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Abstract

Explicit structural dynamics codes simulating, for example, crash-tests and metal form-
ing processes rely on the spectral properties of the chosen finite elements combined with
locking-preventing mechanisms, such as reduced quadrature, to achieve higher-order spa-
tial accuracy. To achieve highly efficient computations, these codes rely on three key
ingredients: (1) low memory requirements; (2) an efficient solver; and (3) relatively large
critical time step values. These three ingredients are present in contemporary linear fi-
nite element codes based on mass lumping, which, however, generally limits the spatial
accuracy to second order. Overcoming this limitation to obtain a higher-order accurate
and locking-free explicit scheme is the main objective of this work. We focus on isogeo-
metric discretizations which are particularly attractive for higher-order accuracy due to
their well-behaved spectral properties.
To this end, this thesis accomplishes the following tasks: (i) We propose to “measure”

locking by assessing the spectral accuracy of different finite element discretizations. (ii)
We introduce a variational approach based on perturbed eigenvalue analysis for improv-
ing spectral properties of isogeometric multipatch discretizations. (iii) We develop an
isogeometric Petrov-Galerkin formulation that enables higher-order spatial accuracy in
explicit dynamics when the mass matrix is lumped, and (iv) we extend this approach to
a Hellinger-Reissner mixed formulation, attempting to eliminate membrane locking for
Kirchhoff-Love shells.
In the first task, we use eigenvalue and mode errors to assess five finite element formu-

lations in terms of their locking-related efficiency: the displacement-based formulation
with full and reduced integration, the B-bar, discrete strain gap, and Hellinger-Reissner
methods. In the second task, we demonstrate that our approach allows for a much
larger critical time step size in explicit dynamics calculations, which does not depend
on the polynomial degree of spline basis functions. In the third task, we discretize the
test functions using the so-called “approximate” dual functions that are smooth, have
local support, and satisfy approximate bi-orthogonality with respect to a trial space of
B-splines. This enables higher-order accurate mass lumping using the standard row-sum
technique. In the last task, to increase efficiency, we integrate a boundary treatment
with built-in Dirichlet boundary constraints, a strong outlier removal approach to in-
crease the critical time step size, and a reduced quadrature rule with a minimal number
of quadrature points. We numerically demonstrate, via spectral analysis and conver-
gence studies of beam, plate, and shell models, that our Petrov-Galerkin approach leads
to higher-order accurate and locking-free computations in explicit dynamics. In addi-
tion, we extend the horizon of this work by exploring the application of isogeometric
analysis, together with the outlier removal approach, to nonlinear dynamics of shear-
and torsion-free rods, combining with a robust implicit time integration scheme.



Zusammenfassung

Explizite Simulationsprogramme zur Strukturdynamik, die beispielsweise bei Crashtests
oder Metallumformprozessen zum Einsatz kommen, basieren auf den spektralen Eigen-
schaften der ausgewählten finiten Elemente in Kombination mit Methoden zur Vermei-
dung von Locking-Phänomenen, um eine räumliche Genauigkeit höherer Ordnung zu
erreichen. Eine der am meisten verwendeten Methoden ist die reduzierte Quadratur.
Zur Erreichung hocheffizienter Berechnungen verfolgen explizite Simulationsprogramme
drei Hauptstrategien: (1) geringer Speicherbedarf; (2) ein effizienter Löser; und (3) rela-
tiv große kritische Zeitschrittwerte. Diese drei Bestandteile sind in modernen linearen
Finite-Elemente-Programmen vorhanden, die auf Massenmatrizen mit Massenkonzen-
tration basieren, was jedoch im Allgemeinen die räumliche Genauigkeit auf zweite Ord-
nung beschränkt. Das Hauptziel dieser Arbeit besteht darin, diese Einschränkung zu
überwinden, um ein präzises und lockingfreies explizites Schema höherer Ordnung zu
erhalten. Der Schwerpunkt liegt auf isogeometrischen Diskretisierungen, die aufgrund
ihrer guten spektralen Eigenschaften besonders attraktiv für die Genauigkeit höherer
Ordnung sind.
Daher wird sich in dieser Arbeit auf die folgenden Aufgaben fokussiert: (i) Wir schla-

gen vor, die Locking-Effekte zu
”
messen“, indem wir die spektrale Genauigkeit ver-

schiedener Diskretisierungen bewerten. (ii) Wir führen einen auf der gestörten Eigen-
wertanalyse basierenden Variationsansatz ein, um die spektralen Eigenschaften isogeo-
metrischer Multipatch-Diskretisierungen zu verbessern. (iii) Wir entwickeln eine isogeo-
metrische Petrov-Galerkin-Formulierung, die eine räumliche Genauigkeit höherer Ord-
nung bei der Verwendung konzentrierter Massen in der expliziten Dynamik ermöglicht,
und (iv) wir erweitern diese Formulierung auf eine gemischte Hellinger-Reissner Mehrfeld-
formulierung, um das Membran-Locking-Phänomen für die Kirchhoff-Love-Schalenele-
mente zu eliminieren.
Im ersten Teil der Arbeit verwenden wir die Genauigkeit der Eigenwerte und Eigen-

moden zur Bewertung von fünf Formulierungen hinsichtlich ihrer lockingbezogenen Ef-
fizienz: die verschiebungsbasierte Formulierung mit vollständiger und reduzierter Inte-
gration, die B-Bar-Methode, die Discrete-Strain-Gap-Methode und die Hellinger-Reissner-
Methode. Im zweiten Teil der Arbeit zeigen wir, dass unser Variationsansatz viel größere
kritische Zeitschritte in expliziten Dynamikberechnungen ermöglicht, wobei die kritische
Größe der Zeitschritte nicht vom Polynomgrad der Spline-Ansatzfunktionen abhängt.
Im dritten Teil der Arbeit diskretisieren wir die Testfunktionen mithilfe der sogenann-
ten

”
approximate dual Spline“-Funktionen, die glatt sind, lokalen Träger haben und

eine ungefähre Bi-Orthogonalität in Bezug auf die zugeordneten B-Splines erfüllen. Dies
ermöglicht eine genaue Konzentration der Massenmatrix höherer Ordnung unter Ver-
wendung der standardmäßigen Zeilensummen-Methode. Im letzten Teil der Arbeit kom-



binieren wir zur Steigerung der Effizienz die gemischte Mehrfeldformulierung mit einer
Behandlung von Dirichlet-Randbedingungen, einem starken Outlier-Entfernungsansatz
zur Erhöhung der kritischen Zeitschritte und einer reduzierten Quadratur mit einer
minimalen Anzahl von Integrationspunkten. Mithilfe von Spektralanalysen und Kon-
vergenzstudien von Balken-, Platten- und Schalenmodellen zeigen wir numerisch, dass
unser Ansatz zu präzisen und lockingfreien Berechnungen höherer Ordnung in der ex-
pliziten Dynamik führt. Darüber hinaus erweitern wir den Horizont dieser Arbeit, indem
wir die Anwendung der isogeometrischen Analyse im Zusammenhang mit dem Outlier-
Entfernungsansatz in der nichtlinearen Dynamik von scher- und torsionsfreien Stäben
untersuchen und mit einem robusten impliziten Zeitintegrationsschema kombinieren.
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1 A short introduction to isogeometric
analysis

Before presenting the main research themes and objectives of this thesis in the next
chapter, we briefly introduce the fundamental concept of isogeometric analysis (IGA)
and its terminology, which are required throughout this work. We begin, in Section 1.1,
with a brief review of the spline basis functions and their properties that are important
in design and analysis. In Section 1.2, we then briefly review the basis in geometry
representation that goes hand in hand with IGA. Lastly, in Section 1.3, we recall the
most important concepts in analysis using isogeometric finite elements.

1.1 Spline basis functions

Spline basis functions provide the basis for geometric modeling and isogeometric analysis.
We now briefly review their formulation and their most important properties in this
context.

1.1.1 B-splines

A B-spline, or basis spline, is a piecewise polynomial function that is characterized by the
polynomial degree, its smoothness, and its domain partition [1], [2]. Let Ξ = [ξ0, . . . , ξm]
denote a non-decreasing sequence of real numbers in an interval I = [a, b] ⊂ R, that is:

a = ξ0 ≤ . . . ≤ ξj−1 ≤ ξj ≤ . . . ≤ ξm = b . (1.1)

ξj is called the jth−knot and Ξ is the knot vector. The interval [ξ0, ξm] is called a patch.
The ith−B-spline basis function of degree p, denoted Ni,p(ξ), i = 1, . . . ,M , is recursively
defined using the Cox-de Boor formula as follows:

p = 0 ∶ Ni,p=0(ξ) = ⎧⎪⎪⎨⎪⎪⎩
1, ξi ≤ ξ < ξi+1 ,
0, otherwise,

(1.2a)

p ≥ 1 ∶ Ni,p(ξ) = ξ − ξi
ξi+p − ξi Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1 Ni+1,p−1(ξ) . (1.2b)

Figure 1.1 illustrates an example of cubic B-spline basis functions defined on a knot
vector of Ξ = [0.0,0.0,0.0,0.0,0.25,0.50,0.75,1.0,1.0,1.0,1.0]. Such knot vectors with
uniformly spaced knots are called uniform knot vectors. Otherwise, they are called non-
uniform. The knot vector of this example has the first and last knots repeated p + 1

1



times, while the interior knots are non-repeated. This kind of knot vector is called an
open knot vector. Basis functions defined on open knot vectors are interpolatory at the
left and right ends, but generally are not interpolatory at the interior knots, as shown in
Figure 1.1. If a knot has a multiplicity of k, k ≥ 1, the basis function is Cp−k−continuous
at that position. Hence, the maximal regularity of B-spline basis functions of degree p
is Cp−1.
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Figure 1.1: A basis of cubic C2 B-splines defined on an open, uniform knot vector of Ξ =
[0.0,0.0,0.0,0.0,0.25,0.50,0.75,1.0,1.0,1.0,1.0].

Other important properties of B-splines, which are useful in design and analysis, are:

� Partition of unity, i.e. ∑M
i=1 Ni(ξ) = 1, ∀ ξ.

� Local support, i.e. Ni(ξ) ≠ 0 ∀ ξ ∈ [ξi, ξi+p+1] and Ni(ξ) = 0 ∀ ξ ∉ [ξi, ξi+p+1].
� Non-negativity, i.e. Ni(ξ) ≥ 0, ∀ ξ.

1.1.2 Non-uniform rational B-spline basis functions

The non-uniform rational B-spline (NURBS) basis functions of degree p, denoted as Ri,p,
i = 1, . . . ,M , are defined as follows [1], [2]:

Ri,p(ξ) = Ni,p(ξ)wi∑M
i=1 Ni,p(ξ)wi

, (1.3)

where Ni,p is the corresponding B-spline basis function, defined in (1.2), and wi is its
weight. While the term non-uniform refers to the knot vector, rational B-spline indi-
cates that NURBS consists of piecewise rational polynomials. When all weights are
equal, NURBS basis functions become B-spline basis functions. Hence, B-splines can be
considered a special case of NURBS. If the weights are non-negative, which is typically
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Figure 1.2: A basis of cubic C2 NURBS defined on an open, non-uniform knot vector of
Ξ = [0.0,0.0,0.0,0.0,0.1,0.5,0.7,1.0,1.0,1.0,1.0] with the weights wi, i = 1, . . . ,7,
[0.4,1.0,0.5,1.5,0.75,1.25,1.0].

the case, they inherit properties such as continuity and local supports from each other.
Figure 1.2 illustrates an example of cubic NURBS basis functions defined on an open,
non-uniform knot vector with positive weights. We observe that these functions in-
herit the C2-continuity and local support property of the corresponding cubic B-splines.
NURBS basis functions that are defined on an open knot vector, also constitute a par-
tition of unity. NURBS are able to represent free-form shapes, sharp edges, and kinks,
as well as spheres, cylinders, etc. [1], [2] Thus, they are established in standard CAD
models and are the broadest technology employed in CAD programs.

1.2 Geometry representation

The most common geometry description in computer-aided design (CAD) is the bound-
ary representation (B-rep), where the object is presented by its bounding surfaces rather
than by volume elements [3]. The construction of these surfaces is typically independent
of each other and involves trimming that “cut away” the superfluous areas, i.e. regions
that are not parts of the actual object. We start with a brief recap of the construction
of fundamental objects such as curves and surfaces, before discussing the main aspects
and challenges regarding trimmed geometries.

1.2.1 Curves and surfaces

Consider a set of n points P1, . . . , Pn. An arbitrary curve can be represented as a
parametric curve that is a linear combination of basis functions of polynomial degree p,
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Bi,p (ξ), i = 1, . . . , n, and these points Pi:

C(ξ) = n∑
i=1

Bi,p(ξ)Pi . (1.4)

The pointsPi are called control points and can be considered as the geometric coefficients
of the curve. The curve C(ξ) is a vector-valued function of the parameter ξ, that maps
a straight line segment in the parametric domain into the Euclidean two-dimensional
space.
One possible choice of the basis functions Bi,p (ξ) in (1.4) is the Bernstein polynomials

[4], [5], which results in the so-called Bézier curve [1], [2], [6]. The definition of these
polynomials requires that ξ ∈ [0,1], and their polynomial degree p depends linearly on
the number of control points: p = n−1. Hence, a direct consequence is that increasing the
number of control points requires a higher polynomial degree. Furthermore, since the
polynomial spans over the complete domain [0,1], modifying one control point affects the
whole curve, i.e. no local changes are possible. Instead of the Bernstein polynomials, one
can employ B-spline or NURBS, reviewed in the previous section, as basis functions to
represent the curve (1.4) [1], [2]. Since these spline basis functions are defined piecewise
on an arbitrary number of intervals, the polynomial degree and the number of control
points can be chosen independently, and local changes are possible. Furthermore, since
the smoothness of the resulting spline curve is defined by that of the basis functions
and their continuity between intervals, modifying the control points does not alter the
curve continuity. In Figure 1.3, we illustrate an example of a B-spline curve, expressed
by (1.4), that is defined by basis functions in Figure 1.1. We observe in Figure 1.3b that
modifying the last control point solely affects the last segment of the curve while other
segments remain unchanged.

(a) Initial curve (b) Modification of the last control point

Figure 1.3: A B-spline curve defined with cubic C2 B-splines in Figure 1.1 and its control net (dotted).
Local change is possible for spline curves (b).

To construct surfaces, the most common and widely applied method in geometric
modeling applications is the tensor product method. Consider a net of n ×m control
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points P11, . . . , Pnm, a tensor-product surface can be expressed as [1], [2]:

S(ξ1, ξ2) = n∑
i=1

m∑
j=1

B1,i(ξ1)B2,j(ξ2)Pij , (1.5)

where B1,i(ξ1) and B2,j(ξ2) are the univariate basis functions in the first and second
parametric direction, ξ1 and ξ2, respectively. S(ξ1, ξ2) is a vector-valued function of(ξ1, ξ2), that maps a rectangle plane in the parametric domain into the Euclidean three-
dimensional space. Analogous to representing a curve, the univariate basis functions
can be chosen as Bernstein polynomials, B-splines, or NURBS. In Figure 1.4, we plot an
example of a circular NURBS curve (a) and spherical surface (b). The curve is defined
by quadratic C1 NURBS with control points given in Figure 1.4a, where four control
points on the curve have a weight of w = 1.0 and the other four a weight of w = 1/√2.
The spherical surface, in the form of (1.5), is constructed using the tensor product of
two circles 1.4a.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

x

y

(a) Circle (b) Sphere

Figure 1.4: A circular NURBS curve (a) and spherical NURBS surface (b).

1.2.2 Trimmed geometry

In CAD, the boundary representation (B-rep) commonly involves trimming to divide
the surfaces into relevant and superfluous areas. To this end, trimming curves that
are representations of intersection curves between two surfaces need to be computed.
Figure 1.5 illustrates an example of a simple CAD solid model [7], which is represented
by its bounding surfaces. We observe that even a simple model such as this one includes
several trimmed surfaces and trimming curves (dashed lines).

In general, one can divide the trimming procedure into two main steps: the first
step is to solve the surface intersection problem, and the second step is to represent its
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(a) Solid model (b) Bounding surfaces (c) Parameterization with

trimming curves (dashed)

Figure 1.5: Boundary representation (B-rep) of a CAD solid model [7].

result. There exist several techniques and approaches for the first step, for example,
analytical methods [8], [9], lattice evaluation [10], [11], subdivision methods [12], [13],
and marching (or tracing) methods [14]–[16]. For an overview and summary of these
methods, we refer to [7]. These intersection algorithms lead to an approximate solution
including sampling points of the intersection. Based on these sampling points, one
can represent the intersection curve in the model space, using for instance B-splines
and either interpolation schemes or curve-fitting techniques [17]. Since the resulting
approximate curve does not lie on any of the trimmed surfaces, it needs to be represented
in each parameter space of these surfaces, based on the sampling points given there [18].
The resulting curves are referred to as trimming curves. One can then compute the
corresponding curves in the model space by evaluating the surface equation along its
trimming curve. For more detailed discussions on the representation of intersection
curves, we refer to [7], [18] and references therein.

We note that the trimming curves do not coincide with the intersection curve in
the model space, and also not with each other, since the representation procedure is
performed separately for each trimmed surface. Hence, gaps and overlaps between these
surfaces may occur. This inaccuracy could lead to inconsistent geometries and other
robustness issues [7]. In addition, different kernels of different CAD applications define
and represent trimming curves differently [19], [20]. This could lead to accuracy loss or
undesirable artifacts such as gaps or overlaps during data exchange. Instead of trimmed
objects, there exist several approaches to remodel or replace them, such as using a set
of regular patches [21]–[23], subdivision surfaces [24]–[27], or T-splines [28], [29]. These
techniques are promising, however, only suitable for certain surface types, as reviewed
and summarized in [7].
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Figure 1.6: A mesh of 2 × 4 element in the parametric domain with cubic C2 and quadratic C1 B-
splines in ξ1- and ξ2-directions, respectively

1.3 Isogeometric discretizations

Isogeometric analysis is based on the isoparametric concept [30]. The unknown variables,
such as displacements, velocity, temperature, etc., are represented in terms of basis
functions which represent the geometry, i.e. spline basis functions such as B-splines or
NURBS. The coefficients of these basis functions are then the degrees-of-freedom, or
control variables, i.e. the unknown variables of the control points. Hence, control points
in the context of IGA are equivalent to nodes of classical finite elements. Univariate
spline basis functions are defined on a patch, as discussed in Section 1.1. In general, the
parametric domain can consist of more than one patch, i.e. multipatches. Each patch is
divided in intervals by the knot vector. These intervals are defined as elements (see also
Figure 1.6). We note that, different from basis functions in classical finite elements, the
spline basis function spans over several elements, up to p + 1 elements, where p is the
polynomial degree of the basis function. This allows higher-order continuity over element
boundaries, which is an important property in analysis. Elements in the context of IGA
can be treated in the same way as classical finite elements, i.e. the same assembly routine
on element level in finite element codes.
A mesh for a patch is defined by the product of knot vectors [30], as illustrated in

Figure 1.6. One can refine the mesh with h-refinement or p-refinement in the same
way as with classical finite elements. In the context of IGA, a third strategy, the so-
called k-refinement [30], is possible, which is a combination of p- and h-refinement with
p-refinement performed before h-refinement.
We note that in cases involving trimmed geometries, the analysis poses additional

challenges, such as identifying the trimmed elements, integration in these elements and
possibly along the trimming curve, and stabilization of the trimmed basis. In the context
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of IGA, one of the most well-established approaches to tackle these issues is the finite
cell methods [31]–[33], where the parameter space of the trimmed patch is employed
as a background discretization while the trimming curve defines the boundary of the
domain of interest. A second class of methods is to employ the remodeling of the
trimmed surfaces, for instance using subdivision surfaces [34]–[36] or T-splines [37]–[39],
discussed in the previous section. In addition, an analysis of trimmed geometries also
involves coupling of multiple patches [40]–[42], which could require a treatment of non-
matching parameterizations, possible gaps, and overlaps between different patches and
trimming curves.
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2 Main research themes and objectives

In structural dynamics, particularly in impact, crash-test, and metal forming simula-
tions, explicit methods have a wide range of applications. To achieve higher-order ac-
curacy, commercial codes of these kinds of simulations rely on the spectral properties
of the chosen finite elements combined with locking-preventing mechanisms such as re-
duced quadrature. To achieve highly efficient computations, these codes rely on three
ingredients: (1) low memory requirements; (2) an efficient solver; and (3) relatively large
critical time step values. Contemporary linear finite element codes achieve these three
ingredients based on diagonalizing the mass matrix using lumping techniques. Mass
lumping, however, generally achieves only second-order accuracy even with higher-order
basis functions [43], [44]. This prevents explicit dynamics calculations from exploiting
the higher-order accuracy of the corresponding finite elements, especially isogeometric
discretizations, which are particularly attractive due to their well-behaved spectral prop-
erties. In this work, our main objective is to overcome this issue, attempting to develop
a higher-order accurate explicit scheme with mass lumping in isogeometric structural
analysis. To this end, we discuss in Section 2.1 the key components affecting the spatial
accuracy and efficiency of an explicit scheme, before introducing the main contributions
of this work in Section 2.2. We then close this chapter with the outline of this thesis in
Section 2.3.

2.1 Spatial accuracy and efficiency in isogeometric explicit
dynamics

In this section, we discuss the key components that affect the spatial accuracy of explicit
dynamics computations, such as the spectral accuracy of the finite discretizations, lock-
ing phenomena, and locking-preventing technology. We also discuss the diagonal mass
matrix that has a crucial impact on both the accuracy and the efficiency, as well as the
critical time step size that plays an essential role regarding the latter.

2.1.1 Spectral accuracy of isogeometric discretizations

Isogeometric analysis (IGA) was first introduced in 2005 as a computational framework
to improve the integration of computer-aided design (CAD) and finite element analysis
(FEA) [30]. The main idea is to employ the higher-order smooth splines, such as stan-
dard uniform B-splines and non-uniform rational B-Splines (NURBS), to describe the
geometry of the CAD models and to approximate the solution fields in FEA at the same
time, i.e. an isoparametric concept. Since 2005, several approaches in the context of
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IGA are developed for various research fields such as structural shell analysis [45]–[49],
solid mechanics [50], [51], fluid mechanics [52], [53], fracture mechanics [54], [55], and op-
timization [56]–[58]. IGA is particularly attractive for higher-order accurate structural
dynamics. A key property of higher-order IGA, already discussed in one of the first
articles [43], is its well-behaved discrete spectrum of eigenfrequencies and eigenmodes.
Compared with classical C0 FEA, isogeometric discretizations exhibit better spectral
properties [59]–[62]. Figure 2.1 illustrates an example obtained from the generalized
eigenvalue problem of a bar, discretized with cubic Lagrange polynomials (FEA) and
cubic smooth splines (IGA) [43], [51]. We plot the discrete frequencies, ωh

n, normalized
with respect to the exact solution, ωn, versus the mode number, n, normalized by the
total number of degrees of freedom, N . We observe that for FEA, the spectrum (red
curve) contains the so-called “optical” branches, separated by distinct jumps, which
compromise the accuracy of the high frequency range. For IGA (blue curve), however,
the accurate “acoustic” branch of the spectrum covers almost the entire frequency range.
Good spectral accuracy is an essential factor guaranteeing the higher-order spatial ac-
curacy of the numerical solution and its optimal convergence behavior.

Figure 2.1: Normalized discrete spectrum of eigenfrequencies obtained from a generalized eigenvalue
problem for a bar, computed with FEA and IGA, both with 1,000 cubic basis functions.

2.1.2 Locking phenomena in finite element formulations

Locking, that is a phenomenon where artificial numerical stiffness occurs, leads to a
parameter-dependent reduced convergence rate in the pre-asymptotic range [63]. It neg-
atively affects the accuracy and convergence. The most well-known locking phenomena
are membrane locking [64], [65], transverse shear locking in beam, plate, and shell ele-
ments [64], and volumetric locking due to incompressibility in solid elements [66]. The
development of locking-preventing technology has a history of more than 40 years, first
within classical finite elements (C0 FEA) and then in IGA. Well-established methods in
IGA are, for example, field consistent approach [67]–[69], approaches using higher-order
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basis [46], [70], using selective reduced integration [71]–[73], using reduced integration
with hourglass mode control [68], [74], B-bar method [70], [75], [76], assumed natural
strain [75], [77], [78], enhanced assumed strain [79], discrete shear/strain gap [47], [80],
and methods using variational principles such as Hu-Washizu [47], [81] or Hellinger-
Reissner principle [67], [81], [82]. For explicit dynamics calculations in the context of
IGA, the most common approach to alleviate locking is (selective) reduced quadrature
rule, possibly combined with hourglass control, [83], [84], which is also the standard
approach in commercial codes such as LS-Dyna [85]. Another approach is the isogeo-
metric collocation method [86]–[88], which is applied to explicit dynamics and shown to
alleviate locking phenomena based on its one-point quadrature rule [88]. In this work,
we focus on using spectral analysis to elucidate the impact of locking phenomena and
these different locking-preventing techniques, which also illustrates the intimate relation
between locking and spectral accuracy of finite discretizations. We also apply this to as-
sess the unlocking of our isogeometric mixed formulation based on the Hellinger-Reissner
principle, which we develop in this work with an attempt to eliminate membrane locking
for explicit dynamics of Kirchhoff-Love shells.

2.1.3 Diagonal mass matrix

A key component to achieve highly efficient explicit dynamics calculations is the diag-
onal mass matrix since it requires only low memory usage and a simple vector-vector
multiplication at each time integration step to solve the system of equations. The most
common and well-established technique to diagonalize the mass matrix in this context
is mass lumping [66]. Various lumping techniques exist, such as row-summing [44], [66],
diagonal scaling [89], manifold-based methods [90], and lumping by nodal quadrature
[91]–[93]. While row-summing is very easy to implement, it suffers from the fact that
the lumped mass matrix is not necessarily positive-definite as negative or zero diago-
nal values are possible. In contrast, diagonal scaling and the manifold-based scheme
guarantee the positive definiteness of the lumped mass matrix, however, suffer from sub-
optimal convergence rates [94], [95]. For the approach of lumping by nodal quadrature,
the choice of basis functions and nodal distributions plays an essential role, particularly
in guaranteeing optimal convergence as well as a positive-definite lumped mass matrix
[95]. Employing the Lagrangian basis functions with Gauss-Lobatto-Legendre quadra-
ture points as interpolation nodes and integrating using the Gauss-Lobatto-Legendre
quadrature rule results in a diagonal matrix. This is also known as the spectral element
method [92], [96], [97]. The hp-collocation method [93], which employs the Gauss-
Lobatto Lagrange test functions and Gauss-Lobatto points as collocation points, can
also be categorized in this lumping technique.
In terms of accuracy, lumping schemes generally achieve second-order accuracy irre-

spective of the polynomial degree of the basis functions [43], [44], i.e. for lower-order
elements the optimal accuracy is preserved. For higher-order elements, the optimal
accuracy and convergence behavior can be achieved, given that additional accuracy con-
ditions of the quadrature rule are satisfied [91], or employing either the spectral element
method based on Gauss-Lobatto-Legendre quadrature points (i.e. lumping using nodal
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quadrature) or combining lumping techniques with the spectral element method based
on Gauss-Lobatto-Chebyshev quadrature points [95]. The spectral element method is
the only technique established so far in classical FEA that obtains higher-order spatial
accuracy in explicit dynamics with a diagonal mass matrix [94]–[96]. There are various
attempts of improving the accuracy of the lumped mass such as the explicit predictor
multicorrector of [66], [86], [87], which, nevertheless, results in a mass matrix that is no
longer diagonal but has a band structure. For IGA, one recent work on improving the
accuracy of a lumped mass matrix is [98], where the authors construct a set of trans-
formed spline basis functions that are interpolatory at the Greville points and lumped
the resulting Galerkin consistent mass matrix using the row-sum lumping technique. It
is shown, that the spectral accuracy and convergence obtained with these transformed
basis functions are improved, however, not yet optimal. Recently, also to improve the
spectral accuracy of row-sum lumped mass matrix, [99] develops preconditioners for this
type of mass lumping scheme. The improved mass matrix potentially achieves better
accuracy in explicit dynamics, however, is no longer diagonal, but has a band structure.
Another idea to diagonalize the mass matrix instead of lumping schemes is to exploit

the bi-orthogonality of a dual basis. One of the first attempts to employ this idea for IGA
in explicit dynamics is [100], where the authors utilize the dual space to discretize the
test functions, which corresponds to the spline space discretizing the trial functions. The
key property of these spaces is that they satisfy the bi-orthogonality constraint in the
physical domain. [100] constructs such dual spaces for Non-uniform rational B-splines
(NURBS), based on their Bernstein-Bézier representation, with dual functions that have
the same supports as the primal one, nevertheless, are C−1-continuous. Furthermore,
this approach requires the inverse of the geometrical mapping, which is not trivial for
curved multidimensional geometries, and does not preserve the tensor-product structure
in such cases. We note that this way of construction is not the most common choice.
Standard approaches are developed in the parametric domain [101]–[107], which are em-
ployed for patch coupling in the context of dual mortar methods [105], [107]–[110] and,
recently, for preventing locking phenomena for Reissner-Mindlin shell elements [82]. The
resulting dual basis functions, however, generally do not lead to a diagonal mass matrix
when it is mapped to the physical domain. Using the dual basis functions of [100] as
test functions leads to an isogeometric Petrov-Galerkin formulation, which is shown, via
numerical results of quadratic and cubic basis functions, to result in good spectral prop-
erties and the same optimal convergence behavior as using standard Galerkin consistent
mass matrix. In this work, we will focus on a new Petrov-Galerkin method that enables
a higher-order accurate mass lumping, whose application is straightforward for arbitrary
geometrical mapping.

2.1.4 Critical time step size

In explicit time integration schemes, the critical time step size, ∆ tcrit, plays a crucial role,
since it is the upper bound of their time step size [111]. ∆ tcrit is inversely proportional to
the maximum eigenfrequency, ωmax, of the discretization. Hence, controlling the highest
frequency is requisite for guaranteeing efficient explicit dynamics calculations. One of the
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Figure 2.2: Normalized discrete spectrum of the exemplary bar in Figure 2.1, computed with IGA using
consistent and row-sum lumped mass matrix.

most common approaches to alleviate the impact of ωmax is mass scaling, where artificial
terms are added to the mass matrix [112]–[115]. One of the most extended variants of
this approach is to scale the density in combination with a mass lumping approach [116].
Another mass scaling approach is to add a weighting of some form of stiffness matrix
as a mass scaling [117]–[120]. This type of approach is also called selective mass scaling
when it targets specific frequencies and modes [120]. We note that, albeit mass lumping
techniques are not developed to reduce ωmax, it results in a smaller value of ωmax, and
thus can be also applied to control ωmax. Figure 2.2 demonstrates this effect of the
standard row-sum lumping technique for the exemplary bar in Figure 2.1, computed
with IGA. We observe that row-summing the consistent mass matrix, whose spectrum
is plotted in blue, reduces not only ωmax, but also most of the spectrum (red curve),
and leads to a significant decrease in spectral accuracy. This indicates the negative
impact of mass lumping on spatial accuracy in explicit dynamics calculations, discussed
in the previous subsection. Mass scaling and lumping techniques can be combined.
However, since the added artificial mass terms generally correspond to a non-diagonal
matrix, when applying mass scaling approaches to a lumped mass matrix, they break its
diagonal structure. A solution could be applying these approaches before lumping the
mass matrix or employing the mass scaling variant of [116].
Alternative approaches for controlling ωmax are outlier removal approaches, which aim

at removing spurious “outliers” modes that usually associate with the highest frequencies
of isogeometric discretizations [43], [51]. An example is illustrated in Figure 2.1, where
we observe a small number of modes that form the optical branch at the end of the blue
spectrum (IGA) and are significantly overestimated. One of the first attempts to remove
these outliers is introduced in [51], which is based on the nonlinear parameterization of
the domain via a uniform distribution of the control points. More recent approaches for
single-patch discretizations [121]–[123] enforce additional boundary constraints arising
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from higher-order eigenvalue problems, either by building these into the basis [122],
[123] or via penalization [121]. While the latter only reduces the outlier frequencies, the
former removes the corresponding spurious outlier modes entirely, for arbitrary degree p
in one- and multidimensional settings. For multipatch discretizations, where additional
outliers occur due to reduced continuity at patch interfaces, [124] also imposes additional
higher-order continuity constraints at these interfaces using a penalty approach. By using
large values penalty parameters, this approach indicates the outlier frequencies which
are then removed using a cut-off normalized frequency. In the framework of mortar
methods, similar penalty approaches are developed to suppress the outlier frequencies
[125], [126], or by applying the optimally-blended quadratures [127] in [62], [128]–[130]. In
such penalty approaches, the penalty parameters are usually chosen based on empirical
results and may depend on the geometry, material, and discretization parameters. In
this work, we will focus on an approach to estimate optimal scaling parameters in the
framework of a variational approach based on perturbed eigenvalue analysis, that could
help solve this issue.

2.2 Contributions of this work in the context of isogeometric
analysis

The first contribution of this work is to extend spectral analysis as a tool for identify-
ing locking behavior and assessing the effectiveness of locking-free formulations. One
motivation is that the discrete spectrum contains all aspects of the employed locking-
preventing formulations since the discrete solution of the eigenvalue problem depends on
the variational formulation, its evaluation, and the solution space spanned by the basis
functions of the discretization. Compared to the standard convergence study based on
error norms, which is the standard way to elucidate locking-prone and locking-free formu-
lations, spectral analysis includes information that this way of using error norms cannot
obtain. We propose to compare the spectrum computed on coarse and “overkill” meshes
to “measure” locking or unlocking. The method is locking-free if the corresponding spec-
trum converges on coarse meshes, that is does not differ from that on “overkill” meshes.
Consequently, the method is locking if the spectra obtained on coarse and “overkill”
meshes differ significantly. We demonstrate this via the example of a circular ring dis-
cretized with isogeometric curved Euler-Bernoulli beam elements, that is subjected to
membrane locking. We show that the transverse-displacement-dominating modes are
locking-prone, while the circumferential-displacement-dominating modes are naturally
locking-free. We then employ our approach to compare and assess three representative
locking-free formulations in terms of their locking-related efficiency: the B-bar, discrete
strain gap, and Hellinger-Reissner methods.
The second contribution is a novel variational approach based on perturbed eigen-

value analysis for improving spectral properties of isogeometric multipatch discretiza-
tions. The main idea is to penalize both the stiffness and the mass matrix [121] and
to add higher-order continuity constraints at patch interfaces [124], such that the sup-
pression of the outlier frequencies caused by reduced continuity at these interfaces is
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improved. In particular, we add scaled perturbation terms that weakly enforce these
continuity constraints to both matrices. This necessarily means that both the left- and
right-hand sides of the standard explicit dynamics formulation are modified. Our ap-
proach distinguishes from a mass scaling approach that modifies only the mass matrix.
Furthermore, to remove the outliers caused by reduced continuity at the boundaries, we
combine the proposed approach with the method introduced in [122]. We then propose
an iterative scheme to estimate optimal scaling parameters of the perturbation term,
such that the outlier frequencies are effectively reduced without affecting the accuracy
of the remainder of the spectrum. We demonstrate this achievement via numerical ex-
amples of bars, beams, membranes, and plates. We also illustrate that our approach
allows for a much larger critical time step size in explicit dynamics calculations, which
does not depend on the polynomial degree of spline basis functions.
The third contribution of this work is an isogeometric Petrov-Galerkin method that

combines the dual basis concept and standard row-sum lumping and achieves higher-
order accuracy in explicit dynamics irrespective of the polynomial degree of the spline
approximation. In particular, we employ a class of “approximate” dual spline func-
tions introduced in [131], which only approximately satisfy the discrete bi-orthogonality
property, but preserves all other properties of the original B-spline basis, such as Cp−1

smoothness, polynomial reproduction, and local support. To preserve the approximate
bi-orthogonality in the mapped domain, we divide these dual functions by the Jacobian
determinant. We employ this modified approximate dual basis to discretize the test
functions while discretizing the trial functions with the corresponding B-splines. This
leads to a semidiscrete Petrov–Galerkin formulation, whose consistent mass matrix is
not diagonal but is, in some sense, “close” to the identity matrix. Applying the row-sum
technique to this mass matrix yields then the identity matrix, eliminating the need for
matrix inversion, which preserves all polynomials up to the same degree as the employed
spline basis functions. Accordingly, employing this lumped mass matrix in explicit dy-
namics does not compromise the higher-order spatial accuracy. We numerically confirm
this via spectral analysis and convergence study of beam and plate models.
The fourth contribution is an isogeometric Petrov-Galerkin mixed formulation based

on the Hellinger-Reissner principle that enables higher-order spatial accuracy in explicit
dynamics. It is an extension of our Petrov-Galerkin approach above with an attempt
to eliminate locking phenomena in explicit calculations. It considers the displacement
and strain fields as two independent variable fields. To eliminate, for instance, the
effect of membrane locking for Kirchhoff-Love shell formulation, we discretize the latter
with a basis of one degree lower than the former. We adopt the higher-order mass
lumping scheme of our first Petrov-Galerkin approach and employ smooth B-splines
to discretize the solution fields and the corresponding approximate dual functions to
discretize the test functions. We apply the boundary treatment that is recently developed
in [132] to be able to row-sum lump the entire mass matrix without compromising
higher-order accuracy. To increase the efficiency of our approach, we combine the strong
approach of outlier removal to increase the critical time step size [122] and apply the
reduced quadrature rule [133] that leads to a minimal number of quadrature points
without compromising accuracy. We demonstrate the favorable numerical behavior of
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the introduced Petrov–Galerkin scheme via spectral analysis and convergence studies for
curved beam and shell models.
In addition, we extend the horizon of this work by exploring the application of isoge-

ometric analysis, combined with the strong outlier removal approach [122], to nonlinear
dynamics of shear- and torsion-free rods [134]. Using isogeometric discretizations enables
the omission of the director as an independent variable field, and thus a reduction of the
number of degrees of freedom. They lead to discrete solution in the Euclidean space R3

that is larger than the one when using the standard nodal finite elements based on cubic
Hermit functions. Moreover, we apply the strong approach of outlier removal [122] to
reduce the high-frequency content in the response without affecting the accuracy, en-
suring robustness of our nonlinear discrete formulation. For robust time integration, we
choose an implicit scheme that is a hybrid form of the mid-point rule and the trapezoidal
rule that preserves the linear angular momentum exactly and approximates the energy
accurately. We illustrate the efficiency of our nonlinear discrete formulation for static
and transient rods under different loading conditions, demonstrating good accuracy in
space, time and the frequency domain. Our numerical example coincides with a relevant
application case, the simulation of mooring lines.

2.3 Outline

This thesis is a cumulative work and composed of five publications, each presenting
one of its contributions. The first three publications have been accepted and published
in the peer-reviewed journal Computer Methods in Applied Mechanics and Engineer-
ing (CMAME), while the fourth one has been submitted to International Journal for
Numerical Methods in Engineering, and the fifth publication to Computational Mechan-
ics. For the sake of uniformity, we number the sections, equations, figures, tables, and
references, consecutively.
The structure of this thesis is as follows: In Chapter 3, we present the first publi-

cation extending spectral analysis as a tool for “measuring” locking in finite element
formulations. Chapter 4 consists of our work in the second publication introducing a
variational approach based on perturbed eigenvalue analysis, together with a scheme for
estimating optimal scaling parameters, for improving spectral properties of isogeometric
multipatch discretizations. In Chapter 5, we introduce our third publication present-
ing an isogeometric Petrov-Galerkin method that enables higher-order accurate mass
lumping in explicit dynamics. In Chapter 6, we present the fourth publication on the
Petrov-Galerkin mixed formulation to achieve locking-free discretizations and a higher-
order accurate explicit scheme based on a row-sum lumped mass matrix. In Chapter 7,
we explore the performance of IGA, combined with a strong outlier removal approach,
in terms of its accuracy and robustness in nonlinear dynamics of shear- and torsion-free
rods. The structure of each publication in Chapters 3 to 7 is maintained within each
chapter. We close this thesis with Chapter 8 which summarizes the presented results,
draws conclusions, and outlines future research directions.
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3 Leveraging spectral analysis to elucidate
membrane locking and unlocking in
isogeometric finite element formulations
of the curved Euler-Bernoulli beam

This chapter is reproduced from [135]:

T.-H. Nguyen, R. R. Hiemstra, and D. Schillinger. Leveraging spectral analysis to elu-
cidate membrane locking and unlocking in isogeometric finite element formulations of
the curved Euler-Bernoulli beam, Comput. Meth. Appl. Mech. and Engrg. 388 (2022)
114240. DOI: 10.1016/j.cma.2021.114240. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0045782521005636.

Abstract

In this paper, we take a fresh look at using spectral analysis for assessing locking phe-
nomena in finite element formulations. We propose to “measure” locking by comparing
the difference between eigenvalue and mode error curves computed on coarse meshes
with “asymptotic” error curves computed on “overkill” meshes, both plotted with re-
spect to the normalized mode number. To demonstrate the intimate relation between
membrane locking and spectral accuracy, we focus on the example of a circular ring
discretized with isogeometric curved Euler-Bernoulli beam elements. We show that the
transverse-displacement-dominating modes are locking-prone, while the circumferential-
displacement-dominating modes are naturally locking-free. We use eigenvalue and mode
errors to assess five isogeometric finite element formulations in terms of their locking-
related efficiency: the displacement-based formulation with full and reduced integration
and three locking-free formulations based on the B-bar, discrete strain gap and Hellinger-
Reissner methods. Our study shows that spectral analysis uncovers locking-related ef-
fects across the spectrum of eigenvalues and eigenmodes, rigorously characterizing mem-
brane locking in the displacement-based formulation and unlocking in the locking-free
formulations.
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3.1 Introduction

In finite element discretizations of curved beam and shell models, membrane locking
refers to the phenomenon of artificial bending stiffness due to the coupling of the bend-
ing response and membrane response caused by the local curvature [64], [65]. Membrane
locking negatively affects accuracy and convergence, illustrated in Fig. 3.1 for an iso-
geometric finite element discretization of a curved Euler-Bernoulli cantilever [136]. We
observe that for practically relevant coarse meshes, the accuracy of the displacement so-
lution measured via the relative error in the L2 norm does not improve when the mesh is
refined. The size of the resulting plateau in the convergence curve indicates the severity
of membrane locking. We can also see that locking becomes more severe with increas-
ing slenderness of the beam, and seems to reduce with increasing polynomial degree of
the basis functions. We note that purely displacement-based finite element formulations
of the Euler-Bernoulli beam model require basis functions in the Sobolev space H3 to
achieve optimal convergence rates O(p+ 1) in the L2 norm [137], [138]. In Fig. 3.1a, we
therefore observe convergence order two for quadratic B-splines that are only in H2.

(a) Increasing slenderness R/t, p = 2
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(b) Increasing p, R/t = 1 ⋅ 103

Figure 3.1: Convergence of the relative L2-norm errors of the displacements field of a curved Euler-
Bernoulli beam (quarter circle cantilever, unit shear force at the free end, radius R, thickness
t), discretized with B-splines of degree p and uniform h-refinement.

Locking-free finite element discretizations do not show any pre-asymptotic plateau,
but converge right away with the optimal rate on coarse meshes. For completeness,
we note that membrane locking is only one of several sources of locking, the most
well-known being transverse shear locking in beam, plate and shell elements [64] and
volumetric locking due to incompressibility in solid elements [66]. The development of
locking-preventing discretization technology has a history of more than 40 years, first
within classical finite elements and then in isogeometric analysis. Without any claim to
completeness, Table 3.1 summarizes the most important locking-preventing formulations
that can be applied against membrane locking, using the standard classifications into
higher-order methods, the field-consistent approach, reduced integration, strain modifi-
cation, and variational principles. For details on the underlying ideas and derivations,
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Approach, concept Application in
derivation via principle of virtual work (⋆) nodal finite isogeometric

or as a mixed method (◇) elements analysis

Higher-order basis (⋆) [139], [140] [46], [70]
Field consistent approach (⋆) [141]–[143] [67]–[69]

Reduced
integration

Selective reduced integration (⋆) [144]–[148] [68], [70]–[73]
Hourglass mode control (⋆) [149]–[152] [68], [74]

Strain
modification

B-bar method (⋆) [144], [153], [154] [68], [70], [75],
[76]

Assumed natural strain (ANS) (⋆) [155]–[157] [75], [77], [78],
[158]

Enhanced assumed strain (EAS) (◇) [159]–[162] [79]
Discrete shear/strain gap (DSG) (⋆) [163]–[165] [47], [68], [80]

Variational
principles

Hu-Washizu (◇) [145], [146],
[166], [167]

[47], [81]

Hellinger-Reissner (◇) [161], [168], [169] [47], [67], [81],
[82]

Table 3.1: Overview of locking-preventing finite element technology, developed in the context of stan-
dard finite element and isogeometric analysis, and associated literature (without claim to
completeness).

we refer the interested reader to the pertinent literature, also given in Table 3.1 for nodal
finite elements and isogeometric analysis.

To illustrate the effect of locking-free formulations, we compare the results obtained
with the standard finite element formulation, using full and reduced integration, to the
results obtained with three representative variants, namely B-bar strain projection, the
discrete strain gap (DSG) method and a Hellinger-Reissner approach. For the curved
cantilever problem described above, Figure 3.2 plots the resulting convergence curves in
terms of the L2-norm errors of the displacements for quadratic, cubic, quartic and quintic
B-spline basis functions. We observe that all three locking-free formulations mitigate the
effect of membrane locking with respect to the standard finite element formulation that
is affected significantly by membrane locking. For quadratic basis functions on finer
meshes, reduced integration mitigates the effect of membrane locking, but does not have
any effect for p ≥ 3. We also see that the DSG method does not consistently perform well
for all polynomial degrees. This example illustrates that convergence studies of simple
benchmark problems do not constitute a satisfactory way of assessing discretization
methods in terms of their locking-related robustness and accuracy. Given the multitude
of formulations addressing membrane locking, the question arises how to best compare
and assess their accuracy and effectivity.
The analysis of the discrete spectrum of eigenvalues and eigenmodes constitutes an

alternative way of assessing the accuracy of a discretization scheme. Eigenvalues and
eigenmodes are computed from a discrete generalized eigenvalue problem that for models
in structural mechanics corresponds to the discretized variational formulation of the
associated free vibration problem without damping. Spectral accuracy directly relates to
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(a) Quadratic B-splines (p = 2) (b) Cubic B-splines (p = 3)

(c) Quartic B-splines (p = 4) (d) Quintic B-splines (p = 5)

Figure 3.2: Relative L2-norm errors of the displacements field of a curved Euler-Bernoulli beam (quarter
circle cantilever, unit shear force at the free end, radius R, thickness t, slenderness R/t = 1 ⋅
103), obtained with different locking-free formulations via uniform h-refinement of quadratic,
cubic, quartic and quintic B-spline basis functions.

the accuracy of a discretized boundary value problem, as the solution of the latter can be
represented in terms of eigenvalues and eigenmodes. For instance, spectral analysis has
been recently used to explain the superior per-degree-of-freedom accuracy and robustness
that is achieved by isogeometric analysis with smooth spline functions [61].
In this paper, we take first steps towards establishing spectral analysis as a tool for

identifying locking behavior and assessing the effectiveness of locking-free formulations.
Our approach is global, that is, we look at the complete spectrum and modal behavior,
and it thus goes far beyond existing work [73], [170]. On the one hand, the solution
to the discrete eigenvalue problem depends on the terms that appear in the variational
formulation, their evaluation, and the solution space spanned by the basis functions of
the finite element discretization. Therefore, all aspects of the various locking-preventing
formulations given in Table 3.1 are reflected in the discrete spectrum. On the other hand,
spectral analysis provides access to information that cannot be obtained via standard
convergence measures based on error norms. Moreover, we propose a practical way of
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“measuring” locking (or unlocking) in the spectrum by comparing normalized spectra
computed on coarse and “overkill” meshes. We define a method as locking-free if the
normalized spectra are converged on coarse meshes, that is, the spectra obtained from
coarse and “overkill” meshes do not differ. Accordingly, we define a method as locking
if the normalized spectra are not converged on coarse meshes, that is, the spectra ob-
tained from coarse and “overkill” meshes differ significantly. We illustrate the validity
and significance of spectral analysis in this context via the example of a circular ring
discretized with isogeometric curved Euler-Bernoulli beam elements susceptible to mem-
brane locking. We then compare and assess the effectivity of the three representative
locking-free formulations selected above in terms of their impact on the accuracy of the
eigenvalues and eigenmodes.
The structure of the paper is as follows: in Section 3.2, we briefly review the generalized

eigenvalue problem and associated error measures in spectral analysis. In Section 3.3,
we introduce the circular ring problem and its discretization via isogeometric Euler-
Bernoulli beam elements. In Section 3.4, we review the three representative locking-
free formulations. In Section 3.5, we present detailed spectral analysis carried out for
isogeometric discretizations of the thin circular ring and various locking and locking-free
formulations. In addition, we provide an in-depth discussion of the validity and strengths
of spectral analysis to interpret membrane locking in this context. In Section 3.6, we
summarize our results and conclusions.

3.2 Generalized eigenvalue problem and error measures in
spectral analysis

3.2.1 Generalized eigenvalue problem

We recall the generalized eigenvalue problem that governs free vibrations of an undamped
linear structural system in the continuous setting. Each continuous eigenmode Un(x),
with n ∈ N+ and defined on a domain Ω, satisfies the eigenvalue problem: find (Un, λn) ∈V ×R+ such that:

(K − λnM) Un(x) = 0 , x ∈ Ω . (3.1)

Here,M and K are the mass and stiffness operators, λn = ω2
n is the nth eigenvalue equal

to the square of the nth eigenfrequency ωn, and V is the space of functions with sufficient
regularity that allows the differential operators inM and K to be applied.
The strong form of the generalized eigenvalue problem (3.1) can be transferred into

a variational form via the standard Galerkin method and subsequently discretized with
N finite element basis functions Bi(x). The resulting discrete eigenvalue problem can
be expressed via the following matrix equations: find (Uh

n , λ
h
n) ∈ Vh ×R+ such that:

(K − λh
nM) Uh

n = 0 , n = 1,2, . . . ,N , (3.2)

where Uh
n denotes the vector of unknown coefficients, such that the nth discrete eigen-
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mode is:

Uh
n(x) = [B1(x) . . . BN(x)] Uh

n , Uh
n(x) ∈ Vh ⊂ V .

Here, K and M denote the stiffness and consistent mass matrix, λh
n = (ωh

n)2 is the nth

discrete eigenvalue equal to the square of the nth discrete eigenfrequency ωh
n, and Vh

is the space of finite element basis functions with sufficient regularity. The discrete
eigenmodes Uh

n are orthogonal in the L2 norm and thus form a basis for the solution of
any boundary value problem defined with the same model.
We note that in many applications, the use of a lumped mass matrix instead of the

consistent mass matrix is common. Lumping schemes, however, often significantly affect
the accuracy of the discrete spectrum, see e.g. [43], and are therefore not considered in
this study.

3.2.2 Ordering of eigenvalues, rank sufficiency

We recall the following important properties due to their relevance in the remainder of
the paper. The eigenvalues λh

n can be sorted in ascending order, where the corresponding
eigenmodes can be ordered arbitrarily. Under the condition that (3.2) is derived from
a homogeneous Neumann eigenvalue problem, that is, no Dirichlet boundary conditions
are specified, the N×N stiffness matrix is symmetric positive semi-definite and the N×N
consistent mass matrix is symmetric positive definite for linear structural systems. As a
consequence, all eigenvalues are nonnegative real numbers ordered as:

0 ≤ λh
1 ≤ λh

2 ≤ . . . ≤ λh
n ≤ . . . ≤ λh

N , (3.3)

A stable finite element scheme satisfies the notion of rank sufficiency based on the fol-
lowing three requirements [66], [171]:

1. The number of zero eigenvalues corresponds exactly to the number of rigid body
modes, given by the specific structural system under consideration. The proper
imposition of Dirichlet boundary conditions removes all rigid body modes and
corresponding zero eigenvalues.

2. All eigenvalues are real, and the smallest non-zero eigenvalue converges to a finite
value larger than zero. This ensures that no further zero eigenvalues occur, since
the set of eigenvalues is bounded from below due to (3.3).

3. The set of eigenvalues is bounded from above, i.e. the largest eigenvalue is finite.

3.2.3 Error measures in spectral analysis

In this paper, we will investigate the error globally across the complete spectrum of
eigenvalues and eigenmodes. To this end, we first define the following two error measures:

∣λh
n − λn

λn
∣ , relative eigenvalue error, (3.4)
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∥Uh
n −Un∥∥Un∥ , relative mode error in the L2-norm, (3.5)

which we will use extensively throughout this paper to quantify locking effects. We
recall that for every mode n, the relative errors in the corresponding eigenvalue and
mode, (3.4) and (3.5), sum to the mode error in the energy norm [172, Section 6.3, p.
233]:

λh
n − λn

λn
+ ∥Uh

n −Un∥2∥Un∥2 = ∥Uh
n −Un∥2E∥Un∥2E , ∀n = 1,2, . . . ,N , (3.6)

provided that ∥Uh
n∥L2 = ∥Un∥L2 . This relationship, denoted as the Pythagorean eigen-

value error theorem, is used extensively in [61] to evaluate both standard finite element
and isogeometric approximations of eigenvalue, boundary-value, and initial-value prob-
lems. We refer to [61] for an in-depth discussion of error measures used in eigenvalue
problems.

3.2.4 The role of the lowest eigenvalues and eigenmodes

It is important to note that for the approximation power of a finite element scheme, the
accuracy of the lower part of the discrete spectrum is particularly crucial. To illustrate
this key statement, we consider the discrete form Kx = f that results from a finite
element discretization of an elliptic boundary value problem, where K and f denote the
stiffness matrix and the force vector, and x is the vector of unknowns. As the discrete
eigenmodes Uh

n form a basis for the solution, we can expand the solution coefficients of
the finite element basis in terms of the coefficients of the eigenmodes as:

x =∑
n

Uh
n cn . (3.7)

Using basic algebra and the orthogonality properties of the eigenmodes with respect
to the stiffness and mass matrices, one can derive a closed-form expression for each
unknown cn of the eigenmode expansion (3.7) that reads:

cn = 1

λh
n

(Uh
n)T(Uh

n)T MUh
n

f . (3.8)

For the intermediate steps of this derivation, we refer to [171], [173]. Each coefficient cn is
inversely proportional to the size of the corresponding eigenvalue λh

n. Due to the ordering
(3.3), the magnitude of the eigenvalues monotonically increases with mode number n.
Therefore, for discretized elliptic boundary value problems, the contribution of higher
eigenmodes with n ≫ 1 will typically be significantly smaller than the contribution of
the lowest eigenmodes n = 1,2,3,4, . . . For practical meshes with more than a few basis
functions, we can even discard the contribution of the high modes completely, as this
tendency becomes more pronounced, when the number of degrees of freedom and hence
the number of eigenvalues is increased.
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3.3 Free vibration of the Euler-Bernoulli circular ring

To illustrate our idea to apply spectral analysis for assessing locking phenomena, we
consider the free vibration response of a thin circular ring that we will model as a
curved Euler-Bernoulli beam in two dimensions and numerically solve with different
finite element formulations, both locking and locking-free. A basic illustration of the
Euler-Bernoulli ring, which we assume to be unconstrained and undamped, is given in
Fig. 3.3. Focusing our attention on a single benchmark entails the following advantages.
On the one hand, the resulting discrete model is a representative example for membrane
locking, but not susceptible to any other form of locking. Therefore, we can a priori
exclude any interaction of different locking phenomena. In addition, the continuous
problem still allows for an analytical solution, so that the error measures (3.4) and (3.5)
can be evaluated. On the other hand, beam formulations can be written up in concise
format, including their different locking free variants, which facilitates comparison and
avoids deviation from our main focus on the assessment of membrane locking through
spectral analysis.

θ

R

y

x

R

x′,w
y′, v

t

Young’s modulus E = 1.2 ⋅ 104,
Mass density ρ = 0.01,
Radius R = 1.0,
Beam width b = 0.1,
Thickness t, slenderness ratio R/t,
Cross section A, inertia moment I.

Figure 3.3: Closed circular ring modeled as a curved Euler-Bernoulli beam.

3.3.1 Strong form of the eigenvalue problem in mixed format

We briefly review the derivation of the generalized eigenvalue problem that governs the
free vibration response of the unconstrained Euler-Bernoulli ring from the system of
equations of motion. For a circular ring, the radius of curvature R is constant and the
arc-length coordinate s = Rθ can be expressed in terms of the angle θ ∈ [0,2π] [174]. To
facilitate the application to some of the locking-free formulations later on, we state the
equations of motion in mixed form, where the kinematic relations are added as individual
constraint equations:

EI

R2
κ,θ + EA

R
ϵ,θ = ρAv̈ , (3.9a)
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EI

R2
κ,θθ − EA

R
ϵ = ρAẅ , (3.9b)

ϵ = 1

R
v,θ + 1

R
w , (3.9c)

κ = 1

R2
v,θ − 1

R2
w,θθ . (3.9d)

The field variables are the circumferential and transverse displacement components v
and w, respectively, the membrane strain ϵ, and the change of curvature κ, which, at
fixed radius R, are functions of the angle θ and time t. Young’s modulus E, cross-section
area A, moment of inertia I, and mass density ρ are assumed constant. The double dot
operator indicates second derivatives with respect to time t, and (⋅),θ and (⋅),θθ indicate
first and second derivatives with respect to the angular coordinate θ.
We now assume that the field solutions of the free vibration problem are composed of

a set of spatial solutions that depend on θ, multiplied by a modulation Tn that depends
on time t:

v(θ, t) =∑
n

v̂n(θ)Tn(t), w(θ, t) =∑
n

ŵn(θ)Tn(t) ,
ϵ(θ, t) =∑

n

ϵ̂n(θ)Tn(t) , κ(θ, t) =∑
n

κ̂n(θ)Tn(t) , (3.10)

where n = 1,2, . . . ,∞. We note that the time modulation is of the form T = exp(j ωnt),
where ωn is an eigenfrequency of the ring and j is the imaginary unit. When we in-
sert relations (3.10) into the equations of motion (3.9a) and (3.9b), we find for each
component n of the solution

[EI

R2
κ̂n,θ + EA

R
ϵ̂n,θ] Tn − [ρAv̂n] T̈n = 0 , (3.11)

[EI

R2
κ̂n,θθ − EA

R
ϵ̂n] Tn − [ρAŵn] T̈n = 0 . (3.12)

For each n, we can now separate the field variables that depend on space and time
by dividing (3.11) and (3.12) by Tn (ρAv̂n) and Tn (ρAŵn), respectively. After this
operation, the first term in (3.11) and (3.12) only depends on θ and the second term
only on t. For the equations of motion (3.11) and (3.12), separation of variables thus
allows us to write:

EI
R2 κ̂n,θ + EA

R ϵ̂n,θ

ρAv̂n
= EI

R2 κ̂n,θθ − EA
R ϵ̂n

ρAŵn
= T̈n

Tn
= −λin . (3.13)

As the angular coordinate θ and the time coordinate t can be varied independently, all
terms in (3.13) must remain equal to a constant, denoted here as −λin. As a result of the
system of two equations of motion, one can show that for each n, two different constants
exist [174], which we refer to with the additional index i = 1,2.
Combining (3.13) and the kinematic relations (3.9c) and (3.9d) that are obviously true

for each n and arbitrary mode coefficients Tn(t) results in the generalized eigenvalue
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problem for the unconstrained circular Euler-Bernoulli ring: find ({v̂n, ŵn, ϵ̂n, κ̂n}, λin) ∈V ×R+ such that

EI

R2
κ̂n,θ + EA

R
ϵ̂n,θ + λin ρAv̂n = 0 , (3.14a)

EI

R2
κ̂n,θθ − EA

R
ϵ̂n + λin ρAŵn = 0 , (3.14b)

ϵ̂n = 1

R
v̂n,θ + 1

R
ŵn , (3.14c)

κ̂n = 1

R2
v̂n,θ − 1

R2
ŵn,θθ . (3.14d)

where n = 1,2, . . . ,∞, i = 1,2, and V is a set of four spaces of continuous functions with
sufficient regularity. Equations (3.14a) and (3.14b) can be identified as a generalized
eigenvalue problem of the form (3.1), accompanied by two additional kinematic con-
straints (3.14c) and (3.14d). The constants λin form the nth eigenvalue pair, the square
of the nth eigenfrequency pair ωin of the ring.
An analytical solution of the eigenvalue problem of the circular Euler-Bernoulli ring

is due to Soedel [174], which is summarized in Appendix 3.A for completeness. As
a consequence of the eigenvalue pairs, the solution naturally splits into two types of
eigenmodes, which can be associated with transverse and circumferential displacement
behavior. In this paper, we we refer to the transverse and circumferential deflection
dominating modes of [174] as transverse and circumferential modes. Figures 3.4 and
3.5 illustrate the analytical shapes of some of the transverse and circumferential modes,
plotted for the geometric and material parameters given in Fig. 3.3, and a slenderness
R/t = 1 ⋅ 103, where t is the thickness of the ring.

Remark 3.3.1. The first two transverse modes in Figure 3.4 denote a rigid body rotation
(n = 0) and translation in x-direction (n = 1), respectively. The remaining rigid body
translation in y-direction is part of another solution set, (3.46) - (3.47), with a π/2
phase-shift, see [174] and Appendix 3.A. The first circumferential mode in Figure 3.5
is called “breathing mode” [174]. For our numerical studies in Section 3.5, we exclude
the rigid body modes and the corresponding zero eigenvalues in both the numerical and
analytical solutions.

Remark 3.3.2. The “kinks” that appear in the circumferential modes shown in Fig. 3.5
do not represent singularities, but are an artifact from plotting the modes for a finite
displacement increment.

3.3.2 Variational formulation

For ease of notation, we omit the hat on all displacement and strain field variables
that we introduced in (3.10), with the understanding that from now on all displacement
and strain fields will only depend on a spatial variable. We also define the following
strain-displacement operators for membrane strain and change of curvature that act on
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n = 0 n = 1 n = 2 n = 3

n = 4 n = 5 n = 6 n = 7

Figure 3.4: Analytical transverse eigenmodes (corresponding to λ1n) of the circular ring with a slen-
derness ratio of R/t = 1 ⋅ 103, where R is the radius and t the thickness of the ring. The
plotted modes represent displacements in Cartesian coordinates, (Ux, Uy), obtained via the
transformation (3.21).

n = 0 n = 1 n = 2 n = 3

n = 4 n = 5 n = 6 n = 7

Figure 3.5: Analytical circumferential eigenmodes (corresponding to λ2n) of the circular ring with a
slenderness ratio of R/t = 1 ⋅ 103, where R is the radius and t the thickness of the ring. The
plotted modes represent displacements in Cartesian coordinates, (Ux, Uy), obtained via the
transformation (3.21).
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circumferential and transverse displacements v and w:

Lϵ(v,w) = 1

R
v,θ + 1

R
w , (3.15a)

Lκ(v,w) = 1

R2
v,θ − 1

R2
w,θθ , (3.15b)

where we assume sufficient regularity, such that all derivatives with respect to θ are well
defined.

Curvilinear displacements

To transfer the strong form of the generalized eigenvalue problem (3.14a) and (3.14b)
with kinematic constraints (3.14c) and (3.14d) into a variational format, we can apply
the weighted residual method [66]. To this end, we bring each equation in residual form,
multiply with a suitable test function and integrate over the ring domain:

∫ 2π

0
[EI

R2
κn,θ + EA

R
ϵn,θ + λin ρAvn] δv Rdθ = 0 , (3.16a)

∫ 2π

0
[EI

R2
κn,θθ − EA

R
ϵn + λin ρAwn] δwRdθ = 0 , (3.16b)

∫ 2π

0
[Lϵ(vn,wn) − ϵn] δN Rdθ = 0 , (3.16c)

∫ 2π

0
[Lκ(vn,wn) − κn] δM Rdθ = 0 . (3.16d)

From an energetic consistency viewpoint, we can identify the test functions as the virtual
displacements δv and δw in circumferential and transverse direction, and the virtual
membrane force and bending moment δN and δM , respectively.
Assuming sufficient regularity, we now integrate (3.16a) and (3.16b) by parts to shift

all derivatives from the strain field variables to the virtual displacements:

∫ 2π

0
[−EI

R2
κn δv,θ − EA

R
ϵn δv,θ + λin ρAvn δv] Rdθ = 0 ,

∫ 2π

0
[EI

R2
κn δw,θθ − EA

R
ϵn δw + λin ρAwn δw] Rdθ = 0 . (3.17)

We note that due to the periodic nature of the ring, the integration by parts procedure
does not produce any boundary terms.
In (3.16c) and (3.16d), we use the constitutive relations for the membrane force and

the bending moment, δN = EAδϵ and δM = EI δκ, to obtain expressions based on
corresponding virtual membrane strain and change of curvature functions:

∫ 2π

0
[EA Lϵ(vn,wn) δϵ −EAϵn δϵ] Rdθ = 0 ,

∫ 2π

0
[EI Lκ(vn,wn) δκ −EI κn δκ] Rdθ = 0 . (3.18)
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Summing up the two equations in (3.17) and the two equations in (3.18), we can
write the variational mixed formulation of the circular Euler-Bernoulli ring in curvilinear
coordinates in concise format: find ({vn,wn},{ϵn, κn}, λin) ∈W × S ×R+ such that

∫ 2π

0
[EAϵnLϵ(δv, δw) +EIκnLκ(δu, δw)] Rdθ −

λin∫ 2π

0
ρA [vn δv +wn δw] Rdθ = 0 ∀ {δv, δw} ∈W ,

(3.19)

∫ 2π

0
[EALϵ(vn,wn) δϵ +EI Lκ(vn,wn) δκ] Rdθ −

∫ 2π

0
[EAϵn δϵ +EI κn δκ] Rdθ = 0 ∀ {δϵ, δκ} ∈ S ,

(3.20)

where W = (H1 ×H2) and S = (L2 × L2) are the Sobolev spaces of periodic functions,
all defined on the ring domain [0,2π].
Cartesian displacements

At each point of the ring parametrized by the angular coordinate θ, we can express
circumferential and transverse displacements v and w in terms of Cartesian displacements
ux and uy that refer to a fixed global coordinate system (see Fig. 3.3). The corresponding
transformation rule is:

[w
v
] = [ cos(θ) sin(θ)− sin(θ) cos(θ)] [uxuy] . (3.21)

Substituting this transformation in (3.15a) and (3.15b), we obtain the corresponding
strain-displacement operators:

Lϵ(ux, uy) = 1

R
(−ux,θ sin(θ) + uy,θ cos(θ)) (3.22a)

Lκ(ux, uy) = 1

R2
(−ux,θθ cos(θ) + ux,θ sin(θ) − uy,θθ sin(θ) − uy,θ cos(θ)) , (3.22b)

that act on Cartesian displacements. From (3.19), we can derive the variational formu-
lation of the generalized eigenvalue problem with respect to Cartesian displacements by
replacing all circumferential and transverse displacements via (3.21), (3.22a) and (3.22b).
The result is: find ({ux,n, uy,n},{ϵn, κn}, λin) ∈ U × S ×R+ such that:

∫ 2π

0
[EAϵnLϵ(δux, δuy) +EI κnLκ(δux, δuy)] Rdθ −

λin∫ 2π

0
ρA [ux,n δux + uy,n δuy] Rdθ = 0 ∀ {δv, δw} ∈ U ,

(3.23)
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∫ 2π

0
[EALϵ(ux,n, uy,n) δϵ +EI Lκ(ux,n, uy,n) δκ] Rdθ −

∫ 2π

0
[EAϵn δϵ +EI κn δκ] Rdθ = 0 ∀ {δϵ, δκ} ∈ S ,

(3.24)

where U = (H2 ×H2) and S = (L2 × L2) are the Sobolev spaces of periodic functions,
defined on the ring domain [0,2π]. In the remainder of this work, we will apply the
variational formulation (3.23) and (3.24) as well as the strain-displacement relations
(3.22a) and (3.22b) as the basis for understanding different finite element discretization
schemes.

3.3.3 Standard isogeometric finite element discretization

In this paper, we employ splines as basis functions, which are widely used today in the
context of isogeometric analysis [30], [51]. For further details, we refer to the recent
reviews [175]–[177] and the references therein.

Uniform periodic B-splines on a circular ring

A spline is a piecewise polynomial, characterized by the polynomial degree p of its
segments and the prescribed smoothness at the segment interfaces. In the following,
we employ smooth B-splines with maximum continuity Cp−1 with p ≥ 2, defined on a
uniform partition of the circle. We construct periodic spline discretizations of dimension
n̂b by taking n̂b + p sequential B-splines and applying suitable end conditions to the last
p B-splines. We denote the resulting discrete space spanned by the n̂b periodic B-spline
basis functions of polynomial degree p with continuity Cp−1 as Vp,p−1n̂b

. For the circular
ring, we apply an exact geometric mapping, F, using trigonometric functions:

(x, y) = F(θ) = (R cos(θ),R sin(θ)) (3.25)

Figure 3.6 shows a graphical illustration. Construction, differentiation and integration
of B-splines can be performed using standard spline formulae, see [1], [2].

Remark 3.3.3. Spline discretization with repeated knots lead to the appearance of outlier
eigenvalues and eigenmodes at the end of the spectrum [43], [60], [122]. The use of uni-
form periodic B-spline discretizations of the circular ring eliminates this issue entirely,
highlighting another advantage of our choice of benchmark problem.

Displacement-based stiffness and mass matrices

Standard displacement-based finite element methods presume that the strain-displacement
relations are exactly satisfied by the finite element approximation. On the one hand,
the strain field variables can therefore be eliminated from the variational formulation
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Figure 3.6: The space V2,1
8 (0,2π), consisting of n̂b = 8 quadratic periodic B-splines on the circle.

by replacing them by the displacement-based expressions incorporated in the strain-
displacement operators (3.22a) and (3.22b). It is thus sufficient to discretize the Carte-
sian displacements and virtual displacements by a finite sum of n̂b B-spline basis func-
tions Ni(θ) multiplied by unknown coefficients:

uhx(θ) = n̂b∑
i=1

Ni(θ)U i
x , uhy(θ) = n̂b∑

i=1
Ni(θ)U i

y , (3.26)

δuhx(θ) = n̂b∑
i=1

Ni(θ) δU i
x , δuhy(θ) = n̂b∑

i=1
Ni(θ) δU i

y . (3.27)

On the other hand, the weak form of the kinematic constraints (3.24) is a priori satisfied
strongly, and can thus be removed from the variational formulation.
Inserting (3.26) and (3.27) in the remaining weak form (3.23) yields the standard

finite element formulation of the generalized eigenvalue problem: find ({uhx,n, uhy,n}, λh
in) ∈V ×R+ such that:

∫ 2π

0
[EALϵ(uhx,n, uhy,n)Lϵ(δuhx, δuhy) +EI Lκ(uhx,n, uhy,n)Lκ(δuhx, δuhy)]Rdθ −

λh
in∫ 2π

0
ρA [uhx,n δuhx + uhy,n δuhy] Rdθ = 0 ∀ {δv, δw} ∈ Vp,p−1n̂b

,

(3.28)

with n = 1,2, . . . , n̂b and i = 1,2. The space V = (Vp,p−1n̂b
×Vp,p−1n̂b

), where p ≥ 2, consists of
n̂b periodic Cp−1 B-spline functions of at least quadratic polynomial degree defined on
the ring domain [0,2π]. It entails displacements and virtual displacements in the sense
of the Galerkin method.

From (3.28), it is straightforward to retrieve the standard form of a discrete generalized
eigenvalue problem (3.2) [66]. For the circular Euler-Bernoulli ring, the stiffness matrix
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of the standard displacement-based finite element method is:

K = EA∫ 2π

0
BT

mBmRdθ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Km

+EI ∫ 2π

0
BT

b BbRdθ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Kb

, (3.29)

that can be divided into a membrane part, Km, and a bending part, Kb. The discrete
strain-displacement matrices for the membrane strain and the change of curvature, Bm

and Bb, are:

Bm = 1

R
[−N1,θ(θ) sin(θ) . . . −Nn̂b,θ(θ) sin(θ) N1,θ(θ) cos(θ) . . . Nn̂b,θ(θ) cos(θ)] ,

(3.30)

Bb = 1

R2
[−N1,θθ(θ) cos(θ) +N1,θ(θ) sin(θ) . . . −N1,θθ(θ) sin(θ) −N1,θ(θ) cos(θ) . . .] .

(3.31)

The consistent mass matrix is a 2 × 2 block diagonal matrix of the following form:

M = [M
M
] , withMij = ρA∫ 2π

0
Ni(θ)Nj(θ)Rdθ , {i, j} = 1,2, . . . , n̂b . (3.32)

Full versus reduced integration

The standard finite element formulation (3.28) of the Euler-Bernoulli circular ring uses
Gauss quadrature with (p + 1) quadrature points to numerically integrate the entries of
the stiffness and mass matrices (3.29) and (3.32), commonly denoted as full integration.
It is well-known, however, that the standard formulation with full integration suffers
from severe membrane locking.
In the case of the Euler-Bernoulli beam, selective reduced integration performs numer-

ical integration of the membrane part of the stiffness matrix in (3.29) with a quadrature
rule that accurately integrates only a subset of all polynomials within an element. On
the one hand, reduced selective integration is simple to implement and operates with the
same displacement-based standard variational formulation (3.28). On the other hand,
reduced integration can imply unstable solution behavior due to the appearance of spuri-
ous zero-energy modes [149], [150], [178]. For other reduced quadrature schemes suitable
for IGA, we refer the reader to [73], [74], [133] and the references therein. In this study,
we will employ a reduced quadrature scheme based on Gaussian quadrature that uses
p quadrature points per spline segment for the integration of the membrane stiffness
matrix Km in (3.29), and p + 1 quadrature points for the integration of the bending
stiffness and mass matrices Kb in (3.29) and M in (3.32). One can show that this choice
preserves full accuracy and still avoids spurious modes [171].
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3.4 Three membrane locking-free finite element formulations

In the following, we briefly review and compare the key concepts of three well-established
methods that are widely used to mitigate membrane locking. These are B-bar strain pro-
jection, the discrete strain gap method, and a mixed formulation based on the Hellinger-
Reissner principle. We note that their use is not limited to membrane locking in the
Euler-Bernoulli beam formulation, but all three have been successfully employed for mit-
igating a variety of locking phenomena in different structure and material models. For
the sake of conciseness, we state their formulation directly for the Euler-Bernoulli ring
and refer to the literature for a more general presentation.

Remark 3.4.1. The assumed natural strain (ANS) method is equivalent to the B-bar
method, since the spaces of assumed strain fields and projection spaces are equivalent to
appropriate projection operators [75]. The ANS method can thus be expected to provide
similar results to the B-bar method. The enhanced assumed strain (EAS) method is
in some sense equivalent to the Hellinger-Reissner formulation [161], and can thus be
expected to provide similar results. We therefore do not include the ANS and EAS
methods in the following study.

3.4.1 B-bar strain projection

The B-bar strain projection method was initially developed to treat volumetric locking
[144], [153] and then extended to isogeometric analysis and other types of locking such
as transverse shear and membrane locking [70], [75], [76]. The basic idea is to project
the strain components associated with locking onto a basis of lower dimension so that
the locking effect is alleviated. A common choice for the definition of a projector is
the minimization of the L2 norm. The B-bar strain projection method can be applied
for any type of locking phenomenon and with any polynomial basis of arbitrary degree
and spatial dimension. The projected strain fields result in a modified strain tensor and
modified strain-displacement matrix, B, hence the name. There are no additional point
sets to evaluate and no additional stiffness terms or variables are required.
For our study, we adapt the Timoshenko beam formulation presented in [68] to the

Euler-Bernoulli case, resulting in a modification of the membrane stiffness matrix Km

in (3.29). We choose a projection using the L2 norm for the membrane strain and a
basis of degree p − 1 with continuity Cp−2 and p with continuity Cp−1, where p ≥ 2, for
the projected membrane strain and the displacement field, respectively. The modified
membrane stiffness matrix is then:

K̄m = EA B̄T
m M̄−1 B̄m . (3.33)

For our example of the circular Euler-Bernoulli ring discretized with a periodic B-spline
basis, the matrices resulting from the projection procedure are defined as:

B̄m = [B̄1 B̄2] , with B̄1,ij = −∫ 2π

0
sin(θ) N̄iNj,θ dθ , B̄2,ij = ∫ 2π

0
cos(θ) N̄iNj,θ dθ,
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and M̄ij = ∫ 2π

0
N̄i N̄j Rdθ , where {i, j} = 1,2, . . . , n̂b , (N, N̄) ∈ Vp,p−1n̂b

× Ṽp−1,p−2n̂b
.

The entries in B̄ and M̄, corresponding to the projected strain in a basis of degree p−1,
are evaluated with p quadrature points in each Bézier element. The bending stiffness
matrix, Kb, and the consistent mass matrix, M, remain unaffected by the projection.

3.4.2 Discrete strain gap method

The discrete strain gap (DSG) method was originally developed to alleviate transverse
shear locking in plates and shells [163], [164], and then extended to membrane locking
[165] and isogeometric analysis [47], [68], [80]. Its main idea is to enable the strain fields
associated with locking to represent zero strains by modifying the interpolation of these
strain fields. The DSG method can be classified as a B-bar method since it results in a
modified strain-displacement matrix. For details on the procedure to modify the strain
interpolation and obtain the modified stiffness matrix, we refer to [68], [80]. For our
example of the circular Euler-Bernoulli ring, we adapt the procedure described for the
Timoshenko curved beam in [68] and obtain the modified strain-displacement matrix,
B̄m, in the following form:

B̄m = 1

R
[Ñ1,θ(θ) Ñ2,θ(θ) . . . ÑN,θ(θ)]A−1CD . (3.34)

The matrices are defined as:

Aij = Ñj(θi) , Cij = − 1
R
∫ θi

0
sin(θ)Nj,θ(θ)Rdθ ,

Dij = 1

R
∫ θi

0
cos(θ)Nj,θ(θ)Rdθ,

where Ni(θ) and Ñi(θ) denote the basis functions interpolating the displacement fields
and the modified membrane contribution, respectively, and θi is the angular coordinate
corresponding to the ith collocation point. Substituting the modifed matrix, B̄m, in
(3.29) results in the modifed membrane stiffness matrix, following the DSG method,
which is equivalent to what is described in [68, eq. 55]. The evaluation of the matrices,
A,C,D, depends only on the set of collocation points and does not require any assembly
routine. The basis functions Ñi,θ(θ) in the first term of B̄m (the first row vector) are
evaluated in an assembly routine at quadrature points in each element.
In [68], [80], the authors apply NURBS to describe the geometry and to interpolate all

variable fields including the modified strain contribution (i.e. NURBS basis functions as
Ñi). In our computations in section 3.5, we choose a space of uniform B-splines that is
of the same degree and defined on the same uniform open knot vector as the space of the
uniform periodic Cp−1 B-splines, Vhp , to interpolate the modified membrane contribution.
Thus:

(N, Ñ) ∈ Vp,p−1n̂b
× Sp,p−1ñb

,
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where Vp,p−1n̂b
denotes the space of uniform periodic B-splines of degree p with continuity

Cp−1, and Sp,p−1ñb
denotes the space of uniform B-splines of degree p with continuity Cp−1,

defined on an open knot vector. Our choice of collocation points is the Greville abscissa
corresponding to the uniform B-splines of the modified membrane contribution [68].

3.4.3 Hellinger-Reissner principle

The third locking-free formulation that we consider is the mixed formulation that follows
from the Hellinger-Reissner principle [47], [81], [161], [169]. This is a two-field formu-
lation of displacement and either stress or strain fields. When we choose appropriate
approximation spaces for these fields, we can eliminate locking. The Hellinger-Reissner
mixed formulation can be derived from the general three-field mixed formulation (Hu-
Washizu principle) by satisfying the constitutive relation strongly [161].
The mixed variational formulation based on the Hellinger-Reissner principle of the

eigenvalue problem for an Euler-Bernoulli circular ring in Cartesian coordinates was de-
rived in section 3.3.2. Discretizing the independent variable fields, (uh, ϵh) = ([ux, uy]T , [ϵ, κ]T )∈ Vp,p−1n̂b

× Ṽp−1,p−2n̂b
, and inserting those in the variational formulation, (3.23) and (3.24),

yields the following matrix equation of the eigenvalue problem based on the Hellinger-
Reissner principle for the Euler-Bernoulli circular ring:

[K11 K12

KT
12 0

] [ ϵ
U
] = [ 0

λMU
] , with K11 = [k11 0

0 k22
] , K12 = [k13 k14

k23 k24
] ,

where the entries of the different blocks of the stiffness matrix are defined as:

k11,ij = −EA∫ 2π

0
N̄iN̄j Rdθ, k22,ij = −EI ∫ 2π

0
N̄iN̄j Rdθ, (3.35)

k13,ij = EA∫ 2π

0
N̄i (− 1

R
sin(θ)Nj,θ) Rdθ (3.36)

k14,ij = EA∫ 2π

0
N̄i ( 1

R
cos(θ)Nj,θ) Rdθ (3.37)

k23,ij = EI ∫ 2π

0
N̄i (− 1

R2
cos(θ)Nj,θθ + 1

R2
sin(θ)Nj,θ) Rdθ (3.38)

k24,ij = EI ∫ 2π

0
N̄i (− 1

R2
sin(θ)Nj,θθ − 1

R2
cos(θ)Nj,θ) Rdθ , (3.39)

where {i, j} = 1,2, . . . , n̂b , (N, N̄) ∈ Vp,p−1n̂b
× Ṽp−1,p−2n̂b

.

To eliminate the secondary field, we can apply static condensation which leads to the
final stiffness matrix of the eigenvalue problem based on the Hellinger-Reissner mixed
formulation:

K = −KT
12K

−1
11K12 . (3.40)

We note that the mass matrix M remains unchanged to what is defined in (3.32).
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3.5 Assessing membrane locking and unlocking via spectral
analysis

In this section, we demonstrate for a slender Euler-Bernoulli circular ring that spectral
analysis can be an effective tool to assess locking and unlocking in finite element formu-
lations. To this end, we compare the errors of the eigenvalues and eigenmodes across the
spectrum for the standard finite element formulations with full and reduced integration
as well as the three locking-free formulations that we reviewed above. In particular, we
use spectral analysis to assess their sensitivity to locking on a coarse mesh, under mesh
refinement, and for p-refinement (i.e. increasing polynomial degree as well as smooth-
ness). We show that the spectral approximation properties of each formulation can be
directly related to its locking deficiency or unlocking capability.

3.5.1 Locking indicator based on spectral analysis

In the following, we measure locking and unlocking from a spectral analysis viewpoint
based on the following criterion:

Locking indicator: A method is locking-free if the normalized spectra obtained on
coarse meshes are “close” to asymptotic refinement curves obtained from “overkill”
discretizations, that is, the normalized spectra do not significantly change with mesh
refinement. Accordingly, a method is locking-prone if its normalized spectra differ
significantly from on asymptotic refinement curves obtained from “overkill” dis-
cretizations, that is, the normalized spectra significantly change with mesh refine-
ment.

The above statement is best described by means of an illustration. Fig 3.7 depicts the
normalized error in the eigenvalues λh

1 computed with quadratic B-splines (p = 2) on a
mesh of 64 elements (N = 32), for “large” slenderness ratio R/t = 2000/3. We observe
from the plot that the spectra obtained with full integration and reduced integration
differ significantly from the asymptotic refinement curves, and hence the corresponding
formulations severely lock over the entire range of the spectrum. In contrast, the discrete
spectra of the B-bar, Hellinger-Reissner and DSG methods are close their asymptotic
refinement curves, and are thus locking-free.

From a practical standpoint, we can now proceed as follows. For the finite element
formulation in question, eigenvalue and mode errors are computed on a coarse discretiza-
tion and corresponding asymptotic eigenvalue and mode errors are computed with an
“overkill” discretization. The eigenvalue and mode errors from the coarse mesh are re-
lated to the corresponding asymptotic eigenvalue and mode errors by plotting both sets
with respect to the normalized mode number n/N , where N denotes the total number
of modes in each discretization. This relation is based on the notion that - given the
underlying solution behavior is sufficiently resolved - all spectral error curves plotted
over their normalized mode numbers must be identical, irrespective of the mesh size
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Figure 3.7: Our locking indicator provides a visual tool to understand locking and unlocking in discrete
spectra.

and the associated number of degrees of freedom. As a consequence, the finite element
formulation is locking-free, if the corresponding spectral error curves are matching up
irrespective of the mesh size, and the finite element formulation is locking-prone, if the
corresponding spectral error curves are different, implying that the spectral error curve
changes with mesh refinement.

3.5.2 In-depth comparison for quadratic splines

In the first step, we study the effect of membrane locking on the spectral approximation
properties for “large” ring slenderness R/t = 2000/3. For this case, we can expect severe
membrane locking to occur, as demonstrated in our initial cantilever example in the
introduction (see Fig. 3.1). For each finite element formulation, we compute the discrete
eigenvalues and modes using periodic uniform B-splines of polynomial degree two, defined
on 64 Bézier elements. Figs. 3.8 and 3.9 plot the relative eigenvalue errors (3.4) and the
relative L2-norm mode errors (3.5) across the normalized spectrum for the transverse
eigenmodes Uh

1 and the associated eigenvalues λh
1 and the circumferential eigenmodes

Uh
2 and the associated eigenvalues λh

2 , respectively. The eigenvalue and mode errors are
obtained with respect to the analytical solutions given in Appendix 3.A. Furthermore, we
compute asymptotic spectral error curves numerically for each finite element formulation
with an “overkill” discretization of 2048 elements.
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Remark 3.5.1. Readers interested in the technical details for identifying transverse and
circumferential modes and ordering them correctly to comply with the analytical ordering
are referred to Appendix 3.B.

Standard formulation with full and reduced integration

We start by considering the spectral analysis results obtained with the standard formu-
lation with full integration, plotted in Figs. 3.8 and 3.9 with blue circles. We would like
to identify the impact of membrane locking on the accuracy of the spectrum. Firstly, we
focus on the eigenvalue error corresponding to the transverse modes, plotted in Fig. 3.8a.
We observe that the transverse eigenvalues obtained with the standard finite element
formulation show significant error levels, with the error curves being far away from the
asymptotic reference curve plotted in black. We attribute this increase in error level to
the effect of membrane locking, which is further supported by a look at the locking-free
formulations that do not show a similar increase, producing transverse eigenvalue errors
that match the asymptotic reference curve. As the accuracy of the transverse eigenval-
ues is heavily affected over the complete spectrum, we conclude that beam computations
with the standard formulation at this mesh size will yield completely inaccurate results.
This is confirmed by the convergence plots in Fig. 3.2a computed for our initial cantilever
example, where the standard formulation does not converge for practical mesh sizes.
Secondly, we focus on the remaining spectral error quantities, that is, the mode errors

for the transverse and circumferential mode shapes and the eigenvalue error correspond-
ing to the circumferential modes, plotted in Fig. 3.8b, Fig. 3.9a and Fig. 3.9b. We observe
that they show exactly the same error as the locking-free formulations, with the error
curves being practically identical to the asymptotic reference curves. We conclude that
for the case of the Euler-Bernoulli ring, membrane locking only influences the accuracy
of the eigenvalues of the transverse modes, while the transverse mode shapes and both
the eigenvalues and mode shapes of the circumferential modes do not lock.
Thirdly, we consider the spectral analysis results obtained with the standard formu-

lation with selective reduced integration, which in Figs. 3.8 and 3.9 are plotted with red
triangles. On the one hand, we observe in Fig. 3.8a that compared to full integration,
selective reduced integration is able to improve the spectral accuracy of the lowest eigen-
values of the transverse modes. On the other hand, the spectral accuracy degenerates
very quickly with increasing mode number. As a consequence, accurate finite element
approximations of beam solutions on coarse meshes, where most of the spectrum is re-
quired to actively contribute, are not possible. Our conclusion is supported by Fig. 3.2a
for the cantilever example, where convergence at the best possible accuracy level can
only be achieved for finer mesh sizes.

B-bar method

We then move forward to the locking-free formulations. We first consider the results
obtained with the B-bar formulation, which in Figs. 3.8 and 3.9 are plotted with green
squares. We observe that the B-bar method eliminates the effect of membrane locking
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Figure 3.8: Normalized errors in eigenvalues λh
1 and transverse mode shapes Uh

1 computed with
quadratic B-splines (p = 2) on a mesh of 64 elements (N = 32), for “large” slender-
ness ratio R/t = 2000/3.
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Figure 3.9: Normalized errors in eigenvalues λh
2 and circumferential mode shapes Uh

2 computed with
quadratic B-splines (p = 2) on a mesh of 64 elements (N = 32), for “large” slenderness
ratio R/t = 2000/3.
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in the entire spectrum of the eigenvalues corresponding to the transverse modes plotted
in Fig. 3.8a. In addition, all error curves, both for the transverse and circumferential
mode shapes and associated eigenvalues, correspond well to the asymptotic error curves,
irrespective of the mesh size. This indicates that the finite element formulation with the
B-bar method already achieves full spectral accuracy on the current coarser mesh. On
the one hand, we conclude that the B-bar formulation successfully mitigates membrane
locking. On the other hand, we can preclude any negative effect from the B-bar method
on the convergence properties of the finite element formulation. Our conclusions there-
fore confirm that the B-bar method is an effective locking-free finite element formulation
for the Euler-Bernoulli beam. They are supported by our initial cantilever example
whose convergence results in Fig. 3.2a show the best possible accuracy on coarse and
fine meshes that can be achieved for p = 2 in a purely displacement based formulation.

DSG method

We then consider the results obtained with the DSG formulation, which in Figs. 3.8 and
3.9 are plotted with yellow triangles. On the one hand, Fig. 3.8a shows that the DSG
method completely eliminates the effect of locking on the locking-prone eigenvalues of
the transverse modes, with the error curve closely matching the asymptotic error curve.
On the other hand, the DSG method exhibits an increased level of error across large
parts of the spectrum for the transverse mode shapes, the circumferential mode shapes
and the eigenvalue error of the circumferential modes, which can be observed in Fig. 3.8b,
Figs. 3.9a and 3.9b. These observations are remarkable as we concluded in the discussion
above that these three quantities are not affected by membrane locking for the current
Euler-Bernoulli ring problem. In particular, we can see in the inset plots that the low
modes that are important for the approximation power of the basis (see Section 3.2.4)
are significantly less accurate compared to the other formulations. We therefore conclude
that the DSG formulations itself is responsible for the increase in error levels, and thus
deteriorates the accuracy of the original standard finite element formulation with respect
to part of the spectrum. We note that in Fig. 3.2a, the DSG method still achieves the
best possible accuracy on coarse and fine meshes, as in our cantilever example, the
transverse mode behavior dominates the overall accuracy of the analysis.

Remark 3.5.2. The kink in the circumferential eigenvalue spectrum obtained with the
DSG method is due to the fact that the ratio λh

2/λ2 changes from positive to negative at
that location.

Hellinger-Reissner formulation

We finally consider the results obtained with the Hellinger-Reissner formulation, which
in Figs. 3.8 and 3.9 are plotted with purple diamonds. We observe that the effect of mem-
brane locking is eliminated in the entire spectrum of the eigenvalues of the transverse
modes. The corresponding error curve closely matches the asymptotic error curve, irre-
spective of the mesh size. We note that the Hellinger-Reissner formulation has a different
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Figure 3.10: Normalized errors in eigenvalues λh
1 and transverse mode shapes Uh

1 computed with
quadratic B-splines (p = 2) on a mesh of 256 elements (N = 128), for “large” slen-
derness ratio R/t = 2000/3.
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Figure 3.11: Normalized errors in eigenvalues λh
2 and circumferential mode shapes Uh

2 computed with
quadratic B-splines (p = 2) on a mesh of 256 elements (N = 128), for “large” slenderness
ratio R/t = 2000/3.

43



asymptotic error curve, which is different from all other formulations considered here.
We observe in the inset plot of Fig. 3.8a that the Hellinger-Reissner formulation achieves
the best accuracy of the lowest eigenvalues of the locking-prone transverse modes, which
are of particular importance for the approximation power of the basis, see Section 3.2.4.
This accuracy advantage is maintained over 80% of the normalized spectrum.
The Hellinger-Reissner formulation is a mixed method, which requires the discretiza-

tion of both displacement and strain fields. To render it comparable to the other meth-
ods that rely only on displacement variables, the Hellinger-Reissner formulation requires
additional computational effort for the static condensation of the strain variables. In
addition, for the Euler-Bernoulli beam model, a mixed formulation does not require
basis functions that are in the space H3 to achieve optimal rates of convergence [137],
[138]. As a consequence, for quadratic basis functions that are only in H2, the displace-
ments converge with O(3) in the L2 norm in the Hellinger-Reissner formulation, while
displacement-based formulations achieve only O(2). This advantage of the Hellinger-
Reissner formulation, however, is expected to disappear, when we consider basis func-
tions of polynomial degree p ≥ 3 that are in H3, for which all methods achieve the same
optimal rates O(p + 1).

We therefore conclude that in terms of the effective prevention of membrane locking,
the Hellinger-Reissner formulation hits a sweet spot for p = 2 and therefore seems to be
the most effective choice for quadratic spline discretizations. This conclusion is confirmed
by our initial cantilever example, where the accuracy gap between the Hellinger-Reissner
formulation on the one hand and the B-bar and DSG methods on the other hand is clearly
demonstrated by Fig. 3.2a.

3.5.3 Sensitivity with respect to mesh refinement

Mesh refinement will eventually remove most locking phenomena. This comes, however,
at the price of a significantly increased computational cost that is always uneconomical
and often prohibitive with respect to the available computing resources. Therefore, from
a practical viewpoint, mesh refinement is not a viable option to mitigate locking. We
use spectral analysis to illustrate the lacking efficiency of mesh refinement. To this end,
we compute the discrete eigenvalues and modes for each finite element formulation at
hand, using quadratic B-splines defined on 256 Bézier elements. Figs. 3.10 and 3.11 plot
the relative eigenvalue errors (3.4) and the relative L2-norm mode errors (3.5) across the
normalized spectrum for the transverse and circumferential modes, respectively.

Inefficiency of the standard formulation

We first focus on the spectrum of eigenvalues λh
1 associated with the transverse modes

plotted in Fig. 3.10a, which is the quantity affected by membrane locking. We observe
that the results obtained with the standard finite element formulation with full and re-
duced integration both improve significantly, with their spectral error now being in range
of the error of the locking-free asymptotic solution. For selective reduced integration, we
achieve the same accuracy in the lowest modes as for the locking-free B-bar and DSG
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methods. For full integration, however, the error of the lowest modes is still two orders of
magnitude larger than the error level of the locking-free formulations, and therefore still
prevents a high-fidelity solution despite the prohibitively fine mesh size. The effect on
the accuracy in analysis that corresponds to these observations is illustrated in Fig. 3.2a
for our initial cantilever example. While the convergence curve obtained with selective
reduced integration catches up with the locking-free solutions for finer mesh sizes, the
curve obtained with full integration still lags significantly behind.

DSG method and the circumferential modes

Looking at the complete set of spectral plots, we observe that the issues we detected for
the DSG method on a mesh with 64 elements do not vanish under mesh refinement. In
Fig. 3.10b, we can see that the lowest transverse mode shapes are approximated at an
accuracy level that is two orders of magnitude below the locking-free standard solution.
In addition, several modes in the center of the spectrum seem completely inaccurate.
Figs. 3.11a and 3.11b that illustrate the spectral behavior of the circumferential modes
show that the error of the lowest eigenvalues and mode shapes are both four to five orders
of magnitude larger than the error of the locking-free solution. These results support our
notion that the DSG formulation itself is responsible for the increase in spectral error
levels, and thus deteriorates the accuracy of the standard finite element formulation in
part of the spectrum. As membrane unlocking is associated primarily with the proper
behavior in the transverse eigenvalues, this shortcoming of the DSG method seems not
to affect its analysis capabilities in this particular case, as demonstrated for our initial
cantilever example in Fig. 3.2a.

3.5.4 Sensitivity with respect to p-refinement

It has been often maintained that p-refinement constitutes an effective way to counteract
locking phenomena, for instance in the context of the p-version of the finite element
method [179]–[181]. A presumed key argument in support of p-refinement is that it
mitigates locking when applied within a standard displacement-based formulation and
thus bypasses the derivation and implementation of special locking-free formulations. In
the following, we will use spectral analysis to shed light on the efficiency of p-refinement
with respect to mitigating membrane locking in the Euler-Bernoulli ring example.

Classical p-refinement: standard formulation

We first move to cubic B-splines defined on 64 Bézier elements, re-computing the dis-
crete eigenvalues and eigenmodes for each finite element formulation at hand. We note
that due to periodicity, the cubic discretization of the circular ring exhibits the same
number of spline basis functions and hence the same number of degrees of freedom as
the quadratic discretization. For polynomial degree p = 3, Figs. 3.12 and 3.13 plot the
relative eigenvalue errors (3.4) and the relative L2-norm mode errors (3.5) across the nor-
malized spectrum for the transverse and circumferential modes, respectively. They can
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Figure 3.12: Normalized errors in eigenvalues λh
1 and transverse mode shapes Uh

1 computed with cubic
B-splines (p = 3) on a mesh of 64 elements (N = 32), for “large” slenderness ratio
R/t = 2000/3.
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Figure 3.13: Normalized errors in eigenvalues λh
2 and circumferential mode shapes Uh

2 computed with
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be directly compared to Figs. 3.8 and 3.9 that plot the equivalent results for quadratic
B-splines.
We first consider the spectrum of eigenvalues λh

1 associated with the transverse modes,
which is the relevant spectral quantity for membrane locking. Focusing on the lowest
eigenvalues, we compare the corresponding error levels shown in the inset figures of
Fig. 3.8a for quadratics and Fig. 3.12a for cubics. We observe that the error level of
the standard formulation improves by two orders of magnitude as a result of moving
from quadratics to cubics. At the same time, however, we also see that the error levels
of all locking-free formulations discretized with the same cubic B-splines improve by
three to four orders of magnitude. The standard formulation thus lags far behind its
true higher-order approximation power as a result of locking. Therefore, the reduction
of locking with p = 3 seems to be merely due to the increase of the approximation
order, as also exemplified by higher convergence rates, but not to the mitigation of the
locking phenomenon itself. We conclude that the standard formulation when discretized
with cubic B-splines suffers from the effect of locking to (at least) the same extent
as when it is discretized with quadratic B-splines. In addition, we observe that the
standard formulation with selective reduced integration that employs p quadrature points
per Bézier element produces practically the same locking-prone results as the standard
formulation with full integration. This observation indicates that reduced quadrature
loses its locking-reducing effect when the polynomial degree is increased.

Increasing p in locking-free formulations

Comparing Fig. 3.8b and Fig. 3.12b, we see that for the DSG method, the mode error
in the transverse mode shapes significantly improves when we move from p = 2 to p = 3,
and is now in the same range as the mode error of all other formulations. Figs. 3.13a and
3.13b show, however, that for the eigenvalues and mode shapes of the circumferential
modes, the accuracy issues shown by the DSG methods remain and seem not to improve
under p-refinement.

As discussed above, the accuracy advantage of the Hellinger-Reissner formulation as a
mixed method over purely displacement based formulations based on the B-bar and DSG
methods reduces. We observe in Fig. 3.12a that all locking-free formulations achieve very
good accuracy, with advantages of the Hellinger-Reissner formulation in the lowest modes
and advantages of the B-bar and DSG methods in the high modes. The effect of this
observation is illustrated in Figs. 3.2b and 3.2c for our initial cantilever example, where
for cubic and quartic spline discretizations, all locking-free methods exhibit optimal
convergence rates at practically the same accuracy level on both coarse and fine meshes.

Classical versus locking-free p-refinement

To corroborate our observations, we carry out a p-refinement study (i.e. increasing
polynomial degree and smoothness) that drives the polynomial degree beyond cubics
on a fixed mesh of 64 Bézier elements. We compare the spectrum of eigenvalues λh

1

associated with the transverse modes, computed via the standard formulation (“classi-
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Figure 3.14: Standard formulation, p-refinement: normalized errors in the transverse eigenvalues
λh
1 , computed on a fixed mesh of 64 elements (N = 32), for “large” slenderness ratio

R/t = 2000/3.
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(b) Behavior of the transverse eigenvalue error in the lower spectrum part

Figure 3.15: B-bar formulation, p-refinement: normalized errors in the transverse eigenvalues λh
1 ,

computed on a fixed mesh of 64 elements (N = 32), for “large” slenderness ratio R/t =
2000/3.
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Figure 3.16: Hellinger-Reissner formulation, p-refinement: normalized errors in the transverse
eigenvalues λh

1 , computed on a fixed mesh of 64 elements (N = 32), for “large” slenderness
ratio R/t = 2000/3.
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Figure 3.17: Convergence of the relative error in the fifth transverse eigenvalue, obtained with different
formulations and quadratic, cubic, quartic and quintic B-spline basis functions, for “large”
slenderness ratio R/t = 2000/3.

cal” p-refinement) and via a-priori locking-free p-refinement based on the B-bar and the
Hellinger-Reissner formulations.
In Figs. 3.14, 3.15, and 3.16, we plot the transverse eigenvalue errors for each formula-

tion at two different scales. We first focus on the overall behavior of the eigenvalue error
across the complete spectrum. We observe in Fig. 3.14a that the spectral accuracy of the
standard formulation significantly improves with p-refinement in the lower part of the
spectrum. At the same time, however, the high modes seem to diverge with increasing
polynomial degree p of the basis functions. Fig. 3.15a plots the corresponding eigenvalue
error obtained with the B-bar formulation. We observe that the overall error levels are
significantly smaller across the complete spectrum, and in particular for the high modes.
We conclude that in contrast to the standard formulation, the B-bar method converges
with increasing p in the high modes. Fig. 3.16a plots the corresponding eigenvalue error
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Figure 3.18: Convergence of the relative error in the fifth transverse eigenmode, obtained with different
formulations and quadratic, cubic, quartic and quintic B-spline basis functions, for “large”
slenderness ratio R/t = 2000/3.

obtained with the Hellinger-Reissner formulation. The overall error levels are signifi-
cantly smaller as well. The highest modes, however, seem not to converge, but remain
at the same error level.
Due to its importance for the approximation power of the basis (see Section 3.2.4), we

then focus on the accuracy of the lower part of the spectrum. We observe in Fig. 3.14b
that p-refinement in the standard formulation continuously improves the accuracy of the
lowest modes. A comparison with the results of the locking-free B-bar and Hellinger-
Reissner formulations plotted in Figs. 3.15b and 3.16b, however, clearly demonstrates
that the negative impact of membrane locking persists with increasing p in the standard
formulation. For instance, for p = 3, the eigenvalue error level of the lowest modes ob-
tained with the B-bar method is three orders of magnitude smaller, and for the Hellinger-
Reissner method even five orders of magnitude smaller, than the one obtained with the
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standard formulation. We note that for the B-bar and Hellinger-Reissner methods at
p = 5, the eigenvalue solver hits the level of machine accuracy, preventing the further
decrease of the eigenvalue error of the lowest mode.
Our observations confirm that p-refinement in a standard displacement-based finite

element formulation reduces the effect of membrane locking with respect to a low-order
locking-prone discretization. A comparison with the true approximation power of the
higher-order basis obtained in a locking-free formulation, however, clearly shows that
membrane locking continues to heavily affect the accuracy of the standard formulation
at high polynomial degrees. Therefore, we conclude that p-refinement is not an effective
way to mitigate the effect of locking, at least not for the curved Euler-Bernoulli beam
model. In addition, our results indicate that the divergence of the higher transverse
modes with increasing p is another negative effect of membrane locking that, to our
knowledge, has not been reported before. We note that inaccurate and divergent high
modes can have significant negative effects in explicit dynamics and nonlinear analysis.

3.5.5 Convergence of the lowest eigenvalues and mode shapes

As outlined in Section 3.2.4, the accuracy of the lowest eigenvalues and mode shapes
directly relate to the accuracy of the approximation that can be achieved with a specific
finite element discretization. It is therefore worthwhile to take a closer look at the
accuracy and rate of convergence of the lower eigenvalues and mode shapes that are
obtained with the different formulations. Figs. 3.17 and 3.18 plot the convergence of the
relative error of the fifth transverse eigenvalue and the convergence of the relative L2-
norm error of the fifth transverse eigenmode obtained with 32, 64 and 128 Bézier elements
and polynomial degrees p = 2 through 5.
For the eigenvalue error, an eigenvalue problem with fourth-order differential opera-

tors achieves optimal rates of convergence of O(2(p − 1)), while an eigenvalue problem
with second-order differential operators achieves optimal rates of O(2p) [43], [182]. We
observe in Fig. 3.17 that the standard formulation with full and reduced integration
exhibits a significantly increased level of eigenvalue error. In particular, we can see that
the error gap to the locking-free B-bar formulation decreases with each mesh refinement
step, but does not decrease when the polynomial degree is increased on a fixed mesh.
The locking-free B-bar and DSG methods based on a displacement-based formulation
achieve optimal rates of convergence for all polynomial degrees. We observe that the
eigenvalue error of the DSG method for p = 4 and p = 5 is slightly larger than the one
for the B-bar method. The Hellinger-Reissner formulation also achieves optimal rates,
which are consistently higher than the ones for the B-bar and DSG methods due to
its mixed-method formulation. This confirms the increased accuracy of the eigenvalues
obtained with the Hellinger-Reissner formulation that we observed in many of the inset
figures of the previous plots.
For the L2-norm mode error, the optimal convergence is alwaysO(p+1). We observe in

Fig. 3.18 that all methods with the exception of the DSG method achieves practically the
accuracy in the mode shapes, indicated by indistinguishable mode errors that converge
optimally. The mode error of the DSG method, however, is significantly larger.
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3.6 Summary and conclusions

In this paper, we have taken first steps towards establishing spectral analysis as a tool
for understanding and assessing locking phenomena in finite element formulations and
comparing their effectivity with respect to unlocking. We proposed to “measure” lock-
ing (or unlocking) from a spectral analysis viewpoint as follows. For the finite element
formulation in question, eigenvalue and mode errors are computed on a coarse discretiza-
tion and corresponding asymptotic eigenvalue and mode errors are computed with an
“overkill” discretization. The eigenvalue and mode errors from the coarse mesh are re-
lated to the corresponding asymptotic eigenvalue and mode errors by plotting both sets
with respect to the normalized mode number n/N , where N denotes the total number
of modes in each discretization. The finite element formulation is locking-free, if the
corresponding spectral error curves are matching up irrespective of the mesh size, and
the finite element formulation is locking-prone, if the corresponding spectral error curves
are different, implying that the spectral error curve changes with mesh refinement.
To illustrate the validity and significance of spectral analysis in the context of as-

sessing locking, we employed the example of a circular ring discretized with curved
Euler-Bernoulli beam elements, which are susceptible to membrane locking. We showed
that for the Euler-Bernoulli circular ring, membrane locking heavily affects the accuracy
of the eigenvalues of the transverse modes, while the transverse mode shapes and both
the eigenvalues and mode shapes of the circumferential modes do not lock. We assessed
and compared the effectivity of the standard displacement-based formulation with full
and selective reduced integration as well as three representative locking-free formulations
(B-bar method, DSG method, Hellinger-Reissner formulation) in terms of their accuracy
in the eigenvalues and eigenmodes. Our study showed that spectral analysis can rigor-
ously characterize membrane locking. With respect to mitigating membrane locking in
curved Euler-Bernoulli beams, we summarize the essential results of our study in Table
3.2.
Our spectral analysis results illustrate that the standard formulation with full integra-

tion is severely affected by membrane locking and does not enable efficient and accurate
finite element solutions, even when the mesh is heavily refined. The standard formula-
tion with selective reduced integration removes membrane locking for finer meshes for
quadratic discretizations, but do not remove membrane locking on coarse meshes and
for polynomial degrees larger than quadratics.
The B-bar, DSG and Hellinger-Reissner methods all enable effective locking-free finite

element formulations for curved Euler-Bernoulli beams, leading to accurate results on
coarse meshes. Due to its mixed-method character, the Hellinger-Reissner formulation
hits a sweet spot for quadratic basis functions, since it converges with O(3) in the L2

displacement norm unlike the purely displacement-based B-bar and DSG formulations
that achieve only O(2) for quadratic basis functions. For polynomial degrees larger
than two, all methods achieve the same optimal convergence rates, so that practically,
all locking-free formulations achieve the same accuracy.
For the DSG method, we observed an increased level of error across large spectrum

parts for the transverse mode shapes, the circumferential mode shapes and the eigen-
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Standard formulation Locking-free formulation
Full

integration
Reduced

integration
B-bar DSG Hellinger-

Reissner

Locking-free on coarse meshes
(accuracy low transverse
modes)

✗ ✗ ✓ ✓ ✓

Locking-free with increasing p
(accuracy low transverse
modes)

✗ ✗ ✓ ✓ ✓

Upper transverse modes
converge with increasing p ✗ ✗ ✓ ✓ ✗

No negative effect on accuracy
of circumferential modes ✓ ✓ ✓ ✗ ✓

Convergence rate O(p + 1) for
quadratic FE approximations ✗ ✗ ✗ ✗ ✓

No additional cost, e.g., due to
static condensation or
projection

✓ ✓ ✗ ✗ ✗

Table 3.2: Summary of the comparative spectral analysis study for the Euler-Bernoulli circular ring
problem.

value error of the circumferential modes. When we refined the mesh or increased the
polynomial degree p, this issue only improved for the transverse mode error, but per-
sisted for the circumferential eigenvalue and mode errors. We hypothesize that the DSG
formulation itself is responsible for this issue, since the accuracy with respect to the
standard formulation decreases in parts of the spectrum. As membrane unlocking is as-
sociated primarily with the proper behavior in the eigenvalues of the transverse modes,
this issue seems not to affect the unlocking capability of the DSG approach.

Classical p-refinement in our study we use splines of maximum smoothness, where the
polynomial degree is driven beyond cubics on a fixed coarse mesh, reduces the effect of
membrane locking with respect to a low-order locking-prone discretization. Membrane
locking, however, continues to heavily affect the accuracy of the standard formulation
with respect to a locking-free formulation at high polynomial degrees. Therefore, p-
refinement by itself is not an effective way to mitigate the effect of locking. In addition,
we observed that the higher transverse modes diverge with increasing p as a result of
membrane locking. Divergent high modes deteriorate the conditioning of the system
matrix, and can seriously affect the approximation accuracy and robustness in struc-
tural dynamics [66]. In contrast, we showed that locking-free formulations unlock the
full potential of higher-order accurate discretizations. We observed that the low modes
obtained with the locking-free formulations consistently were several orders of magnitude
more accurate than the ones obtained with standard formulations, also at high polyno-
mial degrees beyond cubics, and the high modes converged for the B-bar formulation
and did not diverge for the Hellinger-Reissner formulation.
In summary, the results presented in this paper demonstrate the potential of spectral
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analysis as a tool to help assess locking phenomena in finite element formulations. In
the future, we plan to extend the approach and corroborate its potential for finite ele-
ment formulations of more complex structural models, in particular Kirchhoff-Love and
Reissner-Mindlin shells.

Appendix 3.A

Analytical solution of the freely vibrating circular ring

Soedel solved the eigenvalue problem of a circular Euler-Bernoulli ring analytically [174,
p.82-85] using the equations of motion in curvilinear coordinates. He assumed the mode
shapes of a free floating closed ring, that are:

vn(θ) = A1n sin(nθ), (3.41)

wn(θ) = A2n cos(nθ), (3.42)

where n ∈ N and θ are the mode number and the angular coordinate, respectively. The
nth pair of the analytical eigenvalues are then:

λ1n = ω2
1n = k1n

ρA
, λ2n = ω2

2n = k2n
ρA

(3.43)

where ρ and A are the density and the cross section area of the ring, and the parameters
kin are defined as:

k1n = C −B
2R4

, k2n = C +B
2R4

, with (3.44)

C = (EAR2 +EIn2)(n2 + 1),
B =√(EA2R4 +EI2 n4)(n2 + 1)2 + 2EAR2EIn2(6n2 − n4 − 1) .

EA and EI denote the membrane and bending stiffness, and R the radius of the ring.
The two eigenvalues λ1n and λ2n corresponds to different values of the relative amplitude
between the corresponding circumferential and radial modes

rin = A1n

A2n
= EA

R2 n + EI
R4n

3

ρAω2
in − EA

R2 n2 − EI
R4n2

, i = 1,2. (3.45)

The analytical eigenvalues and relative amplitudes of the first twenty modes of the
Euler-Bernoulli circular ring used in this study are listed in Table 3.3. For each mode
number n, one eigenvalue corresponds to the transverse-deflection-dominating modes, i.e.
A1n ≤ A2n (∣rin∣ ≤ 1.0), and one corresponds to the circumferential-deflection-dominating
modes (∣rin∣ ≥ 1.0) (see Table 3.3 and also [174, p.82-85]).
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n
eigenvalue pair amplitude ratio

λ1n λ2n r1n r2n
0 0 1.200000000000000 ⋅ 106 0 0
1 0 2.400000450000000 ⋅ 106 −1 1
2 1.619999222176224 ⋅ 100 6.000002880000779 ⋅ 106 −5.000004499999865 ⋅ 10−1 1.999998200001673 ⋅ 100
3 1.295999212658217 ⋅ 101 1.200000729000787 ⋅ 107 −3.333342333340016 ⋅ 10−1 2.999991900015852 ⋅ 100
4 4.764702716878825 ⋅ 101 2.040001355297283 ⋅ 107 −2.500013235320360 ⋅ 10−1 3.999978823599535 ⋅ 100
5 1.246152982048443 ⋅ 102 3.120002163470180 ⋅ 107 −2.000017307755196 ⋅ 10−1 4.999956730986444 ⋅ 100
6 2.681754852697320 ⋅ 102 4.440003152451474 ⋅ 107 −1.666687950571240 ⋅ 10−1 5.999923378921967 ⋅ 100
7 5.080316340600650 ⋅ 102 6.000004321836594 ⋅ 107 −1.428596628775543 ⋅ 10−1 6.999876521178022 ⋅ 100
8 8.792855145050755 ⋅ 102 7.800005671448547 ⋅ 107 −1.250029077240125 ⋅ 10−1 7.999813909991993 ⋅ 100
9 1.422437983402840 ⋅ 103 9.840007201201658 ⋅ 107 −1.111144038404168 ⋅ 10−1 8.999733296829945 ⋅ 100
10 2.183389483803921 ⋅ 103 1.212000891105162 ⋅ 108 −1.000036758074283 ⋅ 10−1 9.999632432768221 ⋅ 100
11 3.213440252163006 ⋅ 103 1.464001080097479 ⋅ 108 −9.091314837369126 ⋅ 10−2 1.099950906869468 ⋅ 101
12 4.569290413144246 ⋅ 103 1.740001287095869 ⋅ 108 −8.333777137925940 ⋅ 10−2 1.199936095541999 ⋅ 101
13 6.313040026479182 ⋅ 103 2.040001512099735 ⋅ 108 −7.692789471743249 ⋅ 10−2 1.299918584374570 ⋅ 101
14 8.512189111741010 ⋅ 103 2.364001755108883 ⋅ 108 −7.143376831426732 ⋅ 10−2 1.399898148450718 ⋅ 101
15 1.123963766205331 ⋅ 104 2.712002016123379 ⋅ 108 −6.667224211689353 ⋅ 10−2 1.499874562860407 ⋅ 101
16 1.457368565216181 ⋅ 104 3.084002295143479 ⋅ 108 −6.250595358651052 ⋅ 10−2 1.599847602702302 ⋅ 101
17 1.859803304334188 ⋅ 104 3.480002592169566 ⋅ 108 −5.882986078224645 ⋅ 10−2 1.699817043085363 ⋅ 101
18 2.340177978620280 ⋅ 104 3.900002907202137 ⋅ 108 −5.556226441714824 ⋅ 10−2 1.799782659130378 ⋅ 101
19 2.907942582313202 ⋅ 104 4.344003240241770 ⋅ 108 −5.263866505443284 ⋅ 10−2 1.899744225971415 ⋅ 101
20 3.573087108895835 ⋅ 104 4.812003591289111 ⋅ 108 −5.000746314489048 ⋅ 10−2 1.999701518756431 ⋅ 101

Table 3.3: The first twenty exact eigenvalue pairs of the Euler-Bernoulli circular free floating ring with
a slenderness ratio R/t = 2000/3

Another set of mode shapes exists:

vn(θ) = A3n cos(nθ), (3.46)

wn(θ) = A4n sin(nθ) , (3.47)

which results in exactly the same analytical eigenvalues. This explains repeated eigen-
values in numerical computations. In our study, we only considered the free-floating
modes in (3.41), which satisfy:

vn(θ = 0) = 0, wn,θ(θ = 0) = 0. (3.48)

These constraints are also built into the spline trialspaces in order to remove the arbi-
trary phase shift in the numerical mode shapes; allowing direct comparisons to be made
between the discrete and analytical eigenmodes. Because the trialspaces are defined in
the Cartesian frame a rotation is necessary, see 3.3.2. The free-floating modes and their
constraints in Cartesian coordinates are:

Ux(θ) = A2n cos(nθ) cos(θ) −A1n sin(nθ) sin(θ) , (3.49)

Uy(θ) = A2n cos(nθ) sin(θ) +A1n sin(nθ) cos(θ) , (3.50)
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and:

Ux,θ(θ = 0) = 0, Uy(θ = 0) = 0. (3.51)

Algorithm 1 Identify mode type corresponding to λ1 and λ2

Input: rin (i = 1,2, n = 1,2, . . . ,N) (see equation (3.45))
Output: transverse mode numbers lambda1, circumferential mode numbers lambda1,
transverse mode numbers lambda2, circumferential mode numbers lambda2

1: transverse mode numbers lambda1 = findall(∣r1n∣ ≤ 1)
2: circumferential mode numbers lambda1 = findall(∣r1n∣ > 1)
3:

4: transverse mode numbers lambda2 = findall(∣r2n∣ < 1)
5: circumferential mode numbers lambda2 = findall(∣r2n∣ ≥ 1)

Algorithm 2 Sort discrete transverse and circumferential modes

Input: λh
i , U

h
i (i = 1,2, . . . ,2N)

Output: transverse mode numbers, circumferential mode numbers

1: for i in 1 ∶ 2N do
2: vhi ,w

h
i = rotate axes(Uh

i )
3: ∣rhi ∣ =

√(∫ 2π
0 (vhi )2Rdθ) / (∫ 2π

0 (wh
i )2Rdθ)

4: if ∣rhi ∣ = 1 & λh
i = 0 then

5: transverse mode numbers[1] = i
6: else if ∣rhi ∣ = 1 & λh

i ≠ 0 then
7: circumferential mode numbers[1] = i
8: else if ∣rhi ∣ < 1 then
9: append(transverse mode numbers, i)

10: else if ∣rhi ∣ > 1 then
11: append(circumferential mode numbers, i)
12: end if
13: end for

Appendix 3.B

Postprocessing of numerical eigenvalues and modes

The numerical eigenvalues and modes obtained from a finite element discretization are
not automatically ordered in the same way as the analytical solution. To correctly
identify and assign the numerical solutions to the analytical reference, we compute the
L2-norm error in the mode shape of each discrete mode with respect to all analytical
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Algorithm 3 Verify free-floating constraints

Input: Uh
i (i = 1,2, . . . ,2N), transverse mode numbers, circumferential mode numbers

Output: transverse mode numbers, circumferential mode numbers

1: for n in (transverse mode numbers, circumferential mode numbers) do
2: for i in n do
3: vhi,0,w

h
i,0 = rotate axes(Uh

i (θ = 0))
4: if vhi,0 ≠ 1 ∣∣wh

i,0 ≈ 0 then
5: n ∖ {i} ▷ Remove index i from current vector of mode numbers
6: end if
7: end for
8: end for

Algorithm 4 Assign discrete to the correct analytical modes

Input: Uh
i , Ui (i = 1,2, . . . ,2N), transverse mode numbers,

circumferential mode numbers,
transverse mode numbers lambda1, circumferential mode numbers lambda1,
transverse mode numbers lambda2, circumferential mode numbers lambda2
Output: λ1 mode numbers, λ2 mode numbers

1: for i in transverse mode numbers do
2: for n in transverse mode numbers lambda1 do
3: e1[n] = compute L2 error(Uh

i ,Un)
4: end for
5: for n in transverse mode numbers lambda2 do
6: e2[n] = compute L2 error(Uh

i ,Un)
7: end for
8: if minimal(e1) <minimal(e2) then
9: append(λ1 mode numbers, i⇒ argmin(e1))

10: else
11: append(λ2 mode numbers, i⇒ argmin(e2))
12: end if
13: end for
14: repeate with circumferential mode numbers
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modes and assign pairs based on the smallest error. We first identify the transverse
and circumferential modes, using the criterion of the relative amplitude [174, p. 82-85].
We describe the identification scheme in Algorithms 1 and 2. Since we only consider
free-floating modes in this paper, we verify whether each numerical mode satisfies (3.51),
see Algorithm 3. We then assign each numerical transverse and circumferential mode
to the correct analytical counterpart, see Algorithm 4. The last step is to arrange the
numerical eigenvalues and modes in ascending order. Except for the mixed formulation,
this ordering scheme results in ascending discrete eigenvalues.
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4 A variational approach based on
perturbed eigenvalue analysis for
improving spectral properties of
isogeometric multipatch discretizations

This chapter is reproduced from [183]:

T.-H. Nguyen, R. R. Hiemstra, S.K.F. Stoter, and D. Schillinger. A variational approach
based on perturbed eigenvalue analysis for improving spectral properties of isogeomet-
ric multipatch discretizations, Comput. Meth. Appl. Mech. and Engrg. 392 (2022)
114671. DOI: 10.1016/j.cma.2022.114671. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0045782522000615.

Abstract

A key advantage of isogeometric discretizations is their accurate and well-behaved eigen-
frequencies and eigenmodes. For degree two and higher, however, optical branches of
spurious outlier frequencies and modes may appear due to boundaries or reduced con-
tinuity at patch interfaces. In this paper, we introduce a variational approach based
on perturbed eigenvalue analysis that eliminates outlier frequencies without negatively
affecting the accuracy in the remainder of the spectrum and modes. We then propose a
pragmatic iterative procedure that estimates the perturbation parameters in such a way
that the outlier frequencies are effectively reduced. We demonstrate that our approach
allows for a much larger critical time-step size in explicit dynamics calculations. In addi-
tion, we show that the critical time-step size obtained with the proposed approach does
not depend on the polynomial degree of spline basis functions.
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4.1 Introduction

Isogeometric analysis (IGA) was first introduced in 2005 as a computational framework
to improve the integration of computer-aided design (CAD) and finite element analysis
(FEA) [30]. Compared with classical C0 FEA, isogeometric discretizations exhibit better
spectral properties [59]–[62]. While the upper part of the spectrum in classical FEA
is inaccurate [66], [172] and the errors diverge with increasing interpolation degree p,
almost the entire spectrum converges with increasing p in the case of smooth isogeometric
discretizations [59]–[62]. A small number of modes, however, form the so-called optical
branch at the end of the spectra and are denoted as “outliers” [43], [51]. Isogeometric
discretizations using multiple patches with lower smoothness at patch interfaces increase
the number of spurious outlier frequencies [62], as illustrated in Figure 4.1. In the case
where the number of patches equals the number of elements (dark red curves), the outliers
form the well-known three branches of cubic C0 finite elements in classical FEA, see e.g.
[61]. We can also see that the highest frequencies are significantly overestimated, which
may negatively affect the stable critical time-step size in explicit dynamics calculations.
The outlier modes, illustrated in Figure 4.2 for a single-patch discretization and Figure
4.3 for a two-patch discretization, behave in a spurious manner and may negatively
affect the solution accuracy and robustness, particularly in hyperbolic problems [61].
We observe two types of outliers: one with all strain energy located near the boundaries
(Figures 4.2, 4.3c) and one near the patch interface (Figure 4.3a), to which we refer as
boundary and interior outliers, respectively. For an in-depth discussion of these outlier
types, we refer to [62] (interior outliers) and [43], [122] (boundary outliers). Some of
the outlier modes result from the combination of boundary and interior outliers, as
illustrated in Figures 4.3b and d. We list the number of interior outliers in Tables
4.1 and 4.2 for univariate multipatch discretizations of second-order and fourth-order
problems, respectively, after removing the boundary outliers using the reduced spline
basis introduced in [122]. We count the number of interior outliers as a function of
the degree p and the number of patches npa. We also note that the total number of
outliers is obtained by adding the number of interior outliers when the boundary ones are
removed, and the number of boundary outliers when the interior outliers are not present.
For counting boundary outliers dependent on the boundary types and the degree p, we
refer to [122]. For multivariate tensor-product discretizations, the authors of [122] also
provide formulas for the number of boundary outliers for multivariate tensor-product
discretizations, which can be straightforwardly extended to discretizations with interior
outliers.
The first idea on how to remove boundary outliers in an IGA context was based on the

nonlinear parameterization of the domain via a uniform distribution of the control points
[51]. On the one hand, this approach removes the outliers for arbitrary degree p. On the
other hand, a nonlinear parameterization changes the original geometry representation
from CAD, which contradicts the isogeometric paradigm of using the same geometry
in design and analysis. Furthermore, in [122], the authors verified that this approach
leads to a loss of spatial accuracy of the low modes and frequencies. In more recent
contributions [121]–[123], the authors imposed additional boundary constraints arising
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(a) Normalized frequencies (b) L2 errors in the mode shapes

1 patch 50 patches 350 (nele) patches

Figure 4.1: Normalized frequencies and L2 errors in the mode shapes of a free vibrating bar with free
boundary conditions, unit length and unit material parameters, computed with cubic
C2 B-splines (p = 3), N = 1050 modes and increasing number of patches with C0

continuity at patch interfaces. The rigid body mode is excluded.

(a) mode N − 1 (b) mode N

Figure 4.2: Discrete outlier modes Uh
n (blue) corresponding to the example of the free bar studied

in Figure 4.1, computed with one patch of cubic C2 B-splines (p = 3) and discretized
with 30 elements. These modes behave significantly differently compared to the exact modes
(gray) Un = cos(π n), n = 1, . . . ,N , where N = 33 is the number of modes.

Number of patches
Polynomial degree

2 3 4 5 p

2 1 2 3 4 p − 1
3 2 4 6 8 2(p − 1)
npa npa − 1 2(npa−1) 3(npa−1) 4(npa−1) (npa − 1)(p − 1)

Table 4.1: Number of interior outlier modes in one-dimensional multipatch discretizations with C0

patch continuity applied to a second-order problem, e.g. the axial vibration of a bar.

from higher-order eigenvalue problems, either by building constraints into the basis [122],
[123] or via penalization [121], to improve the spectral properties of isogeometric dis-
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(a) mode N − 3 (b) mode N − 2

(c) mode N − 1 (d) mode N

Figure 4.3: Discrete outlier modes Uh
n (blue) corresponding to the example of the free bar studied in

Figure 4.1, computed with two patches of cubic C2 B-splines (p = 3), and C0 patch
continuity. Each patch is discretized with 15 elements. These modes behave significantly
different compared to the exact modes (gray) Un = cos(π n), n = 1, . . . ,N , where N = 35 is
the number of modes.

Number of patches
Polynomial degree

3 4 5 6 p

2 1 2 3 4 p − 2
3 2 4 6 8 2(p − 2)
npa npa − 1 2(npa−1) 3(npa−1) 4(npa−1) (npa − 1)(p − 2)

Table 4.2: Number of interior outlier modes in one-dimensional multipatch discretizations with C1

patch continuity applied to a fourth-order problem, e.g. the transverse vibration of a beam.

cretizations. The strong approach entirely removes the outlier frequencies and modes for
arbitrary degree p in one- and multidimensional settings. The penalty approach reduces
the outlier frequencies, but does not remove the corresponding spurious outlier modes.
An alternative treatment is the penalty approach introduced in [124] that imposes addi-
tional higher-order continuity constraints at interfaces of multipatch discretizations, as
well as the first-order derivative at the Neumann boundary, i.e. a penalty treatment of

65



both boundary and interior outliers. The authors reported an improvement of the eigen-
value spectra after removing “unphysical” modes using a cut-off normalized eigenvalue.
The penalty approach of [124], using large values of penalty parameters, serves purely
as an indicator for the outlier eigenvalues / frequencies such that these are identified
easily, as verified in subsequent sections in this paper. Another approach is to weakly
enforce the continuity constraints at patch interfaces in the framework of mortar meth-
ods [125], [126], or to apply the optimally-blended quadratures [127] that can suppress
the boundary outlier [128]–[130] as well as the interior outlier frequencies [62].
Alternatively, the highest frequencies may be reduced via mass scaling. Its idea is to

add artificial terms to the mass matrix in such a way that high frequencies are affected
and any negative impact on the lower frequencies and modes is kept at a minimum. A
widely used variant scales the density in combination with mass lumping, see e.g. [116].
One existing mass-scaling technique is to add a weighting of some form of stiffness matrix
as a mass scaling [117]–[120]. The approach is then called selective mass scaling when
it targets specific frequencies and modes [120]. In another technique, the added mass
follows from a penalized Hamilton’s principle [114], [115], which is a variationally con-
sistent approach. Further artificial mass terms are also developed to optimize accuracy
and efficiency in e.g. [112], [113].
In this paper, we introduce a novel variational approach based on perturbed eigenvalue

analysis that improves the spectral properties of isogeometric multipatch discretizations.
We combine the ideas of penalizing both the stiffness and the mass matrix [121] and
of adding higher-order continuity constraints at patch interfaces [124] to arrive at an
improved suppression of the interior outlier frequencies. In particular, we add scaled
perturbation terms that weakly enforce the patch continuity constraints of [124] to both
the stiffness and the mass matrix. We note that this approach results in modified left-
and right-hand sides of the standard formulation in explicit dynamics, where the term
involving the stiffness matrix affects the right-hand side residual. This differs from
a mass scaling approach which modifies only the mass matrix. To remove boundary
outliers, we combine the proposed variational approach with the methodology introduced
in [122]. The proposed approach is consistent given that the analytical solution satisfies
the patch continuity constraints of [124], i.e. the solution is sufficiently smooth, as well
as the additional boundary constraints of [122]. Moreover, we introduce an approach
for estimating optimal scaling parameters of the perturbation term, in the sense that
the outlier frequencies are effectively reduced and the accuracy in the remainder of the
spectrum and modes is not negatively affected. We also show how this approach can be
cast into a pragmatic iterative procedure that can be readily implemented in any IGA
framework.
We discuss different perturbation variants, such as perturbation of the stiffness ma-

trix only (equivalent with the approach of [124]), perturbation of the mass matrix only
(equivalent with a selective mass scaling approach), and perturbation of both stiffness
and mass matrices. The proposed iterative procedure can also be applied to approxi-
mate the optimal scaling parameters for the approach of [121] such that the boundary
outliers are optimally suppressed. We verify numerically via spectral analysis of second-
and fourth-order problems that the proposed approach improves spectral properties of
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isogeometric multipatch discretizations in one- and multidimensional settings. For the
examples of membrane and plate structures in an explicit dynamics setting, we confirm
that our approach maintains spatial accuracy and enables a larger critical time-step size.
We also demonstrate that it is effective irrespective of the polynomial order p.

The structure of the paper is as follows: In Section 4.2, we derive the variational
formulation based on perturbed eigenvalue analysis. In Section 4.3, we motivate the
iterative scheme for parameter estimation, focusing on a one-dimensional problem. In
Section 4.4, we generalize our approach to multidimensional discretizations, including its
practical implementation, and demonstrate its effectiveness for discretizations of second-
and fourth-order problems. In Section 4.5, we discuss its advantages in explicit dynamics.
In Section 4.6, we summarize our results and draw conclusions.

4.2 Variational formulation

We start this section with a brief review of the equations of motion that govern free
vibrations of an undamped linear structural system, and derive the corresponding gen-
eralized eigenvalue problem in the continuous and discrete settings. We then introduce
a variational formulation based on a perturbed eigenvalue problem that weakly enforces
additional continuity constraints at patch interfaces. These additional constraints sup-
press only the interior outliers and do not negatively affect the important low frequency
part.

4.2.1 Natural frequencies and modes

The equation of motion that governs the free vibration of an undamped linear structural
system is:

Ku(x, t) +M d2

d t2
u(x, t) = 0 , x ∈ Ω , t > 0 . (4.1)

Here, M and K are the mass and stiffness operators, respectively, and u(x, t) is the
displacement of a point x in the domain Ω. Using separation of variables, the dis-
placement can be expanded in terms of the eigenmodes Un(x) and the time-dependent
coefficients Tn(t), that is u(x, t) = ∑nUn(x) Tn(t). Substitution in (4.1) leads to two
results. Firstly, Tn(t) = C+ ei ωn t +C− e−i ωn t, which satisfies the equation:

d2

d t2
Tn(t) + ω2

n Tn(t) = 0 , (4.2)

and describes an oscillation at a frequency ωn. Here, C+ and C− are constants deter-
mined from initial conditions. Secondly, it results in the strong form of the generalized
eigenvalue problem in the continuous setting, that is: find eigenmodes Un(x) and eigen-
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frequencies ωn, (Un, ωn) ∈ V ×R+ such that:

(K − ω2
nM) Un(x) = 0 . (4.3)

Here, V is the space of functions with sufficient regularity that allows the differential
operators inM and K to be applied.

Applying the standard Galerkin method and subsequently discretizing with N finite
element basis functions Bi(x) results in the following semi-discrete system of equations:

Kuh(t) +M d2

d t2
uh(t) = 0 , (4.4)

where K and M denote the stiffness and consistent mass matrix, respectively, and uh(t)
is the unknown time-dependent displacement vector, such that:

uh(x, t) = [B1(x) . . . BN(x)] uh(t) , uh(x, t) ∈ Vh ⊂ V .
Here, uh(x, t) is the discrete displacement and Vh is a discrete space spanned by suf-
ficiently smooth basis functions Bi(x), i = 1, . . . ,N . The corresponding discrete eigen-
value problem can be expressed in the following matrix equation:

KUh
n = (ωh

n)2 MUh
n , (4.5)

where Uh
n denotes the vector of unknown coefficients corresponding to the nth discrete

eigenmode Uh
n , and ωh

n is the nth discrete eigenfrequency.

4.2.2 Perturbed second- and fourth-order eigenvalue problems

In this paper, we focus on second-order eigenvalue problems involving rods and mem-
branes, and fourth-order problems involving square plate structures. These are of unit
size and unit material parameters and include either homogeneous Dirichlet or homoge-
neous Neumann boundary conditions. Since we consider spaces with sufficient regularity,
as discussed in the previous subsection, the minimum patch continuity of multipatch dis-
cretizations is C0 and C1 for second- and fourth-order problems, respectively. We employ
spaces of Cp−1 B-splines of degree p that are free of boundary outliers, i.e. spaces with
outlier removal constraints that are strongly enforced at the boundary [122].

Remark 4.2.1. The choice of unit material parameters, i.e. unit mass and stiffness,
is not a realistic scenario and does not represent the true conditioning of the problem.
In this paper, however, this choice is trivial since we mostly look at the normalized
eigenfrequency. We plan to further study realistic scenarios and the problem conditioning
in future research.

The discrete eigenvalue problem (4.5) can be expressed in the following variational
form: find (Uh

n , ω
h
n) ∈ Vh ×R+, for n = 1,2, . . . ,N , such that:

a(Uh
n , v

h) = (ωh
n)2 b(Uh

n , v
h) ∀ vh ∈ Vh ⊂ V . (4.6)
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Here, the bilinear form b(⋅, ⋅) is:
b(uh,wh) = ∫

Ω
uhwh dx . (4.7)

The bilinear form a(⋅, ⋅) of a discrete second-order eigenvalue problem is:

a(uh,wh) = ∫
Ω
∇uh ⋅ ∇wh dx , (4.8)

which corresponds to the second-order stiffness operator of the strong form (4.3):

K ∶= −∆ = − d∑
k=1

∂2

∂x2k
d = 1,2,3 , (4.9)

where d is the dimension of the problem.
For fourth-order problems, the bilinear form a(⋅, ⋅) is:

a(uh,wh) = ∫
Ω
∆uh ∆wh dx , (4.10)

which corresponds to the bi-harmonic operator:

K =∆2 =∆∆ . (4.11)

In two-dimensional settings, i.e. the case of a vibrating plate, we consider the simply
supported boundary conditions in this paper, since only the analytical solution of this
case is known [184].
For improving the spectral properties of isogeometric multipatch discretizations, fo-

cussing on the interior outliers, we weakly enforce the following Cp−1 continuity con-
straints at patch interfaces:

⟦∂l
νUn(x)⟧ = 0 on Γe , l = 1, . . . p − 1 , (4.12)

where Γe denotes the eth patch interface, e = 1, . . . ,E and E is the number of patch
interfaces. ν denotes the outward unit normal to the patch interface, and ⟦⋅⟧ denotes
the jump across the interface, ⟦w⟧ = w+ − w−. The lth constraint of (4.12), i.e. the C l

continuity constraint, at the eth patch interface corresponds to the bilinear form:

cle(uh,wh) = ∫
Γe
⟦∂l

νu
h⟧ ⟦∂l

νw
h⟧ dx . (4.13)

We propose the following variational formulation for perturbing the eigenvalue problem
(4.6) that weakly enforces (4.12): find (Ũh

n , ω̃
h
n) ∈ Vh ×R+, for n = 1,2, . . . ,N , such that

69



∀ vh ∈ Vh ⊂ V:
a(Ũh

n , v
h) + p−1∑

l=1

E∑
e=1

αl
e c

l
e(Ũh

n , v
h) = (ω̃h

n)2 [b(Ũh
n , v

h) + p−1∑
l=1

E∑
e=1

βl
e c

l
e(Ũh

n , v
h)] ,

(4.14)

where αl
e and βl

e are scaling factors of the perturbation cle(⋅, ⋅). The tilde in the su-
perscript of Ũh

n and ω̃h
n distinguishes the eigenmode and frequency corresponding to

the perturbed eigenvalue problem (4.15) from those corresponding to the standard non-
perturbed problem (4.6).

Based on empirical observation, we find that, for uniform discretizations, αl
1 = . . . =

αl
E = αl and βl

1 = . . . = βl
E = βl. The variational formulation (4.14) then becomes: find(Ũh

n , ω̃
h
n) ∈ Vh ×R+, for n = 1,2, . . . ,N , such that ∀ vh ∈ Vh ⊂ V:
a(Ũh

n , v
h) + p−1∑

l=1
αl cl(Ũh

n , v
h) = (ω̃h

n)2 [b(Ũh
n , v

h) + p−1∑
l=1

βl cl(Ũh
n , v

h)] , (4.15)

where

cl(uh,wh) = E∑
e=1

cle(uh,wh) . (4.16)

The matrix equation of the perturbed eigenvalue problem (4.15) is:

(K + p−1∑
l=1

αlKl
Γ) Ũh

n = (ω̃h
n)2 (M + p−1∑

l=1
βlKl

Γ) Ũh
n , (4.17)

where the stiffness matrixK and the consistent mass matrixM correspond to the bilinear
forms a(⋅, ⋅) from (4.8) or (4.10) and b(⋅, ⋅) from (4.7), respectively, which are symmetric
positive definite matrices; and the perturbation matrix Kl

Γ corresponds to the bilinear
form cl(⋅, ⋅) from (4.16), which is a symmetric positive semi-definite matrix.

We note that the proposed approach (4.14) is applicable to non-uniform discretizations
while the approach (4.15) is developed for uniform mesh discretizations. In this paper,
we focus on uniform discretizations.

4.2.3 A note on consistency vs. variational consistency

Consistency and variational consistency are important properties of a finite element
formulation. They play key roles in error analysis and are necessary for ensuring optimal
orders of convergence of the method [66], [172], [185]. Additionally, they guarantee that
the method yields the true solution if that solution lies in the trial function space. The
variational approach proposed in the previous subsection is consistent when the true
solution is sufficiently smooth, but it is not variationally consistent.
Variational consistency relates to the equivalence of the strong and weak forms in

the limit h → 0, with h being the characteristic mesh size. If the formulation is also

70



stable, and when the data (body force and boundary conditions) are sufficiently regular,
then variational consistency ensures that the finite element approximation converges to
the strong solution with mesh refinement [66], [172], [185]. The variational formulation
(4.14) is not equivalent to the strong formulation of the eigenvalue problem (4.3) as
h → 0. Instead, we obtain the following alternative strong formulation after performing
integration by parts on a patch level:

(K − (ωh
n)2M) Un(x) = 0 in Ω , (4.18a)

⟦∂l
ν Un(x)⟧ = 0 on Γ , l = 1, . . . p − 1 , (4.18b)

where Γ is a collection of all patch interfaces. This corresponds to the following strong
form of the governing equation of free vibrations:

Ku(x, t) +M d2

d t2
u(x, t) = 0 in Ω , (4.19a)

⟦∂l
ν u(x, t)⟧ = 0 on Γ , l = 1, . . . p − 1 , (4.19b)

which thus involves more constraints on jumps of higher order derivatives across the
patch interface compared to the strong form (4.1).
In a broader sense, consistency refers to some specific solution. A formulation is

consistent with respect to the solution utrue if the variational statement is satisfied when
utrue is substituted in the trial function slot. This property immediately implies a form
of Galerkin orthogonality with respect to utrue, i.e.:

a(utrue − uh, vh) = 0 ∀ vh ∈ Vh ⊂ V (4.20)

Céa’s lemma then only requires that the formulation satisfies a stability criterion (i.e.,
coercivity) to yield the optimal order of convergence to the solution utrue in the natural
norm [172], [185]:

∣∣utrue − uh∣∣H1 ≤ Cb

Cc
min
vh∈Vh

∣∣utrue − vh∣∣H1 (4.21)

where Cb is the boundedness coefficient and Cc is the coercivity coefficient.
Our formulation (4.14) is consistent with respect to solutions that satisfy the condi-

tions of (4.19). This means that we can expect to converge optimally to solutions that
satisfy these conditions. Put simply, we can expect to converge optimally for solutions
in Hp(Ω). Such solutions often correspond to system response governed by free vibra-
tions. For an isogeometric discretization, these are generally the solutions we focus on,
since the optimal order of convergence to a function in Hm(Ω) in the Hq(Ω) norm is
min(p + 1,m) − q, with 0 ≤ q = min(p + 1,m, s), where p is the polynomial degree of
the B-spline basis function, m is the order of smoothness of the solution, and s is the
minimum global regularity of the basis functions [138], [186]. We thus see that our formu-
lation is consistent with respect to solutions for which the B-spline discretization yields
optimal convergence and not for those solutions for which the B-spline discretization
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convergences suboptimally anyway.

4.3 Parameter estimation for a one-dimensional case study

In the next step, we will address the systematic choice of the open parameters α and β
in (4.17). To approach this aspect, we consider the perturbed eigenvalue problem (4.17)
of a fixed bar (unit length, unit axial stiffness, unit mass), discretized by a univariate
multipatch discretization with quadratic C1 B-splines (p = 2) and sufficient regularity,
i.e. C0 patch continuity. The perturbed eigenvalue problem (4.17) then simplifies to:

[K + αKΓ] Ũh
n = (ω̃h

n)2 [M + βKΓ] Ũh
n , n = 1, . . . ,N . (4.22)

We consider a discretization of two patches (npa = 2). The resulting spectrum consists
of one interior outlier frequency (see Table 4.1) which is the maximum frequency.

4.3.1 First-order approximation of the perturbation

The objective of the perturbation is to ensure that ω̃h
n is a good approximation to the true

eigenfrequency over the complete spectrum. Specifically, the parameters α and β need
to be chosen to reduce the severely over-estimated maximum ωh

n without compromising
the accuracy of the lower ωh

n’s. Focusing on the highest frequency mode, relation (4.22)
becomes:

KŨh
max + (α − β (ω̃h

max)2)KΓŨ
h
max = (ω̃h

max)2MŨh
max , (4.23)

and after premultiplying by ŨhT
max:

ŨhT
maxKŨh

max + (α − β (ω̃h
max)2)ŨhT

maxKΓ Ũ
h
max = (ω̃h

max)2 , (4.24)

where we assume that the eigenmodes are normalized with respect to the unperturbed
mass matrix (i.e., ŨhT

n MŨh
m = δnm).

A first order approximation of a perturbed eigenvalue problem reveals that (ωh
n)2

changes with order O(∥Uh
n∥2) and eigenmode Uh

n changes with order O(∥Uh
n∥2/ (ωh

max)2)
[187, Section 15.4]. Since ωh

max is large, the relative change in eigenmodes can be ex-
pected to be much smaller than the relative change in frequencies. This implies that,
for small α and β, we may approximate Ũh

max ≈Uh
max and thus also:

ŨhT
maxKŨh

max ≈UhT
maxKUh

max = (ωh
max)2 UhT

maxMUh
max = (ωh

max)2 . (4.25)
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4.3.2 Identifying (un)suitable parameter windows

To help identify suitable ranges of parameter values, we choose to write β in terms of α
and a scaling factor f as:

β = f 1

(ω̃h
max)2 α . (4.26)

Substitution of (4.25) and (4.26) into (4.24) gives:

α (1 − f) ≈ (ω̃h
max)2 − (ωh

max)2
UhT

maxKΓUh
max

. (4.27)

Depending on our choice of the scaling factor f , we can identify different parameter
windows that we will briefly discuss in the following.

Case f = 0 (no perturbation of the mass matrix): The left-hand side is positive for
positive choice of α. This necessarily means that ω̃h

max > ωh
max, which is precisely not

our goal: the frequency ωh
max needs to be reduced. Adding perturbations only to the

stiffness matrix is thus unsuitable for improving the spectrum.
We note that this case is equivalent to the formulation introduced in [124], excluding

the penalty terms on the Neumann boundary and at cross-points. In Figure 4.4, we il-
lustrate the discrete frequencies of a fixed bar with values for α that are scaled with 1/h
based on [124], without removing any outlier frequency. We note that α scaled with 1/h
is not a consistent scaling factor of the matrices K and KΓ (to the contrary, a consistent
scaling factor would be α = h). As expected, we observe in Figure 4.4 that the outlier
frequency ω̃h

N increases with increasing α.

α = 0 α = 1/h α = 10/h α = 100/h

Figure 4.4: Discrete frequencies of a freely vibrating fixed bar, computed with f = 0 and different values
of α chosen according to [124]. We apply two patches of quadratic C1 B-splines and discretize
each patch with 25 elements (h = 0.01).
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Remark 4.3.1. Instead of ordering the discrete frequencies in ascending order, as is
typically done, the frequencies in Figures 4.4 to 4.7 are ordered in such a way that the
corresponding analytical frequencies are ascending. The corresponding pairs of discrete
and analytical frequencies are identified by inspecting the corresponding mode shapes. In
particular, we find the discrete mode that best fits, in the L2 sense, a certain analytical
mode.

Case 0 < f < 1: The left-hand side of (4.27) is also positive when α is chosen larger
than zero, i.e. ω̃h

max > ωh
max. Thus, a choice of f in (0,1) does not improve the spec-

trum. In Figure 4.5, we illustrate the discrete frequencies of a fixed bar using f = 0.5. We
choose α = h and β = αf/(ωh

N)2, where ωh
N is the N th frequency of the non-perturbed

eigenvalue problem, i.e. the maximum outlier frequency. As expected, ω̃h
N increases.

standard spectrum (α = β = 0) f = 0.5, α = h, β = αf/(ωh
N)2

Figure 4.5: Discrete frequencies of a freely vibrating fixed bar, computed with f = 0.5. We apply two
patches of quadratic C1 B-splines and discretize each patch with 25 elements.

Case f > 1: For a choice of α larger than zero, the left-hand side of (4.27) is negative,
such that ω̃h

max < ωh
max. We thus observe that it is the mass matrix to which we should

add the perturbation to improve the spectrum. In Figure 4.6, we illustrate the discrete
frequencies of a fixed bar computed with a value f = 2. We compute α and β using
(4.26)-(4.27). As expected, the resulting frequency ω̃h

N is reduced.

Case α = 0 and β > 0: Based on the previous observation, we may consider only
adding the perturbation to the mass matrix, which can be interpreted as an approach
of selective mass scaling [115], [120]. In this case, values of β that are scaled with h3

are consistent scaling factors of the matrices M and KΓ. In Figure 4.7, we illustrate
the discrete frequencies of a fixed bar using a factor β = h3. We observe that the outlier
frequency is also effectively reduced.
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standard spectrum (α = β = 0) f = 2

Figure 4.6: Discrete frequencies of a freely vibrating fixed bar, computed with f = 2. We apply two
patches of quadratic C1 B-splines and discretize each patch with 25 elements.

standard spectrum (α = β = 0) α = 0, β = h3

Figure 4.7: Normalized frequencies of a freely vibrating fixed bar, computed with α = 0,β = h3. We
apply two patches of quadratic C1 B-splines and discretize each patch with 25 elements.

4.3.3 An iterative scheme based on first-order perturbed eigenvalue analysis

In this work, we focus on the parameter estimation in the case of perturbing both the
stiffness and mass matrix that reduces the outlier frequency, i.e. the case of f > 1.

Suppressing a single outlier frequency

Based on the first-order perturbation discussed above, we propose to use the following
iterative procedure for approximating α and β in the case f > 1:

α(i) = (ωh∗
max)2 − Ũh (i−1)T

max KŨ
h (i−1)
max

Ũ
h (i−1)T
max KΓ Ũ

h (i−1)
max

1

1 − f , (4.28)
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β(i) = f 1

(ωh∗
max)2α

(i) , (4.29)

where Ũ
h (i−1)
max correspond to the eigenvalue problem (4.22) that is:

(K + α(i−1)KΓ) Ũh (i−1)
n = (ω̃h (i−1)

n )2 (M + β(i−1)KΓ) Ũh (i−1)
n , (4.30)

and ωh∗
max is the target maximum frequency. A practical choice of the target maximum

frequency is a fraction of the unperturbed outlier frequency ωh
max. In this section, to

illustrate the effectiveness of the proposed iterative scheme, we choose as target value
ωh∗
max the maximum analytical frequency. For the studied benchmarks of bars and beams,

the analytical solution is well-known. We find that only three or four iterations are re-
quired to obtain sufficiently converged values for α and β, i.e. these parameters converge
within a small number of iterations. In Section 4.4, we propose an alternate strategy
that avoids the need for a known analytical solution.

Suppressing multiple outlier frequencies

We now discuss the parameter estimation of an example using cubic C2 B-splines (p = 3)
with C0 patch continuity. The resulting spectrum of a two-patches-discretization (npa =
2) consists of two interior outliers (see Table 4.1). The perturbed eigenvalue problem
(4.17) then simplifies to:

[K + α1K1
Γ + α2K2

Γ] Ũh
n = (ω̃h

n)2 [M + β1K1
Γ + β2K2

Γ] Ũh
n . (4.31)

To iteratively estimate the parameters αl and βl, l = 1,2, in each iteration, we first
identify the two outlier modes corresponding to each continuity constraint of (4.12) as
follows:

nl = argmax
N l

(ŨhT
n Kl

Γ Ũ
h
n) , N l = {1, . . . ,N} / {n1, . . . , nl−1} . (4.32)

Inserting these outlier modes in (4.31), aiming at the corresponding target frequencies,
and performing the steps (4.23)-(4.24), as well as expressing βl in terms of αl and the
target frequencies, we obtain the following system of equations:

α1 (1 − f1) ŨhT
n1 K1

Γ Ũ
h
n1 + α2 (1 − f2ω

h∗
n1

ωh∗
n2

) ŨhT
n1 K2

Γ Ũ
h
n1 = (ω̃h∗

n1 )2 − ŨhT
n1 KŨh

n1 ,

(4.33a)

α1 (1 − f1ω
h∗
n2

ωh∗
n1

) ŨhT
n2 K1

Γ Ũ
h
n2 + α2 (1 − f2) ŨhT

n2 K2
Γ Ũ

h
n2 = (ω̃h∗

n2 )2 − ŨhT
n2 KŨh

n2 ,

(4.33b)
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where

β1 = f1 1

(ωh∗
n1 )2α

1 , β2 = f2 1

(ωh∗
n2 )2α

2 . (4.34)

Solving this system of equations, we obtain αl and βl at each iteration. We find that
only four or five iterations are required to obtain sufficiently converged values for αl,
l = 1,2.

In general, the resulting system of equations consists of (p − 1) equations and (p − 1)
unknown parameters αl. Given a choice of (p − 1) factors f l, we obtain βl in terms
of f l, αl, and the target maximum frequency, see (4.29). We note that the proposed
iterative scheme requires (p − 1) target maximum frequencies and an identification of(p−1) outlier modes corresponding to the continuity constraint (4.12) at each iteration.

4.3.4 Spectral analysis of a second-order problem

The proposed iterative parameter estimation still requires a choice of the scaling factor
f > 1 between α and β. Figure 4.8 illustrates the relative error in the frequency, ∣ωh

n/ωn−
1∣, and the relative L2 error in the mode, ∥Uh

n −Un∥L2 / ∥Un∥L2 , of a fixed bar discretized
with two patches of quadratic C1 B-splines. We order these results in the same way
as described in Remark 4.3.1. We observe that optimal accuracy is preserved in the
remainder of the spectrum and modes for all values f > 1. In all numerical studies that
follow we choose a factor f = 2.

(a) Relative error in the frequency (b) Relative L2 error in the mode shape

standard spectrum (α = β = 0) f = 2 f = 101 f = 102

Figure 4.8: Relative error in frequencies and L2 error in the mode shapes of a freely vibrating fixed bar,
computed with different values f > 1. We apply two patches of quadratic C1 B-splines and
discretize each patch with 25 elements.

The corresponding outlier mode, as expected, remains spurious as illustrated in Figure
4.9, since the addition of perturbations improves the eigenvalue spectrum, but does not
remove spurious outlier modes. Nevertheless, the introduced perturbation reduces the
error in the outlier mode, as demonstrated in Figure 4.8b, since the perturbed outlier
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mode approximates the analytical solution better than the unperturbed mode, as shown
in Figure 4.9.

(a) 25 elements per patch (b) 50 elements per patch

standard spectrum (α = β = 0) f = 2, α,β computed with (4.28)-(4.29)

Figure 4.9: Outlier mode of a freely vibrating fixed bar, computed with 2 patches of quadratic C1 B-
splines and normalized such that ∥Uh

n∥L2 = ∥Un∥L2 .

We now consider the free axial vibration of a fixed bar with unit length, unit axial
stiffness and unit mass. We employ a multipatch discretization with two patches (npa = 2)
of Cp−1 B-splines of different polynomial degrees p = 2 through 5 where interior outliers
exist (see Table 4.1), and C0 patch continuity. Figures 4.10 and 4.11 illustrate the
normalized frequency and the relative L2 error in the mode shapes of the studied bar,
respectively. We compare results obtained with multipatch discretizations based on non-
perturbed and perturbed eigenvalue problems (plotted in black and blue, respectively).
We include results of the single-patch discretization in Figures 4.10 and 4.11 in gray
as the reference solution, and keep the same number of degrees of freedom N for the
single- and multipatch discretizations. The discrete frequencies are ordered as described
in Remark 4.3.1.
We first focus on the normalized frequencies plotted in Figure 4.10. The inset figures

of Figure 4.10 focus on the last four frequencies including the outlier frequencies that
are present in the upper part of the spectra. It can be observed that the entire spectrum
obtained with multipatch discretizations without perturbations (in black) is accurate
except for the (p − 1) interior outlier frequencies at the end of the spectrum (see also
Table 4.1). These outliers are significantly reduced by our approach (in blue), while
the remaining frequencies are not negatively affected. We observe that the reduction
factor increases with increasing p since the outlier frequencies increase. We note that the
reduced normalized outlier frequencies are not at the same level for all cases, as illustrated
via small jumps at the end of the blue spectra for p = 4 and 5 in Figures 4.10c and d. The
mode errors are plotted in Figure 4.11. We observe that our approach results in smaller
errors in the outlier modes (in blue), as discussed in the previous subsection, without
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(a) p = 2 (b) p = 3

(c) p = 4 (d) p = 5

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.10: Normalized frequencies of a freely vibrating fixed bar, computed with two patches of
Cp−1 B-splines and discretized with 500 elements.

affecting the remaining modes. We conclude that our approach improves the spectral
properties of univariate multipatch discretizations without affecting the accuracy of the
remaining frequencies and modes.
We then verify that the proposed approach does not negatively affect the accuracy

nor the optimal convergence behavior of the lower frequencies and modes. For second-
order problems, the optimal convergence rate of the frequency error and the L2 error
in the mode is O(2p) and O(p + 1), respectively [43], [66]. Figure 4.12 illustrates the
convergence of the relative error in the 18th frequency (left) and the L2 errors in the
corresponding mode (right) of the bar. We plot these errors vs. the mode number N for
degrees p = 2 through 5. We observe that our approach preserves the optimal accuracy
of the frequency and mode. We can also see in Figure 4.12 that the error converges
optimally in all cases.

4.3.5 Spectral analysis of a fourth-order problem

We then consider the free transverse vibration of a fixed beam with unit length, unit
bending stiffness and unit mass. We employ a multipatch discretization with two patches
(npa = 2) of Cp−1 B-splines of different polynomial degrees p = 3 through 6 where interior

79



(a) p = 2 (b) p = 3

(c) p = 4 (d) p = 5

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.11: L2 errors in the mode shapes of a freely vibrating fixed bar, computed with two patches
of Cp−1 B-splines and discretized with 500 elements.

(a) Normalized frequency error (b) L2 errors in the mode shapes

standard spectrum ⨉ improved spectrum

Figure 4.12: Convergence of the relative error in the 18th eigenfrequency and mode of a fixed bar,
obtained with 2 patches of quadratic, cubic, quartic and quintic Cp−1 B-spline basis func-
tions.
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(a) p = 3 (b) p = 4

(c) p = 5 (d) p = 6

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.13: Normalized frequencies of a freely vibrating fixed beam, computed with two patches of
Cp−1 B-splines and discretized with 500 elements.

outliers exist (see Table 4.2), and with sufficient regularity, i.e. C1 patch continuity.
Figures 4.13 and 4.14 illustrate the normalized frequency and the L2 error in the mode
shapes corresponding to the studied beam, respectively. We order and present the results
in the same way as those of the fixed bar in the previous subsection. We observe a similar
effect of the proposed approach on the frequencies and modes as in the case of the fixed
bar. Thus, we conclude that the proposed approach improves the spectral properties of
univariate multipatch discretizations for both second- and fourth-order problems.
We also verify that the proposed approach preserves the optimal accuracy and optimal

convergence behavior of the lower frequencies and modes. For fourth-order problems,
the optimal convergence rate of the frequency error and the L2 error in the mode isO(2(p−1)) andO(p+1), respectively [43], [66]. Figure 4.15 demonstrates the convergence
of the relative error in the 18th frequency (left) and the L2 errors in the corresponding
mode (right) of the beam, as functions of the mode number N with polynomial degrees
p = 3 through 6. We observe that our approach preserves the optimal accuracy and
convergence behavior in all cases.
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(a) p = 3 (b) p = 4

(c) p = 5 (d) p = 6

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.14: L2 errors in the mode shapes of a freely vibrating fixed beam, computed with two patches
of Cp−1 B-splines and discretized with 500 elements.

(a) Normalized frequency error (b) L2 errors in the mode shapes

standard spectrum ⨉ improved spectrum

Figure 4.15: Convergence of the relative error in the 18th eigenfrequency and mode of a fixed beam,
obtained with 2 patches of cubic, quartic, quintic and sextic Cp−1 B-spline basis functions.
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4.4 Generalization to multidimensional discretizations

The iterative scheme proposed in the previous section is shown to work effectively for
univariate multipatch discretizations. There are two major issues that need to be ad-
dressed in order to generalize this scheme to multidimensional discretizations. First,
the scheme requires (p − 1) target maximum frequencies, which are typically unknown
in practical applications. Second, for each continuity constraint (4.12) a corresponding
outlier mode needs to be identified that maximizes (4.32). This would necessarily imply
that all modes need to be precomputed. In this section, we tackle both these problems
by further simplifying the current approach (4.15), giving rise to a new iterative scheme
for estimating the scaling parameters of the perturbation terms. We then demonstrate
via spectral analysis of two-dimensional second- and fourth-order problems that the sim-
plified approach is able to effectively improve the spectra of multipatch discretizations.

4.4.1 A pragmatic approach to parameter estimation

We assume a uniform mesh with mesh size h. The variational formulation (4.15) can
then be simplified by choosing the lth parameter as: αl = α h2l−2 and βl = β h2l−2. The
scaling factor h2l−2 is based on the dimensional consistency of the inner-products of the
lth derivatives in the perturbation (4.13). The proposed variational formulation of the
perturbed eigenvalue problem (4.15) becomes: find (Ũh

n , ω̃
h
n) ∈ Vh×R+, for n = 1,2, . . . ,N ,

such that ∀ vh ∈ Vh ⊂ V:
a(Ũh

n , v
h) + α p−1∑

l=1
h2l−2 cl(Ũh

n , v
h) = (ω̃h

n)2 [b(Ũh
n , v

h) + β p−1∑
l=1

h2l−2 cl(Ũh
n , v

h)] .
(4.35)

The corresponding matrix equation (4.17) is then simplified to:

⎛⎜⎜⎜⎜⎜⎜⎝
K + α p−1∑

l=1
h2l−2Kl

Γ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
KΓ

⎞⎟⎟⎟⎟⎟⎟⎠
Ũh

n = (ω̃h
n)2
⎛⎜⎜⎜⎜⎜⎜⎝
M + β p−1∑

l=1
h2l−2Kl

Γ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
KΓ

⎞⎟⎟⎟⎟⎟⎟⎠
Ũh

n , (4.36)

On this basis, we design Algorithm 5 for estimating the parameters α and β in (4.35)
(or (4.36)). Here, we iteratively estimate α and β such that the maximum frequency is
reduced by a target factor c ∈ (0,1) in each iteration, and thus do not require a choice
of the target maximum frequency or any analytical value. In Algorithm 5, the target
maximum frequency in each iteration, ω̂h

max, is a fraction of the maximum frequency
obtained from the previous iteration. To obtain α and β in each iteration, instead of
the outlier, we focus on the maximum frequency and corresponding mode, such that no
identification of outlier modes is required. The equation for estimating these parameters
in Algorithm 5 is based on the iterative scheme (4.28)-(4.29) described in the previous
section. We note that to ensure stability, we employ the unperturbed outlier mode Uh

max
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Algorithm 5: Iterative estimation of the parameters involved in (4.35). The algorithm terminates when
the maximum frequency does not correspond to an outlier anymore (see Remark 4.4.1).

Start

Choose f > 1
and 0 < c < 1

i = 0:
ω̃

h (i)
max = ωh

max,
Ũh (i)

max = Uh
max

ω̂h
max = c ω̃

h (i)
max

i = i + 1

α(i) = (ω̂h
max)2−Ũh (i−1)T

max KŨh (i−1)
max(Uh T

max KΓ Uh
max) (1−f)

β(i) = f 1(ω̂h
max)2α(i)

ω̃
h (i)
max and Ũh (i)

max

(solving (36))

ω̃
h (i)
max − ω̃h (i−1)

max < 0
Return

α(i−1), β(i−1)

End

No Yes

(a) Discrete frequency spectrum (b) Evolution of α and β

Figure 4.16: Discrete frequencies and parameters, α, β in each iteration, corresponding to a freely vibrat-
ing square membrane with fixed boundary conditions, computed with 2 × 2 patches
and 15 × 15 elements of quadratic B-splines (p = 2) via Algorithm 5 with f = 2, c = 0.9.
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instead of the perturbed one Ũh
max in the denominator for computing α, since Ũh

max is
not necessarily an outlier mode in all iterations and thus could result in infinitesimal
values in the denominator.
Figure 4.16 illustrates how the Algorithm 5 affects the discrete frequency (left) and

changes the parameters α and β (right) in each iteration for a fixed square membrane
(see next subsection for details of the example). We observe that the maximum outlier
frequency is reduced in each iteration, from the first through the fourth iteration (see
Figure 4.16a), and the parameters α and β increase in the same iteration (see Figure
4.16b). We can also see in the inset figure of Figure 4.16a that our approach reduces
not only the outlier frequencies (data points on the right of the dashed gray line) but
also the non-outlier ones (data points on the left of the dashed gray line). In the last
(fifth) iteration, the maximum frequency increases (purple curve in Figure 4.16a), which
then meets the stopping criterion defined in Algorithm 5. This increase in the maximum
frequency corresponds to decreasing parameters α and β (see Figure 4.16b). Then, the
output of Algorithm 5 are the parameters α and β of the previous (fourth) iteration.

Remark 4.4.1. Algorithm 5 stops when the perturbation reduces the outlier frequencies
by such a factor that they become smaller than the highest non-outlier frequency, see
Figure 4.16a.

Remark 4.4.2. The factor c ∈ (0,1) determines the reduction in each iteration of Algo-
rithm 5. Due to the chosen stopping criterion (Remark 4.4.1), the resulting maximum
frequency lies within a range of 100 ⋅(1−c)% of the minimum value that can be achieved.
For example, a choice of c = 0.9 results in a reduced maximum frequency within 10% of
the minimum value.

Algorithm 5 updates only the maximum frequency and the corresponding mode in
each iteration. It requires two input parameters: a scaling factor f > 1 between α and β,
which can be chosen as discussed in the previous section, and a target reduction factor
c ∈ (0,1) in each iteration. A choice of a small c results in a large reduction step of the
maximum frequency and a small number of iterations. The reduced maximum frequency,
however, could be far away from the minimum value that can be achieved (see Remark
4.4.2), i.e. the maximum frequency is reduced ineffectively. Moreover, a very small c
leads to a very small value in the denominator of the equation for β (see Algorithm 5),
negatively affecting the convergence of β. Large values of c avoid this issue, but require
more iterations. For our numerical studies in the remainder of this paper, we choose
f = 2 and c = 0.9 for all cases. We find that this choice of factor c typically requires only
up to five iterations to sufficiently reduce the maximum frequency, i.e. the maximum
frequency is significantly reduced within 10% of the lowest possible value (see also 4.4.2)
with a small number of iterations.

4.4.2 Spectral analysis of 2D second- and fourth-order model problems

We consider the free transverse vibration of a square membrane, of unit edge size with
fixed boundary conditions, unit membrane stiffness and unit mass. We study Cp−1 B-
splines of polynomial degrees p = 2 through 5 and C0 patch continuity. We employ
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(a) p = 2 (b) p = 3

(c) p = 4 (d) p = 5

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.17: Normalized frequencies of a freely vibrating square membrane with fixed boundary
conditions, computed with 2× 2 patches of Cp−1 B-splines. Each patch is discretized
with 15 × 15 elements.

multipatch discretizations of 2×2, 5×5 patches, and the limit case of C0 Bézier elements
(one element per patch, npa = nele = 15 × 15). Figures 4.17, 4.18, and 4.19 present
the normalized frequencies ωh

n/ωn corresponding to the square membrane discretized
with 2 × 2, 5 × 5, and 15 × 15 patches, respectively. The inset figures of 4.17 focus on
the upper last twenty percent of the spectra. Due to their tensor-product structure, the
spectra of multivariate discretizations exhibit a higher number of outliers than univariate
discretizations.
We then consider the free vibration of a square plate structure of unit edge size with

simply supported boundary conditions, unit bending stiffness and unit mass. We use
Cp−1 B-splines of polynomial degrees p = 3 through 6 and C1 patch continuity. We em-
ploy multipatch discretizations of 2 × 2 and the limit case of C1 Bézier elements (same
number of patches and elements, npa = nele = 15×15). Figures 4.20 and 4.21 illustrate the
normalized frequencies, ωh

n/ωn, corresponding to the square plate discretized with 2 × 2
and 15×15 patches, respectively. These results confirm that our approach (4.35) in com-
bination with Algorithm 5 reduces the outlier frequencies of multipatch discretizations
effectively for both second- and fourth-order problems, without negatively affecting lower
frequencies, and works well for different polynomial degrees and patch configurations.
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(a) p = 2 (b) p = 3

(c) p = 4 (d) p = 5

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.18: Normalized frequencies of a freely vibrating square membrane with fixed boundary
conditions, computed with 5× 5 patches of Cp−1 B-splines. Each patch is discretized
with 5 × 5 elements.

4.5 Application in explicit dynamics

The critical time-step size in explicit dynamics calculations is inversely proportional to
the maximum discrete eigenfrequency [66]. Significantly overestimated outlier frequen-
cies therefore negatively affect the critical time-step size, and hence the computational
cost of explicit dynamics calculations. It can be thus expected that the approaches pre-
sented in this work are able to effectively improve this issue for multipatch isogeometric
discretizations, which we will illustrate in the following.

4.5.1 Semidiscrete formulation

In this section, we consider the semi-discrete form (4.4) of an free-vibrating, undamped
linear structural system, which can be expressed as follows:

M
d2

d t2
uh(t) = −Kuh(t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fint

, (4.37)
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(a) p = 2 (b) p = 3

(c) p = 4 (d) p = 5

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.19: Normalized frequencies of a freely vibrating square membrane with fixed boundary
conditions, computed for the limit case of C0 Bézier elements (npa = nele = 15 × 15).

where Fint is the vector of internal forces. Using the proposed approach in Section 4.4.1
leads to the following semi-discrete form:

(M + αKΓ ) d2

d t2
uh(t) = − (K + βKΓ ) uh(t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F̃int

, (4.38)

where F̃int is the perturbed vector of internal forces. Both the left- and right-hand sides
of the standard formulation (4.37) are modified using our approach. This is not the case
when using the mass scaling approach where only the mass matrix on the left-hand side
is modified by adding artificial mass terms [113]–[115], [120]. The perturbation matrix
KΓ is computed once and hence no reassembly of the mass matrix is needed, so that
this does not increase the computational cost of explicit dynamics calculations.

Remark 4.5.1. Explicit dynamics applications typically involve the use of a lumped mass
matrix in combination with an explicit time integration scheme. There are currently no
widely accepted mass lumping techniques that maintain higher-order spatial accuracy. To
demonstrate that our methodology maintains higher-order spatial accuracy, we employ
the consistent mass matrix in all subsequent computations.
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(a) p = 3 (b) p = 4

(c) p = 5 (d) p = 6

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.20: Normalized frequencies of a freely vibrating square plate with simply supported
boundary conditions, computed with 2 × 2 patches of Cp−1 B-splines. Each patch
is discretized with 15 × 15 elements.

4.5.2 Optimum spatial accuracy

We consider the free vibration of the annular membrane problem illustrated in Fig-
ure 4.22a, see also [122], where boundary conditions are fixed along the inner radius a
and outer radius b. We choose the following displacement solution u that satisfies the
differential equation (4.1):

u(r, θ, t) = J4(r) cos(λ2 t) cos(4 θ) , (4.39)

with radial coordinate r, angular coordinate θ and time t. Here, J4(r) denotes the 4th

Bessel function of the first kind and λk, k = 1,2, . . . denote its positive zeros. We choose
the second and fourth zeros as the inner and outer radii of the annulus, respectively, i.e.
a = λ2 ≈ 11.065 and b = λ4 ≈ 17.616. The analytical solution (4.39) at time t = 0 plotted
in Figure 4.22b defines the initial displacement field u(r, θ,0).
We study the semi-discrete form (4.38) of the annular membrane in explicit dynamics.

We employ a multivariate spline space that is an extension of the univariate spaces of
the angular coordinate (θ ∈ [0,2π]) and radial coordinate (r ∈ [a, b]). The univariate
spline spaces are free of boundary outliers due to outlier removal boundary constraints
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(a) p = 3 (b) p = 4

(c) p = 5 (d) p = 6

single-patch multipatch, standard spectrum multipatch, improved spectrum

Figure 4.21: Normalized frequencies of a freely vibrating square plate with simply supported
boundary conditions, computed for the limit case of C1 Bézier elements (npa = nele =
15 × 15).

[122]. In the spline space of the angular coordinate, we also build in the periodic end-
conditions. We consider Cp−1 B-splines of different polynomial degrees p = 2 through
5 for multipatch discretizations with 2 patches in the radial direction, and 4 patches
in the angular direction, and C0 patch continuity (see Figure 4.22a). We apply the
proposed approach to enforce the Cp−1 continuity constraints (4.12) at patch interfaces
(see Figure 4.22a). We perform uniform mesh refinement of each patch with 4,8,16
elements, i.e. nele = 8,16,32 elements in the radial coordinate, and 16,32,64 elements
in the angular coordinate. We simulate up to a final time of T = 2π/λ2 which is one
full period of the periodic function u(r, θ, t) (4.39). For time integration, we apply the
central difference method [66]. To verify that spatial accuracy is maintained, we choose
a small, order-dependent time step of ∆t = (p/(2nele))p.
Figure 4.23 compares the convergence behavior of the L2 error in the discrete displace-

ment field uh(r, θ, t), when we do standard analysis (circle) and when we do analysis with
the proposed approach based on perturbed eigenvalue problems (cross). We observe that
the analysis with our perturbation approach maintains optimum spatial accuracy.
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θ

r = a
r = b

u = 0, ∆νu = 0, ∆2
νu = 0, ...

⟦∂l
νu⟧ = 0

⟦∂l
νu⟧ = 0

(a) Coarsest Bézier mesh with boundary and inter-
face constraints

(b) Initial displacement field u(r, θ,0)

Figure 4.22: Transient model problem on an annulus.

standard spectrum ⨉ improved spectrum

Figure 4.23: Convergence of the relative L2 error in the vertical displacement field u of the annular
membrane in Figure 4.22, computed with a small, order-dependent time step of ∆t =
(p/(2nele))p.

4.5.3 Critical time-step size

For an undamped problem, the time step ∆t in the central difference method is bounded
from above by the critical time step ∆tcrit [66, Chapter 9, p. 492]:

∆t ≤∆tcrit = 2/ωh
max . (4.40)
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(a) Membrane (b) Plate

p = 2 p = 3 p = 4 p = 5 p = 6

Figure 4.24: Critical time step size in explicit dynamics of a square membrane and plate with fixed
and simply supported boundary conditions, respectively, as a function of the mesh
N = 2nele × 2nele using 2 × 2 patches, resulting from standard and improved spectrum.

(a) Membrane (b) Plate

p = 2 p = 3 p = 4 p = 5 p = 6

Figure 4.25: Increase in critical time step size due to improved spectrum in explicit dynamics of a square
membrane and plate with fixed and simply supported boundary conditions, re-
spectively, as a function of the mesh N = 2nele × 2nele using 2 × 2 patches.

Remark 4.5.2. The maximum eigenfrequency is obtained as part of Algorithm 5. Hence,
in our approach, we directly compute the critical time step size which is inversely pro-
portional to the maximal frequency.

Figure 4.24 plots the critical time-step size with respect to the number of elements per
patch nele, obtained with our perturbation approach (dashed curves) and with standard
analysis (solid curves), for the examples of a square membrane and plate with fixed and
simply supported boundary conditions, respectively, as defined in the sections above.
We consider Cp−1 B-splines of polynomial degrees p = 2 through 6 and multipatch dis-
cretizations of 2×2 patches with C0 and C1 patch continuity for the membrane and plate,
respectively. We observe that using our perturbation approach allows for a significantly
larger critical time step, and thus effectively reduces the associated computational cost
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of explicit dynamics calculations. We can also see that the our approach removes the
dependency of the critical time-step size on the polynomial degree p, which exists for
the standard analysis. Figure 4.25 shows the relative increase in the critical time-step
size.

4.6 Summary and conclusions

In this paper, we presented a variational approach based on perturbed eigenvalue anal-
ysis that reduces overestimated outlier frequencies due to reduced continuity at patch
interfaces in isogeometric multipatch discretizations. It relies on the addition of scaled
perturbation terms that weakly enforce Cp−1 continuity at patch interfaces. We also
presented an iterative procedure to estimate effective scaling parameters for the per-
turbation term. It requires two input parameters (scaling factor f > 1 and reduction
factor c ∈ (0,1)) and computation of the maximum eigenfrequency and corresponding
mode, which can be efficiently computed via power iteration. We demonstrated that
our approach is robust with respect to the scaling factor f > 1, i.e. it reduces the outlier
frequencies to approximately the same values for all f > 1. Furthermore, a reduction
factor c = 0.9 showed good results in all test cases.
We demonstrated numerically that the proposed approach improves spectral prop-

erties of multipatch discretizations for a variety bar, beam, membrane and plate. We
showed that the approach effectively addresses the outlier frequencies, while maintaining
accuracy in the remainder of the spectrum and modes. We confirmed that spatial ac-
curacy of the response was maintained in an explicit dynamics setting and showed that
our approach allows for a much larger time-step size. In particular, we observed that
the proposed approach removes the negative dependency of the critical time-step size on
the polynomial degree p.

We note that our approach may be combined with the approach of [121] to reduce
outlier frequencies due to patch interfaces and boundaries. There are a number of
avenues for future work. One aspect is the extension of our approach to non-uniform
spline discretizations, trimmed and unfitted spline discretizations, and problems with
non-smooth solution fields, where continuity constraints at patch interfaces cannot be
consistently formulated. A second aspect is the further exploration of the case when
α = 0 and β < 1, which reduces the perturbation approach to the mass matrix, and to
further study the resulting perturbation schemes in the context of mass lumping. One
could investigate operator splitting techniques to move the added mass matrix to the
right-hand side, which enables e.g. row-sum lumping of the unperturbed mass matrix.
Another aspect is to study the performance of the proposed approach and the resulting
problem conditioning in realistic scenarios with different material parameters.
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5 Towards higher-order accurate mass
lumping in explicit isogeometric analysis
for structural dynamics

This chapter is reproduced from [188]:

T.-H. Nguyen, R. R. Hiemstra, S. Eisenträger, and D. Schillinger. Towards higher-order
accurate mass lumping in explicit isogeometric analysis for structural dynamics, Comput.
Meth. Appl. Mech. and Engrg. (2023) 116233. DOI: 10.1016/j.cma.2023.116233.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782523003572.

Abstract

We present a mass lumping approach based on an isogeometric Petrov-Galerkin method
that preserves higher-order spatial accuracy in explicit dynamics calculations irrespec-
tive of the polynomial degree of the spline approximation. To discretize the test function
space, our method uses an approximate dual basis, whose functions are smooth, have
local support and satisfy approximate bi-orthogonality with respect to a trial space of
B-splines. The resulting mass matrix is “close” to the identity matrix. Specifically,
a lumped version of this mass matrix preserves all relevant polynomials when utilized
in a Galerkin projection. Consequently, the mass matrix can be lumped (via row-sum
lumping) without compromising spatial accuracy in explicit dynamics calculations. We
also address the imposition of Dirichlet boundary conditions and the preservation of
approximate bi-orthogonality under geometric mappings. In addition, we establish a
link between the exact dual and approximate dual basis functions via an iterative al-
gorithm that improves the approximate dual basis towards exact bi-orthogonality. We
demonstrate the performance of our higher-order accurate mass lumping approach via
convergence studies and spectral analyses of discretized beam, plate and shell models.
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5.1 Introduction

Isogeometric analysis (IGA) was initiated in 2005 by Tom Hughes and his students [30],
[51] with the goal of bridging the gap between computer aided geometric design (CAD)
and finite element analysis (FEA). The core idea of IGA is to use the same smooth
and higher-order spline basis functions for the representation of both geometry in CAD
and the approximation of physics-based field solutions in FEA [175]. IGA enables finite
element approximations that are higher-order smooth, a feature that cannot be achieved
in FEA based on nodal basis functions [176]. A key property of higher-order IGA,
already discussed in one of the first articles [43], is its well-behaved discrete spectrum
of eigenfrequencies and eigenmodes. The associated potential of IGA for higher-order
accurate explicit dynamics calculations, however, lies largely idle to this day. One reason
is that no practical methodology exists yet that reconciles higher-order accuracy and
mass lumping. In this paper, we will focus on a new Petrov-Galerkin method that
enables a higher-order accurate mass lumping that could help close this gap.

5.1.1 Explicit dynamics and mass lumping in FEA

Finite element discretizations of transient problems in structural mechanics generate
semidiscrete systems of coupled second-order ordinary differential equations of the fol-
lowing type [116]:

M ün = Fn
ext − ∫

Ω
B(xn)T σn dΩ , (5.1)

whereM is the mass matrix, u the displacement vector, Fext the vector of external forces,
B the discrete gradient operator, σ the Cauchy stress, and Ω the problem domain. The
superscript n is the time index that indicates that a variable is evaluated at time instant
tn.

In many applications such as virtual testing of vehicle crashworthiness or the simulation-
based design of metal forming processes, the internal force vector of the discrete sys-
tem (5.1) involves shell elements, nonlinear material models, and contact with friction.
For shell problems, most established finite element formulations are based on shear-
deformable Reissner-Mindlin-type models [64], which allow the consistent evaluation of
the integral in (5.1) with standard nodal basis functions. Due to their cost effectiveness
and robustness against locking, state-of-the-art commercial software packages such as
LS-Dyna or Pam-Crash mostly rely on lowest-order linear basis functions with reduced
quadrature and hourglass control, which require very fine meshes to achieve accurate
solutions on complex geometries.
For the resulting large and ill-conditioned systems, however, iterative equation solvers

required by implicit methods do not converge well and are thus prohibitively expensive
[116].
As a result, explicit dynamics based on explicit second-order accurate time integration

methods such as the central difference method or variations thereof [66], has established
itself as the key technology for efficiently solving (5.1) [189], [190]. Given a lumping
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scheme to diagonalize the mass matrix, its inversion in (5.1) becomes trivial and the
dominating cost of the explicit multistep procedure shifts entirely to the evaluation of the
internal force vector. In addition, a diagonal mass matrix significantly reduces memory
and facilitates parallel computing, as global system matrices and the associate assembly
or inversion procedures do never explicitly occur. An alternative pathway to explicit
dynamics with diagonal mass matrices in FEA is the use of so-called Gauss-Lobatto
Lagrange basis functions with nodes at the Gauss-Lobatto points in conjunction with
Gauss-Lobatto quadrature [93], [96], [191], [192]. This is the only technique established
so far that obtains higher-order spatial accuracy in explicit dynamics with a diagonal
mass matrix [94], [95]. We note that within the last decade, there has been a new
increase in research and development in higher-order explicit structural analysis with C0-
continuous finite elements, both in academia, see e.g. [95], [193]–[197] and in industry,
see e.g. the commercial codes IMPETUS [198] and LS-Dyna [199], which in addition to
standard linear elements also promote second- and third-order elements.
Explicit schemes, however, are only conditionally stable. Therefore, the step size, with

which they march forward in time, cannot exceed a maximum critical time step size [111],
which is inversely proportional to the maximum eigenfrequency ωmax of the discretiza-
tion: ∆ tncrit ∼ 1/ωn

max. Due to this dependence, control of the highest frequencies in the
spectrum is indispensable for guaranteeing acceptable time step sizes and hence efficient
explicit dynamics calculations. In FEA, the impact of ωmax can be alleviated, e.g., via
selective mass scaling [115] or time step subcycling [200].

5.1.2 Explicit dynamics and mass lumping in IGA

IGA is particularly attractive for higher-order accurate structural analysis. In addition to
mesh refinement, spline functions naturally enable the increase of the polynomial degree
(p-refinement), or both at the same time (k-refinement). For elastostatic-type problems,
it has been consistently shown across the pertinent literature that higher-order IGA
is superior to FEA based on nodal basis functions in terms of per-degree-of-freedom
accuracy [201]. A variety of advanced formulations for isogeometric structural analysis
have been developed over the past decade, in particular for shells based on Kirchhoff-
Love [48], [80], Reissner-Mindlin [46], [202]–[204], and solid-type models [205], [206],
and hierarchic combinations thereof [45], [47]. Isogeometric shell formulations have been
applied for explicit dynamics calculations, based on the adoption of standard row-sum
lumping to diagonalize the mass matrix [207], [208]. In addition, selective mass scaling
[116] and different methods to obtain time step estimates [116], [209] known from FEA
based on nodal basis functions have been applied in an IGA context. But studies on
explicit dynamics with shell IGA and standard mass lumping have reported sub-optimal
results. For example, Hartmann and Benson report in [116] that “increasing the degree
on a fixed mesh size increases the cost without a commensurate increase in accuracy”,
which they call a “disappointing result.”
To put this statement in perspective and illustrate the negative impact of mass lumping

on a higher-order Galerkin method, we consider the classical result obtained from the
generalized eigenvalue problem of a bar, discretized with cubic Lagrange polynomials
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(a) With consistent mass matrix. (b) With mass lumping (row-sum).

IGA FEA with equally spaced nodes

FEA with nodes at the Gauss-Lobatto points IGA with approximate dual basis

Figure 5.1: Normalized discrete spectrum of eigenfrequencies obtained from a generalized eigenvalue
problem for a bar, computed with FEA and IGA, both with 1,000 cubic basis functions. We
note that in (a), the orange line and the green line overlap with the blue line and the red
line, respectively.

(FEA) and cubic smooth splines (IGA) [43], [51]. The numerically obtained frequencies,
ωh
n, are normalized with respect to the exact solution, ω, and plotted versus the mode

number, n, normalized by the total number of degrees of freedom, N . Figure 5.1a
shows that for FEA, the spectrum (curve plotted in red) with consistent mass matrix
contains so-called “optical” branches, separated by distinct jumps, which compromise the
accuracy of the high frequency range. In contrast, we observe that for IGA (curve plotted
in blue) with consistent mass matrix, the accurate “acoustic branch” of the spectrum
covers the entire frequency range. We note that we removed the outliers at the end of
the spectrum [122]. We now apply standard row-sum lumping to the mass matrix in
both schemes. Figure 5.1b shows that for FEA with equally spaced nodes, the spectrum
exhibits a loss of accuracy in the first optical branch. When we apply FEA with nodes
at the Gauss-Lobatto points and Gauss-Lobatto quadrature [96], we naturally arrive
at a lumped mass matrix, whose spectrum is more accurate in the medium frequency
range. With standard row-sum lumping of the mass matrix, the results for IGA exhibit
a significant decrease in spectral accuracy across the entire frequency range. The results
shown in Fig. 5.1b thus indicate that one reason for the decrease in accuracy lies in
the detrimental impact of row-sum lumping when employed in a standard IGA context,
outlined already in the first contribution on IGA for structural dynamics [43].

5.1.3 Mass lumping based on approximate dual spline functions

The removal of this gap requires the development of novel spline-centered technology that
leverages the additional opportunities provided by this class of basis functions. A first
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attempt was presented in [100], based on the idea of using dual spline functions. This set
of spline functions is defined “dual” to a set of standard B-splines, such that the inner
product of the two integrated over a domain yields a diagonal matrix (bi-orthogonality).
Hence, if a dual basis is used as the test space in a finite element formulation, we
naturally end up with a consistent diagonal mass matrix [100]. In CAD research, the
bi-orthogonality property has been well known for decades, and several approaches for
the construction of the underlying dual basis exist, see e.g. [2]. In the computational
mechanics community, this property has been used for different purposes, e.g. for dual
mortar methods [105], [107] or for unlocking of Reissner-Mindlin shell formulations [82].
Dual spline basis functions still suffer from shortcomings when applied as test functions

in the variational formulation of elastodynamics as envisioned in [100], to the extent
that their use in explicit dynamics seems not straightforward: Firstly, bi-orthogonality
in general holds only on the parametric domain, but is in general lost under non-affine
geometric mappings. Secondly, dual spline functions with the same smoothness as their
B-spline counterparts have global support on each patch, thus producing fully populated
stiffness forms. Their support can be reduced, but at the price of losing continuity,
leading to discontinuous functions in the fully localized case. Both are prohibitive in
a finite element context. And thirdly, dual basis functions are not interpolatory at
the boundaries. Therefore, the identification of a kinematically admissible set of test
functions that allows the variationally consistent strong imposition of Dirichlet boundary
conditions is not straightforward.
In this paper, we present an isogeometric Petrov-Galerkin method that combines the

dual basis concept and standard row-sum lumping and achieves higher-order accuracy in
explicit dynamics irrespective of the polynomial degree of the spline approximation. Its
key ingredients are a class of “approximate” dual spline functions that was introduced in
[131]. It only approximately satisfies the discrete bi-orthogonality property, but preserves
all other properties of the original B-spline basis, such as Cp−1 smoothness, polynomial
reproduction and local support. We employ the approximate dual functions to discretize
the test function space in the variational formulation of elastodynamics. This leads to a
semidiscrete Petrov-Galerkin formulation that can be written in the format (5.1), whose
consistent mass matrix M is not diagonal, but is, in some sense, “close” to the identity
matrix. Specifically, its row-sum lumped mass preserved all polynomials up to degree
p when used in a Galerkin projection. Consequently, the row-sum lumped mass matrix
may be used in explicit dynamics without compromising higher-order spatial accuracy.
In Fig. 5.1b, we anticipate the result of our isogeometric Petrov-Galerkin formulation
with approximate dual basis functions and row-sum lumping for the classical example
of the one-dimensional bar. We observe that the spectrum of our method maintains
accuracy in the low and medium range of modes, which is a significant improvement
over the standard IGA Galerkin formulation with mass lumping. We note that when the
mass matrix is evaluated consistently without lumping, the two methods yield exactly
the same spectrum shown in Fig. 5.1a.
We note that a similar approach is presented in [210]. It consists of a minimally

invasive technique, based on approximate dual test functions, which can be applied in
the sense of preconditioner by a simple matrix pre-multiplication. They show high-order
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convergent results and a straightforward application of Dirichlet boundary conditions by
manipulating this transformation matrix. An additional row-summing step is required
to convert the banded into a diagonal mass matrix.
The structure of our paper is as follows: In Section 5.2, we briefly review the definition

and construction of approximate dual functions of B-splines. In addition, we present an
iterative scheme for improving the approximate dual basis towards exactly satisfying
bi-orthogonality. In Section 5.3, we derive our isogeometric Petrov-Galerkin formulation
with mass lumping for higher-order accurate explicit dynamics. In Section 5.4, we present
numerical examples of beam and plate problems, demonstrating that our Petrov-Galerkin
scheme indeed preserves higher-order accuracy in explicit dynamics calculations. In
Section 5.5, we provide a critical discussion of the potential significance of our results,
highlight by means of a more involved shell benchmark that extending the demonstrated
benefits to practical problems might not be immediate, and motivate potential future
research directions.

5.2 Approximate dual spline basis

In this section, we briefly review the construction and the relevant properties of the
approximate dual functions for univariate B-splines introduced in [131]. We also present
an iterative algorithm to improve an approximate dual basis in terms of satisfying the bi-
orthogonality constraint. We start this section with a brief recap of univariate B-splines
and their dual bases.

5.2.1 B-spline basis functions

A B-spline function is a piecewise polynomial that is characterized by the polynomial
degree, a given series of segments that we call Bézier elements, and the regularity at the
interfaces of the Bézier elements. Let Pp denote the space of piecewise polynomials of
degree p ≥ 0 and consider a partitioning of an interval Ω̂ = [a, b] ⊂ R into an increasing
sequence of breakpoints that define Bézier elements:

a = t0 < . . . < tk−1 < tk < . . . < tm = b . (5.2)

Let S denote the space of Cp−1 smooth splines that is:

S ∶= { s ∶ [a, b] ↦ R ∶ s∣tk−1, tk ∈ Pp , s is Cp−1 smooth at x̂ = t1 . . . tm−1 } . (5.3)

Consider B-spline functions Bi, i = 1, . . . ,N , of degree p with Cp−1-continuity defined
on an open knot vector, Ξ ∶= {x̂1, . . . , x̂N+p+1}, which is the partition (5.2) with p + 1
multiplicity of the first and last breakpoints and non-repeated internal knots. Such B-
splines have interpolating end-conditions, reproduce polynomials in Pp, and form a basis
for S. B-splines can for instance be defined recursively by using the Cox-de Boor formula
[1]. They can be extended to multiple dimensions by constructing tensor products of
univariate B-splines.
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Remark 5.2.1. In the current paper, we use B-spline functions with maximum smooth-
ness of Cp−1. But dual basis functions, approximate dual basis functions and hence
the explicit dynamics technology to be presented do not require maximum smoothness,
but can also operate with B-splines of any continuity. In particular, the extension to
(tensor-product) multi-patch discretizations seems straightforward.

5.2.2 Dual basis functions

We consider the spline space S in (5.3) that is spanned by Cp−1-smooth B-splines of
degree p, Bi, i = 1, . . . , N , defined on an open knot vector Ξ. Let Ω̂ ⊂ R denote the
parametric domain with local coordinates represented in Ξ, i.e. the breakpoints in (5.2).
Given an inner product (⋅, ⋅)Ω̂ ∶ S × S ↦ R in Ω̂. The functions B̄i, i = 1, . . . , N , that
satisfy the bi-orthogonality constraint:

(B̄i, Bj)Ω̂ = δij , (5.4)

where δij is the Kronecker delta, form the dual basis of S, corresponding to the B-splines
Bi.

Let b = [B1 . . . BN ]T and b̄ = [ B̄1 . . . B̄N ]T denote the function vector of the B-
spline basis Bi and its associated dual functions B̄i, respectively. The bi-orthogonality
constraint (5.4) can then be expressed in matrix form:

(b̄ b)
Ω̂
= I , (5.5)

where I is the identity matrix. We recall the Gramian matrix G of the B-spline basis:

G = (bb)Ω̂ . (5.6)

Equation (5.5) is now reformulated as:

(b̄ b)
Ω̂
= I =G−1G =G−1 (bb)Ω̂ (5.7)

The dual functions B̄i, i = 1, . . . , N can then be formulated via the inverse of the
Gramian matrix:

b̄ = G−1 b . (5.8)

These dual functions are linear combinations of the corresponding B-splines, thus span
the same spline space S, and also reproduce polynomials in Pp. The duals (5.8) computed
with the global Gramian matrix have global support and generally do not preserve
the partition of unity and non-negativity properties of the associated B-splines. For
illustration purposes, we plot quadratic C1-continuous B-splines and their global dual
functions (5.8) in Figs. 5.2a and b, respectively. For other possibilities to compute the
global dual basis of spline spaces, we refer to [102], [211] and the references therein.
Alternatively, one can construct dual functions with the same minimal support as

the corresponding B-splines [100], [104], [106], [107]. One approach is to compute the
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(a) C1-continuous B-spline function. (b) Associated C1-continuous dual function, but
with global support.

(c) Associated dual function with minimal support,
but discontinuous.

Figure 5.2: Dual functions for a quadratic C1-continuous B-spline function.

dual function of the Bernstein polynomials, using the inverse of the Gramian matrix
for a Bézier element, and then to apply the Bézier extraction operator to obtain the
dual of the B-spline basis [104], [107]. For illustration purposes, we plot a quadratic
C1-continuous B-spline function in Fig. 5.2a. We observe that while the global dual
(5.8) is Cp−1-continuous, the dual basis with minimal support is discontinuous at the
internal knots.

5.2.3 Approximate dual functions

In this paper, we consider approximate dual functions of B-splines originally introduced
in [131]. Let B̂i, i = 1, . . . , N , denote the approximate dual functions of Cp−1-continuous

B-splines of degree p in the space S ⊂ Pp, and let b̂ = [ B̂1 . . . B̂N ]T be their function

vector. The approximate dual functions B̂i can again be constructed as linear combina-
tions of the corresponding B-splines:

b̂ = Ĝ−1 b , (5.9)

and thus span the same space S and reproduce polynomials in Pp.
The approximate dual basis satisfies the bi-orthogonality constraint (5.5) “approxi-

mately”, in the sense that the matrix Ĝ−1 is an approximate inverse of the Gramian
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matrix:

Ĝ−1 ≈G−1 . (5.10)

We note that the notation Ĝ−1 is to imply that it is an approximate inverse. The
approximate dual basis preserves important properties of the underlying B-spline basis,
such as Cp−1 regularity and local support. The construction of Ĝ−1 does not require any
matrix inversion, see [131] or the worked-out example in Appendix 5.A. It is a recursive
computation, based on fundamental properties of B-splines such as the nestedness of
spaces under knot insertion. For a 1D patch of splines, the approximate inverse matrix
Ĝ−1 is symmetric and positive definite with a bandwidth of at most p + 1 [131].

(a) C1-continuous B-spline basis. (b) Approximate dual basis.

Figure 5.3: Approximate dual functions for a quadratic C1-continuous B-spline basis.

For illustration purposes, we plot the approximate dual functions (5.9) next to the
corresponding quadratic C1-continuous B-spline basis. We observe that the approximate
dual functions preserve the Cp−1-continuity of the B-spline functions and have local
support. Their support, however, is larger than that of the corresponding spline functions
due to the band structure of Ĝ−1.

Remark 5.2.2. We note that in general, the approximate dual basis does not preserve
the partition of unity and non-negativity properties of B-splines. Partition of unity,
however, could be restored by scaling the approximate dual with the inverse of its function
value sum.

In this paper, we consider tensor-product extensions to multivariate dual B-spline
functions. To this end, we use the same spline space S in every coordinate direction such
that the multivariate spaces in the two-dimensional case is S ⊗ S. In the parametric
domain, the tensor-product structure leads to matrices with Kronecker structure due to
affine mapping. We note that the approximate dual functions can also be extended to
non-uniform rational B-splines (NURBS) as shown in [103].
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5.2.4 An iterative approach for improving bi-orthogonality

We outline a method to iteratively improve the accuracy of the approximation (5.10)
based on the predictor-multicorrector scheme introduced in [87]. We consider the linear
system of equations:

Gu = c , (5.11)

where u and c denote the vector of unknowns and a known right-hand side vector,
respectively. Replacing the Gramian matrix G by an approximation Ĝ with a simpler
band structure leads to:

Ĝu = c , (5.12)

which can be iteratively solved to obtain a more accurate solution as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0) = 0 ,
for i = 0, . . . , r

Ĝ∆u(i) = c −Gu(i)

u(i+1) = u(i) +∆u(i)

end.

(5.13)

Here, r denotes the number of iterations, which corresponds to the number of corrector
passes, r ≥ 0. This iterative scheme is based on the recurrence relation1:

Ĝu(i+1) = c −AĜu(i) , (5.14)

where A =GĜ−1 − I. Combining (5.13) and (5.14) results in:

Ĝu(r) = c −AĜu(r)

= c −A (c −AĜu(r−1) ) = c −Ac + AA±
A2

Ĝu(r−1)

= . . . = ( r∑
i=0
(−1)iAi ) c . (5.15)

Here, Ai denotes the matrix A of power i, i = 0, . . . , r. The matrix Ĝ in the initial
equation (5.12) can be then replaced by Ĝr:

Ĝr = Ĝr(r) ∶= ( r∑
i=0
(−1)iAi)−1 Ĝ , (5.16)

1This relation appears in each loop of (5.13) when computing: Ĝu(i+1) = Ĝ (u(i) +∆u(i)) = Ĝu(i) +
c −Gu(i) = c − [GĜ−1 − I] Ĝu(i) = c −AĜu(i).
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to obtain a more accurate solution for u. Hence, Ĝr is an improved approximation of
the Gramian matrix G.

5 15 25

5

15

25

(a) r = 0, bandwidth = 2

5 15 25

5

15

25

(b) r = 1, bandwidth = 6

5 15 25

5

15

25

(c) r = 2, bandwidth = 10

5 15 25

5

15

25

(d) r = 3, bandwidth = 14

Figure 5.4: Structure of the approximate inverse Ĝ−1r for increasing r, computed with (5.17), correspond-
ing to the approximate dual basis of quadratic C1-continuous B-splines in 1D on 25 Bézier
elements.

p
r = 0 r = 1 r = 2

Bandwidth[−] Support
[elements]

Bandwidth[−] Support
[elements]

Bandwidth[−] Support
[elements]

2 2 7 6 11 10 15
3 3 10 9 16 15 22
4 4 13 12 21 20 29
5 5 16 15 26 25 36

p p 3p + 1 3p 5p + 1 p (2 r + 1) 2p r + 3p +
1

Table 5.1: Bandwidth of Ĝ−1r and the support length of the approximate dual with different degrees p
and numbers of iterations r.
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We are interested in the approximate inverse Ĝ−1r :

Ĝ−1r = Ĝ−1r (r) ∶= Ĝ−1 ( r∑
i=0
(−1)iAi) . (5.17)

We note that for r = 0, Ĝ−1r = Ĝ−1, i.e. no iteration is performed. On the one hand,
increasing the number of iterations r increases the accuracy of the approximation Ĝ−1r ≈
G−1. On the other hand, it increases the bandwidth of the iteratively improved approx-
imate inverse Ĝ−1r , as illustrated in Fig. 5.4 for 1D quadratic B-splines, and hence also
increasing the support of the corresponding approximate dual functions. We report the
bandwidth of Ĝ−1r and the maximum support of the improved approximate dual func-
tions in terms of the Bézier elements as a function of p and r in Table 5.1. We emphasize
that the computation of Ĝ−1r does not require any matrix inversion and its notation is
to imply that Ĝ−1r is an approximate inverse of the Gramian matrix.

5.3 A Petrov-Galerkin formulation with higher-order accurate
mass lumping

In this section, we motivate and describe an isogeometric Petrov-Galerkin scheme that
employs standard B-splines as trial functions and the corresponding approximate dual
functions as test functions. Due to the approximate bi-orthogonality of the two function
spaces, it enables higher-order mass lumping via the standard row-sum technique. We
discuss several further relevant aspects, such as maintaining bi-orthogonality on mapped
domains, strong enforcement of boundary conditions, and computational cost in explicit
dynamics.

5.3.1 Model problem: Kirchhoff plate

We consider the vibration of an undamped Kirchhoff plate given by the following fourth-
order partial differential equation:

ρd ü(x, t) + E d3

12 (1 − ν2) ∆2u(x, t) = f(x, t) , x ∈ Ω , t ∈ [0, T ] , (5.18)

with mass density ρ, plate thickness d, Young’s modulus E, and Poisson’s ratio ν. The
spatial and time domains are given by Ω and T . To set up a well-defined initial bound-
ary value problem, equation (5.18) needs to be complemented by suitable initial and
boundary conditions. For ease of notation, we consider the case of a simply supported
plate here. We thus have the following initial conditions at time t = 0:

u(x,0) = u0(x) , u̇(x,0) = v0(x) , (5.19)

and the following boundary conditions:

u(x, t) = 0 , ∇u(x, t) ⋅ n = 0 on Γ , (5.20)
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where n is the outward unit normal to the boundary Γ.
Multiplying (5.18) by suitable test functions w, integrating over Ω, performing inte-

gration by parts twice, and substituting the boundary conditions (5.20) results in the
following weak form: Find u ∈ S such that ∀w ∈ S̃:

ρd ∫
Ω
üw dΩ + E d3

12 (1 − ν2) ∫Ω ∆u∆w dΩ = ∫
Ω
f w dΩ . (5.21)

We assume the spaces S and S̃ are sufficiently regular such that the Laplace operator ∆
can be applied. In addition, we assume that all material and geometric parameters are
constants.

Remark 5.3.1. In the following sections, we will also present computational results for
a straight Euler-Bernoulli beam and a Kirchhoff-Love shell. Based on the exposition
for the Kirchhoff plate, we believe it is straightforward to extend our Petrov-Galerkin
formulation to the one-dimensional beam and the three-dimensional shell. In the interest
of conciseness of the exposition, we therefore do not repeat the derivation for these two
models.

5.3.2 Spatial discretization on geometrically mapped domains

The approximate dual basis is constructed such that the bi-orthogonality constraint
is approximately satisfied in the parametric domain, see (5.9). The basis functions,
however, need to be mapped from the parametric domain to the physical domain, and
this mapping will not be affine in the general case. Discretizing the solution u and the
test function w in (5.21) with standard B-splines and the original approximate dual
functions (5.9), respectively, does not preserve the approximate bi-orthogonality in the
physical domain.

To preserve the approximate bi-orthogonality in the physical domain, we discretize u
with standard B-splines of degree p, Bi(x), i = 1, . . . , N , and w with modified approxi-
mate dual functions that are divided by the determinant of the Jacobian matrix of the
mapping:

B̃i(x̂) ∶= B̂i(x̂)
C(x̂) , i = 1, . . . , N . (5.22)

Here, the function C(x̂) denotes the determinant of the Jacobian matrix. It corresponds
to a geometry map Φ ∶ Ω̂ → Ω that maps a point x̂ from the parametric domain Ω̂ to a
point x in the physical domain Ω. We assume that Φ is sufficiently smooth and invertible
such that the Jacobian matrix and its inverse are well-defined.
The modified functions defined in (5.22) constitute the approximate dual basis of the

standard B-spline basis in the physical domain Ω, where it approximately satisfies the
bi-orthogonality constraint (5.5) in the same sense as the original approximate dual basis
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(5.9) in the parametric domain Ω̂:

(B̃i, Bj)Ω = ∫Ω B̃i(x̂)Bj(x̂)dΩ = ∫
Ω̂

B̂i(x̂)
C(x̂) Bj(x̂)C(x̂)d Ω̂

= ∫
Ω̂
B̂i(x̂)Bj(x̂)d Ω̂ = (B̂i, Bj)Ω̂ . (5.23)

The modified functions B̃i are linearly independent due to the linear independence of
the approximate dual functions B̂i and preserve their local support. Their regularity,
however, depends on the smoothness of the Jacobian C(x̂).
We are now in a position to discretize the weak form (5.18). To this end, we first write

the discretized displacement solution uh and the discretized test function wh as:

uh(x, t) = [B1(x) . . . BN(x)] ûh(t) ,
wh(x) = [B̃1(x) . . . B̃N(x)] ŵh ,

where ûh(t) and ŵh are the unknown time-dependent displacement coefficients and the
coefficients of the discrete test function, respectively. The discrete trial space Sh and
the discrete test space S̃h are then:

Sh ∶= span (Bi(x̂))i∈[1,N] , S̃h ∶= span (B̃i(x̂))i∈[1,N] = span(B̂i(x̂)
C(x̂) )i∈[1,N] .

(5.25)

The resulting semidiscrete formulation of (5.21) is: Find uh ∈ Sh ⊂ S such that ∀wh ∈S̃h ⊂ S̃:
ρd ∫

Ω
ühwh dΩ + E d3

12 (1 − ν2) ∫Ω ∆uh∆wh dΩ = ∫
Ω
f wh dΩ . (5.26)

Figure 5.5 shows a one-dimensional example: Sh contains a standard quadratic B-
spline patch, and S̃h contains the corresponding modified approximate dual functions.
For illustration purposes, we assume a geometric map based on a quarter circle with unit
radius represented by NURBS. We also plot the corresponding non-constant function of
the Jacobian determinant.

Remark 5.3.2. In general, due to the Jacobian determinant C(x̂) in the denominator,
the approximate dual functions (5.22) span a different space as the corresponding B-
splines. Therefore, Sh and S̃h represent two different spaces. Hence, the semidiscrete
formulation (5.26) is in general a Petrov-Galerkin formulation. Only in the special case
of a constant Jacobian determinant, the modified approximate dual function functions
(5.22) span the same space as the original approximate dual functions (5.9), since they
are only scaled by a constant factor, and thus (5.26) falls back to a Galerkin formulation.

Remark 5.3.3. The differential operators in (5.26) require the following derivatives of
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(a) Sh ∶= span (Bi(x̂))i∈[1,7] (b) S̃h ∶= span( B̂i(x̂)
C(x̂)

)
i∈[1,7]

(c) Jacobian determinant function for a quarter circle.

Figure 5.5: Petrov-Galerkin discretization in space: discrete trial space Sh of standard B-splines and
discrete test space S̃h of modified approximate dual functions for a 1D patch of quadratic
B-splines and a non-constant Jacobian determinant.

the modified approximate dual functions (5.22):

B̃i,α = (B̂i

C
)
,α

= 1

C
B̂i,α − 1

C2
B̂iC,α , (5.27a)

B̃i,αβ = (B̂i

C
)
,αβ

= 1

C
B̂i,αβ − 1

C2
B̂i,αC,β − 1

C2
B̂i,β C,α − 1

C3
B̂i (C,αβ C − 2C,αC,β) .

(5.27b)

For the plate model considered here, the indices α and β take values 1,2 and the notation(⋅),α denotes the derivative with respect to the αth Cartesian coordinate.
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5.3.3 Higher-order accurate mass lumping scheme

In the following, we again use of the following vector notation: b̃ = [ B̃1 . . . B̃N ]T is

the vector of modified approximate dual functions, and b̂ and b the corresponding vec-
tors of approximate dual functions and B-splines, respectively. Moving towards explicit
dynamics, we now rethink the semidiscrete variational formulation (5.5) in the format
(3.9a), bringing its second term on the right-hand side. Focusing on the left-hand side,
we find the following (consistent) mass matrix M:

M = ρd ∫
Ω
b̃ bT dΩ = ρd ∫

Ω̂

b̂

C(x̂) bT C(x̂)d Ω̂ = ρd ∫
Ω̂
b̂ bT d Ω̂ . (5.28)

integrated over the physical domain Ω and the parametric domain Ω̂. Employing (5.9)
leads to:

M = ρd Ĝ−1 ∫
Ω̂
bbT d Ω̂ = ρd Ĝ−1G = ρd Î , (5.29)

and hence to the following semidiscrete form of our model problem:

ρd Î ün = Fn
ext − ∫

Ω
B(xn)T σn dΩ , (5.30)

where the mass matrix, due to (5.5), corresponds to an approximation of the identity
matrix, Î ≈ I, scaled by a scalar that corresponds for our model problem to the density
ρ times the thickness d of the plate. The approximation Î, however, is not diagonal, and
hence precludes efficient explicit dynamics, when e.g. a central difference scheme in time
is applied to (5.30).
Our central idea to enable efficient higher-order accurate explicit dynamics based on

(5.30) is simple: we apply standard row-sum mass lumping to diagonalize the approx-
imate identity matrix Î. It is straightforward to show that this leads in fact to the
identity matrix I.

Theorem: The application of row-sum lumping to the matrix (B̂i, Bj)Ω̂ yields the
identity matrix.

Proof : Let P ∈ Pp be a polynomial of degree p in the parametric domain Ω̂, and
consider the spline basis Bi, i = 1, . . . , N and its approximate dual basis B̂i. There
exists a set of coefficients ui such that:

(B̂i, Bj)Ω̂ uj = (B̂i, P )Ω̂ . (5.31)

The spline basis Bi reproduces polynomials P ∈ Pp, i.e. ∑N
j=1 Bj uj = P . If f = 1, uj = 1

due to the partition of unity ∑N
j=1 Bj(x̂) = 1. We thus obtain:

(B̂i, Bj)Ω̂ 1 = (B̂i, 1)Ω̂ = 1 . (5.32)
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Our hypothesis is that the effect of row-sum lumping does not preclude higher-order
accuracy, as Î is already close to the true identity matrix, which is of course diagonal.
We will show by way of numerical examples that this is indeed the case.

5.3.4 Computational cost

The computational cost in explicit dynamics primarily depends on the critical time step
size, the number of quadrature points, and the evaluation of the internal force vector per
quadrature point. We expect that the first two aspects do not differ significantly between
the isogeometric Galerkin method and our isogeometric Petrov-Galerkin method. In this
context, we refer to outlier removal techniques to prevent prohibitively small critical time
steps [121], [122], [183] and to advanced quadrature schemes for spline discretizations
that significantly reduce the number of quadrature points with respect to standard Gauss
quadrature per Bézier element [133], [171], [212].
The cost of the evaluation of the internal force vector requires a more detailed analysis.

Just as standard B-splines (or NURBS), the modified approximate dual basis functions
can be cast into a Bézier or Lagrange extraction format per element [213], [214], whose
derivation from relation (5.10) and the appoximate inverse of the Gramian matrix is
straightforward. The extraction operators can be computed in an offline step, such that
they do not contribute to the online cost of explicit dynamics calculations. In a Petrov-
Galerkin sense, bilinear stiffness forms are not symmetric, as we are using different test
and trial functions on the right-hand side. In explicit dynamics, this is not an issue per se,
as the stiffness matrix is never assembled, stored, or inverted. The central difference to
the standard Galerkin scheme, however, is that the support of the modified approximate
dual functions is larger than the one of the standard B-splines (or NURBS). According
to Table 5.1, the support of an approximate dual function is up to 3p+1 Bézier elements
in each parametric direction, as compared to p + 1 for the corresponding B-spline. For

B̂1

B̂2

B̂3 B̂4 B̂5

B̂6

(a) Patch of approximate dual functions.

B̂1 = B1

B̂2 = B2

B̂3 = B3

B̂4 B̂5

B̂6

(b) Boundary functions replaced by B-splines.

Figure 5.6: Replacing approximate dual functions with support at a boundary with interpolatory B-
splines, illustrated here for one end of a quadratic B-spline patch, recovers the ability to
strongly impose Dirichlet constraints.
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(a) Consistent mass matrix. (b) (Partially) Lumped mass matrix.
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(c) Inverse of the (partially) lumped mass matrix.

Figure 5.7: Population of the consistent mass matrix, (partially) lumped mass matrix and its inverse for
our Petrov-Galerkin scheme for an Euler-Bernoulli beam problem, discretized by quadratic
splines on 25 Bézier elements.

two-dimensional elements, such as plates or shells, due to the increased support of the
basis functions of the discrete test space, the internal force vector has eight to nine
times as many entries, and we have to expect approximately eight to nine times as many
basis function related operations to compute it. In practical scenarios, computationally
costly routines to take into account nonlinear material behavior, such as radial return
algorithms in plasticity, do not depend on the cost or number of the basis functions of
the discrete test space, and hence the net increase in computational cost per quadrature
point will be much lower. It remains to be seen how our Petrov-Galerkin scheme can be
implemented in a competitive fashion and how much this disadvantage in computational
cost then really matters in comparison with its advantage in accuracy.

5.3.5 Imposition of Dirichlet boundary conditions

In general, the approximate dual basis (5.22) does not preserve the interpolatory ends of
the underlying B-spline basis. To enable the strong imposition of Dirichlet boundary con-
ditions, we recover the interpolatory ends by simply replacing the original approximate
dual functions with support at the Dirichlet boundary by the corresponding interpola-
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tory B-splines. Figure 5.6 illustrates this simple idea for one end of a quadratic B-spline
patch.
Figure 5.7 illustrates the structure of the resulting mass matrix M for an Euler-

Bernoulli beam model computed with our Petrov-Galerkin scheme, where we use a 1D
patch of quadratic basis functions and their corresponding approximate dual functions.
Figure 5.7a shows the consistent mass matrix that approximates a diagonal matrix, but
still exhibits the full bandwidth of non-zero entries according to Table 1. Figure 5.7b
shows the non-zero entries ofM after row-sum lumping. We note that for now, we employ
the row-sum technique only in those rows that associate to approximate dual functions
B̂j in order not to jeopardize full accuracy of the Petrov-Galerkin scheme. In turn, a
few rows that associate to interpolatory B-spline functions with support on the Dirichlet
boundary remain “unlumped”, as illustrated in Fig. 5.7b for our 1D example. Hence, we
only require the inversion of small blocks, which limits requirements on computational
and memory resources. The block structure of the inverse mass matrix is illustrated in
Fig. 5.7c.

Remark 5.3.4. If one wants to keep the modified approximate dual functions at the
boundary to maintain a fully diagonal mass matrix without the need for any inversion
operations or associated memory storage, one can resort to imposing Dirichlet boundary
conditions weakly, for instance via the penalty method [40], [208] or Nitsche’s method
[215]–[217].

5.4 Numerical examples

In this section, we demonstrate the favorable numerical behavior of our Petrov-Galerkin
scheme. We will consider both explicit dynamics calculations and spectral analysis re-
sults, obtained for B-spline discretizations of degrees p = 2 through p = 5. In particular,
we will compare the performance of our Petrov-Galerkin scheme with the standard iso-
geometric Galerkin method based on a consistent or row-sum lumped mass matrix.

z

x

y

0.01 m

2.00 m

0.20 m

ρ = 7.84 ⋅ 103 kg/m3

E = 2 ⋅ 1011N/m2

ν = 0.0

simply
supported

simply supported

(a) Beam-like plate model (b) Displacement snapshots

Figure 5.8: Set-up of the simply supported beam benchmark.

112



10−2 10−1

10−12

10−10

10−8

10−6

10−4

10−2

element size h

Re
la

tiv
e
L
2

er
ro

r

10−2 10−1

10−12

10−10

10−8

10−6

10−4

10−2

element size h

Re
la

tiv
e
L
2

er
ro

r

⨉ Galerkin method, consistent mass ∆ Galerkin method, row-sum lumped mass

Petrov-Galerkin method, row-sum lumped mass

p = 2 p = 3 p = 4 p = 5

Figure 5.9: Beam-like plate: convergence of the relative L2 error in the displacement solution at t = 1.5
s.

5.4.1 Simply supported beam

Our first example is the explicit dynamics calculation of a freely vibrating simply sup-
ported steel beam, which is modeled as a stretched Kirchhoff plate as illustrated in
Fig. 5.8a. We assume the following analytical solution:

u(x, y, t) = sin(π x

Lx
) cos⎛⎝( π

Lx
)2 √EI

ρA
t
⎞⎠ , (5.33)

where Lx, I and A are the longitudinal length, the moment of inertia, and the cross
section area, respectively. From (5.33), we can also derive the initial and boundary con-
ditions. We perform uniform mesh refinement in x-direction with 8, 16, 32, 64 Bézier el-
ements, while we use one Bézier element in y-direction. We apply the central difference
method [66] for explicit time integration, simulating the first 1.5 s of the vibration his-
tory. To guarantee that the time integration error is very small, we choose the following
order-dependent time step size: ∆ t = (p / (2nele))p [122], [183]. Figure 5.8b illustrates
the solution for quadratic splines and 16 Bézier elements at three different snapshots in
time.
Figure 5.9 illustrates the convergence behavior of the relative L2 error for the standard

Galerkin method with consistent mass matrix (crosses), the standard Galerkin method
with row-sum lumped mass matrix (triangles), and our Petrov-Galerkin method with
lumped mass matrix (circles). On the one hand, we observe that our approach achieves
the same optimal accuracy under mesh refinement as the Galerkin method with con-
sistent mass matrix. Thus, the accuracy of our Petrov-Galerkin method based on test
functions discretized by approximate dual functions is not affected by row-sum lumping.
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On the other hand, we observe that the accuracy of the Galerkin method is significantly
affected by row-sum lumping, limiting convergence to a maximum of second order irre-
spective of the polynomial degree of the spline basis.

u = 0

r = b
r = a

θ

z

y

x

thicknessu,θ = 0

u,θ = 0

(a) Coarsest Bézier mesh with boundary conditions.

z

y

x

(b) Initial displacement field u(r, θ,0).

Figure 5.10: Set-up of the annular plate benchmark.
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Petrov-Galerkin method, row-sum lumped mass

p = 2 p = 3 p = 4 p = 5

Figure 5.11: Annular plate: convergence of the relative L2 error in the displacement solution at t = 0.6
s.

5.4.2 Annular plate

We now consider a quarter of a freely vibrating annular steel plate. Its set-up is illus-
trated in Fig. 5.10a, with thickness d = 0.01 m, Young’s modulus E = 2 ⋅ 1011N/m2,
Poisson’s ratio ν = 0.0, and mass density ρ = 7.84 ⋅ 103 kg/m3. It is simply supported
along both the inner radius r = a and the outer radius r = b. We construct the following
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analytical solution in polar coordinates (r, θ):

u(r, θ, t) = J4(r) cos(4 θ) cos⎛⎜⎝
¿ÁÁÀ E d3

12 (1 − ν2) ρd t
⎞⎟⎠ , (5.34)

where J4(r) denotes the 4th Bessel function of the first kind. We choose the second
and fourth positive zeros of J4(r) as the inner and outer radii of the annulus, i.e.,
a = λ2 ≈ 11.065 and b = λ4 ≈ 17.616. The analytical solution (5.34) at time t = 0,
plotted in Fig. 5.10b, represents the initial displacement field. We perform uniform
mesh refinement in both radial and angular directions, using 8, 16, 32, and 64 Bézier
elements. We again apply the central difference method for time integration with the
same time step estimate as above.
We focus on the accuracy in space at time t = 0.6 s. Figure 5.11 shows the convergence

behavior of the relative L2 error for the standard Galerkin method with consistent mass
matrix (crosses), the standard Galerkin method with row-sum lumped mass matrix
(triangles), and our Petrov-Galerkin method with lumped mass matrix (circles). The
results again confirm that our approach achieves the same optimal accuracy under mesh
refinement as the Galerkin method with consistent mass matrix, whereas the accuracy of
the Galerkin method is significantly affected by row-sum lumping, limiting convergence
to second order irrespective of the polynomial degree of the spline basis.

5.4.3 Spectral analysis

We now use the tool of spectral analysis to elucidate the impact of lumping on the three
different schemes. To this end, we recall the discrete eigenvalue problem corresponding
to the semidiscrete formulation (5.26), expressed in matrix form:

KUh
n = λh

nMUh
n , (5.35)

where Uh
n denotes the vector of unknown coefficients corresponding to the nth discrete

eigenmode Uh
n , and λh

n is the nth discrete eigenvalue. For further details on spectral
analysis and eigenvalue analysis in this context, we refer for instance to our previous
papers on the topic [122], [135], [183] and the references therein.

Petrov-Galerkin vs. standard Galerkin formulations

We first consider the free transverse vibration of an unconstrained straight Euler-Bernoulli
beam with the following parameters (steel, rectangular cross section): length 1.0 m,
width 0.1 m, thickness 0.01 m, Young’s modulus E = 2 ⋅ 1011N/m2, and mass density
ρ = 7.84 ⋅ 103 kg/m3. We can obtain the exact solution in terms of eigenvalues and mode
shapes from the continuous problem, given for instance in [174].
We solve the discrete eigenvalue problem (5.35) by discretizing the beam with 500

Bézier elements. We then employ our Petrov-Galerkin formulation discussed above, using
B-splines and the corresponding approximate dual functions, and the standard Galerkin

115



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

n/N

λ
h
/λ

(a) p = 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

n/N

λ
h
/λ

(b) p = 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

n/N

λ
h
/λ

(c) p = 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

n/N

λ
h
/λ

(d) p = 5

Galerkin, consistent mass Galerkin, row-sum lumped mass

Petrov-Galerkin, consistent mass Petrov-Galerkin, higher-order accurate lumped mass

Figure 5.12: Normalized eigenvalues of a freely vibrating beam, computed on 500 Bézier elements.

formulation, using only B-splines, all for degrees p = 2 through 5. We then do the
analysis of each formulation once with a consistent mass matrix and once with a lumped
mass matrix based on the row-sum technique. Figure 5.12 plots the eigenvalues of the
discrete problem in ascending order, normalized with respect to the corresponding exact
eigenvalues of the continuous problem versus the normalized mode number. Figure 5.13
plots the relative L2 error in the corresponding mode shapes, versus the normalized
mode number.

We observe in all plots that the eigenvalues and mode shape errors obtained with the
Petrov-Galerkin and Galerkin methods and a consistent mass matrix are identical. The
reason behind this observation is that in the current example, due to the constant deter-
minant of the Jacobian matrix, the modified approximate dual functions span the same
space as the B-splines, and hence both methods need to produce the same results, when
the variational formulations are evaluated and solved consistently. We now focus on the
results obtain with mass lumping. In Fig. 5.12, we observe that our Petrov-Galerkin ap-
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(d) p = 5

Galerkin, consistent mass Galerkin, row-sum lumped mass

Petrov-Galerkin, consistent mass Petrov-Galerkin, higher-order accurate lumped mass

Figure 5.13: Relative L2 error of the mode shapes of a freely vibrating beam, computed on 500 Bézier
elements.

proach with lumped mass matrix leads to significantly better spectral accuracy compared
to the standard Galerkin approach with lumped mass matrix. The difference between
the results of the two approaches becomes more pronounced with increasing polynomial
degree. For p = 5, for instance, we see that in our Petrov-Galerkin approach, the first
40% of the eigenvalues are close to the desired ratio of 1.0, whereas in the Galerkin
approach, this is achieved by only about 5%. Figure 5.13 indicates the same trend for
the error in the corresponding mode shapes. We can observe, however, that for p = 2, all
methods, whether consistent or lumped, produce practically the same error, and a clear
difference between the two methods with lumped mass matrices starts to be evident only
for p = 4 and p = 5.
We then investigate the convergence of the error under mesh refinement, focusing

on the tenth eigenvalue and eigenmode. We note that the lowest eigenmodes are par-
ticularly important for achieving accurate results in space. Figure 5.14 illustrates the
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(a) Eigenvalue λh
10.

(b) Mode shape Uh
10.

p = 2 p = 3 p = 4 p = 5

⨉ Galerkin method, consistent mass ∆ Galerkin method, row-sum lumped mass

Petrov-Galerkin method, row-sum lumped mass

Figure 5.14: Convergence of the relative L2 error in the tenth eigenvalue and mode shape of a freely
vibrating beam, computed on 500 Bézier elements.

convergence of the relative error of the eigenvalue (upper row) and the convergence
of the L2 error in the corresponding mode shape (lower row). We observe that the
Petrov-Galerkin method with mass lumping achieves the same optimal convergence as
the Galerkin method with consistent mass matrix, while the Galerkin method with mass
lumping only achieves second-order convergence for all polynomial degrees. We note
that the optimal convergence rate of the eigenvalue error and the L2 error in the mode
is O(2(p− 1)) and O(p+ 1), respectively [43], [66]. These results indicate that unlike in
the standard Galerkin method, mass lumping in our Petrov-Galerkin method does not
affect optimal convergence of analysis results.
We now investigate how these results transfer to the two-dimensional case. To this end,

we repeat the same analysis for the example of a simply supported Kirchhoff plate with
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Figure 5.15: Normalized eigenvalues of a freely vibrating simply supported plate, computed on 25 × 25
Bézier elements.

the following parameters (square aluminium sheet): length and width 1.0 m, thickness
0.01 m, Young’s modulus E = 7 ⋅ 1010N/m2, and mass density ρ = 2.7 ⋅ 103 kg/m3. We can
obtain the exact solution in terms of eigenvalues and mode shapes from the continuous
problem, given for instance in [174]. For the discrete problem (5.35), we consider meshes
with 25 × 25 Bézier elements of degrees p = 2 to 5.

Figure 5.15 plots the normalized eigenvalues versus the normalized mode number. We
note that some outliers at the end of the spectra lie outside the plotted range. Figure 5.16
plots the convergence of the relative error of the first eigenvalue under uniform mesh
refinement. In Fig. 5.15, we can observe again significant accuracy advantages of our
Petrov-Galerkin scheme with mass lumping over the standard Galerkin scheme with
mass lumping in the spectrum results. Figure 5.15 confirms our observation that unlike
in the standard Galerkin method, mass lumping does not affect the optimal convergence
of our Petrov-Galerkin method.
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⨉ Galerkin method, consistent mass ∆ Galerkin method, row-sum lumped mass

Petrov-Galerkin method, row-sum lumped mass

Figure 5.16: Convergence of the relative error in the first eigenvalue of a freely vibrating simply supported
plate.

Iterative improvement of bi-orthogonality

To further elucidate the accuracy of our Petrov-Galerkin scheme based on approximate
dual functions and mass lumping, we use the iterative approach discussed in Section
5.2.4 to gradually improve the bi-orthogonality property of the approximate dual basis.
To this end, we consider again the two examples of the unconstrained Euler-Bernoulli
beam in 1D and the simply supported square plate in 2D. We now employ our Petrov-
Galerkin scheme with an iteratively improved mass matrix, where we use one or two
corrector passes (r = 1,2) before mass lumping, and compare the corresponding spectral
results to those obtained with the Petrov-Galerkin scheme with a consistent mass matrix
and mass lumping without improvement (r = 0).
For the Euler-Bernoulli beam, the normalized eigenvalues and the relative L2 error

in the corresponding mode shapes are plotted versus the normalized mode number in
Figs. 5.17 and 5.18, respectively. We observe that with increasing number of corrector
passes, the spectrum curves quickly approach the reference solution obtained with the
consistent mass matrix. We see that the iterative improvement is particularly efficient
for improving the accuracy of the mode shapes. After two corrector passes, the L2 error
curve of the Petrov-Galerkin scheme with mass lumping is practically the same as the
one of the reference for polynomial degrees p = 2 to 4 throughout the complete spectrum,
and a clear difference is only noticeable in the high modes for p = 5.
Figure 5.19 plots the normalized eigenvalues versus the normalized mode number for

the simply supported square plate. We observe that in this case, a lumped mass ma-
trix with one or two corrector passes can eliminate the error in the eigenvalue spectrum
completely. For p = 5, the normalized eigenvalue curve obtained with a consistent mass
matrix and the lumped mass matrix with only one corrector pass are practically indis-
tinguishable throughout the complete spectrum. We conclude that - although we have
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Figure 5.17: Normalized eigenvalues of the freely vibrating beam, computed with an iteratively improved
approximate dual basis and a different number r of corrector passes.

not used the iterative improvement in our simple benchmark calculations here - it could
represent a tool to improve spectral accuracy of the Petrov-Galerkin approach in future
more challenging applications.

5.5 Discussion and outlook

5.5.1 Summary and significance of current results

In this paper, we introduced an isogeometric Petrov-Galerkin formulation that enables
higher-order accurate mass lumping. It is based on B-splines to discretize the solution
fields and corresponding approximate dual functions with local support to discretize
the test functions. We demonstrated via convergence studies and spectral analysis for
beam and plate models that our Petrov-Galerkin method leads to higher-order accurate
solutions in explicit dynamics, also when the mass matrix is lumped. Our results thus

121



0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

n/N

Re
la

tiv
e
L
2

er
ro

r

(a) p = 2

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

n/N

Re
la

tiv
e
L
2

er
ro

r

(b) p = 3

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

n/N

Re
la

tiv
e
L
2

er
ro

r

(c) p = 4

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

n/N

Re
la

tiv
e
L
2

er
ro

r

(d) p = 5

Petrov-Galerkin, consistent mass r = 0 r = 1 r = 2

Figure 5.18: Relative L2 error in the mode shapes of the freely vibrating beam, computed with an
iteratively improved approximate dual basis and a different number r of corrector passes.

confirm that mass lumping as such does not have to be a deal-breaker for higher-order
accuracy in the context of isogeometric explicit dynamics calculations, if one adequately
exploits the additional opportunities of splines.
We also presented several ideas to resolve related technical issues. Firstly, we showed

that the approximate bi-orthogonality property, which is in general destroyed under non-
affine geometry mapping, is preserved when we use modified approximate dual functions
that are divided by the Jacobian determinant. Secondly, we discussed options for the
weak and strong imposition of Dirichlet boundary conditions. For the latter, we sug-
gested to replace the few non-interpolatory approximate dual functions at the Dirichlet
boundary by standard B-splines, restoring the interpolation property as a prerequisite
for the strong imposition of Dirichlet boundary conditions. We also presented an algo-
rithm for iteratively improving the approximate bi-orthogonality property of the dual
basis. While its application is not necessary for securing higher-order accurate results, in
particular given the additional computational cost, it establishes a rigorous link between
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Figure 5.19: Normalized eigenvalues of the simply supported plate, computed with an iteratively im-
proved approximate dual basis and a different number r of corrector passes.

truly dual and approximate dual basis functions and the accuracy of the associated
spectra.

5.5.2 A first look at explicit dynamics of shells

To get an idea whether its advantages directly transfer to more involved explicit dy-
namics calculations, we employ our Petrov-Galerkin method with mass lumping to solve
the test case of a pinched cylinder, whose set-up is given in Fig. 5.20. Our implementa-
tion follows the Kirchhoff-Love shell model and its isogeometric discretization presented
in [48], assuming large deformation kinematics and the St. Venant-Kirchhoff consti-
tutive model. In our Petrov-Galerkin approach, we apply B-splines to discretize the
displacement solution and modified approximate dual functions to discretize the virtual
displacements, while the geometry map is provided by an exact NURBS representation
of the cylinder. We use the central difference method to integrate in time, with a time
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Figure 5.20: Pinched cylinder constrained by rigid diaphragms.

(a) P = 1
3Pmax (b) P = 2

3Pmax (c) P = Pmax

Figure 5.21: Deformed configurations of the cylinder, computed with our Petrov-Galerkin method with
mass lumping.

step size of ∆t = 5 ⋅ 10−8. The mass matrix of the Petrov-Galerkin scheme is lumped via
the standard row-sum technique, except for the few rows that correspond to coefficients
of the boundary B-spline functions.

The point load P is linearly increased from zero to Pmax during the time T = 1/30.
Using symmetry, we compute one eighth of the cylinder that we discretize with cubic,
quartic and quintic splines on a mesh of 32×32 Bézier elements. This resolution is known
in the literature to be adequate for this problem [208], which exhibits highly localized
features in the displacement solution due to the point load and the appearance of wrinkles
during deformation. In addition, this resolution guarantees that locking phenomena, in
particular membrane locking, are controlled. Figure 5.21 illustrates three snapshots from
the deformation history.
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(a) p = 3, point A. (b) p = 3, point B.

(c) p = 4, point A. (d) p = 4, point B.

(e) p = 5, point A. (f) p = 5, point B.

Static solution [218] Galerkin, consistent mass

Galerkin, row-sum lumped mass Petrov-Galerkin, higher-order accurate lumped mass

Figure 5.22: Load-deflection curves at point A (uz) and at point B (ux) of the pinched cylinder, computed
with three different isogeometric schemes on a mesh of 32 × 32 Bézier elements.
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To assess the performance of our Petrov-Galerkin method, we compare its displace-
ment response to the results obtained with the standard Galerkin method with a consis-
tent mass matrix and with a row-sum lumped mass matrix. We plot the load-deflection
curves at points A and B, that is uz,A and ux,B, in Fig. 5.22. As an additional reference,
we also include the static solution (black curves), as the explicit dynamic results oscillate
around the static solution after snap-through [208]. We observe that for the given mesh,
all three methods lead to practically the same displacement response, irrespective of the
polynomial degree considered. We note that we also tried to lower the resolution by
repeating the same study on meshes with 16 × 16 Bézier elements. We found that the
three methods still yield displacement results that are overall equivalent, but all deviate
from the static solution, and hence are not accurate.
These results of a more involved test case confirm that our Petrov-Galerkin scheme also

works here. But they also indicate that its advantages might not always be as evident
in practical applications as in the simple benchmarks shown in Section 5.4 above.

5.5.3 Future research directions

From our viewpoint, there are two particularly important technical aspects that remain
to be investigated. One is an in-depth performance test of our Petrov-Galerkin method
in more involved scenarios, extending our initial results presented above. In particular,
relevant scenarios feature typical challenges in explicit dynamics calculations, includ-
ing shell elements, large deformations, contact, nonlinear material behavior, and their
combinations. The other one is a detailed analysis of the computational efficiency, in
particular with respect to the computational cost of a competitive matrix-free imple-
mentation that fully exploits additional technical opportunities of spline functions such
as the exploitation of their tensor-product structure [219], the use of optimal quadrature
rules with minimal number of points [212], and the removal of outliers [122].
The results presented in this paper open up further directions for future technical work.

One is the capability of directly building interpolatory boundary basis functions and/or
the required Dirichlet boundary conditions into the approximate dual space. Another
one is the combination of locking preventing mechanisms with the approximate dual
basis, in order to enable accurate solution fields on coarse meshes. Another challenge,
for which no initial idea exists, is to extend the concept of the approximate dual basis
as a test function space to trimmed Bézier elements.

Appendix 5.A

Approximate inverse of the Gramian matrix

We summarize the recursive construction of Ĝ−1 based on [103], [131] in Algorithm 6.
As discussed in Section 5.2.3, Ĝ−1 is an approximate inverse of the Gramian matrix,
Ĝ−1 ≈G−1.

In [131], the authors provide formulas for computing the homogeneous polynomial
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Algorithm 6 Compute the approximate inverse Ĝ−1 of the Gramian matrix based on
[131]

Input: p, N and Ξ
Output: Ĝ−1

1: D = IN×N ▷ Initialize
2: Ĝ−1 = compute matrix U(v = 0, p,Ξ,N) ▷ Initialize. See Algorithm 7
3: for v in 1 ∶ p do
4: U = compute matrix U(v, p,Ξ,N) ▷ See Algorithm 7
5: D ∗= compute matrix D(v, p,Ξ,N) ▷ See Algorithm 8
6: Ĝ−1 +=DUDT

7: end for

Algorithm 7 Compute the diagonal matrix U in Algorithm 6 [131]

Input: Index v (v = 0, . . . , p), p, Ξ and N
Output: U

1: c = (p+1) !(p−v) !
(p+v+1) !(p+v) !

2: Fv(ξj+1 . . . ξj+p+v) according to Equation (5.1) in [131] ▷ See (5.36) for v = 0, . . . ,5
3: for j in 1 ∶ (N − v) do
4: Ujj = c p+v+1

ξj+p+v+1−ξj Fv(ξj+1 . . . ξj+p+v)
5: end for

Algorithm 8 Compute matrix D in Algorithm 6 [131]

Input: Index v (v = 0, . . . , p), p, Ξ and N
Output: D

1: k = p + v
2: for j in 1 ∶ (N + p + 1 − k) do
3: dΞ,j = k / (ξj+k − ξj)
4: end for

5: ∆N+p+1−k =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
-1 1

. . . . . .
-1 1

-1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(N+p+1−k)×(N+p−k)
6: D = diag (dΞ) ∆N+p+1−k

Fv(x1, . . . , xr) in Algorithm 7 with v = 0, . . . ,5 as follows:

F0(x1, . . . , xr) =1.0 , (5.36a)

F1(x1, . . . , xr) = r2 σ2 , (5.36b)

2F2(x1, . . . , xr) = r2 (r2 − 3r + 3) σ2
2 − r2 (r − 1)σ4 , (5.36c)

6F3(x1, . . . , xr) = r3 (r − 2) (r2 − 7r + 15) σ3
2 − 3r2 (r − 2) (r2 − 5r + 10) σ4 σ2 −
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2r2 (3r2 − 15r + 20) σ2
3 + 2r2 (r − 1) (r − 2)σ6 , (5.36d)

24F4(x1, . . . , xr) = r4 (r4 − 18r3 + 125r2 − 384r + 441) σ4
2 −

6r3 (r4 − 16r3 + 104r2 − 305r + 336) σ4 σ2
2 +

3r2 (r4 − 14r3 + 95r2 − 322r + 420) σ2
4 +

8r2 (r − 2) (r − 3) (r2 − 7r + 21) σ6 σ2 −
8r3 (r − 3) (3r2 − 24r + 56) σ2

3 σ2 + 48r2 (r − 3) (r2 − 7r + 14) σ5 σ3 −
6r2 (r − 1) (r − 2) (r − 3)σ8 , (5.36e)

120F5(x1, . . . , xr) = r5 (r − 4) (r4 − 26r3 + 261r2 − 1176r + 2025) σ5
2 −

10r4 (r − 4) (r4 − 24r3 + 230r2 − 999r + 1674) σ4 σ3
2 +

20r3 (r − 4) (r4 − 20r3 + 168r2 − 645r + 972) σ6 σ2
2 +

15r3 (r − 4) (r4 − 22r3 + 211r2 − 942r + 1620) σ2
4 σ2 −

20r4 (3r4 − 60r3 + 470r2 − 1665r + 2232) σ2
3 σ

2
2 −

30r2 (r − 2) (r − 3) (r − 4) (r2 − 9r + 36) σ8 σ2 −
20r2 (r − 4) (r4 − 18r3 + 173r2 − 828r + 1512) σ6 σ4 +
240r3 (r4 − 19r3 + 143r2 − 493r + 648) σ5 σ3 σ2 +
20r4 (r − 4) (3r2 − 30r + 83) σ4 σ2

3 −
24r2 (5r4 − 90r3 + 655r2 − 2250r + 3024) σ2

5 −
240r2 (r − 3) (r − 4) (r2 − 9r + 24) σ7 σ3 +
24r2 (r − 1) (r − 2) (r − 3) (r − 4)σ10 , (5.36f)

where σl are the centered moments:

σl = 1

r

r∑
j=1
(xj − x̄)l with x̄ = 1

r

r∑
j=1

xj .

We demonstrate the computation of Ĝ−1 in Example 5.5.1 for a space of quadratic
C1 B-splines (p = 2) defined on an open knot vector Ξ = [0,0,0,1,2,3,3,3].
Example 5.5.1. (Computation of the approximate inverse using Algorithm 6 based on
[131]). Consider a space of quadratic C1 B-splines (p = 2) on Ξ = [0,0,0,1,2,3,3,3].
The number of B-splines is N = 5. The spline function vector b = [B1 B2 B3 B4 B5].
The matrix Ĝ−1 computed with Algorithm 6 is:

Ĝ−1 =U(v = 0) + D(v = 1)U(v = 1)DT (v = 1) +
D(v = 1)D(v = 2)U(v = 2)DT (v = 2)DT (v = 1) .
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For v = 0, we compute the diagonal matrix U using Algorithm 7 and obtain:

U(v = 0) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0
1.5

1.0
1.5

3.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For v = 1, we compute the values of the homogeneous polynomial F1 using the equivalent
formulas in (5.36) and obtain F1 = 2,6,6,2 for the entries U11, U22, U33 and U44 of U,
respectively. The diagonal matrix U is then:

U(v = 1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/6
3/4

3/4
1/6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Matrix D, computed with Algorithm 8, is:

D(v = 1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0
1.5

1.0
1.5

3.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−1 1−1 1−1 1−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0−1.5 1.5−1.0 1.0−1.5 1.5−3.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For v = 2, analogously, we obtain:

U(v = 2) =
⎡⎢⎢⎢⎢⎢⎣
1/36

13/144
1/36
⎤⎥⎥⎥⎥⎥⎦

and D(v = 2) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2.0−4/3 4/3−4/3 4/3−2.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix Ĝ−1 is then:

Ĝ−1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11/2 −19/12 2/9−19/12 265/72 −7/6 13/36
2/9 −7/6 65/27 −7/6 2/9
0 13/36 −7/6 265/72 −19/12
0 0 2/9 −19/12 11/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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6 Isogeometric locking-free explicit
dynamics of shells with a Petrov-Galerkin
mixed formulation built on an
approximate dual spline basis

This chapter is reproduced from:

T.-H. Nguyen, R. R. Hiemstra, and D. Schillinger. Isogeometric locking-free explicit
dynamics of shells with a Petrov-Galerkin mixed formulation built on an approximate
dual spline basis, Submitted to Int. J. Numer. Methods Eng. 2023 (under review).

Abstract

In this paper, we combine an isogeometric Petrov-Galerkin approach that uses approx-
imate dual spline functions to enable higher-order accurate mass lumping with the
Hellinger-Reissner principle to eliminate the effect of membrane locking for Kirchhoff-
Love shells. The resulting variational mixed formulation consists of the equations of
motion and a strain projection equation. We discretize all test functions with an ap-
proximate dual spline basis that satisfies approximate bi-orthogonality in the mapped
domain with respect to a trial space of B-splines. For the equations of motion, we apply
row-sum lumping of the mass matrix, maintaining higher-order spatial accuracy in ex-
plicit dynamics calculations. For the strain projection equation, we also apply row-sum
lumping to the projection matrix, which leads to an inexpensive explicit solve equivalent
to what is obtained for the equations of motion. In addition, we show that row-sum lump-
ing of the projection matrix preserves higher-order spatial accuracy. Moving towards an
effective isogeometric analysis framework for explicit dynamics of shells, we combine
our approach with optimal quadrature rules that minimize the number of popint eval-
uations and outlier removal techniques that increase robustness and critical time step
sizes. We demonstrate the performance of our approach in terms of spatial accuracy via
convergence studies and spectral analysis of curved beam and shell benchmarks.
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6.1 Introduction

In structural dynamics, particularly in crash and metal forming simulations, explicit
methods are widely applied. Current commercial codes such as LS-Dyna, Pam-Crash,
or Radioss rely on three key ingredients to achieve highly efficient explicit transient cal-
culations: (1) low memory requirements; (2) an efficient solver; and (3) relatively large
critical time step sizes. In commercial codes, these ingredients are typically achieved
by combining classical C0 finite elements using lowest-order linear basis functions with
specific mass lumping techniques [66]. Various lumping techniques exist, such as row-
summing [44], [220], diagonal scaling [89], manifold-based methods [90], and lumping
by nodal quadrature [91]–[93], [172]. While row-summing is very easy to implement,
the lumped mass matrix is not necessarily positive-definite, as negative or zero diagonal
values are possible. In contrast, diagonal scaling and the manifold-based schemes guar-
antee the positive definiteness of the lumped mass matrix, but might deliver sub-optimal
convergence rates [94], [95]. For lumping by nodal quadrature, given the proper choice of
basis functions and quadrature rules, optimal convergence as well as a positive-definite
lumped mass matrix can be obtained [95]. Employing Lagrangian basis functions with
Gauss-Lobatto-Legendre quadrature points as interpolation nodes and using the Gauss-
Lobatto-Legendre quadrature rule results in a diagonal matrix. This is also known as
the spectral element method [92], [96], [97]. The hp-collocation method [93] which em-
ploys the Gauss-Lobatto Lagrange test functions and Gauss-Lobatto points as collocation
points also falls in this category.
A lumped mass matrix enables a significant reduction in memory usage and computa-

tional cost, as only a matrix-vector multiplication needs to be performed per explicit time
step. In terms of accuracy, however, lumping schemes are generally restricted to second-
order accuracy irrespective of the polynomial degree of the basis functions [43], [44].
Therefore, only for lower-order elements, optimal accuracy in space can be preserved.
For higher-order elements, optimal accuracy is typically not maintained. Exceptions are
if additional accuracy conditions of the quadrature rule are satisfied [91], or the spectral
element method based on nodal quadrature is applied [95]. There are various attempts
at improving the accuracy of the lumped mass matrix such as the explicit predictor-
multicorrector scheme presented in [66], [86], [87], which, nevertheless, results in a mass
matrix that is no longer diagonal, but has a band structure.
Isogeometric analysis (IGA) [30], [51] constitutes an opportunity for higher-order accu-

rate explicit dynamics calculations. It offers a well-behaved discrete spectrum of eigen-
frequencies and eigenmodes [43], a feature that cannot be achieved in finite element
analysis based on nodal basis functions [176]. Standard row-sum lumping, however, de-
stroys the higher-order spatial accuracy of IGA. Therefore, a focus of recent work has
been on the design of suitable lumping schemes that maintain spatial accuracy. In [98],
the authors construct a set of transformed spline basis functions that are interpolatory
at the Greville points and lumped the resulting Galerkin consistent mass matrix using
the row-sum lumping technique. It is shown that the spectral accuracy and convergence
obtained with these transformed basis functions are improved, however, not optimal. In
[99], the authors develop preconditioners for this type of mass lumping scheme. The im-
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proved mass matrix potentially achieves better accuracy in explicit dynamics, however,
is no longer diagonal, but has a banded structure.
Another idea to obtain a diagonal mass matrix without lumping is to exploit the bi-

orthogonality of a dual spline basis. When the corresponding dual basis functions are
used as test functions, the inner product with the spline functions yields a diagonal ma-
trix. In [100], the authors construct such dual space for non-uniform rational B-splines,
based on their Bernstein-Bézier representation and apply it to obtain a diagonal mass
matrix for explicit dynamics calculations. The resulting formulation is an isogeometric
Petrov-Galerkin formulation, which results in good spectral properties and the same op-
timal convergence behavior as the standard Galerkin method based on a consistent mass
matrix. However, it relies on dual functions that are discontinuous, and requires the
inverse of the geometric mapping, which is not trivial for curved multidimensional ge-
ometries. In [188], we have recently developed another isogeometric Petrov-Galerkin for-
mulation based on B-splines and their corresponding smooth approximate dual functions
with local support to discretize the solution fields and the test functions, respectively.
Its main feature is that row-sum lumping to the resulting mass matrix, which is only
approximately diagonal due to the approximate bi-orthogonality, can be applied without
loosing spatial accuracy. Our approach thus preserves higher-order spatial accuracy with
optimal rates of convergence in explicit dynamics. In [132], we further specified our ap-
proach, verifying our lumping approach from a numerical analysis viewpoint and solving
important technical issues such as the treatment of Dirichlet boundary conditions that
can be built directly into the discretization space.
In this work, we extend our isogeometric Petrov-Galerkin approach to higher-order

accurate explicit dynamics calculations of shell structures, with an emphasis on how
to leverage the properties of the approximate dual basis to obtain an efficient discrete
mixed formulation that mitigates locking. For an overview of existing approaches to
mitigate locking and the extensive pertinent literature, we refer the interested to [64]
and [135]. Here, we develop an isogeometric Petrov-Galerkin mixed formulation based
on the Hellinger-Reissner principle that enables higher-order spatial accuracy in explicit
dynamics. We specify our approach for the isogeometric Kirchhoff-Love shell [48], which
is typically prone to membrane locking. Our formulation considers the displacement
and strain fields as two independent variable fields, where we discretize the latter with a
basis of one degree lower than the former. The resulting system of equations contains a
sub-system of discrete equations of motion and a sub-system of discrete strain projection
equations. For the discrete system of equations of motion, we apply row-sum lumping
of the mass matrix, maintaining higher-order spatial accuracy. For the discrete system
of strain projection equations, we also apply row-sum lumping to the projection ma-
trix, which leads to an inexpensive explicit solve equivalent to what is obtained for the
system of equations of motion. We note that for standard nodal finite elements based
on lowest-order linear basis functions, similar approaches based on a locking-free mixed
formulation for thin structures and lumping of the system matrices have been explored,
see e.g. [221], [222] and the references therein. Moving towards an effective isogeometric
analysis framework for explicit dynamics of shells, we combine our approach with opti-
mal (reduced) quadrature rules that minimize the number of point evaluations [133] as
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well as an outlier removal technique that increase robustness and maximize the critical
time step size [122].
The structure of our paper is as follows: In Section 6.2, we briefly review the isogeo-

metric Kirchhoff-Love shell formulation and the explicit scheme for structural dynamics.
In Section 6.3, we review the construction and relevant properties of the approximate
dual functions of B-splines on arbitrarily mapped surfaces, including the enforcement
of Dirichlet boundary conditions and outlier removal. In Section 6.4, we specify our
isogeometric Petrov-Galerkin mixed formulation with lumping of the system matrices
for higher-order accurate and locking-free explicit dynamics of Kirchhoff-Love shells.
In Section 6.5, we present linear and geometrically nonlinear numerical examples of
curved beam and shell problems, demonstrating via spectral analysis and convergence
studies that our approach eliminates membrane locking and achieves higher-order spa-
tial accuracy in explicit dynamics. In Section 6.6, we summarize our results and draw
conclusions.

6.2 Preliminaries

In this section, we briefly review the fundamentals of general continuum elastodynam-
ics, the explicit scheme for structural dynamics, the Hellinger-Reissner principle, and
the Kirchhoff-Love shell model [48], [64], which form the starting points for the new
developments in the remainder of this work.

6.2.1 Finite-strain elastodynamics of a solid continuum

Consider a three-dimensional physical domain Ω ⊂ R3 of a solid continuum. The local
equilibrium equation at each pointX ∈ Ω in the reference configuration and time t > 0, the
constitutive law of the Saint Venant-Kirchhoff material model, and the Green-Lagrange
strain tensor, E, are:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Div (FS) + ρb − ρü = 0 ,
S = C ∶ E ,

E = 1

2
(FTF − I) ,

(6.1a)

(6.1b)

(6.1c)

where S denotes the second Piola-Kirchhoff stress tensor and u = u(X, t) the displace-
ment vector, and F the deformation gradient that depends on u:

F = I + du

dX
= F(u) , (6.2)

with I is the identity matrix. Furthermore, the tensor C is the fourth order material
tensor, ρ is the mass density in the reference configuration that is assumed to be constant
in space and time, and b is the body force.
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At time t = 0, the required initial conditions are:

u(X, t = 0) = u0(X) , (6.3a)

∂

∂ t
u(X, t = 0) = v0(X) . (6.3b)

Along the boundary of Ω, denoted as Γ, we consider either Dirichlet (on ΓD) or Neumann
(on ΓN ) conditions:

u(X, t) = uD on ΓD , (6.4a)(F ⋅ S) ⋅ ν = h on ΓN , (6.4b)

where ν denotes the outward facing unit normal vector.

6.2.2 Finite element discretization and explicit time integration

Finite element discretizations of transient problems governed by (6.1a) generate semidis-
crete systems of the following type:

M ün = Fn
ext − ∫

Ω
B(xn)T σn dΩ , (6.5)

where M is the mass matrix, Fext the vector of external forces, B the discrete gradient
operator, and σ the Cauchy stress. The superscript n is the time index that indicates
that a variable is evaluated at time instant tn.
In this work, we employ the explicit central difference method [66], [111], [189] for time

integration. To remain stable, its time step size, ∆t, is bounded from below by the critical
time step size, ∆tcrit, that is inversely proportional to the maximum eigenfrequency,
ωmax, of the discretization:

∆t ≤∆tcrit = 2

ωmax
. (6.6)

Hence, ∆tcrit can be estimated by finding the maximum eigenvalue of the discrete system,
or alternatively an accurate approximation, for instance, via the power iteration method
[46], [202] or via nodal and element estimates [111], [116], [209], [223]. In this work,
we apply the element estimate of ∆tcrit, where we solve a local generalized eigenvalue
problem at the element level to estimate the element critical time step size, which is
assumed to be smaller than ∆tcrit of the global system. We note that the aforementioned
methods for time step estimate are generally applied to linear systems. For nonlinear
systems, a common practical approach is to transfer the linear result to a nonlinear one
by multiplying it with a safety factor [208].

Remark 6.2.1. An alternative to the explicit central difference method is the fourth-
order Runge Kutta method that leads to higher-order convergence in time. In this work,
we focus on the spatial accuracy obtained with our approach. Hence, we apply the central
difference method and choose a small time step such that the accuracy in time is ensured.
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6.2.3 The Hellinger-Reissner principle

The idea of the Hellinger-Reissner principle is to consider the displacement and either
stress or strain as the second variable field [224], [225]. The result is a two-field variational
formulation that corresponds to a saddle-point problem.
We illustrate one possibility for its derivation in the context of finite-strain elastostatics

of a solid continuum, whose strong form corresponds to (6.1) with ü = 0. The constitutive
law (6.1b) is assumed to be strongly satisfied at each point in Ω. The weighted residual
method is then applied to the strong form of the equilibrium equation (6.1a) and the
strain-displacement relation (6.1c), where both the displacements u and the strains E
are considered independent variable fields. To help differentiate between displacement-
based strains and the independent variable field, we formulate the displacement-based
strains in terms of a strain operator E :

E ⋅u = 1

2
[FT (u)F(u) − I] . (6.7)

The resulting variational formulation with displacements and strains as variable fields
is [226]:

∫
Ω
[− (C ∶ E) ∶ (E ⋅w) + ρb ⋅w] dΩ + ∫

Ω
δE ⋅ (E − E ⋅u) dΩ + ∫

ΓN

w ⋅ h dΩ = 0 ,

(6.8)

which can be split into two equations as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫
Ω
− (C ∶ E) ∶ (E ⋅w) + ρb ⋅w dΩ + ∫

ΓN

w ⋅ h dΩ = 0

∫
Ω
δE ⋅ (E − E ⋅u) dΩ = 0 .

(6.9a)

(6.9b)

Here, w and δE are the test functions corresponding to u and E, respectively. We note
that the Neumann boundary condition (6.4)b is directly substituted in (6.8).

6.2.4 The Kirchhoff-Love shell model

The Kirchhoff-Love shell model can be derived directly from the three-dimensional equa-
tions of a solid continuum reviewed above [64], [227]. Key assumptions are that cross
sections remain straight, unstretched, and normal to the midsurface in the deformed
state. Due to these assumptions, the shell can be represented by its midsurface with
linear strain distribution through the thickness and negligible transverse shear strains.
Therefore, the coefficients Ei3, i = 1,2,3, of the strain tensor E are zero, Ei3 = 0. One
can formulate the remaining in-plane covariant strain coefficients as a sum of a constant
part due to membrane action and a linear part due to bending action as follows:

Eαβ = εαβ + θ3 καβ , with α, β = 1,2 and − 0.5d ≤ θ3 ≤ 0.5d , (6.10)
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where d is the shell thickness, and εαβ , καβ and θ3 are the membrane strains, the change
in curvature due to bending and the coordinate in the thickness direction, respectively.
We briefly review the derivation of εαβ , καβ , following [48], [64]. We first recall the

representation of the shell continuum by its midsurface in the reference and deformed
configuration:

x = θα aα + θ3 a3 , X = θαAα + θ3A3 , with α = 1,2 (6.11)

respectively. Here, θα are the in-plane curvilinear coordinates, aα the base vectors on
the middle surface and a3 its unit normal that is the normalized cross product of aα.
The base vector Aα and A3 are denoted by capital letters to point out that they refer
to the reference configuration. To emphasize that the base vectors aα depend on the
displacements u, we recall:

aα(u) =Aα +u,α(θ3 = 0) . (6.12)

The base vectors at an arbitrary point of the shell continuum are then:

gα = x,α = aα + θ3 a3,α , Gα =X ,α =Aα + θ3A3,α . (6.13)

The corresponding metric coefficients are:

gαβ = gα ⋅ gβ = aα ⋅ aβ´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
aαβ

−2θ3 aα,β ⋅ a3 + (θ3)2 a3,α a3,β ≈ aαβ − 2θ3 aα,β ⋅ a3 , (6.14a)

Gαβ =Gα ⋅Gβ =Aα ⋅Aβ´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Aαβ

−2θ3Aα,β ⋅A3 + (θ3)2 A3,αA3,β

≈ Aαβ − 2θ3Aα,β ⋅A3 , (6.14b)

where the quadratic terms with respect to θ3 are neglected based on the assumption of
thin shells. The in-plane covariant strain coefficients, Eαβ, are then:

Eαβ = 1

2
(gαβ −Gαβ) = 1

2
(aαβ −Aαβ) + θ3 (Aα,β ⋅A3 − aα,β ⋅ a3) , (6.15)

which leads to the following expression for εαβ and καβ in (6.10):

εαβ = 1

2
( aαβ°
aαβ(u)

−Aαβ) = εαβ(u) , (6.16a)

καβ =Aα,β ⋅A3 − aα,β ⋅ a3´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
aα,β(u)⋅a3(u)

= καβ(u) . (6.16b)

We note that εαβ and καβ depend on the displacement u since the base vectors aα and
a3 depend on u (see (6.12)).
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As discussed above, the strain tensor E of Kirchhoff-Love shells consists of only three
non-zero in-plane coefficients. Accordingly, the stress tensor S also has three non-zero
coefficients Sαβ. Using Voigt notation for S and E, equation (6.1b) becomes:

S =
⎡⎢⎢⎢⎢⎢⎣
S11

S22

S12

⎤⎥⎥⎥⎥⎥⎦
= E

1 − ν2
⎡⎢⎢⎢⎢⎢⎣
1 ν 0
ν 1 0

0 0 1−ν
2

⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C

⎡⎢⎢⎢⎢⎢⎣
E11

E22

2E12

⎤⎥⎥⎥⎥⎥⎦
=CE , (6.17)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively, and C a
material matrix. Inserting (6.10) into (6.17), one can separate the stresses in a membrane
and a bending part. Integrating these counterparts through the shell thickness, we obtain
the stress resultants n for normal forces and m for bending moments as follows:

n =
⎡⎢⎢⎢⎢⎢⎣
n11

n22

n12

⎤⎥⎥⎥⎥⎥⎦
= dC

⎡⎢⎢⎢⎢⎢⎣
ε11
ε22
2ε12

⎤⎥⎥⎥⎥⎥⎦
= dCε , m =

⎡⎢⎢⎢⎢⎢⎣
m11

m22

m12

⎤⎥⎥⎥⎥⎥⎦
= d3

12
C

⎡⎢⎢⎢⎢⎢⎣
κ11
κ22
2κ12

⎤⎥⎥⎥⎥⎥⎦
= d3

12
Cκ . (6.18)

We note that all strains and stresses in (6.17) and (6.18) are expressed in a local Cartesian
coordinate system.
For Kirchhoff-Love shell boundary value problems, the Dirichlet boundary conditions

(on ΓD) generally include prescribed displacements and rotations around ΓD that are:

u = uD on ΓD , (6.19a)

ωΓD
= ωD on ΓD , (6.19b)

respectively. In general, the Neumann boundary conditions (on ΓN ) consists of the
prescribed tractions and bending moments that are:

n = nN on ΓN , (6.20a)

m =mN on ΓN , (6.20b)

respectively.

6.3 Approximate dual spline bases

In this section, we review the modified approximate dual functions introduced in [188].
In addition, we discuss the strong enforcement of Dirichlet boundary conditions recently
introduced in [132], and the integration of our approach of strongly removing outliers
[122].

6.3.1 Construction and computation

We start with a brief review of the construction and relevant properties of the original
approximate dual functions for univariate B-splines introduced in [131]. Let S ⊂ Pp
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denote the space of Cp−1 smooth splines that is:

S ∶= { s ∶ [a, b] ↦ R ∶ s∣tk−1, tk ∈ Pp , s is Cp−1 smooth at x̂ = t1 . . . tm−1 } ,
(6.21)

where Pp denotes the space of piecewise polynomials of degree p ≥ 0, and the interval[a, b] ⊂ R is partitioned into an increasing sequence of breakpoints that define Bézier el-
ements:

a = t0 < . . . < tk−1 < tk < . . . < tm = b . (6.22)

Consider B-spline functions Bi, i = 1, . . . ,N , of degree p with Cp−1-continuity defined
on an open knot vector, Ξ ∶= {x̂1, . . . , x̂N+p+1}, which is the partition (6.22) with p +
1 multiplicity of the first and last breakpoints and non-repeated internal knots. Let
Ω̂ ⊂ R denote the parametric domain with local coordinates represented in Ξ, i.e. the
breakpoints in (6.22). Given an inner product (⋅, ⋅)Ω̂ ∶ S × S ↦ R in Ω̂. We recall the
bi-orthogonality constraint expressed in matrix form:

∫
Ω̂
b̄ bT d Ω̂ = I , (6.23)

where I is the identity matrix, b = [B1 . . . BN ]T and b̄ = [ B̄1 . . . B̄N ]T denote the
function vector of the B-spline basis Bi and its associated dual functions B̄i, respectively.
Equation (6.23) can be reformulated in terms of the Gramian matrix, G = (b ,b)Ω̂, as
follows:

(b̄ b)
Ω̂
= I =G−1G =G−1 (bb)Ω̂ . (6.24)

Let B̂i, i = 1, . . . , N , denote the approximate dual functions of Cp−1-continuous B-

splines of degree p in the space S, and b̂ = [ B̂1 . . . B̂N ]T be their function vector.

The approximate dual functions B̂i can be constructed as linear combinations of the
corresponding B-splines [131] as follows:

b̂ = Ĝ−1 b . (6.25)

B̂i satisfies the bi-orthogonality constraint (6.23) “approximately”, in the sense that the
matrix Ĝ−1 is an approximate inverse of the Gramian matrix:

Ĝ−1 ≈G−1 . (6.26)

We note that the notation Ĝ−1 is to imply that it is an approximate inverse, and its
construction does not require any matrix inversion [131]. It is a recursive computation,
based on fundamental properties of B-splines such as the nestedness of spaces under knot
insertion. For a 1D patch of splines, the approximate inverse matrix Ĝ−1 is symmetric
and positive definite with a bandwidth of at most p+ 1 [131]. Since B̂i constructed with
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(6.25) are linear combinations of B-splines, they span the same space S and reproduce
polynomials in Pp. They preserve important properties of the underlying B-spline basis,
such as Cp−1 regularity and local support. For more detail regarding the computation
of Ĝ−1 and in-depth discussions of these approximate dual functions, we refer to [103],
[131], [188].

Remark 6.3.1. The approximation (6.26) can be iteratively improved based on a predictor-
multicorrector scheme, see [188]

For multivariate spline spaces, we consider tensor-product extensions to multivariate
dual B-spline functions in this work. To this end, we use the same spline space S in
every coordinate direction such that the multivariate space in the two-dimensional case
is S ⊗ S. In the parametric domain, the tensor-product structure leads to matrices with
Kronecker structure due to affine mapping. We note that the approximate dual functions
can also be extended to non-uniform rational B-splines (NURBS) as shown in [103].

6.3.2 Geometric mapping

For general non-affine geometric mappings, the approximation (6.26), and thus the ap-
proximate bi-orthogonality, is not preserved when mapped from the parametric domain
to the physical domain. To tackle this problem, in [188], we introduced a modification
of the original approximate dual functions, B̂i, by a multiplication with the inverse of
the determinant of the Jacobian matrix of the mapping, C(x̂). Hence, the modified
approximate dual functions are:

B̃i(x̂) ∶= B̂i(x̂)
C(x̂) , i = 1, . . . , N . (6.27)

As shown in [188], B̃i approximately satisfy the bi-orthogonality constraint (6.23) in
the physical domain in the same sense as B̂i in the parametric domain. B̃i are linearly
independent due to the linear independence of the approximate dual functions B̂i and
preserve their local support. Their regularity, however, depends on the smoothness of the
Jacobian C(x̂). For practical scenarios, we can assume that the underlying geometric
mapping is assumed to be sufficiently smooth and invertible such that the Jacobian
matrix and its inverse are well-defined.
For illustration, we consider a quarter circle with unit radius represented by NURBS.

In Fig. 6.1, we plot the modified approximate dual functions (6.27) next to the cor-
responding quadratic C1-continuous B-splines. We also plot the corresponding non-
constant function of the Jacobian determinant. We observe that the modified approxi-
mate dual functions have local support and preserve the Cp−1-continuity of the B-spline
functions.

6.3.3 Dirichlet boundary conditions

The strong enforcement of Dirichlet boundary conditions is not straightforward, since
the dual basis (6.27) generally does not preserve the interpolatory property of open-knot
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(a) B-splines (b) Modified approximate dual functions

(c) Jacobian determinant function for a quarter circle.

Figure 6.1: Standard B-splines and modified approximate dual functions for a 1D patch of quadratic
B-splines and a non-constant Jacobian determinant (from [188]).

B-splines at the ends of the spline patch (see e.g. Fig. 6.1). In this work, we rely on
the methodology recently introduced in [132] that directly builds the Dirichlet boundary
conditions into the basis of the original approximate dual functions, before modification
by multiplication with the inverse of the Jacobian determinant. The underlying idea
of this methodology is to reduce the degrees of freedom of the approximate dual basis
by solving a minimization problem that includes homogeneous Dirichlet boundary con-
ditions as linear constraints. This approach yields a basis that satisfies homogeneous
Dirichlet boundary conditions and preserves the approximate bi-orthogonality property
for all functions. In homogeneous Dirichlet boundary conditions can be easily imposed
by adding any additional basis functions at the boundary that is linear independent,
e.g. the interpolatory standard B-splines at the ends. Since it is multiplied by a known
coefficient and moved to the right-hand side, it does not appear in the system matrix
and hence the missing bi-orthogonality for that particular function does not affect our
method. For an in-depth discussion, we refer the interested reader to [132].
We illustrate the effect of Dirichlet boundary condition enforcement on the approxi-
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(a) Unconstrained (b) Unconstrained, outliers removed

Figure 6.2: Half a patch of unconstrained approximate dual functions (Neumann boundary at the left
end). The basis is computed for quintic C4 B-splines (p = 5) defined on an open knot vector
with 10 Bézier elements.

(a) Pinned at left end (b) Pinned at left end, outliers removed

Figure 6.3: Half a patch of constrained approximate dual functions (pinned Dirichlet boundary at the
left end). The basis is computed for quintic C4 B-splines (p = 5) defined on an open knot
vector with 10 Bézier elements.

mate dual basis for a one-dimensional patch of splines that could for instance be used
to discretize a beam. In Fig. 6.2a, the basis is unconstrained at the left end, suitable
for a Neumann boundary. We observe that the basis is not interpolatory at the left end.
In Fig. 6.3a, the basis is constrained at the left end to represent a pin. In Fig. 6.4a to
represent a fully fixed support.

6.3.4 Outlier removal

To increase the efficiency of our explicit scheme, we extend the outlier removal technique
proposed in [122] to our approximate dual basis. The main idea is to directly build ad-
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(a) Fully fixed at left end (b) Fully fixed at left end, outliers removed

Figure 6.4: Half a patch of constrained approximate dual functions (fully fixed Dirichlet boundary at the
left end). The basis is computed for quintic C4 B-splines (p = 5) defined on an open knot
vector with 10 Bézier elements.

ditional boundary constraints into the discrete space, such that these spurious modes
and their corresponding overestimated frequencies are removed from the discrete spec-
trum. In practice, the resulting maximum eigenfrequency is significantly reduced, which
in turn increases the critical time step size as a consequence of (6.6). Analogously to the
imposition of Dirichlet boundary conditions, we build these additional constraints into
the approximate dual basis before modification, using the same type of minimization
problem, where the additional outlier conditions at the boundary are added as linear
constraints. For further details on the constrained minimization procedure, we refer the
interested reader to [122] and [132].
We illustrate the effect of outlier removal on the approximate dual basis for a one-

dimensional patch of splines, given a Neumann and Dirichlet boundary conditions for a
beam. In Fig. 6.2b, the basis is unconstrained at the left end, suitable for a Neumann
boundary. In Figs. 6.3b and 6.4b, the basis is constrained at the left end to represent
a pin and a fully fixed support, respectively. We can see that the new basis without
outliers consists of fewer basis functions, but maintains the same approximation power
[122]. The removed degrees of freedom can be associated with the removed outlier modes
that do not contribute to the accuracy of the analysis results. We note that we will apply
the outlier removal approach in all numerical examples shown in this paper. We note
that there are also methods to impose outlier removal constraints weakly at boundaries
[121] and across patch interfaces [183].

6.4 Variational formulation, isogeometric discretization and
lumping

In this section, we derive an isogeometric Petrov-Galerkin mixed formulation based on
the Hellinger-Reissner principle that considers the displacements and strains as two
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independent variable fields. For a Kirchhoff shell formulation, discretizing the latter
with a basis of one degree lower than the former removes membrane locking [80], [135],
[205]. To discretize this formulation, we employ standard B-splines as trial functions
and the corresponding modified approximate dual functions as test functions. In the
context of explicit dynamics, our formulation enables higher-order accurate lumping of
the mass matrix due to their approximate bi-orthogonality. In addition, we also apply
row-sum lumping to the projection matrix, eliminating the need for solving a system for
strain projection. We also discuss implications on the computational cost of our explicit
dynamics scheme with regards to lumping, outlier removal and (reduced) quadrature.

6.4.1 Variational mixed formulation

Consider the strong form (6.1). We apply the Hellinger-Reissner principle and the
weighted residual method, as discussed in Section 6.2.3. In particular, we multiply
(6.1a) and (6.1c) by suitable test functions, w and δE, respectively, integrate over Ω,
performe integration by parts with the first term of (6.1a), and, purely for ease of nota-
tion, assume homogeneous Neumann conditions to obtain the following weak form: Find
E ∈ S, u ∈ V such that:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫
Ω
ρü ⋅w dΩ + ∫

Ω
(C ∶ E) ∶ (E ⋅w) dΩ = ∫

Ω
w ⋅ ρb dΩ ∀w ∈ Ṽ ,

∫
Ω
δE ⋅E dΩ − ∫

Ω
δE ⋅ (E ⋅u) dΩ = 0 ∀δE ∈ S̃ ,

(6.28a)

(6.28b)

where we consider the strains, E, and displacement, u, as two independent variable
fields. Here, the strain operator E is defined in (6.7). We assume that the spaces, S, V,S̃, and Ṽ, are sufficiently regular for all differential operators in (6.28). In addition, we
assume that all material and geometric parameters are constants.
For Kirchhoff-Love shells, one can employ the simplified stress and strain (6.17) and

formulate them with their membrane and bending counterparts (6.10). After integrating
over the shell thickness, the weak form (6.28) for Kirchhoff-Love shells becomes: Find(ε,κ) ∈ S × S, u ∈ V such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
ΩA

ρd ü ⋅w dΩ + ∫
ΩA

n ⋅ (Eε ⋅w) dΩ + ⋅∫
ΩA

m ⋅ (Eκ ⋅w) dΩ
= ∫

ΩA

w ⋅ ρdb dΩ ∀w ∈ Ṽ ,
∫
ΩA

d δε ⋅ ε dΩ + ∫
ΩA

d3

12
δκ ⋅κ dΩ − ∫

ΩA

d δε ⋅ (Eε ⋅u) dΩ
− ∫

ΩA

d3

12
δκ ⋅ (Eκ ⋅u) dΩ = 0 ∀ (δε, δκ) ∈ S̃ × S̃ ,

(6.29a)

(6.29b)

where ΩA is the domain of the shell middle surface, n and m are the stress resultants
corresponding to the independent variable fields ε and κ, respectively. Analogous to
(6.7), we define strain operators corresponding to the displacement-based membrane
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strains and changes in curvature in (6.16) as:

Eε ⋅u = 1

2
( aαβ°
aαβ(u)

−Aαβ) , (6.30a)

Eκ ⋅u =Aα,β ⋅A3 − aα,β ⋅ a3´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
aα,β(u)⋅a3(u)

, (6.30b)

with α, β = 1,2. One can split (6.29b) in two subequations for the membrane strains
and the changes in curvature, and neglect the factor with respect to the shell thickness
d. Equation (6.29) then becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
ΩA

ρd ü ⋅w dΩ + ∫
ΩA

n ⋅ (Eε ⋅w) dΩ + ∫
ΩA

m ⋅ (Eκ ⋅w) dΩ
= ∫

ΩA

w ⋅ ρdb dΩ ∀w ∈ Ṽ ,
∫
ΩA

δε ⋅ ε dΩ − ∫
ΩA

δε ⋅ (Eε ⋅u) dΩ = 0 ∀δε ∈ S̃ ,
∫
ΩA

δκ ⋅κ dΩ − ∫
ΩA

δκ ⋅ (Eκ ⋅u) dΩ = 0 ∀δκ ∈ S̃ .

(6.31a)

(6.31b)

(6.31c)

6.4.2 Isogeometric Petrov-Galerkin discretization

To eliminate membrane locking in the Kirchhoff-Love shell formulation [80], [135], [205],
we discretize the trial functions regarding the strains, ε, κ and the displacements u with
standard smooth B-splines of degree p − 1 and p, respectively:

εh(x, t) = [N1(x) . . . Nm(x)] ε̂h(t) ,
κh(x, t) = [N1(x) . . . Nm(x)] κ̂h(t) , (6.32)

uh(x, t) = [B1(x) . . . Bn(x)] ûh(t) ,
where we denote basis functions of reduced degree p − 1 as Ni, i = 1, . . . ,m, and basis
functions of degree p as Bj , j = 1, . . . , n. Following our discussion in Section 6.3.2, we dis-
cretize the test functions, δε, δκ, and w, with their corresponding modified approximate
dual functions (6.27), Ñi and B̃j :

δεh(x) = [Ñ1(x) . . . Ñm(x)] δε̂h ,
δκh(x) = [Ñ1(x) . . . Ñm(x)] δκ̂h , (6.33)

wh(x) = [B̃1(x) . . . B̃n(x)] ŵh ,

respectively, where

Ñi(x̂) ∶= N̂i(x̂)
C(x̂) , B̃i(x̂) ∶= B̂i(x̂)

C(x̂) . (6.34)
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The resulting semidiscrete formulation is: Find (εh,κh) ∈ Sh × Sh, uh ∈ Vh such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
ΩA

ρd üh ⋅wh dΩ + ∫
ΩA

nh ⋅ (Eε ⋅wh) dΩ + ∫
ΩA

mh ⋅ (Eκ ⋅wh) dΩ
= ∫

ΩA

wh ⋅ ρdb dΩ ∀wh ∈ Ṽh ,
∫
ΩA

δεh ⋅ εh dΩ − ∫
ΩA

δεh ⋅ (Eε ⋅uh) dΩ = 0 ∀δεh ∈ S̃h ,
∫
ΩA

δκh ⋅κh dΩ − ∫
ΩA

δκh ⋅ (Eκ ⋅uh) dΩ = 0 ∀δκh ∈ S̃h ,

(6.35a)

(6.35b)

(6.35c)

where the discrete normal forces and bending moments, nh and mh, following from
(6.18), are:

nh = dCεh , mh = d3

12
Cκh . (6.36)

One can express (6.35) in the following matrix equations, using the format (6.5) for
explicit dynamics:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M ¨̂uh = Fext −Fint (εh, κh) ,
[Mε

Mκ
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ME

[ε̂h
κ̂h] = [Fε(uh)

Fκ(uh)] .
(6.37a)

(6.37b)

The mass matrix M corresponds to the first term of (6.35a), the external force vector
Fext is its right-hand side, and the internal force vector Fint is its second and third terms
that are the membrane and bending parts, respectively. Equation (6.37b) represents the
collection of both (6.35b) and (6.35c), after bringing the second term in each equation
to the right-hand side. We note that the matrices Mε and Mκ are equivalent, since we
use the same spline basis to discretize ε and κ, as well as δε and δκ (see (6.32) and
(6.33)).

6.4.3 Projection of strain fields

In the semidiscrete formulation (6.37) (or (6.35)), we observe that (6.37a) corresponds to
the equations of motion and (6.37b) corresponds to the L2 projection of the displacement-
based strain fields, Eε ⋅uh and Eκ ⋅uh, onto the space Sh of the independent strain variable
fields, εh and κh. In explicit dynamics calculations, updating the internal force vector,
Fint, in (6.37a) at each time step requires the solution of this projection to interpolate εh

and κh. As discussed in [188], discretizing the trial and test functions, εh and δεh, with
the standard B-splines and the modified approximate dual functions (6.34), respectively,
results in Mε that is an approximation of the identity matrix I. Row-sum lumping Mε

indeed yields the identity matrix I [132], [188], which also holds for Mκ, since these two
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(d) p = 5

Galerkin method, consistent projection matrix ⨉ Galerkin method, row-sum lumped projection matrix

Petrov-Galerkin method, row-sum lumped projection matrix

Figure 6.5: Convergence of the relative L2 error in the projected function f(x) on a quarter circle
NURBS-curve, computed with different approaches.

matrices are the same. This necessarily means that row-sum lumping ME yields the
identity matrix I, and (6.37b) then becomes:

I [ε̂h
κ̂h] = [Fε(uh)

Fκ(uh)] or [ε̂h
κ̂h] = [Fε(uh)

Fκ(uh)] . (6.38)

Hence, we observe in (6.38) that the need for solving (6.37b) to update Fint is indeed
eliminated. We note that (6.38) also eliminates the static condensation step in reformu-
lating the mixed formulation to the displacement-based formulation.

Remark 6.4.1. When using the standard Galerkin method, ME can also be row-sum
lumped to avoid solving a system for strain projection (6.37b) [221], [222]. While the
computational cost becomes comparable to our approach, the accuracy is severely affected

146



(to be illustrated in the following).

To illustrate the approximation power of the Petrov-Galerkin approach, we plot the
convergence of the relative L2 error in the projection of a function f(x) = sin(x) cos(x)
on a quarter circle NURBS-curve, computed with quadratic, cubic, quartic, and quintic
discretizations in Fig. 6.5. We compare the accuracy and convergence behavior ob-
tained with the standard Galerkin method with consistent projection matrix (black),
the Galerkin method with row-sum lumped projection matrix (red), and our Petrov-
Galerkin method with row-sum lumped projection matrix (blue). We observe that the
Petrov-Galerkin approach leads to results that are several orders of magnitude more ac-
curate than the Galerkin approach with lumped strain projection. It achieves the same
optimal convergence rate as the Galerkin method with consistent projection matrix, but
at a slightly higher error level. We also see that the accuracy of the projection with the
Galerkin method is significantly affected by row-sum lumping, limiting the convergence
rate to second order irrespective of the polynomial degree of the spline basis.

6.4.4 Higher-order accurate mass lumping

In addition to lumping the strain projection matrix, we adopt the higher-order accurate
mass lumping scheme introduced in [132], [188] when using our Petrov-Galerkin mixed
formulation. Hence, we row-sum lump the mass matrix M of (6.37a), which again
yields the identity matrix. This eliminates the need for matrix inversion and preserves
higher-order spatial accuracy in explicit dynamics [132], [188]. When it comes to strong
Dirichlet boundary conditions, we use the new boundary treatment recently introduced
in [132], which preserves the approximate bi-orthogonality for the complete system and
allows row-sum lumping of the entire mass matrix without compromising higher-order
accuracy.

6.4.5 Computational cost

The computational cost in explicit dynamics primarily depends on the critical time step
size, the number of quadrature points, and the evaluation of the internal force vector per
quadrature point. We expect that the first two aspects do not differ significantly between
the isogeometric Galerkin method and our isogeometric Petrov-Galerkin method. In
this work, we will remove spurious outlier modes, see Section 6.3.4 [122], to increase the
critical time step size. We will show that it allows a time step that is four or five times
larger than without outlier removal, which directly translates in an equivalent speed-
up. As for the number of quadrature points, we refer to advanced quadrature schemes
for spline discretizations that significantly reduce the number of quadrature points with
respect to standard Gauss quadrature per Bézier element [133], [171], [212]. In this work,
we will apply the optimal rules presented in [133] that provide the minimum number of
points at full accuracy. We will use these rules in the sense of reduced quadrature, using
the rule that corresponds to the spline basis of one degree lower, which was shown to
maintain full accuracy in [133].
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For explicit dynamics computations based on mixed formulations such as (6.37) (or
(6.35)), given a lumped mass matrix, an important additional factor that affects the
computational cost is the solution of the strain projection equation (6.37b). One can
mitigate this cost factor via lumping of the projection matrix ME on the left-hand side
(see e.g. [221], [222]). For the standard Galerkin method, however, the lumping of the
projection matrix impedes higher-order accuracy, see the L2 projection example shown
in Section 6.4.3. In this work, we apply the modified approximate dual functions as test
functions, which enables higher-order accurate row-sum lumping, without compromising
higher-order accuracy. Approximate dual test functions in conjunction with row-sum
lumping eliminates the need for solving the system of projection equations. Instead, we
obtain an explicit expression of the strain fields, which can be directly employed in the
evaluation of the internal force vector in the equations of motion. The discrete equations
of motion themselves can be solved explicitly, without loss of accuracy, due to the same
combined mechanism of approximate dial functions with subsequent row-sun lumping
that leads to a diagonal mass matrix, as already demonstrated in [132], [188]. In the
framework of the current mixed formulations, applying this mechanism to both systems
is therefore crucial to ensure that the solution costs of all components are of the same
order, and that the cost and memory advantages of the lumped mass matrix are not
spoiled by a potentially higher-order solution cost of the strain projection system, with
a system matrix to be stored.
As for the cost of the evaluation of the internal force vector, we need to have a closer

look at the Petrov-Galerin scheme, as already outlined in [188]. Just as standard B-
splines (or NURBS), the modified approximate dual basis functions can be cast into
a Bézier or Lagrange extraction format per element [213], [214]. In a Petrov-Galerkin
sense, bilinear stiffness forms are not symmetric, as we are using different test and trial
functions on the right-hand side. In explicit dynamics, this is not an issue per se, as
the stiffness matrix is never assembled, stored, or inverted. The central difference to
the standard Galerkin scheme, however, is that the support of the approximate dual
functions is up to 3p + 1 Bézier elements in each parametric direction, as compared to
only p + 1 for the corresponding B-spline. For two-dimensional elements, such as plates
or shells, due to the increased support of the basis functions of the discrete test space,
the internal force vector has eight to nine times as many entries, and we have to expect
approximately eight to nine times as many basis function related operations to compute
it. In practical scenarios, computationally costly routines to take into account nonlinear
material behavior, such as radial return algorithms in plasticity, do not depend on the
cost or number of the basis functions of the discrete test space, and hence the net
increase in computational cost per quadrature point will be much lower. This aspect
will require further attention in future studies, when production-level implementations
of our Petrov-Galerkin type method will be available.
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6.5 Numerical examples

In this section, we demonstrate the favorable numerical behavior of our Petrov-Galerkin
scheme. We first illustrate that the Hellinger-Reissner mixed formulation eliminates the
effect of membrane locking via spectral analysis of an Euler-Bernoulli circular ring and
via convergence studies for the three examples of the shell obstacle course, using B-
spline discretizations of degrees p = 2 through 5. We then demonstrate the higher-order
accuracy of our approach in explicit dynamics via examples of a curved beam and a
pinched cylinder. We compare the performance of our Petrov-Galerkin scheme with the
standard Galerkin method based on consistent or row-sum lumped mass and projection
matrices. We note that for conciseness, we refer to the entire system, including mass
and projection matrices, when we talk about mass lumping in the following.

6.5.1 Spectral analysis of an Euler-Bernoulli ring

Based on studies in [135], we leverage spectral analysis of a slender Euler-Bernoulli
circular ring to assess membrane locking. We note that the simplified version for one-
dimensional problems of the mixed formulation for Kirchhoff-Love shells (6.35) is the
Euler-Bernoulli mixed beam formulation (see e.g. [135]), which we employ for this
example. To this end, we recall the discrete eigenvalue problem corresponding to the
semidiscrete formulation (6.35a), expressed in matrix form:

KUh
n = (ωh

n)2MUh
n , (6.39)

where Uh
n denotes the vector of unknown coefficients corresponding to the nth discrete

eigenmode Uh
n , and ωh

n the nth discrete eigenfrequency. We note that the final stiffness
matrix K of the eigenvalue problem based on the Hellinger-Reissner mixed formulation is
obtained using static condensation. For more details of its derivation and spectral anal-
ysis in this context, we refer for instance to our previous paper [135] and the references
therein.

θ
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x′,w
y′, v

t

Young’s modulus E = 2 ⋅ 1011 N/m2,

Mass density ρ = 7.84 ⋅ 103 kg/m3,

Radius R = 1.0 m,

Beam width b = 0.1 m,

Thickness t = 10−3 m.

Figure 6.6: Closed circular steel ring modeled as a curved Euler-Bernoulli beam.
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(c) Displacement-based formulation, N = 64
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(d) Mixed formulation, N = 64

Galerkin, consistent mass Galerkin, row-sum lumped mass

Petrov-Galerkin, higher-order accurate lumped mass asymptotic spectrum (2048 ele)

Figure 6.7: Normalized eigenfrequency ωh
1 (associated with transverse modes) of the ring computed with

quadratic B-splines. The continuous lines show the asymptotic curves of each method and
case computed with 2,048 elements (N = 1,024).

Fig. 6.6 illustrates the studied ring that is assumed to be undamped and unconstrained,
for which an analytical solution of its eigenvalue problem exists [174], [228]. Based on
the results shown in [135], we consider only the accuracy of the discrete eigenfrequen-
cies corresponding to the transverse modes that are affected by membrane locking. We
compute the spectrum using periodic uniform B-splines and their corresponding mod-
ified approximate dual functions. We strongly enforce the periodicity as a boundary
constraint in both of these bases, as discussed in Section 6.3.3. To isolate the effect of
locking and unlocking on the spectral accuracy, we always perform a consistent strain
projection and use the full quadrature rule. We compare the discrete eigenfrequencies,
normalized by the exact one, ωh

1 /ω1, and plotted as a function of the normalized mode
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Figure 6.8: Petrov-Galerkin method with lumped mass matrix: normalized eigenfrequency (associated
with transverse modes) of the ring computed on a mesh of 64 elements (N = 32) for increasing
polynomial degrees p = 2 to 5.

number, n/N , obtained with the Hellinger-Reissner mixed formulation and the standard
displacement-based formulation. We employ for each formulation the standard Galerkin
consistent mass matrix (circles), the standard Galerkin row-sum lumped mass matrix
(squares), and our Petrov-Galerkin row-sum lumped mass matrix (triangles).

We start by comparing the spectrum obtained with the displacement-based and the
mixed formulations using quadratic spline functions, plotted on the left and right columns
in Fig. 6.7, respectively. We adopt the locking indicator introduced in [135], and hence,
include the asymptotic curve of each case that is computed on a mesh of 2,048 ele-
ments. On the one hand, we observe that the transverse frequencies obtained with the
displacement-based formulation show significant error levels with the spectrum being far
away from the asymptotic reference, irrespective of the mass lumping scheme. This error
level can be reduced by refining the mesh, as illustrated in Fig. 6.7c. On the other hand,
using the mixed formulation leads to a spectrum that matches well with its asymptotic
curve in all cases, irrespective of the mesh size. We conclude that membrane locking af-
fects the Galerkin and our Petrov-Galerkin methods in terms of spectral accuracy in the
same way. The locking effect does not depend on mass lumping and can be eliminated
by using the Hellinger-Reissner mixed formulation.
In [135], we reported the diverging frequencies corresponding to high modes with

increasing polynomial degree as another effect of membrane locking. Focusing on this
effect, we carry out a p-refinement study on a fixed mesh of 64 Bézier elements, using
quadratic, cubic, quartic, and quintic basis functions. We compare the spectra computed
with the displacement-based (left) and the mixed formulation (right) in Fig. 6.8. We
observe that for the dsiplacement-based formulation, the frequencies corresponding to
high modes, obtained with our Petrov-Galerkin approach, also diverge with increasing
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polynomial degree, as observed for the Galerkin method in [135]. Using the mixed
formulation removes this divergence and the error of these frequencies remains at the
same level. We conclude that our Petrov-Galerkin approach behaves in the same way as
the Galerkin method, exhibiting a distinct locking effect on the high modes, which can
be removed by using the mixed formulation.

6.5.2 Shell obstacle course

To illustrate that our Petrov-Galerkin mixed formulation with mass lumping of the pro-
jection matrix effectively removes membrane locking and achieves comparable accuracy
to the Galerkin mixed formulation with a consistent mass matrix in the projection, we
consider the three elastostatic benchmarks of the shell obstacle course [229]. We note
that to ensure that we isolate locking and unlocking and exclude the influence of other
potential error sources, we apply the full instead of a reduced quadrature rule [133].

Scordelis-Lo roof

R 40°
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rigid diaphragm

L
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z

E = 4.32 ⋅ 108

ν = 0.0
R = 25
L = 50
d = 0.25
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z

Figure 6.9: Scordelis-Lo roof constrained by rigid diaphragms and subjected to its self-weight of 90.0 per
unit area. The deformations are illustrated with displacements scaled by a factor of 10.

The first example is the Scordelis-Lo roof subjected to its self-weight of 90.0 per
unit area, illustrated in Fig. 6.9a. For discretization, we exploit the symmetry and
model only a quarter of the structure marked in blue. Fig. 6.9b illustrates the deformed
configuration, computed with our Petrov-Galerkin mixed formulation and cubic splines
on a 16 × 16 mesh.

For quadratic and cubic basis functions, we first plot the convergence of the normalized
displacement at the midpoint of the free edge in Fig. 6.10, where reference solutions
exist, see e.g. [48], [229]. We observe that the Galerkin displacement-based formulation
leads to less accurate results on coarse meshes, likely a result of membrane locking. This
effect is reduced with increasing polynomial degree and eliminated when using the mixed
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Figure 6.10: Scordelis-Lo roof : Convergence of the normalized vertical displacement at the midpoint
of the free edge, computed with different formulations.

formulation. Consistent with the observations above, we see that the Galerkin mixed
formulation using a lumped mass matrix in the strain projection results in significantly
larger errors in the deformation.
We then carry out uniform h-refinement using the sequence of 3, 6, 12, and 24 elements

per edge and smooth B-splines of degree p = 2 through 5. In Fig. 6.11, we plot the
convergence of the relative error in the H2 semi-norm in the stress resultant m12. As a
reference, we compute an overkill solution with the Galerkin mixed formulation on a mesh
of 128 × 128 Bézier elements, using smooth B-splines of degree p = 7. We compare the
error obtained with the Galerkin displacement-based formulation (black), the Galerkin
mixed formulation with either a consistent (red) or lumped (green) mass matrix in the
strain projection, and our Petrov-Galerkin mixed formulation (blue) with a lumped mass
matrix in the strain projection. Focusing on the two Galerkin methods, we observe in
Fig. 6.11 that the displacement-based formulation shows a slightly higher error level
on coarse meshes, but converges to the same error level at the optimal rate of O(p −
1) [137], [138] when the mesh is refined. We can also see that the error difference
on coarse meshes is reduced with increasing polynomial degree. These observations
indicate the well-known effect of membrane locking on the accuracy and convergence
behavior. Comparing the red and the green curves, i.e. the results obtained with the
Galerkin mixed formulation with a consistent and lumped mass matrix in the strain
projection, respectively, we see that the latter leads to significantly larger errors and a
linear convergence, irrespective of the polynomial degree. This is consistent with the
observations above and illustrates the dominating impact of mass lumping in the strain
projection on the accuracy and convergence of the corresponding discretization. Focusing
on our Petrov-Galerkin mixed formulations (blue) and the Galerkin mixed formulation
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Figure 6.11: Scordelis-Lo roof : Convergence of the relative error in H2 semi-norm in the stress resul-
tant m12, computed with different formulations.

with a consistent mass matrix in the strain projection (red), we observe that the former
shows a slightly higher error level than the latter, nevertheless, has the same order of
magnitude and converges to the same error when the mesh is refined.

Pinched cylinder

The second example is a pinched cylinder subjected to two opposite unit loads in the mid-
dle, illustrated in Fig. 5.20a. We again exploit the symmetry and model only one-eighth
of the structure marked in blue. Figure 5.20b illustrates the deformed configuration,
computed with our Petrov-Galerkin mixed formulation and cubic splines on a 16 × 16
mesh.
For quadratic and cubic basis functions, we plot the convergence of the normalized
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Figure 6.12: Pinched cylinder constrained by rigid diaphragms. The deformations are illustrated with
displacements scaled by a factor of 3 ⋅ 106.
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Figure 6.13: Pinched cylinder: Convergence of the normalized displacement under the load, computed
with different formulations.

displacement at point A under the pinching load in Fig. 6.13, for which reference solu-
tions exist, see e.g. [48], [229]. We also observe less accurate results on coarse meshes
when using the Galerkin displacement-based formulation (black), likely due to membrane
locking. Increasing the polynomial degree or using the mixed formulation improves the
accuracy and the convergence. We see that, in contrast to the Scordelis-Lo roof above,
the cylinder requires finer meshes to achieve the same accuracy. Focusing on the results
obtained with the Galerkin mixed formulation with a lumped mass matrix in the strain
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Figure 6.14: Pinched cylinder: Convergence of the relative error in H2 semi-norm in the stress resul-
tant m12, computed with different formulations.

projection (green), we again observe significantly larger errors in the displacements. The
results do not seem to converge to the reference value when the mesh is refined, but to
a larger value.
We also carry out the same uniform h-refinement study as above and plot the conver-

gence of the relative error in the H2 semi-norm in the stress resultant m12 in Fig. 6.14.
We use an overkill solution computed with the Galerkin mixed formulation on a mesh
of 128× 128 Bézier elements, using smooth B-splines of degree p = 7. We again compare
the four aforementioned approaches. Focusing on the Galerkin mixed formulation with
either a consistent (red) or a lumped (green) mass matrix in the strain projection, we ob-
serve the same dominating error due to mass lumping, which leads to significantly larger
errors. Our Petrov-Galerin mixed formulation (blue) exhibits a slightly increased error

156



level under refinement compared to the Galerkin mixed formulation with a consistent
mass matrix in the strain projection (red).
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Figure 6.15: Hemispherical shell fixed at the top. The deformations are illustrated with displacements
scaled by a factor of 20.
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Figure 6.16: Hemispherical shell: Convergence of the normalized radial displacement under the load,
computed with different formulations.

The third example is a hemispherical shell subjected to two opposite loads in the xy-
plane, illustrated in Fig. 6.15a. We also exploit the symmetry and model only a quarter
of the structure marked in blue. Figure 6.15b illustrates the deformed configuration,
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Figure 6.17: Hemispherical shell: Convergence of the relative error in H2 semi-norm in the stress
resultant m12, computed with different formulations.

computed with our Petrov-Galerkin mixed formulation and cubic splines on a 16 × 16
mesh.
For quadratic and cubic basis functions, we again plot the convergence of the nor-

malized radial displacement at the pinched point under the load in Fig. 6.16, where
reference solutions exist, see e.g. [48], [229]. Similarly to the Scordelis-Lo roof and the
pinched cylinder, we observe that the Galerkin displacement-based formulation (black)
leads to less accurate results on coarse meshes, likely due to membrane locking. This
locking effect is reduced with increasing polynomial degree and eliminated when using
the mixed formulation. Consistent with the observations above, we see that using the
Galerkin mixed formulation with a lumped mass matrix in the strain projection (green)
leads to significantly overestimated displacement that does not seem to converge to the

158



reference value when the mesh is refined.
We again carry out uniform h-refinement as above and plot the convergence of the

relative error in the H2 semi-norm in the stress resultant m12 in Fig. 6.17. As a ref-
erence, we again compute an overkill solution as above. We observe that in contrast
to the Scordelis-Lo roof and the pinched cylinder, the Galerkin displacement-based for-
mulation (black) leads to larger errors on coarse meshes than the mixed formulation
with a consistent mass matrix in the strain projection (red). Particularly in the case of
quadratic spline functions, we see a pre-asymptotic plateau, which indicates a typical
effect of membrane locking. This effect is reduced with increasing polynomial degree or
eliminated when using the mixed formulation. Focusing on the results obtained with the
Galerkin mixed formulation with a lumped mass matrix in the strain projection (green),
we again observe significantly larger errors that do not seem to converge to the reference
value. Focusing on our Petrov-Galerkin mixed formulation (blue), we see that it leads
to approximately the same error as the Galerkin mixed formulation with a consistent
mass matrix in the strain projection (red).

6.5.3 A vibrating curved Euler-Bernoulli beam
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Figure 6.18: Beam-like shell model (circular cantilever). The displacements in (b) are scaled by a factor
of 5.

Our first example in explicit dynamics is a vibrating circular beam that is modeled by
a shell and subjected to a constant unit force at the free end, as illustrated in Fig 6.18a.
Assuming small deformations, we can construct the following analytical solution from
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Figure 6.19: Circular beam-like shell: convergence of the relative L2 error in the displacement solution
at t = T .

Euler-Bernoulli beam theory:

u(θ, t) = ⎛⎜⎜⎜⎝
F
2 (R3

EI − R
EA) sin2(θ)
0

F
2 (R3

EI + R
EA) θ − F

4 (R3

EI − R
EA) sin(2θ)

⎞⎟⎟⎟⎠ cos(2π
T

t) , (6.40)

from which the initial and boundary conditions directly follow. We perform uniform
mesh refinement in the arc length direction, using a sequence of 2, 4, 8, 16 and 32 elements
and one Bézier element in y-direction, using smooth splines of degrees p = 2 through
5. We apply the central difference method for explicit time integration, simulating a
full period of T = 0.1 s of the vibration history. We estimate the critical time step
∆tcrit = 6 ⋅10−6 after removing the outliers on the finest mesh of 32 elements with quintic
basis functions, which increases by almost a factor of four compared to the critical time
step without outlier removal. We choose a time step of ∆t = 4 ⋅ 10−6 s. To reduce the
computational cost, we apply reduced quadrature [133], as discussed in Section 6.4.5.
Figure 6.18b illustrates the solution snapshots obtained with our Petrov-Galerkin mixed
formulation using quadratic spline functions and 16 Bézier elements at five different time
instants.
Figure 6.19 illustrates the convergence behavior of the relative L2 error in the dis-

placements for the Galerkin mixed formulation with a consistent mass matrix (crosses),
the Galerkin mixed formulation with a row-sum lumped mass matrix (triangles), and
our Petrov-Galerkin method with a lumped mass matrix (circles). In general, we do
not observe any pre-asymptotic plateau, but the errors converge right away on coarse
meshes, asserting the expected behavior of locking-free discretizations. On the one hand,
we observe that our approach achieves the same optimal accuracy under mesh refine-
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ment as the Galerkin method with a consistent mass matrix. Thus, the accuracy of our
Petrov-Galerkin method based on test functions discretized by modified approximate
dual functions is not affected by row-sum mass lumping. On the other hand, we observe
that the accuracy of the Galerkin method is significantly affected by mass lumping, lim-
iting its convergence to second order irrespective of the polynomial degree of the spline
basis.

6.5.4 Explicit dynamics of a pinched cylindrical shell

We now focus on the explicit dynamics simulation of the pinched cylinder illustrated in
Fig. 5.20, involving finite deformations, with the following parameters: Young’s modulus
E = 3 ⋅ 104, Poisson’s ratio ν = 0.3, mass density ρ = 7.8 ⋅ 10−9, radius R = 100, length
L = 200, and thickness d = 1. The pinching force is linearly increased from zero to
Pmax = 4 ⋅ 103 during a simulation time of T = 1/30 s. We estimate the critical time step
of ∆tcrit = 1 ⋅10−6 s after removing the outliers on a fine mesh of 32 elements with quintic
splines, which is increased by almost five times compared to the one without outlier
removal. We subsequently choose a time step of ∆t = 2 ⋅ 10−7 s, with a safety factor of
5 for this geometrically nonlinear problem, as discussed in Section 6.2.2. We apply the
reduced quadrature rule discussed above.
To assess our Petrov-Galerkin mixed formulation, we compare its displacement re-

sponse with the one obtained with the Galerkin mixed formulation and a row-sum
lumped mass matrix. In Fig. 6.20, we plot the deformed configuration for half the
cylinder, when Pmax is reached, obtained with quadratic, cubic, quartic, and quintic
basis functions on a mesh of 20 × 20 Bézier elements. As a reference, we also show
the solution commonly used in the literature [208], which is obtained with the Galerkin
displacement-based formulation and a consistent mass matrix on a much finer mesh of
32 × 32 Bézier elements. This resolution is known to be adequate for this problem and
guarantees that membrane locking is controlled. We observe that our Petrov-Galerkin
approach with mass lumping (right column) leads to accurate and stable results that
agree well with the reference solutions (left column). While it seems to deliver an ac-
curate solution for p = 2, the Galerkin method with a row-sum lumped mass matrix
(middle column) leads to diverging and unstable solutions for larger polynomial degrees.
In Fig. 6.21, we plot the load-deflection curve at point A under the pinching load

(see Fig. 5.20) obtained with different mesh sizes. We compare our Petrov-Galerkin
mixed formulation (blue) with the Galerkin mixed formulation (red), both with mass
lumping, computed with cubic (left column) and quintic basis functions (right column).
We also include the reference solution obtained with the Galerkin displacement-based
formulation with a consistent mass matrix on a 32×32 mesh (gray) as well as the quasi-
static solution (black). We observe that on the one hand, the load-deflection curves
obtained with our Petrov-Galerkin mixed formulation agrees well with the reference
solutions when the mesh is refined. For 24 × 24 elements, it shows larger deformations
before snap-through, but oscillates afterwards around the quasi-static solution. The
Galerkin mixed formulation with lumping yields good results yields accurate results for
cubics on the coarsest mesh, but the displacements response quickly diverges with mesh
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left: Galerkin, standard formulation, consistent mass, 32 × 32 elements

middle: Galerkin, mixed formulation, row-sum lumped mass

right: Petrov-Galerkin, mixed formulation, higher-order accurate lumped mass

Figure 6.20: Deformed configurations of the cylinder, computed with two different isogeometric schemes
(middle and right columns), computed on a mesh of 20 × 20 Bézier elements, obtained at
Pmax.
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(a) p = 3, 6 × 6 elements (b) p = 5, 6 × 6 elements

(c) p = 3, 12 × 12 elements (d) p = 5, 12 × 12 elements

(e) p = 3, 24 × 24 elements (f) p = 5, 24 × 24 elements

Static solution [218] Galerkin, displacement-based formulation, consistent mass, 32 × 32 elements

Galerkin, mixed formulation, row-sum lumped mass

Petrov-Galerkin, mixed formulation, higher-order accurate lumped mass

Figure 6.21: Load-deflection curves at point A (uz) of the pinched cylinder, computed with two different
isogeometric schemes.
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refinement and for quintics overall. This observation is consistent with the results seen
in Fig. 6.20 above. For p = 5 and a mesh of 24 × 24 Bézier elements, see Fig. 6.21f, the
computation obviously turns unstable.
As we did not observe the robustness issues for the Galerkin mixed formulation with

a consistent mass matrix in the strain projection, we conclude that in the case of non-
linear transient problems, the error induced by lumping of the strain projection matrix
could become so dominant that the analysis becomes unstable. In contrast, when mass
lumping is used, our Petrov-Galerkin method remains robust and accurate, and thus per-
forms significantly better, particularly for higher-order discretizations, than the Galerkin
method.

6.6 Summary and conclusions

In this paper, we described a Petrov-Galerkin mixed formulation based on the Hellinger-
Reissner principle that considers the displacements and strains as two independent vari-
able fields. When discretized with B-spline trial functions and associated modified ap-
proximate dual splines as test functions, it enables higher-order accurate lumping of
both the mass matrix and the strain projection matrix, which opens the door for efficient
higher-order accurate explicit dynamics simulations. The corresponding methodological
groundwork has been worked out for the mass matrix alone in two recent papers [132],
[188]. In addition, when used in the context of a Kirchhoff-Love shell model, it allows
for an effective elimination of membrane locking by discretizing the strains with basis
functions of one degree lower than the basis functions used for the displacements. We
combined our approach with outlier removal, increasing the critical time step size, and
employed a reduced quadrature rule.
We demonstrated via spectral analysis of a curved beam and convergence studies for

several shell examples that our Petrov-Galerkin approach leads to locking-free, higher-
order accurate and stable solutions in explicit dynamics, when both the mass and the
projection matrix are lumped. For geometrically nonlinear shells, our results illustrate
that our Petrov-Galerkin approach with lumping of the mass and projection matrices
is robust and accurate irrespective of the polynomial degree of the discretization, in
contrast to the Galerkin method with corresponding lumping, which became unstable
for meshes beyond p = 2. Our results thus confirm that lumping of both the mass matrix
and the projection matrix can be achieved without loss of accuracy and robustness in the
context of isogeometric explicit dynamics calculations. On the one hand, our method
thus enables robust locking-free analysis of beam and shell models. On the other hand,
our method enables the solution of the discrete equations of motion and the discrete
projection equations with the same computational complexity. Due to lumping, both
systems can be solved with a complexity of O(n) and O(k), where n and k denote the
number of discrete equations of motion and the number of discrete projection equations.
In contrast, if the system matrix of the projection equations could not be lumped, the
complexity of a Cholesky solver would be at best O(k3/2), and hence the cost of the
strain projection would quickly dominate the solution time for large meshes.
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Based on the current first study, there are various aspects that need to be explored
and investigated further. One is an in-depth performance test of our Petrov-Galerkin ap-
proach for isogeometric shells in more involved scenarios that feature typical challenges
in explicit dynamics calculations, including very large deformations, contact, nonlin-
ear material behavior, and their combinations. Another one is a detailed analysis of
the computational efficiency, in particular with respect to the computational cost of a
competitive matrix-free implementation that fully exploits additional technical oppor-
tunities of spline functions such as the exploitation of their tensor-product structure
[219]. Another question, for which no initial idea exists, is to extend the concept of the
approximate dual basis as a test function space to trimmed Bézier elements.
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7 Nonlinear dynamic analysis of shear- and
torsion-free rods using isogeometric
discretization, outlier removal and robust
time integration

This chapter is reproduced from:

T.-H. Nguyen, B. A. Roccia, R. R. Hiemstra, C. G. Gebhardt, and D. Schillinger. Non-
linear dynamic analysis of shear- and torsion-free rods using isogeometric discretization,
outlier removal and robust time integration, Submitted to Computational Mechanics,
2023 (under review).

Abstract

In this paper, we present a discrete formulation of nonlinear shear- and torsion-free rods
based on [134] that uses isogeometric discretization and robust time integration. Omit-
ting the director as an independent variable field, we reduce the number of degrees of
freedom and obtain discrete solutions in multiple copies of the Euclidean space (R3),
which is larger than the corresponding multiple copies of the manifold (R3

× S2) obtained
with standard Hermite finite elements. For implicit time integration, we choose a hybrid
form of the mid-point rule and the trapezoidal rule that preserves the linear angular
momentum exactly and approximates the energy accurately. In addition, we apply a
recently introduced approach for outlier removal [122] that reduces high-frequency con-
tent in the response without affecting the accuracy, ensuring robustness of our nonlinear
discrete formulation. We illustrate the efficiency of our nonlinear discrete formulation
for static and transient rods under different loading conditions, demonstrating good ac-
curacy in space, time and the frequency domain. Our numerical example coincides with
a relevant application case, the simulation of mooring lines.
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7.1 Introduction

Nonlinear rods have a plethora of applications in science and engineering, for example,
in the analysis of DNA molecules [230]–[232], the dynamics of cables [233], [234], the
mechanical analysis of Möbius bands [235], or the stability of elastic knots [236], [237],
among others. The shear-free model of rods is based on the assumption of cross-sections
that remain flat and perpendicular to the tangent vector associated with the curve that
describes the rod axis [238], [239]. In the context of linear rods, the Euler-Bernoulli and
Rayleigh models are well-established [240], [241]. For nonlinear rods, one of the most
widely used models is the so-called Kirchhoff rod, which can be considered a generaliza-
tion of the Rayleigh model [242]–[244].
In general, it is not possible to formulate the governing equation of non-shearable rods

through a truly unconstrained variational statement, particularly in dynamics problems,
due to the non-integrable nature of vanishing shear deformations [238], [239]. In [245],
Romero and Gebhardt developed an unconstrained variational formulation for this type
of rod, but rely on certain simplification hypotheses. Recently, in [134], Gebhardt and
Romero introduced a new unconstrained structural model for nonlinear initially straight
rods that do not exhibit shear and torsion. This model provides a variational formulation
for shear- and torsion-free rods and is a special case of the static and dynamic variational
principles for nonlinear Kirchhoff rods developed in [245]. Moreover, it can be considered
as the non-shearable counterpart of the torsion-free beam model introduced in [246].
Among the several approaches to solve the governing equations of non-shearable rods,

we can mention classical nodal and isogeometric finite elements [247]–[251]. One of
the key advantages of isogeometric finite elements is the higher-order smoothness of
spline basis functions, which naturally fulfills the C1 continuity required by the rod
formulation. As a consequence, they have broad applications in the analysis of beam
and shell structures, see e.g. [45]–[49], [252]–[254]. For the recently developed nonlinear
rod formulation in [134], the spatial discretization scheme applied so far is the one based
on nodal finite elements. It relies on cubic Hermite functions to represent the discrete
rod configuration, which in turn is decomposed into nodal positions and nodal directors.
We refer to this scheme hereinafter as the standard discretization scheme. The discrete
solutions obtained lie in the manifold (R3

× S2)n, where n is the number of discrete
nodes. This discretization scheme establishes the first attempt to numerically solve the
shear- and torsion-free Kirchhoff rod.
In this paper, we investigate an alternative spatial discretization scheme in the con-

text of isogeometric analysis (IGA). In particular, we discretize the rod configuration
in terms of the position of control points, without considering the director as an inde-
pendent variable field. Hence, the number of degrees of freedom can be reduced and
the discrete solution lies in multiple copies of the Euclidean space R3 which is a larger
space than the corresponding multiple copies of the manifold (R3

× S2) of the standard
scheme. We utilize the higher-order smoothness of spline functions that naturally ful-
fill the C1 continuity required by the rod formulation (and beyond). We demonstrate,
via static benchmarks of two- and three-dimensional cantilever rods, that isogeometric
discretizations and the standard scheme achieve a comparable level of accuracy. More-
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over, we illustrate for a geometrically nonlinear cantilever rod bent to a circle that the
convergence behavior is comparable to optimal convergence in the linear problem, but
sub-optimal in the H1 semi-norm and the L2 norm.
For time integration in our dynamic computations, we employ the same implicit inte-

gration scheme as [134], which is a hybrid combination of the midpoint and trapezoidal
rules. This type of implicit scheme has been shown to achieve second-order accuracy,
approximately preserve the energy, and exactly preserves the linear angular momentum
[255], [256]. We show, via dynamic benchmarks of two- and three-dimensional rods,
that the isogeometric discretization scheme is less robust than the standard one. We im-
prove its robustness via the strong approach of outlier removal introduced in [122]. We
illustrate, via an example of an unconstrained rod subjected to out-of-plane vanishing
forces, that the mass term associated to the inertia is irregular. Hence, the configuration-
dependent mass matrix of the studied formulation behaves irregularly and, therefore,
cannot be simplified to a constant matrix. Finally, we test our rod formulation for the
nonlinear behavior of swinging rods under conservative, non-conservative, and pulsating
forces. Our results indicate that our discrete isogeometric scheme is an efficient tool for
such nonlinear computations.
The structure of the paper is as follows: In Section 7.2, we briefly review the nonlinear

rod formulation. In addition, we derive the external forces induced by a surrounding flow,
considered in our numerical examples. In Section 7.3, we discuss discretization in space
with isogeometric finite elements, the resulting semi-discrete formulation, and differences
when compared to the standard discretization scheme based on Hermite functions. We
also briefly recap the implicit time integration scheme that is applied in our transient
computations. In Section 7.4, we numerically demonstrate the robustness of isogeometric
discretizations for two- and three-dimensional benchmarks and improve it via a strong
approach for outlier removal. In Section 7.5, we apply the isogeometric nonlinear rod
formulation to a swinging rubber rod subjected to different loading conditions, which
can be considered as a relevant application case for the simulation of mooring lines. In
Section 7.6, we summarize our results and draw conclusions.

7.2 Nonlinear shear- and torsion-free rods

In this section, we briefly review the formulation of nonlinear shear- and torsion-free rods
in a continuous setting introduced in [134]. We then describe and derive the external
forces induced by a surrounding flow that are considered in the numerical examples of
this work. We start with a brief recap of required fundamental equations and definitions
in differential geometry that are later utilized for the rod formulation.

7.2.1 Preliminaries

Consider an arbitrary regular one-parameter curve φ = φ(s) in the ambient space R3,
where s ∈ [0, L] is the arc-length coordinate. Since φ is regular, its first derivative with
respect to s, denoted as φ′, is non-zero, i.e. φ′ ≠ 0. The Frenet-Serret moving frame
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associated with the curve φ is then:

d ∶= φ′∣φ′∣ , t ∶= φ′′∣φ′′∣ , b ∶= φ′ ×φ′′∣φ′ ×φ′′∣ , (7.1)

where (⋅)′ denotes the first derivative with respect to the arc-length s, i.e. (⋅)′ = ∂(⋅)/∂ s,
and ∣⋅∣ ∶ R3 → R≥0 denotes the Euclidean vector norm. We refer to d as the director
of the curve φ. We note that t, and thus also b, is ill-defined at points where ∣φ′′∣ = 0,
while the director d is well-defined everywhere along the curve φ.
The director d lives in the unit sphere S2 ∶={d ∈ R3 ∣d ⋅ d = 1} that is a nonlinear, smooth, compact, two-dimensional manifold

[257], [258]. The tangent bundle associated with S2 is also a manifold, which is given
by TS2 ∶= { (d,c) ∈ S2 × R3 ,d ⋅ c = 0}. We recall that the covariant derivative of a
smooth vector field v ∶ S2 → TS2 along a vector field w ∶ S2 → TS2 is a vector field in
TS2 evaluated at d, given by:

∇w v ∶= ( I − d ⊗ d ) Dv ⋅ w, (7.2)

where I denotes the identity matrix, andDv the derivative of v. The covariant derivative∇w v is the projection of Dv in the direction of w onto the tangent plane at d [257],
[258].
For the rod formulation [134] considered in this work, we are particularly interested

in the covariant derivative of φ′ in the direction of d′. Applying (7.2), this covariant
derivative takes the following form [134]:

∇d′ φ
′ = ( I − d ⊗ d )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pd

φ′′ , (7.3)

where d′ is computed by taking the derivative of (7.1), i.e., d′ = 1
∣φ′∣ Pdφ′′. We refer toPd as the orthogonal projection operator.

7.2.2 Strong and weak forms

Let the curve φ now be the configuration of Kirchhoff rods, dependent on the arc-length
s and time t, φ = φ(s, t), (s, t) ∈ [0, L] × [0, T ], that are initially straight, shear-,
torsion-free, and transversely isotropic [134]. Next, let us consider the following set for
the rod configurations:

D ∶= {φ ∈ [C2(0, L)]3 , ∣φ′∣ > 0, φ(0, t) = 0, φ′ (0, t) = E3} , (7.4)

where C2(0, L) is the space of C2 continuous functions on (0, L), Ei, i = 1,2,3, are the
canonical Cartesian basis of R3. For simplicity, we adopt here the clamped boundary
condition at s = 0.

We recall, from [134], the strong form of the equations of motion governing the space-
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time evolution for the Kirchhoff rod:

n′ + ( 1∣φ′∣ d × ∇d′m)′ = Aρ φ̈ + ( 1∣φ′∣ d × Iρ∇ḋ ḋ)
′ − f ext , (7.5)

where n and m are the stress measures, defined as:

n = EA ϵ , m = EI κ , (7.6)

respectively, which are conjugated with the following strain measures:

ϵ ∶= φ′ − d , κ ∶= d × d′ . (7.7)

Here, Aρ and Iρ are the mass per unit length and the inertia density, respectively, i.e.
Aρ = ρA and Iρ = ρ I, where ρ is the mass density, A the cross-section area and I the
moment of inertia of the rod. f ext is the external generalized forces, and the dot notation
in the superscript denotes the derivative with respect to time t, i.e. ˙(⋅) = ∂(⋅)/∂ t. We
note that since the director d is well-defined along the rod φ ∈ D (see also (7.4)), as
discussed in the previous subsection, the strain measures (7.7) are also well-defined at
every point of the rod.
At time t = 0, we require the following initial conditions:

φ = φ0 on (s, t) ∈ [0, L] × [0] , (7.8a)

φ̇ = v0 on (s, t) ∈ [0, L] × [0] . (7.8b)

Additionally, we require at all times the following boundary conditions, for instance,
clamped-free ends:

on (s, t) ∈ [0] × [0, T ] ∶ φ = 0 , φ′ = E3 , (7.9a)

on (s, t) ∈ [L] × [0, T ] ∶ n + 1∣φ′∣ d × (∇d′m − Iρ∇ḋ ḋ ) = 0 , (7.9b)

1∣φ′∣ d × m = 0 . (7.9c)

According to [134], the weak form corresponding to (7.5) is then:

∫ S

0
δφ ⋅ (M (φ′) ∇̂φ̇ φ̇ + B (φ′, φ′′)T σ − f ext ) d s = 0 , (7.10)

where the mass operator,M, and the linearized strain operator, B, are given by:

M = M (φ′) ∶= Aρ I + (⋅)′T Iρ
1∣φ′∣2 Pd (⋅)′ (7.11)

B = B (φ′, φ′′) ∶= ⎡⎢⎢⎢⎢⎣
I − 1

∣φ′∣ Pd 0− 1
∣φ′∣2
[φ′′]× Hd

1
∣φ′∣ [d]×

⎤⎥⎥⎥⎥⎦ [
(⋅)′(⋅)′′] . (7.12)
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Here, σ ∶= [n m]T , Hd is the Householder operator1, Hd ∶= I − 2d ⊗ d, and [a]×
denotes the skew-symmetric matrix of a vector a = [a1 a2 a3]T , i.e.:

[a]× =
⎡⎢⎢⎢⎢⎢⎣

0 −a3 a2
a3 0 −a1−a2 a1 0

⎤⎥⎥⎥⎥⎥⎦
.

The field covariant derivative ∇̂(⋅) (⋅) is the extension of the covariant derivative (7.2).

7.2.3 Simplified model of a force field induced by a surrounding flow

z

E1

E2

E3

d

Pd(V∞ − φ̇)

Wind profile

rod configuration

V∞(z)

Figure 7.1: Schematic of a wind profile.

For the numerical examples included in subsequent sections, we consider forces induced
by a surrounding flow such as wind and water. Fig. 7.1 illustrates the schematic of an
exemplary wind profile acting on a rod configuration. We consider a simplified model
of such forces [259] that consist of three counterparts: the resulting force due to the
accelerated surrounding flow by the moving rod, which we refer to as the added mass
force, the tangential drag force, and the normal drag force. To this end, the resulting
force Ff per unit length at an arbitrary point of the rod is expressed as follows:

Ff = C1aN +C2 ∣VN ∣VN +C3 ∣VT ∣VT , (7.13)

where aN is the normal component of the relative flow acceleration with respect to the
rod, VN and VT the normal and tangential component of the relative flow velocity,

1The Householder operator is also known as a Householder reflection or elementary reflector.
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respectively, and the coefficients C1, C2 and C3 are given by:

C1 = 1

4
πCMρf ∅2 ,

C2 = 1

2
CNρf ∅ ,

C3 = 1

2
CTρf ∅ ,

(7.14)

where ρf is the mass density of the surrounding flow, and ∅ is the diameter of the
cylindrical cross-section of the rod. The coefficients CM , CN , and CT depend on the
Reynolds number and are commonly determined experimentally [259].
To determine the forces acting on a rod segment of length ds due to the added mass,

normal and tangential counterparts, it is necessary to describe the relative flow acceler-
ation and velocity in terms of the ambient motion of the fluid and the rod. Considering
the kinematic description of the rod given in the previous subsection, the quantities aN ,
VN , and VT can be expressed as follows:

aN = Pd a,
VN = PdV, and

VT = (d⊗ d)V,

(7.15)

where V = V∞ − φ̇, and a = a∞ − φ̈. The magnitude and direction of the free-stream
velocity V∞(z, t) is a function of the height z above the ground level (or below the sea
level if ocean structures are considered) and time t. The free-stream acceleration is the
time derivative of the free-stream velocity, i.e., a∞(z, t) = ∂

∂tV∞(z, t). Inserting (7.15)
into (7.13) and integrating along the rod, we obtain the resultant forces as follows:

Ff = C1 ∫ S

0
Pd (a∞ − φ̈)ds

+C2∫ S

0
∣Pd (V∞ − φ̇)∣ Pd (V∞ − φ̇)ds

+C3 ∫ S

0
∣(d⊗ d) (V∞ − φ̇)∣ (d⊗ d) (V∞ − φ̇)ds.

We note that coefficients Ci, i = 1,2,3, are assumed to be independent of the position
along the rod.

7.3 Isogeometric discrete rod model and implicit time
integration

In this section, we first discuss an alternative spatial discretization scheme of the rod
formulation (7.10), reviewed in the previous section. We employ isogeometric discretiza-
tions, which utilize the higher-order continuity of smooth spline functions fulfilling the
C1-continuity required by the considered rod formulation. We show that this alternative
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discretization scheme yields different semi-discrete formulations, reduces the number of
degrees of freedom, and leads to a larger solution space than the standard one based on
nodal finite elements using cubic Hermite functions. We then numerically demonstrate,
via a geometrically nonlinear rod bent to a circle, that the isogeometric discretizations
show optimal convergence in H2 semi-norm, and sub-optimal in H1 semi-norm and L2

norm. In addition, we briefly review the implicit time integration scheme employed in
this work. We close this section with a discussion of applying the strong approach of
outlier removal [122] to improve the robustness of isogeometric discretizations.

7.3.1 Spatial discretizations

The rod formulation (7.10) requires discretizations of at least C1-continuity. To fulfill
this, the standard discretization scheme based on nodal finite element employs cubic
Hermite functions and discretizes both the nodal spatial position and nodal director as
two variable fields [134]. In this work, we want to utilize the higher-order continuity
of smooth spline functions that allow lower polynomial degree and one can omit the
director as a variable field. Thus, we discretize the rod configuration, φ(s, t) ∈ D, and
its variation, δφ(s, t), by a weighted finite sum of m B-splines, Ni (s), with continuity
Cr and polynomial degree p [1], [2], where r is the continuity order, 1 ≤ r ≤ p − 1, as
follows:

φ(s, t) ≈ φh (s, t) = m∑
i

Ni (s)xi (t) = Nq , (7.16a)

δφ(s) ≈ δφh(s) = m∑
i

Ni (s) δxi = N δq . (7.16b)

Here, φh = φh (s, t) ∈ R3 denotes the discrete rod configuration in space, xi ∈ R3 is
the time-dependent position of the ith control point, q = q(t) ∈ (R3)m is the vector
of unknown time-dependent coefficients, and δφh(s), δxi, and δq their variations, re-
spectively. The discrete director d and strain/stress measures follow directly from their
definitions in (7.1) and (7.6)-(7.7), respectively.
Introducing (7.16) into the variational formulation (7.10), we obtain the following

semi-discrete formulation:

Find q(t) ∈ R3m, t ∈ [0, T ], such that ∶
∫ S

0
δq ⋅ (M(q)∇q̇ q̇ + B(q)T σh − NT f ext ) d s = 0 ∀ δq ∈ R3m .

(7.17)

Here, the mass matrix M and the matrix B, resulting from the operators (7.11) and
(7.12), respectively, are:

M = M(q) = AρN
T IN´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M1

+ Iρ
1

∣φ′h∣2 (N
′)T PdN

′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M2

(7.18)
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B = B(q) ∶= ⎡⎢⎢⎢⎢⎣
I − 1

∣φ′
h
∣ Pd 0

− 1

∣φ′
h
∣2
[φ′′h]× Hd

1
∣φ′

h
∣ [dh]×

⎤⎥⎥⎥⎥⎦ [
N′

N′′
] , (7.19)

with Pd = I − dh ⊗ dh, and Hd = I − 2dh ⊗ dh. The discrete stress measures σh are:

σh = [nh

mh
] = [EA ϵh

EI κh
] = [EA (φ′h − dh )

EI dh × dh
] . (7.20)

The term M(q)∇q̇ q̇ in (7.17), derived in [134], takes the following form:

M(q)∇q̇ q̇ = Mq̈ − 2 Iρ
1

∣φ′h∣2 (N
′)T ⎡⎢⎢⎢⎣

1∣φ′h∣ (dh ⋅ φ̇′h)Pd + dh ⊙ dh

⎤⎥⎥⎥⎦ q̇
+ 2 Iρ

1

∣φ′h∣3 (N
′)T [Pd ⊙ (φ̇′h ⊗ dh) ] φ̇′h , (7.21)

where ⊙ denotes the symmetric product between two vectors a1, a2, or two second-order
tensors A1, A2, that is:

a1 ⊙ a2 = 1

2
(a1 ⊗ a2 + a2 ⊗ a1 ) , (7.22a)

A1 ⊙ A2 = 1

2
(A1A2 + AT

2 AT
1 ) . (7.22b)

7.3.2 Isogeometric versus classical nodal finite elements

The isogeometric discretization scheme and the standard one based on nodal finite ele-
ment using cubic Hermite functions both are based on the isoparametric concept. When
the former applies cubic C1 B-splines, the basis functions of these two schemes span
the same function space. However, they belong to two different classes of finite element
methods. While the standard scheme employs classical nodal finite elements, the iso-
geometric scheme is in the context of isogeometric analysis, where we deal with control
points instead of element nodes [30]. Moreover, the former requires two variable fields
that are the nodal spatial position and the nodal director [134], while the latter only
considers the positions of the control points as a variable field. Hence, the isogeometric
scheme can reduce the number of degrees of freedom (dofs). In particular, a discretiza-
tion with ne elements using Cr B-splines of degree p leads to 3 [ne (p − r) + r + 1] dofs2.
Applying B-splines with maximum continuity Cp−1 leads to 3(ne + p) dofs, while the
standard scheme leads to 5(ne + 1) dofs. For example, employing B-splines of minimum
required polynomial degree of p = 2, that are C1 continuous, leads to a smaller number
of dofs of 3(ne + 2) for the same number of elements. Using cubic C1 B-splines that are
in the same function space as cubic Hermite functions, however, leads to more dofs of

2The number of basis functions is mk − p − 1, where mk is the number of knots in the knot vector.
We assume that the Cr B-splines of degree p are defined on an open knot vector with interior knots
repeated (p − r)-times.
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6(ne+1) for the same number of elements. Due to the different variable fields of these two
schemes, they lead to different solution spaces. Particularly, using the standard scheme
results in a discrete solution in the manifold φh ∈ (R3

× S2)m since the director belongs
to a unit sphere S2. This necessary means that the standard scheme also preserves the
manifold structure of the continuous rod. Isogeometric discretizations, however, lead

to a solution in the Euclidean space φh ∈ (R3)N , which is a larger space but does not
ensure the underlying manifold structure of the rod.

(a) In-plane loading (b) Out-of-plane loading

∆ Isogeometric scheme, quadratic C1 B-splines ⨉ Isogeometric scheme, cubic C1 B-splines

Standard scheme, C1 Hermite functions

Figure 7.2: Convergence of the relative error between the geometrically exact beam and the nonlinear
rod model [134], computed with different discretizations on a mesh of 40 elements, obtained
at the last load step.

We now numerically demonstrate that the isogeometric scheme, with a possibly smaller
number of dofs, and the standard one approximately achieve the same accuracy via
two- and three-dimensional static benchmarks from [134, Sec. 5.1]. We consider an
initially straight, transversely isotropic, clamped rod of 40 m with an axial stiffness of
EA = 100 N, bending stiffness of EI = 200 Nm2, and subjected to an in-plane and out-
of-plane loading. We compare the response obtained with isogeometric discretizations
using quadratic and cubic C1 B-splines, with classical nodal finite elements using cubic
C1 Hermite functions, and with a geometrically exact beam model including shear and
torsion deformations using linear C0 Lagrange polynomials. The results of the last two
approaches are provided by [134]. For the first two approaches, we discretize the rod
with the same number of 40 uniform elements with the force divided into 55 uniform load
steps. The number of dofs of the isogeometric scheme using quadratic, cubic B-splines,
and the standard scheme is 126, 246, and 205, respectively. We have chosen a tolerance
of 10−10 for the Newton-Raphson scheme, which required up to 6 iterations in all cases.
We obtained visually indistinguishable snapshots when compared to the standard scheme
(see [134, Fig. 1, 4]) in all cases. In Fig. 7.2, we compare the difference between the
geometrically exact beam formulation and the isogeometric beam formulation with the
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one between the former and the standard Hermite scheme. To this end, we plot the
relative L2 error between the deformed rod obtained with the geometrically exact beam
and the one obtained with the isogeometric (black and green curves), and the standard
scheme (blue), as a function of the shear stiffness GA employed in the geometrically exact
beam model. In [134], the authors employed this convergence study to point out that the
geometrically exact beam model converges to the model using their rod formulation when
GA increases, since the normal directors tend to become tangent to the deformed rod
axis with increasing GA. We adopt this study to illustrate that the isogeometric scheme
results in the same behavior as the standard one, as observed in Fig. 7.2 for both the
in-plane and out-of-plane loading cases, irrespective of the spline basis employed in the
isogeometric scheme. We note that the constant error level between the geometrically
exact beam and the nonlinear rod of [134] at large values of GA is due to shear and
torsion deformations considered in the former but not in the latter.
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Figure 7.3: Deformed configurations of a clamped rod bent to a circle at different load steps, computed
with quadratic C1 B-splines (p = 2) and a mesh of 40 elements.

To study the convergence behavior of the isogeometric scheme with mesh refinement,
we consider a geometrically nonlinear benchmark of planar roll-up. Fig. 7.3a illustrates
the initial rod subjected to a bending moment Mmax = 2EI π

L Nm at its free end, where
L is the rod initial length. We choose the same material parameters and value of L as in
the static benchmarks above. We illustrate the deformed rod in a sequence of six load
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Figure 7.4: Convergence of relative errors of the clamped rod bent to a circle computed with Cp−1 B-
splines of different degrees p (left column) and with Cr B-splines, 1 ≤ r ≤ p − 1 (right
column). The rate shown in figures on the right colum is the optimal rate of linear fourth-
order problems [138].
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steps, obtained with the isogeometric scheme using quadratic C1 B-splines (p = 2) in Fig.
7.3. We observe that, as expected, the deformed rod closes a circle in the last load step.
In the left column of Fig. 7.4, we demonstrate the convergence of the relative error in
L2 norm, H1, and H2 semi-norm, obtained with Cp−1 B-splines of different polynomial
degrees p, compared to the exact circle in the last load step. We included the optimal
convergence rate of linear fourth-order problems using isogeometric discretizations based
on [138]. We observe the same optimal convergence behavior obtained in H2 semi-norm
as the linear case for all degrees (see Fig. 7.4e). The error in the H1 semi-norm (see Fig.
7.4c), however, converges with the same optimal rate of linear cases only when using
even degrees, but with one order lower when using odd degrees. Focusing on the error
in the L2 norm, we see that the convergence rate is smaller than this optimal rate for all
p ≥ 3 (see Fig. 7.4a). Furthermore, cubic C2 B-splines illustrate the same convergence
rate as quadratic, and quintic functions the same as quartic ones. The different conver-
gence behavior between even and odd degrees is well-known in isogeometric collocation
methods [260], [261], however, to our best knowledge, is not yet established for nonlinear
problems.
To investigate the impact of the smoothness of spline basis functions on the conver-

gence behavior of isogeometric discretizations, we compute the relative error obtained
with Cr B-splines of different polynomial degrees p ≥ 3, where 1 ≤ r ≤ p − 1, and il-
lustrate this on the right column of Fig. 7.4. Different markers correspond to different
continuous orders r. We can see that the continuity of B-splines does not affect the
convergence rate in both the L2 norm and the H1 semi-norm for this planar roll-up ex-
ample. Focusing on the error in the H2 semi-norm, reducing the continuity of B-spline
basis functions decreases the convergence rate in cases of odd degrees (see the green and
purple curves in Fig. 7.4f), however, does not affect this rate in the case of even degree
(p = 4, red curve in Fig. 7.4f). Furthermore, based on empirical results, we observe
that increasing or decreasing the number of quadrature points also does not affect the
convergence behavior of the discretizations employed in this example. Further numerical
investigations of a linear simply supported nonlinear rod subjected to sinusoidal loads
shows the same optimal convergence behavior as in the linear cases for all error norms,
polynomial degrees, and continuity. Hence, we suggest that the convergence behavior in
the planar roll-up example results from the nonlinearity captured by the rod formulation
[134]. We note that, in [134], the authors showed that using cubic Hermite functions
with solutions in the manifold (R3 × S2)m results in the same optimal convergence be-
havior in the energy norm as obtained for linear problems. Therefore, we assume that
the manifold structure of the discrete solution space might affect the convergence of the
corresponding discretizations. A mathematical error estimate for the considered nonlin-
ear rod formulation [134] is outside the scope of this work and is postponed to future
work.

7.3.3 Time integration scheme

For time integration of our numerical examples in subsequent sections, we apply the
same implicit scheme as in [134], which is a hybrid combination of the midpoint and
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trapezoidal rules. This implicit scheme achieves second-order accuracy, approximately
preserves energy, and exactly preserves the linear and angular momenta [134], [262],
which we also verify via an example of an elastic pendulum in Appendix 7.A.

Remark 7.3.1. The mass matrix (7.18) of the considered rod formulation [134] is
configuration-dependent due to its second counterpart M2. Thus, an explicit time in-
tegration scheme would not be applicable.

Consider the semi-discrete formulation (7.17) in space evaluated at time instant tn+ 1
2
∈[tn, tn+1]:

∫ S

0
δq ⋅ (M(q)∇q̇ q̇ + B(q)T σh − NT f ext )

n+ 1
2

d s = 0 . (7.23)

We approximate the inertial term (M(q)∇q̇ q̇ )n+ 1
2

using an extended version of the

midpoint rule as follows:

(M(q)∇q̇ q̇ )n+ 1
2

≈ M (qn+1) q̇n+1 − M (qn) q̇n

∆ t

+ ⎧⎪⎪⎨⎪⎪⎩2 Iρ
1

∣φ′h∣3 (N
′)T [Pd ⊙ (φ̇′h ⊗ dh) ] φ̇′h ⎫⎪⎪⎬⎪⎪⎭n+ 1

2

,
(7.24)

where ∆t is the time step. The internal term(B(q)T σh )n+ 1
2

is approximated by using the trapezoidal rule as follows:

(B(q)T σh )n+ 1
2

≈ B (qn+1)T σh,n+1 + B (qn)T σh,n

2
. (7.25)

We also approximate qn+ 1
2
and q̇n+ 1

2
using the trapezoidal and midpoint rules, respec-

tively, as follows:

qn+ 1
2
≈ qn+1 + qn

2
, q̇n+ 1

2
≈ qn+1 − qn

∆ t
, (7.26)

and q̇n+1 as:

q̇n+1 ≈ 2

∆ t
(qn+1 − qn ) − q̇n . (7.27)

Introducing the approximations (7.24)-(7.27) into (7.23) leads to a system of discrete
nonlinear equations in space and time:

g (qn+1) = 0 , (7.28)

which can be normalized and solved using, for instance, the Newton-Raphson method,
for qn+1. q̇n+1 can be then obtained using (7.27). The configuration-independent exter-
nal forces are evaluated at time instant tn+ 1

2
, while the configuration-dependent forces
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induced by a surrounding flow, discussed in Section 7.2.3, are approximated using the
midpoint rule along with the approximations (7.26)-(7.27). We note that solving (7.28)
using the Newton-Raphson method requires each term in (7.24)-(7.25) and force terms
in cases of configuration-dependent forces to be linearized. We derive this and their
resulting counterparts to the tangent stiffness matrix in Appendix 7.B.

7.3.4 Outlier removal

Algorithm 9 Implicit time integration scheme employing the strong approach of outlier
removal of [122].

Input: q0, q̇0 (initial conditions)
Output: q (t), q̇ (t)
1: C = C (p, nele, continuity Cr, boundary conditions) ▷ Extraction operator of [122]
2: n = 0 ▷ index of the time step
3: for t in ∆ t ∶ ∆ t ∶ T do
4: q (t) = qn, q̇ (t) = q̇n

5: qn+1 = qn ▷ inital guess for Newton-Raphson scheme
6: ∆qn+1 = 1.0 ▷ initialize
7: while ∆qn+1 ≥ 10−10 do
8: r = −g (qn+1) ▷ residual vector, see also Eq. (7.28)
9: K = ∂ g

∂ qn+1
▷ Tangent stiffness matrix, see also Appendix 7.B

10: r = CT r, K = CT KC ▷ Removing outliers
11: ∆qn+1 = K−1 r
12: qn+1 + = ∆qn+1
13: q̇n+1 ≈ 2

∆ t (qn+1 − qn ) − q̇n ▷ Eq. (7.27)
14: end while
15: n+ = 1
16: end for

Our empirical results, discussed in the next section, indicate that the response ob-
tained with isogeometric discretizations consists of high-frequency contents, which lead
to unstable computations. Based on this observation, we propose to improve the ro-
bustness of these discretizations via the strong approach of outlier removal introduced
in [122], which entirely removes the spurious outlier modes corresponding to the highest
frequencies. The motivation to remove the outliers is based on the fact that in nonlinear
dynamic analysis, the modes are coupled. Thus, when the outliers are excited at a time
instance, other high-frequency modes might be excited at that time instance and later
ones as well. We note that the modes mentioned here and throughout this work in the
context of nonliner analysis are the ones corresponding to a linearized problem at a time
instance.
To remove outliers, the fundamental idea of [122] is to enforce additional boundary

constraints arising from higher-order eigenvalue problems into the space of B-spline basis
functions. A new subspace of spline basis functions, that are linear combinations of the
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original ones, is constructed via multiplication with the so-called extraction operator C.
The operator C is computed by finding a basis for the null space of a matrix including
boundary constraints, and thus leads to new basis functions that strongly satisfy these
constraints. For more details regarding the algorithm computing C, we refer to [122].
We note that there exist other approaches to remove outliers, either strongly [123] or
weakly [121], [124]. For an overview of these approaches, we refer to [122], [183] and
references therein.
The outlier removal approach [122] affects only the basis functions associated with

the boundary conditions and preserves important properties of B-splines, such as non-
negativity and minimum local support. We employ the strong approach of outlier re-
moval by applying the extraction operator C to both the right- and left-hand sides of
the semi-discrete formulation (7.17) at each time step. The operator C is computed once
before the integration procedure and remains constant during the time integration. We
note that in our computations, the essential boundary conditions are strongly enforced
via C. We illustrate the implicit time integration scheme including the outlier removal
approach in Algorithm 9.

7.4 Robustness of isogeometric discretizations

In this section, we numerically demonstrate, via two- and three-dimensional benchmark,
that the isogeometric discretization scheme is less robust than the standard one based
on nodal finite elements using cubic Hermite functions. We then discuss important
factors, such as the high-frequency contents of the response and round-off errors due to
floating-point arithmetic, which may negatively affect the robustness of the employed
discretization scheme. We show that employing the strong approach of outlier removal
[122], discussed in the previous section, improves the robustness of isogeometric schemes.
In addition, we discuss the influence of the configuration-dependent mass matrix (7.18)
on the accuracy of the response.

7.4.1 Two- and three-dimensional benchmarks

We consider the two dynamic benchmarks of [134, Sec. 5.2] and compare the responses
obtained with isogeometric discretizations, using cubic C1 and C2 B-splines, against
the standard scheme. In all cases, the rod is uniformly discretized into 20 elements,
which leads to 126, 69, and 105 dofs using these three approaches, respectively. We also
include the solution obtained with the geometrically exact beam model including shear
and torsion using linear C0 Lagrange polynomials as a reference, which is provided by
[134].
The first example consists of an initially straight, transversely isotropic, clamped rob
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Figure 7.5: Deformed configurations of a clamped rod subjected to an in-plane loading at different time
steps, computed with different discretizations and a geometrically exact beam model.

subjected to the following in-plane vanishing load at its free end:

F(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
0.5 tc

Fc , 0 ≤ t ≤ 0.5 tc ,
2
tc
( tc − t ) Fc , 0.5 tc < t ≤ tc ,

0 Fc , t > tc ,

(7.29)

where tc and Fc are chosen to be tc = 0.5 s and Fc = (0, 30, 0) N, respectively. Thus,
the rod deforms in the xy-plane. The rod has an initial length of 10 with an initial
director of (1, 0, 0), a circular cross-section with a diameter of 0.01 m, Young’s modulus
E = 2 ⋅ 1011 N/m2, and mass density ρ = 7900 kg/m3. We choose the same time step
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Figure 7.6: The energy of a clamped rod subjected to a vanishing in-plane loading, computed with
different discretizations and a geometrically exact beam model.
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Figure 7.7: Deformed configurations of an unconstrained rod subjected to a vanishing out-of-plane load-
ing at different time steps, computed with different discretizations and a geometrically exact
beam model.

of ∆ t = 0.005 s, a simulation time of 20 s, and a tolerance of 10−10 for the Newton-
Raphson scheme, as done in [134]. Fig. 7.5 illustrates the deformed configurations in
a sequence of eleven load steps, obtained with cubic C1 (black curves) and C2 (green
dashed curves) B-splines, with the standard scheme using cubic C1 Hermite functions
(blue dashed curves), and with the geometrically exact beam model using linear C0

Lagrange polynomials (red dotted curves). We note that for this example, after 16.5 s,
the computations using isogeometric discretizations become unstable and the Newton
scheme does not converge anymore, while the one using the standard scheme remained
stable during the computation time of 20 s. Nevertheless, we observe that during the
first 16.5 s the isogeometric scheme using cubic C1 splines and the standard one result
in virtually identical responses, since their basis functions span the same space and have
the same approximation power. Comparing these results to the one obtained with the
geometrically exact beam, we see that the difference between these two models increases
progressively in time. This may result from the fact that the geometrically exact beam
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model includes torsion and shear, while the employed nonlinear rod formulation does
not, as discussed in [134]. Focusing on the responses obtained with cubic C2 B-splines
(green dashed curves), we can see that these differ from those obtained with cubic C1

B-splines at certain time steps.

Remark 7.4.1. For this benchmark, computations using the isogeometric scheme with
quadratic C1 B-splines become unstable already after 3.5 s. Thus, in this work, we did
not apply quadratic B-splines for any dynamic benchmark.

To gain better insights, we illustrate the time history of the kinetic, potential, and
total energy resulting from the aforementioned approaches in Fig. 7.6. We observe that,
starting around 4 s, there is a phase shift between the responses obtained with cubic
C2 and C1 B-splines (Fig. 7.6a,b). In particular, using cubic C2 B-splines leads to a
smaller phase than C1 B-splines. This phase shift, thus, leads to different responses
between these two approaches observed in Fig. 7.5. Focusing on the responses around
16 s, before the energy, obtained with isogeometric discretizations, shoots up, indicat-
ing unstable computations, we see that high-frequency modes are excited and lead to
fluctuations in the response. Due to a smaller phase, we expect that this generally oc-
curs earlier when using cubic C2 B-splines than C1 splines. This necessary means that
increasing the continuity of spline basis functions reduces the robustness of the corre-
sponding discretizations. Nevertheless, before the computations become unstable, the
isogeometric scheme approximately preserves the same total energy as the standard one
and the geometrically exact beam model (Fig. 7.6c). We conclude that it is less robust
than the standard one based on nodal finite elements [134]. Using discretizations with
splines of higher continuity reduces the phase of the responses and, hence, may reduce
their robustness.
The second benchmark is an unconstrained rod of the same length and material as

the clamped rod studied above. The rod has a smaller cross-section with a diameter of
0.005 m and is subjected to the vanishing load (7.29), with tc = 0.5 s and Fc given by:

Fc = (−30, −30, 0)N at s = 0 , Fc = (30, 30, 0)N at s = L ,

Fc = (0, 0, −24)N at s = L/20 , Fc = (0, 0, 24)N at s = 19L/20 .
Consequently, the rod deforms freely in three-dimensional space. For this benchmark,
we also choose the same time step ∆ t = 0.001 s, a simulation time of 2 s, and a tol-
erance of 10−10 for the Newton-Raphson scheme, as done in [134]. Fig. 7.7 illustrates
the deformed configurations in a sequence of twelve load steps obtained with the afore-
mentioned approaches. For this example, after 1.35 s the computation using cubic C2

B-splines becomes unstable and the Newton scheme does not converge anymore, while
that using cubic C1 B-splines remains stable during the simulation time of 2 s. We have
similar observations as in the case of the clamped rod above: both the isogeometric
scheme using cubic C1 B-splines and the standard one show the same accuracy, while
the former using C2 B-splines leads to distinct responses. This is also demonstrated for
the energy in Fig. 7.8 and the three components of the angular momentum in Fig. 7.9.
We also observe a phase shift in the case of cubic C2 B-splines, before the high-frequency
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exact beam model.
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modes affect the response and the computation becomes unstable. We see that, for this
benchmark, using smoother splines of C2 also leads to less robust computation than
using C1, as discussed in the first benchmark of a clamped rod.

7.4.2 Robustness improvement with outlier removal

The results discussed in the previous subsection indicate that excited high-frequency
contents in the response reduce the robustness of isogeometric discretizations. To gain
better insights, we perform the Fast Fourier Transformation (FFT) of the kinetic energy
in the case of the clamped rod studied in the previous subsection, subjected to half of
the load during a longer simulation time, T = 100 s. To avoid noises in the transformed
signal, we consider the energy as long as it is smaller than a threshold of 40 J. Fig.
7.10 illustrates the FFT of the kinetic energy obtained with cubic C1 B-splines (blue
circles), where we can observe that not only one, but almost all high-frequency modes
are excited.
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100

101

Standard

Outlier removal

Figure 7.10: Fast Fourier transformation of the kinetic energy for the clamped rod in Fig. 7.5, subjected
to a half of the load during a longer time period of 100 s.

As discussed in Section 7.3.4, we employ the strong approach of outlier removal [122] to
remove the high-frequency contents in the response, such that the computations become
more robust. In Fig. 7.10, we include the kinetic energy (green circles) with the outliers
removed. We observe that almost all high-frequency contents are removed, as expected.
Fig. 7.11 shows the kinetic, potential, and total energy of the clamped rod studied in
the previous subsection. Here, we present a comparison among the energy obtained with
isogeometric discretizations using cubic C1 and C2 B-splines, employing outlier removal,
(black and green curves, respectively), the energy obtained with the standard scheme
[134] (blue dashed curve), and the geometrically exact beam model (red dashed curve).
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nele cubic Hermite functions
cubic C1 B-splines, cubic C1 B-splines,

standard outlier removal

∆ t = 0.0025 s

2 1.000000000000000 1.000000000000002 1.000000000000001
4 1.000000000000002 1.000000000000001 0.999999999999972
8 0.999999999999988 1.000000000000044 1.000000000000038
16 0.999999999999940 1.000000000000002 0.999999999999941
32 0.999999999999979 0.999999999999240 1.000000000000137

∆ t = 0.005 s

2 0.999999999999999 0.999999999999999 1.000000000000000
4 1.000000000000006 0.999999999999998 0.999999999999997
8 1.000000000000005 0.999999999999981 0.999999999999984
16 1.000000000000013 1.000000000000125 0.999999999999771
32 0.999999999999995 1.000000000000421 1.000000000000139

∆ t = 0.01 s

2 0.999999999999997 0.999999999999992 0.999999999999997
4 1.000000000000004 1.000000000000003 1.000000000000003
8 0.999999999999998 1.000000000000004 0.999999999999982
16 0.999999999999999 1.000000000000045 0.999999999999932
32 1.000000000000020 0.999999999999663 1.000000000000187

Table 7.1: Determinant of Ã in Eq. (7.34).

We observe that, as expected, the outlier removal approach improves the robustness
of the isogeometric scheme. We see that in the case using cubic C2 B-splines (green
curves), other remaining high-frequency modes are excited, as illustrated in the inset
figure in Fig. 7.11c. Hence, we expect that in this case, the computation will become
unstable at a later time, which might occur in the case using cubic C1 B-splines as well.
Moreover, we can see that the phase shift between cubic C1 and C2 B-splines is not
affected by the outlier removal approach. We thus assume that this phase shift results
from the different continuity of the spline basis functions. To investigate the effect of
the time step on the robustness, we also include the results obtained with cubic C1

B-splines using a smaller time step of ∆ t = 0.0025 s (purple curve) in Fig. 7.11. We see
that decreasing the time step also improves the robustness of the discretization scheme.
Focusing on the accuracy of the results, we observe that neither employing the outlier
removal approach nor decreasing the time step, negatively affects the accuracy of the
responses. We conclude that the robustness of the isogeometric scheme can be improved
using the strong approach of outlier removal or by decreasing the time step, without
compromising the obtained accuracy.
To gain a better understanding of how outlier modes and time step size affect the

robustness of the discretization scheme, we consider the free vibration of a linear one-
dimensional fourth-order problem such as an unconstrained Euler-Bernoulli beam. The
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Figure 7.11: The energy of the clamped rod subjected to a vanishing in-plane loading in Fig. 7.5, com-
puted with different basis functions, time steps, with and without outlier removal.
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semi-discrete equations of motion, in matrix form, are:

Mü + Ku = 0 , (7.30)

where M, K, and u are the global mass matrix, global stiffness matrix, and the unknown
displacement vector of the control points, respectively. Employing the implicit time
integration scheme discussed in Section 7.3.3, the inertial and internal elastic terms are
approximated at the time instant tn+ 1

2
as follows:

Mün+ 1
2
≈ Mu̇n+1 − Mu̇n

∆ t
, (7.31)

Kun+ 1
2
≈ Kun+1 + Kun

2
. (7.32)

Inserting these approximations into (7.30) and applying (7.27) to approximate u̇n+1, we
obtain the following system of equations:

[∆ tK 2M−2 I ∆ t I
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
AL

[un+1
u̇n+1

] = [−∆ tK 2M−2 I −∆ t I
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
AR

[un

u̇n
]

[un+1
u̇n+1

] = A−1L AR´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Ã

[un

u̇n
] . (7.33)

In linear cases, the stiffness and mass matrices, and thus Ã, do not depend on the
configuration, and remain constant during the time integration. Consequently, we can
compute the response at time step tn+1 in terms of the initial conditions as follows:

[un+1
u̇n+1

] = Ã . . . Ã´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
(n+1) times

[u0

u̇0
] = Ãn+1 [u0

u̇0
] . (7.34)

The requirement for (7.34) to have an unique solution is that the matrix Ã is a con-
vergent matrix [263]. This necessarily requires ∣det (Ã)∣ < 1. Table 7.1 illustrates the

determinant of Ã computed with cubic Hermite functions, and cubic C1 B-splines with
and without outlier removal, using different time steps and meshes. We observe that
the determinant is either smaller or larger than 1.0 with a tolerance in the range of[10−13, 10−15], i.e. machine accuracy. Such a problem can be attributed, in principle,
to round-off errors due to floating-point arithmetic, where the numerical deviation from
1.0 highly depends on the time step, mesh size, and basis functions, i.e. on the time
integration and spatial discretization schemes. We can also see that neither using cubic
Hermite functions, employing outlier removal, nor reducing the time step, guarantees
that ∣det (Ã)∣ < 1. Hence, there is no indication that one discretization scheme ensures
the existence of the solution at an arbitrary time step tn+1 for (7.34), and the other
schemes do not. For nonlinear problems, since Ã is configuration-dependent, it is not
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trivial to identify parameters and calibrate them in order to ensure ∣det (Ã)∣ < 1. In
addition, there might be other factors that are decisive for the existence of the solution
at tn+1, and thus for the robustness of the discretization scheme. This requires further
study and investigation, which we postpone to future work.

7.4.3 On the influence of the configuration-dependent mass matrix

Time [s]
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∣φ h(
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Figure 7.12: The relative change of the deformed configuration of an unconstrained rod computed with
different scaling factors α.

We now briefly discuss the behavior of the configuration-dependent mass matrix (7.18),
and whether this counterpart can be omitted. We recall that the mass matrix (7.18), M,
consists of two counterparts, M1 and the rotational counterpart M2. While M1 does
not depend on the current rod configuration and remains constant, M2 is configuration-
dependent. In most of the common nonlinear dynamic analyses, M2 is considered a small
perturbation and thus is neglected, which results in a constant configuration-independent
mass matrix.
To investigate the effect of M2 on the system response and whether M2 behaves as a

regular perturbation, we consider the unconstrained rod benchmark studied in Section
7.4.1, computed with the isogeometric discretization scheme using cubic C1 B-splines.
In particular, we scale M2 by a factor α ∈ [0, 1]. The mass matrix (7.18) then becomes:

M = M1 + αM2 . (7.35)

Fig. 7.12 illustrates the relative change in the L2 norm of the deformed rod, φh, during
the simulation time of 2 s. Different colors correspond to different values of α. We observe
that this relative change increases in time and with increasing α. This observation implies
that, for the studied rod, M2 does not behave as a regular perturbation, and thus should
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not be neglected. Mathematical proof and analysis of this counterpart of the mass matrix
is out of the scope of this paper and is postponed to future works.

7.5 Application to a swinging rubber rod

In this section, we apply the nonlinear rod formulation [134], discretized with isogeo-
metric discretizations, to a swinging rubber rod, which can represent for instance a sort
of mooring line in a offshore wind turbine or a oil platform. We consider conservative
and non-conservative forces such as gravity, forces induced by surrounding wind or wa-
ter, and pulsating forces. We demonstrate that our rod formulation is able to represent
the rod nonlinear behavior that is a combination of elastic vibrations and rigid body
oscillations around a static position and shape, which deforms differently at different
force frequencies. Based on our results in the previous section, we spatially discretize
the swinging rod with cubic C1 B-splines (p = 3) and improve its robustness with the
strong approach of outlier removal. We start with benchmarking our approach via an
example of a swinging rod under gravitational loading [264], [265].

7.5.1 Benchmarking

We consider an initially straight rod of length L = 1.0 m, with a circular cross-section,
a radius of 5 ⋅ 10−3 m, Young’s modulus E = 2 ⋅ 1011 N/m2, and mass density ρ = 1100
kg/m3. The rod is subjected merely to gravitational loading [264], which we simulate
with a direction of (0, −1, 0) while the initial director of the rod is (1, 0, 0). Thus, the
rod deforms in the xy-plane. We choose a time step of ∆ t = 0.01 s, a simulation time
of 2.4 s, and a tolerance of 10−10 for the Newton-Raphson scheme.
Fig. 7.13 illustrates the deformed configuration of the studied rod at twelve time

steps, and Fig. 7.14 shows the time evolution of the horizontal (ux(t) in blue) and the
vertical displacement (uy(t) in red) at the rod free-end. We observe in Fig. 7.13 that the
swinging rod behaves similarly to an elastic pendulum, and thus has a stable equilibrium
configuration when it is aligned with the y−axis and its free-end is located at (x, y, z) =(0,−1,0) m. Due to the highly nonlinear nature captured by the current formulation,
the rod exhibits large elastic rotations and displacements in time. Comparing these
results with those of [264, Fig. 8, 9], we observe an apparent difference after 2.0 s, for
instance, the deformed configuration at t = 2.4 s clearly distinguishes from that in [264,
Fig. 8]. We further compare the energy obtained with our approach, illustrated in Fig.
7.15, with that in [264, Fig. 10]. We see that the total energy and its counterparts show
approximately the same time history as the reference, with an exception of around 2.4
s. While the reference and our results both consist of high-frequency contents around
this time, the reference energy does not jump to a large value as ours. This is consistent
with different deformed configurations after 2.0 s observed in Fig. 7.13. We conclude
that despite the absence of outliers in our computation, our approach is less robust than
the scheme using classical nodal finite elements with cubic Hermite functions applied in
[264]. Nevertheless, it leads to the same behavior for the swinging rod, given that the
computation is stable.
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Figure 7.13: Deformed configurations of a swinging rubber rod due to gravity, computed with cubic C1

B-splines (p = 3) and outliers removed.
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Figure 7.14: The tip displacements of the swinging rubber rod in Fig. 7.13.

7.5.2 Dynamic response to wind forces

We now consider the same rod as in the previous benchmark, subjected to an additional
wind field with a wind profile illustrated in Fig. 7.16. The wind velocity has constant
values but changing direction along the z−axis, that is:

vwind (z) = v0 dwind (z) = v0 [E1 cos(β0 − 2β0 z

L
) + E2 sin(β0 − 2β0 z

L
)] , (7.36)
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Figure 7.15: The energy of the swinging rubber rod in Fig. 7.13.
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vwind(z)= v0 dwind(z)

β0

Figure 7.16: A wind profile with constant amplitude and rotating direction around the z-axis.

where v0 is the constant value of the wind velocity, dwind is the director of the wind
velocity, β0 is the angle of dwind with respect to the y−axis at z = 0, and L is the initial
length of the rod. For this example, we choose v0 = 10 m/s, β0 = 45○, a simulation time
of 30 s, and an initial angle of the rod with respect to the x−axis of −15○, that is an
initial rod director of d = (cos(π/12), 0, − sin(π/12)). We apply the same discretization
as in the previous benchmark. Fig. 7.17 illustrates the motion sequence of the swinging
rod under the considered loading. Due to the three-dimensional wind profile, the rod
shows out-of-plane deformations. Focusing on the configurations at t = 8.75 s and t = 10
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Fig. 7.16, computed with cubic C1 B-splines (p = 3) and outliers removed.
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Figure 7.18: The tip displacements of the swinging rubber rod in Fig. 7.17.

s, which are no longer visually distinguishable, we assume that the rod has approxi-
mately reached a steady state configuration. This behavior is also illustrated in the time
history of the rod tip displacement, demonstrated in Fig. 7.18, and of the energy of the
system, demonstrated in Fig. 7.19. We observe that after about 15 s, all displacement
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Figure 7.19: The energy of the swinging rubber rod in Fig. 7.17.

components remain approximately constant, which is consistent with approximately zero
kinetic energy at this time, i.e. the rod reaches an equilibrium configuration. Comparing
this with the behavior of the rod in the previous benchmark without wind force, we can
see that the wind force dampens the motion of the rod to an equilibrium configuration.
This damping characteristic, generally of aerodynamic forces, can be seen when it is
approximated by a Taylor expansion as follows:

Ff = ∂Ff

∂q
∣
q=0

q + ∂Ff

∂q̇
∣
q̇=0

q̇ + ∂Ff

∂q̈
∣
q̈=0

q̈ + ..., (7.37)

where the first term gives rise to the lift/thrust forces, the second term contains the
so-called damping forces, and the third term is related to the added mass forces. An

aerodynamic damping matrix can then be defined as Dfluid = − ∂Ff

∂q̇ ∣q̇=0, which is a func-

tion of the free-stream velocity, among other parameters. The aerodynamic damping
strongly depends on the magnitude of the free-stream velocity V∞ = ∣V∞∣. When V∞ is
below a critical velocity V C

∞ (subcritical condition), the damping is positive and the sur-
rounding flow absorbs the energy of the structure. When V∞ = V C

∞ (critical condition),
the damping is zero and then the surrounding flow does not absorb or supply the struc-
ture energy. When V∞ > V C

∞ (supercritical condition), the damping becomes negative
and the surrounding flow supplies energy to the structure, i.e. favoring the emergence
of fluid-structure interaction instabilities such as aeroelastic flutter. For the swinging
rod studied here, we are in a subcritical condition since the rod oscillation is damped
out over time. Focusing on the robustness of the employed discretization scheme, we ob-
serve that the wind force also dampens out the high-frequency modes, and thus improves
its robustness. We conclude that, given the subcritical condition, employing damping
forces is another approach to improve the robustness, particularly of the isogeometric
discretization scheme studied in this paper.
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7.5.3 Dynamic response to pulsating forces
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Figure 7.20: The mean value and the amplitude of the horizontal tip displacement ux of an aluminum
swinging rod at steady state, computed with cubic C1 B-splines (p = 3) and outliers removed.
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Figure 7.21: The amplitude of three force components induced by surrounding water at rest, integrated
over the aluminium swinging rod at steady state.

Our last example is a long rod submerged in water, which simulates a sort of mooring
line used in offshore wind engineering. To this end, we consider a combination of the
gravitational field, the surrounding water at rest, and a horizontal pulsating force applied
at the free end of the swinging rod. We choose a sinusoidal pulsating force that is:

F (t) = AF sin(ωF

2π
t) E1 , (7.38)
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Figure 7.22: Deformed configurations of an aluminum swinging rod at force frequencies of 0.88 Hz and
4.90 Hz, computed with cubic C1 B-splines (p = 3) and outliers removed.

where AF and ωF are the force amplitude and angular frequency, respectively. For this
example, we choose an amplitude Af = 350.0 kN, and different frequencies (ωF /2π)
ranging from 0.1 Hz to 8 Hz. The surrounding water is at rest, i.e. V∞ = 0 and a∞ = 0,
and the mass density of the surrounding water is ρf = 1000 kg/m3. In this example,
we consider an aluminium rod with an initial director d = (1, 0, 0), a length of 250 m,
a circular cross-section with a radius of 0.02 m, Young’s modulus E = 7 ⋅ 1010 N/m2,
and mass density ρ = 2700 kg/m3. We simulate the gravitational field with a direction
of (0, −1, 0), which allows the rod to deform only in the xy-plane. We compute this
example for 1000 s and 2000 s such that a steady state is observed during the last 100
s, which is identified as the response becomes periodic in time.
Fig. 7.20 illustrates the mean value and the amplitude of the horizontal displacement

ux at the free tip of the studied swinging rod after it reaches the steady state, as a
function of the force frequencies (ωF /2π). We observe that the mean value of the tip
displacement (Fig. 7.20a), which corresponds to the position, around which the rod
oscillates, i.e. the static equilibrium position, jumps at force frequencies smaller than
2.0 Hz and those larger than 5.0 Hz. It means that the equilibrium position and config-
uration change abruptly when the force frequency changes, which indicates a nonlinear
behavior of the rod in different frequency ranges. Focusing on the amplitude of the tip
displacement in Fig. 7.20b, we can see that after a steep increase at low frequencies, it
decreases with increasing force frequency and slightly jumps downwards around 4.9 Hz.
This relation between the amplitude and the force frequency can be explained based on
the linear theory. Consider a damped harmonic oscillator of mass m, spring stiffness
k, and damping coefficient b, subjected to a sinusoidal pulsating force, f0 sin(Ωt), of
frequency Ω and amplitude f0. It is well-known from classical vibration theory that the
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Figure 7.23: The tip displacements of an aluminum swinging rod computed for force frequencies of 0.88
Hz and 4.90 Hz.

response amplitude of this linear system is:

A = f0√
m(Ω2 − ω2

0)2 + b2Ω2
(7.39)

where ω0 = √k/m is the natural frequency of the system. We can see that for the
cases of Ω < ω0, increasing Ω increases the amplitude A, and for the cases of Ω > ω0,
increasing Ω decreases A. Since the studied nonlinear rod can be considered as a damped
(by considering the surrounding flow) distributed-parameter elastic pendulum subjected
to a pulsating force at its free end, a similar relation between the amplitude and the
force frequency is expected for both linear and the nonlinear cases. This supports our
observation in Fig. 7.20b, except for the jump at 4.9 Hz, which associates with the
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highest positive peak of the mean value in Fig. 7.20a.
To gain better insights into the rod behavior, in Fig. 7.22, we plot some deformed

configurations at different times for 0.88 Hz and 4.9 Hz, i.e. before and close to the
frequency value where the amplitude jumps. We observe that for both two frequencies,
the rod behavior is a combination of elastic vibrations and rotations as a rigid body
that oscillates around a static equilibrium position. While this equilibrium position is
along the vertical axis in the case of 0.88 Hz (Fig. 7.22a), it, as well as the equilibrium
configuration, changes in the case of 4.9 Hz (Fig. 7.22b), since the lower part of the rod
is bent to a horizontal segment, and the rod then oscillates around the new deformed
position. This behavior together with the amplitude jump is also observed in the time
history of the tip displacement, illustrated in Fig. 7.23 for 0.88 Hz and 4.9 Hz. We can
also see that both two displacement components oscillate over time, while their mean
value jumps to a value around 100 m in the case of 4.9 Hz. This is further reflected in the
relation between the pulsating force frequency and the amplitude of forces induced by
the surrounding flow, illustrated in Fig. 7.21. In Fig. 7.21, we illustrate the amplitude
Aω

f of three components of the resulting force induced by the surrounding flow (added
mass, normal drag, and tangential drag), integrated over the rod length once the rod
reaches the steady state, that is:

Aω
f (ωF ) = max

steady state
[f t

f(t)] − min
steady state

[f t
f(t)] ,

where the integrated force f t
f(t) is:

f t
f(t) = ∫ L

0
∣Ff(s, t)∣ ds ,

as a function of the pulsating force frequency. We observe that the amplitude of the
normal and tangential drag forces also jumps approximately at 4.9 Hz. In particular,
the normal drag drops, while the tangential drag jumps upwards, which is consistent
with the fact that the lower part of the rod is bent to a horizontal segment, i.e. only the
upper part is mainly affected by the norm drag, while the tangential drag is the dom-
inating force in the lower part. Regarding the robustness of the applied discretization
scheme, we did not obtain unstable computations and results containing high-frequency
contents. We conclude that different nonlinear behaviors of the swinging rod can be
represented and studied using the rod formulation [134], together with the isogeometric
discretization scheme, improved using outlier removal, and with an energy-momentum
preserving implicit time integration scheme. This has been shown to be a sufficiently
robust approach for studying nonlinear structures such as swinging rods modeling moor-
ing lines, which can be further investigated for complex behaviors such as parametric
resonances and chaotic behavior in future works.
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7.6 Summary and conclusions

In this paper, we explored the application of the nonlinear formulation [134] for rods
that exhibit only axial and bending deformations, using isogeometric spatial discretiza-
tions. Our results illustrate different convergence rates for odd and even polynomial
degrees, which is known from other isogeometric discretization methods, see e.g. [201],
[266] and the references therein. We suggest that the manifold structure of the solu-
tion space might be one key factor affecting the convergence rate of the corresponding
discretization scheme. We demonstrated computationally via dynamic benchmarks of
two- and three-dimensional rods that isogeometric discretizations are less robust than
the standard scheme using Hermite functions. Increasing the smoothness of spline basis
functions leads to a phase shift and reduces the robustness. We showed that robustness
can be improved via a strong approach of outlier removal [122] without compromising
the accuracy. Alternatively, reducing the time step or employing forces with damping
characteristics leads to more robust computations. We have shown that the robustness
is closely related to round-off errors due to floating-point arithmetic. In addition, we
demonstrated computationally via an unconstrained rod subjected to out-of-plane van-
ishing forces that the configuration-dependent mass matrix does not behave as a regular
perturbation and thus cannot be simplified to a constant matrix. Lastly, we applied
our nonlinear transient formulation to a swinging rubber rod subjected to gravity, forces
induced by a surrounding flow such as wind and water, and a pulsating force of different
frequencies. Our results also show that the isogeometric discretization scheme is robust
and reliable for such an analysis.
The results presented in this work open up several directions for future works. One

open question is the accuracy and convergence behavior of the discretization scheme
in nonlinear problems. Another question is the irregular behavior of the configuration-
dependent mass term that, to our best knowledge, is not yet proved analytically. This
is particularly interesting for choosing and developing an efficient and robust time in-
tegration scheme. It is also desirable to employ our nonlinear formulation with the
isogeometric discretization scheme in highly nonlinear problems with complex loads and
geometries.

Appendix 7.A

An elastic pendulum

To benchmark our implementation regarding the time integration scheme and to verify
that the chosen implicit time integration scheme achieves second-order accuracy, ap-
proximately preserves energy, and exactly preserves the linear angular momentum [134],
[262], discussed in Section 7.3.3, we consider the dynamics of a two degrees-of-freedom
elastic pendulum, illustrated in Fig. 7.24. Its configuration space is Dpen = R × SO(2),
where SO(2) is the special orthogonal group in two dimensions. For this pendulum, the
two degrees of freedom are the angular rotation with respect to the vertical axis, θ(t),
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Figure 7.24: Schematic of an elastic pendulum with two degrees of freedom.

and the axial deformation of the spring, η(t). Unit vectors E1 and E2 are the first two
canonical Cartesian bases of R3, L0, k, m, and g are the spring’s natural length, spring
stiffness, mass, and gravitational acceleration, respectively. We consider a simulation
time of 30 s and a time step ∆ t = 0.005 s.

t = 7.5 s t = 15 s t = 22.5 s t = 30 s

Total energy 26.824953231727577 26.824943982990575 26.824999851284034 26.824976045230380

Angular
momentum

−0.605000000000103 −0.605000000000105 −0.605000000000100 −0.605000000000120

Table 7.2: Total energy and the linear angular momentum of an elastic pendulum illustrated in Fig. 7.25.

We first consider the case of no gravitational acceleration (g = 0) and no external load
with the following initial conditions:

θ(t = 0) = 0 , η(t = 0) = 0.1 , (7.40a)

θ̇(t = 0) = −0.5 , η̇(t = 0) = 0.25 . (7.40b)

Fig. 7.25a-b illustrates the time evolution of the energy and the third component of the
angular momentum, j3. We note that for the studied pendulum, the first and second
components of the angular momentum are zero, and thus are not illustrated here. We
observe that both the total energy and j3 are virtually constant over the simulation
time. Table 7.2 shows their values at four snapshots. We can see that the total energy
is approximately preserved, while the angular momentum is exactly preserved up to a
tolerance of the machine accuracy. Fig. 7.25c-d shows the second precision quotient of
the response during the simulation time, which is computed to verify the implementation
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Figure 7.25: Energy, the third component of angular momentum and the second precision quotient of
the elastic pendulum in Fig. 7.24 with the initial conditions (7.40).

correctness of a numerical integration scheme and is defined as [267]:

QII = QII(t) = ∥u∆ t − u∆ t/2∥∥u∆ t/2 − u∆ t/4∥ , (7.41)

where u = u(t) is a time-dependent variable, and its subscripts, ∆t, ∆t/2, ..., denote
the time step employed to compute u. For well-implemented time integration schemes,
the precision quotient QII is approximately 2q, where q is the order of accuracy of the
integration scheme [267]. For our implicit scheme, q = 2. We note that our choice of the
second precision quotient instead of the first precision quotient is due to the lack of an
analytical solution for the studied elastic pendulum [267]. We observe in Fig. 7.25c-d the
expected value of 22 = 4 for QII , which verifies the correctness of our implementation.
We then consider the load case consisting of the gravitational field and the following
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Figure 7.26: Energy, the third component of angular momentum and the second precision quotient of
the elastic pendulum in Fig. 7.24, subjected to gravity and a parabolic wind profile, with
the initial conditions (7.43).

parabolic wind profile:

vw(x1 t) = x21
⎛⎝1.0 + 0.1 sin

⎛⎝ 1

50

√
k /m
2π

t
⎞⎠⎞⎠ E2 . (7.42)

We choose the following initial conditions of the pendulum:

θ(t = 0) = π/2 , η(t = 0) = 0.0 , (7.43a)

θ̇(t = 0) = 0.0 , η̇(t = 0) = 0.0 . (7.43b)

We observe in Fig. 7.26a-b that the total energy and angular momentum are no longer
preserved due to the presence of external forces, as expected. We can also see that
after approximately 17 s, the pendulum does not contain any kinetic energy, i.e. it
approximately achieves a static equilibrium state. The second precision quotient QII ,
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illustrated in Fig. 7.26c-d, also implies a second-order accurate time integration scheme
in this case. We conclude that the chosen implicit time integration scheme approximately
preserves the total energy, exactly preserves the angular momentum, and is second-order
accurate.

Appendix 7.B

Linearization

Preliminaries

We recall the semi-discrete formulation for the rod motions in Section 7.3.1, that is:

gd = ∫ S

0
(M(q)∇q̇ q̇ + B(q)T σh − NT f ext ) ds = 0 . (7.44)

Analogously, the variational formulation that describes the equilibrium of the rod is:

gs = ∫ S

0
(B(q)T σh − NT f ext ) ds = 0 . (7.45)

We employ a standard approach based on a Taylor expansion of (7.45) and (7.44) to
obtain the tangent stiffness matrix associated with gs and gd, respectively. To this end,
Taylor’s approximation for a vector function g(q, q̇, q̈) is given by:

g(q +∆q, q̇ +∆q̇, q̈ +∆q̈) = g(q, q̇, q̈) +Dg(q, q̇, q̈) ⋅ (∆q,∆q̇,∆q̈)
+D2 g(q, q̇, q̈) ∶ ((∆q,∆q̇,∆q̈)⊗ (∆q,∆q̇,∆q̈))
+O (∥∆q∥3, ∥∆q̇∥3, ∥∆q̈∥3, ..., ∥∆q̇∥2∥∆q̈∥, ...) ,

(7.46)

where Di(⋅), i = 1,2, ..., is a (i+1)-order tensor of type (0, i), and (∶) denotes the double-
contraction tensor operation. Assuming that the higher-order terms are negligible, we
obtain:

g(q +∆q, q̇ +∆q̇, q̈ +∆q̈) ≈ g(q, q̇, q̈) + ∂q g(q, q̇, q̈) ⋅∆q+ ∂q̇ g(q, q̇, q̈) ⋅∆q̇ + ∂q̈ g(q, q̇, q̈) ⋅∆q̈ ,
(7.47)

where ∂q(⋅), ∂q̇(⋅), and ∂q̈(⋅) denote partial derivatives with respect to q, q̇, and q̈,
respectively. Introducing (7.45) into (7.47) yields:

gs(q +∆q) ≈ gs(q) + ∂q [∫ S

0
(B(q)T σh − NT f ext ) ds] ⋅∆q

≈ gs(q) + [∫ S

0
∂q (B(q)T σh −NT f ext) ds] ⋅∆q ,

(7.48)
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and (7.44) into (7.47):

gd(q +∆q, q̇ +∆q̇, q̈ +∆q̈) ≈ gd(q, q̇, q̈) + ∂q [...] ⋅∆q + ∂q̇ [...] ⋅∆q̇ + ∂q̈ [...] ⋅∆q̈

≈ gd(q, q̇, q̈) + [∫ S

0
∂q (...)ds] ⋅∆q

+ [∫ S

0
∂q̇ (...)ds] ⋅∆q̇ + [∫ S

0
∂q̈ (...)ds] ⋅∆q̈ .

(7.49)

In tensor notation, derivatives with respect to a vector can be expressed as 3 ∂q(⋅) =
∂qi(⋅) ⊗Gi, where q = (q1, q2, ..., q3m)T , and {G1, ...,G3m} is an orthonormal basis for
R3m. We consider the three following tangent matrices resulting from (7.48) and (7.49):

KS = ∂qi(B(q)Ta)∣a=σh
⊗Gi +B(q)T∂qi(σh)⊗Gi ,

KF = ∂qi(NT f ext)⊗Gi + ∂q̇i(NT f ext)⊗Gi + ∂q̈i(NT f ext)⊗Gi ,

KM = ∂qi(M(q)∇q̇q̇)⊗Gi + ∂q̇i(M(q)∇q̇q̇)⊗Gi + ∂q̈i(M(q)∇q̇q̇)⊗Gi ,

(7.50)

where a ∈ R3m is a constant vector, KS , KF and KM are the so-called static tangent
stiffness matrix, force tangent stiffness matrix and mass tangent stiffness matrix, respec-
tively.

Static tangent stiffness matrix

The static tangent stiffness matrix KS consists of two terms: the first term resulting
from the derivative of the operator B(q) (geometric stiffness), and the second arising
from the derivative of vector σh (elastic stiffness), i.e., KS = Kg

S +Ke
S . We first recall

the discrete stress and strain measures from Section 7.3.1, which are:

σh = {nh

mh
} = [EA ϵh

EI κh

] = [EA I3 03
03 EI I3

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C(E,A,I)

{ϵh
κh
} .

(7.51)

Considering the discrete linearized strain operator B(q) = [B11 0
B21 B22

] in (7.19), we

3We note that Einstein’s summation is implied.
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compute the derivative of the sub-operators B11, B21, and B22, as follows:

∂qi [BT
11(q)a] ∣a=nh

= ∂qi [N′T (I − ∣φ′h∣−1Pd)a]∣
a=nh

=N′TA1 ∂qi(φ′h) ,
∂qi [BT

21(q)a] ∣a=mh
= ∂qi [N′T (∣φ′h∣−2Hd[φ′′h]×)a]∣a=mh=N′TA2 ∂qi(φ′h) +N′TA3 ∂qi(φ′′h) ,

∂qi [BT
22(q)a] ∣a=mh

= ∂qi [N′′T (∣φ′h∣−1 [dh]×)a]∣
a=mh

=N′′TA4 ∂qi(φ′h) ,
(7.52)

where:

A1 = 1

∣φ′h∣2 [2dh ⊙ nh − 3(dh ⋅ nh)dh ⊗ dh + (dh ⋅ nh) I] ,
A2 = − 2

∣φ′h∣3 [2 ([φ
′′
h]×mh ⊙ dh) + ([φ′′h]×mh ⋅ dh)(2Hd − I)] ,

A3 = − 1

∣φ′h∣2Hd [mh]× ,
A4 = 1

∣φ′h∣2 [mh]×Hd .

(7.53)

Applying the spatial approximation of φ(s, t) introduced in (7.16), we obtain:

∂qi(φ′h) = ∂qi ( dds(Nq)) =N′∂qi (q) =N′Gi ,

∂qi(φ′′h) =N′′Gi .

(7.54)

Introducing (7.54) into (7.52), we obtain the first counterpart of KS , K
g
S , that is:

Kg
S = ∂qi(B(q)Ta)∣a=σh

⊗Gi

= [N′T (A1 +A2)N′ +N′TA3N
′′ +N′′TA4N

′]
I3m³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Gi ⊗Gi

= [N′T N′′T ] [A1 +A2 A3

A4 03
] [N′

N′′
] ,

(7.55)

where I3m is the identity matrix of dimension 3m × 3m.
The second counterpart, Ke

S , employing (7.51), can be computed as follows:

Ke
S = B(q)T∂q(σh) = B(q)T∂q (C{ϵhκh

}) . (7.56)

We recall (δϵ, δκ)T = B(φ′,φ′′) δφ. Thus, the derivative ∂q(ϵh,κh)T , directly related
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to the discretized strain operator B(q), is:
∂q ({ϵhκh

}) = B(q) ∂q(q)²
I

. (7.57)

Ke
S then takes the following form:

Ke
S = B(q)TCB(q) , (7.58)

where the constitutive matrix C is assumed to be constant. The static tangent stiffness
matrix KS is then:

KS =Kg
S +Ke

S = [N′T N′′T ] [A1 +A2 A3

A4 03
] [N′

N′′
] +B(q)TCB(q) . (7.59)

Force tangent stiffness matrix

We now derive the force tangent stiffness matrixKF that is required for our computations
in this work. We consider two different types of forces: (i) follower forces for two-
dimensional study cases, and (ii) forces induced by a surrounding flow described in
Section 7.2.3.

Follower forces in two-dimensional studies

In two-dimensional cases, the motion of the rod is confined in a single plane at all times
(see Fig. 7.27). Thus, we can define a lumped follower force as follows:

ff = f0 (E2 × dh) , (7.60)

where f0 is the magnitude of the force and is assumed to be constant, and E2 is the unit
normal to the plane of motion. According to (7.50), the tangent stiffness matrix KF

resulting from ff is:

KF = ∂qi (NT f0 (E2 × dh))⊗Gi

= f0∣φ′h∣N
T [E2]×PdN

′ Gi ⊗Gi´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I3m

= f0∣φ′h∣N
T [E2]×PdN

′ . (7.61)

We note that since the configuration space of Kirchhoff rods employed in this work re-
quires only the specification of φ(s, t) and the director d, a modeling of three-dimensional
follower forces is generally not possible.

Force induced by a surrounding flow

As mentioned in Section 7.2.3, we consider a simplified model for a force induced by a
surrounding flow, that consists of three counterparts: an added mass force, a tangential
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Figure 7.27: Schematic for a two-dimensional follower force.

drag force, and a normal drag force. In this subsection, we derive the tangent stiffness
matrix corresponding to each counterpart. To simplify the involved algebra for this
derivation, we consider the resulting expression of the semi-discrete formulation after
employing the implicit time integration scheme described in Section 7.3.3. We note that
the derivation of the tangent stiffness matrices can be alternatively performed with the
equations of motion and/or the semi-discrete equations, and thus is independent of the
numerical scheme applied.
The chosen implicit scheme in this work (see also Section 7.3.3) evaluates gd at the

time instant tn+ 1
2
, and thus also the force term, i.e. (NT f ext)n+ 1

2
. The term associated

with the force is then:

∫ S

0
[(NTFf)n+ 1

2
]ds = C1∫ S

0
[(NTPdah)n+ 1

2
]ds

+C2∫ S

0
[(NT ∣PdVh∣PdVh)n+ 1

2
]ds

+C3∫ S

0
[(NT ∣(dh ⊗ dh)Vh∣ (dh ⊗ dh)Vh)n+ 1

2
]ds ,

where ah = a∞ − φ̈h is the discrete relative acceleration of the surrounding flow, and
Vh =V∞ − φ̇h the discrete relative velocity.

The added mass force, denoted as Fam, is a function of the free-stream, rod ac-
celeration, and rod configuration. Employing the midpoint rule and a standard Taylor
expansion up to first order, we obtain the following approximation for Fam at the time
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instance tn+ 1
2
:

Fam
n+ 1

2

(qn+1 +∆q, q̇n+1 +∆q̇) ≈ Fam
n+ 1

2

(qn+1, q̇n+1)
+ ∂qn+1F

am
n+ 1

2

(qn+1, q̇n+1) ⋅∆q

+ ∂q̇n+1F
am
n+ 1

2

(qn+1, q̇n+1) ⋅∆q̇ ,

(7.62)

where:

Fam
n+ 1

2

(qn,qn+1, q̇n, q̇n+1) = C1∫ S

0
NT {1

2
[(Pda∞)n + (Pda∞)n+1]}ds

−C1∫ S

0
NT { 1

∆t
[(Pdφ̇h)n+1 − (Pdφ̇h)n]}ds .

(7.63)

Considering (7.62) and (7.63), the corresponding tangent stiffness matrix per unit of
length is:

Kam
F = C1N

T

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1

2
∂qin+1

(Pda∞)n+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f1

− 1

∆t
∂qin+1

(Pdφ̇h)n+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f2

− 1

∆t
∂q̇in+1

(Pdφ̇h)n+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊗Gi .

(7.64)

We assume that both the magnitude and direction of the force vary with the altitude
(or depth for marine applications). For the sake of simplicity, we consider a∞ as a
function of the vertical coordinate z and time t, i.e., a∞(z, t), where z depends on the
current configuration of the rod, that is z = φh ⋅E3. We then obtain:

f1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1∣φ′h∣ [(a∞ ⋅ dh)Hd + dh ⊗ a∞]n+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K1

N′ + [Pd(∂za∞ ⊗E3)]n+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K2

N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
Gi ,

f2 = − 1∣φ′h∣ [(φ̇h ⋅ dh)Hd + dh ⊗ φ̇h]n+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K3

N′Gi ,

f3 = [PdN]n+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K4

Gi .

(7.65)

Introducing (7.65) into (7.64), and recalling that Gi ⊗Gi = I3m and ∆q̇ = 2
h∆q, we
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obtain:

Kam
F = C1N

T [1
2
K1N

′ + 1

2
K2N − 1

∆t
K3N

′ − 2

∆t2
K4N] . (7.66)

The normal drag force, denoted as Fcn, is a function of the free-stream, rod veloc-
ity, and rod configuration. The normal drag force of the surrounding flow, evaluated at
tn+ 1

2
, is:

Fcn
n+ 1

2

(qn,qn+1, q̇n, q̇n+1) = C2∫ S

0
NT {1

2
[(∣PdVh∣PdVh)n + (∣PdVh∣PdVh)n+1]}ds .

Analogously to the tangent stiffness matrix corresponding to the added mass force de-
rived above, the tangent stiffness matrix per unit of length associated with the normal
drag force is:

Kcn
F = C2N

T [1
2
K1N − 1

2
K2N

′ − 1

∆t
K3N] , (7.67)

where:

K1 = ∣PdVh∣ (2I −Pu)Pd(∂zV∞ ⊗E3) ,
K2 = ∣PdVh∣∣φ′h∣ (2I −Pu) [(Vh ⋅ dh)Hd + dh ⊗Vh] ,
K3 = ∣PdVh∣ (2I −Pu)Pd,

Pu = I − 1∣PdVh∣2 (PdVh)⊗ (PdVh) .

The tangential drag force, denoted as Fct, is also a function of the free-stream,
rod velocity, and rod configuration. The tangential drag force of the surrounding flow,
evaluated at tn+ 1

2
, is:

Fct
n+ 1

2

(qn,qn+1, q̇n, q̇n+1)
= C3∫ S

0
NT {1

2
[(∣(dh ⊗ dh)Vh∣ (dh ⊗ dh)Vh)n + (∣(dh ⊗ dh)Vh∣ (dh ⊗ dh)Vh)n+1]}ds .

Analogously, the tangent stiffness matrix per unit of length associated with the tangential
drag force is:

Kct
F = C3N

T [1
2
K1N + 1

2
K2N

′ − 1

∆t
K3N] ,
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where:

K1 = ∣(dh ⊗ dh)Vh∣ [2I −Pv] (dh ⊗ dh)(∂zV∞ ⊗E3) ,
K2 = ∣(dh ⊗ dh)Vh∣∣φ′h∣ (2I −Pv) [(Vh ⋅ dh)Hd + dh ⊗Vh] ,
K3 = ∣(dh ⊗ dh)Vh∣ (2I −Pv) [dh ⊗ dh] ,
Pv = I − 1∣(dh ⊗ dh)Vh∣2 [(dh ⊗ dh)Vh]⊗ [(dh ⊗ dh)Vh] .

Mass tangent stiffness matrix

Lastly, we derive the mass tangent stiffness matrix, KM , corresponding to the inertial
contribution M(q)∇q̇q̇ of the mass operator. Similarly to the tangent stiffness matrix
corresponding to the force induced by a surrounding flow in the previous subsection, we
consider the resulting expression of the semi-discrete formulation after employing the
implicit time integration scheme described in Section 7.3.3. Considering (7.24) together
with the midpoint rule formulas, we obtain the following approximation for the inertia
term of the mass operator, evaluated at t = n + 1

2 , which is:

f I
n+ 1

2

(qn,qn+1, q̇n, q̇n+1) = ∫ S

0
{ 1

∆t
[(Mq̇)n+1 − (Mq̇)n]

+ 1

2
N′T
⎡⎢⎢⎢⎢⎣2 Iρ

⎛⎝ 1

∣φ′h∣3 [Pd ⊙ (φ̇′h ⊗ dh)]φ̇′h⎞⎠
n

+2 Iρ ⎛⎝ 1

∣φ′h∣3 [Pd ⊙ (φ̇′h ⊗ dh)]φ̇′h⎞⎠
n+1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ds .

(7.68)

Employing the standard Taylor expansion up to first order for this term leads to:

f I
n+ 1

2

(qn+1 +∆q, q̇n+1 +∆q̇) ≈ f I
n+ 1

2

(qn+1, q̇n+1) + ∂qn+1F
I
n+ 1

2

(qn+1, q̇n+1) ⋅∆q

+ ∂q̇n+1F
I
n+ 1

2

(qn+1, q̇n+1) ⋅∆q̇ .
(7.69)

Introducing (7.68) into (7.69), we obtain the following counterparts associated with the
inertia contribution of the mass operator:

K1 = ∂qin+1(M(q)q̇)n+1 ⊗Gi = − Iρ∣φ′h∣3N
′T {(dh ⋅ φ̇′h)(2Hd − I) + dh ⊗ φ̇′h + 2 φ̇′h ⊗ dh}N′ ,

K2 = ∂q̇in+1(M(q)q̇)n+1 ⊗Gi =NTM(qn+1)N ,
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K3 = 2 IρN′T∂qin+1 ⎛⎝[Pd ⊙ (φ̇′h ⊗ dh)]φ̇′h∣φ′h∣3
⎞⎠
n+1

⊗Gi

= −IρN′T∣φ′h∣4 {2(φ̇′h ⋅ dh) [4φ̇′h ⊙ dh + (φ̇′h ⋅ dh)[3Hd − 2I]] − φ̇′h ⊗ φ̇′h + (φ̇′h ⋅ φ̇′h)[I − 2Hd]} N′ ,
K4 = 2 IρN′T∂q̇in+1 ⎛⎝[Pd ⊙ (φ̇′h ⊗ dh)]φ̇′h∣φ′h∣3

⎞⎠
n+1

⊗Gi

= 2 Iρ∣φ′h∣3N
′T {(φ̇′h ⋅ dh)Hd + dh ⊗ φ̇′h + 2Pd ⊙ (φ̇′h ⊗ dh)} N′ .

Recalling that ∆q̇ = 2
h∆q, we then obtain the tangent stiffness matrix per unit of

length associated with the inertia term of the mass operator as follows:

KM = [ 1

∆t
K1 + 2

∆t2
K2 + 1

2
K3 + 1

∆t
K4] .
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8 Conclusions and outlook

We have presented the contributions of this thesis in terms of four publications with the
main objective of developing a higher-order accurate and locking-free explicit dynamics
scheme in isogeometric structural analysis. In this chapter, we summarize and highlight
the main conclusions of each publication and outline the potential impact of this work
and directions for future work.

8.1 Conclusions

In the first publication, we extended spectral analysis as a tool for assessing locking
phenomena and comparing the effectivity of different formulations with respect to lock-
ing. This is particularly desired when studying the ability of finite element formulations
to guarantee higher-order accurate explicit dynamics computations. To this end, we
assessed and compared the effectivity of the standard displacement-based formulation
with full and selective reduced integration, as well as three representative locking-free
formulations: the B-bar method, the discrete shear/strain gap (DSG) method, and the
Hellinger-Reissner formulation, for an Euler-Bernoulli circular ring subjected to mem-
brane locking. Our results illustrate that membrane locking severely affects the standard
formulation with full integration, despite mesh refinement. Using selective reduced in-
tegration removes membrane locking for finer meshes using quadratic discretizations,
however, does not remove locking on coarse meshes and for polynomial degrees higher
than quadratics. The B-bar, DSG, and Hellinger-Reissner methods all remove membrane
locking on coarse meshes using quadratic and higher-order discretizations. They result
in optimal convergence behavior in all cases. Our results from a classical p-refinement
show that p-refinement itself is not an effective way to alleviate the effect of locking.
Furthermore, we observed that the higher transverse modes, obtained with the stan-
dard formulation using full integration, diverge with increasing p, while they converged
when using the B-bar formulation and did not diverge when using the Hellinger-Reissner
formulation.
In the second publication, we introduced a variational approach based on perturbed

eigenvalue analysis that reduces overestimated outlier frequencies due to reduced con-
tinuity at patch interfaces in isogeometric multipatch discretizations. This approach is
especially interesting when controlling the critical time step size of explicit schemes with
multipatch discretizations. We also proposed an iterative procedure to estimate effective
scaling parameters of the perturbation terms, that requires (i) two input parameters: a
scaling factor f > 1 and a reduction factor c ∈ (0,1); and (ii) computation of the max-
imum eigenfrequency and corresponding mode, which can be effectively computed via
power iteration. We demonstrated that our approach is robust with respect to f > 1, i.e.
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it reduces the outlier frequencies to approximately the same values for all f > 1. More-
over, a reduction factor c = 0.9 showed good results in all test cases. We demonstrated
the effectiveness of our approach numerically via examples of bar, beam, membrane,
and plate models. We numerically confirm the maintained spatial accuracy when using
this approach in an explicit dynamics setting. Our results illustrated that the obtained
critical time step size is larger and does not depend on the polynomial degree p of the
spline basis functions.
In the third publication, we presented an isogeometric Petrov-Galerkin formulation

that enables higher-order accurate mass lumping in explicit dynamics. This could help
close the gap between higher-order IGA and computations based on a lumped mass
matrix. Our row-sum lumped mass matrix yields the identity matrix, which eliminates
the need for matrix inversion, without compromising higher-order spatial accuracy. To
be able to strongly enforce the Dirichlet boundary conditions in a standard way, we
replaced the dual functions that associate to these constraints by their corresponding
B-splines, before dividing by the Jacobian. We confirmed the achieved higher-order
accuracy of our approach in explicit dynamics via spectral analysis and convergence
studies of beam and plate models.
In the fourth publication, we then extended this approach to a mixed formulation

based on the Hellinger-Reissner principle with an attempt to achieve locking-free dis-
cretizations. By applying the boundary treatment [132], the outlier removal approach
[122], and the reduced quadrature rule [133], our approach allows row-sum lumping of
the entire mass matrix, larger critical time step size, and requires minimal number of
quadrature points, respectively, without compromising the accuracy. Performing spec-
tral analysis of a circular ring, as discussed in the first publication, showed that our
approach eliminates membrane locking in the corresponding discretizations. Our con-
vergence study of curved beam and shell models illustrated that it achieves higher-order
accurate solutions in explicit dynamics, for instance in linear cases, also when the mass
matrix is lumped. For geometrically nonlinear shells, our results indicated that it per-
forms and achieves more accurate results than the Galerkin method based on a row-sum
lumped mass matrix, particularly for higher-order discretizations.
In the fifth publication, we applied isogeometric discretizations to a nonlinear for-

mulation of shear- and torsion-free rods [134], combined with a robust implicit time
integration scheme. This extends the horizon of this work to such nonlinear structures
in the context of implicit dynamics, which find their application in the simulation of
mooring lines in offshore wind engineering. Our results indicated different convergence
rates for odd and even polynomial degrees, which might result from the manifold struc-
ture of the solution space. Via two- and three-dimensional benchmarks, we illustrated
that isogeometric discretizations, whose robustness is improved by the strong outlier
removal approach [122], are robust and reliable for analysis of transient rods subjected
to gravity, forces induced by a surrounding flow such as wind and water, and a pulsating
force of different frequencies.
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8.2 Potential impact

The presented results in this thesis indicate its potential application to higher-order ac-
curate and locking-free computations for practical simulations such as impact, crash-test,
and metal forming when using explicit methods with standard mass lumping, particu-
larly with isogeometric shell elements. The introduced Petrov-Galerkin approaches en-
able row-sum mass lumping without compromising the accuracy. This necessarily means
that a proportionate increase in accuracy with increasing polynomial degree of the em-
ployed basis functions is possible, which was not the case, as reported in state-of-the-art
studies on explicit dynamics with isogeometric shells and standard mass lumping, see
e.g. [116]. Another outcome is that one can exploit the potential of isogeometric anal-
ysis in this context, for instance its percise geometry representation and well-behaved
spectral properties. This work is one of the first applications of the approximate dual
spline functions in explicit dynamics, and thus further establishes the employment of
Petrov-Galerkin methods in this field. This could open up various directions for further
research of such approach, for instance its computational efficiency and error estimate. In
addition, our Petrov-Galerkin mixed formulation is one of the first isogeometric mixed
approaches employed in explicit dynamics to remove locking phenomena. It enables
locking-free isogeometric discretizations that achieve optimal accuracy and convergence
on practically coarse meshes, which makes its applications more attractive, particularly
in realistic scenarios. Moreover, due to the flexibility in choosing discretization spaces for
mixed formulations, such approaches are able to eliminate different locking phenomena
and their combination, see e.g. [67], [81], [82], which is a potential research direction
for our approach in the future. With the two competitive characteristics of higher-order
accurate mass lumping and locking-free discretizations, our Petrov-Galerkin approach
could be developed and adapted in commercial codes for practical applications.
Another field where this work potentially has an impact is implicit structure dynamics

for nonlinear shear- and torsion-free rods [134]. In our fifth publication, it is the first
time that isogeometric discretizations are applied to such a nonlinear rod formulation.
It extends the application and establishes the potential of IGA and particularly of the
outlier removal approach [122] for nonlinear dynamics of such rods, which are relevant
for practical applications such as the simulation of mooring lines in offshore wind engi-
neering. We emphasize that this outlier removal approach reduces the high-frequency
content in the response without compromising the accuracy and without introducing
any artificial damping, which plays an essential role for instance in studying the physi-
cal damping characteristic of the structure that is then not affected or mixed with any
artificial one. In addition, the outlier removal approach potentially provides better in-
sights into the effect of spurious outlier modes on the response. It helps us not only to
better understand the behavior of the studied structures, particularly in nonlinear cases,
but also to study and develop robust and accurate discretization schemes for nonlinear
structural dynamics in the context of IGA.
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8.3 Avenues for future work

The presented results in this thesis disclose various directions for future work. One
aspect is to apply the proposed approaches to practical applications, particularly the
Petrov-Galerkin scheme presented in the fourth publication. These could involve nonlin-
ear material behavior, combinations of different locking phenomena, complex structural
models, and geometries, such as Reissner-Mindlin shells or trimmed shells. This in-
cludes the performance study of spectral analysis as a locking indicator, discussed in
the first publication, in identifying, separating, and assessing locking phenomena from
their combinations, as well as its application to analysis with shell elements. Moreover,
applying our Petrov-Galerkin approaches presented in the third and fourth publications
to trimmed geometry consists of applying approximate dual spline functions as test func-
tions in this context. This opens up a research direction including further challenges,
where no initial idea exists. A second aspect is to combine the variational approach
based on perturbed eigenvalue analysis introduced in the second publication with the
Petrov-Galerkin approach in the fourth one. This is particularly interesting for realistic
applications employing multipatch discretizations. It requires further studies of both
approaches beforehand, such as the application of the former in the context of mass
lumping, and a detailed analysis of the computational efficiency of the latter for explicit
dynamics calculations. Combining these two approaches also means extending the con-
cept of approximate dual basis as a test function space for multipatch discretizations,
which is especially interesting for patch coupling in the context of mortar methods, or
for preventing locking for shell elements, as studied for standard dual basis in [82], [107],
[109], [110]. Coupling of multiple discretization patches is also a challenge in analysis
of trimmed objects [40]–[42], which may involve the employment of finite cell methods
[31]–[33], where the performance of approximate dual functions as test functions is not
yet explored. Another aspect is to apply the developed Petrov-Galerkin approaches in
the third and fourth publications to nonlinear dynamics of shear- and torsion-free rods
in the fifth publication. It is desirable to study the performance of these approaches in
such a nonlinear analysis, in particular, the application of the concept using approximate
dual functions as test functions in this context and its effect on the irregular behavior of
the mass matrix resulting from the rod formulation. Furthermore, one can extend this
combination to multipatch discretizations and combine the variational approach pre-
sented in the second publication, which may be relevant in the case of multiple coupled
rods. It is particularly interesting to study the effect of the perturbation terms on the
mass matrix of the rod and whether adding these terms improves the robustness of the
discretizations as the strong outlier removal approach does.
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metric modeling, isogeometric analysis and the finite cell method,” Computer
Methods in Applied Mechanics and Engineering, vol. 249-252, pp. 104–115, 2012.

[33] D. Schillinger and M. Ruess, “The Finite Cell Method: A Review in the Context of
Higher-Order Structural Analysis of CAD and Image-Based Geometric Models,”
Archives of Computational Methods in Engineering, vol. 22, no. 3, pp. 391–455,
2015.

[34] A. Riffnaller-Schiefer, U. Augsdörfer, and D. Fellner, “Isogeometric shell analysis
with nurbs compatible subdivision surfaces,” Applied Mathematics and Compu-
tation, vol. 272, pp. 139–147, 2016.

[35] F. Cirak and Q. Long, “Subdivision shells with exact boundary control and non-
manifold geometry,” International Journal for Numerical Methods in Engineer-
ing, vol. 88, no. 9, pp. 897–923, 2011.

[36] X. Wei, Y. Zhang, T. J. Hughes, and M. A. Scott, “Truncated hierarchical Cat-
mull–Clark subdivision with local refinement,” Computer Methods in Applied Me-
chanics and Engineering, vol. 291, pp. 1–20, 2015.

[37] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, and T.
Sederberg, “Isogeometric analysis using T-splines,” Computer Methods in Applied
Mechanics and Engineering, vol. 199, no. 5-8, pp. 229–263, 2010.

[38] M. Scott, R. Simpson, J. Evans, S. Lipton, S. Bordas, T. Hughes, and T. Seder-
berg, “Isogeometric boundary element analysis using unstructured T-splines,”
Computer Methods in Applied Mechanics and Engineering, vol. 254, pp. 197–221,
2013.

[39] Y. J. Zhang, Geometric modeling and mesh generation from scanned images, 1st.
CRC Press, 2016.

[40] M. Breitenberger, A. Apostolatos, B. Philipp, R. Wüchner, and K.-U. Bletzinger,
“Analysis in computer aided design: Nonlinear isogeometric b-rep analysis of shell
structures,” Computer Methods in Applied Mechanics and Engineering, vol. 284,
pp. 401–457, 2015.
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“Higher order accurate mass lumping in explicit isogeometric methods based on
approximate dual basis functions,” In preparation, 2023.
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zinger, F. Duddeck, and L. Song, “Explicit dynamic isogeometric B-Rep analysis
of penalty-coupled trimmed NURBS shells,” Computer Methods in Applied Me-
chanics and Engineering, vol. 351, pp. 891–927, 2019.

[209] C. Adam, S. Bouabdallah, M. Zarroug, and H. Maitournam, “Stable time step
estimates for nurbs-based explicit dynamics,” Computer Methods in Applied Me-
chanics and Engineering, vol. 295, pp. 581–605, 2015.
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