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Zusammenfassung

Die jüngsten Fortschritte im Bereich des maschinellen Lernens haben ein neues Interesse
an der lerngestützten prädiktiven Regelung geweckt. Maschinellen Lernens verspricht,
die Modellierung zu erleichtern und die Leistung der Prozesse zu verbessern. Allerdings
bringen diese Ansätze auch einige Herausforderungen mit sich: Beispielsweise geht die
Verbindung zu den physikalischen Gesetzen (teilweise) verloren, so dass maschinelle Lern-
modelle äußerst ungenaue Ergebnisse liefern können. Es ist daher notwendig, Steuerungs-
und Regelungsmethoden bereitzustellen, die die Modellunsicherheit dieser Modelle be-
rücksichtigen. Bei iterativen Prozessen - also Prozessen, die nicht in einem stationären
Zustand arbeiten - sind Unsicherheiten aufgrund der großen Änderungen der Prozessbedin-
gungen während des Betriebs noch wichtiger. In dieser Arbeit werden zwei Methoden zur
datengetriebenen Unsicherheitsmodellierung vorgeschlagen. Die erste Methode verwendet
Gauß-Prozesse zum Lernen der Modellunsicherheit und neuronale Netze zum Lernen des
Nominalmodells. Sie bietet eine einfache Möglichkeit, die Unsicherheit des Modells in
einem einzigen Parameter zusammenzufassen, der von einem modellprädiktiven Regler
verwendet werden kann, um risikobewusste Entscheidungen zu treffen. Diese Methode
ist zwar einfach, garantiert aber nicht die Einhaltung von Beschränkungen. Die zweite
Methode basiert auf tube-based modellprädiktiver Regelung und kann die Sicherstellung
von Beschränkungen garantieren. Sie basiert auf dem Konzept der “sicheren Menge”:
Eine Menge, in der eine tube-based MPC eine zulässige Lösung hat. Wir zeigen, dass
sich die sichere Menge unter bestimmten Annahmen bei jeder Iteration des Prozesses
vergrößert, was eine Leistungssteigerung ermöglichen kann. Schließlich wird die neuartige
Python-Bibliothek HILO-MPC vorgestellt, welche die auf maschinellem Lernen basieren-
de modellprädiktive Regelung umsetzt. Diese Bibliothek verfügt über Schnittstellen zu
TensorFlow und PyTorch und bietet leicht zugängliche Werkzeuge zur Definition von
Regelungs- und Schätzungsproblemen unter Verwendung von maschinellen Lernmodellen.
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Abstract

The recent advances in machine learning have catalyzed a renewed interest in machine-
learning-supported model predictive control. Machine learning promises to facilitate
modeling and improve the process’ performance. Nevertheless, it brings some challenges:
For instance, as the connection with physics law is (partially) lost, machine learning
models can provide wildly inaccurate results. It is therefore necessary to provide control
methods that take the model uncertainty of these models into account. Uncertainties are
even more important for iterative processes - processes that do not operate at a steady
state - due to the large changes in the process conditions during operation.

In this work, two methods for data-driven uncertainty modelling are proposed. The first
method uses Gaussian processes to learn the model uncertainty and neural networks to
learn the nominal model. It provides an simple way to summarize the uncertainty of the
model into a single parameter, which can be used by a model predictive controller to make
risk-aware decisions. This method, while being simple, does not guarantee constraint
satisfaction. The second method is based on tube-based model predictive control and
can guarantee constraint satisfaction. It is based on the concept of the ”safe set”: a set
where a tube-based MPC has a feasible solution. We show that, under some assumptions,
the safe set enlarges at every iteration of the process, potentially allowing increased
performance. Finally, a novel Python library for machine-learning-based model predictive
control, called HILO-MPC, is presented. This library interfaces with TensorFlow and
PyTorch and provides easily-accesible tools for defining control and estimation problem
using machine learning model.
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1. Introduction

1.1. Motivation

A process is called iterative (or repetitive) if, to achieve the desired end result, the same
process must be repeated in time. Such processes are widespread in chemical and biochem-
ical engineering (consider, for example, fed-batch/batch reactors and extraction processes)
and in manufacturing (e.g., robots used for manufacturing or storage in warehouses).
Iterative processes, as depicted in Fig.2, typically embody three distinctive stages: A
preparation phase, in which the necessary actions are taken to prepare the process; a
productive stage during which the process aims to fulfill its designated objectives, and
a final stage, which is tasked with terminating the process and restoring its initial state
prior to the preparatory phase. The final and preparation phases can overlap. To en-
sure continuous production, these phases are repeated. We will refer to a repetition
equivalently as iteration, run, or batch. The repeated nature of such processes introduces
challenges that continuous processes do not have. The dynamics can change significantly
at every run due to changes in the initial conditions and/or the environment. Furthermore,
typically, iterative processes do not reach a steady state, and the system states vary over a
wide range. Hence, the effect of nonlinear dynamics is more important than continuous
processes [187, 178]. Often, innovative processes are iterative [187] (e.g., pilot plants
in chemical engineering) or complex biological processes (e.g., in the biopharmaceutical
industry). Hence, their dynamics are not always completely understood, the models might
not exist or have limited predictive power, and the few available measurements are not
sufficient to identify their dynamics with adequate accuracy [177, 28]. For these reasons,
these processes are often operated with suboptimal control policies based on trial and
error experiments at smaller scales that attempt to infer the sequence of control actions
that need to be applied to reach acceptable results [183].

This is a substantial limitation that decreases the efficiency of such processes. Due
to the market’s fast-changing demands and increased efficiency requirements dictated,
for example, by environmental sustainability regulations, tasks have to be performed
increasingly faster and use fewer resources. Advanced control strategies can meet these
needs. Nevertheless, to gain the trust of the manufacturers, these control strategies must
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Figure 1.1.: Examples of systems performing repetitive tasks. On the left is a pilot-scale
bioreactor for pharmaceutical production; on the right is a robotic arm used
for packaging.

guarantee the safety of operation and process specifications dictated by regulators (e.g.,
the maximum content of pollutant in a given product) or by the process designers (e.g.,
maximum pH in a bioreactor) [182].

Advanced control strategies, such as Model Predictive Control (MPC), are key to achiev-
ing these demands and ensuring optimal performance [182]. Nevertheless, the lack of
accurate prediction models, scarce measurements, and constraints present a challenge
to applying MPC to these processes. The main motivation of this thesis is to provide
methods that inform the MPC regarding the model uncertainty by using the (possibly
small) datasets available directly in the control design.

1.2. Background: predictive control and machine learning

MPC is an advanced model-based control strategy that repeatedly solves an optimal control
problem. This method has been applied successfully in the industry for over 60 years,
thanks to its ability to consider states and input constraints, and multi-input, multi-output
systems. Furthermore, robustness and recursive feasibility guarantees can be given for
some cases. Initially, MPC found applications in chemical engineering. Then it has been
applied in many other fields, such as autonomous vehicles [95, 12], robotics [169], energy
management [212, 170, 208], agriculture [47] and many more.

MPC is based on three “ingredients”: A model of the plant, an objective function, and
constraints. The most critical part of the formulation is the model of the system. The model
must describe the system with sufficient accuracy while being simple enough to ensure
that the problem can be solved within the chosen sampling time. The quality of the model

2
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Figure 1.2.: Illustration of the two typical operating modes of manufacturing processes.
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is even more critical for repetitive processes. Compared to continuous processes, where
states are stabilized in a region close to a set point, the states of repetitive processes can
change considerably within one repetition [28]. Hence, it has to be guaranteed that the
model is valid for the entire range of realizations and variations of the state. First-principle
models can be formulated for well-understood systems: These are built using physics laws,
for example, mass or energy balances. But for complex systems, building an accurate
first-principle model usable in an optimization-based control strategy is difficult or even
impossible.

Thanks to the advances in computing power, deep learning, and data acquisition tools,
in recent years, machine learning has been going through a renaissance period, not only
in the field of computer science [22, 171]. The potential of these technologies has also
been understood by researchers from other areas like control and automation, generating
a rapid increase in publications with machine learning applications in control engineering
(cf. [74] and references therein). Machine learning seems to be one possible solution to
overcome the limitation of first-principle models [138, 193].

Nevertheless, there is a fundamental difference between computer science and process
engineering that often does not allow to completely substitute first-principle models with
machine learning models: In process engineering, data is usually scarce, expensive, and
noisy [48]. Hence, methods to decrease the necessary data for the training should be
explored. Hybrid models that use both first-principle and machine learning meet this
need since they use the (somewhat limited) information that first-principle models give
and augment that information with data using one or more machine learning approaches
[193]. Nevertheless, despite all the efforts to improve the model’s accuracy, it is practically
impossible to have a perfect plant model; hence, advanced control strategies must deal with
uncertainties. We will call risk-aware controllers control methods that consider uncertainty
(e.g., in the constraints) but do not necessarily guarantee stability or constraint satisfaction.
Instead, methods that guarantee stability and constraint satisfaction, which consider set-
membership-type uncertainties, are commonly known as robust controllers.

The problem of robust control is old, dating back to the 1970s, when control engineers,
especially in aerospace, realized the urgent need for control methods and stability concepts
that take uncertainties into account [167]. Since then, manymethods have been developed,
such as H2 [165] and H∞ controllers [172], tube [101, 207, 79], multi-stage [114, 113]
and scenario-based model predictive controllers [21].

The arrival of machine learning brought a new variable that we believe should be
exploited when defining robust and risk-aware control approaches: Data. The approaches
proposed in this thesis use data not only to gain more information about dynamical systems
by training machine learning models but also to integrate data directly in the controller
design as a way to measure the level of uncertainty of a system.

4



1.3. Contribution

In this thesis, we present two approaches dealing with the uncertainty of repetitive
dynamical processes where machine learning influences control decisions. In the first
approach, a risk map correlated to the model uncertainty is built using Gaussian processes.
This uncertainty map enters the constraints of the MPC, which aim to achieve the control
objective while limiting the risk. The second approach proposes a tube-based MPC
approach that ensures constraint satisfaction despite the model uncertainty. This is based
on the definition of a safe set: A subset of the state space where, also in the worst-case
scenario, the constraints can be respected. As we will see, the safe set expands as the
number of measurements used to train the machine learning model increases, reducing
conservativeness. Both approaches take advantage of the repetitions to gain progressively
more knowledge about the plant and improve the performance from run to run. The
approaches are tested on examples such as bioreactors and robotic arms.

As a further outcome, this work also proposes HILO-MPC: A comprehensive, novel
Python toolbox that can solve machine learning-supported optimization, predictive control,
and estimation for research and teaching purposes.

To summarize, the main contributions of this work are

• a risk-aware run-to-run learning supported predictive controller that avoids areas
with large model risk.

• a safe run-to-run learning supported predictive controller that ensures constraints
satisfaction and recursive feasibility despite model uncertainty.

• a Python toolbox that allows the rapid development of machine learning-supported
predictive control, estimation, and optimization problems.

The results of this work were used in a series of publications. Our book chapter [77]
provides a literature review and a generalized framework for machine learning in the
chemical and biochemical industry. In [131], we describe in a more concise form the results
of Chapter 18. In [129], we present some preliminary concepts and results expanded
in Chapter 23. The article [150] presents HILO-MPC. It describes the mathematical
formulations of the problems that HILO-MPC can solve and shows some code snippets and
application examples. HILO-MPC was also used in [130, 53, 149, 54] for more complex
case studies.
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Figure 1.3.: Overview of the structure of this thesis.

1.4. Structure of the thesis

This thesis is structured in eight chapters (cf. Fig. 3). In Chapter 4, we cover the basics of
the modeling frameworks used throughout the thesis: first-principle, machine learning
(with a focus on neural networks and Gaussian processes), and hybrid models. In Chapter
9, the fundamentals of nominal MPC, robust MPC, and risk-aware MPC are given together
with a literature review of the methods available. In Chapter 14, we review the literature
on machine learning-supported MPC. Furthermore, we discuss the learning approaches
and implementation details used for this thesis. Chapter 18 presents the first contribution
of this thesis. This chapter proposes a risk-aware run-to-run learning and optimization
strategy that improves the hybrid model accuracy run-to-run. This method is based on a
risk function built with Gaussian process regressors that reflects the model uncertainty.
This risk function is added to the MPC constraints to limit the risk the controller can take.
We show how the model accuracy increases from run to run while avoiding areas where
model uncertainty is large. While this method is simple and does not require expensive
computations, it cannot guarantee constraint satisfaction. In Chapter 23, we propose
a nonlinear machine learning supported tube MPC method that guarantees constraint
satisfaction. This method is based on the definition of a safe set: A set where the model
error is sufficiently small and nonlinear tube MPC can find a feasible solution. This allows
to explore safely unknown process conditions despite model uncertainty. The safe set is
usually small for the first runs, where only a few data points are available. As the number
of runs (and consequently the measurements) increases, we show that this safe set expands

6



and conservatism is reduced. We show the conditions that guarantee the expansion of the
set at every run. Furthermore, recursive run-to-run feasibility is guaranteed.

In Chapter 30 a novel Python open-source toolbox called HILO-MPC1 is introduced.
HILO-MPC allows the easy and fast development of machine learning-supported control
and estimation problems. To the best of the author’s knowledge, this is the first toolbox
specifically aimed at facilitating the use of machine learning in control with a special focus
on optimization-based methods. We will showcase the toolbox with various problems,
from control to estimation and machine learning.

We conclude with Chapter 39, where the proposed methods are summarized, and new
possible research directions are discussed.

1HILO-MPC: macHIne Learning and Optimization for Modeling, Prediction and Control.
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2. Modeling

In this chapter, we define the different types of models used in the rest of the thesis. The
chapter starts with the general formulation of nonlinear continuous-time models, and it
follows with a brief description of the two main machine learning models used in this
thesis: Neural networks and Gaussian processes. Finally, the concept of hybrid machine
learning/first principles models is explained. In this context, we will explain the concept
of physics-informed learning and describe its advantages and disadvantages compared to
classical data-driven learning.

2.1. Introduction

In this thesis, we consider nonlinear, continuous-time, time-invariant systems of the form:

ẋ(t) = f(x(t), u(t)), x(0) = x̃, (2.1a)
y(t) = h(x(t), u(t)), (2.1b)

where t is the time, x ∈ Rnx the state vector, u ∈ Rnu the input vector, y ∈ Rny the output
vector, f : Rnx×Rnu → Rnx is the system of differential equations and h : Rnx×Rnu → Rny

is the system of algebraic equations describing the measurements. The states will evolve
in time, starting from the initial conditions x̃ under the influence of the input. We will
indicate the solution of (1), starting at time tk from a state x(tk) under the effect of an
input u(t) by

x(x(tk), u(·)) = x(tk) +

∫︂ t

tk

f(x(τ), u(τ))dτ. (2.2)

For some cases, we want to model the uncertainty, i.e., unknown effects acting on the
system dynamics and measurements noise. One common way to achieve this is adding
a state noise w(t) ∈ Rnw to the model and the measurement noise v(t) ∈ Rnv in the
measurement equation

ẋ(t) = f(x(t), u(t), w(t)), x(0) = x̃ (2.3a)
y(t) = h(x(t), u(t), v(t)), (2.3b)
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depending on the application, it is useful to model the noise vectors as random variables
over a closed set with uniform distribution or over a distribution with infinite support,
e.g., Gaussian normal distributed noise.

The models can be generated using first principles or machine learning models. First-
principles models are derived using physics laws (e.g., conservation of mass or energy).
They have the advantage of being interpretable and can be derived with a relatively
small amount of data, which may reduce experimental efforts. Nevertheless, it is hard
to build good first principles models in the case of complex and not well-understood
systems. Machine learning models instead use data and no first-principles knowledge.
They have the advantage of being able to represent complex relationships without an
in-depth understanding of the system [193]. In the effort to combine the strength of both
approaches, hybrid models use both first principles and machine learning components. In
the next sections, we will go into more detail about machine learning models and hybrid
models.

2.2. Machine learning models

Machine learning (ML) models are mathematical expressions (or maps) that try to infer
relationships between inputs and outputs using data. ML can be used, e.g., to solve
regression and classification problems and can be classified as supervised, unsupervised,
or reinforcement learning [6]. The process through which the inference takes place is
called learning or training. Before learning, the data are commonly pre-processed, e.g.,
to remove outliers and filter possible measurement noise. Then the data is used by the
training algorithm to update the model parameters (also called hyperparameters or weights)
in a way that improves their predictive or classification performance. In this thesis, we
focus on supervised machine learning for regression tasks, i.e., both inputs and outputs are
available during training, and the output of the machine learning takes continuous values.
The advantage of machine learning models is that they can fit arbitrary complex functions
if enough data and enough trainable parameters are provided. The interpolation power
of data-driven models, in particular ANN, was demonstrated in [45, 82, 81] where it was
proven that an ANN with a single hidden layer can approximate any continuous function
(with some mild assumptions), provided that there are a sufficient number of neurons in
the hidden layer. In general terms, a machine learning algorithm Lreg for regression can
be defined as the following map [77]

(D ×Θ)
Lreg→ ρ ∈ C0 (F ,L) , (2.4)
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zj−1

activation function
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Θ[i]jzj−1

z[1]j−1

z[2]j−1

z[nj−1]j−1

. . .

bj

Figure 2.1.: Representation of the operations taking place in a neuron in a general layer j.
Θ[i]j represents the i-th row of the weight matrix of layer j, while z[i]j is the
i-th element of the vector zj .

where D is the dataset, Θ a set of parameters (for example neuron weights in case of a
neural network), C0 is the space of continuous functions, F ⊂ Rnv is the feature space
and L ⊂ Rnl the label space and ρ is the machine learning function. The dataset D is
a collection of tuples {(v̂1, l̂1), (v̂2, l̂2), . . . , (v̂nd

, l̂nd
)} containing the observed features

v̂i ∈ Rnv and labels l̂i ∈ Rnl for i = 1, . . . , nd where nd is the dataset size. For convenience
we will also indicate D = {V̂ , L̂} where V̂ ∈ Rnv×nd the matrix of the stacked observed
features and L̂ ∈ Rnl×nd of observed labels. The function ρ depends on the machine
learning method used. In this work, we focus on artificial neural networks (NNs) and
Gaussian processes (GPs). In the following sections, we will give an introduction to these
methods.

2.2.1. Artificial Neural Networks

Artificial Neural Networks are mathematical models that were initially inspired by the
structure of biological neural networks [126]. They are among the most used machine
learning models since they are relatively fast to train, can be trained with very large
datasets, and are capable of learning relations with high complexity. The basic building
blocks of every ANN are the neurons where some mathematical operations take place.
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The set of operations in every neuron can be divided into multiplication, summation, and
activation. The inputs of the network (i.e., features) are firstly multiplied with individual
weights, and then they are summed together. The sum is finally passed through an
activation function (Fig. 4). The result of these operations is passed to the next layer of
neurons, where the operations are repeated (Fig. 5). Note that here, for simplicity, we
consider feed-forward fully connected neural networks. The set of operations on the j-th
layer is

zj = σj (Θjzj−1 + bj) , (2.5)

where zj ∈ Rnzj is the output vector of layer l, Θj ∈ Rnzi×nzi−1 is the matrix of weights,
σj : Rnzj → Rnzj is an element-wise activation function and bj ∈ Rnzj the bias vector.
The layer is initialized as z0 = v. By stacking ns layers together, we have the following
function

ρθ(v) ≜ σns

(︂
Θnsσns−1

(︁
Θns−1 (. . . σ1 (Θ1v + b1) . . . ) + bns−1

)︁
+ bns

)︂
= l,

where θ = {Θ1, ...,Θns} and ns is the number of layers. Different activation functions can
be used. Choosing nonlinear activation functions is fundamental for the network to learn
nonlinear relationships. Common nonlinear activation functions are sigmoid, tangent
hyperbolic, and ReLU functions [156]. The training of the ANN is achieved by adapting the
weight matrices and the bias vectors via an optimization problem such that a user-defined
loss function is minimized. For regression problems, one of the most commonly used loss
functions is the mean squared error (MSE)

θ∗ ≜ arg min
θ

1

nd

nd∑︂
i=1

(li − l̂i)2

subject to li = ρθ,(v)

(2.6)

where li are the values of the labels predicted by the ANN. Other loss functions can be
used, such as weighted MSE or the mean absolute error. Commonly, the loss function is
minimized with a stochastic gradient descent optimizer [97] and by using backpropagation
[166]. The training is stopped when there is no significant change in the loss function
over a defined number of iterations (this is known as early stopping) or if the number of
maximum iterations (or epochs) is reached. Neural networks, while being a very flexible
modeling approach, generally require a large amount of data and have the tendency to
overfit.
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Figure 2.2.: Feed-forward fully-connected neural network with four features, ns layers
and three labels.
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Figure 2.3.: Example of a GP fitting the function ρ(x) = sin(3x). The measurements are
affected by noise. The left figure shows the prior mean and 1σ standard
deviation. The right shows the posterior condition on the measurements and
with optimal hyperparameters.

2.2.2. Gaussian processes

Gaussian processes (GPs) are machine learning models that assume Gaussian distribution
over functions. This section is not meant to be a comprehensive description of GPs; rather,
we want to convey the main idea and terminology. For further details on GPs, refer to
[200]. The prior distribution, i.e., the distribution that describes the prior knowledge
on the function distribution, is defined by its mean function µ(v) and covariance matrix
K ∈ Rnd×nd

ρθ(v) ∼ N (µ(v),K). (2.7)

The covariance matrix is built using kernel functions (also known as covariance functions)
that describe the covariance of the random variables v. There is a large variety of kernel
functions that can be used. One of the most common is the radial basis kernel

k(vi, vj) = δ2 exp
(︃
(vi − vj)2

2l2n

)︃
, (2.8)

where k : Rnv × Rnv → R is the kernel function, δ and ln are hyperparameters that are
optimized during training. The (i, j) element of K is given by k(vi, vj). We can assume
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that the labels are affected by a Gaussian distributed noise ϵ as follows

l = ρθ(v) + ϵ, (2.9)

with Gaussian distribution ϵ ∼ N (0, σ2). Following the idea of Bayesian inference [29],
when new observations on a process are available, the prior knowledge on this process is
updated, forming the posterior distribution. The observations D = {V̂ , L̂} are then used
to condition the prediction and obtain an updated prediction at any test point v∗

ρ(v∗) ∼ N
(︁
µ̄, K̄

)︁
, (2.10)

where

µ̄(v∗) = µ(v∗) +K(v∗, V̂ )T
(︁
K + σ2I

)︁−1
(l̂ − µ(v∗)), (2.11)

K̄(v∗) = k(v∗, v∗)−K(v∗, V̂ )T
(︁
K + σ2I

)︁−1
K(V̂ , v∗), (2.12)

and I ∈ Rnd×nd is the identity matrix. The GPs hyperparameters are commonly optimized
by maximizing the log-marginal likelihood with respect to the hyperparameter vector
θ = [δ, ln, σ]:

θ∗ ≜ arg max
θ

(︃
−1

2
L̂
T (︁
K + σ2I

)︁−1
L̂− 1

2
log |K + σ2I| − n

2
log 2π

)︃
.

The advantage of GPs is that they provide not only an estimation of the unknown
function but also the uncertainty of the estimation (Fig. 6). The main disadvantage is
that the training requires the inversion of the covariance matrix K, which scales poorly
with the number of data points, limiting the size of the datasets that can be used with
GPs [200].

2.3. Hybrid models

There are several advantages in merging machine learning and first-principle models
into so-called hybrid models1. In process engineering, data are often scarce, noisy, and
expensive to obtain [209]. This is an obstacle to the use of purely machine learning
models. Using existing (albeit limited) first-principle knowledge and limiting machine
1Note that here, the term hybrid model does not refer to hybrid systems, i.e., systems containing continuous
and discrete states. The term gray-box models is also used, although in recent years, the term hybrid
models became more common.
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Figure 2.4.: Serial (left) and parallel (right) setups. The feature vector v can contain x, u,
or other system variables and parameters.

learning to the most complex parts can help to reduce the amount of data required for
model identification. As a result of these factors, hybrid modeling approaches have gained
popularity [138, 193]. In this work, hybrid models have either a serial or parallel setup
(cf. Fig. 7). The serial setup can be formulated as follows

ẋ(t) = f(x(t), u(t), ρ(v)). (2.13)

This setup is advantageous when the structure of the first-principle models is accurate (cf.
[193] and references therein). The parallel (or additive) setup is

ẋ(t) = f(x(t), u(t)) + ρ(v), (2.14)

which is particularly indicated for the cases where the first-principle model structure is
known not to be accurate. Note that the feature vector v can contain the states, inputs,
parameters or other variables of the system.

2.3.1. Example: Hybrid model of a fed-batch bioreactor

Let us now, for example, consider a general model for a fed-batch bioreactor:

ẋbio(t) = (rbio(t, x(t), u(t))− F/V )xbio(t), (2.15)
ẋs(t) = rs(t, x(t), u(t))xbio + F/V (xs,f − xs(t)), (2.16)
ẋp(t) = rp(t, x(t), u(t))xbio − F/V xp(t), (2.17)

where xbio ∈ R is the biomass concentration, xs ∈ Rnxs are the concentrations of
substrates, xp ∈ Rnxp are the concentrations of products, F ∈ RnF are the feed rates
of substrates, V ∈ R the liquid volume of the reactor. rbio : R × Rnx × Rnu → R is
the biomass growth rate, rs : R × Rnx × Rnu → Rnxs is the substrate uptake rate and
rp : R×Rnx ×Rnu → Rnxp is the product production rate. The vector u ∈ Rnu represents
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inputs that can influence the reaction rates (i.e. pH, temperature, light intensity of
optogenetic systems [52]). The reaction rate also depends on the bacteria’s metabolism,
which in turn depends on both genetic and fermentation conditions. Reaction rates are
often modeled with simple models fitted to experimental data, such as Monod, Droop,
or Logistic models [189]. The prediction power of these models is limited within certain
conditions. Therefore, it is usually not transferable to a reactor working in different
conditions [2, 64]. Hence, to increase the prediction power, machine learning models can
be used [138, 209, 193, 131]. For example, the reaction rates can be written as

ri(t, x(t), u(t)) ≈ ρi,θ(t, x(t), u(t))li(t, x(t), u(t)), i ∈ [bio, s, p], (2.18)

where l(·) is a known function representing some apriori knowledge. For example, it can
be used to avoid the prediction of negative concentrations of the metabolites or products
that can occur due to fitting errors of the ML model. Nevertheless, this function is not
strictly necessary. This model is an example of a serial hybrid model commonly used for
chemical and biochemical applications.

2.4. Training hybrid models

The training procedure of a hybrid model is an important design decision. Here, we briefly
describe two training procedures for hybrid models that were used in this work; for details,
please refer to [193]. A similar approach can be used for GPs. The dataset D is usually
shuffled and divided in a training dataset T and test dataset Tst 2. The network is trained
on T , and its generalization performance is tested on Tst [87]. A rule of thumb is using
an 80%/20% split 3 i.e., 80% of the data is used for training and 20% for testing. In this
work, two approaches will be used: a purely data-driven approach and a physics-informed
approach [92]. In the purely data-driven approach, the machine learning function ρ is
trained directly using the features and labels, that is, by minimizing the following objective
function

minimize
θ

(︄
1

len(T )
∑︂
i∈T

(︂
l̂i − ρ(v̂i, θ)

)︂T
W
(︂
l̂i − ρ(v̂i, θ)

)︂)︄
(2.19)

where len(T ) is the number of data points in T andW ∈ Rnl×nl is a weighting matrix.
In this case, we explicitly wrote the dependency of the machine learning model ρ with
2For the results of this thesis we have not used a validation dataset, used for selecting the best machine
learning model from a set of possible models.

3For big data applications, it is common to see a much smaller test set, e.g., 95%/5%.
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the parameters θ. Note that the first principles information does not enter the training
procedure in this case. Instead, in the physics-informed approach the first principle
information enters the optimization problem. Without loss of generality, we assume a
parallel hybrid model setup. In this case, we have

minimize
θ

(︄
1

len(T )
∑︂
i∈T

(x̂i − xi)TW (x̂i − xi))

)︄
,

subject to xi = x̂i−1 +

∫︂ ti+1

ti

f(x̂, û, ρ(v̂, θ)dt.

(2.20)

Note that the ODE is integrated during the training procedure, hence the model influ-
ences the training. Note also that to use (19) we need the measurements of the labels,
while to train with (20) we need only the measurements of the states and inputs. This
can be useful when the measurements of the labels are not directly available, which can
be the case, especially for parallel setups. The physics-informed approach has also been
shown to have better performances compared to the classic approach [138]. Nevertheless,
it requires the integration of the model, which can lead to numerical issues if the initial
guess of θ is far away from the optimal or if ρ contains non-smooth components (e.g.,
non-smooth activation functions). Furthermore, the integration step can slow down the
learning procedure. Note that this is only a way to obtain physics-informed learning. In
general, the term physics-informed learning indicates all the learning approaches that
introduce physics-derived observation, inductive or learning biases (cf. [92] and references
therein). In this work, both classic and physics-informed learning approaches will be used
to train hybrid models.

2.5. Summary

In this chapter, we outlined the modeling approaches that are used in this thesis. In
particular, we focused on two machine learning models: Feed-forward fully-connected
neural networks and Gaussian processes. We discussed the advantages and disadvantages
of both models. The hybrid modeling approach that uses machine learning and first-
principles models is also briefly discussed. Finally, we described the classic learning
procedure and a physics-informed learning procedure.
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3. Model Predictive Control

This chapter presents an overview of the fundamental concepts of Model Predictive Control
(MPC). We start by formulating the nominal MPC problem for continuous systems and
then extend it to repetitive finite-time systems while highlighting practical and theoretical
distinctions. Additionally, we provide a concise summary of MPC approaches that account
for uncertainties.

3.1. Introduction

Model Predictive Control (MPC) is an advanced control strategy with a solid track record
of applications in many industries, such as chemical engineering [144, 111], autonomous
driving [201, 161], power electronics [190], internet-of-things [38, 93] and robotics [103,
63] to cite just a few. Furthermore, theoretical properties, such as stability and recursive
feasibility, have been thoroughly investigated by academics in the last 70 years [125].
The success of MPC can be attributed to its ability to address two critical challenges faced
by classical controller approaches like PID controllers, namely accounting for system
constraints and handling multi-input and multi-output systems. With the increasing
complexity of modern systems and the growing demand for automation, MPC has emerged
as a widely adopted solution. Model Predictive Control has its roots in the theory of optimal
control, primarily derived by Lev Pontryagin and Richard Bellman in the 1950s [19]. The
objective of optimal control is to find a control law that steers a dynamical system such that
an objective function is optimized, i.e., minimized or maximized. This optimal control law
can be found by solving the Hamilton-Jacobi-Bellman equation or Pontryagin’s maximum
principle. Nevertheless, finding a solution to these problems is challenging, except for
some special cases. To solve this Model Predictive Control approximates the closed-loop
optimal control solution by an open-loop solution within a receding finite horizon and
repeatedly solves an optimal control problem at discrete time points to introduce feedback.
Constraints can be easily incorporated into the optimization problem.

The main idea behind receding-horizon MPC is depicted in the left part of Fig. 8. MPC
predicts the system in the future within the prediction horizon and tries to find an optimal
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control sequence that optimizes an objective function, e.g., minimizes the distance of
states from some reference trajectories. Commonly, once a (possibly local) optimum input
sequence is found, a given portion of the input sequence is applied to the plant. The plant
proceeds in open-loop until the next sampling time, where the states are measured or
estimated, and the optimization is repeated [159]. This “closes the loop” and gives the
MPC some robustness to uncertainties.

One of the main drawbacks of MPC is that it requires a sufficiently good model since the
prediction quality of the model influences the MPC performances. For specific applications,
another drawback is the computational load of the optimization problem that has to be
solved at every sampling time. This increases, e.g., with the prediction horizon’s length
and the model’s complexity. Thus, a trade-off problem is posed where model prediction
quality and complexity must be balanced to ensure real-time applicability. Models are
never the exact representation of a system. Hence, the predictions will always be subject
to some degree of uncertainty. Often, it is necessary to take this uncertainty into account.
There are mainly two ways to achieve this: The model can be adapted (online or offline), or
the model uncertainty can be considered in the optimization problem, e.g., by considering
the propagation of the uncertainty into the future. The first approach is commonly called
adaptive MPC, while the second is called robust or stochastic MPC, depending on the
representation of the uncertainty [127]. If the MPC does not explicitly consider model
uncertainty and assumes that the model is a perfect representation of the system, it is
commonly referred to as nominal MPC.

In the following sections, we will formalize the nominal MPC problem for continuous
processes, then for repetitive finite-time processes, and highlight practical and theoretical
differences.

3.2. Nominal Model Predictive Control

3.2.1. Continuous processes

Continuous processes are processes that are interrupted only for maintenance or for their
decommissioning. Often, they operate in a steady state around a set point. In this case,
the task of the controllers in the lower levels of the control hierarchy is to keep the plant
close to the set point, reject the disturbances, or bring the system to a new set point when
a change is required. The set-point value can be dictated by, e.g., market requirements or
by an optimization layer like Real Time Optimization [118]. For these processes, classic
receding-horizon MPC can be used. In the following, we define the receding horizon MPC
problem.
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Figure 3.1.: Receding-horizon MPC and shrinking-horizon MPC. The solid black line is the
real plant state, and the dashed black line is the predicted state. The solid
orange lines are the input applied to the system, and the dashed orange lines
are the predicted inputs. Let tk be the k−th sampling time and n ∈ N, in the
receding horizon case, the horizon length for tk and tk+n is the same; hence
the prediction shifts forward in the future. In the shrinking horizon case, the
horizon at tk+n is smaller than tk as the prediction runs up to a fixed final
time Tf . The red areas represent state and input constraints.
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We consider continuous-time time-invariant nonlinear systems (1). At every sampling
time tk, the following optimal control problem is solved:

min
ū(·)

J(x̄(·), ū(·)) (3.1a)

s.t. ẋ̄(t) = f(x̄(t), ū(t)), x̄(tk) = x̃(tk), (3.1b)
x̄(t) ∈ X, ū(t) ∈ U, (3.1c)
x̄(tk + T ) ∈ E ⊆ X , t ∈ [tk, tk + T ] ⊂ R, (3.1d)

with objective function

J(x̄(·), ū(·)) ≜
∫︂ tk+T

tk

l(x̄(τ), ū(τ))dτ + e(x̄(tk + T )), (3.2)

where ū(·) is the input function, l : R+
0 ×Rnx×Rnu → R+

0 is the stage cost, e : R+
0 ×Rnx →

R+
0 is the terminal cost, x̃(tk) is the measured or estimated state at time tk, X ⊆ Rnx and

U ⊆ Rnu are state and input constraints, respectively. E ⊆ Rnx is called terminal constraint
and it can be imposed to guarantee some stability and recursive feasibility properties.
With the bar (·)̄, we indicate the predicted values, which are in general different from
their counterpart in the system even for the nominal case (i.e., uncertainty-free) because
we are solving the finite-horizon problem at every tk.

We make the following assumptions

Assumption 3.1 The function f(·, ·) is continuous, satisfies f(0, 0) = 0 and it is (locally)
Lipschitz in x.

Assumption 3.2 U is compact, X is closed, 0 ∈ X and 0 ∈ U.

Assumption 3.3 l(·, ·) is is continuous, satisfies l(0, 0) = 0, and it is lower bounded by a
class K function αF (·), i.e., αF (x) ≤ l(x, u).

In practice, Problem (21) is solved at finite sampling times. For example, assuming
equally-spaced sampling times, tk = k∆t for k ∈ N0 with constant time interval ∆t. In
this case, the optimal input, denoted by ū∗(·, x(tk)), is applied open-loop until the next
sampling time tk+1. This is called sampled data open-loop MPC [62]. If Problem (21) is
solved for all time instances, we talk about istantaneous MPC. From a theoretical point of
view, the latter is easier to handle. However, it is impractical since solving Problem (21)
often takes a non-negligible amount of time.
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The choice of the objective function (21a) is essential: It should be defined so that the
control task can be achieved. For example, for set-point tracking problems, the stage and
terminal cost can be defined as1

l(x̄(t), ū(t)) = ∥x̄(t)− xr∥2Q + ∥ū(t)− ur∥2R, t ∈ [tk, tk + T ],

e(x̄(tk + T )) = ∥x̄(tk + T )− xr∥2E

where ∥a∥2A = aTAa, xr is the state set-point, ur the input set-point and Q ∈ Rnx×nx , R ∈
Rnu×nu and E ∈ Rnx×nx are weighting matrices. These two terms express the cost we pay
when a given variable stays away from its given reference. Consequently, minimizing this
cost, in turn, minimizes the distance of this variable to the reference.

Notes on numerical solutions

Note that u(·) is a function, which renders Problem (21) infinite dimensional, hence very
challenging to solve, especially in the presence of constraints. In practice, two approaches
are commonly used to approximate and solve Problem (21): Indirect and direct approaches.
In the indirect approaches, the Pontryagin minimum principle [100] is used to obtain the
optimality conditions in the form of a two-point boundary problem, which is then solved
through discretization using single shooting, multiple shooting, or orthogonal collocation
techniques (cf. [153] and references therein). In the direct approaches, Problem (21)
is directly discretized in time to transform it into a finite-dimensional (static) nonlinear
programming problem. This is achieved by parametrizing the input sequence into a finite
number of parameters. In this work, a piece-wise constant input is used, which is kept
constant between sampling intervals. This leads to a finite number of control actions
u = [u0, ...uN−1] whereN ≜ ceil(T/∆t) is the prediction horizon length2, i.e., the number
of sampling times over which the system is predicted into the future, and ceil : R→ Z is
the ceiling function, i.e., the function that returns the smallest integer which is larger than
a given real number. Once the control sequence u = [u0, ...uN−1] is obtained, generally,
only the first control action u0 is applied to the plant, and then Problem (21) is solved again
at the next sampling time. After the discretization, single-shooting, multiple-shooting, or
orthogonal collocation can be used. The MPC problems solved in this thesis use direct
approaches with orthogonal collocation.
1Here, we show a time-invariant stage and terminal cost, which is most commonly used.
2In this work, for simplicity we will assume that the prediction horizon is equal to the control horizon, i.e.,
the control is optimized up the time tk + T as for the state.
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3.2.2. Finite-time processes

Contrary to continuous processes, repetitive processes are characterized by the presence
of a finite terminal time. By design, at least some of the process states are not maintained
at a steady state but vary considerably during the operation, e.g., can follow a predefined
time-varying profile. Once a run is completed, the process is repeated. We will call run,
batch or iteration a process repetition. The initial condition and the run time, i.e., the
time that it takes to complete one run, can be the same or differ at every run. For these
processes, there exist two time scales: The continuous time scale within the batch and the
discrete scale, which indicates the batch repetitions. We refer to parameters, variables,
and functions of a run using a run index i ∈ Z as superscript, i.e., (·)i. For simplicity of
notation, in the following, we will use the same run time Tf for all runs, and we will
assume that every run starts from the same initial condition.

Model Predictive Control can also be applied for repetitive processes, provided that the
prediction horizon is shrunk as it approaches the final time. Let t = 0 be the starting time
and Tf the final time, let tk be the current sampling time, and T be the horizon length
of the MPC. If the prediction does not reach the final time, i.e., tk + T < Tf , then the
receding-horizon MPC problem (21) can be used. As soon as the prediction reaches the
finite time, i.e., tk + T ≥ Tf , the horizon is shrunk, such that the final prediction time
corresponds to the final process time, i.e., by defining T ≜ Tf − tk (see Fig. 8). Hence, the
MPC horizon stops receding and starts shrinking. Problem (21) is valid for the receding
horizon case. For a shrinking-horizon MPC case, the optimization problem is adapted as
follows:

min
ū(·)

J(x̄(·), ū(·)) ≜
∫︂ Tf

tk

l(x̄(τ), ū(τ))dτ + e(x̄(Tf )), (3.3a)

s.t. ẋ̄(t) = f(x̄(t), ū(t)), x̄(tk) = x̃(tk), (3.3b)
x̄(t) ∈ X, ū(t) ∈ U, (3.3c)
x̄(Tf ) ∈ E ⊆ X , t ∈ [tk, Tf ] ⊂ R. (3.3d)

Note that (23a) is defined between the current sampling time tk and the final time Tf .
Often, in continuous processes, the goal is to keep the system at a steady state as close
as possible to a desired reference. For finite-time processes, the objective can be, e.g., to
follow a time-varying profile or to maximize profit at the end of the process. In the first
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case, we solve a trajectory-tracking problem, and the stage and terminal cost can look like

l(x̄(t), ū(t)) = ∥x̄(t)− xr(t)∥2Q + ∥ū(t)− ur(t)∥2R, t ∈ [tk, Tf ],

e(x̄(Tf )) = ∥x̄(Tf )− xr(Tf )∥2E ,

where xr : R→ Rnx and ur : R→ Rnu are two time-varying functions given, e.g., from the
solution of an economic optimization and/or from heuristics or small-scale experiments.
Instead, in the case of economic objectives, we generally have an expression that describes
the cost/profit of the process as a function of the states and inputs. In this case, the
problem becomes a shrinking-horizon economic model predictive controller and will be
used in Chapter 18.

3.3. Theoretical differences between continuous and finite-time
processes

A basic property that a controller is required to satisfy is state and/or output stability.
Stability can be defined in different terms: For controlled systems, input-to-state and
input-output stability [176] is commonly used. Broadly speaking, stability definitions
characterize a system in terms of the convergence of its states or outputs into a steady state
or into a bounded set. Generally, they are based on the assumption that the system runs for
long enough (or infinite) time. Hence, stability is a qualitative property of the controlled
system: A system is either stable or not. These definitions of stability do not apply to
finite-time processes since they do not run for an infinite time and do not necessarily
operate at a steady state [178]. For these processes, other definitions of stability have
been proposed [8, 80]. In [8], a finite-time system is said to be input-output stable if,
given a certain class of bounded input over a time interval, the output does not exceed
a predefined threshold. Note that this definition is quantitative, i.e., the same system
can be finite-time stable or not, depending on the chosen threshold. In [80] a system (it
could be continuous or finite-time) is called finite-time input-to-state stable if stability
can be reached within a given finite time. In this work, we will not be concerned with any
definitions of finite-time stability. The processes considered do not necessarily operate
in a steady state, so the definition of [80] is not useful. Additionally, here, we are not
interested in measuring the degree of stability as in [8]. Here, we will only assume that,
for any of the admissible input, the system does not have a finite escape time smaller than
the batch time, i.e.:

∀u(·) ∈ U, ∀x(t0) ∈ X0, ∥x(t;x(t0), u(·))∥ <∞, ∀t ∈ [t0, Tf ] ⊂ R (3.4)
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Other than this basic stability property, since the MPC repeatedly solves a constrained
optimal control problem along a finite horizon, it is necessary to make sure that (21) is
able to return a feasible solution at every iteration. In other words, there is a solution that
guarantees constraint satisfaction. Guaranteeing a priori a feasible solution to Problem 21
is possible only for some special cases. Hence, it is commonly assumed that the problem is
feasible at time t0, and then conditions that guarantee the solution for ∀ t > t0 are found.
This property is called recursive feasibility. In a receding horizon approach, recursive
feasibility might not also be achieved for the nominal case since the prediction horizon is
finite, and the controller might not “see” that, in the next sampling times, the problem
might be unfeasible. Instead, in a shrinking horizon approach, where the MPC predicts
until the end of the batch, recursive feasibility for the nominal case can be easily achieved if
the MPC problem has a solution at time t0 since, for this case, the MPC has full knowledge,
because it predicts until the end of the process and the model is perfectly known.

In the presence of uncertainties, such as model-plant mismatch and measurement noise,
ensuring the previous two properties becomes more challenging. In the next section, we
will briefly describe how uncertainties can be considered in an MPC approach.

3.4. Model Predictive Control under uncertainties

In the previous sections, we showed the nominal MPC formulation. In the nominal MPC
case, the model is considered to be a perfect representation of the plant. In practice, uncer-
tainties are always present, e.g., in the form of measurement noise or model uncertainty
(the latter is commonly called model-plant mismatch). Nominal MPC has some degree of
robustness, i.e., it maintains its properties of constraint satisfaction, recursive feasibility,
and stability also in the presence of some (small) uncertainty [68, 109], which can be
sufficient for some practical applications. Nevertheless, in many other cases, uncertainties
are an important issue and have to be regarded in the control design.

In the frame of MPC, there are three main approaches that deal with uncertainties:
adaptive, robust, and stochastic MPC. The term adaptive MPC refers to all the techniques
that adapt the model online or offline using the available measurements [3]. For example,
for a nonlinear continuous-time time-invariant system as

ẋ(t) = f(x(t), u(t), p), (3.5a)
y(t) = h(x(t), u(t)), (3.5b)

where p ∈ P ⊆ Rnp are uncertain model parameters that have to be estimated. These can
be either parameters of first principles models or machine learning models. An estimator
is a map E : D ↦→ P that, given the data D, estimates the parameter vector p. Let p̃ be
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the estimated parameter; the model is updated with p̃ when this estimate is available.
The map E can be any estimation algorithm, e.g., Kalman Filters, [106, 152, 15, 133,
141], Moving Horizon Estimator [217, 179, 94, 86] or machine learning [4, 74]. Model
adaptation is based on the separation principle, which assumes that estimation and control
design can be separated [14]. According to this principle, the estimation can be carried
out separately from the control problem. The estimated values can then be used to
adapt the model, which is used by the controller as if it was perfect3. If the separation
principle is valid, the deterministic optimal control law obtained with the adapted model
is equal to the stochastic optimal control law. Unfortunately, in general, the separation
principle is not valid for nonlinear systems, but it is valid for unconstrained linear problems
with Gaussian distributed uncertainties [180]. Hence, also with model adaptation, the
theoretical properties of stability and recursive feasibility might be lost, i.e., there are no
more guarantees that the controller stabilizes the plant and respects the constraints. To
solve this problem, the controller must consider the model uncertainty. This is the case
for robust and stochastic MPC approaches.

In robust MPC approaches, the main assumption is that uncertainty is bounded, i.e.,
it can take (unknown) values within some known and bounded set. One of the first
approaches of this class was the min-max MPC [154]. In this case, the optimization
is carried out for the worst-case disturbance, but the uncertainties accumulate in the
prediction, causing very conservative control actions or infeasibility. Other approaches
that consider feedback in the prediction to reduce the spread of the uncertainty have been
proposed, such as tube MPC [123] and multistage MPC [114]. Tube model predictive
control is a formalization of the hierarchical control idea, where a slower higher-level
control is used to define the trajectory of the plant, and a faster lower-level control stabilizes
the plant around this trajectory by rejecting the disturbances. In tube MPC, an ancillary
feedback controller is used to maintain the system states in a bounded set centered on the
states of a known nominal (uncertainty-free) model. By tightening the constraints by the
size of this set, it is ensured that if the nominal model satisfies the tightened constraints,
then the plant satisfies the original constraints (cf. Fig. 9). Multistage MPC considers the
case of parametric uncertainty. It assumes that the uncertain parameters can take a finite
number of values that are known apriori. These values are taken in a way that represents
the uncertainty of the parameters, for example, by sampling from a given distribution
representing the parameter’s uncertainty. By assuming that the parameters can change
at the sampling times, a scenario tree is formed. Hence, constraint satisfaction, stability,
and recursive feasibility can be guaranteed, assuming that the real system does evolve
as predicted in one of the scenarios [113, 114]. Robust MPC approaches are, in general,

3This is also called certainty equivalence controller.
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Figure 3.2.: Tube MPC approach. The ancillary controller keeps the real system bounded
around the nominal trajectory. The constraint is shrunk by a length equal
to the radius of the tube (right). Hence, if the nominal system respects the
shrunk constraints, the real system will respect the original constraints (left).

conservative since they need to consider the worst-case realization of the uncertainty.
In practice, the worst-case realization is an unlikely event. This motivates the use of
stochastic MPC approaches.

In stochastic MPC, the model uncertainty is modeled as a stochastic process. Uncertain-
ties might be unbounded, and large uncertainty usually has a low probability of occurring.
Consequently, theoretical properties can be given only in expected value, e.g., as chance
constraints, and are never one-hundred-percent certain [127, 96]. The disadvantage of
stochastic MPC is computational complexity. This is caused by the propagation of the
uncertainty into the future through the nonlinear system. It is well known that even a
Gaussian distributed uncertainty, when propagated through a nonlinear system, results in
a non-Gaussian distributed uncertainty that is challenging to describe [127].

3.5. Summary

This chapter introduced the concepts of receding-horizon and shrinking-horizon model
predictive control. The main difference between the two approaches is that in receding-
horizon MPC, the horizon rigidly shifts into the future, while in shrinking horizon MPC,
it reduces its size at every sampling time. Furthermore, nominal MPC, adaptive, robust,
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and stochastic MPC approaches were briefly discussed. Nominal MPC assumes perfect
knowledge of the plant, while adaptive MPC uses measurements that adapt the model
and improve its accuracy, but it does not take the uncertainty directly into account in
the solution of the open-loop OCP. Robust MPC and stochastic MPC approaches, instead,
take the uncertainty into account and can guarantee constraint satisfaction and recursive
feasibility despite the presence of uncertainties. Some robust MPC approaches, such
as tube MPC, ensure constraint satisfaction by considering the uncertainty-free model
and adequately tightening the constraints to guarantee the feasibility of the problem at
every sampling time. Robust MPC approaches assume that the uncertainty is uniformly
distributed in a bounded set. Stochastic MPC approaches usually consider a non-uniform
stochastic distribution of the uncertainty.
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4. Machine Learning & Control

This chapter reviews some of the most relevant developments concerning machine learning-
supported/based control and run-to-run learning and control with a particular focus on
robust and risk-aware control approaches. We will highlight the challenges of using these
methods in process engineering. This chapter aims to give an overview of the state of the
art and challenges of these approaches to set the basis for the contributions of this thesis.

4.1. Introduction

For many decades, data has always been used in control engineering, e.g., to fit the model
parameters to measurements and build statistical models. Nevertheless, in recent years,
thanks to a renewed and more substantial interest in machine learning, the number of
applications in industry and research has dramatically increased. The main two factors
that differentiate this new generation of machine learning solutions from the previous
generation are the quantity of data and the available computational power 1. Data quantity
is less of a concern since sensor technology has become better and economically more
accessible. This allowed techniques such as deep learning to solve the feature selection
bottleneck: While before feature selection was carried out manually, using experience and
statistical analysis (which would surely introduce bias and human errors), deep neural
networks can automatically extract the features from the data, allowing them to find very
complex nonlinear maps. This spurred the application of these approaches also in control
engineering. Covering all the aspects of this developing field is obviously impossible in
this thesis; the reader is referred to the review [71] for a more in-depth discussion of the
subject. Here, we want to point out that while big datasets can be built for some systems
(e.g., robotic systems), in others (e.g., chemical engineering, medicine), data is expensive
and noisy. In chemical engineering, for example, measurements can be expensive, and
the available data can be obsolete due to, e.g., substituting some plant components [168].
Furthermore, it is usually not possible to run the number of experiments necessary to obtain
the required amount of data since these systems are usually large, highly interconnected,
1Commonly, the term “big data” is used to refer to this new machine learning paradigm.
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expensive to run, have slow dynamics, and the experiments aiming at collecting data
could jeopardize the safety and health of the system. Using machine learning models
to describe the dynamics of repetitive processes is generally even more challenging than
continuous processes since the model must be valid in a wide range of conditions [28].

Here, after a brief introduction to machine learning applied for control, we will review
contributions that try to answer at least one of the following questions: How do we improve
run-to-run performances of repetitive processes? How can we guarantee constraint
satisfaction (or safety) despite uncertainties in machine learning-supported control?

4.1.1. learning supported Model Predictive Control

In the last years, the term learning based MPC has been used mainly to refer to control
approaches that use machine learning to (at least partially) learn the process dynamics [74].
Note that other control design components can also be learned (cf. Fig. 10). For example
in [121] the output function is learned, in [164, 163, 33] the terminal constraints of an
MPC, in [34, 10, 131, 186] the path constraints and in [184, 16, 31, 128] the objective
function. This thesis will refer to any control design that implements machine learning in
any of its components as learning supported MPC. Hence, given this definition, learning-
based MPC belongs to the class of learning-supported MPC. For example, in this thesis,
machine learning was used to learn the risk constraints (Chapter 18) and the model
dynamics (Chapter 23).

Some of the most common machine learning models used in combination with MPC
are feedforward neural networks, Gaussian processes, and recurrent neural networks.
In most cases, regression models are used; in other words, the output of the machine
learning model is continuous. The learning of the model can occur online, offline, or
in batches2. In online learning, the measurements are immediately used to update the
model; in offline learning, the model is only updated before the controller is deployed,
while in batch learning, the learning occurs in intervals when a certain amount of data
has been collected. In this thesis, we will use offline learning; in particular, the learning
occurs between every run.

It is important to notice that regardless of the method used, the learning and control
influence each other, which brings us to the concept of active and passive learning.

2Not to be confused with the term batch that refers to the subset of data points used usually when training
large datasets to decrease the effect of noise and speed up the training.
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Figure 4.1.: Machine learning models can be used not only for the system dynamics but
also for other parts of the MPC design.

4.1.2. Notes on active and passive learning

It is crucial to notice that when model identification is conducted in conjunction with the
control task, the control action and the collected data mutually influence each other. In
previous studies such as [57, 58, 59, 60], it has been suggested that in order to enhance
overall control performance, the control input should exhibit a probing effect. This means
that the control input should excite the system in a way that generates information-rich
measurements, which can be used to improve the model’s learning process. However,
this may result in poorer transient system performance initially, but the more informative
measurements obtained can eventually lead to improved overall control performance in
the long term when used to adapt the model. This phenomenon is commonly referred
to as the dual control problem and is well recognized in the field of control theory, as
documented in [127, 71, 70] and other relevant literature.

One could think of explicitly considering both the identification task and the control
task in the control design, in other words, to make the control “aware” of its effect on
the system uncertainty. In this case, we talk about control with active learning. This
can be achieved by designing a control that computes the input by considering effects
at least on the covariance of the states (and parameters) or on higher-order moments
[71]. If the controller is not aware of these effects on the uncertainties, i.e., only the
effect on the mean of the states (and parameters) are considered, we talk about passive
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learning3. On the one hand, active learning can achieve an optimal balance between
exploration and exploitation (i.e., probing effect and control); on the other hand, it is
usually computationally expensive since it requires propagating the system uncertainty
and predicting it into the future, and it requires expert knowledge to use and to maintain.
The advantages of passive learning are that the control structure is easier to develop,
maintain, and interpret, but it reaches sub-optimal performances, resulting from larger
model uncertainty and sub-optimal use of data.

The control approaches used in this thesis learn passively. However, in Chapter 23, the
overall strategy can be considered to learn “actively” since it implements the design of the
experiment in between runs.

4.2. Run-to-run learning & control

As we previously mentioned, at least for the first runs, repetitive processes commonly aim
to optimize the performance at every repetition and adapt to changes between repetitions.
This can be achieved by using the information collected in the previous runs. This problem
has been extensively studied, especially in robotics and chemical engineering [32]. Here,
we will review the main contributions to this topic. One of the first techniques that was
developed is Iterative Learning Control (ILC). ILC aims at improving the trajectory tracking
performance, i.e., achieving offset-free tracking by learning from previous batches (cf.
[32, 105] and references therein). For sampled data systems, the error between reference
and output for the k-th iteration is ek = r− yk, where ek = [ek(1)

⊤ . . . , ek(N)⊤]⊤ and the
input uk = [uk(1), . . . , uk(N − 1)] where N is the number of samples for every run. The
idea is to update uk such that ∥ek∥ → 0 as k →∞. The update algorithm can be written
in general as

uk = r(uk−1) +Q(ek−1), (4.1)

where r is called updating law and Q is the Q-filter. Both depend on the ILC tuning
techniques used [32]. The open-loop control sequence uk is applied to the plant. Often,
ILC is coupled with a feedback controller to reject non-repeating disturbances (cf. e.g.[49]).
This basic formulation was adapted to the model-based formulation that uses model plant
inversion [7, 104]. ILC is usually applied to linear or linearized models in discrete time,
but extensions to continuous-time, nonlinear systems are available (cf., e.g., [204, 40,
203]). Asymptotic stability can be guaranteed with some conditions on the filter matrix
and, in some cases, also in the presence of non-repeating perturbations. For repetitive
3Note that this concept is related to the concept of certainty-equivalent control.
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processes, whose trajectories, dynamics, and disturbance do not change much between
iterations, ILC can be a valid control strategy to use in combination with a feedback control
strategy. Non-repeating disturbances and noise can be detrimental to the performance of
the ILC. For this, it is recommended to couple the ILC control algorithm with a closed-loop
controller.

A run-to-run learning approach using MPC was presented in [163]. In this case, it is
assumed that the reference trajectory is not fixed, but the initial conditions are the same at
every run. It is proved that the cost of the jth batch does not increase with respect to the
batch j − 1, state and input constraints are satisfied, and the closed-loop equilibrium is
asymptotically stable. An extension considering a variable initial condition was proposed
in [33]. In both cases, the model dynamics are assumed to be known. In [184] an MPC is
run online for every batch with a relatively short prediction horizon. Between batches,
offline, an MPC with a longer prediction horizon is run to obtain more insight into the
plan of the next batch; a shaping function that enters the objective function is learned
using a neural network in such a way that the control sequence of the MPC solved online
is similar to the one solved offline. For new processes and scale-ups, it is often the case
that not only is the model uncertain, but also the optimal state and input profile. This
has been investigated in [76, 73, 108] where the model parameters were fitted to the
new data. Model adaptation through parameter estimation that only aims to minimize
the error between measured and predicted measurements can sometimes lead to bad
performance due to a wrong assumption on the structure of the model. This is important
because due to significant model mismatch, especially when only a few runs are available,
the gradient of the plant and the OCP can point in a different direction, leading to a slow
convergence to the optimal or, worst case, to a divergence. This problem was considered
in [117], where parameters were adapted so that the difference between measured and
modeled gradients is minimized. This approach is interesting but has two disadvantages:
it relies only on parameter estimation and requires to excite and measure the plant to
obtain a guess on the gradient. This might lead to a prohibitive number of measurements.
The main drawback of the previous approaches is that structural model uncertainty is not
considered. Reinforcement learning (RL) has recently received interest also in the process
engineering community for run-to-run optimization [147, 148]. This can take model and
measurement uncertainty into account and has a dual-control effect (see Section 15.2).
However, there are two main disadvantages: Constraints cannot be easily implemented,
and a large number of measurements or a good model to initialize the control policy is
required. Those requirements are hard to satisfy, especially for new processes, scale-ups,
or when a limited amount of measurements is available. An RL algorithm was combined
with ILC in [205] where it was shown that the ILC change in references can be tracked
better than ILC alone, and learning efficiency is higher for the same number of runs.
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Optimal control approaches based on neural network models for batch processes were
proposed in [51, 210, 211, 157, 202], where the data of every batch was used to train
and improve the neural networks. In these contributions, no considerations of safety were
made. In the following sections, we review some important approaches that consider
uncertainty, some of them guaranteeing safety.

4.3. Safe learning & Risk-aware learning

In the context of learning-supported and learning-based model predictive control, with the
term safe learning, we indicate all the approaches that execute the control and learning
task online or offline in a way that the system constraints are guaranteed to be satisfied
with a given probability and the problem is guaranteed to remain recursively feasible
at all times. Instead, with the term risk-aware (or risk-sensitive) learning, we indicate
approaches that inform the controller on the risk of modeling error: In this case, risk
can be decreased, but constraints satisfaction and recursive feasibility are not necessarily
guaranteed.

Recently, safe learning has received much attention in the control community [75].
A class of methods is based on the barrier function concept. In this case, there are two
controllers: A performance-oriented controller used inside a safe set and a safe controller
activated only when the system crosses the borders of a safe set and guarantees that the
system returns to the safe set. The concept was developed in [199] then used for safe
learning in [194, 185, 41, 42]. Another class uses safety filters [99, 195, 196, 46]. In
this case, the (possibly unsafe) input signal is passed through a filter that modifies the
input as little as possible so constraints are satisfied. For example, some approaches [99,
196] propose to use reinforcement learning to increase the performance of a possibly
complex, discontinuous system by learning a control policy: Since reinforcement learning
approaches cannot directly consider constraints, an MPC controller could be used as a
filter. For example, the objective function of the MPC could look like this:

min
usafe
∥usafe0 − uperf0 ∥

2
R

subject to (21b)− (21d).

where the terminal constraint is the safe set, usafe0 and uperf0 are the first pieces of the
backup and performance-oriented input sequence, respectively. If necessary, this will
modify the proposed control input to satisfy the constraints while remaining as close
as possible to the proposed optimal input. In [99], the performance-oriented control
input and the safe control input are calculated simultaneously, which allows to force the
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first performance-oriented input of the sequence to be equal to the safe control input.
Furthermore, the MPC considers a safe set in the constraints. This provides a control
sequence that could bring the system into a safe set at all times. For example, consider
an autonomous car aiming to minimize lap time. While reinforcement learning would
try to decrease the lap time, possibly taking very aggressive maneuvers, the MPC can
ensure that, at all times, the car can break and follow the center of the track safely [99].
A further advantage of the previous approaches is that they can be applied to existing
machine learning-supported controllers without modification of the existing controller. A
disadvantage is that it is often assumed that the nominal model is good enough and can
be used by the filter. Other approaches try to add direct constraints during the learning
process, for example, in reinforcement learning (RL) [146, 139] or GPs [122]. In the
case of RL, adding constraints is non-trivial. Since they solve a stochastic problem, the
constraints must be approximated with a certain probability, and then they are usually
added to the objective function. In another class of methods, the system is not allowed to
leave a safe sub-region of the state space: By collecting data, the safe sub-region expands
as the information on the unknown model dynamics increases [20, 129].

Other (more conservative) approaches are based on the separation between performance
and safety. These consider the learned dynamics to be disturbances and use classic robust
MPC theory. For example, the system

ẋ = f(x, u) +BT
wρ(x, u) (4.2)

where ρ(x, u) is an unknown part and f(x, u) is known. If an upper bound on ρ(x, u) is
known (e.g., for all x and u belonging to some sets), tube MPC approaches can be used.
For example, in [11], a tube-based MPC was used for a discrete-time system of the form

xk+1 = Axk +Buk + ρ(xk, uk), (4.3)

where the unknown part ρ : Rnx × Rnu → Rnx (possibly nonlinear) was considered as
bounded system disturbance d ∈ W, i.e.,

xk+1 = Axk +Buk + d. (4.4)

While the nominal model x̄k+1 = Ax̄k + Būk was used to guarantee robust constraint
satisfaction, the learned dynamics 28 was used in the objective function to increase
performance. This approach guarantees constraint satisfaction regardless of the machine
learning model. This was achieved by treating the machine learning part as a disturbance
and finding an upper bound on its value for all admissible state and input values. Hence, the
trainedmachine learningmodel did not enter the construction of the tube nor the constraint
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tightening. This has the advantage of separating learning and constraint satisfaction but
comes at the price of conservativeness. In fact, if ρ(·, ·) takes too large values, the resulting
tube MPC problem could be infeasible. The previous idea was also used in [213], where a
neural network was used as a feedforward controller in parallel with an MPC. The neural
network’s output layer was built so that the output value was bounded. This allows us
to know the maximum error that the neural network can introduce, which consequently
can be used in a tube-based MPC approach. In [214] instead, an output-bounded NN is
used to learn part of the system dynamics. Also in this case tube-based MPC was used to
guarantee constraint satisfaction.

In [23], the idea of [11] was expanded to systems with multiple operations modes with
uncertain switching times among the modes. In this article, constraint satisfaction despite
model switches and learning was proven. The previous approaches can be conservative
because they do not consider that the uncertainty varies with state and input, and they
use an upper bound for all states and inputs. In [174], the work of [11] is expanded
by considering state-varying disturbances. This method needs a description of how the
uncertainty bound varies with the states, which can be challenging to obtain for specific
systems. In Chapter 23, we propose a method that does not require this description but
progressively finds a local bound on the uncertainty from data. As already highlighted,
the main advantage of the previous methods is that they ensure constraint satisfaction.
Nevertheless, there are some disadvantages. Firstly, one crucial assumption of these
methods is that at least an upper bound on the uncertainty is known. If the upper
bound is too large, it is possible that no feasible solution can be found. Secondly, the
methods are often complex and require expert knowledge to be applied in practice.
The already mentioned risk-aware approaches do not necessarily ensure safety but are
usually more straightforward to develop. In [186], a risk-aware run-to-run approach was
proposed using a hybrid modeling approach. In this contribution, the risk associated with
extrapolation of the NN was modeled using a number of radial exponential functions.
These functions heuristically model the uncertainty so that the risk increases far away
from the measurements used for training. A constraint on the maximum accumulated
risk is imposed; hence, the controller tries to avoid areas with large risks. In Chapter 18,
we use a similar approach but with a more rigorous uncertainty description derived from
Gaussian processes.

4.4. Summary

This chapter provided some basic information and definitions concerning machine learning-
supported MPC. The concept of active and passive learning was covered. We furthermore
summarized some contributions in the area of robust and risk-aware learning supported
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MPC and highlighted their strengths and weaknesses. The goal of this chapter was to
highlight the critical points and research areas that are still open, which will be addressed
in the following chapters.
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5. Risk-aware optimization and Model
Predictive Control

This chapter presents an approach that informs an open-loop optimal controller and a
shrinking horizon economic MPC of the risk of model error associated with hybrid models
through a risk map. The risk map is built using an ensemble of Gaussian processes, which
assigns a certain degree of risk to each point of the feature space. The hybrid model can
contain any machine learning algorithm. Once this risk map is built, the user can set the
maximum risk that the control is allowed to take. In practice, this is a tuning parameter
that balances exploration and exploitation. We show that the risk of the hybrid model
decreases from run to run as the number of data points increases. The method is applied
for the simulations of two different bioreactors. The results presented in this chapter are
partially based on [131].

5.1. Introduction

The previous chapters highlighted the importance of considering model uncertainty in
model predictive control approaches. We also stressed that this uncertainty is even more
critical for repetitive processes since the models must be valid over a wide range of
conditions despite the often very limited process knowledge. Nevertheless, one can exploit
the repetitive nature of the process and try to increase its performance in consequent
runs by paying the price of lower performances in the first runs. Following this line,
the objective of this chapter’s approach is twofold: We want to repeatedly improve the
process performance by improving our knowledge of the plant at every run while avoiding
areas where model uncertainty is significant. For this, we use concepts and strategies
of run-to-run learning and risk-aware control. Here, the term risk is used to indicate
the model uncertainty due to lack of knowledge (due to the absence of observations) or
randomness (due to noisy data), i.e., epistemic and aleatoric uncertainty. In our approach,
the risk function will not distinguish between aleatoric and epistemic uncertainty, rather
reflects the overall effect of uncertainties. To keep the decision process simple, we want
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Figure 5.1.: Results showing a trained NN (ρθ) over data generated with the function
ρ(x) = −0.25x3. The measurements are affected by random noise. In this
case, the risk is computed using the standard deviation of a GP trained on
the same data normalized between [0,1].

to build a scalar-valued risk function that takes the features and returns a scalar between
0 (no risk) and 1 (maximum risk), i.e.,

fr : Rnv → [0, 1] ⊂ R,

If the risk is high (close to 1), a significant error could affect the predictions. To explain
this, take, for example, the function ρ(·) (green line) plotted in Fig. 11. The function is
unknown, and it is learned with a machine learning model ρθ(·) (black line). The figure
shows that ρθ(·) approximates the real function close to the training data due to the low
measurement errors, but it extrapolates badly far away from them. As a measure of risk,
let us take the standard deviation of a GP trained on the same data and scale it from 0 to
1. With this choice, we obtain the red line that nicely correlates to the modeling error.
Using this information in an MPC approach could be helpful to avoid entering areas where
the risk is high.

The question that arises now is how to build such a risk function for multi-dimensional
cases, i.e., where the machine learning model has multiple inputs and outputs. In [186], a
heuristic risk function was used: This was based on ellipsoids whose dimensions depended
on the number of points and some tuning parameters. Here, we use the more rigorous
Bayesian framework to represent the risk: The standard deviation of an ensemble of
Gaussian processes measures the risk and is integrated as a constraint in the optimal
control problem. Furthermore, in [186], open-loop optimal control was used. This has
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two main drawbacks: There is no feedback that counteracts the disturbances, and the
real risk can be much higher than the predicted risk, de facto violating the maximum risk
the controller was allowed to take. Hence, here we also use Model Predictive Control.

Here, we will use a hybrid model containing a neural network, but any other regression
model can be used. In this way, we equip neural network prediction with a measure of
uncertainty. The neural network is trained at the end of every run using the data collected
in all the previous runs. Furthermore, since the computation associated with GP training
scales poorly with the size of the dataset, we show how, if necessary, one can train a set of
GPs on subsets of the data to reduce the computation load.

5.2. Problem setup

5.2.1. Open-loop optimization

Since online measurements might not be available for some applications, like biotechno-
logical processes, we will first consider an open-loop optimization and then expand the
approach to a shrinking horizon MPC to cover the case where it is possible to measure
online. We consider the series hybrid model structure (cf. Section 7). At run i, the
following nonlinear optimization problem is solved

max
ū(·)

L(ū(·), x̄(Tf )) (5.1a)

s.t. ẋ̄(t) = f(x̄(t), ū(t), ρiθ(v̄(t))), x̄(0) = x̃(0), (5.1b)
r = fr(v̄(t);Di), (5.1c)
I(r) ≤ Imax, (5.1d)
x̄(t) ∈ X, ū(t) ∈ U, (5.1e)
for t ∈ [0, Tf ],

where L(u(·), x(Tf )) is an economic function to be maximized, (30b) is the hybrid
model, Di = {(v̂1, l̂1), (v̂2, l̂2), . . . , (v̂ni

D
, l̂ni

D
)} is the dataset of measured features v̂ and

labels l̂ that have been collected up to the previous run i − 1, fr : Rnv ↦→ R is the risk
function, I : R ↦→ R is the risk constraint (as we will see in Section 21), Tf is the final
time of the run and x̃(0) is the vector of measured (or estimated) initial conditions. Note
that Di enters the risk function fr(·) as parameter. At every time step, the states and
inputs are constrained into X and U respectively. Note that, before the ith run, ρiθ(v(t))
is trained on the accumulated data set Di. This improves model precision and leads to
better performance as the number of runs increases.
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Figure 5.2.: Schematic idea of the approach. The controller is either an open-loop (OL
Opt.) or a shrinking-horizon MPC (MPC). The gray arrows are active only at
the end of every run.

5.2.2. Shrinking horizon MPC

The extension to a shrinking-horizon Model Predictive Control formulation is straightfor-
ward if the necessary state measurements or estimates are available online. The shrinking-
horizon MPC consists in re-evaluating the previous open-loop optimization at discrete sam-
pling times tk = k∆t, where ∆t is the sampling time and k ∈ [1, ..., N ], N = ceil(Tf/∆t).
Here, the sampling times are assumed to be uniform for simplicity, but non-uniform
sampling times can also be used. The shrinking-horizon MPC problem reads

max
ū(·)

L(ū(·), x̄(Tf )) (5.2a)

s.t. ẋ̄(t) = f(x̄(t), ū(t), ρiθ(v̄(t))), x̄(tk) = x̃(tk), (5.2b)
r = fr(v̄(t);Di), (5.2c)
I(r) ≤ Imax, (5.2d)
x̄(t) ∈ X, ū(t) ∈ U, (5.2e)
for t ∈ [tk, Tf ].

where x̃(tk) is the measured or estimated state at time tk.
Figure 12 shows the control loop of both the open-loop and shrinking horizon approach.

Note that although we used an economic objective function here, other objective functions
can be used, e.g., to track a time-varying state or output trajectory.
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5.3. Risk function

The risk function in this study is constructed using Bayesian inference, with Gaussian
processes (GPs) being utilized, as explained in Section 6.2. The key concept is to utilize
the covariance matrix of the posterior distribution as an indicator of prediction uncertainty.
At the same time, a neural network is employed for the mean (or nominal) prediction. It
may be argued that using a neural network for nominal prediction is unnecessary since
GPs already provide a predicted mean. However, there are two reasons why incorporating
a neural network can be advantageous.

Firstly, in GPs, the prior mean is typically initialized as zero across the entire feature
space. This initialization is justified as the posterior mean is expected to be close to the
measured outputs. However, the mean converges to the prior mean in regions far from
the measurements, which can be inappropriate for describing unseen data if the prior
mean is improperly chosen. Recent research has shown that selecting a non-zero prior
mean can improve predictions in regions far from the measurements [85].

Secondly, Gaussian processes require inverting the covariance matrix during training,
and the computational cost of this operation is proportional to the number of measurements.
Inverting large covariance matrices can be computationally challenging, particularly for
large datasets. One approach to address this issue is to divide the dataset into smaller
subsets and train a GP on each subset. However, merging the mean estimates of multiple
GPs to obtain a single prediction can be non-trivial and may result in discontinuous
predictions. On the other hand, neural networks can be trained efficiently with very large
datasets without the need for data splitting. Therefore, in this study, local GP models
trained on smaller datasets are used to estimate local uncertainties, as it is easier to merge
uncertainty measures smoothly compared to mean predictions. This allows for predictions
with associated uncertainties across the entire feature space.

Note that ρθ : Rnv → Rnl and nl ≥ 1 hence there can bemore than one output dimension.
Since training GPs with multiple outputs is challenging [200], as common when using
GPs, we will assume that the outputs of the unknown functions are independent of each
other. This will allow us to train nl independent GPs, one for every output.

Assumption 5.1 The outputs of the unknown function ρ(·) are independent of each other.

Uncertainty averaging We now proceed to build the risk function. Let K̄j be the posterior
variance matrix of the jth output (cf. Section 6.2) and K∞

j be the variance far away from
the training points for the same output, i.e. K∞

j = limv→+∞Kj(v). Note that given a
point v, K̄j(v) ≤ K∞

j . Hence, we propose to use the ratio between the two variances as a
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measure of uncertainty as follows

r̄(v) =

⎛⎝ nl∏︂
j=1

K̄j(v)

K∞
j

⎞⎠1/nl

, (5.3)

where the geometric mean was used to average among the nl outputs. Note that r̂(v)
takes values between 0 and 1. The closer its value is to 1, the riskier the point v is.

Clustering As we previously mentioned, training the GP can be computationally expen-
sive in the case of large datasets. Here, we want to show how it is possible to train multiple
GPs on a finite number of clusters and then use the uncertainties of the single clusters to
build an overall risk measure. Unsupervised clustering can be used to obtain the subsets
of data. In our case, we used k-means clustering from scikit-learn [145]. The number
of clusters is a design variable. Let nc be the number of clusters, we compute the risk of
every cluster by using (32), hence obtaining r̄j : Rnv ↦→ R, ∀j ∈ [1, .., nc] (cf. Figure 13).

Risk function Equation (32) is computed for every of the nc cluster. Given a distance
definition, one could choose the risk function of the cluster that is closer to the current v.
Here, for simplicity, the final risk function merges all the clusters by taking the minimum
as follows

r(v) = min(r̄1(v), r̄2(v), r̄nc(v)). (5.4)

where r : Rnv → [0, 1]. Since the minimum operator is not differentiable everywhere,
it could lead to some numerical problems during the optimization. For this reason, we
used the smoothmin operator, which is a differentiable approximation of the min operator
defined as

smoothmin(x1, ..., xn) =
∑︁n

i=1 xie
αxi∑︁n

i=1 e
αxi

(5.5)

where α < 0 is a large negative value that can be chosen by the user. Figure 13 shows
graphically the steps behind the construction of the risk function. Once it is available, it
can be used in the risk constraint. One trivial choice of risk constraint is

I(r) = 100 r(v(t)) ≤ Imax. (5.6)

Alternatively, in some cases, one could limit the accumulated risk along the batch to avoid
small but steady errors. In this case, the risk constraint I(r) can be defined as

I(r) =
100

Tf

∫︂ Tf

0
r(v(t))dt ≤ Imax. (5.7)
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Figure 5.3.: Graphical representation of the risk function for a problem with two features
v1 and v2. The dataset is divided into nc = 4 clusters with an unsupervised
clustering technique. Later, a Gaussian process is trained for each cluster.
The risk (32) is computed for every cluster, and finally, it is fused with the
other cluster with (33). Note that the contour lines represent a decreasing
level of risk.

The first choice will limit the instantaneous risk, while the second limits the accumulated
risk. Note that we multiplied by 100 hence I(·) takes values between 0 and 100 %. If we
choose Imax = 100% in (31d), it is equivalent to solving (30) without any risk constraint.
Note that other definitions of risk functions are possible (see, e.g., [186]) and that its
choice may depend on the characteristics of the problem being solved.

Remark Note that the exploration-exploitation trade-off is not explicitly considered here,
as we do not actively try to excite the system to obtain information at the cost of perfor-
mance, e.g., in dual control. The proposed approach rather considers the risk of exploring
possibly risky areas, hence prudently approaches them when necessary, i.e., when the
direction of improvement of the objective function in (30) points towards them. Hence,
the learning is passive.

5.4. Examples

The following sections show some examples that use the proposed method. The first
example considers a fed-batch reactor producing β-glactosidase. The second is also a
fed-batch reactor that produces poly-β-hydroxybutyrate (PHB). In both cases, an economic
open-loop optimal control problem and an economic shrinking horizon MPC are solved,
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and the results are compared. The objective functions used are economic indexes of
the processes. In the first case, the economic index is the profitability, representing
the process’s normalized profit (or loss) at the end of every run. In the second case is
productivity, defined as grams of product produced at the end of a run. We will refer to
both economic indexes with the variable Pr. All the examples were solved using HILO-
MPC [150]. GPyTorch [67] was used to train the GP, and PyTorch [142] for training the
NN.

5.4.1. Key Performance Indicators

We want to study the effect of different Imax on Pr, and how Pr changes from batch to
batch. We expect that the controller might take sub-optimal control actions for high-risk
levels, causing a slower increase or even a decrease of Pr in successive runs. In contrast,
a lower risk level will constrain the controller to take very conservative control actions,
limiting the exploratory effect and consequently reducing possible gains in Pr. To compare
the effects of the risk, four key performance indicators (KPIs) are considered:

• Prmax: Maximum Pr. This is the maximum achieved economic index for a given Imax,

Prmax = max
i=[1,...,nr]

Pri.

• Pravg: Average Pr per run for a given Imax,

Pravg =
1

nr

nr∑︂
i=1

Pri.

• NPr,min: Number of batches necessary to achieve a minimum required economic
index Prmin for a given Imax,

NPr,min = min{i ∈ [1, ..., nr] ⊂ N | Pri ≥ Prmin}.

• CPr: Number of batches necessary to achieve convergence between predicted and
measured profit. This is only calculated for the open-loop case, and indicates the
prediction accuracy of the hybrid model, i.e.,

|Pri − Pri|
Pri

≤ ctol, ∀i ∈ [CPr, ..., nr].

where Pr is the predicted Pr.

The number of clusters chosen for the GPs training is initialized as one and increases by
one at every run. The clusters are re-computed at every batch once new data is available.
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5.4.2. Case Study I: Production β-galactosidase

In this case study, we want to maximize the profitability of a fed-batch β-glactosidase
production process using a recombinant E. coli D1210 [107, 188]. The plant model is
given by the following ODE

Ẋ = µX −DX, (5.8a)
Ṡ = −Rs(x)X −DS + FSSF /V, (5.8b)
Ṗ = Rfp(x)X −DP, (5.8c)
İ = −DI + FIIF /V, (5.8d)

İSF = −k1(x)ISF, (5.8e)
İRF = k2(x)(1− IRF), (5.8f)
V̇ = FI + FS , (5.8g)

where X,S and I are concentrations of biomass, glucose and inducer in [g/l], ISF is the
inducer shock factor, IRF the inducer recovery factor in [U/l], V is the volume of the media
in the bioreactor in [l], and P is the activity of β-galactosidase in [U/ml]. The vector x
contains all the states i.e., x = [X,S, P, I, ISF, IRF, V ]. The inputs are the glucose feeding
rate FS and inducer feeding rate FI in [l/hr]. SF is the concentration of glucose in the feed
FS and IF is the concentration of inducer in the feed FI . Furthermore, D = (FS + FI)/V .
The kinetic rates µ(·), Rs(·) and Rfp(·) are assumed to be unknown and have to be learned
from data. The real reaction rates used to simulate the plant are:

φ(x) =
0.407S

(0.108 + S + S2/14814.8)
,

µ(x) = φ(x)

(︃
ISF +

0.22IRF
0.22 + I

)︃
,

Rs(x) = 2µ(x),

Rfp = φ(x)
0.0005 + I

0.022 + I
,

k1(x) = k2(x) =
0.09

0.034 + I
.
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A further challenge is that the states ISF and IRF cannot be measured, hence and the
equations (37e) and (37f) are not considered in the MPC model, which hence reads

Ẋ = µX −DX, (5.9a)
Ṡ = −RsX −DS + FSSF /V, (5.9b)
Ṗ = RfpX −DP, (5.9c)
İ = −DI + FIIF /V, (5.9d)
V̇ = FI + FS . (5.9e)

The objective function to maximize is

L(FI(t), P (Tf )) = P (Tf )V (Tf )−Q
∫︂ Tf

0
FI(t)dt. (5.10)

This represents the normalized profit of operation, and Q = 5 is the normalized cost
of the inputs with respect to the value of the product P. For this process, the maximum
theoretical profitability is known and equal to 4.03 [186].

Simulation settings For the open-loop and MPC cases, the batch time is 10 hours. The
MPC uses a sampling time of 0.5 hours. A normal distributed Gaussian noise with a
standard deviation of 0.1, 0.1, and 0.1 g/l was added to X,S, andI, respectively, and a
standard deviation of 0.03 was added to P . A total of 20 batches were simulated with
five levels of Imax, 10%, 25%, 50%, 75% and 100%. Note that Imax = 100% is equivalent
to solving the optimization problems without risk constraints. An exploratory run is used
to collect the first set of measurements, using exponentially increasing feeding rates. To
compute the KPIs, we set the required minimum profit as Prmin = 3g, and the convergence
tolerance as ctol = 0.2. The open-loop optimization and MPC were discretized with
orthogonal collocation, and a piece-wise constant control input was considered. The
constraints used are box constraints defined as

X = {x ∈ R5 | [0, 0, 0, 0, 0]T ≤ x ≤ [10, 42, 100, 100, 15]T}.
U = {u ∈ R2 | [0, 0]T ≤ u ≤ [1, 1]T}.

The initial conditions at every batch for the plant are x(t0) = [0.1, 40, 0, 0, 1, 0, 1]T.
The concentration of substrate and inducer in the feed are SF = 100 g/l and If = 4 U/ml.
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Machine learning settings We trained a single NN with two features, the substrate
concentration S and the inducer I, and three outputs µ,Rs andRfp. In this case, the feature
selection was trivial since we already know the variables that influence the reaction rates
from the plant model. In practice, the features are selected based on expert knowledge or
by carrying out data-driven feature selection procedures, such as principal component
analysis or recursive feature elimination. Contrary to [131], we use physics-informed
learning to train the NN as described in Section 8. The neural network has four layers
with ten neurons each. Labels and features were scaled with their respective mean
values (µDv , µDl ) and standard deviations (σDv , σDl ) computed on the data set D as v̂si =
(v̂i − µDv )/σDv and ŷsi = (l̂i − µDl )/σDl where the s indicates the scaled variables.

The training was conducted using HILO-MPC, and PyTorch was used as a learning
library. Stochastic gradient descent, using the Adam optimizer, was used as an optimization
algorithm to train the NN [97] with a learning rate of 0.001. The maximum number of
epochs is 3000. Early stopping with patience of 20 epochs was used to terminate the
training: This means that the learning was stopped if the test loss function did not decrease
in the last 20 epochs. An 80/20 train/test split was used. As an activation function, we
used the soft-plus function. The soft-plus function is a smooth approximation of the
ReLU function. This choice was made since the ReLU function caused problems with the
convergence of the optimization problems.

Results Figure 14 shows the difference between predicted and real profitability for the
open-loop control for different Imax levels. The profitability of the exploratory experiment
referred to as run 0, was also plotted for comparison. As expected, in general, the
profitability increases as the number of batches increases (cf Fig. 14). Figure 20 shows
the KPIs for different Imax levels. With a convergence tolerance ctol = 20%, the best
convergence between predicted and real profitability was achieved for Imax = 50% (cf
Fig. 20d). This can indicate that the learning is more efficient, i.e., the data collected are
more relevant for the close-loop evolution of the plant.

Figure 20c shows that the number of batches necessary to reach the minimum profitabil-
ity is 4 for Imax = 50% and increases for the other Imax levels. The average profitability
Pravg also shows a peak at Imax = 50% (cf Fig. 20a). The maximum profitability Prmax
does not change considerably for the different degrees of risk (cf. Fig. 20b). Overall,
for the open-loop control Imax = 50% has the best performance. This indicates that this
value is a good balance between exploration and exploitation.

As mentioned at the beginning of the chapter, the risk function informs the controller of
possible uncertainty in the output of the NN. Hence, one important question to answer is
how well the risk function represents the actual NN prediction error. Figure 16 compares
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the risk map with the absolute errors maps of the three outputs of the NN, for the open-
loop case, for the 18th run with Imax = 25%. To show the effect of the dataset, the
measurements are also reported as red crosses. We can see that the risk value is higher in
regions with little or no data available, while it is low in regions with dense data. The
NN errors are also lower in the dense data region and larger for less dense data regions.
Similar results were obtained when other Imax were used and for the MPC case. Hence,
we can conclude that, in this case, the risk function condenses valuable information on
the error of the NN.

If online measurements are available, the optimization problem can be solved repeatedly.
Note that the network is trained only at the end of the batch and not every time a
measurement is taken since adding a single measurement to the training dataset would
not considerably change the network’s output. Figure 15 shows the profitability with
respect to the batch number for the open-loop optimal control and MPC for different levels
of Imax. The MPC reaches high profitabilities already from the second batch (not counting
the exploratory batch) for Imax ≥ 25% (cf. Fig. 20c). Nevertheless, for Imax ≥ 50% is
showing worse profitabilities than the open-loop after the 6th run. Note that since the
data collected depends on the controllers’ actions in the previous runs, this result is not
surprising. The fact that MPC closes the loop at the sampling points does not necessarily
mean that the data collected will be more “information-rich” than an open-loop strategy.
To show this, let us consider run 10 of Imax = 75%. At this run, the MPC performs worse
than the open-loop controller (cf. Fig. 15). Figure 17 compares the risk values and errors
of the open-loop (left column) and close-loop (right column) for this run. As a comparison,
an optimal trajectory of the features in the features space generated with a perfect model
is plotted on top of the errors (solid red line). This trajectory is computed by solving
an open-loop optimization with no model plant mismatch and achieving the maximum
theoretical performance of 4.03. Hence, it can be considered a reference trajectory. As
seen in the left column, the open-loop strategy (dashed red line) results in a trajectory
close to the optimal trajectory. On the contrary, the MPC moves away from the optimal.
This is probably due to the fact that, for the MPC case, the risk in the “optimal area” is
higher, as can be seen from the contour plots. This is caused by a different dataset and,
consequently, different NN outputs, as can be seen from the measurements reported in
the first row for both open-loop and MPC cases. This explains why the MPC has worse
performances for this run. However, one may ask why the performance of the MPC, for
the same level of Imax = 75% was much higher for run 6 (where it is very close to the
optimal performance). It is reasonable to think that this high performance must also be
due to a good hybrid model, and since the model should not worsen with more data,
the performance should remain approximately constant. If we plot the errors and risk
function for this case (cf. Fig. 18) we notice that also, in this case, the trajectory of the
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MPC is far away from the optimal. The higher profitability can be explained by looking at
the other variables that influence the profitability, i.e., the feed of inducer FI . As shown
in Fig. 19, in this run, the MPC feeds much less inducer, which results in a lower cost and,
hence, higher profitability. Nevertheless, as shown in the MPC case for Imax = 50%, 75%
and 100% with this “small feed” strategy, the profitability is not reproducible at every run
and has an erratic behavior. Instead for Imax = 25% the profitability was stable with the
runs. This is achieved thanks to a better hybrid model, as shown in Fig. 21, representing
the error and risk graph for both open-loop and MPC. As can be seen, the errors on the
NN outputs are low, and the MPC follows the optimal trajectory that we obtained with
the perfect model very closely.

Even though the MPC performs worse than the OL in some cases, overall, thanks to the
fact that the MPC is reaching higher productivity already in the first runs, the MPC shows
better KPIs for most of the risk levels. as can be seen from Fig. 20.

5.4.3. Case Study II: Production of poly-β-hydroxybutyrate

This case also considers a fed-batch bioreactor. The goal is maximizing the production of
poly-β-hydroxybutyrate (PHB) using a culture of Cupriavidus necator [66]. This case is
more challenging than the previous one. Firstly, the reaction rates are more complex, as
we will see. Secondly, the NN will have three features and five outputs. The simulated
plant uses a reduced version of a Hybrid Cybernetic Model [175, 65]. The ODE reads as
follows

Ẋ =

(︃
µ− (FA + FF )

V

)︃
X,

Ȧ = qAX +
FA

V
(AF −A)−

(FA + FF )

V
A,

Ḟ = qFX +
FF

V
(FF − F )−

(FA + FF )

V
F,

Ṗ = qP − µP,
V̇ = FA + FF ,

where X,A, F are respectively the total biomass, ammonium chloride, and fructose
concentrations in [g/l], P is the percentage of PHB in the biomass, V is media volume in
the reactor in [l], FA and FF the feed of ammonium chloride and fructose in [l/h], AF

and FF the concentrations of ammonium and fructose in the feeds in [g/l]. The reaction
rates qA, qF , qP , and the growth rate µ are given by
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Figure 5.4.: Profitability for the β-galactosidase example for different levels of Imax for
the open-loop optimal controller. Run 0 refers to the exploratory run done to
create the first dataset.
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tion.
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Figure 5.7.: comparison between open-loop optimization (left column) and MPC (right
column) for run 10 with Imax = 75%
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Figure 5.8.: comparison between open-loop optimization (left column) and MPC (right
column) for run 6 with Imax = 75%.
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Figure 5.9.: comparison between the inputs for the open-loop control, MPC, and an open-
loop with the exact model.

µ = SµZρrM (1− P ),
qA = SAZρrM (1− P ),
qF = SFZρrM (1− P ),
qP = SPZρrM (1− P ),

where S(·)Z is the product between the stoichiometric matrix of the respective reactions
and the elementary mode matrix, rM = [r1, r2, r3, r4, r5] where

r1 =
F

KF + F
,

r2 =
F

KF + F

A

KA +A
,

r5 =
F

KF + F

A

KA +A

P

KP + P
,

r3 = r4 = r2,

where KA,KF and KP are known constant. The vector ρ ∈ R5 is unknown and must be
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verge were calculated only for the OL control since the convergence is
computed with respect to the predicted profitability at t = 0.
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Figure 5.11.: comparison between open-loop optimization (left column) and MPC (right
column) for run 15 with Imax = 25%.
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learned from data. The components ρi of the unknown function ρ are:

ρi = uivi, (5.11)

where u and v are the cybernetic control variables

vi =

{︄
firi/max(firi) if max(firi) > 0,

else 0,

ui =

{︄
pv/

∑︁
(firi) if

∑︁
(firi) > 0,

else 0,

where ri is the i-th component of rM and fi are constants that are taken from [65]. The
objective function to maximize is the net product at the end of the batch, i.e.,

L(X(Tf ), P (Tf ), V (Tf )) = P (Tf )X(Tf )V (Tf ), (5.12)

Simulation settings The measurements of X,A, F , and P are affected by Gaussian
noise with standard deviations of 0.5, 0.005, 0.002, and 0.005, respectively. Furthermore,
a 10% standard deviation was added to the labels. An initial batch using an exponential
open-loop feeding strategy was used to collect the first set of measurements. A total of
10 batches were simulated, each 30 hours long. The measurements were collected every
hour. The convergence tolerance ctol = 5%, while the minimum productivity Prmin is 60
g/l. The constraints were defined as

X = {x ∈ R5 | [0, 0, 0, 0, 0]T ≤ x ≤ [10, 10, 10, 1, 100]T},
U = {u ∈ R | [0] ≤ u ≤ [1]}.

Machine learning settings Machine learning settings for this study involved the use
of a neural network with three layers and eight neurons per layer. The neural network
was designed to predict five labels, namely ρ1, ρ2, ρ3, ρ4, and ρ5, based on three features
denoted as A,F , and P , as defined in Equation 40. The values of these features were
known from the plant model used in the study. The simulation was conducted using
HILO-MPC, and the neural network was trained using PyTorch with the Adam stochastic
gradient descent optimizer. The soft-plus activation function was utilized in the neural
network.

The training of the neural network was carried out using the classic approach, as
described in Section 8 since the physics-informed training was not able to converge in this
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case, possibly due to the sensitivity of the states to the variations of the cybernetic control
variables. An 80/20 train/test split was used for the dataset, where 80% of the data was
used for training and 20% for testing.

Results Figure 22 shows the predicted and real net product for every batch for different
levels of Imax. The values for Imax > 50% are not shown, as no significant difference
from Imax = 50% was present because of the low level of risk. In Fig. 23, the difference
between open-loop control and MPC is shown. Also, in this case, the MPC does not always
show better performance of the open-loop strategy because of the different sets of data
collected in the runs. Figure 24 summarizes the KPIs for this case. Imax = 25% shows
overall better KPIs than the other levels both for MPC and open-loop control

The effect of the learning can be seen in Fig. 25 where the predicted and real P was
plotted for Imax = 50% for run 1 (left) and run 5 (right). As can be seen, the prediction
of the P is better as the number of runs increases due to a better machine learning model.
In this case, since the inputs and outputs have more than two dimensions, visualizing the
risk map is challenging; for this reason, they are not shown.

5.5. Summary

In this chapter, we proposed a model-based machine-learning-supported open-loop op-
timization approach for repetitive processes, as well as an economic shrinking-horizon
MPC strategy, considering model and measurement uncertainties and the absence of a
priori knowledge of the optimal trajectory. Our method utilized the data collected during
each run to improve the plant prediction by training a neural network at the end of each
run. Additionally, we incorporated the uncertainties of the model into the optimization
problem through a risk function based on an ensemble of Gaussian process regressors,
which allowed for the safe utilization of a small dataset from the first run and a progressive
increase of confidence regions in subsequent runs, thereby limiting sub-optimal or unsafe
control actions. The controller’s level of exploration or aggressiveness could be easily
tuned by manipulating the maximum risk allowed.

We demonstrated the effectiveness of our approach through two case studies involving
a fed-batch bioreactor for the production of β-glactosidase using genetically modified E.
coli D1210, and a fed-batch reactor for the production of poly-β-hydroxybutyrate (PHB)
using C. necator. We showed the impact of the maximum allowed risk on the controller’s
performance and highlighted that intermediate-risk values often provided the best balance
between exploration and exploitation. Optimal performance was achieved after several
runs for the MPC and open-loop controller. We also demonstrated that using MPC did not
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Figure 5.12.: Productivity of PHB in grams per batch for different levels of Imax. After
Imax = 50%, there is no noticeable change in the predicted and measured
productivities; hence the results are not reported. Probably this is due to the
fact that the risk is already low in the region of the optimal state trajectory
corresponding to Imax = 50%.
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Figure 5.13.: comparison of the measured productivity of PHB in grams per batch for dif-
ferent levels of Imax, for the open loop (OL) andMPC case. After Imax = 50%,
there is no noticeable change in the predicted and measured productivities;
hence the results are not reported. Probably this is due to the fact that the
risk is already low in the region of the optimal state trajectory corresponding
to Imax = 50%.
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Figure 5.15.: Predicted and real values (noise-free) of P for run 1 (left) and run 5 (right).

always result in better performance for individual runs compared to open-loop control,
as the identified model depended on the data collected during the runs, which in turn
depended on the controller’s actions.

It is important to note that our approach is not yet a robust MPC method, as it cannot
guarantee constraint satisfaction for all possible uncertainty values. Furthermore, the
controller does not actively decrease the uncertainty, as the learning takes place passively.
In the next chapter, we will discuss how to incorporate tube-based shrinking horizon MPC
to ensure constraint satisfaction for run-to-run learning, and how to leverage information
on model error for design-of-experiment to enable active learning by the controller.
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6. Safe Exploration Using Robust Learning
Supported MPC

In this chapter, a robust learning-supported MPC using hybrid models with guaranteed
constraint satisfaction is applied for run-to-run learning and control. This approach is
based on the definition of a safe set, i.e., a set where the upper bound on the model
error is sufficiently small. Given this upper bound, nonlinear shrinking-horizon tube-
based MPC can be applied, and robust constraint satisfaction despite model uncertainty is
guaranteed. We show how, under some assumptions, the safe region expands, decreasing
conservativeness and increasing performance as the number of runs increases. This chapter
is partially based on the results presented in [129].

6.1. Introduction

Using hybrid models can improve the prediction performance, but the quality of the
prediction depends on the quality and quantity of the data used for training. Especially in
process engineering, data quality and quantity can be an issue; hence, predictions and,
consequently, closed-loop control performance can be negatively affected. Considering the
model uncertainty in the prediction is fundamental to guaranteeing constraint satisfaction.
Section 17 covered some contributions in safe and risk-aware control using machine
learning models; Chapter 18 proposed a shrinking-horizon MPC approach that considers
the risk of model uncertainty in the constraints, hence was able to avoid areas with
high model uncertainty. Nevertheless, constraint satisfaction was not guaranteed. In
this chapter, we propose an approach based on robust tube shrinking-horizon MPC that
guarantees constraint satisfaction, hence allowing the safe operation of the system despite
model uncertainty.

As for the risk-aware MPC shown in Chapter 18, this method is based on the following
observation: Machine learning models tend to be good at predicting the underlying
unknown function close to the training points and tend to be progressively bad far away
from them. Hence, it is reasonable to think that the modeling error will be smaller in
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some regions of the feature space where training points were taken. In these regions, it is
more likely to find an upper bound on the modeling error that is not excessively large,
i.e., that does not render tube MPC infeasible. To illustrate this concept, let us take the
following system as an example

ẋ(t) =

[︃
−1 2
−3 4

]︃
x(t) +

[︃
0.5
−2

]︃
u(t) + ρ(x(t)). (6.1)

Here ρ(x(t)) = [0,−0.25x32]⊤ is assumed to be unknown and must be learned from data.
The objective is to bring the second state, x2(t), to the reference x2,r = 1.1, while satisfying
the box constraints on the state xlb ≤ x(t) ≤ xub and on the input ulb ≤ u(t) ≤ uub over a
finite horizon ∀t ∈ [0, Tf ] where xub = [5, 1.2]⊤, xlb = [−5,−1.2]⊤. We indicate the state
constraints with the set X ≜ {x ∈ Rnx | xlb ≤ x(t) ≤ xub}. Figure 26 (top-left) shows a
neural network trained on noisy measurements of the unknown function ρ(x(t)). The
neural network fits the function well close to the training datapoints, but the prediction
accuracy deteriorates far away from them. Note that the reference point lies in a zone
where the machine learning model has a significant error, which might cause constraint
violation. Given an upper bound on the error, i.e., the error between the real function
ρ(x) and the learned function ρθ(x) over the set X, nonlinear tube-based MPC could
be used as in [174]. Nevertheless, the upper bound is too large, rendering the tube
MPC approach infeasible. We instead propose the following approach: Suppose to take
the set X = [−1.25, 0.5] ⊂ X shown in Fig. 26 (top-right). In this subset, the error is
small. With this error, let us compute the corresponding robust control invariant set Ω
and shrink X , i.e. X̄ = X ⊖ Ω, forming a smaller area. For this case, the shrunk set is
not empty, the tube MPC problem has a solution, and a control sequence can safely be
applied to the plant. Assume that the system comes closer to the edge of the X where new
measurements can be taken safely. After some measurements are taken, the run is stopped,
and the measurements are used to improve the learned model. In the next run, the error
decreases and a new expanded safe set X can be computed since the confidence of the
machine learning model expands as well (cf. Fig. 26 bottom-left). Eventually, after some
runs, the system can reach the required reference (cf. Fig. 26 bottom-right). Note that,
since the system naturally moves towards the direction where the cost function decreases
(hence towards better performance), the data are collected towards the direction of the
improvement1. In other words, in this way, the machine learning model is tailored towards
the control-relevant regions, hence making a parsimonious use of data. Furthermore, note

1As we will see in the following sections, this might not always be the best approach, since it might happen
that the system “sticks” in a set that cannot expand anymore. We do not discuss this further here for
simplicity.
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that in general, the reference will not be reached at the first run hence this approach is
useful for new plants with a fairly uncertain model, which can be repeated2, where the
objective is to safely learn a model that, from the initial condition, would optimally guide
the system to the required objective. Once the model has been safely identified, another
approach can be used, for example, “vanilla” nonlinear tube MPC. Also, even though we
focus on constant reference tracking problems, the same algorithm could be applied for
time-varying references that repeat at every batch and for economic objectives.

This chapter is partially based on our paper [129], with expansions concerning a new,
more complex system, algorithms to find the safe sets, and proof that guarantees, under
some assumptions, the expansion of the safe set at every run. The following sections give
more details on the method, i.e., how the upper bound on the model error is found and
how the safe set is expanded.

6.2. Problem setup

We consider a partially unknown nonlinear system of the form

ẋ(t) = Ax(t) +Bu(t) + ρ̃(x(t)), (6.2)

subject to constraints

x(t) ∈ X, u(t) ∈ U, ∀t ≥ 0,

where x(t) ∈ Rnx and u(t) ∈ Rnu are the vector of states and inputs respectively,
A ∈ Rnx×nx and B ∈ Rnx×nu are known matrices and ρ̃ : Rnx → Rnx is an unknown,
possibly nonlinear, function.

Assumption 6.1 The set U ⊂ Rnu is compact, and X ⊂ Rnx is bounded.

The process is operated repetitively. The time of every run spans t ∈ [0, Tf ] where Tf
is the final run time. For simplicity, we assume that Tf is known and equal for all runs,
but the same method could also be applied if the run time differs at every run. The
input is calculated using a shrinking-horizon MPC formulation that uses measurements
obtained at each sampling time until the final time Tf , as shown in the following sections.
We indicate with the superscript i the variables used in run i. We want to increase the
process performance at every run by improving our knowledge on ρ̃(·) in regions relevant
to closed-loop control while safely satisfying the constraints. Performance can be defined,
2Although here we are focusing on repeating processes, a similar approach could be used for continuous
processes. We will give some ideas on how this could be achieved in the outlook section of this chapter.
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for example, in terms of tracking error or the economic objective’s value. To this aim,
after every run, we approximate the unknown function with a machine learning model
ρiθ(·) where θ ∈ Rnθ is the vector of hyperparameters or weights of the model. Note that
the method does not depend on the machine learning model. The relation between the
unknown function and its learned counterpart is

ρ̃(x(t)) = ρiθ(x(t)) + wi(x(t)),

where wi : Rnx → Rnx is an unknown state-varying model error. Let ∥(·)∥ be the 2-norm.

Assumption 6.2 The function ρ̃(x) of the real system is Lipschitz continuous over X with
known Lipschitz constant L̃X i.e.

∥ρ̃(x)− ρ̃(x̄)∥∞ ≤ L̃X∥x− x̄∥, ∀x ∈ X. (6.3)

Remark Assumption 6.6 requires us to know an estimate of the Lipschitz constant. This
does not necessarily have to be the smallest Lipschitz constant. Nevertheless, it is important
to remember that a constant that is too large can cause very conservative control actions
or even render the problem unfeasible. In practice, an approximated value of the Lipschitz
constant can be obtained from data, for example, as proposed in [36]. In this chapter, we
will assume that a Lipschitz constant is given.

Assumption 6.3 The nonlinear function ρθ(x(t)) is Lipschitz continuous in X with constant
LX , i.e.,

∥ρθ(x)− ρθ(x̄)∥∞ ≤ LX ∥x− x̄∥, ∀x ∈ X. (6.4)

Remark Note that Assumption 6.7 is not excessively restrictive since a Lipschitz constant
can be found at least locally for all continuously differentiable functions. This includes
machine learning models such as Gaussian processes with appropriate kernels. Several
algorithms for approximating the Lipschitz constant have been proposed for neural net-
works for differentiable as well as non-differentiable activation functions (cf. [56] and
references therein).

The measurements of the real functions ŷ are effected by a bounded noise v ∈ V ⊂ Rnx

ŷ = ρ̃(x(t)) + v(t),

Before the run i, the machine learning model is trained with the dataset

Di ≜ {(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂nDi , ŷnDi
)},
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which contains all measurements of states x̂k and labels ŷk of all runs up to run i − 1,
where nDi is the total number of measurements.

For the i−th run, the system can be written as

ẋ(t) = Ax(t) +Bu(t) + ρiθ(x(t)) + wi(x(t)). (6.5)

We could now find an upper-bound on the modeling error wi(x(t)) and use a nonlinear
tube MPC approach, like in [174], to guarantee constraint satisfaction, but, as mentioned
in the introduction, the upper bound on the error for all admissible states can be too large,
especially when there is not sufficient data to learn ρ̃(·). Hence, we propose to find this
upper bound in a smaller subset of the admissible state set. Let X i ⊆ X be this subset,
compact and containing the plant’s initial conditions. Associated with this set, there exists
a setWX i that contains all values that the model error can take over X i.

Assumption 6.4 wi(x(t)) lies in a compact setWX i whereWX i ∈ Rnx for all x ∈ X i.

Assumption 6.8 is not too restrictive and valid, for example, when wi(·) is continuous
since X is bounded. Hence, if Assumption 6.8 is true, there exist wmax,X i ∈ R such that:

wmax,X i ≥ ∥w(x(t))∥∞, ∀x ∈ X i.

In other words, a bound on the model error can be found. The plant (43) can be repre-
sented equivalently as:

ẋ(t) = Ax(t) +Bu(t) + ρiθ(x(t)) + d(t), (6.6)

for x(t) ∈ X i where d(t) ∈ WX i is a disturbance reflecting the modeling error. In
Section 26.1 we will show how to compute wmax,X i . For now, we assume that it has been
computed and proceed with computing the robust control invariant set.

6.2.1. Robust control invariant set

Given a bound on the model error wmax,X i over the set X i, we proceed with the computa-
tion of the robust control invariant set that encloses the evolution of the error between
the true system and the model used in the controller as we outlined in chapter 9. The
nominal system is given by setting d(t) = 0 as

ẋ̄(t) = Ax̄(t) +Bū(t) + ρiθ(x̄(t)). (6.7)
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The error dynamics are defined as the difference between the nominal system and the
real system (47) as

ż(t) = Az(t) +B(u(t)− ū(t)) + ρiθ(x(t))− ρiθ(x̄(t)) + d(t), (6.8)

where z(t) = x(t)− x̄(t). Following the principle of tube-based MPC [124] the control
that is applied to the plant contains two parts, the control signal that steers the nominal
system to the desired trajectory or reference point ū(t) and an ancillary feedback control
k : Rnx ×Rnx → Rnu that keeps the real system trajectories in the robust control invariant
set centered around the trajectory of the nominal system

u(t) = ū(t) + k(x(t), x̄(t)). (6.9)

Choosing a linear feedback with gainK, the input can be written as u(t) ≜ ū(t)+K(x(t)−
x̄(t)), K ∈ Rnu×nx and the error system (49) becomes

ż(t) = (A+BK)z(t) + ρiθ(x(t))− ρiθ(x̄(t)) + d(t). (6.10)

Definition 6.1 (Robust control invariant set) A set Ω ⊂ X ⊂ Rnx is a robust control
invariant set for the system (51) if there exist a feedback control law k(·, ·) with k(·, ·)+ū(·) ∈
U such that ∀z(t0) ∈ Ω then z(t) ∈ Ω ∀t > t0, ∀d(t) ∈ WX i .

If a robust control invariant set exists for the error dynamics (51), it is possible to keep
the real systems in a bounded region around the nominal system trajectory. The next
theorem defines conditions of existence of such a robust control invariant set (cf. [207]).

Theorem 6.1 Let S : Rnx → [0,∞) be a continuously differentiable function bounded
between two K∞ functions α1 and α2 via α1(∥z∥) ≤ S(z) ≤ α2(∥z∥). If there exist a λ > 0
and µ > 0 such that

Ṡ(z) + λS(z)− µdTd ≤ 0, ∀d ∈ WX i , (6.11)

with z ∈ X i, then there exist a robust control invariant set Ω(wmax,X i , λ, µ) such that

Ω(wmax,X i , λ, µ) ≜

{︄
z ∈ Rnx |S(z) ≤

µw2
max,X i

λ

}︄
. (6.12)

The proof can be found in [206].
When clear from the context, we will write Ωi = Ω(wmax,X i , λ, µ) for simplicity of

notation. The parameters λ, µ and the gain K of the ancillary controller can be found
with the following theorem:
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Theorem 6.2 Suppose that there exist a positive definite matrix X ∈ Rnx×nx and a matrix
Y ∈ Rnu×nx and two scalars λ0 > λ > 0 and µ > 0 such that T (X,Y, λ0, µ) ≤ 0 where

T (X,Y, λ0, µ) ≜

[︃
(AX +BY )T +AX +BY + λ0X I

I −µI

]︃
(6.13)

and let the Lipschitz constant LX i of ρiθ(x(t)) be such that

LX i ≤
(λ0 − λ)αmin(P )

2∥P∥2
, (6.14)

where P = X−1 is a symmetric matrix. Then there exists a robust control invariant set Ω as
in (53) with ancillary control law k(x, x̄) = K(x− x̄) where K = Y X−1.

The proof can be found in Appendix B.1. Hence, the problem of finding a robust
control invariant set can be solved by finding a solution of the linear matrix inequality
T (X,Y, λ0, µ) ≤ 0 where the unknowns are X,Y, λ0 and µ. The solution is not unique,
and we can use this to our advantage. Note from (55) that we want λ0 to be large,
allowing for larger Lipschitz constants. Also, from (53), we note that µ should ideally be
small. Hence, we propose to impose these conditions in an optimization problem. Since
the product λ0X would cause the optimization problem to be nonlinear with respect to
these variables, we split it into two (successively solved) linear optimization problems.
First we guess a value λguess0 for λ0 and we solve:

µ∗, X∗, Y ∗ = arg min
µ,X,Y

µ, (6.15a)

s.t. T (X,Y, µ, λguess0 ) ≤ 0, (6.15b)
X ≥ 0, (6.15c)
µ > 0, (6.15d)

and then we solve again for λ0:

λ∗0 = argmax
λ0

λ0, (6.16a)

s.t. T (X∗, Y ∗, µ∗, λ0) ≤ 0, (6.16b)
λ0 > 0. (6.16c)

Since we want to find the largest λ possible, with µ∗ and λ∗0 and LX i we can now find λ
from (55) by imposing equality3

λ∗ := λ∗0 − 2
∥P∥LX i

αmin(P )
. (6.17)

3See Appendix C.1.
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Hence, if λ∗ > 0, the robust control invariant set (53) can be evaluated as:

Ωi ≜

{︄
z ∈ Rnx |S(z) ≤

µ∗w2
max,X i

λ∗

}︄
. (6.18)

This linear iterative approach, although conservative, allows us to solve the matrix
inequality problem easily.

Reducing conservatism with the one-sided Lipschitz constant Using the Lipschitz
constant to define the robust control invariant set often results in a large set, resulting in a
conservatively large tube. This is due to the fact that αmin(P ) ≤ ∥P∥ hence the admissible
LX i is small. For this reason, a similar condition based on the one-sided Lipschitz constant
was proposed [207].

Definition 6.2 (One-sided Lipschitz continuous function) A function f(x) : Rnx ↦→ R
is one-sided Lipschitz continuous on a set X if there exist a L ∈ R such that, for all x1, x2 ∈ X ,

(f(x1)− f(x2))T(x1 − x2) ≤ L∥x1 − x2∥2 (6.19)

where L is the one-sided Lipschitz constant.

Note that the one-sided Lipschitz constant is smaller or equal to the Lipschitz constant
and can also be negative or zero. This allows us to define a similar but less conservative
condition for the existence of a robust control invariant set.

Corollary 6.3 Suppose that there exist a positive definite matrix X ∈ Rnx×nx and a matrix
Y ∈ Rnu×nx and two scalars λ0 > λ > 0 and µ > 0 such that T (X,Y, λ0, µ) ≤ 0 where

T (X,Y, λ0, µ) ≜

[︃
(AX +BY )T +AX +BY + λ0X I

I −µI

]︃
(6.20)

and let Pρiθ(x(t)) be one-sided Lipschitz continuous in X i with constant LX i . If

LX i ≤
(λ0 − λ)αmin(P )

2
, (6.21)

where P = X−1 is a symmetric matrix, then there exists a robust control invariant set Ω as
in (53) with ancillary control law k(x, x̄) = K(x− x̄) where K = Y X−1.

The proof can be found in [207]. In our case, the one-sided Lipschitz constant is computed
as suggested in [136].
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Remark The condition λ∗ > 0 is checked at every run. If it is respected, the previous
values of λ∗ and µ∗ are used. If it is not respected, one can, for example, choose another
X i or to guess a new λ0guess and solve (58) and (59) again. For our cases, we observed
that when using the one-sided Lipschitz constant, the condition was always respected, so
we did not have to change λ∗ and µ∗.

6.2.2. Tube-based shrinking horizon MPC

Once we obtain Ωi, the nominal shrinking horizon model predictive control at sampling
time tk for the ith run is given by

min
ū(·)

L(ū(·), x(tk)) (6.22a)

s.t. ẋ̄(t) = Ax̄(t) +Bū(t) + ρiθ(x̄(t)), (6.22b)

x̄ ∈ X̄ i
, ū ∈ Ū i

, (6.22c)
x̄(tk) = xk, (6.22d)
for t ∈ [tk, T ], (6.22e)

where X̄ = X i ⊖ Ωi, Ū = U⊖Gi and

Gi = {k(x, x̄) ∈ Rnu |x− x̄ ∈ Ωi, x ∈ X i and x̄ ∈ X̄ i}.

The state constraint in (63c) forces the system to lie in a region with a known upper
bound on the modeling error. The objective function L(ū(·), x(tk)) is defined as

L(ū(·), x(tk)) =
∫︂ T

tk

l(x(τ), u(τ))dτ + e(x(tk + T )), (6.23)

where T − tk is the prediction horizon, l : Rnx×Rnu → R and e : Rnx → R are continuous
and differentiable at least twice. Furthermore l(x(t), u(t)) ≥ 0 and e(x(t), u(t)) ≥ 0.
Problem (63) is solved at discrete sampling times tk = k∆t, k ∈ [0, N − 1] where
N = ceil(T/∆t)with sampling interval∆twhich for simplicity and without loss generality,
is assumed to be fixed. The optimal solution is denoted with ū∗(·). Consequently, the
resulting control signal is given by

u(t) = ū(t) + k(x(t), x̄∗(t)), t ∈ [tk, tk +∆t], (6.24)

where x̄∗(t) is the optimal nominal trajectory.
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Remark We want to stress the fact that the intra-run computational burden is equivalent
to a nominal MPC since Problem 63 does not depend on the disturbances and the robust
control invariant set is computed offline before every run. If the initial state is known, as
proposed in [207], the computational time can be further decreased by pre-computing
the nominal control action offline as in Algorithm 1.

Algorithm 1 Offline implementation of the shrinking-horizon tube MPC controller
Offline

1. Set x̄(t0) = x(t0) and set k ← 1

2. Solve Problem (63) at tk, and store ū(tk)

3. Compute the next state x̄(tk+1) applying ū(tk) to the nominal system and store it

4. Set x̄(tk)← x̄(tk+1) and k ← k + 1 and start from Step 2.

Online

1. Apply the control action u(tk) = ū(tk) + k(x(tk), x̄(tk)) to the real system during
the interval [tk, tk+1) using the stored states and inputs of the nominal system

2. Measure the state x(tk+1) and set and k ← k + 1

Figure 27 summarizes the components of the method.

6.2.3. Intra-run recursive feasibility

Since the shirking horizon MPC predicts until the end of the processes, guaranteeing
recursive feasibility is easier than a receding horizon MPC. All we need is to assume initial
feasibility.

Assumption 6.5 (Initial feasibility) There exist a safe set X i,∗ with the corresponding
upper bound wmax,X i,∗ such that Problem (63) is feasible a t = t0.

Corollary 6.4 If Assumption 6.9 is true, Problem (63) is recursively feasible for all tk = k∆T
with k ∈ [0, N − 1].

Proof For the ith run, let ū∗(τ) with τ ∈ [0, T ] be the solution of (30) at time t0 = 0, then,
for the principle of optimality, at the next sampling time t1 = t0+∆t the truncated control
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Figure 6.2.: Scheme of the proposed approach.

sequence ū∗(τ) with τ ∈ [∆t, T ] is also a feasible solution. By induction, this is true for all
sampling points; hence, a feasible solution always exists.

6.3. Safe sets

It remains to compute suitable safe sets. This task can be split into calculating an upper
bound on the modeling error and the safe sets themself.

6.3.1. Computing an upper bound on the modeling error

So far, we have assumed to have an upper bound on the modeling error. In this section, a
method to compute an upper bound is shown. This method is based on the assumption of
Lipschitz continuity of both learned ρθ(·) and unknown function ρ̃(·).

The idea is to use the Lipschitz constant of the real function to bound it with piece-wise
linear functions as in [18] (cf. Fig. 28). Let us define, for the nth element of ρ̃(·), the
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upper and lower bounding functions Hu and H l, respectively, using its Lipschitz constant:

Hu
n(x;Di) = min

k∈IDi

(ŷk,n + L̃X∥x̂k − x∥+ vn,max), (6.25)

H l
n(x;Di) = max

k∈IDi

(ŷk,n − L̃X∥x̂k − x∥ − vn,max), (6.26)

where vn,max is the maximum absolute value of the nth element of the noise vector and
(x̂k, ŷk) ∈ Di and IDi = {1, ..., nDi} is the set of indices of measurements in Di. The
function that describes the maximum value on the model error in absolute value is

w̃n,max(x;Di) = max
(︁
en,u(x;Di), en,l(x;Di)

)︁
(6.27)

where en,u(x;Di) = |ρθ,n(x)−Hu
n(x;Di)| and en,l(x;Di) = |ρθ,n(x)−H l

n(x;Di)|.
The maximum possible error between the real system and the learned function is then

w̃n,max,X i,Di = max
x∈X i

(︁
w̃n,max(x;Di)

)︁
, (6.28)

Finally, we define the maximum model error as the largest element of the maximum
error vector.

wmax,X i,Di ≜ ∥w̃max,X i,Di∥∞ ≥ ∥w(x(t))∥∞, ∀x ∈ X , (6.29)

where w̃max,X i,Di = [w̃1,max,X i,Di , ..., w̃nx,max,X i,Di ]. For simplicity of notation, we
omit the parametrization with the dataset when clear from the context, i.e., wmax,X i ≜
wmax,X i,Di . Furthermore, let F be the map F : C0×Rnx ×Rnu ×R×Rnx → R that returns
wmax,X i given ρiθ,Di, L̃X and X i. The following lemma will be useful later

Lemma 6.1 The maximum error functions w̃n,max(x;Di) is Lipschitz continuous ∀x ∈ X i

with Lipschitz constant L̃X + LX .

The proof of Lemma 6.1 can be found in Appendix B.2.

Remark So far we have considered only error in the measurements of y but not in the
state error, i.e., the error in the query state x or in the measured state x̂ (c.f. Section
4.2.4. in [35]). This can be done by invoking the Lipschitz continuity property. Assume
that the error on only the query measurements is affected by an error v(x) of which we
have an upper bound vmax(x), then we have that, for the n-th component of the function
ρn(·), |ρn(x)− ρn(x+ vx)| ≤ ∥vmax(x)∥. In this case, the query error affects only the
uncertainty bounds, and vmax(x) can be simply added to en,u(x;Di) and en,l(x;Di). If,
instead, the training points x̂ are noisy, the inference of all query points is affected. By the
same argument used for the query points uncertainty, we can accommodate the training
points uncertainty by adding the upper bound of the uncertainty to vn,max in 66.
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6.3.2. Safety conditions

We now have the tools to computewmax,X i for any given setX i. The choice ofX i influences
wmax,X i and the Lipschitz constant of the learned function LX i , hence it decides if a robust
control invariant set exists and if it does exist, influences its size. For this reason, the
choice of X i must follow some criteria. First, the conditions necessary for the existence of
the robust control invariant set must be satisfied. Second, we would like a “large” set to
restrict the state and control actions as little as possible, allowing higher performance. In
the following, we define the necessary safety conditions.

Definition 6.3 (Necessary safety conditions) The conditions that guarantee the existence
of a robust control invariant set according to Theorem 6.1 and the non-emptiness of the
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shrunk set are:

X̄ i
= X i ⊖ Ω(wmax,X i , λ, µ) ̸= ∅, (6.30a)

Ū i
= X i ⊖Gi(Ω(wmax,X i , λ, µ)) ̸= ∅ (6.30b)

T (X,Y, µ, λ0) ≤ 0 (6.30c)

LX i ≤
(λ0 − λ)αmin(P )

2∥P∥
(6.30d)

wmax,X i = F(ρiθ,Di, L̃X,X i) (6.30e)
X i ⊆ X, x0 ∈ X i (6.30f)
λ0 > λ > 0, µ > 0 (6.30g)

These conditions are called necessary safety conditions.

We can now give a definition of a safe set.

Definition 6.4 (Safe set) A set X i ⊆ X is safe if, for that set, the safety conditions are
satisfied.

We would like to have some procedures that help us to find a safe set for i = 1 (the first
run) and t0 and to update the set for the subsequent runs, i.e., for i ∈ [2, ..., nr] where nr
is the number of runs. Ideally, this update should be carried out in such a way that if X 1 is
safe, then all X j , ∀j > 1 are safe. We will see how this can be achieved in Section 27. For
now, we note that according to the Definition 6.4, one of the conditions for safety is that
the shrunk constraints X̄ i

= X i⊖Ωi and Ū i
= U⊖Gi are non-empty. It is crucial to ensure

that this condition is met because, for example, in the case of large errors, the robust
control invariant set (53) might be large, resulting in empty constraints for the nominal
problem. This condition is rather easy to check for a useful class of constraints (such as
polytopes and box constraints). Furthermore, to avoid excessively conservative constraints
and to be able to reach the reference with as few runs as possible, we would like to find a
large shrunk safe set X̄ i that is contained in the original constraints X. In practice, we
will restrict ourselves to compact sets, Lebesgue measurable under the Euclidean metric.
This restriction allows us to formulate the problem of finding the largest shrunk safe set
as an optimization problem of the form:

max
λ0,λ,µ,X,Y,X i

Λ(X̄ i
), (6.31a)

s.t. (6.31b)
Necessary safety conditions, (71a)− (71g), (6.31c)
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where Λ(·) is the Lebesgue measure. Solving this problem directly is very challenging, and
in general, there is no guarantee that a solution exists. In the following, we will present
some possible approximations that attempt to find a solution.

First, we notice that (71c) does not depend on X i hence we can solve for λ, µ,X and
Y in separate problems as in (56) and (57) obtaining λ∗, µ∗, Y ∗, X∗ and consequently
P ∗. Furthermore, we use (58) to fix λ, note from (58) that the condition λ < λ0 is
automatically satisfied, but it remains to check that λ > 0. Hence we obtain

max
X i

Λ(X̄ i
), (6.32a)

s.t. (6.32b)

X̄ i
= X i ⊖ Ωi(wmax,X i , λ∗, µ∗) ̸= ∅, (6.32c)

Ū i
= X i ⊖Gi(Ωi) ̸= ∅, (6.32d)

λ∗ = λ∗0 − 2
∥P ∗∥LX i

αmin(P ∗)
, (6.32e)

wmax,X i = F(ρiθ,Di, L̃X,X i), (6.32f)
X i ⊆ X, x0 ∈ X i, (6.32g)
λ∗ > 0. (6.32h)

Second, we relax the problem by trying to find any set X̄ i that is non-empty, which is not
necessarily the maximum. This is achieved by guessing a set X i and then checking if the
conditions (73c) to (73h) are met4.

If the safety conditions are respected, we proceed in attempting to solve Problem (63).
If no solution can be found, one can try to guess another set (cf. Fig. 30). Note that this
can be done offline before the batch starts; hence, it does not affect the real-time feasibility
of the algorithm, assuming that there is enough time between the runs. Algorithm 2
resumes the steps that must be followed to ensure the guessed set is safe.

6.3.3. Guess of the first safe set

This section presents two possible algorithms for the initial guess of the safe set of the
first batch X 1.

Remark In general, there is no guarantee that a safe set exists since the model error
or the Lipschitz constant of the unknown function may be too large. In the first case,
4If it is possible to change the initial condition of the system, the requirement x0 ∈ X i can be relaxed by
placing the initial conditions inside the set.
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Algorithm 2 Check if a set is safe
Set the iteration index j = 0. Provide a guess X i

0 ⊆ X:

1. Find a bound on the error wmax,X i
j
by solving (69).

2. Compute a (one-sided) Lipschitz constant (LX i
j
) LX i

j
of giθ(x).

3. Guess a λguess0 and solve (56) then (57) to obtain X∗
j , Y

∗
j , µ

∗ and λ∗0.

4. Given X∗
j , Y

∗
j , µ

∗ and λ∗0 solve (55) imposing equality to obtain λj and check if
λj > 0 if not, update the index j ← j + 1 guess another X i

j and start again from 1.

5. Find Ωi
j from (53) and check if X i

j ⊖ Ωi
j ̸= ∅ and U⊖KΩi

j ̸= ∅.

6. If one of the sets is empty, update the index j ← j + 1, and guess another X i
j ⊆ X

and start again from 1.

7. If the sets are not empty solve (63) with
Ωi ≜ Ωi

j and X i ≜ X i
j .

if the primary source of error is not irreducible measurement noise, one can run more
experiments and collect more data, attempting to decrease the model error, at least locally.

With X i
j , we indicate the j-th iteration over the set of run i.

Initialization as convex hull The first guess of the safe set can be set as the convex hull
of the measured features collected during the genesis experiments, i.e., the runs used to
collect the first dataset (cf. Section 26.4). This is defined by

X 1
0 ≜ conv(D1) =

{︄nD1∑︂
i=1

viλi

⃓⃓⃓⃓
⃓ vi ∈ D1,

nD1∑︂
i=1

λi = 1, λi ≥ 0

}︄
(6.33)

where D1 is the dataset collected in the genesis experiments. For example, the convex
hull can be found using the Graham Scan algorithm [102]. This guess is justified because
machine learning algorithms are usually good at interpolating data. Hence, we expect
lower errors close to the training points. Note that this is an initial guess, and it might
need to be adjusted. The disadvantage of this method is that in the case of sparse data
or outliers, the convex hull can result in a set with a significant model error. In this case,
other approaches, like the following, could be used.
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Figure 6.4.: Guesses of the safe sets for a two-dimensional state vector using the convex
hull of D (left) and a set around the initial condition (right).

Gradual expanding set While the previous approach was based on the data points, this
is based on expanding a set starting from the initial condition. Since it is necessary that
x0 ∈ X 1, we can choose a (small) δX ⊂ Rnx and define the first guess as

X 1
0 = {x0} ⊕ δX

If this first guess does not satisfy the necessary conditions for safety, the set is enlarged
again. For the j-th iteration we have

X 1
j+1 = X 1

j ⊕ δX .

Figures 29 depicts the two proposed approaches.

6.3.4. Genesis experiments

To build the first dataset D1, it is necessary to run some preliminary experiments. Since, at
this stage, there is no data and no learned function is available, it is not possible to use the
proposed approach; hence, constraint satisfaction could be at risk. In our examples, these
experiments were run using a randomly generated input. We assumed to measure all the
system states accurately and shrunk all constraints with safety margins. The systems were
stopped if one state violated these safety margins. In practice, the data of old runs can be
used as well.
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6.4. Guaranteed run-to-run expansion of the safe set

Let us suppose that X ∗ ≜ X i
j∗ is safe, for some j∗ ∈ [1, Imax] where Imax is the maximum

number of iterations. We want to study what are the conditions under which it is pos-
sible to find a larger shrunk safe set X̌ ⊖ Ω(w̌max, λ, µ), i.e., a shrunk safe set such that
X ∗ ⊖ Ω(wmax, λ, µ) ⊂ X̌ ⊖ Ω(w̌max, λ, µ). To achieve this, we first make the following
assumptions

Assumption 6.6 The learned functions ρiθ(·) are Lipschitz continuous over X with a common
Lipschitz constant LX. That is:

|ρiθ(x)− ρiθ(x̃)| ≤ LX∥x− x̃∥, ∀i ∈ [1, ..., nr]. (6.34)

Note that LX ≥ LX i , ∀X i ⊆ X.

Assumption 6.7 There exist a known safe setX ∗ withmaximum errorwmax = F(X ∗,D, L̃X, ρθ).

Remark Note that since LX is not anymore changing with X i, we can fix λ and µ for all
runs (see (58)).

Assumption 6.10 allows us to upper bound all learned functions, of every run, with a
common Lipschitz constant. Note that this is not a strong assumption: By Assumption 6.6
we already know a Lipschitz constant of the real function over the set X. One could use this
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information on the real function and reject any learned function with a Lipschitz constant
over X that is larger than L̃X hence enforcing the condition (75) by setting LX = L̃X. With
this in mind, we formulate the following theorem that guarantees the expansion of the
safe set from run to run. The indices i are omitted for simplicity.

Theorem 6.5 (Sufficient condition for run-to-run expansion) For a given datasetD, let
X ∗ ⊂ X be a safe set with maximum error wmax = F(X ∗,D, L̃X, ρθ) and control invariant
set Ω(wmax, λ, µ). If Assumption 6.11 is satisfied and if there exist a dataset Ď and a
learned function ρ̌θ trained with Ď such that w̌∗

max = F(X ∗, Ď, L̃X, ρθ̌) is smaller than
wmax, i.e. w̌∗

max < wmax then there exists a δX ⊂ Rnx/{∅} such that the error on the set
X̌ ≜ (X ∗ ⊕ δX )∩X ⊂ X defined by w̌max = F(X̌ , Ď, L̃X, ρθ̌) is less than or equal than wmax
i.e. w̌max ≤ wmax. It follows that X̌ is a safe set and X ∗⊖Ω(wmax, λ, µ) ⊂ X̌ ⊖Ω(w̌max, λ, µ).
Hence, the safe set and the shrunk safe set expand until X ∗ = X.

Proof Let X ∗ be a safe set and let us choose δX equal to a ball B(x∗, δ) with center x∗
and radius δ defined as follows

B(x∗, δ) = {x ∈ Rnx | ∥x∗ − x∥ ≤ δ} . (6.35)

By definition (cf. (70)) we have that

max
x∈X ∗

w̃n,max(x; Ď, L̃X) ≤ w̌∗
max.

From Lemma 6.1 it follows that the error functions w̃n,max(x;D, L̃X) are Lipschitz
continuous with Lipschitz constant LX + L̃X. Hence we have that ∀n ∈ [1, ..., nx]

max
x∈X ∗⊕B(0,δ)

w̃n,max(x; Ď, L̃X) = w̌max ≤ w̌∗
max + (LX + L̃X)δ.

In other words, by expanding the set X ∗ with a ball of radius δ the increase in error respect
to X ∗ can be maximum (LX + L̃X)δ. We can now find the δ:

w̌max ≤ w̌∗
max + (LX + L̃X)δ = wmax → δ =

wmax − w̌∗
max

LX + L̃X

where δ > 0 since by assumption w̌∗
max < wmax the Lipschitz constants are strictly positive.

It follows that, according to the definition of the control invariant set,

Ω(w̌max) ⊆ Ω(wmax)
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Figure 6.6.: Depiction of the idea behind Theorem 6.5 for a one-dimensional case. The
blue graph (left) represents the error function for the dataset D. After gen-
erating the next dataset Ď, by the Assumption 6.11 w̌∗

max is smaller. Hence,
the new set (projection of the red area over x) can be safely expanded until
w̌max = wmax since, at that point w̌max = Ω(wmax).

where the constant λ and µ are the same so are omitted for simplicity. Since X̌ =
(X ∗ ⊕ B(0, δ)) ∩ X it follows that

if X̌ ⊂ X, X ∗ ⊖ Ω(wmax) ⊂ X̌ ⊖ Ω(w̌max)

else if X̌ = X, X ∗ ⊖ Ω(wmax) ⊆ X̌ ⊖ Ω(w̌max)

that completes the proof. See Fig. 31 for a graphical description of the main idea.

Remark Note that the Theorem 6.5 provides a way to guarantee the existence of a larger
safe set a priori; hence, there is no need to check the safety conditions again.

Remark Theorem 6.5 assumed that the new dataset and the new learned function de-
crease the maximum error on the previous safe set. This, in general, cannot be ensured a
priori. Nevertheless, it is possible to check if, with the new machine learning model, the
error has decreased or not. If not, the model can be rejected, and another can be trained
to decrease the maximum error.
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Clearly, there is a limit to how much the error can be reduced. For example, it is
impossible to reduce the error below the measurement noise vmax. If the error cannot be
reduced, it follows, from the same arguments of Theorem 6.5, that the set at least does
not shrink.

6.4.1. Set-point error

Theorem 6.5 guarantees that both safe set and shrunk safe set expand at every batch if
the upper bound on the error decreases from batch to batch until the safe set reaches
the constraints X. It remains to guarantee that this expansion will allow the system to
reach an area around the reference point from a fixed x0 at the end of the batch Tf . As
previously mentioned, in this thesis, we consider the case where the initial condition is
fixed at every batch. Let us take a batch bioreactor producing a given product P as an
example. For such processes, the initial condition is often fixed, and a given concentration
of metabolites in the product must be reached within some tolerance at the final batch
time Tf . This can be seen as a reachability problem of the real system subject to input
and state constraints. To this aim, we make the following assumption:

Assumption 6.8 (Reachability of the nominal system) Let B(xr, R) be a ball with cen-
ter xr and radius R ∈ Rnx . There exist a safe set Xr ⊆ X such that the system ẋ̄ =
Ax̄(t)+Bū(t)+gθ(x̄(t)) under the implicit control law of (63) can reach B(xr, R) at time T
under the constraints x̄ ∈ Xr−Ω(wmax,Xr) and ū ∈ U−Gr. In other words, the B(xr, R) ⊆ S
where S is the reachable set of the nominal system i.e.

S ≜ {x̄ ∈ Rnx | x̄(Tf ;x0, u(·)) ∈ S, x̄(t) ∈ Xr, ū(·) ∈ U−Gr} (6.36)

where x̄(Tf ;x0, u(·)) refers to the evolution of the nominal state evaluated at time Tf with
initial condition x0 and control policy u(·) and Gr = G(Ω(wmax,Xr)).

Theorem 6.6 (Reachability of the real system) If Assumption 6.12 is true, it follows that
the real state x(T ;x0, u(·)) ∈ R where

R ≜
{︁
x ∈ Rnx |x ∈ B(xr, R)⊕ Ωi

}︁
. (6.37)

Furthermore, we can find an upper bound on the tracking error at time T :

∥x(Tf )− xr∥ ≤ R+
(︁
αmax(P̄ )

)︁−1/2
,

where αmax(P̄ ) is the maximum eigenvalue of the matrix

P̄ ≜
λ

µw2
max,Xr

P.
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Proof The first part of the theorem can be easily proven, recalling the definition of the
robust control invariant set (cf. Definition 6.1). Let Ω ≜ Ω(wmax,Xr) we have that

x(Tf )− x̄(Tf ) ∈ Ω.

For the Assumption 6.12 we know that x̄(Tf ) ∈ B(xr, R) hence

x(Tf ) ∈ {x ∈ Rnx |{x̄(Tf )} ⊕ Ω, ∀x̄(Tf ) ∈ B(xr, R)} = Ω⊕ B(xr, R).

The second part can be proven by noticing that the maximum Euclidean distance from
x̄(Tf ), ∥x(Tf )− x̄(Tf )∥ is the major semi-axis of the hyperellipsoid xTP̄ x = 1 which the
inverse of squared root of its largest eigenvalue. This ball is defined by the following set

Ωc =
{︂
x ∈ Rnx |∥x− x̄(Tf )∥ ≤

(︁
αmax(P̄ )

)︁−1/2
}︂
.

Note that since P > 0 and λ/(µw2
max,Xr

) > 0 then P̄ > 0 hence αmax(P̄ ) > 0. From this,
it follows that

∥x̄(Tf )− xr∥+ ∥x(Tf )− x̄(Tf )∥ ≤ R+
(︁
αmax(P̄ )

)︁−1/2
,

∥x̄(Tf )− xr + x(Tf )− x̄(Tf )∥ ≤ ∥x̄(Tf )− xr∥+ ∥x(Tf )− x̄(Tf )∥,

∥x(Tf )− xr∥ ≤ R+
(︁
αmax(P̄ )

)︁−1/2
,

which completes the proof. Figure 32 shows graphically the idea of the Theorem.

Corollary 6.7 From Theorem 6.5, it follows that there is a run i∗ ∈ N such that the real
system can reach the reference with maximum error R+

(︁
αmax(P̄ )

)︁−1/2.

Proof From Theorem 6.5 if follows that X i ⊂ X i+1 if X i+1 ⊂ X and X i are safe ∀i ∈
N. Since, from Assumption 6.12, it follows that there exist a set X ∗ ⊆ X such that
∥x(T )− xr∥ ≤ R+

(︁
αmax(P̄ )

)︁−1/2 then, there must be a i∗ ∈ N such that Xr ⊆ X ∗ hence
the reference is reachable with error R+

(︁
αmax(P̄ )

)︁−1/2.

The previous Theorem and its Corollary give useful bounds on the tracking error for the
real system that can be used to ensure that the required tracking tolerance is respected.
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Figure 6.7.: Illustration of the reachable set for a two-state system. The nominal trajectory
(red) finishes at time T in the ball B(xr, R) (green set). The real system (gray
line) evolves around the nominal. Note that the real system might fall outside
the ball B(xr, R).
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6.4.2. Design of experiment

To ensure the expansion of the safe set at every run, it is necessary that the model error
over the current safe set X i decreases with the new data used for the run i + 1 (cf.
Assumption 6.11). Also, from Theorem 6.5, we see that the size of the expansion is
proportional to how much the error has decreased. Since the error function w̃max(x) is
available, it is natural to use this information for an optimal design of experiment, i.e., to
try to decrease the error with as much as possible, hence expanding the safe with fewer
runs. The design of experiment is planned as follows: As long as xr is not reachable by
the plant with the required tolerance, the reference for the run i is set to

xir = argmax
x

w̃i
max(x). (6.38)

By doing so, the plant will collect data close to xir and possibly reduce the modeling
errors. In the following section, we provide an example.

6.4.3. Example

Let us consider again the example with which we started this chapter. The system is given
by

ẋ(t) =

[︃
−1 2
−3 4

]︃
x(t) +

[︃
0.5
−2

]︃
u(t) + ρ(x(t)), (6.39)

where ρ(x(t)) = [0,−0.25x32]⊤ is unknown. The system constraints are X ={︁
x ∈ R2| [−5,−1.2] ≤ x ≤ [5, 1.2]

}︁
and U = {u ∈ R| − 10 ≤ u ≤ 10}. The first data

set was obtained by running a single experiment as outlined in Section 26.4. The collected
data are artificially perturbed with bounded white noise with vmax = 0.1 and then used
to train a neural network ρ1θ(·) with two layers and five neurons for each layer. The
simulations were run using HILO-MPC [150]. The first guess of the safe set is obtained
using the convex hull method (cf. Section 26.3), which respected the safety conditions
(cf. Definition 6.3). Our approach is compared with a nominal shrinking horizon MPC
(non-tube-based) using the hybrid model (48) since the model error over the set X is
wmax,X = 1.15, which is too large and renders the normal tube MPC unfeasible. The plant
initial conditions are x(0) = [1,−0.3]. The set was enlarged at every run according to
Theorem 6.5. The goal is reaching the reference x2(T ) = 1. The set was expanded only in
the direction of increasing x2, since in this case, it is clear that x2 needs to move towards
increasing values to reach the reference. Design of experiment was used as described
in Section 27.2. Figure 33 shows the simulation result for the first run and Figure 34
for the last run. While our approach satisfies the constraints, the nominal MPC violates

93



them. In total, 55 runs were necessary to expand the set safely to the required reference.
In comparison, without design of experiment 95 runs where necessary (results are not
shown). The design of experiment reduced the number of runs by 55%.

Theorem 6.5 gives a way to expand the safe set guaranteed to return a safe set a priori,
but it is rather conservative; hence, a large number of runs might be needed to reach the
reference safely. In the next section, we will propose an algorithm that allows a faster
expansion of the safe set at the cost of losing a priori guaranteed safety.

6.5. Accelerated run-to-run expansion of the safe set

Note that some of the conditions of Theorem 6.5 are only sufficient conditions that allow
expanding the set safely. In practice, we can try to decrease further the number of runs
necessary to reach the reference by allowing a larger expansion rate of the set. By doing
so, we lose the a priori guarantee that the resulting expanded set is safe. Thus, we must
ensure that the safety conditions are respected before every run. Since the conditions
can be checked offline, this does not influence the real-time capability of the algorithm.
Algorithm 3 shows how this is achieved.

Algorithm 3 Algorithm for accelerated set expansion. For simplicity, the index of the run
i is omitted.
1: Given D, ρθ, α∗

min(P ), P, λ
∗
0, X0

2: Set Imax, δX̂ and k ∈ [0, 1)
3: for j ∈ [1, Imax] do ▷ Try to increase the set
4: X̂ j+1 ← Xj ⊕ δX̄
5: wmax,X̂ j+1

← F(ρθ,D, LX̂ j+1
, X̂ j+1)

6: λ← λ∗0 − 2
∥P∥LX̂j+1

αmin(P )

7: if Safety conditions 6.3 are satisfied then
8: Xj+1 ← X̂ j+1

9: else
10: δX̂ ← kδX̂
11: end if
12: end for
13: return Xj+1
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Figure 6.8.: Results of the simulation for the first run. In the first row, the state of the
plant using the proposed approach (Tube MPC) and vanilla nonlinear MPC
(Vanilla MPC) are shown. The second row shows the learned function (on
the left) with the bounds computed with (66) and the upper bound on the
model error (right).
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Figure 6.9.: Results of the simulation for the last run. In the first row, the state of the
plant using the proposed approach (Tube MPC) and vanilla nonlinear MPC
(Vanilla MPC) are shown. The second row shows the learned function (on
the left) with the bounds computed with (66) and the upper bound on the
model error (right).
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6.5.1. Example

We take the same example shown in Section 27.3, but we apply the accelerated expansion
of the safe set where δX = B(0, 0.1). Figure 35 shows the results of the simulation. In
this case, only 13 runs were necessary to reach the reference.

6.6. Example: Robotic arm

We consider the model of a one-link robotic arm modeled as a linear torsional spring
connected to a motor [155]

ẋ(t) =

⎡⎢⎢⎣
0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

⎤⎥⎥⎦x(t) +
⎡⎢⎢⎣

0
21.6
0
0

⎤⎥⎥⎦u(t) +
⎡⎢⎢⎣

0
0
0
−1.3

⎤⎥⎥⎦ g(x(t)). (6.40)

where g(x) = sin(x3) is assumed to be unknown and must be learned from data. The
objective is to bring x3(t) to the reference x3,r = 0.5, while satisfying the box constraints
on the states X =

{︁
x ∈ Rnx | xlb ≤ x(t) ≤ xub

}︁
and on the input U = {u ∈ Rnu | ulb ≤

u(t) ≤ uub ∀t ∈ [0, Tf ]}where xub = [1.57, 10, 1.57, 10]⊤, xlb = [−1.57,−10,−1.57,−10]⊤,
uub = 10 and ulb = −10.

To generate the first data set, one experiment was run as described in 26.4. The
collected data are artificially perturbed with bounded white noise with vmax = 0.05 and
then used to train a neural network ρ1θ(·) with one layer with ten neurons and ReLU
activation functions. The optimization problems were solved using HILO-MPC [150]. For
this case, we used the accelerated expansion of the safe set with δ = 0.05 using design of
experiment. The reference was reached after eight runs (cf. Figures 36,37).

6.7. Summary

We proposed a robust nonlinear model predictive control scheme with a shrinking horizon
for repetitive processes that use machine learning to improve the model and increase
performance from run to run. Robust constraint satisfaction and repeated feasibility are
guaranteed using a tube-based approach for nonlinear systems. Since the uncertainty
might be large in some regions of the state space, at every run, the system is forced to
stay in a safe region where the uncertainty is small enough that a feasible solution can be
guaranteed despite uncertainty. For this safe region, the robust control invariant set is
computed by upper bounding the error between the real system and machine learning
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Figure 6.10.: Results of the 13-th run for in the case of accelerated expansion of the safe
set. In the first row, the state of the plant using our approach (Tube MPC)
and vanilla nonlinear MPC (Vanilla MPC). The second row shows the learned
function (on the left) with the bounds computed with (66) and the upper
bound on the model error (right).
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Figure 6.12.: Results of the robotic arm model. 8th run.
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model using Lipschitz continuity. We proved that the safe set expands from run to run
under the assumption of decreasing modeling error. Furthermore, we provided an upper
bound on the tracking error for the real unknown system. The proposed approach is
particularly useful for new processes with large model uncertainty or for improving
existing processes by exploring new state regions where the model might have a large
uncertainty and constraint satisfaction is critical.
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7. HILO-MPC: A Toolbox for
Learning-supported Control, Modelling
and Estimation

While the number of new methods and theoretical findings using machine learning for
predictive control and optimization is increasing rapidly, a software tool that facilitates
the solutions to these problems is still missing. This chapter presents HILO-MPC: An
open-source and flexible Python library that allows a quick and efficient implementation
of machine learning-supported optimization, model predictive control, and estimation
problems. HILO-MPC was used in Chapter 18 and 23 to generate the results of the
simulations. In this chapter, we will give an overview of the capability of the toolbox and
show its syntax with the help of some examples.

7.1. Introduction

Machine learning libraries help control practitioners build machine learning models,
but using these models in the control design requires ad-hoc solutions, which are time-
consuming, prone to bugs, and not easily transferable to other applications. HILO-MPC is
an open-source Python library that aims to provide a way to implement machine learning
models easily into a wide variety of control, optimization, and estimation problems.
HILO-MPC interfaces with state-of-the-art machine learning libraries, PyTorch [143]
and TensorFlow [1] to train neural networks, and uses scikit-learn [145] or an in-house
learning library to train Gaussian processes. Once trained, the models can be deployed
in the control or estimator design. HILO-MPC does not only focus on machine learning:
To speed up the development time, HILO-MPC provides ways to define and solve a
broad spectrum of predefined optimal control and estimation problems quickly and with
minimum effort. Tab. 1 summarizes the different problems that can be solved with the
version 1.0.3 of HILO-MPC.

The philosophy that HILO-MPC follows is ease of use and modularity. Ease of use is
achieved by providing an intuitive high-level interface for the problem definition. At the
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same time, modularity is guaranteed by ensuring effortless interfaces between the tools
in the toolbox (see Fig. 38). The ease of use makes it suitable for teaching purposes, and
the modularity and personalization capabilities render it a useful tool for more advanced
applications such as research.

Comparing HILO-MPC with other toolboxes is challenging since it can solve a wide
variety of control and estimation problems. Here, we consider only open-source toolboxes
primarily focused on solving model predictive control problems. The software ACADO
[83] and ACADOS [191] aims at efficiency and fast solutions while keeping embedded
applications in mind. MPT3 [72] focuses on computational geometry, particularly useful
for some classes of robust MPC approaches. YALMIP [112] instead offers a broad spectrum
of optimization problems, such as bilevel optimization, mixed-integer programming, and
some MPC schemes. The toolbox do-MPC [115] implements robust multi-stage MPC and
Moving Horizon Estimation. MPC-Tools [162] offers some interfaces that help to build
MPC and MHE control problems in CasADi. In Tab. 2, we summarize the main differences
between the toolboxes.

Using machine learning models in the previously mentioned toolboxes is not straight-
forward. HILO-MPC solves this problem by providing wrappers with machine learning
libraries. Furthermore, HILO-MPC focuses on a lightweight and intuitive interface that
makes it easy for beginners.

The backbone of HILO-MPC is CasADi [9]. CasADi is a tool for algorithmic differentiation
and optimization, and it is used to build models, optimization, and estimation problems.
If TensorFlow or PyTorch are used, HILO-MPC offers an easy way to interface with
those libraries and automatically translate the models into CasADi-compatible structures.
Hence, the CasADi problem is defined and solved. CasADi has interfaces with a wide
range of solvers for linear and quadratic programming (CLP, qpOASES [61]), nonlinear
programming such as IPOPT, [197], quadratic mixed-integer programming (CPLEX [43],
GUROBI [69]), for non-quadratic nonlinear mixed-integer problems (BONMIN [27],
KNITRO [135]) and large nonlinear problems WORHP [134].

7.2. HILO-MPC modules

The toolbox can be divided into five modules: Model, control, observer, machine learning,
and embedded (cf. Fig 38). Each of these contains a set of tools, each one of which
solves a different problem. The model module is used to generate dynamic models. The
control module uses the model module to generate, e.g., optimal control and predictive
control problems. The observer module also uses the model module to generate state and
parameter estimators. The machine learning model is responsible for defining and training
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Figure 7.1.: Overview HILO-MPC
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Table 7.1.: Current tools implemented in HILO-MPC.

Modules Tools

Models

Linear/nonlinear
Time-invariant/variant
Continuous and discrete
ODEs, DAEs

Controllers

Optimal Control, Linear discrete-time MPC
Nonlinear MPC
Trajectory tracking MPC
Path-following MPC
PID
LQR

Machine Learning Neural Networks
Gaussian processes

Observers

Moving Horizon Estimation
Kalman filter
Extended Kalman filter
Unscented Kalman filter
Particle filter

Embedded µAO-MPC
SAM
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Table 7.2.: Comparison overview on the different open-source MPC software. ML: ma-
chine learning, MPC: model predictive control, MHE: moving horizon estimator,
LMPC: linear MPC, PFMPC: path-following MPC, KF: Kalman filter, EKF: ex-
tended Kalman filter, UKF: unscented Kalman filter.

Problems ML Interface Focus Article

HILO-MPC
MPC, PFMPC
MHE,KF,EKF,UKF
SMPC

Yes Python Machine Learning [150]

do-mpc MPC, MHE
Multistage MPC No Python Multistage MPC [115]

ACADO MPC No C++, Matlab Embedded [83]

ACADOS MPC, MHE No C, Matlab, Octave,
Python, Simulink Embedded [191, 192]

NMPC tools MPC, MHE No Octave, Python. MPC,MHE [162]
MPT3 Toolbox LMPC No Matlab Comp. Geometry [72]
YALMIP MPC, MHE No Matlab Optimization [112]

machine learning models that can be used in any previous modules. The embedded module
interfaces with embedded MPC software for linear MPC (µAO-MPC) [216] and nonlinear
MPC (SAM) [88]. We will briefly describe the different modules in more detail in the
following sections.

7.3. Modeling module

At the core of HILO-MPC sits the modeling module. It is a high-level interface to generate
representations of dynamical systems that can be used for model-based controllers and
observers, like MPC or MHE, or inside a control loop to simulate the plant. The system
properties supported by HILO-MPC are reported in column “Models” of Tab. 1.

A general time-variant continuous-time nonlinear system can be modeled using the
following DAEs

ẋ(t) = f(t, x(t), z(t), u(t), p),

0 = q(t, x(t), z(t), u(t), p), (7.1)
y(t) = h(t, x(t), z(t), u(t), p),

where x(t) ∈ Rnx is the differential state vector, z(t) ∈ Rnz the vector of algebraic states,
u(t) ∈ Rnu is the input vector and p ∈ Rnp is a vector of parameters. The function
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f : R×Rnx ×Rnz ×Rnu ×Rnp → Rnx represents the ODEs of the model and the function
q : R × Rnx × Rnz × Rnu × Rnp → Rnz describes the algebraic equations. This forms a
semi-explicit DAE system overall 1. The function h : R× Rnx × Rnz × Rnu × Rnp → Rny

describes the measurement equations mapping to some measurable quantity of the system.
Note that if these measurement equations are omitted during the setup of the HILO-MPC
model object, the controllers and observers connected to this model will assume that all
states are measurable.

Furthermore, HILO-MPC also supports the modeling of discrete-time systems and
discretization of continuous-time models. The available discretization methods are explicit
Runge-Kutta methods up to the fourth order and implicit collocation schemes [24]. For
the explicit Runge-Kutta methods, a series of Butcher tableaus are available, while the
implicit collocation schemes only support Gauss-Legendre polynomials and Gauss-Radau
polynomials for the calculation of the collocation points. If a nonlinear model is given, it
is possible to linearize this model around a steady-state point. It is also possible to create
linear models directly by supplying the required matrices during model setup.

As an example, we show how to set up a simple bike model, which will also be used as
an example model in the following sections:

ṗx = v cos(φ(t) + β)

ṗy = v sin(φ(t) + β)

v̇ = a

φ̇ = v/lr sin(β)

β = arctan
(︃

lr
lr + lf

tan(δ)
)︃
.

Where px and py are the x and y coordinates of the bike center of mass, v is the module of
the velocity of the center of mass, φ is the orientation angle of the vehicle with respect to
the x coordinate. The inputs are the acceleration of the center of mass a and the steering
angle δ. lr is the distance between the center of mass and the rear wheel, and lf the
distance between the center of mass and front wheel. One possible way to set up the
model is as follows
# Import the Model class
from hilo_mpc import Model

1Note that HILO-MPC only supports semi-explicit DAE systems of index 1. The index 1 indicates that the
corresponding DAE system can be transformed into a pure ODE system by differentiating the algebraic
equations once.
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# Initialize empty model
model = Model(name='Bike')

# Define model equations in string form
equations = """
# ODEs
dpx/dt = v(t)*cos(phi(t) + beta)
dpy/dt = v(t)*sin(phi(t) + beta)
dv/dt = a(k)
dphi/dt = v(t)/lr*sin(beta)

# Algebraic equations
beta = arctan(lr/(lr + lf)*tan(delta(k)))
"""
# Pass the equations to the model
model.set_equations(equations=equations)

# Sampling time in seconds
dt = 0.01

# Setup the model
model.setup(dt=dt)

# Pass the initial conditions
model.set_initial_conditions(x0=[0,0,0,0])

where the whole model equations are supplied in form of a string. HILO-MPC is able
to parse the most common functions and operations in this format. Note also that the
function beta is automatically substituted in the ODE.

Alternatively, the same model can be defined using variables directly as follows
# Initialize empty model
model = Model(name='Bike')

# Set the variables
inputs = model.set_inputs(['a', 'delta'])
states = model.set_states(['px','py','v','phi'])

# Unwrap states
px = states[0]
py = states[1]
v = states[2]
phi = states[3]

# Unwrap states
a = inputs[0]
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delta = inputs[1]

# Parameters
lr = 1.4 # [m]
lf = 1.8 # [m]
beta = ca.arctan(lr / (lr + lf) * ca.tan(delta))

# ODE
dpx = v * ca.cos(phi + beta)
dpy = v * ca.sin(phi + beta)
dv = a
dphi = v / lr * ca.sin(beta)

# Pass the differential equations to the model
model.set_differential_equations([dpx, dpy, dv, dphi])

# Sampling time in seconds
dt = 0.01

# Setup the model
model.setup(dt=dt)

# Pass the initial conditions
model.set_initial_conditions(x0=[0,0,0,0])

While the first way is more compact, it might be prone to misspelling errors, hence it is
recommended for small models. The second way is more verbose but less prone to errors.
Units, labels, and descriptions of all variables can also be set for convenience and for use
in the plotting functionality.

Once the initial conditions are set, to simulate the system of n_steps time steps dt, we
system can be simulated. This can be achieved, for example,

for i in range(n_steps):
model.simulate(u=u,p=p)

where u is the input to the system and p the vector of parameters. Note that, for every
integration interval dt the input is kept constant. Finally, HILO-MPC makes it easy to store,
access, and plot solutions generated by simulations. Every time the method simulate
is run, the solution is automatically saved in the solution object. The states and input
evolution of the system can be easily visualized with the command model.solution.plot
(). HILO-MPC uses matplotlib [84] and bokeh [26] as plotting libraries.
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7.4. Machine Learning module

This module is responsible for the definition and training of machine learning models. The
current version 1.0.3 contains two approaches: Artificial feed-forward fully connected
neural networks and Gaussian processes. Once the models are trained on the given dataset,
they can be easily deployed alone or together with a first-principle model. Here, we focus
on regression problems, i.e., the result of the training is a function whose output is a
continuous variable. Classification problems, where the output takes discrete variables,
are not discussed here since they play a minor role in control and estimation applications.
It is nevertheless possible to train such problems with HILO-MPC.

7.4.1. Artificial Neural Networks

We already covered the basics of artificial neural networks in Section 6.1. Currently, HILO-
MPC supports feed-forward, fully-connected NNs2. To train NNs, HILO-MPC interfaces
with PyTorch or TensorFlow, depending on the user’s preferences. Nevertheless, the
definition of the network, the training, and deployment (e.g., for dynamic optimization)
are carried on using HILO-MPC syntax. Under the hood, HILO-MPC transforms the
problem into an equivalent PyTorch or TensorFlow problem, solves it, and then converts
it into a CasADi-compatible function. Hence, HILO-MPC inherits all the optimization
algorithms (e.g., Adam stochastic gradient descent) and loss functions available in PyTorch
or TensorFlow.

In the following example, we show how to define an ANN consisting of two layers with
10 neurons each, with a 80%/20% train/test split, using a sigmoid function as activation
function, a batch size of 64, with maximum 1000 epochs, with early stopping with patience
of 100 epochs (cf. Section 6.1)
from hilo_mpc import ANN, Dense

# Initialize NN
ann = ANN(features, labels)
ann.add_layers(Dense(10, activation='sigmoid'))
ann.add_layers(Dense(10, activation='sigmoid'))

# Add training data set
ann.add_data_set(pdf)

# Set up NN

2Different Bayesian NNs models and recurrent NNs are currently being tested and will be available in the
next releases
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ann.setup()

# Train the NN
batch_size = 64
epochs = 1000
ann.train(batch_size, epochs, test_split=.2, patience=100,

scale_data=True)

where df is a Pandas dataframe containing the dataset, Dense(...) is the command for
creating a fully connected layer. Once the model is trained, it can be, for example, easily
used to define a hybrid model. Hybrid models with series structure (cf. Fig. 7 left) can be
defined with the command model.substitute_from(ann) where model is the previously
defined model containing, e.g., first-principle equations. HILO-MPC will try to find the
names of the labels in the variables of the model and substitute the entire network into
that label.Note that the names of the features and labels are defined as column names
in the data frame df. To create a parallel hybrid model (cf. Fig. 7 right), the network
can be simply added or subtracted to a first-principle model as follows hybrid_model =
model + ann. Once the hybrid model is generated, it can be used where necessary in the
simulation.

7.4.2. Gaussian Processes

Training a GP in HILO-MPC is similar to an NN, but the setup is slightly different since
the kernels have to be defined. The kernels currently available are Rational quadratic,
exponential sine, gamma exponential, polynomial, and squared exponential. HILO-
MPC uses scikit-learn and an in-house Gaussian process library. The user can select
which library to use. The in-house GP trainer can be done using nonlinear constrained
optimization software, e.g., using IPOPT. The kernel class can take the prior value of the
hyperparameters and the bounds where these are allowed to lie when the corresponding
object is initialized. Here is a simple example using a GP with squared exponential kernel
trained on some predefined features and labels

from hilo_mpc import GPR, SquaredExponential

# Initialize kernel
kernel = SquaredExponential(variance=0.002,

bounds={'length_scales': (0.0001, 10),
'variance': (0.0001, 10)})

# Initialize GP
gpr = GPR(features, labels, prior_mean=0, kernel=kernel)
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# Add training data set
gpr.set_training_data(train_in, train_out)

# Set up GP
gpr.setup()

# Fit the GP
gpr.fit_model()

If needed, as for the NN, the trained GP can be integrated into a hybrid model in a parallel
or series structure.

7.5. Control module

The control module contains a nonlinear MPC, a linear MPC for discrete systems, and a
proportional-integral-derivative (PID) controller. Here, we describe only the nonlinear
MPC for brevity.

7.5.1. Model Predictive Control

We consider a sampled-data nonlinear MPC problem with a continuous time-varying DAE
system. A similar formulation can be obtained for a discrete-time nonlinear system. At
the sampling time tk, the optimal control problem to solve reads

min
u(·)

∫︂ tk+T

tk

l(t, x(t), z(t), u(t), p)dt+ e(tk + T, x(tk + T ), z(tk + T ), p), (7.2a)

s.t. ẋ(t) = f(t, x(t), z(t), u(t), p), x(tk) = x̂(tk), (7.2b)
0 = q(t, x(t), z(t), u(t), p), (7.2c)
g(t, x(t), z(t), u(t), p) ≤ 0, (7.2d)
gT (tk + T, x(tk + T ), z(tk + T ), p) ≤ 0, (7.2e)
y(t) = h(t, x(t), z(t), u(t), p) (7.2f)
u(t) = u(tk + Tc), for t ≥ tk + Tc (7.2g)
for t ∈ [tk, tk + T ] ⊂ R. (7.2h)

Where u(·) is the optimal input function, l : R×Rnx ×Rnz ×Rnu ×Rnp → R is the stage
cost, e : R× Rnx × Rnz × Rnp → R the terminal cost and T is the prediction horizon and
Tc is the control horizon. x̂(t0) is the measured or estimated state vector. The equation
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g : R × Rnx × Rnz × Rnu × Rnp → Rng represents the nonlinear path constraints and
gT : R× Rnx × Rnz × Rnp → Rng,T the nonlinear terminal constraints.

Problem (83) cannot be solved directly since u(·) and the constraints are infinite-
dimensional. HILO-MPC uses direct approaches to transform the problem to an equivalent
discrete finite-dimensional optimization problem. These approaches parametrize the input
with a finite number of parameters, for example, using piece-wise constant inputs, and
force the nonlinear constraints only on a finite number of points. This reads as follows

min
u

N∑︂
i=k

∫︂ ti+∆t

ti

l(t, x(t), z(t), ui, p)dt+ e(tk + T, x(tk + T ), z(tk + T ), p), (7.3a)

s.t. x(ti+1) = x(ti) +

∫︂ ti+∆t

ti

f(t, x(t), z(t), ui, p)dt, (7.3b)

x(tk) = x̂(tk), (7.3c)
0 = q(ti, x(ti), z(ti), ui, p), (7.3d)
g(ti, x(ti), z(ti), ui, p) ≤ 0, (7.3e)
gT (tk + T, x(tk + T ), z(tk + T ), p) ≤ 0, (7.3f)
y(ti) = h(ti, x(ti), z(ti), ui, p) (7.3g)
ui = uNc , for i ≥ Nc (7.3h)
for i ∈ [k, ..., N ] ⊂ N0. (7.3i)

where ∆t is the sampling time, Nc = ceil(Tc/∆t) is the control horizon and u =
[uk, ..., uNc ]

⊤ is a sequence of piece-wise constant inputs, i.e. u(t) = ui, ∀t ∈ [ti, ti+∆t] ⊂
R. To solve (84), HILO-MPC implements a multiple shooting approach [25]. The integra-
tion of the system model in between the shooting points can be done with Runge-Kutta
methods of various orders, orthogonal collocation [137] or the dynamics can be integrated
with CVODES or IDAS solvers [78]. The default method is orthogonal collocation, and
the user can select any other method if needed. As default, piece-wise constant input is
assumed at every control interval, but other parametrizations are also possible by defining
an appropriate control signal in the system model. Notice that the actual formulation
of Problem (83) depends on which method is used for the discretization. Here, we do
not go into the details of the formulation of the approximated problem. The reader is
invited to refer to the previously cited papers for more details on the formulation of the
finite-dimensional optimal control problem for single cases.

Remark Any of the equations in (83) could be at least partially learned from data. For
example in [121] the output function (83f) is learned, in [163, 164, 33] the terminal

114



constraints (83e) and in [34, 10] the path constraints. Also, the objective function can be
learned, see, e.g., [184, 17, 31]. HILO-MPC allows the use of machine learning models in
any of these components.

Remark HILO-MPC can also optimize the sampling intervals. This will add to Problem
(84) the vector [∆tk, ...,∆tN ] as an optimization variable. This allows the solution of
minimum time problems and optimal sampling time problems.

The stage and arrival cost depends on the goal of the MPC. We will go through the
different MPC problems HILO-MPC can solve in the next sections.

MPC for set-point tracking

In set-point tracking (or reference tracking) MPC, some outputs, states, or inputs need to
track given fixed references. If a quadratic cost is used, the stage and terminal cost can be
defined as follows

l(x(t), u(t), y(t)) = ∥x(t)− xr∥2Q + ∥u(t)− ur∥2R + ∥y(t)− yr∥2P ,
e(x(tk + T ), y(tk + T )) = ∥x(tk + T )− xr∥2QT + ∥y(tk + T )− yr∥2PT

where xr, ur, yr are fixed references, and Q ∈ Rnx×nx , R ∈ Rnu×nu P ∈ Rny×ny PT ∈
Rny×ny and QT ∈ Rnx×nx are weighting matrices. For example, once we have defined the
bike model like in section 33. A possible set-point tracking MPC that tracks a reference
speed of vr = 2 m/s, with a prediction horizon of 20 steps, can be defined as follows
from hilo_mpc import NMPC

nmpc = NMPC(model)
nmpc.horizon = 20
nmpc.quad_stage_cost.add_states(names=['v'], ref=2, weights=10)
nmpc.quad_term_cost.add_states(names=['v'], ref=2, weights=10)
nmpc.setup()

Note that in the keyworded argument names takes the names of the variable as they are
defined in the model. Generic objective functions can be defined as follows. Let us assume
we want to minimize an economic objective that tries to limit the actuation level of the
two inputs while forcing the bike to go to the reference point [1,1]

l(u(t)) = δa2 + (px − 1)2 + (py − 1)2

this can be set using the method stage_cost.cost
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nmpc.stage_cost.cost = model.u[1]*model.u[0]**2
nmpc.stage_cost.cost =(model.x[0]- 1)**2 + (model.x[1]- 1)**2

Note that, in this case, the generic function takes the variables of the model directly. Note
also that the method can be called multiple times: Every time it is called, the new term is
added to the stage or terminal cost. Quadratic cost and generic cost can be used in the
same MPC definition.

MPC for trajectory-tracking

For trajectory tracking problems, the variables need to track a time-varying reference. For
quadratic cost functions, this looks as follows:

l(x(t), u(t), y(t)) = ∥x(t)− xr(t)∥2Q + ∥u(t)− ur(t)∥2R + ∥y(t)− yr(ti)∥2P , (7.4)
e(x(t0 + T ), y(t0 + T )) = ∥x(t0 + T )− xr(t0 + T )∥2QT + ∥y(t0 + T )− yr(t0 + T )∥2PT ,

(7.5)

where xr : R → Rnx , ur : R → Rnu , yr : R → Rny are time-varying references. For
example, if we want the bike to move in an elliptic trajectory, described by:

px,tr(t) = 30− 14 cos(t) (7.6)
py,tr(t) = 30− 14 sin(t) (7.7)

the MPC problem can be set as follows
from hilo_mpc import NMPC
import casadi as ca

nmpc = NMPC(model)
nmpc.horizon = 20

t = nmpc.create_time_variable()
traj_x = 30 - 14 * ca.cos(t)
traj_y = 30 - 16 * ca.sin(t)

nmpc.quad_stage_cost.add_states(names=['px', 'py'],
ref=[traj_x, traj_y],
weights=[10, 10], trajectory_tracking=True)

nmpc.quad_term_cost.add_states(names=['px', 'py'],
ref=[traj_x, traj_y],
weights=[10, 10], trajectory_tracking=True)

nmpc.setup()
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Note that instead of fixed references, here we passed two time-varying functions traj_x
and traj_y. These are defined using CasADi functions. If only their values are available
instead of the trajectory functions, these can also be passed as a dictionary.

MPC for path-following

While in trajectory tracking MPC, both the value of the reference and time are fixed
simultaneously, in path-following MPC, the controller has the freedom of choosing when
to be on the path [119, 55]. In this case, the model is augmented with a virtual path state
as follows:

min
u(·),upf(·)

∫︂ tk+T

tk

l(t, x(t), z(t), u(t), p)dt+ e(tk + T, x(tk + T ), z(tk + T ), p) (7.8a)

s.t. ẋ(t) = f(t, x(t), z(t), u(t), p), x(tk) = x̂(tk), (7.8b)
0 = q(t, x(t), z(t), u(t), p), (7.8c)
θ̇ = upf, θ(tk) = 0, (7.8d)
g(t, x(t), z(t), u(t), p, ϵ) ≤ 0, (7.8e)
gT (tk + T, x(tk + T ), z(tk + T ), p) ≤ 0 (7.8f)
y(t) = h(t, x(t), z(t), u(t), p) (7.8g)
for t ∈ [tk, tk + T ] ⊂ R, (7.8h)

where θ ∈ Rnθ is a virtual path state vector and upf(·) is the virtual input that can controller
can choose. Hence, the objective function looks like

l(x(ti), u(ti), y(ti)) =∥x(t)− xr(θ(t))∥2Q + ∥u(t)− ur(θ(t))∥2R
+ ∥y(ti)− yr(θ(t))∥2P

e(x(tk + T ), y(tk + T )) =∥x(tk + T )− xr(θ(tk + T ))∥2QT+

+ ∥y(tk + T )− yr(θ(tk + T ))∥2PT .

Usually, to force the controller to move into only one direction along the path usually a
lower bound on upf is added, i.e. upf ≥ upf,min with upf,min ∈ Rnu,θ

+ .
HILO-MPC also allows to track a constant upf, so that the MPC tries to maintain a

constant speed of the virtual state:
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l(x(t), u(t), y(t)) =∥x(t)− xr(θ(t))∥2Q + ∥u(t)− ur(θ(t))∥2R+
+ ∥y(t)− yr(θ)∥2P + ∥upf(t)− upf,ref∥2Rpf

e(x(tk + T ), y(tk + T )) =∥x(tk + T )− xr(θ(tk + T ))∥2Q+
+ ∥y(tk + T )− yr(θ(tk + T ))∥2P .

Contrary to the other available toolboxes, path-following MPC problems are automati-
cally generated. The user needs just to activate the path-following mode for the desired
variables. For the same trajectory of the previous section, the problem reads
from hilo_mpc import NMPC
import casadi as ca

nmpc = NMPC(model)
nmpc.horizon = 20
# Create path variable to use in the definition path definition
theta = nmpc.create_path_variable()
traj_x = 30 - 14 * ca.cos(theta)
traj_y = 30 - 16 * ca.sin(theta)

nmpc.quad_stage_cost.add_states(names=['px', 'py'],
ref=[traj_x, traj_y],
weights=[10, 10],
path_following=True)

nmpc.quad_term_cost.add_states(names=['px', 'py'],
ref=[traj_x, traj_y],
weights=[10, 10],
path_following=True)

nmpc.setup()

Note that in this case, we used the path variable and not the time variable.

Remark HILO-MPC allows mixing the previous problems with minimum effort, e.g., the
user can track some constant references for some of the variables while tracking a path
with other variables.

Constraints

HILO-MPC implements box constraints and nonlinear path and terminal constraints
constraints. The box constraints can be added as follows
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nmpc.set_box_constraints(x_ub=[5,5,2,1], x_lb=[-5,-5,-2,-1],
u_lb = [-1,-1], u_ub=[1,1])

these will limit px ∈ [−5, 5], py ∈ [−5, 5], v ∈ [−2, 2], φ ∈ [−1, 1], a ∈ [−1, 1] and
δ ∈ [−1, 1]. Suppose we now want to limit the position of the bike in a circle with a radius
of 2 m centered in the origin. In this case, the following nonlinear constraint can be added
nmpc.stage_constraint.constraint = (model.x[0]**2 +

model.x[1]**2)**(0.5)
nmpc.stage_constraint.ub = 4
nmpc.stage_constraint.lb = 0

The same follows for the terminal constraint. Soft constraints can be also easily activated
with the command nmpc.stage_constraint.is_soft = True. When soft constraints are
selected, HILO-MPC automatically adds the slack variables ϵp ∈ Rng and ϵT ∈ Rng,T to the
path and terminal constraints respectively as follows

min
u(·),ϵT,ϵp

∫︂ tk+T

tk

l(·)dt+ e(·) + ∥ϵs∥2Ep + ∥ϵT∥
2
ET (7.9a)

s.t. ẋ(t) = f(t, x(t), z(t), u(t), p), x(tk) = x̂(tk), (7.9b)
0 = q(t, x(t), z(t), u(t), p) (7.9c)
g(t, x(t), z(t), u(t), p) ≤ ϵp, (7.9d)
gT (tk + T, x(tk + T ), z(tk + T ), p) ≤ ϵT (7.9e)
y(t) = h(t, x(t), z(t), u(t), p) (7.9f)
0 ≤ ϵp ≤ ϵp,max, 0 ≤ ϵT ≤ ϵT, max (7.9g)
for t ∈ [tk, tk + T ] ⊂ R, (7.9h)

If desired, the user can choose the weighting matrix Ep ∈ Rng×ng and ET ∈ Rng,T×ng,T

that limit the increase of the slack variables, and also ϵp,max and ϵT,max, which are the
maximum constraint violations of path and terminal constraints, respectively.

7.6. Observer module

The observer model contains the Kalman filters, the moving horizon estimator, and the
particle filter. As for the MPC, these can also use machine learning models in their design.

7.6.1. Moving Horizon Estimation

The moving horizon estimator (MHE) is an observer based on the solution of an optimiza-
tion problem similar to the MPC problem [160]. In a nutshell, at time tk it considers a
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window of N̄ past measurements [ŷ(tk−N̄ ), ..., ŷ(tk)] and tries to fit the predicted system
output to these measurements, by optimizing the model parameters, the state estimate at
time tk−N̄ and the state noise. The output is the estimated state and parameters at time
tk. The problem is repeated at every sampling time, similar to the receding horizon MPC.
We consider a sample-data problem with equidistant sampling times as it is more common
in practice. At these sampling times, measurements are taken. Since measurements are
discontinuous, the objective function is usually in discrete form. For simplicity we indicate
with (·)i|k the variable at time ti estimated at time tk. The MHE problem solved at time tk
reads

min
xk−N|k,pk,w(·)|k,z(·)|k

⃦⃦⃦⃦[︃
xk−N̄ |k − x̂k−N̄ |k

pk − p̂k

]︃⃦⃦⃦⃦2
Pk

+

k∑︂
i=k−N̄

∥ŷi − yi|k∥2R + ∥wi|k∥2W (7.9a)

s.t. xi+1|k = xi|k +

∫︂ ti+∆t

ti

f(t, x(t), z(t), û(t), pk) + w(t), (7.9b)

yi|k = h(ti, xi|k, zi|k, ûi, pk) + vi|k (7.9c)
g(ti, xi|k, ui) ≤ 0, (7.9d)
for i ∈ [k − N̄ , k], k, N̄ ∈ N, (7.9e)

where N̄ is the horizon length, ŷi and ûi are the output and input measurements at time
ti respectively. The first term of the objective function is called arrival cost, while the second
and third weight the measurements and state noise respectively [160, 5]. R ∈ Rny×ny ,
W ∈ Rnx×nx and Pk ∈ R(nx+np)×(nx+np) are the weighting matrix for the outputs, state
noise and arrival cost. Note that Pk is often updated at every sampling time, using, for
example, an extended Kalman filter [158]. The optimization variables are the state xk−N |k,
i.e., the state at the beginning of the horizon, the state noisew(·)|k = {wi|k, ∀i ∈ [k−N̄ , k]},
the algebraic states (for DAE systems) z(·)|k = {zi|k, ∀i ∈ [k − N̄ , k]}, and the system
parameters pk. Note that the parameters are considered constant in the horizon but can
be every time the optimization is run to adapt to the new measurements.

As for the MPC, also in this case we use direct approaches to solve (9). For the bike
model, an MHE model with R = W = Pk = 10I (where I is the identity matrix of
appropriate dimensions) can be easily defined as follows:
from hilo_mpc import MHE

mhe = MHE(model)
mhe.horizon = 20
mhe.quad_arrival_cost.add_states(weights=[10,10,10,10], guess=x0_est)
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mhe.quad_stage_cost.add_measurements(weights=[10,10,10,10])
mhe.quad_stage_cost.add_state_noise(weights=[10,10,10,10])
mhe.setup()

7.6.2. Kalman filters

The Kalman filter (KF) is an algorithm that allows for the estimation of observable states
via available measurement data. In general, it consists of two steps. In the prediction
step, the estimated states from the previous iteration are propagated through the model
dynamics to obtain preliminary values for the states at the current time step and the
so-called a priori estimates. In the update step, the a priori estimates are updated using
the measurement data to obtain the a posteriori estimates. The original formulation of
the KF was developed for linear discrete-time systems [89]

xk = Akxk−1 +Bkuk + wk,

yk = Ckxk + vk,

where wk is the process noise and vk is the measurement noise. The process noise
wk ∼ N (0, Qk) and the measurement noise vk ∼ N (0, Rk) are assumed to be zero-mean
normal distributions with the covariance matrices Qk and Rk, respectively. Accordingly,
the prediction step and update step of the KF are as follows

x̂k|k−1 = Akx̂k−1 +Bkuk, (7.10)

Pk|k−1 = AkPk−1A
T
k +Qk, (7.11)

x̂k = x̂k|k−1 +K(yk − ŷk), (7.12)

Pk = Pk|k−1 −KPykykK
T, (7.13)

with

K = PxkykP
−1
ykyk

,

ŷk = Ckx̂k|k−1,

Pxkyk = Pk|k−1C
T
k ,

Pykyk = CkPk|k−1C
T
k +Rk,

where Pk is the error covariance matrix, Pxkyk is the state-measurement cross-covariance
matrix, Pykyk is the measurement covariance matrix, K is called the Kalman gain and ŷk
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is the predicted output. The notation x̂k|k−1 represents the estimated state x̂ at time step
k given observations up to and including time step k − 1. The covariance matrix Pk is a
measure of the estimation accuracy of the estimated states, i.e., the lower the value, the
closer the estimated state is to the actual one assuming normally distributed noise.

There are also extensions to the original KF formulation for dealing with nonlinear
models. The two most known extensions are the extended Kalman filter (EKF) [181]
and the unscented Kalman filter (UKF) [198]. In the EKF, while a priori estimates of the
states can be easily obtained by propagating through the nonlinear model dynamics, the
propagation of the error covariance matrix is approximated by a system linearization. One
drawback is that the linearization can produce highly unstable Kalman filters [198]. The
UKF uses the unscented transform to generate a set of samples, the so-called sigma points,
that represent the initial probability distribution. These sigma points are then propagated
through the nonlinear system dynamics and afterward used to approximate the a priori
estimates and the predicted output and the various covariance matrices. The update step
is then the same as for the KF and EKF.

Here, for brevity, we show only an example of a UKF. The other Kalman filters follow a
similar syntax. Assuming that we can measure all the states of the bike, we have

from hilo_mpc import UKF

ukf = UKF(model)
ukf.setup()

# Set R matrix
ukf.R = [1e-4,1e-4,1e-4,1e-4]

# Set initial guess state
ukf.set_initial_guess([0., 0., 0., 0.])

# Run simulations
for k in range(200):

model.simulate(u=u)

# Get noisy measurement
yk = model.solution.make_some_noise('yf', var={'y': 1e-4})

# Calculate estimates
ukf.estimate(y=yk, u=u)

Note that we used the method make_some_noise to generate noisy measurements. The
noise is assumed to be Gaussian-distributed. In this case, the variance was set to 1e−4 for
all outputs.
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7.6.3. Particle filter

The particle filter [173] is another algorithm that can be used for estimation. It works
similarly to the UKF in that a set of samples, the “particles”, is propagated through the
nonlinear system dynamics. This set of samples is drawn from a probability density
function that is assumed to be known. Next, the relative likelihood of each propagated
particle is determined

q∗i =
qi∑︁np

i=1 qi
,

with
qi ∼ pdf(yk|ŷk),

where np is the number of particles in the set. This relative likelihood measures how well
a particle matches the measurement yk and is used in the resampling step to generate
the set of a posteriori particles. This resampling step is analogous to the update step of
the Kalman filters. The resampling can be achieved by using one of the several available
sampling strategies, like e.g., survival of the fittest [90] or regularization [132]. Similar
to the UKF, the a posteriori particles can be used to determine the estimated states via
computation of the mean of the distribution. For highly nonlinear system dynamics or
non-Gaussian probability density functions, the particle filter usually outperforms the
Kalman filter algorithms [173]. The setup and usage of a particle filter in HILO-MPC is
similar to that of the Kalman filters; hence, we do not show it here for brevity.

7.7. Embedded Module

Implementing optimization-based controllers/MPC controllers on embedded systems
requires a tailored implementation. By now, a series of tailored automatic code generation
tools for MPC exist[83, 192, 216, 50].

HILO-MPC provides an interface for the code generation of MPC for linear time-invariant
discrete-time model predictive control, tailored for small embedded systems, like micro-
controllers[216].

The code generation is limited to discrete-time linear time-invariant systems of the form

x+ = Ax+Bu (7.14)

subject to input and state constraints u ≤ u ≤ u, x ≤ x ≤ x, where x and u denote
the state and input at the current sampling time, and x+ denotes the state at the next
sampling time.
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The considered linear MPC problem formulation is

minimize
u

1

2

N−1∑︂
j=0

(∥xj∥2Q + ∥uj∥2R) +
1

2
∥xN∥2P ,

subject to xj+1 = Axj +Buj , j = 0, . . . , N − 1,

u ≤ uj ≤ u, j = 0, . . . , N − 1,

x ≤ xj ≤ x, j = 0, . . . , N − 1,

x0 = x,

(7.15)

where the integer N ≥ 2 is the prediction horizon, the matrices Q ∈ Rnx×nx , R ∈
Rnu×nu and P ∈ Rnx×nx are the state, input, and terminal weighting matrix, respectively.
The input sequence u =

[︁
u0 . . . uN−1

]︁
is the optimization variable.

For automatic code generation of the problem (15) tailored towards microcontrollers,
we rely on µAO-MPC,[216] a code generation tool that uses an augmented Lagrangian
and Nesterov’s fast gradient method [215, 98]. By design, the algorithm’s implementation
is simple and relies only on matrix-vector operations (i.e., no divisions), it can easily be
warm started and computes good MPC inputs in very few iterations of the algorithm. For
well-behaved problems, the computations can be made more efficient by using fixed-point
arithmetic (instead of floating-point).

The code generation reformulates the MPC optimization problem (15) as a condensed
parametric QP P(x)

minimize
u ∈ U

1

2
uHu+ ug(x),

subject to z(x) ≤ Eu ≤ z(x),
(7.16)

where the constant Hessian matrix HT=H > 0 ∈ RNnu×Nnu and the gradient vector g(x)
depend on the system (14) and the objective function in (15). Additionally, g(x) depends
on the current state x (i.e., the parameter). The set U = {u | u ≤ uj ≤ u, j=0, ..., N − 1}
defines the input constraints. The constant matrix E and the constraint vectors z(x) and
z(x) depend on the constraints in (15).

The generated code is a highly portable C-code. It is split into the data for the QP P(x)
(e.g., the constant matrix H and the parametric vector g(x)) and the implementation of
the optimization algorithm to solve the QP [215, 98].

Figure 39 depicts an overview of the embedded module. Similarly to other modules,
the LMPC class is initialized using a Model object. In this case, a linear time-invariant
discrete-time model is used. Calling the LMPC.setup() method, specifying the solver
'muaompc', will trigger the code generation procedure. The code generation automatically
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Figure 7.2.: A scheme of the Embedded module. Left, the typical use of the module,
including automatic code generation provided byµAO-MPC. Right, a hardware-
in-the-loop simulation is used as an example.

creates C-code, which can be compiled to run on an embedded target. Additionally, a
Python interface to the generated C-code is also created. This Python interface is used by
the LMPC.optimize() method to obtain the input that minimizes 15. The basic use of the
Embedded Module is exemplified in the following Python code

from hilo_mpc import LMPC, Model
# The Model class uses the linear system matrices A, B, and
# the LMPC class uses the weighting matrices Q, R, P, constraints, etc.,
# to create the mpc object. Using the solver muaompc triggers the code

generation
mpc.setup(nlp_solver='muaompc')
# the generated MPC code can be used directly on an embedded target using C,
# or via the Python interface as HILO-MPC does on the next line
u = mpc.optimize(x0=x)

7.8. Examples

In the next section, we present some examples that have been solved using HILO-MPC.
These examples can also be found in the example repository and Python files or Jupyter
notebook files. For this reason, we do not go into the implementation details but give just
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a high-level description of the problems and present the results. The reader is invited to
read the documentation and the example codes for details.

7.8.1. Learning the dynamics - Race car

We consider a realistic example of an autonomous racing minicar. The goal is to follow
a complex track using a path-following formulation in the presence of disturbances. We
use a bike model with nonlinear tire models and a drive train model (cf. Fig. 40a) that
has been identified and validated in experiments by [110]. To this model, we add a
component describing the effect of lateral drag forces due to, for example, a strong wind.
The model is represented by the following system of nonlinear differential equations

ṗx = vx cos(ψ)− vy sin(ψ), (7.17)
ṗy = vx sin(ψ) + vy cos(ψ), (7.18)

ψ̇ = w, (7.19)

v̇x =
1

m
(Fr,x − Fa,x − (Ff,y − Fa,y) sin(δ) +mvyω) , (7.20)

v̇y =
1

m
(Fr,y − Fa,y − (Ff,y − Fa,y) cos(δ)−mvxω) , (7.21)

ω̇ =
1

Iz
(Ff,ylf cos(δ)− Fr,ylr) , (7.22)

where px and py are the coordinates of the center of gravity, vx and vy are longitudinal
and later velocities of the center of gravity. The orientation is denoted by ψ and the yaw
rate by ω. The control inputs are the motor duty cycle d and steering angle δ. The two
parameters lf and lr are the distances from the center of gravity to the front axle and rear
axle, respectively, m is the mass of the car, and Iz is the inertia. The path to follow is the
center of a racing track which has been interpolated using splines. The tire forces are
modeled with a simplified Pacejka Tire Model [13]

Ff,y = Df sin(Cf arctan(Bfαf )), (7.23a)
Fr,y = Dr sin(Cr arctan(Brαr)), (7.23b)
Fr,x = (Cm1 − Cm2vx)d− Cr − Cdv

2
x, (7.23c)

αf = − arctan
(︃
wlf + vy

vx

)︃
+ δ, (7.23d)

αr = arctan
(︃
wlr − vy

vx

)︃
, (7.23e)

126



where Df , Dr, Bf , Br, Cm1, Cm2, Cr and Cd are parameters. The longitudinal and lateral
drag forces are defined, respectively, as

Fa,x = 0.5 cwρAvx,

Fa,y = 0.5 cwρAvy,wind,

where cw is the drag coefficient, ρ is the air density, A the effective flow surface and vy,wind

is the lateral wind velocity.
The model used by the MPC does not have the drag effect. The goal is to learn this

effect from data using a Neural Network and then augment the first principle model with a
machine learning component that models the drag effect. After discretization, the hybrid
model can be written as:

xk+1 = f(xk, uk) +BTm(xk, uk), (7.24)

where m(xk, uk) is an NN model and

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (7.25)

The features of the NN are the vy,wind and vx, the labels are correction terms on φ, vx, vy
and ω. To show the effectiveness of the learning, we compare the results of MPC using
the perfect model (i.e., with known drag force effects), the hybrid model (using the NN),
and the model without drag forces. Furthermore, the measurements of position, velocity,
and directions are affected by Gaussian noise and estimated using an Unscented Kalman
Filter. Figure 40b shows the results of the simulation. While the hybrid model has results
similar to the perfectly-known model, the model without drag exits the race area after the
fifth curve. The complete code can be found in the HILO-MPC repository.

7.8.2. Learning a reference - Cooperative robots

Inspired by [120], a follower robot has to track the position of a leader robot. The leader
moves in a periodic but unknown trajectory. The objective is to learn the trajectory of
the leader with GPs and pass the learned trajectory to the follower. Hence, in this case,
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the machine learning model enters the reference function (cf. Fig. 41). The nonlinear
dynamics of the robots are described by

ẋ1 = u1 sin(x3), (7.26a)
ẋ2 = u1 cos(x3), (7.26b)
ẋ3 = u2, (7.26c)

where x1 and x2 are the horizontal and vertical position of the root and x3 its heading
angle, u1 is the speed and u2 the turning rate. The problem is a trajectory-tracking problem
of the form (83) with an objective function (85) where xr(·) is the mean function of a GP
trained on the data set collected from the position of the leader. The trajectory generated
by the leader results from applying the following time-varying forces

u1(t) = 2 + 0.1 sin(t), (7.27a)
u2(t) = 0.5 + sin(t). (7.27b)

Figures 42 show the results of the reference learning and closed-loop simulation.

7.8.3. Learning the controller - String damper system

Solving an MPC requires the solution of a (nonlinear) optimization problem online. This
is possible only for applications where the available computational power and energy are
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Figure 7.4.: Cooperative robot example. The follower needs to track the trajectory of the
leader. The trajectory is learned from data using a GP regressor.

sufficient to guarantee a solution within the sampling times. For embedded applications
with low computational power or that can use only a limited amount of energy (for
example, battery-powered systems), this is often not possible. Hence, methods that
provide at least a close-to-optimal solution without solving the optimization approach at
every time step are necessary. This can be done using explicit MPC approaches. Some
of these approaches are based on learning the solution of an MPC offline, i.e., the map
x ↦→ ρθ(x) that approximates the implicit MPC control law, and then using the learned
controller online [140, 91, 116, 37, 39, 44, 151], (cf. Fig. 43). In this way, the control
action can be found with a simple and fast function evaluation. In this example, we want
to control a mass-spring-damper system using a learned controller (Fig. 43. The model is

ẋ1 = x2, (7.28a)

ẋ2 =
1

m
(u− kx1 − dx2), (7.28b)

where x1 is the vertical position, x2 the vertical velocity, u the vertical force and k, d the
system parameters. The equilibrium point is x = [0, 0]T, u = 0. The objective is to maintain
the reference xref = [1, 0]T using a learned MPC. To do so, we use the results of just one
closed-loop MPC simulation starting from the initial conditions x(0) = [12, 0]T. In total,
667 data points are collected. We use the data collected to train an NN with three fully
connected layers, with ten neurons each. The features of the NN are x1 and x2; the labels
are the input u. We test the learned controller starting from a different initial condition
x(0) = [10, 0]T. In Fig. 44, the simulation results are shown. The learned controller is able
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to bring the system to the reference as the original controller, but while the MPC takes 14
ms per iteration, the evaluation of the NN took a time below the sensitivity of the profiler
used to compute the elapsed time, that in this case is of 1 ms, so we obtained at least a 14
times reduction in computational time. The main disadvantage of a learned controller
is that constraint satisfaction is not guaranteed (cf. [91]). Here, for brevity, we do not
discuss this aspect.

7.9. Summary

We introduced HILO-MPC, a toolbox developed in the frame of this work, for the fast
development of predictive control and estimation problems that facilitates the use of
machine learning models, which can use state-of-the-art machine learning toolboxes such
as PyTorch, TensorFlow and scikit-learn. The toolbox can solve a large variety of problems,
such as model predictive control, moving horizon estimation, Kalman filters, and particle
filters. We showed three applications of the toolbox. In the first application, a hybrid model
of a minicar was used in an MPC for an autonomous driving example under the presence of
model uncertainty due to external forces. In the second application, the machine learning
model was instead used to learn the reference trajectory of a follower robot, whose task is
to follow a leader robot. Finally, in the third example, machine learning was used to learn
the implicit control law of an MPC offline. This is particularly interesting for applications
where the computational power and/or energy is limited. Hence, the optimal control
problem cannot be solved in the required sampling time. These three examples were
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chosen to show how machine learning models can be used to learn not only the dynamics,
as commonly done in literature but also other components of the controller. The code
of the presented examples is openly available in the HILO-MPC repository. Upon the
submission of the thesis, Stochastic MPC was also developed but has not yet been released
officially. Hence, it was not discussed here. We believe that HILO-MPC’s flexibility and
simplicity can make it a useful tool for both research and teaching.
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8. Conclusions and Outlook

Machine learning can offer valid support to MPC, where using purely first-principles
models is difficult. Hence, the integration of machine learning models with MPC methods
is currently a very active research area. In this thesis, we proposed two machine learning-
supported MPC approaches that consider data directly in the control design, i.e., not only
to learn the unknown dynamics but also to force the system to stay in regions where the
model is more accurate. The approaches proposed focused on repetitive processes, i.e.,
they do not usually work in steady-state conditions.

The first approach was a risk-aware MPC. In this approach, an ensemble of Gaussian
processes was used to build a risk map that entered the MPC constraints and informed the
MPC on the possible modeling risk, i.e., modeling error, across the feature space. We show
in an example that the risk, in our case studies, correlated well with model error. Thanks
to this risk function, the MPC could avoid high-risk areas. As the number of repetitions
increases, the risk over the feature spaces decreases because the machine learning model
enlarges its predictive confidence across the feature space. This enlargement is reflected
in a greater performance of the plant as the number of runs increases. We applied the
method on two fed-batch bioreactors, using open-loop optimization and MPC. The first is
useful in case no online measurements are available. We showed that a balance exists
between exploration and exploitation and that this balance can be tuned by selecting the
maximum allowed risk that the controller is allowed to take. We also showed that the MPC
performance run-to-run is not necessarily better than an open-loop control since the data
collected, and hence the model, are different in the two cases, resulting in different control
performances. While this approach is simple, it does not guarantee robust constraint
satisfaction.

The second approach uses nonlinear tube MPC to guarantee constraint satisfaction.
This method also takes the measurements directly into account in the design, together
with the Lipschitz constant of the real system. Thanks to this information, it is possible
to upper-bound the modeling error. Then, a safe set is found, i.e., a set where the upper
bound on the modeling error is small enough, and a feasible solution of nonlinear tube
MPC can be found. The system is then forced to remain in this safe set. In the run, new
measurements are collected. If a machine learning model exists such that the modeling
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error on the safe set decreases from run to run, we proved that the safe set expands.
We also provided a set expansion method that guaranteed a priori that if a set at run
i is safe, the updated set i + 1 is also safe. To accelerate the expansion of the set, we
proposed using design-of-experiment, which aims to decrease the error on the safe set
quickly, and an accelerated set expansion (at the price of apriori guarantees that the set
is safe). Finally, in the frame of this work, we developed HILO-MPC: An open-source
Python toolbox that allows us to easily solve learning-supported problems such as MPC,
moving horizon estimator, Kalman filter, and particle filters. The toolbox interfaces with
state-of-the-art learning libraries such as TensorFlow and PyTorch. It can use feed-forward
neural networks and Gaussian processes as machine learning models. Thanks to its
integration with software for embedded MPC, such as µAO-MPCand SAM, the machine
learning-supported problem can also be easily deployed in embedded applications.

In the frame of the proposed risk-aware MPC, future research could be focused on using
a multi-dimensional risk function that describes the risk of every output of the machine
learning model without lumping the risk in one single measure.

Furthermore, the tube MPC approach proposed used the robust control invariant set
definition that is valid for continuous processes. Less conservative constraint tightening
could be achieved if, instead, one would take into account the finite-time nature of
the process. Regarding the HILO-MPC toolbox, upon submission of this thesis, we also
implemented a Stochastic MPC formulation using Gaussian processes and a UKF-based
stochastic MPC [30]. We are currently working on implementing other MPC formulations,
such as multi-mode MPC and stochastic MPC, using Bayesian Neural Networks.
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A. Appendix

A.1. Notation and definitions

Here we state some definitions and notations used throughout the paper.

Definition A.1 (Class K functions) A function α : [0,∞) → [0,∞) belongs to the set of
class K functions if it is continuous, strictly increasing and α(0) = 0.

Definition A.2 (Set addition and difference) Consider two sets A,B ⊂ Rn, the set differ-
ence (or Pontryagin difference) is defined as

A⊖ B = {x ∈ Rn|x+ y ∈ A, ∀y ∈ B} (A.1)

the set addition (or Minkowski sum) is defined as

A⊕ B = {x+ y ∈ Rn|x ∈ A, y ∈ B} (A.2)

Definition A.3 (Multiplication of set by a matrix) A set B ⊂ Rn multiplied by a matrix
A ∈ Rn×m is

AB = {c | ∃b ∈ B, c = Ab} (A.3)

A.2. Theorems and Proofs

A.2.1. Proof of Theorem A.2

The proof follows closely [206] with the difference that here we do not consider any
matrix multiplying the noise vector. The idea is guessing a function S̃ that satisfies the
condition in (52).

Proof We consider first a linear system with disturbances

ṡ(t) = (A+BK)s(t) + d(t)
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Let us define the function S̃(s(t)) ≜ s(t)TPs(t). By substituting this in (52) we obtain

Ṡ̃(s(t)) + λ0S̃(s(t))− µd(t)Td(t) =

= s(t)T
[︂
(A+BK)TP + P (A+BK)

]︂
s(t)

+ d(t)TPs(t) + s(t)TPd(t) + λ0s(t)
TPs(t)− µd(t)Td(t).

For simplicity defineH(s(t)) = Ṡ̃(s(t))+λ0S̃(s(t))−µd(t)Td(t). If we multiply both sides
of (54) with diag(P, I) and substitute P = X−1 and K = Y X−1 we obtain:[︃

(A+BK)TP + P (A+BK) + λ0P P
P −µ

]︃
≤ 0 (A.4)

By multiplying both sides of (32) with [s(t) d(t)] and [s(t) d(t)]T respectively, we have
H(s(t)) ≤ 0. Because of Theorem A.1, there exists a robust control invariant set Ω for
the system ṡ(t) = (A + BK)s(t) + d(t), where Ω = {s ∈ Rnx |sTPs ≤ µw2

max,X
λ0
}. Denote

M(z(t)) = Ṡ(z(t)) + λS(z(t)) − µd(t)Td(t) with λ < λ0, and use the error system (51),
we obtain:

M(z(t)) =Ṡ(z(t)) + λS(z(t))− µd(t)Td(t)

=z(t)T
[︂
(A+BK)TP + P (A+BK)

]︂
z(t)

+ 2d(t)TPz(t) + λz(t)TPz(t)− µd(t)Td(t)
+ 2[gθ(x(t))− gθ(x̄(t))]TPz(t)

=H(z(t)) + (λ− λ0)z(t)TPz(t)
+ 2[gθ(x(t))− gθ(x̄(t))]TPz(t).

Since H(z(t)) ≤ 0 and αmin(P )∥z(t)∥2 ≤ z(t)TPz(t) ≤ αmax(P )∥z(t)∥2 we obtain:

M(z(t)) ≤ (λ− λ0)z(t)TPz(t) + 2[gθ(x(t))− gθ(x̄(t))]TPz(t)
≤(λ− λ0)αmin(P )∥z(t)∥2 + 2[gθ(x(t))− gθ(x̄(t))]TPz(t)

By using the definition of Lipschitz continuity and (55), we have

M(z(t)) ≤(λ− λ0)αmin(P )∥z(t)∥2 + 2LX ∥P∥∥z(t)∥2

=(2LX ∥P∥+ (λ− λ0)αmin(P ))∥z(t)∥2 ≤ 0

hence Ωi is robust invariant for the error system.
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A.2.2. Proof of Lemma A.1

Proof We prove first that the functions Hu
n(x;D) and H l

n(x;D) are Lipschitz continuous
with respect to x. We prove it for Hu

n(x;D) since for H l
n(x;D) a very similar proof follows.

We have that ∀k ∈ ID⃓⃓⃓(︂
ŷk,n + L̃∥x̂k − x∥+ vn,max

)︂
−
(︂
ŷk,n + L̃∥x̂k − x̃∥+ vn,max

)︂⃓⃓⃓
=

= L̃ |∥x̂k − x∥ − ∥x̂k − x̃∥| ≤ L̃(∥x̂k − x− (x̂k − x̃))∥ ≤ L̃∥x̃− x∥

Note that the upper-bound L̃∥x̃− x∥ does not depend on k hence

|Hu
n(x;D)−Hu

n(x̃;D)| ≤ L̃∥x̃− x∥. (A.5)

Next, for Assumption A.7, ρθ is Lipschitz continuous. Let L be a Lipschitz constant. Hence
it holds that

|ρθ(x)− ρθ(x̃)| ≤ L∥x̃− x∥ (A.6)
summing this with (33) we obtain

|ρθ,n(x)− ρθ,n(x̃)|+ |Hu
n(x̃;D)−Hu

n(x;D)| ≤ (L̃+ L)∥x̃− x∥
|ρθ,n(x)− ρθ,n(x̃) +Hu

n(x̃;D)−Hu
n(x;D)| ≤ |ρθ,n(x)− ρθ,n(x̃)|+ |Hu

n(x;D)−Hu
n(x̃;D)|

|ρθ,n(x)−Hu
n(x;D)− (ρθ,n(x̃)−Hu

n(x̃;D)) | ≤ (L̃+ L)∥x̃− x∥
|en,u(x;D)− en,u(x̃;D)| ≤ (L̃+ L)∥x̃− x∥.

The same follows for en,l(x;D). Hence, since the maximum operator in (71e) will either
select en,l(x;D) or en,u(x;D) it follows that:

|w̃n,max(x;D)− w̃n,max(x̃;D)| ≤ (L̃+ L)∥x̃− x∥. (A.7)
Hence w̃n,max(x;D), n ∈ [0, ..., nx] are Lipschitz continuous with Lipschitz constant L+ L̃.

A.3. Miscellaneous

A.3.1. Computation of λ for robust control invariant set

We have the following conditions on the Lipschitz constant cf.(55) and one-side Lipschitz
constant respectivelly:
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LX i ≤
(λ∗0 − λ)αmin(P )

∗

2∥P ∗∥
, (A.8)

LX i ≤
(λ∗0 − λ)αmin(P )

∗

2
, (A.9)

The values of λ0 and P found by solving (54). LX i and LX i are also given. The unknown
is then λ. For the case with the vanilla Lipschitz constant we have

λ ≤ λ∗0 − 2
LX i∥P ∗∥
α∗
min(P )

(A.10)

Since P is positive definite, ∥P∥ > 0 and αmin(P ) > 0, furthermore LX i ≥ 0. Hence
the condition λ < λ0 is automatically satisfied. From (53) we see that we would like λ to
be as large as possible. Hence we chose

λ := λ∗0 − 2
LX i∥P ∗∥
α∗
min(P )

(A.11)

The one-sided Lipschitz constant could also be negative. If it is negative we obtain

λ ≤ λ∗0 + 2
|LX i |∥P ∗∥
α∗
min(P )

(A.12)

which is always guaranteed. So it is sufficient to take a non-zero value very close, but
smaller, than λ∗0 to guarantee 0 < λ < λ∗0 as required by Theorem A.2.

138



Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015. url: https://www.tensorflow.org/.

[2] Victoria O. Adesanya, Matthew P. Davey, Stuart A. Scott, and Alison G. Smith.
“Kinetic modelling of growth and storage molecule production in microalgae
under mixotrophic and autotrophic conditions”. In: Bioresource Technology 157
(2014), pp. 293–304. issn: 0960-8524. doi: https://doi.org/10.1016/
j.biortech.2014.01.032. url: https://www.sciencedirect.com/
science/article/pii/S0960852414000571.

[3] V. Adetola, D. DeHaan, and M. Guay. “Adaptive model predictive control for
constrained nonlinear systems”. In: Systems and Control Letters 58.5 (2009),
pp. 320–326. doi: 10.1016/j.sysconle.2008.12.002.

[4] V.A. Akpan and G.D. Hassapis. “Nonlinear model identification and adaptive
model predictive control using neural networks”. In: ISA Transactions 50.2 (2011),
pp. 177–194. doi: 10.1016/j.isatra.2010.12.007.

[5] Frank Allgöwer, Thomas A Badgwell, Joe S Qin, James B Rawlings, and Steven J
Wright. “Nonlinear predictive control and moving horizon estimation—an intro-
ductory overview”. In: Advances in control (1999), pp. 391–449.

[6] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.
[7] N. Amann, D. Owens, and E. Rogers. “Iterative learning control for discrete-time

systems with exponential rate of convergence”. In: 1996.

139

https://www.tensorflow.org/
https://doi.org/https://doi.org/10.1016/j.biortech.2014.01.032
https://doi.org/https://doi.org/10.1016/j.biortech.2014.01.032
https://www.sciencedirect.com/science/article/pii/S0960852414000571
https://www.sciencedirect.com/science/article/pii/S0960852414000571
https://doi.org/10.1016/j.sysconle.2008.12.002
https://doi.org/10.1016/j.isatra.2010.12.007


[8] Francesco Amato, Roberto Ambrosino, Marco Ariola, Carlo Cosentino, Gianmaria
De Tommasi, et al. Finite-time stability and control. Vol. 453. Springer, 2014.

[9] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
“CasADi – A software framework for nonlinear optimization and optimal control”.
In: Mathematical Programming Computation 11.1 (2019), pp. 1–36. doi: 10.
1007/s12532-018-0139-4.

[10] Leopoldo Armesto, Jorren Bosga, Vladimir Ivan, and Sethu Vijayakumar. “Efficient
learning of constraints and generic null space policies”. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA). 2017, pp. 1520–1526. doi: 10.
1109/ICRA.2017.7989181.

[11] Anil Aswani, Humberto Gonzalez, S. Shankar Sastry, and Claire Tomlin. “Provably
safe and robust learning-based model predictive control”. In: Automatica 49.5
(2013), pp. 1216–1226.

[12] Mithun Babu, Yash Oza, Arun Kumar Singh, K Madhava Krishna, and Shanti
Medasani. “Model predictive control for autonomous driving based on time scaled
collision cone”. In: 2018 European Control Conference (ECC). IEEE. 2018, pp. 641–
648.

[13] Egbert Bakker, Lars Nyborg, and Hans B Pacejka. “Tyre Modelling for Use in
Vehicle Dynamics Studies”. In: SAE Transactions (1987), pp. 190–204. doi: 10.
4271/870421.

[14] Y. Bar-Shalom and E. Tse. “Concepts and Methods in Stochastic Control”. In:
Control and Dynamic Systems 12.C (1976), pp. 99–172. doi: 10.1016/B978-0-
12-012712-2.50009-3.

[15] A.G. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang, and M. Morari. “Explicit
model predictive control of DC-DC switched-mode power supplies with extended
Kalman filtering”. In: IEEE Transactions on Industrial Electronics 56.6 (2009),
pp. 1864–1874. doi: 10.1109/TIE.2009.2015748.

[16] Lukas Beckenbach, Pavel Osinenko, and Stefan Streif. “Addressing infinite-horizon
optimization in MPC via Q-learning”. In: IFAC-PapersOnLine 51.20 (2018). 6th
IFAC Conference on Nonlinear Model Predictive Control NMPC 2018, pp. 60–65.
issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2018.10.
175. url: https://www.sciencedirect.com/science/article/pii/
S2405896318326478.

140

https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/ICRA.2017.7989181
https://doi.org/10.1109/ICRA.2017.7989181
https://doi.org/10.4271/870421
https://doi.org/10.4271/870421
https://doi.org/10.1016/B978-0-12-012712-2.50009-3
https://doi.org/10.1016/B978-0-12-012712-2.50009-3
https://doi.org/10.1109/TIE.2009.2015748
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.10.175
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.10.175
https://www.sciencedirect.com/science/article/pii/S2405896318326478
https://www.sciencedirect.com/science/article/pii/S2405896318326478


[17] Lukas Beckenbach, Pavel Osinenko, and Stefan Streif. “Addressing infinite-horizon
optimization in MPC via Q-learning”. In: IFAC-PapersOnLine 51.20 (2018). 6th
IFAC Conference on Nonlinear Model Predictive Control NMPC 2018, pp. 60–65.
doi: 10.1016/j.ifacol.2018.10.175.

[18] Gleb Beliakov. “Interpolation of Lipschitz functions”. In: J. Comput. Appl. Math.
196.1 (2006), pp. 20–44. issn: 0377-0427.

[19] Richard Bellman. “Dynamic programming and a new formalism in the calculus
of variations”. In: Proceedings of the National Academy of Sciences 40.4 (1954),
pp. 231–235. issn: 0027-8424. doi: 10.1073/pnas.40.4.231. eprint:
https://www.pnas.org/content/40/4/231.full.pdf. url: https:
//www.pnas.org/content/40/4/231.

[20] Felix Berkenkamp, Matteo Turchetta, Angela P Schoellig, and Andreas Krause.
“Safe model-based reinforcement learning with stability guarantees”. In: arXiv
preprint arXiv:1705.08551 (2017).

[21] Daniele Bernardini and Alberto Bemporad. “Scenario-based Model Predictive
Control of Stochastic Constrained Linear Systems”. In: (2009).

[22] Massimo Bertolini, Davide Mezzogori, Mattia Neroni, and Francesco Zammori.
“Machine Learning for industrial applications: A comprehensive literature review”.
In: Expert Systems with Applications 175 (2021), p. 114820.

[23] Johanna Bethge, Bruno Morabito, Janine Matschek, and Rolf Findeisen. “Multi-
Mode Learning Supported Model Predictive Control with Guarantees”. In: Proc.
of Nonlinear Model Predicitve Control. Madison, 2018, To appear.

[24] Lorenz T. Biegler. Nonlinear Programming. Society for Industrial and Applied
Mathematics, 2010. doi: 10.1137/1.9780898719383.

[25] H.G. Bock and K.J. Plitt. “A Multiple Shooting Algorithm for Direct Solution of
Optimal Control Problems*”. In: IFAC Proceedings Volumes 17.2 (1984). 9th IFAC
World Congress: A Bridge Between Control Science and Technology, Budapest,
Hungary, 2-6 July 1984, pp. 1603–1608. issn: 1474-6670. doi: https://
doi.org/10.1016/S1474-6670(17)61205-9. url: https://www.
sciencedirect.com/science/article/pii/S1474667017612059.

[26] Bokeh Development Team. Bokeh: Python library for interactive visualization. 2018.
url: https://bokeh.pydata.org/en/latest/.

[27] Pierre Bonami and Jon Lee. “BONMIN user’s manual”. In: Numer Math 4 (2007),
pp. 1–32.

141

https://doi.org/10.1016/j.ifacol.2018.10.175
https://doi.org/10.1073/pnas.40.4.231
https://www.pnas.org/content/40/4/231.full.pdf
https://www.pnas.org/content/40/4/231
https://www.pnas.org/content/40/4/231
https://doi.org/10.1137/1.9780898719383
https://doi.org/https://doi.org/10.1016/S1474-6670(17)61205-9
https://doi.org/https://doi.org/10.1016/S1474-6670(17)61205-9
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://bokeh.pydata.org/en/latest/


[28] DOMINIQUE BONVIN, BALA SRINIVASAN, and DAVID HUNKELER. “Control and
optimization of batch processes”. In: IEEE Control Systems Magazine 26.6 (2006),
pp. 34–45. doi: 10.1109/MCS.2006.252831.

[29] George EP Box and George C Tiao. Bayesian inference in statistical analysis. Vol. 40.
John Wiley & Sons, 2011.

[30] Eric Bradford and Lars Imsland. “Economic Stochastic Model Predictive Control
Using the Unscented Kalman Filter��This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 675215.” en. In: IFAC-PapersOnLine.
10th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2018
51.18 (Jan. 2018), pp. 417–422. issn: 2405-8963. doi: 10.1016/j.ifacol.
2018.09.336. url: https://www.sciencedirect.com/science/
article/pii/S2405896318320196 (visited on 05/07/2023).

[31] Eric Bradford and Lars Imsland. “Stochastic Nonlinear Model Predictive Control
Using Gaussian Processes”. In: 2018 European Control Conference (ECC). 2018,
pp. 1027–1034. doi: 10.23919/ECC.2018.8550249.

[32] D. A. Bristow, M. Tharayil, and A. G. Alleyne. “A survey of iterative learning
control”. In: IEEE Control Systems Magazine 26.3 (2006), pp. 96–114. doi: 10.
1109/MCS.2006.1636313.

[33] M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli. “Repetitive learning model
predictive control: An autonomous racing example”. In: 2017 IEEE 56th Annual
Conference on Decision and Control (CDC). 2017, pp. 2545–2550. doi: 10.1109/
CDC.2017.8264027.

[34] Monimoy Bujarbaruah, Charlott Vallon, and Francesco Borrelli. Learning to Satisfy
Unknown Constraints in Iterative MPC. 2020. arXiv: 2006.05054 [eess.SY].

[35] Jan-Peter Calliess. “Conservative decision-making and inference in uncertain
dynamical systems”. PhD thesis. University of Oxford, 2014.

[36] Jan-Peter Calliess. Lazily Adapted Constant Kinky Inference for Nonparametric
Regression and Model-Reference Adaptive Control. 2021. arXiv: 1701.00178
[math.OC].

[37] Yankai Cao and R. Bhushan Gopaluni. “Deep Neural Network Approximation of
Nonlinear Model Predictive Control”. In: IFAC-PapersOnLine 53.2 (2020). 21st
IFAC World Congress, pp. 11319–11324. doi: 10.1016/j.ifacol.2020.12.
538.

142

https://doi.org/10.1109/MCS.2006.252831
https://doi.org/10.1016/j.ifacol.2018.09.336
https://doi.org/10.1016/j.ifacol.2018.09.336
https://www.sciencedirect.com/science/article/pii/S2405896318320196
https://www.sciencedirect.com/science/article/pii/S2405896318320196
https://doi.org/10.23919/ECC.2018.8550249
https://doi.org/10.1109/MCS.2006.1636313
https://doi.org/10.1109/MCS.2006.1636313
https://doi.org/10.1109/CDC.2017.8264027
https://doi.org/10.1109/CDC.2017.8264027
https://arxiv.org/abs/2006.05054
https://arxiv.org/abs/1701.00178
https://arxiv.org/abs/1701.00178
https://doi.org/10.1016/j.ifacol.2020.12.538
https://doi.org/10.1016/j.ifacol.2020.12.538


[38] R. Carli, G. Cavone, S.B. Othman, and M. Dotoli. “IoT based architecture for model
predictive control of HVAC systems in smart buildings”. In: Sensors (Switzerland)
20.3 (2020). doi: 10.3390/s20030781.

[39] Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D. Lee, Vijay Kumar,
George J. Pappas, and Manfred Morari. “Approximating Explicit Model Predictive
Control Using Constrained Neural Networks”. In: 2018 Annual American Control
Conference (ACC). IEEE. 2018, pp. 1520–1527. doi: 10.23919/ACC.2018.
8431275.

[40] Yangquan Chen and Changyun Wen. Iterative learning control: convergence, robust-
ness and applications. Springer London, 1999.

[41] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. “End-
to-end safe reinforcement learning through barrier functions for safety-critical
continuous control tasks”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 01. 2019, pp. 3387–3395.

[42] Jason Choi, Fernando Castaneda, Claire J Tomlin, and Koushil Sreenath. “Rein-
forcement learning for safety-critical control under model uncertainty, using
control lyapunov functions and control barrier functions”. In: arXiv preprint
arXiv:2004.07584 (2020).

[43] IBM ILOG Cplex. “V12. 1: User’s Manual for CPLEX”. In: International Business
Machines Corporation 46.53 (2009), p. 157.

[44] Lehel Huba Csekő, Michal Kvasnica, and Béla Lantos. “Explicit MPC-Based RBF
Neural Network Controller Design With Discrete-Time Actual Kalman Filter for
Semiactive Suspension”. In: IEEE Transactions on Control Systems Technology 23.5
(2015), pp. 1736–1753. doi: 10.1109/TCST.2014.2382571.

[45] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

[46] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Padu-
raru, and Yuval Tassa. Safe Exploration in Continuous Action Spaces. 2018. arXiv:
1801.08757 [cs.AI].

[47] Y. Ding, L. Wang, Y. Li, and D. Li. “Model predictive control and its application in
agriculture: A review”. In: Computers and Electronics in Agriculture 151 (2018),
pp. 104–117. doi: 10.1016/j.compag.2018.06.004.

143

https://doi.org/10.3390/s20030781
https://doi.org/10.23919/ACC.2018.8431275
https://doi.org/10.23919/ACC.2018.8431275
https://doi.org/10.1109/TCST.2014.2382571
https://arxiv.org/abs/1801.08757
https://doi.org/10.1016/j.compag.2018.06.004


[48] Maarten R. Dobbelaere, Pieter P. Plehiers, Ruben Van de Vijver, Christian V. Stevens,
and Kevin M. Van Geem. “Machine Learning in Chemical Engineering: Strengths,
Weaknesses, Opportunities, and Threats”. In: Engineering 7.9 (2021), pp. 1201–
1211. issn: 2095-8099. doi: https://doi.org/10.1016/j.eng.2021.
03.019. url: https://www.sciencedirect.com/science/article/
pii/S2095809921002010.

[49] Tae-Yong Doh. “Robust iterative learning control with current feedback for un-
certain linear systems”. In: International Journal of Systems Science 30.1 (1999),
pp. 39–47. doi: 10.1080/002077299292650. url: https://doi.org/10.
1080/002077299292650.

[50] Alexander Domahidi and Juan Jerez. FORCES Professional. Embotech AG. https:
//embotech.com/FORCES-Pro. 2014–2019.

[51] Dong Dong, Thomas J. McAvoy, and Evanghelos Zafiriou. “Batch-to-batch op-
timization using neural network models”. In: Industrial and Engineering Chem-
istry Research 35.7 (1996), pp. 2269–2276. issn: 08885885. doi: 10.1021/
ie950518p.

[52] Sebastian Espinel Rios, Katja Bettenbrock, Steffen Klamt, and Rolf Findeisen.
“Maximizing batch fermentation efficiency by constrained model-based optimiza-
tion and predictive control of adenosine triphosphate turnover”. In: AIChE Journal
n/a.n/a (), e17555. doi: https://doi.org/10.1002/aic.17555. eprint:
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.
17555. url: https://aiche.onlinelibrary.wiley.com/doi/abs/
10.1002/aic.17555.

[53] Sebastián Espinel-Ríos, Gerrich Behrendt, BrunoMorabito, Jasmin Bauer, Johannes
Pohlodek, Andreas Schülze, Katja Bettenbrock, Steffen Klamt, and Rolf Findeisen.
“Experimentally implemented dynamic optogenetic optimization of the ATPase
expression using knowledge-based and Gaussian-process-supported models”. In:
Journal of Process Control (2023). To be submitted.

[54] Sebastián Espinel-Ríos, Nicolas Huber, Edgar Alberto Alcalá-Orozco, Bruno Mora-
bito, Thomas F.T. Rexer, Udo Reichl, Steffen Klamt, and Rolf Findeisen. “Cell-free
biosynthesis meets dynamic optimization and control: a fed-batch framework”. In:
IFAC-PapersOnLine 55.23 (2022). 9th IFAC Conference on Foundations of Systems
Biology in Engineering FOSBE 2022, pp. 92–97. issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2023.01.021. url: https://www.
sciencedirect.com/science/article/pii/S2405896323000241.

144

https://doi.org/https://doi.org/10.1016/j.eng.2021.03.019
https://doi.org/https://doi.org/10.1016/j.eng.2021.03.019
https://www.sciencedirect.com/science/article/pii/S2095809921002010
https://www.sciencedirect.com/science/article/pii/S2095809921002010
https://doi.org/10.1080/002077299292650
https://doi.org/10.1080/002077299292650
https://doi.org/10.1080/002077299292650
https://embotech.com/FORCES-Pro
https://embotech.com/FORCES-Pro
https://doi.org/10.1021/ie950518p
https://doi.org/10.1021/ie950518p
https://doi.org/https://doi.org/10.1002/aic.17555
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.17555
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.17555
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.17555
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.17555
https://doi.org/https://doi.org/10.1016/j.ifacol.2023.01.021
https://doi.org/https://doi.org/10.1016/j.ifacol.2023.01.021
https://www.sciencedirect.com/science/article/pii/S2405896323000241
https://www.sciencedirect.com/science/article/pii/S2405896323000241


[55] Timm Faulwasser, Tobias Weber, Pablo Zometa, and Rolf Findeisen. “Implementa-
tion of nonlinear model predictive path-following control for an industrial robot”.
In: IEEE Transactions on Control Systems Technology 25.4 (2016), pp. 1505–1511.

[56] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J.
Pappas. “Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
Networks”. In: CoRR abs/1906.04893 (2019).

[57] AA Feldbaum. “Dual control theory. I”. In: Avtomatika i Telemekhanika 21.9 (1960),
pp. 1240–1249.

[58] AA Feldbaum. “Dual control theory. II”. In: Avtomatika i Telemekhanika 21.11
(1960), pp. 1453–1464.

[59] AA Feldbaum. “Dual control theory III”. In: Automation remote control 22 (1961),
pp. 1–12.

[60] Alexander Aronovich Feldbaum. Dual control theory, IV. Tech. rep. FOREIGN
TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO, 1961.

[61] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. “qpOASES: A
parametric active-set algorithm for quadratic programming”. In: Mathematical
Programming Computation 6.4 (2014), pp. 327–363.

[62] Rolf Findeisen. “Nonlinear model predictive control: a sampled data feedback
perspective”. PhD thesis. 2006.

[63] Michael G. Forbes, Rohit S. Patwardhan, Hamza Hamadah, and R. Bhushan
Gopaluni. “Model Predictive Control in Industry: Challenges and Opportunities”.
In: IFAC-PapersOnLine 48.8 (2015). 9th IFAC Symposium on Advanced Control of
Chemical Processes ADCHEM 2015, pp. 531–538. issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2015.09.022. url: https://www.
sciencedirect.com/science/article/pii/S2405896315011039.

[64] Swanny Fouchard, Jérémy Pruvost, Benoit Degrenne, Mariana Titica, and Jack
Legrand. “Kinetic modeling of light limitation and sulfur deprivation effects in the
induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model
development and parameter identification”. In: Biotechnology and Bioengineering
102.1 (2009), pp. 232–245. doi: https://doi.org/10.1002/bit.22034.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.
22034. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
bit.22034.

145

https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.022
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.022
https://www.sciencedirect.com/science/article/pii/S2405896315011039
https://www.sciencedirect.com/science/article/pii/S2405896315011039
https://doi.org/https://doi.org/10.1002/bit.22034
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.22034
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.22034
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.22034
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.22034


[65] A. Franz. “Nonlinear dynamics of PHB production in Ralstonia eutropha and
Rhodospirillum rubrum”. PhD thesis. Otto-von-Guericke-Universität Magdeburg,
2015.

[66] A. Franz, H.-S. Song, D. Ramkrishna, and A. Kienle. “Experimental and theoretical
analysis of Poly(β-hydroxybutyrate) formation and consumption in Ralstonia
eutropha”. In: Biochemical Eng. J. 55 (2011), pp. 49–58.

[67] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew
Gordon Wilson. “GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference
with GPU Acceleration”. In: Advances in Neural Information Processing Systems.
2018.

[68] Gene Grimm, Michael J. Messina, Sezai E. Tuna, and Andrew R. Teel. “Examples
when nonlinear model predictive control is nonrobust”. In: Automatica 40.10
(2004), pp. 1729–1738. issn: 0005-1098. doi: https://doi.org/10.1016/
j.automatica.2004.04.014. url: https://www.sciencedirect.
com/science/article/pii/S0005109804001402.

[69] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2021. url: http:
//www.gurobi.com.

[70] Tor Aksel N. Heirung, Joel A. Paulson, Shinje Lee, and Ali Mesbah. “Model predic-
tive control with active learning under model uncertainty: Why, when, and how”.
In: AIChE Journal 64.8 (2018), pp. 3071–3081. doi: https://doi.org/10.
1002/aic.16180. eprint: https://aiche.onlinelibrary.wiley.com/
doi/pdf/10.1002/aic.16180. url: https://aiche.onlinelibrary.
wiley.com/doi/abs/10.1002/aic.16180.

[71] Tor Aksel N Heirung, Tito LM Santos, and Ali Mesbah. “Model predictive control
with active learning for stochastic systems with structural model uncertainty:
Online model discrimination”. In: Computers & Chemical Engineering 128 (2019),
pp. 128–140.

[72] M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari. “Multi-Parametric Toolbox
3.0”. In: Proc. of the European Control Conference. http://control.ee.ethz.
ch/~mpt. Zürich, Switzerland, 2013, pp. 502–510.

[73] Martin Wijaya Hermanto, Richard D Braatz, and Min-Sen Chiu. “Integrated batch-
to-batch and nonlinear model predictive control for polymorphic transformation
in pharmaceutical crystallization”. In: AIChE journal 57.4 (2011), pp. 1008–1019.

146

https://doi.org/https://doi.org/10.1016/j.automatica.2004.04.014
https://doi.org/https://doi.org/10.1016/j.automatica.2004.04.014
https://www.sciencedirect.com/science/article/pii/S0005109804001402
https://www.sciencedirect.com/science/article/pii/S0005109804001402
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/https://doi.org/10.1002/aic.16180
https://doi.org/https://doi.org/10.1002/aic.16180
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.16180
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.16180
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16180
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16180
http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt


[74] Lukas Hewing, Kim P. Wabersich, Marcel Menner, and Melanie N. Zeilinger.
“Learning-Based Model Predictive Control: Toward Safe Learning in Control”. In:
Annual Review of Control, Robotics, and Autonomous Systems 3.1 (2020), pp. 269–
296. issn: 2573-5144. doi: 10.1146/annurev-control-090419-075625.

[75] Lukas Hewing, Kim P. Wabersich, Marcel Menner, and Melanie N. Zeilinger.
“Learning-Based Model Predictive Control: Toward Safe Learning in Control”. In:
Annual Review of Control, Robotics, and Autonomous Systems 3.1 (2020), pp. 269–
296. doi: 10.1146/annurev-control-090419-075625. eprint: https:
//doi.org/10.1146/annurev-control-090419-075625. url: https:
//doi.org/10.1146/annurev-control-090419-075625.

[76] Rubin Hille, Jasdeep Mandur, and Hector M Budman. “Robust batch-to-batch
optimization in the presence of model-plant mismatch and input uncertainty”. In:
AIChE Journal 63.7 (2017), pp. 2660–2670.

[77] Andreas Himmel, Janine Matschek, Rudolph Kok, Bruno Morabito, Hoang Hai
Nguyen, and Rolf Findeisen. “Machine Learning for Process Control of (Bio)Chem-
ical Processes”. In: Artificial Intelligence in Manufacturing: Concepts and Methods.
Ed. by Soroush Masoud and Braatz Richard. To appear, preprint available via
arXiv. Elsevier, 2023. doi: 10.48550/ARXIV.2301.06073. url: https:
//arxiv.org/abs/2301.06073.

[78] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban,
Dan E Shumaker, and Carol S Woodward. “SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers”. In: ACM Transactions on Mathematical
Software 31.3 (2005), pp. 363–396. doi: 10.1145/1089014.1089020.

[79] Hirokazu Ishida. Robust tube MPC. https://github.com/HiroIshida/robust-tube-
mpc. (accessed 2022/28/1).

[80] Yiguang Hong, Zhong-Ping Jiang, and Gang Feng. “Finite-time input-to-state
stability and applications to finite-time control design”. In: SIAM Journal on
Control and Optimization 48.7 (2010), pp. 4395–4418.

[81] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In:
Neural networks 4.2 (1991), pp. 251–257.

[82] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. “Multilayer feedforward
networks are universal approximators.” In: Neural networks 2.5 (1989), pp. 359–
366.

147

https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.48550/ARXIV.2301.06073
https://arxiv.org/abs/2301.06073
https://arxiv.org/abs/2301.06073
https://doi.org/10.1145/1089014.1089020


[83] B. Houska, H.J. Ferreau, and M. Diehl. “ACADO Toolkit – An Open Source Frame-
work for Automatic Control and Dynamic Optimization”. In: Optimal Control
Applications and Methods 32.3 (2011), pp. 298–312.

[84] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science
& Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[85] Tomoharu Iwata and Zoubin Ghahramani. “Improving output uncertainty estima-
tion and generalization in deep learning via neural network Gaussian processes”.
In: arXiv preprint arXiv:1707.05922 (2017).

[86] H.A. Izadi, Y. Zhang, and B.W. Gordon. “Fault tolerant model predictive control
of quad-rotor helicopters with actuator fault estimation”. In: vol. 44. 1 PART 1.
2011, pp. 6343–6348. doi: 10.3182/20110828-6-IT-1002.03709.

[87] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduc-
tion to statistical learning. Vol. 112. Springer, 2013.

[88] Christian Kallies. “Approximated adaptive explicit parametric optimal control”.
PhD thesis. Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik
und Informationstechnik, 2021. url: http://dx.doi.org/10.25673/
38707.

[89] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:
Journal of Basic Engineering 82.1 (1960), p. 35. issn: 00219223. doi: 10.1115/1.
3662552. arXiv: NIHMS150003. url: https://www.cs.unc.edu/welch/
kalman/media/pdf/Kalman1960.pdfhttp://fluidsengineering.
asmedigitalcollection . asme . org / article . aspx ? articleid =
1430402.

[90] Keiji Kanazawa, Daphne Koller, and Stuart Russell. “Stochastic simulation algo-
rithms for dynamic probabilistic networks”. In: UAI'95: Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence. ACM. 1995, pp. 346–351.

[91] Benjamin Karg and Sergio Lucia. “Efficient Representation and Approximation
of Model Predictive Control Laws via Deep Learning”. In: IEEE Transactions on
Cybernetics 50.9 (2020), pp. 3866–3878. doi: 10.1109/TCYB.2020.2999556.

[92] George Karniadakis, Yannis Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and
Liu Yang. “Physics-informed machine learning”. In: (May 2021), pp. 1–19. doi:
10.1038/s42254-021-00314-5.

[93] A. Kathirgamanathan, M. De Rosa, E. Mangina, and D.P. Finn. “Data-driven predic-
tive control for unlocking building energy flexibility: A review”. In: Renewable and
Sustainable Energy Reviews 135 (2021). doi: 10.1016/j.rser.2020.110120.

148

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3182/20110828-6-IT-1002.03709
http://dx.doi.org/10.25673/38707
http://dx.doi.org/10.25673/38707
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://arxiv.org/abs/NIHMS150003
https://www.cs.unc.edu/welch/kalman/media/pdf/Kalman1960.pdf http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
https://www.cs.unc.edu/welch/kalman/media/pdf/Kalman1960.pdf http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
https://www.cs.unc.edu/welch/kalman/media/pdf/Kalman1960.pdf http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
https://www.cs.unc.edu/welch/kalman/media/pdf/Kalman1960.pdf http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
https://doi.org/10.1109/TCYB.2020.2999556
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.rser.2020.110120


[94] E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys. “Learning in centralized nonlin-
ear model predictive control: Application to an autonomous tractor-trailer system”.
In: IEEE Transactions on Control Systems Technology 23.1 (2015), pp. 197–205.
doi: 10.1109/TCST.2014.2321514.

[95] Irfan Khan, Stefano Feraco, Angelo Bonfitto, and Nicola Amati. “AModel Predictive
Control Strategy for Lateral and Longitudinal Dynamics in Autonomous Driving”.
In: International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. Vol. 83938. American Society of Mechanical
Engineers. 2020, V004T04A004.

[96] Kwang-Ki K Kim and Richard D Braatz. “Generalised polynomial chaos expansion
approaches to approximate stochastic model predictive control”. In: International
journal of control 86.8 (2013), pp. 1324–1337.

[97] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[98] Markus Kögel and Rolf Findeisen. “Fast predictive control of linear systems com-
bining Nesterov’s gradient method and the method of multipliers”. In: 2011 50th
IEEE conference on decision and control and european control conference. IEEE.
2011, pp. 501–506.

[99] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause.
“Learning-based model predictive control for safe exploration”. In: 2018 IEEE
Conference on Decision and Control (CDC). IEEE. 2018, pp. 6059–6066.

[100] Richard E Kopp. “Pontryagin maximum principle”. In: Mathematics in Science and
Engineering. Vol. 5. Elsevier, 1962, pp. 255–279.

[101] Wilbur Langson, Ioannis Chryssochoos, SV Raković, and David Q Mayne. “Robust
model predictive control using tubes”. In: Automatica 40.1 (2004), pp. 125–133.

[102] Robert Laurini. “6 - Geographic Ontologies”. In: Geographic Knowledge Infrastruc-
ture. Ed. by Robert Laurini. Elsevier, 2017, pp. 111–137. isbn: 978-1-78548-243-4.
doi: https://doi.org/10.1016/B978-1-78548-243-4.50006-2.
url: https://www.sciencedirect.com/science/article/pii/
B9781785482434500062.

[103] Jay H Lee. “Model predictive control: Review of the three decades of development”.
In: International Journal of Control, Automation and Systems 9.3 (2011), pp. 415–
424.

149

https://doi.org/10.1109/TCST.2014.2321514
https://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/B978-1-78548-243-4.50006-2
https://www.sciencedirect.com/science/article/pii/B9781785482434500062
https://www.sciencedirect.com/science/article/pii/B9781785482434500062


[104] Jay H. Lee, K. S. Lee, and W. Kim. “Model-based iterative learning control with
a quadratic criterion for time-varying linear systems”. In: Autom. 36 (2000),
pp. 641–657.

[105] Jay H. Lee and Kwang S. Lee. “Iterative learning control applied to batch processes:
An overview”. In: Control Engineering Practice 15.10 SPEC. ISS. (2007), pp. 1306–
1318. issn: 09670661. doi: 10.1016/j.conengprac.2006.11.013.

[106] J.H. Lee and N.L. Ricker. “Extended Kalman Filter Based Nonlinear Model Pre-
dictive Control”. In: Industrial and Engineering Chemistry Research 33.6 (1994),
pp. 1530–1541. doi: 10.1021/ie00030a013.

[107] Jongdae Lee and W Fred Ramirez. “Optimal fed-batch control of induced foreign
protein production by recombinant bacteria”. In: AIChE J. 40.5 (1994), pp. 899–
907.

[108] Kwang Soon Lee and Jay H. Lee. “Model predictive control for nonlinear batch pro-
cesses with asymptotically perfect tracking”. In: Computers & Chemical Engineering
21 (1997). Supplement to Computers and Chemical Engineering, S873 –S879.
issn: 0098-1354. doi: https://doi.org/10.1016/S0098-1354(97)
87612-0. url: http://www.sciencedirect.com/science/article/
pii/S0098135497876120.

[109] Daniel Limon, Teodoro Alamo, Davide M Raimondo, D Muñoz De La Peña, José
Manuel Bravo, Antonio Ferramosca, and Eduardo F Camacho. “Input-to-state
stability: a unifying framework for robust model predictive control”. In: Nonlinear
model predictive control. Springer, 2009, pp. 1–26.

[110] Alexander Liniger, Alexander Domahidi, and Manfred Morari. “Optimization-
based autonomous racing of 1:43 scale RC cars”. In: Optimal Control Applications
and Methods 36.5 (2015), pp. 628–647. doi: 10.1002/oca.2123.

[111] L. Liu, B. Huang, and S. Dubljevic. “Model predictive control of axial disper-
sion chemical reactor”. In: Journal of Process Control 24.11 (2014). cited By 17,
pp. 1671–1690. doi: 10.1016/j.jprocont.2014.08.010. url: https://
www.scopus.com/inward/record.uri?eid=2-s2.0-84908556454&
doi=10.1016\%2fj.jprocont.2014.08.010&partnerID=40&md5=
79e79366a0c30c04837d27c491ba6b5b.

[112] J. Lofberg. “YALMIP : a toolbox for modeling and optimization in MATLAB”.
In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat.
No.04CH37508). 2004, pp. 284–289. doi: 10.1109/CACSD.2004.1393890.

150

https://doi.org/10.1016/j.conengprac.2006.11.013
https://doi.org/10.1021/ie00030a013
https://doi.org/https://doi.org/10.1016/S0098-1354(97)87612-0
https://doi.org/https://doi.org/10.1016/S0098-1354(97)87612-0
http://www.sciencedirect.com/science/article/pii/S0098135497876120
http://www.sciencedirect.com/science/article/pii/S0098135497876120
https://doi.org/10.1002/oca.2123
https://doi.org/10.1016/j.jprocont.2014.08.010
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908556454&doi=10.1016\%2fj.jprocont.2014.08.010&partnerID=40&md5=79e79366a0c30c04837d27c491ba6b5b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908556454&doi=10.1016\%2fj.jprocont.2014.08.010&partnerID=40&md5=79e79366a0c30c04837d27c491ba6b5b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908556454&doi=10.1016\%2fj.jprocont.2014.08.010&partnerID=40&md5=79e79366a0c30c04837d27c491ba6b5b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908556454&doi=10.1016\%2fj.jprocont.2014.08.010&partnerID=40&md5=79e79366a0c30c04837d27c491ba6b5b
https://doi.org/10.1109/CACSD.2004.1393890


[113] S. Lucia and S. Engell. “Multi-stage and Two-stage Robust Nonlinear Model Predic-
tive Control”. In: IFAC Proceedings Volumes 45.17 (2012). 4th IFAC Conference on
Nonlinear Model Predictive Control, pp. 181 –186. issn: 1474-6670. doi: https:
//doi.org/10.3182/20120823-5-NL-3013.00015. url: http://www.
sciencedirect.com/science/article/pii/S1474667016314471.

[114] Sergio Lucia, Tiago Finkler, and Sebastian Engell. “Multi-stage nonlinear model
predictive control applied to a semi-batch polymerization reactor under uncer-
tainty”. In: Journal of process control 23.9 (2013), pp. 1306–1319.

[115] Sergio Lucia, Alexandru Tatulea-Codrean, Christian Schoppmeyer, and Sebastian
Engell. “Rapid development of modular and sustainable nonlinear model predictive
control solutions”. In: Control Engineering Practice 60 (2017), pp. 51–62. issn:
0967-0661. doi: https://doi.org/10.1016/j.conengprac.2016.12.
009. url: https://www.sciencedirect.com/science/article/pii/
S0967066116302970.

[116] E.T. Maddalena, C.G. da S. Moraes, G. Waltrich, and C.N. Jones. “A Neural Network
Architecture to Learn Explicit MPC Controllers from Data”. In: IFAC-PapersOnLine
53.2 (2020). 21st IFAC World Congress, pp. 11362–11367. doi: 10.1016/j.
ifacol.2020.12.546.

[117] Jasdeep S Mandur and Hector M Budman. “Simultaneous model identification
and optimization in presence of model-plant mismatch”. In: Chemical Engineering
Science 129 (2015), pp. 106–115.

[118] A.G. Marchetti, G. François, T. Faulwasser, and D. Bonvin. “Modifier adaptation
for real-time optimization - Methods and applications”. In: Processes 4.4 (2016).
doi: 10.3390/pr4040055.

[119] Janine Matschek, Tobias Bäthge, Timm Faulwasser, and Rolf Findeisen. “Nonlinear
Predictive Control for Trajectory Tracking and Path Following: An Introduction
and Perspective”. In: Handbook of Model Predictive Control. Ed. by Saša V. Raković
and William S. Levine. Cham: Springer International Publishing, 2019, pp. 169–
198. isbn: 978-3-319-77489-3. doi: 10.1007/978-3-319-77489-3_8.

[120] Janine Matschek, Johanna Bethge, Mohamed Soliman, Bahaaeldin Elsayed, and
Rolf Findeisen. “Constrained reference learning for continuous-time model predic-
tive tracking control of autonomous systems”. In: IFAC-PapersOnLine 54.6 (2021).
7th IFAC Conference on Nonlinear Model Predictive Control NMPC 2021, pp. 329–
334. doi: 10.1016/j.ifacol.2021.08.565.

151

https://doi.org/https://doi.org/10.3182/20120823-5-NL-3013.00015
https://doi.org/https://doi.org/10.3182/20120823-5-NL-3013.00015
http://www.sciencedirect.com/science/article/pii/S1474667016314471
http://www.sciencedirect.com/science/article/pii/S1474667016314471
https://doi.org/https://doi.org/10.1016/j.conengprac.2016.12.009
https://doi.org/https://doi.org/10.1016/j.conengprac.2016.12.009
https://www.sciencedirect.com/science/article/pii/S0967066116302970
https://www.sciencedirect.com/science/article/pii/S0967066116302970
https://doi.org/10.1016/j.ifacol.2020.12.546
https://doi.org/10.1016/j.ifacol.2020.12.546
https://doi.org/10.3390/pr4040055
https://doi.org/10.1007/978-3-319-77489-3_8
https://doi.org/10.1016/j.ifacol.2021.08.565


[121] Janine Matschek, Tim Gonschorek, Magnus Hanses, Norbert Elkmann, Frank
Ortmeier, and Rolf Findeisen. Learning References with Gaussian Processes in Model
Predictive Control applied to Robot Assisted Surgery. 2019. arXiv: 1911.10793
[math.OC].

[122] Janine Matschek, Andreas Himmel, Kai Sundmacher, and Rolf Findeisen. “Con-
strained Gaussian process learning for model predictive control”. In: IFAC-
PapersOnLine 53.2 (2020), pp. 971–976.

[123] D. Q. Mayne, M. M. Seron, and S. V. Raković. “Robust model predictive control
of constrained linear systems with bounded disturbances”. In: Automatica 41.2
(2005), pp. 219–224. issn: 00051098. doi: 10.1016/j.automatica.2004.
08.019. arXiv: arXiv:1011.1669v3.

[124] David Q Mayne and Eric C Kerrigan. “TUBE-BASED ROBUST NONLINEAR MODEL
PREDICTIVE CONTROL”. In: (). url: http : / / www2 . ee . ic . ac . uk /
publications/p5582.pdf.

[125] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. “Constrained model
predictive control: Stability and optimality”. In: Automatica 36.6 (2000), pp. 789–
814. issn: 0005-1098. doi: https://doi.org/10.1016/S0005-1098(99)
00214-9. url: https://www.sciencedirect.com/science/article/
pii/S0005109899002149.

[126] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: Bulletin of Mathematical Biophysics 5.4 (1943), pp. 115–133.
doi: 10.1007/BF02478259.

[127] Ali Mesbah. “Stochastic model predictive control with active uncertainty learning:
a survey on dual control”. In: Annual Reviews in Control 45 (2018), pp. 107–117.

[128] BrunoMorabito, Achim Kienle, Rolf Findeisen, and Lisa Carius. “Multi-modeModel
Predictive Control and Estimation for Uncertain Biotechnological Processes”. In:
12th International-Federation-of-Automatic-Control (IFAC) Symposium on Dynamics
and Control of Process Systems including Biosystems (DYCOPS). Elsevier. 2019,
pp. 709–714.

[129] Bruno Morabito, Hoang Hai Nguen, Janine Matschek, and Rolf Findeisen. “Safe
Exploration Learning Supported Model Predictive Control of Repetitive Processes”.
In: Proceeding American Control Conference. Accepted - to appear. 2022.

152

https://arxiv.org/abs/1911.10793
https://arxiv.org/abs/1911.10793
https://doi.org/10.1016/j.automatica.2004.08.019
https://doi.org/10.1016/j.automatica.2004.08.019
https://arxiv.org/abs/arXiv:1011.1669v3
http://www2.ee.ic.ac.uk/publications/p5582.pdf
http://www2.ee.ic.ac.uk/publications/p5582.pdf
https://doi.org/https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/https://doi.org/10.1016/S0005-1098(99)00214-9
https://www.sciencedirect.com/science/article/pii/S0005109899002149
https://www.sciencedirect.com/science/article/pii/S0005109899002149
https://doi.org/10.1007/BF02478259


[130] Bruno Morabito, Johannes Pohlodek, Lena Kranert, Sebastián Espinel-Ríos, and
Rolf Findeisen. “Efficient and Simple Gaussian Process Supported Stochastic
Model Predictive Control for Bioreactors using HILO-MPC”. In: IFAC-PapersOnLine
55.7 (2022). 13th IFAC Symposium on Dynamics and Control of Process Systems,
including Biosystems DYCOPS 2022, pp. 922–927. issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2022.07.562. url: https://www.
sciencedirect.com/science/article/pii/S2405896322009685.

[131] Bruno Morabito, Johannes Pohlodek, Janine Matschek, Anton Savchenko, Lisa
Carius, and Rolf Findeisen. “Towards Risk-aware Machine Learning Supported
Model Predictive Control and Open-loop Optimization for Repetitive Processes”.
In: IFAC-PapersOnLine 54.6 (2021). 7th IFAC Conference on Nonlinear Model
Predictive Control NMPC 2021, pp. 321–328. issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2021.08.564. url: https://www.
sciencedirect.com/science/article/pii/S2405896321013392.

[132] Christian Musso, Nadia Oudjane, and Francois Le Gland. “Improving Regularised
Particle Filters”. In: Sequential Monte Carlo Methods in Practice. Ed. by Arnaud
Doucet, Nando de Freitas, and Neil Gordon. Statistics for Engineering and Infor-
mation Science. Springer, 2001, pp. 247–271. doi: 10.1007/978-1-4757-
3437-9_12.

[133] Z.K. Nagy and R.D. Braatz. “Robust nonlinear model predictive control of batch
processes”. In: AIChE Journal 49.7 (2003), pp. 1776–1786. doi: 10.1002/aic.
690490715.

[134] Tim Nikolayzik, Christof Büskens, and Matthias Gerdts. “Nonlinear large-scale
Optimization with WORHP”. In: 13th AIAA/ISSMO Multidisciplinary Analysis
Optimization Conference. 2010, p. 9136.

[135] Jorge Nocedal. “Knitro: An integrated package for nonlinear optimization”. In:
Large-Scale Nonlinear Optimization. Springer, 2006, pp. 35–60.

[136] Sebastian A. Nugroho, Vu Hoang, Maria Radosz, Shen Wang, and Ahmad F. Taha.
“New Insights on One-Sided Lipschitz and Quadratically-Inner Bounded Nonlin-
ear Dynamic Systems”. In: Proceedings of the American Control Conference 2020-
July.July (2020), pp. 4558–4563. issn: 07431619. doi: 10.23919/ACC45564.
2020.9147812. arXiv: 2002.02361.

[137] S. H. Oh and R. Luus. “Use of orthogonal collocation method in optimal con-
trol problems”. In: International Journal of Control 26.5 (1977), pp. 657–
673. doi: 10.1080/00207177708922339. eprint: https://doi.org/

153

https://doi.org/https://doi.org/10.1016/j.ifacol.2022.07.562
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.07.562
https://www.sciencedirect.com/science/article/pii/S2405896322009685
https://www.sciencedirect.com/science/article/pii/S2405896322009685
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.564
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.564
https://www.sciencedirect.com/science/article/pii/S2405896321013392
https://www.sciencedirect.com/science/article/pii/S2405896321013392
https://doi.org/10.1007/978-1-4757-3437-9_12
https://doi.org/10.1007/978-1-4757-3437-9_12
https://doi.org/10.1002/aic.690490715
https://doi.org/10.1002/aic.690490715
https://doi.org/10.23919/ACC45564.2020.9147812
https://doi.org/10.23919/ACC45564.2020.9147812
https://arxiv.org/abs/2002.02361
https://doi.org/10.1080/00207177708922339
https://doi.org/10.1080/00207177708922339
https://doi.org/10.1080/00207177708922339


10.1080/00207177708922339. url: https://doi.org/10.1080/
00207177708922339.

[138] Rui Oliveira. “Combining first principles modelling and artificial neural networks:
a general framework”. In: Computers & Chemical Engineering 28.5 (2004), pp. 755–
766.

[139] Elton Pan, Panagiotis Petsagkourakis, Max Mowbray, Dongda Zhang, and Ehecatl
Antonio del Rio-Chanona. “Constrained model-free reinforcement learning for pro-
cess optimization”. In: Computers and Chemical Engineering 154.November 2020
(2021). issn: 00981354. doi: 10.1016/j.compchemeng.2021.107462.
arXiv: 2011.07925.

[140] T. Parisini and R. Zoppoli. “A receding-horizon regulator for nonlinear systems
and a neural approximation”. In: Automatica 31.10 (1995), pp. 1443–1451. doi:
10.1016/0005-1098(95)00044-W.

[141] R.S. Parker, F.J. Doyle, and N.A. Peppas. “A model-based algorithm for blood
glucose control in type I diabetic patients”. In: IEEE Transactions on Biomedical
Engineering 46.2 (1999), pp. 148–157. doi: 10.1109/10.740877.

[142] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

[143] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

154

https://doi.org/10.1080/00207177708922339
https://doi.org/10.1080/00207177708922339
https://doi.org/10.1080/00207177708922339
https://doi.org/10.1080/00207177708922339
https://doi.org/10.1080/00207177708922339
https://doi.org/10.1016/j.compchemeng.2021.107462
https://arxiv.org/abs/2011.07925
https://doi.org/10.1016/0005-1098(95)00044-W
https://doi.org/10.1109/10.740877
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[144] A.A. Patwardhan and T.F. Edgar. “Nonlinear Model Predictive Control of a Packed
Distillation Column”. In: Industrial and Engineering Chemistry Research 32.10
(1993). cited By 24, pp. 2345–2356. doi: 10 . 1021 / ie00022a018. url:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
0027676259&doi=10.1021\%2fie00022a018&partnerID=40&md5=
55760bc31a8e31eed6f677e9a1209425.

[145] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning
in Python”. In: Journak of Machine Learning Research 12 (2011), pp. 2825–2830.

[146] P. Petsagkourakis, I. O. Sandoval, E. Bradford, D. Zhang, and E. A.Rio Chanona
Del. “Constrained Reinforcement Learning for Dynamic Optimization under Un-
certainty”. In: arXiv (2020). issn: 23318422. arXiv: 2006.02750.

[147] P. Petsagkourakis, I.O. Sandoval, E. Bradford, D. Zhang, and E.A. del Rio-Chanona.
“Reinforcement Learning for Batch-to-Batch Bioprocess Optimisation”. In: Com-
puter Aided Chemical Engineering 46 (2019). cited By 2, pp. 919–924. doi: 10.
1016/B978-0-12-818634-3.50154-5. url: https://www.scopus.
com / inward / record . uri ? eid = 2 - s2 . 0 - 85069718918 & doi = 10 .
1016\%2fB978-0-12-818634-3.50154-5&partnerID=40&md5=
93872b9b408d6c68452de91814a8b28b.

[148] Panagiotis Petsagkourakis, Ilya Orson Sandoval, Eric Bradford, Dongda Zhang, and
Ehecatl Antonio del Rio-Chanona. “Reinforcement learning for batch bioprocess
optimization”. In: Computers & Chemical Engineering 133 (2020), p. 106649.

[149] J. Pohlodek, H. Alsmeier, B. Morabito, C. Schlauch, A. Savchenko, and R. Findeisen.
Stochastic Model Predictive Control Utilizing Bayesian Neural Networks. 2023. arXiv:
2303.14519 [eess.SY].

[150] Johannes Pohlodek, Bruno Morabito, Christian Schlauch, Pablo Zometa, and
Rolf Findeisen. Flexible development and evaluation of machine-learning-supported
optimal control and estimation methods via HILO-MPC. 2022. arXiv: 2203.13671
[eess.SY].

[151] Steven Spielberg Pon Kumar, Aditya Tulsyan, Bhushan Gopaluni, and Philip
Loewen. “A Deep Learning Architecture for Predictive Control”. In: IFAC-
PapersOnLine 51.18 (2018). 10th IFAC Symposium on Advanced Control of Chem-
ical Processes ADCHEM 2018, pp. 512–517. doi: 10.1016/j.ifacol.2018.
09.373.

155

https://doi.org/10.1021/ie00022a018
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027676259&doi=10.1021\%2fie00022a018&partnerID=40&md5=55760bc31a8e31eed6f677e9a1209425
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027676259&doi=10.1021\%2fie00022a018&partnerID=40&md5=55760bc31a8e31eed6f677e9a1209425
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027676259&doi=10.1021\%2fie00022a018&partnerID=40&md5=55760bc31a8e31eed6f677e9a1209425
https://arxiv.org/abs/2006.02750
https://doi.org/10.1016/B978-0-12-818634-3.50154-5
https://doi.org/10.1016/B978-0-12-818634-3.50154-5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069718918&doi=10.1016\%2fB978-0-12-818634-3.50154-5&partnerID=40&md5=93872b9b408d6c68452de91814a8b28b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069718918&doi=10.1016\%2fB978-0-12-818634-3.50154-5&partnerID=40&md5=93872b9b408d6c68452de91814a8b28b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069718918&doi=10.1016\%2fB978-0-12-818634-3.50154-5&partnerID=40&md5=93872b9b408d6c68452de91814a8b28b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069718918&doi=10.1016\%2fB978-0-12-818634-3.50154-5&partnerID=40&md5=93872b9b408d6c68452de91814a8b28b
https://arxiv.org/abs/2303.14519
https://arxiv.org/abs/2203.13671
https://arxiv.org/abs/2203.13671
https://doi.org/10.1016/j.ifacol.2018.09.373
https://doi.org/10.1016/j.ifacol.2018.09.373


[152] V. Prasad, M. Schley, L.P. Russo, and B. Wayne Bequette. “Product property and
production rate control of styrene polymerization”. In: Journal of Process Control
12.3 (2002), pp. 353–372. doi: 10.1016/S0959-1524(01)00044-0.

[153] Radoslaw Pytlak. Numerical methods for optimal control problems with state con-
straints. Springer Science & Business Media, 1999.

[154] Davide Martino Raimondo, Daniel Limon, Mircea Lazar, Lalo Magni, and Eduardo
Fernández Camacho. “Min-max Model Predictive Control of Nonlinear Systems:
A Unifying Overview on Stability”. In: European Journal of Control 15.1 (2009),
pp. 5–21. issn: 0947-3580. doi: https://doi.org/10.3166/ejc.15.5-
21. url: https://www.sciencedirect.com/science/article/pii/
S0947358009707034.

[155] R. Rajamani and Y. M. Cho. “Existence and design of observers for nonlinear
systems: Relation to distance to unobservability”. In: International Journal of
Control 69.5 (1998), pp. 717–731. doi: 10.1080/002071798222640. eprint:
https://doi.org/10.1080/002071798222640. url: https://doi.
org/10.1080/002071798222640.

[156] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation
Functions. 2017. arXiv: 1710.05941 [cs.NE].

[157] K. Yamuna Rani and Sachin C. Patwardhan. “Data-driven modeling and optimiza-
tion of semibatch reactors using artificial neural networks”. In: Industrial and
Engineering Chemistry Research 43.23 (2004), pp. 7539–7551. issn: 08885885.
doi: 10.1021/ie0305521.

[158] James B Rawlings. “Moving horizon estimation”. In: Encyclopedia of Systems and
Control (2013), pp. 1–7.

[159] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive control:
theory, computation, and design. Vol. 2. Nob Hill Publishing Madison, WI, 2017.

[160] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive Control: Theory, Com-
putation, and Design. Nob Hill Publishing, 2017. isbn: 9780975937730. url:
https://books.google.de/books?id=MrJctAEACAAJ.

[161] M. Rick, J. Clemens, L. Sommer, A. Folkers, K. Schill, and C. Büskens. “Autonomous
Driving Based on Nonlinear Model Predictive Control and Multi-Sensor Fusion”.
In: vol. 52. 8. cited By 4. 2019, pp. 458–473. doi: 10.1016/j.ifacol.2019.
08.068. url: https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85076257719&doi=10.1016\%2fj.ifacol.2019.08.068&
partnerID=40&md5=3cc01fa2ddf34a9911252e3986b2c39b.

156

https://doi.org/10.1016/S0959-1524(01)00044-0
https://doi.org/https://doi.org/10.3166/ejc.15.5-21
https://doi.org/https://doi.org/10.3166/ejc.15.5-21
https://www.sciencedirect.com/science/article/pii/S0947358009707034
https://www.sciencedirect.com/science/article/pii/S0947358009707034
https://doi.org/10.1080/002071798222640
https://doi.org/10.1080/002071798222640
https://doi.org/10.1080/002071798222640
https://doi.org/10.1080/002071798222640
https://arxiv.org/abs/1710.05941
https://doi.org/10.1021/ie0305521
https://books.google.de/books?id=MrJctAEACAAJ
https://doi.org/10.1016/j.ifacol.2019.08.068
https://doi.org/10.1016/j.ifacol.2019.08.068
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076257719&doi=10.1016\%2fj.ifacol.2019.08.068&partnerID=40&md5=3cc01fa2ddf34a9911252e3986b2c39b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076257719&doi=10.1016\%2fj.ifacol.2019.08.068&partnerID=40&md5=3cc01fa2ddf34a9911252e3986b2c39b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076257719&doi=10.1016\%2fj.ifacol.2019.08.068&partnerID=40&md5=3cc01fa2ddf34a9911252e3986b2c39b


[162] M Risbeck, N Patel, and J Rawlings. Nonlinear model predictive control tools for
casadi. 2015.

[163] U. Rosolia and F. Borrelli. “Learning Model Predictive Control for Iterative Tasks.
A Data-Driven Control Framework”. In: IEEE Transactions on Automatic Control
63.7 (2018), pp. 1883–1896.

[164] Ugo Rosolia, Ashwin Carvalho, and Francesco Borrelli. “Autonomous racing using
learning model predictive control”. In: 2017 American Control Conference (ACC).
IEEE. 2017, pp. 5115–5120.

[165] Mario A. Rotea. “The generalized H2 control problem”. In: Automatica 29.2 (1993),
pp. 373–385. issn: 0005-1098. doi: https://doi.org/10.1016/0005-
1098(93)90130-L. url: https://www.sciencedirect.com/science/
article/pii/000510989390130L.

[166] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning repre-
sentations by back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–536.
doi: 10.1038/323533a0.

[167] Michael G. Safonov. “Origins of robust control: Early history and future specu-
lations”. In: Annual Reviews in Control 36.2 (2012), pp. 173–181. issn: 1367-
5788. doi: https://doi.org/10.1016/j.arcontrol.2012.09.001.
url: https://www.sciencedirect.com/science/article/pii/
S1367578812000363.

[168] Artur M. Schweidtmann, Erik Esche, Asja Fischer, Marius Kloft, Jens-Uwe Repke,
Sebastian Sager, and Alexander Mitsos. “Machine Learning in Chemical Engi-
neering: A Perspective”. In: Chemie Ingenieur Technik 93.12 (2021), pp. 2029–
2039. doi: https://doi.org/10.1002/cite.202100083. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cite.202100083.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.
202100083.

[169] Y. Shi, S. Kumar Singh, and L. Yang. “Classical Control Strategies Used in Recent
Surgical Robots”. In: vol. 1922. 1. 2021. doi: 10.1088/1742-6596/1922/1/
012010.

[170] S. Shimamoto, K. Kobayashi, and Y. Yamashita. “Stochastic Model Predictive
Control of Energy Management Systems with Human in the Loop”. In: 2020,
pp. 60–61. doi: 10.1109/GCCE50665.2020.9291914.

157

https://doi.org/https://doi.org/10.1016/0005-1098(93)90130-L
https://doi.org/https://doi.org/10.1016/0005-1098(93)90130-L
https://www.sciencedirect.com/science/article/pii/000510989390130L
https://www.sciencedirect.com/science/article/pii/000510989390130L
https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1016/j.arcontrol.2012.09.001
https://www.sciencedirect.com/science/article/pii/S1367578812000363
https://www.sciencedirect.com/science/article/pii/S1367578812000363
https://doi.org/https://doi.org/10.1002/cite.202100083
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cite.202100083
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cite.202100083
https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.202100083
https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.202100083
https://doi.org/10.1088/1742-6596/1922/1/012010
https://doi.org/10.1088/1742-6596/1922/1/012010
https://doi.org/10.1109/GCCE50665.2020.9291914


[171] Pramila P. Shinde and Seema Shah. “A Review of Machine Learning and Deep
Learning Applications”. In: 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA). 2018, pp. 1–6. doi: 10.
1109/ICCUBEA.2018.8697857.

[172] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches.
John Wiley & Sons, 2006.

[173] Dan Simon. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches.
ISBN 978-0-471-70858-2. Hoboken, New Jersey: John Wiley & Sons, 2006.

[174] Raffaele Soloperto, Matthias A. Müller, Sebastian Trimpe, and Frank Allgöwer.
“Learning-Based Robust Model Predictive Control with State-Dependent Uncer-
tainty”. In: IFAC-PapersOnLine 51.20 (2018), pp. 442–447. issn: 24058963. doi:
10.1016/j.ifacol.2018.11.052.

[175] H.-S. Song and D. Ramkrishna. “Reduction of a set of elementary modes using
yield analysis”. In: Biotechnology and Bioengineering 102.2 (2009), pp. 554–568.

[176] Eduardo D Sontag. “Input to state stability: Basic concepts and results”. In: Non-
linear and optimal control theory. Springer, 2008, pp. 163–220.

[177] B. Srinivasan, D. Bonvin, E. Visser, and S. Palanki. “Dynamic optimization of batch
processes: II. Role of measurements in handling uncertainty”. In: Computers &
Chemical Engineering 27.1 (2003), pp. 27–44. issn: 0098-1354. doi: https:
//doi.org/10.1016/S0098-1354(02)00117-5. url: https://www.
sciencedirect.com/science/article/pii/S0098135402001175.

[178] B Srinivasan and Dominique Bonvin. “Controllability and stability of repetitive
batch processes”. In: Journal of Process Control 17.3 (2007), pp. 285–295.

[179] K.S. Stadler, J. Poland, and E. Gallestey. “Model predictive control of a rotary
cement kiln”. In: Control Engineering Practice 19.1 (2011), pp. 1–9. doi: 10.
1016/j.conengprac.2010.08.004.

[180] Robert F Stengel. Stochastic optimal control: theory and application. John Wiley &
Sons, Inc., 1986.

[181] “Stochastic Processes and Filtering Theory”. en. In: Mathematics in Science and En-
gineering. Vol. 64. Elsevier, 1970, pp. 162–193. isbn: 978-0-12-381550-7. doi: 10.
1016/S0076-5392(09)60375-1. url: https://linkinghub.elsevier.
com/retrieve/pii/S0076539209603751 (visited on 05/07/2023).

158

https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1016/j.ifacol.2018.11.052
https://doi.org/https://doi.org/10.1016/S0098-1354(02)00117-5
https://doi.org/https://doi.org/10.1016/S0098-1354(02)00117-5
https://www.sciencedirect.com/science/article/pii/S0098135402001175
https://www.sciencedirect.com/science/article/pii/S0098135402001175
https://doi.org/10.1016/j.conengprac.2010.08.004
https://doi.org/10.1016/j.conengprac.2010.08.004
https://doi.org/10.1016/S0076-5392(09)60375-1
https://doi.org/10.1016/S0076-5392(09)60375-1
https://linkinghub.elsevier.com/retrieve/pii/S0076539209603751
https://linkinghub.elsevier.com/retrieve/pii/S0076539209603751


[182] Qinglin Su, Sudarshan Ganesh, Mariana Moreno, Yasasvi Bommireddy, Marcial
Gonzalez, Gintaras V. Reklaitis, and Zoltan K. Nagy. “A perspective on Quality-by-
Control (QbC) in pharmaceutical continuous manufacturing”. In: Computers &
Chemical Engineering 125 (2019), pp. 216–231. issn: 0098-1354. doi: https://
doi.org/10.1016/j.compchemeng.2019.03.001. url: https://www.
sciencedirect.com/science/article/pii/S0098135418309116.

[183] Yuelong Su and Fengqin Yu. “Data mining applications for finding golden batch
benchmarks and optimizing batch process control”. In: 2016 12th World Congress
on Intelligent Control and Automation (WCICA). 2016, pp. 1058–1063. doi: 10.
1109/WCICA.2016.7578815.

[184] A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel. “Learning from the hind-
sight plan — Episodic MPC improvement”. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA). 2017, pp. 336–343.

[185] Andrew Taylor, Andrew Singletary, Yisong Yue, and Aaron Ames. “Learning for
safety-critical control with control barrier functions”. In: Learning for Dynamics
and Control. PMLR. 2020, pp. 708–717.

[186] Ana P Teixeira, João J Clemente, António E Cunha, Manuel JT Carrondo, and Rui
Oliveira. “Bioprocess iterative batch-to-batch optimization based on hybrid para-
metric/nonparametric models”. In: Biotechnology progress 22.1 (2006), pp. 247–
258.

[187] Peter Terwiesch, Mukul Agarwal, and David W.T. Rippin. “Batch unit optimization
with imperfect modelling: a survey”. In: Journal of Process Control 4.4 (1994),
pp. 238–258. issn: 0959-1524. doi: https://doi.org/10.1016/0959-
1524(94)80045-6. url: https://www.sciencedirect.com/science/
article/pii/0959152494800456.

[188] Arun Tholudur and W Fred Ramirez. “Optimization of fed-batch bioreactors
using neural network parameter function models”. In: Biotechnology Progress 12.3
(1996), pp. 302–309.

[189] Ivayla Vatcheva, Hidde de Jong, Olivier Bernard, and Nicolaas J.I. Mars. “Exper-
iment selection for the discrimination of semi-quantitative models of dynami-
cal systems”. In: Artificial Intelligence 170.4 (2006), pp. 472–506. issn: 0004-
3702. doi: https://doi.org/10.1016/j.artint.2005.11.001.
url: https://www.sciencedirect.com/science/article/pii/
S0004370205002092.

159

https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.03.001
https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.03.001
https://www.sciencedirect.com/science/article/pii/S0098135418309116
https://www.sciencedirect.com/science/article/pii/S0098135418309116
https://doi.org/10.1109/WCICA.2016.7578815
https://doi.org/10.1109/WCICA.2016.7578815
https://doi.org/https://doi.org/10.1016/0959-1524(94)80045-6
https://doi.org/https://doi.org/10.1016/0959-1524(94)80045-6
https://www.sciencedirect.com/science/article/pii/0959152494800456
https://www.sciencedirect.com/science/article/pii/0959152494800456
https://doi.org/https://doi.org/10.1016/j.artint.2005.11.001
https://www.sciencedirect.com/science/article/pii/S0004370205002092
https://www.sciencedirect.com/science/article/pii/S0004370205002092


[190] S. Vazquez, J.I. Leon, L.G. Franquelo, J. Rodriguez, H.A. Young, A. Marquez, and
P. Zanchetta. “Model predictive control: A review of its applications in power
electronics”. In: IEEE Industrial Electronics Magazine 8.1 (2014). cited By 661,
pp. 16–31. doi: 10.1109/MIE.2013.2290138.

[191] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Niels van Duijkeren,
Andrea Zanelli, Rien Quirynen, and Moritz Diehl. “Towards a modular software
package for embedded optimization”. In: Proceedings of the IFAC Conference on
Nonlinear Model Predictive Control (NMPC). 2018.

[192] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey, Niels van
Duijkeren, Andrea Zanelli, Branimir Novoselnik, Thivaharan Albin, Rien Quirynen,
and Moritz Diehl. acados: a modular open-source framework for fast embedded
optimal control. 2020. arXiv: 1910.13753 [math.OC].

[193] Moritz Von Stosch, Rui Oliveira, Joana Peres, and Sebastião Feyo de Azevedo.
“Hybrid semi-parametric modeling in process systems engineering: Past, present
and future”. In: Computers & Chemical Engineering 60 (2014), pp. 86–101.

[194] K. P. Wabersich and M. N. Zeilinger. “Scalable synthesis of safety certificates
from data with application to learning-based control”. In: 2018 European Control
Conference (ECC). 2018, pp. 1691–1697. doi: 10.23919/ECC.2018.8550288.

[195] Kim P Wabersich and Melanie N Zeilinger. “Linear model predictive safety cer-
tification for learning-based control”. In: 2018 IEEE Conference on Decision and
Control (CDC). IEEE. 2018, pp. 7130–7135.

[196] Kim PWabersich andMelanie N Zeilinger. “Safe exploration of nonlinear dynamical
systems: A predictive safety filter for reinforcement learning”. In: arXiv preprint
arXiv:1812.05506 (2018).

[197] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming”. In:
Mathematical programming 106.1 (2006), pp. 25–57.

[198] E.a. A Wan and Rudolph Van Der Merwe. “The unscented Kalman filter for non-
linear estimation”. In: Technology v (2000), pp. 153–158. issn: 15270297. doi:
10.1109/ASSPCC.2000.882463. url: https://www.seas.harvard.
edu/courses/cs281/papers/unscented.pdfhttp://ieeexplore.
ieee.org/xpls/abs{\_}all.jsp?arnumber=882463.

[199] Peter Wieland and Frank Allgöwer. “Constructive safety using control barrier
functions”. In: IFAC Proceedings Volumes 40.12 (2007), pp. 462–467.

160

https://doi.org/10.1109/MIE.2013.2290138
https://arxiv.org/abs/1910.13753
https://doi.org/10.23919/ECC.2018.8550288
https://doi.org/10.1109/ASSPCC.2000.882463
https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf http://ieeexplore.ieee.org/xpls/abs{\_}all.jsp?arnumber=882463
https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf http://ieeexplore.ieee.org/xpls/abs{\_}all.jsp?arnumber=882463
https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf http://ieeexplore.ieee.org/xpls/abs{\_}all.jsp?arnumber=882463


[200] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning. Vol. 2. 3. MIT press Cambridge, MA, 2006.

[201] G. Williams, P. Drews, B. Goldfain, J.M. Rehg, and I.A. Theodorou. “Information-
Theoretic Model Predictive Control: Theory and Applications to Autonomous
Driving”. In: IEEE Transactions on Robotics 34.6 (2018). cited By 29, pp. 1603–
1622. doi: 10 . 1109 / TRO . 2018 . 2865891. url: https : / / www .
scopus . com / inward / record . uri ? eid = 2 - s2 . 0 - 85058870968 &
doi = 10 . 1109 \ %2fTRO . 2018 . 2865891 & partnerID = 40 & md5 =
7a4f71629dfea0ba61753044e1b5f481.

[202] Zhihua Xiong and Jie Zhang. “Improved operation of a batch polymerisation reac-
tor through batch-to-batch iterative optimisation”. In: IFAC Proceedings Volumes
(IFAC-PapersOnline) 37.1 (2004), pp. 945–950. issn: 14746670. doi: 10.1016/
s1474-6670(17)38856-0. url: http://dx.doi.org/10.1016/S1474-
6670(17)38856-0.

[203] J.-X. Xu. “A survey on iterative learning control for nonlinear systems”. In: In-
ternational Journal of Control 84.7 (2011). cited By 288, pp. 1275–1294. doi:
10.1080/00207179.2011.574236.

[204] Jian-Xin Xu and Ying Tan. Linear and nonlinear iterative learning control. Vol. 291.
Springer, 2003.

[205] Xinghai Xu, Huimin Xie, and Jia Shi. “Iterative Learning Control (ILC) Guided Re-
inforcement Learning Control (RLC) Scheme for Batch Processes”. In: Proceedings
of 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS
2020 Ilc (2020), pp. 241–246. doi: 10.1109/DDCLS49620.2020.9275065.

[206] S. Yu, C. Böhm, H. Chen, and F. Allgöwer. “Robust model predictive control with
disturbance invariant sets”. In: Proc. Amer. Cont. Conf. (ACC). 2010, pp. 6262–
6267. doi: 10.1109/ACC.2010.5531520.

[207] Shuyou Yu, Christoph Maier, Hong Chen, and Frank Allgöwer. “Tube MPC scheme
based on robust control invariant set with application to Lipschitz nonlinear
systems”. In: Systems & Control Letters 62.2 (2013), pp. 194–200. issn: 0167-
6911.

[208] M. Zhai, Y. Liu, T. Zhang, and Y. Zhang. “Robust model predictive control for energy
management of isolated microgrids”. In: vol. 2017-December. 2018, pp. 2049–
2053. doi: 10.1109/IEEM.2017.8290252.

161

https://doi.org/10.1109/TRO.2018.2865891
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058870968&doi=10.1109\%2fTRO.2018.2865891&partnerID=40&md5=7a4f71629dfea0ba61753044e1b5f481
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058870968&doi=10.1109\%2fTRO.2018.2865891&partnerID=40&md5=7a4f71629dfea0ba61753044e1b5f481
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058870968&doi=10.1109\%2fTRO.2018.2865891&partnerID=40&md5=7a4f71629dfea0ba61753044e1b5f481
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058870968&doi=10.1109\%2fTRO.2018.2865891&partnerID=40&md5=7a4f71629dfea0ba61753044e1b5f481
https://doi.org/10.1016/s1474-6670(17)38856-0
https://doi.org/10.1016/s1474-6670(17)38856-0
http://dx.doi.org/10.1016/S1474-6670(17)38856-0
http://dx.doi.org/10.1016/S1474-6670(17)38856-0
https://doi.org/10.1080/00207179.2011.574236
https://doi.org/10.1109/DDCLS49620.2020.9275065
https://doi.org/10.1109/ACC.2010.5531520
https://doi.org/10.1109/IEEM.2017.8290252


[209] Dongda Zhang, Ehecatl Antonio Del Rio-Chanona, Panagiotis Petsagkourakis, and
Jonathan Wagner. “Hybrid physics-based and data-driven modeling for bioprocess
online simulation and optimization”. In: Biotechnology and Bioengineering 116.11
(2019), pp. 2919–2930. issn: 10970290. doi: 10.1002/bit.27120. url:
http://dx.doi.org/10.1002/bit.27120.

[210] Jie Zhang. “A neural network-based strategy for the integrated batch-to-batch
control and within-batch control of batch processes”. In: Transactions of the Insti-
tute of Measurement & Control 27.5 (2005), pp. 391–410. issn: 01423312. doi:
10.1191/0142331205tm156oa.

[211] Jie Zhang. “Batch-to-batch optimal control of a batch polymerisation process based
on stacked neural network models”. In: Chemical Engineering Science 63.5 (2008),
pp. 1273–1281. issn: 00092509. doi: 10.1016/j.ces.2007.07.047.

[212] J. Zhu, Y. Liu, H. Lei, and T. Zhang. “A Robust and Model Predictive Control
Based Energy Management Scheme for Grid-Connected Microgrids”. In: 2018.
doi: 10.1109/EI2.2018.8582556.

[213] T Zieger, A Savchenko, T Oehlschlägel, and R Findeisen. “Towards safe neural
network supported model predictive control”. In: IFAC-PapersOnLine 53.2 (2020),
pp. 5246–5251.

[214] Tim Zieger, Hoang Hai Nguyen, Erik Schulz, Thimo Oehlschlägel, and Rolf Find-
eisen. “Non-diverging neural networks supported tube model predictive control”.
In: 2022 IEEE 61st Conference on Decision and Control (CDC). 2022, pp. 3066–3073.
doi: 10.1109/CDC51059.2022.9993089.

[215] Pablo Zometa, Markus Kögel, Timm Faulwasser, and Rolf Findeisen. “Implementa-
tion aspects of model predictive control for embedded systems”. In: 2012 American
Control Conference (ACC). IEEE. 2012, pp. 1205–1210.

[216] Pablo Zometa, Markus Kögel, and Rolf Findeisen. “µAO-MPC: A free code gen-
eration tool for embedded real-time linear model predictive control”. In: 2013
American Control Conference. IEEE. 2013, pp. 5320–5325.

[217] C. Zou, X. Hu, Z. Wei, T. Wik, and B. Egardt. “Electrochemical Estimation and
Control for Lithium-Ion Battery Health-Aware Fast Charging”. In: IEEE Transactions
on Industrial Electronics 65.8 (2018), pp. 6635–6645. doi: 10.1109/TIE.2017.
2772154.

162

https://doi.org/10.1002/bit.27120
http://dx.doi.org/10.1002/bit.27120
https://doi.org/10.1191/0142331205tm156oa
https://doi.org/10.1016/j.ces.2007.07.047
https://doi.org/10.1109/EI2.2018.8582556
https://doi.org/10.1109/CDC51059.2022.9993089
https://doi.org/10.1109/TIE.2017.2772154
https://doi.org/10.1109/TIE.2017.2772154

	Acknowledgements
	Introduction
	Motivation
	Background: predictive control and machine learning
	Contribution
	Structure of the thesis

	Modeling
	Introduction
	Machine learning models
	Artificial Neural Networks
	Gaussian processes

	Hybrid models
	Example: Hybrid model of a fed-batch bioreactor

	Training hybrid models
	Summary

	Model Predictive Control
	Introduction
	Nominal Model Predictive Control
	Continuous processes
	Finite-time processes

	Theoretical differences between continuous and finite-time processes
	Model Predictive Control under uncertainties
	Summary

	Machine Learning & Control
	Introduction
	learning supported Model Predictive Control
	Notes on active and passive learning

	Run-to-run learning & control
	Safe learning & Risk-aware learning
	Summary

	Risk-aware optimization and Model Predictive Control
	Introduction
	Problem setup
	Open-loop optimization
	Shrinking horizon MPC

	Risk function
	Examples
	Key Performance Indicators
	Case Study I: Production β-galactosidase
	Case Study II: Production of poly-β-hydroxybutyrate

	Summary

	Safe Exploration Using Robust Learning Supported MPC
	Introduction
	Problem setup
	Robust control invariant set
	Tube-based shrinking horizon MPC
	Intra-run recursive feasibility

	Safe sets
	Computing an upper bound on the modeling error
	Safety conditions
	Guess of the first safe set
	Genesis experiments

	Guaranteed run-to-run expansion of the safe set
	Set-point error
	Design of experiment
	Example

	Accelerated run-to-run expansion of the safe set
	Example

	Example: Robotic arm
	Summary

	HILO-MPC: A Toolbox for Learning-supported Control, Modelling and Estimation
	Introduction
	HILO-MPC modules
	Modeling module
	Machine Learning module
	Artificial Neural Networks
	Gaussian Processes

	Control module
	Model Predictive Control

	Observer module
	Moving Horizon Estimation
	Kalman filters
	Particle filter

	Embedded Module
	Examples
	Learning the dynamics - Race car
	Learning a reference - Cooperative robots
	Learning the controller - String damper system

	Summary

	Conclusions and Outlook
	Appendix
	Notation and definitions
	Theorems and Proofs
	Proof of Theorem A.2
	Proof of Lemma A.1

	Miscellaneous
	Computation of λ for robust control invariant set



