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a b s t r a c t 

Lattice-type periodic metamaterials with beam-like struts have been extensively investigated in recent years 

thanks to the progress in additive manufacturing technologies. However, when lattice structures are subject to 

large deformations, computational simulation for design and optimization remains a major challenge due to 

complex nonlinear and inelastic effects, such as instabilities, contacts, rate-dependence, plasticity, or damage. In 

this contribution, we demonstrate for the first time the efficient and accurate computational simulation of beam 

lattices using a finite deformation 3D beam formulation with inelastic material behavior, instability analysis, and 

contacts. In particular, the constitutive model captures elasto-visco-plasticity with damage/softening from the 

Mullins effect. Thus, the formulation can be applied to the modeling of both stiffer metallic and more flexible 

polymeric materials. The approach is demonstrated and experimentally validated in application to additively 

manufactured lattice structures made from Polyamide 12 by laser sintering and from a highly viscous polymer by 

vat photopolymerization. For compression tests executed until densification or with unloading and at different 

rates, the beam simulations are in very good agreement with experiments. These results strongly indicate that the 

consideration of all nonlinear and inelastic effects is crucial to accurately model the finite deformation behavior 

of lattice structures. It can be concluded that this can be effectively attained using inelastic beam models, which 

opens the perspective for simulation-based design and optimization of lattices for practical applications. 
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. Introduction 

Architected materials such as lattice structures and periodic metama-

erials have received a tremendous amount of attention in recent years

ue to the mechanical and multifunctional properties that they can ex-

ibit, as well as the possibility to effectively realize them by additive

nd other emerging advanced manufacturing (AM) technologies [1] . In

articular, the mechanical behaviors of lattices constituted of truss- or

eam-like struts are highly tailorable. By the choice of base materials

nd micro-architectures, properties such as the stretchability and com-

ressibility [2,3] , anisotropic, auxetic, chiral, or oligomodal behavior

4–6] , resilience, damage-tolerance and failure [7–9] , uncertainties, in-

tabilities, or rate-dependence [10–14] , energy absorption and dissipa-

ion [15–17] , or multi-physical behaviors such as shape memory and

ctive deformations [18,19] can be achieved. 

Main drivers for the industrial adoption of lattice structures are the

erformance and material efficiency improvements, as well as the indi-

idualization made possible by AM. Besides material and manufacturing

dvancements, simulation-based design and optimization of lattices is a
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ey ingredient. When restricted to the linear elastic range, which ap-

lies to “stiff” lattice structures or, more general, to metamaterials with

inimal compliance, full-scale and multiscale simulation and optimiza-

ion are well established using both analytical and numerical methods

20–24] . However, for “soft ” lattice structures that can exhibit at least

oderate deformations, instabilities and contacts occur along with in-

lastic effects such as rate-dependence, plasticity, damage, or failure,

hich makes computational simulation much more challenging [1,25] .

So far most works that compare experimental and modeling results

mploy nonlinear and inelastic 3D continuum finite element methods,

.f. [2,8,9,12,14,15,19] , achieving varying degrees of agreement be-

ween experiments and simulations at very high computational costs

26–29] . However, in particular for lattices with slender struts, compu-

ationally more efficient beam models would be highly desirable to fa-

ilitate extensive parameter studies, design optimization, or uncertainty

uantification. 

Though first steps in this direction have been made [30–34] , to

he best of our knowledge, the applicability of finite deformation in-

lastic 3D beam modeling of lattice structures has so far only been
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emonstrated and validated for metallic lattices considering plasticity

nd damage/fracture [35,36] , as well as viscoelastic polymeric lattices

16] . Thus, the aims of this manuscript are to show that (i) inelastic

aterial models for beams with elasto-visco-plasticity and damage can

e calibrated to relatively simple experimental data, (ii) inelastic beam

ormulations can accurately predict the mechanical behavior of lattices

ubject to large deformations with instabilities and contacts, and that

iii) it is crucial to consider all relevant inelastic phenomena to obtain

ualitatively meaningful simulation results. 

. Methods 

.1. Finite deformation inelastic 3D beam model 

To simulate the mechanical deformation of 3D lattice structures, the

truts are here modeled as geometrically exact beams, often referred

o as Cosserat rods, or Timoshenko or Simo–Reissner beams [37–39] .

his theory accounts for large deformations and rotational changes and

ncludes shear effects, but is limited to small to moderate strains since

he cross-sections are assumed to remain undeformed and plane, and

inear constitutive models are employed. Nevertheless, it can also be

xtended to inelastic material behavior [40,41] , which is very briefly

ummarized in the following. 

A geometrically exact beam of length 𝐿 is represented by its arc-

ength parameterized centerline curve 𝒓 ( 𝑠 ) and the cross-section ori-

ntation in terms of a rotation matrix field 𝑹 ( 𝑠 ) . Figure 1 a illustrates

he initial configurations of 8 differently oriented beams that consti-

ute a body-centered cubic (BCC) unit cell. The initial centerline curves

̊
 ( 𝑠 ) are shown in gray, the two cross-section directors 𝒅̊ 1 , 𝒅̊ 2 given by
̊
 ( 𝑠 ) = ( ̊𝒅 1 , 𝒅̊ 2 , 𝒅̊ 3 = 𝒓̊ ′) as red and green arrows, and the solid cross-

ections are indicated transparently. The kinematics of the beam are

xpressed in terms of two strain measure vectors: 

𝜺 ( 𝑠 ) = 𝑹 

⊤𝒓 ′ − 𝑹̊ 

⊤
𝒓̊ ′, 

( 𝑠 ) = 𝒌 − 𝒌̊ with 𝒌 = axl ( 𝑹 

′⊤𝑹 ) , (1) 

hich express shear strains, axial stretch, bending curvatures, and twist.

he quasi-static mechanical equilibrium of the beam is then described

y the balance of linear and angular momentum: 

𝒏 ′ + 𝒇 = 𝟎 
 

′ + 𝒓 ′ × 𝒏 = 𝟎 ∀𝑠 ∈ (0 , 𝐿 ) . (2) 

he internal forces and moments are related to the stress resultants

s 𝒏 ( 𝑠 ) = 𝑹 ( 𝑠 ) 𝝈( 𝑠 ) , 𝒎 ( 𝑠 ) = 𝑹 ( 𝑠 ) 𝝌( 𝑠 ) , and 𝒇 ( 𝑠 ) = (0 , 0 , − 𝜌𝑔) ⊤ denotes the

ody force. 

The material model, which is required for the closure of the nonlin-

ar system of equilibrium equations, is expressed using a Helmholtz free
Fig. 1. Illustration of the beam, inelastic m

2 
nergy function Ψ [39] : 

( 𝑠 ) = 

𝜕Ψ
𝜕 𝜺 

, 𝝌( 𝑠 ) = 

𝜕Ψ
𝜕 𝜿

, (3)

hich can be formulated in terms of 𝜺 , 𝜿 and further internal variables

o include inelastic behaviors [41,42] : 

( 𝑠 ) = 𝜂Ψ𝑒 ( 𝜺 − 𝜺 𝑝 , 𝜿 − 𝜿𝑝 ) + Ψ𝑑 ( 𝜂) 

+ 

𝑚 ∑
𝑖 =1 

Ψ𝑣 
𝑖 
( 𝜺 − 𝜺 𝑣 

𝑖 
, 𝜿 − 𝜿𝑣 

𝑖 
) + Ψℎ ( 𝝂, 𝝁, 𝜇0 ) . (4) 

his model corresponds to a generalized Maxwell rheological model

ith an elasto-plastic branch with damage and 𝑚 visco-elastic branches,

ee Fig. 1 b. Furthermore, to advance the internal variables and ensure

hermo-dynamic consistency, i.e., the fulfillment of the Clausius–Duhem

nequality 𝝈 ⋅ 𝜺̇ + 𝝌 ⋅ 𝜿̇ − Ψ̇ ≥ 0 , suitable evolution equations must be de-

ned. For plasticity, these flow rules depend on a yield function Φ,

hich is directly expressed in terms of the stress resultants 𝝈, 𝝌 and

onjugate non-equilibrium stresses of the beam model. Further details

n the model formulation, in particular the (inelastic) potentials and

volution equations, are provided in Appendix A.1 . 

.2. Computational simulation of lattice structures 

For the numerical solution of the inelastic 3D beam model, a mixed

sogeometric collocation method is employed here [41,43] . A brief sum-

ary of the approach is provided in Appendix A.2 . However, it should

e noted that the numerical method itself is not critical for the results

resented in this work, i.e., finite element or finite difference methods

ould be used alternatively. Likewise, other beam models that allow

he consideration of inelastic material effects could be used, e.g., the

ughes-Liu element in LS-DYNA [16,35,36] . 

So far, only the mechanical and computational modeling of a single

eam has been introduced. For a lattice structure, each strut is modeled

s a beam and discretized as described above, see also Fig. 1 c. Due to

he concentration of material at the lattice nodes, a rigid coupling of the

truts is assumed at the joints. Thus, forces and moments are in equilib-

ium at each node and positions and changes of cross-section orientation

re equal for all coupled beam end points, see [43] for details. Then, the

oupled nonlinear system of equations is solved in order to determine

he deformed configuration of the beam assembly for given boundary

onditions. Here, the lattice structures are typically clamped, i.e., posi-

ions and rotations are prescribed at certain boundaries. Simulations are

erformed in a displacement-controlled manner, i.e., by incrementing

he prescribed displacements over several load steps, typically yielding

ffective strain increments of 0.25–0.5% per step. 

In fact, especially for polymer structures fabricated by inkjet, SLS,

r MSLA, which have a high geometric accuracy and material homo-
aterial, and lattice structure models 



O. Weeger, I. Valizadeh, Y. Mistry et al. Additive Manufacturing Letters 4 (2023) 100111 

g  

t  

g  

b  

p  

[

 

a  

c  

s  

t  

o  

𝑛  

v  

t  

t  

F

 

p  

m  

s  

m  

c  

p

 

t  

s  

n  

t  

n

2

 

p  

a  

p

 

P  

s  

D  

o

 

R  

t  

m  

p

 

d

 

t  

(  

1  

s  

F

3

3

 

m  

P

 

s  

Fig. 2. Characterization of the material model for the laser sintered Polyamide 

12 based on uniaxial tension tests 
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eneity, the material concentration at nodes further restricts deforma-

ion and requires additional stiffening [31,44,45] . Thus, the struts are

raded by increasing the diameters towards the nodes, i.e., close to the

eam ends. This nodal stiffening approach with geometrically derived

arameters was previously successfully applied to inkjet printed lattices

13,31] . 

Furthermore, beam lattices are prone to geometric instabilities such

s strut buckling. To resolve these instabilities and obtain numerical

onvergence, post-buckling analysis methods are applied [13] . Here, a

imple perturbation approach is used, in which the control points of

he initial centerlines 𝒓̊ 𝑖 are randomly perturbed [46] . The refinement

f the initial NURBS functions and curves is chosen with 𝑝 0 = 3 and

 0 = 4 , and the perturbations are normally distributed with 0-mean and

ariance 0 . 025 𝑑 , 𝑑 being the nominal, as-designed strut diameter. Thus,

he simulation results are non-deterministic and different instances of

he simulations may result in different post-buckling behaviors, see e.g.

ig. 3 . 

Additionally, beam-to-beam contacts typically occur at large com-

ressive displacements due to the compaction of lattice cells. To deter-

ine possible contact points, the centerlines are discretized into equally

paced candidate points and a penalty formulation is used to allow only

inimal penetration when two beams intersect, see [47] . Rigid body

ontacts, e.g., with the plates used to apply the displacements in com-

ression tests, are also considered. 

Generally, it must be noted that the combination of finite deforma-

ions, instabilities, contacts, and inelastic material behavior make this

imulation problem highly nonlinear and non-convex, i.e., the solutions

on-unique. Thus, for increasing compaction with a multitude of con-

acts and plastic zones, convergence can be difficult to achieve and the

umerical method may diverge. 

.3. Experimental methodologies 

The inelastic beam modeling framework as presented above is ap-

lied to lattice structures realized by two different polymer materials

nd additive manufacturing processes, i.e., laser sintering (SLS) and vat

hotopolymerization (masked stereolithography, MSLA). 

For the SLS process, an EOS FORMIGA P 110 machine is used with

olyamide 12 (PA12, nylon) as material. Uniaxial tension tests with

tandard specimens for material characterization according to ASTM

638-14 and compression tests of 3D printed lattices are carried out

n an Instron 5985 testing machine with a 250 kN load cell. 

For the MSLA process, a Prusa SL1S 3D printer and the Prusament

esin Tough Prusa Orange are used. The main printing parameters are

he layer height of 0.05 mm and the cure time per layer of 3 s. Here, the

aterial characterization experiments and lattices compression tests are

erformed on a MFC T500-1200 testing machine with a 5 kN load cell. 

All experiments are executed at room temperature and temperature-

ependence of the materials and models is not considered. 

The lattice geometries are designed in Rhino 6 with the IntraLat-

ice plug-in for Grasshopper. From this software, the centerline curves

which are here always straight lines and can be described with 𝑝 0 =
 , 𝑛 0 = 2 ) are exported in a NURBS format for the simulations and the

olid geometries are exported as STL triangulations for 3D printing, see

ig. 1 a. 

. Results and discussion 

.1. Lattice structures fabricated by laser sintering 

The nonlinear simulation approach based on an inelastic 3D beam

odel is first demonstrated in application to lattices laser sintered from

olyamide 12. 

In order to characterize the material model for PA12, uniaxial ten-

ile tests are carried out on standard specimens at four strain rates
3 
̇  = 10 −4 , 10 −3 , 10 −2 , 10 −1 s −1 . For each strain rate, three tests are exe-

uted and the corresponding averaged stress–strain curves are shown in

ig. 2 . Then, the parameters of the rate-independent elasto-visco-plastic

onstitutive model are fitted to the experimental results, see also Fig. 2 ,

s well as Appendix A.3 for further details and Eq. (A.11) for parameter

alues. A reasonable agreement in terms of the rate-dependence of the

isco-elastic range, the onset of yield, and the plastic hardening behav-

or is obtained. 

Next, BCC lattices with 3 × 3 × 3 unit cells of cell size 𝐿 𝑐 = 15 mm

ith circular cross-sections at two strut diameters 𝑑 = 1 . 2 , 1 . 8 mm are

abricated from PA12 by SLS, see Fig. 3 . As can be seen in Fig. 3 a, at the

op and bottom almost rigid plates are attached so that the struts can

e considered as fully clamped there. For each diameter, three speci-

ens are subjected to compression tests up to 𝑢 = 25 mm applied dis-

lacement (equivalent to 𝜀 = 55 . 6% effective compressive strain) at the

eformation rate 𝑢̇ = 1 mm/s, see Fig. 3 b,c. The snapshots and force–

isplacement curves in Fig. 3 show that the deformation behavior of

he structures is generally characterized by a compression-dominated

lastic initial phase, followed by buckling of the mid layer of cells that

eads to elastic softening in some struts and yielding in others (see 𝑢 = 6
m in Fig. 3 a), and then compaction that causes beam-to-beam contacts

 𝑢 = 11 mm), which lead to a stiffer overall response ( 𝑢 = 14 mm) until

lso the top and bottom layers buckle ( 𝑢 = 24 mm). The experimental

est results of all three specimens are qualitatively and quantitatively

airly consistent for both diameters until the second instability occurs.

his can be explained by manufacturing tolerances having only a mi-

or effect on the load at which the first instability occurs, but possibly

eading to (slightly) different buckling patterns. Once the lattices com-

act, the contacts lead to a similar load increase, but may ultimately

ause very different post-buckling patterns with consequently different

lastified areas, producing a large variety of behaviors and load levels. 

The simulation of the lattice structures with a total of 216 struts

s also carried out three times for each diameter with different random-

zed perturbations of the centerline curves. The rate-independent elasto-

isco-plastic material model with parameters as specified in Eq. (A.11) is

mployed. The resulting force–displacement curves plotted in Fig. 3 b,c

how a good qualitative and quantitative agreement with the experi-

ental test results. The highly complex deformation behavior of the lat-

ice with instabilities, plastification and contacts is well reproduced, as

an also be seen by visual comparison of the snapshots in Fig. 3 a. Since

he applied perturbations are relatively small, the simulation curves co-

ncide almost perfectly until the second instability occurs. Then, they

xhibit also fairly different behaviors, especially for 𝑑 = 1 . 2 mm, which

s again very similar to the experiments. 
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Fig. 3. Compression tests of SLS printed 3 × 3 × 3 BCC lattice structures (curves of the same color indicate different instances of the same experiment or simulation) 
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Additionally, Fig. 3 c shows curves for simulations for 𝑑 = 1 . 8 mm

sing a purely elastic, visco-elastic, and elasto-plastic material model.

t can be seen that plasticity is crucial to obtain the initial instability

nd softening behavior, otherwise the force response is severely over-

stimated. Visco-elasticity is required to capture the rate-dependence of

he (initial) stiffness and relaxation behavior. Overall, this shows that

odeling inelastic effects is crucial to even qualitatively predict the de-

ormation behavior of lattice structures and that this can be accurately

chieved by a inelastic beam formulation – though the aspect ratios

 𝑐 = 𝑑∕ 𝐿 𝑐 are only moderately slender with 0.08 and 0.12. 

.2. Lattice structures fabricated by photopolymerization 

Now, the inelastic beam modeling approach is applied to lattice

tructures manufactured by MSLA of a photopolymer with highly vis-

ous behavior. 

For the experimental characterization of the material model, cyclic

niaxial tension tests with loading up to 3%, 6% and 9% strain fol-

owed by immediate unloading at the same strain rate, as well as stress

elaxation tests with loading up to 2% strain and holding of the applied

eformation/strain are performed at different strain rates. The averaged

tress–strain curves of 3 tests each in Fig. 4 show that this material be-

aves much more viscous than PA12, exhibiting strong rate-dependence

nd considerable stress relaxation even when loaded at the lowest rate

̇  = 4 ⋅ 10 −5 s −1 . The parameters of the now rate-dependent elasto-visco-

lastic constitutive model with damage are fitted to the cyclic and relax-

tion tests, see also Fig. 4 and Eq. (A.12) for parameter values. The load-

ng and relaxation behavior can be described very well by the model.

nly the unloading behavior in the cyclic tension tests shows larger de-
4 
iations, which may be related to the limitations of the simple plasticity

odel or the damage model. 

BCC lattices structures with 3 × 3 × 3 RUCs are fabricated by MSLA,

ee Fig. 5 . The cell size is 𝐿 𝑐 = 10 mm and the strut diameters of the

ircular cross-sections are 𝑑 = 0 . 9 , 1 . 2 mm, i.e., the aspect ratios are

 𝑐 = 0 . 09 , 0 . 12 . As before, at the top and bottom almost rigid plates are

ttached to fully clamp the struts there, see Fig. 5 a. The specimens are

ubjected to compression tests at two deformation rates 𝑢̇ = 0 . 375 , 3 . 75
m/min, which are executed in a cyclic fashion, i.e., with loading up

o an applied displacement 𝑢 = 4 . 5 mm, corresponding to an effective

train 𝜀 = 15% , and then unloading. Additionally, for 𝑑 = 0 . 9 mm cyclic

ests are carried out with loading up to 𝑢 = 6 . 0 mm or 𝜀 = 20% . The

orce–displacement curves for theses experimental tests are shown in

ig. 5 b,c. 

The simulations of the lattices are carried out with the rate-

ependent elasto-visco-plastic material model with damage with param-

ters as specified in Eq. (A.12) , again using different randomized per-

urbations of the initial centerline curves. For the thicker structure with

 = 1 . 2 mm, four snapshots of the deformed lattice structure (on the

oading path) in experiment and simulation are shown in Fig. 5 a. Vi-

ually, a good agreement of the deformation patterns can be observed.

urthermore, the also the force–displacement curves plotted in Fig. 5 b

re in an excellent qualitative and quantitative agreement in the elas-

ic loading, the post-buckling and plastification, as well as the unload-

ng phases. Importantly, the behavior at both strain rates is predicted

qually well. For the thinner structure with 𝑑 = 0 . 9 mm, the plots in

ig. 5 c also show a good agreement of the experimental and simulation

esults with slightly larger deviations, which are also present in the dif-

erent experimental instances. However, in order to obtain these results

nd not to significantly over-predict the responses for 𝑑 = 0 . 9 mm, in
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Fig. 4. Characterization of the material model for the MSLA printed polymer 

Fig. 5. Cyclic compression tests of MSLA printed 3 × 3 × 3 BCC lattice structures. 
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he simulations the strut diameters had to be reduced to 𝑑 = 0 . 85 mm

nd the Young’s modulus to 𝐸 = 210 MPa. These corrections can be jus-

ified by a likely decay in light intensity of the MSLA printer due to

any other objects being printed in between the material characteriza-

ion tests (and the structures with 𝑑 = 1 . 2 mm) and these lattices with

 = 0 . 9 mm, which potentially led to a reduction of the degree of cure

nd thus the material stiffness, see [48] . Furthermore, there could be

eometric deviations in the order of the printer resolution of 0.05 mm
5 
49] , which could have a more significant impact on the mechanical

ehavior compared to the structures with 𝑑 = 1 . 2 mm. 

These observations and explanations are also confirmed by another

attice structure, consisting of 3 × 3 × 3 Octahedron RUCs with 𝐿 𝑐 = 10
m and 𝑑 = 0 . 8 mm, see Fig. 6 . The printed lattice and simulation model

re shown in Fig. 6 a and the force–displacement curves for cyclic com-

ression tests up to 𝑢 = 4 . 5 , 6 . 0 mm applied deformation at different rates

̇  = 0 . 375 , 3 . 75 mm/min are plotted in Fig. 6 b. Again, a very good agree-
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Fig. 6. Cyclic compression tests of MSLA printed 3 × 3 × 3 Octahedron lattice 
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ent of the experimental and simulation results can be observed in both

oading and unloading and for both rates. However, also for these Octa-

edron lattices, which have a small strut diameter 𝑑 = 0 . 8 mm and were

rinted at the same time as the BCC lattices with 𝑑 = 0 . 9 mm, it was

ecessary to set 𝐸 = 210 MPa and 𝑑 = 0 . 76 mm in the simulations. 

Altogether, this application to MSLA 3D printing shows that also

ighly viscous, rate-dependent, and unloading behavior of lattices, in

ombination with instabilities, plasticity, and damage, can be accurately

odeled using the inelastic beam model. The effects of manufacturing

ncertainties resulting in deviations of material and geometric proper-

ies should be further investigated in future research, which is facilitated

y the beam modeling approach. 

. Conclusions 

In this work, the application of a 3D beam formulation, which consid-

rs elasto-visco-plastic material behavior and damage, as well as finite

eformations with instabilities and contacts, to the modeling of addi-

ively manufactured beam lattice structures was presented. The inelastic

aterial models for SLS printed PA12 and a MSLA printed photopolymer

ere characterized by relatively simple uniaxial tension tests at differ-

nt strain rates, including cyclic loading and relaxation. Then, a qualita-

ively and quantitatively good agreement of experimental compression

ests of additively manufactured lattice specimens with the numerical

imulations of the structures using the inelastic beam model could be

chieved. Furthermore, it was shown that the consideration of all rele-

ant inelastic phenomena, instabilities, and contacts is necessary to ob-

ain meaningful simulation results that reflect the highly nonlinear and

omplex deformation behavior of the loading and unloading of beam

attices. 
6 
Since the simulations using beam models are computationally more

fficient than 3D continuum finite element analyses, especially when

nstabilities and contacts occur, these results could pave the way for a

roader industrial application of lattice structures, which requires ac-

urate and efficient simulations to shorten design cycles. Furthermore,

lso the design optimization of lattices subject to large deformations

ay become attainable [50] . 

Nevertheless, a limitation of this work is that the temperature-

ependence of the materials and heat flow have not been considered.

or instance, for PA12, temperature-dependent material models have

lready been investigated [51,52] and the beam model could be further

xtended in this direction. Furthermore, for stiffer and brittle materials

uch as ABS or metals, fracture should be taken into account to model

ighly compressed lattices. On the other hand, for soft elastomers such

s TPU, the elastic nonlinearity would be more pronounced for highly

tretched lattices and the beam model could be extended to nonlinear

yperelasticity. 
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ppendix A 

1. Inelastic beam material model 

As already mentioned in Section 2.1 , the main ingredients of a

hermo-dynamically consistent constitutive model for the 3D beam for-

ulation are a Helmholtz free energy function Ψ, see Eq. (4) , from which

he stress resultants can be derived, see Eq. (3) , and evolution equa-

ions for the internal variables that are required to evaluate Ψ [42] . 

Following [41] , here the free energy is additively decomposed into

he elastic strain energy potential Ψ𝑒 , as well as the internal energy po-

entials for damage Ψ𝑑 , the viscous dash-pots Ψ𝑣 
𝑖 
, and plastic hardening

ℎ . The related additional internal variables are the scalar damage fac-

or 𝜂 for the Mullins effect, the plastic strain vectors 𝜺 𝑝 , 𝜿𝑝 , the kinematic

ardening vectors 𝝂, 𝝁, the isotropic hardening variable 𝜇0 , and the vis-

ous strain vectors 𝜺 𝑣 
𝑖 
, 𝜿𝑣 

𝑖 
. 

The potentials are typically assumed as quadratic, e.g., for homoge-

eous cross-sections as: 

Ψ𝑒 ( ̃𝜺 , ̃𝜿) = 

1 
2 𝜺̃ ⋅𝑨 ⋅ 𝜺̃ + 

1 
2 𝜿̃ ⋅ 𝑪 ⋅ 𝜿̃, 

Ψ𝑣 
𝑖 
( ̃𝜺 , ̃𝜿) = 

1 
2 𝜺̃ ⋅𝑨 

𝑣 
𝑖 
⋅ 𝜺̃ + 

1 
2 𝜿̃ ⋅ 𝑪 

𝑣 
𝑖 
⋅ 𝜿̃, (A.1) 

ℎ ( 𝝂, 𝝁, 𝜇0 ) = 

1 
𝝂 ⋅𝑨 

ℎ ⋅ 𝝂 + 

1 
𝝁 ⋅ 𝑪 

ℎ ⋅ 𝝁 + 

1 
𝐻 

ℎ 𝜇2 
0 . 

https://github.com/CPShub/sim-data
https://doi.org/10.13039/501100001659
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𝑚
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𝐸

𝑚

or the elastic potential, it is 𝑨 = diag ( 𝑘 1 𝐺𝐴, 𝑘 2 𝐺𝐴, 𝐸𝐴 ) and 𝑪 =
iag ( 𝐸 𝐼 1 , 𝐸 𝐼 2 , 𝐺𝐽 ) , with 𝐸 being the Young’s modulus and 𝐺 the shear

odulus of the material, 𝐴 the area, 𝐼 1 , 2 the second moments of area,

nd 𝐽 the polar moment of the cross-section. Here, only circular cross-

ections with radius 𝑟 and diameter 𝑑 = 2 𝑟 are considered, for which 𝐴 =
𝑟 2 , 𝐼 1 = 𝐼 2 = 

𝜋𝑟 4 

12 , 𝐽 = 𝐼 1 + 𝐼 2 , 𝑘 1 = 𝑘 2 = 

5 
6 holds. For simplicity, the ma-

erial matrices of the dissipation potentials are expressed as 𝑨 

𝑣 
𝑖 
= 𝜁𝑖 𝑨 ,

 

𝑣 
𝑖 
= 𝜗 𝑖 𝑪 with viscosity factors 𝜁𝑖 , 𝜗 𝑖 ≥ 0 , and 𝑨 

ℎ = 𝜁ℎ 𝑨 , 𝑪 

ℎ = 𝜗 ℎ 𝑪 with

inematic hardening factors 𝜁ℎ , 𝜗 ℎ ≥ 0 . The isotropic hardening factor is

 

ℎ ≥ 0 . 
In analogy to the Maxwell rheological model, the evolution equa-

ions for the 𝑚 visco-elastic branches are expressed using the relaxation

imes 𝜏𝑖 , 𝜄𝑖 > 0 as: 

̇  𝑣 
𝑖 
= 

1 
𝜏𝑖 
( 𝜺 − 𝜺 𝑣 

𝑖 
) , 𝜿̇𝑣 

𝑖 
= 

1 
𝜄𝑖 
( 𝜿 − 𝜿𝑣 

𝑖 
) . (A.2)

The elasto-plastic internal strain and hardening variables are gov-

rned by the flow rules: 

̇  𝑝 = 𝜆̇
𝜕Φ
𝜕 𝝈

, 𝜿̇𝑝 = 𝜆̇
𝜕Φ
𝜕 𝝌

, 

𝝂̇ = 𝜆̇
𝜕Φ
𝜕 𝒈 

, 𝝁̇ = 𝜆̇
𝜕Φ
𝜕 𝒉 

, 𝜇̇0 = 𝜆̇
𝜕Φ
𝜕ℎ 0 

. (A.3) 

ere, a yield function of the form: 

(
𝝈, 𝝌 , 𝒈 , 𝒉 , ℎ 0 

)
= 

( 

σ1 + b g 1 
σy 1 

) 2 

+ 

( 

σ2 + b g 2 
σy 2 

) 2 

+ 

( 

σ3 + b g 3 
σy 3 

) 2 

+ 

( 

χ1 + b h 1 
χy 1 

) 2 

+ 

( 

χ2 + b h 2 
χy 2 

) 2 

+ 

( 

χ3 + b h 3 
χy 3 

) 2 

−ζy 0 
(
1 + ah 0 

)
, (A.4) 

s used, which is formulated in terms of the stress resultants and the

onjugated non-equilibrium stresses: 

 = − 

𝜕Φ
𝜕 𝝂

, 𝒉 = − 

𝜕Φ
𝜕 𝝁

, ℎ 0 = − 

𝜕Φ
𝜕𝜇0 

. (A.5)

he material parameters of the yield function are the yield stress resul-

ants 𝜎
𝑦 

𝑖 
, 𝜒

𝑦 

𝑖 
, the initial yield limit 𝜁

𝑦 

0 , and the isotropic and kinematic

ardening factors 𝑎, 𝑏 . Note that the definition of the yield function in

erms of stress resultants of beam models is currently still a subject to

f investigation [54,55] . 

For rate-independent plasticity, Φ and the plastic multiplier 𝜆̇ must

ulfill the Karush–Kuhn–Tucker optimality conditions: 

̇ ≥ 0 , 𝜆̇Φ = 0 , Φ ≤ 0 . (A.6)

or rate-dependent (visco-) plasticity, according to the Perzyna model

42] , 𝜆̇ can be directly obtained as: 

̇ = 

1 
𝜂𝑝 

< Φ( 𝝈, 𝝌 , 𝒈 , 𝒉 , ℎ 0 ) >, (A.7)

ith the viscosity parameter 𝜂𝑝 > 0 and the Macaulay brackets < 𝑥 > =
1 
2 ( 𝑥 + |𝑥 |) . 

Using the Ogden and Roxburgh model for the Mullins effect [56,57] ,

he damage variable is directly expressed as: 

= 𝜂
(
𝜺 − 𝜺 𝑝 , 𝜿 − 𝜿𝑝 

)
= 1 − 

1 
𝑟 𝑑 

erf 

( 

1 
𝑚 𝑑 

(
Ψ𝑒 
max − Ψ𝑒 

)) 

ith Ψ𝑒 
max ( 𝑠, 𝑡 ) = max 

𝜏≤ 𝑡 
Ψ𝑒 ( 𝑠, 𝜏) , (A.8) 

here 𝑟 𝑑 , 𝑚 𝑑 > 0 are the parameters of the model. In this way, 𝜂 need not

e treated as an evolving internal variable and an explicit representation

f Ψ𝑑 is not required. 

2. Isogeometric collocation method 

As already mentioned in Section 2.2 , an isogeometric collocation

ethod is employed here for the discretization of the inelastic beam
7 
odel. This particular approach was introduced in [43] and already

uccessfully applied for elastic large deformation design and simulation

f beam lattices [31] . 

The main concept of isogeometric analysis is to employ spline repre-

entations for the parameterization of geometry and the discretization

f solution fields [58] . For the beam model, the initial and deformed

enterline curves and orientation matrix fields, which are here param-

terized by unit quaternions, 𝑹 ( 𝑠 ) = 𝑹 ( 𝒒 ( 𝑠 )) with 𝒒 ∈ ℝ 

4 , ‖𝒒 ‖ = 1 , are

xpressed as NURBS curves: 

𝒓̊ ( 𝑠 ) = 

𝑛 0 ∑
𝑖 =1 

𝑁̊ 𝑖 ( 𝑠 ) ̊𝒓 𝑖 , 𝒓 ≈ 𝒓 ℎ ( 𝑠 ) = 

𝑛 ∑
𝑖 =1 

𝑁 𝑖 ( 𝑠 ) 𝒓 𝑖 , 

̊  ( 𝑠 ) = 

𝑛 0 ∑
𝑖 =1 

𝑁̊ 𝑖 ( 𝑠 ) 𝒒̊ 𝑖 , 𝒒 ≈ 𝒒 ℎ ( 𝑠 ) = 

𝑛 ∑
𝑖 =1 

𝑁 𝑖 ( 𝑠 ) 𝒒 𝑖 , (A.9) 

here 𝑁̊ 𝑖 are the 𝑛 0 NURBS shape functions of degree 𝑝 0 and 𝒓̊ 𝑖 , 𝒒̊ 𝑖 
he control points that describe the initial configuration, while 𝑁 𝑖 are 𝑛

URBS of degree 𝑝 and 𝒓 𝑖 , 𝒒 𝑖 the (to be determined) control points of

he deformed configuration. Here, 𝑝 = 6 , 𝑛 = 12 are chosen to ensure a

ufficient accuracy of the solution. 

The idea of isogeometric collocation [59] is to substitute the dis-

retization of Eq. (A.9) into the strong form of the balance Eq. (2) and

valuate it at 𝑛 discrete points, the so-called collocation points 𝑠 𝑖 : 

𝒏 ′( 𝑠 𝑖 ) + 𝒇 ( 𝑠 𝑖 ) = 𝟎 , 
 

′( 𝑠 𝑖 ) + 𝒓 ′( 𝑠 𝑖 ) × 𝒏 ( 𝑠 𝑖 ) = 𝟎 , (A.10) ‖𝒒 ( 𝑠 𝑖 ) ‖2 − 1 = 0 . 

his results in a nonlinear system of 7 𝑛 equations that determines the

 control points 𝒓 𝑖 , 𝒒 𝑖 of the deformed configuration. To solve this non-

inear system, a Newton–Raphson method is used, which requires the

radients of Eq. (A.10) . Furthermore, at each collocation point, the time-

ntegration of the evolution equations of the visco-plastic internal vari-

bles Eqs. (A.2) and (A.3) is required, for which an implicit Euler method

s used here [41] . 

Here, in fact a mixed method is used, which means that the stress

esultants are separately discretized as 𝝈ℎ ≈ 𝝈, 𝝌ℎ ≈ 𝝌 , which provides

he advantages of higher accuracy, alleviation of locking phenomena,

aster evaluation, and easier implementation, especially with the inelas-

ic material models [41] . 

3. Material parameters 

As discussed in Section 3 , the material parameters of the constitutive

odels are all obtained by fitting to characterization experiments, in

hich only (one-dimensional) uniaxial tension states are considered, see

igs. 2 and 4 . In fact, in this way only the relation of 𝜎3 with 𝜀 3 can

e (accurately) characterized and the shear and bending behaviors are

ssumed to be consistent with the tensile behavior. Of course, a much

ore elaborate material characterization could be carried out, but as the

esults here show, this simplification already provides good qualitative

nd quantitative predictions of the effective lattice behavior. 

In particular, the following parameters are identified for the laser

inetered PA12: 

 = 1500 MPa , 𝜈 = 0 . 45 , 𝜌 = 930 kg/m 

3 
, 

 = 1 , 𝜁1 = 𝜗 1 = 0 . 3 , 𝜏1 = 𝜄1 = 4 . 0 , (A.11) 

𝑦 

𝑖 
= 0 . 033 ⋅ 𝐸𝐴, 𝜒

𝑦 

𝑖 
= 0 . 05 ⋅ 𝐸𝐼𝑟, 

ℎ = 𝜗 ℎ = 0 . 25 , 𝑏 = 1 , 𝑎 = 0 , 

nd the MSLA printed though polymer: 

 = 220 MPa , 𝜈 = 0 . 45 , 𝜌 = 1100 kg/m 

3 
, 

 = 3 , 𝜁1 = 𝜗 1 = 0 . 5 , 𝜏1 = 𝜄1 = 1 . 2 , 

𝜁2 = 𝜗 2 = 0 . 6 , 𝜏2 = 𝜄2 = 14 , 

𝜁3 = 𝜗 3 = 0 . 65 , 𝜏3 = 𝜄3 = 220 , (A.12) 
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𝑦 

𝑖 
= 0 . 055 ⋅ 𝐸𝐴, 𝜒

𝑦 

𝑖 
= 0 . 11 ⋅ 𝐸𝐼𝑟, 

ℎ = 𝜗 ℎ = 0 . 4 , 𝑏 = 1 , 𝑎 = 0 , 𝜂𝑃 = 50∕ 𝐴, 

 𝑑 = 0 . 3 , 𝑚 𝑑 = 0 . 005 ⋅ 𝐸𝐴. 

ote that the Poisson’s ratios are assumed as near incompressible with

= 0 . 45 , but in the beam model the value is not critical, as it is only

equired to calculate the shear modulus 𝐺 = 𝐸∕(2 + 2 𝜈) . Furthermore,

he densities are also just estimated from literature references. They are

nly used to computed the values of the body load in Eq. (2) , which

as a minor effect on the overall force response since the structures are

ufficiently stiff. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.addlet.2022.100111 . 

eferences 

[1] J.R. Greer, V.S. Deshpande, Three-dimensional architected materials and structures:

design, fabrication, and mechanical behavior, MRS Bull. 44 (10) (2019) 750–757,

doi: 10.1557/mrs.2019.232 . 

[2] Y. Jiang, Q. Wang, Highly-stretchable 3D-architected mechanical metamaterials, Sci.

Rep. 6 (1) (2016), doi: 10.1038/srep34147 . 

[3] Y. Zhang, K. Yu, K. Lee, K. Li, H. Du, Q. Wang, Mechanics of stretchy elastomer

lattices, J. Mech. Phys. Solids (2022) 104782, doi: 10.1016/j.jmps.2022.104782 . 

[4] S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamate-

rials with negative Poisson’s ratio, Adv. Mater. 25 (36) (2013) 5044–5049 . 

[5] M. Kadic, G.W. Milton, M. van Hecke, M. Wegener, 3D metamaterials, Nat. Rev.

Phys. 1 (3) (2019) 198–210, doi: 10.1038/s42254-018-0018-y . 

[6] A. Bossart, D.M.J. Dykstra, J. van der Laan, C. Coulais, Oligomodal metama-

terials with multifunctional mechanics, Proc. Natl. Acad. Sci. 118 (21) (2021),

doi: 10.1073/pnas.2018610118 . e2018610118 

[7] L.R. Meza, A.J. Zelhofer, N. Clarke, A.J. Mateos, D.M. Kochmann, J.R. Greer, Re-

silient 3D hierarchical architected metamaterials, Proc. Natl. Acad. Sci. 112 (37)

(2015) 11502–11507, doi: 10.1073/pnas.1509120112 . 

[8] L. Liu, P. Kamm, F. Garca-Moreno, J. Banhart, D. Pasini, Elastic and failure re-

sponse of imperfect three-dimensional metallic lattices: the role of geometric de-

fects induced by selective laser melting, J. Mech. Phys. Solids 107 (2017) 160–184,

doi: 10.1016/j.jmps.2017.07.003 . 

[9] M.-S. Pham, C. Liu, I. Todd, J. Lertthanasarn, Damage-tolerant architected

materials inspired by crystal microstructure, Nature 565 (7739) (2019) 305,

doi: 10.1038/s41586-018-0850-3 . 

10] D.M.J. Dykstra, J. Busink, B. Ennis, C. Coulais, Viscoelastic snapping metamaterials,

J. Appl. Mech. 86 (11) (2019), doi: 10.1115/1.4044036 . 

11] S. Janbaz, F.S.L. Bobbert, M.J. Mirzaali, A.A. Zadpoor, Ultra-programmable buck-

ling-driven soft cellular mechanisms, Mater. Horizons 6 (2019) 1138 . 

12] S. Janbaz, K. Narooei, T.v. Manen, A.A. Zadpoor, Strain rate dependent mechanical

metamaterials, Sci. Adv. 6 (25) (2020) eaba0616, doi: 10.1126/sciadv.aba0616 . 

13] M. Jamshidian, N. Boddeti, D.W. Rosen, O. Weeger, Multiscale modelling of soft

lattice metamaterials: micromechanical nonlinear buckling analysis, experimental

verification, and macroscale constitutive behaviour, Int. J. Mech. Sci. 188 (2020)

105956, doi: 10.1016/j.ijmecsci.2020.105956 . 

14] M. Gavazzoni, S. Foletti, D. Pasini, Cyclic response of 3D printed metamateri-

als with soft cellular architecture: the interplay between as-built defects, ma-

terial and geometric non-linearity, J. Mech. Phys. Solids 158 (2022) 104688,

doi: 10.1016/j.jmps.2021.104688 . 

15] H. Rahman, E. Yarali, A. Zolfagharian, A. Serjouei, M. Bodaghi, Energy absorption

and mechanical performance of functionally graded soft-hard lattice structures, Ma-

terials 14 (6) (2021) 1366, doi: 10.3390/ma14061366 . 

16] S.M. Montgomery, H. Hilborn, C.M. Hamel, X. Kuang, K.N. Long, H.J. Qi, The 3D

printing and modeling of functionally graded Kelvin foams for controlling crushing

performance, Extreme Mech. Lett. (2021) 101323, doi: 10.1016/j.eml.2021.101323 .

17] D. Yavas, Q. Liu, Z. Zhang, D. Wu, Design and fabrication of architected multi-

material lattices with tunable stiffness, strength, and energy absorption, Mater. Des.

217 (2022) 110613, doi: 10.1016/j.matdes.2022.110613 . 

18] Z. Ding, O. Weeger, H.J. Qi, M.L. Dunn, 4D rods: 3D structures via

programmable 1D composite rods, Mater. Des. 137 (2018) 256–265,

doi: 10.1016/j.matdes.2017.10.004 . 

19] A. Pirhaji, E. Jebellat, N. Roudbarian, K. Mohammadi, M.R. Movahhedy, M. Asle

Zaeem, Large deformation of shape-memory polymer-based lattice metamaterials,

Int. J. Mech. Sci. 232 (2022) 107593, doi: 10.1016/j.ijmecsci.2022.107593 . 

20] L.J. Gibson, M.F. Ashby, Cellular Solids - Structure and Properties, Cambridge Uni-

versity Press, 1997 . 

21] N. Huber, Connections between topology and macroscopic mechanical prop-

erties of three-dimensional open-pore materials, Front. Mater. 5 (2018),

doi: 10.3389/fmats.2018.00069 . 

22] J. Souza, A. Gromann, C. Mittelstedt, Micromechanical analysis of the effective prop-

erties of lattice structures in additive manufacturing, Addit. Manuf. 23 (2018) 53–69,

doi: 10.1016/j.addma.2018.07.007 . 
8 
23] F. Veloso, J. Gomes-Fonseca, P. Morais, J. Correia-Pinto, A.C. Pinho, J.L. Vilaa,

Overview of methods and software for the design of functionally graded lattice struc-

tures, Adv. Eng. Mater. (2022) 2200483, doi: 10.1002/adem.202200483 . 

24] B. Telgen, O. Sigmund, D. Kochmann, Topology optimization of graded truss

lattices based on on-the-fly homogenization, J. Appl. Mech. (2022) 1–40,

doi: 10.1115/1.4054186 . 

25] D.M. Kochmann, J.B. Hopkins, L. Valdevit, Multiscale modeling and optimization

of the mechanics of hierarchical metamaterials, MRS Bull. 44 (10) (2019) 773–781,

doi: 10.1557/mrs.2019.228 . 

26] M. Bodaghi, A.R. Damanpack, G.F. Hu, W.H. Liao, Large deformations of

soft metamaterials fabricated by 3D printing, Mater. Des. 131 (2017) 81–91,

doi: 10.1016/j.matdes.2017.06.002 . 

27] B.B. Babamiri, B. Barnes, A. Soltani-Tehrani, N. Shamsaei, K. Hazeli, Designing ad-

ditively manufactured lattice structures based on deformation mechanisms, Addit.

Manuf. 46 (2021) 102143, doi: 10.1016/j.addma.2021.102143 . 

28] D.A. Porter, M.A. Di Prima, Y. Badhe, A.R. Parikh, Nylon lattice design param-

eter effects on additively manufactured structural performance, J. Mech. Behav.

Biomed.Mater. 125 (2022) 104869, doi: 10.1016/j.jmbbm.2021.104869 . 

29] S. Drcker, J.K. Ldeker, M. Blecken, A. Kurt, K. Betz, B. Kriegesmann, B. Fiedler,

Probabilistic analysis of additively manufactured polymer lattice structures, Mater.

Des. 213 (2022) 110300, doi: 10.1016/j.matdes.2021.110300 . 

30] A. Desmoulins, D.M. Kochmann, Local and nonlocal continuum modeling of inelastic

periodic networks applied to stretching-dominated trusses, Comput. Methods Appl.

Mech.Eng. 313 (2017) 85–105, doi: 10.1016/j.cma.2016.09.027 . 

31] O. Weeger, N. Boddeti, S.-K. Yeung, S. Kaijima, M. Dunn, Digital design and non-

linear simulation for additive manufacturing of soft lattice structures, Addit. Manuf.

25 (2019) 39–49, doi: 10.1016/j.addma.2018.11.003 . 

32] C. Lestringant, B. Audoly, D.M. Kochmann, A discrete, geometrically exact method

for simulating nonlinear, elastic and inelastic beams, Comput. Methods Appl.

Mech.Eng. 361 (2020) 112741, doi: 10.1016/j.cma.2019.112741 . 

33] R.N. Glaesener, J.-H. Bastek, F. Gonon, V. Kannan, B. Telgen, B. Spttling, S. Steiner,

D.M. Kochmann, Viscoelastic truss metamaterials as time-dependent general-

ized continua, J. Mech. Phys. Solids (2021) 104569, doi: 10.1016/j.jmps.2021.

104569 . 

34] C. Perez-Garcia, J. Aranda-Ruiz, R. Zaera, D. Garcia-Gonzalez, Beam formulation

and FE framework for architected structures under finite deformations, Eur. J. Mech.

A/Solids 96 (2022) 104706, doi: 10.1016/j.euromechsol.2022.104706 . 

35] N. Novak, M. Vesenjak, L. Krstulovi-Opara, Z. Ren, Mechanical characterisation of

auxetic cellular structures built from inverted tetrapods, Compos. Struct. 196 (2018)

96–107, doi: 10.1016/j.compstruct.2018.05.024 . 

36] N. Novak, M. Vesenjak, S. Tanaka, K. Hokamoto, Z. Ren, Compressive behaviour

of chiral auxetic cellular structures at different strain rates, Int. J. Impact Eng. 141

(2020) 103566, doi: 10.1016/j.ijimpeng.2020.103566 . 

37] S. Antman, Nonlinear Problems of Elasticity, Applied Mathematical Sciences,

Vol. 107, Springer, New York, 2005 . 

38] J. Simo, A finite strain beam formulation. The three-dimensional dynamic

problem. Part I, Comput. Methods Appl. Mech.Eng. 49 (1) (1985) 55–70,

doi: 10.1016/0045-7825(85)90050-7 . 

39] H. Lang, J. Linn, M. Arnold, Multi-body dynamics simulation of geomet-

rically exact cosserat rods, Multibody Syst. Dyn. 25 (3) (2011) 285–312,

doi: 10.1007/s11044-010-9223-x . 

40] Smriti, A. Kumar, A. Großmann, P. Steinmann, A thermoelastoplastic the-

ory for special Cosserat rods, Math. Mech. Solids 24 (3) (2019) 686–700,

doi: 10.1177/1081286517754132 . 

41] O. Weeger, D. Schillinger, R. Mller, Mixed isogeometric collocation for ge-

ometrically exact 3D beams with elasto-visco-plastic material behavior and

softening effects, Comput. Methods Appl. Mech.Eng. 399 (2022) 115456,

doi: 10.1016/j.cma.2022.115456 . 

42] J.C. Simo, T.J.R. Hughes, Computational Inelasticity, Springer, New York, 1998,

doi: 10.1007/b98904 . 

43] O. Weeger, S.-K. Yeung, M. Dunn, Isogeometric collocation methods for Cosserat

rods and rod structures, Comput. Methods Appl. Mech.Eng. 316 (2017) 100–122,

doi: 10.1016/j.cma.2016.05.009 . 

44] Y. Takahashi, D. Okumura, N. Ohno, Yield and buckling behavior of Kelvin open-cell

foams subjected to uniaxial compression, Int. J. Mech. Sci. 52 (2) (2010) 377–385,

doi: 10.1016/j.ijmecsci.2009.10.009 . 

45] G. Meyer, H. Wang, C. Mittelstedt, Influence of geometrical notches and form opti-

mization on the mechanical properties of additively manufactured lattice structures,

Mater. Des. 222 (2022) 111082, doi: 10.1016/j.matdes.2022.111082 . 

46] T. Grtner, M. Fernndez, O. Weeger, Nonlinear multiscale simulation of elas-

tic beam lattices with anisotropic homogenized constitutive models based

on artificial neural networks, Comput. Mech. 68 (5) (2021) 1111–1130,

doi: 10.1007/s00466-021-02061-x . 

47] O. Weeger, B. Narayanan, M.L. Dunn, Isogeometric collocation for nonlinear dy-

namic analysis of Cosserat rods with frictional contact, Nonlinear Dyn. 91 (2) (2017)

1213–1227, doi: 10.1007/s11071-017-3940-0 . 

48] I. Valizadeh, A. Al Aboud, E. Drsam, O. Weeger, Tailoring of functionally graded hy-

perelastic materials via grayscale mask stereolithography 3D printing, Addit. Manuf.

(2021), doi: 10.1016/j.addma.2021.102108 . 

49] G.I. Peterson, J.J. Schwartz, D. Zhang, B.M. Weiss, M.A. Ganter, D.W. Storti,

A.J. Boydston, Production of materials with spatially-controlled cross-link density

via vat photopolymerization, ACS Appl. Mater. Interfaces 8 (42) (2016) 29037–

29043, doi: 10.1021/acsami.6b09768 . 

50] O. Weeger, Isogeometric sizing and shape optimization of 3D beams and lattice

structures at large deformations, Struct. Multidiscip. Optim. 65 (2) (2022) 43,

doi: 10.1007/s00158-021-03131-7 . 

https://doi.org/10.1016/j.addlet.2022.100111
https://doi.org/10.1557/mrs.2019.232
https://doi.org/10.1038/srep34147
https://doi.org/10.1016/j.jmps.2022.104782
http://refhub.elsevier.com/S2772-3690(22)00078-0/sbref0004
https://doi.org/10.1038/s42254-018-0018-y
https://doi.org/10.1073/pnas.2018610118
https://doi.org/10.1073/pnas.1509120112
https://doi.org/10.1016/j.jmps.2017.07.003
https://doi.org/10.1038/s41586-018-0850-3
https://doi.org/10.1115/1.4044036
http://refhub.elsevier.com/S2772-3690(22)00078-0/sbref0011
https://doi.org/10.1126/sciadv.aba0616
https://doi.org/10.1016/j.ijmecsci.2020.105956
https://doi.org/10.1016/j.jmps.2021.104688
https://doi.org/10.3390/ma14061366
https://doi.org/10.1016/j.eml.2021.101323
https://doi.org/10.1016/j.matdes.2022.110613
https://doi.org/10.1016/j.matdes.2017.10.004
https://doi.org/10.1016/j.ijmecsci.2022.107593
http://refhub.elsevier.com/S2772-3690(22)00078-0/sbref0020
https://doi.org/10.3389/fmats.2018.00069
https://doi.org/10.1016/j.addma.2018.07.007
https://doi.org/10.1002/adem.202200483
https://doi.org/10.1115/1.4054186
https://doi.org/10.1557/mrs.2019.228
https://doi.org/10.1016/j.matdes.2017.06.002
https://doi.org/10.1016/j.addma.2021.102143
https://doi.org/10.1016/j.jmbbm.2021.104869
https://doi.org/10.1016/j.matdes.2021.110300
https://doi.org/10.1016/j.cma.2016.09.027
https://doi.org/10.1016/j.addma.2018.11.003
https://doi.org/10.1016/j.cma.2019.112741
https://doi.org/10.1016/j.jmps.2021.\penalty -\@M 104569
https://doi.org/10.1016/j.euromechsol.2022.104706
https://doi.org/10.1016/j.compstruct.2018.05.024
https://doi.org/10.1016/j.ijimpeng.2020.103566
http://refhub.elsevier.com/S2772-3690(22)00078-0/sbref0037
https://doi.org/10.1016/0045-7825(85)90050-7
https://doi.org/10.1007/s11044-010-9223-x
https://doi.org/10.1177/1081286517754132
https://doi.org/10.1016/j.cma.2022.115456
https://doi.org/10.1007/b98904
https://doi.org/10.1016/j.cma.2016.05.009
https://doi.org/10.1016/j.ijmecsci.2009.10.009
https://doi.org/10.1016/j.matdes.2022.111082
https://doi.org/10.1007/s00466-021-02061-x
https://doi.org/10.1007/s11071-017-3940-0
https://doi.org/10.1016/j.addma.2021.102108
https://doi.org/10.1021/acsami.6b09768
https://doi.org/10.1007/s00158-021-03131-7


O. Weeger, I. Valizadeh, Y. Mistry et al. Additive Manufacturing Letters 4 (2023) 100111 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  
51] J. Schneider, S. Kumar, Multiscale characterization and constitutive parameters

identification of polyamide (PA12) processed via selective laser sintering, Polym.

Test. 86 (2020) 106357, doi: 10.1016/j.polymertesting.2020.106357 . 

52] F. Shen, W. Zhu, K. Zhou, L.-L. Ke, Modeling the temperature, crystallization, and

residual stress for selective laser sintering of polymeric powder, Acta Mech. 232 (9)

(2021) 3635–3653, doi: 10.1007/s00707-021-03020-6 . 

53] B. Jüttler, U. Langer, A. Mantzaflaris, S. Moore, W. Zulehner, Geometry + simula-

tion modules: implementing isogeometric analysis, PAMM 14 (1) (2014) 961–962,

doi: 10.1002/pamm.201410461 . 

54] L. Herrnbck, A. Kumar, P. Steinmann, Geometrically exact elastoplastic rods: deter-

mination of yield surface in terms of stress resultants, Comput. Mech. 67 (3) (2021)

723–742, doi: 10.1007/s00466-020-01957-4 . 

55] L. Herrnbck, A. Kumar, P. Steinmann, Two-scale off-and online ap-

proaches to geometrically exact elastoplastic rods, Comput. Mech. (2022),

doi: 10.1007/s00466-022-02204-8 . 
9 
56] R.W. Ogden, D.G. Roxburgh, A pseudo elastic model for the Mullins effect in filled

rubber, Proc. R. Soc. London Ser.A Math. Phys. Eng. Sci. 455 (1988) (1999) 2861–

2877, doi: 10.1098/rspa.1999.0431 . 

57] C. Naumann, J. Ihlemann, On the thermodynamics of pseudo-elastic material models

which reproduce the Mullins effect, Int. J. Solids Struct. 69-70 (2015) 360–369,

doi: 10.1016/j.ijsolstr.2015.05.014 . 

58] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,

NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng.

194 (39-41) (2005) . 

59] F. Auricchio, L. Beirão da Veiga, T. Hughes, A. Reali, G. Sangalli, Isogeometric col-

location methods, Math. Models Methods Appl.Sci. 20 (11) (2010) 2075–2107 . 

https://doi.org/10.1016/j.polymertesting.2020.106357
https://doi.org/10.1007/s00707-021-03020-6
https://doi.org/10.1002/pamm.201410461
https://doi.org/10.1007/s00466-020-01957-4
https://doi.org/10.1007/s00466-022-02204-8
https://doi.org/10.1098/rspa.1999.0431
https://doi.org/10.1016/j.ijsolstr.2015.05.014
http://refhub.elsevier.com/S2772-3690(22)00078-0/sbref0058
http://refhub.elsevier.com/S2772-3690(22)00078-0/sbref0059

	Inelastic finite deformation beam modeling, simulation, and validation of additively manufactured lattice structures
	1 Introduction
	2 Methods
	2.1 Finite deformation inelastic 3D beam model
	2.2 Computational simulation of lattice structures
	2.3 Experimental methodologies

	3 Results and discussion
	3.1 Lattice structures fabricated by laser sintering
	3.2 Lattice structures fabricated by photopolymerization

	4 Conclusions
	Code and data availability
	Declaration of Competing Interest
	Acknowledgments
	Appendix A
	A1 Inelastic beam material model
	A2 Isogeometric collocation method
	A3 Material parameters

	Supplementary material
	References


