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ABSTRACT

For decades, software security has been the primary focus in securing our computing
platforms. Hardware was always assumed trusted, and inherently served as the founda-
tion, and thus the root of trust, of our systems. This has been further leveraged in de-
veloping hardware-based dedicated security extensions and architectures to protect soft-
ware from attacks exploiting software vulnerabilities such as memory corruption. How-
ever, the recent outbreak of microarchitectural attacks has shaken these long-established
trust assumptions in hardware entirely, thereby threatening the security of all of our com-
puting platforms and bringing hardware and microarchitectural security under scrutiny.
These attacks have undeniably revealed the grave consequences of hardware/microar-
chitecture security flaws to the entire platform security, and how they can even sub-
vert the security guarantees promised by dedicated security architectures. Furthermore,
they shed light on the sophisticated challenges particular to hardware/microarchitec-
tural security; it is more critical (and more challenging) to extensively analyze the hard-
ware for security flaws prior to production, since hardware, unlike software, cannot be
patched /updated once fabricated.

Hardware cannot reliably serve as the root of trust anymore, unless we develop and
adopt new design paradigms where security is proactively addressed and scrutinized
across the full stack of our computing platforms, at all hardware design and implementa-
tion layers. Furthermore, novel flexible security-aware design mechanisms are required
to be incorporated in processor microarchitecture and hardware-assisted security ar-
chitectures, that can practically address the inherent conflict between performance and
security by allowing that the trade-off is configured to adapt to the desired requirements.

In this thesis, we investigate the prospects and implications at the intersection of hard-
ware and security that emerge across the full stack of our computing platforms and
System-on-Chips (S0Cs). On one front, we investigate how we can leverage hardware
and its advantages, in contrast to software, to build more efficient and effective security
extensions that serve security architectures, e.g., by providing execution attestation and
enforcement, to protect the software from attacks exploiting software vulnerabilities. We
further propose that they are microarchitecturally configured at runtime to provide dif-
ferent types of security services, thus adapting flexibly to different deployment require-
ments. On another front, we investigate how we can protect these hardware-assisted
security architectures and extensions themselves from microarchitectural and software
attacks that exploit design flaws that originate in the hardware, e.g., insecure resource
sharing in SoCs. More particularly, we focus in this thesis on cache-based side-channel at-
tacks, where we propose sophisticated cache designs, that fundamentally mitigate these
attacks, while still preserving performance by enabling that the performance-security
trade-off is configured by design. We also investigate how these can be incorporated
into flexible and customizable security architectures, thus complementing them to fur-
ther support a wide spectrum of emerging applications with different performance/se-



curity requirements. Lastly, we inspect our computing platforms further beneath the
design layer, by scrutinizing how the actual implementation of these mechanisms is yet
another potential attack surface. We explore how the security of hardware designs and
implementations is currently analyzed prior to fabrication, while shedding light on how
state-of-the-art hardware security analysis techniques are fundamentally limited, and
the potential for improved and scalable approaches.
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ZUSAMMENFASSUNG

Jahrzehntelang stand die Softwaresicherheit bei der Sicherung unserer Computerplat-
tformen im Vordergrund. Die Hardware wurde immer als vertrauenswiirdig ange-
sehen und diente als Grundlage und somit als Vertrauensbasis fiir unsere Systeme.
Dies wurde bei der Entwicklung von hardwarebasierten Sicherheitserweiterungen und
-architekturen weiter genutzt, um Software vor Angriffen zu schiitzen, die Software-
Schwachstellen, wie z.B. Speicher- und Programmierfehler, ausnutzen. Der aktuelle
Ausbruch von Angriffen auf die Prozessor-Mikroarchitektur hat jedoch diese seit
langem etablierten Annahmen tiber das Vertrauen in die Hardware vollig erschiittert,
wodurch die Sicherheit aller unserer Computerplattformen bedroht ist und die Sicher-
heit von Hardware und Mikroarchitektur auf den Priifstand gestellt wird. Diese An-
griffe haben unbestreitbar die schwerwiegenden Folgen von Sicherheitsmédngeln in der
Hardware/Mikroarchitektur fiir die Sicherheit der gesamten Plattform aufgezeigt. Zu-
dem zeigen sie, wie sogar die Sicherheitsgarantien untergraben werden koénnen, die von
speziellen Sicherheitsarchitekturen versprochen werden. Dariiber hinaus werfen diese
Angriffe ein Licht auf die besonderen Herausforderungen, die mit der Sicherung von
Hardware/Mikroarchitekturen verbunden sind: Es ist wesentlicher (und schwieriger),
die Hardware vor der Produktion umfassend auf Sicherheitsméngel zu untersuchen, da
Hardware im Gegensatz zu Software nach der Herstellung nicht gepatcht/aktualisiert
werden kann.

Hardware kann nicht mehr zuverldssig als Vertrauensbasis dienen, es sei denn, wir en-
twickeln und tibernehmen neue Design-Paradigmen, bei denen die Sicherheit proaktiv
angegangen und tiber die gesamten Schichten unserer Computerplattformen auf allen
Hardware-Design- und Implementierungsebenen gepriift wird. Dariiber hinaus miissen
neuartige, flexible und sicherheitsbewusste Design-Mechanismen in die Mikroarchitek-
tur von Prozessoren und in hardwaregestiitzte Sicherheitsarchitekturen integriert wer-
den, die den Konflikt zwischen Leistung und Sicherheit praktisch 16sen kénnen, indem
sie es ermoglichen, den Kompromiss an die gewiinschten Anforderungen anzupassen.

In dieser Dissertation erforschen wir die Perspektiven und Auswirkungen an der
Schnittstelle von Hardware und Sicherheit, die sich iiber die gesamten Schichten un-
serer Computerplattformen und System-on-Chips (SoCs) ergeben. Auf der einen Seite
untersuchen wir, wie wir Hardware und ihre Vorteile im Vergleich zu Software nutzen
konnen, um effizientere und effektivere Sicherheitserweiterungen zu entwickeln, die
Sicherheitsarchitekturen dienen, z.B. um Attestierung und Integritdtsschutz des Kon-
trolflusses anzubieten, mit dem Ziel, Software vor Angriffen zu schiitzen, die Software-
Schwachstellen ausnutzen. Aufierdem schlagen wir vor, dass die Sicherheitserweiterun-
gen zur Laufzeit mikroarchitektonisch so konfiguriert werden, dass sie verschiedene
Arten von Sicherheitsdiensten bereitstellen und sich so flexibel an unterschiedliche Ein-
satzanforderungen anpassen lassen. Auflerdem untersuchen wir, wie wir diese hard-
waregestiitzten Sicherheitsarchitekturen und -erweiterungen selbst vor mikroarchitek-
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tonischen und Software-Angriffen schiitzen konnen, welche Designfehler ausnutzen, die
ihren Ursprung in der Hardware haben, z.B. eine unsichere geteilte Nutzung von SoC-
Ressourcen. Insbesondere konzentrieren wir uns in dieser Arbeit auf Cache-basierte
Seitenkanalangriffe, fiir die wir elegante Cache-Designs vorschlagen, die diese Angriffe
grundlegend entschérfen und gleichzeitig die Leistung erhalten, indem sie ermoglichen,
den Kompromiss zwischen Leistung und Sicherheit zu konfigurieren. Wir untersuchen
auch, wie diese Cache-Designs in flexible und anpassbare Sicherheitsarchitekturen inte-
griert werden konnen, um diese zu ergédnzen und so ein breites Spektrum neuer Anwen-
dungen mit unterschiedlichen Leistungs-/Sicherheitsanforderungen zu unterstiitzen.
Schliefllich nehmen wir unsere Computerplattformen auch unterhalb der Design-Ebene
unter die Lupe, indem wir untersuchen, wie die tatsdchliche Implementierung dieser
Mechanismen eine weitere potenzielle Angriffsfliche darstellt. Wir untersuchen, wie die
Sicherheit von Hardware-Designs und -Implementierungen derzeit vor der Fertigung
analysiert wird, und beleuchten gleichzeitig die grundlegenden Grenzen der modernen
Hardware-Sicherheitsanalyseverfahren sowie das Potenzial fiir verbesserte und skalier-
bare Ansitze.
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INTRODUCTION

For decades, software security has been the primary focus and concern when it comes
to securing our computing platforms. Operating system and software vendors as well
as academia have been exerting extensive efforts in hardening computing platforms
against software-based attacks in the ever-evolving attacks-defenses arms race. Such at-
tacks are usually exploiting various software and architectural security vulnerabilities,
and are more commonly runtime attacks that exploit memory corruption vulnerabilities,
e.g., buffer overflows. On the other hand, far less open scrutiny and efforts have been
invested in hardware and microarchitectural security, despite their significant role both in
inherently constituting the foundation of our computing platforms as well as in emerg-
ing hardware-enforced dedicated security mechanisms.

The long-established working assumption has been that the underlying hardware, pro-
visioned by hardware and chip vendors, is trusted and secure. Only in recent years, did
the recent uncovering of new types of security threats and attacks trigger a paradigm
shift which disrupted the traditional threat assumptions which have, for long, consid-
ered software-only vulnerabilities and unjustifiably assumed the underlying hardware
and our processors to be trusted. This emerging class of attacks are largely microar-
chitectural, and are usually cross-layer in nature, i.e., they usually involve unprivileged
software remotely exploiting hardware vulnerabilities (design or implementation flaws)
at different abstraction layers of the computing system to bypass existing protection
mechanisms, thus achieving privileged code execution and accessing otherwise sensi-
tive information. In recent years, such attacks have been shown to affect a wide range
of computing platforms, ranging from low-end devices to high-end server systems of
different architectures and vendors, e.g., Intel, AMD and ARM [83, 2, 90, 84, 81, 95, 143,
54, 48, 47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20, 80, 129, 120, 90, 132, 54, 48].

The Root Causes. The root causes of these cross-layer attacks originate at different
hardware abstraction layers such as design flaws at the microarchitectural layer [go,
83, 134, 25, 73, 118, 20, 107, 71, 75, 92, 140, 60, 142], and/or implementation flaws at
the low-level hardware implementation layers [8o, 129, 77, 120]. Typically, these attacks
work by causing an otherwise concealed or temporary state of the hardware to become
illegitimately visible to or compromised by unauthorized software, as we describe next.

Abstraction Layers of a Computing Platform. Figure 1 shows a simplified represen-
tation of the different abstraction layers of a computing platform. The architecture layer
of a platform is a high-level abstraction layer which specifies the control unit and dat-
apath (usually comprising the execution and logic units, the system memories and the
general-purpose and architectural registers). The architecture layer also describes the in-
struction set of the platform and its expected behavior and representation to the software
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Figure 1: The different layers of a typical computing stack and a categorization of the main
publications of this thesis across it

layer, i.e., the CPU architectural state and the contents of the general-purpose registers
that should be visible to the software layer. The microarchitecture layer is a lower-level
realization of that architecture and includes the design techniques leveraged to actually
realize the processor architecture, e.g., the specific-purpose configuration registers, exe-
cution units, buffers, cache hierarchy and controller, and the ever-evolving performance
optimizations of our modern processors. These architectural and microarchitectural de-
signs and functionalities are then realized and implemented with concrete hardware
logic gates, constituting the hardware implementation layer. While the architecture repre-
sents the current software-visible state, the microarchitectural state (and that of layers
underneath) is only intermediate, can be out of sync, and is never intended to be visible
to the software.

Cross-Layer Microarchitectural Attacks. At the microarchitecture layer, hardware
vendors have been continuously enabling processors with closed-source and propri-
etary performance boosting optimizations, e.g., cache hierarchies and speculative exe-
cution. Speculative execution is an optimization technique where an out-of-order pro-
cessor "speculates” that a branch or a load would use a value before the processor com-
pletes computing that this speculative value is correct, and execution proceeds with
subsequent instructions "temporarily” or "transiently” assuming this speculated value.
Once that branch/load resolves, the processor knows whether the speculative value was
indeed correct. If correct, then executed instructions that depend on that value were
validly executed and are retired, i.e., their results become architecturally visible to the
software. Otherwise, the executed instructions that depend on that speculative value are
invalid and are squashed, i.e., their results are not committed to the architectural pro-
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gram state and almost most changes are reverted. While the visible architectural state is
guaranteed to be unaffected, microarchitectural traces and "side effects" are left behind
that affect the microarchitectural state of the processor, such as secret-dependent cache
lines fetched during this transient execution, which were not reverted or cleared up. The
current cache state, after this transient execution, can be leaked (and made visible to the
software layer) by an adversary by means of cache-based side-channel attacks such as
Flush+Reload [60, 142] and Prime+Probe [107, 71, 75, 92, 140]. The adversary measures
latencies of cache accesses and exploits the inherent latency discrepancy between hits
and misses (timing side channel) to infer secrets that are otherwise inaccessible. This
is only one simplified example of how microarchitectural security vulnerabilities can
be exploited to launch cross-layer attacks. In recent years, such attacks have shaken
our trust assumptions in the underlying hardware of our computing platforms and
have been shown to have a devastating impact on their security assurances. More crit-
ically, they have been even shown to circumvent the security promises of dedicated
hardware-assisted security architectures, e.g., Trusted Execution Environment (TEE) ar-
chitectures [18, 119, 100, 52, 89, 145].

Even beneath the microarchitecture layer, at the hardware implementation layer, im-
plementation flaws can also reside in the concrete hardware realization of any of the ar-
chitectural or microarchitectural components and can have severe security implications.
For example, the values of security-relevant configuration registers can be incorrectly
read from the processor, a side-channel protected cache architecture implementation
can be flawed, or access control for a debug interface can be incorrectly implemented in
hardware.

The Challenges with Hardware and Microarchitectural Security. As processors and
System-on-Chips (S50Cs) scale in computing capability and complexity to keep up with
the increasing computation and market demands, so do the underlying hardware and
built-in optimizations. This further aggravates the challenge of discovering such cross-
layer exploits and identifying their root causes where they actually originate, both at
design-time and post-production. Moreover, these performance-boosting optimizations
are usually proprietary and closed-source with no open documentation or accessibility
to their inner workings, which has always been the case with hardware intellectual prop-
erty (IP), except perhaps very recently with the growing advent of open hardware and
RISC-V processors. However, the status quo remains largely unchanged for the biggest
players in the semiconductor and processor industry and their proprietary platforms.
Only through extensive reverse engineering efforts are researchers able to disclose how
these microarchitectural implementations actually work and the security vulnerabilities
therein.

Once these vulnerabilities and exploits are uncovered, contrary to software, patching
the hardware post-production is not possible. The only feasible mitigation is to attempt
to tackle these vulnerabilities with software and microcode "hotfixes" and patches. Mi-
crocode patching is limited to only a number of changes possible to the instruction
set architecture, e.g., modifying the interface of individual complex instructions and
adding or removing instructions [62]. Nevertheless, this always comes at the cost of a
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performance regression, while for some vulnerabilities it is not even possible. For in-
stance, microcode patching cannot mitigate the Spoiler attack [73]; this requires fixing
the hardware of the memory subsystem at the hardware design phase, which is not
feasible for legacy systems. In short, software and microcode patching may circumvent
some of the resulting problems and provide "symptomatic" fixes. However, they do not
fundamentally patch the flaw in the hardware where it originates.

Hardware and microarchitectural fixes and re-designs, on the other hand, promise
a significantly smaller performance impact, while addressing the flaws fundamentally,
but these require hardware modifications, which are only feasible for upcoming pro-
cessor generations. Moreover, most proposed fixes are usually static and inflexible, i.e.,
they mitigate a specific issue with a specific microarchitectural design or approach that
cannot adapt to mitigate emerging attacks, and cannot be configured to adapt to dif-
ferent adversarial settings or customized application-dependent performance/security
requirements.

Thus, it follows intuitively that conducting an exhaustive security verification and
analysis of hardware at design-time before production is even more critically required
for hardware than software. Despite of this, state-of-the-art hardware security analysis
techniques and methodologies severely lag behind the far more established spectrum
of software security analysis techniques [78, 106]. Recently, however, inspired by soft-
ware practices, the semiconductor industry has adopted a security development lifecycle
(SDL) for hardware [63, 126]. This process comprises different techniques and tools, such
as RTL manual code reviews, assertion-based testing, directed random testing combined
with regression testing, dynamic simulation, and formal verification techniques. Never-
theless, the growing complexity of processor designs and the outbreak of cross-layer
attacks described above represent difficult challenges for these security verification tech-
niques, where they have been shown to fall short. Recent sophisticated attacks exploit
complex and subtle inter-dependencies between the hardware and software. Thus, this
requires verification techniques capable of modeling, capturing and verifying these dif-
ferent interactions accurately. Currently, state-of-the-art techniques lack in this respect.
Moreover, they do not scale flexibly and in an automated manner with the growing
size and complexity of real-world SoC design, thus still requiring extensive manual in-
tervention and human expertise. In fact, the most significant challenge with hardware
security analysis, as it stands now, is the prerequisite to anticipate potential security is-
sues and requirements at design-time under the assumed threat model and to prepare
and describe the relevant specifications. Assessing and analyzing the effectiveness of ex-
isting hardware security analysis techniques in detecting different classes of hardware
vulnerabilities is another research question we investigate in this thesis and through the
hardware security competitions we have organized.

1.1 OUR INSIGHTS

In light of these open challenges and problems with respect to the security of hard-
ware, we summarize next our insights that inspire the vision of this thesis (described in
Section 1.2) and propel its contributions.
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¢ The underlying hardware of our platforms, being the foundation of our computing
systems, must always constitute inherently all or a portion of the trusted comput-
ing base (TCB) of our computing systems.

¢ Furthermore, the hardware is often even leveraged in dedicated hardware-assisted
security mechanisms and architectures to form the root of trust/trust anchor, e.g.,
in Intel SGX [68, 32], ARM TrustZone [7], Intel Control-Flow Enforcement Technol-
ogy (Intel CET) [69], and Dover Microsystems’ CoreGuard technology [99]. Lever-
aging the hardware in dedicated security mechanisms enables providing signifi-
cantly more efficient security services when compared to their software counter-
parts, in terms of performance, as well as security guarantees under even stronger
adversary assumptions, e.g., untrusted OS kernel and/or hypervisor in TEE archi-
tectures.

* Given the crucial role hardware plays, both fundamentally and in dedicated
hardware-assisted security mechanisms, recent microarchitectural attacks that ex-
ploit hardware flaws break the trust assumptions in hardware, and consequently
the derived security guarantees. Hardware, in this current state, cannot serve re-
liably as the root of trust in our computing systems anymore. This pressingly
calls for the need to systematically rethink our hardware design paradigm, and
exhaustively analyze and verify the security of the underlying hardware/microar-
chitectural, both at design and implementation, to restore justified trust in the
hardware.

¢ These recent microarchitectural cross-layer attacks usually exploit flaws originat-
ing in performance boosting and other microarchitectural optimization features
and interfaces in our modern processors. It is not practical, however, to forsake
them altogether for the sake of security, where performance remains the ultimate
market requirement. On the other hand, it is also not responsible, at least for a
spectrum of use cases, to discard the resulting security concerns and implications
with a sole focus on performance. It becomes necessary to investigate and develop
new design paradigms and approaches that address this persistent conflict and
enable configurable and flexible performance-security trade-offs (micro-) architec-
tecturally by design in our computing platforms. These would enable flexible and
on-demand configuration or "tuning" of the level of security guarantees required
along with the relevant performance cost this entails for the application in ques-
tion, besides adapting to varying adversarial settings.

e Even beyond security flaws at the microarchitectural design, another security
threat arises from the underlying implementation itself of these components. For
example, while a partitioned cache is required microarchitecturally to mitigate
resulting side-channel attacks, how this partitioning and cache management is
actually implemented in hardware logic may still have security implications or
generate other potentially exploitable side channels.

¢ As demonstrated by recent attacks, it is also becoming increasingly difficult for
designers to keep up with the growing complexity of hardware. State-of-the-art
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hardware security analysis techniques are fundamentally challenged in efficiently
and effectively uncovering different types of hardware vulnerabilities at design
time. New techniques are required to uncover more hardware vulnerabilities and
side-channel leakages before production, especially since hardware flaws cannot
be patched after production and deployment.

1.2 THESIS VISION AND SCOPE

The problem of hardware/microarchitectural security and its multifaceted challenges
and implications, as outlined above, imply that hardware, in its current state, cannot
reliably serve as the root of trust of our computing platforms anymore. This calls for
fundamentally rethinking the design and security analysis of our computing platforms
altogether to tackle today’s and future security challenges.

1.2.1 Vision

We envision the pressing need for new design paradigms where security is proactively
addressed and scrutinized across the full stack of our computing platforms, at all hard-
ware design and implementation layers. Furthermore, the security of the interactions
of the hardware with the overlying software and all relevant subtleties should also
be scrutinized and analyzed by scalable and efficient means. We propose that flexible
security-aware design mechanisms are incorporated within the different processor mi-
croarchitectural units and optimization features, as well as hardware-assisted security
mechanisms and architectures, where these mechanisms can be configure the pertinent
security /performance guarantees as desired. This would enable computing platforms to
adapt flexibly to different applications and practically address the inherent conflict be-
tween performance and security by allowing that the trade-off is calibrated by means of
efficient design mechanisms. Moreover, more rigorous and efficient full-stack cross-layer
information flow /security analysis techniques are required to complement the security-
aware design paradigms, in order to vet the hardware design and implementation as
well as its overlying software for security vulnerabilities and design flaws.

In short, the security of the underlying hardware cannot be tackled as an after-thought
anymore. Designing, implementing and testing the hardware with security in mind,
especially in dedicated security architectures, must become integral to the hardware
development lifecycle.

1.2.2  Scope

Towards realizing this vision, we take first steps in this thesis and focus primarily on
exploring the implications and potential roles of the underlying hardware and microar-
chitecture on systems security. On one front, we 1) investigate and propose a suite of
different hardware-based security mechanisms and extensions that can serve security ar-
chitectures by providing different software security services to mitigate different classes
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of software attacks. We show how they are significantly more efficient, perform bet-
ter and provide stronger security guarantees than their software counterparts. We also
investigate how they can be microarchitecturally configured at runtime to provide differ-
ent services, e.g., control-flow integrity or runtime execution measurement. The thesis
contributes to this front with the following five publications that can be found in Ap-
pendices A, B, C, D, and E:

[37] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lu-
cas Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. LO-FAT: Low-
overhead Control Flow Attestation in Hardware. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM, 2017. Core Rank A. Appendix A.

[144] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. ATRIUM: Runtime Attestation
Resilient under Memory Attacks. In IEEE/ACM International Conference on
Computer-Aided Design. IEEE, 2017. Core Rank A. Appendix B.

[38] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi.
LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. In
IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2018.
Core Rank A. Appendix C.

[105] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, An-
drew Paverd, N. Asokan, and Ahmad-Reza Sadeghi. HardScope: Hardening Em-
bedded Systems Against Data-Oriented Attacks. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM/IEEE, 2019. Core Rank A. Appendix D.

[40] Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, and Ahmad-
Reza Sadeghi. CHASE: A Configurable Hardware-Assisted Security Extension
for Real-Time Systems. In IEEE/ACM International Conference on Computer-
Aided Design. IEEE, 2019. Core Rank A. Appendix E.

On a second front, to protect the underlying hardware of these security extensions
and our computing platforms from microarchitectural attacks, we 2) analyze how mi-
croarchitectural design flaws that originate in the hardware, e.g., timing side channels,
can be mitigated by redesigning the hardware fundamentally with flexible security/per-
formance configurable mechanisms built in. We also show how these can be integrated
into flexible and customizable security architectures, thus enabling their customization
even further to support a wide spectrum of different and emerging applications with
different performance/security requirements. The thesis contributes to this front with
the following three publications that can be found in Appendices F, G, and H:

[41] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
USENIX Security. USENIX Association, 2020. Core Rank A*. Appendix F.
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[44] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. Chunked-Cache: On-Demand and Scalable Cache Isola-
tion for Security Architectures. In Annual Network and Distributed System Secu-
rity Symposium (NDSS), 2022. Core Rank A*. Appendix G.

[11] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A Secu-
rity Architecture with CUstomizable and Resilient Enclaves. In USENIX Security.
USENIX Association, 2021. Core Rank A*. Appendix H.

Lastly, we investigate and show 3) how the actual implementation of such hardware-
assisted security extensions and mechanisms as well as processor and SoC microarchitec-
ture is also a potential attack surface. We investigate how hardware designs are currently
analyzed for their security and provide potential research directions on how this can be
improved. The thesis contributes to this front with the following publication that can be
found in Appendix I:

[39] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanu-
parthi, Hareesh Khattri, Jason M. Fung, Ahmad-Reza Sadeghi and Jeyavijayan
Rajendran. HardFails: Insights into Software-Exploitable Hardware Bugs. In
USENIX Security. USENIX Association, 2019. Core Rank A*. Appendix L.

1.3 MAIN CONTRIBUTIONS

More specifically, we categorize our contributions as described above along the different
layers of a typical computing stack into three main pillars as shown in Figure 1, namely:

1. Hardware-based security mechanisms

2. Secure microarchitecture design for trusted execution

3. Hardware implementation security

We illustrate the categorization of these contributions into the thesis chapters and the
relevant publications in Figure 2, and present a more detailed overview of each next.

Hardware-based security mechanisms. Conventional remote attestation allows a
trusted party to establish trust in a potentially compromised and untrusted embedded
device by statically verifying that the program binary initially loaded is unmodified.
However, it cannot provide any guarantees with respect to the execution behavior of this
program, e.g., it cannot detect any runtime attacks that hijack the control or data flow
of execution. These runtime attacks conventionally exploit a security vulnerability, typi-
cally memory corruption, and modify the code on a device by injecting malicious code.
However, protection mechanisms such as Data Execution Prevention (DEP) [61] have
proven effective against code-injection attacks, thus attackers have resorted to other
attack techniques which rely on code reuse, such as Return-Oriented Programming
(ROP) [121] and Jump-Oriented Programming (JOP) [14]. These techniques exploit vul-
nerabilities to corrupt control data and re-use the code chunks already residing in the
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Main Publications Chapters

. 4 A 4

[37] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan, and A.-R.
LO-FAT Sadeghi. LO-FAT: Low-Overhead Control Flow ATtestation in Hardware. In Proceedings of the 54th
Design Automation Conference 2017. Core Rank A. Appendix A.

[144] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R. Sadeghi. ATRIUM:
ATRIUM Runtime Attestation Resilient Under Memory Attacks. In Proceedings of the 36th International
Conference on Computer-Aided Design 2017. Core Rank A. Appendix B.

[38] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi. LiteHAX: Lightweight Hardware- Chapter 75

LiteHAX Assisted Attestation of Program Execution. In Proceedings of the 37th IEEE International Conference Hardware-based Security

On Computer Aided Design 2018. Core Rank A. Appendix C. c
Mechanisms

[105] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd, N. Asokan, and A.-R. Sadeghi.

HardScope: Hardening Embedded Systems Against Data-Oriented Attacks. In Proceedings of the

56th ACM/IEEE Design Automation Conference 2019. Core Rank A. Appendix D.

[40] G. Dessouky, S. Zeitouni, A. Ibrahim, L. Davi, and A.-R. Sadeghi. CHASE: A Configurable

CHASE Hardware-Assisted Security Extension for Real-Time Systems. In Proceedings of the 38th IEEE
y Y 8

International Conference On Computer Aided Design 2019. Core Rank A. Appendix E.

LK

HybCache [41] G. Dessouky, T. Frassetto, and A.-R. Sadeghi. HybCache: Hybrid Side-Channel-Resilient
Caches for Trusted Execution Environments. In Proceedings of the 29th USENIX Security Symposium
2020. Core Rank A*. Appendix F.

;

Chunked- \| [44] G. Dessouky, A. Gruler, P. Mahmoody, A.-R. Sadeghi and E. Stapf. CHUNKED-CACHE: On- | Chapter 3: .
Cache Demand and Scalable Cache Isolation for Security Architectures. To appear in Proceedings of Secure Microarchitecture
Network and Distributed System Security Symposium (NDSS) 2022. Core Rank A*. Appendix G. for Trusted Execution

[11] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R. Sadeghi, and E. Stapf.
CURE CURE: A Security Architecture with CUstomizable and Resilient Enclaves. In Proceedings of the
30th USENIX Security Symposium 2021. Core Rank A*. Appendix H.

.

. [39] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri, J. M. Fung, A.-R. Sadeghi, .
HardFails J. Rajendran. HardFails: Insights into Software-Exploitable Hardware Bugs. In Proceedings of the Chapter 4: H?rdware .
28th USENIX Security Symposium 2019. Core Rank A*. Appendix I. Implementation Security

i

Figure 2: Main publications of this thesis and the thesis structure

memory of the vulnerable program to build the attack payload and hijack the control
flow of the program.

Hence, a software-based runtime remote attestation mechanism was first proposed that
can capture and detect such control-flow attacks [4]. However, being software-based in
design and implementation, it requires instrumentation of the source code and incurs
prohibitively high performance overheads that are largely application-dependent. We in-
vestigate and show through our work how these limitations of software-based security
mechanisms can be overcome by relying on hardware instead. We present LO-FAT [37]
(Appendix A), the first hardware-based mechanism for control-flow attestation. LO-FAT
works by leveraging existing processor hardware features that inherently keep track of
execution in a cycle-accurate manner to track execution and compute a hash measure-
ment over the it. The computed values are communicated securely to a trusted third
party to verify the control flow of the execution. This hardware-based approach enables
significantly more efficient control-flow attestation in contrast with the software-based
scheme, besides providing stronger security guarantees while relying on a significantly
smaller TCB than the software-based counterpart.

The security guarantees of LO-FAT (as well as conventional static remote attestation
schemes) rely on the assumption that attacks are software-only and that the program
code cannot be modified at runtime. In our work [144] (Appendix B), we demonstrate
how these assumptions may, in practice, not hold where a stronger adversary is capable
of modifying the code memory such that benign code is attested but malicious code is
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executed. This would effectively bypass the attestation mechanism in place and leave
the device vulnerable to Time of Check Time of Use (TOCTOU) attacks. To mitigate
these attacks, we present a hardware-based security extension, called ATRIUM, that
provides a variant of runtime attestation that securely attests both the code’s binary and
its execution behavior at a finer granularity. In doing so, it can effectively mitigate these
memory manipulation attacks described above.

Both of these schemes, however, as well as C-FLAT remain vulnerable to the more
sophisticated data-oriented programming (DOP) attacks [64]. Such attacks subvert these
defense schemes by keeping the control flow and the binary of the code unmodified,
while still enabling Turing-complete malicious execution by carefully corrupting only
non-control data to stitch a sequence of operations on attacker-controlled input. Promi-
nent defenses, e.g., control-flow integrity (CFI) [3, 69], code-pointer integrity [85], and
(fine-grained) code randomization [86] to name some, fall short in mitigating these so-
phisticated attacks. In our next work [38] (Appendix C), we investigate how to pro-
vide an efficient hardware-based remote attestation mechanism for RISC-based devices,
called LitTeHAX, that can additionally detect non-control-data attacks. LiteHAX allows
to capture and record both the control- and data-flow events of a program executing on a
remote device and report them to a trusted verifying party. LiteHAX works, in principle,
by interfacing with the processor pipeline and capturing the execution of memory access
instructions at runtime directly from the processor in parallel to the actual execution.

While runtime attestation of memory access operations, as shown in LITEHAX, is
one hardware-based mitigation approach to detect DOP attacks after their occurrence,
runtime enforcement of certain policies or constraints is another promising approach
that blocks the attacks before they even occur. In another work [105] (Appendix D),
we propose runtime scope enforcement to efficiently mitigate all currently known DOP
attacks by identifying the lexical scope rules of variables at compile time and extracting
memory safety constraints from them and enforcing them at runtime. To prototype our
scheme, we presented HARDScOPE [105] (Appendix D), a hardware-assisted runtime
scope enforcement scheme for RISC-V based systems, that provides fine-grained context-
specific memory isolation within programs.

The different hardware-based security mechanisms we have presented above, besides
other state-of-the-art approaches proposed in academia and adopted in industry, ei-
ther apply enforcement or execution tracking/attestation. Moreover, each assume differ-
ent adversarial capabilities, thus mitigating only specific classes of attacks. No consol-
idated defenses exist that can be configured flexibly within the platform at runtime to
thwart different adversarial capabilities depending on the desired security/functional-
ity requirements and deployment environment. This is particularly a challenge for these
hardwired hardware-assisted security extensions which cannot be upgraded or updated
after fabrication (in contrast to software). This makes it impractical for system architects
to deploy these hardware-assisted mechanisms in embedded platforms, despite their ad-
vantages over software-based defenses. In our work [40] (Appendix E), we present and
discuss these insights and challenges in more detail, and present a consolidated runtime-
configurable security extension, called CHASE. CHASE can be more flexibly adapted to
provide different security guarantees and services at runtime, e.g., either enforcement
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or more detailed execution tracking and attestation, depending on the desired security
guarantees and the system real-time, availability and functionality requirements. This
enables the adoption of such hardware-based security extensions and their customiza-
tion at runtime to calibrate the security vs. performance trade-off for individual use
cases and deployment settings.

We present a more detailed overview of our contributions described above in Chap-
ter 2.

Secure microarchitecture for trusted execution environments. As described earlier,
modern multi-core processors are augmented with various performance optimization
features that make them vulnerable to a wide spectrum of different microarchitectural
attacks, as shown in recent works [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101, 132,
134, 25, 27, 118, 20]. Shared cache resources are one of the most popular optimization fea-
tures, and also the most exploited in these attacks. Inherent timing differences between
a cache hit and a cache miss in shared cache behavior are exploited to infer informa-
tion on the victim’s execution patterns, ultimately leaking private information such as
a secret key or other confidential information [56, 53, 57, 55, 18, 147, 92, 16, 71]. The
root cause for these attacks is mutually distrusting processes sharing the cache entries
and deterministic and consistent set-associative eviction and access of these entries. Re-
cently proposed defenses in academia and industry can be classified as randomization-
based [137, 94, 92, 130, 115, 116, 138, 128] or partitioning-based [50, 79, 145, 93, 33, 58,
148, 76, 139, 87, 11, 136, 82, 137]. Recently proposed defenses based on randomized
mapping of addresses to cache lines have been shown vulnerable to newer attack al-
gorithms [116, 17, 113, 114] besides relying on weak cryptographic primitives [15, 114],
and are generally designed to mitigate only certain classes of attacks. When customiz-
ing them to mitigate more advanced attack algorithms, they impose prohibitively high
performance overheads [116]. Ultimately, they fail to provide well-grounded security
guarantees because they do not fundamentally address the root cause for these attacks,
namely, mutually distrusting code sharing cache resources. On the other hand, most
partitioning-based defenses provide the strict resource partitioning required to effec-
tively block all side-channel threats. However, they usually rely on way-based partition-
ing which is not fine-grained, does not scale to support a larger number of protection
domains, degrades performance for larger workloads, and may cause cache underuti-
lization [137, 136, 82, 58]. More importantly, all such defenses assume that side-channel-
resilient cache behavior is required for the entire execution workload and do not allow
the possibility to selectively and flexibly configure the mitigation only for the security-
critical portion of the workload.

To address these limitations of existing cache designs and provide a configurable and
flexible side-channel-resilient cache microarchitecture for security architectures, we pro-
pose a flexible and soft partitioning of set-associative caches by means of a hybrid cache
architecture, called HyBCACHE [41] (Appendix F). HYyBCACHE can be configured to selec-
tively apply side-channel-resilient cache behavior only for isolated execution domains
that require this sophisticated security guarantee, while providing the non-isolated ex-
ecution with conventional cache behavior, capacity and performance. An isolation do-

11
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main is defined as any form of compartmentalization of the workload, e.g., a Trusted
Execution Environment enclave (e.g., as in SGX or TrustZone).

While HyBCACHE enables configurable cache side-channel resilience while maintain-
ing non-degraded performance for the non-isolated execution, it still does not funda-
mentally mitigate all side-channel leakage. The cache occupancy side channel, where
the adversary can attempt to infer the working set size of the victim, is the only side-
channel leakage that is not mitigated by the HyBCACHE construction. This leakage is in-
herently available in any cache architecture where the attacker and the victim processes
compete for entries in shared cache resources. It can only be effectively blocked by strict
cache partitioning, which we deliberately do not provide in the HyBCACHE construction.
This allows different isolation domains to still compete for cache entries, thus preserv-
ing dynamic cache utilization for the entire workload and unaffected performance for
non-isolated execution.

In a follow-up work [44] (Appendix G), we propose another cache design, CHUNKED-
CacHE, that blocks this cache occupancy leakage by providing strict cache partition-
ing thus providing clean isolation, while still maintaining flexible cache utilization.
CHUNKED-CACHE enables an execution context to "carve" out its exclusive cache chunk
of configurable capacity only if it requires cache side-channel resilience. When side-
channel resilience is not required, mainstream cache resources can be freely utilized.
This addresses the security-performance trade-off by efficiently enabling on-demand
cache side-channel resilience, i.e. only when actually required, while providing well-
grounded future-proof security guarantees.

Our work in secure cache designs has enabled more flexible and configurable cache-
based side-channel security that can be adapted on-demand for different portions of
the execution workload individually and independently. To further extend this config-
urability and flexibility to trusted execution capabilities generally, we focus next on the
encompassing security architecture itself. Security architectures providing Trusted Ex-
ecution Environments (TEEs) aim to protect sensitive services by compartmentalizing
them in isolated execution contexts, called enclaves. However, existing TEE solutions
suffer from critical shortcomings with respect to both security and functionality. They
adopt a rigid approach where only a single enclave type is available, although, in fact,
more flexibility is required, since different services require different types of enclaves
that can adapt to the demands of the service in question. Moreover, they cannot even
efficiently support emerging applications, e.g., machine learning services, which require
secure binding of specific enclaves with specific peripherals (e.g., accelerators), or the
computational power of multiple cores securely. Finally, their protection mechanisms
against side-channel attacks, e.g., cache side-channel attacks, are either an afterthought
"hotfix" or impractical for flexible usage, e.g., fine-grained allocation of cache resources
to individual enclaves is usually not supported by default.

We investigate these shortcomings and challenges in our work [11] (Appendix H),
and propose CURE, the first security architecture, which addresses these challenges
by providing different types of enclaves whose boundaries can be flexibly configured
and resources can be selectively allocated to them. Supported enclaves in CURE can
either provide isolation either vertically within any single execution privilege level (sub-
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space enclave), or across multiple privilege levels (kernel-space enclaves) or only for
unprivileged applications (user-space enclaves). In doing so, CURE already outperforms
the state of the art (at time of writing) in TEEs which usually provide only one type
of enclave, as stated earlier. CURE also allows that system resources, e.g., peripherals,
CPU cores, or cache resources are exclusively and selectively assigned to single enclaves,
thus providing the desirable fine-grained resource allocation as well as on-demand and
flexible side-channel protection.

We present a more detailed overview of our contributions described above in Chap-
ter 3.

Security of hardware design and implementation. In this work, we investigate the
security of hardware implementation itself, one level beneath microarchitecture/design
decisions and side-channel mitigation mechanisms. In other words, while a hardware-
based security extension can aim to address software vulnerabilities or mitigate side-
channel leakage, such as cache partitioning, it may in fact be incorrectly implemented,
thus compromising its promised security guarantees. Such hardware-based extensions
and mechanisms, similar to the ones we have designed and developed during the course
of this PhD [37, 144, 40, 38, 105] (Appendices A, B, C, D, and E) as well as industry
solutions such as SGX [68, 32] and TrustZone [7], are not designed to ensure security
at the hardware implementation level. Unless their implementations are exhaustively
verified to ensure that they adhere to the formally defined desired security properties,
they remain vulnerable to potentially undetected hardware bugs committed at design-
time. Such hardware vulnerabilities can occur due to: (a) incorrect or ambiguous or
incorrectly described /formalized security specifications, (b) incorrect design, (c) flawed
implementation of the design, or (d) a combination thereof. Hardware implementation
bugs can be introduced either through human error or by faulty compilation/synthesis
of the design to its gate-level equivalent.

Unlike software flaws, hardware vulnerabilities committed at design-time cannot be
fundamentally patched once the hardware is manufactured. This makes hardware se-
curity testing for detecting these bugs at design-time even more critically crucial than
software security testing. The semiconductor industry already leverages an extensive
variety of techniques, such as simulation, emulation, and formal verification to de-
tect such bugs. While a rich body of knowledge and expertise is long established for
software security, security-focused hardware testing and analysis are currently still lag-
ging behind [78, 106]. To catch up, the industry has recently adopted a security de-
velopment lifecycle (SDL) for hardware [126]. This process combines different tech-
niques and tools, such as RTL manual code audits, assertion-based testing, dynamic
simulation, and automated security verification. In spite of this, our underlying hard-
ware remains vulnerable as demonstrated by the recent outbreak of cross-layer at-
tacks [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20]
where both hardware-only vulnerabilities as well as intricate and complex hardware-
software interactions have been exploited to mount these attacks. Existing industry-
standard techniques are fundamentally limited in modeling and verifying these subtle
hardware-software interactions, and thus fail to detect such flaws. Moreover, they also
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do not scale adequately with the ever-growing size and complexity of real-world SoC
designs.

Thus, in this work [39] (Appendix I) we take a closer look into the design and se-
curity assurance lifecycle of hardware, and focus the spotlight on the limitations and
challenges of state-of-the-art hardware security verification. The first step in qualita-
tively assessing the effectiveness of existing verification techniques was to construct
the test harness itself, i.e., the System-on-Chip (SoC) design and the bugs therein. To-
gether with our industry partners and collaborators at Intel, we systematically con-
structed a varied set of 31 hardware register transfer-level (RTL) bugs inspired from
their first-hand experience with bugs that they have encountered themselves at Intel,
as well as public Common Vulnerabilities and Exposures (CVEs) and real-world er-
rata [103, 104, 102, 90, 83, 62]. We injected the bugs into two open-source real-world
RISC-V-based SoC designs, Pulpino [111] and PULPissimo [112]. We organized the
first edition of what is now the largest international hardware security competition,
Hack@DAC, in 2018 where 54 teams of researchers competed for three months to detect
these bugs in the SoCs. We analyzed the results, and the nature of the approaches they
relied on to detect these bugs, and which classes of bugs were not successfully detected
by the teams.

In a second in-house investigation, we focused on two state-of-the-art formal veri-
fication tools (Formal Property Verification (FPV) [24] and JasperGold’s Security Path
Verification (SPV) [23]) to assess their effectiveness in detecting these bugs and their
ease of use and friendliness. These represent the state of the art in hardware security
verification and are used widely by the semiconductor industry.

Both the results of the competition and our investigation with formal verification tools
have revealed that certain properties of RTL bugs can make them significantly more chal-
lenging to detect, both by manual inspection as well as formal verification techniques.
Building on our findings from both case studies, we attempt to systematically classify
and identify these bugs that are more challenging to detect and the characteristics that
they have in common, where we call such bugs HARDFAILS [39] (Appendix I). We present
our insights and findings in more detail in our work [39] (Appendix I).

Ultimately, our work and insights manifest why further research is urgently required
to improve state-of-the-art security verification and analysis of hardware, and sheds light
on potentially promising directions, e.g., hybrid techniques that combine both formal
verification and simulation-based testing that would scale better than formal verification
only, as well as more efficient testing inputs generation techniques, such as fuzzing. We
presents our insights for future promising directions in this domain in more detail in
Chapter 5.

Ever since it was first launched in 2018, we have been organizing Hack@DAC ev-
ery year, and organized its first USENIX Security sequel, Hack@Sec, in 2020. Over the
past few years, the competition has been growing in sophistication, size and popular-
ity among both academics and industry professionals. The focus of the competitions
has also shifted and evolved from only bug detection and root cause analysis in 2018
and 2019 to more interestingly tooling, automation and proof-of-concept exploitation in
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Hack@DAC and Hack@Sec 2020. We discuss our work and insights with the competition
and how it has evolved over the years in more detail in Chapter 4.

1.4 OTHER CONTRIBUTIONS

During the course of this PhD, several other contributions in complementary directions
have also emerged that are are not included as core of this thesis. We present a brief
overview of them next.

Hardware synthesis for secure computation. Through our work, we have shown how
leveraging hardware synthesis tools can enable more efficient secure computation with
Yao’s garbled circuits protocol [141] and the protocol of Goldreich-Micali-Wigderson
(GMW) [51], which work by evaluating a Boolean circuit that represents the desired
functionality. Many works have thus focused on the practical design and generation of
correct Boolean circuits to enable more efficient circuit-based secure computation in dif-
ferent adversarial settings. However, the complexity and time required quickly escalate
for larger and more complex applications, e.g., floating-point arithmetic and signal pro-
cessing. Moreover, the functional correctness of these circuits becomes more difficult to
verify, making them more error-prone. Besides compromising functionality, faulty cir-
cuits may also compromise the security of the underlying applications, e.g., by leaking
information about a party’s private inputs. Therefore, an automated mechanism for gen-
erating correct large-scale circuits which can be used by non-expert developers is desir-
able to enable the practical adoption of secure computation protocols. TinyGarble [124]
adopted a radical approach to this open challenge by leveraging long-established power-
ful hardware logic synthesis tools and customizing them to be adapted to automatically
generate Boolean circuits for functions to be evaluated by Yao’s garbled circuits protocol.

In our work [35], we further advance the deployment of these tools for secure com-
putation, and show how to automatically use them to synthesize an extensive set of
size-optimized circuits of basic and complex operations for Yao’s garbled circuits proto-
col, as well as depth-optimized circuits for the GMW protocol. We build libraries of these
optimized sub-block circuits and use these to automatically construct more complicated
functionalities in a modular fashion, which would otherwise be impossible to build and
optimize by hand. To also enable the generation of Boolean circuits for more complex
functionalities such as floating-point arithmetic, which would otherwise be impossible
by hand, we also leverage built-in Intellectual Property (IP) libraries (which are already
extensively tested and verified) in commercial hardware synthesis tools. We extensively
evaluate and benchmark our circuit constructions and show how we outperform the
state of the art at the time of writing.

Next in [125], we present and prototype GarbledCPU, the first configurable general-
purpose sequential CPU for 2-party Garbled Circuits-based secure sequential function
computation. GarbledCPU provides support for secure function evaluation (SFE) with
different privacy settings to allow for a configurable trade-off between privacy and per-
formance that can be adapted according to requirements. The parties can choose to eval-
uate a private, semi-private or public function by revealing none, partial or all informa-
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tion about the function respectively while still exploiting the advantages and simplicity
of programming a processor.

Current two-party secure computation protocol implementations against passive ad-
versaries generate and process data much faster than it can be communicated over the
network. In [36], we introduce, deploy and evaluate novel methods to further reduce
the communication bottleneck and round complexity of semi-honest secure two-party
computation. We first improve communication for Boolean circuits with 2-input gates
by factor 1.9x when evaluated with the GMW protocol. Furthermore, we evolve the
conventional Boolean circuit representation from 2-input gates to a more compact multi-
input/multi-output lookup tables (LUTs), thus enabling the evaluation of more complex
functions by representing them into LUT-based circuits. We construct and propose two
protocols for evaluating LUT-based circuits which offer a trade-off between online com-
munication and total communication. Our most efficient LUT-based protocol reduces the
communication overhead and round complexity by a factor 2-4x for several basic and
complex operations compared to prior work. Since we evolve the protocols to evaluate
LUT-based circuits, we also required new optimized LUT-based circuit representations
of pertinent functions. We develop an automated toolchain that transforms high-level
function descriptions into their LUT representations, where we re-purpose hardware
synthesis tools for secure computation. We focus on LUT-based synthesis tools (often
targeting FPGA-based development) in this work, which we customize and adapt to
automatically generate optimized multi-input multi-output LUT representations. We
demonstrate the improved efficiency and practicality of our LUT protocols by exten-
sively evaluating them over a wide range of functionalities.

Besides the impact of our work to enable more practical and efficient secure commu-
nication [35, 125, 36], it additionally serves as concrete testimony to how knowledge
from one discipline, i.e., hardware design and synthesis, can prove radically useful and
enhancing for another discipline, i.e., efficient secure computation protocols.

Publications

[35] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, and Shaza Zeitouni. Automated Synthesis of Optimized Circuits
for Secure Computation. In ACM Conference on Computer and Communications
Security 2015 (CCS’15).

[125] Ebrahim Songhori, Shaza Zeitouni, Ghada Dessouky, Thomas Schneider,
Ahmad-Reza Sadeghi and Farinaz Koushanfar. GarbledCPU: A MIPS Processor for
Secure Computation in Hardware. In the Annual Design Automation Conference 2016
(DAC'16).

[36] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schnei-
der, Shaza Zeitouni, and Michael Zohner. Pushing the Communication Barrier in
Secure Computation using Lookup Tables. In the Annual Network and Distributed
System Security Symposium 2017 (NDSS’17).
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Collective remote attestation. While remotely attesting the software integrity of a sin-
gle device is well established (as we also show through our work in hardware-based
attestation), scaling this service to a network of devices poses a multitude of research
and deployment challenges. In this work [34], we systematically analyze and design
collective remote attestation schemes, with the goal to overcome the limitations of prior
schemes that were designed in an ad-hoc reactive fashion. Ultimately, we aim to provide
a systematic foundation for collective remote attestation schemes that serves as reference
design guidelines for researchers and practitioners. In doing so, we explore the design
space for collective remote attestation and formally define and model notions of the ef-
ficiency, soundness and security requirements according to a given application domain.
In light of these requirements, we also present, prototype and evaluate a concrete collec-
tive remote attestation scheme and show that it adheres to the aforementioned desirable
requirements.

Publication

[34] Ivan De Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Norrathep Rat-
tanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. Towards Systematic Design
of Collective Remote Attestation Protocols. In the 39th International Conference on
Distributed Computing Systems 2019 (ICDCS’19).

Security of multi-tenant FPGA computing. Given the increasing deployment of Field
Programmable Gate Arrays (FPGAs) in data centers, and their continuously evolving
size, complexity and capabilities, researchers have proposed that they can be shared
spatially by multiple tenants, or clients, simultaneously. In contrast to temporal sharing
where the FPGA instance is shared but utilized by only one tenant at any point in time,
in spatial multi-tenant deployment the FPGA fabric is simultaneously shared among
mutually distrusting tenants. This can be enabled by leveraging the partial reconfigura-
tion capability of FPGAs.

In [43], we systematically analyze prior research work on multi-tenant FPGAs in cloud
computing at time of writing. We outline their adversary and deployment assumptions,
acclaimed security guarantees, and analyze how they fall short with respect to both
security and privacy. We also focus more specifically on categorizing existing works
that demonstrate a new class of remotely-exploitable physical attacks on multi-tenant
FPGAs by malicious tenants when they are sharing physical FPGA resources with the
victims. Through investigating end-to-end multi-tenant FPGA deployment comprehen-
sively, we reveal how these remote attacks, in fact, represent only one dimension of the
security/privacy problem. Various more fundamental security and privacy challenges
remain open and unaddressed in deploying multi-tenant FPGAs in cloud computing set-
tings, which we investigate in this work. We also provide our insights on the most vital
research challenges and open opportunities in the future of secure FPGA-based cloud
computing. In doing this, we draw analogies with conventional CPU-based computing
and outline the lessons learned that can proactively serve and guide the establishment
of secure multi-tenant FPGA-based computing in the cloud.
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Publication

[43] Ghada Dessouky, Ahmad-Reza Sadeghi, and Shaza Zeitouni. SoK: Secure FPGA
Multi-Tenancy in the Cloud: Challenges and Opportunities. In IEEE European Sympo-
sium on Security and Privacy 2021 (EuroS&P’21).

Security architectures for Network-on-Chips (NoCs). Novel many-core chips, de-
signed to cater for the increased performance and computational power demands of
emerging applications, require Network-on-Chip (NoC) based architectures to enable
scalable and efficient communication among this increasing number of cores. However,
NoC designs lack adequate security mechanisms that scale to provide the required secu-
rity guarantees, such as enforced isolation of execution and resources, while preserving
the desired scalable and efficient communication. New security-aware architectures that
protect sensitive services in isolated or trusted execution environments, i.e., enclaves,
usually target only multi-core designs, and thus cannot directly extend and scale to sup-
port NoC platforms. These architectures usually lack secure and flexible enclave-device
binding and do not provide flexible and practical enclave memory management.

We investigate and address these fundamental challenges in our work [42], where
we introduce and evaluate a new hardware security primitive, the Distributed Mem-
ory Guard, which performs NoC-level access control on outgoing memory requests. In
doing so, we also investigate the memory fragmentation that occurs for typical cloud
services, and realize that it is unavoidable on long-running systems. We analyze this
specifically for enclave computing and highlight why this is one of the most significant
challenges of enclave architectures that has not been practically addressed. Furthermore,
this becomes a more critical challenge when scaling enclave computing to heterogeneous
NoC-based architectures, thus motivating our work.

Publication

[42] Ghada Dessouky, Mihailo Isakov, Michel A. Kinsy, Pouya Mahmoody, Miguel
Mark, Ahmad-Reza Sadeghi, Emmanuel Stapf, and Shaza Zeitouni. Distributed
Memory Guard: Enabling Secure Enclave Computing in NoC-based Architectures. In the
Annual Design Automation Conference 2021 (DAC’21).

1.5 THESIS OUTLINE

This thesis is structured in line with Figure 1, and consists of four subsequent chapters,
where the first three chapters present our main contributions as shown in Figure 2.
We conclude our work in the last chapter with a summary and on outlook for future
research directions.

1. Hardware-based Security Mechanisms (Chapter 2)
2. Secure Microarchitecture for Trusted Execution (Chapter 3)

3. Hardware Implementation Security (Chapter 4)
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4. Conclusion (Chapter 5)

Chapters 2, 3, and 4 each briefly introduces the problem statement that our work ad-
dresses, and presents a more detailed overview of our contributions, followed by the
relevant peer-reviewed publications.






HARDWARE-BASED SECURITY MECHANISMS

2.1 PROBLEM STATEMENT AND MOTIVATION

The proliferating trend of the Internet of Things (IoT) and their increasingly collabo-
rative nature has made all classes of computing systems, especially embedded devices,
increasingly ubiquitous in a variety of different settings. While these devices collect, pro-
cess, and communicate plenty of security/privacy/security-critical data, their pervasive-
ness, connectivity, and sensing/actuating capabilities render them increasingly vulnera-
ble to a large spectrum of different attacks. On the other hand, to adhere to the desired
cost and power consumption budgets as well as performance and deployment require-
ments, embedded devices are usually resource-constrained and lack the sophisticated
security mechanisms often deployed in higher-end computing devices. This has made
it particularly challenge to harden embedded devices security in the face of various
known and emerging attacks, e.g., malware infestation, as well as runtime attacks such
as control-flow hijacking [121, 14] and data-oriented programming (DOP) attacks [64].
Critical attacks exploiting embedded devices have been shown over the last decade, e.g.,
Stuxnet [31] and Mirai [67]. Such attacks commonly attempt to exploit software mem-
ory corruption vulnerabilities, e.g., buffer overflow vulnerabilities, to compromise the
device. We briefly introduce these attacks next in subsection 2.1.1 and refer the reader
to our work [37, 144, 38, 105, 40] (Appendices A, B, C, D, and E) for a more detailed
description of the attacks.

2.1.1  Software Runtime Attacks

Traditionally runtime attacks exploit a security vulnerability, typically a memory cor-
ruption vulnerability, in order to modify the program code on a device by injecting
malicious code. However, with the advent of W& X memory access policies such as Data
Execution Prevention [61], code-injection attacks have been effectively mitigated. Thus,
attackers have had to resort to other stealthier and more sophisticated tactics such as
code-reuse techniques [127], e.g., Return-Oriented Programming (ROP) [121] or Jump-
Oriented Programming (JOP) [14]. These techniques exploit memory vulnerabilities in
order to corrupt control-data and be able to re-use code chunks or gadgets already resid-
ing in the memory of the targeted program and hijack the control flow of the program
to construct the attack payload. In other words, the code binary is unchanged, but it is
how the code gadgets are executed and their sequence that is actually compromised.

A stealthier class of attacks is that of data-oriented attacks [28], where a non-control-
data variable is compromised to divert control flow to yet another valid execution path,
but an illegal or unauthorized one in this particular execution context. More recently,
even more sophisticated Data-Oriented Programming (DOP) attacks [64] were shown
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which allow the adversary to execute Turing-complete malicious execution by corrupt-
ing only non-control-data to stitch a sequences of operations on attacker-controlled in-
put. DOP attacks neither modify the binaries nor divert the program’s control flow, thus
rendering them significantly more challenging to mitigate or detect.

2.1.2 Limitations of Existing Defenses

To mitigate these sophisticated attacks, extensive research efforts have been invested
in both runtime attacks as well as defenses over the past two decades. Prominent de-
fense approaches are control-flow integrity [3, 69], code-pointer integrity [85], data-flow
integrity [26], and (fine-grained) code randomization [86]. However, these solutions
enforce security policies such as control-flow or data-flow integrity, without or with
only limited context-sensitivity. Moreover, fine-grained enforcement of indirect forward
branches remains a challenge because it is difficult to exhaustively and accurately de-
rive the policies, e.g., the set of valid indirect destination addresses for a given branch
source instruction, and to enforce them with minimal performance overhead. Gener-
ally, these approaches fail to capture and provide information about the complete state
of a program’s execution (which is required in detecting non-control-data attacks) and
cannot mitigate DOP attacks without incurring prohibitively high performance over-
head [64, 26].

Alternatively, remote attestation is a security service that is often deployed to allow
a trusted party, called the verifier to establish trust in a potentially compromised and
untrusted embedded device, called the prover by statically verifying that the program
code initially loaded onto the device is unmodified. It is implemented as a challenge-
response protocol where the verifier sends a challenge to the prover, and the prover
in turn sends back an authenticated report to the verifier. The verifier usually generates
this report by issuing a digital signature or cryptographic MAC (Message Authentication
Code) over the verifier’s challenge and the measurement (typically a hash computation)
of the binary code that ought to be attested. However, conventional attestation schemes
are static in nature, i.e., they only ensure the integrity of the program binary (that it has
not been modified). They cannot provide any guarantees with respect to the execution
behavior of this program, e.g., they cannot capture and report how the program executes,
and thus cannot detect the aforementioned runtime attacks that hijack the control or
data flow of execution [127] without modifying the program binary.

Hence, a software-based runtime remote attestation mechanism was first proposed
that can capture and detect control-flow attacks [4]. The application runs in the normal
untrusted world in a TEE while the attestation software is trusted and deployed in the
secure world. However, being software-based in design and implementation implicates
two major limitations that prohibit its practical deployment. Firstly, in order to detect
control-flow events, the application code must be heavily instrumented prior to deploy-
ment. Non-instrumented or incorrectly-instrumented software cannot be attested. The
instrumentation rewrites all control-flow instructions (e.g., branch, return, etc.) in the
source code with trampoline instructions that capture the control-flow event and trans-
fer it to the attestation software. This increases code size and contributes to the incurred
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performance overheads. Secondly, the attestation software runs on the main processor
along with the application being attested, which incurs prohibitively high performance
penalties because single control-flow instructions are essentially replaced with relatively
many numbers of instructions in order to track and record the control-flow event (e.g.,
update a running hash value). The attestation overhead increases linearly with the num-
ber of control-flow events, which means it can grow significantly for some code samples
and is entirely application-dependent. Besides trampolines, the context switching be-
tween the normal and secure worlds of the TEE for the measurement to be performed
in a trusted environment contributes to the overall incurred performance overhead, as
well as the context switching for the hash computations themselves. Finally, the scheme
assumes that the attestation software itself and its deployment in the secure world is
trusted, and thus the attestation report generated can be trusted.

C-FLAT’s runtime attestation scheme can only report the control flow of the execution.
While it can detect some non-control-data attacks, e.g., corruption that influences the
number of loop iterations, it cannot detect more sophisticated data-oriented attacks that
leave the control flow still valid. Moreover, it still only mitigates attacks by detecting them,
but does not prevent them altogether by enforcing a set of provided policies, for example.
On the other hand, enforcement schemes can only enforce the policies provided, and
thus only detect attacks that involve a deviation from these policies. Thus, they are
only as good as the policies derived, whereas analyzing code (by means of static and
dynamic analysis) to generate these policies exhaustively remains a challenge especially
as the application code size scales. Moreover, they cannot report the overall execution
behavior of the application.

While in some deployment settings, a non-intrusive tracking of program execu-
tion is desired, in others a strict enforcement of policies is necessary. Furthermore,
in different deployment settings different security guarantees under different adver-
sarial assumptions may be desired. However, at the time of our work and publica-
tions [37, 144, 38, 105, 40] (Appendices A, B, C, D, and E), according to our knowl-
edge, no consolidated mechanism actually existed that can be configured flexibly within
the platform at run-time to mitigate different classes of attacks and thwart different
adversarial capabilities, and thus be customized according to the desired security/func-
tionality requirements and deployment environment. This is particularly a challenge for
potentially deploying hardwired hardware-assisted security extensions which cannot be
upgraded or updated after fabrication (in contrast to software), and will thus always
provide fixed security guarantees and assume the same adversarial capabilities once
produced. This makes it impractical for system architects to deploy hardware-assisted
mechanisms in embedded platforms, despite their advantages over software-based de-
fenses. Despite being necessary especially in certain adversarial settings, these protection
mechanisms are often entirely missing from some systems such as timing-critical real-
time systems. This is usually because fail-safe operation that adheres to hard deadlines is
a critical requirement of these systems, while these protection mechanisms [3, 69, 85, 4]
incur non-negligible performance overheads. While this can be tolerated to some extent
for applications without real-time constraints, it would violate the functionality require-
ments of real-time high-availability systems.
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2.2 CONTRIBUTIONS

This thesis has significantly contributed to the problems described above with the fol-
lowing five publications that can be found in Appendices A, B, C, D, and E:

[37] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lu-
cas Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. LO-FAT: Low-
overhead Control Flow Attestation in Hardware. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM, 2017. Core Rank A. Appendix A.

[144] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. ATRIUM: Runtime Attestation
Resilient under Memory Attacks. In IEEE/ACM International Conference on
Computer-Aided Design. IEEE, 2017. Core Rank A. Appendix B.

[38] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi.
LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. In
IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2018.
Core Rank A. Appendix C.

[105] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, An-
drew Paverd, N. Asokan, and Ahmad-Reza Sadeghi. HardScope: Hardening Em-
bedded Systems Against Data-Oriented Attacks. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM/IEEE, 2019. Core Rank A. Appendix D.

[40] Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, and Ahmad-
Reza Sadeghi. CHASE: A Configurable Hardware-Assisted Security Extension
for Real-Time Systems. In IEEE/ACM International Conference on Computer-
Aided Design. IEEE, 2019. Core Rank A. Appendix E.

Through our work we investigate and show how the aforementioned limitations and
deficiencies of software-based security mechanisms can be overcome by relying on hard-
ware instead. We present LO-FAT [37] (Appendix A), the first hardware-based mecha-
nism for control-flow attestation. LO-FAT works by leveraging existing processor hard-
ware features that inherently keep track of execution in a cycle-accurate manner. LO-FAT
hardware extensions non-invasively interface with these existing processor hardware
features to capture the metadata required to track execution and compute a hash mea-
surement over the it. The computed values are communicated securely to a trusted third
party to verify the control flow of the execution. This hardware-based approach enables
significantly more efficient control-flow attestation in contrast with the software-based
scheme, while incurring only negligible additional hardware and without requiring soft-
ware instrumentation. Moreover, it provides stronger security guarantees while relying
on a significantly smaller TCB than the software-based counterpart, as we show with our
work and proof-of-concept implementation based on a RISC-V SoC in [37] (Appendix
A).

The security guarantees of LO-FAT (as well as conventional static remote attestation
schemes) rely on the assumption that attacks are software-only and that the program
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code cannot be modified at runtime. In practice, these assumptions may not hold where
a stronger, yet still realistic, adversary is capable of controlling and modifying the code
memory such that benign code is attested but malicious code is executed, thus bypassing
the attestation mechanism in place and leaving the device vulnerable to Time of Check
Time of Use (TOCTOU) attacks. In our work [144] (Appendix B), we demonstrate such
TOCTOU attacks on recently proposed attestation schemes by exploiting physical access
to the device’s memory and showing how these attacks are, in fact, realistic. To mitigate
them, we present a hardware-based security extension, called ATRIUM, that provides
runtime remote attestation that securely attests both the code’s binary and its execution
behavior, similarly to LO-FAT. However, it captures and measures the entire execution
at a finer granularity and with different mechanisms such that it can also mitigate these
memory manipulation attacks that are possible within a stronger adversary model. We
show in [144] (Appendix B) a proof-of-concept implementation of ATRIUM on a RISC-V
SoC and show how it provides resilience against both software- and hardware-based
TOCTOU attacks, while incurring minimal area and performance overhead.

Both of these schemes, however, as well as C-FLAT remain vulnerable to the more
sophisticated data-oriented programming (DOP) attacks [64]. Such attacks subvert these
defense schemes by principally keeping the control flow and the binary of the code
unmodified. They allow the adversary to execute Turing-complete malicious execution
by carefully corrupting only non-control data to stitch a sequence of operations on
attacker-controlled input. Prominent defenses approaches, e.g., control-flow integrity
(CHI) [3, 69], code-pointer integrity [85], and (fine-grained) code randomization [86] to
name some, fall short in mitigating these sophisticated attacks. These usually enforce
security policies such as control-flow integrity which cannot capture non-control-data
attacks which do not modify the control flow of execution. They do not provide any
information about the complete state of a program’s execution (e.g., required in de-
tecting non-control-data attacks) nor can they mitigate DOP attacks without generating
prohibitively high performance overhead [64].

In our next work [38] (Appendix C), we investigate how we can provide an efficient
hardware-based remote attestation mechanism for RISC-based devices, called LITEHAX,
that can additionally detect non-control-data attacks. LiteHAX allows to securely, effi-
ciently and continuously capture and record both the control- and data-flow events of a
program executing on a remote device and report them to a trusted verifying party. All
known and reported non-control-data and DOP attacks essentially boil down to corrupt-
ing memory access operations, without inflicting any unintended control flow [64]. On
RISC-V based systems, which is the target architecture in this work, memory accesses
are only possible via load and store instructions. LitetHAX works, in principle, by in-
terfacing with the processor pipeline and extracting and capturing all metadata on the
execution of these memory access instructions at run-time directly from the processor
in parallel to the actual execution. Therefore, similar to our earlier work, LiteHAX is
minimally invasive to the processor implementation; it does not require modifications
to the processor micro-architecture, neither does it require extensions to the instruction
set architecture, or instrumentation of the program code. We implemented and evalu-
ated LiteHAX on a RISC-V System-on-Chip (SoC) and show in our publication that it
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incurs minimal performance and area overhead while detecting non-control-data attacks
as required.

While runtime capturing and attestation of memory access operations, as shown in
LireHAX [38] (Appendix C), is one hardware-based mitigation approach to detect DOP
attacks after their occurrence, run-time enforcement of certain policies or constraints is
another promising approach that blocks the attacks before they even occur. In another
work [105] (Appendix D), we propose run-time scope enforcement to efficiently miti-
gate all currently known DOP attacks by identifying the lexical scope rules of variables
at compile time and extracting memory safety constraints from them and enforcing
them at run time. To prototype our scheme, we presented HARDSCOPE [105] (Appendix
D), a hardware-assisted run-time scope enforcement scheme for RISC-V based systems,
that provides fine-grained context-specific memory isolation within programs. HARD-
ScopPE requires that the compiler is modified to instrument the program code with spe-
cial instructions that record which variables may be used by each code block. Thus,
HARDSCOPE requires an instruction set extension for this purpose. At run time, these
instructions are used to create the different memory access rules dynamically for each
individual function invocation (assuming function-level granularity) and these rules are
then stored in hardware-protected stack memory. The HARDScorE hardware extension
captures every memory access directly from the pipeline and mediates it to check it
against the stored access control rules. We show in our work how HARDSCOPE can sig-
nificantly reduce the exposure to data-oriented attacks with a minimal performance
overhead of 3.2% for embedded benchmarks.

The different hardware-based security mechanisms we have presented above, besides
other state-of-the-art approaches proposed in academia and adopted in industry, either
apply enforcement or execution tracking/attestation. Moreover, each assume a differ-
ent adversary model and different adversarial capabilities, thus mitigating only specific
classes of attacks. No consolidated defenses exist that can mitigate multiple classes of
different attack vectors, or can be even configured flexibly within the platform at run time
to thwart different adversarial capabilities depending on the desired security/functional-
ity requirements and deployment environment. This is particularly a challenge for these
hardwired hardware-assisted security extensions which cannot be upgraded or updated
after fabrication (in contrast to software), and will thus always provide fixed security
guarantees and assume the same adversarial capabilities once produced. This makes
it impractical for system architects to deploy these hardware-assisted mechanisms in
embedded platforms, despite their advantages over software-based defenses. Secondly,
timing-critical real-time systems often lack these protection mechanisms, despite. This
is usually because fail-safe operation with hard deadlines is critical, while protection
mechanisms, such as control-flow integrity and attestation, to mitigate or detect such at-
tacks have been shown to incur non-negligible performance overheads. While this can be
tolerated to some extent for applications without real-time constraints, it would violate
the functionality requirements of real-time high-availability systems.

In our work [40] (Appendix E), we present and discuss these insights and challenges in
more detail, and present a consolidated runtime-configurable security extension, called
CHASE. CHASE can be more flexibly adapted to provide different security guarantees
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and services at run time, e.g., either enforcement or more detailed execution tracking
and attestation, depending on the desired security guarantees and the system real-time,
availability and functionality requirements. This enables the adoption of such hardware-
based security extensions and their customization at run time to calibrate the security
vs. performance trade-off for individual use cases and deployment settings. We analyze
CHASE's effectiveness in providing different security guarantees and services against
different adversarial capabilities and for different use cases (e.g., real-time applications),
and evaluate how this is possible with reasonable hardware logic overhead and minimal
performance overhead.
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3.1 PROBLEM STATEMENT AND MOTIVATION

Modern multi-core processors are augmented with various performance optimization
features that make them vulnerable to a wide spectrum of different microarchitectural
attacks, as shown in recent works [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101,
132, 134, 25, 27, 118, 20]. Shared cache resources are one of the most popular optimiza-
tion features, and also the most exploited in these attacks. The inherent timing difference
between a cache hit and a cache miss in shared cache behavior, while being precisely
why caches are used, is also how they are exploited to infer information on the victim’s
execution patterns, ultimately leaking private information such as a secret key. The root
cause for these attacks is mutually distrusting processes sharing the cache entries by
means of deterministic and consistent set-associative access and eviction. We present
next a brief overview of such cache side-channel attacks that are relevant for our work
in 3.1.1, followed by the shortcomings of recently proposed defenses that our work aims
to overcome in 3.1.2. Next, we focus on the encompassing security architecture itself,
where we briefly discuss how state-of-the-art Trusted Execution Environment (TEE) se-
curity architectures suffer from severe shortcomings that hinder their secure and flexible
deployment as desired for different emerging use cases.

3.1.1  Cache Side-Channel Attacks

We briefly introduce here recent cache side-channel attacks that are relevant for our
work. Cache side-channel attacks have been shown to constitute a profound threat, while
also playing a critical role in mounting some of the more popular attacks such as Spec-
tre [83] and Meltdown [9o]. Different types of these attacks have been demonstrated
on all platforms and architectures, ranging from mobile and embedded devices [89] to
server computing systems [92, 71, 147]. Furthermore, they have also been shown to un-
dermine the promised isolation guarantees of trusted execution environments, like Intel
SGX[18, 119, 100, 52] and ARM TrustZone [89, 145]. By means of these attacks, both fine-
grained as well as coarse-grained private data and operations can be inferred, e.g., by
bypassing address space layout randomization (ASLR) [56, 53], inferring keystroke be-
havior [57, 55], or leaking privacy-sensitive human genome indexing computation [18],
or leaking RSA [147, 92] and AES [16, 71] decryption keys.

The attacks usually work by provoking controlled evictions of the victim’s cache line,
where the inherent information leakage from the access timing difference between cache
hits and misses can be exploited by the adversary. We can classify the attacks into four
main classes, as follows.
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Access-based Approaches. In access-based attacks, e.g., Flush + Reload [60, 142],
Flush + Flush [57], Invalidate + Transfer [72], and Flush + Prefetch [56], the adversary
accesses the target addresses directly by flushing them out of the cache using the clflush
instruction [1] or even exploiting timing leakage from the execution of the clflush instruc-
tion [57]. Flushing a target address invalidates the corresponding cache lines and writes
it back to memory. Evict + Reload [55] attacks have also been shown which do not re-
quire the clflush instruction, but instead evict specific cache sets by accessing physically
congruent addresses. These attacks are only feasible in case of shared memory between
the adversary and victim, usually in the form of shared libraries, and thus, shared cache
lines, and are usually effectively easier to defend against.

Conflict-based Approaches. Stealthier conflict/contention-based attacks, such as,
Prime + Probe [107, 71, 75, 92, 140], Prime + Abort [45], Evict + Time [53, 107], alias-
driven attacks [59], and indirect Memory Management Unit (MMU)-based cache at-
tacks [133], require that the adversary constructs a minimal eviction set, i.e., a set of
memory addresses to map to the same cache set as the target address that the adver-
sary wants to monitor, and uses it to trigger and exploit a controlled cache contention
in the same cache set of the target addresses, thus, evicting the corresponding victim
cache lines. This is possible by different techniques. The adversary either measures the
overall time needed by the victim process to perform certain computations [12, 16], or
probes the cache with eviction sets and profiles cache activity to deduce which memory
addresses were accessed [92, 71, 140, 142, 75], or accesses target memory addresses and
measures the timing of these individual accesses [107, 60]. Alternatively, the adversary
can also read values of addresses from the main memory to see whether cache lines
that contain cacheable target addresses have been evicted to memory [59]. These attacks
represent the most challenging class of attacks to sufficiently mitigate, owing to their
continuously evolving sophistication and stealthiness.

Collision-based Approaches. Cache-collision timing attacks exploit cache collisions
that the victim has to experience due to its own cache utilization, e.g., after a sequence of
lookups performed by a table-driven software implementation of an encryption scheme,
such as AES [16]. Here, the adversary is assumed capable of timing the computation
of the victim process. Collision-based attacks, however, are not very commonly shown
and are very specific to certain software implementations, and thus do not represent a
sufficiently significant threat. The only effective architectural defense for them is locking
relevant cache lines after pre-loading them.

Occupancy-based Approaches. Cache-occupancy attacks are possible in any cache
architecture where adversary and victim processes compete for shared cache resources,
i.e., when no strict partitioning is enforced. In these attacks the adversary observes when
an eviction of his own line occurs, even if he cannot infer the address of the line that
replaced it. Thus, the adversary can measure the number of evictions, use this informa-
tion to infer the size of the victim’s working set, and use this as a signature. A recent
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attack [122] leverages this side channel to infer which website is opened in a browser
tab.

3.1.2  Shortcomings of Recent Cache Defenses

Various types of defenses have been proposed to mitigate the aforementioned side-
channel attacks, with a particular focus on the more challenging and powerful access-
based and conflict-based attacks. We summarize below the different defense categories.

Side-channel Resilient Software Implementation. This aims at implementing algo-
rithms, e.g. cryptographic algorithms, in a time-constant (thus side-channel-resilient)
fashion [70, 13]. Time-constant algorithms and their implementations are not generaliz-
able, i.e., they are hardware platform-dependent [30] and require considerable manual
effort, and thus, do not represent a scalable solution.

Attack Detection. Other approaches aim to detect attacks in progress by observing
hardware performance counters (e.g., on cache miss rates) [29, 109] and inferring heuris-
tically whether an attack is underway, and consequently killing the suspicious process.
However, like any heuristics-based approach, the attacks can only be discovered with a
certain probability with no solid protection guarantees possible. Moreover, some stealthy
variants of the attacks have been shown to not cause abnormal cache behavior [57] and
would thus slip undetected through such mechanisms.

Noise Injection. Another class of defenses aims to impede a successful attack by pre-
venting the adversary from performing precise time measurements, e.g., by restricting
the access to timers [108, 110, 97], injecting noise into the system [135, 66] or deliberately
slowing down the system clock [65, 96]. Such defenses are not fool-proof, since they do
not address the fundamental root cause of the attacks, but instead only debilitate the
mechanisms and means required to mount them. Moreover, they directly impact access
to features, e.g., timers that are required-as actually intended—for benign functionalities.
In fact, workarounds have been shown to synthesize timers still [117] or to perform
attacks without relying on timers altogether [46]. Additionally, such defenses cannot
protect TEE (Trusted Execution Environment) architectures, where a strong adversary
capable of compromising the OS kernel is assumed, and can therefore circumvent such
restrictions and still access the timers.

Cache Micro-architectural/Architectural Defenses. The approaches most related to
our work are defenses which tackle the side-channel problem directly where it origi-
nates, at the cache. These defenses fall under one of two paradigms: 1) randomization-
based defenses that rely on either randomized mapping tables [137, 94, 91] or cryp-
tographic primitives Trilla18,Qureshi18,ceaser-s,scattercache,phantomcache to generate
reproducible randomized mapping of memory addresses to cache sets, in order to make
the attacks computationally impractical or 2) cache partitioning of any form to provide
strict isolation, thus eliminating interference altogether [50, 79, 145, 93, 33, 58, 148, 76,
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139, 87, 11, 136, 82, 137]. We describe the state of the art in cache side-channel defenses
and their deficiencies in more detail in our work [41] (Appendix F) and [44] (Appendix
G), and provide a brief summary below.

Randomization-based defenses cannot provide comprehensive and solid future-proof
security guarantees, e.g., subsequent advances in minimal eviction set construction
techniques have been shown to already undermine recent randomization-based de-
fenses [116, 17, 113, 114]. In other words, these defenses usually provide security guar-
antees on par with the state of the art in attack algorithms/techniques, and are quickly
rendered ineffective once a novel attack technique that undermines them is discovered.
Once these defenses are customized to mitigate more advanced attack algorithms, e.g.,
more frequent re-keying of the indexing function [116], they impose prohibitively high
performance overheads. Moreover, many of them rely on weak cryptographic primi-
tives which have been shown vulnerable to cryptoanalysis, whereas deploying more se-
cure primitives would further degrade performance and prohibitively increase hardware
overheads [15, 114]. They are usually also designed to mitigate only certain classes of
attacks, leaving them still vulnerable to either other attack variants or other side-channel
attacks. In short, defenses in this category fail to provide well-grounded security guaran-
tees because they do not fundamentally address the root cause for these attacks, namely,
mutually distrusting code sharing cache resources.

On the other hand, cache partitioning defenses provide strict cache isolation and
the desirable explicit non-interference between mutually distrusting processes, which
allows to give well-justified and solid security guarantees on side-channel protection.
However, existing partitioning defenses suffer from significant performance degrada-
tion, restrictive and inflexible cache utilization [137], coarse-grained allocation of the
cache resources, and their inability to scale with a larger number of protection do-
mains [136, 82, 58], as required for TEE security architectures for example. Several ap-
proaches do not directly cater for the use of shared libraries [50, 136], are architecture-
specific [76, 139] or do not defend against occupancy-based attacks.

Most importantly, all of these defenses apply their side-channel cache protection for
the entire execution workload impacting overall system performance, which is in prac-
tice not even required in most scenarios. They do not allow the possibility to selectively
and flexibly configure the mitigation only for the security-critical portion of the work-
load, and thus being able to fine-tune the security vs. performance trade-off for different
portions of the workload as desired.

Another approach to mitigating these side-channel attacks is flushing cache resources
on every context switch to a sensitive application, as proposed by various TEE architec-
tures [33, 19, 87, 11]. However, this does not scale well for larger caches since the per-
formance cost incurred would become unreasonable. Moreover, flushing is not possible
on a shared last-level cache, since it is shared simultaneously among multiple cores and
thus, more sophisticated mechanisms are required to prevent cross-core side-channel
attacks.
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3.1.3 Limitations of Existing TEE Security Architectures

Security architectures that provide Trusted Execution Environments (TEE) protect
against a privileged software adversary, e.g., a compromised operating system, by en-
abling the execution of sensitive services (both code and data) in isolated containers or
compartments, also called enclaves. TEE architectures have been proposed for a variety
of computing platforms, though we focus in our work specifically on high-performance
computing platforms, e.g., industry solutions such as Intel SGX [68, 32], AMD SEV [74],
and ARM TrustZone [7] or academic solutions such as Sanctum [33], Sanctuary [19],
Keystone [87], and Komodo [49].

These TEE architectures usually provide only one type of enclave with the same priv-
ileges and boundaries, and thus it is required that applications which require enclave
execution are adapted to the features and limitations of the enclave that the platform
provides, e.g., Intel SGX restricts system calls of its enclaves and thus, applications need
to be modified when being ported to SGX which incurs both deployment and perfor-
mance overhead costs. In practice, it is definitely more desirable and practical if unmod-
ified applications can be deployed directly to enclaves, and the enclave privilege level
and boundaries can be specified and configured on-demand to accommodate the use
case in question.

Moreover, an increasing number and variety of services now are processing
sensitive/security-critical data, e.g., payment services, biometric authentication, smart
contracts, speech processing, Machine Learning as a Service (MLaaS), among many oth-
ers. These services are of different nature, and thus impose different requirements, both
in terms of functionality and security, on the underlying TEE architecture. One such re-
quirement, for instance, concerns the ability to establish secure, exclusive and practical
binding between specific enclaves and different input/output peripherals on-demand.
On some devices, for instance, privacy-sensitive data is constantly being collected over
various audio, video or biometric data sensors. On devices running machine learning
services, massive amounts of potentially sensitive data are often aggregated and usually
offloaded to external hardware accelerators, e.g., FPGAs and GPUs, to train proprietary
machine learning models. However, architectures such as SGX, SEV and Sanctum do not
provide secure input/output capabilities altogether, while Keystone would require ad-
ditional hardware mechanisms incorporated in order to support Direct Memory Access
(DMA)-capable peripherals (e.g., GPUs and FPGAs), and other architectures would re-
quire hardware changes to the peripheral itself, e.g., to the GPU, which is only possible
by the vendor itself. TrustZone, Sanctuary, and Komodo cannot even bind peripherals
directly to individual enclaves. Moreover, an increasing number and variety of services
now are processing sensitive/security-critical data, e.g., payment services, biometric au-
thentication, smart contracts, speech processing, Machine Learning as a Service (MLaaS),
among many others. These services are of different nature, and thus impose different
requirements, both in terms of functionality and security, on the underlying TEE ar-
chitecture. One such requirement, for instance, concerns the ability to establish secure,
exclusive and practical binding between specific enclaves and different input/output
peripherals on-demand. On some devices, for instance, privacy-sensitive data is con-
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stantly being collected over various audio, video or biometric data sensors. On devices
running machine learning services, massive amounts of potentially sensitive data are
often aggregated and usually offloaded to external hardware accelerators, e.g., FPGAs
and GPUs, to train proprietary machine learning models. However, architectures such
as SGX, SEV and Sanctum do not provide secure input/output capabilities altogether,
while Keystone would require additional hardware mechanisms incorporated in order
to support Direct Memory Access (DMA)-capable peripherals (e.g., GPUs and FPGAs),
and other architectures would require hardware changes to the peripheral itself, e.g., to
the GPU, which is only possible by the vendor itself. TrustZone, Sanctuary, and Komodo
cannot even bind peripherals directly to individual enclaves.

Another increasingly important requirement desired from TEE architectures is pro-
viding applications in enclaves with an adequate, practical and configurable protection
against side-channel attacks, e.g., OS controlled side-channel attacks as well as cache
side-channel attacks which we discussed earlier. Current industry-standard TEE archi-
tectures, e.g., SGX and TrustZone, do not consider cache side-channel attacks within
their threat model altogether. Current academic architectures, such as Sanctum, propose
impractical mitigation mechanisms, which would heavily degrade the OS’s performance.
Others, such as SEV, do not consider controlled side-channel attacks. The significant im-
pact of these sophisticated attacks on platform security, especially cache side-channel
attacks as discussed above, has already been sufficiently demonstrated, rendering them
too critical to remain out of the threat model in TEE architectures. Furthermore, platform
mechanisms that provide, by design, both this side-channel resilience while preserving
performance and flexibility as desired for every individual application, are currently
entirely missing in TEE security architectures. We elaborate on the related TEE architec-
tures and their relevant shortcomings in more detail in our work [11] (Appendix H).

3.2 CONTRIBUTIONS

This thesis has significantly contributed to the problems described above with the fol-
lowing three publications that can be found in Appendices F, G, and H:

[41] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
USENIX Security. USENIX Association, 2020. Core Rank A*. Appendix E.

[44] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. Chunked-Cache: On-Demand and Scalable Cache Isola-
tion for Security Architectures. In Annual Network and Distributed System Secu-
rity Symposium (NDSS), 2022. Core Rank A*. Appendix G.

[11] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A Secu-
rity Architecture with CUstomizable and Resilient Enclaves. In USENIX Security.
USENIX Association, 2021. Core Rank A*. Appendix H.
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To address the limitations of existing cache designs discussed above, and provide a
configurable and flexible side-channel-resilient cache microarchitecture for security ar-
chitectures, we propose a flexible and soft partitioning of set-associative caches and pro-
pose a hybrid cache architecture, called HyBCACHE [41] (Appendix F). HyBCACHE can be
configured to selectively apply side-channel-resilient cache behavior only for isolated ex-
ecution domains that require this sophisticated security guarantee, while providing the
non-isolated execution with conventional cache behavior, capacity and performance. An
isolation domain is defined as any form of compartmentalization of the workload, and
can include one or more processes, specific portions of code, or a Trusted Execution En-
vironment (e.g., SGX or TrustZone). We show in our work how, with minimal hardware
modifications and kernel support, HYBCACHE can provide side-channel-resilient cache
only for isolated execution with a performance overhead of 3.5-5%, while incurring no
performance overhead for the remaining execution workload. To evaluate the overhead
incurred by our new microarchitecture design, we implement HYBCACHE into an ar-
chitectural simulator, gems, and evaluate the performance overheads for the SPEC2006
benchmarks. We also provide a hardware implementation of HyBCACHE to evaluate its
hardware footprint (area and storage/memory overhead), and show through our secu-
rity analysis how HyBCACHE mitigates typical access-based and contention-based cache
attacks.

While HyBCACHE enables configurable cache side-channel resilience while maintain-
ing non-degraded performance for the non-isolated execution, it still does not funda-
mentally mitigate all side-channel leakage, since it does not provide strict partitioning
by design. The cache occupancy side channel, where the adversary can attempt to infer
the working set size of the victim, is the only side-channel leakage that is not mitigated
by the HyBCACHE construction. This leakage is inherently available in any cache archi-
tecture where the attacker and the victim processes compete for entries in shared cache
resources. It can only be effectively blocked by strict cache partitioning, which we de-
liberately do not provide in the HyBCACHE construction. This allows different isolation
domains to still compete for cache entries, thus preserving dynamic cache utilization for
the entire workload and unaffected performance for non-isolated execution.

In a follow-up work [44] (Appendix G), we propose another cache microarchitec-
ture design, CHUNKED-CACHE, that blocks this cache occupancy leakage by providing
strict cache partitioning thus providing clean isolation, while still maintaining flexible
cache utilization. CHUNKED-CACHE enables an execution context to "carve" out its ex-
clusive cache chunk of configurable capacity only if it requires cache side-channel re-
silience. When side-channel resilience is not required, mainstream cache resources can
be freely utilized. This addresses the security-performance trade-off by efficiently en-
abling on-demand cache side-channel resilience, i.e. only when actually required, while
providing well-grounded future-proof security guarantees. CHUNKED-CACHE provides
side channel-resilient cache utilization for sensitive execution, while incurring no perfor-
mance overhead on the OS due to its design mechanisms. Through our proof-of-concept
implementation (on a cycle-accurate architectural simulator and a hardware implemen-
tation) and its evaluation, we show how it outperforms way-based partitioning signifi-
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cantly in terms of performance and scalability for minimal hardware (logic and memory)
overhead.

Our work in secure cache designs has enabled more flexible and configurable cache-
based side-channel security that can be adapted on-demand for different portions of the
execution workload individually and independently. To enable further configurability
and flexibility for trusted execution capabilities generally, we focus next on the encom-
passing security architecture itself. Security architectures providing Trusted Execution
Environments (TEEs) aim to protect sensitive services by compartmentalizing them in
isolated execution contexts, called enclaves. However, existing TEE solutions suffer from
critical shortcomings with respect to both security and functionality. They adopt a rigid
approach where only a single enclave type is available, although, in fact, more flexibility
is required, since different services require different types of enclaves that can adapt to
the demands of the service in question. Moreover, they cannot even efficiently support
emerging applications, e.g., machine learning services, which require secure binding
and interaction of specific enclaves with specific peripherals (e.g., accelerators), or the
computational power of multiple cores securely. Finally, their protection mechanisms
against side-channel attacks, e.g., cache side-channel attacks, are either an afterthought
"hotfix" or impractical for flexible usage, e.g., fine-grained allocation of cache resources
to individual enclaves is usually not supported by default.

We investigate and highlight these shortcomings and challenges in our work [11]
(Appendix H), and propose CURE, the first security architecture, which addresses these
design goals by providing different types of enclaves whose boundaries can be flexibly
configured and resources can be selectively allocated to them. Supported enclaves in
CURE can either provide isolation either vertically within any single execution privilege
level (sub-space enclave), or across multiple privilege levels (kernel-space enclaves) or
only for unprivileged applications (user-space enclaves). In doing so, CURE already
outperforms the state of the art (at time of writing) in TEEs which usually provide
only one type of enclave, as stated earlier. CURE also allows that system resources, e.g.,
peripherals, CPU cores, or cache resources are exclusively and selectively assigned to
single enclaves, thus providing the desirable fine-grained resource allocation as well as
on-demand and flexible side-channel protection.

In [11] (Appendix H), we describe in detail the design challenges therein and how
we tackle them in our design for CURE to successfully fulfill individual and unique
functionality and security requirements of different services on demand. Besides the
software stack implementation and modifications, we introduce novel hardware security
primitives for the CPU cores, system bus and the shared cache in order to achieve the en-
visioned design goals, i.e., to adapt adequately to satisfy the different functionality and
security requirements of different services. We ensure that the hardware modifications
are not invasive and are also not architecture-agnostic, and can thus be ported to other
platforms and architectures. While we attempt to keep the modifications in hardware
reasonably minimal, we also ensure that the performance overhead for managing the
enclaves in software is minimized, hence successfully achieving a reasonable trade-off
in the available hardware-software co-design space.
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For proof of concept, we implement CURE for the RISC-V platform using the open-
source Rocket Chip generator [9]. For the fine-grained cache allocation to enclaves and
cache side-channel protection, we design and implement a way-based flexible cache
partitioning for the shared L2 (last-level) cache in our prototype, which we describe in
more detail in [11] (Appendix H). We also emphasize that this particular cache-based
partitioning /side-channel protection mechanism was selected only for convenient pro-
totyping, whereas CURE supports that more sophisticated cache designs, such as our
work HyBCACHE [41] (Appendix F) can be easily integrated into it, as shown in [11].
We evaluate the hardware and software components of our CURE prototype in terms
of the additional hardware logic and lines of software code, and show that even with
minimal hardware changes, CURE can already significantly improve the state of the
art of hardware-assisted security architectures. We also evaluate CURE’s performance
overhead on an FPGA and cycle-accurate simulator setup using micro- and macrobench-
marks, and show that CURE incurs a geometric mean performance overhead of 15.33%
on standard benchmarks.
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4.1 PROBLEM STATEMENT AND MOTIVATION

The gap between hardware and software security analysis is taking its toll on the se-
curity of our computing platforms. The recent outbreak of microarchitectural attacks
such as Spectre and Meltdown among many others [83, 2, 90, 84, 81, 95, 143, 54, 48,
47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20] has revealed how our computing plat-
forms and hardware-based security solutions are flawed in their fundamental trust as-
sumptions. The conventional threat model always assumed a software-only adversary
and software-only vulnerabilities with the spotlight largely on software and processor
architecture. However, these increasingly sophisticated attacks have been shown to ex-
ploit both software and underlying hardware flaws to compromise our computing plat-
forms [143, 101, 80, 129, 90, 132, 54, 48], and they have emphasized to researchers and
practitioners how underneath the architecture is a very complex microarchitecture and
its hardware implementation that were always unjustifiably assumed trusted and secure.
These attacks may trigger physical hardware effects that induce system faults or exploit
microarchitectural /architectural flaws by software means to generate certain controlled
microarchitectural states. Moreover, these physical or microarchitectural flaws and ef-
fects are made visible to software adversaries by means of software vulnerabilities, thus
also enabling a software-only adversary to exploit these hardware vulnerabilities re-
motely. Platforms ranging from low-end embedded devices to complex servers, that are
augmented with advanced defenses, such as data-execution prevention and control-flow
integrity, have been shown vulnerable. This is because these state-of-the-art defenses
aim to mitigate attacks that exploit software vulnerabilities, such as memory corrup-
tion. Furthermore, hardware-based security extensions, such as the schemes presented
in Chapter 2, also aim to mitigate software attacks. They cannot mitigate attacks that
exploit microarchitectural or hardware flaws. In fact, their implementation is actually
vulnerable to potential hardware flaws that may not be detected at design-time, where
these flaws may break the security claims of these schemes altogether. Even industry-
standard security architectures, such as SGX and TrustZone, have been targets of suc-
cessful microarchitectural attacks [18, 119, 100, 52, 89, 145]. Architectures proposed in
academia [33, 19, 8y, 11], while equipped with side-channel protection mechanisms to
overcome the deficiencies of SGX and TrustZone, are not verified at the hardware imple-
mentation level to ensure that they indeed provide the claimed security guarantees.

4.1.1  Hardware Implementation Flaws

Hardware and System-on-Chip (SoC) designs are typically implemented at register-
transfer level (RTL) by engineers using hardware description languages (HDLs), such as
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Verilog and VHDL, which are in turn synthesized into a lower-level netlist representa-
tion using automated tools. At this pre-silicon design-time phase (prior to final tape-out
and fabrication), hardware vulnerabilities can occur due to: (a) incorrect or ambiguous
or incorrectly described /formalized security specifications, (b) flawed design, (c) flawed
implementation of the design, or (d) a combination thereof. Hardware implementation
bugs can be introduced either through human error by the hardware developers or by
faulty compilation/synthesis of the design into its gate-level equivalent.

Even seemingly minor flaws in the implementation of a hardware module within our
processor can compromise the SoC security objectives and result in denial of service, IP
leakage, or exposure of assets and secrets to untrusted entities. Flaws in the underlying
hardware, which serves as the foothold of our computing platforms and their security
and trust assumptions, would subvert the security of all that sits above. It becomes even
more critical if these flaws were committed in the implementation of hardware-based
extensions dedicated to provide software security services, such as the extensions we
propose in our work in Chapter 2.

The permanence of these flaws further aggravates the dilemma. Unlike software flaws,
hardware vulnerabilities committed at design-time cannot be generally patched (at the
actual root cause) once the hardware is fabricated. While existing industry SoCs may
support microcode patching, this is only limited to a handful of changes to the instruc-
tion set architecture, e.g., modifying the interface of individual complex instructions
and adding or removing instructions. These patches are firmware-only, and tend to be
symptomatic fixes that circuamvent the actual RTL flaw, without fundamentally patching
it, while also usually incurring a performance penalty that can be avoided if the under-
lying problem were discovered and fixed at design-time. Besides, some vulnerabilities
cannot even be patched by microcode, such as the recent Spoiler attack [73], and they
require fundamentally fixing the hardware which is impossible for a legacy system.

Therefore, hardware security testing for detecting these flaws at design-time prior to
fabrication in legacy systems is even more crucial than the more established software
security testing.

4.1.2  Detecting Hardware Flaws

The semiconductor industry leverages a variety of techniques, such as simulation, emu-
lation, and formal verification to detect these flaws.Some examples of industry tools that
are leveraged for both functional as well as security-specific verification are Incisive [21],
Solidify [10], Questa Simulation and Questa Formal [98], OneSpin 360 solutions [123],
and JasperGold [22]. While knowledge and techniques for software security are well
established both in academia and industry (e.g., regarding software exploitation and
automatic bug detection techniques), security-centric HDL analysis, in comparison, lags
critically behind [78, 106]. Hence, inspired by software practices [63], the chip design in-
dustry has recently adopted a security development lifecycle (SDL) for hardware [126].
This process deploys different techniques and tools, such as RTL manual code audits,
assertion-based testing, dynamic verification (e.g., simulation), and automated formal
verification to detect bugs in hardware designs at the pre-silicon phase, i.e., prior to
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tape-out and fabrication. However, recent sophisticated cross-layer microarchitectural
attacks [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20]
pose difficult challenges for these security verification techniques, and indicate how
such stealthy bugs would still slip through these security verification processes. This is
because these attacks usually exploit complex and subtle interactions between hardware
and software, though existing verification techniques are fundamentally limited in mod-
eling and verifying these interactions. They also fail to seamlessly capture some specific
semantics that are relevant to many vulnerabilities, e.g., timing flow, side channels, and
cache states. Generally, SDL practices are tedious, complex, largely non-automated, and
require extensive human expert intervention. The correct security specifications and test
cases must be exhaustively anticipated, identified, and accurately and adequately ex-
pressed using security properties and invariants that can be captured and verified by
the tools.

At one end, dynamic verification techniques, e.g., simulation, involve driving a Design
Under Test (DUT) with input sequences (either crafted or randomly generated) during
simulation, and comparing the DUT’s behavior with a set of invariants or golden ref-
erence. Such techniques are effective in identifying flaws in complex and large designs
and scaling well, however, they fail to achieve deep coverage of the design’s state space,
and cannot uncover complex flaws.

At the opposite end of the spectrum, formal verification involves proving/disproving
properties or proving the absence of an information flow of a DUT using mathematical
reasoning like model checking. In contrast to dynamic verification, formal verification
is capable of detecting more complex flaws but they fail, in practice, to scale to real-
world, complex and large designs. To alleviate this state explosion problem, techniques
such as "black-box" abstraction of a selected set of hardware modules of the design,
state space constraining, and bounded-model checking are often used. However, these
do not eliminate the fundamental problem and rely on interactive human expertise
and manual intervention. Erroneously applying them may result in false negatives and
missed vulnerabilities.

We elaborate in more detail on the SDL process and the limitations of the state-of-the-
art hardware security verification in our work [39] (Appendix I).

4.2 CONTRIBUTIONS

This thesis has significantly contributed to the problems described above with the fol-
lowing publication that can be found in Appendix I:

[39] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanu-
parthi, Hareesh Khattri, Jason M. Fung, and Ahmad-Reza Sadeghi. HardFails: In-
sights into Software-Exploitable Hardware Bugs. In USENIX Security. USENIX
Association, 2019. Core Rank A*. Appendix L.

In our work, we take a closer look into the design and security assurance lifecycle of
hardware, and focus the spotlight on the limitations and challenges of state-of-the-art
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hardware security verification discussed above. However, this is challenging to achieve,
since hardware designs with such real-world bugs are usually closed-source and pro-
prietary, therefore it is not trivial to acquire either real-world hardware designs or real-
world hardware bugs therein. Thus, the first step in qualitatively assessing the effective-
ness of existing verification techniques was to construct the test harness itself, i.e., the
System-on-Chip (SoC) design and the bugs therein. Together with our industry partners
and collaborators at Intel, we systematically constructed a varied set of 31 hardware reg-
ister transfer-level (RTL) bugs inspired from their first-hand experience with bugs that
they have encountered themselves at Intel, as well as public Common Vulnerabilities
and Exposures (CVEs) [103, 104, 102, 90, 83, 84] and real-world errata [62]. We injected
the bugs into two open-source real-world RISC-V-based SoC designs, Pulpino [111] and
PULPissimo [112]. We organized the first edition of what is now the largest international
hardware security competition, Hack@DAC [131], in 2018 where 54 teams of researchers
competed for three months to detect these bugs in the SoCs. While a number of the bugs
could not be detected by any of the teams, several teams also detected new bugs that
already existed in the open-source SoCs, which we did not inject ourselves and had no
prior knowledge of. The teams largely relied on manual RTL code inspection and simula-
tion techniques to detect the bugs. In industry, however, these are usually complemented
by automated tool-based and formal verification approaches.

Thus, we conducted a second in-house investigation ourselves, in which we focused
on two state-of-the-art formal verification tools (Formal Property Verification (FPV) [24]
and JasperGold’s Security Path Verification (SPV) [23]) to assess their effectiveness in
detecting these bugs and their ease of use and friendliness. These represent the state
of the art in hardware security verification and are used widely by the semiconductor
industry [8], including Intel. FPV exhaustively verifies that a set of specified security
properties hold true for the given RTL of a hardware design. If a security property is
violation, the tool generates a counter-example, which we examine to ensure whether the
property is indeed violated or if this is a false alarm. SPV leverages formal verification
and path sensitization to check for illegal /unauthorized information flows.

Both the results of the competition and our investigation with formal verification
tools have revealed that certain properties of RTL bugs can make them significantly
more challenging to detect. With formal verification techniques, technical and practical
challenges arise when attempting to scale them efficiently for larger SoCs thus requiring
error-prone workaround mechanisms, such as black-box abstraction. They remain non-
automated and require a certain capacity of human expertise in hardware design and
intervention. They are also incapable of modeling and capturing side channels and other
flows, such as timing flows as well as non-register states, e.g., cache states. Even when
formal verification techniques are aided with manual inspection and simulation meth-
ods by human experts, some classes of bugs may still slip through the security analysis
altogether, e.g., bugs that arise from complex and cross-modular interactions in SoCs
and span multiple modules. What further aggravates the threat arising from such bugs,
is the fact that many of them are in fact exploitable from software, and thus can com-
promise the entire SoC platform remotely, as we also demonstrate in our work. Building
on our findings from both our investigation and the competition results, we attempt to
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systematically classify and identify these bugs that are more challenging to detect and
the characteristics that they have in common, where we call such bugs HARDFAILS.

Our work is thus the first, to the best of our knowledge, that attempts to provide
a systematic and in-depth analysis of state-of-the-art hardware verification approaches
for security-relevant RTL bugs. Our findings reveal qualitatively the actual capacity and
effectiveness of these tools, while identifying types of bugs that are particularly more
challenging to detect: HARDFAILS. We demonstrate reproducibly how these bugs can slip
through current hardware security verification processes and the gravity of the security
threat they pose, by showcasing how one such bug can be exploited to compromise the
entire platform. We also reveal that one of the most significant and open challenges
in hardware security analysis is practically anticipating and identifying all the security
properties that are required in a real-world scenario, as well as specifying/formally
defining them correctly. In other words, besides the technical limitations of the formal
verification tools themselves, they are still only as good as the security properties that
the human expert specifies and defines for the tools. There is no automated way to
determine whether a tool is proving the actually intended properties, and there is no
fool-proof automated approach at generating these properties, though there is some
active research in this direction [146].

Ultimately, our work and insights manifest why further research is urgently required
to improve state-of-the-art security verification and analysis of hardware, and sheds light
on potentially promising directions, e.g., hybrid techniques that combine both formal
verification and simulation-based testing that would scale better than formal verification
only, as well as more efficient testing inputs generation techniques, such as fuzzing.
Fuzzing is an established automated software testing technique that provides different
types of data, e.g., invalid, unexpected, or entirely random data, as input to a piece of
software, aka the fuzz target, and monitors if the software crashes or triggers provided
code assertions, thus detecting memory corruption bugs that would otherwise be much
more difficult to find out. Coverage-guided fuzzing uses program instrumentation to
trace the code coverage reached by each input fed to a fuzz target. Fuzzing engines can
then use this information to guide the generation of the subsequent inputs provided to
the fuzz target, in order to maximize coverage. We are currently investigating whether
and how fuzzing can be ported to hardware design testing, and whether it would enable
more efficient coverage of the hardware DUT, e.g., better and/or faster coverage of state
space and state transitions, in contrast to directed random testing.

Ever since it was first launched in 2018, we have been organizing Hack@DAC every
year, and organized its first USENIX Security sequel, Hack@Sec, in 2020 [131]. Over the
past few years, the competition has been growing in sophistication, size and popularity
among both academics and industry professionals. Over the years, the focus of the com-
petitions has also shifted and evolved from only bug detection and root cause analysis in
2018 and 2019 to more interestingly tooling, automation and proof-of-concept exploita-
tion in Hack@DAC and Hack@Sec 2020. Moreover, the complexity of the deployed SoCs
has also evolved, from an SoC that runs only bare-metal applications to a more complex
SoC with an MMU and multiple privilege levels and a full multi-level cache subsystem
and can run a small kernel. This implied that we could integrate more interesting se-
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curity features such as more firmware and boot flows, cryptographic units self-tests at
bootup, firmware encryption, stack canaries, thus making room for more challenging
bugs as well as bugs that can span both the hardware and software of the platform. The
calibre and interest of the participating teams have also evolved over the years, and so
have the results and our insights. We have been involved in more exchange with some
of the teams on developing and customizing open-source tools to detect some specific
classes of bugs, while other teams could come up with automated exploit generation
techniques. All in all, our experience with Hack@DAC and Hack@Sec over the past
3 years has given us solid insights into how bugs can be introduced in hardware de-
signs, the varying complexity of these bugs, their security impact, and most importantly
the the state-of-the-art hardware security analysis techniques. We observe how the open-
source space severely lacks security analysis techniques that specifically target hardware
designs, and experience first-hand the practical limitations of state-of-the-art industry-
grade techniques. Plenty of open opportunities exist for developing new techniques that
can address the growing challenges of analyzing the security of our hardware as it con-
tinuously evolves in size and complexity.



CONCLUSION

The recent surge of microarchitectural attacks has fueled a growing interest, in both
academia and industry, to question the trust assumptions in the underlying hardware of
our systems. These attacks have revealed the threatening consequences of hardware /mi-
croarchitecture security flaws to the entire platform security, and pressingly urge for a
rethink of our hardware design paradigm where security is a key metric.

To this end, we investigate, in this thesis, the opportunities and implications of
hardware-based security that emerge across the full stack of our computing platforms.
Our work contributes significantly to the state of the art on multiple fronts, as we sum-
marize next.

5.1 SUMMARY OF CONTRIBUTIONS

In Chapter 2 based on [37] (Appendix A), [144] (Appendix B), [38] (Appendix C), [105]
(Appendix D), and [40] (Appendix E), we propose a suite of different hardware-based
processor extensions that aim to provide dedicated security services, e.g., execution
tracking, runtime attestation and policy enforcement, for security architectures. Through
our work, we illustrate how the advantages of hardware can be leveraged to provide sig-
nificantly more efficient security services to defend the software against different soft-
ware attacks, particularly runtime memory corruption attacks. We further consolidate
these different security extensions into one flexible scheme that can be configured to
provide different security services or flavors, thus catering to the different security and
performance requirements imposed by different applications and deployment settings.

In Chapter 3 based on [41] (Appendix F), [44] (Appendix G) and [11] (Appendix H),
we investigate how our computing platforms and even dedicated hardware-based secu-
rity mechanisms, similar to our work above, can be entirely compromised by attacks that
exploit microarchitectural /hardware design flaws. We focus specifically on cache-based
side-channel leakage, since it plays a key role in most microarchitectural attacks to date.
We present two sophisticated secure cache microarchitecture designs that attempt to
mitigate these attacks fundamentally by enabling secure cache resource sharing among
different security domains, while still preserving performance. Our cache designs pro-
vide configurable side-channel resilience by design, i.e., the sophisticated side-channel
resilience is only enabled when desired, thus providing a flexible performance-security
calibration that can adapt to different applications. We further extend this flexibility to
trusted execution environment (TEE) architectures themselves, and propose the first se-
curity architecture, which can provide different types of enclaves whose boundaries can
be configured and system resources, including cache resources, can be selectively and
exclusively allocated to them.
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In Chapter 4 based on [39] (Appendix I), we delve one layer beneath the microarchi-
tecture and design, and scrutinize the actual implementation of the hardware. Through
extensive case studies and our Hack@DAC hardware security competition, we exam-
ine how the actual implementation of the hardware can also harbor RTL vulnerabilities.
We survey the design and security assurance lifecycle of hardware, and focus the spot-
light on the limitations and challenges of state-of-the-art hardware security verification.
Through the results of the competition and our investigation with formal verification
tools, we show how certain properties of RTL bugs can make them significantly chal-
lenging to detect, both by manual inspection as well as formal verification techniques.
Our work and insights indicate that further research is pressingly required to improve
state-of-the-art security verification and analysis of hardware, and sheds light on poten-
tially promising directions.

5.2 FUTURE WORK AND OUTLOOK

To address the open challenges in hardware and microarchitectural security fundamen-
tally and reinstate trust in the underlying hardware of our computing platforms, we
envision a radically different design paradigm fo a security-adaptive platform that can
sustainably serve secure next-generation computing platforms. Such a platform would
aim to provide more consolidated and comprehensive full-stack security-aware and
adaptive primitives which span both the software and hardware layers of the platform.
These cross-layer primitives would be integrated by pro-active design into the com-
puting platform architecturally and micro-architecturally to address the performance-
security trade-off fundamentally and flexibly. Ultimately, these primitives would then
be configured on-demand by means of an interfacing configuration engine to 1) adapt
to customized requirements with regards to performance, compatibility and security
for different use cases, and to 2) adapt to different adversarial settings and mitigate
emerging threats.

Figure 3 demonstrates our vision for such a platform where adaptive hardware ele-
ments are integrated within the microarchitecture and configured in different flavors.
They can be tightly and invasively integrated within individual key components and
features of the CPU/SoC, e.g., different cache mapping and partitioning mechanisms
that can be configured on-demand to selectively provide side-channel-resilient cache.
On the other hand, a less invasive and more coarse-grained flavor of integration would
involve adaptive hardware extensions that only interface with the CPU/SoC to provide
hardware-based security services to the software, e.g., control-flow integrity or runtime
attestation of the executing software (in line with our work [37, 144, 38, 105, 40] (Ap-
pendices A-E). These different security primitives, being ingrained fundamentally in the
hardware with varying degrees of integration and granularities, allow the platform to ef-
ficiently adapt to changing security/performance requirements. They can be configured
to enforce different security policies through a secure interfacing configuration engine
as shown in Figure 3. Ultimately, this would also equip vendors with more degrees of
freedom and customization in updating platform security policies and applying full-
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Figure 3: Our vision for future computing platforms that incorporate adaptive hardware primi-
tives to achieve full-stack configurable security

stack security patches (across both the hardware, microcode and software) to mitigate
the latest threats, where currently this is limited to software/microcode patches only.

Designing and developing this platform opens up multiple concrete challenges and
directions for future research. Mechanisms are required to provide hardware-based secu-
rity extensions that interface with the CPU/SoC such that they can be very flexibly con-
figured to provide a spectrum of different security services that can adapt to emerging
threats and different deployment/adversarial settings. Moreover, the hardware-software
co-design space for these extensions needs to be exhaustively investigated to identify
the sweet spot that would combine the best of both hardware and software worlds. This
would also enable that they can sufficiently scale as required, e.g., to either support
more complex software applications or instead only secure the TCB of the computing
platform. To increase synergy, techniques to further extend these services to leverage
them for different purposes when necessary, e.g., hardware-assisted software fuzzing
(which also relies fundamentally on software execution tracking), are also required.

Practically integrating adaptive hardware elements invasively within the processor/-
SoC microarchitecture also poses different interesting challenges. Mechanisms to achieve
this efficiently, while still providing flexible configuration, are required. Furthermore,
enabling this configurability (to calibrate the security-performance trade-off) at the dif-
ferent microarchitectural features and units (and not only caches which has been the
focus in this thesis), while still preserving the desired performance benefits, is another
research challenge.

Finally, scalable techniques that can efficiently verify and analyze the security proper-
ties and specifications of both the design and implementation of these extensions and
hardware primitives, as well as their interactions with the overlying software are essen-
tial.
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CONCLUSION

On a final note, envisioning and developing such a platform with security-aware hard-
ware design primitives and investigating the full hardware-software co-design space has
only recently become both viable and valuable owing to the advent of open hardware,
such as RISC-V and the emergence of open-source RISC-V processor and SoC implemen-
tations. This has also coincided with the outbreak of microarchitectural attacks, where
both of which have evolved the focus in system security in the last few years, shifting
the spotlight to the long ignored security implications of hardware and the unjustified
trust assumptions therein. New territories and opportunities have emerged where the
security of hardware microarchitecture, design and implementation can be better scruti-
nized, making room for the state of hardware security to eventually catch up with that
of software security.
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ABSTRACT

Attacks targeting software on embedded systems are becoming in-
creasingly prevalent. Remote attestation is a mechanism that allows
establishing trust in embedded devices. However, existing attesta-
tion schemes are either static and cannot detect control-flow attacks,
or require instrumentation of software incurring high performance
overheads. To overcome these limitations, we present LO-FAT, the
first practical hardware-based approach to control-flow attestation.
By leveraging existing processor hardware features and commonly-
used IP blocks, our approach enables efficient control-flow attesta-
tion without requiring software instrumentation. We show that our
proof-of-concept implementation based on a RISC-V SoC incurs no
processor stalls and requires reasonable area overhead.

1 Introduction

Embedded systems have been facing a variety of security challenges
for decades [25] which are becoming increasingly prevalent with
emerging trends such as collaborative Internet of Things (IoT). A
recent prominent example is Mirai malware' in October 2016, where
a series of Distributed Denial-of-Service (DDoS) attacks against
the DNS system disrupted a number of prominent websites.These
attacks were perpetrated by IoT devices, including routers, DVRs,
and web-enabled security cameras, that had been compromised by
the Mirai malware.

Increasingly, attacks against embedded systems aim to exploit
software vulnerabilities. In 2015, a remotely exploitable buffer
overflow vulnerability was found in the USB over IP software used
in millions of residential gateways and wireless routers supplied
by prominent manufacturers®. In 2014, a memory corruption flaw
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was found in the embedded webserver software used by over 200
different models of embedded devices, affecting at least 12 million
devices, many of which still remain vulnerable today”.

Remote attestation is an important class of security mechanisms
designed to detect software attacks. In principle, remote attestation
allows one entity (the verifier) to ascertain the precise state of the
software running on a remote system (the prover). However, most
attestation schemes are stzatic in that they attest the software initially
loaded by the prover before it begins executing. Although useful,
this still leaves the system vulnerable to run-time software attacks.
If the adversary gains control of the stack or heap, (s)he can alter
control-flow information to subvert the control flow of the target
program, and mount a code-reuse attack. Similarly, in non-control
data attacks [8], the adversary modifies strategic data variables
to cause a permissible but unintended control flow change (e.g.,
executing a privileged instruction sequence). Traditionally, code-
reuse attacks are mitigated using techniques such as control-flow
integrity (CFI) [1]. However, CFI cannot prevent non-control data
attacks, since these do not violate control-flow integrity. Neither of
these types of attacks can be detected by static attestation.

To overcome these challenges control-flow attestation [2] was
proposed very recently, enabling the prover to precisely report the
control flow of application software to the verifier while giving
assurance on control-flow integrity and detection of non-control
data attacks. The attestation mechanism of [2] requires an iso-
lated execution environment (e.g., ARM TrustZone, Intel SGX)
to protect it against potentially compromised application software.
However, implementing control-flow attestation in software has
two limitations: Firstly, in order to detect control-flow events, the
application software must be instrumented prior to deployment.
Non-instrumented or incorrectly-instrumented software cannot be
attested. The instrumentation rewrites all control-flow instructions
(e.g., branch, return, etc.) in order to transfer control to the
attestation software. Secondly, the attestation software runs on the
main processor which incurs significant performance penalties be-
cause single control-flow instructions are essentially replaced with
relatively many numbers of instructions in order to track and record
the control-flow event (e.g., update a running hash value). As we
elaborate in §7, some existing hardware approaches, such as debug-
ging and tracing features in modern processors [14, 24] or hardware
security architectures [3, 6, 9], can be used to record control flow
information. However, due to the overhead they incur or the type

*http://mis.fortunecook.ie/



of information they record, these approaches are not well-suited for
control-flow attestation.

Goals and Contributions. To overcome the limitations of a
software solution, we introduce a practical hardware-based Low-
Overhead Control Flow ATtestation architecture, LO-FAT. Unlike
software implementations, LO-FAT can handle unmodified applica-
tion software without instrumentation, meaning that it is transparent
to legacy software. By recording the control flow in hardware in
parallel to the main processor, LO-FAT does not stall the application
software, thus eliminating the performance overhead of attestation
in software. LO-FAT leverages existing processor features and
commonly-used IP blocks and can feasibly be implemented on
typical embedded systems hardware platforms.

The main contributions of this paper are:

e Design of LO-FAT, a hardware-based scheme for control-
flow attestation, providing the same security guarantees as
previous software schemes, without the performance overhead
or the need for software instrumentation (§4).

e An integrated optimization for eliminating redundant attesta-
tion computation (e.g., avoiding duplication when attesting
loops) and reducing the burden on the verifier (§4).

e A proof-of-concept implementation of LO-FAT on the new
open-source RISC-V architecture targeting the Pulpino core
for single-threaded embedded system software (§5).

e A systematic evaluation of LO-FAT in terms of the required
hardware area and performance benefits (§6).

2 Problem Setting and Challenges

Remote attestation provides a well-known mechanism for detecting
malware on a device. However, existing conventional (binary) attes-
tation cannot detect run-time exploitation techniques, since run-time
attacks do not not modify the program binary. Such attacks aim to
subvert the intended control flow of the targeted program while it is
executing. An overview of different classes of such attacks is shown
in Figure 1. In general, a program reserves dedicated memories for
data and code. The former is marked as readable and writable (rw),
whereas the latter is as readable and executable (7x). This ensures
that code cannot be executed from data memory, and code memory
cannot be overwritten. Furthermore, any program can be abstracted
through its corresponding control-flow graph (CFG) that encapsu-
lates the valid paths a program should follow at run-time.

Program Memory

DATA (rw)

o Data Variables

H » indirectly affecting
e control flow

e > Loop Counters |

e Code Pointers |-

Control-Flow

Figure 1: Overview on run-time attack classes

We can distinguish three classes of run-time attacks: @ non-
control-data attacks that indirectly affect the control flow of a pro-
gram, @ corruption of loop counter variables, and & code-pointer
overwrites. The most prominent run-time attacks exploit code-
pointer overwrites, i.e., corruption of return addresses and function
pointers. For instance, code-reuse attacks such as Return-oriented
Programming (ROP) [23] exploit memory corruption vulnerabilities
(e.g., buffer overflows) in the program and then stitch together a
malicious sequence of machine code instructions from benign gad-
gets of code already residing in the vulnerable program memory.
This is exemplified by a malicious CFG edge (see dashed line for
code-pointer overwrite in Figure 1). These attacks have been shown

Verifier V Prover P
idg, i, CFG(S) S, I
idg, i, N
P = (A, L) + exec(S(i,I)), where:
A= hash([Srcn, Destg], - - - , [Srcn, Destn])
L = loops metadata
P, R R « sign(P||N; sk)
-—

(L, T) < versig(R; pk)
(L, T) < ver(P, CFG(S5),;)

Figure 2: Attestation protocol of LO-FAT

to be a realistic threat on many processor architectures, such as
Intel x86 [23], ARM [17] and embedded systems building on Atmel
AVR [12]. Although countermeasures against this class of attacks
exist, e.g., control-flow Integrity (CFI) [1] and code-pointer integrity
(CPI) [16], they do not prevent attacks @ and @. The so-called
non-control data attacks [8] do not compromise the control flow of
a program, but cause unexpected malicious control-flow paths by
corrupting data variables. In @, the attacker compromises data vari-
ables that are used for security decisions during program execution,
e.g., corrupting an authentication variable to execute a privileged but
existing path. Attack class ® is even more subtle as it only affects
the number of times a program loop is executed. This can have
severe consequences in the context of embedded system software,
e.g., a syringe pump dispenses more liquid than requested (see [2]).

Control-flow attestation can cover these cases by assuring the
verifier of the precise run-time control flow of the program on the
embedded device. In [2], the first control-flow attestation scheme
was proposed and implemented. However, it suffers from practical
limitations, such as high performance overhead and the need for
tedious software instrumentation.

Our work tackles the challenge of detecting attack classes @-
®, while addressing the limitations of recently proposed software-
based control-flow attestation [2] by presenting LO-FAT, an efficient
hardware-only solution.

3 System Model

Figure 2 depicts the attestation protocol of LO-FAT: the verifier
V aims to attest the run-time control-flow (execution path) of the
Program S on a remote embedded system — the prover P. We
assume that both V and P have access to the program S in binary
form and that conventional static (binary) attestation assures P is
executing the correct and unmodified program S.

First, V performs a one-time offline pre-processing step to gener-
ate the CFG of S (including expected loop execution information)
by means of static or dynamic analysis. Next, V initiates the proto-
col by sending P the program input ¢ for the program ID ids, and
the nonce N to ensure freshness of the attestation response. P exe-
cutes S with verifier input ¢ and a set of malicious adversary inputs
1. In fact, the untrusted inputs received may corrupt the control-
flow by means of the attack techniques described in §2. While S
executes, LO-FAT captures the control-flow transitions and gener-
ates a cumulative authenticator A of the control-flow path taking
source and destination address (S7c, Dest) of each branch as input.
Naively storing and transmitting every single executed instruction
to V would incur impractical memory, power and communication
overheads, especially for resource-constrained embedded devices.
Hence, LO-FAT follows the idea outlined in [2] and computes a
cumulative cryptographic hash of the executed path. In addition, it
also produces auxiliary metadata L to track program loop paths and
their number of iterations (including recursive functions) thereby
covering attacks of class @ in Figure 1. Together A and L form
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a unique program path P. Lastly, upon program exit, P generates
the attestation report R = sign(P||N; sk), under the signing key
sk, which is stored by P in hardware-protected secure memory, e.g.,
a register that is accessible only to LO-FAT. Upon receiving R, V
verifies the signature using the verification key pk. Next, V checks
whether the reported path P resembles a valid path in CFG under
input 4. If true, V is assured of P’s execution.

Adversary Model and Assumptions. We assume a strong adver-
sary that has full control over the data memory of P and can uti-
lize standard memory corruption vulnerabilities to modify arbitrary
writable memory locations. However, the adversary cannot modify
program code at run-time (marked as rx) and cannot modify mem-
ory used by LO-FAT itself (due to hardware protection). Note that
similar to all attestation schemes we consider software-only attacks
and hence physical attacks on P’s device are out of scope in this
work. Also note that our scheme can detect attacks that affect the
program’s control-flow, but not pure data-driven attacks (that do not
affect any control-flow) such as data-oriented programming attacks,
which remain an open research problem [13].

4 LO-FAT Design

Figure 3 illustrates our architecture for LO-FAT and how it inter-
faces with the processor pipeline. The proposed scheme exploits
branch tracking functionality inherent in any processor pipeline and
re-usable IP cores such as the hash engine. We extend these with
additional logic to achieve efficient tracing of control-flow infor-
mation. The main LO-FAT components are the branch filter and
the loop monitor. The former extracts branch instructions from the
processor as it executes the attested code segment while the latter
monitors program loops.

[
| pipelined processor

Code ) Legend:
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Figure 3: Architecture of LO-FAT.

Branch Filter. Upon code execution, the branch filter, which is
tightly coupled to the processor, extracts the current program counter
and instruction executed per clock cycle. Then it filters in every
branch, jump and return instruction since these are the rel-
evant instructions for control-flow attestation. The branch filter
outputs a concise representation of every executed branch instruc-
tion with its source and destination address pair (Src, Dest) into
a dedicated branches memory and detects whether the intercepted
branch is within a program loop. If not, the branch filter enables
hashing of (Sre, Dest). Branches inside a program loop require
special treatment in LO-FAT, because (i) loop counter manipulation
may compromise the program’s control-flow in a malicious way
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(§2), and (ii) naively hashing each loop iteration and path leads to a
combinatorial explosion of valid hash values [2]. As such, we de-
sign LO-FAT to compress control-flow information associated with
loops efficiently. As mentioned earlier in §3, we report each loop
path and its number of iterations as auxiliary metadata L. However,
doing so in hardware is challenging, i.e., in contrast to the most
related work C-FLAT, since we do not use code instrumentation to
preserve legacy compliance. Hence, the branch filter must detect
and identify loop entry and exit points and their depth at run-time
without instrumentation aid. We describe in §5.1 how we tackled
this challenge.

Loop Monitor. When a loop is encountered, the branch filter for-
wards the loop entry and exit to the loop monitor. The loop monitor
identifies and tracks program loops (including nested loops). When
a branch inside a program loop is encountered, the branch filter
forwards this information to the loop monitor which in turn encodes
each path inside the loop uniquely. Simultaneously, (Src, Dest) of
each branch remains stored in the branches memory.

Another major challenge concerning loops is the hash computa-
tion and attestation overhead incurred by hashing each loop iteration.
In LO-FAT, we significantly reduce the hash computation cost by
only hashing each loop path once and keeping an iteration counter
for each unique loop path. To achieve this, LO-FAT generates a
unique path encoding for each loop path and associates an on-chip
loop counter with it. The loop monitor indicates newly observed
loop paths to the hash engine controller in order to hash its corre-
sponding (Src, Dest) from the branches memory. On the other
hand, once the same loop path executes, LO-FAT only needs to
increment the counter, i.e., not requiring further hash operations.

Upon loop exit, the loop monitor requests the metadata generator
to assemble the loop auxiliary metadata based on the loops memory
which contains the unique loop path encodings, their number of
iterations, and indirect branch targets. This information is stored on-
chip and is appended to the final hash value A computed at the end
of the attested execution. Finally, a digital signature R is computed
over the hash value A, metadata L and nonce N and sent to ) for
attestation (as per our protocol outlined in §3).

5 Implementation
5.1 Loop Handling

Detecting loops. As shown in Figure 3, the branch filter unit traces
the instruction (and its address) executed per clock cycle and filters
in @ every branch, jump and return instruction. It outputs a
concise representation of every executed branch instruction with its
(Src, Dest)-pair into a dedicated branch buffer (@). To compress
the control-flow trace for loops, the branch filter has to detect loops.
If the intercepted branch is not in a loop, the branch filter sends the
control signal non_loops_ctrl to the existing hash engine controller
to compute a hash over (Src, Dest) in (3). Otherwise, the branch
filter forwards the loop status (entry and exit) to the loop monitor
and its depth (in case of nested loops) via the loops_status_ctrl
signals ((4)).

To enable efficient run-time loop detection, we utilize a property
of RISC architectures that implement a link-register, such as Pow-
erPC, ARM, SPARC, and RISC-V. LO-FAT uses a simple heuristic
to differentiate between backward branches that constitute loops,
and branches for subroutine calls where the call target resides earlier
in memory. Since subroutine calls use instructions that update the
link-register, we consider the target of each non-linking backwards
branch as a loop entry node. The basic block proceeding the branch
instruction is considered a loop exit node. We base our heuristic on
our observations of the RISC-V compiler assembly and the calling



convention described in the instruction manual: any subroutine call
with multiple call sites must be linking and updates the link-register.
Subroutines with a single call site are still compiled as a linking
branch or are optimized by traditional inlining using the RISC-V
compiler.

The addresses of the entry and exit nodes of each loop are stored
in registers by the loop detector and used to detect and track loop
iterations and loop depth at run-time when executing nested loops.
The number of loop iterations is determined by recording the number
of times the loop entry node is entered within the loop. Loop
termination is detected by tracking if execution proceeds to or past
the currently active loop exit node, either as the result of sequential
execution (e.g. in the case of a conditional branch) or a non-linking
branch (e.g. break). Loop execution status is forwarded using the
loops_status_ctrl signals to the loop monitor, as shown in Figure 3.

Loop entry @
(&) basic block 1 _1) while ; foop sty
(™) (cond1) { a oopexit_| g
if (cond2) 1 € |Path_ID
cond. branch: ]
() then: bb_4 (taken 1/ not taken 0) | €
@ else: bb_5 1 %
(%) bb 6} jumpz1) | S

Loop exit \I\L)
Figure 4: CFG for pseudo-code and its Iz]yout of instructions in memory.

Tracking loops. As shown in Figure 3, the loop monitor receives
branch_status_ctrl signals from the branch filter to describe the
type of intercepted branch instruction and its (Src, Dest) (@).
This branch tracking mechanism allows the loop path encoder to
uniquely encode paths as they occur. Simultaneously, (Src, Dest)
of each branch along the executing loop path remain stored in the
branches memory.

Figure 4 shows a sample pseudo-code and its CFG according to
how the instructions would be laid out in code memory to illustrate
how the loop monitor encodes the loop paths. The example code
shows a while-loop with an if-else statement inside. Each basic
block in the pseudo-code is represented by a node in the CFG
and numbered accordingly, with loop entry and exit nodes also
indicated. Within this simple loop, there are only 2 valid paths:
bold path N2 —- N3 — N4 — Ng — N> and dashed path
NQ—)N;;—)N5—)N6—>N2.

For every conditional branch, the processor evaluates the
condition and either jumps to the computed target address (branch
is taken), or continues sequentially to the next instruction address
in memory (branch is not taken). Processors commonly track this
branching behavior in the pipeline and may encode a taken/not-
taken branch with *1°/°0. This branch information is extracted from
the processor by the branch filter and used by the loop monitor to
uniquely identify and encode paths within each loop with a unique
path_ID, as shown in Figure 4. In Figure 4, the dashed path N> —
N3 — N5 — Ng — Na is encoded as ‘011’ and bold path No —
N3 — N4 — Ng — N3 as ‘0011°. Other path encodings are
considered invalid and detected by the V.

Once a loop path is completed, this unique path_ID is used to
index loop counter memory, in which the number of iterations for
each corresponding path is saved (@) in Figure 3. A counter value
of zero indicates the first time a particular path is executed. This is
forwarded by the loop monitor into the hash engine controller using
new_path_ctrl signals (@) to enable hashing of corresponding
(Src, Dest) pairs. Otherwise, the counter is simply incremented.

To ensure constant-time, single-cycle memory access latency, we
implement loop counter memory as on-chip memory indexed by the
unique loop path encodings. However, this consumes a dedicated
sparsely-utilized memory which is often a constrained resource
on low-end embedded devices. In light of this, LO-FAT allows
configuring the granularity of the control-flow tracking according to
the availability of memory resources.

Once a loop exits, this is identified by the loop monitor and
indicated in the loop_end_ctrl signals sent to the metadata generator
(). The metadata generator assembles the loop auxiliary metadata
from the loops memory - this consists of the unique loop path
encodings in order of first occurrence, the number of iterations of
each path, and the indirect branch targets encountered in this loop
(@). This fine-grained auxiliary information on loop execution
is stored on-chip () and is appended to the final hash value
computed at the end of the attested execution (@). Finally, a digital
signature is computed over the hash value, metadata and nonce N,
and sent to V for attestation. Handling indirect branches in loops is
yet another implementation challenge we discuss next.

5.2 Handling Indirect Branches in Loops

Indirect branches can involve any arbitrary number of targets which
can never be exhaustively identified using static analysis. To uniquely
identify loop paths with indirect branches (calls and returns), we
would need to include the 32-bit target addresses into the path en-
codings, which would require infeasibly high memory requirements
for loop path-indexed memory. Instead, we re-encode the addresses
using a smaller number of n bits, allowing a maximum number of
2"-1 possible targets for each loop. Target addresses are encoded at
run-time and stored in a register file, which is implemented as 2 in-
terleaved CAMs to ensure low-latency constant-time access. When
a target address is encountered that exceeds the configured limit, we
report this in the encoding to the V by an all-zero code. LO-FAT is
designed such that the maximum number of branches per loop path
and the maximum number of possible target addresses (of indirect
branches) to track is configurable in a trade-off between granularity
and availability of on-chip memory. Tracking ¢ branches per path in
a loop requires 8 x 2° bits memory. In our implementation, we con-
figure n = 4 to track up to 16 possible indirect branch targets for a
given loop and ¢ = 16 such that LO-FAT can handle a maximum of
16 branches per loop path (every additional indirect branch tracked
reduces the maximum number of possible conditional branches by
n) and depth of up to 3 nested loops, which requires a dedicated 1.5
Mbits memory that is synthesized as block RAM (BRAM) when
prototyping on FPGA. Once a loop exists, its memory is re-used for
other subsequent loop executions.

Loop metadata. The measurement in A is a single hash com-
putation of (Sre, Dest) pairs of executed loop paths. To enable V
to reconstruct the final hash value, metadata L of the loops serves
as helper data and provides V with fine-grained insight into the
execution of the loops. L contains the encodings of executed paths
in each loop, the order of first occurrence of each executed path, and
number of iterations per loop path and indirect branch targets.

5.3 Hash Engine

A single hash measurement A is computed on the full execution path,
along with auxiliary loop metadata L. We employ a SHA-3 512-bit
open-source engine’ operating at a maximum clock frequency of
150 MHz. It consists of a permutation module which operates on a
message block size of 576-bit. User input is absorbed by the core
first into a padding module to assemble the 576-bit block size. Once
this padding is full, the permutation module begins computation on

*http://opencores.org/project, sha3
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input. In LO-FAT, the engine can absorb a 64-bit input (Src, Dest)-
pair every clock cycle into the padding module for 9 clock cycles,
after which the 576-bit buffer becomes full and notifies the per-
mutation module to begin its computation. Once full, the padding
buffer cannot absorb further input for 3 clock cycles after which
it resumes normally. Therefore, a small cache buffer is configured
at the hash engine input to prevent dropping of (Src, Dest)-pairs
if they arrive during these cycles where the padding buffer is full.
Using this hash engine, an unlimited message size can be hashed
while indicating the end of streaming (Src, Dest)-pairs when the
execution of attested software is completed.

6 Evaluation

We present a proof-of-concept implementation of LO-FAT on Pulpino [18],

the first open-source RISC-V-based microcontroller SoC [19]. It
is based on a single 32-bit 4-stage minimal RISC-V core targeting
low-end embedded systems. We augment the RISC-V processor
pipeline to interface with the LO-FAT branch filter to extract control-
flow signals required for execution flow tracing. LO-FAT can be
easily integrated into any low-end embedded processor as it does
not require modifications to the ISA.

6.1 Functionality and Performance

We integrated LO-FAT with Pulpino and performed cycle-accurate
functional simulation of their RTL Verilog source code on Mod-
elSim while Pulpino executed extracted code segments from real
embedded applications, such as Open Syringe Pump’, an open-
source open-hardware syringe pump design. Simulation results
confirmed the functionality of LO-FAT in correctly capturing and
compressing the control flow (branches, loops, and nested loops) of
an uninstrumented application. Since LO-FAT extracts and filters
control-flow events in parallel with the processor, it does not incur
any performance overhead for the attested software, as opposed to
C-FLAT which incurs attestation overhead that is linearly dependent
on the number of control-flow events. LO-FAT internally incurs
latency of 2 clock cycles for branch instructions and loop status
tracking and 5 clock cycles at loop exit for completing path_ID
generation and loop counter memory access and update. However,
LO-FAT simultaneously continues to absorb and process any in-
coming (Sre, Dest)-pairs to prevent the processor from stalling
or dropping trace information. Synthesis results using Xilinx Vi-
vado indicate LO-FAT can operate at maximum clock frequency
of 80 MHz on a Virtex-7 XC7Z020 FPGA device on a Zedboard.
The LO-FAT units are engineered such that they operate on par
with Pulpino’s clock frequency, while also allowing single-cycle
constant-time memory accesses for indirect branches and loops
management. Eliminating the CAM access results in a much higher
clock frequency if desired.

The length of the auxiliary metadata (L) that must be sent to
V depends on the number of loops executed, the number of dif-
ferent paths per loop, and the number of indirect branch targets
encountered in the attested code.

6.2 Area

On a Virtex-7 XC7Z020, LO-FAT consumes 4% of the available
registers and 6% of available LUTs, which amounts to an average
of 20%additional logic overhead to the Pulpino SoC. 49 36Kbit
Block RAM (BRAMSs) are utilized, most of which are dedicated
for the sparse loop path-indexed memories to ensure constant-time
single-cycle access. Therefore, its width depends on the configured
maximum number of indirect branches allowed in each loop path
and number of bits required to encode them, as discussed in §5.2. In

Shttps://hackaday.io/project/1838-open-syringe-pump
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our implementation, the loop monitor is configured to tackle up to 4
indirect branches and requires 10 bits to encode them in Path_I D,
resulting in 16 BRAMs per loop. Since we allow up to 3 levels of
nested loops, we require 48 BRAMs. Configuring these parameters
to lower numbers or leveraging CAMs instead reduces the memory
requirements significantly at the expense of coarser granularity or
additional logic overhead respectively.

6.3 Security

The primary security requirement of LO-FAT is to provide an ac-
curate, complete, authentic, and fresh attestation of P’s control
flow. This requires an integrity-protected mechanism for recording
control-flow information and unforgeably communicating this to V.

Control-Flow Recording. One of the main contributions of LO-
FAT is using low-overhead hardware extensions to record control-
flow information preventing it from being modified or subverted by
malicious software. The on-chip memory employed by LO-FAT
for storing the (Src, Dest) addresses prior to their hashing is also
assumed to be protected from adversarial access. The hardware ex-
tensions are guaranteed to receive every control-flow event from the
processor, thus ensuring that the complete control flow is recorded.
All (Src, Dest) addresses are cryptographically hashed resulting
in the authenticator A. The auxiliary metadata L records (1) the
unique paths within each loop; (2) the number of repetitions of each
path; and (3) all indirect branches encountered within loops.

Attestation Protocol. LO-FAT makes use of the widely-used
secure challenge-response attestation protocol. As explained in §3,
‘P sends the recorded program path P along with a digital signature
over P and a nonce supplied by V. If P’s signing key has not been
compromised, this signature guarantees the authenticity of the attes-
tation, and the inclusion of the challenge nonce ensures freshness.
Our assumed software adversary cannot compromise the signing
key because it is stored in hardware-protected secure memory. Any
tampering with the attestation messages can be detected by V.

Given that the control flow recording and the signing key is pro-
tected from software attacks, the resulting attestation report provided
by LO-FAT is accurate, complete, authentic, and fresh. Since P’s
code is immutable and is statically attested at boot time, ) has com-
plete information about P’s execution. As described in §3, V also
has access to the CFG of the attested software, which it can use to
identify permissible control flows and detect control-flow attacks or
non-control data attacks.

7 Related Work

Remote Attestation. Most prior work focuses on static remote
attestation [7, 11, 21], which is orthogonal to run-time attestation —
the focus of this paper. Software-based attestation [22] can, under
strict assumptions, enable static attestation of legacy devices without
hardware-based trust anchors. Property-based attestation [20] can
attest behavioral characteristics of a program, with the assistance of
a trusted third-party. However, none of these can attest control-flow
at machine code instruction level.

Prior work on run-time attestation focuses on specific aspects of
a program’s execution. ReDAS [15] attests program data invariants,
such as the integrity of a function’s base pointer, at each system
call. Trusted virtual containers [4] attest the run-time launch or-
der of application modules — a form of coarse-grained control-flow
attestation that does not include internal control flows within mod-
ules. DynIMA [10] uses dynamic taint analysis and tracing to attest
run-time properties that may be symptomatic of run-time attacks.
However, it does not cover non-control data attacks and incurs high
performance overhead due to dynamic taint analysis.



C-FLAT [2] is a fine-grained control-flow attestation scheme.
LO-FAT also leverages the idea of attesting the control flow of an
application by computing a cumulative hash of executed branches
but with several fundamental differences. C-FLAT requires instru-
mentation of all control-flow instructions thereby violating legacy
compliance. In contrast, LO-FAT does not require any binary rewrit-
ing. C-FLAT requires complete coverage in the offline binary analy-
sis, as un-instrumented control-flow instructions could be exploited
to mount undetectable attacks. This is not possible in LO-FAT as
every executed branch is monitored by design. Finally, C-FLAT
incurs significant performance overhead, whereas LO-FAT incurs
no performance overhead due to its efficient hardware support for
control-flow attestation.

Tracing and Debug Mechanisms. Intel processors provide the
Last Branch Record (LBR) and Branch Trace Store (BTS) mecha-
nisms, which can be used to trace control-flow events [24]. However,
the overhead incurred by these debugging mechanisms makes them
unsuitable for control-flow attestation. Recently, Intel processors
introduced Intel Processor Trace (IPT) [14], a low-overhead exe-
cution tracing feature that collects more tracing information than
BTS (including execution mode and timing information). However,
IPT cannot be directly used for control-flow attestation as it only re-
ports control-flow events that cannot be inferred from static analysis.
ARM’s CoreSight® debug and trace architecture provides a mech-
anism to access trace information from different hardware trace
components. However, high-throughput tracing on ARM typically
requires the use of proprietary hardware.

Hardware-Assisted Security. Recent work [5, 26] developed a
generic architecture for enforcing a diverse range of SoC security
policies. Each IP block has an individually-customized security
wrapper that sends security-relevant events and information to a
central security controller to enforce individual security policies for
each IP. However, this incurs high memory and logic complexity
overhead as the number of IPs increases. It has further been pro-
posed [3, 6] that this could be made more practical by re-purposing
design-for-debug features found on many SoCs — a promising ap-
proach which could complement LO-FAT in future.

Sofia [9] is a recent hardware-assisted architecture for enforc-
ing control-flow integrity (CFI). It encrypts instructions with CFI-
dependent data, such that they can only be decrypted at run-time
as part of a valid control-flow path, and it ensures instruction in-
tegrity by checking MACs on groups of instructions at run-time.
However, unlike LO-FAT, this requires software instrumentation
and places decryption in the critical execution path, thus incurring
total execution time overheads of up to 110%.

8 Conclusion

Due to the increasing prevalence of interconnected embedded sys-
tems, software running on these devices have become a prime target
for remote attacks. We presented in this paper the first hardware-
based control-flow attestation scheme that allows precise detection
of remote memory corruption attacks in embedded system soft-
ware. Our architecture, LO-FAT, monitors, measures and reports the
program’s behavior by interfacing with the processor to intercept
control-flow events. LO-FAT does not require any code instru-
mentation (compliant to legacy software), compiler toolchain or
instruction set extension. Our proof-of-concept implementation on
the open-source RISC-V core is highly efficient with no perfor-
mance impact on the attested software at the expense of minimal
logic overhead and on-chip memory.
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Abstract—Remote attestation is an important security service
that allows a trusted party (verifier) to verify the integrity of a
software running on a remote and potentially compromised de-
vice (prover). The security of existing remote attestation schemes
relies on the assumption that attacks are software-only and that
the prover’s code cannot be modified at runtime. However, in
practice, these schemes can be bypassed in a stronger and more
realistic adversary model that is hereby capable of controlling
and modifying code memory to attest benign code but execute
malicious code instead — leaving the underlying system vulnerable
to Time of Check Time of Use (TOCTOU) attacks.

In this work, we first demonstrate TOCTOU attacks on
recently proposed attestation schemes by exploiting physical
access to prover’s memory. Then we present the design and
proof-of-concept implementation of ATRIUM, a runtime remote
attestation system that securely attests both the code’s binary and
its execution behavior under memory attacks. ATRIUM provides
resilience against both software- and hardware-based TOCTOU
attacks, while incurring minimal area and performance overhead.

Index Terms—Attestation, runtime, memory attacks

I. INTRODUCTION

Recent high-profile attacks on embedded systems, such as
Mirai and Stuxnet, have become crucially alarming and of
increased significance as systems are becoming more intercon-
nected and collaborative. Remote attestation plays an important
role as a security service for detecting malware on a remote
device. It is implemented as a challenge-response protocol that
allows a trusted verifier to obtain an authentic report about
the (software) state of a potentially untrusted remote device
called prover. Conventional attestation schemes are static in
nature, i.e., the prover sends an authenticated report to the
verifier by issuing a digital signature or cryptographic MAC
(Message Authentication Code) over the verifier’s challenge
and the measurement (typically hash) of the binary code to
be attested [22]. However, static attestation only ensures the
integrity of binaries but not of their execution. In particular, it
cannot detect the prevalent state-of-the-art runtime attacks that
do not modify the program binary but subvert the intended
control flow of the targeted application program during its
execution. Current runtime attacks take advantage of code-
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reuse techniques, such as return-oriented programming that
dynamically generate malicious code by chaining together code
snippets (called gadgets) of benign code without requiring
to inject any malicious code/instructions [24]. Consequently,
the hash value computed over the binaries remain unchanged
and the attestation protocol succeeds, although the prover has
been compromised. These sophisticated exploitation techniques
have been shown effective on many processor architectures,
such as Intel x86 [23], SPARC [4], ARM [16], and Atmel
AVR [10]. In fact, large-scale investigations of embedded
systems security have shown various vulnerabilities, including
memory corruption (such as buffer overflow) that can be
exploited for runtime attacks.

Hence, effective attestation should enable reporting the
prover’s dynamic behavior — more concretely, its current
execution details — to the verifier. To attest the dynamic
program behavior researchers have proposed enhancements
and/or extensions to static binary attestation (e.g., [11], [3]).
The most recent, C-FLAT [3], reports the prover’s dynamic
state (execution paths) and provides fine-grained control-flow
measurements to the verifier. Note that, unlike control-flow
integrity (CFI) enforcement, control-flow attestation provides
detailed information about the executed path that might be of
crucial interest to a remote verifier. This information helps
in detecting data-oriented non-control attacks [5] that can
bypass CFI by corrupting data variables to execute a valid
but unintended control-flow path, for instance, redirecting the
control flow to a high-privileged recovery routine (see also [13]).
However, C-FLAT requires program code instrumentation and
incurs high performance overhead, particularly on the prover.

On the other hand, all existing attestation schemes (including
C-FLAT) rule out physical attacks in their adversary model.
This assumption is not always realistic, since the adversary may
at some point have physical access to the prover. In this case,
it is possible to execute (extraordinarily effective and cheap)
non-invasive attacks on the program code memory through
physical access. In particular, the adversary physically controls
and modifies the memory such that benign code is attested but
malicious code is executed instead.
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Goals and Contributions. In this paper, we first demon-
strate that — using external interfacing with prover’s program
code memory bank — an adversary can bypass all existing at-
testation schemes and deliver sound attestation reports, without
even having to extract the prover’s secret keys (cf. § III).
To overcome the limitations of current attestation schemes,
we introduce a holistic approach to attestation ATRIUM, a
resilient runtime attestation scheme that is capable of detecting
both physical memory attacks and software attacks including
runtime attacks by attesting the executed instructions and their
control flow at runtime. Our main contributions are listed as
follows.

« We demonstrate memory bank attacks on state-of-the-
art attestation schemes for embedded devices such as
SMART [9] and C-FLAT [3]. We exploit physical access
to code memory to bypass attestation and deliver sound
attestation reports without having to extract the prover’s
secret keys.

e We present ATRIUM- an attestation scheme which:
(1) detects memory bank attacks by attesting instructions
as they are fetched from (off-chip) memory for execution;
(2) prevents software attacks on the attestation process it-
self by separating the attestation engine from the processor
(i.e., no instructions are sent to the processor to perform
attestation). Instead, attestation is performed by a separate
hardware engine in parallel. (3) detects runtime attacks
by tracking and reporting both executed instructions and
control-flow events during execution.

o We present a proof-of-concept implementation and perfor-
mance analysis which demonstrate the effectiveness and
feasibility of ATRIUM, and its applicability to low-end
embedded devices.

II. BACKGROUND

Control-Flow Graph (CFG). The execution flow of a
program can be abstracted into a control-flow graph (CFG) by
leveraging the aid of static and dynamic code analysis. The
nodes in CFG represents basic blocks of a program, while
edges represent control-flow transitions from one block to
another by means of a branch instruction. A valid path in CFG
is composed of several nodes connected by edges.

Runtime Attacks. An outline of the different classes of
runtime attacks is illustrated in Figure 1. The system dedicates
separate memories for data and code. The former is marked
as readable and writable (rw), while the latter is marked as
readable and executable (7x). This ensures that code cannot
be executed from data memory, and code memory cannot be
overwritten by means of software. Along this CFG, we can
outline three major classes of runtime attacks: @ non-control-
data attacks that indirectly affect the control flow of a program,
@ corruption of loop variables, and ® code-pointer overwrite
attacks. By corrupting control-flow information stored in the
stack or heap and overwriting code-pointers (return addresses
and function pointers) as in ® an attacker can redirect the
control flow of a program such that execution has a malicious
and unauthorized effect. In attacks based on code-injection,

Program Memory
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Data Variables
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Figure 1: Different attack classes

the attacker places a malicious executable payload in program
memory and redirects control flow to execute it. Alternatively,
state-of-the-art runtime attacks leverage code-reuse techniques,
such as Return-oriented Programming (ROP) [23]. These
attacks exploit a memory corruption vulnerabilities (e.g., buffer
overflows) in the program and stitch together a malicious
sequence of machine code instructions from benign gadgets
of code already residing in the memory of the vulnerable
program. Non-control-data attacks [5] do not compromise the
control flow of a program, but cause unexpected malicious
control flow by corrupting critical data variables such as an
authentication variable. This results in executing a privileged
(unintended) but permissible control-flow path that exists in
the CFG. Attack @ affects the number of times a program loop
executes by corrupting a loop variable such as a counter. This
can have severe consequences depending on the context, e.g.,
a syringe pump dispenses more liquid than requested (see [3]).
Code injection attacks can be prevented by either marking
memory as writable or executable. This mechanism is known
as Data Execution Prevention (DEP) [12]. Countermeasures
against code reuse attacks include: Control-Flow Integrity
(CFI) [2], fine-grained code randomization [19], and Code-
Pointer Integrity (CPI) [18].

Besides software-based runtime attacks, a stronger adversary
as shown in Figure 1, can modify program code in memory
through physical access without mounting sophisticated inva-
sive physical attacks, but by simply replacing the benign code
memory with malicious code memory at runtime. We elaborate
on these memory bank attacks next in § III and propose an
attestation scheme that can mitigate them in § V.

III. TOCTOU ATTACKS ON ATTESTATION SCHEMES

Next we describe memory bank attacks that we aim to
mitigate in this work, and we show how they bypass recently
proposed attestation schemes: SMART [9] C-FLAT [3] and
LO-FAT [7]. These attacks assume a stronger adversary that
can physically manipulate the code memory without the need
for sophisticated invasive physical attacks and can consequently
bypass attestation schemes that strictly consider software-only
adversary. The attack is illustrated in Figure 2: At Prv’s side
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the attestation scheme (i.e., the attestation code and secret
key) is stored on-chip while the benign code resides in an
external memory. The adversary can interleave instruction
fetches to malicious code in-between those fetches needed
to attest the benign code of the original program. This can
be done by replacing the original memory interface with an
interface to a memory controller. This allows the adversary to
direct instruction fetches to either benign code when attestation
is running, or malicious code otherwise. The same interleaving
attack can be achieved by inserting malicious instructions in-
between hooks to the attestation. As long as the malicious
instructions do not interfere with attesting benign code, e.g.,
intended control flow, the attestation can be bypassed. In the
following, we describe how we implement the attacks to bypass
SMART and C-FLAT.
\

Prover Request to attest

d

Remote

Execute

| Malicious ' -~ - Processor Verifier
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lllllll <7 Attestation report,
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Figure 2: Memory bank attack on attestation schemes
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A. SMART

SMART [9] is a static attestation scheme that establishes
a root of trust in low-end embedded systems with minimal
hardware components. It targets microprocessors that are able to
execute code from an external memory, whereas the attestation
code and key reside in an internal ROM and are protected by
access control policies of a memory protection unit (MPU).
When an attestation request is received, the atomic attestation
code in ROM computes a HMAC of a region of code memory,
provided in the attestation request. Then the attested code
executes atomically.

Detecting Attestation Execution. By eavesdropping in the
communication channel between the verifier and the prover for
an attestation request, we determine when the attestation engine
is about to run in order to launch a TOCTOU attack. Although
this is permissible by the adversary model in SMART, we
choose not to tackle the detection problem this way. Instead,
we examine a side-channel that is inherent to the SMART
design, by placing a monitor on the address bus between the
processor and memory to capture which addresses are being
accessed. Using the access patterns, we are able to discern
whether a CPU is executing from external memory or from the
internal ROM. Since SMART is prototyped on the open-source
MSP430', it utilizes a von Neumann architecture, where data
and instructions are accessed over the same address space but
are structured such that they reside in different sections of
memory. Hence, we can extract and filter out data accesses,

"http://opencores.org/project,openmsp430

leaving behind accesses to code memory. In doing so, we
observe the time-frame that it takes the internal ROM to set
up the attestation environment, followed by the linear scan of
code addresses, then the subsequent execution of external code.
On processors with modified Harvard architecture, a temporary
halt in accesses to code memory would be recognized, as the
ROM code starts executing. We then observe a linear scan
over an address range, as code is being read and hashed by
the attestation code. A break is then noticed as the ROM
code cleans up memory, followed by the continued access to
program memory for execution. Utilizing this, we perform one
of the following attacks to mount a TOCTOU attack.

Blind Execution of Malicious Software. Since code mem-
ory remains external to the SoC, we splice the address bus,
add a new memory chip containing malicious code and utilize
the monitor to detect when the attestation code runs. When
attesting, we bank to the memory with the intended code. When
executing, we bank to the malicious code memory, allowing
SMART to report valid attestation results while malicious code
is actually executed by CPU during periods of no attestation.

Leakage of Secrets via Data Memory Banking. As the
attestation code runs, temporary values are saved in memory,
assuming SMART implementation utilizes off-chip memory
to store temporary values. We use the monitor to detect when
the attestation code runs. As data memory is accessed to store
temporary values, we bank memories to allow for the leakage
of values. We perform this by physically tampering with the
address lines between the processor and the memory. As the
monitor detects when SMART is about to perform its cleanup
routines, we bank to a different portion of memory, leaving the
ROM code to erase the wrong portion of memory. By reading
the SMART secrets from memory, we are able to reconstruct
the attestation secret and fake a valid response.

B. C-FLAT

C-FLAT [3] is a runtime attestation scheme that aims to
measure and report the control-flow behavior of an executing
code. It instruments all branch instructions such that they are
intercepted by a runtime tracer (RTT). The RTT recovers the
source and destination addresses of the branch as well as its
type, which are then passed to the measurement engine (ME).
The ME is responsible for computing a hash over the reported
branches and these hash measurements are secured by running
in a TrustZone secure world. In this way, a runtime control-flow
attestation report is generated and verified against previously
computed control-flow traces stored in a trusted verifier party.

C-FLAT is susceptible to two TOCTOU attacks assuming
that the attacker has physical access to the code memory : 1)
replacing instructions within a basic block with malicious ones;
and 2) refactoring the control-flow graph (CFG) of an arbitrary
program to match a benign CFG protected by C-FLAT. Both
attacks exploit the fact that C-FLAT attests only control flow
when exiting a basic block but not the executed instructions
themselves. Hence, intermediate instructions within the basic
block can be arbitrarily replaced by malicious executable code
by a stronger adversary with physical access to the code
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memory, as long as the control flow of the code remains
unchanged and the expected attestation report is not violated.
These attacks are also applicable to the hardware-assisted
control-flow attestation scheme LO-FAT [7] since it also only
attests control flow.

We chose to implement a TOCTOU attack against one of the
case studies presented in [3], namely the syringe pump program
responsible for dispensing intravenous (IV) fluids. Our attack
goal is to dispense liquid in incorrect volumes at unexpected
times, thereby, disrupting the correct flow of IV fluids. We
only demonstrate the second attack variant, however, the first
variant of the attack is also easily feasible by replacing the
original instructions within the basic block with malicious ones.
This allows the original RTT hooks into the ME to compute
a valid attestation report as it is based upon the source and
destination addresses of a branch and its type.

In place of the original program that manages liquid
dispensing and withdrawal, we implement a malicious program
that chooses a random value to dispense by modifying the
set—quantity function and additionally creates compound
dispense and withdraw triggers for the move-syringe
function. We embed this code in the original program, which
creates new edges in the CFG of the syringe pump program.
Our new edges would violate C-FLAT’s attestation report for
the benign syringe pump program.

To avoid triggering C-FLAT, we refactor the CFG of our
attacker syringe pump program using the REpsych tool” to
construct the desired CFG. The REpsych tool is an IDA plugin
that translates a source image into a functioning program whose
CFG is the image. We used the original syringe pump’s CFG as
a source image, and our modified syringe pump program as the
target. This allowed us to generate a program with alternative
functionality, but equivalent CFG to the original syringe pump
program. We then recompute the attestation report using
C-FLAT’s tools®. The attacker program’s attestation report
matched the original syringe pump program’s attestation report
after CFG refactoring. Thus, we were able to accurately execute
the attacker program without violating C-FLAT’s protection.

IV. ATRIUM

We present ATRIUM a runtime attestation scheme targeting
bare-metal embedded systems software. ATRIUM comprises
a remote embedded system, called in this context the prover
Pru, and a trusted verifier Vr f. The Pro is deployed in-field
such that the adversary has physical access to its memory.
Typically, both Vrf and Prv have access to the binary code
of the program P to be attested on Prv. Note that, in practice,
it may not be feasible to apply runtime attestation to the entire
program code due to obvious efficiency reasons, but it can be
applied to pre-defined security-critical code regions.

A. Adversary Model and Assumptions

In addition to the standard capabilities of the adversary in
typical remote attestation schemes, which assume software-

Zhttps://github.com/xoreaxeaxeax/REpsych
3https://github.com/control-flow-attestation/c-flat

only attacks, our adversary can also perform runtime attacks
(§ II). Furthermore, we assume a stronger adversary that has
physical access to the Prv’s memory and can manipulate the
program code at runtime and, therefore, is able to mount a
TOCTOU attack (§ III). However, the adversary cannot modify
memory reserved and used by ATRIUM itself — this memory is
hardware-protected and not mapped to the software-accessible
address space. Data-oriented programming attacks [13] that
do not affect the control flow as well as invasive physical
attacks on the SoC that aim at extracting secret keys are out
of scope. This assumption is reasonable, since an adversary is
more likely to mount a simple physical attack on the memory
as we demonstrated in § III, rather than expensive sophisticated
invasive attacks on the chip that can destruct it eventually.

B. Runtime Attestation: High-Level Scheme

Inspired by C-FLAT [3] (described in § III-B) and the
hardware-assisted scheme LO-FAT [7], ATRIUM performs
attestation of an executing program code at runtime. However,
unlike both schemes, it measures both the executed instructions
(to detect the more advanced TOCTOU attacks described
in § III) and control flow (to detect runtime attacks).

Similar to C-FLAT, our attestation mechanism relies on Vr f
performing one-time offline pre-processing to generate the CFG
of program P (including expected loop execution information)
by means of static and dynamic analysis. Vrf computes
cryptographic hash measurements over the instructions and
addresses of basic blocks along legal CFG paths and stores
them in a reference database. Vrf initiates the attestation by
sending Prv benign input iny, the code region to be attested
in P, and a nonce to ensure freshness of the attestation report.
‘Prv executes P on the benign inputs in, and potentially
malicious inputs in,, that are not controlled by Vr f and may
lead to the corruption of the program’s control flow by means
of runtime attacks (§ II). ATRIUM is triggered during the
execution of the code region of interest and computes a set of
hash measurements over the executed paths. When execution
of the code region is complete, Prv generates and sends to
Vrf the final attestation report consisting of the concatenated
set of hash values Hy||...||H,, and the number of iterations of
the hash values which correspond to executed loop paths, and
a signature over Hyl|...||H,, and the nonce based on Pruv’s
secret key sk. To ensure authenticity of the report, sk is stored
in memory accessible only by ATRIUM. Upon receiving the
report, Vr f verifies its signature using Prv’s public key pk
and checks whether the Hy||...||H,, values match the reference
hash values under input in;,. If they match, Vrf concludes
that Prv’s execution of the attested code region was correct
in terms of executed instructions and their control flow. For
better understanding, we demonstrate next by an example how
the hash values are computed during attestation.

Example. A CFG of an example pseudo-code is shown
in Figure 3. Each numbered node in the CFG represents the
corresponding numbered basic block of sequential instructions
in the pseudo-code and the address of the first instruction of
that basic block. For example, N5 corresponds to the first 3
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Control-flow Graph (CFG) of pseudo-code

@{ segment 0

if (variable==true) (s0)
@7 then: call func_x()
®7 else: call func_y()
@ - segment 1

terminate ST

segment 0
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}
@7}}‘unc_ v{ -

segment 2
{s2)

®——» Path 0in CFG (PO)
®:--Ppath 1in CFG (P1)

D D I:] D CFG path segments
Figure 3: Example pseudo-code and its segmented CFG

Legend

instructions outlined in the pseudo-code, constituting a single
basic block, and the address of the first instruction. The CFG
shown in Figure 3 has 2 main paths: PO, in bold, consisting
of nodes N1-Ny-N5-Ng-Ny and P1, in dashed, consisting of
nodes Ny-N3-N7-Ny. In order to avoid combinatorial explosion
of legal hash values that would occur due to multiple loop
iterations, the program CFG is split into segments such that
hash values for loop paths are computed separately, rather than
computing a single hash value over the complete executed path
of the attested region. In Figure 3, due to the loop in N5-Ng,
PO is sectioned into 3 segments: SO, S1 and S2. SO comprises
all nodes till loop entry at N5, where S1 is initialized. S1
ends at the loop exit node Ng, and S2 is initialized at N4 and
beyond until again another loop is encountered and so on.

When path PO is executed and attested, ATRIUM accumu-
lates nodes (address of the first instruction and the individual
instructions in each node) along each segment and computes a
hash value for each segment: a hash value Hy = H(N;||N2)
over the nodes in SO of PO, followed by Hy = H(N5||Ng)
over the nodes in S1, and Hy = H(N,) over the nodes in 52,
resulting in the set of hash values Hy||H;||Hs representing
the executed path P0. P1, on the other hand, has no loops.
Therefore, when executed the whole path is measured by
a single hash value Hs = H(Np||N3||N7||Ny). This CFG
segmentation in hash computation allows our scheme to tackle
loops and nested loops efficiently, while also allowing fine-
grained attestation of their execution. It requires that ATRIUM
can detect and interpret loops accurately at runtime. Unlike
C-FLAT, we aim to realize this without instrumentation, hence
avoiding the associated performance overheads. We present next
the architecture of ATRIUM and how it interfaces directly with
the processor hardware to capture at runtime every executed
instruction and accurately interpret control flow and infer loop
entry and exit points without instrumentation.

V. ATRIUM: DESIGN AND IMPLEMENTATION

ATRIUM is a hardware-based scheme for runtime attestation
that tightly integrates with a processor, as shown in Figure 4.
This allows it to extract the executed instructions and their
memory addresses from the execute stage of the pipeline
at runtime while the program P (that needs to be attested)
executes on input values in; and in,,. ATRIUM outputs a set
of hash values Hyl|...||H, computed over the executed path

PC,
executed instruction

branch (SRC, TGT),
executed instruction

loop_ID, F_ID
executed instruction

Hll... IIH,

Processor Pipeline

increment
hash counter.~"

ARTRIUM HW- [
Components [ —

Of-the-shelf
Components

Figure 4: Architecture of ATRIUM

Legend

which get included in the attestation report. We present next
the components of ATRIUM and their implementation details.

A. Instruction Filter

Upon code execution, the instruction filter extracts the current
program counter (PC) and the executed instruction per clock
cycle and checks whether the current instruction is a branch or
jump, since such instructions reflect control-flow transitions.

Implementation. We implemented the instruction filter such
that it tightly extends the execute stage of the processor from
which it extracts the PC and instruction per clock cycle. If the
current instruction is a control-flow instruction, its PC and the
address it jumps to are stored as source—target pair, (Src, Tgt)-
pair. To determine whether the branch was taken and whether
control jumped forwards or backwards in memory, the PC of
the next executed instruction is compared to the stored target
address. Instruction filter outputs the following signals: (1)
branch instructions, their type, and (Src,Tgt)-pairs and (2)
basic block addresses and executed instructions.

B. Loop Encoder

As explained in § IV-B, ATRIUM handles loops and their
hash computations differently. Hence, at runtime the loop
encoder detects loops and identifies their entry and exit points
and their depth, in case of nested loops. It checks whether
the behavior of a captured branch can be inferred as returning
to a loop’s entry point, hence indicating a new loop iteration.
The loop encoder instructs the hash controller to finalize the
ongoing hash computation and initialize a new one with the
entry address of a loop iteration. Furthermore, the loop encoder
also detects if a branch represents a system call since system
functions have to be handled specially in ATRIUM.

Implementation. To detect loops at runtime without rely-
ing on code instrumentation, we utilize a feature of RISC
architectures that implement a link-register, such as PowerPC,
ARM, SPARC, and RISC-V. We adopt a heuristic used in [7]
to distinguish between backward branches that indicate loop
entry, and branches for subroutine calls where the call target
resides earlier in memory. Subroutine calls use instructions
that update the link-register with the return address, hence, we
consider any non-linking backwards branch as a loop entry
node. Consequently, the basic block after the branch instruction
is considered a loop exit node. This is based on observations
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of the RISC-V compiler assembly and its calling convention:
any subroutine call with multiple call sites must be linking
and updates the link-register. Subroutines with a single call
site can be compiled as a linking branch or inlined using the
RISC-V compiler. A system call is identified by comparing its
target against a predefined list of addresses of such functions
and issuing a unique identifier for that function F_ID. The
loop encoder stores the addresses of entry and exit nodes of
each loop in a content-addressable memory (CAM) to ensure
single-cycle constant-access search time. At runtime, every
(Sre,Tgt) is used to index the CAM to detect if a loop is
re-entered or exits and to extract its loop_ID and depth (in
case of nested loops). An iterations counter for each loop is
maintained and updated at runtime. We detect loop exit when
execution proceeds past the currently active loop exit node,
either due to sequential execution or a non-linking jump, such
as a break. The F_ID, loop_ID and loop_status signals are
forwarded then to the hash controller.

C. Hash Engine and Hash Controller

The hash engine computes a hash value of each executed
path within a segment (§ IV-B). The hash controller regulates
the operation of the hash engine, i.e., finalizes or initiates a
hash computation based on the control signals received from
the loop encoder. In case the computed hash corresponds to
a loop path, the hash controller sends this hash to the hash
lookup and sets the search boundaries of the hash lookup to
that particular current loop (necessary in case of nested loops).
Otherwise, the hash value is simply stored in hash memory.

Implementation. We selected Blake2 # for hash computa-
tions and used the open-source hardware implementation of
Blake2b, which takes as an input a message block of size 1Kbit
and has a configurable digest size. We configured its digest size
to 88 bits to reduce memory requirements for hash lookup and
hash memory. The hash controller buffers incoming instructions
from the loop encoder, aligns them in 1Kbit message blocks
and feeds them to the hash engine. The hash engine requires
28 cycles to process a block, thus the hash controller issues a
stall signal to the processor in case its buffer is full and the
hash engine cannot digest a new message block. Therefore,
system calls are handled differently because we observe that
they often involve short loops that are executed arbitrarily
many times, e.g., string utility functions. Hashing such a short
loop path every time it executes, especially for a large number
of iterations, would require the hash controller to stall the
processor frequently and delibitate performance. Hence, the
executed instructions along a loop path are concatenated and
stored in plaintext in a dedicated CAM and sent to the hash
engine only once when it is first encountered. When the same
path is executed again, it is compared with the previously
recorded paths in the CAM, and a corresponding counter is
incremented when a match is found, without sending it to
the hash engine again. The counters are concatenated with
the corresponding hash values in the final attestation report.

“https://blake2.net/

Upon finalizing a hash computation, the hash controller checks,
whether the resulting hash is computed over a path within a
loop or not. If it is computed over a path loop, it forwards the
resulting hash value from the hash engine synchronized with
its corresponding loop_ID to the hash lookup.

D. Hash Lookup

The hash lookup is dedicated to storing and tracking hash
values during loop iterations efficiently. Once a hash value is
ready, the hash controller forwards it to the hash lookup, which
searches within the current loop’s list of hash values for a
match. If not found, then the hash value is appended to the list.
The hash lookup also maintains a counter per loop path which
is incremented when its corresponding hash is encountered.

Implementation. To avoid multiple memory accesses due to
sequential search of a particular hash value, we implement the
hash lookup as a set of CAMs, whose number can be configured
based on the system’s requirements. A CAM is dedicated for
every active loop, so the number of CAMs is determined by the
maximum number of nested loops that ATRIUM is configured
to track concurrently. Each CAM has a configurable capacity
of (n,m) bits, where n is the maximum number of entries and
m is number of bits per entry and a counter to maintain the
occupied number of entries. When a loop is detected, the hash
controller sends the hash lookup to reserve a CAM for it and
reset its counter to zero. The CAM holds the computed hash
values of a currently executing loop temporarily till the loop
exits. Each time a path in the pertinent loop is executed, its
computed hash value is looked up in the associated CAM. If a
match is not found, i.e., this path has not been executed before,
then its hash value is appended to the CAM. When a new
loop is detected and all CAMs are occupied, a CAM that was
reserved for a loop that already exit (and will not be executed
again) is freed and re-used. If a path does not belong to a loop,
then its hash value is used to update the hash memory directly.

E. Hash Memory

All computed hash values are stored in a dedicated memory.
After the execution of the code region to be attested completes,
these hash values are assembled and a digital signature is
computed over them. The hash values Hy|...||H,, and their
signature are then transmitted to Vrf.

Implementation. An on-chip hash memory is dedicated to
store all computed hash values during a single attestation run
of the pertinent code region. The sequence of the storage of the
hash values in memory indicates the order of the first occurrence
of their corresponding code segments during execution. It is
necessary to maintain this order and report Ho||...||H,, in the
same sequence to Vr f for correctly verifying execution. In our
FPGA prototyping of ATRIUM (cf. § VI), we configure the
hash memory as on-chip block RAM (BRAM) of configurable
capacity with each entry occupying 88 bits for hash digest and
8 bits for its counter. The capacity is configured according
to our attestation requirements, i.e., the maximum number
of CFG segments an attested code region would consist of.
Alternatively, for constrained embedded systems, we can reduce

389

77

Authorized licensed use limited to: ULB Darmstadt. Downloaded on July 07,2021 at 19:44:28 UTC from IEEE Xplore. Restrictions apply.



the memory requirements by streaming the hash values (or
every batch of them) as soon as they get generated to the Vr f.

VI. EVALUATION & SECURITY CONSIDERATIONS
A. Performance & Area Evaluation

We implemented ATRIUM in Verilog, interfaced it with the
open-source RISC-V Pulpino core >, and simulated and synthe-
sized it. Performance and functionality were evaluated using
a suite of microprocessor benchmarks including Dhrystone,
mt-matmul, rsort, spvm and towers.

Functionality. We extended the Pulpino RTL with ATRIUM
and performed cycle-accurate simulation on ModelSim while
executing the aforementioned benchmarks. We confirm correct
functionality of ATRIUM by comparing simulation results
with reference execution profiles of the benchmarks, which we
extracted by running the benchmarks on standalone Pulpino
without ATRIUM and analyzing the execution trace.

Area and Memory. Area utilization depends on the config-
urations of the hash lookup and hash memory of ATRIUM. For
our evaluation, we configured the hash lookup with 8 CAMs,
each CAM with n = 8 entries and each entry being m = 88
bits. This allows ATRIUM to track up to 8 active nested loops
at once with a maximum of 8 different 88 — bit path hashes
per loop. On synthesizing ATRIUM using Xilinx Vivado on
a Zedboard (Virtex-7 XC7Z020 FPGA), we show the overall
area utilization to be 15% of slice registers and 20% of slice
LUTs of this FPGA, while only one 18Kbit BRAM is required
for the hash memory.

Performance. Implementation results indicate that ATRIUM
can operate at a maximum clock frequency of 70 MHz on
a Zedboard (Virtex-7 xc7z020 FPGA) and is, hence, on par
with the Pulpino’s maximum clock frequency of 50 MHz on
the same board. Performance experiments show an overhead
of 1.97% for Dhrystone, 12.23% for mt-matmul, 22.69% for
rsort, 6.06% for spvm and 1.7% for towers. Since ATRIUM
components run on par with Pulpino, performance loss is caused
by the hash function, as the processor stalls occur only when the
currently executed path has ended and needs to be hashed while
the hash engine is still processing the previously executed path
and is not ready for input. This overhead is incurred for loops
with paths whose number of executed instructions are less than
the required number of cycles for the hash engine to finalize
its computation (28 cycles for the chosen hash function). To
mitigate this overhead, the hash engine should be clocked at a
higher frequency than the processor if possible.

B. Security Considerations.

We assume that the used cryptographic primitives are secure.
Upon receiving an attestation request, Prv generates and sends
the list of computed hash values Hy||...|| H,, along with a digital
signature computed over it and a nonce provided by Vrf and
signed by Pruv’s secret key sk. The signature guarantees the
authenticity of the attestation report while the nonce ensures
its freshness. By verifying the signature, checking the value of

Shttps://github.com/pulp-platform/pulpino

the nonce, and comparing the received hashes to their expected
values stored in Vrf’s database, Vrf gains assurance of the
correct execution (both instruction and their control flow) of
the current program on Prv. We consider three classes of
attacks that can be mounted on ATRIUM.

Malware and Network Attacks. ATRIUM detects mali-
cious software modification introduced by the adversary, as
every executed instruction is included in the hash computation.
To evade detection, finding a second image that maps to same
hash value is required. However, that is infeasible since the
hash engine is second pre-image resistant. Forging the signature
or replaying an old signature is also not feasible, due to security
of signature scheme and to the nonce being long enough.

Runtime Attacks. Since basic block addresses are included
in hash computations along with the executed instructions, the
hash values computed in ATRIUM reflect the control flow of
the executed path. Being tightly integrated with the processor,
ATRIUM is guaranteed to track and record every control-flow
event executed. An attacker who knows the program code
P or CFG(P) can try to bypass ATRIUM by searching for
a second pre-image of the corresponding hash. However, by
using cryptographically-secure hash function, finding collisions
is computationally infeasible.

Physical Attacks. An adversary with physical access to Prv
can try to manipulate the program code in Prv’s memory at
runtime, i.e, between time of attestation and time of execution.
However, in ATRIUM attestation is performed during execution.
Therefore, it is guaranteed that every instruction that is
executed on Prov will be included in the hash generation, and
consequently any manipulation will be detected by Vrf, as
the generated hash values would not match Vr f’s expectations.
This defends against TOCTOU attacks that can occur when
attestation is followed by execution, as was the case for both
SMART [9] and C-FLAT [3]. Finally, fault injection attacks
which target the SoC clock and cause unintended behavior
would also be detected by Vrf, as long as the attacks affect
the instructions executed or their control flow. Note that,
expensive invasive/semi-invasive physical attacks on the SoC
are considered out of scope in this work.

VII. RELATED WORK

Attestation Schemes. Existing static attestation schemes
such as software-based [14], [20], hardware-based [21], [17],
and hybrid [15], [9] attestation schemes are vulnerable to
runtime attacks. Control-flow attestation (C-FLAT) aims at
enhancing the security of static attestation schemes by addi-
tionally hashing the code’s execution control flow. This enables
the detection of code-reuse and non-control data attacks that
divert the execution flow. However, due to frequent hash calcu-
lations and context switching (on TrustZone), C-FLAT incurs
high performance overhead. LO-FAT [7] leverages hardware
assistance to track and measure control flow, thus, overcoming
the limitations of C-FLAT and enabling efficient attestation
of uninstrumented code. LO-FAT, however, incurs significant
area overhead due to its on-chip memory requirements (up to
49 36Kbit Block RAMs are used sparsely to store counters of
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loops’ paths). Finally, in a stronger adversary model with
physical access to the prover’s device, these schemes are
vulnerable to Time of Check Time of Use (TOCTOU) attacks.
ATRIUM mitigates this by providing both static and control-
flow attestation in a stronger (and more realistic) adversary
model efficiently.

Authenticated Memory Modules. Authenticated Memory
Modules (such as Intel Authenticated Flash [1]) aim at
resisting physical attacks on external memory by preserving
the memory’s integrity. However, they are insecure under an
adversary model with physical access. Moreover, they do
not authenticate the control flow of the execution. On the
contrary, ATRIUM provides an additional defense against
software runtime attacks by coupling the attestation of both
the instructions and their control flow with their execution to
eliminate any room for TOCTOU attacks.

Memory Authentication. Such schemes [8], [6] aim at
resisting physical attacks on external memory. However, they
incur high performance overhead by authenticating memory
blocks before execution and are susceptible to runtime attacks.
ATRIUM detects both runtime attacks and physical attacks on
code memory while incurring minimal overhead.

Hardware Security Architectures. Finally, hardware se-
curity architectures (such as Intel SGX) provide memory
authentication as well as static attestation. However, such
architectures are not designed to target low-end embedded
devices. Furthermore, they only provide static attestation and
therefore cannot meet the goals that we target. Nevertheless,
they provide security features complementary to our work.

VIII. CONCLUSION

Due to the ubiquity of interconnected embedded systems,
software running on these devices have become vulnerable
to remote software attacks. Previous attestation schemes have
been proposed to detect these attacks while always ruling
out physical attacks. In this paper, we showed that physical
attacks on the system’s code memory are indeed feasible. We
presented a hardware-based efficient scheme ATRIUM that
allows precise attestation of both executed instructions as well
as their control flow. ATRIUM is the first attestation scheme to
provide security guarantees against a stronger adversary with
physical access to code memory, and does not require any code
instrumentation (compliant to legacy software) or instruction
set extension. Our proof-of-concept implementation is highly
efficient with reasonable performance impact on the attested
software at an expense of minimal area overhead and memory.
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ABSTRACT

Unlike traditional processors, embedded Internet of Things (IoT)
devices lack resources to incorporate protection against modern
sophisticated attacks resulting in critical consequences. Remote
attestation (RA) is a security service to establish trust in the integrity
of a remote device. While conventional RA is static and limited to
detecting malicious modification to software binaries at load-time,
recent research has made progress towards runtime attestation, such
as attesting the control flow of an executing program. However, ex-
isting control-flow attestation schemes are inefficient and vulnerable
to sophisticated data-oriented programming (DOP) attacks subvert
these schemes and keep the control flow of the code intact.

In this paper, we present LittHAX, an efficient hardware-assisted
remote attestation scheme for RISC-based embedded devices that
enables detecting both control-flow attacks as well as DOP attacks.
LiteHAX continuously tracks both the control-flow and data-flow
events of a program executing on a remote device and reports them
to a trusted verifying party. We implemented and evaluated LiteHAX
on a RISC-V System-on-Chip (SoC) and show that it has minimal
performance and area overhead.

1 Introduction

The proliferating rise of the Internet of Things (IoT) hype has made
embedded devices increasingly ubiquitous and deployed in numer-
ous settings. These devices collect, process, and communicate
security, privacy and safety critical information and due to their per-
vasiveness, connectivity, and increased sensing and actuating capa-
bilities, they provide an attractive attack surface. On the other hand,
to meet the cost and power consumption budgets, embedded devices
are usually resource-constrained and lack sophisticated security fea-
tures of legacy computing devices. This has made embedded device
security particularly challenging in the face of various known and
emerging attack strategies, e.g., malware infestation, control-flow
hijacking, and data-oriented programming (DOP) attacks [13]. Crit-
ical exploits include Stuxnet' and the more recent Mirai malware’
in 2016, where a series of disruptive Distributed Denial-of-Service
(DDoS) attacks were committed, by compromised IoT devices, in-

"http://www.computerworld.com/article/2519574/security0/
stuxnet-renews-power-grid-security-concerns.html
2https://www.incapsula.com/blog/
malware-analysis-mirai-ddos-botnet.html
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cluding routers and web-enabled security cameras, against the DNS
system. Successor variants of Mirai such as Satori® and Okiru* have
been crafted that target popular embedded processors from ARM to
x86 among others to exploit many more IoT devices.

Traditionally runtime attacks exploit a security vulnerability, typ-
ically memory corruption, and modify the code on a device by
injecting malicious code. However, since deployed protection mech-
anisms such as Data Execution Prevention (DEP) [16] have proven
effective against code-injection attacks, attackers have resorted to
other tactics such as code-reuse techniques like Return-Oriented
Programming (ROP) [28]. These techniques exploit vulnerabilities
to corrupt control-data and re-use the code chunks already residing
in the memory of the targeted program to build the attack payload
and hijack the control flow of the program. More recently, practical
Data-Oriented Programming (DOP) attacks were shown [13] which
allow the adversary to execute Turing-complete malicious execution
by carefully corrupting only non-control-data to stitch a sequences
of operations on attacker-controlled input. DOP attacks do not divert
the program’s control flow or modify its binaries. To mitigate these
sophisticated attacks, there has been ongoing intensive research on
runtime attacks and defenses in recent years. Prominent defense
approaches are control-flow integrity [1] (CFI), code-pointer in-
tegrity [22], and (fine-grained) code randomization [9, 23] to name
some. However, these solutions enforce security policies such as
control-flow integrity and neither provide any information about the
complete state of a program’s execution (e.g., required in detecting
non-control-data attacks) nor can they mitigate DOP attacks without
generating prohibitively high performance overhead [7, 13].

Remote attestation (RA) is a security service that aims at detecting
malware infestation. It is based on an interactive protocol through
which a remote device (the prover) sends an authenticated report
about its software configuration (i.e., usually an authenticated hash)
to a trusted entity (the verifier) to prove that it has not been altered.
Conventional attestation schemes are static and rely on the binary
digest of the code at load-time. Recent advances in attestation
solutions have aimed to attest the runtime behavior of program
execution by reporting the program’s control-flow path [2, 10, 33]
and detecting control-flow attacks as well as some non-control-data
attacks that change the control flow to a valid, yet unauthorized
control-flow path. However, this still leaves the mitigation of highly
expressive DOP attacks an open problem, while DOP attacks are
likely to become the next prevalent attack technique as control-flow
defenses become more established.

In this paper, we propose LittHAX- a hardware-assisted scheme
enabling remote runtime attestation on RISC-based embedded de-
vices. LiteHAX allows to securely and efficiently record and report
prover’s control- and data-flow events to a remote verifier. In con-

3https://www.computerweekly.com/news/45043 1409/
Next-gen-Mirai-botnet-sparks-calls-for-more-secure-loT-design
*https://thehackernews.com/2018/01/mirai-okiru-arc-botnet.html
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trast to existing schemes [2, 10, 33], this allows a trusted verifier
to detect (1) control-data attacks that overwrite a code pointer such
as ROP [28], (2) non-control-data attacks that indirectly effect the
control flow of a program, and (3) existing data-only attacks such as
DOP [13, 14]. The intuition behind our work is that all known and
reported non-control-data and DOP attacks are essentially reduced
to corrupting memory access operations, without inflicting any unin-
tended control flow [13]. In RISC-based architectures, which is the
target architecture of the prototype in this work, memory accesses
are only possible via load and store instructions.

LiteHAX is minimally invasive, i.e., it does not require modi-
fications to the processor micro-architecture, extensions to the in-
struction set architecture, or instrumentation of the program code.
Furthermore, unlike existing runtime attestation schemes such as
C-FLAT [2], LiteHAX is applicable to a more realistic embedded de-
vice usage scenario, as it allows the verifier to continuously monitor
the code executing on the prover while inducing minimal overhead
in terms of runtime, area, and memory requirements on both entities.

Control-flow hijacking attacks are detected because the verifier
receives an encoding of the control-flow path executed at the prover
which it uses to re-construct and validate the execution path. By
performing online symbolic execution and data-flow analysis that
is constrained to the re-constructed control-flow path to generate
the reference legal memory access operations, LittHAX overcomes
the problem of execution-path explosion induced by control-flow
attestation [2] while also providing context-sensitive security guar-
antees. DOP attacks are detected because the verifier receives a
short digest that represents all the memory access operations that
have been actually executed by the prover and compares them with
the aforementioned generated reference.

The main contributions of our work are:

o Data-flow attestation: We present LiteHAX~ the first runtime
attestation scheme that is capable of detecting runtime attacks
that do not change the control flow of the executing program.

o Proof of concept: We implement LiteHAX on the Pulpino
core — an open-source RISC-V microcontroller-based SoC.

o Systematic evaluation: We present an evaluation of LiteHAX
in terms of security, performance and hardware overhead.
Evaluation results show the efficiency and practicality of our
design and implementation.

2 Problem Description

We present next an overview of the different classes of software
runtime attacks that we aim to detect and proposed defenses to date.

Control-Hijacking Attacks. Runtime attacks exploit program vul-
nerabilities to corrupt the memory space and cause malicious be-
havior. The most popular entry-point to a vulnerable program is
via a buffer overflow where the attacker writes data to a buffer on
the stack or heap beyond its intended bounds and corrupts adjacent
memory locations. These attacks usually aim to manipulate the
control-flow information stored on the program’s stack and heap in
order to hijack the intended control flow of the program execution.

Figure 1 demonstrates the typical memory layout of a C program
and the different classes of runtime attacks that it is vulnerable to.
Exclusive memory sections are dedicated for the data and code
segments of a given program. The former is assigned read & write
permissions and the latter is assigned read & execute permissions.
This ensures that code cannot be executed from data memory and
that code memory cannot be maliciously overwritten by means of
a software adversary. A program can be analyzed by static and
dynamic analysis to generate its corresponding control-flow graph
(CFG) that dictates the valid control-flow paths a program should
follow while executing. The numbered nodes (/V;...Ng) in the CFG

Memory Layout of C Program

Software-only data (read & write)

Adversary
6@7 Code Pointers

Data Variables
(non-control-data

attacks)
Stronger

DOP attacks
Adversary

o are
“ ! o code (read & execute)

malicious

Control-Flow Graph

= privileged path — unprivileged path --*» code-injection attack
--+code-reuse attack @ benign code block Oattacker—injected code block
Figure 1: Different classes of runtime attacks

in Figure 1 represent the basic blocks of the code, while the edges
represent the control-flow transitions from one block to the next by
means of a control-flow instruction. A valid control-flow path is any
path that exists within the CFG. However, not all valid paths are
necessarily legitimate in a given execution context.

Runtime attacks can be categorized into: (I) code-pointer over-
write attacks, @ non-control-data attacks which corrupt data vari-
ables to indirectly affect the control flow, and (3) Data-Oriented
Programming (DOP) attacks which do not affect the control flow.

By corrupting control-flow information stored in the stack or heap
and overwriting code-pointers (return addresses or function pointers)
as in (1), an adversary can redirect the control flow of a program
such that execution has a malicious and unauthorized effect. This
is possible in one of two ways; either via code-injection attacks or
code-reuse attacks. In code-injection attacks, the adversary injects
a malicious executable payload in program memory (node Ng)
and redirects control flow to execute it after node Ng, as shown
in Figure 1. Alternatively, in state-of-the-art code-reuse attacks,
such as Return-oriented Programming (ROP) [28], the adversary
stitches together a malicious sequence of machine code instructions
from benign gadgets of code already residing in the memory of the
vulnerable program. To achieve this, the adversary would redirect
control flow to execute the already existing benign code represented
by node N7 after executing node Ng. All of the above attacks result
in the control flow explicitly being hijacked and redirected to an
invalid path that does not exist in the CFG. Such runtime exploitation
attacks have been shown to be a threat on many popular processor
architectures, such as Intel x86 [28] and ARM [20] among others.

In response to these control-flow hijacking attacks, various prin-
cipled defenses have been proposed in recent years. Code-injection
attacks are prevented by marking memory as writable or executable
using WdX memory access policies such as Data Execution Preven-
tion (DEP) [16]. Code-reuse attacks are mitigated by defenses such
as Control-Flow Integrity (CFI) [1, 18], Address Space Layout Ran-
domization (ASLR) [23], and Code-Pointer Integrity (CPI) [22].

Non-Control-Data Attacks. While the above attacks (and their
defenses) focus on the control plane of program’s execution, an
adversary naturally is compelled to investigate next its capabilities
within the data plane of the execution. An adversary could corrupt
critical data variables that drive the control flow of the execution
via the more sophisticated non-control-data attacks [8] as in attacks
). This may redirect the control flow to a valid, yet illegal and
unintended path in the given execution context. An adversary may
corrupt a critical authentication variable (at node N1) and redirect
execution to continue in a privileged path (nodes Ny — N3 — N4)
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even though the user has not been authenticated to execute this path
and should have executed the unprivileged path (nodes N1 — N>
— Ns) instead. Alternatively, an adversary may also corrupt a loop
counter variable (at node Ng) to modify the number of iterations
a program loop executes. The attack payloads here are, however,
simple and limited to corrupting a critical data variable and causing
privilege escalation or sensitive data leakage.

Data-Oriented Programming (DOP) Attacks. In DOP attacks as
in (3), the adversary carefully corrupts non-control-data to chain
sequences of instructions (data-oriented gadgets) to execute highly
expressive (assignment, arithmetic and conditional branching) op-
erations on some attacker-controlled input. The key challenge is
in crafting such an expressive construction of the desired mali-
cious execution without incurring any illegitimate control flow with
respect to the CFG. The data-oriented gadgets used consist of se-
quences of operations which can be visualized as a single virtual
machine instruction executing on top of benign program logic. An
adversary-controlled loop in the benign program, known as a gad-
get dispatcher, is used to stitch together the data-oriented gadgets
and realize expressive computation and malicious behavior. Hu et
al. [13] demonstrated three end-to-end DOP exploits against the
ProFTPD file server and one DOP attack against the Wireshark
network packet analyzer. Evans [14] demonstrated another attack
against the GStreamer FLIC decoder.

To date, deterring non-control-data attacks, and even stealthier
DOP attacks, remains a significant challenge as they have been
shown to actively break state-of-the-art defenses. While runtime
attestation schemes, C-FLAT [2] and LO-FAT [10], may detect some
non-control-data attacks, the more critical DOP attacks cannot be
detected by them. With defenses against control-flow hijacking
attacks on constrained embedded devices becoming increasingly
available, it is only natural for adversaries to turn to crafting DOP
attacks on embedded systems.

3 LiteHAX: Our Scheme

The intuition behind our work is that all known and reported non-
control-data and DOP attacks only corrupt memory load and store
operations, without inflicting any unintended control flow. To that
end, we observe that it has become insufficient to only attest control
flow in runtime attestation schemes. We present LiteHAX, a runtime
attestation scheme that continuously captures and attests both con-
trol flow and data flow of any given program execution in an efficient
and lightweight approach that is well suited for low-end embedded
devices. While the control-flow events would explicitly reflect any
control-flow hijacking exploits, the fine-grained memory operations’
trace would reflect illegal memory accesses that result from memory
corruption vulnerabilities being exploited as an entry-point for an
adversary to craft a data-oriented or a DOP attack.

LiteHAX is deployed by extending the processor core of a re-
mote in-field embedded device (called the prover PRV) with cus-
tom hardware that tracks and records the fine-grained control- and
data-flow events of executing programs at runtime. The recorded
execution trace is then reported to a trusted third party (called the
verifier VRJF), which in turn verifies that the reported execution is
as expected, i.e., whether the reported control- and data flows are
legal for the given execution context. LiteHAX builds on the threat
model and assumptions that we describe next.

3.1 Threat Model and Assumptions

We assume that both VRF and PRV have access to the source
and binary code of the target program and that conventional static
(binary) attestation is deployed to assure that PRV is executing
unmodified program Prog. We also assume that address space
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layout randomization (ASLR) is not deployed. This assumption
is reasonable since low-end embedded systems targeted by Lite-
HAX do not currently support ASLR due to their limited processing
power. Assuming no ASLR guarantees that YV RF has access to
the memory address space mapping of the target program on PRV .
Otherwise, addresses would change for each run of the program and
instrumentation can be used to embed unique labels to identify basic
blocks and memory access operations. We assume PRV has data
execution prevention (DEP) deployed to prevent injecting malicious
code into running processes. Finally, for simplicity, we focus on
RISC-based load-store architectures for prototyping, where only
load and store instructions access data memory.

We consider a powerful adversary .ADV with full control over
the data memory of the target program executing on PRY. ADY
can launch runtime attacks (§ 2) by exploiting standard memory
corruption vulnerabilities (e.g., externally-controlled format string®)
that cause buffer overflows leading to corruption of data memory.
We assume ADYV cannot modify program code at runtime (due to
WX protection). Furthermore, .ADYV cannot modify hardware-
protected memory used exclusively by LiteHAX. This assumption
is valid since this memory is not mapped to software-accessible
address space and invasive physical attacks are out of scope.

3.2 LiteHAX Attestation Scheme

We derive the following requirements for a secure runtime attestation
scheme:

o Runtime security: The scheme should be capable of detecting
all runtime attacks throughout the program execution, both
control-flow and data-oriented attacks. Continuously tracking
and recording both control- and data-flow events of execution
is sufficient to reveal all such runtime attacks.

o Accuracy & completeness: It should accurately record every
control- and data-flow event. This is guaranteed by integrating
the attestation hardware modules tightly with the processor.

o Secure reporting: It should securely report attestation results
which are integrity-protected and fresh. This is achieved by
using digital signatures and a monotonic counter.

e Low overhead on prover: It should incur minimal perfor-
mance overhead on the low-end PRV device. This is made
possible by leveraging hardware-assisted extensions for track-
ing and recording control- and data-flow events.

e No state explosion: It should not yield an explosion of possi-
ble attestation reports stored and checked by the verifier. This
is achieved by performing online context-sensitive analysis
and symbolic execution constrained to the reported control-
flow path.

LiteHAX has two phases: an offline phase, where VRF generates
the necessary information to verify attestation reports (control-flow
graph — CFG); and an online phase, during which PRV sends its
execution trace (i.e., control flow and data flow) to be validated by
VRF. The offline phase is executed only once by VR.F, and the
online phase is executed continuously between the VRF and PRV.
We illustrate the LiteHAX attestation protocol in Figure 2.

Offline Phase. The verifier VRJF performs a one-time pre-
processing to generate the CFG of the target program Prog by
means of static and dynamic analysis. We do not require VRF to
generate a data-flow graph (DFG) or create a database of the crypto-
graphic hash measurements over all control- and data-flow events.
This would result in a combinatorial explosion of the number of
valid hash measurements, even if the different execution paths for
each loop were only considered (e