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Abstract
This dissertation examines anomalies of the volatility surface. Technical

anomalies as well as market anomalies are examined. The VIX Index struc-

turally underestimates model-free implied variance, and the extend of un-

derestimation varies over time. The SABR model can be utilized to identify

stock price bubbles, and arbitrage opportunities in the volatility surface co-

incide with other changes in trading dynamics in the underlying.

Kurzzusammenfassung
Diese Dissertation untersucht Anomalien der Volatilitätsoberfläche. Es wer-

den sowohl technische Anomalien als auch Marktanomalien untersucht. Der

VIX-Index unterschätzt strukturell die modellfreie implizite Varianz, und

das Ausmaß der Unterschätzung variiert im Laufe der Zeit. Das SABR-

Modell kann zur Identifizierung von Aktienpreisblasen verwendet werden,

und Arbitragemöglichkeiten auf der Volatilitätsoberfläche fallen mit anderen

Änderungen in der Handelsdynamik des Basiswerts zusammen.
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Chapter 1

Introduction

1.1 Background and Motivation

When judged by its ability to explain the empirical data, option

pricing theory is the most successful theory not only in finance,

but in all of economics. [Ross, 1987]

While option contracts have a long history, the breakthrough in option pric-

ing were the seminal papers by Black and Scholes [1973] and Merton [1973]

who independently developed a closed-form solution for European options in

continuous time and introduced the market’s expectation of future volatility

as explicit input parameter of the pricing equation. This contribution revo-

lutionized financial markets and garnered widespread recognition, ultimately

earning Robert C. Merton and Myron S. Scholes the Nobel Memorial Prize

in Economic Sciences for their transformative work1. The concept of implied

volatility emerged as integral part of option pricing theory and as a widely

used standard to quote option prices in business transactions. It is calculated

by solving the Black-Scholes-Merton model (BSM model)2 for its variance pa-

1Fisher Black passed away in 1995, and Nobel Prizes are not awarded posthumously.
2It is possible to calculate the implied volatility for other option pricing models, but
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rameter given an option contract specification plus its observed price. The

collection of all implied volatilities across strikes and expirations at a point in

time is called the volatility surface, and it represents the market’s collective

expectation of future uncertainty.

Subsequent decades witnessed the development of extensions and improve-

ments of the Black-Scholes-Merton model, such as stochastic volatility (e.g.

Heston [1993]) and jumps in asset prices (e.g. Merton [1976]), to better re-

flect real-world dynamics. The advances in theoretical option pricing lead

to increased popularity of options. As market participants’ understanding of

pricing and hedging grew, liquidity increased, and more complex strategies,

such as straddles, strangles, and spreads, became common tools to manage

risk and speculate on market movements. Figure 1.1 illustrates the develop-

ment of option trading based on the number of daily actively traded options

contracts on the Standard & Poor’s 500 Index (SPX Index) as well as on

the constituents of the MSCI Investible Markets Index (MSCI IMI), which

covers the US’ large-, mid-, and small-cap stocks. In recent years, option

trading even gained popularity among retail investors, which may be seen as

a testament to the success and increasing approachability of financial theory.
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Figure 1.1: Daily actively traded options contracts for the SPX Index as well as
the constituents of MSCI IMI. The contracts are split by tenor as defined in B.3.
For visual clarity, one year rolling averages are presented.

Option pricing theory has become one of the most empirically accurate the-

rarely done in practice. We explore this issue in chapter 2.
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ories in economics, and studying the volatility surface allows us to directly

observe market perceptions of risk. It has been the subject of extensive

study, with theoretical models and results that are fundamentally sound,

and any known limitations can be effectively managed. However there are

instances where the empirical volatility surface diverges from the theoretical

predictions, even when the underlying theory stands true. This dissertation

is concerned with these anomalies of the volatility surface.

This dissertation contributes to the understanding of the volatility surface

in two perspectives and three distinct research questions. First, how tech-

nical reasons affect the analysis of aggregate measure of the future market

uncertainty, and second, how irrational expectations and overoptimistic spec-

ulation can shape the volatility surface.

1.2 Research Questions

Within this dissertation, anomalies of the volatility surface are distinguished

into two categories: technical anomalies, and market anomalies.

Technical anomalies arise due to practical limitations of option trading in

the form of discrete and truncated strikes. They manifest as distinct gaps

between strike prices where no options are specified or actively traded, and

minimum and maximum strikes. In contrast, financial theory often relies

on the foundational assumption of complete markets, wherein assets and

derivatives are available at all possible strikes and without consideration for

liquidity. This theoretical ideal posits a continuum of strike prices, ranging

seamlessly from zero to infinity, necessitating interpolation to fill the gaps

between strikes, and extrapolation to extend the observable data beyond the

minimum and maximum strikes.

The first research question of this dissertation is to examine the effect of

truncation and discretization on the estimation of the markets’ expectation

3



of uncertainty in different market regimes. The analysis is based on simu-

lated – and therefore known, not estimated – volatility surfaces, which are

artificially truncated and discretized. From the remaining set of options, the

implied volatility is calculated using different interpolation and extrapolation

methods. The impact of discretization and truncation are examined and the

ability of various suggested approaches are benchmarked. Variance swaps

are volatility derivatives whose payoff is equal to the markets’ expectation of

future realized variance. By constructing a replication portfolio of an infinite

continuum of out-of-the-money options, we are able to price a variance swap

theoretically precise. Using a variety of option pricing models with different

parameterizations to account for different market dynamics and regimes, we

first generate infinitely dense and wide volatility surfaces. In separate tests,

these surfaces are then artificially discretized from very dense to sparse, and

artificially truncated from wide to narrow. A variance swap replication port-

folio is then constructed from the remaining options, and the future realized

variance is calculated using different approaches for inter- and extrapolation.

For each model, we derive the model-true variance explicitly as a bench-

mark. In conjunction with the parameters of each simulated surface, this

sets the benchmark against which the implied volatility is evaluated. We

find that discretization bias in variance swaps tends to be self-correcting and

the common approaches to interpolation are stable for reasonable strike grid

densities. Truncation on the other hand introduces a structural negative bias,

and none of the tested extrapolation methods provides a robust compensa-

tion. Depending on the specific method, the certain shapes of the volatility

surface can lead to overcompensation, increasing the error.

The second research question focusses on this structural underestimation due

to truncation further, to provide a reliable compensation term, and assess the

effect of the truncation error in practice. Based on a well-established result

on rational shapes of the volatility surface at extreme strikes by Lee [2004],

we develop an explicit compensation term for the truncation-induced error.

As variance swaps form the theoretical underpinning of volatility indices

such as the CBOE VIX Index, the explicit compensation term permits us

4



to examine the effect of truncation on these indices. As the width of the

actively traded option strike grid fluctuates over time, the severeness of the

structural underestimation also fluctuates. In periods of positive returns with

low volatility, the option strike grid contracts, leading to larger truncation

errors. As prices correct and volatility increases, the option strike grid widens

and the truncation error becomes negligible.

Market anomalies arise where the shape of the volatility surface diverges

from fundamental financial theory, such that the fundamental theorem of

asset pricing does not hold, and the subsequent theory breaks down. The

third research question of this dissertation analyzes speculative bubbles in

option prices, which manifest themselves in irrational shapes of the volatility

surface. The stochastic alpha beta rho model (SABR model) is one of the few

option pricing models that admits a strict martingale representation. We

utilize this property by calibrating a SABR model to observed option prices

to detect speculative bubbles. In an event study covering 2576 stocks over

26 years, we find that the option market absorbs speculative bubbles much

faster than the equity market, and that irregular shapes in the volatility sur-

face precede significant and persistent changes in the distribution of returns,

option trading activity, outstanding short interest, and institutional own-

ership. We further find that speculative bubbles are temporally clustered,

and occur almost exclusively in periods of sustained positive asset returns.

During market corrections, speculative bubbles dissipate quickly.

1.3 Structure of the Dissertation

This dissertation consist of three separate studies. Figure 1.2 provides an

overview of the structure of the dissertation and draws connections between

the presented studies.

Chapter 2 examines the structural errors that arise when pricing variance

5



Figure 1.2: Structure of the dissertation. Anomalies in the volatility surface
are distinguished into technical and market anomalies. Chapter 2 examines
the technical anomalies in the volatility surface and the errors they introduce.
Chapter 3 proposes a solution to the structural errors in the VIX Index
which are caused by truncation. Chapter 4 studies the effect of irrational
exuberance on the volatility surface.

swaps using replication portfolios based on artificially constrained option

strike grids. It introduces the two sources of technical anomalies when pricing

variance swaps, truncation and discretization, and examines their impact in

detail 3.

Chapter 3 shows how the VIX Index is fundamentally a variance swap, and

how it structurally underestimates model-free implied variance, and how this

error depends on market volatility itself. It further suggests a novel approach

to extrapolate the volatility smile in the strike domain using asymptotic

properties derived from the underlying probability density function 4.

Chapter 4 analyzes irrational shapes in the volatility surface, and the impli-

cations of overoptimistic speculation. First, the notion of strict local martin-

gales and their implications is introduced and the necessary conditions within

the SABR model are examined. An event study then connects deformations

3Chapter 2 is currently under review in the International Journal of Theoretical &
Applied Finance.

4Chapter 3 was published as Stahl, P.: Asymptotic extrapolation of model-free implied
variance: exploring structural underestimation in the VIX Index. Review of Derivatives
Research 25, 315–339 (2022) https://doi.org/10.1007/s11147-022-09190-2.
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of the volatility smile with fundamental data and finds that it can indicate

permanent changes in fundamental trading dynamics. The identified events

are then studied in aggregate over time, showing that periods of sustained

positive returns and low volatility increase the markets’ optimism beyond a

rational measure 5.

Finally, chapter 5 concludes the findings.

5Chapter 3 was published as Stahl, P. and Blauth, J.: Martingale Defects in the Volatil-
ity Surface and Bubble Conditions in the Underlying. Review of Derivatives Research 27,
85–111 (2024) https://doi.org/10.1007/s11147-023-09200-x.
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Chapter 2

Structural Errors in Variance

Swap Replication

Model-free implied variance, the theoretical underpinning of variance swaps

as well as the VIX Index, is non-parametric by design. However, its imple-

mentation introduces some assumptions that cause structural errors. This

chapter examines the performance of three commonly used implementations

of model-free implied variance under a variety of simulated market condi-

tions. We find that all three discussed implementations have drawbacks, and

provide guidance for the choice of the implementation method.

2.1 Introduction

The CBOE VIX Index is the probably best known volatility index for equity

markets. It attempts to extract the markets expectation of future realized

variance of the S&P 500-Index. Under absence of arbitrage and risk neu-

trality, the fair price of any financial product equals its discounted expected

payoff. For option contracts, the payoff is a function of the price of its under-

9



lying at expiration and the strike. Accordingly, the fair price is the payoff for

each possible price of the underlying multiplied with its probability. Dupire

[1994] shows that a complete option chain therefore fully determines the

stochastic process of the underlying, and equivalently determines its risk-

neutral density. Britten-Jones and Neuberger [2000] utilize this to extract

the future realized variance of the underlying from its option chain without

assuming a stochastic process for the underlying. This model-free implied

variance (MFIV) is the theoretical foundation of the VIX Index as laid out

in CBOE [2018].

In practice, option chains are naturally discrete, and any implementation

of MFIV must consider two issues. First, the discreteness of option strikes

requires interpolation. Second, the option chain has a minimum and a max-

imum strike, beyond which option prices are not available. While it is not

strictly necessary to extrapolate option prices, many authors1 chose to do so.

While MFIV itself is purposely mode-free, the choice of interpolation and

extrapolation methods imply assumptions about the stochastic process of

the underlying. The goal of this chapter is to show the effects of different

interpolation and extrapolation approaches on MFIV under various market

conditions. To accomplish this, three models are selected to benchmark

against. They exhibit either stochastic variance, jumps in the return process,

or both. For each model, the parameters of its primary feature are varied, and

a multitude of volatility surfaces are generated. Each surface is artificially

discretized and truncated, and three widely used implementations of MFIV

are benchmarked against the models’ expected variance.

We find that, due to the smooth nature of our simulated volatility surfaces,

discretization appears to be of low concern. Naive linear interpolation ap-

proaches appear to be sufficient under a variety of market conditions. Trun-

cation on the other hand poses a bigger challenge. Ignoring truncation, such

as proposed by CBOE [2018], does lead to structural underestimation of

1An overview of related literature is provided in section 2.2.3; specifically see Jiang and
Tian [2005], Jiang and Tian [2007], and Fengler [2009]
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MFIV. Extrapolation with constant Black-Scholes Implied Variance (BSIV)

also leads to underestimation of MFIV, albeit typically less. Spline-based

extrapolation is prone to overshooting and unpredictability, as here the cur-

vature of the variance smile at the cutoff point becomes a significant factor.

Neither of these approaches fulfills no-arbitrage conditions.

This chapter provides the following contributions. We develop a systematic

approach to analyze and compare the performance of MFIV implementations.

Furthermore we identify the error dynamics under stochastic volatility and

jump processes and the impact of their parameters on the performance of

an implementation of MFIV. Most importantly, we find that all three im-

plementations of MFIV exhibit structural errors that change with market

dynamics. Any implementation of MFIV should be evaluated against a vari-

ety of stochastic processes for its underlying to achieve robustness in changing

environments.

The remainder of this chapter is structured as follows. First, we derive MFIV

and show the fundamental implementation challenges, and review the litera-

ture concerned with implementing MFIV. Second, we explain the three most

common approaches to both issues in detail. Third, we set up the experi-

ment design and show how simulated surfaces are discretized and truncated.

Fourth, we derive the benchmark variance for each model. Fifth, we provide

a detailed review of simulation results and the effects of market conditions

on MFIV. Finally we summarize our findings and provide recommendations.

11



2.2 Theoretical Background and Fundamen-

tal Challenges

2.2.1 Derivation of Model-free Implied Variance

Under risk neutrality, option prices are determined by probability of the un-

derlying expiring in-the-money and its respective payoff. Demeterfi et al.

[1999] reverse-construct a trinomial strike-price tree with deterministic local

volatility as a function of strike and time from observed option prices. Neu-

berger [1994] introduces the concept of futures contracts that pay the natural

logarithm of an underlying future at expiration and shows that the payoff of

a delta-hedged log-contract depends purely on volatility of the underlying,

provided its variance is constant over time. Britten-Jones and Neuberger

[2000] show that, with K being the option strike price, a 1
K2 -weighted port-

folio of out-of-the-money options has constant sensitivity to changes in vari-

ance, and construct a portfolio that perfectly replicates forward variance of

a continuous underlying2. Furthermore, it is only based on the assumption

of risk-neutrality, and does not rely on a specific stochastic model for the

underlying process, except that it follows a diffusion. It is therefore called

model-free implied variance (MFIV). Britten-Jones and Neuberger [2000] de-

fine the MFIV as

EQ
0

[∫ T

0

(
dFt

Ft

)2
]
= 2

∫ ∞

0

C(T,K)−max(F0 −K, 0)

K2
dK (2.1)

with C(T,K) being the call option price, K ∈ K being the strike, and, since

the expectation is taken under Q, C(t,K) = EQ
t [max(Ft−K, 0)] for all t ∈ T .

Since option sensitivity to changes in variance – commonly referred to as

vega – peaks at the strike of the option, the discrete nature of strikes of

observable options fundamentally introduces replication errors. Derman and

2For example, see Derman and Miller [2016], Chapter 4.
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Miller [2016] show that the replication error grows larger as fewer contracts

are observed. When few options are observed, the replication portfolio de-

scribed by equation 3.2 exhibits fluctuating variance sensitivity in the put

side, and diminishing variance in the call wing. This asymmetric sensitivity

is a consequence of the 1
K2 weighting scheme, which compensates the higher

dollar-vega of contracts with higher strikes.

Jiang and Tian [2005] show that replication portfolio holds for price processes

with jumps in the price level. Furthermore, they find evidence that the

MFIV is a more accurate predictor of future realized variance than historical

variance or Black-Scholes ATM implied variance. They state theoretical

upper bounds for the truncation and discretization errors. Jiang and Tian

[2007] examine the implementation equation 3.2 by CBOE [2018] and find it

to be systematically flawed. They suggest a numerical scheme to overcome

the issues. This chapter extends their analysis and provides a framework to

evaluate numerical schemes in the context of MFIV.

Carr et al. [2012] show that equation 3.2 also holds for arbitrary exponential

Lévy processes with few technical conditions. Carr and Wu [2009] utilize

MFIV to estimate variance risk premia for indices and single stocks. They

also provide a detailed interpolation and extrapolation procedure that we

will discuss in section 2.3.2.

2.2.2 Discretization and Approaches to Interpolation

Discretization errors result from the simple fact that option strikes are dis-

crete by nature. Thus, we can only approximate the k-continuous integral of

equation 3.2.

In their implementation of the VIX index, CBOE [2018] uses constant mid-

point interpolation between observations, which we will discuss in section

2.3.1.
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Carr and Wu [2009] interpolate implied variance linearly in similar manner

and generate a high-density strike-price grid to integrate along. We will

discuss their approach in more detail in 2.3.2. Kahale [2005] suggests inter-

polating observed call prices with polynomial splines, then translating it into

Black-Scholes implied volatilities, and finally interpolating implied variances

linearly. Fengler [2009] argues that this approach, to guarantee absence of

arbitrage, requires absence of arbitrage within the observed option prices.

Since this is not guaranteed, he suggests smoothing the volatility surface

using natural cubic splines (NCS). When smoothing, true observations are

removed in favour of an arbitrage-free surface calibration. Therefore, this

type of interpolation is not a suitable approach in the context of MFIV com-

putation. Laurini [2011] suggests a similar smoothing procedure, and impose

absence of static arbitrage by using constrained B-splines. Fengler and Hin

[2015] refine this by using a tensor-product B-spline to enforce no-arbitrage

constraints in strike and calendar dimensions.

Jiang and Tian [2007] also chose natural cubic splines, but apply them di-

rectly to the implied volatilites of their observations. Their implementation

will be discussed in 2.3.3.

Glau et al. [2017] suggest bivariate interpolation along the implied volatility

smile based on Chebyshev polynomials. They find that their implementation

approaches the accuracy of natural cubic splines at reduced computational

expense. However, they do not apply their results to the specific problem

at hand. Fukasawa et al. [2011] avoid numerical integration by integrating

with respect to the standard normal density, and interpolating along the inte-

grand using piecewise polynomials. They show that their approach prevents

numerical oscillations of the error term. Some insight into these oscillations

can also be found in Jiang and Tian [2005]. Loucks [1996] remarks that –

in the context of terrain elevation – Chebyshev polynomials should only be

used on fine grids, since they tend to overshoot when observations have large

vertical distances. The same applies to volatility surface interpolation, and

the level of trading activity of the chosen market should be considered when
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choosing an interpolation method.

2.2.3 Truncation and Approaches to Extrapolation

Option strikes are naturally truncated. The defining integral of equation 3.2

requires option strikes from zero to infinity, which is naturally not observable.

The VIX Index implementation by CBOE [2018] does not extrapolate option

prices beyond the outermost strikes. Accordingly, this leads to a structural

underestimation of true MFIV, which depends on the distance of the outer-

most strikes and the relative price levels.

Another approach is to extrapolate option prices from the observed prices

outward. As out-of-the-money option prices tend to approach zero as |k| →
∞, it is standard practice to extrapolate on the BSIV surface3. Carr and Wu

[2009] convert the outermost option prices into BSIV, and extrapolate with

constant BSIV.

Jiang and Tian [2007] utilize the slope of the cubic spline at the outermost

strikes, and extrapolate BSIV linearly with a constant slope. Fengler [2009]

follows a similar approach on a smoothed surface.

A fundamentally different approach would be to calibrate a stochastic model

against observable data and generate prices from the surface. This approach

depends on wether the chosen model can accurately resemble the observed

prices. In this chapter, we choose the stochastic model to compare differ-

ent implementations, therefore a model-dependent extrapolation approach

cannot be sensibly compared and will be omitted here. Figlewski [2008]

extrapolates the tails by fitting a generalized extreme value distribution to

option prices directly. Since this fundamentally implies the assumption of

3for example, see Andersen and Andreasen [2000], Cont and da Fonseca [2002], and
Choi et al. [2009]
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specific process dynamics, this approach is also not reviewed further.

2.3 Implementations

This section provides details on three implementations of equation 3.2. In

the first section, the official definition of the VIX Index is examined. The

following two sections provide different approaches to reduce the effect of

discrete option prices on the computation of the continuous integral.
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Figure 2.1: Comparison of three implementation schemes
of equation 3.2. For visual clarity, out-of-the-money option
prices have been translated into BSIV, even though the com-
putation requires the corresponding prices. Option prices
have been generated using a Heston model with parameters
Ω = {v0 = 0.0225, v̄ = 0.0225, a = 3, η = 0.25, r = 0, ρ =
0.2}. Nine equidistant strikes centered around K0 have been
selected to be made available to the implementation function.
The panels on the left side illustrate the implementation in
dollar-strike terms, the panels on the right show the same in
log-moneyness terms.
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2.3.1 The CBOE VIX Index

The VIX Index is defined by CBOE [2018]. Their implementation focuses on

computing a constant maturity volatility index of the S&P 500 Index.

For a chosen maturity from a given date, the observed option set is subjected

to the following liquidity requirements.

1. From the complete set of options available for trading on a given day,

select those with the chose maturity;

2. Choose all options that are currently out of the money;

3. Remove contracts which do not have valid bids;

4. If two strikes without bids are observed in succession, remove all further

contracts.

The mid-price is calculated as the midpoint between bid and ask price for

each contract.

The main VIX formula is based on a weighted Riemann sum which approxi-

mates equation 3.2 in the form

VIX = σ2 (2.2)

=
2

T
Σi

∆Ki

K2
i

erT q(Ki)−
1

T

[
F

K∗ − 1

]2
(2.3)

where Ki are the USD-Strikes of all i ∈ [0, N ] contracts, and qi is the price of

the respective out-of-the-money option at Ki. F is the forward price of the

underlying, and K∗ is the largest available strike below F . The intervals are

defined as half the distance between the neigbouring strikes ∆Ki =
Ki+1−Ki−1

2
.

For the outermost strikes K0 and KN , this changes to ∆K0 = K1 −K0 and

∆KN = KN − KN−1. r is the risk-free rate, T is the remaining lifetime in
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years4.

This implementation implies that the interpolation between strikes assumes

q to be constant around Ki, depending on the distance to its neighbours.

While there is no specific term for extrapolation, the implementation via

equation 2.2 implies an overhang with size
∆K0,N

2
for each tail.

2.3.2 Implementation by Carr and Wu (2009)

Carr and Wu [2009] propose using the difference between MFIV and ex-post

realized variance as measure of the variance risk premium. Their analysis

includes 5 stock indices and 35 individual stocks. As their diverse set of

underlyings exhibits large differences in quote availability, they propose in-

terpolating and extrapolating the strike-price grid before computing equation

3.2. In this chapter, our focus is examining their proposed implementation.

As out-of-the-money option prices approach zero as |k| → ±∞, prices are

first converted into BSIVs, inter- and extrapolation is applied, and the result

is converted back into prices5.

For a given set of implied volatilities, they suggest interpolating linearly

between log-strikes. Outside of the observable strike range, implied volatility

is assumed to be constant. Figure 2.1 illustrates this implementation in the

top panels. This general approach – linear interpolation, flat extrapolation –

has also been suggested by other authors, for example Jiang and Tian [2005].

From this interpolated and extrapolated volatility smile, Nk = 2000 equidis-

tant log-strikes are drawn such that kmax = −kmin = 8σ2
Average BSIV with

σ2
Average BSIV being the average BSIV of the entire set. With constant extrap-

olation, this very wide grid is simple to implement, but testing this method

4These definitions are exactly as stated in the implementation whitepaper CBOE [2018].
5This is standard practice, see e.g. Bates [1996], Bates [2000], and Jiang and Tian

[2005].
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against the surface of a parameterized stochastic process presents numerical

challenges, unless implied volatilites are generated directly.

2.3.3 Implementation by Jiang and Tian (2007)

Jiang and Tian [2007] find that the implementation of equation 3.2 by CBOE

[2018] leads to structural errors. They test this by simulating option prices

from a stochastic volatility plus jumps (SVJ) model, and benchmarking equa-

tion 2.2 against the known model volatility. They show that the result of

equation 2.2 may underestimate the true value by up to 198 basis points, or

overestimate it by up to 79 basis points in their sample period from 1994 –

2004. They focus their simulations on a single volatility smile, and assume

its maturity matches the desired horizon exactly.

To overcome truncation and discretization errors, they suggest interpolating

and extrapolating option prices, and computing equation 2.2 from a subsam-

ple of these generated prices. As usual, interpolation and extrapolation are

applied to the implied volatilities instead of prices, and are converted back

into prices afterwards. To interpolate, Jiang and Tian [2007] suggest fit-

ting natural cubic splines (NCS) to implied volatilites to generate a smooth

volatility smile function that fits every single observed price exactly. They

comment that a constant extrapolation such as chosen by Carr and Wu [2009]

or Jiang and Tian [2005] violates no-arbitrage conditions, and instead suggest

linearly extrapolating implied volatilities using the steepness of the NCS at

the two outermost observations. Figure 2.1 illustrates this implementation in

the bottom panels. It should be noted that this extrapolation is only linear

in log-strike space (bottom right panel), and creates a very steep smile in

dollar-strike space (bottom left panel).

Since they do not provide this information, we assume that Nk = 2000

equidistant log-strikes are generated, with kmax = −kmin = 3σ2
ATM BSIV, with

σ2
ATM BSIV being the at-the-money BSIV of the observed/simulated volatility
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smile.

2.4 Experiment Design

To analyze the effect of variance surface dynamics on the pricing of variance

swaps using numerical approaches, we specify a variety of stochastic processes

as drivers for our underlying and compute their respective forward variances

for a variety of parameters. Three different stochastic models are chosen to

exhibit stochastic variance and jumps in isolation as well as in combination.

We then generate decreasingly discretized and truncated sets of option prices,

upon which we apply the three numerical approaches described in section

2.3. Finally, we benchmark the numerically computed MFIV against the

analytically derived MTV as the strike grid width and density is increased.

2.4.1 Model-specific Forward Variance

To benchmark a numerical implementation, we need to compute the forward

variance of the underlyings stochastic process. Since our analysis is based

on option price surfaces of parameterized stochastic models, the process is

known exactly, and we can compute the model-specific forward variance or

model-true variance (MTV). Alternatively, Jiang and Tian [2007] propose a

Monte-Carlo approach.

The differences between different types of variance are crucial. The underly-

ing’s return process is governed by a parameterized stochastic process, and

since the process and all parameters are known beforehand (in the simula-

tion), we can take expectations and calculate MTV. At time t = 0, option

prices are observed. Based on these observed option prices, a hedging port-

folio is constructed via equation 3.2, and the ex-ante MFIV is calculated.

At expiration at time t = T , the return process exhibits observable ex-post
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historic variance. The stochastic process may or may not have a parameter

referred to as variance or σ, but they bear different interpretations, and may

exhibit very different values. The special case is the Black-Scholes model,

where the stochastic parameter σ describes the variance of the underlyings’

return process in its entirety, such that it is equivalent to the Black-Scholes

MTV. As in this case the volatility smile is flat, and the MFIV is fundamen-

tally a weighted average of the smile, MFIV is identical. In the Heston-model,

as defined by the set of stochastic differential equations (SDE) 2.4, variance

of the diffusion process is stochastic itself. In the Merton-model, as defined

by SDE 2.13, the variance parameter σ only captures the variance of the

diffusion process, and is only a part of the expected variance of the return

process.

We will use the definition of a variance swap as MTV. Carr and Wu [2006]

show that the fair price of a variance swap equals the average of the expected

realized variance of underlying St for t = 0 → T . Define

VS =
EQ

0 [
∫ T

s=0
Vsds]

T

as the fair price of this variance swap contract. Carr and Wu [2006] also

show that, by definition, VIX2 = VS.

To benchmark the numerical performance of the different implementations,

we will analyze how each estimator approaches the MTV of a variety of

parameterized stochastic processes. Model-specific MTV are described in

detail in section 2.5.

2.4.2 Simulated Discretization

Strikes are chosen such that kmin = −kmax, and a center strike always exists

at k = 0. Each grid is symmetric in log-moneyness and the strikes are

equidistant. From each grid to the next, the number of strikes is increased
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Figure 2.2: Example strike price grids, illustrating the gen-
eration of strike grids to test convergence. SVJ model with
parameter set ΩSVJ = {v0 = 0.0225, v̄ = 0.0225, κ = 3, ξ =
0.25, ρ = 0, σ = 0.22, z1 = 0.51, z2 = 0.48, λ = 0.225} and
time-to-maturity of one year.
Left panel shows discretized grids. 50 different grids, begin-
ning with 5 strikes, up to 103 strikes. Between each grid, the
number of strikes is increased by 2.
Right panel shows truncated grids. 50 different grids, sym-
metric in log-moneyness, beginning with kmax = 0.02, up to
kmax = 2. Between grids, kmax is increased by 0.04.

by two. The first grid g = 1 is the most discrete, with five strikes in total

such that for the first grid ∀kg=1 ∈ {−2,−1, 0, 1, 2}. The second grid g = 2

is less discrete, such that ∀kg=2 ∈ {−2,−1.33,−0.67, 0, 0.67, 1.33, 2}, and so

forth for the remaining grids. The last grid has 103 equidistant strikes.

The left panel of figure 2.2 illustrates this using a parameterized SVJ model.
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2.4.3 Simulated Truncation

To analyze the effect of truncation of the strike grid, a set of strike grids is

generated, ranging from highly truncated to very wide. To isolate the effect

from discretization, the strikes inbetween are chosen to be equidistant and

densely spaced. In total, fifty strike grids are generated in log-moneyness

space. Each grid is symmetrical in log-moneyness, such that kmin = −kmax.

Strikes are chosen to be equidistant with a distance kN+1 − kN = 0.01. The

first grid g = 1 is the most truncated, with kmax = 0.02. For each subsequent

grid, kmax is increased by 0.04, until kmax = 2.

The right panel of figure 2.2 illustrates this using a parameterized SVJ model.

The price of out-of-the-money options approaches 0 the further out the re-

spective strike lies, which leads to numerical instability when solving the

Black-Scholes equation for σ. This creates fluctuations in the volatility smile,

making extrapolation even less reliable. The exact fluctuation depends on the

stochastic model, the specific implementation of the root finder algorithm,

and the computer itself. In our experiments, most volatility surfaces started

to degrade beyond k = ±2, which is why we chose to limit all simulated

surfaces to this range.

2.5 Stochastic Models and Model-True Vari-

ance

MFIV replicates the forward variance of the underlying, and the objective

of this chapter is to understand the impact of truncation and discretization

on the computation of MFIV. Since we choose specific stochastic processes

to simulate the underlying, we can analytically derive its expected forward

variance, which we will refer to as model-true variance (MTV).
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Since we are interested in the variance, all drift terms are assumed to be zero,

and omitted in the SDEs.

2.5.1 The Heston Stochastic Volatility Model

In the Heston stochastic volatility model, stock returns follow a Brownian

motion with stochastic instantaneous variance vt, which is driven by a Cox-

Ingersoll-Ross (CIR)-process, such that

dSt =
√
vtSt(ρdW

S
t +

√
1− ρ2dW v

t ) (2.4)

dvt = κ(v̄ − vt)dt+ ξ
√
vtdW

v
t (2.5)

W S and W v are independent Wiener processes with constant instantaneous

correlation ρ. The CIR process is mean reverting to long-term mean variance

v̄ with pullback speed κ.

It is important to note that, for longer dated options, the expected forward

variance under Q does not depend on ξ. The forward variance is the sum of

the variances of both SDEs. To show the independence from ξ, consider that,

asymptotically6, the probability distribution of vt approaches the Gamma

distribution with probability density function

v∞(κ, v̄, ξ) =
βα

Γ(α
(2.6)

with Γ(α) being the Gamma function, and

α =
2κ

ξ2

6The time scale of convergence depends on κ, typically in the order of a few days. In
this analysis the focus lies on options with longer time to expiration, since short dated
options often capture idiosyncratic effects.
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β =
2κv̄

ξ

By applying the Fourier transform, we arrive at the characteristic function

of the long-run instantaneous variance as

ϕHeston
v (u) =

(
1− iu

β

)−α

(2.7)

To compute the first moment of vt, following Resnik [1998], take the partial

derivative w.r.t the Fourier variable, divide by i, and evaluate at u = 0:

E[vt] = i−1∂ϕv(u)

∂u

∣∣∣∣
u=0

(2.8)

= i−1
iα
(
1− iu

β

)−(1+α)

β

∣∣∣∣∣∣∣
u=0

(2.9)

Evaluation along the real line and simplifying then confirms the intuition

that, for a mean reverting variance process, the expected long term variance

exactly equals the long term variance level v̄ and is independent from ξ.

E[vt] = v̄ (2.10)

Broadie and Jain [2008a] present the fair strike of a variance swap on the

Heston model as the sum of the variance of both SDEs.

MTVHeston := EQ
0 [S

2] = EQ
0 [

1

T

∫ T

0

vsds] (2.11)

=
1− e−κT

κT
(v0 − v̄) + v̄ (2.12)
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2.5.2 The Merton Jump-Diffusion Model

The Merton jump-diffusion model describes a stock price evolution as a con-

tinuous diffusion process with discrete jumps of random size and at random

times. The diffusion component is identical to the Black-Scholes model. The

jumps occur following a Poisson process P with jump intensity λ, and the

jump size is lognormal distributed, with mean jump size z1 and jump vari-

ance z2. The jumps are persistent, such that the jump component is the sum

of all jumps that happened up to time t. Therefore, Jt = ΣPt
i=1[Yi − 1] with

Pt ∼ Poisson(λ) and Ji ∼ LN(z1, z2). Under Q, the process is specified as

dSt = σdWQ
t St + λ(ez1+

1
2
z2 − 1)Stdt+ StdJt (2.13)

Broadie and Jain [2008b] analyze the effect of sampling on the fair price of

variance swaps. We follow their approach to derive the continuous variance.

At time T , PT jumps have occurred, such that the realized variance of the

jump component is 1
T
ΣPT

i=1[ln (Yi)
2]. The risk-neutral expectation of future

total realized variance of S at time t = 0 is then given by

MTVMerton := EQ
0 [S

2] =
1

T

∫ T

0

σ2dt+
1

T
ΣPT

i=1[ln (Yi)
2] (2.14)

= σ2 + λ(z21 + z2) (2.15)

2.5.3 The Stochastic Volatility plus Jumps (SVJ)

Model

To capture the stochastic nature of volatility, but also account for the high

skewness in options with short remaining time to expiry, Bakshi et al. [2000]

suggest combining the stochastic volatility dynamics of the Heston model

with the jump-diffusion dynamics of the Merton model. The dynamics of
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this SVJ model are described by

dSt

St

=
√
vt(ρdW

S
t +

√
1− ρ2dW v

t ) + σdWQ
t + λ(ez1+

1
2
z22 − 1)dt+ dJt

(2.16)

dvt = κ(v̄ − vt)dt+ ξ
√
vtdW

v
t (2.17)

with all parameters as described above. The components of the stochastic

evolution are independent. Following Broadie and Jain [2008b], the forward

variance is the sum of the individual component processes, such that

MTVSV J := EQ
0 [S

2] =
1− e−κT

κT
(v0 − v̄) + v̄ + λ(z21 + z22) (2.18)

.

2.6 Analysis of Error Dynamics

Initial model parameters have been generated by fitting a model to observed

data, and have been simplified and selected to illustrate the various dynamics

of interest. For each simulation, a single parameter is increased and decreased

within plausible constraints to generate a similar but sufficiently different

smile.

Plots within the text have been limited to present only the most insightful

results. Further results can be found in the appendix.

2.6.1 Error Dynamics of Stochastic Volatility

The Heston model tends to exhibit log-moneyness symmetrically shaped

volatility smiles with upward sloping, but flattening tails. This behaviour

is consistent with the mean-reverting nature of the variance process.
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Figure 2.3: Comparison of implementation performance. Op-
tion prices have been generated from a Heston model with
three parameter sets Ω = {v0 = [0.0100, 0.0225, 0.0350], v̄ =
0.0225, a = 3, η = 0.25, r = 0, ρ = 0}. Top panel shows im-
plied volatility smile of each parameterization. Middle panels
show computed MFIVs for each parameter set after trunca-
tion. Bottom panels show computed MFIVs for each param-
eter set after discretization.

Figure 2.3 shows the effect of truncation and discretization as described in

section 2.4. The base model calibration is Ω = {v0 = 0.0225, v̄ = 0.0225, a =

3, η = 0.25, r = 0, ρ = 0}. One surface is generated for the base model, a

second surface is generated with initial variance v0 = 0.0100, and a third

surface is generated with v0 = 0.0350. All three surfaces are shown in the

top panel. Only initial variance v0 is varied.

In the middle row, for each calibration, the effect of truncation on the three

MFIV implementations are shown. The middle left panel shows the error for

the v0 = 0.0100 calibration, the middle center panel shows this for the base

model, and the middle right panel show this for the v0 = 0.0350 calibration.
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For every calibration, the respective MTV is shown as benchmark. The three

bottom panels show the effect of discretization on the three implementations

in identical order.

Comparing the three parameterizations it can be seen that varying v0 impacts

primarily the level of MTV, while the shape of the volatility smiles remains

similar. The error dynamics are therefore very similar as well. The VIX

Index implementation does not extrapolate, which leads to a strong under-

estimation of MTV when applied to a truncated surface. As the surface gets

wider, this error disappears completely. The implementation by Carr and

Wu [2009] extrapolates with constant variance, and compensates truncation

partially. The implementation by Jiang and Tian [2007] extrapolates linearly

using the slope of cubic splines, which compensates at first, but overcompen-

sates quickly as the curvature of the smile changes at the truncation points.

On a discretized option strike grid, all three implementations overestimate

MTV. The VIX Index implementation interpolates with constant volatility

and overestimates MTV by a large amount. The implementation by Carr and

Wu [2009] and Jiang and Tian [2007] both interpolate using cubic splines,

but differ significantly in their error dynamics. While the implementation by

Carr and Wu [2009] approaches MTV quickly, the implementation by Jiang

and Tian [2007] quickly approaches a constant volatility above MTV. This

overestimation is caused by the extrapolation, as all discretized surfaces have

identical strike grid width. For v0 = 0.0100, we observe an irregular fluctua-

tion which is caused by numerical errors when calculating option prices very

far from the money.

Figure 2.4 shows similar behaviour when varying the long-term variance level

v̄. This results in volatility smiles with lower and wider spread ATM BSIV,

and steeper wings. Under discretization, the estimation error dynamics be-

have very similar to above. The increased steepness and convexity in the

wings affect the dynamics of the estimation error under truncation system-

atically. As extrapolation is missing in the implementation by CBOE [2018],

its error dynamics are predictable in that they underestimate MTV severely
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Figure 2.4: Comparison of implementation performance.
Option prices have been generated from a Heston model
with three parameter sets Ω = {v0 = 0.0225, v̄ =
[0.0100, 0.0225, 0.0350], a = 3, η = 0.25, r = 0, ρ = 0}. Top
panel shows implied volatility smile of each parameterization.
Middle panels show computed MFIVs for each parameter set
after truncation. Bottom panels show computed MFIVs for
each parameter set after discretization.

in a highly truncated grid, but converge to MTV quickly and reliably without

overshooting. The implementation by Carr and Wu [2009] reduces this effect

for a very regular surface. The implementation by Jiang and Tian [2007]

takes curvature of the smile at the truncation point into account, therefore

the extrapolation overestimates the true wing IV less than on the surfaces

presented in figure 2.3.

Figure 2.5 illustrates the error dynamics when varying variance rebound

speed κ. With a lower chosen value for κ, the wings of the smile steepen,

while the smile remains mostly symmetric in log-moneyness. The patterns

observed previously apply here. The methods by CBOE [2018] and Carr
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Figure 2.5: Comparison of implementation performance. Op-
tion prices have been generated from a Heston model with
three parameter sets Ω = {v0 = 0.0225, v̄ = 0.0225, a =
[2, 3, 4], η = 0.25, r = 0, ρ = 0}. Top panel shows implied
volatility smile of each parameterization. Middle panels show
computed MFIVs for each parameter set after truncation.
Bottom panels show computed MFIVs for each parameter set
after discretization.

and Wu [2009] exhibit initially large, but reliably converging results. The

implementation by Jiang and Tian [2007] overcompensates for truncation,

worsening with increased steepness in the wings.

2.6.2 Error Dynamics under Jumps in the Price Pro-

cess

To illustrate the error dynamics when observing an asymmetric smile, we

simulate option prices using a Merton model as described in section 2.5.2.
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Figure 2.6: Comparison of implementation perfor-
mance. Option prices have been generated from a Mer-
ton model with three parameter sets Ω = {σ = 0.2, α =
[−0.20,−0.15,−0.10], δ = 0.05, λ = 0.5}. Top panel shows
implied volatility smile of each parameterization. Middle pan-
els show computed MFIVs for each parameter set after trun-
cation. Bottom panels show computed MFIVs for each pa-
rameter set after discretization.

The initial parameterization is Ω = {σ = 0.2, α = −0.15, δ = 0.05, λ = 0.5},
and individual parameters are modified to change the shape of the volatility

smile.

Figure 2.6 shows the error dynamics when changing the mean jump size α.

For the chosen parameterization, the mean jump size is negative, and the

jump process can be interpreted as sudden market corrections. With larger

negative jumps sizes, the option prices in the left wing of the smile are larger,

therefore the left wing is steeper. The flatness of the right wing is a conse-

quence of the log-normality of the remaining process. Under these return

dynamics, the increased premia in the left wing lead to increased variance
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sensitivity. This, in combination with the 1
K2 -weighting scheme, leads to

the general underestimation of MTV by equation 3.2, which is distinct from

errors due to discretization and truncation.

While the left wing exhibits positive growth, the right wing is flat. There-

fore all three implementations underestimate MTV under artificial trunca-

tion. As the smile is less severely truncated, the underestimation diminishes.

The implementation by CBOE [2018] is affected strongest, and exhibits the

largest underestimation error. The implementation by Carr and Wu [2009]

compensates for most of the truncated smile. The log-linear extrapolation

scheme suggested by Jiang and Tian [2007] depends on the curvature of the

left wing at the respective cutoff point, and overcompensates slightly. Under

discretization, both the implementations by Carr and Wu [2009] and Jiang

and Tian [2007] compensate for most of the discretized surface. The constant

level BSIV interpolation by CBOE [2018] creates a large overcompensation.

2.6.3 Error Dynamics under Stochastic Volatility and

Jumps

While the analysis of the error dynamics under Heston- and Merton-style

underlyings shed light on the effect of stochastic variance and jump risk in

isolation, the analysis of the SVJ model permits insight into the combinatorial

properties of the error behaviour. As the two sources of randomness are per

equation 2.16 not correlated, we isolate the cumulative effects.

The chosen base parameterization parallels the previous calibrations. The

volatility smile consequently exhibits properties of both previously discussed

base calibrations. It is upward sloping with flattening tails, but the left tail

is steeper and more convex. The global minimum is approximately at k =

0.2. As before, the asymmetry in the smile creates a structural discrepancy

between MTV and MFIV.
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Figure 2.7: Comparison of implementation performance. Op-
tion prices have been generated from an SVJ model with three
parameter sets Ω = {v0 = 0.0225, v̄ = 0.0225, κ = 3, η =
[0.15, 0.25, 0.35], ρ = 0, σ = 0.2, α = −0.15, δ = 0.05, λ =
0.5}. Top panel shows implied volatility smile of each param-
eterization. Middle panels show computed MFIVs for each
parameter set after truncation. Bottom panels show com-
puted MFIVs for each parameter set after discretization.

Since the average jump size is negative, the jump component dominates the

left wing. Modifying volatility-of-variance parameter ξ of the stochastic vari-

ance component has therefore a stronger effect on the right wing than the left

wing. Results are provided in figure 2.7. Under truncation, the implemen-

tation by CBOE [2018] shows consistent underestimation of MTV. The con-

stant extrapolation approach of Carr and Wu [2009] compensates truncation

partially, but requires approximately the same grid width as the implemen-

tation by CBOE [2018]. The implementation by Jiang and Tian [2007] com-

pensates best on highly truncated surfaces, but overestimates MTV on wider

surfaces. The error size increases with steeper tails. On a discretized smile

the CBOE VIX Index implementation overestimates MTV most strongly.
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Carr and Wu [2009]’s interpolation leads to small, consistent overestima-

tion and converges quickly. The implementation by Jiang and Tian [2007]

compensates discretization, but suffers from consistent overestimation due to

extrapolation, consistent with the results from truncated surfaces.

2.7 Summary of Findings

Across all simulations, a common pattern emerges. The implementation by

CBOE [2018], which does not employ procedures to adjust for truncated tails,

severely underprices forward variance compared to the MTV. The error grows

with less option prices observable. The constant extrapolation of Carr and

Wu [2009] does reduce the error significantly, but still underprices when very

few option prices are observable. Both methods converge reliably to MTV

once a sufficiently wide strike domain can be observed. The linear constant

slope extrapolation by Jiang and Tian [2007] tends to overcompensate the

tails, leading to overpricing of MTV with wider smiles.

Our key result is that the VIX index is very error prone in real-world condi-

tions, and that these errors should be accounted for when using the VIX index

as a proxy for market risk aversion. In markets with short option chains, it

might be beneficial to use parametric models to estimate MFIV. The pres-

ence of jump risk leads to highly asymmetric volatility smiles, increases the

magnitude of error, and makes its behaviour less predictable.

Discretization generally leads to larger error magnitudes because it occurs,

by definition, closer to ATM than the truncation. The implementation of ar-

tificial discretization also affects the resulting error dynamics. For example,

Jiang and Tian [2005] choose a different approach to artificially discretize the

volatility surface, which, under their proposed interpolation method, leads

to fluctuating error signs due to the ATM strike being either under- or over-

estimated. Our discretization scheme forces the existence of an ATM strike
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to account for this.

As the log-linear extrapolation of Jiang and Tian [2007] tends to overestimate

BSIV in the tails due to curvature, the truncation error at k = 2 also affects

the discretization error for all discretization simulations.

2.8 Conclusion

In this chapter we show that the accuracy of MFIV calculations in practice is

highly dependent on the choice of interpolation and extrapolation methods.

Our findings reveal that the most common features of stochastic models for

equities, stochastic variance and jumps, lead to distinct error dynamics for

each method. The choice of model should take the length and resolution

of the option chain as well as the features of the underlyings’ process into

consideration.

None of the implementations discussed attempt to generate arbitrage-free

volatility smiles. While this tends to average out for interpolation because

the surrounding strikes of each interval provide reasonable boundaries, ex-

trapolation without regard for no-arbitrage constraints causes large errors,

even on very wide smiles.

Our results are, however, only valid in market configurations that can be

represented with our chosen stochastic processes. The reason for choosing

these specific models is that they exhibit both stochastic variance as well as

jumps, and allow us to compare both in the SVJ model. An interesting ques-

tion for further research lies in error dynamics under market configurations

with large outlier events.

For highly liquid indices with very active and dense option chains and ex-

hibiting smooth volatility surface, a simple approach, such as suggested by

CBOE [2018], seems appropriate. For individual stocks with relatively illiq-
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uid option markets, the computation of MFIV might not be as model-free as

intended, and interpolation and extrapolation introduce model dependency

though the back door. These issues should receive special consideration when

applying a relatively simple implementation to individual stocks as underly-

ing, such as suggested by CBOE [2011].

Furthermore, this analysis focusses on maturities where the reversion to the

mean is dominant. For tactical risk management, it is be of interest to exam-

ine the convergence in the short term as well. In that case, one would have

to analytically derive the model-true short term variance. Further analysis

should also investigate the convergence in a regime-switching world.
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Chapter 3

Asymptotic Extrapolation of

Model-free Implied Variance

This chapter was published as

Stahl, P.: Asymptotic extrapolation of model-free implied vari-

ance: exploring structural underestimation in the VIX Index.

Review of Derivatives Research 25, 315–339 (2022)

https://doi.org/10.1007/s11147-022-09190-2

We show that the VIX Index structurally underestimates model-free implied

volatility because its implementation omits extrapolation of the volatility

smile in the tails. Hedging strategies that reduce their risk exposure in

response to elevated VIX levels are therefore systematically underhedged. We

use the asymptotic behavior of the volatility surface to construct a correction

term that is model-independent and only requires option prices at the two

outermost strikes. We show how to apply this correction to the VIX Index ex-

post as well as how to modify its implementation accordingly. Furthermore,

we show that the degree of underestimation varies over time. For the S&P
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500 Index and the DJIA Index the error is larger in periods of sustained

low volatility. This cannot be observed for the Volatility-of-VIX Index. By

incorporating strike grid width into the calculation, the suggested correction

reduces uncertainty of the volatility index, which may benefit VIX-based

hedging stratgies.

3.1 Introduction

The CBOE VIX Index is the one of the most commonly used indicators

for investor fear. It implements the static replication approach to variance

swap pricing by Carr and Madan [1998], who show how to replicate the

future realized variance of an assets’ return process between today and a

future date T using the prices of options expiring at T . Britten-Jones and

Neuberger [2000] coin the term model-free implied variance (MFIV), as the

replication strategy does not depend on the assumption of a stochastic model

for the underlying. The replication portfolio requires a continuous set of

strikes from 0 to infinity. Since in practice option strikes are discrete and

only actively traded in a relatively narrow range around the current price of

the underlying, systematic errors are introduced.

Specifically, the methodology behind the VIX Index as outlined in CBOE

[2018] truncates the tails completely, and makes no effort to compensate

for this. This leads to structural underestimation of MFIV in the VIX In-

dex implementation. Option trading activity varies over time with changing

market regimes. When interest in far-from-the-money options wanes during

calm market periods, the observable area of the volatility smile is truncated

further than in more volatile periods. As the width of the observable option

strike grid changes, the underestimation varies over time. Many hedging

strategies reduce their risk exposure when the VIX Index is elevated. The

structural underestimation therefore implies that these strategies underesti-

mate market risk, and are systematically overinvested or underhedged. The
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goal of this chapter is to examine this truncation error and to understand

its dynamics over time. The truncation error term can compensate for the

time-varying structural underestimation in the VIX Index by systematically

accounting for grid width, and make values from different market regimes or

underlyings comparable.

To compensate for truncation, we apply a result by Lee [2004] on the asymp-

totic behaviour of the volatility smile. By deconstructing the main integral

of Britten-Jones and Neuberger [2000], which is based on Carr and Madan

[1998], we isolate the tails of the volatility smile and compute them using

asymptotic option prices. This yields a very simple truncation error correc-

tion term that is completely independent of model assumptions. The only

required observations are the option prices at the outermost strike to param-

eterize each tail. The calculation is demonstrated using the reference data

by CBOE [2018].

We calculate the truncation error for volatility indices of both the S&P 500

Index and the Dow Jones Industrial Average Index, and show how the trun-

cation error varies depending on market conditions. As a counterexample,

we show that the Volatility-of-VIX Index does not exhibit this pattern.

Our findings have implications for the analysis of the volatility premium as

well as VIX Index futures. The volatility premium refers to the positive ex-

pected return that sellers of options capture. In the literature, it is commonly

defined as the difference between the volatility of the underlying price and the

VIX Index. For example, Eraker [2021] presents a general equilibrium model

based on long-run risk that is able to capture the volatility premium as well

as the negative correlation between prices of the underlying. Gruber et al.

[2020] construct a state-based volatility process to model the term structure

of the volatility premium in periods of low and high volatility separately.

The structural underestimation of the VIX Index might explain a small por-

tion of this premium. Bardgett et al. [2018] examine the information content

of options on VIX Index futures and document a that it varies over time.

41



Cheng [2019] studies the volatility premium embedded in VIX futures and

finds a lower than expected response to rising market risk. Bakshi et al.

[2021] show that VIX futures are in contango when jumps in volatility exist,

and are correlated with jumps in the price of the underlying. This implies

that the volatility premium compensates the option seller for the risk of large

jumps. Eraker and Yang [2020] construct a sophisticated consumption-based

equilibrium framework to integrate the pricing VIX and SPX options as well

as equity and variance premium. The structural underestimation in the VIX

Index is likely priced into VIX futures, and the described patterns might

distort the VIX Index futures term structure.

To begin our analysis, we review the related literature. Next, we examine

the construction of the VIX Index in detail to identify its structural bias. We

then investigate the asymptotic behaviour of the volatility smile and show

how to correct for truncation. Finally, historical option prices are used to

calculate the truncation error over time, revealing its dependence on market

volatility.

3.1.1 Notation

Markets are assumed to be free of arbitrage opportunities and complete. This

implies the existence of an equivalent martingale measure (EMM) which is

uniquely characterised by the risk neutral density ΦQ of the stochastic process

ruling the underlying. The fair value of a derivative is given by the expected

value of its payoff under Q.

Contracts live from time 0 to time T , which is specified in years. The current

time is t ∈ [0, T ]. The time to maturity is τ = T − t. For discrete returns,

actual trading days per year are used for annualization; for continuous cases,

365.25 calendar days and 252 trading days are assumed.

The price of an underlying at t is St, its forward price at time t is Ft = Ste
rτ .
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Option strikes in absolute (dollar) terms are denoted K, while the strike in

terms of log-moneyness against the forward price is denoted k = log
(

K
F0

)
.

Capitalized option prices C(K, τ) and P (K, τ) are quoted in dollar value,

their counterparts in log-moneyness terms, such that C(K, τ) = F0c(k, τ) and

P (K, τ) = F0p(k, τ). Unless explicitly specified, prices refer to the average

of the bid and ask quotes. Q(K, τ) and q(k, τ) denote the price of the out-

of-the-money option in dollar and log-moneyness, respectively.

The term implied volatility (IV) refers to the Black-Scholes implied volatility

(BSIV) σBSIV that solves

Cobserved(K, τ) = CBlack-Scholes(K, τ, σBSIV ) (3.1)

uniquely, where Cobserved(K, τ) is an observed call price at strike K and

CBlack-Scholes(K, τ, σBSIV ) is the Black-Scholes price at strike K and volatility

σBSIV . The term volatility smile describes the set of BSIVs that is produced

by all options on an underlying asset with the same expiration date. The

term volatility surface refers to the collection of volatility smiles of all avail-

able expiration dates at a certain point in time.

Unless explicitly specified, all options are of European style, and dividends

and interest rate r are assumed to be zero and omitted for clarity.

3.1.2 Literature Review

Some fundamental results in the literature provide insight into the relation-

ship between observed option prices and forward variance of the underlying.

Breeden and Litzenberger [1978] show that the risk neutral price probability

distribution of an underlying at expiration is uniquely determined by the

complete set of options without assumption of a parametric model for the

underlying. Neuberger [1994] introduces the concept of futures contracts that

pay the natural logarithm of an underlying future at expiration and shows
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that the payoff of a delta-hedged log-contract depends purely on volatility of

the underlying, provided its variance is constant over time. Independently,

Dupire [1994] shows that a unique risk-neutral density ΦQ can be recovered

from market prices, if all prices are compatible with no arbitrage conditions

and the underlying is governed by a diffusion process.

Carr and Madan [1998] show that a volatility swap whose payoff is the real-

ized volatility of the underlying can be fairly priced by statically replicating

log-contracts using the result of Breeden and Litzenberger [1978] and delta-

hedging them as suggested by Neuberger [1994]. Specifically, they show that

a 1
K2 -weighted portfolio of out-of-the-money options has virtually constant

sensitivity to changes in variance, and construct a portfolio that perfectly

replicates forward variance of a continuous underlying1. Furthermore, it

is only based on the assumption of risk-neutrality, and does not rely on a

specific stochastic model for the underlying process, except that it follows a

diffusion. Britten-Jones and Neuberger [2000] extend their analysis and show

that this result holds in the case of stochastic volatility in the underlying as

well. Demeterfi et al. [1999] explore the effect of skewness on the price of

variance and volatility swaps for continuously moving underlyings. Based on

Carr and Madan [1998], Britten-Jones and Neuberger [2000] define MFIV as

EQ
0

[∫ T

0

(
dFt

Ft

)2
]
= 2

∫ ∞

0

C(K, τ)−max(F0 −K, 0)

K2
dK, (3.2)

with K being a strike from the set of all observable strikes, and, since the

expectation is taken under Q, C(K, τ) = EQ
t [max(Ft −K, 0)].

Jiang and Tian [2005] show that equation 3.2 holds for price processes with

jumps. They find evidence that the MFIV is a more accurate predictor

of future realized variance than historical variance or Black-Scholes ATM

implied variance.

1For detailed derivation, see Demeterfi et al. [1999] or Derman and Miller [2016], Ch.
4.
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Even though the result by Carr and Madan [1998] has been thoroughly in-

vestigated, the discrete and truncated nature of option markets still presents

challenges in practical applications. The VIX Index was originally intro-

duced by the Chicago Board Options Exchange (CBOE) in 1993 to measure

market-expected 30-day volatility of the S&P 100 Index. In its original for-

mulation as suggested by Fleming et al. [1995] it was defined as at-the-money

Black-Scholes implied volatility, and computed by solving equation 3.1 with

the current 30-day at-the-money option. In 2003, the VIX Index was up-

dated to reflect the advances in option pricing theory laid out above, in

conjunction with a change of the underlying to the S&P 500 Index. CBOE

[2018] provide details on the updated calculation and section 3.2 discusses

its shortcomings. CBOE [2011] introduced a single-stock variant of the VIX

Index for a handful of stocks whose options are very liquid. In 2012, CBOE

[2012] introduced the Volatility-of-VIX Index, which applies the methodol-

ogy of the VIX Index to options on the VIX Index itself. Jiang and Tian

[2005] examine the practicality of 3.2 and identify two distinct sources of

implementation error: discretization due to the fact that observed strikes

of options are naturally discrete, but equation 3.2 is based on a continu-

ous integral in K; and truncation because equation 3.2 requires integration

along K ∈ [0,∞). They state theoretical upper bounds for the truncation

and discretization errors. Jiang and Tian [2007] examine the implementa-

tion of equation 3.2 by CBOE [2018] and find it to be systematically flawed.

They show that, depending on the volatility environment, the magnitude

of the implementation error is predictable. This chapter partially extends

their analysis. They suggest a numerical scheme to overcome the issues us-

ing cubic splines for interpolation, and linear extrapolation in log-moneyness

space k beyond the outermost strikes. Benaim et al. [2009] investigate the

concept of model-based interpolation and extrapolation, where a stochastic

process is calibrated to fit option prices, which is used to generate a synthetic

option price surface that overcomes the issues of truncation and discretiza-

tion. They find that this approach introduces systematic errors in the tails.

They suggest supplementing a model-based interpolation with numerical ex-

trapolation. Broadie and Jain [2008b] analyze the effect of discretization on
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the pricing of variance swaps using a variety of stochastic processes for the

underlying and find that errors due to discretization are usually small, but

the effect of jumps – which manifest in the tails of the smile – can be large.

Carr and Wu [2009] and Jiang and Tian [2005] extrapolate with constant

BSIV beyond the outermost strikes. While simple, this approach has sev-

eral drawbacks. First, it satisfies the conditions set forth by Benaim and

Friz [2009] if and only if we limit the underlying process to be log-normally

distributed (the Black-Scholes case). For this specific case, the approach out-

lined in this chapter can be adapted using the distribution-specific dynamics

of Benaim and Friz [2009] to achieve an equivalent result. Second, it intro-

duces dependency on the observed cutoff point: a cutoff point at a larger

|k| has, under the described growth dynamics, necessarily a equal or larger

BSIV, such that constant extrapolation leads to similar, albeit lower, struc-

tural underestimation as the implementation by CBOE [2018]. Jiang and

Tian [2007] furthermore criticise the introduction of kinks into the volatility

smile, which violate no-arbitrage conditions. They interpolate with natural

cubic splines and extrapolate BSIV linearly in log-moneyness, with the slope

of the extrapolation function matching the first derivative of the spline at

the outermost strike. Except for a Black-Scholes world where a constant

extrapolation would be exact, any linear growth violates the no-arbitrage

bounds set forth by Lee [2004]2. Carr and Wu [2009] utilize MFIV to esti-

mate variance risk premia for indices and single stocks. They also provide a

detailed interpolation and extrapolation procedure, which differs from Jiang

and Tian [2007] in that they use linear interpolation between strikes and

constant extrapolation beyond the outermost strikes.

The relationship of the distribution of the underlying and the shape of the

volatility surface permits analysis of the asymptotic behaviour of BSIV in

the tails. Hodges [1996] establishes that the no-arbitrage bounds set forth

by Merton [1973] can be expressed by quoting option prices in terms of

2Any positive linear growth violates Lee [2004]’s upper bound, and any negative linear
growth is excluded by the lower bound of constant growth in the Black-Scholes case, where
all moments of the underlying distribution are finite. For details, see Gatheral [2006, p.
99]
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their BSIV, where a positive BSIV prevents arbitrage of between options

and the underlying plus cash, and having a single BSIV per strike and T

enforces Put-Call parity. Furthermore, he provides bounds for the slope of

implied volatility in the tails. Lee [2005] describes the static and dynamic

characteristics of the volatility smile, and shows how the volatility smile

can be interpreted as probabilistic density. Carr and Wu [2016] provide

insights into the dynamic evolution of the volatility surface and derive no-

arbitrage constraints based on those dynamics. Lee [2004] examines the

asymptotic behaviour of BSIV in the strike domain. He finds that under

absence of arbitrage the growth of BSIV is bound from above by
√

β
T
|k|,

where β ∈ [0, 2] being specific to either the left or right wing. Benaim

and Friz [2009] expand and refine this result and show that the asymptotics

of the volatility smile are a non-linear transform of the asymptotics of the

underlyings’ return distribution. They show that the result of Lee [2004],

under some mild technical conditions, precisely determines tail behaviour.

Furthermore, they show how to explicitly derive the asymptotic behaviour

of the BSIV for a variety of stochastic models. Benaim et al. [2012] examine

the relationship between the moment-generating function and the moment

formula. They suggest using it to extrapolate the implied volatility surface in

the strike domain. In a preceding analysis, Drǎgulescu and Yakovenko [2002]

come to agreeing results for the special case of distributions with stochastic

variance. Gulisashvili [2010] provides asymptotic formulas for call options,

as well as error estimates, based on Lee [2004] and Benaim and Friz [2009].

3.2 Structural Shortcomings of the VIX In-

dex

The calculation of the VIX Index is laid out in detail in CBOE [2018]. An

overview is provided in appendix A.1.
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CBOE [2018] implement equation 3.2 as a weighted Riemann sum based on

Demeterfi et al. [1999] using the midpoint rule as

MFIV 2 =
2

T
ΣN

i=1

∆Ki

K2
i

erTQKi
−
(

Ft

K∗ − 1

)2

, (3.3)

with N ∈ N+ being the number of observed option prices, Ki being a strike

price with Ki < Ki+1∀i ∈ N+, K∗ being the at-the-money strike price,

QKi
being the observed price of an out-of-the-money option at Ki, ∆Ki =

Ki+1−Ki−1

2
∀1 < i < N for all strikes between endpoints, and ∆K1 = K2 −K1

and ∆KN = KN −KN−1 for the strikes at the endpoints.

Equation 3.3 implies that the tails of the volatility smile are cut off, leading

to a systematic underestimation of forward variance.The truncation error

becomes larger when the strike price grid becomes narrower in k. It also

grows after large price movements in the underlying, specifically in the time

between large price drops in the underlying, and the creation of new options

by market makers.

Between strikes, each observation is weighted by half of the difference of

the surrounding strikes. This is akin to a constant level interpolation sym-

metrically around each observation. The errors of this interpolation between

strikes tend to be approximately self-cancelling, leading to a small error from

interpolation. This does not happen in the region around the strike with the

smallest Black-Scholes implied variance, leading to a fluctuating error sign.

Some discussion on this can be found in Jiang and Tian [2005]3. The extend

of this depends on the shape of the smile around its minimum. Higher skew-

ness in the underlying implied distribution tend to increase the fluctuation.

3Specifically, see figure 2 in Jiang and Tian [2005].
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3.3 Asymptotic Extrapolation and Construc-

tion of the Truncation Error

The implementation of the VIX Index by CBOE [2018] does not compen-

sate for truncation. By deconstructing equation 3.2, we compensate for the

missing tails. We then examine the required strike grid width as well as

convergence behaviour of the truncation error.

3.3.1 Construction of the Truncation Error

To compensate for truncation we utilize the asymptotic behaviour of BSIV

by computing the respective Black-Scholes option prices and calculating the

partial MFIV contribution of each tail.

Extrapolating with constant BSIV of the outermost option price would make

the truncation error compensation highly dependent on only the price of these

options, without taking the varying strikes into account. We utilize Gulisas-

hvili [2010], who shows that Lee [2004]’s formula can be used to extrapolate

option prices in the strike domain.

If we where to assume knowledge of the underlying distribution, we could use

the precise tail behaviour based on Benaim and Friz [2009], as suggested by

Gulisashvili [2010]. The specific case of a Black-Scholes-compliant underlying

would then result in constant extrapolation. While the boundary condition

of Lee [2004] does not necessarily apply close to the money, it allows us

to find the non-parametric asymptotic truncation error of MFIV, provided

kmin ≤ 0 ≤ kmax and both kmin and kmax have sufficient distance from 0.

Section 3.3.2 examines this issue in greater detail.

To compute the truncation error compensation, we first deconstruct MFIV

into three segments: the observed center segment, and two tails. For the

49



tails, we derive the Black-Scholes option price as a function of k and a tail-

specific parameter β. After calculating β for each tail to fit the outermost

option price, we substitute the option price within the tail segments of the

deconstructed MFIV. The center segment is left unchanged. The two tails

compensate the missing MFIV contribution of equation 3.3.

By rewriting equation 3.2 in log-moneyness terms, we get

MFIV = 2

∫ +∞

−∞

c(k, τ, σk)−max(0, 1− ek)

ek
dk. (3.4)

Appendix A.2 provides a detailed derivation.

Since the asymptotic BSIV depends exclusively on k and β as k −→ ±∞,

we can define the extrapolated price of a far-out-of-the-money call option

c̃(k, τ, β) as

c̃(k, τ, β) = Ψ(d̃1(k, τ, β))− ekΨ(d̃2(k, τ, β)), (3.5)

d̃1(k, τ, β) = − k√
β|k|

+ 1
2

√
β|k|, and (3.6)

d̃2(k, τ, β) = d̃1(k, τ, β)−
√
β|k|. (3.7)

where Ψ is the Normal CDF 4.

As suggested by Benaim et al. [2012], β is chosen according to the outermost

observed option for each tail individually. Since

β := lim sup
k−→±∞

σ2
BST

|k|
, (3.8)

we fix the outermost strike for each tail, and compute the respective βleft,right

4See Appendix A.3 for derivation.
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as

βleft =
T

|kmin|
σ2
kmin

and (3.9)

βright =
T

|kmax|
σ2
kmax

. (3.10)

First, we derive the right side truncation error where k > 0. The observation

farthest to the right is located at kmax. Hence, max(0, 1 − ek) = 0. The

truncation error to the right side is a function of only kmax and βright given

by

TEright(kmax, βright) = 2

∫ +∞

kmax

c̃(k, τ, βright)

ek
dk. (3.11)

The left side truncation error follows in similar fashion, using the asymptotic

price of a far-out-of-the-money put option such that

p̃(k, τ, βleft) = c̃(k, τ, βleft)− (1− ek) and (3.12)

TEleft(kmin, βleft) = 2

∫ kmin

−∞

p̃(k, τ, βleft)

ek
dk. (3.13)

The total truncation error is the sum of both sides given by

TEtotal(kmin, kmax, βleft, βright) = TEleft(kmin, βleft)

+ TEright(kmax, βright) (3.14)

= 2

∫ kmin

−∞

p̃(k, τ, βleft)

ek
dk

+ 2

∫ +∞

kmax

c̃(k, τ, βright)

ek
dk. (3.15)

In comparison to Jiang and Tian [2005], who provide parametric as well as

non-parametric upper bounds for the truncation error, this result provides

an asymptotic value for the total truncation error. Provided kmin and kmax
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are sufficiently far from 0, this yields a correction term that can be added

to MFIV without relying on numerical methods, and instead only relying on

asymptotic properties of the volatility surface.

To calculate this truncation error, the uncorrected MFIV value, the observed

minimum and maximum option prices, and their strikes are required. Beyond

absence of arbitrage, no further parametric assumptions are required.
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Figure 3.1: Illustration of the extrapolation approach. Simulated volatility smile
generated with a Merton-model with Ω = {σ = 0.3, α = 0.5, δ = 0.5, λ = 0.1}.
Left wing cutoff point kmin = −0.6 with βleft = 0.0646, and right wing cutoff point
kmax = 0.6 with βright = 0.2185. Note that the extrapolation extends beyond the
shown range and the extrapolation is only limited by machine precision.

Figure 3.1 illustrates the extrapolation approach on a simulated volatility

smile. The dotted line shows the volatility smile of a Merton-model with

the specified parameters. The cutoff points are chosen to be kmin = −0.6

and kmax = 0.6, and we calculate βleft and βright as described above. The

extrapolated wings are shown as a solid line. In the implementation described

by CBOE [2018], the extrapolated wings are considered to be 0.

To apply the correction to an observed volatility index VI, square it to convert
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to variance, add the error correction from 3.14, and take its square root

V Icorrected =
√

V I2uncorrected + TEleft(kmin, βleft) + TEright(kmax, βright).

(3.16)

3.3.2 Minimum Requirements for Strike Grid Width

The result of Lee [2004] only holds asymptotically, therefore the suggested

truncation error may lead to overestimation when the observable strike grid

is too narrow.

To confirm the applicability of the extrapolation, we analyse the behaviour

of the tail-parameters βleft and βright as |k| → ∞ and show that the observed

strike grid tends to be wide enough to admit extrapolation. A reasonable

minimum cutoff strike can be found be found by calculating β for every

possible cutoff strike of the volatility smile. By definition, β will level off

further out-of-the-money, where the extrapolation will be in agreement with

the smile. Since the observed volatility smile is truncated, this requires mod-

elling the underlying explicitly. Gulisashvili [2010] provides explicit error

estimates for the extrapolation term if the model is known. By imposing a

minimum cutoff strike for each wing, this uncertainty of the extrapolation

can be reduced.

The VIX Index has a time-to-expiration of 30 days. For short expirations,

the jumps tend to be a more important feature than stochastic volatility.

Therefore the Merton jump-diffusion model has been chosen as illustrative

benchmark5.

The top panel of figure 3.2 shows the dynamics of βLeft and βRight as the

cutoff strike is shifted outwards for multiple expirations. With increasing

time to maturity, leveling off happens slower and the grid width requirement

5Other models and parameterizations are provided in appendix A.4.
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Figure 3.2: Top panel shows the dynamics of Lee [2004]’s tail parameter β as a
function of k for various expiration times. Computation based on a Merton jump-
diffusion model with parameter set ΩMerton = {σ = 0.2, α = −0.15, δ = 0.05, λ =
0.5} (Calibration parameters for the S&P-500 Index from Gatheral [2006, p. 63]).
Bottom panel shows the frequency of daily cutoff strikes of the SPX Index with
a time-to-maturity between 28 and 32 days (approximately τ = 0.083) between
January 1996 and April 2016. Data extends beyond the shown range, but is hidden
for visual clarity. Results for different models and parameterizations are provided
in appendix A.4

widens. Depending on data availability, the approach by Lee [2004] might

not be sufficient. The model-specific approach by Benaim and Friz [2009]

may help alleviate some uncertainty of the estimators, however one would be

left with model risk.
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The bottom panel of figure 3.2 shows a histogram of cutoff strikes for both

left and right wing for SPX Index. Based on this data, taking the intended

τ = 0.083 into consideration, a minimum cutoff strike of k = ±0.05 appears

to provide a reasonable compromise between data availability and resulting

uncertainty for our application. For the SPX Index, this condition is satisfied

for 99.8% of data points in the left wing, and for 97.8% of data points in the

right wing6.

3.3.3 Convergence of TELeft and TERight

Note that the integral in equation 3.2 is well-defined. By the substitution

rule, the integral in equation 3.4 is also well-defined. In particular, we have∫ ∞

k̃

c(k, τ, σk)−max(1− ek, 0)

ek
dk → 0, as k̃ → ∞ (3.17)

and the same is true for the integral from −∞ to −k̃.

By definition of c̃(k, τ, β) and p̃(k, τ, β) and the asymptotic behaviour of σk

by Lee [2004], we can approximate TETotal to any given degree by moving the

boundary for the approximating proper integral further out, and are limited

only by machine precision7.

6The results of the SPX Index analysis for different minimum cutoff strikes are provided
in appendix A.5.

7Our analysis is implemented in Python 3.9 x64 and appears to be stable to approx-
imately k = ±30, which should suffice for any practical application.
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3.4 Applying the Truncation Error Term to

the VIX Index

To apply the truncation error to the VIX Index we must either modify the

VIX Index to remove the extrapolation described above or calculate the

actual cutoff points for the truncation error. Using the sample data provided

by CBOE [2018] we show how to practically apply the truncation error.

3.4.1 Preliminary Modifications

By construction, the VIX Index implements a very short extrapolation

through the definition of ∆K1 and ∆KN in equation 3.3. To deal with

this modification, we can either shift the cutoff-strikes outward, or modify

the underlying price weights at the endpoints.

Ex-Post Approach

When applying our correction term to the VIX Index (and similar indices

with this protruding extrapolation), the outermost strikes need to be shifted

outwards as

K∗
min = K1 −

K2 −K1

2
and (3.18)

K∗
max = KN +

KN −KN−1

2
. (3.19)

Direct Approach

A slight modification to equation 3.3 can make the outward shift of the cutoff

point superfluous. It is then straightforward to include the extrapolation. By
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redefining ∆Kmin and ∆Kmax, we can avoid the shift described above.

In the original form, the observation atKi is weighted with ∆Ki =
Ki+1−Ki−1

2
,

i.e. half of the distance between the surrounding strikes. This implies a

constant option price for an interval with length ∆Ki, centered around Ki.

At the outermost strikes, ∆Kmin,max is defined as the distance to the adjacent

strike, e.g. ∆Kmin = Kmin+1 −Kmin ([CBOE, 2018, p.8]).

To simplify the extrapolation, we redefine ∆Kmin,max to represent half of the

distance to the adjacent strike as

∆K∗
min =

Kmin+1 −Kmin

2
and (3.20)

∆K∗
max =

Kmax −Kmax−1

2
. (3.21)

This modification alleviates the implicit extrapolation, but requires comput-

ing the center part of the MFIV implementation.

3.4.2 Step-by-Step Example

We will illustrate the approach using the dateset provided by CBOE [2018,

Appendix 1 and 2]. The original document provides two option chains, one 25

days from expiration (”near term”), a second chain 32 days from expiration

(”next term”). We will show the calculations based on the near term set,

and provide results the next term.

We calculate the individual strike contributions as ∆Ki

K2
i
erT qi based on the

modified ∆K values as shown in table 3.1. The contributions of the two

outermost strikes are halved. We compute the implied variance as

σ2 =
2

T

(∑
i

∆Ki

K2
i

erT qi −
(

F

K0

− 1

)2
)
. (3.22)
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Original Modified
K Put/Call Mid-quote ∆K Contribution ∆K∗ Contribution
1370 Put 0.2 5.0 0.0000005328 2.5 0.0000002664
1375 Put 0.125 5.0 0.0000003306 5.0 0.0000003306
1380 Put 0.15 5.0 0.0000003938 5.0 0.0000003938

...
...

...
2095 Call 0.2 5.0 0.0000002278 5.0 0.0000002278
2100 Call 0.1 5.0 0.0000003401 5.0 0.0000003401
2125 Call 0.1 25.0 0.0000005536 12.5 0.0000002768

Table 3.1: Strike contributions to CBOE-VIX computation with standard
and adjusted definition of ∆Kmin,max. Affected contributions are highlighted.
Data is taken from [CBOE, 2018, Near term data only]

Next, we compute single-sided truncation error corrections using equations

3.13 and 3.11 and add both to the computed variance. Finally, we com-

pute the time-weighed average of the near-term and the far-term variance,

and annualise to find the final extrapolated index value. Table 3.2 provides

intermediary results.

CBOE [2018] reports a VIX level of 13.69. After the adjustment and com-

pensation for truncation errors on both tails, we find a level of 14.07. In

this specific example, truncation leads to an underestimation of variance of

approximately 0.38 percentage points.

This adjustment simplifies the extrapolation significantly. The drawback is

that it cannot be applied to a precomputed or observed volatility index value,

and is therefore mostly useful where MFIV is to be computed from scratch.

3.5 Historical Analysis

The truncation error is larger when the observed option strike grid is nar-

rower. Following demand of market participants, market makers create new

contracts. This changes the width of the strike grid over time. In this sec-
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Near-Term Next-Term
σ2
Reference 0.018463 0.018821

σReference 0.135878 0.137190
V IXReference 0.136858
σ2
Adjusted 0.018479 0.018793

σAdjusted 0.135938 0.137087
V IXAdjusted 0.136797
βLeft 0.085886 0.081216
βRight 0.059768 0.062062
TEleft 0.000542 0.000273
TEright 0.000867 0.000695
σ2
incl.TE 0.019888 0.019761

σincl.TE 0.141025 0.145074
V IXincl.TE 0.140688

Table 3.2: Step-by-step results of ∆K-adjustment and truncation error cor-
rection in reference to CBOE [2018].

tion, we analyze how the availability of observable option prices affects the

truncation error over time. In periods of high market volatility, the strike

grid of observable option prices tends to be wide, which implies a low to-

tal truncation error. As volatility levels quiet down after periods of steady

growth, the strike grid shrinks, and the truncation error grows larger. In

effect, the VIX Index is typically precise in turbulent market phases, but

underestimates MFIV when it is low. This effect is shown for the S&P 500

Index (SPX Index) and the associated VIX Index, as well as the Dow Jones

Industrial Average (DJIA Index) with its respective volatility index. The

Volatility-of-VIX-Index (VVIX Index) does not exhibit this pattern.

3.5.1 Dataset and Computation

The dataset consists of options traded on the CBOE Options Exchange be-

tween January 1st, 1996 and April 29th, 2016, spanning 5118 trading days.

It contains daily bid and ask prices for 233186 option contract on the SPX

Index, the DJIA Index, and the VVIX Index. The options have been selected
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to have a remaining lifetime between 23 and 37 days. The same liquidity re-

quirements as laid out in CBOE [2018] are applied. Contracts that have not

been traded on a given day (and thus have a “stale price”) are excluded for

that day. For each day and maturity, once two contracts with neighbouring

strikes and stale prices are encountered, all contracts further away from the

money are discarded as well. These constraints leave around 2.73 million ob-

servations, 1.57 million of which for contracts on the SPX Index. The option

price data is matched to price data of the underlying price and to linearly

interpolated U.S. treasury rates.

Since the choice of each wings’ β depends on the respective outside strike,

we require a minimum log-moneyness of ±0.05. If the strike grid is narrower

than this, the truncation error might grow unreasonably large. Based on

the analysis in section 3.3.2 and the intended time-to-expiration of 30 days,

±0.05 appears to provide sufficient space for the β to level out.

For each day with sufficient option price data, the volatility index is calcu-

lated in two ways. First, we follow the reference implementation by CBOE

[2018]. Second, the truncation error is calculated and added to the strike-

adjusted reference implementation. βLeft and βRight are computed for the left

and right wing based on the price with the lowest (highest) available strike

after applying liquidity requirements. This is done for each trading day with

available and admissible data.

3.5.2 Analysis

As strike price grid width changes over time, the total truncation error fluctu-

ates. From day to day, fluctuations are due to the discrete nature of strikes

and the fact that stale prices are not considered in the calculation. Us-

ing smoothed data reveals the structural effect on the volatility index. The

truncation error grows in calm market phases, and contracts during correc-

tion phases. As market volatility spikes during a correction, high implied
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volatility levels and option delta create short-term spikes in the truncation

error, which level off quickly. The daily log changes of the corrected volatil-

ity indices exhibit lower standard deviation and higher kurtosis than their

uncorrected counterparts.
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Figure 3.3: Observable option strikes and the effect on the truncation error over
time. Top panel shows the S&P 500 Index level and the outermost observable
strikes of each respective date. Middle panel shows the VIX Index and the VIX
Index after adding the correction. Bottom panel shows the total truncation error
and its 25-day rolling mean.

Figure 3.3 shows the behaviour of the truncation error over time. The top
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panel illustrates the configuration of the option market in relationship to the

underlying SPX Index over time. Each dot represents the outermost option

strike observable at each point in time, with the options being subject to

the liquidity constraints of CBOE [2018]. The middle panel compares the

VIX Index implementation as described in section 3.2 with the amended

implementation as described in section 3.4.1. The bottom panel provides the

relative error size and its 25-day rolling mean. The overall average truncation

error is 1.13%.

In broad strokes, four distinct periods can be identified from figure 3.3. From

1996 to 2004, the SPX Index shows a large correction. The VIX Index is

generally above 20%. The truncation error is fluctuating heavily, but its 25-

day rolling mean mostly remains below its global average. Between 2004 and

2007 the SPX Index developed positively. The VIX Index mostly remaines

below 20%. The truncation error fluctuates less, and its rolling mean rises

to 2% and remains on this level. From 2007 to late 2012, the multiple large

corrections in the SPX Index take place. The VIX Index spikes during the

corrections, and remains above 20%. In this period, the truncation error falls

below 1%, where it remains for most of the time. After 2012 until the end of

the dataset in 2016, the SPX Index develops positively, and the VIX Index

again remains around or below 20%. The truncation error grows to 2% and

remains on this relatively high level. In the last few months of the dataset,

a slight increase in the VIX Index coincides with a drop in the truncation

error.

Overall, the truncation error appears negatively related to the VIX Index.

In periods of high volatility, the truncation error fluctuates, but its rolling

mean remains below the overall average truncation error. As the VIX Index

remains on low levels, the truncation error is consistently elevated.

Figure 3.4 shows the results of the historical calculation for the DJIA Index.

Strike price grids, after applying liquidity requirements, for the DJIA Index

tend to be narrower than for the SPX Index. The truncation error has an
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Figure 3.4: Observable option strikes and the effect on the truncation error over
time. Top panel shows the DJIA Index level and the outermost observable strikes,
subject to liquidity requirements. Middle panel shows the DJIA VIX Index and
the DJIA VIX Index after adding the correction. Bottom panel shows the total
truncation error and its 25-day rolling mean.

overall average of 2.72%, which is higher than the truncation error of the

SPX Index.

The observation period can again be divided into four distinct periods. From

the 1996 to 2004, the DJIA Index moves roughly sideways and exhibits ele-
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vated levels of volatility including several sharp spikes. The truncation error

fluctuates strongly and its rolling mean fluctuates between 1% and 5%, but

remains mostly below its overall average. From 2005 to 2007, the DJIA Index

exhibits positive performance, and volatility levels remain consistently below

20%. The truncation error in this period is consistently elevated between

2.5% and 4.3%. In the period from 2008 to 2013, coinciding with negative

returns, three large volatility spikes can be observed. The truncation error

spikes during periods of negative market returns, and falls quickly below its

overall average. From 2013 to 2016, DJIA Index returns are positive, and

volatility levels are low. The rolling mean of the truncation error remains

above its overall average for almost the entire time.

This behaviour is consistent with the analysis of the SPX Index. In peri-

ods with low DJIA VIX Index levels, the truncation error tends to be on a

higher level. However, immediately after strong market corrections with cor-

responding volatility spikes, the truncation error spikes as well. This pattern

is only very faintly visible in the analysis of the SPX Index.

Figure 3.5 shows the truncation error of the VVIX Index over time, the

option-implied forward volatility of the VIX Index. The VVIX Index, de-

tailed in CBOE [2012], applies the same methodology as CBOE [2018] to

options on the VIX Index. The VIX Index is governed by a return distribu-

tion that is fundamentally different from a stock price index, with the most

prominent difference being its mean reversion property in combination with

a positive expected jump size. Furthermore, its negative correlation with the

SPX Index makes it possible to use options on the VIX Index as hedging in-

struments for SPX Index-related delta risks. Fernandes et al. [2014] attempt

to model the underlying process of the VIX Index directly and confirm both

properties.

The dynamics of the VIX Index and the related VVIX Index appear very sta-

ble. While there are large spikes in the VIX Index during market corrections

in the SPX Index, the VVIX Index exhibits much higher levels than the VIX
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Figure 3.5: Observable option strikes and the effect on the truncation error over
time. Top panel shows the VIX Index level and the outermost observable strikes,
subject to liquidity requirements. Middle panel shows the VVIX Index and the
VVIX Index after adding the correction. Bottom panel shows the total truncation
error and its 25-day rolling mean.

Index, and fluctuates much more. The fluctuations are smaller in magnitude

than those of the VIX Index, thus its range tends to be more localized over

time. The individual trajectories appear more erratic than in the VIX Index,

where spikes can often be linked with SPX Index corrections. Spikes in the

VVIX Index occur but are less extensive.
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Considering the truncation error, the available timeseries can be split into

two periods. From 2006 to 2010, the truncation error starts on a very high

level, but quickly shrinks to below the overall average level of 2.04%. The

market correction in 2009 leads to a spike in the VIX Index, and to a spike

in the truncation error levels. In the period after 2010, the truncation error

remains mostly below its overall average, even as the VIX Index spikes.

The VVIX Index was introduced in 2012 (CBOE [2012]), but options on the

VIX Index begin to be available from 2006, which extends the period for

analysis. In the period shortly after introduction of VIX options to the mar-

ket in 2006, a relatively large truncation error hints at a not-yet-developed

market for VIX options.

In general, several patterns emerge from the analysis. For both equity indices,

low levels of their volatility indices coincide with higher truncation errors than

average. This is consistent for both the SPX Index and the DJIA Index, as

well as over time. A possible explanation for this is that the width of the

strike price grid with sufficient liquidity shrinks as volatility contracts. This

implies that options are becoming cheaper and market participants can afford

to purchase protection with higher delta. Another pattern which is consistent

for both equity indices is that the truncation error sharply increases during

market corrections. This can be explained by the spot price moving beyond

the liquid strike grid, which creates large single-sided truncation errors on

the left side. The truncation error of the VIX Index behaves completely

different. This is fundamentally caused by the different stochastic processes

that rule the underlying dynamics.

3.6 Conclusion

This chapter examines the methodology behind the VIX Index and finds that

it structurally underestimates MFIV because it ignores the unobservable tails
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of the volatility surface. Insights by Lee [2004] into the behaviour of the

volatility surface at extreme strikes enable us to derive a compensation term

that can correct the structural underestimation in the VIX Index. Historical

analysis shows that the underestimation due to truncation fluctuates over

time, as option trading activity in the tails varies.

Our approach does not require any assumptions about the underlying pro-

cess, beyond those laid out by Lee [2004]. The estimation of the extrapolation

parameter β for each tail does however add an additional layer of uncertainty

to the calculation. It is ultimately the shape of the volatility smile which

determines the point where the β-parameters stabilize. Therefore, underly-

ing dynamics and data availability must both be considered carefully when

choosing a minimum strike grid width. It is straightforward to extend the

suggested approach to incorporate specific model assumptions in scenarios

with little available data or long maturities.

Analysis of historical truncation errors has revealed consistent patterns,

where the truncation error grows in calm market phases. This implies that

volatility indices underestimate forward volatility in calm market phases.

Analysing risk aversion in the market should account for these patterns, as

risk appetite of market participants might be overestimated otherwise. The

analysis of the term structure of variance can also be improved by this ap-

proach. Option chains tend do become less liquid with longer expirations,

implying a possible systematic downward bias. The behaviour of the ex-

trapolation factors βLeft and βRight as time-to-maturity is increased must

therefore be carefully considered.

VIX-like single-stock indices, such as introduced by CBOE [2011], can be

based on underlyings with significantly less option trading activity. Com-

pensating for this makes MFIV-estimates comparable between indices and

stocks, independently of market conditions. The different market conditions,

especially in the single-stock option market, also require further investiga-

tion. As strike grid width can be expected to be narrower, the validity of
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asymptotic extrapolation on heavily truncated volatility surfaces should be

examined closely.
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Chapter 4

Martingale Defects in the

Volatility Surface and Bubble

Conditions in the Underlying

This chapter was published as

Stahl, P. and Blauth, J.: Martingale Defects in the Volatility

Surface and Bubble Conditions in the Underlying

Review of Derivatives Research, 27, 85–111 (2024)

https://doi.org/10.1007/s11147-023-09200-x

The martingale theory of bubbles enables testing for asset price bubbles by

analyzing option prices. As recently shown by Piiroinen et al. [2018], the

SABR model is a strict local martingale when its parameterization implies a

positive correlation between stock and option prices. We operationalize this

theoretical result and analyze stock price bubbles in 2576 stocks over 26 years.

Martingale defect conditions are absorbed quickly by options markets, but

identify high proportions in significant and permanent changes in distribution
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of price returns, option trading activity, short interest in the underlying, and

institutional ownership. These results confirm many common assumptions

about stock price bubbles. These bubbles are temporally clustered, and

tend to occur in periods of positive market development. Martingale defects

are rare in market corrections, which indicates that they are a result of

overoptimistic speculation.

4.1 Introduction

An asset price bubble occurs when the price exceeds the fundamental value

of the asset for a sustained period. Unfortunately, testing for bubbles suffers

from a joint hypothesis problem: As the fundamental value is, by its na-

ture, unknown, both quantities have to be estimated simultaneously, which

severely reduces the usefulness of these types of analysis [Camerer, 1989].

The martingale theory of bubbles as developed by Jarrow [1992], Loewen-

stein and Willard [2000], Cox and Hobson [2005], Heston et al. [2007], Jarrow

et al. [2010], Biagini et al. [2014], and many others, characterizes asset price

bubbles in terms of strict local martingales.

To overcome the joint hypothesis issue, Jarrow [2015] suggests specifying

an option pricing model, which can be validated separately, and checking

whether it implies an underlying price process that is a true martingale, and

not a strict local martingale1. Piiroinen et al. [2018] derive a martingale

defect indicator for SABR dynamics, fundamentally transforming the task of

identifying an asset price bubble into a calibration problem. In this chapter,

we empirically investigate the connection between stock price bubbles and

changes in several non-related variables in a large-scale study of 2576 stocks

over approximately 26 years.

We adapt the approach suggested by Piiroinen et al. [2018] to identify mar-

1Specifically, see section 3.2.3 of Jarrow [2015]
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tingale defects in the volatility surface of single stocks. We evaluate defect

persistence, stock price return distribution, option trading activity, short

interest, and institutional ownership on a per-event basis and find strong

evidence that martingale defects coincide with permanent changes in these

variables. Our findings confirm many fundamental assumptions about stock

price bubbles. Furthermore, we examine the temporal clustering of martin-

gale defect events over time and find that they predominantly occur during

phases of positive market returns and rarely in phases of sustained negative

returns.

Monitoring the volatility surface for martingale defects is a useful tool to

detect overoptimistic speculation in stocks. It enables investors to identify

individual stocks which may not be rationally priced and adjust their ex-

posure accordingly. It is furthermore an appropriate tool for regulators to

improve market monitoring and focus their resources in order to protect retail

investors. Across the entire market, it provides a gauge of general investor

optimism and a markets propensity to develop bubbles.

The remainder of this chapter is structured as follows. To provide background

and context to our study, we will begin with a short review of the related

literature. Then we examine the details of the martingale theory of bubbles

and the implementation by Piiroinen et al. [2018]. Section 4.4 provides an

overview of the data, specifics of our calibration procedure, and further im-

plementation details. Our subsequent analysis is two-fold. First, we examine

individual bubble events and evaluate changes after observing a martingale

defect. Second, we aggregate bubble events across the entire market and

investigate their clustering behaviour over time. Section 4.6 concludes the

chapter and identifies topics for further exploration.
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4.2 Literature Review

The martingale theory of bubbles is fundamentally based on the idea that an

asset in bubble conditions is not a fair bet, as market participants are willing

to overpay for a potential upside.

Participating in these bubbles can be rational under certain conditions, such

as laid out by Jarrow [1992], who analyzes asset price bubbles as market

manipulation by large traders and extends arbitrage pricing theory, which is

based on an economy of price taking actors, by allowing for large traders.

These purchase large positions in individual stocks, and may corner the mar-

ket or squeeze holders of short positions to force them to pay an arbitrary

price. He derives sufficient conditions under which these strategies are im-

possible under fair pricing measures. In this study, we find that martingale

defects in option prices do indeed coincide with increased short interest.

We now review the literature concerning the martingale theory of bubbles,

delving into its fundamental assumptions and constraints. In a seminal pa-

per, Delbaen and Schachermayer [1994] generalize the fundamental theorem

of asset pricing and introduce No Free Lunch with Vanishing Risk (NFLVR),

thus paving the way for the martingale theory of bubbles. Jarrow et al. [2007]

review the literature on asset price bubbles in complete markets with infinite

trading horizons and conclude that, under NFLVR no arbitrage conditions,

the existence of bubbles implies that markets must be incomplete. Cheridito

et al. [2007] show that it is necessary and sufficient for stocks and bonds

to be undominated trading opportunities for an equivalent local martingale

measure to exist. Heston et al. [2007] provide conditions on the prices of

options to rule out bubbles in the underlying. Jarrow et al. [2010] extend

the NFLVR framework by imposing the no dominance (ND) conditions sug-

gested by Merton [1973] and allow an infinite number of local martingale

measures to coexist, which represent the fundamental economic regimes. For

each trade, the market chooses one of these measures to determine the price.

When market fundamentals change, a different measure is chosen. While as-
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set prices remain unchanged, derivatives prices must change, which implies

that stock price bubbles can be inferred from option prices.

Jarrow and Protter [2013] investigate perceived positive alpha under incom-

plete information, leading to the illusion of arbitrage opportunities in asset

price bubbles. Biagini et al. [2020] extend Jarrow and Protter [2013] and

study the relationship between private information and perceived bubbles

formally, with the potential consequence that asset price bubbles are less

likely for assets with less hidden information, such as indices, when com-

pared to single stocks.

The utilization of martingale theory in empirical research proves valuable for

examining financial bubbles. Jarrow and Protter [2010] examine the impli-

cations for derivatives pricing and detection of asset price bubbles. They

suggest three different approaches to detect asset price bubbles. The first

approach relies on modelling the fundamental value of assets directly, lead-

ing to the joint hypothesis issues described by Camerer [1989]. The second

approach specifies a stochastic process for the underlying which is calibrated

against the time series of stock price returns. The third approach chooses an

option pricing model, and calibrates it against observed option prices. The

advantage of this approach is that by calibrating the model, it is automati-

cally validated. In this chapter, we follow the this suggestion by calibrating

the SABR model to observed out-of-the-money option prices. Jarrow et al.

[2011] employ martingale-based volatility modelling to detect bubbles. They

estimate a non-parametric volatility function as proposed by Florens-Zmirou

[1993] from past asset prices. They illustrate their method based on four

stocks during the dotcom-bubble and find that the bubble conditions they

identify overlap with stocks and periods that where previously considered

bubbles as well. Obayashi et al. [2016] utilize the first approach proposed

by Jarrow et al. [2011] to analyze a large number of stocks and examine the

lifetime of bubbles. They find that these stock price bubbles exhibit surpris-

ingly long lifetimes, typically spanning several months or years. As irrational

exuberance would typically be short-lived, this points towards the rational-
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ity of stock price bubbles. In contrast, we find that bubble conditions in the

volatility surface are typically absorbed within a few days. In conjunction

with our other findings, this lends some support to the notion that bubbles

in option markets are predominantly propelled by irrational speculation.

By imposing boundary conditions on option prices at extreme strikes, Jarrow

and Kwok [2021] identify bubble conditions in the S&P 500 Index and develop

a profitable momentum trading strategy based on the concept of ”riding the

bubble to the top”, as suggested by Conlon [2004], indicating that martingale

defects in option prices may have some value for forecasting price returns.

Piiroinen et al. [2018] develop the martingale defect indicator from the SABR

model by analytically deriving an expression to describe the magnitude of

the defect. They analyze the bubble risk of SNAP Inc., Twitter Inc., and

Square Inc. in 2017 and 2018 and show that bubble conditions can be ac-

curately detected by calibrating a SABR model to observed option prices.

Our empirical investigation relies on this indicator due to its straightforward

implementation, as well as the extensive research on the SABR model, which

makes its calibration a well-documented process.

Fusari et al. [2022] exploit the put-call price differential to identify bubble

conditions from option prices. By estimating a specifically developed gen-

eralized stochastic volatility jump diffusion or G-SVJD model, which admits

both martingale and strict local martingale representations, to put and call

options separately, they are able to show that bubbles tend to occur in call

options, but not in put options. Furthermore, they find that bubbles tend to

occur regularly in single stocks, but rarely in indexes.

A different approach is proposed by Biagini et al. [2022], who suggest train-

ing a neural network to recognize whether a smile of call option prices is

generated by a strict local martingale or a true martingale. The advantage

of this approach is its independence from model specifications, at the cost of

computational complexity.

74



Asset price bubbles are examined not solely through the lens of martingale

theory but also via alternative approaches. In our empirical investigation, we

are able to substantiate some of these findings. Bakshi et al. [2021] analyze

VIX futures curves and find that volatility is mean-reverting and VIX futures

are in backwardation when disaster risk is elevated. This provides some

empirical backing for the approach of Piiroinen et al. [2018], who identify

martingale defects when the correlation between stock price and variance

level turns positive.

The concept of dark matter in asset pricing models draws a connection to

economic components that are difficult to measure directly and quantifies

its impact on model stability, which was formalized by Chen et al. [2022].

Using a semimartingale-based approach, Bakshi et al. [2022] show how to

decompose equity option risk premiums and examine the dynamics of jumps

crossing the strike and local time. Intuitively, our approach identifies bubble

conditions in the underlying when the correlation of price and volatility is

positive, which suggests a possible link with the findings of Bakshi et al.

[2022], who show that negative premia for upside equity risk are consistent

with the presence of unspanned risks.

Blocher et al. [2021] find that short sellers are regularly forced to exit po-

sitions earlier than optimal. In our study, we find that bubble conditions

induce increased short selling activity, supporting their short squeeze hy-

pothesis. SEC [2021] examine market structure and trading activity around

the GameStop Inc. bubble in January 2021 and find, contrary to common

perception at that time, that short covering was not the primary driver of

the stock price run-up. Instead, the primary driver for this specific bub-

ble event were overly optimistic, young, inexperienced investors. Observing

overoptimistic speculation in the volatility surface further corroborates these

findings. Mohrschladt and Schneider [2021] link option prices with inter-

net search interest and find that retail investors contribute to idiosyncratic

volatility through irrational trades, which are exploited by sophisticated mar-

ket participants in the options market.

75



4.3 Theoretical Background

In this section we describe the market setting and adapt the approach by

Piiroinen et al. [2019] to utilize the SABR model to detect bubble conditions

for a large data set.

We fix a finite time horizon T > 0 and consider the filtered probability space

(Ω, F, (Ft)t≥0,Q), where F is the σ-field of measurable subsets of Ω and

the filtration (Ft)t≥0 satisfies the usual conditions (see Protter [2016]). Q
denotes an equivalent local martingale measure and, by possibly embedding

(Ω, F, (Ft)t≥0) into a larger complete market, we can assume that Q is also

unique. We consider a stock price process (St)t≥0 on Ω with continuous paths

Q almost surely. Its forward price is then given by

Ft = Ste
(r−d)t,

for some constant risk free rate r and dividend yield d which might include

borrow costs. We denote the expectation operator with respect to Q by E
and, if we want to empathize on the current price x = S0 ≥ 0, we put x into

the subscript Ex.

We follow Piiroinen et al. [2019] by making the following

Definition 1 The stock price St is said to admit a bubble on [0, T ] with

respect to Q if the discounted process

Ste
−(r−d)t

is a strict local martingale on [0, T ] with respect to Q. The normalized mar-

tingale defect is defined as

dx(T ) := 1− e(d−r)T

x
Ex[ST ].
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The intuition behind this definition is as follows: the asset is currently in

the state of a bubble if the current market value of the asset S0 exceeds its

fundamental value which is the discounted expectation of its future value

e−rT E[ST ].

From the definition of a (local) martingale it is immediate that our martingale

defect indicator satisfies dx(T ) ≥ 0 with equality if and only if our model does

not admit a bubble.

It shall be noted that dx not only tells us whether or not an asset is currently

in bubble condition but also, due to its domain dx ∈ [0, 1], quantifies the

strength of the bubble: the closer dx is to one, the stronger the indication of

a bubble event.

We use the results in Piiroinen et al. [2019] to calculate an analytical expres-

sion for dx from market data. More precisely, we use available option prices

for a given asset, calibrate a SABR model to this data and use the resulting

parameters to compute our bubble indicator. This reduces our problem of

estimating dx to the problem of calibrating a volatility smile and leads to a

particularly simple representation of dx in the model parameters. We start

by giving a rough overview over the model.

The stochastic volatility model introduced by Hagan et al. [2002], commonly

known as stochastic alpha, beta, rho or SABR model, is an extension of the

CEV model and is determined by the SDEs

dFt = αtF
β
t dZ

1
t (4.1)

dαt = ναtdZ
2
t , (4.2)

where α0 = α and

⟨dZ1
t dZ

2
t ⟩ = ρt. (4.3)

The elasticity parameter β ∈ [0, 1] controls the general behaviour of the
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model and is usually not calibrated but chosen in advance. Following Pi-

iroinen et al. [2019, Theorem 3.1], we set β = 1, which is the log-normal

case. ν ≥ 0 is the volatility-of-volatility and ρ ∈ [−1, 1] is the correlation

between the driving Brownian motions Z1 and Z2.

The advantage of the SABR model in this context is that it admits a strict

local martingale representation, unlike many traditionally used option pricing

models. The SABR model therefore implies that stock price bubbles can

possibly exist. Fusari et al. [2022] examine this issue in further detail, and

contribute a more sophisticated approach based on their G-SVJD model.

For notational clarity and without loss of generality, from now on, interest

rates and dividend are omitted and assumed to be zero. Piiroinen et al.

[2019] then show that under SABR dynamics the martingale defect takes the

particularly simple form

A(α, ν, ρ) := lim
T→∞

dx(T ) = 1− e
−2ρα

ν . (4.4)

This is Piiroinen et al. [2018, Equation 15].

Since both volatility α and volatility-of-volatility ν must be strictly positive,

A can only become positive when the correlation between stock price and

volatility ρ is positive as well. Intuitively, this means that options get more

expensive as the stock experiences positive returns, hinting at optimistic

risk-seeking preferences.

4.4 Data and Calibration

Our analysis covers the constituents of the MSCI USA Investible Market

Index, which attempts to cover all large-, mid- and small-cap US stocks2.

We analyze daily close prices of all put and call options on all stocks within

2MSCI [2017] documents the index’ construction.

78



the universe within a set of restrictions outlined below. In total, 2576 stocks

are considered, and our universe is updated monthly to match the index.

Constituent information is provided by MSCI. The option data is provided

by OptionMetrics, begins on January 1st, 1996, and ends on April 25th,

2022, spanning 6758 trading days. The options dataset consists of daily

close prices for approximately 51.3 million option contracts on all analyzed

stocks. Stocks for which no options have been traded are excluded from the

analysis. The option price data is matched to price data of the underlying

price and to linearly interpolated U.S. treasury rates. Dividends are assumed

to be a constant yield, based on the last known dividend payment. American

options are evaluated using the approach suggested by Cox et al. [1979].

Average daily trading volume, outstanding short interest, and institutional

holdings data have been provided by Bloomberg.

Options with a daily trading volume of less than 100 contracts are excluded

for that day. We write ki = log
(

Ki

FT

)
for the log moneyness. Our calibration

only considers out-of-the-money options, as they tend to be more liquid than

in-the-money options. This entails using call implied volatilities for strikes

below the forward price and put implied volatilities for strikes exceeding the

forward price. As shown by Fusari et al. [2022], we will not be able to see

a bubble solely based on the put options. However, it is worth highlighting

that the martingale defect indicator, as it is fundamentally derived from the

parameter ρ, effectively models the skew of the volatility smile. In the SABR

model, this parameter characterizes the ’difference’ between the call and put

wings of the smile. In this regard, our approach is consistent with Fusari

et al. [2022]. We further restrict the calibration to options with absolute

log-moneyness |k| < 0.5.

This leaves us with a number of pairs (Ki, σi)i of strikes and implied volatil-

ities for the remaining call or put options. The remaining contracts are

enumerated by running variable i = 1, . . . , N , where N is the total number

of remaining contracts. If N < 5, the stock is excluded from the analysis for

that day. On average, each calibration is fitted against 6.12 contracts. This
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number increases over time as more contracts are traded. Figure B.1 in the

appendix provides the average number of available contracts per calibration

over time.

As the volatility process 4.2 is not mean reverting, the SABR model is better

suited for short expirations [Gatheral, 2006, Ch. 7]. Our analysis is therefore

two-fold. We calibrate the model against the full option price surface and

refer to these results as full surface. We repeat the analysis, but restrict the

calibration of the model to options with one month to expiration. For the

one-month-tenor, contracts are selected to have a remaining lifetime between

25 and 35 days. We do not use shorter expirations, because the relative

volume has shifted within the time frame of our analysis. Options with short

maturities became more popular within the time frame of our analysis3.

We calibrate the model to the remaining option mid prices, which we convert

to implied volatilities. Our minimization problem is

minimize
α,ν,ρ

n∑
i=1

(σα,ν,ρ(ki)− σi)
2 (4.5)

s.t.

α ≥ 0 (4.6)

ν > 0 (4.7)

ρ ∈ (−1, 1) (4.8)

where σα,ν,ρ(·) is the SABR implied volatility function for given parameters

α, ν, ρ and fixed time to maturity T .

We implement the suggestion of Le Floc’h and Kennedy [2014], who present

an explicit initial guess procedure to generate an initial parameter guess for

the minimization problem. This initial guess is the starting point for a Nelder

and Mead [1965]-minimization of equation 4.5. We repeat this procedure for

3Appendix B.3 shows that the relative proportion of contracts shifts to the short end
from 2012 onward.
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both the one-month tenor as well as the full surface calibration daily for every

stock under consideration. In order to avoid redundancy, we occasionally

present only results for the full surface in the text body and move one-month

tenor to appendix B.5, where appropriate.

To validate the model calibration, we calculate the at-the-money SABR-

model implied volatility of the root mean squared error on a 30 day horizon

RMSEIV . In total, we have 1.4 million calibrations with a mean RMSEIV

of 0.97%. Of these, 56722 calibrations (4.05% of all calibrations) show a

martingale defect A(·) ≥ 0.05, with a mean RMSEIV of 1.99%. Appendix

B.1 provides full results.

From these calibrated parameters α, ν and ρ, the martingale defect A(·)
follows from equation 4.4. Due to the large number of stocks in our study and

the computational effort required for Markov Chain Monte Carlo methods,

we forgo obtaining a distribution for the martingale defect as suggested by

Piiroinen et al. [2019].
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Figure 4.1: Relative frequencies of persistence of martingale defect events in
trading days. Martingale defects based on SABR calibration of the 1-month tenor
as well as the full volatility surface with thresholds Amin = {0.01, 0.05, 0.1}.

For our analysis across a large number of stocks we must convert the
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martingale defect indicator A(α, ν, ρ) of equation 4.5 into a binary signal

I(A(·)) ∈ {0, 1}. A positive signal marks an event in our study, which is

specific to a single stock and date, at which the option price surface for this

stock indicates bubble conditions for its underlying.

By design, the defect indicator be will greater when the volatility surface

deformation is more pronounced, and very small values indicate a low bubble

intensity [Piiroinen et al., 2018]. To reduce the noise created by the faintest

bubble conditions, we impose a minimum threshold Amin on the indicator4.

Since the martingale defect indicator is based on the correlation ρ, which is

normalized and thus time independent, we pick a static threshold Amin.

Asset price bubbles are in part defined by their persistence. We utilize this

property to fortify our analysis against calibration issues which may not

have been dealt with by the calibration procedure described in section 4.4.

By requiring A(·) to remain above a threshold for a number of consecutive

days p, the total number of events is reduced, but the accuracy of the signal

can be improved. Section 4.5.1 examines defect persistence in more detail.

Days where we cannot find a sufficiently accurate calibration are excluded,

and break persistence. Our indicator is thus defined as

It =

{
1, if At−n ≥ Amin∀ n ∈ [0, . . . , p]

0, otherwise.
(4.9)

To prevent counting the same fundamental event multiple times, event peri-

ods must be non-overlapping. Where SABR model is calibrated against the

full surface, the indicator is denoted Ifull, and where it is calibrated against

the one-month tenor of the volatility surface, it is denoted I1m. Figure 4.1

provides the numbers of events for various thresholds and persistence require-

ments. Increasing these two requirements reduces the total number of events

considered as well as the number of affected companies. We will further ex-

4Appendix B.1 provides summary statistics of all events conditional on the martingale
defect level.
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amine this in the next section. Calibrating the SABR model against the full

surface generates a larger number of bubble events because the number of

datapoints for each calibration is larger, and calibration errors are less likely.

Consequently, persistent events are less likely to be interrupted by miscal-

ibrations. Since calibrating the SABR model on the full volatility surface

tends to smooth out anomalies in the low-DTE part, we expect to see more

false negatives (Type II errors) compared to the one-month tenor.

Most events do not persist over multiple days, which will be examined in

detail in the next section. While we observe 18526 events with a persistence

of one day above a threshold of Amin = 0.01 based on the one-month tenor,

this count reduces to 3505 after two days, and to 1339 after three days.

Based on the full surface, we observe 38798 events with a persistence of one

day, which reduces to 6731 after two, and 2477 after three days. The effect

of Amin is similar. For Amin = 0.05, only 9983 events remain for the one-

month tenor, while 21087 events remain on the full surface calibration. The

effect is even stronger for Amin = 0.1, with 6659 and 14602 events remaining

before applying a persistence requirement. A threshold of Amin = 0.05 with

a minimum persistence of 2 trading days appears to strike a balance between

sensitivity and noise, and are chosen for the remaining analysis. With these

requirements, 1518 events remain for the one-month tenor, and 2745 events

remain when calibrating against the full surface.

4.5 Analysis

In order to investigate the relationship between martingale defects derived

from the volatility surface and bubble conditions in the underlying, we as-

sess return distribution and trading activity before and after detecting a

martingale defect event. Furthermore, we examine the relative occurrence of

martingale defects over time.
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For each event, we consider data during a certain number of trading days

before and after the event, which we refer to as event period tevent. To assess

whether an effect is persistent, we provide results for multiple event periods

tevent ∈ {21, 63, 84, 105, 126, 189, 252}.

Since bubbles are hard to quantify, we analyze a variety of metrics to estab-

lish a tight-knit connection between martingale defect and bubble conditions

in the underlying. Since it is the foundation of our analysis, we begin with

the reaction of the option market to a martingale defect event. Assessing

the persistence of martingale defects in the volatility surface gauges the abil-

ity of the options market to arbitrage irregularities away. Next, we analyze

whether the distribution of returns changes after observing a defect. Using

the number of actively traded option contracts, we find that the martingale

defect coincides with increasing option trading activity for this underlying.

We also find that outstanding short interest increases. By examining insti-

tutional ownership, we find that institutional traders tend to reduce their

exposure to stocks in suspected bubble conditions, leaving the participation

to retail investors.

These four characteristics are naturally time-varying, and might exhibit time

dependent variation that are unrelated to stock price bubbles. To avoid

confounding the bubble-induced change with natural variation over time, we

study a set of placebo-events and compare the results to identified bubble

events. We generate these placebo events on a per-stock basis by shuffling the

dates at which martingale defect events have been identified. This way, the

number of events per stock remains identical, but the timing of the events is

randomized. The events are restricted to the time period where each stock is

a constituent of the IMI Index. We repeat the analysis on this set of placebo

events and report the results for comparison.

Finally, we investigate bubble events over time across the entire market and

find that martingale defects tend to occur more often in good times, and
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rarely in bad times.

4.5.1 Defect Persistence

The martingale defect fundamentally indicates an irrational deformation of

the volatility surface.

Figure 4.1 shows the frequency of event persistence for all incidences with

Amin ∈ {0.01, 0.05, 0.1}. The majority of events occurs for only one day, and

frequency drops quickly. The longest event in the one-month tenor analysis

was Sundial Growers Inc., where a defect was indicated for 14 consecutive

days in May 2021. In the full surface analysis, Myriad Genetics Inc. indicated

a defect for 20 consecutive days in December 2007. PubMatic Inc. also

indicated a 20 day defect in June 2021. All three companies are well-known

as meme stocks on various retail trading investing websites5.

The short persistence of the martingale defect hints at the efficiency of op-

tions markets to absorb bubble conditions in the underlying into a rational

shape of the volatility surface. It does not imply that irrational exuberance

in the underlying is not persistent, but rather that options markets can ac-

commodate and return to efficiency quickly. Obayashi et al. [2016] analyze

the lifetime of financial bubbles by modelling the distribution of the under-

lying directly, and find that bubble conditions in the underlying persist on

the scale of years.

Appendix B.4 presents more details on the effect of threshold and persis-

tence on the number of observed events, as well as the number of affected

companies.

5For example, see Sun [2021], Smith [2007], Farooque [2022]
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4.5.2 Change of Distribution

To confirm the connection between martingale defect events in the volatility

surface and the price process of the underlying, we analyze whether the

distribution of historical log returns changes with an event.

To assess whether the martingale defect indicator can reliably identify a

change in the distribution of log-returns of the underlying, we employ the

two-sample Kolmogorov-Smirnov (K-S)-test. The Null-hypothesis is that the

distribution of log-returns during a period of given length before and after

an event is identical. The interpretation of this would be that observing a

martingale defect in the volatility surface does not coincide with a changing

log-return distribution of the underlying, and is purely an anomaly in the

volatility surface.

More specifically, for given underlying and length of event period tevent > 0

and for each date t0 where we observe a martingale defect signal, we perform

a K-S-test between the two sets {rt0−1, . . . rt0−tevent} and {rt0+1, . . . rt0+tevent},
where we denote by

ri = log

(
Sti

Sti−1

)
(4.10)

the return on day ti.

For each event, we compute the K-S test statistic and p-value. Finally, we

calculate the 1%-quantile and 5%-quantile of all p-values, which we report for

a range of event periods in table 4.1. These quantiles represent the proportion

of events where the Null hypothesis that distribution of log-returns before

and after an event is equal can be rejected with a confidence level of 1% and

5% respectively. By comparing different time frames, we gain insight into

the persistence of changes. It should be emphasized that, regardless of the

event period length, the martingale defect events are identical. The number

of events changes only where event periods overlap or extend beyond the
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One-Month Tenor Full Surface
Period tevent N p ≤ 1% p ≤ 5% N p ≤ 1% p ≤ 5%
63 867 12.31% (1.29%) 22.99% (3.28%) 1402 11.40% (0.94%) 21.65% (2.18%)
84 860 17.25% (1.86%) 28.80% (5.71%) 1393 15.24% (2.50%) 26.44% (6.82%)
105 836 21.09% (2.31%) 33.81% (8.29%) 1371 19.97% (2.44%) 31.94% (10.26%)
126 820 23.93% (4.29%) 37.00% (14.54%) 1345 23.56% (3.50%) 36.61% (11.71%)
189 793 36.69% (4.07%) 50.55% (15.03%) 1310 35.14% (3.81%) 48.58% (13.36%)
252 739 47.07% (10.57%) 59.66% (22.05%) 1245 47.71% (8.47%) 59.20% (20.06%)

Table 4.1: Aggregate results of two-sample Kolmogorov-Smirnov tests to
compare empirical daily return distributions of the underlying before and af-
ter an event. Results on the left side are based on the calibration of the SABR
model against the one-month tenor of the volatility surface, while results on
the right side are based on the full surface. Event Period tevent provides the
number of trading days before and after an event under consideration. N
refers to the number of events after discarding stocks with insufficient data
and overlapping event periods. p ≤ 5% and p ≤ 1% report the quantile of
p-values in the sample. The corresponding results of the placebo study with
shuffled event dates are shown in parentheses.

available data.

We observe that, for both the 1%-quantile and 5%-quantile, a longer event

period increases the proportion of significantly different return distributions.

For an event period of 252 trading days, almost 60% of events reject the

null hypothesis of an unchanged log-return distribution with a confidence of

95%. Even though the options market absorbs the martingale defect within

a few days, these findings imply that it hints at a permanent change of the

underlying’s price process for a large proportion of events. A longer event

period increases the number of datapoints and reduces uncertainty, therefore

longer event periods are inherently more reliable. It is therefore not clear

whether the effect is immediate or takes some time to manifest.

In our placebo study, we shuffle the identified event dates for each stock in

order to randomize the timing component. The randomized sample shows

a highly reduced proportion of significant changes in the return distribu-

tion, indicating that this distribution is indeed changing over time but to a

generally lesser degree than when only accounting for bubble events.
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4.5.3 Option Trading Activity

Full Surface One-month Tenor
Period tevent N t-statistics p-values N t-statistics p-values

Mean p ≤ 5% p ≤ 1% Mean p ≤ 5% p ≤ 1%
21 780 0.16 27.77% (8.08%) 19.20% (3.35%) 670 0.36 13.75% (3.58%) 6.36% (1.15%)
63 800 0.47 41.52% (15.34%) 32.76% (9.72%) 724 0.33 26.07% (6.79%) 16.03% (2.69%)
84 797 0.57 43.26% (25.34%) 35.00% (19.75%) 702 0.42 25.00% (14.16%) 13.84% (8.32%)
105 775 0.82 46.47% (25.27%) 38.68% (18.48%) 692 0.54 28.14% (12.36%) 17.84% (8.29%)
126 755 0.94 49.15% (26.18%) 40.85% (22.44%) 673 0.62 33.17% (17.17%) 21.83% (9.97%)
189 735 1.39 53.41% (30.48%) 44.82% (24.44%) 660 0.90 36.99% (16.57%) 28.16% (12.08%)
252 677 2.03 55.21% (32.16%) 48.85% (26.49%) 611 1.12 41.81% (20.06%) 31.94% (14.40%)

Table 4.2: Aggregate results for t-tests of the number of actively traded
option contracts before and after a martingale defect event, based on the
calibration of the SABR model against the one-month tenor of the volatility
surface. Event Period tevent provides the number of trading days before
and after an event under consideration. Results under Full Surface count all
available options, while results under One-month Tenor count only contracts
within the one-month tenor. N refers to the number of events after discarding
stocks with insufficient data and overlapping event periods. Mean t-statistic
reports the mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report
the quantile of p-values in the sample. The corresponding results of the
placebo study with shuffled event dates are shown in parentheses.

In order to examine the relationship between a martingale defect in the

volatility surface and option trading activity, we analyze whether the number

of contracts available remains constant before and after an event.

For each day, we calculate the number of traded options contracts for the

underlying, while applying the liquidity requirements laid out in section 4.4.

For a pre-specified event window length, we calculate the average number of

daily available contracts before and after each event. We calculate results

counting contracts on either the full surface or restrict ourselves to the one-

month tenor. This is independent of the tenor selection for the calibration.

Over the time period of our sample, the number of daily actively traded

options has grown considerably. Appendix B.2 provides a short overview of

option trading activity over time. Therefore, the number of active contracts

after an event should be expected to be larger than before, just due to the

length of the event period. To compensate for this positive trend in the

number of available options we adjust the observations downwards by cal-
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culating the total growth in options contracts during estimation and event

period and distributing it equally across stocks. This implies (falsely) that

option trading activity grows at a constant rate during the event period,

and is equally distributed amongst securities. The effect of this adjustment

is on average 0.0014 contracts for an event period of 10 days, and 0.0354

contracts for an event period of one year, and is negligible. The remaining

difference can therefore be attributed to the martingale defect event. The

number of contracts is consistently higher after an event. We evaluate this

effect using a paired t-test, i.e. we compare the number of options contracts

before and after an event on a per-event basis. Results are reported in table

4.2. The resulting p-values are consistently very small across event periods,

indicating that the increased number of traded contracts is significant. The

mean difference grows with longer event windows and does not rebound after

a while. This implies that the cause for the increase is not a sudden price

movement, but rather a persistent effect created by increased options trad-

ing activity for the affected underlying. The observed effect is much stronger

when considering all available options, not only those within the one-month

tenor, implying that the market prefers either shorter or longer options for

bubble speculation. As the number of daily available contracts has grown

continuously over time, the placebo study shows a similar pattern over time,

but for a much smaller proportion of events.

4.5.4 Short Interest Ratio

Jarrow [1992] develops the martingale defect theory of bubbles to investigate

price manipulation by large traders. One of his examples involves cornering

the market and squeezing the holders of short positions to pay any price

arbitrarily chosen by the large trader6. He provides two reasons why this

might happen. First, short traders are unable to observe the large traders

purchases, thus not realize that the market is cornered. Second, that the

6Specifically, example 2 in Jarrow [1992].
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Period tevent N t-statistics p-values
Mean p ≤ 5% p ≤ 1%

21 683 1.454 75.3% (51.7%) 66.3% (47.0%)
63 670 1.331 79.6% (59.4%) 74.0% (61.0%)
84 661 1.069 80.8% (57.9%) 75.2% (55.7%)
105 635 0.614 81.6% (70.6%) 76.9% (62.1%)
126 623 0.260 82.7% (74.8%) 78.2% (63.9%)
189 594 0.336 85.2% (70.9%) 80.1% (67.1%)
252 538 0.528 86.6% (78.2%) 82.1% (74.2%)

Table 4.3: Aggregate results for t-tests of outstanding short interest divided
by ADTV before and after a martingale defect event, based on the calibration
of the SABR model against the one-month tenor of the volatility surface.
Event Period tevent provides the number of trading days before and after an
event under consideration. N refers to the number of events after discarding
stocks with insufficient data and overlapping event periods. Mean t-statistic
reports the mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report
the quantile of p-values in the sample. The corresponding results of the
placebo study with shuffled event dates are shown in parentheses.

cornering is technical in nature, i.e. that the short position exceeds the

floating supply of shares, and the large traders position exceeds the float.

To investigate this hypothesis, we analyze the short interest in a stock relative

to its available supply before and after observing a bubble event. As a proxy

for freely available shares we use Average Daily Trading Volume (ADTV) as

reported by the exchange. We divide outstanding short interest by ADTV,

which is commonly referred to as days-to-cover ratio, as it measures the

number of days would take short sellers buying the entire trading volume to

cover their short positions.

For each stock, we retrieve daily outstanding short interest and ADTV, and

calculate the days-to-cover ratio. Stocks where either is missing are removed

from the sample. Individual missing values are filled forward. For each event,

we calculate t-statistics of the days-to-cover ratio before and after the event

over a certain number of trading days in the same fashion as above. We

repeat this analysis for multiple event periods from 21 to 252 days. The
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results of the t-tests are aggregated.

Table 4.3 provides results based on the events generated by the I1m. The

mean t-statistic is positive for all event periods, with the largest value being

2.185 for the shortest event period, and ranging between 0.647 and 0.998 for

event periods longer than three months. This implies that the short interest

rises after a martingale defect is observed in the volatility smile. It rises, on

average, by roughly one standard deviation of the days-to-cover ratio. For an

event period of 21 days, 75.2% of events have a p-value of less than 5%, and

66.7% have a p-value of less than 1%. With longer event periods, and more

daily observations per event, the proportion of significant test results rises.

The longest event period shows the largest proportion of highly significant

results, with 88.0% of events have a p-value of less than 5%, and 83.7% have

a p-value of less than 1%. Appendix B.5 provides similar results based on

I1m in table B.5.

After a martingale defect in the volatility surface, the market appears to be

increasing short positions. For a very large proportion of events, this is highly

significant. The effect is largest in the short term and levels off after a few

months, but remains elevated for at least a year. This seems to confirm that

the martingale defect can reveal bubble conditions in the underlying, and that

some traders have similar perceptions. Similar to the previous results, the

placebo study shows a similar pattern of growth with longer event periods,

but with significantly reduced proportions. While short interest seems to be

on an upward trend long event periods, martingale defects provide a clear

indication of distinct increases in short interest.

4.5.5 Institutional Ownership

In recent years, retail traders have shown increased interest in option markets

[Deshpande et al., 2020]. We investigate whether martingale defects spike

the interest of retail investors by analyzing the percentage of shares held by
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Period tevent N t-statistics p-values
Mean p ≤ 5% p ≤ 1%

21 880 -0.585 62.0% (43.1%) 54.5% (34.2%)
63 867 -1.031 68.1% (49.1%) 64.8% (43.8%)
84 860 -0.193 67.4% (48.6%) 65.3% (49.4%)
105 836 -0.178 67.3% (57.4%) 65.4% (54.0%)
126 820 -0.671 67.4% (58.5%) 65.9% (56.4%)
189 793 -0.326 66.5% (57.4%) 64.5% (53.5%)
252 739 -0.088 66.9% (59.6%) 65.3% (56.8%)

Table 4.4: Aggregate results for t-tests of the percentage of institutional
ownership before and after a martingale defect event, based on the calibration
of the SABR model against the one-month tenor of the volatility surface.
Event Period tevent provides the number of trading days before and after an
event under consideration. N refers to the number of events after discarding
stocks with insufficient data and overlapping event periods. Mean t-statistic
reports the mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report
the quantile of p-values in the sample. The corresponding results of the
placebo study with shuffled event dates are shown in parentheses.

institutions before and after an event.

Our data is matched to institutional holdings data provided by Bloomberg,

which includes the holdings of institutions of type 13F, US and International

Mutual Funds, US Insurance Companies, and aggregate institutional stake

holdings7. This data is available on a weekly basis since March 2010. Stocks

where either is missing are removed from the sample. Individual missing val-

ues are filled forward. For each event, we calculate t-statistics of institutional

ownership before and after the event over a certain number of trading days.

We repeat this analysis for multiple event periods from 21 to 252 days. The

results of the t-tests are aggregated.

Table B.6 provides results based on the events generated by the Ifull. The

mean t-statistic is negative for all event periods, however, no clear trend is

apparent. It ranges from −0.102 to −0.479. In a similar pattern as before,

with longer event periods, and more daily observations per event, the pro-

7For further information, see Bloomberg Terminal FLDS DS211.
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portion of significant test results rises. The longest event period shows the

largest proportion of highly significant results, with 64.7% of events have a

p-value of less than 5%, and 63.1% have a p-value of less than 1%. Appendix

B.5 provides similar results based on I1m in table 4.4.

We find strong evidence that after a martingale defect in the volatility surface

the percentage of institutional ownership tends to be lower than before. Our

analysis does not reveal whether this is due to institutional investors reduc-

ing their position in response to bubble conditions, or due to increased retail

trader demand, and is limited to ownership of the stock, not the options. In

addition, the placebo study reveals an overarching trend of slowly increasing

non-institutional market participation. Proportions of significant changes

are lower throughout, with a larger gap for shorter event periods, indicat-

ing that martingale defects mark distinct short-term changes in institutional

ownership even under long-term trends.

4.5.6 Bubbles as Market-wide phenomenon

We will now analyze whether the occurrence of martingale defects between

stocks are related to each other by examining temporal clustering of events.

We show that bubbles happen predominantly in good times, and occurrence

of bubbles falls sharply when the overall market corrects.

For our entire stock universe, we count daily bubble events. During the time

span of our analysis, option trading activity has grown8. The number of ob-

served events grows in line with this trend. This does not indicate that more

assets are in bubble conditions, rather that these conditions are now trade-

able in the options market. Figure 4.2 reports the total count of daily events

as a fraction of daily total liquid contracts with the intention of compensat-

ing this development for our analysis. For the one-month tenor, we use the

total number of traded contracts within that tenor as denominator. Since the

8Appendix B.2 examines the number of daily liquid option contracts over time.
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number of active contracts fluctuates daily, we use 252 trading day rolling

averages for normalization. As a proxy for overall market performance, we

use the S&P 500 Index.
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Figure 4.2: Number of daily bubble events divided by the number of daily ac-
tively traded options contracts for the entire stock universe. Top panel shows the
performance of the S&P 500 Index. Second panel shows the relative occurrence
of bubble events based on the full surface. Third panel shows the relative occur-
rence of bubbles based on the one-month tenor. Bottom panel compares relative
occurrences from panel two and three, smoothed by 252 trading days.

Relative occurrence of bubbles based on both the full surface and the one-

month tenor follow a very similar pattern. Over time, the relative number
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of bubble events fluctuates between zero and 0.25% of daily liquid options.

From 1997 to 2000, the SPX Index had positive performance, and the rela-

tive occurrence of martingale defects was highest in the entire sample. In the

recession of 2001, the relative number of martingale defects was lower and

less clustered, showing waning optimism. After a short rebound, the number

of bubble events increases and is more clustered than during the drawdown.

A further market correction until June 2003 disappoints the optimism, and

a relatively bubble-free period commences until January 2004. As market

performance is positive, the relative number of bubbles increases steadily,

reaching a peak at the market top in 2007. During the recession, the num-

ber of bubble events falls quickly, and there are no bubble events between

November 2008 and February 2009. From 2009 to 2012, SPX Index perfor-

mance is positive, and the number of martingale defects grows. As a reaction

to the 2012 correction, the number of events collapses, but continues to be

elevated until 2016, after which it slightly levels off. At the beginning of 2020,

the number of bubble events reaches 0.5%, which it has not reached since

2014. During the Covid-19 market correction, the number of events drops

off sharply but rises quickly afterwards and remains elevated throughout the

pandemic.

Overall, we observe that long periods of positive returns lead to a rise in

martingale defect events in single stock volatility surfaces. By construction,

our indicator is elevated when – in the parameters of the SABR model – stock

price and volatility become positively correlated. Our observation implies

that single stock options are used by the market to express strong optimism,

and that option prices are higher than rational. These results support the

hypothesis that asset price bubbles are an expression of overly optimistic

expectations.

From 2016 on, the number of actively traded contracts begins to rise at a

larger rate than before. The number of martingale defect events in relation

to the total number of contracts is only very slightly lower. This implies

that the multitude of single stocks with active option markets now absorb
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the gambling needs of the market. The bottom panel of figure 4.2 compares

relative occurrence of bubble events of the one-month tenor to those of the

entire surface. A negative value means that bubble events are more prevalent

in the one-month tenor, while a positive value means the opposite. While

monthly contracts appear to be preferred for trading bubble events for the

majority of our sample, trading activity shifted with the introduction of

weekly and bi-weekly options. The expansion of options markets into shorter

expirations and smaller companies does not appear to have created more

bubble events, but redistributed them among a larger number of smaller

securities.

4.6 Conclusion

This chapter provides a large scale study of martingale defects in the volatility

surface and changes in stock price dynamics and trading reaction. We find

that martingale defects tend to coincide with other bubble characteristics.

We operationalize the detection of stock price bubbles by calibrating a SABR

model to observed option prices, simplifying the approach suggested by Pi-

iroinen et al. [2018]. Using a large stock and option price dataset, we calculate

a daily bubble indicator for the constituents of the MSCI IMI Index.

The volatility surface admits bubble conditions regularly, but rarely for longer

than three days, which implies that the options market is generally efficient

absorbing bubble conditions.

For each identified martingale defect event, we analyze changes of the return

distribution, option trading activity, short interest, and institutional owner-

ship. For all four factors, we find that a large proportion changes significantly

after bubble conditions are observed. These effects appear to be permanent.

By comparing our results with those obtained from a set of event dates that

have been randomly shuffled, we affirm the reliability of martingale defects
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in identifying bubble conditions. This shows that our methodology success-

fully avoids any potential confounding of stock price bubbles with naturally

changing characteristics.

The empirical distribution of returns is significantly different for almost 60%

of events after one year. Option trading activity, measured by actively traded

contracts of any maturity, remains significantly elevated a year after an event

for about 55% of events. Short interest remains significantly increased after a

year for 88% of events. Institutional ownership decreases significantly within

the year after 67% of events. Our results become more robust as the event

period increases, and all examined effects appear to be permanent.

Our market-wide analysis of bubble events over time reveals that martingale

defects in the volatility surface tend to occur in periods of positive market

returns. Market corrections lead to an immediate collapse of the number of

martingale defects across all stocks. As option contract availability increased

over time, martingale defects are distributed across more stocks, but the

relative occurrence of defects remains somewhat constant. The implication

is that overoptimistic speculation is a constant element of markets, and that

better availability of options can help distribute this irrational force across a

larger number of underlyings.

The advantages of the presented simplified implementation of the martingale

defect indicator make it a promising tool for future research. Of particular in-

terest might be the correlation between the analyzed factors, the distribution

of option trading activity between retail traders and institutional investors

to isolate the propensity to take more risk than intended, and the particular

effect of options with a lifetime of less than two weeks. Furthermore, our

results might be of interest to regulators to help balance option availability,

since an overabundance of options for small stocks might permit easier mar-

ket cornering and thus manipulation, negatively affecting market stability

and trust in institutions.
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Chapter 5

Concluding Remarks

Options and option pricing theory give us an opportunity to mea-

sure directly the degree of anticipated uncertainty in the markets.

[Ross, 1987]

The volatility surface offers unique insights into the markets perception of

risk. It is the subject of an extensive body of literature with the aim of under-

standing option pricing, market behaviour, and investor risk aversion. These

insights form the basis for many investment and risk management decisions.

However, translating these insights from theory into practice still provides

challenges. This dissertation distinguishes two categories of challenges: tech-

nical anomalies and market anomalies. The technical anomalies, arising from

the inherent practical limitations of option trading, comprises discrete and

truncated strikes, which introduce structural errors into the elegant mathe-

matics of modern financial economics. Market anomalies on the other hand

arise from overoptimistic speculation, and lead to irrational shapes of the

volatility surface where fundamental assumptions of asset pricing are vio-

lated.

In chapter 2, technical anomalies where described as discernible gaps in strike

prices and the constraints of minimum and maximum strikes. To evaluate
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their impact on the analysis of the markets’ perception of future variance,

we derive an the expected value of future realized variance explicitly for a se-

lection of common option pricing models. Using multiple sets of parameters

for each model to simulate a wide range of market conditions and volatil-

ity surface shapes, we assess the accuracy of variance swap pricing methods

against artificially discretized and truncated volatility surfaces. We find that

discretization tends to be non-structural and interpolation along the strike

grid leads to robust results. Truncation on the other hand leads to struc-

tural underestimation of future realized variance, and the commonly used

extrapolation approaches introduce other sources of potentially large errors.

Chapter 3 examines the issue of truncation in the strike domain further. As

the width of the strike grid fluctuates over time, the extend of the struc-

tural underestimation fluctuates in the same fashion. By utilizing a well-

established result by Lee [2004] on the asymptotic slope of implied volatility

at extreme strikes, we construct an explicit truncation compensation term

that only depends on the strike and volatility of the outermost option con-

tract for each wing. This compensation term measures the amount of missing

future realized variance directly, and can be added to volatility indices such

as the VIX Index with only minor modifications. Since investors are able

to afford to purchase protection closer to the money, low volatility regimes

induce larger truncation errors. During market corrections with peaking

volatility the truncation error becomes negligible. A direct consequence of

this is that strategies which rely on implied volatility for risk management

are structurally over-leveraged.

Detecting irrational shapes of the volatility surface and their relation to spec-

ulative bubbles is the topic of chapter 4. When markets become irrational,

core assumptions of financial theory fail to hold, and associated results are

not applicable in these conditions. By explicitly specifying conditions where

the fundamental theorem of asset pricing is violated within the framework of

the SABR model, speculative bubbles can be identified. A large-scale study

of 2576 stocks over 26 years reveals that the options market absorbs specu-
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lative bubbles within a few days, while stock price bubbles have a lifetime

in months or years. Based on events identified through martingale defects in

the SABR model, we find that the distribution of asset returns changes, the

number of actively traded option contracts as well as short interest increases,

and institutional ownership decreases. These effects to be permanent and

persistent. Our results further indicate that retail investors exhibit a higher

propensity to participate in asset price bubbles than institutional investors.

Over time, speculative bubbles appear almost exclusively in periods of posi-

tive price developments. Optimism fades quickly when markets correct.

In essence, this dissertation has unveiled the volatility surface as a dynamic

and multifaceted construct that serves as a bridge between theoretical fi-

nancial models and the complex practical realities of financial markets. It

has demonstrated that the anomalies of the volatility surface are not mere

curiosities but rather windows into the intricate dynamics of risk percep-

tion, market sentiment, and speculative behavior. These anomalies provide

a rich landscape for future research, promising further advancements in the

realms of option pricing, risk management, and the broader understanding

of financial markets. As financial economics continues to evolve, the volatil-

ity surface remains a fertile ground for exploration and a testament to the

enduring appeal of financial theory in practice.
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Lévy processes. Finance and Stochastics, 16(2):335–355, April 2012. ISSN

0949-2984, 1432-1122. doi: 10.1007/s00780-011-0157-9.

CBOE. CBOE to Apply VIX Methodology to Individual Equity Op-

tions. https://ir.cboe.com/news-and-events/2011/01-05-2011/cboe-apply-

vix-methodology-individual-equity-options, 2011.

CBOE. Double the Fun with CBOE’s VVIX Index.

https://cdn.cboe.com/resources/indices/documents/vvix-

termstructure.pdf, 2012.

CBOE. Cboe VIX Whitepaper - Cboe Volatility Index.

https://cdn.cboe.com/resources/futures/vixwhite.pdf, 2018.

Hui Chen, Winston Wei Dou, and Leonid Kogan. Measuring ’Dark Matter’

in Asset Pricing Models, January 2022.

Ing-Haw Cheng. The VIX Premium. The Review of Financial Studies, 32

(1):180–227, January 2019. ISSN 0893-9454, 1465-7368. doi: 10.1093/rfs/

hhy062.

Patrick Cheridito, Damir Filipovic, and Robert L. Kimmel. Market Price of

Risk Specifications for Affine Models: Theory and Evidence. Journal of

Financial Economics, 83:123–170, 2007. ISSN 1556-5068. doi: 10.2139/

ssrn.524724.

Jaehyuk Choi, Kwangmoon Kim, and Minsuk Kwak. Numerical approxima-

tion of the implied volatility under arithmetic Brownian motion. Applied

Mathematical Finance, 16(3), 2009.

John R. Conlon. Simple Finite Horizon Bubbles Robust to Higher Order

106



Knowledge. Econometrica, 72(3):927–936, May 2004. ISSN 0012-9682,

1468-0262. doi: 10.1111/j.1468-0262.2004.00516.x.
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Appendix A

Chapter 2

A.1 Calculation of the VIX Index

CBOE [2018] lays out the methodology of the VIX Index in detail. It fun-

damentally consists of the following steps:

1. The two maturities closest to the 30 days-to-expiration mark are se-

lected and all relevant options are chosen.

2. Of those options, options with zero-bids are removed; If two options

with adjacent strikes have zero-bids, all options further from the money

are removed as well.

3. The MFIV is computed for both maturities.

4. The two resulting volatility estimates are linearly interpolated to match

the desired time-to-expiration of 30 days.
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A.2 MFIV in terms of log-forward money-

ness

We begin with the definition by Britten-Jones and Neuberger [2000], equation

3.2 as

EQ
0

[∫ T

0

(
dFt

Ft

)2
]
= 2

∫ ∞

0

C(K, τ, σK)−max(F0 −K, 0)

K2
dK. (A.1)

By definition, we have

k = log

(
K

F0

)
(A.2)

⇔ K = F0e
k (A.3)

and thus σK = σk to shorten notation.

The price of an option in log-forward moneyness is quoted in relative terms,

thus

C(K, τ, σK) = F0c(k, τ, σk). (A.4)

Substitute and simplify to

MFIV = 2

∫ ∞

−∞

F0c(k, τ, σk)−max(F0 − F0e
k, 0)

(F0ek)2
F0e

kdk (A.5)

= 2

∫ ∞

−∞

c(k, τ, σk)−max(1− ek, 0)

ek
dk. (A.6)
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A.3 Derivation of the extrapolated Black-

Scholes call price

In the standard Black-Scholes model, the price of a call option is given by

c(k, τ, σ) = Ψ(d1(k, τ, σ))− ekΨ(d2(k, τ, σ)), (A.7)

d1(k, τ, σ) = − k

σ
√
τ
+ 1

2
σ
√
τ , and (A.8)

d2(k, τ, σ) = d1(k, τ, σ)− σ
√
τ , (A.9)

where Ψ is the normal cumulative distribution function (CDF).

By Lee [2004], as k −→ ±∞, σBSIV −→
√

β
τ
|k|, where β ∈ [0, 2] being

specific to either the left or right wing. To extrapolate c in the tails, compute

β from the outermost option price, then substitute σ to get the price of a

far-out-of-the-money call option in line with no-arbitrage limits as

c̃(k, τ, β) = c(k, τ,

√
β

τ
|k|) (A.10)

= Ψ(d̃1(k, τ))− ekΨ(d̃2(k, τ)), (A.11)

d̃1(k, τ, β) = d1(k, τ,

√
β

τ
|k|) (A.12)

= − k√
β|k|

+ 1
2

√
β|k|, and (A.13)

d̃2(k, τ, β) = d2(k, τ,

√
β

τ
|k|) (A.14)

= d̃1(k, τ, β)−
√
β|k|. (A.15)

Repeat for the price of a put option.
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A.4 Dynamics of Lee [2004]’s tail parameter

Figure A.1 shows the β-curves for six different models to illustrate the general

stability of the tail parameter dynamics. With short time-to-expiration, the

tail parameters level out quickly. For longer time-to-expiration the specific

model properties and parameters become more important.
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Figure A.1: β-curves in comparison. The top row shows the results for the
Merton-model with ΩMerton1 = {σ = 0.2, α = 0.5, δ = 0.5, λ = 0.02} and
ΩMerton2 = {σ = 0.2, α = 0.3, δ = 0.7, λ = 0.04}. The middle row shows the
results for the Heston-model with ΩHeston1 = {v0 = 0.0225, v̄ = 0.0225, κ = 3, η =
0.25, ρ = 0} and ΩHeston2 = {v0 = 0.09, v̄ = 0.09, κ = 3, η = 0.25, ρ = 0}. The bot-
tom row shows the results for the Stochastic Volatility with Jumps (SVJ)-model
with ΩSvj1 = {ΩMerton1,ΩHeston1} and ΩSvj2 = {ΩMerton2,ΩHeston2}.
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A.5 Truncation error under different cutoff

strikes

Figure A.2 provides the bottom plot of figure 3.3 for the minimum cutoff

strikes ±0.05, ±0.075, and ±0.1. While there are some visible differences,

the general result appears to hold.

Date0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

TE
 w
ith

 C
ut
of
f=
0.
05

Truncation Error 25d. Roll. Mean Total Mean

Date0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

TE
 w
ith

 C
ut
of
f=
0.
07

5

Truncation Error 25d. Roll. Mean Total Mean

1996 2000 2004 2008 2012 2016
Date

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

TE
 w
ith

 C
ut
of
f=
0.
10

Truncation Error 25d. Roll. Mean Total Mean

Figure A.2: Comparison of truncation error for the minimum cutoff strikes
±0.05, ±0.075, and ±0.1.
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Appendix B

Chapter 3

B.1 Calibration results

Table B.1 provides descriptive statistics of calibration results. The large

sample size leads to a small number of calibrations with above-desirable

RSMEIV figures, but for the vast majority of observations these results in-

dicate adequate fit. Comparing calibration results for the full sample with

those observations where the resulting A(·) exceeds a set of thresholds con-

firms that the calibration achieves acceptable fit most of the time even under

martingale defect conditions.

B.2 Total trading activity over time

Within the timespan of our dataset, option trading activity has increased.

The number of underlyings with actively traded options as well as the num-

ber of options per underlying have both grown. This development propagates

into our results, since more underlyings with active option trading implies

a higher number of possible events. To measure and compensate for this

121



Full Sample A(·) > 0 A(·) ≥ 0.01 A(·) ≥ 0.05 A(·) ≥ 0.1

Count
total 1,402,230 159,309 109,414 56,722 39,270
% of total 11.36% 7.80% 4.05% 2.80%

R
S
M

E
I
V

mean 0.0097 0.0192 0.0182 0.0199 0.0219
min 0.0000 0.0000 0.0000 0.0000 0.0000
25% quantile 0.0000 0.0000 0.0000 0.0000 0.0017
50% quantile 0.0027 0.0080 0.0072 0.0094 0.0116
75% quantile 0.0102 0.0255 0.0238 0.0259 0.0280
max 0.2121 0.2121 0.2121 0.2121 0.2121

D
ef
ec
t
A
(·)

mean 0.0172 0.1511 0.2181 0.3978 0.5432
min 0.0000 0.0000 0.0100 0.0500 0.1000
25% quantile 0.0000 0.0071 0.0228 0.0857 0.1743
50% quantile 0.0000 0.0245 0.0535 0.1886 0.4281
75% quantile 0.0000 0.0973 0.2038 0.8419 1.0000
max 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.1: Descriptive statistics of calibration results. The first two rows
provide the number of valid calibrations in the sample, as well as their pro-
portions. The second set of rows provides statistics of calibration RSMEIV .
The third set of rows provides statistics of the resulting martingale defect
indicator A(·). The columns provide statistic conditional on wether A(·) ex-
ceeds a given threshold [0.0, 0.01, 0.05, 0.1].

trend, we use the total number of actively traded option contracts as proxy

for market-wide option trading activity. We employ the same liquidity re-

quirements as laid out in section 4.4. Figure 1.1 provides the total number

of daily active contracts for the SPX Index as well as the complete secu-

rities universe. As activity is fluctuating strongly from day to day, we use

252 trading day rolling averages. Figure B.1 provides the average number of

contracts available for the calibration of the SABR model.

B.3 Relative trading activity over time by

maturity

Appendix B.2 examines the total number of actively traded contracts. In this

section, we will examine the proportional trading activity by maturity, as far

as it is relevant to our analysis. We separate contracts by their remaining
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Figure B.1: Average daily number of contracts available for calibration. For visual
clarity, the plot shows one year rolling averages.

lifetime in days. These slices are commonly called tenors. Table B.2 provides

a list of tenor definitions.

Tenor 1 week 2 weeks 1 month 3 months 6 months
DTE 2− 7 days 12− 16 days 25− 35 days 80− 100 days 165− 195 days

Table B.2: Tenor classifications.

Figure B.2 provides an overview of the development of available option con-

tracts within a tenor. It shows the number of contracts within a range of

days-to-maturity relative to the total number of contracts available. We ap-

ply the liquidity requirements laid out in section 4.4. As the periods are not

exactly adjacent, the sum of the relative proportions may be less than 100%.

Each day, all available option contracts are sorted by days to expiration, and

their proportions are compared over time. The proportion of available op-

tions with a lifetime of less than one month begins to increase in 2012. The

proportion of options with a lifetime of approximately one month remains

very roughly constant, while the proportion of longer options declines from

2012 onward. After 2012, the proportion of available contracts has increased

strongly. The proportion of the one-month tenor is relatively stable, but

has increased as well. Overall, the market appears to have embraced the

availability of low-DTE contracts. This fundamental shift in the dataset mo-

tivates us to provide our findings based on the one month tenor as well as
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the full surface.
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Figure B.2: Proportions of traded option contracts by tenor. For visual clarity,
the plot shows one year rolling averages.

B.4 Persistence

Table B.3 provides details on the results discussed in section 4.4. Further-

more, the number of affected stocks is disclosed.

B.5 Results for Full Surface

Table B.4 complements table 4.2 and provides results based on the full sur-

face.

Table B.5 complements table 4.3 and provides results based on the full sur-
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by Persistence
1 Month Tenor Full Surface

by Threshold 1 day 2 days 3 days 1 day 2 days 3 days

0.01
Events 18526 3505 1339 38798 6731 2477
Companies 1591 820 475 1923 1193 717

0.05
Events 9983 1518 529 21087 2745 856
Companies 1391 527 249 1806 806 382

0.10
Events 6659 823 274 14602 1519 390
Companies 1203 353 149 1674 561 217

Table B.3: Number of events and number of unique affected companies for
different persistence and threshold configurations. The left half provides
results based on options with approximately one month to expiration, the
right half provides results based on the entire volatility surface. The upper
row provides the number of events in total, the lower row shows across how
many companies these events are spread out. A persistence of one day means
that the indicator must be above threshold for one day, i.e. there is no
persistence requirement.

face.

Table B.6 complements table 4.4 and provides results based on the full sur-

face.

125



Full Surface One-month Tenor
Period tevent N t-statistics p-values N t-statistics p-values

Mean p ≤ 5% p ≤ 1% Mean p ≤ 5% p ≤ 1%
21 1149 0.19 22.55% (7.13%) 12.19% (3.17%) 780 0.38 10.01% (2.16%) 4.58% (0.86%)
63 1196 0.36 32.41% (9.81%) 23.34% (5.60%) 953 0.18 20.63% (5.81%) 12.13% (2.76%)
84 1195 0.45 33.86% (17.50%) 24.66% (12.73%) 930 0.32 19.19% (9.85%) 10.50% (6.67%)
105 1168 0.67 35.82% (19.14%) 28.28% (13.44%) 944 0.44 23.08% (10.18%) 14.73% (6.19%)
126 1179 0.79 39.96% (22.60%) 31.25% (16.67%) 956 0.49 25.74% (14.27%) 17.34% (9.92%)
189 1152 0.95 42.70% (23.72%) 34.07% (17.96%) 957 0.61 28.42% (14.42%) 20.40% (9.56%)
252 1090 1.35 45.45% (29.85%) 37.25% (24.20%) 912 0.68 31.13% (20.06%) 22.04% (13.84%)

Table B.4: Aggregate results for t-tests of the number of actively traded
option contracts before and after a martingale defect event, based on the
calibration of the SABR model against the full volatility surface. Event
Period tevent provides the number of trading days before and after an event
under consideration. Results under Full Surface count all available options,
while results under One-month Tenor count only contracts within the one-
month tenor. N refers to the number of events after discarding stocks with
insufficient data and overlapping event periods. Mean t-statistic reports the
mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report the quantile
of p-values in the sample. The corresponding results of the placebo study
with shuffled event dates are shown in parentheses.

Period tevent N t-statistics p-values
Mean p ≤ 5% p ≤ 1%

21 1060 2.185 75.2% (46.5%) 66.7% (38.5%)
63 1042 1.250 77.9% (64.4%) 71.8% (64.2%)
84 1033 0.979 80.8% (73.7%) 75.4% (63.1%)
105 1010 0.867 81.0% (60.9%) 75.7% (48.1%)
126 985 0.647 83.1% (79.5%) 77.9% (66.5%)
189 950 0.879 86.3% (73.8%) 81.5% (63.5%)
252 884 0.998 88.0% (75.1%) 83.7% (63.2%)

Table B.5: Aggregate results for t-tests of outstanding short interest divided
by ADTV before and after a martingale defect event, based on the calibra-
tion of the SABR model against the full volatility surface. Event Period
tevent provides the number of trading days before and after an event under
consideration. N refers to the number of events after discarding stocks with
insufficient data and overlapping event periods. Mean t-statistic reports the
mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report the quantile
of p-values in the sample. The corresponding results of the placebo study
with shuffled event dates are shown in parentheses.
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Period tevent N t-statistics p-values
Mean p ≤ 5% p ≤ 1%

21 1060 -0.264 59.0% (43.1%) 52.9% (34.2%)
63 1042 -0.479 65.1% (49.1%) 62.9% (43.8%)
84 1033 -0.176 64.5% (48.6%) 62.0% (49.4%)
105 1010 -0.319 63.8% (57.4%) 61.4% (54.0%)
126 985 -0.244 64.0% (58.5%) 61.7% (56.4%)
189 950 -0.308 65.4% (57.4%) 63.3% (53.5%)
252 884 -0.102 64.7% (59.6%) 63.1% (56.8%)

Table B.6: Aggregate results for t-tests of the percentage of institutional
ownership before and after a martingale defect event, based on the calibra-
tion of the SABR model against the full volatility surface. Event Period
tevent provides the number of trading days before and after an event under
consideration. N refers to the number of events after discarding stocks with
insufficient data and overlapping event periods. Mean t-statistic reports the
mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report the quantile
of p-values in the sample. The corresponding results of the placebo study
with shuffled event dates are shown in parentheses.
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