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A B S T R A C T

For decades, software security has been the primary focus in securing our computing
platforms. Hardware was always assumed trusted, and inherently served as the founda-
tion, and thus the root of trust, of our systems. This has been further leveraged in de-
veloping hardware-based dedicated security extensions and architectures to protect soft-
ware from attacks exploiting software vulnerabilities such as memory corruption. How-
ever, the recent outbreak of microarchitectural attacks has shaken these long-established
trust assumptions in hardware entirely, thereby threatening the security of all of our com-
puting platforms and bringing hardware and microarchitectural security under scrutiny.
These attacks have undeniably revealed the grave consequences of hardware/microar-
chitecture security flaws to the entire platform security, and how they can even sub-
vert the security guarantees promised by dedicated security architectures. Furthermore,
they shed light on the sophisticated challenges particular to hardware/microarchitec-
tural security; it is more critical (and more challenging) to extensively analyze the hard-
ware for security flaws prior to production, since hardware, unlike software, cannot be
patched/updated once fabricated.

Hardware cannot reliably serve as the root of trust anymore, unless we develop and
adopt new design paradigms where security is proactively addressed and scrutinized
across the full stack of our computing platforms, at all hardware design and implementa-
tion layers. Furthermore, novel flexible security-aware design mechanisms are required
to be incorporated in processor microarchitecture and hardware-assisted security ar-
chitectures, that can practically address the inherent conflict between performance and
security by allowing that the trade-off is configured to adapt to the desired requirements.

In this thesis, we investigate the prospects and implications at the intersection of hard-
ware and security that emerge across the full stack of our computing platforms and
System-on-Chips (SoCs). On one front, we investigate how we can leverage hardware
and its advantages, in contrast to software, to build more efficient and effective security
extensions that serve security architectures, e.g., by providing execution attestation and
enforcement, to protect the software from attacks exploiting software vulnerabilities. We
further propose that they are microarchitecturally configured at runtime to provide dif-
ferent types of security services, thus adapting flexibly to different deployment require-
ments. On another front, we investigate how we can protect these hardware-assisted
security architectures and extensions themselves from microarchitectural and software
attacks that exploit design flaws that originate in the hardware, e.g., insecure resource
sharing in SoCs. More particularly, we focus in this thesis on cache-based side-channel at-
tacks, where we propose sophisticated cache designs, that fundamentally mitigate these
attacks, while still preserving performance by enabling that the performance-security
trade-off is configured by design. We also investigate how these can be incorporated
into flexible and customizable security architectures, thus complementing them to fur-
ther support a wide spectrum of emerging applications with different performance/se-
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curity requirements. Lastly, we inspect our computing platforms further beneath the
design layer, by scrutinizing how the actual implementation of these mechanisms is yet
another potential attack surface. We explore how the security of hardware designs and
implementations is currently analyzed prior to fabrication, while shedding light on how
state-of-the-art hardware security analysis techniques are fundamentally limited, and
the potential for improved and scalable approaches.
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Z U S A M M E N FA S S U N G

Jahrzehntelang stand die Softwaresicherheit bei der Sicherung unserer Computerplat-
tformen im Vordergrund. Die Hardware wurde immer als vertrauenswürdig ange-
sehen und diente als Grundlage und somit als Vertrauensbasis für unsere Systeme.
Dies wurde bei der Entwicklung von hardwarebasierten Sicherheitserweiterungen und
-architekturen weiter genutzt, um Software vor Angriffen zu schützen, die Software-
Schwachstellen, wie z.B. Speicher- und Programmierfehler, ausnutzen. Der aktuelle
Ausbruch von Angriffen auf die Prozessor-Mikroarchitektur hat jedoch diese seit
langem etablierten Annahmen über das Vertrauen in die Hardware völlig erschüttert,
wodurch die Sicherheit aller unserer Computerplattformen bedroht ist und die Sicher-
heit von Hardware und Mikroarchitektur auf den Prüfstand gestellt wird. Diese An-
griffe haben unbestreitbar die schwerwiegenden Folgen von Sicherheitsmängeln in der
Hardware/Mikroarchitektur für die Sicherheit der gesamten Plattform aufgezeigt. Zu-
dem zeigen sie, wie sogar die Sicherheitsgarantien untergraben werden können, die von
speziellen Sicherheitsarchitekturen versprochen werden. Darüber hinaus werfen diese
Angriffe ein Licht auf die besonderen Herausforderungen, die mit der Sicherung von
Hardware/Mikroarchitekturen verbunden sind: Es ist wesentlicher (und schwieriger),
die Hardware vor der Produktion umfassend auf Sicherheitsmängel zu untersuchen, da
Hardware im Gegensatz zu Software nach der Herstellung nicht gepatcht/aktualisiert
werden kann.

Hardware kann nicht mehr zuverlässig als Vertrauensbasis dienen, es sei denn, wir en-
twickeln und übernehmen neue Design-Paradigmen, bei denen die Sicherheit proaktiv
angegangen und über die gesamten Schichten unserer Computerplattformen auf allen
Hardware-Design- und Implementierungsebenen geprüft wird. Darüber hinaus müssen
neuartige, flexible und sicherheitsbewusste Design-Mechanismen in die Mikroarchitek-
tur von Prozessoren und in hardwaregestützte Sicherheitsarchitekturen integriert wer-
den, die den Konflikt zwischen Leistung und Sicherheit praktisch lösen können, indem
sie es ermöglichen, den Kompromiss an die gewünschten Anforderungen anzupassen.

In dieser Dissertation erforschen wir die Perspektiven und Auswirkungen an der
Schnittstelle von Hardware und Sicherheit, die sich über die gesamten Schichten un-
serer Computerplattformen und System-on-Chips (SoCs) ergeben. Auf der einen Seite
untersuchen wir, wie wir Hardware und ihre Vorteile im Vergleich zu Software nutzen
können, um effizientere und effektivere Sicherheitserweiterungen zu entwickeln, die
Sicherheitsarchitekturen dienen, z.B. um Attestierung und Integritätsschutz des Kon-
trolflusses anzubieten, mit dem Ziel, Software vor Angriffen zu schützen, die Software-
Schwachstellen ausnutzen. Außerdem schlagen wir vor, dass die Sicherheitserweiterun-
gen zur Laufzeit mikroarchitektonisch so konfiguriert werden, dass sie verschiedene
Arten von Sicherheitsdiensten bereitstellen und sich so flexibel an unterschiedliche Ein-
satzanforderungen anpassen lassen. Außerdem untersuchen wir, wie wir diese hard-
waregestützten Sicherheitsarchitekturen und -erweiterungen selbst vor mikroarchitek-
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tonischen und Software-Angriffen schützen können, welche Designfehler ausnutzen, die
ihren Ursprung in der Hardware haben, z.B. eine unsichere geteilte Nutzung von SoC-
Ressourcen. Insbesondere konzentrieren wir uns in dieser Arbeit auf Cache-basierte
Seitenkanalangriffe, für die wir elegante Cache-Designs vorschlagen, die diese Angriffe
grundlegend entschärfen und gleichzeitig die Leistung erhalten, indem sie ermöglichen,
den Kompromiss zwischen Leistung und Sicherheit zu konfigurieren. Wir untersuchen
auch, wie diese Cache-Designs in flexible und anpassbare Sicherheitsarchitekturen inte-
griert werden können, um diese zu ergänzen und so ein breites Spektrum neuer Anwen-
dungen mit unterschiedlichen Leistungs-/Sicherheitsanforderungen zu unterstützen.
Schließlich nehmen wir unsere Computerplattformen auch unterhalb der Design-Ebene
unter die Lupe, indem wir untersuchen, wie die tatsächliche Implementierung dieser
Mechanismen eine weitere potenzielle Angriffsfläche darstellt. Wir untersuchen, wie die
Sicherheit von Hardware-Designs und -Implementierungen derzeit vor der Fertigung
analysiert wird, und beleuchten gleichzeitig die grundlegenden Grenzen der modernen
Hardware-Sicherheitsanalyseverfahren sowie das Potenzial für verbesserte und skalier-
bare Ansätze.
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1
I N T R O D U C T I O N

For decades, software security has been the primary focus and concern when it comes
to securing our computing platforms. Operating system and software vendors as well
as academia have been exerting extensive efforts in hardening computing platforms
against software-based attacks in the ever-evolving attacks-defenses arms race. Such at-
tacks are usually exploiting various software and architectural security vulnerabilities,
and are more commonly runtime attacks that exploit memory corruption vulnerabilities,
e.g., buffer overflows. On the other hand, far less open scrutiny and efforts have been
invested in hardware and microarchitectural security, despite their significant role both in
inherently constituting the foundation of our computing platforms as well as in emerg-
ing hardware-enforced dedicated security mechanisms.

The long-established working assumption has been that the underlying hardware, pro-
visioned by hardware and chip vendors, is trusted and secure. Only in recent years, did
the recent uncovering of new types of security threats and attacks trigger a paradigm
shift which disrupted the traditional threat assumptions which have, for long, consid-
ered software-only vulnerabilities and unjustifiably assumed the underlying hardware
and our processors to be trusted. This emerging class of attacks are largely microar-
chitectural, and are usually cross-layer in nature, i.e., they usually involve unprivileged
software remotely exploiting hardware vulnerabilities (design or implementation flaws)
at different abstraction layers of the computing system to bypass existing protection
mechanisms, thus achieving privileged code execution and accessing otherwise sensi-
tive information. In recent years, such attacks have been shown to affect a wide range
of computing platforms, ranging from low-end devices to high-end server systems of
different architectures and vendors, e.g., Intel, AMD and ARM [83, 2, 90, 84, 81, 95, 143,
54, 48, 47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20, 80, 129, 120, 90, 132, 54, 48].

The Root Causes. The root causes of these cross-layer attacks originate at different
hardware abstraction layers such as design flaws at the microarchitectural layer [90,
83, 134, 25, 73, 118, 20, 107, 71, 75, 92, 140, 60, 142], and/or implementation flaws at
the low-level hardware implementation layers [80, 129, 77, 120]. Typically, these attacks
work by causing an otherwise concealed or temporary state of the hardware to become
illegitimately visible to or compromised by unauthorized software, as we describe next.

Abstraction Layers of a Computing Platform. Figure 1 shows a simplified represen-
tation of the different abstraction layers of a computing platform. The architecture layer
of a platform is a high-level abstraction layer which specifies the control unit and dat-
apath (usually comprising the execution and logic units, the system memories and the
general-purpose and architectural registers). The architecture layer also describes the in-
struction set of the platform and its expected behavior and representation to the software
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Figure 1: The different layers of a typical computing stack and a categorization of the main
publications of this thesis across it

layer, i.e., the CPU architectural state and the contents of the general-purpose registers
that should be visible to the software layer. The microarchitecture layer is a lower-level
realization of that architecture and includes the design techniques leveraged to actually
realize the processor architecture, e.g., the specific-purpose configuration registers, exe-
cution units, buffers, cache hierarchy and controller, and the ever-evolving performance
optimizations of our modern processors. These architectural and microarchitectural de-
signs and functionalities are then realized and implemented with concrete hardware
logic gates, constituting the hardware implementation layer. While the architecture repre-
sents the current software-visible state, the microarchitectural state (and that of layers
underneath) is only intermediate, can be out of sync, and is never intended to be visible
to the software.

Cross-Layer Microarchitectural Attacks. At the microarchitecture layer, hardware
vendors have been continuously enabling processors with closed-source and propri-
etary performance boosting optimizations, e.g., cache hierarchies and speculative exe-
cution. Speculative execution is an optimization technique where an out-of-order pro-
cessor "speculates" that a branch or a load would use a value before the processor com-
pletes computing that this speculative value is correct, and execution proceeds with
subsequent instructions "temporarily" or "transiently" assuming this speculated value.
Once that branch/load resolves, the processor knows whether the speculative value was
indeed correct. If correct, then executed instructions that depend on that value were
validly executed and are retired, i.e., their results become architecturally visible to the
software. Otherwise, the executed instructions that depend on that speculative value are
invalid and are squashed, i.e., their results are not committed to the architectural pro-
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gram state and almost most changes are reverted. While the visible architectural state is
guaranteed to be unaffected, microarchitectural traces and "side effects"’ are left behind
that affect the microarchitectural state of the processor, such as secret-dependent cache
lines fetched during this transient execution, which were not reverted or cleared up. The
current cache state, after this transient execution, can be leaked (and made visible to the
software layer) by an adversary by means of cache-based side-channel attacks such as
Flush+Reload [60, 142] and Prime+Probe [107, 71, 75, 92, 140]. The adversary measures
latencies of cache accesses and exploits the inherent latency discrepancy between hits
and misses (timing side channel) to infer secrets that are otherwise inaccessible. This
is only one simplified example of how microarchitectural security vulnerabilities can
be exploited to launch cross-layer attacks. In recent years, such attacks have shaken
our trust assumptions in the underlying hardware of our computing platforms and
have been shown to have a devastating impact on their security assurances. More crit-
ically, they have been even shown to circumvent the security promises of dedicated
hardware-assisted security architectures, e.g., Trusted Execution Environment (TEE) ar-
chitectures [18, 119, 100, 52, 89, 145].

Even beneath the microarchitecture layer, at the hardware implementation layer, im-
plementation flaws can also reside in the concrete hardware realization of any of the ar-
chitectural or microarchitectural components and can have severe security implications.
For example, the values of security-relevant configuration registers can be incorrectly
read from the processor, a side-channel protected cache architecture implementation
can be flawed, or access control for a debug interface can be incorrectly implemented in
hardware.

The Challenges with Hardware and Microarchitectural Security. As processors and
System-on-Chips (SoCs) scale in computing capability and complexity to keep up with
the increasing computation and market demands, so do the underlying hardware and
built-in optimizations. This further aggravates the challenge of discovering such cross-
layer exploits and identifying their root causes where they actually originate, both at
design-time and post-production. Moreover, these performance-boosting optimizations
are usually proprietary and closed-source with no open documentation or accessibility
to their inner workings, which has always been the case with hardware intellectual prop-
erty (IP), except perhaps very recently with the growing advent of open hardware and
RISC-V processors. However, the status quo remains largely unchanged for the biggest
players in the semiconductor and processor industry and their proprietary platforms.
Only through extensive reverse engineering efforts are researchers able to disclose how
these microarchitectural implementations actually work and the security vulnerabilities
therein.

Once these vulnerabilities and exploits are uncovered, contrary to software, patching
the hardware post-production is not possible. The only feasible mitigation is to attempt
to tackle these vulnerabilities with software and microcode "hotfixes" and patches. Mi-
crocode patching is limited to only a number of changes possible to the instruction
set architecture, e.g., modifying the interface of individual complex instructions and
adding or removing instructions [62]. Nevertheless, this always comes at the cost of a
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performance regression, while for some vulnerabilities it is not even possible. For in-
stance, microcode patching cannot mitigate the Spoiler attack [73]; this requires fixing
the hardware of the memory subsystem at the hardware design phase, which is not
feasible for legacy systems. In short, software and microcode patching may circumvent
some of the resulting problems and provide "symptomatic" fixes. However, they do not
fundamentally patch the flaw in the hardware where it originates.

Hardware and microarchitectural fixes and re-designs, on the other hand, promise
a significantly smaller performance impact, while addressing the flaws fundamentally,
but these require hardware modifications, which are only feasible for upcoming pro-
cessor generations. Moreover, most proposed fixes are usually static and inflexible, i.e.,
they mitigate a specific issue with a specific microarchitectural design or approach that
cannot adapt to mitigate emerging attacks, and cannot be configured to adapt to dif-
ferent adversarial settings or customized application-dependent performance/security
requirements.

Thus, it follows intuitively that conducting an exhaustive security verification and
analysis of hardware at design-time before production is even more critically required
for hardware than software. Despite of this, state-of-the-art hardware security analysis
techniques and methodologies severely lag behind the far more established spectrum
of software security analysis techniques [78, 106]. Recently, however, inspired by soft-
ware practices, the semiconductor industry has adopted a security development lifecycle
(SDL) for hardware [63, 126]. This process comprises different techniques and tools, such
as RTL manual code reviews, assertion-based testing, directed random testing combined
with regression testing, dynamic simulation, and formal verification techniques. Never-
theless, the growing complexity of processor designs and the outbreak of cross-layer
attacks described above represent difficult challenges for these security verification tech-
niques, where they have been shown to fall short. Recent sophisticated attacks exploit
complex and subtle inter-dependencies between the hardware and software. Thus, this
requires verification techniques capable of modeling, capturing and verifying these dif-
ferent interactions accurately. Currently, state-of-the-art techniques lack in this respect.
Moreover, they do not scale flexibly and in an automated manner with the growing
size and complexity of real-world SoC design, thus still requiring extensive manual in-
tervention and human expertise. In fact, the most significant challenge with hardware
security analysis, as it stands now, is the prerequisite to anticipate potential security is-
sues and requirements at design-time under the assumed threat model and to prepare
and describe the relevant specifications. Assessing and analyzing the effectiveness of ex-
isting hardware security analysis techniques in detecting different classes of hardware
vulnerabilities is another research question we investigate in this thesis and through the
hardware security competitions we have organized.

1.1 our insights

In light of these open challenges and problems with respect to the security of hard-
ware, we summarize next our insights that inspire the vision of this thesis (described in
Section 1.2) and propel its contributions.
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• The underlying hardware of our platforms, being the foundation of our computing
systems, must always constitute inherently all or a portion of the trusted comput-
ing base (TCB) of our computing systems.

• Furthermore, the hardware is often even leveraged in dedicated hardware-assisted
security mechanisms and architectures to form the root of trust/trust anchor, e.g.,
in Intel SGX [68, 32], ARM TrustZone [7], Intel Control-Flow Enforcement Technol-
ogy (Intel CET) [69], and Dover Microsystems’ CoreGuard technology [99]. Lever-
aging the hardware in dedicated security mechanisms enables providing signifi-
cantly more efficient security services when compared to their software counter-
parts, in terms of performance, as well as security guarantees under even stronger
adversary assumptions, e.g., untrusted OS kernel and/or hypervisor in TEE archi-
tectures.

• Given the crucial role hardware plays, both fundamentally and in dedicated
hardware-assisted security mechanisms, recent microarchitectural attacks that ex-
ploit hardware flaws break the trust assumptions in hardware, and consequently
the derived security guarantees. Hardware, in this current state, cannot serve re-
liably as the root of trust in our computing systems anymore. This pressingly
calls for the need to systematically rethink our hardware design paradigm, and
exhaustively analyze and verify the security of the underlying hardware/microar-
chitectural, both at design and implementation, to restore justified trust in the
hardware.

• These recent microarchitectural cross-layer attacks usually exploit flaws originat-
ing in performance boosting and other microarchitectural optimization features
and interfaces in our modern processors. It is not practical, however, to forsake
them altogether for the sake of security, where performance remains the ultimate
market requirement. On the other hand, it is also not responsible, at least for a
spectrum of use cases, to discard the resulting security concerns and implications
with a sole focus on performance. It becomes necessary to investigate and develop
new design paradigms and approaches that address this persistent conflict and
enable configurable and flexible performance-security trade-offs (micro-) architec-
tecturally by design in our computing platforms. These would enable flexible and
on-demand configuration or "tuning" of the level of security guarantees required
along with the relevant performance cost this entails for the application in ques-
tion, besides adapting to varying adversarial settings.

• Even beyond security flaws at the microarchitectural design, another security
threat arises from the underlying implementation itself of these components. For
example, while a partitioned cache is required microarchitecturally to mitigate
resulting side-channel attacks, how this partitioning and cache management is
actually implemented in hardware logic may still have security implications or
generate other potentially exploitable side channels.

• As demonstrated by recent attacks, it is also becoming increasingly difficult for
designers to keep up with the growing complexity of hardware. State-of-the-art
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hardware security analysis techniques are fundamentally challenged in efficiently
and effectively uncovering different types of hardware vulnerabilities at design
time. New techniques are required to uncover more hardware vulnerabilities and
side-channel leakages before production, especially since hardware flaws cannot
be patched after production and deployment.

1.2 thesis vision and scope

The problem of hardware/microarchitectural security and its multifaceted challenges
and implications, as outlined above, imply that hardware, in its current state, cannot
reliably serve as the root of trust of our computing platforms anymore. This calls for
fundamentally rethinking the design and security analysis of our computing platforms
altogether to tackle today’s and future security challenges.

1.2.1 Vision

We envision the pressing need for new design paradigms where security is proactively
addressed and scrutinized across the full stack of our computing platforms, at all hard-
ware design and implementation layers. Furthermore, the security of the interactions
of the hardware with the overlying software and all relevant subtleties should also
be scrutinized and analyzed by scalable and efficient means. We propose that flexible
security-aware design mechanisms are incorporated within the different processor mi-
croarchitectural units and optimization features, as well as hardware-assisted security
mechanisms and architectures, where these mechanisms can be configure the pertinent
security/performance guarantees as desired. This would enable computing platforms to
adapt flexibly to different applications and practically address the inherent conflict be-
tween performance and security by allowing that the trade-off is calibrated by means of
efficient design mechanisms. Moreover, more rigorous and efficient full-stack cross-layer
information flow/security analysis techniques are required to complement the security-
aware design paradigms, in order to vet the hardware design and implementation as
well as its overlying software for security vulnerabilities and design flaws.

In short, the security of the underlying hardware cannot be tackled as an after-thought
anymore. Designing, implementing and testing the hardware with security in mind,
especially in dedicated security architectures, must become integral to the hardware
development lifecycle.

1.2.2 Scope

Towards realizing this vision, we take first steps in this thesis and focus primarily on
exploring the implications and potential roles of the underlying hardware and microar-
chitecture on systems security. On one front, we 1) investigate and propose a suite of
different hardware-based security mechanisms and extensions that can serve security ar-
chitectures by providing different software security services to mitigate different classes
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of software attacks. We show how they are significantly more efficient, perform bet-
ter and provide stronger security guarantees than their software counterparts. We also
investigate how they can be microarchitecturally configured at runtime to provide differ-
ent services, e.g., control-flow integrity or runtime execution measurement. The thesis
contributes to this front with the following five publications that can be found in Ap-
pendices A, B, C, D, and E:

[37] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lu-
cas Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. LO-FAT: Low-
overhead Control Flow Attestation in Hardware. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM, 2017. Core Rank A. Appendix A.

[144] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. ATRIUM: Runtime Attestation
Resilient under Memory Attacks. In IEEE/ACM International Conference on
Computer-Aided Design. IEEE, 2017. Core Rank A. Appendix B.

[38] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi.
LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. In
IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2018.
Core Rank A. Appendix C.

[105] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, An-
drew Paverd, N. Asokan, and Ahmad-Reza Sadeghi. HardScope: Hardening Em-
bedded Systems Against Data-Oriented Attacks. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM/IEEE, 2019. Core Rank A. Appendix D.

[40] Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, and Ahmad-
Reza Sadeghi. CHASE: A Configurable Hardware-Assisted Security Extension
for Real-Time Systems. In IEEE/ACM International Conference on Computer-
Aided Design. IEEE, 2019. Core Rank A. Appendix E.

On a second front, to protect the underlying hardware of these security extensions
and our computing platforms from microarchitectural attacks, we 2) analyze how mi-
croarchitectural design flaws that originate in the hardware, e.g., timing side channels,
can be mitigated by redesigning the hardware fundamentally with flexible security/per-
formance configurable mechanisms built in. We also show how these can be integrated
into flexible and customizable security architectures, thus enabling their customization
even further to support a wide spectrum of different and emerging applications with
different performance/security requirements. The thesis contributes to this front with
the following three publications that can be found in Appendices F, G, and H:

[41] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
USENIX Security. USENIX Association, 2020. Core Rank A*. Appendix F.
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[44] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. Chunked-Cache: On-Demand and Scalable Cache Isola-
tion for Security Architectures. In Annual Network and Distributed System Secu-
rity Symposium (NDSS), 2022. Core Rank A*. Appendix G.

[11] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A Secu-
rity Architecture with CUstomizable and Resilient Enclaves. In USENIX Security.
USENIX Association, 2021. Core Rank A*. Appendix H.

Lastly, we investigate and show 3) how the actual implementation of such hardware-
assisted security extensions and mechanisms as well as processor and SoC microarchitec-
ture is also a potential attack surface. We investigate how hardware designs are currently
analyzed for their security and provide potential research directions on how this can be
improved. The thesis contributes to this front with the following publication that can be
found in Appendix I:

[39] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanu-
parthi, Hareesh Khattri, Jason M. Fung, Ahmad-Reza Sadeghi and Jeyavijayan
Rajendran. HardFails: Insights into Software-Exploitable Hardware Bugs. In
USENIX Security. USENIX Association, 2019. Core Rank A*. Appendix I.

1.3 main contributions

More specifically, we categorize our contributions as described above along the different
layers of a typical computing stack into three main pillars as shown in Figure 1, namely:

1. Hardware-based security mechanisms
2. Secure microarchitecture design for trusted execution
3. Hardware implementation security

We illustrate the categorization of these contributions into the thesis chapters and the
relevant publications in Figure 2, and present a more detailed overview of each next.

Hardware-based security mechanisms. Conventional remote attestation allows a
trusted party to establish trust in a potentially compromised and untrusted embedded
device by statically verifying that the program binary initially loaded is unmodified.
However, it cannot provide any guarantees with respect to the execution behavior of this
program, e.g., it cannot detect any runtime attacks that hijack the control or data flow
of execution. These runtime attacks conventionally exploit a security vulnerability, typi-
cally memory corruption, and modify the code on a device by injecting malicious code.
However, protection mechanisms such as Data Execution Prevention (DEP) [61] have
proven effective against code-injection attacks, thus attackers have resorted to other
attack techniques which rely on code reuse, such as Return-Oriented Programming
(ROP) [121] and Jump-Oriented Programming (JOP) [14]. These techniques exploit vul-
nerabilities to corrupt control data and re-use the code chunks already residing in the
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[37] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan, and A.-R. 
Sadeghi. LO-FAT: Low-Overhead Control Flow ATtestation in Hardware. In Proceedings of the 54th 
Design Automation Conference 2017. Core Rank A. Appendix A.

[144] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R. Sadeghi. ATRIUM: 
Runtime Attestation Resilient Under Memory Attacks. In Proceedings of the 36th International 
Conference on Computer-Aided Design 2017. Core Rank A. Appendix B.

[38] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi. LiteHAX: Lightweight Hardware-
Assisted Attestation of Program Execution. In Proceedings of the 37th IEEE International Conference 
On Computer Aided Design 2018. Core Rank A. Appendix C.

[105] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd, N. Asokan, and A.-R.  Sadeghi. 
HardScope: Hardening Embedded Systems Against Data-Oriented Attacks. In Proceedings of the 
56th ACM/IEEE Design Automation Conference 2019. Core Rank A. Appendix D.

[40] G. Dessouky, S. Zeitouni, A. Ibrahim, L. Davi, and A.-R. Sadeghi. CHASE: A Configurable 
Hardware-Assisted Security Extension for Real-Time Systems. In Proceedings of the 38th IEEE 
International Conference On Computer Aided Design 2019. Core Rank A. Appendix E.

[41] G. Dessouky, T. Frassetto, and A.-R. Sadeghi. HybCache: Hybrid Side-Channel-Resilient 
Caches for Trusted Execution Environments. In Proceedings of the 29th USENIX Security Symposium 
2020. Core Rank A*. Appendix F.

[44] G. Dessouky, A. Gruler, P. Mahmoody, A.-R. Sadeghi and E. Stapf. CHUNKED-CACHE: On-
Demand and Scalable Cache Isolation for Security Architectures. To appear in Proceedings of 
Network and Distributed System Security Symposium (NDSS) 2022. Core Rank A*. Appendix G.

[11] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R. Sadeghi, and E. Stapf. 
CURE: A Security Architecture with CUstomizable and Resilient Enclaves. In Proceedings of the 
30th USENIX Security Symposium 2021. Core Rank A*. Appendix H.

[39] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri, J. M. Fung, A.-R. Sadeghi, 
J. Rajendran. HardFails: Insights into Software-Exploitable Hardware Bugs. In Proceedings of the 
28th USENIX Security Symposium 2019. Core Rank A*. Appendix I.

Main Publications Chapters

Figure 2: Main publications of this thesis and the thesis structure

memory of the vulnerable program to build the attack payload and hijack the control
flow of the program.

Hence, a software-based runtime remote attestation mechanism was first proposed that
can capture and detect such control-flow attacks [4]. However, being software-based in
design and implementation, it requires instrumentation of the source code and incurs
prohibitively high performance overheads that are largely application-dependent. We in-
vestigate and show through our work how these limitations of software-based security
mechanisms can be overcome by relying on hardware instead. We present LO-FAT [37]
(Appendix A), the first hardware-based mechanism for control-flow attestation. LO-FAT
works by leveraging existing processor hardware features that inherently keep track of
execution in a cycle-accurate manner to track execution and compute a hash measure-
ment over the it. The computed values are communicated securely to a trusted third
party to verify the control flow of the execution. This hardware-based approach enables
significantly more efficient control-flow attestation in contrast with the software-based
scheme, besides providing stronger security guarantees while relying on a significantly
smaller TCB than the software-based counterpart.

The security guarantees of LO-FAT (as well as conventional static remote attestation
schemes) rely on the assumption that attacks are software-only and that the program
code cannot be modified at runtime. In our work [144] (Appendix B), we demonstrate
how these assumptions may, in practice, not hold where a stronger adversary is capable
of modifying the code memory such that benign code is attested but malicious code is
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executed. This would effectively bypass the attestation mechanism in place and leave
the device vulnerable to Time of Check Time of Use (TOCTOU) attacks. To mitigate
these attacks, we present a hardware-based security extension, called ATRIUM, that
provides a variant of runtime attestation that securely attests both the code’s binary and
its execution behavior at a finer granularity. In doing so, it can effectively mitigate these
memory manipulation attacks described above.

Both of these schemes, however, as well as C-FLAT remain vulnerable to the more
sophisticated data-oriented programming (DOP) attacks [64]. Such attacks subvert these
defense schemes by keeping the control flow and the binary of the code unmodified,
while still enabling Turing-complete malicious execution by carefully corrupting only
non-control data to stitch a sequence of operations on attacker-controlled input. Promi-
nent defenses, e.g., control-flow integrity (CFI) [3, 69], code-pointer integrity [85], and
(fine-grained) code randomization [86] to name some, fall short in mitigating these so-
phisticated attacks. In our next work [38] (Appendix C), we investigate how to pro-
vide an efficient hardware-based remote attestation mechanism for RISC-based devices,
called LiteHAX, that can additionally detect non-control-data attacks. LiteHAX allows
to capture and record both the control- and data-flow events of a program executing on a
remote device and report them to a trusted verifying party. LiteHAX works, in principle,
by interfacing with the processor pipeline and capturing the execution of memory access
instructions at runtime directly from the processor in parallel to the actual execution.

While runtime attestation of memory access operations, as shown in LiteHAX, is
one hardware-based mitigation approach to detect DOP attacks after their occurrence,
runtime enforcement of certain policies or constraints is another promising approach
that blocks the attacks before they even occur. In another work [105] (Appendix D),
we propose runtime scope enforcement to efficiently mitigate all currently known DOP
attacks by identifying the lexical scope rules of variables at compile time and extracting
memory safety constraints from them and enforcing them at runtime. To prototype our
scheme, we presented HardScope [105] (Appendix D), a hardware-assisted runtime
scope enforcement scheme for RISC-V based systems, that provides fine-grained context-
specific memory isolation within programs.

The different hardware-based security mechanisms we have presented above, besides
other state-of-the-art approaches proposed in academia and adopted in industry, ei-
ther apply enforcement or execution tracking/attestation. Moreover, each assume differ-
ent adversarial capabilities, thus mitigating only specific classes of attacks. No consol-
idated defenses exist that can be configured flexibly within the platform at runtime to
thwart different adversarial capabilities depending on the desired security/functional-
ity requirements and deployment environment. This is particularly a challenge for these
hardwired hardware-assisted security extensions which cannot be upgraded or updated
after fabrication (in contrast to software). This makes it impractical for system architects
to deploy these hardware-assisted mechanisms in embedded platforms, despite their ad-
vantages over software-based defenses. In our work [40] (Appendix E), we present and
discuss these insights and challenges in more detail, and present a consolidated runtime-
configurable security extension, called CHASE. CHASE can be more flexibly adapted to
provide different security guarantees and services at runtime, e.g., either enforcement
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or more detailed execution tracking and attestation, depending on the desired security
guarantees and the system real-time, availability and functionality requirements. This
enables the adoption of such hardware-based security extensions and their customiza-
tion at runtime to calibrate the security vs. performance trade-off for individual use
cases and deployment settings.

We present a more detailed overview of our contributions described above in Chap-
ter 2.

Secure microarchitecture for trusted execution environments. As described earlier,
modern multi-core processors are augmented with various performance optimization
features that make them vulnerable to a wide spectrum of different microarchitectural
attacks, as shown in recent works [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101, 132,
134, 25, 27, 118, 20]. Shared cache resources are one of the most popular optimization fea-
tures, and also the most exploited in these attacks. Inherent timing differences between
a cache hit and a cache miss in shared cache behavior are exploited to infer informa-
tion on the victim’s execution patterns, ultimately leaking private information such as
a secret key or other confidential information [56, 53, 57, 55, 18, 147, 92, 16, 71]. The
root cause for these attacks is mutually distrusting processes sharing the cache entries
and deterministic and consistent set-associative eviction and access of these entries. Re-
cently proposed defenses in academia and industry can be classified as randomization-
based [137, 94, 92, 130, 115, 116, 138, 128] or partitioning-based [50, 79, 145, 93, 33, 58,
148, 76, 139, 87, 11, 136, 82, 137]. Recently proposed defenses based on randomized
mapping of addresses to cache lines have been shown vulnerable to newer attack al-
gorithms [116, 17, 113, 114] besides relying on weak cryptographic primitives [15, 114],
and are generally designed to mitigate only certain classes of attacks. When customiz-
ing them to mitigate more advanced attack algorithms, they impose prohibitively high
performance overheads [116]. Ultimately, they fail to provide well-grounded security
guarantees because they do not fundamentally address the root cause for these attacks,
namely, mutually distrusting code sharing cache resources. On the other hand, most
partitioning-based defenses provide the strict resource partitioning required to effec-
tively block all side-channel threats. However, they usually rely on way-based partition-
ing which is not fine-grained, does not scale to support a larger number of protection
domains, degrades performance for larger workloads, and may cause cache underuti-
lization [137, 136, 82, 58]. More importantly, all such defenses assume that side-channel-
resilient cache behavior is required for the entire execution workload and do not allow
the possibility to selectively and flexibly configure the mitigation only for the security-
critical portion of the workload.

To address these limitations of existing cache designs and provide a configurable and
flexible side-channel-resilient cache microarchitecture for security architectures, we pro-
pose a flexible and soft partitioning of set-associative caches by means of a hybrid cache
architecture, called HybCache [41] (Appendix F). HybCache can be configured to selec-
tively apply side-channel-resilient cache behavior only for isolated execution domains
that require this sophisticated security guarantee, while providing the non-isolated ex-
ecution with conventional cache behavior, capacity and performance. An isolation do-
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main is defined as any form of compartmentalization of the workload, e.g., a Trusted
Execution Environment enclave (e.g., as in SGX or TrustZone).

While HybCache enables configurable cache side-channel resilience while maintain-
ing non-degraded performance for the non-isolated execution, it still does not funda-
mentally mitigate all side-channel leakage. The cache occupancy side channel, where
the adversary can attempt to infer the working set size of the victim, is the only side-
channel leakage that is not mitigated by the HybCache construction. This leakage is in-
herently available in any cache architecture where the attacker and the victim processes
compete for entries in shared cache resources. It can only be effectively blocked by strict
cache partitioning, which we deliberately do not provide in the HybCache construction.
This allows different isolation domains to still compete for cache entries, thus preserv-
ing dynamic cache utilization for the entire workload and unaffected performance for
non-isolated execution.

In a follow-up work [44] (Appendix G), we propose another cache design, Chunked-
Cache, that blocks this cache occupancy leakage by providing strict cache partition-
ing thus providing clean isolation, while still maintaining flexible cache utilization.
Chunked-Cache enables an execution context to "carve" out its exclusive cache chunk
of configurable capacity only if it requires cache side-channel resilience. When side-
channel resilience is not required, mainstream cache resources can be freely utilized.
This addresses the security-performance trade-off by efficiently enabling on-demand
cache side-channel resilience, i.e. only when actually required, while providing well-
grounded future-proof security guarantees.

Our work in secure cache designs has enabled more flexible and configurable cache-
based side-channel security that can be adapted on-demand for different portions of
the execution workload individually and independently. To further extend this config-
urability and flexibility to trusted execution capabilities generally, we focus next on the
encompassing security architecture itself. Security architectures providing Trusted Ex-
ecution Environments (TEEs) aim to protect sensitive services by compartmentalizing
them in isolated execution contexts, called enclaves. However, existing TEE solutions
suffer from critical shortcomings with respect to both security and functionality. They
adopt a rigid approach where only a single enclave type is available, although, in fact,
more flexibility is required, since different services require different types of enclaves
that can adapt to the demands of the service in question. Moreover, they cannot even
efficiently support emerging applications, e.g., machine learning services, which require
secure binding of specific enclaves with specific peripherals (e.g., accelerators), or the
computational power of multiple cores securely. Finally, their protection mechanisms
against side-channel attacks, e.g., cache side-channel attacks, are either an afterthought
"hotfix" or impractical for flexible usage, e.g., fine-grained allocation of cache resources
to individual enclaves is usually not supported by default.

We investigate these shortcomings and challenges in our work [11] (Appendix H),
and propose CURE, the first security architecture, which addresses these challenges
by providing different types of enclaves whose boundaries can be flexibly configured
and resources can be selectively allocated to them. Supported enclaves in CURE can
either provide isolation either vertically within any single execution privilege level (sub-
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space enclave), or across multiple privilege levels (kernel-space enclaves) or only for
unprivileged applications (user-space enclaves). In doing so, CURE already outperforms
the state of the art (at time of writing) in TEEs which usually provide only one type
of enclave, as stated earlier. CURE also allows that system resources, e.g., peripherals,
CPU cores, or cache resources are exclusively and selectively assigned to single enclaves,
thus providing the desirable fine-grained resource allocation as well as on-demand and
flexible side-channel protection.

We present a more detailed overview of our contributions described above in Chap-
ter 3.

Security of hardware design and implementation. In this work, we investigate the
security of hardware implementation itself, one level beneath microarchitecture/design
decisions and side-channel mitigation mechanisms. In other words, while a hardware-
based security extension can aim to address software vulnerabilities or mitigate side-
channel leakage, such as cache partitioning, it may in fact be incorrectly implemented,
thus compromising its promised security guarantees. Such hardware-based extensions
and mechanisms, similar to the ones we have designed and developed during the course
of this PhD [37, 144, 40, 38, 105] (Appendices A, B, C, D, and E) as well as industry
solutions such as SGX [68, 32] and TrustZone [7], are not designed to ensure security
at the hardware implementation level. Unless their implementations are exhaustively
verified to ensure that they adhere to the formally defined desired security properties,
they remain vulnerable to potentially undetected hardware bugs committed at design-
time. Such hardware vulnerabilities can occur due to: (a) incorrect or ambiguous or
incorrectly described/formalized security specifications, (b) incorrect design, (c) flawed
implementation of the design, or (d) a combination thereof. Hardware implementation
bugs can be introduced either through human error or by faulty compilation/synthesis
of the design to its gate-level equivalent.

Unlike software flaws, hardware vulnerabilities committed at design-time cannot be
fundamentally patched once the hardware is manufactured. This makes hardware se-
curity testing for detecting these bugs at design-time even more critically crucial than
software security testing. The semiconductor industry already leverages an extensive
variety of techniques, such as simulation, emulation, and formal verification to de-
tect such bugs. While a rich body of knowledge and expertise is long established for
software security, security-focused hardware testing and analysis are currently still lag-
ging behind [78, 106]. To catch up, the industry has recently adopted a security de-
velopment lifecycle (SDL) for hardware [126]. This process combines different tech-
niques and tools, such as RTL manual code audits, assertion-based testing, dynamic
simulation, and automated security verification. In spite of this, our underlying hard-
ware remains vulnerable as demonstrated by the recent outbreak of cross-layer at-
tacks [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20]
where both hardware-only vulnerabilities as well as intricate and complex hardware-
software interactions have been exploited to mount these attacks. Existing industry-
standard techniques are fundamentally limited in modeling and verifying these subtle
hardware-software interactions, and thus fail to detect such flaws. Moreover, they also
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do not scale adequately with the ever-growing size and complexity of real-world SoC
designs.

Thus, in this work [39] (Appendix I) we take a closer look into the design and se-
curity assurance lifecycle of hardware, and focus the spotlight on the limitations and
challenges of state-of-the-art hardware security verification. The first step in qualita-
tively assessing the effectiveness of existing verification techniques was to construct
the test harness itself, i.e., the System-on-Chip (SoC) design and the bugs therein. To-
gether with our industry partners and collaborators at Intel, we systematically con-
structed a varied set of 31 hardware register transfer-level (RTL) bugs inspired from
their first-hand experience with bugs that they have encountered themselves at Intel,
as well as public Common Vulnerabilities and Exposures (CVEs) and real-world er-
rata [103, 104, 102, 90, 83, 62]. We injected the bugs into two open-source real-world
RISC-V-based SoC designs, Pulpino [111] and PULPissimo [112]. We organized the
first edition of what is now the largest international hardware security competition,
Hack@DAC, in 2018 where 54 teams of researchers competed for three months to detect
these bugs in the SoCs. We analyzed the results, and the nature of the approaches they
relied on to detect these bugs, and which classes of bugs were not successfully detected
by the teams.

In a second in-house investigation, we focused on two state-of-the-art formal veri-
fication tools (Formal Property Verification (FPV) [24] and JasperGold’s Security Path
Verification (SPV) [23]) to assess their effectiveness in detecting these bugs and their
ease of use and friendliness. These represent the state of the art in hardware security
verification and are used widely by the semiconductor industry.

Both the results of the competition and our investigation with formal verification tools
have revealed that certain properties of RTL bugs can make them significantly more chal-
lenging to detect, both by manual inspection as well as formal verification techniques.
Building on our findings from both case studies, we attempt to systematically classify
and identify these bugs that are more challenging to detect and the characteristics that
they have in common, where we call such bugs Hardfails [39] (Appendix I). We present
our insights and findings in more detail in our work [39] (Appendix I).

Ultimately, our work and insights manifest why further research is urgently required
to improve state-of-the-art security verification and analysis of hardware, and sheds light
on potentially promising directions, e.g., hybrid techniques that combine both formal
verification and simulation-based testing that would scale better than formal verification
only, as well as more efficient testing inputs generation techniques, such as fuzzing. We
presents our insights for future promising directions in this domain in more detail in
Chapter 5.

Ever since it was first launched in 2018, we have been organizing Hack@DAC ev-
ery year, and organized its first USENIX Security sequel, Hack@Sec, in 2020. Over the
past few years, the competition has been growing in sophistication, size and popular-
ity among both academics and industry professionals. The focus of the competitions
has also shifted and evolved from only bug detection and root cause analysis in 2018

and 2019 to more interestingly tooling, automation and proof-of-concept exploitation in
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Hack@DAC and Hack@Sec 2020. We discuss our work and insights with the competition
and how it has evolved over the years in more detail in Chapter 4.

1.4 other contributions

During the course of this PhD, several other contributions in complementary directions
have also emerged that are are not included as core of this thesis. We present a brief
overview of them next.

Hardware synthesis for secure computation. Through our work, we have shown how
leveraging hardware synthesis tools can enable more efficient secure computation with
Yao’s garbled circuits protocol [141] and the protocol of Goldreich-Micali-Wigderson
(GMW) [51], which work by evaluating a Boolean circuit that represents the desired
functionality. Many works have thus focused on the practical design and generation of
correct Boolean circuits to enable more efficient circuit-based secure computation in dif-
ferent adversarial settings. However, the complexity and time required quickly escalate
for larger and more complex applications, e.g., floating-point arithmetic and signal pro-
cessing. Moreover, the functional correctness of these circuits becomes more difficult to
verify, making them more error-prone. Besides compromising functionality, faulty cir-
cuits may also compromise the security of the underlying applications, e.g., by leaking
information about a party’s private inputs. Therefore, an automated mechanism for gen-
erating correct large-scale circuits which can be used by non-expert developers is desir-
able to enable the practical adoption of secure computation protocols. TinyGarble [124]
adopted a radical approach to this open challenge by leveraging long-established power-
ful hardware logic synthesis tools and customizing them to be adapted to automatically
generate Boolean circuits for functions to be evaluated by Yao’s garbled circuits protocol.

In our work [35], we further advance the deployment of these tools for secure com-
putation, and show how to automatically use them to synthesize an extensive set of
size-optimized circuits of basic and complex operations for Yao’s garbled circuits proto-
col, as well as depth-optimized circuits for the GMW protocol. We build libraries of these
optimized sub-block circuits and use these to automatically construct more complicated
functionalities in a modular fashion, which would otherwise be impossible to build and
optimize by hand. To also enable the generation of Boolean circuits for more complex
functionalities such as floating-point arithmetic, which would otherwise be impossible
by hand, we also leverage built-in Intellectual Property (IP) libraries (which are already
extensively tested and verified) in commercial hardware synthesis tools. We extensively
evaluate and benchmark our circuit constructions and show how we outperform the
state of the art at the time of writing.

Next in [125], we present and prototype GarbledCPU, the first configurable general-
purpose sequential CPU for 2-party Garbled Circuits-based secure sequential function
computation. GarbledCPU provides support for secure function evaluation (SFE) with
different privacy settings to allow for a configurable trade-off between privacy and per-
formance that can be adapted according to requirements. The parties can choose to eval-
uate a private, semi-private or public function by revealing none, partial or all informa-
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tion about the function respectively while still exploiting the advantages and simplicity
of programming a processor.

Current two-party secure computation protocol implementations against passive ad-
versaries generate and process data much faster than it can be communicated over the
network. In [36], we introduce, deploy and evaluate novel methods to further reduce
the communication bottleneck and round complexity of semi-honest secure two-party
computation. We first improve communication for Boolean circuits with 2-input gates
by factor 1.9x when evaluated with the GMW protocol. Furthermore, we evolve the
conventional Boolean circuit representation from 2-input gates to a more compact multi-
input/multi-output lookup tables (LUTs), thus enabling the evaluation of more complex
functions by representing them into LUT-based circuits. We construct and propose two
protocols for evaluating LUT-based circuits which offer a trade-off between online com-
munication and total communication. Our most efficient LUT-based protocol reduces the
communication overhead and round complexity by a factor 2-4x for several basic and
complex operations compared to prior work. Since we evolve the protocols to evaluate
LUT-based circuits, we also required new optimized LUT-based circuit representations
of pertinent functions. We develop an automated toolchain that transforms high-level
function descriptions into their LUT representations, where we re-purpose hardware
synthesis tools for secure computation. We focus on LUT-based synthesis tools (often
targeting FPGA-based development) in this work, which we customize and adapt to
automatically generate optimized multi-input multi-output LUT representations. We
demonstrate the improved efficiency and practicality of our LUT protocols by exten-
sively evaluating them over a wide range of functionalities.

Besides the impact of our work to enable more practical and efficient secure commu-
nication [35, 125, 36], it additionally serves as concrete testimony to how knowledge
from one discipline, i.e., hardware design and synthesis, can prove radically useful and
enhancing for another discipline, i.e., efficient secure computation protocols.

Publications

[35] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, and Shaza Zeitouni. Automated Synthesis of Optimized Circuits
for Secure Computation. In ACM Conference on Computer and Communications
Security 2015 (CCS’15).

[125] Ebrahim Songhori, Shaza Zeitouni, Ghada Dessouky, Thomas Schneider,
Ahmad-Reza Sadeghi and Farinaz Koushanfar. GarbledCPU: A MIPS Processor for
Secure Computation in Hardware. In the Annual Design Automation Conference 2016

(DAC’16).

[36] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schnei-
der, Shaza Zeitouni, and Michael Zohner. Pushing the Communication Barrier in
Secure Computation using Lookup Tables. In the Annual Network and Distributed
System Security Symposium 2017 (NDSS’17).
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Collective remote attestation. While remotely attesting the software integrity of a sin-
gle device is well established (as we also show through our work in hardware-based
attestation), scaling this service to a network of devices poses a multitude of research
and deployment challenges. In this work [34], we systematically analyze and design
collective remote attestation schemes, with the goal to overcome the limitations of prior
schemes that were designed in an ad-hoc reactive fashion. Ultimately, we aim to provide
a systematic foundation for collective remote attestation schemes that serves as reference
design guidelines for researchers and practitioners. In doing so, we explore the design
space for collective remote attestation and formally define and model notions of the ef-
ficiency, soundness and security requirements according to a given application domain.
In light of these requirements, we also present, prototype and evaluate a concrete collec-
tive remote attestation scheme and show that it adheres to the aforementioned desirable
requirements.

Publication

[34] Ivan De Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Norrathep Rat-
tanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. Towards Systematic Design
of Collective Remote Attestation Protocols. In the 39th International Conference on
Distributed Computing Systems 2019 (ICDCS’19).

Security of multi-tenant FPGA computing. Given the increasing deployment of Field
Programmable Gate Arrays (FPGAs) in data centers, and their continuously evolving
size, complexity and capabilities, researchers have proposed that they can be shared
spatially by multiple tenants, or clients, simultaneously. In contrast to temporal sharing
where the FPGA instance is shared but utilized by only one tenant at any point in time,
in spatial multi-tenant deployment the FPGA fabric is simultaneously shared among
mutually distrusting tenants. This can be enabled by leveraging the partial reconfigura-
tion capability of FPGAs.

In [43], we systematically analyze prior research work on multi-tenant FPGAs in cloud
computing at time of writing. We outline their adversary and deployment assumptions,
acclaimed security guarantees, and analyze how they fall short with respect to both
security and privacy. We also focus more specifically on categorizing existing works
that demonstrate a new class of remotely-exploitable physical attacks on multi-tenant
FPGAs by malicious tenants when they are sharing physical FPGA resources with the
victims. Through investigating end-to-end multi-tenant FPGA deployment comprehen-
sively, we reveal how these remote attacks, in fact, represent only one dimension of the
security/privacy problem. Various more fundamental security and privacy challenges
remain open and unaddressed in deploying multi-tenant FPGAs in cloud computing set-
tings, which we investigate in this work. We also provide our insights on the most vital
research challenges and open opportunities in the future of secure FPGA-based cloud
computing. In doing this, we draw analogies with conventional CPU-based computing
and outline the lessons learned that can proactively serve and guide the establishment
of secure multi-tenant FPGA-based computing in the cloud.
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Publication

[43] Ghada Dessouky, Ahmad-Reza Sadeghi, and Shaza Zeitouni. SoK: Secure FPGA
Multi-Tenancy in the Cloud: Challenges and Opportunities. In IEEE European Sympo-
sium on Security and Privacy 2021 (EuroS&P’21).

Security architectures for Network-on-Chips (NoCs). Novel many-core chips, de-
signed to cater for the increased performance and computational power demands of
emerging applications, require Network-on-Chip (NoC) based architectures to enable
scalable and efficient communication among this increasing number of cores. However,
NoC designs lack adequate security mechanisms that scale to provide the required secu-
rity guarantees, such as enforced isolation of execution and resources, while preserving
the desired scalable and efficient communication. New security-aware architectures that
protect sensitive services in isolated or trusted execution environments, i.e., enclaves,
usually target only multi-core designs, and thus cannot directly extend and scale to sup-
port NoC platforms. These architectures usually lack secure and flexible enclave-device
binding and do not provide flexible and practical enclave memory management.

We investigate and address these fundamental challenges in our work [42], where
we introduce and evaluate a new hardware security primitive, the Distributed Mem-
ory Guard, which performs NoC-level access control on outgoing memory requests. In
doing so, we also investigate the memory fragmentation that occurs for typical cloud
services, and realize that it is unavoidable on long-running systems. We analyze this
specifically for enclave computing and highlight why this is one of the most significant
challenges of enclave architectures that has not been practically addressed. Furthermore,
this becomes a more critical challenge when scaling enclave computing to heterogeneous
NoC-based architectures, thus motivating our work.

Publication

[42] Ghada Dessouky, Mihailo Isakov, Michel A. Kinsy, Pouya Mahmoody, Miguel
Mark, Ahmad-Reza Sadeghi, Emmanuel Stapf, and Shaza Zeitouni. Distributed
Memory Guard: Enabling Secure Enclave Computing in NoC-based Architectures. In the
Annual Design Automation Conference 2021 (DAC’21).

1.5 thesis outline

This thesis is structured in line with Figure 1, and consists of four subsequent chapters,
where the first three chapters present our main contributions as shown in Figure 2.
We conclude our work in the last chapter with a summary and on outlook for future
research directions.

1. Hardware-based Security Mechanisms (Chapter 2)

2. Secure Microarchitecture for Trusted Execution (Chapter 3)

3. Hardware Implementation Security (Chapter 4)
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4. Conclusion (Chapter 5)

Chapters 2, 3, and 4 each briefly introduces the problem statement that our work ad-
dresses, and presents a more detailed overview of our contributions, followed by the
relevant peer-reviewed publications.





2
H A R D WA R E - B A S E D S E C U R I T Y M E C H A N I S M S

2.1 problem statement and motivation

The proliferating trend of the Internet of Things (IoT) and their increasingly collabo-
rative nature has made all classes of computing systems, especially embedded devices,
increasingly ubiquitous in a variety of different settings. While these devices collect, pro-
cess, and communicate plenty of security/privacy/security-critical data, their pervasive-
ness, connectivity, and sensing/actuating capabilities render them increasingly vulnera-
ble to a large spectrum of different attacks. On the other hand, to adhere to the desired
cost and power consumption budgets as well as performance and deployment require-
ments, embedded devices are usually resource-constrained and lack the sophisticated
security mechanisms often deployed in higher-end computing devices. This has made
it particularly challenge to harden embedded devices security in the face of various
known and emerging attacks, e.g., malware infestation, as well as runtime attacks such
as control-flow hijacking [121, 14] and data-oriented programming (DOP) attacks [64].
Critical attacks exploiting embedded devices have been shown over the last decade, e.g.,
Stuxnet [31] and Mirai [67]. Such attacks commonly attempt to exploit software mem-
ory corruption vulnerabilities, e.g., buffer overflow vulnerabilities, to compromise the
device. We briefly introduce these attacks next in subsection 2.1.1 and refer the reader
to our work [37, 144, 38, 105, 40] (Appendices A, B, C, D, and E) for a more detailed
description of the attacks.

2.1.1 Software Runtime Attacks

Traditionally runtime attacks exploit a security vulnerability, typically a memory cor-
ruption vulnerability, in order to modify the program code on a device by injecting
malicious code. However, with the advent of W⊕X memory access policies such as Data
Execution Prevention [61], code-injection attacks have been effectively mitigated. Thus,
attackers have had to resort to other stealthier and more sophisticated tactics such as
code-reuse techniques [127], e.g., Return-Oriented Programming (ROP) [121] or Jump-
Oriented Programming (JOP) [14]. These techniques exploit memory vulnerabilities in
order to corrupt control-data and be able to re-use code chunks or gadgets already resid-
ing in the memory of the targeted program and hijack the control flow of the program
to construct the attack payload. In other words, the code binary is unchanged, but it is
how the code gadgets are executed and their sequence that is actually compromised.

A stealthier class of attacks is that of data-oriented attacks [28], where a non-control-
data variable is compromised to divert control flow to yet another valid execution path,
but an illegal or unauthorized one in this particular execution context. More recently,
even more sophisticated Data-Oriented Programming (DOP) attacks [64] were shown

21
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which allow the adversary to execute Turing-complete malicious execution by corrupt-
ing only non-control-data to stitch a sequences of operations on attacker-controlled in-
put. DOP attacks neither modify the binaries nor divert the program’s control flow, thus
rendering them significantly more challenging to mitigate or detect.

2.1.2 Limitations of Existing Defenses

To mitigate these sophisticated attacks, extensive research efforts have been invested
in both runtime attacks as well as defenses over the past two decades. Prominent de-
fense approaches are control-flow integrity [3, 69], code-pointer integrity [85], data-flow
integrity [26], and (fine-grained) code randomization [86]. However, these solutions
enforce security policies such as control-flow or data-flow integrity, without or with
only limited context-sensitivity. Moreover, fine-grained enforcement of indirect forward
branches remains a challenge because it is difficult to exhaustively and accurately de-
rive the policies, e.g., the set of valid indirect destination addresses for a given branch
source instruction, and to enforce them with minimal performance overhead. Gener-
ally, these approaches fail to capture and provide information about the complete state
of a program’s execution (which is required in detecting non-control-data attacks) and
cannot mitigate DOP attacks without incurring prohibitively high performance over-
head [64, 26].

Alternatively, remote attestation is a security service that is often deployed to allow
a trusted party, called the verifier to establish trust in a potentially compromised and
untrusted embedded device, called the prover by statically verifying that the program
code initially loaded onto the device is unmodified. It is implemented as a challenge-
response protocol where the verifier sends a challenge to the prover, and the prover
in turn sends back an authenticated report to the verifier. The verifier usually generates
this report by issuing a digital signature or cryptographic MAC (Message Authentication
Code) over the verifier’s challenge and the measurement (typically a hash computation)
of the binary code that ought to be attested. However, conventional attestation schemes
are static in nature, i.e., they only ensure the integrity of the program binary (that it has
not been modified). They cannot provide any guarantees with respect to the execution
behavior of this program, e.g., they cannot capture and report how the program executes,
and thus cannot detect the aforementioned runtime attacks that hijack the control or
data flow of execution [127] without modifying the program binary.

Hence, a software-based runtime remote attestation mechanism was first proposed
that can capture and detect control-flow attacks [4]. The application runs in the normal
untrusted world in a TEE while the attestation software is trusted and deployed in the
secure world. However, being software-based in design and implementation implicates
two major limitations that prohibit its practical deployment. Firstly, in order to detect
control-flow events, the application code must be heavily instrumented prior to deploy-
ment. Non-instrumented or incorrectly-instrumented software cannot be attested. The
instrumentation rewrites all control-flow instructions (e.g., branch, return, etc.) in the
source code with trampoline instructions that capture the control-flow event and trans-
fer it to the attestation software. This increases code size and contributes to the incurred
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performance overheads. Secondly, the attestation software runs on the main processor
along with the application being attested, which incurs prohibitively high performance
penalties because single control-flow instructions are essentially replaced with relatively
many numbers of instructions in order to track and record the control-flow event (e.g.,
update a running hash value). The attestation overhead increases linearly with the num-
ber of control-flow events, which means it can grow significantly for some code samples
and is entirely application-dependent. Besides trampolines, the context switching be-
tween the normal and secure worlds of the TEE for the measurement to be performed
in a trusted environment contributes to the overall incurred performance overhead, as
well as the context switching for the hash computations themselves. Finally, the scheme
assumes that the attestation software itself and its deployment in the secure world is
trusted, and thus the attestation report generated can be trusted.

C-FLAT’s runtime attestation scheme can only report the control flow of the execution.
While it can detect some non-control-data attacks, e.g., corruption that influences the
number of loop iterations, it cannot detect more sophisticated data-oriented attacks that
leave the control flow still valid. Moreover, it still only mitigates attacks by detecting them,
but does not prevent them altogether by enforcing a set of provided policies, for example.
On the other hand, enforcement schemes can only enforce the policies provided, and
thus only detect attacks that involve a deviation from these policies. Thus, they are
only as good as the policies derived, whereas analyzing code (by means of static and
dynamic analysis) to generate these policies exhaustively remains a challenge especially
as the application code size scales. Moreover, they cannot report the overall execution
behavior of the application.

While in some deployment settings, a non-intrusive tracking of program execu-
tion is desired, in others a strict enforcement of policies is necessary. Furthermore,
in different deployment settings different security guarantees under different adver-
sarial assumptions may be desired. However, at the time of our work and publica-
tions [37, 144, 38, 105, 40] (Appendices A, B, C, D, and E), according to our knowl-
edge, no consolidated mechanism actually existed that can be configured flexibly within
the platform at run-time to mitigate different classes of attacks and thwart different
adversarial capabilities, and thus be customized according to the desired security/func-
tionality requirements and deployment environment. This is particularly a challenge for
potentially deploying hardwired hardware-assisted security extensions which cannot be
upgraded or updated after fabrication (in contrast to software), and will thus always
provide fixed security guarantees and assume the same adversarial capabilities once
produced. This makes it impractical for system architects to deploy hardware-assisted
mechanisms in embedded platforms, despite their advantages over software-based de-
fenses. Despite being necessary especially in certain adversarial settings, these protection
mechanisms are often entirely missing from some systems such as timing-critical real-
time systems. This is usually because fail-safe operation that adheres to hard deadlines is
a critical requirement of these systems, while these protection mechanisms [3, 69, 85, 4]
incur non-negligible performance overheads. While this can be tolerated to some extent
for applications without real-time constraints, it would violate the functionality require-
ments of real-time high-availability systems.
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2.2 contributions

This thesis has significantly contributed to the problems described above with the fol-
lowing five publications that can be found in Appendices A, B, C, D, and E:

[37] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lu-
cas Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. LO-FAT: Low-
overhead Control Flow Attestation in Hardware. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM, 2017. Core Rank A. Appendix A.

[144] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. ATRIUM: Runtime Attestation
Resilient under Memory Attacks. In IEEE/ACM International Conference on
Computer-Aided Design. IEEE, 2017. Core Rank A. Appendix B.

[38] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi.
LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. In
IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2018.
Core Rank A. Appendix C.

[105] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, An-
drew Paverd, N. Asokan, and Ahmad-Reza Sadeghi. HardScope: Hardening Em-
bedded Systems Against Data-Oriented Attacks. In IEEE/ACM Design Automa-
tion Conference (DAC). ACM/IEEE, 2019. Core Rank A. Appendix D.

[40] Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, and Ahmad-
Reza Sadeghi. CHASE: A Configurable Hardware-Assisted Security Extension
for Real-Time Systems. In IEEE/ACM International Conference on Computer-
Aided Design. IEEE, 2019. Core Rank A. Appendix E.

Through our work we investigate and show how the aforementioned limitations and
deficiencies of software-based security mechanisms can be overcome by relying on hard-
ware instead. We present LO-FAT [37] (Appendix A), the first hardware-based mecha-
nism for control-flow attestation. LO-FAT works by leveraging existing processor hard-
ware features that inherently keep track of execution in a cycle-accurate manner. LO-FAT
hardware extensions non-invasively interface with these existing processor hardware
features to capture the metadata required to track execution and compute a hash mea-
surement over the it. The computed values are communicated securely to a trusted third
party to verify the control flow of the execution. This hardware-based approach enables
significantly more efficient control-flow attestation in contrast with the software-based
scheme, while incurring only negligible additional hardware and without requiring soft-
ware instrumentation. Moreover, it provides stronger security guarantees while relying
on a significantly smaller TCB than the software-based counterpart, as we show with our
work and proof-of-concept implementation based on a RISC-V SoC in [37] (Appendix
A).

The security guarantees of LO-FAT (as well as conventional static remote attestation
schemes) rely on the assumption that attacks are software-only and that the program
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code cannot be modified at runtime. In practice, these assumptions may not hold where
a stronger, yet still realistic, adversary is capable of controlling and modifying the code
memory such that benign code is attested but malicious code is executed, thus bypassing
the attestation mechanism in place and leaving the device vulnerable to Time of Check
Time of Use (TOCTOU) attacks. In our work [144] (Appendix B), we demonstrate such
TOCTOU attacks on recently proposed attestation schemes by exploiting physical access
to the device’s memory and showing how these attacks are, in fact, realistic. To mitigate
them, we present a hardware-based security extension, called ATRIUM, that provides
runtime remote attestation that securely attests both the code’s binary and its execution
behavior, similarly to LO-FAT. However, it captures and measures the entire execution
at a finer granularity and with different mechanisms such that it can also mitigate these
memory manipulation attacks that are possible within a stronger adversary model. We
show in [144] (Appendix B) a proof-of-concept implementation of ATRIUM on a RISC-V
SoC and show how it provides resilience against both software- and hardware-based
TOCTOU attacks, while incurring minimal area and performance overhead.

Both of these schemes, however, as well as C-FLAT remain vulnerable to the more
sophisticated data-oriented programming (DOP) attacks [64]. Such attacks subvert these
defense schemes by principally keeping the control flow and the binary of the code
unmodified. They allow the adversary to execute Turing-complete malicious execution
by carefully corrupting only non-control data to stitch a sequence of operations on
attacker-controlled input. Prominent defenses approaches, e.g., control-flow integrity
(CFI) [3, 69], code-pointer integrity [85], and (fine-grained) code randomization [86] to
name some, fall short in mitigating these sophisticated attacks. These usually enforce
security policies such as control-flow integrity which cannot capture non-control-data
attacks which do not modify the control flow of execution. They do not provide any
information about the complete state of a program’s execution (e.g., required in de-
tecting non-control-data attacks) nor can they mitigate DOP attacks without generating
prohibitively high performance overhead [64].

In our next work [38] (Appendix C), we investigate how we can provide an efficient
hardware-based remote attestation mechanism for RISC-based devices, called LiteHAX,
that can additionally detect non-control-data attacks. LiteHAX allows to securely, effi-
ciently and continuously capture and record both the control- and data-flow events of a
program executing on a remote device and report them to a trusted verifying party. All
known and reported non-control-data and DOP attacks essentially boil down to corrupt-
ing memory access operations, without inflicting any unintended control flow [64]. On
RISC-V based systems, which is the target architecture in this work, memory accesses
are only possible via load and store instructions. LiteHAX works, in principle, by in-
terfacing with the processor pipeline and extracting and capturing all metadata on the
execution of these memory access instructions at run-time directly from the processor
in parallel to the actual execution. Therefore, similar to our earlier work, LiteHAX is
minimally invasive to the processor implementation; it does not require modifications
to the processor micro-architecture, neither does it require extensions to the instruction
set architecture, or instrumentation of the program code. We implemented and evalu-
ated LiteHAX on a RISC-V System-on-Chip (SoC) and show in our publication that it
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incurs minimal performance and area overhead while detecting non-control-data attacks
as required.

While runtime capturing and attestation of memory access operations, as shown in
LiteHAX [38] (Appendix C), is one hardware-based mitigation approach to detect DOP
attacks after their occurrence, run-time enforcement of certain policies or constraints is
another promising approach that blocks the attacks before they even occur. In another
work [105] (Appendix D), we propose run-time scope enforcement to efficiently miti-
gate all currently known DOP attacks by identifying the lexical scope rules of variables
at compile time and extracting memory safety constraints from them and enforcing
them at run time. To prototype our scheme, we presented HardScope [105] (Appendix
D), a hardware-assisted run-time scope enforcement scheme for RISC-V based systems,
that provides fine-grained context-specific memory isolation within programs. Hard-
Scope requires that the compiler is modified to instrument the program code with spe-
cial instructions that record which variables may be used by each code block. Thus,
HardScope requires an instruction set extension for this purpose. At run time, these
instructions are used to create the different memory access rules dynamically for each
individual function invocation (assuming function-level granularity) and these rules are
then stored in hardware-protected stack memory. The HardScope hardware extension
captures every memory access directly from the pipeline and mediates it to check it
against the stored access control rules. We show in our work how HardScope can sig-
nificantly reduce the exposure to data-oriented attacks with a minimal performance
overhead of 3.2% for embedded benchmarks.

The different hardware-based security mechanisms we have presented above, besides
other state-of-the-art approaches proposed in academia and adopted in industry, either
apply enforcement or execution tracking/attestation. Moreover, each assume a differ-
ent adversary model and different adversarial capabilities, thus mitigating only specific
classes of attacks. No consolidated defenses exist that can mitigate multiple classes of
different attack vectors, or can be even configured flexibly within the platform at run time
to thwart different adversarial capabilities depending on the desired security/functional-
ity requirements and deployment environment. This is particularly a challenge for these
hardwired hardware-assisted security extensions which cannot be upgraded or updated
after fabrication (in contrast to software), and will thus always provide fixed security
guarantees and assume the same adversarial capabilities once produced. This makes
it impractical for system architects to deploy these hardware-assisted mechanisms in
embedded platforms, despite their advantages over software-based defenses. Secondly,
timing-critical real-time systems often lack these protection mechanisms, despite. This
is usually because fail-safe operation with hard deadlines is critical, while protection
mechanisms, such as control-flow integrity and attestation, to mitigate or detect such at-
tacks have been shown to incur non-negligible performance overheads. While this can be
tolerated to some extent for applications without real-time constraints, it would violate
the functionality requirements of real-time high-availability systems.

In our work [40] (Appendix E), we present and discuss these insights and challenges in
more detail, and present a consolidated runtime-configurable security extension, called
CHASE. CHASE can be more flexibly adapted to provide different security guarantees
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and services at run time, e.g., either enforcement or more detailed execution tracking
and attestation, depending on the desired security guarantees and the system real-time,
availability and functionality requirements. This enables the adoption of such hardware-
based security extensions and their customization at run time to calibrate the security
vs. performance trade-off for individual use cases and deployment settings. We analyze
CHASE’s effectiveness in providing different security guarantees and services against
different adversarial capabilities and for different use cases (e.g., real-time applications),
and evaluate how this is possible with reasonable hardware logic overhead and minimal
performance overhead.





3
S E C U R E M I C R O A R C H I T E C T U R E F O R T R U S T E D E X E C U T I O N

3.1 problem statement and motivation

Modern multi-core processors are augmented with various performance optimization
features that make them vulnerable to a wide spectrum of different microarchitectural
attacks, as shown in recent works [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101,
132, 134, 25, 27, 118, 20]. Shared cache resources are one of the most popular optimiza-
tion features, and also the most exploited in these attacks. The inherent timing difference
between a cache hit and a cache miss in shared cache behavior, while being precisely
why caches are used, is also how they are exploited to infer information on the victim’s
execution patterns, ultimately leaking private information such as a secret key. The root
cause for these attacks is mutually distrusting processes sharing the cache entries by
means of deterministic and consistent set-associative access and eviction. We present
next a brief overview of such cache side-channel attacks that are relevant for our work
in 3.1.1, followed by the shortcomings of recently proposed defenses that our work aims
to overcome in 3.1.2. Next, we focus on the encompassing security architecture itself,
where we briefly discuss how state-of-the-art Trusted Execution Environment (TEE) se-
curity architectures suffer from severe shortcomings that hinder their secure and flexible
deployment as desired for different emerging use cases.

3.1.1 Cache Side-Channel Attacks

We briefly introduce here recent cache side-channel attacks that are relevant for our
work. Cache side-channel attacks have been shown to constitute a profound threat, while
also playing a critical role in mounting some of the more popular attacks such as Spec-
tre [83] and Meltdown [90]. Different types of these attacks have been demonstrated
on all platforms and architectures, ranging from mobile and embedded devices [89] to
server computing systems [92, 71, 147]. Furthermore, they have also been shown to un-
dermine the promised isolation guarantees of trusted execution environments, like Intel
SGX [18, 119, 100, 52] and ARM TrustZone [89, 145]. By means of these attacks, both fine-
grained as well as coarse-grained private data and operations can be inferred, e.g., by
bypassing address space layout randomization (ASLR) [56, 53], inferring keystroke be-
havior [57, 55], or leaking privacy-sensitive human genome indexing computation [18],
or leaking RSA [147, 92] and AES [16, 71] decryption keys.

The attacks usually work by provoking controlled evictions of the victim’s cache line,
where the inherent information leakage from the access timing difference between cache
hits and misses can be exploited by the adversary. We can classify the attacks into four
main classes, as follows.

29
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Access-based Approaches. In access-based attacks, e.g., Flush + Reload [60, 142],
Flush + Flush [57], Invalidate + Transfer [72], and Flush + Prefetch [56], the adversary
accesses the target addresses directly by flushing them out of the cache using the clflush
instruction [1] or even exploiting timing leakage from the execution of the clflush instruc-
tion [57]. Flushing a target address invalidates the corresponding cache lines and writes
it back to memory. Evict + Reload [55] attacks have also been shown which do not re-
quire the clflush instruction, but instead evict specific cache sets by accessing physically
congruent addresses. These attacks are only feasible in case of shared memory between
the adversary and victim, usually in the form of shared libraries, and thus, shared cache
lines, and are usually effectively easier to defend against.

Conflict-based Approaches. Stealthier conflict/contention-based attacks, such as,
Prime + Probe [107, 71, 75, 92, 140], Prime + Abort [45], Evict + Time [53, 107], alias-
driven attacks [59], and indirect Memory Management Unit (MMU)-based cache at-
tacks [133], require that the adversary constructs a minimal eviction set, i.e., a set of
memory addresses to map to the same cache set as the target address that the adver-
sary wants to monitor, and uses it to trigger and exploit a controlled cache contention
in the same cache set of the target addresses, thus, evicting the corresponding victim
cache lines. This is possible by different techniques. The adversary either measures the
overall time needed by the victim process to perform certain computations [12, 16], or
probes the cache with eviction sets and profiles cache activity to deduce which memory
addresses were accessed [92, 71, 140, 142, 75], or accesses target memory addresses and
measures the timing of these individual accesses [107, 60]. Alternatively, the adversary
can also read values of addresses from the main memory to see whether cache lines
that contain cacheable target addresses have been evicted to memory [59]. These attacks
represent the most challenging class of attacks to sufficiently mitigate, owing to their
continuously evolving sophistication and stealthiness.

Collision-based Approaches. Cache-collision timing attacks exploit cache collisions
that the victim has to experience due to its own cache utilization, e.g., after a sequence of
lookups performed by a table-driven software implementation of an encryption scheme,
such as AES [16]. Here, the adversary is assumed capable of timing the computation
of the victim process. Collision-based attacks, however, are not very commonly shown
and are very specific to certain software implementations, and thus do not represent a
sufficiently significant threat. The only effective architectural defense for them is locking
relevant cache lines after pre-loading them.

Occupancy-based Approaches. Cache-occupancy attacks are possible in any cache
architecture where adversary and victim processes compete for shared cache resources,
i.e., when no strict partitioning is enforced. In these attacks the adversary observes when
an eviction of his own line occurs, even if he cannot infer the address of the line that
replaced it. Thus, the adversary can measure the number of evictions, use this informa-
tion to infer the size of the victim’s working set, and use this as a signature. A recent
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attack [122] leverages this side channel to infer which website is opened in a browser
tab.

3.1.2 Shortcomings of Recent Cache Defenses

Various types of defenses have been proposed to mitigate the aforementioned side-
channel attacks, with a particular focus on the more challenging and powerful access-
based and conflict-based attacks. We summarize below the different defense categories.

Side-channel Resilient Software Implementation. This aims at implementing algo-
rithms, e.g. cryptographic algorithms, in a time-constant (thus side-channel-resilient)
fashion [70, 13]. Time-constant algorithms and their implementations are not generaliz-
able, i.e., they are hardware platform-dependent [30] and require considerable manual
effort, and thus, do not represent a scalable solution.

Attack Detection. Other approaches aim to detect attacks in progress by observing
hardware performance counters (e.g., on cache miss rates) [29, 109] and inferring heuris-
tically whether an attack is underway, and consequently killing the suspicious process.
However, like any heuristics-based approach, the attacks can only be discovered with a
certain probability with no solid protection guarantees possible. Moreover, some stealthy
variants of the attacks have been shown to not cause abnormal cache behavior [57] and
would thus slip undetected through such mechanisms.

Noise Injection. Another class of defenses aims to impede a successful attack by pre-
venting the adversary from performing precise time measurements, e.g., by restricting
the access to timers [108, 110, 97], injecting noise into the system [135, 66] or deliberately
slowing down the system clock [65, 96]. Such defenses are not fool-proof, since they do
not address the fundamental root cause of the attacks, but instead only debilitate the
mechanisms and means required to mount them. Moreover, they directly impact access
to features, e.g., timers that are required–as actually intended–for benign functionalities.
In fact, workarounds have been shown to synthesize timers still [117] or to perform
attacks without relying on timers altogether [46]. Additionally, such defenses cannot
protect TEE (Trusted Execution Environment) architectures, where a strong adversary
capable of compromising the OS kernel is assumed, and can therefore circumvent such
restrictions and still access the timers.

Cache Micro-architectural/Architectural Defenses. The approaches most related to
our work are defenses which tackle the side-channel problem directly where it origi-
nates, at the cache. These defenses fall under one of two paradigms: 1) randomization-
based defenses that rely on either randomized mapping tables [137, 94, 91] or cryp-
tographic primitives Trilla18,Qureshi18,ceaser-s,scattercache,phantomcache to generate
reproducible randomized mapping of memory addresses to cache sets, in order to make
the attacks computationally impractical or 2) cache partitioning of any form to provide
strict isolation, thus eliminating interference altogether [50, 79, 145, 93, 33, 58, 148, 76,
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139, 87, 11, 136, 82, 137]. We describe the state of the art in cache side-channel defenses
and their deficiencies in more detail in our work [41] (Appendix F) and [44] (Appendix
G), and provide a brief summary below.

Randomization-based defenses cannot provide comprehensive and solid future-proof
security guarantees, e.g., subsequent advances in minimal eviction set construction
techniques have been shown to already undermine recent randomization-based de-
fenses [116, 17, 113, 114]. In other words, these defenses usually provide security guar-
antees on par with the state of the art in attack algorithms/techniques, and are quickly
rendered ineffective once a novel attack technique that undermines them is discovered.
Once these defenses are customized to mitigate more advanced attack algorithms, e.g.,
more frequent re-keying of the indexing function [116], they impose prohibitively high
performance overheads. Moreover, many of them rely on weak cryptographic primi-
tives which have been shown vulnerable to cryptoanalysis, whereas deploying more se-
cure primitives would further degrade performance and prohibitively increase hardware
overheads [15, 114]. They are usually also designed to mitigate only certain classes of
attacks, leaving them still vulnerable to either other attack variants or other side-channel
attacks. In short, defenses in this category fail to provide well-grounded security guaran-
tees because they do not fundamentally address the root cause for these attacks, namely,
mutually distrusting code sharing cache resources.

On the other hand, cache partitioning defenses provide strict cache isolation and
the desirable explicit non-interference between mutually distrusting processes, which
allows to give well-justified and solid security guarantees on side-channel protection.
However, existing partitioning defenses suffer from significant performance degrada-
tion, restrictive and inflexible cache utilization [137], coarse-grained allocation of the
cache resources, and their inability to scale with a larger number of protection do-
mains [136, 82, 58], as required for TEE security architectures for example. Several ap-
proaches do not directly cater for the use of shared libraries [50, 136], are architecture-
specific [76, 139] or do not defend against occupancy-based attacks.

Most importantly, all of these defenses apply their side-channel cache protection for
the entire execution workload impacting overall system performance, which is in prac-
tice not even required in most scenarios. They do not allow the possibility to selectively
and flexibly configure the mitigation only for the security-critical portion of the work-
load, and thus being able to fine-tune the security vs. performance trade-off for different
portions of the workload as desired.

Another approach to mitigating these side-channel attacks is flushing cache resources
on every context switch to a sensitive application, as proposed by various TEE architec-
tures [33, 19, 87, 11]. However, this does not scale well for larger caches since the per-
formance cost incurred would become unreasonable. Moreover, flushing is not possible
on a shared last-level cache, since it is shared simultaneously among multiple cores and
thus, more sophisticated mechanisms are required to prevent cross-core side-channel
attacks.
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3.1.3 Limitations of Existing TEE Security Architectures

Security architectures that provide Trusted Execution Environments (TEE) protect
against a privileged software adversary, e.g., a compromised operating system, by en-
abling the execution of sensitive services (both code and data) in isolated containers or
compartments, also called enclaves. TEE architectures have been proposed for a variety
of computing platforms, though we focus in our work specifically on high-performance
computing platforms, e.g., industry solutions such as Intel SGX [68, 32], AMD SEV [74],
and ARM TrustZone [7] or academic solutions such as Sanctum [33], Sanctuary [19],
Keystone [87], and Komodo [49].

These TEE architectures usually provide only one type of enclave with the same priv-
ileges and boundaries, and thus it is required that applications which require enclave
execution are adapted to the features and limitations of the enclave that the platform
provides, e.g., Intel SGX restricts system calls of its enclaves and thus, applications need
to be modified when being ported to SGX which incurs both deployment and perfor-
mance overhead costs. In practice, it is definitely more desirable and practical if unmod-
ified applications can be deployed directly to enclaves, and the enclave privilege level
and boundaries can be specified and configured on-demand to accommodate the use
case in question.

Moreover, an increasing number and variety of services now are processing
sensitive/security-critical data, e.g., payment services, biometric authentication, smart
contracts, speech processing, Machine Learning as a Service (MLaaS), among many oth-
ers. These services are of different nature, and thus impose different requirements, both
in terms of functionality and security, on the underlying TEE architecture. One such re-
quirement, for instance, concerns the ability to establish secure, exclusive and practical
binding between specific enclaves and different input/output peripherals on-demand.
On some devices, for instance, privacy-sensitive data is constantly being collected over
various audio, video or biometric data sensors. On devices running machine learning
services, massive amounts of potentially sensitive data are often aggregated and usually
offloaded to external hardware accelerators, e.g., FPGAs and GPUs, to train proprietary
machine learning models. However, architectures such as SGX, SEV and Sanctum do not
provide secure input/output capabilities altogether, while Keystone would require ad-
ditional hardware mechanisms incorporated in order to support Direct Memory Access
(DMA)-capable peripherals (e.g., GPUs and FPGAs), and other architectures would re-
quire hardware changes to the peripheral itself, e.g., to the GPU, which is only possible
by the vendor itself. TrustZone, Sanctuary, and Komodo cannot even bind peripherals
directly to individual enclaves. Moreover, an increasing number and variety of services
now are processing sensitive/security-critical data, e.g., payment services, biometric au-
thentication, smart contracts, speech processing, Machine Learning as a Service (MLaaS),
among many others. These services are of different nature, and thus impose different
requirements, both in terms of functionality and security, on the underlying TEE ar-
chitecture. One such requirement, for instance, concerns the ability to establish secure,
exclusive and practical binding between specific enclaves and different input/output
peripherals on-demand. On some devices, for instance, privacy-sensitive data is con-



34 secure microarchitecture for trusted execution

stantly being collected over various audio, video or biometric data sensors. On devices
running machine learning services, massive amounts of potentially sensitive data are
often aggregated and usually offloaded to external hardware accelerators, e.g., FPGAs
and GPUs, to train proprietary machine learning models. However, architectures such
as SGX, SEV and Sanctum do not provide secure input/output capabilities altogether,
while Keystone would require additional hardware mechanisms incorporated in order
to support Direct Memory Access (DMA)-capable peripherals (e.g., GPUs and FPGAs),
and other architectures would require hardware changes to the peripheral itself, e.g., to
the GPU, which is only possible by the vendor itself. TrustZone, Sanctuary, and Komodo
cannot even bind peripherals directly to individual enclaves.

Another increasingly important requirement desired from TEE architectures is pro-
viding applications in enclaves with an adequate, practical and configurable protection
against side-channel attacks, e.g., OS controlled side-channel attacks as well as cache
side-channel attacks which we discussed earlier. Current industry-standard TEE archi-
tectures, e.g., SGX and TrustZone, do not consider cache side-channel attacks within
their threat model altogether. Current academic architectures, such as Sanctum, propose
impractical mitigation mechanisms, which would heavily degrade the OS’s performance.
Others, such as SEV, do not consider controlled side-channel attacks. The significant im-
pact of these sophisticated attacks on platform security, especially cache side-channel
attacks as discussed above, has already been sufficiently demonstrated, rendering them
too critical to remain out of the threat model in TEE architectures. Furthermore, platform
mechanisms that provide, by design, both this side-channel resilience while preserving
performance and flexibility as desired for every individual application, are currently
entirely missing in TEE security architectures. We elaborate on the related TEE architec-
tures and their relevant shortcomings in more detail in our work [11] (Appendix H).

3.2 contributions

This thesis has significantly contributed to the problems described above with the fol-
lowing three publications that can be found in Appendices F, G, and H:

[41] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
USENIX Security. USENIX Association, 2020. Core Rank A*. Appendix F.

[44] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. Chunked-Cache: On-Demand and Scalable Cache Isola-
tion for Security Architectures. In Annual Network and Distributed System Secu-
rity Symposium (NDSS), 2022. Core Rank A*. Appendix G.

[11] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A Secu-
rity Architecture with CUstomizable and Resilient Enclaves. In USENIX Security.
USENIX Association, 2021. Core Rank A*. Appendix H.
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To address the limitations of existing cache designs discussed above, and provide a
configurable and flexible side-channel-resilient cache microarchitecture for security ar-
chitectures, we propose a flexible and soft partitioning of set-associative caches and pro-
pose a hybrid cache architecture, called HybCache [41] (Appendix F). HybCache can be
configured to selectively apply side-channel-resilient cache behavior only for isolated ex-
ecution domains that require this sophisticated security guarantee, while providing the
non-isolated execution with conventional cache behavior, capacity and performance. An
isolation domain is defined as any form of compartmentalization of the workload, and
can include one or more processes, specific portions of code, or a Trusted Execution En-
vironment (e.g., SGX or TrustZone). We show in our work how, with minimal hardware
modifications and kernel support, HybCache can provide side-channel-resilient cache
only for isolated execution with a performance overhead of 3.5-5%, while incurring no
performance overhead for the remaining execution workload. To evaluate the overhead
incurred by our new microarchitecture design, we implement HybCache into an ar-
chitectural simulator, gem5, and evaluate the performance overheads for the SPEC2006

benchmarks. We also provide a hardware implementation of HybCache to evaluate its
hardware footprint (area and storage/memory overhead), and show through our secu-
rity analysis how HybCache mitigates typical access-based and contention-based cache
attacks.

While HybCache enables configurable cache side-channel resilience while maintain-
ing non-degraded performance for the non-isolated execution, it still does not funda-
mentally mitigate all side-channel leakage, since it does not provide strict partitioning
by design. The cache occupancy side channel, where the adversary can attempt to infer
the working set size of the victim, is the only side-channel leakage that is not mitigated
by the HybCache construction. This leakage is inherently available in any cache archi-
tecture where the attacker and the victim processes compete for entries in shared cache
resources. It can only be effectively blocked by strict cache partitioning, which we de-
liberately do not provide in the HybCache construction. This allows different isolation
domains to still compete for cache entries, thus preserving dynamic cache utilization for
the entire workload and unaffected performance for non-isolated execution.

In a follow-up work [44] (Appendix G), we propose another cache microarchitec-
ture design, Chunked-Cache, that blocks this cache occupancy leakage by providing
strict cache partitioning thus providing clean isolation, while still maintaining flexible
cache utilization. Chunked-Cache enables an execution context to "carve" out its ex-
clusive cache chunk of configurable capacity only if it requires cache side-channel re-
silience. When side-channel resilience is not required, mainstream cache resources can
be freely utilized. This addresses the security-performance trade-off by efficiently en-
abling on-demand cache side-channel resilience, i.e. only when actually required, while
providing well-grounded future-proof security guarantees. Chunked-Cache provides
side channel-resilient cache utilization for sensitive execution, while incurring no perfor-
mance overhead on the OS due to its design mechanisms. Through our proof-of-concept
implementation (on a cycle-accurate architectural simulator and a hardware implemen-
tation) and its evaluation, we show how it outperforms way-based partitioning signifi-
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cantly in terms of performance and scalability for minimal hardware (logic and memory)
overhead.

Our work in secure cache designs has enabled more flexible and configurable cache-
based side-channel security that can be adapted on-demand for different portions of the
execution workload individually and independently. To enable further configurability
and flexibility for trusted execution capabilities generally, we focus next on the encom-
passing security architecture itself. Security architectures providing Trusted Execution
Environments (TEEs) aim to protect sensitive services by compartmentalizing them in
isolated execution contexts, called enclaves. However, existing TEE solutions suffer from
critical shortcomings with respect to both security and functionality. They adopt a rigid
approach where only a single enclave type is available, although, in fact, more flexibility
is required, since different services require different types of enclaves that can adapt to
the demands of the service in question. Moreover, they cannot even efficiently support
emerging applications, e.g., machine learning services, which require secure binding
and interaction of specific enclaves with specific peripherals (e.g., accelerators), or the
computational power of multiple cores securely. Finally, their protection mechanisms
against side-channel attacks, e.g., cache side-channel attacks, are either an afterthought
"hotfix" or impractical for flexible usage, e.g., fine-grained allocation of cache resources
to individual enclaves is usually not supported by default.

We investigate and highlight these shortcomings and challenges in our work [11]
(Appendix H), and propose CURE, the first security architecture, which addresses these
design goals by providing different types of enclaves whose boundaries can be flexibly
configured and resources can be selectively allocated to them. Supported enclaves in
CURE can either provide isolation either vertically within any single execution privilege
level (sub-space enclave), or across multiple privilege levels (kernel-space enclaves) or
only for unprivileged applications (user-space enclaves). In doing so, CURE already
outperforms the state of the art (at time of writing) in TEEs which usually provide
only one type of enclave, as stated earlier. CURE also allows that system resources, e.g.,
peripherals, CPU cores, or cache resources are exclusively and selectively assigned to
single enclaves, thus providing the desirable fine-grained resource allocation as well as
on-demand and flexible side-channel protection.

In [11] (Appendix H), we describe in detail the design challenges therein and how
we tackle them in our design for CURE to successfully fulfill individual and unique
functionality and security requirements of different services on demand. Besides the
software stack implementation and modifications, we introduce novel hardware security
primitives for the CPU cores, system bus and the shared cache in order to achieve the en-
visioned design goals, i.e., to adapt adequately to satisfy the different functionality and
security requirements of different services. We ensure that the hardware modifications
are not invasive and are also not architecture-agnostic, and can thus be ported to other
platforms and architectures. While we attempt to keep the modifications in hardware
reasonably minimal, we also ensure that the performance overhead for managing the
enclaves in software is minimized, hence successfully achieving a reasonable trade-off
in the available hardware-software co-design space.
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For proof of concept, we implement CURE for the RISC-V platform using the open-
source Rocket Chip generator [9]. For the fine-grained cache allocation to enclaves and
cache side-channel protection, we design and implement a way-based flexible cache
partitioning for the shared L2 (last-level) cache in our prototype, which we describe in
more detail in [11] (Appendix H). We also emphasize that this particular cache-based
partitioning/side-channel protection mechanism was selected only for convenient pro-
totyping, whereas CURE supports that more sophisticated cache designs, such as our
work HybCache [41] (Appendix F) can be easily integrated into it, as shown in [11].
We evaluate the hardware and software components of our CURE prototype in terms
of the additional hardware logic and lines of software code, and show that even with
minimal hardware changes, CURE can already significantly improve the state of the
art of hardware-assisted security architectures. We also evaluate CURE’s performance
overhead on an FPGA and cycle-accurate simulator setup using micro- and macrobench-
marks, and show that CURE incurs a geometric mean performance overhead of 15.33%
on standard benchmarks.
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H A R D WA R E I M P L E M E N TAT I O N S E C U R I T Y

4.1 problem statement and motivation

The gap between hardware and software security analysis is taking its toll on the se-
curity of our computing platforms. The recent outbreak of microarchitectural attacks
such as Spectre and Meltdown among many others [83, 2, 90, 84, 81, 95, 143, 54, 48,
47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20] has revealed how our computing plat-
forms and hardware-based security solutions are flawed in their fundamental trust as-
sumptions. The conventional threat model always assumed a software-only adversary
and software-only vulnerabilities with the spotlight largely on software and processor
architecture. However, these increasingly sophisticated attacks have been shown to ex-
ploit both software and underlying hardware flaws to compromise our computing plat-
forms [143, 101, 80, 129, 90, 132, 54, 48], and they have emphasized to researchers and
practitioners how underneath the architecture is a very complex microarchitecture and
its hardware implementation that were always unjustifiably assumed trusted and secure.
These attacks may trigger physical hardware effects that induce system faults or exploit
microarchitectural/architectural flaws by software means to generate certain controlled
microarchitectural states. Moreover, these physical or microarchitectural flaws and ef-
fects are made visible to software adversaries by means of software vulnerabilities, thus
also enabling a software-only adversary to exploit these hardware vulnerabilities re-
motely. Platforms ranging from low-end embedded devices to complex servers, that are
augmented with advanced defenses, such as data-execution prevention and control-flow
integrity, have been shown vulnerable. This is because these state-of-the-art defenses
aim to mitigate attacks that exploit software vulnerabilities, such as memory corrup-
tion. Furthermore, hardware-based security extensions, such as the schemes presented
in Chapter 2, also aim to mitigate software attacks. They cannot mitigate attacks that
exploit microarchitectural or hardware flaws. In fact, their implementation is actually
vulnerable to potential hardware flaws that may not be detected at design-time, where
these flaws may break the security claims of these schemes altogether. Even industry-
standard security architectures, such as SGX and TrustZone, have been targets of suc-
cessful microarchitectural attacks [18, 119, 100, 52, 89, 145]. Architectures proposed in
academia [33, 19, 87, 11], while equipped with side-channel protection mechanisms to
overcome the deficiencies of SGX and TrustZone, are not verified at the hardware imple-
mentation level to ensure that they indeed provide the claimed security guarantees.

4.1.1 Hardware Implementation Flaws

Hardware and System-on-Chip (SoC) designs are typically implemented at register-
transfer level (RTL) by engineers using hardware description languages (HDLs), such as
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Verilog and VHDL, which are in turn synthesized into a lower-level netlist representa-
tion using automated tools. At this pre-silicon design-time phase (prior to final tape-out
and fabrication), hardware vulnerabilities can occur due to: (a) incorrect or ambiguous
or incorrectly described/formalized security specifications, (b) flawed design, (c) flawed
implementation of the design, or (d) a combination thereof. Hardware implementation
bugs can be introduced either through human error by the hardware developers or by
faulty compilation/synthesis of the design into its gate-level equivalent.

Even seemingly minor flaws in the implementation of a hardware module within our
processor can compromise the SoC security objectives and result in denial of service, IP
leakage, or exposure of assets and secrets to untrusted entities. Flaws in the underlying
hardware, which serves as the foothold of our computing platforms and their security
and trust assumptions, would subvert the security of all that sits above. It becomes even
more critical if these flaws were committed in the implementation of hardware-based
extensions dedicated to provide software security services, such as the extensions we
propose in our work in Chapter 2.

The permanence of these flaws further aggravates the dilemma. Unlike software flaws,
hardware vulnerabilities committed at design-time cannot be generally patched (at the
actual root cause) once the hardware is fabricated. While existing industry SoCs may
support microcode patching, this is only limited to a handful of changes to the instruc-
tion set architecture, e.g., modifying the interface of individual complex instructions
and adding or removing instructions. These patches are firmware-only, and tend to be
symptomatic fixes that circumvent the actual RTL flaw, without fundamentally patching
it, while also usually incurring a performance penalty that can be avoided if the under-
lying problem were discovered and fixed at design-time. Besides, some vulnerabilities
cannot even be patched by microcode, such as the recent Spoiler attack [73], and they
require fundamentally fixing the hardware which is impossible for a legacy system.

Therefore, hardware security testing for detecting these flaws at design-time prior to
fabrication in legacy systems is even more crucial than the more established software
security testing.

4.1.2 Detecting Hardware Flaws

The semiconductor industry leverages a variety of techniques, such as simulation, emu-
lation, and formal verification to detect these flaws.Some examples of industry tools that
are leveraged for both functional as well as security-specific verification are Incisive [21],
Solidify [10], Questa Simulation and Questa Formal [98], OneSpin 360 solutions [123],
and JasperGold [22]. While knowledge and techniques for software security are well
established both in academia and industry (e.g., regarding software exploitation and
automatic bug detection techniques), security-centric HDL analysis, in comparison, lags
critically behind [78, 106]. Hence, inspired by software practices [63], the chip design in-
dustry has recently adopted a security development lifecycle (SDL) for hardware [126].
This process deploys different techniques and tools, such as RTL manual code audits,
assertion-based testing, dynamic verification (e.g., simulation), and automated formal
verification to detect bugs in hardware designs at the pre-silicon phase, i.e., prior to
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tape-out and fabrication. However, recent sophisticated cross-layer microarchitectural
attacks [83, 2, 90, 84, 81, 95, 143, 54, 48, 47, 88, 6, 5, 129, 101, 132, 134, 25, 27, 118, 20]
pose difficult challenges for these security verification techniques, and indicate how
such stealthy bugs would still slip through these security verification processes. This is
because these attacks usually exploit complex and subtle interactions between hardware
and software, though existing verification techniques are fundamentally limited in mod-
eling and verifying these interactions. They also fail to seamlessly capture some specific
semantics that are relevant to many vulnerabilities, e.g., timing flow, side channels, and
cache states. Generally, SDL practices are tedious, complex, largely non-automated, and
require extensive human expert intervention. The correct security specifications and test
cases must be exhaustively anticipated, identified, and accurately and adequately ex-
pressed using security properties and invariants that can be captured and verified by
the tools.

At one end, dynamic verification techniques, e.g., simulation, involve driving a Design
Under Test (DUT) with input sequences (either crafted or randomly generated) during
simulation, and comparing the DUT’s behavior with a set of invariants or golden ref-
erence. Such techniques are effective in identifying flaws in complex and large designs
and scaling well, however, they fail to achieve deep coverage of the design’s state space,
and cannot uncover complex flaws.

At the opposite end of the spectrum, formal verification involves proving/disproving
properties or proving the absence of an information flow of a DUT using mathematical
reasoning like model checking. In contrast to dynamic verification, formal verification
is capable of detecting more complex flaws but they fail, in practice, to scale to real-
world, complex and large designs. To alleviate this state explosion problem, techniques
such as "black-box" abstraction of a selected set of hardware modules of the design,
state space constraining, and bounded-model checking are often used. However, these
do not eliminate the fundamental problem and rely on interactive human expertise
and manual intervention. Erroneously applying them may result in false negatives and
missed vulnerabilities.

We elaborate in more detail on the SDL process and the limitations of the state-of-the-
art hardware security verification in our work [39] (Appendix I).

4.2 contributions

This thesis has significantly contributed to the problems described above with the fol-
lowing publication that can be found in Appendix I:

[39] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanu-
parthi, Hareesh Khattri, Jason M. Fung, and Ahmad-Reza Sadeghi. HardFails: In-
sights into Software-Exploitable Hardware Bugs. In USENIX Security. USENIX
Association, 2019. Core Rank A*. Appendix I.

In our work, we take a closer look into the design and security assurance lifecycle of
hardware, and focus the spotlight on the limitations and challenges of state-of-the-art
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hardware security verification discussed above. However, this is challenging to achieve,
since hardware designs with such real-world bugs are usually closed-source and pro-
prietary, therefore it is not trivial to acquire either real-world hardware designs or real-
world hardware bugs therein. Thus, the first step in qualitatively assessing the effective-
ness of existing verification techniques was to construct the test harness itself, i.e., the
System-on-Chip (SoC) design and the bugs therein. Together with our industry partners
and collaborators at Intel, we systematically constructed a varied set of 31 hardware reg-
ister transfer-level (RTL) bugs inspired from their first-hand experience with bugs that
they have encountered themselves at Intel, as well as public Common Vulnerabilities
and Exposures (CVEs) [103, 104, 102, 90, 83, 84] and real-world errata [62]. We injected
the bugs into two open-source real-world RISC-V-based SoC designs, Pulpino [111] and
PULPissimo [112]. We organized the first edition of what is now the largest international
hardware security competition, Hack@DAC [131], in 2018 where 54 teams of researchers
competed for three months to detect these bugs in the SoCs. While a number of the bugs
could not be detected by any of the teams, several teams also detected new bugs that
already existed in the open-source SoCs, which we did not inject ourselves and had no
prior knowledge of. The teams largely relied on manual RTL code inspection and simula-
tion techniques to detect the bugs. In industry, however, these are usually complemented
by automated tool-based and formal verification approaches.

Thus, we conducted a second in-house investigation ourselves, in which we focused
on two state-of-the-art formal verification tools (Formal Property Verification (FPV) [24]
and JasperGold’s Security Path Verification (SPV) [23]) to assess their effectiveness in
detecting these bugs and their ease of use and friendliness. These represent the state
of the art in hardware security verification and are used widely by the semiconductor
industry [8], including Intel. FPV exhaustively verifies that a set of specified security
properties hold true for the given RTL of a hardware design. If a security property is
violation, the tool generates a counter-example, which we examine to ensure whether the
property is indeed violated or if this is a false alarm. SPV leverages formal verification
and path sensitization to check for illegal/unauthorized information flows.

Both the results of the competition and our investigation with formal verification
tools have revealed that certain properties of RTL bugs can make them significantly
more challenging to detect. With formal verification techniques, technical and practical
challenges arise when attempting to scale them efficiently for larger SoCs thus requiring
error-prone workaround mechanisms, such as black-box abstraction. They remain non-
automated and require a certain capacity of human expertise in hardware design and
intervention. They are also incapable of modeling and capturing side channels and other
flows, such as timing flows as well as non-register states, e.g., cache states. Even when
formal verification techniques are aided with manual inspection and simulation meth-
ods by human experts, some classes of bugs may still slip through the security analysis
altogether, e.g., bugs that arise from complex and cross-modular interactions in SoCs
and span multiple modules. What further aggravates the threat arising from such bugs,
is the fact that many of them are in fact exploitable from software, and thus can com-
promise the entire SoC platform remotely, as we also demonstrate in our work. Building
on our findings from both our investigation and the competition results, we attempt to
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systematically classify and identify these bugs that are more challenging to detect and
the characteristics that they have in common, where we call such bugs Hardfails.

Our work is thus the first, to the best of our knowledge, that attempts to provide
a systematic and in-depth analysis of state-of-the-art hardware verification approaches
for security-relevant RTL bugs. Our findings reveal qualitatively the actual capacity and
effectiveness of these tools, while identifying types of bugs that are particularly more
challenging to detect: Hardfails. We demonstrate reproducibly how these bugs can slip
through current hardware security verification processes and the gravity of the security
threat they pose, by showcasing how one such bug can be exploited to compromise the
entire platform. We also reveal that one of the most significant and open challenges
in hardware security analysis is practically anticipating and identifying all the security
properties that are required in a real-world scenario, as well as specifying/formally
defining them correctly. In other words, besides the technical limitations of the formal
verification tools themselves, they are still only as good as the security properties that
the human expert specifies and defines for the tools. There is no automated way to
determine whether a tool is proving the actually intended properties, and there is no
fool-proof automated approach at generating these properties, though there is some
active research in this direction [146].

Ultimately, our work and insights manifest why further research is urgently required
to improve state-of-the-art security verification and analysis of hardware, and sheds light
on potentially promising directions, e.g., hybrid techniques that combine both formal
verification and simulation-based testing that would scale better than formal verification
only, as well as more efficient testing inputs generation techniques, such as fuzzing.
Fuzzing is an established automated software testing technique that provides different
types of data, e.g., invalid, unexpected, or entirely random data, as input to a piece of
software, aka the fuzz target, and monitors if the software crashes or triggers provided
code assertions, thus detecting memory corruption bugs that would otherwise be much
more difficult to find out. Coverage-guided fuzzing uses program instrumentation to
trace the code coverage reached by each input fed to a fuzz target. Fuzzing engines can
then use this information to guide the generation of the subsequent inputs provided to
the fuzz target, in order to maximize coverage. We are currently investigating whether
and how fuzzing can be ported to hardware design testing, and whether it would enable
more efficient coverage of the hardware DUT, e.g., better and/or faster coverage of state
space and state transitions, in contrast to directed random testing.

Ever since it was first launched in 2018, we have been organizing Hack@DAC every
year, and organized its first USENIX Security sequel, Hack@Sec, in 2020 [131]. Over the
past few years, the competition has been growing in sophistication, size and popularity
among both academics and industry professionals. Over the years, the focus of the com-
petitions has also shifted and evolved from only bug detection and root cause analysis in
2018 and 2019 to more interestingly tooling, automation and proof-of-concept exploita-
tion in Hack@DAC and Hack@Sec 2020. Moreover, the complexity of the deployed SoCs
has also evolved, from an SoC that runs only bare-metal applications to a more complex
SoC with an MMU and multiple privilege levels and a full multi-level cache subsystem
and can run a small kernel. This implied that we could integrate more interesting se-
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curity features such as more firmware and boot flows, cryptographic units self-tests at
bootup, firmware encryption, stack canaries, thus making room for more challenging
bugs as well as bugs that can span both the hardware and software of the platform. The
calibre and interest of the participating teams have also evolved over the years, and so
have the results and our insights. We have been involved in more exchange with some
of the teams on developing and customizing open-source tools to detect some specific
classes of bugs, while other teams could come up with automated exploit generation
techniques. All in all, our experience with Hack@DAC and Hack@Sec over the past
3 years has given us solid insights into how bugs can be introduced in hardware de-
signs, the varying complexity of these bugs, their security impact, and most importantly
the the state-of-the-art hardware security analysis techniques. We observe how the open-
source space severely lacks security analysis techniques that specifically target hardware
designs, and experience first-hand the practical limitations of state-of-the-art industry-
grade techniques. Plenty of open opportunities exist for developing new techniques that
can address the growing challenges of analyzing the security of our hardware as it con-
tinuously evolves in size and complexity.



5
C O N C L U S I O N

The recent surge of microarchitectural attacks has fueled a growing interest, in both
academia and industry, to question the trust assumptions in the underlying hardware of
our systems. These attacks have revealed the threatening consequences of hardware/mi-
croarchitecture security flaws to the entire platform security, and pressingly urge for a
rethink of our hardware design paradigm where security is a key metric.

To this end, we investigate, in this thesis, the opportunities and implications of
hardware-based security that emerge across the full stack of our computing platforms.
Our work contributes significantly to the state of the art on multiple fronts, as we sum-
marize next.

5.1 summary of contributions

In Chapter 2 based on [37] (Appendix A), [144] (Appendix B), [38] (Appendix C), [105]
(Appendix D), and [40] (Appendix E), we propose a suite of different hardware-based
processor extensions that aim to provide dedicated security services, e.g., execution
tracking, runtime attestation and policy enforcement, for security architectures. Through
our work, we illustrate how the advantages of hardware can be leveraged to provide sig-
nificantly more efficient security services to defend the software against different soft-
ware attacks, particularly runtime memory corruption attacks. We further consolidate
these different security extensions into one flexible scheme that can be configured to
provide different security services or flavors, thus catering to the different security and
performance requirements imposed by different applications and deployment settings.

In Chapter 3 based on [41] (Appendix F), [44] (Appendix G) and [11] (Appendix H),
we investigate how our computing platforms and even dedicated hardware-based secu-
rity mechanisms, similar to our work above, can be entirely compromised by attacks that
exploit microarchitectural/hardware design flaws. We focus specifically on cache-based
side-channel leakage, since it plays a key role in most microarchitectural attacks to date.
We present two sophisticated secure cache microarchitecture designs that attempt to
mitigate these attacks fundamentally by enabling secure cache resource sharing among
different security domains, while still preserving performance. Our cache designs pro-
vide configurable side-channel resilience by design, i.e., the sophisticated side-channel
resilience is only enabled when desired, thus providing a flexible performance-security
calibration that can adapt to different applications. We further extend this flexibility to
trusted execution environment (TEE) architectures themselves, and propose the first se-
curity architecture, which can provide different types of enclaves whose boundaries can
be configured and system resources, including cache resources, can be selectively and
exclusively allocated to them.

45
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In Chapter 4 based on [39] (Appendix I), we delve one layer beneath the microarchi-
tecture and design, and scrutinize the actual implementation of the hardware. Through
extensive case studies and our Hack@DAC hardware security competition, we exam-
ine how the actual implementation of the hardware can also harbor RTL vulnerabilities.
We survey the design and security assurance lifecycle of hardware, and focus the spot-
light on the limitations and challenges of state-of-the-art hardware security verification.
Through the results of the competition and our investigation with formal verification
tools, we show how certain properties of RTL bugs can make them significantly chal-
lenging to detect, both by manual inspection as well as formal verification techniques.
Our work and insights indicate that further research is pressingly required to improve
state-of-the-art security verification and analysis of hardware, and sheds light on poten-
tially promising directions.

5.2 future work and outlook

To address the open challenges in hardware and microarchitectural security fundamen-
tally and reinstate trust in the underlying hardware of our computing platforms, we
envision a radically different design paradigm fo a security-adaptive platform that can
sustainably serve secure next-generation computing platforms. Such a platform would
aim to provide more consolidated and comprehensive full-stack security-aware and
adaptive primitives which span both the software and hardware layers of the platform.
These cross-layer primitives would be integrated by pro-active design into the com-
puting platform architecturally and micro-architecturally to address the performance-
security trade-off fundamentally and flexibly. Ultimately, these primitives would then
be configured on-demand by means of an interfacing configuration engine to 1) adapt
to customized requirements with regards to performance, compatibility and security
for different use cases, and to 2) adapt to different adversarial settings and mitigate
emerging threats.

Figure 3 demonstrates our vision for such a platform where adaptive hardware ele-
ments are integrated within the microarchitecture and configured in different flavors.
They can be tightly and invasively integrated within individual key components and
features of the CPU/SoC, e.g., different cache mapping and partitioning mechanisms
that can be configured on-demand to selectively provide side-channel-resilient cache.
On the other hand, a less invasive and more coarse-grained flavor of integration would
involve adaptive hardware extensions that only interface with the CPU/SoC to provide
hardware-based security services to the software, e.g., control-flow integrity or runtime
attestation of the executing software (in line with our work [37, 144, 38, 105, 40] (Ap-
pendices A-E). These different security primitives, being ingrained fundamentally in the
hardware with varying degrees of integration and granularities, allow the platform to ef-
ficiently adapt to changing security/performance requirements. They can be configured
to enforce different security policies through a secure interfacing configuration engine
as shown in Figure 3. Ultimately, this would also equip vendors with more degrees of
freedom and customization in updating platform security policies and applying full-
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Figure 3: Our vision for future computing platforms that incorporate adaptive hardware primi-
tives to achieve full-stack configurable security

stack security patches (across both the hardware, microcode and software) to mitigate
the latest threats, where currently this is limited to software/microcode patches only.

Designing and developing this platform opens up multiple concrete challenges and
directions for future research. Mechanisms are required to provide hardware-based secu-
rity extensions that interface with the CPU/SoC such that they can be very flexibly con-
figured to provide a spectrum of different security services that can adapt to emerging
threats and different deployment/adversarial settings. Moreover, the hardware-software
co-design space for these extensions needs to be exhaustively investigated to identify
the sweet spot that would combine the best of both hardware and software worlds. This
would also enable that they can sufficiently scale as required, e.g., to either support
more complex software applications or instead only secure the TCB of the computing
platform. To increase synergy, techniques to further extend these services to leverage
them for different purposes when necessary, e.g., hardware-assisted software fuzzing
(which also relies fundamentally on software execution tracking), are also required.

Practically integrating adaptive hardware elements invasively within the processor/-
SoC microarchitecture also poses different interesting challenges. Mechanisms to achieve
this efficiently, while still providing flexible configuration, are required. Furthermore,
enabling this configurability (to calibrate the security-performance trade-off) at the dif-
ferent microarchitectural features and units (and not only caches which has been the
focus in this thesis), while still preserving the desired performance benefits, is another
research challenge.

Finally, scalable techniques that can efficiently verify and analyze the security proper-
ties and specifications of both the design and implementation of these extensions and
hardware primitives, as well as their interactions with the overlying software are essen-
tial.
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On a final note, envisioning and developing such a platform with security-aware hard-
ware design primitives and investigating the full hardware-software co-design space has
only recently become both viable and valuable owing to the advent of open hardware,
such as RISC-V and the emergence of open-source RISC-V processor and SoC implemen-
tations. This has also coincided with the outbreak of microarchitectural attacks, where
both of which have evolved the focus in system security in the last few years, shifting
the spotlight to the long ignored security implications of hardware and the unjustified
trust assumptions therein. New territories and opportunities have emerged where the
security of hardware microarchitecture, design and implementation can be better scruti-
nized, making room for the state of hardware security to eventually catch up with that
of software security.
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ABSTRACT
Attacks targeting software on embedded systems are becoming in-
creasingly prevalent. Remote attestation is a mechanism that allows
establishing trust in embedded devices. However, existing attesta-
tion schemes are either static and cannot detect control-flow attacks,
or require instrumentation of software incurring high performance
overheads. To overcome these limitations, we present LO-FAT, the
first practical hardware-based approach to control-flow attestation.
By leveraging existing processor hardware features and commonly-
used IP blocks, our approach enables efficient control-flow attesta-
tion without requiring software instrumentation. We show that our
proof-of-concept implementation based on a RISC-V SoC incurs no
processor stalls and requires reasonable area overhead.

1 Introduction
Embedded systems have been facing a variety of security challenges
for decades [25] which are becoming increasingly prevalent with
emerging trends such as collaborative Internet of Things (IoT). A
recent prominent example is Mirai malware1 in October 2016, where
a series of Distributed Denial-of-Service (DDoS) attacks against
the DNS system disrupted a number of prominent websites.These
attacks were perpetrated by IoT devices, including routers, DVRs,
and web-enabled security cameras, that had been compromised by
the Mirai malware.

Increasingly, attacks against embedded systems aim to exploit
software vulnerabilities. In 2015, a remotely exploitable buffer
overflow vulnerability was found in the USB over IP software used
in millions of residential gateways and wireless routers supplied
by prominent manufacturers2. In 2014, a memory corruption flaw

1https://www.incapsula.com/blog/
malware-analysis-mirai-ddos-botnet.html
2http://blog.sec-consult.com/2015/05/
kcodes-netusb-how-small-taiwanese.html
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was found in the embedded webserver software used by over 200
different models of embedded devices, affecting at least 12 million
devices, many of which still remain vulnerable today3.

Remote attestation is an important class of security mechanisms
designed to detect software attacks. In principle, remote attestation
allows one entity (the verifier) to ascertain the precise state of the
software running on a remote system (the prover). However, most
attestation schemes are static in that they attest the software initially
loaded by the prover before it begins executing. Although useful,
this still leaves the system vulnerable to run-time software attacks.
If the adversary gains control of the stack or heap, (s)he can alter
control-flow information to subvert the control flow of the target
program, and mount a code-reuse attack. Similarly, in non-control
data attacks [8], the adversary modifies strategic data variables
to cause a permissible but unintended control flow change (e.g.,
executing a privileged instruction sequence). Traditionally, code-
reuse attacks are mitigated using techniques such as control-flow
integrity (CFI) [1]. However, CFI cannot prevent non-control data
attacks, since these do not violate control-flow integrity. Neither of
these types of attacks can be detected by static attestation.

To overcome these challenges control-flow attestation [2] was
proposed very recently, enabling the prover to precisely report the
control flow of application software to the verifier while giving
assurance on control-flow integrity and detection of non-control
data attacks. The attestation mechanism of [2] requires an iso-
lated execution environment (e.g., ARM TrustZone, Intel SGX)
to protect it against potentially compromised application software.
However, implementing control-flow attestation in software has
two limitations: Firstly, in order to detect control-flow events, the
application software must be instrumented prior to deployment.
Non-instrumented or incorrectly-instrumented software cannot be
attested. The instrumentation rewrites all control-flow instructions
(e.g., branch, return, etc.) in order to transfer control to the
attestation software. Secondly, the attestation software runs on the
main processor which incurs significant performance penalties be-
cause single control-flow instructions are essentially replaced with
relatively many numbers of instructions in order to track and record
the control-flow event (e.g., update a running hash value). As we
elaborate in §7, some existing hardware approaches, such as debug-
ging and tracing features in modern processors [14, 24] or hardware
security architectures [3, 6, 9], can be used to record control flow
information. However, due to the overhead they incur or the type
3http://mis.fortunecook.ie/
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of information they record, these approaches are not well-suited for
control-flow attestation.

Goals and Contributions. To overcome the limitations of a
software solution, we introduce a practical hardware-based Low-
Overhead Control Flow ATtestation architecture, LO-FAT. Unlike
software implementations, LO-FAT can handle unmodified applica-
tion software without instrumentation, meaning that it is transparent
to legacy software. By recording the control flow in hardware in
parallel to the main processor, LO-FAT does not stall the application
software, thus eliminating the performance overhead of attestation
in software. LO-FAT leverages existing processor features and
commonly-used IP blocks and can feasibly be implemented on
typical embedded systems hardware platforms.

The main contributions of this paper are:
• Design of LO-FAT, a hardware-based scheme for control-

flow attestation, providing the same security guarantees as
previous software schemes, without the performance overhead
or the need for software instrumentation (§4).
• An integrated optimization for eliminating redundant attesta-

tion computation (e.g., avoiding duplication when attesting
loops) and reducing the burden on the verifier (§4).
• A proof-of-concept implementation of LO-FAT on the new

open-source RISC-V architecture targeting the Pulpino core
for single-threaded embedded system software (§5).
• A systematic evaluation of LO-FAT in terms of the required

hardware area and performance benefits (§6).

2 Problem Setting and Challenges
Remote attestation provides a well-known mechanism for detecting
malware on a device. However, existing conventional (binary) attes-
tation cannot detect run-time exploitation techniques, since run-time
attacks do not not modify the program binary. Such attacks aim to
subvert the intended control flow of the targeted program while it is
executing. An overview of different classes of such attacks is shown
in Figure 1. In general, a program reserves dedicated memories for
data and code. The former is marked as readable and writable (rw),
whereas the latter is as readable and executable (rx). This ensures
that code cannot be executed from data memory, and code memory
cannot be overwritten. Furthermore, any program can be abstracted
through its corresponding control-flow graph (CFG) that encapsu-
lates the valid paths a program should follow at run-time.

Adversary

DATA (rw)

CODE (rx)

Loop Counters

Data Variables
indirectly affecting 

control flow

Code Pointers

Program Memory

Control-Flow 
Graph (CFG)1

2

3

Figure 1: Overview on run-time attack classes

We can distinguish three classes of run-time attacks: ¶ non-
control-data attacks that indirectly affect the control flow of a pro-
gram, · corruption of loop counter variables, and ¸ code-pointer
overwrites. The most prominent run-time attacks exploit code-
pointer overwrites, i.e., corruption of return addresses and function
pointers. For instance, code-reuse attacks such as Return-oriented
Programming (ROP) [23] exploit memory corruption vulnerabilities
(e.g., buffer overflows) in the program and then stitch together a
malicious sequence of machine code instructions from benign gad-
gets of code already residing in the vulnerable program memory.
This is exemplified by a malicious CFG edge (see dashed line for
code-pointer overwrite in Figure 1). These attacks have been shown

idS , i, CFG(S)

Veri�er V Prover P

S , I

idS , i , N

R ← sign(P ||N ; sk)

A = hash
(
[Src0,Dest0], · · · , [Srcn,Destn]

)
L = loops metadata

P = (A,L)← exec
(
S(i , I )

)
, where:

P , R

(⊥,>)← versig(R; pk)

(⊥,>)← ver(P ,CFG(S)|i )

Figure 2: Attestation protocol of LO-FAT

to be a realistic threat on many processor architectures, such as
Intel x86 [23], ARM [17] and embedded systems building on Atmel
AVR [12]. Although countermeasures against this class of attacks
exist, e.g., control-flow Integrity (CFI) [1] and code-pointer integrity
(CPI) [16], they do not prevent attacks ¶ and ·. The so-called
non-control data attacks [8] do not compromise the control flow of
a program, but cause unexpected malicious control-flow paths by
corrupting data variables. In ¶, the attacker compromises data vari-
ables that are used for security decisions during program execution,
e.g., corrupting an authentication variable to execute a privileged but
existing path. Attack class · is even more subtle as it only affects
the number of times a program loop is executed. This can have
severe consequences in the context of embedded system software,
e.g., a syringe pump dispenses more liquid than requested (see [2]).

Control-flow attestation can cover these cases by assuring the
verifier of the precise run-time control flow of the program on the
embedded device. In [2], the first control-flow attestation scheme
was proposed and implemented. However, it suffers from practical
limitations, such as high performance overhead and the need for
tedious software instrumentation.

Our work tackles the challenge of detecting attack classes ¶-
¸, while addressing the limitations of recently proposed software-
based control-flow attestation [2] by presenting LO-FAT, an efficient
hardware-only solution.

3 System Model
Figure 2 depicts the attestation protocol of LO-FAT: the verifier
V aims to attest the run-time control-flow (execution path) of the
Program S on a remote embedded system – the prover P . We
assume that both V and P have access to the program S in binary
form and that conventional static (binary) attestation assures P is
executing the correct and unmodified program S.

First, V performs a one-time offline pre-processing step to gener-
ate the CFG of S (including expected loop execution information)
by means of static or dynamic analysis. Next, V initiates the proto-
col by sending P the program input i for the program ID idS , and
the nonce N to ensure freshness of the attestation response. P exe-
cutes S with verifier input i and a set of malicious adversary inputs
I . In fact, the untrusted inputs received may corrupt the control-
flow by means of the attack techniques described in §2. While S
executes, LO-FAT captures the control-flow transitions and gener-
ates a cumulative authenticator A of the control-flow path taking
source and destination address (Src,Dest) of each branch as input.
Naively storing and transmitting every single executed instruction
to V would incur impractical memory, power and communication
overheads, especially for resource-constrained embedded devices.
Hence, LO-FAT follows the idea outlined in [2] and computes a
cumulative cryptographic hash of the executed path. In addition, it
also produces auxiliary metadata L to track program loop paths and
their number of iterations (including recursive functions) thereby
covering attacks of class · in Figure 1. Together A and L form
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a unique program path P . Lastly, upon program exit, P generates
the attestation report R = sign(P ||N ; sk), under the signing key
sk , which is stored by P in hardware-protected secure memory, e.g.,
a register that is accessible only to LO-FAT. Upon receiving R, V
verifies the signature using the verification key pk. Next, V checks
whether the reported path P resembles a valid path in CFG under
input i. If true, V is assured of P’s execution.
Adversary Model and Assumptions. We assume a strong adver-
sary that has full control over the data memory of P and can uti-
lize standard memory corruption vulnerabilities to modify arbitrary
writable memory locations. However, the adversary cannot modify
program code at run-time (marked as rx) and cannot modify mem-
ory used by LO-FAT itself (due to hardware protection). Note that
similar to all attestation schemes we consider software-only attacks
and hence physical attacks on P’s device are out of scope in this
work. Also note that our scheme can detect attacks that affect the
program’s control-flow, but not pure data-driven attacks (that do not
affect any control-flow) such as data-oriented programming attacks,
which remain an open research problem [13].

4 LO-FAT Design
Figure 3 illustrates our architecture for LO-FAT and how it inter-
faces with the processor pipeline. The proposed scheme exploits
branch tracking functionality inherent in any processor pipeline and
re-usable IP cores such as the hash engine. We extend these with
additional logic to achieve efficient tracing of control-flow infor-
mation. The main LO-FAT components are the branch filter and
the loop monitor. The former extracts branch instructions from the
processor as it executes the attested code segment while the latter
monitors program loops.
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Figure 3: Architecture of LO-FAT.

Branch Filter. Upon code execution, the branch filter, which is
tightly coupled to the processor, extracts the current program counter
and instruction executed per clock cycle. Then it filters in every
branch, jump and return instruction since these are the rel-
evant instructions for control-flow attestation. The branch filter
outputs a concise representation of every executed branch instruc-
tion with its source and destination address pair (Src,Dest) into
a dedicated branches memory and detects whether the intercepted
branch is within a program loop. If not, the branch filter enables
hashing of (Src,Dest). Branches inside a program loop require
special treatment in LO-FAT, because (i) loop counter manipulation
may compromise the program’s control-flow in a malicious way

(§2), and (ii) naively hashing each loop iteration and path leads to a
combinatorial explosion of valid hash values [2]. As such, we de-
sign LO-FAT to compress control-flow information associated with
loops efficiently. As mentioned earlier in §3, we report each loop
path and its number of iterations as auxiliary metadata L. However,
doing so in hardware is challenging, i.e., in contrast to the most
related work C-FLAT, since we do not use code instrumentation to
preserve legacy compliance. Hence, the branch filter must detect
and identify loop entry and exit points and their depth at run-time
without instrumentation aid. We describe in §5.1 how we tackled
this challenge.
Loop Monitor. When a loop is encountered, the branch filter for-
wards the loop entry and exit to the loop monitor. The loop monitor
identifies and tracks program loops (including nested loops). When
a branch inside a program loop is encountered, the branch filter
forwards this information to the loop monitor which in turn encodes
each path inside the loop uniquely. Simultaneously, (Src,Dest) of
each branch remains stored in the branches memory.

Another major challenge concerning loops is the hash computa-
tion and attestation overhead incurred by hashing each loop iteration.
In LO-FAT, we significantly reduce the hash computation cost by
only hashing each loop path once and keeping an iteration counter
for each unique loop path. To achieve this, LO-FAT generates a
unique path encoding for each loop path and associates an on-chip
loop counter with it. The loop monitor indicates newly observed
loop paths to the hash engine controller in order to hash its corre-
sponding (Src,Dest) from the branches memory. On the other
hand, once the same loop path executes, LO-FAT only needs to
increment the counter, i.e., not requiring further hash operations.

Upon loop exit, the loop monitor requests the metadata generator
to assemble the loop auxiliary metadata based on the loops memory
which contains the unique loop path encodings, their number of
iterations, and indirect branch targets. This information is stored on-
chip and is appended to the final hash value A computed at the end
of the attested execution. Finally, a digital signature R is computed
over the hash value A, metadata L and nonce N and sent to V for
attestation (as per our protocol outlined in §3).

5 Implementation
5.1 Loop Handling
Detecting loops. As shown in Figure 3, the branch filter unit traces
the instruction (and its address) executed per clock cycle and filters
in 1© every branch, jump and return instruction. It outputs a
concise representation of every executed branch instruction with its
(Src,Dest)-pair into a dedicated branch buffer ( 2©). To compress
the control-flow trace for loops, the branch filter has to detect loops.
If the intercepted branch is not in a loop, the branch filter sends the
control signal non_loops_ctrl to the existing hash engine controller
to compute a hash over (Src,Dest) in 3©. Otherwise, the branch
filter forwards the loop status (entry and exit) to the loop monitor
and its depth (in case of nested loops) via the loops_status_ctrl
signals ( 4©).

To enable efficient run-time loop detection, we utilize a property
of RISC architectures that implement a link-register, such as Pow-
erPC, ARM, SPARC, and RISC-V. LO-FAT uses a simple heuristic
to differentiate between backward branches that constitute loops,
and branches for subroutine calls where the call target resides earlier
in memory. Since subroutine calls use instructions that update the
link-register, we consider the target of each non-linking backwards
branch as a loop entry node. The basic block proceeding the branch
instruction is considered a loop exit node. We base our heuristic on
our observations of the RISC-V compiler assembly and the calling
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convention described in the instruction manual: any subroutine call
with multiple call sites must be linking and updates the link-register.
Subroutines with a single call site are still compiled as a linking
branch or are optimized by traditional inlining using the RISC-V
compiler.

The addresses of the entry and exit nodes of each loop are stored
in registers by the loop detector and used to detect and track loop
iterations and loop depth at run-time when executing nested loops.
The number of loop iterations is determined by recording the number
of times the loop entry node is entered within the loop. Loop
termination is detected by tracking if execution proceeds to or past
the currently active loop exit node, either as the result of sequential
execution (e.g. in the case of a conditional branch) or a non-linking
branch (e.g. break). Loop execution status is forwarded using the
loops_status_ctrl signals to the loop monitor, as shown in Figure 3.
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Figure 4: CFG for pseudo-code and its layout of instructions in memory.

Tracking loops. As shown in Figure 3, the loop monitor receives
branch_status_ctrl signals from the branch filter to describe the
type of intercepted branch instruction and its (Src,Dest) ( 5©).
This branch tracking mechanism allows the loop path encoder to
uniquely encode paths as they occur. Simultaneously, (Src,Dest)
of each branch along the executing loop path remain stored in the
branches memory.

Figure 4 shows a sample pseudo-code and its CFG according to
how the instructions would be laid out in code memory to illustrate
how the loop monitor encodes the loop paths. The example code
shows a while-loop with an if-else statement inside. Each basic
block in the pseudo-code is represented by a node in the CFG
and numbered accordingly, with loop entry and exit nodes also
indicated. Within this simple loop, there are only 2 valid paths:
bold path N2 → N3 → N4 → N6 → N2 and dashed path
N2 → N3 → N5 → N6 → N2.

For every conditional branch, the processor evaluates the
condition and either jumps to the computed target address (branch
is taken), or continues sequentially to the next instruction address
in memory (branch is not taken). Processors commonly track this
branching behavior in the pipeline and may encode a taken/not-
taken branch with ’1’/’0’. This branch information is extracted from
the processor by the branch filter and used by the loop monitor to
uniquely identify and encode paths within each loop with a unique
path_ID, as shown in Figure 4. In Figure 4, the dashed path N2 →
N3 → N5 → N6 → N2 is encoded as ‘011’ and bold path N2 →
N3 → N4 → N6 → N2 as ‘0011’. Other path encodings are
considered invalid and detected by the V .

Once a loop path is completed, this unique path_ID is used to
index loop counter memory, in which the number of iterations for
each corresponding path is saved ( 6©) in Figure 3. A counter value
of zero indicates the first time a particular path is executed. This is
forwarded by the loop monitor into the hash engine controller using
new_path_ctrl signals ( 7©) to enable hashing of corresponding
(Src,Dest) pairs. Otherwise, the counter is simply incremented.

To ensure constant-time, single-cycle memory access latency, we
implement loop counter memory as on-chip memory indexed by the
unique loop path encodings. However, this consumes a dedicated
sparsely-utilized memory which is often a constrained resource
on low-end embedded devices. In light of this, LO-FAT allows
configuring the granularity of the control-flow tracking according to
the availability of memory resources.

Once a loop exits, this is identified by the loop monitor and
indicated in the loop_end_ctrl signals sent to the metadata generator
( 8©). The metadata generator assembles the loop auxiliary metadata
from the loops memory - this consists of the unique loop path
encodings in order of first occurrence, the number of iterations of
each path, and the indirect branch targets encountered in this loop
( 9©). This fine-grained auxiliary information on loop execution
is stored on-chip ( 10©) and is appended to the final hash value
computed at the end of the attested execution ( 11©). Finally, a digital
signature is computed over the hash value, metadata and nonce N ,
and sent to V for attestation. Handling indirect branches in loops is
yet another implementation challenge we discuss next.

5.2 Handling Indirect Branches in Loops
Indirect branches can involve any arbitrary number of targets which
can never be exhaustively identified using static analysis. To uniquely
identify loop paths with indirect branches (calls and returns), we
would need to include the 32-bit target addresses into the path en-
codings, which would require infeasibly high memory requirements
for loop path-indexed memory. Instead, we re-encode the addresses
using a smaller number of n bits, allowing a maximum number of
2n-1 possible targets for each loop. Target addresses are encoded at
run-time and stored in a register file, which is implemented as 2 in-
terleaved CAMs to ensure low-latency constant-time access. When
a target address is encountered that exceeds the configured limit, we
report this in the encoding to the V by an all-zero code. LO-FAT is
designed such that the maximum number of branches per loop path
and the maximum number of possible target addresses (of indirect
branches) to track is configurable in a trade-off between granularity
and availability of on-chip memory. Tracking ` branches per path in
a loop requires 8× 2` bits memory. In our implementation, we con-
figure n = 4 to track up to 16 possible indirect branch targets for a
given loop and ` = 16 such that LO-FAT can handle a maximum of
16 branches per loop path (every additional indirect branch tracked
reduces the maximum number of possible conditional branches by
n) and depth of up to 3 nested loops, which requires a dedicated 1.5
Mbits memory that is synthesized as block RAM (BRAM) when
prototyping on FPGA. Once a loop exists, its memory is re-used for
other subsequent loop executions.

Loop metadata. The measurement in A is a single hash com-
putation of (Src,Dest) pairs of executed loop paths. To enable V
to reconstruct the final hash value, metadata L of the loops serves
as helper data and provides V with fine-grained insight into the
execution of the loops. L contains the encodings of executed paths
in each loop, the order of first occurrence of each executed path, and
number of iterations per loop path and indirect branch targets.

5.3 Hash Engine
A single hash measurement A is computed on the full execution path,
along with auxiliary loop metadata L. We employ a SHA-3 512-bit
open-source engine4 operating at a maximum clock frequency of
150 MHz. It consists of a permutation module which operates on a
message block size of 576-bit. User input is absorbed by the core
first into a padding module to assemble the 576-bit block size. Once
this padding is full, the permutation module begins computation on

4http://opencores.org/project,sha3
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input. In LO-FAT, the engine can absorb a 64-bit input (Src,Dest)-
pair every clock cycle into the padding module for 9 clock cycles,
after which the 576-bit buffer becomes full and notifies the per-
mutation module to begin its computation. Once full, the padding
buffer cannot absorb further input for 3 clock cycles after which
it resumes normally. Therefore, a small cache buffer is configured
at the hash engine input to prevent dropping of (Src,Dest)-pairs
if they arrive during these cycles where the padding buffer is full.
Using this hash engine, an unlimited message size can be hashed
while indicating the end of streaming (Src,Dest)-pairs when the
execution of attested software is completed.

6 Evaluation
We present a proof-of-concept implementation of LO-FAT on Pulpino [18],
the first open-source RISC-V-based microcontroller SoC [19]. It
is based on a single 32-bit 4-stage minimal RISC-V core targeting
low-end embedded systems. We augment the RISC-V processor
pipeline to interface with the LO-FAT branch filter to extract control-
flow signals required for execution flow tracing. LO-FAT can be
easily integrated into any low-end embedded processor as it does
not require modifications to the ISA.

6.1 Functionality and Performance
We integrated LO-FAT with Pulpino and performed cycle-accurate
functional simulation of their RTL Verilog source code on Mod-
elSim while Pulpino executed extracted code segments from real
embedded applications, such as Open Syringe Pump5, an open-
source open-hardware syringe pump design. Simulation results
confirmed the functionality of LO-FAT in correctly capturing and
compressing the control flow (branches, loops, and nested loops) of
an uninstrumented application. Since LO-FAT extracts and filters
control-flow events in parallel with the processor, it does not incur
any performance overhead for the attested software, as opposed to
C-FLAT which incurs attestation overhead that is linearly dependent
on the number of control-flow events. LO-FAT internally incurs
latency of 2 clock cycles for branch instructions and loop status
tracking and 5 clock cycles at loop exit for completing path_ID
generation and loop counter memory access and update. However,
LO-FAT simultaneously continues to absorb and process any in-
coming (Src,Dest)-pairs to prevent the processor from stalling
or dropping trace information. Synthesis results using Xilinx Vi-
vado indicate LO-FAT can operate at maximum clock frequency
of 80 MHz on a Virtex-7 XC7Z020 FPGA device on a Zedboard.
The LO-FAT units are engineered such that they operate on par
with Pulpino’s clock frequency, while also allowing single-cycle
constant-time memory accesses for indirect branches and loops
management. Eliminating the CAM access results in a much higher
clock frequency if desired.

The length of the auxiliary metadata (L) that must be sent to
V depends on the number of loops executed, the number of dif-
ferent paths per loop, and the number of indirect branch targets
encountered in the attested code.

6.2 Area
On a Virtex-7 XC7Z020, LO-FAT consumes 4% of the available
registers and 6% of available LUTs, which amounts to an average
of 20%additional logic overhead to the Pulpino SoC. 49 36Kbit
Block RAM (BRAMs) are utilized, most of which are dedicated
for the sparse loop path-indexed memories to ensure constant-time
single-cycle access. Therefore, its width depends on the configured
maximum number of indirect branches allowed in each loop path
and number of bits required to encode them, as discussed in §5.2. In
5https://hackaday.io/project/1838-open-syringe-pump

our implementation, the loop monitor is configured to tackle up to 4
indirect branches and requires 10 bits to encode them in Path_ID,
resulting in 16 BRAMs per loop. Since we allow up to 3 levels of
nested loops, we require 48 BRAMs. Configuring these parameters
to lower numbers or leveraging CAMs instead reduces the memory
requirements significantly at the expense of coarser granularity or
additional logic overhead respectively.

6.3 Security
The primary security requirement of LO-FAT is to provide an ac-
curate, complete, authentic, and fresh attestation of P’s control
flow. This requires an integrity-protected mechanism for recording
control-flow information and unforgeably communicating this to V .

Control-Flow Recording. One of the main contributions of LO-
FAT is using low-overhead hardware extensions to record control-
flow information preventing it from being modified or subverted by
malicious software. The on-chip memory employed by LO-FAT
for storing the (Src,Dest) addresses prior to their hashing is also
assumed to be protected from adversarial access. The hardware ex-
tensions are guaranteed to receive every control-flow event from the
processor, thus ensuring that the complete control flow is recorded.
All (Src,Dest) addresses are cryptographically hashed resulting
in the authenticator A. The auxiliary metadata L records (1) the
unique paths within each loop; (2) the number of repetitions of each
path; and (3) all indirect branches encountered within loops.

Attestation Protocol. LO-FAT makes use of the widely-used
secure challenge-response attestation protocol. As explained in §3,
P sends the recorded program path P along with a digital signature
over P and a nonce supplied by V . If P’s signing key has not been
compromised, this signature guarantees the authenticity of the attes-
tation, and the inclusion of the challenge nonce ensures freshness.
Our assumed software adversary cannot compromise the signing
key because it is stored in hardware-protected secure memory. Any
tampering with the attestation messages can be detected by V .

Given that the control flow recording and the signing key is pro-
tected from software attacks, the resulting attestation report provided
by LO-FAT is accurate, complete, authentic, and fresh. Since P’s
code is immutable and is statically attested at boot time, V has com-
plete information about P’s execution. As described in §3, V also
has access to the CFG of the attested software, which it can use to
identify permissible control flows and detect control-flow attacks or
non-control data attacks.

7 Related Work
Remote Attestation. Most prior work focuses on static remote
attestation [7, 11, 21], which is orthogonal to run-time attestation –
the focus of this paper. Software-based attestation [22] can, under
strict assumptions, enable static attestation of legacy devices without
hardware-based trust anchors. Property-based attestation [20] can
attest behavioral characteristics of a program, with the assistance of
a trusted third-party. However, none of these can attest control-flow
at machine code instruction level.

Prior work on run-time attestation focuses on specific aspects of
a program’s execution. ReDAS [15] attests program data invariants,
such as the integrity of a function’s base pointer, at each system
call. Trusted virtual containers [4] attest the run-time launch or-
der of application modules – a form of coarse-grained control-flow
attestation that does not include internal control flows within mod-
ules. DynIMA [10] uses dynamic taint analysis and tracing to attest
run-time properties that may be symptomatic of run-time attacks.
However, it does not cover non-control data attacks and incurs high
performance overhead due to dynamic taint analysis.
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C-FLAT [2] is a fine-grained control-flow attestation scheme.
LO-FAT also leverages the idea of attesting the control flow of an
application by computing a cumulative hash of executed branches
but with several fundamental differences. C-FLAT requires instru-
mentation of all control-flow instructions thereby violating legacy
compliance. In contrast, LO-FAT does not require any binary rewrit-
ing. C-FLAT requires complete coverage in the offline binary analy-
sis, as un-instrumented control-flow instructions could be exploited
to mount undetectable attacks. This is not possible in LO-FAT as
every executed branch is monitored by design. Finally, C-FLAT
incurs significant performance overhead, whereas LO-FAT incurs
no performance overhead due to its efficient hardware support for
control-flow attestation.

Tracing and Debug Mechanisms. Intel processors provide the
Last Branch Record (LBR) and Branch Trace Store (BTS) mecha-
nisms, which can be used to trace control-flow events [24]. However,
the overhead incurred by these debugging mechanisms makes them
unsuitable for control-flow attestation. Recently, Intel processors
introduced Intel Processor Trace (IPT) [14], a low-overhead exe-
cution tracing feature that collects more tracing information than
BTS (including execution mode and timing information). However,
IPT cannot be directly used for control-flow attestation as it only re-
ports control-flow events that cannot be inferred from static analysis.
ARM’s CoreSight6 debug and trace architecture provides a mech-
anism to access trace information from different hardware trace
components. However, high-throughput tracing on ARM typically
requires the use of proprietary hardware.

Hardware-Assisted Security. Recent work [5, 26] developed a
generic architecture for enforcing a diverse range of SoC security
policies. Each IP block has an individually-customized security
wrapper that sends security-relevant events and information to a
central security controller to enforce individual security policies for
each IP. However, this incurs high memory and logic complexity
overhead as the number of IPs increases. It has further been pro-
posed [3, 6] that this could be made more practical by re-purposing
design-for-debug features found on many SoCs – a promising ap-
proach which could complement LO-FAT in future.

Sofia [9] is a recent hardware-assisted architecture for enforc-
ing control-flow integrity (CFI). It encrypts instructions with CFI-
dependent data, such that they can only be decrypted at run-time
as part of a valid control-flow path, and it ensures instruction in-
tegrity by checking MACs on groups of instructions at run-time.
However, unlike LO-FAT, this requires software instrumentation
and places decryption in the critical execution path, thus incurring
total execution time overheads of up to 110%.

8 Conclusion
Due to the increasing prevalence of interconnected embedded sys-
tems, software running on these devices have become a prime target
for remote attacks. We presented in this paper the first hardware-
based control-flow attestation scheme that allows precise detection
of remote memory corruption attacks in embedded system soft-
ware. Our architecture, LO-FAT, monitors, measures and reports the
program’s behavior by interfacing with the processor to intercept
control-flow events. LO-FAT does not require any code instru-
mentation (compliant to legacy software), compiler toolchain or
instruction set extension. Our proof-of-concept implementation on
the open-source RISC-V core is highly efficient with no perfor-
mance impact on the attested software at the expense of minimal
logic overhead and on-chip memory.
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Abstract—Remote attestation is an important security service
that allows a trusted party (verifier) to verify the integrity of a
software running on a remote and potentially compromised de-
vice (prover). The security of existing remote attestation schemes
relies on the assumption that attacks are software-only and that
the prover’s code cannot be modified at runtime. However, in
practice, these schemes can be bypassed in a stronger and more
realistic adversary model that is hereby capable of controlling
and modifying code memory to attest benign code but execute
malicious code instead – leaving the underlying system vulnerable
to Time of Check Time of Use (TOCTOU) attacks.
In this work, we first demonstrate TOCTOU attacks on

recently proposed attestation schemes by exploiting physical
access to prover’s memory. Then we present the design and
proof-of-concept implementation of ATRIUM, a runtime remote
attestation system that securely attests both the code’s binary and
its execution behavior under memory attacks. ATRIUM provides
resilience against both software- and hardware-based TOCTOU
attacks, while incurring minimal area and performance overhead.

Index Terms—Attestation, runtime, memory attacks

I. INTRODUCTION

Recent high-profile attacks on embedded systems, such as
Mirai and Stuxnet, have become crucially alarming and of
increased significance as systems are becoming more intercon-
nected and collaborative. Remote attestation plays an important
role as a security service for detecting malware on a remote
device. It is implemented as a challenge-response protocol that
allows a trusted verifier to obtain an authentic report about
the (software) state of a potentially untrusted remote device
called prover. Conventional attestation schemes are static in
nature, i.e., the prover sends an authenticated report to the
verifier by issuing a digital signature or cryptographic MAC
(Message Authentication Code) over the verifier’s challenge
and the measurement (typically hash) of the binary code to
be attested [22]. However, static attestation only ensures the
integrity of binaries but not of their execution. In particular, it
cannot detect the prevalent state-of-the-art runtime attacks that
do not modify the program binary but subvert the intended
control flow of the targeted application program during its
execution. Current runtime attacks take advantage of code-

reuse techniques, such as return-oriented programming that
dynamically generate malicious code by chaining together code
snippets (called gadgets) of benign code without requiring
to inject any malicious code/instructions [24]. Consequently,
the hash value computed over the binaries remain unchanged
and the attestation protocol succeeds, although the prover has
been compromised. These sophisticated exploitation techniques
have been shown effective on many processor architectures,
such as Intel x86 [23], SPARC [4], ARM [16], and Atmel
AVR [10]. In fact, large-scale investigations of embedded
systems security have shown various vulnerabilities, including
memory corruption (such as buffer overflow) that can be
exploited for runtime attacks.

Hence, effective attestation should enable reporting the
prover’s dynamic behavior – more concretely, its current
execution details – to the verifier. To attest the dynamic
program behavior researchers have proposed enhancements
and/or extensions to static binary attestation (e.g., [11], [3]).
The most recent, C-FLAT [3], reports the prover’s dynamic
state (execution paths) and provides fine-grained control-flow
measurements to the verifier. Note that, unlike control-flow
integrity (CFI) enforcement, control-flow attestation provides
detailed information about the executed path that might be of
crucial interest to a remote verifier. This information helps
in detecting data-oriented non-control attacks [5] that can
bypass CFI by corrupting data variables to execute a valid
but unintended control-flow path, for instance, redirecting the
control flow to a high-privileged recovery routine (see also [13]).
However, C-FLAT requires program code instrumentation and
incurs high performance overhead, particularly on the prover.

On the other hand, all existing attestation schemes (including
C-FLAT) rule out physical attacks in their adversary model.
This assumption is not always realistic, since the adversary may
at some point have physical access to the prover. In this case,
it is possible to execute (extraordinarily effective and cheap)
non-invasive attacks on the program code memory through
physical access. In particular, the adversary physically controls
and modifies the memory such that benign code is attested but
malicious code is executed instead.
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Goals and Contributions. In this paper, we first demon-
strate that – using external interfacing with prover’s program
code memory bank – an adversary can bypass all existing at-
testation schemes and deliver sound attestation reports, without
even having to extract the prover’s secret keys (cf. § III).
To overcome the limitations of current attestation schemes,
we introduce a holistic approach to attestation ATRIUM, a
resilient runtime attestation scheme that is capable of detecting
both physical memory attacks and software attacks including
runtime attacks by attesting the executed instructions and their
control flow at runtime. Our main contributions are listed as
follows.

• We demonstrate memory bank attacks on state-of-the-
art attestation schemes for embedded devices such as
SMART [9] and C-FLAT [3]. We exploit physical access
to code memory to bypass attestation and deliver sound
attestation reports without having to extract the prover’s
secret keys.

• We present ATRIUM– an attestation scheme which:
(1) detects memory bank attacks by attesting instructions
as they are fetched from (off-chip) memory for execution;
(2) prevents software attacks on the attestation process it-
self by separating the attestation engine from the processor
(i.e., no instructions are sent to the processor to perform
attestation). Instead, attestation is performed by a separate
hardware engine in parallel. (3) detects runtime attacks
by tracking and reporting both executed instructions and
control-flow events during execution.

• We present a proof-of-concept implementation and perfor-
mance analysis which demonstrate the effectiveness and
feasibility of ATRIUM, and its applicability to low-end
embedded devices.

II. BACKGROUND

Control-Flow Graph (CFG). The execution flow of a
program can be abstracted into a control-flow graph (CFG) by
leveraging the aid of static and dynamic code analysis. The
nodes in CFG represents basic blocks of a program, while
edges represent control-flow transitions from one block to
another by means of a branch instruction. A valid path in CFG
is composed of several nodes connected by edges.
Runtime Attacks. An outline of the different classes of

runtime attacks is illustrated in Figure 1. The system dedicates
separate memories for data and code. The former is marked
as readable and writable (rw), while the latter is marked as
readable and executable (rx). This ensures that code cannot
be executed from data memory, and code memory cannot be
overwritten by means of software. Along this CFG, we can
outline three major classes of runtime attacks: � non-control-
data attacks that indirectly affect the control flow of a program,
� corruption of loop variables, and � code-pointer overwrite
attacks. By corrupting control-flow information stored in the
stack or heap and overwriting code-pointers (return addresses
and function pointers) as in � an attacker can redirect the
control flow of a program such that execution has a malicious
and unauthorized effect. In attacks based on code-injection,

Figure 1: Different attack classes

the attacker places a malicious executable payload in program
memory and redirects control flow to execute it. Alternatively,
state-of-the-art runtime attacks leverage code-reuse techniques,
such as Return-oriented Programming (ROP) [23]. These
attacks exploit a memory corruption vulnerabilities (e.g., buffer
overflows) in the program and stitch together a malicious
sequence of machine code instructions from benign gadgets
of code already residing in the memory of the vulnerable
program. Non-control-data attacks [5] do not compromise the
control flow of a program, but cause unexpected malicious
control flow by corrupting critical data variables such as an
authentication variable. This results in executing a privileged
(unintended) but permissible control-flow path that exists in
the CFG. Attack � affects the number of times a program loop
executes by corrupting a loop variable such as a counter. This
can have severe consequences depending on the context, e.g.,
a syringe pump dispenses more liquid than requested (see [3]).
Code injection attacks can be prevented by either marking
memory as writable or executable. This mechanism is known
as Data Execution Prevention (DEP) [12]. Countermeasures
against code reuse attacks include: Control-Flow Integrity
(CFI) [2], fine-grained code randomization [19], and Code-
Pointer Integrity (CPI) [18].

Besides software-based runtime attacks, a stronger adversary
as shown in Figure 1, can modify program code in memory
through physical access without mounting sophisticated inva-
sive physical attacks, but by simply replacing the benign code
memory with malicious code memory at runtime. We elaborate
on these memory bank attacks next in § III and propose an
attestation scheme that can mitigate them in § V.

III. TOCTOU ATTACKS ON ATTESTATION SCHEMES

Next we describe memory bank attacks that we aim to
mitigate in this work, and we show how they bypass recently
proposed attestation schemes: SMART [9] C-FLAT [3] and
LO-FAT [7]. These attacks assume a stronger adversary that
can physically manipulate the code memory without the need
for sophisticated invasive physical attacks and can consequently
bypass attestation schemes that strictly consider software-only
adversary. The attack is illustrated in Figure 2: At Prv’s side
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the attestation scheme (i.e., the attestation code and secret
key) is stored on-chip while the benign code resides in an
external memory. The adversary can interleave instruction
fetches to malicious code in-between those fetches needed
to attest the benign code of the original program. This can
be done by replacing the original memory interface with an
interface to a memory controller. This allows the adversary to
direct instruction fetches to either benign code when attestation
is running, or malicious code otherwise. The same interleaving
attack can be achieved by inserting malicious instructions in-
between hooks to the attestation. As long as the malicious
instructions do not interfere with attesting benign code, e.g.,
intended control flow, the attestation can be bypassed. In the
following, we describe how we implement the attacks to bypass
SMART and C-FLAT.

Figure 2: Memory bank attack on attestation schemes

A. SMART

SMART [9] is a static attestation scheme that establishes
a root of trust in low-end embedded systems with minimal
hardware components. It targets microprocessors that are able to
execute code from an external memory, whereas the attestation
code and key reside in an internal ROM and are protected by
access control policies of a memory protection unit (MPU).
When an attestation request is received, the atomic attestation
code in ROM computes a HMAC of a region of code memory,
provided in the attestation request. Then the attested code
executes atomically.
Detecting Attestation Execution. By eavesdropping in the

communication channel between the verifier and the prover for
an attestation request, we determine when the attestation engine
is about to run in order to launch a TOCTOU attack. Although
this is permissible by the adversary model in SMART, we
choose not to tackle the detection problem this way. Instead,
we examine a side-channel that is inherent to the SMART
design, by placing a monitor on the address bus between the
processor and memory to capture which addresses are being
accessed. Using the access patterns, we are able to discern
whether a CPU is executing from external memory or from the
internal ROM. Since SMART is prototyped on the open-source
MSP4301, it utilizes a von Neumann architecture, where data
and instructions are accessed over the same address space but
are structured such that they reside in different sections of
memory. Hence, we can extract and filter out data accesses,

1http://opencores.org/project,openmsp430

leaving behind accesses to code memory. In doing so, we
observe the time-frame that it takes the internal ROM to set
up the attestation environment, followed by the linear scan of
code addresses, then the subsequent execution of external code.
On processors with modified Harvard architecture, a temporary
halt in accesses to code memory would be recognized, as the
ROM code starts executing. We then observe a linear scan
over an address range, as code is being read and hashed by
the attestation code. A break is then noticed as the ROM
code cleans up memory, followed by the continued access to
program memory for execution. Utilizing this, we perform one
of the following attacks to mount a TOCTOU attack.
Blind Execution of Malicious Software. Since code mem-

ory remains external to the SoC, we splice the address bus,
add a new memory chip containing malicious code and utilize
the monitor to detect when the attestation code runs. When
attesting, we bank to the memory with the intended code. When
executing, we bank to the malicious code memory, allowing
SMART to report valid attestation results while malicious code
is actually executed by CPU during periods of no attestation.
Leakage of Secrets via Data Memory Banking. As the

attestation code runs, temporary values are saved in memory,
assuming SMART implementation utilizes off-chip memory
to store temporary values. We use the monitor to detect when
the attestation code runs. As data memory is accessed to store
temporary values, we bank memories to allow for the leakage
of values. We perform this by physically tampering with the
address lines between the processor and the memory. As the
monitor detects when SMART is about to perform its cleanup
routines, we bank to a different portion of memory, leaving the
ROM code to erase the wrong portion of memory. By reading
the SMART secrets from memory, we are able to reconstruct
the attestation secret and fake a valid response.

B. C-FLAT

C-FLAT [3] is a runtime attestation scheme that aims to
measure and report the control-flow behavior of an executing
code. It instruments all branch instructions such that they are
intercepted by a runtime tracer (RTT). The RTT recovers the
source and destination addresses of the branch as well as its
type, which are then passed to the measurement engine (ME).
The ME is responsible for computing a hash over the reported
branches and these hash measurements are secured by running
in a TrustZone secure world. In this way, a runtime control-flow
attestation report is generated and verified against previously
computed control-flow traces stored in a trusted verifier party.

C-FLAT is susceptible to two TOCTOU attacks assuming
that the attacker has physical access to the code memory : 1)
replacing instructions within a basic block with malicious ones;
and 2) refactoring the control-flow graph (CFG) of an arbitrary
program to match a benign CFG protected by C-FLAT. Both
attacks exploit the fact that C-FLAT attests only control flow
when exiting a basic block but not the executed instructions
themselves. Hence, intermediate instructions within the basic
block can be arbitrarily replaced by malicious executable code
by a stronger adversary with physical access to the code
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memory, as long as the control flow of the code remains
unchanged and the expected attestation report is not violated.
These attacks are also applicable to the hardware-assisted
control-flow attestation scheme LO-FAT [7] since it also only
attests control flow.

We chose to implement a TOCTOU attack against one of the
case studies presented in [3], namely the syringe pump program
responsible for dispensing intravenous (IV) fluids. Our attack
goal is to dispense liquid in incorrect volumes at unexpected
times, thereby, disrupting the correct flow of IV fluids. We
only demonstrate the second attack variant, however, the first
variant of the attack is also easily feasible by replacing the
original instructions within the basic block with malicious ones.
This allows the original RTT hooks into the ME to compute
a valid attestation report as it is based upon the source and
destination addresses of a branch and its type.

In place of the original program that manages liquid
dispensing and withdrawal, we implement a malicious program
that chooses a random value to dispense by modifying the
set-quantity function and additionally creates compound
dispense and withdraw triggers for the move-syringe
function. We embed this code in the original program, which
creates new edges in the CFG of the syringe pump program.
Our new edges would violate C-FLAT’s attestation report for
the benign syringe pump program.

To avoid triggering C-FLAT, we refactor the CFG of our
attacker syringe pump program using the REpsych tool2 to
construct the desired CFG. The REpsych tool is an IDA plugin
that translates a source image into a functioning program whose
CFG is the image. We used the original syringe pump’s CFG as
a source image, and our modified syringe pump program as the
target. This allowed us to generate a program with alternative
functionality, but equivalent CFG to the original syringe pump
program. We then recompute the attestation report using
C-FLAT’s tools3. The attacker program’s attestation report
matched the original syringe pump program’s attestation report
after CFG refactoring. Thus, we were able to accurately execute
the attacker program without violating C-FLAT’s protection.

IV. ATRIUM

We present ATRIUM a runtime attestation scheme targeting
bare-metal embedded systems software. ATRIUM comprises
a remote embedded system, called in this context the prover
Prv, and a trusted verifier Vrf . The Prv is deployed in-field
such that the adversary has physical access to its memory.
Typically, both Vrf and Prv have access to the binary code
of the program P to be attested on Prv. Note that, in practice,
it may not be feasible to apply runtime attestation to the entire
program code due to obvious efficiency reasons, but it can be
applied to pre-defined security-critical code regions.

A. Adversary Model and Assumptions

In addition to the standard capabilities of the adversary in
typical remote attestation schemes, which assume software-

2https://github.com/xoreaxeaxeax/REpsych
3https://github.com/control-flow-attestation/c-flat

only attacks, our adversary can also perform runtime attacks
(§ II). Furthermore, we assume a stronger adversary that has
physical access to the Prv’s memory and can manipulate the
program code at runtime and, therefore, is able to mount a
TOCTOU attack (§ III). However, the adversary cannot modify
memory reserved and used by ATRIUM itself – this memory is
hardware-protected and not mapped to the software-accessible
address space. Data-oriented programming attacks [13] that
do not affect the control flow as well as invasive physical
attacks on the SoC that aim at extracting secret keys are out
of scope. This assumption is reasonable, since an adversary is
more likely to mount a simple physical attack on the memory
as we demonstrated in § III, rather than expensive sophisticated
invasive attacks on the chip that can destruct it eventually.

B. Runtime Attestation: High-Level Scheme

Inspired by C-FLAT [3] (described in § III-B) and the
hardware-assisted scheme LO-FAT [7], ATRIUM performs
attestation of an executing program code at runtime. However,
unlike both schemes, it measures both the executed instructions
(to detect the more advanced TOCTOU attacks described
in § III) and control flow (to detect runtime attacks).

Similar to C-FLAT, our attestation mechanism relies on Vrf
performing one-time offline pre-processing to generate the CFG
of program P (including expected loop execution information)
by means of static and dynamic analysis. Vrf computes
cryptographic hash measurements over the instructions and
addresses of basic blocks along legal CFG paths and stores
them in a reference database. Vrf initiates the attestation by
sending Prv benign input inb, the code region to be attested
in P , and a nonce to ensure freshness of the attestation report.
Prv executes P on the benign inputs inb and potentially
malicious inputs inm that are not controlled by Vrf and may
lead to the corruption of the program’s control flow by means
of runtime attacks (§ II). ATRIUM is triggered during the
execution of the code region of interest and computes a set of
hash measurements over the executed paths. When execution
of the code region is complete, Prv generates and sends to
Vrf the final attestation report consisting of the concatenated
set of hash values H0‖...‖Hn and the number of iterations of
the hash values which correspond to executed loop paths, and
a signature over H0‖...‖Hn and the nonce based on Prv’s
secret key sk . To ensure authenticity of the report, sk is stored
in memory accessible only by ATRIUM. Upon receiving the
report, Vrf verifies its signature using Prv’s public key pk
and checks whether the H0‖...‖Hn values match the reference
hash values under input inb. If they match, Vrf concludes
that Prv’s execution of the attested code region was correct
in terms of executed instructions and their control flow. For
better understanding, we demonstrate next by an example how
the hash values are computed during attestation.
Example. A CFG of an example pseudo-code is shown

in Figure 3. Each numbered node in the CFG represents the
corresponding numbered basic block of sequential instructions
in the pseudo-code and the address of the first instruction of
that basic block. For example, N5 corresponds to the first 3
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Figure 3: Example pseudo-code and its segmented CFG

instructions outlined in the pseudo-code, constituting a single
basic block, and the address of the first instruction. The CFG
shown in Figure 3 has 2 main paths: P0, in bold, consisting
of nodes N1-N2-N5-N6-N4 and P1, in dashed, consisting of
nodes N1-N3-N7-N4. In order to avoid combinatorial explosion
of legal hash values that would occur due to multiple loop
iterations, the program CFG is split into segments such that
hash values for loop paths are computed separately, rather than
computing a single hash value over the complete executed path
of the attested region. In Figure 3, due to the loop in N5-N6,
P0 is sectioned into 3 segments: S0, S1 and S2. S0 comprises
all nodes till loop entry at N5, where S1 is initialized. S1
ends at the loop exit node N6, and S2 is initialized at N4 and
beyond until again another loop is encountered and so on.

When path P0 is executed and attested, ATRIUM accumu-
lates nodes (address of the first instruction and the individual
instructions in each node) along each segment and computes a
hash value for each segment: a hash value H0 = H(N1||N2)
over the nodes in S0 of P0, followed by H1 = H(N5||N6)
over the nodes in S1, and H2 = H(N4) over the nodes in S2,
resulting in the set of hash values H0||H1||H2 representing
the executed path P0. P1, on the other hand, has no loops.
Therefore, when executed the whole path is measured by
a single hash value H3 = H(N1||N3||N7||N4). This CFG
segmentation in hash computation allows our scheme to tackle
loops and nested loops efficiently, while also allowing fine-
grained attestation of their execution. It requires that ATRIUM
can detect and interpret loops accurately at runtime. Unlike
C-FLAT, we aim to realize this without instrumentation, hence
avoiding the associated performance overheads. We present next
the architecture of ATRIUM and how it interfaces directly with
the processor hardware to capture at runtime every executed
instruction and accurately interpret control flow and infer loop
entry and exit points without instrumentation.

V. ATRIUM: DESIGN AND IMPLEMENTATION

ATRIUM is a hardware-based scheme for runtime attestation
that tightly integrates with a processor, as shown in Figure 4.
This allows it to extract the executed instructions and their
memory addresses from the execute stage of the pipeline
at runtime while the program P (that needs to be attested)
executes on input values inb and inm. ATRIUM outputs a set
of hash values H0‖...‖Hn computed over the executed path

Figure 4: Architecture of ATRIUM

which get included in the attestation report. We present next
the components of ATRIUM and their implementation details.

A. Instruction Filter

Upon code execution, the instruction filter extracts the current
program counter (PC) and the executed instruction per clock
cycle and checks whether the current instruction is a branch or
jump, since such instructions reflect control-flow transitions.
Implementation. We implemented the instruction filter such

that it tightly extends the execute stage of the processor from
which it extracts the PC and instruction per clock cycle. If the
current instruction is a control-flow instruction, its PC and the
address it jumps to are stored as source–target pair, (Src, Tgt)-
pair. To determine whether the branch was taken and whether
control jumped forwards or backwards in memory, the PC of
the next executed instruction is compared to the stored target
address. Instruction filter outputs the following signals: (1)
branch instructions, their type, and (Src, Tgt)-pairs and (2)
basic block addresses and executed instructions.

B. Loop Encoder

As explained in § IV-B, ATRIUM handles loops and their
hash computations differently. Hence, at runtime the loop
encoder detects loops and identifies their entry and exit points
and their depth, in case of nested loops. It checks whether
the behavior of a captured branch can be inferred as returning
to a loop’s entry point, hence indicating a new loop iteration.
The loop encoder instructs the hash controller to finalize the
ongoing hash computation and initialize a new one with the
entry address of a loop iteration. Furthermore, the loop encoder
also detects if a branch represents a system call since system
functions have to be handled specially in ATRIUM.
Implementation. To detect loops at runtime without rely-

ing on code instrumentation, we utilize a feature of RISC
architectures that implement a link-register, such as PowerPC,
ARM, SPARC, and RISC-V. We adopt a heuristic used in [7]
to distinguish between backward branches that indicate loop
entry, and branches for subroutine calls where the call target
resides earlier in memory. Subroutine calls use instructions
that update the link-register with the return address, hence, we
consider any non-linking backwards branch as a loop entry
node. Consequently, the basic block after the branch instruction
is considered a loop exit node. This is based on observations
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of the RISC-V compiler assembly and its calling convention:
any subroutine call with multiple call sites must be linking
and updates the link-register. Subroutines with a single call
site can be compiled as a linking branch or inlined using the
RISC-V compiler. A system call is identified by comparing its
target against a predefined list of addresses of such functions
and issuing a unique identifier for that function F_ID. The
loop encoder stores the addresses of entry and exit nodes of
each loop in a content-addressable memory (CAM) to ensure
single-cycle constant-access search time. At runtime, every
(Src, Tgt) is used to index the CAM to detect if a loop is
re-entered or exits and to extract its loop_ID and depth (in
case of nested loops). An iterations counter for each loop is
maintained and updated at runtime. We detect loop exit when
execution proceeds past the currently active loop exit node,
either due to sequential execution or a non-linking jump, such
as a break. The F_ID, loop_ID and loop_status signals are
forwarded then to the hash controller.

C. Hash Engine and Hash Controller

The hash engine computes a hash value of each executed
path within a segment (§ IV-B). The hash controller regulates
the operation of the hash engine, i.e., finalizes or initiates a
hash computation based on the control signals received from
the loop encoder. In case the computed hash corresponds to
a loop path, the hash controller sends this hash to the hash
lookup and sets the search boundaries of the hash lookup to
that particular current loop (necessary in case of nested loops).
Otherwise, the hash value is simply stored in hash memory.
Implementation. We selected Blake2 4 for hash computa-

tions and used the open-source hardware implementation of
Blake2b, which takes as an input a message block of size 1Kbit
and has a configurable digest size. We configured its digest size
to 88 bits to reduce memory requirements for hash lookup and
hash memory. The hash controller buffers incoming instructions
from the loop encoder, aligns them in 1Kbit message blocks
and feeds them to the hash engine. The hash engine requires
28 cycles to process a block, thus the hash controller issues a
stall signal to the processor in case its buffer is full and the
hash engine cannot digest a new message block. Therefore,
system calls are handled differently because we observe that
they often involve short loops that are executed arbitrarily
many times, e.g., string utility functions. Hashing such a short
loop path every time it executes, especially for a large number
of iterations, would require the hash controller to stall the
processor frequently and delibitate performance. Hence, the
executed instructions along a loop path are concatenated and
stored in plaintext in a dedicated CAM and sent to the hash
engine only once when it is first encountered. When the same
path is executed again, it is compared with the previously
recorded paths in the CAM, and a corresponding counter is
incremented when a match is found, without sending it to
the hash engine again. The counters are concatenated with
the corresponding hash values in the final attestation report.

4https://blake2.net/

Upon finalizing a hash computation, the hash controller checks,
whether the resulting hash is computed over a path within a
loop or not. If it is computed over a path loop, it forwards the
resulting hash value from the hash engine synchronized with
its corresponding loop_ID to the hash lookup.

D. Hash Lookup

The hash lookup is dedicated to storing and tracking hash
values during loop iterations efficiently. Once a hash value is
ready, the hash controller forwards it to the hash lookup, which
searches within the current loop’s list of hash values for a
match. If not found, then the hash value is appended to the list.
The hash lookup also maintains a counter per loop path which
is incremented when its corresponding hash is encountered.
Implementation. To avoid multiple memory accesses due to

sequential search of a particular hash value, we implement the
hash lookup as a set of CAMs, whose number can be configured
based on the system’s requirements. A CAM is dedicated for
every active loop, so the number of CAMs is determined by the
maximum number of nested loops that ATRIUM is configured
to track concurrently. Each CAM has a configurable capacity
of (n,m) bits, where n is the maximum number of entries and
m is number of bits per entry and a counter to maintain the
occupied number of entries. When a loop is detected, the hash
controller sends the hash lookup to reserve a CAM for it and
reset its counter to zero. The CAM holds the computed hash
values of a currently executing loop temporarily till the loop
exits. Each time a path in the pertinent loop is executed, its
computed hash value is looked up in the associated CAM. If a
match is not found, i.e., this path has not been executed before,
then its hash value is appended to the CAM. When a new
loop is detected and all CAMs are occupied, a CAM that was
reserved for a loop that already exit (and will not be executed
again) is freed and re-used. If a path does not belong to a loop,
then its hash value is used to update the hash memory directly.

E. Hash Memory

All computed hash values are stored in a dedicated memory.
After the execution of the code region to be attested completes,
these hash values are assembled and a digital signature is
computed over them. The hash values H0‖...‖Hn and their
signature are then transmitted to Vrf .
Implementation. An on-chip hash memory is dedicated to

store all computed hash values during a single attestation run
of the pertinent code region. The sequence of the storage of the
hash values in memory indicates the order of the first occurrence
of their corresponding code segments during execution. It is
necessary to maintain this order and report H0‖...‖Hn in the
same sequence to Vrf for correctly verifying execution. In our
FPGA prototyping of ATRIUM (cf. § VI), we configure the
hash memory as on-chip block RAM (BRAM) of configurable
capacity with each entry occupying 88 bits for hash digest and
8 bits for its counter. The capacity is configured according
to our attestation requirements, i.e., the maximum number
of CFG segments an attested code region would consist of.
Alternatively, for constrained embedded systems, we can reduce
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the memory requirements by streaming the hash values (or
every batch of them) as soon as they get generated to the Vrf .

VI. EVALUATION & SECURITY CONSIDERATIONS

A. Performance & Area Evaluation

We implemented ATRIUM in Verilog, interfaced it with the
open-source RISC-V Pulpino core 5, and simulated and synthe-
sized it. Performance and functionality were evaluated using
a suite of microprocessor benchmarks including Dhrystone,
mt-matmul, rsort, spvm and towers.
Functionality. We extended the Pulpino RTL with ATRIUM

and performed cycle-accurate simulation on ModelSim while
executing the aforementioned benchmarks. We confirm correct
functionality of ATRIUM by comparing simulation results
with reference execution profiles of the benchmarks, which we
extracted by running the benchmarks on standalone Pulpino
without ATRIUM and analyzing the execution trace.
Area and Memory. Area utilization depends on the config-

urations of the hash lookup and hash memory of ATRIUM. For
our evaluation, we configured the hash lookup with 8 CAMs,
each CAM with n = 8 entries and each entry being m = 88
bits. This allows ATRIUM to track up to 8 active nested loops
at once with a maximum of 8 different 88− bit path hashes
per loop. On synthesizing ATRIUM using Xilinx Vivado on
a Zedboard (Virtex-7 XC7Z020 FPGA), we show the overall
area utilization to be 15% of slice registers and 20% of slice
LUTs of this FPGA, while only one 18Kbit BRAM is required
for the hash memory.
Performance. Implementation results indicate that ATRIUM

can operate at a maximum clock frequency of 70 MHz on
a Zedboard (Virtex-7 xc7z020 FPGA) and is, hence, on par
with the Pulpino’s maximum clock frequency of 50 MHz on
the same board. Performance experiments show an overhead
of 1.97% for Dhrystone, 12.23% for mt-matmul, 22.69% for
rsort, 6.06% for spvm and 1.7% for towers. Since ATRIUM
components run on par with Pulpino, performance loss is caused
by the hash function, as the processor stalls occur only when the
currently executed path has ended and needs to be hashed while
the hash engine is still processing the previously executed path
and is not ready for input. This overhead is incurred for loops
with paths whose number of executed instructions are less than
the required number of cycles for the hash engine to finalize
its computation (28 cycles for the chosen hash function). To
mitigate this overhead, the hash engine should be clocked at a
higher frequency than the processor if possible.

B. Security Considerations.

We assume that the used cryptographic primitives are secure.
Upon receiving an attestation request, Prv generates and sends
the list of computed hash values H0‖...‖Hn along with a digital
signature computed over it and a nonce provided by Vrf and
signed by Prv’s secret key sk. The signature guarantees the
authenticity of the attestation report while the nonce ensures
its freshness. By verifying the signature, checking the value of

5https://github.com/pulp-platform/pulpino

the nonce, and comparing the received hashes to their expected
values stored in Vrf ’s database, Vrf gains assurance of the
correct execution (both instruction and their control flow) of
the current program on Prv. We consider three classes of
attacks that can be mounted on ATRIUM.
Malware and Network Attacks. ATRIUM detects mali-

cious software modification introduced by the adversary, as
every executed instruction is included in the hash computation.
To evade detection, finding a second image that maps to same
hash value is required. However, that is infeasible since the
hash engine is second pre-image resistant. Forging the signature
or replaying an old signature is also not feasible, due to security
of signature scheme and to the nonce being long enough.
Runtime Attacks. Since basic block addresses are included

in hash computations along with the executed instructions, the
hash values computed in ATRIUM reflect the control flow of
the executed path. Being tightly integrated with the processor,
ATRIUM is guaranteed to track and record every control-flow
event executed. An attacker who knows the program code
P or CFG(P ) can try to bypass ATRIUM by searching for
a second pre-image of the corresponding hash. However, by
using cryptographically-secure hash function, finding collisions
is computationally infeasible.
Physical Attacks. An adversary with physical access to Prv

can try to manipulate the program code in Prv’s memory at
runtime, i.e, between time of attestation and time of execution.
However, in ATRIUM attestation is performed during execution.
Therefore, it is guaranteed that every instruction that is
executed on Prv will be included in the hash generation, and
consequently any manipulation will be detected by Vrf , as
the generated hash values would not match Vrf ’s expectations.
This defends against TOCTOU attacks that can occur when
attestation is followed by execution, as was the case for both
SMART [9] and C-FLAT [3]. Finally, fault injection attacks
which target the SoC clock and cause unintended behavior
would also be detected by Vrf , as long as the attacks affect
the instructions executed or their control flow. Note that,
expensive invasive/semi-invasive physical attacks on the SoC
are considered out of scope in this work.

VII. RELATED WORK

Attestation Schemes. Existing static attestation schemes
such as software-based [14], [20], hardware-based [21], [17],
and hybrid [15], [9] attestation schemes are vulnerable to
runtime attacks. Control-flow attestation (C-FLAT) aims at
enhancing the security of static attestation schemes by addi-
tionally hashing the code’s execution control flow. This enables
the detection of code-reuse and non-control data attacks that
divert the execution flow. However, due to frequent hash calcu-
lations and context switching (on TrustZone), C-FLAT incurs
high performance overhead. LO-FAT [7] leverages hardware
assistance to track and measure control flow, thus, overcoming
the limitations of C-FLAT and enabling efficient attestation
of uninstrumented code. LO-FAT, however, incurs significant
area overhead due to its on-chip memory requirements (up to
49 36Kbit Block RAMs are used sparsely to store counters of
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loops’ paths). Finally, in a stronger adversary model with
physical access to the prover’s device, these schemes are
vulnerable to Time of Check Time of Use (TOCTOU) attacks.
ATRIUM mitigates this by providing both static and control-
flow attestation in a stronger (and more realistic) adversary
model efficiently.
Authenticated Memory Modules. Authenticated Memory

Modules (such as Intel Authenticated Flash [1]) aim at
resisting physical attacks on external memory by preserving
the memory’s integrity. However, they are insecure under an
adversary model with physical access. Moreover, they do
not authenticate the control flow of the execution. On the
contrary, ATRIUM provides an additional defense against
software runtime attacks by coupling the attestation of both
the instructions and their control flow with their execution to
eliminate any room for TOCTOU attacks.
Memory Authentication. Such schemes [8], [6] aim at

resisting physical attacks on external memory. However, they
incur high performance overhead by authenticating memory
blocks before execution and are susceptible to runtime attacks.
ATRIUM detects both runtime attacks and physical attacks on
code memory while incurring minimal overhead.
Hardware Security Architectures. Finally, hardware se-

curity architectures (such as Intel SGX) provide memory
authentication as well as static attestation. However, such
architectures are not designed to target low-end embedded
devices. Furthermore, they only provide static attestation and
therefore cannot meet the goals that we target. Nevertheless,
they provide security features complementary to our work.

VIII. CONCLUSION

Due to the ubiquity of interconnected embedded systems,
software running on these devices have become vulnerable
to remote software attacks. Previous attestation schemes have
been proposed to detect these attacks while always ruling
out physical attacks. In this paper, we showed that physical
attacks on the system’s code memory are indeed feasible. We
presented a hardware-based efficient scheme ATRIUM that
allows precise attestation of both executed instructions as well
as their control flow. ATRIUM is the first attestation scheme to
provide security guarantees against a stronger adversary with
physical access to code memory, and does not require any code
instrumentation (compliant to legacy software) or instruction
set extension. Our proof-of-concept implementation is highly
efficient with reasonable performance impact on the attested
software at an expense of minimal area overhead and memory.
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ABSTRACT
Unlike traditional processors, embedded Internet of Things (IoT)
devices lack resources to incorporate protection against modern
sophisticated attacks resulting in critical consequences. Remote
attestation (RA) is a security service to establish trust in the integrity
of a remote device. While conventional RA is static and limited to
detecting malicious modification to software binaries at load-time,
recent research has made progress towards runtime attestation, such
as attesting the control flow of an executing program. However, ex-
isting control-flow attestation schemes are inefficient and vulnerable
to sophisticated data-oriented programming (DOP) attacks subvert
these schemes and keep the control flow of the code intact.

In this paper, we present LiteHAX, an efficient hardware-assisted
remote attestation scheme for RISC-based embedded devices that
enables detecting both control-flow attacks as well as DOP attacks.
LiteHAX continuously tracks both the control-flow and data-flow
events of a program executing on a remote device and reports them
to a trusted verifying party. We implemented and evaluated LiteHAX
on a RISC-V System-on-Chip (SoC) and show that it has minimal
performance and area overhead.

1 Introduction
The proliferating rise of the Internet of Things (IoT) hype has made
embedded devices increasingly ubiquitous and deployed in numer-
ous settings. These devices collect, process, and communicate
security, privacy and safety critical information and due to their per-
vasiveness, connectivity, and increased sensing and actuating capa-
bilities, they provide an attractive attack surface. On the other hand,
to meet the cost and power consumption budgets, embedded devices
are usually resource-constrained and lack sophisticated security fea-
tures of legacy computing devices. This has made embedded device
security particularly challenging in the face of various known and
emerging attack strategies, e.g., malware infestation, control-flow
hijacking, and data-oriented programming (DOP) attacks [13]. Crit-
ical exploits include Stuxnet1 and the more recent Mirai malware2

in 2016, where a series of disruptive Distributed Denial-of-Service
(DDoS) attacks were committed, by compromised IoT devices, in-

1http://www.computerworld.com/article/2519574/security0/
stuxnet-renews-power-grid-security-concerns.html
2https://www.incapsula.com/blog/
malware-analysis-mirai-ddos-botnet.html
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cluding routers and web-enabled security cameras, against the DNS
system. Successor variants of Mirai such as Satori3 and Okiru4 have
been crafted that target popular embedded processors from ARM to
x86 among others to exploit many more IoT devices.

Traditionally runtime attacks exploit a security vulnerability, typ-
ically memory corruption, and modify the code on a device by
injecting malicious code. However, since deployed protection mech-
anisms such as Data Execution Prevention (DEP) [16] have proven
effective against code-injection attacks, attackers have resorted to
other tactics such as code-reuse techniques like Return-Oriented
Programming (ROP) [28]. These techniques exploit vulnerabilities
to corrupt control-data and re-use the code chunks already residing
in the memory of the targeted program to build the attack payload
and hijack the control flow of the program. More recently, practical
Data-Oriented Programming (DOP) attacks were shown [13] which
allow the adversary to execute Turing-complete malicious execution
by carefully corrupting only non-control-data to stitch a sequences
of operations on attacker-controlled input. DOP attacks do not divert
the program’s control flow or modify its binaries. To mitigate these
sophisticated attacks, there has been ongoing intensive research on
runtime attacks and defenses in recent years. Prominent defense
approaches are control-flow integrity [1] (CFI), code-pointer in-
tegrity [22], and (fine-grained) code randomization [9, 23] to name
some. However, these solutions enforce security policies such as
control-flow integrity and neither provide any information about the
complete state of a program’s execution (e.g., required in detecting
non-control-data attacks) nor can they mitigate DOP attacks without
generating prohibitively high performance overhead [7, 13].

Remote attestation (RA) is a security service that aims at detecting
malware infestation. It is based on an interactive protocol through
which a remote device (the prover) sends an authenticated report
about its software configuration (i.e., usually an authenticated hash)
to a trusted entity (the verifier) to prove that it has not been altered.
Conventional attestation schemes are static and rely on the binary
digest of the code at load-time. Recent advances in attestation
solutions have aimed to attest the runtime behavior of program
execution by reporting the program’s control-flow path [2, 10, 33]
and detecting control-flow attacks as well as some non-control-data
attacks that change the control flow to a valid, yet unauthorized
control-flow path. However, this still leaves the mitigation of highly
expressive DOP attacks an open problem, while DOP attacks are
likely to become the next prevalent attack technique as control-flow
defenses become more established.

In this paper, we propose LiteHAX– a hardware-assisted scheme
enabling remote runtime attestation on RISC-based embedded de-
vices. LiteHAX allows to securely and efficiently record and report
prover’s control- and data-flow events to a remote verifier. In con-

3https://www.computerweekly.com/news/450431409/
Next-gen-Mirai-botnet-sparks-calls-for-more-secure-IoT-design
4https://thehackernews.com/2018/01/mirai-okiru-arc-botnet.html
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trast to existing schemes [2, 10, 33], this allows a trusted verifier
to detect (1) control-data attacks that overwrite a code pointer such
as ROP [28], (2) non-control-data attacks that indirectly effect the
control flow of a program, and (3) existing data-only attacks such as
DOP [13, 14]. The intuition behind our work is that all known and
reported non-control-data and DOP attacks are essentially reduced
to corrupting memory access operations, without inflicting any unin-
tended control flow [13]. In RISC-based architectures, which is the
target architecture of the prototype in this work, memory accesses
are only possible via load and store instructions.

LiteHAX is minimally invasive, i.e., it does not require modi-
fications to the processor micro-architecture, extensions to the in-
struction set architecture, or instrumentation of the program code.
Furthermore, unlike existing runtime attestation schemes such as
C-FLAT [2], LiteHAX is applicable to a more realistic embedded de-
vice usage scenario, as it allows the verifier to continuously monitor
the code executing on the prover while inducing minimal overhead
in terms of runtime, area, and memory requirements on both entities.

Control-flow hijacking attacks are detected because the verifier
receives an encoding of the control-flow path executed at the prover
which it uses to re-construct and validate the execution path. By
performing online symbolic execution and data-flow analysis that
is constrained to the re-constructed control-flow path to generate
the reference legal memory access operations, LiteHAX overcomes
the problem of execution-path explosion induced by control-flow
attestation [2] while also providing context-sensitive security guar-
antees. DOP attacks are detected because the verifier receives a
short digest that represents all the memory access operations that
have been actually executed by the prover and compares them with
the aforementioned generated reference.

The main contributions of our work are:
• Data-flow attestation: We present LiteHAX– the first runtime

attestation scheme that is capable of detecting runtime attacks
that do not change the control flow of the executing program.
• Proof of concept: We implement LiteHAX on the Pulpino

core – an open-source RISC-V microcontroller-based SoC.
• Systematic evaluation: We present an evaluation of LiteHAX

in terms of security, performance and hardware overhead.
Evaluation results show the efficiency and practicality of our
design and implementation.

2 Problem Description
We present next an overview of the different classes of software
runtime attacks that we aim to detect and proposed defenses to date.
Control-Hijacking Attacks. Runtime attacks exploit program vul-
nerabilities to corrupt the memory space and cause malicious be-
havior. The most popular entry-point to a vulnerable program is
via a buffer overflow where the attacker writes data to a buffer on
the stack or heap beyond its intended bounds and corrupts adjacent
memory locations. These attacks usually aim to manipulate the
control-flow information stored on the program’s stack and heap in
order to hijack the intended control flow of the program execution.

Figure 1 demonstrates the typical memory layout of a C program
and the different classes of runtime attacks that it is vulnerable to.
Exclusive memory sections are dedicated for the data and code
segments of a given program. The former is assigned read & write
permissions and the latter is assigned read & execute permissions.
This ensures that code cannot be executed from data memory and
that code memory cannot be maliciously overwritten by means of
a software adversary. A program can be analyzed by static and
dynamic analysis to generate its corresponding control-flow graph
(CFG) that dictates the valid control-flow paths a program should
follow while executing. The numbered nodes (N1...N8) in the CFG

data (read & write)

code (read & execute)
benign

N1
Data Variables

(non-control-data 
attacks)

Code Pointers

Memory Layout of C Program

Control-Flow Graph 
(CFG) of code1

2

3

privileged path unprivileged path

attacker-injected code blockcode-reuse attack

code-injection attack

benign code block

code (read & execute)
malicious

N8

N2 N3

N6 N5

N4N7

Software-only
Adversary

Stronger
Adversary

DOP attacks

Figure 1: Different classes of runtime attacks

in Figure 1 represent the basic blocks of the code, while the edges
represent the control-flow transitions from one block to the next by
means of a control-flow instruction. A valid control-flow path is any
path that exists within the CFG. However, not all valid paths are
necessarily legitimate in a given execution context.

Runtime attacks can be categorized into: 1 code-pointer over-
write attacks, 2 non-control-data attacks which corrupt data vari-
ables to indirectly affect the control flow, and 3 Data-Oriented
Programming (DOP) attacks which do not affect the control flow.

By corrupting control-flow information stored in the stack or heap
and overwriting code-pointers (return addresses or function pointers)
as in 1 , an adversary can redirect the control flow of a program
such that execution has a malicious and unauthorized effect. This
is possible in one of two ways; either via code-injection attacks or
code-reuse attacks. In code-injection attacks, the adversary injects
a malicious executable payload in program memory (node N8)
and redirects control flow to execute it after node N6, as shown
in Figure 1. Alternatively, in state-of-the-art code-reuse attacks,
such as Return-oriented Programming (ROP) [28], the adversary
stitches together a malicious sequence of machine code instructions
from benign gadgets of code already residing in the memory of the
vulnerable program. To achieve this, the adversary would redirect
control flow to execute the already existing benign code represented
by node N7 after executing node N6. All of the above attacks result
in the control flow explicitly being hijacked and redirected to an
invalid path that does not exist in the CFG. Such runtime exploitation
attacks have been shown to be a threat on many popular processor
architectures, such as Intel x86 [28] and ARM [20] among others.

In response to these control-flow hijacking attacks, various prin-
cipled defenses have been proposed in recent years. Code-injection
attacks are prevented by marking memory as writable or executable
using W⊕X memory access policies such as Data Execution Preven-
tion (DEP) [16]. Code-reuse attacks are mitigated by defenses such
as Control-Flow Integrity (CFI) [1, 18], Address Space Layout Ran-
domization (ASLR) [23], and Code-Pointer Integrity (CPI) [22].
Non-Control-Data Attacks. While the above attacks (and their
defenses) focus on the control plane of program’s execution, an
adversary naturally is compelled to investigate next its capabilities
within the data plane of the execution. An adversary could corrupt
critical data variables that drive the control flow of the execution
via the more sophisticated non-control-data attacks [8] as in attacks
2 . This may redirect the control flow to a valid, yet illegal and

unintended path in the given execution context. An adversary may
corrupt a critical authentication variable (at node N1) and redirect
execution to continue in a privileged path (nodes N1→ N3→ N4)
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even though the user has not been authenticated to execute this path
and should have executed the unprivileged path (nodes N1 → N2

→ N5) instead. Alternatively, an adversary may also corrupt a loop
counter variable (at node N6) to modify the number of iterations
a program loop executes. The attack payloads here are, however,
simple and limited to corrupting a critical data variable and causing
privilege escalation or sensitive data leakage.
Data-Oriented Programming (DOP) Attacks. In DOP attacks as
in 3 , the adversary carefully corrupts non-control-data to chain
sequences of instructions (data-oriented gadgets) to execute highly
expressive (assignment, arithmetic and conditional branching) op-
erations on some attacker-controlled input. The key challenge is
in crafting such an expressive construction of the desired mali-
cious execution without incurring any illegitimate control flow with
respect to the CFG. The data-oriented gadgets used consist of se-
quences of operations which can be visualized as a single virtual
machine instruction executing on top of benign program logic. An
adversary-controlled loop in the benign program, known as a gad-
get dispatcher, is used to stitch together the data-oriented gadgets
and realize expressive computation and malicious behavior. Hu et
al. [13] demonstrated three end-to-end DOP exploits against the
ProFTPD file server and one DOP attack against the Wireshark
network packet analyzer. Evans [14] demonstrated another attack
against the GStreamer FLIC decoder.

To date, deterring non-control-data attacks, and even stealthier
DOP attacks, remains a significant challenge as they have been
shown to actively break state-of-the-art defenses. While runtime
attestation schemes, C-FLAT [2] and LO-FAT [10], may detect some
non-control-data attacks, the more critical DOP attacks cannot be
detected by them. With defenses against control-flow hijacking
attacks on constrained embedded devices becoming increasingly
available, it is only natural for adversaries to turn to crafting DOP
attacks on embedded systems.

3 LiteHAX: Our Scheme
The intuition behind our work is that all known and reported non-
control-data and DOP attacks only corrupt memory load and store
operations, without inflicting any unintended control flow. To that
end, we observe that it has become insufficient to only attest control
flow in runtime attestation schemes. We present LiteHAX, a runtime
attestation scheme that continuously captures and attests both con-
trol flow and data flow of any given program execution in an efficient
and lightweight approach that is well suited for low-end embedded
devices. While the control-flow events would explicitly reflect any
control-flow hijacking exploits, the fine-grained memory operations’
trace would reflect illegal memory accesses that result from memory
corruption vulnerabilities being exploited as an entry-point for an
adversary to craft a data-oriented or a DOP attack.

LiteHAX is deployed by extending the processor core of a re-
mote in-field embedded device (called the prover PRV) with cus-
tom hardware that tracks and records the fine-grained control- and
data-flow events of executing programs at runtime. The recorded
execution trace is then reported to a trusted third party (called the
verifier VRF), which in turn verifies that the reported execution is
as expected, i.e., whether the reported control- and data flows are
legal for the given execution context. LiteHAX builds on the threat
model and assumptions that we describe next.

3.1 Threat Model and Assumptions
We assume that both VRF and PRV have access to the source
and binary code of the target program and that conventional static
(binary) attestation is deployed to assure that PRV is executing
unmodified program Prog. We also assume that address space

layout randomization (ASLR) is not deployed. This assumption
is reasonable since low-end embedded systems targeted by Lite-
HAX do not currently support ASLR due to their limited processing
power. Assuming no ASLR guarantees that VRF has access to
the memory address space mapping of the target program on PRV .
Otherwise, addresses would change for each run of the program and
instrumentation can be used to embed unique labels to identify basic
blocks and memory access operations. We assume PRV has data
execution prevention (DEP) deployed to prevent injecting malicious
code into running processes. Finally, for simplicity, we focus on
RISC-based load-store architectures for prototyping, where only
load and store instructions access data memory.

We consider a powerful adversary ADV with full control over
the data memory of the target program executing on PRV . ADV
can launch runtime attacks (§ 2) by exploiting standard memory
corruption vulnerabilities (e.g., externally-controlled format string5)
that cause buffer overflows leading to corruption of data memory.
We assume ADV cannot modify program code at runtime (due to
W⊕X protection). Furthermore, ADV cannot modify hardware-
protected memory used exclusively by LiteHAX. This assumption
is valid since this memory is not mapped to software-accessible
address space and invasive physical attacks are out of scope.

3.2 LiteHAX Attestation Scheme
We derive the following requirements for a secure runtime attestation
scheme:
• Runtime security: The scheme should be capable of detecting

all runtime attacks throughout the program execution, both
control-flow and data-oriented attacks. Continuously tracking
and recording both control- and data-flow events of execution
is sufficient to reveal all such runtime attacks.
• Accuracy & completeness: It should accurately record every

control- and data-flow event. This is guaranteed by integrating
the attestation hardware modules tightly with the processor.
• Secure reporting: It should securely report attestation results

which are integrity-protected and fresh. This is achieved by
using digital signatures and a monotonic counter.
• Low overhead on prover: It should incur minimal perfor-

mance overhead on the low-end PRV device. This is made
possible by leveraging hardware-assisted extensions for track-
ing and recording control- and data-flow events.
• No state explosion: It should not yield an explosion of possi-

ble attestation reports stored and checked by the verifier. This
is achieved by performing online context-sensitive analysis
and symbolic execution constrained to the reported control-
flow path.

LiteHAX has two phases: an offline phase, where VRF generates
the necessary information to verify attestation reports (control-flow
graph – CFG); and an online phase, during which PRV sends its
execution trace (i.e., control flow and data flow) to be validated by
VRF . The offline phase is executed only once by VRF , and the
online phase is executed continuously between the VRF and PRV .
We illustrate the LiteHAX attestation protocol in Figure 2.
Offline Phase. The verifier VRF performs a one-time pre-
processing to generate the CFG of the target program Prog by
means of static and dynamic analysis. We do not require VRF to
generate a data-flow graph (DFG) or create a database of the crypto-
graphic hash measurements over all control- and data-flow events.
This would result in a combinatorial explosion of the number of
valid hash measurements, even if the different execution paths for
each loop were only considered (excluding their order of execution
5CWE-134: Use of Externally-Controlled Format String https://cwe.
mitre.org/data/definitions/134.html
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Figure 2: Attestation protocol of LiteHAX

and iteration counts) [2]. Alternately, VRF only generates the legal
sequence of memory load/store instructions in the online phase by
performing symbolic execution and data-flow analysis constrained
along the reported execution path (see online phase below).
Online Phase (Prover-side). During execution, LiteHAX tracks
and records every control-flow transition executed by PRV and en-
codes it in the form of a bitstream BCF in a dedicated memory buffer
(operation 1 Figure 2). Simultaneously, LiteHAX creates a hash
measurement HDF = hash(Load1/Store1‖ . . . ‖Loadn/Storen)
that is computed over all the executed load/store instructions (opera-
tion 2 ). The recorded bitstreams BCF allow VRF to re-construct
the exact execution path executed at PRV segment by segment and
perform context-sensitive analysis at runtime. Because VRF keeps
state of the execution context and control flow throughout, it can
verify that each control transfer is benign and consistent with the
program’s executed control-flow path up until that point in time, i.e.,
that it adheres to a context-sensitive CFG. On the other hand, HDF
allows VRF to verify the state of the data flow on PRV .
PRV regularly (e.g., at specific time periods or when BCF reaches

a configured length ` 3 ) sends to VRF an intermediate attestation
report R = {BCF, HDF, σ} formed of the control-flow bitstream BCF
and the data-flow hash measurement HDF ( 5 ). The report is au-
thenticated along with the monotonic counter ctr by PRV using a
digital signature σ based on its signing key skPRV ( 4 ). To ensure
authenticity of the report, skPRV is stored in hardware-protected
memory that is only accessible by LiteHAX.
Online Phase (Verifier-side). Upon receiving the report, VRF
verifies the signature σ using PRV’s public key pkPRV ( 6 ) for
authenticity. VRF then re-constructs the executed path encoded in
BCF by stitching it to the last control-flow execution state. It utilizes
a runtime analysis to refine the CFG with context-sensitive analy-
sis and dynamically activates executed control-flow transfers and
basic blocks on the CFG while validating them. This constrains all
online analysis only to the activated segment of the CFG which elim-
inates the exponential increase in analysis time and state explosion
that would otherwise occur, while still enabling VRF to perform
context-sensitive control-flow validation, e.g., call-return matching
( 7 ). Simultaneously, VRF runs symbolic execution and incremen-
tal forward data-flow analysis constrained by the execution control
flow encoded in BCF. Constrained symbolic execution enables VRF
to generate the memory addresses that were accessed by each exe-
cuted instruction during the actual execution. The data-flow analysis
generates the data objects that each instruction is allowed to access.
Since field-insensitive and array-insensitive data-flow analysis can-

not distinguish between fields of an object or elements of an array,
VRF then checks whether the memory addresses obtained from
the symbolic execution are within the memory bounds allocated for
the allowed object ( 8 ). If not, this would indicate a data-oriented
attack. VRF computes a reference hash measurement RDF over
the instructions, their addresses, and the data addresses they access.
Finally, VRF checks whether the received hash measurement HDF
matches RDF ( 9 ). A mismatch would indicate a runtime attack.

4 LiteHAX: High-Level Architecture
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Figure 3: Architecture of LiteHAX

Figure 3 shows our hardware architecture for LiteHAX at PRV’s
end. LiteHAX works by continuously tracking and recording
control-flow and data-flow instructions at runtime while program
Prog executes on its benign inputs and potentially malicious
adversary-controlled inputs.

LiteHAX takes advantage of the control-flow and load/store track-
ing features inherent in any pipelined processor and interfaces with
the decode, execute and load/store stages, as shown in Figure 3. It ex-
tracts and encodes control-flow events at runtime in a bitstream BCF.
Simultaneously, it tracks all memory access events (which represent
data flow) and records them compactly by computing a cumulative
cryptographic hash measurement HDF over them. PRV then sends
to VRF an attestation report R = {BCF, HDF, σ} (cf. § 3.2).

………………………………………
if (auth-var == true) 

then: call fun_A()
else: call fun_B()

lw $rd, imm($rs)
………………………………………
end

fun_A{ 
for (x < n) loop
………………………………………

lw $rd, imm($rs)

end loop
}
fun_B{ …
………………………………………

sw $rs, imm($rd)
ret}

1
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3

4

5

6

7

BCF: 1

B

C

BCF: 1-1010110001110011 

BCF: 1-1010110001110011-10101100000010011

HDF: hash()

HDF: hash()

BCF: 1-1010110001110011 HDF: hash(StoreC)

HDF: hash(StoreC ǁ LoadA)

A

1

2

3

4

Figure 4: Example pseudo-code and its generation of BCFand HDF

The hardware add-on required is primarily comprised of uncore
modules that are tightly integrated with the processor core while
being minimally invasive to the core itself, i.e., requiring no mod-
ifications to the processor pipeline or instruction set architecture
extensions. The key modules are the control-flow instruction tracer,

Authorized licensed use limited to: ULB Darmstadt. Downloaded on July 07,2021 at 19:45:49 UTC from IEEE Xplore.  Restrictions apply. 

85



control-flow encoder, load/store instruction tracer and off-the-shelf
hardware cryptographic hash module as shown in Figure 3.

We describe the high-level operation of LiteHAX and how it
attests the execution of an example pseudo-code shown in Figure 4.
Each basic block of instructions is denoted by a numbered node
and each memory access instruction is denoted by a lettered node.
During execution, the control-flow instruction tracer extracts the
current program counter, the executed instruction and its type at
every clock cycle from the decode and execute stages. Then it
filters in and captures only control-flow instructions, namely all
branch, direct and indirect jump and return instructions, and
records their type and source SRC and destination DST addresses and
forwards this to the control-flow encoder.

The control-flow encoder efficiently encodes control-flow events
into a bitstream that is compact yet sufficient to accurately re-
construct the control-flow path executed. Both conditional branches
and direct jumps are encoded with a single bit. If the conditional
branch is not taken and execution proceeds sequentially, this transfer
is encoded as a ’0’. If the conditional branch is taken and execu-
tion proceeds non-sequentially, this is encoded as a ’1’. Note that,
all direct jumps must jump to their hard-coded addresses and are,
therefore, always encoded as a ’1’. However, we cannot eliminate
the encoding of direct jumps altogether because this might result
in ambiguous re-construction at VRF if the last control-flow trans-
fers executed (for a transferred bitstream) were non-encoded direct
jumps. Indirect jumps require that the destination address is encoded
in 32-bit, since the jump and link register (JALR) in-
struction in the RISC-V ISA is defined to enable a two-instruction
sequence of load upper immediate (LUI) followed by a
JALR to jump anywhere in a 32-bit absolute address range. This
encoding guarantees that the minimum data required for an accu-
rate re-construction of the executed control-flow path is stored and
streamed to VRF .

After the conditional branch instruction if (auth-var ==
true) in basic block N1 in Figure 4 is evaluated, control flow
either proceeds to node N2 or N3. If auth-var is evaluated to be
false, then execution jumps to the base address of N3. Since the
conditional branch jumps non-sequentially to N3, this gets encoded
as a ’1’ into a dedicated BCF memory buffer. At N3 fun_B() is
called and control flow is redirected to the base address of node N7.
This indirect jump is encoded by its DST address (base address of
N7) "1010110001110011" which gets appended to the BCF bitstream.
The buffer continues to accumulate the bits generated for every
control-flow transfer and gets read out later when the attestation
report is being assembled.

Simultaneously, the load/store instruction tracer extracts from the
load/store stage every executed load/store instruction, its address in
code memory, and the data memory address it accessed, and buffers
this information into a dedicated memory. If we were to naively store
and transfer this information as is PRV would be streaming very
large attestation reports to VRF . Instead, to generate a compact
attestation report that can be efficiently streamed and verified, we
employ a cryptographic hash module to compute a cumulative hash
measurement HDF over these data-flow events.

In Figure 4, while executing fun_B() in N7, the memory ac-
cess instruction C sw $rs, imm($rd) is captured by the load-
/store instruction tracer. It gets stored in the load/store instruction
buffer followed by subsequent data-flow events (such as A next in
N4) which continue to get absorbed into the hash module until the
control-flow encoding buffer is full. This is indicated to the hash
controller by the cf_buffer_full signal. The hash controller
regulates the operation of the hash module and synchronizes it with
other modules of LiteHAX. When the hash controller receives the

signal cf_buffer_full asserted, it communicates to the hash
module to finalize (via hash_end signal) the running hash com-
putation, i.e., no more data-flow events are absorbed in generating
this particular hash measurement. Incoming data-flow events in
the meantime are buffered into the dedicated load/store instruction
memory and are forwarded to the hash module only when it is ready
again. When the hash computation is completed and the data-flow
hash measurement HDF is successfully generated and read out, this
is indicated by the hash controller to the control-flow encoder via
hash_done signal. Consequently, the corresponding control-flow
bitstream BCF is also read out as shown in Figure 3.

The execution is effectively traced and measured in segments
where a set BCF and HDF measurements are continuously generated for
subsequent execution segments and transferred to VRF . Besides
enabling continuous attestation of the executed program, LiteHAX
also tackles the challenges associated with fine-grained attestation
of loops and recursion because control flow is recorded and re-
constructed at VRF for as many times as a loop iterates.

We present next our PoC implementation of LiteHAX.

5 LiteHAX: Implementation
5.1 Prover Implementation
Control-Flow Instruction Tracer. The control-flow instruction
tracer is implemented such that it directly interfaces with the decode
and execute stages of the processor core to collect information on
the type and operands of each instruction from the decode stage.
If the current instruction is a control-flow instruction, the program
counter (PC), and the address it jumps to in the next branch execu-
tion cycle are stored in a 64-bit register as a source–destination pair
– SRC, DST. If the SRC, DST addresses are consecutive this indicates
that the branch was not taken and non-consecutive SRC, DST ad-
dresses indicate that the branch was taken. In the unlikely case that
speculative execution is supported on an embedded core, extracting
DST address is delayed by a pre-defined number of clock cycles until
execution is committed.
Control-Flow Encoding and Buffering. We described earlier in
§ 4 how different control-flow instructions are encoded into the bit-
stream BCF. To prevent dropping of any control-flow events, the BCFis
buffered into a dedicated memory as it gets generated. In our FPGA
prototype (cf. § 6), we implement this as a First-In-First-Out (FIFO)
buffer using on-chip block RAM (BRAM) of configurable capacity
(cf. § 6). When the buffer is full, BCF becomes ready to be read out
and streamed to VRF . However, the corresponding data-flow hash
computation HDF must be finalized first before BCF can be read out to
prepare the attestation response. In the meantime, LiteHAX must
continue to attest the execution without dropping any control-flow
(or data-flow) events, thus, the control-flow encoding buffer should
remain available to store the continuously generated bitstream. We
guarantee this by configuring the capacity of the control-flow en-
coding buffer such that it exceeds the configured length of BCF to
compensate for the maximum number of clock cycles incurred by
the hash module to finalize a running hash computation (latency of
24 clock cycles). The buffer is managed by two pointers that grow
in opposite directions. One of these pointers is always active and
available to index and store the bitstream being generated, and the
second is a spare pointer that may be used to index the previous
bitstream until the corresponding hash computation is completed.
When the active pointer reaches its maximum index (BCF length),
it switches status to a spare pointer until BCF is ready to be read
out. The bitstream currently being generated is then indexed into
the buffer by the other pointer which is currently the active one.
Whenever BCF is read out (after the corresponding HDF is generated),
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its indexing pointer is reset and remains available and idle until
it is activated again. The pointers switch roles in a round-robin
fashion to guarantee continuous recording of all control-flow events.
The buffer capacity is configured such that the bitstream indexed
by the spare pointer is always read out (after the hash computa-
tion completes) before the active pointer overwrites the previous
bitstream.
Load/Store Instruction Tracing and Buffering. The load/store
instruction tracer tightly interfaces with the load/store stage of the
processor core to extract the relevant information on all data mem-
ory access events. It extracts every load/store instruction that is
executed (and successfully granted access to the requested data),
the instruction address (in program memory), and the data mem-
ory address it accessed. For our RISC-V prototype, the Instruction
Set Architecture (ISA) supports a 32-bit byte-addressable address
space and eight load/store instruction variants. These instructions
can access either a full word (four bytes), half word (two bytes),
or a single byte of data memory. The number of bytes accessed is
indicated by the funct3 bits in the instruction itself, and does not
need to be explicitly recorded by LiteHAX in HDF. The extracted
data is buffered into a dedicated FIFO buffer. It is read by the hash
controller and forwarded, in turn, along with the relevant control sig-
nals to the cryptographic hash module whenever the latter is ready
to absorb input. The capacity of this buffer is configured such that
it would prevent dropping of any data-flow events due to latency
incurred by the hash module as described below.
Cryptographic Hash Module and Controller. Our scheme re-
quires that a single hash computation runs over a variable number
of data-flow events. We employ a SHA-3 512-bit high-throughput
open-source hash module 6 operating at a maximum clock frequency
of 150 MHz. It comprises a padding module and permutation mod-
ule which operates on a message block size of 576-bit. Input is
absorbed by the core first into a padding module to assemble the
576-bit block size. Once this padding is full, the permutation mod-
ule begins computation on the assembled block. In the meantime,
the padding module starts assembling the next message block. The
high-throughput core is configured to absorb a 64-bit input every
clock cycle from the load/store instruction memory into the padding
module for the duration of 9 clock cycles. After this the 576-bit
buffer becomes full and notifies the permutation module to begin its
computation. Once full, the padding buffer cannot absorb further
input for only three clock cycles after which it resumes absorption
normally.

A single data-flow event is 96-bit consisting of a 32-bit instruc-
tion address, 32-bit instruction encoding, and 32-bit data memory
address. Every two consecutive data-flow events are buffered to gen-
erate three 64-bit inputs to the hash core. This effectively reduces the
hash computation per data-flow event. In case the encoding buffer
is full at an odd number of data-flow events, the last hash input is
zero-padded. Using this hash core, a streaming input of a variable
number of data-flow events can be continuously hashed until the
core is signaled to conclude the current computation. Finalizing a
current hash computation incurs a maximum latency of 24 clock
cycles before a new hash measurement is re-initialized and the hash
core can absorb input again from the load/store instruction buffer.
Hence, the load/store instruction buffer is configured to guarantee
that data-flow events that arrive during these cycles, either when
the padding buffer cannot absorb further input or when the hash
computation is being concluded, are not dropped. They are buffered
until the module is ready again. A hash controller is implemented
to regulate the operation of the hash module and synchronize it with

6http://opencores.org/project,sha3

other modules of LiteHAX that are responsible for the control flow
tracing.

5.2 Verifier Implementation
To prototype the verifier VRF , we use and build on top of a Python
framework, called angr7, which provides capabilities to perform
static binary analysis and dynamic symbolic execution mechanisms
for multiple architectures. Recall that VRF has access to the source
code of the program Prog being attested, and it receives the control-
flow transfers executed by PRV . Offline, VRF performs static
and dynamic analysis to generate the CFG. Online, it uses the CFG
and runs a runtime context-sensitive analysis constrained by the
received control-flow execution trace. Accordingly, it performs a
context-sensitive control-flow integrity check for each control-flow
transfer of the received execution trace and sequentially activates
validated transfers and basic blocks in the CFG.

Simultaneously, VRF traverses and analyzes the activated basic
blocks of the CFG by a context-sensitive forward data-flow analysis.
While iterating through its instructions, it generates state changes
including objects accessed by each store/load instruction. It also
runs a path-constrained symbolic execution to generate the executed
instructions and the memory addresses they accessed. VRF com-
pares the memory accesses obtained from the symbolic execution
with the data-flow analysis results. Besides providing a more accu-
rate path- and context-sensitive analysis, knowing the execution path
minimizes the computational effort and eliminates the exponential
explosion in analysis time by constraining analysis and symbolic
execution to a single path.

6 LiteHAX: Evaluation & Security
We prototyped LiteHAX to target bare-metal embedded software
executing on a single-core processor architecture. For the prover,
we implemented the hardware modules of LiteHAX in Verilog,
interfaced it with the open-source RISC-V Pulpino core 8, simulated
and synthesized it. We evaluated the functionality and performance
of LiteHAX using Open Syringe Pump 9, an open-source embedded
syringe pump application and CoreMark 10. For the verifier, we used
the angr framework for the offline CFG generation analysis and
online context-sensitive analysis and validation for Open Syringe
Pump and CoreMark. We discuss next our evaluation results.

6.1 Prover
Functionality. We extended the Pulpino RTL with LiteHAX and
performed cycle-accurate simulation on ModelSim while executing
the aforementioned programs. We confirmed that LiteHAX extracts
and reports all control-flow and memory load/store instructions and
that none are dropped even when the BCF buffer is full and when the
hash module is not ready to absorb subsequent instructions.
Performance, Area and Memory. Synthesis and implementation
results using Xilinx Vivado indicate that LiteHAX can be clocked at
a maximum frequency of 150 MHz on an Artix-7 XC7Z020 FPGA
device on a Zedboard, well above that of Pulpino and on par with
the SHA-3 engine we use. The LiteHAX modules ensure that zero
performance overhead is incurred on the executing program being
attested. LiteHAX consumes 2% of the available registers and 3%
of available LUTs on an Artix-7 XC7Z020 FPGA device which
amounts to ≈15% additional overhead to the base Pulpino SoC.

The memory utilization depends on the configuration of the
control-flow bitstream buffer and the load/store instruction memory.
7http://angr.io/
8https://github.com/pulp-platform/pulpino
9https://hackaday.io/project/1838-open-syringe-pump

10https://www.eembc.org/coremark//index.php
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We configure the load/store instruction memory to buffer up to 32
memory access operations which consumes 3Kbit of distributed
RAM. While the configuration of the control-flow encoding buffer
is limited by the memory resources on the device, other metrics
are also affected. A smaller buffer consumes less on-chip memory
and reduces the latency in detecting individual runtime attacks but
also increases the overhead incurred in transmitting more attestation
report packets and initiating the online verification process more
often (cf. § 6.2 for online verification phase runtime). For proto-
typing, we configured the control-flow buffer to consume 35 36Kb
BRAM blocks which is used to encode around 40,000 control-flow
transfers assuming they are all, at worst case, indirect jumps and
require 32-bit encoding. In practice, this is entirely code dependent
but we observe that only around 44% of all control-flow transfers
in the Syringe Pump are indirect jumps. The control-flow buffer is
also sized to absorb incoming control-flow events when the hash
module is busy finalizing the previous hash computation.

6.2 Verifier
We evaluated the verifier VRF performance by measuring the run-
time of the online verification phase of LiteHAX for Syringe Pump
when dispensing three different amounts of liquid. The reference
CFG is generated once in an offline phase, while in the online phase,
VRF re-constructs the control-flow path executed and checks that
each control-flow transfer is allowed according to the CFG. It si-
multaneously runs symbolic execution and data-flow analysis while
traversing the basic blocks of the validated control-flow path to
generate the executed and legal memory access operations respec-
tively. Table 1 shows the verification runtime measured for this
online phase and how it is directly proportional to the number of
control-flow transfers. We also measured the online phase runtime
of CoreMark for an execution path consisting of 7,947,881 basic
blocks to be 29,738 seconds. Our measurements were conducted
on a system with Linux OS, 39 GB of system memory, and Intel
Haswell Core Processor @ 2.2GHz.
Table 1: Verifier runtime measurements of online phase for Syringe Pump.

Liquid Quantity Control-Flow Transfers Runtime (s)
0.1 ml 6333 57
0.2 ml 12480 115
0.5 ml 30912 283

6.3 Security Considerations and Limitations
To enable detection of control-flow hijacking and data-oriented
attacks by VRF , LiteHAX is required to provide a continuous,
accurate, complete, authentic, and fresh attestation of the control
and data flow of a program execution at PRV . Recall that the
adversary ADV is incapable of modifying software binary at load-
time (due to static attestation) or at runtime (due to W⊕X).
Runtime Attacks: Control-Flow Hijacking and DOP Attacks.
LiteHAX uses hardware modules that are tightly integrated with
the processor to extract and encode all control-flow information and
memory access events directly from the processor pipeline. This in
addition to the sufficiently sized buffers for control-flow and HDF for
load/store instructions (cf. § 6.2) guarantee that every control-flow
and load/store event is received from the processor pipeline and
recorded (i.e., completeness). The control flow is encoded such that
the execution path can be accurately re-constructed by VRF ; direct
jumps and conditional branches are encoded by a single bit, while
for each indirect jump, the destination address is included in BCF.
Since load/store instructions are the only instructions that can access
memory on RISC-based architectures, they are the only operations
that influence data flow, hence the only operations corrupted to

perform illegal memory accesses for non-control-data and DOP
exploits. Hence, tracing the data flow by recording every load/store
instruction, its address and the data memory address it accesses is
sufficient to detect all known DOP attacks (i.e., accuracy). Since
LiteHAX is hardware-based, it cannot be compromised by malicious
software. The on-chip memory utilized by LiteHAX is hardware-
protected and not mapped to software-accessible address space,
hence protected from adversarial access by software means.
Attestation Protocol and Network Attacks. Attestation occurs
continuously and is coupled with code execution at PRV and is
reset only when PRV is reset. The recorded memory access events
are measured into a compact cryptographically-secure hash digest
HDF = hash(Load1/Store1‖ . . . ‖Loadn/Storen). To evade de-
tection of data-flow attacks, finding a second image (sequence of
load/store instructions) that maps to the reference hash value is re-
quired. However, that is infeasible since the hash engine used for
generating HDF is second pre-image resistant. Every intermediate
attestation report is authenticated by PRV along with a mono-
tonic counter ctr using a cryptographically-secure digital signa-
ture σ = sign{skPRV ; BCF‖HDF‖ctr} based on PRV’s signing key
skPRV . Note that, skPRV is stored in hardware-protected memory
that is only accessible by LiteHAX. The signature and secure key
storage guarantee the authenticity of the report while the monotonic
counter ensures its freshness. Note that the monotonic counter is
backed with non-volatile memory and is non-resettable even when
PRV is reset to protect against network replay attacks.
Physical Attacks. While expensive invasive/semi-invasive physical
attacks are generally considered out of scope in this work, most other
physical attacks can be detected by LiteHAX. In particular, physical
attacks that aim at manipulating the program code at runtime as well
as fault injection attacks will be detected by VRF if they affect
the control flow or data flow or memory access instructions of the
program. To evade detection of code modification at runtime by
LiteHAX, the adversary is restricted to mounting an expressive
attack while preserving both the control flow or data flow. We
chose to also include the memory access instructions in the hash
computation (while unnecessary for mitigating control-flow and
data-only runtime attacks) to make it increasingly difficult in practice
for an adversary to evade detection of code modification.
Practical Limitations. Effectively detecting all runtime attacks re-
lies largely on the analysis and verification techniques deployed by
VRF . The context-sensitive analysis we deploy in this work detects
attacks that break context-sensitivity and memory corruptions across
data objects. However, detecting memory corruptions across fields
within the same object would require sophisticated field-sensitive
data-flow analysis at VRF which is out of scope. If detecting at-
tacks with minimum time latency is required, the online verification
at VRF would need to keep up with the actual execution which
is not possible if they both run at the same clock speed. However,
we assume that, in a practical setting, VRF operates with the max-
imum available computation resources while the actual execution
would be running on an embedded device clock frequency, which
would compensate for the difference. Finally, symbolic execution
theoretically may fail to successfully resolve a symbolic expression
required to generate data memory accesses. However, we have not
encountered such case in our evaluation of Open Syringe Pump and
CoreMark. However, this can be identified either at runtime or a
priori by offline analysis and flagged.

7 Related Work
Static Attestation. Attestation is used to allow a third party (ver-
ifier) to check the trustworthiness of a remote device (prover).
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Many approaches to remote attestation have been proposed in lit-
erature. These are classified into: (i) Software-based attestation
schemes [15, 24, 27] that allow attestation of legacy low-end em-
bedded devices and require no hardware support or cryptographic
secrets. These provide weak security guarantees [32]. (ii) Hardware-
based attestation schemes [21, 31] that provide stronger security
guarantees based on a secure co-processor such as TPM. These are,
however, complex for low-end embedded devices, and (iii) Hybrid
attestation schemes [3, 4, 12, 19] that allow scalable attestation of
embedded devices while requiring minimal hardware security fea-
tures. Static attestation only measures program binaries at load-time
and is incapable of detecting runtime attacks.

Mitigation of Runtime Attacks. Many defenses have been pro-
posed over the past few years to mitigate runtime exploits [30].
Control-flow integrity (CFI) [1] ensures that a program follows
a valid path in its control-flow graph (CFG). However, CFI can-
not mitigate non-control-data and DOP attacks. Fine-grained code
randomization [23] randomizes the code layout at different granular-
ities. However, an attacker can still exploit a branch instruction to
jump to the target address of choice and mount a runtime attack [17].
Code-Pointer Integrity (CPI) [22] aims at ensuring the integrity of
code pointers but it also does not mitigate non-control-data attacks.

Runtime Attestation. To detect some non-control-data runtime at-
tacks, control-flow attestation (C-FLAT [2]) was recently proposed.
C-FLAT enables reporting the exact control-flow path of an execut-
ing program to a trusted verifier that can be assured of the program’s
execution. However, C-FLAT requires code instrumentation and
incurs high runtime overhead due to frequent hash computations and
context switching at the prover. It is also not scalable at the verifier
that is required to search a large database of expected execution
paths. LO-FAT [10] and ATRIUM [33] leverage hardware exten-
sions to record and measure control-flow events during program
execution and thus, eliminate the performance overhead of C-FLAT.
ATRIUM additionally tracks executed instructions to detect memory
manipulation attacks by a stronger adversary. However, all of the
above runtime attestation schemes can only detect control-flow and
some non-control-data attacks but cannot detect DOP attacks.

DOP Attacks and Mitigation. DOP attacks corrupt non-control-
data to stitch together a sequence of operations to perform highly
expressive execution on attacker-controlled input without modifying
the control flow of the executing program [13, 14]. DOP attacks
continue to be a challenging class of attacks to effectively mitigate.
Existing defenses against DOP attacks (e.g., memory safety [11,
25], data-plane randomization [5, 6], data-flow integrity (DFI) [7])
are highly inefficient or provide limited simultaneous protection
domains. Hardware-assisted data scoping enforcement and isolation
architectures [26, 29] either incur high area overhead or provide
limited number and granularity of protection domains. Enforcing
DFI in all memory regions would mitigate DOP attacks at runtime
but incurs a prohibitively high overhead [7, 13]. LiteHAX enables
efficient after-the-fact detection of these attacks by attesting the
control-flow and data-flow events at execution while performing the
data-flow analysis at verification afterwards.

8 Conclusion
Embedded devices represent an attractive target for remote attacks
largely due to their pervasiveness, connectivity, and lack of appro-
priate defenses. Runtime attestation schemes have been proposed
to detect runtime attacks but none of which effectively deter the
more expressive data-oriented programming (DOP) attacks. In this
work, we presented LiteHAX, an efficient hardware-assisted run-
time attestation scheme that can continuously attest both control-

and data-flow events of the executing program at runtime, thus,
enabling detection of all runtime attacks, including known DOP
attacks. LiteHAX does not require invasive micro-architecture mod-
ifications, architecture extensions or any code instrumentation. We
demonstrate a proof-of-concept implementation of LiteHAX that
targets a RISC-V SoC and evaluate its performance and efficiency.
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ABSTRACT
Memory-unsafe programming languages like C and C++ leave

many (embedded) systems vulnerable to attacks like control-flow
hijacking. However, defenses against control-flow attacks, such
as (fine-grained) randomization or control-flow integrity are in-
effective against data-oriented attacks and more expressive Data-
oriented Programming (DOP) attacks that bypass state-of-the-art
defenses.

We propose run-time scope enforcement (RSE), a novel approach
that efficiently mitigates all currently known DOP attacks by enforc-
ing compile-time memory safety constraints like variable visibility
rules at run-time. We present Hardscope, a proof-of-concept imple-
mentation of hardware-assisted RSE for RISC-V, and show it has a
low performance overhead of 3.2% for embedded benchmarks.

1 INTRODUCTION
Data-oriented attacks can influence program behavior without

the need to modify control-flow data. Instead, they corrupt vari-
ables used by the program’s decision making, or leak sensitive
information from program memory. Such attacks are called non-
control-data attacks [7]. Non-control-data attacks have been shown
to allow attackers to forge user credentials, change security criti-
cal configuration parameters, bypass security checks, and escalate
privileges. Recent work shows that it is even possible to generalize
data-oriented attacks to construct full-blown malicious attacks with
Turing-complete expressiveness, calledData-Oriented Programming
(DOP) [15]. Such attacks are executed by carefully corrupting only
non-control data over time to chain together sequences of opera-
tions on attacker-controlled input. DOP provides similar capabili-
ties to attackers as return-oriented programming [26], but without

An extended version of the work available [22].
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breaking the victim program’s control-flow integrity. This, com-
bined with the ability for DOP to reuse virtually any data, makes
preventing DOP attacks a significant and open challenge.

Existing defenses against control-flow attacks cannot prevent
data-oriented attacks. Some defenses against non-control-data at-
tacks (e.g., [5, 24]) protect individual pieces of (security-critical)
data. Hu et al. [15] discuss various existing schemes that could
reduce the number of DOP attacks, including memory safety, data-
flow integrity, fine-grained data-plane randomization, and hard-
ware/software fault isolation. However, they explain that existing
approaches are either too coarse grained, or result in prohibitively
high performance overheads. Without viable alternatives, and be-
cause effective defenses against control-flow attacks are already
being deployed, DOP is likely to become the next appealing attack
technique for run-time exploitation.
Goals and Contributions. We propose a new efficient defense
against data-oriented attacks that effectively prevents all currently
known DOP attacks. It can also be configured to prevent control-
flow hijacking. The intuition behind our approach is simple: In block
structured languages every variable has a lexical scope, denoting
the block(s) of source code in which the variable is visible. All cor-
rect compilers enforce variable scope at compile-time by checking
these variable visibility rules. All currently known DOP attacks,
and many data-oriented attacks in general, violate variable scope
rules at run-time, since there is no equivalent enforcement. Conse-
quently, mechanisms for variable scope enforcement at run-time
can significantly reduce the exposure to data-oriented attacks.

In this paper, we define the notion of Run-time Scope Enforce-
ment (RSE) that provides fine-grained compartmentalization of data
memorywithin programs.We then describeHardScope, a hardware-
assisted RSE scheme. HardScope differs from existing defenses in
the following important ways: a) it provides complete meditation
of all variables accesses, b) it is efficient, incurring only a small
performance overhead for embedded benchmarks, and c) it enables
context-specific policies. This means that the same piece of code can
be granted access to different memory locations depending on the
context in which the code is executed. Our main contributions are:
• Run-time Scope Enforcement: A novel approach for fine-grained

context-specific memory isolation within programs (Sec-
tion 3) to defeat data-oriented attacks.
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• HardScope: An open-source proof-of-concept implementation of
hardware-assisted RSE on the RISC-V architecture that demon-
strates efficient memory compartmentalization (Section 4).

• Compiler support and APIs: Compiler support for protecting
static and automatic variables at run-time (Section 4.3) with-
out requiring any developer input, and a programmer’s API
(Section 4.4) that allows developers to annotate dynamic alloca-
tions to complement the automated instrumentation.

• Evaluation: Analysis of RSE security guarantees (Section 5.1), and
evaluation of HardScope’s hardware area overhead and minimal
performance impact (Section 5.2).

2 ADVERSARY MODEL & CHALLENGES
Adversary Model.We consider a powerful adversary who has full
control over the data memory of the target program. This models
buffer overflows and other memory corruption vulnerabilities (e.g.,
an externally controlled format string1) that could corrupt any data
memory. However, the adversary cannot modify program code
(W⊕X protection). Our adversary model is standard for run-time
attacks and consistent with Hu et al.’s DOP attacks [15].
Challenges. Our goal is to prevent the above adversary from
mounting DOP attacks. Since DOP attacks (similar to many other
data-oriented attacks) require the adversary to modify and access
data in unintended ways at run-time, these attacks can be prevented
by a run-time enforcement mechanism that prevents any data ac-
cess that would not be permitted during a compile-time check by a
correct compiler. Designing a solution to meet this goal requires
addressing the following significant challenges:
C1 Run-time enforcement: enforcing variable scopes at run-

time requires information which is usually only available at
compile-time.

C2 Multi-granularity enforcement: the enforcement mechanism
must be configurable for any granularity of protection do-
main (subject) and protected region (object).

C3 Context-specific enforcement: enforcing different permissions
on each invocation of the same subject (e.g., each function),
to minimize the attack surface following the principle of
least privilege.

C4 Complete mediation: protection domains cannot be allowed
to increase their permissions accidentally or maliciously, and
all memory accesses must be checked with only minimal
performance impact and memory overhead.

3 DESIGN OVERVIEW
The high-level idea of HardScope is to extend the compiler to

emit compile-time information about the visibility of variables, and
to extend the underlying hardware to use this compiler-supplied
information to dynamically create and update a set of memory
access rules against which all memory accesses are checked.
Run-time enforcement.Machine code produced from languages
such as C and C++ does not include information available to the
compiler about variables and code blocks ( C1 ). RSE needs this
information to assign in-memory variables to specific execution
contexts. To bridge this gap between compile-time lexical scope and

1CWE-134: Use of Externally-Controlled Format String
https://cwe.mitre.org/data/definitions/134.html

run-time execution context, we modified the compiler to instru-
ment the program code with special instructions that record which
variables may be used by each code block. HardScope introduces
an instruction set extension for this purpose (Section 4).

The compile-time components and behavior of HardScope are
illustrated in Figure 1. An unmodified source code program (❶) is
fed to the compiler (❷), which checks (as usual) that all variable ac-
cesses are correctly scoped. Our new RSE Plug-in (❸) in the compiler
adds HardScope instructions (❹) at particular locations in the bi-
nary (e.g., at the start of functions). This results in a fully-functional
program binary, instrumented with HardScope instructions that
the HardScope hardware uses to create a set of rules against which
all memory accesses can be checked at run-time.
Multi-granularity enforcement. We chose function-level com-
partmentalization as the granularity of isolation, since this is suf-
ficient to mitigate all currently known DOP attacks (Section 5.1).
However, RSE can also be implemented at other granularities (Sec-
tion 4), without changes to the new HardScope hardware ( C2 ).
Context-specific enforcement. Consider the program (❶) in Fig-
ure 1: function C receives two pointers and copies data from the
first pointer to the second. It can be called from either function A
or function B (call graph shown in Figure 2). In benign execution,
variables x and y are only used in a privileged execution path, where
access control checks prevent misuse (e.g., x could be a secret key).
Function B contains an exploitable vulnerability allowing the at-
tacker to control the pointers passed to function C. Since function C
can be used to copy arbitrary data between two attacker-controlled
pointers, this constitutes a DOP gadget. The attacker could use
this to bypass the access control checks on variables x and y by
accessing them through the unprivileged execution path.

HardScope prevents this by providing context-specific enforce-
ment, in which different memory access rules can be associated
with each active instance of a function ( C3 ). To achieve this, the
HardScope hardware creates memory access rules dynamically
for each individual function invocation, and stores these in a data
structure called the Storage Region Stack (SRS). The SRS is kept in
hardware-isolated protected memory; only HardScope instructions
can add or remove SRS entries. Each SRS entry defines an area of
memory (e.g., the location of a variable) that may be accessed. The
SRS is organized into frames; each frame contains all the entries for
a particular execution context. The topmost SRS frame corresponds
to the active execution context. On each memory access, e.g., load
or store, HardScope validates that the memory address matches an
entry in the topmost SRS frame.

Specifically,HardScope prevents the attack in Figure 2 as follows:
The SRS for function A (❺) includes variables x and y, and the SRS
for function B (❻) includes variables i and j (Figure 2). To allow
function C to access certain variables, the calling function must use
a special instruction (Figure 1 ❼) to delegate access to a variable to
function C: e.g., function Amust delegate access to x and y. For valid
delegation, the calling function must already have access to the
delegated variables. Even though the attacker can still manipulate
the pointers in function B, this function does not have access to x
and y (no corresponding SRS entries) and hence it cannot delegate
access to these variables to function C.
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Figure 1: Compile-phase design of HardScope. Run-time
memory accesses via pointers ptrx , ptry are limited to vari-
ables x and y, while ptri , ptr j are limited to i and j.
4 IMPLEMENTATION

We developed a proof-of-concept hardware implementation of
HardScope and integrated it into the open-source RISC-V Pulpino
core.2 HardScope extends the RISC-V instruction set with seven
new SRS management instructions, as shown in Table 1. We aug-
mented the GCC compiler to incorporate a proof-of-concept RSE
plug-in and a modified RISC-V backend to automatically instru-
ment C programs with the relevant HardScope instructions. These
protect static and automatic variables at run-time without requiring
any changes to program code. We also developed a HardScope Pro-
grammer’s API (Section 4.4) that allows developers to annotate
dynamic allocations to complement the automated instrumentation.
HardScope itself is architecture-agnostic; our choice of RISC-V and
Pulpino is due to the open-source nature of the ISA and the RTL
implementation, thus enabling us to prototype our solution.

4.1 Instructions
The sbent and sbxit instructions are used to mark the begin-

ning and end of each execution context. HardScope uses these
instructions to track when HardScope is first enabled and when
the execution context changes, and thus when new enforcement
rules should be loaded in the SRS. sbent pushes a new frame on
top of the SRS, whilst sbxit pops the topmost SRS frame. Program
execution starts with an empty SRS and HardScope enforcement
is initially disabled. HardScope is enabled by the first sbent, and
remains enabled until a matching sbxit empties the stack.

The sradd and srdda instructions create an SRS entry in the
current (topmost) SRS frame. HardScope uses these instructions to
determine the bounds of memory areas that the current execution
context is allowed to access. The two operands set the base and

2http://www.pulp-platform.org/
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Figure 2: Run-time design of HardScope showing the call
graph of program in Figure 1. In (a), access to variables x
and y is successfully delegated from A to C. In (b), function B
should not have access to x and y, but a memory corruption
vulnerability in B is used to corrupt ptri and ptr j to point to x
andy instead of i and j.HardScope prevents B from accessing
or delegating x and y.

limit address of the storage region respectively. An optional offset is
added to to either the limit (sradd) or base (srdda) register operand.

The srdel instruction removes the specified number of SRS
entries from the current SRS frame (last in first out). It allows
the program to drop unneeded memory access privileges without
changing execution context.

The srdlg and srdsub instructions delegate an SRS entry from
the currently executing function either to an invoked callee function
or to the caller when the current function returns. HardScope uses
these instructions to derive SRS entries for data flows which are not
known at compile-time, such as context-specific accesses (Section 3).
The operands specify an address to determine which memory
address to delegate. The resulting memory address is compared
with the current SRS entries and if a match is found, the most recent
matching entry is copied to the next execution context entered. If
the delegation is followed by a sbent, the delegated entry is added
to the newly created SRS frame. If the delegation is followed by a
sbxit, the delegated entry is added to the caller’s SRS frame.

The srdsub instruction is used to delegate a new SRS entry that
is a subset of an existing SRS entry. It takes the same operands
as sradd. If the new subdivided memory region is a subset of an
existing SRS entry in the current SRS frame, a new SRS entry is
created for a sub-region using the new base and limit.

If no matching entry is found in the SRS when srdlg or srdsub
execute, no entry is delegated. This prevents the use of srdsub
to elevate the access rights of the next execution context beyond
the rights of the current, but allows the delegation instructions
to be applied to pointers which are not dereferenced directly in
the current context. These include null-pointers and intentionally
created out-of-scope pointers (e.g., via the use of pointer arithmetic)
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Table 1: HardScope Instructions. Operands lists valid combina-
tions of operands: rn is a register, imm is an immediate value, and
imm(rn) is a register to which an immediate offset is added. Cycles
indicates the number of cycles consumed at execute stage.

Mnemonic Name Operands Cycles
sbent scope block enter n/a 1 (+ N )
sbxit scope block exit n/a 1 (+ N )
sradd storage region add r1, imm(r2) 1
srdda storage region dda (reverse add) imm(r1), r2 1

srdel storage region delete imm(r1) 1 (+ 1)
imm

srdlg storage region delegate imm(r1) 1 (+ 1)
imm

srdsub storage region delegate sub-region r1, imm(r2) 1 (+ 1)

that are passed to callees for which they are in scope (e.g., accessor
functions that receive opaque pointers as arguments).

4.2 Hardware Implementation
We modified the instruction decoding stage of the processor

pipeline to interpret the new instructions (Section 4.1). After de-
coding, the appropriate control signals are sent to the HardScope
unit, which realizes the execute stage of the new instructions. Fig-
ure 3 shows the main components of the HardScope unit: the SRS
controller (❶), dedicated memory to hold the SRS (❷), and three reg-
ister banks (❸, ❹, ❺). The active bank (❸) holds the entries in the
SRS frame for the current execution context enabling each memory
access to be compared against all active entries efficiently. The spare
bank (❹) holds entries delegated via srdlg and srdsub before a
HardScope context switch occurs. It allows delegated entries for
the next execution context to be accumulated ahead of time. When
a HardScope context switch occurs, the spare bank becomes the
active bank (and vice versa), thus activating the delegated entries.
The third bank (❺) is used as a cache to hold a copy of the topmost
frame of the SRS. This reduces the latency when the topmost SRS
frame is transferred between the stack memory and the spare bank.

When executing sbent, the controller activates the spare bank
and transfers the contents of the currently active bank to the cache
(❻) in a single cycle. The bank that held the previously active frame
becomes the spare, and can be used for subsequent delegations.
The entries in the cache must be stored for future use, and are
transferred to the SRS in protected memory (❼) over at most N sub-
sequent cycles, where N is the maximum number of entries in the
cache. During this time, the CPU continues to execute subsequent
instructions normally until a newHardScope context switch occurs.
Only if a HardScope context switch occurs before the cache has
been emptied does the processor stall until the transfer is complete.

When executing sbxit, the controller copies the SRS frame from
the cache into the spare bank (❽) while retaining delegated entries
(i.e., activating the entries that are already in the spare bank). The
SRS frame in the previously active bank is no longer needed and is
discarded. This executes in a single cycle. The cache, which now
holds an out-of-date copy of the active frame, is updated with the
topmost SRS frame from the protected memory (❾), which takes at
most N cycles, where N is the number of entries in the topmost SRS
frame in memory. This does not stall the processor unless another
sbxit is encountered before the cache is fully populated, in which
case the CPU stalls until the next frame is available. However, if
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Figure 3: HardScope hardware architecture.

an sbent is encountered before the cache is fully populated, the
partial cache is discarded and replaced with the contents of the
active bank, without stalling.

The sradd and srdda instructions always operate on the active
bank. When executing srdsub, the controller checks the active
bank for an entry containing the given memory region and, if found,
adds the new sub-entry to the spare bank. Similarly, in srdlg, the
controller checks for the matching entry in the active bank and,
if found, copies the entry to the spare bank (❿). The srdlg and
srdsub instructions require an additional cycle only if followed
immediately by a sbent or sbxit.

Integrating HardScope into the processor pipeline also required
modifying the memory access stage to intercept all memory access
requests to the load/store unit. At each load or store instruction,
the requested memory address and the number of requested bytes
(one byte, half-word (two bytes), or word (four bytes)) are inter-
cepted and forwarded to the SRS controller, which compares it
against all entries in the active bank. The registers in each bank are
wired to comparators such that all entries in the bank are checked
in parallel. If a match is found, i.e. the requested address range is
a subset of any of the active entries, then the memory access is
granted by the processor’s load/store unit, otherwise a hardware
fault exception is raised. We design and integrate HardScope to the
processor pipeline such that no additional clock cycle latency is
incurred to the baseline load and store instructions.

4.3 Software Instrumentation
Our RSEGCCplug-in and themodified RISC-V backend currently

supports automatic instrumentation of C programs at function gran-
ularity to protect the 1) call stack frame including local variables,
return address and other return state information, 2) arguments
passed on the stack, 3) heap objects, and 4) global and static vari-
ables. The beginning of each distinct execution context is marked
by inserting a single sbent instruction at the function call site just
before the jump instruction. The end of an execution context is
marked by inserting an sbxit instruction just before the return
in the callee function. In Section 5 we show that function-level
isolation is sufficient to mitigate all currently known DOP attacks.
However, RSE can also be implemented at other granularities, with-
out changes to the HardScope instructions, by inserting sbent and
sbxit instructions around the instructions that comprise a distinct
execution context.
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4.4 HardScope Programmer’s API
Deeply Nested Pointers. The HardScope Programmer’s API en-
ables the handling of code that uses deeply nested pointers e.g.,
traversing linked lists. This type of code is a challenge for auto-
mated instrumentation because e.g., passing the head of a linked list
to a function that iterates through the list would require delegation
of an SRS entry for each element of the list. Since the number of SRS
entries (per frame) is constrained by the HardScope hardware (see
Section 4.2), this leads to suboptimal use of HardScope hardware
resources and an increased cost in HardScope context switches
due to more frequent stalls at run-time. Instead, we propose a pro-
gramming pattern using the HardScope Programmer’s API where
one sradd instruction is added before the dereference of member
pointers to linked member elements, and one srdel is added after
the dereference. This enables effective yet secure traversal of linked
lists and other data structures containing nested pointers.
Heap object allocation. We implemented a wrapper on top of
the C standard library malloc() function that creates SRS entries
for heap allocations, and delegates these to the caller. Other li-
brary functions can be similarly wrapped to allow HardScope-
instrumented code to be linked against uninstrumented libraries.

5 EVALUATION
HardScope meets the stated challenges (Section 2) as follows:

C1 Run-time enforcement. The RSE GCC Plug-in infers and
emits the necessary HardScope instructions to manage the SRS for
stack and global data, as well as dynamic allocations that follow
a well-defined pattern. The HardScope Programmer’s API allows
handling code that is not automatically instrumentable, e.g., uses
deeply nested pointers.
C2 Multi-granularity enforcement. HardScope can enforce
policies with either coarser or finer granularity of execution con-
texts with the appropriate instrumentation ( C2 ). For instance,
HardScope can isolate the function prologue and epilogue from the
function body, and protect return addresses on the stack from mem-
ory errors in the function body to prevent control-flow hijacking.
C3 Context-specific enforcement. In HardScope, the active
SRS entries can differ between different invocations of the same
subject, depending on which entries have been delegated to this
subject (e.g., variables passed to a function by its caller or callee).
C4 Complete mediation. HardScope hardware checks every
memory access against the active set of SRS entries; accesses with-
out matching entries will fail. Therefore only compiler-admissible
memory accesses are allowed.

Instructions that create rules at run-time could potentially be
used as confused deputies. In a confused deputy attack, the attacker
attempts to subvert the RSE property by misusing existing Hard-
Scope instructions at run-time to create unintended rules. Our de-
sign ensures that no such instructions are available to the attacker.
Rules for static allocations (stack and global variables) are encoded
directly into the instructions. Since these cannot be modified at
run-time, they cannot be used as confused deputies.

Instructions that create rules that are determined at run-time
are found within memory allocators, e.g., malloc(), or code that
deals with deeply nested pointers, e.g., iterators annotated using
the HardScope Programmer’s API. It is reasonable to assume that

memory allocators are trusted (or at least that allocations are not
influencable by the attacker). We recommend that manually an-
notated code is vetted for allocators that create rules at run-time.
Furthermore, an attacker can only initiate a confused deputy attack
if he already controls some part of the code, which is very difficult
since every memory access in the instrumented program is checked
by the HardScope hardware.

5.1 Security Evaluation
We replicated the DOP attack by Hu et al. [15] and ported the

code to Pulpino to evaluate the effectiveness of HardScope. Al-
though it was not possible to port the complete victim ProFTPD
server to our FPGA testbed, we focussed on the vulnerable
sreplace() function [15]. All enforcement rules in our experi-
ments are derived without any developer annotations – the GCC
intermediate representation contains all information necessary for
compile-time instrumentation, including: stack-frame sizes, global
variable accesses, function calls, parameters, and return values.
Function-granularity isolation is sufficient to prevent the attack.

We verified experimentally four ways in which RSE prevents
this DOP attack: 1) it prevents the initial memory violation in
sreplace() as it enforces the indended bounds of input and out-
put buffers when operated on by an unsafe string copy operation
(strncpy() with incorrect buffer length), 2) it prevents the attack
from keeping internal state in unused areas of the program’s data
section, 3) it denies access to global variables which are accessed by
the attack out of their normal context, 4) it denies access to static
variables which should only be accessible by code wihin the same
compilation unit. We discuss each of these in detail in the extended
version of this article [22]. Any one of these would be sufficient to
stop the attack, and thus the existence of four distinct mitigations
demonstrates the effectiveness of RSE’s layered defense strategy.

5.2 Performance and Area Evaluation
Performance overhead. We ran CoreMark3, a standard perfor-
mance benchmark for embedded systems, with varying iteration
counts on a HardScope-augmented Pulpino synthesized on a Xilinx
Zynq-7020 ZedBoard. We observed an average overall performance
overhead of 3.2% compared to the execution of unmodified Core-
Mark on the unmodified Pulpino SoC. All instrumentation in Core-
Mark was automatically generated by our extended GCC compiler
resulting in the binary size increasing by 11%. The number of en-
tries required per SRS frame varied throughout execution between
1 and 23. The overall maximum SRS size was 71 entries in 11 frames,
resulting in a memory overhead of 573 bytes (64 bits per entry + 4
bits per frame to record the number of entries).
Area and memory utilization. The area utilization depends pri-
marily on the size of active, spare and cache banks (i.e., the number
of entries per frame). All three banks are mapped to logic to guar-
antee single-cycle access parallel checking of all frame entries. The
area utilization increases linearly as the number of entries con-
figured per frame increases (for a fixed number of frames), since
more entries must be checked in parallel. For a protected memory
size of 8 entries × 16 frames, HardScope utilizes 4, 572 LUTs, 1, 760
registers, and one 36 kB block RAM (RAMB36). For a 32 entries ×

3http://www.eembc.org/coremark/faq.php
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16 frames configuration (required for the CoreMark performance
evaluation above), HardScope utilizes 30, 520 LUTs, 6, 362 registers,
and one 36 kB block RAM (RAMB36).

6 RELATED WORK
Various software-only and hardware-assisted memory safety

technologies have been proposed and/or deployed (e.g., [2–6, 8, 11,
13, 17–19, 24, 25]). We discuss approaches that aim to mitigate data-
oriented attacks in detail in the extended version of this article [22].

Software-only defenses (e.g. DFI [6] and SoftBound [20]) can
offer strong security guarantees, but their usefulness is limited
by high performance overhead, and by requiring changes to the
system software architecture. Consequently, the granularity of en-
forcement of deployed defenses are often relaxed in favor of im-
proved performance. Memory-safe dialects of C (e.g., CCured [21],
Cyclone [16], and Checked C [12]) retrofit C with compile- and/or
run-time checks that prevent memory errors from occuring. How-
ever, such dialects only benefit programs which are modified to
make use of enhanced language features, also incur considerable
run-time overhead [16, 21], or preclude certain C features [12].

Hardware-assisted defenses (e.g., BIMA [19], HDFI [27], and
CHERI [28]) promise to drastically improve the performance over-
head compared to software-based defenses. However, recent ad-
vances in attacks against bounds-checking approaches [14] sug-
gest that low-fat pointer schemes which enforce allocation bounds
rather than object bounds, such as BIMA [19] are exploitable. On
the other hand approaches that track object bounds in separate
storage, e.g., Intel MPX [23], HardBound [11], are not faster nor
more memory effient than sofware-based approaches. Hardware-
assisted tagged memory allow efficient enforcement of memoru
access policies, but unlike HardScope only support a small number
of simultaneour protection domains (e.g. two domains in HDFI [27]).
CHERI [28] is a hardware-assisted capability model that can support
various protection models, but requires program re-engineering.

Run-time attestation schemes [1, 9, 10, 29] can only detect, but
not prevent, control-flow and non-control-data attacks.

AlthoughHardScope shares many of the same goals as the above
schemes, it differs in several fundamental aspects. Compared to
software-based schemes (e.g., DFI [6] and SoftBound [20]), Hard-
Scope has significantly lower overhead, does not require whole-
program static analysis, and can enforce context-specific policies
for individual function invocations. HardScope RSE policies can be
instantiated for a large class of programs without additional input
from developers (cf., YARRA [24]), or software re-engineering (cf.,
CHERI). HardScope reduces the metadata needed at execution time
to the rules for active execution contexts. Active rules are cached
in on-chip memory, to enable access checks with no overhead.

7 CONCLUSION
By implementing and evaluating HardScope, we demonstrated

that RSE is an effective approach to protect against data-oriented
attacks. HardScope can also enforce memory isolation at coarser or
finer granularity, to enable different memory protection strategies.

We provide 1) our enhanced GCC compiler; 2) instrumented
binaries of our test programs; and 3) a RISC-V simulator with
support for HardScope instructions at https://goo.gl/TAjLxy.
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Abstract—Real-time autonomous systems are becoming pervasive in
many application domains such as vehicular ad-hoc networks, smart
factories and delivery drones. The correct functioning of these real-
time systems is timing-critical with hard deadlines. However, although
they interact with other systems and exchange inputs/outputs with the
physical world, they usually lack security mechanisms, which makes
them susceptible to a wide range of attacks with critical consequences.
Typically, this is because security mechanisms usually violate the real-
time requirements of these systems and cannot be adjusted at runtime
to provide the adequate security without compromising performance.

In this paper, we propose a consolidated runtime-configurable
hardware-assisted security extension called CHASE that supports dif-
ferent levels of security at runtime. Depending on the desired security
level and the system real-time, availability or functionality requirements,
CHASE can be configured accordingly at runtime, thus enabling the cal-
ibration of the security vs. performance trade-off. We analyze CHASE’s
effectiveness in providing different security guarantees against various
adversarial capabilities, and show how this is achieved with reasonable
logic overhead and minimal performance overhead.

Index Terms—Remote attestation, real-time system security, runtime
attacks, hardware-assisted security, runtime attestation

I. INTRODUCTION

Real-time systems are ubiquitous in many application domains
such as programmable logic controllers (PLCs), electronic control
units (ECUs) and emerging domains that deploy networks of col-
laborative autonomous systems, e.g., vehicular ad-hoc networks,
smart factories, search and rescue, and delivery robots and drones.
Typically, such systems are required to perform their tasks in real
time, while some may have hard and critical time deadlines with little
tolerance for down time. They may also be deployed in safety-critical
or non-deterministic infrastructures where their fail-safe operation is
paramount. To perform their tasks, they might also be interconnected
with the physical world and other devices, making them equally
vulnerable as other systems to security exploits.

Security for Timing-Critical Applications. Nevertheless, these
systems usually lack security protection mechanisms, leaving them
exposed to a wide spectrum of attacks, such as the infamous
Stuxnet1 and more recently Triton2. Particularly, an attacker may
violate memory integrity by exploiting a standard memory corruption
vulnerability, e.g., externally-controlled format string3 that causes
buffer overflows leading to data memory corruption. By corrupting
targeted control-flow information stored in the stack or the heap and
overwriting code-pointers (return addresses or function pointers), an
attacker can redirect the control flow of execution to cause a malicious
and unauthorized effect. Such runtime attacks can be used to inject

?Authors contributed equally to this work
1https://www.mcafee.com/enterprise/en-us/security-awareness/

ransomware/what-is-stuxnet.html
2https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/

triton-malware-spearheads-latest-generation-of-attacks-on-industrial-systems/
3CWE-134: Use of Externally-Controlled Format String https://cwe.mitre.

org/data/definitions/134.html

malicious code (code-injection attacks) or re-use already existing
benign code chunks maliciously (code-reuse attacks), such as control-
flow hijacking and data-oriented attacks [1], [2].

Protection mechanisms, such as control-flow integrity (CFI) [3] and
control-flow attestation [4]) to mitigate or detect such attacks have
been shown to incur non-negligible performance overheads. While
this can be tolerated to some extent for applications without real-time
constraints, it would violate the functionality requirements of real-
time high-availability systems. Even defenses such as asynchronous
CFI specifically designed for PLCs [5] still incur performance
overhead of up to 8.3%. According to the NIST 800-82 guide on
the security of industrial control systems [6], timing, safety and
availability requirements must be prioritized when designing security
mechanisms for these systems.

Attack Space Coverage and Reconfigurability. Moreover, exist-
ing defenses against runtime attacks each assume a particular adver-
sary model and thus mitigate specific classes of attacks. Currently,
no consolidated defense exists that can mitigate multiple classes
of different attack vectors, or can be at least configured to thwart
different adversarial capabilities depending on the desired security
requirements and deployment environment. This is especially true
for hardwired hardware-assisted security extensions [7]–[12] which
cannot be upgraded or patched after fabrication. This makes system
architects reluctant to deploy them, despite their advantages over
software-based defenses.

Our Goal. In this work, we aim to tackle the challenges outlined
with respect to attack space coverage and applicability of defenses
for timing-critical applications. These challenges hinder the practical
deployment of hardware-assisted security mechanisms for embedded
systems in general, and for real-time safety-critical systems in partic-
ular. In doing so, we address the persistent trade-off between func-
tionality requirements (e.g., real-time operation, safety, availability or
other deployment constraints) vs. security requirements. We aim to
provide a flexible means for the system designer to tune this trade-
off by only incurring the corresponding performance overhead for the
degree of the security guarantees required and configured at runtime.

To achieve this, we categorize the different classes of attacks
that may target embedded systems. We evaluate which of these
attacks can be detected on-device and which of them require more
sophisticated policy-checking at a trusted third party. With this in
mind, we provide a consolidated and configurable defense mechanism
that can be adjusted at runtime to provide different security services
(and thus different security guarantees against different classes of
attacks) at the cost of different performance overheads. We enable this
by leveraging a custom hardware-based extension, called CHASE,
designed to operate in parallel to the actual processor. It captures and
tracks the execution at runtime in a cycle-accurate and tightly cou-
pled manner. CHASE is runtime-configurable and supports different
security services to mitigate different adversarial capabilities, where

978-1-7281-2350-9/19/$31.00 ©2019 IEEE
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its hardware can be configured at runtime to either verify or enforce
control flow (including call-return matching). Verifying control flow
checks on-device that a control-flow transfer is allowed after it is
executed, without incurring performance overhead on the execution.
Conversely, enforcing control flow actively checks that each control-
flow transfer is allowed prior to its execution, which evidently comes
with some performance overhead. For more sophisticated attacks that
cannot be detected on-device, CHASE can be configured to capture
fine-grained features of the relevant execution, and send them to
a trusted third party (equipped with computational resources) for
verification using more complex policies.

For timing-critical systems, CHASE can be configured to verify
on-device that the control flow of execution is valid without inter-
fering with the application run time or halting the execution in case
of illegal control flow. Violation of a control flow policy is detected
with minimal latency, after which CHASE reacts gracefully without
compromising the safety or real-time requirements of the application.
Execution is redirected to a pre-defined and isolated safe state which
is application-dependent. In the meantime, a neighboring device (in
case of a network of collaborative devices) and the trusted third party
are notified of the impending exploit to react accordingly.

Contributions. In this work, we tackle the challenges we outline
above by proposing:
• A modular hardware-assisted extension CHASE that consoli-

dates different defenses and security services mitigating a larger
attack space than existing defenses.

• Configurable security that can be adjusted at runtime depending
on the security vs. functionality requirements of a given embed-
ded application and the deployment scenario.

• A security mechanism that can verify control flow on-device
with minimal latency making it suitable for timing-critical
systems (with caveats).

• Proof-of-concept implementation for a RISC-V processor and an
evaluation of performance overhead for the detection latency.

II. CHASE: SYSTEM AND ADVERSARY MODEL

The intuition behind our work is two-fold. The first is that security
mechanisms to date are not configurable by design to provide differ-
ent levels of security at runtime. Configurable security is required
when an embedded system is deployed in scenarios with different
threat levels and different functionality requirements (fail-safety, real-
time, periodicity, etc.). This is particularly a limitation of existing
hardware-assisted extensions which cannot be modified or upgraded
after production, rendering them hardwired to mitigate a fixed class
of security threats for the entire lifetime of the encompassing system.
Despite their many advantages as opposed to software-based schemes,
this hinders their deployment in practice.

The second is that existing security extensions, even asynchronous
Control-Flow Integrity (CFI) designed for PLCs [5], affect the
application run time, often non-deterministically. This makes them
unsuited for timing-sensitive systems that have no tolerance for down
time or variable reaction times. This further emphasizes the need for
a tuning knob that can be used to calibrate the trade-off between
the security guarantees vs. application run time and performance
overhead for different use cases and deployment settings.

To tackle the above challenges and provide configurable security
and modular lines of defense, we propose CHASE. CHASE is
the first consolidated and configurable custom hardware-assisted
security extension that integrates tightly with the processor core of
a remote in-field mid-end embedded device, called DEV . CHASE

captures and tracks the execution of DEV at runtime in a cycle-
accurate manner using custom hardware that operates in parallel to
the processor execution. It supports different security configuration
modes where valid control flow can be either actively-enforced or
attested after-the-fact, assuming control-flow policies are provisioned
on DEV . Verification can be performed either on-device or remotely.
On-device verification checks control-flow transfers against control-
flow policies that are provisioned on DEV . Although on-device
verification is limited to detecting explicit control-flow hijacking, it
is low-latency and can mitigate an exploit within a few clock cycles
as shown in § V-B.

Remote attestation, on the other hand, is used to detect more
sophisticated attacks, such as non-control-data attacks, which do not
directly compromise the control flow. It requires that the recorded
and measured execution is reported to a trusted third party (called
the moderator MOD). MOD is assumed to be a significantly
more computation-resourceful server than DEV and, thus can verify
the reported execution against a more complex set of policies and
heuristics, and detect data-oriented attacks. At runtime, the user
can select to activate or deactivate any of these security services
depending on the trade-off between the functionality requirements
(e.g., how much performance overhead can be tolerated) and the
presumed threat level of the deployment settings. In what follows,
we describe and classify the adversarial capabilities and classes of
attacks we consider in this work.

A. Adversary Model and Assumptions

Adversary Model. We consider an adversary ADV with varying
capabilities depending on the deployment settings, and with full
control over both the program memory and data memory of the target
program executing on DEV .

The different types of attacks ADV can launch against embedded
systems can be broadly classified into:
A1 Static code manipulation (malware injection) attacks
A2 Runtime code-injection attacks
A3 Runtime control-flow attacks
A4 Runtime non-control-data attacks
A5 Runtime code manipulation attacks
ADV can launch static code manipulation attacks and inject

malware such that modified code is loaded at start-up and executed
(A1). ADV can also launch runtime attacks (A2 - A5) by exploiting
memory corruption vulnerabilities that cause buffer overflows leading
to corruption of data memory. By corrupting control-flow information
stored in the stack or heap and overwriting code-pointers (return
addresses and function pointers), ADV can maliciously redirect
the control flow of execution at runtime. In code-injection attacks
(A2), the attacker places a malicious executable payload in program
memory and redirects control flow to execute it. Alternatively, state-
of-the-art runtime attacks exploit code-reuse techniques, e.g., Return-
Oriented Programming (ROP) [2]. These attacks exploit memory
corruption vulnerabilities and stitch together benign gadgets of code,
which already reside in the program memory, in a particular sequence
to build the attack payload and hijack the control flow of the program
maliciously. These attacks hijack the control flow of the program
by executing invalid control-flow transfers, that do not exist in the
control-flow graph (CFG) of the program (A3).

More sophisticated code-reuse attacks known as non-control-data
attacks (A4) do not explicitly compromise the control flow of a
program, but cause malicious execution by corrupting critical data
variables such as an authentication variable or loop variable. This
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results in executing a privileged (unintended) but permissible control-
flow path that exists in the CFG or manipulating the number of
iterations of a program loop or control-flow edge. This can have
severe consequences depending on the context and is more challeng-
ing to detect. Furthermore, a stronger ADV can modify program
code in memory at runtime through physical access without mounting
sophisticated invasive physical attacks. ADV can replace the benign
code memory with malicious code memory at runtime especially if
the program code resides in an external off-chip memory [10] (A5).

Assumptions. We assume that MOD has access to the source
and binary code of the target program and that static root of trust
is in place by deploying conventional static (binary) attestation at
load-time. This assures that DEV is executing unmodified program
code, thus effectively mitigating attacks A1. Static attestation is a
standard established mechanism assumed to be commonly deployed
in embedded systems, while incurring no overhead on the application
run time. Access to the source code is assumed forMOD to generate
the control-flow graph of the target program and define the set of
policies to be enforced/attested (described in more detail in III-A).
Code injection attacks A2 can be effectively prevented by marking
memory as either writable or executable (W⊕X). This mechanism,
known as Data Execution Prevention (DEP) [13], is long-established
and considered a standard assumption for these systems. Finally, we
assume that expensive invasive physical attacks are out of scope
(except attacks A5 because they are realistic in practice). Thus, ADV
cannot compromise hardware-protected memory used exclusively by
CHASE that is not mapped to the software-accessible address space.

B. Requirements Analysis

To address the above, we derive the following requirements:
R1 Configurable security: Different security services with varying

security guarantees should be supported. These should be con-
figured at runtime depending on the threat level presumed for
the deployment and functionality requirements.

R2 Runtime security: The security services should be capable of
detecting different classes of runtime attacks (A3 - A5) when
activated. For at least one of these services, the attacks should
also be detected with a sufficiently low latency for an impending
exploit to be prevented in time (not just after-the-fact detection).

R3 Minimal performance impact: All services supported should
incur minimal performance overhead on DEV . At least one of
these services should deterministically guarantee zero perfor-
mance overhead and no impact on the application run time.

R4 Accuracy & completeness: All services, when enabled, should
accurately capture, record and enforce or attest every control-
flow event in the execution. No control-flow events can be
dropped or bypass the activated security mechanism.

R5 Secure communication: Whenever applicable, attestation results
should be securely reported to MOD; they should be integrity-
protected and fresh.

R6 Reasonable logic overhead: The hardware extension providing
these security services should incur minimal memory and logic
overhead to the baseline processor.

III. CHASE: HIGH-LEVEL DESIGN

In light of the requirements described in § II, we present CHASE,
the first consolidated hardware-assisted security extension that is con-
figurable by design in the face of different attack classes § II-A based
on their degree of difficulty to launch and (effectively) detect/mitigate.
With this in mind, we describe the different security configuration
modes supported in CHASE to mitigate these attacks and how

they can be configured at runtime in § III-A. These modes aim to
provide varying security guarantees by means of different security
mechanisms to thwart different adversarial capabilities at different
performance overhead costs. In § III-B, we describe the modular
design of CHASE shown in Figure 2 and how its components can
be configured to realize the different configuration modes at runtime.

Attack Categorization. As described in § II-A, attacks A1 and A2
are the most trivial to launch and mitigate. The former are mitigated
by deploying static attestation at load-time. The latter are mitigated
by deploying Data Execution Prevention (DEP), a long-established
mechanism that does not affect application run time. Attacks A3,
A4, and A5 are the more challenging to launch and mitigate, and are
currently the more sophisticated threats targeting embedded systems.
CHASE provides different modes of configuration for different secu-
rity guarantees against these attacks, thus fulfilling R1 in § II-B. This
enables the configuration of different security mechanisms at runtime
while having the targeted application, functionality requirements and
the threat level in mind, thus calibrating the performance/security
trade-off flexibly. For real-time applications, for instance, particular
configurations can be selected that do not affect the application run
time, while providing an adequate level of security. For more vulner-
able or less timing-critical applications, higher security guarantees
can be provided by enabling other mechanisms, but at a higher
performance overhead. This renders CHASE suitable for deployment
in a wide spectrum of embedded systems with different use cases,
while also taking into account the strict functionality requirements of
timing-critical systems. We describe next how these different security
services can be activated at runtime.

A. Security Configurations Scheme

Four configuration modes are supported by CHASE:
C1 On-device control flow verification
C2 On-device control flow enforcement
C3 Moderator-verified control flow attestation
C4 Moderator-verified executed instructions attestation

Check 
data/message 

request 

Check security 
configuration 

mode

C1: Verify  
CF events 
on-device

C3: Attest 
Control-Flow 
(CF) events &

iterations

C4: Attest CF 
events, 

iterations & 
instructions

Send attestation 
report to moderator 

& disable C3/C4

Direct execution  to 
safe state and report 

to moderator

Message request

Enable C3 

Service completed

Service completed

C2: Enforce 
CF events 
on-device

Enable C2

Violation detected

Idle

Security configuration 
(C1/C2) request

Enable C4 Enable C1

Disable 
C1/C2

C1/C2 disabled

Fig. 1: Runtime activation of the CHASE configuration modes.

To enable these security mechanisms, a set of reference control-
flow policies is generated and provisioned in a dedicated addressable
policy memory on DEV , while more complex policies are made
available atMOD. These policies are generated by means of offline
one-time static and dynamic code analysis. The addresses used to
access the policy memory for fetching the policies for indirect branch
instructions are instrumented directly after the corresponding indirect
jump instructions in the application binary (or source). Moreover,
code analysis is used to generate a priori the list of security-
critical data/messages that can be requested from DEV , and the
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Fig. 2: CHASE high-level hardware architecture representing the modules activated for different security configuration modes.

corresponding software modules that contribute to the generation of
the pertinent data/message, and their memory address bounds. This
list is provisioned in a dedicated memory on DEV along with the
data/message ID, and is used to restrict the attestation in modes C3
and C4 to the relevant software modules only, when a particular
data/message is requested as described below.

Modes C1 and C2 can be enabled or disabled at any point
during execution as shown in Figure 1, and are not bound to
the execution of a particular data/message request. They verify or
enforce, respectively, that the control flow of execution is valid so
long as they are enabled. Modes C3 and C4, on the other hand,
are bound to a particular data/message request. If either mode is
requested along with the data/message request, the attestation service
continues to run until the request is completed. We describe next how
the hardware modules of CHASE shown in Figure 2 are configured
at runtime to realize the different configuration modes.

B. Security Configuration Modes

C1. Control-flow transfers are captured at runtime by module
M1b in Figure 2 while being executed. The captured control-flow
events are checked against control-flow policies, which enlist the
allowed destination addresses for every indirect branch instruction.
These policies are in a dedicated policy memory and are pre-fetched
into a dedicated on-chip cache (policy cache). The required policy
address is mapped to the corresponding cache entry by module M3

and used to fetch the policies from cache in M4. M6 verifies the
captured control-flow transfer by comparing it against the fetched
policy if it is a forward transfer, e.g, a function call. The call site
address is then pushed to the call-return matching stack in M6 if
this is a jump-and-link-register instruction (function call).
Backward control-flow transfers, e.g., returning to a call site, are
verified by comparing the return address with a pre-defined number
of most-recently call sites pushed onto the stack. The matching call
site address and addresses pushed on top of it afterwards are all
popped off the stack. The activated paths for this mode are A , C ,
D , F , and H through the activated modules M1b, M3, M4, and M6

as shown in Figure 2. This mode guarantees low-latency (within a few
clock cycles) detection of illegal control-flow transfers and graceful
mitigation of an impending exploit (A3 attacks) while incurring zero

performance overhead on the application run time (with caveats that
we discuss in § V-B and § VI).

C2. A control-flow transfer is not permitted to occur unless it is
validated on-device by M5 in this mode. This invasive enforcement
of control-flow transfers guarantees prevention of executing illegal
control-flow transfers (A3 attacks) that violate the provisioned poli-
cies, while incurring minimal performance overhead. This overhead
is variable and proportional to the number of control-flow transfers
and the number of policy rules verified for each control-flow transfer.
The activated paths for this mode are A , C , D , E , and G through
the activated modules M1b, M3, M4, and M5.

C3. To detect more sophisticated control-flow and non-control-
data attacks (A3 and A4 attacks), a more detailed attestation is
performed that cannot be verified on-device owing to the complexity
of the required code analysis and derived policies. Since this mode is
activated for a specific data/message request, the current instruction
address is checked by M2 to validate whether it is within the memory
bounds of relevant program modules that should be attested for
this particular data/message. This avoids attesting modules that may
execute in parallel but are irrelevant to the requested data/message.
If a control-flow event is within bounds, i.e., to be attested, its policy
address is fetched from cache by M3 and M4 (similar to C1 and
C2). Then the control-flow event is verified on-device by M6 and the
counter for this particular edge is incremented by M7 to keep track
of the number of times a control-flow edge executes. Each executed
edge is measured into a cryptographic hash computation by the hash
engine (M9) and forwarded to the multi-set hash operator (M10).
Both are regulated by (M8). The multi-set hash (MSH) function
enables the computation of a single fixed-length hash digest for a
set of elements (control-flow edges in this case) while allowing its
members to occur multiple times, in which the order of the items does
not affect the final value [14]. The MSH functionality significantly
reduces the amount of information that needs to be sent by DEV to
enable reconstructing the hash values at MOD side. The attestation
report is assembled of a bitmap of executed control-flow edges and
their iteration numbers as well as a single MSH measurement of the
executed edges. The resulting attestation report is then sent toMOD.
MOD uses the bitmap to identify the executed edges and the number
of times each edge was executed to identify benign behavior by the

Authorized licensed use limited to: ULB Darmstadt. Downloaded on July 07,2021 at 19:45:57 UTC from IEEE Xplore.  Restrictions apply. 

103



expected control-flow edge iterations. Therefore, it can detect more
sophisticated attacks which often involve a loop iteration counter
getting maliciously compromised, thus causing the loop to execute
for an abnormally different number of times than expected. MOD
is assumed to be more computationally resourceful than DEV and
provisioned with more complex fine-grained policies and heuristics
in order to detect more sophisticated non-control-data attacks (A4
attacks). The activated paths for this mode are A , B , C , D , F ,
H , I , J , K , L , and M through the activated modules M1b, M2,
M3, M4, M6, M7, M8, M9, and M10.

C4. This configuration mode assumes a much stronger adversary
capable of manipulating the actual instructions that are executed at
runtime without compromising control flow. To detect such an attack,
every instruction executed, besides control flow, is captured by both
M1a and M1b respectively, and included into the cryptographic hash
computations. As in C3 mode, a final MSH measurement is sent
along with a bitmap of executed control-flow edges and their iteration
numbers to MOD in order to detect attacks A3, A4 and A5. The
activated paths for this mode are ( A , B , C , D , F , H , I , J ,
K , L , and M ) through the activated modules M1a, M1b, M2, M3,
M4, M6, M7, M8, M9, and M10.

While providing progressively stronger and more sophisticated
detection guarantees, configuration modes C3 and C4 come with sig-
nificant latency that includes network communication with the remote
moderator. On the other hand, modes C1 and C2 are performed on-
device, thus incurring minimal (if any) clock cycle-level latency for
detection/enforcement.

IV. CHASE: HARDWARE ARCHITECTURE

We describe next the functionality of the hardware modules of
CHASE used to enable the different configuration modes.
Execution Tracer M1 is tightly coupled to the processor

pipeline. It tracks the execution flow of a software module/program by
extracting several signals relevant to the execution from the processor
pipeline at every clock cycle. It consists of two sub-modules: the
Instruction Tracer which captures every instruction executed when
mode C4 is activated, and the Control-Flow Tracer which captures all
signals relevant to control-flow transfers, as shown in Figure 2. This
module requires tight interfacing with the Fetch and Decode stages
of the pipeline to extract the program counter (PC), the instruction
itself, and whether it is an indirect branch. Only indirect branches
are exploitable by runtime attacks, and thus only these are captured
and their destination addresses are extracted from the Decode stage.
Bounds Checker M2 controls which control-flow events are

tracked and attested when either mode C3 or C4 is activated. For
modes C3 or C4 only software modules that contribute to the
generation of the requested data/message are attested during their
execution (§ III-A). Therefore, the Bounds Checker compares the
current PC with the address bounds of the relevant software modules.
This requires two clock cycles and is interleaved with the operation
of other CHASE modules for minimal performance overhead.
Policy Access Mapper M3 receives an address pointer to

the policy memory from the Execution Tracer and maps it
to corresponding cache entry in the Policy Cache, where the
requested policy would be available. If the policy is already cached
then the Policy Access Mapper fetches it from the Policy
Cache. Otherwise, it issues a cache miss. The Policy Access
Mapper also enables successive accesses to the Policy Cache in
case more than one cache entry is required to store the policies for
the pertinent control-flow transfer. The policies consist of the allowed
source–destination address tuples and are organized in the policy

memory per control-flow transfer, i.e., by source address, to achieve
spatial locality in the Policy Cache, thus lower miss rates. As
explained in § III-A, the policy memory addresses are instrumented
within the program binary immediately after their corresponding
indirect branch instructions, such that they get fetched anyway by
the processor then invalidated (incurring no additional overhead).
The Execution Tracer extracts the instrumented policy memory
address before it gets invalidated.
Policy Cache M4 is accessed to fetch the cache line with the

requested policy once the policy memory address is resolved by the
Policy Access Mapper. The policy is then forwarded to either
the Control-Flow Verifier or Control-Flow Enforcer
depending on whether C1 or C2 is enabled respectively.
Control-Flow Enforcer M5 is tightly coupled with the

processor Decode stage. For function calls and forward edges, the
Control-Flow Enforcer ensures that the computed destina-
tion address matches one of the possible destination addresses in
the relevant policy. For function returns or backward edges, the
Control-Flow Enforcer utilizes the call-return matching stack
to enforce returning to one of the call sites on the stack. Otherwise, it
issues an interrupt signal to flush the pipeline and jump to an interrupt
routine, which requires invasive integration with the pipeline.
Control-Flow Verifier M6 checks whether the computed

control-flow destination address adheres to the pertinent policy by
comparing it with the allowed destination addresses in parallel. If
no match is found, then a control-flow violation is detected and
communicated to MOD. Execution may be gracefully interrupted
and redirected to an application-dependent safe state. In case C3 or
C4 is also enabled, the executed control-flow event is recorded in the
metadata and included in the hash computation to report to MOD.
MOD can analyze the detected violation to confirm that it is indeed
a violation and not a false positive. Otherwise, it can update the
provisioned policies if necessary. The Control-Flow Verifier
also informs the Control-Flow (CF) Event Counter with
the executed control-flow event for further processing.
Control-Flow (CF) Event Counter M7 is only en-

abled for modes C3 and C4 and receives information from the
Control-Flow Verifier on the executed control-flow trans-
fers. The CF Event Counter generates and maintains a bitmap
per software module that indicates which indirect edges and how
many times they are executed by means of maintaining edge counters.
It also maintains a list of control-flow transfers that were flagged as
violating. At the end of the attestation epoch of C3 or C4, the CF
Event Counter outputs the metadata to be sent toMOD namely,
the bitmaps, violated control-flow events and edge-counters.
Hash Regulator, Hash Engine and MSH Operator are

only enabled in the two modes C3 and C4. Hash Regulator
M8 regulates the operation of the Hash Engine for different
configuration modes and instructs it when to initialize/finalize a hash
computation. When C3 is enabled, it instructs the Hash Engine to
compute a hash measurement over the executed control-flow event.
It also guarantees that an executed control-flow transfer is hashed
only once when it is encountered for the first time, thus avoiding
exhausting the Hash Engine (with respect to power computation
and clock cycles) in repeatedly computing the same hash values.
When C4 is enabled, it also forwards the executed instructions
between consecutive control-flow events to the Hash Engine for
hashing. Finally, it also regulates the forwarding of the computed
hash values from the Hash Engine to the MSH Operator.
Hash Engine M9 is required to be a high-throughput and

collision-resistant cryptographic hash function (R5 in § II-B). We de-
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ploy BLAKE2 4 as the underlying hash function for the computation
of the multi-set hash value [14] that will be reported toMOD. More
details specific to our BLAKE2 instantiation are presented in § V.
MSH Operator M10 receives the computed hash values from

the Hash Engine to continuously generate the intermediate and
final multi-set hash (MSH) values. The MSH Operator performs
additive multi-set hashing using simple arithmetic operations (+ and
mod) [14]. At the end of the attestation epoch, the final MSH-hash
value is sent along with metadata to MOD for further inspection.
The execution of the Hash Engine and MSH Operator are
interleaved to achieve minimal performance overhead.

V. IMPLEMENTATION AND EVALUATION

We prototype CHASE by extending the open-source RISC-V
Pulpino 5 on a Zedboard Zynq evaluation board. Hardware modules
were implemented in Verilog and integrated with the processor, along
with integrating modifications to the processor pipeline for capturing
the required execution signals and enabling control-flow enforcement.
In the following, we highlight the most crucial details relevant to our
proof-of-concept (PoC) implementation and evaluation.

A. Hardware Prototyping

Policy Access Mapper & Policy Cache. In our PoC,
we deploy a direct-mapped Policy Cache and a simple mod
function for the Policy Access Mapper that requires a single
clock cycle. The policy is fetched from the mapped cache entry
in the Policy Cache. Similar to conventional processor caches,
the cache organization, mapping and replacement policies are design
decisions and can be applied differently for the Policy Cache.
Furthermore, cache misses in the Policy Cache would correspond
to misses in the instruction cache. In case several cache lines need to
be accessed for fetching the policies of a control-flow transfer, suc-
cessive accesses to the Policy Cache are pipelined with the op-
eration of the Control-Flow Verifier and Control-Flow
Enforcer to maintain minimal performance overhead. In our PoC,
we assume a 64KB cache and a 64B cache line, such that a tuple of
16 32-bit addresses (thus up to 16 policies for one source address)
correspond to one cache line. We synthesize the cache using 8
instances of 64Kb Block RAMs (BRAMs), such that the complete
cache line (storing 16 policies) is fetched in one cycle.
Hash Engine & Hash Regulator. Blake2 is deployed as

the underlying cryptographic hash function for the computation of the
multi-set hash [14]. We utilize the Blake2s version, which consists of
10 rounds of computation. In each round, the compression function is
applied in parallel to the columns of the internal state and then in par-
allel to its diagonals. We build our Hash Engine implementation
on top of the open-source Verilog implementation of Blake2s 6. The
Hash Regulator is a simple controller that regulates the operation
of Hash Engine for different configuration modes and instructs it
when to initialize or finalize a hash computation. In C4, instructions
executed after a destination address of a control-flow transfer and
the source address of the next control-flow transfer are split into
blocks of 512 bits such that the blocks are hashed individually by
Hash Engine. These values are forwarded continuously to the MSH
Operator for the final MSH-hash value computations.

4https://blake2.net/
5https://github.com/pulp-platform/pulpino
6https://github.com/secworks/blake2s

B. Area & Performance Overhead

Area. In Table I, we show a breakdown of the area overhead
of the CHASE modules. CHASE consumes 7, 556 lookup-tables
(LUTs) and 5, 040 Registers/Flip Flops (FFs), approximately 50%
of the baseline Pulpino logic (R6 in § II-B). However, the Hash
Engine incurs 50% of this overhead and requires at least 24 cycles
to finalize a hash computation. The rounds of the Hash Engine
implementation can be unrolled to achieve a significantly higher
throughput (at the cost of increased area overhead).

Performance. We evaluate sample control-flow exploits (ROP
and simple JOP attacks) with CHASE, and show that the detec-
tion latency of an illegal control-flow transfer is at least 3 clock
cycles after an indirect branch is decoded. For instance, the total
number of instructions in the Pixhawk7 firmware, an open-source
flight controller for drones (a timing-critical application), is 324, 996
instructions including 6, 210 indirect branches. For C2, this incurs a
performance overhead of 6% on the application run time, assuming
that all the policies are cached and only one cache line (maximum of
16 policies) is required per branch instruction. For C1, this latency
does not affect the application run time (a requirement for such
timing-critical applications), since the control-flow transfer is verified
after its execution. However, this only holds as long as there are at
least 3 clock cycles between consecutive indirect branch instructions,
which is satisfied for this particular benchmark. For other cases
where this is not true, only certain indirect branch instructions can
be verified while others are discarded, or the binary can be re-
instrumented accordingly. Nevertheless, the low detection latency
guarantees that an impending exploit can be prevented in time (R3).

TABLE I: Breakdown of CHASE Area Overhead

LUTs FFs Memory
Execution Tracer 210 128 1KB
Bounds Checker 630 1, 071 4 KB
Policy Access Mapper 7 2 -
Policy Cache - 4 64 KB
Control-Flow Verifier 230 140 -
Control-Flow Enforcer 1053 287 -
Control-Flow Event Counter 240 288 34 KB
MSH Operator 384 256 -
Hash Regulator & Hash Engine 4, 802 2, 864 -

VI. SECURITY ANALYSIS

CHASE aims to provide a configurable defense and cover the
attack space described in § II-A. To achieve this, CHASE is required
to provide accurate, authentic and low-latency enforcement or on-
device verification of control-flow transfers for modes C1 or C2.
For C3 and C4, CHASE is required to provide accurate, complete,
authentic, and fresh attestation of control flow (as well as executed
instructions in C4) of the program running on DEV .

Attestation and Network Attacks. In modes C3 and C4,
the recorded control-flow events as well as the executed instruc-
tions (for C4) are measured into a compact cryptographically-
secure additive multi-set hash (MSH) digest MSH =

(
hash(r) +

ΣIteri.hash(CFlowi)
)
mod 2n, where r is a nonce, CFlowi is an

executed control-flow edge (source-destination address pair), Iteri
is the number of iterations of that edge, n is the bit length of
CFlowi and hash is the underlying hash function used (Blake2 in
CHASE). In order to evade detection of control-flow/code manipu-
lation attacks, ADV is required to find a sequence of control-flow
events/instructions (another multi-set) that maps to the the same MSH

7http://pixhawk.org/
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value. However, this is not feasible since the chosen additive MSH
is multiset-collision resistant where the hardness of finding collisions
is reduced to the hardness of breaking the underlying hash function,
which is the second pre-image resistant Blake2 in our design (R5).

Moreover, every attestation report is authenticated by DEV along
with a monotonic counter ctr using a cryptographically-secure
digital signature σ = sign{skDEV ; bitmapCF‖Iteri‖r‖MSH‖ctr}
based on DEV’s signing key skDEV . skDEV is stored in hardware-
protected memory that is only accessible by CHASE. The signature
and secure storage of the key guarantee the authenticity of the report
while the monotonic counter ensures its freshness (R5). Note that,
the monotonic counter is backed in a non-volatile memory and is
non-resettable even when DEV is reset. Finally, since attestation is
coupled with program execution at DEV , Time-of-Check-Time-of-
Use (TOCTOU) attacks on attestation are prevented.

Malware and Code Injection Attacks. Recall that the adversary
is incapable of modifying the software binary at load-time (malware
injection) as well as the control-flow policies which are fetched from
external memory into on-chip memory. This is due to static attestation
which allows the detection of such tampering, thus mitigating attacks
A1. Furthermore, code injection attacks are effectively prevented
through DEP (W⊕X)), thus mitigating attacks A2.

Runtime Code-Reuse Attacks. CHASE uses hardware modules
that are tightly integrated with the processor to extract the control-
flow information and executed instructions directly from the proces-
sor pipeline. This guarantees that all control-flow events and executed
instructions are recorded. CHASE hardware also guarantees that all
control-flow transfers are verified against their respective policies,
thus, ensuring that the provisioned control-flow policies are accurately
and completely enforced. The security guarantees with respect to the
detection of runtime attacks are as good as the provisioned control-
flow policies, and the code analysis that generated the policies. So
long as any configuration modes in CHASE is enabled, at least every
executed control-flow transfer is directly captured from the processor
and either verified or enforced (for modes C1 and C2 respectively)
using the provisioned control-flow policies or measured (for modes
C3 and C4). Thus, in order to ensure that no control-flow transfers
are dropped, Execution Tracer of CHASE is padded with a
First-In-First-Out (FIFO) structure that buffers incoming control-flow
transfers. This is required for the unlikely event that multiple indirect
jump instructions execute consecutively (R1 and R4). While CHASE
ensures that all buffered control-flow transfers are verified with
their respective policies, the detection latency of potential violations
is increased. Nevertheless, software developers are advised not to
program multiple indirect branches consecutively.

This accurate tracking and enforcement/verification of control-flow
edges in CHASE guarantees the detection of explicit control-flow
hijacking attacks (A3). The call-return matching stack also provides
additional guarantees on context-sensitive enforcement/verification of
backward edges, i.e., returning to correct call sites. Moreover in C3
and C4, tracking the number of times each edge iterates and sending
the respective bitmap to MOD enables the detection of all data-
oriented attacks that do not directly hijack the control flow but mali-
ciously compromise the expected number of loop iterations (attacks
A4). In C4, tracking and measuring every instruction executed (not
only control flow) allowsMOD to detect runtime code manipulation
attacks (A2 and A5). This assumes thatMOD has knowledge of the
program source code and the benign number of loop iterations for a
given service/message by means of code analysis (see § II-A) (R2).

Finally, since CHASE is hardware-based, it cannot be compro-
mised by malicious software. Moreover, all on-chip cache/memory

utilized by CHASE, e.g., for policies, is hardware-protected and not
mapped to software-accessible address space, and hence protected
from remote software attacks.

Figure 3 shows an example of a control-flow violation at runtime.
The solid arrows represent the expected benign execution path,
while the dashed arrows respresent the violating control-flow edges,
assuming the function pointer in the writable data memory was
overwritten by the attacker. Assuming C3 is enabled, the attestation
report will differ from the reference in the bitmap of the executed
edges, iterations per edge as well as the final MSH value computed.

0x100: Instructions, 
0x124: CALL f1()

0x12c: Instructions, 

<main>:

0x200: Function Prologue
0x210: CALL gets(Buffer)

0x23c: RET

<f1>:

0x500: Function Prologue
0x510: Instructions, …
0x56c: RET

<gets>:

Program Code Library Code

0x244: Function Prologue
0x254: CALL puts(Buffer), …

0x27c: RET

<f2>:

0x148: CALL f2()

0x150: Instructions,… 
0x580: Function Prologue
0x590: Instructions, …
0x618: RET
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0x700: HALT Program
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Fig. 3: Detection of a control-flow violation by CHASE. Expected
control-flow path (benign): ¬ (0x124, 0x200),  (0x210, 0x500),
® (0x56c, 0x218), ¯ (0x23c, 0x12c), ° (0x148, 0x244), ± (0x254,
0x580), ² (0x618, 0x25c), ³ (27c, 0x150), etc. Traced control-flow
path (corrupted): ¬ (0x124, 0x200),  (0x210, 0x500), ® (0x56c,
0x218), ¯ (0x23c, 0x12c), ° (0x148, 0x244), Ï (0x254, 0x500), Ð

(0x56c, 0x25c), ³ (27c, 0x150), etc.

Physical Attacks. Expensive invasive/semi-invasive physical at-
tacks are out of scope in this work, thus CHASE hardware is
assumed secure against such attacks that would compromise its
accuracy/functionality (R4). However, other realistic physical attacks
that manipulate the program code at runtime, as well as fault injection
attacks are captured by CHASE and detected byMOD in the mode
C4 since CHASE captures all executed instructions.

VII. RELATED WORK

Static Attestation. Attestation aims at enabling a trusted third
party to check the trustworthiness of the software on another device.
Approaches to static attestation include: (1) Software-based attes-
tation [15], [16] that allows the attestation of legacy and low-end
computing devices while requiring no secure hardware but relying on
strong assumptions, and thus have been attacked [17], (2) Hardware-
based attestation [18], [19] that requires complex and/or security
hardware (e.g., trusted platform module – TPM), and (3) Hybrid
attestation [20]–[22] that is based on hardware/software co-design
aiming at reducing the hardware security required for remote attes-
tation. Static attestation, however, cannot detect runtime attacks.

Runtime Integrity. Many defenses have been proposed in re-
cent years to mitigate runtime exploits [1]. Control-Flow Integrity
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(CFI) [3] ensures that a program follows a valid path in its control-
flow graph (CFG). However, CFI does not mitigate non-control-
data and DOP attacks. Code randomization [23] randomizes the
code layout, but a branch instruction can still be exploited to jump
to the target address of choice. Code-Pointer Integrity (CPI) [24]
aims at ensuring the integrity of code pointers but also does not
mitigate non-control-data attacks. Defenses has been proposed for
mitigating pure data-oriented attacks such as data-flow integrity
enforcement/isolation [12], [25], [26], but they all incur a non-
negligible performance overhead.

Runtime Attestation. Control-flow attestation was proposed in [4]
and aimed to allow the verifier to attest the measure and record the
control-flow path executed on the prover. However, code instrumen-
tation was required and prohibitively high performance overhead was
incurred on the prover. Subsequent schemes have been proposed [4],
[9]–[11] to leverage hardware assistance for recording runtime execu-
tion events in parallel to program execution, and without code instru-
mentation, thus reducing the overhead on the prover significantly and
tackling stronger adversarial capabilities [10], [11]. However, existing
schemes each tackle different adversarial capabilities with no scheme
providing a consolidated or configurable defense.

Defenses for Real-Time Systems. Some defenses have been
recently proposed for providing integrity to real-time systems and
the requirements of applying remote attestation to safety-critical
systems was investigated recently in [27]. SeED [28] enables non-
interactive attestation, while ERASMUS [29] proposes periodic self-
measurements of the prover’s software that are occasionally reported
to a remote verifier, thus providing applicability to real-time systems,
but only providing static integrity. DIAT [30] proposes data-integrity
attestation for collaborating real-time systems but still incurs signif-
icant performance overhead to the application run time. ECFI [5]
proposes a CFI mechanism for PLCs which gives priority to the
PLC’s runtime operation, yet it still incurs a performance overhead
of up to 8.3%. Existing solutions cannot provide runtime security
guarantees for a real-time system without incurring a performance
overhead on the application, unlike CHASE.

VIII. CONCLUSION

In this work, we presented the first hardware-assisted security
extension CHASE, that consolidates different modular defenses that
can be configured at runtime to mitigate different adversarial capa-
bilities, thus effectively covering a larger attack space than existing
defenses. This enables the calibration of the security/performance
trade-off by selecting the desired level of security and thus the corre-
sponding performance overhead. Moreover, CHASE also provides a
non-intrusive control-flow verification mechanism that does not affect
the application run time, yet detects violations with minimal latency,
making it applicable to timing-critical systems.
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Abstract

Modern multi-core processors share cache resources for max-
imum cache utilization and performance gains. However, this
leaves the cache vulnerable to side-channel attacks, where
inherent timing differences in shared cache behavior are ex-
ploited to infer information on the victim’s execution pat-
terns, ultimately leaking private information such as a secret
key. The root cause for these attacks is mutually distrusting
processes sharing the cache entries and accessing them in a
deterministic and consistent manner. Various defenses against
cache side-channel attacks have been proposed. However,
they suffer from serious shortcomings: they either degrade
performance significantly, impose impractical restrictions, or
can only defeat certain classes of these attacks. More im-
portantly, they assume that side-channel-resilient caches are
required for the entire execution workload and do not allow
the possibility to selectively enable the mitigation only for
the security-critical portion of the workload.

We present a generic mechanism for a flexible and soft
partitioning of set-associative caches and propose a hybrid
cache architecture, called HYBCACHE. HYBCACHE can be
configured to selectively apply side-channel-resilient cache
behavior only for isolated execution domains, while providing
the non-isolated execution with conventional cache behavior,
capacity and performance. An isolation domain can include
one or more processes, specific portions of code, or a Trusted
Execution Environment (e.g., SGX or TrustZone). We show
that, with minimal hardware modifications and kernel sup-
port, HYBCACHE can provide side-channel-resilient cache
only for isolated execution with a performance overhead of
3.5–5%, while incurring no performance overhead for the
remaining execution workload. We provide a simulator-based
and hardware implementation of HYBCACHE to evaluate the
performance and area overheads, and show how HYBCACHE
mitigates typical access-based and contention-based cache
attacks.

1 Introduction

For decades now, upcoming processor generations are being
augmented with novel performance-enhancing capabilities.
Performance and security of processor architectures and mi-
croarchitectures are considered exclusively independent de-
sign metrics, with architects primarily focused on the more
tangible performance benefits. However, the recent outbreak
of micro-architectural cross-layer attacks [4–6, 18, 19, 22, 42,
44, 46, 47, 50, 56, 59, 68, 70, 79], has demonstrated the critical
and long-ignored effects of micro-architectural performance
optimizations on systems from a security standpoint. It is be-
coming evident how performance and security are at conflict
with each other unless architects address the design trade-off
early on and not as an afterthought.

One prominent performance feature and the subject of a
wide range of recent architectural attacks is the use of caches
and cache-like structures to provide orders-of-magnitude
faster memory accesses. The intrinsic timing difference be-
tween a cache hit and miss is one of various side channels
that can be exploited by an adversary process via a carefully
crafted side-channel attack to infer the memory access pat-
terns of a victim process [23,25–29,34,35,38,54,61,71,77,78].
Consequently, the adversary can leak unauthorized informa-
tion, such as a private key, hence violating the confidentiality
and isolation of the victim process.

Cache Side-Channel Attacks. In earlier years, cache side-
channel attacks have been shown to compromise crypto-
graphic implementations [8, 54, 61, 78]. More recently, attack
variants such as Prime + Probe [34, 38, 54, 61] and Flush +
Reload attacks [29, 78] are being demonstrated on a much
larger scale. They have been shown to bypass address space
layout randomization (ASLR) [23, 25], infer keystroke behav-
ior [26,27], or leak privacy-sensitive human genome indexing
computation [11], whereby millions of platforms using vari-
ous architectures have been shown vulnerable to such attacks.
The attacks require an adversary to orchestrate particular
cache evictions of target memory addresses of interest and
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after a time interval measure its own memory access latencies
or observe relevant computation and profile how it has been
affected. This enables the adversary to deduce the victim’s
memory access patterns and infer dependent secrets. Cache
side-channel attacks have been shown to exploit core-specific
caches as well as shared last-level caches across different
cores or virtual machines [27,38,54]. Even hardware-security
extensions and trusted execution environments (TEEs) such
as Intel SGX [13, 33] and ARM TrustZone [7] are not im-
mune to these attacks. While they do not claim cache side-
channel security, recent cache side-channel attacks targeting
SGX [11, 21, 60, 66] and TrustZone [49, 80] have been shown
to compromise the acclaimed privacy and isolation guarantees
of these security architectures, thus undermining their very
purpose.

Existing Cache Defenses. To defeat cache side-channel
attacks, there has been extensive research on techniques to
identify and mitigate information leaks in a software’s mem-
ory access patterns [16, 17, 45]. However, mitigating these
leaks efficiently for arbitrary software (beyond cryptographic
implementations) remains impractical and challenging. Alter-
natively, hardware-based and software approaches have been
proposed to modify the cache organization itself to limit cache
interference across different security domains. Examples in-
clude modifying replacement and leveraging inclusion poli-
cies [39,76], as well as approaches that rely on cache partition-
ing [24, 40, 41, 51, 72, 73, 82], and randomization/obfuscation-
based schemes [52, 53, 63, 69, 73] to randomize the relation
between the memory address and its cache set index.

While strict cache partitioning is the intuitive approach
to provide complete cache isolation and non-interference
between mutually distrusting processes, it remains highly
impractical and prevents efficient cache utilization. On the
other hand, randomization-based approaches make the attacks
computationally much more difficult by randomizing the map-
ping of memory addresses to cache sets. However, existing
schemes either require complex management logic, impose
particular restrictions, rely on weak cryptographic functions,
or mitigate only some classes of cache side-channel attacks.
Most importantly, all of the aforementioned schemes are de-
signed to provide side-channel cache protection for the entire
code execution, which is actually not required in practice.

Our Goals. We observe that usually the majority of the
code is not security-critical. Typically, a small portion of the
code is security-critical and requires cache-based side-channel
resilience. Moreover, this security-critical portion of the code
is often already running in an isolated environment, such as
in a TEE or in an isolated process. In these cases, a trusted
component, namely the processor hardware or microcode or
the operating system kernel, enforces this isolation. We aim to
leverage and extend this existing isolation mechanism to also
selectively enable side-channel resilience for the caches only

for the portion of the code that needs it, without reducing the
cache performance for the remaining non-isolated code. In
doing so, we practically address the persistent performance-
security trade-off of caches by providing the system adminis-
trator with a "tuning knob" to configure by balancing and iso-
lating the workload as required. Consequently, s/he can tune
the resulting cache side-channel resilience, utilization, and
performance, while guaranteeing no performance overhead
is incurred on the non-isolated portion of the code execution.
Only the isolated (usually the minority) portion is subject to
a reasonable reduction in cache capacity and performance –
the cost of increased security guarantees.

To achieve this flexible and hybrid cache behavior, we
introduce HYBCACHE, a generic mechanism that protects iso-
lated code from cache side-channel attacks without reducing
the cache performance for the remaining non-isolated code.
In HYBCACHE, isolated execution only uses a pre-defined
(small) number of cache ways1 in each set of a set-associative
cache. It uses these ways fully-associatively, while for evic-
tion random victim cache lines are selected to be replaced
by new ones, thus breaking the set-associativity and remov-
ing the root cause of access leakage. Non-isolated execution
uses all cache ways set-associatively as usual, without any
performance overhead. While isolated and non-isolated exe-
cution may compete for the use of some ways in the cache,
the random replacement policy and fully-associative mapping
used by the isolated execution prevent leaking information
about the accessed memory locations (and their cache set
mapping) to the non-isolated execution, thus making the pre-
computation and construction of an eviction set impossible.
Moreover, HYBCACHE flexibly supports multiple, mutually
distrusting isolated execution domains while preserving the
above security guarantees individually for each domain.

HYBCACHE is architecture-agnostic, and can be seam-
lessly integrated with any isolation mechanism (TEEs or inter-
process isolation); the definition of the isolation domains and
the distribution of the workload is left up to the system admin-
istrator. HYBCACHE is backward compatible by design; it
provides conventional set-associative caches for the workload
if the side-channel resilience feature is not supported.

Contributions. The main contributions of this paper are as
follows.
• We present HYBCACHE, the first cache architecture de-

signed to provide flexible configuration of cache side-
channel resilience by selectively enabling it for isolated
execution without degrading the performance and avail-
able cache capacity of non-isolated execution.
• We evaluate the performance overhead of a simulator-

based implementation of HYBCACHE and show that it
is less than 5% for the SPEC2006 benchmarks suite,

1Ways are different available entries in a cache set to which a particular
memory address can be allocated.
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and estimate the memory and area overheads of a cycle-
accurate hardware implementation of HYBCACHE.
• We show – through our security analysis – how breaking

set-associative mapping and shared cache lines between
mutually distrusting isolation domains (which are the
root causes for typical cache side-channel attacks besides
the intrinsic cache sharing and competition) mitigates
typical contention-based and access-based cache attacks.

2 Cache Organization, Attacks and Defenses

We briefly present the typical cache organization, as well as
recent cache side-channel attacks that are within the scope of
our work, and limitations of existing defenses.

2.1 Cache Organization
Cache Structure. Caches are typically arranged in a hi-
erarchy of fastest/closest/smallest to slowest/furthest/largest
levels of cache, respectively L1, L2, and L3 cache/last-level-
cache (LLC). Each core incorporates its L1 and L2 caches and
shares the LLC with other on-chip cores. A cache consists of
the storage of the actual cached data/instructions and the tag
bits of their corresponding memory addresses. Cache memory
is organized into fixed-size memory blocks, called cache lines
each of size B bytes. Set-associative caches are organized
into S sets of W ways each (called a W-way set-associative
cache) where each way can be used to store a cache line. A
single cache line can only be allocated to only one of the
cache sets, but can occupy any of the ways within this cache
set. The least significant log2 B bits are the block offset bits
that indicate which byte block within the B-Byte cache line
is requested. The next log2 S bits are the index bits used to
locate the correct cache set. The remaining most significant
bits are the tag bits for each cache line.

In a set-associative cache, once the cache set of a requested
address is located, the tag bits of the address are matched
against the tags of the cache lines in the set to identify if it is
a cache hit. If no match is found, then it is a miss at this cache
level, and the request is sent down to the next lower-level
cache in the hierarchy until the requested cache line is found
or fetched from main memory (cache miss). However, in a
fully-associative cache, a cache line can be placed in any of
the cache ways where the entire cache serves as one set. No
index bits are required, but only log2 B block offset bits and
the rest of the bits serve as tag bits.

Eviction and Replacement. Due to set-associativity and
limited cache capacity, cache contention and capacity misses
occur where a cache line must be evicted in favor of the
new cache line. Which cache line to evict depends on the
replacement policy deployed, some of which include First-in-
First-Out (FIFO), Least-Recently-Used (LRU), pseudo-LRU,
Least-Frequently-Used (LFU), Not-Recently-Used (NRU),

random and pseudo-random replacement policies. In practice,
approximations to LRU (pseudo-LRU) and random replace-
ment (pseudo-random) are usually deployed.

2.2 Cache Side-Channel Attacks

Cache side-channel attacks pose a critical threat to trusted
computing and underlie more proliferating side-channel at-
tacks such as the Spectre [44] and Meltdown [50] vari-
ants. Different classes of these attacks have been demon-
strated on all platforms and architectures ranging from mo-
bile and embedded devices [49] to server computing sys-
tems [34, 54, 81]. They have also been shown to undermine
the isolation guarantees of trusted execution environments,
like Intel SGX [11, 21, 60, 66] and ARM TrustZone [49, 80].
Such attacks have been shown to infer both fine-grained and
coarse-grained private data and operations, such as bypass-
ing address space layout randomization (ASLR) [23, 25],
inferring keystroke behavior [26, 27], or leaking privacy-
sensitive human genome indexing computation [11], as well
as RSA [54, 81] and AES [10, 34] decryption keys.

Cache side-channel attacks exploit the inherent leakage
resulting from the timing latency difference between cache
hits and misses. This is then used to infer privacy/security-
critical information about the victim’s execution. In an offline
phase, the attacker must first identify the target addresses of
interest (by means of static and dynamic code analysis of
the victim program) whose access patterns leak the desired
information about the victim’s execution, such as a private
encryption key. In an online phase, the attacker measures
the timing latency of its memory accesses or the victim’s
computation time to infer the desired information.

To demonstrate how a simple cache attack works, consider
the pseudo-code of the Montgomery ladder implementation
for the modular exponentiation algorithm shown in Algo-
rithm 1. Modular exponentiation is the operation of raising a
number b to the exponent e modulo m to compute be mod m
and is used in many encryption algorithms such as RSA. Leak-
ing the exponent e may reveal the private key. As shown in
Algorithm 1, the operations performed for each of the expo-
nent bits directly correspond to the value of the bit. If the
exponent bit is a zero, the instruction in Line 5 is executed.
If the exponent bit is a one, the instruction in Line 9 is exe-
cuted. An attacker that can observe or deduce these execution
patterns can thus disclose the value of each corresponding ex-
ponent bit, and eventually recover the encryption key [78, 81].
S/he, however, needs to identify the target addresses that need
to be observed (the addresses of the instructions in Lines 5
and 9 in this example) in the victim program and accordingly
construct the eviction set. The eviction set is a collection of
addresses that are mapped to the same specific cache set to
which the target addresses are also mapped. The attacker uses
this eviction set to evict the contents of the whole set in the
cache, and therefore guarantee to successfully evict the target
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addresses from the caches. Consequently, s/he measures the
timing latency of its own memory accesses after a time in-
terval to deduce whether the victim has accessed these target
addresses.

Algorithm 1: Montgomery Ladder RSA Implementa-
tion

Input: base b, modulo m, exponent e = (en−1...e0)2

Output: be mod m
1 R0 ← 1; R1 ← b;
2 for i from n-1 downto 0 do
3 if ei = 0 then
4 R1 ← R0 × R1 mod m;
5 R0 ← R0 × R0 mod m;
6 end
7 if ei = 1 then
8 R0 ← R0 × R1 mod m;
9 R1 ← R1 × R1 mod m;

10 end
11 end
12 return R0;

The online phase of these attacks consists of three main
steps: Eviction, Waiting and Analysis. The attacker uses the
eviction set to evict the victim’s target addresses from the
cache. Next, the attacker waits an interval of time to allow
the victim to access the target addresses. Then the attacker
measures and analyzes its access time measurements to de-
termine if the victim has accessed the target addresses. This
is repeated as many times as the attacker requires to collect
sufficient traces to recover the exponent bits.

The different techniques used by the attacker to perform
the eviction can be classified into two main approaches, either
access-based or contention-based. In access-based attacks
such as Flush + Reload [29, 78], Flush + Flush [26], Invali-
date + Transfer [35], and Flush + Prefetch [25], the attacker
accesses the target addresses directly by flushing them out
of the cache using the dedicated clflush instruction [2] and
possibly exploiting timing leakage from the execution of the
clflush instruction [26]. This invalidates the lines containing
these addresses and writes them back to memory. Evict +
Reload [27] attacks have also been shown which do not re-
quire the clflush instruction, but instead evict specific cache
sets by accessing physically congruent addresses. These at-
tacks are only feasible in case of shared memory pages be-
tween the attacker and victim, usually in the form of shared
libraries. Otherwise, an attacker resorts to contention-based
attacks such as Prime + Probe [34, 38, 54, 61, 77], Prime +
Abort [15], Evict + Time [23, 61], alias-driven attacks [28],
and indirect Memory Management Unit (MMU)-based cache
attacks [71], where s/he constructs an eviction set and uses it
to trigger and exploit a cache contention in the same cache set
as the target addresses, thus evicting cache lines containing
the target addresses from the pertinent cache set.

The waiting interval should be selected and synchronized
such that the victim is expected to access the target address

at least once before the attacker analyzes the collected obser-
vations. By analyzing the collected observations, the attacker
determines whether the target address was indeed accessed by
the victim. This is achieved by different techniques depend-
ing on the attack approach, either the adversary measures the
overall time needed by the victim process to perform certain
computations [8, 10], or probes the cache with eviction sets
and profiles cache activity to deduce which memory addresses
were accessed [34, 38, 54, 77, 78], or accesses target memory
addresses and measures the timing of these individual ac-
cesses [29, 61]. Alternatively, the adversary can also read
values of addresses from the main memory to see whether
cache lines that contain cacheable target addresses have been
evicted to memory [28].

Cache-collision timing attacks exploit cache collisions that
the victim experiences due to its cache utilization, e.g., after
a sequence of lookups performed by a table-driven software
implementation of an encryption scheme, such as AES [10].
These attacks are out of scope in this work since they are not
common, are specific to certain software implementations,
and can only be mitigated by adapting the implementation or
locking the relevant cache lines after pre-loading them.

2.3 Limitations of Existing Defenses
To mitigate these attacks, software-based countermeasures
and modified cache architectures have been proposed in re-
cent years, which we cover in depth in the Related Work
(Section 8). These can be classified into two main paradigms:
1) applying cache partitioning to provide strict isolation, or
2) applying randomization or noise to make the attacks com-
putationally impractical. However, all proposed countermea-
sures to date either impact performance significantly, require
explicit programmer’s annotations, are not seamlessly com-
patible with existing software requirements such as the use
of shared libraries, are architecture-specific, or do not defend
against all classes of attacks. Most importantly, all existing
defenses apply their side-channel cache protection for the
entire execution workload.

In practice, cache side-channel resilience is only required
for the security-critical (usually smaller) portion of the work-
load that is allocated to execute in isolation. Thus, non-
isolated execution should not suffer any resulting performance
costs. To address this in this work, we propose a modified
hybrid cache microarchitecture that enables side-channel re-
silience only for the isolated portion of execution, while re-
taining the conventional cache behavior and performance for
the non-isolated execution.

3 Adversary Model and Assumptions

To provide side-channel-resilient cache accesses for only
security-critical isolated execution, we propose a hybrid soft
partitioning scheme for set-associative memory structures.
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In this work, we apply it to caches and call it HYBCACHE.
HYBCACHE aims to provide cache-based side-channel re-
silience to the security-critical or privacy-sensitive workload
that is allocated to one or more Isolated Execution Domains
(I-Domains), while maintaining conventional cache behavior
for non-critical execution that is allocated to the Non-Isolated
Execution Domain (NI-Domain). HYBCACHE assumes an
adversary capable of mounting the attacks described in Sec-
tion 2.2 and is designed to mitigate them.

Furthermore, the construction of HYBCACHE is based on
the following assumptions:

A1 Security-critical code that requires side-channel re-
silience is already allocated to an isolated component,
like a process or a TEE (enclave).

A recent trend in the design of complex applications, like web
browsers, is to compartmentalize them using multiple pro-
cesses. As an example, all major browsers spawn a dedicated
process for every tab [43] and some even use a dedicated pro-
cess to better isolate privileged components [58]. Similarly,
the widespread availability of TEEs, like SGX, encourages
developers to encapsulate sensitive components of their code
in protected environments.

A2 Isolated execution is the minority of the workload.

Isolation works best when the isolated component is as small
as possible, thus reducing the attack surface. This complies
with the intended usage of TEEs like SGX where only small
sensitive components of the code would be allocated to the
TEE. Hence, we assume only the minority of the workload
needs to be isolated. HYBCACHE still provides the same
security guarantees if the majority of the workload is isolated,
but the performance of the isolated execution would suffer.

A3 Sensitive code only uses writable shared memory for I/O
(if at all), and access patterns to this shared memory do
not leak any information.

Isolated code should focus on processing some local data,
while I/O needs should be limited to copying the input(s)
into the isolated component, and copying the output(s) out
of the component. Both of these procedures just access the
data sequentially; thus, the access patterns during I/O do not
depend on the data and does not leak any information.

A4 The attacker is not in the same I-Domain as the victim.

HYBCACHE is designed to isolate mutually distrusting I-
Domains and thus, we must assume the attacker and the vic-
tim are not in the same I-Domain. Note that, as a consequence
of A3, if a process handles sensitive data and has multiple
threads, they must all be in the same I-Domain, since they
share the entire address space. In cases where isolation be-
tween threads sharing the same address space is also required,
HYBCACHE can, in principle, provide intra-process isolation
as discussed later in Section 7.

4 Hybrid Cache (HYBCACHE)

We systematically analyzed existing contention-based and
access-based cache attacks in the literature (Section 2.2) to
identify their common root causes (besides the intrinsic shar-
ing of cache entries and latency difference between a cache
hit and miss). Cache side-channel attacks are, by nature, very
specific to the victim program and may exploit attack-specific
features such as the side-channel leakage of the clflush [26]
or prefetch instructions [25]. Nevertheless, each one of these
attacks is primarily caused by one or both of the following
root causes: shared memory pages (and cache lines) between
mutually distrusting code, and deterministic and fixed set-
associativity of cache structures, which enables targeted cache
set contention by pre-computed eviction sets.

4.1 Requirements Derivation

In light of the above, HYBCACHE should provide side-
channel resilience between different isolation domains with
respect to their cache utilization. An adversary process shar-
ing the cache with a victim process should not be able to
distinguish which memory locations a victim accesses. Nev-
ertheless, we emphasize that the only approach to enforce
complete non-interference between different domains is by
strict static cache partitioning, such that no cache resources
are shared, and thus zero information leakage occurs. On
the other hand, this is impractical, and results in inefficient
cache utilization from a performance standpoint. Our key
objective in this work is to practically address and accommo-
date this persistent performance/security trade-off of cache
structures by providing sufficiently strong cache side-channel-
resilience, such that practical and typical cache side-channel
attacks become effectively infeasible without necessarily en-
forcing complete non-interference. Additionally, we desire
that this security guarantee is run-time configurable, such that
it is only in effect when required.

This builds on our insight that it is neither practical nor
required to provide cache side-channel resilience for all the
code in the workload. This additional security guarantee is
only required for security-critical execution, which is a mi-
nority of the workload (Assumption A2), and usually isolated
in a Trusted Execution Environment (TEE) (Assumption A1).
Thus, we require to provide a cache architecture that provides
non-isolated execution with conventional cache utilization
(with no performance costs), and simultaneously side-channel-
resilient cache utilization (with a tolerable performance degra-
dation) only for the smaller portion of the execution workload
that is security-sensitive and isolated. We also require that
our architecture is portable, can be easily deployed, and is
backward compatible when a system does not support it. We
summarize these requirements below:
R1 Strong side-channel resilience guarantees between the

isolated and non-isolated execution domains, sufficient to
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thwart typical contention-based and access-based cache
attacks

R2 Dynamic and scalable cache isolation between multiple
different isolation domains

R3 Addressing the cache performance/security trade-off by
configuring the non-isolated/isolated workload balance
(compliant with how TEEs are intended and designed to
be used) such that the performance of the non-isolated
execution workload is not degraded

R4 Usability: backward-compatible, architecture-agnostic,
no usage restrictions and no code modifications required

Next, we present the high-level construction of HYBCACHE
in Section 4.2 and its microarchitecture in more detail in
Sections 4.3 and 4.4.

4.2 High-Level Idea
In HYBCACHE, a subset of the cache, named subcache, is re-
served to form an orthogonal isolated cache structure. Specif-
ically, nisolated cache ways within the conventional cache sets
form the subcache. While these subcache ways are available
for the NI-Domain to utilize, the I-Domains are restricted to
utilize only these subcache ways. However, the I-Domains
utilize this subcache in a fully-associative way and using
a random-replacement policy. In doing so, all mutually dis-
trusting processes executing in the I-Domains can share the
subcache without leaking information on the actual mem-
ory locations they access. Since these subcache ways are
not reserved exclusively for isolated execution and can also
be utilized by non-isolated execution with least priority, the
NI-Domain still retains unaltered cache capacity usage and
non-degraded performance.

The key purpose of HYBCACHE, unlike existing defenses,
is to selectively enable side-channel-resilient cache utilization
only for the I-Domains. Hence, only the isolated execution is
subjected to the resulting performance overhead, while still
maintaining conventional cache behavior and performance for
the NI-Domain, as outlined in Requirement R3. We describe
next the architecture of HYBCACHE and how it achieves this.

4.3 Controller Algorithm
HYBCACHE modifies how memory lines are mapped to cache
entries for the I-Domains. nisolated ways (at least a way in each
set) of the conventional set-associative cache are designated
to the orthogonal subcache. Cache lines are mapped fully-
associatively to the subcache entries and evicted and replaced
in the subcache using a random replacement policy. This
means that a given memory line can be cached in any of the
nisolated entries. This breaks the deterministic link between
memory addresses and their corresponding cache locations,
thus defeating an attacker that attempts to infer the victim’s
memory accesses by triggering and observing contention in a
particular cache set.

Figure 1 illustrates how the HYBCACHE controller man-
ages cache requests. HYBCACHE supports multi-core proces-
sors with simultaneous multithreading (SMT) and assumes
that each process is assigned an IsolationDomainID (IDID)
that identifies whether the process is in an I-Domain (and
which isolation domain) or in the NI-Domain. Any incoming
cache request is accompanied by the IDID of the issuing pro-
cess. In A , HYBCACHE controller queries the IDID of the
cache request and the request is serviced accordingly. If it is
in the NI-Domain, the complete cache is queried convention-
ally using the set index and tag bits of the requested address
to locate the cache set and line respectively ( B & C ). If a
match is found, the controller checks whether the cache line
was found in one of the subcache ways in D . Recall that
these ways are not reserved exclusively for isolated execution,
i.e., they can be used by non-isolated execution but with least
priority in case a cache set becomes over-utilized. Therefore,
if a matching cache line is found in one of these ways, the
controller checks whether it was cached by an isolated or non-
isolated process ( E ). The requesting process can only hit and
access the cache line if that line was placed by a process in
the NI-Domain. Otherwise, it is not allowed to hit on it.

Checks in the controller are implemented to occur in par-
allel, i.e., all cache hits are generated in the same number of
clock cycles (as well as cache misses), to eliminate respective
timing side channels. In case of a cache miss, the memory
block is fetched from main memory and cached in F . The
eviction and replacement are performed according to the de-
ployed policy. All ways are available for eviction, including
the subcache ways to provide the NI-Domain execution with
unaltered cache capacity. However, the usage of the subcache
ways by the I-Domains is considered while recording the re-
cency of accesses to the cache ways to make it least likely
to evict a line from one of the subcache ways if it is recently
used by an I-Domain process.

If the cache request is issued by an I-Domain process, it is
serviced by querying only the subcache ( G ). The subcache
deploys fully-associative mapping, and is thus queried by a
lookup of all the ways using the (cache line address bits -
block offset bits) as tag bits ( H ) and simultaneously query-
ing that the line belongs to an I-Domain (since these ways
may also be used by the NI-Domain) and that it was placed
by a process with the same IDID ( I ). Otherwise, a cache
miss occurs. Disallowing I-Domain processes from hitting on
cache lines originally placed by processes in other I-Domains
provides dynamic isolation between an unlimited number of
mutually distrusting processes that share memory. In case of
a miss, any of the subcache ways is randomly selected and
its cache line is evicted and replaced by the memory block
fetched from main memory ( J ). The random replacement
policy considers all subcache ways equally, even those occu-
pied by the NI-Domain cache lines.
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FIGURE 1: HYBCACHE controller policy

4.4 Hardware Microarchitecture

Figure 2 shows how HYBCACHE could be applied for a con-
ventional cache hierarchy of a multi-core processor. The cache
capacity available for the NI-Domain execution is unaltered,
i.e., the conventional set-associative cache with all its sets and
ways can be utilized by the NI-Domain.

At each cache level, way-based partitioning is used to re-
serve at least a way in each set (gray ways in Figure 2). These
ways, combined, form the orthogonal subcache that the I-
Domain execution is restricted to use. However, these sub-
cache ways are not used exclusively by the I-Domain execu-
tion, i.e., the NI-Domain execution may use these ways in
case a corresponding set is fully utilized and the least-recently-
used (LRU) replacement algorithm requires to evict a cache
line from a subcache way in this set. This ensures that the NI-
Domain execution is provided with unaltered cache capacity
and does not suffer performance degradation.

The subcache is fully-associative and deploys random re-
placement policy, i.e., a given memory block is always equally
likely to be cached in any of the available ways. This breaks
set-associativity and provides randomization-based dynamic
isolation between different I-Domains while allowing flexible
sharing of the subcache depending on the run-time utilization
requirements of the isolated execution domains. Using the
subcache fully-associatively further maximizes the utilization
of its limited hardwired capacity.
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FIGURE 2: HYBCACHE hierarchy and organization

The nisolated ways that form the subcache are configured
(hardwired) at design-time and cannot change at run-time,
because these ways are members of both the primary cache as
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well as the subcache as shown in Figure 3. It is not feasible to
make nisolated run-time configurable, as this would require that
all the ways are unreasonably wired in both a fully-associative
and set-associative organization. Thus, only a small subset
of nisolated ways (dark gray ways in Figure 3) is selected to
form the subcache. Each of the subcache ways is augmented
with IsolationDomainID (IDID) configuration bits to iden-
tify the isolation domain that placed an occupying cache line
in the pertinent way. To provide any cache isolation at the
microarchitectural level, a mechanism to bind owners/tags to
cache lines is required, thus IDIDs are needed. We chose to
configure 4 bits for the IDID, thus supporting 16 concurrent
isolation domains, where an all-zero indicates the NI-Domain.
The number of bits allocated in HYBCACHE for IDID is a
hardware design decision. Increasing the number of desig-
nated bits would increase the number of maximum concurrent
isolation domains that HYBCACHE can support. However,
other metrics such as area overhead and power consumption
come into play in this design trade-off.
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26/33/40

line-IDID
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Extended Tag

FIGURE 3: HYBCACHE hardware microarchitecture

The subcache ways are augmented with an extended tag
bits storage (dashed dark gray tag bits of the dark gray ways
in Figure 3). When queried fully-associatively (for the I-
Domains), all bits, except the offset bits (6 bits for byte-
addressable 64B cache line), of the requested address are
compared with the extended tag bits of the subcache ways
to locate a matching cache line. For the NI-Domain, the sub-
cache ways are queried set-associatively with the rest of the
cache (conventionally), where the request tag bits are com-
pared only with the non-extended tag bits of the subcache
ways within the located cache set.

4.5 Software Configuration
Abstraction and Transparency. The hardware modifica-
tions required for HYBCACHE are transparent to the software
and abstracted from it. The trusted software (or hardware)
component of the incorporating platform is only required to
interface with the HYBCACHE controller to communicate the
isolation domain of each incoming cache request. However,
HYBCACHE does not stipulate or restrict how these isolation
domains are defined and communicated, thus leaving it to the
discretion of the system designer to identify how HYBCACHE
can be integrated with the comprising architecture.

Isolated Execution. HYBCACHE enables the dynamic iso-
lation of the cache utilization of different isolation domains
by using the IDID of the process that issues the cache request
being serviced. The means by which the isolation domains
are defined, generated, and communicated is dependent on
how the trusted execution and isolation is deployed. We de-
sign HYBCACHE such that it is seamlessly compliant with
any trusted execution environment (TEE) where isolation do-
mains (across different processes, cores, containers, or virtual
machines (VMs)) are either software-defined by a trusted OS
(thus requiring kernel support) or hardware/firmware-defined
in case the OS is not trusted (such as in SGX). Different isola-
tion domains can be defined across different isolated address
space ranges such as in SGX enclaves, across processes such
as in TrustZone normal/secure worlds or by standard inter-
process isolation, or even across different groups of processes
or different virtual machines.

HYBCACHE is agnostic to the means of defining the IDIDs
of different isolation domains, and complements any form
of isolated execution environment in place to provide it with
cache side-channel resilience. If the kernel is trusted, kernel
support is required to assign an IDID (or an all-zero IDID for
a non-isolated process) to each process according to its isola-
tion domain. The IDID bits can be added as an additional pro-
cess attribute in each process’s process control block (PCB).
Otherwise, the trusted hardware or firmware would assign the
isolation domains. HYBCACHE assumes that some mecha-
nism of isolation is already enforced for security-critical code
that it can leverage to provide the cache-level isolation. We
argue why this is reasonable in Assumption A1. Neverthe-
less, if this is not the case, then isolation domains need to
be explicitly defined by the developer if s/he wishes to pro-
tect particular code against cache-based side-channel attacks.
While HYBCACHE is focused on protecting user code, in prin-
ciple, kernel code can also be protected by allocating it to an
isolation domain.

Backward Compatibility. Similar to processor supplemen-
tary capabilities such as Page Attribute Tables (PATs) and
Memory Type Range Register (MTRR) for x86, HYBCACHE
supports providing side-channel-resilience on-demand while
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retaining backward compatibility. HYBCACHE only effec-
tively provides side-channel resilience for the cache utilization
of execution when processes are assigned different IDIDs that
are communicated with each cache request. Otherwise, from
a software perspective, HYBCACHE is identical to a conven-
tional cache architecture. If no isolation domains are assigned
to the different processes by the trusted kernel or trusted hard-
ware, HYBCACHE is designed to assign an all-zero IDID by
default to incoming cache requests and all execution is treated
as non-isolated (see Figure 1) with cache-based side-channel
resilience disabled. Only when kernel support is provided
(or trusted hardware or firmware in case of SGX) does HY-
BCACHE behave differently for different isolation domains
and provides its side-channel resilience capability.

Shared Memory Support. HYBCACHE supports, by de-
sign, that different isolation domains can share read-only
memory, usually in the form of shared code libraries, without
sharing the corresponding cache lines. This results in having
multiple copies of the shared memory kept in cache (multiple
cache entries), enforcing that cache entries are not shared be-
tween mutually distrusting code. Data coherence is also not a
problem, in this case, since this is read-only memory. We elab-
orate in Section 5 how this effectively mitigates access-based
side-channel attacks.

Conventional access to shared writable memory, on the
other hand, between different isolation domains is disallowed
by design in HYBCACHE, as this makes the victim pro-
cess vulnerable to access-based attacks and would under-
mine cache coherence. In order to provide input and output
functionality to isolated code, HYBCACHE provides special
I/O move instructions. These allow code in an I-Domain to
transfer data between a CPU register and a memory region
(assigned an all-zero IDID when cached) that is designated
exclusively for shared memory between processes belonging
to different I-Domains. These special instructions are meant
to be used to transfer data between domains only through this
designated memory. In practice, we expect them to be used
only in frameworks like the SGX SDK or a trusted kernel. If
code in an I-Domain incorrectly accesses this memory region
using regular instructions, or accesses its own memory using
these special instructions, this could be disallowed, i.e., de-
tected and blocked by the hardware or microcode, e.g., the
MMU. This prevents inserting duplicated writable cache en-
tries which can disrupt cache coherency, while ensuring that
HYBCACHE’s security guarantees still apply to any access
performed using regular instructions.

5 Security Analysis

In the following, we evaluate the effectiveness of HYBCACHE
with respect to the security requirements we outlined in Sec-
tion 4.1. We show that HYBCACHE achieves these security

guarantees by mitigating the following leakages:

S1 Malicious software running in an I-Domain or NI-Domain
cannot flush or perform a cache hit on a cache line belong-
ing to a different I-Domain.

S2 Malicious software running in an I-Domain or NI-Domain
cannot pre-compute and construct an eviction set that
selectively evicts a non-trivial subset of the cache lines
belonging to a different I-Domain. Moreover, the set of
the attacker’s cache lines which can be evicted by the
victim’s lines does not depend on the addresses accessed
by the victim.

S3 Cache hits generated by software in an I-Domain cannot
be observed by software running in a different I-Domain
or NI-Domain. Cache misses generated by software in
an I-Domain can still be indirectly observed by mali-
cious software running in a different I-Domain or NI-
Domain, but the malicious software learns no information
(e.g., memory address) about the access besides whether
a cache miss has occurred.

5.1 S1: Absence of Direct Access to Cache
Lines

Access-based attacks, like Flush + Reload [29, 78], Flush +
Flush [26], Invalidate + Transfer [35], Flush + Prefetch [25],
and Evict + Reload [27], require the attacker to have direct
access to the victim’s cache lines, normally as a result of
shared memory between processes (e.g., shared libraries).
As an example, Flush + Reload works by flushing shared
cache lines and monitoring which lines the victim accesses
and brings back into the cache. HYBCACHE mitigates this
class of attacks by preventing shared cache lines between the
attacker and victim, as we explain in the following.

Shared Read-Only Memory. Read-only memory is shared
between different processes in case of shared code libraries.
HYBCACHE provides support for shared read-only memory
(Section 4.5), while fundamentally disallowing that any cache
line is shared across different I-Domains. Execution within
one domain can only access cache lines brought into the cache
by the same domain. Separate (potentially duplicate) cache
lines are maintained for each domain; flushing and reloading
cache lines only impacts those owned by the attacker’s do-
main and cannot influence any other I-Domain or leak any
information on its cache lines. Having duplicate cache lines
for read-only memory pages does not disturb cache coherency
because it is read-only.

Shared Writable Memory. Shared writable memory be-
tween mutually distrusting domains is disallowed by design
with HYBCACHE. Code in an I-Domain can only exchange
data with another isolation domain through the special I/O
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move instructions, which transfer data between the CPU reg-
isters and memory in the NI-Domain that is designated for
shared communication (see Section 4.5). Incorrect usage of
those instructions or incorrect access to this designated mem-
ory region could be detected and blocked by the MMU to
prevent potential cache coherency disruption due to dupli-
cate writable cache entries. However, HYBCACHE still en-
forces that every cache line only belongs to one domain. Since
cache lines always belong to one specific I-Domain or the
NI-Domain, code in a domain cannot flush or perform a cache
hit on a different domain’s cache lines (S1), and attacks that
rely on those capabilities are thus impossible.

5.2 S2: Impossibility of Pre-Computed Evic-
tion Set Construction

Without direct access to the victim’s cache lines, attackers
resort to contention-based attacks, like Prime + Probe [34, 38,
54, 61, 77], Prime + Abort [15], and Evict + Time [23, 61].
In these attacks, the attacker pre-computes and constructs an
eviction set which ensures eviction of a specific subset of the
victim’s cache lines, e.g., lines that belong to a specific set in
a set-associative cache. The attacker process first accesses the
whole eviction set, thus ensuring the victim’s cache lines are
evicted. After a waiting interval, it then checks if its whole
eviction set is still in cache by timing its own memory ac-
cesses to this set, thus detecting if the victim accessed any of
the cache lines of interest. For a conventional set-associative
cache, this is possible because of a fixed set-indexing, which
can be directly determined from the target address of interest.

HYBCACHE protects I-Domains from such attacks by dis-
abling the set-associativity of the reserved subcache entries
when they are used by isolated execution: when a memory ad-
dress is accessed by the isolated victim process, the cache line
will be stored in any entry chosen randomly from the whole
subcache and not from a specific set. The random replacement
policy for isolated execution ensures that any of the subcache
entries is chosen using a discrete uniform distribution, i.e.,
with an equal and independent probability every time, so the
attacker has no means of identifying deterministically and
reproducibly which cache set (or entry) will be used to cache
a particular memory access of the victim. In order to ensure
that a specific cache line of the victim is evicted, the attacker
can only evict all lines in the subcache, but s/he cannot se-
lectively evict a non-trivial subset of the victim’s cache lines.
Moreover, the set of the attacker’s cache lines which can be
evicted by the victim’s lines does not depend on the addresses
accessed by the victim (S2). As a consequence, attacks that
rely on these capabilities are no longer possible. This holds
whether the attacker process is running in an I-Domain or
NI-Domain, as long as the victim process is in an I-Domain
(Requirements R1 and R2).

5.3 S3: Observable Cache Events

Software running in an I-Domain can only hit on cache lines
belonging to the same I-Domain. These cache hits generate
no changes to the cache state, thus, they are unobservable by
an attacker in a different I-Domain or in the NI-Domain.

Cache misses generated by software in an I-Domain evict a
random cache line, which may belong to a different I-Domain
or the NI-Domain. Malicious attacker code can then periodi-
cally observe how many of its lines are evicted and infer the
number of cache misses the victim process is experiencing.
The attacker can further use this information to infer the size
of the victim’s working set, i.e., the number of cache lines in
the subcache currently belonging to the victim.

This cache occupancy channel is the only side-channel
leakage that is not mitigated by the HYBCACHE construc-
tion, which is inherently available in any cache architecture
where the attacker and the victim processes compete for en-
tries in shared cache resources. It can only be effectively
blocked by strict cache partitioning, which we deliberately
do not provide in the HYBCACHE construction. This allows
different isolation domains to still compete for cache entries,
thus preserving maximum and dynamic cache utilization and
unaffected performance for non-isolated execution, as our per-
formance evaluation shows in Section 6.1. Note that, due to
S2, the information inferred by the attacker from observing
this remaining leakage, is effectively reduced to only knowing
the working set size at any point in time.

Leveraging this side channel to infer further information
and mount an attack in typical settings is not trivial. The vic-
tim may evict its own lines when it experiences cache misses
due to the random replacement policy. This would not effect
a difference in the cache state for the attacker, which compli-
cates the attacker’s bookkeeping. Moreover, observations are
severely hindered when any other software is concurrently
running besides the attacker and the victim processes. Finally,
standard software hardening techniques can be applied to
mitigate attacks to code implementations that are particularly
sensitive to this attack. Furthermore, exploiting this side chan-
nel to leak data has not been shown in practice. A recent
attack [67] leverages the cache occupancy side channel to
infer which website is open in a different browser tab (under
the strong assumption that no other tabs are open); however,
it does not leak any user data. Cache activity masking is
suggested as one of the countermeasures to the attack. Imple-
menting cache activity masking for HYBCACHE is feasible
and independent of our cache architecture.

Since the attacker aims to maximize its information and
cannot observe cache hits, s/he can attempt to evict all sub-
cache entries in order to maximize the number of misses expe-
rienced by the victim. As we discuss later, evicting the whole
subcache takes time for an attacker in either the NI-Domain
or in a I-Domain. An unprivileged attacker is unable to pause
the victim’s execution; thus, the attacker can only measure the

460    29th USENIX Security Symposium USENIX Association

120



cache usage with limited granularity. However, a privileged
adversary, like a malicious OS in the case of an SGX enclave,
can stop and restart the victim arbitrarily and leverage tools
like SGX-Step [12] to observe the victim’s cache usage with
fine granularity. HYBCACHE does not mitigate such an attack
by construction. However, mitigating it is only possible by
strict cache partitioning and the resulting performance costs.
We emphasize that we make an intentional design decision
in HYBCACHE to allow isolation domains to dynamically
compete for cache entries for maximum cache utilization and
unaffected performance for non-isolated execution. A HYB-
CACHE construction that dynamically allocates a dedicated
subcache for each isolation domain would block this leakage
and mitigate attacks that rely on it.

Non-isolated Attacker Process. If the attacker process is
in the NI-Domain, in order to guarantee eviction of the whole
subcache it must fill up all ways in every cache set, includ-
ing the subcache ways. Therefore, the attacker process must
construct an eviction set that is as large as the entire cache
capacity. A typical data L1 cache holds 512 cache entries.
In our experiments, probing (accessing and measuring ac-
cess latencies) of 512 cache lines takes approximately 30 000
CPU cycles, i.e., a little over 8 µs.2 For larger caches, such
as the LLC, it is not even feasible to mount Prime+Probe
attacks by probing the entire cache. The adversary is required
to pinpoint a few cache sets that correspond to the relevant
security-critical accesses made by the victim and monitor
these only [54].

Isolated Attacker Process. If the adversary is in a differ-
ent I-Domain than the victim process, it still cannot control
cache eviction of particular target addresses specifically. Both
attacker and victim processes are isolated and can only use
the subcache ways. Thus, an adversary aiming to perform
controlled eviction can only try to evict the entire subcache.
Because the subcache is fully-associative with random re-
placement, evicting the entire subcache requires an eviction
set much larger than the subcache capacity. We argue below
that this is not easier than probing the entire L1 cache (in
case the attacker is non-isolated), for instance, even though
the subcache is significantly smaller. Moreover, it can be only
guaranteed up to a certain level of probabilistic confidence.
This can be represented statistically by the coupon collector’s
problem, where coupons are represented by entries in the sub-
cache. Let Naccesses be the total number of accesses needed
to evict all the subcache entries n and ni be the number of
accesses needed to evict the i-th way after i-1 ways have been
evicted. Both Naccesses and ni are discrete random variables.
The probability of evicting a new way becomes (n−(i−1))

n . The

2We ran this experiment on an Intel i7-4790 CPU clocked at 3.60 GHz.

expected value and variance of Naccesses are

E(Naccesses) = n ·Hn V(Naccesses)≈
π2

6
·n2

Hn denotes the nth harmonic number. For n = 128 subcache
entries, an average of 695 memory accesses (each mapping
to a different 64B cache line) is needed to evict the subcache
with a variance of ≈ 26 951. This is comparably more than
the 512 accesses required to probe the entire typical L1 cache
if the attacker process is not isolated (see above). Moreover,
with such a large variance, significant variations in the number
of Naccesses required are expected from the mean E(Naccesses)
every time this eviction process is repeated.

6 Evaluation

Cache Size Associativity Sets

L1 64 KB 8-way associative 128
L2 256 KB 8-way associative 512
L3 4 MB 16-way associative 4096

TABLE 1: Cache hierarchy used in our evaluation

Mix Components

pov+mcf povray, mcf
lib+sje libquantum, sjeng
gob+mcf gobmk, mcf
ast+pov astar, povray
h26+gob h264ref, gobmk
bzi+sje bzip2, sjeng
h26+per h264ref, perlbench
cal+gob calculix, gobmk

pov+mcf+h26+gob povray, mcf, h264ref, gobmk
lib+sje+gob+mcf libquantum, sjeng, gobmk, mcf

TABLE 2: Benchmark mixes used in our evaluation

HYBCACHE is architecture-agnostic and applicable to x86,
ARM or RISC-V. We performed our performance evaluation
of HYBCACHE on a gem5-based [9] x86 emulator. We evalu-
ated the hardware overhead for an RTL implementation that
we implemented to extend an open-source RISC-V processor
Ariane [62]. For our prototyping, we applied HYBCACHE to
L1, L2, and LLC. We describe our evaluation results next.

6.1 Performance Evaluation
To evaluate HYBCACHE, we chose eight mixes of programs
from the SPEC CPU2006 benchmark suite, which are used in
the literature3 [36, 76], shown in the upper part of Table 2.

3 [76] also uses a ninth mix, dea+pov, which fails to run on gem5.
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Two-Process Mixes. In order to evaluate the impact of iso-
lating one process in the context of an SMT processor, we
configure gem5 to simulate two processors connected to a sin-
gle three-level cache hierarchy, whose parameters are shown
in Table 1. The caches have the latencies used in [76].

For each mix, we first isolate one process, then the other,
and we compare the performance of those processes to a third
run in which neither process is isolated. We make either 2 or
3 of ways per set usable by the isolated execution processes.
The replacement policy for non-isolated processes is LRU.
Like in [76], we let gem5 simulate the first 10 billion instruc-
tions of each process in order to let the process initialize,
then we measure the performance of one additional billion
instructions. We measure the performance overhead as the
relative change in the instructions-per-cycle (IPC), i.e., the
ratio between instructions executed and CPU cycles required.
A positive overhead represents a decrease in performance.

Figure 4 reports the IPC overhead of each program when
running in isolation mode, while the other member of the mix
runs in normal mode, for 2 or 3 isolated ways. The geometric
mean of the positive overheads is 4.95% with 2 isolated ways
and 3.47% with 3 isolated ways, with maximum overheads
of 16% and 14% respectively for the cal+gob mix. For this
mix, the overhead is due to a significantly increased L3 cache
miss rate: the data miss rate jumps from 0.6% to 17.6%,
while the instruction miss rate increases from 2.1% to 9.0%.
The working set of calculix normally fits in L3 [36] but it
does not in the subcache, hence the higher overhead. Since
HYBCACHE is meant to protect only sensitive applications,
which can be expected to be short-lived and only constitute
a minority of the workload of a system, we consider those
overheads easily tolerable. Figure 5 reports the IPC overhead
for the member of the mix that is not isolated. In all cases the
IPC overhead is not positive, i.e., the IPC is equal or better
than the baseline, thus showing that HYBCACHE does not
degrade the performance of non-isolated processes.

Four-Process Mixes. To demonstrate scalability, we also
ran four-process mixes, shown in the bottom part of Table 2.
We configured gem5 with four cores; two cores share an L1
and L2 cache, the other two cores share one additional L1
and L2, while L3 is shared by all cores. Isolated execution
can use two ways per set. We isolated each member of the
two mixes (the first eight bars in Figure 6), while the other
three processes were running normally. Each isolated process
has an overhead similar to that reported in the two-process
mix experiments in Figure 4. Moreover, we also isolated two
processes in each mix (last two columns in Figure 6). In this
case, we measured increased overheads by up to 2 additional
percentage points due to the additional competition for the
subcache. However, those overheads are still easily tolerable
given the security benefits and that they are only incurred by
the isolated execution.
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FIGURE 4: IPC overhead of each isolated process when 2 or
3 ways are available to isolated execution. Each pair of bars
refers to a specific 2-process mix: the uppercase benchmark
is isolated and the other is not.
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nisolated NAND2X1 Gates Memory Overhead (Kb)

32 6114 0.34
64 12219 0.68

128 24563 1.3
256 48796 2.75
512 97830 5.5
1024 201792 11
2048 458300 22

TABLE 3: Logic and memory overhead estimates for fully-
associative lookup of 46-bit addresses for different numbers
of isolated cache ways (in any cache level).

6.2 Hardware and Memory Overhead
HYBCACHE requires additional hardware and memory for
the fully-associative lookup of the subcache entries. We im-
plemented the RTL for HYBCACHE and evaluated it for the
hardware overhead for different number of isolated cache
ways as shown in Table 3, irrespective of which cache levels
this is applied to. While the overhead of the additional hard-
ware is non-negligible, it is reasonable for a fully-associative
cache lookup. Nevertheless, it diminishes in perspective with
an 8-core Xeon Nehalem [1] of 2,300,000,000 transistors, for
example. The logic overhead of HYBCACHE for 2048 fully-
associative ways lookup is estimated at 1,833,200 transistors
(NAND2X1 count× 4) which is 0.07% overhead to the Xeon
Nehalem. For an 8-way 128-set cache, the memory overhead
in our PoC for fully-associative mapping is 7 additional tag
bits + 4 IDID bits per cache way. With respect to access la-
tencies, the exact timing latency of lookups will eventually
depend on the circuit routing but, in principle, for a paral-
lel content-addressable memory lookup (as in our hardware
PoC), accesses are performed in 2 clock cycles.

7 Discussion

Design and Implementation Aspects. HYBCACHE relies
on a random-replacement cache policy combined with full-
associativity to provide its dynamic isolation guarantees. The
implementation of the random replacement policy is dele-
gated to the hardware designer and considered an orthogonal
problem. Cryptographically-secure pseudo-random number
generators (CSPRNG) or even true hardware random number
generators can be used and the seed can be changed as often
as required. The output of the CSPRNG cannot be predicted
if it is seeded with secret randomness at the start of every pro-
cess. When the seed is changed, re-keying management tasks
such as cache flushing and invalidation for the re-mapping
are not required, unlike in recent architectures [63, 74]. This
is because in HYBCACHE the randomness is only used for
selection of the victim cache line, and not for locating exist-
ing cache lines in the subcache. Furthermore, we emphasize

that CSPRNG design and implementations are an orthogonal
problem to our work.

The "soft" cache partitioning of HYBCACHE is a generic
concept and can be applied, in principle, to any set-associative
structure. In this work, we apply it to the L1, L2, and L3
(LLC) caches, but it can also be applied selectively to only
some of these cache levels or to the TLB as well, or to only
some cache levels in only one or more cores in a multi-core
architecture that become dedicated for allocating isolated ex-
ecution. The choice of which cache structures to apply this to
and how many ways to isolate in the subcache is delegated
to the hardware designer, given that it is a more complex de-
sign decision with other metrics and trade-offs that come into
play such as the size of the structure, power consumption,
and logic overhead. The power consumption and timing over-
heads associated with building and routing a fully-associative
cache lookup in VLSI are significant, but can be alleviated
by leveraging emerging hybrid memory technologies such as
DRAM-based caches [48] and STT-MRAM caches [30, 31].
In practice, applying HYBCACHE to the LLC or larger caches
in general would be more expensive (in terms of hardware)
than L1 and L2 caches, and strict partitioning might be ap-
plied instead for the LLC. Nevertheless, HYBCACHE can
be, in principle, applied to sliced Intel LLCs. In each slice,
a number of cache ways (subcache) is reserved for isolated
execution. Any mapping from the IDID to the LLC slices
can be used, such that lines from a particular IDID are allo-
cated to a specific slice. Fully-associative lookups are thus
only be performed on the subcache portion of a single slice,
thus reducing the performance overheads and allowing scal-
ing to high-core-count processors. The slice-mapping would
be based only on the IDID, and thus it would not leak any
information about the data address or value.

Other design decisions in HYBCACHE include the number
of bits designated for IDID and thus the maximum number of
concurrent isolation domains supported (see Section 4.4). To
support more isolation domains (not concurrently) than the
hardwired maximum, the cache lines of one domain can be
flushed by the kernel or microcode at context switching while
the next domain is switched in and is re-assigned the available
IDID. Nevertheless, supporting too many isolation domains
will result in increased cache utilization, and the overall per-
formance will suffer. This is in line with conventional cache
behavior, but is aggravated in HYBCACHE because isolated
execution is only allowed to utilize the subcache portion.
However, this violates our working assumption A2 that only
the minority of the workload requires cache-level isolation.

We emphasize that cache-based side-channel leakage di-
rectly results from the design of the cache microarchitecture
and, thus, it is reasonable to investigate the fundamental mi-
croarchitectural designs of caches for upcoming processor
designs. While this does not address the problem for legacy
systems, it provides an exploratory ground of ideas for upcom-
ing processor designs. HYBCACHE is architecture-agnostic
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and can be integrated with any processor architecture (we
simulated it for x86 and implemented it for RISC-V). It is
also compliant with any set-associative cache architecture in-
dependent of its hierarchy and organization, and whether it is
virtually or physically indexed since no indexing is involved.

Intra-Process Isolation Support. HYBCACHE can also
be extended, in principle, to provide fine-grained run-time
configuration of the isolation domain within a process, e.g.,
between different threads within the same process. Besides
kernel support, this requires an instruction extension to en-
able isolation of particular code regions or threads to different
IDIDs or disable isolation altogether at run-time (reset its
run-time IDID to all-zero). However, this requires the devel-
oper to identify and annotate security-sensitive code regions.
Nevertheless, this is useful in practice since a process might
not require cache-based side-channel resilience for its entirety
but only for sensitive code such as cryptographic computa-
tions. This is a more generalizable approach that is easier and
more directly applicable than implementing leakage-resilient
variants for security/privacy-sensitive computations.

Deployment Assumptions. HYBCACHE assumes any
TEE or trusted computing environment that is leveraged in
compliance with their original design intent, i.e., that the
much larger portion of the execution workload is not security-
critical and only a smaller portion is security-critical and
isolated in an I-Domain (A2). Otherwise, if the workload
is equally balanced, the isolated execution subset would be
restricted to a smaller partition of the cache and would in-
cur a more than tolerable performance degradation especially
if it is cache-sensitive. For HYBCACHE to be optimally ad-
vantageous, the workload distribution and allocation must be
performed by the administrator such that the right balance of
overall security and performance is achieved, as shown by the
performance results in Section 6.1.

8 Related Work

We describe next the state of the art in existing defenses and
their shortcomings that HYBCACHE overcomes.

8.1 Partitioning
Cache partitioning allocates to each process or security do-
main a separate partition of the cache, hence guaranteeing
strict non-interference. Both software-based [20, 40, 51, 82]
and hardware-based [24,41,72,73] partitioning schemes have
been proposed in recent years, where partitioning is either
process-based or region-based.

Process-based partitioning. Godfrey [20] implements
process-based cache partitioning using page coloring on Xen,
which incurs a prohibitive performance overhead with increas-
ing number of processes. SecDCP [72] is a way-partitioning
scheme where each application is assigned a security class
and cache partitioning between the security classes is dynam-

ically managed according to the cache demand of non-secure
applications. SecDCP is not scalable; selective cache flushing
and repartitioning is required if the number of security classes
exceeds that of allocated partitions and it may perform worse
than static partitioning. Furthermore, both schemes do not
support the use of shared libraries. CacheBar [82] periodically
configures the maximum number of ways allocated to each
process which unfairly impacts performance and cache uti-
lization, and does not scale well with the number of security
domains. DAWG [41] partitions the caches where different
processes are assigned to different protection domains isolat-
ing cache hits and misses. The aforementioned schemes incur
the performance overhead for the entire code, whereas HYB-
CACHE only enables side-channel resilience and the resulting
performance overhead only for the isolated execution.

Sanctum [14] protects TEEs by flushing private caches
whenever the processor switches between enclave mode and
normal mode and partitioning of the LLC and assigning to
each enclave a static number of sets. Sets allocated to an
enclave can be used exclusively by the enclave and cannot be
utilized by the OS. On the contrary, HYBCACHE allows for
a flexible and dynamic sharing of cache resources between
processes (thus improving performance), while preserving
cache side-channel resilience for isolated execution.

Many cache partitioning and allocation schemes [37, 55,
64, 65, 75] have been proposed that focus on cache alloca-
tion mechanisms aiming to improve performance for multi-
core caches. However, such schemes do not provide security
guarantees. HYBCACHE addresses the security/performance
trade-off by providing a configurable means to enable the side-
channel resilience only for isolated execution while providing
non-isolated execution with unaltered performance.

Region-based partitioning. These approaches split the
cache into a secure partition reserved for security/privacy-
critical memory pages and a non-secure partition for the
remaining memory pages. STEALTHMEM [40] uses page
coloring where several pages are colored and reserved for
security-sensitive data and they remain locked in cache. CAT-
alyst [51] leverages Intel’s CAT (Cache Allocation Technol-
ogy) [3] to divide the cache into secure and non-secure par-
titions and uses page coloring within the secure partition to
isolate different processes’ cache accesses to these pages.
PLcache [73] locks cache lines and allocates them exclusively
to particular processes such that the cache line can only be
evicted by its process. However, overall performance and
fairness of cache utilization are strongly impacted as the pro-
tected memory size increases in relevance to the total cache
capacity. Moreover, with PLcache an attacker process may
still infer the victim’s memory accesses by observing that it
is unable to access or evict cache lines (locked by a victim
process) from a particular cache set.

Cloak [24] uses hardware transactional memory, such as In-
tel TSX [2], to protect sensitive computations by pre-loading
the security-critical code and data into the cache at the begin-
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ning of the transaction and any cache line evictions are de-
tected by the transaction aborting. Cloak incurs prohibitively
high performance overhead for memory-intense computations
and requires the developer’s strong involvement to identify
and instrument security-sensitive code and split it into sev-
eral transactions. Recent works have also explored the LLC
inclusion property for defense schemes such as RIC [39] and
SHARP [76]. However, both are architecture-specific, RIC
requires coherence protocol modifications and cache flushing
on thread migration, while SHARP requires modifications to
the clflush instruction. HYBCACHE, however, is architecture-
agnostic, and does not require cache flushing or modifications
to coherence protocols or the clflush instruction.

8.2 Randomization

Introducing randomization involves introducing noise or de-
liberate slowdown to the system clock to hinder the accuracy
of timing measurements as in FuzzyTime [32] and Time-
Warp [57]. These techniques can only defeat attacks which
rely on measuring access latency, but cannot prevent other
attacks such as alias-driven attacks [28]. They compromise
the precision of the clock for the remaining workload, thus
affecting functionality requirements.

RPCache [73] randomizes the mapping of all memory lines
of a protected application at a per-set granularity from their
actual cache set to a randomly mapped cache set, by using a
permutation table. NewCache [53] randomizes the mapping at
a per-line granularity using a Random Mapping Table. Both
RPCache and NewCache schemes do not scale well with
the number of lines in the cache (not applicable for larger
LLCs) and the number of protected domains. Random Fill
Cache [52] mitigates only reuse-based cache collision attacks
by replacing deterministic fetching with randomly filling the
cache within a configurable neighborhood window whose
size impacts the performance degradation incurred. It does
not scale well with an increasing TEE size.

Time-Secure Cache [69] uses a set-associative cache in-
dexed with a keyed function using the cache line address and
Process ID as its input. However, a weak low-entropy index-
ing function is used, thus re-keying is frequently required
followed by cache flushing which requires complex manage-
ment and impacts performance. CEASER [63] also uses a
keyed indexing function but without the Process ID, thus also
requiring frequent re-keying of its index derivation function
and re-mapping to limit the time interval for an attack. A con-
current work, ScatterCache [74], uses keyed cryptographic
indexing that depends on the security domain, where cache
set indexing is different and pseudo-random for every domain
but consistent for any given key. Thus, re-keying may still
be required at time intervals to hinder the profiling and ex-
ploitation efforts of an adversary attempting to construct and
use an eviction set to collide with the victim access of inter-
est. HYBCACHE, on the other hand, leverages randomization

by disabling set-associativity altogether and using random
replacement for isolated execution. Every given memory ad-
dress can be cached in any of the available subcache ways and
placement is random and unpredictable; it varies randomly
every time the same memory line is brought in cache.

9 Conclusion

In this paper, we proposed a generic mechanism for flexi-
ble and "soft" partitioning of set-associative memory struc-
tures and applied it to multi-core caches, which we call HY-
BCACHE. HYBCACHE effectively thwarts contention-based
and access-based cache attacks by selectively applying side-
channel-resilient cache behavior only for code in isolated
execution domains (e.g., TEEs). Meanwhile, non-isolated ex-
ecution continues to utilize unaltered and conventional cache
behavior, capacity and performance. This addresses the persis-
tent performance/security trade-off with caches by providing
the additional side-channel resilience guarantee, and the re-
sulting performance degradation, only for the security-critical
execution subset of the workload (usually isolated in a TEE)
by eliminating the fundamental causes of these attacks. We
evaluated HYBCACHE with the SPEC CPU2006 benchmark
and show a performance overhead of up to 5% for isolated
execution and no overhead for the non-isolated execution.
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Abstract— Shared cache resources in multi-core processors
are vulnerable to cache side-channel attacks. Recently proposed
defenses such as randomized mapping of addresses to cache
lines or well-known cache partitioning have their own caveats:
Randomization-based defenses have been shown vulnerable to
newer attack algorithms besides relying on weak cryptographic
primitives. They do not fundamentally address the root cause for
cache side-channel attacks, namely, mutually distrusting codes
sharing cache resources. Cache partitioning defenses provide
the strict resource partitioning required to effectively block all
side-channel threats. However, they usually rely on way-based
partitioning which is not fine-grained and cannot scale to support
a larger number of protection domains, e.g., in trusted execution
environment (TEE) security architectures, besides degrading
performance and often resulting in cache underutilization.

To overcome the shortcomings of both approaches, we present
a novel and flexible set-associative cache partitioning design
for TEE architectures, called CHUNKED-CACHE. The core idea
of CHUNKED-CACHE is to enable an execution context to
“carve” out an exclusive configurable chunk of the cache if
the execution requires side-channel resilience. If side-channel
resilience is not required, mainstream cache resources can be
freely utilized. Hence, our solution CHUNKED-CACHE addresses
the security-performance trade-off practically and optimally by
enabling efficient selective and on-demand utilization of side-
channel resilience caches, while providing well-grounded future-
proof security guarantees. We show that CHUNKED-CACHE
provides side-channel-resilient cache utilization for sensitive code
execution, with minimum hardware overhead, while incurring
no performance overhead on the OS. We also show that it
outperforms conventional way-based cache partitioning by 43%,
while scaling significantly better to support a larger number of
protection domains.

I. INTRODUCTION

The outbreak of micro-architectural attacks has demon-
strated the crucial implications of performance-boosting pro-
cessor optimizations on the security of our computing plat-
forms [55], [1], [61], [57], [53], [66], [100], [32], [29], [28],
[59], [4], [3], [88], [69], [90], [92], [16], [17], [83], [15]. One
of the most popular features, and also the subject of many
recent attacks, are shared resources such as caches. Caches
provide orders-of-magnitude faster memory accesses and large
last-level-caches (LLCs) are usually shared across multiple
processor cores to maximize utilization.

The Problem with Caches. When a sensitive (victim)
and malicious (adversary) application run simultaneously on
different cores and share the LLC, cache side channels can
be exploited by the adversary to leak sensitive information,
such as private keys. The timing difference between a cache
hit and miss – which is why caches are used in the first place
– is the most commonly exploited side channel to infer the

memory access patterns of a victim application [39], [99], [36],
[45], [35], [44], [47], [65], [33], [72], [37], [38], [98], [91].
In typical side-channel attacks [72], [44], [47], [65], [39], [99]
the adversary deduces the victim’s memory access patterns
by exploiting that both the victim and adversary compete for
shared set-associative cache resources, which are designed in
such a way that a larger number of memory lines are mapped
to a smaller number of cache ways/entries in each cache set.

Besides compromising cryptographic implementations [7],
[65], [72], [99], more recent attacks have had even stealthier
impact such as bypassing address space layout randomization
(ASLR) or leaking privacy-sensitive human genome index-
ing computation [35], [33], [14], [36], [37], leaving millions
of platforms vulnerable. Even trusted execution environment
(TEE) security architectures which aim to protect sensitive
services by compartmentalizing them in isolated execution
contexts, called enclaves, e.g., Intel SGX [42], [21] or ARM
TrustZone [5], have been shown vulnerable to these attacks,
thereby undermining their acclaimed privacy and isolation
guarantees [14], [85], [70], [31], [60], [101]. This is alarming
since TEE architectures are now widely deployed by major
cloud providers, e.g., Microsoft Azure, Google Cloud, Alibaba
Cloud and IBM Cloud, to offer confidential computing, where
sensitive workloads are protected in enclaves.

The Problem with Recent Cache Defenses. To mitigate
cache side-channel attacks, various approaches have been
proposed over the years. These solutions range from time-
constant cryptographic implementations [27], [26], [56] to
software- and hardware-based approaches that modify the
cache organization itself. The latter can be broadly classified
into either cache partitioning [30], [94], [52], [62], [23], [52]
or randomization-based techniques [64], [89], [79], [80], [96],
[87] that attempt to obfuscate the relationship between the
memory address and the cache location it is mapped to.

More recently, various schemes for a randomized memory-
to-LLC mapping, such as CEASER, ScatterCache, and
Phantom-Cache [89], [79], [80], [96], [87] have been proposed
to mitigate these attacks by obfuscating the adversary’s view of
which cache lines actually get evicted. However, such defenses
continue to evict cache lines from a small number of locations
in a shared cache, thus cache set-based conflicts essentially
still occur. While these defenses were shown effective against
the eviction set construction algorithms and techniques at
the time, subsequent more efficient eviction set construction
algorithms [80] were able to undermine them. Consequently,
enhancements to these defenses were proposed [80], only to
be rendered ineffective again by yet another attack vector, e.g.,
weak low-latency cryptographic primitives [76], [10].

Caught in an arms race, randomization-based defenses
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remain as good as the best known attack technique at the time
and are constructed to mitigate very specific side channels
and attack strategies [12], with no future-proof and well-
grounded security guarantees. They only make the attacks
computationally more difficult, but do not address their fun-
damental root cause, i.e., sharing set-associative caches across
mutually distrusting processes. These schemes also assume that
all execution contexts require side-channel resilience without
providing mechanisms for a selective configuration of side-
channel-resilience, thus, taxing the entire system with the
resulting performance impact. In practice, however, only a
small portion of the workload is usually security-/privacy-
sensitive and requires this sophisticated security guarantee.

On the other hand, strict partitioning approaches promise
well-grounded security guarantees due to their cache isolation
across different execution contexts. However, these approaches
usually rely on conventional way-based partitioning [6], [58],
[94], [52], [23], and thus, are not fine-grained, cannot scale
with an increasing number of execution contexts and large
LLCs, or do not provide support for shared memory.

With these limitations in mind, we argue that a more
future-proof and practical approach for side-channel resilient
cache computing is to address the root cause of these at-
tacks, namely, sharing set-associative cache structures across
mutually distrusting execution contexts. Meanwhile, perfor-
mance, usability, flexibility and scalability should still be
preserved. We further observe that, in practice, cache side-
channel resilience is only a reasonable concern in dedicated
security architectures, e.g., TEE security architectures. Thus,
it is crucial to develop side-channel-resilient cache designs
that cater for the security/functionality requirements of these
architectures, e.g., with integrated support for enabling the
side-channel resilience (and the performance cost) only for
specific execution contexts that require it.

Our Goals. In this work, we aim to selectively enforce
clean partitioning of the cache resources across mutually dis-
trusting execution contexts that require side-channel resilience,
such that all side channels are blocked (including stealthy
cache occupancy channels [86] which are not mitigated by
recent works [96], [23]), while maintaining the desired perfor-
mance requirements.

To address this performance-security trade-off most op-
timally, we propose a new cache design for TEE security
architectures, which we call CHUNKED-CACHE, that enables
each execution context or domain to “carve” out its exclusive
cache sets, if desired. These sets essentially constitute an
independent set-associative cache, which we call the domain’s
cache chunk, that this domain can utilize exclusively but
fully and efficiently, unlike in conventional way-based cache
partitioning. A domain can flexibly request and configure
1.) whether it requires side-channel-resilient cache utilization,
2.) for which memory regions, and 3.) the required capacity
of this exclusive side-channel-resilient cache chunk. Mem-
ory accesses by a domain that requires side-channel-resilient
cache utilization are mapped exclusively to its cache chunk,
while mainstream cache resources are freely and convention-
ally utilized whenever side-channel-resilience is not required.
Enabling this on-demand flexibility per domain practically
requires addressing multiple key challenges. Firstly, efficient
design mechanisms are required to configure the memory-to-

set mapping at run time for each domain depending on its
chunk capacity, while preserving conventional cache behavior
for the rest of the execution. Secondly, it must be ensured that
the operating system performance is not degraded as cache
sets get allocated exclusively to domains. Finally, seamless
support must be provided for shared memory between domains
to meet the security and functionality requirements of different
sensitive applications.

Our Contributions. Our main contributions are as follows:

• We present CHUNKED-CACHE, a novel cache architecture
for TEE security architectures, which enables a selec-
tive, flexible and scalable configuration of side-channel
resilient caches for execution domains, without degrading
the OS performance.

• We address the performance-security trade-off by enforc-
ing clean cache partitioning that blocks all cache side
channels by allocating exclusive cache chunks for differ-
ent domains. In doing so, future-proof and solid security
assurances are guaranteed, while still preserving perfor-
mance, functionality and compatibility requirements.

• We extensively evaluate the cycle-accurate performance
overhead of CHUNKED-CACHE for compute-intensive
SPEC CPU2017 workloads and I/O-intensive real-world
applications. We show that it outperforms shared cache
utilization in some cases, that the OS performance even
improves owing to CHUNKED-CACHE’s flexible cache
utilization, and that CHUNKED-CACHE outperforms way-
based partitioning by 43% while also scaling better to
support a larger number of protection domains.

• We implement and evaluate a hardware prototype of
CHUNKED-CACHE. We show that it incurs a minimal
2.3% memory overhead relative to a 16 MB LLC, 1.6%
logic overhead relative to a single-core RISC-V processor,
and 12.3% LLC power consumption overhead.

II. CACHE ATTACKS & DEFENSES

Next, we briefly introduce recent cache side-channel at-
tacks that are relevant for our work and a summary of the
shortcomings of recent defenses that our work overcomes.

A. Cache Side-Channel Attacks

Cache side-channel attacks have been shown to consti-
tute a profound threat that underlies popular attacks such as
Spectre [55] and Meltdown [61], besides threatening a wide
spectrum of platforms and architectures [60], [65], [44], [102],
and even TEE architectures [14], [85], [70], [31], [60], [101].
The attacks usually work by provoking controlled evictions
of the victim’s cache line, such that the inherent information
leakage from the access-timing difference between cache hits
and misses can be exploited by the adversary. This can be
achieved using three main approaches:

• Access-based approaches [39], [99], [36], [45], [35]
where the target address is explicitly accessed and flushed.

• Conflict-based approaches [72], [44], [47], [99], [65],
[98], [24], [33], [72], [38], [91], [7], [11] where the ad-
versary triggers a controlled cache contention in the same
cache set of the target address to evict the corresponding
victim cache lines.
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• Occupancy-based approaches [86] where the adversary
observes an eviction of its own cache lines and uses this
information to infer the size of the victim’s working set.

B. Recent Defenses and their Shortcomings

Various defenses against side-channel attacks have been
proposed, focusing on access-based and conflict-based attacks.

Side-channel Resilient Implementation. This aims at
implementing algorithms, e.g. cryptographic algorithms, in
a time-constant (thus side-channel-resilient) fashion [43],
[8]. Time-constant algorithms vary between hardware plat-
forms [19] and require considerable effort that is not general-
izable and scalable for all software.

Attack Detection. Other approaches aim to detect attacks
in progress by observing hardware performance counters (e.g.,
on cache miss rates) [18], [74] and killing the suspicious
process. However, being based on heuristics, attacks can only
be discovered with a certain probability and no guaranteed
protection is provided. Moreover, some attacks have been
shown to not cause an abnormal cache behavior [36].

Noisy Measurements. Another group of defenses aims to
impede a successful attack by preventing the adversary from
performing precise time measurements, e.g., by restricting the
access to timers [73], [75], [67], by injecting noise into the
system [93], [41] or deliberately slowing down the system
clock [40], [68]. However, workarounds have been found to
create timers [84] or to perform attacks without relying on
timers [25]. Moreover, such defenses cannot protect TEE
architectures since they assume a strong adversary that can
compromise the OS kernel and circumvent such restrictions.

Cache-level Defenses. Other approaches tackle the side-
channel problem directly where it originates, i.e., at the cache
level. These defenses fall under one of two paradigms: 1.) ran-
domized cache line mapping to make the attacks computation-
ally impractical [89], [79], [80], [96], [87], [95], [64], [63]
or 2.) cache partitioning to provide strict isolation [30], [51],
[101], [62], [22], [34], [103], [48], [97], [58], [6], [94], [52],
[95], [23]. We discuss the works most related to CHUNKED-
CACHE in more detail in Section VII.

Randomization-based defenses cannot provide comprehen-
sive future-proof security guarantees, e.g., advances in attack
strategies and minimal eviction set construction techniques
have been shown to undermine such defenses [80], [12],
[77], [76]. Moreover, many rely on cryptographic primitives
which have been shown vulnerable to cryptoanalysis, while
deploying more secure primitives would further degrade per-
formance [10], [76].

Cache partitioning defenses provide strict resource isola-
tion which allows to give solid security guarantees on side-
channel protection. However, existing partitioning defenses
suffer from high performance penalties, restrictive and in-
flexible cache utilization [95] and their inability to scale
with a larger number of protection domains [94], [52], [34].
Several approaches do not directly cater for the use of shared
libraries [30], [94], are architecture-specific [48], [97] or do
not defend against occupancy-based attacks. Memory page
coloring approaches [22], [51], [30] are impractical since they
require invasive modifications of the memory management of

commodity software and cannot sufficiently support Direct
Memory Access (DMA). Most importantly, existing partition-
ing defenses to date apply their side-channel cache protection
for the entire execution workload, impacting overall system
performance, which is not even required in most scenarios.

To fundamentally address all these shortcomings, we
propose a modified cache microarchitecture, which we call
CHUNKED-CACHE, that provides strict, yet configurable par-
titioning across the mutually distrusting execution domains.
For each domain, CHUNKED-CACHE carves out and iso-
lates an exclusive cache share only as the domain requires.
This effectively mitigates all interference across domains,
thus, defending against even stealthy cache occupancy attacks
unlike recent cache defenses, while activating side-channel
resilience only for sensitive execution domains that require
it. All other execution domains can freely utilize mainstream
cache resources at the same performance or even improved
performance than conventional non-secure cache sharing.

III. SYSTEM & ADVERSARY MODEL

In the following section, we describe our assumptions
regarding the system and adversary model.

A. System Model

CHUNKED-CACHE targets computing systems which im-
plement a TEE security architecture and contain a set-
associative cache architecture. In the following, we first present
our standard assumptions regarding the cache architecture,
followed by our assumptions on the TEE security architecture
which are aligned with existing academic [22], [58], [13], [6]
and industry solutions [42], [46], [5].

Cache Architecture. In CHUNKED-CACHE, we assume a
typical modern set-associative cache architecture with multiple
cache levels, where some cache levels are core exclusive
(typically L1 and L2) and others shared between multiple cores
(L3), whereby the L3 can be a sliced cache, e.g., sliced Intel
LLCs. While CHUNKED-CACHE can be deployed to provide
partitioning for smaller L1 and L2 caches in principle, we
assume, however, that core-exclusive caches are flushed at
context switching (similar to most recent TEE architectures [6],
[22], [58]), and thus, that CHUNKED-CACHE is deployed
for the last-level L3 cache. Moreover, we assume that the
cache controller can be configured via dedicated configuration
registers, in line with typical platforms.

TEE Architecture. We assume that the computing systems
which deploy CHUNKED-CACHE implement a TEE architec-
ture. TEE architectures already have established mechanisms
for protecting sensitive code in compartmentalized execution
contexts called enclaves or Isolated Domains (I-Domain), as
we refer to them in this work. All non-sensitive code which
does not require enhanced protection is consolidated in a
Non-Isolated Domain (NI-Domain). The domains are also
each assigned a unique identifier (domain ID). The separation
between the I-Domains and the NI-Domain is enforced by
access control mechanisms already implemented in the TEE
architectures, e.g., at the MMU in Intel SGX [42] or Sanc-
tum [42], at the system bus in CURE [6] or by the Physical
Memory Protection (PMP) unit in Keystone [58]. The access
control mechanisms are either configured by microcode [42],
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[46] or by a small software component which consists only
of a few thousand lines of code (to be formally verifiable)
and which runs in the highest software privilege level of the
system [22], [58], [13], [6], [5]. We refer to this component as
a trusted software component. The trusted software component
is also responsible for all other security-sensitive operations,
e.g., assigning the domain IDs, and, in the case of CHUNKED-
CACHE, configuring our novel protection mechanisms in the
cache controller which we describe in detail in Section IV.

Although I-Domains are security-sensitive, they might still
require to share data with another domain, e.g., to enable com-
munication with the operating system. Thus, TEE architectures
typically provide the possibility to mark parts of an I-Domain’s
memory as shared, whereby this information is again managed
by the trusted software component. In many TEE architectures,
e.g., TrustZone [5], CURE [6] or AMD SEV [46], security-
relevant metadata, which is required to perform access control,
is sent as part of every memory request. For CHUNKED-
CACHE we assume the same, namely, that the domain ID of the
domain issuing a memory access request and the information
whether the requested memory address is shared or non-
shared, are sent within the memory request.

B. Adversary Model

Since we focus on the deployment of CHUNKED-CACHE
on systems with TEE architectures, we assume the same
strong adversary model where the operating system kernel and
hypervisor are untrusted [22], [58], [13], [6], [42], [46], [5].

With regard to cache side-channel attacks, we assume the
adversary is able to mount access-based and conflict-based
side-channel attacks, which are the most sophisticated and
applicable cache attacks (cf. Section II-A), to leak information
about a sensitive execution domain (I-Domain). Since the
adversary is also able to control the OS kernel, we assume a
worst-case scenario where an adversary can easily mount the
described attacks, i.e., has knowledge about the CHUNKED-
CACHE design and specs, and knows the virtual to physical
address mapping of the victim domain. Moreover, the ad-
versary can mount attacks from all privilege levels (except
the highest privilege level that contains the trusted software
component), has access to precise timing measurements and
eviction instructions (e.g., clflush), can attack from the
same CPU core executing the victim domain or a different
core (cross-core), freely interrupt the victim domain and even
keep the system noise to a minimum. In contrast to related
work [89], [79], [80], [96], [87], we also consider the stealthier
cache occupancy-based attacks (cf. Section II-A). Collision-
based attacks [11], which exploit cache collisions at the victim
caused by the victim’s own cache utilization, are kept out
of scope, since they are very specific to certain software
implementations and have not been frequently shown.

Apart from cache side-channel attacks, an adversary who
compromises the OS kernel has full control over the memory
management and thus, can easily map physical memory pages
of a victim domain into its own memory. This allows an
adversary to perform rogue cache accesses to sensitive data
directly without the need of a cache side channel.

In line with related work [30], [94], [52], [62], [23], [95],
[64], [89], [79], [80], [96], [87], we do not consider physical

attacks on caches, e.g., physical side-channel attacks [54],
fault injection attacks [9], and attacks that exploit hardware
flaws [88], [49], [78]. We do not consider denial-of-service
attacks from a security point of view. However, to avoid the
performance impact on the OS, CHUNKED-CACHE ensures
that a certain amount of cache resources are always available
to the OS (described in Section IV). Based on our system
model (Section III-A) , we assume that the adversary cannot
compromise the trusted software component.

IV. CHUNKED-CACHE DESIGN

We first describe the high-level idea of CHUNKED-CACHE,
a novel cache microarchitecture that provides flexible and on-
demand assignment of cache resources to execution domains
(Section IV-A). We follow with a detailed explanation of our
design (Section IV-B) and the required cache tag store and
cache controller modifications (Section IV-C).

Fig. 1. Computing system with TEE architecture and CHUNKED-
CACHE as the shared last-level cache.

A. High-Level Design

In Figure 1, we show how CHUNKED-CACHE is inte-
grated as the last-level cache in a computing system which
implements a TEE architecture, aligned with our system
model detailed in Section III-A. Figure 2 steers the focus
to the design of CHUNKED-CACHE itself and illustrates its
architecture abstractly. As described in Section III-A, all TEE
architectures provide built-in mechanisms to protect sensitive
code in Isolated Domains (I-Domains), whereas non-sensitive
code is running in a Non-Isolated Domain (NI-Domain).

Each active domain (NI-Domain and I-Domains) is
uniquely identified by an ID: DID. The operating system
(OS) and all workloads which do not require protection (and
are combined in the NI-Domain) are assigned the DID 0 by
default. Every I-Domain can request exclusive cache resources
of desirable capacity, forming the domain’s exclusive cache
chunk, that is only utilized by the owner domain. The NI-
Domain utilizes the cache sets which are not exclusively
allocated to I-Domains, which we call mainstream cache sets.

Each I-Domain requests its dedicated cache chunk con-
sisting of the required number of cache sets, e.g., I-Domain
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Fig. 2. CHUNKED-CACHE high-level design: each domain gets an
exclusive cache chunk allocated on-demand.

1 in Figure 2 requested 4 sets. Thus, at I-Domain 1 setup,
4 available (unallocated) sets are located in the cache (sets
with global IDs 8-11 here) and allocated to I-Domain 1 such
that they form its cache chunk. The allocated sets are mapped
to I-Domain 1’s chunk set IDs 0-3, and they are used to
exclusively cache all and only memory accesses issued by I-
Domain 1. Enabling each I-Domain to request its desired cache
chunk capacity exclusively provides strict partitioning and
completely isolates its cache utilization on-demand. Besides
enabling selective cache-based side-channel resilience, this
also guarantees that each I-Domain acquires the performance
that corresponds to the cache capacity it has requested, without
any competition from other workload. In contrast to way-based
partitioning schemes [62], [58], [6], [94], [52] that provide
each domain with only 1 or 2 ways within each set of the full
cache structure, CHUNKED-CACHE also partitions the cache
but more efficiently. CHUNKED-CACHE carves out a full cache
chunk (with all its ways per set) of configurable capacity
for the I-Domain and configures all its memory accesses to
be mapped to the cache chunk, thus, promising maximum
utilization, significantly improved performance, and enhanced
scalability, as we show in Section VI.

B. Design Details of CHUNKED-CACHE

In the following, we discuss the key design goals and
challenges of CHUNKED-CACHE, and the mechanisms we
propose to achieve them.

Configurable Per-Domain Isolation Modes. One of our
key design goals for CHUNKED-CACHE is to support config-
urable cache isolation modes that provide different security
guarantees, thus catering for different use cases and their
requirements. In line with the design paradigm of TEEs, it
is not reasonable to assume that all workloads require cache
isolation and side-channel resilience. Thus, in CHUNKED-
CACHE, we provide 2 different ISOLATION MODES that each
I-Domain can selectively configure for the workload it protects:
1.) MAINSTREAM-CACHE MODE: where cache isolation and
side-channel resilience is not a security requirement, and thus,
the I-Domain can utilize the mainstream cache. However,

the cached I-Domain data must still be protected from ma-
licious OS accesses. 2.) EXCLUSIVE-CACHE MODE: where
cache isolation is required since side-channel resilience is a
security requirement and thus, an exclusive cache chunk is
required by this I-Domain. The latter mode is configured for
I-Domain 1 and I-Domain 2 shown in Figure 2. In addition
to the ISOLATION MODE, the I-Domain can also configure its
SHARED MEMORY settings, i.e., if it requires to share memory
regions (and thus cache lines) with the OS, e.g., when using
OS services. To cache shared memory, the mainstream cache
that the OS uses is utilized. Typically, the developer of the
workload decides which ISOLATION MODE an I-Domain uses
and identifies which memory regions need to be shared, which
is on par with the requirement in TEE architectures where the
developer must identify the security-sensitive parts of the over-
all workload [42], [5], [22]. If a developer is not sure whether
cache side-channel attacks are a threat, the EXCLUSIVE-
CACHE MODE should be selected out of caution. At setup,
an I-Domain configures: 1.) the desired ISOLATION MODE for
its cache utilization and 2.) its SHARED MEMORY regions if
required. This metadata is securely configured by the trusted
component (as shown in Figure 1). The ISOLATION MODE
is communicated to the cache controller at domain setup,
whereas the SHARED MEMORY information is transmitted at
every memory request, aligned with our assumed system model
(Section III-A).

Mainstream Cache vs. Shared Memory Support. When
an I-Domain is in MAINSTREAM-CACHE MODE, it uses the
mainstream cache sets also used by the OS (DID 0). To prevent
a malicious OS from mapping the memory of an I-Domain in
its own memory space and accessing it directly in the cache,
CHUNKED-CACHE requires that cache lines are tagged with
the domain ID DID. The hardware mechanisms integrated into
the CHUNKED-CACHE controller enforce this tagging when
caching the data, and that only the owner domain which cached
the data can access it. Being hardware managed, the OS has
no means to modify the DID stored in the cache lines.

When an I-Domain is also sharing memory with the OS, the
corresponding cache lines for the defined SHARED MEMORY
regions are cached in the mainstream cache sets, and are to be
accessed by both the owner domain and the OS. To support
that, cache lines need to be tagged with an additional SHARED
flag that indicates whether the cache line is shared with the OS.
For typical TEE architectures, the developer of the workload
protected in the I-Domain configures which of its memory
regions are to be shared.

EXCLUSIVE-CACHE MODE Chunk Set Indexing. The
index bits of a memory address are used to locate the cache
set that its cache line is mapped to. In a conventional cache,
the number of index bits is fixed and depends on the number
of sets the cache supports. However, for CHUNKED-CACHE to
support cache chunks of different sizes for different domains,
configurable set indexing is required.

When an I-Domain is in EXCLUSIVE-CACHE MODE and
requests a number of cache sets for its cache chunk, the number
of set index bits that will be used to map its memory lines has
to be computed individually for this domain. Therefore, the
cache controller keeps track of the global IDs of sets which
constitute the cache chunk (Figure 2), and the index bits for
each domain. When a memory access is issued by a domain,
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this metadata is looked up, and the pertinent cache chunk
sets correctly indexed. Moreover, when an I-Domain is torn
down and its sets are de-allocated, the relevant metadata needs
to be updated accordingly, besides flushing and invalidating
the cache lines. CHUNKED-CACHE also enables support for
dynamic cache allocation, i.e., allocating additional cache sets
to an I-Domain’s cache chunk at runtime and reconfiguring the
index bits accordingly. In Section IV-C, we describe how the
cache microarchitecture and controller are modified to enable
this configurability efficiently.

NI-Domain Chunk Set Indexing. Another design chal-
lenge in CHUNKED-CACHE is managing the sets allocated to
the OS, which represents the NI-Domain with DID 0, such that
both flexibility as well as maximum utilization are preserved.
At bootup, when no domains are set up yet besides the OS,
the OS should ideally be able to utilize all the available
cache capacity, i.e., all cache sets are allocated to the OS
by default. We refer to these as the mainstream cache sets.
Then, once domains are set up and request exclusive cache sets,
these get “torn away” from the OS’s cache and are allocated
to the domains. This would, however, incur an impractical
performance degradation for the OS since every time some
of the OS’s cache resources are allocated to another domain,
its own capacity is changed, and so would its set indexing. This
renders all memory lines already cached by the OS inaccessible
unless complicated remapping is performed. Essentially, the
OS would need to cache these memory addresses once again,
thus suffering a high number of cold misses every time a new
domain is set up and subjecting the OS to an unreasonably
high performance overhead.

Fig. 3. CHUNKED-CACHE OS-specific chunk set indexing.

To avoid this performance penalty on the OS, the OS is
allocated a fixed (sufficiently large) number of the cache sets
in CHUNKED-CACHE which remain always dedicated to the
OS, while still allowing it to utilize the other cache sets so long
as they remain unallocated. We demonstrate this in Figure 3
where the OS is always allocated a fixed number of 8 sets
(0-7) which form its principal cache chunk. Since the 8 sets
are always available for the OS, the memory address indexing
and the number of index bits do not change at runtime. In
other words, no OS memory lines cached in this principal
cache chunk must ever be flushed out when any other domain
requests to allocate additional cache sets, since the OS cache

chunk sets are never torn away from the OS. However, the OS
can still utilize unallocated sets (sets 12-15) in parallel until
they get allocated to another domain, thus also guaranteeing
maximum utilization of the available cache resources. This
works by indexing cache sets in parallel which are congruent
to the set a memory address is mapped to. In Figure 3, 3 index
bits are required to map a memory address to the correct set
for a cache chunk of size 8 sets. Thus, if the index bits, e.g.,
map to set 4, then set 12 can also be utilized by the OS (set ID
+ OS cache chunk size) to cache that memory line. The same
applies for memory lines that are mapped to sets 5, 6 and 7;
they also map to sets 13, 14 and 15, respectively. However,
memory lines mapped to sets 0-3 cannot utilize the congruent
sets 8-11 because these are already allocated to I-Domain 1.

C. Cache Tag Store & Cache Controller

Cache lines need to be additionally tagged with the domain
ID (DID) bits as well as a 1-bit SHARED flag bit to enforce
access control and moderate sharing with the NI-Domain. For
instance, to support 16 parallel active domains, we require to
extend the cache tag store with 4 bits to represent the DID.
We emphasize that the CHUNKED-CACHE design does not
limit the number of parallel domains to 16; a larger number is
possible but increases the hardware overhead of CHUNKED-
CACHE (but only linearly). Moreover, the number of domains
only limits how many domains can be simultaneously active
on the system. It does not limit how many applications can be
protected in I-Domains on the system in general.

To support the configurable set indexing, the allocation/de-
allocation of cache sets to different I-Domains and to differ-
entiate between OS (NI-Domain) cache accesses vs. I-Domain
accesses, 2 table structures are required by the CHUNKED-
CACHE controller which are shown in Figure 5. The CACHE
SET STATUS TABLE (CST) is a 1-bit vector that is indexed by
the global set ID (SID) and that stores the status of each set,
i.e., whether it is allocated to a domain. The CST is used to
query the status of a set when searching for free cache sets to
allocate to an I-Domain.

The DOMAIN CACHE ALLOCATION TABLE (DCAT) is
indexed by the domain ID DID. It maintains whether this
domain is configured by the cache controller (ALLOC), a
vector of the global set IDs that form its cache chunk (SID-
VEC), and the corresponding number of index bits (INDEX)
required to map a memory line to the correct set (log2(number
of sets in the cache chunk)), as shown in Figure 5.

We describe next how the CHUNKED-CACHE controller
performs these cache management operations, i.e., allocation,
de-allocation and access control and represent this in Figure 4.
The description in Figure 4 only represents the sequence of
operations for understanding, but does not reflect the temporal
nature of the operations, i.e., whether they occur sequentially
or in parallel.

Cache Allocation & De-allocation. When an I-Domain
requests to allocate exclusive cache sets, this request (DID, the
number of sets (CH-NUM) requested, and the corresponding
number of INDEX bits (log2 CH-NUM) is securely commu-
nicated from the trusted component to the cache controller via
configuration registers of the cache controller (Section III-A).
The DID is looked up in the DCAT to check if it is already
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Fig. 4. CHUNKED-CACHE controller operations for cache chunk allocation, de-allocation and access control.

Fig. 5. CHUNKED-CACHE table structures.

allocated and that the maximum sets number per I-Domain
is not exceeded. The CST is queried to locate free sets and
to allocate them to the I-Domain by flipping the ALLOC bit,
until CH-NUM sets are allocated. If CST runs out of free sets,
this is communicated back to the trusted component in order
to modify the cache request. Next, the DCAT is indexed with
the DID and its metadata updated by updating the INDEX bits
and the SID-VEC with the global IDs of the allocated sets.

If a domain requests to de-allocate its cache sets, DCAT is
indexed with DID, ALLOC reset and the SID-VEC read out.
Next, the CST is indexed with each set ID in SID-VEC and
de-allocated. For both allocation and de-allocation, the cached
memory lines in the relevant sets are invalidated and flushed
(if dirty) to remove potentially malicious data in the allocation
case and prevent information leakage in the de-allocation case.

Cache Access Management. The DID of an incoming
cache access request indicates whether it is an access by the
NI-Domain (OS domain with DID 0) or an I-Domain. If it is an
OS access, DCAT is indexed with the all-zero ID to read out
the index bits. The OS domain is assigned the least significant
cache sets by default, thus the SID-VEC is not needed. The
correct set index in the principal chunk is computed from the
memory address in the request. Because it is an OS access,
congruent cache sets that are not allocated can also be utilized
(see Section IV-A). Thus, they are also computed and their
ALLOC status queried in the CST to locate the unallocated

sets. The tag store of the principal and congruent sets are
looked up in parallel to locate a tag bit match (cache hit). In
parallel, the DID and SHARED tag bits are also checked. If the
cache line belongs to a non-zero DID (I-Domain), the SHARED
tag bit should be 1 to allow the OS to access it.

For an I-Domain (non-zero DID), if access is requested
to a SHARED MEMORY region or if the I-Domain is in
MAINSTREAM-CACHE MODE, then the access is treated by
the controller as a NI-Domain access where the mainstream
and congruent cache sets are accessed. However, at the tag
comparison, the issuing DID is checked against the cache
line DID to verify that only the owner domain accesses it.
If the access is performed in EXCLUSIVE-CACHE MODE, the
exclusive cache chunk of the domain is accessed. The DCAT
is indexed with the DID and the SID-VEC and INDEX bits
are read out. The chunk set index is computed and used to
index into the SID-VEC to map to the correct global set ID.
Then, the tag store is accessed for a tag bits comparison.

CHUNKED-CACHE’s design is independent from the im-
plemented cache replacement policy and thus, does not require
additional modifications to it. On every cache miss experienced
by an I-Domain in EXCLUSIVE-CACHE MODE, a cache line
in the corresponding set in the domain’s exclusive cache chunk
is selected for eviction. On cache misses by an I-Domain
in MAINSTREAM-CACHE MODE or when accessing SHARED
MEMORY, and for all misses by the NI-Domain, a cache line
in the corresponding set from the mainstream cache is selected.

V. SECURITY CONSIDERATIONS

In this section, we discuss how CHUNKED-CACHE protects
from the adversary described in Section III-B. One key aspect
of CHUNKED-CACHE is that its protection capabilities rely
on a strict partitioning of cache resources. Thus, in contrast
to related work, which rely on randomized cache line map-
pings [89], [79], [80], [96], [87], CHUNKED-CACHE provides
well-grounded security guarantees which do not depend on
weak cryptographic primitives. The main security goals of
CHUNKED-CACHE are to prevent an adversary from accessing
(read/write) data in the exclusive cache chunk of an I-Domain
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and to prevent eviction interference between the adversary and
victim domain. In the following, we show how CHUNKED-
CACHE achieves these goals with strict cache partitioning and
we discuss why CHUNKED-CACHE’s security guarantees even
hold in the event of a strong adversary that compromised the
operating system kernel. Besides these security considerations,
we verified the correctness of our implemented CHUNKED-
CACHE prototype by explicitly issuing memory requests which
try to read, write and evict cached data of I-Domains.

Strict Partitioning of I-Domain Cache Chunks. As
described in Section IV, the trusted software component
communicates the number of chunk sets which should be
assigned to an I-Domain to the CHUNKED-CACHE cache
controller which configures the DCAT and verifies that each
cache chunk set is only assigned to a single I-Domain. At
every cache memory access, the cache controller uses the
domain ID to index the DCAT and to retrieve the list of
assigned sets (SID-VEC). Since the assignment of domain
IDs and configuration of the DCAT can only be performed
by the trusted software component, the indexing logic of the
cache controller will never return a cache set which does
not belong to the issuer of the memory request. Thus, an
adversary is never able to read an I-Domain’s exclusive sets
(cache chunk), write to them or evict them. As a result,
CHUNKED-CACHE protects from access-based attacks, which
require the adversary to flush memory out of the victim’s sets,
and conflict-based attacks, which require to fill the victim’s
sets and thus, evicting its cache lines. Moreover, CHUNKED-
CACHE’s strict cache resource separation prevents an adversary
from observing evictions of its own sets caused by the victim,
which protects from occupancy-based attacks, and also strictly
prevents the sharing of replacement policy metadata, which
has been shown exploitable [52]. In general, the adversary can
only infer how many cache sets are assigned to an I-Domain
but cannot infer which sets (and therefore which memory
addresses) are accessed at which point in time.

CHUNKED-CACHE allows for a dynamic assignment of
cache sets to I-Domains. Whenever the chunk set of an I-
Domain is modified, all assigned chunk sets are invalidated.
This prevents leakage of sensitive I-Domain data when chunk
sets are reassigned to another execution domain, and prevents
an adversary from injecting malicious data into a set, when
additional sets are assigned to an I-Domain. An adversary
could also try to trick an I-Domain into storing sensitive
data in a mainstream cache line that is accessible for the
adversary (SHARED flag bit set). CHUNKED-CACHE prevents
this by checking the metadata on every memory request of
an I-Domain to verify that the memory region was indeed
configured as shared.

Protecting from Compromised NI-Domain. As described
in Section III-B, in the adversary model of TEE architectures,
the OS (and therefore the NI-Domain) is not trusted, allowing
an adversary to map physical memory pages of a victim I-
Domain to its own memory space and to directly access it in
the cache. If an I-Domain (represented by an enclave) demands
side-channel protection (EXCLUSIVE-CACHE MODE), all data
is cached in the exclusive cache chunk and thus, not accessible
for the adversary. However, if an I-Domain is not concerned
about cache side channels (MAINSTREAM-CACHE MODE),
the data is cached in the shared mainstream sets and thus, must

still be protected from malicious direct accesses. CHUNKED-
CACHE prevents those attacks with the domain ID tag which
is added to every cache line. On every cache write, the domain
ID tag is set to the ID of the write request issuer. Subsequently,
on every read request, the ID of the issuer is compared to the
stored ID and the request only permitted if both IDs match.
Evictions are permitted for every domain to achieve a perfect
utilization of the shared cache sets. This is, however, not a
security concern since an I-Domain’s data will only be cached
in the shared sets if the I-Domain is in MAINSTREAM-CACHE
MODE or if the data is explicitly shared with the NI-Domain.

VI. IMPLEMENTATION & EVALUATION

To evaluate CHUNKED-CACHE with respect to its hardware
footprint, power consumption overheads, and performance
impact, we implemented our design in hardware and on an
architectural cycle-accurate simulator.

Methodology. We implemented a hardware RTL model
of CHUNKED-CACHE to extend an open-source RISC-V pro-
cessor and synthesized it to evaluate the storage and logic
overhead incurred. We use our hardware implementation to
extract the additional cycle latencies incurred by CHUNKED-
CACHE due to individual cache management and access opera-
tions. Then, to evaluate the performance impact of CHUNKED-
CACHE on large mixed workloads, we extend an architectural
cycle-accurate simulator, the gem5 simulator, with CHUNKED-
CACHE and configure it to model a multi-core architecture
with a 3-level cache hierarchy which matches our system
assumptions (Section III-A). We incorporate the cycle latencies
derived from our hardware implementation into our gem5 setup
and use it to collect performance measurements on the standard
SPEC CPU2017 [20] benchmarks suite (aligned with related
work [79], [80], [96], [87]) to evaluate the overall performance
impact of CHUNKED-CACHE. Complementary to the compute-
intensive SPEC benchmarks, we also evaluate CHUNKED-
CACHE on the I/O-intensive webserver nginx. In order to
achieve the most realistic results, we conduct our experiments
in the full-system simulation mode of gem5 which simulates
the user- and kernel-space software and also I/O devices.

We describe next our hardware implementation (Sec-
tion VI-A), performance evaluation (Section VI-B), and our
hardware an power overhead evaluation (Section VI-C).

A. Hardware Implementation

In our hardware model, we extended the cache tag store
with a 4-bit DID and a 1-bit SHARED bit to tag the owner
domain of each cache line and whether it is shared with the
NI-Domain (OS), respectively. We also extended the cache
controller with the table structures shown in Figure 5. To
track the status of the 16,384 sets of a 16 MB LLC with 16-
ways, the CST is implemented as a 16,384-bit register that
is indexed by the set ID to read out the corresponding 1-
bit ALLOC flag. To support set allocation for 16 domains
in parallel, the DCAT is implemented as a 16-row DID-
indexed vector structure. We decided for 16 parallel domains in
our hardware implementation since this is also the maximum
number of enclaves supported by multiple TEE architectures
in parallel [58], [6]. We define for our implementation that the
maximum number of sets that can be allocated to any domain is
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8,192 sets. Thus, we reserve 4 bits to represent the set INDEX
bits number (to index into one of 8,192 sets), 114,688 bits
(8,192 sets × 14 bits to represent each set’s global ID) for the
SID-VEC, and 1 bit ALLOC flag per domain. We discuss
the storage overheads incurred by the tables in Section VI-C.

We implement the control finite-state-machines (FSMs)
that receive cache allocation and de-allocation requests and
perform the necessary management. For allocation, the FSM
controls cycling through the sets sequentially to allocate free
ones to the requesting I-Domain, updating their status in the
CST and updating the corresponding domain status in the
DCAT. For de-allocation, another FSM controls that the SID-
VEC of the pertinent I-Domain is read from the DCAT, its
ALLOC flag reset, and then, all sets of that I-Domain de-
allocated (by sequentially indexing through the CST with the
respective set IDs from the SID-VEC). Both allocation and de-
allocation occur in powers-of-2 set numbers in our prototype.
This is only an implementation decision in our prototype to
minimize the logic complexity and overhead.

The cache access mechanisms are extended to include
the DCAT lookup required for CHUNKED-CACHE to identify
which global set IDs belong to the issuing domain and to map
the access to the correct set prior to tag lookup. Additionally,
for NI-Domain accesses, after mapping to the correct set ID,
concurrent sets are computed and looked up in the CST in
parallel to identify which ones are unallocated.

B. Performance Evaluation

In this section, we first describe the latencies from our
RTL model which we incorporate into our gem5 implementa-
tion. Next, we provide an evaluation of CHUNKED-CACHE’s
performance impact using the gem5 implementation.

Cycle Latencies. As described in Section IV, CHUNKED-
CACHE introduces a new indexing policy. For I-Domain
memory requests in EXCLUSIVE-CACHE MODE, a lookup
in the DCAT is required. For requests in MAINSTREAM-
CACHE MODE and all NI-Domain (OS) memory requests, the
mainstream sets must be looked up. The comparison of the
stored DID with the requester DID is done in parallel with the
address tag comparison and thus, does not introduce additional
latency. For I-Domain requests in EXCLUSIVE-CACHE MODE,
we measure an additional latency of 1 cycle and for NI-Domain
requests and I-Domain requests in MAINSTREAM-CACHE
MODE of an additional 2 cycles. For the access latencies of
modern LLCs on multi-core systems, we estimate a baseline
of 80 cycles in line with vendor multi-core processors [2].

Whenever an I-Domain gets sets allocated, unallocated sets
need to be looked up and the DCAT updated. At de-allocation,
sets of the I-Domain must be invalidated (and possibly flushed)
and the CST and DCAT updated. For allocation, the overall
latency incurred is variable and is a function of: 1.) how many
sets CH-NUM are requested for allocation, and 2.) how many
sets have to be looked up in the CST. At the worst case, this
would incur a latency of 16,384 cycles and at the best case,
CH-NUM cycles. Additionally, a fixed latency of 1 cycle is
incurred to update the DCAT subsequently. The INDEX is
computed and communicated already by the trusted component
in the allocation request, thus it does not contribute additional
latency.

Parameters L1 L2 L3 L3
(I&D) (gem5) (CHUNKED-CACHE)

size 64 KB 512 KB 16 MB 16 MB& 32 KB
# of sets 128 & 64 512 16,384 16,384

associativity 8-way 16-way 16-way 16-way
access latency 4 14 80 81 / 82(in cycles)

TABLE I. CACHE CONFIGURATION ON OUR GEM5 EVALUATION
SETUP WITH AN INCLUSIVE 3-LEVEL CACHE HIERARCHY.

For de-allocation, we measure an overall latency of CH-
NUM + 2 cycles, whereby 1 cycle is required to look up
the DCAT, and another cycle to update it, followed by CH-
NUM cycles to de-allocate each set in the CST. At worst case,
a latency of 8,194 cycles is incurred (assuming a maximum
of 8,192 sets per domain). However, de-allocating the sets in
CST is done in parallel to invalidating (and possibly flushing
if dirty) the respective cache lines.

We emphasize that allocating new sets to any I-Domain
does not require to invalidate or flush any other sets of the
NI-Domain which would require re-caching them. This is one
key design goal of CHUNKED-CACHE since it eliminates this
performance overhead on the NI-Domain. The allocation of
sets either happens only once during the I-Domain setup or oc-
casionally when the number of assigned sets is modified at run-
time which requires a context switch out of the I-Domain. The
overhead CHUNKED-CACHE induces for the allocation/de-
allocation remains negligible when compared with the general
overheads of TEE architectures [22], [13], [58], [6]. Therefore,
we do not invest in increased logic complexity to optimize the
cycle overheads incurred for allocation and de-allocation, since
they are not in the critical path, i.e., LLC accesses.

Mixed-Workload Cycle-Accurate Evaluation. We im-
plement CHUNKED-CACHE on the cycle-accurate gem5 sim-
ulator and construct a multi-core system which resembles a
modern computing system with an inclusive 3-level cache
hierarchy. Each core has access to a core-exclusive L1 and L2
cache, and an L3 LLC shared among all cores. For the L1 and
L2, we use the unmodified cache implementation provided by
gem5, whereas we use our CHUNKED-CACHE implementation
for the L3 cache. The configuration parameters of each cache
level are shown in Table I. We derive realistic values for the
cache sizes, number of cache sets, associativity and access
latency in line with modern caches. For the CHUNKED-CACHE
L3 cache, we add our induced latencies collected from our
hardware implementation. Constructing a gem5-based multi-
core system with 3-level cache hierarchy in full-system simu-
lation mode to collect representative cycle-accurate traces for
large workloads involved significant engineering challenges, as
also evident by recent works that rely on trace-based simulators
for their evaluation with SPEC workloads [79], [80], [96], [87].

We measure the performance impact of CHUNKED-CACHE
on real-world workloads by using the standard SPEC CPU2017
benchmarks with both the SPECspeed 2017 Integer and SPEC-
speed 2017 Floating Point suites which represent a wide range
of compute-intensive applications such as compilers, video
compression, machine learning or modeling tasks. Moreover,
to also cover I/O-intensive workloads, we evaluate the impact
of CHUNKED-CACHE on the widely used webserver nginx.
We run our experiments for 1 trillion instructions before we
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Fig. 6. Cache miss rate impact of CHUNKED-CACHE for SPEC
benchmarks on a 8-domain setup; compared to a shared L3 cache.

start to collect measurements, in order to boot the system, start
the benchmarks and collect more representative metrics. We
run all our experiments for a total of 1 billion instructions in
the full-system mode of gem5 and collect statistics to compute
the Cycles Per Instruction (CPI) metric, in order to capture
the additional latency effect, and the L3 cache miss rates for
the reduced cache capacity effects. If not stated otherwise
for single experiments, the miss rates are calculated as the
geometric mean over the instruction and data miss rates of
the page table walker and core. We compare CHUNKED-
CACHE to 1.) a baseline system with an unmodified insecure
L3 cache and to 2.) an L3 cache which implements a way-
based partitioning scheme in which cache ways are assigned
to I-Domains as provided, e.g., by CATalyst [62] which uses
Intel CAT [50], SecDCP [94], DAWG [52], Keystone [58] or
CURE [6]. We evaluate CHUNKED-CACHE with a set of exper-
iments which investigate different computing scenarios. First,
we show how CHUNKED-CACHE’s partitioning influences the
performance of mixed workloads when encapsulated in I-
Domains (in EXCLUSIVE-CACHE MODE). Then, we evaluate
CHUNKED-CACHE’s impact on the NI-Domain (OS-domain)
and compare against way-based partitioned cache schemes.
We conclude our evaluation with a set of experiments which
show the scalability of CHUNKED-CACHE. All the following
experiments were conducted on an x86 platform equipped with
an Intel Xeon Silver 4215 CPU (2.50 GHz) and 186 GB RAM.

I-Domain Performance Impact. In the first set of ex-
periments, we evaluate the performance impact CHUNKED-
CACHE has on mixed workloads when protected in I-Domains
in EXCLUSIVE-CACHE MODE. We run 7 randomly se-
lected SPEC benchmarks in I-Domains and show our re-
sults in Figure 6. The NI-Domain (D0) runs Linux (kernel
version 4.19.83) and 2 benchmarks with large working sets
(600.perlbench_s and 602.gcc_s). In this experiment,
we assign 8,192 sets to the NI-Domain and a varying number
of sets to each I-Domain as indicated in the plot. We choose
the number of sets by briefly analyzing the working set size
of the benchmark running in each I-Domain, whereby bigger
working sets get more cache sets assigned. We observe in the
experiment that the overall miss rate significantly decreases
for most benchmarks when compared to sharing the L3 cache.
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Fig. 7. Cache miss rate impact of CHUNKED-CACHE for SPEC
CPU2017 benchmarks (varying sets); compared to a shared L3 cache.

This shows that the assignment of a smaller but exclusive
cache portion can even reduce the cache miss rates of a
workload. Moreover, our results indicate that the number of
cache sets required to reduce or completely avoid the impact
of CHUNKED-CACHE heavily depends on the characteristics of
the workload. In our experiment, the benchmarks 605.mcf_s
and 620.omnetpp_s would require more cache sets than the
assigned 512 and 1024 sets to avoid an impact on the cache
miss rates. We investigate this in another experiment where
we customize the number of sets allocated to an I-Domain for
some of the benchmarks and show how the miss rate decreases
significantly when increasing the chunk size (Figure 7). In
another experiment (Figure 8), we show how the varying chunk
sizes also influence the CPI values. As for the miss rates, the
CPI decreases in general. We observe, however, some outliers
with the CPI metrics collected, owing to the complexity of a
full-system multi-core simulation on gem5 which also includes
unpredictable kernel runtime behavior into the statistics.
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Fig. 8. CPI impact of CHUNKED-CACHE for SPEC CPU2017
benchmarks (increasing sets); compared to a shared L3 cache.

Additionally, to evaluate the impact of CHUNKED-CACHE
on I/O-intensive workloads, we conduct experiments in which
we run the nginx webserver in one I-Domain and the HTTP
benchmarking tool wrk in another I-Domain, whereas we
keep the NI-Domain unmodified. We then use wrk to send
HTTP requests to the webserver using 12 threads and 400 open
connections. In Figure 9, the miss rate impact of CHUNKED-
CACHE on nginx and wrk is shown when increasing the
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number of sets from 128 to 2048. The results show, in line
with our results on SPEC, how the increase of cache sets
leads to a decrease in the overall miss rate. The decrease is
already noticeable for a relatively small number of sets since
the exclusive assignment of the cache sets prevents nginx
and wrk from evicting the sets from one another.
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Fig. 9. Cache miss rate impact of CHUNKED-CACHE for nginx and
wrk (increasing sets); compared to a shared L3 cache.

NI-Domain Performance Impact. In the second set of ex-
periments, we focus on the performance impact of CHUNKED-
CACHE on workloads executing in the NI-Domain. We again
run mixed workloads from the SPEC benchmarks in I-
Domains, while running Linux and the 2 memory-intensive
benchmarks 600.perlbench_s and 602.gcc_s in the
NI-Domain. In Figure 10, we vary the number of sets allocated
to the NI-Domain from 2,084 to 8,192 while keeping the sets
for the other domains unchanged. For these experiments, we
show all 4 miss rate metrics over which we average in the other
experiments, the data and instruction miss rates of the page
table walker (DTB MR and ITB MR, respectively), and the
data and instruction miss rates of the core (Data MR and Instr.
MR, respectively). While in general, all miss rates and CPI
metrics decrease compared to the baseline, we only observe
a slight improvement when increasing the chunk size from
2,084 to 4,096 and 8,192 sets. This is because even when
the number of statically allocated sets to the NI-Domain is
rather small, the unallocated sets in the system (mainstream
sets) remain available for the NI-Domain. Thus, performance
is not significantly impacted for the NI-Domain and maximum
utilization of the available resources is preserved which was
one of the key design goals of CHUNKED-CACHE.

To investigate this, we run experiments (same setup) in
which we assign 1,024 sets to the NI-Domain and vary the
number of unassigned sets. In the first run, all cache sets are
allocated in our system, while in the second run, 4,096 sets
remain unallocated and available for the NI-Domain. Figure 11
shows how the miss rates significantly decrease when 4,096
sets remain unallocated which demonstrates how CHUNKED-
CACHE enables the NI-Domain to utilize unused cache sets.

Comparison with Way-based Partitioning. We compare
CHUNKED-CACHE to a way-based cache partitioning scheme
which we implement on gem5, being the only other strict cache
partitioning approach. We run a number of experiments with
a 5-domain setup where we assign the same cache capacity to
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Fig. 10. Miss rate & CPI impact of CHUNKED-CACHE on the NI-
Domain (increasing sets); compared to a shared L3 cache.

the same benchmark in both, the CHUNKED-CACHE and way-
partitioned cache – 1,024 or 2,048 sets in CHUNKED-CACHE
and equivalently 1 way or 2 ways, respectively, in the way-
partitioned setup. We show in Figure 12 how for the same
cache capacity, CHUNKED-CACHE outperforms way-based
partitioning for randomly selected benchmarks. In fact, for
some benchmarks such as 625.x264_s and 644.nab_s,
allocating 1,024 sets even outperforms 2 ways (double the
cache capacity) on a way-partitioned cache. We calculate an
average decrease of 43% in the miss rate for CHUNKED-
CACHE vs. the way-partitioned cache for a 1 MB cache
capacity (1024 sets) and a 39% decrease for 2 MB (2048 sets).

Scalability and Dynamic Cache Allocation. In Ap-
pendix A, we additionally evaluate CHUNKED-CACHE’s abil-
ity to scale and support 32 I-Domains in parallel without
degrading the performance of the NI-Domain (OS) and we also
demonstrate how CHUNKED-CACHE supports the dynamic
allocation of cache sets to an I-Domain during runtime.

C. Hardware Footprint and Power Consumption Evaluation

To evaluate the storage and logic overhead incurred by
CHUNKED-CACHE, we synthesize our implementation target-
ing a single-issue single-core RISC-V processor [81] using
Xilinx Vivado tools. While this processor does not provide
an LLC, this is not necessary since we can still extend the
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Fig. 11. Miss rate of CHUNKED-CACHE on the NI-Domain with
varying number of unassigned sets; compared to a shared L3 cache.
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existing simple cache controller to implement CHUNKED-
CACHE, verify its functionality in cycle-accurate RTL-level
simulations and evaluate its overheads.

Storage/Memory Overhead. The main contribution to the
hardware area overhead of CHUNKED-CACHE is in fact the
extra storage required, rather than the logic itself, since that
requires the fabrication of memory which consumes more
gates than hardware logic. The extra storage is needed for
the additional tag bits required per cache line (4-bit DID
and 1-bit SHARED flag), the CST and DCAT. In our current
prototype implementation targeting 16 domains, 16 MB LLC
with 16-ways and 16,384 sets, and an allowed maximum of
8,192 sets per domain, the CST consumes 2 KB, the DCAT
≈ 224 KB, and the additional tag storage 160 KB, totaling
386 KB. This amounts to a negligible 2.3% storage overhead
relative to a 16 MB LLC which would consume approximately
an additional 2.7% area in fabrication.

The storage and area overheads are directly impacted by
the various design/implementation trade-offs involved which
can be configured differently in different implementations of
CHUNKED-CACHE. For example, the CST storage required
can be reduced if the number of sets always allocated to the
NI-Domain is hard-wired, e.g. to 8,192 sets, such that these
sets do not need to be tracked. Similarly, the DCAT storage
overhead would also be significantly reduced since these sets
would not be accounted for. The DCAT overhead can also
be reduced significantly if contiguous set allocation is used
instead, thus, reducing the length of SID-VEC, which is the
largest overhead contributor. In our design and prototype, we
decided against contiguous set allocation due to fragmentation
that can eventually occur as the system continues to run.

In short, the capacity of these tables varies with 1.) the
number of active parallel domains supported (overhead in-
creases only linearly) 2.) the cache capacity they are tracking
and its total number of sets, 3.) the maximum number of
sets that can be allocated to a domain, and 4.) whether the
sets for the NI-Domain are hard-wired to a certain number at
design-time. The configuration of these trade-offs for a specific
implementation directly impacts the incurred overheads.

Logic Overhead. CHUNKED-CACHE requires extra hard-
ware logic for the FSMs that handle the cache de-/allocation,
and look up the tables prior to cache accesses (Section VI-A).

We synthesize our hardware implementation using Xilinx
Vivado targeting a ZedBoard Zynq-7000 FPGA board, and
estimate a logic overhead of ≈ 1.6% relative to the single-core
RISC-V processor that we extend. This would thus diminish
negligibly when ported to a significantly more complex multi-
billion-transistor processor with a 3-level cache hierarchy
which is the intended platform for CHUNKED-CACHE.

Power Consumption Overhead. CHUNKED-CACHE in-
curs a higher static leakage power consumption and dynamic
consumption per access due to the additional tag bits per cache
line (4-bit DID and 1-bit SHARED flag) as well as the CST
and DCAT tables, though the LLC power consumption is
largely dominated by the static leakage power. We estimate
the power consumption overheads of CHUNKED-CACHE in
22nm technology using the CACTI-6.0 tool [71]. For a 16-
way 16 MB cache with 64 B cache line size, the total leakage
power increases from 5056.57 mW (baseline) to 5313.83 mW.
The CST and DCAT incur an additional 365 mW, amounting
to a total of 12.3% increase in the LLC power consumption. To
support OS-specific chunk set indexing, the power consump-
tion increases accordingly. If 2 sets are looked up in parallel
(when 8,192 sets are allocated to the OS), the penalty on
power consumption is negligibly minimal. When 4 or 8 sets
are looked up in parallel, the power consumption overhead
additionally increases by 5.5% and 27.1% relative to the
baseline of 5056.57 mW, respectively. Relative to the overall
chip power consumption of modern multi-core processors (90-
150W), the LLC power consumption increases incurred by
CHUNKED-CACHE remain reasonable.

VII. RELATED WORK

We categorize cache side-channel defenses which tackle
the problem directly in the cache into two broad classes:
partitioning-based and randomization-based. We focus in this
section only on the most relevant works to CHUNKED-CACHE,
which all propose hardware changes at the cache architecture.

A. Partitioning-based Microarchitectures

The partitioning-based defenses most related to
CHUNKED-CACHE propose new cache architectures that
assign cache resources (cache lines or ways) exclusively to
protected domains. The TEE architectures Keystone [58] and
CURE [6] implement way-based partitioning to assign cache
ways exclusively to enclaves. SecDCP [94] forms security
classes of applications with similar security requirements and
assigns cache ways to them. DAWG [52] provides way-based
cache partitioning in the context of speculative execution
attacks. The main limitation of way-based partitioning is its
inability to support a large number of protected domains in
parallel since even large LLCs only comprise a small number
of cache ways (up to 16). Moreover, these defenses lead to
cache underutilization when assigned cache ways are not
evenly utilized by a protected domain since the unused cache
lines are blocked for all other domains on the system.

CHUNKED-CACHE, besides other approaches [95], [23],
is more flexible since it partitions the cache on a cache-
line basis. PLcache [95] assigns cache lines exclusively to
processes which allows for a strict and fine-grained partitioning
of cache resources. However, PLcache’s strict isolation does
not allow for caching data shared between processes and
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strongly impacts the overall system performance and fairness
of the cache utilization. Moreover, PLcache does not protect
against occupancy-based attacks since the adversary can still
infer the victim’s memory accesses by observing that the
victim is unable to access/evict cache lines.

HybCache [23] assigns cache ways to protected domains
(or enclaves) by providing a fully-associative mapping with
random replacement for the ways to overcome the cache
underutilization problem of way-based partitioning schemes.
In contrast to PLcache, HybCache assigns only a subset of
the cache resources to the protected domains which can be
reclaimed by non-sensitive domains and thus, a fairer cache
utilization is achieved which does not heavily degrade the
overall system performance. However, HybCache does not
scale practically with large LLCs since it would incur high
power consumption overheads. Moreover, HybCache does not
provide strong security guarantees against occupancy-based
attacks since it does not enforce a strict partitioning.

CHUNKED-CACHE, however, provides flexible cache-line
partitioning that can scale to support a larger number of
protection domains than the number of cache ways. It addition-
ally overcomes the limitations of other cache-line partitioning
techniques by providing support for shared memory and by
scaling to large LLCs while still providing strict isolation.

B. Cryptographic Randomization Defenses

These randomization techniques attempt to avoid the stor-
age overhead of large randomized mapping tables that are
deployed by earlier defenses [95], [64], [63] by relying on
cryptographic primitives to reproducibly generate the random-
ized mapping. Time-Secure Cache [89] uses a set-associative
cache indexed with a keyed function using the cache line
address and process ID as its input. However, a weak low-
entropy indexing function is used, thus, frequent re-keying and
cache flushing must be performed which increases complexity
and performance impact.

CEASER [79] also uses a keyed indexing function but
without process ID. It also requires frequent re-keying of its
index derivation function and re-mapping to limit the time
interval available for an attacker to reconstruct the eviction set.
Under a minimal eviction set construction algorithm of O(E2)
complexity, CEASER has been shown able to withstand attacks
with a re-keying rate of 1%. However, under eviction set con-
struction techniques with O(E) complexity [80], the re-keying
rate needs to increase to 35%-100%, which incurs prohibitively
high performance overheads. To resist these improved attacks,
a skewed variant of CEASER, CEASER-S [80] was proposed
that divides the cache ways into multiple partitions (skews),
with different encryption keys used for each partition. A cache
line maps to a different set in each partition, where one of the
partitions is chosen randomly for the line placement, making
the minimal eviction set construction more difficult.

ScatterCache [96] also uses keyed cryptographic indexing
where cache set indexing is different and pseudo-random for
every protected domain but consistent for any given key.
Thus, re-keying is still required at time intervals to hinder the
profiling and minimal eviction set construction efforts.

Phantom-Cache [87] relies on a set of hardware-efficient
hash function and XOR operations to map a cache line to 1 of

8 randomly chosen sets in the cache, each with 16 ways, thus,
increasing the associativity to 128. This requires accessing 128
locations on each cache access to check if an address is cached,
resulting in a high power overhead of 67%.

Defenses based on cryptographic primitives have multiple
weaknesses: 1.) These defenses remain only as secure as
the best/fastest known attack strategy/minimal set eviction
construction algorithm [12], [77] with no solid future-proof
security guarantees. 2.) Their promised security guarantees
often rely on the alleged, yet not thoroughly investigated
unpredictability of low-latency cryptographic primitives. The
primitives deployed by CEASER, CEASER-S and Scatter-
Cache have been shown vulnerable to cryptanalysis which
enables the construction of eviction sets without even accessing
memory [76], [10]. Deploying primitives that resist formal
cryptanalysis is also not practical since it would incur increased
latency, thus, further degrading performance in the cache’s
critical path. 3.) If the re-keying rate is increased to mitigate
novel attacks, the induced performance overhead renders these
defenses impractical.

Mirage, a concurrent work, attempts to overcome the vul-
nerability to newer faster eviction-set construction algorithms,
by eliminating set-associative eviction altogether [82]. How-
ever, besides still being vulnerable to occupancy-based attacks,
Mirage does not support selectively enabling side-channel
resilience only for execution domains that require it, thus,
incurring a performance slowdown on the entire workload.

CHUNKED-CACHE, in contrast, eliminates the described
unreliability and inflexibility fundamentally by providing strict,
yet perfectly configurable and selective, partitioning across
the execution domains. This enables each domain to allo-
cate the cache capacity it requires and thus, experience the
performance that it has opted to tolerate accordingly. This
different paradigm provides well-grounded security assurances
that stand the test of advances in cache side-channel attacks
and different attack methodologies and complexities, without
sacrificing performance. Instead, it provides by-design the
possibility to tune the security-performance trade-off for each
domain as desired, without overtaxing the OS either.

VIII. CONCLUSION

In this paper, we presented a novel side-channel-resilient
cache microarchitecture, CHUNKED-CACHE, for TEE archi-
tectures, that enables each execution domain to flexibly and
selectively configure its exclusive cache sets only when
cache isolation and side-channel resilience is required. Un-
like randomization-based cache microarchitectures recently
proposed, CHUNKED-CACHE fundamentally mitigates side-
channel attacks by enforcing strict cache partitioning, thus
providing future-proof and solid security guarantees. It also
outperforms way-based partitioning and scales to support a
larger number of execution domains, without degrading the
performance of the OS. In this work, we show how CHUNKED-
CACHE incorporates this configurable performance-security
trade-off by design in the cache microarchitecture to cater most
optimally for TEE architectures. Through our security analysis
and evaluation, we also show how on-demand sophisticated
side-channel security, as well as performance, functionality and
usability requirements are preserved in CHUNKED-CACHE, at
minimum hardware and memory costs.
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APPENDIX

A. I-Domain Scalability

We also demonstrate how CHUNKED-CACHE scales for a
larger number of parallel domains. As described in Section IV,
the design of CHUNKED-CACHE allows to support more
domains in parallel than the 16 domains we choose for our
hardware implementation. Thus, we conduct scaling experi-
ments where we run the 619.lbm_s benchmark on every
I-Domain and we increase the number of I-Domains from 4
to 8, 16 and up to 32. Running more I-Domains in parallel
is not possible on our evaluation platform since the gem5
full-system simulation with 32 I-Domains already consumes
the complete 186 GB of available RAM which unavoidably
imposes certain limitations on our experiments. Given these
constraints, we selected 619.lbm_s as a benchmark because
of its relatively small working set. Throughout these experi-
ments, the NI-Domain (which runs the Linux kernel and one
instance of 619.lbm_s) gets 8,192 sets assigned. The overall
miss rates for the NI-Domain, when scaling from 4 to 32 I-
Domains, are stable, reaching 71.45%, 71.64%, 72.06% and
71.75%, respectively. Thus, with CHUNKED-CACHE, also a
high number of I-Domains can be supported without degrading
the performance of the NI-Domain (OS). Running even more
domains was only limited by the memory constraints of our
evaluation platform.

B. Dynamic Set Allocation

In another experiment, we analyze how the dynamic set
allocation capabilities of CHUNKED-CACHE impact the NI-
Domain and I-Domains during runtime. For this, we select
a SPEC benchmark (631.deepsjeng_s) which achieves a
relatively small average cache miss rate, when enough cache
sets are available, in order to better demonstrate the behavior
of the dynamic set allocation. We run the benchmark in 4
distinct I-Domains and as part of the NI-Domain. We simulate
24 billion cycles on our evaluation platform which corresponds
to 12s worth of computing (given that we simulate processors
with a clock frequency of 2 GHz). At the beginning of the
experiment, the NI-Domain (D0) gets 8,192 sets assigned, the
I-Domains D1-D3 512 sets each and the I-Domain D4 only 1
set. Then, during runtime, the size of D4’s chunk is modified.
After 3s, the chunk size is increased to 512 sets, after 6s to
2048 sets and after 9s decreased to 1 set. The chunk sizes of
the domains D0, D1, D2 and D3 are kept constant throughout
the duration of the experiment. We collect miss rate statistics
for all domains every 75ms (150,000,000 cycles) and compute
the arithmetic mean over the instruction and data miss rates of
the page table walker and core.

The results of the experiment are shown in Figure 13,
whereby we only show the miss rates for D0, D1 and D4
since the results of D2 and D3 are very similar to those of
D1. The plot clearly shows how the increase and decrease of
the chunks size affects the miss rate of D4. At the beginning,
when only 1 set is assigned to D4, the miss rate fluctuates
heavily around a value of 80%. At the time point 3s, when
511 additional sets are assigned to D4, the miss rate almost
immediately drops to around 60%, thereby catching up with
the miss rates achieved by D1. After another 3s, when D4’s
chunk size is increased to 2048, a low and stable miss rate of

20% is achieved. The fact that D0 experiences the same miss
rate with 8,192 sets shows that applications are not always
benefiting from an increased chunk size and thus, available sets
are better redistributed to other benefiting domains to improve
the overall system performance. After 9s, the chunk size is
decreased to 1 set which again leads to a heavily fluctuating
miss rate of around 80%.

Another interesting take-way from Figure 13 is that the
flushing of all chunk sets, which happens after 6s, does not
negatively influence the miss rate of D4, at least not when
collecting the miss rate statistics at intervals of 75ms.
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[31] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache Attacks on Intel SGX. In European Workshop on
Systems Security, 2017.

[32] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks. In USENIX Security Symposium, 2018.

[33] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU. In
Annual Network and Distributed System Security Symposium (NDSS),
2017.

[34] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan
Haller, and Manuel Costa. Strong and Efficient Cache Side-channel
Protection Using Hardware Transactional Memory. In USENIX Secu-
rity Symposium. USENIX Association, 2017.

[35] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2016.

[36] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+Flush: A Fast and Stealthy Cache Attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). Springer-Verlag, 2016.

[37] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches. In
USENIX Security Symposium, 2015.

[38] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads
Dam. Cache Storage Channels: Alias-Driven Attacks and Verified
Countermeasures. In IEEE Symposium on Security & Privacy (IEEE
S&P), 2016.

[39] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games
– Bringing Access-Based Cache Attacks on AES to Practice. In IEEE
Symposium on Security & Privacy (IEEE S&P), 2011.

[40] Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time. In IEEE
Computer Society Symposium on Research in Security and Privacy,
1991.

[41] Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of
computer security, 1(3-4):233–254, 1992.

[42] Intel. Intel Software Guard Extensions. Tutorial slides. https://
software.intel.com/sites/default/files/332680-002.pdf. Reference Num-
ber: 332680-002, revision 1.1.

[43] Intel. Intel Integrated Performance Primitives Cryptography Developer
Reference. 2019.

[44] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared
Cache Attack That Works across Cores and Defies VM Sandboxing
– and Its Application to AES. In IEEE Symposium on Security &
Privacy (IEEE S&P), 2015.

[45] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor
Cache Attacks. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS). ACM, 2016.

[46] Kaplan et al. AMD memory encryption. https://developer.amd.com/
wordpress/media/2013/12/AMD Memory Encryption Whitepaper
v7-Public.pdf, 2016.

[47] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A High-resolution Side-channel Attack on Last-level Cache. In
IEEE/ACM Design Automation Conference (DAC). ACM, 2016.

[48] Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfeden,
Jesse Elwell, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. RIC: Relaxed Inclusion Caches for mitigating LLC side-channel
attacks. In IEEE/ACM Design Automation Conference (DAC), 2017.

[49] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In 29th USENIX Security Symposium (USENIX
Security 20), 2020.

[50] Khang T Nguyen. Introduction to Cache Allocation Technology in the
Intel Xeon Processor E5 v4 Family. https://software.intel.com/articles/
introduction-to-cache-allocation-technology, 2016.

[51] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTH-
MEM: System-level Protection Against Cache-based Side Channel
Attacks in the Cloud. In USENIX Security Symposium. USENIX
Association, 2012.

[52] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. DAWG: A Defense Against Cache Timing

15

144



Attacks in Speculative Execution Processors. In IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2018.

[53] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and defenses. arXiv preprint arXiv:1807.03757, 2018.

[54] Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In CRYPTO, 1996.

[55] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.
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Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In IEEE Symposium on
Security and Privacy, 2019.

[93] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating
fine grained timers in xen. In Proceedings of the 3rd ACM workshop
on Cloud computing security workshop, pages 41–46, 2011.

[94] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers,
and G. Edward Suh. SecDCP: Secure Dynamic Cache Partitioning
for Efficient Timing Channel Protection. In IEEE/ACM Design
Automation Conference (DAC). ACM, 2016.

[95] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In International Sympo-
sium on Computer Architecture (ISCA). ACM, 2007.

[96] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. ScatterCache: Thwarting Cache
Attacks via Cache Set Randomization. In USENIX Security Sympo-
sium, 2019.

[97] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas.
Secure Hierarchy-Aware Cache Replacement Policy (SHARP): De-
fending Against Cache-Based Side Channel Atacks. In International
Symposium on Computer Architecture (ISCA). ACM, 2017.

[98] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy Campbell, and Josep Torrellas. Attack Directories, Not
Caches: Side Channel Attacks in a Non-Inclusive World. To appear in
the Proceedings of the IEEE Symposium on Security & Privacy (IEEE
S&P), May 2019.

[99] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-channel Attack. In USENIX
Security Symposium, 2014.

[100] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a
timing attack on OpenSSL constant-time RSA. volume 7, pages 99–
112. Springer, 2017.

[101] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas
Hou. TruSpy: Cache Side-Channel Information Leakage from the
Secure World on ARM Devices. Cryptology ePrint Archive, Report
2016/980, 2016. https://eprint.iacr.org/2016/980.

[102] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM Side Channels and Their Use to Extract Private Keys. In
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 2012.

[103] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng.
SecTEE: A Software-based Approach to Secure Enclave Architecture
Using TEE. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1723–1740, 2019.

17

146



H
C U R E : A S E C U R I T Y A R C H I T E C T U R E W I T H C U S T O M I Z A B L E A N D
R E S I L I E N T E N C L AV E S

[11] Raad Bahmani, Ferdinand Brasser, Ghada
Dessouky, Patrick Jauernig, Matthias Klimmek, Ahmad-
Reza Sadeghi, and Emmanuel Stapf. CURE: A Security
Architecture with CUstomizable and Resilient Enclave.
In USENIX Security. USENIX Association, 2021. Core
Rank A*.

147



CURE: A Security Architecture with CUstomizable and Resilient Enclaves

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, Emmanuel Stapf

Technische Universität Darmstadt, Germany
{raad.bahmani, ferdinand.brasser, ghada.dessouky, patrick.jauernig,}

{matthias.klimmek, ahmad.sadeghi, emmanuel.stapf}@trust.tu-darmstadt.de

Abstract
Security architectures providing Trusted Execution Envi-

ronments (TEEs) have been an appealing research subject
for a wide range of computer systems, from low-end embed-
ded devices to powerful cloud servers. The goal of these
architectures is to protect sensitive services in isolated ex-
ecution contexts, called enclaves. Unfortunately, existing
TEE solutions suffer from significant design shortcomings.
First, they follow a one-size-fits-all approach offering only
a single enclave type, however, different services need flexi-
ble enclaves that can adjust to their demands. Second, they
cannot efficiently support emerging applications (e.g., Ma-
chine Learning as a Service), which require secure channels
to peripherals (e.g., accelerators), or the computational power
of multiple cores. Third, their protection against cache side-
channel attacks is either an afterthought or impractical, i.e., no
fine-grained mapping between cache resources and individual
enclaves is provided.
In this work, we propose CURE, the first security architecture,
which tackles these design challenges by providing different
types of enclaves: (i) sub-space enclaves provide vertical iso-
lation at all execution privilege levels, (ii) user-space enclaves
provide isolated execution to unprivileged applications, and
(iii) self-contained enclaves allow isolated execution environ-
ments that span multiple privilege levels. Moreover, CURE
enables the exclusive assignment of system resources, e.g.,
peripherals, CPU cores, or cache resources to single enclaves.
CURE requires minimal hardware changes while significantly
improving the state of the art of hardware-assisted security ar-
chitectures. We implemented CURE on a RISC-V-based SoC
and thoroughly evaluated our prototype in terms of hardware
and performance overhead. CURE imposes a geometric mean
performance overhead of 15.33% on standard benchmarks.

1 Introduction

For decades, software attacks on modern computer systems
have been a persisting challenge leading to a continuous arms

race between attacks and defenses. The ongoing discovery
of exploitable bugs in the large code bases of commodity
operating systems have proven them unsuitable for reliable
protection of sensitive services [104, 105]. This motivated
various hardware-assisted security architectures integrating
hardware security primitives tightly into the System-on-Chip
(SoC). Capability-based systems, such as CHERI [100],
CODOMs [95], IMIX [30], or HDFI [82], offer fine-grained
protection through (in-process) sandboxing, however, they
cannot protect against privileged software adversaries (e.g.,
a malicious OS). In contrast, security architectures provid-
ing Trusted Execution Environments (TEE) enable isolated
containers, also called enclaves. Enclaves allow for a coarse-
grained but strong protection against adversaries in privileged
software layers. TEE architectures have been proposed for
a variety of computing platforms1, in particular for modern
high-performance computer systems, e.g., industry solutions
like Intel SGX [35], AMD SEV [38], ARM TrustZone [3],
or academic solutions such as Sanctum [22], Sanctuary [10],
Keystone [48], or Komodo [27] to name some.

In this paper, we focus on TEE architectures for modern
high-performance computer systems. We investigate the
shortcomings of existing TEE architectures and propose an en-
hanced and significantly more flexible TEE architecture with
a prototype implementation for the open RISC-V architecture.

Deficiencies of existing TEE architectures. So far, existing
TEE architectures have adopted a one-size-fits-all enclave
approach. They provide only one type of enclave requiring
applications and services to be adapted to these enclaves’ fea-
tures and limitations, e.g., Intel SGX restricts system calls
of its enclaves and thus, applications need to be modified
when being ported to SGX which produces additional costs.
Additional efforts like Microsoft’s Haven framework [5] or
Graphene [87] are needed to deploy unmodified applications
to SGX enclaves. Moreover, today, we are using diverse

1TEE architectures for resource-constrained embedded systems (e.g.,
Sancus [66], TyTAN [8], TrustLite [47] or TIMBER-V [98]) are not the
subject of this paper.
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services that process sensitive data, e.g., payment, biometric
authentication, smart contracts, speech processing, Machine
Learning as a Service (MLaaS), and many more. Each ser-
vice imposes a different set of requirements on the underlying
TEE architecture. One important requirement concerns the
ability to securely connect to devices. For example on mobile
devices, privacy-sensitive data is constantly collected over var-
ious sensors, e.g., audio [9], video [83], or biometric data [19].
On cloud servers, massive amounts of sensitive data are aggre-
gated and used to train proprietary machine learning models,
often outside of the CPU, offloaded to hardware accelera-
tors [84]. However, TEE architectures such as SGX [35],
SEV [38] and Sanctum [22], do not consider secure I/O at
all, solutions such as Keystone [48] would require additional
hardware to support DMA-capable peripherals, solutions like
Graviton [96] require hardware changes at the peripheral side.
TrustZone [3], Sanctuary [10] and Komodo [27] cannot bind
peripherals directly to individual enclaves.

Another important requirement imposed on TEE architec-
tures is an adequate and practical protection against side-
channel attacks, e.g., cache [11,50] or controlled side-channel
attacks [65, 92, 101]. Current TEE architectures either do not
include cache side-channel attacks in their threat model, like
SGX [35], or TrustZone [3], only provide impractical solu-
tions which heavily influence the OS, like Sanctum [22], or do
not consider controlled side-channel attacks, e.g., SEV [38].
We will elaborate on the related work and the problems of
existing TEE architectures in detail in Section 9.
This work. In this paper, we present a TEE architecture,
coined CURE, that tackles the problems of existing solutions
with a cost-effective and architecture-agnostic design.
CURE offers multiple types of enclaves: (i) sub-space
enclaves that isolate only parts of an execution context,
(ii) user-space enclaves, which are tightly integrated into
the operating system, and (iii) self-sustained enclaves,
which can span multiple CPU-cores and privilege levels.
Thus, CURE is the first TEE architecture offering a high
degree of freedom in adjusting enclave boundaries to fulfill
the individual functionality and security requirements of
modern sensitive services such as MLaaS. CURE can bind
peripherals, with and without DMA support, exclusively to
individual enclaves. Further, it provides side-channel pro-
tection via flexible and fine-grained cache resource allocation.

Challenges. Building a TEE architecture with the de-
scribed properties comes with a number of challenges.
(i) New hardware security primitives must be developed
that allow enclaves to adapt to different functionality
and security requirements. (ii) Even though the security
primitives should allow flexible enclaves, they must not
require invasive hardware modification, which would impede
cross-platform adoption. (iii) While the changes in hardware
should remain small, performance overhead for managing
enclaves in software must be minimized. (iv) Protections

against the emerging threat of microarchitectural attacks
in form of side-channel and transient-execution attacks
must be considered in the design for all types of enclaves.
Contributions. Our design of CURE and its implementation
on the RISC-V platform tackles all these challenges. To
summarize, our main contributions are as follows:

• We present CURE, our novel architecture-agnostic de-
sign for a flexible TEE architecture which can protect
unmodified sensitive services in multiple enclave types,
ranging from enclaves in user space, over sub-space en-
claves, to self-contained (multi-core) enclaves which
include privileged software levels and support enclave-
to-peripheral binding.

• We introduce novel hardware security primitives for the
CPU cores, system bus and shared cache, requiring min-
imal and non-invasive hardware modifications.

• We prototype CURE for the open RISC-V platform using
the open-source Rocket Chip generator [4].

• We evaluate CURE’s hardware and software components
in terms of added logic and lines of code, and CURE’s
performance overhead on an FPGA and cycle-accurate
simulator setup using micro- and macrobenchmarks.

2 System Assumptions

CURE targets a modern high-performance multi-core sys-
tem, with common performance optimizations like data and
instruction caches, a Translation Lookaside Buffer (TLB),
shared caches, branch predictors, respective instructions to
flush the core-exclusive resources, and a central system bus
that connects the CPU with the main memory (over a dedi-
cated memory controller) and various peripherals.
System bus and peripherals. The system bus connects the
CPU to a plethora of system peripherals over a fixed set of
hardwired peripheral controllers. The peripherals range from
storage, communication, and input devices to specialized com-
pute units, e.g., hardware accelerators [37]. The CPU interacts
with peripherals using parts of the internal peripheral memory
which are mapped to the address space of the CPU, called
Memory-Mapped I/O (MMIO). We assume that the CPU can
nullify the internal memory of a peripheral to sanitize its state.
Every access from the CPU to a peripheral is decoded in the
system bus and delegated to the corresponding peripheral.
The CPU acts as a parent on the system bus, whereas the
peripherals (and main memory) act as childs that respond to
requests from a parent. However, MMIO is not sufficient
for some peripherals where large amounts of data need to be
shared with the CPU since the CPU needs to copy the data
from the main memory to the peripheral memory. Therefore,
these peripherals are often connected to the system bus as par-
ents over Direct Memory Access (DMA) controllers, allowing
them to directly access the main memory. To cope with re-
source contention in these complex interconnects, system
buses also incorporate arbitration mechanisms to schedule the
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Figure 1: Software privilege levels (PL): user space, kernel
space & dedicated levels for hypervisor & firmware.

establishment of parent-child connections when multiple bus
requests occur simultaneously.
Software privilege levels. We assume the CPU supports the
privilege levels (PLs) as shown in Figure 1. In line with
modern processors (Intel [21], AMD [34] or ARM [55]), we
assume a separation between a user-space layer (PL3) and a
more privileged kernel-space layer (PL2), which is performed
by the MMU (configured by PL2 software) through virtual
address spaces. The CPU may support a distinct layer for
hypervisor software (PL1) to run virtualized OS in Virtual
Machines (VMs), where the separation to PL2 is performed
by a second level of hardware-assisted address translation [73].
Lastly, we assume a highly-privileged layer (PL0) which
contains firmware that performs specific tasks, e.g., hardware
emulation or power management.

We assume that the system performs secure boot on re-
set, whereas the first bootloader stored in CPU Ready-Only
Memory (ROM), verifies the firmware through a chain of
trust [53]. After verification, the firmware starts execution
from a predefined address in the firmware code and loads
the current firmware state from non-volatile memory (NVM)
where it is stored encrypted, integrity- and rollback-protected.
The cryptographic keys to decrypt and verify the firmware
state are passed by the bootloader which loads the firmware
into Random-access Memory (RAM). Rollback protection
can be achieved, e.g., by making use of non-volatile memory
with Replay Protected Memory Block (RPMB) partitions or
by using eFuses as secure monotonic counters [56]. When a
system shutdown is performed, the firmware stores its state
in the NVM, encrypted and integrity- and rollback-protected.

3 Adversary Model

Our adversary model adheres to the one commonly assumed
for TEE architectures, i.e., a strong software-only adversary
that can compromise all software components, including the
OS, except a small software/microcode Trusted Computing
Base (TCB) which configures the hardware security primi-
tives of the system, manages the enclaves and which is inher-
ently trusted [3, 10, 22, 27, 35, 48].

We assume that the goal of the adversary is to leak secret
information from the TCB or from a victim enclave. An
adversary with full control of the system software can inject
own code into the kernel (PL2) and even into the hypervisor

(PL1). This allows the adversary, with full access to the TCB
interface used for setting up enclaves, to spawn malicious
processes and even enclaves. Even though the adversary
cannot change the firmware code (which uses secure boot),
memory corruption vulnerabilities might still be present in the
code and be exploitable by the adversary [24]. In addition, we
assume that an adversary is able to compromise peripherals
from software to perform DMA attacks [63, 76].

We assume the underlying hardware to be correct and
trusted, and hence, exclude attacks that exploit hardware
flaws [40, 86]. We also do not assume physical access, and
thus, fault injection attacks [6], physical side-channel at-
tacks [46, 62] or the physical connection of malicious periph-
erals are out of scope. We do not consider Denial-of-Service
(DoS) attacks in which the adversary starves an enclave since
an adversary with control over the OS can shut down the
complete system trivially. As standard for TEE architectures,
CURE does not protect from software-exploitable vulnerabili-
ties in the enclave code but prevents their exploitation from
compromising the complete system.

4 Requirements Analysis

To provide customizable, practical and strongly-isolated en-
claves, CURE must fulfill a number of security and function-
ality requirements. We list them in the following section, and
show in Section 7 how CURE fulfills the security require-
ments. In Section 6 and Section 8, we demonstrate how the
functionality requirements are met.

4.1 Security Requirements (SR)
SR.1: Enclave protection. Enclave code must be integrity-
protected when at rest, and inaccessible for an adversary when
executed. All sensitive enclave data must remain confiden-
tial and integrity-protected at all times. An enclave must
be protected from adversaries on all software layers (PL3-
PL0), other potentially malicious enclaves, and DMA at-
tacks [63, 76].
SR.2: Hardware security primitives. The protection of the
enclaves must be enforced by secure hardware components
which can only be configured by the software TCB.
SR.3: Minimal software TCB. The TCB must be protected
from adversaries in all software layers (PL3-PL0) and mini-
mal in size to be formally verifiable, i.e., a few KLOCs [44].
SR.4: Side-channel attack resilience. Mitigations against
the most relevant software side-channel attacks must be avail-
able, namely, side-channel attacks on cache resources [31,
50, 70, 102], controlled side-channel attacks [65, 92, 101] and
transient-execution attacks [12, 14, 43, 45, 78, 89, 90, 93].

4.2 Functionality Requirements (FR)
FR.1: Dynamic enclave boundaries. The trust boundaries
of an enclave must be freely configurable such that enclaves
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5.2.1 Enclave Management

Before describing the different enclave types supported by
CURE, we give an overview on CURE’s enclave management.
Security monitor. All CURE enclaves are managed by the
software TCB, called Security Monitor (SM), as in other TEE
architectures [22, 48]. As indicated in Figure 2, the SM it-
self represents an enclave which is part of the firmware. As
described in Section 2, we assume a system that performs
a secure boot on reset, verifies the firmware (including the
SM) and then jumps to the entry point of the SM. Further,
we assume that the SM has already loaded its rollback pro-
tected state Ssm into the volatile main memory. The SM state
contains SKd, PKd, Certd, Cℎainp and a structure Dencl for
each enclave installed on the device.
Enclave installation. When an enclave is deployed to the
device, the SM first verifies the signature Sigencl using Certp
and Cℎainp. Then, the SM creates a new enclave meta-data
structure Dencl and stores Lencl, Sigencl and Certp in it. More-
over, the SM creates an enclave state structure Sencl which
is used to persistently store all sensitive enclave data. The
SM also creates an authenticated encryption key Kencl which
is used to protect the enclave state when it is stored to disk
or flash memory. Kencl and Sencl are also stored in Dencl.
Initially, Sencl only contains an authenticated encryption keyKcom created by the SM, which is used by the enclave to en-
crypt and integrity protect data communicated to the untrusted
OS, and a monotonic counter. The enclave meta-data struc-
ture Dencl also contains a monotonic counter used to rollback
protect the enclave state.
Enclave setup & teardown. The setup of an enclave is al-
ways triggered by the corresponding host app. After the OS
loads the enclave binary and configuration file, it performs a
context switch to the SM. The SM identifies the enclave by
the label Lencl and begins the enclave setup by (1) configuring
the hardware security primitives (Section 5.3) such that one or
multiple continuous physical memory regions (according to
the configuration file) are exclusively assigned to the enclave
in order to isolate the enclave from the rest of the system soft-
ware. Since the binary and configuration file are loaded from
untrusted software, their integrity must always be verified
using Sigencl and Certp. Assigning physical memory regions
is inevitable when providing enclaves which are able to ex-
ecute privileged software (kernel-space enclave), since this
allows the enclave to control the MMU. Thus, virtual memory
cannot be used to effectively isolate the enclave. (2) After en-
clave verification, the SM configures the hardware primitives
to assign also the rest of the system resources, e.g., cache
or peripherals, to the enclave according to the configuration
file. All assigned resources are also noted in Dencl. Moreover,
the SM assigns an identifier to the enclave which is stored inDencl and which is unique for every enclave currently active
on the device. The SM can manage up to N (implementation
defined) enclaves in parallel. We provide more details on the

meaning of the enclave identifier in Section 5.3. (3) In the last
step, the enclave state Sencl is restored, i.e., loaded from disk
or flash memory, decrypted and verified using Kencl, and then
copied to the enclave memory such that it is accessible during
enclave runtime. The SM also checks that the monotonic
counter in Sencl matches the counter stored in Dencl.

The SM configures all interrupts to be routed to the SM
while an enclave is running. Thus, the SM fully controls the
context switches into and out of an enclave. While the SM
is executed, all interrupts on the CPU core executing the SM
are disabled. All other cores remain interrupt responsive. In
CURE, hardware-assisted hyperthreading is disabled during
enclave execution to prevent data leakage through resources
shared between the hardware threads. Alternatively, all hard-
ware threads of a CPU core could also be assigned to the
enclave if the enclave code benefits from parallelization. In
the reminder of the paper, we assume that hyperthreading is
disabled during enclave runtime.

After the setup is complete, the SM jumps to the entry
point of the enclave. During the enclave teardown, which
can be triggered by the host app or the enclave itself, the SM
securely stores the enclave state (using Kencl), while incre-
menting the monotonic counters in Sencl and Dencl, removes
all enclave data from the memory and caches and reconfigures
the hardware primitives.

Enclave execution. At run time, enclaves can access services
provided by the SM over its API, e.g., to dynamically increase
the enclave’s memory or to receive an integrity report which
the SM creates by signing Sigencl with SKd and by attachingCertd. The integrity report is then send to the service provider
by the enclave. Subsequently, using Cℎaind, the service
provider can perform a remote attestation of the enclave. Only
if the attestation succeeds, the service provider provisions
sensitive data to the enclave. More complex remote attestation
schemes [61] could also be implemented.

Enclaves might use services of the untrusted OS which do
not require access to the plain sensitive enclave data, e.g., file
or network I/O. For those cases, an enclave can utilize Kcom,
which is part of Sencl, to protect its sensitive data. CURE also
allows multiple enclaves to share encrypted sensitive data
over the OS. However, the required key exchange is assumed
to be performed over the back ends of the service providers
and thus, out-of-scope for CURE.

Every enclave which includes a cryptographic library can
also create own keys (apart fromKcom) and store them in Sencl.
Thus, enclaves can also implement key rotation, revocation
or recovery schemes which is, however, the responsibility of
the service provider and thus, out-of-scope for CURE.

On every enclave setup/teardown and context switch in and
out of an enclave, the SM flushes all core-exclusive cache
resources, i.e., the data cache, the TLB and the BTB, thereby
preventing information leakage across execution contexts.
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5.2.2 User-space Enclaves

User-space enclaves (Encl1 in Figure 2) comprise a complete
user-space process.
OS integration. The key characteristic of a user-space en-
clave is its tight integration into the OS, i.e., it relies on the
OS for memory management, exception/interrupt handling
and other services provided through syscalls (e.g., file system
or network I/O). The OS schedules user-space enclaves like
normal user-spaces processes, only that the context switches
in and out of the enclave are intercepted by the SM. The
OS’s services are used by all user-space enclaves which pre-
vents code duplication. Moreover, user-space enclaves do not
contain management software, leading to smaller binaries.
Controlled side-channel defenses. In controlled side-
channel attacks, the adversary gains information about an
enclave’s execution state by observing usage of resources
managed by the OS, predominantly page tables [65, 92, 101].
CURE defends against these attacks by moving the page tables
of user-space enclaves into the enclave memory. More subtle
controlled side-channel attacks exploit the fact that the en-
clave’s interrupt handling is performed by the OS [91]. CURE
also mitigates these attacks by allowing each enclave to reg-
ister trap handlers to observe its own interrupt behavior, and
act accordingly if a suspicious behavior is detected [15, 79].
Limitations & usage scenarios. A user-space enclave cannot
run higher-privileged code, e.g., device drivers. Thus, all
sensitive data shared with a peripheral has to be processed
by drivers in the untrusted OS and thus, is unprotected if not
encrypted. Hence, user-space enclaves are unable to protect
sensitive services which interact with devices like sensors
or GPUs. Instead, user-space enclave are beneficial when
protecting short-living services that can rely on encrypted
data transmission, e.g., One Time Password (OTP) generators,
payment services, digital key services and many more.

5.2.3 Kernel-space Enclaves

Kernel-space enclaves can comprise only the kernel space
(Encl2), or the kernel and user space (Encl3).
Providing OS services. The key characteristic of a kernel-
space enclave is its capability to run code bare-metal on a
CPU core in the privileged (PL2) software layer or even in
the hypervisor level (PL1) if available. Thus, OS services,
e.g. memory management, can be implemented inside the
enclave in a runtime (RT) component (Figure 2). This results
in less resource sharing with the untrusted OS, and thus, it is
easier to protect against controlled side-channel attacks [91,
92, 101]. Moreover, by including device drivers into the
RT, a secure communication channel to peripherals can be
established. Furthermore, kernel-space enclaves provide more
computational power since CURE allows to run kernel-space
enclaves across multiple cores. In CURE, peripherals can
either be assigned exclusively to a single enclave, by the SM,
at enclave setup or shared between different enclaves and/or

the OS. The peripheral’s internal memory is flushed by the
SM when (re-)assigned to a new entity to prevent information
leakage [49, 72, 107].
Protecting virtual machines. CURE’s ability to include the
kernel space into the enclave allows the construction of en-
claves that encapsulate complete virtual machines (VMs).
VMs are not self-contained but rely on memory and periph-
eral management services provided by a hypervisor, which
makes the VM enclave vulnerable to controlled side-channel
attacks [38, 51]. CURE mitigates this by moving the VM
page tables into the enclave memory and including unmodi-
fied complete drivers into the enclave to avoid dependencies
on the untrusted hypervisor [16, 17]. As for other kernel-
space enclaves, peripherals are temporarily assigned to VM
enclaves by the SM. Again, before a peripheral is reassigned,
its internal memory is sanitized by the SM.
Limitations & usage scenarios. Sensitive services can be
ported to kernel-space enclaves without changing them. How-
ever, in contrast to user-space enclaves, an enclave RT needs
to be added which increases the binary size, adds development
overhead and increases the memory consumption. Moreover,
the CPU cores selected for the enclave first have to be freed
from pending processes, detached from the OS and the RT
booted on them. Nevertheless, kernel-space enclaves are
required when protecting services which heavily rely on pe-
ripheral communication, e.g., authentication services using
biometric sensors, ML services collecting input data over
sensors or offloading computations to accelerators, DRM ser-
vices or in general services which require secure I/O.

5.2.4 Sub-space Enclaves

In CURE, enclave trust boundaries can be freely defined which
allows to construct fine-grained enclaves that only include
parts of the software residing in a privilege level, therefore
called sub-space enclaves.
Shrinking the TCB. Sub-space enclaves are especially ap-
pealing when constructed in the highest privilege level (PL0)
of the system (Encl4 in Figure 2). In CURE, sub-space en-
claves are used to isolate the SM from the firmware code to
protect against exploitable memory corruption vulnerabilities
that might be present in the firmware code [24]. Moreover,
hardware countermeasures, described in Section 5.3, are used
to prevent the firmware code from accessing the SM data or
hardware primitives. Ultimately, this minimizes the software
TCB in CURE, as opposed to other TEE architectures that rely
on a software TCB containing all code in the highest privilege
level, i.e., EL3 (ARM) or the machine level (RISC-V), e.g.,
TrustZone [3], Sanctuary [10], Sanctum [22], Keystone [48].

5.3 Hardware Security Primitives

To provide CURE’s customizable enclaves, new security prim-
itives (SP) are needed in hardware. Our SPs augment the
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Performing access control. The added registers hold mem-
ory ranges defined by a 32-bit base address (Addr) and a
32-bit mask (Mask), and are used by the control logic to per-
form access control on every memory transaction using the
eid and address signals. Access control is only performed
on channels with a parent-to-child direction (channels A and
C). At access violation, the transaction is redirected (with
all-zero data) to an unused, zero-initialized memory region.
Thus, all forbidden transactions write/read zeros to/from the
unused memory region. An adversary enclave might fill L1
with malicious data which could get flushed with SM priv-
ileges during enclave context switch. To prevent this, we
modify the core such that on every switch to the SM, the L1 is
flushed before the eid register is set. We connect the system
bus to the peripheral and interrupt bus. This allows the SM to
configure the added registers and control logic, and trigger an
interrupt upon access violation which is handled by the SM.
Memory arbiter. We add 15 registers to the memory arbiter,
one for each enclave (13), the SM and the firmware. Each
register defines the memory region assigned to each execu-
tion context. For the enclaves, the control logic verifies that
transactions only target the assigned region. For the SM, no
access control is performed. The OS is allowed to access all
regions except the ones specified in registers of the arbiter.
The firmware is allowed to access its own and the OS regions
which is why a static ID needs to be assigned to the firmware.
Peripheral arbiter. We add two registers per peripheral to the
arbiter of the peripheral bus. One covers the MMIO region of
the peripheral, and the other 32-bit register contains a bitmap
that defines read and write permissions for every enclave.
DMA port. We add a register at every port which connects
a DMA device. In CURE, a DMA device is exclusively as-
signed to a single enclave at one point in time. In our pro-
totype, a DMA device accesses the main memory but not
other peripherals. If specific use cases, e.g. PCI peer-to-
peer transactions [67], must be supported, additional registers
need to be added to specify multiple allowed memory regions.
Together with the peripheral arbiter, this fulfills FR.2.

6.2.3 L2 Cache Partitioning

For cache side-channel resilience, we implement way-based
flexible cache partitioning for the shared L2 (last-level)
cache [81] in our prototype. We leverage the eid-extended
TileLink memory transactions to detect when an enclave is-
sues a cache request.

Configurable partitioning. We implement two modes of
partitioning to allow enclaves to individually enable cache
side-channel resilience. The first mode CP-BASIC performs
rudimentary access control where each enclave is only permit-
ted to access (hit) its own cache lines, but is free to evict cache
lines from other ways. The second mode CP-STRICT provides
more stringent security guarantees by allocating exclusively
one or more ways (across all cache sets) to the pertinent en-

clave. Only these cache ways can be accessed by the enclave
to store or evict cache lines. This provides strict isolation
between the cache resources of the different enclaves, thus,
effectively blocking cache side-channel leakage, but reduces
the cache resources available for the enclave. Depending on
the enclave service requirements, the partitioning mode can
be configured by the SM independently for each enclave at
setup and during the enclave lifetime, thus, fulfilling FR.5.

Access control. We extend each cache entry metadata with
a 4-bit line-eid register encoding the owner enclave of the
cache line, as shown in in Figure 6. We extend the cache
lookup logic to generate a hit only when both tag as well as
eid match for CP-BASIC, as opposed to usual tag matching.

To support CP-STRICT, the cache ways directory is also
extended with a 1-bit register excl that identifies whether
each way is owned exclusively by an enclave, as well as a
4-bit eid register that identifies the owner enclave. The cache
controller logic is augmented with a register-based lookup
table that is indexed by the eid. It encodes with a single
mode bit whether the corresponding enclave has CP-STRICT
enabled and its allocated cache way indices. In CP-STRICT,
cache hits are only allowed in these cache ways.

Eviction and replacement. The L2 cache we use imple-
ments a pseudo-random replacement policy where any way
is selected pseudo-randomly for eviction. We modify this to
only select a way from the subset of ways allowed for each
enclave. For enclaves with CP-STRICT, only ways exclusively
allocated to it are used. For enclaves with CP-BASIC, all ways
(except ways allocated exclusively to other enclaves) are used.

Per-enclave cache allocation. Unallocated way indices
are maintained in a register vector. If an enclave with
CP-STRICT enabled requests to exclusively own cache ways,
the required ways are allocated if available and below the
allowed maximum per enclave.

An inherent drawback of this partitioning technique is how
the limited number of cache ways directly constrains the num-
ber of simultaneous enclaves that can have CP-STRICT en-
abled. However, this is only an implementation decision
for our particular prototype, where more sophisticated cache
designs [25, 74, 99] can be integrated into CURE.

7 Security Considerations

To protect from a strong software adversary, our instantiation
of CURE must fulfill the security requirements introduced
in Section 4.1. In the following section, we discuss how
our prototype meets the requirements SR.1, SR.2, and SR.4,
whereas we show the fulfillment of SR.3 in Section 8.

7.1 Hardware Security Primitives (SR.2)

The enclave protection is enforced by hardware SPs at the
system bus and L2 cache which are configured over MMIO.
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After the system is powered on and on every switch to the ma-
chine level, the CPU jumps to the trap vector whose address
is stored in the mtvec register. The trap vector is included
into the SM such that the boot process and context switches
are overlooked by the SM. The mtvec register is assigned to
the SM by coupling the access permission to the SM enclave
ID (stored in the eid register) which is also assigned to the
SM. The eid register is set by hardware during the context
switch into the machine level. During boot, the SM assigns
the SP MMIO regions exclusively to its own enclave ID.

7.2 Enclave Protection (SR.1)
At rest, the enclave binaries are stored unencrypted in memory.
However, during enclave setup, the SM verifies the binaries
using digital signatures. Moreover, the L1 is flushed during
setup/teardown to remove malicious or sensitive data from
the cache. The communication between enclaves and the OS
is controlled by the SM, so is the delegation of the shared
memory address. Hardware-assisted hyperthreading is dis-
abled during enclave execution. The enclave state, which is
loaded during the setup process, is persistently stored by the
SM using authenticated encryption, either in RAM as part of
the SM state or evicted to flash/disk, and additionally rollback
protected. During teardown, the SM removes all enclave data
from the memory.

The SPs in hardware perform access control on physical
addresses at the system bus. Thus, CURE protects from ad-
versaries in privileged software levels (PL2 - PL0) and from
off-core adversaries, e.g. peripherals performing DMA. The
enclave data cached in the L1 during run time is protected
by flushing it on all context switches. Data in the L2 cache
is protected by assigning cache lines exclusively to enclaves.
Since no enclave (except the SM), has elevated rights on the
system, CURE also protects from malicious enclaves.

7.3 Side-channel Attack Resilience (SR.4)
Cache side-channel attacks. Side-channel attacks which tar-
get data in core-exclusive cache resources, i.e., in the L1 [11],
the BTB [50] or the TLB [31], are prevented by the SM by
flushing the resources on all context switches. Side-channel
attacks targeting data in the shared L2 cache [36, 39, 102] are
prevented through strict way-based cache partitioning.
Controlled side-channel attacks. Side-channel attacks on
user-space enclaves which target page tables [65, 92, 101]
are prevented by including the page tables into the enclave
memory and by mapping all enclave code and data pages
before execution. The SM verifies the page tables and the
base address of the root page table stored in the satp register.
The hardware SPs prevent the page table walker (PTW) from
performing forbidden memory access during the page table
walk. Side-channel attacks exploiting interrupts [91] can be
mitigated using trap handlers (Section 5.2.2).

CURE provides cryptographic primitives in the user-space
enclaves to encrypt and integrity-protect data shared with
the OS. However, using OS services over syscalls always
comprises a remaining risk of leaking meta data informa-
tion [2, 77] or of receiving malicious return values from the
OS [13]. In user-space enclaves, these attacks must be mit-
igated on the application level inside the enclave, e.g., by
using data-oblivious algorithms [2, 68] or by verifying the
return values [13]. None of these attacks pose a threat to
kernel-space enclave since all resources are handled by the
enclave RT. However, on VM enclaves, the second level
page tables need to be protected, as with user-space enclaves.
Interrupt-based attacks can again be mitigated with custom
trap handlers. No additional countermeasures are needed to
protect the SM since the SM does not use a virtual address
space or OS services and handles its own interrupts.
Transient execution attacks. The discovered transient exe-
cution attacks either mistrain the branch predictor [14,43,45],
rely on information leakage [89] or malicious injections [90]
on the L1 cache, or rely on resources shared when using
hardware-assisted hyperthreading [12, 78, 90, 93, 94]. By
disabling hyperthreading during enclave execution (or alter-
natively assigning all threads to the enclave) and flushing
core-exclusive caches, CURE protects enclaves against the
known transient execution attacks.

8 Evaluation

In the following section, we systematically evaluate our CURE
prototype. First, we quantify the software and hardware mod-
ifications required to implement CURE. Next, we evaluate
the performance of CURE’s enclaves using microbenchmarks,
and the overall performance overhead of CURE using generic
RISC-V benchmark suites.

8.1 System Modifications

Component LOC
Linux Kernel 375 (modified)
Custom Kernel Module 200
Security Monitor 544
SM Crypto-Library 2586

Table 1: Lines of code required to implement CURE. SM
Crypto-Library refers to the crypto library (part of tomcrypt)
included in the Security Monitor.

Software changes and TCB. Our implementation of CURE
on RISC-V comprises of a slightly modified Linux LTS kernel
4.19, a custom kernel module, and our software TCB (SM).
In Table 1, the lines of code (LOC) are shown for each of
the components, which indicate that the software changes
required to implement CURE are minimal. Moreover, the
SM only consists of around 3KLOC of code, whereas most
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(82.62%) of the SM code consists of cryptographic primi-
tives. Because of its minimal size, formal verification of the
SM is possible [44], thus, fulfilling SR.3. Note that since
CURE isolates the SM in an own sub-space enclave, CURE
can achieve a smaller TCB size than other RISC-V security ar-
chitectures [22, 48, 98] which include all code in the machine
level, i.e., the firmware code, in the TCB. In our implemen-
tation, the firmware code consists of 3286 LOCs. Thus, by
isolating the SM in a sub-space enclave, we managed to cut
the software TCB in half, where the actual management code
is even less (15.56%).

Protecting a sensitive service in a user-space enclave re-
quires to add a small custom library (10KB) to the service
binary. For the kernel-space enclaves, management code (the
enclave RT) must be added in addition. In our prototype, we
use the Linux LTS kernel 4.19 as the RT which increases the
size of the service binary by 3MB. Custom RTs can further
decrease this kernel-space enclave overhead. However, kernel-
space enclaves will always have an increased binary size and
memory consumption compared to user-space enclaves.
Hardware overhead. We evaluate the hardware overhead of
our changes by synthesizing the generated Verilog descrip-
tions using Xilinx Vivado tools targeting a Virtex UltraScale
FPGA device. Table 2 shows a breakdown of the individ-
ual area overhead of the different modifications required to
implement CURE. Overhead is represented in look-up ta-
bles (LUTs), the fundamental programmable logic blocks of
FPGA devices, and registers.

Configuration LUTs Registers
Overhead (+%) Overhead (+%)

Baseline 61,097 28,012
TileLink extension +211 (0.4%) +110 (0.4%)

Access control extensions

Main memory +5,276 (8.6%) +1,055 (3.8%)
1 MMIO peripheral +248 (0.4%) +107 (0.4%)
1 DMA device +112 (0.2%) +72 (0.3%)

On-demand cache partitioning

w/ L2 cache (baseline) +30,232 +11,549
w/ L2 cache partitioned +516 (1.7%∗) +214 (1.8%∗)

Table 2: Hardware overhead breakdown in LUTs and registers.
Baseline setup consists of 2 Rocket cores without L2 cache.∗Overhead relative to the L2 cache (baseline).

We compare in Table 2 with a baseline configuration of 2
in-order Rocket cores (each with L1 cache). Extending the
TileLink protocol throughout the system bus incurs a minimal
overhead of 105 LUTs per core relative to the baseline (211
LUTs for 2 cores). This overhead includes propagating the
eid in tandem with memory access transactions through the
MMU of every core, and is thus replicated for every additional
core in the system.

In contrast, the rest of our modifications for performing ac-
cess control at the system bus, including enclave-to-peripheral

Measurement Normal
Process

User-Space
Enclave

Kernel-Space
Enclave

Setup: 0.741 23.918 413.726
Binary Verification - 21.824 218.975
Others 0.741 2.094 194.750

Teardown: 0.065 23.531 103.517
Memory Cleaning - 9.384 50.206
Others 0.065 14.147 53.311

Context switch to OS 0.008 0.025 53.308
Context switch from OS 0.078 0.084 194.747
Dynamic memory allocation 0.003 0.020 0.005
OS communication - 0.020 0.049

Table 3: CURE performance overhead compared to a normal
process on microbenchmarks in milliseconds.

binding, are independent of the number of cores. Incorpo-
rating logic to perform access control for every MMIO pe-
ripheral utilizes an additional 248 LUTs, and 112 LUTs per
DMA device. Each represent below 0.5% overhead relative
to a dual-core baseline SoC. Integrating an L2 cache into our
baseline setup utilizes an additional 30,232 LUTs. Applying
our on-demand way-based partitioning to this cache costs only516 LUTs and 214 registers, which is 1.8% overhead relative
to the L2 cache logic utilization itself, and 0.5% relative to the
entire SoC. Our area overhead evaluation results demonstrate
that the hardware modifications required to achieve our fine-
grained and customized enclave protection in CURE indeed
incur minimal area overhead on both single- and multi-core
architectures, thus fulfilling FR.3.

8.2 Performance Evaluation
We evaluate the performance of CURE using our FPGA-based
setup coupled with cycle-accurate simulators. We conduct
our experiments using micro and macro benchmarks for user-
space and kernel-space enclaves, and compare them to un-
modified user-space processes. We conduct 10 runs for each
of the experiments.

8.2.1 Microbenchmarks

For microbenchmarks (Table 3), we measured important key
aspects individually: setting up and tearing down an enclave,
context switching with the OS, dynamic memory allocation,
and communication via shared memory. We implement an
application which performs the required tasks (without any
additional logic) and run it as a normal Linux process, a user-
space enclave and a kernel-space enclave (single core). The
enclave setup is triggered by a host app in Linux which is the
only purpose of the app. The enclave binary sizes therefore
mainly correspond to the overhead produced by the enclave
types, i.e., 10KB for the user-space enclave and around 3MB
for the kernel-space enclave.

For the enclave setup, our results show that most of the
time (91.3% for user-space, 52.1% for kernel-space enclaves)
is spent on binary verification. The Others measurement
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Benchmark Cycles # for 16/16 Cycles # for 1/16 Overhead
ways (baseline) ways (worst-case) (+%)

rv8.aes 29,754,631,670 32,175,733,155 8.1%
rv8.miniz 42,040,536,353 45,063,752,315 7.2%
rv8.norx 30,899,386,564 32,702,249,193 5.8%

rv8.primes 21,731,621,683 21,770,731,965 0.18%
rv8.qsort 24,355,792,115 25,280,228,818 3.8%

rv8.dhrystone 19,865,586,529 20,289,555,571 2.1%
rv8.bigint 65,512,466,917 71,487,944,568 9.1%
CoreMark 394,664,199 402,293,814 1.9%
GeoMean - - 3.09%

Table 5: Performance impact of L2 cache strict way-based par-
titioning for kernel-space enclaves on different benchmarks.

that the kernel-space enclave has a higher performance impact
on the OS than the user-space enclave. Based on these results,
we demonstrate that CURE also fulfills FR.4 and achieves a
moderate performance overhead.
L2 cache partitioning. We evaluate the performance impact
of partitioning the L2 cache (CP-STRICT mode) for kernel-
space enclaves and show our results in Table 5. For our
cycle-accurate experiments, we configure the core with 64KB
8-way set-associative L1 data and instructions caches and
2048KB 16-way set-associative shared L2 cache. The im-
pact of way-based cache partitioning on performance is very
application-dependent (besides the caches configuration and
caches and main memory access latencies), as demonstrated
by our experiments where the performance overhead ranges
from a little under 0.2%, as for the prime benchmark, to a
little over 9% for the bigint benchmark, for example. We
measure a geometric mean of 3.09%. We note that the over-
heads reported are performance hits where the baseline is a
best-case scenario where the only workload utilizing the cache
resources (all 16 ways of the L2 cache) is the kernel-space
enclave under test. Furthermore, we observe that performance
significantly improves once more than 1 way is allocated per
enclave, which is the likely scenario for enclaves that run
applications with larger working sets and can benefit more
from increased L2 cache resources.

9 Related Work

The existing works mostly related to CURE are TEE archi-
tectures which focus on modern high-performance computer
systems. In contrast to capability systems or memory tagging
extensions [30, 82, 88, 95, 100], TEE architectures protect
sensitive services in security contexts (enclaves) against priv-
ileged software adversaries. We do not further discuss TEE
architectures focusing on embedded systems [8, 47, 66, 98].

We compare CURE to other TEE architectures in Table 6.
All presented architectures provide a single type of enclave
which, on an abstract level, resemble either the user-space or
kernel-space enclaves provided by CURE.

Intel SGX [64] offers user-space enclaves on Intel proces-
sors. The untrusted OS provides memory management and

other OS services, e.g. exception handling, to the enclaves.
SGX does not protect against cache side-channel [11, 50] and
controlled side-channel attacks [91, 92, 101]. Many exten-
sions to SGX were proposed in order to mitigate side-channel
attacks [1, 2, 7, 15, 69, 79], however, these solutions are all
ad-hoc approaches that do not fix the underlying design short-
comings of SGX, but instead leverage costly data-oblivious
algorithms [1, 2, 7], or exploit not commonly available hard-
ware in an unintended way [15, 79].

Sanctum [22], which also provides user-space enclaves, ad-
dresses both, cache side-channels through page coloring, and
controlled side-channels by storing the enclave page tables in
the enclave memory, like CURE. However, page coloring is
not practical as it influences the whole OS memory layout and
cannot be efficiently changed at run time. CURE’s cache par-
titioning instead allows dynamic assignment of cache ways,
and also mechanisms to mitigate interrupt-based side-channel
attacks. Sanctum and SGX only provide user-space enclaves
which are inherently limited as they cannot provide secure
I/O, but only protect from simple DMA attacks.

Similar to SGX, AMD SEV [38], which isolates complete
VMs in the form of kernel-space enclaves, does not consider
any side-channel attacks. VM data in the CPU cache is pro-
tected by an access control mechanism relying on Address
Space Identifiers which, however, does not protect against
cache side-channel attacks. As the memory management and
I/O services are provided by the untrusted hypervisor, SEV
is also vulnerable to controlled side-channel attacks [65] and
cannot provide secure peripheral binding [51].

ARM TrustZone [3] separates the system into normal and
secure world, a single kernel-space enclave which does not
rely on the OS and thus, is protected from controlled side-
channel attacks. TrustZone does not provide cache side-
channels protection, only by using additional hardware [106].
Further, TrustZone’s major design shortcoming is provid-
ing only a single enclave, thus, sensitive services cannot be
strongly isolated with TrustZone, hence, access to TrustZone
is highly limited in practice by device vendors. Extensions
building upon TrustZone mostly tried to enable multi-enclave
support for TrustZone [10, 18, 33, 85] with workarounds that
either rely on ARM IP [10], block the hypervisor [18, 33], or
massively impact performance [85]. Since multiple enclaves
were not considered in the TrustZone design from the begin-
ning, even the proposed extensions cannot provide binding
peripherals directly and exclusively to single enclaves.

Keystone [48] provides kernel-space enclaves on RISC-
V. Moreover, Keystone uses a cache-way based partition-
ing against cache side-channel attacks, comparable to CURE.
However, Keystone provides a coarse-grained cache ways
assignment per CPU core, whereas CURE assigns cache ways
to enclaves with freely configurable boundaries. Thus, the
Keystone design is limited to a single enclave type which
prevents Keystone from isolating the firmware from the ac-
tual TCB and demands adapting the sensitive services to the
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Enclave Type

Name Extensions User-Space Kernel-Space Sub-Space
Dynamic Cache

Side-Channel Resilience
Controlled Side-

Channel Resilience
Enclave-to-Peripheral

Binding
SGX [64] [1, 2, 7, 15, 69, 79] ●∗ ○∗ ○∗ ◐∗ ◐∗ ○∗

Sanctum [22] - ●∗ ○∗ ○∗ ◐∗ ●∗ ○∗
SEV(-ES) [38] - ○∗ ●∗ ○∗ ○∗ ○∗ ○∗
TrustZone [3] [10, 18, 27, 32, 33, 57, 85, 106] ○∗ ●∗ ○∗ ◐∗ ●∗ ◐∗
Keystone [48] - ○∗ ●∗ ○∗ ●∗ ●∗ ○∗

CURE - ●∗ ●∗ ●∗ ●∗ ●∗ ●∗
Table 6: Comparison of major TEE architectures with respect to provided enclave types, dyn. cache-side channel and controlled-
side channel resilience, and enclave-to-peripheral binding, i.e., MMIO/DMA protection with exclusive enclave assignment.● indicates full support, ◐ for support with limitations, ○ for no support, ∗ if resilience can only be achieved through extensions.

predefined enclave. Moreover, in contrast to CURE, Keystone
does not support enclave-to-peripheral binding.
10 Conclusion

We presented CURE, a novel TEE architecture which provides
strongly-isolated enclaves that can be adapted to the function-
ality and security requirements of the sensitive services which
they protect. CURE offers different types of enclaves, rang-
ing from sub-space enclaves, over user-space enclaves, to
self-sustained kernel-space enclaves which can execute priv-
ileged software. CURE’s protection mechanisms are based
on new hardware security primitives on the system bus, the
shared cache and the CPU. We instantiate CURE on a RISC-V
system. The evaluation of our prototype indicates minimal
hardware overhead for the security primitives and a moderate
overall performance overhead.
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Abstract

Modern computer systems are becoming faster, more efficient,
and increasingly interconnected with each generation. Thus,
these platforms grow more complex, with new features con-
tinually introducing the possibility of new bugs. Although the
semiconductor industry employs a combination of different
verification techniques to ensure the security of System-on-
Chip (SoC) designs, a growing number of increasingly so-
phisticated attacks are starting to leverage cross-layer bugs.
These attacks leverage subtle interactions between hardware
and software, as recently demonstrated through a series of
real-world exploits that affected all major hardware vendors.

In this paper, we take a deep dive into microarchitectural
security from a hardware designer’s perspective by reviewing
state-of-the-art approaches used to detect hardware vulnera-
bilities at design time. We show that a protection gap currently
exists, leaving chip designs vulnerable to software-based at-
tacks that can exploit these hardware vulnerabilities. Inspired
by real-world vulnerabilities and insights from our industry
collaborator (a leading chip manufacturer), we construct the
first representative testbed of real-world software-exploitable
RTL bugs based on RISC-V SoCs. Patching these bugs may
not always be possible and can potentially result in a product
recall. Based on our testbed, we conduct two extensive case
studies to analyze the effectiveness of state-of-the-art security
verification approaches and identify specific classes of vulner-
abilities, which we call HardFails, which these approaches
fail to detect. Through our work, we focus the spotlight on
specific limitations of these approaches to propel future re-
search in these directions. We envision our RISC-V testbed
of RTL bugs providing a rich exploratory ground for future
research in hardware security verification and contributing to
the open-source hardware landscape.

1 Introduction

The divide between hardware and software security research
is starting to take its toll, as we witness increasingly sophis-

ticated attacks that combine software and hardware bugs to
exploit computing platforms at runtime [20, 23, 36, 43, 45, 64,
69, 72, 74]. These cross-layer attacks disrupt traditional threat
models, which assume either hardware-only or software-only
adversaries. Such attacks may provoke physical effects to in-
duce hardware faults or trigger unintended microarchitectural
states. They can make these effects visible to software adver-
saries, enabling them to exploit these hardware vulnerabilities
remotely. The affected targets range from low-end embedded
devices to complex servers, that are hardened with advanced
defenses, such as data-execution prevention, supervisor-mode
execution prevention, and control-flow integrity.

Hardware vulnerabilities. Cross-layer attacks circumvent
many existing security mechanisms [20, 23, 43, 45, 64, 69, 72,
74], that focus on mitigating attacks exploiting software vul-
nerabilities. Moreover, hardware-security extensions are not
designed to tackle hardware vulnerabilities. Their implemen-
tation remains vulnerable to potentially undetected hardware
bugs committed at design-time. In fact, deployed extensions
such as SGX [31] and TrustZone [3] have been targets of suc-
cessful cross-layer attacks [69, 72]. Research projects such
as Sanctum [18], Sanctuary [8], or Keystone [39] are also not
designed to ensure security at the hardware implementation
level. Hardware vulnerabilities can occur due to: (a) incor-
rect or ambiguous security specifications, (b) incorrect design,
(c) flawed implementation of the design, or (d) a combination
thereof. Hardware implementation bugs are introduced either
through human error or faulty translation of the design in
gate-level synthesis.

SoC designs are typically implemented at register-transfer
level (RTL) by engineers using hardware description lan-
guages (HDLs), such as Verilog and VHDL, which are synthe-
sized into a lower-level representation using automated tools.
Just like software programmers introduce bugs to the high-
level code, hardware engineers may accidentally introduce
bugs to the RTL code. While software errors typically cause
a crash which triggers various fallback routines to ensure the
safety and security of other programs running on the platform,
no such safety net exists for hardware bugs. Thus, even mi-
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nor glitches in the implementation of a module within the
processor can compromise the SoC security objectives and
result in persistent/permanent denial of service, IP leakage, or
exposure of assets to untrusted entities.

Detecting hardware security bugs. The semiconductor in-
dustry makes extensive use of a variety of techniques, such
as simulation, emulation, and formal verification to detect
such bugs. Examples of industry-standard tools include In-
cisive [10], Solidify [5], Questa Simulation and Questa For-
mal [44], OneSpin 360 [66], and JasperGold [11]. These were
originally designed for functional verification with security-
specific verification incorporated into them later.

While a rich body of knowledge exists within the software
community (e.g., regarding software exploitation and tech-
niques to automatically detect software vulnerabilities [38,
46]), security-focused HDL analysis is currently lagging be-
hind [35, 57]. Hence, the industry has recently adopted a
security development lifecycle (SDL) for hardware [68] —
inspired by software practices [26]. This process combines
different techniques and tools, such as RTL manual code au-
dits, assertion-based testing, dynamic simulation, and auto-
mated security verification. However, the recent outbreak of
cross-layer attacks [20, 23, 37, 43, 45, 47, 48, 49, 51, 52, 53,
64, 69, 74] poses a spectrum of difficult challenges for these
security verification techniques, because they exploit complex
and subtle inter-dependencies between hardware and software.
Existing verification techniques are fundamentally limited in
modeling and verifying these interactions. Moreover, they
also do not scale with the size and complexity of real-world
SoC designs.

Goals and Contributions. In this paper, we show that cur-
rent hardware security verification techniques are fundamen-
tally limited. We provide a wide range of results using a
comprehensive test harness, encompassing different types
of hardware vulnerabilities commonly found in real-world
platforms. To that end, we conducted two case studies to
systematically and qualitatively assess existing verification
techniques with respect to detecting RTL bugs. Together
with our industry partners, we compiled a list of 31 RTL
bugs based on public Common Vulnerabilities and Exposures
(CVEs) [37, 43, 50, 54, 55] and real-world errata [25]. We in-
jected bugs into two open-source RISC-V-based SoC designs,
which we will open-source after publication.

We organized an international public hardware security
competition, Hack@DAC, where 54 teams of researchers
competed for three months to find these bugs. While a number
of bugs could not be detected by any of the teams, several
participants also reported new vulnerabilities of which we
had no prior knowledge. The teams used manual RTL inspec-
tion and simulation techniques to detect the bugs. In industry,
these are usually complemented by automated tool-based and
formal verification approaches. Thus, our second case study
focused on two state-of-the-art formal verification tools: the

first deploys formal verification to perform exhaustive and
complete verification of a hardware design, while the second
leverages formal verification and path sensitization to check
for illegal data flows and fault tolerance.

Our second case study revealed that certain properties of
RTL bugs pose challenges for state-of-the-art verification
techniques with respect to black-box abstraction, timing flow,
and non-register states. This causes security bugs in the RTL
of real-world SoCs to slip through the verification process.
Our results from the two case studies indicate that particu-
lar classes of hardware bugs entirely evade detection—even
when complementing systematic tool-based verification ap-
proaches with manual inspection. RTL bugs arising from
complex and cross-modular interactions in SoCs render these
bugs extremely difficult to detect in practice. Furthermore,
such bugs are exploitable from software, and thus can com-
promise the entire platform. We call such bugs HardFails.

To the best of our knowledge, this is the first work to pro-
vide a systematic and in-depth analysis of state-of-the-art
hardware verification approaches for security-relevant RTL
bugs. Our findings shed light on the capacity of these tools and
demonstrate reproducibly how bugs can slip through current
hardware security verification processes. Being also software-
exploitable, these bugs pose an immense security threat to
SoCs. Through our work, we highlight why further research
is required to improve state-of-the-art security verification of
hardware. To summarize, our main contributions are:
• Systematic evaluation and case studies: We compile

a comprehensive test harness of real-world RTL bugs, on
which we base our two case studies: (1) Hack@DAC’18,
in which 54 independent teams of researchers competed
worldwide over three months to find these bugs using
manual RTL inspection and simulation techniques, and
(2) an investigation of the bugs using industry-leading
formal verification tools that are representative of the
current state of the art. Our results show that particular
classes of bugs entirely evade detection, despite combin-
ing both tool-based security verification approaches and
manual analysis.
• Stealthy hardware bugs: We identify HardFails as

RTL bugs that are distinctly challenging to detect using
industry-standard security verification techniques. We
explain the fundamental limitations of these techniques
in detail using concrete examples.
• Open-sourcing: We will open-source our bugs testbed

at publication to the community.

2 SoC Verification Processes and Pitfalls

Similar to the Security Development Lifecycle (SDL) de-
ployed by software companies [26], semiconductor compa-
nies [15, 35, 40] have recently adapted SDL for hardware
design [57]. We describe next the conventional SDL process
for hardware and the challenges thereof.
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FIGURE 1: Typical Security Development Lifecycle (SDL)
process followed by semiconductor companies.

2.1 The Security Development Lifecycle
(SDL) for Hardware

SDL is conducted concurrently with the conventional hard-
ware development lifecycle [68], as shown in Figure 1. The
top half of Figure 1 shows the hardware development lifecy-
cle. It begins with design exploration followed by defining
the specifications of the product architecture. After the archi-
tecture specification, the microarchitecture is designed and
implemented in RTL. Concurrently, pre-silicon verification
efforts are conducted until tape-out to detect and fix all func-
tional bugs that do not meet the functional specification. After
tape-out and fabrication, iterations of post-silicon validation,
functional testing, and tape-out "spins" begin. This cycle is re-
peated until no defects are found and all quality requirements
are met. Only then does the chip enter mass production and
is shipped out. Any issues found later in-field are debugged,
and the chip is then either patched if possible or recalled.

After architectural features are finalized, a security assess-
ment is performed, shown in the bottom half of Figure 1. The
adversary model and the security objectives are compiled in
the security specification. This typically entails a list of assets,
entry points to access these assets, and the adversary capa-
bilities and architectural security objectives to mitigate these
threats. These are translated into microarchitectural security
specifications, including security test cases (both positive and
negative). After implementation, pre-silicon security verifica-
tion is conducted using dynamic verification (i.e., simulation
and emulation), formal verification, and manual RTL reviews.
The chip is not signed off for tape-out until all security specifi-
cations are met. After tape-out and fabrication, post-silicon se-
curity verification commences. The identified security bugs in
both pre-silicon and post-silicon phases are rated for severity
using the industry-standard scoring systems such as the Com-
mon Vulnerability Scoring System (CVSS) [30] and promptly
fixed. Incident response teams handle issues in shipped prod-
ucts and provide patches, if possible.

2.2 Challenges with SDL

Despite multiple tools and security validation techniques used
by industry to conduct SDL, it remains a highly challenging,

tedious, and complex process even for industry experts. Exist-
ing techniques largely rely on human expertise to define the
security test cases and run the tests. The correct security spec-
ifications must be exhaustively anticipated, identified, and
accurately and adequately expressed using security properties
that can be captured and verified by the tools. We discuss
these challenges further in Section 7.

Besides the specifications, the techniques and tools them-
selves are not scalable and are less effective in capturing
subtle semantics that are relevant to many vulnerabilities,
which is the focus of this work. We elaborate next on the lim-
itations of state-of-the-art hardware security verification tools
commonly used by industry. To investigate the capabilities of
these tools, we then construct a comprehensive test-harness
of real-world RTL vulnerabilities.

3 Assessing Hardware Security Verification

In this section, we focus on why the verification of the secu-
rity properties of modern hardware is challenging and provide
requirements for assessing existing verification techniques
under realistic conditions. First, we describe how these ver-
ification techniques fall short. Second, we provide a list of
common and realistic classes of hardware bugs, which we
use to construct a test harness for assessing the effectiveness
of these verification techniques. Third, we discuss how these
bugs relate to the common security goals of a chip.

3.1 Limitations of Automated Verification
Modern hardware designs are highly complex and incorpo-
rate hundreds of in-house and third-party Intellectual Property
(IP) components. This creates room for vulnerabilities to be
introduced in the inter-modular interactions of the design hi-
erarchy. Multi-core architectures typically have an intricate
interconnect fabric between individual cores (utilizing com-
plex communication protocols), multi-level cache controllers
with shared un-core and private on-core caches, memory and
interrupt controllers, and debug and I/O interfaces.

For each core, these components contain logical modules
such as fetch and decode stages, an instruction scheduler, indi-
vidual execution units, branch prediction, instruction and data
caches, the memory subsystem, re-order buffers, and queues.
These are implemented and connected using individual RTL
modules. The average size of each module is several hundred
lines of code (LOC). Thus, real-world SoCs can easily ap-
proach 100,000 lines of RTL code, and some designs may
even have millions of LOC. Automatically verifying, at the
RTL level, the respective interconnections and checking them
against security specifications raises a number of fundamen-
tal challenges for the state-of-the-art approaches. These are
described below.
L-1: Cross-modular effects. Hardware modules are inter-
connected in a highly hierarchical design with multiple inter-
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dependencies. Thus, an RTL bug located in an individual
module may trigger a vulnerability in intra- and inter-modular
information flows spanning multiple complex modules. Pin-
pointing the bug requires analyzing these flows across the
relevant modules, which is highly cumbersome and unreliable
to achieve by manual inspection. It also pushes formal veri-
fication techniques to their limits, which work by modeling
and analyzing all the RTL modules of the design to verify
whether design specifications (expressed using security prop-
erty assertions, invariants and disallowed information flows)
and implementation match.

Detecting such vulnerabilities requires loading the RTL
code of all the relevant modules into the tools to model and
analyze the entire state space, thus driving them quickly
into state explosion due to the underlying modeling algo-
rithms [16, 21]. Alleviating this by providing additional com-
putational resources and time is not scalable as the complexity
of SoCs continues to increase. Selective "black-box" abstrac-
tion of some of the modules, state space constraining, and
bounded-model checking are often used. However, they do
not eliminate the fundamental problem and rely on interactive
human expertise. Erroneously applying them may introduce
false negatives, leading to missed vulnerabilities.
L-2: Timing-flow gap. Current industry-standard techniques
are limited in capturing and verifying security properties re-
lated to timing flow (in terms of clock cycle latency). This
leads to vast sources of information leakage due to software-
exploitable timing channels (Section 8). A timing flow exists
between the circuit’s input and output when the number of
clock cycles required for the generation of the output depends
on input values or the current memory/register state. This can
be exploited to leak sensitive information when the timing
variation is discernible by an adversary and can be used to
infer inputs or memory states. This is especially problematic
for information flows and resource sharing across different
privilege levels. This timing variation should remain indis-
tinguishable in the RTL, or should not be measurable from
the software. However, current industry-standard security ver-
ification techniques focus exclusively on the functional in-
formation flow of the logic and fail to model the associated
timing flow. The complexity of timing-related security issues
is aggravated when the timing flow along a logic path spans
multiple modules and involves various inter-dependencies.
L-3: Cache-state gap. State-of-the-art verification tech-
niques only model and analyze the architectural state of a
processor by exclusively focusing on the state of registers.
However, they do not support analysis of non-register states,
such as caches, thus completely discarding modern proces-
sors’ highly complex microarchitecture and diverse hierarchy
of caches. This can lead to severe security vulnerabilities aris-
ing due to state changes that are unaccounted for, e.g., the
changing state of shared cache resources across multiple privi-
lege levels. Caches represent a state that is influenced directly
or indirectly by many control-path signals and can generate

security vulnerabilities in their interactions, such as illegal
information leakages across different privilege levels. Identi-
fying RTL bugs that trigger such vulnerabilities is beyond the
capabilities of existing techniques.
L-4: Hardware-software interactions. Some RTL bugs re-
main indiscernible to hardware security verification tech-
niques because they are not explicitly vulnerable unless trig-
gered by the software. For instance, although many SoC ac-
cess control policies are directly implemented in hardware,
some are programmable by the overlying firmware to allow
for post-silicon flexibility. Hence, reasoning on whether an
RTL bug exists is inconclusive when considering the hardware
RTL in isolation. These vulnerabilities would only materialize
when the hardware-software interactions are considered, and
existing techniques do not handle such interactions.

3.2 Constructing Real-World RTL Bugs

To systematically assess the state of the art in hardware se-
curity verification with respect to the limitations described
above, we construct a test harness by implementing a large
number of RTL bugs in RISC-V SoC designs (cf. Table 1).
To the best of our knowledge, we are the first to compile and
showcase such a collection of hardware bugs. Together with
our co-authors at Intel, we base our selection and construc-
tion of bugs on a solid representative spectrum of real-world
CVEs [47, 48, 49, 51, 52, 53] as shown in Table 1. For in-
stance, bug #22 was inspired by a recent security vulnerability
in the Boot ROM of video gaming mobile processors [56],
which allowed an attacker to bring the device into BootROM
Recovery Mode (RCM) via USB access. This buffer over-
flow vulnerability affected many millions of devices and is
popularly used to hack a popular video gaming console1.

We extensively researched CVEs that are based on
software-exploitable hardware and firmware bugs and clas-
sified them into different categories depending on the weak-
nesses they represent and the modules they impact. We repro-
duced them by constructing representative bugs in the RTL
and demonstrated their software exploitability and severity
by crafting a real-world software exploit based on one of
these bugs in Appendix D. Other bugs were constructed with
our collaborating hardware security professionals, inspired
by bugs that they have previously encountered and patched
during the pre-silicon phase, which thus never escalated into
CVEs. The chosen bugs were implemented to achieve cover-
age of different security-relevant modules of the SoC.

Since industry-standard processors are based on proprietary
RTL implementations, we mimic the CVEs by reproducing
and injecting them into the RTL of widely-used RISC-V SoCs.
We also investigate more complex microarchitecture features
of another RISC-V SoC and discover vulnerabilities already
existing in its RTL (Section 4). These RTL bugs manifest as:

1https://github.com/Cease-and-DeSwitch/fusee-launcher
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• Incorrect assignment bugs due to variables, registers,
and parameters being assigned incorrect literal values,
incorrectly connected or left floating unintended.
• Timing bugs resulting from timing flow issues and in-

correct behavior relevant to clock signaling such as in-
formation leakage.
• Incorrect case statement bugs in the finite state ma-

chine (FSM) models such as incorrect or incomplete
selection criteria, or incorrect behavior within a case.
• Incorrect if-else conditional bugs due to incorrect

boolean conditions or incorrect behavior described
within either branch.
• Specification bugs due to a mismatch between a spec-

ified property and its actual implementation or poorly
specified / under-specified behavior.

These seemingly minor RTL coding errors may constitute
security vulnerabilities, some of which are very difficult to
detect during verification. This is because of their intercon-
nection and interaction with the surrounding logic that affects
the complexity of the subtle side effects they generate in their
manifestation. Some of these RTL bugs may be patched by
modifying parts of the software stack that use the hardware
(e.g., using firmware/microcode updates) to circumvent them
and mitigate specific exploits. However, since RTL is usually
compiled into hardwired integrated circuitry logic, the under-
lying bugs cannot, in principle, be patched after production.

The limited capabilities of current detection approaches in
modeling hardware designs and formulating and capturing rel-
evant security assertions raise challenges for detecting some
of these vulnerabilities, which we investigate in depth in this
work. We describe next the adversary model we assume for
our vulnerabilities and our investigation.

3.3 Adversary Model
In our work, we investigate microarchitectural details at the
RTL level. However, all hardware vendors keep their propri-
etary industry designs and implementations closed. Hence,
we use an open-source SoC based on the popular open-source
RISC-V [73] architecture as our platform. RISC-V supports
a wide range of possible configurations with many standard
features that are also available in modern processor designs,
such as privilege level separation, virtual memory, and multi-
threading, as well as optimization features such as config-
urable branch prediction and out-of-order execution.

RISC-V RTL is freely available and open to inspection
and modification. While this is not necessarily the case for
industry-leading chip designs, an adversary might be able
to reverse engineer or disclose/steal parts of the chip using
existing tools23. Hence, we consider a strong adversary that
can also inspect the RTL code.

In particular, we make the following assumptions:

2https://www.chipworks.com/
3http://www.degate.org/

• Hardware Vulnerability: The attacker has knowledge of
a vulnerability in the hardware design of the SoC (i.e., at
the RTL level) and can trigger the bug from software.

• User Access: The attacker has complete control over a user-
space process, and thus can issue unprivileged instructions
and system calls in the basic RISC-V architecture.

• Secure Software: Software vulnerabilities and resulting
attacks, such as code-reuse [65] and data-only attacks [27]
against the software stack, are orthogonal to the problem
of cross-layer bugs. Thus, we assume all platform software
is protected by defenses such as control-flow integrity [1]
and data-flow integrity [13], or is formally verified.
The goal of an adversary is to leverage the vulnerability

on the chip to provoke unintended functionality, e.g., access
to protected memory locations, code execution with elevated
privileges, breaking the isolation of other processes running
on the platform, or permanently denying services. RTL bugs
in certain hardware modules might only be exploitable with
physical access to the victim device, for instance, bugs in de-
bug interfaces. However, other bugs are software-exploitable,
and thus have a higher impact in practice. Hence, we focus on
software-exploitable RTL vulnerabilities, such as the exploit
showcased in Appendix D. Persistent denial of service (PDoS)
attacks that require exclusive physical access are out of scope.
JTAG attacks, though they require physical access, are still in
scope as the end user may be the attacker and might attempt to
unlock the device to steal manufacturer secrets. Furthermore,
exploiting the JTAG interface often requires a combination of
both physical access and privilege escalation by means of a
software exploit to enable the JTAG interface. We also note
that an adversary with unprivileged access is a realistic model
for real-world SoCs: Many platforms provide services to other
devices over the local network or even over the internet. Thus,
the attacker can obtain some limited software access to the
platform already, e.g., through a webserver or an RPC inter-
face. Furthermore, we emphasize that this work focuses only
on tools and techniques used to detect bugs before tape-out.

4 HardFails: Hardware Security Bugs

In light of the limitations of state-of-the-art verification tools
(Section 3.1), we constructed a testbed of real-world RTL
bugs (Section 3.2) and conducted two extensive case stud-
ies on their detection (described next in Sections 5 and 6).
Based on our findings, we have identified particular classes of
hardware bugs that exhibit properties that render them more
challenging to detect with state-of-the-art techniques. We call
these HardFails. We now describe different types of these
HardFails encountered during our analysis of two RISC-V
SoCs, Ariane [59] and PULPissimo [61]. In Section 5.3, we
describe the actual bugs we instantiated for our case studies.

Ariane is a 6-stage in-order RISC-V CPU that implements
the RISC-V draft privilege specification and can run Linux
OS. It has a memory management unit (MMU) consisting of
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TABLE 1: Detection results for bugs in PULPissimo SoC based on formal verification (SPV and FPV, i.e., JasperGold Security
Path Verification and Formal Property Verification) and our hardware security competition (M&S, i.e., manual inspection and
simulation). Check and cross marks indicate detected and undetected bugs, respectively. Bugs marked inserted were injected
by our team and based on the listed CVEs, while bugs marked native were already present in the SoC and discovered by the
participants during Hack@DAC. LOC denotes the number of lines of code, and states denotes the total number of logic states
for the modules needed to attempt to detect this bug.

# Bug Type SPV FPV M&S Modules LOC # States

1 Address range overlap between peripherals SPI Master and SoC Inserted (CVE-2018-12206 / 3 3 3 91 6685 1.5×1020

CVE-2019-6260 / CVE-2018-8933)

2 Addresses for L2 memory is out of the specified range. Native 3 3 3 43 6746 3.5×1013

3 Processor assigns privilege level of execution incorrectly from CSR. Native 7 3 3 2 1186 2.1×1096

4 Register that controls GPIO lock can be written to with software. Inserted (CVE-2017-18293) 3 3 7 2 1186 2.1×1096

5 Reset clears the GPIO lock control register. Inserted (CVE-2017-18293) 3 3 7 2 408 1

6 Incorrect address range for APB allows memory aliasing. Inserted (CVE-2018-12206 / 3 3 7 1 110 2
CVE-2019-6260)

7 AXI address decoder ignores errors. Inserted (CVE-2018-4850) 7 3 7 1 227 2

8 Address range overlap between GPIO, SPI, and SoC control peripherals. Inserted (CVE-2018-12206 / 3 3 3 68 14635 9.4×1021

(CVE-2017-5704)

9 Incorrect password checking logic in debug unit. Inserted (CVE-2018-8870) 7 3 7 4 436 1

10 Advanced debug unit only checks 31 of the 32 bits of the password. Inserted (CVE-2017-18347 / 7 3 7 4 436 16
CVE-2017-7564)

11 Able to access debug register when in halt mode. Native (CVE-2017-18347 / 7 3 3 2 887 1

12 Password check for the debug unit does not reset after successful check. Inserted (CVE-2017-7564) 7 3 3 4 436 16

13 Faulty decoder state machine logic in RISC-V core results in a hang. Native 7 3 3 2 1119 32

14 Incomplete case statement in ALU can cause unpredictable behavior. Native 7 3 3 2 1152 4

15 Faulty logic in the RTC causing inaccurate time calculation for security-critical flows, e.g., DRM. Native 7 3 7 1 191 1

16 Reset for the advanced debug unit not operational. Inserted (CVE-2017-18347) 7 7 3 4 436 16

17 Memory-mapped register file allows code injection. Native 7 7 3 1 134 1

18 Non-functioning cryptography module causes DOS. Inserted 7 7 7 24 2651 1

19 Insecure hash function in the cryptography module. Inserted (CVE-2018-1751) 7 7 7 24 2651 N/A

20 Cryptographic key for AES stored in unprotected memory. Inserted (CVE-2018-8933 / 7 7 7 57 8955 1
CVE-2014-0881 / CVE-2017-5704)

21 Temperature sensor is muxed with the cryptography modules. Inserted 7 7 3 1 65 1

22 ROM size is too small preventing execution of security code. Inserted (CVE-2018-6242 / ) 7 7 3 1 751 N/A
CVE-2018-15383)

23 Disabled the ability to activate the security-enhanced core. Inserted (CVE-2018-12206) 7 7 7 1 282 N/A

24 GPIO enable always high. Inserted (CVE-2018-1959) 7 7 7 1 392 1

25 Unprivileged user-space code can write to the privileged CSR. Inserted (CVE-2018-7522 / 7 7 3 1 745 1
CVE-2017-0352)

26 Advanced debug unit password is hard-coded and set on reset. Inserted (CVE-2018-8870) 7 7 3 1 406 16

27 Secure mode is not required to write to interrupt registers. Inserted (CVE-2017-0352) 7 7 3 1 303 1

28 JTAG interface is not password protected. Native 7 7 3 1 441 1

29 Output of MAC is not erased on reset. Inserted 7 7 3 1 65 1

30 Supervisor mode signal of a core is floating preventing the use of SMAP. Native 7 7 3 1 282 1

31 GPIO is able to read/write to instruction and data cache. Native 7 7 3 1 151 4
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data and instruction translation lookaside buffers (TLBs), a
hardware page table walker, and a branch prediction unit to
enable speculative execution. Figure 4 in Appendix A shows
its high-level microarchitecture.

PULPissimo is an SoC based on a simpler RISC-V core
with both instruction and data RAM as shown in Figure 2. It
provides an Advanced Extensible Interface (AXI) for access-
ing memory from the core. Peripherals are directly connected
to an Advanced Peripheral Bus (APB) which connects them
to the AXI through a bridge module. It provides support for
autonomous I/O, external interrupt controllers and features a
debug unit and an SPI slave.
TLB Page Fault Timing Side Channel (L-1 & L-2).
While analyzing the Ariane RTL, we noted a timing
side-channel leakage with TLB accesses. TLB page faults
due to illegal accesses occur in a different number of clock
cycles than page faults that occur due to unmapped memory
(we contacted the developers and they acknowledged the
vulnerability). This timing disparity in the RTL manifests
in the microarchitectural behavior of the processor. Thus,
it constitutes a software-visible side channel due to the
measurable clock-cycle difference in the two cases. Previous
work already demonstrated how this can be exploited by
user-space adversaries to probe mapped and unmapped
pages and to break randomization-based defenses [24, 29].
Timing flow properties cannot be directly expressed by
simple properties or modeled by state-of-the-art verification
techniques. Moreover, for this vulnerability, we identify at
least seven RTL modules that would need to be modeled,
analyzed and verified in combination, namely: mmu.sv -
nbdcache.sv - tlb.sv instantiations - ptw.sv - load_unit.sv
- store_unit.sv. Besides modeling their complex inter- and
intra-modular logic flows (L-1), the timing flows need to be
modeled to formally prove the absence of this timing channel
leakage, which is not supported by current industry-standard
tools (L-2). Hence, the only alternative is to verify this
property by manually inspecting and following the clock
cycle transitions across the RTL modules, which is highly
cumbersome and error-prone. However, the design must still
be analyzed to verify that timing side-channel resilience is
implemented correctly and bug-free in the RTL. This only
becomes far more complex for real-world industry-standard
SoCs. We show the RTL hierarchy of the Ariane core in
Figure 5 in Appendix A to illustrate its complexity.

Pre-Fetched Cache State Not Rolled Back (L-1 & L-3).
Another issue in Ariane is with the cache state when a system
return instruction is executed, where the privilege level of the
core is not changed until this instruction is retired. Before
retirement, linear fetching (guided by branch prediction) of
data and instructions following the unretired system return
instruction continues at the current higher system privilege
level. Once the instruction is retired, the execution mode of the
core is changed to the unprivileged level, but the entries that
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FIGURE 2: Hardware overview of the PULPissimo SoC. Each
bug icon indicates the presence of at least one security vulner-
ability in the module.

were pre-fetched into the cache (at the system privilege level)
do not get flushed. These shared cache entries are visible to
user-space software, thus enabling timing channels between
privileged and unprivileged software.

Verifying the implementation of all the flush control signals
and their behavior in all different states of the processor
requires examining at least eight modules: ariane.sv -
controller.sv - frontend.sv - id_stage.sv - icache.sv - fetch_fifo
- ariane_pkg.sv - csr_regfile.sv (see Figure 5). This is complex
because it requires identifying and defining all the relevant
security properties to be checked across these RTL modules.
Since current industry-standard approaches do not support
expressive capturing and the verification of cache states, this
issue in the RTL can only be found by manual inspection.

Firmware-Configured Memory Ranges (L-4).
In PULPissimo, we added peripherals with injected bugs to
reproduce bugs from CVEs. We added an AES encryption/de-
cryption engine whose input key is stored and fetched from
memory tightly coupled to the processor. The memory ad-
dress the key is stored in is unknown, and whether it is within
the protected memory range or not is inconclusive by observ-
ing the RTL alone. In real-world SoCs, the AES key is stored
in programmable fuses. During secure boot, the bootload-
er/firmware senses the fuses and stores the key to memory-
mapped registers. The access control filter is then configured
to allow only the AES engine access to these registers, thus
protecting this memory range. Because the open-source SoC
we used did not contain a fuse infrastructure, the key storage
was mimicked to be in a register in the Memory-Mapped I/O
(MMIO) space.

Although the information flow of the AES key is defined
in hardware, its location is controlled by the firmware.
Reasoning on whether the information flow is allowed or
not using conventional hardware verification approaches is
inconclusive when considering the RTL code in isolation.
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The vulnerable hardware/firmware interactions cannot be
identified unless they are co-verified. Unfortunately, current
industry-standard tools do not support this.

Memory Address Range Overlap (L-1 & L-4).
PULPissimo provides I/O support to its peripherals by map-
ping them to different memory address ranges. If an address
range overlap bug is committed at design-time or by firmware,
this can break access control policies and have critical secu-
rity consequences, e.g., privilege escalation. We injected an
RTL bug where there is address range overlap between the
SPI Master Peripheral and the SoC Control Peripheral. This
allowed the untrusted SPI Master to access the SoC Control
memory address range over the APB bus.

Verifying issues at the SoC interconnect in such complex
bus protocols is challenging since too many modules needed
to support the interconnect have to be modeled to properly
verify their security. This increases the scope and the com-
plexity of potential bugs far beyond just a few modules, as
shown in Table 1. Such an effect causes an explosion of the
state space since all the possible states have to be modeled
accurately to remain sound. Proof kits for accelerated verifica-
tion of advanced SoC interconnect protocols were introduced
to mitigate this for a small number of bus protocols (AMBA3
and AMBA4). However, this requires an add-on to the default
software and many protocols are not supported4.

5 Crowdsourcing Detection

We organized and conducted a capture-the-flag competition,
Hack@DAC, in which 54 teams (7 from leading industry
vendors and 47 from academia) participated. The objective
for the teams was to detect as many RTL bugs as possi-
ble from those we injected deliberately in real-world open-
source SoC designs (see Table 1). This is designed to mimic
real-world bug bounty programs from semiconductor com-
panies [17, 32, 62, 63]. The teams were free to use any tech-
niques: simulation, manual inspection, or formal verification.

5.1 Competition Preparation
RTL of open-source RISC-V SoCs was used as the testbed
for Hack@DAC and our investigation. Although these SoCs
are less complex than high-end industry proprietary designs,
this allows us to feasibly inject (and detect) bugs into less
complex RTL. Thus, this represents the best-case results for
the verification techniques used during Hack@DAC and our
investigation. Moreover, it allows us to open-source and show-
case our testbed and bugs to the community.Hack@DAC con-
sisted of two phases: a preliminary Phase 1 and final Phase 2,
which featured the RISC-V Pulpino and PULPissimo SoCs,

4http://www.marketwired.com/press-release/jasper-
introduces-intelligent-proof-kits-faster-more-accurate-
verification-soc-interface-1368721.htm

respectively. Phase 1 was conducted remotely over a two-
month period. Phase 2 was conducted in an 8-hour time frame
co-located with DAC (Design Automation Conference).

For Phase 1, we chose the Pulpino [60] SoC since it was
a real-world, yet not an overly complex SoC design for the
teams to work with. It features a RISC-V core with instruction
and data RAM, an AXI interconnect for accessing memory,
with peripherals on an APB accessing the AXI through a
bridge module. It also features a boot ROM, a debug unit and
a serial peripheral interface (SPI) slave. We inserted security
bugs in multiples modules of the SoC, including the AXI,
APB, debug unit, GPIO, and bridge.

For Phase 2, we chose the more complex PULPissimo [61]
SoC, shown in Figure 2. It additionally supports hardware pro-
cessing engines, DMA, and more peripherals. This allowed us
to extend the SoC with additional security features, making
room for additional bugs. Some native security bugs were dis-
covered by the teams and were reported to the SoC designers.

5.2 Competition Objectives
For Hack@DAC, we first implemented additional security
features in the SoC, then defined the security objectives and
adversary model and accordingly inserted the bugs. Specify-
ing the security goals and the adversary model allows teams to
define what constitutes a security bug. Teams had to provide
a bug description, location of RTL file, code reference, the se-
curity impact, adversary profile, and the proposed mitigation.
Security Features: We added password-based locks on the
JTAG modules of both SoCs and access control on certain
peripherals. For the Phase-2 SoC, we also added a crypto-
graphic unit implementing multiple cryptographic algorithms.
We injected bugs into these features and native features to
generate security threats as a result.
Security Goals: We provided the three main security goals
for the target SoCs to the teams. Firstly, unprivileged code
should not escalate beyond its privilege level. Secondly, the
JTAG module should be protected against an adversary with
physical access. Finally, the SoCs should thwart software
adversaries from launching denial-of-service attacks.

5.3 Overview of Competition Bugs
As described earlier in Section 3.2, the bugs were selected
and injected together with our Intel collaborators. They are
inspired by their hardware security expertise and real-world
CVEs (cf. Table 1) and aim to achieve coverage of different
security-relevant components of the SoC. Several participants
also reported a number of native bugs already present in the
SoC that we did not deliberately inject. We describe below
some of the most interesting bugs.
UDMA address range overlap: We modified the memory
address range of the UDMA so that it overlaps with the master
port to the SPI. This bug allows an adversary with access to
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the UMDA memory to escalate its privileges and modify the
SPI memory. This bug is an example of the "Memory Address
Range Overlap" HardFail type in Section 4. Other address
range configuration bugs (#1, 2, 6 and 8) were also injected
in the APB bus for different peripherals.
GPIO errors: The address range of the GPIO memory was
erroneously declared. An adversary with GPIO access can
escalate its privilege and access the SPI Master and SoC Con-
trol. The GPIO enable was rigged to display a fixed erroneous
status of ’1’, which did not give the user a correct display of
the actual GPIO status. The GPIO lock control register was
made write-accessible by user-space code, and it was flawed
to clear at reset. Bugs #4, 5, 24 and 31 are such examples.
Debug/JTAG errors: The password-checking logic in the
debug unit was flawed and its state was not being correctly
reset after a successful check. We hard-coded the debug unit
password, and the JTAG interface was not password protected.
Bugs #9, 10, 11, 16, 26, and 28 are such examples.
Untrusted boot ROM: A native bug (bug #22) would allow
unprivileged compromise of the boot ROM and potentially
the execution of untrusted boot code at a privileged level, thus
disclosing sensitive information.
Erroneous AXI finite-state machine: We injected a bug
(bug #7) in the AXI address decoder such that, if an error
signal is generated on the memory bus while the underlining
logic is still handling an outstanding transaction, the next sig-
nal to be handled will instead be considered operational by the
module unconditionally. This bug can be exploited to cause
computational faults in the execution of security-critical code
(we showcase how to exploit this vulnerability—which was
not detected by all teams—in Appendix D).
Cryptographic unit bugs: We injected bugs in a crypto-
graphic unit that we inserted to trigger denial-of-service, a
broken cryptographic implementation, insecure key storage,
and disallowed information leakage. Bugs #18, 19, 20, 21,
and 29 are such examples.

5.4 Competition Results

Various insights were drawn from the submitted bug reports
and results, which are summarized in Table 1.

Analyzing the bug reports: Bug reports submitted by teams
revealed which bug types were harder to detect and analyze
using existing approaches. We evaluated the submissions and
rated them for accuracy and detail, e.g., bug validity, method-
ology used, and security impact.
Detected bugs: Most teams easily detected two bugs in
PULPissimo. The first one is where debug IPs were used
when not intended. The second bug was where we declared
a local parameter PULP_SEC, which was always set to ’1’,
instead of the intended PULP_SECURE. The former was de-
tected because debugging interfaces represent security-critical
regions of the chip. The latter was detected because it indi-

cated intuitively that exploiting this parameter would lead
to privilege escalation attacks. The teams reported that they
prioritized inspecting security-relevant modules of the SoC,
such as the debug interfaces.
Undetected bugs: Many inserted bugs were not detected.
One was in the advanced debug unit, where the password bit
index register has an overflow (bug #9). This is an example of
a security flaw that would be hard to detect by methods other
than verification. Moreover, the presence of many bugs within
the advanced debug unit password checker further masked
this bug. Another bug was the cryptographic unit key storage
in unprotected memory (bug #20). The teams could not detect
it as they focused on the RTL code in isolation and did not
consider HW/FW interactions.
Techniques used by the teams: The teams were free to use
any techniques to detect the bugs but most teams eventually
relied on manual inspection and simulation.
• Formal verification: One team used an open-source

formal verification tool (VeriCoq), but they reported little
success because these tools (i) did not scale well with
the complete SoC and (ii) required expertise to use and
define the security properties. Some teams deployed
their in-house verification techniques, albeit with little
success. They eventually resorted to manual analysis.
• Assertion-based simulation: Some teams prepared

RTL testbenches and conducted property-based simu-
lations using SystemVerilog assertion statements.
• Manual inspection: All teams relied on manual inspec-

tion methods since they are the easiest and most accessi-
ble and require less expertise than formal verification, es-
pecially when working under time constraints. A couple
of teams reported prioritizing the inspection of security-
critical modules such as debug interfaces.
• Software-based testing: One team detected software-

exposure and privilege escalation bugs by running C
code on the processor and attempting to make arbitrary
reads/writes to privileged memory locations. In doing
this, they could detect bugs #4, #8, #15, and #17.

Limitations of manual analysis: While manual inspection
can detect the widest array of bugs, our analysis of the
Hack@DAC results reveals its limitations. Manual analysis
is qualitative and difficult to scale to cross-layer and more
complex bugs. In Table 1, out of 16 cross-module bugs (span-
ning more than one module) only 9 were identified using
manual inspection. Three of them (#18, #19, and #20) were
also undetected by formal verification methods, which is 10%
of the bugs in our case studies.

6 Detection Using State-of-The-Art Tools

Our study reveals two results: (1) a number of bugs could not
be detected by means of manual auditing and other ad-hoc
methods, and (2) the teams were able to find bugs already
existing in the SoC which we did not inject and were not
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aware of. This prompted us to conduct a second in-house
case study to further investigate whether formal verification
techniques can be used to detect these bugs. In practice,
hardware-security verification engineers use a combination of
techniques such as formal verification, simulation, emulation,
and manual inspection. Our first case study covered manual
inspection, simulation and emulation techniques. Thus, we
focused our second case study on assessing the effectiveness
of industry-standard formal verification techniques usually
used for verifying pre-silicon hardware security.

In real-world security testing (see Section 2), engineers will
not have prior knowledge of the specific vulnerabilities they
are trying to find. Our goal, however, is to investigate how an
industry-standard tool can detect RTL bugs that we deliber-
ately inject in an open-source SoC and have prior knowledge
of (see Table 1). Since there is no regulation or explicitly de-
fined standard for hardware-security verification, we focus our
investigation on the most popular and de-facto standard for-
mal verification platform used in industry [11]. This platform
encompasses a representative suite of different state-of-the-art
formal verification techniques for hardware security assur-
ance. As opposed to simulation and emulation techniques,
formal verification guarantees to model the state space of the
design and formally prove the desired properties. We empha-
size that we deliberately fix all other variables involved in the
security testing process, in order to focus in a controlled set-
ting on testing the capacity and limitations of the techniques
and tools themselves. Thus, our results reflect the effective-
ness of tools in a best case where the bug is known a priori.
This eliminates the possibility of writing an incorrect security
property assertion which fails to detect the bug.

6.1 Detection Methodology
We examined each of the injected bugs and its nature in order
to determine which formal technique would be best suited to
detect it. We used two formal techniques: Formal Property
Verification (FPV) and JasperGold’s Security Path Verifica-
tion (SPV) [12]. They represent the state of the art in hardware
security verification and are used widely by the semiconductor
industry [4], including Intel.

FPV checks whether a set of security properties, usually
specified as SystemVerilog Assertions (SVA), hold true for
the given RTL. To describe the assertions correctly, we exam-
ined the location of each bug in the RTL and how its behavior
is manifested with the surrounding logic and input/output re-
lationships. Once we specified the security properties using
assert, assume and cover statements, we determined which
RTL modules we need to model to prove these assertions.
If a security property is violated, the tool generates a coun-
terexample; this is examined to ensure whether the intended
security property is indeed violated or is a false alarm.

SPV detects bugs which specifically involve unauthorized
information flow. Such properties cannot be directly captured
using SVA/PSL assertions. SPV uses path sensitization tech-
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FIGURE 3: Verification results grouped by bug class and
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Verification (SPV), Formal Property Verification (FPV) and
manual inspection and simulation techniques (M&S).

niques to exhaustively and formally check if unauthorized
data propagates (through a functional path) from a source
to a destination signal. To specify the SPV properties, we
identified source signals where the sensitive information was
located and destination signals where it should not propagate.
We then identified the bounding preconditions to constrain the
paths the tool searches to alleviate state and time explosion.
Similar to FPV, we identified the modules that are required
to capture the information flow of interest. This must include
source, destination and intermediate modules, as well as mod-
ules that generate control signals which interfere with the
information flow.

6.2 Detection Results
Of the 31 bugs we investigated, shown in Table 1, using the
formal verification techniques described above, only 15 (48%)
were detected. While we attempted to detect all 31 bugs for-
mally, we were able to formulate security properties for only
17 bugs. This indicates that the main challenge with using
formal verification tools is identifying and expressing security
properties that the tools are capable of capturing and checking.
Bugs due to ambiguous specifications of interconnect logic,
for instance, are examples of bugs that are difficult to create
security properties for.

Our results, shown in Figure 3, indicate that privilege es-
calation and denial-of-service (DoS) bugs were the most de-
tected at 60% and 67% respectively. Secret leakage only had
a 17% detection rate due to incorrect design specification for
one bug, state explosion and the inability to express proper-
ties that the tool can assert for the remaining bugs. The code
injection bug was undetected by formal techniques. Bugs at
the interconnect level of the SoC such as bugs #1 and #2 were
especially challenging since they involved a large number of
highly complex and inter-connected modules that needed to be
loaded and modeled by the tool (see L-1 in Section 3.1). Bug
#20, which involves hardware/firmware interactions, was also
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detected by neither the state-of-the-art FPV nor SPV since
they analyze the RTL in isolation (see L-4 in Section 3.1). We
describe these bugs in more detail in Appendix C.

6.3 State-Explosion Problem
Formal verification techniques are quickly driven into state
space explosion when analyzing large designs with many
states. Many large interconnected RTL modules, like those
relevant to bugs #1 and #2, can have states in the order of
magnitude of 1020. Even smaller ones, like these used for bugs
#3 and #4, can have a very large number of states, as shown
in Table 1. When combined, the entire SoC will have a total
number of states significantly higher than any of the results
in Table 1. Attempting to model the entire SoC drove the tool
into state explosion, and it ran out of memory and crashed.
Formal verification tools, including those specific to security
verification are currently incapable of handling so many states,
even when computational resources are increased. This is
further aggravated for industry-standard complex SoCs.

Because the entire SoC cannot be modeled and analyzed at
once, detecting cross-modular bugs becomes very challeng-
ing. Engineers work around this (not fundamentally solve
it) by adopting a divide-and-conquer approach and selecting
which modules are relevant for the properties being tested
and which can be black-boxed or abstracted. However, this
is time-consuming, non-automated, error-prone, and requires
expertise and knowledge of both the tools and design. By
relying on the human factor, the tool can no longer guarantee
the absence of bugs for the entire design, which is the original
advantage of formal verification.

7 Discussion and Future Work

We now describe why microcode patching is insufficient for
RTL bugs while emphasizing the need for advancing the hard-
ware security verification process. We discuss the additional
challenges of the overall process, besides the limitations of
the industry-standard tools, which is the focus of this work.

7.1 Microcode Patching

While existing industry-grade SoCs support hotfixes by mi-
crocode patching for instance, this approach is limited to a
handful of changes to the instruction set architecture, e.g.,
modifying the interface of individual complex instructions
and adding or removing instructions [25]. Some vulnerabili-
ties cannot even be patched by microcode, such as the recent
Spoiler attack [33]. Fundamentally mitigating this requires
fixing the hardware of the memory subsystem at the hardware
design phase. For legacy systems, the application developer is
advised to follow best practices for developing side channel-

resilient software5. For vulnerabilities that can be patched,
patches at this higher abstraction level in the firmware only
act as a "symptomatic" fix that circumvent the RTL bug. How-
ever, they do not fundamentally patch the bug in the RTL,
which is already realized as hardwired logic. Thus, microcode
patching is a fallback for RTL bugs discovered after produc-
tion, when you can not patch the RTL. They may also incur
performance impact 6 that could be avoided if the underlying
problem is discovered and fixed during design.

7.2 Additional Challenges in Practice

Functional vs. Security Specifications. As described in Sec-
tion 2, pre- and post-silicon validation efforts are conducted
to verify that the implementation fully matches both its func-
tional and security specifications. The process becomes in-
creasingly difficult (almost impossible) as the system com-
plexity increases and specification ambiguity arises. Devi-
ations from specification occur due to either functional or
security bugs, and it is important to distinguish between them.
While functional bugs generate functionally incorrect results,
security bugs are not reflected in functionality. They arise due
to unconsidered and corner threat cases that are unlikely to
get triggered, thus making them more challenging to detect
and cover. It is, therefore, important to distinguish between
functional and security specifications, since these are often
the references for different verification teams working con-
currently on the same RTL implementation.

Specification Ambiguity. Another challenge entails antic-
ipating and identifying all the security properties that are
required in a real-world scenario. We analyzed the efficacy
of industry-standard tools in a controlled setting—where we
have prior knowledge of the bugs. However, in practice hard-
ware validation teams do not have prior knowledge of the
bugs. Security specifications are often incomplete and am-
biguous, only outlining the required security properties under
an assumed adversary model. These specifications are inval-
idated once the adversary model is changed. This is often
the case with IP reuse, where the RTL code for one product
is re-purposed for another with a different set of security re-
quirements and usage scenarios. Parameters may be declared
multiple times and get misinterpreted by the tools, thus caus-
ing bugs to slip undetected. Furthermore, specs usually do
not specify bugs and information flows that should not exist,
and there is no automated approach to determine whether one
is proving the intended properties. Thus, a combination of
incomplete or incorrect design decisions and implementation
errors can easily introduce bugs to the design.

5https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00238.html

6https://access.redhat.com/articles/3307751
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7.3 Future Research Directions
Through our work, we shed light on the limitations of state-
of-the-art verification techniques. In doing so, we hope to
motivate further research in advancing these techniques to
adequately capture and detect these vulnerabilities.

Although manual RTL inspection is generally useful and
can potentially cover a wide array of bugs, its efficacy de-
pends exclusively on the expertise of the engineer. This can
be inefficient, unreliable and ad hoc in light of rapidly evolv-
ing chip designs. Exhaustive testing of specifications through
simulation requires amounts of resources exponential in the
size of the input (i.e., design state space) while coverage
must be intelligently maximized. Hence, current approaches
face severe scalability challenges, as diagnosing software-
exploitable bugs that reside deep in the design pipeline can
require simulation of trillions of cycles [14]. Our results indi-
cate that it is important to first identify high-risk components
due to software exposure, such as password checkers, crypto
cores, and control registers, and prioritize analyzing them.
Scalability due to complex inter-dependencies among mod-
ules is one challenge for detection. Vulnerabilities associated
with non-register states (such as caches) or clock-cycle depen-
dencies (i.e., timing flows) are another open problem. Initial
research is underway [71] to analyze a limited amount of
low-level firmware running on top of a simulated RTL de-
sign for information and timing flow violations. However,
these approaches are still in their infancy and yet to scale for
real-world SoC designs.

8 Related Work

We now present related work in hardware security verifica-
tion while identifying limitations with respect to detecting
HardFails. We also provide an overview of recent software
attacks exploiting underlying hardware vulnerabilities.

8.1 Current Detection Approaches
Security-aware design of hardware has gained significance
only recently as the critical security threat posed by hardware
vulnerabilities became acutely established. Confidentiality
and integrity are the commonly investigated properties [19]
in hardware security. They are usually expressed using infor-
mation flow properties between entities at different security
levels. Besides manual inspection and simulation-based tech-
niques, systematic approaches proposed for verifying hard-
ware security properties include formal verification methods
such as proof assistance, model-checking, symbolic execu-
tion, and information flow tracking. We exclude the related
work in testing mechanisms, e.g., JTAG/scan-chain/built-in
self-test, because they are leveraged for hardware testing af-
ter fabrication. However, the focus of this work is on veri-
fying the security of the hardware before fabrication. Inter-

estingly, this includes verifying that the test mechanisms are
correctly implemented in the RTL, otherwise they may consti-
tute security vulnerabilities when used after fabrication (see
bugs#9,#10,#11,#12,#16, #26 of the JTAG/debug interface).

Proof assistant and theorem-proving methods rely on
mathematically modeling the system and the required secu-
rity properties into logical theorems and formally proving if
the model complies with the properties. VeriCoq [7] based on
the Coq proof assistant transforms the Verilog code that de-
scribes the hardware design into proof-carrying code.VeriCoq
supports the automated conversion of only a subset of Verilog
code into Coq. However, this assumes accurate labeling of the
initial sensitivity labels of each and every signal in order to
effectively track the flow of information. This is cumbersome,
error-prone, generates many faluse positives, and does not
scale well in practice beyond toy examples. Moreover, timing
(and other) side-channel information flows are not modeled.
Finally, computational scalability to verifying real-world com-
plex SoCs remains an issue given that the proof verification
for a single AES core requires ≈ 30 minutes to complete [6].

Model checking-based approaches check a given prop-
erty against the modeled state space and possible state tran-
sitions using provided invariants and predefined conditions.
They face scalability issues as computation time scales ex-
ponentially with the model and state space size. This can
be alleviated by using abstraction to simplify the model or
constraining the state space to a bounded number of states
using assumptions and conditions. However, this introduces
false positives, may miss vulnerabilities, and requires expert
knowledge. Most industry-leading tools, such as the one we
use in this work, rely on model checking algorithms such as
boolean satisfiability problem solvers and property specifica-
tion schemes, e.g., assertion-based verification to verify the
required properties of a given hardware design.

Side-channel leakage modeling and detection remain
an open problem. Recent work [76] uses the Murϕ model
checker to verify different hardware cache architectures for
side-channel leakage against different adversary models. A
formal verification methodology for SGX and Sanctum en-
claves under a limited adversary was introduced in [67]. How-
ever, such approaches are not directly applicable to hardware
implementation. They also rely exclusively on formal veri-
fication and remain inherently limited by the underlying al-
gorithms in terms of scalability and state space explosion,
besides demanding particular expertise to use.

Information flow analysis (such as SPV) works by assign-
ing a security label (or a taint) to a data input and monitoring
the taint propagation. In this way, the designer can verify
whether the system adheres to the required security policies.
Recently, information flow tracking (IFT) has been shown ef-
fective in identifying security vulnerabilities, including timing
side channels and information-leaking hardware Trojans.

IFT techniques are proposed at different levels of abstrac-
tion: gate-, RT, and language-levels. Gate-level information
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flow tracking (GLIFT) [2, 58, 70] performs the IFT analysis
directly at gate-level by generating GLIFT analysis logic that
is derived from the original logic and operates in parallel to it.
Although gate-level IFT logic is easy to automatically gener-
ate, it does not scale well. Furthermore, when IFT uses strict
non-interference, it taints any information flow conservatively
as a vulnerability [34] which scales well for more complex
hardware, but generates too many false positives.

At the language level, Caisson [42] and Sapper [41] are
security-aware HDLs that use a typing system where the de-
signer assigns security "labels" to each variable (wire or reg-
ister) based on the security policies required. However, they
both require redesigning the RTL using a new hardware de-
scription language which is not practical. SecVerilog [22, 75]
overcomes this by extending the Verilog language with a dy-
namic security type system. Designers assign a security label
to each variable (wire or register) in the RTL to enable a
compile-time check of hardware information flow. However,
this involves complex analysis during simulation to reason
about the run-time behavior of the hardware state and depen-
dencies across data types for precise flow tracking.

Hardware/firmware co-verification to capture and verify
hardware/firmware interactions remains an open challenge
and is not available in widely used industry-standard tools. A
co-verification methodology [28] addresses the semantic gap
between hardware and firmware by modeling hardware and
firmware using instruction-level abstraction to leverage soft-
ware verification techniques. However, this requires modeling
the hardware that interacts with firmware into an abstraction
which is semi-automatic, cumbersome, and lossy.

While research is underway [71] to analyze a limited
amount of low-level firmware running on top of a simulated
RTL design these approaches are still under development and
not scalable. Current verification approaches focus on register-
state information-flow analysis, e.g., to monitor whether sensi-
tive locations are accessible from unprivileged signal sources.
Further research is required to explicitly model non-register
states and timing explicitly alongside the existing capabilities
of these tools.

8.2 Recent Attacks
We present and cautiously classify the underlying hardware
vulnerabilities of recent cross-layer exploits (see Table 2 in
Appendix B), using the categories introduced in 3.1. We do
not have access to proprietary processor implementations,
so our classification is only based on our deductions from
the published technical descriptions. Yarom et al. demon-
strate that software-visible side channels can exist even below
cache-line granularity in CacheBleed [74]–undermining a
core assumption of prior defenses, such as scatter-gather [9].
MemJam [45] exploits false read-after-write dependencies in
the CPU to maliciously slow down victim accesses to mem-
ory blocks within a cache line. We categorize the underlying
vulnerabilities of CacheBleed and MemJam as potentially

hard to detect in RTL due to the many cross-module connec-
tions involved and the timing-flow leakage. The timing flow
leakage is caused by the software triggering clock cycle differ-
ences in accesses that map to the same bank below cache line
granularity, thus breaking constant-time implementations.

The TLBleed [23] attack shows how current TLB imple-
mentations can be exploited to break state-of-the-art cache
side-channel protections. As described in Section 4, TLBs
are typically highly interconnected with complex processor
modules, such as the cache controller and memory manage-
ment unit, making vulnerabilities therein very hard to detect
through automated verification or manual inspection.

BranchScope [20] extracts information through the direc-
tional branch predictor, thus bypassing software mitigations
that prevent leakage via the BTB. We classify it as a cache-
state gap in branch prediction units, which is significantly
challenging to detect using existing RTL security verification
tools, which cannot capture and verify cache states. Melt-
down [43] exploits speculative execution on modern proces-
sors to completely bypass all memory access restrictions. Van
Bulck et al. [72] also demonstrated how to apply this to Intel
SGX. Similarly, Spectre [37] exploits out-of-order execution
across different user-space processes as arbitrary instruction
executions would continue during speculation. We recognize
these vulnerabilities are hard to detect due to scalability chal-
lenges in existing tools, since the out-of-order scheduling
module is connected to many subsystems in the CPU. Addi-
tionally, manually inspecting these interconnected complex
RTL modules is very challenging and cumbersome.

CLKScrew [69] abuses low-level power-management func-
tionality that is exposed to software to induce faults and
glitches dynamically at runtime in the processor. We cat-
egorize CLKScrew to have vulnerable hardware-firmware
interactions and timing-flow leakage, since it directly exposes
clock-tuning functionality to attacker-controlled software.

9 Conclusion

Software security bugs and their impact have been known for
many decades, with a spectrum of established techniques to
detect and mitigate them. However, the threat of hardware
security bugs has only recently become significant as cross-
layer exploits have shown that they can completely undermine
software security protections. While some hardware bugs can
be patched with microcode updates, many cannot, often leav-
ing millions of affected chips in the wild. In this paper, we
presented the first testbed of RTL bugs and systematically
analyzed the effectiveness of state-of-the-art formal verifica-
tion techniques, manual inspection and simulation methods
in detecting these bugs. We organized an international hard-
ware security competition and an in-house study. Our results
have shown that 54 teams were only able to detect 61% of
the total number of bugs, while with industry-leading formal
verification techniques, we were only able to detect 48% of
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the bugs. We showcase that the grave security impact of many
of these undetected bugs is only further exacerbated by being
software-exploitable.

Our investigation revealed the limitations of state-of-the-
art verification/detection techniques with respect to detecting
certain classes of hardware security bugs that exhibit partic-
ular properties. These approaches remain limited in the face
of detecting vulnerabilities that require capturing and verify-
ing complex cross-module inter-dependencies, timing flows,
cache states, and hardware-firmware interactions. While these
effects are common in SoC designs, they are difficult to model,
capture, and verify using current approaches. Our investiga-
tive work highlights the necessity of treating the detection
of hardware bugs as significantly as that of software bugs.
Through our work, we highlight the pressing call for further
research to advance the state of the art in hardware security
verification. Particularly, our results indicate the need for in-
creased scalability, efficacy and automation of these tools,
making them easily applicable to large-scale commercial SoC
designs—without which software protections are futile.
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Appendix

A Ariane Core and RTL Hierarchy
Figure 4 shows the high-level microarchitecture of the Ariane
core to visualize its complexity. This RISC-V core is far
less complex than an x86 or ARM processor and their more
sophisticated microarchitectural and optimization features.

Figure 5 illustrates the hierarchy of the RTL components of
the Ariane core. This focuses only on the core and excludes all
uncore components, such as the AXI interconnect, peripherals,
the debug module, boot ROM, and RAM.

B Recent Microarchitectural Attacks
We reviewed recent microarchitectural attacks with respect
to existing hardware verification approaches and their limita-
tions. We observe that the underlying vulnerabilities would
be difficult to detect due to the properties that they exhibit,
rendering them as potential HardFails. We do not have access
to their proprietary RTL implementation and cannot inspect
the underlying vulnerabilities. Thus, we only infer from the
published technical descriptions and errata of these attacks
the nature of the underlying RTL issues. We classify in Ta-
ble 2 the properties of these vulnerabilities that represent
challenges for state-of-the-art hardware security verification.

C Details on the Pulpissimo Bugs
We present next more detail on some of the RTL bugs used in
our investigation.

Bugs in crypto units and incorrect usage: We extended
the SoC with a faulty cryptographic unit with a multiplexer
to select between AES, SHA1, MD5, and a temperature sen-
sor. The multiplexer was modified such that a race condition
occurs if more than one bit in the status register is enabled,
causing unreliable behavior in these security critical modules.

Furthermore, both SHA-1 and MD5 are outdated and bro-
ken cryptographic hash functions. Such bugs are not de-
tectable by formal verification, since they occur due to a
specification/design issue and not an implementation flaw,
therefore they are out of the scope of automated approaches
and formal verification methods. The cryptographic key is
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FIGURE 4: High-level architecture of the Ariane core [59].Ariane RISC-V Core RTL Module Hierarchy
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FIGURE 5: Illustration of the RTL module hierarchy of the Ariane core.

Attack Privilege Level
Memory
Corruption

Information
Leakage

Cross-
modular

HW/FW-
Interaction

Cache-State
Gap

Timing-Flow
Gap

HardFail

Cachebleed [74] unprivileged 7 3 7 7 7 3 3

TLBleed [23] unprivileged 7 3 3 7 3 3 3

BranchScope [20] unprivileged 7 3 7 7 3 7 3

Spectre [37] unprivileged 7 3 3 7 3 7 3

Meltdown [43] unprivileged 7 3 3 7 3 7 3

MemJam [45] supervisor 7 3 3 7 7 3 3

CLKScrew [69] supervisor 3 3 7 3 7 3 3

Foreshadow [72] supervisor 3 3 3 3 3 7 3

TABLE 2: Classification of the underlying vulnerabilities of recent microarchitectural attacks by their HardFail properties.
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stored and read from unprotected memory, allowing an at-
tacker access to the key. The temperature sensor register value
is incorrectly muxed as output instead of the crypto engine
output and vice versa, which are illegal information flows that
could compromise the cryptographic operations.

LISTING 1: Incorrect use of crypto RTL: The key input for
the AES (g_input) is connected to signal b. This signal is then
passed through various modules until it connects directly to a
tightly coupled memory in the processor.

input logic [127:0] b,
...
aes_1cc aes(
.clk(0),
.rst(1),
.g_input(b),
.e_input(a),
.o(aes_out)
);

Bugs in security modes: We replaced the standard
PULP_SECURE parameter in the riscv_cs_registers and
riscv_int_controller modules with another constant param-
eter to permanently disable the security/privilege checks for
these two modules. Another bug we inserted is switching the
write and read protections for the AXI bus interface, causing
erroneous checks for read and write accesses.

Bugs in the JTAG module: We implemented a JTAG
password-checker and injected multiple bugs in it, includ-
ing the password being hardcoded in the password checking
file. The password checker also only checks the first 31 bits,
which reduces the computational complexity of brute-forcing
the password. The password checker does not reset the state
of the correctness of the password when an incorrect bit is
detected, allowing for repeated partial checks of passwords
to end up unlocking the password checker. This is also facil-
itated by the fact that the index overflows after the user hits
bit 31, allowing for an infinite cycling of bit checks.

D Exploiting Hardware Bugs From Software
We now explain how one of our hardware bugs can be ex-
ploited in real-world by software. This RTL vulnerability
manifests in the following way. When an error signal is gen-
erated on the memory bus while the underlining logic is still
handling an outstanding transaction, the next signal to be han-
dled will instead be considered operational by the module
unconditionally. This lets erroneous memory accesses slip
through hardware checks at runtime. Armed with the knowl-
edge about this vulnerability, an adversary can force memory
access errors to evade the checks. As shown in Figure 6, the
memory bus decoder unit (unit of the memory interconnect)
is assumed to have the bug. This causes errors to be ignored

Userspace

Kernel

Task B

Task A 

NULL

Core Core

Memory
Interconnect  D

R
A
M

12

3

5

4

PCBB
...

Task B Task A

IVT PCBA PCBB MM

OS Kernel

6

FIGURE 6: Our attack exploits a bug in the implementation
of the memory bus of the PULPissimo SoC: by 1 spamming
the bus with invalid transactions an adversary can make 4

malicious write requests be set to operational.

under certain conditions (see bug number #7 in Table 1). In
the first step 1 , the attacker generates a user program (Task
A) that registers a dummy signal handler for the segmenta-
tion fault (SIGSEGV) access violation. Task A then executes a
loop with 2 a faulting memory access to an invalid memory
address (e.g., LW x5, 0x0). This will generate an error in
the memory subsystem of the processor and issue an invalid
memory access interrupt (i.e., 0x0000008C) to the processor.
The processor raises this interrupt to the running software (in
this case the OS), using the pre-configured interrupt handler
routines in software. The interrupt handler in the OS will then
forward this as a signal to the faulting task 3 , which keeps
looping and continuously generating invalid accesses. Mean-
while, the attacker launches a separate Task B, which will
then issue a single memory access 4 to a privileged memory
location (e.g., LW x6, 0xf77c3000). In this situation, multi-
ple outstanding memory transactions will be generated on the
memory bus, all of which but one will be flagged as faulty by
the address decoder. An invalid memory access will always
proceed the single access of Task B. Due to the bug in the
memory bus address decoder, 5 the malicious memory ac-
cess will become operational instead of triggering an error.
Thus, the attacker can issue read and write instructions to
arbitrary privileged (and unprivileged) memory by forcing the
malicious illegal access to be preceded with a faulty access.
Using this technique the attacker can eventually leverage this
read-write primitive, e.g., 6 to escalate privileges by writing
the process control block (PCBB) for his task to elevate the
corresponding process to root. This bug leaves the attacker
with access to a root process, gaining control over the en-
tire platform and potentially compromising all the processes
running on the system.

230    28th USENIX Security Symposium USENIX Association

186


	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	My Contributions
	Contents

	1 Introduction
	1.1 Our Insights
	1.2 Thesis Vision and Scope
	1.2.1 Vision
	1.2.2 Scope

	1.3 Main Contributions
	1.4 Other Contributions
	1.5 Thesis Outline

	2 Hardware-based Security Mechanisms
	2.1 Problem Statement and Motivation
	2.1.1 Software Runtime Attacks
	2.1.2 Limitations of Existing Defenses

	2.2 Contributions

	3 Secure Microarchitecture for Trusted Execution
	3.1 Problem Statement and Motivation
	3.1.1 Cache Side-Channel Attacks
	3.1.2 Shortcomings of Recent Cache Defenses
	3.1.3 Limitations of Existing TEE Security Architectures

	3.2 Contributions

	4 Hardware Implementation Security
	4.1 Problem Statement and Motivation
	4.1.1 Hardware Implementation Flaws
	4.1.2 Detecting Hardware Flaws

	4.2 Contributions

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Future Work and Outlook

	Bibliography
	A LO-FAT: Low-Overhead Control Flow ATtestation in Hardware
	B ATRIUM: Runtime Attestation Resilient Under Memory Attacks
	C LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution
	D HardScope: Hardening Embedded Systems Against Data-Oriented Attacks
	E CHASE: A Configurable Hardware-Assisted Security Extension for Real-Time Systems
	F HybCache: Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments
	G Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures
	H CURE: A Security Architecture with CUstomizable and Resilient Enclaves
	I HardFails: Insights into Software-Exploitable Hardware Bugs

