽ sinh(X)ũ† ṽ[cosh(X)− 1]ṽ† âB(ω)

�

(7.33)

For parallel photons ũ and ṽ are ũA and ṽB given by eq. (7.25), but the index is dropped in
the following to simplify the notation. When χσ0 ≪ 1, such that the cosh function can be

6A compact linear operator T is a trace class operator if the sum over its singular values, that is the sum of
the square roots of the eigenvalues of T †T , is finite [300, 301]. The values of ws in W are between 0 and 1
(cf. eqs. (6.50) to (6.54)), meaning that tr(WZ) ≤ tr(Z). Therefore, WZ is a trace-class operator as well.

7The transformation matrix for the reordering is given by U =
� 1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0

�

.
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expanded to the second order, from eqs. (7.21), (7.22) and (7.30) it follows χ ≈ 2
√
µp for

orthogonal photons and χ ≈
p

2µp for parallel photons. The diagonal matrix X contains
the singular values and is given by

X =

¨

χΣ⊥ ≈ 2
√
µpΣ⊥ for orthogonally polarized photons and

2χΣ∥ ≈ 2
p

2µpΣ∥ for parallel polarized photons.
(7.34)

Equation (7.33) represents the state after SPDC and demultiplexing and will be further
transformed to model the setup.

Modeling the Interferometer in the Photon Pair Source
The IF in the PPS splits the SHG pulses into two separate pulses with a delay determined
by the OPD of the IF. The SPDC process is pumped with a coherent double pulse given
by α̃s+l(ωs + ωi) = α̃(ωs + ωi)

�

cs eiLP,s[2k0−(ωs+ωi−2ω0)/vg] + cl eiLP,l[2k0−(ωs+ωi−2ω0)/vg]
�

.
The coefficients cs and cl are determined by the beam splitter coupling and transmission
coefficients of the short and long arm of the pump IF. For simplicity, it is assumed that cs and
cl are real, as their constant complex phases could always be absorbed into the ei2Lk0 terms.
Furthermore, they are normalized to |cs|2 + |cl|2 = 1 to keep the JSA normalized, and the
amplitude is absorbed into χ. For ideal 50/50 beam splitters and identical transmission
losses in both IF arms, cs = cl = 1/

√
2.

The JSA of the SPDC state generated by the double pulses is given by

ψ̃s+l(ωs,ωi) = ψ̃(ωs,ωi)
�

cs eiLP,s[2k0−(ωs+ωi−2ω0)/vg] + cl eiLP,l[2k0−(ωs+ωi−2ω0)/vg]
�

.
(7.35)

By introducing integral operators R̃P,γ for the phase rotation with kernel functions

R̃P,γ(ω,ω′) = eiLP,γ(k0−ω0/vg) eiωLP,γ/vgδ(ω−ω′) and γ ∈ {s, l} , (7.36)

the Schmidt decomposition of Ψ̃ s+l can be expressed in terms of Ψ̃ = ũΣṽ:

Ψ̃ s+l = csũsΣṽ
†
s + clũlΣṽ

†
l with ũγ = R̃P,γũ , ṽγ = R̃†

P,γṽ . (7.37)

When in eq. (7.18) Γ̃ is calculated with Ψ̃ s+l instead of Ψ̃ , the products Ψ̃†
s+lΨ̃ s+l and

Ψ̃ s+lΨ̃
†
s+l yield terms containing the products ũ

†
s ũl and ṽsṽ

†
l and vice versa, such that for

example

Ψ̃
†
s+lΨ̃ s+l = c2

s ṽ
†
sΣ

2ṽ
†
s + c2

l ṽlΣ
2ṽ

†
l + csclṽsΣũ

†
s ũl

=0

Σṽ†l + csclṽlΣũ
†
l ũs

=0

Σṽ†s . (7.38)
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The last two terms vanish, which can be seen by evaluating, for example, (ũ†s ũl)i j in the
time domain. Using the Parseval-Plancherel identity eq. (A.8) and identifying the result as
the autocorrelation of ui(t) yields, with ∆LP = LP,l − LP,s,

(ũ†s ũl)i j =
∫︂

ei∆LP(k0+ω−ω0)/vg ũ∗
i (ω)ũ j(ω) dω = ei∆LP(k0−ω0)/vg(ui ⋆ ui)

�

−∆LP

vg

�

δi j .

(7.39)
As the two halves of the pump pulse are well separated in the time domain so that they

do not overlap, the autocorrelation of the basis functions at a delay ∆LP/vg of the IF is
zero.

Therefore, by defining Xγ = cγX , the SPDC state is represented by

Θ̃s+l =
1
2

∑︂

γ∈{s,l}

�

ũγ[cosh(Xγ)− 1]ũ†γ ũγ sinh(Xγ)ṽ
†
γ

ṽγ sinh(Xγ)ũ
†
γ ṽγ[cosh(Xγ)− 1]ṽ†γ

�

. (7.40)

Propagation in the Fiber Links and Transformation to the Time Domain
The rest of the setup is modeled with the same transformations as shown in fig. 6.1 (a).
Frequency-dependent transmissions and phase rotations due to propagation and chromatic
dispersion in the fiber links are modeled by introducing the operators T̃ fib and R̃fib

8:

T̃ fib =
�

τ(
A)

fib (ω) 0
0 τ(

B)
fib (ω)

�

and R̃fib =

�

eiφ(A)fib (ω) 0

0 e−iφ(B)fib (ω)

�

. (7.41)

Here, φ(A/B)fib (ω) = k(ω)L(A/B)fib represents the propagation in the fiber links of lengths

L(A/B)fib with the quadratic phase in k(ω) describing the acquired chirp due to chromatic
dispersion and τfib(ω) is the real-valued frequency-dependent transmission function. For
the implementation, the dependence of the transmission loss over the frequency intervals of
the photons is neglected because around the center wavelength of 1550 nm, the attenuation
shows a flat minimum (cf. fig. 1.5). Therefore, τfib(ω) only comprises the transmission
function of the WDM channels (cf. fig. 2.15).

8The notation with a function of a single argument such as t(ω) as matrix element is here used to represent
the integral operator with kernel K(ω,ω′) = t(ω)δ(ω − ω′). Applying it to some function f (ω) yields
∫︁

t(ω)δ(ω−ω′) f (ω′) dω = t(ω) f (ω). The negative sign in the exponent for the phase rotation in the lower
right block is due to the reordering of matrix elements in eq. (7.31). In the covariance formalism, losses in
general are modeled by applying a transmission matrix T according to eq. (C.8) to Γ as Γ ′ = TΓ T +(1−T 2)1.
For Z = (Γ − 1)/2 this simplifies to the transformation Z ′ = TZT and analogously for Θ, so that T̃ fib is
directly applied to Θ̃s+l.
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At this point it is convenient to transform Θ̃ to the time domain by applying the unitary IFT
operator F−1 with (F−1 f̃ )(t) = (2π)−1/2

∫︁

e−iωt f̃ (ω) dω. Collecting the IFT operators
into F−1 = F−1 ⊕

�

F−1
�∗

yields Θfib in the time domain:

Θfib = F−1R̃fib T̃ fibΘ̃s+l T̃
†
fibR̃†

fib

�

F−1�† . (7.42)

Introducing exp
�

iφ(γ)0

�

= exp
�

iLP,γ(k0 −ω0/vg)
�

, TP,γ = LP,γ/vg and

uT
γ,A(t) = exp

�

iφ(γ)0

�

F−1
ω

�

eiφ(A)fib (ω)τ(
A)

fib (ω)ũ
T
γ(ω)

�

(t − TP,γ) and (7.43)

vT
γ,B(t) = exp

�

−iφ(γ)0

��

F−1
ω

�∗
�

e−iφ(B)fib (ω)τ(
B)

fib (ω)ṽ
T
γ(ω)

�

(t − TP,γ) , (7.44)

with ũT(ω) and ṽT(ω) defined in eq. (7.12), yields the matrix of kernels

Θfib(t, t ′) =
1
2

∑︂

γ∈{s,l}

�

uT
γ,A(t)[cosh(Xγ)− 1]u∗

γ,A(t
′) uT

γ,A(t) sinh(Xγ)v∗
γ,B(t

′)
vT
γ,B(t) sinh(Xγ)u∗

γ,A(t
′) vT

γ,B(t)[cosh(Xγ)− 1]v∗
γ,B(t

′)

�

.

(7.45)

Receiver Interferometers
The receiver modules are modeled by applying a sequence of transformations to the state
consisting of a combination of transformations for beam splitters, losses, and phase shifts:

1. The beam splitters of the interferometers couple the light with coupling coefficients
κ2

A/B to the short arms and with 1−κ2
A/B to the long arms. The transformation matrix

for the first pass through the beam splitter is B̃(I).

2. Losses and phase shifts due to propagation in the interferometer arms are described
by the transmission matrix T̃ IF and phase rotation matrix R̃IF defined analogously to
T̃ fib and R̃fib in eq. (7.41).

3. Imperfect interference modeled by the mode mismatch model from ref. [101] is
represented by the beam splitter transformation B̃(II)MM for the second pass through

the IF’s beam splitter. The transformation B̃(II)MM is constructed from elementary beam
splitter transformations as shown in fig. 6.2.

4. Losses from the detector efficiencies are represented by T̃det.

The photons are detected in the three time bins E, C, or L. Projections onto the corre-
sponding time intervals i ∈ IE, IC, IL for detectors d ∈ {0, 1} are represented by applying
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time-domain projection operators Pu,id . For each user u ∈ {A, B}, the projections for all
time bins and both detectors are collected into Pu and the projections of Alice and Bob are
summarized into P = PA ⊕ PB.

The final operator Θf after applying all transformations in the receivers is given by

Θf = PSrecv

�

Θfib 0
0 010×10

�

S†
recvP with Srecv = F−1 T̃detB̃

(II)
MMR̃IF T̃ IFB̃(I)

�

F−1�† .

(7.46)
The matrix Θf consists of 12 × 12 operator blocks for the four detectors, each receiving
three spatial mode groups due to the mode mismatch. The matrix Θfib consists only of
2 × 2 blocks. Therefore, the matrix size is extended by inserting zero blocks representing
the additional modes in the vacuum state before they are coupled to the modes of Θfib by
beam splitters.

Size Reduction of the Block Matrix Structure
Similar to eq. (7.41), each of the transformation matrices in Srecv is block-diagonal because
the transformations for the different spatial mode groups are independent. In eq. (7.46),
only the first two columns of Srecv are relevant because they are multiplied with Θfib and
the other ten columns are multiplied with zeros. Equation (7.46) can therefore also be
written as

Θf =
�

PAsA 0
0 PBs∗B

�

Θfib

�

s†APA 0
0 sTBPB

�

, (7.47)

with vectors of operators sA and sB given by s = F−1 s̃F and s̃ given by

s̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

η0ξ
�

eiφsκ2τs + eiφl r2τl
��

(ω) X1
�

η1κrξ
�

eiφsτs − eiφlτl
��

(ω) Y1
�

eiφsτsη0κ
2
p

1 − ξ2
�

(ω) X2
�

eiφsτsη1κr
p

1 − ξ2
�

(ω) Y2
�

eiφlτlη0r2
p

1 − ξ2
�

(ω) X3
�

− eiφlτlη1κr
p

1 − ξ2
�

(ω) Y3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7.48)

The entries depend on the parameters of the components in Alice’s and Bob’s IFs, and in
general, s̃A and s̃B are different. The labels X1 to Y3 enumerate the modes of the mode
mismatch model from ref. [101] as shown in fig. 6.2. The first two entries of s̃ represent
the interfering modes, and the last four represent the non-interfering modes. The vector
s̃A is given by the first column of a 6 × 6 matrix obtained by successive application of
the transformations in one receiver IF, that is of the beam splitter transformation with the
coupling coefficient κ and r =

√
1 − κ2, phase shiftsφ and transmissions τ for both IF arms,
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the mode mismatch transformation with the mismatch parameter ξ for the interference at
the beam splitter consisting of five individual beam splitter transformations (cf. fig. 6.2),
and the transmissions η representing the detector efficiencies.

Direct handling of the 12 × 12 operator block matrix Θf from eq. (7.46) is rather
inconvenient. Fortunately, the size of the matrix for which the determinant is computed
can be reduced to 2 × 2 blocks by applying Sylvester’s determinant theorem9, such that
the determinant can be written as

det(112×12 + WABΘf) = det(12×2 + Ξ) , (7.49)

with the diagonal matrix WAB = WA ⊕ WB containing the differentiation parameters, and

Ξ =
�

s̃†AWAPA s̃A 0
0 s̃TBWBPB s̃∗B

�

Θfib . (7.50)

The parameters η, κ, r, and τ are, in general, slowly varying frequency-dependent
functions. However, over the narrow frequency range of a DWDM channel, they are
assumed to be frequency-independent to simplify the calculation. Furthermore, it is
assumed that the CD in the IFs is negligible, such that the phase acquired along an IF arm of
length L is given by φ(ω) = k0 L+(ω−ω0)L/vg. Thereby, the kernel of the phase rotation
operator in the time domain becomes

�

F−1 eiφ(ω)F
�

(t, t ′) = ei(k0 L−ω0 L/vg)δ(L/vg+ t ′− t).
The expression s†u WuPusu for a single user u ∈ {A, B} is essentially an inner product of
s†u and su, weighted with the entries of WuPu:

(s†u WuPusu)(t, t ′) =
∑︂

α,β∈{s,l}
d∈{0,1}, id

C (d,u)
α,β δ

�

T (u)
β

− T (u)α + t ′ − t
�

w(u,d)
∆id

rect(d,u)
∆id

�

T (u)
β
+ t ′

�

. (7.51)

Here, T (u)α = L(u)α /vg and T (u)
β
= L(u)

β
/vg. The variables α and β enumerate the short and

long IF paths s and l and the detectors are labeled by d ∈ {0, 1}. The coefficients are
given by C (d,u)

α,β = c(d,u)
α,β exp

�

i(k0 −ω0/vg)(L
(u)
α − L(u)

β
)
�

with c(d,u)
α,β given by table 7.1. The

rectangle function represents the time-domain projection onto an interval of width ∆id
centered around its argument. The widths ∆id can differ for different users and detectors.
The summation over id takes into account that the projection for a detector can consist of
multiple time intervals.

9Sylvester’s determinant theorem states that det(1m + AB) = det(1n + BA) for matrices Am×n and Bn×m [302].
This relation is also valid for trace class operators [300].
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Table 7.1: Table of coefficients c(d,u)
α,β of the kernels of Ξ for the path combinations α,β ∈ {s, l}

and detectors d ∈ {0, 1}. In general, the coefficients are different for different users u.

c(d,u)
α,β s, s s, l l, s l, l

Detector 0 (η0τsκ
2)2 (η0ξκr)2τsτl (η0ξκr)2τsτl (η0τlr2)2

Detector 1 (η1τsκr)2 −(η1ξκr)2τsτl −(η1ξκr)2τsτl (η1τlκr)2

The kernels of Ξ are obtained from eq. (7.50) with t(u)
α,β = t + T (u)α − T (u)

β
:

Ξ(t, t ′) =
1
2

∑︂

γ,α,β∈{s,l}
d∈{0,1}, id

 

C (d,A)
α,β w(d,A)

id
rect(d,A)

∆id

�

T (A)α + t
�

0

0 C∗(d,B)
α,β w(d,B)

id
rect(d,B)

∆id

�

T (B)α + t
�

!

×

⎛

⎝

uT
γ,A

�

t(A)
α,β

�

[cosh(Xγ)− 1]u∗
γ,A(t

′) uT
γ,A

�

t(A)
α,β

�

sinh(Xγ)v∗
γ,B(t

′)

vT
γ,B

�

t(B)
α,β

�

sinh(Xγ)u∗
γ,A(t

′) vT
γ,B

�

t(B)
α,β

�

[cosh(Xγ)− 1]v∗
γ,B(t

′)

⎞

⎠ . (7.52)

7.4 Approximations for the Computation of Detection
Probabilities

When the aspect ratio of the JSA is large because the photons are strongly entangled,
a direct discretization of the biphoton wave function requires many points to represent it
accurately. Therefore, the computation of the cosh and sinh functions via the SVD and the
computation of the determinants become computationally expensive in the limit of strong
entanglement. This section presents approximations facilitating the evaluation for strongly
entangled biphoton states.

Truncation of the Schmidt Decomposition
The evaluation of the cosh and sinh terms in Ξ requires the Schmidt decomposition of
the JSA. The example of the two-dimensional Gaussian JSA showed that the Schmidt
decomposition might be a sum of infinitely many terms. It must be truncated after a finite
number of terms for numerical computations.

The Hilbert-Schmidt norm of Ψ̃ is ∥Ψ̃∥HS =
�∫︁∫︁

|ψ̃(ω,ω′)|2 dω dω′�1/2
. The approx-

imation ψ̃N (ω,ω′) =
∑︁N−1

k=0 σkũk(ω)ṽ∗k(ω
′) using the largest N Schmidt values is the

best possible approximation expressing ψ̃ as a sum of N products of one-dimensional
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functions ũ(ω) and ṽ(ω′) meaning that it minimizes the error in the Hilbert-Schmidt norm
EHS(N) = ∥Ψ̃ − Ψ̃N∥HS [293]:

E2
HS(N) =

∫︂∫︂

|︁

|︁ψ̃(ω,ω′)− ψ̃N (ω,ω′)
|︁

|︁

2
dω dω′ =

M−1
∑︂

k=N

σ2
k = ∥Ψ̃∥2

HS − ∥Ψ̃N∥2
HS . (7.53)

Therefore, for practical computations, always the components with the largest Schmidt
coefficients should be kept. For the normalized JSA, ∥Ψ̃∥HS =

q

∑︁

k σ
2
k = 1 such that the

error introduced by the truncation is given by

EHS(N) =

�

1 −
N−1
∑︂

k=0

σ2
k

�1/2

. (7.54)

The stronger the entanglement, the more Schmidt modes are required, such that the
truncation of the Schmidt components works particularly well for photon pairs that are not
too strongly entangled.

Truncation of the Sinh and Cosh Series
When the entanglement is strong, many Schmidt components are required to obtain
a sufficiently good approximation of the JSA. In this case, a different approximation can
be used. When the total mean photon pair number is low and distributed over many
Schmidt modes, the cosh and sinh functions can be approximated by their series expansions
truncated after the N -th power,

coshN (x) =
N
∑︂

n=0
n even

xn

n!
and sinhN (x) =

N
∑︂

n=0
n odd

xn

n!
. (7.55)

The first few terms of the series can be efficiently computed by discretizing the JSA on
a fine grid and performing sparse matrix multiplications.

The trace of Z is related to the total mean photon number by eq. (7.30) via 2µ = tr(Z)
and it is therefore directly related to the truncation error of the cosh series. By using the
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mediant inequality10, the relative error in the total mean photon number µ due to the
truncation of the cosh series in eq. (7.40) can be estimated as

Eµ(N) =

∑︁

k cosh(cγxk)− coshN (cγxk)
∑︁

k[cosh(cγxk)− 1]
≤ max

γ

�

cosh(cγx0)− coshN (cγx0)
cosh(cγx0)− 1

�

. (7.57)

For parallel polarized photons, x0 = 2χσ∥,0 and for orthogonal polarized photons
x0 = χσ⊥,0 (cf. eq. (7.34)). The coefficient cγ is close to 1/

√
2, corresponding to two

half-pulses with equal amplitude. The advantage of using the mediant inequality is that
the estimation only requires the computation of the first Schmidt coefficient, which can be
obtained efficiently by discretizing the JSA and performing an SVD truncated to the first
component.

Expansion of the Determinant
The computation of the detection probabilities for vacuum requires the evaluation of
p

det(1 + WZf) for the trace-class operator Zf = (Γf − 1)/2 and the final covariance Γf

after all transformations. This type of operator determinant is called a Fredholm determinant.
Methods for the numerical evaluation of Fredholm determinants are discussed in ref. [304].
The recommended method for smooth kernels is the Nytröm method, approximating the
operator determinant by the determinant of a matrix of values obtained by two-dimensional
numerical quadrature approximations of the kernel [304]. However, many integration
points would be required to approximate JSA with high aspect ratios. One of the simplest
quadrature rules would be to replace integrations with Riemann sums, corresponding to
the evaluation of the kernel on a rectangular grid and the subsequent computation of the
determinant of the resulting discrete matrix.

Another option to evaluate the determinant is to expand it according to the
Plemelj-Smithies formula for trace class operators [300]:

det(1 + WZf) = exp{tr[ln(1 + WZf)]} = exp

�

−
∞
∑︂

n=1

(−1)n

n
tr
�

(WZf)n
�

�

. (7.58)

The expression becomes apparent by recalling that the determinant is the product of the
eigenvalues and that the trace is the sum of the eigenvalues. The series converges when

10The mediant or “baseball” inequality [303] states that for R ratios ri = ai/bi for non-negative values ai and
positive values bi with r1 ≤ r2 ≤ · · · ≤ rR it holds

r1 ≤ a1 + a2 + · · · + aR

b1 + b2 + · · · + bR
≤ rR . (7.56)
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the absolute values of all eigenvalues of WZf are less than one. From eq. (7.30) it is
known that tr(Zf) = 2µ. The total mean photon number per channel pair for the QKD
system is µ ≈ 0.1. After the SPDC and after all transformations, projections, and losses, the
final mean photon number µ is much lower, such that it can be expected that the series in
eq. (7.58) converges rapidly. In ref. [VII], a bound for the error from truncating the series
expansion is derived.

Publication [VII] also shows that for the parameters of the type-II QKD system, the errors
introduced by truncating the cosh and sinh series or the determinant expansion after N = 2
are negligible compared to the uncertainties in the measured parameters of the setup. For
type-0 SPDC, the aspect ratio of the relevant part of the JSA covering the WDM channels is
lower. Therefore, the full SVD is computed because truncating the Schmidt decomposition
would introduce additional errors, and the cosh and sinh series are evaluated up to N = 5
(cf. appendix D).

The Limit of Poissonian Photon Statistics
Using the complex-valued variant of the covariance formalism and provided that the
Neumann series [305] (1 + WZ)−1 = 1 +

∑︁∞
n=1(−WZ)n and the series in eq. (7.58)

converge, the generating function for the photon statistics from eq. (6.48) can be written
as

G0(w ) =
�

det(1 + WZ) exp
�

d†(1 + WZ)−1Wd
��−1/2

= exp

�

−1
2

�

d†Wd +
∞
∑︂

n=1

(−1)n
�

d†(WZ)nWd − 1
n

tr
�

(WZ)n
�

�

��

. (7.59)

Truncating the expression after the first contributing orders in d and Z and using eq. (6.24)
relates the vacuum detection probability for η = 1 to the total mean photon number µ:

pvac = exp
�

−1
2

�

d†d + tr(Z)
�

�

= exp(−µ) . (7.60)

This expression is the vacuum detection probability expected for a Poissonian photon
number distribution. For QKD simulation with type-II SPDC, d = 0. Truncating the
determinant expansion to N = 2 yields for Zf

11

G0(w ) ≈ exp
�

−1
2

�

tr(WZf)−
1
2

tr
�

(WZf)2
�

��

(7.61)

≈ exp
�

− tr(Ξ) +
1
2

tr
�

(Ξ(⧸))
2�
�

. (7.62)

11Here it is used that the reordering transformation in eq. (7.31) is unitary and therefore does not change the
eigenvalues. Therefore, Θfib and Θf are Hermitian and have real eigenvalues. Using eqs. (7.32) and (7.50)
and cyclic permutation of the trace yields tr

�

(WZf)n
�

= 2 tr(Ξn).
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Here, Ξ is split up into the block-diagonal part Ξ(⧹) and the block-antidiagonal part Ξ(⧸) by
Ξ = Ξ(⧹) +Ξ(⧸), such that tr(Ξ2) = tr[(Ξ(⧹))2] + tr[(Ξ(⧸))2]. From eqs. (7.61) to (7.62),
the term tr[(Ξ(⧹))2] describing correlations among detection events of each individual user
is neglected because it is of fourth order in Ψ , such that the coefficient is small compared
to the second-order contributions.

For simulating QKD with photons from type-II SPDC, truncating the sinh and cosh series
after N = 2 yields the following approximations for the kernels in Ξ (cf. eq. (7.52)):

uT
γ,A

�

t(A)
α,β

�

[cosh2(Xγ)− 1]u∗
γ,A(t

′) =
χ2c2

γ

2

∫︂

ψ
(γ)
fib

�

t(A)
α,β − TP,γ, u

�

ψ
∗(γ)
fib (t

′ − TP,γ, u) du ,

(7.63)

vT
γ,B

�

t(B)
α,β

�

[cosh2(Xγ)− 1]v∗
γ,B(t

′) =
χ2c2

γ

2

∫︂

ψ
∗(γ)
fib

�

u, t(B)
α,β − TP,γ

�

ψ
(γ)
fib (u, t ′ − TP,γ) du ,

(7.64)

uT
γ,A

�

t(A)
α,β

�

sinh2(Xγ)v∗
γ,B(t

′) = χcγψ
(γ)
fib

�

t(A)
α,β − TP,γ, t ′ − TP,γ

�

, (7.65)

vT
γ,B

�

t(B)
α,β

�

sinh2(Xγ)u∗
γ,A(t

′) = χcγψ
∗(γ)
fib

�

t ′ − TP,γ, t(B)
α,β − TP,γ

�

. (7.66)

Here, ψ(γ)fib (t, t ′) is the kernel of e2iφ(γ)0 F−1 eiφ(A)fib τ(
A)

fib Ψ̃ eiφ(B)fib τ(
B)

fib F
∗, describing the biphoton

wave packet after the propagation through the fiber links, with φ(γ)0 = (k0 −ω0/vg)LP,γ:

ψ
(γ)
fib (t, t ′) = e2iφ(γ)0 F−1

ω,ω′

¦

exp
�

i
�

φ(
A)

fib (ω) + φ
(B)
fib (ω

′)
��

τ(
A)

fib (ω)τ
(B)
fib (ω

′) ψ̃(ω,ω′)
©

(t, t ′) .
(7.67)
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Evaluating the traces of the terms in eq. (7.62) by using eq. (7.29) and the approximations
eqs. (7.63) to (7.66) yields

tr(Ξ) =
∑︂

γ,α,β
d, id

χ2c2
γ

4

�

C (d,A)
α,β w(d,A)

id

∫︂

Id,A

d t

∫︂

duψ(γ)fib

�

t − T (A)
β ,γ , u

�

ψ
∗(γ)
fib

�

t − T (A)α,γ , u
�

,

+ C∗(d,B)
α,β w(d,B)

id

∫︂

Id,B

d t

∫︂

duψ∗(γ)
fib

�

u, t − T (B)
β ,γ

�

ψ
(γ)
fib

�

u, t − T (B)α,γ

�

�

, (7.68)

tr
�

�

Ξ(⧸)
�2� =

1
2

∑︂

γ,γ′,α,α′

β ,β ′,d,d′

id ,id′

�

χ2c2
γC (d,A)
α,β C∗(d′,B)

α′,β ′ w(d,A)
id

w(d,B)
id

×
∫︂∫︂

Id,A
Id′ ,B

ψ
(γ)
fib

�

tA − T (A)
β ,γ , tB − T (B)

α′,γ

�

ψ
∗(γ′)
fib

�

tA − T (A)
α,γ′ , tB − T (B)

β ′,γ′

�

d tB d tA

�

.

(7.69)

with the abbreviations T (u)α,γ = T (u)α + TP,γ and T (u)
β ,γ = T (u)

β
+ TP,γ as well as u ∈ {A, B}.

The terms in eq. (7.62) as well as eqs. (7.68) and (7.69) are the final expressions imple-
mented in the frequency-resolved type-II QKD simulation. A more intuitive understanding
of the terms can be developed by considering as an example the detection in the early time
bins of detectors A0 and B0. All terms in the sum that are associated with this combination
of detectors and time bins vanish. When the leakage of photons out of the time bins due to
CD is negligible, the generating function for the detection can be written as

G0 = exp
�

−µp

�

w(0,A)
E p′E(A0) + w(0,B)

E p′E(B0)− w(0,A)
E w(0,B)

E p′E(A0 ∩ B0)
��

with (7.70)

p′E(A0) = C (0,A)
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∫︂
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∫︂

du
|︁

|︁

|︁
ψ(

s)
fib

�

t − T (A)s,s , u
�

|︁

|︁

|︁

2
, (7.71)

p′E(B0) = C (0,B)
s,s

∫︂

E0,B

d t

∫︂

du
|︁

|︁

|︁
ψ(

s)
fib

�

u, t − T (B)s,s

�

|︁

|︁

|︁

2
, and (7.72)

p′E(A0 ∩ B0) = C (0,A)
s,s C (0,B)

s,s

∫︂

E0,A

d tA

∫︂

E0,B

d tB

|︁

|︁

|︁
ψ(

s)
fib

�

tA − T (A)s,s , tB − T (B)s,s

�

|︁

|︁

|︁

2
. (7.73)

The generating function in eq. (7.70) is the PGF of the general bivariate Poisson distribu-
tion [306, 307]. The probabilities p′E(A0) and p′E(B0) denote the probability that a photon
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created by the SPDC process is transmitted to and registered by Alice’s or Bob’s detector
labeled with “0” in the early time bin, respectively. The mean photon number is given by
µ = tr[cosh(Xγ)] ≈ c2

γ/2, such that c2
γ/4 is approximately the mean photon pair number µp.

The coefficients C (0,A)
s,s and C (0,B)

s,s are the transmissions probabilites through the interferom-

eters given by (η0τsκ
2)2 (cf. table 7.1). The time offsets T (A)s,s and T (B)s,s are identical when

the delays of all IFs are the same. The integrals in p′E(A0) and p′E(B0) are the marginal
distributions of the biphoton probability density observed by Alice and Bob and the integral
in p′E(A0 ∩B0) is the probability for a joint detection of the photons by Alice and Bob. Here,
the efficiencies η of the detectors are already absorbed into the probabilities p′, such that
the differentiation parameters are given by w(0,A/B)

E = 1− yA/B. The probability-generating
functions of the marginal distributions are GA(yA) and GB(yB). Using

GA(yA) =
∑︂

nA

ynA
A

∑︂

nB

p(nA, nB) =
∑︂

nA,nb

ynA
A ynB

B p(nA, nB)|yB=1 = G0(yA, yB = 1) , (7.74)

and similarly GB(yB) = G0(yA = 1, yB), shows that the marginal distributions are given by
the Poisson distributions

pA(nA) =
1

nA!
∂ n

∂ yA
n e−µp(1−yA)p′E(A0) and pB(nB) =

1
nB!

∂ n

∂ yB
n e−µp(1−yB)p′E(B0) . (7.75)

Importantly, the bivariante Poisson distribution also yields the correct correlations. For
example, for an ideal setup without losses, p′E(A0) = p′E(B0) = p′E(A0 ∩ B0) = 1, and
differentiating eq. (7.70) yields

p(nA, nB) =
1

nA!nB!
∂ nA+nB

∂ yA
nA ∂ yB

nB
eµp(yA yB−1)

|︁

|︁

|︁

|︁ yA=0
yB=0

=
µnA

P

nA!
e−µPδnA,nB . (7.76)

In this case, as expected for a setup without losses, the photon pairs are perfectly correlated
so that Alice and Bob observe the same photon numbers following a Poissonian distribution.

The stronger the entanglement, the faster the series expansions of the cosh and sinh
functions and of the determiant converge. The observation that the generating functions in
eqs. (7.59) and (7.70) yield Poissonian photon statistics when the expansion is truncated
after the leading terms well matches the fact that for infinitely many equally strong squeez-
ers, the photon statistics becomes Poissonian (cf. eq. (7.5)). For strongly entangled states,
the leading terms of the series expansion yield the Poissonian photon statistics expected for
the maximally entangled state, and higher expansion orders of the cosh and sinh functions
and determinant from eqs. (7.55) and (7.58) yield minor corrections to these statistics.
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Evaluating eqs. (7.71) to (7.73), or eq. (7.62) for other combinations of detectors and
time bins, requires computing of the marginal distributions of the temporal biphoton
probability density and the joint detection probability. These are the same functions
that need to be computed when the assumption is made that at most one photon pair is
generated (cf. eqs. (1.30) and (1.31)), as it was done for example to investigate the effects
of misaligned IFs on QBERp and of the CD on QBERt in section 2.3. The advantage of
eq. (7.62) compared to these equations is that it yields not only the term for precisely one
photon pair but a Poissonian statistics with components from multiple generated pairs,
which approximates the true photon statistics well when the entanglement is strong.

7.5 Simulation Results

To check that the simulation accurately describes the performance of the QKD system, key
rates and QBERs were simulated and measured for different values of the mean photon
pair number per pulse µp for different repetition frequencies and transmission distances.

The synchronization of the TCs and the source was realized electronically, such that
the uncertainty from the clock recovery does not broaden the arrival time distributions
of the photons, although this effect is small (cf. fig. 2.30 (d))12. The measured data were
evaluated using the dead time postselection for all detectors (cf. section 3.1).

For the simulation, the relevant parameters of all optical components in the setup were
determined by measurements or from the component data sheets (cf. section 6.3). To take
into account the dead time, the computed detection probabilities are multiplied by the
probability pon that the detector is active (cf. eq. (5.1)). The detection, including dark
counts, afterpulses, and the blocking of detections in later time bins due to the dead time, is
modeled as described in section 6.3.1. The methods for simulating QKD with photon pairs
from type-II and type-0 SPDC are different and separated into two simulations. Appendix D
discusses the most relevant details of the implementations.

Effects of Phase Misalignment and Chromatic Dispersion on the QBER
The two-photon interference in the central peak is critical for the security of the QKD
protocol. To demonstrate the characteristic cosine-shaped dependence of the QBERp on the
IF phases (cf. eq. (1.2)) experimentally, a QKD experiment with Alice and Bob in default
configuration was set up, and the QBERp was recorded while scanning the temperature
of Bob’s IF. The measured data are compared to the simulation results in fig. 7.3. The

12Some of the measurements were acquired at a repetition frequency of 100 MHz instead of the 110 MHz
usually used in chapter 3. The clock generator was defective at the time of the measurement and the
synchronization had to be realized by using the electronic outputs of the TCs, which provide pulses with
repetition frequencies up to 100 MHz only.
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Figure 7.3: Comparison of the measured and
simulated QBERp for a QKD session with Al-
ice and Bob in the default configuration. The
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Figure 7.4: Simulated QBERt as a function
of the total fiber length between Alice and
Bob for QKD with type-II photons for an ideal
setup without losses, afterpulses and dark
counts and in comparison in the inset for the
parameters of the real setup.

simulation was run with two different data sets for the parameters characterizing the
optical components: The worst-case scenario uses the lowest estimates for the transmissions
through the components and the highest estimates for the mode mismatches, dead times,
and afterpulse probabilities, and the best-case scenario uses the corresponding best-case
estimates for these values. The error band indicates the range of values between both
scenarios. The IF temperature was translated to the IF phase by fitting a cosine function
to the experimental data. Within the measurement accuracy, the simulation results well
match the measured correlation.

One of the most relevant advantages of the frequency-resolved simulation compared to
the simulation in section 6.3 is its ability to consider the elongation of the biphoton wave
packets due to CD. In fig. 2.26, it was already shown that the elongation is more critical for
the type-II photons than for the type-0 photons demultiplexed into 100 GHz wide DWDM
channels. To investigate the relevance of the elongation, the QBERt between Alice and
Bob observed at the pulse repetition frequencies of 110 and 220 MHz was simulated as
a function of the total transmission distance, assuming that the fibers from the q-hub to
Alice and Bob have the same lengths. To isolate the effect of the CD on the QBERp, the
simulations were run for an ideal setup without losses, afterpulses, and dark counts and,
for comparison, with the realistic parameters. The results are shown in fig. 7.4. The QBERt
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increases with increasing fiber length as expected, because more photons leak into adjacent
time bins for longer fibers. However, the curve is not monotonous. Local maxima appear for
lengths at which side lobes of the photon spectrum (cf. fig. 2.22) overlap with neighboring
time bins. The effect is well visible for the simulation of the ideal setup. For the real setup,
other noise contributions blur the effect and lead to higher values of QBERt.

For fiber lengths longer than approximately 200 km, the QBERt with twofold pulse
interlacing at a repetition rate of 220 MHz is significantly lower than the QBERt at 110 MHz.
This result may appear counterintuitive at first because, for twofold interlacing, the time
bins are packed more densely, and one could expect that, therefore, effects from photons
leaking into adjacent time bins would already become relevant for shorter fiber lengths.
However, a detailed analysis shows that because Alice’s and Bob’s fibers are equally long,
the frequency anticorrelation of the photons leads in both cases to photon leakage into time
bin combinations that do not lead to quantum bit errors in the time basis. Furthermore,
for twofold pulse interlacing, photons from time bin combinations that would usually be
discarded during postselection can leak into early-early and late-late time bin combinations
of adjacent repetition cycles, thereby leading to additional bit values. Therefore, for
the same fiber length, the QBERt with twofold pulse interlacing is lower than without
interlacing. The effect is discussed in detail in ref. [VII]. Comparing the curves for the
ideal and real setup, it can be concluded that QKD with photon pairs from type-II SPDC is
limited to total fiber lengths of about 150 km between two users because for longer fibers,
the QBERt becomes too high due to CD. In comparison, if an AWG with 50 or 100 GHz
wide channels is used for demultiplexing type-0 photons, the spectrum is narrower such
that for the practically relevant transmission distances up to 90 km between the source and
the users, no photon leakage into adjacent time bins is observed (cf. fig. 2.26 (b)).

Sifted Key Rates and QBERs in the Time Basis
An advantage of using the covariance formalism for the simulations is that it takes into
account effects from the generation of multiple photon pairs per pump pulse. The key
rates and QBERs were measured and simulated to investigate the effects for different
mean photon numbers per pulse µp. The results are shown in fig. 7.5. Instead of the
total QBER, only the QBERt is compared because the QBERp was not entirely stable for all
measurements. Depending on the fiber lengths and SPDC types, the sifted key rates show
maxima for different fiber lengths. For small values of µp, the sifted key rate increases
with µp because the probability for a pump pulse to generate a photon pair grows. For
high values of µp, the count rate becomes so high that pon decreases significantly due to
the dead time, and the sifted key rate decreases with increasing µp. For shorter distances,
the losses are lower, and the count rates are higher, such that the maximum of the sifted
key rates is reached for lower values of µp than the longer distances. Comparing the two
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Figure 7.5: Comparison of the measured QKD performance and results from the frequency-
resolved simulations. The markers show the measured data, and the bands mark the range
of values between the best-case and worst-case estimates from the simulation. The vertical
error bars for the measured data are obtained from the statistical uncertainty of the key
rates and QBERs. The horizontal error bars are obtained from the uncertainty of µp, which is
mainly determined by the uncertainty of the SPDC conversion efficiency. (a) For the type-II
measurements, Alice is connected via the 26.8 km long deployed fiber, and Bob is connected via
a 30.8 or 50.4 km long spooled fiber. (b) For the type-0 measurements, the distance between
Charlie and Diana is 30 km, and the distance between Alice and Bob is 78 km. Alice is connected
via the deployed fiber.
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measurements at the longer distance of 78 km, the maximum is reached earlier for the
measurement with the higher repetition rate due to the same effect.

The measured and simulated key rates well match for QKD with type-0 and type-II
photons pairs. The QBERs also agree, but the QBERs in the type-II simulation are slightly
higher than the measured QBERs, especially for the distance of 58 km. A possible reason
is a value of µp in the experiment that is slightly lower than the value assumed in the
simulation, leading to an overestimation of the quantum bit errors due to multi-photon-pair
emission. However, overall, it can be concluded that the simulation and the measured data
closely match. The simulation correctly represents the dependence of the key rates and
QBERs on the transmission distance, repetition frequency, and mean photon pair number
per pulse µp, including the maximum in the sifted key rate due to the detector saturation.

Summary of Chapter 7

Frequency-resolved simulations of the q-hub QKD system with photon pairs generated
by type-II and type-0 spontaneous parametric down-conversion (SPDC) were presented.
For that, the covariance formalism of Gaussian states was extended to a continuum of
frequency modes. In the continuous-mode limit, the matrices describing the quantum state
and its transformations become integral operators. The continuous-mode formulation is
compatible with the method of simulating the photon statistics of Gaussian states using
generating functions presented in chapter 6. This is an essential advantage of the generating-
function-based method to computing the photon statistics compared to the Hafnian-based
method, for which extensions to a continuum of modes are yet to be developed.

Approximations of the covariance and detection probabilities for strongly entangled
states were derived, simplifying the computations. The biphoton states used in the q-hub
QKD system are so strongly entangled that it is sufficient to expand the expression for the
detection probabilities to the first contributing order, yielding Poissonian photon statistics.
Several methods are used to reduce the computational resources required for the simulation,
such as the application of Sylvester’s determinant theorem or the evaluation of the biphoton
amplitude after the transmission trough fibers with chromatic dispersion in a diagonal
coordinate system based on Andrianov’s method.

The simulated key rates and quantum bit errror rates match the measurements, demon-
strating that the simulation considers all relevant effects. In the future, the simulation can
be used to predict the influence of changes in the setup, enabling systematic optimizations
of the QKD performance. The methods developed for the simulation will also be useful for
simulating other quantum-optical setups using strongly entangled biphoton states. They
will be published in ref. [VII] together with the simulation results for the q-hub system.
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Summary

The main goals of the research presented in this thesis were to develop a robust multi-
user QKD network, to demonstrate its flexibility, scalability, and reliability in a field test,
and to develop detailed models of this system, enabling the analysis of relevant setup
imperfections.

In the first part of this thesis, the implementation and characterization of an entanglement-
based star-shaped QKD network for four users with a central quantum key hub (q-hub) was
presented.

In chapter 2, the q-hub system was described in detail. In contrast to other entanglement-
based QKD networks reported in the literature, the q-hub network uses the BBM92 time-bin
QKD protocol. The protocol requires that the optical path differences of the interferometers
in the receivers and the photon pair source are matched with an accuracy of a few microm-
eters. A method to build such interferometers quickly and reliably was developed, and
a patent for the method is pending. The receivers are synchronized by clock recovery from
the photon arrival times with a precision better than 100 ps, and a patent is also pending
for the clock recovery method.

The field test of the q-hub QKD network at a facility of Deutsche Telekom presented in
chapter 3 was the first field test of a multi-user QKD network using the BBM92 time-bin
protocol. Key transmissions between the users were demonstrated for more than three
days over optical fiber lengths of up to 108 km between the users. A length of 27 km this
fiber link was deployed underground. The flexibility of the network was demonstrated with
various experiments. Examples are the interlacing of pulse repetitions to increase the key
rate, dynamic switching of the users combinations with a wavelength-selective switch, and
the operation of a fully-connected QKD network. Three different wavelength demultiplexers
were tested. It was shown that using the arrayed-waveguide grating with 50 GHz channel
widths, up to 78 users can be readily connected to the network. By cascaded demultiplexing
with multiple wavelength-selective switches, networks with hundreds of users are feasible.

In chapter 4, photon pair generation by spontaneous four-wave mixing in silicon nitride
microring resonators on photonic chips, also called photonic integrated circuits (PICs), was
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demonstrated as a first step towards even more compact and robust photon pair sources
for the q-hub. A setup for coupling light to the waveguides was developed for the first
tests with a borrowed PIC, and a dedicated PIC was designed to generate photon pairs. It
combines filters for cleaning the pump light from Raman noise, microring resonators for
photon pair generation, and filters separating the remaining pump light from the photon
pairs on a single chip. Pound-Drever-Hall locking of the microring resonators to the laser
frequency was implemented, allowing to keep the microring resonators in resonance with
the pump light even for the highest tested pump powers. Photon pair generation was
demonstrated, showing that a large amount of noise photons is generated on the chip.
Further investigations are required to identify and eliminate the root cause of this noise.
Nevertheless, comparing values for the coincidence-to-accidental ratio reported in the
literature showed that the quality of the photon pairs may be sufficient to demonstrate
QKD.

In the second part of the thesis, an entire framework for characterizing the q-hub network
was developed. It comprises a method for time-resolved tomography of the single photon
detectors, a new method to simulate the photon statistics of multi-mode Gaussian states,
and a frequency-resolved numerical simulation model of the q-hub system considering all
relevant imperfections of the setup.

In chapter 5, the detectors of the q-hub system were characterized by sending laser pulses
attenuated to the single-photon level into the detectors and recording the time-dependent
count probabilities. The dark count rates, dead times, and afterpulse probabilities were
calculated from these data. Time-independent positive operator-valued measures (POVMs)
were reconstructed, allowing to calculate the detection efficiencies. For the reconstruction
of time-dependent POVMs, a new method was introduced to adjust the strength of the reg-
ularization to the statistical data quality. The measured count distributions were compared
to the predictions of a POVM model from the literature. The deviation of the measured
data from the model predictions demonstrates that measuring time-dependent detector
POVMs can reveal additional information about the detectors.

In chapter 6, a general new method was presented to simulate the photon statistics of
Gaussian states by automatically differentiating generating functions. It uses the covariance
formalism to model quantum-optical setups systematically by applying simple matrix
operations to the covariance matrices and displacement vectors describing Gaussian states.
The photon number distribution, its moments, and factorial moments are evaluated by
automatically differentiating the corresponding generating functions. This method is
flexible, so various kinds of imperfections of optical setups can be considered. Simulation
results for key rates and quantum bit error rates in the q-hub QKD system match the
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measurements. It was shown that the generation of multiple photon pairs per pump pulse
is one of the most relevant sources of quantum bit errors.

In chapter 7, a frequency-resolved simulation of the q-hub QKD system was presented. For
the modeling, the covariance formalism of Gaussian states was extended to a continuum
of frequency modes, and approximations for strongly entangled biphoton states were
developed to reduce the required computational resources. The simulation results match
the measured data, indicating that the simulation accurately describes all relevant effects.
The simulation enables future optimizations of the q-hub system. The developed methods
will also facilitate frequency-resolved simulations of other quantum-optical setups using
strongly entangled photon pairs.

Compared to multi-user QKD networks based on polarization entanglement, the key
transmission in the q-hub network is independent of polarization changes in the fiber links,
which can occur due to mechanical stress or temperature changes. Therefore, the q-hub is
particularly well suited to implement QKD networks in metropolitan areas where many
users are located within a radius of about 50 km and where the polarization in the fiber links
is not stable because aerial fibers or fibers deployed underground are exposed to vibrations
and the weather. Q-hub networks could be applied to set up quantum-secure networks for
the healthcare or financial sectors or government or law enforcement organizations. The
presented theoretical frameworks for the detector analysis and the photon-number-resolved
and frequency-resolved simulation methods will enable systematic numerical modeling
of such QKD networks, reducing the time and development costs and enabling systematic
optimizations of the QKD performance.
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Outlook

Further technical improvements could make the presented QKD system even more compact,
robust, and cost-effective, paving the way toward large-scale implementations of q-hub
networks.

Possible Improvements of the Receivers
The current interferometer (IF) housing containers are relatively heavy because a sizeable
thermal mass smooths out fast temperature fluctuations due to the ambient air. Furthermore,
the control loop thermistors are placed close to thermoelectric coolers (TECs) to avoid
temperature oscillations due to resonances of the control circuit. Therefore, the temperature
control reacts relatively slowly to temperature setpoint changes. After applying a setpoint
temperature step of 2 kelvin, it takes 15 to 30 min for the container to stabilize at the new
temperature with millikelvin precison [28] and it takes up to 40 min to align the phases
after switching the user combinations (cf. fig. 3.9). For real-world applications, waiting for
such a long time before keys can be exchanged is impractical. To speed up the alignment,
the thermal mass of the containers could be reduced, requiring better insulation at the
same time to maintain the temperature stability.

For all experiments presented in this thesis, the container temperatures were always set
above room temperature to avoid switching between cooling and heating, prolonging the
TEC lifetime. When the ability to cool the container is not required, the TECs could be
replaced by cartridge heaters, which, in contrast to the TECs, do not require contact with
a thermal bath on the other side. This would allow to improve the thermal decoupling
of the container from the environment by insulating the bottom of the housing container.
However, due to the better insulation, it is no longer possible to quickly remove heat from
the container when necessary to keep the phase of the interferometer stable.

Furthermore, a more sophisticated control loop algorithm could replace the currently
used controller. Temperature readings from multiple points within the containers and
from the outside could be combined to predict the temperature changes in the container
based on the temperature changes of the environment, allowing to compensate them
accordingly. In general, the fibers of the IF arms cannot be placed close together due to
their different lengths, such that a variation of the temperature distribution within the
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container affects the IF phase even when the average container temperature is kept constant.
The temperature distribution could be homogenized by installing multiple independently
controllable heaters or TECs. For fine-grained control, the ability to cool some parts of
the container and simultaneously heat other parts is desirable, requiring TECs instead of
cartridge heaters.

The demonstration in section 3.2 showed that QKD with the q-hub also works for fully-
connected networks. For the demonstration, the phase realignment was turned off. A major
next step towards stable QKD in a fully connected network would be the implementation
of a phase alignment algorithm capable of realigning the phases during the QKD session.

The costs per receiver would be the main cost driver for large-scale q-hub networks.
The single-photon detectors (SPDs) are the most expensive part of the receivers, such that
reducing their number would reduce the costs per receiver module. Therefore, another
possible improvement of the receivers would be reducing the number of detectors from two
to one, which can be realized using SPDs with spatial multi-mode input. The single-mode
output fibers of the IFs can be extended and combined with a fiber combiner into one
multi-mode fiber to which the SPD is connected. By adjusting the fiber lengths, the delay
can be chosen such that the peaks of the arrival time histograms from the two IF outputs
are interlaced, similar to twofold pulse interlacing. This modification of the setup has been
implemented and will be published in ref. [IX].

To improve the security of the q-hub system, countermeasures against well-known
attacks on the receivers could be implemented. For example, the attack in ref. [53] used
detector blinding with strong light pulses to compromise a similar QKD system. Various
countermeasures against detector blinding have been proposed, such as monitoring the
optical input power of the receiver with a second detector or monitoring the current at the
photo diode [308].

The maximum key rates achievable with the q-hub network are mainly limited by the
detection efficiency, dead time, and timing jitter of the single-photon detectors. Efficiencies
of 20 % and dead times of 10 µs were chosen for the field test. Superconducting nanowire
single-photon detectors with efficiencies greater than 70 %, dead times around 40 ns and
timing jitter below 30 ps are commercially available [309]. If such detectors were used in
the q-hub network, the key rate would be increased by a factor of 12 solely due to the higher
detection efficiency. Furthermore, the much lower timing jitter would allow for a reduction
of the time bin width. Pulse generators and amplitude modulators with bandwidths of tens
of gigahertz are commercially available. Assuming that the width of the time bins can be
reduced to 95 ps, 32-fold pump pulse interlacing could be used to increase the repetition
rate to approximately 3.5 GHz. However, dispersion compensation would be required
to avoid photon leakage into adjacent time bins. Therefore, by using superconducting
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nanowire single-photon detectors, the key rate could be increased by roughly two orders
of magnitude overall, such that key rates in the range of kilobits per second over dozens of
kilometers of optical fiber would become feasible. However, superconducting-nanowire
single-photon detectors are much more cost-intensive than the single-photon avalanche
diodes currently used in the q-hub system.

Interferometers with Phase Shifters and Alternative QKD Protocols
An option to speed up the alignment of future generations of the IFs is to integrate phase
shifters. Piezo-based fiber stretchers could be used to control the IF phases directly, as
demonstrated in refs. [116, 133, 162]. Directly stretching the fiber of one of the IF arms
would enable much quicker phase alignments than changing the temperature without
introducing additional insertion losses. Alternatively, lithium-niobate-based electro-optic
phase modulators (EOPMs) with gigahertz switching bandwidths are available, but they
introduce losses of about 2 dB, which would lead to a significant reduction of the key rate.
The base plates in the IF containers are already prepared for installing such modulators
(cf. fig. 2.27) and a second IF per receiver. IFs with EOPMs were planned during the master’s
thesis of Lucas Bialowons [M5]. The EOPMs and further components were purchased, but
the IFs could not be realized due to limited time. With IFs comprising EOPMs, different QKD
protocols could be realized, such as phase-coding protocol with a continuous-wave (CW)
photon pair source (PPS) [31] or quantum secret sharing between three users [310]. An
advantage of using a CW entanglement protocol is that the PPS becomes much simpler
because a pulse generation stage is not required. EOPMs in the receivers, on the contrary,
complicate the setup. However, phase coding with a continuous PPS can also be realized
by setting up two IFs per user for two different phase bases [31]. For that, a 50/50 beam
splitter randomly directs arriving photons to one of the IFs, realizing a passive basis choice.
The phases of both IFs are shifted by π/2 to realize the different bases. The protocol has
been implemented in ref. [311] and can readily be realized with the PPS and IFs of the
q-hub QKD system.

Postprocessing Software
In the previous chapters, it was demonstrated that the hardware of the q-hub system,
the software for data acquisition and setup operation, and the synchronization by clock
recovery are fully functional. For the field test, the q-hub and the four receiver modules
were set up in the same room. The timestamps of all four users were evaluated on the
same computer that operated the photon source. Postprocessing software for the keys
and remote communication over an authenticated classical channel must be implemented
to operate the receivers at different locations. Early implementation efforts for the QKD
systems in Darmstadt date back to the masters’s theses of Tobias Diehl and Micha Ober
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and to the Ph.D. of Sabine Euler [312]. The results were published in the technical report
ref. [313], and Oleg Nikiforov made the software publicly available as a GitLab project [314].
Later, parts of the software were analyzed for cache side channels in joint efforts with the
research group of Prof. Dr. Heiko Mantel from the Computer Science department of the
Technical University of Darmstadt. Side channels in parts of the software were found and
removed [56]. A fully functional postprocessing software stack for the q-hub QKD system
is currently under development. Once the software for key postprocessing and remote
control is completed, the receivers and the source can be separated to demonstrate QKD
between remote locations.

Possible Improvements of the Photon Pair Source
The current implementation of the PPS has proven to be robust and flexible, but further
improvements are possible. A relatively simple improvement would be the replacement of
the 10/90 beam splitter for monitoring the second-harmonic pump power. The currently
installed beam splitter shows relatively large variations of the splitting ratio of 10 % of the
value, which is the most significant source of the uncertainty for the measurements of the
source performance, such as the crystal conversion efficiency. For QKD, a time-dependent
variation of the splitting ratio leads to variations of the mean photon pair number µp during
the QKD session. The beam splitter could be replaced by a more stable one to improve the
overall stability of the system.

As discussed in section 2.1.2, the number of users could be slightly increased by shifting
the q-hub center wavelength from 1550.5 nm to the center of the operating range of the
WSS at 1547.9 nm. The fiber Bragg gratings used in EDFA-2 are not reflective at this
wavelength, so EDFA-2 cannot be used without replacing the FBGs. However, one EDFA is
sufficient to generate the required pulse powers for type-0 SPDC. The width of the bandpass
filter used in EDFA-1 is 6.5 nm. Therefore, using EDFA-1 instead of EDFA-2, the center
wavelength could be tuned to the center wavelength of the WSS. The temperature of the
wavelength converters can be easily adjusted with the temperature controllers to achieve
phase matching at this wavelength.

Some of the most expensive parts of the PPS are the type-0 wavelength converters. It was
demonstrated that the PPS can also be operated with a single converter in a bidirectional
configuration. The setup could be changed permanently to this configuration. The second
converter could then be used to set up another type-0 PPS. A fully functional pulsed
laser system is available from Nikiforov’s QKD system for two users. Multiple wavelength
demultiplexers are also already in use, such that a second q-hub system is easily completed.
Thereby, a QKD network with two q-hubs key hubs could be built.

Another option to simplify the PPS would be to directly generate laser pulses at a wave-
length of 775 nm and to set up the IF in the PPS for this wavelength, such that second-
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harmonic generation is not required. Laser diodes at 775 nm are commercially available,
but the lithium niobate-based amplitude modulators for 775 nm are typically limited to
much lower input powers than at 1550 nm. However, due to the high efficiency of the
wavelength converters, only moderate powers are required. The q-hub was typically oper-
ated at an average pump power of 60 µW at 775 nm, corresponding to a pulse peak power
of 660 µW. If laser pulses with this power could be generated by using a 775 nm laser diode
and an amplitude modulator, the converter could be used for the photon pair generation,
and neither second-harmonic generation nor fiber amplifiers would be required anymore.
However, the pump interferometer would need to be set up with different fiber components
for 775 nm. The calculation of the required OPD accuracy in section 2.3.1 showed that for
the pump interferometer, path length deviations of up to 2 mm are acceptable. Achieving
this tolerance is feasible even when the pump interferometer is not built from the same
components as the receiver interferometers.

Yet another option is to abandon the pump interferometer completely and to produce
the double pulses directly. However, the method requires that the jitter of the pulses is
sufficiently low. A fixed phase relation of the two halves of the pump is required. It can
be achieved by choosing a stable pump laser with a coherence length much longer than
the separation and duration of the two halves of the pump pulses. Tests by Oleg Nikiforov
showed that generating electronic double pulses with the pulse generator HP8131A and
applying them to a single amplitude modulator results in high QBERs, probably because
the timing jitter is too large. However, the method has been demonstrated successfully
in refs. [63–65] by producing a pulse train of equidistant pulses with a first amplitude
modulator and extinguishing every third pulse with a second amplitude modulator.

If QKD protocols with a continuous PPS, such as the phase coding protocol with active
or passive basis choice, were implemented, no pulse generation would be required. The
PPS setup could be simplified to a stable laser diode at 775 nm and a wavelength converter
with pump light filters.

Possible Extensions and Improvements of the QKD Simulations
For the photon-number-resolved simulation, a further research topic could be a systematic
comparison of the computation speed for the photon statistics between the Hafnian-based
approach and the generating-function-based approach presented in this thesis. The theoret-
ical complexity of the generating function-based approach could be analyzed, and the speed
of different software frameworks for automatic differentiation, such as Tensorflow [252] or
JAX [315, 316] for computing the higher-order derivatives could be compared.

The computation speed of the generating-function-based approach could possibly be
improved by using different algorithms for the computation of the derivatives of the deter-
minant. The standard method for computing the determinant implemented in PyTorch is
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based on the LU decomposition, with an operation count scaling with the matrix dimen-
sion n approximately as 2n3/3 [296]. The real covariance Γ (q) is symmetric and positive
definite [228] and so is the matrix Λ (cf. eq. (6.49)). Therefore, the determinant could also
be computed from the Cholesky decomposition Λ = LL† by

p

det(Λ) =
∏︁

i Lii . Computing
the Cholesky decomposition requires only roughly half as many operations as computing the
LU decomposition [296]. As the required computation time for the photon number distribu-
tion scales roughly exponentially with the number of derivatives, even a relatively moderate
speedup, such as a factor of two per derivative, could lead to a significant speedup for higher
photon numbers. Another way to improve the computation speed for the higher-order
derivatives could be to use so-called Taylor-mode differentiation instead of the direct ap-
proach of the nested application of the first-order differentiation rules [249, 316]. For linear
algebra functions such as the Cholesky decomposition, the relevant expressions are known
and have been implemented in the AlgoPy software [317, 318]. In JAX, the implementation
of Taylor-mode differentiation is pursued [316], but it is not yet implemented for the matrix
decompositions. Yet another option proposed in ref. [229] is to compute derivatives of the
determinant by using Jacobi’s formula ∂ det(M)/∂ y = det(M) tr[M−1∂ M/∂ y] [319].

The frequency-resolved QKD simulation could be extended to include the photon polar-
ization. Thereby, QKD systems using polarization encoding could be modeled. Furthermore,
other types of PPSs with different joint spectral amplitudes could be simulated, such as PPSs
based on spontaneous four-wave mixing in microring resonators. Parameter scans could
be performed to analyze the impact of different imperfections on the QKD performance,
allowing systematic improvements of the system.
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A Formulary

In the following, some useful mathematical relations used throughout this thesis are listed
for reference.

Complex Exponential Integrals

Dirac delta distribution δ(t) =
1

2π

∫︂

eiωt dω (A.1)

Complex Gaussian integral [320]
∫︂

exp
�

−ax2 + bx
�

=
s

π

a
exp

�

b2

4a

�

(A.2)

Multivariate Gaussian integral [321]
∫︂

RN

e−xTAx/2+ibTx dx =

⌜

⎷(2π)N

det A
e−bTA−1b/2 (A.3)

The integral in eq. (A.2) converges for a, b ∈ C when Re(a) > 0 as well as for Re(a) = 0
when Re(b) = 0 and Im(b) ̸= 0. Here,

√
a is the principal square root of a. Equation (A.3)

holds for complex vectors b and real, symmetric, positive definite matrices A.

Different conventions for the Fourier transform exist in the literature. In this thesis, the
following definitions are used:

Fourier transform f̃ (ω) = Ft
�

f (t)
�

(ω) =
1

√
2π

∫︂

f (t) eiωt d t (A.4)

Inverse Fourier transform f (t) = F−1
ω

�

f̃ (ω)
�

(t) =
1

√
2π

∫︂

f̃ (ω) e−iωt dω (A.5)

Some useful relations involving the Fourier transform are listed below:

Shift in time or frequency Ft
�

f (t − t0) e−iω0 t�(ω) = ei(ω−ω0)t0 f̃ (ω−ω0) (A.6)

Complex conjugation Ft
�

f ∗(t)
�

(ω) =
�

f̃ (−ω)
�∗

(A.7)

Parseval-Plancherel identity

∫︂

f (t)h∗(t) d t =
∫︂

f̃ (ω)
�

h̃(ω)
�∗

dω (A.8)
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Convolution ( f ∗ h)(t) =
∫︂

f (τ)h(t − τ) dτ (A.9)

Cross-correlation ( f ⋆ h)(t) =
∫︂

f ∗(τ)h(τ + t) dτ (A.10)

Convolution theorem Ft[(g ∗ h)(t)](ω) =
√

2π g̃(ω)h̃(ω) (A.11)

Normalized autocorrelation g(1)f (t) =
( f ⋆ f )(t)
∫︁

| f (τ)|2 dτ
(A.12)

Normalized spectral density s f (ω) =
| f̃ (ω)|2

∫︁

| f̃ (ω)|2 dω
(A.13)

Wiener-Khinchine theorem g(1)f (t) =
∫︂

s f (ω) e−iωt dω (A.14)

Coherence time [235] τcoh. =
∫︂

|g(1)f (t)|
2 d t = 2π

∫︂

s2
f (ω) dω (A.15)

Series and Special Functions

Exponential series exp(y) =
∞
∑︂

k=0

yk

k!
(A.16)

Geometric series
1

1 − y
=

∞
∑︂

k=0

yk for |y| < 1 (A.17)

Binomial theorem (x + y)n =
n
∑︂

k=0

�

n
k

�

xk yn−k (A.18)

Negative binomial series [223]
1

(1 − y)n+1
=

∞
∑︂

k=0

(k + n)!
k!n!

yk for |y| < 1 (A.19)

Generating function of

the Laguerre polynomials [245]

∞
∑︂

n=0

yn Ln(x) =
1

1 − y
exp

� −x y
1 − y

�

(A.20)
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Rectangle function rectτ(x) =

⎧

⎨

⎩

0 if |x | > |τ|/2
0.5 if |x | = |τ|/2
1 if |x | < |τ|/2

(A.21)

Sine cardinal [98] sinc(x) =
�

sin(x)/x if x ̸= 0

1 if x = 0
(A.22)

Fourier transform of a rectangle Ft[rectτ(t)](ω) =
τ

√
2π

sinc
�ωτ

2

�

(A.23)

Probability Rules

For events A and B with probabilities p(A) and p(B), the following probability rules hold:

Addition rule p(A∪ B) = p(A) + p(B)− p(A∩ B) (A.24)

Multiplication rule p(A∩ B) = p(A | B) p(B) = p(B |A) p(A) (A.25)

Conditional probability p(A | B) =
p(A∩ B)

p(B)
(A.26)

Law of total probability p(A) =
∑︂

i

p(A∩ Bi) (A.27)

Bayes’ theorem p(A | B) =
p(B |A) p(A)

p(B)
(A.28)

Here, p(A | B) is the conditional probability that A occurs, given that B occurs.

Quantum Mechanics

The Baker-Campbell-Hausdorff formula states that for two operators Ô1 and Ô2 with
commutator [Ô1, Ô2] and [Ô1, [Ô1, Ô2]] = [Ô2, [Ô1, Ô2]] = 0, it holds [235, 322]

exp
�

Ô1 + Ô2
�

= exp
�

Ô1
�

exp
�

Ô2
�

exp
�

−
�

Ô1, Ô2
�

/2
�

. (A.29)

The optical equivalence theorem states that the expectation value of a normally-ordered
function of creation and annihilation operators F(â†, â) is given by [233, 235, 322]

tr
�

ρ̂F(â†, â)
�

=
∫︂

C
P(α)F(α∗,α) d2α . (A.30)

Here, P(α) is the Glauber–Sudarshan P-function given by ρ̂ =
∫︁

C P(α)|α⟩⟨α| d2α.
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B Model for Calculating the Generated
Photon Pair Rate

To calculate the crystal efficiency from eq. (2.3), the average SHG pump power as well as
the signal and idler timestamps are recorded, and the generated photon pair rate Rpair needs
to be calculated. For that, a model was developed, including various imperfections of the
setup, such as the detector dead times, dark counts, afterpulses, and frequency-dependent
transmission losses.

A simulation based on artificially generated timestamps shows that all these effects must
be included in the calculation to obtain correct values. The core functionalities of this
simulation were implemented during the master’s thesis of Maximilian Mengler [M8].

B.1 Calculation of the Generated Photon Pair Rate

To calculate Rpair from the signal and idler count rates rs and ri and from the coincidence
count rate R, a model from ref. [323] is extended to include effects from dead times,
afterpulses and frequency-dependent losses. The following definitions are used:

ζs/i Average spectral transmission efficiency (cf. eq. (2.4))

ts/i Transmission efficiency independent of the spectrum

ηs/i Detection efficiency

αs/i Afterpulse factor

ds/i Dark count rate

ζpair Average spectral joint transmission efficiency (cf. eq. (2.5))

γ Beam splitting factor

τ Duration of the coincidence window

The coincidence window size τ is set in the data evaluation software, and the dark count
rates ds/i are known from separate measurements. The model assumes that all counts
are due to dark counts, photons, or afterpulses. Other noise sources, such as a photon
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background scaling with the pump power, are not included. The count rates rs and ri as
well as the coincidence count rate R are given by:

rs/i = ζs/iηs/i ts/iαs/iRpair + ds/i Rate of signal / idler photons (B.1)

R = C + U Rate of coincidences (B.2)

C = γζpair ts tiηsηiRpair Rate of coincidences from photon pairs (B.3)

U = (rs − C)(ri − C)τ Rate of accidental coincidences (B.4)

Accidental coincidences are coincidences not caused by SPDC photons from the same pair.
The uncorrelated rate rs − C describes all signal detections except those where a pair
was produced and both photons were detected. The probability for such an uncorrelated
detection to be detected in coincidence with an uncorrelated idler detection is τ(ri − C).

Inserting eq. (B.4) into eq. (B.2) and solving for C yields

C =
1

2τ

�

(rs + ri)τ− 1 +
Æ

[1 − (rs + ri)τ]2 − 4τ(τrsri − R)
�

. (B.5)

Thereby, C can be directly calculated from the measured rates rs, ri, and R.
Inserting eq. (B.3) into eq. (B.4) and using eq. (B.1) yields

Rpair = γ
ζpair

ζsζi

(rs − ds)(ri − di)
αsαiC

and ts/i =
rs/i − ds/i

ζs/iηs/iαs/iRpair
. (B.6)

Equation (B.6) allows to calculate the pair rate Rpair and the transmission values ts/i from
the measured rates when ζs/i, ηs/i, and αs/i are known. For example, the ts/i contain the
unknown efficiency for coupling photons from the SPDC crystal waveguide into the fibers.

Probabilistic Splitting of Parallel Polarized Photon Pairs
When the photon pairs are split by a WDM or polarization beam splitter, the beam splitting
factor is set to γ = 1. The separation can also be achieved probabilistically for parallel
polarized photons by inserting a 50/50 beam splitter instead of a WDM. The probability of
observing a count in one of the detectors from the signal or the idler photon or both photons
is given by the probability addition rule (cf. eq. (A.24)) p(s∪i) = p(s)+p(i)−p(s∩i). Assum-
ing ηsζs ts = ηiζi ti = ηζt yields p(s) = p(i) = ηζt/2 and the term p(s ∩ i) = η2ζpair t2/4,
which can be neglected when the transmission probabilities including all losses and detector
efficiencies in the experiment are low. Therefore, inserting the 50/50 splitter leaves the
rates rs and ri almost unchanged. In contrast, the coincidence rate is reduced by a factor
of two because, with 50 % probability, both photons are directed to the same detector. The
beam splitting factor is therefore set to γ = 1/2.
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When the detector exhibits no dead time and no afterpulses, rs, ri, and R are directly
given by the measured count rates and the rate of coincidences. Two options exist to include
effects from afterpulses and dark counts: A statistical treatment or data postselection. Both
are discussed in the following.

Statistical Treatment of Afterpulses and Dark Counts
Afterpulses increase the count rates of the detectors by introducing uncorrelated counts.
The afterpulse rate is given by rap = (rg + rap)pap, with the afterpulse probability pap and
the rate of genuine counts rg which are not afterpulses. The term rappap on the right-hand
side takes into account that an afterpulse can generate another afterpulse with probability
pap. Solving for rap/rg shows that the average number of counts produced by one genuine
count is given by the afterpulse factor

α = 1 +
rap

rg
=

1
1 − pap

. (B.7)

Dark counts are not multiplied by α because the measured dark count rate already
includes the afterpulses of genuine dark counts.

The detector dead time can be treated statistically as described in section 5.2. The rates
that a detector would have measured without dead time are calculated from the measured
rates rm and Rm by using eq. (5.2):

rs/i =
rm,s/i

1 − τrm,s/i
, (B.8)

R =
Rm

(1 − τsrm,s)(1 − τirm,i)
. (B.9)

Equation (B.6) is then applied to these corrected rates.

Removing Afterpulses and Dead Time by Data Postselection
In the statistical treatment of afterpulses and dead time, it is assumed that the detection
events are described by two independent processes, such that in eq. (B.9), the two factors
1 − τrm,s/i can be multiplied. This assumption is only approximately fulfilled because coin-
cident detections lead to a simultaneous deactivation of the detectors and a simultaneous
reactivation. Furthermore, in fig. 5.2 (b), it can be seen that the detection efficiency is
not instantly restored after the dead time. The afterpulses are assumed to contribute as
uncorrelated noise, but due to the time-dependent afterpulse distribution, the coincidence
probability between afterpulses is increased. These effects can distort the results of the
efficiency calculation.
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As an alternative, data postselection can be used to entirely remove the effects introduced
by the dead time and afterpulses. For that, only the counts with a sufficiently long time
difference to the preceding count are selected. The detector is considered ready for the
subsequent detection when a time of τsel has passed since the last count. Counts registered
when the detectors are not ready are discarded. To find a suitable value for τsel, the
afterpulse histograms in fig. 5.2 (b) are examined. It shows that effects from afterpulses
and from the dead time are limited to some tens of microseconds after a count. Based on
these histograms, τsel = 40 µs is chosen. The principle of the data postselection for the
individual detector and coincidence count rates are shown in fig. B.1. The postselected count
and coincidence rates are used for the crystal conversion efficiency calculation, eliminating
the effects of the dead times and afterpulses. The count rate under the condition that
a detector is ready is the number of accepted counts divided by the sum of all time intervals
in which the detector was ready, which is given by the sum of the green time intervals in
fig. B.1. Coincidence counts are only selected when both detectors are ready.

Time

Co
in

ci
de

nc
es

Signals

Idlers

Signal counts Selected counts
Discarded counts

sel

Detector ready
Detector not ready
Selected Coincidence

Figure B.1: Data postselection for the crystal efficiency calculation. The upper diagram shows
the selection of counts and the time intervals when the detector is ready for exemplary signal
counts. A coincidence is only selected if both detectors are ready, as shown in the lower
diagram. When both detectors are ready, and a signal and an idler are registered with a time
difference ∆t ≤ τ/2, the counts are considered coincident.
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B.2 Model Verification with Simulated Timestamps

To verify the crystal efficiency calculation model and to quantify the influence of different
corrections, artificial timestamps were generated with parameters close to the experimental
values:

• The pair rate Rpair is calculated via eq. (2.3). Emission times for photon pairs following
a Poissonian process with rate Rpair are sampled.

• The transmission probabilities to pass the 7 nm wide bandpass filter, given by ζs, ζi,
and ζpair, are considered. A random fraction of p(s) = ζs of the pair times are kept.
These are the signal photons passing the frequency-dependent losses of the filter.
A random fraction p(i | s) = p(i ∩ s)/p(s) = ζpair/ζs of signal times is selected. These
are the idler counts that are detected in coincidence with signal counts. A random
fraction p(i | s̄) = p(i ∩ s̄)/p(s̄) of those pair times that are not signal times (s̄) is
selected, these are the idler counts that are not paired with a signal count. Applying
the law of total probability from eq. (A.27) yields p(i ∩ s̄) = ζi − ζpair, such that
p(i | s̄) = (ζi − ζpair)/(1 − ζs). Finally, the paired and unpaired idler times are
combined into the total list of idler counts.

• Half of the signals and half of the idlers are randomly selected to be sent into the
first detector to model probabilistic photon pair splitting with a 50/50 beam splitter.
The photons that were not selected are those reflected by the beam splitter. They are
sent into the second detector.

• The frequency-independent losses are applied by selecting random fractions ηs/i ts/i
from the signals and idlers.

• Dark counts are modeled by a Poisson process with a rate corresponding to the
measured dark count rate divided by the afterpulse factor, taking into account that
the measured dark count rates already include afterpulses. The dark count timestamps
are merged with the photon timestamps.

• All counts are shifted by small random time offsets following a Gaussian distribution
modeling the timing jitter of the detectors and acquisition electronics.

• Afterpulses with a random time distribution roughly following the shape of the mea-
sured afterpulse distribution are introduced according to the afterpulse probability.
The afterpulses are introduced together with the dead time effect. Timestamps are
rejected when they follow within the dead time after a count or afterpulse. An
afterpulse leads with probability pap to another afterpulse.
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The conversion efficiency calculation model was applied to the simulated timestamps.
Figure B.2 compares the nominal values used for the simulation to the values obtained from
the postselection model and to the statistical model considering different effects. When
deadtimes, afterpulses and the spectral correlation factor c∆I = ζpair/(ζsζi) (cf. eq. (2.6)) of
the bandpass filter are not taken into account, the reconstruction underestimates the crystal
efficiency by more than a factor of 1.5 and overestimates the transmission probabilities
for signals and idlers. Considering the dead time leaves the estimated value for ε almost
unchanged and leads to higher estimates for the transmission probabilities ηs ts and ηi ti.
Taking into account the afterpulses leads to an even lower estimate for the conversion
efficiency ε and to even higher estimates for the transmission probabilities. Considering
additionally c∆I improves the estimates to values close to the set values. This shows that
the effects from the dead times, afterpulses, and the spectral correlation factor must all be
considered to obtain correct estimates. The best estimates are obtained from the model that
includes c∆I and removes effects from dead times and afterpulses by data postselection.
The statistical uncertainties of this model, shown by error bars, are slightly larger than for
the other models because the postselection reduces the number of timestamps from which
the values are estimated.

3 4
 in 10 7

Ideal detectors
dead

dead, pap

dead, pap, c I

Postselection, c I

Estimated value
15 20 25

sts in %

Set values

15 20 25
iti in %

Figure B.2: Verification of the crystal conversion efficiency calculation model. The measured
efficiency over the 0.7 nm wide frequency interval∆I of the bandpass filter is ε = 4.7 × 10−7 and
the measured transmissions ηs/i ts/i are 16.1%. Using these values, timestamps were simulated,
and five reconstructionmodels including different effects were applied to estimate ε and ηs/i ts/i

from these data. The results are compared to the set values (vertical lines) of the timestamps
simulation. The labels “τdead‘‘, “pap‘‘ and “c∆I ‘‘ indicate whether the dead times, afterpulses, or
the spectral correlation factor are taken into account. The model “Ideal detectors‘‘ does not
take into any of the effects. The “Postselection‘‘ model eliminates effects from afterpulses
and dead times by data postselection. The error bars indicate the statistical uncertainties
originating from the finite number of counts and coincidences for the simulated measurement
time of 120 s.
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C Examples for Common Gaussian States
and Transformations

Representation of some of the most important Gaussian states and transformations are
listed below.

• The vacuum state |0⟩ is represented by Γ = 1 and d = 0 [101].

• The coherent state is represented by Γ = 1 and d(q) =
√

2

�

Re(α)
Im(α)

�

[101].

• The single-mode displaced squeezed thermal state ρ̂ = D(α)S(χ)ρ̂th(µth)S†(χ)D†(α)
is represented by d(q) =

√
2
�

Re(α), Im(α)
�T

and [225, 227]

Γ (q) = (1 + 2µth)
��

1 0
0 1

�

cosh(2r) +
�

cos θ sin θ
sin θ − cos θ

�

sinh(2r)
�

. (C.1)

Here, D(α) = exp(αâ†−α∗â) and S(χ) = exp[(χ â†2−χ∗â2)/2] are the displacement
and squeezing operators with squeezing parameter χ = r eiθ , and

ρ̂th(µth) =
∞
∑︂

k=0

µth
k

(1 + µth)k+1
|k⟩⟨k| (C.2)

is a thermal state with mean photon number µth [227].

• The TMSV state |ψ⟩TMSV = exp
�

r eiθ â†
s â†

i − r e−iθ âsâi

�

|0⟩ from eq. (1.20) is repre-
sented by d(q) = 0 and

Γ (q) =

⎛

⎜

⎜

⎝

cosh(2r) cos(θ ) sinh(2r) 0 sin(θ ) sinh(2r)
cos(θ ) sinh(2r) cosh(2r) sin(θ ) sinh(2r) 0

0 sin(θ ) sinh(2r) cosh(2r) − cos(θ ) sinh(2r)
sin(θ ) sinh(2r) 0 − cos(θ ) sinh(2r) cosh(2r)

⎞

⎟

⎟

⎠

.

(C.3)
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• The transformation for the phase rotation of a single mode is represented by [101]

S(q) =
�

cos(φ) sin(φ)
− sin(φ) cos(φ)

�

. (C.4)

• The transformation for a beam splitter coupling two modes, with a field transmission
of κ and κ2 + r2 = 1, κ, r ∈ R, is represented by [101]

S(q) =

⎛

⎜

⎜

⎝

κ r 0 0
−r κ 0 0
0 0 κ r
0 0 −r κ

⎞

⎟

⎟

⎠

=
�

κ r
−r κ

�⊕2

. (C.5)

• If a beam splitter is introduced into one of the modes of a state, an additional mode
containing vacuum needs to be introduced for the second beam splitter input before
the beam splitter transformation can be applied. This is performed by inserting two
new columns and rows into Γ (q) for the x and p components with 1 on the diagonal.

• Sometimes, only a subset M = {m1, m2, . . . } of all modes is of interest, and the other
modes are removed by a partial trace. For that, the unwanted modes are deleted
from Γ and d. Formally this is achieved by applying the projection matrix PM to Γ :

Γ ′ = PMΓPM , and d ′ = PMd . (C.6)

The projection matrix is described by a vector p of diagonal elements:

PM = diag(p)⊕2 with ps =

¨

1 if s ∈ M ,

0 otherwise.
(C.7)

• Combining the last three operations, losses can be modeled by introducing an auxiliary
mode containing vacuum, coupling it to the mode experiencing losses with a beam
splitter with transmission τ2 and τ > 0, and tracing out the auxiliary mode. The
combined loss transformation for a single-mode reads [101]

Γ ′ = τ2Γ + (1 − τ2)1 , d ′ = τd . (C.8)
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D Details on the Implementation of the
Frequency Resolved Simulation

Two different simulations were set up as the QKD system can be operated with type-0 or
type-II SPDC. Although the simulations are conceptually very similar, some details of the
implementations are different.

D.1 Details of the Type-II Simulation

Series Expansions
The spectrum of the photons from type-II SPDC shows side lobes, and the QBER increases
when the CD elongates the wave packet so much that photons leak into adjacent time bins
(cf. fig. 2.26 (a)). Therefore, the frequency range of the JSA for the type-II simulation must
be chosen large enough to cover the side lobes. The type-II simulation, therefore, uses the
approximations of the cosh and sinh functions to order N = 2 from eqs. (7.63) to (7.66).
It evaluates the expansion of the determinant to the second order by using the expressions
for tr(Ξ) and tr

��

Ξ(⧸)
�2�

from eqs. (7.68) and (7.69).

Inverse Fourier Transformation
As the signal and idler frequencies are close to the minimum of the frequency-dependent
attenuation coefficient in the SMFs around 1550 nm (cf. fig. 1.5), the transmission losses in
the fiber are assumed to be frequency-independent, meaning that the transmission factors
τfib, A/B are independent of the frequency. For the propagation phases φfib(ω) = k(ω)L,
the approximation of k(ω) up to the O

�

(ω−ω0)2
�

term from eq. (1.11) is used. The
phase terms from the propagation through the fiber links that are constant or linear in
ωs and ωi are omitted because they only represent the absolute phase and overall arrival
time of the wave packets, which are of no further relevance. The shape of the biphoton
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wave packet after the transmission through the fiber links is obtained by evaluating the
two-dimensional IFT in the diagonal ω± coordinate system:

ψfib(ts, ti) =
1

2π

∫︂∫︂

ψ̃(ωs,ωi) e−iωs ts−iωi ti eiβ[Ls(ωs−ω0)2+Li(ωi−ω0)2]/2 dωs dωi

=
e−iω0 t+

2

Outer IFT computed by using Andrianov’s method

F−1
ω−

�

Φ̃(ω−) eiω2
−β L+/8F−1

ω′

�

Ã(ω′) eiω′2β L+/8
�

�

t+
2

−ω−
β L−

4

�

Inner IFT computed by using standard IFFT

�

� t−
2

�

.

(D.1)

Here, the abbreviations ω′ = ω+ − 2ω0 and L± = Ls ± Li have been introduced, and
Ã(ω′) = α̃(ω′−2ω0) is the envelope of the pump pulse spectrum as before. The initial JSA
ψ̃(ωs,ωi) is represented by points on a rectangular grid in the diagonal coordinate system.
The phase oscillations introduced by the quadratic phase term eiω′2β L+/8 in the inner IFT are
sufficiently slow in the narrow spectral range of Ã(ω′) such that the IFT can be evaluated by
directly applying the IFFT. In the outer IFT, the factor eiω2

−β L+/8 can introduce considerable
phase oscillations when the transmission links are long. In these cases, which include the
transmission distances used in the field test, Andrianov’s method [91] (cf. eq. (1.16)) is
used to compute the IFT efficiently.

Evaluation of Wave Packet Overlaps
The evaluation of the vacuum detection probabilities requires the evaluation of overlap
integrals (cf. eqs. (7.68) and (7.69)) of the type

∫︂

IA

∫︂

IB

Ψfib(tA, tB)Ψ∗
fib(tA − t ′, tB − t ′′) d tB d tA (D.2)

and the summation of multiple of such terms. Depending on the arguments t ′ and t ′′ and
the elongation of the wave packets due to CD, some or most of these integrals do not have
a significant overlap. The summation in eq. (7.69), for example, runs over 28 × 32 = 2304
terms. To reduce the computation time, the shifts in the arguments are compared to the
extent of the grids. Integrals for which the discretization grids do not overlap are set
directly to zero. This is the case when the elongation of the wave packet due to CD is not
large enough to lead to a leakage of photons into adjacent time bins. For combinations
with non-zero overlap, ψfib and ψ∗

fib are interpolated to a joint diagonal grid. The integral
is then approximated by summing up the products of the values on the grid points in the
rectangle spanned by the detection intervals IA and IB.
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Besides the elongation of the wave packet envelope, CD leads to a quadratic time
dependence of the phase of the wave packet. When Andrianov’s method is used to compute
the IFT, the quadratic phase becomes directly apparent outside the FTs. Therefore, under
the overlap integral eq. (D.2) a phase factor

exp

�

−
it2
−

2β L+

�

exp

�

i(t− − t ′ + t ′′)2

2β L+

�

= exp

�

i(t ′ − t ′′)2

2β L+

�

exp
�

−it−
t ′ + t ′′

β L+

�

Oscillating term

(D.3)

appears, oscillating in t−-direction. When the oscillation period β L+/(t ′ + t ′′) is much
larger than the resolution of the discrete approximation of the integral, the sum can be
evaluated as usual. However, when sufficiently many oscillations are present within a single
discrete step ∆t−, the oscillations cancel the integral approximately to zero. Therefore, if
∆t− ≥ 100β L+/(t ′ + t ′′), the integral value is set to zero. Otherwise, the discretization is
refined such that β L+/(t ′ + t ′′) ≥ 12∆t− and the integral is evaluated.

Errors in the Time Basis from Adjacent Repetition Cycles
Compared to the frequency-independent simulation, the most relevant advantage of the
frequency-resolved simulation is the ability to model chromatic dispersion (CD). As discussed
in section 2.3.1, CD elongates the photon wave packets in time. When the wave packets
become too long, photons leak into adjacent time bins. Within one repetition cycle, this
leakage is automatically represented by sums over the different path combinations and
time bins in Ξ. Additionally, photons from adjacent pulse repetition cycles can leak into the
time bins, as shown in fig. D.1. As the simulation computes the detection probabilities only
for one repetition cycle, such inter-cycle leakage effects are not automatically included. In
principle, extending the simulation to cover multiple pulse repetitions would be possible
by extending the pump pulse shape to multiple repetition cycles. However, this approach
would significantly increase the required computational resources. Instead, inter-cycle
leakage is modeled by adjusting the vacuum detection probabilities from the single-cycle
simulation.

All pulse repetitions are equal, so considering the N -th repetition cycle is sufficient. When
the dispersion effects are not too strong, it is sufficient to consider the leakage from directly
adjacent time bins only, as shown in fig. D.1. In general, the probability that photons leak
from time bin i in cycle N − z with z ∈ Z into time bin j in cycle N is the same probability
that photons from time bin i in cycle N leak into time bin j in cycle N + z. Furthermore,
the detection of photons in different repetition cycles is independent, except for the dead
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EN CN LNLN-1 EN+1 CN+1 LN+1EN-1 CN-1

Simulated Time Bins

Figure D.1: Model of photon leakage into adjacent time bins due to chromatic dispersion for
the N -th repetition cycle with time bins E (early), C (central), and L (late). For simplicity, it
is assumed that photons do not leak into time bins beyond the directly adjacent time bins,
such that it is sufficient to simulate the additional time bins LN−1 to LE+1. The probability that
photons from LN−1 leak into EN is the same as the probability that photons from LN leak into
EN+1. Therefore, the vacuum detection probability for EN is multiplied by the vacuum probability
for EN+1 (green arrow). Similarly, the vacuum probability obtained for LN is multiplied by the
vacuum probability for LN−1 (brown arrow).

time effect. The probability that some detector measures vacuum in a set of time bins {i},
including the leakage, is therefore given by

p′vac({i}) = pvac({i})
∏︂

z∈Z
z ̸=0

pvac, no noise

�

{i} + z
frep

�

. (D.4)

The vacuum probability pvac({i}) for the N -th pulse cycle alone is obtained directly from the
determinant describing the detection probability. The probabilities pvac, nonoise({i}+ z/ frep)
take into account that vacuum is only measured when additionally no photons from any
other repetition cycle have leaked into {i} in cycle N , which is the same probability as
the probability that no photon has leaked from cycle N into the time bins {i} of any other
repetition. These probabilities only consider photon counts and are therefore calculated
for zero noise. The probabilities for coincident counts are modified similarly, as described
in ref. [VII].
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D.2 Details of the Type-0 Simulation

Singular Value Decomposition of the JSA
The type-0 SPDC spectrum is much broader than the type-II spectrum and almost constant
over the width of the WDM channels used for QKD. Due to the large aspect ratio between
the ω− and ω+ directions of the overall type-0 JSA, a direct computation of the Schmidt
decomposition of the full JSA would require a considerable amount of computational
resources. However, the frequency range on which the decomposition needs to be com-
puted can be reduced to a domain including the frequency channel and a relatively small
neighborhood. For iterations of the JSA operator such as (Ψ̃†

Ψ̃)nΨ̃ it was discussed that
the narrow antidiagonal stripe of width ∆+ (in the diagonal coordinate system) on which
the JSA attains non-negligible values broadens at most by ∆+ for each JSA factor in such
a product (cf. fig. 7.2 and eq. (7.23)). A slice through the stripe in the direction ofωA orωB

also has a width of ∆+ (in the rectilinear coordinate system). A value of the JSA at some
point (ω1,ω2) can therefore not spread to points that are further apart from (ω1,ω2) than
∆+ in the products Ψ̃†

Ψ̃ or Ψ̃Ψ̃†. More generally, the value of a product involving N JSA
operators at some point (ω1,ω2) on the stripe is therefore not affected by points of the
JSA that are further apart from (ω1,ω2) than N∆+ in the direction of ωA or ωB. When
the cosh and sinh series expansions are truncated after order N , it is therefore sufficient to
compute the iterated JSA kernels on a square given by the channel width ±N∆+ in each
direction.

For the type-0 simulation, the series are truncated at N = 5, and the domain on which
the JSA is evaluated is therefore chosen to the channel width ±5∆+ in each direction. On
this domain, the Schmidt decomposition is approximated by the SVD of the discretized
JSA, and the approximations coshN=5 and sinhN=5 are computed from the singular values.

Inverse Fourier Transformation and Evaluation of the Determinant
To obtain the shape of the biphoton wave packet in the time domain, the left and right
singular vectors are multiplied by τfib,A(ω) exp(iφ(A)fib (ω)) and τfib,B(ω) exp(iφ(B)fib (ω)) rep-
resenting the frequency-dependent losses in the WDM and the phases acquired in the fiber
links. Similar to the type-II simulation, only the phase terms with a quadraticω-dependence
are considered. The shape of the wave packet in the time domain is obtained by taking the
IFFT of the singular vectors, meaning that eqs. (7.43) and (7.44) are computed numerically.
Thereby, the biphoton wave packet is represented by points in the rectilinear coordinate
system. From a practical point of view, it is convenient to evaluate the IFFT for discrete
frequency vectors centered at the channel center frequencies. This corresponds to shifting
the argument of the Fourier transform, which, by the FT shift theorem, corresponds to
multiplying the result with phase terms with linear ω dependence. These phase terms do
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not change the determinant of Ξ and can be discarded, meaning that the IFFTs can be
centered at the channel center frequencies.

Photon leakage into adjacent time bins due to CD can be considered with the same method
as for the type-II simulation. However, photon leakage is currently not implemented in the
type-0 simulation because the effect is for the relevant transmissions distances negligible
due to the narrower channel spectra (cf. fig. 2.26 (b)).

The sum in eq. (7.52) requires the addition of multiple matrices with relative time shifts,
which is implemented by interpolating the transformed singular vectors to a common grid.
The determinant of the resulting matrix is then computed numerically. This numerical
computation benefits considerably from the reordering of the matrix in eq. (7.32) and from
the application of eq. (7.49), reducing the matrix size from 24×24 to 2×2 blocks of the same
size. The number of operations to calculate the determinant via LU decomposition scales
with the third power of the matrix dimension [296], such that the speedup for computing
the determinant over all modes can be roughly estimated to a factor of 123 = 1728.
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