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Abstract

Kubernetes (K8s) has emerged as the de facto standard for distributed container workload
orchestration in cloud and on-premises environments. Due to its open-source nature,
strong separation of duty, and well-defined interfaces, Kubernetes creates abstraction
layers between cluster operators, compute & storage providers, networking providers, and
workloads authors. Developers can deploy their applications without needing thorough
experience in the abovementioned fields to deploy and scale their applications. Instead,
they can collaborate by utilizing existing resources and configurations and have their
workloads run and distributed according to the specifications in the workload definitions.

In the current Kubernetes environment, scheduling decisions are based on CPU and
memory requirements, neglecting other crucial resources such as network bandwidth. As
the adoption of networking-intensive applications and workloads progresses, the need for
network-aware scheduling becomes more pressing, as issues such as network congestion
and overall system stability can degrade over time.

This thesis aims to improve the scheduler and ecosystem by incorporating plug-and-
play extensions to the current scheduler and proposing a new scheduler that utilizes a
different scheduling approach and incorporates algorithms optimization algorithms to
find optimizations for the Kubernetes scheduling problems.

Experiments indicate that our solution outperforms the existing Kubernetes scheduler in
solution quality and correctness, performing qualitatively higher resource distribution
and guarantees. By deploying representative samples of network-demanding workloads
in simulations, the extended scheduler ensured resource requirements for pods, while the
default Kubernetes scheduler failed to do so. This improvement introduces a negligible
computing cost to the scheduler. In addition, it avoids network congestion, idle cpu time,
and overall higher resource usage on the machines, increasing network throughput and
reducing application lags, avoiding slowdowns of two to three times the necessary time if
networking resources were met.
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Goals and Objectives

This bachelor’s thesis aims to address the current Kubernetes scheduler limitations in
regards to network bandwidth requirements and enable these as an additional scheduling
attribute for Kubernetes workloads.

The goals are:

1. Study the existing literature related to optimization, scheduling problems and
applicable scheduling algorithms.

2. Enable the Kubernetes scheduler to make decisions based on static bandwidth
requirements in a standard Kubernetes cluster.

3. Propose a mechanic for performing dynamic scheduling, considering the actual
usage of resources instead of static declarations.

4. Verify the proposed algorithms and extensions on benchmark instances and compare
them with existing works.

5. Implement a simulation scenario using the kube-scheduler-simulator and KWOK to
verify the proposed solution for correction and scalability.

The work will contribute to the growing body of research on resource-aware scheduling in
the Kubernetes ecosystem, with the potential to improve the efficiency and performance
of Kubernetes workloads.
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1 Introduction

This chapter introduces the problem of enhancing the Kubernetes scheduler with network
resource awareness. It establishes the issue’s importance, outline the thesis contribution
and the subsequent chapters.

1.1 Motivation

The driving factor behind this thesis is the ever-increasing need for effective network
resource management in Kubernetes environments. The emergence of identity-aware prox-
ies, access control systems, and streaming applications such as Pomerium [15], Hashicorp’s
Boundary [2], StrongDM [17], and Teleport [17] has highlighted the importance of net-
work bandwidth management for containerized applications. If network bandwidths and
latencies cannot be guaranteed overall system stability will be impacted and can result in
hard to recover error states in a given topology. This thesis aims to develop a solution
that empowers the Kubernetes scheduler to allocate workloads based on their network
bandwidth requirements, ensuring optimal resource distribution and improved overall
performance.

1.2 Outline and Contributions

This section outlines the main objectives and contributions of the bachelor’s thesis, which
focuses on enhancing the scheduling mechanism in a container orchestration system,
specifically Kubernetes. The research aims to achieve two primary goals:
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• Extending the native scheduler: The thesis proposes developing a scheduler
extension that enables the inclusion of network bandwidth requirements into the
scheduling process. This extension provides an efficient means of incorporating this
essential resource consideration by utilizing annotations on workloads. It enhances
the existing bin-packing algorithm by filtering and scoring machines based on their
static resource requirements.

• Novel adaptive scheduling mechanism: The thesis proposes a novel scheduling ap-
proach inspired by a reconciling controller. The proposed approach aims to reconcile
the state of workloads and machines within the cluster, periodically evaluating and
resolving inconsistencies. It responds to changes in workload resource requirements,
the number of workloads, and the number of machines in the cluster, allowing for
adaptive workload distribution and overcoming limitations of the current Kubernetes
scheduling mechanism.

These contributions address critical challenges in container orchestration by improving
network bandwidth management and dynamic workload distribution. In addition, they
provide valuable insights and pave the way for advancements in scheduling mechanisms
within container orchestration systems.

1.3 Structure of the Thesis

The thesis is structured as follows. Chapter 2 gives an overview to the relevant scheduling
algorithms and Kubernetes related topics. Since the Kubernetes scheduler is distributing
workloads to nodes already, chapter 3 presents the current approaches taken by both
industry and academia to overcome its shortcomings and how those can relate to network
bandwidth for workload scheduling in Kubernetes. The objective of chapter 4 is to propose
algorithmic solutions regarding the shortcomings of the existing Kubernetes scheduler,
whereas chapter 5 will showcase the integration of the algorithm into Kubernetes. Chapter
6 provides an evaluation in regards to the quality of the solution, the resources necessary
to achieve it, and the time it took. Finally, chapter 7 provides a conclusion to the thesis
and potential future works that can be conducted.
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2 Overview

The primary goal of this overview is to familiarize the reader with the fundamental
concepts required for comprehending the thesis. This chapter’s content is concise and
targeted, avoiding excessive details unrelated to the central thesis objectives. We will
examine the interaction among various components and their significance in expanding
the Kubernetes scheduler’s network resource awareness.

2.1 Containers

Parallel programming often divides workloads into smaller tasks that can be executed
concurrently on multiple processors. Similarly, modern software applications can be
separated into smaller, isolated units called containers, which can operate independently
and communicate with one another. Consequently, containers offer an efficient method
for packaging, deploying, and managing applications, enabling developers to concentrate
on code development without concerning themselves with the underlying infrastructure.

As shown in figure 2.1 the container and microservice approach enables the creation of
loosely coupled services interacting with each other, without a central point of failure or
centralized bottleneck. Additionally, this kind of architecture has gained a lot of popularity
in recent years, due to it’s ability to scale horizontally, as more instances of a micro service
can be launched automatically, and due to the ability to separate services by team and
domain, instead of having all of them in one central, monolith service.
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Figure 2.1: Monolith vs Microservice Architectures

2.2 Kubernetes

Kubernetes is an open-source platform that automates containerized applications’ deploy-
ment, scaling, and management. It organizes containers into logical groupings called
pods and distributes them across several machines referred to as nodes, ensuring that
applications operate efficiently and maintain high availability.

Originating at Google [1], Kubernetes was inspired by the company’s internal container
orchestration system, Borg [18] , which was created to manage the vast scale of Google’s
infrastructure. Kubernetes was open-sourced in 2014 and has since become the de facto
standard for container orchestration.

Kubernetes itself is an assembly of multiple critical services that work in concert to sustain
the cluster’s desired state:

• Nodes can be physical or virtual machines that execute containerized applications.
They may serve as worker nodes, which host user-defined workloads, or as control
plane nodes, containing the control plane components that govern the entire cluster.
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• Pods represent the most basic deployable units within the Kubernetes ecosystem.
Pods can incorporate one or more side-car containers that utilize shared network
and storage resources. Additionally, each pod is allocated a unique IP address within
the cluster and can expose several ports for communication.

• The Control Plane includes the API server, etcd datastore, controller manager, and
scheduler to manage the overall state of the cluster. These components work together
to ensure that the cluster maintains its desired configuration. In order to upkeep
the cluster’s stability and functionality, the control plane components perform tasks
such as resource allocation and workload distribution, including system monitoring.

Figure 2.2 outlines roughly the interplay between the Kubernetes components running on
nodes and the control plane.

Control Plane

API Server

etcd

Controller Manager

Scheduler

Node A

Kubelet Kube-Proxy

Pod Pod Pod

Node A

Kubelet Kube-Proxy

Pod Pod Pod

Node A

Kubelet Kube-Proxy

Pod Pod Pod

CNI Network

Figure 2.2: Kubernetes Cluster Architecture
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2.3 Current Kubernetes Scheduler

Kubernetes employs the scheduler (kube-scheduler) [10] to determine which nodes in
the cluster should run newly created pods. The scheduling problem is a bin-packing
problem with NP-Hard complexity. The nodes can be considered as the ”bins”, pods can
be regarded as the ”objects”, and the volumes of both can be represented by the total
resource availabilities (CPU, memory, etc.) a node has and total resource requirements
that a workload demands.

Scheduling pods on Kubernetes is a two-part operation: filtering and scoring nodes.
During the filtering phase, the scheduler filters out nodes that cannot cater to the pod’s
requirements. These might be due to resource limitations, taints, or tolerations. The
scoring phase then ensues, where the remaining nodes are scored based on established
rules. The node with the highest score is considered the ideal host for the pod. This
approach is generally viewed as a heuristic algorithm, meaning it employs a set of rules for
decision-making rather than a complete exploration of all possible options. In the scoring
phase, Kubernetes uses multi-criteria decision-making, simultaneously considering various
factors, such as resource availability and affinity rules. One could compare the scheduling
strategy of the Kubernetes scheduler to a ”best bin” methodology. The ”first bin” strategy
would imply placing a pod on the first node capable of accommodating it without regard
to other considerations. However, the Kubernetes scheduler evaluates several factors to
score each node and chooses the best one to run the pod.

This scheduler provides a framework for extension development, which includes disk and
data localities, inter-pod affinities and anti-affinities, node name filtering, node ports,
resource suitability, topology spreads, and the availability of CPU and memory. These
add-ons, portrayed by the green arrows in Figure 2.3, enrich the scheduling process by
delivering specialized function implementations.

The Kubernetes scheduler operates through two separate cycles, as Figure 2.3 illustrates
scheduling and binding. The scheduler initiates with PreEnqueue operations before
entering the scheduling cycle, subsequently sorting the pods to be scheduled. Scheduler
extensions can also augment the sorting mechanism. Following the sorting stage, optional
pre-filter functions provided by the extensions, along with their filter functions, are applied
to exclude unfeasible nodes further.

Post-filtering, the scheduler administers the pre-scoring functions, followed by scoring
functions, culminating in normalizing those values. The scheduler applies user-defined
weighting to specific extension scores during the normalization process. Consequently, one
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Figure 2.3: Kubernetes scheduler extension points [11]

node will emerge with the highest score, reserving the pod’s resources in the scheduler
cache and approving binding to that node.

During the binding phase, the scheduler invokes a binding API call that binds the pod to
the node on which the pod shall run.

However, the Kubernetes scheduler does not consider network resources of nodes and
pod bandwidth requirements and can thus not factor in network bandwidth requirements
during resource allocation and scheduling. Integrating network resource consideration
into the Kubernetes scheduler is crucial for optimizing resource allocation and averting
performance deterioration due to network bottlenecks. By allowing the scheduler to weigh
network bandwidth requirements alongside CPU and memory resources in scheduling
decisions, network resource consideration helps prevent situations in which workloads
with high network demands run on nodes lacking sufficient network capacity and, in turn,
enhances overall application performance and resource utilization.

2.4 Kubernetes Controllers

Kubernetes controllers [6] are vital in maintaining the cluster’s desired state by con-
tinuously reconciling the observed state with the intended state. These controllers are
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engineered to monitor cluster resource changes and take appropriate action to achieve
the desired state.

A controller operates in a loop that involves the following steps:

1. Observe the current state of the cluster.

2. Compare the observed state with the desired state.

3. Execute necessary actions to reconcile any discrepancies between the two states.

Reconcile()

Controller
Manager

Control loop
(infinite loop)

Custom controller
(e.g. etcd operator)

Figure 2.4: Architecture of a custom Kubernetes controller/operator

The reconciling nature of controllers provides several benefits in terms of stability and
reliability:

• Self-healing: Controllers perpetually oversee the cluster and autonomously rectify
any inconsistencies, ensuring the preservation of the desired state in case of failures
or alterations.

• Scalability: The reconciling loop enables controllers to adjust to cluster changes,
such as scaling up or down based on resource requirements, without human inter-
vention.

• Extensibility: Kubernetes offers a flexible framework for creating custom controllers
tailored to specific use cases or requirements, fostering the development of domain-
specific controllers that align with application needs.
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By harnessing the inherent stability and reliability of Kubernetes controllers, the proposed
network-aware scheduler can effectively manage network resources and guarantee optimal
performance for containerized applications.

2.5 Pod Disruption Budget

A Pod Disruption Budget (PDB) [16] is a Kubernetes feature that enables users to specify
the minimum number of available replicas for a particular application, ensuring that
the application remains accessible during voluntary disruptions, such as maintenance or
updates.

2.6 Kubernetes Scheduling Framework and Extensibility

The Kubernetes scheduling framework [9] allows for the development of custom scheduler
plugins that can be integrated into the existing scheduler. These plugins can introduce new
scheduling features or modify the scheduler’s behavior to consider additional scheduling
attributes, such as network bandwidth requirements. In addition, there are several
methods to extend the Kubernetes scheduler:

1. Custom Scheduler Plugins: Developers can create custom scheduler plugins using
the Kubernetes scheduling framework. These plugins can be written in Go and
integrated directly into the scheduler codebase. [9]

2. Scheduler Extenders: The Kubernetes scheduler can call these external services
during its scheduling process. Scheduler extenders can be written in any language
and communicate with the scheduler via RESTful APIs. [8]

3. Multiple Schedulers: Multiple Schedulers: Kubernetes also supports running multi-
ple scheduler instances, each with its configuration and behavior. This approach
allows different workloads to be scheduled using distinct scheduling algorithms or
policies, depending on their specific requirements. [5]

By leveraging these extensibility methods, developers can create a network-aware Kuber-
netes scheduler that considers network bandwidth requirements when making scheduling
decisions. This enhanced scheduler can optimize resource allocation, prevent network
bottlenecks, and improve overall application performance.
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2.7 Kubernetes Scheduler Simulator

Verifying the efficiency of the suggested network-aware Kubernetes scheduler is vital
for confirming that it satisfies the intended goals and functions optimally across diverse
scenarios. Therefore, a simulation-oriented method will be adopted, using the Kubernetes
Scheduler Simulator [12] established by the Kubernetes Special Interest Group (SIG).

The Kubernetes Scheduler Simulator is a practical resource explicitly crafted to assist
developers in examining and understanding the behavior of Kubernetes schedulers. It
enables users to emulate various scheduling situations, scrutinize the scheduler’s choices,
and assess its comprehensive performance, as can be seen in detail in Figure 2.5.

By implementing the Kubernetes Scheduler Simulator, developers can glean invaluable
knowledge about the network-sensitive scheduler’s performance under various conditions,
such as varying network requirements, resource constraints, and workload allocations.
This information can be harnessed to adjust and optimize the scheduler’s behavior, ensuring
it affords the most advantageous resource allocation and workload distribution for network-
demanding applications.
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Figure 2.5: Kubernetes Scheduler Simulator showcasing the internal scoring and final
scores of each plugin within the kube-scheduler
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3 Related Work

Many research projects and initiatives have delved into expanding the capabilities of the
Kubernetes scheduler to address limitations concerning resources beyond just CPU and
memory.

3.1 GPU resource scheduling

In scheduling deep learning tasks on Kubernetes, KubFBS [14] and GPUShare [4] are
examples of scheduler extensions to support additional resource types in Kubernetes.
KubFBS [14] is a scheduling system that has been developed by academia with the
express goal of increasing efficiency when scheduling deep learning tasks on Kubernetes.
Conversely, GPUShare is a scheduler extender developed by industry professionals, namely
Alibaba Cloud, which significantly enhances the Kubernetes scheduler’s capacity to support
GPU resource allocations.

GPUShare and KubFBS utilize the same proposed method, namely an extension to the
Kubernetes scheduler, to solve a different yet related problem to extended resource
scheduling in Kubernetes.

3.2 Load-Aware Dynamic Scheduling

For addressing the dynamic, load-aware scheduling in Kubernetes, the crane-scheduler [3]
proposes a solution for monitoring the actual resource usage of workloads and adjusting
resource allocation based on real-time resource demands. The crane-scheduler project
demonstrates the potential benefits of incorporating dynamic resource allocation based on
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actual resource usage, which could be adapted to address network bandwidth requirements
in our problem statement.

The implementation differs in that it considers the current resource load onto the nodes
but does not re-evaluate the current distribution or perform rescheduling. Thus it carries
the same shortcomings as the current Kubernetes scheduler but can initially distribute
workloads more efficiently.
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4 Scheduling Approach

The primary aim of this chapter is to present a scholarly and abstract problem state-
ment focused on enhancing the Kubernetes scheduler by incorporating network resource
awareness.

4.1 Problem Statement

Within the Kubernetes ecosystem, the Kubernetes scheduler makes scheduling decisions
that consider resource demands, node restrictions, and affinity rules. Nonetheless, the de-
fault Kubernetes scheduler mainly concentrates on CPU and memory resources, frequently
neglecting other vital resources, such as network bandwidth.

One can express the issue this thesis intends to tackle as follows:

Given a Kubernetes cluster comprising multiple nodes with varying network
bandwidth capabilities and workloads with diverse network bandwidth de-
mands, how can we enhance the Kubernetes scheduler to effectively allocate
network resources, avoid network congestion, and optimize overall application
performance?

4.2 Mathematical Formulation

Let N be the set of nodes in the Kubernetes cluster and W be the set of workloads to be
scheduled. Then, for each node i ∈ N , let Bi denote the available network bandwidth
capacity, and for each workload j ∈ W , let bj represent the required network bandwidth.
The goal is to assign each workload j ∈ W to node i ∈ N , minimizing the network
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congestion and balancing the overall application performance while considering the CPU
and memory resource constraints. We introduce a binary decision variable xij:

xij =

{︄
1 if workload j is assigned to node i

0 otherwise.

Our objective is to minimize network congestion while allocating network resources
effectively:

minimize:
∑︂
i∈N

∑︂
j∈W

(Bi − bj ∗ xij)2

according to the following constraints:

• Workload assignment constraint: Each workload must be assigned to exactly one
node.

∑︁
i∈N xij = 1,∀j ∈ W

• Network bandwidth capacity constraint: The sum of the required network band-
widths of the workloads assigned to a node must not exceed the node’s network
bandwidth capacity.

∑︁
j∈W bj ∗ xij ≤ Bi, ∀i ∈ N

• CPU and memory resource constraints: Let Ci and Mi denote the available CPU
and memory capacities of node i, and let cj and mj represent the required CPU
and memory resources of workload j. The sum of the required CPU and memory
resources of the workloads assigned to a node must not exceed the node’s CPU and
memory capacities.

CPU capacities:
∑︂
j∈W

cj ∗ xij ≤ Ci,∀i ∈ N

Memory capacities:
∑︂
j∈W

mj ∗ xij ≤ Mi,∀i ∈ N

• Binary decision variable constraint: xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ W

The resulting mathematical formulation is a Quadratic Mixed-Integer Program (QMIP)
that minimizes network congestion while effectively allocating network resources and
considering CPU and memory constraints.
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N Set of nodes in the Kubernetes cluster
W Set of workloads to be scheduled
i A node in the node set N
Bi Available network bandwidth capacity for node i
j A workload in the workload set W
bj Required network bandwidth for workload j
xij Binary decision variable indicating node assignment
Ci Available CPU capacity for node i
Mi Available memory capacity for node i
cj Required CPU capacity for workload j
mj Required memory capacity for workload j

Table 4.1: List of Symbols

4.3 Network Extended Scheduler

The primary intent of this algorithm, subsequently called the Network Extended Scheduler,
abbreviated to NES, is to build upon the existing Kubernetes native solution, extending
its current capabilities to tackle bandwidth requirements. In addition, by modifying the
inherent bin-packing algorithm of Kubernetes, we improve its functionality in terms of
network demands. This modification to the native bin-packing algorithm is discussed
throughout this section, focusing on how bandwidth consideration impacts different stages
like filtering, scoring, and others.

As presented in the introduction section 2.3, the standard Kubernetes scheduler employs a
heuristic best-fit bin-packing algorithm, providing a framework for extension development.

NES implements the Filter, Score, and NormalizeScore functions made available by this
extension framework.

• The Filter function interprets and parses a pod’s network bandwidth requirements
as defined in its annotations. Subsequently, nodes unable to meet these networking
needs are filtered out, ensuring only capable nodes will be used further.

• The Score function comes into action by deducting the pod’s necessary network
bandwidth of the node’s available network resources, providing the difference as
score. Specifically:
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Let B = {b1, b2, b3, ..., bn} denote all node bandwidths.
Let bw denote a workload’s bandwidth requirements.

Table 4.2: Scoring terms

Then each node’s score si is calculated as si = bi − bw, i.e., the node’s bandwidth is
subtracted from the required bandwidth, resulting in a node’s individual score.

• The NormalizeScore function adjusts the previously obtained score of each node to
be within the range of 0 to 100. For example:

Let S = {s1, s2, s3, ..., sn} denote all node scores.
Let smin = min(S) denote the minimum of all scores, so that ∀s ∈ S, s ≥ smin.
Let smax = max(S) denote the maximum of all scores, so that ∀s ∈ S, s ≤ smax.
Let snode be a score such that smin ≤ snode ≤ smax denote a node score to
be scaled.
We require that smin < smax.

Table 4.3: Normalization terms

Then:

snode →
snode − smin

smax − smin
∗ 100

will scale snode linearly into [0, 100].

4.4 Novel adaptive scheduling approach

The proposed adaptive scheduling approach, called kube-scheduler-rs, abbreviated to
KSRS, periodically reconciles the state of the world. During each run, the scheduler enters
a scheduling cycle. It executes multiple parallel algorithms, yielding a proposed workload
distribution called an intermediate state in Figure 4.1.

This parallel computation is then invokedN times with the newly discovered and improved
workload distribution unless none of the algorithms find a better workload distribution, in
which case the loop exits early. Once the scheduling cycle yields an improved workload
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Figure 4.1: The proposed adaptive scheduling approach

distribution, the reconcile function applies the desired workload distributions within the
Kubernetes cluster, and the run is complete.

In this thesis, we propose a scheduling approach that uses a bin-packing algorithm, like the
one found in Kubernetes, referenced in Section 4.3, combined with a tabu-search-based
local search algorithm. This way, we ensure that the distribution of tasks across multiple
runs will not underperform compared to the default Kubernetes scheduler on a per-pod
basis.

The local search process depicted in Figure 4.1 employs a tabu search-based algorithm. In
this procedure, pods - individual and in groups, scheduled or pending - are swapped, with
the tabu list logging these swaps, and an evaluation function evaluates the subsequent
distributions. We aim to sidestep potential pitfalls, such as being caught in poorly scoring
regions or plateaus, and instead perform searches into various parts of the search space.

When both algorithms have reached a suggested workload distribution, KSRS evaluates
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these distributions based on a set of heuristic rules and either reintroduces those proposed
distributions back into the scheduling cycle, encouraging a cycle of distribution revision
and further optimization or applies the distribution to the Kubernetes cluster, once a
higher scoring distribution was found.

4.4.1 Illustration of the cyclic improvement process

The following is an illustration of the cyclic improvement process, assuming there is only
one resource and each node has a capacity of 100 units of said resource. Pod A requires
33 units and Pod B requires 50 units to run.

In Figure 4.2, the initial utilization of Node A is 100, Node B 50, and Node C 0. Conclusively,
the amount of unused resources is 0 for Node A, 50 for Node B and 100 for Node C.
According to the formula defined in 4.2, this would yield a score of 12500 = 02+502+1002.

In the next cycle, scheduling the pending pod to Node C utilizing bin-packing lowers the
score the most, as the utilization of Node C increases to 50, as seen in Figure 4.3. The
score is now 5000 = 02 + 502 + 502.

Subsequently, utilizing a tabu-list local search in the following cycle, Figure 4.4, identifies
an even superior workload placement for another pod. Moving one pod from Node A to
Node B further decreases the score to 3878, as 332 + 172 + 502 is an even lower score
than found in the last cycle. Conclusively, this method allows KSRS to consider multiple
pods for preemption and reassignment.
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Figure 4.2: Initial workload distribution with one pending pod

31



Node A

Node B

Pod A Pod A Pod A

Pod B

Node C

Unscheduled pods

Pod B

Distribution Rating: 5000

Figure 4.3: Second cycle, after bin packing the pending pod to a fitting node is yielding
the lowest value.
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Figure 4.4: Third cycle, after swapping a running pod from node A to B, utilizing tabu-list
local search, yielding the lowest value.
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5 Algorithms integration into Kubernetes

In this chapter, we discuss the methods employed to tackle the deficiencies in the Ku-
bernetes scheduler concerning network bandwidth allocation. Our strategy consists of
augmenting the Kubernetes scheduler using a custom extension and proposing an inde-
pendent, tailored scheduler that uses various scheduling algorithms to enhance workload
distribution.

5.1 Integrating the Network Extended Scheduler

To overcome the constraints of the standard Kubernetes scheduler, we have implemented
and integrated NES into Kubernetes and broadened the bin-packing algorithm by consid-
ering network bandwidth requirements. Moreover, by integrating network bandwidth
annotations transmitted to the Container Network Interface (CNI), the plugin introduces
a new scheduling aspect to the Kubernetes scheduler. In Code Listing 5.1, one can see the
pod object response the Kubernetes API server sends to the Kubernetes scheduler, which
the scheduler then passes to all scheduler extensions as arguments. In addition, lines 8
and 10 include the relevant bandwidth information for the CNI to introduce bandwidth
limits, and NES now utilizes that information.

NES assesses only static network bandwidth requirements, guaranteeing that pods with
substantial network needs are placed on nodes with adequate network resources. The
placing happens by filtering out nodes that do not have the available resources to run the
pod and then scoring the remaining nodes based on the total and normalized amount of
available network bandwidth and other resources, with configurable weights applied to
each normalized score.

There are multiple ways in which one can integrate NES:
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1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: my-pod
5 namespace: kube-scheduler-rs
6 annotations:
7 # Limits the ingress bandwidth to 2Mbit/s
8 networking.k8s.io/ingress-bandwidth: 2M
9 # Limits the egress bandwidth to 2Mbit/s

10 networking.k8s.io/egress-bandwidth: 2M
11 spec:
12 containers:
13 - name: my-container
14 image: registry.k8s.io/pause:2.0
15 resources:
16 requests:
17 cpu: 2
18 memory: 100Mi
19 limits:
20 cpu: 4
21 memory: 1Gi

Code Listing 5.1: Pod with CNI annotations
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• One could merge the extension’s source code into the source of the Kubernetes
scheduler. This way, one could use the ”out of the box” extension without further
maintenance on the cluster itself. However, merging back into the Kubernetes source
is lengthy and can take months or years to merge and be released.

• A proposed alternative is building a custom image and either swapping out the
default Kubernetes scheduler with one’s custom-built image or running the two
schedulers in parallel.

By NES only introducing a new plugin to the scheduler, one can non-intrusively prevent
network congestion without significant changes in the code or introducing further compo-
nents into the Kubernetes cluster. As a result, overall application performance and system
stability can improve but might result in suboptimal overall resource allocation.

5.2 Integrating Kube-scheduler-rs

Alongside the NES, we are proposing the design of a novel adaptive scheduling approach,
KSRS, that employs a generational method to address the scheduling problem, drawing
inspiration from genetic algorithms and their fitness functions from the Machine Learning
field. This novel scheduler merges multiple scheduling algorithms, such as bin packing
and tabu-list local search, to identify the most efficient workload distribution within a
specified time frame. This combined approach enables KSRS to utilize the strengths of
each algorithm to find the most effective workload distribution within a given time frame.

The bin-packing algorithm seeks to optimize resource utilization by packing workloads as
tightly as possible, reducing wasted resources, and maximizing available capacity. Con-
versely, the tabu-list local search algorithm explores the scheduling solution space by
iteratively making minor adjustments to the existing solution and avoiding previously en-
countered solutions, aiding it in escaping local optima and discovering improved solutions
over time.

By integrating these algorithms in a generational fashion, KSRS can benefit from the
bin-packing algorithm’s effectiveness in initial workload placement and the tabu-list local
search algorithm’s capacity to explore and refine solutions iteratively. For instance, it
might initially schedule a pod using bin-packing and subsequently utilize tabu-list local
search in the next scheduling cycle to identify an even superior placement for another
pod. Additionally, this method allows KSRS to consider multiple pods for preemption and
reassignment, creating space for new pods while adhering to pod disruption budgets.
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By considering PDBs when making scheduling decisions, KSRS guarantees that the
rescheduling and reassignment of pods do not breach the stated availability require-
ments, minimizing the potential impact on application performance and reliability. [7]

KSRS’s structure resembles a standard Kubernetes controller more than the existing
scheduler implementation. This reconciling framework simplifies the adaptation of the
scheduler to work with dynamic values. It can be repurposed for schedulers that prefer to
use dynamic or current usage values instead of static ones.

Integrating this scheduler into an existing Kubernetes cluster requires the cluster adminis-
trator to create a new deployment and specify its name in the Kubernetes pod resources.
Subsequently, the default scheduler will not schedule this pod, and the proposed scheduler
can schedule it as described above.

This method allows running both scheduler deployments in parallel, reducing risks and
allowing fine-grained scheduling per namespace and workload demand.

5.3 Benefits and Implications

Implementing NES and KSRS addresses significant limitations concerning the network
bandwidth allocation of the default Kubernetes scheduler. By considering network band-
width requirements in conjunction with CPU and memory constraints, these solutions
enable more informed scheduling decisions that avoid network bottlenecks and optimize
overall application performance.

The KSRS’s capability to reschedule running workloads offers a distinct advantage. It
allows for ongoing workload distribution and resource allocation optimization in response
to evolving application demands and network conditions. In this manner, a dynamic
scheduler can be implemented, as with each reconciliation run, previous decisions can
be revised, and more efficient distributions applied to the cluster. This architecture also
goes hand in hand with the introduction of ”In-Place Update of Pod Resources” in the
Kubernetes 1.27 release.

37



6 Simulation and Result Evaluation

In this chapter, we examine the NES implementation, created to mitigate the inadequacies
of the Kubernetes scheduler concerning network bandwidth allocation. Additionally, we
will propose a strategy for conducting benchmarks on the resulting solutions to evalu-
ate their performance and efficacy in optimizing resource allocation within Kubernetes
clusters.

6.1 Benchmarks settings

To verify the correctness and quality of the resulting workload distribution by the default
Kubernetes scheduler and the NES implementation, one will create diverse Kubernetes
cluster using KWOK [13], outlined in detail in each subsequent scenario, to compare
the resulting workload distributions. Each node in the cluster will have a ‘node.kuber-
netes.io/network-limit: 1Gi‘ annotation, indicating a 1 Gbit/s network bandwidth limit,
32 CPU cores and 256Gi of memory, see Code Listing 6.1.

All scenarios will run on a 2023 16-inch MacBook Pro with an Apple M2 Pro chipset and
32 GB of memory. The docker desktop VM hosting the KWOK-managed Kubernetes cluster
will have 6 CPU cores and 8GB of memory allocated.

Section 5.1 outlined running the scheduler with the custom extension as a secondary
scheduler. By defining the ”schedulerName” field in the pod’s definition, one can explicitly
define which scheduler will be used to schedule the pod.

Each scenario will have individually adjusted workload definitions, that will be comparable
to the Code Listings in 6.2 and 6.3, yet with adequate changes for the given simulation
setting.

We track the scheduler’s resource utilization using a custom-built Go command line
application that connects directly to the system’s docker daemon and efficiently collects
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1 apiVersion: v1
2 kind: Node
3 metadata:
4 annotations:
5 node.alpha.kubernetes.io/ttl: "0"
6 node.kubernetes.io/network-limit: "1Gi"
7 labels:
8 beta.kubernetes.io/arch: arm64
9 beta.kubernetes.io/os: linux

10 kubernetes.io/arch: arm64
11 kubernetes.io/hostname: kwok-node-0
12 kubernetes.io/os: linux
13 kubernetes.io/role: agent
14 name: kwok-node-0
15 status:
16 allocatable:
17 cpu: "32"
18 memory: 256Gi
19 pods: "110"
20 capacity:
21 cpu: "32"
22 memory: 256Gi
23 pods: "110"
24 nodeInfo:
25 architecture: arm64
26 bootID: f9d3750e-8d48-4e73-867a-b144a06e17f8
27 containerRuntimeVersion: containerd://1.6.19-k3s1
28 kernelVersion: 5.15.49-linuxkit
29 kubeProxyVersion: v1.26.4+k3s1
30 kubeletVersion: v1.26.4+k3s1
31 machineID: ""
32 operatingSystem: linux
33 osImage: K3s dev
34 systemUUID: ""
35 phase: Running

Code Listing 6.1: Kwok node definition
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CPU and memory usage over time. The captured output is then analyzed and visualized
in a Jupyter Lab Notebook, utilizing Pandas and Matplotlib.

6.2 Simulation Scenarios

In order to evaluate the performance and effectiveness of both the NES and default Sched-
uler implementations, we suggest carrying out a series of benchmarks within simulated
Kubernetes environments. The benchmarks will concentrate on these key performance
indicators:

1. Scalability: Investigate the schedulers’ capacity to manage increasing numbers of
nodes, pods, and workloads and ascertain the time for the schedulers to make and
implement scheduling decisions.

2. Resource utilization: Evaluate CPU, memory, and network bandwidth utilization
efficiency.

3. Application performance: Examine the influence of the schedulers on the perfor-
mance of containerized applications operating within the Kubernetes clusters.

The benchmarking strategy will entail establishing multiple Kubernetes clusters with di-
verse workloads and network demands. The custom scheduler plugin and the generational
custom scheduler will manage these clusters, and their performance will be observed and
compared to that of the default Kubernetes scheduler.

6.2.1 Scenario 1: Fixed and strict network bandwidth requirements

In this scenario, we assume that the workloads need their requested resource requirements
to be guaranteed by the scheduler. Examples of these workload classes include live video
transcoding, media transcoding, and file transfer.

One will be creating a cluster consisting out of 200 nodes by adjusting the node’s name in
Code Listing 6.1 line 14, and applying the definition to the KWOK-managed cluster.

Utilizing the workload definitions shown in Code Listing 6.2 and 6.3, we deploy pods with
equal network bandwidth requests and limits into dedicated testing namespaces. Thus
the Kubernetes quality of service class for these pods will be ”Guaranteed”. One utilizes
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the pod definitions shown in Code Listing 6.2 for the default Kubernetes scheduler and
Code Listing 6.3 for the NES implementation. The only differences for the pod definition
between the two listings is line 26 explicitly defining the scheduler to be used, and the
namespace in line 12.

Each namespace will hold 1500 pods, requiring a total of 300Gi. However, only 200Gi
are available in the cluster. Subsequently, the scheduler should only schedule 1000 of
those 1500 pods. Thus, the remaining 500 pods shall remain pending indefinitely, as
one cannot provide the workloads with their requested network bandwidths. Unless the
cluster administrator scales the cluster horizontally, i.e., adding new nodes to the cluster,
adding new resources availabilities to it, or once running workloads are scaled down
or complete their task and free up their allocated resources to be used by other pods.
This blocking behavior is the desired behavior in Kubernetes, as, by definition, resource
requests must be matched for a workload to start.

6.2.2 Scenario 2: Burstable network bandwidth requirements and node
overcommitment

Unlike the first scenario, we assume the pod’s workload requirements are burstable,
meaning pods will have a base network bandwidth guaranteed, e.g., an average minimum
to work correctly and a much higher limit on the network bandwidth limit. As in scenario
one, we will create a KWOK-managed cluster of 200 nodes by adjusting the node’s name
in Code Listing 6.1 line 14 and applying the definition to the KWOK-managed cluster.

In order to implement this scenario, one adjusts the network bandwidth annotation in
lines 21 to 24 in Code Listings 6.2 and 6.3 to the annotations shown in Code Listing 6.4.

As in scenario one, the deployments will consist of 1500 pods, with each deployment
residing in a dedicated namespace explicitly specifying the scheduler used for scheduling.
Each namespace will hold 1500 pods, requiring 150Gi of network bandwidth, with a
limit of 300Gi of combined ingress and egress bandwidth. The scheduler should sched-
ule all 1500 pods, evenly balancing the workloads with regards to network bandwidth
requirements.
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1 apiVersion: v1
2 kind: Namespace
3 metadata:
4 labels:
5 kubernetes.io/metadata.name: stress-test-default-scheduler-1500-100
6 name: stress-test-default-scheduler-1500-100
7 ---
8 apiVersion: apps/v1
9 kind: Deployment

10 metadata:
11 name: stress-test
12 namespace: stress-test-default-scheduler-1500-100
13 spec:
14 replicas: 1500
15 selector:
16 matchLabels:
17 app: pause
18 template:
19 metadata:
20 annotations:
21 kubernetes.io/ingress-bandwidth: 100M
22 kubernetes.io/egress-bandwidth: 100M
23 kubernetes.io/ingress-request: 100M
24 kubernetes.io/egress-request: 100M
25 labels:
26 app: pause
27 spec:
28 schedulerName: default-scheduler
29 containers:
30 - name: pause-container
31 image: gcr.io/google_containers/pause:3.2
32 resources:
33 requests:
34 cpu: "0.1"
35 memory: "10Mi"
36 limits:
37 cpu: "0.1"
38 memory: "10Mi"

Code Listing 6.2: Pod with 200M total network bandwidth requirements scheduled by
the default-scheduler
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1 apiVersion: v1
2 kind: Namespace
3 metadata:
4 labels:
5 kubernetes.io/metadata.name: stress-test-network-extended-scheduler-1500-100
6 name: stress-test-network-extended-scheduler-1500-100
7 ---
8 apiVersion: apps/v1
9 kind: Deployment

10 metadata:
11 name: stress-test
12 namespace: stress-test-network-extended-scheduler-1500-100
13 spec:
14 replicas: 1500
15 selector:
16 matchLabels:
17 app: pause
18 template:
19 metadata:
20 annotations:
21 kubernetes.io/ingress-bandwidth: 100M
22 kubernetes.io/egress-bandwidth: 100M
23 kubernetes.io/ingress-request: 100M
24 kubernetes.io/egress-request: 100M
25 labels:
26 app: pause
27 spec:
28 schedulerName: network-extended-scheduler
29 containers:
30 - name: pause-container
31 image: gcr.io/google_containers/pause:3.2
32 resources:
33 requests:
34 cpu: "0.1"
35 memory: "10Mi"
36 limits:
37 cpu: "0.1"
38 memory: "10Mi"

Code Listing 6.3: Pod with 200M total network bandwidth requirements scheduled by
the network-extended-scheduler
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kubernetes.io/ingress-bandwidth: 100M
kubernetes.io/egress-bandwidth: 100M
kubernetes.io/ingress-request: 50M
kubernetes.io/egress-request: 50M

Code Listing 6.4: Pod annotations for burstable network bandwidth

6.2.3 Scenario 3: Workload distribution with mixed workloads

This scenario analyzes the scheduling behavior with mixed types of workload requirements.
We will deploy two distinct deployments, one primarily requiring network bandwidth and
the other workload only requiring CPU and memory while not having any networking
requirements, into a newly created cluster to the likes of the cluster in scenario one.
We will use Code Listings 6.2 and 6.3 for this, and for the CPU and memory-intensive
workload, we will use Code Listing 6.5.

As in the first, fixed bandwidth scenario, we will guarantee pods the availability of their
resource requirements by applying unmodified Code Listings 6.2 and 6.3. First, the
CPU and memory-demanding Kubernetes deployment will be applied, followed by the
network-demanding deployment.

This scenario showcases the balanced distribution of networking bandwidth across diverse
workloads in a cluster.

6.2.4 Scenario 4: Workload distribution with mixed, burstable workloads

This fourth scenario builds on the third scenario but introduces the option for both
deployments to be burstable in resource requirements, thus overcommitting node resources.
The networking burst ability is introduced by replacing lines 21 to 24 in Code Listings 6.2
and 6.3 with the annotations showcased in Code Listing 6.4. In contrast, one introduces
workload burst ability by replacing lines 19 to 25 in Code Listing 6.5 with the resources
object showcased in Code Listing 6.6.

This scenario aims to showcase the balanced distribution of diverse workloads in a cluster
across overcommitted node resources and the resulting distribution of workloads.
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1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: stress-test-cpu-memory-workload
5 spec:
6 replicas: 1600
7 selector:
8 matchLabels:
9 app: cpu-memory

10 template:
11 metadata:
12 labels:
13 app: cpu-memory
14 spec:
15 schedulerName: network-extended-scheduler
16 containers:
17 - name: pause-container
18 image: gcr.io/google_containers/pause:3.2
19 resources:
20 requests:
21 cpu: "2"
22 memory: "16Gi"
23 limits:
24 cpu: "2"
25 memory: "16Gi"

Code Listing 6.5: Deployment of CPU and memory-heavy application

resources:
requests:

cpu: "1"
memory: "8Gi"

limits:
cpu: "2"
memory: "16Gi"

Code Listing 6.6: Pod resource object for burstable CPU and memory
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6.3 Scalability

While performing scalability testing on KWOK-managed Kubernetes clusters, both NES and
the default scheduler could handle the increasing number of nodes and pods to distribute.

As seen in the Figures in 6.1, the total time for scheduling each scenario is comparable
for both schedulers, which traces back to API server rate limiting and local caching. The
schedulers consistently took less than 2 seconds to schedule a pod to a node in all four
simulation scenarios with clusters consisting of 200 nodes. This delay mainly traces back
to the Kubernetes API server imposing rate limiting and, thus, the scheduler keeping a
cache, which is periodically fetched and updated.

Hence, from a scalability perspective, both schedulers make and implement scheduling
decisions in the same timeframe without lagging behind the other, and both schedulers
are not putting additional pressure on the Kubernetes API server, even with an increasing
number of nodes and pods to schedule.

6.4 Resource utilization

Regarding CPU usage, the charts in Figure 6.1 showcase that NES occasionally has a slightly
higher CPU usage than the default scheduler. This additional CPU usage can be attributed
to the calculations performed by the network scheduling extension or measurement and
rounding errors.

On the other hand, the charts in Figure 6.2 portray a comparable memory utilization
across both schedulers, that like the CPU usage, are occasionally higher and occasionally
lower but require the same memory to operate.

As outlined in the Scalability section, both schedulers keep an internal cache due to Kuber-
netes API server rate limiting and optimization purposes. Thus the network bandwidth
utilization of NES remains equal to the utilization of the default scheduler, as the cache
invalidation and refreshing is a separate component of the scheduler that has not been
modified.
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Figure 6.1: CPU core usage during scheduling scenarios
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Figure 6.2: Memory usage in MiB during scheduling scenarios
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6.5 Application performance

In contrast to both previous sections, the pod distributions resulting from NES differ
enormously from the ones resulting from the default scheduler.

Within the first and third test scenarios, the scheduler provided pods with their required
constant network bandwidth, meaning that applications could perform at 100In the
case of video transcoding and file transfer services, these workloads did not experience
any slowdowns or increased pings due to network congestion. In contrast, the default
scheduler only balanced out pods based on the number of pods on a node, disregarding
networking needs. Unfortunately, this disregard leads to data transfers slowing down by
50-75

On the other hand, in scenarios two and three, NES distributed pods with network require-
ments evenly across nodes in the entire cluster, balancing the workloads and demands.
The workloads had a predictable behavior with higher usage, linearly increasing in network
congestion, as even with overcommitted nodes, the percentage of the overcommitment is
fixed.

In contrast, using the default scheduler resulted in imbalanced distributions of network-
demanding workloads. As a result, the default scheduler heavily overcommitted some
nodes while underutilizing others from a networking bandwidth perspective. This im-
balance impacted the workloads, as in their burstable nature, the performance became
unpredictable and, with higher usage, led to higher pings and delayed operations more
than necessary.
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7 Conclusion

During this bachelor’s thesis, the driving goal was to resolve a pressing issue – the lack
of network-bandwidth awareness in Kubernetes scheduling. The vision was to extend
the Kubernetes scheduler’s capabilities and propose a new, more dynamic Kubernetes
scheduler capable of making real-time decisions based on static bandwidth requirements
and accounting for actual resource usage.

The journey has seen the creation of a scheduler extension and a design proposal for a
novel adaptive scheduling approach for Kubernetes. The extension, crafted using the
Kubernetes extension framework, enabled the scheduler to read network bandwidth
requirements directly from pod annotations, enriching the existing bin-packing algorithm
by filtering and scoring nodes based on these specifications. This advancement allows
cluster operators to better integrate network bandwidth resource requirements into the
standard Kubernetes scheduler, facilitating a more efficient scheduling process.

However, proposing the design of a novel adaptive scheduling approach for a Kubernetes
scheduler is an area for further research. This scheduler design, mirroring the concept
of Kubernetes controllers, undertakes a periodic reconciliation of the state of pods and
nodes within the cluster. This constant updating means it can adapt swiftly to changes in
workload resource requirements, the number of pods and workloads, or even the number
of nodes within the cluster. Furthermore, its ability to continuously reassess and adapt
to external changes ensures optimal workload distribution, a capability that the existing
Kubernetes scheduler needs to improve.

The robustness of these improvements was confirmed through testing using the kube-
scheduler-simulator and KWOK. In addition, they demonstrated the practicality of the
proposed solutions and pointed the way to future enhancements in the Kubernetes schedul-
ing ecosystem.

In conclusion, this thesis has significantly advanced the discourse on network-bandwidth
awareness in Kubernetes scheduling. It has not only met the set objectives but also made a
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meaningful contribution to the broader discipline of resource-aware scheduling in Kuber-
netes. Furthermore, the work carried out here lays the groundwork for future research in
this area, pointing towards a future with even more refined resource management within
Kubernetes environments, such as introducing adaptive scheduling mechanisms and ways
of implementing those in the future.

51



Bibliography

[1] About Google. url: https://about.google (visited on 03/31/2023).
[2] Boundary. HashiCorp Inc. url: https://www.boundaryproject.io/ (visited

on 03/31/2023).
[3] Crane-scheduler. url: https://github.com/gocrane/crane-scheduler

(visited on 03/31/2023).
[4] GPU Sharing Scheduler Extender in Kubernetes. Alibaba Cloud. url: https://

github.com/AliyunContainerService/gpushare-scheduler-extender
(visited on 03/31/2023).

[5] Kubernetes – Configure Multiple Schedulers. The Linux Foundation. url: https:
//kubernetes.io/docs/tasks/extend-kubernetes/configure-
multiple-schedulers/ (visited on 03/31/2023).

[6] Kubernetes – Controllers. The Linux Foundation. url: https://kubernetes.
io/docs/concepts/architecture/controller/ (visited on 03/31/2023).

[7] Kubernetes – Disruptions. The Linux Foundation. url: https://kubernetes.
io/docs/concepts/workloads/pods/disruptions/ (visited on 03/31/2023).

[8] Kubernetes – Scheduler Extender. The Linux Foundation. url: https://github.
com/kubernetes/design-proposals-archive/blob/main/scheduling/
scheduler_extender.md (visited on 03/31/2023).

[9] Kubernetes – Scheduling Framework. The Linux Foundation. url: https : / /
kubernetes.io/docs/concepts/scheduling-eviction/scheduling-
framework/ (visited on 03/31/2023).

[10] Kubernetes Scheduler. The Linux Foundation. url: https://kubernetes.io/
docs/concepts/scheduling-eviction/kube-scheduler/ (visited on
03/31/2023).

52

https://about.google
https://www.boundaryproject.io/
https://github.com/gocrane/crane-scheduler
https://github.com/AliyunContainerService/gpushare-scheduler-extender
https://github.com/AliyunContainerService/gpushare-scheduler-extender
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/


[11] Kubernetes scheduler extension points. url: https://d33wubrfki0l68.cloudfront.
net/a2935907046b492bc7ee8b9a10c54fffd6b5a4a0/834e0/images/
docs/scheduling-framework-extensions.png (visited on 05/19/2023).

[12] Kubernetes scheduler simulator. The Linux Foundation. url: https://github.
com/kubernetes-sigs/kube-scheduler-simulator (visited on 03/31/2023).

[13] KWOK (Kubernetes WithOut Kubelet). url: http://kwok.sigs.k8s.io (visited
on 05/10/2023).

[14] Zijie Liu et al. “KubFBS: A fine-grained and balance-aware scheduling system for
deep learning tasks based on kubernetes”. In: Concurrency and Computation: Practice
and Experience 34.11 (2022), e6836. doi: https://doi.org/10.1002/cpe.
6836. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
cpe.6836. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cpe.6836.

[15] Pomerium. Pomerium Inc. url: https://pomerium.com/ (visited on 03/31/2023).
[16] Specifying a Disruption Budget for your Application. The Linux Foundation. url:

https://kubernetes.io/docs/tasks/run-application/configure-
pdb/ (visited on 03/31/2023).

[17] StrongDM. StrongDM, Inc. url: https://www.strongdm.com/ (visited on
03/31/2023).

[18] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In:
Proceedings of the European Conference on Computer Systems (EuroSys). Bordeaux,
France, 2015.

53

https://d33wubrfki0l68.cloudfront.net/a2935907046b492bc7ee8b9a10c54fffd6b5a4a0/834e0/images/docs/scheduling-framework-extensions.png
https://d33wubrfki0l68.cloudfront.net/a2935907046b492bc7ee8b9a10c54fffd6b5a4a0/834e0/images/docs/scheduling-framework-extensions.png
https://d33wubrfki0l68.cloudfront.net/a2935907046b492bc7ee8b9a10c54fffd6b5a4a0/834e0/images/docs/scheduling-framework-extensions.png
https://github.com/kubernetes-sigs/kube-scheduler-simulator
https://github.com/kubernetes-sigs/kube-scheduler-simulator
http://kwok.sigs.k8s.io
https://doi.org/https://doi.org/10.1002/cpe.6836
https://doi.org/https://doi.org/10.1002/cpe.6836
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6836
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6836
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6836
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6836
https://pomerium.com/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://www.strongdm.com/

	Introduction
	Motivation
	Outline and Contributions
	Structure of the Thesis

	Overview
	Containers
	Kubernetes
	Current Kubernetes Scheduler
	Kubernetes Controllers
	Pod Disruption Budget
	Kubernetes Scheduling Framework and Extensibility
	Kubernetes Scheduler Simulator

	Related Work
	GPU resource scheduling
	Load-Aware Dynamic Scheduling

	Scheduling Approach
	Problem Statement
	Mathematical Formulation
	Network Extended Scheduler
	Novel adaptive scheduling approach
	Illustration of the cyclic improvement process


	Algorithms integration into Kubernetes
	Integrating the Network Extended Scheduler
	Integrating Kube-scheduler-rs
	Benefits and Implications

	Simulation and Result Evaluation
	Benchmarks settings
	Simulation Scenarios
	Scenario 1: Fixed and strict network bandwidth requirements
	Scenario 2: Burstable network bandwidth requirements and node overcommitment
	Scenario 3: Workload distribution with mixed workloads
	Scenario 4: Workload distribution with mixed, burstable workloads

	Scalability
	Resource utilization
	Application performance

	Conclusion

