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Zusammenfassung

In den letzten Jahrzehnten haben Licht-emittierende Dioden (LED) aufgrund ihrer flexiblen
Steuerungsmöglichkeiten, ihrer hohen elektrooptischen Effizienz und ihrer außergewöhnlich
hohen Lebensdauer den Markt für Allgemeinbeleuchtung weitestgehend besetzt. Mit der
fortlaufenden Entwicklung neuer anwendungsspezifischer Leuchtstoffmaterialien werden auch
zunehmend Nischenanwendungen besetzt. In einigen Anwendungsfällen ist die LED mehreren,
oft erhöhten Umweltbelastungen wie Temperatur und Feuchtigkeit zugleich ausgesetzt. Ein
Beispiel für eine solche Anwendung sind Beleuchtungszenarien im industriellen Agrar-Sektor
jenseits der traditionellen Feldbewirtschaftung wie Gewächshäuser.
Die Auswirkung von Feuchtigkeit auf die LED als solche wurde in bisherigen Studien jedoch
nur spärlich untersucht, da überwiegend thermische und elektrische Stressbedingungen im
Vordergrund standen. Insbesondere wurden nur sehr wenige Studien zu Licht-emittierenden
Dioden der Mid-Power Leistungsklasse in PLCC-Gehäusebauform (Plastic-Leaded Chip Carri-
er) mit Hinblick auf den Einfluss von Luftfeuchtigkeit auf deren Zuverlässigkeit durchgeführt.
Diese Situation spiegelt sich auch in den gängigen Normen und Methoden zum Testen und
Berechnen der Bauteilzuverlässigkeit wieder. Daher ist die Untersuchung des Einflusses von
Feuchtigkeit auf die Zuverlässigkeit von Mid-Power LEDs sowie die Modellierung dieses
Einflusses der Hauptgegenstand dieser Arbeit.
Im Verlauf dieser Arbeit wurde ein Experiment zur beschleunigten Degradation konzipiert und
durchgeführt um tiefgehendere Erkenntnisse über die Rolle der Kombination von Umgebungs-
temperatur, Betriebsstrom und Luftfeuchtigkeit als Stressparameter auf die Degradation der
LED zu gewinnen. Dieses Experiment umfasst vier aktuelle, im Handel erhältliche LEDs, die
jeweils 24 verschiedenen Temperatur-, Luftfeuchtigkeits- und Strombedingungen ausgesetzt
wurden. Der aktuelle Zustand jeder LED wurde fortlaufend im Hinblick auf deren optische,
elektrische und thermische Eigenschaften gemessen.
Basierend auf den beobachteten Ergebnissen wird der Schluss gezogen, dass insbesondere das
Eindringen von Feuchtigkeit die Zuverlässigkeit der Bauelemente stark beeinträchtigt, da sich
die Verkapselung aufgrund von Scherkräften, welche durch hygroskopisches Aufquellen der
Silikonverkapselung entstehen, von angrenzenden Teilen des Gehäuses löst. Dadurch können
weiterführende Effekte wie das Anlaufen der reflektierenden Lead-Frame-Beschichtung oder
die beschleunigte Auflösung beigemischter Leuchtstoffpartikel begünstigt auftreten.
Hinsichtlich der Modellierung der beobachteten Degradationsverläufe wurden verschiedene
kontinuierliche Degradationsfunktionen und ein segmentierter Degradationsansatz untersucht.
Letzterer zeigte vielversprechende Ergebnisse, insbesondere, wenn die anschließende Mo-
dellierung der Beschleunigungsparemter durch die Eyrings-Gleichung berücksichtigt wird.
Darüber hinaus wurden eine Gaußsche Prozessregression als Modellierungsansatz für die
Degradationstrajektorie sowie die Survival-Analyse als Ansatz für die Modellierung der Le-
bensdauer untersucht. Insbesondere für nicht-monotone Beschleunigungsfunktionen konnten
beide Methoden eine erhöhte Genauigkeit gegenüber gängigen physikalisch-basierten Model-
lierungsansätzen erzielen.
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Abstract

Over the past decades Light-emitting Diode (LED) devices have not only entered but occupied
large segments of the general lighting market due to their flexible control features, high
power conversion efficiency and exceptional long lifetime when operated at the recommended
conditions. With the constant emergence of new application specific phosphor-materials niche
applications are targeted. In some use cases the LED device is exposed to multiple, often
elevated environmental stress conditions, such as temperature and humidity. An example of
such an application is horticulture lighting in vertical or greenhouse farming scenarios.
However, especially the impact of moisture on the LED device as a whole is only sparsely
investigated in past studies since mostly thermal and electrical stress conditions were targeted.
In particular, only very few studies have been conducted on plastic-leaded chip carrier (PLCC)
Mid-Power LED devices with respect to moisture. These situation is also reflected in common
standards and methodologies for reliability testing and lifetime calculation. Therefore, the
investigation of moisture ingress on performance of a LED and modeling this very is the main
scope of this work.
Over the course of this work an Accelerated Degradation Test (ADT) experiment was designed
and conducted to gain further insights on the role of the combination of temperature, current
and humidity on the devices degradation. This experiment included four state-of-the-art,
commercially available Mid-Power LED devices recommended for the use in horticulture
applications that were each subjected to 24 different temperature, humidity and current
conditions. The current state of each device was measured continuously with respect to its
optical, electrical and thermal characteristics.
Based on the observed results it is concluded that especially moisture ingress severely impacts
the devices performance by causing the encapsulant to detach from adjacent parts of the
package due to shear forces introduced by hygroscopic swelling of the silicone encapsulant.
Accompanying effects, such as tarnishing of the reflective lead-frame coating or accelerated
dissolution admixed phosphor particles can also be reported.
Regarding the modeling of the observed degradation trajectories various continuous decay
functions and a segmented decay approach were investigated. Latter showed promising results
especially when considering the subsequent modeling of its decay parameters according to
Eyrings equation. In addition, a Gaussian Process Regression as a decay modeling approach
as well as Survival Analysis as a time-to-failure approach were explored. Especially for case
of non-monotonous acceleration functions both yielded an increased accuracy compared to
typical physics-based modeling approaches.
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1 Introduction

From the discovery of semiconductor material’s ability to emit light when subjected to an
external voltage by Henry Round (1907), Oleg Losev (1921) and Georges Destriau (1935) [1,
2] to today’s LED it has been a long journey. About four decades after the first observation of
this effect, referred to electroluminescence, with the research on the semiconductor pn-junction
by William Shockley [3] and Heinrich Welker [4] the development towards the modern LED

increasingly accelerated with new improved processing technologies. Subsequently, the first
optical active, binary GaP semiconductor crystal with an orange to red light emission pattern
was synthesized during the 1950s [2, 5–7]. Dating the early 1960s Nick Holonyak reported
the first application of GaAs and GaAsP based Light Amplification by Stimulated Emission of
Radiation (LASER) devices [2]. Later in 1968 the first commercial red GaAsP LED devices were
produced [2, 8]. Over the following decades binary and ternary semiconductor compounds
steadily advances regarding their efficiency as well as their spectral properties resulting in a
variety of green to (infra)red LED devices. Even though the existence of blue emitting GaN
based semiconductors was verified in the late 1960s, reliably processing of such on a large
scale proved to be a major challenge with existing manufacturing technology due to significant
lattice mismatches during the growth process [2, 9]. As a result most research was ceased up
until in the 1980s structural improvements, such as stabilizing AlN buffer layers on sapphire
substrate, and finally Nakamuras optimization of the GaN on sapphire growth process with
distinct thermal curing set the foundation for the modern LED [2, 10–13]. With further structural
and processing advances, these blue light emitters efficiency and reliability largely increased
over the following years [14]. The final step towards todays widely spread application of GaN
based LED devices was the addition of a wavelength-converting phosphor material, such as
a yellow-emitting YAG, onto the emitter in order to generate white light [2, 15–18]. Further,
the flexibility of obtaining distinct spectral emission patterns by adjusting the ratio of the GaN
to InN concentration ratio in ternary InGaN compounds allows highly diverse and use case
specific emitter-phosphor combinations encompassing applications ranging from architectural
over healthcare to horticulture [2, 16, 19–31].
On the emitter side the primary development focus over the past two decades was on ceramic
substrate package based InGaN emitters in the High-Power (HP) regime (Pel,typ ≥ 1 W) in order
to obtain maximum power densities. Even though this technology has matured in terms of
a consolidation in utilized materials and manufacturing processes an optimization towards
maximum efficiency at such high power densities is challenging due to self heating of the
device. Therefore, lately the focus shifted towards devices in Mid-Power (MP) PLCC-package
regime (100 mW < Pel,typ < 1 W). As these devices are operated at much lower power densities
an operation closer to their efficiency maximum can be achieved. It should be noted, that the
MP regime’s upper limit varies between 0.5 W to 1 W depending on different definitions. Over
the course of this work the above stated definition regarding typical power consumption and
package technology is used. Due to their low heat dissipation as a result of a high power
conversion efficiency these devices allow to simplify the application’s thermal design. Thereby,
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MP devices are incorporated increasingly in consumer and professional lighting products
accompanied by an steadily increased number of MP PLCC LED devices offered on the market.
[32]

1.1 Horticulture LED Lighting Applications

Considering the previous elaborated current developments in emerging lighting applications
the horticulture market segment stands out in particular. For one, due to the emerging climate
change [33] the traditional field based crop cultivation will face drought and extreme weather
related challenges letting greenhouse and indoor cultivation become a sustainable alternative.
Second, in order to nourish the worlds steadily growing population while considering the
limited amount of available farm land, approaches like indoor vertical farming are required
for space efficient crop cultivation. Since these proposed greenhouse and indoor farming
approaches require artificial light sources for plant illumination, LED based lighting systems
are of major interest due to their efficiency and extraordinary control features [29, 31, 34–36].
This becomes particularly evident when analyzing the current market situation and forecast of
horticulture related lighting products ranging from LED devices over luminaries towards smart
crop yield control systems ranging up to about 19 billion US Dollar by 2027 [37].
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Figure 1.1: Estimated market growth for horticulture LED devices for indoor and greenhouse farming
applications according to different sources by the European Union Joint Research Center [37].

1.2 Moisture and LED Reliability

Despite the fact that state-of-the-art LED devices for standard applications, such as white
phosphor-converted Light-emitting Diode (pcLED) for indoor lighting, feature an exceptional
long lifetime of several 10 000 h while operated within the manufacturers specifications [32,
38–40] devices under harsher conditions like e.g. in greenhouse environments may face lifetime
reducing challenges. Comparing horticulture lighting to indoor lighting applications the
operational and in specific the environmental conditions highly differ. Climatic conditions
indoors can be assumed mostly static around T ≈ 22 °C and rH ≈ 40 % to 60 % [41]. In contrast,
LED devices in horticultural applications are subjected to elevated stress conditions due to
longer switching cycles and high air moisture. In greenhouses luminaries may additionally
be subjected to elevated temperatures during the day due to direct exposure to sunlight.
Depending on the application the air moisture can also be supplemented with fertilizer
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particles which provide a potential hazard for the LED devices.
In terms of reliability, a decrease in optical power or changes in the spectral composition
would decrease crop yield and is therefore not desired [29, 42]. Identifying the impact of
environmental stress on the performance of a LED is an ongoing scope in reliability research
[32, 38, 39]. However, in the past, the focus of such reliability investigations has been on the
temperature and current side while environmental humidity was only sparsely investigated.
This is also reflected in typical test standards like IES TM-21 [43]. Especially, when concerning
new packaging, phosphor and processing technologies for such applications further studies
are mandatory.
The scope of this thesis, therefore, is the identification of moisture-related reliability issues as
well as the modeling of the corresponding lifetime. Considering the prolonged lifetime of a LED,
an ADT at 24 different (rHA, TA, IF)-conditions on 480 state-of-the-art MP LED devices containing
different phosphor materials is carried out. Both, the results and observed degradation effects
of the ADT are put into perspective with respect to an extensive literature review on past LED

reliability studies. Finally, the degradation behavior and subsequently, the devices lifetime
with regard to the applied stress conditions is modeled. Since the most common physics based
models do not encompass temperature, current and humidity together as independent stress
variables alternative modeling approaches are investigated.

1.3 Outline of This Thesis

For the ease of readability this work is structured in seven chapters. Beginning with this chapter
an introduction is provided to the reader followed by an overview on the physical background
on LED technology in chapter 2. Next, in the first part of chapter 3, standards and procedures
for LED reliability testing are discussed before an in depth literature review on degradation
mechanisms of LED devices is given in the second part of chapter 3. Based on the literature
research a ADT experiment is designed in chapter 4 whose results are discusses subsequently
in chapter 5. With respect to the measured degradation trajectories these very are modeled in
chapter 6. Finally, a discussion and outlook for further work is presented in chapter 7.





2 Blue and Phosphor-converted Mid-Power LEDs

Over the course of this chapter the reader is provided with a comprehensive overview on
physical and technological properties MP LEDs. The first section will elaborate on the basic
principles of III-N semiconductors for LED applications. Next, the basics of phosphors for
wavelength-conversion is presented. Subsequently, the structural properties of PLCC packages
are discussed before finally giving an overview on LED performance metrics in the last section.

2.1 III-Nitride Semiconductors for Blue Light-Emitting Diodes

This section emphasizes on the physical and electrical properties of binary and ternary III-
Nitride semiconductors for Light-emitting Diode (LED) applications. Starting with the structural
design of the III-Nitride material system, followed by the generation of blue light emission
pattern and the electrical properties of such devices.

2.1.1 The Material System of III-Nitride Semiconductor Compounds

Structural Properties

Due to their high radiative efficiency III-N(itride) compound semiconductors are the prevalent
material system for blue LEDs [2]. These compounds combine group III elements, such as
Indium (In), Gallium (Ga) or Aluminium (Al), with Nitrogen (N) as a group V element to form
a III-V semiconductor. Common III-N compounds are either of a binary type, hosting one group
III/V element each, such as GaN, and ternary types incorporating two group III elements
and one group V element, such as InxGa1 – xN or AlxIn1 – xN [2, 44–46]. III-N compounds are
characterized by their Wurtzite crystal structure (hexagonal) shown in fig. 2.1 in contrast to a
Zinc-Blende crystal structure (cubic) present in other III-V semiconductor compounds with
higher period group V elements like Phosphorus (P) or Arsenic (As) [47].

 a  

 c  

 –c -plane

c -plane
Ga3+ / In3+

N3-

Figure 2.1: Wurtzite crystal structure of a III-N semiconductor lattice unit cell [48], reproduced with
the authors permission.
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6 blue and phosphor-converted mid-power leds

The Wurtzite structure features two interlacing hexagonal close-packed (HCP) lattice structures
yielding two parallel c-planes occupied by the group III element(s). Its geometrical properties
are described by the Wurtzite crystal cell’s lattice constants a = (2

√
2/
√

3) · (rIII + rV) (in-plane)
and c = (8/3) · (rIII + rV) (out-of-plane) with the tetrahedron covalent radii rIII and rV[45]
presented in table 2.1. At equilibrium condition in an ideal III-N Wurtzite structure the III/N
elements electrical dipoles cancel each other out resulting in a cells net electrical field of
~E = ~0N C−1 thus no polarization should be present. However, a polarization in the c-plane
has been observed due to lattice mismatches [49–51]. The present electric field ~E 6= ~0N C−1

in the c-plane generates a small directional charge difference ∆ ~Qc between both c-planes of
the Wurtzite crystal. In addition to lattice mismatches, spontaneous polarization effects were
observed in the crystal’s growth direction [51].

Table 2.1: Lattice constants a, c and the band gap energy Eg of different binary III-N Wurtzite semicon-
ductor compounds at room temperature T = 300K [2, 45].

Compound a (Å) c in (Å) Eg (eV)

AlN 3.112 4.982 6.28

GaN 3.191 5.185 3.425

InN 3.545 5.703 0.77

Band Structures of III-N Semiconductors

Covalent bonds between two neighboring atoms in a III-N crystal lattice are formed as a result
of their overlapping valence electron orbitals. Those valence electrons can either be tied to their
atom or available as free charge carriers within the lattice depending on their electron energy.
Since energy is quantized according to the wave function Ψ(~r, t), electrons can only occupy
discrete energy states. The highest energy levels at T = 0 K occupied by valence electrons
tied to their atom is denoted as the valence band Ev and the lowest energy levels of vacancies
for free electrons is denoted as the conduction band Ec respectively. Occupation of states
within the resulting band gap Eg = Ec − Ev is forbidden due to the wave functions properties.
Furthermore, the energy level defined by the chemical potential in equilibrium state at T = 0 K
is denoted as the Fermi-level EF, which for undoped semiconductors located close to the band
gap center at EF ≈ 0.5Eg ≈ 0.5(Ec− Ev) as a result from Fermi-Dirac-statistics [52]. Typical band
gaps of semiconductors range up to Eg(SiO2) ≈ 11 eV [53] at low temperatures. Considering
III-N semiconductors at room temperature of T = 300 K typical band gap energies of binary,
wurtzite structured compounds are presented in table 2.1. For ternary III-N compounds the
theoretical Eg [2] is determined according to eq. (2.1) with the bowing parameter Eb set to
−1 eV for AlGaN [54], −2.4 eV for InGaN [55] and −3 eV for AlInN [56].

EAB
g = EA

g + (EB
g − EA

g )x + x(1− x)Eb (2.1)

In blue LED applications ternary InGaN with a low Inx content of x ≈ 15 % to 20 % is predomi-
nantly used since its processing is well understood and controllable compared to Inx-rich AlInN
alloys with x ≈ 45 % to 50 % that also provides blue wavelength emission. The processing
issues of InN-rich compounds originate for one from the low dissociation temperature of InN
hindering the growth uniformity required [57]. In addition, InN lattice constants a, c differ from
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most common substrates, thus, promoting lattice mismatches (Si: 7 %, GaN: 11 %, SiC: 14 %,
saphhire: 27 %) [45, 58]. Subsequently, these mismatches introduce compressive and tensile
forces into the lattice altering its polarization due to the piezoelectric effect [51, 59, 60]. Thereby
created electric fields distort the lattice’s band structure and causing a separation of free charge
carriers lowering the overall radiative efficiency. This effect is denoted as the Quantum-confined
Stark Effect (QCSE) [61–63]. The following paragraphs will therefore emphasize only on (In)GaN
based semiconductors with low Indium content used for blue LED applications.

Doping

The beforehand discussed pure (intrinsic semiconductor) III-N crystal structure provides fixed
electrical and optical properties. The process of intentional introducing defined impurities
(dopants) into the (III-N) host lattice to adjust these properties is referred to as doping. Such
dopants are of adjacent groups (II, IV, VI) and occupy lattice positions of either group III
(Al, Ga, In) or V (N) elements. Doped (extrinsic) semiconductors thus offer additional charge
carriers in the form of either excessive electrons for replacements by higher group elements
(Donors; group III→ IV, V→ VI) or electron vacancies (holes) for replacements by lower group
elements (Acceptors; group III→ II, V→ IV). The former are denoted as n-type and the latter
as p-type semiconductors. In order to alter the host lattices conductivity these additional charge
carriers need to be ionized by an activation energy Ea either elevating the donors free electrons
into the conduction or lowering the acceptors free holes into the valence band respectively.
Simultaneously, the Fermi level shifts towards the corresponding band. [2, 45, 58]
The n-doping of (In)GaN semiconductors is mainly achieved by replacing Ga atoms with Silicon
yielding free carrier concentrations of about 1017 cm−3 to 1019 cm−3 [64]. Since the activation
energy of these SiGa donor charge carriers of 12 meV ≤ Ea ≤ 17 meV [65] is lower than the
crystals thermal energy at room temperature of kBT ≈ 25 meV an ionization automatically
takes place. However, unintentional n-doping (autodoping) has also been reported as a result of
Oxygen contaminants from the growth process substituting Nitrogen atoms as well as Nitrogen
vacancies resulting from poor processing acting as donors [58, 65–68].
Implanting acceptors into the (In)GaN lattice by p-doping has proven to be far more challenging.
For one introducing group IV elements turns out not to be purposeful, since these elements
rather substitute group III elements [58]. Secondly, the passivation of Magnesium acceptors by
residue Hydrogen bonding with Nitrogen [11, 69, 70]. Thirdly, the rather high activation energy
of Mg at room temperature of Ea = 200 meV� kBT [58]. Both previous challenges were solved
to a certain extend by a proper processing followed by an additional thermal annealing step
reversing the passivation and activating the implanted Mg-donors [13].

2.1.2 The pn-Junction

The fundamental building block of semiconductor devices in electronics is the pn-junction
consisting of two oppositely doped layers of a single semiconductor. This simple pn-junction is
referred to as a p-n-homojunction diode as fig. 2.2 shows. In order to achieve an equilibrium
state, free charge carriers in the interfaces proximity diffuse towards the opposite doped region
to recombine with their counterparts. The average distance of these (minority) carriers diffuse
into the opposite doped layer before recombining is specified by the diffusion length Ln,p
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in eq. (2.2) with the diffusion constant Dn,p, the charge carriers lifetimes τn,p and the charge
carriers mobility µn,p. This process is illustrated in the right part of fig. 2.2.

Ln,p =
√

Dn,pτn,p with Dn,p =
kBT

q
µn,p (2.2)

Ec

Ef
Ev

Electrons
Holes

p-GaN

Depletion 
Region

n-GaN

Ec

Ef
Ev

p-GaN

Ln

Lp

n-GaN
Rrad

Rrad

(a) (b)

Figure 2.2: The pn-junction: (left) Depletion region forming a potential barrier at the junction, (right)
length of minority charge carriers with an external forward bias voltage to lower the potential barrier
[48], reproduced with the authors permission.

Resulting from these diffusion processes the interface area is depleted of free charge carriers,
denoted as the depletion region, leaving ionized donors and acceptors introducing a net
charge on the p-side and n-side respectively. The thus generated electrical potential across the
depletion region – the diffusion voltage VD – displayed in the left part of fig. 2.2 is given by
eq. (2.3) with the absolute temperature T, Boltzmann’s constant kB, the elementary charge q,
the concentrations of acceptors and donors NA and ND as well as the semiconductor materials
intrinsic carrier concentration ni.

VD =
kBT

q
ln
(

NAND

n2
i

)
(2.3)

Further, eq. (2.2) implies a broadening of the minority charge carriers distribution with in-
creasing temperature. As a consequence, the charge carrier density decreases and thus the
possibility of radiative recombination is lowered. An detailed explanation on this matter is
provided in section 2.1.3. To overcome this issue a sandwich structure of a small band gap
semiconductor between two wide band gap materials also known as Quantum Well (QW) or
double pn-heterojunction is introduced as highlighted in fig. 2.3. Both wide band gap regions
act as a barrier to trap charge carriers in between due to their bands abrupt energy gradient. The
resulting high charge carrier concentration along the small band gap area – the active region –
significantly increases radiative recombination. Current state of the art LED semiconductors
use Multi Quantum Well (MQW) structures to further increase and control the charge carriers
radiative recombination [2, 45]. It is noteworthy, that (In)GaN alloys display a higher band to
band energy difference in the conduction than the valence band [71].
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Electrons
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p-GaN n-GaNInGaN

∆Ev

Rrad

∆Ec

Figure 2.3: Illustration of a pn-heterojunction of an InGaN semiconductor device with a QW charge
carrier confinement [48], reproduced with the authors permission.

2.1.3 Radiative and non-Radiation Recombination of Free Charge Carriers

While transitioning from a higher energy state to a lower one, an electron releases its excessive
energy ∆E = qVD ≈ Eg. This process is called recombination and can either happen by emitting
a photon (radiative) or a phonon (non-radiative) [72, 73]. Although both processes occur in
LED semiconductors, the former is clearly preferred. The following paragraphs elaborate on
both types of recombination as well as the resulting spectral emission properties for radiative
recombination.

Direct and Indirect Semiconductors

In general, semiconductors are categorized by their valence bands maximum Ev,max(kv) and
conduction bands minimum Ec,min(kc) alignment within the momentum (~k) space diagram.
Due to the conservation of momentum kc u kv is required for recombination processes. Direct
semiconductors, like (In)GaN, naturally fulfill kc u kv since both bands extreme points are
aligned within the ~k-space as shown in fig. 2.4. Alongside with momentum conservation
also energy must be preserved by releasing a photon EPhoton = h f ≈ Ec,min − Ev,max. For
indirect semiconductors, like Si, the momentum of both bands is not aligned kc 6= kv. Thus, an
additional momentum ∆k = kc − kv has to be introduced to fulfill conservation of momentum.
Usually ∆k is generated by emitting a phonon (lattice vibration) with the energy EPhonon =

Ec,min − Ev,max − h f lowering the probability of radiative recombination. [2, 45]

Radiative Recombination of Free Charge Carriers

Considering a direct semiconductor at equilibrium condition with a given electron n0 and
hole concentration p0 the intrinsic charge carrier concentration is given due to the law of
mass action by n2

i = n0 p0. Additional charge carriers ∆n, ∆p, are generated by e.g. applying a
current to the semiconductor. The total charge carrier concentration for electrons subsequently
is n = n0 + ∆n and p = p0 + ∆p for holes respectively. As electrons and holes recombine the
total carrier concentration decreases over time. This decrease is denoted as the recombination
rate Rrad defined by the bimolecular rate equation in eq. (2.4) showing a proportionality
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E = Ec + ℏ2k2/(2me*)

E = Eh + ℏ2k2/(2mh*)
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Figure 2.4: Charge carrier distribution of a direct semiconductor represented in E-k-diagram by means
of its aligned valence and conduction bands momentum. [48], reproduced with the authors permission.

to n, p with the bimolecular recombination coefficient B. Usually B is in the magnitude of
10−12 cm3 s−1 to 10−9 cm3 s−1 [2, 46, 74–79].

Rrad = −dn
dt

= Bnp (2.4)

Within the relatively small active region an nearly equal electron and hole n ≈ p concentration
can be assumed. Injecting a current increases the excessive charge carriers concentration
substantially to ∆n, ∆p� n0, p0 yielding n = ∆n ≈ ∆p = p. Thus, eq. (2.4) can be simplified to
Rrad = Bn2 stating the radiative recombination an quadratic dependency on the charge carrier
concentration.

Non-Radiative Recombination of Free Charge Carriers

Direct semiconductors can also be prone to non-radiative recombination processes, namely:
Shockley-Read-Hall (SRH) and Auger recombination. Promoted by lattice defects, such as
impurities or dislocations [80, 81], additional deep level trap energy states ET can arise within
the band gap. The process of trap assisted recombination is denoted as SRH recombination
RSRH [72] and involves two phonon generating reactions following eq. (2.5) and eq. (2.6).

Trap0 + e− −−→ Trap− + EPhonon,1 (2.5)

Trap− + h+ −−→ Trap0 + EPhonon,2 (2.6)

Both phonons energies correspond to the band to trap energy difference Ec − ET for EPhonon,1
and ET − Ev for EPhonon,2 respectively. In this two part reaction the slower reaction part of
both eq. (2.5) and eq. (2.6) limits the overall recombination rate. Thus the probability of a
recombination is proportional to the product of the total trap NT and carrier n concentration.
Considering the thermal velocity vth and the trap’s capture-cross-section σe the SRH recombi-
nation rate is defined by RSRH = σevthNTn = An where A is the SRH coefficient. Typically A
decreases with increased fabrication quality of the semiconductor and takes values in the order
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of 106 s−1 to 109 s−1 [2, 74–79].
Auger recombination RAuger on the other hand, occurs if upon recombination with its counter-
part a charge carriers energy is passed to a third carrier of that type within the energy band.
Subsequently, the excess energy of the third particle is emitted as a phonon. This recombina-
tion can occur as an eeh process involving two electrons given by the reaction in eq. (2.7) or
respectively as an ehh process following eq. (2.8). [2]

e− + e− + h+ −−→ e− + EPhonon (2.7)

e− + h+ + h+ −−→ h+ + EPhonon (2.8)

Subsequently, assuming an equal charge carrier concentration n ≈ p the Auger recombination
rate can is calculated by RAuger = (Ceeh + Cehh)n3 = Cn3. The Auger coefficient C typically
ranges from 10−31 cm6 s−1 to 10−29 cm6 s−1 [74–79].

ABC-Model of Recombination

The overall recombination R of the active region is found according to eq. (2.9) by summing
the three recombination rates specified above.

R = RSRH + Rrad + RAuger = An + Bn2 + Cn3 (2.9)

It should be noted, that no leakage of charge carriers out of the QW is assumed in the following.
Thus, the induced charge carrier generation or injection rate G within the active regions volume
Vactive must equal the recombination rate R (eq. (2.10)).

IF

qVactive
= G !

= R = An + Bn2 + Cn3 (2.10)

The ratio of emitted photon energy EPhoton = h f to the total injected energy Etot = EPhoton +

EPhonon is directly proportional to the ratio of radiative recombination processes Rrad to all
recombination processes R shown in eq. (2.11) which is denoted as the internal quantum
efficiency ηIQE.

ηIQE =
Rrad

R
=

Bn2

An + Bn2 + Cn3 ∝
EPhoton

Etot
(2.11)

Further considering solely radiative recombination A, C = 0 and B 6= 0 in eq. (2.10) the optical
power Popt is obtained by eq. (2.12).

G = R|A,C=0
|·EPhoton−−−−→ Popt = Bn2h f Vactive (2.12)

Since the charge carrier concentration is proportional to the injection current n ∝ IF three
observations can be stated from eq. (2.11): Firstly, SRH recombination dominates within the
low injection range due to the linear n-term and increases steadily. Secondly, the efficiency
maximum ηIQE,max is located at moderate current conditions as B� C. Thirdly, at very high
injection currents the substantially small Auger coefficient C is compensated by the cubic
n3-term resulting in an efficiency droop ηDroop described by eq. (2.13). The droop’s shape is
highly dependent on the device’s structure and material parameters. [2, 82–85]

ηDroop = 1− ηIQE,max

ηIQE
(2.13)



12 blue and phosphor-converted mid-power leds

Spectral Emission

Starting from the beforehand discussed radiative recombination and emission of photons of a
certain frequency f the following paragraph will derive the quasi monochromatic emission
spectrum with its characteristic peak wavelength λp and Full Width Half Mid (FWHM) as well as
its thermal properties. The photon emission in LED semiconductors origins from spontaneous
recombination effects induced by an electric current yielding a quasi monochromatic spectrum.
In contrast, LASER semiconductors require the stimulation by additional, external photons that
produce a narrow, nearly monochromatic spectrum with FWHMLASER � FWHMLED.
In order to determine the emission spectrum, first, the conduction and valence band shapes
within the~k-space are analyzed. The electrons and holes, both feature a parabolic dispersion
within the conductance and valence band respectively following eq. (2.14) with the reduced
Planck constant h̄, the wave number k, the electrons and holes effective masses m∗e , m∗h and the
band edges Ec, Ev.

Ee(k) = Ec +
h̄2k2

2m∗e
Eh(k) = Ev −

h̄2k2

2m∗h
(2.14)

Considering the conservation of energy and momentum the energy of a photon at a certain
wave number is obtained according to eq. (2.15) also denoted as the joint dispersion relation.

EPhoton = h f ≈ Eg ≈ Ee(k)− Eh(k) ≈ Eg +
h̄2k2

2m∗r
with m∗r =

m∗em∗h
m∗e + m∗h

(2.15)

From rearranging the joint dispersion relation from eq. (2.15) in terms of k(E) the joint Density
of States (DOS) ρ(E) in a given volume can be inferred. The distribution of charge carriers along
these states is given by the Boltzmann distribution fB(E). The spectral emission is therefore
directly proportional to the superposition of ρ(E) and fB(E) shown in eq. (2.16).

Popt(E) ∝ ρ(E) · fB(E) ≈
√

E− Eg exp
(
− E

kBT

)
(2.16)

Subsequently, λp and the FWHM can be derived according to eq. (2.17) and eq. (2.18) by taking
the Planck-Einstein relation E = h f = hc

λ into account. Both parameters λp and FWHM are
illustrated for a real blue InGaN spectrum in the left plot fig. 2.5.

Emax = Eg +
1
2

kBT −−−→ λp =
hc

Emax
(2.17)

FWHME = 1.8kT −−−→ FWHMλ =
1.8kTλ2

p

hc
(2.18)

Accompanied by the spectrums temperature dependency in eq. (2.16) the band gap exhibits an
additional temperature dependency that can be modeled according to the Varshni formula in
eq. (2.19) with the material dependent fitting parameters αV, βV [71, 86, 87].

Eg(T) = Eg(T0)−
αVT2

T + βV
(2.19)

As a result the peak wavelength, the FWHM and the amplitude of the emitted spectrum varies
with temperature. Latter can be attributed to enhanced carrier leakage as well as non-radiative
deep level and surface recombination. This amplitude change can be modeled by eq. (2.20) with
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the characteristic temperature T1. The temperatures effect on the LED spectrum is displayed in
the right plot of fig. 2.5.

Popt(T) = Popt,300 K · exp
(

T − 300 K
T1

)
(2.20)

Consequently in MQW structure semiconductors a discrete superposition of multiple emission
spectra depending on the physical design should be expected. Despite that, a broadened
spectrum has been observed in several studies whereupon intermediate states occurring within
the structure were suggested [88, 89]. Modeling such MQW spectra by means of physical or
probabilistic functions is still an ongoing subject [90].
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Figure 2.5: Typical spectrum of a blue InGaN emitter: (left) spectrum with its characteristic peak
wavelength λp as well as FWHM and (right) temperature dependence of the emitted spectrum.

2.1.4 Electrical Characteristics

Operating the LED at forward bias conditions by applying a positive voltage – forward voltage
VF – to the pn-junction a positive current IF flow is initiated due charge carrier injection into the
neutral region of the semiconductor promoting radiative recombination. Measuring IF while
varying VF exhibits two characteristics of the function IF(VF): First, a sudden increase of IF

at VF ≈ VD occurs since more majority charge carriers diffuse through depletion region due
to a lowered potential barrier ∆E = q(VD − VF). Second, at voltages far below the thermal
voltage VF � VT = kBTq−1 a small current – the saturation current Is – with a magnitude
of 10−6 A to 10−12 A is measured as a result of minority carrier drifting into opposite doped
region. This IV-characteristic of an ideal diode is described by the general Shockley equation
in eq. (2.21) with the diodes cross-sectional are A and the minority carrier lifetimes τn, τp. It
should be noted that the saturation current has a temperature dependency Is ∝ T3/2 resulting
from the DOS ρ(E) influence on the intrinsic charge carrier density n2

i .

IF = Is

[
exp

(
qV
kBT

)
− 1
]

with Is = qA

[√
Dp

τp

n2
i

ND
+

√
Dn

τn

n2
i

NA

]
(2.21)
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As LED devices usually are operated under forward bias conditions VF � VT the former
eq. (2.21) is simplified to eq. (2.22) where the ideality factor is introduced to consider deviations
in experimental measurements from the ideal diode characteristic. For an ideal diode nideal is
set to nideal = 1 while measurements show nideal > 1. [2]

IF = Is exp
(

VF −VD

nidealVT

)
(2.22)

In real diodes however, the IV-characteristic diverges from that of an ideal diode given by
equations eq. (2.21) and eq. (2.22). Such a real characteristic is shown in part (a) of fig. 2.6.
Reasons can be found on the one hand by non-radiative recombination processes and on the
other hand by parallel and series parasitic resistances Rp and Rs as fig. 2.6 highlights. The
modified Shockley equation eq. (2.23) takes both deviations from the ideal IV-characteristic
into account. Due to the transcendental form (x = f (x)) of eq. (2.23) a solution can be found
by approximation or assistance of the LabertW function [91, 92].

IF −
VF − IFRs

Rp
= Is(T) exp

(
VF − IFRs

nidealVT

)
(2.23)

The previously introduced ideality factor is used to model non-radiative recombination into
eq. (2.23). At the very low injection regime VF ≤ VT defect induced trap assisted tunneling
processes are the predominating cause of deviations from the ideal IV-characteristic that
are recognized by an nideal ≥ 2. SRH recombination processes, present at VF > 2VT, can be
considered with nideal = 2 [93, 94]. However, in some cases the actual nideal highly differs from
the beforehand describes theoretical values. In such cases, nideal is obtained by linearizing
eq. (2.22) and deriving it towards VF yielding eq. (2.24) [95–98].

nideal(IF) =
q

kBT

[
d(ln IF)

dVF

]−1

(2.24)

Subsequently, by taking the derivative of nideal(IF) with respect to IF the ideality factor is
extracted at the functions range of lowest slope as presented in eq. (2.25). Both to the ideality
factor adjacent ranges of higher slope are not suitable for a valid expression of nideal due to the
influence of the corresponding parasitic resistances Rp and Rs.

dnideal

dIF
=


� 0, for Rp-limited

≈ 0, for ideal diode

� 0, for Rs-limited

(2.25)

These limiting parasitic resistances are the second contributor to these deviations from the ideal
IV-characteristic and become primarily apparent in low injection region as parallel Rs and in
the high injection regime as series resistance Rs. Former provides additional low impedance
current paths surpassing the active region, e.g. surface currents. Latter are introducing regions
of low conductivity, e.g. poor contacting, into the current path resulting in a voltage drop that
lowers the forward voltage across the pn-junction. Both parasitic resistances are determined
following eq. (2.26) with regard to their corresponding injection regions.

Rp =
dVF

dIF

∣∣∣∣
VF→0

and Rs =
dVF

dIF

∣∣∣∣
VF�VD

(2.26)
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Figure 2.6: (a) Semi-logarithmic IV-characteristic of a real LED pn-junction with various conduction mech-
anisms, (b) diffusion current of the ideal diode around nideal = 1, (c) non-radiative SRH-recombination
around nideal = 2 and (d) trap assisted tunneling processes [48]. Reproduced with the authors permis-
sion.

2.2 Phosphors for Wavelength-Conversion of Blue LED Spectra

Most lighting applications require use-case specific, polychromatic spectra across the Visible
Spectrum (VIS) range which are only possible to realize up to a limited extend with pure semi-
conductor based emitters while maintaining reasonable manufacturing effort [99]. Therefore,
the most common approach is the application of a photo-luminescent inorganic phosphor layer
onto the LED die that converts the emitted (narrow) spectrum located at λp,1 into a (broadened)
spectrum centered at λp,2. A conversion where λp,1 < λp,2 is denoted as down-conversion
and λp,1 > λp,2 as up-conversion, respectively. Former are the predominating method of
wavelength conversion in the context of LED due to their extraordinary high efficiency. This
section emphasizes on the principles of wavelength conversion and provides an overview on
commonly utilized materials and their properties.

2.2.1 Principle of Spectral Excitation and Emission of Photo-Luminescent Materials

In contrary to the beforehand discussed current-induced electro-luminescence in (In)GaN
semiconductors, the excitation in inorganic phosphor materials is induced by optical radiation
and thus denoted as Photo-Luminescence (PL). With further regard to the excited electrons
lifetime τe, PL is categorized into fluorescence with short lifetimes of 10 ns to 100 ns and
phosphorescence usually showing lifetimes of τe > 100 µs. Since phosphorescent materials are
prone to saturation effects that limit their efficiency at high intensities of radiation they are not
suited for LED applications.
Similar to semiconductors, phosphors are composed of a host lattice that is further doped
with intentional impurities, so called activator and sensitizer atoms. Activator atoms are
optically active elements, mainly rare earth lanthanides (Ce, Pr, Eu, Er), that emit a photon
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upon relaxation of an excited electron. Often the electron excitation is directly triggered by
absorption of an incoming photon (eq. (2.27)) [100, 101]. Alternatively, the incoming photon is
absorbed by a sensitizer atom (eq. (2.28)), such as Mn or O, that further transfers its energy the
activator atom (eq. (2.29)). The excessive energy of the down-conversion process is released
as heat (lattice vibration) and the energy difference ∆E = |EPhoton(λ2)− EPhoton(λ1)| > 0 is
referred to as the Stokes shift.

EPhoton(λ1)
Activator−−−−−→ EPhoton(λ2) + EPhonon(h f1) (2.27)

EPhoton(λ1)
Sensitizer−−−−−→ EPhonon(h f1) (2.28)

EPhoton(λ1)
Sensitizer−−−−−→ EPhonon(h f1)

Activator−−−−−→ EPhoton(λ2) + EPhonon(h f2) (2.29)

Both, activator and sensitizer atoms, are implanted into the host lattice by substituting cations
like Y or Ca. Since the absorption of photons and phonons is intended to take place in the
dopant atoms, the host lattice is required to be optically transparent within the VIS with a stiff
and stable crystal structure. Elements of the upper periodic systems columns (N, O, F, S) that
provide a comparatively high Eg fulfill these requirements. An overview of typical blue light
exited phosphors used in LED applications is given by table 2.2.

Table 2.2: Overview of typical phosphors for LED applications excited by blue (In)GaN emitters [102]
with their excitation λex and emission λem peak wavelengths as well as their quenching temperatures
Tq.

Type Compound λex (nm) λem (nm) Tq (K)

Green
Ca Y2 Al4 Si O12 : Ce3+ 450 540 420

Ca3 Sc2 Si3 O12 : Ce3+ 455 505 -

Sr Ba Si O4 : Eu2+ 430 512 440

Yellow
Y3 Al5 O12 : Ce3+ (YAG) 450 565 >600

Y3 Mg2 Al Si2 O12 : Ce3+ 480 600 -

Li – α-Si Al O N : Eu2+ 460 573 -

Red
Lu2 Ca Mg2 Si3 O12 : Ce3+ 477 605 500

Ca Zn O S : Eu2+ 460 650 400

β-Si Al O N : Pr2+ 460 624 -

2.2.2 Thermal Quenching

The likelihood whether an exited electron will emit a photon or a phonon depends highly on
the phosphor compounds temperature aside from unintended impurities that are avoidable
by proper processing. At high temperatures the phosphors luminescence efficiency ηLE(T) =

Wr
Wr+Wnr

reduces substantially as the probability of radiative relaxation Wr decreases and non-
radiative relaxations Wnr increase. This process is denoted as thermal quenching [21, 103–106].
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As shown in eq. (2.30) the luminescence efficiency has an inverse exponential dependence on
the temperature where Aq is a material specific constant and I(T) are the measured intensities.

ηLE(T) =
Wr

Wr + Wnr
=

1

1 + Aq exp
(
− Eq

kBT

) =
I(T)

I(0 K)
(2.30)

Further, the quenching temperature Tq specifies the temperature at which the likelihood of a
non-radiative relaxation is at 50% and thus ηLE(T) = 0.5. A phosphor compound’s temperature
robustness therefore scales with Tq which is proportional to the Debye temperature given by
eq. (2.31) with the compound’s volume Vph, the compound’s molecular mass M, the unit cell’s
atom count N, BH as the adiabatic bulk modulus and the mean phonon velocity 〈v〉.

Tq ∝ ΘD =
h̄
kB

(
6π2V1/2

ph N
) 1

3

√
BH

M
〈v〉 (2.31)

The origin of thermal quenching in LED phosphors is still subject to current research. Commonly
it is assumed that a non-radiative electron relaxation takes place at the cross-over point where
the ground states and the excited states parabolas overlap in k-space. The probability to elevate
an electron onto this cross-over point increases with temperature. A more recent explanation is
the elevation of the excited electron into the host lattices conduction band by thermal ionization
that provides a stronger agreement with recent experiments [106].

2.3 Materials and Properties of LED Packages for Mid-Power LEDs

Over the course of this section the package assembly of a semiconductor emitter for the final
LED application is discussed. Therefore, first the assembly of typical Surface Mount Device (SMT)
Plastic Leaded Chip Carrier (PLCC) packages is examined with an assessment of their thermal
properties. Subsequently, common (optical) polymers used in LED packages are presented.

2.3.1 LED Package Types

Regarding their application, LED packages have to provide different beneficial optical, thermal
and electrical properties to assure a proper functionality. While due to their exceptional
small form factor the maximum light extraction states a challenge especially in Low-Power (LP)
packages, managing heat dissipation is a predominant design task in High-Power (HP) packages
as a result of their high current densities. Mid-Power (MP) packages, as an intermediate between
the both previous mentioned, however, have to handle both challenges up to a certain degree
simultaneously. With respect to the scope of this thesis, injection molded SMT PLCC packages
will be further focused in the following. Nonetheless, it should be mentioned that aside from
PLCC also ceramic substrate based and chip-scale SMT packages are widely used. [2, 107–109]
A typical structure of a PLCC package is presented in section 2.3.1. This package is based on a
conductive and highly reflective lead frame coated with a composite of Ag, Cu and/or Ni. On
this frame an injection molded, reflective, white housing cup is placed to provide stability to
the package and reflect lateral emitted light. The actual LED die is attached to the lead frame in
the center of the package area with an transparent adhesive epoxy resin. This allows the lead
frame to reflect downward emitted light towards the package top surface. It should be noted
that a aside from single die configurations also package configurations with multiple dies
connected in parallel or series exist as shown in section 2.3.1. An electrical contact between the
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die(s) and the lead frame is established by Au bond wires. Finally, to provide a defined optical
extraction path and protecting the die against environmental contaminants the housing cup is
filled with an encapsulant – typically a siloxane based polymer. For the case of a phosphor
deployment, section 2.3.1 displays different variants of phosphor distributions inside the cup.
In most mid-power pcLED variants a proximate phosphor distribution is chosen due to the
ease of manufacturing since the mixture of encapsulant and phosphor can be applied in a
single step. However, the curing time in this process becomes crucial to prevent phosphor
sedimentation. [107, 110, 111]

Figure 2.7: Schematic structure of typical Plastic Leaded Chip Carrier packages for mid-power LED

applications: (a) key structure of a PLCC package, (b) top view of a single and double die configuration,
(c) different phosphor distribution schemes [2].

As elaborated in the previous sections, both the dies and phosphors efficiency is highly
temperature dependent. Therefore, a proper thermal package design in terms of heat dissipation
is essential. In fig. 2.8 the equivalent thermal circuit of a phosphor-converted Light-emitting
Diode (pcLED) package is shown.

Rj−s−a

Q̇Chip

Rj−e−p

Q̇Phosphor

Rp−e−a

Ta

Figure 2.8: Schematic of heat flow inside a PLCC package [111].



2.3 materials and properties of led packages for mid-power leds 19

Two heat sources Q̇ can be identified: First, the LED die produces an undesired thermal power
loss Pth,Chip = Pel − Popt during the conversion from electrical to optical power. This power
loss is attributed to Ohmic losses in parasitic series resistances (Pth,Chip = I2Rs) and non-
radiative recombination processes as Auger- or SRH-recombination. As a result a heat flux
Q̇Chip =

dPth,Chip
dt is induced into the package. Second, due to the phosphors thermal quenching

a fraction of the dies emitted optical power is converted to heat Pth,Phosphor = Popt(1− ηle(T))
that subsequently induces a heat flux Q̇Phosphor. In order to achieve thermal equilibrium with
the ambient surrounding, both heat fluxes are dissipated towards the packages surface. Along
this path package material-specific thermal resistances Rth = d(κc A)−1 introduce a temperature
difference ∆T = Q̇Rth where d is the materials thickness, A the cross-sectional area and κc the
thermal conductivity. With respect to fig. 2.8 two main heat dissipation paths are observed.
The first path Rth,j−s−a mainly dissipates heat generated by Q̇Chip from the dies junction (j)
via the die attach and solder pads (s) towards the ambient (a). However, a small fraction of
Q̇Chip is also dissipated into the encapsulant (e) and phosphor (p) through Rth,j−e−p � Rth,j−s−a
combining with second heat flux induced by Q̇Phosphor that is dissipated towards the packages
upper surface via Rp−e−a. If no phosphor is applied to the package Q̇Phosphor is shorted and
the dissipation path towards the upper surface becomes Rth,j−e−a. It should further be noticed,
that a very small fraction of heat is dissipated parallel via convection (∝ ∆T) and as radiation
(∝ ∆T4).

2.3.2 Optical Polymers in LED Packaging

Within the final package assembly, polymeric materials serve various functions such rang-
ing from providing mechanical stability to defining and enhancing the overall light extrac-
tion of the package. The four most commonly used polymers – Bisphenol-A Polycarbon-
ate (BPA-PC), Poly(methyl methacrylate) (PMMA), Epoxy Polymers as well as siloxanes like
Polydimethylsiloxane (PDMS) and Polymethylphenylsiloxane (PMPS) – are presented below. A
brief summary of these optical polymers key features is given in table 2.3.

Table 2.3: [39, 112].

Polymer PMMA BPA-PC Epoxy PDMS PMPS

Tg (°C) 105 145 >110 −127 −23

CTE (10−5 K−1) 7 6.5 2.3 93 -

γT (10−3 N m−1) 41.1 - - 21.5 25.5

PCO2 (Barrer) 0.34 8 - 3250 -

PH2O (103 Barrer) 3.2 - - 36 -

RI (-) 1.5 1.6 1.53 1.42 1.55

Tg: glass temperature, CTE: Coefficient of Thermal Expansion, γT: Surface
Tension, Px: gas permeability, RI: refractive index
(-): no (valid) information available
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Epoxy (Molding) Compounds

In electronic packaging Epoxy Molding Compounds (EMC) are used widely for housing since
they offer various advantages as table 2.4 highlights. Especially in LED packages EMC have two
main applications as die attachment adhesive and as housing cup in PLCC packages. Since
both applications demand different properties, such as high adhesive strength or high stiffness,
its good and variable processability stands out. Often the epoxy group shown in eq. (2.32) is
utilized as a linker molecule between other application specific molecules. [2, 39, 108, 113]

CH CH

O[ ]
n

(2.32)

Table 2.4: Advantages and disadvantages of Epoxy Molding Compounds used in LED applications [2,
39, 108, 113].

Advantages Disadvantages

Low cost High photo-thermal degradation

Wide availability High brittleness

Good processability

High thermal stability

High moisture resistance

High adhesive strength

Polycarbonate

Bisphenol-A Polycarbonate in LED applications is most commonly used polycarbonate for
lenses, in housing cups linked by EMC and in early LED generation encapsulants. Its molecule
structure presented in eq. (2.33) provides a high stiffness but is very sensitive to photo-thermal
stress due to the weak carbonate group as shown in table 2.5. [2, 39, 108]

O

CH3

CH3

O C

O[ ]
n

(2.33)

Polymethyl methacrylate

As of its excellent transmittance in the Ultraviolet Spetrum (UV)-VIS range Poly(methyl
methacrylate) (eq. (2.34)) is very well suited for lenses in LED packages. On the downside,
the acid part of its ester group (R – C( –– O) – OH) is very prone to (hygro-)thermal degradation.
table 2.6 gives an overview on the advantages and disadvantages of PMMA. [2, 39, 108]

C CH2

CH3

C
O O CH3

[ ]
n

(2.34)
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Table 2.5: Advantages and disadvantages of Bisphenol-A Polycarbonate used in LED applications [2, 39,
108].

Advantages Disadvantages

Wide availability High photo-thermal degradation

High thermal stability

High moisture resistance

High elastic module

High fracture resistance

Table 2.6: Advantages and disadvantages of Poly(methyl methacrylate) used in LED applications [2, 39,
108].

Advantages Disadvantages

Wide availability Low moisture stability

Very low cost Low thermal stability

High stiffness Low abrasion resistance

High transmittance

Silicone

Currently silicone polymers (eq. (2.35)), in particular PDMS and PMPS, are widely utilized in
LED package encapsulants and lenses. A key feature of silicone based encapsulants is their
modifiability as Si atom of the Si – O backbone offers place for two organic group attachments
like methyl (C H3) or phenyl (C6 H5). These organic attachments offer two benefits by first
shielding the siloxane backbone and on secondly tuning the polymers optical and thermal
properties by adjusting the attachments ratio. However, these benefits are accompanied by
higher costs and a high gas and moisture permeability that may trigger additional degradation
effects. table 2.7 gives a summary of the advantages and disadvantages of silicones. [2, 39, 108]

Si

R1

R2

O

[ ]
n

(2.35)

2.4 Efficiency Metrics

Derived from the previous discussed efficiencies of the separate LED parts this section will
define an overall efficiency [2, 114]. This definition follows the path from the electrical input
power Pel applied to the LED contact pads to the optical output power Popt extracted from
the packages surface. The power conversion efficiency ηPCE shown in eq. (2.36) specifies this
ratio of extracted Popt to injected Pel with the efficiency metrics for the following parameters:
forward-voltage ηVfE, injection ηIE, radiation ηRE, light extraction ηLEE as well as the internal
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Table 2.7: Advantages and disadvantages of siloxane polymers used in LED applications [2, 39, 108].

Advantages Disadvantages

Good processability Low stiffness

High transmittance High Coefficient of Thermal Expansion (CTE)

High mechanical stress absorbance Low adhesive strength

High biocompatibility High moisture and gas permeability

High electrical stability High cost

ηIQE and external quantum efficiency ηEQE. The respective metrics are defined in the subsequent
paragraphs.

ηPCE = ηVfE · ηIE · ηRE · ηLEE = ηVfE · ηIQE · ηLEE = ηVfE · ηEQE (2.36)

Forward-voltage efficiency

The total forward-voltage VF of a LED is results from the addition of the semiconductors band
gap energy h f /q and the additional voltage drop induced by parasitic series resistances along
the current injection path ∆VF = Rs IF presented in section 2.1.4. Following the produced heat
loss in Rs is calculated by Pth = IF(VF − h f q−1). Subsequently, the forward-voltage efficiency
ηVfE can be expressed following eq. (2.37).

ηVfE =
Pel − Pth

Pel
=

h f
qVF

(2.37)

Injection Efficiency

In section 2.1.3 the absence of charge carrier leakage was assumed for simplification and thus
an injection efficiency of ηIE = 1 implied. However, in real LED a fraction charge carriers leaks
out of the active region ηIE < 1 as a result of low hetero structure barriers or large polarization
fields and thereupon recombine non-radiatively at the contacts or confinement regions. Since
the number of injected electrons equal those of injected holes, the injection efficiency ηIE is
described accordingly to eq. (2.38).

ηIE =
IF,active/q

IF/q
(2.38)

Radiative Efficiency

As discussed in section 2.1.3 and section 2.1.3 charge carriers in the active region recombine by
emission of an photon or phonon. The ratio between radiative and non-radiative recombination
is described by radiative efficiency ηRE in eq. (2.39). The radiative efficiency highly corresponds
to the quality of the semiconductor material.

ηRE =
Popt,active/h f

IF,active/q
=

τ−1
radiative

τ−1
non−radiative + τ−1

radiative

(2.39)
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Internal Quantum Efficiency

Combining ηIE and ηRE yields the full definition of the internal quantum efficiency ηIQE

describing the in eq. (2.40) presented ratio of emitted photons from the active region to injected
electrons.

ηIQE = ηIE · ηRE =
Popt,active/h f

IF/q
(2.40)

Light Extraction Efficiency

Real LED devices show a discrepancy between the theoretical released photons from the active
region and the actual measured photon yield. This difference is defined by the light extraction
efficiency ηLEE given in eq. (2.41)). The reasons for a decreased ηLEE are manifold and range
from absorption of photon within the semiconductor or metallic contacts to backscattering
at interface region to total internal reflection trapping photons inside the semiconductor. In
addition, the phosphors luminous efficiency ηLE ≤ 1 presented in section 2.2.2 has to be taken
into account for pcLEDs otherwise ηLE may be neglected or set to 1.

ηLEE = ηLE ·
Popt/h f

Popt,active/h f
(2.41)

External Quantum Efficiency

The relation between overall light extraction into free space to injected charge carriers is denoted
by the external quantum efficiency ηEQE given in eq. (2.42) as a product of ηIQE and ηLEE.

ηEQE = ηLEE · ηIQE =
Popt/h f

IF/q
(2.42)





3 Degradation Effects in Harsh Environments

This chapter provides an in-depth exploration of Light-emitting Diode (LED) degradation
effects induced by harsh environmental conditions with a focus on package related failures.
The first section presents common Accelerated Stress Test (AST) standards and methodologies in
LED degradation experiments. Subsequently, the second section provides an all-encompassing
literature review on degradation effects, their causes and the underlying processes.

3.1 Accelerated Stress Tests for LED Degradation Studies

During the design process of (opto)electronic components, like LEDs [115], it is aspired to reveal
potential design flaws that may result in a gradual or complete failure over the course of the
operational life of a Device Unter Test (DUT). Considering the LEDs potential prolonged lifetime
of several 104 h at recommended operating conditions ASTs are carried to obtain an estimate
on the devices expected lifetime and the influence of different stress factors on this very. In
general, ASTs are grouped by their type, acceleration method, stress loading, stress source, stress
type and the DUTs operational state as shown below within the Design of Experiment (DoE)
procedure [116–118]:

1. Test Type: Accelerated Life Test (ALT) and Accelerated Degradation Test (ADT) are the
two prevalent types. An ALT is carried out until a defined percentage of a population
has exhibited a predefined failure criterion. This can either be complete loss of opera-
tion (catastrophic failure) or the gradual passing of a threshold parameter (parametric
failure). Such tests are suitable for pass/fail setups and quantitative lifetime estimation.
In scenarios that require an insight into the underlying degradation processes and their
velocity ADT are applied by monitoring the population’s performance during the whole
test period. The additional information gain suits ADT for qualitative studies.

2. Acceleration Method: Typically AST are carried out at stress levels within DUTs specified
operating conditions. Tests with stress levels exceeding those conditions are denoted as
Highly Acclerated Stress Test (HAST) such as HALT and HADT.

3. Stress: The lifetime or performance limiting stress variable(s) Si. In the context of LED

degradation studies, primarily electrical (current, voltage) or environmental variables
(ambient temperature, relative humidity) are evaluated.

4. Stress Source: It is distinguished between intrinsic and extrinsic stress sources. An
intrinsic stress is provoked solely by the DUTs operational condition, like the LEDs forward
current. Environmental conditions as ambient temperature or relative humidity represent
extrinsic stress sources. However, an interaction of both source types is possible depending
on the selected DUT and DoE.

5. Stress Loading Profile: By varying the stress level different operating and environmental
conditions, like DUT switching or weather changes, are simulated to provoke specific

25



26 degradation effects in harsh environments

failures mechanisms. The majority of LED AST is exercised under a constant bias c0 in
the form of a function Si(t) = c0. Alternative loading profiles can be ramp functions
Si(t) = c0 + mt where m is the ramps slope, step up or step down profiles Si(t) =

c0 ±∑i ci H(t− ti) with the time shifted Heaviside Step Function H(t) or cyclic profiles
Si(t) = f (t + tP) with a periodic behavior.

3.1.1 Industry Standards for LED Reliability Tests

The vast majority of semiconductor related standardization aspects, including reliability tests,
are defined by the Joint Electron Device Engineering Council Solid State Technology Assiciation
(JEDEC). Based on JEDEC JESD22 standards [119–124] use case specific derivatives have been
implemented, such as for automotive lighting qualification (AEC-Q102 [125]) by the Automotive
Electronics Council (AEC) or for general lighting purposes (LM-80 [43]) by the Illuminating
Engineering Society (IES). The AEC-Q102 standard focuses on a quantitative qualification by
applying pass/fail criterions over time periods of 1000 h. Whereas, LM-80 considers the LEDs
performance by means of luminous/radiant/photon flux, forward voltage and chromaticity
coordinates at time periods of at least 6000 h with measurement intervals of ∆t = 1000 h.
Table 3.1 gives an overview on prevailing test methods.

Table 3.1: Commonly used JEDEC standards in reliability testing and their use case specific derivations
for LED reliability AST

Test Loading Duration JESD22 Derived Standard

WHTOL bias 1000 h A101[119] AEC-Q102-A2a[125]

WHTOL bias 1000 h A101[119] AEC-Q102-A2b[125]

PTC cyclic N = 1000 A104[121] AEC-Q102-A3a [125]

TC cyclic N = 1000 A105[122] AEC-Q102-A4[125]

HTOL bias 1000 h A108[123] AEC-Q102-B1a[125]

HTOL bias 1000 h A108[123] AEC-Q102-B1b[125]

HTOL bias 1000 h A108[123] LM-80[43]

PC - - A113[124] AEC-Q102 A1[125]

PC: Pre Conditioning, HTOL: High Temperature Operating Life, WHTOL: Wet
High Temperature Operating Life, TC: Temperature Cycling, PTC: Power
Temperature Cycling

3.2 Causes, Effects and Mechanisms of LED Degradation

This section presents a comprehensive literature review on the causes and effects of LED
degradation. First, relevant physical processes and chemical reactions are explained for the
reader’s further understanding. Following, possible occurring failure mechanisms in the die
itself, the interconnects and the LED package, along with their failure causes and effects, are
examined. Each section first provides a detailed explanation of the mechanisms that occur and
finally gives a tabular summary with relevant sources.
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3.2.1 Basic Physical Effects and Chemical Reactions

Diffusion [113] describes the process of particle transport, e.g. moisture or dopants, between
two regions of different concentrations. The spatial difference in concentration C(~r, t) = C with
~r = {x, y, z} provokes a concentration flux ~J(~r, t) = J along the concentration fields gradient.
The particles quantity and direction of movement from regions with higher concentration
towards those with a lower concentration can be modeled by Fick’s first law in eq. (3.1)
[126] with the temperature dependent diffusion coefficient D(T). Subsequently, the change
in concentration at a given spatial coordinate~ri is derived from eq. (3.2) according to Fick’s
second law [126].

J = −D(T)~∇C (3.1)
∂C
∂t

= ~∇J = ~∇
(

D(T)~∇C
)

(3.2)

Further, the diffusion coefficient D(T) has an Arrhenius-like exponential dependency of the
temperature T as shown for the isotropic (non-directionally) case in eq. (3.3) with a pre-factor
D0, Boltzmann’s constant kB and the activation energy Ea. In anisotropic (directionally) cases,
as e.g. in cristal lattices, the diffusion coefficient becomes a tensor D(T) = ~Dxyz(T) ∈ R3×3. It
should be noted that polymers however, exhibit different diffusion coefficients for temperatures
above and below the their glass transition temperature D1(T < Tg) 6= D2(T ≥ Tg) [127].

D(T) = D0 exp
(
− Ea

kBT

)
(3.3)

Considering the scenario of moisture absorption into a polymeric medium a direct moisture
concentration measurement inside a given volume V is not possible, thus the relation between
the mass uptake at a given time Mt with respect to the equilibrium state M∞ at complete
saturation level shown eq. (3.4) is utilized.

Ct

Csat
∝

Mt

Msat
(3.4)

To give a simplified example [128, 129] of the above scenario a one-dimensional (~r = {x}),
infinite plate with the thickness h is considered. Separating the temporal and spatial part of
eq. (3.2) yields an Partial Differential Equation (PDE) of the type ∂t f (t, x) = k∂2

x f (t, x). Applying
a Taylor series expansion on the PDEs analytical solution results in the approximation eq. (3.5).
Subsequently, the diffusion coefficient D(T) can be derived from the initial linear slope at
Mt/Msat < 0.5 of the first order expansion with a reasonable low error further simplifying
eq. (3.5) to eq. (3.6) additionally pointing out the

√
t-dependence of the diffusion process.

Mt

Msat
= 1− 8

π

∞

∑
n=0

1

(2n + 1)2 exp

[
− (2n + 1)2 π2D(T)

h2 t

]
(3.5)

0.5
!
>

Mt

Msat
≈
√

cD(T)t with c =
16
πl2 (3.6)

Especially in polymers, multiple experiments [128–131] reported a non-Fickian moisture uptake.
These observations can attributed structural changes introduced by former moisture absorption
in the polymer [128]. For this reason additive Dual-Stage [128] or Multi-Stage [130] diffusion



28 degradation effects in harsh environments

models were proposed that superimpose multiple Fickian or Fickian with non-Fickian diffusion
trajectories like C(~r, t) = ∑i Ci(~r, t).

Subjected to excessive heat, (UV-VIS) radiation or the presence of catalyst residuals (e.g. Pt from
siloxane processing) polymers can undergo an Autoxidation Cycle [132, 133] enforcing chain
scission (depolymerization) and cross-linking reactions (linkage between polymer chains). This
chain reaction cycle includes three phases: Initiation by free polymer radical (R•) formation
(1), propagation through Oxygen intake and peroxy radical (ROO•) creation (2) and finally
termination of available radicals (3).

1. The cycle is initiated by the generation of free radicals due to thermal or radiative bond
cleavage by either Hydrogen abstraction following the reaction in eq. (3.7) or scissioning
of C – C bonds as eq. (3.8) shows.

R−H hf, T−−→ R• + H• (3.7)

R−R hf, T−−→ R• + R• (3.8)

2. After initiation, the chain reaction propagates further under increasing Oxygen intake
following eq. (3.9) and peroxy radical generation. The newly formed highly reactive
peroxy radicals subsequently cleave additional polymer bonds resulting in additionally
chain scission according eq. (3.10). Highly thermally- and radiation-unstable Hydroperox-
ide (ROOH) side products are then decomposed into free oxy (O•) and hydroxy (•OH)
radicals (eq. (3.11)) that further accelerate chain scission (eq. (3.12) and eq. (3.13)). Addi-
tional, excessive water resulting as a byproduct of eq. (3.13) can further initiate hydrolysis
reactions.

R• O2−−→ R−OO• (3.9)

R−OO• R−H−−→ R• + R−OOH (3.10)

R−OOH hf, T−−→ R−O• + •OH (3.11)

R−O• R−H−−→ R• + R−OH (3.12)
•OH R−H−−→ R• + H2O (3.13)

3. Lastly the chain reaction gets terminated by cross-linking of free radicals to non-radical
products. Various termination reactions are possible like bonding of two backbone
structures (eq. (3.14)) as a reverse reaction of eq. (3.10) likewise the termination of oxy
or peroxy radicals eventually forming chromophore impurities (eqs. (3.15) to (3.18)).
Moreover, Oxygen released as a byproduct in eq. (3.10) and eq. (3.18) propagates the
chain reaction cycle.

R• + R• −−→ R−R (3.14)

2 R−OO• −−→ ROOR + O2 (3.15)

R• + R−OO• −−→ ROOR (3.16)

R• + R−O• −−→ ROR (3.17)
•OH + R−OO• −−→ R−OH + O2 (3.18)



3.2 causes , effects and mechanisms of led degradation 29

As formerly indicated the presence of water, due to external moisture ingress or as a
reaction side product of preceded Autoxidation reactions, can initiate Hydrolysis [134] reactions
scissioning the polymeric backbones Si – O or C – O bonds in solixanes and carbon-based
polymers respectively. The reverse reaction, e.g. if one product is an alcohol and the other
is acidic, establishing cross-linkage between polymer chains is denoted as Condensation. The
formation of chromophore impurities by the latter is equally possible.

R−O−R + H2O
Hydrolysis−−−−−−−⇀↽−−−−−−−

Condensation
R−OH + HO−R (3.19)

3.2.2 Die Level

The semiconductor chip itself is prone to multiple degradation mechanisms limiting and
reducing the optical output power emitted into the package [32, 38, 135]. As summarized in
table 3.2 the four most prominent effects are Lattice Defects, Die Cracking, Dopant Diffusion and
Electromigration.
Lattice Defects as shown in fig. 3.1 support the creation of energy levels within the band gap and
thus enhancing non-radiative Shockley-Read-Hall (SRH) recombination resulting in a reduction
of optical power [136]. These defects firstly occur native through misplacements within the
semiconductor lattice by (In)Ga or N atoms missing at their expected lattice location, presence
of such at unexpected locations (interstitials) or occupation of their counterparts position
(substutionals). Secondly, impurities introduced by the production process provide an extrinsic
cause of such defects. The p- and n-type conductivity is controlled by adding Mg and Si to
the doping process both lead to impurities. Hydrogen ions, as a residual from the processes
precursors enhances the passivation of p-type dopants like Mg [11, 137, 138]. Carbon and
Oxygen promote undesired parasitic yellow luminescence at Ga vacancies [139–144]. Besides
increased SRH recombination, an increase in shunt current bypassing the radiative center via
tunneling through mid-gap defects in the Quantum Well (QW), spacer layer and Electron
Blocking Layer (EBL) can lower the overall optical power [145, 146].
Originating from previously discussed native and extrinsic defects Dopant Diffusion processes
towards the active region are triggered [126, 147]. Due to their Fickian behavior, Joule heating
and high temperature in general accelerates the diffusion of residual H+ resulting in the
previously described Mg acceptor passivation and a decreased electrical field within the
depletion region. This however, increases the forward current and therefore lowers the charge
carrier lifetimes as a result of faster deep level recombination [138, 147].
Electromigration represents another diffusion path from the Ohmic contacts towards the die
initiated due to elevated electrical stress. Here metallic ions diffuse in the direction of the active
region forming conductive paths along preexisting lattice defects [148–151]. In extreme cases,
the conductive path shunts the active region and thus enables a high current flow thermally
destroying the device.
Resulting from misaligned process parameters during the manufacturing, such as material
concentrations or temperature slopes, alongside with high Joule heating during operation
Die Cracking is promoted as illustrated in fig. 3.1. The consequences range from a decrease in
optical power up to total breakdown depending on the cracks location. These cracks occur in
the form of open groves or facets along the LED’s die as a result to thermomechanical stress of
wrongly adjusted heating or cooling slopes. This stresses is induced by the large difference in
Coefficient of Thermal Expansion (CTE) between the substrate layer (Sapphire, Silicon) and the
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(In)GaN [152–154]. To reduce emerging thermomechanical stress a buffer layer with a moderate
CTE (e.g. AlAs, AlN, AlGaN, SiN or superlattices) is introduced in between both [10, 155–163].

Figure 3.1: Examples of typical die level failures: (1) TEM image of lattice defects [164], (2) die cracking
[153].

Table 3.2: Summary of die level degradation mechanisms, their stress cause and effect, the resulting
failure mode and type based on [32, 38, 135] extended by additional primary sources.

Mechanism Effect Cause Mode Type Source

Lattice
Defect

Thermo-
mechanical

Stress

High Joule Heating
Poor Processing

Φ ↓

P

[11, 136,
137,
139–146,
154,
164–180]

Ir,leak ↑
Rs ↑
Rp ↓

Die
Cracking

Thermo-
mechanical

Stress

High Joule Heating
Φ ↓ P/C

[152–154,
165, 181]High Temperature

Poor Processing

Dopant
Diffusion

Thermal
Stress

Poor Processing Φ ↓
P

[174,
182–194]High Joule Heating Rs ↑

High Temperature IF ↑

Electromigration
Electrical

Overstress
High Temperature OC P/C [148–151,

195]

Failure Mode: (OC) Open Circuit
Failure Type: (P)arametric, (C)atastrophic

3.2.3 Interconnect Level

To connect the die to the packages electrical contact pads in Plastic Leaded Chip Carrier (PLCC)
packages wire bonding is the prevailing method. Bond Wire Fatigue and Fracture, Metallic Contact
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Diffusion and Electrostatic Discharge (ESD) are the main acting failures at the interconnect level [32,
38, 135, 196] shown in table 3.3 and following explained in detail. Examples of the subsequent
discussed failures are presented in fig. 3.2.
Thermomechanical stress introduced by high current to the interconnects promotes Bond Wire
Fatigue and Fracture. Due to a difference in CTE of the bond wire ball and the contact surface the
contact wears out over time detaching it from its contact surface [197–200]. At currents above
the maximum specified operating point bond wire evaporation has been reported. Additionally,
as a result of moisture ingress hygrothermal stress fosters shear forces on the bond wires due
to the packages and encapsulants hygroscopic swelling [113].
Thermal and hygrothermal stress can further cause Metallic Contact Diffusion. In addition to
the beforehand described diffusion on the metal-semiconductor interface, a metal-metal type
diffusion was observed at the packages contact pads due to the Kirkendall Effect altering the
contacts conductivity and subsequently increasing the parasitic series resistance Rs [201–204].
Moreover, if both metals have a sufficiently large difference in electronegativity moisture ingress
can promote electrolysis effects [205–207].
ESD as the third failure mechanism on the interconnect level is mainly caused by an electrical
overstress due to transient high voltage pulses. Even though pulses in both forward and reverse
polarity may cause damage, the LED is rather sensitive to the latter due to avalanche breakdown
effects [208, 209]. Studies revealed that in particular the contact layers and bonding pads edges
as well as V-pits with prominent threading dislocations are prone to ESD [208–213]. A reduction
ESD sensitivity can either be achieved by optimizing the manufacturing process by growing
the (In)GaN onto the substrate at high temperatures of above 1000 °C [209, 214] or increasing
the internal capacitance Ci to lower the overall dissipated energy Ed = Q2

c C−1
i where Qc is the

stored charge in Ci [215–217].

Figure 3.2: Examples of typical interconnect level failures: (1) bond pad/wire fatigue resulting in the
detachmend of the bond pad from the die [165], (2) electromigration of Cu atoms into the bond attach
area resulting in oxidation of the interconnect [207] and (3) damage of the bond pad areas surrounding
due to electrical overstress [210].

3.2.4 Package Level

The package site, housing the die and enhancing the LEDs optical performance, is prone to
various thermal and moisture related failures namely Encapsulant Carbonization, Delamination,
Reflective Layer Tarnishing, Encapsulant Yellowing, Bubble Generation, Lens Cracking and Phosphor
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Table 3.3: Summary of interconnect level degradation mechanisms, their stress cause and effect, the
resulting failure mode and type based on [32, 38, 135, 196] extended by additional primary sources.

Mechanism Effect Cause Mode Type Source

Bond Wire
Fatigue

and
Fracture

Electrical
Overstress

High Current

OC C
[165,
197–200,
218]

Thermo-
mechanical

Stress

Thermal Cycling

Material Mismatch

Hygrothermal
Stress

High Moisture

Metallic
contact

diffusion

Thermal Stress
High Current

High Temperature Φ ↓
Rs ↑
SC

P
P
C

[154, 170,
174,
201–207,
219–221]

Hygrothermal
Stress

High Moisture

ESD

Thermal Stress
Poor Material

Properties
OC C

[165,
209–217,
222–225]Electrical

Overstress
High Voltage

Failure Mode: (SC) Short Circuit, (OC) Open Circuit
Failure Type: (P)arametric, (C)atastrophic

Degradation [32, 38, 39, 108, 135, 196] as summarized in table 3.4 and discussed below. In
addition, examples of these effects are demonstrated in fig. 3.3.
Several studies observed dark spots on the dies and wire bonds surface reducing the devices
overall light output [181, 219, 226–232]. Energy dispersive X-ray spectroscopy (EDX) analysis
revealed an accumulation of Carbon and Oxygen at these dark spots originating from a Car-
bonization of the Encapsulant in proximity to the die induced by high temperature. A conductive
path is initiated at these spots enabling parasitic current paths that substantially increase the
encapsulants temperature and thereby starting a positive feedback loop.
The proper interfacing between different package materials, such as die to encapsulant or
encapsulant to plastic mold, plays a key role in achieving a maximum light extraction efficiency
from the package. Defects at these interface regions are referred to as Delamination. Experiments
and simulations revealed a separation of the interface creating an air gap between both materi-
als [151, 165, 200, 218, 223, 226–228, 233, 234]. This gap however, alters the interfaces reflectance
from ρtot = ρ(n1, n2) to ρtot = τ(n1, nair)ρ(nair, n2) with the transmission τ and the materials
refractive indices ni. These air gaps are formed as a result of difference in material expansion
leading to an adhesive force reduction between both materials at the interface. Experiments
identified two sources for material expansion provoking shear forces at the interface layer: ther-
mally induced stress due to the materials different CTE and hygromechanical stress caused by
hydroscopic swelling due to moisture ingress. Both effects are correlated to a proper selection
of interfacing materials. Furthermore, delamination at the dies interface lowers the packages
thermal performance since these gaps add a large thermal impedance into heat conduction



3.2 causes , effects and mechanisms of led degradation 33

path. Due to increased heating of the package thermally induced degradation effects can be
accelerated.
Depending on the LED packages configuration Tarnishing of the Reflective Layer may decrease
the light output substantially. The tarnishing is visible a gray or black deposit on the reflective
layers surface caused by an oxidation reaction with air pollutants like Hydrogen Sulfide (H2S)
[40, 230, 235–239]. Especially highly reflective coatings of Ag or Ag-Cu alloys show an elevated
vulnerability to sulfur-rich contaminants [240–244]. The underlying reaction can be split in
multiple concurrent reactions triggered by Oxygen as well as Silver Oxide producing Silver
Oxide (eq. (3.20)) or Silver Sulfide (eq. (3.21)) respectively. An acceleration of both reactions
with temperature was observed as well as a maximum in reactivity at moderate humidity of
around 54%rH [243]. It is notable that in eq. (3.21) water is produced as a side product that can
provoke further hygrothermal and hygromechanical driven failure mechanisms.

O2 + 4 Ag −−→ 2 Ag2O (3.20)

Ag2O + H2S −−→ Ag2S + H2O (3.21)

Encapsulant Yellowing represents yet another important source of decrease in optical power
and chromaticity shift of the LED [108, 245]. This term includes changes in the encapsu-
lants structure and appearance ranging from slight discoloration, noticeable yellowing while
maintaining parts of its transparency up to strong enbrittlement. The yellowing degree is
determined by the applied stress, predominantly photodegradation and (hygro-)thermal stress,
as well as the material in use, such as Bisphenol-A Polycarbonate (BPA-PC) and Epoxy Molding
Compounds (EMC) [226, 230, 246–270] or Siloxanes like Polydimethylsiloxane (PDMS) and
Polymethylphenylsiloxane (PMPS) [232, 248, 271–276]. Irradiation induced photodegradation
is mainly attributed to UV radiation. At the Ultraviolet Spetrum (UV) range photon energy
Eph ≤ 300 nm is absorbed by the Methyl ( – CH3) and Phenyl groups (cyclic – C6H5) aggregated
around the polymeric backbone. By cleaving either aromatic groups or abstracting H+ from
such, an UV-enables Autoxidation cycle is initiated altering the polymers backbone structure
(BPA-PC [39, 269, 277, 278], PDMS and PMPS [39, 276, 279]). Alongside with macroradical Au-
toxidation products presented in eqs. (3.9) and (3.11) also impurities (e.g. Pt residuals from
the siloxane curing process) are suspected to majorly contribute to the yellow appearance
since their absorption range into the blue to green Visible Spectrum (VIS) range [39, 260, 280,
281]. (Hygro-)thermal stress on the other hand provokes the breaking of bonds with low
electronegativity like C – C and C –– (O) – O from the BPA-PC backbone subsequently triggering
auto-oxidation or hydrolysis reactions respectively [282–284]. Further Siloxane encapsulants
feature a higher temperature resistance than BPA-PC based encapsulants. Studies revealed pre-
dominantly cross-linking due to condensed Silanol (SiOH) below T < 300 °C. At temperatures
above T > 340 °C the silicone backbone is prone to oxidation resulting in chain scission [39,
279, 285–288].
A visual noticeable Bubble Generation inside the encapsulant has been reported after exposing
the LED to high temperature and high moisture conditions [196, 230, 250, 289–296]. Those
bubbles may be attributed to either out-gassing of byproducts, like H2O, CO2, CO, H2 or O2,
from the encapsulants degradation or air trapped during the encapsulants curing process
due to poor processing. Similar to air gaps caused by delamination these bubbles alter the
encapsulants transmission resulting in an overall decrease of light extraction efficiency.
Likewise to the latter, Lens Cracking is easily detectable through visual inspection. Induced by
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thermomechanical or hygromechanical stress, cracks are inflicted by shear forces that change
the lenses emission pattern. As a consequence the optical power is substantially reduced [108,
297–300].
In the case of a phosphor-converted Light-emitting Diode (pcLED) the Phosphor is also prone
to Degradation under harsh environmental conditions causing a shift in chromaticity and a
decrease in optical power. Subjected to elevated thermal conditions, either by the dies internal
Joule heating or due to thermal quenching [301–310] of the phosphor itself, activator oxidation
was reported [104, 311, 312]. A recent literature study on the thermal stability Eu2+ doped
(oxy)nitride phosphors by Tian et al. [104] concluded that aside from excessive heat also
a higher phosphor concentration as well as host lattices with high atomic bond covalence
largely benefit the overall thermal degradation. The presence of elevated moisture is a second
major degradation cause [237, 273, 276, 291, 294, 313–318]. As a result of moisture ingress
hydrolysis effects damage the host lattice [276]. Further, within the prevailing extended water
concentration, dissolving of the phosphor has been reported [294, 318].
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Figure 3.3: Examples of typical package level failures: (1) carbonization of the encapsulant along the
dies / interconnects surface [273], (2) delamination of die from the encapsulant [228], (3) tarnishing /
oxidation of the reflective lead-frame coating, (4) bubble generation within the encapsulant [295], (5)
cracking of the encapsulant [298], (6) discoloration / yellowing of the polymer encapsulant [270] and
(7,8) moisture induced phosphor degradation [319].
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Table 3.4: Summary of package level degradation mechanisms, their stress cause and effect, the resulting
failure mode and type based on [32, 38, 39, 108, 135, 196] extended by additional primary sources.

Mechanism Effect Cause Mode Type Source

Encapsulant
Carbonization

Electrical
Overstress

High Joule Heating

Φ ↓ P

[219,
226–228,
233, 234,
320]High Temperature

Delamination

Thermo-
mechanical

Stress

Material Mismatch

Φ ↓
Rth ↑ P

[151, 165,
200, 218,
223,
226–228,
233, 234]

Thermal Stress

Hygromechanical
Stress

High Moisture

Reflective
Layer

Tarnishing
Oxidation

High Temperature Φ ↓
∆u′v′ P

[40, 230,
235–244]Contamination

Encapsulant
Yellowing

Photodegradation High (UV) Radiation

Φ ↓
∆u′v′ P

[226, 230,
232,
246–276,
281]

Thermal
Stress

High Joule Heating

High Temperature

Phosphor Presence

Hygrothermal
Stress

High Moisture

Bubble
Generation

Hygromechanical
Stress

High Moisture
Poor Processing Φ ↓ P

[196, 230,
289–295]

Lens
Cracking

Thermo-
mechanical

Stress

High Temperature

Φ ↓ P
[108,
297–300]

Poor Thermal Design

Hygromechanical
Stress

High Moisture

Phosphor
Degradation

Thermal
Stress

High Temperature
Φ ↓

∆u′v′ P

[104, 237,
273, 276,
291, 294,
301–319]

High Joule Heating

Hygrothermal
Stress

High Moisture

Failure Type: (P)arametric, (C)atastrophic



4 Experiment - Accelerated Degradation Test

Based on the insights regarding LED devices and their degradation mechanism gathered in
chapter 2 and chapter 3, this section, first, derives two research questions. Thereupon, an ADT

experiment is designed. The last section, finally, presents performance metrics for degradation
analysis derived from the previous measured parameters.

4.1 Research questions

The literature study on degradation effects of LED devices presented in section 3.2 revealed
that especially moisture combined with high temperature can severely impact the LEDs optical
performance. Considering ADT related studies [131, 196, 204, 226, 229–231, 273, 274, 289, 293–295,
318, 321–337], however, the following observations became apparent: First, in the early stages of
LED reliability research (until 2005) fundamental electro-thermal mechanisms were investigated.
In the following years a broad assessment of reliability studies was conducted to reveal electro-
thermal degradation effects on research as well as commercial devices. Lately, since about
2015 an increased number of studies on the impact of environmental stress conditions on
the device, such as moisture ingress, emerged. Secondly, while early studies focused mainly
on high-power devices, a recently mid-power devices are gaining more attention due to an
increased commercial interest. Third, only a few environmental stress related studies on mid-
power devices have been conducted so far – mostly on white pcLEDs. The formerly commercial
interest in LED devices for human-centered applications lately has expanded towards other
fields of application such as horticultural lighting applications.
These new application fields have different spectral requirements demanding for phosphors
aside from common YAG:Ce phosphors for white LED devices. As a result of the previous
stated observations three research questions with respect to the devices reliability were derived:

Q1: How is moisture from the environmental surrounding impacting the optical performance
of a LED device (for horticulture applications) with respect to different phosphor types?

Q2: If and how are devices under storage conditions (IF = 0) affected by moisture ingress?

Q3: Which of the three common stress factors – electrical current, temperature or humidity –
is the main contributor to the devices degradation?

4.2 Experimental Design

This section describes the DoE conducted with respect to the research questions presented in
section 4.1 by first discussing a proper DUT selection and further elaborating on the test and
measurement methods and procedure.

37
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4.2.1 Device under Test

A market research of currently (January, 2021) commercial available LEDs for horticultural use
cases has been conducted to select a proper DUT. The following list of criteria was used as a
selection basis:

1. Availability: Widely commercially available devices for horticultural applications provided
by common distributor.

2. Power rating: Mid-power rated (Pel ≤ 1 W) at typical operating conditions.

3. Packaging: Plastic Leaded Chip Carrier package design.

4. Comparability: Devices from one product line with a common LED emitter and package
type.

5. Spectral diversity: Typical horticulture use case specific spectra like magenta, lime, pho-
tosynthetic active white or blue provided by different phosphor configurations (none,
single and multiple phosphors).

Since LEDs for horticultural applications were fairly recently introduced to the market only
the Lumileds LUXEON SunPlus 2835 product line [338] met the above listed requirements.
Despite an extensive market research, other product lines exhibited either a high-power rating
at typical operating currents or a lack of spectral diversity. An overview of the selected DUT

types and their key parameters is given in table 4.1. Regarding their spectra, a blue LED

was selected as a baseline to compare the pcLED devices to. To incorporate multiple different
phosphor composites pcLEDs with a single phosphor lime and magenta spectrum as well as a
multi-phosphor white spectrum were selected as shown in fig. 4.1.

Table 4.1: Overview of DUTs from the Lumileds LUXEON SunPlus 2835 product line used for this
experiment [338].

Color
I(a)
F,max

(mA)
I(a,b)
F,typ

(mA)
V(b)

F,typ
(V)

Rth,j−s
(K W−1)

αV

(mV K−1)
Part Number

Hort. White 480 120 2.85 13 -2.0 L1SP-PNK1002800000

Purple 480 120 2.85 13 -2.0 L1SP-PRP0002800000

Royal Blue 240 120 3.00 25 -2.5 L1SP-RYL0002800000

Lime 240 120 3.00 25 -1.7 L1SP-LME0002800000
(a) Horticulture White and Purple facilitate two parallel emitters thus IF,max is doubled, (b) measured at a
junction temperature Tj = 25 °C

4.2.2 Test Conditions

In accordance with the majority of conducted studies and common test standards an Accelerated
Degradation Test design with a constant bias Wet High Temperature Operating Life stress
level is selected for this experiment. This results in four independent variables to be recorded:
time t and three acceleration variables S : {Si ∈ [rHA, TA, IF]} with the relative humidity rHA,
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Figure 4.1: Relative spectral power distributions of the selected test subjects. From left to right: Royal
Blue, Lime, Purple and Horticulture White.

ambient temperature TA and the drive current IF. Each variables stress bias levels are specified
to represent real use cases – like dry shelf storage to greenhouse operational scenarios [339]
or (im)proper thermal design of a luminaire as well as different drive current levels – while
maintaining a broad stress level distribution as presented in table 4.2. Permutation of these
stress levels from table 4.2 yields a total of 24 test conditions for each DUT type.

Table 4.2: Constant bias stress levels used for the experiments Accelerated Degradation Test.

Stress variable Si Stress level

Relative humidity rHA 25 %, 55 % and 85 % (a)

Ambient temperature TA 65 °C and 85 °C(b)

Drive current IF
0 mA, 75 mA, 150 mA and 300 mA (c)

0 mA, 150 mA, 300 mA and 600 mA (d)

(a) lower/upper recommended moisture range for greenhouses [339], (b) proper
and inporper thermal luminaire design, (c) Blue and Lime DUT, (d) Horticulture
White and Purple DUT.

4.2.3 Test Setup

Due to the large number of test conditions in total N = 5 DUT are tested per condition and LED

type. Therefore, each DUT is placed on a separate 30 mm× 33 mm aluminum metal-core Printed
Ciruit Board (PCB) alongside with a PT100 Resistance Temperature Detector (RTD) to measure
the solder point temperature Ts in close proximity to the LED. Following, each conditions five
DUT are screw-mounted on a separate 300 mm× 55 mm× 8 mm die cast aluminum heat sink
plate and electrical connected in series. All plates sharing identical SrH and ST conditions are
subsequently placed in one of three climate chamber of the type Memmert HCP105 that is set
to the corresponding environmental conditions. Each LED string is powered by an individual
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DC power supply of either the type Keithley 2200-72-1 or Rohde & Schwarz NGE103. During
the whole test all environmental and electrical parameters were continuously monitored to
ensure a steady operation. The test setup is schematically illustrated in fig. 4.2.

Figure 4.2: Test setup with three climate chambers and a computer controlled power supply and
temperature measurement rack.

4.2.4 Measurement Setup

The identification of certain degradation effects, as previously discussed in section 3.2, often
requires multiple measurement parameter. Therefore, a comprehensive set of spectral, electrical
and thermal measurements as well as visual inspection are performed over the course of
the experiment with the electro-optical measurement setup shown in fig. 4.3 and an Mentor
Graphics T3ster® thermal impedance measurement system. The following paragraphs highlight
the domain specific measurement setups. All measurements are conducted at laboratory
conditions of TA = 25 °C and rHA ≈ 30 %.

Temperature Stabilization

Considering the thermal sensitivity of a LED device, a proper thermal management during the
measurement is crucial in order to prevent inaccurate results due to internal self heating or
ambient induced temperature changes. For this purpose, the PCB is mounted on a thermoelectric
tempered massive copper block (mCU � mDUT) with an electrical socket providing connections
for LED driving and RTD temperature feedback reading as the left side of fig. 4.3 highlights.
The temperature control for stabilizing the DUT to Ts = Tset ± 0.1 K as well as RTD reading and
driving the thermoelectric Peltier device is managed by a Thorlabs ITC4020 TEC Controller.

Electrical Measurement

The DUT is simultaneously electrically driven and measured by a Keithley 2450 type Source
Measure Unit (SMU) in 4-wire Kelvin measurement configuration. During measurements the
SMU provides two modes of operation: In order to measure IV-characteristics the SMU enters a
Voltage sweeping mode and sweeps through a given voltage range Vsweep = [Vmin, Vmax] with a
resolution of nIV steps. This mode provides an accuracy for voltage sourcing of ≤ 150 ppm and
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Figure 4.3: Electro-optical measurement setup for spectral and electrical LED characterization.

≤ 300 ppm for a current measurement, respectively. Alternatively, for driving the DUT the SMU

is put into constant current source mode acting as a current source with a sourcing accuracy of
≤ 670 ppm and ≤ 150 ppm of voltage reading accuracy.

Spectral Measurement

The spectrally resolved measurement of the optical power is carried out by a setup consisting
of a PTFE coated integrating (Ulbricht) sphere with a diameter of d = 30 cm connected via
a fiber to an UV-VIS array-spectrometer model CAS140CT-152 by Instrument Systems. The
spectrometer features a spectral measurement range of 200 nm to 800 nm with a resolution of
∆λ = 2.7 nm± 0.3 nm. A spectral measurement is performed by the following protocol:

1. The DUT is placed at the integrating sphere’s port by assistance of a linear guidance.

2. While DUT the temperature stabilizes the spectrometer performs a dark current measure-
ment.

3. The SMU is set to the specified forward current.

4. The SMUs output is enabled and instantly a spectral measurement is triggered to prevent
undesired self heating of the DUT.

5. Upon completion of the spectral measurement the SMUs output is disabled and both the
spectral and electrical measurement values are read from the instruments.

Thermal Impedance Measurement

Often degradation effects in the electrical or optical domain can be traced back to structural
changes within the package. With respect to the ongoing test of the DUT a non-destructive
measurement method is mandatory which omits destructive measurement methods such as
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micrographs. Therefore, a thermal impedance Zth measurement method is selected that reveals
structural changes by means of changes in thermal resistance Rth and thermal capacitance Cth.
Computer tomography scanning was also considered but discarded due its comparatively long
measurement time that would result in a reduction of the overall measurement throughput. A
Zth measurement [340] consists of two consecutive steps – a calibration measurement and the
actual Zth impedance measurement:

1. Calibration measurement: First, the forward voltage coefficient αV is determined. Therefore,
the DUT is stabilized to a given temperature before conducting a VF measurement with
the before mentioned SMU. To prevent self heating, the DUT is driven a short pulsed
(≈ 200 µs) current. This process is repeated at three different temperatures Tj ≈ Ts =

[25 °C, 50 °C, 75 °C]. Due to the forward voltage’s linear temperature dependence αV at a
fixed IF,meas is determined by a linear regression of the form VF(Tj|IF,meas) = αVTj + VF,0.
For blue (In)GaN LED devices the αV ranges from −4.5 mV K−1 to −1 mV K−1 [341]. This
procedure is referred to as the forward voltage method [342]. Alternatively, a calibration
measurement is also possible by the less accurate peak-wavelength method [2].

2. Zth measurement: The DUT is first thermally stabilized at Ts = [25 °C. Next, a thermal step
function is introduced into the DUT by applying a heating current of IF,heat = 200 mA
over a duration of theat = 60 s. Subsequently, the forward voltage change is continuously
monitored at a measurement current of IF,meas = 1 mA for tmeas = 60 s. By taking the
previous determined forward voltage coefficient αV into account a thermal step response
∆Tj(t) is derived from VF(t). As shown in eq. (4.1) this step response correlates to the
specific materials along the heat dissipation paths of the DUT expressed by Rth and Cth.

∆Tj(t) = Pth ∑
i

Rth,i

[
1− exp

(
t

τth,i

)]
with τth,i = Rth,iCth,i (4.1)

With the time constant spectrum R∗(τ) the time dependent thermal impedance is sub-
sequently determined by eq. (4.2). By translating the continuous Zth(t) function into
a discrete one Zth(n∆t) both R

′
th,i and C

′
th,i for each structural part are derived for a

Foster network equivalent thermal circuit. A further transformation into a Cauer network
equivalent thermal circuit yields the physically accurate Rth,i and Cth,i presented in fig. 4.4.

Zth(t) =
∫ ∞

0
R∗(τ)

[
1− exp

(
t
τ

)]
dτ (4.2)

Lastly, the thermal properties of the LEDs package structure is visualized by plotting an
differential structure function of the cumulative thermal resistance R∑

th = ∑i Rth,i versus
kth = dCth/dRth as shown in fig. 4.4. Following, the actual junction temperature calculates to
Tj = PthR∑

th + TA.

Visual Inspection

A visual inspection is carried out by a Bresser Advance ICD 10-160x optical microscope with
a MikroCamII digital camera extension. The DUT is therefore illuminated by a cool white
correlated color temperature ring light source. Subsequently, a digital photo of the image is
saved.
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Figure 4.4: Thermal representation of a LED packages internal structure: (top left) Foster and (bottom
left) Cauer thermal equivalent circuit as well as (right) differential structure function.

4.2.5 Test and Measurement Procedure

During the course of the experimental period, a long-term stable white pcLED reference is
measured before each measurement cycle to allow compensation of any measurement setup
related drift errors afterwards. The references Spectral Power Distribution (SPD) S(λ|t, IF) is
measured at five forward currents IF ≤ IF,max to track drive-point specific changes up into
its high injection region while assuring not to trigger unintended current related degrada-
tion effects. Afterwards, an averaged correction factor γ̄(t; λ) for each measurement cycle is
determined according to eq. (4.3).

γ̄(t; λ) =
1
5 ∑

I∈IF

Sref(λ|0, I)
Sref(λ|t, I)

(4.3)

As a results of conducting a reference measurement at the beginning of every measuring date
a sum of N = 688 reference measurements were obtained at 140 measurement dates with five
measurement currents each. A total of 12 measurements were discarded due to errors during
the spectral measurement. The correction factors of these 12 measurements were later linearly
interpolated between the previous and subsequent date. As fig. 4.5 shows the VF uncertainty
is normally distributed with σ = 90.7 ppm. Even if the extended 2σ uncertainty is assumed
the values are well within the specifications provided by the manufacturer. Also the γ̄(t; λ)

corrected optical power shown in fig. 4.5 presents a similar normally distributed behavior with
σ = 116.9 ppm. Due to the normal distribution of both uncertainties a setup drift is ruled out
as also indicated by fig. 4.5.
The experimental procedure is split into measurement and test section. During the test each

DUT is operated inside a climate chamber at the predefined stress conditions. In total this
results in 80 devices under test – 4 DUT types × 4 IF conditions × 5 DUT – simultaneously
operated in each climate chamber at a given environmental condition (rHA, TA). The test
period ∆tTest between two consecutive measurements is adaptability adjusted, ranging from
daily measurement periods up to several weeks depending on the past degradation history.
Since especially in the early test stage of t / 300 h drastic performance changes may occur,
measurements are performed on a daily basis. Depending on the past degradation history
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Figure 4.5: Stability of N = 688 reference LED measurements taken over the whole course of the
experiment at different measurement currents: (left) correlation between normalized forward voltage
and normalized optical power uncertainty, (b) normalized optical power uncertainty after spectral
correction and (c) normalized forward voltage uncertainty.

either a regular or extended measurement is performed. A regular measurement includes a
spectral measurement at nine different drive currents in the range of 1 mA to 102 mA and
a forward biased IV characterization. For the extended measurement an additionally visual
inspection is performed of every DUT as well as a thermal characterization of two predefined
DUT per (rHA, TA, IF)-condition. In total a normal measurement of 80 DUT takes about 4 h for
the extended one this time doubles to 8 h. The whole test and measurement cycle is listed
below:

1. Perform a spectral measurement of the reference LED.

2. Perform either a regular or extended measurement according to the experimental time
schedule for all available devices.

3. Stop experiment if Popt(t) has dropped below 70 % of its initial value L70 for the majority
of devices under test else progress.

4. Place DUT in climate chamber and ramp up (≈ 1 h) rHA and TA to test conditions.

5. Expose DUT for ∆tTest to specified stress conditions (rHA, TA, IF).

6. Let the DUT acclimatize for t = 1 h during ramp down of rHA and TA to lab environmental
conditions to prevent unintentional damage to the DUT resulting from thermal-mechanical
shock.

7. Remove the DUT from the climate chamber.
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4.3 Derived Parameters

On the basis of the optical, electrical and thermal parameters previously obtained, further
metrics relevant for a comprehensive analysis are computed. This section presents in particular
derived optical and physics related metrics or calculations that were not covered in chapter 2.

Normalized Output Power

Often a qualitative comparison of degradation trajectories of different stress levels S challenging
due to a high variability in magnitude resulting e.g. from different drive currents. Therefore,
all optical power measurement values of a DUT at a certain stress condition S are referenced to
their initial value t = 0 h. The normalized output power NOP(t; S), also denoted as the lumen
maintenance LM(t; S) is presented in eq. (4.4) according to [43].

NOP(t; S) = LM(t; S) =
Popt(t; S)
Popt(0; S)

(4.4)

Chromaticity Coordinates

Aside from the change in optical power the change in emitted chromaticity holds additional
information about underlying degradation effects. Commonly, the CIE 1976 UCS chromaticity
coordinates u′, v′ (eq. (4.5)) drift ∆u′v′ [343] is taken into account for degradation analysis [32,
39, 344].

u′ =
6Y

X + 15Y + 3Z
, v′ =

9Y
X + 15Y + 3Z

(4.5)

∆u′v′(t) =
√
[u′(t)− u′(0)]2 + [v′(t)− v′(0)]2 (4.6)

The Tristimulus X, Y and Z are derived from the SPD S(λ) = Popt/(h f ) with the standard
observer color matching functions x̄(λ), ȳ(λ) and z̄(λ) [343].

X = Km

∫
x̄(λ)S(λ)dλ

Y = Km

∫
ȳ(λ)S(λ)dλ (4.7)

Z = Km

∫
z̄(λ)S(λ)dλ

Phosphor to Blue Ratio

In order to get a first idea of the degradation site in a pcLED evaluating both the dies and
phosphors peak wavelength ratio (phosphor to blue ratio, PBR) ξ has proven to be a suitable
metric.

ξ =
Popt,ph(λp,ph)

Popt,die(λp,die)
=


< 1, phosphor degradation

≈ 1, die degradation

> 1, encapsulant degradation

(4.8)



46 experiment - accelerated degradation test

Yellowing Index

Especially when analyzing the discoloration or yellowing of polymers the yellowing index YI
is considered as a metric for comparison. Despite its official discontinuation the YI standard
ASTM D1925 [345] presented in eq. (4.9) is usually applied in LED degradation studies [108].

YI = 100 % ·
(

1.28X− 1.06Z
Y

)
(4.9)

(Maximum) Internal Quantum Efficiency and ABC-Model Parameters

The direct measurement of ηIQE is not possible within a LED package. However, under consider-
ation of eq. (2.42) as assuming ηLEE a constant parameter and no leakage current (ηIE = 1), ηIQE

can be approximated by eq. (4.10) with the the maximum internal quantum efficiency ηIQE,max

and its corresponding forward current IIQE,max = IEQE,max [84, 114].

ηEQE(I) =
1

ηIQE,max
− 1− ηIQE,max

2ηIQE,max

(
1 +

I
IIQE,max

ηEQE(I)
)√

IIQE,max

I
ηEQE(I) (4.10)

The unknown parameter ηIQE,max is subsequently derived from the linear expression given by
eq. (4.11) where Pnorm(I) = Popt(I)/Popt,max is the optical power normalized with respect to the
forward current and the slope m̃ [84].

ηEQE,max

ηEQE(I)
= m̃

[
P0.5

norm(I)− P−0.5
norm(I)

]
+ ηIQE,max (4.11)

Following, the ABC-models recombination coefficients and charge carrier concentration is
determined. Therefore, according to [2], the bimolecular recombination coefficient B is set to an
arbitrarily reasonable value of B = 1× 10−12 cm3 s−1. Since the actual structural parameters of
the LED chip are also unknown the chip area AChip, the number of QW nQW and the thickness
of each QW dQW are assumed to AChip = 1 mm2, nQW = 5 and dQW = 3.5 nm. Subsequently,
by taking ηIQE,max into account, both recombination coefficients, A and C, are obtained from
eq. (4.12) and eq. (4.13) with r = qVactive/ηIE as well as from eq. (4.14) the charge carrier
concentration n, respectively.

A =

√
ηEQE,max (1− ηIQE,max)

2 B
4rηIQE,max

(4.12)

C = A3 4r2

η2
EQE,max (1− ηIQE,max)

2 (4.13)

n =

√
Popt/(h f )

ηIEηLEEVactiveB
(4.14)



5 Results and Degradation Analysis

Based on the experimental procedure highlighted in chapter 4 this chapter presents the
obtained results followed by a subsequent analysis and discussion of the observed degradation
effects with respect to the current state of literature elaborated in chapter 2 and chapter 3. In
order to identify production outliers or binning variation in the DUT types population, first, a
comprehensive initial characterization is conducted by means of the devices electrical, optical
and thermal characteristics. Afterwards, the ADT results are presented and analyzed. Since all
four DUT mainly differ by their die (single or two in parallel) and phosphor configuration while
having the same package structure and a similar (In)GaN emission pattern of around 450 nm
the Royal Blue device is firstly analyzed to provide a baseline for comparison. Subsequently,
the Lime, Purple and Horticulture White devices are examined. Concluding, an overview on
the overall identified degradation mechanisms is given in section 5.5.
It is noteworthy, that the following initial and degradation analysis is performed at fixed
operating point with a nominal forward current of Inom = Im = 100 mA if not specified
otherwise. Further, due to a SMU configuration issue for the IV-measurement no representative
IV-characteristics were recorded for the (55 % and 85 %, 85 °C)-conditions, reducing the total
amount of IV-characteristics to N = 80 per DUT type. Since each group of DUT reaches the stop
criteria defined in section 4.2.5 after different aging periods the total aging time varies from
several 100 h to 6000 h.

5.1 Royal Blue LED Samples

The following section discusses the observed degradation effects of the Royal Blue DUT [338]
during the experiment presented in chapter 4.

5.1.1 Initial Characterization

For the Royal Blue DUT a total of N = 120 devices have been characterized that subsequently
were aged at the 24 previously specified (rHA, TA, IF)-conditions. However, one device of the
(25 %, 65 °C, 0 mA)-condition was removed from the further evaluation due to an error in the
spectral measurement data at its initial 0 h characterization leaving a total of N = 119 analyzed
devices.
The distribution and dependence of Popt with respect to VF is shown in fig. 5.1. On the left side
of fig. 5.1 the mean optical power and its corresponding forward voltage is presented which
ranges from 1.62± 0.05 mW and 2.51± 0.004 V at 1 mA to 312.62± 3.15 mW and 3.14± 0.017 V
at 200 mA. At each of the nine measured forward currents Im both the optical power and
forward voltage are normally distributed as exemplary highlighted in the center plot of fig. 5.1
at Inom, therefore it is assumed that all Royal Blue DUT originate from one production bin.
This assumption is further confirmed by the SPD in the right plot of fig. 5.1 with a narrow
main emission peak distribution of λp(Inom) = 452.7± 1.5 nm. The SPD additionally reveals
a secondary peak at ≈ 467 nm which is attributed to phonon-replica transitions occurring
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due to lattice defects resulting from GaN/InN lattice mismatches [346]. Varying the junction
temperature Tj from 25 °C to 75 °C decreases the band gap causing a shift towards longer
wavelengths of ∆λp = +2.24 nm. Simultaneously, a decrease in optical peak power of about
∆Popt(λp) = −18.8 % originating from thermally enhanced SRH recombination is observed.
In contrast, at room temperature a variation of Im = 1 mA to 200 mA yields a shift towards
smaller wavelengths of ∆λp = −3.84 nm since band distortions QCSE within the QW structure
are compensated by the increasing external electrical field applied.
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Figure 5.1: Initial optical measurements of the Royal Blue DUT: (left) optical power Popt vs. forward
voltage VF at nine distinct measurement currents Im, (middle) distribution of VF and Popt at Im = 100 mA
and (right) all measured SPDs at Im = 100 mA with the die’s mean emission peak wavelength λp = λb.
All measurements respective sample count, mean, standard deviation and measurement condition are
highlighted in red.

Addressing the external quantum efficiency ηEQE, fig. 5.2 presents the operating point de-
pendent ηEQE and its distribution. Within the range of the given Im shown in the left plot of
fig. 5.2 the maximum EQE is determined to ηEQE,max = 59.1± 0.72 % at Im = 10 mA which is
in agreement with the value range of measurements in the literature [18, 114, 347, 348]. The
average droop thus is specified to ηDroop = −6.15 %.
Regarding the electrical parameters a total of N = 79 IV-characteristics have been recorded
as depicted by fig. 5.3. The left plot of fig. 5.3 displays the IV-characteristic of the remaining
Royal Blue devices. Within the low injection area VF < 1.75 V a strong deviation from the ideal
diode characteristic is noticeable that can be attributed to parasitic shunt current paths with a
high variance in parallel resistance of Rp = 18.6± 4.84 GΩ. Only three devices exhibit distinct
mid-gap tunneling [145, 146] in the low injection regime at 0.75 V < VF < 2.3 V. Along the
diode region of VF = 2.3 V to 2.7 V a near ideal diode behavior is present with an ideality
factor of nideal = 1.18± 0.03. Increasing the forward voltage to VF > 2.7 V reveals the expected
dominance of parasitic series resistances in the high injection regime with Rs = 2.13± 0.06 Ω.
Derived from the above analyzed SPD additional colorimetric parameters such as the CIE
UCS 1976 chromaticity coordinates u′, v′ [343] and the yellowing index YI [345] are of in-
terest, as changes in such are linked to specific failure modes [344]. Since this DUT is a
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monochromatic LED both chromaticity coordinates are distributed along the spectral locus at
(u′, v′)T = (0.2± 0.0015, 0.082± 0.002)T presented in the left plot of fig. 5.4. On the right side
of fig. 5.4 the distribution of the initial yellowing index is displayed with a YI ≈ −2715± 75.
Furthermore, the initial junction to solder pad thermal resistance of Rth,j−s = 22.19± 3.38 K W−1

is in agreement with the manufacturer’s specifications [338].
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Figure 5.2: Initial EQE measurements of blue DUT: (left) external quantum efficiency EQE at nine distinct
measurement currents Im, (middle) distribution of maximum external quantum efficiency EQEmax at
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Figure 5.4: Initial colorimetric measurements of blue DUT: (left) distribution of the CIE 1976 UCS
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5.1.2 Results and Degradation Analysis

The following degradation analysis provides an all-encompassing discussion of the different
failure site discussed in section 3.2. Since each stress parameter impacts different structural
parts of the LED device, in a first step, the electrical and efficiency parameters are analyzed in
order to determine the degradation of the die itself and its interconnects. Subsequently, a link
to the package degradation will be established by investigating the stress conditions impact on
the overall optical power decrease shown in fig. 5.5.

Electrical and Efficiency Parameters

Considering the change in forward voltage over time as shown in fig. 5.6 an initial decrease
of ∆VF(t) ≈ −5 mV to 0 mV within the first hours of operation was measured. This decrease
strongly correlates to the observed initial optical power increase in fig. 5.5.
According to former studies [349] the observed initial change in both parameters, optical power
and forward voltage, is attributed to the activation of Mg acceptors on the p-side. As a result
the hole injection efficiency on the p-side is enhanced due to an increased p-conductivity. A
decrease of the parasitic series resistance as an alternative explanation can further be ruled out,
since only a ∆Rs ≈ 10−3 Ω was observed for all DUT which can be traced back to minor fitting
inaccuracies from the extraction of Rs from the IV-characteristic. However, at t� t0 a gradual
increase VF(t) for all devices aged under operating conditions (ITest > 0 mA) is noticeable,
whereas no substantial change occurs at storage condition (ITest = 0 mA). This leads to the
assumption that predominantly forward current induced diffusion processes contribute to the
increase in ∆VF(t). During the diffusion processes H atoms diffuse towards the n-side resulting
in negatively charged point defects on the p-side. These H atoms originate from formerly
passivated Mg – H complexes on the p-side that were broken by the interaction with hot carriers
[349]. The subsequent acceptor decompensation of these point defects result in a steady increase
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in Rs [298]. From fig. 5.6 also thermal effects as a second, subsidiary contributor to the increase
of ∆VF(t) can be suspected, since the diffusion constant (eq. (3.3)) and subsequent both the
diffusion length and rate are temperature dependent. This assumption is backed up by a
comparatively slow increase in Rs that correlates to the overall increase of each DUT forward
voltage. However, the (55 %, 85 °C, 300 mA)-condition presents a drastic ∆VF(t) increase at
around 50 h when compared to the other conditions. While no explicit correlation regarding
the optical power was observed, it is suspected that the formation of Kirkendall voids and
electrolysis at the Au – Ag lead-frame to bond-wire interface triggered this behavior [204]. In
fig. 5.7 a micrograph Scanning Electron Microscope (SEM) recording of the cathode sides bond
wire ball of both an unaged and an aged DUT is shown. Compared to the unaged DUT the aged
DUT exhibits an accumulation of residues in the lower left of the bond ball. An EDX revealed
that these dark colored residues are Cu deposits. As the electronegativity of both Cu (χ = 1.9)
and Ag (χ = 1.93) is about the same, the accumulation of Cu possibly results from moisture
enabled Cu – Ag electrolysis effects.
In order to gain further insight regarding the main contributor to the reduction in optical

power of the DUT the degradation trajectory of the external quantum efficiency ηEQE(t, Im)

with respect to measurement current is analyzed. Stating from eq. (2.42) it can be assumed
that in case of a noticeable LED die degradation the internal quantum efficiency would exhibit
distinguishable trajectories ηIQE for different measurement currents Im attributed to an increase
of either non-radiative SRH-recombination in the low injection regime or Auger processes in
the high injection region. In case of a uniform, measurement current independent degradation
trajectory the root cause of the decrease in Popt can be linked to a change of the package’s
light extraction efficiency ηLEE. As exemplary demonstrated in the left and center of fig. 5.8, a
uniform decrease in ηEQE is observed. However, at low measurement currents of Im = 1 mA a
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Figure 5.7: SEM micrograph of cathode side the wire bond ball attach to the lead-frame: (left) unaged
and (right) aged blue DUT with a sudden rise in forward voltage.

minimal deviation in ∆ηEQE occurs due to a slight increase of non-radiative SRH-recombination
as shown in the right plot of fig. 5.8. The increase of non-radiative SRH-recombination is
assumed to result from the emergence of point defects which introduce parasitic current paths
for injected charge carriers. A strong decrease of the parasitic shunt resistance in the order
of several magnitudes from 1010 Ω to 106 Ω confirms this assumption. With respect to typical
operating conditions of IF � 1 mA the external quantum efficiency, however, can be simplified
to ηEQE(t) ∝ ηLEE(t) since no significant changes within the measured current regimes where
observed as the center plot of fig. 5.8 shows. Concluding the main decrease in optical power
can be attributed to package related degradation mechanisms by means of reflectivity and
transmittance changes of the used optical materials.
Analyzing the efficiency decrease ∆ηEQE for all test conditions as presented in fig. 5.9 allows
to formulate three further observations: firstly, temperature induced stress has a significant
higher impact on ∆ηEQE and thus on ηLEE compared to humidity stress. This results from the
fact that diffusion processes, regardless if carrier related within the die or moisture related at
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the package level, scale according to eq. (3.3) with the temperature [32]. Secondly, as previously
discussed at elevated stress currents an inverse proportionality Popt ∝ ∆ηEQE ∝ I−1

Test should be
expected as the probability of defects introduced to the die increases [154, 331]. At conditions
of TTest = 65 °C and ITest > 0 mA this assumption withstands. However, at TTest = 85 °C and
ITest > 0 mA conditions as well as for all ITest = 0 mA conditions this assumption breaks which
further indicate degradation effects that are rather related to the package’s optical materials
than the semiconductor. Finally, the third observation shows at the TTest = 65 °C condition an
intermediate increase of ∆ηEQE at elevated humidity conditions rHTest that also seems to be
attributed to a package related degradation mechanism, since no correlations in the electrical
and thermal parameters were found.
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Figure 5.8: External quantum efficiency ηEQE with respect to aging time t and measurement current Im
exemplary for one blue DUT of the (85 %, 65 °C, 300 mA)-condition: (left) calculated ηEQE for different
Im at various aging times, (center) absolute change in EQE over time for different Im and (right) the
ABC-model’s SRH coefficient A with respect to aging time.

Optical Degradation

Since previous analysis identified the package as the predominating degradation site sub-
sequently a detailed investigation is carried out on the two main optical structures of the
package with respect to their optical properties – the lead-frame coating’s reflectance and the
encapsulant’s transmittance. Therefore, first the absolute shift in CIE 1976 UCS chromaticity
coordinates ∆u′(t) = u′(t)− u′(t0) and ∆v′(t) = v′(t)− v′(t0) according to [344] presented in
fig. 5.10 is investigated. Comparing storage (ITest = 0 mA) to operating ITest > 0 mA conditions
reveals a single trajectory under storage conditions while at operating conditions a second
effect takes places that becomes apparent as a „bump“ especially at the lower temperature
conditions TTest = 65 °C. At this temperature also a faster degradation trajectory is observed
under storage conditions which leads to the assumption of two concurring degradation effects.
The dominating degradation effect which is present under storage and operating condition
exhibits a strong shift towards the yellow region of the CIE 1976 UCS as both left plots of
fig. 5.10 show. Considering fig. 5.11 reveals the emergence of encapsulant yellowing as well
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Figure 5.10: Change in CIE 1976 UCS chromaticity coordinates (top) ∆u′ and (bottom) ∆v′ of the Royal
Blue DUT for each of the 24 investigated stress conditions separated by the stress current ITest: (left to
right) 0 mA, 75 mA, 150 mA and 300 mA. Each plot displays the stress temperatures TTest in (blue) 65 °C
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as bubble generation within the encapsulant. Both effects are known for a reduction of the
encapsulants transmittance especially within the blue wavelength region [39, 108] which in
turn gives an explanation for the strong yellow shift which is also apparent in the YI.
When aging the DUT under operating conditions a slower yellowing rate can be reported
accompanied by discoloration of the lead-frame reflector and the formation of micro fractures
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Figure 5.11: Encapsulant yellowing of the royal blue DUT aged at (85 %, 65 °C, 0 mA)-condition at
different aging times: (left) 0 h, (center) 537 h and (right) 1434 h.

as exemplary presented in fig. 5.12. Since the DUT is operated, the die introduces an internal
heat source into the package that elevates the junction’s temperature within the package
to Tj > TTest. As a result moisture ingress into the package is impeded which results in a
decreased yellowing rate. Similarly, less bubbles are generated as less moisture can condensate
at micro-cavities. The lead-frame reflector’s discoloring, however, occurs due to progressing
oxidation reactions of the Ag containing reflective coating with sulfur from the environment
following eq. (3.20) and eq. (3.21) [240]. Subsequently, the reflectance significantly decreases
especially towards blue wavelengths [241, 350]. Further, a closer inspection shows an area
right around the die which is spared from the oxidation at this point of time. This area can be
assigned to the die adhesive. Since the die adhesive has a comparably higher adhesive force
than the silicone at the dead-frame interface, (sulfur-containing) moisture preferably creeps
along the silicone-reflector interface area. In addition, micro fractures start to form that first
benefit the direct escape of emitted blue light from the die out of the package. Thus, the on-set
of the „bump “ can be linked to the start of these fracture’s formation. However, at prolonged
aging times reflector oxidation and encapsulant yellowing are further promoted due to elevated
moisture ingress along previously formed fractures. Additional moisture creepage paths are
promoted along the interface between reflector the cup and the encapsulant as both layers are
detached from each other. This detachment results from hygroscopic swelling of the silicone

Figure 5.12: Lead-frame tarnishing of the royal blue DUT aged at (85 %, 65 °C, 150 mA)-condition at
different aging times: (left) 0 h, (center) 537 h and (right) 1434 h with magnified micro fractures of the
encapsulant.
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encapsulant. With increased swelling the induced shear forces at the interface surpass the
silicones adhesive forces to the cup and thus large cavities are generated as shown in fig. 5.13.

Figure 5.13: SEM micrograph of the moulding cup to encapsulant interface: (left) whole micrograph
of an unaged blue DUT, (center) magnification of an unaged interface and (right) close-up of an aged
device. Following characteristics are highlighted by numbers: (1) unaged interface, (2) cracks of unaged
devices that result from the slicing of the micrograph, (3) swollen silicone of an aged device and (4)
detachment and cavities at the interface of an aged device.

5.2 Lime LED Samples

Over the course of this section the experimental data of the N = 120 lime DUT [338] aged at a
total 24 (rHA, TA, IF)-conditions are presented and their underlying degradation causes are
discussed with respect to section 3.2.

5.2.1 Initial Characterization

The initial variation of the operating point specific optical power at nine different measurement
currents Im = 1 mA to 200 mA is presented in the left plot of fig. 5.14. These range from
1.32± 0.04 mW and 2.53± 0.005 V at 1 mA to 250.71± 2.55 mW and 3.13± 0.026 V at 200 mA.
Due to the broad cluster-free distribution of the corresponding Popt and VF data which are
exemplary shown for Inom in the center plot of fig. 5.14, a single production bin is assumed.
This is also confirmed by the narrow distributed SPD presented in fig. 5.14 (right) with a blue
direct emitter peak at λp,die = 448.59± 1.19 nm and a phosphor emission peak at λp,ph =

541.63± 0.92 nm. Similar to the royal blue DUT also a blue side peak at ≈ 467 nm is present
which confirms the assumption of the same semiconductor structure for the royal blue and
the lime DUT. Comparing both peaks average optical power Popt(λp,die) = 0.16 mW nm−1 and
Popt(λp,ph) = 1.11 mW nm−1 reveals that a significant amount of emitted blue light is down-
converted due to either a very high phosphor concentration, a very high luminescence efficiency
at room temperature ηLE(25 °C) or both. These observation in combination with the emission
pattern suggests the use of a Ce-doped oxyflouride (Sr, Ca)3 (Al, Si) O4 (F, O):Ce3+ with an
excitation peak wavelength of λp,ex = 450 nm and emission peak at λp,em = 540 nm− 550 nm
[102].
Regarding the varying Tj from 25 °C to 75 °C at Inom a red shift of the die emission peak of
∆λp,die = +2.65 nm and ∆λp,ph = +4.30 nm for the phosphor emission peak, respectively, was
observed due to a temperature induced band gap shrinkage. Analogous the peak optical power
dropped by ∆Popt(λp,die) = −17.8 % due to thermally promoted SRH recombination in the die
emitter and ∆Popt(λp,ph) = −6.0 % resulting from thermal quenching. Varying the operating
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Figure 5.14: Initial optical measurements of the Lime DUT: (left) optical power Popt vs. forward voltage
VF at nine distinct measurement currents Im, (middle) distribution of VF and Popt at Im = 100 mA and
(right) all measured SPDs at Im = 100 mA with the die’s mean emission peak wavelength λp = λb.
All measurements respective sample count, mean, standard deviation and measurement condition are
highlighted in red.

current at room temperature returns a blue shift for the die ∆λp,die = −4.68 nm since the
Quantum-confined Stark Effect (QCSE) is reduced at elevated charge carrier injection levels.
However, the phosphor peak exhibits a small red shift ∆λp,ph = −0.28 nm that is attributed to
a band gap decrease as a result from phosphor self heating due to thermal quenching.
In fig. 5.15 the average injection current dependent external quantum efficiency ηEQE of the
lime DUT is presented. At Im,max = 10 mA the maximum EQE is determined to ηEQE,max =

48.45± 0.56 %. Compared to the royal blue DUT the lime DUT only yields about 82 % of the royal
blues maximum EQE. Considering the reported phosphor’s luminescence efficiency ηLE ≈ 85 %
[102] the observed decrease in maximum EQE ranges within the phosphor’s ηLE. Further, the
mean efficiency droop of ηDroop = −5.99 % is similar to that of the royal blue DUT.
The IV-characteristics of N = 80 initial measured DUT are drawn in fig. 5.16. Apart from one
single DUT, all IV-characteristics follow a similar pattern with a noticeable parasitic parallel
resistance of Rp = 18.5± 4.89 GΩ derived from the low injection regime at VF < 1.75 V. For
the one deviating case trap assisted tunneling processes are responsible for the distortion of
the IV-characteristic in the low injection regime that may originate from impurities introduced
during the manufacturing process. This outlier characteristic is also present in the center plot
of fig. 5.16 as nideal = 1.38 that is larger than the average ideality factor that was determined
to nideal = 1.19± 0.05. At the high injection regime of VF > 2.7 V a parasitic series resistance
of Rs = 2.01± 0.08 Ω can be reported. Again, these parameters align with the previously
reported parameters of the royal blue DUT further manifesting the assumption that the same
die structure is present in both devices.
Considering the measured SPD the CIE UCS 1976 chromaticity coordinates u′, v′ presented
in fig. 5.17 are calculated to [343] (u′, v′)T = (0.187± 0.0001, 0.558± 0.0007)T. A proper color
binning can be assumed due to both coordinates distribution very low variation. However,
a few devices deviate from this narrow distribution which may be attributed to inconsistent
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Figure 5.16: Initial electrical measurements of lime DUT: (left) IV-characteristic, (middle) distribution of
the ideality factor nideal and (right) distribution of the parasitic series resistance Rs. All measurements
respective sample count, mean, standard deviation and measurement condition are highlighted in red.

phosphor contents admixing resulting in a more blueish appearance (0.186, 0.553)T for too
low phosphor content and (> 0.187,> 0.559)T for too high admixing, respectively. Especially,
a single DUT with too low admixing is represented as an outlier in the right plot of fig. 5.17
with a yellowing index of YI = 79.11 compared to the average of YI ≈ 83.54± 0.72. In addition,
with respect to the datasheet [338], an initial junction to solder pad thermal resistance of
Rth,j−s = 22.38± 2.38 K W−1 was measured.
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5.2.2 Results and Degradation Analysis

Hereafter, the results obtained from the aging experiment beforehand characterized lime
devices aged at 24 stress conditions defined in chapter 4 are presented and discussed regarding
their origin. An overview on the devices’ relative decrease in optical power is highlighted in
fig. 5.18. In order to investigate the root cause of the presented degradation trajectories the
different structural parts of the LED package are analyzed starting from the die’s electrical and
efficiency parameters up to the optical parameters of the package.

Electrical and Efficiency Parameters

Degradation effects related to the LED die usually are noticeable in the form of changing
electrical parameters. Therefore, first the time-dependent change in forward voltage ∆VF(t)
displayed in fig. 5.19 is investigated. Within the first hours of operation an initial decrease
of VF(t) ≈ −4 mV to 0 mV is observed for all devices that correlates with an increase in
optical power presented in fig. 5.18. Since the parasitic series resistances extracted from the
IV-characteristic only vary in the range of ∆Rs ≈ 10−3 Ω no substantial decrease in series
resistance is concluded. This hints, similar to the case of the blue DUT, towards an activation
Mg acceptors on the semiconductors p-side [349] that promoted p-side acceptor decompen-
sation [298]. Subsequently, VF(t) steadily increases while aged under operating conditions
(ITest > 0 mA). Analogous to the in depth discussed observations for the royal blue DUT, diffu-
sion processes triggered by injected charge carriers and elevated temperature are suspected for
the VF(t) increase [349]. Further, a similar sudden increase in VF(t) was observed at around
50 h for the (55 %, 85 °C, 300 mA)-condition. Since no current or voltage anomalies were found
in the test protocol a bond-wire attach related defect promoted by electrolysis similar to the
blue DUT is assumed [204].
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Figure 5.18: Normalized optical power NOP degradation trajectories of the lime DUT for each of the 24
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Figure 5.19: Change in forward voltage ∆VF of the lime DUT for each of the 24 investigated stress
conditions separated by the stress current ITest: (top left) 0 mA, (top right) 150 mA, (bottom left) 75 mA
and (bottom right) 300 mA. Each plot displays the stress temperatures TTest in (blue) 65 °C and (red)
85 °C as well as the stress humidity rHStress as (dotted line) 25 %, (dashed line) 55 % and (solid line)
85 %.

In a next step the time and current dependence of the external quantum efficiency ηEQE(t, Im)

is analyzed. Trend-wise all DUT exhibit a comparable degradation trajectory with varying
magnitude as exemplary shown in fig. 5.21. Therefore, an exemplary discussion based on one
DUT of the (85 %, 65 °C, 300 mA)-condition presented in fig. 5.8 is performed. After the initial
performance decrease discussed above the EQE does not change significantly within the first
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150 h as both the left and center plot of fig. 5.8 indicate. Following a rapid decrease in EQE
over the whole measured current regime is observed. As the center plot shows no significant
measurement current dependency of the EQE, die related degradation effects are dismissed as
the main degradation contributors. This assumption is confirmed by the rather small changes
of the SRH coefficient A (right plot of fig. 5.8) and Auger-coefficient C which would be expected
at least one magnitude higher than observed for an significant degradation effect. The main
contributor must be therefore located within the package along the optical path of the light
emitted from the die onto the package’s surface. Thus, according to eq. (2.42) the internal
quantum efficiency presents no relevant time-dependency during the test period. As a result,
the light extraction efficiency exhibits a strong time-dependency and thus majorly contributes
to the change in EQE by ηEQE(t) ∝ ηLEE(t).
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Figure 5.20: External quantum efficiency ηEQE with respect to aging time t and measurement current
Im exemplary for one lime DUT of the (85 %, 65 °C, 300 mA)-condition: (left) calculated ηEQE for different
Im at various aging times, (center) absolute change in EQE over time for different Im and (right) the
ABC-model’s SRH coefficient A with respect to aging time.

Optical Degradation

Considering the before evaluated results regarding the die and interconnect failure sites,
following the packages encapsulant, lead-frame reflector and phosphor degradation will be
examined in order to describe the observed optical power and EQE decrease. First the calculated
absolute shift in CIE 1976 UCS chromaticity coordinates ∆u′(t) and ∆v′(t) shown in fig. 5.22
are analyzed.
At elevated temperature conditions TTest = 85 °C a common shift trajectory towards yellow/red
coordinates (∆u′(t) > 0, ∆v′(t) < 0) becomes evident. While the moisture level seems to have a
subordinate impact, the shift trajectories acceleration scales well with ITest. In contrast for the
lower TTest = 65 °C condition an intermediate „bump“ on the ∆u′(t) axis indicates a second
mechanism becoming present that yields a blue shift (∆u′(t) < 0, ∆v′(t) < 0). This behavior
becomes also evident noticeable the Yellowing Index. In addition to the current level, also the
moisture level impacts both the general shifts trajectory as well as the on-set of this secondary
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degradation effect. Considering the peak wavelength’s position the measurement data reveal
a stable blue peak of around ∆λp,die(t � t0) ≈ ∆λp,die(0) while the green phosphors peak
wavelength change is ∆λp,ph(t) ∝ ∆u′(t) < 0.
Similar to the royal blue DUT lead-frame mirror tarnishing and encapsulant yellowing are
expected. Due to the encapsulant’s phosphor content a direct visual inspection via light
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microscopy of both former mentioned degradation effects proves difficult. However, adjusting
the RGB settings of the taken image can highlight the underlying degradation effects up to a
certain level as shown in fig. 5.23.
The left images in fig. 5.23 show a lime DUT at its initial state before aging. At this initial stage

Figure 5.23: Visible degradation effects of the lime DUT with (top) the original image and (bottom) color
modified image exemplary highlighting the distinct degradation effects: DUT (left) before aging, (center)
phosphor dissolving and lead-frame reflector tarnishing and (right) encapsulant carbonization.

only the tips of the bond-wires are visible by RGB adjustment. After aging slight darkening is
visible. Adjusting the RGB settings reveals the underlying lead-frame reflector and the centered
LED die as the center image of fig. 5.23 presents. In addition, the area along the molded cup
appears brighter. Therefore, two conclusions can be drawn: firstly the darkened area represents
the tarnished lead-frame mirror which itself drastically reduces the reflected light from the
packages bottom layer to its surface. Secondly, the phosphor content becomes more transparent
as a result of phosphor dissolution [204].
By comparing the phosphor’s and die’s spectrums peak optical power ratio as shown in fig. 5.24
reveals a significantly decrease of the phosphor’s spectral emission. Since the dissolution
process requires a solvent, the dissolution progresses faster with increasing moisture content
diffused into the package. The diffusion rate itself has a positive temperature dependence
which explains the observed higher degradation rate at elevated temperatures. Simultaneously,
the encapsulant’s yellowing advances as hinted by the observed yellow chromaticity shift. The
emerging „bump“ on the ∆u′(t) axis may be attributed to concurring directions of moisture
diffusion due to temperature differences between the inner package and the ambient. At
this aging stage previously entered moisture could be driven out of the package. Since those
beforehand trapped water molecules were scattering especially blue light due to Rayleigh
scattering (∝ λ−4) an increase in emitted blue light can be found after evaporating these
moisture contents from the encapsulant. From the right columns pictures of fig. 5.23 a third
degradation mechanism can be derived. In particular at very elevated stress conditions a brown
to black residue begins to form on top of the die. Similar effects were observed in former
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studies that linked the encapsulant’s carbonization due to high temperatures [273]. These
temperatures of several 100 °C result from high injection currents for one causing excessive
Joule heating at the die area which reduces the phosphor’s efficiency causing additional heat
to be generated by the phosphor during the down-conversion.
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Figure 5.24: Relative phosphor to chip peak power ratio ξ of the lime DUT for each of the 24 investigated
stress conditions separated by the stress current ITest: (left to right) 0 mA, 150 mA, 75 mA and 300 mA.
Each plot displays the stress temperatures TTest in (blue) 65 °C and (red) 85 °C as well as the stress
humidity rHTest as (dotted line) 25 %, (dashed line) 55 % and (solid line) 85 %.

5.3 Purple LED Samples

This section presents the measurement results of the purple DUT [338] and provides subsequent
a discussion of the origins of the observed aging experiment from chapter 4. Therefore, an initial
characterization of the N = 118 devices aged under 24 different (rHA, TA, IF)-conditions. Prior
it should be noted, that two devices aged at elevated temperature conditions of TTest = 85 °C
exhibited an early catastrophic failure (open circuit) during the first aging period and thus
were removed from the following discussion.

5.3.1 Initial Characterization

Analogous to the previous sections an initial characterization of the purple device will be per-
formed as a baseline for the following degradation analysis starting with drive point dependent
optical power output. Measuring the DUT at varying forward currents Im = 1 mA to 400 mA
yields the left plot of fig. 5.25 presenting an average measured optical power and forward
voltage ranging from 0.97 ± 0.03 mW and 2.52 ± 0.004 V at 1 mA to 362.49 ± 3.74 mW and
3.16± 0.021 V at 400 mA. Compared to the royal blue and lime device the maximum forward
current is doubled due to the parallel chip configuration while maintaining a the optical power
at a comparable level. The presented data exhibits no obvious voltage or power clusters as
the center plot of fig. 5.25 highlights for Inom. Thus no electrical voltage or power binning is
assumed. The SPD also presents a narrow wavelength and power distribution as the right plot
of fig. 5.25 displays. The emission peaks of the die and the red phosphor are determined to



5.3 purple led samples 65

λp,die = 448.21± 0.69 nm with a side peak at about 467 nm and λp,ph = 646.11± 1.15 nm, respec-
tively. This further confirms the assumption that the same principal semiconductor structure
was used for all devices, whereby only the chip area and thus the volume of the active region
mainly was adjusted for the two chip configuration. The average peak optical power yields a
ratio of 1 : 7.7 with Popt(λp,die) = 0.14 mW nm−1 and Popt(λp,ph) = 1.08 mW nm−1. Commonly,
red Eu-doped nitride phosphors, such as (Sr, Ba)2 Si5 N8 : Eu2+ or (Sr, Ca) Al Si N3 : Eu2+, are
widely used in LED applications [102]. However, a clear determination of the phosphor type
is difficult, since these phosphors are specifically tuned regarding their Sr and Eu content to
meet the desired emission pattern in combination with a specific LED emitter. Measuring the
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Figure 5.25: Initial optical measurements of the Purple DUT: (left) optical power Popt vs. forward voltage
VF at nine distinct measurement currents Im, (middle) distribution of VF and Popt at Im = 100 mA and
(right) all measured SPDs at Im = 100 mA with the die’s mean emission peak wavelength λp = λb.
All measurements respective sample count, mean, standard deviation and measurement condition are
highlighted in red.

temperature dependence over a range of Tj = 25 °C to 75 °C at a drive current of Inom a red
shift of the LED emitters peak wavelength of ∆λp,die = +2.43 nm and a minor blue shift of
∆λp,ph = −0.44 nm of the phosphor’s peak wavelength is observed. Former can be attributed to
a temperature induced lowering of the band gap energy, the latter however, could be attributed
to quenching processes. Simultaniously, a drop in optical power at the corresponding peak
wavelengths was observed of ∆Popt(λp,die) = −20.4 % and ∆Popt(λp,ph) = −7.4 %, respecively,
where the first is attributed to to thermally enhanced SRH recombination of the LED chip and
the second results from thermal quenching in combination with a reduced blue light emission
of the die. The dependence of the forward current over the defined current range is determined
to ∆λp,die = −2.55 nm and ∆λp,ph = −0.72 nm and results from a decrease of the QCSE and self
heating due to thermal quenching, respectively. Further, varying the injection current yields
the external quantum efficiency ηEQE characteristic presented in the left plot of fig. 5.26. The
maximum EQE of ηEQE,max = 37.01± 0.38 % at a forward current of Im,max = 25 mA with a
resulting average efficiency droop of ηDroop = −6.33 % similar to the blue and lime DUT.
In fig. 5.27 the initial IV-characteristics of N = 80 purple devices are presented. The vast
majority of devices follow a similar IV-characteristics apart from three devices that exhibit trap
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assisted tunneling processes in the low injection regime at VF < 1.75 V. Both, the parallel and
series parasitic resistances are derived from the IV-characteristics and are narrowly distributed
at Rp = 16.1± 4.49 GΩ and Rs = 0.98± 0.03 Ω. The of value Rs was expected to be approxi-
mately half of the blue or lime devices Rs since two chips are operated in parallel. Further, the
ideality factor is close to an ideal diode characteristic with nideal = 1.15± 0.07 with one outlier
of nideal = 0.86 which traced back to a fitting error during the calculation since it ranges for all
further measurements within the shown distribution.
The CIE UCS 1976 chromaticity coordinates u′, v′ are determined to (u′, v′)T = (0.465 ±
0.002, 0.503± 0.002)T. For all devices the chromaticity coordinates are broad, but normally
distributed along the spectral locus’ purple boundary as shown in fig. 5.28. Based on the
chromaticity coordinates underlying tristimulus values X, Y and Z the yellowing index results
to YI ≈ 239.65± 2.28. A small set of outliers observable within the CIE 1976 UCS ((u′, v′)T =

(< 0.462,< 0.500)T) as well as regarding their Yellowing Index YI < 235 is probably attributed
to a lower phosphor content admixing and thus a small manufacturing process uncertainty.
Similar to both before measured devices’ thermal resistance also the purple DUT is well within
the manufacturer’s specification [338] with Rth,j−s = 12.70± 0.99 K W−1.

5.3.2 Results and Degradation Analysis

The results obtained from the aging experiment described in chapter 4 are presented in fig. 5.29.
Based on fig. 5.29 a significant decrease in optical power scaling well with temperature and
drive current is observable. In addition, a correlation between the decline in optical power and
humidity is present for all devices aged under operating conditions ITest > 0 mA. The root
causes for the observed trajectories in fig. 5.29 are discussed below.
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Electrical and Efficiency Parameters

First, the device’s electrical parameters are examined in order to identify any die related
degradation effects. In fig. 5.30 the devices change in forward voltage ∆VF(t) over the course
of the experiment is displayed. After an initial decrease of VF(t ≤ 50 h) ≈ −4 mV to 0 mV
the forward voltage ∆VF(t > 50 h) continuously increases. In accordance to the royal blue
and lime DUT (section 5.1.2 and section 5.2.2) an abrupt increase in ∆VF(t) is observed for the
(55 %, 85 °C, 600 mA)-condition, that, in contrast, is followed by an subsequent decrease. This
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diverging behavior from both before discussed devices might result from the fact, that the L70

threshold has not been exceeded at this point of the experiment in comparison to the blue and
lime DUT.

In agreement with the other device’s results no substantial change in parasitic series resistances
(∆Rs ≈ 10−3 Ω) was found thus pointing towards to an activation Mg acceptors on the
semiconductors p-side [349] promoting p-side acceptor decompensation [298]. However, the
following VF(t) increase at operating conditions of ITest > 0 mA exhibits an exponential behavior
that is relatively high compared to both single die devices. This behavior becomes especially
present in the high operating current regime. As a underlying degradation process electrolysis
triggered Cu migration towards the bond wire attach [204] as elaborated in section 5.1.2 can be
assumed alongside with charge carrier induced diffusion processes causing lattice defect. The
reason for this comparably higher increase of ∆VF(t) is suspected in an unbalanced current
loading. Due to the higher diffusion rate one die will exhebit an higher degradation rate that
the second die exposed to a lower forward current [349].
In order to further confirm the die’s contribution to the overall decrease in optical power of the
device its external quantum efficiency ηEQE(t, Im) with regard to forward current and operation
time is investigated based on the results presented in fig. 5.8 and fig. 5.21. First, the left plot
of fig. 5.21 indicates that a roughly uniform external quantum efficiency decrease of present
over the whole measurement current range leaves the assumption of a predominantly light
extraction efficiency related degradation contributed by the package. However, by inspecting
the center plot of fig. 5.21 a growing deviation in degradation rate between measurement
current at t ≥ 400 h becomes apparent hinting toward an growing die related contribution in
the low injection current regime. Analyzing the SRH-coefficient confirms a rapid increasing
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Figure 5.29: Normalized optical power NOP degradation trajectories of the purple DUT for each of the
24 investigated stress conditions separated by the stress current ITest: (top left) 0 mA, (top right) 150 mA,
(bottom left) 75 mA and (bottom right) 300 mA. Each plot displays the stress temperatures TTest in (blue)
65 °C and (red) 85 °C as well as the stress humidity rHTest as (dotted line) 25 %, (dashed line) 55 % and
(solid line) 85 %.



5.3 purple led samples 69

0

10

F
or

w
ar

d
vo

lt
a

g
e

ch
a

n
g

e
∆
V

F
(m

V
)

ITest=0mA

101 102 103

Time t (h)

0

10

ITest=150mA

ITest=300mA

101 102 103

Time t (h)

ITest=600mA

Figure 5.30: Change in forward voltage ∆VF of the purple DUT for each of the 24 investigated stress
conditions separated by the stress current ITest: (top left) 0 mA, (top right) 150 mA, (bottom left) 75 mA
and (bottom right) 300 mA. Each plot displays the stress temperatures TTest in (blue) 65 °C and (red)
85 °C as well as the stress humidity rHTest as (dotted line) 25 %, (dashed line) 55 % and (solid line) 85 %.

die related contribution starting at around t ≥ 400 h which agrees with the previous ∆VF(t)
observations. Therefore it can be concluded, the external quantum efficiency is dependent on
both time and current resulting in the following expression ηEQE(t, Im) = ηLEE(t) · ηIQE(Im).
Yet it should be noted, that for t < 400 h the light extraction efficiency ηLEE(t) predominates
while at t � 400 h the current dependent internal quantum efficiency ηIQE(Im) will mainly
influence the degradation. The overall change in external quantum efficiency ∆ηEQE is shown
in fig. 5.21. Due to the fact, that even under storage conditions (ITest = 0 mA) a decrease
in external quantum efficiency exists non-current induced and thus rather package related
contributions within the optical path to ηLEE are concluded.

Optical Degradation

Following the degradation of the optical path will be examined by means of the CIE 1976 UCS
chromaticity coordinates shift ∆u′(t) and ∆v′(t) and the phosphor-to-chip ration shown in
fig. 5.33 and fig. 5.35, respectively. At storage conditions (ITest = 0 mA) a distinct blue shift
(∆u′(t) < 0, ∆v′(t) < 0) which scales well with temperature and humidity can be observed
within the CIE 1976 UCS as well as it becomes apparent in the PBR. Latter suggests a decrease in
phosphor emission which can be attributed to a moisture and temperature promoted dissolution
of phosphor particles resulting in a higher blue light transmittance of the encapsulant [204].
Under operating conditions at lower temperature TTest = 65 °C a combination of different shift
directions can be observed which first approaches yellow (∆u′(t) > 0, ∆v′(t) > 0) then heads
towards blue (∆u′(t) < 0, ∆v′(t) < 0) and finally towards yellow again. This combination
hints towards a yellowing of the encapsulant followed by phosphor dissolution which becomes
overwhelmed by a final encapsulant yellowing process. Alongside small fractures arise that
promote further moisture ingress. The phosphor dissolution is shown in the middle picture
of fig. 5.34. In contrast within the high temperature regime at TTest = 85 °C a more chaotic
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Figure 5.31: External quantum efficiency ηEQE with respect to aging time t and measurement current Im
exemplary for one purple DUT of the (85 %, 65 °C, 600 mA)-condition: (left) calculated ηEQE for different
Im at various aging times, (center) absolute change in EQE over time for different Im and (right) the
ABC-model’s SRH coefficient A with respect to aging time.
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Figure 5.32: Change in external quantum efficiency ηEQE of the purple DUT for each of the 24 investigated
stress conditions separated by the stress current ITest: (top left) 0 mA, (top right) 150 mA, (bottom left)
75 mA and (bottom right) 300 mA. Each plot displays the stress temperatures TTestress in (blue) 65 °C
and (red) 85 °C as well as the stress humidity rHTest as (dotted line) 25 %, (dashed line) 55 % and (solid
line) 85 %.

behavior emerges. While at lower humidity and high current ITest = 600 mA conditions the
trajectories follow those of at lower temperatures, a sudden and rather drastic blue shift
is exhibited by the moderate current conditions. The first case be attributed to a yellowing
of the encapsulant as also the increasing Yellowing Index suggests. The latter observations
can be drawn to a combination of severe encapsulant cracking and phosphor dissolution.
Under high temperature hygrothermal stress moisture ingress causes the encapsulant to swell
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Figure 5.33: Change in CIE 1976 UCS chromaticity coordinates (top) ∆u′ and (bottom) ∆v′ of the purple
DUT for each of the 24 investigated stress conditions separated by the stress current ITest: (left to right)
0 mA, 150 mA, 75 mA and 300 mA. Each plot displays the stress temperatures TTest in (blue) 65 °C and
(red) 85 °C as well as the stress humidity rHTest as (dotted line) 25 %, (dashed line) 55 % and (solid line)
85 %.

Figure 5.34: Visible degradation effects of the purple DUT with (top) the original image and (bottom) gray
scaled image highlighting the distinct degradation effect. The following effects are shown exemplary
from left to right: DUT before aging, phosphor dissolving and lead-frame reflector tarnishing and
encapsulant cracking.

and become enbrittle especially in the region of highest temperature right above the die.
Small fractures formed this way promote further moisture ingress resulting in large cracks
as displayed in the right plot of fig. 5.34 alongside with elevating the dissolution rate in this
region. Subsequently, more blue light escapes the package either direct along the cracks or
through the more transparent encapsulant.
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Figure 5.35: Relative phosphor to chip peak power ratio ξ of the purple DUT for each of the 24
investigated stress conditions separated by the stress current ITest: (left to right) 0 mA, 150 mA, 75 mA
and 300 mA. Each plot displays the stress temperatures TTest in (blue) 65 °C and (red) 85 °C as well as
the stress humidity rHTest as (dotted line) 25 %, (dashed line) 55 % and (solid line) 85 %.

5.4 White LED Samples

Following the measurement results of the horticulture white DUT [338] obtained from the
experiment presented in chapter 4 are highlighted alongside with an investigation of the
observed degradation effects root causes. This section, therefore, first provides an initial
characterization of N = 117 devices subjected to 24 different (rHA, TA, IF) stress conditions.
Similar to the purple DUT again a total of three test subjects exhibited an early stage open
circuit catastrophic failure during the first 12 h test period and thus were dismissed from the
subsequent analysis.

5.4.1 Initial Characterization

In order to obtain an insight on the initial uncertainties of the devices originating from e.g.
the manufacturing process all N = 117 devices are characterized. At first the device point
dependent characteristics are investigated along with the overall spectral emission pattern. By
sweeping the forward current from Im = 1 mA to 400 mA Im = 1 mA to 400 mA the typical
exponential diode IVL-characteristic is obtained since Popt ∝ IF(VF). The observed optical power
and voltage ranges from 1.23± 0.05 mW and 2.51± 0.004 V at 1 mA to 473.51± 3.49 mW and
3.20± 0.014 V at 400 mA as shown in the left plot of fig. 5.36. Further, a uniform distribution of
Popt and VF displayed in the center plot suggests no manufacturer side optical power or voltage
binning of the devices. On the spectral side a blue emitter placed at λp,die = 450.52± 0.83 nm
accompanied by a 467 nm side peak is combined with two or three phosphor wavelength-
converters of λp,ph1 = 515.75± 0.69 nm, λp,ph2 = 550.59± 0.75 nm and λp,ph1 = 651.0± 0.1 nm
respectively. Due to the similar blue emission pattern the same die structure as used for
the purple DUT can be assumed for the horticulture device. The presence of three phosphor
peaks firstly suggests that also three phosphors might have been used, however, as elaborated
in a publication by Zhou et al. [351] a similar peak emission pattern can be achieved by a
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cyan-green Lu2 Ba Al4 Si O12 : Ce3+ and a standard red (Ca, Sr) Al Si N3 : Eu2+ phosphor. Further,
despite the comparatively high peak power variations with respect to the other devices the
overall variation in optical power of the SPD aligns with the previous analyzed test subjects.
These variations influence on the CIE 1976 UCS chromaticity coordinates distribution will be
discussed at a later point in this section. The overall peak powers and their ratios are as follows:
Popt(λp,die) = 0.83 mW nm−1, Popt(λp,ph1) = 0.42 mW nm−1, Popt(λp,ph2) = 0.44 mW nm−1 and
Popt(λp,ph3) = 1.11 mW nm−1 with corresponding ratios of 1 : 0.50, 1 : 0.53 and 1 : 1.34.
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Figure 5.36: Initial optical measurements of the White DUT: (left) optical power Popt vs. forward voltage
VF at nine distinct measurement currents Im, (middle) distribution of VF and Popt at Im = 100 mA and
(right) all measured SPDs at Im = 100 mA with the die’s mean emission peak wavelength λp = λb.
All measurements respective sample count, mean, standard deviation and measurement condition are
highlighted in red.

Similar to the lime and purple DUT temperature induced wavelength shift of the die emitter
towards the red spectrum ∆λp,die = +2.54 nm when increasing the junction temperature from
Tj = 25 °C to 75 °C is observed due to temperature dependent decrease of the band gap energy.
Alongside the optical power decreases by ∆Popt(λp,die) = −11.4 % as a result of thermally
enhanced SRH-recombination. In contrast, a blue shift of ∆λp,die = −3.77 nm is observed with
increasing forward current induced charge carriers which lower opposed electrical within
the die and thus reduce the QCSE. Contrarily, a red temperature induced red shift of all three
phosphor peaks of ∆λp,die = +2.54 nm and a blue shift of ∆λp,ph1 = −16.87 nm, ∆λp,ph2 =

−1.28 nm and ∆λp,ph3 = −1.83 nm can be determined due to thermal quenching behavior of
the phosphor. Resulting from thermal quenching as well as reduced emissions from the die
itself the peak’s overall power is reduced by ∆Popt(λp,ph1) = −6.1 %, ∆Popt(λp,ph2) = −7.9 %
and ∆Popt(λp,ph3) = −10.4 %.
By further considering fig. 5.37 the average, maximum external quantum efficiency EQE can
be determined to ηEQE,max = 47.42± 0.42 % at a forward current of maximum efficiency of
Im,max = 25 mA. Compared to the maximum measured forward current of Im = 400 mA the
horticulture white DUT exhibits a significant higher efficiency droop of ηDroop = −18 % with
respect to the previous discussed test subjects. This most likely reasons from the multi-phosphor
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composition exhibiting a distinct thermal quenching at higher excitation power levels and thus
decreasing the light extraction efficiency ηLEE of the device.
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Figure 5.37: Initial EQE measurements of white DUT: (left) external quantum efficiency EQE at nine
distinct measurement currents Im, (middle) distribution of maximum external quantum efficiency
EQEmax at IEQE,max and (right) distribution of EQE at maximum measurement current Im,max. All
measurements respective sample count, mean, standard deviation and measurement condition are
highlighted in red.

With regard to the electrical parameters initially N = 80 IV-characteristics were analyzed as
presented in fig. 5.38. Apart from nine outliers exhibiting trap assisted tunneling processes in
the low injection regime at VF < 1.75 V, all devices follow a common IV-characteristics as the
left plot of fig. 5.38 presents. Along the ideal diode characteristic in the forward voltage region
of 2.0 V ≤ VF ≤ 2.7 V a narrow distributed ideality factor of nideal = 1.20± 0.05 is obtained as
displayed in the center plot. Deviations from the ideal diode characteristic in the low injection
regime VF < 1.75 V are attributed to a parasitic parallel resistance of Rp = 14.3± 6.05 GΩ
originating from parallel, non-radiating current path around the active region [145, 146].
Whereas in the high injection region a parasitic series resistance of Rs = 0.1.1± 0.03 Ω is
obtained from the IV-characteristic at VF ≥ 2.7 V. Again, the obtained values agree with
measurements presented in the previous section drawing the conclusion that the same parallel
semiconductor configuration as also for the purple DUT is used.
In the following the previously identified peak power variations shown in the SPD of fig. 5.36
are investigated in terms of color binning with regard to the CIE 1976 UCS chromaticity
coordinates u′, v′ and the yellowing index highlighted in fig. 5.39. The chromaticity coordinates
obtained from the SPD are calculated to (u′, v′)T = (0.2222± 0.001, 0.4847± 0.002)T with a
corresponding yellowing index of YI = 37.03± 3.03. Both metrics show no clustering, thus no
distinct color binning is assumed in the device’s population.
Also the measured thermal junction to solder resistances fo Rth,j−s = 9.99± 1.18 K W−1 are
as those of the previously discussed devices also within and even below the manufacturer’s
specifications [338].
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Figure 5.39: Initial colorimetric measurements of white DUT: (left) distribution of the CIE 1976 UCS
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5.4.2 Results and Degradation Analysis

The subsequent part of this section elaborates on the experimental results of the horticulture
white DUT that was aged according to the 24 stress conditions proposed in chapter 4. Therefore,
the obtained degradation trajectories shown in fig. 5.40 are analyzed regarding their root cause
and failure site within the LED package by following the light extraction path from the die up
to the packages surface.
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Figure 5.40: Normalized optical power NOP degradation trajectories of the Royal white DUT for each of
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Electrical and Efficiency Parameters

First, the forward voltages change over time ∆VF(t) presented in fig. 5.41 is investigated to
determine whether any die related degradation is apparent. After an initial voltage drop
VF(t < 20 h) ≈ −6 mV to 0 mV an exponential-like increase is observed for the devices
under operating conditions at ITest > 0 mA whilst no significant change occurs under storage
conditions at ITest = 0 mA. The drop apparently scales marginally with temperature and
forward current. It further correlates to the initial increase in optical power. Similar to the
previous analyzed devices the change parasitic series resistance of ∆Rs ≈ 10−3 Ω is not
sufficiently pronounced in order to affect the forward voltage significantly. Subsequently, a
decompensation of p-side acceptors can be suspected [298]. Since the successive VF(t) increase
is only present under operating conditions, current induced diffusion processes of hot charge
carriers across the active region are suspected to promote point defects [349]. Similar to the
purple DUT the relative strong voltage increase rate compared to the both devices using a single
die configuration can be attributed to a drive current imbalance between both dies enhancing
one die’s degradation speed significantly. In contrast to the other test subjects no sudden rise
of VF(t) was present for the (55 %, 85 °C, 600 mA)-condition around 50 h which concludes that
no drastic electrolysis effects [204] are present for the horticulture white devices.
By further taking the influence of the aging time as well as the measurement current on
the external quantum efficiency ηEQE(t, Im) = ηLEE(t) · ηIQE(Im) into account the contribution
of the die’s degradation due to the internal quantum efficiency ηIQE and the encapsulant’s
and package’s contribution by the light extraction efficiency ηLEE is evaluated. As the left
plot of fig. 5.42 shows exemplary for one test subject, a approximate uniform decrease in
ηEQE over the whole measurement current range is present. This suggests that the main
degradation contributor is rather be found alongside package than the die. However, towards
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the experiments end t > 1000 h a noticeable spreading between the measurement currents
appears as shown by the center plot. Yet, the no significant change of the SRH-coefficient —
which would be expected in the order of at least one magnitude — was observed in the data
as highlighted in the right plot. Therefore, an onset of a die related contribution in the late
stage of testing can be assumed. In summary, for t < 1000 h a package related degradation
mechanism along the optical path is present yielding ηEQE(t < 1000 h) ∝ ηLEE(t) whereas with
prolonged operating time the external quantum efficiency results in ηEQE(t > 1000 h, Im) =

ηLEE(t) · ηIQE(Im).
The overall change in external quantum efficiency ∆ηEQE for all test conditions is subsequent
presented in fig. 5.43 exhibiting a similar s-shape trajectory over time as the optical power
shown in fig. 5.40.
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Figure 5.41: Change in forward voltage ∆VF of the white DUT for each of the 24 investigated stress
conditions separated by the stress current IStress: (top left) 0 mA, (top right) 150 mA, (bottom left) 75 mA
and (bottom right) 300 mA. Each plot displays the stress temperatures TStress in (blue) 65 °C and (red)
85 °C as well as the stress humidity rHStress as (dotted line) 25 %, (dashed line) 55 % and (solid line)
85 %.

Optical Degradation

This paragraph examines the degradation effects appearing along the optical path at different
parts of the LED package with regard to the devices CIE 1976 UCS chromaticity coordinates
shift ∆u′(t) and ∆v′(t) and the phosphor to blue ratios change over time. Under storage
conditions at ITest = 0 mA first a small green shift (∆u′(t) < 0, ∆v′(t) > 0) until t ≈ 300 h
followed by a significant blue shift (∆u′(t) < 0, ∆v′(t) < 0) can be observed in fig. 5.44 for all
climate conditions. By taking additional the PBR presented in fig. 5.45 into consideration the
degradation of the encapsulant becomes obvious for the first two peaks of the green-yellow
phosphor. However, the red phosphor exhibits a drastic emission decrease. Therefore, it can
be assumed that during the first 300 h a yellowing of the encapsulant takes place as also
observed for the other devices with a simultaneous dissolution of the red phosphor followed
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Figure 5.42: External quantum efficiency ηEQE with respect to aging time t and measurement current Im
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Figure 5.43: Change in external quantum efficiency ηEQE of the white DUT for each of the 24 investigated
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by a subsequent dissolution of the yellow-green phosphor with an onset at about 300 h [204].
Inspecting the chromaticity coordinates reveals a rather uniform blue shifting trajectory that
saturates at a certain point in time and scales with temperature and humidity but not with
current. Especially at high current conditions an intermediate green-shift becomes visible
for all but the highest climate condition. A possible origin for this behavior might be the
higher dissolution rate of the red phosphor compared to the green-yellow phosphor thus
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enhancing the green to yellow spectral content of the SPD. This behavior agrees with overall
faster dissolution rate of the red phosphor observed at the other current conditions.
Further a continuous decrease in optical power during the first few hundred hours without
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Figure 5.44: Change in CIE 1976 UCS chromaticity coordinates (top) ∆u′ and (bottom) ∆v′ of the white
DUT for each of the 24 investigated stress conditions separated by the stress current IStress: (left to right)
0 mA, 150 mA, 75 mA and 300 mA. Each plot displays the stress temperatures TStress in (blue) 65 °C and
(red) 85 °C as well as the stress humidity rHStress as (dotted line) 25 %, (dashed line) 55 % and (solid
line) 85 %.

a significant change in the CIE 1976 UCS is present. As the RGB-adjusted picture of an aged
device in the center of fig. 5.46 shows, a noticeable tarnishing of the lead-frames reflective
coating becomes apparent. Therefore, less blue light is reflected and subsequently down-
converted as also indicated by the PBR. Also the formation of encapsulant cracks above the die
at very high elevated stress conditions as shown in the right part of fig. 5.46 was registered
which agrees with an observed strong blue shift in fig. 5.45 since more direct blue light escapes
the package without being either absorbed by a yellowed encapsulant nor down-converted by
one of the phosphors.

5.5 Conclusion and Findings

This section provides an overview over the observed degradation effects and their impact on
the test subjects optical performance. Therefore, the stress types impact on the various failure
sites similar to section 3.2.4 will be highlighted subsequently.

Die Level

An initial increase in optical power accompanied by a forward voltage drop was exhibited by all
devices. This effect is definitely not a failure by definition, yet it should be taken into account
for further application designs, e.g. in luminaires, by scheduling a defined burn in or at least
tempering phase of about 100 h before operation. Since this procedure is not economically
feasible a short period high temperature tempering of 400 °C to 800 °C might address these
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ξ3 of the white DUT for each of the 24 investigated stress conditions separated by the stress current
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Figure 5.46: Visible degradation effects of the white DUT with (top) the original image and (bottom) gray
scaled image highlighting the distinct degradation effect. The following effects are shown exemplary
from left to right: DUT before aging, phosphor dissolving and lead-frame reflector tarnishing and
encapsulant cracking.

problems.
The subsequent increase in forward voltage due to diffusion related point defects was observed for
all devices. However, both the purple and horticulture white test subjects which used a parallel
die configuration experienced a larger increase due to imbalanced current flow between both
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dies resulting in a higher defect generation rate in one dies.

Interconnect Level

The ingress of moisture promoted the accumulation of copper at the bond wire attachment on
the lead-frame due to electrolysis at Cu – Au interface. As a result the forward voltage drastically
increased. Due to the increased series resistance enhanced Joule heating can further damage
the device at all levels. An additional separation layer between the copper heat slug and the
lead-frame could be a possible solution to prevent the observed copper accumulation.

Package Level

Sulfur particles containing moisture ingress enables the oxidation of the lead-frames reflective layer.
As a result less light is reflected from the bottom of the package towards the packages surface
resulting in an decrease in optical power. A decreased oxidation rate around the die attach
suggests that the application of highly adhesive and water repellent coating layer between
lead-frame and encapsulant might slow down the oxidation process.
Persistent exposure to high moisture and elevated temperatures promote to moisture absorbance
by silicone encapsulant. Due to the moisture intake the silicone swells and shear forces are
introduced into the package enabling follow-up effects:

• Detachment of the silicone from the reflective moulding cup as the induced shear forces
cancel out the silicones adhesive forces at the cups interface. This issue might be addressed
by an mechanical design adjustment in order to dissipate uprising shear forces.

• Moisture ingress triggered an Autoxidation cycle promoting in cross-linking and chain
cleavage of the silicone polymer encapsulant. A yellow discoloration of the encapsulant
was the result which lowered the overall optical power of the device.

• Both, shear forces and Autoxidation enhance the enbrittlement as well as the formation
of cracks of the silicone encapsulant. As a result a direct blue light escape path is formed
altering the overall spectral emission pattern of the device. Simultaneously, a higher level
moisture directly penetrates the packages deeper layers triggering further degradation
effects.

Moisture ingress opposes an additional threat to phosphor-converted devices since water
molecules promote phosphor dissolution by destroying the host lattices structure yielding
lower wavelength-conversion rates. This effect was especially present in the nitride based red
phosphor of the horticulture white test subject.
In general a highly transparent and water repellent coating applied to the encapsulants surface
on the packages top side should decrease the moisture ingress an thus prolong the devices
lifetime.





6 Lifetime Modeling for LED Devices

Degradation data recorded in ALT or ADT presented in section 3.1 reveal a general estimate of
the devices total lifetime or, respectively, a deeper understanding of its degradation trajectory
and the underlying physical effect of such at a certain stress level. Latter is of special interest
on the manufacturers side in terms of design improvement while on the application side often
a more generalized model for lifetime estimation based on the operation profile is desired for
e.g. predictive maintenance. Therefore, this chapter will first provide a literature overview of
common physical and stochastic lifetime modeling approaches before applying a set of suitable
models on the data collected in chapter 4 and chapter 5. Afterwards, the different modeling
results are discussed and compared to each other in order to find a "fitting" model for the given
data set.

6.1 Current State of Model- and Data-Driven Modeling Approaches

According to previous conducted literature studies on lifetime and degradation modeling [39,
352–357] three different approaches were identified: Model-Driven (MD), Data-driven (DD) and
hybrid approaches as a combination of both previous types. In scenarios with an extensive
prior knowledge about the specific DUT and its underlying degradation process a Model-Driven
approach is able to provide a physically accurate model with limited available data [352].
An outline of the most relevant empirical, physics-based models is presented in section 6.1.1.
If, in contrast, only sparse domain knowledge is available or the underlying model is of
high complexity, statistical- and Machine Learning (ML)-based DD approaches offer an useful
alternative to MD ones. Depending on the quantity and quality of available data different DD

approaches are suitable. Especially, for large data sets of high complexity Neural Network (NN)
related models state an accurate approach. Yet, often a major disadvantage of a NN is the limited
interpretability of the underlying model itself. On the other hand, stochastic processes and
regression models as subgroups of statistical-based DD approaches offer better interpretable
modeling approaches for data sets low to moderate complexity and size. A suitable selection
of statistical DD approaches is highlighted in section 6.1.2.

6.1.1 Model-based approaches: Decay and Linkage Function

In the domain of physics-based MD approaches it is distinguished between the degradation
trajectories model y(t) = fD(t|θα(S)) (decay function) at a given set of stress levels S = Si,j
with j stress levels of i types of stress and the coupling model between different stress levels
θα(S) = fL(S|θS) (linkage function). Since the values for θα(S) are determined as free fitting
parameters for each decay function separately the selection of a proper and highly accurate
decay function model is essential.

83
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Decay Functions for Modeling Degradation Trajectories

In the context of flux decay modeling methods as provided by e.g. IES TM-21 [358] an
exponential decay model is typically chosen. However, several cases of such exponential
models leading to inaccuracies have been reported [359–361]. In table 6.1 a collection of common
decay functions and their free parameters are shown with a subsequent illustration in fig. 6.1.
Regarding the free fitting parameters it should be noted that B usually denotes the initial decay
starting point, the acceleration factor α = α(S) defines the stress dependent degradation velocity
and n scales the dependent variable t. In most cases this factor is set to n = 1. Nonetheless,

Table 6.1: Continuous decay functions for modeling lumen maintenance.

Function name Decay function fD(t|θα) Free parameters θα
(a)

Linear B− αtn B, α, n

Exponential B exp [−αtn] B, α, n

Square Root B− α
√

tn B, α, n

Logarithmic B− α ln [tn] B, α, n

Inverse Sigmoid B 1
1+β exp[−αtn]

B, α, n, β

Bobashevs’ Model [359] exp [−αtn] · [B + λ (1− exp [−βtn])] B, α, β, λ, n

Baes’ Model [360] B1 exp [−α1tn] + B2 exp [−α2tn] B1, B2, α1, α2, n
(a) The scaling factor n is typically assumed to n = 1.

the first five models in table 6.1 assume a single underlying degradation mechanism while
both Bobashevs’ [359] and Bae’s [360] models are a multiplicative and respectively additive
superposition of two exponential-like models. An alternative to such model superposition
approaches is a segmented decay model also known as segmented regression introduced by
Muggeo [362] presented in fig. 6.2. This approach proposes a non-linear model following
eq. (6.1) where c is the y-axis intercept, α, β are the respective acceleration factors for each
segment, ψ is the corresponding breakpoint, H(·) is the Heaviside step function and ζ is a
noise term.

y(t) = c + αt + β(t− ψ)H(t− ψ) + ζ (6.1)

Pilgrim [363] proposes an iterative computing approach of a Taylor expansion approximating
eq. (6.1) starting from an initially guessed breakpoint ψ(0) as shown in eq. (6.2) allowing to
find a new breakpoint ψ(1). This approximation is then solvable by ordinary linear regression
algorithms. In order to cover trajectories between breakpoints which deviate from a strict linear
decay model both the independent variable t as well as the dependent variable y(t) can be
linearized by an appropriate function x′ = flin(x) such as logarithmic transformations for
exponential decay sections.

y(x) ≈ c + αx + β(x− ψ(0))H(x− ψ(0))− β(ψ− ψ(0))H(ψ− ψ(0)) + ζ (6.2)
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Figure 6.1: Examples of common continuous decay functions for modeling degradation trajectories
with different exponential scaling factors n: (solid line) n = −1, (dashed line) n = 0.5, (dash dotted line)
n = 1 and (dotted line) n = 2 .
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Figure 6.2: Segmented decay functions for modeling degradation trajectories with different number of
breakpoints Nψ: (left) Nψ = 0, (center) Nψ = 1 and (right) Nψ = 2.

Linkage Functions for (Multi-)Stress Interpolation

Yet, the above discussed decay functions often rather present a mathematical approach to
describe the observations than imply any physical meaning themselves due to their static
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stress level. By modeling the stress type- and stress level-dependent acceleration factors a more
insightful empirical, physical relationship between observations at different stress conditions
can be obtained.
So far the most common and popular model shown in eq. (6.3) was proposed by Svante
Arrhenius in 1898 [364] in order to model the rate of chemical reactions with respect to
temperature. The determining factor in the model is the activation energy Ea that is found
alongside a pre-exponential factor A as free parameters and Boltzmanns’ constant kB by e.g.
curve fitting the model onto the data. In applications with a clear describable reaction of two
chemicals Ea describes the lowest energy necessary to start the reaction at a given temperature
T. Despite multiple different temperature-dependent reactions might be occurring during a
LED ADT, the Arrhenius model still provides a suitable description of the overall acceleration
factor behavior if only temperature stress is applied to the DUT. It should be noted, that
different application-specific modifications of the original Arrhenius model exist. One of the
most common is a single temperature stress form of the later discussed General Eyring model
[356] presented in eq. (6.4).

α(T|Ea, A) = A exp
[
− Ea

kBT

]
(6.3)

α(T|Ea, A, n) = ATn exp
[
− Ea

kBT

]
(6.4)

With respect to semiconductor reliability testing in 1969 James R. Black expanded the Arrhenius
model following eq. (6.5) [365] in order to cover the effect of current-induced electromigration
processes within the semiconductor device. Therefore, the current is modeled as with an inverse
power law relation into eq. (6.3).

α(T, I|Ea, A, n) = AI−n exp
[
− Ea

kBT

]
(6.5)

With the rise of new packaging technologies for integrated circuits such as epoxy mould
packages Peck and Hallberg proposed a moisture-temperature reliability model eq. (6.6) for
AST of such devices [366]. Similar to Blacks’ model the humidity stress factor is introduced by
an inverse power law term with an exponential factor n.

α(T, rH|Ea, A, n) = A(rH)−n exp
[
− Ea

kBT

]
(6.6)

Another more general acceleration model originated from Eyring’s transition state model for
chemical reactions from 1935 [367] as the General Eyring model in eq. (6.7) [356]. A useful
property of this model is the weighting of individual stress types (ai) and temperature coupling
term bi taking the possible interdependence of different stress types into account. The model in
eq. (6.7) can further be transferred into an Arrhenius(-like) model by setting the free parameters
ai, bi≥1 = 0, b0 = − Ea

kB
. The original Arrhenius model is obtained by additionally setting n = 0.

In the context of temperature, current and humidity related AST the General Eyring model in
eq. (6.8) has been proven suitable [356].

α(T, Si|a, b) = AT−n exp

[(
a0 +

b0

T

)
+ ∑

i=1

(
ai +

bi

T

)
Si

]
(6.7)

α(T, I, rH|a, b) = AT−n exp
[
− Ea

kBT
+

(
a1 +

b1

T

)
I +

(
a2 +

b2

T

)
rH
]

(6.8)
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6.1.2 Data-driven Approaches: Statistical Methods

Depending on the DUT and stress loading applied over the course of an AST rather complex
degradation trajectories may become apparent exceeding the limits of above discussed MD

approaches. Therefore, a Gaussian Process Regression (GPR) based approach that combines
stochastic properties from Gaussian Processes with a non-stochastic regression in order to model
arbitrary functions based on small sets of observations under various auxiliary conditions.
Scenarios, which are not demand the trajectory itself but rather the probability of a device
surpassing a certain threshold level at a given time, e.g. in order to plan maintenance intervals,
time-to-failure or Remaining Useful Life (RUL) based approaches are more feasible such as
Survival Analysis that even cover missing (censored) events.

Gaussian Process Regression

Originating from a background in geostatistics for interpolating the spacial distribution of
ground metal deposits for mining applications the GPR [368] — also known as Kriging [369] —
is utilized in a variety of disciplines from geosciences [370–372] or social science [373, 374] to
the context of reliability testing, modeling and RUL prediction [375–387]. An example of such a
GPR is shown in fig. 6.3.
For correlated observations, such as spacial and/or temporal measurements, a GPR GP presents
an useful approach to model the underlying second-order stochastic process y(x) = f (x) + ε

with the regression model f (x) ∼ GP(m(x), k(x, x′)) : Rn → R, (x, x′) ∈ Rn and an additive,
normally distributed noise component ε ∼ N (0, σ). Here m(x) is the models mean function
and k(x, x′) its covariance (also denoted as kernel) function with the independent variables x =

[t, T, I, rH] in the context of this work. Since the covariance function explains the relationship
of the observations features x and x′ selecting the proper mathematical description of this very
is essential for the interpolation and prediction accuracy of the GPR. Commonly a Radial Basis
Function (RBF) kernel defined in eq. (6.9) is used for modeling degradation trajectories with a
scaling factor η and the length scale ` as hyperparameters θ.

k(x, x′|θ) = η exp
[
−‖x− x′‖2

2`2

]
(6.9)

For training the GPR is assumed as a Bayesian inference problem. Thus, before training the
covariance function is placed as a prior over all possible functions meeting the observations.
Subsequently, the inferred posterior of this Gaussian process is again a Gaussian Process
allowing to analytical compute an estimate for θ = θ̂ with standard gradient based opti-
mization algorithms. As the GPR not only estimates the underlying function to interpolate
between observations but also models this very variance the GPR provides an alternative to
conventional (non-)linear regression methods for applications prone to elevated noise levels
as well as functions with highly non-linear and non-monotonous properties. Yet, it should be
considered that at high dimensional x and/or large dimensions of each independent variable
the computational complexity of k(x, x′) increases exponentially.

Survival Analysis

From an application point of view rather an estimate on the RUL with regard to stress S
induced by the operating conditions than an actual degradation trajectory is of interest. For
such RUL-based prognostics estimating the time of failure (e.g. L70) is crucial. But there are
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Figure 6.3: Example of a Gaussian Process Regression: (gray line) true observations, (green line) true
decay mean function, (solid red line) mean function estimated by GPR and (dashed red lines) 95 %
confidence interval of the GPR estimate.

two major challenges with regard to standard AST: covering all possible operating conditions
and extending the testing period until a failure event occurs. Both are unfeasible from an
economical and practical point of view. Originating from an statistical analysis approach
in medical research the non-parametric, statistical approach of Survival Analysis has found
application in various disciplines like engineering (Reliability Analysis) or Social Sciences
(Event History Analysis) [388–390]. A key feature of Survival Analysis is the computationally
lightweight approximation of a failure time distribution for new stress conditions and missing
(censored) event occurrences.
Within the context of Survival Analysis the probability of a subjects survival after the time
T is given by the survival function S(t) = P(T > t). Concurrently, the hazard function h(t)
denotes the chance of the event occurring during the time interval [t; ∆t] following eq. (6.10).
Integrating the hazard h(t) subsequently results the total amount of event occurrences at a time
t given by the cumulative hazard function H(t) =

∫ t
0 h(t)dt. An example of these probability

functions is shown in fig. 6.4.

h(t) = lim
∆t→∞

P(t ≤ T < ∆t|T ≥ t)
∆t

≥ 0 (6.10)

Given a set data points and no external factors both Kaplan-Meier [391] and Nelson-Aalen [392,
393] estimators provide a good approximation on the survival function Ŝ(t) ≈ S(t) and the
cumulative hazard function Ĥ(t) ≈ H(t) shown below in equations eq. (6.11) and eq. (6.12)
respectively. The number DUT subjected to an event at a specific time Ti denoted by di whilst
the number subjects surviving past Ti are given by ni.

ŜKM(t) = ∏
Ti≤t

(
1− di

ni

)
(6.11)

ĤNA(t) = ∑
Ti≤t

(
di

ni

)
(6.12)

As previous hinted, often exogenous factors influence affect the probability of survival in a
specific manner. Covering such rater complex scenarios David R. Cox introduced the Cox
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Proportional Hazard (CPH) model [394] as a regression method for estimating the h(t) presented
in eq. (6.13) with the baseline hazard h0(t) and a free parameter vector β = {β0, .., βi} where i
is e.g. the number of stress types i = dim(Si).

h(t|S) = h0(t) exp [β · S] (6.13)

600 800 1000

Time t (h)

0.000

0.002

0.004

0.006

0.008

0.010

P
ro

b
a

b
il

it
y

d
en

si
ty

Probability density function

f(t|µ, σ2) ∼ N (µ, σ2)

600 800 1000

Time t (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
ro

b
a

b
il

it
y
p
(t

)

Hazard function

h(t|µ, σ2) =
∫
f(t|µ, σ2)dt

600 800 1000

Time t (h)

Survival function

S(t|µ, σ2) = 1− h(t|µ, σ2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o

u
n

ts

Figure 6.4: Examples of time-to-event observations and their underlying distributions: (blue) true
distribution, (red) estimated distribution. Each idstribution is presented as (left) prbability density
function, (center) hazard function and (right) survival funtion with the corresponding observations
denoted as vertical lines.

6.2 Experiment - Lifetime Modeling

Based on the discussed MD and DD approaches in section 6.1 this section derives two research
questions on which subsequently a lifetime modeling experiment is presented.

6.2.1 Research questions

As stated before, the common lifetime modeling approach following the IES TM-21 [358]
methodology is prone to inaccuracies in Lx-prediction due to incorrectly specified decay
functions as well as neglecting potentially important stress parameters while simply applying
an Arrhenius model linkage function. Even though the stochastic LxBy provided by EN 62717
[395] provides a better insight on the failure probability By at a certain failure threshold level
Lx this approach still requires a proper decay function for stochastic modeling. Therefore the
above listed research question are derived:

Q4: Which combination of decay and linkage functions are suitable for modeling the obtained
ADT data?

Q5: Are Gaussian Process Regression and Survival Analysis potential alternative Data-driven
approaches to common methodologies for modeling the life- and failure-time of a LED?
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6.2.2 Experimental Design

Following the experimental design for the different presented modeling approaches are high-
lighted. Starting from MD to DD approaches to presenting suitable model evaluation metrics
as well as the models implementation. As a preliminary step to the degradation trajectory
process the measurement data are averaged for all DUT of a certain stress condition at each
measurement time similar to the procedure recommended in IES TM-21. Further, it is sug-
gested by IES TM-21 to dismiss the initial lumen increase data in order to start from the actual
maximum lumen maintenance value. This suggestion was incorporated by fitting two data sets:
one starting at t = 0 h and one at t(max {y(t)}).
All models are implemented and computed on a desktop computer (Intel i5-8600K, 32GB
RAM) in the Python programming language (v3.11.4) with the following key packages numpy
v1.24.3 [396], pymc v5.6.1 [397], scikit-learn v1.2.2 [398], piecewise-regression v1.3.0 [363]
and scikit-survival v0.21.0 [399]. The key parameters of different models are described in the
following subsections.

Performance Metric

In the realm of curve fitting the coefficient of determination R2 is typically considered as a
proper goodness of fit metric. However, when comparing different curve fitting models with a
varying number of free parameters θ the R2 metric does not take these very into account thus
R2 should not be used for model selection tasks. A more suitable metric for model selection
is the Bayesian Information Criterion (BIC) which takes the amount of samples as well the
number of free parameters into account as shown in eq. (6.14). Here k denotes the number
of free parameters, n the number of samples and L̂ = P(y(t)|θ̂) is the likelihood of value for
the given model. Comparing two models, the model yielding a lower BIC is assumed to be the
more suitable model.

BIC = k · ln(n)− 2 ln(L̂) (6.14)

Decay and Linkage Function

The first part of this experiment covers the MD approach by curve fitting a decay and linkage
model onto the degradation data collected in chapter 4 by following the steps listed below.
It should be noted that the curve fit for the continuous decay and linkage functions is not
performed by a common least-squares method as recommended by IES TM-21 instead the
Differential Evolution algorithm [400] is used as a global optimizer since it produces results of
higher accuracy for the given objective.

1. Continuous Decay Function: The decay functions displayed in table 6.1 or curve fitted
on the data. Since, the exponential scaling factor n is often neglected, each model is
fitted once with a fixed n = 1 and once with a varying n. Similarly, two distinct curve
fits are performed with and without the initial lumen increase start at t = 0 h and at
t(max {y(t)}) respectively. In total, a set of 20736 curve fits were performed at four LED

types, nine measurement currents, 24 stress conditions, six decay functions and four
scaling / starting combinations.

2. Segmented Decay Function: As the first section of this chapter elaborates a preliminary
linearization of either t, y(t) or even both can be feasible to enhance the accuracy
of this approach. Therefore, the following seven linearization functions were applied
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x′ = f (x) : f (x) =
{

x, ln(x), log2(x), log10(x), x2, x3,
√

x, 3
√

x
}

. These functions were
permuted among t and y(t). Further, functions with up to three breakpoints ψi : i ∈ [0, 3]
were evaluated as well as data with and without the initial lumen increase. In total,
a number 338688 regressions were performed for four LED types, nine measurement
currents, 24 stress conditions, up to three breakpoints, seven t-linearizations, seven
y(t)-linearizations and two starting points.

3. Linkage Function: Finally, the acceleration factors of a selection of the ten most accurate
continuous and segmented decay models each are modeled onto the linkage functions
shown in eq. (6.3) - eq. (6.8). Apart from the General Eyring model in eq. (6.8) the
data are split according to the models required stress level in order to assume steady
stress levels for each stress type not covered by the respective linkage model. For this
experimental part in sum 11520 models are evaluated for four LED, (5+5) decay models,
nine measurement currents and 32 data splits for five linkage models.

Gaussian Process Regression Model

The applied GPR follows a zero knowledge approach with no prior insight on the underlying
mean function thus setting m(x) = 0 and utilizing a RBF covariance function resulting in the
GPR model described by eq. (6.15) with the multi-feature covariance function in eq. (6.16).
Subsequently, five hyperparameters θ = [`1, `2, `3, `4, η] result from large set of different input
parameters x = [t, T, I, rH].

f (x) = GP
(
0, k(x, x′, θ)

)
+ ε (6.15)

k(x, x′, θ) = η2 · kt(t, t′, `1) · kT(T, T′, `2) · k I(I, I′, `3) · krH(rH, rH′, `4) (6.16)

By further following the zero knowledge approach uniform priors U (a, b) are selected for the
length scales `i and η as well as a broad positive half-normal distribution N+(µ, σ) to address
the process noise ε as shown below. The final hyperparameter tuning is performed by the
L-BFGS-B algorithm [401] in order to find the maximum a posteriori point.

`1 ∼ U (0, 20000), `2 ∼ U (0, 1000), `3 ∼ U (0, 10000),

`4 ∼ U (0, 1000), η ∼ U (0, 500), σ ∼ N+(0, 10)

As a result this experiment generates 36 models for 4 LED types at 9 measurement currents.

Survival Analysis

As a first step for this experimental part the correct event times Ti(y = Lx) have to be evaluated
if an event occurred. Therefore, if a DUT surpassed the Lx threshold the Ti is evaluated
by linear interpolation between the two nearest measurement points around the threshold
y(t−) : t− = argmaxt {y(t) < Lx} and y(t+) : t+ = argmint {y(t) > Lx} otherwise the event
is right-censored and the last measurement time Ti = max {t} is noted. Next, the hazard
function alongside with its coefficients β is determined by the CPH model. By then increasing
the failure threshold towards a maximum threshold value Lx → max {Lx} an inside regarding
the influence of each stress type a given degradation stage can be obtained alongside with the
failure time distribution.
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6.3 Results and Model Comparison

The results obtained from the lifetime modeling according to the above elaborated experimental
steps are presented and discussed over the course of this section. Concluding a comparison of
the different modeling approaches is given.

6.3.1 Continuous Decay Functions

The first experimental part investigated the suitability of different continuous decay functions
presented in table 6.1. The results of the best three models for each device type as well as the
common exponential approach for comparison are highlighted in table 6.2. Each model has
been curve fitted on every measurement belonging to a device type. The BIC has then been
averaged to provide an overview on the average model performance. Aside from the mean also
the median, standard deviation as well as observed minimum and maximum BIC are presented
to get further inside into the variance of each models results.

Table 6.2: Model fitting results of the three best continuous decay functions of each DUT by means of
their BIC and the results of standard exponential curve fit approach as a baseline.

DUT fD(t) tStart n
BIC (a.u.)

Mean Median Std Min Max

Blue

Bae ymax Vary -177.5 -170.2 86.3 -351.7 -35.0

Bae t0 Vary -176.1 -163.8 88.8 -345.2 -37.4

IS t0 Vary -175.5 -150.8 102.3 -360.6 -31.4

Exp t0 Fix -38.7 -42.2 24.0 -84.3 -3.9

Lime

IS t0 Vary -173.3 -182.9 106.3 -409.9 -17.6

IS ymax Vary -163.7 -157.6 104.4 -399.0 -17.6

Bae t0 Vary -148.0 -122.9 82.8 -416.7 -38.2

Exp t0 Fix -34.6 -37.8 15.8 -70.7 -6.0

Purple

IS t0 Vary -226.9 -224.9 142.5 -441.5 -12.8

Bae t0 Vary -225.5 -245.8 129.4 -441.6 -48.5

IS ymax Vary -220.1 -215.9 138.4 -435.7 -20.4

Exp t0 Fix -43.5 -41.8 22.9 -82.7 -3.5

Horticulture
White

IS ymax Vary -222.5 -210.6 102.6 -421.7 -67.2

IS t0 Vary -222.0 -202.2 102.7 -427.0 -67.2

Bae ymax Fix -199.0 -157.9 103.2 -374.8 -57.8

Exp t0 Fix -39.7 -40.3 15.9 -71.4 -18.2

IS: Inverse Sigmoid model, Exp: Exponential model.
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Analyzing the results two conclusions can be drawn: Firstly, for all devices the decay model
presented by Bae et al. [360] and the Inverse Sigmoidal model yielded consistently the highest
results. Especially varying the exponential time scaling parameter n improves the overall results
as also demonstrated by van Driel et al. [361]. Secondly, compared to the typical exponential
approach both models yield a substantial higher model performance. This behavior was
consistent also for the Logarithmic, Square-root and Linear models. Considering both sets of
models, it becomes apparent that the former set provides a non-monotonous decay rate while
the latter exhibits a monotonous one. However, the measured data exhibit a certain change in
degradation rate due to multiple underlying degradation effects as discussed in the in chapter 5.
This distinct behavior can be modeled by a superposition of multiple decay functions, such as
provided in the model by Bae et al. [360]. The Inverse Sigmoid model on the other hand shows
good results since it sufficiently models the slow onset of the decay in combination with a steep
decay transitioning into a steady state as the measurements of the Horticulture White device
suggests. Generally, also the model presented by Bobashev et al. [359] was expected to yield
promising results, however, the majority of curve fits yielded a fitting error due to a maximum
of 100.000 fit iterations reached or at least very poor BIC values. The reason for this behavior is
assumed to be found in the models intention of primarily modeling the initial flux increase
rather than a subsequent change in degradation trajectory after the onset of the main decay.
Further, all top ranging models exhibit a rather large standard deviation. This behavior results
from a huge variation in the number of provided data points for each measurement conditions
since especially at highly elevated stress levels a rapid degradation was observed such that
only a limited number of data points were generated.

6.3.2 Segmented Decay Functions

The results for the second experimental part regarding the segmented decay function approach
are presented in table 6.3 and table 6.4. Similar to the previous analysis the BIC results are
averaged and a statistic of each models performance on a respective device is given. Since the
number of breakpoints is crucial for the models performance on the given data, both tables
provide an overview on the top three models for 0, 1 and 2 breakpoints ψ for each device.
It first stands out, that the majority of the presented results yield higher BIC values than the
before discussed continuous models. This behavior was well expected, since the segmented
approach aims on modeling distinct curve sections rather than the whole function. In addition,
the data were beforehand linearized in order to further improve the curve fitting results.
Subsequently, an expected increase in performance with with increasing number of breakpoints
Nψ has been observed over the range of all devices.
Next, the linearization terms are inspected, since these may provide a link to underlying degra-
dation effects. As for the time scale, t′ = t2 and t′ =

√
t are well represented in a majority of

cases while the normalized optical power is mainly scaled by y′ = 3
√

y. Due to moisture as the
main contributor to the degradation of the LED package, two relations can be found: The mass
exchange during the diffusion process given by eq. (3.6) has a

√
t-dependency hinting towards

the observed moisture diffusion into the encapsulant. The moisture ingress again promoted
hydroscopic swelling of the encapsulant and therefore shear forces along the reflector cup to
encapsulant interface. Assuming the detachment rate and thus the normalized optical power
proportional to the moisture ingress induced shear forces along the encapsulants interface
a similar shear force behavior was observed by Shiue et al. [402] at a glass fiber to polymer
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coating interface. However, the quadratic and logarithmic time dependency could not be linked
to a specific physical effect.

Table 6.3: Model fitting results of the three best segmented decay functions of the blue and lime DUT by
means of their BIC with respect to the number of breakpoints Nψ.

DUT Nψ t′ y′ tStart
BIC (a.u.)

Mean Median Std Min Max

Blue

0
t2 3

√
y t0 -229.4 -233.6 114.6 -414.0 -97.0

log2(t) 3
√

y t0 -228.3 -223.0 112.7 -406.5 -76.3

ln(t) 3
√

y t0 -228.3 -223.0 112.7 -406.5 -76.3

1
t2 3

√
y t0 -246.6 -238.3 118.8 -447.1 -108.7

3
√

t 3
√

y t0 -238.9 -228.1 121.7 -415.1 -70.1

log2(t) 3
√

y t0 -238.4 -233.6 123.5 -421.5 -71.8

2

3
√

t log10(y) t0 -260.6 -255.5 112.9 -413.1 -88.0
√

t log10(y) t0 -259.8 -253.7 115.4 -416.8 -84.3
√

t 3
√

y t0 -259.2 -257.2 124.3 -442.5 -92.7

Lime

0
t2 3

√
y t0 -213.1 -216.0 97.6 -428.0 -85.2

t2 log10(y) t0 -198.5 -201.1 95.9 -408.7 -64.7

t2 √
y t0 -198.0 -200.6 90.7 -398.0 -80.5

1
t2 3

√
y t0 -234.2 -227.0 108.8 -473.4 -86.8

log10(t) 3
√

y t0 -233.4 -230.4 114.9 -441.8 -73.6

log2(t) 3
√

y t0 -233.2 -230.4 114.8 -441.8 -73.6

2

√
t 3

√
y t0 -251.6 -246.0 121.4 -512.7 -80.4

log2(t) 3
√

y t0 -250.8 -243.2 120.1 -478.6 -71.6

t3 3
√

y t0 -244.9 -250.2 104.3 -465.3 -83.0

6.3.3 Linkage Functions

In the next step of the experiment various linkage functions were analyzed with respect to
both the continuous and segmented decay functions. In the following the focus will be set on
the Eyring linkage model, since it incorporates all three available stress variables and should
thus be most suitable as a comprehensive model for each decay functions free parameters. In
contrast, a further linkage model between each specific one- or two-parameter linkage model
would need to be set up which is from a computational and usability point of view not feasible.
The Eyring linkage models results are presented in table 6.5, table 6.6 and table 6.7.
Taking the continuous model’s linkage function given in table 6.5 into account, a relatively
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Table 6.4: Model fitting results of the three best segmented decay functions of the purple and horticulture
white DUT by means of their BIC with respect to the number of breakpoints Nψ.

DUT Nψ t′ y′ tStart
BIC (a.u.)

Mean Median Std Min Max

Purple

0
t2 3

√
y t0 -272.4 -259.3 144.8 -552.8 -66.3

√
t 3

√
y t0 -265.0 -271.8 157.9 -530.4 -39.4

3
√

t 3
√

y t0 -260.6 -261.8 153.8 -517.6 -35.7

1

√
t 3

√
y t0 -296.2 -339.4 155.0 -545.5 -83.7

log2(t) 3
√

y t0 -293.0 -308.0 163.8 -576.0 -75.4

log10(t) 3
√

y t0 -292.6 -308.0 164.2 -576.0 -75.4

2
log2(t) 3

√
y t0 -306.7 -333.5 169.8 -597.1 -71.2

√
t 3

√
y t0 -304.4 -339.3 165.1 -578.3 -79.3

t3 3
√

y t0 -300.4 -316.8 151.0 -566.4 -81.3

Horticulture
White

0

√
t 3

√
y t0 -239.2 -237.2 113.3 -459.5 -77.5

t2 3
√

y t0 -238.0 -223.8 101.2 -433.3 -104.7
3
√

t 3
√

y t0 -232.4 -226.1 108.1 -431.7 -70.3

1

√
t 3

√
y t0 -271.6 -248.6 121.7 -487.3 -104.2

3
√

t 3
√

y t0 -269.1 -249.0 122.0 -479.0 -103.1

t2 3
√

y t0 -265.5 -245.8 113.6 -474.2 -106.2

2

√
t 3

√
y t0 -279.5 -253.6 126.9 -519.4 -101.1

t2 3
√

y t0 -278.1 -252.4 121.6 -499.3 -102.6
3
√

t 3
√

y t0 -276.4 -250.9 126.4 -508.4 -101.1

poor performance in terms of BIC is noticeable. Especially for Baes’ model a huge variation for
α̂1 and α̂2 was determined. This behavior resulted from the fitting process since either the each
part of the models equation was used to model a specific part of the data like e.g. the initial
flux increase. Subsequently, an approach with restricted ranges of the free parameters was
tested but with a similar result. As for the Exponential base line model a comparative good
performance was yielded since here no concurring parameters were present and α̂ is expected
to have monotonous behavior that fits the Eyring model in contrast to Baes’ model and the
Inverse Sigmoid model. Yet, as shown in fig. 6.5, while performing reasonable good on the
given training data the proposed Eyring linkage model performs very poorly on the provided
test data on the top three decay functions as shown in the right plot of fig. 6.5. In this case it
was possible only to calculate the Exponential and one of Baes’ models due to floating point
number overflows generated by the other two models.
Considering the results of the segmented decay function in table 6.6 and table 6.7 it is noticeable,
that the majority of results are suitable for a linkage fit. This behavior was well expected as
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Table 6.5: Results of the Eyring linkage model curve fit for each free parameter of the continuous decay
functions for all DUT by means of their BIC.

DUT fL(t) tStart n
BIC (a.u.)

α̂ α̂1 α̂2 β̂ n̂

Blue

Bae t0 Vary - 30.3 380.8 - 7.9

Bae ymax Vary - -27.4 329.3 - -1.7

IS t0 Vary 135.4 - - -45.1 -2.0

Exp t0 Fix -19.9 - - - -

Lime

Bae t0 Vary - 85.6 378.8 - -16.2

IS t0 Vary 138.4 - - -58.5 6.1

IS ymax Vary 138.3 - - -45.0 -22.6

Exp t0 Fix 29.1 - - - -

Purple

Bae t0 Vary - 100.7 372.2 - -10.9

IS t0 Vary 131.8 - - -62.4 -16.8

IS ymax Vary 159.2 - - -43.5 -1.0

Exp t0 Fix 39.6 - - - -

Horticulture
White

Bae ymax Fix - 51.5 342.3 - -

IS t0 Vary 123.5 - - -96.5 -23.2

IS ymax Vary 118.0 - - -58.3 -41.1

Exp t0 Fix -11.2 - - - -

each function segments free parameters represent a separate monotonous function. In this
regard the effect of the previous linearization benefits the models performance especially at
Nψ = 0 for the blue, purple and white DUT. Here, additional segments can be waived while
still resulting in a good BIC score thus making the segmented decay model especially suitable
in combination with an Eyring linkage model. However, in cases with multiple changes in
degradation slope the computational effort for the segmented model increases rapidly, since
each free parameter requires a separate linkage model.

6.3.4 Gaussian Process Regression

Next, a DD-approach is considered by applying a GPR to the measured data yielding a combined
decay and linkage model. The results are shown in table 6.8. In terms of BIC, the yielded scores
improved by about two magnitudes compared to those of the before evaluated decay and
linkage models. Since a GPR is able to approximate arbitrarily non-monotonous and non-steady
functions this result was expected. However, in this regard it is important to consider the
models variance in order to get an estimate on the model’s confidence as exemplary shown in
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Figure 6.5: Top three continuous decay functions as well as the exponential decay function fitted with
the Eyring linkage model: (Left) fitting result for the blue DUT trained at T = 65 °C, I = 300 mA and
rH = 55 %, (right) the result of the interpolated stress values T = 75 °C, I = 300 mA and rH = 55 % of
the blue DUT. The model’s estimate is denoted as a red lines for the following decay functions: (solid)
BAE’s model starting at maximum, (short dashed) BAE’s model starting at 0, (long dashed) exponential
and (dotted) Inverse Sigmoid.

fig. 6.6. It can be seen that the variance increases exponentially towards the training intervals
end due to the RBF kernel exponential properties. In comparison to the previous discussed
models, the GPR performs reasonable well on the stress level interpolation presented in a set of
test data in the right plot of fig. 6.6. Despite the models mean functions accuracy, the confidence
is rather poorly since even the 1σ confidence intervals are way outside of the plots boundaries.
Two things might improve this behavior: due to the devices highly accelerated degradation
at elevated temperatures, only few data were available at these conditions. Since, the time
resolution at high stress levels is difficult to achieve in order to avoid stress cycling due to too
short test and measurement periods, it is more appropriate to test at more temperature levels.
This, however, comes at the cost increased total experimental time. Secondly, adjusting the
kernel function might improve the models confidence and accuracy.

6.3.5 Survival Analysis

As the last model the CPH survival model is evaluated. This model, however, does not ap-
proximate the degradation function, but rather estimates the time until a certain degrada-
tion level is reached. Here, one distinct CPH model was evaluated for every NOP step from
Lx = NOP ∈ [0.7, 1]. The resulting mean survival time for each step is presented in fig. 6.7
exemplary for the blue DUT at for a training an test condition. The training condition shows a
reasonable estimation of the underlying mean function that somehow deviates in the early and
late degradation phase. Since only five devices were measured at this condition the inter-sample
degradation variance affects the accuracy of the estimate. This behavior is specifically present
during the initial flux increase, while it consolidates with progressing aging time before becom-
ing vastly present towards the measurement series end as a result of increasing variation in the
tested devices trajectories. Regarding the CPH models stress level interpolation capabilities this
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Table 6.6: Results of the Eyring linkage model curve fit for each free parameter of the to segmented
decay functions of the blue, lime and purple DUT by means of their BIC and with respect to the number
of breakpoints Nψ.

DUT Nψ t′ y′ tStart
BIC (a.u.)

α̂ β̂1 β̂2 ψ̂1 ψ̂1 ĉ

Blue

0
ln(t) 3

√
y t0 -132.6 - - - - -76.6

log2(t) 3
√

y t0 -165.4 - - - - -76.9

t2 3
√

y t0 94.1 - - - - -29.5

1
log2(t) 3

√
y t0 -174.3 -105.4 - 20.5 - -80.9

3
√

t 3
√

y t0 -70.9 -19.8 - -27.0 - -17.6

t2 3
√

y t0 89.2 79.1 - -46.9 - -212.5

2

3
√

t log10(y) t0 -98.8 -35.9 -17.3 -44.0 -22.9 -185.0
√

t log10(y) t0 -38.2 -16.6 -31.3 -41.5 -25.7 -122.7
√

t 3
√

y t0 -56.6 -28.5 -23.7 -32.2 -25.8 -154.7

Lime

0
t2 log10(y) t0 72.7 - - - - -136.5

t2 3
√

y t0 41.0 - - - - -29.5

t2 √
y t0 43.8 - - - - -29.5

1
log10(t) 3

√
y t0 -141.2 -35.4 - -56.3 - -32.7

log2(t) 3
√

y t0 -184.4 -78.6 - -13.7 - -119.4

t2 3
√

y t0 26.3 72.2 - -15.7 - -24.9

2
log2(t) 3

√
y t0 -191.0 -111.9 -70.9 -37.9 -4.4 -18.8

√
t 3

√
y t0 -87.0 -6.6 21.1 -63.1 -47.4 -28.9

t3 3
√

y t0 152.1 143.4 124.7 -41.6 -5.9 -182.4

Purple

0

3
√

t 3
√

y t0 -69.7 - - - - -141.8
√

t 3
√

y t0 -31.4 - - - - -114.8

t2 3
√

y t0 79.0 - - - - -180.6

1
log10(t) 3

√
y t0 -168.0 -54.7 - -53.5 - -161.0

log2(t) 3
√

y t0 -208.7 -94.8 - -12.4 - -162.8
√

t 3
√

y t0 -91.7 -20.1 - -42.2 - -17.7

2
log2(t) 3

√
y t0 -190.7 -73.4 -61.2 -11.2 -1.6 -138.1

√
t 3

√
y t0 -85.0 -1.1 8.9 -43.5 -38.4 -178.3

t3 3
√

y t0 177.6 177.1 92.6 -67.8 40.8 -201.0
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Table 6.7: Model fitting results of the three best segmented decay functions of the horticulture white
DUT by means of their BIC with respect to the number of breakpoints Nψ.

DUT Nψ t′ y′ tStart
BIC (a.u.)

α̂ β̂1 β̂2 ψ̂1 ψ̂1 ĉ

Horticulture
White

0

3
√

t 3
√

y t0 -69.2 - - - - -133.8
√

t 3
√

y t0 -58.5 - - - - -32.8

t2 3
√

y t0 10.5 - - - - -207.9

1

3
√

t 3
√

y t0 -147.9 -62.2 - -73.4 - -227.6
√

t 3
√

y t0 -127.0 -68.4 - -60.7 - -240.6

t2 3
√

y t0 -11.7 13.8 - -47.3 - -33.0

2

3
√

t 3
√

y t0 -158.7 -67.7 -39.8 -89.2 -60.0 -258.1
√

t 3
√

y t0 -123.2 -82.5 -57.5 -51.3 -37.9 -244.0

t2 3
√

y t0 41.0 -0.7 26.7 -70.1 0.6 -32.9

Table 6.8: Results of the GPR model for different devices under test by means of their BIC and the models
mean standard deviation σ̄.

DUT BIC σ̄

Blue -18680.3 0.027

Lime -17852.2 0.025

Purple -15332.3 0.053

Horticulture White -20501.8 0.018

model shows reasonable good results on the test data for higher aging times. This behavior
was well expected, since the model relies on a sufficient number of event occurrences in order
to provide an accurate estimate.

6.3.6 Model Comparison

By comparing the above presented and discussed results of the different models the following
conclusions can be drawn:

• Continuous decay functions with a monotonous decay rate provide a rough estimate of
the degradation trajectory but lack in scenarios with varying decay rates.

• Continuous decay functions with a non-monotonous decay rate offer a higher flexibility
at the cost of higher computational complexity. An additional disadvantage of these
functions is a rather difficult linkage between different stress levels since these physics-
based linkage models assume a monotonous decay rate.
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Figure 6.6: (Left) The GPR fitting result for the blue DUT trained at T = 65 °C, I = 300 mA and rH = 55 %,
(right) the GPR result of the interpolated stress values T = 75 °C, I = 300 mA and rH = 55 % of the blue
DUT. The models estimate is denoted as a red line.
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Figure 6.7: Estimation of the degradation trajectory by a CPH survival model evaluated at each Lx ≤ 0.7:
(Left) result for the blue DUT trained at T = 65 °C, I = 300 mA and rH = 55 %, (right) the result of the
interpolated stress values T = 75 °C, I = 300 mA and rH = 55 % of the blue DUT. The models estimate
is denoted as a red line.

• A segmented decay function addresses the disadvantages of both before mentioned
models at a cost of higher computational complexity since every free parameter has to be
modeled individually.

• All previously discussed linkage models assume a monotonous acceleration regardless of
the accepted stress parameters and their levels. The models, however, tend to produce
inaccurate results in scenarios with a non-monotonic relationship between a stress level
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and the resulting acceleration as present in the humidity influence on the investigated
devices of this work.

• A Properly trained GPR model provides a comparatively high accuracy for moderate
extrapolation rates even for small sample populations. However, this type of models
exhibit a large computational complexity at increasing data set size accompanied by its
lack of physical meaning.

• A CPH survival model provides an lightweight computable approach in scenarios with
missing or censored data points. However, this modeling approach is subjected to accuracy
drawbacks for small sample populations.





7 Conclusion and Future Work

Over the course of this thesis the impact of operational and environmental stress at 24 different
(rHA, TA, IF)-conditions on 480 commercial available LED devices of four different types
was investigated. Therefore, the devices were subjected to an Accelerated Degradation Test
and measured periodically with respect to their optical, electrical and thermal characteristics.
Subsequently, an in-depth analysis was carried out in order to identify and differentiate between
various degradation effects and failure sites starting from the LED die over its interconnect to
the package’s optical material along the light extraction path. Then, as a final step the previous
obtained degradation trajectories of the devices optical power were modeled according with
different approaches to obtain an total lifetime estimate of the devices at certain stress levels.
The overall findings will be highlighted in the following with respect to the proposed research
questions section 4.1 and section 6.2.

Q1: How is moisture from the environmental surrounding impacting the optical performance of a LED

device (for horticulture applications) with respect to different phosphor types?
Given the investigated LED devices, multiple moisture ingress related impairments on the
devices optical performance were identified. All devices exhibited distinct swelling due
to moisture uptake of the silicone encapsulant varying with humidity and temperature
level. Especially highly elevated environmental conditions promoted this behavior. As a
result from this swelling, shear forces were introduced into the silicone interfacing layers
causing the encapsulant to detach from the packages reflector cup enabling moisture
creepage along these generated cavities into the packages inner parts. At this stage,
the lead-frames reflective layer was exposed to sulfur-containing moisture triggering
a tarnishing of this very thus reducing the overall reflected light from the packages
bottom. Simultaneously, the encapsulant underwent an autoxidation cycle causing the
silicone polymer chains to link and cleave which lead to enbrittlement of the encapsulant.
This effect appeared as a yellow discoloration in the early stages and resulted in distinct
cracking with prolonged exposure. In addition, the three phosphor-converted device types
presented an increasing dissolution of the phosphor particles with progressing aging
causing the spectral properties of the device to change significantly. In particular, the
green phosphor compound used in the lime device and the white devices red phosphor
compound were prone to an increased dissolution rate.
On the interconnects site, moisture ingress induced electrolysis effects at the Cu – Au
lead-frame to bond-wire attachment decreasing the conductivity and thus yielding a
substantial higher forward voltage of the device. This effect however, has only been
observed under moderate humidity and high temperature conditions. However, the
origin of this observed effect requires further investigation surpassing the scope of this
work.
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Q2: If and how are devices under storage conditions (IF = 0) affected by moisture ingress?
Since the above autoxidation cycle depends on temperature and moisture content a
significant degradation was also observed under storage conditions. In some scenarios
the degradation was even higher that at operating conditions. A reason for this behavior
might be due to the die acting as an additional heat source under operating conditions
decreasing the rate of moisture diffusion into the silicone as long as the encapsulant has
not been substantially damaged. Thus, the investigated LED devices should be stored in a
dry and moderately tempered environment.

Q3: Which of the three common stress factors – electrical current, temperature or humidity – is the
main contributor to the devices degradation?
As the theoretical background presented section 3.2, the interaction between a given
stress parameter and temperature determines the effects severance. In this context, the
temperature often acts as an accelerator on a given effect or reaction like diffusion for
example. Results obtained from the conducted ADT verify this theoretical background.
For the investigated devices, especially the combination of elevated temperature and
moisture levels presented an significant effect on the devices performance. As a root
cause the selection of package materials in combination with the PLCC package structure
is suspected.

Q4: Which combination of decay and linkage functions are suitable for modeling the obtained ADT

data?
With respect to the observed degradation trajectories exhibiting at least two distinct
underlying time-dependent effects, decay functions with varying decay rate were expected
to outperform their static decay rate counterparts. Among the investigated continuous
decay functions especially the Inverse Sigmoid and the model proposed by Bae et al.
presented significantly more accurate results compared to e.g. the standard Exponential
model proposed by IES TM-21. Both models, however, have the downside of no control
over the exact transition point between the underlying degradation effects acceleration
rates. In this regard, the segmented decay model following the partial regression approach
by Muggeo proved to be substantially more accurate than the continuous models since it
provides sufficient control over the acceleration rate’s transition points.
Among the different investigated linkage functions the Eyring model has proven to
be the most suitable on the given multi-stress data. Given the fact, that none of the
other proposed models takes all three stress variables into account this result was
somewhat expected. Further, the proposed physics-based models assume a monotonic
behavior of the acceleration factor since they assume a higher reaction or degradation
rate with increasing stress levels. However, due to currents observed non-monotonic
impact at moderate current levels, static decay rate-based models will be subjected to
significant accuracy drawbacks. The segmented decay models on the other hand showed
an acceptable to good accuracy at a disadvantage of requiring one linkage model for each
acceleration factor and thus increasing the computational complexity.

Q5: Are Gaussian Process Regression and Survival Analysis potential alternative Data-driven ap-
proaches to common methodologies for modeling the degradation and failure-time of a LED?
Given the relative small number of evaluated samples for each condition alongside the
large number of test conditions especially a GPR yields extraordinary results in terms of
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interpolating between stress conditions compared to MD-based approaches. However, at
large time extrapolation distances its accuracy decreases exponentially. In addition, its
computational complexity increases drastically with the number of dependent variables
and observations. In cases were only the time-to-failure is required, especially under the
presence of right censored data, the application of a CPH model based Survival Analysis
offers a computational lightweight alternative with a reasonable accuracy and should
therefore be further investigated in the context of LED lifetime estimation.

Even though the promising results of this work, it reveals the need for future work encompass-
ing several aspects with respect to the observed degradation effects: Firstly, the drive current’s
non-monotonic influence on the degradation rate needs to be further investigated. Therefore,
a single device type ADT with a more granular stress level resolution is proposed in order
to identify an empirically accurate degradation model. Secondly, different packages types,
such as hermetically sealed packages, and various materials of the packages structural parts
should be tested to obtain a better understanding on the critical design elements of an LED

device with respect to environmental humidity. Finally, on the modeling side new emerging DD

approaches such as physics based neural networks may pose suitable candidates for physically
interpretable alternatives to common partly inaccurate or non-physics related MD approaches.
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