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Zusammenfassung

Die Aufgabe in der inkrementellen Maximierung ist es, im Laufe der Zeit eine Lösung
aufzubauen, die den Wert einer gegebenen monotonen Zielfunktion maximiert. Dabei
fügt man der Lösung ein Element nach dem anderen hinzu, ohne zu wissen, wie viele
Elemente letztendlich in der Lösung enthalten sein dürfen. Diese Information wird erst in
dem Moment bekannt, in dem das letzte zulässige Element hinzugefügt wurde. Daher
besteht das Ziel in der inkrementellen Maximierung darin, eine Reihenfolge anzugeben,
in der die Elemente zu der Lösung hinzugefügt werden, sodass deren Wert zu jedem
Zeitpunkt größtmöglich ist. In dieser Arbeit befassen wir uns mit der kompetitiven Analyse
dieses Problems und beweisen obere und untere Schranken für den kompetitiven Faktor
dieses Problems.
Anfangs analysieren wir einen Greedy Algorithmus, der in jedem Schritt das Element

hinzufügt, das zu diesem Zeitpunkt den Wert der Lösung am meisten steigert. Es ist
bekannt, dass dieser Algorithmus für einige Teilklassen des Problems einen beschränkten
kompetitiven Faktor hat. Wir führen die neue Klasse mit γ-α-augmentierbaren Zielfunk-
tionen ein und zeigen, dass sie mehrere aus der Literatur bekannte Teilklassen vereint.
Darüber hinaus zeigen wir eine obere Schranke von α−(1−c)γ

γ · eα−(1−c)γ

eα−(1−c)γ−1
für den kompe-

titiven Faktor des Greedy Algorithmus für diese Teilklasse, wobei c ∈ [0, 1] die Krümmung
der Zielfunktion ist. Für c = 1 präsentieren wir eine entsprechende untere Schranke.
Anschließend befassen wir uns mit dem Problem unter der Annahme, dass die Ziel-

funktion verantwortlich (engl.: accountable) ist. Verantwortlichkeit ist eine Eigenschaft,
die sich als vorteilhaft für inkrementelle Maximierung erwiesen hat. Wir zeigen, dass der
kompetitive Faktor in diesem Fall mit dem der Teilklasse mit separierbaren Instanzen
übereinstimmt. Separierbarkeit ist eine neue Eigenschaft, die gerantiert, dass das Problem
eine einfache Struktur besitzt. Um dieses vereinfachte Problem zu analysieren, führen wir
eine Kontinuisierungstechnik ein, mit der man untere Schranken an den kompetitiven
Faktor zeigen kann. Wir verwenden diese Technik, um ein Indiz dafür zu geben, dass
die obere Schranke von φ + 1 ≈ 2.618 an den kompetitiven Faktor dem tatsächlichen
kompetitiven Faktor entspricht, wobei φ = 1

2(1+
√
5) der goldene Schnitt ist. Desweiteren

nutzen wir die Kontinuisierungstechnik, um eine verbesserte untere Schranke von 2.246
zu beweisen.
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Wir analysieren mehrere Skalierungsalgorithmen für die Teilklasse mit separierbaren
Instanzen und bestimmen die exakten kopetitiven Faktoren der deterministischen Algo-
rithmen CardinalityScaling, ValueScaling und DensityScaling. Wir präsentieren
den randomisierten Algorithmus RandScaling und zeigen, dass er einen randomisierten
kompetitiven Faktor von höchstens 1.772 hat. Dieser oberen Schranke an den randomi-
sierten kompetitiven Faktor der Teilklasse mit separierbaren Instanzen stellen wir eine
untere Schranke von 1.357 gegenüber, die wir mittels Yao’s Prinzip erhalten.
Um Schranken an den kompetitiven Faktor von mehr und größeren Teilklassen zu

finden, führen wir β-Verantwortlichkeit (engl.: β-accountability) als eine Relaxierung
von Verantwortlichkeit ein. Für die von dieser Eigenschaft induzierte Subklasse zeigen
wir eine obere Schranke von 1

2β + 1 +
√︂

1
4β2 + 1 an den kompetitiven Faktor. Da jede

subadditive Funktion auch 1
2 -verantwortlich ist, erhalten wir folglich mit einem Wert von

2 +
√
2 die erste bekannte obere Schranke an den kompetitiven Faktor der Teilklasse mit

subadditiven Zielfunktionen. Dieser oberen Schranke stellen wir eine untere Schranke
von 1

β ·
(︁
1 + 1

⌈ 1
β
⌉+1

)︁ entgegen, die für β → 0 strikt ist.
Abschließend genaralisieren wir das Problem der inkrementellen Maximierung und

nehmen an, dass anstelle einer unbekannten Kardinalitätsschranke eine unbekannte
Knapsackschranke gegeben ist. Wir zeigen, dass der strikte kompetitive Faktor dieses
Problems mit monotonen, fraktional subadditiven undM -beschränkten Zielfunktionen im
Intervall [max{φ + 1,M},max{3.293

√
M, 2M}] liegt. Untere Schranken, die wir durch

die zuvor eingeführte Kontinuisierungstechnik erhalten, übertragen sich auf den nicht-
strikten kompetitiven Faktor im Problem mit Knapsackschranke. Also ist der nicht-strikte
kompetitive Faktor dieses Problems wenigstens 2.246. Wir komplementieren diese untere
Schranke mit einer oberen Schranke von φ+ 1.
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Abstract

In incremental maximization, we are tasked with building up a solution over time by
adding elements from a groundset one by one. We want to maximize the monotone
objective value of the assembled solution. However, the information how many elements
may be added to the final solution is only revealed when the last feasible element is added.
Thus, the goal is to give an ordering in which to add the elements such that the value of
the solution in each step is maximized. In this thesis, we investigate this problem in the
sense of competitive analysis and present upper and lower bounds on the competitive
ratio for various subclasses of this problem.
We start by considering a simple greedy algorithm that always adds the element that

yields the largest increase in the objective value. It is known to have a bounded competitive
ratio for various problem classes. We introduce the new class with γ-α-augmentable
objective functions and show that it generalizes multiple subclasses from the literature.
Furthermore, we prove that the greedy algorithm has a competitive ratio of at most
α−(1−c)γ

γ · eα−(1−c)γ

eα−(1−c)γ−1
for this new subclass where c ∈ [0, 1] is the curvature of the objective.

This bound is tight for c = 1.
Next, we consider the subclass of instances with accountable objectives. Accountability

has proven to be a favorable property in incremental maximization. We show that the
competitive ratio of this class is the same as the competitive ratio of the subclass of
separable instances. Separability is a new property that guarantees the problem to have
a simple structure. For its analysis, we introduce a continuization technique that can be
used to show lower bounds on the competitive ratio of this subclass. We utilize it to give
evidence that the known upper bound of φ+ 1 ≈ 2.618 on this competitive ratio might
actually be tight. Here, φ = 1

2(1 +
√
5) is the golden ratio. Furthermore, we use the

continuization technique to show an improved lower bound of 2.246 on the competitive
ratio.
We analyze multiple scaling algorithms for separable problem instances and prove tight

competitive ratios for the deterministic algorithms CardinalityScaling, ValueScaling,
and DensityScaling. We introduce the randomized algorithm RandScaling and show
that it has a randomized competitive ratio of at most 1.772. This upper bound on the
randomized competitive ratio of the subclass of separable instances is complemented with
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a lower bound of 1.357 by using Yao’s principle.
In order to find bounds on the competitive ratio of more and larger problem classes,

we introduce β-accountability, a relaxation of accountability. For the subclass with β-
accountable objective functions, we show an upper bound on the competitive ratio of
1
2β + 1 +

√︂
1

4β2 + 1. Since every subadditive function is 1
2 -accountable, we obtain the first

upper bound on the competitive ratio of the subclass with subadditive objective functions
with a value of 2 +

√
2. We complement the upper bound on the competitive ratio of the

subclass with β-accountable objectives with a lower bound of 1
β ·
(︁
1 + 1

⌈ 1
β
⌉+1

)︁ which is
tight in the limit β → 0.
Lastly, we generalize the incremental maximization problem by considering an unknown

knapsack constraint instead of an unknown cardinality constraint. We show that, for
monotone, fractionally subadditive, and M -bounded objective functions, this problem
has a strict competitive ratio in [max{φ+1,M},max{3.293

√
M, 2M}]. The lower bounds

from the newly introduced continuization technique also yield lower bounds on the non-
strict competitive ratio in the knapsack setting, i.e., the non-strict competitive ratio is at
least 2.246. We complement this with an upper bound of φ+ 1.
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1. Introduction

Consider the development of expansive road or railroad networks, where it is initially
unknown how large the network will be. In the beginning, only a small network can be
constructed that may need to be adapted to larger demands over time. Similarly, corporate
enterprises, such as car rental companies and delivery services, build depots designed
to serve limited areas initially. However, as these businesses thrive, they may want to
expand and build new depots to serve a larger area. With this in mind, it might make
sense to build the first depot a bit off-center so that its service area overlaps less with that
of later depots. In both cases, the challenge is to select an ordering in which to build the
infrastructure - be it networks or depots - such that, at every point in time, it is as good as
possible.
We aim to capture problems like the above with the incremental maximization problem

(IncMax). In this problem, we are given a countable ground set U containing the elements
that can be added to the solution over time, together with a monotone objective function
f : 2U → R≥0 that maps every subset of U to some non-negative value. The function f
is called monotone if, for all A ⊆ B ⊆ U , we have f(A) ≤ f(B). The associated offline
problem to IncMax is cardinality constrained maximization where it is known how many
elements can be added to the solution. We denote the optimum for this problem by

Opt(C) := sup{f(S) | S ⊆ U, |S| ≤ C}.

We assume that Opt(C) ∈ R for all C ∈ N, i.e., that it is not unbounded. Furthermore,
we define the optimum solution O(C) ⊆ U of cardinality C to be a set with |O(C)| ≤ C
and f(O(C)) = Opt(C), where we break ties in an arbitrary but fixed manner.1
In contrast to cardinality constrained maximization, in the online IncMax problem,

the cardinality constraint C ∈ N is not known in advance and only revealed when no
1Note that such a set O(C) does not need to exist if the groundset is infinite. In this case, we define O(C) to
be a set that approximates the value Opt(C) arbitrarily close and satisfies |O(C)| ≤ C. Throughout this
thesis, the sets O(1), O(2), . . . are only used to define algorithms where they are added to the solution
one element at the time. Thus, we only lose the arbitrarily small approximation error in the performance
guarantee of the algorithm.

1



s t

µ(a) = 1

µ(b) = k µ(c) = k

Figure 1.1.: Example of the incremental maximum s-t-flow problem where no incremental
solution with competitive ratio ρ < k exists.

more elements can be added to the solution. An incremental solution X for the Inc-
Max problem is an ordering X = (e1, e2, . . . ) of elements in U . The solution of X for
cardinality C ∈ N is given by X(C) = {e1, . . . , eC}. Since the cardinality constraint C
is not known in the IncMax problem, the solution of X has to be good for every car-
dinality C ∈ N. As it is usual in competitive analysis, we measure the quality of the
incremental solution X using the competitive ratio. We call X ρ-competitive for ρ ≥ 1 if,
for all C ∈ N, we have ρ · f(X(C)) ≥ Opt(C). The competitive ratio of the solution X
is inf{ρ ≥ 1 | X is ρ-competitive}. We call an algorithm Alg for a subclass P of Inc-
Max ρ-competitive for ρ ≥ 1 if the incremental solution of Alg for all instances in P
is ρ-competitive. The competitive ratio of Alg is inf{ρ ≥ 1 | Alg is ρ-competitive}. A
solution/algorithm is called competitive if its competitive ratio is finite. The competitive
ratio of the problem class P is

inf{ρ ≥ 1 | there exists a ρ-competitive algorithm for P}.

As an example, we will consider the incremental maximum s-t-flow problem. Here, the
ground set U corresponds to the set of edges in a directed graph G = (V,E) with two
designated vertices s, t ∈ V . Each edge has a capacity µ(e) ∈ R≥0. The value f(S) of a
subset S ⊆ E is defined as the value of a maximum s-t-flow in GS = (V, S). Even in this
special case, a competitive incremental solution may fail to exist. For illustration, consider
the graph in Figure 1.1. Every incremental solution X has to add edge a first in order to
be competitive. Otherwise, we would have Opt(1) = 1 and f(X(1)) = 0. On the other
hand, every incremental solution that adds edge a first cannot have a competitive ratio
better than k, because for C = 2, we have for Opt(2) = k and f(X(2)) = 1.
This shows that, in general, the competitive ratio of the IncMax problem is unbounded.

Thus, throughout this thesis, we will investigate natural subclasses of the IncMax problem
for which we can show that competitive solutions exist. An instance of IncMax is defined by
giving a ground set U and the monotone objective function f : 2U → R≥0. The subclasses
of IncMax that we will consider in this thesis will be defined by giving properties that

2



objective weights Alg lower bound upper bound

γ-α-augmentable w(e)=1 Greedy
α
γ · eα

eα−1
Cor. 2.22, [15, Thm. 2]

α−(1−c)γ
γ · eα−(1−c)γ

eα−(1−c)γ−1
Thm. 2.17

accountable w(e)=1
- 2.246

Thm. 3.27, [19, Thm. 4]
2.618

[5, Thm. 1]
random. 1.357

Thm. 4.22
1.772

Thm. 4.21, [19, Thm. 5]
subadditive w(e)=1 - 2.246 3.415

Thm. 5.9

β-accountable w(e)=1 - 1
β + 1

β⌈ 1
β
⌉+β

Thm. 5.5

1
2β + 1 +

√︂
1

4β2 + 1

Thm. 5.4
frac. subadditive - - max{2.618,M}

Thm. 6.16, [17, Thm. 1.6]
max{3.292

√
M, 2M}

Thm. 6.8, [20, Thm. 1]

Figure 1.2.: Overview over bounds on the competitive ratio for incremental maximization
under a knapsack constraint for monotone objectives in different settings.
Here, c ∈ [0, 1] is the curvature, andM := maxe1,e2∈U

f({e1})
f({e2}) .

the objectives of the instances in the subclass should have. For example, the subclass
of submodular objectives is the class containing all instances in IncMax that have a
submodular objective function.
In the following, we provide an overview of the structure of this work. For definitions of

the objective properties mentioned, we refer to Definitions 1.2 to 1.5 later in this chapter.
An overview over the most important results in this work and the literature can be found
in Figure 1.2.

overview. First, in Chapter 2 we present the Greedy algorithm for the IncMax problem.
This algorithm is known to have a bounded competitive ratio for the subclass of IncMax
where the objective is the weighted rank function in some independence system [40],
for the subclass of objectives with a bounded submodularity ratio [14], as well as for
the subclass of α-augmentable objectives [5]. We propose the new subclass of IncMax
with γ-α-augmentable objectives, and show that it encompasses all of the aforementioned
problem classes. We give an upper bound of α−(1−c)γ

γ · eα−(1−c)γ

eα−(1−c)γ−1
on the competitive ratio

of this class where c ∈ [0, 1] is the curvature of the objective function. Furthermore, we
show that its competitive ratio generalizes the competitive ratios of the three other classes.
For c = 1, we show that the competitive ratio is tight. The lower bound that we present
can also be used to show that the known upper bound on the competitive ratio of the class
with α-augmentable objectives is tight, which closes a gap left in the analysis in [5].
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In Chapter 3, we turn to the class IncMaxacc, the subclass of IncMax containing the
instances with an accountable objective, and give an improved lower bound on its com-
petitive ratio using a new continuization technique. In order to do this, we introduce the
new subclass IncMaxSep that contains instances where the ground set is partitioned into
subsets and the objective is the maximum over modular functions that each assign the
same value for all elements within one subset and 0 for all other elements. We show that
IncMaxSep has the same competitive ratio as IncMaxacc. We introduce IncMaxCont, a
continuous version of IncMaxSep, where we assume that we have one subset containing c
(fractional) elements for each c > 0 and that the solution may also add fractional elements.
The smooth structure of this problem better lends itself to analysis. We show that lower
bounds on the competitive ratio of this problem are also lower bounds on the competitive
ratio of IncMaxSep. In order to investigate the competitive ratio of IncMaxCont, we
introduce an optimal algorithm for this problem. We present strong evidence that its com-
petitive ratio is not better than φ+1 ≈ 2.618 which would tightly match the known upper
bound on the competitive ratio of IncMaxacc. Here, φ = 1

2(1 +
√
5) is the golden ratio.

Subsequently, we give a lower bound of 2.246 on the competitive ratio of IncMaxCont
that transfers back to the class IncMaxacc and improves upon the best known lower bound
of 2.18 on the competitive ratio of this class.
We continue investigating the problem class IncMaxSep in Chapter 4 and present

multiple deterministic algorithms to solve it. The algorithm CardinalityScaling was
introduced by Bernstein et al. [5] and is currently the best known algorithm for the
problem class IncMaxacc with a known upper bound of φ + 1 on its competitive ratio.
We show that this bound is actually tight. Afterwards, we present two new algorithms,
ValueScaling and DensityScaling, that have a similar idea to CardinalityScaling.
All of these algorithms add optimum solutions of increasing cardinalities where the
cardinalities are scaled such that, from one cardinality to the next, the cardinality, value,
or density increases or decreases at least by some fixed scaling factor. We show that
CardinalityScaling and ValueScaling both have a tight competitive ratio of φ+ 1 and
that DensityScaling has a tight competitive ratio of 4. In the remainder of the chapter,
we consider randomized algorithms for this problem. We introduce the RandScaling
algorithm that operates similar to the CardinalityScaling algorithm but chooses the first
cardinality randomly. We show an upper bound of 1.772 on its randomized competitive
ratio which beats the lower bound of 2.246 that we have shown in Chapter 3 on the
deterministic competitive ratio of IncMaxSep. We complement this upper bound on the
randomized competitive ratio with a lower bound of 1.357 using Yao’s principle.
In Chapter 5, we observe that IncMaxacc does not contain all problem instances in

IncMax with a bounded competitive ratio. For example, the subclass of IncMax of
instances with subadditive objectives yields a bounded competitive ratio and contains

4



instances that are not in IncMaxacc, and vice versa. We propose the new property of
β-accountability, β ∈ (0, 1], a relaxation of accountability, and give upper and lower
bound on the competitive ratio of the class induced by it. For β → 0, these bounds are
tight. Furthermore, we show that this new class subsumes the subclass of IncMax with
subadditive objectives, the subclass with γ-α-augmentable objectives, and the subclass of
accountable objectives. With a value of 2 +

√
2, we obtain the first upper bound on the

competitive ratio of the subclass of IncMax with subadditive objectives.
Lastly, in Chapter 6 we consider a generalization of the IncMax problem where, instead

of an unknown cardinality constraint, we are given an unknown knapsack constraint.
For this, every element has some weight and the goal is to define an ordering of the
elements such that, for each capacity C, the largest prefix with a combined weight of at
most this capacity has a value that is as large as possible. We assume that the objective
function is fractionally subadditive and that the value of single elements in in [1,M ]
for some fixed M ≥ 1. We show upper and lower bounds on the strict and non-strict
competitive ratio of this problem. On the one hand, the strict competitive ratio is in
[max{φ+ 1,M},max{3.293

√
M, 2M}], i.e., it is linearly growing withM . On the other

hand, the non-strict competitive ratio turns out to be in [2.246, φ+ 1], i.e., it is constant.
We remark that the results in Chapter 2 are in large parts based on joint work Yann

Disser [15]. Further, large parts of Chapter 3 as well as Section 4.2 were published together
with Yann Disser, Max Klimm and Kevin Schewior [19]. Lastly, Chapter 6 appeared in
parts as joint work with Yann Disser and Max Klimm [20]. For further information see
the introduction of the respective chapters and sections.

1.1. Related Work

The problem IncMax was first proposed by Bernstein et al. [5]. They consider the natural
Greedy algorithm for this problem and give an upper bound of α eα

eα−1 on its competitive
ratio for the subclass with α-augmentable objective functions, which is tight for α ∈ {1, 2}
and for α→ ∞. Furthermore, they introduce accountable functions. For the subclass of
IncMax induced by this property they show that every algorithm has a competitive ratio of
at least 2.18, and they give a (φ+1)-competitive algorithm where φ = 1

2(1 +
√
5) ≈ 1.618

is the golden ratio. A special case of incremental maximization was investigated by Zhu et
al. [73] where the goal is to incrementally insert edges into a graph such that the number
of internal nodes in the resulting graph is maximized. They provide an algorithm with a
competitive ratio of at most 12

7 ≈ 1.714.
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greedy algorithm. The Greedy algorithm was first studied for the offline variant of
IncMax, which is cardinality constrained maximization. Yet, it does not use any knowl-
edge of the size of the cardinality constraint. Thus, it can also be used for incremental
maximization and results regarding the competitive/approximation ratio of the Greedy
algorithm for one of these problems also hold for the other. The Greedy algorithm is
known to calculate the optimum solution for all weighted rank functions over matroids
due to a result by Rado [63]. Edmonds [23] proved the inverse direction of this state-
ment, i.e., if the Greedy algorithm produces an optimum solution for all weighted rank
functions over some independence system, then the independence system is a matroid.
The combination of these results is often called the Rado-Edmonds theorem. Jenkyns [40]
generalized the upper bound and showed that the Greedy algorithm is 1

q -competitive
for weighted rank functions over an independence system with rank quotient q. This
bound was shown to be tight by Korte and Hausmann [48]. The same result was later
shown by Mestre [55] with a focus on highlighting the structure that yields a competitive
ratio of 1

q . A different relaxation of the matroid constraint was considered by Bouchet [9]
who introduced symmetric matroids and showed that the Greedy algorithm produced
optimum solutions.
Nemhauser et al. [58] considered the performance of the Greedy algorithm for sub-

modular objectives under a cardinality constraint and gave tight bounds of e
e−1 on the

competitive ratio. This was later shown to be best possible for any algorithm that runs in
polynomial time, unless P = NP , due to a result by Feige [26]. For submodular objectives
under the constraint that the solution lies in the intersection of p ∈ Nmatroids, Nemhauser
et al. [59] gave an upper bound of p+ 1 on the competitive ratio. This was later refined
to p+ c by Conforti and Cornuejols [13], where c ∈ [0, 1] is the curvature of the objective.
Since modular functions have a curvature of c = 0, this result also generalizes the result
by Jenkyns [40]. Conforti and Cornuejols also refined the the bound of e

e−1 by Nemhauser
et al. [58] to c ec

ec−1 . The analysis of the Greedy algorithm if only an approximation of the
best element can be added was considered by Goundan and Schulz [34].
Das and Kempe [14] introduced the submodularity ratio as a generalization of sub-

modularity and gave an upper bound of eγ

eγ−1 on the competitive ratio of the Greedy
algorithm under a cardinality constraint for objectives with submodularity ratio at least γ.
This bound was refined by Bian et al. [6] by using the curvature c of the objective. They
gave an upper bound of c eγc

eγc−1 and proved that this is tight. Bernstein et al. [5] intro-
duced α-augmentability as a different generalization of submodularity and gave an upper
bound of α eα

eα−1 on the competitive ratio of the Greedy algorithm in this setting under a
cardinality constraint. They gave a tight lower bound for α ∈ {1, 2}. Krause et al. [50]
considered functions that are given by the minimum of two submodular functions and
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showed that, in general, no competitive solutions exist.
The continuous greedy algorithm was introduce by Vondrák [69] as a randomized

algorithm that achieves an e
e−1 -approximation for combinatorial auctions. Calinescu et

al. [11] showed that the continuous greedy algorithm has a competitive ratio of e
e−1 for

IncMax with a submodular objective functions under any matroid constraint. This was
refined by Vondrák [70] who gave an upper bound of c ec

ec−1 where c is the curvature of the
objective function. Sviridenko et al. [66] show that the continuous greedy has competitive
ratio at most e

e−c for IncMax with a monotone submodular objective function, which was
later shown by Yoshida [72] to also hold under a knapsack constraint. A generalization of
the continuous greedy algorithm was shown to be (e+o(1))-competitive for non-monotone
submodular objectives under a cardinality constraint by Feldman et al. [29]. Buchbinder
et al. [10] improved this upper bound to e− 0.029 and Ene and Nguyen [24] to e− 0.03
each by adapting the algorithm further.
Other variants of the Greedy algorithm include a Greedy algorithm that is combined

with a partial enumeration technique [65] and a Greedy algorithm that is called multiple
times [28].

INCMAX under a knapsack constraint. A generalization of IncMax is a variation of the
problem where, instead of an unknown cardinality constraint, we are given an unknown
knapsack constraint. The competitive ratio of this problem is unbounded but Megow
and Mestre [54] gave an instance sensitive near-optimal solution when the objective
is modular. Under the mild assumption that every item fits into the knapsack, Navarra
and Pinotti [57] were able to show an upper bound of 2 on the competitive ratio of the
problem with a modular objective, which improves to 86

49 if the items have unit densities.
When the objective is modular and we allow to discard items that do not fit into the
knapsack and pack others instead, Disser et al. [18] were able to show that the competitive
ratio is exactly 2 in the general case and φ ≈ 1.618 in the unit density case. Kawase
et al. [45] considered the problem with discarding and a submodular objective. They
gave an 2e

e−1 -competitive randomized algorithm and a 21e
2(e−1) -competitive deterministic

algorithm. This deterministic bound was later improved by Klimm and Knaack [46].
They parameterized their upper bound with the curvature of the objective such that it
generalizes the tight bound by for monotone objectives by Disser et al. [18] and gives a
bound for general submodular objectives of 2.795.

robustness. Incremental Maximization is closely related to robust maximization, where
the goal is to give a solution for a problem that contains a good solution of every cardinality.
Hassin and Rubinstein [38] proposed the problem of robust weighted matching where
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a matching in a weighted graph has to be given that contains a heavy matching of
every cardinality. They showed that this problem has a tight competitive ratio of

√
2.

Matuschke et al. [53] consider randomized algorithms for this problem and provide an
ln(4)-competitive randomized algorithm. A generalization of this problem is the problem
of giving a robust solution in the intersection of two matroids, for which Fujita et al. [30]
provide a

√
2-competitive algorithm. Kakimura and Makino [41] generalized the problem

even further by considering robust solutions in independence systems. Here, they give
a √µ-competitive solution where µ is the exchangeability of the independence system.
Hassin and Segev [39] consider robust paths and trees in a weighted graph and give a
1
α -competitive solution that contains α

1−α2 edges. Robust solutions of knapsack problems
were considered by Kakimura et al. [42] and Kobayashi and Takazawa [47]. Anari et
al. [2] investigated robustness problems with submodular objective function under multiple
combinatorial constraints in online and offline settings, and Orlin et al. [61] provided
approximation guarantees for a setting where an adversary may remove elements and the
objective is monotone and submodular.

related problems. A related problem to IncMax is the problem of incremental maxi-
mization with a sum-objective, where the goal is not to maximize the value of the solution
in every time step but rather the sum of the solution of all previous time steps. Kalinowski
et al. [43] gave a 1.5-competitive algorithm for the special case of incremental maximum
flow. For a subclass of problems containing matchings and matroid intersections, Goemans
and Unda [32] showed an upper bound of (9 +

√
21)/15 on the competitive ratio. In his

PhD thesis, Unda Surawski [68] considered incremental minimization and maximiza-
tion problems with a sum-objective and gave multiple algorithms for various problem
settings, including an e+1

e -competitive algorithm for monotone submodular objectives and
an 2e−1

e -competitive algorithm for maximum weighted matchings.
Incremental maximization was also studied in settings where in each time step the

environment changes. Hartline and Sharp consider this setting with a sum-objective for
bipartite matching, maximum flow, and knapsack [36, 37]. In his PhD thesis, Sharp [64]
considers even more problems, as well as the incremental minimization problem. Thielen
et al. [67] investigate a form of the knapsack problem where in each step the capacity
increases and new items are released and can be added to the solution.
The incremental minimization problem was investigated for various problem classes

including k-center [33], k-median [56, 62, 12], and facility location [62]. A generalized
approach for incremental minimization was given by Lin et al. [52]. They also note that
results for the minimum latency problem, which was studied by Blum et al. [8] and
Goemans and Kleinberg [31], yield results for the incremental k-minimum spanning tree
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problem. Incremental minimization with a sum-objective was investigated by Engel et
al. [25] for minimum spanning trees and by Baxter et al. [4] for shortest paths.

1.2. Notations and Preliminaries

We denote by N = {1, 2, 3, . . . } the set of all natural numbers, by Q the set of all rational
numbers, by R the set of all real numbers, and by C the set of all complex numbers. For a set
of numbers S ∈ {N,Q,R} and some real number r ∈ R, we define S≥r := {s ∈ S | s ≥ r},
and analogously S>r. For k ∈ N, let [k] := {1, 2, . . . , k}, and let [∞] := N. We denote the
golden ratio by φ = 1

2(1 +
√
5) ≈ 1.618.

competitive analysis. Now, we define some variations of the competitive ratio, namely
the non-strict, the strict, and the randomized competitive ratio. The definition of the
strict competitive ratio will coincide with the definition of the competitive ratio in the
introduction. Whenever we talk about the strict competitive ratio and no other competitive
ratios in the same context, we simply write “competitive ratio” throughout this thesis.
Let α ≥ 0. For ρ ≥ 1, we call an incremental solution X non-strictly ρ-competitive with

additive constant α if, for all C ∈ N, we have ρ · f(X(C)) ≥ Opt(C)− α. The non-strict
competitive ratio with additive constant α of the solution X is

inf{ρ ≥ 1 | X is non-strictly ρ-competitive with additive constant α}.

For ρ ≥ 1, we call an algorithm Alg for a problem class P non-strictly ρ-competitive with
additive constant α if the incremental solution of Alg is non-strictly ρ-competitive with
additive constant α for all instances in P. The non-strict competitive ratio with additive
constant α of the algorithm Alg is

inf{ρ ≥ 1 | Alg is non-strictly ρ-competitive with additive constant α}.

The non-strict competitive ratio with additive constant α of a problem class P is

inf{ρ ≥ 1 | there exists a non-strictly ρ-competitive
algorithm with additive constant α for P}.

If the additive constant is α = 0, we call the competitive ratio “strict” instead of “non-
strict” and omit the addition “with additive constant α”.
A randomized algorithm for IncMax is one that picks a deterministic algorithm randomly

according to some distribution over the class of deterministic algorithms and returns
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the incremental solution of this deterministic algorithm. Since the algorithm is chosen
randomly, the incremental solution of the randomized algorithm X = (e1, e2, . . . ) is a
random variable. Similarly, the solution of X for cardinality C ∈ N, X(C) = {e1, . . . , eC}
is a random variable. The randomized competitive ratio of X is

sup
C∈N

Opt(C)
E[f(X(C))]

.

Similar to the definition of the (non-strict) competitive ratio, the randomized competitive
ratio of a problem class is the infimum over the randomized competitive ratios of all
randomized algorithms for this problem class.

Remark 1.1. As it is usual in competitive analysis, we do not only consider algorithms that
have a polynomial running time, but also those with worse running times. Yet, all algorithms
presented in this work can run in polynomial time if we are given an algorithm that returns
the set O(C) for a given C ∈ N in polynomial time.

objective properties. Throughout this thesis, we consider multiple subclasses of IncMax
that are induced by different properties of the objective. In the following, we define some
of these properties. Figure 1.3 gives an overview how the different properties relate to
each other. For the definitions of γ-α-augmentability and β-accountability, we refer to
Definitions 2.3 and 5.1.

Definition 1.2. A function f : 2U → R≥0 is called

• modular if, for all A ⊆ U and e ∈ U , we have f(A ∪ {e}) = f(A) + f({e}),

• submodular if, for all A,B ⊆ U , we have f(A ∪B) + f(A ∩B) ≤ f(A) + f(B),

• subadditive if, for all A,B ⊆ U , we have f(A ∪B) ≤ f(A) + f(B),

• fractionally subadditive if, for all A,B1, . . . , Bk ⊆ U and all α1, . . . , αk ∈ R≥0 with∑︁
i∈[k]:e∈Bi

αi ≥ 1 for all e ∈ A, we have

f(A) ≤
k∑︂

i=1

αif(Bi),

• accountable if, for all finite S ⊆ U , there exists e ∈ S with f(S\{e}) ≥ (1−1/|S|)f(S),
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submodular

BSRWRF

FSA
subadditive

accountable

β-accountable

γ-α-augmentable

Figure 1.3.: Relation of the different objective properties used throughout this paper. We
use the following abbreviations: FSA - fractionally subadditive, WRF - weighted
rank function, BSR - bounded submodularity ratio. For the definitions of
γ-α-augmentability and β-accountability, we refer to Definitions 2.3 and 5.1.
The parameter β ∈ (0, 1] has to be chosen as β = min{1

2 ,
γ
α}.
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• α-augmentable for α ≥ 1 if, for all A,B ⊆ U with B \A ̸= ∅, there exists b ∈ B \A
with

f(A ∪ {b})− f(A) ≥ f(A ∪B)− αf(A)

|B|
.

Note that every modular function is submodular, and every submodular function is
fractionally subadditive [51] and 1-augmentable [5]. Furthermore, every fractionally
subadditive function is subadditive [51].
Definition 1.3 ([14]). The submodularity ratio of f : 2U → R≥0 is (using 0

0 := 1)

γ(f) := inf
A∈2U ,B⊆U\A

∑︁
b∈B(f(A ∪ {b})− f(A))

f(A ∪B)− f(A)
∈ [0, 1].

By definition, submodular functions have submodularity ratio 1.
Definition 1.4 ([6]). The curvature of f : 2U → R≥0 is

1− inf

{︃
f(A ∪B ∪ {e})− f(A ∪B)

f(A ∪ {e})− f(A)

⃓⃓⃓⃓
A,B ⊆ U, e ∈ U \ (A ∪B)

}︃
.

The curvature is a measure how close a function is to being modular. If the curvature
is 0 it is modular, and if it is 1 there are items that completely lose their value when added
to large sets.
Definition 1.5. An independence system is a tuple (U, I), where I ⊆ 2U is closed under
taking subsets and ∅ ∈ I. For a given weight function w : U → R≥0, the weighted rank
function of (U, I) is given by f(X) = max{

∑︁
x∈Y w(x)|Y ∈ I ∩ 2X}. The set B(X) of all

bases of some set X ⊆ U is defined to be the set of inclusion-wise maximal subsets of I ∩ 2X ,
i.e., B(X) := {B ∈ I∩2X |∀x ∈ X \B : B∪{x} /∈ I}. The rank quotient of an independence
system (U, I) is q(U, I) := minX⊆U minB,B′∈B(X) |B|/|B′|, where we set 0

0 := 1.

The weighted rank function of an independence system can be represented as the
maximum over modular functions and is therefore fractionally subadditive [1].

graphs. We denote a directed graph by G = (V,E) where V is the vertex set and
E ⊆ V × V the edge set. For a vertex v ∈ V , we define δ+(v) := ({v} × V ) ∩ E to
be the set of outgoing edges from v, and δ−(v) := (V × {v}) ∩ E to be the set of incoming
edges to v. A flow in G with respect to a capacity function µ : E → R≥0 is a function
ϑ : E → R≥0 that satisfies

ϑ(e) ≤ µ(e) ∀e ∈ E (capacity constraint),
exϑ(v) = 0 ∀v ∈ V (flow conservation),
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where the excess of a vertex v ∈ V is defined as

exϑ(v) :=
∑︂

e∈δ−(v)

ϑ(e)−
∑︂

e∈δ+(v)

ϑ(e),

and the excess of a set V ′ ⊆ V is exϑ(V ′) =
∑︁

v∈V ′ exϑ(v). Let G = (V,E) be a directed
graph with a designated source s ∈ V and a set of sinks T ⊆ V \ {s}. An s-T -flow in G
with respect to a capacity function µ : E → R≥0 is a function ϑ : E → R≥0 that satisfies

ϑ(e) ≤ µ(e) ∀e ∈ E (capacity constraint),
exϑ(v) = 0 ∀v ∈ V \ ({s} ∪ T ) (flow conservation),
exϑ(t) ≥ 0 ∀t ∈ T (T are sinks).

A maximum s-T -flow ϑ∗ : E → R≥0 is an s-T -flow that maximizes the excess of T , i.e.,
exϑ∗(T ) = max{exϑ(T ) | ϑ is an s-T -flow in G}. If T contains only one vertex T = {t},
we may also write s-t-flow instead of s-T -flow.

a useful estimate. We will often encounter sequences (c1, c2, . . . ) where every value
in the sequence is at least as large as the previous value multiplied by some δ > 0. The
following estimate will be useful in this context.

Lemma 1.6. Let δ > 1 and (c1, . . . , ck) with ci+1 ≥ δci for all i ∈ [k − 1]. Then∑︁k
i=1 ci <

δ
δ−1ck. In particular, if δ = φ+ 1, we have

∑︁k
i=1 ci < φck.

Proof. The fact that, for all i ∈ [k− 1], we have ci+1 ≥ δci yields ck ≥ δk−ici for all i ∈ [k].
We obtain

k∑︂
i=1

ci ≤ ck

k∑︂
i=1

1

δk−i
< ck

∞∑︂
i=1

1

δk−i
=

1

1− 1
δ

ck =
δ

δ − 1
ck.

If δ = φ+ 1, we have
δ

δ − 1
=
φ+ 1

φ
=
φ2

φ
= φ.
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2. The Greedy Algorithm

Probably, the most natural approach to define an incremental solution for the IncMax
problem is to add the elements of U one by one, and, in each step, to choose the element
that yields the largest increase in the objective value.1 The algorithm that does this is the
Greedy algorithm. For i ∈ N, it iteratively chooses elements

ei ∈ argmaxe∈U\{e1,...,ei−1}f({e1 . . . , ei−1, e}).

If the choice is not unique, it chooses an element from the set in an arbitrary but fixed
way. The incremental solution of the Greedy algorithm is XG := (e1, e2, . . . ). Note that
we have XG(i) = {e1, . . . , ei} for all i ∈ N. While this algorithm is widely used in practical
applications, the competitive ratio of the Greedy algorithm can be arbitrarily bad. To see
this, consider the following example.
Example 2.1. Let k ∈ N, and let U1, U2 be disjoint sets with |U1| = |U2| = k. We define
U := U1 ∪ U2 and, with ε ∈ (0, 1k ], the objective function

f(S ⊆ U) :=

{︄
0, if S = ∅,
max{1 + |S ∩ U1|ε, |S ∩ U2|}, else.

We set the (unknown) capacity constraint to be C = k. The first element added by the Greedy
algorithm is one from the set U1 because it increases the objective value by 1 + ε, while the
elements from set U2 increase the objective value only by 1. In the following k − 1 iterations,
the Greedy algorithm adds the remaining elements from U1 because they each increase the
objective value by ε, while the elements from U2 do not increase the objective value. After k
steps, the value of the greedy solution is 1 + kε ≤ 2, while the optimum solution is the set U2

with a value of k. As we can choose k ∈ N arbitrarily large, the competitive ratio of the
Greedy algorithm can be arbitrarily bad.
1If the groundset is infinitely large, such an element might not exists. In this case, we can instead add an
arbitrarily good approximation. The competitive ratio of the Greedy algorithm is negligibly worse. Thus,
throughout the chapter we assume that there always exists an element maximizing the marginal value
when it is added.
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A natural question in this context is, for which objective functions f the Greedy
algorithm gives a good solution, i.e., one with a bounded competitive ratio. We are
interested in characterizing these objective functions.
A well-known class of functions for which the Greedy algorithm has a bounded com-

petitive ratio of (exactly) e
e−1 are the monotone, submodular functions [58]. This class

includes, for example, the maximum coverage problem, but fails to capture many other
greedily approximable settings. See Figure 2.1 along with the following.
Das and Kempe [14] introduced the class of functions with bounded submodularity ratio

(cf. Definition 1.3) as a generalization of submodular functions. This class was further
generalized by Bian et al. [6] to the class of functions with bounded weak submodularity
ratio.
Definition 2.2 ([6]). The weak submodularity ratio of f : 2U → R≥0 is (using 0

0 := 1)

γ(f) := inf
A∈{XG(0),XG(1),... },B⊆U\A

∑︁
b∈B(f(A ∪ {b})− f(A))

f(A ∪B)− f(A)
∈ [0, 1].

Das and Kempe [14] showed an upper bound of eγ

eγ−1 on the competitive ratio of
the Greedy algorithm for the set of all monotone functions with submodularity ratio at
least γ > 0. Bian et al. [6] extended this to a tight bound that is additionally parameterized
by the curvature c of the objective. This tight bound is c ecγ

ecγ−1 . Since submodular functions
have submodularity ratio 1 and curvature c ∈ [0, 1], this bound generalizes the submodular
bound. Crucially, it is easy to verify that these results carry over to the set F̃γ of all
monotone functions with weak submodularity ratio at least γ > 0.2
Bernstein et al. [5] proposed another generalization of submodularity, α-augmentability

(cf. Definition 1.2). They showed that the Greedy algorithm has a competitive ratio of at
most α · eα

eα−1 on the set Fα of monotone, α-augmentable functions, for α ≥ 1, and that
this bound is tight for α ∈ {1, 2} and in the limit α → ∞. Since submodular functions
are 1-augmentable, this bound again generalizes the submodular bound. The class of α-
augmentable problems captures the objective of the maximum (weighted) α-dimensional
matching problem, which is not submodular. In this chapter, we introduce a natural
α-commodity flow variant that is α-augmentable, and we prove a tight lower bound on
the competitive ratio for all α ≥ 1.
Another, well-known setting, besides submodularity, where the Greedy algorithm

has a bounded competitive ratio, are weighted rank functions of independence systems
of bounded rank quotient [49] (cf. Definition 1.5). Jenkyns [40] and Korte and Haus-
mann [48] showed that the Greedy algorithm has a competitive ratio of exactly 1/q on
2Here and throughout we use the notation F̃ as opposed to F to refer to a function class based on a weak
definition.
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Figure 2.1.: Relation of the different problem classes (nodes) and objective properties
(ellipses). Anything that is contained within one ellipse has the property the
ellipse stands for. Newly introduced classes and problems are marked in red
with dashed lines and round nodes. The parameter k′ is chosen sufficiently
large, depending on γ and α.

the set Fq of all weighted rank functions of independence systems with rank quotient at
least q > 0.3
The goal of this chapter is to unify and to generalize the above classes of functions for

which the Greedy algorithm has a bounded approximation ratio.
In Section 2.1 we introduce a natural α-augmentable variant of multi-commodity flow.

Besides the α-dimensional matching problem, to our knowledge, this problem is the only
other natural α-augmentable problem to date. We will construct a family of instances
of this problem that yield a tight lower bound for the competitive ratio of the Greedy
algorithm on the class of monotone and α-augmentable problems for α ∈ N. This closes
3Note that we abuse notation, since, e.g., Fα ̸= Fq for α = q = 1. However, the set of functions we are
referring to will always be clear by the naming of the indices.
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the gap left [5] for α ∈ N≥3.
In Section 2.2 we will observe that each of the classes F̃γ , Fα, and Fq captures greed-

ily approximable objectives that are not contained in either of the other two classes
(cf. Figure 2.1). This motivates the definition of the following property.

Definition 2.3. The function f : 2U → R≥0 is γ-α-augmentable for γ ∈ (0, 1] and α ≥ γ if,
for all A,B ⊆ U with B \A ̸= ∅, there exists b ∈ B with

f(A ∪ {b})− f(A) ≥ γf(A ∪B)− αf(A)

|B|
.

We call f weakly γ-α-augmentable if this only holds for all A ∈ {XG(0), XG(1), . . . }.

In order to capture as many functions as possible, we will consider the weak variant
of this definition, which enforces its defining property only for “greedy sets”. However,
any upper bound on the approximation ratio immediately carries over to the same bound
in the stronger definition. Also note that γ-α-augmentability only requires α ≥ γ, unlike
α-augmentability where α ≥ 1. This is in line with the definitions of α-augmentability
where γ = 1 and of the submodularity ratio where α = γ. We let F̃γ,α denote the set of
all weakly γ-α-augmentable functions.
Finally, in Section 2.3 we show that the function class F̃γ,α contains the other three

classes F̃γ , Fα, and Fq, as well as additional functions (cf. Figure 2.1). We show that the
competitive ratio of the Greedy algorithm for IncMax problems with γ-α-augmentable
objective with curvature c (cf. Definition 1.4) is at most α−(1−c)γ

γ · eα−(1−c)γ

eα−(1−c)γ−1
which

recovers the known upper bounds for the class of monotone, α-augmentable functions,
and for the class of monotone functions of bounded (weak) submodularity ratio with
curvature c. For curvature c = 1, we show that this bound is tight. For γ = 1, the tight
lower bound is obtained with an α-augmentable function. This means that, in particular,
we are able to close the gap left in [5] by showing a tight lower bound for monotone,
α-augmentable objectives for all α ≥ 1. Lastly, we recover the upper bound for the
competitive ratio of the Greedy algorithm on the class of weighted rank functions of some
independence system by showing that, for γ-α-augmentable weighted rank functions, the
competitive ratio is α

γ .
An extended abstract with most of the results in this chapter was published in [15] and

a full version will soon appear in [16]. A new result in this thesis is the introduction of
the dependency on the curvature in Theorem 2.17.
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2.1. The MULTI-SINK α-COMMODITY FLOW problem

In this section, we introduce a natural α-commodity flow problem that models, e.g.,
production processes where the output is limited by availability of all components. The
objective of this problem is (exactly) α-augmentable, but, for α ∈ N \ {1}, does not have
a bounded (weak) submodularity ratio and cannot be expressed as a weighted rank
function over an independence system. We will show that this problem also gives a tight
lower bound for the competitive ratio of the Greedy algorithm on the class of monotone,
α-augmentable functions, for α ∈ N. We will extend this lower bound to all α ≥ 1 in
Section 2.3.1, and thus close a gap left in [5].
We extend the notion of s-T -flows to multi-commodity flows, where each commodity

has an independent capacity function.
Definition 2.4. Let α ∈ N and G = (V,E) be a graph with s ∈ V and T ⊆ V . Furthermore,
let µ = (µi : E → R≥0)i∈[α] be capacity functions. A multicommodity-flow in G w.r.t. µ is
a tuple ϑ = (ϑ1, . . . , ϑα), where ϑi is an s-T -flow in G with respect to capacity function µi.
The minimum-excess of a sink vertex t ∈ T in ϑ is

minexϑ(t) := min
i∈[α]

exϑi
(t).

For convenience, we define µ(u, v) := µ((u, v)) and ϑ(u, v) := ϑ((u, v)) For T ′ ⊆ T , we
let minexϑ(T

′) :=
∑︁

t∈T ′ minexϑ(t) in the following.
An instance of the problem Multi-Sink α-Commodity Flow, for α ∈ N, is given by a

tuple (G, s, T,µ), where G = (V,E) is a directed graph, s ∈ V is a source vertex, T ⊆ V
is a set of sink vertices, and µ = (µi : E → R≥0)i∈[α] are capacity functions. The problem
is to find a subset of sinks S ⊆ T with |S| ≤ k that maximizes the objective function

f(S) = max
ϑ∈MG,µ

minexϑ(S),

whereMG,µ denotes the set of all multicommodity-flows in G w.r.t. capacities µ.
Example 2.5. For a prototypical application of Multi-Sink α-Commodity Flow, consider a
factory where k ∈ N machines are to be built in a set T of potential locations. Each machine
produces the same item and needs a number α ∈ N of different resources. The output of a
machine is limited by the resource it has available the least. All resources are delivered to the
machines along different routes within the factory, e.g., some liquids might be transported
via pipes, other resources might be transported on a conveyor belt or on pallets. The objective
is to determine in which k locations the machines should be constructed in order to maximize
overall production.
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Theorem 2.6. For every α ∈ N, the objective of Multi-Sink α-Commodity Flow is monotone
and α-augmentable.

Proof. Let A ⊆ T and t ∈ T \A. To prove monotonicity, fix some multicommodity-flow ϑ
withminexϑ(A) = f(A). By definition,minexϑ(A) ≤ minexϑ(A ∪ {t}) ≤ f(A ∪ {t}) holds
and thus f is monotone.
To show α-augmentability, let (G, s, T, µ) be an instance of Multi-Sink α-Commodity

Flow. Let A,B ⊆ T such that B′ := B \A ̸= ∅. We show that there exists b ∈ B′ with

f(A ∪ {b})− f(A) ≥ f(A ∪B′)− αf(A)

|B′|
.

This suffices because, with

f(A ∪B′)− αf(A)

|B′|
=
f(A ∪B)− αf(A)

|B′|
≥ f(A ∪B)− αf(A)

|B|
,

α-augmentability of f follows.
Let ϑA∪B′

= (ϑA∪B′
1 , . . . , ϑA∪B′

α ) be a multicommodity-flow in G that maximizes
the minimum-excess minex

ϑA∪B′ (A ∪ B′), i.e., minex
ϑA∪B′ (A ∪ B′) = f(A ∪ B′), such

that ϑA∪B′
i is a maximum s-(A ∪ B′)-flow w.r.t. capacity µi for all i ∈ [α]. Such a

multicommodity-flow can, for example, be obtained by augmenting a flow that maxi-
mizes minex

ϑA∪B′ (A ∪ B′) with the Edmonds-Karp algorithm (cf. [49]). Furthermore,
we let ϑA = (ϑA1 , . . . , ϑ

A
α ) be a multicommodity-flow in G with minexϑA(A) = f(A), as

well as exϑA
i
(A) = f(A) and exϑA

i
(T \ A) = 0 for all i ∈ [α], i.e., ϑA maximizes the

minimum-excess of the set A while the values of all flows ϑAi are as small as possible. This
multicommodity-flow can be obtained by reducing the flows of a multicommodity-flow
that maximizesminexϑA(A∪B′) along paths of a path decomposition of the flow (cf. [49]).
We define the function g : A → [α], such that, for all x ∈ A, no flow ϑ̃ w.r.t. capacity
µg(x) exists with exϑ̃(x

′) ≥ exϑA
g(x)

(x′) for all x′ ∈ A \ {x} and with exϑ̃(x) > exϑA
g(x)

(x).
This means that the flow ϑAg(x) is one of the flows limiting the value of minexϑA(x). Let
g−1(i) = {x ∈ A | g(x) = i} for all i ∈ [α] be the preimage of g. Obviously

α⋃︂
i=1

g−1(i) = A. (2.1)

We add a super sink t to G and, with Ṽ := V ∪{t} and Ẽ := E ∪{(v, t) | v ∈ (A∪B′)},
let G̃ = (Ṽ , Ẽ) denote the resulting graph. Furthermore, we define the capacity functions
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µ̃i : Ẽ → R≥0 for all i ∈ [α] such that, for (u, v) ∈ Ẽ,

µ̃i(u, v) :=

⎧⎪⎪⎨⎪⎪⎩
µi(u, v), if (u, v) ∈ E,

max{exϑA
i
(u), ex

ϑA∪B′
i

(u)}, if (u, v) ∈ A× {t},
ex

ϑA∪B′
i

(u), if (u, v) ∈ B′ × {t}.

Now we extend the flow ϑA∪B′ to a flow ϑ̃
A∪B′

in G̃, such that, for all i ∈ [α] and
(u, v) ∈ Ẽ,

ϑ̃
A∪B′

i (u, v) :=

{︄
ϑA∪B′
i (u, v), if (u, v) ∈ E,

ex
ϑA∪B′
i

(u), else,

holds, and analogously, we extend the flow ϑA to a flow ϑ̃
A in G̃. With this defini-

tion, ϑ̃A∪B′

i is a maximum s-t-flow w.r.t. capacity µ̃i, because ϑA∪B′
i is a maximum s-

(A ∪B′)-flow w.r.t. capacity µi.
For i ∈ [α], let ϑ̃i be a maximum s-t-flow w.r.t. capacity µ̃i in G̃ obtained from ϑ̃

A
i by

using the Edmonds-Karp algorithm. Then its value is exactly
ex

ϑA∪B′
i

(A ∪B′)

because ϑA∪B′
i is a maximum s-(A ∪B′)-flow. We project ϑ̃i onto a flow in G, i.e., we set

ϑi := ϑ̃i|E for i ∈ [α] and define ϑ := (ϑ1, . . . , ϑα). For all x ∈ A, by definition of ϑ, we
have exϑi

(x) ≥ exϑA
i
(x), and thus, by definition of g,

exϑg(x)
(x) = exϑA

g(x)
(x). (2.2)

Because ϑ̃i is a maximum s-t-flow in G̃ w.r.t. capacity µ̃i, ϑi is a maximum s-(A∪B′)-flow
w.r.t. capacity µi in G. Since ϑA∪B′

i is also a maximum s-(A ∪B′)-flow w.r.t. capacity µi,
we have

exϑi
(A ∪B′) = ex

ϑA∪B′
i

(A ∪B′). (2.3)

For all x ∈ A, we know that the excess of x in ϑi is as large as the flow ϑ̃i(x, t), i.e.,
exϑi

(x) = ϑ̃i(x, t) ≤ µ̃i(x, t)

= max{exϑA
i
(x), ex

ϑA∪B′
i

(x)}

≤ exϑA
i
(x) + ex

ϑA∪B′
i

(x). (2.4)

By maximality of ϑA and because exϑi
(x) ≥ exϑA

i
(x) for all x ∈ A, we have

minexϑ(A) = minexϑA(A) = f(A). (2.5)
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Since A ∩B′ = ∅, we obtain

ex
ϑA∪B′
i

(B′)− exϑi
(B′)

= ex
ϑA∪B′
i

(A ∪B′)− exϑi
(A ∪B′)− ex

ϑA∪B′
i

(A) + exϑi
(A)

(2.3)
= exϑi

(A)− ex
ϑA∪B′
i

(A)

=
∑︂

x∈A\g−1(i)

(︁
exϑi

(x)− ex
ϑA∪B′
i

(x)
)︁
+

∑︂
x∈g−1(i)

(︁
exϑi

(x)− ex
ϑA∪B′
i

(x)
)︁

(2.4),(2.2)
≤

∑︂
x∈A\g−1(i)

exϑA
i
(x) +

∑︂
x∈g−1(i)

(︁
exϑA

i
(x)− ex

ϑA∪B′
i

(x)
)︁

= f(A)−
∑︂

x∈g−1(i)

ex
ϑA∪B′
i

(x), (2.6)

where we used minimality of ϑA. Using this we can compute

minex
ϑ
A∪B′ (B′) =

∑︂
b∈B′

min
i∈[α]

{︁
ex

ϑA∪B′
i

(b)
}︁

=
∑︂
b∈B′

min
i∈[α]

{︁
exϑi

(b) +
(︁
ex

ϑA∪B′
i

(b)− exϑi
(b)
)︁}︁

≤
∑︂
b∈B′

(︄
min
i∈[α]

{︁
exϑi

(b)
}︁
+

α∑︂
i=1

(︁
ex

ϑA∪B′
i

(b)− exϑi
(b)
)︁)︄

= minexϑ(B
′) +

α∑︂
i=1

(︁
ex

ϑA∪B′
i

(B′)− exϑi
(B′)

)︁
(2.6)
≤ minexϑ(B

′) +
α∑︂

i=1

(︄
f(A)−

∑︂
x∈g−1(i)

ex
ϑA∪B′
i

(x)

)︄
(2.1)
= minexϑ(B

′) + αf(A)−
∑︂
x∈A

ex
ϑA∪B′
g(x)

(x). (2.7)
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Finally, because A ∩B′ = ∅, we get

f(A ∪B′) = minex
ϑ
A∪B′ (A) + minex

ϑ
A∪B′ (B′)

=
∑︂
x∈A

(︁
min
i∈[α]

ex
ϑA∪B′
i

(x)
)︁
+minex

ϑA∪B′ (B′)

(2.7)
≤

∑︂
x∈A

ex
ϑA∪B′
g(x)

(x) + minexϑ(B
′) + αf(A)−

∑︂
x∈A

ex
ϑA∪B′
g(x)

(x)

=
∑︂
b∈B′

minexϑ(b) + αf(A),

which is equivalent to ∑︂
b∈B′

minexϑ(b) ≥ f(A ∪B′)− αf(A). (2.8)

Now, we show that f(A ∪ {b})− f(A) ≥ minexϑ(b) for all b ∈ B′, which will complete
the proof, because then⃓⃓

B′⃓⃓ (︁max
b∈B′

f(A ∪ {b})− f(A)
)︁

≥
∑︂
b∈B′

(f(A ∪ {b})− f(A))

≥
∑︂
b∈B′

minexϑ(b)

(2.8)
≥ f(A ∪B′)− αf(A).

In order to show that f(A∪{b})−f(A) ≥ minexϑ(b) holds for all b ∈ B′, let b ∈ B′. Since
A ∩B′ = ∅, we have

minexϑ(A ∪ {b}) = minexϑ(A) + minexϑ(b)
(2.5)
= f(A) + minexϑ(b).

Furthermore, we have f(A∪{b}) ≥ minexϑ(A∪{b}) because ϑ is a multicommodity-flow
in G. Combining these two insights yields f(A ∪ {b})− f(A) ≥ minexϑ(b). Thus, we can
conclude that f is α-augmentable.

Proposition 2.7. For every γ, q ∈ (0, 1), and α ∈ N≥2, there exists an instance ofMulti-Sink
α-Commodity Flow where the objective is not in F̃γ ∪ Fq.
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s

v1

v2

t1

t2

t3

(1+ε, 0)

(0, 1+ε)

(0, 1)

(1, 0)

(1, 0)

(1, 0)

(0, 1)

(0, 1)

Figure 2.2.: An instance ofMulti-Sink α-Commodity Flow for α = 2where the objective
has an arbitrarily small (weak) submodularity ratio and cannot be modeled
as weighted rank function of some independence system.

Proof. Wewill define such an instance ofMulti-Sink α-Commodity Flow (cf. Figure 2.2).
Let

T := {t1, t2, t3},
V := {s, v1, v2} ∪ T,
E := {(s, v1), (s, v2), (s, t1), (s, t3), (v1, t1), (v1, t2), (v2, t2), (v2, t3)},
G := (V,E),

and, with 0 < ε < γ
2 , let

µ : E → Rα
≥0, µ(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + ε, 0, 0, . . . , 0), if e = (s, v1),

(0, 1 + ε, 1 + ε, . . . , 1 + ε), if e = (s, v2),

(1, 0, 0, . . . , 0), if e ∈ {(s, t3), (v1, t1), (v1, t2)},
(0, 1, 1, . . . , 1), else.

With proper tie breaking (or by adding small extra capacities), the Greedy algorithm
picks the sink t2 in the first iteration. Adding any other sink to this increases the objec-
tive value by ε, i.e., for all t ∈ T , we have∑︁t∈T (f(X

G(1) ∪ {t})− f(XG(1))) = 2ε. But
since f(XG(1) ∪ {t1, t3})− f(XG(1)) = 1, the weak submodularity ratio of this problem
is 2ε

1 < γ.
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If f could be modeled as the weighted rank function of some independence system, the
corresponding weight function would have to satisfy w(t1) = w(t2) = w(t3) = 1 because
each sink alone has a minimum-excess of 1. Yet, we have f({t1, t2}) = 1 + ε. This cannot
be possible if f is the weighted rank function of some independence system, as, in this
case, we would have f({t1, t2}) ∈ {0, 1, 2}, depending on which sets are independent.

We will now construct a family of instances of the Multi-Sink α-Commodity Flow
problem to show a tight lower bound on the competitive ratio of the Greedy algorithm
for the class of monotone, α-augmentable objectives for α ∈ N.
Forα = 2, theMulti-Sink α-Commodity Flow problem is equivalent to the BridgeFlow

problem that was used in [5] to show the tight lower bound for α = 2. We generalize the
tight lower bound construction for BridgeFlow to arbitrary α ∈ N.
For k ∈ N, k ≥ 2 we let x := k

k−1 . Now, we define the graphs Gk = (Vk, Ek) (cf. Fig-
ure 2.3) via

Vk := {s, v1, . . . , vαk, t1, . . . , t2αk},
E1

k,i := {(s, t(α+i−1)k+1), . . . , (s, t(α+i)k)},
E∞

k,i := {(s, tαk+1), . . . , (s, t2αk)} \ E1
k,i,

Ek,i,j := {(s, vj), (vj , tj)}∀j ∈ [αk],

E′
k,i,j := {(vj , t(α+i−1)k+1), . . . , (vj , t(α+i)k)}∀j ∈ [αk],

Ek,i := E1
k,i ∪ E∞

k,i ∪
αk⋃︂
j=1

Ek,i,j ∪
αk⋃︂
j=1

E′
k,i,j ,

Ek :=
α⋃︂

i=1

Ek,i,

capacity functions µk = (µk1, . . . , µ
k
α) with µki : Ek → R≥0 for i ∈ [α] and

µki (e) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if e ∈ E1
k,i,

∞, if e ∈ E∞
k,i,

xαk−j+1, if e ∈ Ek,i,j for some j ∈ [αk],
1
kx

αk−j+1, if e ∈ E′
k,i,j for some j ∈ [αk],

0, else.

Note that only the edges in Ek,i allow a flow of commodity i. We define s to be the source
vertex and T := {t1, . . . , t2αk} to be the set of sink vertices.
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∞

1
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∞

Figure 2.3.: The graph Gk only with edges from Ek,i and capacities µki .
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In the next proof we will need the following observation: Using x = k
k−1 and with i ∈ N

the equation

1 +
1

k

i∑︂
j=1

xj = 1 +
1

k

(︃
xi+1 − 1

x− 1
− 1

)︃
= 1 +

1

k

(︄(︁
k

k−1

)︁i+1 − 1(︁
k

k−1

)︁
− 1

− 1

)︄

= 1 +
1

k

(︃
(k − 1)

(︃(︃
k

k − 1

)︃i+1

− 1

)︃
− 1

)︃
= 1 +

(︃
k

k − 1

)︃i

− 1

k
((k − 1) + 1) =

(︃
k

k − 1

)︃i

= xi (2.9)

holds.
We will now show in which order the Greedy algorithm picks the vertices from the

set T . We assume that the tie-breaking works out in our favor. This can be achieved by
introducing small offsets to the capacities. For better readability we omit this here.
Lemma 2.8. Let α, k ∈ N and ℓ ∈ [αk]. In iteration ℓ, the Greedy algorithm picks sink
vertex tℓ. A multicommodity-flow ϑ = (ϑ1, . . . , ϑα) that maximizes the minimum-excess of
the vertices {t1, . . . , tℓ} fully saturates all edges in Ek,i,j for all i ∈ [α] and j ∈ [ℓ].

Proof. We will prove the statement by induction. In iteration ℓ = 1, the gain of picking
vertex tj with j ∈ [αk] is xαk−j+1, because for all i ∈ [α] we can have a flow of value
xαk−j+1 of commodity i from s via vj and the edges in Ek,i,j to tj and no more flows to tj
are possible, since the only incoming edge to tj , which allows a flow of commodity i, is
the edge (vj , tj) ∈ Ek,i,j . For j ∈ {αk + 1, . . . , 2αk}, the gain of picking vertex tj is the
minimum of all commodities flowing to tj and there is only one commodity which does
not allow an unbounded flow to tj , because for i ∈ [α] \

{︁⌈︁ j−α
k

⌉︁}︁ there is an edge from si
to tj in E′

k,i,j with infinite capacity for commodity i. The maximum flow of the commodity
with a finite flow to tj is

1 +
1

k

αk∑︂
j=1

xj
(2.9)
= xαk,

and, thus, with proper tie-breaking, the Greedy algorithm chooses vertex t1. For i ∈ [α],
the only incoming path that allows a flow of commodity i from s to t1 is along the edges
in Ek,i,1, so they have to be fully saturated by a multicommodity-flow with maximum
minimum-excess.
Now suppose the statement is true for some ℓ ∈ [αk − 1], i.e., the Greedy algorithm

has picked edges t1, . . . , tℓ and a multicommodity-flow with maximum minimum-excess
of the vertices {t1, . . . , tℓ} fully saturates all edges in Ek,i,j for all i ∈ [α] and j ∈ [ℓ]. Then
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the gain of picking vertex tj for j ∈ {ℓ+ 1, . . . , αk} is still xαk−j+1, because all s-tj-paths
for i ∈ [α] do not carry flow that contributes to the maximum minimum-excess. The gain
of picking vertex tj for j ∈ {αk + 1, . . . , 2αk} is still the minimum of all commodities
flowing to tj , and again there is only one commodity which does not allow an unbounded
flow to tj . Because all incoming flow at vertices v1, . . . , vℓ already saturates all incoming
edges, there is no flow of this commodity via a vertex in {v1, . . . , vℓ} to tj possible without
reducing the minimum-excess of another sink vertex by the same amount. Thus, the
maximal flow of this commodity to tj is

1 +
1

k

αk−ℓ∑︂
j=1

xj
(2.9)
= xαk−ℓ,

so, with proper tie-breaking, the Greedy algorithm picks vertex tℓ+1 next. For i ∈ [α] and
j ∈ [ℓ], the only incoming path that allows a flow of commodity i from s to tj is along
the edges in Ek,i,j , so they have to be fully saturated by a multicommodity-flow with
maximum minimum-excess.

This enables us to calculate the competitive ratio of the Greedy algorithm for this
instance of Multi-Sink α-Commodity Flow, which gives us a lower bound for the com-
petitive ratio of the Greedy algorithm for the Multi-Sink α-Commodity Flow problem.

Proposition 2.9. For α ∈ N, the Greedy algorithm has a competitive ratio of at least α eα

eα−1
for Multi-Sink α-Commodity Flow.

Proof. We will consider the (unknown) cardinality constraint C = αk. By Lemma 2.8, the
Greedy algorithm picks the sinks t1, . . . , tαk in the first αk iterations and the objective
increases by xαk−j+1 when sink vertex tj is picked and thus the minimum-excess of the
greedy solution is

f(XG(k)) =
αk∑︂
j=1

xj
(2.9)
= k(xαk − 1).

We compare this to the solution that picks the vertices tαk+1, . . . , t2αk (which is, in fact,
an optimum solution for cardinality αk). Increasing the flow to one of these vertices does
not reduce the flow to the others, so the minimum-excess of any of these vertices is

1 +
1

k

αk∑︂
j=1

xj
(2.9)
= xαk,
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and their combined minimum-excess thus is (αk)xαk. Using this and x = k
k−1 , we calculate

the ratio between this solution and the greedy solution to get

αkxαk

k(xαk − 1)
= α

xαk

xαk − 1
= α

(︁
k

k−1

)︁αk(︁
k

k−1

)︁αk − 1
= α

(︁(︁
k

k−1

)︁k)︁α(︁(︁
k

k−1

)︁k)︁α − 1
.

Using the identity limk→∞(k/(k − 1))k = e, we obtain the limit

lim
k→∞

α

(︁(︁
k

k−1

)︁k)︁α(︁(︁
k

k−1

)︁k)︁α − 1
= α

eα

eα − 1
.

AsMulti-Sink α-Commodity Flow is monotone and α-augmentable, we obtain a lower
bound for the competitive ratio of the Greedy algorithm on Fα for α ∈ N that tightly
matches the upper bound of [5].

Corollary 2.10. For α ∈ N, the competitive ratio of the Greedy algorithm for IncMax with
α-augmentable objectives is exactly α · eα

eα−1 .

In particular, it follows that the objective of Multi-Sink α-Commodity Flow is not
α′-augmentable for any α′ < α. We will generalize the lower bound to all α ≥ 1 in
Section 2.3.1.

2.2. Separating Function Classes

In this section we will show that the function classes F̃γ ,Fα, andFq each contain functions
that are not in either of the other two function classes, i.e., we show the following.

Theorem 2.11. For every γ, q ∈ (0, 1) and α ∈ N, α ≥ 2, it holds that

F̃γ ⊈ (Fα ∪ Fq) and Fα ⊈ (F̃γ ∪ Fq) and Fq ⊈ (F̃γ ∪ Fα).

Note that we only show this for α ∈ N≥2. The case α ≥ 1 will be addressed in
Section 2.3.1.
We start with the second part, i.e., we separateFα for α ∈ N≥2. This follows immediately

from Theorem 2.6 and Proposition 2.7.

Proposition 2.12. For every γ, q ∈ (0, 1), and α ∈ N≥2, it holds that Fα ⊈ (F̃γ ∪ Fq).
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Proof. Let γ, q ∈ (0, 1), and α ∈ N≥2. By Theorem 2.6, every objective of an instance
of Multi-Sink α-Commodity Flow is α-augmentable. By Proposition 2.7, there exists
an instance of Multi-Sink α-Commodity Flow, where the objective is not in F̃γ ∪ Fq.
Combining this yields the desired result.

We proceed to show the first and third part of Theorem 2.11 (for all α ≥ 1).
Proposition 2.13. For every γ, q ∈ (0, 1), α ≥ 1, it holds that F̃γ ⊈ (Fα ∪ Fq).

Proof. Consider the set U = {a, b} and the objective function

fγ : 2U → R≥0, f
γ(S) =

{︄
|S|, if |S| ≤ 1,
2
γ , else.

If fγ could be modeled as the weighted rank function of an independence system (U, I),
then we would have U ∈ I because f(U) > f(S) for all S ⊊ U . Then I = 2U and fγ
would be linear which is not true. Thus fγ cannot be modeled as the weighted rank
function of an independence system, and fγ /∈ Fq.
Furthermore, fγ /∈ Fα. To see this, consider A = ∅ and B = {a, b}. Then we have

fγ(A ∪ {y}) − fγ(A) = 1 for all y ∈ B, and we have fγ(A∪B)−αfγ(A)
|B| = 1

γ . Since γ < 1,
the problem is not α-augmentable.
It remains to show that fγ ∈ F̃γ . Let A,B ⊆ U with A ∩B = ∅. For B = ∅, the ratio in

the definition of the weak submodularity ratio is 0
0 = 1. Thus, assume |B| ≥ 1. If A = ∅,

we have ∑︁
b∈B f

γ(A ∪ {b})− fγ(A)

fγ(A ∪B)− fγ(A)
=

|B|
fγ(B)

∈ {1, γ}.

Otherwise, if |A| = 1, then |B| = 1 and the ratio in the definition of the (weak) submodu-
larity ratio is 1. In both cases, the ratio is at least γ, thus the (weak) submodularity ratio
of this problem is γ, and fγ ∈ F̃γ .

Proposition 2.14. For every γ, q ∈ (0, 1), α ≥ 1, it holds that Fq ⊈ (F̃γ ∪ Fα).

Proof. We fix i, j ∈ N with q ≤ i
j < 1 and α ≥ 1. Let

U1 := {a1, . . . , a⌈α⌉j},
U2 := {b1, . . . , b⌈α⌉j},
U3 := {c}
U := U1 ∪ U2 ∪ U3,

I := 2U1 ∪ 2U2 ∪ {S ⊂ U | |S| ≤ ⌈α⌉i}.
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We consider the independence system (U, I) and the weight function w : U → R≥0 defined
by

w(e) =

{︄
1, e ∈ U1,

⌈α⌉(j − i) + 1, else.

The weighted rank function f is given by f q : U → R≥0,

f q(S) = max{w(S′) | S′ ⊆ S, S′ ∈ I}.

Obviously we have q(U, I) = i
j < q, i.e., f q ∈ Fq.

For A = U1, B = U2 and b ∈ B, we calculate

f q(A) = ⌈α⌉j,
f q(A ∪ {b}) = max{⌈α⌉j, (⌈α⌉i− 1) + (⌈α⌉(j − i) + 1)} = ⌈α⌉j,
f q(A ∪B) = ⌈α⌉j(⌈α⌉(j − i) + 1).

Suppose, f q was α-augmentable. Then

f q(A ∪ {b})− f q(A) ≥ f q(A ∪B)− αf q(A)

|B|
,

i.e.,
⌈α⌉j − ⌈α⌉j ≥ ⌈α⌉j(⌈α⌉(j − i) + 1)− α⌈α⌉j

⌈α⌉j
,

which is equivalent to
α ≥ ⌈α⌉(j − i) + 1.

Since j > i, this is a contradiction, i.e., f q /∈ Fα.
Now, with A = {c, b1, . . . , b⌈α⌉i−1} and B = U2 \A = {b⌈α⌉i, . . . , b⌈α⌉j}, we have∑︁

b∈B f
q(A ∪ {b})− f q(A)

f q(A ∪B)− f q(A)
= 0.

Thus, and because the set A is the greedy solution XG(⌈α⌉i) (if we break ties in our favor
or change the weights of some elements slightly), the weak submodularity ratio of this
problem is γ(f q) = 0, i.e., f q /∈ F̃γ .
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2.3. γ-α-Augmentability

In this section, we argue that the function class F̃γ,α of monotone, weakly γ-α-augmentable
functions unifies the classes F̃γ , Fα, and Fq. We show that the competitive ratio of the
Greedy algorithm on the function class F̃γ,α is at most α−(1−c)γ

γ · eα−(1−c)γ

eα−(1−c)γ−1
where

c ∈ [0, 1] is the curvature of the objective. Later, in Section 2.3.1, we will introduce
a critical family of functions that are monotone and weakly γ-α-augmentable. These
functions give a tight lower bound for the competitive ratio of the Greedy algorithm for
curvature c = 1, separate the class F̃γ,α from the classes F̃γ , Fα, and Fq, and give a tight
lower bound for the competitive ratio of the Greedy algorithm on the class of monotone
and α-augmentable functions, Fα, for all α ≥ 1. Finally, in Section 2.3.2, we show an
improved upper bound of α

γ for the competitive ratio of the Greedy algorithm when the
objective is a (weakly) γ-α-augmentable weighted rank function of some independence
system.
We start by proving the following simple lemma.

Lemma 2.15. Let (U, I) be an independence system with weight function w : U → R≥0 and
weighted rank function f . Furthermore, let i ∈ N and x ∈ U \XG(i) with w(x) > 0. Then,
the following are equivalent:

(i) XG(i) ∪ {x} ∈ I
(ii) f(XG(i) ∪ {x})− f(XG(i)) = w(x)
(iii) f(XG(i) ∪ {x})− f(XG(i)) > 0

Proof. “(i) ⇒ (ii)”: Because f is a weighted rank function and XG(i) ∪ {x} ∈ I, we have

f(XG(i) ∪ {x})− f(XG(i)) =
∑︂

x′∈XG(i)∪{x}

w(x′)−
∑︂

x′∈XG(i)

w(x′) = w(x).

“(ii) ⇒ (iii)”: This follows immediately from the fact that w(x) > 0.
“(iii) ⇒ (i)”: Let x ∈ U \XG(i) with f(XG(i) ∪ {x})− f(XG(i)) > 0. Suppose there is
some s′ ∈ XG(i)withw(x) > w(s′). This means that xwas considered by theGreedy algo-
rithm before and not added to the solution, i.e., {s ∈ XG(i) | w(s) ≥ w(x)} ∪ {x} /∈ I. The
fact that f(XG(i) ∪ {x})− f(XG(i)) > 0 implies that there is a non-empty set S ⊆ XG(i)
with XG(i) \ S ∪ {x} ∈ I and w(S) < w(x). The last inequality implies that, for s ∈ S,
we have w(s) < w(x), which means that {s ∈ XG(i) | w(s) ≥ w(x)} ⊆ XG(i) \ S. But
then {s ∈ XG(i) | w(s) ≥ w(x)} ∪ {x} ∈ I, which is a contradiction. Thus, we have
w(x) ≤ w(s) for all s ∈ XG(i). If XG(i) ∪ {x} /∈ I would hold, then the equality
f(XG(i) ∪ {x})− f(XG(i)) = 0 would hold because every element in XG(i) has a greater
weight than x and because XG(i) ∈ I. Thus, (i) holds.
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We are now ready to prove that the class of monotone, weakly γ-α-augmentable functions
unifies the three function classes F̃γ , Fα, and Fq.
Theorem 2.16. For every γ, q ∈ (0, 1], and every α ≥ 1, it holds that

Fα ⊆ F̃1,α and F̃γ ⊆ F̃γ,γ and Fq ⊆ F̃γ,γ/q.

Proof. If f ∈ Fα, then, for all A,B ⊆ U and in particular A ∈ {XG(0), XG(1), . . . }, there
exists b ∈ B with

f(A ∪ {b})− f(A) ≥ 1 · f(A ∪B)− αf(A)

|B|
,

which means that f ∈ F̃1,α.
For the second part of the proof, let f ∈ F̃γ , A ∈ {XG(0), XG(1), . . . } and B ⊆ U with

B′ := B \A ̸= ∅. Furthermore, let b∗ ∈ argmaxb∈B f(A ∪ {b}). Then, by definition of the
submodularity ratio γ(f), we have

|B|(f(A ∪ {b∗})− f(A)) ≥
∑︂
b∈B

(f(A ∪ {b})− f(A))

=
∑︂
b∈B′

(f(A ∪ {b})− f(A))

≥ γ(f)f(A ∪B′)− γ(f)f(A)

= γ(f)f(A ∪B)− γ(f)f(A).

Since γ(f) ≥ γ, this means that f is weakly γ-γ-augmentable, i.e., f ∈ F̃γ,γ .
For the last part of the proof, let f ∈ Fq be the weighted rank function of an indepen-

dence system (U, I), and let w : U → R≥0 be the associated weight function. Furthermore,
letA ∈ {XG(0), XG(1), . . . } andB ⊆ U withB\A ̸= ∅. We prove that, for every γ ∈ (0, 1],
there exists b ∈ B with

f(A ∪ {b})− f(A) ≥
γf(A ∪B)− γ

q(U,I)f(A)

|B|
.

If f(A ∪ B)− 1
q(U,I)f(A) < 0, the inequality holds by monotonicity of f . Thus, assume

from now on that
f(A ∪B)− 1

q(U, I)
f(A) ≥ 0. (2.10)

Let A′ ⊆ A and B′ ⊆ B with A′ ∪ B′ ∈ I and f(A ∪ B) = w(A′ ∪ B′). Furthermore, let
b∗ := argmaxb∈B′ f(A ∪ {b}). We define

B̃ :=

{︄
{b ∈ B′ | w(b) > w(b∗)}, if f(A ∪ {b∗}) > f(A),

B′, if f(A ∪ {b∗}) = f(A).
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Note that, for all b ∈ B̃, we have f(A ∪ {b}) − f(A) = 0. We define the independence
system (Ũ , Ĩ) with

Ũ := A ∪ B̃,
Ĩ := 2A ∪ 2A

′∪B̃.

We have Ũ ⊆ U and Ĩ ⊆ I and thus, by Lemma 2.15, q(Ũ , Ĩ) ≥ q(U, I). The greedy
solution for the maximization problem on the independence system (Ũ , Ĩ) of cardinal-
ity i := |A| is A because all elements in Ũ are also in U . The next element ei+1 added by
the Greedy would be from the set B̃, i.e., f(A ∪ {ei+1}) − f(A) = 0. Then, as shown
in [40, 48], we have

f(A) ≥ q(Ũ , Ĩ)f(Ũ) ≥ q(U, I)f(A′ ∪ B̃) = q(U, I)w(A′ ∪ B̃). (2.11)
If f(A ∪ {b∗}) > f(A), Lemma 2.15 yields f(A ∪ {b∗})− f(A) = w(b∗), and otherwise, if
f(A∪{b∗}) = f(A), by definition of B̃, we have |B′ \ B̃| = 0. Using this and the definition
of B̃, we get

|B|(f(A ∪ {b∗})− f(A)) ≥ |B′ \ B̃|w(b∗)
≥ w(B′ \ B̃)
(2.11)
≥ w(B′ \ B̃) + w(A′ ∪ B̃)− 1

q(U, I)
f(A)

= w(A′ ∪B′)− 1

q(U, I)
f(A)

= f(A ∪B)− 1

q(U, I)
f(A)

(2.10),1≥γ
≥ γf(A ∪B)− γ

q(U, I)
f(A).

Since q(U, I) ≥ q, this yields weak γ-γq -augmentability, i.e., f ∈ F̃γ,γ/q.

Having shown that F̃γ,α subsumes the other three classes of functions, we now prove an
upper bound for the competitive ratio of the Greedy algorithm on this class. Observe that
this upper bound trivially carries over to Fγ,α, the class of monotone, γ-α-augmentable
functions.
Theorem 2.17. For γ ∈ (0, 1], α ≥ γ, and c ∈ [0, 1], the competitive ratio of the Greedy
algorithm for IncMax with weakly γ-α-augmentable objectives with f(∅) = 0 and curvature c
is at most

ρ =
α− (1− c)γ

γ
· eα−(1−c)γ

eα−(1−c)γ − 1
.
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Proof. Let C ∈ N be the cardinality constraint. First, we consider the case that there exists
some i ∈ [C], with f(XG(i− 1)) = f(XG(i)). Then, we have

max
e∈U

f(XG(i− 1) ∪ {e})− f(XG(i− 1)) = 0, (2.12)

which implies that the curvature is c = 1. By γ-α-augmentability of f , for all e ∈ O(C),
we obtain

0
(2.12)
= |O(C)|

(︁
f(XG(i− 1) ∪ {e})− f(XG(i− 1))

)︁
≥ γf(XG(i− 1) ∪O(C))− αf(XG(i− 1))

≥ γf(O(C))− αf(XG(i− 1)).

This and monotonicity of f yields

Opt(C) = f(O(C)) ≤ α

γ
f(XG(i− 1)) ≤ α

γ
f(XG(C))

<
α

γ
· eα

eα − 1
f(XG(C)) c=1

= ρf(XG(C)).

Now consider the case that, for all i ∈ [C], we have f(XG(i − 1)) < f(XG(i)). Let
A,B ⊆ U be two disjoint sets and B = {b1, . . . , b|B|}. By definition of the curvature we
have

f(A ∪B) = f(A) +

|B|∑︂
j=1

f(A ∪ {b1, . . . , bj})− f(A ∪ {b1, . . . , bj−1})

≥ f(A) +

|B|∑︂
j=1

(1− c)
(︁
f({b1, . . . , bj})− f({b1, . . . , bj−1})

)︁
= f(A) + (1− c)f(B)− (1− c)f(∅)
= f(A) + (1− c)f(B). (2.13)

For ease of notation, we define the gain of the Greedy algorithm in iteration i to be
δi := f(XG(i))− f(XG(i− 1)) for all i ∈ [C]. By γ-α-augmentability, for all i ∈ [C], we
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have

δi = max
e∈U

f(XG(i− 1) ∪ {e})− f(XG(i− 1))

≥ max
e∈O(C)

f(XG(i− 1) ∪ {e})− f(XG(i− 1))

≥ γf(XG(i− 1) ∪O(C))− αf(XG(i− 1))

|O(C)|
(2.13)
≥ γ

|O(C)|
(︁
f(O(C)) + (1− c)f(XG(i− 1))

)︁
− α

|O(C)|
f(XG(i− 1))

=
γ

C
f(O(C))− α− (1− c)γ

C
f(XG(i− 1)). (2.14)

We prove by induction that, for all ℓ ∈ {0, . . . , C}, we have

f(O(C))− α− (1− c)γ

γ
f(XG(ℓ)) ≤ f(O(C))

(︃
1− α− (1− c)γ

C

)︃ℓ

. (2.15)

For ℓ = 0 the inequality holds because

α− (1− c)γ

γ
≥ γ − (1− c)γ

γ
= cγ ≥ 0.

Now suppose that (2.15) holds for some ℓ ∈ {0, . . . , C − 1}. Then, for ℓ+ 1, we have

f(O(C))− α− (1− c)γ

γ
f(XG(ℓ+ 1))

= f(O(C))− α− (1− c)γ

γ
f(XG(ℓ))− α− (1− c)γ

γ
δℓ+1

(2.14)
≤ f(O(C))− α− (1− c)γ

γ
f(XG(ℓ))

−α− (1− c)γ

γ

(︃
γ

C
f(O(C))− α− (1− c)γ

C
f(XG(ℓ))

)︃
=

(︃
f(O(C))− α− (1− c)γ

γ
f(XG(ℓ))

)︃(︃
1− α− (1− c)γ

C

)︂
(2.15)
≤ f(O(C))

(︃
1− α− (1− c)γ

C

)︃ℓ+1

,

and (2.15) continues to hold.
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Because of 1 + x ≤ ex for x ∈ R, we have

f(O(C))− α− (1− c)γ

γ
f(XG(ℓ))

(2.15)
≤ f(O(C))

(︃
1− α− (1− c)γ

C

)︃ℓ

≤ e−
α−(1−c)γ

C
ℓf(O(C)).

Rearranging this for ℓ = C yields

f(XG(C)) ≥ γ

α− (1− c)γ
· e

α−(1−c)γ − 1

eα−(1−c)γ
f(O(C)) =

1

ρ
Opt(C).

Since every function f : 2U → R≥0 with weak submodularity ratio γ ∈ (0, 1] is weakly
γ-γ-augmentable, we obtain an upper bound of c ecγ

ecγ−1 for objectives with submodularity
ratio γ ∈ (0, 1] and curvature c ∈ [0, 1]. This recovers the bound shown in [6].

Remark 2.18. Note that in the proof of Theorem 2.17, the requirement f(∅) = 0 was only
needed to show (2.13). If f(∅) > 0, we can only make the estimate f(A ∪ B) ≥ f(A) by
monotonicity. In this case, the upper bound on the competitive ratio we obtain is

α

γ
· eα

eα − 1
,

which is exactly the bound shown in [15].

2.3.1. A Critical Function

To show that the lower bound in Theorem 2.17 for the class of problems with monotone
and weakly γ-α-augmentable objectives is tight for curvature c = 1 and to separate this
class from F̃γ ∪ Fα ∪ Fq, we introduce a function that is inspired by a lower bound
construction in [6] for the submodularity ratio.
We fix γ ∈ (0, 1] and α ≥ γ. Let k ∈ N with k > α, and let U1 = {a1, . . . , ak} and

U2 = {b1, . . . , bk} be disjoint sets. We set U = U1 ∪ U2, define ξi := 1
k (

k−α
k )i−1 and let

h(x) := γ−1−1
k−1 x2 + k−γ−1

k−1 x. For our purpose, the important facts about h are h(0) = 0,
h(1) = 1, h(k) = k

γ and that h is convex and non-decreasing on [0, k]. With this in mind,
we define the function Fγ,α,k : 2

U → R≥0 by

Fγ,α,k(S) = max
S′⊆S

{︄
h(|{b1} ∩ S′| · |U2 ∩ S′|)

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩S′

ξi

)︄
+

∑︂
i∈[k]:

ai∈U1∩S′

ξi

}︄
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If h(|{b1} ∩ S| · |U2 ∩ S|) > k
α , we have

Fγ,α,k(S) =
h(|{b1} ∩ S| · |U2 ∩ S|)

k
,

and otherwise, if h(|{b1} ∩ S| · |U2 ∩ S|) ≤ k
α , we have

Fγ,α,k(S) =
h(|{b1} ∩ S| · |U2 ∩ S|)

k

(︃
1− α

∑︂
i∈[k]:

ai∈U1∩S

ξi

)︃
+

∑︂
i∈[k]:

ai∈U1∩S

ξi.

We observe that, for S ⊆ U2, convexity of h, h(0) = 0, h(k) = k/γ and |S| ≤ |U2| = k
imply that

h(|{b1} ∩ S| · |S|) ≤
|{b1} ∩ S| · |S|

γ
, (2.16)

and, for ℓ ∈ {0, . . . , k}, we have
ℓ∑︂

i=1

ξi =

ℓ∑︂
i=1

1

k

(︃
k − α

k

)︃i−1

=
1

k
·
1−

(︁
k−α
k

)︁ℓ
1− k−α

k

=
1−

(︁
k−α
k

)︁ℓ
α

. (2.17)

We show that our modification of the function introduced in [6] retains the same structure
in regard to greedy solutions.
Lemma 2.19. For i ∈ [k], the Greedy algorithm picks the element ai in iteration i, and, for
i ∈ [2k] \ [k], the Greedy algorithm picks the element bi−k in iteration i.

Proof. First, we consider the case i ∈ [k]. Suppose that in iteration i, the initial solution is
{a1, . . . , ai−1}, where {a1, . . . , a0} = ∅, with objective value∑︁i−1

ℓ=1 ξℓ. Adding an element
from {b2, . . . , bk} does not increase the objective value because, for all b ∈ {b2, . . . , bk},
we have {b1} ∩ {b} = ∅. For j ∈ {i, . . . , k}, adding aj increases the objective value by
ξj = 1

k (
k−α
k )j−1. Since k > α, we have ξi ≥ ξj for j ≥ i. Adding the element b1 to the

solution {a1, . . . , ai−1} increases the objective value by

1

k

(︄
1− α

i−1∑︂
ℓ=1

ξℓ

)︄
(2.17)
=

1

k

(︄
1− α

1−
(︁
k−α
k

)︁i−1

α

)︄
=

1

k

(︃
k − α

k

)︃i−1

.

Thus, with proper tie breaking, the Greedy algorithm picks the element ai in iteration i
for i ∈ [k].
Now, we consider the case that i ∈ {k+1, . . . , 2k}. For i = k+1, adding an element from

{b2, . . . , bk} does not increase the objective value, while adding b1 increases it by 1
k (

k−α
k )k.
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Thus, in iteration k+ 1, the element b1 is added to the solution. For i ≥ k + 2, adding any
element from U2 \XG(i− 1) to the greedy solution XG(i− 1) increases the function value
by the same amount. Therefore, with proper tie breaking, the Greedy algorithm picks
the element bi−k in iteration i for i ∈ {k + 1, . . . , 2k}.

With this, we can show that Fγ,α,k is weakly γ-α-augmentable.

Lemma 2.20. Let γ ∈ (0, 1], α ≥ γ, and k ∈ N>α. Then Fγ,α,k ∈ F̃γ,α.

Proof. The monotonicity of Fγ,α,k immediately follows from the maximum in the definition.
In order to prove weak γ-α-augmentability, let A ∈ {XG(0), . . . , XG(2k)} and B ⊆ U with
B′ := B \A ̸= ∅. For better readability, we will write F := Fγ,α,k.
First, consider the case that A ⊆ U1. Then F (A) =

∑︁
i∈[k]:ai∈A ξi because h(0) = 0.

Thus and because h(1) = 1, for all y ∈ B′, we have

F (A ∪ {y})− F (A) =

⎧⎪⎨⎪⎩
ξi, if y = ai ∈ (U1 ∩B′),
1
k (1− α

∑︁
i∈[k]:ai∈A ξi), if y = b1,

0, else.

This yields

|B′|
(︁
max
y∈B′

F (A ∪ {y})− F (A)
)︁

≥

(︄ ∑︂
y∈U1∩B′

(︁
F (A ∪ {y})− F (A)

)︁)︄
+ |U2 ∩B′| max

y∈U2∩B′
F (A ∪ {y})− F (A)

=

(︄ ∑︂
i∈[k]:

ai∈U1∩B′

ξi

)︄
+ |{b1} ∩B′| · |U2 ∩B′|1

k

(︄
1− α

∑︂
i∈[k]:
ai∈A

ξi

)︄
. (2.18)
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If h(|{b1} ∩B′| · |U2 ∩B′|) ≤ k
α , we use the fact that F (A) =

∑︁
i∈[k]:ai∈A ξi to calculate

γF (A ∪B)− αF (A)

U2∩A=∅
= γ

(︄
h(|{b1} ∩B′| · |U2 ∩B′|)

k

(︄
1− α

∑︂
i∈[k]:

ai∈A∪(U1∩B′)

ξi

)︄
+

∑︂
i∈[k]:

ai∈A∪(U1∩B′)

ξi

)︄

−α
∑︂
i∈[k]:
ai∈A

ξi

=

[︄
γ

k
h(|{b1} ∩B′| · |U2 ∩B′|)

(︄
1− α

∑︂
i∈[k]:
ai∈A

ξi

)︄]︄

+

[︄
γ
(︂
1− α

k
h(|{b1} ∩B′| · |U2 ∩B′|)

)︂(︄ ∑︂
i∈[k]:

ai∈U1∩B′

ξi

)︄]︄
+

[︄
(γ − α)

∑︂
i∈[k]:
ai∈A

ξi

]︄

≤

[︄
1

k
|{b1} ∩B′| · |U2 ∩B′|

(︄
1− α

∑︂
i∈[k]:
ai∈A

ξi

)︄]︄
+

[︄ ∑︂
i∈[k]:

ai∈U1∩B′

ξi

]︄
+ [0]. (2.19)

The first part of the last inequality follows from (2.16). The second part of the inequality
follows from the fact that γ ∈ (0, 1] and, for x ≥ 0, we have α

kh(x) ≥ 0. The last part
follows from the fact that γ ≤ α. Combining equations (2.18) and (2.19) together with
the fact that B′ ⊆ B yields weak γ-α-augmentability.
Otherwise, if h(|{b1} ∩B′| · |U2 ∩B′|) > k

α , we have

γF (A ∪B)− αF (A) = γ
h(|{b1} ∩B′| · |U2 ∩B′|)

k
− α

∑︂
i∈[k]:
ai∈A

ξi

(2.16)
≤ 1

k
|{b1} ∩B′| · |U2 ∩B′| − α

∑︂
i∈[k]:
ai∈A

ξi

|U2|=k

≤ 1

k
|{b1} ∩B′| · |U2 ∩B′|

(︄
1− α

∑︂
i∈[k]:
ai∈A

ξi

)︄

(2.18)
≤ |B′|

(︁
max
y∈B′

F (A ∪ {y})− F (A)
)︁
,
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which yields γ-α-augmentability also in this case.
Now, consider the case thatA ⊈ U1. Then, by Lemma 2.19, we haveA = U1 ∪ {b1, . . . , bi}

for some i ∈ [k]. We have i < k because B′ ̸= ∅. The fact that h is convex and non-
decreasing on [0, k] yields

h(i+ |B′|)− h(i)

|B′|
|B′|+i≤|U2|

≤ h(|U2|)− h(i)

|U2| − i
. (2.20)

With
H(i) := (k − i)

h(i+ 1)− h(i)

h(k)− h(i)
,

we have
H ′(i) = (k − 1)

2− 3γ + γ2

(k − 1 + i− γi)2
≥ 0,

which yields
H(i) ≥ H(0) = k

1− 0
k
γ − 0

= γ. (2.21)

Combining this with (2.20), we obtain

|B′|
(︁
h(i+ 1)− h(i)

)︁
h(i+ |B′|)− h(i)

(2.20)
≥

(|U2| − i)
(︁
h(i+ 1)− h(i)

)︁
h(|U2|)− h(i)

|U2|=k
= H(i)

(2.21)
≥ γ. (2.22)

Recall that h is increasing for positive values. In the following let b ∈ B′.
If k

α < h(i) ≤ h(i+ 1) ≤ h(i+ |B′|), then we have

|B|
(︁
F (A ∪ {b})− F (A)

)︁
= |B′|h(i+ 1)− h(i)

k
(2.22)
≥

γ
(︁
h(i+ |B′|)− h(i)

)︁
k

≥ γ
h(i+ |B′|)

k
− α

h(i)

k
= γF (A ∪B)− αF (A),

i.e., F is weakly γ-α-augmentable.
Now, consider the case that k

α ≥ h(i). We will start by showing that we have

|B|
(︁
F (A ∪ {b})− F (A)

)︁
≥
(︃
γ
h(i+ |B′|)

k
− α

h(i)

k

)︃(︄
1− α

k∑︂
j=1

ξj

)︄
. (2.23)
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If h(i) ≤ h(i+ 1) ≤ k
α , we have

|B|
(︁
F (A ∪ {b})− F (A)

)︁
≥ |B′|h(i+ 1)− h(i)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
(2.22)
≥

γ
(︁
h(i+ |B′|)− h(i)

)︁
k

(︄
1− α

k∑︂
j=1

ξj

)︄
γ≤α
≥

(︃
γ
h(i+ |B′|)

k
− α

h(i)

k

)︃(︄
1− α

k∑︂
j=1

ξj

)︄
.

Otherwise, if h(i) ≤ k
α < h(i+ 1), then

α

k
h(i+ 1) >

α

k
· k
α

= 1, (2.24)

which implies that

F (A ∪ {b}) = h(i+ 1)

k

(2.24)
>

h(i+ 1)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
+

k∑︂
j=1

ξj . (2.25)

Thus,

|B|
(︁
F (A ∪ {b})− F (A)

)︁ (2.25)
≥ |B′|h(i+ 1)− h(i)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
(2.22)
≥

γ
(︁
h(i+ |B′|)− h(i)

)︁
k

(︄
1− α

k∑︂
j=1

ξj

)︄

≥ γh(i+ |B′|)− αh(i)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
.

Now that we have established (2.23), we will show that(︃
γ
h(i+ |B′|)

k
− α

h(i)

k

)︃(︄
1− α

k∑︂
j=1

ξj

)︄
≥ γF (A ∪B)− αF (A). (2.26)

Combining (2.23) and (2.26) yields γ-α-augmentability.
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If h(i) ≤ h(i+ |B′|) ≤ k
α , we have(︃

γ
h(i+ |B′|)

k
− α

h(i)

k

)︃(︄
1− α

k∑︂
j=1

ξj

)︄
γ≤α
≥ γ

[︄
h(i+ |B′|)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
+

k∑︂
j=1

ξj

]︄
− α

[︄
h(i)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
+

k∑︂
j=1

ξj

]︄
= γF (A ∪B)− αF (A).

Otherwise, if h(i) ≤ k
α ≤ h(i+ |B′|), we have
(︃
γ
h(i+ |B′|)

k
− α

h(i)

k

)︃(︄
1− α

k∑︂
j=1

ξj

)︄

= γ
h(i+ |B′|)

k
− α

h(i)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
− γ

k
h(i+ |B′|)α

k∑︂
j=1

ξj

h(i+|B′|)≤h(k)= k
γ

≥ γ
h(i+ |B′|)

k
− α

[︄
h(i)

k

(︄
1− α

k∑︂
j=1

ξj

)︄
+

k∑︂
j=1

ξj

]︄
= γF (A ∪B)− αF (A).

This establishes (2.26) and, thus, completes the proof.

It is straightforward to bound the competitive ratio of the Greedy algorithm for Fγ,α,k.

Proposition 2.21. Let γ ∈ (0, 1], α ≥ γ and k ∈ N>α. Then, the competitive ratio of the
Greedy algorithm for the instance with objective Fγ,α,k is at least

α

γ
· eα

eα − 1
.

Proof. We set the cardinality constraint to be C = k. We compare the objective values of
the greedy solutionXG(k) of cardinality k and the solution U2, which also has cardinality k.
By Lemma 2.19, we have XG(k) = U1, and thus

F (XG(k)) = F (U1) =

k∑︂
i=1

ξi
(2.17)
=

1−
(︁
k−α
k

)︁k
α
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and

F (U2) =
h(k)

k
=

k
γ

k
=

1

γ
.

Thus, the Greedy algorithm has a competitive ratio of at least

Opt(k)
F (XG(k))

≥ F (U2)

F (XG(k))
=
α

γ
· 1

1−
(︁
k−α
k

)︁k .
The lower bound follows, since

lim
k→∞

1

1−
(︁
k−α
k

)︁k =
1

1− e−α
=

eα

eα − 1
.

As Fγ,α,k ∈ F̃γ,α by Lemma 2.20, this immediately yields the following result.

Corollary 2.22. Let γ ∈ (0, 1] and α ≥ γ. Then, the competitive ratio of the Greedy
algorithm for IncMax with weakly γ-α-augmentable objectives is at least

α

γ
· eα

eα − 1
.

By combining Theorem 2.17 for curvature c = 1 with Corollary 2.22, we obtain a tight
bound on the competitive ratio for monotone, weakly γ-α-augmentable functions.

Theorem 2.23. Let γ ∈ (0, 1] and α ≥ γ. Then, the competitive ratio of the Greedy algorithm
for IncMax with weakly γ-α-augmentable objectives is exactly

α

γ
· eα

eα − 1
.

It even turns out that, for γ = 1, the function Fγ,α,k is α-augmentable. This allows to
carry the lower bound over to the class Fα.

Proposition 2.24. Let α ≥ 1 and k ∈ N≥α. Then F1,α,k ∈ Fα.

Proof. By Lemma 2.20, F1,α,k is monotone. Thus, it suffices to prove that the function is
α-augmentable. For better readability, we write F := F1,α,k. Observe that, since γ = 1,
we have h(x) = x for all x ∈ R. Let A,B ⊆ U and B′ := B \A.
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Case 1: |{b1} ∩ (A ∪B)| · |U2 ∩ (A ∪B)| ≤ k
α .

Then, for b ∈ B′, we have

F (A ∪ {b})− F (A)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︁
1− |{b1}∩A|·|U2∩A|

k α
)︁
ξi, if b = ai ∈ U1 ∩B′,

|{b1}∩(A∪{b})|·|U2∩(A∪{b})|−|{b1}∩A|·|U2∩A|
k

·
(︁
1− α

∑︁
i∈[k]:ai∈U1∩A ξi

)︁
, if b ∈ U2 ∩B′.

(2.27)

This yields

F (A ∪B)− αF (A)

=

(︄
|{b1} ∩ (A ∪B′)| · |U2 ∩ (A ∪B′)|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩(A∪B′)

ξi

)︄
+

∑︂
i∈[k]:

ai∈U1∩(A∪B′)

ξi

)︄

−α

(︄
|{b1} ∩A| · |U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄
+

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄

=

[︄
|{b1} ∩ (A ∪B′)| · |U2 ∩ (A ∪B′)| − α|{b1} ∩A| · |U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄]︄

+

[︄(︃
1− |{b1} ∩ (A ∪B′)| · |U2 ∩ (A ∪B′)|

k
α

)︃ ∑︂
i∈[k]:

ai∈U1∩B′

ξi

]︄
+

[︄
(1− α)

∑︂
i∈[k]:

ai∈U1∩A

ξi

]︄

≤

[︄
|U2 ∩B′| max

b∈U2∩B′

{︄
|{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})| − |{b1} ∩A| · |U2 ∩A|

k(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄}︄]︄
+

[︄(︄
1− |{b1} ∩A| · |U2 ∩A|

k
α

)︄ ∑︂
i∈[k]:

ai∈U1∩B′

ξi

]︄
+ [0]

(2.27)
= |U2 ∩B′|

(︂
max

b∈U2∩B′
F (A ∪ {b})− F (A)

)︂
+

∑︂
b∈U1∩B′

(F (A ∪ {b})− F (A))

≤ |B|
(︂
max
b∈B

F (A ∪ {b})− F (A)
)︂
.
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This establishes α-augmentability if |{b1} ∩ (A ∪B)| · |U2 ∩ (A ∪B)| ≤ k
α .

Case 2: |{b1} ∩A| · |U2 ∩A| ≤ k
α < |{b1} ∩ (A ∪B)| · |U2 ∩ (A ∪B)|.

Let b ∈ U2 ∩B′. If |{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})| ≤ k
α , then

F (A ∪ {b})− F (A)

(2.27)
=

|{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})| − |{b1} ∩A| · |U2 ∩A|
k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄
.

Otherwise, if
|{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})| > k

α
, (2.28)

then
|U2 ∩ (A ∪ {b})| = |{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})|, (2.29)

which yields

F (A ∪ {b})− F (A)

=
|U2 ∩ (A ∪ {b})|

k
− |{b1} ∩A| · |U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄
−

∑︂
i∈[k]:

ai∈U1∩A

ξi

(2.28),(2.29)
≥ |{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})| − |{b1} ∩A| · |U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄
.

By combining the two cases, for all b ∈ U2 ∩B′, we obtain

F (A ∪ {b})− F (A) (2.30)
≥ |{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})| − |{b1} ∩A| · |U2 ∩A|

k
·
(︁
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi
)︁
.

Since we consider |{b1} ∩A| · |U2 ∩A| ≤ k
α < |{b1} ∩ (A ∪B)| · |U2 ∩ (A ∪B)|, we have

B′ ∩ U2 ̸= ∅ and b1 ∈ A ∪B = A ∪B′. (2.31)

This yields
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F (A ∪B)− αF (A)

=
|U2 ∩ (A ∪B′)|

k
− α

(︄
|{b1} ∩A| · |U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄
+

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄

=

[︄
|U2 ∩ (A ∪B′)|

k
− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

]︄
−

[︄
α
|{b1} ∩A| · |U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄]︄

α≥1
≤

[︄
|U2 ∩ (A ∪B′)|

k
− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

]︄
−

[︄
|{b1} ∩A| · |U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄]︄

=

[︄
|U2 ∩ (A ∪B′)|

k
− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

]︄

−

[︄
(|U2 ∩B′| − (|U2 ∩B′| − 1))

|{b1} ∩A| · |U2 ∩A|
k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄]︄

≤

[︄
|U2 ∩ (A ∪B′)|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄]︄

−

[︄
|U2 ∩B′| · |{b1} ∩A| · |U2 ∩A| − (|U2 ∩B′| − 1)|U2 ∩A|

k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄]︄

= |U2 ∩B′| |U2 ∩A|+ 1− |{b1} ∩A| · |U2 ∩A|
k

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄

(2.31)
= |U2 ∩B′| max

b∈U2∩B′

{︄
|{b1} ∩ (A ∪ {b})| · |U2 ∩ (A ∪ {b})| − |{b1} ∩A| · |U2 ∩A|

k

·

(︄
1− α

∑︂
i∈[k]:

ai∈U1∩A

ξi

)︄}︄

(2.30)
≤ |U2 ∩B′|

(︂
max

b∈U2∩B′
F (A ∪ {b})− F (A)

)︂
.
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Thus, the function F is α-augmentable.
Case 3: k

α < |{b1} ∩A| · |U2 ∩A|.
For b ∈ B′, we have

F (A ∪ {b})− F (A) =

{︄
0 if b = ai ∈ U1 ∩B′,
|U2∩(A∪{b})|−|U2∩A|

k if b ∈ U2 ∩B′,
(2.32)

which yields

F (A ∪B)− αF (A) =
|U2 ∩ (A ∪B′)|

k
− α

|U2 ∩A|
k

α≥1
≤ |U2 ∩ (A ∪B′)| − |U2 ∩A|

k

=
|U2 ∩B′|

k

= |U2 ∩B′| max
b∈U2∩B′

|U2 ∩ (A ∪ {b})| − |U2 ∩A|
k

≤ |B| max
b∈U2∩B′

|U2 ∩ (A ∪ {b})| − |U2 ∩A|
k

(2.32)
= |B|

(︁
max
b∈B

F (A ∪ {b})− F (A)
)︁
.

This establishes α-augmentability.
Combining this with Proposition 2.21 extends the lower bound of Corollary 2.10 to

all α ≥ 1.
Theorem 2.25. Let α ≥ 1. Then, the competitive ratio of the Greedy algorithm for IncMax
with α-augmentable objectives is exactly α · eα

eα−1 .

Now, we will use the function Fγ,α,k in order to separate the class F̃γ,α from the
class F̃γ ∪ Fα ∪ Fq.
Lemma 2.26. For every γ′ ∈ (0, 1), α′ ≥ γ′, α ≥ 1 and k ∈ N>α′ , it holds that Fγ′,α′,k /∈ Fα.
For every γ, γ′, q ∈ (0, 1] and α′ ≥ γ′, there exists k′ ∈ N>α such that Fγ′,α′,k′ ⊈ F̃γ ∪ Fq.

Proof. For the first part, let γ′ ∈ (0, 1), α′ ≥ γ′ and k ∈ N>α′ . Furthermore, let A = ∅ and
B = U2. For all b ∈ B, we have

Fγ′,α′,k(A ∪ {b})− Fγ′,α′,k(A) = Fγ′,α′,k({b}) ≤ Fγ′,α′,k({b1}) =
1

k
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and, for all α ≥ 1, we have
Fγ′,α′,k(A ∪B)− αFγ′,α′,k(A)

|B|
=
Fγ′,α′,k(U2)

k
=

1

kγ′
>

1

k

because γ′ < 1. Thus, Fγ′,α′,k is not α-augmentable for any α ≥ 1.
For the second part, let γ′ ∈ (0, 1], α′ ≥ γ′ and k ∈ N>α′ . Furthermore, let A = U1 =

XG(k) and B = U2. For all b ∈ B, we have

Fγ′,α′,k(A ∪ {b})− Fγ′,α′,k(A) =

{︄
1
k

(︁
1− α′∑︁k

i=1 ξi
)︁
= 1

k

(︁
k−α′

k

)︁k if b = b1,

0, else,

and

Fγ′,α′,k(A ∪B)− Fγ′,α′,k(A) = Fγ′,α′,k(U2)− Fγ′,α′,k(U1) =
1

γ′
− 1

α′
(︁
1−

(︁k − α′

k

)︁k)︁
.

For k → ∞, the (weak) submodularity ratio gets arbitrarily close to 0 because

lim
k→∞

∑︁
b∈B
(︁
Fγ′,α′,k(A ∪ {b})− Fγ′,α′,k(A)

)︁
Fγ′,α′,k(A ∪B)− Fγ′,α′,k(A)

= lim
k→∞

1
k

(︁
k−α′

k

)︁k
1
γ′ − 1

α′

(︁
1−

(︁
k−α′

k

)︁k)︁ = 0,

i.e., for k = k′ large enough, Fγ′,α′,k′ /∈ F̃γ . It remains to show that Fγ′,α′,k′ ⊈ Fq. If
Fγ′,α′,k′ ∈ Fq would hold, then there would be some independence system with weight
function w such that Fγ′,α′,k′ was the associated weighted rank function. The fact that
Fγ′,α′,k′({b2}) = 0 implies that b2 must have weight 0 or {b2} is not independent, and
the fact that Fγ′,α′,k′({b1, b2})− Fγ′,α′,k′({b1}) = h(2)−h(1)

k > 0 implies that b2 must have
a weight greater 0 and that {b2} has to be independent, which contradict each other.
Thus, Fγ′,α′,k′ cannot be modeled as the weighted rank function of an independence
system, i.e., Fγ′,α′,k′ /∈ Fq.

This lemma immediately yields the following.

Theorem 2.27. Let γ, q ∈ (0, 1], γ′ ∈ (0, 1), α ≥ 1, and α′ ≥ γ′. Then

F̃γ′,α′ ⊈ F̃γ ∪ Fα ∪ Fq.

Finally, we can extend Proposition 2.12 to all α ≥ 1 by combining the fact that, for
α ≥ 1, we have {F1,α,k | k ∈ N, k > α} ⊆ Fα by Proposition 2.24 and the fact that, for
every γ, q ∈ (0, 1], we have {F1,α,k | k ∈ N, k > α} ⊈ F̃γ ∪ Fq by Lemma 2.26.
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Corollary 2.28. For every γ, q ∈ (0, 1], α ≥ 1, it holds that Fα ⊈ (F̃γ ∪ Fq).

Combining Propositions 2.13 and 2.14 with Corollary 2.28 yields the following.

Theorem 2.29. For every γ, q ∈ (0, 1) and α ≥ 1, it holds that

F̃γ ⊈ (Fα ∪ Fq) and Fα ⊈ (F̃γ ∪ Fq) and Fq ⊈ (F̃γ ∪ Fα).

2.3.2. γ-α-Augmentability on Independence Systems

To tightly capture the class Fq of weighted rank functions on independence systems, we
show a stronger bound for the competitive ratio of the Greedy algorithm on the class
of monotone, (weakly) γ-α-augmentable weighted rank functions. In particular, it was
already shown in [5] that the objective function of α-Dimensional Matching is (exactly)
α-augmentable, while the Greedy algorithm yields a competitive ratio of α, which beats
the upper bound of α · eα

eα−1 for this case. We show that this can be explained by the
fact that α-Dimensional Matching can be represented via a weighted rank function
over an independence system. We denote the set of all weighted rank functions on some
independence system by FIS :=

⋃︁
q∈(0,1]Fq.

Proposition 2.30. The competitive ratio of the Greedy algorithm for IncMax with objectives
in F̃γ,α ∩ FIS is at most α

γ , for every γ ∈ (0, 1] and α ≥ γ.

Proof. Let f ∈ F̃γ,α ∩FIS, and let w : U → R≥0 be the weight function that induces f . We
use induction over C to show that, for all C ∈ N, we have

f(XG(C)) ≥ γ

α
Opt(C). (2.33)

For C = 0, the statement holds obviously.
Now suppose, the statement holds for some C ∈ N. If f(XG(C)) ≥ γ

αf(O(C + 1)),
then, by monotonicity of f , f(XG(C + 1)) ≥ f(XG(C)) ≥ γ

αf(O(k + 1)). On the other
hand, if f(XG(C)) < γ

αf(O(C + 1)), then the weak γ-α-augmentability of f guarantees
the existence of e ∈ O(C + 1) with

f(XG(C) ∪ {e})− f(XG(C)) ≥ γf(XG(C) ∪O(C + 1))− αf(XG(C))
|O(C + 1)|

≥ γf(O(C + 1))− αf(XG(C))
C + 1

> 0.
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By Lemma 2.15, this is equivalent to f(XG(C) ∪ {e}) = f(XG(C)) + w(e).We conclude
f(XG(C + 1)) ≥ f(XG(C) ∪ {e})

= f(XG(C)) + w(e)
(2.33)
≥ γ

α
f(O(C)) + w(e)

≥ γ

α
f(O(C + 1) \ {e}) + w(e)

α≥γ
≥ γ

α
f(O(C + 1) \ {e}) + γ

α
w(e)

≥ γ

α
f(O(C + 1)),

i.e., the Greedy algorithm has a competitive ratio of at most α
γ .

The tight lower bound follows directly from the well-known tight bound of 1/q for Fq.
Proposition 2.31. The competitive ratio of the Greedy algorithm for IncMax with objectives
in F̃γ,α ∩ FIS is at least α

γ , for every γ ∈ (0, 1] and α ≥ γ.

Proof. Let γ ∈ (0, 1], α ≥ γ and q ∈ [ γα , 1] ∩Q. In [40] it was shown that the competitive
ratio of the Greedy algorithm on the set Fq is exactly 1/q. By definition of FIS, we have
Fq ⊆ FIS, and, by Theorem 2.16, Fq ⊆ F̃γ,γ/q ⊆ F̃γ,α holds, where we use the fact that
γ
q ≤ γ

γ/α = α. Thus, we can conclude that the competitive ratio of the Greedy algorithm
on the class F̃γ,α ∩ FIS is at least 1/q, and since q can be chosen arbitrarily close to γ

α , the
statement follows.
Combining Propositions 2.30 and 2.31 yields the following.

Theorem 2.32. The competitive ratio of the Greedy algorithm for IncMax with objectives in
F̃γ,α ∩ FIS is exactly α

γ , for every γ ∈ (0, 1] and α ≥ γ.

It can be shown that the lower bound of Proposition 2.31 already holds for the class
of γ-α-augmentable functions, i.e., for the non-weak subclass of F̃γ,α. It follows that the
tight bound carries over to this, in some sense more natural, class of functions. Since every
α-augmentable function is 1-α-augmentable, and vice-versa, we additionally obtain the
following. Note that this tightly captures the performance of the Greedy algorithm for
the α-Dimensional Matching problem, which can be represented as the maximization
of an α-augmentable weighted rank function over an independence system [5].
Corollary 2.33. Let α ≥ 1. Then, the competitive ratio of the Greedy algorithm for IncMax
with objectives in Fα ∩ FIS is exactly α.
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3. Incremental Maximization via
Continuization

In the previous chapter, we analyzed the performance of the Greedy algorithm for the
IncMax problem. Now, we also consider other algorithms and work towards finding the
competitive ratio of the IncMax problem. As we have seen in the instance in Figure 1.1,
the competitive ratio of the IncMax problem itself is unbounded. Thus, we can only hope
to find meaningful subclasses with a bounded competitive ratio. The problem with the
instance in Figure 1.1 is that there exists a set with a very large value, whose proper subsets
have rather small values. Thus, the solution we obtain while assembling this set is not
competitive compared to other sets. In order to avoid this, Bernstein et al. [5] introduced
accountability which guarantees that in every set S ⊆ U there exists an element that can
be removed without decreasing the value of the set too much (cf. Definition 1.2). The
authors in [5] showed that the competitive ratio of IncMaxacc, the subclass of IncMax
with instances that have an accountable objective, lies in [2.18, φ+ 1], where φ ≈ 1.618 is
the golden ratio. We give an intuition why accountability is a desirable property for the
objective of IncMax.
Lemma 3.1. A function f : 2U → R≥0 is accountable if and only if, for every finite S ⊆ U ,
there exists an ordering (e1, . . . , e|S|) of S with f({e1, . . . , ei}) ≥ i

|S|f(S) for all i ∈ [|S|].

Proof. “⇐”: Let S ⊆ U be finite. There exists an ordering (e1, . . . , e|S|) of S with
f({e1, . . . , ei}) ≥ i

kf(S) for all i ∈ [|S|]. In particular, we have

f(S \ {e|S|}) = f({e1, . . . , e|S|−1}) ≥
|S| − 1

|S|
f(S) = f(S)− f(S)

|S|
,

i.e., f is accountable.
“⇒”: Let S ⊆ U be finite, and let f be accountable and S|S| := S. We define

S|S|−1, . . . , S1 recursively. Suppose, for i ∈ [|S| − 1], the set Si+1 is defined and |Si+1| =
i+ 1. By accountability of f , there exists e ∈ Si+1 with

f(Si+1 \ {e}) ≥ f(Si+1)−
f(Si+1)

|Si+1|
=

i

i+ 1
f(Si+1).
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Let Si := Si+1 \ {e}. We define the ordering (e1, . . . , e|S|) to be the unique ordering of S
such that Si = {e1, . . . , ei} for all i ∈ [|S|]. Then, for i ∈ [|S| − 1], we have

f({e1, . . . , ei}) = f(Si) ≥
i

i+ 1
f(Si+1) ≥ · · · ≥ i

i+ 1
· · · · · |S| − 1

|S|
f(S|S|) =

i

|S|
f(S).

Lemma 3.1 immediately yields that the optimum value for larger cardinality cannot
grow too fast with increasing cardinality.
Corollary 3.2. Let C,C ′ ∈ N with C ≤ C ′ ≤ |U |. Then, for every instance in IncMaxacc,

Opt(C) ≥ C

C ′Opt(C
′).

Proof. Let (e1, . . . , eC′) be the ordering of the optimum solutionO(C ′) given by Lemma 3.1.
Then

Opt(C) ≥ f({e1, . . . , eC})
Lem. 3.1

≥ C

C ′ f(O(C ′)) =
C

C ′Opt(C ′).

In this chapter, we dive deeper into the analysis of the competitive ratio of IncMaxacc.
We are going to introduce a continuization technique to reduce the problem to a continuous
one and use this continuous problem to show improved lower bounds for the (non-strict)
competitive ratio of IncMaxacc. We give an overview over the contents of this chapter.
In Section 3.1, we introduce the problem class IncMaxSep - a subclass of IncMax where

the instances have a simpler structure and are easier to analyze. The elements of such an
instance are partitioned into (countably many) subsets, where the objective within one of
the subsets is a simple weight function where each element has the same weight. The
objective value of a set of elements from different subsets is simply the maximum over the
value of the weight functions on the subsets. We show that this objective is monotone and
accountable and that IncMaxSep has the same competitive ratio as IncMaxacc.
Subsequently, in Section 3.2, we define the IncMaxCont problem, a continuization of

the IncMaxSep problem, where we assume that there exists one such subset every size
c > 0. Note that we have to assume that there also exist fractional elements in order to
have sets of non-integral sizes. The smooth structure of this problem is more beneficial to
analysis. We show that the strict competitive ratio of the IncMaxCont problem gives a
lower bound on the (non-strict) competitive ratio of the IncMaxSep problem, i.e., in order
to find lower bounds for the (non-strict) competitive ratio of IncMaxacc, we can instead
find a lower bound for the strict competitive ratio of IncMaxCont.
In order to do this, we introduce the continuous algorithm GreedyScaling(c1, ρ) in

Section 3.2.1. This algorithm adds a sequence of subsets to the solution, starting with the
subset of size c1 > 0 and proceeding with a sequence of subsets such that, in every step, the
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size of the next subset is as large as possible without violating ρ-competitiveness. We show
that this algorithm is optimal for the correct choice of c1 > 0 and ρ ≥ 1. Furthermore, we
show that, for any reasonably small choice of c1 and with ρ = φ+1, the algorithm is always
(φ+ 1)-competitive. We conclude the analysis of GreedyScaling(c1, ρ) by showing that,
if we restrict the algorithm to choose c1 from some fixed countable set, then the algorithm
cannot be better than (φ+ 1)-competitive. While this gives a lower bound if we restrict
the starting value, it does not transfer to the problem class IncMaxCont because, for this,
we would have to find one problem instance that shows this for all starting values c1 > 0,
and not only a countable set.
In Section 3.2.2, we extrapolate the techniques used before to show a lower bound

of 2.246 on the competitive ratio of the problem class IncMaxCont. This yields a lower
bound of 2.246 on the (non-strict) competitive ratio of IncMaxacc which improves upon
the lower bound of 2.18 from [5].
An extended abstract with most of the results in this chapter appeared in [19]. A new

result in this thesis is Theorem 3.20.

3.1. Separability of Accountable Incremental Maximization

As a first step to bound the competitive ratio of IncMaxacc, we introduce IncMaxSep, a
class of instances of IncMax with a relatively simple structure. We show that the (non-
strict) competitive ratios of IncMaxacc and IncMaxSep coincide. Thus, we can analyze
IncMaxSep to obtain bounds on the (non-strict) competitive ratio of IncMaxacc.

Definition 3.3. An instance of IncMax with objective f : 2U → R≥0 is called separable if
there exist a partition U = U1 ∪ U2 ∪ . . . of U and values di > 0 such that, for all S ⊆ U ,

f(S) = max
i∈N

{|S ∩ Ui| · di}.

We refer to di as the density of set Ui and to vi := |Ui| · di as the value of set Ui. The
restriction of IncMax to separable instances will be denoted by IncMaxSep.

It turns out that the class IncMaxSep is a subclass of IncMaxacc.

Lemma 3.4. The objective of every instance in IncMaxSep is monotone and accountable.

Proof. Let f be the objective function of some instance in IncMaxSep. The function f is
the maximum over modular functions with non-negative values for single elements and
therefore monotone.
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To show that f is accountable, let S ⊆ U . Let i ∈ N such that f(S) = |S ∩ Ui| · di. If
S \ Ui ̸= ∅, we consider some element e ∈ S \ Ui. We have

f(S \ {e}) = |S ∩ Ui| · di = f(S) ≥ f(S)− f(S)

|S|
,

i.e., f is accountable. Otherwise, if S \ Ui = ∅, we let e ∈ S be chosen arbitrarily and
obtain

f(S \ {e}) ≥ |(S \ {e}) ∩ Ui| · di = (|S ∩ Ui| − 1) · di

=
|S ∩ Ui| − 1

|S ∩ Ui|
f(S) =

|S| − 1

|S|
f(S) = f(S)− f(S)

|S|
,

i.e., also in this case, f is accountable.

Lemma 3.4 implies that lower bound on the (non-strict) competitive ratio of IncMaxSep
are also lower bound on the (non-strict) competitive ratio of IncMaxacc. We will show
in the remainder of this chapter that the competitive ratios of the two problem classes
coincide. In order to do this, we show that we can restrict ourselves to instances in
IncMaxSep with a couple of nice properties.
Lemma 3.5. Any instance of IncMaxSep can be transformed into one with the same (non-strict)
competitive ratio, that satisfies the following properties.

(i) There is exactly one set of every cardinality, i.e., |Ui| = i.
(ii) Densities are decreasing, i.e., 1 ≥ d1 ≥ d2 ≥ . . . .
(iii) Values are increasing, i.e., v1 ≤ v2 ≤ . . . .

Proof. We show this by transforming a given instance that does not satisfy (i)-(iii) into one
that does, without changing the optimum value for any cardinality, and without changing
the value of the best incremental solution. Thus the (non-strict) competitive ratio of the
two instances coincide.
If there are two sets Ui, Uj with |Ui| = |Uj |, it only makes sense to consider the one

with higher density, as every incremental solution adding elements from the set of smaller
density can be improved by adding elements from the other set instead, i.e., we can
remove the set with smaller density. If there is i ∈ N≥2 such that there is no set with i
elements, we can add a new set Ui with i elements to the instance with value vi := vi−1.
Then, every incremental solution that adds elements from the newly introduced set can
be improved by adding elements from set Ui−1 instead. Thus, we neither change the
value of the optimum solution of a given cardinality, nor the value of the best incremental
solution for any cardinality. If there is no set U1 with 1 element, we can introduce it with
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U1 U2 U3 U4 U5

Figure 3.1.: Illustration of an instance of IncMaxSep with N = 5 sets. Each set Ui con-
sists of i elements. The height of the elements represents their value. As in
Lemma 3.5, the values of the single elements decreases the larger i is, while
the value of the whole set Ui increases.

density d2. Then, every incremental solution that adds this one element can instead also
add one element from U2. With these changes we obtain an instance that satisfies (i).
The property that 1 ≥ d1 can be made without loss of generality by rescaling the

objective f . If there was i ∈ N with di < di+1, every incremental solution to the problem
instance that adds elements from the set Ui could be improved by adding elements from
the set Ui+1 instead. Since |Ui+1| ≥ |Ui|, this is possible. Thus, we can change the
density di to be equal to di+1 without changing the (non-strict) competitive ratio of the
instance. With this, we obtain an instance satisfying (i) and (ii).
We can assume that (iii) holds because, if there was i ∈ Nwith vi > vi+1, an incremental

solution that adds elements fromUi+1 can be improved by adding elements fromUi instead.
This would mean that we could set vi+1 to be equal to vi without changing the (non-strict)
competitive ratio.
In the following, we assume that every instance satisfies the properties from Lemma 3.5.

Definition 3.6. We say that an incremental solution for IncMaxSep can be represented by a
sequence (c1, c2, . . . ) with ci ∈ N for all i ∈ N if it first adds all elements from the set Uc1 ,
then all elements from the set Uc2 , and so on.

An incremental solution of IncMaxSep can only improve if it is modified in a way such
that it can be represented by a sequence (c1, c2, . . . ). If not all elements of one set Uci are
added to the solution at some point in time, the incremental solution does not degrade if
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elements from a smaller set are added instead because the density of the smaller set is at
least as large as the density of the larger set. Adding all elements of one set consecutively
is better because the value of the incremental solution increases faster this way.
Lemma 3.7 ([5, Observation 2]). For every instance of IncMaxSep, there is an incremental
solution achieving the best-possible competitive ratio that can be represented by a sequence
(c1, c2, . . . ). We can assume that vci < vci+1 and thus, since the values (vi)i∈N are non-
decreasing, ci < ci+1 for all i ∈ N.
From now on, we restrict ourselves to the analysis of incremental solutions that can be

represented by a sequence (c1, c2, . . . ) with ci < ci+1 for all i ∈ N.
Proposition 3.8. Let ρ ≥ 1 and α ≥ 0. If there exists an algorithm with (non-strict)
competitive ratio ρ with additive constant α for IncMaxSep, then there also exists an algorithm
with (non-strict) competitive ratio ρ with additive constant α for IncMaxacc.
Proof. Let f : U → R≥0 be the monotone and accountable objective of some instance of
IncMaxacc. We construct an instance of IncMaxSep such that, for ρ ≥ 1, every incremen-
tal solution that is non-strictly ρ-competitive with additive constant α ≥ 0 induces an
incremental solution for the initial instance of IncMaxacc that is non-strictly ρ-competitive
with additive constant α.
By O(i) we refer to the optimum solution of cardinality i for the instance of IncMaxacc,

and by Opt(i) to the value f(O(i)).
First, we define the instance of IncMaxSep. Let n := |U | and let U1, . . . , Un be disjoint

sets such that, for i ∈ [n], |Ui| = i. For i ∈ [n], let di := Opt(i)/i, i.e., we have vi = Opt(i).
Let the objective of this problem be denoted by fsep. Note that this new instance contains
significantly more elements than the instance of IncMaxacc.
LetX be an incremental solution of the separable problem instance that is non-strictly ρ-

competitive with additive constantα ≥ 0 that can be represented by a sequence (c1, . . . , cn).
We define an incremental solution X̃ to the IncMaxacc problem as follows. First, we add
all elements from the set O(c1), then all elements from the set O(c2) and so on, until we
added all optimum solutions O(c1), . . . , O(cn). For all i ∈ [n], the elements of the set O(ci)
are added in the order given by Lemma 3.1. We show that this incremental solution is
non-strictly ρ-competitive with additive constant α, as well. For this, fix a cardinality
C ∈ [n]. Let i ∈ [n] be such that the last element added to the solution X̃(C) is from the
set O(ci). Note that, for cardinality C, X̃ has added O(ci−1), the optimum solution of
cardinality ci−1, completely and C −

∑︁i−1
j=1 cj elements from the set O(ci). By Lemma 3.1

and monotonicity of f , the value of the solution X̃(C) is

f(X̃(C)) = max

{︄
Opt(ci−1),

C −
∑︁i−1

j=1 cj

ci
Opt(ci)

}︄
. (3.1)
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Similar to X̃, the solution X(C) of the separable problem instance contains all elements
from the set Uci−1 and C −

∑︁i−1
j=1 cj elements from the set Uci . Thus, the value of the

solution X(C) is

fsep(X(C)) = max

{︄
vci−1 ,

(︄
C −

i−1∑︂
j=1

cj

)︄
dci

}︄
= max

{︄
vci−1 ,

C −
∑︁i−1

j=1 cj

ci
vci

}︄
.

Combining this with the fact that vcj = Opt(cj) for all j ∈ [n] as well as with (3.1), we
obtain

f(X̃(C)) = fsep(X(C)) ≥ 1

ρ
v(C)− α =

1

ρ
Opt(C)− α.

By Lemma 3.4, IncMaxSep is a subclass of IncMaxacc, which yields that the competitive
ratio of IncMaxSep is smaller or equal to that of IncMaxacc. Furthermore, by Proposi-
tion 3.8, the competitive ratio of IncMaxSep cannot be smaller than that of IncMaxacc.
Combining these results immediately yields the following.

Theorem 3.9. The (non-strict) competitive ratios of IncMaxacc and IncMaxSep coincide.

3.2. Continuization of Accountable Incremental Maximization

In order to find lower bounds on the (non-strict) competitive ratio of IncMaxSep, we
transform the problem into a continuous one, the IncMaxCont problem. We will only
consider the strict competitive ratio of this problem because it will turn out that lower
bounds for the strict competitive ratio of the IncMaxCont problem are also lower bounds
on the non-strict competitive ratio of the IncMaxSep problem.
Before we state the definition of the IncMaxCont problem, we give an intuition what

the problem is about. In the IncMaxSep problem, we restricted ourselves to instances
where the ground set U is partitioned into disjoint subsets U1, U2, . . . with |Ui| = i for
all i ∈ N. Within one such subset, the objective function f is modular and every element
has the same value. We have seen that, without loss of generality, an incremental solution
for such a problem can be represented by a sequence (c1, c2, . . . ) with ci ∈ N, i.e., the
incremental solution starts by adding the elements in Uc1 one by one, then the elements
in Uc2 , and so on. In the continuized version of this problem we assume that, instead of
the sets U1, U2, . . . , we are given a family of disjoint sets (Uc)c∈R>0 with |Uc| = c for all
c > 0. Note that sets may now contain fractional elements. Further we assume that we
can add fractional items to the solution. Within one such subset, the objective will still be
modular in the sense that the value of S ⊆ Uc is given by |S| · d(c), where d : R≥0 → R≥0
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maps the index of the subset Uc to the value of one element in this subset. An incremental
solution for this problem will also be a sequence (c1, c2, . . . ) with the idea that first the
subset Uc1 is added to the solution, then Uc2 , and so on. Since |Uc| is not necessarily an
integer, instead of the cardinality of a set, we will talk about its size.

Definition 3.10. In the IncMaxCont problem, we are given a density function d : R≥0 → (0, 1]
and a value function v(c) := cd(c). As for the discrete problem, we denote an incremental
solution X for IncMaxCont by a sequence X = (c1, c2, . . . ). For a given size c ≥ 0, we denote
the solution of this size by X(c). With k ∈ N such that

∑︁k−1
i=1 ci < c ≤

∑︁k
i=1 ci, the value of

X(c) is defined as

f(X(c)) := max

{︄
max

i∈[k−1]
v(ci),

(︄
c−

k−1∑︂
i=1

ci

)︄
d(dk)

}︄
.

An incremental solution X is ρ-competitive if ρ · f(X(c)) ≥ Opt(c) for all c > 0. The
competitive ratio of X is defined as inf{ρ ≥ 1 | X is ρ-competitive}.

As we did for the discrete version of the problem, without loss of generality, we assume
that the density function d is non-increasing and the value function v is non-decreasing.
These assumptions imply that d is continuous: If this was not the case and d was not contin-
uous for some size c′, i.e., limc↗c′ d(c) > limc↘c′ d(c), then limc↗c′ v(c) > limc↘c′ v(c) by
definition of v, i.e., v would not be increasing in c. So d is continuous, and, by definition of
v, also v is continuous. Furthermore, without loss of generality, we assume that d(0) = 1.

Remark 3.11. As the function v is increasing and d is decreasing, we have Opt(c) = v(c).
Thus, an incremental solution X is ρ-competitive if ρ · f(X(c)) ≥ v(c) for all c > 0.

For a fixed size c ≥ 0, we define p(c) := max{c′ ≥ 0 | v(c′) ≤ ρv(c)}. This value gives
the size up to which a solution with value v(c) is ρ-competitive. Throughout our analysis,
we assume that p(c) is defined for every c ≥ 0, i.e., that limc→∞ v(c) = ∞. Otherwise,
any algorithm can terminate when the value of its solution is at least 1

ρ supc∈R≥0
v(c).

Proposition 3.12. For every additive constant α ≥ 0, the non-strict competitive ratio of
IncMaxSep is greater or equal to the strict competitive ratio of IncMaxCont.

Proof. Let an instance of the IncMaxCont problem with value function v : R≥0 → R≥0

and density function d : R≥0 → R≥0 be given, and let ρ ≥ 1, α ≥ 0, ε > 0. We will
construct an instance of the IncMaxSep problem such that every incremental solution for
this problem instance with non-strict competitive ratio ρ with additive constant α yields
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an incremental solution for the IncMaxCont problem with competitive ratio ρ+ ε. Let
ε′ > 0 be small enough such that

ρ < (ρ+ ε)(1− ε′), (3.2)
1− 2ε′

ρ
≥ 1

ρ+ ε
, (3.3)

ε′ < 1− 1

ρ
. (3.4)

Furthermore, let cmin ≥ 0 be the largest value with d((ρ+ 1)cmin) = 1− ε′.
Let k ∈ N be large enough such that, for all C ≥ cmin,

ε′

ρ
⌊kcmin⌋ ≥ α, (3.5)

ρ+ ε

ρ
v

(︃
C − 1

k

)︃
− (ρ+ ε)α

k
≥ v(C), (3.6)

ρk · cmin < ⌊k(ρ+ 1)cmin⌋(1− ε′)− α, (3.7)
1− ε′

ρ
− α

⌊kρcmin⌋
≥ 1

ρ+ ε
, (3.8)

(3.9)

where the last two are possible because of (3.2). We define the IncMaxSep problem as
follows. Let U1, U2, . . . be disjoint sets of elements with |Ui| = i. For i ∈ N, let

di := d
(︂ i
k

)︂
(3.10)

be the density of set Ui, i.e., the value of Ui is

vi = i · di = i · d
(︂ i
k

)︂
= k · v

(︂ i
k

)︂
(3.11)

LetX be an incremental solution that is non-strictly ρ-competitive with additive constant α
for this instance of IncMaxSep and can be represented by the sequence (c1, c2, . . . ).
Without loss of generality, we can assume that ci < ci+1 for all i ∈ N. Furthermore, we
can assume that

dc2 <
1

ρ
. (3.12)

If this was not the case, we could simply consider the incremental solution represented by
(c2, c3, . . . ), which would also be non-strictly ρ-competitive with additive constant α.
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We will define an incremental solution X̃ = (c1̃, c2̃, . . . ) for the instance of IncMaxCont
depending on the values c1 and cmin.

Case 1: c1
k ≥ cmin.

In this case, we define X̃ =
(︁
c1
k ,

c2
k , . . .

)︁. The fact that X is non-strictly ρ-competitive with
additive constant α, together with the fact that c1 ≥ kcmin yields

⌊kcmin⌋dc1 = f(X(⌊kcmin⌋)) ≥
1

ρ
v⌊kcmin⌋ − α

=
1

ρ
⌊kcmin⌋d⌊kcmin⌋ − α

(3.10)
=

1

ρ
⌊kcmin⌋d

(︃
⌊kcmin⌋
k

)︃
− α

≥ 1

ρ
⌊kcmin⌋d(cmin)− α ≥ 1− ε′

ρ
⌊kcmin⌋ − α

(3.5)
≥ 1− ε′

ρ
⌊kcmin⌋ −

ε′

ρ
⌊kcmin⌋ =

1− 2ε′

ρ
⌊kcmin⌋

(3.3)
≥ 1

ρ+ ε
⌊kcmin⌋,

i.e., we have
d(c1̃) = d

(︂c1
k

)︂ (3.10)
= dc1 ≥ 1

ρ+ ε
.

Case 2: c1
k < cmin.

In this case, we define X̃ =
(︁
c2
k ,

c3
k , . . .

)︁, i.e., we skip the first size c1
k . The solutionX(⌊k(ρ+

1)cmin⌋) contains the set Uc1 completely because we have c1 < kcmin ≤ ⌊k(ρ+ 1)cmin⌋.
Furthermore, because

d⌊k(ρ+1)cmin⌋ = d

(︃
⌊k(ρ+ 1)cmin⌋

k

)︃
≥ d((ρ+ 1)cmin) = 1− ε′

(3.4)
>

1

ρ

(3.12)
> dc2 ,

we have c2 > ⌊k(ρ+1)cmin⌋. Thus, X(⌊k(ρ+1)cmin⌋) contains exactly ⌊k(ρ+1)cmin⌋− c1
elements from the set Uc2 and, except for the set Uc1 , nothing else. Thus,

f(X(⌊k(ρ+ 1)cmin⌋)) = max{vc1 , (⌊k(ρ+ 1)cmin⌋ − c1)dc2}. (3.13)
We have

⌊k(ρ+ 1)cmin⌋(1− ε′) = ⌊k(ρ+ 1)cmin⌋d((ρ+ 1)cmin)

≤ ⌊k(ρ+ 1)cmin⌋d
(︃
⌊k(ρ+ 1)cmin⌋

k

)︃
= k · v

(︃
⌊k(ρ+ 1)cmin⌋

k

)︃
(3.11)
= v⌊k(ρ+1)cmin⌋ (3.14)
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and thus

ρvc1
(3.11)
= ρk · v

(︂c1
k

)︂
≤ ρk · v(cmin) ≤ ρk · cmin

(3.7)
< ⌊k(ρ+ 1)cmin⌋(1− ε′)− α

(3.14)
≤ v⌊k(ρ+1)cmin⌋ − α. (3.15)

Since X has a non-strict competitive ratio of ρ with additive constant α, (3.13) and (3.15)
yield

f(X(⌊k(ρ+ 1)cmin⌋)) = (⌊k(ρ+ 1)cmin⌋ − c1)dc2 .

Combined with the fact that X is non-strictly ρ-competitive with additive constant α, this
implies

(⌊k(ρ+ 1)cmin⌋ − c1)dc2 ≥ 1

ρ
v⌊k(ρ+1)cmin⌋ − α

(3.14)
≥ 1

ρ
⌊k(ρ+ 1)cmin⌋(1− ε′)− α

≥ 1

ρ
(⌊k(ρ+ 1)cmin⌋ − c1)(1− ε′)− α, (3.16)

i.e.,

d(c1̃) = d
(︂c2
k

)︂ (3.10)
= dc2

(3.16)
≥ 1− ε′

ρ
− α

⌊k(ρ+ 1)cmin⌋ − c1

≥ 1− ε′

ρ
− α

⌊kρcmin⌋+ ⌊kcmin⌋ − c1
c1∈N, c1<kcmin

≥ 1− ε′

ρ
− α

⌊kρcmin⌋
(3.8)
≥ 1

ρ+ ε
.

At the beginning of this case we have already established that c2 > ⌊k(ρ+1)cmin⌋ ≥ kcmin.
As c1̃ = c2

k , we have c1̃ ≥ cmin.
In both cases, we have defined X̃ such that

d(c1̃) ≥
1

ρ+ ε
(3.17)

and
c1̃ ≥ cmin. (3.18)
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To show that X̃ has a strict competitive ratio of ρ + ε, fix some C ≥ 0. If C ≤ c1̃, we
have

f(X̃(C)) = C · d(c1̃)
(3.17)
≥ 1

ρ+ ε
C ≥ 1

ρ+ ε
v(C).

Otherwise, if C > c1̃,

(ρ+ ε)fc(X̃(C)) ≥ (ρ+ ε)fc

(︃
X̃

(︃
⌊kC⌋
k

)︃)︃
(3.11)
= (ρ+ ε)

1

k
f(X(⌊kC⌋))

≥ (ρ+ ε)

ρ

1

k
v⌊kC⌋ −

(ρ+ ε)α

k

(3.11)
=

(ρ+ ε)

ρ
v

(︃
⌊kC⌋
k

)︃
− (ρ+ ε)α

k

≥ (ρ+ ε)

ρ
v

(︃
kC − 1

k

)︃
− (ρ+ ε)α

k

=
(ρ+ ε)

ρ
v

(︃
C − 1

k

)︃
− (ρ+ ε)α

k
(3.6)
≥ v(C),

where for the last inequality we use the fact that, by (3.18), we have C > cmin.

Proposition 3.12 implies that, instead of devising a lower bound for the (non-strict)
competitive ratio of the IncMaxSep problem, we can construct a lower bound for the strict
competitive ratio of the IncMaxCont problem.
Note that it is not clear whether the (non-)strict competitive ratio of IncMaxSep and the

strict competitive ratio of IncMaxCont coincide. This is due to the fact that an incremental
solution to the IncMaxCont problem may add fractional elements while an incremental
solution to the IncMaxSep problem may only add an integral number of items. There are
even discrete instances where every continuization of the instance has a competitive ratio
smaller than the initial instance.

Observation 3.13. There exists an instance of IncMaxSep that has a strict competitive
ratio that is strictly larger than that of every instance of IncMaxCont that monotonically
interpolates the IncMaxSep instance, i.e., with v(i) = vi for all i ∈ N.
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Proof. Consider the instance of IncMaxSep with N = 16 sets and

d1 = 1,

d3 = d4 =
17

40
,

d12 = d13 = d14 = d15 = d16 =
16473

107200
.

For i ∈ {2, 5, 6, 7, 8, 9, 10, 11}, we choose di such that i · di = vi = vi−1 = (i− 1)di−1. We
show that every incremental solution represented by a sequence (c1, c2, . . . ) has a com-
petitive ratio of at least 1.446 for this problem instance. If c1 ≥ 2, then dc1 ≤ 1

2 , i.e., for
cardinality 1, the solution has value dc1 ≤ 1

2 which implies that the incremental solution
has a competitive ratio of at least 2. Thus assume that c1 = 1. If c2 ≥ 5, we can, with-
out loss of generality, assume that c2 ≥ 12. Otherwise we can improve the incremental
solution by choosing c2 = 4 instead. Then, the value of the solution for cardinality 4 is
max{1, 3 · dc2} = max{1, 3 · 16473

107200} = 1, while the optimum solution has value 4d4 = 17
10 ,

i.e., the competitive ratio of the incremental solution is at least 1.7. Without loss of
generality, we can assume that vc2 > vc1 , i.e., that c2 ≥ 3. It remains to consider the case
that c2 ∈ {3, 4}. We can assume that dc3 < dc2 because otherwise, we could improve the
incremental solution by removing c2. Thus, and because vc3 > vc2 , we have c3 ≥ 12, i.e.,
dc3 = 16473

107200 . For cardinality 4c2, the value of the solution is

max{17
40
c2, (4c2 − 1− c2)

16473

107200
} =

17

40
c2

and the optimum solution has value at least 4c2 · 16473
107200 . Thus, the competitive ratio is

4c2 · 16473
107200/(

17
40c2) =

969
670 > 1.446.

Now, we consider an instance of IncMaxCont with d(i) = di for all i ∈ [16]. Let
ρ = 57

40 = 1.425. We show that the incremental solution (c1, c2, c3) = (1ρ , 4, 12 − 1
ρ) is

ρ-competitive. Note that c1 ≥ 1
ρ . As we will see in Lemma 3.14, it suffices to show that

d(ci) ≥
v(ci−1)

p(ci−1)−
∑︁i−1

j=1 cj
(3.19)

for i ∈ {2, 3}. We have p(c1) ≤ ρv(c1)
d3

= 57
17v(c1) and thus

d(c2) = d(4) = d4 =
17

40
=

1
57
17 − 1

d(c1)≥d1=1

≥ 1
57
17 − 1

d(c1)

v(c1)=c1d(c1)
=

v(c1)

p(c1)− c1
.
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We have p(c2) = p(4) = ρv(4)
d12

=
57
40

·4· 17
40

16473
107200

= 268
17 and thus

d(c3)
c3<12
≥ d12 =

16473

107200
=

4 · 17
40

268
17 − 40

57 − 4
=

v(c2)

p(c2)− c1 − c2
.

Therefore, (3.19) holds for i ∈ {2, 3} and thus, the incremental solution (c1, c2, c3) is
ρ-competitive.

Note that, even though this shows that there are instances where the continuous
problem is easier than the discrete one, this does not rule out that the competitive ratios
of IncMaxSep and IncMaxCont coincide. This is due to the fact that the instance in the
proof is not a worst-case instance.

3.2.1. Optimal Continuous Online Algorithm

In this section, we present an optimal algorithm to solve the IncMaxCont problem and
analyze it. By giving a lower bound on the competitive ratio of such an optimal algorithm,
one can derive a lower bound for the competitive ratio of the IncMaxCont problem. To get
an idea what the algorithm does, consider the following lemma. It gives a characterization
what it means for an incremental solution (c1, c2, . . . ) to be ρ-competitive, depending on
(c1, c2, . . . ), v and d.

Lemma 3.14. Let X = (c1, c2, . . . ) be an incremental solution for an instance of the
IncMaxCont problem. The following are equivalent:

(i) X is ρ-competitive.
(ii) We have d(c1) ≥ 1

ρ and, for all i ∈ N, d(ci+1) ≥ v(ci)

p(ci)−
∑︁i

j=1 cj
.

(iii) We have d(c1) ≥ 1
ρ , and, for all i ∈ N, p(ci) >

∑︁i
j=1 cj and d(ci+1) ≥ v(ci)

p(ci)−
∑︁i

j=1 cj
.

Proof. (i) ⇒ (iii): Since X is ρ-competitive, for all C ≥ 0, we have f(X(C)) ≥ v(C)/ρ. If
d(c1) <

1
ρ was true, X would not be ρ-competitive for all sizes C ≥ 0 with d(C) > ρd(c1),

which exist because d(0) = 1. Thus, we have d(c1) ≥ 1
ρ . Now suppose p(ci) <

∑︁i
j=1 cj . By

definition of p and monotonicity of v, we know that

ρv(ci) = v(p(ci)) < v

(︄
i∑︂

j=1

cj

)︄
,

which means that X is not ρ-competitive for size ∑︁i
j=1 ci. This is a contradiction and

thus we have p(ci) ≥
∑︁i

j=1 cj . Suppose p(ci) =
∑︁i

j=1 cj . Let x ∈
(︁
0, v(ci)

d(ci+1)

)︁. We have
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f(X(p(ci) + x)) = v(ci) but, by definition of p and monotonicity of v, we know

ρv(ci) = v(p(ci)) < v

(︄(︄
i∑︂

j=1

cj

)︄
+ x

)︄
,

and thus we have p(ci) >
∑︁i

j=1 cj . Assume that

d(ci+1) <
v(ci)

p(ci)−
∑︁i

j=1 cj
.

We established p(ci) >
∑︁i

j=1 cj and because
(︁
p(ci) −

∑︁i
j=1 cj

)︁
d(ci+1) < v(ci), we have

f(X(p(ci))) = v(ci) = v(p(ci))/ρ. Furthermore, for the same reason there is ε > 0 with(︁
p(ci) + ε−

∑︁i
j=1 cj

)︁
d(ci+1) < v(ci). This implies that

f(X(p(ci) + ε)) = max

{︄(︄
p(ci) + ε−

i∑︂
j=1

cj

)︄
d(ci+1), v(ci)

}︄
= v(ci).

Yet, by definition of p, v(p(ci) + ε) > ρv(ci) holds and thus X is not ρ-competitive. This is
a contradiction, i.e., (iii) must hold.
(iii) ⇒ (i): Suppose (iii) holds but X was not ρ-competitive. Then there exist C ≥ 0

and ε > 0 such that X is ρ-competitive for all sizes in [0, C] and not ρ-competitive for
all sizes in (C,C + ε] because v(c) and f(X(c)) are both continuous in c. Let i ∈ N and
0 < x ≤ ci such that C =

(︁∑︁i−1
j=1 cj

)︁
+ x. If i = 1, we have

X(C) = xd(c1) ≥
1

ρ
x ≥ 1

ρ
xd(x) =

1

ρ
v(x).

This is a contradiction to the fact that X is not ρ-competitive for size C and there-
fore we have i ≥ 2. Assume that x = ci. Then, f(X(C)) = v(ci) holds. For all
0 < x′ ≤ min{ε, v(ci)

d(ci+1)
}, we have f(X(C+x′)) = v(ci) and, by definition ofC, ε and x′,X

is not ρ-competitive for size C + x′, i.e., v(C + x′) > ρv(ci). Since this holds for arbitrarily
small x′ > 0 and because ρ-competitiveness for size C of X implies v(C) ≤ ρv(ci), we
know that p(ci) = C =

∑︁i
j=1 cj , which is a contradiction to (iii) and thus x ̸= ci, i.e.,

x < ci. Let x′ ∈ (x,min{ci, x + ε}) be chosen arbitrarily and let C ′ :=
(︁∑︁i−1

j=1 cj
)︁
+ x′.

Now suppose that
xd(ci) < v(ci−1). (3.20)

Then we have f(X(C)) = v(ci−1) and since X is ρ-competitive for size C, we have
C ≤ p(ci−1). But since C ′ > p(ci−1) for any x′ > x, i.e., for any C ′ > C, we have

67



C = p(ci−1). Non-negativity of v and (iii) imply p(ci−1)−
∑︁i−1

j=1 cj ≥ 0 and thus

x
(3.20)
<

v(ci−1)

d(ci)

(iii)

≤ p(ci−1)−
i−1∑︂
j=1

cj

or, equivalently, C =
(︁∑︁i−1

j=1 cj
)︁
+x < p(ci−1). This is a contradiction and therefore (3.20)

does not hold, i.e., we have xd(ci) ≥ v(ci−1). Thus, we have f(X(C)) = xd(ci). Since X
is ρ-competitive for size C, we have

v(C) ≤ ρ · xd(ci). (3.21)

This implies
d(C) =

v(C)

C

(3.21)
≤ ρ

x

C
d(ci) ≤ ρd(ci). (3.22)

We can conclude

v(C ′) = C ′d(C ′)
d non-inc.

≤ C ′d(C)

= Cd(s) + (C ′ − C)d(C)

= v(C) + (x′ − x)d(C)
(3.20),(3.22)

≤ ρ · xd(ci) + (x′ − x)ρd(ci)

= ρ · x′d(ci),

which is a contradiction to the fact that X is not ρ-competitive for size C ′ and therefore (i)
must hold.
(iii) ⇒ (ii): This follows immediately.
(ii) ⇒ (iii): Suppose (ii) holds. We have to show that p(ci) >

∑︁i
j=1 cj for all i ∈ N.

The rest of (iii) follows immediately from (ii). We will prove that this is the case by
induction on i. For i = 1 we have p(c1) > c1 by definition of p, continuity of v and the fact
that c1 > 0. Now suppose

p(ci) >

i∑︂
j=1

cj (3.23)

holds for some i ∈ N. If p(ci) ≥
∑︁i+1

j=1 cj , then (3.23) holds for i+1 because p(ci+1) > p(ci).
So suppose

p(ci) <
i+1∑︂
j=1

cj . (3.24)
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In that case, we have

v

(︄
i+1∑︂
j=1

cj

)︄
=

(︄
i+1∑︂
j=1

cj

)︄
· d

(︄
i+1∑︂
j=1

cj

)︄
(3.24)
≤

(︄
i+1∑︂
j=1

cj

)︄
· d(p(ci))

= p(ci)d(p(ci)) +

(︄(︄
i+1∑︂
j=1

cj

)︄
− p(ci)

)︄
d(p(ci))

= v(p(ci)) +

(︄(︄
i+1∑︂
j=1

cj

)︄
− p(ci)

)︄
d(p(ci))

def of p
= ρv(ci) +

(︄(︄
i+1∑︂
j=1

cj

)︄
− p(ci)

)︄
ρv(ci)

p(ci)

(3.23)
< ρ ·

(︄
p(ci)−

i∑︂
j=1

cj

)︄
v(ci)

p(ci)−
∑︁i

j=1 cj
+

(︄(︄
i+1∑︂
j=1

cj

)︄
− p(ci)

)︄
ρv(ci)

p(ci)−
∑︁i

j=1 cj

= ρ · ci+1
v(ci)

p(ci)−
∑︁i

j=1 cj

(ii)

≤ ρ · ci+1d(ci+1) = ρv(ci+1) = v(p(ci+1)).

Since v is increasing and continuous, this implies that p(ci+1) >
∑︁i+1

j=1 cj .

The intuition behind the fraction

v(ci)

p(ci)−
∑︁i

j=1 cj

is the following: The value of the partial incremental solution (c1, . . . , ci−1, ci) is v(ci) and
this value is ρ-competitive up to size p(ci). The total size required for this partial incremen-
tal solution is∑︁i

j=1 cj . Thus, in order to stay competitive, the size of the optimum solution
added next, namely ci+1, needs to be chosen such that

(︁
p(ci)−

∑︁i
j=1 cj

)︁
d(ci+1) ≥ v(ci),

i.e., the density d(ci+1) has to be large enough such that the value of the solution of size
p(ci) is

(︁
p(ci)−

∑︁i
j=1 cj

)︁
d(ci+1).

We use this fraction to define an algorithm for solving the IncMaxCont Problem. For
the algorithm, we assume that v is strictly increasing and d is strictly decreasing to make
the definition of our algorithm unique. Every instance of IncMaxCont can be transformed
to satisfy this with an arbitrarily small loss by simply “tilting” constant parts of d and v
slightly. The algorithm GreedyScaling(c1, ρ) starts by adding the optimum solution of
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∑︁i
j=1 cj p(ci) ci+1

∑︁i+1
j=1 cj

v(ci)

v(ci+1)

c

v(c)

1
ρv(c)

GreedyScaling(c)

Figure 3.2.: Illustration of GreedyScaling(c1, ρ). Between size
∑︁i

j=1 cj and size
∑︁i+1

j=1 cj ,
the algorithm adds the optimum solution of size ci+1. This size is chosen in a
way such that the value of the partially added optimum solution of size ci+1

has value v(ci) exactly at size p(ci), i.e., when the previously added optimum
solution of size ci loses ρ-competitiveness.

size c1 > 0 and iteratively chooses the size ci+1 such that

d(ci+1) =
v(ci)

p(ci)−
∑︁i

j=1 cj
, (3.25)

i.e., as large as possible while still satisfying the inequality in Lemma 3.14. The incremental
solution is given by (c1, c2, . . . ). An illustration of the algorithm can be found in Figure 3.2.
Using the definition of the algorithm in (3.25) and Lemma 3.14, we are able to prove

the following.

Proposition 3.15. The algorithm GreedyScaling(c1, ρ) is ρ-competitive if and only if
d(c1) ≥ 1

ρ and ci < ci+1 for all i ∈ N.

Proof. Let X = (c1, c2, . . . ) denote the solution of GreedyScaling(c1, ρ).
“⇐”: If ci < ci+1 for all i ∈ N and d(c1) ≥ 1

ρ , we can simply apply Lemma 3.14 and
obtain that X is ρ-competitive.
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“⇒”: If d(c1) < 1
ρ , Lemma 3.14 yields that X is not ρ-competitive. Now, suppose that

ck+1 ≤ ck for some k ∈ N. If ci ≤ 0 for some i ∈ N, then X is not valid and thus not
ρ-competitive. Thus, assume that ci > 0 for all i ∈ N. We will now iteratively show that,
for all i ∈ {k, k + 1, . . . }, we have ci+1 < ci. For this, suppose that ci+1 ≤ ci. Then

d(ci+2) =
v(ci+1)

p(ci+1)−
∑︁i+1

j=1 cj
=

1
ρ

d(p(ci+1))
− 1

v(ci+1)

∑︁i+1
j=1 cj

ci+1≤ci
≥ 1

ρ
d(p(ci))

− 1
v(ci)

∑︁i+1
j=1 cj

>
1

ρ
d(p(ci))

− 1
v(ci)

∑︁i
j=1 cj

=
v(ci)

p(ci)−
∑︁i

j=1 cj
= d(ci+1).

Because d is non-increasing, we have ci+2 < ci+1. By an iterative argument it follows
that, for all i ∈ {k, k + 1, . . . }, we have ci+1 < ci. This implies that the value of X is
smaller or equal to v(ck) for all sizes. Yet, for large sizes C ∈ N, we have v(C) > ρv(ck)
as limc→∞ v(c) = ∞.

To show that GreedyScaling(c1, ρ) with the correct choice of c1 and ρ computes the
best-possible incremental solution, we need the following lemma. It states that if it is
possible to find a ρ-competitive incremental solution for the problem, then, for any k ∈ N,
there exists an incremental solution such that we cannot reduce any of the sizes in any
prefix with a combined size of up to k without losing ρ-competitiveness. The idea behind
its proof is the following. We start with some ρ-competitive incremental solution and
iteratively reduce the sizes until we converge to some incremental solution that satisfies
the sought property. To avoid running into some sequence starting with 0’s, we start
our search with an incremental solution with a minimal number of chosen sizes up to a
combined size of k.

Lemma 3.16. Let v be strictly increasing, let k ∈ N, and let ρ ≥ 1 such that there ex-
ists a ρ-competitive incremental solution. Then there exists a ρ-competitive incremental
solution (c∗1, c

∗
2, . . . ) such that, with n := min{ℓ ∈ N |

∑︁ℓ
i=1 c

∗
i ≥ k}, there exists no other

ρ-competitive incremental solution (c′1, c
′
2, . . . ) with c′i ≤ c∗i for all i ∈ [n− 1], c′i = c∗i for all

i ∈ N≥n and c′i < c∗i for at least one i ∈ [n− 1]. Furthermore, there is some C > 0 that is
independent from k such that c∗1 > C.

Proof. We fix a ρ-competitive incremental solution (c1, c2, . . . ) with c1 < c2 < . . . . We
define n := min{ℓ ∈ N |

∑︁ℓ
i=1 ci ≥ k}. For i ∈ N, let Si be the set of all ρ-competitive

incremental solutions (c′1, c′2, . . . ) with cn+j = c′i+j for all j ∈ N ∪ {0}. Furthermore, let

71



m := min{i ∈ N | Si ̸= ∅}. This value exists since (c1, c2, . . . ) ∈ Sn. For every incremental
solution (c′1, c′2, . . . ) ∈ Sm, we have

0 < c′1 < c′2 < · · · < c′m = cn (3.26)

because otherwise it would be possible to skip a size, which is a contradiction to the
minimality of m. For every (c′1, c′2, . . . ) ∈ Sm, we define the set

Sm((c′1, c
′
2, . . . )) := {(c′′1, c′′2, . . . ) ∈ Sm | c′′i ≤ c′i ∀i ∈ N}.

To prove the lemma, it suffices to show that there exists some incremental solution
(c∗1, c

∗
2, . . . ) with

Sm((c∗1, c
∗
2, . . . )) = {(c∗1, c∗2, . . . )}. (3.27)

It is easy to see that, for every (c′′1, c′′2, . . . ) ∈ Sm((c′1, c
′
2, . . . )), we have

Sm((c′′1, c
′′
2, . . . )) ⊆ Sm((c′1, c

′
2, . . . )). (3.28)

For (c′1, c′2, . . . ) ∈ Sm, we define

sm((c′1, c
′
2, . . . )) := inf

{︄
m∑︂
i=1

c′′i

⃓⃓⃓⃓
⃓ (c′′1, c′′2, . . . ) ∈ Sm((c′1, c

′
2, . . . ))

}︄
.

Since (3.26) holds, this value is larger than 0 and smaller than∑︁n
j=1 cj , and therefore

exists.
We fix some incremental solution (c11, c12, . . . ) ∈ Sm and recursively define a sequence of

incremental solutions such that, for all i, j ∈ N, we have (cj+1
1 , cj+1

2 , . . . ) ∈ Sm((cj1, c
j
2, . . . )),

and such that (︄
m∑︂
i=1

cj+1
i

)︄
− sm((cj1, c

j
2, . . . )) ≤

(︃
1

2

)︃j

. (3.29)

This sequence exists because the infimum can be approximated arbitrarily close.
Claim 1: The limit (c∗1, c∗2, . . . ) := limj→∞(cj1, c

j
2, . . . ) exists.

Proof of Claim 1: The sequence (︁sm((cj1, c
j
2, . . . ))

)︁
j∈N is increasing because of (3.28),

and the sequence (︁∑︁m
i=1 c

j
i

)︁
j∈N is decreasing because (c

j+1
1 , cj+1

2 , . . . ) ∈ Sm((cj1, c
j
2, . . . )).

Furthermore,
sm((cj1, c

j
2, . . . )) ≤

∑︂
i=1

cji

and (3.29) imply
lim
j→∞

sm((cj1, c
j
2, . . . )) = lim

j→∞

∑︂
i=1

cji .
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Because cj+1
i ≤ cji for all i, j ∈ N, the sequence (︁(cj1, cj2, . . . ))︁j∈N converges to some

incremental solution (c∗1, c∗2, . . . ) with
m∑︂
i=1

c∗i = lim
j→∞

m∑︂
i=1

cji = lim
j→∞

sm((cj1, c
j
2, . . . )). (3.30)

Claim 2: We have (c∗1, c∗2, . . . ) ∈ Sm.
Proof of Claim 2: For every j ∈ N, we have cjm+ℓ = cn+ℓ for all ℓ ∈ N∪{0} and therefore

also c∗m+ℓ = cn+ℓ for all ℓ ∈ N ∪ {0}. So, it remains to prove that the incremental solution
(c∗1, c

∗
2, . . . ) is ρ-competitive. For all j ∈ N, we have cj1 ≥ 1

ρ and thus c∗1 = limj→∞ cj1 ≥ 1
ρ .

Next, we show that
d(c∗i+1) ≥

v(c∗i )

p(c∗i )−
∑︁i

ℓ=1 c
∗
ℓ

holds for all i ∈ N. The function p is continuous by continuity and strict monotonicity
of v. Continuity of v and p imply that v(c′i)/(p(c′i)−

∑︁i
ℓ=1 c

′
ℓ) is continuous in c′1, . . . , c′i.

By Lemma 3.14, we have

d(cji+1) ≥
v(cji )

p(cji )−
∑︁i

ℓ=1 c
j
ℓ

for all j ∈ N because (cj1, c
j
2, . . . ) is ρ-competitive. Both sides of this inequality are

continuous in cj1, cj2, . . . , and we have limj→∞ cji = c∗i . Those two facts imply that

d(c∗i+1) ≥
v(c∗i )

p(c∗i )−
∑︁i

ℓ=1 c
∗
ℓ

holds. To prove ρ-competitiveness of (c∗1, c∗2, . . . ), by Lemma 3.14, it remains to show that
0 < c∗1 < c∗2 < . . . holds. We know that this holds for all incremental solutions (cj1, cj2, . . . ),
j ∈ N. Therefore, we have 0 ≤ c∗1 ≤ · · · ≤ c∗m < c∗m+1 < . . . . Bit if c∗i = c∗i+1 for some
i ∈ [m − 1], then we could remove ci+1 and would still be left with a ρ-competitive
solution. This would be a contradiction to the minimality of m. Therefore, we have
0 < c∗1 < c∗2 < . . . , which concludes the proof of Claim 2.
We established (c∗1, c

∗
2, . . . ) ∈ Sm and therefore (c∗1, c∗2, . . . ) ∈ Sm((cj1, c

j
2, . . . )), which

implies that Sm((c∗1, c
∗
2, . . . )) ⊆ Sm((cj1, c

j
2, . . . )). Combined with the fact that we have

(c∗1, c
∗
2, . . . ) ∈ Sm((c∗1, c

∗
2, . . . )), this implies

m∑︂
i=1

c∗i ≥ sm((c∗1, c
∗
2, . . . )) ≥ lim

j→∞
sm((cj1, c

j
2, . . . ))

(3.30)
=

m∑︂
i=1

c∗i ,
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i.e., sm((c∗1, c
∗
2, . . . )) =

∑︁m
i=1 c

∗
i . Thus, (3.27) holds.

It remains to show that there is some C > 0 that is independent from k such that c∗1 > C.
Suppose the contrary, i.e., that c∗1 is not bounded from 0 for varying values of k. Let ε > 0
be small enough such that ρ

1−ε − 1 ≤ ρ. Furthermore, let k ∈ N such that d(p(c∗1)) ≥ 1− ε,
which is possible because d(0) = 1, d is continuous, and c∗1 is not bounded from 0. By
minimality of m and Lemma 3.14, we have

1

ρ
> d(c∗2) ≥

v(c∗1)

p(c∗1)− c∗1
=

1
ρ

d(p(c∗1))
− 1

d(c∗1)

≥ 1
ρ

1−ε − 1
≥ 1

ρ

which is a contradiction. Thus, c∗1 is bounded from 0.

Using this lemma, we can show that GreedyScaling(c1, ρ) for the correct choice of c1
and ρ can achieve every possible competitive ratio.

Lemma 3.17. Let v be strictly increasing and d be strictly decreasing, and let ρ ≥ 1 such
that there exists a ρ-competitive incremental solution. Then, there exists a starting value
c∗1 ∈

[︁
d−1
(︁ρ−1

ρ

)︁
, d−1(1ρ)

]︁
such that GreedyScaling(c∗1, ρ) is ρ-competitive.

Proof. By Lemma 3.16, for every k ∈ N, there exists a ρ-competitive incremental solution
(ck1, c

k
2, . . . ) such that, with n(k) := min{ℓ ∈ N |

∑︁ℓ
i=1 ci ≥ k}, there exists no other ρ-

competitive incremental solution (c′1, c′2, . . . ) with c′i ≤ cki for all i ∈ [n(k)− 1], c′i = cki for
all i ∈ N≥n(k) and c′i < cki for at least one i ∈ [n(k)− 1]. Furthermore, there is C > 0 such
that ck1 ≥ C for all k ∈ N. Without loss of generality, we can assume that v(cki+1) ≥ v(cki )
for all i ∈ N. Because (ck1, ck2, . . . ) is ρ-competitive, by Lemma 3.14, we know that, for all
i ∈ N, we have

d(cki+1) ≥
v(cki )

p(cki )−
∑︁i

j=1 c
k
j

. (3.31)

Suppose there was i′ ∈ [n(k) − 1] such that (3.31) does not hold with equality. By
continuity of v, d and p, we can find c′i′ < cki′ such that

d(cki′+1) >
v(c′i′)

p(c′i′)− c′i′ −
∑︁i′−1

j=1 cj
>

v(cki′)

p(cki′)−
∑︁i′

j=1 c
k
j

. (3.32)

The incremental solution (c′1, c′2, . . . ) := (ck1, . . . , c
k
i′−1

, c′i′ , c
k
i′+1, . . . ) satisfies

d(c′i+1) ≥
v(c′i)

p(c′i)−
∑︁i

j=1 c
′
j
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for all i ∈ N. For i ∈ [i′ − 1], this follows immediately from (3.31), for i = i′, this
follows from (3.32), and, for i ∈ {i′ + 1, i′ + 2, . . . }, this is due to (3.31) and the fact that
c′i′ < cki′ . We have c′i ≤ cki for all i ∈ [n(k) − 1], c′i = cki for all i ∈ {n(k), n(k) + 1, . . . }
and c′i′ < cki′ , which is a contradiction to our initial choice of (ck1, ck2, . . . ). Thus, for all
i ∈ [n(k)− 1], (3.31) holds with equality.
The sequence (︁ck1)︁k∈N is bounded since C ≤ ck1 ≤ d−1(1ρ). Therefore, by the Bolzano-

Weierstrass theorem, it contains a converging subsequence (︁ckℓ1 )︁ℓ∈N with kℓ ∈ N and
kℓ+1 > kℓ for all ℓ ∈ N. We define the limit c∗i := limℓ→∞ ckℓi for all i ∈ N. We have
v(c∗1) ≥ v(d−1(C)) > 0 and v(c∗i+1) ≥ v(c∗i ) by continuity of v and because this holds for
all sequences (︁cki )︁i∈N. By Lemma 3.14, we have d(ck1) ≥ 1

ρ and

d(cki+1) ≥
v(cki )

p(cki )−
∑︁i

j=1 c
k
j

for all i, k ∈ N. Continuity of d, v and p yields d(c∗1) ≥ 1
ρ and

d(c∗i+1) ≥
v(c∗i )

p(c∗i )−
∑︁i

j=1 c
∗
j

.

Thus, the incremental solution (︁c∗1, c∗2, . . . )︁ is ρ-competitive. It remains to show that
c∗i+1 = d−1

(︃
v(c∗i )

p(c∗i )−
∑︁i

j=1 c
∗
j

)︃
.

Note that n(k) increases in k. This implies that for every i ∈ N, there exists some K ∈ N
such that

d(cki+1) =
v(cki )

p(cki )−
∑︁i

j=1 c
k
j

for all k ∈ N with k ≥ K. Since c∗i = limℓ→∞ ckℓi , the desired equality follows, i.e., the
incremental solution (c∗1, c∗2, . . . ) is produced by the algorithm GreedyScaling(c∗1, ρ).

This result immediately yields the following.

Theorem 3.18. For every instance of IncMaxCont, there exists a starting value c1 such that
the algorithm GreedyScaling(c1, ρ∗) achieves the best-possible competitive ratio ρ∗ ≥ 1.

For all starting values c1 that are reasonably small, we are able to show an upper bound
of φ + 1 on the competitive ratio of GreedyScaling(c1, φ + 1), where φ is the golden
ratio.

75



Theorem 3.19. GreedyScaling(c1, φ+ 1) is (φ+ 1)-competitive if and only if d(c1) ≥ 1
φ+1 .

Proof. “⇒”: By Lemma 3.14, d(c1) ≥ 1
φ+1 holds because the algorithm is (φ+1)-competitive.

“⇐”: Let (c1, c2, . . . ) be the incremental solution produced byGreedyScaling(c1, φ+1).
To show (φ+ 1)-competitiveness, by Proposition 3.15, it suffices to show that ci ≤ ci+1.

Claim: We have ci+1 ≥ (φ+ 1)ci for all i ∈ N.
We have p(ci) = max{c ≥ 0 | v(c) ≤ (φ+ 1)v(ci)}. This implies v(p(ci)) = (φ+ 1)v(ci)

by continuity of v, and thus

p(ci) =
v(p(ci))

d(p(ci))
=

(φ+ 1)v(ci)

d(p(ci))
≥ (φ+ 1)v(ci)

d(ci)
= (φ+ 1)ci, (3.33)

where the inequality holds because v(p(ci)) = (φ+ 1)v(ci) > v(ci), v is non-decreasing, d
is non-increasing.
Proof of claim: We will prove the claim by induction. For i = 1, we have

d(c2) =
v(c1)

p(c1)− c1

(3.33)
≤ v(c1)

p(c1)− 1
φ+1p(c1)

=
φ+ 1

φ
· v(c1)
p(c1)

=
1

φ
· v(p(c1))
p(c1)

=
1

φ
d(p(c1)) < d(p(c1)),

Together with (3.33), this yields c2 ≥ p(c1) ≥ (φ+ 1)c1.
Let i ∈ N and suppose the claim holds for all j ∈ [i]. Then,

d(ci+2) =
v(ci+1)

p(ci+1)−
∑︁i+1

j=1 cj

Lem. 1.6
<

v(ci+1)

p(ci+1)− φci+1

(3.33)
≤ v(ci+1)

p(ci+1)− φ
φ+1p(ci+1)

= (φ+ 1)
v(ci+1)

p(ci+1)
=
v(p(ci+1))

p(ci+1)
= d(p(ci+1)),

which implies ci+1 > p(ci) because d is decreasing. Together with (3.33), this yields the
claim.

If we assume that the value function is concave, we are able to show an even better
upper bound on the competitive ratio for GreedyScaling(c1, ρ).

Theorem 3.20. Consider an instance of IncMaxCont with concave value function, and let
ρ = 2.508. Then, GreedyScaling(c1, ρ) is ρ-competitive if and only if d(c1) ≥ 1

ρ .

Proof. “⇒”: By Lemma 3.14, d(c1) ≥ 1
ρ holds because the algorithm is ρ-competitive.
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“⇐”: Let (c1, c2, . . . ) be the incremental solution produced by GreedyScaling(c1, ρ).
To show ρ-competitiveness, by Proposition 3.15, it suffices to show that ci ≤ ci+1. Let
δ = 3.287. We will show that, for all i ∈ N, we have

ci+1 ≥ δci, (3.34)
which immediately yields the desired result. For all i ∈ N, because p(ci) > ci, we have

p(ci) =
v(p(ci))

d(p(ci))
=

ρv(ci)

d(p(ci))
≥ ρv(ci)

d(ci)
= ρci. (3.35)

We show (3.34) by induction. For i = 1, we have

d(c2)
(3.25)
=

v(c1)

p(c1)− c1
=

v(c1)
ρv(c1)
d(p(c1))

− c1
=

d(p(c1))

ρ− d(p(c1))
d(c1)

p(c1)≥c1
≤ d(p(c1))

ρ− 1

ρ≥2
≤ d(p(c1)),

i.e., c2 ≥ p(c1). Thus,

c2 =
v(c2)

d(c2)

c2≥p(c1)

≥ v(p(c1))

d(c2)

(3.25)
=

ρv(c1)
v(c1)

p(c1)−c1

= ρ(p(c1)−c1)
(3.35)
≥ ρ(ρ−1)c1 > 3.77c1 > δc1.

Now fix i ∈ N and suppose that, for all j ∈ [i− 1], (3.34) holds. For all j ∈ [i], we have

d(cj+1)
(3.25)
=

v(cj)

p(cj)−
∑︁j

ℓ=1 cℓ

Lem. 1.6
<

v(cj)

p(cj)− δ
δ−1cj

(3.35)
≤ 1

1− δ
δ−1 · 1

ρ

· v(cj)
p(cj)

< 2.343
v(cj)

p(cj)
<
ρv(cj)

p(cj)
=
v(p(cj))

p(cj)
= d(p(cj)),

i.e., cj+1 > p(cj) because d is non-increasing. Furthermore, for all j ∈ [i],

cj+1 =
v(cj+1)

d(cj+1)

(3.25)
=

v(cj+1)

v(cj)

(︄
p(cj)−

j∑︂
ℓ=1

cℓ

)︄
. (3.36)

Since we assume that v is concave, we have

ρv(ci) = v(p(ci)) ≤ v(ci) +
v(ci)− v(p(ci−1))

ci − p(ci−1)
(p(ci)− ci),

which is equivalent to

p(ci)− ci ≥
(ρ− 1)v(ci)(ci − p(ci−1))

v(ci)− ρv(ci−1)
=

(ρ− 1)(ci − p(ci−1))

1− ρv(ci−1)
v(ci)

.
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This yields

p(ci) ≥

(︄
(ρ− 1)

(︂
1− p(ci−1)

ci

)︂
1− ρv(ci−1)

v(ci)

+ 1

)︄
ci

=

(︄
(ρ− 1)

v(ci)
v(ci−1)

− v(ci)
v(ci−1)

· p(ci−1)
ci

v(ci)
v(ci−1)

− ρ
+ 1

)︄
ci

(3.36)
=

(︄
(ρ− 1)

v(ci)
v(ci−1)

− p(ci−1)

p(ci−1)−
∑︁i−1

ℓ=1 cℓ

v(ci)
v(ci−1)

− ρ
+ 1

)︄
ci

=

(︄
(ρ− 1)

v(ci)
v(ci−1)

− 1
1− 1

p(ci−1)

∑︁i−1
ℓ=1 cℓ

v(ci)
v(ci−1)

− ρ
+ 1

)︄
ci.

By combining this with
i−1∑︂
ℓ=1

cℓ
Lem. 1.6
<

δ

δ − 1
ci−1

(3.35)
≤ δ

δ − 1
· 1
ρ
p(ci−1),

we obtain

p(ci)

ci
> (ρ− 1)

v(ci)
v(ci−1)

− 1
1− δ

δ−1
· 1
ρ

v(ci)
v(ci−1)

− ρ
+ 1 = (ρ− 1)

v(ci)
v(ci−1)

− ρ(δ−1)
δρ−ρ−δ

v(ci)
v(ci−1)

− ρ
+ 1. (3.37)

Furthermore, by Lemma 1.6 and the fact that d is non-increasing, we have
i∑︂

ℓ=1

cℓ <
δ

δ − 1
ci−1 + ci ≤

(︃
δ

δ − 1
· v(ci−1)

v(ci)
+ 1

)︃
ci. (3.38)

Similar to the case that i = 1, for j ∈ [i], we have

d(cj+1)
(3.25)
=

v(cj)

p(cj)−
∑︁j

ℓ=1 cℓ

Lem. 1.6
<

v(cj)

p(cj)− δ
δ−1cj

=
d(p(cj))

ρ− δ
δ−1

d(p(cj))
d(cj)

p(cj)≥cj
≤ d(p(cj))

ρ− δ
δ−1

< d(p(cj))
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Thus, cj+1 ≥ p(cj), which yields
v(cj+1) ≥ v(p(cj)) = ρv(cj). (3.39)

We can conclude that
ci+1

ci

(3.36)
=

1

ci

v(ci+1)

v(ci)

(︄
p(ci)−

i∑︂
ℓ=1

cℓ

)︄
(3.39)
≥ ρ

(︄
p(ci)

ci
− 1

ci

i∑︂
ℓ=1

cℓ

)︄
(3.37),(3.38)

≥ ρ

(︄(︄
(ρ− 1)

v(ci)
v(ci−1)

− ρ(δ−1)
δρ−ρ−δ

v(ci)
v(ci−1)

− ρ
+ 1

)︄
−
(︃

δ

δ − 1
· v(ci−1)

v(ci)
+ 1

)︃)︄

= ρ

(︄
(ρ− 1)

v(ci)
v(ci−1)

− ρ(δ−1)
δρ−ρ−δ

v(ci)
v(ci−1)

− ρ
− δ

δ − 1
· v(ci−1)

v(ci)

)︄
.

Since δ = 3.287 and ρ = 2.508 are fixed, the only variable in this expression is the ratio
v(ci)

v(ci−1)
. By (3.39), we have v(ci)

v(ci−1)
≥ ρ. Analyzing the function

ρ

(︄
(ρ− 1)

x− ρ(δ−1)
δρ−ρ−δ

x− ρ
− δ

δ − 1
· 1
x

)︄
for x ≥ ρ yields that it has a global minimum at x ≈ 4.285 with a function value larger
than 3.2871 > δ, i.e., we have ci+1 ≥ δci.
Since GreedyScaling(c1, ρ) with the correct starting value c1 is the best-possible al-

gorithm for a fixed instance, we can give a lower bound of ρ > 1 for the IncMaxCont
problem by finding an instance that is a lower bound for GreedyScaling(c1, ρ) for all
starting values c1 > 0 that satisfy d(c1) ≤ 1/ρ. Theorem 3.20 implies that a lower bound
instance where the value function is concave cannot give a lower bound larger than 2.508.
Since the best upper bound for the class IncMaxacc is φ+1 ≈ 2.618, we aim to find better
lower bounds than 2.508. Thus, in the following, we will derive lower bound instances
that are not convex, but rather some sort of step function, where we alternate between
intervals of constant value function and constant density function (cf. Figure 3.4 later in
the chapter).
We start by showing that, for every countable set S ⊆ R>0 of starting values, there is

an instance where GreedyScaling(c1, ρ) cannot have a competitive ratio of better than
φ+ 1 for every c1 ∈ S. In order to do this, we need the following lemma.
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Lemma 3.21. For α, β, ρ, ε ∈ R≥0 with β > 0, consider the recursively defined sequence
(tn)n∈N with

t0 = β, tn+1 =
1

ρ
tn(1−ε) −

(︁∑︁n
j=0

(ρ+ε)j−n

tj

)︁
− α

(ρ+ε)n

for all n ∈ N ∪ {0}.

If 1 < ρ < φ + 1, then there exists ε′ > 0 such that, for all ε ∈ (0, ε′], there is ℓ ∈ N with
tℓ < 0.

Proof. Rearranging terms, for all n ∈ N, we obtain

t0 = β,
(ρ+ ε)n+1

tn+1
=
ρ(ρ+ ε)n+1

tn(1− ε)
−

(︄
n∑︂

j=0

(ρ+ ε)j+1

tj

)︄
− α(ρ+ ε).

We substitute an = 1/tn for all n ∈ N and obtain the recursively defined sequence (an)n∈N
with a0 = 1/β and, for all n ∈ N,

an+1(ρ+ ε)n+1 = an
ρ

1− ε
(ρ+ ε)n+1 −

(︄
n∑︂

j=0

aj(ρ+ ε)j+1

)︄
− α(ρ+ ε), (3.40)

which implies

an(ρ+ ε)n = an−1
ρ

1− ε
(ρ+ ε)n −

(︄
n−1∑︂
j=0

aj(ρ+ ε)j+1

)︄
− α(ρ+ ε). (3.41)

Subtracting (3.41) from (3.40), for all n ∈ N, we obtain

an+1(ρ+ ε)n+1 − an(ρ+ ε)n = an
ρ

1− ε
(ρ+ ε)n+1 − an−1

ρ

1− ε
(ρ+ ε)n − an(ρ+ ε)n+1,

which yields
an+1 = an

(︃
1

ρ+ ε
+

ρ

1− ε
− 1

)︃
− an−1

ρ

(1− ε)(ρ+ ε)
.

Together with the start values a0 = 1/β and

a1 =
1

t1
=

ρ

β(1− ε)
− 1

β
− α

this yields a uniquely defined linear homogeneous recurrence relation with characteristic
polynomial

0 = x2 −
(︃

1

ρ+ ε
+

ρ

1− ε
− 1

)︃
x+

ρ

(1− ε)(ρ+ ε)
.
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Let D(ρ, ε) =
(︁

1
2(ρ+ε) +

ρ
2(1−ε) −

1
2

)︁2 − ρ
(1−ε)(ρ+ε) . The roots of the characteristic polyno-

mial are then

x =
1

2(ρ+ ε)
+

ρ

2(1− ε)
− 1

2
−
√︁
D(ρ, ε), (3.42)

y =
1

2(ρ+ ε)
+

ρ

2(1− ε)
− 1

2
+
√︁
D(ρ, ε).

We claim that if ρ < φ+ 1, then there is ε > 0 such that D(ρ, ε) < 0. To see this claim,
consider the function

D(ρ, 0) =

(︃
1

2ρ
+
ρ

2
− 1

2

)︃2

− 1.

The function h(ρ) = 1
2ρ + ρ

2 − 1
2 has the derivative h′(ρ) = − 1

2ρ2
+ 1

2 > 0 for ρ > 1. Thus, h
is strictly increasing for ρ ∈ (1,∞), and, hence, D(ρ, 0) is also strictly increasing for
ρ ∈ (1,∞). Thus, D(ρ, 0) has at most one root ρ0 ∈ (1,∞). This root satisfies

1

2ρ0
+
ρ0
2

− 1

2
= 1.

Rearranging terms yields 1 + ρ20 = 3ρ0. The only solution ρ0 > 1 to this equation is φ+ 1.
We have shown that D(ρ, 0) < 0 for all ρ < φ+ 1. Since D(ρ, ε) is continuous in ε, there
is ε′ > 0 such that also D(ρ, ε) < 0 for all ε ∈ (0, ε′]. For ρ ∈ (1, φ+ 1) and ε chosen small
enough, we have that the roots of the characteristic polynomial (3.42) are distinct and
complex valued. We then obtain that the sequence (an)n∈N has the closed-form expression

an = λxn + µyn for all n ∈ N ∪ {0}, (3.43)

where the constants λ, µ ∈ C are chosen in such a way that the equations for the starting
values

a0 =
1

β
= λ+ µ and a1 =

ρ

β(1− ε)
− 1

β
− α = λx+ µy (3.44)

are satisfied. Note that by (3.42), x and y are complex conjugate, and hence, by (3.44),
also λ and µ are complex conjugate. We can, thus, reformulate (3.43) as

an = λxn + λ̄x̄n = λxn + λxn¯ = 2R(λxn) (3.45)

for all n ∈ N, where for the second equation we used that conjugation is distributive with
multiplication and for the third equation we used that for a complex number z ∈ C its
real part can be computed as R(z) = z+z̄

2 . We will show that R(λxℓ) is negative for some
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ℓ ∈ N. The idea behind this part of the proof is visualized in Figure 3.3. Going to polar
coordinates, we obtain

λ = rλ exp(iφλ) and x = rx exp(iφx)

for some rλ, rx ∈ R≥0 and some φλ, φx ∈ [0, 2π). By exchanging the roles of x and y, it is
without loss of generality to assume that φx ∈ [0, π]. We obtain

an
(3.45)
= 2R(λxn) = 2R

(︁
rλr

n
x exp(i(φλ + nφx))

)︁ for all n ∈ N.

Let k = ⌈π/φx⌉. We claim that a0, . . . , ak are not strictly increasing. To see this, note that
a0 = 1/β, and thus,

1 = sgn(a0) = sgn
(︁
2R
(︁
rλ exp(iφλ)

)︁)︁
= sgn

(︁
2R
(︁
exp(iφλ)

)︁)︁
.

On the other hand, we have

−1 = sgn
(︁
2R
(︁
exp(iφλ + π)

)︁)︁
.

Since φx ≤ π, this implies that either sgn(ak) = −1 or sgn(ak−1) = −1 (or both). In any
case, this implies that there is ℓ ∈ N with aℓ < 0. Since tn = 1/an for all n ∈ N, this
further implies that tℓ < 0.

The following lemma shows that, given points ((x0, v0), . . . , (xk, vk)) ∈ (R>0 × R>0)
k+1

with vi < vi+1 <
xi+1

xi
vi for all i ∈ {0, . . . , k − 1}, we can construct an instance of IncMax-

Cont with v(xi) = vi for all i ∈ {0, . . . , k − 1} simply by linearly interpolating between
these points.
Lemma 3.22. Let an instance of IncMaxCont with value function v̄ : R≥0 → R≥0 and density
function d̄ : R≥0 → R≥0 be given. Let k ∈ N and ((x0, v0), . . . , (xk, vk)) ∈ (R>0 × R>0)

k+1

with v̄(x0) = v0 and vi < vi+1 <
xi+1

xi
vi for all i ∈ {0, . . . , k−1}. Then there exist an instance

of IncMaxCont with value function v : R≥0 → R≥0 and density function d : R≥0 → R≥0 such
that v(x) = v̄(x) for all x ∈ [0, x0] and v(xi) = vi for all i ∈ {0, . . . , k}.

Proof. For all c ∈ [0, x0], we define

v(x) := v̄(x) (3.46)

and, for all i ∈ {0, . . . , k − 1} and x ∈ (xi, xi+1],

v(x) := vi +
x− xi
xi+1 − xi

(︁
vi+1 − vi

)︁
. (3.47)
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Figure 3.3.:Multiplying λ repeatedly by x ∈ (C \R) is equivalent to a rotation around the
origin that, at some point, reaches the half-plane corresponding to negative
real parts.

Note that xi+1 > xi because xi+1

xi
vi > vi+1 and vi < vi+1. Furthermore, for x > xk, we

define

v(x) := vk−1 +
x− xk−1

xk − xk−1
(vk − vk−1). (3.48)

We set d(0) := 1 and d(x) := v(x)
x for all x > 0.

We have to show that
(i) v is strictly increasing,
(ii) d is strictly decreasing,
(iii) d(0) = 1,
(iv) v(x) = xd(x) for all x ∈ R≥0,
(v) v(x) = v̄(x) for all x ∈ [0, x0], and
(vi) v(xi) = vi for all i ∈ {0, . . . , k}.
On the interval [0, x0], (i) holds because of (3.46) and because v̄ is strictly increasing.

For x > x0, we have

v(x)
(3.47),(3.48)

= vi +
x− xi
xi+1 − xi

(︁
vi+1 − vi

)︁
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for some i ∈ {0, . . . , k − 1}, and thus

v′(x)
(3.47),(3.48)

=
vi+1 − vi
xi+1 − xi

vi+1>vi,xi+1>xi

> 0,

i.e., (i) holds for x > x0.
On the interval [0, x0], (ii) holds because d̄ is strictly decreasing and because d(x) = d̄(x)

by definition of d and by (3.46). For x > x0, we have

d(x)
(3.47),(3.48)

=
vi
x

+
1− xi

x

xi+1 − xi

(︁
vi+1 − vi

)︁
for some i ∈ {0, . . . , k − 1}, and thus

d′(x)
(3.47),(3.48)

= − 1

x2

(︃
vi − xi

vi+1 − vi
xi+1 − xi

)︃ vi+1<
xi+1
xi

vi

< − 1

x2

(︃
vi −

xi+1vi − xivi
xi+1 − xi

)︃
= 0,

i.e., (ii) holds for x > x0.
By definition of d, we have d(0) = 1, i.e., (iii) holds.
We have v(0) = v̄(0) = 0 · d̄(0) = 0 · d(0) and v(x) = xd(x) by definition of d, i.e., (iv)

holds.
By (3.46), (v) holds.
We have v(x0) (3.46)= v̄(x0) = v0 and, for i ∈ [k], we have

v(xi)
(3.47)
= vi−1 +

xi − xi−1

xi − xi−1

(︁
vi − vi−1

)︁
= vi,

i.e., (vi) holds.

The following calculations are needed to show that Lemma 3.22 can be applied to a
sequence of points in the proof of Proposition 3.24.
Lemma 3.23. Let 1 < ρ < φ+ 1, x0, v0, z > 0,

t0 =
v0
x0
, tn+1 =

1
ρ

tn(1−ε) −
(︁∑︁n

j=0
(ρ+ε)j−n

tj

)︁
− z

(ρ+ε)nv0

for all n ∈ N ∪ {0}

and let ε ∈ (0, 1) be small enough. By Lemma 3.21, there exists ℓ′ ∈ N with tℓ′ < 0. Let
ℓ ∈ {0, . . . , ℓ′ − 1} be the smallest index such that 1

tℓ
> 1

tℓ+1
. Then,

(i) (ρ+ ε)nv0 < ρ(ρ+ ε)nv0 for all n ∈ {0, . . . , ℓ},
(ii) ρ(ρ+ ε)nv0 < (ρ+ ε)n+1v0 for all n ∈ {0, . . . , ℓ− 1},
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(iii) ρ(ρ+ ε)nv0 <
ρ(ρ+ε)nv0
(1−ε)tn
(ρ+ε)nv0

tn

(ρ+ ε)nv0 for all n ∈ {0, . . . , ℓ}, and

(iv) (ρ+ ε)n+1v0 <
(ρ+ε)n+1v0

tn+1
ρ(ρ+ε)nv0
(1−ε)tn

ρ(ρ+ ε)nv0 for all n ∈ {0, . . . , ℓ− 1}.

Proof. Inequalities (i) and (ii) hold because ρ > 1, ε > 0, and v0 > 0.
Let n ∈ {0, . . . , ℓ}. Inequality (iii) is equivalent to ρ < ρ

1−ε , which holds because
ε ∈ (0, 1).
Let n ∈ {0, . . . , ℓ− 1}. Inequality (iv) is equivalent to

1

tn
< (1− ε)

1

tn+1
for all n ∈ {0, . . . , ℓ− 1}. (3.49)

For fixed 1 < ρ < φ+ 1, we define the ratio r(n, ε) := tn
tn+1

for all n ∈ N ∪ {0}. Note that
r(0, ε) = ρ

1−ε − 1− z
v0
t0 and, for n ∈ N,

r(n, ε) =
tn
tn+1

=

(︄
ρ

tn(1− ε)
−

(︄
n∑︂

j=0

(ρ+ ε)j−n

tj

)︄
− z

(ρ+ ε)nv0

)︄
tn

=

(︄
ρ

tn(1− ε)
− 1

tn
− ρ

tn−1(ρ+ ε)(1− ε)

+
1

ρ+ ε

(︄
ρ

tn−1(1− ε)
−

(︄
n−1∑︂
j=0

(ρ+ ε)j−n+1

tj

)︄
− z

(ρ+ ε)n−1v0

)︄)︄
tn

=

(︃
ρ

tn(1− ε)
− 1

tn
− ρ

tn−1(ρ+ ε)(1− ε)
+

1

ρ+ ε
· 1

tn

)︃
tn

=
ρ

1− ε
− 1− ρ

(ρ+ ε)(1− ε)
· tn
tn−1

+
1

ρ+ ε

=
ρ

1− ε
− 1 +

1

ρ+ ε
− ρ

(ρ+ ε)(1− ε)
· 1

r(n− 1, ε)
. (3.50)

Claim: For all n ∈ {0, . . . , ℓ− 1}, we have

r(n, ε) >
r(n, 0)

1− ε
. (3.51)

Proof of claim: We prove the claim by induction. For n = 0, we have

r(0, ε)

r(0, 0)
=

ρ
1−ε − 1− z

v0
t0

ρ− 1− z
v0
t0

=
ρ− (1− ε)

(︁
1 + z

v0
t0
)︁

ρ−
(︁
1 + z

v0
t0
)︁ · 1

1− ε

ε>0
>

1

1− ε
,
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i.e., (3.51) holds for n = 0.
If ρ < 2, without loss of generality, we can assume that ε < 1 − ρ

2 because ε is small
enough. This yields

t0 = r(0, ε)t1 =
(︂ ρ

1− ε
− 1− z

v0
t0

)︂
t1 <

(︂ ρ

1− ε
− 1
)︂
t1

ε<1− ρ
2

< t1,

i.e., ℓ = 0 and we are done with the proof. Thus, assume from now on that ρ ≥ 2 > φ.
Suppose (3.51) holds for some n ∈ {0, . . . , ℓ− 2}. Then

ρ

ρ+ ε
· 1

r(n, ε)
<

1

r(n, ε)

(3.51)
<

1− ε

r(n, 0)
<

1

r(n, 0)
(3.52)

and

ερ(ρ+ ε) + (1− ε)ρ = ερ2 + ε2ρ+ ρ− ερ

= (ρ+ ε) + (ρ2 − ρ− 1)ε+ ε2ρ
ρ≥2
≥ ρ+ ε+ ε2ρ > ρ+ ε,

which is equivalent to
ε+

1− ε

ρ+ ε
>

1

ρ
. (3.53)

This yields

r(n+ 1, ε)

r(n+ 1, 0)

(3.50)
=

ρ
1−ε − 1 + 1

ρ+ε −
ρ

(ρ+ε)(1−ε) ·
1

r(n,ε)

ρ− 1 + 1
ρ − 1

r(n,0)

=
ρ− 1 + ε+ 1−ε

ρ+ε −
ρ

ρ+ε ·
1

r(n,ε)

ρ− 1 + 1
ρ − 1

r(n,0)

· 1

1− ε

(3.52),(3.53)
>

ρ− 1 + 1
ρ − 1

r(n,0)

ρ− 1 + 1
ρ − 1

r(n,0)

· 1

1− ε

=
1

1− ε
,

which proves the claim.
Note that ℓ depends on ε. Thus, we write ℓ(ε) from now on. By definition of ℓ(0), for all

n ∈ {0, . . . , ℓ− 1}, we have
r(n, 0) ≥ 1 (3.54)
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and r(ℓ, 0) < 1. Note that, by definition, (tn)n∈N∪{0} is continuous in ε for all n ∈ N ∪ {0}.
Thus, if ε > 0 is small enough (which we assumed), we have r(ℓ, ε) < 1 and, for all
n ∈ {0, . . . , ℓ− 1},

r(n, ε)
(3.51)
>

r(n, 0)

1− ε

(3.54)
≥ 1

1− ε
.

This immediately implies (3.49) and thus completes the proof.

With these preparations, we are now ready to define an instance of IncMaxCont where
GreedyScaling(c1, ρ) cannot be better than (φ+ 1)-competitive for one given starting
value c1.

Proposition 3.24. Let an instance of IncMaxContwith value function v̄ : R≥0 → R≥0 be given.
Let ρ ∈ (1, φ+ 1) and 0 < c1 < C. Then there exists an instance of IncMaxCont with value
function v : R≥0 → R≥0 such that v(c) = v̄(c) for all c ∈ [0, C] and GreedyScaling(c1, ρ) is
not ρ-competitive for this instance. Furthermore, there is some C > 0 such that v(c) can be
altered for all c ≥ C without losing the fact that GreedyScaling(c1, ρ) is not ρ-competitive
for this instance.

Proof. Let d̄ : R≥0 → R≥0 be the density function with v̄(c) = cd̄(c) for all c ≥ 0.
If GreedyScaling(c1, ρ) is not ρ-competitive for the instance given by v̄, we can simply

choose v = v̄ and C to be some value for whichGreedyScaling(c1, ρ) is not ρ-competitive.
Suppose GreedyScaling(c1, ρ) is ρ-competitive for the instance given by v̄, and let
(c̄1, c̄2, . . . ) with c̄1 = c1 be the incremental solution produced by GreedyScaling(c1, ρ)
on this instance. We will define the function v such that GreedyScaling(c1, ρ) is not
ρ-competitive on the instance given by v. In order to do this, we will give a sequence
of points together with values such that GreedyScaling(c1, ρ) is forced to choose these
points and Lemma 3.21 will show that this incremental solution is not a valid one be-
cause the sizes in the incremental solution are not increasing. Let k ∈ N≥2 such that
c̄k−1 ≤ C < c̄k, let vk := v̄(c̄k), and let z :=

∑︁k−1
j=1 c̄j .

We will modify the value function v̄ for c > c̄k, but we have to ensure that c̄k ≥ p(c̄k−1

holds. If this is not the case and c̄k < p(c̄k−1), we change the instance in such a way
that, for the incremental solution (c′1, c′2, . . . ) with c′1 = c1 of GreedyScaling(c1, ρ), we
have c′i = c̄i for all i ∈ [k − 1] and c′k ≥ p(c′k−1). This can be achieved by leaving v̄
unchanged on the interval [0,max{p(c̄k−2), c̄k}] and linearly interpolating from there on
such that v̄(︁ ρ

ρ−1z
)︁
= ρv̄(c̄k−1). To show that this is possible, we first observe that, because

c̄k < p(c̄k−1), we have

d̄(p(c̄k−1)) < d̄(c̄k)
(3.25)
=

v̄(c̄k−1)

p(c̄k−1)− z
=

1
ρ

d(p(c̄k−1))
− z

v̄(c̄k−1)

.
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This yields
ρ− 1 < d̄(p(c̄k−1))

z

v(c̄k−1)
. (3.55)

By Lemma 3.22, the above change of v̄ is possible because

ρv̄(c̄k−1) > max{ρv̄(c̄k−2), v̄(c̄k)} = v̄(max{p(c̄k−2), c̄k})

and
ρv̄(c̄k−1)

ρ
ρ−1z

= (ρ− 1)
v̄(c̄k−1)

z

(3.55)
< d̄(p(c̄k−1) ≤ d̄(max{p(c̄k−2), c̄k}).

With this altered value function, we have p(c′k−1) =
ρ

ρ−1z and thus

d̄(c′k)
(3.25)
=

v̄(c′k−1)

p(c′k−1)− z
=

v̄(c′k−1)
ρ

ρ−1z − z
=
v̄(c′k−1)

1
ρ−1z

= ρ
v̄(c′k−1)

p(c′k−1)
= d(p(c′k−1)),

i.e., we have c′k = d(p(c′k−1)). We are now ready to modify the instance for c > c′k. For
ease of notation, we redefine c̄k := c′k.
We consider the recursively defined sequence

t0 = d̄(c̄k), tn+1 =
1

ρ
tn(1−ε) −

(︁∑︁n
j=0

(ρ+ε)j−n

tj

)︁
− z

(ρ+ε)nvk

for all n ∈ N ∪ {0}.

Since ρ < φ+ 1, by Lemma 3.21, there exists ε′ > 0 such that, for all ε ∈ (0, ε′], there is
ℓ′ ∈ N with tℓ′ < 0. Let ε ∈ (0, ε′] be small enough. Since tℓ′ < 0, we have

ρ

tℓ′−1(1− ε)
−

(︄
ℓ′−1∑︂
j=0

(ρ+ ε)j−ℓ′+1

tj

)︄
− z

(ρ+ ε)ℓ′−1vk
< 0,

i.e., we can define ℓ ∈ {0, . . . , ℓ′ − 1} to be the smallest index such that

1

tℓ
>

ρ

tℓ(1− ε)
−

(︄
ℓ∑︂

j=0

(ρ+ ε)j−ℓ

tj

)︄
− z

(ρ+ ε)ℓvk
=

1

tℓ+1
. (3.56)

For n ∈ {0, . . . , ℓ}, let

x2n :=
(ρ+ ε)nvk

tn
, v2n := (ρ+ ε)nvk (3.57)
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and

x2n+1 :=
ρ(ρ+ ε)nvk
(1− ε)tn

, v2n+1 := ρ(ρ+ ε)nvk. (3.58)

For c ∈ [0, x0], we let v(c) = v̄(c) and for c > x0, we let v be the function with v(xn) = vn
for all n ∈ {0, . . . , 2ℓ} that linearly interpolates between these points. By Lemmas 3.22
and 3.23, this is a valid value function for an instance of IncMaxCont. It remains to show
that GreedyScaling(c1, ρ) is not ρ-competitive for the instance given by v.
Let (c1, c2, . . . ) be the incremental solution generated by GreedyScaling(c1, ρ) on

the instance given by v. Note that ci = c̄i for all i ∈ [k − 1] since v(c) = v̄(c) for all
c ∈ [0,max{p(c̄k−2), c̄k}], i.e., z =

∑︁k−1
j=1 cj .

Claim: For all n ∈ {0, . . . , ℓ+ 1}, we have

d(ck+n) = tn. (3.59)

Proof of Claim: We prove this by induction. For n = 0, we have

d(ck)
(3.25)
= d̄(c̄k) = t0.

Suppose, for some n ∈ {0, . . . , ℓ}, the claim holds for all i ∈ {0, . . . , n}. Because
v(c) = cd(d) for all c ∈ R≥0, we have, for all j ∈ {0, . . . , n},

d(x2j) =
v2j
c2j

(3.57)
= tj

(3.59)
= d(ck+j),

i.e.,
ck+j = x2j (3.60)

because d is strictly decreasing. Furthermore, we have

v(x2j+1)
(3.58)
= ρ(ρ+ ε)jvk

(3.57)
= ρv(x2j)

(3.60)
= ρv(ck+j),

i.e.,
p(ck+j) = x2j+1. (3.61)
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because v is strictly increasing. This yields

d(ck+n+1)
(3.25)
=

v(ck+n)

p(ck+n)−
∑︁k+n

j=1 cj

(3.60),(3.61)
=

v(x2n)

x2n+1 − z −
∑︁n

j=0 x2j

(3.57),(3.58)
=

(ρ+ ε)nvk
ρ(ρ+ε)nvk
(1−ε)tn

− z −
∑︁n

j=0
(ρ+ε)jvk

tj

=
1

ρ
(1−ε)tn

− z
(ρ+ε)nvk

−
∑︁n

j=0
(ρ+ε)j−n

tj

= tn+1,

which proves the claim.
This implies

1

d(ck+ℓ+1)

(3.59)
=

1

tℓ+1

(3.56)
<

1

tℓ

(3.59)
=

1

d(ck+ℓ)
,

i.e., either d(ck+ℓ+1) > d(ck+ℓ) and thus ck+ℓ+1 < ck+ℓ because d is strictly decreasing, or
d(ck+ℓ+1) < 0. In both cases, by Proposition 3.15, this implies that GreedyScaling(c1, ρ)
is not ρ-competitive for the instance given by v.
Note that the values v(c) for c > x2ℓ+1 are never used throughout this proof. Thus, we

can set C = x2ℓ+1 + 1.
We can use Proposition 3.24 iteratively in order to exclude any countable set of starting

values. Proposition 3.24 states that we can modify the value function of an instance of
IncMaxCont in such a way that one starting value gets excluded, v(c) for small values
of c, i.e., for c ∈ [0, C], remains unchanged, and v(c) for large values of c, i.e., for c ≥ C,
can be changed without losing the fact that the starting value is excluded. Thus, after we
modified the instance to exclude one starting value, we can modify the part for c ≥ C in
order to exclude one more starting value. We can repeat this countably often to exclude a
countable set of starting values.
Corollary 3.25. For every countable set S ⊂ R>0 of starting values, there exists an instance of
IncMaxCont such that GreedyScaling(c1, ρ) is not ρ-competitive for any c1 ∈ S and ρ < φ+1.

3.2.2. General Lower Bound

Now we want to employ the techniques we used to prove Lemma 3.21 in order to give a
lower bound on the competitive ratio of IncMaxCont. Let ρ∗ ≈ 2.246 be the unique real
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root ρ ≥ 1 of the polynomial −4ρ6 + 24ρ4 − ρ3 − 30ρ2 + 31ρ− 4. We will show that there
is no algorithm that is better than ρ∗-competitive for IncMaxCont. As before, we need to
show that a recursively defined sequence becomes negative at some point.
Lemma 3.26. For ρ ∈ R≥0 and ε > 0, consider the recursively defined sequence (tn)n∈N
with

t0 = 1, t1 =
1− ε

ρ
, tn =

1− ε
ρ

tn−1
− 1

tn−2
− 1

ρ

∑︁n−3
j=0

(ρ+ε)j+2−n

tj

for all n ∈ N≥2.

If 1 < ρ < ρ∗, then there exists ε′ > 0 such that, for all ε ∈ [0, ε′], there is ℓ ∈ N with tℓ < 0.

Proof. Let 1 < ρ < ρ∗. Rearranging terms, for all n ∈ N≥2, we obtain

1− ε

tn
=

ρ

tn−1
− 1

tn−2
− 1

ρ

(︄
n−3∑︂
j=0

(ρ+ ε)j+2−n

tj

)︄
.

We substitute an = 1/tn for all n ∈ N ∪ {0} and obtain the recursively defined sequence
(an)n∈N with a0 = 1 and, for all n ∈ N≥2,

(1− ε)an = ρan−1 − an−2 −
1

ρ

(︄
n−3∑︂
j=0

(ρ+ ε)j+2−naj

)︄
, (3.62)

which implies

(1− ε)(ρ+ ε)an+1 = ρ(ρ+ ε)an − (ρ+ ε)an−1 −
1

ρ

(︄
n−2∑︂
j=0

(ρ+ ε)j+2−naj

)︄
. (3.63)

Subtracting (3.62) from (3.63), for all n ∈ N≥2, we obtain

(1− ε)(ρ+ ε)an+1 − (1− ε)an =

(︃
ρ(ρ+ ε)an − (ρ+ ε)an−1 −

1

ρ
an−2

)︃
−
(︁
ρan−1 − an−2

)︁
,

which yields

(1− ε)(ρ+ ε)an+1 = (ρ2 + 1 + ρε− ε)an − (2ρ+ ε)an−1 +

(︃
1− 1

ρ

)︃
an−2.

Together with the start values

a0 = 1, a1 =
ρ

1− ε
, and a2 =

ρa1 − a0
1− ε

=
ρ2 − 1 + ε

(1− ε)2
, (3.64)
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this yields a uniquely defined linear homogeneous recurrence relation with characteristic
polynomial

0 = x3 − ρ2 + 1 + ρε− ε

(1− ε)(ρ+ ε)
x2 +

2ρ+ ε

(1− ε)(ρ+ ε)
x−

1− 1
ρ

(1− ε)(ρ+ ε)
. (3.65)

Using

a = −ρ
2 + 1 + ρε− ε

(1− ε)(ρ+ ε)
,

b =
2ρ+ ε

(1− ε)(ρ+ ε)
,

c = −
1− 1

ρ

(1− ε)(ρ+ ε)
,

the discriminant of this polynomial is

D(ρ, ε) =

(︃
a3

27
− ab

6
+
c

2

)︃2

+

(︃
b

3
− a2

9

)︃3

.

In particular, we have

D(ρ, 0) =
−4ρ6 + 24ρ4 − ρ3 − 30ρ2 + 31ρ− 4

108ρ5
> 0

because 1 < ρ < ρ∗. Note that a, b, c are all continuous in ε and, thus, so is D(ρ, ε).
Therefore, there is ε′ > 0 such that, for all ε ∈ [0, ε′], we have D(ρ, ε) > 0. The fact that
for the discriminant of the polynomial we have D(ρ, ε) > 0 implies that (3.65) has one
real root r1 and two complex conjugate roots r2 and r3 = r2. We want to express the
recurrence relation in terms of the roots, i.e., we want to find λ1, λ2, λ3 ∈ C such that

an = λ1r
n
1 + λ2r

n
2 + λ3r

n
3 . (3.66)

We will now show that λ3 = λ2. Using the starting values (3.64) together with (3.66), we
obtain

1 = λ1 + λ2 + λ3,
ρ

1− ε
= λ1r1 + λ2r2 + λ3r3,

ρ2 − 1 + ε

(1− ε)2
= λ1r

2
1 + λ2r

2
2 + λ3r

2
3.
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This implies

0 = Im(λ1) + Im(λ2) + Im(λ3), (3.67)
0 = Im(λ1r1) + Im(λ2r2) + Im(λ3r3), (3.68)
0 = Im(λ1r

2
1) + Im(λ2r

2
2) + Im(λ3r

2
3). (3.69)

We obtain

Re(r1 − r2)Im(λ2 + λ3) + Im(r1 − r2)Re(λ2 − λ3)

= Re(r1 − r2)Im(λ2) + Im(r1 − r2)Re(λ2)

+Re(r1 − r2)Im(λ3)− Im(r1 − r2)Re(λ3)
r1∈R,r3=r2

= Re(r1 − r2)Im(λ2) + Im(r1 − r2)Re(λ2)

+Re(r1 − r3)Im(λ3) + Im(r1 − r3)Re(λ3)

= Im
(︁
(r1 − r2)λ2 + (r1 − r3)λ3

)︁
r1∈R= r1Im(λ2)− Im(λ2r2) + r1Im(λ3)− Im(λ3r3)

(3.67),(3.68)
= −r1Im(λ1) + Im(λ1r1)

r1∈R= 0 (3.70)

and

Re(r21 − r22)Im(λ2 + λ3) + Im(r21 − r22)Re(λ2 − λ3)

= Re(r21 − r22)Im(λ2) + Im(r21 − r22)Re(λ2)

+Re(r21 − r22)Im(λ3)− Im(r21 − r22)Re(λ3)
r1∈R,r3=r2

= Re(r21 − r22)Im(λ2) + Im(r21 − r22)Re(λ2)

+Re(r21 − r23)Im(λ3) + Im(r21 − r23)Re(λ3)

= Im
(︁
(r21 − r22)λ2 + (r21 − r23)λ3

)︁
r1∈R= r21Im(λ2)− Im(λ2r

2
2) + r21Im(λ3)− Im(λ3r

2
3)

(3.67),(3.69)
= −r21Im(λ1) + Im(λ1r

2
1)

r1∈R= 0. (3.71)

Consider the real matrix

M :=

(︃
Re(r1 − r2) Im(r1 − r2)
Re(r21 − r22) Im(r21 − r22)

)︃
r1∈R=

(︃
r1 −Re(r2) −Im(r2)
r21 −Re(r22) −Im(r22)

)︃
.
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This matrix does not have rank 0 because −Im(r2) ̸= 0. Suppose M has rank 1. Then
there exists x ∈ R with

x · (−Im(r2)) = −Im(r22) = −2Re(r2)Im(r2),

which yields
x = 2Re(r2), (3.72)

as well as

x(r1 −Re(r2)) = r21 −Re(r22) = r21 −Re(r2)
2 + Im(r2)

2

= (r1 −Re(r2))(r1 +Re(r2)) + Im(r2)
2,

which yields
x = r1 +Re(r2) +

Im(r2)
2

r1 −Re(r2)
. (3.73)

Combining (3.72) and (3.73) yields

Re(r2)− r1 =
Im(r2)

2

r1 −Re(r2)
.

This is equivalent to −(r1 −Re(r2))
2 = Im(r2)

2, which can only hold if both sides are 0,
because the left side is non-positive and the right is non-negative. Yet, we have r2 /∈ R,
which is a contradiction. Thus,M has rank 2, i.e., the system of equations

M · (Im(λ2 + λ3),Re(λ2 − λ3))
T = (0, 0)T

given by (3.70) and (3.71) only has the solution (0, 0)T . This yields Im(λ2) = −Im(λ3)
and Re(λ2) = Re(λ3), i.e., we have λ3 = λ2, and, by (3.67), we have λ1 ∈ R. Thus, the
recurrence relation can be written as

an = λ1r
n
1 + λ2r

n
2 + λ2rn2 = λ1r

n
1 + 2Re(λ2r

n
2 ).

We have |r1| < 1 and |r2| > 1. There exists ℓ ∈ N such that Re(λ2r
ℓ
2) < −λ1

2 because
r2 /∈ R and |r2| > 1 (cf. Figure 3.3). Thus, aℓ = λ1r

ℓ
1 + 2Re(λ2r

ℓ
2) < λ1r

ℓ
1 − λ1 < 0 where

the last inequality follows from the fact that |r1| < 1.

With this lemma, we are ready to construct our lower bound on the competitive ratio of
IncMaxCont, which, via Theorem 3.9 and Proposition 3.12, gives a lower bound on the
(non-strict) competitive ratio of IncMaxacc. Recall that ρ∗ ≈ 2.246 is the unique solution
ρ ≥ 1 to the equation −4ρ6 + 24ρ4 − ρ3 − 30ρ2 + 31ρ− 4.

94



Theorem 3.27. The competitive ratio of IncMaxCont is at least 2.246.

Proof. Let ρ < ρ∗. By Lemma 3.26, there is ε′ > 0 such that, for all ε ∈ (0, ε′], the
recursively defined sequence (tn)n∈N with

t0 = 1, t1 =
1− ε

ρ
, tn =

1− ε
ρ

tn−1
− 1

tn−2
− 1

ρ

∑︁n−3
j=0

(ρ+ε)j+2−n

tj

for all n ∈ N≥2

becomes negative at some point. Thus, for ε > 0, we can define ℓ(ε) ∈ N to be the
smallest value such that 1

tℓ(ε)
≥ 1

tℓ(ε)+1
. Note that this is the case when either tℓ(ε)+1 < 0 or

tℓ(ε)+1 ≥ tℓ(ε). This implies that t0 > t1 > · · · > tℓ(ε). Let vi = (ρ+ ε)i, and let ε ∈ (0, ε′]
be small enough such that ℓ := ℓ(ε) = ℓ(0) and such that, for all n ∈ {0, . . . , ℓ − 1}, we
have

1

tn+1
+

1

vn+1

n−1∑︂
j=0

vj
tj
>

1

tn
+

1

ρvn

n−1∑︂
j=0

vj
tj
, (3.74)

which is possible because vn+1 = (ρ+ ε)vn, i.e., the inequality holds for ε = 0.
We consider the instance of IncMaxCont with the value function that linearly interpo-

lates between the points v(0) = 0,

v

(︃
vn
tn

)︃
= v

(︃
vn
tn+1

)︃
= vn for all n ∈ {0, 1, . . . , ℓ− 1},

and v(vℓtℓ ) = vℓ. This means that, for 0 ≤ c ≤ 1, we have d(c) = 1, for vn
tn

≤ c ≤ vn
tn+1
, we

have v(c) = vn, and, for vn
tn+1

≤ c ≤ vn+1

tn+1
, we have d(c) = tn+1 (cf. Figure 3.4).

Suppose there was a ρ-competitive incremental solution (c0, . . . , ck) for this problem
instance. We will show that these capacities have to satisfy d(cn) = tn, which is not
possible because the sequence t0, . . . , tℓ+1 is not decreasing.
Without loss of generality, we can assume that, for all n ∈ {0, . . . , k}, we have

d(cn) ∈ {t0, t1, . . . , tℓ}. (3.75)

If this was not the case, we have vi
ti
< cn <

vi
ti+1
for some i ∈ {0, . . . , k − 1}. Then, we

can improve the incremental solution by setting cn = vi
ti
because v(cn) = vi = v

(︁
vi
ti

)︁ and
vi
ti
< cn, i.e., the modified incremental solution obtains the same value faster and can

start adding the next optimum solution earlier. Furthermore, we can assume that

d(cn) > d(cn+1) (3.76)

for all n ∈ {0, . . . , k−1}. Otherwise we can improve the incremental solution by removing
the smaller of cn and cn+1. This also implies that k ≤ ℓ.
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v1
v2

v3

v4

v5

c

d(c) = t3 d(c) = t4 d(c) = t5

Figure 3.4.: Lower bound construction from the proof of Theorem 3.27 for ρ = 2.1. Here,
we have ℓ = 5.

We will now show by induction, that, for n ∈ {0, . . . , k}, we have

d(cn) > tn+1, (3.77)

and, for n ∈ {0, . . . , k − 1}, we have

cn ≥ 1

ρ
· vn
tn
. (3.78)

For n = 0, by Lemma 3.14, we have d(c0) ≥ 1
ρ >

1−ε
ρ = t1, i.e., (3.77) holds. This

implies d(c0) = t0 because t0 > · · · > tℓ. If c0 < 1
ρ · v0

t0
= 1

ρ , then the solution achieved by
only adding the optimum solution of size c0 is ρ-competitive up to size p(c0) = ρc0. By
Lemma 3.14, we have

d(c1) ≥
v(c0)

p(c0)−
∑︁0

j=0 cj
=

c0t0
ρc0 − c0

=
1

ρ− 1
>

1− ε

ρ
= t1,

i.e., using (3.75), we obtain d(c1) = t0, which is a contradiction to the fact that d(c0) = t0.
Thus, c0 ≥ 1

ρ · v0
t0
, i.e., also (3.78) holds.
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Now, assume that, for some n ∈ {0, . . . , k − 1}, (3.77) and (3.78) hold for all natural
numbers at most n. As cn ≥ 1

ρ · vn
tn
, we have

p(cn) =
ρv(cn)

tn+1
. (3.79)

Note that, for all i ∈ {0, . . . , k}, we have d(ci) ∈ {t0, . . . , tℓ} and d(ci+1) < d(ci). Because
t0 > · · · > tℓ and because, for all i ∈ {0, . . . , n}, (3.77) holds, we have d(ci) = ti for all
i ∈ {0, . . . , n}. Thus, cn ≤ vn

tn
and therefore

v(cn) ≤ v

(︃
vn
tn

)︃
= vn. (3.80)

By Lemma 3.14, cn+1 has to satisfy

d(cn+1) ≥ v(cn)

p(cn)−
∑︁n

j=0 cj

(3.79)
=

v(cn)
ρv(cn)
tn+1

−
∑︁n

j=0 cj

(3.78)
≥ v(cn)

ρv(cn)
tn+1

− cn − 1
ρ

∑︁n−1
j=0

vj
tj

=
1

ρ
tn+1

− 1
tn

− 1
ρv(cn)

∑︁n−1
j=0

(ρ+ε)j

tj

(3.80)
≥ 1

ρ
tn+1

− 1
tn

− 1
ρvn

∑︁n−1
j=0

(ρ+ε)j

tj

=
1

ρ
tn+1

− 1
tn

− 1
ρ

∑︁n−1
j=0

(ρ+ε)j−n

tj

=
1

1− ε
tn+2 > tn+2,

i.e., (3.77) holds for n+ 1. As d(cn+1) < d(cn) = tn by (3.76) and because t0 > · · · > tℓ,
we have d(cn+1) = tn+1. Now, assume that n ∈ {0, . . . , k − 2}. We will show that (3.78)
holds for n+ 1. For the sake of contradiction, suppose that (3.78) does not hold for n+ 1,
i.e., we have cn+1 <

1
ρ · vn+1

tn+1
. Then,

v(cn+1) = cn+1tn+1 <
1

ρ
vn+1, (3.81)

i.e., the prefix (c0, . . . , cn+1) of the incremental solution is ρ-competitive up to size
p(cn+1) =

ρv(cn+1)
tn+1

= ρcn+1. By Lemma 3.14, the next size in the incremental solution has
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to satisfy

d(cn+2) ≥ v(cn+1)

p(cn+1)−
∑︁n+1

j=0 cj
=

v(cn+1)

ρcn+1 −
∑︁n+1

j=0 cj

(3.78)
≥ v(cn+1)

ρcn+1 − cn+1 − cn − 1
ρ

∑︁n−1
j=0

vj
tj

≥ v(cn+1)

ρcn+1 − cn+1 − 1
ρ

∑︁n−1
j=0

vj
tj

=
1

ρ
tn+1

− 1
tn+1

− 1
ρv(cn+1)

∑︁n−1
j=0

vj
tj

(3.81)
>

1
ρ

tn+1
− 1

tn+1
− 1

vn+1

∑︁n−1
j=0

vj
tj

(3.74)
≥ 1

ρ
tn+1

− 1
tn

− 1
ρvn

∑︁n−1
j=0

vj
tj

=
1

ρ
tn+1

− 1
tn

− 1
ρ

∑︁n−1
j=0

(ρ+ε)j−n

tj

=
1

1− ε
tn+2 > tn+2.

As t0 > · · · > tℓ, we have d(cn+2) /∈ {tn+2, . . . , tℓ}. But, for all i ∈ {0, . . . , n+ 1}, we also
have d(ci) = ti and thus d(cn+2) /∈ {t0, . . . , tn+1}. This is a contradiction to (3.75) and
therefore (3.78) holds for n+ 1.
We have established that (3.77) holds for all n ∈ {0, . . . , k}. Together with the fact that

d(cn) ∈ {t0, . . . , tℓ} for n ∈ {0, . . . , k}, d(c0) > · · · > d(ck) and t0 > · · · > tℓ, we obtain
d(cn) = tn for all n ∈ {0, . . . , k}. If k < ℓ, the solution obtains a value of v(ck) for size vℓ

tℓ
.

Yet, the optimum solution for this size has value

v
(︂vℓ
tℓ

)︂
= vℓ = (ρ+ ε)ℓ−kvk ≥ (ρ+ ε)ℓ−kv(ck) > ρv(ck).

Thus, (c0, . . . , ck) would not be ρ-competitive. Therefore, we have k = ℓ. By a similar
argument, we find that ck = cℓ ≥ 1

ρ · vℓ
tℓ
. By (3.77), we know that d(cℓ) > tℓ+1. If tℓ+1 ≥ tℓ,

we know that d(cℓ) ̸= tℓ. But we also have d(cℓ) /∈ {t0, . . . , tℓ−1} as d(cℓ) < d(cℓ−1) = tℓ−1

and t0 < · · · < tℓ−1. This is a contradiction to the assumption that d(cℓ) ∈ {t0, . . . , tℓ}.
Therefore, tℓ+1 < tℓ. By definition of ℓ, we have 1

tℓ+1
< 1

tℓ
, which implies that

0 > tℓ+1 =
1− ε

ρ
tℓ
− 1

tℓ−1
− 1

ρ

∑︁ℓ−2
j=0

(ρ+ε)j+1−ℓ

tj

>
1

ρ
tℓ
− 1

tℓ−1
− 1

ρ

∑︁ℓ−2
j=0

(ρ+ε)j+1−ℓ

tj

.

This is equivalent to
ρ

tℓ
− 1

tℓ−1
− 1

ρ

ℓ−2∑︂
j=0

(ρ+ ε)j+1−ℓ

tj
< 0. (3.82)
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We have p(cℓ−1) =
ρv(cℓ−1)

tℓ
and thus

1

vℓ−1

(︄
p(cℓ−1)−

ℓ−1∑︂
j=0

cj

)︄
=

1

vℓ−1

(︄
ρv(cℓ−1)

tℓ
− cℓ−1 −

ℓ−2∑︂
j=0

cj

)︄
(3.78)
≤ 1

vℓ−1

(︄
ρv(cℓ−1)

tℓ
− cℓ−1 −

1

ρ

ℓ−2∑︂
j=0

vj
tj

)︄

=
cℓ−1

vℓ−1

(︃
ρ
tℓ−1

tℓ
− 1

)︃
− 1

ρ

ℓ−2∑︂
j=0

(ρ+ ε)j+1−ℓ

tj
.

As cℓ−1 ≤ vℓ−1

tℓ−1
, we obtain

1

vℓ−1

(︄
p(cℓ−1)−

ℓ−1∑︂
j=0

cj

)︄
≤ 1

tℓ−1

(︃
ρ
tℓ−1

tℓ
− 1

)︃
− 1

ρ

ℓ−2∑︂
j=0

(ρ+ ε)j+1−ℓ

tj

=
ρ

tℓ
− 1

tℓ−1
− 1

ρ

ℓ−2∑︂
j=0

(ρ+ ε)j+1−ℓ

tj

(3.82)
< 0.

Since vℓ−1 = (ρ+ ε)ℓ−1 > 0, we find that p(cℓ−1)−
∑︁j−1

j=0 cj < 0, which is a contradiction
to Lemma 3.14 (iii) and the fact that (c0, . . . , ck) is ρ-competitive. Thus, a ρ-competitive
incremental solution cannot exist.

As the strict competitive ratio of IncMaxCont is smaller or equal to the (non-strict)
competitive ratio of IncMaxacc we immediately obtain the following.

Theorem 3.28. The (non-strict) competitive ratio of IncMaxacc is at least 2.246.
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4. Scaling Algorithms for Separable
Incremental Maximization

Now that we have derived an improved lower bound on the competitive ratio of IncMaxacc,
the subclass of IncMax of instances with monotone and accountable objectives, we will
turn to investigate multiple algorithms for this problem class. More precisely, we will
consider algorithms for the problem class IncMaxSep. By Proposition 3.8, these algorithms
induce algorithms for IncMaxacc with the same competitive ratios. Because of the simple
structure of the problems in IncMaxSep, incremental solutions for problems in this class
can be represented as a sequence of cardinalities (c1, c2, . . . ) (cf. Lemma 3.7). Even though,
we presented evidence that the upper bound of φ+1 on the competitive ratio of IncMaxacc
might be tight, analyzing different algorithms for this problem class might lead to a better
understanding of the problem and help in finding better lower bounds on the competitive
ratio. Furthermore, it enables us to improve the upper bound by randomizing one of the
algorithms in Section 4.2.
CardinalityScaling is the best known algorithm for the incremental maximization

problem with monotone and accountable objective and was introduced in [5]. It adds
the optimum solutions for increasing cardinalities c1 < c2 < . . . , where the cardinalities
increase by a factor δ = φ + 1, which we call the scaling parameter. In the context of
separable incremental maximization problems, this corresponds to the solution represented
by the cardinalities (c1, c2, . . . ). We will further analyze the competitive ratio of this
algorithm and introduce similar algorithms that all follow the same idea of scaling up the
cardinalities in the sequence representation.
In Section 4.1, we will investigate three deterministic algorithms for the IncMaxSep

problem, CardinalityScaling, ValueScaling, and DensityScaling. Each of these
algorithms scales the cardinalities in its sequence representation (c1, c2, . . . ) such that
either the cardinalities ci, the values vi, or the densities di are at least scaled by some fixed
scaling factor δ. We will show that CardinalityScaling and ValueScaling each have a
tight competitive ratio of φ+1 ≈ 2.618, and that DensityScaling has a tight competitive
ratio of 4.
In Section 4.2, we combine the idea of CardinalityScaling with a randomization
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approach from [44] and present the algorithm RandScaling. This algorithm chooses the
first cardinality in the sequence representation randomly and, similar to the Cardinali-
tyScaling algorithm, iteratively scales the next cardinalities by a fixed scaling parameter δ.
We show that this algorithm has a randomized competitive ratio of at most 1.772. We
complement this upper bound on the randomized competitive ratio of IncMaxSep with a
lower bound of 1.357 by employing Yao’s principle.
Recall that the groundset of an instance of IncMaxSep is partitioned into disjoint

sets U1, U2, . . . . Since v1 ≤ v2 ≤ . . . and d1 ≥ d2 ≥ . . . , the optimum solution of
cardinality c ∈ N is given by the set Uc. Thus, Opt(c) = vc for all c ∈ N.
An extended abstract with the results in Section 4.2 appeared in [19].

4.1. Deterministic Scaling Algorithms

4.1.1. Cardinality Scaling

We start off with the CardinalityScaling algorithm that was introduced in [5] for the
IncMaxacc problem. For this problem, the algorithm is the best known algorithm with a
competitive ratio of φ+ 1. In this section, we will adapt this algorithm for the IncMaxSep
problem and show that the competitive ratio of φ+ 1 is tight.
The CardinalityScaling algorithm operates as follows. It fixes a scaling parameter

δ > 1 and calculates c1 = 1, and ci+1 = ⌈δci⌉ for all i ∈ N. The incremental solution of
CardinalityScaling is the one represented by the sequence (c1, c2, . . . ).1
An upper bound on the competitive ratio of this algorithm was given in [5].

Theorem 4.1 ([5, Theorem 3]). CardinalityScaling with scaling factor δ = φ + 1 is
(φ+ 1)-competitive for IncMaxSep.

We will now derive lower bounds on the competitive ratio of CardinalityScaling to
show that its competitive ratio is exactly φ+ 1. In the analysis, the following estimate is
very useful.
The fact that ci+1 = ⌈δci⌉ yields ci ≥ 1

δ (ci+1 − 1) for all i ∈ N. Using this iteratively, for
i ∈ [k], we obtain

ci ≥
1

δk−i
ck −

k−i∑︂
j=1

1

δj
>

1

δk−i
ck −

∞∑︂
j=1

1

δj
=

1

δk−i
ck −

1

δ − 1
.

1Note that, with this definition, the algorithm does not terminate on finite instances. To avoid this, it suffices
to stop calculating the cardinalities ci when they become larger than the number of elements in the
instance. This will also be the case for the other algorithms presented in this chapter.
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Figure 4.1.: Visualization of the lower bound instance in the proof of Proposition 4.2.

This yields

k∑︂
i=1

ci >

k∑︂
i=1

(︃
1

δk−i
ck −

1

δ − 1

)︃

=
1− 1

δk+1

1− 1
δ

ck −
k

δ − 1

=

(︃
δ

δ − 1
− 1

δk(δ − 1)
− 1

δ − 1

k

ck

)︃
ck (4.1)

We will now give a lower bound for small scaling parameters δ ≤ φ+ 1.

Proposition 4.2. For all δ > 1, the competitive ratio of CardinalityScaling with scaling
factor δ for IncMaxSep is at least 1 + δ

δ−1 for all δ > 1.

Proof. We define the following lower bound instance of IncMaxSep (cf. Figure 4.1). Let
U1, U2, . . . be disjoint sets such that |Uc| = c for all c ∈ N. We define the groundset
U :=

⋃︁
c∈N Uc and the densities dc = 1 for all c ∈ N.

We denote the incremental solution of CardinalityScaling byX and the sequence that
represents X by (c1, c2, . . . ). Let k ∈ N be some large integer. We consider the cardinality
constraint C =

(︁∑︁k
i=1 ci

)︁
+ ck. The solution X(C) contains the sets Uc1 , . . . , Uck and ck

elements from the set Uck+1
. This and dck = dck+1

= 1 imply f(X(C)) = ck. Furthermore,
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Figure 4.2.: Visualization of the lower bound instance in the proof of Proposition 4.3.

Opt(C) = vC = CdC = C. Combining all of the above gives us
Opt(C)
X(C)

=
C

ck
=

(︁∑︁k
i=1 ci

)︁
+ ck

ck

(4.1)
>

δ

δ − 1
− 1

δk(δ − 1)
− 1

δ − 1

k

ck
+ 1.

The lower bound of 1+ δ
δ−1 follows in the limit for k → ∞ because ck grows exponentially

fast in k.
We complement this lower bound for small scaling parameters with one for large scaling

parameters δ ≥ φ+ 1.
Proposition 4.3. For all δ ≥ φ+ 1, the competitive ratio of CardinalityScaling with scaling
factor δ for IncMaxSep is at least δ

2(δ−1) +
√︂

δ2

4(δ−1)2
+ δ for all δ ≥ φ+ 1.

Proof. Let k ∈ N be some large integer, ρ = δ
2(δ−1) +

√︂
δ2

4(δ−1)2
+ δ and C = ⌊ρck⌋ be the

cardinality constraint. We define the following lower bound instance of IncMaxSep (cf.
Figure 4.2). Let U1, U2, . . . be disjoint sets such that |Uc| = c for all c ∈ N. We define the
groundset U :=

⋃︁
c∈N Uc and the densities

dc :=

{︄
1, if c ∈ [C]
C
c , else.

Then the values of the sets are

vc =

{︄
c, if c ∈ [C]

C, else.
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We denote the incremental solution of CardinalityScaling by X and the sequence that
represents X by (c1, c2, . . . ). Due to the fact that ci+1 ≥ δci for all i ∈ N, we have

k∑︂
i=1

ci
Lem. 1.6
<

δ

δ − 1
ck =

(︄
δ

2(δ − 1)
+

√︄
δ2

4(δ − 1)2

)︄
ck < ρck.

Because∑︁k
i=1 ci ∈ N and C = ⌊ρck⌋, we obtain

k∑︂
i=1

ci ≤ C. (4.2)

By the fact that δ ≥ φ+ 1, we have δ−1
δ−2 ≤ δ. This yields

δ ≤ δ2
δ − 2

δ − 1
= δ2

(︂
1− 1

δ − 1

)︂
= δ2 − δ2

δ − 1
,

and therefore

δ2

4(δ − 1)2
+ δ ≤ δ2

4(δ − 1)2
+ δ2 − δ2

δ − 1
=
(︂
δ − δ

2(δ − 1)

)︂2
.

This yields

ρ =
δ

2(δ − 1)
+

√︄
δ2

4(δ − 1)2
+ δ ≤ δ

2(δ − 1)
+
(︂
δ − δ

2(δ − 1)

)︂
= δ,

which implies
C = ⌊ρck⌋ ≤ ρck ≤ δck ≤ ⌈δck⌉ = ck+1. (4.3)

The solutionX(C) contains the sets Uc1 , . . . , Uck because of (4.2) and exactly C−
∑︁k

i=1 ci
elements from the set Uk+1 because of (4.3). Thus,

f(X(C)) = max

{︄
vck ,

(︄
C −

k∑︂
i=1

ci

)︄
dck+1

}︄
= max

{︄
ck,

(︄
C −

k∑︂
i=1

ci

)︄
C

ck+1

}︄
. (4.4)
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We have (︄
C −

k∑︂
i=1

ci

)︄
C

ck+1

Def. C,ck+1

≤

(︄
ρck −

k∑︂
i=1

ci

)︄
ρ

δ

(4.1)
≤

(︃
ρ− δ

δ − 1
+

1

δk(δ − 1)
+

k

ck(δ − 1)

)︃
ρ

δ
ck

Def. ρ
=

(︄
1

δ

(︄
δ

2(δ − 1)
+

√︄
δ2

4(δ − 1)2
+ δ

)︄2

− 1

δ − 1

(︄
δ

2(δ − 1)
+

√︄
δ2

4(δ − 1)2
+ δ

)︄

+
ρ

δk+1(δ − 1)
+

ρk

ckδ(δ − 1)

)︄
ck

=

(︄(︄
δ

4(δ − 1)2
+

1

δ − 1

√︄
δ2

4(δ − 1)2
+ δ +

δ

4(δ − 1)2
+ 1

)︄

−

(︄
δ

2(δ − 1)2
+

1

δ − 1

√︄
δ2

4(δ − 1)2
+ δ

)︄
+

ρ

δk+1(δ − 1)
+

ρk

ckδ(δ − 1)

)︄
ck

=

(︃
1 +

ρ

δk+1(δ − 1)
+

ρk

ckδ(δ − 1)

)︃
ck.

Together with (4.4), this yields

f(X(C)) ≤
(︃
1 +

ρ

δk+1(δ − 1)
+

ρk

ckδ(δ − 1)

)︃
ck

and thus
Opt(C)
f(X(C))

=
C

f(X(C))
≥ ρck − 1(︁

1 + ρ
δk+1(δ−1)

+ ρk
ckδ(δ−1)

)︁
ck
.

In the limit k → ∞, the terms ρ
δk+1(δ−1)

and ρk
ckδ(δ−1) vanish and we are left with

Opt(C)
f(X(C))

≥ ρ− 1

ck
− ε

for arbitrarily small ε > 0. The fraction 1
ck
vanishes as well for k → ∞ and we are

done.

By taking the maximum of the two lower bounds in Propositions 4.2 and 4.3, we obtain
the following lower bound on the competitive ratio of CardinalityScaling.
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Theorem 4.4. For all δ > 1, the competitive ratio of CardinalityScaling with scaling factor δ
for IncMaxSep is at least φ+ 1.

Combining the above results yields the following.

Corollary 4.5. The competitive ratio of CardinalityScaling with scaling factor δ = φ+ 1 for
IncMaxSep is exactly φ+ 1.

By Proposition 3.8, an incremental solution (c1, c2, . . . ) for IncMaxSep can be trans-
formed into one for IncMaxacc by adding Oc1 , then Oc2 , and so on in the accountable
instance. Thus, by interpreting the solution returned by CardinalityScaling in this way,
we obtain the following result.

Corollary 4.6. The competitive ratio of CardinalityScaling with scaling factor δ = φ+ 1 for
IncMaxacc is exactly φ+ 1.

4.1.2. Value Scaling

Now, we present an algorithm that has a similar idea to the CardinalityScaling algorithm,
but instead of scaling the cardinalities by a scaling parameter, the ValueScaling algorithm
increases the cardinalities such that the corresponding values of the optimum solutions
are scaled by a scaling parameter.
The ValueScaling algorithm operates as follows. It fixes a scaling parameter δ > 1

and calculates c1 = 1, and ci+1 = min{c ∈ N | vc ≥ δvci} for all i ∈ N. The incremental
solution of ValueScaling is the one represented by the sequence (c1, c2, . . . ).
Note that, for all i ∈ N, we have

ci+1 =
vci+1

dci+1

≥ δvci
dci

= δci. (4.5)

We show that ValueScaling is as good as CardinalityScaling.

Theorem 4.7. ValueScaling with scaling factor δ = φ+1 is (φ+1)-competitive for IncMaxSep.

Proof. Fix an instance of IncMaxacc with objective f , and let X denote the incremental
solution of ValueScaling. Furthermore, let (c1, c2, . . . ) denote the sequence represent-
ing X. First, suppose that, for some k ∈ N, we have C ∈

[︁∑︁k
i=1 ci, (φ+ 1)ck

]︁. Then X(C)
contains all sets Uc1 , . . . , Uck , i.e.,

f(X(C)) ≥ vck = ckdck
C≥ck
≥ ckdC ≥ 1

φ+ 1
CdC =

1

φ+ 1
vC .
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Now suppose that, for some k ∈ N, we have C ∈
[︁
(φ + 1)ck,

∑︁k+1
i=1 ci

]︁. This implies
C ≥ ck+1 = ⌈(φ + 1)ck⌉ because C ∈ N and C ≥ (φ + 1)ck. By Lemma 1.6 and (4.5),
we have∑︁k

i=1 ci ≤ φck < C, i.e., the solution X(C) contains all elements from the sets
Uc1 , . . . , Uck . Thus and because C ≤

∑︁k+1
i=1 ci,X(C) contains exactly C−

∑︁k
i=1 ci elements

from the set Uck+1
. Therefore,

f(X(C)) ≥

(︄
C −

k∑︂
i=1

ci

)︄
dck+1

Lem. 1.6
≥ (C − φck)dck+1

C≥ck+1

≥ (C − φck)dC

=
C − φck

C
vC ≥

(︃
1− φck

(φ+ 1)ck

)︃
vC =

1

φ+ 1
vC .

We show that this upper bound is indeed tight. We do this again by giving two lower
bounds, starting with the lower bound for small scaling parameters δ ≤ φ+ 1.

Proposition 4.8. For all δ > 1, the competitive ratio of ValueScaling with scaling factor δ
for IncMaxSep is at least 1 + δ

δ−1 .

Proof. We will show this lower bound with the same construction as in the proof of
Proposition 4.2. Let U1, U2, . . . be disjoint sets such that |Uc| = c for all c ∈ N. We define
the groundset U :=

⋃︁
c∈N Uc and the densities dc = 1 for all c ∈ N.

Let X denote the incremental solution of ValueScaling and let it be represented by
the sequence (c1, c2, . . . ). Note that vc = c for all c ∈ N. This yields that c1 = 1 and

ci+1 = min{c ∈ N | vc ≥ δvci} = ⌈δci⌉

for all i ∈ N. Thus, X is identical to the incremental solution of CardinalityScaling for
this instance. This implies that the competitive ratios of the solution of ValueScaling
cannot be better than the competitive ratio of the solution of CardinalityScaling. Thus,
also ValueScaling has a competitive ratio of at least 1 + δ

δ−1 for this instance.

We complement this with a lower bound for large scaling parameters δ ≤ φ+ 1.

Proposition 4.9. For all δ > 1, the competitive ratio of ValueScaling with scaling factor δ
for IncMaxSep is at least δ.

Proof. We will prove this statement via contradiction. For this suppose, there was a scaling
parameter δ > 1 such that ValueScaling was ρ-competitive for ρ < δ. Let C = ⌈ρ+δ

2 ⌉. We
define a lower bound instance of the IncMaxSep problem (cf. Figure 4.3). Let U1, U2, . . .

108



C

f(UC)

1

1

2

2

ρ+δ
2

ρ+δ
2

(C−1)(ρ+δ)
2

Figure 4.3.: Visualization of the lower bound instance in the proof of Proposition 4.9.

be disjoint sets such that |Uc| = c for all c ∈ N. We define the groundset U :=
⋃︁

c∈N Uc

and the densities

dc =

⎧⎪⎨⎪⎩
1, if c ≤ ρ+δ

2 ,
ρ+δ
2c , if ρ+δ

2 < c ≤ (C−1)(ρ+δ)
2 ,

1
C−1 , else.

Then

vc =

⎧⎪⎨⎪⎩
c, if c ≤ ρ+δ

2 ,
ρ+δ
2 , if ρ+δ

2 < c ≤ (C−1)(ρ+δ)
2 ,

c
C−1 , else.

We consider the cardinality constraint C. Let X denote the incremental solution of
ValueScaling that is represented by the sequence (c1, c2, . . . ). We have c1 = 1 and
vc1 = 1. Since vc ≤ ρ+δ

2 < δ = δvc1 for all c ∈
[︁⌊︁ (C−1)(ρ+δ)

2

⌋︁]︁, we have c2 > (C−1)(ρ+δ)
2 .

Thus, dc2 = 1
C−1 . The solution X(C) contains the set U1 and C − 1 elements from the

set Uc2 . Thus,

f(X(C)) = max{v1, (C − 1)dc2} = max

{︃
1, (C − 1)

1

C − 1

}︃
= 1.

Yet, we have vC = ρ+δ
2 > ρ = ρf(X(C)), i.e., ValueScaling is not ρ-competitive.

By taking the maximum of the two lower bounds in Propositions 4.8 and 4.9, we obtain
the following lower bound on the competitive ratio of ValueScaling.
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Theorem 4.10. For all δ > 1, the competitive ratio of ValueScaling with scaling factor δ for
IncMaxSep is at least φ+ 1.

Combining the above results yields the following.
Corollary 4.11. The competitive ratio of ValueScaling with scaling factor δ = φ + 1 for
IncMaxSep is exactly φ+ 1.

As reasoned before Corollary 4.6, we can interpret the solution returned by ValueScal-
ing to work for accountable problem instances and obtain the following result.
Corollary 4.12. The competitive ratio of ValueScaling with scaling factor δ = φ + 1 for
IncMaxacc is exactly φ+ 1.

4.1.3. Density Scaling

In this section, we present the DensityScaling algorithm. Similar to the two algorithms
in the two previous sections, the idea is to increase the cardinalities in such a way that
some value associated with the sets Ui is scaled by some scaling parameter. This time we
scale the density di of the sets.
TheDensityScaling algorithm operates as follows. It fixes a scaling parameter δ ∈ (0, 1)

and calculates c1 = 1 and ci+1 = max{c ∈ N | dc ≥ δdci} for all i ∈ N. Note that this time
we are not scaling up some value, but are scaling it down to be smaller in the next step.
The incremental solution of DensityScaling is the one represented by (c1, c2, . . . ).
Remark 4.13. In order to be able to show bounds on the competitive ratio of DensityScaling,
we have to assume that limc→∞ dc = 0. Otherwise, we might have the problem that ci+1 does
not exist for some i ∈ N. This would be the case for the lower bound construction in the proof
of Proposition 4.2, where dc = 1 for all c ∈ N. Here, DensityScaling would terminate after
adding one element and would therefore have an unbounded competitive ratio.

Note that, because v1 ≤ v2 ≤ . . . , we have

d⌊ ci
δ
⌋ =

v⌊ ci
δ
⌋

⌊ ciδ ⌋
≥ vci

⌊ ciδ ⌋
≥ δ

vci
ci

= δdci ,

which yields
ci+1 ≥

⌊︂ci
δ

⌋︂
. (4.6)

In particular, if δ = 1
k for some integer k ∈ N, then ci+1 ≥ kci.

We give an upper bound on the competitive ratio of DensityScaling.
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Theorem 4.14. DensityScaling with scaling factor δ = 1
2 is 4-competitive for IncMaxSep.

Proof. LetC ∈ N be the cardinality constraint. Let k ∈ N such thatC ∈
[︁∑︁k

i=1 ci,
∑︁k+1

i=1 ci
)︁,

and let X denote the incremental solution of DensityScaling that is represented by the
sequence (c1, c2, . . . ).
First, consider the case that C ≤ 4ck. Recall that C ≥

∑︁k
i=1 ci. Thus, the solution X(C)

contains all elements from the sets Uc1 , . . . , Uck , i.e.,

f(X(C)) ≥ vck = ckdck ≥ ckd4ck =
1

4
(4ck)d4ck =

1

4
v4ck ≥ 1

4
vC .

Now, consider the case that C ≥ 4ck. As C <
∑︁k+1

i=1 ci, X(C) does not contain the
whole set Uck+1

. Yet, it contains all the sets Uc1 , . . . , Uck . Thus, X(C) contains exactly
C −

∑︁k
i=1 ci elements from the set Uck+1

, i.e., we have

f(X(C)) ≥

(︄
C −

k∑︂
i=1

ci

)︄
dck+1

Lem. 1.6, (4.6)
≥ (C − 2ck)dck+1

Def. ck+1

≥ (C − 2ck)δdck
C≥ck
≥ (C − 2ck)δdC

= δ
C − 2ck

C
vC

C≥4ck
≥ δ

(︃
1− 2ck

4ck

)︃
vC =

1

4
vC .

We complement this upper bound with a tight lower bound. We start with a bound for
small scaling parameters δ ≤ 1

2 .

Proposition 4.15. For all δ ∈
(︁
0, 12
]︁
, the competitive ratio of DensityScaling with scaling

parameter δ for IncMaxSep is at least 1
δ(1−δ) ≥ 4.

Proof. Let ε > 0 be arbitrarily small. We define t1 := 1, ti+1 :=
⌊︁
1
δ ti
⌋︁ for i ∈ N. Since

δ ≤ 1
2 , we have

ti+1 =

⌊︃
1

δ
ti

⌋︃
≥ ⌊2ti⌋ = 2ti > ti,

i.e., (t1, t2, . . . ) is strictly increasing.
Let k ∈ N be large enough such that, with C :=

(︁∑︁k
i=1 ti

)︁
+
⌊︁
1
δ tk
⌋︁
+ 1, we have(︃

1 + δ
1

tk

)︃
C + 1

C
≤ 1 + ε (4.7)
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Figure 4.4.: Visualization of the lower bound instance in the proof of Proposition 4.15.

and (︃
1− δk+1

1− δ
+

1

δ

)︃(︃
1

δ
tk−1 − 1

)︃
≥ (1− ε)

(︃
1

1− δ
+

1

δ

)︃
1

δ
tk−1. (4.8)

Let ε′ > 0 such that
ε′ < ε (4.9)

and
(δ − ε′)

1

tk−1
≥ δ

1

tk
, (4.10)

which is possible because tk > tk−1.
With these preparations, we are ready to define the lower bound instance of IncMaxSep

(cf. Figure 4.4). Let U1, U2, . . . be disjoint sets such that |Uc| = c for all c ∈ N. We define
the groundset U :=

⋃︁
c∈N Uc and, the densities

dc =

⎧⎪⎪⎨⎪⎪⎩
1
c , if c ≤ tk,

(δ − ε′) 1
tk−1

, if tk + 1 ≤ c ≤ C − 1,

(δ − ε′) 1
tk−1

· C
c , else.

The densities are non-increasing. For c ∈ N \ {tk}, dc ≥ dc+1 follows immediately from
the definition. For c = tk, we have

dtk =
1

tk
=

1⌊︁
1
δ tk−1

⌋︁ ≥ δ
1

tk−1
> (δ − ε′)

1

tk−1
= dtk+1.
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Thus,

vi =

⎧⎪⎪⎨⎪⎪⎩
1, if c ≤ tk,

(δ − ε′) c
tk−1

, if tk + 1 ≤ c ≤ C − 1,

(δ − ε′) C
tk−1

, else.
The values are non-decreasing. For c ∈ N \ {tk}, vc ≤ vc+1 can be seen immediately. For
c = tk, we have

vtk = 1 < δ
(4.10)
≤ (δ − ε′)

tk
tk−1

< (δ − ε′)
tk + 1

tk−1
= vtk+1.

Note that ti+1 =
⌊︁
1
δ ti
⌋︁
≤ 1

δ ci holds for all i ∈ [k − 1], which yields
k∑︂

i=1

ti ≥
k∑︂

i=1

δk−itk =
1− δk+1

1− δ
tk. (4.11)

This yields

C =

(︄
k∑︂

i=1

ti

)︄
+

⌊︃
1

δ
tk

⌋︃
+ 1

(4.11)
≥ 1− δk+1

1− δ
tk +

1

δ
tk

=

(︃
1− δk+1

1− δ
+

1

δ

)︃⌊︃
1

δ
tk−1

⌋︃
≥
(︃
1− δk+1

1− δ
+

1

δ

)︃(︃
1

δ
tk−1 − 1

)︃
(4.8)
≥ (1− ε)

(︃
1

1− δ
+

1

δ

)︃
1

δ
tk−1 =

1− ε

δ

1

δ(1− δ)
tk−1. (4.12)

Let X denote the incremental solution of DensityScaling with scaling parameter δ,
and let (c1, c2, . . . ) be its representation.

Claim: For i ∈ [k], we have
ci = ti. (4.13)

Proof of Claim: We show this by induction. For i = 1, we have c1 = 1 = t1 by definition.
Now assume that, for some i ∈ [k − 1], ci = ti holds. Then

dti+1 =
1

ti+1
=

1⌊︁
1
δ ti
⌋︁ ≥ δ

1

ti
= δdti = δdci ,

which implies that ci+1 ≥ ti+1. If i ≤ k − 2, we have

dti+1+1 =
1

ti+1 + 1
=

1⌊︁
1
δ ti
⌋︁
+ 1

< δ
1

ti
= δdti = δdci .
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Otherwise, if i = k − 1, then

dti+1+1 = dtk+1 = (δ − ε′)
1

tk−1
< δ

1

tk−1
= δdtk−1

= δdti = δdci .

In both cases, we have dti+1+1 < δdci , which yields ci+1 < ti+1 +1. Together with the fact
that ci+1 ≥ ti+1, we have ci+1 = ti+1, which establishes the claim.
By definition of ε′, we have

dC = (δ − ε′)
1

tk−1

(4.10)
≥ δ

1

tk
= δdtk

(4.13)
= δdck ,

i.e., ck+1 ≥ C. This and the definition of ck+1 imply

dck+1
=
vck+1

ck+1
=
ck+1 + 1

ck+1

vck+1+1

ck+1 + 1
=
ck+1 + 1

ck+1
dck+1+1 <

ck+1 + 1

ck+1
δdck . (4.14)

The solution X(C) contains all the sets Uc1 , . . . , Uck because

C =

(︄
k∑︂

i=1

ti

)︄
+

⌊︃
1

δ
tk

⌋︃
+ 1 >

k∑︂
i=1

ti
(4.13)
=

k∑︂
i=1

ci.

Furthermore, X(C) contains ⌊︁1δ tk⌋︁+ 1 elements from the set Uck+1
. We have(︃⌊︃

1

δ
tk

⌋︃
+ 1

)︃
dck+1

(4.14)
<

(︃⌊︃
1

δ
tk

⌋︃
+ 1

)︃
ck+1 + 1

ck+1
δdck =

(︃⌊︃
1

δ
tk

⌋︃
+ 1

)︃
ck+1 + 1

ck+1
δ
1

tk

≤
(︃
1 + δ

1

tk

)︃
ck+1 + 1

ck+1

ck+1≥C

≤
(︃
1 + δ

1

tk

)︃
C + 1

C

(4.7)
≤ 1 + ε.

Thus, and because vi = 1 for all i ∈ [ck], we have f(X(C)) ≤ 1 + ε. Yet, we have
Opt(C) = vC = (δ − ε′) C

tk−1
. Thus, the competitive ratio of DensityScaling is at least

Opt(C)
f(X(C))

≥ (δ − ε′)C

(1 + ε)tk−1

(4.9),(4.12)
≥ (δ − ε)(1− ε)

(1 + ε)δ
· 1

δ(1− δ)
.

The lower bound follows in the limit ε→ 0.
With this, we can now show a lower bound on the competitive ratio of DensityScaling

for all scaling parameters.
Theorem 4.16. For all δ ∈ (0, 1), the competitive ratio of DensityScaling with scaling
parameter δ for IncMaxSep is at least 4.
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Proof. For δ ∈
(︁
0, 12
]︁ this immediately follows from Proposition 4.15. Thus, suppose

that δ ∈
(︁
1
2 , 1
)︁. Consider an instance of IncMaxSep with d1 = 1, d2 = 1

2 , and arbitrary
di ∈

(︁
0, 12
]︁ for all i ∈ N≥3 such that d2 ≥ d3 ≥ . . . and limc→∞ vc = ∞. DensityScaling

chooses c1 = 1 and

c2 = max{c ∈ N | dc ≥ δdc1} = max{1} = 1.

Here, we use the fact that di ≤ 1
2 for all i ∈ N≥2 and δ > 1

2 . This continues, i.e., we have
ci = 1 for all i ∈ N. Thus, DensityScaling only adds one element and stops after that.
Since limc→∞ vc = ∞, DensityScaling cannot be competitive.

Combining the above results yields the following.

Corollary 4.17. The competitive ratio of DensityScaling with scaling factor δ = 1
2 for

IncMaxSep is exactly 4.

As reasoned before Corollaries 4.6 and 4.12, we can interpret the solution returned
by DensityScaling to work for accountable problem instances and obtain the following
result.

Corollary 4.18. The competitive ratio of DensityScaling with scaling factor δ = 1
2 for

IncMaxacc is exactly 4.

4.2. Randomized Algorithms

We turn to analyzing randomized algorithms to solve the IncMaxSep problem. In contrast
to deterministic algorithms, we do not compare the value obtained by the algorithm to an
optimum solution, but rather the expected value obtained by the algorithm. This enables
us to find an algorithm with randomized competitive ratio smaller than the lower bound
of 2.24 on the competitive ratio of deterministic algorithms we have seen in Theorem 3.28.

4.2.1. A Randomized Scaling Algorithm

As we have stated before, the best known deterministic algorithm is the CardinalityScal-
ing algorithm [5]. In the analysis, it turns out that, on average, a scaling algorithm
performs better than the actual competitive ratio, which is only tight for few cardinali-
ties. By randomizing the initial cardinality c1, we manage to average out the worst-case
cardinalities in the analysis.
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We describe the randomized algorithm RandScaling for IncMaxSep. In its analysis,
we need the unique maximum of the function

g(x) = z − 1− x−3

2(x− 1) log(x)
− 2x2+z(︂√︂(︁

x3−1
x−1 x

z − 1
)︁2

+ 4x5+2z − x3−1
x−1 x

z + 1
)︂
log(x)

+
1−

√︂(︁
x3−1
x−1 x

z − 1
)︁2

+ 4x5+2z

2 log(x)x3+z
− (1− z)

1− x−3

x− 1
−
(︃
1− x−3

x− 1
− 1

x3+z

)︃

·

(︄
logx

(︄√︄(︃
x3 − 1

x− 1
xz − 1

)︃2

+ 4x5+2z − x3 − 1

x− 1
xz + 1

)︄
− logx(2)− 3

)︄

+
2

log(x)
−
(︃
1 +

1

x3+z

)︃(︁
logx(x

3+z + 1) + logx(x− 1)− logx(x
4 − 1)

)︁
with z = logx

(︁
x4−1
x−1 −1

)︁
−3. Let δ ≈ 5.165 be the unique maximum of g with g(δ) ≈ 0.564.

The upper bound on the randomized competitive ratio that we show later in the chapter will
be 1/g(δ) < 1.772. The algorithm RandScaling starts by choosing ε ∈ (0, 1) uniformly at
random. For all i ∈ N, it calculates c̃i := δi−1+ε and ci := ⌊c̃i⌋ and returns the incremental
solution represented by (c1, c2, c3, . . . ). This approach is similar to a randomized algorithm
to solve the CowPath problem in [44], which also calculates such a sequence with a
different choice of δ ∈ R in order to explore a star graph.
For better readability, we define

t̃i :=

i∑︂
j=1

c̃j = δε
δi − 1

δ − 1
and ti :=

i∑︂
j=1

cj ,

as well as c̃0 = c0 = t̃0 = t0 = 0. Note that, for all i ∈ N, we have

ti ≤ t̃i = δε
δi − 1

δ − 1

δ>2
< δi+ε − δε ≤ δi+ε − 1 = c̃i+1 − 1 ≤ ci+1. (4.15)

We denote the incremental solution of RandScaling by X.
In order to find an upper bound on the randomized competitive ratio of RandScaling,

we need the following lemma. It gives an estimate on the expected value of the solution
for a fixed cardinality C ∈ N of RandScaling depending on the interval in which C falls.
Lemma 4.19. Let C ∈ N.
(i) For i ∈ N with P[C ∈ (ti−1, ti]] > 0, we have

E
[︁
f(X(C)) | C ∈ (ti−1, ti]

]︁
≥ E

[︃
max

{︃
ci−1

C
,
C − ti−1

max{C, ci}

}︃ ⃓⃓⃓⃓
C ∈ (ti−1, ti]

]︃
· vC .
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(ii) For i ∈ N with P[C ∈ (c̃i, t̃i − 1]] > 0, we have

E
[︁
f(X(C)) | C ∈ (c̃i, t̃i − 1]

]︁
≥ E

[︃
1− t̃i−1

C

⃓⃓⃓⃓
C ∈ (c̃i, t̃i − 1]

]︃
· vC .

(iii) For i ∈ N with P[C ∈ (t̃i−1 − 1, c̃i]] > 0, we have

E
[︁
f(X(C)) | C ∈ (t̃i−1 − 1, c̃i]

]︁
≥ E

[︃
max

{︃
c̃i−1 − 1

C
,
C − t̃i−1

c̃i

}︃ ⃓⃓⃓⃓
C ∈ (t̃i−1 − 1, c̃i]

]︃
· vC .

Proof. We prove (i). For C ∈ (ti−1, ci] with i ∈ N, the solution X(C) contains the sets
U1, . . . , Uci−1 and some elements from the set Uci . Thus,

f(X(C)) = max{vci−1 , (C − ti−1)dci}

= max

{︃
ci−1dci−1 , (C − ti−1)

vci
ci

}︃
d dec.,v inc.

≥ max

{︃
ci−1dC , (C − ti−1)

vC
ci

}︃
= max

{︃
ci−1

C
,
C − ti−1

ci

}︃
· vC . (4.16)

Now, assume C ∈ (ci, ti] for some i ∈ N. By (4.15), we have ti−1 ≤ ci, i.e., the solu-
tion X(C) contains the sets U1, . . . , Uci−1 and some elements from the set Uci . Thus, we
have

f(X(C)) = max{vci−1 , (C − ti−1)dci}
= max{ci−1dci−1 , (C − ti−1)dci}

d dec.
≥ max{ci−1dC , (C − ti−1)dC}

= max

{︃
ci−1

C
,
C − ti−1

C

}︃
· vC . (4.17)

Combining (4.16) and (4.17), for C ∈ (ci−1, ci], we obtain

f(X(C)) ≥ max

{︃
ci−1

C
,
C − ti−1

max{C, ci}

}︃
· vC .

By monotonicity of the conditional expectation, (i) follows.
We prove (ii). If C ∈ (c̃i, t̃i − 1] for some i ∈ N, we have

C > c̃i ≥ ci
(4.15)
≥ ti−1,
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i.e., the solution X(C) contains the sets U1, . . . , Uci−1 and either some, or all elements
from the set Uci . Thus,

f(X(C)) ≥ min{C − ti−1, ci}dci ≥ min{C − t̃i−1, ci}dci
C≤t̃i−1
= (C − t̃i−1)dci =

(︃
1− t̃i−1

C

)︃
dci
dC

· vC

d dec.
≥

(︃
1− t̃i−1

C

)︃
· vC .

By monotonicity of the conditional expectation, (ii) follows.
Lastly, we prove (iii). IfC ∈ (t̃i−1−1, c̃i] for some i ∈ N, we haveC > t̃i−1 − 1 ≥ ti−1 − 1.

Together with the fact that C and ti−1 are both integral, this implies C ≥ ti−1, i.e.,
the solution X(C) contains the sets U1, . . . , Uci−1 and some elements from the set Uci .
Furthermore, C ≤ c̃i and C ∈ N imply that C ≤ ci = ⌊c̃i⌋. Together this yields

f(X(C)) = max{vci−1 , (C − ti−1)dci}

= max

{︃
ci−1dci−1 , (C − ti−1)

vci
ci

}︃
d dec.,v inc.

≥ max

{︃
ci−1dC , (C − ti−1)

vC
ci

}︃
= max

{︃
ci−1

C
,
C − ti−1

ci

}︃
· vC

≥ max

{︃
c̃i−1 − 1

C
,
C − t̃i−1

ci

}︃
· vC .

By monotonicity of the conditional expectation, (iii) follows.
In the analysis of the algorithm, additionally, the following estimate is needed.

Lemma 4.20. Let k ∈ N and r ∈ (0, 1] such that δk+r ≥
∑︁3

i=0 δ
i. Then

g(δ) ≤ I(k, r) :=

∫︂ 1

min
{︁
1,µ(k)

}︁ 1− t̃k−1

δk+r
dε +

∫︂ min{1,µ(k)}

min{1,ν(k)}

c̃k − 1

δk+r
dε

+

∫︂ min{1,ν(k)}

r

δk+r − t̃k
c̃k+1

dε +

∫︂ r

max
{︁
0,µ(k+1)

}︁ 1− t̃k
δk+r

dε

+

∫︂ max{0,µ(k+1)}

max{0,ν(k+1)}

c̃k+1 − 1

δk+r
dε+

∫︂ max{0,ν(k+1)}

0

δk+r − t̃k+1

c̃k+1
dε
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where

µ(i) = logδ(δ
k+r + 1) + logδ(δ − 1)− logδ(δ

i − 1),

ν(i) = logδ

(︄√︄(︃
δk+r

1− δ−i

δ − 1
− 1

)︃2

+ 4δ2k+2r−1 − δk+r 1− δ−i

δ − 1
+ 1

)︄
− logδ(2)− i+ 1.

Proof. Note that, because δk+r ≥
∑︁3

i=0 δ
i, we have k ≥ 3.

For the analysis of the expression I(k, r), we need to distinguish between different
cases, depending on the value of µ(i) and ν(i) for i ∈ {k, k + 1}. For this, the following
observations are useful. For m ∈ {0, 1}, we have

µ(i) ≤ m ⇔ (δk+r + 1)
δ − 1

δi − 1
≤ δm

⇔ δk+r ≤ δm
δi − 1

δ − 1
− 1

⇔ r ≤ logδ

(︃
δm

δi − 1

δ − 1
− 1

)︃
− 1

and

ν(i) ≤ m

⇔

√︄(︃
δk+r

1− δ−i

δ − 1
− 1

)︃2

+ 4δ2k+2r−1 − δk+r 1− δ−i

δ − 1
+ 1 ≤ 2δi+m−1

⇔
(︃
δk+r 1− δ−i

δ − 1
− 1

)︃2

+ 4δ2k+2r−1 ≤
(︃
2δi+m−1 + δk+r 1− δ−i

δ − 1
− 1

)︃2

⇔ 4δ2k+2r−1 ≤ 4δ2(i+m−1) + 4δi+m−1

(︃
δk+r 1− δ−i

δ − 1
− 1

)︃
⇔ (δr)2 − δm−k δ

i − 1

δ − 1
δr − δ2(i+m−k)−1 + δi+m−2k ≤ 0

r>0⇔ δr ≤ δm−k δi − 1

2(δ − 1)
+

√︄(︃
δm−k

δi − 1

2(δ − 1)

)︃2

+ δ2(i+m−k)−1 − δi+m−2k.

We define
bµ(k, i,m) := logδ

(︂
δm

δi − 1

δ − 1
− 1
)︂
− 1
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and

bν(k, i,m) := logδ

(︄
δm−k δi − 1

2(δ − 1)
+

√︄(︃
δm−k

δi − 1

2(δ − 1)

)︃2

+ δ2(i+m−k)−1 − δi+m−2k

)︄
to obtain

µ(i) ≤ m ⇔ r ≤ bµ(k, i,m), (4.18)
ν(i) ≤ m ⇔ r ≤ bν(k, i,m). (4.19)

Depending on r and k, only 3 or 4 of the integrals in I(k, r) are non-zero. We distinguish
between the different possibilities.

Case 1: ν(k + 1) > 0. Then
ν(k) + logδ(2) + k − 1

= logδ

(︄√︄(︃
δk+r

1− δ−k

δ − 1
− 1

)︃2

+ 4δ2k+2r−1 − δk+r 1− δ−k

δ − 1
+ 1

)︄

≥ logδ

(︄√︄(︃
δk+r

1− δ−(k+1)

δ − 1
− 1

)︃2

+ 4δ2k+2r−1 − δk+r 1− δ−(k+1)

δ − 1
+ 1

)︄
= ν(k + 1) + logδ(2) + k,

i.e., we have ν(k) ≥ ν(k + 1) + 1 > 1. For the inequality, we used the fact that, for
a > b > 0 and x > 0, we have

√
b2 + x− b >

√
a2 + x− a. We obtain

I(k, r)

=

∫︂ 1

r

δk+r − δk−1
δ−1 δ

ε

δk+ε
dε

+

∫︂ r

logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k+1−1)
1−

δk−1
δ−1 δ

ε

δk+r
dε

+

∫︂ logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k+1−1)

logδ

(︂√︃(︁
δk−δ−1

δ−1
δr−1

)︁2
+4δ2k+2r−1− δk−δ−1

δ−1
δr+1

)︂
−logδ(2)−k

δk+ε − 1

δk+r
dε

+

∫︂ logδ

(︂√︃(︁
δk−δ−1

δ−1
δr−1

)︁2
+4δ2k+2r−1− δk−δ−1

δ−1
δr+1

)︂
−logδ(2)−k

0

δk+r − δk+1−1
δ−1 δε

δk+1+ε
dε

=
[︂
− δk+r

log(δ)δk+ε
− 1− δ−k

δ − 1
ε
]︂1
r
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+
[︂
ε− (δk − 1)δε

log(δ)(δ − 1)δk+r

]︂r
logδ(δ

k+r+1)+logδ(δ−1)−logδ(δ
k+1−1)

+
[︂ δk+ε

log(δ)δk+r
− ε

δk+r

]︂logδ(δk+r+1)+logδ(δ−1)−logδ(δ
k+1−1)

logδ

(︂√︃(︁
δk−δ−1

δ−1
δr−1

)︁2
+4δ2k+2r−1− δk−δ−1

δ−1
δr+1

)︂
−logδ(2)−k

+
[︂
− δk+r

log(δ)δk+1+ε
− 1− δ−(k+1)

δ − 1
ε
]︂logδ(︂√︃(︁ δk−δ−1

δ−1
δr−1

)︁2
+4δ2k+2r−1− δk−δ−1

δ−1
δr+1

)︂
−logδ(2)−k

0

= r +
2 + δ−(k+r)

log(δ)
−

√︂(︁
δk−δ−1

δ−1 δr − 1
)︁2

+ 4δ2k+2r−1 − δk−δ−1

δ−1 δr + 1

2 log(δ)δk+r
−
(︃
1 +

1

δk+r

)︃
(︁
logδ(δ

k+r + 1) + logδ(δ − 1)− logδ(δ
k+1 − 1)

)︁
− 1− δ−k

δ − 1

(︃
1− r +

1

log(δ)

)︃
− 2δk−1+r

log(δ)
(︂√︂(︁

δk−δ−1

δ−1 δr − 1
)︁2

+ 4δ2k+2r−1 − δk−δ−1

δ−1 δr + 1
)︂ −

(︂1− δ−(k+1)

δ − 1
− 1

δk+r

)︂
(︄
logδ

(︄√︄(︃
δk − δ−1

δ − 1
δr − 1

)︃2

+ 4δ2k+2r−1 − δk − δ−1

δ − 1
δr + 1

)︄
− logδ(2)− k

)︄
=: f1(k, r).

We have ν(k + 1) > 0, which, by (4.19), implies r ≥ bν(k, k + 1, 0). By analyzing
f1(k, r) for r ∈ [bν(k, k + 1, 0), 1], one can see that it is minimized for small k, i.e., for
k = 3. Analyzing f1(3, r) yields that it is minimized for small r, i.e., for r = bν(3, 4, 0). By
combining the above, we obtain

I(k, r) = f1(k, r) ≥ f1(3, bν(3, 4, 0)) > 0.566 > g(δ).

Case 2: ν(k + 1) ≤ 0 and ν(k) > 1. Then

I(k, r)

=

∫︂ 1

r

δk+r − δk−1
δ−1 δ

ε

δk+ε
dε

+

∫︂ r

logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k+1−1)
1−

δk−1
δ−1 δ

ε

δk+r
dε

+

∫︂ logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k+1−1)

0

δk+ε − 1

δk+r
dε
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=

[︃
− δk+r

log(δ)δk+ε
− 1− δ−k

δ − 1
ε

]︃1
r

+

[︃
ε− (δk − 1)δε

log(δ)(δ − 1)δk+r

]︃r
logδ(δ

k+r+1)+logδ(δ−1)−logδ(δ
k+1−1)

+

[︃
δk+ε

log(δ)δk+r
− ε

δk+r

]︃logδ(δk+r+1)+logδ(δ−1)−logδ(δ
k+1−1)

0

= − δr

log(δ)δ
− 1− δ−k

δ − 1

(︃
1− r +

1

log(δ)

)︃
+

2 + δ−(k+r)

log(δ)
− 1

log(δ)δr

+r −
(︃
1 +

1

δk+r

)︃(︁
logδ(δ

k+r + 1) + logδ(δ − 1)− logδ(δ
k+1 − 1)

)︁
=: f2(k, r)

We have ν(k + 1) ≤ 0 and ν(k) > 1, which, by (4.19), implies r ≤ bν(k, k + 1, 0) and
r ≥ bν(k, k, 1). By analyzing f2(k, r) for r ∈ [bν(k, k, 1), bν(k, k+ 1, 0)], one can see that it
is minimized for small k, i.e., for k = 3. Analyzing f2(3, r) yields that it is minimized for
small r, i.e., for r = bν(3, 3, 1). By combining the above, we obtain

I(k, r) = f2(k, r) ≥ f2(3, bν(3, 3, 1)) > 0.566 > g(δ).

Case 3: ν(k) ≤ 1 and µ(k + 1) > 0. Then
µ(k) = µ(k + 1) + logδ(δ

k+1 − 1)− logδ(δ
k − 1)

= µ(k + 1) + 1 + logδ

(︃
δk − δ−1

δk − 1

)︃
≥ µ(k + 1) + 1

> 1. (4.20)
We obtain

I(k, r)

=

∫︂ 1

logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

δk−1+ε − 1

δk+r
dε

+

∫︂ logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

r

δk+r − δk−1
δ−1 δ

ε

δk+ε
dε

+

∫︂ r

logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k+1−1)
1−

δk−1
δ−1 δ

ε

δk+r
dε
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+

∫︂ logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k+1−1)

0

δk+ε − 1

δk+r
dε

=

[︃
δk−1+ε

log(δ)δk+r
− ε

δk+r

]︃1
logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

+

[︃
− δk+r

log(δ)δk+ε
− 1− δ−k

δ − 1
ε

]︃logδ(︂√︃(︁ δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

r

+

[︃
ε− (δk − 1)δε

log(δ)(δ − 1)δk+r

]︃r
logδ(δ

k+r+1)+logδ(δ−1)−logδ(δ
k+1−1)

+

[︃
δk+ε

log(δ)δk+r
− ε

δk+r

]︃logδ(δk+r+1)+logδ(δ−1)−logδ(δ
k+1−1)

0

= r − 1− δ−k

2(δ − 1) log(δ)
− 2δk−1+r(︂√︂(︁

δk−1
δ−1 δ

r − 1
)︁2

+ 4δ2k+2r−1 − δk−1
δ−1 δ

r + 1
)︂
log(δ)

+
1−

√︂(︁
δk−1
δ−1 δ

r − 1
)︁2

+ 4δ2k+2r−1

2 log(δ)δk+r
− (1− r)

1− δ−k

δ − 1
−
(︃
1− δ−k

δ − 1
− 1

δk+r

)︃

·

(︄
logδ

(︄√︄(︃
δk − 1

δ − 1
δr − 1

)︃2

+ 4δ2k+2r−1 − δk − 1

δ − 1
δr + 1

)︄
− logδ(2)− k

)︄

+
2

log(δ)
−
(︃
1 +

1

δk+r

)︃(︁
logδ(δ

k+r + 1) + logδ(δ − 1)− logδ(δ
k+1 − 1)

)︁
=: f3(k, r).

We have ν(k) ≤ 1 and µ(k + 1) > 0, which, by (4.18) and (4.19), implies r ≤ bν(k, k, 1)
and r ≥ bµ(k, k + 1, 0). By analyzing f3(k, r) for r ∈ [bµ(k, k + 1, 0), bν(k, k, 1)], one can
see that it is minimized for small k, i.e., for k = 3. Analyzing f3(3, r) yields that it is
minimized for small r, i.e., for r = bµ(3, 4, 0). By combining the above, we obtain

I(k, r) = f3(k, r) ≥ f3(3, bµ(3, 4, 0)) = g(δ).

Case 4: µ(k + 1) ≤ 0 and µ(k) > 1. Then

I(k, r)

=

∫︂ 1

logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

δk−1+ε − 1

δk+r
dε
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+

∫︂ logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

r

δk+r − δk−1
δ−1 δ

ε

δk+ε
dε

+

∫︂ r

0
1−

δk−1
δ−1 δ

ε

δk+r
dε

=

[︃
δk−1+ε

log(δ)δk+r
− ε

δk+r

]︃1
logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

+

[︃
− δk+r

log(δ)δk+ε
− 1− δ−k

δ − 1
ε

]︃logδ(︂√︃(︁ δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

r

+

[︃
ε− (δk − 1)δε

log(δ)(δ − 1)δk+r

]︃r
0

=
1

log(δ)δr
− 1

δk+r
− 1

2 log(δ)δk+r
+

1

log(δ)
+

1− δ−k

δ − 1
r

− 2δk−1+r

log(δ)
(︂√︂(︁

δk−1
δ−1 δ

r − 1
)︁2

+ 4δ2k+2r−1 − δk−1
δ−1 δ

r + 1
)︂ −

(︃
1− δ−k

δ − 1
− 1

δk+r

)︃
(︄
logδ

(︄√︄(︃
δk − 1

δ − 1
δr − 1

)︃2

+ 4δ2k+2r−1 − δk − 1

δ − 1
δr + 1

)︄
− logδ(2)− k + 1

)︄

−

√︂(︁
δk−1
δ−1 δ

r − 1
)︁2

+ 4δ2k+2r−1

2 log(δ)δk+r
+ r −

(︃
1

2
− 1

δr

)︃
1− δ−k

log(δ)(δ − 1)

=: f4(k, r).

We have µ(k + 1) ≤ 0 and µ(k) > 1, which, by (4.18), implies r ≤ bµ(k, k + 1, 0) and
r ≥ bµ(k, k, 1). Furthermore, 0 ≥ µ(k+1) = logδ(δ

k+r +1)+ logδ(δ− 1)− logδ(δ
k+1 − 1)

is equivalent to

δk+r + 1 ≤ δk+1 − 1

δ − 1
=

k∑︂
i=0

δi.

Since δk+r ≥
∑︁3

i=0 δ
i, we have∑︁k

i=0 δ
i ≥ 1 +

∑︁3
i=0 δ

i which implies k ≥ 4. By analyzing
f4(k, r) for r ∈ [bµ(k, k, 1), bµ(k, k + 1, 0)], one can see that it is minimized for small k,
i.e., for k = 4. Analyzing f4(4, r) yields

I(k, r) = f4(k, r) ≥ f4(4, r) > 0.566 > g(δ).
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Case 5: µ(k) ≤ 1. Then

I(k, r)

=

∫︂ 1

logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k−1)
1−

δk−1−1
δ−1 δε

δk+r
dε

+

∫︂ logδ(δ
k+r+1)+logδ(δ−1)−logδ(δ

k−1)

logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

δk−1+ε − 1

δk+r
dε

+

∫︂ logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

r

δk+r − δk−1
δ−1 δ

ε

δk+ε
dε

+

∫︂ r

0
1−

δk−1
δ−1 δ

ε

δk+r
dε

=

[︃
ε− (δk−1 − 1)δε

log(δ)(δ − 1)δk+r

]︃1
logδ(δ

k+r+1)+logδ(δ−1)−logδ(δ
k−1)

+

[︃
δk−1+ε

log(δ)δk+r
− ε

δk+r

]︃logδ(δk+r+1)+logδ(δ−1)−logδ(δ
k−1)

logδ

(︂√︃(︁
δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

+

[︃
− δk+r

log(δ)δk+ε
− 1− δ−k

δ − 1
ε

]︃logδ(︂√︃(︁ δk−1
δ−1

δr−1
)︁2

+4δ2k+2r−1− δk−1
δ−1

δr+1

)︂
−logδ(2)−k+1

r

+

[︃
ε− (δk − 1)δε

log(δ)(δ − 1)δk+r

]︃r
0

= 1 + r +
2

log(δ)
−
(︃
1 +

1

δk+r

)︃(︁
logδ(δ

k+r + 1) + logδ(δ − 1)− logδ(δ
k − 1)

)︁
+
logδ

(︂√︂(︁
δk−1
δ−1 δ

r − 1
)︁2

+ 4δ2k+2r−1 − δk−1
δ−1 δ

r + 1
)︂
− logδ(2)− k + 1

δk+r

− 2δk+r(︂√︂(︁
δk−1
δ−1 δ

r − 1
)︁2

+ 4δ2k+2r−1 − δk−1
δ−1 δ

r + 1
)︂
log(δ)δ

+
3

2 log(δ)δk+r

−1− δ−k

δ − 1

(︄
logδ

(︄√︄(︃
δk − 1

δ − 1
δr − 1

)︃2

+ 4δ2k+2r−1 − δk − 1

δ − 1
δr + 1

)︄

125



− logδ(2) +
1

2 log(δ)
− k + 1− r

)︄
−

√︂(︁
δk−1
δ−1 δ

r − 1
)︁2

+ 4δ2k+2r−1

2 log(δ)δk+r

=: f5(k, r).

We have µ(k) ≤ 1, which, by (4.18) implies r ≤ bµ(k, k, 1). Because (4.20) does not hold
and (4.20) followed from the fact that µ(k + 1) > 0, we can conclude that µ(k + 1) ≤ 0.
Thus, by the same argumentation as in Case 4, we have k ≥ 4. By analyzing f5(k, r) for
r ∈ [0, bµ(k, k, 1)], one can see that it is minimized for small k, i.e., for k = 4. Analyzing
f5(4, r) yields that it is minimized for large r, i.e., for r = bµ(4, 4, 1). By combining the
above, we obtain

I(k, r) = f5(k, r) ≥ f5(4, bµ(4, 4, 1)) > 0.566 > g(δ).

With these lemmas, we are ready to prove an upper bound of 1/g(δ) on the randomized
competitive ratio of RandScaling.
Theorem 4.21. The randomized competitive ratio of RandScaling for IncMaxSep is at
most 1/g(δ) < 1.772.

Proof. LetX denote the incremental solution obtained by RandScaling, and let (c1, c2, . . . )
be its representation. Let C ∈ N. First, assume that C <

∑︁3
i=0 δ

i. Then

C <
3∑︂

i=0

δi <
3∑︂

i=0

δi+ε = t4.

For better readability, let I := {i ∈ [4] | P[C ∈ (ti−1, ti]] > 0} denote the set of indices
such that the value C can fall into the interval (ti−1, ti]. Let

S4 := {(⌊δx⌋, ⌊δ1+x⌋, ⌊δ2+x⌋, ⌊δ3+x⌋) | x ∈ (0, 1)}

denote the finite set of all possible realizations of the sequence (c1, c2, c3, c4). We denote
σ ∈ S4 as σ = (σ1, σ2, σ3, σ4). By Lemma 4.19 (i), for i ∈ I, we have

E
[︁
f(X(C)) | C ∈ (ti−1, ti]

]︁
≥ E

[︃
max

{︃
ci−1

C
,
C − ti−1

max{C, ci}

}︃ ⃓⃓⃓⃓
C ∈ (ti−1, ti]

]︃
· vC

=
∑︂
σ∈S4

max

{︃
σi−1

C
,
C − σ1 − · · · − σi−1

max{C, σi}

}︃
·P
[︁
(c1, c2, c3, c4) = σ

⃓⃓
C ∈ (ti−1, ti]

]︁
· vC (4.21)
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This yields (with σ0 = 0)
E
[︁
f(X(C))

]︁
vC

=
1

vC

∑︂
i∈I

E
[︁
f(X(C)) | C ∈ (ti−1, ti]

]︁
· P
[︁
C ∈ (ti−1, ti]

]︁
(4.21)
≥

∑︂
i∈I

∑︂
σ∈S4

max

{︃
σi−1

C
,
C − σ1 − · · · − σi−1

max{C, σi}

}︃
·P
[︁(︁
(c1, c2, c3, c4) = σ

)︁
∩
(︁
C ∈ (ti−1, ti]

)︁]︁
=

∑︂
i∈I

∑︂
σ∈S4

max

{︃
σi−1

C
,
C − σ1 − · · · − σi−1

max{C, σi}

}︃
·P
[︁
(c1, c2, c3, c4) = σ

]︁
· 1
[︁
C ∈ (σi−1, σi]

]︁
=

∑︂
σ∈S4

max

{︃
σi(C,σ)−1

C
,
C − σ1 − · · · − σi(C,σ)−1

max{C, σi}

}︃
· P
[︁
(c1, c2, c3, c4) = σ

]︁
,

where we write i(C, σ) for the unique value i ∈ [4] with ∑︁i−1
j=1 σj < C ≤

∑︁i
j=1. For

σ = (σ1, σ2, σ3, σ4) ∈ S4, we have

P
[︁
(c1, c2, c3, c4) = σ

]︁
= P

[︂ ⋂︂
i∈[4]

(︁
δi−1+ε ∈ [σi, σi + 1)

)︁]︂
= P

[︂ ⋂︂
i∈[4]

(︁
ε ∈ [logδ(σi)− i+ 1, logδ(σi + 1)− i+ 1)

)︁]︂
= P

[︂
ε ∈

[︂
max
i∈[4]

(logδ(σi)− i+ 1),min
i∈[4]

(logδ(σi + 1)− i+ 1)
)︂]︂
.

This gives us an explicit formula to calculate an upper bound for the randomized competi-
tive ratio. A visualization of the inverse of these upper bounds can be found in Figure 4.5,
while the calculated values can be found in the appendix in Figure A.1. We can see that

E
[︁
f(X(C))] > g(δ) · vC .

Now, suppose C ≥
∑︁3

i=0 δ
i and let k ∈ N and r ∈ (0, 1] be uniquely defined such that

C = δk+r (4.22)

We have
c̃k = δk−1+ε

ε≤1
≤ δk

(4.22)
< C

(4.22)
≤ δk+1

ε≥0
≤ δk+1+ε = c̃k+2
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C

0.58
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g(δ)

Figure 4.5.: Lower bound on E[f(X(C))]/vC , the inverse of the competitive ratio of
RandScaling, for cardinalities C ∈

[︁⌊︁∑︁3
i=0 δ

i
⌋︁]︁. The dashed horizontal line

in the right graphic represents the value g(δ) ≈ 0.5644.

and, for all i ∈ N,
t̃i − 1

(4.15)
< c̃i+1 < t̃i+1 − 1

where the second inequality follows from the fact that
(t̃i+1 − 1)− c̃i+1 = t̃i − 1 ≥ c̃0 − 1 = δε − 1 > 0.

This means that there are 4 intervals, in which C can fall:
I1 = (c̃k, t̃k − 1], I2 = (t̃k − 1, c̃k+1], I3 = (c̃k+1, t̃k+1 − 1], I4 = (t̃k+1 − 1, c̃k+2].

We will calculate for which values of ε the value C falls into which interval. For i ∈ N,
we have

C ≤ c̃i ⇔ δk+r ≤ δi−1+ε

⇔ ε ≥ k − i+ 1 + r (4.23)
and

C ≤ t̃i − 1 ⇔ δk+r ≤ δε
δi − 1

δ − 1
− 1

⇔ ε ≥ logδ(δ
k+r + 1) + logδ(δ − 1)− logδ(δ

i − 1) =: µ(i). (4.24)
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The expected value of X(C) is
E[f(X(C))]

=

5∑︂
i=1

E[f(X(C)) | C ∈ Ii] · P[C ∈ Ii]

Lem. 4.19 (ii),(iii)
≥

(︄
E
[︃
1− t̃k−1

C

⃓⃓⃓⃓
C ∈ (c̃k, t̃k − 1]

]︃
· P[C ∈ I1]

+E
[︃
max

{︃
c̃k − 1

C
,
C − t̃k
c̃k+1

}︃ ⃓⃓⃓⃓
C ∈ (t̃k − 1, c̃k+1]

]︃
· P[C ∈ I2]

+E
[︃
1− t̃k

C

⃓⃓⃓⃓
C ∈ (c̃k+1, t̃k+1 − 1]

]︃
· P[C ∈ I3]

+E
[︃
max

{︃
c̃k+1 − 1

C
,
C − t̃k+1

c̃k+2

}︃ ⃓⃓⃓⃓
C ∈ (t̃k+1 − 1, c̃k+2]

]︃
· P[C ∈ I4]

)︄
· vC

(4.23),(4.24)
=

(︄∫︂ 1

min{1,µ(k)}
1− t̃k−1

C
dε

+

∫︂ min{1,µ(k)}

r
max

{︃
c̃k − 1

C
,
C − t̃k
c̃k+1

}︃
dε

+

∫︂ r

max{0,µ(k+1)}
1− t̃k

C
dε

+

∫︂ max{0,µ(k+1)}

0
max

{︃
c̃k+1 − 1

C
,
C − t̃k+1

c̃k+2

}︃
dε

)︄
· vC

Furthermore, for i ∈ N we have
c̃i − 1

C
≥ C − t̃i

c̃i+1

⇔ δi+ε(δi−1+ε − 1) ≥ δk+r
(︂
δk+r − δε

δi − 1

δ − 1

)︂
⇔ δ2i−1(δε)2 +

(︂
δk+r δ

i − 1

δ − 1
− δi

)︂
δε − δ2k+2r ≥ 0

δε>0⇔ δε ≥ − 1

2δi−1

(︂
δk+r 1− δ−i

δ − 1
− 1
)︂

+

√︄
1

4δ2i−2

(︃
δk+r

1− δ−i

δ − 1
− 1

)︃2

+ δ2k−2i+2r+1
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⇔ ε ≥ logδ

(︄√︄(︃
δk+r

1− δ−i

δ − 1
− 1

)︃2

+ 4δ2k+2r−1 − δk+r 1− δ−i

δ − 1
+ 1

)︄
− logδ(2)− i+ 1 =: ν(i),

i.e., instead of one integral over a maximum, we can evaluate two separate integrals,
which yields

E[f(X(C))] ≥

(︄∫︂ 1

min{1,µ(k)}
1− t̃k−1

C
dε +

∫︂ min{1,µ(k)}

min{1,ν(k)}

c̃k − 1

C
dε

+

∫︂ min{1,ν(k)}

r

C − t̃k
c̃k+1

dε +

∫︂ r

max{0,µ(k+1)}
1− t̃k

C
dε

+

∫︂ max{0,µ(k+1)}

max{0,ν(k+1)}

c̃k+1 − 1

C
dε+

∫︂ max{0,ν(k+1)}

0

C − t̃k+1

c̃k+2
dε

)︄
· vC

Lem. 4.20
≥ g(δ) · vC .

4.2.2. Randomized Lower Bound

Now, we want to complement the upper bound on the randomized competitive ratio of
IncMaxSep of 1.772 in Theorem 4.21 with a lower bound. To do this, we employ Yao’s
principle [71]. In [19], the authors used Yao’s principle to show a lower bound of 1.447
on the randomized competitive ratio. Yet, the way Yao’s principle was used by the authors
is flawed and thus the lower bound might not hold. We fix the error made in the analysis
and present a new lower bound of 1.357.
The idea behind Yao’s principle is to exchange the randomness in the algorithm for

randomness in the (unknown) cardinality constraint. This can be done as follows. Fix
some problem instance in IncMaxSep. Let A denote the set of deterministic algorithms
for this instance. Let Alg∗ be some randomized algorithm2, and let C∗ be a random
cardinality constraint that is drawn from the probability distribution p : N → [0, 1]. Then,

2In order to show a lower bound on the randomized competitive ratio, it makes sense to consider the
randomized algorithm to be (near-)optimal.
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we can derive a lower bound on the randomized competitive ratio of Alg∗ as follows:

sup
C∈N

Opt(C)
E[Alg∗(C)] = sup

C∈N

1

E
[︂
Alg∗(C)
Opt(C)

]︂ =
1

infC∈N E
[︂
Alg∗(C)
Opt(C)

]︂
≥ 1∑︁

C∈N p(C)E
[︂
Alg∗(C)
Opt(C)

]︂ =
1

E
[︂∑︁

C∈N p(C)
Alg∗(C)
Opt(C)

]︂
≥ 1

supAlg∈A
∑︁

C∈N p(C)
Alg(C)
Opt(C)

= inf
Alg∈A

1∑︁
C∈N p(C)

Alg(C)
Opt(C)

= inf
Alg∈A

1

E
[︂
Alg(C∗)
Opt(C∗)

]︂ .
Thus, we obtain a lower bound on the competitive ratio of Alg∗ by analyzing the expected
value of the ratio Alg(C∗)

Opt(C∗) for all deterministic algorithms.

Theorem 4.22. The randomized competitive ratio of IncMaxSep is at least 1.357.

Proof. We fix N ∈ N, and let U1, . . . , UN be disjoint sets with |Uc| = c for all c ∈ [N ].
We define the groundset U :=

⋃︁
c∈[N ] Uc, and let d1, . . . , dN denote the densities. The

densities will be parameters to determine the instance; we denote the resulting instance
by I(d1, . . . , dN ). Note that, given a probability distribution p1, . . . , pN over the set of
possible cardinality constraints [N ] in addition, Yao’s principle yields

inf
Alg∈A

1∑︁N
i=1 pi ·

Alg(I(d1,...,dN ),i)
i·di

as a lower bound on the randomized competitive ratio of the problem. Here, Alg(I, i)
denotes the value of the first i elements in the solution of Alg on instance I. By Lemma 3.7,
we may assume that

A :=

{︄
Algc1,...,cℓ

⃓⃓⃓⃓
1 ≤ c1 < · · · < cℓ ≤ N,

ℓ∑︂
i=1

ci ≤ N

}︄
,

where Algc1,...,cℓ is the algorithm that first includes all elements of Uc1 into the incremental
solution, then all elements of Uc2 , and so on. Once it has added the cℓ elements of Ucℓ , it
adds some arbitrary elements from then onwards.
We can formulate the problem of maximizing the lower bound on the randomized

competitive ratio as an optimization problem:
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max ρ

s.t. ρ ≤ 1∑︁N
i=1 pi ·

Alg(I(d1,...,dN ),i)
i·di

∀Alg ∈ A,

N∑︂
i=1

pi = 1,

d1, . . . , dN ≥ 0,

p1, . . . , pN ≥ 0.

Every feasible solution of this optimization problem yields a lower bound on the randomized
competitive ratio of IncMaxSep.
Note that the expression Algc1,...,cℓ(I(d1, . . . , dN ), i) can also be written as a function

of c1, . . . , cℓ, d1, . . . , dN , and i by taking the maximum over all sets from which Algc1,...,cℓ
selects elements, i.e.,

Algc1,...,cℓ(I(d1, . . . , dN ), i) = max
1≤j≤ℓ

{︄
min

{︄
i−

∑︂
1≤j′<j

cj′ , cj

}︄
· dcj

}︄
.

A feasible solution to the above optimization problem with N = 16 is given by

(ρ; d1, . . . , d16; p1, . . . , p16)

=(1.357;

1, 0.725, 0.593, 0.524, 0.48, 0.4284, 0.42431, 0.3713, 0.3666, 0.3666,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
;

0.1382, 0.0646, 0.0937, 0.1602, 0.0596, 0, 0.1491, 0, 0, 0.1853, 0, 0, 0, 0, 0.0253, 0.124),

with objective value 1.357.
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5. Incremental Maximization beyond
Accountability

One major problem why the competitive ratio of IncMax is unbounded is because, for
two sets A ⊊ B ⊆ U , the value of A can be very small compared to the value of the
set B (cf. Figure 1.1). In the previous chapters, we avoided this by restricting ourselves to
the problem class IncMaxacc of instances with an accountable objective. Unfortunately,
this class does not contain all problem instances that admit a competitive solution. This
is already the case for the relatively simple instance with U = {a, b, c} and objective
f : 2U → R≥0, such that, for all S ⊆ U ,

f(S) =

⎧⎪⎨⎪⎩
0, if S = ∅,
2, if S = U,

1, else.

This objective is not accountable because, for all e ∈ U , we have

f(S \ {e}) = 1 <
2

3
· 2 =

(︃
1− 1

|U |

)︃
f(U).

Yet, one can immediately see that any ordering of the elements in U is a 1-competitive
incremental solution.
We recall that the problem with instances with unbounded competitive ratio was that the

value of larger sets was not bounded by the value of its subsets. Subadditivity does exactly
this. For two sets A,B ⊆ U , it bounds the value of their union f(A ∪B) ≤ f(A) + f(B).
For example, the objective we considered above is subadditive. As we will see later in
this chapter, the subclass of IncMax with subadditive objectives indeed admits a bounded
competitive ratio. Yet, there are also problem instances where the objective is accountable,
but not subadditive. As an example consider U = {a, b} and the function f : 2U → R≥0
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such that, for all S ⊆ U ,

f(S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if S = ∅,
2, if S = {a},
1, if S = {b},
4, if S = U.

This function is not subadditive because f({a}) + f({b}) = 3 < 4 = f({a, b}), but
accountable because the ordering (a, b) is one where each prefix of length i ∈ {1, 2} has
value at least i

2f(U).
This gives rise to the question whether there exists a natural problem class that en-

compasses both, the instances with accountable objectives, as well as the instances with
subadditive objectives. In order to answer this question, in this chapter, we introduce and
investigate a relaxed version of accountability that also relaxes subadditivity.

5.1. β-Accountability

Lemma 3.1 shows that accountability of a function f : 2U → R≥0 implies that, for every
finite set S ⊆ U with k := |S|, there exists an ordering (e1, . . . , ek) of the elements in S
such that, for all i ∈ [k],

f({e1, . . . , ei}) ≥
i

k
f(S).

In order to define a relaxed version of accountability, we relax this property.

Definition 5.1. For β ∈ (0, 1], a function f : 2U → R≥0 is called β-accountable if, for every
S ⊆ U with k := |U |, there exists an ordering (e1, . . . , ek) of the elements in S such that, for
all i ∈ [k],

f({e1, . . . , ei}) ≥ β
i

k
f(S).

Similar to accountability, β-accountability implies that the optimum value for large
cardinalities cannot grow too fast. As we did with accountability, we denote the subclass
of IncMax with β-accountable objective functions by IncMaxβ-acc.

Lemma 5.2. Let f be monotone and β-accountable for some β ∈ (0, 1]. Then, for C,C ′ ∈ N
with C < C ′, we have

Opt(C) ≤ Opt(C ′) ≤ 1

β

C ′

C
Opt(C).
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Proof. The fact that Opt(C) ≤ Opt(C ′) follows immediately from monotonicity.
By β-accountability, there is an ordering (e1, . . . , eC′) of O(C ′), the optimum solution

of cardinality C ′, such that, for all i ∈ [C ′], we have f({e1, . . . , ek}) ≥ β i
C′Opt(C ′). Thus,

Opt(C) ≥ f({e1, . . . , eC}) ≥ β C
C′Opt(C ′).

The best known algorithm to solve the IncMax problem with an accountable objective is
the CardinalityScaling algorithm that was introduced in [5], and that we investigated
in Section 4.1.1. Since β-accountability is closely related to accountability, we introduce a
modified version of CardinalityScaling to find an incremental solution for the IncMax
problem with a β-accountable objective.
The algorithm CardinalityScalingβ uses the scaling parameter

δ =
1

2β
+ 1 +

√︃
1

4β2
+ 1

and chooses
c1 ∈ argmaxc∈N

Opt(c)
c

in an arbitrary, but fixed way. Then, for i ∈ N, it chooses

ci+1 ∈ argmaxc∈N≥δci

Opt(c)
c

also in an arbitrary, but fixed way. CardinalityScalingβ operates in phases, and in
phase i ∈ N, it adds O(ci), the optimum solution of cardinality ci, in the order given by
Definition 5.1.
The following observation follows immediately from the definition of ci and Lemma 1.6.

Observation 5.3. For all i ∈ N, we have
(i) ci+1 ≥ δci,
(ii)

∑︁i
j=1 cj ≤

δ
δ−1ci,

(iii) Opt(ci)
ci

≥ Opt(c)
c for all c ∈ N≥δci .

We are now ready to prove an upper bound on the competitive ratio ofCardinalityScalingβ .
Theorem 5.4. The algorithm CardinalityScalingβ is δ-competitive for IncMaxβ-acc.

Proof. Let X denote the incremental solution of CardinalityScalingβ. Let C ∈ N and
i ∈ N such that C ∈

(︁∑︁i−1
j=1 cj ,

∑︁i
j=1 cj

]︁. If i = 1, we let x = 0, otherwise, let

x =
1

β
· Opt(ci−1)

Opt(ci)
ci +

i−1∑︂
j=1

cj , (5.1)
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i.e., we have

Opt(ci−1) = β
x−

∑︁i−1
j=1 cj

ci
Opt(ci).

The value x is chosen such that, if C ≥ x, then the value of the partially added optimum
solution O(ci) in the solution X(C) is at least as large as the value of the completely
contained optimum solution O(ci−1).

Case 1: C < ⌈δci−1⌉.
As X(C) contains the optimum solution O(ci−1), by monotonicity, we have

Opt(C)
f(X(C))

≤ Opt(C)
Opt(ci−1)

≤ Opt(⌈δci−1⌉ − 1)

Opt(ci−1)

Obs. 5.3 (iii)
≤ ⌈δci−1⌉ − 1

ci−1
≤ δ.

Case 2: ⌈δci−1⌉ ≤ C < x.
Note that C < x implies that x > 0, i.e., (5.1) holds. The solution X(C) contains the
optimum solution O(ci−1). Thus,

Opt(C)
Alg(C) ≤ Opt(C)

Opt(ci−1)

Obs. 5.3 (iii)
≤ Opt(ci)

Opt(ci−1)
· C
ci

≤ Opt(ci)
Opt(ci−1)

· x
ci

(5.1)
=

1

β
+
Opt(ci)
Opt(ci−1)

· 1
ci

i−1∑︂
j=1

cj

Obs. 5.3 (iii)
≤ 1

β
+

ci
ci−1

· 1
ci

i−1∑︂
j=1

cj
Obs. 5.3 (ii)

≤ 1

β
+

δ

δ − 1
= δ,

where the last equality follows from the definition of δ.
Case 3: C ≥ ⌈δci−1⌉, C ≥ x.

If i = 1, by definition of c1, we have

Opt(C)
Alg(C) ≤ Opt(C)

β C
c1
Opt(c1)

≤ 1

β
< δ.

Now, assume that i ≥ 2, i.e., (5.1) holds. The solution X(C) contains C −
∑︁i−1

j=1 cj
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elements from the optimum solution O(ci). Thus,

Opt(C)
Alg(C) ≤ Opt(C)

β
C−

∑︁i−1
j=1 cj
ci

Opt(ci)

Obs. 5.3 (iii)
≤ 1

β
· C

C −
∑︁i−1

j=1 cj

C≥x
≤ 1

β
· x

x−
∑︁i−1

j=1 cj

(5.1)
=

1

β

(︄
1 +

∑︁i−1
j=1 cj

1
β · Opt(ci−1)

Opt(ci) ci

)︄

=
1

β
+
Opt(ci)
Opt(ci−1)

· 1
ci

i−1∑︂
j=1

cj
Obs. 5.3 (iii)

≤ 1

β
+

ci
ci−1

· 1
ci

i−1∑︂
j=1

cj

Obs. 5.3 (ii)
≤ 1

β
+

δ

δ − 1
= δ.

We complement this upper bound with a lower bound, that, in particular, shows that
for β → 0, we cannot be better than 1

β -competitive.

Theorem 5.5. For all β ∈ (0, 1], the competitive ratio of IncMaxβ-acc is at least

1

β
·
(︃
1 +

1⌈︁
1
β

⌉︁
+ 1

)︃
.

Proof. Let k := ⌈ 1
β ⌉+ 2 and d := k−1

k β. We will define an instance where no incremental
solution can have a competitive ratio better than 1

d . Let U = {e1, . . . , ek+1} be the
groundset and f : 2U → R≥0 be the objective such that, for S ⊆ U ,

f(S) =

{︄
kd
β = k − 1, if {e2, . . . , ek+1} ⊆ S,

max
{︁
|{e1} ∩ S|, |{e2, . . . , ek+1} ∩ S| · d

}︁
, else.

This objective is monotone because of the maximum in the definition and because kd
β ≥ kd.

We show that f is β-accountable. For this, let S ⊆ U . We have to show that there is an
ordering (︁ei1 , . . . , ei|S|

)︁ of S such that f({ei1 , . . . , eij}) ≥ β j
|S|f(S) for all j ∈ [|S|]. If we

have e1 ∈ S and f(S) = 1, we can simply choose e1 to be the first element in the ordering
and obtain

f({ei1 , . . . , eij}) = 1 = f(S) ≥ β
j

|S|
f(S)

for all j ∈ [|S|]. Otherwise, if e1 /∈ S or f(S) > 1, then, with S′ := S ∩ {e2, . . . , ek+1},
either f(S) = kd

β = |S′|d
β , or f(S) = |S′|d ≤ |S′|d

β . In our ordering, we can put the elements
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from S′ in the beginning and, for j ∈ [|S′|], obtain

f({ei1 , . . . , eij}) ≥ j · d = β
j

|S′|
|S′|d
β

≥ β
j

|S′|
f(S) ≥ β

j

|S|
f(S).

If S′ = S, we are done. Otherwise, |S| = |S′| + 1 holds and, for j = |S|, we have
f({ei1 , . . . , eij}) = f(S) ≥ β j

|S|f(S).
LetX be an incremental solution for this instance. We consider two cases. First, assume

that e1 is not the last element in the ordering X. We have

(k − 1)d =

(︁⌈︁
1
β

⌉︁
+ 1
)︁2⌈︁

1
β

⌉︁
+ 2

β >

⌈︁
1
β

⌉︁2
+ 2
⌈︁
1
β

⌉︁⌈︁
1
β

⌉︁
+ 2

β =

⌈︃
1

β

⌉︃
β ≥ 1.

The solution X(k) contains e1 and k − 1 elements from {e2, . . . , ek+1}. Thus,

f(X1(k)) = max{1, (k − 1)d} = (k − 1)d.

The optimum solution of cardinality k is the set {e2, . . . , ek+1} with a value of k− 1. Thus,
in this case, the competitive ratio of X is at least 1

d .
Now, consider the other case, i.e., e1 is the last element in the ordering X. Then the

solution X(1) contains exactly one element from the set {e2, . . . , ek+1} and has therefore
value f(X(1)) = d. The optimum solution of cardinality 1 is {e1} with a value of 1. Thus,
also in this case, the competitive ratio of X is at least 1

d .

In Figure 5.1, we can see a plot of the upper bound from Theorem 5.4 and the lower
bound from Theorem 5.5 in black, as well as a plot of their difference in red. On the one
hand, one can see that both bounds diverge for small β. This seems plausible because
for β → 0, we have (almost) no guarantee that the value of large sets is bounded by the
value of smaller sets. On the other hand, one can see in Figure 5.1 that the difference
between upper and lower bound is almost 0 for β → 0. Thus, in the limit β → 0,
CardinalityScalingβ performs optimally.

5.2. Comparison to Other Properties

We have seen that the class of β-accountable objectives yields a bounded competitive ratio
for the IncMax problem. We turn to comparing the new property of β-accountability to
other objective properties to see whether the upper bound results from Theorem 5.4 yield
upper bounds for objectives with these other properties.
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Figure 5.1.: Plot of the upper bound from Theorem 5.4, the lower bound from Theorem 5.5,
and their difference (red).

We will show that every function that is subadditive, accountable, or γ-α-augmentable
is also β-accountable for β = 1

2 , β = 1, or β = γ
α respectively. Since the classes with these

properties contain functions that are submodular, weighted rank functions of independence
systems, fractionally subadditive, α-augmentable, or have a bounded submodularity ratio
(cf. Figure 1.3), we also obtain upper bounds on the competitive ratio for IncMax problems
with these objectives.

accountability. We start by comparing β-accountability to accountability. Since β-
accountability is simply a relaxation of accountability with relaxation parameter β, the sets
of accountable and 1-accountable functions coincide. Theorem 5.4 gives an upper bound of
1
2(3+

√
5) on the competitive ratio of the IncMaxacc problem, which recovers the best known

upper bound of φ+ 1. This is not surprising because, for β = 1, CardinalityScalingβ
behaves exactly like CardinalityScaling.
Proposition 5.6. Every fractionally subadditive function is accountable.

Proof. Let f : 2U → R≥0 be fractionally subadditive. Then, the function is also an XOS-
function as shown by [27]. Thus, there are k ∈ N and values ve,i ∈ R for all e ∈ U and
i ∈ [k] such that, for all S ⊆ U ,

f(S) = max
i∈[k]

∑︂
e∈S

ve,i.
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To show that f is accountable, fix a finite set S ⊆ U . Let i∗ ∈ [k] such that f(S) =∑︁
e∈S ve,i∗ . Let e∗ = argmine∈S ve,i∗ , i.e., we have ve∗,i∗ ≤ 1

|S|f(S). Then

f(S \ {e∗}) = max
i∈[k]

∑︂
e∈S\{e∗}

ve,i ≥
∑︂

e∈S\{e∗}

ve,i∗ = f(S)− ve∗,i∗ ≥
(︃
1− 1

|S|

)︃
f(S).

Combined with Theorem 5.4, we obtain an upper bound on the competitive ratio of
IncMax with fractionally subadditive.

Corollary 5.7. CardinalityScaling1 has a competitive ratio of φ + 1 for IncMax with a
fractionally subadditive objective.

subadditivity. Now, we compare β-accountability to subadditivity.

Proposition 5.8. Every monotone, subadditive function is 1
2 -accountable.

Proof. Let f : 2U → R≥0 be monotone and subadditive, S ⊆ U be finite, and k := |S|. We
define ℓ := ⌈log2 k⌉, i.e., we have 2ℓ−1 < k ≤ 2ℓ. Furthermore, we define Sℓ := S and
iteratively, for j ∈ {ℓ − 1, . . . , 0}, Sj ⊆ Sj+1 with |Sj | =

⌈︁
k

2ℓ−j

⌉︁ and f(Sj) ≥ 1
2f(Sj+1).

This is possible as we will see now. We have 2⌈︁ k
2ℓ−j

⌉︁
=
⌈︁
2
⌈︁

k
2ℓ−j

⌉︁⌉︁
≥
⌈︁

k
2ℓ−j−1

⌉︁, i.e., we can
choose A,B ⊆ Sj with |A| = |B| =

⌈︁
k

2ℓ−j

⌉︁ and A ∪B = Sj+1. By subadditivity, we have
f(A) ≥ 1

2f(Sj+1) or f(B) ≥ 1
2f(Sj+1). Thus, we can choose Sj ∈ {A,B} with the desired

properties.
Consider any order (x1, . . . , xk) of S with {e1, . . . , e|Sj |} = Sj for all j ∈ {0, . . . , ℓ}.

Let i ∈ [k] and j ∈ {0, . . . , ℓ} such that ⌈︁ k
2ℓ−j

⌉︁
≤ i <

⌈︁
k

2ℓ−j−1

⌉︁. This implies that
Sj ⊆ {e1, . . . , ei} and, because i ∈ N, that i < k

2ℓ−j−1 . Together with monotonicity of f ,
we obtain

f({e1, . . . , ei}) ≥ f(Sj) ≥
(︃
1

2

)︃ℓ−j

f(Sℓ) =
1

2ℓ−j
f(S) ≥ 1

2

i

k
f(S),

which yields 1
2 -accountability.

We combine the results from Theorem 5.4 and Proposition 5.8 to obtain an upper bound
on the competitive ratio of IncMax with a subadditive objective, which, to our knowledge,
is the first for this problem setting.

Theorem 5.9. CardinalityScaling1/2 is (2 +
√
2 < 3.415)-competitive for IncMax with a

subadditive objective.
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We complement this upper bound on the competitive ratio of the subclass of IncMax
with subadditive objective functions with a lower bound. In order to do this, we show that
the objective function of every instance in IncMaxSep (cf. Section 3.1) is subadditive.
Proposition 5.10. The objective function of every instance in IncMaxSep is subadditive.

Proof. Let an instance from IncMaxSep with objective function f : 2U → R≥0 be given.
Furthermore, let U = U1 ∪ U2 ∪ . . . be a partition of U , and let d1, d2, · · · > 0 be the
densities such that, for all S ⊆ U ,

f(S) = max
i∈N

|S ∩ Ui| · di.

In order to show subadditivity, we fix two sets A,B ⊆ U . Let i∗ ∈ N be the index such
that f(A ∪B) = |(A ∪B) ∩ Ui∗ | · di∗ . Then

f(A ∪B) = |(A ∪B) ∩ Ui∗ | · di∗
= |A ∩ Ui∗ | · di∗ + |(B \A) ∩ Ui∗ | · di∗
≤ |A ∩ Ui∗ | · di∗ + |B ∩ Ui∗ | · di∗
≤

(︁
max
i∈N

|A ∩ Ui| · di
)︁
+
(︁
max
i∈N

|B ∩ Ui| · di
)︁

= f(A) + f(B).

This result yields that the (non-strict) competitive ratio of IncMax with subadditive
objectives is at least that of IncMaxSep. Therefore, the lower bound from Theorem 3.27
also holds here.
Corollary 5.11. The (non-strict) competitive ratio of IncMax with a subadditive objective
function is at least 2.246.

γ-α-augmentability. We turn to comparing β-accountability to γ-α-augmentability that
we introduced to bound the competitive ratio of the Greedy algorithm (cf. Definition 2.3).
Proposition 5.12. For all γ ∈ (0, 1] and α ≥ 1, every monotone, γ-α-augmentable function is
γ
α -accountable.

Proof. For γ ∈ (0, 1] and α ≥ 1, let f : 2U → R≥0 be monotone and γ-α-augmentable. Let
S ⊆ U be finite and k := |S|. By γ-α-augmentability, there exists an ordering (e1, . . . , ek)
of the elements in S such that, for all i ∈ {0, . . . , k − 1},

f({e1, . . . , ei+1})− f({e1, . . . , ei}) ≥
γf(S)− αf({e1, . . . , ei})

k − i
.
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For i ∈ {0, . . . , k}, let Si := {e1, . . . , ei}. Then, for i ∈ {0, . . . , k − 1}, this yields

f(Si+1)− f(Si) ≥ α
γ
αf(S)− f(Si)

k − i

α≥1
≥

γ
αf(S)− f(Si)

k − i
. (5.2)

To show γ
α -accountability of f , we prove by induction that, for i ∈ [k], we have

f(Si) ≥
γ

α

i

k
f(S). (5.3)

For i=1, (5.2) yields

f(S1) ≥
1

k

(︃
γ

α
f(S)− f(∅)

)︃
+ f(∅) = γ

α

1

k
f(S) +

(︃
1− 1

k

)︃
f(∅) ≥ γ

α

1

k
f(S),

where the last inequality follows from non-negativity of f .
Now, suppose that (5.3) holds for some i ∈ [k − 1]. Then

f(Si+1)
(5.2)
≥ f(Si) +

γ
αf(S)− f(Si)

k − i

=
γ

α

1

k − i
f(S) +

(︃
1− 1

k − i

)︃
f(Si)

(5.3)
≥ γ

α

1

k − i
f(S) +

(︃
k − i− 1

k − i

)︃
γ

α

i

k
f(S)

=
γ

α

ki+ k − i2 − i

(k − i)k
f(S)

=
γ

α

(k − i)(i+ 1)

(k − i)k
f(S)

=
γ

α

i+ 1

k
f(S),

which concludes the induction.
Note that we have to require that f is γ-α-augmentable, and not weakly γ-α-augmentable,

in order to have the estimate in (5.2) for all sets S0, . . . , Sk.
Proposition 5.13. For γ ∈ (0, 1], α ≥ 1, and ε > 0, there exists a monotone, γ-α-
augmentable function that is not

(︁ γ
α + ε

)︁
-accountable.

Proof. Let n ∈ N be large enough that n ≥ α and
n− 1

n
>

γ
α

γ
α + ε

. (5.4)
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Consider some set U with |U | = n and the function f : 2U → R≥0 with

f(S) =

⎧⎪⎨⎪⎩
0, if |S| = 0,
γ
α , if 1 ≤ |S| ≤ n− 1,

1, if |S| = n.

Obviously, this function is monotone. We show that it is γ-α-augmentable. Let A,B ⊆ U
with B \ A ̸= ∅. If A = ∅ and B = U , then, for all b ∈ B, we have f(A ∪ {b})− f(A) =
γ
α − 0 ≥ γ−0

n = γf(A∪B)−αf(A)
|B| . If A = ∅ and |B| ≤ n− 1, then, for all b ∈ B, we have

f(A ∪ {b})− f(A) =
γ

α
− 0 ≥

γ
α − 0

|B|
=
f(A ∪B)− f(A)

|B|
≥ γf(A ∪B)− αf(A)

|B|
.

Now suppose that A ̸= ∅. Because B \A ̸= ∅, we have 1 ≤ |A| ≤ n− 1, which yields

f(A) =
γ

α
. (5.5)

For all b ∈ B, we have

f(A ∪ {b})− f(A) ≥ 0 =
γ − α γ

α

|B|
(5.5)
≥ γf(A ∪B)− αf(A)

|B|
,

i.e., f is γ-α-augmentable.
Now we will show that f is not (︁ γα + ε

)︁-accountable. For the sake of contradiction
suppose that f is (︁ γα + ε

)︁-accountable. Then there exists an ordering (e1, . . . , en) of U
such that, for all i ∈ [n], we have

f({e1, . . . , ei}) ≥
(︃
γ

α
+ ε

)︃
i

n
f(U) =

(︃
γ

α
+ ε

)︃
i

n
.

Yet, we have
f({e1, . . . , en−1}) =

γ

α

(5.4)
<

(︃
γ

α
+ ε

)︃
n− 1

n
,

which gives the desired contradiction.

We combine the results from Proposition 5.12 and Theorem 5.4 to obtain an upper
bound on the competitive ratio of IncMaxwith a monotone and γ-α-augmentable objective.
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Theorem 5.14. For γ ∈ (0, 1] and α ≥ 1, CardinalityScalingγ/α has a competitive ratio of
at most

α

2γ
+ 1 +

√︄
α2

4γ2
+ 1

for IncMax with a γ-α-augmentable objective.

We compare this upper bound on the competitive ratio of IncMaxwith a γ-α-augmentable
objective to the upper bound

α

γ
· eα

eα − 1

from Theorem 2.17. Let the ratio between the two upper bounds be denoted by

r(γ, α) :=

α
2γ + 1 +

√︂
α2

4γ2 + 1

α
γ · eα

eα−1

=
eα − 1

eα
·

(︄
1

2
+
γ

α
+

√︃
1

4
+
γ2

α2

)︄
.

We have limγ→0 r(γ, α) =
eα−1
eα < 1, i.e., for small values of γ, CardinalityScalingγ/α

performs better than Greedy. Since γ ∈ (0, 1] and α ≥ 1, we have r(γ, α) = 1 if and only
if γ = α eα

e2α−1
. This value lies in the interval (︁0, e

e2−1

]︁
⊆ (0, 0.426), and for α → ∞, ap-

proaches 0. Thus, for large α ≥ 1, Greedy performs better than CardinalityScalingγ/α
for almost all values of γ ∈ (0, 1]. This is probably due to the fact that γ-α-augmentability
is a property that relaxes an inequality that is a core estimate in the analysis of the Greedy
algorithm for monotone and submodular functions.
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6. Incremental Maximization under a
Knapsack Constraint

A natural generalization of the IncMax problem is one where, instead of an unknown
cardinality constraint, we are given an unknown knapsack constraint. This problem lends
itself better to model real life problems such as, e.g., infrastructure projects because we
are able to model different construction times or costs in this model.
In the IncMaxKnap problem, we are given a countable ground set U of elements. Each

element e ∈ U has a weight w(e) that models the time or money that has to be spent to
realize the element. In the following, for a set S ⊆ U , we write w(S) :=∑︁e∈S w(e). As in
the IncMax problem, we are given a monotone objective f : 2U → R≥0 and the optimum
for a capacity C ∈ R≥0 is defined as

Opt(C) := sup
{︁
f(S)

⃓⃓
S ⊆ U,w(S) ≤ C

}︁
.

We denote a set S ⊆ U for which the optimum is attained by O(C)1, where we break ties
in an arbitrary but fixed manner in order to obtain a unique set O(C).
Again, we assume that we do not know the capacity constraint C. Thus, also for this

problem, an incremental solutionX is given by an orderingX = (e1, e2, . . . ) of the elements
of the ground set U . As before, for a capacity C, we denote by X(C) the elements of the
largest prefix of weight at most C, i.e.,

X(C) = {e1, e2, . . . , ek}

with k ∈ N such that∑︁k
i=1w(eπ(i)) ≤ C and either k = |U | or∑︁k+1

i=1 w(eπ(i)) > C. All
definitions regarding competitiveness are analogous to the IncMax problem. For example,
we say that X is ρ-competitive if, for all C ∈ R≥0, we have Opt(C) ≤ ρf(X(C)).
As an example, let us consider a modified version of the incremental maximum s-t-flow

problem that we already considered in Chapter 1. Now, every edge additionally has a
weight w(e) ∈ R≥0 and the combined weight of a solution may not exceed the (unknown)
1In the case that such a set does not exists, we use an arbitrarily close approximation as we did for the
IncMax problem.
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s t

µ(a) = w(a) = 1

µ(b) = w(b) = k

Figure 6.1.: Two examples of the incremental maximum s-t-flow problem where no ρ-
competitive incremental solution with ρ < k exists.

capacity constraint C. Consider the graph in Figure 6.1. Every competitive incremental
solution has to put edge a first in order to be competitive for C = 1, and every incremental
solution that puts edge a first is not better than k-competitive for C = k.
A closer inspection of the examples in Figure 1.1 (which is an instance of this problem

with weights w(a) = w(b) = w(c) = 1) and in Figure 6.1 reveals that there are (at least)
two effects that prevent the existence of competitive incremental solutions. The first is the
complementarity of elements. In the graph in Figure 1.1, edges b and c are complementary
in the sense that both edges together support an s-t-flow of k while a single one of these
edges alone cannot support any s-t-flow. For the graph in Figure 6.1, no two edges are
complementary since the total s-t-flow supported by a subset of edges is here simply
equal to the sum of the capacities of the edges. In this example, the non-existence of a
competitive incremental solution is caused by the fact that the edges are too heterogeneous.
More specifically, we have f({a}) = 1, but f({b}) = k, i.e., there are two singleton sets
whose values differ by a factor of k.
As we will show, these are essentially the only two effects that prevent the existence

of competitive incremental solutions. More specifically, we make two assumptions that
exclude the two effects shown in Figure 1.1 and Figure 6.1. First, to avoid complementar-
ities between elements, we assume that f is fractionally subadditive (cf. Definition 1.2).
Second, to avoid that there exist singleton sets that differ too much in their values, we
assume that there is a constantM ∈ R≥0,M ≥ 1 such that f({e}) ∈ [1,M ] for all e ∈ U .
We call such valuationsM -bounded.
Summarizing the discussion, this chapter considers the IncMaxKnap with the following

assumptions.

• f is monotone, i.e., f(A) ≥ f(B) for A ⊇ B

• f isM -bounded, i.e., f(e) ∈ [1,M ] for all e ∈ U

• f is fractionally subadditive
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Before giving an overview over the chapter, we illustrate the applicability of this framework
to different settings.
Example 6.1 (Submodular objective). It was shown by Lehmann et al. [51] that every
monotone submodular function is also fractionally subadditive.
As a consequence our framework captures, e.g., the Maximum Coverage problem, where

we are given a weighted family of sets U ⊆ 2E over a universe E. Every element of E has
a value v : E → R≥0 associated with it, and f(S) = v

(︁⋃︁
X∈S X

)︁
for all S ⊆ U where we

write v(X) :=
∑︁

x∈X v(x) for a set X ⊆ U . In this context, theM -boundedness condition
demands that v(X) ∈ [1,M ] for all X ∈ U . Further examples include maximization versions
of clustering and location problems.

Example 6.2 (XOS objective). An objective function f : 2U → R is called XOS if it can be
written as the pointwise maximum of modular functions, i.e., there are k ∈ N and values
ve,i ∈ R for all e ∈ U and i ∈ [k] such that

f(S) = max

{︄∑︂
e∈S

ve,i

⃓⃓⃓⃓
⃓ i ∈ [k]

}︄
for all S ⊆ U.

As shown by Feige [27], the set of fractionally subadditive functions and the set of XOS
functions coincide. XOS functions are a popular way to encode the valuations of buyers in
combinatorial auctions (cf. [21, 22, 51, 60]).

Example 6.3 (Weighted rank function of an independence system). As shown by Ama-
natidis et al. [1], the weighted rank function of an independence system is fractionally
subadditive. Thus, this setting includes problems like weighted d-dimensional matching,
weighted set packing, or weighted maximum independent set.

Example 6.4 (Potential-based s-t-flows). Consider a variant of the incremental maximum
s-t-flow problem on parallel edges in a directed graph G = ({s, t}, E), as in Figure 6.1.
Every edge e has a capacity µ(e) ∈ R≥0. In addition, we are given a continuous and strictly
increasing potential-loss function ψ : R → R with limx→∞ ψ(x) = ∞ that describes the
physical properties of the network. Every edge e ∈ E has a resistance β(e) ∈ R≥0. A flow
ϑ : E → R≥0 is called a potential-based flow if there are vertex potentials ps, pt ∈ R≥0 such
that

ps − pt = β(e)ψ(ϑ(e)) for all e ∈ E.

The potentials correspond to physical properties at the nodes such as pressures or voltages;
different choices of ψ allow to model, e.g., gas flows, water flows, and electrical flows, see
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Birkhoff and Diaz [7] and Groß et al. [35]. In our incremental framework, w : U → R≥0

are interpreted as construction costs/times of pipes or cables and the objective is to maximize
the potential-based s-t-flow, i.e., the objective f : 2U → R≥0 maps S ⊆ U to the value

f(S) = max

{︄∑︂
e∈T

ψ−1

(︃
p

β(e)

)︃ ⃓⃓⃓⃓
⃓T ⊆ S, p ∈ R≥0 with ψ−1

(︃
p

β(e)

)︃
≤µ(e) for all e ∈ T

}︄
,

where p := ps − pt. Note that we allow turning off the edges in S \ T in order to make f
monotone. TheM -boundedness condition corresponds to the assumption that µ(e) ∈ [1,M ].
As we will show in Proposition 6.21, this objective is fractionally subadditive.

In Section 6.1 we analyze the strict competitive ratio of the IncMaxKnap problem. We
introduce the algorithm DoubleScaling that combines the ideas of the CardinalityScal-
ing and the ValueScaling by adding optimum solutions for different capacities one after
the other such that the capacities and values of the added sets are scaled by at least some
constant each. The order in which the elements from one set are added is chosen based on
a primal-dual LP formulation that relies on fractional subadditivity. For the definition of the
algorithm, we need access to two oracles. On the one hand, we need oracle access to the
optimum solution of a given capacity; on the other hand, we need access to an XOS oracle.
More information on this can be found in Remark 6.5. The algorithm DoubleScaling
yields an upper bound of max

{︁
3.293

√
M, 2M

}︁ on the competitive ratio. We complement
this with a problem instance that yields a lower bound of φ+ 1.
In order to eliminate the dependence of the competitive ratios on the value ofM , in

Section 6.2, we analyze the non-strict competitive ratio of the IncMaxKnap problem. We
show that a modified version of the CardinalityScaling algorithm achieves a non-strict
competitive ratio of φ+ 1 with additive constant 2M . We complement this upper bound
with a lower bound and show that every lower bound on the strict competitive ratio of
IncMaxCont (cf. Section 3.2) is also a lower bound for the IncMaxKnap problem.
As an additional motivation, in Section 6.3 we show that our framework captures

potential-based s-t-flows as described in Example 6.4. In this context, a 1-bounded
objective corresponds to unit capacities. In comparison, we also show that the classical
incremental maximum s-t-flow problem with capacities in [1,M ] admits a 2M -competitive
incremental solution, and that this is best-possible for the unit capacity case.
An extended abstract with the results in Section 6.1.1 appeared in [20] and a full

version with the results in Section 6.1 will appear in [17].
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6.1. Strict Analysis

6.1.1. A Capacity and Value Scaling Algorithm

In the following, we fix an instance from IncMaxKnap with ground set U , anM -bounded
and fractionally subadditive objective f : 2U → R≥0, and weightsw : U → R≥0. We present
an algorithm that combines the ideas of the CardinalityScaling algorithm from [5] and
the ValueScaling algorithm that both were presented in Section 4.1. On a high level, the
idea is to consider optimum solutions of increasing capacities, and to add all elements in
these optimum solutions one at a time. By carefully choosing the order in which we add
elements of a single optimum solution, we ensure that elements contributing the most
to the objective are added first. In this way, we can guarantee that either the optimum
solution we have assembled most recently, or the optimum solution we are currently
assembling provides sufficient value to stay competitive. While CardinalityScaling and
ValueScaling only scale either the capacity, or the value of the optimum solution, our
algorithm DoubleScaling simultaneously scales both of them. In addition, we use a
more sophisticated order in which we assemble the optimum solutions that is based on a
primal-dual LP formulation.
We now describe DoubleScaling in detail. Let λ ≈ 3.2924 be the unique real root of

the equation
0 = λ7 − 2λ6 − 3λ5 − 3λ4 − 3λ3 − 2λ2 − λ− 1.

This yields (︃
1

λ
+

1

λ2

)︃
λ3

λ2 + 1
=

λ2

λ+ 1
− 1− λ2 + 1

λ3
. (6.1)

Furthermore, let δ := λ3

λ2+1
≈ 3.0143 and

ρ := max
{︁
λ
√
M, 2M

}︁
. (6.2)

Algorithm DoubleScaling operates in phases of increasing capacities c1, . . . , cN ∈ R≥0

with

c1 := min
e∈U

w(e),

ci := min
{︁
C ≥ δci−1

⃓⃓
Opt(C) ≥ ρOpt(ci−1)

}︁ for all i ∈ N,

where we set min ∅ = w(U). We define N ∈ N to be the minimal index such that
cN = w(U). In phase i ∈ [N ], DoubleScaling adds the elements of the set O(ci), the
optimum solution for capacity ci, one at a time. We may assume that previously added
elements are added again (without any benefit), since this only hurts the algorithm.
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To specify the order in which the elements of O(ci) are added, consider the following
linear program parameterized by X ⊆ U (cf. [27]):

min
∑︂
B⊆U

αBf(B) (LPX)

s.t.
∑︂

B⊆U :e∈B
αB ≥ 1, for all e ∈ X,

αB ≥ 0, for all B ⊆ U,

and its dual

max
∑︂
e∈X

γe

s.t.
∑︂
e∈B

γe ≤ f(B), for all B ⊆ U,

γe ≥ 0, for all e ∈ X.

Fractional subadditivity of f yields f(X) ≤
∑︁

B⊆U αBf(B) for all α ∈ R2U feasible
for (LPX). The solution α∗ ∈ R2U with α∗

X = 1 and α∗
B = 0 for X ̸= B ⊆ U is feasible and

satisfies f(X) =
∑︁

B⊆U α
∗
Bf(B). Together this implies that α∗ is an optimum solution

to (LPX). By strong duality, there exists an optimum dual solution γ∗(X) ∈ RU with

f(X) =
∑︂
e∈X

γ∗(X)e. (6.3)

In phase 1, the algorithm DoubleScaling adds the single element in O(c1). In phase 2,
DoubleScaling adds an element e ∈ O(c2) first that maximizes γ∗(O(c2))e and the other
elements in an arbitrary order. In phase i ∈ {3, 4, . . . , N}, DoubleScaling adds the
elements of O(ci) in an order (e1, . . . , e|O(ci)|) such that, for all j ∈ [|O(ci)| − 1],

γ∗(O(ci))ej
w(ej)

≥
γ∗(O(ci))ej+1

w(ej+1)
. (6.4)

The reason why we do not use (6.4) in phase 2 is because so early on we want to increase
the objective value as fast as possible which is not necessarily guaranteed by choosing the
order of elements in O(c2) according to (6.4).
In the following, we denote the incremental solution of the DoubleScaling algo-

rithm by XA. Fix some 0 ≤ C ≤ C ′ ≤ w(U). Let k := |O(C ′)|, and let (e1, . . . , ek) be
an ordering of all elements in O(C ′) such that, for all j ∈ [k − 1], (6.4) holds. With
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j := max{j ∈ [k] | w({e1, . . . , ej}) ≤ C}, we define O(C ′, C) := {e1, . . . , ej} to be the
largest prefix of the optimum solution O(C ′) with capacity at most C.
Roughly, we show that this algorithm is competitive as follows: In the first phase

DoubleScaling obviously performs optimally. In all other phases, the optimum solution
added in the previous phase is large enough to be competitive until partially added
optimum solution of the next phase has a larger value. From this point until the end of
the phase, the partially added optimum solution of the next phase is competitive.

Remark 6.5. In the construction of our algorithm, we assume to have oracle access to an
optimum solution O(C) of a given capacity C ∈ R≥0. Finding such an optimum solution may
not be possible in polynomial time. Badanidiyuru et al. [3], give a (2 + ε)-approximation
algorithm that uses only a polynomial number of demand oracle queries. Furthermore, they
show that no algorithm with a polynomial number of demand oracle queries can have an
approximation ratio of less than 2, unless P = NP. Our algorithm DoubleScaling can use an
α-approximation oracle instead of an oracle for the optimum solution, for a loss of factor
α in its competitive ratio. Furthermore, we assume to have access to an XOS oracle. For a
given set X ⊆ U and x ∈ X, an XOS oracle gives the value of x within the set X, which
corresponds to the solution of the dual of (LPX). Instead of an XOS oracle, our algorithm
can use an β-approximation oracle for a loss of factor β in its competitive ratio.

For all X ⊆ U , the dual variables γ∗(X) are a feasible solution for the dual of (LPX).
Thus, for all Y ⊆ U , we have ∑︂

e∈Y
γ∗(X)e ≤ f(Y ). (6.5)

i.e., γ∗(X) associates a contribution to the overall objective to each element e ∈ U , and
this association is consistent for all sets Y ⊆ U .
The following lemma establishes that the order in which we add the elements of each

optimum solution are decreasing in density, in an approximate sense.

Lemma 6.6. Let 0 ≤ C ≤ C ′ ≤ w(U). Then

Opt(C ′) ≤ C ′

C

(︁
f(O(C ′, C)) +M

)︁
.

Proof. If O(C ′) = O(C ′, C), the statement holds trivially. Suppose |O(C ′)| > |O(C ′, C)|.
Let j := |O(C ′, C)|, and let O(C ′) =

{︁
e1, . . . , e|O(C′)|

}︁ such that (6.4) holds. Note that,
by definition, O(C ′, C) = {e1, . . . , ej} and

w({e1, . . . , ej}) ≤ C < w({e1, . . . , ej+1}). (6.6)
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We have

Opt(C ′)
(6.3)
=

|O(C′)|∑︂
i=1

w(ei)
γ∗(O(C ′))ei

w(ei)

(6.4)
≤

(︄
j+1∑︂
i=1

γ∗(O(C ′))ei

)︄
+

∑︁j+1
i=1 w(ei)

w({e1, . . . , ej+1})

|O(C′)|∑︂
i=j+2

w(ei)
γ∗(O(C ′))ej+1

w(ej+1)

=

(︄
j+1∑︂
i=1

γ∗(O(C ′))ei

)︄
+

∑︁j+1
i=1 w(ei)

γ∗(O(C′))ej+1

w(ej+1)

w({e1, . . . , ej+1})

|O(C′)|∑︂
i=j+2

w(ei)

(6.4)
≤

(︄
j+1∑︂
i=1

γ∗(O(C ′))ei

)︄
+

∑︁j+1
i=1 γ

∗(O(C ′))ei
w({e1, . . . , ej+1})

|O(C′)|∑︂
i=j+2

w(ei)

(6.6)
<

(︄
j+1∑︂
i=1

γ∗(O(C ′))ei

)︄
+

∑︁j+1
i=1 γ

∗(O(C ′))ei
C

(C ′ − C)

=
C ′

C

[︄(︄
j∑︂

i=1

γ∗(O(C ′))ei

)︄
+ γ∗(O(C ′))ej+1

]︄
(6.5)
≤ C ′

C

(︁
f({e1, . . . , ej}) + f({ej+1})

)︁
≤ C ′

C

(︁
f(O(C ′, C)) +M

)︁
.

Since every set S ⊆ U with w(S) ≤ C satisfies f(S) ≤ Opt(C), and since we have
w(O(C ′, C)) ≤ C, we immediately obtain the following.
Corollary 6.7. Let C,C ′ ∈ R≥0 with C ≤ C ′ ≤ w(U). Then

Opt(C ′) ≤ C ′

C

(︁
Opt(C) +M

)︁
.

With this, we are now ready to show an upper bound on the competitive ratio of
DoubleScaling.
Theorem 6.8. With ρ = max

{︁
λ
√
M, 2M

}︁
≈ max

{︁
3.2924

√
M, 2M

}︁
, DoubleScaling is

ρ-competitive.

Proof. We have to show that, for all capacities C ∈ R≥0, we have Opt(C) ≤ ρf(XA(C)).
We do this by analyzing the different phases of the algorithm. Observe that, for all
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i ∈ {2, . . . , N − 1}, byM -boundedness, we have

Opt(ci) ≥ ρOpt(ci−1) ≥ ρi−1Opt(c1) ≥ ρi−1 ≥ (λ
√
M)i−1, (6.7)

where for the first inequality, we use the definition of the algorithm DoubleScaling, and
for the last inequality we use the definition of ρ in (6.2).
In phase 1, we have C ∈ (0, c1]. Since c1 is the minimum weight of all elements and

we start by adding O(c1), i.e., the optimum solution of capacity c1, the value of XA(C) is
optimal.
Consider phase 2, and suppose C ∈ (c1, c2). If c2 > δc1 holds, then c2 is the smallest

value such that Opt(c2) ≥ ρOpt(c1), i.e., by monotonicity of f , we have

f(XA(C)) ≥ f(XA(c1)) = Opt(c1) >
1

ρ
Opt(C).

Now assume c2 ≤ δc1. If C ∈ (c1, 3c1), i.e., any solution of capacity C cannot contain
more than two elements, or if C ∈ (c1, c2) and O(c2) contains at most 2 elements, by
fractional subadditivity and M -boundedness of f , we have Opt(C) ≤ |O(c2)|M ≤ 2M
and thus,

f(XA(C)) ≥ Opt(c1) ≥ 1 ≥ 1

2M
Opt(C) ≥ 1

ρ
Opt(C).

Now suppose that C ∈ [3c1, c2) and that the set O(c2) contains at least 3 elements.
The solution XA(c1 + c2) contains all elements from the set O(c1) ∪O(c2), the solution
XA(c2) = XA((c1 + c2)− c1) contains at least all but one elements from O(c2), and the
solution XA(c2 − c1) contains at least all but 2 elements from O(c2) because the weight of
any element is at least c1. Since

C ≥ 3c1 > (δ − 1)c1 ≥ c2 − c1,

XA(C) contains at least all but 2 elements fromO(c2). Recall that in phase 2, the algorithm
adds the element e ∈ O(c2) that maximizes γ∗(O(c2))e first. Therefore, and because
|O(c2)| ≥ 3, we have f(XA(C)) ≥ 1

3f(O(c2)) ≥ 1
ρOpt(C).

Consider phase 2 and suppose C ∈ [c2, c1 + c2]. We have

Opt(c1 + c2) ≤ Opt(c2) +M (6.8)

because f is subadditive and because c1 is the minimum weight of all elements. Further-
more, we have

f
(︁
XA(c2)

)︁
≥ Opt(c2)−M ≥ ρ−M ≥M (6.9)
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where the first inequality follows from subadditivity of f and the fact that the solution
XA(c2) contains at least all but one element from O(c2). We obtain

f
(︁
XA(c2)

)︁ (6.9)
≥ Opt(c2)−M

(6.8)
≥ Opt(c1 + c2)− 2M

(6.9)
≥ Opt(c1 + c2)− 2f(XA(c2)),

i.e., by monotonicity,

Opt(C) ≤ Opt(c1 + c2) ≤ 3f(XA(c2)) ≤ ρf(XA(c2)) ≤ ρf(XA(C)).

Now consider phase i ∈ {3, . . . , N} and C ∈
(︁∑︁i−1

j=1 cj ,
∑︁i

j=1 cj ]. Note that, for
1 ≤ j ≤ i ≤ N − 1, we have ci ≥ δi−jcj and hence

i−1∑︂
j=1

cj
ci

Lem. 1.6
<

δ

δ − 1
− 1 =

1

δ − 1
< 1.

This yields ∑︁i−1
j=1 cj ≤ ci ≤

∑︁i
j=1 cj . If i = N and ∑︁N−1

j=1 cj ≥ cN = w(U), we have
nothing left to show because C ≥ w(E). Thus, suppose that we have ∑︁N−1

j=1 cj ≤ cN .
Furthermore, if i = N and ρOpt(cN−1) > Opt(cN ) = Opt(w(U)), we again have nothing
to show as the solution XA(︁∑︁i−1

j=1 cj
)︁
⊆ XA(C) contains the set O(cN−1) and has value at

least Opt(cN−1). Thus, assume that Opt(cN ) ≥ ρOpt(cN−1). This implies that (6.7) also
holds for i = N .

Case 1: C ∈
(︁∑︁i−1

j=1 cj , ci
)︁
.

We show that in this case, the value of the optimum solution O(ci−1), which is already
added by the algorithm, is large enough to guarantee competitiveness. If ci > δci−1 holds,
then ci is the smallest integer such that Opt(ci) ≥ ρOpt(ci−1), i.e., using monotonicity
of f , we obtain

f(XA(C)) ≥ f
(︁
XA
(︁∑︁i−1

j=1 cj
)︁)︁

≥ Opt(ci−1) >
1
ρOpt(C).

For the case that ci = δci−1. Note that ci < δci−1 is only possible if i = N .
Case 1.1: i = 3.

Let c := (︁ 1
λ
√
M

+ 1
λ2

)︁
δc2. We have

c ≤
(︃
1

λ
+

1

λ2

)︃
δc2

(6.1)
=

(︃
λ2

λ+ 1
− 1− 1

δ

)︃
c2

≤ λ2

λ√
M

+ 1
c2 − c2 − c1 =

λ2M

λ
√
M +M

c2 − c2 − c1. (6.10)
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We show thatXA(c1+c2) is competitive up to capacity c1+c2+c, and thatXA(c1+c2+c)
is competitive up to capacity c3. We have

Opt(c1 + c2 + c)
Cor. 6.7
≤ c1 + c2 + c

c2

(︁Opt(c2) +M
)︁

(6.10)
≤

c1 + c2 +
(︂

λ2M
λ
√
M+M

c2 − c2 − c1

)︂
c2

(︁Opt(c2) +M
)︁

=
λ2M

λ
√
M +M

(︃
1 +

M

Opt(c2)

)︃
Opt(c2)

(6.7)
≤ λ2M

λ
√
M +M

(︃
1 +

M

λ
√
M

)︃
Opt(c2)

= λ
√
M

λ
√
M

λ
√
M +M

(︃
λ
√
M +M

λ
√
M

)︃
Opt(c2)

≤ ρOpt(c2) ≤ ρf(XA(c1 + c2)),

where the last inequality follows from the fact that the algorithm starts by packing O(c1)
and O(c2) before any other elements and needs capacity c1 + c2 to assemble both sets,
i.e., O(c2) ⊆ XA(c1 + c2).
Since DoubleScaling adds the elements from O(c3) after those from O(c1) and O(c2),

we have O(c3, c) ⊆ XA(c1 + c2 + c), and thus

f
(︁
XA(c1 + c2 + c)

)︁
≥ f(O(c3, c))

Lem. 6.6
≥ c

c3
Opt(c3)−M

≥
[︃(︃

1

λ
√
M

+
1

λ2

)︃
− M

Opt(c3)

]︃
Opt(c3)

(6.7)
≥

(︃
1

λ
√
M

+
1

λ2
− M

λ2M

)︃
Opt(c3)

=
1

λ
√
M
Opt(c3)

≥ 1

ρ
Opt(c3),

where for the first inequality we use monotonicity of f , and for the third we use c3 ≤ δc2.
This, together with monotonicity of f , implies Opt(C) ≤ ρf(XA(C)) for all C ∈ (c1 +
c2, c3].
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Case 1.2: i ≥ 4.
Recall that C ∈

(︁∑︁i−1
j=1 cj , ci

)︁. We have
Opt(C) ≤ Opt(ci)

Cor. 6.7
≤ ci

ci−1
(Opt(ci−1) +M)

≤ δ

(︃
1 +

M

Opt(ci−1)

)︃
Opt(ci−1)

(6.7)
≤ δ

(︃
1 +

M

λ2M

)︃
Opt(ci−1)

=
λ3

λ2 + 1

(︃
1 +

1

λ2

)︃
Opt(ci−1) = λOpt(ci−1)

≤ ρf(XA(C)),

where for the first inequality we use monotonicity of f , and for the third we use ci ≤ δci−1.
Thus, also in this case, we find Opt(C) ≤ ρf(XA(C)) for all C ∈

(︁∑︁i−1
j=1 cj , ci

)︁.
Case 2: C ∈

[︁
ci,
∑︁i

j=1 cj
]︁
.

Since cN = w(U), we can assume that i < N . Up to this budget, the algorithm had
a capacity of C −

∑︁i−1
j=1 cj > C − ci ≥ 0 to pack elements from O(ci), i.e., we have

O(ci, C −
∑︁i−1

j=1 cj) ⊆ XA(C). We show that the value of this set is large enough to guar-
antee competitiveness in this case. We have

f
(︁
XA(C)

)︁
≥ f

(︁
O
(︁
ci, C −

∑︁i−1
j=1 cj

)︁)︁
Lem. 6.6

≥
C −

∑︁i−1
j=1 cj

ci
Opt(ci)−M

Cor. 6.7
≥

C −
∑︁i−1

j=1 cj

ci

(︃
ci
C
Opt(C)−M

)︃
−M

=

(︄
C −

∑︁i−1
j=1 cj

C
−
C −

∑︁i−1
j=1 cj

ci
· M

Opt(C) −
M

Opt(C)

)︄
Opt(C)

≥

(︄
1−

i−1∑︂
j=1

cj
ci

− 1 · M

Opt(C) −
M

Opt(C)

)︄
Opt(C)

(6.7), Lem. 1.6
≥

(︃
1−

(︃
δ

δ − 1
− 1

)︃
− 2M

ρi−1

)︃
Opt(C)

≥
(︃
1−

(︃
δ

δ − 1
− 1

)︃
− 2M

λ2M

)︃
Opt(C)

≥ 0.319 · Opt(C) ≥ 1

ρ
Opt(C),
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where for the first inequality we use monotonicity of f , and for the fourth we use
ci ≤ C ≤

∑︁i
j=1 cj .

For 1-bounded objectives, Theorem 6.8 immediately yields the following.
Corollary 6.9. IfM = 1, DoubleScaling is 3.293-competitive.

6.1.2. Lower Bound

In this section, we give a lower bound on the competitive ratio of IncMaxKnap with
a monotone, M -bounded, and fractionally subadditive objective, and we show a lower
bound for the special case withM = 1.
Theorem 6.10. The competitive ratio of IncMaxKnap with monotone, M -bounded, and
fractionally subadditive objectives is at leastM .

Proof. Consider the set U = {e1, e2} with weights w(ei) = i for i ∈ {1, 2} and the values
v(e1) = 1 and v(e2) =M . We define the objective f(S) :=∑︁e∈S v(e) for all S ⊆ U . It is
easy to see that f is monotone,M -bounded and modular and thus fractionally subadditive.
In order to be competitive for capacity 1, an algorithm has to add element e1 first. Thus,

the solution of the algorithm for capacity 2 cannot contain element e2, i.e., the value of
the solution of capacity 2 given by the algorithm has value 1. The optimum solution of
capacity 2 has valueM , and thus the algorithm cannot be better thanM -competitive.

We will now give a stronger lower bound forM ∈ [1, φ+1)where φ = 1
2(1+

√
5) ≈ 2.618

is the golden ratio. This lower bound construction will be similar to an instance from
IncMaxSep (cf. Definition 3.3), as, for some N ∈ N, the ground set U will be partitioned
into N disjoint sets U1, . . . , UN with |Ui| = i for all i ∈ [N ].
We proceed to give the actual construction. Let N ∈ N, consider a problem instance I

with∑︁N
i=1 i =

1
2N(N +1) elements partitioned into sets U1, U2, . . . , UN such that |Ui| = i

for all i ∈ [N ]. We define the groundset U :=
⋃︁

i∈[N ] Ui and the objective f : 2U → R≥0

such that, for all S ⊆ U ,

f(S) = max
i∈[N ]

|S ∩ Ui| for all S ⊆ U . (6.11)

The elements’ weights are defined as w(e) = b + i! for all e ∈ Ui with base weight
b = (N + 2)!.
We note that the problem instance I is built in such a way that the elements in all sets

U1, . . . , UN have roughly the same relative weight because b is very large. First, we show
that, for a given capacity C ∈ N, the number of elements that can be packed without
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exceeding this capacity can vary by at most 1, regardless of which elements are packed.
Yet, the weights of elements in Ui increase quickly enough with increasing i such that, for
capacity C = i(b+ i!) it is only possible to pack i elements if all i elements are from the
set U1 ∪ · · · ∪ Ui.
Proposition 6.11. Let X = (e1, . . . , eN(N+1)/2) be an incremental solution for the instance
defined above and i ∈

[︁
1
2N(N + 1)

]︁
. Consider capacity C = i(b+ i!). Then (with Uj = ∅ for

j > N), we have

|X(C)| =

{︄
i if {e1, . . . , ei} ⊆ U1 ∪ · · · ∪ Ui,

i− 1 else.

Proof. First we show that |X(C)| ∈ {i− 1, i}. Assume |X(C)| < i− 1. Then, we have

C − w(X(C)) ≥ i(b+ i!)− (i− 2)(b+N !) ≥ 2b− i ·N !

≥ b+ (N + 2)!−N(N + 1)N ! = b+ 2(N + 1)!

≥ max
e∈U

w(e),

contradicting the fact that X(C) is the maximum prefix of the incremental solution X
with capacity at most C. Assume |X(C)| > i. Then, we have

w(X(C)) > (i+ 1)b > ib+ (i+ 1)! > i(b+ i!) = C,

which contradicts w(X(C)) ≤ C. We have established that |X(C)| ∈ {i− 1, i}.
If X(C) contains e ∈ Uj with j > i, we have

C − w(e) = i(b+ i!)− (b+ j!) = (i− 1)b+ i · i!− j!

< (i− 1)b < (i− 1)min
e∈U

w(e).

So X(C) \ e contains at most i − 2 elements and |X(C)| ≤ i − 1, which yields that
X(C) contains i− 1 elements. Otherwise, if the elements in {e1, . . . , ei} are from the set
U1∪· · ·∪Ui, each element has weight at most b+i!. Thus, we havew(X(C)) ≤ i(b+i!) = C.
Therefore, |X(C)| ≥ i which yields that X(C) contains i elements.

We say an incremental solution to the problem instance I given above is represented
by a sequence (c1, . . . , cℓ) with ci < ci+1 and cℓ = N if the incremental solution adds
all elements from Uc1 , then all elements from Uc2 , and so on until adding all elements
from Ucℓ . Only afterwards all remaining elements are added in an arbitrary order. Note
that elements added after the last element of UN in any incremental solution do not
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influence the objective value for any capacity since when they are added the incremental
solution has already reached the maximum value of N . First, we will observe that every
incremental solution of problem instance I can be transformed into a solution that can
be represented by a sequence (c1, . . . , cℓ) without decreasing the objective value for any
capacity.
Lemma 6.12. For every incremental solutionX there is a sequence (c1, . . . , cℓ) with ci < ci+1

and cℓ = N representing an incremental solution with objective value at least f(X(C)) for
all capacities C ≥ 0.

Proof. First, we show that there is an incremental solution X ′ satisfying the following
three properties.
(i)We have f(X ′(C)) ≥ f(X(C)) for all C ≥ 0.
(ii) For all i ∈ [N − 1], if at least one element from the set Ui is added before the last

element from UN is added, then this is true for all elements in Ui.
(iii) For all i ∈ [N ], if the last element from the set Ui is added before the last element

from UN is added, then the objective value of the solution increases from i− 1 to i when
this last element is added.
To show this, fix some i ∈ N such that at least one element from the set Ui is added

before the last element from UN is added in the incremental solution X. Let j ∈ N, j ≤ i
be the largest number such that, when the j-th element from the set Ui is added, the value
of the solution increases from j − 1 to j. If this does not exist, we set j = 0. If j = i, Ui is
completely added before the last element from UN and when the last element from Ui

is added to the incremental solution its value increases by one to the value of i. Thus,
suppose that j < i. All elements from Ui that are added after the j-th element do not
increase the value of the solution and can thus be moved to the end of the whole order X.
Since now, there are only j elements from the set Ui added before the last element from
the set UN is added, it makes sense to add the elements from the set Uj instead of these j
elements, as they have a smaller weight (if they are not already added). We can then move
the j elements from Ui to the end of the order. After all these changes the incremental
solution obtains all values at least as fast as before, i.e., (i) holds. Furthermore, (ii) and (iii)
also hold because of the changes we made to the incremental solution.
Now, we show that we can reorder the elements in the incremental solutionX ′ such that

the elements that are added before the last element from UN is added are ordered by the
index of the set they belong to. Consider any two sets Ui, Uj , i < j that are added before
the last element from set UN is added. Recall that, when the last element from Ui is added,
the value of the solution is i. This implies that at that point at most i−1 elements from the
set Uj are added. Thus, swapping the elements of Ui and Uj in the incremental solution
X ′ until all elements from Ui are added before the elements from Uj , does not decrease
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the value of the incremental solution for any capacity. By doing this for all pairs (i, j), we
obtain an incremental solution that can be represented by a sequence (c1, . . . , cℓ).

Utilizing the properties of the weights we mentioned before, we can find a collection
of conditions which are necessary and sufficient for a sequence (c1, . . . , cℓ) to represent
a ρ-competitive incremental solution for the problem instance I. In the following, we
denote by ℓ′ the index with ρcℓ′ < N and ρcℓ′+1 ≥ N and set ti :=

∑︁i
j=1 cj . The index ℓ′

is needed because all indices i > ℓ′ satisfy ρci ≥ N , i.e., after an incremental solution has
added the set Uℓ′+1, it is ρ-competitive for all capacities.
Lemma 6.13. Let (c1, . . . , cℓ) with ci < ci+1 and cℓ = N be a sequence that represents an
incremental solution for instance I. Then, the incremental solution is ρ-competitive if and
only if the following three conditions are satisfied:

(i) c1 = 1,
(iia) ti + ci ≤ ⌊ρci⌋ for all i ∈ [ℓ′] with ci+1 ≤ ⌊ρci⌋+ 1,
(iib) ti + ci + 1 ≤ ⌊ρci⌋ for all i ∈ [ℓ′] with ci+1 > ⌊ρci⌋+ 1.

Proof. We first show that for a ρ-competitive incremental solution X that can be repre-
sented by some sequence conditions (i), (iia) and (iib) have to be satisfied.
If c1 ̸= 1, the incremental solution is not competitive for capacity C = b + 1, i.e., (i)

must hold.
Consider capacity C = (⌊ρci⌋+ 1)(b+ (⌊ρci⌋+ 1)!) for i ∈ [ℓ′]}. The optimum solution

of capacity C is O(C) = U⌊ρci⌋+1 and has value Opt(C) = ⌊ρci⌋ + 1. Furthermore,
f(X(C)) ≥ ci + 1, since 1

ρ(⌊ρci⌋+ 1) > ci. Thus, X(C) contains at least ci + 1 elements
from Uci+1 .
If ci+1 ≤ ⌊ρci⌋+1,X(C) contains ⌊ρci⌋+1− ti elements from Uci+1 by Proposition 6.11.

Thus, we have ci+1 ≤ ⌊ρci⌋+1− ti which implies (iia). If ci+1 > ⌊ρci⌋+1,X(C) contains
⌊ρci⌋ − ti elements from Uci+1 by Proposition 6.11. Thus, we have ci + 1 ≤ ⌊ρci⌋ − ti
which implies (iib).
We proceed to show that, conversely, an incremental solution that can be represented

by some sequence satisfying conditions (i), (iia) and (iib) is ρ-competitive. To this end, fix
an arbitrary incremental solution X with these properties. Since all elements have integer
weight, it suffices to show ρ-competitiveness for all capacities C ∈ N.
For capacities C ∈ [b+ 1], the incremental solution is ρ-competitive because b+ 1 is the

smallest weight of all elements and c1 = 1 by (i), i.e., the element of smallest weight is
added first.
Let i ∈ [ℓ′]. We show that, for all capacities in{︁

ti(b+ ti!) + 1, . . . , ti+1(b+ ti+1!)
}︁
,
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X is ρ-competitive. For all capacities
C ∈

{︁
ti(b+ ti!) + 1, . . . , (⌊ρci⌋+ 1)(b+ (⌊ρci⌋+ 1)!)− 1

}︁
, (6.12)

we have Opt(C) ≤ ⌊ρci⌋ ≤ ρci ≤ f(X(C)) because X(ti(b + ti!)) ⊆ X(C) contains at
least all elements from Uc1 ∪ · · · ∪ Uci by Proposition 6.11. Thus, X is ρ-competitive for
all values C as in (6.12). Next, suppose that

C ∈
{︁
(⌊ρci⌋+ 1)(b+ (⌊ρci⌋+ 1)!), . . . , ti+1(b+ ti+1!)

}︁
.

Let a∗ = Opt(C) ∈ {⌊ρci⌋+ 1, . . . , ti+1}. This implies C ≥ a∗(b+ a∗!). We consider two
cases.
Case 1: ci+1 ≤ ⌊ρci⌋+ 1.

By (iia), we have ti + ci ≤ ⌊ρci⌋ and thus

a∗ − ti ≥ ci + a∗ − ⌊ρci⌋ ≥
1

ρ
⌊ρci⌋+

1

ρ

(︁
a∗ − ⌊ρci⌋

)︁
=

1

ρ
a∗. (6.13)

By Proposition 6.11, X(C) contains at least a∗ − ti elements from the set Uci+1 since
ci+1 ≤ ⌊ρci⌋+ 1 ≤ a∗. This implies that, by (6.13), f(X(C)) ≥ a∗ − ti ≥ 1

ρa
∗, i.e., X is

ρ-competitive for capacity C.
Case 2: ci+1 > ⌊ρci⌋+ 1.

By (iib), we have ti + ci + 1 ≤ ⌊ρci⌋ and thus

a∗ − ti − 1 ≥ ci + a∗ − ⌊ρci⌋ ≥
1

ρ
⌊ρci⌋+

1

ρ

(︁
a∗ − ⌊ρci⌋

)︁
=

1

ρ
a∗. (6.14)

By Proposition 6.11 X(C) contains at least a∗ − ti − 1 elements from the set Uci+1 . This
means that, by (6.14), f(X(C)) ≥ a∗−ti−1 ≥ 1

ρa
∗, i.e.,X is ρ-competitive for capacity C.

We conclude that, for every capacity C ∈ [tℓ′+1(b+ tℓ′+1!)], X is ρ-competitive. For all
capacities C > tℓ′+1(b + tℓ′+1!), the value of X(C) is at least cℓ′+1, while the optimum
solution has value at most N . By definition of ℓ′ we have ρcℓ′+1 ≥ N . Therefore, X is
ρ-competitive.
If ti + ci = ⌊ρci⌋, then ti + ci + 1 > ⌊ρci⌋, i.e., contraposition of condition (iib) from

Lemma 6.13 yields the following.
Corollary 6.14. If a sequence (c1, . . . , cℓ) represents a ρ-competitive incremental solution
and ti + ci = ⌊ρci⌋ for some i ∈ [ℓ′], then ci+1 ≤ ⌊ρci⌋+ 1.

In the following we show that, for 2 ≤ ρ ≤ φ+ 1 and given some sequence (c1, . . . , ci),
every algorithm is forced to choose ci+1 ≤ ⌊ρci⌋ + 1 to be ρ-competitive for capacity
⌊ρci⌋+ 1.
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Proposition 6.15. Let ρ ∈ [2, φ + 1], and let (c1, . . . , cℓ) with ci < ci+1 be a sequence
that represents an incremental solution. If the incremental solution is ρ-competitive, then
ci+1 ≤ ⌊ρci⌋+ 1 for all i ∈ [ℓ′].

Proof. By Corollary 6.14, it suffices to show that we have ti + ci = ⌊ρci⌋ for all i ∈ [ℓ′]. We
prove this by induction. For i = 1, we have

t1 + c1 = 1 + 1 = 2 = ⌊ρ⌋ = ⌊ρc1⌋,

where we use the fact that c1 = 1 by Lemma 6.13(i).
Suppose that

ti + ci = ⌊ρci⌋ (6.15)
holds for some i ∈ [ℓ′ − 1]. By Lemma 6.13 (iia) and (iib), we have ti+1 + ci+1 ≤ ⌊ρci+1⌋.
Thus, it remains to show that

ti+1 + ci+1 ≥ ⌊ρci+1⌋. (6.16)

To prove this, we first calculate for ρ ∈ (2, φ+ 1]:

(3− ρ)(ρ− 1)

ρ− 2
=

−(ρ− 2)2 + 1

ρ− 2
=

1

ρ− 2
− (ρ− 2)

≥ 1

φ− 1
− (φ− 1) = φ− (φ− 1) = 1, (6.17)

where for the inequality we use that ρ ≤ φ+1. In the case ρ = 2 we can calculate directly
ρ− 2 = 0 ≤ 1 = (3− ρ)(ρ− 1). We obtain

(3− ρ)⌊(ρ− 1)ci⌋+ 1 > (3− ρ)((ρ− 1)ci − 1) + 1

= (3− ρ)(ρ− 1)ci + ρ− 2
(6.17)
≥ (ρ− 2)ci + ρ− 2

= (ρ− 2)(ci + 1). (6.18)

Utilizing this inequality, we have

⌊(ρ− 2)(⌊ρci⌋+ 1)⌋ =
⌊︁
(ρ− 2)(⌊(ρ− 1)ci⌋+ ci + 1)

⌋︁
=

⌊︁
⌊(ρ− 1)ci⌋+ (ρ− 3)⌊(ρ− 1)ci⌋+ (ρ− 2)(ci + 1)

⌋︁
= ⌊(ρ− 1)ci⌋+

⌊︁
(ρ− 3)⌊(ρ− 1)ci⌋+ (ρ− 2)(ci + 1)

⌋︁
(6.18)
< ⌊(ρ− 1)ci⌋+ 1,
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where for the third equation we use that ⌊(ρ − 1)ci⌋ ∈ N. Because both sides of this
inequality are in N, we have

⌊(ρ− 2)(⌊ρci⌋+ 1)⌋ ≤ ⌊(ρ− 1)ci⌋ (6.19)

This yields

⌊ρci+1⌋ = ⌊(ρ− 2)ci+1⌋+ 2ci+1

Cor. 6.14
≤ ⌊(ρ− 2)(⌊ρci⌋+ 1)⌋+ 2ci+1

(6.19)
≤ ⌊(ρ− 1)ci⌋+ 2ci+1

= ⌊ρci⌋ − ci + 2ci+1

(6.15)
= ti + 2ci+1

= ti+1 + ci+1,

i.e., (6.16) holds. By induction ti + ci = ⌊ρci⌋ follows for all i ∈ [ℓ′].

Theorem 6.16. For ρ < φ+ 1, there is no ρ-competitive algorithm for problem instance I
with sufficiently large N ∈ N.

Proof. Suppose, for ρ < 2, there was a ρ-competitive incremental solution represented by
the sequence (c1, . . . , cℓ). Yet, Lemma 6.13 implies that

2 = t1 + c1 ≤ ⌊ρc1⌋ = 1

which is a contradiction, i.e., for ρ < 2, there is no ρ-competitive incremental solution.
Next, suppose that for ρ ∈ [2, φ+1) there was a ρ-competitive incremental solution. Let

the number of disjoint setsN ∈ N in the instance I be sufficiently large, and let (c1, . . . , cℓ)
with ci > ci+1 for all i ∈ [ℓ− 1] be the sequence representing a ρ-competitive incremental
solution. By Lemma 6.13 and Proposition 6.15, we know that the following conditions are
satisfied:
(i) c1 = 1,
(ii) ti + ci ≤ ⌊ρci⌋ for all i ∈ [ℓ′],
(iii) ci+1 ≤ ⌊ρci⌋+ 1 for all i ∈ [ℓ′].
For 1 ≤ j ≤ i ≤ ℓ′, from (i) it follows that

cj ≥
1

ρ
⌊ρcj⌋

(iii)
≥ 1

ρ
(cj+1 − 1) ≥ 1

ρ

[︃
1

ρ

(︃
cj+2 − 1

)︃
− 1

]︃
≥ · · · ≥ 1

ρi−j
ci −

i−j∑︂
k=1

1

ρk
.
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This implies

ti =

i∑︂
j=1

cj ≥
i∑︂

j=1

(︄
1

ρi−j
ci −

i−j∑︂
k=1

1

ρk

)︄

=

(︄
i−1∑︂
j=0

1

ρj

)︄
ci −

i∑︂
j=1

i−j∑︂
k=1

1

ρk

=
1− ρ−i

1− ρ−1
ci −

i∑︂
j=1

(︃
1− ρj−i−1

1− ρ−1
− 1

)︃

≥ 1− ρ−i

1− ρ−1
ci − i

1

1− ρ−1

=
1

1− ρ−1

(︁
(1− ρ−i)ci − i

)︁
. (6.20)

For i ∈ {2, . . . , ℓ′}, we obtain

ρ ≥ 1

ci
⌊ρci⌋

(ii)
≥ 1

ci
(ti + ci)

(6.20)
≥ 1

ci
· 1

1− ρ−1

(︁
(1− ρ−i)ci − i

)︁
+ 1

=
1

1− ρ−1

(︃
1− ρ−i − i

ci

)︃
+ 1. (6.21)

Observe that cj+1 > cj for all j ∈ [ℓ− 1] implies cj ≥ j for all j ∈ [ℓ]. It follows that

ci ≥
1

ρ− 1

(︁
⌊ρci⌋ − ci

)︁ (ii)
≥ 1

ρ− 1
ti

cj≥j

≥ 1

ρ− 1
· i(i+ 1)

2
,

which implies that
i

ci
≤ 2(ρ− 1)

i+ 1
. (6.22)

By definition of ℓ′ and by Proposition 6.15, ℓ′ increases when N is increased sufficiently.
Thus, for every ε > 0, there exists some N ∈ N such that

ℓ′

cℓ′

(6.22)
≤ 2(ρ− 1)

ℓ′ + 1
≤ ε

2
(6.23)

and
ρ−ℓ′ ≤ ε

2
. (6.24)

164



Since we chose N sufficiently large, we can assume that this holds. Let ε = 1− ρ−1
ρ φ.

Note that ε > 0 because ρ < φ+ 1. We obtain

ρ
(6.21)
≥ 1

1− ρ−1

(︃
1− ρ−ℓ′ − ℓ′

cℓ′

)︃
+ 1

(6.23),(6.24)
≥ 1

1− ρ−1
(1− ε) + 1

=
ρ

ρ− 1

(︃
1−

(︃
1− ρ− 1

ρ
φ

)︃)︃
+ 1

= φ+ 1,

This yields a contradiction to the fact that ρ < φ + 1. Thus, there is no ρ-competitive
algorithm for ρ < φ+ 1.

This result immediately yields the desired lower bound.

Corollary 6.17. The competitive ratio of IncMaxKnap with monotone, 1-bounded, and
fractionally subadditive objectives is at least φ+ 1.

6.2. Non-Strict Analysis

In the upper and lower bound in Theorems 6.8 and 6.10 it becomes apparent that the
value ofM has a lot of impact on the competitive ratio because we are always forced to
add the element of smallest weight first. In order to avoid this one can allow some slack
in the analysis, i.e., use the non-strict competitive ratio instead of the strict version. In
this section, we investigate the non-strict competitive ratio of IncMaxKnap.

6.2.1. An Adapted Capacity Scaling Algorithm

Recall that the CardinalityScaling algorithm presented in Section 4.1.1 adds optimum
solutions for capacities c1, c2, . . . one after the other. The capacities are chosen such
that c1 = 1 and ci+1 = ⌈δci⌉ for all i ∈ N with a scaling parameter δ > 1. We adapt
this algorithm to the IncMaxKnap problem. The algorithm KnapsackScaling sets c1 =
mine∈U w(e) and calculates ci+1 = δci for scaling parameter δ = φ + 1 where φ is the
golden ratio. Then, similar to the DoubleScaling algorithm, in phase i ∈ N, it adds the
elements of the set O(ci) in an order such that (6.4) holds. The non-strict competitive
ratio of this algorithm is smaller than the strict competitive ratio of DoubleScaling in
Theorem 6.8 and, furthermore, independent ofM (except for the additive constant).
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Theorem 6.18. The algorithm KnapsackScaling is non-strictly (φ + 1)-competitive with
additive constant α = (φ+ 1)M .

Proof. Let XA denote the incremental solution of KnapsackScaling. As XA adds the
optimum solution of capacity c1 = mine∈U w(e) first, we have have XA(C) = Opt(C) for
all C ∈ [0, c1].
Now, suppose that C ∈ (

∑︁i
j=1 cj , ci+1] for some i ∈ N. Note that the setXA(C) contains

the set O(ci), i.e.,

f(XA(C)) ≥ Opt(ci). (6.25)

By monotonicity of f , we have

Opt(C) ≤ Opt(ci+1)
Cor. 6.7
≤ ci+1

ci

(︁Opt(ci) +M
)︁

(6.25)
≤ ci+1

ci

(︁
XA(C) +M

)︁
= (φ+ 1)

(︁
XA(C) +M

)︁
,

which yields a non-strict competitive ratio of φ+ 1 with additive constant α = (φ+ 1)M .
Now, suppose that

C ∈

(︄
ci,

i∑︂
j=1

cj

]︄
(6.26)

for some i ∈ N≥2. Then

i−1∑︂
j=1

cj
Lem. 1.6
<

(︃
φ+ 1

φ
− 1

)︃
ci =

1

φ
ci < ci < C.

Thus, the solution XA(C) contains all optimum sets for capacities c1, . . . , ci−1 taking up a
capacity of at most∑︁i−1

j=1 cj . Thus, XA(C) also contains the prefix of O(ci) of capacity at
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most C −
∑︁i−1

j=1 cj , namely O
(︁
ci, C −

∑︁i−1
j=1 cj

)︁. Thus
f(XA(C)) ≥ f

(︄
O

(︄
ci, C −

i−1∑︂
j=1

cj

)︄)︄
Lem. 6.6

≥
C −

∑︁i−1
j=1 cj

ci
Opt(ci)−M

Cor. 6.7
≥

C −
∑︁i−1

j=1 cj

ci

(︃
ci
C
Opt(C)−M

)︃
−M

=

(︄
1− 1

C

i−1∑︂
j=1

cj

)︄
Opt(C)−

(︄
C −

∑︁i−1
j=1 cj

ci
+ 1

)︄
M

(6.26)
≥

(︄
1− 1

ci

i−1∑︂
j=1

cj

)︄
Opt(C)− 2M

Lem. 1.6
≥ (2− φ)Opt(C)− 2M

=
1

φ+ 1
Opt(C)− 2M,

which, yields a non-strict competitive ratio of φ+ 1 with additive constant α = 2M .

6.2.2. Lower Bound

We take a look at lower bounds on the non-strict competitive ratio of the IncMaxKnap
problem.
In Proposition 3.12, we have seen that, for every additive constant α ≥ 0, the non-

strict competitive ratio of IncMaxSep is greater or equal to the strict competitive ratio of
IncMaxCont. The objective of every instance of IncMaxSep is the maximum over modular
functions over the ground set. Thus, it is an XOS-function, and therefore fractionally
subadditive. Furthermore, it is monotone by Lemma 3.4. If it wasM -bounded, every lower
bound on the non-strict competitive ratio of IncMaxSep would transfer to the IncMaxKnap
problem with monotone,M -bounded, and fractionally subadditive objective. Yet, this is
not the case. In order to circumvent this problem, we reason in the following that the proof
of Proposition 3.12 can be adapted to a modified version of separable problem instances
that are 1-bounded.
In the proof of Proposition 3.12, a lower bound instance of IncMaxCont is discretized

arbitrarily finely to generate an instance of IncMaxSep. If we also do this, but additionally
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change the value of non-empty sets to always be at least 1, we obtain a monotone,
1-bounded, and fractionally subadditive objective. The analysis of this new problem
instance is very similar to the analysis in the proof of Proposition 3.12. This is due to
the fact that, by discretizing very finely, the density of small sets (in the proof, sets of
cardinality at most (ρ+ 1)cmin) is very close to 1. Thus, it (almost) makes no difference
that the values of a single element is increased to 1. We obtain the following.
Corollary 6.19. For every additive constant α ≥ 0, the (non-strict) competitive ratio of
IncMaxKnap with monotone,M -bounded, and fractionally subadditive objectives is greater or
equal to the strict competitive ratio of IncMaxCont.

Combining this with Theorem 3.27 yields the following
Corollary 6.20. For every additive constant α ≥ 0, the (non-strict) competitive ratio
of IncMaxKnap with monotone, M -bounded, and fractionally subadditive objectives is at
least 2.246

6.3. Application to s-t-Flows

In this section we show that the algorithms from the two previous sections can be used to
find competitive incremental solutions for incremental maximum potential-based s-t-flow
problems as in Example 6.4. Further, we show that the lower bound construction for the
strict competitive ratio from Section 6.1.2 can be modeled by a potential-based s-t-flow.
Lastly, we consider the incremental maximum s-t-flow problem without potentials and
derive upper and lower bounds for this.
Formally, for the incremental maximum potential-based s-t-flow problem on parallel

edges, we are given a directed graph G = (V,E) consisting of two nodes s and t with a
collection of edges between them. The goal is to determine an order in which to build
the edges while maintaining a potential-based s-t-flow that is as large as possible. To this
end, we are given a continuous and strictly increasing potential-loss function ψ : R → R
with limx→∞ ψ(x) = ∞. Every edge e has an edge resistance β(e) > 0 and a capacity µ(e).
Vertex potentials ps, pt ∈ R induce an s-t-flow of ϑ(e) = ψ−1(p/β(e)) on edge e where
p = pt − ps. This s-t-flow is only feasible if ϑ(e) ≤ µ(e). The goal is to choose vertex
potentials ps, pt ∈ R together with a subset of active edges that maximize the total induced
s-t-flow. This yields the objective

f(S) = max

{︄∑︂
e∈T

ψ−1

(︃
p

β(e)

)︃⃓⃓⃓⃓
⃓T ⊆ S, p ∈ R≥0 with ψ−1

(︃
p

β(e)

)︃
≤ µ(e) for all e ∈ T

}︄
(6.27)
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for all S ⊆ E. The function f is obviously monotone. We further obtain that f scaled by
(mine∈E µ(e))

−1 isM -bounded forM := maxe∈E µ(e)
mine∈E µ(e) because f({e}) = µ(e). We proceed

to show that the objective is fractionally subadditive.

Proposition 6.21. The function f : 2E → R≥0 defined in (6.27) is fractionally subadditive.

Proof. For e ∈ E, let
pe := β(e)ψ(µ(e))

be the maximum potential difference between s and t such that the flow along e induced
by the potential difference pe is still feasible, i.e., does not violate the capacity constraint
µ(e). For e, e′ ∈ E, we define ϑe′(e) to be the flow value along e induced by a potential
difference of pe′ between s and t if this flow is feasible, and 0 otherwise. For S ⊆ E, we
have

f(S) = max

{︄∑︂
e∈T

ψ−1

(︃
p

β(e)

)︃⃓⃓⃓⃓
⃓T ⊆ S, p ∈ R≥0 with ψ−1

(︃
p

β(e)

)︃
≤ µ(e)for alle ∈ T

}︄

= max

{︄∑︂
e∈S

ϑe′(e)

⃓⃓⃓⃓
⃓e′ ∈ E

}︄
,

i.e., f is an XOS-function and thus fractionally subadditive (see Example 6.2).

Since the objective is monotone and fractionally subadditive, we obtain the following
corollaries.

Corollary 6.22. The strict competitive ratio of the incremental maximum potential-based
s-t-flow problem on parallel edges is at most

ρ ∈
[︁
max

{︁
φ+1,M

}︁
,max

{︁
3.293

√
M, 2M

}︁]︁
,

whereM = maxe∈E µ(e)
mine∈E µ(e) .

Theorem 6.18 and Proposition 6.21 yield the following.

Corollary 6.23. The non-strict competitive ratio with additive constant (φ+1)maxe∈E µ(e)
mine∈E µ(e) of

the incremental maximum potential-based s-t-flow problem on parallel edges is at most φ+1.

It is possible to define a problem instance of the incremental maximum potential-based
s-t-flow problem on parallel edges which reflects the construction in Section 6.1.2. Thus,
the lower bound on the competitive ratio translates also to this special case.

169



Proposition 6.24. The strict competitive ratio of the incremental maximum potential-based
s-t-flow problem on parallel edges is at least φ+ 1.

Proof. Let N ∈ N. For i = 1, . . . , N define Ei to be a set of i parallel edges from s to t
with unit capacities. For e ∈ Ei, define its resistance to be β(e) := εi for some 0 < ε < 1.
Let the potential loss function ψ be continuous and strictly increasing with ψ(0) = 0. Let
pi := εiψ(1) be the potential difference between s and t inducing a flow of 1 on all edges
e ∈ Ei. Then, the maximum potential-based s-t-flow on a subset S ⊆ E :=

⋃︁N
i=1Ei is

given by

f ′(S) = max

{︄∑︂
e∈T

ψ−1

(︃
p

β(e)

)︃⃓⃓⃓⃓
⃓T ⊆ S, p ∈ R≥0 with ψ−1

(︃
p

β(e)

)︃
≤ u(e) for all e ∈ T

}︄

= max

{︄
i∑︂

j=1

∑︂
e∈Ej∩S

ψ−1

(︃
pi

β(ej)

)︃ ⃓⃓⃓⃓
⃓i ∈ [N ]

}︄

= max
i∈[N ]

|S ∩ Ei|+
i−1∑︂
j=1

|S ∩ Ej |ψ−1(εi−jψ(1)).

For all edges e ∈ Ei, the weights that represent the construction cost of the edges is
defined as in the problem instance in Section 6.1.2 to be w(ei) = b+ i! for b = (N + 2)!.
Note that the problem instance that we just defined is similar to the construction in
Section 6.1.2, with the only difference being the sum in the objective f ′. This sum can be
chosen arbitrarily small by choosing ε small enough.
Assume there is a ρ-competitive incremental solution X with ρ < φ+1 for this problem.

Let ε′ > 0 with ρ+ ε′ < φ+1. Consider the problem instance with objective f : 2U → R≥0

such that, for all S ⊆ U , we have
f(S) = max

i∈[N ]
|S ∩ Ei|.

This instance is the same as the one defined in Section 6.1.2. By Theorem 6.16 the
solution X cannot be better than (ρ + ε′)-competitive for the instance given by f , i.e.,
there exists C ∈ N with

(ρ+ ε′)f(X(C)) < Optf (C), (6.28)
where we write Optf (c) for the optimum of capacity c in the instance given by f . Analo-
gously, we write Optf ′(c) for the optimum of capacity c in the instance given by f ′. As X
is ρ-competitive for the instance with objective function f ′, we have f ′(X(C)) ≥ 1 and
thus also

1 ≤ f(X(C))
(6.28)
<

1

ρ+ ε′
Optf (C) (6.29)
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Choose ε small enough such that ρN2ψ−1(εψ(1)) < ε′. This yields

f ′(S)− f(S) =
i−1∑︂
j=1

|S ∩ Ej |ψ−1(εi−jψ(1)) ≤ n2ψ−1(εψ(1)) <
ε′

ρ
(6.30)

for all S ⊆ U . Then, we have

ρf ′(X(C))
(6.30)
< ρ

(︃
f(X(C)) +

ε′

ρ

)︃
(6.28)
< ρ

(︃Optf (C)
ρ+ ε′

+
ε′

ρ

)︃
= Optf (C)−

ε′

ρ+ ε′
Optf (C) + ε′

(6.29)
< Optf (C) ≤ Optf ′(C).

This is a contradiction to the fact that X is a ρ-competitive incremental solution for the
instance with objective f ′. Therefore, a ρ-competitive algorithm for the incremental
maximum potential-based s-t-flow problem cannot exist for ρ < φ+ 1.

We now return to the incremental maximum s-t-flow problem discussed in the beginning
of the chapter. In this problem, we are given a directed graph G = (V,E) with two
designated vertices s, t ∈ V .
For S ⊆ E, the incremental maximum s-t-flow problem has the objective

f(S) = max
{︁
v
⃓⃓
there exists an s-t-flow of value v in GS = (V, S)}.

It is straightforward to verify that f is modular (and, hence, also fractionally subadditive)
for the case that G has only the two vertices s and t and all edges go from s to t. This
problem can be solved by a greedy approach optimally. Thus, we will consider the problem
on a general directed graph G. It is easy to see that the objective does not have to be
fractionally subadditive in general. In fact, for the example of Figure 1.1, we have

f({b}) = 0, f({c}) = 0, f({b, c}) = k.

This contradicts fractional subadditivity for the choices A = {b, c}, B1 = {b}, B2 = {c},
and α1 = α2 = 1.
We proceed to show that, despite the lack of (fractional) subadditivity, this problem

admits a bounded competitive incremental solution. To solve this problem, we describe the
algorithm Quickest-Increment that has been introduced by Kalinowski et al. [43] for a
different incremental s-t-flow problem where the sum of the s-t-flow values for all integer
capacities C is to be maximized. The algorithm starts by adding the shortest path and then
iteratively adds the smallest set of edges that increase the value of the maximum s-t-flow
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by at least 1. We denote by r ∈ N the number of iterations until Quickest-Increment
terminates. For i ∈ {0, 1, . . . , r}, let λi be the size of the set added in iteration i, i.e., λ0 is
the length of the shortest s-t-path, λ1 the size of the set added in iteration 1, and so on.
We denote the incremental solution of the algorithm by XA.
With vmax ∈ R≥0 defined as the maximum possible s-t-flow value in the underlying

graph, for j ∈ [⌊vmax⌋], we denote by kj the minimum number of edges required to achieve
an s-t-flow value of at least j. The values λi and kj are related in the following way.

Lemma 6.25 ([43, Lemma 4]). Whenw(e) = µ(e) = 1 for all e ∈ E, we have λi ≤ kj/(j−i)
for all i, j ∈ N with 0 ≤ i < j ≤ r.

Using this estimate, we can find a bound on the competitive ratio of Quickest-Incre-
ment for the unit weight and unit capacity case.

Theorem 6.26. For the incremental maximum s-t-flow problem with unit capacities and
weights, the algorithm Quickest-Increment is 2-competitive.

Proof. Note that, since we consider the unit capacity case, we have vmax = r + 1 because
Quickest-Increment increases the value of the solution by exactly 1 in each iteration.
Consider some capacity C ∈ [|E|]. If C < k1, we have f

(︁
O(C)

)︁
= 0, i.e., every

incremental solution is competitive. If C ≥ k1, let j := f
(︁
O(C)

)︁. Note that we have
f
(︁
O(kj)

)︁
= j = f

(︁
O(C)

)︁ and therefore C ≥ kj . By Lemma 6.25, we have

⌈j/2⌉−1∑︂
i=0

λi ≤
⌈j/2⌉−1∑︂

i=0

kj
j − i

= kj

⌈j/2⌉−1∑︂
i=0

1

j − i

≤ kj

⌈j/2⌉−1∑︂
i=0

1

j −
⌈︁ j
2

⌉︁
+ 1

= kj

⌈︃
j

2

⌉︃
1⌊︁ j

2

⌋︁
+ 1

≤ kj (6.31)

This implies f(XA(C)) ≥ f(XA(kj))
(6.31)
≥

⌈︁ j
2

⌉︁
≥ 1

2j =
1
2f(O(C)).

Now, we turn to the case of unit capacities and rational weights. By rescaling the weights,
we can assume that, without loss of generality, the weights are integral. To transform an
instance with integral weights to one where all edges have unit weight, one can simply
replace every edge e ∈ E by a path of length w(e) where every edge on the new path has
unit weight. Then, Theorem 6.26 can be applied and we obtain the following.

Corollary 6.27. The algorithm Quickest-Increment is 2-competitive for the incremental
maximum s-t-flow problem with unit capacities and w(e) ∈ Q≥0 for all e ∈ E.
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If we consider capacities that are in the interval [1,M ], one s-t-path can carry at mostM
times as much s-t-flow as every other s-t-path. Combining this with the fact that the
incremental solution of Quickest-Increment for the instance with µ(e) = 1 for all e ∈ E
is 2-competitive yields that adding the edges in the same order is always within a factor
of 2M of the optimum solution.
Corollary 6.28. The solution obtained by Quickest-Increment when the capacities are all
set to 1 is 2M -competitive for the incremental maximum s-t-flow problem with µ(e) ∈ [1,M ],
w(e) ∈ Q≥0 for all e ∈ E.

As it turns out, the competitive ratio of Quickest-Increment of 2 in the unit capacity
case is optimal.
Theorem 6.29. The competitive ratio of the incremental maximum s-t-flow problem with
unit capacities and weights is at least 2.

Proof. Consider the directed graph G = (V,E) with
V := {s, t, u1, u2, u3, v1, v2, v3},
E := {(s, u1), (s, v1), (u1, u2), (v1, v2), (u2, u3), (v2, v3), (u3, t), (v3, t), (u1, v3)},

with unit capacities and unit weights (cf. Figure 6.2). Let X be an arbitrary incremental
solution that is ρ-competitive. If the first three elements added by X are not the elements
(s, u1), (u1, v3), and (v3, t) (in any order) then the incremental solution is not competitive
for capacity 3. Thus, any competitive solution starts by adding these three elements. This,
however, implies that the first eight elements of X cannot contain the elements of the
upper and lower paths, i.e., we have

{(s, u1), (u1, u2), (u2, u3), (u3, t)} ∪ {(s, v1), (v1, v2), (v2, v3), (v3, t)} ⊈ X(8).

This implies that f(X(8)) = 1. Since Opt(8) = 2, we obtain ρ ≥ 2, as claimed.
Furthermore, similar to the IncMaxKnap problem with a fractionally subadditive,M -

bounded objective function, no algorithm can have a competitive ratio better than M
when µ(e) ∈ [1,M ] for all e ∈ E.
Theorem 6.30. The competitive ratio of the incremental maximum s-t-flow problem with
unit weights and µ(e) ∈ [1,M ] for all e ∈ E is at leastM .

Proof. Consider the directed graph G = (V,E) with
V := {s, t, v},
E := {(s, t), (s, v), (v, t)},
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s

v1 v2 v3

u1 u2 u3

t

Figure 6.2.: A lower bound instance with best possible competitive ratio 2 for the incre-
mental maximum s-t-flow problem

with unit weights and capacities µ((s, t)) = 1, µ((s, v)) = µ((v, t)) = M (cf. Figure 1.1
with k =M).
Let X be an arbitrary incremental solution. If X does not begin with element (s, t),

then it is not competitive for capacity 1. This, however, implies that, if X is competitive,
we have X(2) ̸= {(s, v), (v, t)}. Thus, we have f(X(2)) = 1 while Opt(2) = M . This
implies ρ ≥M , as claimed.
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7. Conclusion

The goal of this work was to investigate the competitive ratio of the IncMax problem. We
have seen right from the start, in the instance in Figure 1.1, that the competitive ratio
of IncMax is unbounded. Thus, we tried to find meaningful subclasses of IncMax that
induce a bounded competitive ratio.
In Chapter 2, we analyzed the Greedy algorithm that iteratively adds the element

that yields the largest increase in the objective value. For this, we introduced the class of
γ-α-augmentable problems and showed that it encompasses important classes of greedily
approximable problems from the literature, e.g., problems with an α-augmentable ob-
jective, objectives with a bounded submodularity ratio, or objectives that are weighted
rank functions. We gave an upper bound on the competitive ratio of α−(1−c)γ

γ · eα−(1−c)γ

eα−(1−c)γ−1
.

This bound is tight for curvature c = 1 and recovers the known bounds for the subclass
with α-augmentable objectives, as well as for the subclass with objectives with bounded
submodularity ratio and curvature c. Our tight lower bound also closed a gap left in the
analysis of the class with α-augmentable objectives left in [5].
Then, we turned to analyzing the competitive ratio of the class IncMaxacc of instances

with and accountable objectives. In Chapter 3, we reduced this problem to analyzing the
competitive ratio of the well-structured subclass IncMaxSep. We introduced IncMaxCont
as a continuization of IncMaxSep and showed that lower bounds on the strict competitive
ratio of IncMaxCont are also a lower bound on the (non-strict) competitive ratio of
IncMaxSep. We gave evidence that the upper bound of φ+1 on the competitive ratio might
actually be tight. Using a similar technique, we gave an improved lower bound of 2.246
on the competitive ratio of IncMaxCont. Subsequently, in Chapter 4, we took one step
back and investigated the IncMaxSep problem again. We presented three deterministic
algorithms, CardinalityScaling, ValueScaling, and DensityScaling, and gave tight
bounds on their competitive ratio of φ+ 1, φ+ 1, and 4, respectively. Lastly, we turned
to randomized algorithms, where the RandScaling algorithm, a randomized version
of CardinalityScaling, gave an upper bound of 1.772 on the randomized competitive
ratio of IncMaxSep. We complemented this with a lower bound of 1.357 by using Yao’s
principle.
In Chapter 5, we introduced the new class of β-accountable functions that generalizes
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the classes of accountable, subadditive, and γ-α-augmentable functions. We gave upper
and lower bounds on the competitive ratio of the class with β-accountable objectives, that
are tight for β → 0. For β = 1, the upper bound exactly recovers the best upper bound
of φ+ 1 known for the class with accountable objectives. For β = 1

2 , we showed that we
capture the class of subadditive objectives and obtain an upper bound of 2 +

√
2 on its

competitive ratio, which, to our knowledge, is the first one known.
Lastly, in Chapter 6, we considered IncMaxKnap, a variation of IncMax where we are

not given an unknown cardinality constraint, but an unknown knapsack constraint. We
started off by investigating the strict competitive ratio of this problem for objectives that
are monotone, fractionally subadditive andM -bounded. We gave upper and lower bounds
and could see that, for large M , the competitive ratio grows linearly in M . In order to
avoid this, we turned to the non-strict competitive ratio and showed that an algorithm
with constant non-strict competitive ratio φ+ 1 and additive constant (φ+ 1)M exists.
We also argued that every lower bound on the strict competitive ratio of IncMaxCont,
e.g., the bound of 2.246 from Section 3.2.2, is a lower bound on the non-strict competitive
ratio for IncMax under a knapsack constraint with monotone, fractionally subadditive
andM -bounded objective for allM ≥ 1.

7.1. Future Work

While we were able to show a bounded competitive ratio for many natural problem classes,
there are still relatively simple problems that admit a competitive solution, but that are
not captured by any of our settings.
Proposition 7.1. For all β ∈ (0, 1], there exists an instance of IncMax that is not weakly
β-accountable, and for which every ordering is an optimal incremental solution.

Proof. Let U = N and consider the objective function f : 2U → R≥0 such that, for all
S ⊆ U ,

f(S) = |S|2.
It is obvious that every ordering of the elements in U is optimal because all elements are
symmetrical with regard to f . Monotonicity of f follows immediately from the fact that
the function x2 is non-decreasing for x ≥ 0. It remains to show that f is not β-accountable.
For this, let k =

⌈︁
1
β

⌉︁
+ 1 consider the set S = [k] ⊆ U . Let (e1, . . . , ek) be any ordering of

the elements in S. Then
f({e1}) = 1 < βk = β

1

k
k2 = β

1

k
f(S),

i.e., f is not β-accountable.
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One problem with the instance in Proposition 7.1 it that the objective value grows very
fast with increasing set size. Thus, the objective is not β-accountable. Yet, the elements
behave very symmetrically which is why a competitive incremental solution exists. We
leave it as an open question to find a natural problem class that captures such problems
where the elements are rather symmetrical, and to find a generalization of it that also
encompasses β-accountable objectives.
We explored one generalization of the unknown cardinality constraint in Chapter 6

where we looked at the problem under an unknown knapsack constraint. A knapsack
constraint requires that the value of our solution under some modular function does not
exceed an unknown value. In future work, this can be generalized even further to not
only consider modular functions, but any monotone function. A cardinality constraint
can also be expressed as the requirement that the solution has to be independent in
some uniform matroid. To generalize this, rather than considering an unknown uniform
matroid constraint, one can consider some unknown matroid constraint or an unknown
independence system constraint.
Many of our results are not tight, so, naturally, the open question arises to find tight

bounds in these settings. Examples include the deterministic and randomized compet-
itive ratio of IncMaxacc, the deterministic competitive ratio of the class IncMax with
β-accountable objectives, or the strict and non-strict competitive ratio of IncMax under a
knapsack constraint with monotone, fractionally subadditive andM -bounded objective.
We leave it open to find a natural generalization of weak γ-α-augmentability that

captures a larger set of greedily approximable objectives. The challenge is to find a
meaningful generalization in terms of a natural definition that does not directly depend
on the behavior of the Greedy algorithm as it it the case with weak γ-α-augmentability,
but rather enforces some structural property of the objective function.
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C bound C bound C bound C bound C bound
1 0.64208 35 0.57597 69 0.57364 103 0.57187 137 0.57071
2 0.65090 36 0.57576 70 0.57369 104 0.57184 138 0.57069
3 0.60073 37 0.57576 71 0.57370 105 0.57185 139 0.57064
4 0.59777 38 0.57582 72 0.57378 106 0.57179 140 0.57063
5 0.58725 39 0.57601 73 0.57374 107 0.57171 141 0.57063
6 0.58432 40 0.57618 74 0.57371 108 0.57171 142 0.57059
7 0.59353 41 0.57598 75 0.57369 109 0.57168 143 0.57057
8 0.59445 42 0.57600 76 0.57370 110 0.57162 144 0.57054
9 0.59025 43 0.57591 77 0.57364 111 0.57159 145 0.57050
10 0.59115 44 0.57588 78 0.57360 112 0.57153 146 0.57050
11 0.58804 45 0.57591 79 0.57354 113 0.57145 147 0.57049
12 0.58747 46 0.57593 80 0.57338 114 0.57146 148 0.57046
13 0.59052 47 0.57567 81 0.57325 115 0.57143 149 0.57045
14 0.59002 48 0.57545 82 0.57323 116 0.57139 150 0.57042
15 0.58765 49 0.57531 83 0.57313 117 0.57137 151 0.57038
16 0.58664 50 0.57511 84 0.57308 118 0.57130 152 0.57038
17 0.58482 51 0.57512 85 0.57302 119 0.57125 153 0.57036
18 0.58287 52 0.57510 86 0.57288 120 0.57125 154 0.57032
19 0.58344 53 0.57486 87 0.57280 121 0.57121 155 0.57030
20 0.58278 54 0.57479 88 0.57275 122 0.57116 156 0.57026
21 0.58143 55 0.57462 89 0.57268 123 0.57113 157 0.57021
22 0.58114 56 0.57444 90 0.57266 124 0.57106 158 0.57018
23 0.57983 57 0.57452 91 0.57259 125 0.57098 159 0.57016
24 0.57885 58 0.57446 92 0.57244 126 0.57096 160 0.57011
25 0.57921 59 0.57432 93 0.57232 127 0.57091 161 0.57007
26 0.57858 60 0.57422 94 0.57224 128 0.57087 162 0.57003
27 0.57814 61 0.57405 95 0.57214 129 0.57083 163 0.56999
28 0.57791 62 0.57380 96 0.57209 130 0.57078 164 0.56997
29 0.57698 63 0.57377 97 0.57201 131 0.57077 165 0.56997
30 0.57609 64 0.57369 98 0.57195 132 0.57076 166 0.56995
31 0.57609 65 0.57361 99 0.57195 133 0.57073 167 0.56995
32 0.57583 66 0.57369 100 0.57191 134 0.57075 168 0.56994
33 0.57581 67 0.57369 101 0.57185 135 0.57076 169 0.56990
34 0.57615 68 0.57359 102 0.57189 136 0.57073 170 0.56990

Figure A.1.: Evaluations for C ∈ [170] of the lower bounds on the inverse of the randomized
competitive ratio that was derived in (4.21) in the proof of Theorem 4.21.
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