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Abstract
In this work, an experimentally validated multiscale modeling framework for additively manufactured shell lattice structures 
with graded parameters is introduced. It is exemplified in application to the Schwarz primitive triply periodic minimal surface 
microstructure and 3D printing using masked stereolithography of a photopolymer material. The systematic procedure 
starts with the characterization of a hyperelastic material model for the 3D printed material. This constitutive model is then 
employed in the finite element simulation of shell lattices at finite deformations. The computational model is validated 
with experimental compression tests of printed lattice structures. In this way, the numerical convergence behavior and 
size dependence of the model are assessed, and the range in which it is reasonable to assume linear elastic behavior is 
determined. Then, representative volume elements subject to periodic boundary conditions are simulated to homogenize the 
mechanical behavior of Schwarz primitives with varying aspect ratios and shell thicknesses. Subsequently, the parameterized 
effective linear elasticity tensor of the metamaterial is represented by a physics-augmented neural network model. With this 
constitutive model, functionally graded shell lattice structures with varying microstructural parameters are simulated as 
macroscale continua using finite element and differential quadrature methods. The accuracy, reliability and effectiveness of 
this multiscale simulation approach are investigated and discussed. Overall, it is shown that this experimentally validated 
multiscale simulation framework, which is likewise applicable to other shell-like metamaterials, facilitates the design of 
functionally graded structures through additive manufacturing.

Keywords  Metamaterials · Functionally graded materials · Multiscale modeling · Physics-augmented machine learning · 
Additive manufacturing

1  Introduction

Additive manufacturing (AM) has in particular enabled 
the fabrication of lattice structures composed of repeating 
patterns of metamaterials with beam, plate, thin-walled, 
shell-like, or multi-phase solid geometries. The mechanical 
behavior of a metamaterial is determined by the base 
materials it is made of, as well as the topology and 
geometrical parameters of the (periodically) repeated unit 

cell (RUC). In particular, metamaterials with slender, beam- 
or shell-like microstructures offer a unique combination of 
lightweight, high strength, and efficient load distribution 
[1–3]. Furthermore, AM allows to functionally grade (FG) 
structures by varying the microstructure, e.g., by locally 
adjusting material, topological, or design geometrical 
parameters [4, 5]. For instance, Choy et al. [6] conducted 
an experimental study and found that FG beam lattices 
exhibit higher plateau stress and specific energy absorption 
compared to homogeneous lattices. Bai et al. [7] performed 
an experimental and numerical study on size-graded beam 
lattice structures with varying topological parameters. 
Alternatively, graded lattices can be created in additive 
manufacturing by gradually adjusting material properties, 
e.g., by mixing constituents [8] or adjusting the degree 
of polymerization [9, 10]. To explore this technique, Kim 
et al. [11] carried out an experimental study to improve 
surface hardness and flexural stiffness of FG beam lattices 
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using varying degrees of polymerization. Furthermore, 
a non-periodic class of functionally graded spinodoid 
topologies was introduced in [12].

In par ticular,  RUCs consisting of shell-like 
microstructures such as triply periodic minimal surfaces 
(TPMS) have been shown to ideally combine high structural 
strength with low effective density, which makes them 
suitable for the efficient design of lightweight structures 
[13]. Triply periodic minimal surfaces are usually defined 
by implicit equations and repeat periodically in three 
dimensions with a certain material symmetry [14]. TPMS 
lattice structures fabricated by selective laser melting are of 
interest in a variety of fields due to their unique geometric 
and mechanical properties, including their minimal surface 
area and their ability to resist compressive loads [15]. An 
extensive investigation of the mechanical performance of 
additively manufactured shell-lattice metamaterials using 
simulations and experiments was carried out in [16]. Guo 
et al. [17] proposed different shapes and opening diameters 
for uniform lattice structures consisting of the Schwarz 
primitive (SP), a common TPMS, to enhance its mechanical 
properties and energy absorption. The implementation of 
FG TPMS lattice structures in engineering applications 
has been boosted in recent years due to the advancement of 
AM technologies, which have eliminated many constraints 
on the realization of geometrically intricate and graded 
microstructures [18]. In this regard, Plocher and Panesar 
[19] reported on an experimental investigation of the effect 
of density and topology grading on the stiffness and energy 
absorption of additively manufactured FG TPMS lattices 
with a small number of unit cells. They confirmed that 
the severity of density grading had a positive effect on 
the total compressive stiffness of the SP TPMS. Similarly, 
in [20] the effect of varying unit cell size on the energy 
absorption behaviour of additively manufactured TPMS 
structures was experimentally studied. Furthermore, in [21] 
the shape memory effect of TPMS lattice structures made 
from polymers was investigated. However, the mechanical 
behavior of FG TPMS lattices has not been intensively 
investigated yet and in particular, no approaches have been 
proposed yet that would facilitate the computational design 
of FG lattices with a large number of TPMS RUCs.

Since structures composed of thousands or even millions 
of RUCs of a metamaterial can hardly be computationally 
modeled at full-scale, multiscale modeling techniques 
must be applied [22]. In a number of works, the numerical 
homogenization method has been used to determine the 
elastic moduli of uniform TPMS structures, including 
dependencies on the effective density of the RUCs [16, 
23–26]. Recently, these microstructural characterizations 
were also carried out for as-manufactured TPMS geometries 
obtained from imaging data and including manufacturing 
imperfections [27, 28]. Furthermore, Jian et  al.  [29] 

proposed a numerical approach using multiscale mechanical 
topology optimization to improve the compressive properties 
of FG TPMS. The properties of the optimized designs were 
improved over a uniform structure by almost 25%. Even 
though multiscale analysis methods have been applied to 
TPMS lattices, none of the mentioned works verifies their 
(microstructural) simulation approach in application to a 
concrete AM technique and connects the homogenization 
to a sequential multiscale simulation. Furthermore, material 
models that include dependencies on geometric parameters 
of the TPMS microstructures have not been derived yet.

In this regard, the adoption of machine learning 
techniques provides many opportunities for multiscale 
modeling [30]. In particular for representing constitutive 
relations, many approaches have been presented in recent 
years that employ artificial, feed-forward neural networks 
(ANNs, FFNNs) [31, 32] due to their flexibility and 
universal approximation capabilities [33]. For instance, an 
FFNN architecture that allows to preserve the symmetric 
positive definiteness of linear elastic constitutive tensors was 
presented in [34] and then also applied in [35]. The flexibility 
of ANNs has also been largely exploited to formulate 
nonlinear, hyperelastic, inelastic, and multiphysical material 
models [36–42]. However, to ensure the physical sensibility 
and generalizability of a material model, ANNs should as 
much as possible be augmented with physical requirements 
[43], i.e., they should fulfill by construction properties 
such as thermodynamic consistency [37, 41] or convexity 
requirements [34, 36]. In the context of linear elasticity, 
microstructural dependencies of the homogenized elasticity 
tensors in the form of image data have been considered 
in [44, 45] using deep convolutional neural networks. 
Furthermore, also hyperelastic FFNN models have already 
been enhanced with parametric dependencies, e.g., of 
homogenized beam lattice metamaterials [46], and were used 
in multiscale simulations [47]. Generally, both hyperelastic 
constitutive models as well as parameterized linear elasticity 
tensors are multi-dimensional, nonlinear functions, which 
are difficult to represent. Thus, neural networks are highly 
suitable candidates for formulating such models.

This manuscript aims to introduce a systematic 
multiscale modeling technique for additively manufactured, 
functionally graded TPMS lattices. For its demonstration, 
the multiscale modeling framework is applied to the 
parameterized Schwarz primitive TPMS and realized by 
masked stereolithography (MSLA) 3D printing. Besides 
the full-scale simulation and microscale homogenization 
using shell finite elements, one of the key ingredients of 
the proposed approach is the use of a physics-augmented 
FFNN to accurately predict the effective elasticity tensor of 
the SP TPMS, which incorporates the dependency on four 
geometrical parameters.
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The further structure of this manuscript is as follows. 
In Sect.  2, the methodologies applied in this work are 
described, including the geometric modeling of the Schwarz 
primitive, the computational modeling of lattices at full-
scale, microscale, and macroscale, the homogenization 
and parameterized effective constitutive modeling with 
neural networks, and the experimental setup using MSLA 
3D printing. Then, in Sect.  3 the results are presented 
from the experimental validation of the simulation model, 
to the investigation of the microscale behavior of the SP, 
to the homogenized, effective material modeling, and to 
the multiscale simulation and its verification. Finally, the 
manuscript concludes with a summary and outlook in 
Sect. 4.

2 � Methods

Since the fully resolved design and simulation of additively 
manufactured structures comprised of metamaterials with 
thousands of unit cells such as TPMS is computationally 
challenging and inefficient, our aim is to establish a 
multiscale simulation framework. The main methodological 
ingredients and steps in this approach, which are also 
illustrated in Fig. 1 are: 

1.	 The parameterized geometric design of the unit cell of 
the metamaterial, here the Schwarz primitive TPMS 
(Sect. 2.1).

2.	 The computation modeling of the mechanical behavior 
of the shell lattice structures and unit cells (Sect. 2.2) 
for which an experimentally characterized constitutive 

model of the 3D printed material is required and which 
has to be experimentally validated (Sect. 2.5).

3.	 The numerical homogenization of the effective mechani-
cal behavior of the unit cells (Sect. 2.3) and the deter-
mination of a parameterized effective material model 
(Sect. 2.4) that allows to represent functionally graded 
structures in macroscopic simulations (Sect. 2.2).

As mentioned, we demonstrate and validate this framework 
here in application to the Schwarz primitive TPMS 
fabricated by MSLA 3D printing, but it could likewise be 
applied to other shell lattice metamaterials and additive 
manufacturing methods.

2.1 � Geometric model of parameterized Schwarz 
primitive

The Schwarz primitive (SP) is a common TPMS. The mid-
surface of a Schwarz primitive RUC is defined using a local 
coordinate system (x̄, ȳ, z̄) ∈ [−a, a] × [−b, b] × [−c, c] and 
can be expressed using the following implicit equation:

The geometrical parameters a, b,  c control the length, 
width, and height of the RUC of the SP, which is depicted 
in Fig. 2. Here, we model the RUCs in the computer-aided 
design software Siemens NX, where the constant in Eq. (1) 
is chosen in such a way that the cross sections of the unit 
cell have an elliptical profile. For numerical simulation, 
see Sect.  2.2, the surface geometry can be exported in 
STEP file format and meshed using shell finite elements. 
For 3D printing, see Sect. 2.5, the surfaces defined by Eq. 

(1)cos
𝜋x̄

a
+ cos

𝜋ȳ

b
+ cos

𝜋z̄

c
= const.

Material 
characterization

Parameterized 
Schwarz TPMS

Validated shell
simulation model

Microscale homogenization
of parametric database ℂ( )

Physics-augmented 
neural network model ℂ( )

Multiscale simulation 
and full-scale verification

−div ℂ ∶ =

=
1

Fig. 1   Illustration of the proposed multiscale simulation workflow



	 Engineering with Computers

1 3

(1) are extruded by ±h∕2 in the normal direction, which 
yields a shell-like, volumetric structure of thickness h that 
can be exported in STL file format. Overall, the geometric 
dimensions, and thus also the mechanical behavior, of 
SP shell lattice RUCs are controlled by the parameters 
t = (a, b, c, h).

2.2 � Shell model for direct and microscale 
simulation

Slender structures such as TPMS and in particular the SP 
can be mechanically modelled using shell theories, in which 
only the displacements (and rotations) of the mid-surface 
are considered as independent degrees of freedom. Here, we 
employ the finite strain shell formulation based on 4-node 
finite elements with bilinear interpolation of displacements 
and rotation updates, using reduced integration with 
hourglass control, as implemented in the “S4R” element 
in the Abaqus CAE software [48]. The quadrilateral finite 
element meshes, see e.g. Fig. 6, are also generated in Abaqus 
from the geometries imported in STEP file format. Special 
attention is put on creating meshes with nodes aligned 
at corresponding positions on opposite edges, as this is 
favorable for homogenization, see Sect. 2.3.

Within the finite strain shell theory, hyperelastic material 
behavior is assumed. Here, the near incompressible Mooney-
Rivlin constitutive model, which is widely used in the 
analysis of polymers, is adopted. The Cauchy stress tensor 
� can be computed from the strain energy function U of the 
Mooney-Rivlin model as:

where J = det(F) is the determinant of the deformation 
gradient tensor F and Ī1 = J−2∕3 I1, Ī2 = J−4∕3 I2 are the 
isochoric invariants, which can be computed using J and 
the first and second invariants of the right Cauchy-Green 
strain tensor C = FTF : I1 = tr(C) , I2 = (tr(C)2 − tr(C2))∕2 
[49]. The specific material behavior is defined by the three 

(2)

� = 1
J
�U
�F

FT with U(F)

≡ U(Ī1, Ī2, J) = D10(Ī1 − 3) + D01(Ī2 − 3) + 1
D2

(J − 1)2,

material parameters D10 , D01 , and D2 , which are to be 
determined experimentally.

Since the numerical modeling using a shell formulation 
is computationally much more efficient than using the 
3D continuum elements, not only (microscopic) RUCs of 
the SP, but also (macroscopic) structures consisting of a 
moderate amount of unit cells can be directly simulated 
on desktop computers in a reasonable amount of time. The 
direct simulations serve for the experimental validation of the 
simulation model, while the microscale simulations are the 
basis of the multiscale simulation, see Sect. 2.3.

2.3 � Multiscale simulation and homogenization

Mechanical multiscale simulations are based on the concept 
of scale separation and the Hill-Mandel principle, which state 
that the virtual work at any point in a macroscopic continuum 
is equal to the volume average of the virtual work of a 
representative volume element (RVE) of the microstructure, if 
the microstructure is periodically repeated and infinitesimally 
small compared to the macro continuum [50]. The RVE should 
be large enough to include all the relevant microstructural 
features and characteristic behaviors, and can thus also consist 
of multiple periodic RUCs, but small enough to be considered 
as a point in the macroscale [51]. For instance, in Fig. 2, (d) 
would refer to the macro structure that could be regarded as 
a continuum, since it consists of many periodically repeated 
cells, which are shown in (a).

As will be investigated in Sect. 3.2, the effective behavior 
of SP TPMS can be well approximated as linear elastic within 
a strain range of -2% to 4%. For higher compressive strains 
instabilities may occur that restrict multiscale approaches 
and for larger tensile strains the material may already exhibit 
plastic deformations. Thus, for the multiscale modeling of the 
SP TPMS, we restrict ourselves here to linear elasticity. Then, 
the Hill-Mandel condition can be formulated as:

where � and � stand for the linear strain and Cauchy stress 
tensors at the macro scale, the subscript m indicates their 
microscale counterparts, and ⟨⋅⟩ symbolizes the volume 

(3)�� ∶ � = ⟨��m⟩ ∶ ⟨�m⟩ = ⟨��m ∶ �m⟩,

Fig. 2   Geometric modeling of 
the Schwarz primitive TPMS. 
a–c show 3D and 2D views of 
the mid-plane geometry of the 
SP RUC, with the 2D views 
highlighting the geometrical 
parameters of the unit cell. 
c Illustrates a functionally 
graded structure made of non-
uniform SP RUCs with varying 
parameters

(a)

x̄
ȳ

b

a

(b)

ȳ
z̄

cb

(c) (d)
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average over the microscale RVE [50]. Since in linear 
elasticity the macroscopic stress tensor can be expressed as 
� = ℂ ∶ � , the aim is to determine a corresponding fourth-
order elasticity tensor ℂ that captures the effective, averaged 
behavior of the microscale.

Generally, the fulfillment of the Hill-Mandel condition 
Eq. (3) can be ensured by applying macroscale strains or 
stresses to the RVE using suitable boundary conditions. 
Typically, periodic boundary conditions are employed, 
which ensure compatible deformations and tractions 
at opposing faces of the RVE. To fully determine the 
effective constitutive tensor ℂ , it is then only necessary to 
carry out 6 homogenizations of the RVE, in each of which 
either a uniaxial strain state with only �11 = � ≠ 0 , or only 
�22 = � , or only �33 = � , or a simple shear deformation 
state with only �23 = � ≠ 0 , or only �13 = � , or only �12 = � 
is prescribed, respectively (with � specifying the applied 
strain). From the resulting stress tensors � = ⟨�m⟩ , all 21 
independent components Cijkl can be computed. Since the 
dimensions a, b, and c of the RUCs can have different 
values, the parameterized SP possess a rhombic material 
symmetry, which allows to represent the constitutive 
model in Voigt notation as:

with only 9 independent, non-zero coefficients, see [52, 
Sec. 3.4] and [53, Sec. 9.3.2].

Ultimately, a multiscale simulation of a structure 
consisting of many periodically repeated TPMS unit cells 
can simply be carried out as a simulation of the macroscale 
3D continuum. Thus, the linear elasticity equation:

together with appropriate boundary conditions, needs to 
be solved, in which the constitutive model defined by the 
homogenized (parameter-dependent) ℂ(t) is used. Here, we 
perform such multiscale or macroscale simulations in two 
ways, using a finite element discretization in Abaqus [48], 
or using a differential quadrature method (DQM) [54, 55]. 

(4)

� = ℂ:� ⇔

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�11
�22
�33
�23
�31
�12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C1111 C1122 C1133 0 0 0
C1122 C2222 C2233 0 0 0
C1133 C2233 C3333 0 0 0
0 0 0 C2323 0 0
0 0 0 0 C3131 0
0 0 0 0 0 C1212

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�11
�22
�33
2�23
2�31
2�12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(5)− div (ℂ(t) ∶ �) = b

While it is difficult to consider three-dimensionally graded 
microstructures with location-dependent material behavior 
ℂ(t) ≡ ℂ(x) in commercial FEA software such as Abaqus, 
this is easier to realize in an in-house DQM program. For 
instance, in [56] one-dimensional functional grading was 
realized by a user material routine (UMAT) in Abaqus. 
Based on the three-dimensional constitutive relations and 
the strain–displacement relations, the governing differential 
equations of Eq. (5) can be written as:

Using the DQM, these partial differential equation 
are discretized on a given grid (xm

1
, xn

2
, xs

3
) = xmns with 

m = 1,… ,Nx , n = 1,… ,Ny , s = 1,… ,Nz as:

where Nx,Ny,Nz are the number of grid points along the 
direction of x1, x2, x3 , respectively, and Amnspqr

l
 and Bmnspqr

lg
 

denote the weighting coefficients of first-order and second-
order derivatives, respectively, see [54, 55] for details. 
Finally, by applying the differential quadrature rules, a 
system of algebraic equations is obtained, which can be 
solved for the displacement coefficients of the grid points 
u
pqr

k
.

2.4 � Parameterized material modeling with neural 
networks

Above, the homogenization of the effective constitutive tensor 
ℂ for a given microstructure has been described. However, here 
we want to facilitate the multiscale simulation of functionally 
graded shell lattices with arbitrarily (within a certain range) 
varying geometric design parameters of the SP RUC, see 
Sect. 2.1. This would entail that a numerical homogenization 
procedure according to Sect. 2.3 has to be carried out for each 
quadrature point within a macroscale FEM or DQM with 
the microstructural parameters given at that point. To avoid 
this high computational effort, we introduce a parameterized 
material model, which is to be realized through a physics-
augmented neural network.

As mentioned above, the linear elastic material model for 
the parameterized SP is defined through the 9 independent 
coefficients of ℂ , see Eq. (4). However, to yield only positive 
energy densities:

(6)
�

�xj

[
Cijkl(x1, x2, x3)

2

(
�uk

�xl
+

�ul

�xk

)]
= bi for i = 1, 2, 3.

(7)

�uk

�xl

|||xmns =
Nx,Ny,Nz∑
p,q,r=1

A
mnspqr

l
u
pqr

k
,

�uk

�xl�xg

|||xmns =
Nx,Ny,Nz∑
p,q,r=1

B
mnspqr

lg
u
pqr

k
,

(8)U(�) =
1

2
� ∶ ℂ ∶ � ≥ 0 ∀�,
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the elasticity tensor has to be positive semi-definite. This 
applies in both the fourth-order tensor and the Voigt 
notations. Thus, positive semi-definiteness can be ensured 
by expressing ℂ ∈ ℝ

6×6 by its the Cholesky decomposition 
ℂ = GGT , see [57, Corollary 7.2.9], where G ∈ ℝ

6×6 is a 
lower triangular matrix with non-negative diagonal entries. 
For the rhombic material symmetry group, the Cholesky 
matrix G can be restricted to the form:

which leads to:

Thus, we may represent the rhombic elasticity tensor ℂ in 
terms of the 9 components of G , which then automatically 
fulfills the condition of positive semi-definiteness as well as 
the restrictions on the specific components.

As mentioned, for functionally graded bodies, the 
macroscopic elasticity tensor is not a constant but depends 
on microstructural parameters, e.g., the geometrical 
parameters of the Schwarz RUC, here a, b, c, and h, see 
Sect. 2.1. We summarize these four parameters in a vector 
t = (a, b, c, h) and express the parametric dependency of the 
elasticity tensor through its Cholesky matrix:

(9)G =

⎡⎢⎢⎢⎢⎢⎢⎣

G11 0 0 0 0 0

G21 G22 0 0 0 0

G31 G32 G33 0 0 0

0 0 0 G44 0 0

0 0 0 0 G55 0

0 0 0 0 0 G66

⎤⎥⎥⎥⎥⎥⎥⎦

,

(10)

ℂ = GGT

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

G2
11 G11G21 G11G31 0 0 0

G11G21 G2
21 + G2

22 G21G31 + G22G32 0 0 0
G11G31 G21G31 + G22G32 G2

31 + G2
32 + G2

33 0 0 0
0 0 0 G2

44 0 0
0 0 0 0 G2

55 0
0 0 0 0 0 G2

66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Finding an explicit form for G(t) , or rather of its 9 inde-
pendent coefficients, see Eq. (9), is not straightforward, as 
the functional relationship may be arbitrary nonlinear and 
complex, depending on the microstructure under considera-
tion, in particular with an increasing amount of geometrical 
parameters. Thus, we want to apply FFNNs [31, 32], which 
can represent arbitrary complex functional relationships 
[33]. By representing G(t) with a FFNN, we can exploit 
their extraordinary flexibility, while at the same time, all 
physical properties of ℂ are preserved, i.e., the neural net-
work model used to represent ℂ(t) is “augmented” with the 
physical requirements of positive definiteness and material 
symmetry, compare also [34].

In this work, FFNNs with a single hidden layer with 32 
nodes and a linear output layer are employed to map the 
input vector t = (a, b, c, h) ∈ ℝ

4 to the output vector y ∈ ℝ
9 

as:

Here, W1 ∈ ℝ
32×4 , W2 ∈ ℝ

9×32 are weight matrices, 
b1 ∈ ℝ

32 , b2 ∈ ℝ
9 bias vectors, and s(x) = log(1 + exp(x)) 

symbolizes the softplus activation function, which acts on 
vectors component-wise.

Since the 6 diagonal coefficients of G must be positive, 
they are obtained from the first 6 outputs by again applying 
the softplus function, while the remaining 3 coefficients are 
directly related to the remaining 3 outputs:

In Fig. 3, the overall structure and flow of this physics-
augmented neural network model are illustrated.

To train the FFNN, i.e., to determine its so-called 
hyperparameters {W1,W2, b1, b2} such that it yields an 

(11)ℂ(t) = G(t) G(t)T ,

(12)y = W2
s
(
W1t + b1

)
+ b2.

(13)
Gii = s(yi), i = 1,… , 6, G21 = y7, G32 = y8, G31 = y9.

t Y ∈ R
9 G =





s(Y1) 0 0 0 0 0
Y7 s(Y2) 0 0 0 0
Y9 Y8 s(Y3) 0 0 0
0 0 0 s(Y4) 0 0
0 0 0 0 s(Y5) 0
0 0 0 0 0 s(Y6)




CGGT =

Fig. 3   Illustration of the physics-augmented neural network 
architecture used to represent the parameterized effective constitutive 
model of the Schwarz primitive. The geometrical parameters 
t = (a, b, c, h) of the RUC serve as inputs to the single-layered FFNN 

(yellow color). The p.s.d. rhombic structural tensor ℂ(t) is calculated 
through its Cholesky matrix G(t) , where the softplus function s 
ensures positivity of the diagonal components
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approximation of the functional relationship G(t) , a dataset 
of the form

is obtained from the homogenization of the linear elasticity 
tensors, see Sect. 2.3, which consists of tuples of geometrical 
parameters ti and corresponding effective elasticity tensors 
ℂ̂i . Then, a nonlinear optimization algorithm, here the 
Adam optimizer with a learning rate of 0.002 and 5000 
iterations, is applied to minimize the mean squared error of 
the deviations of the homogenized elasticity tensors from the 
ones predicted by the physics-augmented NN:

Note that for the application here, the single-layered FFNN 
architecture from Eq. (12) has been shown to be sufficiently 
flexible to represent the dependency of the elasticity 
tensor of the SP TPMS on its 4 geometric parameters. 
Similar observations have also been made for hyperelastic 
constitutive models, cf. [37, 38, 58]. However, the approach 
presented in this work does not depend on the activation 
function or number of hidden layers of the FFNN, and thus 
may be also applied for multilayered network architectures 
and other activation functions.

2.5 � Experimental setup

Here, the manufacturing and mechanical characterization 
of SP TPMS structures is exemplary and carried out 
using MSLA 3D printing of a photo-curable polymer 
material. The specimens are fabricated using the 
commercial MSLA 3D printer “Original Prusa SL1S” 
by Prusa Research a.s. This printer is equipped with 
a monochrome LCD module, a UV LED with 405 nm 
wavelength, and the maximum irradiance is ca. 3.6 mW/
cm2. The display has a size of 120 mm × 68 mm and 
a resolution of 2560 × 1620 pixels. The specimens are 
produced using the UV-sensitive “Prusament Resin 
Tough Prusa Orange”, a material also developed by Prusa 
Research a.s. The composition of the material includes 
epoxy resin (20% − 40%) , color pigment (2% − 5%) , and 
photoinitiators (3% − 5%) . The specimens are printed with 
a layer thickness of 0.05 mm, an initial exposure time of 
10 s for the first 10 layers, and an exposure time of 3 s for 
all remaining layers.

To characterize the mechanical properties of the 
material, uniaxial tension tests are performed according 
to the ASTM D638 standard. The geometries of the 
3D-printed samples are chosen according to sample type 

(14)D =
{(

t1, ℂ̂1

)
,…

(
tn, ℂ̂n

)}
,

(15)MSE ∶=
1

n

n�
i=1

‖ℂ̂i − ℂ(ti)‖2.

IV. A T500-1200-5kN machine (MFC Sensortechnik 
GmbH) is utilized for the tests, in accordance with 
EN ISO 7500-1 standard. The machine has a travel 
resolution accuracy of 1 � m. Furthermore, to evaluate the 
mechanical behavior of Schwarz P lattices, samples with 
3×3×3 RUCs are fabricated with various shell thickness 
h = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 mm and the shell geometry 
parameters are a = b = c = 5 mm, compare Fig. 2. These 
structures are subjected to compression testing with a 
crosshead speed of 5 mm/min, i.e., a quasi-static strain 
rate of ca. 0.0028 1/s.

3 � Results

3.1 � Experimental validation of the simulation 
model

The numerical homogenization of the effective mechanical 
behavior of an RVE requires a validated simulation model. 
Thus, the first step is the experimental characterization 
of the hyperelastic material model of the 3D-printed 
polymer. As outlined in Sect.  2.5, for this purpose 
tensile tests are carried out on MSLA printed standard 
samples. Then, the three parameters of the hyperelastic 
Mooney-Rivlin material model given in Eq. (2) are 
fitted to approximate the stress–strain relation. Here, the 
coefficients of the Mooney-Rivlin model from Eq. (2) are 
obtained as D10 = −564.35 MPa , D01 = 670.22 MPa , 
D2 = 0.00157 MPa−1 . Figure  4 shows the stress–strain 
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hyperelastic material model for a uniaxial tension test of the MSLA 
3D printed material
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curves for both the experimental uniaxial tension tests, as 
well as the fitted Mooney-Rivlin model.

This material model and parameters are then used in 
direct simulations of Schwarz primitive lattice structures, 
which consist of 3×3×3 RUCs with geometry parameters 
a = b = c = 5 mm and shell thickness h = 0.4 mm, i.e., the 
aspect ratio is h∕a = 0.08 and the overall size of the structure 
is 30×30×30 mm. First, a convergence study is carried out 
to assess the accuracy of the FEM using finite strain shell 
elements. For this purpose S4R meshes with increasing 
numbers of elements (from 208 to 784, to 1792, and to 
3236 elements per RUC) are generated and simulated. The 
relationship between the applied compressive displacement 
and the resulting compressive force is plotted for these 
four meshes in Fig. 5. First of all, it can be seen that the 
shell finite element discretization converges with mesh 

refinement. Since the results for 1792 and 3236 elements 
per RUC are hardly distinguishable, we proceed in all 
subsequent FE calculations with 1792 elements.

Furthermore, in Fig. 5 it can be observed that the lattice 
structure becomes increasingly nonlinear as the compressive 
displacement increases up to 2 mm (i.e., 6.67% strain of the 
structure). This behavior is commonly observed in lattice 
structures and metamaterials and can be mostly attributed to 
geometrically nonlinear effects that stem from the bending 
of the shell. The analysis of this nonlinear behavior is crucial 
for estimating the range of applied structural strain, in which 
it is acceptable to model the effective behavior of the RUCs 
as linear elastic. For this purpose in Fig. 6, the distribution of 
maximum in-plane principal strain is shown. The maximum 
value is close to 4.5%, which is almost 30% less than the 
applied strain of 6.67%. Thus, in further investigations, we 
can assume that the maximum strains in the material are 
smaller than the strains applied on the structure, which can 
again be associated with predominant bending behavior of 
the shells. Figure 6 also shows the lattice structure in an 
experimental compression test for visual comparison.

Finally, a comprehensive comparison of experimental and 
simulation results of the compression of the shell lattices is 
performed for 6 different aspect ratios h/a, see Fig. 7. For 
each aspect ratio, three structures are MSLA 3D printed 
and subjected to compression testing. Thus, the averaged 
load–displacement curves of each three experiments are 
depicted in Fig. 7. The repetition of the experiment is carried 
out to ensure the reliability and accuracy of the experimental 
results. Up to an aspect ratio of h∕a = 0.20 , the experiments 
and the shell FEM are in very close agreement. However, for 
h∕a = 0.24 and above, the simulations tend to underestimate 
the experimental results. The root of the error possible stems 
from the general restrictions of shell theories, which are only 
applicable for thin to moderately thick structures and tend 
to under-estimate the stiffness of a thicker, less shell-like 
structure.

Overall, the results presented show that the finite strain 
shell model can accurately, reliably and efficiently simulate 
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the mechanical behavior of additively manufactured SP 
TPMS structures.

3.2 � Investigation of microscale behavior

Having a validated simulation model for SP shell lattices, 
this model is now investigated and verified in terms of its 
microscale behavior. For this purpose, we first study the 
required mesh refinement for accurately simulating an SP 
RUC with a = b = c = 5 mm using periodic boundary 
conditions and then confirm the independence of the 
homogenization results from the RVE size.

Table 1 presents the convergence of the normal or shear 
stress values for applied strains of � = ±3% for various 
applied deformation cases for an RUC with h∕a = 0.20 . 
The number of shell elements used in the calculation varies 
between 208 to 9342. The convergence of the four types 
of displacement loading, namely uniaxial, equibiaxial, 
volumetric, and simple shear, is examined under both tensile 
and compressive strain conditions. The rate of convergence 
is found to be fast and acceptable in all cases. The results 
obtained with 1792 elements are considered sufficiently 
accurate for further analysis. Furthermore, Fig. 8a shows 
the resulting load–displacement curves for strains ranging 

from – 6 to 6%. Within this strain range, it is observed that 
equibiaxial and volumetric compression states experience 
compressive instabilities, for which the nonlinear finite 
strain simulations do not converge anymore. On the other 
hand, the uniaxial and simple shear states exhibit a mostly 
linear behavior within this strain range.

To investigate the dependency of the homogenization 
procedure on the number of unit cells in the RVE, RVEs 
with 1 × 1 × 1 ( 13 ), 2 × 2 × 2 ( 23 ), and 3 × 3 × 3 ( 33 ) RUCs 
with a = b = c = 5 mm and h∕a = 0.12 are subjected to 
the aforementioned four strain conditions under PBC. In 
Fig. 8b, it can be seen that for all cases the results with 
different number of unit cells are in exact agreement. This 
is to be expected and confirms the correct implementation 
of the PBC and the homogenization procedure. However, 
it can be observed that the instabilities and termination 
of convergence occur at different compressive strains for 
the equibiaxial and volumetric cases. This is in fact also 
to be expected, since instabilities can be size-dependent 
and different buckling modes can be triggered for different 
RVE sizes. In such cases, effective, homogenized modeling 
of the microstructural behavior is not possible anymore, at 
least using the classical Cauchy continuum theory.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1,000

Compressive displacement (mm)

C
om

pr
es
si
ve

lo
ad

(N
)

Exp. h
a
= 0.08

FEM h
a
= 0.08

Exp. h
a
= 0.12

FEM h
a
= 0.12

Exp. h
a
= 0.16

FEM h
a
= 0.16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1,000

1,500

2,000

Compressive displacement (mm)

C
om

pr
es
si
ve

lo
ad

(N
)

Exp. h
a
= 0.20

FEM h
a
= 0.20

Exp. h
a
= 0.24

FEM h
a
= 0.24

Exp. h
a
= 0.28

FEM h
a
= 0.28

Fig. 7   Comparison of experimental and simulation load–displacement curves of compression tests of 3 × 3 × 3 lattices with different aspect 
ratios h/a of the SP RUCs

Table 1   Mesh refinement 
convergence study of the 
stress value (MPa) for an SP 
RUC ( a = b = c = 5 mm, 
h∕a = 0.20 ) under various 
loading conditions applied using 
periodic boundary conditions

Uniaxial �11 Equibiaxial 
�11 = �22

Volumetric �
ii

Simple shear �12

No. of elements � = 3% � = −3% � = 3% � = −3% � = 3% � = −3% � = 3% � = −3%

208 2.1798 −1.9289 3.8273 −2.9845 5.7072 −3.7563 0.7263 −0.7261
784 2.1601 −1.8980 3.8024 −2.9450 5.6760 −3.7281 0.7165 −0.7166
1792 2.1552 −1.8942 3.7924 −2.9378 5.6641 −3.7207 0.7125 −0.7125
3236 2.1528 −1.8907 3.7906 −2.9339 5.6609 −3.7184 0.7123 −0.7123
9342 2.1520 −1.8900 3.7891 −2.9326 5.6589 −3.7172 0.7117 −0.7117
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Fig. 9   Maximum in-plane strain distributions of the 3 × 3 × 3 RVE of SP RUCs with a = b = c = 5 mm and h∕a = 0.12 under PBC at an applied 
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Additionally, Fig.  9 shows the maximum in-plane 
principal strain distributions over the RVE with 3 × 3 × 3 
RUCs at the applied strain of 2%. It is apparent that 
the strain distributions are periodic for all four cases. 
Furthermore, it can be observed that the maximum strain 
values within the RUC are close to the applied strain, 
indicating that linearization can safely be employed.

Overall, it can be concluded that in the applied strain 
range of -2% to 4%, the effective behavior of the SP lattice 
can be safely approximated as linear elastic for all cases. 
Thus, this range is suitable for linear elastic multiscale 
analysis of functionally graded SP lattice structures. 
Note that these analyses have been carried out using the 
nonlinear shell formulation and hyperelastic constitutive 
model to safely determine this range without potentially 
neglecting crucial geometrical and material nonlinear 
effects.

3.3 � Homogenization of parametric effective 
material model

After having verified the microscale simulation model, we 
proceed with the homogenization of an effective material 
model for the parametrized SP lattice. First, data in terms 
of parameter–elasticity tensor couples, compare Eq. (14), 
must be generated and then the physics-augmented FFNN 
can be fitted.

For the generation of the dataset D , we vary the param-
eters a, b, c uniformly in {4.0, 4.5,… , 7.5} mm and the 
shell thickness h in {0.4, 0.5,… , 1.4} mm. These ranges 
are chosen in view of the manufacturability of the SP lat-
tices using MSLA, as well as the validity of the shell theory. 
Overall, this yields 83 ⋅ 11 combinations and thus a dataset 

size n = 5632 . For each parameter combination ti , the cor-
responding SP RUC geometry is created and meshed with 
1792 shell elements. Then, 6 microscale simulations with 
PBCs are carried out to determine the effective elasticity 
tensor ℂ̂i , as discussed in Sect. 2.3.

The effect of the variation of geometric parameters within 
the dataset D on the effective, homogenized behavior of the 
Schwarz primitive is illustrated in Fig. 10a. SP RUCs with 
a = 4, 5, 6, 7 mm, b = c = 5 mm, and h = 0.4, 0.5,… , 1.4 
mm are subject to uniaxial loading with 1% applied strain 
and periodic boundary conditions. Figure 10a shows the 
value of the homogenized stress �11 over the thickness 
h for different values of a. The results indicate that by 
increasing the thickness, as can be expected, the effective 
stress increases for all choices of a. Furthermore, as the a 
increases, the difference in the effective stress decreases. 
Figure 10b visualizes the stress distributions for SP RUCs 
with h = 1.2 mm and a = 4, 5, 6, 7 mm. As can be seen, 
the pattern of the stress distributions and the position of 
maximum stress shift as the length of the RUC increases.

For the training of the neural network model to predict 
ℂ(t) , i.e., the optimization of its hyperparameters, the 
dataset D is randomly split into a calibration dataset Dc and 
an evaluation dataset De . Here, we use 60 % of the overall 
dataset for Dc . After calibrating the model on Dc , it is 
evaluated on De . Only when the accuracy of the predictions 
is equally good on Dc and De , it can be assumed that the 
model is able to generalize, meaning that it can make reliable 
predictions for inputs not seen in the calibration process. 
Thus, the parameter optimization is initialized three times, 
where each time different random initial values for the model 
parameters are used, as well as new random splits of the 
dataset into calibration and evaluation sets. In this way, 
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different minima of the optimization problem can be found, 
out of which the best can be chosen for further evaluation.

The MSEs for the three different model calibrations are 
presented in Table 2 for the different datasets. While the 
first model calibration was stuck in a local minimum where 
G11 = G21 = G31 ≈ 0 and thus shows a very high MSE, 
the other two model calibrations both show an excellent 
interpolation of the calibration data, meaning a low MSE 
value for the calibration dataset, and an excellent prediction 
on the evaluation dataset. In particular, the evaluation loss 
for model calibration 2 and 3 is approximately as high as the 
calibration loss.

In addition to Dc and De , to visualize some model predic-
tions, two variations of parameter combinations are gener-
ated, which are denoted as “case A”and “case B”, see also 
Fig. 11. Also for these two datasets, which feature each 20 
data points with smoothly progressing parameter values, 
which are mostly not part of D , the MSEs shown in Table 2 

are similar to the ones on Dc and De . Thus, case A and case 
B are somewhat representative for the overall prediction 
quality of the model.

For the following investigations, the calibrated model of 
the third model calibration is chosen, as it performs the best 
on the evaluation dataset. In Fig. 11, the model predictions 
for case A and case B, as well as the corresponding 
coefficients of the effective elasticity tensors from the 
numerical homogenization are presented. Case A is 
symmetric in the parameter combination and the results 
show that the model learned also this underlying symmetry. 
In particular, in the middle the model learned to be cubic, 
meaning same parameter values. Case B features a somewhat 
arbitrary parameter variation and also shows an excellent 
prediction quality. Note the different orders of magnitude of 
the different components for some fixed parameter values, 
as well as the different orders of magnitude in the single 
components when changing the parameter values.

3.4 � Multiscale simulation and verification

Finally, the homogenized effective material model can be 
applied for the multiscale simulation of 3D lattice structures 
consisting of (functionally graded) SP RUCs and be 
evaluated against direct full-scale simulations.

In the first case study, we consider a 3D solid lattice 
made of a uniform, homogeneous SP RUC geometry 
with a = b = c = 5 mm and h = 1 mm ( h∕a = 0.20 ). 

Table 2   MSEs of the neural networks predictions of the effective 
constitutive tensors ℂ(t) of the parameterized SP RUC on the different 
datasets for a different model calibration runs

calibration log10(MSE) on...

run calibration D
c

evaluation D
e

case A case B

1 2.39 2.40 2.34 2.41
2 −0.77 −0.76 −0.77 −0.78
3 −0.77 −0.80 −0.80 −0.85

Fig. 11   Progression of the 
coefficients of the homogenized 
elasticity tensor ℂ(t) (top 
row) for the two variations 
of continuous parameter 
combinations case A and case B 
(left and right). The parameter 
values t are provided in the 
bottom row. Dots denote the 
data, while continuous lines 
denote the neural network 
model predictions
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The dimensions of the 3D solid are constant in the x- 
and y-directions, with L1 = 100 mm and L2 = 100 mm. 
However, we consider three different heights (in the 
z-direction), i.e., L3 = 50, 100, 150 mm. Thus, the full-
scale models consist of 10 × 10 × 5 , 10 × 10 × 10 , and 
10 × 10 × 15 RUCs, respectively. For the homogenized 
model, the corresponding effective material properties 
a r e  o b t a i n e d  a s :  C1111 = C2222 = C3333 = 68.711 
M P a ,  C1122 = C1133 = C2233 = 46.39  M P a ,  a n d 
C1212 = C1313 = C2323 = 24.2 MPa.

For a first investigation, the boundary conditions are 
described using the abbreviation C-C-C-C-F-L, where the 
four sides (left, right, front, and back) are clamped (C), the 
bottom surface is free (F), and the top surface is subject to a 
uniform pressure load (L) with value p0 = 0.5 N/mm2.

Figure 12 shows the distribution of the z-displacement 
u3 graphically for both the full-scale and the homogenized 
models simulated in Abaqus. The displacement distribution 

is very similar, indicating the reliability of the homogenized 
model. To show the accuracy, Fig. 3 compares the results 
obtained using the full-scale, direct shell simulation in 
Abaqus with the multiscale simulation using FEM in Abaqus 
and using DQM in an in-house code. The results converge 
rapidly and are generally in good agreement, which confirms 
the viability of the multiscale approach and verifies the DQM 
against Abaqus. Note that for FEM Nx = Ny = Nz denotes the 
number of elements used in x, y, z-directions, while for the 
DQM it denotes the polynomial degree. The total number 
of degrees of freedom is however comparable for FEM and 
DQM with the same Nx = Ny = Nz . Furthermore, note that 
a perfect agreement of full-scale and multiscale simualtions 
is not to be expected, since boundary and size effects may 
have an influence.

For a second investigation of the same type of structure, 
we just change the boundary conditions to C-C-F-F-F-L, 
indicating that the left and right sides are clamped (C), 

(a) Direct, full-scale simulation with 10× 10× 10 RUCs (b) Multiscale FEM simulation with effective material model

Fig. 12   Comparison of a full-scale and b multiscale simulation of a 3D lattice structure consisting of uniform SP RUCs with a = b = c = 5 mm 
and h∕a = 0.20 . C-C-C-C-F-L boundary conditions are applied and the displacement field u3 is visualized

Table 3   Comparison of the 
maximum displacement u3 (in 
mm) of 3D lattice structures 
consisting of uniform SP 
RUCs subject to C-C-C-C-F-L 
boundary conditions

Lattice size 10 × 10 × 5 10 × 10 × 10 10 × 10 × 15

Full-scale shell model - 0.5852 0.4189 0.4319
Multiscale (Abaqus) N

x
= N

y
= N

z

10 0.5768 0.4638 0.4600
20 0.5699 0.4402 0.4340
33 0.5731 0.4386 0.4348
50 0.5741 0.4393 0.4352

Multiscale (DQM) N
x
= N

y
= N

z

9 0.5698 0.4257 0.4380
13 0.5689 0.4312 0.4353
17 0.5689 0.4374 0.4340
21 0.5690 0.4373 0.4335
25 0.5691 0.4372 0.4333
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while the front, back, and bottom surfaces are free (F), and 
the top surface is subject to a uniform pressure load (L) 
with p0 = 0.5 N/mm2. The accuracy and convergence of the 
results for these different boundary and loading conditions 
can be assessed in Figs. 13 and 4. Once again, a good visual 
agreement of the displacement u3 obtained from full-scale 
and multiscale FEM simulation can be observed in Figs. 13 
and 4 shows good convergence behavior as well as a good 
agreement of maximum u3 for all 3 approaches.

Finally, a functionally graded lattice structure with a non-
uniform distribution of the geometric parameters of the SP 
RUCs is investigated, see Figs. 2d and 14. The dimensions 
of the 3D structure are L1 = L2 = 184 mm and the height 
is varied as either L3 = 100 mm or L3 = 150 mm. The full-
scale model consists of 16 non-uniform RUCs in the x- and 
y-directions, with graded sizes ranging from 15 to 8 mm, 
i.e., with a = b ∈ {7.5,… , 4.5, 4.0, 4.0, 4.5,… , 7.5} mm. 
All unit cells have a height of 10 mm in the z-direction and, 
i.e., c = 5 mm, and a uniform thickness of h = 1 mm. The 

(a) Direct, full-scale simulation with 10× 10× 10 RUCs (b) Multiscale FEM simulation with effective material model

Fig. 13   Comparison of a full-scale and b multiscale simulation of a 3D lattice structure consisting of uniform SP RUCs with a = b = c = 5 mm 
and h∕a = 0.20 . C-C-F-F-F-L boundary conditions are applied and the displacement field u3 is visualized

Table 4   Comparison of the 
maximum displacement u3 (in 
mm) of 3D lattice structures 
consisting of uniform SP 
RUCs subject to C-C-F-F-F-L 
boundary conditions

Lattice size 10 × 10 × 5 10 × 10 × 10 10 × 10 × 15

Full-scale shell model - 1.364 0.8565 0.8793
Multiscale (Abaqus) N

x
= N

y
= N

z

10 1.2677 0.8863 0.8669
20 1.2773 0.8732 0.8530
33 1.2854 0.8755 0.8550
50 1.2878 0.8762 0.8555

Multiscale (DQM) N
x
= N

y
= N

z

9 1.2713 0.8730 0.8547
13 1.2765 0.8711 0.8504
17 1.2771 0.8710 0.8496
21 1.2771 0.8709 0.8493
25 1.2771 0.8709 0.8493

Fig. 14   Illustration of geometric parameter distribution of the 
functionally graded 3D lattice. Colors indicate 

√
a2 + b2 of the unit 

cells
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distributions of the geometric parameters of the functionally 
graded SP lattice are visualized in Fig. 14. Furthermore, 
the material coefficients obtained from the neural network 

model, which are used in the multiscale DQM and result 
from the functional grading in the x − y-plane, are illustrated 
in Fig. 15. Again, the boundary conditions are C-C-F-F-F-L 

(a) 25.9 ≤ C1111 ≤ 110.8 (b) 30.6 ≤ C1122 ≤ 47.0 (c) 21.8 ≤ C1133 ≤ 56.8

(d) 25.4 ≤ C2222 ≤ 110.9 (e) 21.9 ≤ C2233 ≤ 57.0 (f) 20.2 ≤ C3333 ≤ 108.7

(g) 15.0 ≤ C2323 ≤ 29.7 (h) 15.0 ≤ C1313 ≤ 29.7 (i) 20.7 ≤ C1212 ≤ 25.2

Fig. 15   Distribution of the resulting coefficients of the effective material model of the functionally graded lattice structure with dimensions 
184 mm×184 mm in the x − y-plane. The values of Cijkl are given in MPa

(a) Direct, full-scale simulation with 16× 16× 10 RUCs (b) Displacement on top surface of multiscale DQM

Fig. 16   Comparison of a full-scale and b multiscale DQM simulation 
of a functionally graded 3D lattice structure consisting of non-
uniform SP RUCs. C-C-F-F-F-L boundary conditions are applied 

and the displacement field u3 is visualized. Note that for the DQM 
method, only the result on the top surface is visualized
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with the uniform pressure load p0 = 0.5 N/mm2 on the top 
surface.

The deformation of the lattice structure with 16 × 16 × 10 
RUCs resulting from the full-scale shell simulation in 
Abaqus and the displacement distribution on the top surface 
resulting from the multiscale simulation of the 3D solid 
calculated using the differential quadrature method and 
the FFNN material model are shown in Fig. 16. Visually, 
the results are in good agreement, as the magnitudes and 
patterns of the z-displacement u3 are similar. Note that here 
solely the DQM is used for the multiscale analysis, since 
such a grading of material parameters is difficult to realize 
in Abaqus.

Furthermore, Fig. 5 shows a comparison of the maximum 
z-displacement of the full-scale simulation with the DQM 
multiscale results for 16 × 16 × 10 and 16 × 16 × 15 
RUCs. In both cases, the values of the max. u3 are in good 
agreement and also the convergence behavior of the DQM 
for increasing the polynomial order Ni in all directions can 
be observed.

4 � Conclusion

In this work, a computational framework for the multiscale 
modeling of functionally graded shell lattice structures is 
presented. The systematic procedure combines experiments 
and simulation at microscale, full-scale, and macroscale 
levels for the validation and detailed verifications of the 
numerical models and comparison studies.

Functional grading of microstructures can be realized 
through additive manufacturing, which is here exemplified 
using masked stereolithography of a photopolymer material. 
Thus, the material behavior of the 3D printed polymer is first 
characterized for the validation of the full-scale simulation, 
in which Schwarz primitive TPMS structures are modeled 
by shell finite elements. The good agreement between the 
experimental and simulation results validates the accuracy 
and reliability of the simulation model. This shell model is 

then also employed for the microstructural homogenization 
of SP unit cells, which are parameterized by their geometric 
dimensions and shell thickness. The effective linear elastic 
material behavior of these metamaterials is represented by 
a physics-augmented neural network, which preserves the 
rhombic material symmetry and the positive definiteness 
of the parameterized elasticity tensors. It is demonstrated 
that this machine learning based approach can accurately 
express the homogenized material response of the SP RUCs. 
Finally, the multiscale simulation framework is completed 
by using the homogenized material model in FEM and DQM 
simulations of 3D solids. These macroscale simulations 
are verified against full-scale simulations using the shell 
model and a good agreement of multiscale with full-scale 
results, as well as proper convergence behavior of the full-
scale simulations are observed. Furthermore, a functionally 
graded Schwarz primitive lattice structure is analyzed by 
combining the DQM with the ANN material model, which 
is also in good agreement with full-scale simulations.

Overall, we believe that this systematic and validated 
multiscale simulation framework can yield valuable insights 
for the design and additive manufacturing of functionally 
graded shell lattice structures. It was here demonstrated in 
application to MSLA 3D printing and the Schwarz primitive 
TPMS, but could likewise be applied to any other type of 
(additive) manufacturing method or microstructure type. In 
future work, we would like to include even further design 
parameters into the microscale homogenization procedure 
and the effective physics-augmented neural network material 
model, such as process parameters of the manufacturing 
method. Furthermore, since functionally graded lattice 
structures offer great potential in particular for energy 
absorption applications, we want to include dynamic and 
inelastic material behaviors, i.e., elasto-visco-plasticity with 
fracture or failure, into the microscale and effective material 
models.
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Table 5   Comparison of the maximum displacement u3 (in mm) of 
functionally graded 3D lattice structures consisting of non-uniform 
SP RUCs subject to C-C-F-F-F-L boundary conditions

Lattice size 16 × 16 × 10 16 × 16 × 15

Full-scale shell model 2.790 2.362
Multiscale (DQM) N

x
= N

y
= N

z

9 2.8600 2.3315
13 2.8434 2.3146
17 2.8410 2.3174
19 2.8294 2.3073
21 2.8383 2.3120
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