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Foreword of the Editor

The pressing challenge of climate change requires urgent global action to reduce
greenhouse gas emissions and curb global warming. To tackle this challenge,
the German Federal Government has set the ambitious goal of achieving climate
neutrality by 2045. To achieve this goal, the government has begun implementing
the Easter Package of 2022, which outlines a strategic plan to triple the expansion
speed of renewable energy.
Industrial processes and production plants are critical for improving energy

efficiency and flexibility. Tapping this potential can greatly speed up achieving set
goals. The Industry 4.0 paradigm enables detailed planning and control of manu-
facturing processes, which can lead to improved energy efficiency and flexibility.
Benedikt Grosch’s thesis is dedicated to improving energy efficiency and flexi-

bility through technological innovation in the field of energy-aware production
scheduling. The author proposes a scheduling system architecture supported by
a practical implementation procedure to simplify the implementation of energy-
aware production scheduling systems. This combination allows manufacturing
companies to adopt energy-aware practices in their real-world production sys-
tems. Themodular architecture of the energy-aware production scheduling system
ensures adaptability across diverse production systems.
In conclusion, this work provides an approach for industries to meet the de-

mands of a changing climate and energy scenario. The thesis not only contributes
to the academic discourse but also offers practical solutions for industries to con-
tribute to sustainable and energy-efficient practices.

Darmstadt, December 2023 Prof. Dr.-Ing MatthiasWeigold
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Abstract

Climate change presents a pressing global challenge, necessitating urgent actions
to reduce greenhouse gas emissions and limit global warming. As a significant
energy consumer, the industrial sector plays a crucial role in advancing sustain-
able practices and mitigating the impact of climate change. In this context, this
thesis focuses on developing an implementation procedure and an energy-aware
production scheduling system architecture to optimize production schedules while
considering production-related and energy-related objectives.
The research goal of this thesis is to simplify the implementation of energy-

aware production scheduling systems in real production systems. To achieve this,
the thesis addresses three key research areas: (1) to find whether the absence of
standardized procedures and architectures hinders the implementation of energy-
aware production scheduling systems for job shops, (2) to propose a standardized
and partially automated implementation procedure for energy-aware production
scheduling, and (3) to design an architecture supporting the implementation pro-
cedure.
The proposed implementation procedure includes a structured system configu-

ration and deployment approach, ensuring alignment with stakeholder require-
ments. It comprises three phases: discovery and planning, development and
configuration, and testing and deployment. The energy-aware production schedul-
ing system architecture implements a cyber-physical production system with a
virtual representation of the actual production system. The architecture incor-
porates the Non-Dominated Sorting Genetic Algorithm-II optimization algorithm
with a graph-based solution encoding and the production system environment,
which adapts to specific production system requirements. An energy model pa-
rameter estimation module supports the automatic configuration of production
machine energy models.
Evaluation of the proposed concepts in the ETA Research Factory demon-

strates the system’s success in reducing energy consumption while maintaining
production-related objectives. The energy-aware production scheduling system
achieves average energy cost savings of 13% and 18% compared to traditional
Shortest Processing Time dispatching rules while slightly improving or marginally
decreasing production-related performance, respectively.
This thesis contributes to the field of energy-aware production scheduling by

providing an implementation procedure and an adaptable architecture that fulfills
the set requirements and success criteria. The proposed concepts offer practical
solutions for adopting energy-aware production scheduling systems in industrial
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settings, promoting environmentally conscious and economically viable produc-
tion practices. The thesis also identifies areas for improvement and future re-
search, ensuring the continuous development of energy-efficient and sustainable
manufacturing processes.

Keywords: Demand Response, Energy-Efficiency, Energy-Flexibility, Cyber-
Physical Production System, Production Machine Energy Model, Imple-
mentation Procedure, Scheduling System Architecture
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Kurzfassung

Der Klimawandel stellt eine globale Herausforderung dar, die dringende Maß-
nahmen zur Verringerung der Treibhausgasemissionen und zur Begrenzung der
globalen Erwärmung erforderlich macht. Der Industriesektor spielt als bedeu-
tender Energieverbraucher eine entscheidende Rolle bei der Umsetzung einer
nachhaltigenWirtschaft und der Minimierung der Auswirkungen des Klimawan-
dels. In diesem Zusammenhang konzentriert sich diese Arbeit auf die Entwicklung
eines Implementierungsverfahrens und einer Systemarchitektur für die ener-
giebewusste Produktionsplanung unter Berücksichtigung von produktions- und
energiebezogenen Zielfunktionen.
Das Forschungsziel dieser Arbeit ist, die Implementierung von energiebewuss-

ten Produktionsplanungssystemen in realen Produktionssystemen zu vereinfa-
chen. Die Arbeit befasst sich mit drei Forschungsschwerpunkten, um (1) herauszu-
finden, ob das Fehlen standardisierterVerfahren und Architekturen die Implemen-
tierung energiebewusster Produktionsplanungssysteme in derWerkstattfertigung
behindert, (2) ein standardisiertes und teilweise automatisiertes Implementie-
rungsverfahren für die energiebewusste Produktionsplanung vorzuschlagen und
(3) eine Systemarchitektur zu entwerfen, die das Implementierungsverfahren
unterstützt.
Das vorgeschlagene Implementierungsverfahren stellt einen strukturierten An-

satz für die Konfiguration und -einführung eines Produktionsplanungssystems
bereit, der eine Anpassung an die Anforderungen der Beteiligten gewährleistet.
Das Verfahren besteht aus drei Phasen: Untersuchung und Planung, Entwicklung
und Konfiguration sowie Test und Umsetzung. Die Architektur des energiebewuss-
ten Produktionsplanungssystems ermöglicht es, reale Produktionssysteme als
cyber-physisches Produktionssystem abzubilden. Für die Optimierung nutzt das
Produktionsplanungssystem den Non-Dominated Sorting Genetic Algorithm-II-
Optimierungsalgorithmusmit einer graphenbasiertenCodierung für die Lösungen.
Die Produktionssystemumgebung, als zweiter Bestandteil der Architektur kann
an die spezifischen Anforderungen des Produktionssystems angepasst werden.
Weiterhin umfasst die Systemarchitektur ein Modul, das eine automatisierte Para-
meteridentifikation für Energiemodelle von Produktionsmaschinen ermöglicht.

DieBewertungder vorgeschlagenenKonzepte in der ETA-Forschungsfabrik zeigt,
dass das System die Energiekosten der Produktion unter Beibehaltung produkti-
onsbezogener Ziele senken kann. Das Produktionsplanungssystem erzielt in den
durchgeführten Experimenten durchschnittliche Kosteneinsparungen von 13%
beziehungsweise 18% imVergleich zur Shortest ProcessingTime Zuordnungsregel,
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während die produktionsbezogene Zielfunktion leicht verbessert oder geringfügig
verschlechtert wird.

Diese Arbeit leistet einen Beitrag zur Forschung im Bereich der energiebewuss-
ten Produktionsplanung, indem sie ein Implementierungsverfahren und eine an-
passungsfähige Systemarchitektur bereitstellt, die die festgelegten Anforderungen
und Erfolgskriterien erfüllt. Die vorgeschlagenen Konzepte bieten Lösungen für
die Einführung energiebewusster Produktionsplanungssysteme in der Industrie
und fördern umweltbewusste und wirtschaftlich tragfähige Produktionsverfah-
ren. Außerdem zeigt diese Arbeit Bereiche für zukünftige Forschung auf, um die
Weiterentwicklung der energiebewussten Produktionsplanung voranzutreiben.

Stichwörter: Demand Response, Energieeffizienz, Energieflexibilität, Cyber-
Physisches Produktionssystem, Energiemodell für Produktionsmaschinen,
Implementierungsverfahren, Produktionsplanungs-Systemarchitektur
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1. Introduction

Climate change is one of the most critical global challenges facing humankind. As
Joe Biden, President of the United States of America, said in a speech at the 2021
Leaders Summit on Climate:

“To protect livelihoods and keep global warming at a maximum of
1.5 °C, we must get on the path now!”

The yearly State of the Global Climate report by the World Meteorological Organi-
zation shows that all major global warming indicators are increasing. The years
between 2015 to 2022were the eight warmest years on record. For example, in 2022,
the global mean temperature was 1.15 °C above the 1850 – 1900 baseline (WorldMe-
teorological Organization, 2023, p. 7). This places 2022 as the fifth or sixth warmest
year on record (World Meteorological Organization, 2023, p. 8). The International
Monetary Fund (IMF) also sees climate change and the resulting exacerbation of
natural disasters as a relevant risk factor for economic development, especially
for smaller economies (International Monetary Fund, 2021, p. 15, p. 27).

Climate Change endangers our society, and urgent action is existential to reduce
its impact on our living standards. TheUnitedNations have set sustainable develop-
ment goals to counteract this impact (United Nations, 2015); however, a significant
and fast overall reduction of greenhouse gas emissions is required to reach the
1.5 °C goal (Intergovernmental Panel on Climate Change, 2018, p. 32). The German
example further illustrates the urgent need for action: the Sachverständigenrat
für Umweltfragen (SRU) states that the German CO2 budget would be used up
in 2038 assuming a linear reduction of emissions (Hornberg et al., 2020, p. 10).
Therefore, the German government plans to reduce greenhouse gas emissions
by 55% by 2030 compared to 1990 (Bundesministerium für Umwelt, 2016, p. 28).
In the United States of America, the government presented similar ideas with a
planned reduction of greenhouse gas emissions by 50% – 52% below 2005 levels by
2030 (TheWhite House, 2021). However, Kobiela et al. (2020) analyze the German
targets and argue that these reductions still fall short of what is actually required.
There are two primary paths to reduce emissions and achieve the 1.5 °C target:

reducing energy consumption through energy efficiency measures and replacing
greenhouse gas-emitting primary energy sources. As Benndorf et al. (2014, p. 90)
explain, renewable electric energy generation in combination with the electrifica-
tion of fossil energy consumers can help to achieve the latter. Green synthetic fuels
must be used instead of fossil fuels where electrification is impossible (Benndorf
et al., 2014, p. 90).
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Industry
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Figure 1.1: Share of industrial final energy consumption in Germany (ownfigure; Arbeits-
gemeinschaft Energiebilanzen e.V., 2020).

As a very large final energy consumer, the industrial sector can bring vital contri-
butions to bothpaths. The industrial share of final energy consumption inGermany
in 2019 was approximately 28%, as shown in Figure 1.1 (Arbeitsgemeinschaft En-
ergiebilanzen e.V., 2020). The industrial sector can directly contribute to energy
efficiency improvements by investing in energy efficiency measures. In Germany
the government encourages green investments in the industrial sector through tax
reform, the extension of emissions trading, and public subsidy programmes (Bun-
desministerium für Umwelt, 2019, p. 88). TheWorld Economic Outlook mentions the
importance of investment in green technologies to improve future development
and suggests carbon pricing as a possible measure to incentivize investment by
internalizing the cost of environmental damage from using fossil fuels (Interna-
tional Monetary Fund, 2021, p. 21). Energy efficiency technologies, such as waste
heat reduction and substituting high-energy processes, are crucial to achieving
the emission reduction targets in the industrial sector (Bundesministerium für
Umwelt, 2019, p. 89).
Concurrently the industrial sector can also facilitate the replacement of green-

house gas emitting primary energy sources by improving the integration of renew-
able energy sources into the power grid through demand-side integration (Bun-
desministerium für Umwelt, 2019, p. 90;Walther et al., 2022). Demand response
is part of demand-side integration and describes measures like the adaptation
of electricity demand to available generation to better handle the volatile nature
of renewable energy sources (Walther et al., 2022) – this improves the integra-
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tion of renewable energy sources into the power grid. The term demand-side
integration covers the whole range from long-term improvements in energy ef-
ficiency, to short-term demand response measures (Walther et al., 2022). The
necessity for demand response is explicitly illustrated by increasing re-dispatch
costs (Bundesnetzagentur, 2022) to stabilize the electric power grid.
In addition to the trend toward energy efficiency and demand-side integration,

many other trends influence developments in the industrial sector. Industry 4.0
and smartmanufacturing are two of these trends (Kang et al., 2016; Lasi et al., 2014).
Smart manufacturing describes manufacturing systems that can automatically
adapt to complicated situations (Kang et al., 2016). In contrast, Industry 4.0 de-
scribes the paradigm shift toward digitalization and integrating smart devices into
manufacturing processes (Lasi et al., 2014). Among other improvements, this leads
to the more convenient collection and higher availability of data about production
processes (Mohamed et al., 2019). As a result, Mohamed et al. (2019) identify many
areas where energy efficiency could benefit from Industry 4.0. Other trends, such
as shorter development periods, more individualized products, higher flexibility,
and decentralization, accelerate the trend toward Industry 4.0 (Lasi et al., 2014).
Recently direct applications of artificial intelligence are also gaining more trac-
tion (Groombridge, 2021). Researchers and practitioners agree that Industry 4.0 is
an enabler for sustainable manufacturing (Bunse et al., 2011).
Considering climate change as a critical global challenge and acknowledging

the aforementioned trends, this thesis aims to simplify the implementation of
energy-aware production scheduling systems. Energy-aware production schedul-
ing combines the goals of improving energy efficiency and providing energy flexi-
bility for demand response (refer to definitions in Section 2.3.1) with conventional
production-related objectives to create more sustainable production schedules. To
achieve this, energy-aware production scheduling systems need high availability
production system data and sometimes also connectivity to energy utilities, which
is enabled by the trend toward Industry 4.0. The same trend also simplifies data
gathering during the system’s implementation phase.

1.1. Research Goal and Research Questions

While the desire to advance energy efficient and energy flexible production is the
primary motivation for this thesis, all cited trends influence the goals and struc-
ture. As Garetti and Taisch (2012) mention, the manufacturing industry, which
is the focus of this thesis, has a high remaining potential for energy efficiency.
They also underpin the idea of energy-aware production scheduling as a relevant
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building block for energy efficient production (Garetti & Taisch, 2012). Industry
4.0 can contribute to implementing energy-aware production scheduling through
data availability and by offering paths to control production machine operations.
Systematic literature reviews reveal the increasing research efforts in the area of
energy-aware production scheduling (Bänsch et al., 2021; Biel & Glock, 2016; Gahm
et al., 2016); however, they identify the practical relevance and the understand-
ing of scheduling-relevant energy characteristics as an area of future research
potential (Gahm et al., 2016).

This thesis aims to address part of this potential by providing tooling andmodels
for the implementation of energy-aware production scheduling systems:

Research Goal

This thesis aims to simplify the implementation of energy-aware produc-
tion scheduling systems in real production systems by manufacturing
companies using generalized modelling and tooling.

The following questions guide the research in this thesis by examining the
research gaps necessitating this work and by providing ideas to fill this gap. To
examine the research gap, this thesis needs to analyze existing research with real
industrial use cases and study the implementations and guidance given regarding
the implementation procedure:

Research Question 1: Implementation Shortfall

Can a lack of implementations be attributed to an absence of procedures
and architectures for implementing energy-aware production scheduling
systems in job shops?

If true, this thesis aspires to provide the missing components by developing a
concept for an implementation procedure and an energy-aware production scheduling
system architecture with energy model parameter estimation. These two parts
should build upon each other; requirements for the energy-aware production
scheduling result from the specifics of the implementation procedure:
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Research Question 2: Implementation procedure

Can a standardized and partially automated implementation procedure for
the adoption of energy-aware production scheduling systems be proposed
such that an energy-aware production scheduling system can be more
easily applied to real industrial use cases?

The implementation procedure will contain some steps that software tooling
can support. The necessity to support these steps entails the requirements for the
energy-aware production scheduling system architecture and the energy model
parameter estimation:

Research Question 3: Energy-aware production scheduling system archi-
tecture

How should the architecture of an energy-aware production scheduling
system be designed to support the implementation procedure, and which
additional tooling is needed to reduce the implementation efforts?

These research-guiding questions are the basis for the research design and
methodology outlined in the subsequent section.

1.2. Research Design and Outline

The research design of this thesis follows the Design Research Methodology de-
scribed by Blessing and Chakrabarti (2009). This thesis focuses on the design of an
implementation procedure and a corresponding energy-aware production schedul-
ing system architecture. Thus, the Design Research Methodology, which explicitly
addresses design research projects, is well suited to govern this research. It sug-
gests four research stages that may be revisited iteratively (Blessing & Chakrabarti,
2009):

− Research Clarification as the first stage is essential to determine the project’s
aim, focus, and scope (Blessing & Chakrabarti, 2009, p. 29).

− In the Descriptive Study-I stage, undertaking a literature review extends the
understanding gathered in the first stage (Blessing & Chakrabarti, 2009,
p. 31). The results also facilitate elaborating this research’s aim, focus,
and scope. The result of this stage should include success criteria for the
research project (Blessing & Chakrabarti, 2009, p. 31).
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− The Prescriptive Study stage follows the first descriptive study and is the
main focus area of this thesis. Developing the implementation procedure
and the energy-aware production scheduling system architecture are two
focal points of the prescriptive study phase.

− Finally, in the Descriptive Study-II stage, the developed concept and imple-
mentation procedure are evaluated (Blessing & Chakrabarti, 2009, p. 35).
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Section 7: Summary and Outlook

Section 6: Deployment and Evaluation
– Answers Research Questions 2 and 3
– Rough Evaluation of Scheduling Improvements

Section 5:

– Implementation Procedure
– Deployment Support Tooling

Implementation Procedure
and System Architecture

Section 4: Conceptualization
– Success Criteria
– Concept for Research Question 2 and 3

Section 3: Literature Review
– Answers Research Question 1
– Contributes Success Criteria

Section 2: Fundamentals
– Definitions
– Research Focus Refinement

Section 1: Introduction
– Research Goal
– Research-Guiding Questions

Figure 1.2: Outline of this thesis within the Design Research Methodology context (own
figure).

The following paragraphs contextualize each stage of the Design Research
Methodology with the research questions mentioned in Section 1.1 in mind and
describe the organization and outline of this thesis document. Overall, the struc-
ture of this thesis adheres to the third type of design research project suggested by
Blessing and Chakrabarti (2009, p. 60). In this type, the research clarification and the
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descriptive study-I are review-based. A comprehensive prescriptive study constitutes
the project’s core, while an initial descriptive study-II validates the results (Blessing
& Chakrabarti, 2009, p. 61). Figure 1.2 also illustrates the outline of this thesis in
the context of Design Research Methodology.
Sections 1 and 2 of this thesis document the research clarification stage and the

research goals. Section 1.1 details the research-guiding questions generated from
this initial literature review. Section 2 further clarifies the definitions this thesis
relies on to create a shared understanding of the researched subjects and the
specific research area.
Section 3 discusses the descriptive study-I comprising the literature review. The

literature review clarifies the research gap (Section 3.3) and contributes to the
requirements and success criteria (Section 4.1). Section 4 summarizes the concept
resulting from the research clarification and the literature review. The results of the
descriptive study-I should also answer the first research question.
The prescriptive study stage is at the core of this thesis. Section 4 describes the

concept for the implementation procedure developed during this stage. Section 5
details the structure and components of the energy-aware production scheduling
system architecture. Predominantly, the prescriptive study suggests answers for
the second and third research questions. Thus, besides the energy-aware pro-
duction scheduling system architecture, it also provides a concept to support the
implementation procedure through energy model parameter estimation.
Finally, this thesis evaluates the implementation procedure and the energy-

aware production scheduling system architecture by deploying it to an actual
research production system. The experiences from this deployment constitute
the initial descriptive study-II. Section 6 reveals the results of this deployment trial,
which answer the second and third research questions. The section also provides
a rough analysis of the achieved scheduling improvements, although that is not
the focus of this thesis.

1.3. Highlights

The primary objective of this thesis is making the implementation of energy-aware
production scheduling systems in job shops easier by proposing an implementa-
tion procedure with a corresponding system architecture supported by energy
model parameter estimation. The literature review (Section 3) highlights that
most research conducted on real industrial use cases lacks sufficient guidance on
implementing the proposed solutions, which emphasizes the need for this work.
The implementation procedure derives from state-of-the-art procedures for
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realizing traditional production scheduling, Manufacturing Execution Systems
(MESs), or Enterprise Resource Planning (ERP) systems. It expands on these
procedures by including energy-awareness. The procedure identifies the areas
where implementers need to gather additional information and the steps where
automation could support the implementation process (refer to Section 4).
This thesis also proposes a modular energy-aware production scheduling sys-

tem architecture with generalized energy models for machine tools and industrial
aqueous cleaning machines. The system uses configuration options to select the
relevant modules needed to represent a particular production system, and thus, it
provides the ability to adapt to a variety of production systems. The configuration
considers production machines, products (also: production jobs) and respective
manufacturing operations (refer to Section 5). Models for other types of machines
could also be added in the future (see Section 5). Additionally, energymodel param-
eter estimation automates parts of the implementation procedure by estimating
the parameters of generalized models for production machines.
Finally, this thesis successfully applies the proposed implementation procedure

and energy-aware production scheduling system by deploying the system to an
actual research production system. The system consists of multiple machines of
each type; thus, it demonstrates that the generalized models are flexible enough
to describe various machines (see Section 6). Additionally, this thesis describes a
preliminary study of transferability to an actual industrial production system.
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2. Fundamentals and Definitions

This section defines some fundamental terms that this thesis frequently uses, to
ensure clarity and focus. There are three main focus points for this: production
planning, digital connectivity in production systems, and energy considerations
in production scheduling.
Regarding production planning in general, it is crucial to understand the terms

production planning and production scheduling, as well as the various machine envi-
ronments to which they apply. Additionally, this section provides an overview of
the algorithms commonly used for production scheduling.
This thesis will use the terms cyber-physical production system and Industrial In-

ternet of Things to refer to connectivity in production systems. Therefore, focusing
on these concepts and the connectivity frameworks required to implement them in
real production systems is vital.
Finally, since this thesis aims to simplify the implementation of energy-aware

production scheduling systems, this section will look at energy considerations in
production scheduling. In this area, a shared understanding of energy efficiency,
energy flexibility, concepts for demand-side integration, and energy modelling of
production machines is elemental.

2.1. Production Planning and Production Systems

To narrow down the focus of this thesis, discussing what production scheduling is
and how it integrates into the overarching process of production planning and con-
trol is crucial. This section provides an understanding of the production planning
and control process and the goals of production scheduling.
The formulation of production scheduling problems is strongly dependent on

the machine environment present in a factory. The second part of this section
introduces classification schemes for production systems and machine environ-
ments. The last part of this section deliberates various objectives for the production
scheduling problem and algorithms to approximate optimal solutions.

2.1.1. Production Planning and Control

Production planning and control is the complex decision-making process govern-
ing production in industrial companies (Wiendahl &Wiendahl, 2019, p. 279):
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Definition 2.1: Production Planning and Control

Production planning and control describes the multi-step planning of
production in industrial companies (Grabner, 2017, p. 216).

Production planning and control covers the entire process, fromdetermining the
products to be produced and production sites or production machines to be used
or built, down to the individual production operation performed to fulfil customer
orders. There aremany subtasks covering different aspects of production planning
and control and many different taxonomies for differentiating them (e.g., Groover
(2008, p. 753) and Silver et al. (1998, p. 539)). Most of these taxonomies use an
hierarchical approach to structuring production planning and control dating back
to Hax and Meal (1973). This approach classifies tasks by planning time horizon
and level of aggregation. The Aachen Production Planning and Control Model is
also often used to discuss these aspects (Grabner, 2017, p. 215). According to Schuh
et al. (2015) it differentiates the tasks described in the subsequent paragraphs.

Production program planning determines the type and quantity of products
(primary demand) to be produced, among other factors (Schuh, 2019). This is
roughly equivalent to the aggregate planning, demand management and master pro-
duction scheduling steps proposed by Silver et al. (1998, p. 539).

Production requirements planning estimates the demand for required re-
sources by examining the bill ofmaterials, production capacity, and the like (Schuh,
2019). Silver et al. (1998, p. 539) refer to this step as material planning and capacity
planning.

In-plant production planning and control details the allocation of production
quantities to the available resources, such as machines, and monitors the realiza-
tion of production plans (Schuh, 2019). It includes the short-range scheduling and
capacity control modules of the framework by Silver et al. (1998, p. 539).

Procurement planning and control defines the quantities and dates of products
purchased from other manufacturers (Schuh, 2019).

Again, each of these tasks consists of multiple subtasks. Since the goal of this
thesis is to analyze short-termplanning, the subtasks of in-plant production planning
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and control are most relevant in this context. Detailed descriptions of other tasks
can be found in Schuh et al. (2015, p. 29) and Grabner (2017, p. 214). The subtasks
of in-plant production planning and control are defined as the following.

− Lot-sizing determines the size of production lots (Schuh et al., 2015, p. 50).
− Fine scheduling adjusts when each production order is produced (Schuh

et al., 2015, p. 54).
− Fine resource planning considers the production resources and their capacity

(Schuh et al., 2015, p. 55).
− Sequencing determines the sequence of production orders for each produc-

tion resource (Schuh et al., 2015, p. 55).
− Availability checks ensure that production resources are available at produc-

tion start (Schuh et al., 2015, p. 57).
− Finally, the order release confirms the start of production and generates all

necessary documentation (Schuh et al., 2015, p. 57).

The segmentation of processes proposed by Schuh et al. (2015) is very detailed –
in the context of this thesis, it is more suitable to aggregate the fine scheduling,
fine resource planning, sequencing and availability check tasks. This work refers
to this aggregate task as production scheduling:

Definition 2.2: Production Scheduling

“[Scheduling] deals with the allocation of resources to tasks over given
time periods, and its goal is to optimize one or more objectives (Pinedo,
2016, p. 1).” Production scheduling is a sub-domain of scheduling.

Since production scheduling is concerned with allocating tasks to resources,
it is essential to consider the characteristics of tasks and resources as well. In
production scheduling the tasks are typically operations associated with jobs.

Definition 2.3: (Production) Job and Operation

A (production) job is the equivalent of a customer order within the produc-
tion system. The result of a job is the production of one or more finished
products. A job may consist of a sequence of operations necessary to
produce the product.

An example of a job could be the assembly of a hydraulic cylinder from a piston,
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housing, and gaskets. One of the operations to complete this job could be pressing
the gaskets into the cylinder housing.

2.1.2. Production Systems and their Structure

There aremany different types and structures of production systems, each ofwhich
pose different demands on production scheduling due to variations in production
resources, types of processes, and orders.

Definition 2.4: Production System

“A production system is a collection of people, equipment, and proce-
dures organized to perform the manufacturing operations of a company.”
(Groover, 2008, p. 19)

Production systems consist of facilities and manufacturing support systems
(Groover, 2008, p. 19). Facilities are the factory itself and the equipment used for
production, while manufacturing support systems describe the procedures used
to initiate and manage the production (Groover, 2008, p. 19). The facilities differ
significantly depending on whether one studies continuous production or discrete
production. This thesis is solely concerned with discrete production. In discrete
production the output consists of discrete workpieces or products (Groover, 2008,
p. 44).
There is no universal classification for production systems – instead, there are

many views and classification schemes according to different aspects. Jodlbauer
(2008, p. 1) provides an overview of typical aspects relevant to classifying pro-
duction systems in discrete production. Groover (2008, p. 51) substantiates these
aspects. They are:

− order decoupling point,
− manufacturing structure,
− product variety and complexity,
− factory layout, and
− production quantity.

In contrast, Pinedo (2016) bases his classification of production systems on the
specific requirements of production scheduling. Pinedo (2016, p. 14) refers to
these as machine environments and differentiates between single-machine models,
parallel machine models, flow shops, flexible flow shops, job shops, and open
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shops. Classifications similar to what Pinedo (2016) proposes are ubiquitous in the
field of production scheduling.

Definition 2.5: Machine Environment

The machine environment describes the structure of the facilities in a
production system, considering the factory layout and flow of jobs through
the factory.

Single-machinemodels are a special case of all other structures. As the name
suggests, they enable scheduling for precisely one machine (Pinedo, 2016, p. 14).
Parallel-machine models also consider only a single stage of production but allow
for multiple identical or different machines in parallel (Pinedo, 2016, p. 14). The
machines in such models may differ in terms of their capabilities, for instance,
processing speed or the jobs they can perform.

Machine 1 Machine 2

Machine 3

Machine 4

(a) Structure of a flow shop.

Machine 1 Machine 2

Machine 3

Machine 4

(b) Structure of a flexible flow shop.

Figure 2.1: Structure of flow shops. Dashed lines indicate alternative routes for the same
job (own figure).

Flow shops are more complex than single-stage models. Flow shops can have
multiple stages of production machines; however, jobs are constrained by having
to pass through all stages in sequence (Pinedo, 2016, p. 15). Figure 2.1a illustrates
the principle of a flow shop. A flexible flow shop, in comparison, can havemultiple
machines (work centers) for each stage, and any machine in a work center can
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process each job (Pinedo, 2016, p. 15). There is also an option for jobs to recirculate
and be processed twice in the same work center (Pinedo, 2016, p. 15). Figure 2.1b
shows the structure of flexible flow shops. The illustration shows that the same
job can follow multiple routes through a work center.

Machine 1 Machine 2

Machine 3

Machine 4

(a) Structure of a job shop.

Machine 1 Machine 2

Machine 3

Machine 4

(b) Structure of a flexible job shop.

Figure 2.2: Structure of job shops. Dashed lines indicate alternative routes for the same
job (own figure).

Job shops and flexible job shops feature individual routes for each job (Pinedo,
2016, p. 15). Machines in job shops are typically organized according to their capa-
bilities (Jodlbauer, 2008, p. 10), and machines with similar production capabilities
are located in the same factory area. Flexible job shops differentiate by the ex-
istence of work centers. Similar to flexible flow shops, any machine in a work
center could process the same job, and production scheduling can choose the best
suitable machine (Pinedo, 2016, p. 15). Figure 2.2 illustrates the structure of job
shops and flexible job shops.
Since this thesis targets job shops, a specific definition for the term is essential.

The definition of a job shop used in this thesis is based on Pinedo (2016) and focuses
on the flexible routing aspect of job shops.

Definition 2.6: Job Shop

A job shop is a machine environment where each job follows its unique
predetermined route (Pinedo, 2016, p. 15).
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Through the flexible routing available in job shops this type of machine envi-
ronment also provides high flexibility when reacting to new products or customer
requirements (Jodlbauer, 2008). However, job shops pose one of the more complex
problems for scheduling.

Open shops have even more relaxed requirements for the routing of jobs. In an
open shop each job’s routing through the factory can be chosen arbitrarily (Pinedo,
2016, p. 15). This complete flexibility means that open shops are the most general
type of production scheduling problem.

2.1.3. Optimization of Production Schedules

The preceding sections characterize production planning and control in general
and discuss production system structures or machine environments. Building
on that information this section examines objective criteria and optimization
methods for production scheduling. Literature often refers to objective criteria
as cost factors or key values to be minimized. The objective criteria introduced
in this section are production-related objective criteria - they are distinct from the
energy-related objective criteria addressed in Section 2.3.1.
Pinedo (2016), Jodlbauer (2008) and Silver et al. (1998) provide some examples

of production-related objectives of production scheduling. According to Jodlbauer
(2008, p. 19), the key values used as objective criteria can be separated into inward-
looking and outward-looking values, where inward-looking values describe a com-
pany’s structure and outward-looking factors evaluate market potentials. However,
no list of objective criteria can be exhaustive because there are specifics to every
production system and many different perspectives on production scheduling
performance.
Even the three named sources identify relevant cost factors from different view-

points. Jodlbauer (2008, p. 19) concentrates on the performance of the production
system and includes factors like utilization, inventory, costs for additional capacity,
and lead time. On the other hand, Silver et al. (1998, p. 44) are more concerned
with the cost of production for individual items and favour factors like the cost of
carrying items in inventory, unit variable cost, or the ordering cost. Finally, the
factors preferred by Pinedo (2016, p. 18) pertain more directly to the performance
of production schedules. Since they aremost relevant to the topic of this thesis, the
following paragraphs introduce some of these factors in more detail. Additionally,
Guzman et al. (2021) give a more detailed overview of objective criteria for produc-
tion scheduling used in recent research. Valid objective criteria for production
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scheduling could also be formulated frommany other factors.

Makespan is equivalent to the completion time of the last job to leave the pro-
duction system (Pinedo, 2016, p. 18). It represents the total time passed while
producing a defined set of jobs. Minimal makespan generally implies high utiliza-
tion of production machines (Pinedo, 2016, p. 18). Simply put, makespan describes
the total duration of a production schedule. It could be used, for example, to
evaluate whether a production schedule can be completed within a single day.

Total weighted completion time represents the sum of completion times, often
called flow time (Pinedo, 2016, p. 19). The flow time or completion time is the
time taken from introducing a job into the production system until it leaves the
production system (Dickmann, 2015, p. 395). It includes non-productive time like
holding time and downtime of machines (Dickmann, 2015, p. 395). The weight in
total weighted completion time depends on the job and could represent something
like the importance of the job or associated storage costs (Pinedo, 2016, p. 14). This
way, total weighted completion time may indicate the inventory costs caused by a
schedule (Pinedo, 2016, p. 19).

Total weighted tardiness measures howmany jobs are completed later than the
due date and how much later they are completed (Pinedo, 2016, p. 19). The due
date can be understood as the shipping date promised to a customer (Pinedo, 2016,
p. 14). There is a differentiation between tardiness and lateness here, such that
tardiness only refers to jobs completed after the due date, while lateness examines
all jobs (Jodlbauer, 2008, p. 39).

While there are many more objective criteria for production scheduling, this
short overview is sufficient for the purpose of this work. More detailed discussions
of objective criteria and problem formulations for various machine environments
are provided by Pinedo (2016).
The second important aspect of optimizing production schedules are the opti-

mization algorithms. They range from dispatching rules over local search proce-
dures to machine learning algorithms. Similar to the objective criteria, there is
a sheer infinite number of optimization methods. Pinedo (2016, p. 375) provides
an overview of some methods, but since this is not the main focus of this thesis,
the following focuses on the most pertinent broader categories of methods. Guz-
man et al. (2021) provide a much more detailed review of current research and
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algorithms regularly used in the field.

Dispatching rules are heuristics that are comparatively easy to implement and
apply to various production systems (Pinedo, 2016, p. 376). They can lead to optimal
results in specific situations and often achieve good results when optimizing for a
single objective, such as makespan (Pinedo, 2016, p. 376). Composite dispatching
rules extend this concept by combining multiple dispatching rules with scaling
factors (Pinedo, 2016, p. 377). In addition, dispatching rules are constructive – they
can be used to create new schedules without prior knowledge about starting points
(Pinedo, 2016, p. 382).

The Shortest Processing Time (SPT) rule, where the next operation for each pro-
duction machine is determined to be the one with the shortest processing time on
that machine is an example of a dispatching rule (Pinedo, 2016, p. 377). Another
straightforward example is the service in random order rule, which simply selects a
random operation to be processed next (Pinedo, 2016, p. 376). As a final example,
the shortest queue rule assigns jobs to the production machine with the shortest
queue of jobs waiting for the next operation (Pinedo, 2016, p. 376).

(Meta)heuristic algorithms are a very active field of research, and many re-
searchers use heuristic algorithms to solve the energy-aware production schedul-
ing problem. Pinedo (2016, p. 382) provides a series of examples for algorithms
in this category: Simulated annealing and tabu search, for example, perform a
neighbourhood search led by developer-specified rules, and genetic algorithms
and ant colony optimization are more generalist procedures considering multiple
schedules at the same time. Genetic algorithms are one of the most used solution
techniques for the problem (refer to Section 3). All of these heuristic algorithms are
improvement algorithms and cannot be used to generate new schedules (Pinedo,
2016, p. 382). Solutions for these algorithms can be initialized randomly or using
dispatching rules. While many researchers use random initialization, we have also
seen good results using the latter path (Grosch et al., 2021).

Again, there are many sub-types of each of these methods – the Non-Dominated
SortingGenetic Algorithm-II (NSGA-II) is an example of a specific genetic algorithm
that will be of importance later on in this thesis. The NSGA-II was proposed by
Deb et al. (2002) and is well suited to solving multi-objective problems. When
discussing genetic algorithms, the term population refers to thenumber of solutions
evaluated in parallel, individual refers to a single solution, and generation refers to
all solutions in a single iteration (Pinedo, 2016, p. 389). Each individual has one
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(b) Crossover operator for a genetic algo-
rithm.

Figure 2.3: Schematic representation of mutation and crossover operators - the exact im-
plementation often varies (own figure).

or more chromosomes to describe the values of the solution. Like other genetic
algorithms, the NSGA-II uses mutation and crossover operators, as illustrated in
Figure 2.3, to perform a local search. Themutation operator changes the values on
the chromosomes of some individuals, while the crossover operator interchanges
parts of the chromosomes of two individuals (Pinedo, 2016, p. 289). The NSGA-
II is unique for its non-dominated sorting process to select the best individuals
in a generation and its crowding-distance preservation mechanism (Deb et al.,
2002). Section 5.2.1 provides a more detailed explanation of the algorithm and its
implementation used in this thesis.

Mathematical programming generates exact solutions to the scheduling prob-
lem. For example, many scheduling problems can be formulated as mixed integer
programs and solved with exact algorithms like branch-and-bound (Pinedo, 2016,
p. 561). However, since many scheduling problems are NP-hard, as Pinedo (2016,
p. 588) demonstrates, and exact solutions are often optional, there are also inex-
act solution algorithms for mathematical programming formulations. Besides
the heuristics mentioned above these include constraint programming, where
most requirements on the problem formulation are relaxed, and the algorithm
only ensures that all constraints of the program are satisfied (Pinedo, 2016, p. 579).
Beam search, which is similar to branch-and-bound but does not evaluate all nodes
(Pinedo, 2016, p. 400), also belongs in this category.

Machine Learning algorithms have shown promising results in more recent re-
search (e.g., Stricker et al., 2018;Waschneck et al., 2018). There are three categories
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Figure 2.4:Markov decision process with an algorithm generating actions Θ𝑡 and an en-
vironment that consumes the actions and provides the agent with its current
state Ξ𝑡 and a reward value Λ𝑡 (own figure).

of machine learning approaches: supervised learning, unsupervised learning and
reinforcement learning (Sutton & Barto, 2018, p. 2). As the two sources mentioned
above exemplify, reinforcement learning appears to be particularly promising for
scheduling use cases.

As shown in Figure 2.4, theMarkov decision process is the basis of reinforcement
learning (Sutton & Barto, 2018, p. 37). The Markov decision process formalizes
the sequential decision-making process where an algorithm receives information
about the state and a reward from an environment and returns a set of actions to
the environment (Sutton & Barto, 2018, p. 37). The state represents the current
condition of the environment and the reward measures the performance of the
state with respect to a set objective (Sutton & Barto, 2018, p. 37). The actions are
the instructions the algorithm gives to the environment to change its state.

2.2. Digital Connectivity in Production Systems

This thesis understands that future production systems will take the form of
cyber-physical production systems. This section introduces some aspects of cyber-
physical production systems and relevantmanufacturing support services that pro-
vide production scheduling functionality. Since energy-aware production schedul-
ing requires good access to data about the production systems, the second part
of this section focuses on connectivity through the Industrial Internet of Things
and the connectivity frameworks used to achieve it. The final part of this sec-
tion considers implementation procedures for production scheduling systems in
cyber-physical production systems.

2.2.1. Cyber-Physical Production Systems

The previous sections look at the definition of production scheduling in general,
the variety of machine environments where scheduling problems arise, and some
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optimization algorithms. At the same time, the digitalization of production systems
is alsohighly relevant to the implementationof production scheduling systems, and
is quickly advancing – concepts like industry 4.0 and smart manufacturing are on
the rise (see: Kang et al., 2016; Lasi et al., 2014; Pfeiffer, 2017). Both concepts focus
on integrating cyber-physical systems along the complete value chain (Brauner
et al., 2022).

Definition 2.7: Cyber-Physical System

“Cyber-physical systems are systems of collaborating computational en-
tities which are in intensive connection with the surrounding physical
world and its on-going processes, providing and using, at the same time,
data-accessing and data-processing services available on the internet.”
(Monostori, 2019)

Although older, Groover (2008, p. 87) provides an intriguing overview of au-
tomation technologies in a production system. Groover (2008, p. 87) locates the
manufacturing support systems at the enterprise level, and manufacturing sys-
tems as well as the automation, control and material handling technologies at the
factory level. In combination with the interconnections between the production
system components, the characterization proposed by Groover (2008, p. 87) can
be interpreted as an early form of the cyber-physical production system.

Definition 2.8: Cyber-Physical Production System

In the context of production systems, cyber-physical systems are referred
to as cyber-physical production systems (Napoleone et al., 2020).

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (2013) and Monos-
tori (2019) corroborate the departure from the typical automation pyramid with a
move towards service-centric architectures. They foresee self-organizing networks
of services in cyber-physical production systems. The technology necessary for
implementing energy-aware production scheduling within cyber-physical produc-
tion systems thus is a multitude of interconnected services communicating with
the physical production machines to receive data and control production opera-
tions. This service-oriented architecture helps handle the pertinent technologies’
complexity and heterogeneity (Schuh et al., 2007). According to International
Organization for Standardization (2021) a service is a “distinct functionality that is
provided by an entity through interfaces”.
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Many services and software systems can be involved in the production planning
and control process. The services differ in the process stage where they are applied
and the level of detail their output provides. Typical software systems offering such
services include ERP, MES and Material Requirement Planning (MRP) (Grabner,
2017, p. 214).
ERP systems focus on general business functions such as accounting and per-

sonnel management besides production planning (Schuh, 2019). Therefore, ERP
systems are also often used in other industries, such as retail and service (Grab-
ner, 2017, p. 214). While ERP systems often have functionality for production
planning, MESs additionally provide connectivity between the ERP system and
process automation (Grabner, 2017, p. 215). MESs commonly include functions to
collect machine and process data and to enable evaluations based on customer
orders or production jobs (Grabner, 2017, p. 215). They also support the production
scheduling process, considering machine utilization and production job due dates
(Grabner, 2017, p. 215).

The termsMRP andManufacturing Resource Planning (MRP II) refer to some of
the earlier concepts in production planning and date back to the 1960s and 1990s
respectively (Schuh, 2019). These concepts describe a gradual approach where
required materials and production machines are scheduled subsequently (Schuh,
2019). Modern ERP systems integrate all of these concepts. Recent developments
in ERP systems deviate from the traditional approach, using advanced, integrated
planning techniques for all resources in a single run (Schuh, 2019). Additionally,
ERP systems are generally company-wide systems, while MRP applications are
usually more plant-centric (Groover, 2008, p. 779)
Production planning and control, as introduced in Section 2.1.1, can be offered

as amodule of one of the systemsmentioned above or as a separate, self-contained
service. As Grabner (2017, p. 215) mentions, production planning and control, ERP,
and MES are frequently ambiguous in common parlance. This thesis defines the
production planning and control service as an independent, self-contained part of
the cyber-physical production system. In addition to, or as a replacement for, the
production planning and control service, there can be an energy-aware production
scheduling service.

2.2.2. Connectivity in the Industrial Internet of Things

Besides the services, connectivity between entities (services and physical assets)
is the second cornerstone of cyber-physical production systems. The entities that
are part of the cyber-physical production system must be able to communicate
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with each other and with external services via the Industrial Internet of Things.

Definition 2.9: Industrial Internet of Things

The Industrial Internet of Things is “a system comprising networked smart
objects, cyber-physical assets, associated generic information technologies
and optional cloud or edge computing platforms, which enable real-time,
intelligent, and autonomous access, collection, analysis, communications,
and exchange of process, product and/or service information, within the
industrial environment, so as to optimize overall production value. This
valuemay include; improving product or service delivery, boosting produc-
tivity, reducing labour costs, reducing energy consumption, and reducing
the build-to-order cycle.” (Boyes et al., 2018)
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Figure 2.5: Connectivity stack proposed for the Industrial Internet Reference Architec-
ture (Lin et al., 2017).

Currently, there are several national standards for Industrial Internet of Things
connectivity architectures like the Industrial Internet Reference Architecture
(Lin et al., 2022) and the Reference Architecture Model Industrie 4.0 (RAMI 4.0)
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(Deutsches Institut für Normung e.V., 2016). A variety of different standardization
organizations manage these standards; however, efforts for an alignment between
the architecture models have been made (e.g., Lin et al., 2017; Gayko et al., 2018).
The RAMI 4.0 strongly focuses on the manufacturing industry, while the Indus-
trial Internet Reference Architecture is more generally applicable and caters to a
variety of industrial sectors. The Industry IoT Consortium (IIC) assesses various
connectivity technologies and identifies four technologies it suggests for use in the
Industrial Internet of Things, as illustrated in Figure 2.5 (Joshi et al., 2022). The
suggested core connectivity technologies are published as the Industrial Internet
of Things Connectivity Framework (IICF) (Joshi et al., 2022).
The IICF focuses on the framework and transport layers, as shown in Figure 2.5.

It differentiates connectivity technologies between the framework and transport
layers by defining that a connectivity framework at least pairs a connectivity trans-
port with a data type system (Joshi et al., 2022, p. 51).

Definition 2.10: Connectivity Framework

A connectivity framework provides syntactic interoperability independent
of endpoint implementations (Joshi et al., 2022, p. 28).

In comparison, a connectivity transport only provides technical interoperability
(Joshi et al., 2022, p. 39). Some connectivity frameworks provide mappings to
multiple transports.
The IICF and the RAMI 4.0 agree that Open Plattform Communications Unified

Automation (OPC UA) is well suited for the manufacturing industry and should be
one of the core standards for the Industrial Internet of Things (Lin et al., 2017). The
IICF also mentions the importance of Representational State Transfer (ReST) web
services based on the Hypertext Transport Procotol. However, they are thought
to be more suitable for manufacturing support systems than device-to-device
communications within the factory (Joshi et al., 2022, p. 64). Finally, Fieldbus
technologies like Modbus via TCP/IP (Modbus TCP) are relevant at the factory level.
They should be integrated into the Industrial Internet of Things (Joshi et al., 2022,
p. 63) because many applications, including energy-aware production scheduling
systems, need access to information from them. The IICF does not list them as
one of the core standards, though (Joshi et al., 2022).
Since this thesis uses connectivity frameworks and connectivity transports for

similar purposes and abstracts their functionality, the term connectivity frame-
work is applied more liberally and, for example, includes Modbus TCP, although it
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does not technically fulfil the requirement of having a data type system.

2.2.3. Implementation Procedures for Production Scheduling
Services

Since this thesis strives to simplify the implementation of energy-aware production
scheduling services, discussing existing procedures for implementing production
planning and control services is crucial. Some steps of these procedures are similar
for any software product, while other steps are specific to production planning
and control services.
Schuh et al. (2015, p. 333) describe the implementation of production planning

and control services and ERP systems in detail. Schuh et al. (2015, p. 333) differen-
tiate two main phases during the implementation: selecting a suitable software
system and implementing the system. The selection process is not discussed in
detail here because it is irrelevant to this thesis; however, the implementation
procedure is very significant for this work.

Definition 2.11: Implementation procedure

An implementation procedure is a multi-step process that companies can
follow to introduce and implement a specific software system or service.
The implementation procedure begins after a specific software product
has been selected and ends once the company has successfully adopted
the new system.

A review shows that software companies have developed specific implemen-
tation procedures which they follow. Schuh et al. (2015, p. 362) corroborate this
finding. The ORACLE NETSUITE implementation plan (Schwarz, 2022) and SAP
ACTIVATE (Musil, 2018) are examples of implementation procedures. In addition,
Beeson (2022) from ERP FOCUS describes a manufacturer-independent process.

Theprocedure describedbyMusil (2018) has six steps: discover, prepare, explore,
realize, deploy and run. The procedure in Schwarz (2022) also consists of six steps:
discovery and planning, design, development, testing, deployment, and support.
The concept outlined byBeeson (2022) focusesmore on the planning andbudgeting
stages. It has seven steps: assemble a team, create a change management plan,
estimate the implementation budget, begin data migration, train users, go live,
and evaluate. The more theoretical approach by Kropik (2009, p. 366) suggests
adapting software development processes. Schuh et al. (2015, p. 362) propose a
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six-step process with personnel qualification (for the implementation, not usage of
the system), prototyping, detailed concept, development and configuration, data
migration, and deployment.

Table 2.1: Correlation between the phases of various implementation procedures.

Step Schuh et al. (2015) ORACLE implementation
plan

Discovery and planning personnel qualification,
prototyping, detailed
concept

discovery and planning,
design

Development and configu-
ration

development and configu-
ration, data migration

development

Testing and deployment deployment testing, deployment, sup-
port

Step SAP ACTIVATE ERP FOCUS

Discovery and planning discover, prepare, explore assemble a team, create
changemanagement plan,
estimate implementation
budget

Development and configu-
ration

realize begin data migration

Testing and deployment deploy, run train users, go-live, evalu-
ate

When looking at the procedures in detail, many similarities become apparent,
and the following typical phases can be identified: discovery and planning, devel-
opment and configuration, testing and deployment. This thesis uses these three
high-level phases for its implementation procedure. Table 2.1 shows a rough cor-
relation between the different procedures introduced in the previous paragraphs
and these phases. The following paragraphs outline the activities in each phase
that have to be performed by a company wanting to implement a new production
scheduling service.

Discovery and planning include the assembly of a project team for the imple-
mentation, the creation of a project plan, and an analysis of the business processes
in the company to prepare the design phase. The team responsible for the imple-
mentation project must be adequately qualified (Schuh et al., 2015, p. 363) and
great care must be taken to ensure that the budget allotted for the implementation
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project is sufficient (Beeson, 2022). The result of the discovery and planning phase
is a concept for integrating the company’s processes into the software system.
Thus, the phase involves a detailed analysis of the company’s processes and their
juxtaposition with the software’s capabilities and standardized processes. The in-
tegration might require transforming the company’s processes and some software
adaptation (Schuh et al., 2015, p. 339) which leads into the next phase.

Development and configuration of the system follow after the initial discovery.
This phase encompasses adapting the system to the company’s desired processes
(Musil, 2018). The adaptation includes configuration where possible but might also
require some software development effort (Schuh et al., 2015, p. 374). Once basic
configuration is complete, data migration can begin. During the data migration, it
is fundamental to ensure high data quality (Beeson, 2022).

Testing and Deployment ensure that the final system can perform the required
processes without errors and that users can utilize the new system to its full
potential (Schwarz, 2022). Real usersmust perform and test the required processes
with actual data to minimize risk during the adoption (Schuh et al., 2015, p. 376).
The deployment can comprise a one-off event or a staggered approach (Schwarz,
2022). Finally, it is essential not to forget continued support and improvements
after the initial deployment (Schwarz, 2022).

It is obvious that many activities in the implementation procedure are more
concerned with general project management than the actual data collection and
migration. However, the authors seem to agree that it is critical to consider this
entire general change process to ensure the successful implementation of ERP
systems. Therefore, this thesis builds on the identified features of the implementa-
tion procedure to develop improvements to the implementation of energy-aware
production scheduling services.

2.3. Energy Considerations in Production Scheduling

Besides production planning and connectivity in production systems, energy is
the third important factor in the context of this thesis. The goal of energy-aware
production scheduling services is to improve energy efficiency as well as provide
energy flexibility. The first part of this section defines these two terms and gives
some context related to production systems. The second part discusses mone-
tization options specifically for energy flexibility with demand-side integration.
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The final part of this section examines how to predict the energy consumption of
production machines for given production schedules.

2.3.1. Energy Efficiency and Energy Flexibility

Energy-aware production scheduling can have an influence on energy efficiency
and energy flexibility at the same time. Energy efficiency is the ratio of energy
consumption to the output of a system. A macroeconomic measure for energy
efficiency in the services and manufacturing sectors is energy intensity, which
is energy per value-added or the ratio of total final energy consumption to gross
domestic product (or purchasing power parity for comparisons between multiple
countries) (International Energy Agency, 2020, p. 45). Specific energy consumption
is another indicator of energy efficiency often used at the macroeconomic level
(Phylipsen et al., 1997). The specific energy consumption is used instead of energy
intensity when the resources used are measured in physical units, not in economic
terms (Phylipsen et al., 1997). How to measure energy efficiency depends strongly
on the use case and selected system boundaries (Hesselbach, 2012, p. 7). For
production scheduling a more technical approach to measuring energy efficiency
seems sensible. This thesis uses the definition from International Organization
for Standardization (2017) to identify efficiency improvements through production
scheduling.

Definition 2.12: Energy Efficiency

Energy efficiency is the “relationship between the result achieved and
the resources used, where resources are limited to energy (International
Organization for Standardization, 2017).”

There are many ways to improve energy efficiency in production systems –
Hesselbach (2012, p. 14) proposes an onion model for identifying energy efficiency
measures. The approach begins analysis at the process level, as illustrated in
Figure 2.6. Themodel then suggests analyzingmachines and building systems, and
it finishes with identifying efficiency measures for decentralized energy suppliers
(Hesselbach, 2012, p. 14). Energy-aware production scheduling would most likely
influence energy efficiency on the machine level. For example, Blesl and Kessler
(2021, p. 13) mention the reduction of standby energy consumption as one of the
areas that has received little attention to date and could provide significant energy
savings. Energy-aware production scheduling could contribute to savings in this
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Figure 2.6: Bottom up identification of energy efficiency measures (own figure; Hessel-
bach, 2012, p. 15).

area by reducing standby energy consumption or by selecting the most efficient
production machine for every process.
Energy flexibility is the second factor besides energy efficiency affected by

energy-aware production scheduling. Energy flexibility measures are deliberate
actions taken to change the state of a production system to alter its energy con-
sumption over time (Verein Deutscher Ingenieure e.V., 2020). Energy flexibility
typically entails a reaction to changes in energy markets or by power utilities.

Definition 2.13: Energy Flexibility

Energy flexibility is the “ability of a production system to adapt quickly
and in a process-efficient way to changes in the energy market (Verein
Deutscher Ingenieure e.V., 2020).”

The previously introduced concepts of energy efficiency, energy flexibility and
production scheduling (refer to Section 2.1.1) allow for a definition of energy-aware
production scheduling, which combines these definitions into a single overarching
concept.

Definition 2.14: Energy-Aware Production Scheduling

Energy-aware production scheduling combines conventional production-
related objectiveswith the aim to improve the energy efficiency and energy
flexibility of a factory through production scheduling.

As mentioned in Section 2.1.3, this thesis differentiates the energy-related ob-
jective criteria for production scheduling from the production-related objective
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criteria discussed earlier. Energy-related objective criteria usually aim to evaluate
either the energy efficiency of production schedules or the energy flexibility they
achieve. Biel and Glock (2016) find that energy-related cost and total energy con-
sumption are the most used energy-related objective criteria for energy-aware pro-
duction scheduling. As the names suggest, optimizing total energy consumption
improves energy efficiency, while optimizing energy-related cost in combination
with appropriate pricing schemes (refer to Section 2.3.2) advances energy flexibil-
ity. Section 2.3.2 discusses pricing schemes that enable evaluating energy-related
cost. Some authors also utilize other objective criteria like peak power consumption
or energy-related greenhouse gas emissions (Biel & Glock, 2016).

2.3.2. Demand Side Integration

Demand-side integration is the technical area devoted to realizing efficient and
flexible use of electric energy. Besides the technical aspects of the concepts in-
troduced in the previous section, demand-side integration also includes their
commercialization. Demand-side integration includes short-term and long-term
measures (Walther et al., 2022). Energy efficiency measures and on-site power
generation are typically long-termmeasures requiring a planning phase before
implementation (Walther et al., 2022). Other long-term measures include load-
increasing measures like the electrification of processes that previously operated
with different energy forms apart from electricity (Walther et al., 2022). In the
short-term, there are energy flexibility measures which are usually referred to as
demand response and may lead to an increase or decrease in load.

Definition 2.15: Demand Response

Demand response is a “change in electric usage by end-use customers
from their normal consumption patterns in response to changes in the
price of electricity over time, or to incentive payments designed to induce
lower electricity use at times of high wholesale market prices or when
system reliability is jeopardized (U.S. Department of Energy, 2006, p. ix).”

Verein Deutscher Ingenieure e.V. (2020) standardizes a classification scheme
for demand response based on the corresponding automation hierarchy level and
implementation time frame, as illustrated in Figure 2.7. Changes to shift times
or shift break times must be made at the enterprise level because of their high
impact on workers’ schedules (Verein Deutscher Ingenieure e.V., 2020). On the
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Figure 2.7: Classification of demand response based on the automation hierarchy level
and implementation time frame (Verein Deutscher Ingenieure e.V. 2020;
©Reproduced with permission of the Verein Deutscher Ingeniuere e.V.).
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other hand, changes in the production sequence or the production start, as well as
adjustments to capacity planning, have a long-term impact and, as such, are also
classified at the enterprise level (Verein Deutscher Ingenieure e.V., 2020).
The classification locates measures with more time-constrained and localized

impact at the manufacturing control level (Verein Deutscher Ingenieure e.V., 2020).
These measures are most relevant for energy-aware production scheduling and
are described in more detail below:

− Interrupt job refers to the interruption of a job with multiple operations, for
example, to avoid high energy prices occurring during the production of
the job (Verein Deutscher Ingenieure e.V., 2020).

− Shift start of job names a similar measure and moves the starting time of a
job to comply with energy consumption requirements (Verein Deutscher
Ingenieure e.V., 2020).

− Change job sequence means that jobs are re-sequenced based on their energy
consumption – a job with lower consumption could be performed before
another job with higher consumption, for example (Verein Deutscher Inge-
nieure e.V., 2020).

− Adjust resource allocation implies switching between production machines
to produce a job on a machine with lower energy consumption (Verein
Deutscher Ingenieure e.V., 2020).

− Store energy expresses the controlled energy storage for later use when there
is higher demand or higher energy prices (Verein Deutscher Ingenieure
e.V., 2020).

− Adjust energy procurement represents a change in the energy form used to
power the process (Verein Deutscher Ingenieure e.V., 2020).

Furthermore, there are measures at the manufacturing level, including the
interruption of already running processes, changes to the processing sequence,
and adjustments to process parameters like theprocessing speed (VereinDeutscher
Ingenieure e.V., 2020). Some production machines might also feature inherent
storage or the option to operate with bivalent energy, meaning they are able to
utilize two different energy forms (e.g., electricity and gas) (Verein Deutscher
Ingenieure e.V., 2020).
Viable measures for energy-aware production scheduling are measures includ-

ing changes to the process type or parameters, in addition tomeasures that change
the sequencing and timing of jobs or the resource allocation. However, measures
that lead to a change in the operating point of production machines might lead to
negative interactions with efficiency (Verein Deutscher Ingenieure e.V., 2020). This
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problem affects direct changes to process parameters and process interruptions,
whereas the interruption of jobs on the manufacturing control level usually does
not have this specific problem.
Commercializing these demand response measures is quite complex and de-

pends on many factors – Walther et al. (2022) propose a methodology that helps to
find monetization options for specific demand response measures depending on
the automation hierarchy level, factory lifecycle phase, achieved power difference,
the planning horizon (how long in advance a company has to know about the
requirements to be ready to implement a demand response measure within the
required reaction duration), the reaction duration (how long it takes from a request
to execution of the measure) and holding duration (how long the power difference
is maintained). The monetization options can be differentiated between wholesale
and retail markets (Walther et al., 2022). Two kinds of wholesale markets exist:
integrated markets and exchange-based markets (Cramton, 2017). In an integrated
market, the system operator optimizes the scheduling and dispatch of resources;
in contrast, exchange-based markets let energy companies trade, which decen-
tralizes resource optimization (Cramton, 2017). The products sold and the time
frame between the trade and service delivery also differentiate wholesale energy
markets (Cramton, 2017). For example, there are derivatives for long-term forward
contracting of energy supply, day-ahead markets and intraday markets (Cramton,
2017). On the other hand, there are capacity markets to guarantee financing for
new generating capacity before being built, and ancillary servicemarkets to ensure
power grid stability (Cramton, 2017).
There are many different wholesale market designs, depending on the region

(Cramton, 2017). Paterakis et al. (2017) provide an overview of electricity markets
and the commercialization of demand response in a multitude of regions across
all continents. The European electricity market, as one example, is split into
an energy-only market with futures to provide long-term hedging options and
day-ahead and intraday markets, as well as real-time trading on a continuous
intraday market (Bertsch et al., 2019). In addition to these energy-only markets,
the European electricity market has ancillary service markets to provide primary
and secondary balancing power and a minute-reserve (Bertsch et al., 2019). These
are successively invoked when balancing power is required (Bertsch et al., 2019).
Entry into the wholesale electricity markets is limited by the smallest tradable

units – the exact limit depends on the specific market. In Germany, for example,
the smallest tradable units are 1MW for the primary balancing power market or
5MW for the secondary balancing power market and the minute reserve (Bertsch
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Table 2.2: Incomplete overviewof price-baseddemand responseprogramswithplanning
horizon and holding duration (Walther et al., 2022).

Description Planning Horizon Holding Duration

Time-of-use pricing > 12 h 1h – 12 h
Critical peak pricing Varying 1 h – 12 h
Real-time pricing 1 h – 24 h 5min − 1 h

et al., 2019). Furthermore, to allow the commercialization of demand response
measures, factors like the planning horizon and reaction duration must match
the corresponding markets. Finally, regulatory and financial entry barriers can
prevent participation in the wholesale markets (Walther et al., 2022).

Retail markets have lower barriers to entry and are more accessible for demand
sidemarket participants. Since there is no exact differentiation between wholesale
and retail, some of the markets introduced above could also be open for retail
customers if the entry barriers are sufficiently low. As Paterakis et al. (2017) discuss,
this is the case in some regions. Where this is not the case, grid operators, like
power utilities, act as retailers and potentially offer demand response programs
(U.S. Department of Energy, 2006, p. x).
There are price-based and incentive-based programs for monetizing demand

response on the retail market (U.S. Department of Energy, 2006, p. x). Incentive-
based programs give customers incentives in addition to their regular electricity
price (U.S. Department of Energy, 2006, p. xi) – overall lower prices could be
an example of such an incentive. Direct control programs, where utilities can
remotely control equipment, are an example of an incentive-based program (U.S.
Department of Energy, 2006, p. xii). Curtailable loadprogramsare similar; however,
in this case, the power utility signals to the customer to curtail a load and does not
have direct control over equipment (U.S. Department of Energy, 2006, p. xii). One
more example is demand bidding, where the customer places bids for curtailments
that the grid operator can accept or refuse (U.S. Department of Energy, 2006, p. xii).
Most research on energy-aware production scheduling assumes price-based

programs, as introduced in Table 2.2. Time-of-use pricing schemes have fixed
prices for predetermined daily time intervals (U.S. Department of Energy, 2006,
p. ix) meant to shift demand from peak to off-peak periods (Lampropoulos et al.,
2013). Critical peak pricing extends time-of-use pricing by a higher rate for specific
trigger conditions (Lampropoulos et al., 2013). Trigger conditions for the peak
price may include compromised system reliability or very high supply prices (U.S.
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Department of Energy, 2006, p. ix). Finally, real-time pricing is the most flexible
pricing scheme, with frequent adjustments of retail prices to reflect supply prices
(Lampropoulos et al., 2013).

2.3.3. Energy Consumption of Production Machines

Models of the energy consumption of production machines are necessary to eval-
uate the performance of production schedules regarding energy considerations
like energy efficiency and energy flexibility. There are multiple ways to account
for energy consumption during production scheduling. For example, Sihn et al.
(2018) differentiate two categories.

Simulation-based approaches employ simulation models with varying levels of
detail to describe the production system and its energy consumption. Production
schedules are then compiled by manual experimentation or using optimization
techniques with the simulation model as an evaluation function (Sihn et al., 2018).
Rager (2008, p. 106) uses a continuous-time simulation model for the energetic
evaluation of production schedules generated by an evolutionary algorithm, for
example. Thiede et al. (2016) describe a different approach and employ a multi-
level simulation model combined with a manual, scenario-based approach for
optimization.

Optimizationmodel-based approaches integrate energy consumption models
directly into an overarching optimization model. Such approaches typically use
simplified energy consumption models (Sihn et al., 2018) such that the entire opti-
mization model can be solved exactly (or optimal solutions can be approximated)
using the methods introduced in Section 2.1.3. The disadvantage of these models
is their much lower performance regarding the realistic description of system
behaviour (Sihn et al., 2018).

The diverse approaches also implicitly bring differentiation in the level of de-
tail incorporated by the models. Optimization models cannot be as detailed as
simulation models because they must be directly solvable in a reasonable time
frame. In simulation-based approaches the influence of model complexity on the
solution time is much lower; thus, more complex models are possible (Sihn et al.,
2018). This allows simulation-based approaches to take a variety of factors that
are ordinarily not considered in optimization model-based approaches. As the
literature review in Section 3 shows, most research on energy-aware production
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scheduling appears to be optimization model-based (see, e.g. Bänsch et al. (2021),
who find that only about 4% of articles use simulation-based approaches).

The optimizationmodel-based approaches are structured by the energy demand
aspects they attempt to reflect in their models. For example, Biel and Glock (2016)
differentiate between processing power, power used during idle, base and hold-
ing states, setup power, power for tool changes, power used during shutdown,
and power used during parts transport. Gahm et al. (2016) identify even more
different energy demand aspects and propose disambiguating non-processing
energy demand and processing energy demand. The different nomenclatures and
considered aspects indicate a lack of generally applicable definitions of energy
demand aspects for production scheduling.
This thesis uses the disambiguation between processing energy demand and

non-processing energy demand, as proposedbyGahmet al. (2016). Non-processing
energy demand aspects include energy consumed during storage (Gahm et al.,
2016) and transportation (Biel & Glock, 2016). The technical specification VDMA
34179, which is specific to machine tools but can be applied to other types of
productionmachines as well, provides a good starting point for differentiating pro-
cessing energy demand aspects (Verein Deutscher Maschinen- und Anlagenbauer,
2019). VDMA 34179 discerns energy states and state transitions (Verein Deutscher
Maschinen- und Anlagenbauer, 2019). Energy state transitions are characterized by
a change in energy consumption determined by the prior energy state, posterior
energy state, and by the duration of the transition (Verein Deutscher Maschinen-
und Anlagenbauer, 2019). The specification asserts that the energy states differ
between machines and processes; however, four universally applicable states can
be identified (Verein Deutscher Maschinen- und Anlagenbauer, 2019):

− off
− standby
− operational
− working

Schrems (2014, p. 40) shows that the same approach can also represent other
machine types. However, depending on the type of machine, the influence of par-
ticular process-independent components might be much more substantial than it
is formachine tools (Schrems, 2014, p. 40). For example, the heat needed to control
the temperature of the cleaning medium dominates the energy consumption of
aqueous cleaning machines (Schrems, 2014, p. 41). Hence, besides the primary en-
ergy states, energy consumption also depends on the types of components within
the machine.
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Figure 2.8: Electric power consumptionof variousproductionmachine component types;
translated from German (Kuhrke, 2011, p. 65).

The different types of components, according to Kuhrke (2011, p. 65), are illus-
trated in Figure 2.8. However, as Kuhrke (2011, p. 65) finds, the energy consumption
characteristics of individual components can often be ignored when the goal is
to model total energy consumption. To determine which components must be
included in a model, Schrems (2014) analyzes each component individually to
determine how relevant its characteristics are. Components with high average
consumption in comparison to the total power consumption of the machine are
the most relevant (Schrems, 2014). The takeaway for this thesis is that additional
modelling effort on top of the energy states may be required depending on the
machine and its components.

2.4. Research Focus Refinement

The fundamentals and definitions outlined in the preceding sections constitute the
results of the research clarification phase within the Design ResearchMethodology.
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The research clarification phase revealed areas needing focus refinement due to
the abundance of paths to energy-aware production scheduling. Thus, it is crucial
to look at all the topics covered above and determine how each topic should be
handled throughout this thesis.
The production planning and control tasks are diverse – from production pro-

gram planning to sequencing and order release, many subtasks may have some
influence on the energy consumption of production. Therefore, this thesis ag-
gregates some planning tasks and refers to them as production scheduling. Pinedo
(2016), who integrates aspects of thementioned subtasks in the proposedmodelling
scheme for production scheduling, supports this aggregate view.
This thesis will also focus on one machine environment, namely job shops,

due to the varying requirements for production scheduling in different machine
environments. Job shops present an attractive challenge for developing and imple-
menting an energy-aware production scheduling system. However, although the
focus is on job shops, the insights gained may also be applicable to other machine
environments.
The previous sections also show the variety of production-related and energy-

related objective criteria for production scheduling. Due to the amount and diver-
sity of objective criteria and companies’ varying needs, focusing this research on
optimization algorithms that perform well with multiple objective criteria is sensi-
ble. The objective criteria chosen in this research should also be interchangeable to
allow for adaptation to the requirements of different companies. This also affects
the algorithm used for optimization – it should be applicable despite changes in the
objective criteria without requiring complete re-creation of the entire production
scheduling model. Since objective criteria should be interchangeable, a target of
the implementation procedure should be choosing and implementing the objective
criteria relevant to an individual company or factory.
Data availability and the ability to control the production processes performed

within the production system are also essential requirements for implementing
energy-aware production scheduling systems. While some of the demand response
measures discussed in Section 2.3.2 might necessitate the involvement of work-
ers, the additional work must be kept to a minimum to avoid decreasing process
efficiency while energy efficiency and flexibility improve. This thesis focuses on
utilizing the capabilities of cyber-physical production systems, and the energy-
aware production scheduling system developed in this thesis is a service within
the cyber-physical production system. Therefore, connectivity to manufacturing
support systems and productionmachines is crucial and the solutionmust support
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modern connectivity frameworks.
Section 2.2.3 discusses various implementation procedures. This thesis uses

the common steps identified in that section as a starting point for developing
an implementation procedure for energy-aware production scheduling systems.
The literature review in Section 3 will show whether there are other approaches
proposing implementation procedures. If they exist, such approaches must be
considered throughout this work. Apart from that, extensions to the identified
common implementation procedures should be the result of this thesis, in addition
to tools that aid in their execution. The discovery and planning as well as the
development and configuration phases are most relevant for implementing energy-
aware production scheduling systems. The testing and deployment phase likely
does not have to be adjusted significantly to support energy-aware production
scheduling.
Regarding energy considerations, both energy efficiency and energy flexibility

are compelling goals for energy-aware production scheduling. A promising way
to improve the energy efficiency of production is better management of power
consumption during idle times. This path should be considered when developing
the energy-aware production scheduling system. Looking at energy flexibility
and demand response, Section 2.3.2 shows many of the relevant measures. While
all of these measures can be relevant over the entire production planning and
control process, measures on the manufacturing control level are most applicable
to production scheduling. As the literature review in Section 3 will show, mea-
sures on the manufacturing level are also regularly considered in energy-aware
production scheduling research. However, since this thesis looks to simplify the
implementation of energy-aware production scheduling systems, it makes sense
to excludemeasures on themanufacturing level for now since their potential inter-
actions with process parameters would complicate the implementation procedure
unnecessarily.
If there is no economic relevance, nothing is likely to be implemented. Thus,

monetizing energy-aware production scheduling is another issue to be aware of
when proposing implementation procedures for energy-aware production schedul-
ing systems. Since many manufacturing companies presumably do not fulfil the
entry criteria for wholesale energy markets, the retail markets are most suitable
for this thesis. In particular, this thesis focuses on real-time pricing since it offers a
good compromise between an exact representation of the energy markets’ flexibil-
ity needs and simplicity of implementation. Real-time pricing offers more control
to companies performing production scheduling than, for example, curtailable
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load or time-of-use pricing schemes. It is also easier to understand, implement,
and execute than, for example, a demand bidding scheme.
In conclusion, the research clarification corroborates the need to study imple-

mentation procedures for energy-aware production scheduling in job shops. The
specific optimization algorithms and objective criteria, production- or energy-
related, are not a focus; however, focus is placed on choosing an optimization
algorithm that allows optimizing multiple objectives and quickly changing objec-
tive criteria without requiring extensive re-modelling. This work interprets the
energy-aware production scheduling as a service within the cyber-physical produc-
tion system and recognizes the need to support various connectivity frameworks.
The goal is to improve energy efficiency and energy flexibility through demand
response measures on the manufacturing control level with a real-time pricing
scheme for monetization. The results of this thesis are the inclusion of energy
awareness in the implementation procedure for production scheduling systems
and the development of software tools supporting their deployment. This the-
sis aspires to expedite the dissemination of energy-aware production scheduling
systems in industry.
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Section 2 examines a host of factors that are generally relevant for the implementa-
tion and propagation of energy-aware production scheduling systems. Section 2.4
additionally identifies a set of research focus points. Combined with the research
questions defined in Section 1.1, these focus points form the basis for this literature
review. The literature review aims to identify other research in the energy-aware
production scheduling field and the research gaps that should be addressed. In
conjunction with the first research question set out at the beginning of this thesis,
the literature review’s purpose is to provide insights if and why there are few real
implementations of energy-aware production scheduling.
Energy-aware production scheduling is a vast and active field of research, and

many systematic literature reviews have been published over recent years. There-
fore, this literature review begins by analyzing available literature reviews. These
reviews provide a comprehensive overview of the research field. Based on this
overview, the later parts of this section focus on actual implementations of energy-
aware production scheduling. The last part of this section identifies and discusses
the research gaps this thesis will address.

3.1. Prior Literature Reviews

Numerous literature reviews in the field of sustainable manufacturing acknowl-
edge energy-aware production scheduling. Earlier reviews, like Duflou et al. (2012),
Garetti and Taisch (2012), and Haapala et al. (2011), analyze the field with a broad
focus and identify planning and scheduling as one of many relevant factors. Later
reviews focus on more specific aspects of sustainable manufacturing because the
number of published articles in the field increased significantly (Bänsch et al.,
2021). For example, Narciso and Martins (2020) review the utilization of machine
learning for energy efficient manufacturing in general, and Garwood et al. (2018)
address the development of energy simulation tools. There are also several reviews
with a more specific focus on energy-aware scheduling and scheduling for sustain-
able manufacturing. The following paragraphs take a more detailed look at some
of these reviews because they constitute a good starting point for the literature
search in this thesis.
Giret et al. (2015) is a narrative review and one of the first reviews with a fo-

cus on scheduling for sustainable manufacturing. The review states that at the
time, there was a strong focus on the input factors that enable production, for
example, the energy consumption of production processes, but little emphasis
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was given to the outputs (e.g. carbon emissions) (Giret et al., 2015). The authors
argue that the outputs are even more relevant to achieve sustainability than the
inputs because processes with relatively sustainable inputs but high carbon emis-
sions exist (Giret et al., 2015). However, Giret et al. (2015) also find that developing
global approaches to energy-aware production scheduling is a challenging task in
itself. Additionally considering input and output factors while also allowing for
rescheduling requires support by further paradigm shifts (Giret et al., 2015). In
this regard, they identify cyber-physical production systems, intelligent products
and new scheduling algorithms as some of the possible solutions (Giret et al.,
2015). One of the most important conclusions from this review is that there is a
need for realistic research production systems where the inputs and emissions
from energy-aware production scheduling can be measured precisely (Giret et al.,
2015). Such production systems could also provide the research community with
benchmarks to test new algorithms and procedures and facilitate the effective
development of energy-aware production scheduling (Giret et al., 2015).
The reviews by Biel and Glock (2016) and Gahm et al. (2016) are conducted only

about one year later, in 2016. They both take the approach of a systematic literature
review, which contrasts with the review by Giret et al. (2015). Biel and Glock (2016)
and Gahm et al. (2016) use two sets of keywords to narrow the focus of their search.
The first set of keywords is related to production planning and control, and the
second set is related to energy. With this approach, they found 89 (Biel & Glock,
2016) and 87 articles (Gahm et al., 2016), respectively.
Gahm et al. (2016) differentiate three dimensions when they classify literature:

the systems covered by the approach (for example, whether energy conversion is
included), the energy supply (whether energy is supplied by internal infrastructure
or from the grid), and the energy demands (whether additional factors apart from
the processing energy demand are considered). Most of the articles Gahm et al.
(2016) found concentrate on energy consumption within the production system
and neglect energy conversion. Most articles that use grid power supply use
a time-of-use pricing scheme for demand response; incentive-based programs
are not widely considered (Gahm et al., 2016). Notably, many articles do not
incorporate the production job in their energy consumption calculations (Gahm et
al., 2016). However, articles usually account for differences in energy consumption
resulting from using different machines (Gahm et al., 2016). Gahm et al. (2016)
put some effort into evaluating the energy savings the reviewed articles report.
Their evaluation proves that the energy-aware production scheduling approach
is viable. In their conclusion, Gahm et al. (2016) highlight the fragmentation of
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energy-aware production scheduling research and assert that there is an urgent
need for a common classification framework, which they provide. Bänsch et al.
(2021) later reuse and extend the classification framework proposed by Gahm et al.
(2016). Gahm et al. (2016) identify multi-objective models and more specialized
solution algorithms as relevant areas for future research. They also reiterate the
need for benchmark instances as well as a deeper understanding of the energy
characteristics of involved systems and their relevance to the scheduling problem
(Gahm et al., 2016).
In contrast to Gahm et al. (2016) and Giret et al. (2015), Biel and Glock (2016)

put much more emphasis on the different planning horizons in the production
planning and control hierarchy (refer to Section 2.1.1). In addition to energy-aware
production scheduling, they include master production scheduling, capacity plan-
ning, and lot-sizing in their review (Biel & Glock, 2016). The authors differentiate
betweenmachine environments (which they call machine scheduling approaches),
equivalent to the other reviews. The authors’ quantitative analysis shows that most
research in the field concentrates on energy-related cost and total energy con-
sumption as objective criteria and uses processing and idle energy consumption
in their models (Biel & Glock, 2016). Biel and Glock (2016) confirm the finding that
energy-aware production scheduling is a viable option to improve sustainability in
production processes but that, while there is no significant equipment investment
required, the implementation requires a deep understanding of the underlying
energy consumption characteristics and consultation with experts in the field is
necessary to find satisfactory solutions. Similar to the other two reviews from the
time, Biel and Glock (2016) identify a more global view on energy conversion and
production scheduling as an area for further research. They suggestmore research
on integrating renewable energy sources and modelling CO2 emissions (Biel &
Glock, 2016). Broader consideration of the available demand response schemes is
also on their agenda (Biel & Glock, 2016). Another contribution by Biel and Glock
(2016) is the proposal of a standardized nomenclature for energy-aware production
planning and control.
The three following reviews are more current than those previously introduced

– they should also provide some insights into the progress in the field since these
first reviews. Bänsch et al. (2021) expand explicitly upon the prior reviews by
Biel and Glock (2016) and Gahm et al. (2016). With 192 articles, despite further
narrowing the search and only looking at the four years between 2016 and 2020,
Bänsch et al. (2021) found more than twice as many articles as the two previous
reviews. Combined with the increasing trend in publications found by Bänsch
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et al. (2021), this reiterates the surge in research interest the field of energy-aware
production scheduling received. Bänsch et al. (2021) narrow the search by adding
a third set of keywords, limiting the results to mathematical optimization and
heuristics. Gao et al. (2020) apply a similar strategy in their search but are not as
rigorous in their documentation. These two reviews supplement each other since
Bänsch et al. (2021) use the SCOPUS database, and Gao et al. (2020) use WEB OF
SCIENCE.
Bänsch et al. (2021) propose the most comprehensive classification scheme and

use ten criteria, including elements from the classification schemes by Biel and
Glock (2016) and Gahm et al. (2016). The criteria include the energy supply with
on-site generation and grid power, objective criteria (which they call planning
objectives), the production planning and control hierarchy (they simplify this as
planning horizon), machine environments (which they refer to as manufacturing
model), and more (Bänsch et al., 2021). Interestingly Bänsch et al. (2021) have
some findings that are similar to the earlier reviews. However, they also argue
that many research areas identified by Biel and Glock (2016) and Gahm et al. (2016)
have seen positive development.
In particular, Bänsch et al. (2021) identify the system boundary, the conceptual-

ization and the practical relevance as the areas of future development found by the
earlier reviews. Regarding the practical relevance of research, Bänsch et al. (2021)
identify 48 articles that apply their findings to real-life case studies. Additionally,
they find substantial progress in all development areas, with some papers even
addressing all three (Bänsch et al., 2021). Bänsch et al. (2021) proceed to identify
the primary research streams that have seen prominent advancements. These
are on-site generation environments, layout and process planning, assembly line bal-
ancing, dynamics and rescheduling, multiple forms of energy, and the integration of
transportation processes.
In Gao et al. (2020), the authors discover 90 publications – in contrast to Bänsch

et al. (2021), they narrow their search to include only what they call intelligent
strategies for optimization. They use the keywords swarm intelligence, evolutionary
algorithm, and meta-heuristic to identify intelligent strategies (Gao et al., 2020);
however, they do not rigorously document their methodology. Gao et al. (2020)
use five criteria to classify papers, the machine environment (they refer to this as
shop floor category), the model formulation (they call this problemmodel), the
objective criteria (they call this scheduling objectives), the optimization algorithm
and the energy demand aspects (the authors name these energy consumption
aspects). The authors note that the percentage of genetic algorithms used for
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production schedule optimization is 52%; the NSGA-II alone is used in 14% of the
analyzed articles (Gao et al., 2020). A significant outcome of Gao et al. (2020) is
that few articles currently address practical implementations outside of special
cases. They also observe a need for more unified frameworks and benchmarks for
energy-aware production scheduling (Gao et al., 2020).
Dos Santos et al. (2023) take a more application-oriented view on energy-aware

production scheduling research. The authors include the industrial sector to
which the research applies in their classification scheme. They also use a more
application-oriented approach to classify machine environments (they refer to
this as manufacturing organization levels) by differentiating three levels: the unit-
process level, multi-machine level, and factory level (Dos Santos et al., 2023). The
systematic review by Dos Santos et al. (2023) adds value due to its unique approach
to the classification and analysis of literature. In addition, the authors also analyze
articles that apply to real practical scenarios and find that the implementation
of demand response in industrial companies remains a considerable challenge
(Dos Santos et al., 2023). They see some barriers to implementing energy-aware
production scheduling as reasons for the scarcity of implementations. In particular,
they mention lacking economic benefits and organizational obstacles (Dos Santos
et al., 2023). On the other hand, they note that the Industrial Internet of Things will
be convenient for deriving newenergymodels of factories by improvedmonitoring.
Combined with more accurate multi-objective models, better monitoring could
improve the profitability of investments in energy-aware production scheduling
(Dos Santos et al., 2023).
The literature reviews introduced in this section provide a rough overview of

the vast field of research concerning energy-aware production scheduling. As the
articles found by each reviewer show, there has been copious research in energy-
aware production scheduling, especially in recent years, where sustainability has
become increasingly important. However, the reviews also show that agreement
regarding the classification of research in the field has yet to be achieved. The
classification scheme introduced by Gahm et al. (2016) and extended by Bänsch
et al. (2021) is the most comprehensive currently available and provides categories
for almost anything relevant. However, articles in the field have not widely adopted
it, and authors sometimes leave the exact specifics of their research unclear due
to inexact wording.
Giret et al. (2015) realize early on that there is a need to more accurately repre-

sent actual production systems by considering input and output factors while also
allowing for rescheduling in case something goes wrong during the execution of
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production schedules. They identify cyber-physical production systems combined
with realistic research production systems as a pathway for more effective devel-
opment of energy-aware production scheduling approaches. The reviews agree
that more accurate representations and a global view of energy consumption and
conversion would help to improve the scheduling models. Bänsch et al. (2021)
found positive developments in these areas, with more articles expanding the
system boundaries and using real use cases to validate their models. However,
Dos Santos et al. (2023) found that implementing demand response in industrial
settings remains a significant challenge.

Overall, there still seems to be a lack of models that accurately represent produc-
tion systems and are fit for implementation in real industrial use cases. Therefore,
to answer the first research question of this thesis, an additional review of articles
focusing on implementation in real use cases and considerationsmade concerning
this is required.

3.2. Search Procedure, Criteria and Literature Analysis

Due to the apparent lack of implementations that the review of secondary litera-
ture above suggests, it makes sense to perform a more detailed literature review
focusing on real practical implementations. This area can be approached from two
angles: by looking at research that performs actual implementations or by looking
at research that analyzes the barriers that prevent industrial implementations.
The next part of this section introduces the search procedure and criteria used
to select relevant articles. An analysis of the selected articles and a discussion of
the results under the premises of the first research question posed in Section 1.1
follows afterwards.

3.2.1. Definition of Search Procedure and Criteria

The systematic literature review performed for this thesis adopts the procedure
suggested byHochrein and Glock (2012). Figure 3.1 illustrates the procedure, which
ensures that appropriate care is taken when selecting search terms and inclusion
or exclusion criteria. The method also emphasizes data evaluation and critical
analysis of sampled articles.

This reviewwill use themetadata databasesWEB OF SCIENCE CORE COLLECTION
and EBSCO BUSINESS SOURCE PREMIER. The search is performed in April 2023
and is limited to articles published between 2016 and the search date. Due to the
abundance of articles in the field, it is essential to find categories that limit the

46



3.2. Search Procedure, Criteria and Literature Analysis

Define Search Terms
& Search Procedure

Perform Literature
Search

Screen Articles for
Relevance (Abstract)

Descriptive Analysis
of Sampled Articles

Extract Data &
Categorize (Full Read)

Analyze & Report
Results

Figure 3.1: Procedure for a systematic literature review as used in this thesis (own figure;
Hochrein & Glock, 2012).

sample to the most relevant research. The review should thus be constrained to
energy-aware production scheduling in job shops. Most of the previously analyzed
literature reviews use two keyword sets for energy-aware production scheduling:
production planning-related keywords and energy-related keywords. Since this
choice led to good results, this review also adheres to that strategy and extends it by
requiring selected articles to be about job shops. This review uses a third category
of implementation-related keywords to limit the sample to articles concentrating
on actual implementations. Some of the implementation-related keywords match
articles describing the implementation itself, and others match articles about
implementation barriers. These deliberations yield the following list of keywords:

− job shop
− Production planning-related:

• scheduling
• planning

− Energy-related:

• demand response
• energy
• sustainable

− Implementation-related:

• use case
• industrial case
• case study
• obstacle
• barrier
• challenge
• experience
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The search is limited to the article metadata available in theWEB OF SCIENCE
CORE COLLECTION and BUSINESS SOURCE PREMIER databases. Available fields
include the title, abstract, keywords, and other fields like funding details and
research area. The search logically combines the keywords in each category with
the “OR”-operator and the categories with the “AND”-operator. The resulting search
string requires that one keyword from each category is present:

1 "job shop"
2 AND ("scheduling" OR "planning")
3 AND ("demand response" OR "energy" OR "sustainable")
4 AND (
5 "use case" OR "industrial case" OR "case study"
6 OR "obstacle" OR "barrier"
7 OR "challenge" OR "experience"
8 )

The search produced 78 results from theWEB OF SCIENCE CORE COLLECTION
and 20 results from BUSINESS SOURCE PREMIER. Unfortunately, some of these
results were duplicates, and the total number of unique articles found is 84. During
the first screening, articles are included or excluded based on the title and abstract.
Expressly, articles that fall into the following categories are excluded:

− Articles focusing on scheduling in other sectors like power grid mainte-
nance, sensor networks, data centers, or quality control. For example,
Aizpurua et al. (2021), Cao et al. (2018), Huang et al. (2021), Ibrahim et al.
(2022), Orozco-Santos et al. (2021), and Z.Wang et al. (2022),

− Articles talking about demand response or scheduling from a supply-side
point of view, such as Elliott et al. (2019), Shao et al. (2021), and Vahid-
Ghavidel et al. (2021)

− Articles using scheduling as an example but focusing on something else,
such as simulation. The articles in this category are Back et al. (2016) and
Bai et al. (2022).

− Articles performing higher-level optimization of production systems like
layout planning. Elahi (2021) falls into this group.

− Articles that do not consider energy in their scheduling approach, like Berti
et al. (2021), Denkena et al. (2021), Kowalski et al. (2022), Ramya et al. (2019),
and Q. Zeng et al. (2019)

− Articles carrying out scheduling for machine environments apart from job
shops, such as Cheng et al. (2020), Rubaiee et al. (2019), Ujazdowski and
Piotrowski (2022), and Z. Zeng et al. (2018).
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− Articles mentioning in the abstract that their case study is only theoretical
or numerical and thus not a real industrial use case, like Pereira and Lima
(2018), Sun et al. (2020), and Zarte et al. (2021). The abstract often does not
clearly state whether the included case study is a real industrial use case
or a numerical or theoretical study. When in doubt, studies were included
rather than excluded.

− Articles reviewing other articles without introducing new approaches (sec-
ondary literature) like Alvarez-Meaza et al. (2021) and He and Smith (2021).

The first screening excluded 52 articles according to the exclusion criteria. The
32 remaining articles constitute the sample for the detailed literature analysis.
During the second scrutiny, which included a full read of the remaining sampled
articles, the following articles were excluded because theymet one of the exclusion
criteria: Lotfi et al. (2021) (does not perform production scheduling) and Y. W.
Zhang (2022) (deals with the evaluation of sustainability indicators, not production
scheduling directly).

3.2.2. Descriptive Analysis and Classification Scheme

After the selection process, 30 articles are in the sample for a more thorough
analysis. As illustrated in Figure 3.2, the Journal of Cleaner Production emerged as
the leading journal in the field, with about 23% of the sampled articles published
there. Theprior literature reviews introduced in Section 3.1 obtained similar results.
Sustainability published three articles, while other journals only published one
article each. Five articles were published in conference proceedings; however, all
were presented at different conferences.

0 2 4 6 8 10 12 14

Journal of Cleaner Production

Sustainability

Other Journals (one article each)

Other Conference Procedings

Number of sampled articles

Figure 3.2:Number of sampled articles published per journal (own figure).
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As Figure 3.3 shows, there has not been a significant increase in the number
of articles published per year over the studied period. Two additional articles
were published until April 2023; these are not shown in the figure to prevent
misinterpretation because additional articles might still be published in 2023.
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Figure 3.3:Number of sampled articles published per year until 2022 (own figure).

Bänsch et al. (2021) developed a comprehensive classification scheme for arti-
cles that incorporates their literature review findings presented above. This work
adapts their literature classification by adding additional categories to evaluate the
sampled articles regarding their focus on real industrial use cases and implementa-
tion. To conform to the nomenclature of this thesis, some of the categories Bänsch
et al. (2021) propose are renamed here; however, the identifying letters remain
the same. Bänsch et al. (2021) proposed the categories A to J, and the categories K
and L were added to their scheme. Categories C energy storage, F machine environ-
ment, H planning horizon and I model type are omitted because they do not provide
relevant insights. In particular, the machine environment is irrelevant because
the search only included articles concerned with job shops. In the other omitted
categories, there was scant variation within the sampled articles. Most articles do
not include energy storage and perform short-term planning with mixed integer
programming models. As a result, the following classification scheme is used to
group the sampled articles:

− A Energy supply
− B Energy demand
− D Objective criterion
− E System of objectives
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− GMode characteristic
− J Solution algorithm
− K Use case
− L Implementation procedure

For more detailed descriptions of categories A to J, please refer to Bänsch et al.
(2021). Since this review is more focused than the review by Bänsch et al. (2021), it
does not include some of the sub-categories they used.
In the A energy supply category, there is some differentiation regarding how

the energy is supplied to the production processes. Many articles do not specify
the energy’s origin and just assume it is available. These articles are classified as
electric grid (off-site). Some articles in this category consider energy prices, for
example, using the time-of-use pricing scheme or other pricing schemes. The
other off-site category is for articles that consider other energy forms apart from
electricity. Some articles additionally utilize non-adjustable on-site electricity supply,
for instance, from photovoltaic installations.
Within category B energy demand, all articles include energy consumed while

machines are in the working energy state. Some articles also include energy
consumed while machines are in the operational or standby states. Other articles
specifically differentiate energy used during setup, tool change, or energy state
transitions. This thesis calls these aspects processing-related. A few articles also
model non-processing energy demand aspects like transportation or customer
deliveries.
The most common D objective criteria set by the articles are energy-related costs,

total energy consumption, and makespan. Some of the sampled articles set other
energy-related and other production-related criteria like the difference between re-
newable power supply and power demand or the total workload of machines.
Regarding the E system of objectives, differentiation between single-objective and
multi-objective optimization is possible. Some articles also performmulti-objective
optimization on multiple levels.
Category G mode characteristic differentiates between models that allow produc-

tion jobs to be processed with different energy consumption depending on the
machine or process parameters. For example, in a multi-mode model, the same
production job could be processed with different speeds or on multiple machines
with different energy consumption characteristics. Single-mode models exclude
these degrees of freedom.

In category J solution algorithm, most articles use heuristics to solve their mathe-
matical programming problems. Genetic algorithms are the most pervasive, but
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some articles also use various other heuristics. Finally, a few articles use exact
solution algorithms.

Compared to the classification scheme proposed by Bänsch et al. (2021), the two
added categories are K use case and L implementation procedure. Category K use case
discerns articles using theoretical problem instances to evaluate their model and
solutionmethod and articles with real industrial use cases. To be classified as a real
industrial use case, articles must provide some evidence that they implemented
the scheduling approach in a real industrial setting. Articles in this category show
some results obtained during the actual execution of their production schedules.
There are also intermediate articles which use data from real industrial use cases
but do not include an actual implementation of their schedules. Such articles are
classified as numerical studies.
Within the articles with a numerical or a real industrial use case, category L

implementation procedure identifies articles that detail what it takes to implement
energy-aware production scheduling in industrial use cases. Relevant details could
includemanagerial aspects as well as technical aspects. Some articles may provide
limited insights into these aspects, for example, by outlining preconditions they
considered when creating their model. Other authors describe the full procedure
they used to develop and implement their approach.
Tables 3.1 and 3.2 represent the resulting classification of the sampled articles.

An analysis of the results follows in Section 3.2.3.

3.2.3. Analysis and Classification of Sampled Articles

The following examines the various approaches mentioned in the sampled arti-
cles, focusing on each classification category. This analysis aims to offer further
insights into the first research question introduced in Section 1.1: Can a lack of
implementations be attributed to an absence of procedures and tooling for implementing
energy-aware production scheduling systems in job shops?

A Energy supply considerations vary little between the articles – all sampled
articles include an off-site electricity supply in their models. This result intercon-
nects with the results in category D objective criterion, where most articles focus
on total energy consumption as the energy-related objective. The focus on energy
consumption instead of energy-related costs or other energy-related objective
functions means that few articles consider pricing schemes to enable demand
response. Notable exceptions to this rule are Ayyoubzadeh et al. (2021), Selmair
et al. (2016), and Y.Wang et al. (2019). Ayyoubzadeh et al. (2021) follow the objective
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Table 3.1: Classification of sampled articles
(*: multi-level approach. **: unclear classification, GA: genetic algorithm).
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A Energy supply
non-adjustable on-site x
electric grid (off-site) x x x x x x x x x x x x x x x
other off-site x x
time-of-use pricing
other pricing scheme x

B Energy demand
working x x x x x x x x x x x x x x x
processing-related x x x x x x x x x x x
non-processing x x x x x x x

D Objective criterion
energy-related costs x
total energy consumption x x x x x x x x x x
other energy related x x x x
makespan x x x x x x x x x x x x x
other production related x x x x x x x

E System of objectives
single objective x
multi-objective x x x x x x x x x* x x x x x

GMode characteristic
single-mode x x x x x x x x
multi-mode x x x x x x x

J Solution algorithm
heuristic (GA) x x x x x x x x x x
heuristic (other) x x x x x
exact

KUse case
theoretical x x x x x
numerical x x x x x x x x
real industrial x x

L Implementation procedure
limited insights x x x
full procedure x
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Table 3.2: Classification of sampled articles (Continued)
(*: multi-level approach. **: unclear classification, GA: genetic algorithm).
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A Energy supply
non-adjustable on-site x
electric grid (off-site) x x x x x x x x x x x x x x x
other off-site
time-of-use pricing x** x x
other pricing scheme

B Energy demand
working x** x x x x x x x x x x x x x x
processing-related x x x x x x x x x x
non-processing x x

D Objective criterion
energy-related costs x** x x
total energy consumption x x x x x x x x x x x
other energy-related x x
makespan x x x x x x x x x x x
other production-related x x x x x x x x

E System of objectives
single objective x** x x
multi-objective x x* x* x* x x x x x x x* x

GMode characteristic
single-mode x x x x x**
multi-mode x** x x x x x x x x x

J Solution algorithm
heuristic (GA) x x x x x x x
heuristic (other) x x x x x x x
exact x

KUse case
theoretical x x x x x x x
numerical x x x x x x x
real industrial x

L Implementation procedure
limited insights x x x x x
full procedure
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of reducing the power consumed by the factory. To achieve this, they use taxes
on surplus power consumption as an objective function in addition to lateness
cost (Ayyoubzadeh et al., 2021). In contrast, Selmair et al. (2016) and Y.Wang et al.
(2019) use a more typical time-of-use pricing scheme to determine and optimize
energy-related costs.

A fewarticles also include energy supply other than the electricity grid. For exam-
ple, Bokah and Maheri (2021) and Ramos et al. (2020) incorporate non-adjustable
on-site generation. Ramos et al. (2020) limit this to photovoltaic power, while
Bokah and Maheri (2021) consider power available from a more generic renew-
able energy system, including energy storage. The model proposed by Bokah and
Maheri (2021) also focuses on predicting photovoltaic power generation using
irradiance values from weather data. They use the knowledge about available
renewable power to reduce the energy consumed from the electricity grid (Bokah
& Maheri, 2021). Coca et al. (2019) go even further and include a variety of energy
supply sources in their multi-objective model. They include other energy forms
as well as the production of waste, and they also include optimization of social
aspects of production (Coca et al., 2019).

B Energy demand aspects studied by the sampled articles frequently include
energy consumption during the working state of production machines. A large
share of the articles also integrate other processing-related energy demand aspects
like the energy consumption during the setup of parts and while machines are in
the operational and standby states. Bokah and Maheri (2021) and Qu et al. (2022)
additionally include aspects like lighting, ventilation, or air conditioning. Others
like Dai et al. (2018), Liu, Guo, and Wang (2019), and Tian et al. (2023) include
transportation within the factory, and Liao andWang (2019) incorporate customer
delivery into their model.

D Objective criteria are diverse within the sampled set of articles. When it
comes to production-related criteria, most articles use makespan as their primary
criterion. Correspondingly, among the energy-related criteria, total energy con-
sumption is the most commonly used within the sample. However, some articles
like Selmair et al. (2016) and Y. Wang et al. (2019) incorporate pricing schemes
in their energy supply models and focus on energy-related costs instead of total
energy consumption. Ayyoubzadeh et al. (2021) have an objective criterion that
depends on peak power pricing, while X. Zhang et al. (2020) optimize peak power
consumption in addition to total energy consumption. Zhu et al. (2020) also have a
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unique approach where they optimize for parts per emission and profits per emis-
sion. These objective criteria are interesting as they combine production-related
and energy-related aspects into a single objective criterion.
Coca et al. (2019) take a rare path by creating a model with three objectives:

one each for economic, environmental and social performance. Each objective
criterion includes multiple weighted factors such as makespan, CO2 emissions,
water consumption, sound intensity and weights manipulated by workers (Coca
et al., 2019). Qu et al. (2022) also establish a model with many objectives – they
optimize the total cost of production, CO2 emissions, and the amount of power used
by machines to process parts compared to the total power consumption. Other
studies, including Feng et al. (2020), Jiang et al. (2022), Liu, Guo,Wang, et al. (2019),
Tian et al. (2023), and H.Wang et al. (2018), also incorporate production-related
cost indicators.

E Systems of objectives and Gmode characteristics provide additional insights
into the complexity of models presented in the sampled articles. Most articles
performmulti-objective optimization, some of them using a multi-level approach.
Only some articles propose single-objective models with either energy-related or
production-related constraints. Xu andWang (2017) use the intermediate technique
and perform single objective optimization of makespan and total energy cost by
assigning weights to both objectives. In contrast, the mode characteristics are
distributed relatively evenly, with 17 articles studying multi-mode models and 13
articles studying single-mode models.

J Solution algorithms employed by the sampled articles are mostly heuristics.
Of these, genetic algorithms are the most common, with the NSGA-II being one
of the most frequently used. However, most researchers adapt their algorithms
to suit their specific problem better. Even more than within the group of genetic
algorithms, this is visible in the articles using other heuristics. The heuristics
range from simple rule-based approaches, as used by Alotaibi et al. (2016), over
bee colony optimization (e.g., Jiang et al., 2022; Tian et al., 2023) and game-based
approaches (e.g., J. Wang et al., 2021; Y. Zhang et al., 2017) to heuristics simulating
the behaviour of grey-wolf packs (see: W. Zhang et al., 2023). Finally, one article
in the sample performs exact optimization (see: Selmair et al., 2016).

KUse cases and L implementation procedures are rarely described in detail in
the sampled articles. Although numerical studies using data from real industrial
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use cases are common, most do not explain how the data was collected or how the
results could be implemented in reality. However, some studies provide insights
into important requirements for actual implementations, particularly regarding
aspects of the optimization model. For instance, transportation is a significant
constraint (e.g., Dai et al., 2018; Liu et al., 2022). Many articles also mention the
stochastic behaviour of production systems due to timing inaccuracies, machine
breakdowns or rush jobs. This is addressed through rescheduling (e.g., Lv et al.,
2022; Xu & Wang, 2017; Zhu et al., 2020) or stochastic models (see: Yang et al.,
2016). Some authors, for example, Feng et al. (2020), J. Wang et al. (2020), and
J. Wang et al. (2021) suggest using edge computing to gather data from production
systems and to control machines; however, all of them remain conceptual and do
not show actual implementations. Y.Wang et al. (2019) is an exception – the article
contains a detailed description of the energy measurements and preliminary
analysis performed before the authors propose a solution through production
scheduling.
Despite this, the sample only includes three articles describing real industrial

use cases. Coca et al. (2019) worked with a company in the metal machining sector
to create a many-objective model and to implement it in production. The various
aspects of the model are developed and parameters are estimated in coopera-
tion with the industrial partner (Coca et al., 2019). The authors describe their
implementation procedure and the aspects that must be considered when imple-
menting a production scheduling model with environmental and other aspects
in a company in detail. The implementation procedure consists of 22 steps in
four phases: planning, information collection, evaluation of the multi-objective
solutions, and decision-making (Coca et al., 2019). The schedules generated in
this research are optimized once, and priorities and products are assumed not
to change over time; otherwise, the implementation procedure would have to be
partially repeated (Coca et al., 2019). The last two phases of the procedure, which
focus on identifying the best solution generated by the optimization, emphasize
this need.

The authors Liu, Guo,Wang, et al. (2019) implement their production scheduling
model at a cement equipment manufacturer and provide some insights into their
experience. Like Coca et al. (2019) they calculate feasible production schedules
in advance and allow for some managerial processes before implementation of
a production schedule. In particular, they identify the problem that while the
parent company wants to improve energy efficiency, some of its subsidiaries might
reject production schedules with lower energy consumption because they result
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in higher overall production costs (Liu, Guo,Wang, et al., 2019). Liu, Guo,Wang,
et al. (2019) determine production costs by considering material costs, labour
costs, production costs and costs for delay claims by customers. They find that
multi-objective optimization can achieve solutions with lower energy consumption
and costs, facilitating adoption in their use case (Liu, Guo,Wang, et al., 2019).
Liu et al. (2022) build on the same use case as Liu, Guo, andWang (2019) and in-

clude automated guided vehicles instead of cranes for transportation. The authors
also addmultiplemachine speeds and energy states to the use case and use a newly
developed heuristic optimization algorithm to solve the production scheduling
problem. Liu et al. (2022) report energy savings of up to approximately 40% with
their approach compared to manual dispatching of production jobs. However, the
article does not specify exactly how they conducted the experiment – it appears
like their optimized schedule was executed by manual dispatchers.

3.3. Conclusion and Research Gap

For the conclusion, it is necessary to go back and examine the first research
question: Can a lack of implementations be attributed to an absence of procedures and
tooling for implementing energy-aware production scheduling systems in job shops? The
literature review shows that few researchers have investigated the implementation
of energy-aware production scheduling for job shops in real industrial use cases.
On the other hand,many sampled articles havemore or less thoroughly considered
the requirements for an actual implementation when developing their models.
Many authors have additionally cooperated with industrial partners to create
numerical use cases which they use to test their models. However, in most cases,
the details of how authors obtained data and which challenges might be incurred
when trying to implement the optimization in the actual production system are
not available. It is interesting to note how few of the numerical studies have led
to actual implementations. There seem to be barriers to the implementation that
research has so far failed to address fully.
Overall, the lack of industrial use cases in energy-aware production scheduling

research equates to a lack of research into the actual implementation of energy-
aware production scheduling in real production systems. Thus, there is likely a
significant discrepancy between the approaches proposed in scientific literature
and the requirements of actual implementations. Overcoming this discrepancy
would mean identifying and surmounting the barriers preventing real implemen-
tations. The answer to the research question follows from the preceding analysis:
a lack of research into real implementations led to an insufficient understanding
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of the barriers preventing implementations which entails a scarcity of procedures
to overcome these barriers. When looking for actual industrial implementations
of energy-aware production scheduling their scarcity underpins this conclusion.
Nevertheless, the literature review helps by gathering the requirements other

authors have identified. For example, some studies include requirements for the
scheduling model, the software and Industrial Internet of Things devices needed
to automate control of production machines. Concerning the requirements for
the scheduling approach itself, many authors agree on the following points:

− Scheduling models should include all factors with a meaningful impact on
the execution of production schedules. This can include transportation,
different machining speeds, or machine breakdowns; however, the factors
relevant to a specific system differ and must be established prior to model
development.

− In addition to ensuring all relevant factors are incorporated, it is also essen-
tial to confirm that changes in the real production system, such as machine
breakdowns, are reflected in the production schedule and do not lead to
unnecessary downtimes. Possible solutions to this include stochastic opti-
mization and rescheduling.

− Multi-objective optimization is the technical basis for including multiple
aspects deemed relevant by a company. It is unlikely that companies will
completely set aside production-related objectives for energy-related objec-
tives, making multi-objective optimization a prerequisite.

− Sufficient information about the state of the production system must be
available: the scheduling system and the actual production system can form
a cyber-physical production system to achieve this. Technologies enabling a
cyber-physical production systemmentioned in the sampled articles include
edge devices, track-and-trace systems, and wireless Industrial Internet of
Things communication.

− Considering requirements brought forward by any involved or affected
stakeholders is instrumental. Failing to do so might lead to failure of the
entire implementation.

Most articles provide valid solutions for some of the mentioned requirements;
however, almost none comprehensively investigate the requirements and pro-
cedures necessary to achieve real implementations. Looking at the resulting
research gaps, this literature review’s results align with the prior reviews discussed
in Section 3.1. The research gaps can be broken down into two main points:
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1. There is a need for accurate representations of production systems with a
high tolerance for deviations during the execution of production schedules,
for example, using rescheduling approaches integrated into cyber-physical
production systems.

2. Implementations in real production systems as complete cyber-physical
production systems are necessary to evaluate any significant factors that
might influence such implementations. Since this is extremely difficult to
achieve in actual industrial systems, realistic research production systems
might offer a solution.

There is abundant research on how to model and optimize production systems
accurately. Thus, the first point focuses on tolerating some deviations while main-
taining the required accuracy when following production schedules. The second
point highlights the process of actually implementing these models, including
developing and parameterizing production scheduling models. Unfortunately,
while there are some articles addressing the first point, articles addressing the
second point are extremely rare.
This thesis aims to address both points by introducing a production scheduling

system architecture that provides energy model parameter estimation and an
implementation procedure based on real-life production system requirements.
Furthermore, this thesis evaluates both aspects effectively by testing this imple-
mentation procedure and energy model parameter estimation within an actual
research production system.
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This thesis aims to address the research gap identified in the literature review by
answering the second and third research questions posed in Section 1.1. Answering
the questions requires developing an implementation procedure and a correspond-
ing energy-aware production scheduling system architecture. This section’s goal
is to aggregate the information gathered in Sections 2 and 3 to derive requirements
and success criteria. The requirements motivate the concepts proposed in the sub-
sequent sections. The following differentiates between the implementation team,
users, and stakeholders. The implementation team is a teammade up of users and
representatives for other stakeholders. The team performs the implementation
procedure. Stakeholders are people or departments involved in or affected by the
implementation of the energy-aware production scheduling system, and users are
those people who utilize the system once it is completely implemented.
The first part of this section aggregates the requirements and develops success

criteria. The second part builds on the success criteria to establish an implementa-
tion procedure, and the third part of this section defines additional requirements
for the energy model parameter estimation and energy-aware production schedul-
ing system architecture arising from the implementation procedure.

4.1. Requirements and Success Criteria

This section aggregates the functional and technical requirements for the energy-
aware production scheduling system. These requirements later inform the devel-
opment of the implementation procedure and the system architecture.
Little (1970) understands decision-support systems as an extension of a man-

ager’s decision-making process, helping them find and implement their decisions.
Thus, energy-aware production scheduling systems are decision-support systems,
and the generic functional requirements for decision-support systems stipulated
by Little (1970) apply. Additionally, requirements to ensure that the production
scheduling systems can directly control production machines must be established.
Like Little (1970), the following requirements for an energy-aware production
scheduling system assume that the system should be geared towards managerial
roles – explicitly production managers.

Simplicity. The system should be as easy to understand as possible – it should
only include the required factors and exclude everything else (Little, 1970). This
requirement influences, for example, the selection of objective criteria and the
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complexity of the scheduling model.

Robustness. Ideally, system users should be unable to produce incorrect an-
swers when using the model independent of the input values (Little, 1970). While
user inputs, as mentioned by Little (1970), are one possible source of disturbance,
the production scheduling systemmust also be robust against partially incorrect
measurements, machine breakdowns and inaccurate timing of production opera-
tions.

Controllability. The system should behave as the user expects; conversely, any
changes the user makes should lead to the intended consequences (Little, 1970).
Controllability impacts the objective criteria of the energy-aware production
scheduling system and the handling of changes occurring during the execution of
a production schedule.

Adaptivity. When new information becomes available, the models’ parameters
and structure should be updated (Little, 1970). The energy-aware production
scheduling systemmust be adaptive regarding the production systemmodel and
production jobs. During execution it must adapt to machine breakdowns and
inaccurate timing of production operations. Adaptivity also includes adapting the
entire energy-aware production scheduling system to various uses and production
systems.

Completeness. The system should incorporate all factors impacting the objective
criteria (Little, 1970). This requirement conflicts with simplicity – themodel should
reflect a reasonable compromise between the two requirements (Little, 1970). The
compromise between completeness and simplicity depends on the goals set by
the implementation team. Therefore, the implementation procedure should aim
to identify an acceptable compromise.

Interactivity. The system should enable users to easily alter input data and ob-
tain output data (Little, 1970). The energy-aware production scheduling system
should provide easy-to-use interfaces for inputting and visualizing output data. In
contrast to the other requirements, since this thesis proposes a prototype system,
this requirement addresses the needs of researchers instead of managers. Addi-
tional interactivity needed by managers can be added later when a final system is
implemented.
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Connectivity. In addition to the requirements set by Little (1970), providing
connectivity between the energy-aware production scheduling system and the
production machines is crucial. Connectivity partially alleviates the need for
manual data entry during the system implementation and execution of production
schedules. Thus, it supplements the robustness and adaptivity requirements.

The technical requirements derive from the functional requirements defined
above. However, before defining the technical requirements, it is necessary to look
back at the research focus refinement in Section 2.4 to unequivocally summarize
the findings, decisions and limitations up to this point. In short, this thesis:

− performs production scheduling and does not consider longer-term optimiza-
tion of production planning and control,

− only considers discrete production and applies to the job shop machine envi-
ronment,

− should implement multi-objective optimization with energy and production-
related objective criteria,

− strives to improve both energy flexibility and energy efficiency,
− endeavours to implement a cyber-physical production system with the produc-

tionmachines as physical components andmanufacturing support systems
as external entities,

− attempts to provide options for adapting the proposed system to divergent
needs of varying users,

− assumes that data from the production system is available and production
machines are controllable through connectivity frameworks, and

− expects that the production processes are stable enough to estimate pro-
cessing and setup times with reasonable accuracy warranting automated
scheduling.

With this in mind, the following technical requirements for the energy-aware
production scheduling system architecture and the implementation procedure
are defined:

Collection of Requirements. The implementation procedure should formalize
the collection of requirements for the energy-aware production scheduling system.
The literature review highlighted the necessity of considering requirements from
all involvedor affected stakeholders. The implementationprocedure should ensure
the integration of all relevant facets of the production system in the deployed
production scheduling system based on the collected requirements.
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Production System Configuration. Different production systems differ in many
aspects, for example, themachine environment, the types of productionmachines,
the production jobs and operations, and the Industrial Internet of Things devices.
Consequently, the energy-aware production scheduling system architecture should
have interfaces for configuring the aspects that could change when adapting the
system to various production systems.

StandardizedModels. The production machine energy models should provide
a standardized interface for production machine models to simplify adapting the
energy-aware production scheduling system to different production systems.

Automatic Model Parameter Estimation. The energy model parameter estima-
tion should enable automaticmodel parameter estimation of the standardizedmod-
els using data collected from the production system. Automatic model parameter
estimation reduces the model creation effort and helps to increase completeness.

Customer Order Input. Users should be able to supply the energy-aware pro-
duction scheduling system with information about customer orders. The system
should use this input to create the production schedule.

Individualized Objective Criteria. As the literature review showed (refer to Sec-
tion 3.3), the energy-aware production scheduling system should realize all require-
ments brought forward by the stakeholders. Such requirements likely concern the
objective criteria; thus, the system should allow users to select individualized ob-
jective criteria during the implementation procedure, and the system architecture
should be valid for whichever objective criteria they choose.

Multi-Objective Optimization. The literature review also revealed that success-
ful implementations are most likely when the system can optimize production-
related objective criteria simultaneously with energy-related criteria. Hence, the
energy-aware production scheduling system should use multi-objective optimiza-
tion.

Rescheduling. The requirements collected during the literature review include
reacting to unexpected events. Thus, the scheduling system architecture should
enable rescheduling. This way, production schedules can adapt to changes, for
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example, caused by machine breakdowns or changing energy prices. Data ac-
quired from the production system and external services helps determine when
rescheduling is necessary.

Production SystemDataAcquisition. According to the literature review, energy-
aware production scheduling needs sufficient information about the production
system state. The scheduling system should be able to acquire data from produc-
tion machines, sensors and measuring equipment in the factory to gather this
information. Accordingly, the system architecture should incorporate connectivity
frameworks supported by production machines and measuring equipment. Op-
tionally including fieldbus communication could provide connectivity to a broader
range of machines and equipment.

Controlling Production Machines. The energy-aware production scheduling
system should automatically execute production schedules by controlling ma-
chines via a connectivity framework. Optionally including fieldbus communica-
tion could extend connectivity to a wider range of machines.

Connectivity with External Services. External factors, like energy prices, also
affect the production system state. Thus, the energy-aware production scheduling
system architecture should facilitate connectivity with external services supplying
this data.

Table 4.1: Relationship between the functional and technical requirements.

Technical Requirement Addresses (Functional Requirement)

Collection of Requirements Simplicity, completeness
Production System Configuration Completeness, adaptivity, interactivity
Standardized Models Simplicity, adaptivity
Automatic Model Parameter Estimation Adaptivity, completeness
Customer Order Input Interactivity
Individualized Objective Criteria Controllability, completeness
Multi-Objective Optimization Controllability, completeness
Rescheduling Adaptivity
Production System Data Acquisition Adaptivity, connectivity
Controlling Production Machines Connectivity
Connectivity with External Services Adaptivity, connectivity
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Since each technical requirement relates to one or more functional require-
ments, Table 4.1 presents an overview of the relationships between the functional
and technical requirements. Likewise, the technical requirements influence the
design of the system’s components – the implementation procedure, energy-aware
production scheduling system architecture, and energy model parameter estima-
tion. Table 4.2 illustrates which of these components each requirement affects.

Table 4.2: Relationship between the technical requirements and components of the
energy-aware production scheduling system.

Technical Requirement Affected Components

Collection of Requirements Implementation procedure
Production System Configuration Implementation procedure, system architecture
Standardized Models Energy model parameter estimation, system ar-

chitecture
Automatic Model Parameter Estimation Energy model parameter estimation
Customer Order Input System architecture
Individualized Objective Criteria Implementation procedure, system architecture
Multi-Objective Optimization System architecture
Rescheduling System architecture
Production System Data Acquisition System architecture
Controlling Production Machines System architecture
Connectivity with External Services System architecture

Finally, according to the Design Research Methodology (Blessing & Chakrabarti,
2009), this thesis should establish success criteria to be used to evaluate the success
of the prescriptive study during the descriptive study-II.While success criteria can
be qualitative, measurable success criteria are necessary to succinctly evaluate the
results (Blessing & Chakrabarti, 2009). The following success criteria will provide
measurable results at the end of this research.

Functional Requirements Fulfilled. The functional requirements ensure that
the energy-aware production scheduling system suits its users and provides the
necessary functions. Therefore, all functional requirements for the production
scheduling system must be met. This criterion should be measured using the
number of met requirements – some requirements may only be partially fulfilled.

Technical Requirements Fulfilled. The technical requirements delineate tech-
nical aspects deemed essential for a sound production scheduling system. Hence,
all technical requirements alsomust be fulfilled. The number ofmet requirements
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is measured to check this criterion. Some requirements may only be partially
fulfilled.

AccurateRepresentationof theProductionSystem. Theproduction scheduling
system should represent the actual production system with sufficient accuracy.
An accurate representation is especially relevant for the energy-related aspects of
the production scheduling model. Appropriate model accuracy measures should
be selected and used to evaluate this criterion.

Improved Energy-Awareness of Production Scheduling. Since this research is
concerned with energy-aware production scheduling, the resulting scheduling
approach should improve the energy-awareness of production scheduling. Energy-
awareness can be measured through improved energy efficiency (reduced energy
consumption for the same number of production jobs) and reduced energy cost as
a measure of energy flexibility.

Sufficient Performance in Production-Related Objectives. While this thesis fo-
cuses on the energy-related aspects of production scheduling, the production-
related objectives should not be significantly affected negatively by the improve-
ments in energy-awareness. At the same time, small decreases in production-
related objectives for larger increases in energy-related objectives can be accept-
able. MKSP is a possible criterion for measuring the production-related perfor-
mance of a schedule.

Transferable Scheduling System Architecture. This last success criterion is
not directly measurable; however, the descriptive study-II phase of this research
should prove that the developed energy-aware production scheduling system is
transferable to various production systems. This transferability can be verified by
applying the system to multiple machines and production systems and keeping
track of the necessary adaptations to the proposed system.

Overall, this section introduced the functional requirements, technical require-
ments and success criteria. The functional requirements ensure the basic func-
tionality of a decision support system for production scheduling. The technical
requirements extend the functional requirements by inspecting the research focus
refinement in Section 2.4 and the literature review in Section 3. Finally, the success
criteria summarize the requirements and define measures that can be checked
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when evaluating the resulting energy-aware production scheduling system during
the descriptive study-II phase of this thesis.

4.2. Implementation Procedure for Production Scheduling Systems

The literature review (refer to Section 3.3) revealed that additional research on
implementing energy-aware production scheduling in real production systems is
necessary. Section 2.2.3 discusses approaches to implementing ERP systems and
MESs; however, while these procedures do pertain to energy-aware production
scheduling systems, they do not sufficiently guide the treatment of energy-related
aspects. Additionally, most concepts for energy-aware production scheduling
found in the literature review also do not cover their implementation.

Overall, the literature documents many models and optimization algorithms for
energy-aware production scheduling but few implementations in job shops. The
need to develop complex, individualizedmodels specific to a particular production
system likely exacerbates the scarcity of implementations. Research showcasing
pathways to more standardized energy-aware production scheduling system ar-
chitectures and implementation procedures could improve the dissemination of
energy-aware production scheduling.

Testing and Deployment

Development and Configuration

Discovery and Planning

Figure 4.1: Three phases of the implementation procedure (own figure).

Therefore, this section introduces an implementation procedure with three
phases based on the procedures studied in Section 2.2.3. The three phases iden-
tified in Section 2.2.3 are discovery and planning, development and configuration,
and testing and deployment, as illustrated in Figure 4.1. The figure also shows that
the procedure is recursive, and it is possible to return to prior phases as needed.
The next three parts of this section detail the procedures performed during each
phase and highlight the outputs and results of the phases. The implementation
procedure is performed by an implementation team assembled at the beginning
of the first phase.
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4.2.1. Discovery and Planning Phase

The discovery and planning phase prepares the implementation process – it obliges
users following the procedure to put necessary prerequisites in place, analyze
their requirements, and create a concrete implementation plan. As mentioned
in Section 2.2.3, this phase begins by assembling an implementation team and
creating a project plan. Thus, an adequately qualified team (Schuh et al., 2015,
p. 363) and sufficient budgeting (Beeson, 2022) for the project are two outputs of
this phase. The implementation team should consist of representatives for all
stakeholders. As defined in Section 4, stakeholders are people or departments
involved in or affected by the implementation or use of the system.

After completing the first two steps, the third output of this phase is a concept for
integrating the company’s processes into the software system. A detailed analysis
of the company’s processes and their correlation with capabilities and processes
provided by the software are the basis for creating this concept. Where the com-
pany’s requirements and the software’s capabilities diverge, the implementation
team should evaluate whether transforming the company’s processes or adapting
the software is more appropriate (Schuh et al., 2015, p. 339).
Figure 4.2 illustrates the discovery and planning phase in detail. After the two

steps of assembling a team and establishing the budget, discussed in the previous
paragraphs, it is essential to set the project scope, goals and requirements. The
project scope defines the production systemboundaries included in the production
scheduling system. It also provides information about the typical production jobs
encountered within the boundary.
The goals and requirements determine the project’s focus and ensure it fulfills

all stakeholders’ expectations. Besides ensuring that the implementation achieves
improvements compared to an existing production scheduling system, the goals
should include commercializing the enhanced energy efficiency and flexibility.
Ultimately, the requirements should determine all aspects thatmust be included in
the energy-aware production scheduling system to fulfil the company’s needs. At
the end of this section there is a list of exemplary requirements. Note the difference
between the functional and technical requirements for the production scheduling
system as a whole, set in Section 4.1, and the requirements mentioned here, which
are set by the implementation team to guide the implementation procedure. The
literature mentions many methods to determine scope, goals and requirements.
For example, the design thinking framework offers many options (e.g., Lewrick
et al., 2018). Accordingly, this thesis suggests using an established method to set
scope, goals and requirements.
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Assemble and Qualify
Implementation Team

Establish Project Budget

Set Project Scope, Goals
and Requirements

Evaluate Energy Supply

Determine
Objective Criteria

Identify Relevant
Production Machines

Identify Relevant
Production Jobs

Can EAPSs
represent
machines

and products?

Adapt Software
or Process?

Create Software
Implementation Plan Begin Change Process

Create Configuration
Concept

Yes

No

Software Process

Figure 4.2: Detailed procedure of the discovery and planning phase (own figure).
(EAPSs: energy-aware production scheduling system)
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The scope, goals and requirements are the basis for determining the objective
criteria that the energy-aware production scheduling system should optimize. The
objective criteria are distinct for each company, and the implementation team
should ensure that the objective criteria are suitable to fulfil the goals and require-
ments. Since this implementation procedure aims to implement an energy-aware
production scheduling system, there should be at least one production-related
objective criterion and one energy-related criterion. Some examples of production-
related and energy-related objective criteria were introduced in Sections 2.1.1
and 3.2.3 respectively.
Knowledge of the previously determined factors allows identifying the relevant

production machines as well as relevant production jobs. As Figure 4.2 shows,
these two steps can occur in parallel. Information about the relevant produc-
tion machines and production jobs is needed to determine whether the energy-
aware production scheduling system can represent them. This question must
be answered for all machines and production jobs individually, considering the
following factors:

− Does the production scheduling system offer configuration options describ-
ing the operations required by each production job?

− Are the energy models included in the energy-aware production scheduling
system sufficient to represent the machine types present in the production
system?

− Do the models incorporate all relevant factors to evaluate the chosen objec-
tive criteria?

As Figure 4.2 illustrates, there are three possible answers to the above ques-
tions. If the energy-aware production scheduling system already incorporates all
necessary aspects, creating a concept for the configuration is the next step. The
configuration concept includes a summary of the required data and a plan for
gathering data. For example, for configuring a machine tool, required data might
include the energy states, power consumption, and products produced on the ma-
chine (see also Section 5.2.5). The data-gathering plan should be devised according
to DIN ISO 50015 (Deutsches Institut für Normung e. V., 2018). The standard re-
quires planning the data-gathering process by selecting goals before choosing
corresponding data values and appropriate data-gathering methods (Deutsches
Institut für Normung e. V., 2018). Information needed to create a data-gathering
plan according the the standard includes among others (Deutsches Institut für
Normung e. V., 2018):
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− names of variables,
− necessary data quality (i.e., measurement accuracy, and validation), and
− measuring equipment or technique.

The data-gathering plan could comprise measuring power consumption with
external measuring equipment and logging the energy states and products deter-
mined by the machine’s Programmable Logic Controller (PLC). Other data, for
example, regarding production jobs, could be collected manually or from other
systems like ERP systems.
If the energy-aware production scheduling system cannot represent a machine

or production job, the implementation team can adapt the software or change the
production processes. This work focuses on adapting the software since changes
to production processes often require specialized knowledge about the products
and processes themselves. Changes to the software might become necessary
when energy models for specific machine types are not available in the software
or when configuration options for relevant aspects of the production processes
are unavailable. As an example, this could be the case if transportation times
are significant for a specific company but are not considered in the software
yet. The implementation team should create a software implementation plan
if software adaptations are necessary. The implementation plan determines which
parts of the software need to be changed and how they should be changed. For
example, this could include implementing mathematical models for additional
production machine types. This path also ends in creating a configuration concept
(see Figure 4.2 above) for the newly implemented features.
The following list summarizes the outcomes of the discovery and planning

phase. Overall, the outcomes should include everything needed for the develop-
ment and configuration phase. The outcomes of this phase provide the necessary
information to begin the next steps in the development and configuration phase,
whether they are additional software development or gathering data for configura-
tion. The outcomes also include the criteria needed to evaluate the success of the
implementation procedure in the final testing and deployment phase:

− Scope and goals:

• Production system boundaries
• Typical production jobs
• Pricing schemes for energy efficiency and energy flexibility (refer to
Section 2.3.2)

• Goals for improvements compared to an existing system
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− Requirements, for example:

• Planning horizon (refer to Section 2.3.2)
• Number of jobs and products
• Types of machines
• Additional production-related aspects to be considered (e.g., due
dates)

• Energy supply of the company (e.g., available pricing schemes)

− Objective criteria:

• Production-related criterion
• Energy-related criterion

− Configuration concepts:

• Summary of required data
• Data collection plan

− Software implementation plan:

• List of features to be implemented
• Configuration concepts for additional configuration options for new
features

The implementation team should ensure that all goals and requirements can be
achieved. The team should also verify that all necessary information is available
and correct. If the team discovers any shortcomings in these aspects, they have
the ability to return to a previous step and make the necessary adjustments. This
approach ensures that the implementation process is thorough and effective.

4.2.2. Development and Configuration Phase

After completing the initial discovery and planning phase, the development and
configuration phase begins. This phase aims to adapt the system to the company’s
desires and to fulfil the goals and requirements set in the previous phase (Musil,
2018). Adapting the system includes configuration and software development as
planned in the discovery and planning phase (Schuh et al., 2015, p. 374). Successful
configuration requires prior data-gathering and assurance of data quality (Beeson,
2022).

Figure 4.3 illustrates the development and configuration phase’s procedure. This
phase is not necessarily sequential – it is possible to re-sequence steps and execute
some steps in parallel if deemed necessary by the implementation team. The phase
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begins with implementing the objective criteria selected in the previous phase.
Most likely, each implementation team will choose slightly different objective
criteria meaning that this step will always require some implementation effort (see
Section 5.2.4). While or after implementing the objective criteria, the execution of
the other software implementation plans begins. The newly implemented features
should provide the additional functionality and configuration options set in the
implementation plan.

Implement
Objective Criteria

Execute Software
Implementation Plans

Collect Production
Machine Data

Select and Parametrize
Machine Models

Configure
Production Machines

Collect Production
Process Data

Configure Products
and Processes

Configure Internal
Communication

Configure External
Communication

Export Configuration

Figure 4.3: Steps of the development and configuration phase procedure (own figure).

Often, newly implemented features will be energy models of production ma-
chine types which are not provided by default. Implementations of energy models
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should closely examine the needed level of detail. While precisely calculating the
power consumption of production machines might require very complex physi-
cal models, this level of detail is usually unnecessary for production scheduling.
Instead, predicting the energy consumption of the machine’s energy states can
be sufficient. Furthermore, the influence of different production operations can
be represented using characteristic factors like the material removal rate. Since
the factors influencing energy consumption during each energy mode and the
characteristic factors to evaluate the energy consumption of production operations
can be challenging to determine manually, this thesis proposes using regression
models for this purpose. Regressionmodels also enable the creation of generalized
models for types of similar machines.
Once the energy-aware production scheduling system contains all essential

features, the implementation team starts the configuration process. As Figure 4.3
shows, the configuration requires prior data-gathering. Some data can be collected
manually, for example, from ERP systems, while other data can be measured. The
configuration concepts and associated data-gathering plans established in the
discovery and planning phase provide insights into the collection of different
data values. Since all manufacturing companies need some kind of production
planning and control system, data about production jobs and operations should
be readily available. Any data that is not readily available must be measured,
estimated or collected – the exact values to be measured or determined depend
on the data-gathering plans for the configuration parameters of the energy-aware
production scheduling system. When data-gathering is complete, parameters for
the energy models of production machines can be estimated using regression, as
proposed above. The result are fitted models which should represent the actual
energy consumption ofmachines well; however, the testing and deployment phase
validates their performance to make sure.
Apart from configuring the production machines, production jobs and oper-

ations, the implementation teammust also configure connectivity between the
energy-aware production scheduling system and internal or external entities. In-
formation needed to configure connectivity includes the addresses of external
services and services publishing data from internal measuring equipment and
production machines. Additionally, some information about the data available
from these services is required to identify individual data elements fully.
Overall, the outcomes of this phase consist of the following items which have

been implemented and configured throughout this phase:

− Implemented software functionality:
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• Objective criteria
• Missing energy models of production machines
• If needed, additional software features

− Collected data about:

• Production jobs
• Production operations for each job
• Production machine data (energy and otherwise)

− Fitted production machine models
− Configurations for system components:

• Production jobs and operations
• Production machines
• Internal and external connectivity

Once the software implementation is complete, data is collected, and all system
components are correctly configured, the implementation teammust export the
resulting data and configuration in a reusable format. The exported data is a
prerequisite for the testing and deployment phase.

4.2.3. Testing and Deployment Phase

The testing and deployment phase is the implementation procedure’s concluding
phase. It should ensure that users can utilize the system’s full potential and that
the system can perform all required processes (Schwarz, 2022). As Schuh et al.
(2015, p. 376) suggest, real users must perform final testing with actual data to
minimize the remaining risks. Sincemany shortcomings only become visible after
the deployment, continued support and improvements are also essential (Schwarz,
2022). When the tests detect issues or when other problems arise, the implementa-
tion team can always decide to return to previous phases of the implementation
procedure recursively.

Figure 4.4 illustrates the steps of the testing and deployment phase. User training
commences at the beginning of the phase and is performed in parallel with tests of
the energy-aware production scheduling system. Since user training methodology
does not directly pertain to the central goals of this thesis, the implementation
team should select an appropriate methodology.

On the other hand, testing the quality of the implemented system is fundamental
to the energy-aware production scheduling system’s operation. Similar to many
other steps of the implementation procedure, the testing steps are well suited for
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Check Parametrized
Model’s Quality

Test Data Acquisition

Test Controlling
Production Machines

Train Users

Test with Real
Orders and Users

Final
Quality Gate

Deploy System

Continuous Support
and Improvements

Previous Phases

No Issues

Issues
Detected

Figure 4.4: Overview of the testing and deployment phase steps (own figure).

re-sequencing or parallelization. In Figure 4.4 testing begins by checking the fitted
energy model’s performance. The implementation team should select appropri-
ate criteria to evaluate the performance. For example, energy models provide
predictions that must be accurate over relatively long time intervals compared
to the measured data. Hence, an energy model of a production machine’s power
consumption should accurately predict the machine’s energy consumption over
a few minutes; however, power consumption is measured every second. Due
to the disparate time intervals, accuracy measures applying rolling averages or
integrated values are fitting (see also Section 6.2.3).
Since connectivity with the production system and external services is a re-

quirement for the energy-aware production scheduling system, testing the data

77



4. Conceptualization and Implementation Procedure

acquisition and controlling production machines are separate steps of the imple-
mentation procedure. When testing data acquisition, evaluating all machines and
services configured for connectivity is essential. Once acquiring data from ma-
chines and services is stable, testing controlling the production machines follows
as the next step. The implementation team should ensure that most errors are
corrected before connecting the system to actual production machines.
After the implementation team completes the elementary model quality and

connectivity tests, the trained users can begin quality assurance of the entire
system. These tests should be performed with actual customer orders to ensure
realism (Schuh et al., 2015, p. 376). As Schuh et al. (2015, p. 376) point out, realistic
tests minimize the risks during system deployment. The tests end in the final
quality gate, the last checkpoint before the system’s deployment. If any remaining
issues could not be corrected up to this point, returning to a corresponding step
in one of the previous phases is crucial. The implementation team should only
advance to the next step and deploy the system if no relevant issues remain, as
illustrated in Figure 4.4.
Summarizing the outcomes of the testing and deployment phase, similar to the

previous phases, results in the following list:

− Tested system components and processes:

• Quality of fitted models
• Connectivity
• Full scheduling process

− Trained users
− Corrected any detected problems
− Deployed system

Finally, once the entire implementation procedure is complete and the energy-
aware production scheduling system is deployed, continuous support and improve-
ments are vital to driving users’ support and adoption of the new system (Schwarz,
2022).

4.3. Summary and Implications for the Scheduling System
Architecture

Overall, the implementation procedure proposed in Section 4.2 has many steps
valid for any production scheduling system, not just energy-aware production
scheduling systems. However, the procedure also illustrates the need to scrutinize
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the implications of energy-aware production scheduling during the implemen-
tation process because the implementation team must take additional steps to
consider energy properly. For example, the implementation team should evaluate
the energy supply of the factory during the discovery and planning phase, and
it must create appropriate energy models for production machines during the
development and configuration phase.
Energy-aware production scheduling also requires connectivity with additional

external services and internal equipment. Collecting energy pricing informa-
tion and data about production machines’ energy consumption are examples of
additional communication. Due to the high relevance of information and data,
configuring internal and external connectivity becomes an integral part of the
implementation procedure for energy-aware production scheduling systems.
The requirements set and the implementation procedure proposed in this sec-

tion form the basis for developing the energy-aware production scheduling system
architecture in the next section. There is a close interrelation between some
steps of the implementation procedure and the architecture of the energy-aware
production scheduling system, for example, because the systemmust enable the
required configuration and connectivity. The implementation procedure proposed
in Section 4.2 reinforces many of the requirements set in Section 4.1.
An important takeaway from the implementation procedure is the need for

standardization and modularity. Standardization and modularity go hand in hand
because modularity is achieved by standardizing modules to fit many use cases by
adjusting their parameters. Thus, the energy-aware production scheduling system
should provide configuration options to select and adapt standardized modules to
fit a particular production system. The availability of configuration options can
also guide the formulation of data-gathering plans. The following section proposes
an energy-aware production scheduling system architecture, which supports the
implementation procedure proposed in this section.
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Section 4 discussed the requirements that the energy-aware production scheduling
system proposed in this section must fulfil. The section also contemplated the
implementation procedure and established prerequisites for the energy-aware
production scheduling system architecture. This section introduces a system archi-
tecture with energy model parameter estimation to support the implementation
of energy-aware production scheduling systems and to facilitate related research.
The system architecture is based on the mathematical production scheduling
model introduced in Section 5.1.
The result of this section is a concept for a cyber-physical production system

with energy-aware production scheduling – the scheduling system implements the
production scheduling model and connects to the production system to control
its operation. The first part of this section describes the energy-aware production
scheduling model formulation used for the optimization in this thesis. The second
part introduces the energy-aware production scheduling system architecture with
its provisions for configuration and adaptation to various production systems, and
the third part summarizes the findings. All of this leads to testing and deployment
of the system in the next section.

5.1. Energy-Aware Production Scheduling Model

A general understanding of the production scheduling problem used in this thesis
is essential to follow some of the decisions made in the subsequent sections. The
production scheduling problem in this thesis builds on the formulations published
in Grosch et al. (2019) and Grosch et al. (2021) – it represents an energy-aware
job shop scheduling problem. It is imperative to point out that the optimization
algorithm described in Sections 5.2.1, 5.2.2, and 5.2.3 solves an equivalent problem
due to the specified encoding and decoding strategies. It does not directly solve
the mathematical model specified in this section; however, writing the underlying
model down helps to clarify the scheduling approach.
This section only provides the general model structure and does not establish

particular objective criteria since the requirements prescribe that the implemen-
tation team chooses individualized objective criteria during the implementation
procedure (refer to Section 4.1). Specific objective criteria are selected in Section 6
when configuring the system for a use case. Sections 2.1.1 and 3.2.3 discuss exam-
ples of possible objective criteria. The basic model introduced here makes the
following simplifications:

81



5. Scheduling System Design

− Machines are always available
− Transportation times between production machines and storage are negli-

gible
− Storage space is unlimited and there is no cost associated with it
− Jobs are not prioritized

In practice, these limitations should not have a significant impact on the schedul-
ing results’ applicability. The simplifications regarding transportation time and
machine availability can be directly counteracted by implementing reschedul-
ing. Job prioritization does not have practical relevance because the production
scheduling system proposed here usually only considers one or a few days. In such
short time-frames, job prioritization is usually not necessary. The same is true
for storage limitations – since the scheduled time-frame is short, storage space
and storage cost are less relevant. However, future research should evaluate how
storage space and cost could be integrated into the proposed scheduling system.

5.1.1. Jobs, Operations, Storage, and Machines

For the general structure of the production scheduling model, there is a set of
𝑖max jobs 𝑖 (see equation (5.1)), and each job has an ordered sequence 𝑂𝑖 of 𝑜𝑖,max
operations as equation (5.2) states. There is also a set of 𝑚max machines 𝑚 to
perform the operations (equation (5.3)).

𝐽 = {1, 2, … , 𝑖max} (5.1)

𝑂𝑖 = {1, 2, … , 𝑜𝑖,max} ∀𝑖 ∈ 𝐽 (5.2)

𝑀 = {1, 2, … , 𝑚max} (5.3)

Each job has an associated order quantity 𝑞order𝑖 but some partially (or fully)
finished parts can be in storage. The parameter 𝑞stored𝑖,𝑜,𝑡 denotes the number of parts
in storage for each operation of a job. Thus, it includes information about the
processing state of the stored parts. Each operation also has a specified processing
time 𝑑proc

𝑖,𝑜 and a setup time 𝑑setup
𝑖,𝑜 .

Additionally, each machine has a defined capacity 𝑞capa𝑚 and a parameter to
determine if this capacity can be used by multiple different jobs or only a single
unique job 𝐼unique𝑚 .
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5.1.2. Time, Events, and Decision Variables
The following describes a discrete-event approach for production-related opti-
mization. In contrast, the energy models of production machines examined in
Section 5.1.5 are discrete-time models following a simulation-based approach. The
discrete-event production scheduling model and the discrete-time energy models
are connected through the machine’s energy states. The discrete-event modelling
for the production-related models has advantages due to the encoding necessary
for the NSGA-II used for the optimization (refer to Sections 5.2.1 and 5.2.2).
There is a set of events 𝑒𝑚 on each machine comprised of events for every

operation in every job processed on that machine and according to the demand
for each operation ℎ𝑚,max.

𝑒𝑚 = {1, 2, … , ℎ𝑚,max} ∀𝑚 ∈ 𝑀. (5.4)

Each event has an associated job and operation specified by the matrix 𝐼op𝑖,𝑜,𝑚,ℎ in
equation (5.5). The number of events equals the demand for each operation given
by equation (5.6). The demand depends on the number of customer orders for the
job, 𝑞order𝑖 and the number of stored workpieces for that job and operation 𝑞stored𝑖,𝑜,𝑡0
with 𝑡0 being the optimization starting time.

𝐼op𝑖,𝑜,𝑚,ℎ =
⎧{
⎨{⎩

1 if 𝑖, 𝑜 processed on 𝑚 as ℎ

0 otherwise
∀𝑖 ∈ 𝐽, 𝑜 ∈ 𝑂𝑖, 𝑚 ∈ 𝑀, ℎ ∈ 𝑒𝑚 (5.5)

∑
𝑚∈𝑀

∑
ℎ∈𝑒𝑚

𝐼op𝑖,𝑜,𝑚,ℎ = 𝑞order𝑖 − 𝑞stored𝑖,𝑜,𝑡0 ∀𝑖 ∈ 𝐽, 𝑜 ∈ 𝑂𝑖 (5.6)

The optimization determines the optimal starting time of each event 𝑠𝑚,ℎ result-
ing in a clock structure, which fully specifies the solution; however, an ordered
sequence of events is required to specify the constraints of the production schedul-
ing problem. According to Cassandras and Lafortune (2008, p. 271), the following
clock structure recursively identifies the next event to be processed on each ma-
chine ℎ″ from the current event ℎ′. In equation (5.7), the current time 𝑡, which is
independent of any event, determines the remaining clock time 𝑦𝑚,ℎ until each
event is scheduled. The minimum remaining clock time 𝑦∗

𝑚 over all events follows
from equation (5.8), and equation (5.9) determines the next event 𝑒𝑚,ℎ″.

𝑦𝑚,ℎ(𝑡) = 𝑠𝑚,ℎ − 𝑡 ∀𝑚 ∈ 𝑀, ℎ ∈ 𝑒𝑚 (5.7)

𝑦∗
𝑚(𝑡) = min

ℎ∈𝑒𝑚
(𝑦𝑚,ℎ(𝑡)) ∀𝑚 ∈ 𝑀 (5.8)
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ℎ″ = argmin
ℎ∈𝑒𝑚

(𝑦𝑚,ℎ(𝑡)) ∀𝑚 ∈ 𝑀 (5.9)

Finally, the time step when the next event starts is

𝑡𝑚,ℎ′ = 𝑡 + 𝑦∗
𝑚(𝑡) ∀𝑚 ∈ 𝑀. (5.10)

5.1.3. Constraints

The production schedule optimization is subject to the constraints discussed in this
section. The constraints ensure the optimized production schedules are feasible
and can be executed in a factory.
Equation (5.11) calculates the ending time 𝑐𝑚,ℎ″ of the next event. In addition

to the starting time, the ending time depends on the setup time 𝑑setup
𝑖,𝑜 if setup is

required 𝐼setup𝑚,ℎ and the processing time 𝑑proc
𝑖,𝑜 of the job and operation. However, if

the starting time of the next event is smaller than the starting time of the current
event 𝑐𝑚,ℎ′ the ending time is set equal to the ending time of the previous event for
all 𝑚 ∈ 𝑀, ℎ ∈ 𝑒𝑚:

𝑐𝑚,ℎ″ =
⎧{
⎨{⎩

𝑐𝑚,ℎ′ if 𝑠𝑚,ℎ″ < 𝑐𝑚,ℎ′

𝑠𝑚,ℎ″ + (𝐼setup𝑚,ℎ″ 𝑑setup
𝑖,𝑜 + 𝑑proc

𝑖,𝑜 ) 𝐼op𝑖,𝑜,𝑚,ℎ″ otherwise.
(5.11)

Equation (5.12) ensures that the current event ℎ′ can start on the machine. De-
pending on the capacity constraint in equation (5.14) the previous event either has
to be complete (≥ 𝑐𝑚,ℎ′), or not. In combination with the previous equation this
equation sets the ending times of the current and next events equal if available
capacity of the machine 𝑚 is used.

𝑠𝑚,ℎ″ ≥
⎧{
⎨{⎩

𝑐𝑚,ℎ′ if 𝑞concurrent𝑚,ℎ″ > 𝑞capa𝑚

𝑠𝑚,ℎ′ if 𝑞concurrent𝑚,ℎ″ ≤ 𝑞capa𝑚
∀𝑚 ∈ 𝑀 (5.12)

If the machine has a capacity larger than one, multiple events can be processed
concurrently (𝑞concurrent𝑚,ℎ″ ), limited by equation (5.13). The equation checks if the
machine requires all concurrent operations to belong to the same job as specified
by the parameter 𝐼unique𝑚 . Adding the very large number 𝐺 in case the machine
requires a unique job and the next event is not for the same job as the current
event violates the capacity constraint from equation (5.14). The capacity constraint
in equation (5.14) avoids exceeding the machine capacity.
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𝑞concurrent𝑚,ℎ″ =

⎧{{
⎨{{⎩

𝑞concurrent𝑚,ℎ′ + 𝐺 if 𝐼unique𝑚 , 𝑠𝑚,ℎ″ = 𝑠𝑚,ℎ′, 𝐼op𝑖,𝑜,𝑚,ℎ″ ≠ 𝐼op𝑖,𝑜,𝑚,ℎ′

𝑞concurrent𝑚,ℎ′ + 1 if 𝐼unique𝑚 , 𝑠𝑚,ℎ″ = 𝑠𝑚,ℎ″

0 otherwise

(5.13)

𝑞concurrent𝑚,ℎ″ ≤ 𝑞capa𝑚 ∀𝑚 ∈ 𝑀 (5.14)

Additionally, setup time can be required if the product changes between events.
The variable 𝐼setup𝑚,ℎ″ defined in equation (5.15) determines whether setup time is
needed.

𝐼setup𝑚,ℎ″ =
⎧{
⎨{⎩

1 if 𝐼op𝑖,𝑜,𝑚,ℎ″ ≠ 𝐼op𝑖,𝑜,𝑚,ℎ′

0 otherwise
∀𝑚 ∈ 𝑀 (5.15)

Finally, there must be enough stored workpieces from prior operations to pro-
cess the subsequent operations. Therefore, equations (5.16) and (5.17) determine
the number of workpieces in storage 𝑞stored𝑖,𝑜,ℎ″ for each operation of each job after
completing event ℎ″. The event adds workpieces to the storage for the current op-
eration 𝑞stored𝑖,𝑜,ℎ″ and removes workpieces for the previous operation 𝑞stored𝑖,𝑜−1,ℎ″. Finally,
equation (5.18) ensures that storage does not become negative.

𝑞stored𝑖,𝑜,ℎ″ = 𝑞stored𝑖,𝑜,ℎ′ + ∑
𝑚∈𝑀

𝐼op𝑖,𝑜,𝑚,ℎ′ ∀𝑖 ∈ 𝐽, 𝑜 ∈ 𝑂𝑖 (5.16)

𝑞stored𝑖,𝑜−1,ℎ″ = 𝑞stored𝑖,𝑜−1,ℎ′ − ∑
𝑚∈𝑀

𝐼op𝑖,𝑜,𝑚,ℎ′ ∀𝑖 ∈ 𝐽, 𝑜 ∈ 𝑂𝑖 (5.17)

𝑞stored𝑖,𝑜−1,ℎ′ ≥ 0 ∀𝑖 ∈ 𝐽, 𝑜 ∈ 𝑂𝑖 (5.18)

5.1.4. Graph Representation of the Scheduling Problem

The jobs, operations and events defined in the previous sections can be interpreted
and represented as graphs. The graph representation helps define the solution
encoding and decoding strategies discussed in Sections 5.2.2 and 5.2.3. There are
two separate graphs representing the scheduling problem. The following refers
to them as the product graph and machine graph. Both graphs are directed acyclic
graphs, and the relationships between them are given by the matrix 𝐼op𝑖,𝑜,𝑚,ℎ, as
detailed in equation (5.5) and Section 5.1.2. In directed graphs every edge can
only be traversed in one direction. Acyclic graphs additionally do not have cycles:

85



5. Scheduling System Design

When starting to traverse the graph from any node it is impossible to reach that
same node again.
The product graph represents the jobs and operations (see equations (5.1)

and (5.2)), and has disconnected components for each job. Each component con-
tains nodes for each operation of the corresponding job, and its edges are directed
from the first operation of the job to the next. The order quantity 𝑞order𝑖 determines
the number of nodes for each operation of the related job. To be explicit, each job
𝑖 has an associated number of orders and its operations 𝑜 occur multiple times,
each occurrence being a single workpiece. Therefore, a node in the product graph
is denoted as 𝑂𝑖,𝑜,𝑘 with the job 𝑖, operation 𝑜 and the workpiece 𝑘. Equation (5.19)
calculates the number of nodes for job 𝑖 and operation 𝑜.

∑ 𝑂𝑖,𝑜,𝑘 = 𝑞order𝑖 ∀𝑖 ∈ 𝐽, 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ {1, 2, … 𝑞order𝑖 − 𝑞stored𝑖,𝑜,𝑡0 } (5.19)

𝑂1,1,1 𝑂1,2,1 𝑂1,𝑜1,max,1

⋯

𝑂1,1,2 𝑂1,2,2 𝑂1,𝑜𝑖,max,2

⋮ ⋮ ⋮

𝑂𝑖,1,1 𝑂𝑖,2,1 ⋯ 𝑂𝑖,𝑜𝑖,max,1

Figure 5.1: Exemplary illustration of a product graph, the last job is 𝑖max (own figure).

Figure 5.1 illustrates an exemplary product graph with 𝑖max jobs and 𝑜𝑖,max opera-
tions in each job. In the example, job 𝑖 = 1 has an order quantity of 𝑞order1 = 2, and
the order quantity for job 𝑖max is 𝑞order𝑖max

= 1. The figure shows that each operation
and all possible successors are fully connected – it is irrelevant whether node𝑂1,2,1
or 𝑂1,2,2 follows either node 𝑂1,1,𝑘. At the same time, different jobs have separate,
disconnected components in the graph. In Figure 5.1, there are no connections
between the operations 𝑂1,𝑜,𝑘 and the operations 𝑂𝑖max,𝑜,𝑘.
Figure 5.2 illustrates the machine graph, which represents the order of oper-

ations on a machine by determining the order of the set of events 𝑒𝑚 (see equa-
tion (5.4)). While the product graph is constant for an entire scheduling problem as
long as the sets of jobs and operations are constant, the machine graph is a distinct
solution to the scheduling problem. The constraints established in Section 5.1.3
decide whether a machine graph is a valid solution.
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𝑒1,4 𝑒1,ℎ′ 𝑒1,ℎ″ ⋯

𝑒2,7 𝑒2,3 𝑒2,ℎ′ 𝑒2,ℎ″ ⋯

𝑒𝑚,ℎ ⋯ 𝑒𝑚,ℎ′ 𝑒𝑚,ℎ″ ⋯

⋮

Figure 5.2: Exemplary illustration of a machine graph (own figure).

Figure 5.2 shows that the machine graph has a node for each event in the set
of events 𝑒𝑚. It is built recursively according to equations (5.7) to (5.9). While
the product graph contains multiple nodes for each operation according to equa-
tion (5.19), the machine graph only contains nodes for events that actually need
to be processed, bearing the stored quantity 𝑞stored𝑖,𝑜,𝑡 in mind. Thus, equation (5.6)
gives the number of nodes per machine in the machine graph. Figure 5.2 also
shows that the events in 𝑒𝑚 do not have to be ordered by occurrence ℎ. For example,
event 𝑒1,4 might come before event 𝑒1,1.

5.1.5. Production Machine Energy Models

In addition to the regular production scheduling model presented in the previous
sections, the energy-aware production schedulingmodel also includes energymod-
els of the production machines. The energy models must consider that machines
consume energy in different forms within the set of energy forms ℰ. The models
in this thesis focus on electric and thermal energy; however, other energy forms,
like compressed air, could be added to the models during the implementation
procedure. This section first looks at electric energy consumption and later con-
tinues with thermal energy models. The energy models are discrete-time models
with the time 𝑡 as a connection to the discrete-event production-related scheduling
models. To introduce some diversity in themodelledmachine types and to prepare
implementation for the use case introduced in Section 6.1, this thesis proposes
models for machine tools and industrial aqueous parts cleaning machines.
Electric energy consumption is often well represented by a machine’s energy

states (refer to Section 2.3.3) (Verein Deutscher Maschinen- und Anlagenbauer,
2019); however, this assumption is only valid if the machine has no singular com-
ponents significantly influencing power consumption patterns (see Figure 2.8).
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As Section 6 will show, the implementation procedure might reveal a need to
extend the models to integrate such components. This thesis assumes that the rel-
evant energy states for most machines in the context of energy-aware production
scheduling are:

− off (no power consumption)
− standby, (𝑎st)
− operational, (𝑎op)
− working, (𝑎wk)

The models proposed in this thesis do not consider the state off since it only oc-
curswhen themain switch of amachine is turned off (VereinDeutscherMaschinen-
und Anlagenbauer, 2019). The models also do not consider transitions between
energy states as state transitions are typically very short and become irrelevant
over longer production scheduling time frames. To improve model accuracy over
shorter time periods, state transitions may be an area for future framework exten-
sions; however, the tradeoff between accuracy improvement and additional data
collection efforts must be considered.
The generalized model for a machine’s electric power 𝑃el

𝑡 in equation (5.20) is
based on the energy states determined by the binary variables 𝑎st𝑡 , 𝑎op𝑡 , and 𝑎wk𝑡
(see above), which are one if the corresponding energy state is active.

𝑃el
𝑡 = (𝑎st𝑡 + 𝑎op𝑡 + 𝑎wk𝑡 ) ⋅ 𝛽el

st + (𝑎op𝑡 + 𝑎wk𝑡 ) ⋅ 𝛽el
op

+ 𝑎wk𝑡 ⋅ (𝑧procsrc ⋅ 𝛽el
proc + 𝛽el

wk)
(5.20)

Since only one of the binary variables is active at a time, equation (5.20) sums
the binary variables such that the regression parameters 𝛽el

st and 𝛽el
op represent the

respective power increase of an energy state over lower energy states. For example,
𝛽el
op describes the electric power increase between the standby and operational

state. In the working state when 𝑎wk is one, the equation expects a generally higher
load compared to the operational state. 𝛽el

wk represents this general load increase
which could, for example, be caused by activating additional machine components
or by positioning movements of the machine’s axes.
In addition to the general load increase during the working state, there are

process-dependent factors influencing the machine’s power consumption in the
working state. Process-dependent factors could include the number of workpieces
processed at once in a batch production machine or the material removal rate for
a machine tool. Therefore, the machine energy models need a process-dependent
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parameter 𝑧procsrc . This parameter depends on the type of machine and the process
performed by the machine. In conclusion, the regression parameters 𝛽el

st and 𝛽el
op

represent the machine’s power during the respective energy states, and the energy
consumption in the working state combines a generally higher load during the
working state 𝛽el

wk with the influence of the workpiece 𝛽el
proc.

Since the machine energy models are based on the machine’s energy states, the
connection between the production scheduling model and the machine energy
models is also based on the machine’s energy states as given by equations (5.21)
to (5.23).

𝑎st𝑡 =
⎧{
⎨{⎩

1 if 𝑠𝑚,ℎ″ − 𝑐𝑚,ℎ′ > 180 s and 𝑐𝑚,ℎ′ < 𝑡 < 𝑠𝑚,ℎ″

0 otherwise
(5.21)

𝑎op𝑡 =
⎧{
⎨{⎩

1 if 𝑎st𝑡 = 0 and 𝑐𝑚,ℎ′ < 𝑡 < 𝑠𝑚,ℎ″

0 otherwise
(5.22)

𝑎wk𝑡 =
⎧{
⎨{⎩

1 if 𝑎st𝑡 = 0 and 𝑎op𝑡 = 0

0 otherwise
(5.23)

Generalizing models for the thermal power of production machines is more
diverse, as illustrated by the selection of machine tools and cleaning machines
as the two primary machine types in this thesis. Machine tools mainly consume
electric energy, and their thermal power is dominated by the need for cooling to
dissipate heat converted from electric power consumption. On the other hand, for
cleaning machines the thermal power is most relevant (Bayerisches Landesamt
für Umwelt, 2006, p. 17). Bayerisches Landesamt für Umwelt (2006, p. 16) analyze
the thermal power consumption of spray cleaning machines and determine that
heat dissipation to the environment through spraying and to cleaned workpieces
dominate the power consumption.
Figure 5.3 illustrates the machine tool as a thermal system with electric power

as an input and thermal power as an output. As Denkena et al. (2020) state, the
machine emits part of the input power 𝑃el to the environment as waste heat 𝑃th,env,
and the remaining thermal power is usable heat 𝑃th,cool collected by a fluid-bound
machine cooling system.
Using the first law of thermodynamics (Lauth & Kowalczyk, 2022, p. 74) on the

system shown in Figure 5.3 yields equation (5.24) for the change in the inner energy
of the system d𝑈.
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Machine
Tool

𝑇M

𝑇env

𝑃el 𝑃th,cool

𝑃th,env

Figure 5.3:Machine tool system with electric and thermal power (own figure).

d𝑈 = 𝑃el − 𝑃th,cool − 𝑃th,env (5.24)

The change in inner energy is isentropic and thus equivalent to a change of the
average machine temperature 𝑇M multiplied by a regression parameter for the
machine’s heat capacity 𝛽c

M as stated by equation (5.25) (Lauth & Kowalczyk, 2022,
p. 76).

𝛽c
M ⋅ d𝑇M = 𝑃el − 𝑃th,cool − 𝑃th,env (5.25)

For simplicity, the proposed models assume that the exact mechanism of heat
transfer to the environment and the cooling medium is unknown and that regres-
sion parameters for the thermal transfer coefficients 𝛽th

cool and 𝛽th
env can estimate

the resulting heat transfer. This assumption yields equations (5.26) and (5.27) to
describe the heat transfer from the machine to the environment and the coolant
discretized in time 𝑡. In the equation, 𝑇env

𝑡 is the average temperature of the factory
environment, and 𝑇cool

𝑡 is the coolant temperature.

𝑃th,env
𝑡 = 𝛽th

env (𝑇M
𝑡 − 𝑇env

𝑡 ) ∀𝑡 (5.26)

𝑃th,cool
𝑡 = 𝛽th

cool (𝑇M
𝑡 − 𝑇cool

𝑡 ) ∀𝑡 (5.27)

Substituting 𝑃th,cool and 𝑃th,env in equation (5.25) with these two equations and
solving for the machine temperature at the next time step 𝑇M

𝑡 results in equa-
tion (5.28).

𝑇M
𝑡 = 𝑃el

𝑡
𝛽c
M

−
𝛽c
M − 𝛽th

env − 𝛽th
cool

𝛽c
M

⋅ 𝑇M
𝑡−1

+
𝛽th
cool

𝛽c
M

⋅ 𝑇cool
𝑡 + 𝛽th

env
𝛽c
M

⋅ 𝑇env
𝑡 ∀𝑡 > 𝑡0

(5.28)
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The system of equations given by equations (5.20), (5.26), (5.27), and (5.28) fully
determines the machine tool’s electric and thermal power.

In contrast tomachine tools, cleaningmachines often have a large tank for clean-
ing medium which must remain at a specified temperature. Thus, the thermal
power of a cleaning machine mostly depends on the heat losses from the cleaning
medium tank. In Fuhrländer-Völker et al. (2023), we identify three main compo-
nents of heat loss affecting the cleaning machine: heat loss to the environment
𝑃th,env, heat loss to the cleanedworkpieces 𝑃th,wp, and heat loss to the environment
due to cleaning medium circulation during the spray cleaning process 𝑃th,spray.
Figure 5.4 illustrates the cleaning machine as a thermal system with these heat
losses. The thermal input power 𝑃th,heater is provided by a heating element in the
cleaning medium tank or by a heat exchanger.

Cleaning
Machine

𝑇M

𝑇env

𝑃th,heater 𝑃th,env

𝑃th,wp

𝑃th,spray

Figure 5.4: Cleaning machine system with electric and thermal power (own figure).

The thermal behaviour of the cleaning machine depends on its operating state.
For example, the heat losses to workpieces and due to spray cleaning only occur
while the machine is working (𝑎wk = 1). Additionally, the cleaning machine’s
heating element is only active when the temperature within the cleaning medium
tank requires it – the 2-point controller defined by equation (5.29) controls its
operation 𝑎heater𝑡 with the upper temperature limit 𝐼 tankupper and lower temperature
limit 𝐼 tanklower. 𝑇M

𝑡 describes the average temperature in the cleaning medium tank.

𝑎heater𝑡 =

⎧{{
⎨{{⎩

𝑎heater𝑡−1 if 𝐼 tanklower ≤ 𝑇M
𝑡−1 ≤ 𝐼 tankupper

1 if 𝑇M
𝑡 < 𝐼 tanklower

0 if 𝑇M
𝑡 > 𝐼 tanklower

(5.29)

Equations (5.30) and (5.31) result using the first law of thermodynamics around
the cleaning machine system and considering the operating states defined above.

d𝑈 = 𝑎heater ⋅ 𝑃el − 𝑃th,env − 𝑎wk ⋅ (𝑃th,wp − 𝑃th,spray) (5.30)

𝛽c
M ⋅ d𝑇M = 𝑎heater ⋅ 𝑃th,heater − 𝑃th,env − 𝑎wk ⋅ (𝑃th,wp − 𝑃th,spray) (5.31)
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Similar to equations (5.26) and (5.27), the next equation represents the heat
transfer to the environment and workpieces with regression parameters for the
thermal transfer coefficients 𝛽th

env, 𝛽th
wp, and 𝛽th

spray. The regression parameter
𝛽th
heater represents the nominal power input by the cleaning medium tank heater.

Substituting this into equation (5.31) and solving for 𝑇M
𝑡 yields equation (5.32).

𝑇M
𝑡 = 𝑎heater𝑡 ⋅

𝛽th
heater
𝛽c
M

− 𝛽th
env

𝛽c
M

⋅ (𝑇M
𝑡−1 − 𝑇env

𝑡 )

− 𝑎wk𝑡 ⋅
𝛽th
spray + 𝑧procsrc ⋅ 𝛽th

wp
𝛽c
M

⋅ (𝑇M
𝑡−1 − 𝑇env

𝑡 ) + 𝑇M
𝑡−1

(5.32)

Finally, the cleaning medium tank heater’s power is determined by its operating
state 𝑎heater𝑡 and its estimated nominal power 𝛽th

heater according to equation (5.33).

𝑃th,heater
𝑡 = 𝑎heater𝑡 ⋅ 𝛽th

heater (5.33)

The equations derived in this section represent the energy consumption of
production machines (see also Section 2.3.3). The energy models are included
in the production machine models discussed in Section 5.2.5. The structure of
these models defines a reusable interface used by the energy model parameter
estimation proposed in Section 5.2.6.

5.2. Energy-Aware Production Scheduling System Architecture

The architecture of the energy-aware production scheduling system must fulfil all
previously determined requirements as specified in Section 4.1. The requirements
include standardization, configuration, and connectivitywith internal and external
entities. The energy-aware production scheduling system architecture should also
support the implementation procedure using energy model parameter estimation.
The following sections describe the components of the energy-aware production
scheduling system architecture.
Figure 5.5 illustrates the energy-aware production scheduling system architec-

ture as a cyber-physical production system. The real world is at the bottom of
the figure and consists of the actual production system and external entities. The
actual production system has some production machines to produce products;
additionally, some partsmight be in storage. The upper part of the figure illustrates
the virtual parts of the cyber-physical production system, whose central compo-
nents are the production system environment (see Section 5.2.4) and the optimization
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Figure 5.5: Energy-aware production scheduling system architecture (own figure).

algorithm (see Section 5.2.1). The production system environment has production
machine models (see Section 5.2.5) representing the actual machines. It also knows
about workpieces in storage and information about orders to be processed (see
Section 5.2.8).

The production system configuration is closely connected to the production system
environment because it contains the necessary information about the structure
of the production system to instantiate the production system environment. The
production system configuration results from the implementation procedure – it
contains estimated parameters for the production machine models and data about
products (which are types of jobs) and their associated production operations.
The energy model parameter estimation supports the creation of the production
system configuration by estimating the parameters for the energy models.
The production system environment also provides connectivity to the actual

production system and external entities using connectors. The connectors are
the interface between the virtual and real parts of the cyber-physical production
system. The production system configuration also contains data to configure the
connectors.
The large number of components and variety of requirements regarding the

system architecture justify the need for a framework serving as a basis for more
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specific additions. Hence, the architecture proposed in this section utilizes the
eta_utility framework – Figure 5.6 depicts the framework’s modules (Grosch, Ran-
zau, et al., 2022).

𝑨𝒌

𝑺𝒕+𝟏𝑺𝒕

𝑹𝒕+𝟏𝑹𝒕
Rule-based Controller

or

DRL Algorithm (from SB3)

MPC Instance

or

Agent
Environment(s)

Deployed

.eta_x.ETAx

.connectors

.servers

Simulated

.eta_x.agents

.simulators

.util.eta_x.envs

Python

Mathematical

Simulation

DRL (SB3)

Math. opt.

Rule-based

Genetic

.timeseries

OPC-UA

Modbus

etc.

CSV

Python

FMULogging

JSON

URLs

Dicts

etc.

OPC-UA

eta_utility

Figure 5.6: Interaction between the environment, agent (optimization algorithm), and
othermodules of the optimization framework. The blue arrows indicate mod-
ules which compose the environments and agent (Grosch, Ranzau, et al.,
2022).

The framework provides an abstract structure for rescheduling using an en-
vironment class as a virtual representation of the system to be optimized. The
virtual (the framework refers to this as simulated) environment may communicate
with a real (called deployed in the figure) environment, as indicated by the black
arrow in the bottom right corner of the figure. The environment interacts with the
real system through connectors. Due to its roots in reinforcement learning, the
framework refers to optimization algorithms as agents. The eta_x module of the
frameworkmanages the interaction between the real and virtual environments and
their interface with the optimization algorithm (Grosch, Ranzau, et al., 2022). The
interaction between the environment and optimization is based on the interfaces
and structures implemented in the GYM (Brockman et al., 2016) and STABLE_BASE-
LINES3 (Raffin et al., 2021) frameworks. These frameworks implement the Markov
Decision Process introduced in Figure 2.4 of Section 2.1.3.
The subsequent parts of this section describe the components of the energy-
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aware production scheduling system architecture from Figure 5.5 in more detail
(see references at the beginning of this section). The following parts base their
explanations on the production scheduling model outlined in Section 5.1.

5.2.1. Optimization Algorithm

The optimization algorithm interacts with the virtual production system environ-
ment to evaluate and execute production schedules – each production schedule is
a solution to the optimization problem. The NSGA-II was initially proposed by Deb
et al. (2002), and as the literature review in Section 3 expresses, it is widely used
for energy-aware production scheduling. Moreover, the algorithm is well suited
to multi-objective optimization (Deb et al., 2002), one of the requirements from
Section 4.1. Thus, this thesis uses the NSGA-II for optimization, explicitly building
on the hybrid approach published in Grosch et al. (2021). The hybrid algorithm
uses dispatching rules for initialization and the NSGA-II for local optimization.
Section 2.1.3 introduces general aspects concerning genetic algorithms and

discusses the language used to describe genetic algorithm-based optimization
algorithms. This section details adjustments to the algorithm and its integration
into the energy-aware production scheduling system by encoding and decoding
solutions. Note that themodular eta_utility framework and the system architecture
allow interchanging optimization algorithms – other algorithms could also be
utilized for energy-aware production scheduling. Interchanging algorithms is
limited by the problem structure – it would not be possible to replace the heuristic
algorithm presented here directly with, for example, a reinforcement learning
algorithm.
According to Deb et al. (2002), who proposed the NSGA-II, there are three main

advantages over similar algorithms. It reduces the computational complexity of
the non-dominated sorting, supports elitism to preserve good solutions through
generations, and features a diversity preservation method without additional pa-
rameters. Figure 5.7 shows the entire process of the NSGA-II. The algorithm starts
by initializing the parent generation of solutions 𝑆parent𝑔 (Deb et al., 2002). Since this
thesis uses the hybrid approach proposed by Grosch et al. (2021), it implements
dispatching rules for the initialization. The dispatching rule used in this thesis
is the SPT rule, as introduced in Section 2.1.3; however, other rules may also be
applicable depending on the objective criteria of the optimization.

As Figure 5.7 illustrates, the algorithmmodifies the parent generation withmuta-
tion and crossover operators (refer to Section 2.1.3) to create the offspring solutions
𝑆offspr1 (Deb et al., 2002). Afterwards, the algorithm passes the new solutions to
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Figure 5.7: Illustration of the NSGA-II procedure’s steps (own figure; Deb et al., 2002)
(lower portion© IEEE, 2002).

the production system environment for evaluation and the environment returns
values for the objective criteria. Then the evaluation procedure shown in the
bottom half of Figure 5.7 takes the parent and offspring solutions and passes them
through the non-dominated sorting and the crowding distance sorting steps (Deb
et al., 2002). The non-dominated sorting step compares the objective criteria of the
solutions, taking multiple objectives into account (Deb et al., 2002). One solution
dominates another if all objective criteria are equal and at least one criterion of
the dominating solution is smaller than that of the other solution. In pseudocode,
this is written as follows:
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1 all(sol1.objectives <= sol2.objectives)
2 && any(sol1.objectives < sol2.objectives)

0

w−1
w

w+1 1

Criterion 1

Cr
ite

ri
on

2

Cuboid

Figure 5.8: Crowding distance between solutions𝑤withmultiple objective criteria. Black
points are solutions of the same pareto front – the cuboid indicates the dis-
tance between three adjacent solutions (Deb et al. 2002; © IEEE).

Solutions are placed in pareto fronts 𝐹𝑓 depending on the number of other solu-
tions they dominate (Deb et al., 2002). The algorithm rejects all fronts exceeding
the population size after the non-dominated sorting step (Deb et al., 2002). If
the last remaining front (𝐹3 in Figure 5.7) still exceeds the population size, the
crowding-distance sorting operator decides which solutions to include in the next
parent generation 𝑆parent𝑛+1 (Deb et al., 2002). Crowding-distance sorting keeps the
solutions with the largest distance from other solutions and rejects solutions with
close neighbours (Deb et al., 2002). Figure 5.8 illustrates the crowding distance
calculation proposed by Deb et al. (2002). Solutions on the border of the solution
space are assigned infinite crowding distance (Deb et al., 2002).
The following parameters control the algorithm’s procedure. The next section

discusses the mutations and crossovers parameters in more detail.

− The mutations parameter 𝜔 specifies the percentage of each solution that is
mutated.

− The crossovers parameter 𝜅 specifies the percentage of solutions that incur
crossover into another solution.

− The population parameter 𝑤max controls the total number of solutions per
generation.

− The generations parameter 𝑔max contains the algorithm termination condi-
tion. The optimization will end after it reaches the set number of genera-
tions.
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Refer to Deb et al. (2002) formore details regarding and performance evaluations
of the algorithm. The following sections of this thesis will more specifically discuss
the encoding and decoding of solutions and corresponding adaptations to the
crossover and mutation operators.

5.2.2. Solution Encoding and Algorithm Implementation

The solution encoding and algorithm implementation are crucial for the optimiza-
tion’s performance. The implementation of the crossover and mutation operators
depends on the solution encoding. Therefore, this section discusses the solution
encoding and then examines the crossover and mutation operator’s implementa-
tions.
The solution encoding maps the production scheduling problem’s events to the

genes on the chromosomes of the genetic algorithm’s solutions. The encoding used
in this thesis is based on the machine graph introduced in Section 5.1.4. Figure 5.2
shows the machine number 𝑚 and event number ℎ for each node in the machine
graph. The solution encoding also uses these unique machine and event number
combinations to represent the sequencing of events on machines.
In addition to the sequencing problem, the optimization must solve the start

time scheduling problem. Since these are separate sub-problems, the encoding
proposed here consists of two separate chromosomes. The sequence chromosome
encodes the unique event numbers, and the time chromosome governs the pauses
between operations on each machine.
Section 5.2.3 explains the decoding of solutions and the interpretation of both

chromosomes in more detail. For now, it is sufficient to note the distinct concepts
the two chromosomes use to encode their part of the solution. The sequence chro-
mosome conveys information through the sequence of genes in the chromosome.
Thus, the information in the sequence chromosome is contained in its sorting
order. A single gene on the chromosome does not provide any information by
itself. In contrast, the information in the time chromosome consists of time values
representing the pauses between two events. Thus, each gene in the time chromo-
some contains information independent of the genes next to it. The mutation and
crossover operators must consider these divergent concepts.
Section 2.1.3 examines the general concepts of mutation and crossover. The

implementation proposed here builds on this default but also deals with the differ-
ences between the sequence and time chromosomes. The mutation and crossover
operators for the time chromosome are equivalent to the process shown in Figures
2.3a and 2.3b. However, the operators for the sequence chromosome differ from
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these because they directly manipulate the sequence of the chromosome.

1,4 2,3 1,3 2,1 2,2 1,1 1,2

1,4 2,1 1,3 2,3 1,1 2,2 1,2

g:

g-1:

Figure 5.9:Mutation of the sequence chromosome with events specified by the machine
number 𝑚 and event number ℎ as 𝑚, ℎ (own figure).

Themutation operator for the sequence chromosome works by reordering parts
of the solution, as illustrated in Figure 5.9. Themutation operator selects a number
of genes based on the algorithm’s mutation parameter to achieve the reordering.
The operator then randomly assigns each of these genes to another gene on the
chromosome and interchanges their positions, as illustrated in Figure 5.9.

Themutation of the sequence chromosome also behaves differently with respect
to the mutation rate because it always affects two genes simultaneously. Looking
at the extreme case of 100% mutations, it is evident that the mutation rate for the
sequence chromosome must be halved. Otherwise, the mutation operator would
select all events in the sequence chromosome and try to find partners on the same
chromosome to switch with them, which is impossible. Therefore, equation (5.34)
determines the number of solutions to be mutated 𝑛solutions such that there are at
least twomutations per solution. In addition to the algorithmparameters discussed
previously, the equation introduces the number of genes per chromosome 𝛾.
Equation (5.35) ensures that the mutation rate used for each selected solution is
equivalent to the rate that would have been applied if all solutions were mutated.

𝑛solutions = 1
2 (𝑤max ⋅ 𝛾 ⋅ 𝜔

2 + 𝑤max − ∣𝑤max ⋅ 𝛾 ⋅ 𝜔 − 𝑤max∣) (5.34)

𝜔′ = 𝑤max ⋅ 𝛾 ⋅ 𝜔
𝑛solutions ⋅ 𝛾

(5.35)

Figure 5.10 illustrates the crossover operator for the sequence chromosome.
Since the crossover operator combines two chromosomes and the sequence chro-
mosome encodes information in the sequence of genes, direct replacement of the
crossover sequence would lead to duplicate or missing genes on the resulting chro-
mosome. Thus, the following describes the process of keeping the chromosome
structure intact and ensuring each event occurs only once.
The crossover operator first selects two random chromosomes from the parent
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2,1 1,1 2,2 1,4 1,3 2,3 1,2

2,3 1,1 2,2 1,4 2,1 1,3 1,2

1,4 2,1 1,3 2,3 1,1 2,2 1,2

g:

g-1:

Figure 5.10: Crossover of the sequence chromosomewith two chromosomes from thepar-
ent generation 𝑔−1 and the resulting offspring chromosome fromgeneration
𝑔 (own figure).

generation of solutions (𝑔−1). The subsequent description of the crossover process,
refers to the topmost chromosome in Figure 5.10 as the primary chromosome and to
the chromosome in the second row as the secondary chromosome. The resulting
chromosome for the offspring generation 𝑔 is the offspring chromosome.
After choosing the primary and secondary chromosomes from the parent gen-

eration, the crossover operator selects a random sequence of genes from the
secondary chromosome. The crossover parameter of the optimization algorithm
determines the length of this sequence. For example, the selected sequence in
Figure 5.10 is (1, 1), (2, 2), (1, 4). It is marked orange in the figure. The sequence be-
gins at the second and ends at the fourth gene in the chromosome – the crossover
operator conserves this placement when creating the offspring chromosome.
The crossover operator constructs the offspring chromosome for generation

𝑔 by iterating over the primary chromosome and checking whether the current
gene occurs in the crossover sequence from the secondary chromosome. If the
gene does not occur in the crossover sequence, it is used for the offspring and
otherwise it is discarded. For example, in Figure 5.10, the operator would start
by taking event (1, 4) from the primary chromosome. However, this gene also
occurs in the crossover sequence from the secondary chromosome. Therefore,
the crossover operator does not copy it to the offspring. The next gene in the
primary chromosome is (2, 1), which does not occur in the crossover sequence
and is accordingly placed as the first gene in the offspring. The crossover sequence
begins at the second gene, and thus, the operator copies it from the secondary to the
offspring chromosome after placing the first gene. Then, the process continues
iterating through the primary chromosome to fill the remaining places in the
offspring. Gene (1, 3) is the next gene in the primary chromosome. It is copied
to the fifth position in the offspring because it does not occur in the crossover
sequence. Figure 5.10 marks genes copied from the primary chromosome in blue
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and genes copied from the secondary chromosome in orange.
Having two chromosomes requires distributing themutation and crossover rates

specified by the corresponding algorithm parameters. The algorithm determines
the distribution 𝜓 of mutation and crossover rates between the time and sequence
chromosomes randomly. However, precautions must be taken because a rate
affecting less than one event on either of the chromosomes is undefined. Looking
at the example of mutation for a solution with 𝛾 = 20 genes and a mutation rate
of 𝜔 = 0.05 makes this more clear. If the example had a single chromosome this
would mean a single mutation; however, when multiplying the mutation rate by a
distribution of 𝜓 = 0.5, for example, each chromosome would be left with a half
mutation, which is impossible.
To check whether the selected crossover and mutation rate distributions are

possible, equations (5.36) and (5.37) determine the number of affected genes per
chromosome 𝑛genestime and 𝑛genessequence. Both equations are written for the example
of a mutation but similarly apply to crossover rates. The interchange of genes
on the sequence chromosome implicitly doubles its mutation rate. Therefore
equation (5.36) doubles the mutation rate for the time chromosome to ensure that
both chromosomes are affected equally.

𝑛genestime = 𝛾time ⋅ (1 − 𝜓) ⋅ 2𝜔′ (5.36)

𝑛genessequence = 𝛾sequence ⋅ 𝜓 ⋅ 𝜔′ (5.37)

The algorithm then uses the number of affected genes to determine if adjust-
ments to the crossover or mutation rates are necessary. The following pseudocode
illustrates these adjustments for the mutation rate.

1 if 𝜓 ≤ 0.5 && 𝑛genessequence < 1:
2 𝜓 = 1 / (𝛾sequence ⋅ 𝜔′)
3 else if 𝜓 > 0.5 && 𝑛genestime < 1:
4 𝜓 = 1 - (1 / (2 𝛾time ⋅ 𝜔′))
5
6 𝜔′

sequence = max(𝜓 ⋅ 𝜔′, 0)
7 𝜔′

time = max((1 − 𝜓) ⋅2𝜔′, 0)

The algorithm checks whether the chromosome with the smaller portion of the
distribution has at least one complete affected gene, and if that is not the case, it
will set the distribution such that it does. If both chromosomes have at least one
affected gene, the rate is set by multiplying the mutation rate with the distribution
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or one minus the distribution, respectively.
Results generated with similar encoding, mutation, and crossover operators also

using two separate chromosomes are published in Grosch et al. (2019) and Grosch
et al. (2021); however, these publications used a different strategy to generate and
decode the sequence chromosome. The strategy was not yet based on the graph-
based representation of the optimization problem, making the decoding process
less efficient. Grosch et al. (2019) also used a different strategy for calculating each
chromosome’s mutation and crossover rates.

5.2.3. Solution Decoding and Building Schedules

The environment must decode the solutions generated by the optimization algo-
rithm before creating schedules that can be evaluated and executed. This section
explains the decoding algorithm and examines how it derives schedules from
the time and sequence chromosomes. The goal of building schedules is to map
the processing events to corresponding starting times 𝑠𝑚,ℎ. The algorithm also
determines whether setup time is required (𝐼setup𝑚,ℎ ) before the production of an
event starts.
The machine graph (refer to Section 5.1.4) can hold all information needed to

sequence the operations correctly. Since the graph representation is efficient when
decoding solutions, the decoding process first generates the machine graph from
the encoded information on the chromosomes. The decoding assumes that each
event has a unique identifier, and all identifiers are part of an increasing sequence
of integers starting from one, so the event in the following pseudocode is an
integer. The same is true for machines which also have a unique index starting
from one.

1 machine_graph = DiGraph(length(sequence_chromosome))
2 prior_event = zeros(length(machines))
3 starting_event = zeros(length(machines))
4
5 for event in sequence_chromosome:
6 # Determine the machine from the event
7 machine = get_machine(event)
8
9 if prior_event[machine] == 0
10 starting_event[machine] = event
11 else
12 add_edge(machine_graph, prior_event[machine], event)
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13 end
14 prior_event[machine] = event + 1
15 end

The actual implementation is written in the Julia programming language; thus,
the pseudocode uses a syntax similar to Julia. The preceding pseudocode de-
scribes the creation of the machine graph – it first initializes the machine graph as
a directed graph and two arrays. The graph implementations use the JuliaGraph-
s/Graphs.jl package by Fairbanks et al. (2021). The prior_event array stores
the event previously scheduled on the machine, and the starting_event array
stores the first event scheduled on themachine. The decoding procedure initializes
both arrays with zeros as special values meaning no prior events are scheduled on
the machine.
The for loop then iterates through the sequence chromosome to create the

machine graph. After getting themachine on which the event should be scheduled
(get_machine()), it checks whether there are prior events on that machine.
If there are no prior events, it will set the current event as the starting event.
Otherwise, it will add an edge to the machine graph from the prior event to the
current event. When the for loop is complete, the result is the machine graph with
disconnected components for each machine in the production system.
The scheduling algorithm then uses the machine and product graphs to deter-

mine a starting time for each node in themachine graph. The implementation pro-
posed in the following checks many of the constraints introduced in Section 5.1.3
and ensures they are always fulfilled.
Before creating the schedule, the decoding procedure must introduce and ini-

tialize some variables as shown in the following pseudocode. Since the following
code iterates over machine and product graphs multiple times, it refers to the
nodes the code has seen before as visited nodes. The visited_from array keeps
track of cycles in the graphs – if a node is visited twice from the same node, a cycle
in the graphs makes the solution invalid. The scheduled_nodes and sched-
uled_nodes_bits arrays are necessary to avoid duplicate scheduling of nodes
and to check if a node can be used as a stored item by subsequent operations. The
set of used_nodes ensures that nodes cannot be used again once subsequent op-
erations have used them. In reality, this is equivalent to using a stored workpiece,
and scheduled_nodes and used_nodes can be interpreted as keeping track
of parts in storage. For example, if the scheduled_nodes array contains some
nodes, these can be interpreted as workpieces in storage. Tracking of stored parts
is an important enabler for rescheduling.
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1 # Keep track of nodes that have been visited before
2 visited_from = falses(length(events), length(events + 1))
3
4 # Keep track of nodes that have already been scheduled
5 scheduled_nodes = Int[]
6 scheduled_nodes_bits = falses(length(events))
7
8 # Keep track of nodes already used by subsequent nodes
9 used_nodes = Set{Int}()

Finally, there are two arrays to store the in-degree of every node: inde-
grees_product_graph stores the in-degrees of the product graph’s nodes, and
indegrees_machine_graph store the in-degrees for the machine graph. Since
the in-degrees are often needed in the scheduling loop, storing them in advance
speeds up the iteration.

1 # Store indegrees for product and machine graphs
2 indegrees_product_graph = indegree(product_graph)
3 indegrees_machine_graph = indegree(machine_graph)

Obtusely iterating over nodes of the machine and product graphs would be
inefficient since the schedule can only start from very few nodes. More specifically,
the search canonly start fromnodes in themachine graphwith an in-degree of zero,
meaning they have no incoming edges. These are the same nodes previously stored
in starting_event; thus, starting_event = starting_nodes. After this
preparation, the actual iteration over the two graphs begins.
The while loop uses an additional array starters which stores the preceding

node and the starting nodes to enable the cycle check using the visited_from
array. The starters array starts equal to starting_nodes and is refilled with
all out-neighbours of scheduled nodes from the product and machine graphs. The
search strategy means that some nodes can be visited multiple times (checked
with scheduled_nodes_bits). In this case, the loop directly continues to the
next iteration.

1 while length(starters) > 0:
2 node, from_node = popfirst(starters)
3
4 if visited_from[node, from_node]:
5 # The graph contains a cycle.
6 return "Solution is invalid."
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7 else:
8 visited_from[node, from_node] = true
9
10 # Skip already scheduled nodes
11 if scheduled_nodes_bits[node]:
12 continue
13 end
14 end

The subsequent checks within the loop determine whether the node can be
scheduled, for example, by checking whether stored workpieces and the machine
are available. A node can always be scheduled on a machine if the in-degree of
that node on the machine graph is zero. Otherwise, if the preceding node on
the machine graph is not also in scheduled_nodes, the loop continues because
the current node cannot be scheduled yet. If the preceding node is in sched-
uled_nodes the loop stores it as the required_machine_node.

1 if indegrees_machine_graph[node] == 0
2 required_machine_node = 0
3 else
4 required_machine_nodes = (
5 scheduled_nodes ∩ inneighbors(
6 machine_graph, node
7 )
8 )
9 if length(required_machine_nodes) > 0
10 required_machine_node = first(
11 required_machine_nodes
12 )
13 else
14 continue
15 end
16 end

The second check is the storage check, which ensures that previous operations
required by the production job are scheduled before subsequent operations. There
are no prior operations if the in-degree on the product graph is zero. Otherwise,
the algorithm uses the set difference between in-neighbours on the product graph
and the used_nodes and takes the intersection of the result with the sched-
uled_nodes. The algorithm stores the result in required_product_nodes.
Any node within this array would be a valid predecessor for scheduling the current
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node – the algorithm always chooses the first possible node.

1 if indegrees_product_graph[node] == 0
2 required_product_node = 0
3 else
4 required_product_nodes = (
5 scheduled_nodes ∩ (
6 inneighbors(product_graph, node) - usednodes
7 )
8 )
9 if length(required_product_nodes) > 0
10 required_product_node = first(
11 required_product_nodes
12 )
13 else
14 continue
15 end
16 end

After these two checks ensure a node canbe scheduled based on themachine and
product graphs, the algorithm stores the selected nodes in scheduled_nodes,
scheduled_nodes_bits andused_nodes. It also determines the next possible
starting nodes by looking at the out-neighbours on both graphs and adds them to
the starters.
Finally, the algorithm performs the actual scheduling and determines the start-

ing time of the processing event identified by the node. The current node’s earliest
possible starting time (earliest_start) usually equals the latest ending time
between the required_product_node and the required_machine_node se-
lected above; however, if the machine has available capacity according to equa-
tion (5.14), the earliest starting time has to consider the starting time of the re-
quired_machine_node. In the latter case, the earliest starting time must not
be between the starting and ending time of the last processing operation on the
machine. If it is, the starting time will be set to begin after completing the prior
operation.

1 if machine_capacity_available(required_machine_node):
2 machine_endtime = starting_time(required_machine_node)
3 else:
4 machine_endtime = ending_time(required_machine_node)
5 end
6
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7 # The earliest starting time depends on the latest
8 # ending time of the preceding events.
9 earliest_start = max(
10 machine_endtime, ending_time(required_product_node)
11 )
12
13 # If events are coinciding reuse values of the
14 # coinciding event.
15 if (
16 machine_capacity_available(required_machine_node)
17 && earliest_start != ending_time(required_product_node)
18 ):
19 setup = setup_time(required_machine_node)
20 pause_time = pause_time(required_machine_node)
21 starting_time = starting_time(required_machine_node)
22 else:
23 # Get the preceding pause from the variables
24 pause_time = time_chromosome(event)
25 # Calculate the starting time
26 starting_time = earliest_start + pausetime
27
28 # Check if setup is necessary
29 if equal_operation(required_machine_node):
30 setup = 0
31 else:
32 setup = setup_time(event)
33 end
34 end

The actual starting_time depends on the pause determined by the time
chromosome. The time chromosome’s genes determining pause times before
the operation can start must be allocated to a specific machine to avoid unstable
scheduling. Failing to assign the time chromosome’s genes to specific machines
impedes optimization convergence because the same pause time could be assigned
to different machines depending on the sequence chromosome, which can lead
to vastly different results. Therefore, the algorithm uses the mapping array ma-
chine_genes to ensure that each machine always uses the same genes from the
time chromosome in the same order.
As a last step, the scheduling algorithm checks whether setup of the machine is

necessary (𝐼setup𝑚,ℎ ). Setup time is needed if the previous event on the same machine
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belongs to a different job than the current event. When the algorithm reaches
the end of the while loop and has not visited all nodes on the machine graph, it
discards the entire solution as invalid. Otherwise the solution is valid, completely
decoded, and ready to evaluate the objective criteria – this evaluation is discussed
in more detail in Section 5.2.4 because it depends on the objectives selected during
the implementation procedure.

5.2.4. Production System Environment

Looking back at Figure 5.5 in Section 5.2 on page 93, the optimization algorithm
examined in Section 5.2.1 generates solutions to the optimization problem. A
solution consists of the encoded sequence and time chromosomes. Conversely,
the production system environment is the virtual representation of the actual
production system. It implements the environment class described in Grosch,
Ranzau, et al. (2022) and Section 5.2.
The solution encoding and decoding processes described in Sections 5.2.2

and 5.2.3 connect the environment and the optimization algorithm. The encod-
ing and decoding processes are both part of the environment class. According
to Figure 5.5, the environment also returns information about its state Ξ to indi-
cate completed production operations, and it determines the value of production
schedules using the objective criteria Λ.

As shown in Figure 5.5, the virtual environment can interact with the actual pro-
duction system using connectors implementing different connectivity frameworks.
Section 5.2.7 describes this interaction in more detail. Since some optimization
algorithms have separate training and execution phases, the interaction is only
allowed to occur during the execution phase. Hence, the virtual environment
must be separate from the actual production system during training. The sep-
aration between the virtual and real environments provided by the eta_utility
framework, as illustrated in Figure 5.6, allows for this differentiation between the
training and execution phase. When the interaction between both environments
is enabled, the production scheduling system will communicate with the actual
production system. When the interaction between the environments is disabled,
no communication will take place.
We have previously published results generated with some parts of the architec-

ture in Grosch et al. (2019) and Grosch et al. (2021); however, the implementations
used then are not completely integrated with the eta_utility framework. They also
do not include any ability to communicate with the production system, they do
not implement the graph-based encoding and decoding strategies proposed in
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Sections 5.2.2 and 5.2.3, and they use different energy models. Furthermore, both
of these papers use the Python programming language for their entire implemen-
tation, which leads to significant problems with the execution speed. Since the
algorithms introduced in the previous sections contain tight loops, the problem is
primarily due to how Python handles data types in loops. This thesis reimplements
the entire optimization algorithm and production system environment in the Julia
programming language. The reimplementation led to significant improvements
in the algorithm’s run time.

machines
1..*

products

1..*

jobs

1..*

storage

1..*

connection
1..*

Environment

from_json()
encode_solution()
decode_solution()
schedule()
calculate_objectives()
render_schedule()

Machine

Product

Job

StoredItem

LiveConnect

Figure 5.11: Simplified diagram of the production system environment and its associated
components (own figure).

Figure 5.11 illustrates that the functions discussed in Section 5.2.2 and
Section 5.2.3 are part of the Environment class as encode_solution(),
decode_solution(), and schedule(). There are also functions for
reading configuration files (from_json()), calculating objective values
(calculate_objectives()) and rendering the results of production schedul-
ing (render_schedule()). The calculate_objectives() function always
has to be implemented during the implementation procedure according the the
chosen individual objective criteria. It takes a production schedule and uses that in-
formation to calculate the objective criteria values. Additionally, the environment
contains the following modules:

− Generalized production machine models (refer to Section 5.2.5) simulate pro-
duction machines’ behaviour and energy consumption. They are contained
in Machine objects.
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− The product, order and storage configuration (refer to Section 5.2.8) defines the
products, their operations, and the jobs scheduled by production schedul-
ing. This information is contained in the Product, Job, and StoredItem
objects.

− The connectors (refer to Section 5.2.7) connect to and communicate with
the production machines and potentially external entities. In conjunction
with the other environment modules and the actual production system,
they form the cyber-physical production system. The LiveConnect class
implements connectivity utilizing the connectors.

The production system environment’s modules are configurable through the
production system configuration, which contains all information necessary to cre-
ate the virtual representation of the actual production system. In addition, the
configuration contains the information necessary to estimate the production ma-
chine model parameters and instantiate the connectors. The production system
configuration also forms the interface between the energy model parameter esti-
mation introduced in Section 5.2.6. The ability to configure different production
systems provided by the production system configuration is existential to support
the implementation procedure discussed in Section 4.2.
The production system configuration consists of multiple parts for production

machine models and connectors. The section describing each module also details
its configuration. Additionally, there is the product and production job configura-
tion (refer to Section 5.2.8). The product configuration contains general informa-
tion about the products manufactured in the factory. In contrast, the production
job configuration configures a specific optimization run with information about
customer orders for products and stored workpieces. Since this thesis creates a
prototype implementation, the configuration consists of Javascript Object Notation
(JSON) files exported by the energy model parameter estimation or created manu-
ally. Final implementations should have a graphical user interface to create and
change the configuration. Until then, the eta_xmodule configuration described
by Grosch, Ranzau, et al. (2022) is the primary configuration file and determines
the other relevant configuration files. The production system environment reads
and processes the configuration files to instantiate the relevant modules as objects.

5.2.5. Production Machine Models

The production machine models are a fundamental building block of the produc-
tion system environment because they enable simulating the energy consump-
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tion of production schedules. Separating creating schedules as described in Sec-
tion 5.2.3 from energy simulation improves the modularity of the energy-aware
production scheduling system architecture. The production machine models also
accumulate other information about production machines, including capacity and
capabilities.
The information stored by the production machine models comprises

production- and energy-related data. The models do not limit the information in
each category, but they define the following attributes as a minimum:

− Production-related data

• Human-readable machine name
• Unique identifier for the machine 𝑚
• Capacity 𝑞capa𝑚

• A flag indicating the machine can only process a single job at once
𝐼unique𝑚

− Energy-related data

• Energy consumption model

The production-related data fulfils the specification of the production scheduling
problem introduced in Section 5.1. Additional data may be added to the production
machine models to represent more complex systems. The production schedul-
ing system assigns jobs to production machines based on the unique machine
identifier 𝑚. The capacity 𝑞capa𝑚 limits how many workpieces the machine can
process at once – it differentiates batch production machines and determines the
respective batch size. When the capacity is greater than one, the unique job flag
𝐼unique𝑚 additionally constrains whether multiple different jobs can be processed si-
multaneously. Finally, the machine name is necessary to present human-readable
output.
Regarding the energy data, this thesis proposes that each production machine

model should have an energy model to calculate the energy for each final energy
form consumed by the production machine. The model should be formed such
that its parameters can be estimated automatically with data collected from the
operation of the productionmachine. Automatic parameter estimation is achieved
by formulating the energy models as regression models (see Sections 5.1.5 and
5.2.6).
The Unified Modelling Language diagram in Figure 5.12 shows the overall struc-

ture of the production machine models. The structure consists of the Machine
class containing the production-related information and a generalized energy
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1
data

1

Machine

name: string
id: int
capacity: int
unique_job: bool

energy_model()
regression_model()
export_parameters()
plot_data()
plot_results()

MachineTool

CleaningMachine

ModelData

ParameterData RegressionData

Figure 5.12: Simplified illustration of the production machine model components with
the Machine class, a ModelData class and the energymodel functions (own
figure).

model as described above. The Machine class has a ModelData object contain-
ing the parameters for the energy model. The ModelData object can also contain
the parameters for the regression model (RegressionData) before the parame-
ter estimation for the energy model is finished. Once the parameter estimation
is complete, the estimated parameters are stored in the ParameterData object.
The Machine object cannot be used for scheduling until it has a ParameterData
object.

Figure 5.12 also shows that the Machine can be a MachineTool or Cleaning-
Machine object. These are two exemplary types – other machine types are also
feasible (the use case in Section 6.1 explainswhy thesemachine types were selected
as an example). Various machine types may have additional production-related
attributes, but they primarily differ in the energy_model and the correspond-
ing ParameterData. Figure 5.12 does not illustrate the various subclasses of
ParameterData and RegressionData. In addition to the energy_model()
and regression_model() functions which return the corresponding models,
the Machine class also has some functions for exporting the model parame-
ters determined during regression (export_parameters()) and for plotting
(plot_data() and plot_results()).

The interface between the energy models within the Machine objects and the
production system environment is an integral part of the specification; it enables
combinations of multiple Machine objects to embody a complete production
system. Section 5.1.5 examines two exemplary energy models for production
machines. The interface between the production system environment and the
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energymodels is based on the productionmachine’s energy states and the process-
dependent parameter introduced in that section. Overall, the interface includes
the following parameters:

− Machine energy state (𝑎st, 𝑎op, 𝑎wk).
− Process-dependent parameter for the workpiece 𝑧procsrc .
− Forecast of temperatures in the factory 𝑇env

𝑡 over time.

The energy models should return the power for all relevant energy forms based
on these parameters. For example, the models introduced in Section 5.1.5 would
return thermal and electric power forecasts for the production schedule defined
via the aforementioned interface.

5.2.6. Energy Model Parameter Estimation

During the implementation procedure, the production machine model’s parame-
ters must be estimated to fit the models to the behaviour of the actual machines in
the production system. While the implementation team would typically configure
the production-related part of the production scheduling problemmanually, the
production machine energy models proposed in Section 5.1.5 need many parame-
ters that cannot easily be determined precisely.
The energy model parameter estimation therefore supports the fitting process

for the production machine energy models – it provides data-based parameter
identification using linear regression models. The regression models are imple-
mented using the JuMP package in Julia (Lubin et al., 2023) and solved with the
IBM ILOG CPLEX Optimization Studio (CPLEX) solver for quadratic optimization
problems (IBM Corporation, 2022). The regression models estimate the parame-
ters for the models from Section 5.1.5, and according to Rencher and Christensen
(2012, p. 354), they are of the form

min
𝑡max

∑
𝑡=𝑡0

∑
𝛼∈Γ

𝜖𝛼,𝑡
2 (5.38)

subject to 𝑦𝛼,𝑡 = 𝑋𝛼,𝜑,𝑡𝛽𝛼,𝜑 + 𝜖𝛼,𝑡 ∀𝛼 ∈ Γ, 𝜑 ∈ Φ, 𝑡. (5.39)

Equation (5.39) describes amultivariatemultiple regressionmodel, wheremulti-
variate means there is a set of dependent variables Γ, and multiple refers to the set
of independent variables Φ for each dependent variable (Rencher & Christensen,
2012). Each dependent variable is denoted by 𝑦𝛼, the independent variables are
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𝑋𝛼,𝜑, and the regression parameters are 𝛽𝛼,𝜑. The regression inspects multiple
measured sets of independent and dependent variables at different times 𝑡. It uses
the least squares estimator in equation (5.38) to minimize the regression error
𝜖𝛼,𝑡 for each measured data set and dependent variable. Equation (5.39) shows
the relation between the dependent and independent variables, the regression
parameters and the regression error for each measured data set over time 𝑡. The
equations from Section 5.1.5 must be rearranged, conforming to equation (5.39).
The rearrangement mainly consists of adding the regression error 𝜖𝛼.
To utilize the energy model parameter estimation, the implementation team

must collect the data sets required for the regression. For example, the machine
toolmodel presented in Section 5.1.5 has the following dependent and independent
variables.

− Dependent variables are:

• 𝑃el, the electric power consumed by the machine,
• 𝑇M, the machine’s average temperature,
• 𝑃th,env, the heat loss to the environment, and
• 𝑃th,cool, the heat captured by the machine cooling system.

− Independent variables are:

• 𝑎st, 𝑎op, 𝑎wk, the machine’s energy state,
• 𝑧procsrc , the process-dependent parameter,
• 𝑇cool, the coolant temperature, and
• 𝑇env, the temperature within the factory building.

In contrast, the cleaning machine model from Section 5.1.5 has the following
dependent and independent variables.

− The dependent variables are:

• 𝑃el, the electric power consumed by the machine,
• 𝑇M, the machine’s cleaning medium tank temperature,
• 𝑎heater, the heating element’s state, and
• 𝑃th,heater, the heating elements power.

− Independent variables are:

• 𝑎st, 𝑎op, 𝑎wk, the machine’s energy state,
• 𝑧procsrc , the process-dependent parameter,
• 𝐼 tanklower, 𝐼 tankupper, the 2-point controller’s temperature limits, and
• 𝑇env, the temperature within the factory building.
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The energy model parameter estimation needs data sets for all dependent and
independent variables. It imports these data sets, performs the regression and
exports the results as JSON files that are later imported by the production system
environment to instantiate the Machine objects scrutinized in Section 5.2.5. The
productionmachinemodels provide the RegressionData and ParameterData
objects to contain the data sets needed for regression and the resulting regres-
sion parameters needed while executing the energy-aware production scheduling
system.
The implementation teammust identify the required models with their inputs

and outputs before using the energy model parameter estimation. The complexity
of creating models for various machine types and energy forms demonstrates the
importance of creating a library of energy models that can be fitted using the en-
ergymodel parameter estimation. Such a library would alleviate the need to create
specific models for each implementation of energy-aware production scheduling
systems. In addition, the parameter estimation functionality, in combination
with flexible, standardized energy model integration and model export, facilitates
different real machines employing the same model structure, as implemented in
the Machine class.

5.2.7. Connectors

The production system environment must connect to and communicate with the
production machines and other entities. For example, to gather information about
the production system’s state and external factors like energy prices. Therefore, it
must have connectors to facilitate and standardize this connectivity. The connec-
tors also enable controlling the production machine’s operation and allow data
collection for the energy model parameter estimation.
Since there are multiple relevant connectivity frameworks and other standards

for connectivity (refer to Section 2.2.2), the connectors must support various con-
nectivity frameworks. ReST-based web services are particularly problematic to
support in a standardized way. Since each Application Programming Interface
(API) they expose can be different and the specification is completely up to the
API’s vendor, the connectors do not attempt to abstract the APIs completely –
instead they propose a generalized structure which is fully extensible to support
API-specific functionality. The connectors’ proposed generalized structure ensures
that common functions such as reading and writing values are equivalent between
different connectivity frameworks (Grosch, Ranzau, et al., 2022).
Figure 5.13 illustrates the structure of the connectors. The LiveConnect class
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is the central component and forms the interface to the production system environ-
ment. The LiveConnect class provides the from_json() function to read JSON
configuration files and initialize all connections (Grosch, Ranzau, et al., 2022). The
connectivity configuration can contain multiple system objects, each containing
multiple server objects (Grosch, Ranzau, et al., 2022). This structure accommo-
dates productionmachines that havemultiple Industrial Internet of Things devices
associated with themselves, as might be the case with a machine having a PLC and
some sensors. For example, some of the machines introduced in Section 6.1 have
a PLC communicating via OPC UA and energy meters communicating via Modbus
TCP.

0..1
connections

1..*LiveConnect

from_json()
read()
write()
activate()
deactivate()

Connection

read()
write()
subscribe()

NodeOpcUA

opc_id: String

NodeEntsoE

endpoint: String
bidding_zone: String

NodeModbus

slave: Integer
register: String
channel: Integer
bit_length: Integer
byteorder: String

Node

name: String
url: String
protocol: String
usr: String
pwd: String
interval: Integer
dtype: Function

Figure 5.13: Simplified structure of the connectors, made up of the LiveConnect object
and its interaction with the Connection and Node objects in the eta_utility
framework (own figure; Grosch, Ranzau, et al., 2022).
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1 {
2 "system": [
3 {
4 "name": "MachineTool1",
5 "servers": {
6 "glt": {
7 "url": "127.0.0.1:4840",
8 "protocol": "opcua",
9 "usr": "admin",
10 "pwd": "0"
11 }
12 },
13 "nodes": [{
14 "name": "power_elek",
15 "server": "glt",
16 "opc_id": "ns=6;s=.MachineTool.PowerElek",
17 "dtype": "float"
18 }],
19 }
20 ]
21 }

The configuration also specifies a list of nodes containing the information
needed to initialize a Node object, as illustrated in Figure 5.13 (Grosch, Ranzau,
et al., 2022). A Node object represents the endpoint of a connectivity framework
(Grosch, Ranzau, et al., 2022). The figure shows three exemplary types of Node
objects, NodeOpcUa which is an OPC UA node, NodeEntsoE which represents
an endpoint for the European Network of Transmission System Operators for
Electricity (ENTSO-E) transparency platform, and NodeModbus which identifies
a value using the Modbus TCP fieldbus protocol. The Node class specifies some
common attributes like the name and Unique Resource Locator (URL) of a node;
however, each connectivity framework also has unique attributes like the id for an
OPC UA node or multiple attributes to identify Modbus TCP data (Grosch, Ranzau,
et al., 2022).
Each Node type is specific to one connectivity framework, and the same is true

of implementations of the Connection interface. An implementation of the Con-
nection interface contains the implementation of the connectivity framework or
API. The Connection interface specifies basic functionality, such as the ability
to read data from and write data to specified nodes (Grosch, Ranzau, et al., 2022).

117



5. Scheduling System Design

Classes for any connectivity framework may also contain additional functionality
specific to that framework (Grosch, Ranzau, et al., 2022). As Figure 5.13 shows, the
basic interface of a Connection includes the followingmethods (Grosch, Ranzau,
et al., 2022):

− read(), to get a variable
− write(), to change a variable
− subscribe(), to continuously and asynchronously readmultiple variables

The configuration also maps configured external nodes to internal variables
(Grosch, Ranzau, et al., 2022). Using this mapping, the LiveConnect class fur-
ther abstracts the Connection interface. For example, its read() and write()
functions use the internal variable names to identify the corresponding Node and
Connection objects (Grosch, Ranzau, et al., 2022). Furthermore, in the mapping
each configured system object is referenced by its name attribute and contains a
list of nodes referenced by their respective names (Grosch, Ranzau, et al., 2022).
Overall, the structure provided by the connectors enables configuration during
the implementation procedure and provides an interface enabling connectivity
between the production system environment and actual machines in the factory.

5.2.8. Product, Storage and Order Configuration

Besides the structure of the actual production system, the production system
environment also needs information about its state and the products and orders to
be produced. As Figure 5.11 shows, three classes define the state of the workpiece
storage (StoredItem), the produced products (Product) and the production jobs
(Job). The configuration for each of these classes is defined in a JSON file and read
by the production system environment during its instantiation.
The products define how a production job should be produced by enumerating

the corresponding production operations. Each operation is associated with a
distinct machine which must have a production machine model (see Section 5.2.5).
The operation also contains information about the processing time 𝑑proc

𝑖,𝑜 on the
given machine and the setup time 𝑑setup

𝑖,𝑜 if the previous operation on the same
machine was different. Finally, the operation configuration defines the process-
dependent parameter 𝑧procsrc . In summary, the product configuration contains the
following information:

− Human-readable product name
− Unique identifier of the product
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− Ordered sequence of operations:

• Unique identifier of the associated machine executing the operation
𝑚

• Processing time 𝑑proc
𝑖,𝑜

• Setup time 𝑑setup
𝑖,𝑜

• Process-dependent energy consumption parameter 𝑧procsrc

Another configuration file provides the current state of the factory’s storage
when starting the optimization. Stored workpieces might be in an intermediate
state – they do not have to be completely finished. Accordingly, the storage config-
uration identifies the stored workpieces using their last completed operation. For
example, when a workpiece for the third operation of a job is in storage, the fourth
operation for that product is the next to be performed. The storage configuration
for a workpiece contains the following information:

− Unique identifier of the product
− Unique identifier of the last operation completed on the workpiece
− Number of workpieces in storage 𝑞stored𝑖,𝑜,𝑡

Finally, the production system environment should create a production schedule
to fulfil customer orders. Similar to the storedworkpieces, the configuration of cus-
tomer orders is based on the previously defined products. It contains information
about the number of ordered workpieces and provides a basis for future extension,
for example, by including order due dates. The production order configuration
contains the following information:

− Human-readable order identification
− Unique identifier of the product
− Number of workpieces to be produced 𝑞order𝑖

The product configuration allows the environment to correctly decode solu-
tions and check whether the created schedules fulfil all constraints defined in
Section 5.1.3. In combination with the production order configuration and the
storage configuration, the production system environment can create the solution
encoding to communicate with the optimization algorithm.

5.3. Summary

The proposed energy-aware production scheduling system design is a cyber-
physical production system with an energy-aware production scheduling system
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architecture that implements the energy-aware production scheduling model
discussed in Section 5.1. The production scheduling model has two parts: the
production-related scheduling part and the production machine energy models.
The production-related part of the schedulingmodel uses a discrete-event formula-
tion to facilitate a graph representation, while the energy models are discrete-time
regression models with a simulation-based approach.
The energy-aware production scheduling system architecture allows for the

configuration, parameterization, and solving of the production scheduling model.
It is based on the eta_utility framework and consists of the optimization algorithm
and the primarymodules of the production systemenvironment. Togetherwith the
actual production system and external entities it forms a cyber-physical production
system, as illustrated in Figure 5.5.

The optimization algorithm used is the NSGA-II, originally proposed by Deb et al.
(2002), with adapted mutation and crossover operators to support the solution
encoding used in this thesis. The solution encoding (see Section 5.2.2) uses a
graph representation of the production scheduling model to create a sequence
chromosome and a time chromosome. These chromosomes each represent part
of the solution and are combined to create complete production schedules using
the graph-based decoding algorithm described in Section 5.2.3.
Solving the model requires a fully configured production system environment

that includes multiple attributes describing the actual production system, such as
productionmachinemodels, the product configuration, storage configuration, and
production order configuration. These attributes are configured using JSON files.
The production machine models are a fundamental component of the production
system environment because, besides some production related-information, they
contain the energy models describing the electric and thermal power. The energy
model parameter estimation integrates with the production machine models and
helps to estimate their parameters using measured data.

The production system environment also maintains connectors that enable it to
connect to and communicate with the actual production system and other entities.
It uses these components to gather information about the production system’s
state, control the production machines, and obtain additional information such as
energy prices.
The energy-aware production scheduling system architecture is built to address

the technical requirements established in Section 4.1 and provides a standardized
approach to implementing the productionmachinemodels. It enables connectivity
and rescheduling and performs multi-objective optimization while allowing for
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individualized objective criteria independent of the production-related and energy-
relatedmodels. The architecture is also fully configurable, which is another crucial
requirement from Section 4.1.
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The second and third research questions (refer to Section 1.1) focus on evaluating
the implementation procedure and energy-aware production scheduling system
architecture. The second research question asks whether “a standardized and
partially automated implementation procedure for the adoption of energy-aware
production scheduling systems [can] be proposed such that an energy-aware pro-
duction scheduling system can be more easily applied to real industrial use cases.”
The third research question scrutinizes the system architecture: “How should the
architecture of an energy-aware production scheduling system be designed to
support the implementation procedure, and which additional tooling is needed to
reduce the implementation efforts?”

Sections 4 and 5 propose a concept for an implementation procedure and energy-
aware production scheduling system architecture which can answer the research
questions. Since the research questions ask about suitability for actual implemen-
tations, which the literature review in Section 3 also identified as a critical factor,
this section aims to follow the proposed implementation procedure (refer to Sec-
tion 4.2) for a research factory. Thus, this section constitutes the initial descriptive
study-II stage of the Design Research Methodology following the research design
established in Section 1.2.

Thefirst part of this section introduces the EnergyTechnologies andApplications
Research Factory (ETA Research Factory) (Abele et al., 2018) and its production
system, which this thesis uses to validate the proposed approach. The second part
follows the implementation procedure and evaluates how the procedure and the
energy-aware production scheduling system architecture work for a real produc-
tion system. Finally, the third part presents preliminary results from transferring
the proposed implementation procedure and energy-aware production scheduling
system architecture to an industrial company, and the fourth part evaluates the
requirements and success criteria from Section 4.1.

6.1. Use Case ETA Research Factory

The ETA Research Factory at the Technical University of Darmstadt is well suited
to evaluate the production scheduling system architecture because it provides
a full-scale production process with actual production machines. The factory
also has an established Industrial Internet of Things architecture with installed
sensors measuring the power consumption of production machines and other
equipment (Abele et al., 2018). The product produced in the ETA Research Factory

123



6. Deployment and Evaluation

is a control plate for a hydraulic pump needing milling, cleaning, hardening, and
grinding operations (Abele et al., 2018). The factory building is also equipped with
elaborate Technical Building Services, tightly integrating the factory building and
the production system (Abele et al., 2018).
Figure 6.1 illustrates the energy networks and Technical Building Services in

the ETA Research Factory (Abele et al., 2018). The production system shown in
the center consists of two machine tools, two cleaning machines and a tempering
furnace (Abele et al., 2018). These productionmachines are connected to Technical
Building Services for energy and media supply (Abele et al., 2018). For example,
the machine tools need cooling and compressed air, and the second cleaning
machine needs a heat supply (Abele et al., 2018). The bottom of the figure shows
the Technical Building Services present to provide energy and other media for
the production machines (Abele et al., 2018). For example, Combined Heat and
Power Unit (CHP) units generate heat and electricity from natural gas, and an air
compressor provides compressed air to the production machines (Abele et al.,
2018).

There aremultiple energy storage facilities to operate the systemmost efficiently
during every season of the year (Abele et al., 2018). Underground High-Volume
Fly Ash (HVFA) insulated storage tanks store water at three different temperature
levels (Abele et al., 2018). Each temperature level has a heating or cooling network
connected to the production machines and other systems (Abele et al., 2018).
As Figure 6.1 highlights, the energy supply systems of the ETA Research Factory

are complex and tightly interconnectedwith the productionmachines. The produc-
tion machines themselves are typical machines found in industrial applications.
The first machine tool is an EMAG VLC100 Y vertical Computerized Numerical
Control (CNC) lathe with driven tools for milling and drilling operations. The
secondmachine tool is an EMAGVLC100 GT CNC grinding machine. Both machine
tools have automatic workpiece pick-up systems allowing automated operation.
The two cleaning machines are operated manually and allow for cleaning batches
of up to 42 parts at once. Cleaningmachine 1 in Figure 6.1 is aMAFAC KEAmachine
with an electric heater, and cleaning machine 2 is a MAFAC JAVA heated by the hot
water network. The heat pump between the cleaning machine and machine tools
from Figure 6.1 has recently been removed. Lastly, an IVA tempering furnace is
used to nitride the workpieces (surface hardening). The furnace is connected to
the hot and warm water networks and acts as a heat supplier to both networks.
Overall, the production system of the ETA Research Factory is a relevant use

case and allows for a first evaluation of transferability due to its various production

124



6.1. Use Case ETA Research Factory

M
ac
hi
ne

to
ol
s

Cl
ea
ni
ng

m
ac
hi
ne

1
Cl
ea
ni
ng

m
ac
hi
ne

2
Te

m
pe

ri
ng

fu
rn

ac
e

H
ea
tp

um
p

Ab
so
rp
tio

n
ch

ill
er

H
V
FA

25
m

3
H
V
FA

13
m

3
H
V
FA

13
m

3
H
ig
h
Vo

lu
m
e
Fl
y
A
sh

(H
V
FA

)s
to
ra
ge

to
st
or
e
he

at
an

d
co

ld
be

tw
ee

n
12

–
42

°C

VS
I

st
or
ag
e

Va
cu

um
-s
up

er
-

in
su

la
ti
on

(V
SI
)

bu
ff
er

st
or
ag

e
w
ith

st
ra
tifi

er
an

d
go

od
in
su
la
tio

n
pr
op

er
tie

s
fo
r
lo
ng

-
te
rm

he
at

st
or
ag
e

fr
om

th
e
ho

tw
at
er

ne
tw

or
k

Ve
nt
ila

tio
n

sy
st
em

Ai
r

co
m
pr
es
or

Co
nd

en
si
ng

bo
ile

r
CH

P
1

CH
P
2

Fl
oo

r
he

at
in
g

St
at
ic

he
at
in
g

el
ec
tr
ic
ity

st
or
ag
e

H
ot

w
at
er

ne
tw

or
k

W
ar
m

w
at
er

ne
tw

or
k

Co
ld

w
at
er

ne
tw

or
k

Ca
pi
lla

ry
tu
be

m
es
h

in
th
e
fa
ca
de

el
em

en
ts

fo
r

he
at

tr
an

sf
er

to
th
e
en

vi
ro
nm

en
t

Figure 6.1: Energy systems in the ETA Research Factory (Abele et al., 2018).
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machines. It also poses modelling challenges due to the tight integration of Tech-
nical Building Services and production machines. In the future, the production
scheduling problem could incorporate additional complexity by increasing the
number of products produced in the factory

6.1.1. Production Process

As previously mentioned, the ETA Research Factory produces a control plate for a
hydraulic pump. The production process derives from a real industrial process in
one of BOSCH REXROTH’S factories and includes equivalent production operations.

RawMaterial
Storage

OP10

1 pcs

Milling and Turning

OP11

1 pcs

EMAGVLC100 Y

Setup

OP20

42 pcs

Mafac JAVA

Cleaning

OP30

360 pcs

IVA Furnace

Hardening

OP40

1 pcs

Grinding

OP41

1 pcs

EMAGVLC100 GT

Setup

OP50

42 pcs

Mafac KEA

Cleaning
Final Parts
Storage

Operation

Storage

Figure 6.2: Production process for the control plate in the ETA Research Factory (Abele
et al., 2019).

Figure 6.2 illustrates the entire production process. The raw material consists
of forgings close to the final geometry. The machine tools feature equipment for
automated handling of these forgings, and the process begins with turning and
milling operations on the front (OP 10) and backside (OP 11). These two operations
are responsible for the most material removal. The process then continues with
cleaning the parts using the MAFAC JAVA aqueous cleaning machine (OP 20) before
a heat treatment operation (OP 30) in the tempering furnace. The heat treatment
process is a nitriding surface hardening process. Two grinding operations (OP
40 and OP 41) create the required surface finishes on the workpiece’s front and
backside, respectively. The production process concludes with a final cleaning
operation (OP 50) before moving the finished workpieces to the final parts storage.
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Figure 6.2 also indicates the capacity of the machines for each production oper-
ation. The machine tools have a capacity of one piece for each operation at a time,
while the cleaning machines can handle 42 pieces per batch and the tempering
furnace processes up to 360 pieces in a single batch. The figure also shows the
need for setup time between operations OP 10 and OP 11 and between operations
OP 40 and 41. The capacity and distribution of operations on the machine tools
lead to the following limitations from a production scheduling point of view:

− The production machine capacity is not level over the entire production
process. Hence, the cleaning machines have a much higher capacity and
correspondingly lower utilization than the machine tools.

− The machine tools have to go through a setup process when switching
between processing the front and backside of the workpieces. This depen-
dency entails relatively large numbers of stored workpieces and decreases
the production process flexibility because it increases the interdependence
of production operations.

The setup times for changing operations on the machine tools depend on the
operator’s experience. They are approximately 15min for the EMAG VLC100 Y and
5min for the EMAG VLC100 GT for operators with intermediate experience. The
processing times for the two cleaning operations (OP 20 and OP 50) are known to
be 12min, and the processing time for heat treatment is 36 h (Abele et al., 2019).
The other processing times are unavailable before the case study begins and are
determined in Section 6.2.2.
A third limitation, closely related to the first limitation, is the high capacity and

very long duration of the hardening process in the furnace. In terms of energy
consumption, it usually only makes sense to operate the oven at full capacity;
however, producing enough parts to fill the furnace would take multiple days of
production by themachine tools. Therefore, the following implementation follows
the simplified production process illustrated in Figure 6.3. The tempering oven,
which is excluded in the simplified process, should only operate when its entire
capacity can be utilized – anything else would waste too much energy. Thus, the
oven does not benefit from additional scheduling optimization and the simplified
production process does not have relevant drawbacks for the purpose of evaluating
the energy-aware production scheduling system’s implementation.
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RawMaterial
Storage
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Milling and Turning

OP11
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EMAGVLC100 Y

Setup

OP20
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Mafac JAVA
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OP40
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Grinding

OP41
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EMAGVLC100 GT

Setup

OP50
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Mafac KEA

Cleaning
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Storage

Figure 6.3: Simplified production process for the control plate in the ETA Research Fac-
tory.

6.2. Energy-Aware Production Scheduling System Implementation

The following sections build on the basic knowledge about the production system
detailed in Section 6.1 and utilize the implementation procedure proposed in
Section 4.2 to implement the energy-aware production scheduling system for the
ETA Research Factory. The implementation begins with the discovery and planning
phase, continues with the development and configuration phase, and finishes with
the testing and deployment phase. Refer to Figure 4.1 on page 68 for an overview of
the phases.
The discovery and planning phase consists of a detailed evaluation of the scope

and goals to identify requirements and objective criteria and to create configura-
tion concepts and software implementation plans. The configuration concepts
and software implementation plans are used during the development and con-
figuration phase to implement missing features and to create the configuration
files introduced in Section 5.2. Finally, during the testing and deployment phase,
the implemented system is tested with sets of orders and stored parts to create
production schedules. The last phase also tests the communication between the
scheduling system and the production machines.
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6.2.1. Discovery and Planning Phase

Section 4.2.1 introduces the steps of the discovery and planning phase – refer to
Figure 4.2 on page 70 for an overview of the steps. The phase begins with assem-
bling and qualifying an implementation team and establishing the project budget.
Together with other stakeholders in the implementation process, the implementa-
tion team discusses the project scope, goals and requirements. After establishing
this basic framework, the team should evaluate the factory’s energy supply and
determine suitable objective criteria for the energy-aware optimization. Then the
team identifies relevant production machines and jobs and checks whether the
existing energy-aware production scheduling system architecture can represent
them and which adaptations to the software and processes might be necessary.
The discovery and planning phase concludes with creating a software implementa-
tion plan and configuration concepts. The following describes the results of each
discovery and planning phase step for the ETA Research Factory use case.

Assemble and Qualify Implementation Team. Since this is a research project
in a research environment, the implementation teammainly consists of the author
of this thesis. Some student assistants and other stakeholders are involved in the
project at various points, for example, when performing experiments. It is evident
that a research use case is unsuitable for identifying shortcomings regarding
organizational aspects of the proposed implementation procedure; however, this
aspect still needs to be considered for industrial implementations.

Establish Project Budget. This step also does not directly apply to a research en-
vironment and cannot be validated well with the use case. In the research context,
the budget could be considered limited by the time available to the implementation
team. The project budget is somewhat limited since one person primarily performs
the implementation with support from student assistants with limited available
working hours. The limited budget demands some simplifications regarding the
configuration, parameter estimation and testing.

Set Project Scope, Goals and Requirements. Section 6.1 describes the produc-
tion system, which is this project’s scope. As a simplification, this implementation
will only consider the production machines and neglect a detailed analysis of the
Technical Building Services. Nevertheless, the productionmachine energymodels
must specify the machine’s thermal behaviour to identify their total electric power
consumption. This case study’s conversion between thermal and electric power
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uses a constant efficiency factor for simplicity. In the future, the scheduling system
could integrate more detailed models of the Technical Building Services.
Implementing the energy-aware production scheduling system in the ETA Re-

search Factory aims to have equivalent performance regarding the makespan as
an SPT dispatching rule. At the same time, the optimization should reduce energy
consumption or energy cost. In addition to these goals, there are the following
requirements:

− The energy-aware production scheduling system should schedule a full day
in advance in a reasonable time frame of approximately 15min.

− As explained in Section 6.1, there is one product and four machines; how-
ever, the energy-aware production scheduling system should be extensible
to multiple products.

− The system should consider the overall electricity cost of the proposed
schedules.

Evaluate Energy Supply. The production machines in the ETA Research Factory
mainly operate using electric energy. The MAFAC JAVA additionally utilizes the hot
water network to heat the cleaning medium tank, and the EMAG VLC100 GT uses
cold water from the cold water network for machine cooling. The two machine
tools have a combined Direct Current (DC) electricity supply for their motors. The
warm water network cools the DC converters. All machines also use compressed
air supplied by an electric central air compressor connected to the warm water
network for waste heat recovery.
A central compression chiller provides cold water for the cold water network,

and central CHP units heat the water in the hot water network. Thus, the thermal
energy supply is only partially electric; however, since this thesis focuses on
evaluating the energy-aware production scheduling, not scheduling for Technical
Building Services, this thesis assumes the thermal energy supply is fully electric.
This thesis also assumes that the EMAG VLC100 Y is connected to the cold water
network while it really has a separate compression chiller.
The ETA Research Factory building additionally provides options for cooling or

heating the factory hall using a ventilation system and capillary tube mats in the
walls and ceiling. Thewaste heat from the productionmachines directly influences
the energy consumption of this heating, ventilation and air conditioning system;
however, this thesis neglects this aspect to reduce the model’s complexity.
Since the following considers all systems as using electric energy, the question

of electric energy supply remains. The demand for heat affects the electric energy
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supply, which in turn affects the CHP units’ operation and electric energy output.
This thesis also neglects these effects and assumes that the electric power grid
provides all the needed electric energy. This thesis also assumes that the elec-
tric utility company supplying the factory’s electricity offers time-of-use pricing.
Time-of-use pricing should indirectly decrease the carbon emissions of electricity
generation because there is a correlation between electricity prices and carbon
emissions (see: Grosch et al., 2021). This thesis does not directly consider the
carbon emissions from using electricity.

Determine Objective Criteria. Since the goals for this implementation include
optimizing a full day in advance, makespan is well-suited as an optimization crite-
rion. Makespan is an evaluation of the total duration of production for the entire
production schedule (refer to Section 2.1.3); thus, it ensures that production sched-
ules do not exceed the available time, and it allows users to experiment with the
number of products the factory produces during the available time. Additionally,
makespan is easy to calculate using available data. Using it as an objective could
provide similar results to optimization with the SPT dispatching rule defined as
the reference case above. Equation (6.1) calculates the makespan MKSP.

MKSP = max
𝑚∈𝑀,ℎ∈𝑒𝑚

𝑐𝑚,ℎ (6.1)

Since the energy supply systems in the ETA Research Factory are very complex
andwill not be fullymodelled, using factors like the production’s carbon emissions
does not seem sensible. Instead, since one of the requirements is considering
the energy cost of production schedules, using electricity cost as the secondary
objective is reasonable. Cost-based objective criteria also have the advantage that
cost reductions can strongly incentivize companies to implement new systems.
Since this case only considers electric energy, electricity cost is equivalent to the
total energy-related cost given by equation (6.2).

ERC =
𝑡max

∑
𝑡0

∑
𝑚∈𝑀

𝑃el
𝑚,𝑡 (6.2)

Identify Relevant ProductionMachines and Production Jobs. Section 6.1.1 de-
scribes the production process performed in the ETA Research Factory. Since this
process is straightforward enough, including the entire process and all machines
makes sense. Section 6.1.1 also explains that the production scheduling system
excludes the tempering furnace due to its high capacity and very long process
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times. The furnace should operate at full capacity whenever possible, thus not
requiring more complex optimization.

Check whether the scheduling system can represent the machines and jobs.
The proposed energy-aware production scheduling system includes models of
machine tools with separate cooling supply. Using the regression parameters,
these models should appropriately represent the machine tools present in the ETA
Research Factory. The cleaningmachinemodel separates the thermal power of the
cleaning medium tank heater and the electric power for the machine’s operation.
This model holds for the MAFAC JAVA, which has a heat exchanger connected to
the hot water network of the factory. On the other hand, the assumptions made in
the cleaning machine model only partially hold for the MAFAC KEA because it uses
an electric heating element. Thus, the cleaning machine model must be adapted
to correctly represent the electric energy consumption of this type of machine.
The proposed energy-aware production scheduling system architecture can

represent the production process of the ETA Research Factory fully; however,
preliminary evaluations showed that the solution encoding and decoding strategies
proposed in Sections 5.2.2 and 5.2.3 might lead to problems if a single product
has multiple operations on the same machine. The problems likely arise because
this requires exactly the correct number of events for the first operation to occur
before the events for the second operation on the same machine. Products where
separate machines perform each operation do not have this limitation. In this
case suboptimal ordering of operations still leads to a long makespan but does not
make the entire solution infeasible. The hybrid initialization strategy introduced in
Section 5.2.1 helps improve this problem by providing the algorithm with a better
starting point and avoiding generating too many invalid solutions at the start of
the optimization.

Create Software Implementation Plan or Begin Change Process. Since the ETA
Research Factory informed the energy-aware production scheduling system’s
creation, no significant changes are necessary. The most important adaptation
is the inclusion of electric heaters for the cleaning medium in the MAFAC KEA.
Looking back at equations (5.20) on page 88 and (5.33) on page 92, the thermal
and electric power of the cleaning machine are already known. Since the electric
heating element can be assumed to have a conversion efficiency from electricity
to heat of approximately one (see: Fuhrländer-Völker et al., 2023), the thermal
power can be added to the electric power resulting in equation (6.3) for the total
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electric power 𝑃el,CM
𝑡 of an electric cleaning machine.

𝑃el,CM
𝑡 = 𝑃el

𝑡 + 𝑃th,heater
𝑡 (6.3)

Since no new parameters exist in this equation, the extended cleaning machine
model does not require additional configuration options on top of those already
introduced in Section 5.2.5. There only needs to be a differentiation between
electrically heated cleaning machines like the MAFAC KEA and cleaning machines
with a heat exchanger like the MAFAC JAVA.

Create Configuration Concept. The final outcome of this phase is the config-
uration concept, and a significant part of the configuration concept is the data-
gathering plan. The data-gathering plan according to DIN ISO 50015 (Deutsches
Institut für Normung e. V., 2018) prescribes a very detailed description of every
data element to be gathered. Some of this information is irrelevant to this case
study due to its research nature, for example, the access to measurement points,
the responsibility for each data element, and operating constraints; thus, the
following data-gathering plans do not include this information.

For a more succinct description of the data-gathering plans, the following is true
for every data element if not specifically noted:

− Where possible, data will be collected every second.
− Outliers are eliminated from the data set.
− The measurements are instantaneous spot measurements.

The following provides examples of data-gathering plans for the different types
of machines. Additionally, there is a data-gathering plan for general information.
Manual data-gathering only occurs once, and the other variables are measured for
a few days of production to gather enough data for accurate model parameter esti-
mation. Data-gathering plans for the machines not shown here are in Appendix A.
Refer to Section 6.1 for an overview of machines and sensors in the factory.
Table 6.1 is the data-gathering plan for generally applicable values, including

Technical Building Services, temperatures and products. Since this is a general
test of the production scheduling system and implementation procedure and the
goal is not to accurately represent the factory’s energy consumption, the heating
and cooling efficiency are roughly estimated. The information about products is
necessary to create the product configuration for the energy-aware production
scheduling – it contains the product name in addition to information about each of
the production operations needed to manufacture the product. The information
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Table 6.1: Data-gathering plan for general information, products and operations.

Variable Name Data Source Type of Sensor Unit

Temperature in factory building automation PLC °C
Heating efficiency estimation %
Cooling efficiency estimation %

Products manual -
Product name manual documentation -
Operation IDs manual documentation -
Processing times manual stopwatch s
Setup times manual stopwatch s

about products is collected manually. The processing times are measured for
approximately five workpieces or batches.
Table 6.2 details the data-gathering process for the EMAG VLC100 Y machine

tool. Since the machine tools are connected to a unified DC supply, the electric
power is calculated as the sum of Alternating Current power, measured within
the machine itself and DC power measured at the DC supply. The cooling power
for the water-glycol mixture in the machine’s cooling system can be calculated
from the temperature difference between the feed and return and the volume flow.
The machine’s PLC defines the energy states depending on the machine’s state.
Finally, since the material removal rate for each operation is constant, manually
measuring the weight before and after processing the workpiece and dividing it by
the processing time is sufficient to calculate it. The material removal rate should
be measured for multiple workpieces to avoid measuring errors.
Table 6.3 shows the data-gathering plan for the MAFAC JAVA cleaning machine.

The machine has a built-in sensor measuring its electric power consumption.
The MAFAC JAVA has two separate cleaning medium tanks, which it uses inter-
changeably throughout the cleaning process. For simplicity, the model averages
the heating power and temperatures in the two cleaning medium tanks. The
heat exchanger for the tank heating system has built-in sensors evaluating its
performance: temperature probes in the feed and return lines and volume flow
sensors.
This machine does not directly provide the energy states; a workaround is to

use the machine’s state indicator lights. All lights are off when the machine is
operational, the green light lights up when the machine is working, and the yellow
light lights up when the machine is in the standby state. Lastly, the tank heater
operation can be calculated by checking whether there is a relevant amount of
heating power. This case study uses 1000 watts as a minimal value.
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Table 6.2: Data-gathering plan for EMAG VLC100 Ymachine tool.

Variable Name Data Source Type of Sensor Unit

Electric power calculated (sum) W
Machine (Alternating

Current)
Janitza UMG 801 current transformer W

Drives (DC) QI-POWER-485-300 current transformer W

Cooling power calculated W

Feed temperature cooler PLC HYDAC ETS
4146-A-050-000 °C

Return temperature cooler PLC HYDAC ETS
4146-A-050-000 °C

Volume flow cooler PLC HYDAC EVS
3116-A-0300-000 L/min

Energy states
standby machine PLC software binary
operational machine PLC software binary
working machine PLC software binary

Material removal rate calculated g/s
Weight before manual KERN 824 g
Weight after manual KERN 824 g
Processing time manual stopwatch s

Product machine PLC software -
Machine Temperature machine PLC internal sensor °C
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Table 6.3: Data-gathering plan for MAFAC JAVA cleaning machine.

Variable Name Data Source Type of Sensor Unit

Electric power machine Janitza UMG 96 RM current transformer W

Heating power calculated (mean) W
Feed temp. (tank 1) machine PLC PT 100 °C
Return temp. (tank 1) machine PLC PT 100 °C
Volume flow (tank 1) machine PLC internal (unknown) L/min
Feed temp. (tank 2) machine PLC PT 100 °C
Return temp. (tank 2) machine PLC PT 100 °C
Volume flow (tank 2) machine PLC internal (unknown) L/min

Medium tank temp. calculated (mean) °C
Tank 1 temperature machine PLC PT 100 °C
Tank 2 temperature machine PLC PT 100 °C

(Energy) states
standby (yellow light) machine PLC software binary
operational (no light) machine PLC software binary
working (green light) machine PLC software binary

heater operation calculated heating power
> 1000W binary

Batch size manual counted pieces
Capacity manual documentation pieces
lower temperature limit manual documentation °C
upper temperature limit manual documentation °C
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The data elements described by the data-gathering plans that are not marked
with manual can be collected over the network via OPC UA or Modbus TCP. The
data collection uses the connectors introduced in Section 5.2.7 and stores collected
data in comma-separated value files.

Results. This first phase of the implementation procedure set the scope and
goals for implementing the energy-aware production scheduling system in the ETA
Research Factory. The detailed analysis of the production system shows that some
simplifying assumptions are necessary to keep the modelling effort reasonable.
These assumptions include a fully electric energy supply, including the hot and
cold water networks. The simplifications also extend to more detailed aspects, like
combining both tanks of the MAFAC JAVA cleaning machine.
The optimization will use the makespan MKSP and energy-related cost as objec-

tive functions and optimize the entire production system except for the tempering
furnace. The configuration concept includes the relevant variables for configur-
ing the production system environment with its machines and products, and the
software implementation plan delineates the implementation of an additional
cleaning machine model.

6.2.2. Development and Configuration Phase

The development and configuration phase utilizes the discovery and planning
phase’s results to implement changes to the energy-aware production scheduling
system and adapt it to the actual production system. Section 4.2.2 introduces the
steps of the development and configuration phase – refer to Figure 4.3 on page 74
for an overview of the steps. The development and configuration phase begins by
executing the previous phase’s software implementation plans and implementing
the selected objective criteria. Afterwards, the production machine energy model
parameters must be estimated, meaning that data must be collected according to
the data-gathering plans, which are part of the configuration concepts. Besides the
automatic parameter estimation, some data is also needed to manually configure
the production machine models and production processes. The development
and configuration phase also includes the configuration of the connectors, and it
concludes with exporting the configured data such that subsequent steps can use
it. The following discusses the results of the implementation procedure for the
ETA Research Factory use case in more detail.
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Implement Objective Criteria. Due to the energy-aware production scheduling
system’s modularity, implementing the makespan calculation is quite simple –
each item in the schedule has an associated ending time (see also Section 5.2.3),
and the latest ending time is equal to the makespan MKSP.
In contrast, the energy-related cost results from the machine’s electric energy

consumption and the energy prices. Thus, besides the production machine’s en-
ergy models, the production scheduling system needs information about energy
prices. The eta_utility framework provides a connector to the ENTSO-E trans-
parency platform, which could read this information and transfer it to the energy-
aware production scheduling system; however, to enable scheduling for future
production days, the energy-aware production scheduling systemwould need price
forecasts which are not readily available. This case study instead uses intraday
energy prices for a fixed day, 29 November 2021.

Execute Software Implementation Plans. The software implementation plan
only asks for a relatively minor adjustment. The equations for calculating the
electric power of an electrically heated cleaning machine are included in a new
class ElectricCleaningMachine which uses similar equations as the cleaning
machine with the addition discussed in the previous phase (refer to Section 6.2.1).

Collect ProductionMachine Data. Throughout this thesis, multiple days of ex-
periments were performed before coming to a point where collected data was
usable. A major problem during these trials was the research production system’s
lack of stability. Since the system only operates for experiments and previously
often operated without actually producing new workpieces, multiple days of pro-
duction were spent identifying and solving problems that arose. The experiments
began on 25 July 2022; however, since this was the first time in a few years that
the machines had to produce actual workpieces for an extended amount of time,
multiple malfunctions were identified. The MAFAC JAVA had problems with its
heat supply, the MAFAC KEA had a malfunctioning motor, the EMAG VLC100 Y
had incorrectly measured tools, and the EMAG VLC100 GT had a software problem
intermittently blocking the process operation.
After the manufacturer’s technicians fixed most of the problems identified in

July, new experiments were performed in October 2022; however, problems with
data collection via OPC UA and additional reliability problems with the machines
prevented successful data-gathering. Additionally, the supply of forged raw parts
ran out, and the supplier could not deliver more in a reasonable time frame.
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Finally, the experiments were successfully conducted in December 2022, when
the machines operated reliably. However, due to the previous problems with
the production system the total amount of collected and usable data remains
relatively small, containing only three production shifts of approximately eight
hours each. Due to the lack of forged raw parts, the experiments used turned raw
parts designed as a replacement with a different material (42CrMo4 instead of
8CrMo16). Measurements during the ETA-Fabrik project showed that the EMAG
VLC100 Y has a higher power consumption when processing 42CrMo4 instead
of 8CrMo16 (Abele et al., 2019). This difference means that the results produced
during the experiments in December cannot be directly compared to the results
of previous experiments.
The following two figures show data collected from the experiments on 13 De-

cember 2022. More experiments took place on 14 December and 21 December
2022. Refer to Appendix B for data from all machines and days not displayed here.
Figure 6.4 displays data from the EMAG VLC100 GTmachine tool, and Figure 6.5
displays data from the MAFAC KEA cleaning machine.
Figure 6.4 plots the electrically heated cleaning machine’s electric power con-

sumption, energy states, number of workpieces and various temperatures from
top to bottom. The plots begin with a short setup phase until about 9:30. After the
initial startup phase, the machine enters its warm-up phase, which it indicates as
an operational state. Production begins after the warm-up phase and runs until
approximately 10:30, when it is interrupted by a fault. Between 11:00 and 11:30,
production resumes before it stops for a break due to a lack of raw parts. This lack
is due to the slower production rate of the EMAG VLC100 Ymachine tool, which
performs prior operations. The plot confirms that the data-gathering process for
the machine performs correctly.
Figure 6.5 plots the electrically heated cleaning machine’s electric power con-

sumption, energy states, number of workpieces and various temperatures from
top to bottom. This plot begins at the same time as the previous plot; however,
it includes part of the pre-heating phase before the machine reaches its operat-
ing temperature of approximately 60 °C. The figure also illustrates that the tank
heating system is off while the machine is in the standby state between 11:00 and
14:00. Before the next cleaning operation can begin after this, some pre-heating is
required.

Select Machine Models and Estimate Parameters. In the case of the ETA Re-
search Factory, selecting the machine models and estimating the parameters is
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Figure 6.4: Gathered data for the EMAG VLC100 GTmachine tool during the experiments
on 13 December 2022.
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Figure 6.5: Gathered data for the MAFAC KEA cleaning machine during the experiments
on 13 December 2022.
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Table 6.4: Configuration parameters for the production machines in the ETA Research
Factory.

Parameter EMAG VLC100 Y EMAG VLC100
GT

MAFAC JAVA MAFAC KEA

Identifier 971 972 981 985
Capacity 1 piece 1 piece 42 pieces 42 pieces
Unique Job true true false false
Upper temp.
limit

- - 62 °C 62 °C

Lower temp.
limit

- - 58 °C 58 °C

relatively simple. The existing machine tool model presented in Section 5.2.5
captures the machine tools’ energy consumption well. The cleaning machine
model presented in Section 5.2.5 reflects the behaviour of the MAFAC JAVA, and
the cleaning machine model adapted for electrically heated cleaning machines
presented in Section 6.2.1 represents the MAFAC KEA.
The parameter estimation is performed as described in Section 6.2.2. The pa-

rameter estimation uses the CPLEX solver (IBM Corporation, 2022) to estimate the
regression parameters of the production machine energy models. The parameter
estimation uses data from 13 and 14 December 2022. The testing and deployment
phase (refer to Section 6.2.3) shows the parameter estimation results in more
detail.

Configure Production Machines. As the data-gathering plans in Section 6.2.1
state, some data about the production machines must be collected manually. Ta-
ble 6.4 displays the complete configuration for all involved production machines.
These parameters are in addition to the parameters estimated by the model pa-
rameter estimation process.

Collect Production Process Data. The collection of production process data for
all machines also occurred during the experiment days in December 2022. Five
workpieces were identified and measured throughout their production process to
ensure the reliability of the collected data. The relevant process data identified
during the discovery and planning phase includes the weights before and after
the processing steps on the machine tools as well as the processing time on the
machine tools.
Table 6.5 lists the weights of each workpiece after the completion of the respec-
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Table 6.5:Weights of workpieces after each operation as measured during production on
14 December 2022.

Workpiece Raw OP 10 OP 11 OP 40 OP 41

1 671.24 g 378.11 g 266.74 g 257.63 g 256.98 g
2 678.60 g 381.79 g 266.91 g 257.79 g 256.85 g
3 677.43 g 377.09 g 266.94 g 257.78 g 257.01 g
4 684.70 g 386.15 g 266.59 g 257.57 g 256.72 g
5 671.85 g 383.34 g 266.38 g 257.55 g 256.84 g

Average 676.76 g 381.30 g 266.71 g 257.66 g 256.88 g

Table 6.6: Processing times of workpieces as measured during production on 14 Decem-
ber 2022.

Operation: OP 10 OP 11 OP 40 OP 41

Processing time: 326 s 113 s 79 s 174 s

tive operation. Notably, the weights after operation OP 41 are very similar, while
the weights of the raw parts show much more significant deviations. These differ-
ences are most likely due to the increasingly tight tolerances. Table 6.6 details the
processing times for each operation. Since the processing times were measured
using a stopwatch and the deviations between different measurements were less
than one second, the table only shows one value rounded to whole seconds.

Configure Products and Processes. The product configuration uses the previ-
ously collected data. The process-dependent parameter 𝑧procsrc for the cleaning
machines is the number of workpieces, and for the machine tools it is the material
removal rate in g/s. The material removal rate can be calculated using the data
from Tables 6.5 and 6.6.

Configure Internal andExternal Communication. As previously discussed, this
case study does not consider external communication. Additionally, the case study
does not directly validate internal communication apart from what is necessary
to gather data for model parameter estimation. Grosch, Fuhrländer-Völker, et al.
(2022) and Fuhrländer-Völker et al. (2023) perform preliminary studies of commu-
nication and some aspects of rescheduling. Section 6.2.3 discusses some additional
preliminary experiments; however, fully configuring and controlling the entire
ETA Research Factory production system exceeds the scope of this work.
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Export Configuration. After completing the configuration, there are two JSON
files representing the production system of the ETA Research Factory. After in-
serting manually collected information, the energy model parameter estimation
automatically generates the first file containing the machine configuration. The
second file contains the product and process configuration and describes the op-
erations to produce the hydraulic control plate as described in Section 6.1.1. This
second file was created manually. A third JSON configuration file contains the
configuration for internal and external communication using the connectors.

Results. The development and configuration phase required implementing the
objective criteria and executing the software implementation plans created in
the previous phase. The software implementation plans included the creation of
an adapted cleaning machine model. The most important part of this phase was
performing the experiments. The experiments revealed some limitations of the
research production system, which is less stable than an actual production system;
however, it also validated many of the processes proposed by the implementation
procedure.
The configuration files created during this phase include the information nec-

essary to operate the production scheduling system. This includes information
representing the production system structure, the estimated parameters for the
production machine energy models and data for internal and external communi-
cation.

6.2.3. Testing and Deployment Phase

After preparing the energy-aware production scheduling system during the devel-
opment and configuration phase, the testing and deployment phase ensures that
the system is suitable for scheduling the actual production system. Section 4.2.3
introduces the steps of the testing and deployment phase – refer to Figure 4.4 on
page 77 for an overview of the steps. This phase performs various tests, such as of
the parametrized model’s quality and communications. Additionally, the testing
and deployment phase includes user training and tests with real orders and users
before deploying the system. Since this thesis performs an initial evaluation of the
proposed concepts according to the Design Research Methodology, as discussed
in Section 1.2, the following provides preliminary test results – future research
should perform additional evaluations of these concepts.
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Table 6.7: Collected machine data used for model parameter estimation.
BOD: beginning of day, EOD: end of day.

Machine 13 December 14 December

EMAG VLC100 Y BOD to EOD BOD to EOD
EMAG VLC100 GT 13:20 to EOD 10:00 to 11:30 and 13:10 to EOD
MAFAC JAVA 10:10 to EOD 10:00 to EOD
MAFAC KEA 10:00 to EOD 9:50 to EOD

Check ParametrizedModel’s Quality. The energy model parameter estimation
uses the productionmachine data collected during the development and configura-
tion phase to find the best parameters for the production machine energy models.
This thesis uses data collected on 13 and 14 December 2022 to estimate the model
parameters and then uses data collected on 21 December to verify their quality.
Table 6.7 contains the exact times used for parameter estimation. These fixed time
frames exclude some invalid data, which would otherwise significantly decrease
the estimated parameter’s quality. Data validity problems occurred most often at
the beginning of the day, while data from the end of each day was usually valid.
In addition to the periods with invalid data, another problem for the model

parameter estimation is the measuring uncertainty in the temperature measure-
ments. The uncertainty introduces noise in the signal and creates problems with
the temperature gradient calculation. Since the gradient is calculated using ad-
jacent temperature measurements, even slightly inaccurate measurements can
cause significant inaccuracy in the temperature gradient. To reduce noise in the
temperature measurements, the model parameter estimation uses moving aver-
ages over 20 s intervals. The moving average filter is well suited for this purpose
because it is good at reducing noise in the time domain while preserving good step
response (Smith, 1999, p. 277)
Figures 6.6 and 6.7 illustrate the testing data collected on 21 December 2022

and the corresponding predictions from the parametrized production machine
energy models. Data for the machines not shown here is available in Appendix C.
Figure 6.6 presents the test data for the EMAG VLC100 GT. Since the machine
depends on raw parts from the EMAG VLC100 Y, there were not enough parts
available for production in the morning; thus, the machine only operated in the
afternoon. Before noon the machine remained in the operational or standby state.
As the figure illustrates, the thermal power in the operational state is similar to
that in the working state, while the electric power is significantly less.
Figure 6.6 illustrates that the energy models have some inaccuracies. For ex-
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Figure 6.6: Testing data for the EMAGVLC100 GTmachine tool during the experiments on
21 December 2022.
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Figure 6.7: Testing data for theMAFAC JAVA cleaningmachine during the experiments on
21 December 2022.
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Table 6.8: Estimated parameters for each production machine. - indicates parameters
not applicable to the respective model.

Parameter EMAG VLC100 Y EMAG VLC100 GT MAFAC JAVA MAFAC KEA

𝛽el
st 876.2 999.2 0.0 176.3

𝛽el
op 0.0 82.7 368.1 776.2

𝛽el
wk 2713.8 0.0 5765.4 3795.6

𝛽el
proc 0.0 1977.6 - -

𝛽c
M 9475.8 7393.7 41 691.6 43 293.3

𝛽th
cool 135.5 102.4 - -

𝛽th
wp - - 0.0 0.4

𝛽th
spray - - 1.0 7.8

𝛽th
heater - - 2349.9 3704.9

𝛽th
env 233.0 157.2 24.8 4.5

ample, the machine energy model does not accurately represent the machine’s
electric and thermal standby power consumption. While this might be due to inac-
curacies in the mathematical models presented in Section 5.1.5, it could also be
attributed to insufficient training data. Table 6.8 presents the estimated regression
parameters for each production machine model. Notably, some parameters, for
example, the 𝛽el

op parameter of both machine tools, are 0 or very close to 0. This
could indicate linear dependencies between parameters resulting from insuffi-
cient training data for the respective states. Such dependencies are even more
apparent for the machine tools’ 𝛽el

wk and 𝛽el
proc parameters, one of which is 0 for

both machines because the variation of material removal rates for different parts
on the machine tools is low.
Figure 6.7 illustrates data from the MAFAC JAVA cleaning machine. Between

approximately 9 and 10 am, themachine was pre-heating its cleaningmedium tank
and started production soon after this process was complete. The figure shows
indications that the parameter estimation underestimates the cleaning medium
tank’s heat capacity because the tank heater activates much more often than it
does in reality. Looking at the model parameters in Table 6.8, it is clear that the
energymodel parameter estimation needs additional data to correctly estimate the
effects of different numbers of workpieces processed concurrently. The models
did not find a relation between the number of workpieces and the thermal power
because limitations in the data available from thismachine necessitated constantly
cleaning the same number of workpieces. Overall, for both cleaning machines
the heating power predictions are less accurate than the predictions of electric
power. For the MAFAC KEA, the lower heating power prediction accuracy directly
translates to lower electric power accuracy because it is heated electrically and
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Table 6.9: Error measures for predicted values for 21 December 2022. - indicates mea-
sures not applicable to the respective model.

Parameter EMAG VLC100 Y EMAG VLC100 GT MAFAC JAVA MAFAC KEA

RMSE
𝑃el 1163.7W 555.6W 2294.8W 4716.9W
𝑃th,cool 396.8W 991.2W - -
𝑃th,heater - - 5163.9W -
𝑇M 3.4 °C 2.8 °C 4.7 °C 2.8 °C

MAE
𝑃el 887.2W 438.1W 1462.4W 3492.1W
𝑃th,cool 291.1W 916.7W - -
𝑃th,heater - - 3052.1W
𝑇M 2.8 °C 2.6 °C 2.3 °C 1.8 °C

Total Energy
Percentage Error

𝑃el 6.7% 15.3% −1.8% −12.6%
𝑃th,cool −14.1% −24.0% - -
𝑃th,heater - - −64.5% -

heating power is part of its total electric power.
Table 6.9 summarizes the error measures Mean Absolute Error (MAE) and Root-

Mean-Squared Error (RMSE) for each machine. The table also shows the total
energy percentage error, which looks at the predicted total energy consumption
over the entire day compared to the measured energy consumption. Since the
production machine energy models only predict the average power for each ma-
chine energy state, the evaluation uses a moving average over 30 seconds for the
measured electric power consumption. The smoothing decreases the impact of
the high positive and negative deviations ofmeasured values from predicted values
due to the short measuring interval of 1 s compared to the much longer intervals
between energy state transitions ranging in the realm of minutes.
The error measures show that future work should perform additional analyses

of the production machine energy models and check whether there are ways to
improve the thermal model quality. The total energy percentage errors reiterate
that the electric power predictions are more accurate over the entire day than the
thermal power predictions. All models appear to slightly overestimate electric
energy consumption while they underestimate thermal energy consumption. This
assumption could also be valid for the electric cleaning machine model, which
sums the electric and thermal energy before calculating the total (see equation
(6.3)).
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Table 6.10: Stored items after each operation and orders for finished workpieces.

Experiment OP 10 OP 11 OP 20 OP 40 OP 41 OP 50 Orders

1 0 0 0 0 0 0 5
2 0 0 0 0 0 0 10
3 0 0 0 0 0 0 15
4 0 0 2 0 2 0 10
5 5 0 5 5 0 0 15

A comparison between the RMSE and MAE for electric power emphasizes that
many large short-term deviations lead to a significantly higher RMSE than MAE.
Since the models do not aspire to represent the very short-term behaviour of
the production machines accurately, this effect does not negatively impact the
model’s quality. Comparing the RMSE and MAE for thermal power and for the
machine temperature shows less pronounced differences, likely due to thermal
power’s less volatile nature. Overall, the MAE for the production machine energy
models ranges between approximately 10% – 20% of the machine’s average power
consumption. While this result is not perfect, the models are sufficient for the
preliminary analysis in this thesis. Future work could try to improve the parameter
estimation accuracy, for instance, by collecting additional data from theproduction
system.

TestDataAcquisition. Data acquisition consists of two parts – reading data about
the current production system state from the production machines and other In-
dustrial Internet of Things devices in the factory and gathering data from users
about the production scheduling problem. The step test controlling production ma-
chines details some experiments testing reading and writing data from production
machines.
On the other hand, users supply data in a configuration file. The file contains

information about customer orders and storedworkpieces, as previously examined
in Section 5.2.8. Data acquisition from users generally works properly. The final
quality checks use the test configurations given in Table 6.10. The first three tests
do not have any stored items but use increasing numbers of orders. Tests four and
five additionally have some stored items. There are intentionally no stored items
for OP 50 because this would be equivalent to reducing the number of orders.

Test Controlling ProductionMachines. As indicated in Section 6.2.2, this case
study does not perform a complete validation of controlling the machines because
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this validation would exceed the scope of the initial descriptive study-II, which
is the goal of this thesis. In addition to the experiments published in Grosch,
Fuhrländer-Völker, et al. (2022) and Fuhrländer-Völker et al. (2023), which validated
controlling the MAFAC KEA with the connectors and structure provided by the
eta_utility framework, additional control experiments with the machines were
performed.
The control experiments included all machines in the production system of the

ETA Research Factory. During these experiments, the machines operated accord-
ing to rules set by a simple controller. The experiments showed that controlling
all machines is generally possible. The configuration file structure provided by
the framework proved helpful in this case because the machine tools have three
different Industrial Internet of Things devices, which the energy-aware production
scheduling system must communicate with. Besides the machines themselves
these devices include a separate power meter for each machine, and both ma-
chines connect to the unified DC supply. The configuration allows combining
the separate Industrial Internet of Things devices for each machine into a single
system such that they appear as one in the energy-aware production scheduling
system.

Train Users. Validating user training exceeds the scope of this case study; how-
ever, according to literature (see: Schuh et al., 2015), this is an essential step for
implementation in actual production systems. As mentioned in Section 4.2.3, the
implementation team should resort to established training methods to ensure
adequate training outcomes.

Test with Real Orders and Users. While testing with real orders and users is not
directly possible due to the production system’s origin in research, the following
tests of the energy-aware production scheduling system use the configurations
proposed in Table 6.10. Prior to performing the tests, preliminary evaluations
are needed to determine appropriate parameters for the optimization algorithm.
This thesis performs the preliminary evaluations with the second case from Ta-
ble 6.10. This experiment provides a good combination of complexity and speed
for many runs with varying parameters. The preliminary evaluations to determine
appropriate algorithm parameters are executed in two incremental phases. The
termination condition 𝑔max equals 500 generations for all runs which, as Figure 6.8
shows, is sufficient to ensure that all experiments are mostly converged.
Table 6.11 shows the parameters analyzed during each phase of the algorithm
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Table 6.11: Analyzed parameter values for the algorithm parameter variation.

Population 𝑤max Crossover rate 𝜅 Mutation rate 𝜔

Phase 1
50 0.1 0.025
100 0.15 0.05
200 0.2 0.075

0.25 0.1
0.3 0.125

0.15

Phase 2
100 0.2 0.02
200 0.275 0.035

0.35 0.05

parameter variation. Every possible combination of these parameters was investi-
gated – 90 combinations in phase one and an additional 18 combinations in phase
two. The first phase uses a wider variety and number of parameters to roughly
establish the appropriate ranges, while the second phase performs amore detailed
analysis. The first phase shows that the mutation rate becomes more relevant
during later generations when the solutions are overall more refined. In contrast,
the crossover rate is more relevant during earlier generations at the beginning of
the optimization.
The first phase of parameter variation shows that the refinement of solutions

during later generations becomes significantly worse when the mutation rate is
too high. The algorithm cannot find satisfactory solutions within the allotted
termination condition of 500 generations when the mutation rate is above 0.05.
On the other hand, the mutation rate of 0.025 shows an increasing number of
collisions with solutions which the algorithm has seen before, leading to decreased
improvement rates. Crossover rates are much less sensitive, but higher crossover
rates generally lead to faster convergence toward adequate solutions. Similar to
the mutation rates, if the crossover rates become too high, the final solution after
500 generations will be slightly worse. During the first phase crossover rates above
0.2 appear to perform well. Finally, the population size 50 is too small to find
suitable solutions quickly while larger population sizes show diminishing returns,
especially considering the increased overall duration of the optimization.
The second phase validates the findings of the first phase; larger populations

improve convergence slightly at the cost of significantly increased optimization
duration. Therefore, the following tests use a population of 100. Higher crossover

152



6.2. Energy-Aware Production Scheduling System Implementation

Table 6.12: Algorithm configuration after parameter variation.

Parameter Value

Population 𝑤max 100
Crossover rate 𝜅 0.4
Mutation rate 𝜔 0.025
Learning rate linear decreasing 1 to 0.5
Generations 𝑔max 500 (experiment 3: 1000)

and mutation rates also increase convergence speed at the beginning while de-
creasing the solution quality toward the end of the optimization. The best values
according to the tests are a crossover rate of 0.35 and a mutation rate of 0.02. Since
lower crossover andmutation values during later generations improve the solution
quality, the following tests use a configuration with a linearly decreasing learning
rate between 1 and 0.5 and starting points of 0.4 for the crossover rate and 0.025 for
the mutation rate. The crossover andmutation rates are multiplied by the learning
rate for each new generation. With the proposed configuration, the crossover rate
during the last generation before the algorithm terminates will be 0.2, and the final
mutation rate will be 0.0125. Table 6.12 summarizes the algorithm configuration
after the parameter variation. The configuration with the learning rate converged
approximately 100 generations earlier than the best configuration without the
learning rate decreasing the crossover and mutation rates. The preliminary evalu-
ations also verify the findings from Grosch et al. (2021): The hybrid initialization
outperforms the normal random initialization (refer to Section 5.2.1).
In addition to the algorithm parameters in Table 6.12, the energy-aware produc-

tion scheduling system needs starting values for the schedule optimization and
production machine energy models. Table 6.13 shows these starting values. The
scenario dates for energy prices and temperature measurements are two days for
which data was available. Future work could implement predictions for energy
prices and temperature measurements in addition to the energy consumption of
production machines. The energy prices are 15min intraday prices from EPEX
Spot, and the temperature measurements were performed in the ETA Research
Factory during experiments on 21 December 2022. The possible pause times are
the durations of pauses that the algorithm can choose from using the time chro-
mosome (refer to Section 5.2.2). The scheduler will wait 180 s before switching a
production machine to the standby state (refer to Section 5.1.5). The production
machine energy models also need starting temperatures – the starting tempera-
tures are close to the environment’s temperature for the two machine tools. The
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Table 6.13: Parameters and starting values for the production schedule optimization.

Parameter Value

Scenario Dates
Date of energy prices 29 November 2021, 8:00 to 16:00
Date of temperature measurements 21 December 2022, 8:00 to 16:00

Pause Scheduling
Possible pauses in s 0, 180, 300, 600, 900, 1800, 3600
Wait before standby 180 s

Starting Temperatures
EMAG VLC100 Y 𝑇M

1 20 °C
EMAG VLC100 GT 𝑇M

1 20 °C
MAFAC JAVA 𝑇M

1 60 °C
MAFAC KEA 𝑇M

1 60 °C

Thermal Power Conversion
Cooling efficiency 0.8
Heating efficiency 0.95

Random Seed for Reproducible Results
Random number seed 542346723

cleaning machines’ starting temperatures assume they have been pre-heated to
their operating temperature of approximately 60 °C. The thermal power conver-
sions are necessary because this thesis considers a simplified energy conversion
system, as introduced in Section 6.1. These factors are chosen arbitrarily for this
initial study of the energy-aware production scheduling system’s performance.
Future work could include more detailed models of the factory’s building and
energy supply systems.
The actual scheduling experiments can now be performed with the algorithm

parameters from Table 6.12 and the other parameters and starting values from
Table 6.13. Figure 6.8 illustrates the convergence for the experiments and both
objective criteria. Most experiments converge well before the optimization’s ter-
mination at 500 generations 𝑔max. Only the third experiment benefited from addi-
tional optimization time, so this run was repeated with a termination condition of
1000 generations 𝑔max. The figure confirms that the chosen algorithm parameters
work well for all experiments. Note that the energy cost can only be calculated
once the makespan MKSP is smaller than the available energy price data. Due to
this limitation, the energy cost is not available for the earlier generations of some
of the scheduling experiments.
Regarding the optimization duration, experiment 1 was the fastest, with 2min

16 s, and experiment 3 was the slowest, with 11min and 5 s. All experiments were
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Figure 6.8: Convergence for both objective criteria and all experiments (only first 500 gen-

erations shown).

Table 6.14: Best solutions from each optimization experiment and comparison to the
benchmark.

Experiment Only SPT rule Best MKSP solution Best ERC solution
MKSP ERC MKSP ERC MKSP ERC

1 7453 s 1.90€ 7573 s 1.76€ 7772 s 1.69€
2 11 344 s 4.29€ 10 640 s 3.18€ 10 640 s 3.18€
3 14 376 s 5.71€ 14 035 s 5.29€ 15 327 s 4.28€
4 8411 s 3.63€ 8010 s 2.83€ 8010 s 2.83€
5 5464 s 1.74€ 5391 s 1.17€ 5391 s 1.17€

performed on a laptop with an 11th Generation Intel Core i7 1185G7 processor. The
processor has four cores and eight threads with a base clock speed of 3GHz. The
implementation in Julia led to significant speed improvements over the Python
implementations used in Grosch et al. (2019) and Grosch et al. (2021), where sim-
ilar optimization runs would routinely take many hours on much more capable
computers.
Table 6.14 presents the makespan and energy-related cost values for the best so-

lutions for each objective criterion and every experiment. The table also notes the
results achieved using just the SPT dispatching rule without further optimization.
Looking at the generated schedules, which Appendix D illustrates, it is clear that
the results generated by the SPT rule are an excellent benchmark for themakespan
optimization. Since the energy price only significantly begins to rise after about
7000 s, some experiments only have one best solution for both dimensions because
the solutions do not differ in their energy cost. For experiment 1 there are two

155



6. Deployment and Evaluation

solutions but the difference between the two best solutions is minimal.
Overall, the energy-aware production scheduling optimization can almost always

find better solutions than the SPT rule. When looking at makespan as the only
objective criterion, the best solutions foundby the optimization are, on average, 3%
better than those found by the SPT rule. The energy-related cost is also improved by
13% for the same solutions compared to the SPT rule. When choosing the solutions
with the best energy-related cost instead, the makespan generally increases, but
the energy-related cost also decreases significantly – for example, experiment
3 benefits most from the energy cost optimization due to its comparatively long
makespan. Compared to the solution generated by the SPT rule, the best ERC
solution for experiment 3 improves energy-related cost by 25% while increasing
makespan by 7%. When comparing the same solution to the best MKSP solution
generated by the optimization algorithm, there is an improvement of 19% in ERC
and an increase of 9% in MKSP.
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Figure 6.9: Solution space with two pareto fronts for experiment 3.

Figure 6.9 depicts the solution space for experiment 3. While Table 6.14 only
shows the best solutions for either makespan or energy cost, the figure also high-
lights that multiple intermediate solutions are available. For example, if a user
wanted a schedule below a makespan of 15 000 s, a significant improvement of
the energy-related cost would still be possible by selecting the solution at approxi-
mately 14 700 s and 4.42 €.
Figures 6.10 and 6.11 show the best solutions from experiment 3 for makespan

and energy-related cost, respectively. The topmost plot indicates when machines
need to undergo setup to switch between operations, when there are scheduled
pauses and when the production of a specific product takes place. The plots reflect
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Figure 6.10: Solution with the best makespan from experiment 3.
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Figure 6.11: Solution with the best energy-related cost from experiment 3.
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that the ETA Research Factory only produces a single product. The topmost plot
also indicates the number of parts being processed at once for machines with a
capacity greater than one. The figures’ middle plot illustrates the factory’s total
electric power, and the bottom plot shows the energy price and cumulated energy
cost. Appendix D contains additional plots for the other experiments and the
schedules generated by the SPT rule.
Figures 6.10 and 6.11 also illustrate some differences between the solutions with

the best makespan and with the best energy-related cost. It can be beneficial to be
very eager when processing parts on machines with higher capacity to achieve the
best makespan. For example, in Figure 6.10, the algorithm chooses to produce only
six parts when it first uses theMAFAC KEA. This choice allows the EMAGVLC100 GT
to begin processing the first parts slightly earlier than in Figure 6.11. The same is
also true for the MAFAC JAVA, although in this case it does not serve a real purpose
because no further operations follow it. In the best energy-related cost solution in
Figure 6.11, the algorithm waits until the cleaning machines can process all parts
at once. A similar comparison with the SPT rule (refer to Appendix D) is possible –
it begins processing as soon as the first part becomes available and continuously
utilizes all machines whenever feasible. However, it does not take advantage of
the additional machine capacity.
The two figures and the additional figures in Appendix D highlight even more

aspects. For example, the optimization algorithm has problems avoiding unnec-
essary setup times and sometimes schedules unnecessary pauses. This aspect
becomes apparent when looking at the EMAG VLC100 GT in Figure 6.11, where
the algorithm schedules operation OP 41 once while processing OP 40, leading
to three unnecessary setup times. One reason for this might be the limitation
to fixed pause durations. In the case mentioned above, a pause of 1800 s would
likely have been too short to gather all workpieces for the MAFAC JAVA, while a
pause of 3600 s is too long because it would leave the entire factory idle at the end
of the day. More fine-grained control over the pause times could improve upon
this; however, it might also lead to problems with convergence by increasing the
number of possible solutions.

Check Final Quality Gate and Deploy System. The tests show that the produc-
tion scheduling system performs well and achieves the goals set during the discov-
ery and planning phase in Section 6.2.1. The goals were to exceed the performance
of SPT dispatching rules, perform scheduling for an entire day within a maximum
of 15min, and to represent the ETA Research Factory production system with a
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single product and four machines while considering the electricity cost of produc-
tion. Section 6.4 provides a more detailed discussion of how well the proposed
concepts meet the requirements set in Section 4.1.

Continuous Support and Improvements. While this step is vital for actual in-
dustrial implementations, the research environment cannot sufficiently evaluate it.
See Section 7.1 for possible improvements to the entire implementation procedure
and energy-aware production scheduling system architecture that future research
should analyze.

Results. The testing and deployment phase aims to check whether the proposed
energy-aware production scheduling system suits the use case and whether the
results conform to the requirements set during the discovery and planning phase.
The requirements were that the system should be able to schedule for a day within
a maximum of 15min, which the system achieved by scheduling a day within
approximately 11min. The system should also be able to represent the ETA Re-
search Factory production system while being able to extend to multiple products.
The testing and deployment phase showed that the system could represent the
ETA Research Factory reasonably well. The energy-aware production scheduling
system is also extensible to multiple products. Finally, the system should consider
the total energy-related cost of the schedules it creates. This consideration is
included in the energy-aware production scheduling system, and it can improve
energy-related cost while improving the makespan simultaneously, as shown in
Table 6.14.

6.3. Transfer to another Production System

Validating whether the energy-aware production scheduling system can transfer
to different production systems is fundamental while answering the research
questions introduced in Section 1.1. The case study in the previous section validates
the suitability of the energy-aware production scheduling system for a single use
case. Additionally, a master’s thesis supervised by the author of this work analyzed
transferring the energy-aware production scheduling system to another production
system 1. The production system in question belongs to an industry partner in the
KI4ETA project (Projektträger Jülich, 2021).
1Hirsch, Jonas. (2023). Application-oriented analysis of the adaptivity of systems for energy-aware

production scheduling (Unpublished master’s thesis). Technische Universität Darmstadt. Fach-
bereich Maschinenbau. Unfinished at the time of writing.
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The master’s student executed the implementation procedure to implement the
energy-aware production scheduling system for the industry partner. Since this
transfer is also a prototype, the student could not evaluate all steps of the implemen-
tation procedure; nevertheless, preliminary results showed a promising tendency
that the implementation procedure and energy-aware production scheduling can
be easily transferred to various production systems. The master’s thesis was still
incomplete when this thesis was finalized; thus, the final results were unavailable.
The following is an account of preliminary observations gathered inmeetings with
the master’s student and the industry partner.

During the implementation procedure it quickly became apparent that clarifying
the project scope, goals, and requirements is critical once the implementation
team is assembled. A clear project goal helps to manage the expectations of the
implementation’s stakeholders. The production system for this case study consists
of four parallel production machines; any machine can produce all products.
All machines operate solely with electric energy, but two production machines
are more efficient than the others. Additionally, the production machines have
multiple relevant energy states while processing workpieces.
The checks on whether the energy-aware production scheduling system could

represent the production system showed that additional implementation work
was required to correctly model the production system as well as the production
machines. The production machines are similar to the existing MachineTool
class but have additional energy states. The production system structure addition-
ally required adaptations to the production scheduling model because the model
previously did not support multiple parallel machines with equivalent capabilities.
Based on this information, the student could create software implementation

plans and quickly progress with the implementation. Additionally, the student
communicated with the industry partner to create the configuration concepts and
data-gathering plans.
Executing the software implementation plans and creating a testing environ-

ment with simulated data went smoothly; however, an essential outcome of the
development and implementation phase is that data-gathering in an industrial en-
vironment can be very tedious and time-consuming due to organizational barriers
– the data-gathering was incomplete when this thesis was finalized.

Overall, the preliminary case study transferring the proposed implementation
procedure and energy-aware production scheduling system architecture showed
that the proposed concepts are well suited for an industrial use case. The dis-
covery and planning phase emerged as an essential part of the implementation
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Table 6.15: Fulfilment of functional requirements. Checkmarks in parentheses indicate
partially fulfilled requirements.

Requirement Fulfilment

Simplicity ✓
Robustness (✓)
Controllability ✓
Adaptivity ✓
Completeness ✓
Interactivity (✓)
Connectivity (✓)

procedure to unify the understanding of goals and requirements as well as the
production system itself. The plans produced during the discovery and planning
phase supported the development and configuration phase well.

6.4. Evaluation and Discussion

The experiments and case studies in the preceding sections reveal that the pro-
posed implementation procedure and energy-aware production scheduling system
architecture generally fulfil their purpose of performing energy-aware produc-
tion scheduling. This section checks all requirements and success criteria set in
Section 4.1 to analyze how deeply the proposed concepts fulfill them.
The functional requirements form the basis for the proposed solution because

they are generic requirements for decision-support systems, as Little (1970) pro-
posed. They also enable deriving the more detailed technical requirements dis-
cussed later in this section. Table 6.15 summarizes the fulfilment of the functional
requirements. The following paragraphs elaborate why each requirement is fully
or partially fulfilled.

Simplicity. According to Little (1970), the system should only incorporate the re-
quired factors and exclude everything else. The proposed system includes the nec-
essary elements for performing production scheduling. The system also provides
flexibility regarding adding further energy models or changing the production
scheduling model. The proposed concepts are kept as simple as possible, although
the inherent complexity of the energy-aware job shop scheduling problem with
rescheduling restrains simplicity. Overall, the proposed energy-aware production
scheduling system fulfils this requirement well.
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Robustness. The energy model parameter estimation should enable system
users to configure the production machine energy models easily by avoiding con-
figuration errors. The models should also be more accurate than the manual
configuration of multiple energy states where users might obtusely derive values
from the machine’s rated power. Despite these advantages, the energy model
parameter estimation also has the problem that the parameter estimation quality
strongly depends on the available data. In case good data is unavailable, the pa-
rameter estimation might fail to find reasonable estimates for the parameters, in
which case the implementation team needs the expertise to improve the energy
model parameter estimation results. On the other hand, the robustness regarding
production scheduling is quite high due to the multi-objective optimization, which
empowers users to select the most satisfactory solution. Ultimately, the implemen-
tation procedure’s robustness could be improved by enhancing robustness of the
energy model parameter estimation.

Controllability. Little (1970) demands that changesmade by the user should lead
to the intended consequences. When executing production scheduling, the user
usually changes the number of customer orders and the number of workpieces
in storage. Both of these directly impact the objective criteria; the exact impact
depends on the precise objective criteria chosen during the implementation pro-
cedure. Changes occurring due to rescheduling behave the same because these
usually manifest as changes in the number of workpieces in storage. The proposed
system and implementation procedure fulfil this requirement completely.

Adaptivity. To achieve adaptivity, Little (1970) requires that the models’ parame-
ters and structure should be updatable. The proposed energy-aware production
scheduling system architecture realizes both aspects by providing configuration
files read before every scheduling run. Therefore, the proposed energy-aware
production scheduling system always uses the most current available data. The
implementation of storage is another crucial part of adaptivity because it facilitates
adapting to inaccurate timing of production jobs through rescheduling. With the
implementation procedure and energy model parameter estimation, the proposed
energy-aware production scheduling system architecture can adapt to various uses
and production systems. The system is extensible such that new functionality can
be added when required. The transfer to another production system in Section 6.3
delineates adding additional aspects to the production scheduling model and the
production machine energy models, which is easily possible. Thus, the proposed
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concepts statisfy this requirement.

Completeness. This requirement asks for a compromise with the simplicity re-
quirement. As detailed in the paragraph about the simplicity requirement, the
proposed system includes the necessary components to successfully model and
optimize the energy-aware job shop scheduling problem. The system also provides
some extensibility to other scheduling problems through the implementation
procedure and energy model parameter estimation. Regarding the production
machine energy models, the evaluate energy supply step is essential to the im-
plementation procedure. As the case study showed, the evaluation provides the
implementation team with a better understanding of the requirements for the
energy models. In that step the implementation team can also decide whether
simplifications of the energy supply system are necessary to achieve the previously
determined goals. Overall, the proposed energy-aware production scheduling
system is flexible enough to fulfil various completeness requirements.

Interactivity. Since this is a research prototype, Section 4.1 intentionally left the
requirement for interactivity loose; however, the configuration files, which cover
the production system’s structure aswell as the productionmachine energymodels
and the product, order, and storage configurations allow for easy manipulation
of the production scheduling aspects of the system. While this interactivity is
helpful for users of the energy-aware production scheduling system after the
implementation is complete, the implementation team does need substantial
programming knowledge. There will often be cases when the implementation
team identifies particularities of a production system that must be implemented in
the software or when additional energymodels are needed. The proposed system’s
energymodel parameter estimation aspects also requiremanual scripting because
the available data often needs some pre-processing to rename values, remove
outliers, or calculate derived variables. Overall, the user-facing aspects of the
energy-aware production scheduling system could be implemented in a graphical
user interface suitable for managers without programming knowledge. However,
the implementation procedure will likely continue to require some programming
knowledge.

Connectivity. Providing connectivity to the production machines and external
services is another aspect of implementing an energy-aware production schedul-
ing system in industrial settings. While evaluating connectivity exceeded the
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Table 6.16: Fulfilment of technical requirements. Checkmarks in parentheses indicate
partially fulfilled requirements.

Requirement Fulfilment

Collection of Requirements ✓
Production System Configuration ✓
Standardized Models ✓
Automatic Model Parameter Estimation ✓
Customer Order Input ✓
Individualized Objective Criteria ✓
Multi-Objective Optimization ✓
Rescheduling (✓)
Production System Data Acquisition (✓)
Controlling Production Machines (✓)
Connectivity with External Services (✓)

scope of the initial case study in Section 6.2, the evaluations we published in
Grosch, Fuhrländer-Völker, et al. (2022) and Fuhrländer-Völker et al. (2023) and
additional experiments conducted in the ETA Research Factory showed that the
proposed system in conjunction with the eta_utility framework could acquire
data and control production machines. The connectors provided by the eta_utility
framework also enabled data-gathering for the implementation procedure and
energy model parameter estimation. However, since this requirement was not
fully tested, it is considered partially fulfilled.

In summary, the proposed implementation procedurewith energymodel param-
eter estimation and the energy-aware production scheduling system architecture
fulfil the functional requirements well. At the same time, areas for future enhance-
ments include the robustness of the energy modelling process and interactivity
during the implementation procedure and the usage phase. Further research into
various levels of detail for the energy models and the connectivity aspects would
also be valuable.
Section 4.1 derives technical requirements from the functional requirements

to more precisely identify the most pertinent conditions that the technical im-
plementation has to consider. Table 6.16 marks the degree of fulfilment for each
technical requirement. Requirements with a checkmark in parentheses are not
fulfilled entirely, or the case study did not wholly evaluate them.
The table shows that this thesis makes substantial strides toward fulfilling the
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technical requirements for energy-aware production scheduling. The formalized
implementation procedure and its collection of requirements from stakehold-
ers ensured the integration of their perspectives and needs into the system and
unified their understanding. The energy-aware production scheduling system
architecture’s interfaces for configuring production systems improved adaptability
to various environments, and the standardized interface for production machine
models demonstrated the potential for scalability and applicability to different
production systems.
In combination with the automatic model parameter estimation, the standard-

ized models showed promise in reducing the effort required for model creation;
however, the transfer to another production system also highlighted that energy
models can be very specialized such that they do need to be implemented individ-
ually. The energy-aware production scheduling system can also read customer
orders from a configuration file enabling users to generate production schedules
quickly. The energy-aware production scheduling system also provides the ability
to select individualized objective criteria during the implementation procedure
contributing to user flexibility and ensuring that the specific needs of all stake-
holders are addressed.
While the energy-aware production scheduling system’s rescheduling capa-

bility, production system data acquisition, machine control, and connectivity
with external services were not thoroughly tested, this thesis recognizes their
importance and emphasizes the potential for future research in these directions.
Once fully implemented, these aspects are crucial to allow the scheduling system
to dynamically adapt to unexpected events, acquire real-time data for informed
decision-making, automate productionmachine control, and incorporate external
factors such as energy prices into the optimization process.

The success criteria defined in Section 4.1 should provide a quantitative evalu-
ation of the functional and technical requirements as well as the general perfor-
mance of the energy-aware production scheduling system. The first two success
criteria focus on fulfilling the functional and technical requirements. The success
criterion accurate representation of the production system ensures that the energy
models represent the actual production machine’s behaviour, and the two success
criteria improved energy-awareness of production scheduling and sufficient performance
in production-related objectives concentrate on the production schedule optimization.
The last criterion gauges the transferability to a variety of production systems.
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Functional and Technical Requirements Fulfilled. In combination, the pro-
posed energy-aware production scheduling system architecture and implementa-
tion procedure meet most of the functional and technical requirements. Of the
seven functional requirements, the case studies only could not evaluate the connec-
tivity requirement thoroughly due to the vast scope of evaluating this requirement;
however, we published some initial results showing the general capabilities of the
eta_utility framework in the previously mentioned articles. Regarding the tech-
nical requirements, the proposed concepts also achieved a satisfying fulfillment
rate, fully meeting seven of eleven requirements. Although some requirements
were only partially met, it is worth noting that none of them were outright unmet.
Like the incomplete functional requirement, the four technical requirements not
exhaustively validated in this thesis are also related to connectivity.

Accurate Representation of the Production System. The production machine
energy models achieved reasonable results reflecting the production machine’s
energy consumption; however, additional data collection from the production
system could help to improve the prediction accuracy. In terms of the total en-
ergy consumption over the entire test data set, gathered during production on 21
December 2022, the models had absolute percentage errors for the prediction of
electric energy between approximately 2% – 15%. However, the absolute percent-
age errors for thermal energy prediction over the entire day were significantly
higher, between approximately 14% – 24% for the machine tools and at 64.5% for
the cleaning machine with a heat exchanger. The MAE and RMSE paint a similar
picture – the RMSE additionally indicates that momentary peaks of the measured
power have a much more significant impact on electric power predictions than
thermal power predictions. The higher volatility of electric power compared to
thermal power might be responsible for this impact.
Accurate representations of the production system’s energy consumption are

crucial to energy-aware production scheduling. The accuracy achieved by the pro-
posed models is sufficient to validate the entire energy-aware production schedul-
ing system architecture proposed in this thesis. However, future research should
look into improving the accuracy of energy models for production scheduling in
combination with energy model parameter estimation.

Improved Energy-Awareness and Sufficient Performance in Production-
Related Objectives. The energy-aware production scheduling system also
successfully reduced the energy consumption of production schedules with-
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out compromising production-related objectives. This performance signifies the
scheduling system’s effectiveness in improving energy-awareness while maintain-
ing satisfactory production-related performance. The energy-aware production
scheduling system contributes to more sustainable and cost-effective production
by optimizing energy-related objective criteria in the production scheduling
process.

Transferable Scheduling System Architecture. The case study further demon-
strates the transferability of the scheduling system across various machines of
the same type using the energy model parameter estimation component. The
energy model’s ability to capture the energy consumption of the two machine
tools and two cleaning machines, respectively, using a single model for each type
of machine, symbolizes this flexibility. The energy model parameter estimation
enables this and allows the system to adapt to different production systems, albeit
with some development work required if additional types of machines exist. The
case study and the transfer to a second production system also showcase the
implementation procedure’s capability to accommodate and facilitate adaptations.
Thus, the implementation procedure ensures the system’s transferability and
applicability to diverse manufacturing environments.

In conclusion, the energy-aware production scheduling system and implemen-
tation procedure exhibit a solid performance in fulfilling a substantial portion of
the requirements established in Section 4.1. While there is room for improvement
in some technical areas, especially regarding the evaluation of connectivity and
rescheduling, the proposed concepts show promising results in accurately rep-
resenting the production system, enhancing energy-awareness, and maintaining
production-related performance. The energy-aware production scheduling system
architecture and implementation procedure also improve the adaptivity to diverse
production systems and consider stakeholder requirements during implemen-
tation to implement systems that support the user’s goals. These achievements
lay a foundation for future research into implementing energy-aware production
scheduling in real industrial settings.
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The motivation for this thesis, as discussed in Section 1, is recognizing climate
change as a pressing global challenge, as emphasized by world leaders and reports
from organizations like the Intergovernmental Panel on Climate Change (Inter-
governmental Panel on Climate Change, 2018). Urgent action is required to reduce
greenhouse gas emissions, mitigate the impacts of climate change, and limit global
warming to 1.5 °C. As a large energy consumer, the industrial sector plays a crucial
role in reducing emissions and advancing sustainable practices. Improving the
integration of renewable energy into the power grid through demand-side inte-
gration is one avenue for achieving these goals (Bundesministerium für Umwelt,
2019, p. 90; Walther et al., 2022). Additionally, trends such as Industry 4.0 (Lasi
et al., 2014) and smart manufacturing (Kang et al., 2016) offer opportunities for
enhancing energy efficiency and sustainability within the industrial sector (Bunse
et al., 2011; Mohamed et al., 2019).
Against this backdrop, this thesis focuses on developing an implementation

procedure and an energy-aware production scheduling system architecture to
optimize production schedules while concurrently considering production-related
and energy-related objective criteria. By improving the integration of energy con-
siderations into production scheduling, the proposed concepts aim to improve
energy efficiency, utilize opportunities for demand-side integration and minimize
the environmental impact of production. Under the assumption that actual indus-
trial implementations of energy-aware production scheduling are still lacking, the
research goal for this thesis is:

Research Goal

This thesis aims to simplify the implementation of energy-aware produc-
tion scheduling systems in real production systems by manufacturing
companies using generalized modelling and tooling.

To achieve this goal, this thesis addresses three key research questions, to de-
termine why there is a lack of actual implementations and to identify an imple-
mentation procedure as well as an energy-aware production scheduling system
architecture with energy model parameter estimation to support the implementa-
tion procedure.

1. “Can a lack of implementations be attributed to an absence of procedures
and architectures for implementing energy-aware production scheduling
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systems in job shops?”
2. “Can a standardized and partially automated implementation procedure for

the adoption of energy-aware production scheduling systems be proposed
such that an energy-aware production scheduling system can bemore easily
applied to real industrial use cases?”

3. “How should the architecture of an energy-aware production scheduling
system be designed to support the implementation procedure, and which
additional tooling is needed to reduce the implementation efforts?”

This research explicitly focuses on implementing energy-aware production
scheduling for job shops in the discrete manufacturing industry. At the beginning
of the research project, the literature review (refer to Section 3) aimed to answer
the first research question. It revealed two significant research gaps in the field of
energy-aware production scheduling. Firstly, there is a need for accurate represen-
tations of production systems that can tolerate deviations during the execution of
production schedules because much of the existing research focuses on optimiza-
tionmodels and algorithms instead of actual implementations. Secondly, since it is
challenging to implement energy-aware production scheduling in actual industrial
environments, evaluating the factors that may influence such implementations
is necessary. To overcome this challenge, realistic research production systems
like the ETA Research Factory can provide valuable insights. Studying realistic
research production systems can help to assess the feasibility, performance, and
potential obstacles to implementing energy-aware production scheduling systems
in actual production environments. Overall, the literature review showed that
some of the implementation shortfall in the industry can likely be attributed to
the absence of standardized procedures and system architectures and a resulting
knowledge gap in industrial companies.
Addressing the identified research gaps by answering the second and third

research questions is crucial to disseminating energy-aware production schedul-
ing systems. Accurate representations of production systems with rescheduling
capabilities enable the system to adapt to dynamic conditions and deviations,
ensuring the feasibility and efficiency of the production schedule. Additionally,
evaluations in realistic research production systems provide valuable insights into
the challenges and opportunities associated with implementing such systems in
industrial settings. Through these contributions, this thesis seeks to provide prac-
tical solutions and insights that facilitate the adoption of energy-aware production
scheduling.
This thesis proposes an implementation procedure and an energy-aware pro-
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duction scheduling system architecture. The implementation procedure proposed
in Section 4.2 standardizes a structured approach to configuring and deploying the
energy-aware production scheduling system, ensuring alignment with stakeholder
requirements. The implementation procedure begins with a discovery and plan-
ning phase to aggregate goals and requirements and create plans for additional
software implementations, data-gathering, and configuration of the energy-aware
production scheduling system’s components. The development and configura-
tion phase executes these plans by gathering data from and about the production
system, creating software implementations and generating configuration files.
Finally, the testing and deployment phase checks if the completed implementation
fulfils the goals established during the development and configuration phase. The
testing and deployment phase also confirms that the system performs as expected,
provides user training and validates whether the system works for real users and
orders.
The energy-aware production scheduling system architecture discussed in Sec-

tion 5 implements a cyber-physical production systemwith a virtual representation
of the actual production system, as illustrated in Figure 5.5. The system archi-
tecture is based on the eta_utility framework introduced by Grosch, Ranzau, et
al. (2022). It incorporates the NSGA-II optimization algorithm, enabling multi-
objective optimization and individualized objective criteria. The algorithm uses a
graph-based encoding for the production scheduling solutions, which helps quickly
evaluate solutions and avoids infeasible solutions. The second major component
of the energy-aware production scheduling system architecture is the production
system environment. The production system environment is at the scheduling
system’s core because it is the virtual representation of the actual production
system. The production system environment is an adaptive component which can
be adjusted to the specific requirements of a particular production system using
software implementation (e.g., for objective criteria) and configuration files (e.g.,
for the production system structure). As a final component, the energy model
parameter estimation supports the implementation procedure by simplifying the
configuration process through automatic parameter estimation for the production
machine energy models. The proposed energy models, in combination with the
energy model parameter estimation, accurately represent the energy consump-
tion characteristics of production processes. The architecture is designed to be
adaptive and scalable, ensuring its applicability to various industrial contexts and
production environments.

This thesis evaluates the proposed implementationprocedure, energy-awarepro-
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duction scheduling system architecture and energy model parameter estimation
in Section 6. The ETA Research Factory serves as a use case for the energy-aware
production scheduling system deployment. The proposed concepts’ evaluation fo-
cuses on assessing the fulfillment of the requirements and success criteria outlined
in Section 4.1. During the case study in the ETA Research Factory, the energy-aware
production scheduling system was successfully tested in a real-world production
system. The case study indicates that the functional requirements are generally
fulfilled, with the system demonstrating simplicity, robustness, controllability,
adaptivity, and completeness. Areas for improvement include the robustness of
energy modelling and enhancing interactivity for non-technical users. A detailed
evaluation of connectivity exceeds the scope of this work, although preliminary
studies (see: Grosch, Fuhrländer-Völker, et al., 2022) showed promising results.
The production machine energy models also captured reasonably accurate rep-

resentations of the production machines, enabling the energy-aware production
scheduling system to reduce energy consumption while maintaining production-
related objective criteria. The system is compared to the SPT dispatching rules
as a traditional production scheduling approach that does not consider energy
constraints to evaluate the energy efficiency optimization, and the results demon-
strated by the energy-aware production scheduling system show energy cost sav-
ings of 13% on average, while slightly improving the production-related objectives
as well. When accepting slightly worse performance in the production-related
objective, the energy-aware production scheduling system achieves energy cost
savings of 18% on average while decreasing the production-related performance
by 5% over all experiments. A preliminary evaluation of transferring the proposed
concepts to another production system additionally shows that the implemen-
tation procedure and energy-aware production scheduling system architecture
facilitate implementations in various production systems with diverse structures.
In summary, this thesis contributes to the field of energy-aware production

scheduling by developing an implementation procedure and a system architec-
ture that fulfill most of the identified requirements and demonstrate satisfactory
performance in all success criteria. The proposed implementation procedure is
a structured approach to implementing energy-aware production scheduling in
a variety of production systems. Combined with the energy-aware production
scheduling system architecture, it forms a framework for disseminating energy-
aware production scheduling in industrial applications. The energy-aware pro-
duction scheduling system architecture also provides a basis for further research.
This thesis concludes that the proposed concepts significantly contribute to the
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field, promoting environmentally conscious and economically viable production
practices.

7.1. Outlook

The implementation procedure and energy-aware production scheduling system
architecture proposed in this thesis form a starting point for filling an essential
research gap regarding the dissemination of energy-aware production scheduling
in real industrial applications; however, there are also many remaining areas for
future research to address limitations and leverage potentials for further improve-
ment.
There are edge cases where the solution encoding and decoding strategies do

not perform as well as expected. For example, when multiple operations of a job
have to be performed by the same machine, the solution encoding leads to many
infeasible solutions. Thus, one area of focus should be addressing edge cases
where the optimization algorithm may break down. Further investigation and
refinement of the optimization algorithm and solution encoding could improve its
robustness and ensure reliable performance across various scenarios.
Enhancing the robustness of the energy model parameter estimation process

is another important aspect for future research. This could involve refining the
energy models and modelling techniques to handle uncertainties, variations, and
complex energy consumption patterns more effectively. By improving the produc-
tion machine energy models’ accuracy and reliability, the system could provide
even more precise optimization outcomes. Regarding energy models, exploring
various levels of detail and considering the interconnections between production
systems and technical building services would also be valuable. Considering these
interconnections also involves incorporating more granular models of technical
building services and considering aspects like thermal energy conversion.
Regarding the production scheduling model, integrating product order due

dates could be an appealing area for future research. By incorporating due date
constraints, the system can ensure the timely completion of customer orders,
particularly when scheduling over longer timeframes. Furthermore, additional
information could be incorporated into the scheduling model to provide a more
comprehensive description of the production process. Such information includes
considering factors beyond processing and setup times, such as complex depen-
dencies between production steps and the inclusion of additional input resources.
Moreover, adopting capability-based resource assignment mechanisms in re-

configurable production systems could enhance scheduling efficiency and energy
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utilization (D’Addona & Teti, 2019). This approach would enable assigning jobs to
different resources with similar capabilities, potentially leading to higher energy
efficiency by rescheduling to underutilized, more efficient resources.
Integrating energy price predictions or energy trading mechanisms could con-

tribute to evaluating more realistic scenarios. By incorporating market dynamics
and economic factors, the system can optimize production schedules considering
energy consumption, cost-efficiency, and financial implications. These factors
are vital to bringing energy-aware production scheduling closer to actual imple-
mentations considering demand response in addition to energy efficiency during
production scheduling. In combination with pricing schemes, direct evaluation of
carbon emissions could provide further insights into the environmental impact of
production scheduling decisions facilitating greener decision-making.
Improving interactivity during the implementation procedure and the usage

phase of the system is also an area for future enhancements. Research in this direc-
tion could involve analyzing stakeholder preferences and developing user-friendly
interfaces, providing more intuitive visualization and decision-support tools. Re-
search should also be done to analyze how users of a production scheduling system
select the production schedule they implement and whether automation, visualiza-
tions or decision-support tools could be proposed to improve users’ understanding
of the trade-offs between energy consumption, production cost and timely com-
pletion of production jobs.
Since this thesis only performed an initial evaluation of the case study, some

of the implementation procedure steps involving user training and deploying the
system while actually controlling production machines require further evaluation.
Future research should focus on assessing these steps in real-world industrial
settings and identifying any challenges or improvements needed for a successful
implementation.

In conclusion, future research should address the identified gaps and further ad-
vance the energy-aware production scheduling system. By addressing challenges
related to optimization algorithms, energy modelling, interactivity, and real-world
implementation and by incorporating additional factors and dependencies into
the models, the system can continue to evolve and contribute to sustainable and
efficient industrial production.
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A. Data-gathering plans

A. Data-gathering plans

Data-gathering plan for EMAG VLC100 GTmachine tool.

Variable Name Data Source Type of Sensor Unit

Electric power calculated W
Machine (Alternating

Current)
Janitza UMG 604 current transformer W

Drives (DC) QI-POWER-485-300 current transformer W

Cooling power calculated W
Feed temperature Grundfos Magna 3 internal (unknown) °C
Return temperature Grundfos Magna 3 internal (unknown) °C
Volume flow Grundfos Magna 3 internal (unknown) L/min

Energy states
standby machine PLC software binary
operational machine PLC software binary
working machine PLC software binary

Material removal rate calculated g/s
Weight before manual KERN 824 g
Weight after manual KERN 824 g
Processing time manual stop watch s

Product machine PLC software -
Machine Temperature machine PLC internal sensor °C

Data-gathering plan for MAFAC KEA cleaning machine.

Variable Name Data Source Type of Sensor Unit

Electric power machine Janitza UMG 96 RM current transformer W
Medium tank temp. machine PLC PT 100 °C

Energy states
standby machine PLC software binary
operational machine PLC software binary
working machine PLC software binary
heater operation calculated electric power > 9500W binary

Batch size machine PLC counted / software pieces
Capacity manual documentation pieces
Lower temperature limit manual documentation °C
Upper temperature limit manual documentation °C
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B. Experiment Data Plots
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Gathered data for the EMAGVLC100 Ymachine tool during the experiments on 13 Decem-
ber 2022.
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B. Experiment Data Plots
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Gathered data for theMAFAC JAVA cleaningmachine during experiments on 13 December
2022.
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Gathered data for the EMAG VLC100 GT machine tool during the experiments on 14 De-
cember 2022.
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Gathered data for the EMAGVLC100 Ymachine tool during the experiments on 14 Decem-
ber 2022.
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Gathered data for theMAFAC JAVA cleaningmachine during experiments on 14 December
2022.
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B. Experiment Data Plots
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Gathered data for theMAFAC KEA cleaningmachine during experiments on 14 December
2022.
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Gathered data for the EMAG VLC100 GT machine tool during the experiments on 21 De-
cember 2022.
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Gathered data for the EMAGVLC100 Ymachine tool during the experiments on 21 Decem-
ber 2022.
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Gathered data for theMAFAC JAVA cleaningmachine during experiments on 21 December
2022.
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Gathered data for theMAFAC KEA cleaningmachine during experiments on 21 December
2022.
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C. Test Data Plots
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Testing data for the EMAGVLC100Ymachine tool during the experiments on 21December
2022.
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D. Scheduling Experiment Plots
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Solution with the best makespan from experiment 1.

205



D. Scheduling Experiment Plots
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Solution with the best energy-related cost from experiment 1.
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Schedule for experiment 1, generated by the SPT rule.
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D. Scheduling Experiment Plots
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Schedule for experiment 2, generated by the SPT rule.
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Schedule for experiment 3, generated by the SPT rule.
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Schedule for experiment 4, generated by the SPT rule.
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Best solution from experiment 5.
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Schedule for experiment 5, generated by the SPT rule.
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