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A B S T R A C T

Radio resource management (RRM) plays a critical role in modern
wireless communications networks. RRM’s ultimate goal is to devise
strategies to efficiently manage the network’s radio resources, e.g.,
infrastructure and spectrum, and thus coordinate interference and
ensure quality-of-service (QoS) requirements for the user equipments
(UEs). RRM has undergone a tremendous transformation from ini-
tially being limited to solely the physical layer with fixed policies
to presently incorporating dynamic cross-layer algorithms that allow
controlling multiple characteristics of the physical and higher layers.

Each succeeding generation of wireless mobile technology has
contributed to expanding the network capabilities but has also posed
new challenges for RRM in coordinating more radio spectrum, e.g.,
millimeter-wave spectrum, and more radio infrastructure, e.g., coordi-
nated multi-point operation (CoMP) and integrated access-backhaul
(IAB). Therefore, as wireless technologies evolve, RRM strategies must
also adapt to account for emerging radio infrastructure and spectrum,
ensuring their efficient utilization along with the existing resources.

This thesis proposes several RRM strategies and algorithms to
improve radio resource utilization, addressing challenges intrinsic to
the evolution of wireless mobile technologies. Different RRM research
problems are investigated considering diverse radio resources, such
as precoding, admission control, and discrete rate allocation, focusing
on various use cases, such as Industry 4.0.

The strategies and algorithms developed herein not only target
networks deployed using space-division multiple access (SDMA),
adopted as de facto multiple access scheme, but also target emerging
multiple access schemes, such as layered-division multiple access
(LDMA) and rate-splitting multiple access (RSMA). In addition, the
strategies and algorithms are not limited to access networks only, but
also include backhaul networks, specifically IAB technology.
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Z U S A M M E N FA S S U N G

Radio resource management (RRM) spielt eine entscheidende Rolle
in modernen drahtlosen Kommunikationsnetzen. Ziel des RRM ist es,
Strategien zur effizienten Verwaltung der Funkressourcen des Netzes,
z. B. der Infrastruktur und des Spektrums, zu entwickeln und so Inter-
ferenzen zu koordinieren und quality-of-service (QoS)-Anforderungen
für das Endgerät zu gewährleisten. RRM hat eine enorme Entwicklung
durchgemacht: War es anfangs nur auf die physikalische Schicht mit
festen Richtlinien beschränkt, so umfasst es heute dynamische, schicht-
übergreifende Algorithmen, die die Steuerung mehrerer Merkmale
der physikalischen und höherer Schichten ermöglichen.

Jede nachfolgende Generation der drahtlosen Mobilfunktechno-
logie hat dazu beigetragen, die Netzkapazitäten zu erweitern, hat
aber auch neue Herausforderungen für das RRM mit sich gebracht,
da mehr Funkspektrum, z. B. im Millimeterwellenbereich, und mehr
Funkinfrastruktur, z. B. coordinated multi-point operation (CoMP)
und integrated access-backhaul (IAB), koordiniert werden müssen. Da
sich die drahtlosen Technologien weiterentwickeln, müssen sich die
RRM-Strategien auch an die neu entstehende Funkinfrastruktur und
das Spektrum anpassen, um deren effiziente Nutzung zusammen mit
den vorhandenen Ressourcen zu gewährleisten.

In dieser Arbeit werden mehrere RRM-Strategien und -Algorithmen
vorgeschlagen, um die Nutzung von Funkressourcen zu verbessern
und die mit der Entwicklung der drahtlosen Mobilfunktechnologien
verbundenen Herausforderungen zu bewältigen. Verschiedene RRM-
Forschungsprobleme werden unter Berücksichtigung verschiedener
Funkressourcen untersucht, wie z. B. Vorcodierung, Zulassungskon-
trolle und diskrete Ratenzuweisung, wobei der Schwerpunkt auf ver-
schiedenen Anwendungsfällen, wie z. B. Industrie 4.0, liegt.

Die hier entwickelten Strategien und Algorithmen zielen nicht
nur auf Netze ab, die space-division multiple access (SDMA) als
de facto-Mehrfachzugriffsverfahren verwenden, sondern auch auf
neue Mehrfachzugriffsverfahren wie layered-division multiple access
(LDMA) und rate-splitting multiple access (RSMA). Darüber hinaus
sind die Strategien und Algorithmen nicht nur auf Zugangsnetze
beschränkt, sondern umfassen auch Backhaul-Netze, insbesondere die
IAB-Technologie.
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1
I N T R O D U C T I O N

This chapter provides the context and motivation for the investigated
radio resource management (RRM) research problems in [A, B, C, D,
E, F, G, H], included in this thesis.

1.1 overview

RRM has long been recognized as a crucial component of wireless
communications networks. RRM is an umbrella term that encompasses
a set of strategies and algorithms designed to optimize the utilization
of the networks’ radio resources, i.e., infrastructure, spectrum, and
transmission characteristics. The utilization of the radio resources is
optimized through intelligent management and coordination, resulting
in reduced interference and improved quality-of-service (QoS) for user
equipments (UEs) [1–3].

Traditional RRM in legacy technologies, such as the 2nd gen-
eration mobile network (2G), consisted primarily of physical layer In 2G, static channel

assignment was
used, which
consisted of
assigning a certain
number of manually
selected channels to
every cell.

strategies in which resources were statically allocated, i.e., unable to
adapt to environmental changes and limited to only a small set of
possible choices, such as frequency channels [4, 5]. In contrast, con-
temporary mobile technologies, such as the 4th generation mobile
network (4G) and 5th generation mobile network (5G), have evolved
to the point that it is feasible to dynamically control a broader range
of radio resources, even beyond the physical layer [6].

Thus, RRM has evolved from static and confined solely to the
physical layer to dynamic and spanning multiple layers, allowing for
unified control of physical and higher layers. Nowadays, RRM can be
designed to control a wider variety of characteristics, such as transmit
power, modulation and coding scheme (MCS), admission control, UE
association, antenna and subcarrier assignment, as well as allowing a
choice between fixed or adaptive precoding.

Each generation of mobile technology has contributed tremendous
advancements. For instance, 4G introduced coordinated multi-point
operation (CoMP) [7–9], whereas 5G incorporated millimeter-wave
spectrum and integrated access-backhaul (IAB) [10–12]. Specifically,
CoMP has made it possible to serve UEs through multiple cooperating
distributed base stations (BSs), while millimeter-wave spectrum has
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facilitated the decongestion of data traffic, and IAB has bonded the
access and backhaul networks to more closely orchestrate the use of
resources, allowing for higher capacity and throughput. However, the
introduction of these new radio resource has also posed challenges for
RRM. Specifically, integrating and managing new radio resources and
infrastructure alongside the existing ones is becoming increasingly
complex, thus posing a threat to maintaining high network perfor-
mance and optimal resource utilization. Furthermore, the increasing
QoS requirements and the proliferation of Internet of Things (IoT) de-
vices have further compounded the situation, calling for sophisticated
strategies and algorithms to efficiently manage a constantly evolv-
ing constellation of radio resources, be it infrastructure, spectrum, or
transmission characteristics.

1.2 motivation and challenges

As wireless technologies continue to evolve, so must the algorithms
and strategies used to manage the network’s radio resources. This
thesis proposes several novel RRM strategies and algorithms to tackle
many inherent challenges of modern wireless communication net-
works, aiming to ensure the QoS requirements of UEs and the optimal
use of the networks’ radio resources. The following discussion focuses
on various challenges that are investigated in this thesis.

New infrastructure and spectrum. As new generations of mobile
technologies emerge, more advanced infrastructure is developed and
integrated with the existing ones. An example is CoMP [7–9], which
was introduced in 4G, and allows for higher throughput but requires
coordination between BS and UE association to manage inter-user
interference effectively, thus requiring more elaborated RRM strategies
for proper operation. Similarly, 5G introduced IAB [10–12] as a cutting-
edge technology for unified control of access and backhaul networks.
IAB promises savings in deployment and maintenance costs compared
to traditional fiber optic backhauling but requires optimizing the ra-
dio resources for both access and backhaul in tandem, resulting in
greater complexity for RRM design. Besides, the use of millimeter-
wave spectrum [13–15] was incorporated in 5G as a means to alleviate
network congestion caused by the limited bandwidth available in
the sub-6GHz spectrum. In particular, adopting the millimeter-wave
spectrum in 5G has helped expand network capacity and attend to the
increasing throughput demands. However, it has also presented tech-
nical challenges, such as high power consumption due to the severe
path loss and the need for dedicated hardware, i.e., hybrid precoders,
to exploit the spectrum. Consequently, incorporating new infrastructure
and spectrum requires renovated RRM strategies and algorithms tailored to
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exploit the unique attributes of these radio resources and enable their optimal
utilization.

Remark: The RRM design considering new spectrum resources,
i.e., millimeter-wave spectrum, was investigated in [A, B, C, D, E, F,
G, H], and considering new infrastructure, i.e., IAB technology, was
investigated in [G].

Hybrid precoders. Analog-digital precoders, also known as hybrid
precoders [16–18], were introduced to take early advantage of the
available millimeter-wave spectrum. Hybrid precoders provide an The terms

precoder/precoding
and beam-
former/beamforming
are used
interchangeably.

acceptable compromise between costs and performance by requiring a
high-dimensional network of cost-efficient analog phase shifters and
a low-dimensional network of more expensive radiofrequency (RF)
chains, thus overall maintaining costs affordable at the tradeoff of a
penalty on performance. In contrast, fully-digital precoders, typically
used for the sub-6GHz spectrum, are more versatile and perform
better than hybrid precoders. However, fully-digital precoders still
need to be more affordable to manufacture before they can be used in
the millimeter-wave spectrum. Specifically, they require a dedicated RF
chain per antenna, substantially increasing costs. While hybrid precoders
are an excellent solution to exploit the millimeter-wave spectrum at a low
cost, the couplings between the analog and digital components, which are
intrinsic to hybrid precoder architectures, make their design more complex. In
particular, these complicating couplings result in nonconvex functions and
need to be adequately addressed by the RRM design and thus utilize the radio
resources more efficiently.

Remark: The RRM design considering hybrid precoders was in-
vestigated in [A, B, C, D, E].

Admission control. Owing to physical constraints, such as a
limited number of RF chains, network operators typically devise
policies to accommodate a fixed number of UEs per channel use,
especially when using hybrid precoders, which have fewer RF chains
than their fully-digital counterparts. Specifically, each RF chain can In this thesis, the

terms admission
control, UE
admission, UE
scheduling or simply
scheduling are used
interchangeably
although they may
have a different
connotation in other
contexts.

only handle a single data stream. As a result, when the number of
UEs exceeds the number of RF chains, some form of regulation, i.e.,
admission control, is required to decide which UEs are served [19–21].
Despite the importance of admission control in wireless communications
systems, it is usually not accounted for in the literature. With the adoption
of hybrid precoders to exploit the millimeter-wave spectrum, the importance
of admission control becomes more prominent. Therefore, admission control
must be included in the RRM design to depict realistic characteristics of
modern wireless communications systems.

Remark: The RRM design considering admission control was in-
vestigated in [E, F, G, H].

3



UE association. Most works in the literature assume that UEs
are served by a single BS or all BSs within a given range, imposing
a pre-association for service. Typically, these extreme strategies, i.e.,
assuming that UEs be served by one or all BSs, are a way of circumvent-
ing integer variables that would be used to represent the connectivity
between UEs and BSs. Despite this assumption greatly simplifying the
RRM design, it is not realistic nor optimal from a practical perspective.
In practice, each UE may be served by some BSs, but likely not all in a
given range. Again, this may be due to a limited number of RF chains
at each BS or a policy imposed by the network operator. Particularly,
radio infrastructure, such as BSs, must be exploited intelligently to
guarantee the continued sustainability of wireless communications
systems. Thus, to improve radio resource utilization, the RRM design must
allow flexible association between BSs and the UEs.

Remark: The RRM design considering UE association was investi-
gated in [G].

Discrete rates. Shannon capacity provides an information-theoretic
upper limit for the rate, which in reality cannot be achieved. Still, Shan-
non capacity is commonly adopted in most literature, as it facilitates
relating signal-to-interference-plus-noise ratios (SINRs) and rates. A
more realistic representation of the rate is using MCSs, which yield
a limited number of discrete rates. However, relating rates and their
corresponding MCSs is more complex and usually disregarded. In
particular, continuous rates obtained by Shannon capacity are not
achievable and must be approximated or rounded to the nearest feasi-
ble discrete rate, resulting in power and/or rate losses [22]. Therefore,
incorporating the use of discrete rates in the RRM design is necessary for
efficient use of radio resources, thereby avoiding losses.

Remark: The RRM design considering discrete rates was investi-
gated in [G, H].

New multiple access schemes. The 3rd Generation Partnership
Project (3GPP) standardized multi-user superposition transmission
(MUST) in 4G, which is a type of non-orthogonal multiple access
scheme. Recently, other forms of non-orthogonal multiple access, such
as layered-division multiple access (LDMA) [23, 24] and rate-splitting
multiple access (RSMA) [25, 26] have emerged but are not standard-
ized. However, LDMA and RSMA have demonstrated advantages
compared to space-division multiple access (SDMA), making it possi-
ble for these technologies to be adopted in beyond 5G (B5G) mobile
technologies1. However, adopting a new multiple access scheme would

1 A variant of LDMA has been standardized for digital terrestrial television, allow-
ing to transmit multimedia content with different qualities overlaid over the same
spectrum band. In addition, RSMA has recently been subject of discussion at 3GPP
standardization meetings and is strongly supported by the BBC [27].
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require restructuring current RRM strategies and algorithms. In par-
ticular, this would impact the design of precoding, admission control,
UE association as well as discrete and continuous rate allocation. In
particular, investigating RRM design for emerging multiple access is of great
relevance. It can help to understand the advantages of these new develop-
ments compared to the mainstream ones, which are the basis of today’s mobile
technologies.

Remark: The RRM design considering new multiple access schemes
was investigated in [C, D, F, H]. Specifically, in [C, F] for LDMA and
in [D, H] for RSMA.

Imperfect successive interference cancellation. Non-orthogonal
multiple access schemes, such as LDMA and RSMA, rely on succes-
sive interference cancellation (SIC) in order to decode the received
signals. The efficacy of LDMA and RSMA is directly linked to the
success of SIC, which is usually assumed to be perfect in most of the
literature. However, SIC is prone to errors that can produce residuals
of previously decoded signals, leading to unmitigated self-interference
that can negatively affect performance [28, 29]. Thus, it is essential to
take into account possible SIC imperfections in the RRM design of LDMA
and RSMA in order to guarantee the efficient use of radio resources.

Remark: The RRM design considering imperfect SIC was investi-
gated in [H].

Optimization. One of the major challenges faced in RRM is its
appropriate design. Specifically, one way to perform the RRM de-
sign is to formulate it as an optimization problem and solve it using
mathematical programming, also known as optimization theory, the
methodology mainly adopted in this thesis. However, other meth-
ods exist, such as machine learning and game theory. In the RRM
design, various types of radio resources can be considered. For in-
stance, power allocation is one of the most commonly optimized
resources, and therefore abundant literature exists on the topic. How-
ever, the amount of literature decreases significantly when other radio
resources are accounted for, such as precoding, admission control,
UE association, discrete rates, IAB, and CoMP. In particular, with
more radio resources to consider, the RRM design becomes more
complex. In this thesis, RRM designs of varying degrees of difficulty
are investigated, ranging from precoding alone to the joint design of
precoding, admission control, UE association, and discrete or contin-
uous rate allocation. Depending on the use case and the resources
considered, the RRM design can result in optimization problems of
different natures, from simple linear programs (LPs) to challenging
nonconvex mixed-integer nonlinear programs (MINLPs). Thus, several
techniques were employed to solve the optimization problems that
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resulted from the RRM designs, for instance, alternating optimization
(AO), semidefinite relaxation (SDR), successive convex approximation
(SCA), sequential parametric optimization (SPO), Cholesky matrix de-
composition (CMD), minorization-maximization (MM), interior-point
methods (IPMs), among others. Knowledge of a wide range of optimiza-
tion techniques is essential to deal with problems of different natures arising
from RRM designs. In general, no one-fits-all technique exists to solve all
optimization problems.

RRM is a crucial component of modern wireless communications
networks. RRM is responsible for efficiently managing the networks’
radio resources, i.e., infrastructure, spectrum, and transmission charac-
teristics, to meet UEs’ connectivity requirements. RRM can be concep-
tualized as radio resource orchestrator that balances the demands of
different UEs, ensuring that each UE meets its individual needs while
promoting an efficient use of radio resources. RRM can be designed to
support a wide range of use cases and services, from video games to
industrial communications. For each case, a different goal is pursued,
e.g., maximizing throughput would be of more significant relevance
for video gaming while minimizing latency would be more natural to
adopt for industrial communications. As wireless networks evolve and
new needs and use cases emerge, effective RRM designs that achieve
seamless connectivity and high resource utilization efficiency become
indispensable.

1.3 outline

The thesis consists of ten chapters organized as follows. Chapter 1

gives an introduction of the RRM problem investigated in this thesis.
Chapter 2, Chapter 3, Chapter 4, and Chapter 5 investigate the design
of hybrid precoding for millimeter-wave wireless communications
networks, considering several use cases and various multiple access
schemes, such as SDMA, LDMA, and RSMA. Chapter 6 and Chapter 7

investigate the joint design of hybrid precoding and admission control
for millimeter-wave wireless communications networks, considering
SDMA and LDMA. Chapter 8 and Chapter 9 investigate the joint
design of precoding, admission control, and discrete rate allocation
for millimeter-wave wireless communications networks, considering
SDMA and RSMA. In addition, Chapter 8 includes the design of UE
association since a CoMP network with multiple BSs is considered,
whereas Chapter 9 accounts for imperfect SIC, which may be caused
by hardware malfunctioning at the receiving UEs. Finally, Chapter 10

summarizes the conclusion of this thesis. The chapters are briefly
summarized in the following.
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• Chapter 1 provides an overview of RRM and establishes the
need for developing novel RRM strategies and algorithms to
address challenges of modern wireless communication networks.
Additionally, it provides the outline of this thesis.

• Chapter 2 builds on [A], which is included in Appendix A. In
particular, Chapter 2 investigates the design of hybrid precoding
for single-group multicast transmissions based on SDMA. The
chapter proposes a learning-based algorithm based on AO and
the gradient descent method to maximize the rate fairness among
all UEs. It is demonstrated that the proposed algorithm can
perform close to that of fully-digital precoders.

• Chapter 3 builds on [B], which is included in Appendix B. In par-
ticular, Chapter 3 investigates the design of hybrid precoding for
multi-group multicast transmissions based on SDMA. The chap-
ter proposes an algorithm based on SDR, AO, and CMD with
the objective of minimizing the transmit power. Despite the more
constrained architecture of hybrid precoders, it is shown that
the proposed hybrid precoder design performs very similarly
to its fully-digital counterpart even under challenging scenarios,
where fully-digital precoders are known to excel.

• Chapter 4 builds on [C], which is included in Appendix C. In
particular, Chapter 4 investigates the design of hybrid precoding
for non-orthogonal unicast and multicast (NOUM) transmissions
based on LDMA in the context of Industry 4.0. The chapter
proposes an algorithm based on SCA with the aim of maximizing
the rate fairness among all industrial IoT (IIoT) devices. It is
demonstrated that the proposed algorithm outperforms other
competing schemes.

• Chapter 5 builds on [D], which is included in Appendix D. In
particular, Chapter 5 investigates the design of hybrid precoding
for NOUM transmissions based on RSMA. The chapter proposes
an algorithm based on level sets, SCA, and SDR with the objec-
tive of maximizing the sum rate (SR) among all UEs. It is shown
that the proposed algorithm converges to a local optimum and is
able to find solutions in more instances than the state-of-the-art
algorithm.

• Chapter 6 builds on [E], which is included in Appendix E. In
particular, Chapter 6 investigates the joint design of hybrid pre-
coding and admission control for multi-group multicast trans-
missions based on SDMA in the context of Industry 4.0. The
chapter proposes an algorithm using integer linear programs
(ILPs), SDR, CMD, and the bisection method with the aim of
minimizing data transmission latency. It is demonstrated that the
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proposed algorithm can yield high quality solutions compared
to the optimal, which requires an exhaustive search to test all
possible combinations.

• Chapter 7 is builds on [F], which is included in Appendix F. In
particular, Chapter 7 investigates the joint design of hybrid pre-
coding and admission control for NOUM transmissions based
on LDMA in the context of Industry 4.0. The chapter proposes
an algorithm based on ILPs and SCA with the objective of maxi-
mizing the rate fairness among the admitted IIoT devices. It is
shown that the proposed algorithm can produce near-optimal
solutions compared to the optimal exhaustive search, and sig-
nificantly outperforms other multiple access schemes, such as
time-division multiple access (TDMA) and frequency-division
multiple access (FDMA).

• Chapter 8 builds on [G], which is included in Appendix G. In
particular, Chapter 8 investigates the joint design of precoding,
admission control, rate allocation, and UE association for IAB
systems based on SDMA. The chapter proposes a first algorithm
based on the convexification of MINLPs and a second algorithm
based on MM, both aiming to maximize the SR. It is demon-
strated that under specific settings the proposed algorithms
can achieve near-optimality, a conclusion obtained by noting a
minimum gap with respect to an upper bound.

• Chapter 9 builds on [H], which is included in Appendix H. In
particular, Chapter 9 investigates the joint design of precod-
ing, admission control, discrete rates allocation and considering
imperfect SIC for networks based on RSMA. The chapter pro-
poses an algorithm based on the convexification of MINLPs with
the objective of maximizing the weighted sum rate (WSR) and
weighted energy efficiency (WEE). The proposed algorithm pro-
vides revealing results on the performance of WSR and WEE
when discrete or continuous rates are used, as well as when
optimal or random UE admission is employed.

• Chapter 10 provides a summary of the outcomes and contribu-
tions of the thesis. This chapter also gives an insight into open
research problems and future extensions of the publications
presented herein.
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2
P R E C O D I N G F O R S I N G L E - G R O U P
M U LT I C A S T B A S E D O N S D M A

This chapter gives an overview of the research problem investigated
in [A], which is included in Appendix A. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

2.1 motivation

Wireless multicasting is a favorable transmission strategy for distribut-
ing the same content to multiple user equipments (UEs). In particular,
the precoding design is crucial for multicast applications as it allows
the realization of flexible radiation patterns, leading to enhanced ra-
dio resource utilization. Despite the benefits of precoding for better
exploiting the radio resources, additional spectrum will be needed to
support the increasing throughput demands of emerging high-end
applications, such as virtual reality. As a result, the millimeter-wave
spectrum has gained momentum as a solution since it offers larger
bandwidths [30]. Thanks to recent developments in analog-digital
antenna array architectures, the millimeter-wave spectrum can be ex-
ploited cost-effectively using analog-digital precoders, also known
as hybrid precoders, thus opening an opportunity to realize high-
throughput multicasting in the millimeter-wave spectrum. However,
designs involving multicast precoding are generally challenging, as
they are NP-hard, even for simple cases. Adding to this the complexity
of designing hybrid precoders, which have complicating analog-digital
couplings, the design becomes even more challenging. This requires
novel and performant solutions that can address the inherent difficul-
ties in designing hybrid precoders for multicast purposes.

2.2 goal

The goal is to design a hybrid precoder to maximize the minimum
signal-to-noise ratio (SNR), subject to transmit power and constant-
modulus phase rotation constraints. Specifically, constant-modulus
phase rotations are inherent to hybrid precoders and are challenging to
design. The minimum SNR maximization is adopted since the weakest
SNR dictates the system’s performance in multicast applications. Here,
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a low-complexity algorithm is proposed to design a hybrid precoder,
specifically for single-group multicasting. The proposed algorithm is
inspired by machine learning ideas, specifically gradient-based up-
dates, exploration, exploitation, and low-complexity matrix operations.
Only a few works exist in this research direction, but none of them
for hybrid precoders. Also, most works have employed semidefinite
relaxation (SDR), whose complexity is usually very high. In addition,
compared to previous works, the proposed algorithm can be applied
to any hybrid precoder architecture and to fully-digital precoders.

2.3 related work

Precoding for single-group multicasting has been investigated with
fully-digital precoders in several works [31–58] and with hybrid pre-
coders in only a few [59–66]. In single-group multicasting, all UEs are
interested in the same information. This causes the achievable through-
put to be tied to the minimum SNR of all UEs. Therefore, maximizing
the minimum SNR is an important criterion in the multicast precoding
design, which has been adopted in the research problem investigated
in this chapter. However, other criteria have also been used, such as
transmit power minimization. The following gives an overview of
several works on single-group multicast precoding design.

An initial work on the precoder design for single-group multi-
casting is [31], where the authors investigated respectively the max-
imization of the minimum SNR and minimization of the transmit
power. The authors showed that multicast precoding yields nonconvex
quadratically constrained quadratic programs (QCQPs), which are
NP-hard, and proposed algorithms for addressing this difficulty. In
particular, the authors employed SDR to recast the the nonconvex
QCQPs as semidefinite programmings (SDPs) with relaxed rank-one
constraints, thus eliminating the nonconvexities. They showed that
the relaxed SDPs yield solutions that are not necessarily feasible to
the original optimization problems. This occurs because the relaxation
of rank-one constraints enlarges the feasible set, and therefore, the
relaxed SDPs can produce solutions outside the original feasible sets.
To find feasible solutions, the authors computed the best rank-one
approximation of the relaxed SDP solution and perturbed the outcome
using randomization to improve its quality. This process can produce
high-quality solutions, but not always guarantees that the perturbed
solution is feasible.

An algorithm based on SDR, convex projections, and perturbations
was proposed in [42] to minimize the transmit power, showing higher
performance compared to the algorithm proposed in [31] but with
higher computational complexity. Besides, a high-complexity optimal
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algorithm for transmit power minimization was developed in [53],
showing substantial gains over SDR-based algorithms.

In [54], the authors proposed an iterative algorithm based on
convex inner approximations using successive convex approximation
(SCA) to minimize the transmit power. The algorithm proved to be
less complex than existing SDR-based algorithms and capable of
producing high-quality solutions. Besides, a precoder design for the
maximization of the minimum SNR was proposed in [55]. In particular,
the authors devised an iterative algorithm based on SCA and proposed
multiplicative and additive update policies to optimize the precoder
iteratively, demonstrating that their proposed algorithm has higher
performance than other algorithms based on SDR. Similar algorithms
were proposed in [56] based on iterative updates to either maximize
the minimum SNR or minimize the transmit power.

The authors of [57] proposed to maximize the weighted sum
rate (WSR) of all UEs since they found that the WSR can be used to
maximize the minimum SNR if the weights assigned to each UE are
chosen suitably. Compared to SDR-based algorithms, their proposed
algorithm was shown to be superior. Besides, the authors of [32, 58]
employed machine learning to identify the UEs most likely to affect
the maximization of the minimum SNR and tailored the precoder
design to specifically prioritize those UEs.

An iterative algorithm to maximize the minimum SNR was pro-
posed in [33]. Specifically, the authors leveraged the channel correla-
tion among UEs to guide the precoder design, achieving acceptable
performance at low computational complexity. The authors of [34]
proposed an algorithm based on subgradient descent for maximizing
the minimum SNR. Their algorithm demonstrated high performance
and affordable computational complexity compared to competing
algorithms. An algorithm based on alternating direction method of
multipliers (ADMM) was proposed in [35], which demonstrated simi-
lar performance to the algorithm proposed in [34] but with reduced
computational complexity.

Several other algorithms have been developed, for instance, based
on proximal projections [36, 37], machine learning [38, 39], and switched
beams [40, 67]. Other variants of single-group multicast precoding
have been studied jointly with space-time block codes (STBC) in [41,
43–47] and multiple-input multiple output (MIMO) transceivers in [49].
Besides, single-group multicast precoding has also been investigated
for relaying in [48] and for secrecy maximization in [50–52].

The works mentioned above assumed fully-digital precoders, im-
practical for the millimeter-wave spectrum due to high fabrication
costs. Specifically, the literature on multicast precoding with hybrid
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precoders is much scarcer than with fully-digital precoders, partly
because hybrid architectures are more recent and partly because they
are more challenging to design due to couplings between analog and
digital components.

An iterative algorithm for maximizing the minimum SNR was
proposed in [59]. The author employed alternating optimization (AO)
based on matrix and vector multiplications without resorting to opti-
mization solvers, making the algorithm attractive for fast optimization.
The authors of [63] investigated the maximization of the minimum
SNR and proposed a low-complexity algorithm, which employed a
codebook to design the analog precoder and eigendecomposition to
design the digital precoder. In [64], the authors proposed algorithms to
maximize the minimum SNR, relying on SDR and genetic algorithms.
Besides, the authors of [65] proposed an algorithm based on AO for
minimizing the transmit power. The authors of [66] investigated the
maximization of the minimum SNR, ensuring secure communications
in the presence of non-legitimate UEs. In particular, they proposed an
algorithm based on the error minimization between the fully-digital
precoder and the hybrid precoder. Security was also the focus of [60],
where the authors investigated the maximization of the secrecy rate
and proposed an algorithm based on the penalty dual decomposition
(PDD) method. In [61] the minimization of the outage probability
was considered, and an algorithm based on stochastic optimization
was proposed. In [62], a simple heuristic for designing fully-analog
precoders was proposed to maximize the minimum SNR.

Multi-group multicasting with hybrid precoders is a more general
case, which has also been investigated, e.g., in [68–70]. In particular,
the precoder design for multi-group multicasting remains nonconvex
and is subject to the same challenges as in single-group multicasting.

2.4 contributions

The contributions of this chapter are summarized in the following.

• A low-complexity learning-based algorithm is proposed, em-
ploying gradient descent with momentum and AO to optimize
the digital and analog precoders of the hybrid precoder at the
base station (BS) and the analog combiners at each UE.

• The proposed learning-based algorithm is less complex than
other existing solutions, which primarily utilize SDR. In particu-
lar, SDR-based algorithms involve vector-lifting, which can be
costly as it expands the dimensionality of the decision variables,
increasing complexity. Further, SDR-based solutions expand the
feasible set of the decision variables, yielding solutions that are
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not necessarily feasible for the original problem, thus necessitat-
ing a subsequent rank-one projection. This projection may affect
the solution found and degenerate its optimality. In contrast,
the proposed algorithm involves only matrix multiplications,
additions, low-dimensional matrix inversions, and simple pro-
jections.

• In contrast to existing solutions, which only allow a limited num-
ber of phase rotation values to design the analog precoder, the
proposed algorithm can handle an arbitrary number of constant-
modulus phase rotations. Similarly, the proposed algorithm is
extended to design the analog combiners, which are subject to
the same constant-modulus phase rotation constraints.

• The proposed algorithm features exploration and exploitation
stages that help to find high-quality solutions avoiding stagna-
tion at low-quality local optima.

• The proposed algorithm is evaluated in various scenarios, show-
ing that it can perform similarly to a fully-digital precoder.

2.5 investigated problem

Consider a millimeter-wave system, where a BS serves several UEs, as
shown in Figure 1.

Multicast

BS

UE

Figure 1: SDMA-based multicast system consisting of a BS and several UEs.

Generalities

The number of UEs is K and they are indexed by set K = {1, 2, . . . ,K}.
In particular, all UEs are served with the same information by means
of a multicast signal.
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The BS is equipped with Ntx transmit antennas and NRF
tx ra-

diofrequency (RF) chains, such that NRF
tx ⩽ Ntx. The downlink signal

transmitted from the BS to UEs is represented by x = Fms, where
F ∈ CNtx×NRF

tx and m ∈ CN
RF
tx ×1 denote respectively the analog and

digital precoders constituting the hybrid precoder. The multicast data
symbol s ∈ C, transmitted from the BS, has unit power on average, i.e.,
E {ss∗} = 1. Every element of the analog precoder is a phase rotation,
denoted by [F]q,r and controlled by an independent phase shifter that

selects a value from set F =

{︃√
δtx, . . . ,

√
δtxe

j
2π(Ltx−1)

Ltx

}︃
, where

√
δtx

is the phase modulus, Ltx is the number of allowed phase rotations,
q ∈ Q = {1, . . . ,Ntx}, and r ∈ R =

{︁
1, . . . ,NRF

tx
}︁

.

Each UE is equipped with Nrx receive antennas and a single RF
chain, i.e., NRF

rx = 1. The analog combiner at each UE is denoted by
wk ∈ CNrx×1, and each of its elements [wk]l can take values from set

W =
{︂√
δrx, . . . ,

√
δrxe

j
2π(Lrx−1)

Lrx

}︂
, where

√
δrx is the phase modulus,

Lrx is the number of allowed phase rotations, and l ∈ L = {1, . . . ,Nrx}.

Under the assumption of narrowband flat-fading, the signal re-
ceived by the k-th UE is given by

yk = wHk HkFms⏞ ⏟⏟ ⏞
multicast signal

+wHk nk⏞ ⏟⏟ ⏞
noise

, (1)

where Hk ∈ CNrx×Ntx denotes the channel between the BS and the k-th
UE, whereas nk ∼ CN

(︁
0,σ2I

)︁
denotes circularly symmetric Gaussian

noise. The SNR at the k-th UE is given by

γk =

⃓⃓
wHk HkFm

⃓⃓2

σ2 ∥wk∥22
. (2)

Problem formulation

The goal is to design the hybrid precoder and analog combiners
that maximize the minimum SNR among all UEs, subject to transmit
power and constant-modulus phase rotation constraints. The maxi-
mization of the minimum SNR is chosen as the objective function
because, in multicast applications, the UE with the weakest link dic-
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tates the performance for the rest of UEs. The optimization problem is
defined as,

P : max
F,m,{wk}

K
k=1

min
k∈K

⃓⃓
wHk HkFm

⃓⃓2

σ2 ∥wk∥22
(3a)

s.t. ∥Fm∥22 = Pmax
tx , (3b)

∥F∥2F = 1, (3c)

[F]q,r ∈ F,q ∈ Q, r ∈ R, (3d)

∥wk∥22 = Pmax
rx ,k ∈ K, (3e)

[wk]l ∈W, l ∈ L, ∀k ∈ K, (3f)

where (3a) aims to maximize the minimum SNR, (3b) restricts the
transmit power of the hybrid precoder to Pmax

tx , (3c) imposes a power
normalization on the phase rotations, (3d) enforces every phase ro-
tation of the analog precoder to belong to set F, (3e) restrains the
power of the analog combiners to Pmax

rx , and (3f) constrains the phase
rotations of the combiners to W.

Constraints (3d) and (3f) define nonconvex sets on F and wk due
to their combinatorial nature. Also, (3b) is nonconvex as it exhibits
a multiplicative coupling between F and m. The objective function
(3a) is defined as the ratio of two quadratic expressions, where the
numerator exhibits a coupling of three different decision variables,
making it nonconvex. Besides, nonconvex constraints (3c) and (3e) can
be circumvented as the phase rotations have constant modulus, which
results in δtx = 1

NRF
tx Ntx

and δrx =
Pmax

rx
Nrx

. However, the problem remains
nonconvex and challenging to solve.

Note: For details on the proposed algorithm to solve P, the reader is
referred to [A], which can also be found in Appendix A.

2.6 selected results

In the following, simulation results of a specific scenario in [A] are
discussed. Figure 2 shows the minimum SNR, i.e., the objective of
problem P, achieved by the proposed algorithm applied to hybrid and
fully-digital precoders. Figure 2 is taken

from [A], but the
layout has been
slightly modified.

At the BS, the number of antennas is Ntx = 15 and the number of
RF chains is NRF

tx = 6. At the UEs, the number of antennas is Ntx = 2

and the number of RF chains is NRF
rx = 1. The number of UEs is K = 30,

and Nxpr = {1, . . . , 100} and Nxpl = {1, . . . , 100} denote respectively the
number of exploration and exploitation instances.

The results in Figure 2 show that the proposed algorithm attains
significantly higher gains for various numbers of UEs in the system,
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Figure 1: Impact of exploration (Nxpr) and exploitation (Nxpt)
phases on the system performance.

capitalizes on already known solutions to further refine them.
By doing so, our proposed LB-GDM avoids getting trapped
in local optima. As expected, the fully-digital precoder out-
performs its hybrid counterpart due to a larger number of RF
chains and less stringent constraints (constant-modulus phase
shifts). The former attains a minimum SNR of 1.77 whereas
the latter achieves 1.49. Besides, the hybrid precoder attains
11.5% lower SE than that of the fully-digital precoder.

Remark: While the minimum SNR monotonically increases
for both precoders, the SE performance does not exhibit the
same behavior. This is because the optimization criterion of
LB-GDM is to enhance the minimum SNR (MMF), without
considering the spectral efficiency. Nevertheless, the general
trend shows that higher Nxpr and Nxpt yield SE improvement.

B. Impact of the number of antennas Ntx and Nrx

In this scenario, we evaluate the performance of hybrid
and fully-digital precoders based on LB-GDM for a different
number of transmit and receive antennas. We consider K = 50,
Ntx = {8, 12, 16}, and Nrx = {1, 2, 3, 4, 5}. For the hybrid
precoder, we assume NRF

tx = 2. Fig. 2 depicts the improvement
of the minimum SNR when increasing Ntx and Nrx, for both
types of precoders. Since the transmit and receive power are
limited, endowing users with multiple antennas is beneficial
to improve the SNR. In particular, in the fully-digital case,
when Ntx = 8, the minimum SNR improves from 0.37 to 0.65

when the number of receive antenna increases from Nrx = 1

to Nrx = 2, which essentially indicates a 75.7% gain. Similarly,
the gain for the hybrid precoder is 100%. We also observe
a considerable improvement of the minimum SNR as Ntx

increases from 8 to 16, in which we attain a gain of up to 72.9%

and 58.6% for fully-digital and hybrid precoders, respectively.
Further, the SE also achieves 25.5% and 32.9% gain, for the
fully-digital and hybrid precoders, respectively (when Ntx = 8,
for Nrx = 1 and Nrx = 2). In general, the hybrid precoder attains
a SE at worst 11.8% lower than its fully-digital counterpart (for
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1

2

3

0
.2

9

0
.3

8

0
.4

6

0
.5

8

0
.7

3

0
.8

5

0
.9

5

1
.1

6

1
.3

9

1
.4 1
.6

4

1
.8

6

1
.7

6

2
.0

4 2
.4

6

0
.3

7

0
.5

1

0
.6

4

0
.6

5

0
.8

2

0
.9

9

1
.0

9

1
.3

1

1
.5

3

1
.5

1

1
.8

1

2
.0

2

1
.9 2
.1

7

2
.5

1

M
in

im
um

SN
R

H |Nrx = 1 H |Nrx = 2 H |Nrx = 3 H |Nrx = 4 H |Nrx = 5

D |Nrx = 1 D |Nrx = 2 D |Nrx = 3 D |Nrx = 4 D |Nrx = 5

Ntx = 8 Ntx = 12 Ntx = 160

50

100

150

7
2
.5

6

8
2
.0

2

8
9
.2

8

9
6
.4

2

1
0
6
.4

2

1
1
6
.4

3

1
1
6
.5

6

1
2
6
.3

4

1
3
6
.1

6

1
3
1
.0

6

1
4
1
.9

1

1
5
1
.4

8

1
4
3
.9

9

1
5
4
.8

6

1
6
4
.6

9

8
1
.4

6

9
1
.8

1

1
0
1
.2

4

1
0
2
.2

6

1
1
3
.4

6

1
2
3
.6

3

1
2
3
.0

8

1
3
4
.1

7

1
4
4
.3

3

1
3
7
.7

8

1
4
9
.4

8

1
5
9
.3

1

1
5
0
.9

1
6
1
.4

1

1
7
1
.5

3

SE
[b

ps
/H

z]

Figure 2: Performance evaluation of LB-GDM for varying Ntx

and Nrx in fully-digital (D) and hybrid (H) precoders.
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Figure 3: Performance comparison between LB-GDM and
SDR-C in terms of the minimum SNR.

all the cases). We also observe that with only NRF
tx = 2, the

hybrid transmit precoder is at worst 25.5% below the optimality
attained by the fully-digital in terms of the minimum SNR.

Remark: This scenario sheds lights on the relevance of reck-
oning with multiple antennas at the receivers when constrained
by power at both ends. Specifically, we obtain improvements
up to 72.9% and 58.6% by increasing the number of receive
antennas from Nrx = 1 to Nrx = 2. On the other hand, in this
case where NRF

tx = 2, the complexity of LB-GDM is even more
affordable as F† =

(
FHF

)−1
FH requires no actual inversion

of FHF, since a 2× 2 matrix can be inverted directly.

C. Performance comparison with an SDR-based scheme

We compare the performance of LB-GDM and SDR-C,
when implemented in fully-digital and hybrid precoders. We
consider Ntx = 20, Nrx = 3, with a wide range of users
K = {25, 50, 75, 100}. For the hybrid precoder NRF

tx = 6, whereas
for the fully-digital counterpart NRF

tx = Ntx. For LB-GDM, we
assume that Nxpt = Nxpr = 120. For SDR-C, the number of
randomizations are Nrand = {1, 10, 50, 100, 500, 1000}. To ensure

Figure 2: Minimum SNR achieved.

showing its superiority compared to the SDR-based algorithm. Also,
it is observed that the minimum SNR decreases as the number of UEs
increases, since the limited transmit power must be shared among
more UEs, thus decreasing the power contributions for each UE.

The results in Figure 2 show that the minimum SNR improves for
increasing values of Nxpr and Nxpt for both precoding architectures. In
addition, Nxpr is more relevant than Nxpt in improving this metric for
the particular realization shown in Figure 2. Nevertheless, both phases
are critical. Exploration is the capability of effectively scanning the
search space to find potentially fitter solutions, whereas exploitation
capitalizes on already known solutions to refine them further. Via
these mechanisms, the proposed algorithm avoids getting trapped in
local optima. As expected, the fully-digital precede outperforms its
hybrid counterpart because it has a larger number of RF chains and is
not constrained to constant-modulus phase shifts. The performance
gap between the precoders is small. The fully-digital precoder attains
a minimum SNR of 1.77, whereas the hybrid precoder achieves 1.49.
While the minimum SNR increases monotonically for both precoders,
the spectral efficiency (SE), defined as the sum of all rates, does
not exhibit the same behavior. This occurs because the optimization
criterion of the algorithm is to enhance the minimum SNR and does
not consider the SE.
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3
P R E C O D I N G F O R M U LT I - G R O U P M U LT I C A S T
B A S E D O N S D M A

This chapter gives an overview of the research problem investigated
in [B], which is included in Appendix B. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

3.1 motivation

In today’s wireless networks, multicasting has found multiple applica-
tions, e.g., for video streaming and conferencing. Most studies have
investigated precoding designs for multicasting using fully-digital
precoders in the sub-6GHz spectrum. However, as the sub-6GHz spec-
trum continues to be over-utilized, the millimeter-wave spectrum has
emerged as an alternative, requiring hybrid precoders for cost-effective
operation [30]. However, the benefits and challenges of multicasting
with hybrid precoders in the millimeter-wave spectrum still need to be
further explored, especially when considering multiple groups of user
equipments (UEs), known as multi-group multicasting. Multi-group
multicasting involves sending simultaneously different data streams,
each targeting a specific group of UEs. Due to the spatial reuse of
spectrum resources, interference arises, and therefore its mitigation
through precoding becomes crucial. However, hybrid precoders are
less effective than fully-digital precoders in mitigating interference,
as the former have fewer radiofrequency (RF) chains, making the
design of performant hybrid precoders challenging. Thus, it is of sig-
nificant interest to investigate hybrid precoder designs for multi-group
multicasting to support future applications that can benefit from the
millimeter-wave spectrum.

3.2 goal

The goal is to design a hybrid precoder for transmit power minimiza-
tion, subject to satisfying constant-modulus phase rotation constraints
and target quality-of-service (QoS) requirements for each multicast
group. In particular, it is of great interest to guarantee the QoS require-
ments for the UEs with minimal transmit power. This is especially
desirable when using hybrid precoders, which consume more power
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than fully-digital precoders. Specifically, hybrid precoders have much
more limited capability to mitigate interference due to having fewer
RF chains and thus they compensate for this lack of flexibility by con-
suming more power. This limitation is more significant in multi-group
multicasting, where interference is significantly high, and the UEs
with the worst channel conditions dictate the performance of the sys-
tem. Thus, an algorithm is proposed to design multi-group multicast
hybrid precoders. The proposed algorithm is based on semidefinite
relaxation (SDR), alternating optimization (AO), and Cholesky matrix
decomposition (CMD). Compared to previous works, the proposed
algorithm does not need a customized network of phase shifters, nor
is limited to a particular set of phase rotations.

3.3 related work

Precoding for multi-group multicasting has been investigated with
fully-digital precoders in [71–83] and with hybrid precoders in [68–70,
84, 85]. In multi-group multicasting, several data streams are trans-
mitted using the same frequency resources, giving rise to interference.
Consequently, the precoding design is paramount to combat interfer-
ence and thus deliver the transmitted information with the desired
QoS requirements. The following provides an overview of several
works on multi-group multicast precoding design.

Precoding for multi-group multicasting with fully-digital pre-
coders was first investigated in [71] for respectively minimizing the
transmit power and maximizing the minimum signal-to-interference-
plus-noise ratio (SINR). The authors showed the NP-hardness of these
problems and proposed an algorithm to solve them using SDR and
randomization, as an extension of their previous work [31]. In [76],
the authors extended their previous work in [71] and gave insight
into the relation between the maximization of the minimum SINR and
the minimization of the transmit power, allowing them to develop
more cost-effective algorithms. A similar work by the same authors is
[77], in which Vandermonde channels were assumed to respectively
minimize the transmit power and maximize the minimum SINR. The
authors showed that the considered problems have rank-one solutions
for Vandermonde channels and therefore can be solved optimally via
SDR and eigendecomposition.

The authors of [78] proposed algorithms for maximizing the min-
imum SINR, inspired by the literature on multi-user precoding. In
particular, the authors proposed extensions for multicast precoding
based on multi-user precoding techniques, such as zero-forcing (ZF)
and minimum mean square error (MMSE). Besides, the authors of [79]
investigated the minimization of the transmit power and proposed
an iterative algorithm based on second-order cone programs (SOCPs).
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The authors showed that their SOCP-based reformulation is an inner
approximation of the original nonconvex problem. The proposed al-
gorithm was shown to perform relatively well compared to a lower
bound obtained using SDR. The authors of [80] proposed an algorithm
based on successive convex approximation (SCA) to maximize the min-
imum SINR, and showed that their algorithm can achieve very good
performance compared to an SDR-based upper bound. In [81], an iter-
ative algorithm was proposed for the maximization of the minimum
SINR. The authors divided the problem into four simpler subproblems
and solved them iteratively, achieving lower computation complexity
than SDR-based algorithms and slightly better performance.

Other works on multi-group multicasting precoding with minor
variations have been investigated, such as including transmit power
constraints per antenna, [82, 83], incorporating energy harvesting [72],
with multi-cell systems [73], for relaying purposes [74], and with
power control for massive multiple-input multiple output (MIMO)
[75].

Considering hybrid precoders, multigroup multicasting has been
studied in fewer works. For instance, the authors of [84] investigated
the maximization of the minimum SINR, and proposed an algorithm
based on the penalty dual decomposition (PDD) method. The authors
showed that the performance of the proposed algorithm was generally
comparable to that of fully-digital precoders but only for a small
number of UEs. The authors of [68] proposed a hybrid precoder
architecture based on an especially connected network of phase shifters
to maximize the minimum SINR or minimize the transmit power,
showing performance close to that of fully-digital precoders. The
authors of [69] proposed an algorithm based on SCA and AO to
minimize the transmit power subject to energy harvesting constraints.
The authors of [85] also investigated the transmit power minimization
assuming outage probability constraints, and proposed an algorithm
based on AO, SCA, and SDR. In [70], the phase shifters of the hybrid
precoder were replaced by high-resolution lens arrays with adjustable
magnitude and phase, which resulted in an architecture similar to
that of a fully-digital precoder. Doing so removed the complicating
constant-modulus phase rotation constraints, making the solution not
applicable to usual hybrid precoder architectures.

3.4 contributions

The contributions of this chapter are summarized in the following.

• An algorithm is proposed, which leverages SDR, AO, and CMD,
to sequentially optimize the digital and analog precoders at the
base station (BS) and the fully-digital combiners at each UE.
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In particular, the investigated problem is divided into multiple
subproblems, each of which is tackled at a time until convergence
is achieved.

• Unlike other works, the proposed algorithm can handle phase
rotations with an arbitrary resolution for the analog precoder
design. Also, the proposed algorithm introduces for the first
time the use of CMD to design hybrid precoders, leading to
increased flexibility for meeting the QoS requirements of the UEs.
Specifically, the use of CMD in this work is in the same spirit as
randomization but the difference is the echelon structure of the
upper and lower triangular matrices that result from CMD. This
allows to limit the randomization to only a subset of elements at
a time.

• Simulation results show that the proposed algorithm can design
hybrid precoders and successfully deliver a large number of
packets to UEs, with similar performance to that of fully-digital
precoders, at the expense of additionally larger transmit power.

3.5 investigated problem

Consider a millimeter-wave system, where a BS serves UEs clustered
into several groups, as shown in Figure 3.

BS

UE

Multicast

Multicast

Figure 3: SDMA-based multicast system consisting of a BS and two groups
of UEs.

Generalities

The number of UEs is K, which are evenly distributed into G
different multicast groups. The UEs are indexed by set K = {1, 2, . . . ,K}
and the multicast groups are indexed by set I = {1, 2, . . . ,G}. The i-th
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multicast group is denoted by Gi (i ∈ I) and contains the indices of the
UEs that constitute it. The number of UEs in each multicast group is
represented by |Gi| =

K
G . In addition, it is assumed that

∑︁G
i=1 |Gi| = K

and Gi ∩ Gj = {∅} ,∀i ̸= j, forcing each UE to belong to only one group.

The BS is equipped withNtx transmit antennas andNRF
tx RF chains,

such that G ⩽ NRF
tx ⩽ Ntx. The downlink signal transmitted from the

BS to the UEs is represented by x = FMs, where F ∈ CNtx×NRF
tx is

the analog precoder and M = [m1, . . . , mG] ∈ CN
RF
tx ×G is the digital

precoding matrix, which collects the digital precoders for all the
multicast groups. The data symbols for the multicast groups are
denoted by s = [s1, s2, . . . , sG]

T ∈ CG×1, where the entries have unit
powers on average and are statistically independent from one another,
i.e., E

{︁
ssH

}︁
= I. Every element of the analog precoder, denoted by

[F]q,r, is controlled by a phase shifter that sets a phase rotation with

constant modulus
√
δtx, i.e., [F]q,r ∈ F =

{︃√
δtx, . . . ,

√
δtxe

j
2π(Ltx−1)

Ltx

}︃
,

where q ∈ Q = {1, . . . ,Ntx}, r ∈ R =
{︁
1, . . . ,NRF

tx
}︁

, and Ltx is the
number of allowed phase rotations.

Each UE is endowed with Nrx receive antennas andNRF
rx RF chains,

where NRF
rx = Nrx, thus resulting in fully-digital combiners. This is

assumed to be possible because Nrx is in general small. The combiner
at each UE is denoted by wk ∈ CNrx×1, such that ∥wk∥22 = Pmax

rx .

Under the assumption of narrowband flat-fading, the signal re-
ceived by the k-th UE, with k ∈ Gi, is given by

yk = wHk HkFmisi⏞ ⏟⏟ ⏞
desired multicast signal

+wHk Hk
G∑︂
j=1
j̸=i

Fmjsj

⏞ ⏟⏟ ⏞
interference

+wHk nk⏞ ⏟⏟ ⏞
noise

,
(4)

where i is the index of group Gi. In addition, Hk ∈ CNrx×Ntx denotes
the channel between the BS and the k-th UE, whereas nk ∼ CN

(︁
0,σ2I

)︁

denotes circularly symmetric Gaussian noise. The SINR at the k-th UE
is defined as

SINRk =

⃓⃓
wHk HkFmi

⃓⃓2∑︁
j̸=i

⃓⃓
wHk HkFmj

⃓⃓2
+ σ2 ∥wk∥22

. (5)

Problem formulation

The objective is to design the hybrid precoder and fully-digital
combiners, such that the transmit power expenditure at the BS is
minimized while satisfying a QoS requirement per multicast group.
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The latter constraint means that each UE in a group must achieve a
minimum target SINR. Thus, the optimization problem is defined as

P : min
F,{mi}

G
i=1,{wk}

K
k=1

G∑︂
i=1

∥Fmi∥22 (6a)

s.t.

⃓⃓
wHk HkFmi

⃓⃓2∑︁
j̸=i

⃓⃓
wHk HkFmj

⃓⃓2
+ σ2 ∥wk∥22

⩾ γi, (6b)

∥wk∥22 = Pmax
rx , (6c)

∥F∥2F = NRF
tx , (6d)

[F]q,r ∈ F,q ∈ Q, r ∈ R, (6e)

where (6a) aims to minimize the transmit power used by the hybrid
precoder at the BS. Constraint (6b) imposes specific QoS requirements
for each multicast group Gi in terms of a target SINR denoted by γi.
Constraint (6c) enforces a power expenditure equal to Pmax

rx for the
combiner of each UE. Constraint (6d) limits the power of the analog
precoder, which is fixed because of the constant modulus of the phase
rotations. In addition, (6e) enforces every phase rotation to belong to
set F.

Constraint (6a) is nonconvex due to multiplicative coupling be-
tween F and mi. Constraint (6b) is nonconvex since it is defined as
the ratio of two nonconvex expressions. On the other hand, (6c) is
quadratic and nonconvex on wk. Constraint (6e) is inherently of combi-
natorial nature, therefore nonconvex. Thus, (6d) is also nonconvex due
to its dependence on (6e). As a result, P is nonconvex and challenging
to solve.

Note: For details on the proposed algorithm to solve P, the reader is
referred to [B], which can also be found in Appendix B.

3.6 selected results

In the following, simulation results of a specific scenario in [B] are
discussed. Figure 4 shows the transmit power, i.e., the objective of P,
needed by the proposed hybrid precoder and a fully-digital precoder.Figure 4 is taken

from [B], but the
layout has been

slightly modified.
At the BS, the number of antennas is Ntx = 12 and the number of

RF chains is NRF
tx = 8. At the UEs, the number of antennas is Ntx = 2

and the number of RF chains is NRF
rx = 2. The number of UEs is

K = 60, the number of multicast groups is G = 4, and the number of
randomizations is Nrand = {1, 10, 25, 50, 75, 100, 500, 1000}. Specifically,
randomization is used to mitigate the performance loss caused by
rank-one projections. In general, the performance tends to improve for
higher values of Nrand. The target SINR γi = 5 dB is set the same for
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Figure 3: Evaluation of the number of decoded packets and transmit power for Nt = 12 when Niter and Nrand are varied.

mitigate the interference and improve Np considerably. The
gain is more noticeable for the hybrid precoder as its Np
improves by 60%. For the fully-digital precoder, there is also
a moderate gain of 9%. Moreover, the average transmit power
per successfully received message improves by 12.9% and
16.8% for the digital and hybrid precoders, respectively. It
is evident from this scenario that, at the transmitter side, Np
cannot be further improved when the receivers operate with a
single omnidirectional antenna, i.e., Nr = 1, as interference
and desired signals are equally amplified. However, when
Nr = 2, the receivers can enforce limited selectivity and can
discard some of the unwanted interference to improve Np.
Finally, we observe that Np for both types of precoders are
very similar when Nr ≥ 2 although the consumed power
differs within 6-8 dBm, approximately.

Scenario 3: The objective of this setting is to analyze the
sensitivity of the fully-digital and hybrid precoders to the
selection of Nrand and Niter. To this purpose, we consider
Nr = 2 and γ = 5 dB. For the fully-digital precoder, we
assume that Nt = NRF = 12. On the other hand, the hybrid
precoder is endowed with NRF = 8 and Nt = 12. We
evaluate the performance variation when Niter = {1, 2, 3, 4, 5}
and Nrand = {1, 10, 25, 50, 75, 100, 500, 1000}. The results in
terms of Np and Pt for both types of precoders are shown in

Fig. 3. We observe that for the fully-digital precoder, Nrand is
more influential than Niter since Np improves noticeably when
Nrand increases. Thus, a small improvement can be observed
between the cases Niter = 1 and Niter = 2. Conversely, for the
hybrid precoder, Niter helps in reducing the performance gap
for the fully-digital precoder. The reason is that while only
{mi}Gi=1 , and {wk}Kk=1 need to be optimized for the fully-
digital case, we need to design F, {mi}Gi=1 and {wk}Kk=1

for the hybrid precoder, with even more limiting constraints
(finite-resolution constant-modulus phase shifts).

Figure 4: Delivery success and transmit power in a multi-group multicast system.

all multicast groups. Besides, Niter = {1, 2, 3, 4} represents the number
of iterations needed by the proposed algorithm.

The results show that the proposed hybrid precoder improves the
delivery success, i.e., the percentage of successfully received packets
by the UEs, as the number of iterations Niter increases. In fact, beyond
Niter = 4 the results do not change substantially, showing that the
algorithm converges quickly. It is also noted that the performance of
the fully-digital precoder does not change significantly as the number
of iterations increases. This occurs because it converges much quicker
since it has fewer variables to optimize. In contrast, the analog phase
rotations in the hybrid precoder pose a difficulty for optimization,
and therefore its convergence is slower. Also, as the packet delivery
success increases with every iteration, the hybrid precoder consumes
more transmit power. Specifically, to satisfy the QoS requirements for
more UEs, an increment in the transmit power is needed.
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4
P R E C O D I N G F O R U N I C A S T A N D M U LT I C A S T
B A S E D O N L D M A

This chapter gives an overview of the research problem investigated
in [C], which is included in Appendix C. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

4.1 motivation

Modern production factories consist of several industrial IoT (IIoT)
devices, such as sensors, actuators, programmable logic devices, and
robotic arms, interconnected by redundant wiring to ensure safety and
reliable communications during the various manufacturing stages [86].
However, wires limit automation and restrict the mobility of robotics.
As a result, wireless technologies are a promising alternative for
replacing wires, which are undesirable for future intelligent factories,
also known as Industry 4.0 [87].

Recent studies have highlighted the importance of leveraging non-
orthogonal multiple access to improve wireless networks’ capacity and
spectral efficiency [88, 89]. In addition, the millimeter-wave spectrum
is considered a key driver to meet the high throughput requirements of
future wireless networks [13–15]. Therefore, non-orthogonal multiple
access and millimeter-wave spectrum together are expected to support
many use cases, including Industry 4.0 scenarios [90–92].

Layered-division multiple access (LDMA) is a non-orthogonal
multiple access variant that allows the simultaneous transmission
of different signals by overlaying them on the same radio resources
[23, 24]. This characteristic makes LDMA attractive, for instance, for
transmitting common information via multicast signals and private
information via unicast signals, known as non-orthogonal unicast
and multicast (NOUM). In particular, using LDMA for implement-
ing NOUM is advantageous as it eliminates the need to resort to
time-division multiple access (TDMA) or frequency-division multi-
ple access (FDMA) to switch between unicast and multicast traffic
transmission, thus improving resource utilization. However, LDMA
requires user equipments (UEs) to perform successive interference
cancellation (SIC) to decode the multicast signal before accessing the
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unicast signals. Therefore, the precoding design is relevant to ensure
adequate signal-to-interference-plus-noise ratios (SINRs) to differen-
tiate multicast from the unicast signals. In addition, the integration
of NOUM with LDMA and the millimeter-wave spectrum has not
been studied in depth. Furthermore, hybrid precoders are preferable
for exploiting the millimeter-wave spectrum, but their design poses
challenges owing to digital-analog couplings. Consequently, further
research in this direction is needed.

4.2 goal

The goal is to design a hybrid precoder to maximize the unicast and
multicast sum rate (SR) of NOUM transmissions based on LDMA,
subject to transmit power and constant-modulus phase rotation con-
straints. Investigating the precoding design for LDMA-based NOUM
is essential, especially for future wireless network deployments, where
multicast and unicast signals are expected to coexist. Thus, two algo-
rithms are proposed, which leverage successive convex approximation
(SCA) and alternating optimization (AO). As a potential application
of NOUM, an industrial setting is considered. Specifically, the base
station (BS) transmits two types of overlapping signals. The first type
is comprised of a single multicast signal carrying common control
information with superlative importance (e.g., critical control packets)
and targeting all IIoT devices. The second type is comprised of a
set of unicast signals carrying less critical private information (e.g.,
routine updates) for the IIoT device. It is worth mentioning that only
a few works have investigated the hybrid precoder design for NOUM
transmissions based on LDMA.

4.3 related work

The design of precoders for NOUM transmissions based on LDMA has
been investigated for several purposes, with fully-digital precoders
in [93–103] and with hybrid precoders in [104–107]. Since NOUM
includes a multicast signal, the precoder design for NOUM is NP-hard
[31]. In addition, due to the mutual interference caused by resource
sharing of unicast and multicast signals, and the complicated analog-
digital couplings of the hybrid precoder, a proper precoder design
is required. The following provides an overview of several works
investigating the precoding design for LDMA-based NOUM.

The authors of [93] investigated the precoder design for transmit
power minimization and proposed two algorithms based on SCA and
semidefinite relaxation (SDR). The authors showed that LDMA can
outperform TDMA, as LDMA reuses the same radio resources without
resorting to time sharing. The authors extended their work in [96],

26



assuming an imperfect channel. A work similar to [96] is [97], where
an application to satellite communications was considered.

The transmit power minimization was also investigated in [98],
where two algorithms based on SCA and branch-and-bound (BnB)
were proposed. Besides, the authors of [99] proposed an algorithm
based on SCA in order to minimize the transmit power considering a
system with cooperative BSs, which were subject to backhaul capacity
constraints. The work was extended in [100], where BS clustering was
included, and a BnB algorithm was proposed for its solution.

The energy efficiency (EE) maximization was investigated in [101],
where the authors proposed an algorithm based on SCA. Specifically,
the authors showed that LDMA has higher EE than TDMA. The EE
maximization was also investigated in [102], assuming a cell-free
network. The authors proposed an algorithm based on SCA for the
solution. The same authors extend their work in [103], including
energy harvesting constraints. Besides, a learning-based algorithm
was proposed in [94] to maximize the weighted sum rate (WSR) of
unicast and multicast signals. The authors of [95] also investigated the
WSR maximization of unicast and multicast signals. They proposed an
algorithm based on SCA and a statistical description of the channel.

Considering hybrid precoders, LDMA-based NOUM has been
studied in fewer works. For instance, the authors of [104] investigated
the WSR maximization of unicast and multicast signals. The authors
designed the analog precoder using a heuristic method and the digital
precoder using zero-forcing (ZF) technique. In addition, the authors
used SCA to optimize the power allocation of the digital precoder. In
[105, 106], the EE maximization with energy harvesting constraints
was investigated. The authors proposed an algorithm based on SCA
and the bisection method to solve the investigated problems. A system
with cooperative BSs was envisaged in [107] for the WSR maximization
of unicast and multicast signals. The authors proposed a framework
based on several techniques including Bayesian learning.

4.4 contributions

The contributions of this chapter are summarized in the following.

• Two novel algorithms based on SCA and AO are proposed to
accomplish the design of hybrid precoders at the BS and analog
combiners at the UEs.

• This is the first study that prioritizes multicast over unicast
signals in LDMA-based NOUM transmissions by proposing a
power-splitting mechanism. The power splitting ensures that the
multicast signal is received with a higher power than the power
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of all unicast signals together, which enables the SIC decoder to
operate correctly.

• A fairness constraint is included to guarantee ubiquitous mul-
ticast service. Specifically, it guarantees the delivery of critical
control packets that ensure that multicast information is received
and decoded on all IIoT devices.

• Two algorithms are proposed. The first one designs indepen-
dently the multicast precoder from the unicast precoders. Specif-
ically, the unicast precoders are pre-designed as the unit-norm
ZF precoding vectors and their powers are optimized. In the
second algorithm, the multicast precoder is designed as a conic
combination of the unicast unit-norm ZF precoding vectors.

• The proposed algorithms are compared against a benchmark
algorithm in terms of SR and bit error rate (BER). It is shown
that one of the proposed algorithms outperforms the benchmark
in terms of SR while the other proposed algorithm is slightly
outperformed. However, the two proposed algorithms exhibit a
higher BER compared to the existing benchmark, demonstrating
the importance of prioritizing the multicast signals in LDMA-
based NOUM transmissions, where overlapping signals may
interfere with each other.

4.5 investigated problem

Consider a millimeter-wave system, where a BS serves multiple IIoT
devices, as shown in Figure 5.

.....

.Unicast

Multicast

BS

Figure 5: LDMA-based NOUM industrial system consisting of a BS and
several IIoT devices.
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Generalities

The number of IIoT devices is K and they are indexed by set K =

{1, . . . ,K}. All the IIoT devices is served by the same multicast signal,
which carries common information. In addition, the IIoT devices
receive unicast signals, which convey private information for each of
them.

The BS is equipped with a hybrid precoder consisting of Ntx trans-
mit antennas and NRF

tx radiofrequency (RF) chains, where NRF
tx ⩽ Ntx.

Without loss of generality, it is assumed that NRF
tx = K. The downlink

signal, transmitted from the BS to the IIoT devices, is represented
by x = F [B|m] [s|z]T , where F = [f1, . . . , fK] ∈ CNtx×K is the analog
precoder, B = [b1, . . . , bK] ∈ CK×K is the unicast precoding matrix
formed by all unicast precoding vectors bk, and m ∈ CK×1 is the mul-
ticast digital precoder. In addition, s = [s1, . . . , sK]

T ∈ CK×1 denotes
the unicast data symbols for the K IIoT devices and z ∈ C represents
the multicast symbol, where E

{︁
[sTz]H[sTz]

}︁
= I. Every element [F]q,r

of the analog precoder is controlled by a phase shifter that chooses a

phase rotation from set F =

{︃
1/
√
Ntx, . . . , 1/

√
Ntxe

j
2π(Ltx−1)

Ltx

}︃
, where

q ∈ Q = {1, . . . ,Ntx} and r ∈ R =
{︁
1, . . . ,NRF

tx
}︁

. In addition, Ltx denotes
the number of phase rotations in F.

Each IIoT device is equipped with Nrx receive antennas and a sin-
gle RF chain, i.e., NRF

rx = 1. Further, wk ∈ CNrx×1 represents the analog
combiner of the k-th IIoT device. Every element [wk]n of the ana-

log combiners is restricted to W =
{︂
1/
√
Nrx, . . . , 1/

√
Nrxe

j
2π(Lrx−1)

Lrx

}︂
,

where n ∈ N = {1, . . . ,Nrx}. Also, Lrx denotes the number of phase
rotations in W.

Under the assumption of narrowband flat-fading, the signal re-
ceived by the k-th IIoT device is given by

yk = wHk HkFmz⏞ ⏟⏟ ⏞
common multicast signal

+ wHk HkFbksk⏞ ⏟⏟ ⏞
unicast signal for the k-th device

+ wHk HkF
∑︂
j̸=k

bjsj⏞ ⏟⏟ ⏞
interference at the k-th device

+wHk nk⏞ ⏟⏟ ⏞
noise

, (7)

where Hk ∈ CNrx×Ntx denotes the channel between the BS and the k-th
IIoT device, whereas nk ∼ CN

(︁
0,σ2I

)︁
denotes circularly symmetric

Gaussian noise.

At each IIoT device, SIC is employed to obtain the multicast and
unicast information transmitted from the BS. The multicast symbol z is
decoded first by treating all unicast signals as interference. Afterwards,
the multicast signal is reconstructed using the already decoded symbol
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z and is subtracted from yk. After removing the multicast signal, the
remaining signal consists only of unicast components and noise, from
where each IIoT device can decode its intended unicast symbol sk.

The SINR of the multicast and unicast signals are, respectively,
defined as

SINRmulticast
k =

⃓⃓
wHk HkFm

⃓⃓2∑︁
j

⃓⃓
wHk HkFbj

⃓⃓2
+ σ2 ∥wk∥22

(8)

SINRunicast
k =

⃓⃓
wHk HkFbk

⃓⃓2∑︁
j̸=k

⃓⃓
wHk HkFbj

⃓⃓2
+ σ2 ∥wk∥22 .

(9)

Problem formulation

The objective is to design the hybrid precoder and analog com-
biners that maximize the SR of the system, subject to transmit power,
constant-modulus phase rotations, and fairness constraints. Thus, the
optimization problem is defined as,

P : max
{wk}

K
k=1,

{fk}
K
k=1,

{bk}
K
k=1,m,∆

K∑︂
k=1

log2
(︂
1+ SINRmulticast

k

)︂

+

K∑︂
k=1

log2
(︁
1+ SINRunicast

k

)︁
−C∆ (10a)

s.t.
⃓⃓
⃓SINRmulticast

k − γmin

⃓⃓
⃓ ⩽ ∆, ∀k ∈ K, (10b)

∥Fm∥22 /
∑︂
k

∥Fbk∥22 ⩾ β, (10c)

∥Fm∥22 +
∑︂
k

∥Fbk∥22 ⩽ Pmax
tx , (10d)

[F]q,r ∈ F,q ∈ Q, r ∈ R, (10e)

[wk]n ∈W,n ∈ N,∀k ∈ K, (10f)

∆ ⩾ 0, (10g)

where (10a) maximizes the overall SR of the unicast and multicast
signals. In addition, the objective contains penalty function C∆, where
C is a very large value that promotes minimization of ∆ and helps
to improve multicast fairness. Constraint (10b) aims to minimize the
multicast SINR deviation from a target γmin. Constraint (10c) splits
the power among multicast and unicast signals with the aim of giving
higher priority to multicast information and thus ensure successful
SIC decoding. Constraint (10d) limits the transmit power to Pmax

tx .
Constraints (10e) and (10f) limits the phase rotations to sets F and
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W, respectively, ensuring the constant-modulus characteristics of the
analog components. Finally, (10g) enforces the positiveness of ∆. All
constraints as well as the objective are nonconvex, which makes it
difficult to solve problem P.

Note: For details on the proposed algorithm to solve P, the reader is
referred to [C], which can also be found in Appendix C.

4.6 selected results

In the following, simulation results of a specific scenario in [C] are
discussed. Figure 6 shows the SR and BER achieved by the proposed
algorithms and a existing benchmark. Figure 6 is taken

from [C], but the
layout has been
slightly modified.
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I. SIMULATION RESULTS
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Figure 6: SR and BER of LDMA-based NOUM.

At the BS, the number of antennas is Ntx = 64 and the number of
RF chains is NRF

tx = 6. At the UEs, the number of antennas is Ntx = 4

and the number of RF chains is NRF
rx = 1. The number of UEs is K = 6

whereas the number of allowed phase rotations at the BS and IIoT
devices are Ltx = 32 and Ltx = 4, respectively. In addition, Pmax

tx = 1 W,
β = 1 and γmin = 5 dB.

It is observed that the three algorithms perform similarly in terms
of SR but greatly differ in terms of BER. In particular, the multicast BER
is seldom satisfied by the existing algorithm, as multicast information
is not prioritized and therefore unsuccessfully decoded, which leads to
severely degraded BER. On the other, the proposed algorithms ensure
the multicast quality-of-service (QoS) and therefore maintains a high
unicast and multicast BER.
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5
P R E C O D I N G F O R U N I C A S T A N D M U LT I C A S T
B A S E D O N R S M A

This chapter gives an overview of the research problem investigated
in [D], which is included in Appendix D. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

5.1 motivation

The increase in wireless applications and the growing number of In-
ternet of Things (IoT) devices are expected to aggravate the scarcity of
radio resources. This problem is compounded by the need to support
multiple services simultaneously, such as unicast and multicast. As a
result, much attention has been devoted to studying non-orthogonal
unicast and multicast (NOUM) transmissions, which can improve spec-
tral efficiency (SE) by allowing unicast and multicast services to reuse
the same radio resources. In addition, exploiting the millimeter-wave
spectrum is expected to help alleviate the scarcity of radio resources
in the sub-6GHz spectrum. Although previous works have shown
that layered-division multiple access (LDMA) is an effective means of
implementing NOUM, a more comprehensive multiple access scheme,
called rate-splitting multiple access (RSMA), has recently emerged as
an alternative technology [25]. In particular, RSMA has been shown
to outperform non-orthogonal multiple access (NOMA) and space-
division multiple access (SDMA) due to its capability to partially
decode interference and partially treat remaining interference as noise.
In contrast, SDMA fully treats interference as noise, whereas NOMA
aims to fully decode interference. RSMA splits the signals for the user
equipments (UEs) into private and common portions. The common
portions are encoded into a single message, which is precoded and
then transmitted in a multicast manner to all UEs. The private por-
tions are encoded into independent messages and are precoded before
being transmitted to the intended UEs. Therefore, in RSMA-based
NOUM, the multicast signal transmitted to all UEs carries common in-
formation, such as video content, in addition to the common portions
resulting from information splitting. The unicast signals only carry
the private portions resulting from information splitting.
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Given the rise of coexisting unicast and multicast services, inves-
tigating RSMA-based NOUM transmissions in the millimeter-wave
spectrum is of timely interest. However, hybrid precoders will be
required to exploit the millimeter-wave spectrum, posing difficulties
owing to analog-digital couplings inherent to hybrid precoders. In
fact, few studies have considered using hybrid precoders for NOUM
transmissions based on RSMA, and therefore, this should be further
investigated. Besides, the literature on RSMA has mainly focused on
using weighted minimum mean square error (WMMSE) as a predom-
inant means for RSMA precoding design. However, a disadvantage
of WMMSE is that it strongly depends on the quality of the initial
feasible points, which can lead to varying performance levels and high
inconsistency. Also, existing studies have not compared RSMA against
LDMA but only against NOMA and SDMA.

5.2 goal

The goal is to design a hybrid precoder to maximize the weighted
sum rate (WSR) for NOUM transmissions based on RSMA, subject to
transmit power limitations, constant-modulus phase rotations, and a
minimum signal-to-interference-plus-noise ratio (SINR) requirement
for the multicast signal. Thus, a new algorithm is proposed to design
hybrid precoders. In particular, the proposed algorithm leverages suc-
cessive convex approximation (SCA) and semidefinite relaxation (SDR)
and is compared against the state-of-the-art WMMSE. In addition, the
performance of RSMA and LDMA are compared.

5.3 related work

The design of fully-digital precoders for RSMA-based NOUM has been
investigated in [108–112]. In particular, the authors of [108] were the
first to investigate this research problem. The authors studied the WSR
maximization and proposed an algorithm leveraging WMMSE and al-
ternating optimization (AO). The authors showed in multiple settings
that RSMA outperforms NOMA and SDMA. The authors extended
their work [108] and further investigated the energy efficiency (EE)
maximization in [109]. They proposed an algorithm based on SCA and
showed that RSMA can achieve higher EE than NOMA and SDMA.
The authors of [110] investigated the precoding design to study the EE.
The authors considered the minimization of the weighted sum of the
transmit power and the rate mean square error (MSE), computed with
respect to a desired rate value. In particular, the authors proposed a
low-complexity algorithm based on fractional programming. Besides,
the authors of [111, 112] combined dirty paper coding (DPC) and
RSMA, referred to as dirty paper coding rate-splitting multiple access
(DPC-RSMA). They investigated the WSR maximization and showed
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that DPC-RSMA can attain higher SE than DPC or RSMA alone. To
solve the investigated research problem, the authors developed an
algorithm based on WMMSE and AO.

With hybrid precoders, RSMA-based NOUM was only investi-
gated in [113]. Specifically, the authors investigated the transmit power
minimization and proposed an algorithm based on SDR. The hybrid
precoder design for NOUM using LDMA, a similar multiple access
scheme to RSMA, was investigated in [104–107], as already revisited
in Chapter 4.

Besides, literature that has addressed similar problems to WSR
maximization for RSMA-based NOUM are, for example, [114–118]. In
these works, however, there was no common information to transmit to
the UEs except for the common portions resulting from rate-splitting.

5.4 contributions

The contributions of this chapter are summarized in the following.

• An algorithm is proposed based on sub-level and super-level
sets, allowing to establish parametric convex upper bounds that
can be adapted iteratively. In addition, the algorithm leverages
sequential parametric optimization (SPO), SDR, and SCA, which
provide desirable characteristics for precoder design in RSMA.

• The proposed algorithm converges to a local optimum of the
nonconvex WSR maximization problem.

• The proposed algorithm does not rely on carefully selected
initial feasible points, as WMMSE does, in order to guarantee
high performance, thus facilitating its applicability.

• The proposed algorithm is compared against the optimal DPC,
revealing a small optimality gap between the two algorithms.

• Quantizing the phase rotations of the hybrid precoder with 4
bits is sufficient for the proposed algorithm to achieve the same
performance as fully-digital precoders under specific settings.

• The proposed algorithm is less prone than WMMSE to return
infeasible solutions due to not strongly depending on initial
feasible points. Nevertheless, the proposed algorithm has higher
computational complexity per iteration but needs fewer number
of iterations to converge. Overall, the time complexity of the
proposed algorithm is much lower than that of WMMSE.
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5.5 investigated problem

Consider a millimeter-wave system, where a base station (BS) serves
several UEs, as shown in Figure 7

Multicast

BS
UE

Unicast

Figure 7: RSMA-based NOUM system consisting of a BS and several UEs.

Generalities

The number of UEs is K and they are indexed by set K = {1, . . . ,K}.
Each of the UEs expects to receive two messages from the BS, trans-
mitted in a non-orthogonal manner, particularly a multicast message
destined for all UEs and an unicast message intended only for a
given UE. The multicast message is denoted by W(m) and the unicast
message of the k-th UE is denoted by W(u)

k .

The BS is equipped with a hybrid precoder consisting of Ntx trans-
mit antennas and NRF

tx radiofrequency (RF) chains, where K ⩽ NRF
tx ⩽

Ntx. Without loss of generality, it is assumed that NRF
tx = K. Every

unicast message W(u)
k is decomposed into W(u,c)

k and W(u,p)
k , which

are known as the common and private portions of W(u)
k , respectively.

The multicast message together with the common parts of the uni-
cast messages are jointly encoded into a common macro-stream as{︂
W

(u,c)
1 , . . . ,W(u,c)

K ,W(m)
}︂
↦→ ˜︁z = [˜︁z1,˜︁z2, . . . ]T . The unicast private

portions are encoded into independent streams as W(u,p)
k ↦→ ˜︁sk =

[˜︁sk,1,˜︁sk,2, . . . ]T , ∀k ∈ K. Then, the encoded streams are precoded by
the digital precoder [B|m] = [b1, . . . , bK, m] ∈ CK×(K+1). Let z and
s = [s1, . . . , sK]

T denote the instantaneous symbol and vector sym-
bol of the common macro-stream and private streams, respectively,
such that E

{︂[︁
sT |z

]︁H [︁
sT |z

]︁}︂
= I. Thus, the downlink signal from the

BS is x = F [B|m]
[︁
sT |z

]︁T ∈ CNtx×1, where F = [f1, . . . , fK] ∈ CNtx×K

represents the analog precoder.
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Under flat fading, the signal received by the k-th UE is

yk = hHk Fmz⏞ ⏟⏟ ⏞
common signal

y
(c)
k

+ hHk Fbksk⏞ ⏟⏟ ⏞
private signal for the k-th UE

y
(p)
k

+ hHk F
∑︁
j̸=k bjsj⏞ ⏟⏟ ⏞

interference at the k-th UE
y
(i)
k

+ nk⏞⏟⏟⏞
noise

,

where nk ∼ CN
(︁
0,σ2

)︁
denotes circularly symmetric Gaussian noise

and hk ∈ CNtx×1 is the channel between the BS and the k-th UE.

To decode the non-orthogonal signals transmitted by the BS, each
UE relies on successive interference cancellation (SIC), which consists
in decoding and removing one signal after the other. Specifically, the
k-th UE decodes the common macro-stream symbol z (in term y

(c)
k )

by treating the rest of signals as noise. Then, the common signal y(c)
k

is reconstructed and subtracted from yk. The remaining signal ỹk =

yk − y
(c)
k consists solely of private unicast components

{︂
y
(p)
k ,y(i)

k

}︂
and noise nk, from where the k-th UE decodes symbol sk.

The SINR of the common macro-stream and private streams are
denoted by SINR(c)

k and SINR(p)
k , respectively.

SINR(c)
k =

⃓⃓
hHk Fm

⃓⃓2∑︁
j∈K

⃓⃓
hHk Fbj

⃓⃓2
+ σ2

(11)

SINR(p)
k =

⃓⃓
hHk Fbk

⃓⃓2∑︁
j̸=k

⃓⃓
hHk Fbj

⃓⃓2
+ σ2

(12)

Based on the SINRs in (11) and (12), the rates are defined as
R
(c)
k = log2

(︂
1+ SINR(c)

k

)︂
and R(p)

k = log2
(︂
1+ SINR(p)

k

)︂
. In addition,

R̄
(c) is defined as the maximal rate at which all UEs can decode the

common symbol z. Therefore, the common macro-stream must be
encoded at a rate R̄(c) ⩽ R(c)

min, where R(c)
min = mink∈K

{︂
R
(c)
1 , . . . ,R(c)

K

}︂
.

This holds true because the lowest rate dictates the performance in a
multicast transmission.

Recall that z results from jointly encoding multiple components,
i.e., the common portions W(u,c)

k resulting from rate-splitting and the
common message W(m) which, for example, could be video content.
Thus, let C0 denote the fraction of R̄(c) that carries the multicast
message W(m), and Ck the fraction of R̄(c) that carries the unicast
common part W(u,c)

k , such that C0 +
∑︁
k∈KCk = R̄

(c). Upon decoding
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the received signals, the k-th UE acquiresW(u,c)
1 , . . . ,W(u,c)

K ,W(m), and
W

(u,p)
k , from where the unicast message W(u)

k can be recomposed.

Problem formulation

The objective is to design a hybrid precoder that maximizes the
WSR, subject to constraints on the transmit power and constant mod-
ulus of the phase rotations. The optimization problem is defined as,

P : max
C0,Ck,
F,bk,m

∑︁
k∈K µk

(︂
Ck + log2

(︂
1+ SINR(p)

k

)︂)︂
(13a)

s.t. C0 +
∑︁
j∈KCj ⩽ mink∈K

{︂
R
(c)
1 , . . . ,R(c)

K

}︂
, (13b)

C0 ⩾ Cth
0 , (13c)

Ck ⩾ 0,∀k ∈ K, (13d)

∥Fm∥22 +
∑︁
k∈K ∥Fbk∥22 ⩽ Pmax

tx , (13e)

[F]n1,n2 ∈ F,n1 ∈ N1,n2 ∈ N2, (13f)

where µk > 0 in (13a) is the weight assigned to the k-th UE and (13b)
is used to enforce that the sum of common rate portions is at most
mink∈K

{︂
R
(c)
1 , . . . ,R(c)

K

}︂
. Constraint (13c) imposes a minimum rate

requirement Cth
0 for decoding the common message whereas (13d)

imposes a non-negativity restriction on the rates Ck. Constraint (13e)
restricts the transmit power to Pmax

tx while (13f) enforces the analog
precoder characteristics. Concretely, every phase rotation [F]n1,n2 is

constrained to set F =
{︂
δtx, . . . , δtx exp

(︂
j
2π(Ltx−1)

Ltx

)︂}︂
, where Ltx is the

number of allowed constant-modulus phase rotations, δtx =
√︂
1/NRF

tx ,
n1 ∈ N1 = {1, . . . ,Ntx}, and n2 ∈ N2 =

{︁
1, . . . ,NRF

tx
}︁

. Note that the
aggregate unicast rate of UE k is given by

R
(u)
k = Ck + log2

(︂
1+ SINR(p)

k

)︂
. (14)

Note: For details on the proposed algorithm to solve P, the reader is
referred to [D], which can also be found in Appendix D.

5.6 selected results

In the following, simulation results of a specific scenario in [D] are
discussed. Figure 8 shows the rates achieved by the proposed algo-
rithm. The proposed algorithm was used for both LDMA and RSMA
due to their similarity.
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Figure 1: Two-user rate region with fully-digital and hybrid precoders.
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Figure 2: Convergence of FALCON and WMMSE.

channels h1 = [1, 1, 1, 1]H , h2 =
[
1, ejθ, ej2θ, ej3θ

]H . For the
hybrid precoder, we assume that NRF

tx = K = 2 with four
degrees of quantization, Ltx = {2, 4, 8, 16}. To solve the LDM
case via FALCON, we enforce Ck = 0, ∀k ∈ K. Fig. 1a shows
the case when the channels are highly correlated (θ = π/9).
We observe that RS outperforms LDM due to its capability to
manage interference, in particular in this challenging scenario.
We also note that for RS and LDM, the hybrid precoder
with Ltx = 16 (i.e., 4 bits) has the same performance as a
fully-digital precoder. The performance when Ltx = 2 and
Ltx = 4 is the same due to quantization that has produced
the same analog precoder. Through Fig. 1b, Fig. 1c, Fig. 1d,
the channel correlation among users is reduced by increasing
θ. As expected, LDM approaches the performance of RS as

interference becomes less detrimental. Interestingly, the phase
resolution of the hybrid precoder becomes less relevant as
the correlation between channels decreases. For instance, in
Fig. 1d with Ltx = 4 (i.e., 2 bits) the hybrid and fully-digital
precoders attain the same performance.

D. Comparing hybrid precoder designs

We compare the performance of FALCON in RS-NOUM
with the two hybrid precoder designs described in Section
V-B. In this scenario, we assume that Ntx = 8, Cth

0 = 1.5 (as
in Case C of Table ?? and Table ??) for various number of
users K = {2, 3, 4, 5, 6}. For the PB hybrid (PB-H) precoder
we assume that Ltx = 16. For CB hybrid (CB-H) precoder,
we form the codebook V with 128 codewords, where Ntx

codewords are mutually orthogonal obtained from the discrete
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Figure 3: Performance comparison of hybrid precoders

Figure 8: Rate performance of LDMA and RSMA.

Figure 8 show four scenarios, where Ntx = 4 and K = 2. The rates
R
(u)
1 and R(u)

2 are computed according to (14). The noise power is set
to σ2 = 30 dBm and the UE channels are defined as h1 = [1, 1, 1, 1]H,
h2 =

[︁
1, ejθ, ej2θ, ej3θ

]︁H, where the channel correlation between h1
and h2 is controlled by θ =

{︁
π
9 , 2π9 , 3π9 , 4π9

}︁
. Specifically, a small value,

such as θ = π
9 implies that the channels are highly correlated (nearly

parallel) while a large value, such as θ = 4π
9 implies that the channels

are highly uncorrelated (nearly orthogonal).

In the legend of Figure 8, "FD" and "H" are used to respectively
identify the fully-digital and hybrid precoders. The values next to "FD"
and "H", i.e., Ltx = {2, 4, 8, 16}, denote the number of allowed phase
rotations, which are linked to phase resolution. For instance, Ltx = 2

implies that only two phase rotations are used, i.e., F = {0,π}, whereas
Ltx = 8 implies that F = {0,π/8,π/4, 3π/8,π/2, 5π/8, 3π/4, 7π/8}.

One first observation from Figure 8 is that performance generally
improves for an increasing value of Ltx. This is especially true when
θ = π

9 . On the other hand, a higher Ltx is less relevant when θ = 4π
9 .

This occurs because interference is significant when the channels are
highly correlated, e.g., θ = π

9 , posing an obstacle for rate improvement.
As a result, a higher Ltx makes more phase rotations available that can
improve decorrelation among channels. When θ = 4π

9 , the channels
are already nearly orthogonal, thus interference is not substantially
significant. Thus, a lower Ltx is sufficient to achieve high performance.
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Another observation is that RSMA outperforms LDMA. The most
significant difference is observed when θ = π

9 whereas the smallest dif-
ference occurs when θ = 4π

9 . Specifically, when θ = π
9 , interference is

very high for the unicast signals due to high channel correlation. This
scenario is, in fact, more suitable for the multicast signal. Therefore,
RSMA splits the unicast messages, so that most of the information
for the UEs is transmitted through the multicast signal, avoiding the
high interference that would have resulted from transmitting via uni-
cast signals alone as LDMA does. On the other hand, LDMA cannot
split the unicast messages for the UEs into unicast and multicast, and
transmits only via unicast. Recall that, LDMA also transmits a multi-
cast messages, e.g., video content, which generates high interference
and affects rates. When θ = 4

9 , the channels are highly uncorrelated,
making the multicast signal unsuitable and the unicast signals more
preferable. Therefore, RSMA does not split the information for UEs
into unicast and multicast in this case, and chooses to transmit only
using unicast signals. As a result, RSMA collapses to LDMA, as a
particular case, and both perform similarly.
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6
P R E C O D I N G A N D A D M I S S I O N C O N T R O L
F O R M U LT I - G R O U P M U LT I C A S T B A S E D O N
S D M A

This chapter gives an overview of the research problem investigated
in [E], which is included in Appendix E. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

6.1 motivation

Industry 4.0 represents the next generation of smart factories, where
all components of the production chain, including industrial equip-
ment, logistics, and processes, will be interconnected. Given the high
degree of connectivity expected in Industry 4.0, wired connections
become less desirable since they may hinder automation and limit the
movement of industrial robotics. Therefore, wireless technologies are
considered a solution to overcome hard wiring.

Besides, the millimeter-wave spectrum offers wide bandwidth and
requires small antennas that can be easily embedded into miniature
industrial machinery/devices. Thus, the millimeter-wave spectrum is
advantageous to support future industrial networks, benefiting dense
deployments due to low interference resulting from high path loss.

Multicasting will be necessary in industrial settings since several
industrial IoT (IIoT) devices, such as sensor and actuators, will need
to receive common information, e.g., control signaling. In particular,
multicasting with multiple groups of IIoT devices can increase spectral
efficiency and reduce latency. Also, to exploit the millimeter-wave spec-
trum, hybrid precoders will be needed. However, hybrid precoders
have a limited number of radiofrequency (RF) chains, which allows
transmitting only a few data streams simultaneously. Thus, admission
control, i.e., scheduling of multiple multicast groups, must also be
considered. Specifically, the joint design of hybrid precoding and ad-
mission control for multi-group multicasting has not been explored in
depth, yet.
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6.2 goal

The objective is to design hybrid precoders for several multicast groups
and their corresponding scheduling in order to achieve low-latency
communications, subject to transmit power limitations and phase
rotation constraints. Each multicast group consists of several IIoT
devices. Additionally, due to the small number of RF chains available
at the base station (BS), the multicast groups cannot be served all at the
same time. Therefore, they must be served in smaller groups such that
the total latency of serving them all is minimized. However, finding
such groupings and the precoders for each of them is not trivial. In
particular, unsuitable groupings can lead to high interference and,
consequently, very low throughput and high communications latency.
Thus, a new algorithm is proposed to design the hybrid precoders
and the admission control for multi-group multicasting. Precisely, the
proposed algorithm consists of two phases, i.e., admission control
and hybrid precoding, which are devised taking advantage of integer
linear programs (ILPs), semidefinite relaxation (SDR), and the bisection
method.

6.3 related work

The precoder design for multi-group multicasting has been investi-
gated with fully-digital precoders in [71–83] and with hybrid pre-
coders in [68–70, 84, 85], as already revisited in Appendix B. However,
the joint design of precoding and admission control for multi-group
multicasting has not been investigated in many works.

The works [119–124] studied the precoding and admission control
for single-group multicasting. Specifically, only [119–122] considered
the precoder design, whereas [123, 124] employed physical layer ab-
stractions of the multicast beams to simplify the design. In particular,
the authors of [119] proposed an algorithm consisting of two stages.
In the first stage, the total number of user equipments (UEs) was
partitioned into several disjoint groups using a similarity metric based
on the channels of the UEs. Only one group was served at a time,
and therefore, interference was not generated. In the second stage, a
fully-digital precoder for each group was designed to maximize the
minimum signal-to-noise ratio (SNR). The precoder for each group
was designed using linear combinations of the channels of the UEs
in each group. In [120], a similar scenario as in [119] was studied. In
particular, the UEs were divided into several groups and the groups
were assigned to different orthogonal frequency channels. Thus, all the
UE groups could be served simultaneously without interference. The
authors proposed a first algorithm based on SDR and randomization
followed by a power allocation stage, and a second algorithm based
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on gradient descent. Specifically, the proposed algorithms aimed at
minimizing the transmit power. A similar scenario was investigated in
[121], where the authors distributed the multicast groups among dif-
ferent subcarriers and then optimized the transmit power to maximize
the sum rate (SR) using an algorithm based on geometric program-
ming (GP). Besides, the authors of [122] investigated the precoding
design for transmit power minimization under the condition of ad-
mitting a fixed number of UEs. The authors proposed an algorithm
based on the outer approximation of a mixed-integer semidefinite
programs (MISDPs), which was recast as a sequence of mixed-integer
second-order cone programs (MISOCPs).

The authors of [123] considered mutually orthogonal beams to
serve a number of UEs, which were partitioned into disjoint groups.
The authors proposed an optimal and a suboptimal greedy algorithm
to form subsets of beams in order to serve all groups at maximum
rate. A similar problem was considered in [124], where the authors
proposed an algorithm closely related to the bin-packing problem.

Besides, the works [125–128] investigated the joint design of multi-
group multicasting and admission control. However, none of these
works considered hybrid precoders. Further, none of them investigated
the admission control to minimize the total communications latency.
In particular, the authors of [125] investigated the maximization of
the number of UEs served. Specifically, as many UEs as possible were
assigned to every multicast group, subject to satisfying transmit power
and signal-to-interference-plus-noise ratio (SINR) constraints. The
authors proposed an algorithm based on SDR, randomization, and
deflation. In [126], a problem similar to that of [125] was investigated.
The authors proposed three algorithms, two based on branch-and-
bound (BnB) and a third based on heuristics. Besides, the authors of
[127, 128] investigated UE grouping and precoding for SR [128] and
energy efficiency (EE) [127] maximization. In both cases, an algorithm
based on successive convex approximation (SCA) was proposed.

6.4 contributions

The contributions of this chapter are summarized in the following.

• Three propositions are introduced to guide the design of the pre-
coders. The first proposition explains the relationship between
SINR and latency. Exploiting this result, the second proposition
reveals that latency minimization is promoted if the equalized
signal-to-interference-plus-noise ratio (ESINR) is maximized.
The third proposition takes advantage of the latter result to
formulate the problem of joint precoding and admission control
for multi-group multicasting for latency minimization.
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• Due to the complexity of addressing the joint precoding and
admission control, which is a mixed-integer nonlinear program
(MINLP), its design is divided into two subproblems, i.e., admis-
sion control and precoding. Admission control is accomplished
by proposing an algorithm that is formulated as an ILP, which
co-schedules the multicast groups by minimizing the number of
scheduling windows and the channel correlation between the
served IIoT devices. To achieve this, a new metric is designed
which is shown to be well suited.

• The multi-group multicast precoding problem is nonconvex.
Thus, an algorithm based on SDR and alternating optimization
(AO) is proposed, where the analog and digital precoders are
optimized sequentially and iteratively.

• Compared to prior works on multi-group multicast precoding,
the IIoT devices are assumed to have multiple antennas, which
is feasible in the millimeter-wave spectrum due to the small size
of the antennas.

• The proposed admission control algorithm is not only evaluated
with hybrid precoders, but also with fully-digital and fully-
analog precoders, demonstrating that it is effective in scheduling
several multicast groups and achieving low latency. Further-
more, it is demonstrated via simulations that the proposed ad-
mission control algorithm achieves performance close to that of
exhaustive search and is significantly more efficient than random
admission.

6.5 investigated problem

Consider a millimeter-wave system, where a BS serves IIoT devices
clustered into several groups, as shown in Figure 9. In particular, the
BS has a limited number of RF chains and it cannot serve all multicast
groups at the same time. Therefore, the BS splits the groups and serves
them in smaller groups. The groups must be scheduled such that the
overall latency of serving all groups is minimized.

Generalities

The number of IIoT devices is KT and they are indexed by set
K = {1, . . . ,KT }. The number of multicast groups is GT and they
are indexed by set I = {1, . . . ,GT }. In addition, Gi represents the
set of IIoT devices in multicast group i ∈ I and |Gi| represents the
number of IIoT devices in that group. Furthermore, it is assumed that
Gi ∩ Gi ′ = {∅} ,∀i ̸= i ′.
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Figure 9: SDMA-based multi-group multicast industrial system consisting of
a BS and several groups of IIoT devices.

The BS is equipped with a sub-connected hybrid precoder consist-
ing of Ntx transmit antennas and NRF

tx RF chains. Specifically, each RF
chain is connected to a sub-array of Ltx = Ntx/N

RF
tx antennas. Besides,

each IIoT device is equipped with analog combiners that have Nrx

antennas and a single RF chain, i.e., NRF
rx = 1. Since GT ⩾ NRF

tx , admis-
sion control is necessary. In particular, NRF

tx determines the maximum
number of groups that can be simultaneously served.

Let Ts be the number of scheduling windows needed to serve
all groups, assuming exclusive subsets of multicast groups across all
scheduling windows, i.e., each group is served only once within Ts
scheduling windows. The number of scheduling windows Ts depends
on both NRF

tx and GT , i.e.,
⌈︁
GT
NRF

tx

⌉︁
⩽ Ts ⩽ GT . Specifically, Ts is max-

imum when only one multicast group is served at each scheduling
window. Similarly, Ts is minimum when the BS serves NRF

tx multi-
cast groups simultaneously at each window (except for at most one
window, in case GT is not a multiple of NRF

tx ).

Let ordered set Vt contain the indices of the multicast groups
scheduled in window t. In addition, let set Ut denote the IIoT devices
served in window t, i.e., Ut = {k | k ∈ Gi, i ∈ Vt}. Besides, let {Vt}

Ts
t=1

and {Ut}
Ts
t=1 denote the collection of multicast groups and IIoT devices

served over all Ts windows, respectively. Since each multicast group
is served only once within Ts windows, then Vt ∩ Vt ′ ̸=t = {∅}, Ut ∩
Ut ′ ̸=t = {∅}.

Since multicasting is considered, all IIoT devices in the same group
require the same length-Bi bit stream bi = [bi1 , . . . biBi ]

T . Thus, the
amount of bits required by IIoT device k is Bk = Bi,∀k ∈ Gi. At the
BS, each bit stream bi is encoded at a suitable rate πi that allows
successful decoding at the intended IIoT devices. As a result, streams
s̃i = [s̃i1 , s̃i2 , . . . ]T (i ∈ I) are simultaneously transmitted, each having
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symbol-wise unit power on average, i.e., E
{︁

s̃is̃Hi
}︁
= I. The symbol

streams are arranged in matrix S = [s̃1, . . . , s̃GT ]
T , which is padded

with zeroes where necessary, as the length of each stream s̃i depends
on Bi and πi. Note that the non-zero entries of S represent the data
that needs to be delivered to all the groups.

Let Ŝt = VtS denote the symbol streams transmitted in the t-th
scheduling window. Here, Vt ∈ {0, 1}|Vt|×GT is a binary scheduling ma-
trix that filters the symbol streams from S that are to be transmitted in
window t. The latency associated to delivering Ŝt is ξt = maxi∈Vt

Bi
πi

,
which represents the minimal time interval required by the IIoT de-
vices in window t to receive the intended data.

Let Ft ∈ CNtx×NRF
tx and Mt ∈ CN

RF
tx ×|Vt| denote, respectively, the

analog and digital precoders in window t. Each element (q, r) of the
analog precoder is a constant-modulus phase rotation. Thus, [Ft]q,r ∈
F, where q ∈ Q = {(r− 1)Ltx + l | 1 ⩽ l ⩽ Ltx}, r ∈ R =

{︁
1, . . . ,NRF

tx
}︁

,

and F =

{︃√
δF . . . ,

√
δFe

j
2π(DF−1)

DF

}︃
. Specifically, DF is the number of

allowed phase shifts and δF is a scaling factor. Thus, the downlink
signal transmitted from the BS at window t is given by xt = FtMts̃.

Let wk ∈ CNrx×1 be the combiner of the k-th IIoT device, where

[wk]l ∈ W, l ∈ L = {1, . . . ,Nrx}, W =

{︃√
δW , . . . ,

√
δWe

j
2π(DW−1)

DW

}︃
.

Here, DW is the number of phase shifts allowed and δW is a scaling
factor.

Under the assumption of narrowband flat-fading, the signal re-
ceived by the k-th IIoT device is

yk = wHk HkFtMtsit⏞ ⏟⏟ ⏞
desired multicast signal

+wHk Hk
|Vt|∑︂

jt=1,jt ̸=it
FtMtsjt⏞ ⏟⏟ ⏞

interference

+wHk nk⏞ ⏟⏟ ⏞
noise

, (15)

where Hk ∈ CNrx×Ntx is the channel between the BS and the k-th
IIoT device, whereas nk ∼ CN

(︁
0,σ2I

)︁
denotes circularly symmetric

Gaussian noise. Also, it ∈ {1, . . . , |Vt|} is a relative index that represents
the elements of Vt, whereas sit = s̃− sjt is a vector padded with zeroes
except for the it-th position and contains the it-th element of s̃. The
SINR at IIoT device k is defined as

SINRk =

⃓⃓
wHk HkFtMteit

⃓⃓2
|Vt|∑︂

jt=1,jt ̸=it

⃓⃓
wHk HkFtMtejt

⃓⃓2
+ σ2 ∥wk∥22

, (16)
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In (16), vector eit has a 1 in the it-th position if k ∈ Vt {it} and 0
otherwise. Note that in (15) and (16), the subscript t has been dropped
for the combiner wk. The reason is that each combiner wk is designed
using only its corresponding Hk. In particular, the design of wk is
based on the maximization of the effective channel gain between the
BS and the k-th IIoT device, and therefore does depend on the rest of
channels. This allows each device to be capable to optimize its own
combiner.

Problem formulation

The joint design of precoding and admission control is challenging
to address. Thus, the problem is split into two subproblems. The first
problem, S, aims to minimize the number of scheduling windows
and the channel correlation of the admitted IIoT devices. Reducing
the number of scheduling windows naturally results in lower latency,
especially when a switching delay is considered. Besides, seeking the
reduction of the overall correlation of the scheduled devices allows for
lower interference and, therefore, higher rates, thus promoting latency
minimization.

S : min
µi,i,τi,j,l

GT∑︂
i=1

µi,i⏞ ⏟⏟ ⏞
first term

+ω

GT−1∑︂
i=1

GT−1∑︂
j⩾i

GT∑︂
l>j

ρj,l · τi,j,l⏞ ⏟⏟ ⏞
second term

(17a)

s.t.
∑︂
i⩽j<l

ρj,l · τi,j,l ⩽ λ · µi,i, ∀i, (17b)

∑︂
i⩽j

µi,j = 1,∀j, (17c)

∑︂
j⩾i

µi,j ⩽ NRF
tx ,∀i, (17d)

µi,j ⩽ µi,i,∀i < j, (17e)

µi,j + µi,l ⩽ 1+ τi,j,l,∀i ⩽ j < l, (17f)

µi,j ∈ {0, 1} , (17g)

τi,j,l ∈ {0, 1} . (17h)

In S, binary variable µi,j indicates with 1 that multicast group j
is scheduled in the i-th window and with 0 otherwise. Binary vari-
able τi,j,l is 1 if multicast groups j and l are co-scheduled in the i-th

window. Besides, ρj,l =
|hHj hl|
∥hj∥2∥hl∥2

is the metric used to capture the

channel correlation between the co-scheduled IIoT devices. In particu-
lar, ρj,l measures the inter-group correlation between groups j and l,
where hj = 1

|Gj|

∑︁
k∈Gj vec (Hk) is the mean channel of all IIoT devices

in group j.
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The first term in the objective (17a) is the number of scheduling
windows. The second term is the aggregate channel correlation, which
is computed pair-wise for all multicast groups. Further, ω in (17a)
is a penalty factor used to balance the importance of the two terms.
Constraint (17b) restricts, for every window i, the aggregate channel
correlation of the admitted groups to be below a certain threshold
λ. Constraint (17c) enforces every group j to be scheduled only once,
whereas constraint (17d) restricts the number of groups per window
to be at most NRF

tx , i.e., it cannot exceed the number of RF chains.
Constraint (17e) reduces the search space by pruning redundant vari-
ables, allowing to decrease the computational complexity of S, without
affecting the solution. Constraint (17f) links variables µi,j and τi,j,l,
ensuring consistency. Constraints (17g) and (17h) define µi,i and τi,j,l
as binary.

Having found a suitable scheduling after solving S, then Vt be-
comes available. Therefore, a hybrid precoder and analog combiners
for every window t can be designed based on P.

P : max
Ft,Mt,

{wk}k∈Ut

min
k∈Ut

1
Bk

⃓⃓
wHk HkFtMteit

⃓⃓2

|Vt|∑︂
jt=1
jt ̸=it

⃓⃓
wHk HkFtMtejt

⃓⃓2
+ σ2 ∥wk∥22

(18a)

s.t. ∥FtMt∥2F ⩽ Pmax
tx , (18b)

∥wk∥22 ⩽ Pmax
rx ,k ∈ Ut, (18c)

[Ft]q,r ∈ F,q ∈ Q, r ∈ R, (18d)

[wk]l ∈W, l ∈ L. (18e)

The objective (18a) is to maximize of the minimum ESINR. Con-
straint (18b) limits the transmit power of the hybrid precoder and (18c)
limits the receive power of each IIoT device. Further, (18d) and (18e)
enforce constant-modulus phase rotations for the analog precoder
Ft and analog combiners {wk}k∈Ut , respectively. Note that the objec-
tive is fractional and therefore nonconvex. Also, the coupling FtMt

adds nonconvexity to constraint (18b) and the objective. Constraints
(18d) and (18e) are nonconvex since [Ft]q,r and [w]l are limited to
nonconvex sets F and W, respectively. Thus, (18) is nonconvex.

Note: For details on the proposed algorithm to solve P, the reader is
referred to [E], which can also be found in Appendix E.

6.6 selected results

In the following, simulation results of a specific scenario in [E] are
discussed. Figure 10 shows the latency achieved by the proposed
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algorithm alongside with other benchmarks. In the legend of Figure 10,
HYDRAWAVE denotes the proposed algorithm. Benchmarks XHAUS and
RAND denote exhaustive and random search, respectively. In particular, Figure 10 is taken

from [E], but the
layout has been
slightly modified.

XHAUS considers all possible combinations of scheduling whereas RAND

considers random co-scheduling of groups. Additionally, benchmark
SING is included, representing single-group multicasting, i.e., only one
group is served at a time. 1

SING RAND XHAUS HYDRAWAVE |λ = 0.01 HYDRAWAVE |λ = 0.05

HYDRAWAVE |λ = 0.1 HYDRAWAVE |λ = 0.2 HYDRAWAVE |λ = 0.4 HYDRAWAVE |λopt Switching delay
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(a) Fully-digital precoder
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(b) Hybrid precoder
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(c) Fully-analog precoder

Figure 1: Latency performance of different scheduling schemes with fully-digital, hybrid, and fully-analog
precoders.
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Figure 10: Latency of several algorithms with fully-digital, hybrid, and fully-analog precoders.

Figure 10 shows the performance of the proposed algorithm using
fully-digital, hybrid, and fully-analog precoders. Solid colors represent
the latency without switching delay whereas dashed colors represent
the latency with switching delay. The switching delay increases pro-
portionally to the number of scheduling windows, since it is assumed
that the configuration of the precoders from one time window to
another requires some processing time. The parameter λ is left for the
design, as it regulates the amount of interference supported in each
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time window, thus also affecting latency. Finding an optimal value for
λ is not trivial, in general, as it involves an additional search.

In Figure 10, the number of antennas and RF chains at the BS
are Ntx = 24 and NRF

tx = 4, respectively. Each IIoT device has Nrx = 2

antennas and NRF
rx = 1 RF chains. The maximum transmit power

at the BS is Pmax
tx = 20 dBm. The number of multicast groups is

GT = 4 and the number of IIoT devices is KT = {16, 32, 64}. The length
of the bit-streams for all multicast groups are considered the same,
i.e., B1 = B2 = B3 = B4 = 4 Mbits. The switching is denote by
δSW = {0.0, 0.5} ms.

When KT = 16, SING generally produces the highest latency
whereas XHAUS produces the lowest. Further, RAND exhibits an in-
termediate performance between SING and XHAUS. When, KT = 64,
the performance gap between SING and XHAUS reduces considerably
since interference becomes more difficult to manage, making SING

optimal in some realizations. Specifically, when KT is large, inter-
ference is higher and, therefore, it is more suitable to schedule less
groups simultaneously. As a result, RAND deteriorates markedly due
to inadequate co-scheduling of the multicast groups which causes
mutual high interference, allowing only very low rates and, there-
fore, resulting in high latency. Note that when a switching delay is
assumed, similar behavior is observed in all results except for SING,
which is more severely penalized because it serves only one group
at a time, incurring more overall switching delay due to needing
more scheduling windows. Considering the fully-digital precoder
with KT = 16, the performance of HYDRAWAVE is close to that of XHAUS.
Besides, for KT = {32, 64}, its performance is within 11% of XHAUS

when δSW = 0.0 ms and within 9% when δSW = 0.5 ms. Considering
the hybrid and fully-analog precoders, the performance of HYDRAWAVE
is within 1.5− 9.5% and 3.4− 11.7% of XHAUS, respectively. With the
hybrid precoder, HYDRAWAVE exhibits gains up 32% higher than SING

and up to 102% compared to RAND when δSW = 0 ms. Besides, when
δSW = 0.5 ms, the gains are up to 60% and 59%, respectively.

Finding an optimal value of λ for HYDRAWAVE is generally time-
consuming. The results with λopt, i.e., optimal value of λ, are shown
only for the purpose of serving as a performance benchmark. Gen-
erally, HYDRAWAVE performs acceptably well for λ = {0.2, 0.4}, which
can be adopted for the considered scenario. Besides, λ is related to
the amount of interference allowed per scheduling window. For the
fully-digital precoder, a larger λ can be tolerated due to the versatility
of these precoders to manage interference better. For hybrid precoders,
smaller λ values are more suitable due to the limited number of RF
chains available.
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7
P R E C O D I N G A N D A D M I S S I O N C O N T R O L
F O R U N I C A S T A N D M U LT I C A S T B A S E D O N
L D M A

This chapter gives an overview of the research problem investigated
in [F], which is included in Appendix F. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

7.1 motivation

Industry 4.0 envisions fully automated factories with a vast network of
interconnected industrial IoT (IIoT) devices, such as sensors, actuators,
programmable logic devices, and access points. This high degree
of interconnectivity is expected to provide ultra-precise control and
seamless coordination, resulting in incredibly efficient and reliable
production processes. However, most IIoT devices in today’s industrial
environments are interconnected via hard wiring to ensure reliable
communications.

As the number of IIoT devices in industrial settings increases,
wires will face the following challenges: intricate deployment complex-
ity, increased operational costs, limited maneuverability of articulated
robots, and difficulty to communicate with autonomous mobile robots.
On the other hand, wireless technologies can significantly reduce
deployment and maintenance costs while promoting more flexible
mechanics for robotics. Consequently, transitioning from wired to
wireless technology is an attractive option for industrial evolution.

High spectral efficiency has been demonstrated by exploiting
the millimeter-wave spectrum and massive multiple-input multiple
output (MIMO). Specifically, the millimeter-wave spectrum is an at-
tractive substitute for the saturated sub-6GHz spectrum because of
its high bandwidth availability. In addition, due to its shorter wave-
length, the millimeter-wave spectrum requires smaller antennas that
can be embedded into small IIoT devices. Furthermore, the millimeter-
wave spectrum exhibits high spatial reuse due to significant path loss
and sparse propagation. These characteristics make it excellent for
short-range communications in highly congested scenarios, such as
industrial environments. In addition, thanks to the superior degrees
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of freedom of massive MIMO, improved interference mitigation can
be achieved, enabling greater spectral efficiency (SE) and multiplexing
capability, both desirable attributes to support the future industrial
landscape.

Future industries will need two forms of information: shared
control messages, i.e., multicast signals, and private communications,
i.e., unicast signals. Orthogonal multiple access schemes can meet
this requirement, transmitting multicast and unicast signals on sep-
arate time or frequency resources. However, as the number of IIoT
devices increases, orthogonal multiple access schemes will struggle to
accommodate a large number of devices on separate radio resources.
As a result, non-orthogonal multiple access is being considered, as
it allows the same resources to be reused to serve multiple devices.
Non-orthogonal multiple access schemes can improve SE by enabling
overlapping transmissions on the same radio resources. Specifically,
layered-division multiple access (LDMA) is a non-orthogonal multiple
access scheme, which is promising among many existing variants.
LDMA can transmit multiple layers of information simultaneously
using the same radio resources. For instance, with LDMA, multicast
and unicast information can be transmitted simultaneously, which is
known as non-orthogonal unicast and multicast (NOUM).

Several non-orthogonal multiple access schemes have recently
been applied to the millimeter-wave spectrum and massive MIMO,
demonstrating excellent synergy in various applications. Further-
more, research on exploiting non-orthogonal multiple access and
the millimeter-wave spectrum for industrial settings has also yielded
promising results. Based on these outcomes, combining the millimeter-
wave spectrum, massive MIMO, and LDMA is expected to bring
further benefits for future industrial ecosystems. However, intertwin-
ing these technologies raises questions requiring further research in
two critical aspects, as explained in the following.

Admission control. Generally, the number of radiofrequency (RF)
chains in the base station (BS) limits the number of IIoT devices that
can be simultaneously served with individual signals. Most works
on precoding consider sufficient RF chains to serve all IIoT devices,
making admission control unnecessary. However, as wireless networks
become denser, admission control will be essential in order to maintain
high performance.

Precoding. In NOUM-based LDMA, overlapping unicast and mul-
ticast transmissions are employed. However, multicast and unicast
have opposite objectives. In particular, multicast precoding aims to
exploit the channel similarities to design the precoder. On the contrary,
unicast precoding aims to design the precoders exploiting the channel
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dissimilarities. Therefore, the precoding performance will depend on
admission control, i.e., the IIoT devices admitted for service.

7.2 goal

The goal is to design the precoding and admission control for NOUM
transmissions based on LDMA. In particular, the investigated research
problem aims to serve a subset of IIoT devices for which unicast
and multicast precoders are designed to maximize unicast signal-to-
interference-plus-noise ratio (SINR) fairness. Due to safety reasons, the
multicast signal, which carries control information, is not subject to
admission control or scheduling. Thus, it is always present and must
be received by all IIoT devices. In contrast, the unicast signals, which
carry non-critical information, are conveyed to only a subset of devices,
subject to the availability of RF chains. Thus, two superimposed signals
are transmitted by the BS.

7.3 related work

The precoding design for NOUM transmissions based on LDMA has
been studied for different purposes. For instance, the precoding design
for transmit power minimization was investigated in [93, 96, 98]. In
particular, the authors of [93, 96] proposed two algorithms based on
successive convex approximation (SCA) and semidefinite relaxation
(SDR) and showed that LDMA consistently outperforms time-division
multiple access (TDMA) as it requires less power to fulfill the same
given task. Besides, the authors of [98] proposed algorithms based on
branch-and-bound (BnB) and successive linear approximation (SLA),
which exhibited similar performance.

Also, the precoding design for energy efficiency (EE) maximization
was investigated in [101, 105, 106]. In [101], the authors studied the
EE of LDMA for the first time and proposed an algorithm based on
first-order Taylor approximations. The authors revealed that LDMA
can also improve EE compared to TDMA. The authors of [105, 106]
further included energy harvesting constraints into the NOUM system
and proposed two algorithms to solve the investigated problem. The
first algorithm proposed was based on the bisection method and SCA,
whereas the second low-complexity algorithm on zero-forcing (ZF)
precoding.

In addition, the joint precoding and base station clustering design
for weighted sum rate (WSR) maximization was investigated in [99,
100]. The authors of these works proposed algorithms based on BnB
and SCA and confirmed the higher versatility of LDMA compared to
TDMA.
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Although some works have investigated the precoding design
for LDMA-based NOUM transmissions, e.g., [93, 96, 98–101, 105,
106], the joint design of precoding and admission control has not yet
been studied. In addition, the combination of the millimeter-wave
spectrum, massive MIMO, and LDMA has neither been investigated
for industrial environments.

7.4 contributions

The contributions of this chapter are summarized in the following.

• The investigated research problem is formulated as mixed-integer
nonlinear program (MINLP), which jointly optimizes the precod-
ing and admission control in LDMA-based NOUM systems. In
particular, a minimum SINR target is imposed on the multicast
signal, which carries the ubiquitous control message, to ensure
that all IIoT devices receive the signal.

• An algorithm called BEAMWAVE is proposed, which decomposes
the MINLP into two subproblems, i.e., admission control and
precoding. To design the admission control, an integer linear
program (ILP) is formulated, which uses pairwise metrics named
PAWN, ROOK, KING to guide the decision of admitting IIoT devices.
Essentially, these metrics represent the discordance of serving
two devices together, and therefore, the goal is to minimize such
discordance. To design the precoding, an algorithm based on
SCA is proposed. Through simulations, it is shown that BEAMWAVE
can attain near-optimality when compared to a benchmark based
on exhaustive search.

• The need for admission control is motivated in the context of
LDMA-based NOUM transmissions, especially when the number
of RF chains is insufficient to serve a large number of IIoT de-
vices, expected in future industrial settings. It is shown through
simulations the importance of designing the admission control
compared to adopting trivial criteria, such as random admission.

7.5 investigated problem

Consider a millimeter-wave system, where a BS serves multiple IIoT
devices, as shown in Figure 11. The BS transmits common and private
information leveraging multicast and unicast precoding, respectively.
The BS has a limited number of RF chains and, therefore, not all
devices can be serviced simultaneously with unicast and multicast
information. All devices receive shared information via multicast but
only a subset of devices is chosen to receive private signals via unicast.
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Figure 11: LDMA-based NOUM industrial system consisting of a BS and
several IIoT devices.

Generalities

The number of IIoT devices is K and they are indexed by set
K = {1, 2, . . . ,K}. All the IIoT devices are served by the multicast
signal, which carries common information. However, onlya subset
of IIoT devices receive their corresponding unicast signals, each of
which conveys private information. Thus, the BS transmits two types
of non-orthogonal signals: multicast and unicast. The multicast signal
is intended for every device k ∈ K. Besides, a composite signal is
transmitted to only a subset of devices K ′ ⊆ K, where |K ′| = K ′.
Devices served only with the multicast signal are called single-layer
device, whereas devices that are served with both signals are called
dual-layer devices. Thus, K ′ dual-layer devices are served with both
unicast and multicast information, whereas K−K ′ single-layer devices
are served with multicast information only.

The BS is equipped with Ntx antennas and NRF
tx RF chains. It

is assumed that NRF
tx = K ′. The unicast and multicast precoders are

denoted by B ∈ CNtx×K ′ and m ∈ CNtx×1, respectively. The unicast and
multicast symbols are denoted by s ∈ CK

′×1 and z ∈ C, respectively,
assuming E

{︂[︁
sT , z

]︁H [︁
sT , z

]︁}︂
= I. The downlink signal from the

BS is x = [B|m]
[︁
sT |z

]︁T . Here, B = ˜︁BU, where ˜︁B = [b1, . . . , bK] ∈
CNtx×K and U ∈ BK×K

′
is a binary matrix used to select the dual-

layer devices. Also, s = UT˜︁s, where ˜︁s = [s1, . . . , sK]
T ∈ CK×1. It

must also hold 1TU1 = K ′, U1 ≼ 1 and UT1 ≼ 1, which yields that
UUT = diag ([µ1, · · · ,µK]) is a square matrix. In particular, the k-th
diagonal element is 1 when k is a dual-layer device and 0 otherwise.

Besides, each IIoT device is equipped with Nrx antennas and
NRF

rx = 1 RF chains. To design the combiner wk for each IIoT device,
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only a small number of Lrx constant-modulus phase rotations are
allowed. Every element [wk]l is a constant-modulus phase rotation

limited to W =
{︂
δrx, . . . , δrxe

j
2π(Lrx−1)

Lrx

}︂
, l ∈ L = {1, . . . ,Nrx}, where

δrx =
√︁
Pmax

rx /Nrx and Pmax
rx is the receive power for each IIoT device.

Assuming flat fading, the signal received by the k-th IIoT device
is given by

yk = wHk Hkmz⏞ ⏟⏟ ⏞
yM
k : multicast signal

+ wHk Hk
∑︂
j∈K ′

bjsj⏞ ⏟⏟ ⏞
yU
k : aggregate unicast signal

+wHk nk,⏞ ⏟⏟ ⏞
ηk:noise (19)

where Hk ∈ CNrx×Ntx denotes the channel between the BS and the
k-th device and nk ∼ CN

(︁
0,σ2I

)︁
is circularly symmetric Gaussian

noise. Note that the unicast signal for single-layer devices will be zero.

Since unicast and multicast signals are transmitted in a non-
orthogonal manner, successive interference cancellation (SIC) is per-
formed by the dual-layer devices to extract the information from both
received signals. Each device k ∈ K decodes the multicast symbol by
treating the aggregate unicast signal as noise. In addition, if device k
is a dual-layer device, then it applies SIC to decode the unicast signal.
The k-th device reconstructs the multicast signal yM

k using the decoded
symbol z, and then subtracts yM

k from yk. The remaining signal only
contains unicast components and noise, from where the device can
decode symbol sk.

The SINR for the multicast and unicast signals at the k-th device
are defined as

SINRM
k =

⃓⃓
wHk Hkm

⃓⃓2∑︁
j∈K ′

⃓⃓
wHk Hkbj

⃓⃓2
+ σ2 ∥wk∥22

, ∀k ∈ K, (20)

SINRU
k =

⃓⃓
wHk Hkbk

⃓⃓2∑︁
j̸=k,j∈K ′

⃓⃓
wHk Hkbj

⃓⃓2
+ σ2 ∥wk∥22

, ∀k ∈ K ′. (21)

Problem formulation

The objective is to design the precoder and admission control as
well as the combiners with the aim of maximizing the minimum SINR,
as shown in the following.
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P :max
W,m,
˜︁B,µ

min
k∈K

⃓⃓
wHk Hkbk

⃓⃓2
g(µk)∑︁

j̸=k,j∈K
⃓⃓
wHk Hkbj

⃓⃓2
µj + σ2 ∥wk∥22

s.t. C1 :

⃓⃓
wHk Hkm

⃓⃓2∑︁
j∈K

⃓⃓
wHk Hkbj

⃓⃓2
µj + σ2 ∥wk∥22

⩾ γmin, ∀k ∈ K,

C2 :
∑︂
k∈K
∥bk∥22 µk + ∥m∥22 ⩽ Pmax

tx ,

C3 :
∑︂
k∈K

µk = K ′,

C4 : [wk]l ∈W, l ∈ L,∀k ∈ K,

C5 : µk ∈ {0, 1} ,

where g(χ) is defined as

g(χ) =

{︄
1, if χ = 1,∞, if χ = 0.

and W = [w1, · · · , wK], ˜︁B = [b1, · · · , bK], µ = [µ1, · · · ,µK].

The objective function of P aims to find a subset K ′ ⊆ K that
maximizes the minimum SINRU

k of the admitted IIoT devices. Con-
straint C1 in nonconvex and enforces the multicast SINR to be above a
target SINR γmin for all devices. Constraint C2 is convex and limits the
transmit power to Pmax

tx . Constraint C3 selects K ′ dual-layer devices
while C4 imposes restrictions on the combiners design. Both C3 and
C3 are of combinatorial nature. Finally, C5 enforces µk to be binary.
Problem P is a nonconvex MINLP that is generally difficult to solve.

Note: For details on the proposed algorithm to solve P, the reader is
referred to [F], which can also be found in Appendix F.

7.6 selected results

In the following, simulation results of a specific scenario in [F] are dis-
cussed. Figure 12 shows the fairness in terms of the minimum SINR
achieved by the admitted IIoT devices. In the legend of Figure 12,
XHAUS denotes the algorithm that employs exhaustive search for ad-
mission control. Thus, it is used as an upper bound for the achievable Figure 12 is taken

from [F], but the
layout has been
slightly modified.

fairness. Besides, RANDOM denotes the algorithm that employs random
selection for admission control and, therefore, it is used as a perfor-
mance lower bound. In addition, BEAMWAVE-PAWN, BEAMWAVE-ROOK, and
BEAMWAVE-KING represent the proposed algorithm using three different
metrics, PAWN, ROOK, and KING, respectively. Each of these metrics lever-
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age different characteristics of the channels to select the IIoT devices
to be admitted.

JOURNAL OF LATEX CLASS FILES, VOL. 33, NO. 27, JUN 2019 1

Nrx = 1 Nrx = 2 Nrx = 3 Nrx = 4
100

200

300

400

500

600

Number of antennas at each IIoT device

M
in

im
um

un
ic

as
t

SI
N

R

XHAUS RANDOM BEAMWAVE-CORR BEAMWAVE-PAWN BEAMWAVE-ROOK BEAMWAVE-KING

(a) Lrx = 2

Nrx = 1 Nrx = 2 Nrx = 3 Nrx = 4
100

200

300

400

500

600

Number of antennas at IIoT device

M
in

im
um

un
ic

as
t

SI
N

R

(b) Lrx = 4

Nrx = 1 Nrx = 2 Nrx = 3 Nrx = 4
100

200

300

400

500

600

Number of antennas at IIoT device

M
in

im
um

un
ic

as
t

SI
N

R

(c) Lrx = 8

Nrx = 1 Nrx = 2 Nrx = 3 Nrx = 4
100

200

300

400

500

600

Number of antennas at IIoT device

M
in

im
um

un
ic

as
t

SI
N

R

(d) Lrx = 16

Figure 1: Achievable minimum SINR for varying Nrx and Lrx at each IIoT device.
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Figure 12: Minimum unicast SINR.

At the BS, the number of antennas is Ntx = 16 and the number
of RF chains is NRF

tx = 5. The transmit power at the BS is Pmax
tx = 35

dBm. At the IIoT devices, the number of antennas is Ntx = {1, . . . , 4}
and the number of RF chains is NRF

rx = 1. The number of IIoT devices
is K = 6, and the number of allowed phase rotations at each combiner
is Lrx = {2, 4, 8, 16}. The power assigned to the combiners is Pmax

rx = 0

dBm. The target SINR for the multicast signal is γmin = 6 dB.

Figure 12 shows the impact of Nrx and Lrx on the unicast SINR
fairness. It is observed that the fairness improves for all algorithms
as the number of receive antennas Nrx increases. With larger Nrx,
the IIoT devices can devise more directional reception beampatterns
to mitigate undesired unicast signals from other devices. A larger
number of antennas at the IIoT devices also facilitates the task of
the multicast precoder, whose design alone is NP-hard. Specifically,
endowing IIoT devices with multiple antennas saves extra power at
the BS that can be used to improve the unicast SINR fairness of the
admitted devices. For instance, up to 60% gain can be achieved with
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Lrx = 4 when varying the number of receive antennas from Ntx = 1 to
Ntx = 2. On the other hand, it is also observed that a larger number
of allowed phase rotations at the IIoT devices has a beneficial effect
on fairness. In particular, gains up to 16.00%, 30.70%, and 49.47% are
achieved when increasing from Lrx = 2 to Lrx = 4, from Lrx = 4 to
Lrx = 8, and from Lrx = 8 to Lrx = 16, respectively.

Comparing the performance of the algorithms, BEAMWAVE-KING
attains superior performance, close to that of XHAUS, and at a fraction of
the computational complexity of XHAUS. In particular, BEAMWAVE-KING
is outperformed by 5.60% compared to XHAUS.

59





8
P R E C O D I N G , A D M I S S I O N C O N T R O L , A N D
R AT E A L L O C AT I O N F O R U N I C A S T A N D
M U LT I C A S T B A S E D O N S D M A

This chapter gives an overview of the research problem investigated
in [G], which is included in Appendix G. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

8.1 motivation

Next-generation wireless communications networks will incorporate
millimeter-wave integrated access-backhaul (IAB) leveraging macro
base stations (MBSs) and small base stations (SBSs) as critical infras-
tructure for the rollout. However, achieving efficient operation of
millimeter-wave IAB technology is a major challenge. In particular,
to guarantee efficient operation, the joint radio resource management
(RRM) design of access and backhaul networks is essential. In addi-
tion, several practical challenges must be overcome to ensure smooth
operation and high radio resource utilization efficiency, as explained
in the following.

Scalable self-backhauling design. Most previous studies considered
point-to-point backhaul links between an MBS and SBSs, which is
impractical, making it unscalable in dense SBS deployments since
MBSs cannot spatially multiplex a large number of streams at the
same time. Some studies have proposed that MBSs employ multicast-
ing and SBSs employ multi-layer successive interference cancellation
(SIC) to partially alleviate the scalability issue. However, multi-layer
SIC requires considerable processing time and is prone to errors that
depend on the decoding order of the received signals, making it un-
suitable. Therefore, novel backhauling strategies need to be developed
to enable scalable IAB.

Adaptive backhaul capacity. Although IAB relies on wireless media
sensitive to noise and interference and has, therefore, a highly variable
capacity, many previous studies assumed that backhaul capacity is
unlimited or constant. However, it is critical to account for variations
and limitations in backhaul link capacity, even though backhaul links
are more stable than access links.
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UE association. A typical assumption is that user equipments (UEs)
are served by one SBS or all SBSs within a certain distance. Although
this assumption simplifies the RRM design, it is not optimal. There-
fore, a more comprehensive strategy is needed that flexibly allows
connectivity between UEs and several SBSs, enabling the full multi-
connectivity potential of dense SBSs.

Admission control. Numerous studies have assumed that all UEs in
a network can be served simultaneously, which is not always possible
due to power limitation, insufficient number of antennas, or radiofre-
quency (RF) chains. Thus, admission control is critical to ensure that at
least a fraction of the UEs have granted access. However, the selection
of such set of UEs is not trivial and should be investigated further.

Discrete data rates. Many works have assumed that data rates are
continuous. In reality, they are discrete since they result from a limited
number of modulation and coding schemes (MCSs). Considering the
discrete nature of the rates is critical since continuous-valued solutions
cannot be applied in real wireless communications systems and are
unlikely to work as intended.

The performance of IAB technology depends largely on consider-
ing the above practical challenges in the RRM design. It is important
to note that there exist few studies addressing these challenges.

8.2 goal

The goal is to propose an RRM design that maximizes the weighted
sum rate (WSR) in IAB systems while addressing the above practical
challenges. The RRM design includes optimizing precoding, rate allo-
cation, UE association, and admission control in the access network
and precoding, and rate allocation in the backhaul network. In partic-
ular, the RRM design for the considered system results in a nonconvex
mixed-integer nonlinear program (MINLP), which is difficult to solve.
Therefore, three algorithms that balance complexity and optimality are
proposed. The first algorithm is based on the convexification of the non-
convex MINLP, while the second and third algorithms are based on
successive convex approximation (SCA), minorization-maximization
(MM), and the penalty method. The proposed algorithms are evalu-
ated in several scenarios, demonstrating that it is possible to deploy a
practical IAB system in future millimeter-wave networks.

8.3 related work

There is a large body of literature on RRM for IAB. However, much
of this literature have considered the sub-6GHz spectrum, e.g., [129–
131], assuming signal properties that do not necessarily apply to the
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millimeter-wave spectrum. Furthermore, many works have focused
on the RRM design of either the backhaul, e.g., [132–134] or the
access network, e.g., [127, 135] alone. However, the evolution of mobile
networks demands integrating the RRM design of both access and
backhaul. In particular, precoding is a key aspect to improve the
throughput in IAB. Considering linear antenna arrays, many works
have optimized the precoding, e.g., [129, 136]. However, precoding
with planar arrays for IAB has been seldom investigated, even though
planar arrays allow beampattern control in elevation and azimuth,
making them more suitable for dense deployments.

Precoding is not the only aspect that needs consideration in IAB.
In particular, UE association, admission control, and discrete rate
allocation should also be accounted for in the RRM. In particular,
their joint design generally requires solving complicated nonconvex
MINLPs. Thus, many papers facing these challenges divide the RRM
design into subproblems and solve them separately. For instance, inte-
ger variables are first eliminated by assuming a given set of admitted
UEs, e.g., [136, 137]. Next, the underlying problem is solved in the
continuous domain. Although simpler to solve, dividing the RRM
design into subproblems affects optimality due to removing inter-
dependencies between variables. To meet the continuously growing
throughput demands, radio resources have to be exploited more effi-
ciently. Therefore, RRM designs must be addressed holistically rather
than dividing them into subproblems, which results in inefficient use
of radio resources.

The works most related to the one summarized in this chapter are
[130, 138]. Similar to [G], the authors of [138] considered a multicast
topology for the backhaul links. In particular, the MBS was tasked
with the transmission of multiple signals to various SBSs employing
multi-group multicast precoding. Each transmitted signal from the
MBS carried the data of one UE. Further, since each SBS was allowed
to serve several UEs, SBSs were required to employ multi-layer SIC
to decode the different signals for the UEs they served, increasing
the computational burden for low-cost SBSs. The decoding order of
signals in multi-layer SIC is known to affect performance and lead
to high decoding errors but this was not considered in [138]. The
authors investigated the maximization of the WSR and proposed an
algorithm based on the successive lower-bound maximization, for
which a new concave lower-bound approximation for the achievable
rate was introduced. Besides, the authors of [130] considered multiple
SBS groups served in a multicast manner using time-division multiple
access (TDMA), thus generating zero interference for the backhaul
links since only one multicast stream was active at a time. However,
using TDMA affects the scalability of the adopted system. Specifically,
as the number of clusters increases, a larger latency is generated, mak-
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ing it only practical for small systems. The authors investigated the
WSR maximization and proposed an algorithm based on semidefinite
relaxation (SDR), SCA, and second-order cone program (SOCP). Fur-
thermore, [130, 138] did not consider discrete rates, admission control,
millimeter-wave spectrum, and planar arrays.

Other related works on RRM for IAB or similar systems, such
as cloud RAN and relay networks, can be found in the literature
[100, 122, 127, 130–133, 135–137, 139–152]. However, these works are
fundamentally different from [G]. The resemblance is minimal with
respect to these works, since they generally address only one of the
aforementioned challenges and focus on the RRM for only the access
or backhaul links but not both.

8.4 contributions

The contributions of this chapter are summarized in the following.

• To address the scalability issue in IAB, a clustering strategy is
proposed for grouping SBSs and UEs, which generates several
disjoint clusters. This enables the use of multi-group multicast
precoding to transmit backhaul traffic. Thus, the proposed clus-
tering strategy simplifies backhaul design by requiring only a
few RF chain at the MBS and eliminating the need for SIC at the
SBSs.

• To address the remaining challenges, a joint formulation is pro-
posed that includes the optimization of the precoding, UE as-
sociation, rate allocation, and admission control in the access
network and the precoding and rate allocation in the backhaul
network. The resulting RRM design yields a nonconvex MINLP,
which is novel and has not been investigated before.

• Three algorithms are proposed to solve the aforementioned non-
convex MINLP. The first algorithm consists in convexifying the
nonconvex MINLP by using convex transformations to recast the
problem as a mixed-integer second-order cone program (MIS-
OCP) that can be solved optimally via branch-and-cut (BnC).
This is achieved by eliminating additive binary couplings and
multiplicative couplings of mixed integers, and reducing the
search space by adding custom cutting planes. However, the
BnC is overly expensive due to the large number of integer vari-
ables. Thus, a second algorithm is proposed that solves iteratively
a sequence of SOCPs, obtained upon relaxing and penalizing the
integrality constraints. The third algorithm is based on the sec-
ond algorithm but reduces the complexity further by optimizing
only the precoder gains, resulting in fewer variables.
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• An upper bound is derived to assess the performance differences
and trade-offs of the proposed algorithms. In addition, a simple
lower bound is included to mark the worst-case performance.

8.5 investigated problem

Consider a millimeter-wave system, where data is transported from
the core network to the UEs via a MBS and several SBSs as shown
in Figure 13. It is assumed that the backhaul and access networks
operate in non-overlapping bands. The system model assumptions are
described below in more detail.

Core network

MBS

UE

Band 1 

(Backhaul)

Band 2 

(Access)

SBS

Figure 13: SDMA-based IAB system consisting of multiple clustered SBSs
and UEs.

Generalities

The MBS is equipped with a planar array of NMBS
tx transmit an-

tennas, each SBS is equipped with a planar array of NSBS
tx transmit

antennas and NSBS
rx = 1 receive antenna, and each UE has NUE

rx = 1

receive antenna. The transmit antennas at the MBS and the receive
antennas at the SBSs operate in Band 1, whereas the transmit anten-
nas at SBSs and the receive antennas at the UEs operate in Band 2.
Since Band 1 and Band 2 are non-overlapping, this system is called
out-of-band full-duplex IAB.

Backhaul model: The SBSs are divided into L non-overlapping clus-
ters, each consisting of B SBSs. In this way, data streams sent from
the MBS to an SBS cluster contain the aggregated content for all UEs
served in that cluster. The SBSs are clustered based on their proximity.

Access model: Depending on geographical distance or operator
policy, each UE is pre-assigned to an SBS cluster. It is assumed that
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each cluster has U UEs. As a result, the SBSs in a cluster only transmit
collaboratively to the UEs in that cluster. However, not all SBSs are
required to serve a given UE, and not all UEs may be served. All SBSs
co-process information for all served UEs, allowing for more efficient
interference management.

Channel model: The access and backhaul networks operate on dis-
joint frequencies. For the backhaul network, channels with line-of-sight
(LOS) are assumed since the MBS and SBSs are usually strategically
placed in the planning phase. For the access network, channels with
multipath scattering and containing both LOS and non-line-of-sight
(NLOS) components are assumed. Access and backhaul channels are
modeled according to [153].

Optimization model: It is assumed that the MBS has knowledge of
the access channels between the SBSs and UEs. This is possible since
the 3rd Generation Partnership Project (3GPP) specifies channel train-
ing procedures in the access network. In addition, the MBS also knows
the backhaul channels, i.e., between itself and the SBSs. Estimating the
backhaul channels demand less overhead since they are more stable
and have small variability compared to the access channels. Thus, the
MBS collects knowledge of all the wireless channels and, accordingly,
can manage the radio resources of the system.

Backhaul Network

In the backhaul network, two important aspects are dealt with:
rate allocation and precoding, as explained in the following.

Precoding: The MBS transmits as many streams as there are clus-
ters. Each stream contains the aggregated data of the UEs that will
be served in their respective clusters. The instantaneous multicast
symbol for the SBSs in cluster Bl is denoted by zl, with E [zl] = 0 and
E
[︂
|zl|
2
2

]︂
= 1. The precoding vector conveying zl is denoted by ml.

The composite signal transmitted from the MBS to all SBS clusters is
xMBS =

∑︁
l∈L mlzl. The received signal at SBS b ∈ Bl is expressed as

ySBS
b = gHb xMBS +nb = gHbmlzl⏞ ⏟⏟ ⏞

signal for SBS b

+
∑︂

l ′∈L,l ′ ̸=l
gHbml ′zl ′⏞ ⏟⏟ ⏞

interference

+ nb⏞⏟⏟⏞
noise

,

where gb is the channel between SBS b ∈ Bl and the MBS whereas
nb ∼ CN

(︁
0,σ2SBS

)︁
represents circularly symmetric Gaussian noise. The

signal-to-interference-plus-noise ratio (SINR) at SBS b is given by

SINRSBS
b =

⃓⃓
gHbml

⃓⃓2∑︁
l ′∈L,l ′ ̸=l

⃓⃓
gHbml ′

⃓⃓2
+ σ2SBS

. (23)
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Since all SBSs within a cluster receive the same stream, the per-
formance of each cluster is determined by the SBS with the weakest
channel conditions in that cluster. Consequently, a more sensible way
to characterize the performance of each cluster is to use the minimum

SINR, i.e., ˜︂SINR
SBS
l = minb∈Bl

{︁
SINRSBS

b

}︁
, ∀l ∈ L.

Rate allocation: The set of feasible data rates is finite in practical
wireless communications systems [22, p. 64]. These predefined rates
are uniquely identified by their associated channel quality indicator
(CQI), and each corresponds to a specific MCS. In addition, for each
rate, a minimum target SINR is required in order to guarantee the
block error rate (BLER) [154]. The following target SINRs in [155] are
considered.

Table 1: Rates and target SINR values

Coding rate 120/1024 308/1024 602/1024 466/1024 948/1024

Rate [bps/Hz] RSBS
1 = 0.2344 RSBS

2 = 0.6016 RSBS
3 = 1.1758 RSBS

4 = 2.7305 RSBS
5 = 5.5547

SINR Γ SBS
1 = 0.2159 Γ SBS

2 = 0.6610 Γ SBS
3 = 1.7474 Γ SBS

4 = 10.6316 Γ SBS
5 = 95.6974

To allocate rate RSBS
j to the SBSs in the l-th cluster, it is needed

that ˜︂SINR
SBS
l ⩾ ΓSBS

j , j ∈ JSBS, where JSBS is the set of possible rates.
To represent the rate allocation, binary variables βl,j ∈ {0, 1} are in-
troduced, where βl,j = 1 denotes that the SBSs in Bl are served at
rate RSBS

j . Also, it is assumed that all SBS clusters are served, which
is ensured via

∑︁
j∈JSBS βl,j = 1,∀l ∈ L and NMBS

streams ⩾ L. To guar-
antee the predefined target BLER for cluster Bl, it must hold that
˜︂SINR

SBS
l ⩾

∑︁
j∈JSBS βl,jΓ

SBS
j .

Access Network

In the access network, two important aspects are dealt with: ad-
mission control, rate allocation, UE association, and precoding, as
explained in the following.

Precoding and UE association: A SBS b ∈ Bl serving a subset of UEs
in Ul transmits several unicast signals simultaneously, where each
signal aims to serve a specific UE. The instantaneous unicast symbol
for UE u ∈ Ul is denoted by sl,u, with E [sl,u] = 0 and E

[︂
|sl,u|

2
2

]︂
= 1.

In addition, the precoder designed by SBS b ∈ Bl to transmit sl,u to
UE u ∈ Ul is denoted by wb,u. Thus, the composite signal that SBS
b in Bl sends to all UEs in Ul is given by xSBS

b =
∑︁
u∈Ul wb,usl,uκb,u.

Here, κb,u represents a binary variable whose value is 1 when SBS
b ∈ Bl serves UE u ∈ Ul and is 0 otherwise. Further, an admitted UE
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u ∈ Ul is served by at least Bmin = 1 and at most Bmax = B SBSs in Bl.
Specifically, the signal received by UE u in Ul is given by

yUE
u =

∑︂
b∈Bl

hHb,uwb,usl,uκb,u⏞ ⏟⏟ ⏞
signal for UE u in cluster Ul

+
∑︂
b∈Bl

∑︂
u ′∈Ul
u ′ ̸=u

hHb,uwb,u ′sl,u ′κb,u ′

⏞ ⏟⏟ ⏞
interference originated in cluster Ul

+

∑︂
l ′∈L
l ′ ̸=l

∑︂
b ′∈Bl ′

∑︂
u ′∈Ul ′

hHb ′,uwb ′,u ′sl ′,u ′κb ′,u ′

⏞ ⏟⏟ ⏞
aggregate interference originated in clusters Ul′ ̸=l

+ nu⏞⏟⏟⏞
noise

(24)

where nu ∼ CN
(︁
0,σ2UE

)︁
and hb,u is the channel between SBS b and

UE u. Note that UEs receive interference from within its own cluster
and from neighboring clusters since the access network reuses the
same frequency band to serve all UEs. The SINR at UE u in Ul is
defined as

SINRUE
u =

Pdes
u

Pintra
u + Pinter

u + σ2UE
.

where

Pdes
u =

⃓⃓
⃓⃓
⃓⃓
∑︂
b∈Bl

hHb,uwb,uκb,u

⃓⃓
⃓⃓
⃓⃓

2

Pintra
u =

∑︂
u ′∈Ul
u ′ ̸=u

⃓⃓
⃓⃓
⃓⃓
∑︂
b∈Bl

hHb,uwb,u ′κb,u ′

⃓⃓
⃓⃓
⃓⃓

2

Pinter
u =

∑︂
l ′∈L
l ′ ̸=l

∑︂
u ′∈Ul ′

⃓⃓
⃓⃓
⃓⃓
∑︂
b ′∈Bl ′

hHb ′,uwb ′,u ′κb ′,u ′

⃓⃓
⃓⃓
⃓⃓

2

Rate allocation and admission control: The rate allocated to an admit-
ted UE can only be from a set of predefined values. Thus, to depict
this rate allocation, binary variables αu,j ∈ {0, 1} are introduced. In par-
ticular, these variables are used for both admission control and rate al-
location. This is ensured by including

∑︁
j∈JUE αu,j ⩽ 1, ∀l ∈ L,u ∈ Ul,

where JUE represents the set of possible rate values. An UE u is served
when

∑︁
j∈JUE αu,j = 1, indicating that one rate has been allocated.

Otherwise, when
∑︁
j∈JUE αu,j = 0, the UE is not admitted. The rates

and target SINRs for UEs are denoted by RUE
j and ΓUE

j , respectively.
To allocate rate RUE

j to UE u, it must be satisfied that SINRUE
u ⩾ ΓUE

j ,
j ∈ JUE. Specifically, for the access network, we assume the same val-
ues shown in Table 1. Note that not all UEs are necessarily admitted
since each SBS can transmit at most NSBS

streams streams simultaneously.
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Problem formulation

The objective is to design the precoding, UE association, rate
allocation, and admission control in the access network, and precoding,
rate selection in the backhaul network in order to maximize the WSR
at the access network. Thus, the optimization problem is defined as,

P ′ : max
ml,wb,u,

αu,j,βl,j,κb,u

Raccess
w−sum (α) ≡

∑︂
l∈L

∑︂
u∈Ul

ωu
∑︂
j∈JUE

αu,jR
UE
j

s.t. C1 : αu,j = {0, 1} ,∀l ∈ L,u ∈ Ul, j ∈ JUE,

C2 :
∑︂
j∈JUE

αu,j ⩽ 1, ∀l ∈ L,u ∈ Ul,

C3 :
∑︂
l∈L
∥ml∥22 ⩽ PMBS

tx ,

C4 :
∑︂
u∈Ul

∥wb,uκb,u∥22 ⩽ PSBS
tx , ∀l ∈ L,b ∈ Bl,

C5 : SINRUE
u ⩾

∑︂
j∈JUE

αu,jΓ
UE
j ,∀l ∈ L,u ∈ Ul,

C6 : κb,u = {0, 1} , ∀l ∈ L,b ∈ Bl,u ∈ Ul,

C7 :
∑︂
u∈Ul

κb,u ⩽ NSBS
streams,∀l ∈ L,b ∈ Bl,

C8 :
∑︂
u∈Ul

κb,u ⩾ 1,∀l ∈ L,b ∈ Bl,

C9 :
∑︂
b∈Bl

κb,u ⩽ Bmax
∑︂
j∈JUE

αu,j, ∀l ∈ L,u ∈ Ul,

C10 :
∑︂
b∈Bl

κb,u ⩾ Bmin
∑︂
j∈JUE

αu,j, ∀l ∈ L,u ∈ Ul,

C11 : βl,j = {0, 1} ,∀l ∈ L, j ∈ JSBS,

C12 :
∑︂
j∈JSBS

βl,j = 1,∀l ∈ L,

C13 :Waccess
BW

∑︂
u∈Ul

∑︂
j∈JUE

αu,jR
UE
j ⩽Wbackhaul

BW

∑︂
j∈JSBS

βl,jR
SBS
j ,∀l ∈ L,

C14 :
∑︂
u∈Ul

∑︂
j∈JUE

αu,j = Userved, ∀l ∈ L,

C̄15 : ˜︂SINR
SBS
l ⩾

∑︂
j∈JSBS

βl,jΓ
SBS
j ,∀l ∈ L,

The weight associated with UE u is represented by ωu, which
can be adjusted to enforce different priorities between UEs. Thus,
Raccess

w−sum (α) represents the WSR achieved by all UEs. Constraints C1 −

C2 ensure rate selection for all UEs. Constraint C3 limits the transmit
power of the MBS to PMBS

tx , whereas constraint C4 limits the transmit
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power of the SBS to PSBS
tx . To guarantee the allocated rate for a UE,

the UE’s SINR must to be larger than the target SINR corresponding
to the allocated rate (see Table 1), which is enforced via constraint
C5. To ensure that each SBS serves at least one UE and that each
SBS cannot serve more UEs than the number of streams supported,
constraints C6 − C8 are included. Each admitted UE is served by at
least Bmin and by at most Bmax SBSs, therefore, constraints C9 − C10

are considered. Constraints C11 − C12 together select a rate for the
SBS clusters. Besides, to guarantees that the access throughput in
a cluster does not exceed the backhaul throughput for that cluster,
constraint C13 is included. Constraint C14 ensures that Userved UEs are
served per cluster. To guarantee the allocated rate for the SBS clusters,
the SINR of the SBS cluster needs to be larger than the target SINR
corresponding to the allocated rate (see Table 1). As a result, constraint
C15 is included.

Note: For details on the proposed algorithm to solve P ′, the reader is
referred to [G], which can also be found in Appendix G.

8.6 selected results

In the following, simulation results of a specific scenario in [G] are
discussed. Figure 14 shows the throughput achieved by the pro-Figure 14 is taken

from [G], but the
layout has been

slightly modified.

posed algorithms, which are denoted by BnC-MISOCP, RnP-SOCP-1, and
RnP-SOCP-2. In addition, the proposed upper and lower bounds are
denoted by UB and LB, respectively.

Figure 14 shows three scenarios where the transmit power of the
SBSs is PSBS

tx = {6, 10, 14} dBm and the transmit power of the MBS is
PMBS

tx = {9, 12, . . . , 36} dBm. In addition, the number of antennas of
the MBS and SBSs are NMBS

tx = 64 and NSBS
tx = 16, respectively. The

number of clusters is L = 2, the number of SBSs per cluster is B = 3,
the number of UEs per cluster is U = 6, and the number of admitted
UEs per cluster is Userved = 3.

Figure 14 shows that RnP-SOCP-1 and RnP-SOCP-2 are 5.1% and
9.7% below BnC-MISOCP, respectively, when PSBS

tx = 14 dBm. This in-
dicates that RnP-SOCP-1 and RnP-SOCP-2 can achieve relatively high
performance at much lower complexity than BnC-MISOCP. Specifically,
BnC-MISOCP attains near-optimality but demands high computational
complexity.

On the other hand, it is observed that the performance gap be-
tween UB and BnC-MISOCP reduces when increasing PSBS

tx , showing only
9.6% difference when PSBS

tx = 14 dBm. However, the difference between
UB and BnC-MISOCP is large when the transmit power of the SBS is
PSBS

tx = 6 dBm. This occurs because the SBSs can only serve UEs at
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(b) Varying PMBS
tx when P SBS
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(c) Varying PMBS
tx when P SBS

tx = 14 dBm

RadiOrchestra
Abstract

Millimeter-wave self-backhauled small cells are a key component

Figure 14: Rate performance of the proposed algorithms.

very low rates when PSBS
tx = 6 dBm, producing a large difference with

respect to UB. When PSBS
tx = 14 dBm, the SBSs have sufficient transmit

power and therefore can guarantee higher rates for the served UEs,
thus showing little difference with respect to UB.

71





9
P R E C O D I N G , A D M I S S I O N C O N T R O L , A N D
R AT E A L L O C AT I O N F O R U N I C A S T A N D
M U LT I C A S T B A S E D O N R S M A

This chapter gives an overview of the research problem investigated
in [H], which is included in Appendix H. In the following, the moti-
vation is given, the goal is stated, the related work is reviewed, the
contributions are summarized, the research problem is formulated,
and selected results are discussed.

9.1 motivation

Due to its enhanced ability to cope with multi-user interference, rate-
splitting multiple access (RSMA) is capable of outperforming non-
orthogonal multiple access (NOMA) and space-division multiple ac-
cess (SDMA). To date, several studies have demonstrated in several
use cases that RSMA has superior capabilities compared to SDMA
and NOMA, thus positioning RSMA as a formidable multiple access
scheme candidate with great potential to meet the stringent connectiv-
ity requirements of next-generation wireless communications systems.

Radio resource management (RRM) design is critical to ensure
suitable RSMA performance. In particular, precoding and power are
the most commonly optimized resources in RSMA, and their design
has been examined in a variety of RRM designs and for a variety
of purposes. For instance, the precoding design was investigated in
[156, 157] for fairness maximization, in [158–162] for weighted sum
rate (WSR) and WSR maximization, and in [160–163] for weighted
energy efficiency (WEE) maximization. Besides, power allocation was
investigated in [118, 164–167].

Although the literature on RSMA continues to grow and show
promising results, questions arise as to whether the observed results
remain equally valid when accounting for frequently overlooked prac-
tical characteristics, such as discrete rates, admission control, and
imperfect successive interference cancellation (SIC). It is expected that
by accounting for these practical characteristics of wireless communi-
cations systems, the true potential of RSMA can be revealed compared
to SDMA and NOMA.
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In fact, the full extent of the impact of these practical characteristics
on RSMA performance remains largely unexplored, as most works
have assumed continuous rates, perfect SIC, and have not included
admission control in the RRM design. Motivated by this, the RRM
design for RSMA is investigated, considering discrete rates, admission
control, and imperfect SIC, together with the precoding. In particular,
the maximization of the WSR and WEE are investigated, which are
two key indicators to quantify spectral efficiency (SE) and energy
efficiency (EE) performance.

9.2 goal

The goal is to design the RRM to maximize the WSR and WEE of
RSMA accounting for practical characteristics of real wireless com-
munications systems, such as discrete rate, admission control, and
imperfect SIC. A first algorithm is proposed to design the precoders,
discrete rate allocation and admission control, accounting for poten-
tially imperfect SIC. In particular, the proposed algorithm is based on
the convexification of nonconvex mixed-integer nonlinear programs
(MINLPs). Given the wide adoption of Shannon capacity to model
rates, a second algorithm for continuous rates is proposed, which is
also a nonconvex MINLPs.

9.3 related work

Most studies have assumed continuous rates based on Shannon ca-
pacity. This assumption contravenes the predominant use of discrete
rates in real wireless communications systems, and raises questions
as to whether the advantages of RSMA will still hold when discrete
rates are considered. Transmission rates are discrete in practice and
are governed by a set of modulation and coding schemes (MCSs) [22],
resulting in a finite number of discrete rates. Shannon capacity, on the
other hand, is a continuous-rate information-theoretic upper bound
that cannot be achieved in practice, but is often used because dealing
directly with MCSs is impractical. Thus, it is common practice to use
Shannon capacity and project the continuous rates, i.e., round them
to the closest discrete rate, to meet the MCS specifications. However,
rate projection may lead to performance degradation. Therefore, rate
discretization must be properly accounted for in the RRM design to
exploit the full potential of RSMA. A first study to investigate the
impact of discrete rates in RSMA is [168]. The authors considered
the precoding design and discrete rate allocation to maximize the
sum rate (SR) of RSMA. The authors demonstrated that RSMA out-
performs SDMA when discrete rates are considered. However, the
proposed design does not allow handling predefined MCSs, as the au-
thors assumed continuous rates. Specifically, the authors customized
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the MCSs to achieve a SR close to the ensemble average, obtained
over multiple realizations of the channel. In addition, a number of
works have investigated the impact of precoding and discrete rates on
SDMA performance. The joint design of precoding and discrete rate
allocation was investigated in [139, 144, 169] for SR and WSR maxi-
mization, where algorithms based on convexification of nonconvex
MINLPs were proposed. However, the findings in these works are
not applicable to RSMA, as RSMA is a more general framework that
includes SDMA as a particular case.

Due to the availability of a limited number of radiofrequency (RF)
chains, wireless communications systems typically limit the number
of user equipments (UEs) served per time slot. This is generally true
for SDMA since each RF chain only support one UE. When the num-
ber of UEs exceeds the maximum number supported, some form of
control is required. Although RSMA can serve multiple UEs using
the multicast signal, RSMA’s multicast signal degrades rapidly as the
number of UEs increases, defeating the purpose of the service and
necessitating selective admission control. Particularly, the impact of
admission control has not yet been studied for RSMA but has been
studied for SDMA and NOMA. For instance, the precoding design
and admission control for SDMA was investigated in [170] to mini-
mize the transmit power, where the authors proposed an algorithm
based on mixed-integer semidefinite program (MISDP). The precod-
ing design and admission control for SDMA was also investigated in
[171], where the authors proposed an algorithm based on successive
convex approximation (SCA) to maximize the SR. The maximization
of the number of UEs served was investigated in [172] for SDMA. To
this purpose the authors proposed algorithms based on semidefinite
relaxation (SDR) and second-order cone programs (SOCPs) to design
the precoding and admission control. The power allocation and admis-
sion control were designed in [173] for NOMA in order maximize the
number of UEs served. In particular, an algorithm based on matching
theory and linear programming was proposed. Besides, the design
of precoding, admission control, and discrete rate allocation for SR
maximization of SDMA was investigated in [G]. The authors pro-
posed algorithms based on the convexification of nonconvex MINLPs
and minorization-maximization (MM). The algorithms developed in
the preceding studies, in particular, do not apply to RSMA. First,
RSMA admission control differs significantly from SDMA and NOMA
because RSMA delivers information to users through overlapping mul-
ticast and unicast precoders. Unicast precoders benefit from UEs with
uncorrelated channels because interference is easier to mitigate, while
multicast precoders benefit from UEs with correlated channels as this
facilitates transmitting shared information. Given these competing
objectives, it is critical to incorporate admission control into the RRM
design of RSMA.
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The success of SIC has a significant impact on RSMA performance.
In practice, SIC is rarely perfect, which can result in unmanaged self-
interference that can impair performance. Despite the importance of
accounting for an imperfect SIC in the RRM design of RSMA, most
RSMA literature has assumed perfect SIC, with the exception of a few
studies. For instance, the authors of [174] proposed a block coordinate
descent (BCD) algorithm to investigate the precoding design and
subcarrier allocation for SR maximization, assuming imperfect SIC.
The proposed algorithm, however, assumed continuous rates and did
not account for admission control. The SR maximization of RSMA with
imperfect SIC was also investigated in [175], where the authors derived
criteria for power allocation but did not account for admission control
or discrete rates. Since NOMA also depends on SIC, imperfect SIC in
NOMA systems has been investigated in a few works. In particular,
the power allocation with imperfect SIC for NOMA was investigated
in [176–178] for SR maximization, and in [179] for EE maximization.

9.4 contributions

The contributions of this chapter are summarized in the following.

• Two novel RRM problems are formulated, whose objective is to
maximize the WSR and WEE of RSMA via the joint optimization
of the precoding, admission control, and private and common
discrete rates, while accounting for imperfect SIC. The resulting
WSR and WEE problems, denoted by P ′DWSR and P ′DWEE, are
nonconvex MINLPs and challenging to solve. In addition, non-
convex MINLPs Q ′CWSR and Q ′CWEE are also formulated, which
represent the continuous-rate counterparts of P ′DWSR and P ′DWEE
based on Shannon capacity.

• A first algorithm is proposed to solve nonconvex MINLPs P ′DWSR
and P ′DWEE. The algorithm proposed is referred to as optimal
mixed-integer second-order cone program (OPT-MISOCP), which
tackles the nonconvexities of P ′DWSR and P ′DWEE through apply-
ing a series of convex transformations. OPT-MISOCP approximates
P ′DWSR and P ′DWEE as convex MINLPs PDWSR and PDWEE, instead
of treating P ′DWSR and P ′DWEE as general nonconvex MINLPs.
This allows to solve PDWSR and PDWEE in a globally optimal
manner. However, getting rid of the nonconvexities of P ′DWSR
and P ′DWEE carries the risk of reducing the feasible set, possi-
bly resulting in a loss of optimality. Thus, to assess the loss of
optimality, an upper bound is derived, showing that globally
optimal solutions for PDWSR and PDWEE result in near-optimal
solutions for P ′DWSR and P ′DWEE with negligible degradation.
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• A second algorithm is proposed to solve nonconvex MINLPs
Q ′CWSR and Q ′CWEE. The algorithm proposed is based on binary
enumeration and convex transformations. Enumeration is uti-
lized to list all possible combinations of admission control, which
results in multiple subproblems where binary variables are
known. To solve each of the resulting subproblems, the opti-
mal successive convex approximation with semidefinite relax-
ation (OPT-SCA-SDR) algorithm is proposed, which converges to
a Karush-Kuhn-Tucker (KKT) point. To enforce compliance with
the finite set of discrete rates, the continuous rates obtained by
OPT-SCA-SDR are projected, i.e., rounded to the closest feasible
discrete rates.

• Compared to projecting continuous rates, RSMA designed for
discrete rates achieves gains of up to 89.7% (WSR) and 21.5%
(WEE). Besides, admission control for RSMA yields additional
gains of up to 15.3% (WSR) and 11.4% (WEE) compared to ran-
dom admission control when discrete rates are considered. Also,
self-interference can be successfully mitigated by accounting for
imperfect SIC in the RRM design.

• In general, simulation results show that incorporating character-
istics of practical wireless systems in the RRM design of RSMA
leads to improved exploitation of the radio resources and, there-
fore, to higher WSR and WEE.

9.5 investigated problem

Consider a millimeter-wave system, where a base station (BS) serves
multiple UEs, as shown in Figure 15.

Multicast

BS

UE

Unicast

Served

Unserved

Figure 15: RSMA-based system consisting of a BS and multiple UEs.
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Generalities

The number of UEs is U and they are indexed by set U = {1, . . . ,U}.
It is assumed that the UEs have one antenna and one RF chain, i.e.,
Nrx = 1 and NRF

rx = 1. The BS is equipped with an antenna array with
Ntx elements and NRF

tx RF chains. The maximum transmit power that
the BS can use for downlink is Pmax

tx . In addition, the BS admits K of
the U UEs, where K ⩽ U. In the following, the system model and
constraints for the RRM design are introduced and discussed.

RSMA principle: The following explains RSMA’s principle but
excludes admission control for the sake of simplicity. However, admis-
sion control is considered in the RRM design, described afterwards.
It is assumed that the BS has messages for all UEs, denoted by ˜︂Wu,
u ∈ U. However, only K out of U UE are served with their respective
messages. Since admission control is disregarded for this explanation,
the set of admitted UEs is assumed to be known beforehand, which
is denoted by U ′, such that |U ′| = K. Let UEu denote the u-th UE in
U ′. To differentiate the UEs served from those not served, the mes-
sages for the served UEs are denoted by Wu, u ∈ U ′. Based on the
rate-splitting concept, message Wu, u ∈ U ′ is decomposed into two
parts as Wu ≜

(︂
W

(p)
u ,W(c)

u

)︂
, where W(p)

u and W(c)
u are respectively

referred to as the private and common portions of Wu.

The private portion W(p)
u is encoded into symbol su ∈ C, which

is transmitted at a rate R(p)
u to UEu in an unicast manner. On the other

hand, all K common portions,W(c)
1 , . . . ,W(c)

K , are merged and encoded
into symbol s0 ∈ C, which is transmitted at rate R(c) in a multicast
manner to all UEs. The symbols are assumed to be statistically inde-
pendent, such that E

{︁
sHs

}︁
= I and s = [s0, s1, . . . , sK]

T ∈ C(K+1)×1.
Let Cu denote the rate portion of R(c) corresponding to UEu, such
that R(c) =

∑︁
uCu. Therefore, UEu is served with an overall rate of

R
(p)
u +Cu, i.e., the private rate transmitted via unicast and a fraction of

the common rate transmitted via multicast. Using SIC, as explained in
more detail afterwards, each UE is able to recover W(c)

u and W(p)
u after

decoding s0 and su, thus allowing to recompose the original message
Wu. Furthermore, each UEu obtains common parts W(c)

i ̸=u, correspond-
ing to the other UEs, which are used for interference decoding and
cancellation. Thus, RSMA can smoothly bridge the two extremes of fully
treating the interference as noise and fully decoding it by means of adjusting
the partition ratio of the common and private parts of the messages, W(p)

u

and W(c)
u [180].

Discrete rates: Wireless communications systems support only a
finite set of data rates [22, p. 64]. Each of these predefined rates is the
result of a specific MCS, each of which is identified by its channel
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quality indicator (CQI). To enable a given rate, a target signal-to-
interference-plus-noise ratio (SINR) is required which ensures a given
block error rate (BLER) [154]. Rates and MCSs are usually standardized
but the target SINRs depend on the UE’s features. Let J = {1, . . . , J} be
the set indexing the MCSs supported by the system and let J be the
total number of MCSs. Thus, for a given discrete rate Rj, j ∈ J, there is
a corresponding target SINR Γj that must be satisfied to ensure rate Rj.
Assuming that Rj+1 > Rj and Γj+1 > Γj, if an UE achieves an SINR of
Γ , the BS can allocate any discrete rate Rdis ≜

{︁
Rj | Γj ⩽ Γ , j ∈ J

}︁
to the

UE. However, when Shannon capacity is employed, the BS allocates
the continuous rate Rcon ≜ log2

(︁
1+ Γ

)︁
. The discrete rates and target

SINRs used for the RRM design are shown in Table 2

Table 2: Rates and target SINRs for various CQIs.
CQI index j Coding rate Rate Rj [bps/Hz] SINR Γj

1 0.0762 0.1523 0.1128

2 0.1172 0.2344 0.2159

3 0.1885 0.3770 0.3892

4 0.3008 0.6016 0.6610

5 0.4385 0.8770 1.0962

6 0.5879 1.1758 1.7474

7 0.3691 1.4766 2.8113

8 0.4785 1.9141 4.3321

9 0.6016 2.4063 7.0081

10 0.4551 2.7305 10.6316

11 0.5537 3.3223 16.6648

12 0.6504 3.9023 25.8345

13 0.7539 4.5234 38.4503

14 0.8525 5.1152 60.0620

15 0.9258 5.5547 95.6974

Admission control

To indicate whether a given UEu is admitted or not, constraint C1 :
χu ∈ {0, 1} ,∀u ∈ U is introduced. Specifically, χu = 1 indicates that the
BS serves UEu, and χu = 0 otherwise. Constraint C2 :

∑︁
u∈U χu = K

is included to enforce admission control, i.e., the number of admitted
UEs must be K, which are chosen out of U. An admitted UE can be
served via the common signal only, the private signal only, or both.
Therefore, to indicate whether an admitted UEu is served via the
private signal, constraint C3 : µu ∈ {0, 1} ,∀u ∈ U is introduced, i.e.,
µu = 1 indicates that UEu is served via the private signal, and µu = 0

otherwise. Constraint C4 : µu ⩽ χu,∀u ∈ U is included to ensure
that non-admitted UEs are not served by a private signal. Obviously,
non-admitted UEs are neither served by the common signal but this
aspect is addressed by constraint C12, discussed later. Constraint

79



C5 : ψ ∈ {0, 1} is incorporated to specify whether the common signal
is employed or not.

Precoding

For each UE, the BS employs a private precoder wuµu ∈ CNtx×1,
u ∈ U. Also, the BS employs common precoder mψ ∈ CNtx×1 for the
common signal serving all the admitted UEs. In particular, the private
precoder is 0 when UEu is not admitted. Every private symbol su is
precoded by its corresponding wuµu. Similarly, the common symbol
s0 is precoded by mψ. Therefore, the downlink signal transmitted
from the BS to the UEs is given by x =

∑︁
u∈U wuµusu + mψs0. Since

the BS has limited power for precoding, the following constraint is
included C6 :

∑︁
u∈U ∥wuµu∥22 + ∥mψ∥22 ⩽ Pmax

tx .

Imperfect SIC

The signal received by UEu is expressed as

yu = hH
ux +nu = hH

umψs0⏞ ⏟⏟ ⏞
common signal

y
(c)
u

+ hH
uwuµusu⏞ ⏟⏟ ⏞

private signal for UEu
y
(p)
u

+

hH
u

∑︁
i ̸=uwiµisi⏞ ⏟⏟ ⏞

interference at UEu
y
(int)
u

+ nu⏞⏟⏟⏞
noise

. (26)

In (26), terms y(c)
u , y(p)

u , and y(int)
u represent the received common

signal, private signal, and interference at UEu. Circularly symmetric
Gaussian noise is denoted by nu ∼ CN

(︁
0,σ2

)︁
whereas the channel

between the BS and UEu is represented by hu ∈ CNtx×1. Obviously,
only admitted UEu utilize SIC to recover the message su from yu.
Thus, an admitted UE UEu decodes first the common symbol s0 from
yu by treating signals terms y(p)

u and y(int)
u as noise. Afterwards, UEu

reconstructs the received common signal y(c)
u using the decoded sym-

bol s0 and subtracts y(c)
u from yu, yielding ySIC

u = y
(p)
u + y

(int)
u + nu.

From ySIC
u , UEu can decode private symbol su. However, removal of

y
(c)
u is not perfect, which may be caused, e.g., by hardware impair-

ments [175, 176]. Hence, the resulting signal after imperfect SIC can be
expressed as yiSIC

u = ∆SICy
(c)
u + y

(p)
u + y

(int)
u +nu, where 0 ⩽ ∆SIC ⩽ 1

represents the percentage of the common signal that was not canceled.
In particular, ∆SIC = 0 indicates that SIC is perfect.
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From (26), the SINRs of the common and private signals at UEu
are obtained and defined as

SINR
(c)
u =

⃓⃓
hH
umψ

⃓⃓2∑︁
i∈U |hH

uwiµi|
2
+ σ2

, (27)

SINR
(p)
u =

⃓⃓
hH
uwuµu

⃓⃓2

|∆SIChH
umψ|2 +

∑︁
i ̸=u |hH

uwiµi|
2
+ σ2

. (28)

The exact value of ∆SIC is usually not known by the BS. Therefore,
it must be set properly to avoid performance degradation, and thus
guarantee the target SINRs that enable the allocated rates. Typical
values for ∆SIC are in the range of 4% and 10% [176].

Rate allocation for the private signals

An UEu that receives its private signal at a rate Rj, can only decode
the message if its SINR satisfies SINR

(p)
u ⩾ Γj. Here, Γj is the target

SINR that guarantees Rj. In particular, Table 2 defines the target SINRs
Γj for every rate supported by the system. Constraint C7 : αu,j ∈
{0, 1} , ∀u ∈ U, j ∈ J, is introduced to depict the assignment of private
rates. Specifically, αu,j = 1 indicates that UEu is served by a private
signal transmitted at rate Rj. Constraint C8 :

∑︁
j∈J αu,j = µu,∀u ∈ U,

is also included to ensure that a rate is allocated to UEu, if UEu is
served by a private signal. Constraint C9 : SINR

(p)
u ⩾

∑︁
j∈J αu,jΓj,∀u ∈

U, is included in order to relate each discrete rate and its corresponding
target SINR. Thus, C9 ensures for UEu a private rate of

∑︁
j∈J αu,jRj,

if µu = 1. In particular, µu = 0 does not indicate that UEu is not
admitted since UEu can also be served by the common signal when
Cu > 0.

Rate allocation for the common signal

An UEu that is admitted can decode the common message, which
is transmitted at rate Rj, only if SINR(c)

u ⩾ Γj. Thus, to depict the
rate allocation for the common signal, constraint C10 : κj ∈ {0, 1},
j ∈ J, is introduced, where κj = 1 indicates that rate Rj is chosen.
Furthermore, constraint C11 :

∑︁
j∈J κj = ψ is introduced to enable

the possibility that the common rate is 0. In order to combine ad-
mission control and the allocation of the common rate, constraint
C12 : SINR

(c)
u ⩾ χu

∑︁
j∈J κjΓj,∀u ∈ U is included. This, results in

common rate
∑︁
j∈J κjRj for all admitted UEs. Note that rate portions

Cu are not continuous. However, these rates have very fine granu-
larity since rate-splitting can divide messages Wu into portions of
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any size. Therefore, rate portions Cu are regarded as continuous-
valued, and constraint C13 : Cu ⩾ 0,∀u ∈ U is included. Constraint
C14 : Cu ⩽ χu

∑︁
j∈J κjRj,∀u ∈ U, is included in order to enforce

consistency with admission control, i.e., Cu = 0 in two possible cases:
when the common rate is zero or when referring to non-admitted
UEs. Also, constraint C15 :

∑︁
uCu =

∑︁
j∈J κjRj is added in order

to guarantee that the sum of all Cu is equal to the overall common
rate. To enforce a minimum rate Rmin for each admitted UE, constraint
C16 :

∑︁
j∈J αu,jRj +Cu ⩾ Rminχu is included.

Problem formulation

Two objectives are considered, namely WSR and WEE maximiza-
tion. Thus, the optimization problems are P ′DWSR and P ′DWEE, which
are defined as follows

P ′DWSR

P ′DWEE

: max
W,m,c,χ,µ,α,κ,ψ

{︄
fDWSR (c,α)
fDWEE (W, m, c,µ,α,ψ)

(linear)

(nonconvex)

s.t. C1 : χu ∈ {0, 1} , ∀u ∈ U, (binary)

C2 :
∑︂
u∈U

χu = K, (linear)

C3 : µu ∈ {0, 1} ,∀u ∈ U, (binary)

C4 : µu ⩽ χu, ∀u ∈ U, (linear)

C5 : ψ ∈ {0, 1} , (binary)

C6 :
∑︂
u∈U
∥wuµu∥22 + ∥mψ∥22 ⩽ Pmax

tx , (nonconvex)

C7 : αu,j ∈ {0, 1} , ∀u ∈ U, j ∈ J, (binary)

C8 :
∑︂
j∈J

αu,j = µu, ∀u ∈ U, (linear)

C9 : SINR
(p)
u ⩾

∑︂
j∈J

αu,jΓj,∀u ∈ U, (nonconvex)

C10 : κj ∈ {0, 1} ,∀j ∈ J, (binary)

C11 :
∑︂
j∈J

κj = ψ, (linear)

C12 : SINR
(c)
u ⩾ χu

∑︂
j∈J

κjΓj,∀u ∈ U, (nonconvex)

C13 : Cu ⩾ 0,∀u ∈ U, (linear)

C14 : Cu ⩽ χu
∑︂
j∈J

κjRj,∀u ∈ U, (nonconvex)

C15 :
∑︂
u∈U

Cu =
∑︂
j∈J

κjRj, (linear)

C16 :
∑︂
j∈J

αu,jRj +Cu ⩾ Rminχu, ∀u ∈ U, (linear)
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where the objectives are fDWSR (c,α) ≜
∑︁
u∈Uωu

(︂∑︁
j∈J αu,jRj+Cu

)︂

and fDWEE (W, m, c,µ,α,ψ) ≜
∑︁
u∈Uωu(

∑︁
j∈Jαu,jRj+Cu)

1
ηeff

(
∑︁
u∈U∥wuµu∥22+∥mψ∥22)+Pcir

. Here,ωu

is the weight assigned to UEu, which may be adjusted by the net-
work operator. Besides, W = [w1, . . . , wU], c = [C1, . . . ,CU], χ =

[χ1, . . . ,χU], µ = [µ1, . . . ,µU], α = [α1,1, . . . ,αU,J], and κ = [κ1, . . . , κJ].
Parameter ηeff is the amplifier efficiency and Pcir = NtxPdyn + Psta is
the power consumed by the circuitry at the BS. Pdyn and Psta denote
the dynamic and static parts of the power, respectively [162].

The continuous-rate counterparts of P ′DWSR and P ′DWEE are Q ′CWSR
and Q ′CWEE, which are defined as follows,

Q ′CWSR

Q ′CWEE

: max
W,m,c,χ,ψ

⎧⎪⎨⎪⎩
f ′CWSR (W, m, c) ≜

∑︁
u∈Uωu

(︁
log2

(︁
1+ SINR

(p)
u

)︁
+Cu

)︁

f ′CWEE (W, m, c) ≜
∑︁
u∈Uωu

(︂
log2

(︂
1+SINR

(p)
u

)︂
+Cu

)︂

1
ηeff

(
∑︁
u∈U∥wuχu∥22+∥mψ∥22)+Pcir

(nonconvex)

(nonconvex)

s.t. C1 : χu ∈ {0, 1} ,∀u ∈ U, (binary)

C2 :
∑︂
u∈U

χu = K, (linear)

C5 : ψ ∈ {0, 1} , (binary)

C6 :
∑︂
u∈U
∥wuχu∥22 + ∥mψ∥22 ⩽ Pmax

tx , (nonconvex)

C13 : Cu ⩾ 0, ∀u ∈ U, (linear)

C17 : Cu ⩽ ψχuSmax,∀u ∈ U, (linear)

C18 :
∑︂
i∈U

Ci ⩽ log2
(︁
1+ SINR

(c)
u

)︁
+ (1− χu)Smax,∀u ∈ U, (nonconvex)

C19 : log2
(︁
1+ SINR

(p)
u

)︁
+Cu ⩾ Rminχu, ∀u ∈ U. (nonconvex)

To account for continuous rates, the following changes have been
applied to problems P ′DWSR and P ′DWEE. The binary variables α,κ
used for discrete rate selection have been eliminated. Also, the num-
ber of binary variables has been reduced by dropping variables µ

to only use χ, because µ = χ. Hence, constraints C3, C4, C7 − C12
have been removed allowing to employ Shannon capacity to redefine
constraints C14, C15, C16. Specifically, constraint C14 was replaced
with C17 : Cu ⩽ ψχuSmax,∀u ∈ U, and constraint C15 with C18 :∑︁
i∈UCi ⩽ log2

(︁
1+ SINR

(c)
u

)︁
+ (1− χu)Smax,∀u ∈ U, where Smax =

maxu∈U log2
(︂
1+

Pmax
tx
σ2

⃦⃦
hu

⃦⃦2
2

)︂
is an upper bound for the common rate.

Finally, constraint C16 was replaced with C19 : log2
(︁
1+ SINR

(p)
u

)︁
+

Cu ⩾ Rminχu,∀u ∈ U, and the objective functions were redefined
using Shannon capacity as f ′CWSR (W, m, c) ≜

∑︁
u∈Uωu

(︁
log2

(︁
1 +

SINR
(p)
u

)︁
+Cu

)︁
and f ′CWEE (W, m, c) ≜

∑︁
u∈Uωu

(︂
log2

(︂
1+SINR

(p)
u

)︂
+Cu

)︂

1
ηeff

(
∑︁
u∈U∥wuχu∥22+∥mψ∥22)+Pcir

.
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Note: For details on the proposed algorithms to solve P ′DWSR, P ′DWEE,
Q ′CWSR, and Q ′CWEE the reader is referred to [H], which can also be found in
Appendix H.

9.6 selected results

In the following, simulation results of a specific scenario in [H] are
discussed. Figure 16 shows the SE achieved by the proposed algorithmFigure 16 is taken

from [H], but the
layout has been

slightly modified.

OPT-MISOCP considering discrete rates. The proposed algorithm was
used for both SDMA and RSMA since the latter is a more general
case than the former, which occurs when ψ = 0. In addition, the
performance of dirty paper coding (DPC) with continuous rates is
included as a benchmark for reference.JOURNAL OF LATEX CLASS FILES, VOL. 33, NO. 27, JUN 2019 1
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Figure 1: The advantage of RSMA

Radio Resource Management

Abstract

This paper investigates

Figure 16: Rate performance of RSMA and SDMA with discrete rates.
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Figure 16 shows four scenarios, where Ntx = 4 and K = 2.
The noise power is set to σ2 = 30 dBm and the UE channels are
defined as h1 = [1, 1, 1, 1]H, h2 =

[︁
1, ejϕ, ej2ϕ, ej3ϕ

]︁H, where ϕ ={︁
π
9 , 2π9 , 3π9 , 4π9

}︁
varies the similarity between channels h1 and h2.

Specifically, a small value, such as θ = π
9 makes the channels highly

correlated (nearly parallel) while a large value, such as θ = 4π
9 makes

the channels highly uncorrelated (nearly orthogonal).

In the legend, different colors are used to depict the performance
for several SINR values, i.e., P

max
tx
σ2

= {10, 15, 20}. It is observed that
RSMA and SDMA have almost the same performance when Pmax

tx
σ2

= 10

dB, for all ϕ =
{︁
π
9 , 2π9 , 3π9 , 4π9

}︁
. When Pmax

tx
σ2

= 15 dB, the perfor-
mance of both RSMA and SDMA is very similar when the chan-
nels are sufficiently uncorrelated, i.e., ϕ =

{︁
2π
9 , 3π9 , 4π9

}︁
. However,

RSMA outperforms SDMA more evidently when Pmax
tx
σ2

= 20 dB, for all
ϕ =

{︁
π
9 , 2π9 , 3π9 , 4π9

}︁
. Specifically, SDMA saturates as it is allocated the

maximum rate R15 = 5.5547 bps/Hz, while RSMA can still improve
since it can use any surplus power to support a common signal albeit
with a small rate.
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10
C O N C L U S I O N S

This thesis contributes to the modeling and design for the efficient
management of radio resources in millimeter-wave wireless networks,
leading to multiple algorithms formulated as optimization problems.
The motifs and scenarios investigated herein are diverse, e.g., maxi-
mization of sum rate (SR), weighted sum rate (WSR), weighted energy
efficiency (WEE), and fairness or minimization of transmit power,
which were studied in settings such as Industry 4.0 and integrated
access-backhaul (IAB).

Chapter 2, Chapter 3, Chapter 4, and Chapter 5 focused on the
design of hybrid precoding for three types of multiple access schemes:
space-division multiple access (SDMA), layered-division multiple ac-
cess (LDMA), and rate-splitting multiple access (RSMA). These chap-
ters showed that hybrid precoding is more constrained than fully-
digital precoding and generally has lower performance due to having
a reduced number of radiofrequency (RF) chains, limiting its capa-
bility to cope with interference. However, by properly accounting for
the limitations of the architecture, performance close to fully-digital
precoders can be obtained for specific cases.

Chapter 2 investigated the hybrid precoder design for single-
group multicasting in a wireless system based on SDMA. Specifically,
a low-complexity algorithm based on gradient descent was proposed,
which proved to be capable of realizing high-performance hybrid
precoders.

Chapter 3 investigated the hybrid precoder design for multi-group
multicasting in a wireless system based on SDMA. An algorithm
based on semidefinite relaxation (SDR), alternating optimization (AO),
and Cholesky matrix decomposition (CMD) was proposed, showing
remarkable flexibility and capability to perform properly despite the
limitations of analog phase shifting.

Chapter 4 investigated the hybrid precoder design for non-orthogonal
unicast and multicast (NOUM) transmissions in an industrial setting
based on LDMA. An algorithm was proposed based on successive con-
vex approximation (SCA) and AO, exhibiting improved performance
compared to the considered benchmarks.
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Chapter 5 investigated the hybrid precoder design for NOUM
transmissions in a wireless system based on RSMA. Notably, an algo-
rithm was proposed based on SCA and SDR, exhibiting substantial
performance compared to the state-of-the-art in terms of optimality,
convergence, and feasibility performance.

Chapter 6 and Chapter 7 focused on the design of precoding and
admission control for two types of multiple access schemes: SDMA
and LDMA. Chapter 6 dealt with hybrid precoding whereas Chap-
ter 7 dealt with fully-digital precoding. These chapters showed that
admission control is crucial in improving the communications quality
and in securing quality-of-service (QoS) requirements for the admitted
user equipments (UEs). In particular, failing to account for admission
control may result in low rates or fairness, and in infeasible solutions,
e.g., due to high QoS requirements, limited transmit power or reduced
number of RF chains.

Chapter 6 investigated the design of hybrid precoding and ad-
mission control for multi-group multicasting in an industrial setting
based on SDMA, where multiple groups of industrial IoT (IIoT) de-
vices were serviced. An algorithm was proposed, which divided the
investigated problem into two subproblems: admission control and
hybrid precoding. The admission control was formulated as an integer
linear program (ILP), whereas the hybrid precoding relied on AO and
SDR. It was shown that it is possible to reduce transmission latency
by controlling which devices are served since lower interference can
be achieved depending on the selection, thus allowing for higher data
rates.

Chapter 7 investigated the design of fully-digital precoding and
admission control for NOUM transmission in an industrial setting
based on LDMA. Similarly to Chapter 6, an algorithm was proposed
that decouples the investigated problem into two subproblems, i.e.,
admission control and precoding. The admission control was formu-
lated as an ILP, whereas SCA was employed for the precoding design.
This chapter showed that LDMA outperforms SDMA combined with
time-division multiple access (TDMA) or frequency-division multiple
access (FDMA), where the latter was employed to schedule unicast
and multicast traffic in orthogonal time/frequency resources. In ad-
dition, it was shown that admission control is crucial as it allows to
select and serve UEs that can mutually benefit when served together.

Chapter 8 and Chapter 9 focused on the design of precoding,
admission control, and discrete-rate allocation for two types of mul-
tiple access schemes: SDMA and RSMA. Additionally, Chapter 8

included UE association, allowing multiple small base stations (SBSs)
to collaboratively serve the admitted UEs, whereas Chapter 9 instead
considered imperfect successive interference cancellation (SIC) arising
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due to hardware imperfections. These chapters showed the importance
of accounting for practical characteristics of wireless systems that can
substantially affect their performance.

Chapter 8 investigated the design of precoding, admission con-
trol, UE association, and discrete-rate allocation at the access network
and the design of precoding and discrete-rate allocation at the back-
haul network in an IAB system based on SDMA. Three algorithms
with different degrees of computational complexity were proposed
to solve the formulated problem. The first algorithm was based on
the convexification of nonconvex mixed-integer nonlinear programs
(MINLPs), and the second and third algorithms were based on the
penalty method and minorization-maximization (MM). Due to the
interdependency of backhaul and radio access networks, devising
effective and practical solutions for IAB is generally challenging. How-
ever, this chapter demonstrated how to cope with this complexity
through several system design options and mathematical formulation
and optimization of the radio resources.

Chapter 9 investigated the design of precoding, admission control,
and discrete- or continuous-rate allocation assuming imperfect SIC
in a wireless system based on RSMA. Two algorithms were proposed
to solve the formulated problems. The algorithm for discrete rates
was based on the convexification of nonconvex MINLPs, whereas the
algorithm for continuous rates was based on binary enumeration,
SDR, and SCA. This chapter shared insights for the first time on the
impact of how practical characteristics such as imperfect SIC, UE
admission, and discrete rates can impact the performance of RSMA.
Not accounting for these characteristics can result in misleading results
concerning the advantages of RSMA over SDMA.

In beyond 5G (B5G), in addition to millimeter-wave, the terahertz
spectrum is expected to become part of the radio resource realm. While
the proposed algorithms have been developed for millimeter-wave
wireless networks, they are not limited to this spectrum. For instance,
the hybrid precoder designs investigated in Chapter 2, Chapter 3,
Chapter 4, Chapter 5, and Chapter 6 could be used in the terahertz
spectrum as it is expected that the first terahertz base stations (BSs)
will have hybrid architectures since fully-digital precoders will be
too expensive to afford. Also, the algorithms developed in this thesis
can be extended to support novel use cases with emerging technolo-
gies, such as integrated sensing and communications, non-terrestrial
infrastructure, and reflecting intelligent surfaces.

Chapter 6, Chapter 7, Chapter 8, and Chapter 9 investigated
UE admission control and showed its importance in dictating the
performance of a wireless system. Admission control in these chapters
focused on determining whether a UE should be admitted or not.
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The admitted UEs would be multiplexed in the spatial domain and
served for several slots. The process would then be repeated with the
remaining UEs until all UEs were served. The investigated problems
in these chapters can be generalized by including the time domain
in the admission control, thus determining from the beginning the
subset of UEs to be served in each slot without the need to perform the
admission control sequentially with the remaining UEs. It is expected
that this method would lead to improved performance.
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Abstract—This paper investigates the joint design of hybrid
transmit precoder and analog receive combiners for single-group
multicasting in millimeter-wave systems. We propose LB-GDM, a
low-complexity learning-based approach that leverages gradient
descent with momentum and alternating optimization to design (i)
the digital and analog constituents of a hybrid transmitter and (ii)
the analog combiners of each receiver. In addition, we also extend
our proposed approach to design fully-digital precoders. We show
through numerical evaluation that, implementing LB-GDM in
either hybrid or digital precoders attains superlative performance
compared to competing designs based on semidefinite relaxation.
Specifically, in terms of minimum signal-to-noise ratio, we report
a remarkable improvement with gains of up to 105% and 101%
for the fully-digital and hybrid precoders, respectively.

Index Terms—max-min fairness, hybrid precoding, multicast,
millimeter-wave, learning, semidefinite relaxation.

I. INTRODUCTION

Wireless multicasting has a long-standing record for effi-
cient utilization of spectrum resources to disseminate common
information. Looking at the unprecedented growth in number
and variety of multicast applications (e.g., high-definition
video streaming, mobile video, content distribution in au-
tonomous vehicular networks), multicast is outlined as a key
player in emerging 5G millimeter-wave (mmWave) networks
to sustain these demands [1]. With the recent advancements
in antenna arrays architectures (e.g., digital-analog designs),
particularly for mmWave systems, continuous investigation on
beamforming techniques is crucial to ensure high performance.
Indeed, a vital aspect to ensure high spectral efficiency lies in
the optimal design of the beamformer or precoder. Neverthe-
less, the optimization problems derived from this context are at
best non-convex quadratically constrained quadratic programs
(QCQP), which have been proven NP-hard [2]. Therefore,
many ongoing works are devoted to exploring alternative low-
complexity schemes that yield near-optimality.

A. Related work

An initial work that addresses the NP-hardness of multicast
optimization problems (e.g., quality-of-service (QoS) and max-
min fairness (MMF)) in single-group scenarios is [2], where
non-convex QCQPs are reformulated as semidefinite relaxation
(SDR) programs. It is shown that SDR yields an approximate
solution that, if feasible, is not necessarily optimum. To find
feasible solutions, three types of Gaussian randomization are
evaluated. In [3], an iterative algorithm based on second-order
conic programming (SOCP) is proposed for the QoS problem

in single-group multicasting. The single-group MMF problem
is studied in [4]. Furthermore, the QoS and MMF problems in
multi-group multicast contexts are studied in [5]–[11].

The above-mentioned works consider beamforming using
fully-digital precoders. In such an architecture, each antenna
requires a dedicated baseband and a radio frequency (RF)
chain, which is deemed impractical in many multi-antenna
systems (e.g., mmWave) due to high design complexity, hard-
ware cost, and power consumption. Consequently, industry
and academia scrutinize antenna designs based on a digital-
analog (hybrid) architectures which allow the use of a large
number of antennas with a limited amount of RF chains
[12]. While fully-digital precoders for physical layer mul-
ticasting has been widely researched, the design of hybrid
precoders remains understudied. The existing literature on
hybrid precoding includes investigations on the MMF (in
[13], [14]) and QoS (in [15], [16]) problems for single-group
and multi-group multicasting. However, the designs proposed
therein are either (i) constrained due to simplified premises or
(ii) unimplementable in the existing multi-antenna hardware,
for the following reasons. In [14], the propounded solution
requires a specially connected network of phase shifters for
optimal operation. On the other hand, the proposed scheme in
[16] is restricted to implementations with only four different
phase shifts. In [15], the analog phase shifters are replaced
by high-resolution lens arrays with adjustable power, thus
circumventing the actual problem of phase shift selection.
Finally, in [13], it is required to test several codewords in
order to design the analog precoder, thus demanding additional
memory storage that scales with the number of antennas.

Our objective is to provide a low-complexity scheme for
already available off-the-shelf devices (e.g., TP-Link TALON
AD7200), which reckon with a primitive network of phase
shifters, limited memory storage, and moderate computational
capabilities [17]. To address all these requirements, we propose
a learning-based scheme that only requires matrix multiplica-
tions/additions with controllable complexity and performance
that depend on customizable input parameters. Furthermore,
in contrast to prior literature on multicasting, we include the
design of analog multi-antenna combiners at the receivers.

B. Our contributions

We design the first learning-based hybrid precoder for
single-group multicasting while considering analog multi-



antenna receivers. The details of our contributions are sum-
marized as follows:

• We investigate the MMF problem subject to power con-
straints at the transmitter and receivers. Precisely, our
solution can handle an arbitrary number of constant-
modulus phase shifts for the analog precoder in contrast
to the existing designs that only consider a limited num-
ber of phase shifts. Moreover, the idea is extended for
designing the analog combiners at the receivers.

• Our proposed learning-based scheme has lower com-
plexity than SDR-based approaches. While SDR-based
solutions require expensive vector-lifting that expands the
variables into higher dimensional spaces, our proposed
scheme, namely LB-GDM, only uses matrix multiplica-
tions/additions and a number of low-dimensional matrix
inversions. Furthermore, the exploration and exploitation
phases of our algorithm promote the search for optimal
solutions while preventing getting trapped in local optima.
Specifically, LB-GDM leverages gradient descent with
momentum and alternating optimization.

• We consider analog multi-antenna receivers. We show
that, by endowing the receivers with only two antennas,
the minimum SNR improves by 75.7% compared to om-
nidirectional receiving patterns (i.e., single antenna case).

• Since the SDR method in [2] is only applicable to
fully-digital implementations, we propose a novel scheme
called SDR-C, capable of handling the constant-modulus
constraints of the hybrid precoder and analog receivers.
Inspired by [18], SDR-C exploits SDR and Cholesky
matrix factorization. A similar technique was used by [19]
to solve the QoS problem for multi-group multicasting.
We extend the idea in [19] to the MMF problem.

• We perform extensive simulations to evaluate the per-
formance of LB-GDM and SDR-C in terms of minimum
SNR and spectral efficiency. We provide valuable insights
on the fully-digital and hybrid precoders design under
various system parameters (i.e., the number of transmit
and receive antennas, the number of RF chains, and the
number of iterations). We show that LB-GDM substan-
tially outperforms state-of-the-art SDR-based solutions
such as SDR-C, achieving up to 105.6% and 101.4% gains
in digital and hybrid precoders, respectively.

II. SYSTEM MODEL

We consider a mmWave system where a next generation
Node B (gNodeB) serves a set of K multicast users denoted by
K = {1, 2, . . . ,K}. The gNodeB is equipped with Ntx transmit
antennas and NRF

tx radio frequency (RF) chains, where NRF
tx ≤

Ntx. The downlink signal is represented by x = Fms, where
F ∈ CNtx×NRF

tx and m ∈ CN
RF
tx ×1 are the analog and digital

components of the hybrid precoder. The data symbol s has unit
power in average, i.e., E {ss∗} = 1. Every element of the analog
precoder is a phase rotation with constant modulus, i.e., [F]q,r ∈

F =

{
√
δtx, . . . ,

√
δtxe

j
2π(Ltx−1)

Ltx

}
, where q ∈ Q = {1, . . . , Ntx},

r ∈ R =
{
1, . . . , NRF

tx

}
and Ltx is the number of allowed phase

rotation values. Each user is endowed with Nrx ≪ Ntx antennas
and an analog combiner wk ∈ CNrx×1 with NRF

rx = 1, such that

[wk] ∈ W =

{
√
δrx, . . . ,

√
δrxe

j
2π(Lrx−1)

Lrx

}
, l ∈ L = {1, . . . , Nrx}

and Lrx is the number of allowed phase rotation possibilities at
the receivers. Under the assumption of narrowband flat-fading,
the signal received by the k-th user is

yk = wH
k HkFms︸ ︷︷ ︸

multicast signal

+wH
k nk︸ ︷︷ ︸
noise

, (1)

where Hk ∈ CNrx×Ntx denotes the channel between the k-
th user and the gNodeB, whereas nk ∼ CN

(
0, σ2I

)
denotes

additive white Gaussian noise. The SNR at user k is given by

γk =

∣∣wH
k HkFm

∣∣2

σ2 ∥wk∥22
. (2)

III. PROBLEM FORMULATION

The objective is to design a hybrid precoder that maximizes
the minimum SNR among all K users, subject to power
constraints at the transmitter and receiver. We define

Phyb
0 : max

F,m,{wk}Kk=1

min
k∈K

∣∣wH
k HkFm

∣∣2

σ2 ∥wk∥22
(3a)

s.t. ∥Fm∥22 = Pmax
tx , (3b)

∥F∥2F = 1, (3c)
[F]q,r ∈ F , q ∈ Q, r ∈ R, (3d)

∥wk∥22 = Pmax
rx , k ∈ K, (3e)

[wk]l ∈ W, l ∈ L,∀k ∈ K, (3f)
where (3b) restricts the transmit power of the hybrid precoder,
(3c) imposes a power normalization on the phase rotations,
(3d) enforces every phase rotation of the analog precoder
to be in F , (3e) restrains the receive power whereas (3f)
constrains the phase rotations of the combiners to W. The
constraints (3d) and (3f) denote non-convex feasible sets due
to their combinatorial nature. Also, due to parameter coupling,
(3b) is non-convex. The objective function (3a) is defined as
the ratio of two quadratic expressions, where the numerator
exhibits coupling of three parameters. Thus, Phyb

0 is a non-
convex problem. Note that (3c) and (3e) can be circumvented
as they are only employed to calculate δtx = 1/NRF

tx Ntx and
δrx = Pmax

rx /Nrx.

Remark: When Nrx = 1, {wk}Kk=1 = 1, and F = I, Phyb
0

collapses to the problem investigated in [2], which is
known to be NP-hard. Since (3) has additional non-
convex constraints, Phyb

0 is thus NP-hard as well. Addi-
tionally, when Nrx = 1 and {wk}Kk=1 = 1, Phyb

0 is equivalent
to the problem studied in [13].

IV. PROPOSED SCHEME

In order to solve (3), we adopt an alternating optimization
approach that allows us to decouple the unknown parameters
F, m, and {wk}Kk=1. Thus, Phyb

0 in (3) is decomposed into
three sub-problems Phyb

1 , Phyb
2 , and Phyb

3 defined in (4), (9),
and (11), respectively. Moreover, for each of the sub-problems
we propose a learning-based algorithm that leverages gradient



Algorithm 1: Optimization of the analog precoder

Input: The precoders F(t−1), m(t−1) and receive combiners
{
w

(t−1)
k

}K

k=1

Output: The analog precoder F(t)

Execute:
1: Calculate the weights c(t)k , ∀k ∈ K.

2: Compute ∇JF =
∑K

k=1 c
(t)
k ∇FJ

F
k /

∥∥∥∇FJ
F
k

∥∥∥
F

.

3: Compute the normalized gradient ∇J̃(t)
F = ∇JF /

∥∥∥∇JF
∥∥∥
F

.

4: Compute F(t) = F(t−1) + ρFF
(t−1)
best + αF∇J̃(t)

F .

5: Project
[
F(t)

]
q,r
← ΠF

[
F(t)

]
q,r

onto F to satisfy (8b).

descent with momentum, i.e., LB-GDM. Conversely to [20],
where the momentum term affects the most recent gradient,
in our case the momentum is associated with the fittest
known solution (at each iteration). Furthermore, we include
two parameters, Nxpr and Nxpt, that control exploration and
exploitation of the learning process, respectively.

A. Optimization of the analog precoder F

Assuming that m and {wk}Kk=1 are known, we optimize F,

Phyb
1 :max

F
min
k∈K

∣∣wH
k HkFm

∣∣2

σ2Pmax
rx

(4a)

s.t. ∥Fm∥22 = Pmax
tx , (4b)

[F]q,r ∈ F , q ∈ Q, r ∈ R. (4c)

In order to reduce the number of constraints, we incorporate
(4b) into the objective function (4a). Specifically, we replace∣∣∣wHk HkFm

∣∣∣
2

σ2Pmax
rx

= ψ

∣∣∣wHk HkFm
∣∣∣
2

∥Fm∥22
, where ψ =

Pmax
tx

σ2Pmax
rx

. Notice that ψ
can be disregarded as it is constant for all the users. Thus,

Phyb
1 :max

F
min
k∈K

mHFHHH
k wkw

H
k HkFm

mHFHFm
(5a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R. (5b)

Instead of approaching (5), we propose to solve the sur-
rogate problem (6), which consists of a weighted sum of all
τFk =

mHFHHHk wkw
H
k HkFm

mHFHFm
, as shown in (6)

P̂hyb
1 :max

F

K∑

k=1

ck
mHFHHH

k wkw
H
k HkFm

mHFHFm
(6a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R, (6b)
where ck ≥ 0 denotes the k-th weighting factor. On the other
hand, note that τFk is upper-bounded by

τFk ≤ λmax

((
FHF

)−1
FHHH

k wkw
H
k HkF

)

= wH
k HkF

(
FHF

)−1
FHHH

k wk
︸ ︷︷ ︸

JF
k

, (7)

where λmax(·) extracts the maximum eigenvalue of matrix(
FHF

)−1
FHHH

k wkw
H
k HkF. Upon replacing τFk in (6) by its

upper bound JFk , the problem collapses to

P̃hyb
1 :max

F

K∑

k=1

ckw
H
k HkF

(
FHF

)−1
FHHH

k wk, (8a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R. (8b)

Since (8a) is an upper bound for (6a), an optimal solution
to (8), in general, may not be optimal to (6). Notice that the
performance of the system in (8) will be determined by the

Algorithm 2: Optimization of the digital precoder

Input: The precoders F(t), m(t−1) and receive combiners
{
w

(t−1)
k

}K

k=1

Output: The digital precoder m(t)

Execute:
1: Calculate the weights d(t)k , ∀k ∈ K.

2: Compute ∇JM =
∑K

k=1 d
(t)
k ∇mJ

M
k /

∥∥∥∇mJ
M
k

∥∥∥
2

.

3: Compute the normalized gradient ∇J̃(t)
M = ∇JM/

∥∥∥∇JM
∥∥∥
2

.

4: Compute m(t) = m(t−1) + ρMm
(t−1)
best + αM∇J̃(t)

M .

5: Normalize m(t) ←
√
Pmax

tx m(t)/
∥∥∥Fm(t)

∥∥∥
2

.

minimum JFk , which can be regarded as a utility function of the
k-th user. In order to solve (8), we first compute the gradient
of ∑K

k=1 ckJ
F
k to update F. Then, we scale the modulus of

each [F]q,r and approximate its phase by the closest available
option in F in order to comply with (8b), as detailed in
Algorithm 1. The gradient of JFk with respect to F is ∇FJ

F
k =(

I− FF†)T (F†HH
k wkw

H
k Hk

)T
, where F† =

(
FHF

)−1
FH (see

Appendix for derivation). In Step 1, the weights are computed
according to c

(t)
k =

(
1 + ξ

(
γ
(t−1)
max − γ(t−1)

k

)
/γ

(t−1)
max

)2
for each

iteration t, where γ
(t)
k is the SNR attained by user k, γ(t)max =

maxk∈K γ
(t)
k and ξ > 0. In Step 2, the weighted sum of the unit-

power gradients ∇FJ
F
k /
∥∥∇FJ

F
k

∥∥
F

is computed. In Step 3, the
unit-power aggregate gradient ∇J̃(t)

F is obtained. In Step 4, the
current F(t−1) is updated using ∇J̃(t)

F . Also, F(t)
best represents the

best known solution until iteration t, whereas ρF and αF are the
momentum and learning factors associated to F, respectively.
Finally, Step 5 enforces (8b). The weights are bounded to
1 ≤ c

(t)
k ≤ (1 + ξ)2 and increase inversely proportional to the

attained SNR γ
(t)
k . Thus, the gradient of the user with minimum

SNR is weighted with the largest c(t)k , whereas the gradient of
the user with maximum SNR is assigned the smallest c(t)k = 1.

Remark: To motivate the connection between (5) and (6),
we assume that (6) can be solved iteratively, and in each
iteration we are capable of predicting k⋆ = argmink∈K τFk .
Thus, if we assigned binary values ck⋆ = 1 and ck ̸=k⋆ = 0

at each iteration instance, we would indirectly be solving
a problem closely related to (5), where the minimum
SNR is maximized. However, due to the intractability
of predicting such k⋆, we propose to simultaneously
maximize a subset of the smallest SNRs by considering
non-binary positive weights c(t)k that can be adapted based
on the SNR values (obtained after each iteration), thus
controlling the priorities of τFk or JFk . This proposed
approach also facilitates to keep track of several gradi-
ents simultaneously, preventing the search from getting
trapped in local optima.

B. Optimization of the digital precoder m

When F and {wk}Kk=1 are known, the problem collapses to

Phyb
2 :max

m
min
k∈K

∣∣∣wH
k HkFm

∣∣∣
2

(9a)

s.t. ∥Fm∥22 = Pmax
tx . (9b)



Algorithm 3: Optimization of the k-th combiner

Input: The precoders F(t), m(t) and the receive combiner w(t−1)
k

Output: The receive combiner w(t)
k

Execute:
1: Compute ∇wk

JW
k .

2: Compute ∇wk
J̃

(t)
W = ∇wk

JW
k /

∥∥∥∇wk
JW
k

∥∥∥
2

.

3: Compute w
(t)
k = w

(t−1)
k + ρWw

(t−1)
best,k + αW∇wk

J̃
(t)
W .

4: Project
[
w

(t)
k

]
l
← ΠW

[
w

(t)
k

]
l

onto W , ∀l ∈ L to satisfy (12b).

Similarly as in (5) and (6), we recast (9) as

P̃hyb
2 :max

m

K∑

k=1

dk

∣∣∣wH
k HkFm

∣∣∣
2

(10a)

s.t. ∥Fm∥22 = Pmax
tx , (10b)

where dk is the weight corresponding to JMk =
∣∣wH

k HkFm
∣∣2.

Compared to P̃hyb
1 , where an upper bound JMk for τFk was

derived, finding such a bound by means of the same procedure
is not feasible in this case, as it involves computing the inverse
of a rank-1 matrix M = m∗mT . Thus, we assume JMk = τMk .
P̃hyb
2 is iteratively solved employing Algorithm 2, where a

similar procedure as in Algorithm 1 is used to compute m.
Moreover, we assume that d

(t)
k are computed in the same

fashion as c
(t)
k . The gradient of JMk with respect to m is

∇mJMk = mHFHHH
k wkwkHkF. The main difference between

Algorithm 1 and Algorithm 2 is Step 5, which restricts the
transmit power to Pmax

tx .

C. Optimization of the combiners wk

Assuming that F and m are given, we optimize {wk}Kk=1

Phyb
3 : max
{wk}Kk=1

min
k∈K

∣∣wH
k HkFm

∣∣2

σ2 ∥wk∥22
(11a)

s.t. [wk]l ∈ W, l ∈ L, ∀k ∈ K. (11b)

Note that (11) can be decomposed into K parallel and
independent sub-problems, whereby users will adapt their
corresponding wk in order to maximize their own SNR. Also,
since ∥wk∥22 is an scalar, each sub-problem reduces to

P̃hyb
3,k :max

wk

∣∣∣wH
k HkFm

∣∣∣
2

(12a)

s.t. [wk]l ∈ W, l ∈ L, (12b)
∀k ∈ K. As in P̃hyb

2 , we assume JWk = τWk =
∣∣wH

k HkFm
∣∣2.

Moreover, each sub-problem in (12) is similar to (8) ex-
cept that each user optimizes their own utility function JWk .
We employ Algorithm 3 to find {wk}Kk=1, where ∇wk

JWk =

wH
k HkFmmHFHHH

k .
For completeness, LB-GDM is summarized in Algorithm 4.

The exploration phase is based on randomization of F, m

and {wk}Kk=1 (line 17). The exploitation phase harnesses F
(t)
best,

m
(t)
best, and

{
w

(t)
best,k

}K
k=1

as the momentum terms, which preserve
the fittest known solutions until iteration t and are updated
once per exploration instance (line 16). On the other hand,
Fopt, mopt, and

{
wopt,k

}K
k=1

retain the fittest solutions after each
exploitation instance (line 10). These parameters are updated
more frequently since they execute a finer scanning of the
search space. Further, to refine the potential solutions in this
phase, the learning factors αF , αM and αW are progressively

Algorithm 4: Proposed LB-GDM scheme
Initialize:

1: Assign
[
F(0)

]
q,r
← δ, q = {1, . . . , Ntx}, r ← mod

(
q,NRF

tx

)
+1,

m(0) ←
[
1 0

1×(NRF
tx −1)

]T
, w(0)

k ←
[
1 01×(Nrx−1)

]T , ∀k ∈ K.

2: Assign Fbest ← 0, mbest ← 0 and {wbest,k} ← 0.
3: Assign αF ← αF0

, αM ← αM0
, αW ← αW0

.
4: Assign t← 0, γT ← 0.

Execute:
5: for ixpr = 1, . . . , Nxpr do (exploration phase)
6: for ixpt = 1, . . . , Nxpt do (exploitation phase)

7: Compute F(t), m(t),
{
w

(t)
k

}K

k=1
via Algorithms 1, 2, 3.

8: Find the minimum SNR, γmin, among all users.
9: if γmin ≥ γT
10: Assign Fopt ← F(t), mopt ← m(t),

{
wopt,k

}K

k=1
←

{
w

(t)
k

}K

k=1
.

11: Assign γT ← γmin.
12: end if
13: Update αF ← 0.98 αF , αM ← 0.98 αM , αW ← 0.98 αW .
14: Increment t← t+ 1.
15: end for
16: Assign F

(t)
best ← Fopt, m

(t)
best ← mopt,

{
w

(t)
best,k

}K

k=1
←

{
wopt,k

}K

k=1
.

17: Randomize F(t), m(t) and
{
w

(t)
k

}K

k=1
enforcing (3b) - (3f).

18: Assign αF ← αF0
, αM ← αM0

, αW ← αW0
.

19: end for

decreased as the exploration phase advances (line 13). How-
ever, these learning factors are reset to their original values
when a new exploration instance begins (line 18). A proper
balance between exploration and exploitation allows LB-GDM
to produce more suitable precoders than SDR.

V. SIMULATION RESULTS

We consider the geometric channel model with Np = 5

propagation paths between the transmitter and each user. Also,
Pmax
tx = 1 (30 dBm), Pmax

rx = 0.01 (10 dBm), σ2 = 1 (30
dBm), while F and W consist of Ltx = 8 and Lrx = 4

different phase shifts, respectively. In the following scenarios,
we compare the performance of LB-GDM and SDR-C for fully-
digital and hybrid precoders in terms of the minimum SNR
(among all users) and the spectral efficiency (SE), computed
as the sum-capacity of the whole system. We evaluate several
configurations of Ntx, NRF

tx , Nrx, Nxpr, Nxpt, and K. For
LB-GDM, we set ρF = ρM = ρW = 0.9, αF0 = 1, αM0

= 1,
αW0

= 1 and vary Nxpr, Nxpt to control the fitness of the
solutions. In the case of SDR-C, we control the number of
randomizations Nrand. Furthermore, the numerical results show
the average over 100 channel realizations.

A. Impact of exploration (Nxpr) and exploitation (Nxpt)

In this scenario we evaluate the performance of LB-GDM for
different values of Nxpr and Nxpt, under a particular channel
realization. We consider K = 30, Ntx = 15, Nrx = 2, when
Nxpr and Nxpt are varied in the range [1, 100]. For the fully-
digital and hybrid precoders, we assume NRF

tx = Ntx = 15

and NRF
tx = 6, respectively. We observe in Fig. 1 that the

minimum SNR improves for increasing values of Nxpr and
Nxpt in both precoders. Further, Nxpr is more relevant than
Nxpt in improving this metric for this particular realization.
Nevertheless, both of these phases are important. Exploration
is the capability of effectively sampling/scanning the search
space to find potentially fitter solutions, whereas exploitation
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Figure 1: Impact of exploration (Nxpr) and exploitation (Nxpt)
phases on the system performance.

capitalizes on already known solutions to further refine them.
By doing so, our proposed LB-GDM avoids getting trapped
in local optima. As expected, the fully-digital precoder out-
performs its hybrid counterpart due to a larger number of RF
chains and less stringent constraints (constant-modulus phase
shifts). The former attains a minimum SNR of 1.77 whereas
the latter achieves 1.49. Besides, the hybrid precoder attains
11.5% lower SE than that of the fully-digital precoder.

Remark: While the minimum SNR monotonically increases
for both precoders, the SE performance does not exhibit the
same behavior. This is because the optimization criterion of
LB-GDM is to enhance the minimum SNR (MMF), without
considering the spectral efficiency. Nevertheless, the general
trend shows that higher Nxpr and Nxpt yield SE improvement.

B. Impact of the number of antennas Ntx and Nrx

In this scenario, we evaluate the performance of hybrid
and fully-digital precoders based on LB-GDM for a different
number of transmit and receive antennas. We consider K = 50,
Ntx = {8, 12, 16}, and Nrx = {1, 2, 3, 4, 5}. For the hybrid
precoder, we assume NRF

tx = 2. Fig. 2 depicts the improvement
of the minimum SNR when increasing Ntx and Nrx, for both
types of precoders. Since the transmit and receive power are
limited, endowing users with multiple antennas is beneficial
to improve the SNR. In particular, in the fully-digital case,
when Ntx = 8, the minimum SNR improves from 0.37 to 0.65

when the number of receive antenna increases from Nrx = 1

to Nrx = 2, which essentially indicates a 75.7% gain. Similarly,
the gain for the hybrid precoder is 100%. We also observe
a considerable improvement of the minimum SNR as Ntx

increases from 8 to 16, in which we attain a gain of up to 72.9%

and 58.6% for fully-digital and hybrid precoders, respectively.
Further, the SE also achieves 25.5% and 32.9% gain, for the
fully-digital and hybrid precoders, respectively (when Ntx = 8,
for Nrx = 1 and Nrx = 2). In general, the hybrid precoder attains
a SE at worst 11.8% lower than its fully-digital counterpart (for
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Figure 2: Performance evaluation of LB-GDM for varying Ntx

and Nrx in fully-digital (D) and hybrid (H) precoders.
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Figure 3: Performance comparison between LB-GDM and
SDR-C in terms of the minimum SNR.

all the cases). We also observe that with only NRF
tx = 2, the

hybrid transmit precoder is at worst 25.5% below the optimality
attained by the fully-digital in terms of the minimum SNR.

Remark: This scenario sheds lights on the relevance of reck-
oning with multiple antennas at the receivers when constrained
by power at both ends. Specifically, we obtain improvements
up to 72.9% and 58.6% by increasing the number of receive
antennas from Nrx = 1 to Nrx = 2. On the other hand, in this
case where NRF

tx = 2, the complexity of LB-GDM is even more
affordable as F† =

(
FHF

)−1
FH requires no actual inversion

of FHF, since a 2× 2 matrix can be inverted directly.

C. Performance comparison with an SDR-based scheme

We compare the performance of LB-GDM and SDR-C,
when implemented in fully-digital and hybrid precoders. We
consider Ntx = 20, Nrx = 3, with a wide range of users
K = {25, 50, 75, 100}. For the hybrid precoder NRF

tx = 6, whereas
for the fully-digital counterpart NRF

tx = Ntx. For LB-GDM, we
assume that Nxpt = Nxpr = 120. For SDR-C, the number of
randomizations are Nrand = {1, 10, 50, 100, 500, 1000}. To ensure



a fair comparison, we refine the solutions of SDR-C by
optimizing sequentially F, m, and {wk}Kk=1 over NSDR

iter = 3

iterations. In each iteration, Nrand randomizations are evalu-
ated. Fig. 3 depicts a notable improvement of LB-GDM over
SDR-C in both fully-digital (see Fig. 3b) and hybrid (see Fig.
3a) implementations, for all K. Specifically, the SDR-C results
are shown in the format ⟨SDR-C | Nrand⟩. We observe a more
prominent improvement for larger K. For instance, in the case
of the fully-digital precoder, when K = 50, the minimum SNR
obtained by LB-GDM is 79.3% higher than that of SDR-C
although a wide range of Nrand were tested. The gain is even
higher (i.e. 105.6%) for K = 100. We observe a similar trend for
LB-GDM-based hybrid precoder, with gains of up to 101.4%.

VI. DISCUSSION

SDR-C: This scheme is based on the approach in [19], where
the QoS problem is researched. We extended the approach
therein for the MMF problem. In this paper, SDR-C solves the
sub-problems Phyb

1 , Phyb
2 , Phyb

3 in alternate manner over NSDR
iter =

3 iterations. The initialization of m and {wk}Kk=1 are the same
as for LB-GDM (see line 1 of Algorithm 4). The SDR-C
scheme is discussed in Appendix B.
Optimality: The proposed schemes, LB-GDM and SDR-C,
cannot ensure global optimality. However, by observing Fig.
1 and Fig. 3 we corroborate that the approaches converge to
a local optima for increasing Nxpr, Nxpt or Nrand.
Impact of number of constraints: It is well known that the
optimality-gap of SDR degrades with increasing number of
constraints (i.e., number of users K). As a result, we observe
that for large K, the performance difference between LB-GDM
and SDR-C increases, which indicates that LB-GDM is more
robust and less sensitive to the number of constraints.

VII. CONCLUSION

In this paper, we investigated the design of fully-digital
and hybrid precoders for single-group multicasting using a
learning-based scheme. With the aim of maximizing the min-
imum SNR, our proposed low-complexity LB-GDM uses only
matrix multiplications/additions and low-dimensional matrix
inversion operations. We compare the performance of pre-
coders based on SDR-C and LB-GDM under diverse simulation
settings. The numerical results show a substantial gain, where
LB-GDM outperforms SDR-C by up to 105.6% and 101.4%

for digital and hybrid precoders, respectively. In addition,
we demonstrate the importance of incorporating more receive
antennas, where we achieve 75.7% and 100% gains in terms
of the minimum SNR by increasing the number of receive
antennas from one to two.
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APPENDIX A
GRADIENT OF JFk IN ALGORITHM 1

Let us define u = FHHH
k wk and Y = FHF. Then, the

following differentials are computed: du = dFHHH
k wk, dY =

FH dF, duH = wH
k Hk dF and dY−1 = −Y−1 dYY−1. Thus, the

differential of JFk = uHY−1u is given by
dJFk =

(
duH

)
Y−1u+ uH

(
dY−1

)
u+ uHY−1

(
du
)

=
(
wH
k Hk dF

)
Y−1u− uH

(
Y−1 dYY−1

)
u

=
(
wH
k Hk dF

)
Y−1u− uH

(
Y−1FH dFY−1

)
u

= Tr
{
Y−1uwH

k Hk dF
}
− Tr

{
Y−1uuHY−1FH dF

}

= Tr
{(

Y−1uwH
k Hk −Y−1uuHY−1FH

)
dF
}

The Frobenius inner product of two matrices P and
Q is defined as P : Q ≡ Tr

{
PTQ

}
. Thus, dJFk =(

Y−1uwH
k Hk −Y−1uuHY−1FH

)T
: dF. Upon replacing u in

the expression above, we obtain

∇FJ
F
k =

(
I− FF†

)T (
F†HH

k wkw
H
k Hk

)T
, (A.1)

where F† =
(
FHF

)−1
FH . Note that the Wirtinger derivative of

JFk with respect to F∗ is zero, i.e., ∇F∗JFk = ∇
FH

JFk = 0.

APPENDIX B
SDR-C SCHEME

B.1. Optimization of F

Assuming that {wk}Kk=1 and m are known, notice that we
can express Fm = Pf , where P = mT ⊗ I and f = vec (F).

Furthermore, if we assign t = mink∈K

∣∣∣wHk HkFm
∣∣∣
2

σ2Pmax
rx

, then Phyb
1

in (4) can be equivalently expressed as,
Phyb
1 :max

t,F
t (B.1a)

s.t.
∣∣∣wH

k HkPf
∣∣∣
2
≥ t, (B.1b)

∥Pf∥22 = Pmax
tx , (B.1c)

[f ]n ∈ F , n ∈ N , (B.1d)
where N =

{
1, 2, . . . , NtxNRF

tx

}
. In (B.1), realize that ∥Pf∥22 =

Tr (XD), with X = PHP and D = ffH . Also, [D]n,n = δtx

since [f ]n ∈ F . By noticing that
∣∣wH

k HkPf
∣∣2 = Tr (RkD), with

Rk = PHHH
k wkw

H
k HkP, (B.1) can be recast in its SDR form

as shown in (B.2)
Phyb
SDR,1 :max

t,D
t (B.2a)

s.t. Tr {RkD} ≥ t, (B.2b)
[D]n,n = δtx, n ∈ N , (B.2c)

D ≽ 0, (B.2d)
where the constraint rank (D) = 1 has been dropped. Also,
(B.2d) enforces D to be Hermitian positive semidefinite (PSD).
Note that (B.2d) is linear in the PSD domain, and thus can be
effectively approached by optimization solvers such as SDPT3.
Upon obtaining D, f is recovered in three stages.

Stage 1: Observe that any element (n1, n2) of matrix D

can be represented as [D]n1,n2
= [f ]n1

[f ]∗n2 . Now, let us
define a vector u ∈ CN

RF
tx ×1 such that ∥u∥22 = uHu = 1.

Thus, we can express [D]n1,n2
in terms of u, i.e., [D]n1,n2

=



(
[f ]n1

uT
)(

[f ]∗n2 u∗
)

. Assuming that qn = [f ]n u, D can be

recast as D = QTQ∗ with Q =

[
q1,q2, . . . ,qNtxN

RF
tx

]
.

Stage 2: If the solution returned by Phyb
SDR,1 is denoted by D̂.

Then, via Cholesky decomposition we can obtain D̂ = Q̂T Q̂∗,
where Q̂ =

[
q̂1, q̂2, . . . , q̂NtxN

RF
tx

]
. In the previous stage, the

premise was that each qn could be obtained from the same u,
since qn = [f ]n u. However, we cannot guarantee that every q̂n

in D̂ has the same stem û. Although we have found D̂, f and
û remain unknown.

Stage 3: The objective is to find some û such that it
originates the least error in the 2-norm sense, i.e.,

Phyb
LS,1 : min

û,[f ]n,∀n∈N

NtxN
RF
tx∑

n=1

∥∥q̂n − [f ]n û
∥∥2
2

(B.3a)

s.t. ∥û∥22 = 1, (B.3b)
[f ]n ∈ F , n ∈ N . (B.3c)

Minimizing simultaneously over both q̂n and û is challeng-
ing. If we assume that û is known such that (8b) is satisfied,
then we are required to solve

P̃hyb
LS,1 : min

[f ]n,∀n∈N

NtxN
RF
tx∑

n=1

∥∥q̂n − [f ]n û
∥∥2
2

(B.4a)

s.t. [f ]n ∈ F , n ∈ N . (B.4b)
By expanding (B.4a), we realize that

∥∥q̂n − [f ]n û
∥∥2
2

=

q̂Hn q̂n − 2Re
(
[f ]n q̂Hn û

)
+
∣∣[f ]n

∣∣2 ûH û. Thus, (B.4) is

P̃hyb
LS,1 : max

[f ]n,∀n∈N

NtxN
RF
tx∑

n=1

Re
(
[f ]n q̂Hn û

)
(B.5a)

s.t. [f ]n ∈ F , n ∈ N . (B.5b)
Note that (B.5) can be decomposed into NtxNRF

tx

independent sub-problems. Thus, since zn = q̂Hn û is known,
we need to select [f ]n such that the real part of (B.5a) is
maximized. This is equivalent to choosing [f ]n with the closest
phase to z∗n. After finding f , it can be reshaped to obtain F.

B.2. Optimization of m

We assume herein that F and {wk}Kk=1 are known. Thus, the
SDR form of Phyb

2 is given by
Phyb
SDR,2 :max

t,M
t (B.6a)

s.t. Tr (ZkM) ≥ t, (B.6b)
Tr (YM) = Pmax

tx , (B.6c)
M ≽ 0, (B.6d)

where Y = FHF, Zk = FHHH
k wkw

H
k HkF and M = mmH .

B.3. Optimization of wk

Now, we assume that F and m are given. Therefore, SDR
form of Phyb

3 is
Phyb
SDR,3 : max

t,{Wk}Kk=1

t (B.7a)

s.t. Tr (CkWk) ≥ t, (B.7b)
Tr (Wk) = Pmax

rx , (B.7c)
Wk ≽ 0, k ∈ K, (B.7d)

where Wk = wkw
H
k and Ck = HkFmmHFHHH

k . The problems
Phyb
SDR,1, Phyb

SDR,2 and Phyb
SDR,3 can be straightforwardly recast as

linear programs and can therefore be efficiently solved by
numerical solvers. In our case, we employed CVX and SDPT3.
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Abstract—Multicast beamforming is known to improve spec-
tral efficiency. However, its benefits and challenges for hybrid
precoders design in millimeter-wave (mmWave) systems remain
understudied. To this end, this paper investigates the first
joint design of hybrid transmit precoders (with an arbitrary
number of finite-resolution phase shifts) and receive combiners
for mmWave multi-group multicasting. Our proposed design
leverages semidefinite relaxation (SDR), alternating optimization
and Cholesky matrix factorization to sequentially optimize the
digital/analog precoders at the transmitter and the combiners
at each receiver. By considering receivers with multiple-antenna
architecture, our design remarkably improves the overall system
performance. Specifically, with only two receive antennas the
average transmit power per received message improves by 16.8%
while the successful information reception is boosted by 60%.
We demonstrate by means of extensive simulations that our
hybrid precoder design performs very close to its fully-digital
counterpart even under challenging scenarios (i.e., when co-
located users belong to distinct multicast groups).

Index Terms—hybrid precoding, millimeter-wave, multicast,
semidefinite relaxation, alternating optimization.

I. INTRODUCTION

In recent years, millimeter-wave (mmWave) has emerged as
a promising technology to fuel the ever-increasing consumer
demands for extremely fast (i.e., up to multi-Gbps) connec-
tivity. In delivering such requirements for dense networks
scenarios (due to extreme densification in next-generation
networks), a system can leverage the benefits of multicast
communications [1]. Indeed, recent studies in [2], [3] demon-
strate the potential of multicast to significantly improve the
network throughput and spectral efficiency of mmWave sys-
tems. To guarantee these performances, an appropriate design
for multicast precoders is crucial (i) to compensate for severe
channel attenuation, and (ii) to minimize the interference
between simultaneous transmissions.

An early effort on multicast precoder design is presented
in [4], where the authors investigated single-group multicast
precoding with a multi-antenna base station and several single-
antenna receivers. Aiming at minimizing the transmit power
subject to predefined quality of service (QoS) requirements
(i.e., QoS problem), the problem is formulated as a relaxed
semidefinite program (SDP) where befitting solutions are ob-
tained via randomization [5]. Since their work only considers
single-group multicast, the problem formulation thus excludes
the interference aspect that is relevant in designing multi-
group multicast precoders. Expanding on [4], the authors
of [6], [7] investigate a scenario with multiple co-channel

multicast groups, which allows transmissions of simultaneous
multicast signals by exploiting spatial multiplexing. Further-
more, to mitigate the interference between the distinct signals
(and thus increase the number of served users), [6], [7] an
additional stage of power control is incorporated. The QoS
problem is also considered in [8]–[10] with diverse extensions
to the formulation. A related formulation known as the max-
min fair (MMF) problem is studied in [11]–[13].

The works mentioned above are developed within the
framework of fully-digital multicast precoders. Given the
affordable hardware and moderate computational complexity
of hybrid precoders, a shift of interest has been observed
in departing from fully-digital to adopting hybrid antenna
arrays architectures. Hybrid precoders are composed of a
low-dimensional digital beamformer in cascade with a high-
dimensional network of cost-efficient constant-modulus phase
shifters that admit a limited number of phase rotations. In
general, hybrid precoders are less flexible than their fully-
digital counterparts, thus rendering the design of an optimal
hybrid precoder a challenging task. Besides, they pose a com-
promise in terms of beamforming capabilities and interference
management. On the other hand, the versatility of digital
precoders comes at the expense of highly complicated and
expensive hardware, wherein a dedicated radio frequency (RF)
chain is required for each antenna element.

To date, the body of works that has studied hybrid pre-
coding for physical layer multicasting includes single-group
multicasting (in [14]) and multi-group multicasting (in [15]–
[17]). The authors of [14] consider the MMF problem in
single-group multicast settings, wherein a codebook-based
design is presented. On the other hand, the multi-group
multicast QoS and MMF problems are revisited in [15], where
the authors propose a customized hybrid architecture with
improved performance. In [16], the authors investigate the
QoS problem by considering a high-resolution lens array
with adjustable power. However, such design circumvents
the constant-modulus discrete phase shifts characteristics of
analog circuitry components of hybrid precoders. On the
contrary, the authors in [17] design an scheme to support
joint power and information transfer with hybrid precoders.
Their formulation considers discrete phase shifts, but restrains
the set of phase shifts to only four choices. In addition, the
existing studies on multicast precoders for mmWave systems
only consider receivers with single-antenna architecture. This
conditioning prevents the mitigation of undesired signals (e.g.,
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interference), especially when users from different multicast
groups have correlated channel vectors. In particular, endow-
ing receivers with multiple antennas: (i) mitigates interference
from other sources, (ii) reduces the power expenditure from
the transmitter, and (iii) improves the service ubiquitousness.

To the best of our knowledge, we are the first to investi-
gate the joint design of hybrid multicast precoders with an
arbitrary number of finite-resolution constant-modulus phase
shifts at the transmitter while considering multiple antennas
at the receivers. Related art on hybrid precoding for multi-
user scenarios (e.g., in [18]) are fundamentally different as
each RF chain at the transmitter is matched to the channel of
one dedicated user. In the multi-group multicast scenario we
consider in this paper—due to the limitation of RF chains—
several users with distinct channel conditions need to be
served by a single RF unit, thus complicating the design of
the hybrid precoder. Our proposed formulation focuses on the
QoS problem, for which we present an SDR-based approach to
optimize the digital precoder, analog phase shifts and receive
combiners. Due to the existence of several design parameters,
our proposed formulation is divided into a set of sub-problems
that we approach adopting alternating optimization (as in e.g.,
[19]). Moreover, we incorporate a set of slack parameters to
promote coherent parameter binding among the decoupled
sub-problems. Since alternating optimization requires each
sub-problem to be solvable to guarantee the continuity of the
optimization process, such a set of slack parameters ensures
that each sub-problem always yields a feasible solution for
the succeeding stages. Finally, due to the selection of finite-
resolution constant-modulus phase shifts, the problem is inher-
ently of combinatorial nature. To circumvent this matter, we
propose a scheme where the phase shifts selection is recast as
an SDR program followed by a stage consisting of Cholesky
matrix factorization, least squares, and randomization.

The paper is structured as follows. In Section II, we model
and elaborate on the problem of multi-group multicast hy-
brid transmit precoders with finite-resolution phase shifts and
multi-antenna receivers in mmWave systems. In Section III,
we formulate the problem and present the proposed solution in
Section IV. We analyze and compare the performance of our
design in Section V. Also, we include an insightful discussion
in Section VI. Finally, we conclude with the contributions of
this paper in Section VII.

II. SYSTEM MODEL

We adopt a mmWave system where a gNodeB serves K

users distributed into G different co-channel multicast groups.
The sets of users and groups are denoted by K = {1, 2, . . . ,K}
and I = {1, 2, . . . , G}, respectively. Each multicast group
Gi (i ∈ I) contains the indices of users that constitute it. The
amount of users in each multicast group is represented by
|Gi|, such that ∑G

i=1 |Gi| = K. As in [6], we assume that
Gi∩Gj = {∅} , ∀i 6= j. The gNodeB is equipped with Ntx transmit
antennas and NRF

tx RF chains, with G ≤ NRF
tx ≤ Ntx. The down-

link signal is represented by x = FMs, where F ∈ CNtx×NRF
tx is

the analog precoder whereas M = [m1,m2, . . . ,mG] ∈ CN
RF
tx ×G

assembles the digital precoders for each of the multicast
group. The collection of data symbols for the intended groups
is denoted by s = [s1, s2, . . . , sG]T ∈ CG×1, where each entry has
unit power on average, i.e., E

{
ssH

}
= I. Also, every element

(q, r) of the analog precoder is a phase rotation with constant
modulus. Therefore, [F]q,r ∈ F , where q ∈ Q = {1, 2, . . . , Ntx},
r ∈ R =

{
1, 2, . . . , NRF

tx

}
, F =

{√
δ,
√
δe

2π
L , . . . ,

√
δe

2π(L−1)
L

}
, L

denotes the number of different phase shifts that are allowed,
and δ is a scaling factor. Each multicast receiver has a finite
number of receive antennas Nrx � Ntx, and an equal number
of RF chains. Under the assumption of narrowband flat-fading,
the signal received by the k-th user (k ∈ Gi) is given by

yk = wH
k HkFmisi︸ ︷︷ ︸

desired multicast signal

+ wH
k Hk

G∑

j=1
j 6=i

Fmjsj

︸ ︷︷ ︸
interference

+ wH
k nk︸ ︷︷ ︸
noise

,
(1)

where i is the index of group Gi, and wk ∈ CNrx×1 repre-
sents the digital receive beamformer of the k-th user. Also,
Hk ∈ CNrx×Ntx denotes the channel between the gNodeB and
the k-th user, whereas nk ∼ CN

(
0, σ2I

)
denotes additive white

Gaussian noise. The signal–to–interference–plus-noise ratio
(SINR) at user k is defined as

SINRk =

∣∣wH
k HkFmi

∣∣2
∑
j 6=i

∣∣wH
k HkFmj

∣∣2 + σ2 ‖wk‖22
. (2)

III. PROBLEM FORMULATION

Aiming to optimize the transmit power, we formulate

Phyb : min
F,{mi}Gi=1,

{wk}Kk=1

G∑

i=1

‖Fmi‖22 (3a)

s.t.

∣∣wH
k HkFmi

∣∣2
∑
j 6=i

∣∣wH
k HkFmj

∣∣2 + σ2 ‖wk‖22
≥ γi, (3b)

‖wk‖22 = Pmax
rx , (3c)

‖F‖2F = NRF
tx , (3d)

[F]q,r ∈ F , q ∈ Q, r ∈ R, ∀k ∈ Gi, i ∈ I, (3e)
where (3a) targets the minimization of the transmit power.
Constraint (3b) imposes specific QoS requirements for each
multicast group, whereas (3c) restricts the power expenditure
for receive beamforming at each user. Constraint (3d) limits
the power associated with the analog precoder. In addition,
(3e) enforces every phase shift to belong to F . The target
SINR of every group Gi is denoted by γi. Note that (3a) is
non-convex due to multiplicative coupling between F and mi.
Constraint (3b) is non-convex since it is defined as the ratio
of two non-convex expressions. On the other hand, (3c) is
quadratic and non-convex on wk. Constraint (3e) is inherently
of combinatorial nature, therefore non-convex. Thus, (3d) is
also non-convex due to its dependence on (3e). As a result,
Phyb is classified as a non-convex quadratically constrained
quadratic program (QCQP), which is known to be NP-hard.

IV. PROPOSED SOLUTION

In this section, we propose an approach based on alternat-
ing optimization, where the unknown parameters F, {mi}Gi=1
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and {wk}Kk=1 are optimized sequentially and iteratively. Due
to sequential (and independent) parameter optimization, the
suitability of the solution can be compromised. Therefore,
we include an additional set of slack parameters {xk}Kk=1 to
reinforce the linkage between F, {mi}Gi=1 and {wk}Kk=1. Thus,
the resulting problem formulation is defined as follows,

Phyb
0 : min

F,{mi}Gi=1,

{wk}Kk=1,

{xk}Kk=1

G∑

i=1

‖Fmi‖22 + β
K∑

k=1

xk (4a)

s.t.

∣∣wH
k HkFmi

∣∣2 + xk∑
j 6=i

∣∣wH
k HkFmj

∣∣2 + σ2 ‖wk‖22
≥ γi, (4b)

‖wk‖22 = Pmax
rx , (4c)

‖F‖2F = NRF
tx , (4d)

[F]q,r ∈ F , (4e)

xk ≥ 0, q ∈ Q, r ∈ R, ∀k ∈ Gi, i ∈ I. (4f)
Each xk ∈ R+ penalizes the objective function (with a

sufficiently large β) whenever xk > 0 needs to be added to
the left-hand side numerator of (4b) for the QoS inequality to
hold. Thus, an increment of ∑G

i=1 ‖Fmi‖22 will be prioritized
instead of letting ∑K

k=1 xk augment. This regularization pro-
motes more QoS inequalities to be satisfied by action of F,
{mi}Gi=1 and {wk}Kk=1. The slack parameters {xk}Kk=1 ensure
that a feasible solution always exists as xk will absorb any
surplus that is required for (4b) to hold. In the following we
optimize the three sets of parameters by separating Phyb

0 into
3 sub-problems Phyb

1 , Phyb
2 and Phyb

3 , which are sequentially
and alternately solved.
Observation: Even with fully-digital precoders and single-
antenna receivers (i.e., F = I, wk = 1), a feasible solution
to (4) cannot always be guaranteed. This usually occurs
when Ntx < K (as in our case). As a consequence, Phyb

1 ,
Phyb
2 or Phyb

3 may render infeasible, thus interrupting the
optimization procedure. To prevent this, we include xk to
ensure the existence of a feasible solution (without raising
infeasibility certificates), thereby guaranteeing the continuity
of the sequential optimization process.
Observation: In contrast to adaptive hybrid precoding, where
the architectures changes dynamically (i.e., some phase
shifters activate/deactivate), in our case the fixed fully-
connected architecture allows us to determine δ = 1/NRF

tx from
(4d). Thus, (4d) is removed in the sequel.

A. Optimization of F

Assuming that {mi}Gi=1 and {wk}Kk=1 are known, we opti-
mize over F. Thus,

Phyb
1 : min

F,{xk}Kk=1

G∑

i=1

‖Fmi‖22 + β

K∑

k=1

xk (5a)

s.t. γi


∑

j 6=i

∣∣∣wH
k HkFmj

∣∣∣
2

+ σ2 ‖wk‖22




−
∣∣∣wH

k HkFmi

∣∣∣
2
≤ xk, (5b)

[F]q,r ∈ F , (5c)

xk ≥ 0, q ∈ Q, r ∈ R, ∀k ∈ Gi, i ∈ I. (5d)

Notice that we can express Fmi = Jif , where Ji = mT
i ⊗ I

and f = vec (F). With this redefinition, (5) can be equivalently
expressed as,

Phyb
1 : min

f ,{xk}Kk=1

G∑

i=1

‖Jif‖22 + β

K∑

k=1

xk (6a)

s.t. γi


∑

j 6=i

∣∣∣wH
k HkJjf

∣∣∣
2

+ σ2 ‖wk‖22




−
∣∣∣wH

k HkJif
∣∣∣
2
≤ xk, (6b)

[f ]n ∈ F , (6c)
x ≥ 0, n ∈ N , ∀k ∈ Gi, i ∈ I, (6d)

where N =
{

1, 2, . . . , NRF
tx Ntx

}
. Note that ‖Jif‖22 = Tr (RiD),

with Ri = JHi Ji and D = ffH . Also, [D]n,n = δ since [f ]n ∈
F . Furthermore, since

∣∣wH
k HkJif

∣∣2 = Tr
(
Vi,kD

)
, with Vi,k =

JHi HH
k wkw

H
k HkJi, we can recast (6) in its SDP form as,

Phyb
SDP,1 : min

D,{xk}Kk=1

G∑

i=1

Tr (DRi) + β

K∑

k=1

xk (7a)

s.t. Tr


D


γi

∑

j 6=i
Vj,k −Vi,k






+ σ2γi ‖wk‖22 ≤ xk, (7b)
[D]n,n = δ, (7c)

rank (D) = 1, (7d)
D < 0, (7e)
xk ≥ 0, n ∈ N , ∀k ∈ Gi, i ∈ I. (7f)

The SDP program in (7) has a linear objective subject to
affine constraints except for the non-convex constraint (7d),
which imposes a rank-one condition on D (as it is originally
obtained from D = ffH). Constraint (7e) restricts D to be
Hermitian positive semidefinite. It is worth noticing that (6c)
is the only constraint not strongly enforced in (7). Thus, while
the constant-modulus requirement of (6c) is satisfied by (7c),
its phase has been ignored. Nevertheless, the phase will be
optimized through the following procedure [20].

Stage A1: Notice that any element (n1, n2) of matrix D can
be represented as [D]n1,n2

= [f ]n1
[f ]∗n2

. Now, let us define
a vector u ∈ CN

RF
tx Ntx×1 such that ‖u‖22 = uHu = 1. As

a consequence, we can express [D]n1,n2
in terms of u, i.e.,

[D]n1,n2
=
(

[f ]n1
uT
)(

[f ]∗n2
u∗
)

. Assuming that qn = [f ]n u, D

can be recast as D = QTQ∗ with Q =
[
q1,q2, . . . ,qNRF

tx Ntx

]
.

Stage A2: In (7), the only non-convex constraint is (7d).
Thus, we define Phyb

SDR,1 as the resultant SDR surrogate of (7)
obtained upon dropping (7d). The solution returned by Phyb

SDR,1

is denoted by D̂. Then, via Cholesky matrix factorization we
obtain D̂ = Q̂T Q̂∗, where Q̂ =

[
q̂1, q̂2, . . . , q̂NRF

tx Ntx

]
. Although

we have derived a relation that associates the unknown phase
shifts f̂ with the known vectors {q̂n}N

RF
tx Ntx

n=1 (via q̂n =
[
f̂
]
n

û),
the vector û also remains unknown. Moreover, the initial
premise was that every q̂n could be obtained from the same
û. However, this cannot be guaranteed as a solution

(
f̂ , û
)

for
q̂n =

[
f̂
]
n

û, ∀n ∈ N may not exist. Thus, we aim at finding
approximate f̂ and û, such that q̂n ≈

[
f̂
]
n

û, and whose error
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is minimum in the 2-norm sense. Mathematically,

Phyb
LS : min

û,[f̂ ]
n

NRF
tx Ntx∑

n=1

∥∥∥q̂n −
[
f̂
]
n

û
∥∥∥
2

2
(8a)

s.t. ‖û‖22 = 1, (8b)
[
f̂
]
n
∈ F , n ∈ N . (8c)

Stage A3: Minimizing simultaneously over both q̂n and û

is challenging. If we assume that û is known such that (8b)
is satisfied, then we are required to solve

P̃hyb
LS : min

[f̂ ]
n

NRF
tx Ntx∑

n=1

∥∥∥q̂n −
[
f̂
]
n

û
∥∥∥
2

2
(9a)

s.t.
[
f̂
]
n
∈ F , n ∈ N (9b)

By expanding (9a), we realize that
∥∥∥q̂n −

[
f̂
]
n

û
∥∥∥
2

2
= q̂Hn q̂n−

2Re
([

f̂
]
n

q̂Hn û
)

+
∣∣∣
[
f̂
]
n

∣∣∣
2

ûH û. Thus, (9) is equivalent to

P̃hyb
LS : max

[f̂ ]n

NRF
tx Ntx∑

n=1

Re
([

f̂
]
n

q̂Hn û
)

(10a)

s.t.
[
f̂
]
n
∈ F , n ∈ N . (10b)

Note that (10) can be decomposed into NRF
tx Ntx independent

sub-problems. Thus, since zn = q̂Hn û is known, we need to
select [f ]n such that the real part of (10a) is maximized. This
is equivalent to choosing

[
f̂
]
n
∈ F with the closest phase to

z∗n. After finding f̂ , it can be reshaped in order to obtain F̂. As
shown in Algorithm 1, Nrand candidate vectors û are generated
and the best-performing option is maintained.

B. Optimization of mi

We assume herein that F and {wk}Kk=1 are known. Thus,
the original problem in (4) collapses to

Phyb
2 : min

{mi}Gi=1,

{xk}Kk=1

G∑

i=1

‖Fmi‖22 + β
K∑

k=1

xk (11a)

s.t. γi


∑

j 6=i

∣∣∣wH
k HkFmj

∣∣∣
2

+ σ2 ‖wk‖22




−
∣∣∣wH

k HkFmi

∣∣∣
2
≤ xk, (11b)

xk ≥ 0, ∀k ∈ Gi, i ∈ I. (11c)
The SDP equivalent formulation of (11) is expressed as

Phyb
SDP,2 : min

{Mi}Gi=1,

{xk}Kk=1

G∑

i=1

Tr (YMi) + β

K∑

k=1

xk (12a)

s.t. Tr


Xk


γi

∑

j 6=i
Mj −Mi






+ σ2γi ‖wk‖22 ≤ xk, (12b)
Mi < 0, (12c)
rank (Mi) = 1, (12d)
xk ≥ 0, ∀k ∈ Gi, i ∈ I, (12e)

where Y = FHF, Xk = FHHH
k wkw

H
k HkF and Mi = mim

H
i .

Similarly as before, (12) has a linear objective with affine
constraints except for (12d). Thus, we define Phyb

SDR,2 as the
SDR surrogate of (12), where (12d) is neglected.

C. Optimization of wk

Now, we assume that F and {mi}Gi=1 are given. Therefore,
we optimize over {wk}Kk=1 as shown in (13)

Phyb
3 : min

{wk}Kk=1,

{xk}Kk=1

K∑

k=1

xk (13a)

s.t. γi


∑

j 6=i

∣∣∣wH
k HkFmj

∣∣∣
2

+ σ2 ‖wk‖22




−
∣∣∣wH

k HkFmi

∣∣∣
2
≤ xk, (13b)

‖wk‖22 = Pmax
rx , (13c)

xk ≥ 0, ∀k ∈ Gi, i ∈ I, (13d)
In SDP form, (13) can be recast as

Phyb
SDP,3 : min

{Wk}Kk=1,

{xk}Kk=1

K∑

k=1

xk (14a)

s.t. Tr


Wk


γi

∑

j 6=i
Zk,j − Zk,i






+ σ2γiTr (Wk) ≤ xk, (14b)
Tr (Wk) = Pmax

rx , (14c)
Wk < 0, (14d)
rank (Wk) = 1, (14e)
xk ≥ 0, ∀k ∈ Gi, i ∈ I, (14f)

where Wk = wkw
H
k and Zk,i = HkFmim

H
i FHHH

k . Now, we
define Phyb

SDR,3 as (14) without the non-convex constraint (14e).
Furthermore, since the optimization of Wk only affects SINRk,
then Phyb

SDR,3 can be split into K parallel sub-problems Phyb
SDR,3,k.

For completeness, we summarize our proposed scheme in
Algorithm 1 with more implementation details. Note that
Phyb
SDR,1, Phyb

SDR,2 and Phyb
SDR,3 can be recast as linear programs

and can therefore be efficiently solved in polynomial time
by numerical solvers. In our case, we employed CVX and
SDPT3. In Algorithm 1, g(t) computes the total transmit
power, whereas K(t) counts the number of users whose QoS re-
quirement has been satisfied at iteration t. In the initialization
stage, every wk is set in omnidirectional reception mode, i.e.,
only one antenna is active. Similarly, every multicast precoder
mi is in omnidirectional mode. Then, F, {mi}Gi=1 and {wk}Kk=1

are alternately optimized for a number of iterations Niter. At
each iteration, the SDR-based solutions are used to generate
Nrand potentially befitting solutions.

V. SIMULATION RESULTS

To evaluate our proposed design, we consider the geometric
channel model with Mp = 8 propagation paths between the
transmitter and each user. The maximum receive power for
all the users is Pmax

rx = 10 dBm, and F consists of L = 8

different phase shifts equally spaced in a circle with radius√
δ. The regularization hyper-parameter in (4) is defined as

β = G3NRF
tx NtxNrx. In the following scenarios, we compare

the performance of fully-digital and hybrid precoders in terms
of the number of decoded packets Npackets and the required
transmit power Ptx for several configurations of γi, NRF

tx , Ntx,
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Algorithm 1: Proposed Iterative Approach
Define

Let g(t) =
∑G
i=1

∥∥∥F(t)m
(t)
i

∥∥∥
2

2
be the total transmit power.

Let K(t) be the number of users that satisfy (5b) at iteration t.
Initialize

Set w
(0)
k ← [1 0]T ,∀k ∈ K, m

(0)
i ← [1 0]T ,∀i ∈ I.

Set K̃ ← 0, g̃ ← 105, t← 1.
Iterate

Set C1 ← 0, C2 ← 0 and
{
C3,k

}K
k=1
← 0.

Optimize F:
Solve Phyb

SDR,1 to obtain D(t).
repeat

Generate u with uniform distribution in the sphere ‖u‖22 = 1.
Solve P̃hyb

LS and compute F(t).
if K(t) > K̃ or

(
K(t) = K̃ and g(t) ≤ g̃

)

Assign F← F(t), g̃ ← g(t), K̃ ← K(t).
end
Increase the counter C1, C1 ← C1 + 1.

while C1 ≤ Nrand

Optimize mi:

Solve Phyb
SDR,2 and obtain

{
M

(t)
i

}G
i=1

.
repeat

Generate m̃
(t)
i ∼ CN

(
0,M

(t)
i

)
, ∀i ∈ I.

if K(t) > K̃ or
(
K(t) = K̃ and g(t) ≤ g̃

)

Assign {mi}Gi=1 ←
{

m
(t)
i

}G
i=1

, g̃ ← g(t), K̃ ← K(t).
end
Increase the counter C2, C2 ← C2 + 1.

while C2 ≤ Nrand

Optimize wk:

Solve Phyb
SDR,3 and obtain

{
W

(t)
k

}K
k=1

.
repeat for each k

Generate w
(t)
k ←W

(t)
k vk,∀k ∈ K with vk uniformly

distributed in the sphere ‖vk‖22 = 1.
if K(t) > K̃ or

(
K(t) = K̃ and g(t) ≤ g̃

)

Assign wk ← w
(t)
k , g̃ ← g(t), K̃ ← K(t)

end
Increase the counter C3,k , C3,k ← C3,k + 1

while C3,k ≤ bNrand/Kc
Until t > Niter

Nrx, Nrand and Niter. In the sequel, we consider K = 60 users
evenly distributed among G = 4 multicast groups. All groups
have the same SINR requirements, i.e., γ = γi (∀i ∈ I) and
σ2 = 10 dBm. All the numerical results show the average over
100 channel realizations.

1) Impact of NRF
tx : The objective of this experiment is to

evaluate the performance of the hybrid precoder with respect
to its fully-digital counterpart, when NRF

tx = {5, 6, 7, 8, 9, 10, 11}
is varied for different γ = {4, 6, 8}. We assume that Ntx = 12,
Nrx = 2, Niter = 3 and Nrand = 500. The results for this
setting are shown in Fig. 1, where the hybrid precoder is
denoted by HY and the fully-digital by FD. We observe that
for any specific γ, the number of decoded packets Npackets

augments when NRF increases. By observing Npackets, it is
evident that it suffices to only have NRF

tx = 8 to yield
a similar performance as that of the fully-digital precoder
(which requires NRF

tx = 12). However, due to the reduced

γ = 4 dB γ = 6 dB γ = 8 dB
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Figure 1: Evaluation of the number of decoded packets and
transmit power for Ntx = 12 when γ and NRF

tx are varied.
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Figure 2: Evaluation of the number of decoded packets and
transmit power when Nrx is varied.

number of RF chains in the hybrid precoder, interference
management becomes more challenging at the transmitter.
Thus, we observe that in general, the hybrid precoder requires
more transmit power Ptx to attain a similar performance.
As more RF chains are added, the required transmit power
decreases as interference can be more effectively mitigated.
It is also worth noting an apparently abnormal behavior that,
for instance, occurs when γ = 6 dB for NRF

tx = 7 and NRF
tx = 8.

Observe that Ptx is higher when NRF
tx = 8 than when NRF

tx = 7.
However, Npackets is larger by (approximately) one unit when
NRF

tx = 8. The reason is that some users experiencing high
interference cannot be served when NRF

tx = 7. Nevertheless,
when an additional RF chain is incorporated, the number
of degrees of freedom increases and oftentimes a subset of
the uncatered users can be served at the expense of boosting
the transmit power. The maximum value of Npackets is 60 as
we consider one transmitted message per user. Due to the
highly interfering scenario we have considered, not even the
fully-digital precoder with Nrand = 500 can guarantee 100%
successful reception.

2) Impact of Nrx: The objective of this configuration is
to observe the performance improvement of Npackets and the
importance of the multi-antenna architecture at the receiver.
We consider that γ = 5 dB and Niter = 4. Since we vary
Nrx, the number of randomization Nrand should scale with
the dimensionality of Hk,F, {mi}Gi=1 , {wk}Kk=1. Thus, for this
scenario, we select Nrand = 400 + 300 (Ntx +Nrx − 11) with
Ntx = 12 and Nrx = {1, 2, 3, 4, 5}. For the hybrid precoder,
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Figure 3: Evaluation of the number of decoded packets and transmit power for Ntx = 12 when Niter and Nrand are varied.

we assume that NRF = 8. On the other hand, for the fully-
digital version Ntx = NRF

tx . The results in Fig. 2 demonstrate
that, with only Nrx = 2 antennas at the receiver, it is possible
to mitigate the interference and improve Npackets considerably.
The gain is more noticeable for the hybrid precoder as Npackets

improves by 60%. For the fully-digital precoder, there is also
a moderate gain of 9%. Moreover, the average transmit power
per successfully received message improves by 12.9% and
16.8% for the digital and hybrid precoders, respectively. It is
evident from this scenario that, at the transmitter side, Npackets

cannot be further improved when the receivers operate with a
single omnidirectional antenna (i.e., Nrx = 1), as interference
and desired signals are equally amplified. However, when
Nrx = 2, the receivers can enforce limited selectivity by
rejecting the unwanted interference to a certain extent, thereby
improving Npackets. Finally, we observe that Npackets for both
types of precoders are very similar when Nrx ≥ 2 although the
consumed power differs in 6− 8 dBm.

3) Impact of Nrand and Niter: The objective of this setting
is to analyze the performance sensitivity of the fully-digital
and hybrid precoders to the selection of Nrand and Niter. To
this purpose, we consider Nrx = 2 and γ = 5 dB. For the
fully-digital precoder, we assume that Ntx = NRF

tx = 12. On
the other hand, the hybrid precoder is endowed with NRF

tx = 8

and Ntx = 12. We evaluate the performance variation when
Niter = {1, 2, 3, 4, 5} and Nrand = {1, 10, 25, 50, 75, 100, 500, 1000}.
The results in terms of Npackets and Ptx for both types of
precoder are shown in Fig. 3. We observe that in the fully-
digital precoder case, Nrand is more influential than Niter

since Npackets improves noticeably when Nrand is augmented,
whereas a small improvement can be observed between the
cases Niter = 1 and Niter = 2. Conversely, for the hybrid
precoder, Niter promotes performance gap reduction with
respect to the fully-digital implementation. The fully-digital
precoder converges faster since only {mi}Gi=1 and {wk}Kk=1

are optimized. In the hybrid precoder case, we need to
design F, {mi}Gi=1 and {wk}Kk=1 with even more limiting
constraints (finite-resolution constant-modulus phase shifts),
thus requiring more iterations to obtain an stable solution.

Generation of co-channel users: In order to gain more
understanding on the kind of scenario we are dealing with,
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Figure 4: Evaluation of the number of decoded packets and
transmit power for Ntx = 12 when Niter and Nrand are varied.

we show in Fig. 4 the histogram of channel correlations for
(i) users that belong to the same group (intra-cluster) and (ii)
users that belong to different groups (inter-cluster). In the first
case, the average channel correlation is 0.24 whereas in the
second case is 0.10. The mean angles of departure

{
θ̄AoD
i

}G
i=1

for the multicast groups are distributed in the range [−80°, 80°]
with angular spread σAoD = 30°. The mean angles of arrival{
θ̄AoA
k

}K
k=1

for each receiver are uniformly distributed in the
range [−360°, 360°] with angular spread of σAoA = 60°. Thus,
for a given user k′ that belongs to group Gi′ , the paths will
have angles of departure and arrival in the ranges θ̄AoD

i′ ±σAoD

and θ̄AoA
i′ ± σAoD, respectively. To shed more light on this

aspect, Fig. 5 shows a particular channel realization when
Ntx = 8, NRF

tx = 4, Nrx = 2, K = 4, G = 4, θ̄AoD
1 = −60°,

θ̄AoD
2 = −20°, θ̄AoD

3 = 20°, θ̄AoD
4 = 60° and σAoD = 5°. Due to

existence of multiple paths, the transmit and receive beams
are not fully aligned as expected in line-of-sight scenarios.
Thus, each of the users orients their receive power in specific
directions that are coherent with the most meaningful beams of
the transmitter beam-pattern. Also, note that secondary lobes
at the receiver have been shaped to minimize amplification of
interfering signals.

VI. DISCUSSION

Co-channel users: We have considered a very challenging
scenario throughout our simulations in order to examine the
operational limits of our design. We can observe from Fig. 4
that intra-cluster and inter-cluster users are not easily separa-
ble as a subset of them have similar channel correlations. In
our scenarios, this is determined by the selection of

{
θ̄AoD
i

}G
i=1

,{
θ̄AoA
k

}K
k=1

, σAoD and σAoA. We notice that highly correlated
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Figure 5: Radiation patterns

users (co-located users) belonging to different groups were the
most challenging to cater, specifically for the hybrid precoder
whose beamforming flexibility is limited.
Hybrid precoder design: Different from the majority of
works in hybrid precoding (either multi-user or multicast),
the proposed design has no knowledge of the optimal fully-
digital precoder (as in e.g., [19]). Thus, our proposed design is
not obtained as an approximation of the optimal fully-digital
implementation. Without an optimal reference, the design
becomes more challenging.
Initial points: We have considered naive initializations for
the optimization parameters. We leave for future work the
exploitation of AoA/AoD to infer more befitting initializations
and thus improve the performance of the scheme.
Fully-digital precoder design: The fully-digital implemen-
tation is obtained by assigning F = I and then optimizing
alternately over {mi}Gi=1 and {wk}Kk=1.
Algorithm convergence: There is no theoretical evidence
supporting the convergence of Algorithm 1, essentially due
to the non-convexity of the problem. However, the proposed
scheme exhibits an stable behavior for both digital and hybrid
precoders since the solutions do not vary significantly as Niter

and Nrand increase beyond a certain limit.
Computational complexity: Neglecting the complexity
owing to randomization and obviating the insignificant
complexity increase due to the inclusion of slack pa-
rameters, the computational complexity of the proposed
scheme when Niter = 1 is O

((
NRF

tx Ntx
)6

+K
(
NRF

tx Ntx
)2)

+

O
(
G3
(
NRF

tx

)6
+KG

(
NRF

tx

)2)
+O

(
K (Nrx)6 +K (Nrx)4

)
.

VII. CONCLUSION

In this paper, we investigated the optimization of multi-
group multicast hybrid precoders in mmWave systems. Our
proposed solution is based on the alternating optimization,
semidefinite relaxation and Cholesky matrix factorization,
where the digital precoder, analog phase shifts, and receive
combiners are optimized sequentially in an iterative manner.
Furthermore, our formulation allows the employment of an
arbitrary number of phase shifts. It was corroborated through
extensive simulations that the hybrid precoder can indeed

attain similar performance as its fully-digital counterpart, even
in very challenging scenarios with high inter-cluster user
correlation. In addition, we demonstrate that having receivers
with two antennas suffices to improve the number of decoded
packets. Thus, our proposed design achieves up to 60% gain.
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Abstract—This paper investigates dual-layer non-orthogonally
superimposed transmissions for industrial internet of things (IoT)
millimeter-wave communications. Essentially, the overlayer is a
ubiquitous multicast signal devised to serve all the devices in
coverage with a common message, i.e., critical control packet.
The underlayer is a composite signal that consists of private
unicast messages. Due to safety implications, it is critical that
all devices can decode the multicast information. To ensure this
requirement, we jointly optimize the hybrid precoder, analog com-
biners, power allocation, and fairness. Specifically, we incorporate
a power splitting constraint between the two overlaid signals
and enforce supplementary per-device constraints to guarantee
multicast fairness. Performance is evaluated in terms of the
spectral efficiency, multicast fairness, and bit error rate, thus
corroborating the feasibility of our proposed scheme.

Index Terms—fairness, hybrid precoding, unicast, multicast,
non-orthogonal multiple access, industrial IoT, mmWave.

I. INTRODUCTION

In factories, multiple industrial devices (e.g., sensors, ac-
tuators, programmable logic devices, robotic arms) are inher-
ently hyper-connected via hard-wiring to ensure redundancy,
safety and precise coordination among the different phases
of a manufacturing process. Nevertheless, wired connections
hinder extensive automation deployment and constrain the
mechanics of mobile robotics. Considering the rapid densi-
fication of industrial devices, wired connections become less
appealing for factories of the future (i.e., Industry 4.0). Thus,
wireless information transmission is a viable alternative for
these environments. However, guaranteeing high-performance
in terms of fairness, spectral efficiency and reliability is a
challenging task.

A. Background and Motivation

Recent studies emphasize the importance of integrating non-
orthogonal multiple access (NOMA) with the next-generation
wireless technologies, e.g., massive multiple-input multiple-
output (mMIMO) and millimeter-wave (mmWave) [1], [2].
NOMA can concurrently serve multiple devices within the
same radio resource via non-orthogonal superposition of sig-
nals in power or code domain (e.g., [3], [4]), thus improving
the spectral efficiency. By interweaving mMIMO, mmWave
and NOMA, the expected next-generation networks through-
put demands can be fulfilled while enabling simultaneous
coexistence of heterogeneous connectivities. Owing to recent
progress in mmWave technology, the mmWave spectrum is
regarded as a plausible candidate to replace wires in industrial
sectors. As a matter of fact, a measurement campaign reported

that mmWave communications is feasible in industrial envi-
ronments [5]. Furthermore, mmWave spectrum does not only
provide high data rates (due to wide-band availability) but also
characterizes for requiring antennas with a small footprint that
can be easily embedded onto industrial devices and machinery.

Due to high fabrication costs, hardware complexity and
power consumption, mmWave fully-digital precoders are un-
affordable. In contrast, more power-efficient hybrid (digital-
analog) precoders have emerged as a functional solution,
where a high-dimensional analog precoder (consisting of
a low-cost phase shifts network) is connected in cascade
with a low-dimensional digital precoder [6], [7]. Essentially,
mmWave communications has become a tangible technology
due to advancements in hybrid architectures.

In this paper, we foresee an industrial scenario where a next
generation Node B (gNodeB) transmits common multicast
control beacons with superlative importance (e.g., critical
safety packets, coordination messages) alongside less relevant
private unicast information to each device (e.g., software or
routine updates). To this aim, we propose the integration of
NOMA, massive MIMO and mmWave. Specifically, NOMA is
harnessed to transmit two overlaid signals (i.e., multicast and
unicast) with different priorities. Further, mmWave provides
wide-band spectrum that is efficiently exploited by massive
MIMO. Thus, this integration can be leveraged to serve numer-
ous industrial devices with a variety of data rate requirements
while improving the spectral efficiency of the system.

B. Related Work

Power-domain NOMA (P-NOMA) is a comprehensive class
of multiple-access technology capable of enhancing the spec-
trum utilization by means of superposing multiple signals with
distinct power levels in the same time-frequency radio resource
[8] (e.g., layered-division multiplexing (LDM) [9], multi-user
superposition transmission (MUST) [3]). Although promising,
the deployment of P-NOMA in practical systems has been con-
sistently neglected due to the implementation complexity for
successive interference cancellation (SIC). Nevertheless, due
to novel advancements in signal processing and silicon tech-
nology, P-NOMA has reemerged in digital terrestrial television
(e.g., [9]) and wireless mobile communications (e.g., [3], [4])
domains as a feasible recourse to meet the ever-increasing data
rate demands. For instance, [10] leverages LDM to transmit
superposed broadcast/unicast signals in single-frequency net-
works. The authors of [11] investigate energy efficiency in



MUST systems, where a base station with hybrid precoder
conveys information to single-antenna receivers clustered in
pairs. In [12], dual-layer LDM broadcast/unicast transmissions
with quality of service constraints (QoS) is researched, consid-
ering a system with fully-digital precoders and single-antenna
receivers. The authors in [13] investigate the design of overlaid
LDM unicast/multicast precoders with the aim of maximizing
the sum-capacity in a scenario with a hybrid transmitter and
multi-antenna users. In [14], LDM broadcast/unicast trans-
missions with fully-digital transmitters and backhaul capacity
constraints is investigated. In [15], [16], a similar idea to
that described in [12] is proposed, where two data layers are
superposed. While the multicast and unicast data streams are
originated independently in [12], in [15], [16] the two data
streams are interrelated. The unicast data for each user is
split into common and private parts. Thus, one layer carries a
common message consisting of the multicast information and
the unicast common parts whereas the remaining layer conveys
the unicast private messages only. Through this procedure,
unicast inter-user interference (IUI) can be partially decoded
and removed at each receiver (by exploiting the common
unicast parts), thus further boosting the spectral efficiency.

Although mentioned in a few prior works, transmit power
splitting among unicast and multicast signals is not considered
in the formulations. For instance, in [12], explicit unicast and
multicast QoS inequality constraints were imposed, thus re-
moving the necessity of designing the power sharing between
the signals. In [13], this aspect was not considered, causing
undesirable power allocation and information irrecoverability
at the receivers. On the other hand, multicast fairness at
each receiver has neither been researched in non-orthogonally
overlaid multicast/unicast transmissions.

C. Our Contributions

We study the spectral efficiency maximization problem in
dual-layer LDM multicast/unicast systems, while considering
hybrid precoders and analog combiners, subject to multicast
fairness and transmit power constraints. To the best of our
knowledge, we are the first to prioritize the multicast signal
(over unicast) in dual-layer LDM multicast/unicast transmis-
sions by means of a power-splitting mechanism while guar-
anteeing multicast fairness at each receiver. These features
are highly relevant for industrial IoT wireless networks to
ensure successful decoding of the control signals. Specifically,
we consider power splitting to allow the multicast signal to
be received with higher power (than the aggregate unicast
signal), thus ensuring proper operation of the SIC decoder.
Also, to guarantee ubiquitous multicast service (i.e., delivery
of critical control packets), we incorporate fairness constraints
that guarantee decodability of the multicast information at
each receiver, thus promoting reliability. Further, we assume
a hybrid precoder at the transmitter and analog combiners at
each receiver, where finite-resolution phase shifts are adopted.
We propose two solutions for the problem described. Our
first scheme, PLDM-1, designs independently the multicast
precoder from the unicast precoders In the second approach,
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Figure 1: Dual-layer unicast-multicast LDM system

PLDM-2, the multicast precoder is obtained as a conic combi-
nation of the unicast precoding vectors. Thus, in PLDM-1 each
type of signal (multicast or unicast) is transmitted through a
different precoder with distinct spatial radiation pattern. Con-
trastingly, PLDM-2 repurposes the same precoder to multiplex
the multicast and unicast signals with different powers. As a
result, the two signals exhibit the the same spatial radiation
pattern but with different power signatures.

Our paper is organized as follows. In Section II, we describe
the system model whereas in Section III, we formulate the
problem above mentioned. In Section IV, our proposed solu-
tion is described in detail. Section V is devoted for simulation
results. Section VI discusses relevant implementation aspects
while Section VII summarizes our conclusions.

II. SYSTEM MODEL

We assume a mmWave system, where a gNodeB serves K
devices in the downlink. The transmitted signal consists of two
non-orthogonal layers that overlap with different power levels1.
The primary layer is a multicast signal that transports a shared
high-priority packet intended for all the devices in coverage.
The secondary layer is a composite signal that contains multi-
ple unicast messages, each intended for a distinct device. The
gNodeB is equipped with a hybrid transmitter consisting of Ntx

transmit antennas and NRF
tx ≤ Ntx radio frequency (RF) chains

as shown in Fig. 1. Essentially, a hybrid precoder is formed
by a high-dimensional network of low-resolution constant-
modulus phase shifters (analog precoder) that perform ele-
mentary beamsteering at the RF frequency. Interconnected in
cascade, a low-dimensional mixed-signal constituent (digital
precoder) operates at the baseband frequency performing more
sophisticated beamforming [6], [17]. Each receiver possesses
a single RF chain with Nrx antennas, which enables analog
receive beamforming. In addition, without loss of generality,

1We only discuss herein PLDM-1. By redefining x = FB [I|u] [s|z]T ,
PLDM-2 can be derived through a similar procedure. The elements of u ∈
RK×1 represent the weights to be optimized. Thus, m = Bu.



we assume that NRF
tx = K. The downlink signal is represented

by x = F [B|m] [s|z]T , where F = [f1, f2, . . . , fK ] ∈ CNtx×K is
the analog precoder whereas B = [b1,b2, . . . ,bK ] ∈ CK×K

and m ∈ CK×1 represent the unicast and multicast digital
precoders, respectively. Also, s = [s1, s2, . . . , sK ]T ∈ CK×1

denotes the unicast data symbols for the K devices and z ∈ C
represents the common multicast symbol, with E

{
ssH

}
= I and

E
{
zHz

}
= 1. Under the assumption of narrowband flat-fading,

the signal received by the k-th device is given by
yk = wH

k HkFmz︸ ︷︷ ︸
common multicast signal

+ wH
k HkFbksk︸ ︷︷ ︸

unicast signal for device k

+ wH
k HkF

∑

j 6=k
bjsj

︸ ︷︷ ︸
interference at device k

+ wH
k nk︸ ︷︷ ︸
noise

, (1)

where wk ∈ CNrx×1 represents the analog combiner of the k-th
device, Hk ∈ CNrx×Ntx denotes the downlink channel between
the gNodeB and the k-th device, whereas nk ∼ CN

(
0, σ2I

)

denotes additive white Gaussian noise. At each receiver, the
multicast symbol is decoded first by treating the aggregate
unicast signals as interference. Subsequently, the multicast
signal is reconstructed and then subtracted from yk (by em-
ploying the decoded multicast symbol and the channel Hk).
As a consequence, the remaining byproduct consists solely
of unicast components and noise, from where each receiver
k can decode its intended symbol sk. Thus, the signal–to–
interference–plus–noise ratio (SINR) of the multicast and
unicast signals are respectively defined as

γ̃k =

∣∣wH
k HkFm

∣∣2
∑
j

∣∣wH
k HkFbj

∣∣2 + σ2 ‖wk‖22
(2)

γk =

∣∣wH
k HkFbk

∣∣2
∑
j 6=k

∣∣wH
k HkFbj

∣∣2 + σ2 ‖wk‖22 .
(3)

III. PROBLEM FORMULATION

Aiming at maximizing the aggregate multicast and unicast
spectral efficiency, the optimization problem is formulated as
P : max

{wk}Kk=1,

{fk}Kk=1,

{bk}Kk=1,m,∆

∑

k

log2 (1 + γ̃k) + log2 (1 + γk)− C∆ (4a)

s.t. |γ̃k − γmin| ≤ ∆, ∀k ∈ K, (4b)
γ̃1 ≥ γ̃2 ≥ · · · ≥ γ̃K ≥ γ̃1, (4c)
‖Fm‖22 /

∑

k

‖Fbk‖22 ≥ β, (4d)

‖Fm‖22 +
∑

k

‖Fbk‖22 ≤ Ptx, (4e)

[F]q,r ∈ F , q ∈ Q, r ∈ R, (4f)

[wk]n ∈ W, n ∈ N , ∀k ∈ K, (4g)
∆ ≥ 0, (4h)

where (4b) confines the multicast SINRs to a narrow interval
around a predefined threshold γmin (with deviation ∆), thus
ensuring the control packet decoding. Constraint (4c) binds
all the multicast SINRs together in order to promote fairness.
Constraint (4d) splits the power among multicast and unicast
signals (in the ratio of β ≥ 1 to 1) with the purpose of enforcing
higher priority on the multicast information and securing SIC

decoding. Constraint (4e) restricts the transmit power to Ptx

while (4f)-(4g) enforce the limitations of analog beamforming,
i.e., only a small number of Ltx (at the analog precoder) and
Lrx (at the analog combiners) constant-modulus phase shifts
are allowed. Finally, (4g) enforces positiveness on ∆. Under
sufficient power Ptx (and large positive C) then ∆ → 0, since
(4b) can be satisfied with equality. However, when Ptx is
insufficient, ∆ increases such that every γ̃k is at most at ∆

from γmin while simultaneously enforcing fairness via (4c).
Every element [F]q,r of the analog precoder is constrained

to a feasible set F =

{
1/
√
Ntx, . . . , 1/

√
Ntxe

j
2π(Ltx−1)

Ltx

}
, where

q ∈ Q = {1, . . . , Ntx} and r ∈ R =
{

1, . . . , NRF
tx

}
. Similarly,

every element [wk]n of the k-th analog combiner is restricted to
W =

{
1/
√
Nrx, . . . , 1/

√
Nrxe

j
2π(Lrx−1)

Lrx

}
, n ∈ N = {1, . . . , Nrx}.

Remark: Note that (4a) aims to jointly maximize the sum-
capacity of multicast and unicast signals. While maxi-
mization of the latter term is widely accepted, optimizing
the multicast sum-capacity is non-standard. However, in
our case the multicast term in (4a) is linked to (4b)-
(4c), thus enforcing the multicast SINRs to be equal and
proximate to γmin. Thus, the combined action of (4a)-
(4c) promotes multicast sum-capacity maximization and
fairness improvement.

IV. PROPOSED SOLUTION

We recast (4) as (5) without loss of optimality
P0 : max

{wk}Kk=1,{fk}Kk=1,

{pk}Kk=1,{vk}Kk=1,m,∆

∑

k

γ̃k + γk − C∆ (5a)

s.t. |γ̃k − γmin| ≤ ∆, ∀k ∈ K, (5b)
γ̃1 ≥ γ̃2 ≥ · · · ≥ γ̃K ≥ γ̃1, (5c)
‖Fm‖22 /

∑

k

pk ‖Fvk‖22 ≥ β, (5d)

‖Fm‖22 +
∑

k

pk ‖Fvk‖22 ≤ Ptx, (5e)

[F]q,r ∈ F , q ∈ Q, r ∈ R, (5f)

[wk]n ∈ W, n ∈ N , ∀k ∈ K, (5g)
‖vk‖22 = 1,∀k ∈ K, (5h)
pk ≥ 0,∀k ∈ K, (5i)
∆ ≥ 0, ∀k ∈ K, (5j)

where (4a) is transformed harnessing ∑k log2 (1 + γk)→∑
k γk

(refer to Appendix). Also, pk is the power associated to
the unit-power vector vk, such that bk =

√
pkvk. Due to

expressions involving multiplicative coupling (i.e., (5a)-(5e))
and non-convex domains (i.e., (5f)-(5g)), P0 is challenging to
solve. Except for the convex constraints (5h)-(5j), (5a)-(5g) are
non-convex. In order to approach (5), we adopt a sequential
optimization scheme that can only guarantee local optimality.
Hence, P0 is decomposed into smaller sub-problems P1 and
P2 that are independently and alternately optimized.



A. Optimization of wk, fk and vk

We optimize {wk}Kk=1, {fk}Kk=1 and {vk}Kk=1 to maximize
the unicast sum-capacity while momentaneously disregarding
the multicast constituent. Therefore, (5b)-(5c) and (5j) are
not considered in P1. Moreover, since m and {pk}Kk=1 are
optimized in P2, we can further suppress (5d)-(5e) and (5i)-
(5j) since m and {pk}Kk=1 can be finely tuned to satisfy such
constraints in a latter stage. Thus, we define
P1 : max

{wk}Kk=1,{fk}Kk=1,{vk}Kk=1

∑

k

γk (6a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R, (6b)

[wk]n ∈ W, n ∈ N , ∀k ∈ K, (6c)
‖vk‖22 = 1, ∀k ∈ K. (6d)

Since (6a) entails coupling of parameters and (6b)-(6c) are
defined over non-convex sets, P1 is non-convex. On the other
hand, the objective function ∑k γk is a sum of fractional pro-
grams and therefore NP-complete. Although not guaranteeing
optimality, a generally accepted practice is to express a sum
of fractional programs in the substractive form [11]. Thus, we
define the surrogate problem

P̃1 : max
{wk}Kk=1,{fk}Kk=1,{vk}Kk=1

∑

k

pk

∣∣∣wH
k HkFvk

∣∣∣
2
− ψ

∑

k

σ2

− ψ
∑

k

∑

j 6=k
pj

∣∣∣wH
k HkFvj

∣∣∣
2

︸ ︷︷ ︸
aggregate IUI of allK devices

(7a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R, (7b)

[wk]n ∈ W, n ∈ N , ∀k ∈ K, (7c)
‖vk‖22 = 1, ∀k ∈ K, (7d)

which is obtained by subtracting the denominator from the
numerator (with ‖wk‖22 = 1 due to (6c)). We optimize P̃1 by
first maximizing ∑k pk

∣∣wH
k HkFvk

∣∣2 (in P̃1,1) and subsequently
minimizing the aggregate IUI ∑

k

∑
j 6=k pj

∣∣wH
k HkFvj

∣∣2 (in
P̃1,2), in an alternate manner. For the same reasons mentioned
above, P̃1, P̃1,1 and P̃1,2 are also non-convex.

A.1 Design of wk and fk

Disregarding the interference term in P̃1, we maximize the
aggregate power of the desired unicast signals at each receiver

P̃1,1 : max
{wk}Kk=1

,{fk}Kk=1

∑

k

pk

∣∣∣wH
k HkFvk

∣∣∣
2

(8a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R, (8b)

[wk]n ∈ W, n ∈ N , ∀k ∈ K. (8c)
Without knowledge of {vk}Kk=1, and since NRF

tx ≤ K we
are in the position of maximizing the RF-to-RF channel gain
|hk|2 =

∣∣wH
k Hkfk

∣∣2 for each device k, where F = [f1, f2, . . . , fK ].
Thus, we define K sub-problems

P̃(k)
1,1 : max

wk,fk

∣∣∣wH
k Hkfk

∣∣∣
2

(9a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R, (9b)

[wk]n ∈ W, n ∈ N , ∀k ∈ K, (9c)
that can be solved in parallel. The channel Hk is de-
composed via singular value decomposition, i.e., Hk =

[lk|Lk] Λk [rk|Rk]H , where lk and rk are the left and right
singular vectors corresponding to the largest singular value
[10] [13]. Then, wk and fk are selected such that [wk]n =

argminφ∈W
∣∣φ− [lk]n

∣∣2 = argmaxφ∈W Re
{
φ∗ [lk]n

}
and [fk]l =

argminφ∈F
∣∣φ− [rk]l

∣∣2 = argmaxφ∈F Re
{
φ∗ [rk]l

}
, n ∈ N , q ∈ Q,

∀k ∈ K, thus satisfying (9b)-(9c). Essentially, φ is chosen from
W or F , such that its phase is the closest to the phase of [lk]n
or [fk]l, respectively.

A.2 Design of vk

Upon suppressing the first term in P̃1, we minimize the
aggregate inter-user interference via

P̃1,2 : min
{vk}Kk=1

∑

k

∑

j 6=k
pj

∣∣∣wH
k HkFvj

∣∣∣
2

(10a)

s.t. ‖vk‖22 = 1,∀k ∈ K. (10b)
By harnessing zero-forcing (ZF) beamforming [12], the

unicast precoding vectors bk = pkvk are obtained. As a
result, the IUI can be removed to a great extent. To this
purpose, we denote the effective baseband channel of device
k as heff

k = wH
k HkF. Then, we obtain a set of unit-norm

precoders {vk}Kk=1 (by normalizing the ZF vectors {bk}Kk=1),
which minimize ∑k

∑
j 6=k

∣∣heff
k bj

∣∣2 =
∑
k

∑
j 6=k pj

∣∣wH
k HkFvj

∣∣2

since heff
k bj ≈ 0, ∀j 6= k. For sufficiently large Ntx, the IUI term

in (10) is negligible. Therefore, γ̃k ≈
∣∣heff
k m

∣∣2 /
(
pk |gk|2 + σ2

)

and γk ≈ pk |gk|2 /σ2, where gk = heff
k vk and ‖wk‖22 = 1.

B. Optimization of m and pk

We optimize the multicast precoder and unicast powers,
P2 : max

{pk}Kk=1
,m,∆

∑

k

γ̃k + γk − C∆ (11a)

s.t. |γ̃k − γmin| ≤ ∆,∀k ∈ K, (11b)
γ̃1 ≥ γ̃2 ≥ · · · ≥ γ̃K ≥ γ̃1, (11c)
‖Fm‖22 /

∑

k

pk ‖Fvk‖22 ≥ β, (11d)

‖Fm‖22 +
∑

k

pk ‖Fvk‖22 ≤ Ptx, (11e)

pk ≥ 0,∀k ∈ K, (11f)
∆ ≥ 0. (11g)

The objective function (11a) is constructed as the sum of
two quadratic-over-linear expressions, which are non-convex.
Similarly, (11b)-(11d) are of the same nature. On the other
hand, (11e)-(11g) are convex. To facilitate optimization, we
introduce two sets of auxiliary parameters {µk}Kk=1, {υk}Kk=1

and define the following problem
P̃2 : max

{pk}Kk=1,{µk}Kk=1,

{υk}Kk=1,m,∆

∑

k

µk + υk − C∆ (12a)

s.t.
∣∣∣heff
k m

∣∣∣
2
/
(
pk |gk|2 + σ2

)
≥ µk, (12b)

pk |gk|2 /σ2 ≥ υk, (12c)
‖Fm‖22 /

∑

k

pk ‖Fvk‖22 ≥ β, (12d)

‖Fm‖22 +
∑

k

pk ‖Fvk‖22 ≤ Ptx, (12e)

µ1 ≥ µ2 ≥ · · · ≥ µK ≥ µ1, (12f)



µk ≤ γmin + ∆, (12g)
µk ≥ γmin −∆, (12h)
υk ≥ 0, (12i)
pk ≥ 0, (12j)
∆ ≥ 0, (12k)

The objective function (12a) defines the maximization of a
linear function over µk and υk, therefore it is convex. Con-
straints (12c) and (12e)-(12k) are convex, whereas (12b) and
(12d) are non-convex. In order to convexify P̃2, we linearize
the non-convex constraints (12b) and (12d) around a feasible
point

(
m(t), p

(t)
1 , · · · , p(t)

K

)
. Thus, the convexified versions of

(12b) and (12d) are shown in (13) and (14), respectively2. As
a result, we optimize P̃(t)

2 iteratively over a number of Niter2

iterations. In (15), we show the vectorized form of P̃2 after
linearization,
P̃(t)

2 : max
m,p,
µ,υ,∆

1Tµ + 1Tυ − C∆ (15a)

s.t. 2Re
{

diag
(
Ap(t) + d

)(
I⊗m(t)H

)
C (1⊗m)

}

− diag (Ap + d)
(
I⊗m(t)H

)
C
(
1⊗m(t)

)
−

diag
(
Ap(t) + d

)
diag

(
Ap(t) + d

)
µ < 0, (15b)

(
A� (diag (d))−1

)
p < υ, (15c)

2Re
{(

cTp(t)m(t)HFHFm
)}
−

cTpm(t)HFHFm(t) −
(
cTp(t)

)2
β ≥ 0, (15d)

‖Fm‖22 +
∑

k

pk ‖Fvk‖22 ≤ Ptx, (15e)
(
I− Ĩ

)
µ < 0, (15f)

µ 4 (γmin + ∆) 1, (15g)
µ < (γmin −∆) 1, (15h)
υ < 0, (15i)
p < 0, (15j)
∆ ≥ 0. (15k)

where A = diag
(
|g1|2 , . . . , |gK |2

)
, p = [p1, . . . , pK ]T , d = σ21,

C = diag
(∥∥heff

1

∥∥2

2
, . . . ,

∥∥heff
K

∥∥2

2

)
, I is the identity matrix, Ĩ is

obtained by cyclically shifting all the columns of I to the
left only once, c =

[
‖Fv1‖22 , . . . , ‖FvK‖22

]T
, µ = [µ1, . . . , µK ]T

and υ = [υ1, . . . , υK ]T . Also, ⊗ denotes the Kronecker product,
whereas � represents component-wise multiplication. This for-
mulation can be efficiently approached by convex optimization
solvers. In our case, we use CVX and SDPT3.

2When computing the gradients of real-valued expressions with respect
to complex parameters (for linearization), we have employed the Wirtinger
derivatives [18].

V. SIMULATION RESULTS

Throughout the simulations, we consider the geometric
channel model with L = 8 propagation paths (to depict
the highly reflective industrial environment [5]), where the
azimuth angles of departure and arrival are uniformly dis-
tributed over [−π;π]. Also, Ntx = 64, Ltx = 32, Nrx = 4, Lrx = 4

and K = 6. The maximum transmit power, the power splitting
parameter, and the multicast SINR target are Ptx = 1W, β = 3,
γmin = 5dB, respectively. We denote our two proposed schemes
by PLDM-1 and PLDM-2 as mentioned in Section I-C. In
addition, we include the outcomes of [9], which we denote
by PLDM-0. The results depicting spectral efficiency (SE)
performance have been averaged over 1000 simulations. Fig.
2 shows the aggregate SE of the system, which is the sum
of the unicast and multicast components, considering all the
receivers. In terms of aggregate SE, the three schemes perform
similarly. This a consequence of employing highly optimized
precoders, where each expends the same amount of power
Ptx that is distributed among the two signals in different
proportions.

In Fig. 3, the SE of the multicast and unicast signals is
displayed. The multicast SE per device is expected to be
ρ = log2

(
1 + 10γmin/10

)
= 2.057 bps/Hz. Further, when all

devices are considered the aggregate multicast SE should be
ρ × K = 12.344 bps/Hz. This target is more tightly achieved
by PLDM-2. Notice that both PLDM-1 and PLDM-2 are
capable of prioritizing the multicast signal over the unicast
counterpart so as to satisfy (5b). Nevertheless, PLDM-1 can
provide higher multicast SE than PLDM-2 for low Ptx/σ2. As
Ptx/σ2 increases, additional usable power becomes available
for both signals to boost the SE. Thus, as the multicast signal
approaches its target γmin, it is progressively induced to a
state where the SE saturates and the unicast SE gains more
relevance. This behavior is attained through (5a), (5b) and (5j).
On the contrary, in PLDM-0 the unicast SE is higher than
the multicast SE for low Ptx/σ2, which is unsuitable. This
undesirable behavior on data prioritization is obtained even
though a weighted max-min approach was considered in [13],
aiming to emphasize the multicast importance.

In order to assess multicast fairness, Fig. 4 shows the SE
for all devices within a confidence interval of 95%, where
the shaded area delimitates the upper and lower bounds. We
observe that PLDM-1 outperforms PLDM-2 at prioritizing
multicast information for low Ptx/σ2. Notice that once the
target is reached, the SE of PLDM-1 remains in the upper
region of the desired threshold with some variability. On the
other hand, PLDM-2 is capable of maintaining a high multicast
SE fairness among all the devices with negligible variance. For
the sake of comparison, the results of PLDM-0 are included.

2Re
{(
p

(t)
k |gk|

2 + σ2 ‖wk‖22
)

m(t)Hheff
k
H

heff
k m

}
−
∣∣∣heff
k m(t)

∣∣∣
2 (
pk |gk|2 + σ2 ‖wk‖22

)
− µk

(
p

(t)
k |gk|

2 + σ2 ‖wk‖22
)2
≥ 0. (13)

2Re

{(∑

k

p
(t)
k ‖Fvk‖22

)
m(t)HFHFm

}
−
(∑

k

pk ‖Fvk‖22

)
m(t)HFHFm(t) − β

(∑

k

p
(t)
k ‖Fvk‖22

)
≥ 0. (14)
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Figure 5: Bit Error Rate Performance

Fig. 5 shows the bit error rate (BER) performance aver-
aged over 106 simulations, where the unicast and multicast
symbols were obtained from a 4-QAM constellation. Since
the multicast prioritization mechanism proposed in [13] does
not work as expected, SIC cannot operate properly thus
severely degrading the BER. We swapped (where necessary)
the decoding order between unicast and multicast information
to favor PLDM-0. On the other hand, PLDM-1 and PLDM-2
perform very similarly with a slight advantage of the former.

VI. DISCUSSION

Unicast/multicast dichotomy: Although the power splitting
mechanism promotes the prioritization of the multicast signal,
the multicast SINR and SE are not always higher than that
of the unicast signal. This is advantageous since unicast
transmissions can support higher order modulation in high
SNR regime.
Multicast SINR threshold: Having a deterministic γmin is
justified since beacon control packets are usually of fixed
size and a target SINR that allows successful decoding of the
message can be derived.

PLDM-1 vs PLDM-2: Recall that in PLDM-1, x =

F [B|m] [s|z]T = FBs + Fmz. In PLDM-2, if m = Bu then
x = FBs + FBuz = FB [s + uz], where u = [u1, · · · , uK ]T < 0.
Realize that uk defines the ratio of energy between the unicast
symbol sk and the multicast symbol z, for the k-th device.
Thus, PLDM-2 has only one set of nearly-orthogonal digital
unicast precoding vectors {bk}Kk=1 that are matched to the
channel of each device. As a result, the multicast packet
and the k-th unicast information are conveyed simultaneously
through the k-th precoding vector bk with different powers
(since m = Bu). On the contrary, PLDM-1 is devised as
non-orthogonally overlaid unicast and multicast precoders.
Therefore, the spatial radiation patterns of {bk}Kk=1 and m do
not necessary match.
PLDM-0: In [13], the authors attempted to prioritize multicast
information by assigning (in the objective function) a higher
weighting factor to the multicast minimum SINR. However,
the formulation proposed therein did not allow to enforce such
condition as observed in the simulations results.
Initialization: In order to solve P̃(t)

2 we need an initial feasible
point for

{
p

(0)
k

}K
k=1

and m(0). In this paper we selected, p(0)
k =



Ptx

2
∑
k‖Fvk‖22

, ∀k ∈ K and a randomly generated m such that
∥∥Fm(0)

∥∥2

2
= Ptx

2
.

VII. CONCLUSION

In this paper, we investigated the joint optimization of
hybrid precoding, fairness, and power splitting in NOMA-
LDM superimposed transmissions for industrial IoT scenarios.
We proposed two solutions: one of them regarded as the
superposition of two distinct precoders with different spatial
and power signatures. The second approach is designed as a
purely power-domain NOMA scheme. We included a power
sharing constraint to support the SIC decoder task at the
receiver. In addition, simulations show that both proposed
schemes are capable of providing a high degree of fairness
among all the devices, which is relevant for the dissemination
of critical control messages in this kind of scenarios.
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APPENDIX

Let us define the function g : Z → R+
0 that maps any 4-tuple

(wk,Hk,F,bk) ∈ Z to γk, where Z is a subspace of CNrx×1 ×
CNrx×Ntx × CNtx×K × CK×1.

Lemma: It holds true that the 4-tuple (wk,Hk,F,bk) ∈ Z
for which log2 (g (wk,Hk,F,bk)) is maximal in Z, also makes
g (wk,Hk,F,bk) maximal in Z.

Proof: Since every g (wk,Hk,F,bk) ∈ R+
0 , then

g (wk,Hk,F,bk) ≥ g
(
ŵk, Ĥk, F̂, b̂k

)
⇔ log2 (g (wk,Hk,F,bk)) ≥

log2

(
g
(
ŵk, Ĥk, F̂, b̂k

))
, due to log2 (·) being monotonically

increasing in R+
0 . Thus, for every

(
ŵk, Ĥk, F̂, b̂k

)
∈ Z,

g (wk,Hk,F,bk) ≥ g
(
ŵk, Ĥk, F̂, b̂k

)
. Also, for

every
(
ŵk, Ĥk, F̂, b̂k

)
∈ Z, log2 (g (wk,Hk,F,bk)) ≥

log2

(
g
(
ŵk, Ĥk, F̂, b̂k

))
. Therefore, the 4-tuple

(wk,Hk,F,bk) ∈ Z that maximizes log2 (g (wk,Hk,F,bk)), also
maximizes g (wk,Hk,F,bk) and these two inequalities are
equivalent.
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Abstract—This paper investigates rate-splitting (RS) precoding
for non-orthogonal unicast and multicast (NOUM) transmissions
using fully-digital and hybrid precoders. We study the nonconvex
weighted sum-rate (WSR) maximization problem subject to a
multicast requirement. We propose FALCON, an approach based
on sequential parametric optimization, to solve the aforemen-
tioned problem. We show that FALCON converges to a local
optimum without requiring judicious selection of an initial
feasible point. Besides, we show through simulations that by
leveraging RS, hybrid precoders can attain nearly the same
performance as their fully-digital counterparts under certain
specific settings.

Index Terms—parametric optimization, SDP, unicast, multi-
cast, non-orthogonal multiple access, rate-splitting.

I. INTRODUCTION

The upsurge of wireless applications and the increasing
omnipresence of internet-of-things (IoT) devices are expected
to exacerbate the scarcity of radio resources. Moreover, recent
requirements to support multiple services simultaneously (e.g.,
concurrent unicast and multicast) will further aggravate the
situation. This state of affairs has invigorated research on non-
orthogonal unicast and multicast (NOUM) transmissions and
millimeter-wave. On the one hand, NOUM has been envisaged
as a recourse for improving spectral efficiency due to its
capability of providing concurrent services in the same radio
frequency resources. Specifically, NOUM has encountered
outstanding solutions through layered-division-multiplexing
(LDM) [1] and rate-splitting (RS) [2]. On the other hand, usage
of the underexploited millimeter-wave spectrum is a promising
solution to alleviate the scarcity of radio resources. However,
the adoption of (traditional) fully-digital precoders at high
frequencies is challenging owing to prohibitive fabrication
costs and excessive power consumption. Consequently, the
more power-efficient hybrid precoders have emerged as a
functional solution to overcome such difficulties.

II. MOTIVATION

Inspired by the exceptional spectral efficiency achieved
by fully-digital precoders in RS-NOUM [2], [3], and the
predominant use of hybrid precoders in millimeter-wave com-
munications, we investigate the weighted sum-rate (WSR) max-
imization problem with both fully-digital and hybrid precoders
in millimeter-wave RS-NOUM systems. Further, the body of
work on WSR maximization with RS precoding leverages
weighted minimum mean square error (WMMSE) [2], [4]–
[6] as a prevailing means of solution. In this paper, we

propose FALCON, which is based on sequential parametric
optimization and compared to WMMSE. Our contributions are:

• We propose FALCON, a fast convergence algorithm for
solving the nonconvex WSR maximization problem. Our
approach leverages semidefinite programming (SDP) and
successive convex approximations (SCA). Specifically, we
exploit sub-level/super-level sets and establish parametric
convex upper bounds that can be contracted iteratively [7].
We show that FALCON converges to a local optimum of the
nonconvex WSR maximization problem. Further, FALCON
does not rely on judicious selection of initial feasible points
(as WMMSE does) in order to guarantee high performance.

• We use FALCON and WMMSE with both RS-NOUM and
LDM-NOUM systems. We realize that the former outper-
forms the latter due to the capability of RS to partially
decode interference and partially treat remaining interfer-
ence as noise. We compare RS-NOUM against the optimal
dirty paper coding, thus revealing a small optimality gap
between the two schemes.

• We find that, under specific settings, quantizing the hybrid
precoder phase shifts with 4 bits is sufficient to achieve the
same performance as fully-digital implementations. Further,
in scenarios wherein users have channels with a low degree
of correlation, such performance can be attained with 2 bits.

• We show, through simulations, that FALCON is less prone
than WMMSE to return infeasible solutions due to its
non-dependency on initial feasible points. Nevertheless,
FALCON has higher computational complexity per iteration.

III. RELATED WORK

NOUM has been studied under LDM in [1], [8]–[14].
Specifically, [1], [8], [9] investigate the design of fully-digital
precoders for transmit power minimization with unicast and
multicast quality-of-service (QoS) requirements. A fairness-
aware hybrid precoder is proposed in [10], [15]. Energy
efficiency with fully-digital precoders is investigated in [11],
[12] whereas a similar setting with backhaul constraints is
considered in [13], [14]. On the other hand, NOUM with
RS has only been researched with fully-digital precoders
in [2], [3], wherein the WMMSE approach is proposed for
WSR maximization. Relevant literature on other aspects of RS
includes [4], [5], [16]–[20]. Although both LDM and RS are
power-domain non-orthogonal schemes, the superiority of RS
resides in its capability to partially decode interference. This



is achieved by embedding fragments of unicast information in
the multicast signal, that the receivers can decode and remove.

IV. SYSTEM MODEL: RS FOR NOUM TRANSMISSIONS

We consider a system where a next-generation Node B
(gNodeB) serves K single-antenna users indexed by K =

{1, . . . ,K}. The gNodeB is equipped with a hybrid transmitter
composed of Ntx transmit antennas and NRF

tx radio frequency
(RF) chains, where K ≤ NRF

tx ≤ Ntx. Without loss of generality,
we assume NRF

tx = K. The gNodeB transmits in a non-
orthogonal manner a multicast message W (m) (intended to
all the users) and K unicast messages W

(u)
1 , . . . ,W

(u)
K (each

targeting a particular user). Every unicast message is decom-
posed into two components as W (u)

k ≜
(
W

(u,c)
k ,W

(u,p)
k

)
, where

W
(u,c)
k and W (u,p)

k are referred as the common and private parts,
respectively. The multicast message along with the unicast
common parts are jointly encoded into a common macro-
stream as

{
W

(u,c)
1 , . . . ,W

(u,c)
K ,W (m)

}
7→ z̃ = [z̃1, z̃2, . . . ]

T . The
unicast private parts are encoded into independent streams
as W

(u,p)
k 7→ s̃k =

[
s̃k,1, s̃k,2, . . .

]T , ∀k ∈ K. The encoded
streams are processed by the baseband digital precoder [B|m] =

[b− 1, . . . ,bK ,m] ∈ CK×(K+1) of the hybrid transmitter. Let
z and s = [s1, . . . , sK ]T denote the instantaneous symbol
and vector symbol of the common macro-stream and private
streams, respectively, such that E

{[
sT |z

]H [
sT |z

]}
= I. Thus,

the downlink signal is x = F [B|m]
[
sT |z

]T ∈ CNtx×1, where
F = [f1, . . . , fK ] ∈ CNtx×K represents the RF analog precoder
of the hybrid transmitter. Under flat fading, the signal received
by the k-th user is
yk = hHk Fmz︸ ︷︷ ︸

common signal

y
(c)
k

+ hHk Fbksk︸ ︷︷ ︸
private signal for user k

y
(p)
k

+hHk F
∑
j ̸=k bjsj︸ ︷︷ ︸

interference at user k
y
(i)
k

+ nk︸︷︷︸
noise

, (1)

where nk ∼ CN
(
0, σ2

)
denotes additive white Gaussian

noise and hk ∈ CNtx×1 represents the channel between
the gNodeB and the k-th user. Because the users have a
single antenna, they are not capable of performing spatial
demultiplexing to separate the two data streams. In order
to distinguish and decode both signals, the users rely on
successive interference cancellation (SIC), which consists
in detecting and decoding one signal after the other, as
explained in the following. First, each user k decodes the
common macro-stream symbol z, in term y

(c)
k , by treating the

rest of signals as noise. Subsequently, the common signal y(c)k
is reconstructed and subtracted from yk. At this point, the
remaining byproduct ỹk = yk − y(c)k consists solely of private
unicast components

{
y
(p)
k , y

(i)
k

}
and noise nk, from where user

k decodes symbol sk. Thus, the signal–to–interference–plus–
noise ratio (SINR) of the common macro-stream and private
streams are denoted by SINR

(c)
k and SINR

(p)
k , respectively.

SINR
(c)
k =

∣∣hHk Fm
∣∣2

∑
j∈K

∣∣hHk Fbj
∣∣2 + σ2

SINR
(p)
k =

∣∣hHk Fbk
∣∣2

∑
j ̸=k

∣∣hHk Fbj
∣∣2 + σ2

RS principle: Based on the expressions above, the achiev-
able rates are R

(c)
k = log2

(
1 + SINR

(c)
k

)
and R

(p)
k =

log2

(
1 + SINR

(p)
k

)
. We define R̄(c) as the maximal rate at

which all users can successfully decode the common symbol
z. Thus, the common macro-stream is to be encoded at a rate

R̄(c) ≤ R
(c)
min, where R

(c)
min = mink∈K

{
R

(c)
1 , . . . , R

(c)
K

}
. Since z

results from jointly encoding multiple messages, let C0 denote
the fraction of R̄(c) conveying the multicast message W (m), and
Ck the fraction of R̄(c) transmitting the unicast common part
W

(u,c)
k , subject to C0 +

∑
k∈K Ck = R̄(c). Upon decoding the

streams z̃ and s̃k, user k acquires W (u,c)
1 , . . . ,W

(u,c)
K ,W (m) and

W
(u,p)
k , from where the unicast message W (u)

k can be reassem-
bled. The common parts W

(u,c)
j ̸=k decoded by user k are used

for interference decoding, thus improving the SINR. The ag-
gregate unicast rate of user k is R(u)

k = Ck+log2

(
1 + SINR

(p)
k

)
.

V. PROBLEM FORMULATION

The QoS-constrained WSR maximization problem is
P : max

C0,Ck,F,bk,m

∑
k∈K µk

(
Ck + log2

(
1 + SINR

(p)
k

))
(2a)

s.t. C0 +
∑
j∈K Cj = R̄(c), (2b)

C0 ≥ Cth
0 , (2c)

Ck ≥ 0,∀k ∈ K, (2d)
∥Fm∥22 +

∑
k∈K ∥Fbk∥22 ≤ Ptx, (2e)

[F]n1,n2
∈ F , n1 ∈ N1, n2 ∈ N2, (2f)

where µk > 0 in (2a) is the weight assigned to the k-th unicast
rate and (2b) enforces the sum of rate fractions to be R̄(c).
The constraint (2c) imposes a minimum QoS requirement
Cth

0 , necessary for decoding the multicast message whereas
(2d) imposes a non-negativity restriction on the rates Ck. The
constraint (2e) restricts the transmit power to Ptx while (2f)
enforces the limitations of analog beamforming. Concretely,
every phase shift [F]n1,n2

is constrained to the feasible set
F =

{
δtx, . . . , δtx exp

(
j
2π(Ltx−1)

Ltx

)}
, where Ltx is the number

of allowed constant-modulus phase shifts, δtx =
√

1/NRF
tx ,

n1 ∈ N1 = {1, . . . , Ntx} and n2 ∈ N2 =
{
1, . . . , NRF

tx

}
.

A. WSR maximization using fully-digital precoders

In this case, F = I thereby transforming the hybrid precoder
into a fully-digital precoder, where the number of antennas and
RF chains are the same. Note that this assumption removes the
nonconvex constraint (2f). As a result, P and Q2 (shown in
Section V-B) become equivalent.

B. WSR maximization using hybrid precoders

The hybrid precoder consists of a coupled architecture
between an analog component F and a digital component
[B|m]. This structure poses a difficulty in obtaining an optimal
solution for P. Therefore, we design the hybrid precoder by
means of two suboptimal methods that prove to have high
performance when compared to the fully-digital precoder (as
evidenced in Section VII). These suboptimal methods consist
of two stages: in Stage 1 we design the analog precoder
whereas in Stage 2 we optimize the rate-splitting and digital
precoders.

Stage 1 (Analog precoder design): To design the RF analog
precoder F = [f1, . . . , fK ], two methods are devised with the
goal of maximizing the effective RF-to-RF channel gain of
every user. Notice that F is optimized only once as it is



matched to the channels {hk}Kk=1, which are deemed invariant
for a number of channel uses.
Codebook-based (CB): This method designs F in a column-
wise manner using a codebook V by means of

Q1,k : fk = argmax
v

∣∣∣hHk v
∣∣∣
2

s.t. v ∈ V\V̄, ∀k ∈ K, (3)
where V̄ is formed by all the columns of V that have already
been assigned to some user. Initially, V̄ = ∅ and for each user
the number of elements of V̄ is increased by one.
Projection-based (PB): This methods designs F in an element-
wise manner, given the set of phase shifts F , via
Q1,k : fk = argmax

rk

∣∣∣hHk rk

∣∣∣
2

s.t. [rk]n ∈ F , n ∈ N1, ∀k ∈ K. (4)
First, the unconstrained version of Q1,k is solved, whose
solution collapses to the matched filter (i.e., a vector parallel
to hk). Then, such vector is projected onto the set F , thus
yielding fk, i.e., [fk]n = argmaxϕ∈F Re

{
ϕ [hk]

∗
n

}
.

Stage 2 (Rate-splitting and digital precoder design):
With the analog precoder F designed, the problem
that optimizes C0, {Ck}Kk=1, {bk}Kk=1, m is given by
Q2 : max

C0,Ck,bk,m

∑
k∈K µk

(
Ck + log2

(
1 + SINR

(p)
k

))
(5a)

s.t. C0 +
∑
j∈K Cj ≤ log2

(
1 + SINR

(c)
k

)
, ∀k ∈ K, (5b)

C0 ≥ Cth
0 , (5c)

Ck ≥ 0, ∀k ∈ K, (5d)
∥Fm∥22 +

∑
k∈K ∥Fbk∥22 ≤ Ptx, (5e)

where (2b) has been equivalently recast as (5b) since
R̄(c) ≤ R

(c)
min. This nonconvex problem has been approached

via the WMMSE method proposed in [2], [3], [5], which is
shown to converge to a local optimum.

VI. PROPOSED SOLUTION: FALCON

To solve Q2, we propose FALCON, which does not require
judicious selection of an initial feasible point. Our approach
stems from exploiting level sets and the establishment of
convex upper bounds that can be contracted iteratively. Thus,
assuming that gk = FHhk, we equivalent recast Q2 as
Q̃2 : max

C0,Ck,bk,m
rk,tk,zk,qk

∑
k∈K µk (Ck + log2 (rk)) (6a)

s.t.
∣∣∣gHk bk

∣∣∣
2
≥ (rk − 1) tk, ∀k ∈ K, (6b)

∑
j ̸=k

∣∣gHk bj
∣∣2 + σ2 ≤ tk, ∀k ∈ K, (6c)

C0 +
∑
j∈K Cj ≤ log2 (zk) , ∀k ∈ K, (6d)

∣∣∣gHk m
∣∣∣
2
≥ (zk − 1) qk, ∀k ∈ K, (6e)

∑
j∈K

∣∣gHk bj
∣∣2 + σ2 ≤ qk, ∀k ∈ K, (6f)

rk ≥ 1, ∀k ∈ K, (6g)
zk ≥ 1, ∀k ∈ K, (6h)
C0 ≥ Cth

0 , (6i)
Ck ≥ 0, ∀k ∈ K, (6j)
∥Fm∥22 +

∑
k∈K ∥Fbk∥22 ≤ Ptx. (6k)

In (6a), 1+SINR
(p)
k is lower-bounded by rk whereas, in (6c), the

denominator of SINR
(p)
k is upper-bounded by tk. By combining

these two relations, we obtain (6b). The constraints (6d), (6e)
and (6f) are obtained in a similar manner.
Proposition 1: The formulations Q2 and Q̃2 are equivalent.

Proof: We prove the equivalence by contradiction. Let r⋆
k′ , t⋆k′ ,

z⋆
k′ , q⋆k′ denote the values of the variables for user k′ at the

optimum. Let us assume that at the optimum, constraint (6c)
for user k′ is inactive. Under this assumption, there must exist
an strictly smaller t̃k′ < t⋆

k′ for which (6c) attains equality.
This implies that there must also exist a strictly larger
r̃k′ > r⋆

k′ that satisfies (6b), thus producing a larger objective
(6a). This result contradicts the premise that we have obtained
an optimal solution. Similar relations can be derived for (6d),
(6e), (6f), thus corroborating the equivalence of Q2 and Q̃2. ■
Q̂2 : max

C0,Ck,Bk,M,
rk,tk,zk,qk

∑
k∈K µk (Ck + log2 (rk)) (7a)

s.t. rktk − tk − Tr (GkBk) ≤ 0, ∀k ∈ K, (7b)
∑
j ̸=k Tr (GkBj) + σ2 − tk ≤ 0, ∀k ∈ K, (7c)

C0 +
∑
j∈K Cj ≤ log2 (zk) ,∀k ∈ K, (7d)

zkqk − qk − Tr (GkM) ≤ 0, ∀k ∈ K, (7e)
∑
j∈K Tr (GkBj) + σ2 − qk ≤ 0,∀k ∈ K, (7f)

Tr
(
FHFM

)
+
∑
k∈K Tr

(
FHFBk

)
≤ Ptx, (7g)

Bk ⪰ 0, ∀k ∈ K, (7h)
M ⪰ 0, (7i)
C0 ≥ Cth

0 , (7j)
Ck ≥ 0, ∀k ∈ K, (7k)
rk ≥ 1, ∀k ∈ K, (7l)
zk ≥ 1, ∀k ∈ K. (7m)

Via semidefinite programming, Q̃2 is transformed into Q̂2,
where Gk = gkg

H
k , and the rank-one constraints on Bk = bkb

H
k ,

M = mmH have been neglected. With the exception of
constraints (7b), (7e), which contain quasi-concave functions
of the form xy, the rest of expressions in Q̂2 constitute a
convex problem. In order to circumvent these constraints we
resort to the inequality γ

2
x2 + 1

2γ
y2 ≥ xy, which arises from

the arithmetic-geometric mean of γx2 and 1
γ
y2, for γ > 0 [7].

Upon applying this upper estimate to (7b), (7e), we obtain Q2.
Q2 : max

C0,Ck,Bk,M,
rk,tk,zk,qk,αk,βk

∑
k∈K µk (Ck + log2 (rk)) (8a)

s.t.
αk

2
r2k +

1

2αk
t2k − tk − Tr (GkBk) ≤ 0, ∀k ∈ K, (8b)

βk

2
z2k +

1

2βk
q2k − qk − Tr (GkM) ≤ 0, ∀k ∈ K, (8c)

αk > 0, βk > 0, ∀k ∈ K, (8d)
∑
j ̸=k Tr (GkBj) + σ2 − tk ≤ 0, ∀k ∈ K, (8e)

C0 +
∑
j∈K Cj ≤ log2 (zk) ,∀k ∈ K, (8f)

∑
j∈K Tr (GkBj) + σ2 − qk ≤ 0,∀k ∈ K, (8g)

Tr
(
FHFM

)
+
∑
k∈K Tr

(
FHFBk

)
≤ Ptx, (8h)

Bk ⪰ 0, ∀k ∈ K, (8i)
M ⪰ 0, (8j)
C0 ≥ Cth

0 , (8k)
Ck ≥ 0, ∀k ∈ K, (8l)
rk ≥ 1,∀k ∈ K, (8m)
zk ≥ 1, ∀k ∈ K. (8n)

Proposition 2: When γ = y/x, Q2 and Q̂2 are equivalent.
Proof: The geometric mean equates the arithmetic mean when
the two constituents are equal, which occurs at γ = y/x. ■



Note that Q2 is still nonconvex. However, we have removed
the complicated constraints (7b), (7e) by incorporating auxil-
iary variables αk and βk. Notice that if αk and βk are fixed,
Q2 is convex. Therefore, we are in the position of tailoring
an algorithm to solve Q2. By harnessing Proposition 2, we
propose Algorithm 1, wherein the upper estimates of rktk and
zkqk are contracted iteratively by updating αk and βk (i.e.,
lines 3,4). Although Algorithm 1 solves Q2, a solution to
Q2 may not be feasible to Q̂2 or Q̃2 due to omission of the
rank-one constraints and the use of upper estimates. In the
following, we clarify these aspects.
Proposition 3: The solutions to Q(i)

2 have at most rank one.
Proof: Let Q(i)

2 denote the i-th iteration of Q2. Let the
Lagrangian with respect to M be defined as LM =∑
k∈K ξk

(
βk
2
z2k + 1

2βk
q2k − qk − Tr (GkM)

)
+
∑
k∈K πk

(
zkqk −

qk − Tr (GkM)
)
+ ϵ

(
Tr
(
FHFM

)
+
∑
k∈K Tr

(
FHFBk

)
− Ptx

)
−

Tr (SM), where ξk ≥ 0, πk ≥ 0, ϵ ≥ 0, S ≽ 0 are the dual
variables. From the stationarity condition, we obtain S =

ϵ(FHF)−∑k∈K(ξk+πk)Gk ≽ 0. Since FHF is positive definite,
the equivalent relation ϵI−∑k∈K(ξk+πk)(F

HF)−1Gk ≽ 0 holds
if ϵ ≥ λmax(T), where λmax is the principal eigenvalue of
T =

∑
k∈K(ξk+πk)(F

HF)−1Gk ≽ 0. When ϵ > λmax, the matrix
S is positive definite and therefore rank(S) = Ntx

RF. Due to the
complementary slackness condition, this implies that M = 0.
However, replacing M = 0 in Q(i)

2 yields C0 = 0, which violates
(2c). Therefore this solution is not feasible. When ϵ = λmax

then S ≽ 0. Consequently, rank(S) = Ntx
RF − 1 and rank(M) = 1,

which satisfies the assertion. For the unicast precoders Bk,
similar relations can be derived. However, Bk = 0 does not
violate any constraint. In particular, Bk = 0 can be optimal
for a particular instance, specifically when the user weight µk
is small compared to other weights. ■
Proposition 4: The sequence of objective function values
produced by the update method in Algorithm 1 converges.
Proof: Let Ωi denote the optimum of Q(i)

2 . Also, let f (Ωi)

be the objective function of Q(i)
2 evaluated at the optimum

Ωi. Note that if we evaluate f (Ωi+1), all the constraints are
still satisfied. This implies that an optimal solution to Q(i)

2 is
feasible to Q(i+1)

2 . Further, the update method (i.e., line 4)
renders f (Ωi+1) ≥ f (Ωi), thus generating a monotonically non-
decreasing sequence of objective function values. Moreover,
since Q2 is limited by a power constraint, the non-decreasing
sequence will be bounded and therefore guarantees conver-
gence. ■
Proposition 5: Q2 satisfies the KKT conditions of Q2.
Proof: A solution Ωi to Q(i)

2 will always be feasible to Q̂2 as
the inequalities of Q(i)

2 are tighter. Because a solution Ωi with
rank-one M(i), B

(i)
k , ∀k ∈ K can be found in Q(i)

2 , Ωi is also
feasible to Q̃2 and Q2. Invoking the results in Proposition 3.2
of [7], we state that the sequence of solutions {Ωi} converges
to a regular point Ω⋆i that is a KKT point of Q̃2 and Q2. ■

Based on the propositions above, we show that via FALCON
the feasible set of Q2 converges to the feasible set of Q2.
Further, by iteratively solving Q(i)

2 the solutions Ωi converge
to a local optimum of the nonconvex problem Q2.

Algorithm 1: Rate-splitting and precoding via FALCON

Input: {hk}Kk=1, {µk}Kk=1, Cth
0 .

Output: F, {bk}Kk=1, m, C0, {Ck}Kk=1
Execute:

1: Design the analog precoder F by solving Q1,k , ∀k ∈ K.
2: Initialize α(i)

k = 1 and β(i)
k = 1, i = 0, ∀k ∈ K.

repeat
3: Solve Q(i)

2 employing α(i)
k and β(i)

k .
4: Update α(i+1)

k = t
(i)
k /r

(i)
k , β(i+1)

k = q
(i)
k /z

(i)
k , ∀k ∈ K.

5: Update i = i+ 1.
until stopcriterion.

Table I: Feasibility response of fully-digital precoders.

C
as

e

Parameters FALCON
WMMSE (%)

configuration P
(0)
m = 0.70Ptx P

(0)
m = 0.80Ptx P

(0)
m = 0.90Ptx P

(0)
m = 0.95Ptx P

(0)
m = 0.99Ptx

[
Ntx, K, Cth

0

]
(%) MRT ZF SLNR MRT ZF SLNR MRT ZF SLNR MRT ZF SLNR MRT ZF SLNR

A [4,2,2.5] 100 38 55 54 63 63 63 75 77 73 83 83 78 84 83 80

B [6,3,2.0] 100 36 49 68 51 63 70 70 80 77 81 83 81 87 87 83

C [8,4,1.5] 96 53 67 86 69 73 89 80 85 93 83 85 93 91 92 94

Table II: Feasibility response of hybrid precoders.
C

as
e

Parameters FALCON
WMMSE (%)

configuration P
(0)
m = 0.70Ptx P

(0)
m = 0.80Ptx P

(0)
m = 0.90Ptx P

(0)
m = 0.95Ptx P

(0)
m = 0.99Ptx

[
Ntx, K, Cth

0

]
(%) MRT ZF SLNR MRT ZF SLNR MRT ZF SLNR MRT ZF SLNR MRT ZF SLNR

A [4,2,2.5] 100 54 58 69 82 77 68 82 82 78 87 87 84 87 87 87

B [6,3,2.0] 100 63 54 62 70 72 67 79 79 76 84 83 81 88 87 85

C [8,4,1.5] 96 74 81 79 85 85 86 93 94 91 93 95 94 96 96 96

VII. SIMULATION RESULTS

In this section, we compare FALCON and WMMSE. In the
scenarios evaluated in Section VII-A, Section VII-B, Section
VII-C we employ the more versatile projection-based hybrid
precoder whereas in Section VII-D we compare the two types
of hybrid precoders. Throughout the simulations, we have
considered Ptx = 50 dBm and σ2 = 30 dBm as in [2]. In
addition, for all scenarios involving different precoders and
techniques, we have used the same stopping criterion (see
Algorithm 1). Specifically, the techniques are executed for a
maximum of Niter = 60 iterations or until an increment of less
than ϵ = 0.0001 is attained (by the objective function).

A. Feasibility response

We evaluate the performance of FALCON and WMMSE with
RS-NOUM, in terms of the feasible solutions count. We
examine different configurations of

[
Ntx,K,Cth

0

]
assuming

equal weights µ1 = · · · = µK = 1 with fully-digital and hybrid
precoders. We employ the geometric Saleh-Valenzuela channel
model [21]. Since WMMSE requires an initial feasible point,
we assess three types of initialization methods. The initial
multicast precoder m(0) is obtained via singular value decom-
position (SVD) of the aggregate channel [3], [19] whereas
the initial unicast precoders b

(0)
k are the MRT, ZF or SLNR

precoding vectors. The initial multicast and unicast powers
(for the initial feasible point) are computed as P (0)

m =
∥∥Fm(0)

∥∥2
2

and P
(0)
u,k =

∥∥∥Fb
(0)
k

∥∥∥
2

2
= Ptx−P (0)

m
K

, ∀k ∈ K. We evaluate several
values of P (0) = {0.70Ptx, 0.80Ptx, 0.90Ptx, 0.95Ptx, 0.99Ptx} with
Ltx = 16 different phase shifts for the projection-based hybrid
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Figure 1: Two-user rate region for fully-digital (FD) and hybrid (H) precoders.

precoder. Table I and Table II show the results for the fully-
digital and hybrid precoders. Note that FALCON is superior
to WMSSE in delivering a larger number of feasible solutions
without requiring complicated initialization. Throughout the
different configurations, FALCON returns a feasible solution in
at least 96% of the cases whereas the performance of WMMSE
is inferior. In the WMMSE case, the same value of P (0) leads to
different feasibility responses for distinct

[
Ntx,K,Cth

0

]
. In cer-

tain cases, the hybrid precoder attains more feasible solutions
that the fully-digital precoder. This occurs due to the strong
dependence of WMMSE on the initial feasible point, which is
also influenced by the analog precoder F. Nevertheless, this
outcome does not imply that both precoders provide the same
rate value, as clarified in the next scenario.

B. Convergence

We compare the convergence of FALCON and WMMSE for a
random realization of Case C in Table I, which is the most
favorable scenario for WMMSE. Fig. 2a shows the evolution
of the unicast rates when P

(0)
m = 0.90Ptx. We observe that

FALCON converges 2− 3 times faster than WMMSE for hybrid
and fully-digital precoders. Since the performance of WMMSE
relies on a initial point, in Fig. 2b we evaluate more cases
for the fully-digital precoder using MRT (in [5] it is shown
that MRT with SVD leads to faster convergence in high SNR
regime as in this case). In Fig. 2b, although P

(0)
m = 0.80Ptx

produces faster convergence among other choices, it does not
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Figure 2: Convergence of FALCON and WMMSE.

surpass FALCON, which only requires 8 iterations to attain
convergence. Further, from Table I, using P

(0)
m = 0.80Ptx only

produces 69% of feasible solutions. Also, note that while P (0)
m =

0.99Ptx produces a feasible solution in 94% of the cases, this
choice makes WMMSE converge to a less optimal point. Finding
performant initial feasible points for WMMSE is impractical as
either infeasibility certificates are returned or the convergence
is impacted. In particular, we observe that WMMSE experiences
the following trade-off: large initial power allocation for P (0)

m

leads to higher likelihood of producing feasible solutions but
causes extremely slow convergence (optimality may even be
affected) while small initial power allocations may produce
faster convergence but increases the likelihood of resulting in
infeasible solutions.



C. Two-user rate region

We evaluate the performance of RS-NOUM and LDM-
NOUM using FALCON with fully-digital (FD) and projection-
based hybrid (H) precoders considering the same settings as
in [2], namely K = 2, Ntx = 4, Cth

0 = 0.5 bps/Hz and
channels h1 = [1, 1, 1, 1]H , h2 =

[
1, ejθ, ej2θ, ej3θ

]H . For the
hybrid precoder, we assume that NRF

tx = K = 2 with four
degrees of quantization, Ltx = {2, 4, 8, 16}. To solve the LDM
case via FALCON, we enforce Ck = 0, ∀k ∈ K. Fig. 1a shows
the case when the channels are highly correlated (θ = π/9).
We observe that RS outperforms LDM due to its capability to
manage interference, in particular in this challenging scenario.
We also note that for RS and LDM, the hybrid precoder
with Ltx = 16 (i.e., 4 bits) has the same performance as a
fully-digital precoder. The performance when Ltx = 2 and
Ltx = 4 is the same due to quantization that has produced
the same analog precoder. Through Fig. 1b, Fig. 1c, Fig. 1d,
the channel correlation among users is reduced by increasing
θ. As expected, LDM approaches the performance of RS as
interference becomes less detrimental. Interestingly, the phase
resolution of the hybrid precoder becomes less relevant as
the correlation between channels decreases. For instance, in
Fig. 1d with Ltx = 4 (i.e., 2 bits) the hybrid and fully-digital
precoders attain the same performance.

D. Comparing hybrid precoder designs

We compare the performance of FALCON in RS-NOUM
with the two hybrid precoder designs described in Section
V-B. In this scenario, we assume that Ntx = 8, Cth

0 = 1.5 (as
in Case C of Table I and Table II) for various number of
users K = {2, 3, 4, 5, 6}. For the PB hybrid (PB-H) precoder
we assume that Ltx = 16. For CB hybrid (CB-H) precoder,
we form the codebook V with 128 codewords, where Ntx

codewords are mutually orthogonal obtained from the discrete
Fourier matrix of size Ntx and 120 codewords pseudo-randomly
generated. Fig. 3 shows that PB-H outperforms CB-H through
all values of K. In addition, we include FALCON and WMMSE
using fully-digital precoders. For WMMSE, we have assumed
P

(0)
m = 0.80Ptx because in Section VII-B we showed that this

initial value does not affect performance substantially while
allowing high convergence speed (although the feasibility ratio
is conditioned).
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Figure 3: Performance comparison of hybrid precoders

E. Computational complexity

The computational complexity per iteration of WMMSE and
FALCON with fully-digital (FD) or hybrid (H) precoders is
shown in Table III. The complexity of designing the analog
component F has been considered negligible due to simple
inner products involved. Since the complexity per iteration is
not representative of the convergence behavior of a scheme,
we show in Table IV the time required for convergence and the
feasibility ratio. We evaluate FALCON and WMMSE using fully-
digital precoders for the same scenario described in Section
VII-D. We observe that while FALCON has higher computa-
tional complexity per iteration (see Table III), it converges up
to 100% times faster (in terms of the execution time) and in
addition, it returns more feasible solutions than WMMSE.

Table III: Computational complexity per iteration

Description Notation Complexity

Weights of WWMSE with FD design C(w)
FD-WMMSE O

(
K2Ntx

)

Precoders of WWMSE with FD design C(p)FD-WMMSE O
(
K3.5 [Ntx]

3.5
)

Weights of WWMSE with H design C(w)
H-WMMSE O

(
K2NRF

tx

)

Precoders of WWMSE with H design C(p)H-WMMSE O
(
K3.5

[
NRF

tx

]3.5)

FALCON with FD design CFD-FALCON O
(
K3 [Ntx]

6
)

FALCON with H design CH-FALCON O
(
K3

[
NRF

tx

]6)

Table IV: Convergence time

Scheme Number of users
K = 6 K = 5 K = 4 K = 3 K = 2

FALCON 93.6s|91% 40.1s|93% 33.8s|96% 31.7s|100% 37.5s|100%
WWMSE 116.9s|67% 75.9s|82% 66.3s|75% 45.1s|79% 31.4s|62%

VIII. CONCLUSION

We have investigated non-orthogonal unicast multicast
transmissions by means of rate-splitting with fully-digital
and hybrid precoders. We considered the weighted sum-rate
maximization problem with a minimum multicast QoS require-
ment. We proposed FALCON based on sequential parametric
optimization, which is shown to outperform WMMSE under a
variety of scenarios. We showed that FALCON converges to
local optimum of the nonconvex problem. Although FALCON
has higher complexity per iteration than WMMSE, it converges
faster within a few iterations and does not require an initial
feasible point, which impacts performance. Further, FALCON
is a viable option for designing hybrid precoders with rate-
splitting since the complexity scales with the number of RF
chains, which in general, is relatively small. In addition, for the
two-user case, we noticed that a quantization scheme with 4
bits is sufficient for guaranteeing performance equal to that
of a fully-digital precoder. Moreover, as the user channels
become less correlated, the quantization granularity of the
analog precoder is less relevant.
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HydraWave: Multi-Group Multicast Hybrid Precoding and Low-Latency
Scheduling for Ubiquitous Industry 4.0 mmWave Communications
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Abstract—Industry 4.0 anticipates massive interconnectivity
of industrial devices (e.g., sensors, actuators) to support fac-
tory automation and production. Due to the rigidity of wired
connections to harmonize with automation, wireless information
transfer has attracted substantial attention. However, existing
solutions for the manufacturing sector face critical issues in
coping with the key performance demands: ultra-low latency, high
throughput, and high reliability. Besides, recent advancements in
wireless millimeter-wave technology advocates hybrid precoding
with affordable hardware and outstanding spatial multiplexing
performance. Thus, we present HYDRAWAVE — a new paradigm
that contemplates the joint design of group scheduling and hybrid
precoding for multi-group multicasting to support ubiquitous low-
latency communications. Our hybrid precoder, based on semidef-
inite relaxation and Cholesky matrix factorization, facilitates the
robust design of the constant-modulus phase shifts rendering
formidable performance at a fraction of the power required
by fully-digital precoders. Further, our novel group scheduling
formulation minimizes the number of scheduling windows while
accounting for the channel correlation of the co-scheduled mul-
ticast receivers. Compared to exhaustive search, which renders
the optimal scheduling at high overhead, HYDRAWAVE incurs only
9.5% more delay. Notoriously, HYDRAWAVE attains up to 102%
gain when compared to the other benchmarked schemes.

Index Terms—hybrid precoding, multi-group multicasting,
low-latency, Industry 4.0, millimeter-wave, scheduling.

I. INTRODUCTION

The industrial revolution, Industry 4.0, fosters smart fac-
tories of the future where the components in a production
chain—such as industrial equipment, logistics, products, and
processes—are inherently interconnected. Given the hyper-
connected vision of Industry 4.0, wired connections become
less attractive because they (i) hinder automation by con-
straining the movement of industrial robotics and (ii) slow
down mechanics. To overcome this obstacle, in recent years,
significant effort has been dedicated to leveraging the benefits
of wireless communications solutions for the manufacturing
sector (e.g., 6TiSCH, ZigBee). However, the adoption of these
technologies is either limited or has not been consolidated
due to the uncertainty on their capability to offer performance
similar to optical fiber and guarantee the critical requirements
of industrial applications: ultra-high throughput and ultra-low
latency with emphasis on high reliability [1].

Owing to recent advancements in wireless millimeter-wave
(mmWave) technology, the mmWave spectrum is regarded as
a solution to wire replacement in industrial/manufacturing sec-
tors. In addition to providing multi-Gbps rates due to wideband
availability, mmWave frequencies characterize for requiring
antennas with a small footprint that can be easily embedded
onto miniature machinery/devices. A measurement campaign

conducted in an industrial environment has concluded that
mmWave communications is feasible and effortlessly imple-
mentable in such environments [2]. Nevertheless, the research
on wireless and (in particular) mmWave technology for the
industrial context is still at its infancy.

The industrial sectors can profoundly benefit from mmWave
multicast beamforming to deliver common information to
industrial equipment (e.g., sensors and actuators) for the
distributed organization of production. In such setting, instead
of sequentially transmitting unicast streams from a transmitter
to each receiver (Fig. 1a), multicasting to a group of devices
(Fig. 1b) can boost the spectral efficiency and offer lower
latency. Moreover, if the transmitter is equipped with multiple
radio frequency (RF) chains, multi-group multicasting can
be enabled thus making possible to serve several groups of
devices concurrently while further leveraging the gains in
terms of spectral efficiency and latency (Fig. 1c).

We envision a heterogeneous hyper-connected Industry 4.0
with (i) anchored receivers (e.g., sensors, actuators, pro-
grammable logic devices) that perform tasks locally and (ii)
mobile receivers (e.g., robots) that carry out tasks at various
locations. Specifically, multiple anchored receivers from dif-
ferent multicast groups can be found sharing the same space,
thus increasing the difficulty of spatial multiplexing (Fig. 1b).
In addition, due to mobility (e.g. robots), numerous mobile
receivers with different information needs may temporarily
change their location to carry out specific tasks, thus either
altering the density of devices at different phases of the pro-
duction chain or generating a variable degree of interference.

Fully-digital precoders with a massive amount of anten-
nas and RF chains are a tangible technology at sub-6GHz
frequencies. However, in mmWave, these precoders are still
not affordable due to hardware complexity and high power
consumption. As a result, substantial effort has been oriented
to (i) improve the architectures design (e.g., [3], [4]) and
(ii) develop accurate channel estimation methods (e.g., [5],
[6]) for hybrid precoders, aiming at facilitating physical-layer
hybrid precoding with high signal-to-interference-plus-noise
ratio (SINR). In industrial scenarios, the number of multicast
groups is expected to be large in comparison to the number
of RF chains, generating thereby the necessity for scheduling.
Further, depending on how the groups are co-scheduled, the
achievable performance of the precoder will be impacted.
As a result, a scrupulous design that considers the joint
optimization of scheduling, hybrid precoder (at the transmitter)
and analog combiners (at receivers) is required to comply
with the requirements of industrial applications. To this end,
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Figure 1: Comparison of mmWave unicast, conventional and proposed multi-group multicasting methods in Industry 4.0.

we propose HYDRAWAVE, a versatile scheme that devises an
agile scheduler and a robust multi-group multicast precoder
with analog combiners, capable of providing high throughput,
low latency, and high reliability (which is guaranteed through
service ubiquitousness).

Table I: Literature on multicasting

Type Scheduling with
PHY abstraction

PHY design w/o scheduling PHY design w/ scheduling

Fully-digital Hybrid Fully-digital Hybrid

SGM [7]–[9] [10]–[14] [12], [15], [16] [17], [18] –

MGM – [19]–[26] [27]–[30] – –

As shown in Table I, the literature on single-group multi-
casting (SGM) focus on either pure scheduling with physical-
layer (PHY) abstraction [7]–[9] or physical-layer beamform-
ing/precoding with [17], [18] and without scheduling [10]–
[16], ignoring the interference aspect in multi-group multi-
cast scenarios. On the other hand, the body of research on
multi-group multicasting (MGM) focuses mostly on fully-
digital precoder designs without scheduling tailored for sub-
6GHz frequencies [19]–[26], which are not appropriate for
mmWave. As a result, the more practical and cost-efficient
hybrid precoders [27]–[29] have attracted substantial attention.
Nevertheless, these solutions are either (i) constrained in
application due to simplified assumptions [21], [28] or (ii)
unimplementable in the existing multi-antenna hardware due
to customized designs [27], [29]. In [30], MGM is investigated
with hybrid precoders and finite resolution phase shifts but
the scheduling aspect is not considered. The joint problem of
group scheduling and precoding for multi-group multicasting
has been studied for neither fully-digital nor hybrid precoders.
The following summarizes our contributions:

• We introduce three propositions that support the design
of precoders that ensure low-latency and high reliabil-
ity. Proposition 1 renders insights on the (approximate)
inverse relation between SINR and latency. Proposition
2 leverages on this result, and reveals that latency min-
imization is promoted when maximizing the minimum
equalized SINR (e-SNR). This exposes a relevant relation
with the max-min MGM problem. Proposition 3 supports
our formulation of optimal joint group scheduling and
precoding for the multi-group multicast problem, with
emphasis on latency minimization and high reliability.

• Due to the complexity of solving the problem related
to Proposition 3 (which requires exhaustive search), we
devise a novel group scheduling formulation with a two-
fold objective: (i) minimizing the number of scheduling
windows and (ii) reducing channel correlation between

the co-scheduled receivers. To attain the latter objective,
we introduce a metric called aggregate inter-group cor-
relation that is shown to be highly suitable for forming
the co-scheduled multicast groups. As a result, we only
need to solve the problem associated with Proposition 2
(which is comparatively simpler) for every window of the
resultant scheduling thus reducing the complexity.

• The problem associated with Proposition 2 is non-convex.
Due to the NP-hardness of this problem, we propose
an alternate optimization scheme where the analog and
digital components of the hybrid precoder (at the trans-
mitter), and the analog combiners (at each receiver) are
optimized sequentially. We recast each sub-problem as
a semidefinite relaxation (SDR) program in order to
convexify the non-convex expressions.

• We propose a versatile approach based on Cholesky ma-
trix factorization, capable of handling an arbitrary number
of phase rotations at both the analog component of the
hybrid precoder (at the transmitter) and the analog com-
biners (at the receivers) with outstanding performance.

• Compared to prior art on multi-group multicast precod-
ing, we consider receivers with multiple antennas, which
can be adopted at mmWave frequencies owing to the
small antenna footprints.

• Through extensive simulations, we evaluate the perfor-
mance of our hybrid precoder and compare it against
fully-digital and fully-analog implementations. Further,
we also assess our proposed HYDRAWAVE (joint group
scheduling and precoding) and compare it in terms of
latency against three competing approaches: single-group
multicasting (SING), random scheduling (RAND) and ex-
haustive search (XHAUS). We show through simulations
that HYDRAWAVE can attain gains up to 102% and 60%

when compared against RAND and SING, respectively,
while remaining within 9.5% optimality of XHAUS.

II. RELATED WORK

In SGM scheduling with physical-layer abstraction [7]–[9],
the transmitter adjusts the gains of single-lobe switched beams
to improve the SNR at the receivers. These works mainly
focus on achieving high throughput with minimum delay for
all the multicast receivers. Concerning SGM physical-layer
precoding (hybrid/fully-digital and with/without scheduling),
researchers have studied the quality-of-service (QoS) and max-
min fairness problems [10]–[15], [17], [18]. Under these two
categories, the QoS [19]–[23], [27], [28] and max-min fairness
[22]–[26], [29] problems have also been researched for the
MGM case. Fully-digital precoders are highly versatile for



interference mitigation due to the availability of numerous
RF chains. However, these designs consumes excessive power
and require expensive hardware (particularly for mmWave).
To address these issues, the use of analog-digital architectures
(i.e., hybrid precoders) have received considerable attention.
Hybrid precoders are constituted by a low-dimensional digital
precoder that allows interference management and a high-
dimensional network of phase shifters, with an arbitrary set of
phase rotations that facilitates beamsteering. These designs do
not have the same versatility as fully-digital implementations
but are more energy-efficient and practical. Nevertheless, the
existing hybrid precoder solutions (in general, multicast and
multi-user unicast designs) are restricted in usage due to either
(i) simplified assumptions in phase rotations selection or (i)
unimplementability owing to customized hardware. Specifi-
cally, the solution propounded in [29] requires a especially
connected network of phase shifters for optimal operation. On
the other hand, in [21], [28], the usage is constrained to only
four different phase shifts. In [27], the analog phase shifters are
replaced by high-resolution lens arrays with adjustable power,
thus circumventing the actual problem of phase selection.

A work that focuses on a problem slightly related to ours
is [31], where the authors study user selection and MGM
precoding with fully-digital transmitters and single-antenna
receivers. In [31], specific users for each multicast group are
selected in order to maximize the sum-rate. Contrastingly, in
our case we deal with group selection for which we devise
a metric (i.e., IGC) that depicts the mean channel vector
correlation among the receivers of each group. Also, in our
case, the objective is to design the precoders aiming at the
minimization of the transmission latency.

III. MULTI-GROUP MULTICAST SYSTEM MODEL

We consider a mmWave system where a next generation
Node B (gNodeB) equipped with a hybrid precoder aims
to schedule GT multicast groups comprising a total of KT

receivers. The sets of receivers and groups are denoted by K =

{1, 2, . . . ,KT } and I = {1, 2, . . . , GT }, respectively. In addition,
Gi represents the set of receivers in multicast group i ∈ I. The
number of receivers in the i-th multicast group is represented
by |Gi|. As in [22], we assume that Gi ∩ Gi′ = {∅} , ∀i ̸= i′.
The hybrid precoder at the gNodeB exhibits a sub-connected
architecture, which consists of Ntx transmit antennas and NRF

tx

RF chains. Thus, each RF chain is connected to a sub-array
of Ltx = Ntx/NRF

tx antennas [3]. Due to capacity constraints,
each receiver is equipped with purely analog combiners that
consist of Nrx antennas and a single RF chain, i.e, NRF

rx = 1

and Lrx = Nrx. Since, in general GT ≥ NRF
tx , scheduling is

necessary because NRF
tx determines the maximum number of

data streams (or groups) that can be spatially multiplexed.
We define Ts as the number of scheduling windows, wherein

mutually exclusive subsets of multicast groups are served,
as shown in Fig 2. The admissible range of scheduling
windows, Ts, depends on both NRF

tx and GT . Specifically,⌈ GT

NRF
tx

⌉
≤ Ts ≤ GT is maximum when exactly one multicast

group is served per scheduling window. Also, Ts is minimum
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Figure 2: Multicast groups scheduling: Multicast groups 1 and
12 have been jointly scheduled during window t = 2.

when the gNodeB operates at maximal utilization, serving NRF
tx

multicast groups simultaneously during every window (except
for at most one window, if GT mod NRF

tx ̸= 0). Let Vt denote
an ordered set containing the indices of the co-scheduled
groups within window t. In addition, Ut denotes the set of
receivers catered during window t, i.e. Ut = {k | k ∈ Gi, i ∈ Vt}.
Similarly, {Vt}Ts

t=1 and {Ut}Ts
t=1 denote the collection of Vt

and Ut for all scheduling windows, respectively. Since every
multicast group is served only once within Ts windows, then
Vt ∩ Vt′ ̸=t = {∅}, Ut ∩ Ut′ ̸=t = {∅}. Due to the multicast nature
of the system, every receiver k ∈ Gi requires the same length-
Bi bit stream bi = [bi1 , . . . biBi

]T . Thus, the amount of bits
required by receiver k is Bk = Bi, ∀k ∈ Gi. At the transmitter,
each bit stream bi is encoded at a suitable rate πi that allows
successful decoding at every intended receiver. As a result,
GT symbol streams s̃i = [s̃i1 , s̃i2 , . . . ]

T (i ∈ I) with symbol-
wise average unit power are produced, i.e., E

{
s̃is̃

H
i

}
= I. The

symbol streams are arranged in a matrix S =
[
s̃1, . . . , s̃GT

]T

that is zero-padded where necessary, as the length of each
stream s̃i depends on Bi and πi. Specifically, the non-zero
entries of S represent the effective data that needs to be
delivered to all the groups (within Ts scheduling windows). Let
Ŝt = VtS denote the |Vt| symbol streams transmitted during the
t-th scheduling window, where Vt ∈ {0, 1}|Vt|×GT is a binary
scheduling matrix that filters the symbol streams from S. The
transmission latency associated to the delivery of Ŝt is defined
as ξt = maxi∈Vt

Bi
πi

, which represent the minimal time interval
required by the devices in all the multicast groups i ∈ Vt to
receive the intended data.

For any window t, the analog and digital precoders of
the hybrid transmitter are denoted by Ft ∈ CNtx×NRF

tx and
Mt ∈ CN

RF
tx ×|Vt|, respectively. Any element (q, r) of the analog

precoder is a phase rotation with constant modulus. Thus,
[Ft]q,r ∈ F , where q ∈ Q = {(r − 1)Ltx + l | 1 ≤ l ≤ Ltx}, r ∈ R =

{
1, . . . , NRF

tx

}
, and F =

{√
δF . . . ,

√
δF e

j
2π(DF −1)

DF

}
. DF denotes

the number of different phase shifts allowed at the transmitter,
and δF is a scaling factor. The combiner of the k-th receiver is
denoted by wk ∈ CNrx×1, where [wk]l ∈ W, l ∈ L = {1, . . . , Nrx},
W =

{√
δW , . . . ,

√
δW e

j
2π(DW −1)

DW

}
, DW is the number of phase

shifts allowed at the analog combiner, and δW is a scaling
factor. The instantaneous downlink signal is represented by
xt = FtMts̃, where s̃ =

[
s̃1c , . . . , s̃|Vt|c

]T
∈ C|Vt|×1 sweeps

through every column c of Ŝt extracting the multicast symbols
to be delivered during window t. The received signal at the



k-th device is denoted by yk = wH
k Hkxt, where Hk ∈ CNrx×Ntx

denotes the channel between the device and the gNodeB,
whereas nk ∼ CN

(
0, σ2I

)
denotes additive white Gaussian

noise. Assuming a flat-fading channel, yk is given by

yk = wH
k HkFtMtsit︸ ︷︷ ︸

desired multicast signal

+wH
k Hk

|Vt|∑

jt=1,jt ̸=it
FtMtsjt

︸ ︷︷ ︸
interference

+wH
k nk︸ ︷︷ ︸
noise

, (1)

where it ∈ {1, 2, . . . , |Vt|} is a relative index to denote the
elements of Vt. Also, sit = s̃−sjt is a vector that contains zeros
except for the it-th position, which stores the it-th element of
s̃. Thus, the SINR at receiver k is defined as

SINRk =

∣∣wH
k HkFtMteit

∣∣2
|Vt|∑

jt=1,jt ̸=it

∣∣∣wH
k HkFtMtejt

∣∣∣
2
+ σ2 ∥wk∥22

, (2)

where eit stores a 1 in the it-th position if k ∈ Vt {it} or 0

otherwise. Based on [32], the achievable rate π is approximated
by the modified Shannon capacity,

π = min{C,Cmax}, (3)
where C = log2(1 + β · SINR), Cmax is the capacity limit and
β = 0.5 represents the SINR loss [32]. In (1) and (2), we have
dropped the subscript t when referring to wk because only the
combiners of the scheduled receivers need to be designed.
Remark: Vt is obtained from Vt =

{
vt1, v

t
2, . . .

}
. For instance,

if vta (a ∈ {1, 2, . . . , |Vt|}) is in the z-th position in Vt, then the
element in the z-th row and vta-th column of Vt is set to 1.

IV. SCHEDULING CRITERIA FOR MULTICASTING

Note that Ts is not necessarily related to the overall trans-
mission latency ξ =

∑Ts
t=1 ξt. Each bit stream bi is to be

transmitted at an optimal rate πi that not only should pro-
vide service ubiquitousness (data decoding at every intended
receiver) but also should minimize the transmission latency
of the co-scheduled groups. Encoding every bi ∈ Vt at a
high rate will promote low latency ξt, but it will require
superior SINR at every receiver k ∈ Gi(i ∈ Vt) to ensure
successful decoding. Nevertheless, under constrained transmit
and receive power, a high SINR at every receiver cannot be
guaranteed, compromising thereby the service ubiquitousness.
On the other hand, transmitting at very low rate improves data
decodability for a larger number of receivers (ubiquitousness
enhancement) at the expense of increasing latency. In light
of this observation, we realize that the optimal rate needs
to be carefully devised to (i) improve the ubiquitousness
and (ii) minimize the latency. However, the optimal rate
depends on the SINR, which can only be determined once the
scheduling, precoder and combiners have been designed. This
calls for a meticulous design of the hybrid precoder, analog
combiners, and scheduling in order to attain ubiquitous multi-
group multicast service with low latency. In the following, we
present three propositions that will guide our design of {Vt}Ts

t=1,
{Ft}Ts

t=1, {Mt}Ts
t=1, {wk}KT

k=1 to attain the desired objectives.
Proposition 1: Let 1 ≤ t′ ≤ Ts be a window with de-

fined Vt′ , Ft′ , Mt′ , {wk}k∈Ut′
, then the transmission latency

ξt′|Vt′ ,Ft′ ,Mt′ ,{wk}k∈U
t′

is approximately inversely proportional

to the minimum regularized SINR (r-SINR) among all the co-
scheduled receivers.

We assume that for a certain window t′, the sets Vt′ and Ut′
have been determined. Moreover, we consider that Ft′ and Mt′

at the transmitter, and {wk}k∈Ut′
for each scheduled receiver,

have been designed. Under these assumptions, the SINR at any
receiver is obtained via (2). The maximal rate πk|Vt′ ,Ft′ ,Mt′ ,wk

at which receiver k ∈ Gi, (i ∈ Vt′ ) can successfully decode
is given by (3). Thus, the minimal latency associated to
receiver k ∈ Gi (i ∈ Vt′ ) is ξk|Vt′ ,Ft′ ,Mt′ ,wk

= Bi
πk|V

t′ ,Ft′ ,Mt′ ,wk

.
Since every receiver k ∈ Gi (i ∈ Vt′ ) requires the same infor-
mation, the optimal rate at which bi can be encoded while
guaranteeing successful reception at every receiver, is deter-
mined by πi|Vt′ ,Ft′ ,Mt′ ,{wk}k∈U

t′
= mink∈Gi

πk|Vt′ ,Ft′ ,Mt′ ,wk
.

The latency associated to multicast group i ∈ Vt′ is de-
noted by ξi|Vt′ ,Ft′ ,Mt′ ,{wk}k∈U

t′
, and the latency owing to

all multicast groups scheduled during window t′ is defined
as ξt′|Vt′ ,Ft′ ,Mt′ ,{wk}k∈U

t′
= maxi∈Vt′ ξi|Vt′ ,Ft′ ,Mt′ ,{wk}k∈U

t′
,

which can also be expressed as

ξ⋆t′ = ξt′|Ut′ ,Ft′ ,Mt′ ,{wk}k∈U
t′

= max
k∈Ut′

{
Bk

πk|Ut′ ,Ft′ ,Mt′ ,wk

}
(4)

As shown in Appendix A, the transmission latency is
approximately inversely proportional to the minimum r-SINR
among all the receivers k ∈ Ut′ , i.e.,

ξ⋆t′
∝∼−1 min

k∈Ut′

{(
1 + β · SINRk|Vt′ ,Ft′ ,Mt′ ,wk

) 1
Bk

}
, (5)

where (1+β·SINRk|Vt′ ,Ft′ ,Mt′ ,wk
)

1
Bk is termed r-SINR. Further,

(5) reveals a crucial relation between latency and SINR, which
we exploit to design optimal precoders and combiners.

Proposition 2: Let t′ be a window with defined Vt′ , then
the minimization of transmission latency ξt′|Vt′ is equivalent to
designing Ft′ ,Mt′ , {wk}k∈Ut′

such that the minimum equalized
SINR (e-SINR) of all co-scheduled receivers is maximized.

To minimize the latency associated to Vt′ , the optimization
problem that devises optimal Ft′ ,Mt′ , {wk}k∈Ut′

is

min
Ft′∈ΩF
Mt′∈ΩM

{wk}k∈U
t′

∈ΩW

ξt′|Ut′ ↔ max
Ft′∈ΩF
Mt′∈ΩM

{wk}k∈U
t′

∈ΩW

min
k∈Ut′

SINRk|Vt′

Bk
, (6)

where
SINRk|V

t′
Bk

is e-SINR. Also, ΩF , ΩM , and ΩW are the
feasible sets for the analog precoder, digital precoder and
analog combiners, respectively. A more detailed derivation of
this expression is available in Appendix B.

Proposition 3: The minimization of the overall transmission
latency of the system is equivalent to simultaneously maxi-
mizing the minimum e-SINR of the co-scheduled receivers at
every scheduling window.

It follows from Proposition 2 that, in order to minimize
the overall latency, the latency associated to every scheduling
window t must also be minimum. Thus,

min
{Ft}Ts

t=1∈ΩF

{Mt}Ts
t=1∈ΩM

{wk}
KT
k=1

∈ΩW

{Vt}Ts
t=1∈ΩV (Ts)
Ts∈ΩT

ξ↔ max
{Ft}Ts

t=1∈ΩF

{Mt}Ts
t=1∈ΩM

{wk}
KT
k=1

∈ΩW

{Vt}Ts
t=1∈ΩV (Ts)
Ts∈ΩT

Ts∧

t=1

min
k∈Ut

{
SINRk|Vt

Bk

}
, (7)



where ξ = [ξ1, . . . , ξTs ]
T . Besides, ΩV (Ts) denotes the feasible

set of all the scheduling combinations for a given Ts, whereas
ΩT ≡

[⌈
GT /N

RF
tx

⌉
, GT

]
defines the feasible set of Ts. Since the

feasible sets ΩF , ΩM , ΩW , ΩV (Ts), and ΩT are non-convex
(discussed in Section V), (7) is difficult to solve. Moreover,
{Ft}Ts

t=1, {Mt}Ts
t=1, and {wk}KT

k=1 are mutually coupled as ob-
served in (2). Furthermore, the number of potential scheduling
combinations grows combinatorially with GT and NRF

tx .
A straightforward but intractable solution to (7) is ex-

haustive search (XHAUS), whereby every scheduling pattern
{Vt}Ts

t=1 ∈ ΩV (Ts) for every value Ts ∈ ΩT is created. Then, for
each pattern, the precoder and combiners are to be designed
according to (6) while keeping the best-performing scheduling.
A simpler approach consists in randomly associating the
groups (RAND) and then solving (6). It is evident that for
any scheduling choice, we are required to solve (6) for every
window. Thus, in the following, we propose an approach based
on semidefinite relaxation and Cholesky matrix factorization
to design near-optimal hybrid precoders and analog combiners.

V. PROPOSED JOINT DESIGN OF HYBRID PRECODER AND
ANALOG COMBINERS

Given Vt, a suitable hybrid precoder and analog combiners
for window t can be designed based on (6). Thus, the latency
ξt is minimized when

P0 : max
Ft,Mt,

{wk}k∈Ut

min
k∈Ut

1
Bk

∣∣wH
k HkFtMteit

∣∣2

|Vt|∑

jt=1
jt ̸=it

∣∣∣wH
k HkFtMtejt

∣∣∣
2
+ σ2 ∥wk∥22

(8a)

s.t. ∥FtMt∥2F ≤ Pmax
tx , (8b)

∥wk∥22 ≤ Pmax
rx , k ∈ Ut, (8c)

[Ft]q,r ∈ F , q ∈ Q, r ∈ R, (8d)

[wk]l ∈ W, l ∈ L, (8e)
where (8a) aims at maximizing the minimum e-SINR, (8b)
restricts the transmit power of the hybrid precoder, whereas
(8c) limits the receive power of each receiver. On the other
hand, (8d) and (8e) enforce the phase shifts of the analog
precoder Ft and analog combiners {wk}k∈Ut

to have constant
modulus. Furthermore, (8a) is non-convex since it is as a frac-
tional program of quadratic forms with coupled parameters.
The constraints (8d) and (8e) are non-convex since [Ft]q,r and
[w]l belong to the non-convex sets F and W, respectively.
Thus, (8c) is also non-convex. Besides, (8b) is non-convex
due to the coupling between Ft and Mt, and the existence of
(8d). As a result, P0 is a non-convex program with non-convex
constrains. Note that (8) can be recast as (9),

P0 : max
α,F,M,

{wk}Kk=1

α (9a)

s.t.
1

Bk

∣∣wH
k HkFMei

∣∣2
∑

j ̸=i

∣∣∣wH
k HkFMej

∣∣∣
2
+ σ2 ∥wk∥22

≥ α, (9b)

∥FM∥2F ≤ Pmax
tx , (9c)

∥wk∥22 ≤ Pmax
rx , ∀k ∈ Ut, (9d)

[F]q,r ∈ F , q ∈ Q, r ∈ R, (9e)

[wk]l ∈ W, l ∈ L, (9f)
α ≥ 0. (9g)

For notation simplification, we assume that G = |Vt| and K =

|Ut|. In addition, we also drop the subscript t when referring
to Ft and Mt. Note that P0 is challenging to solve due to
parameter coupling and non-convexity of the feasible sets. In
fact, for the particular case when F = I and wk = 1, P0 was
shown to be NP-hard [10]. In this paper, we resort to alternate
optimization [33] to solve (9). Thus, F, M, and {wk}Kk=1 are
sequentially optimized in an iterative manner.

A. Optimization of F

Given M and {wk}Kk=1, α and F are optimized as follows,
P1 :max

α,F
α (10a)

s.t. αBk
∑

j ̸=i

∣∣∣wH
k HkFMej

∣∣∣
2
+ αBkσ

2 ∥wk∥22

−
∣∣∣wH

k HkFMei

∣∣∣
2
≤ 0, ∀k ∈ Ut, (10b)

∥FM∥2F ≤ Pmax
tx , (10c)

[F]q,r ∈ F , q ∈ Q, r ∈ R, (10d)

α ≥ 0. (10e)
Due to the sub-connected architecture of the analog pre-

coder, F is sparse. Thus, we can express FM = diag (f) M̃,
where M̃ = M⊗ 1Ltx , and f ∈ CNtx×1 is a vector that contains
the non-zero elements of F. In addition, FMei = diag

(
M̃ei

)
f .

Thus, (10) is equivalent to
P1 :max

α,f
α (11a)

s.t. αBk
∑

j ̸=i
fHbk,jb

H
k,jf − fHbk,ib

H
k,if

+ αBkσ
2 ∥wk∥22 ≤ 0, ∀k ∈ Ut, (11b)

∥Lf∥22 ≤ Pmax
tx , (11c)

[f ]n ∈ F , n ∈ N , (11d)
α ≥ 0, (11e)

where bk,i = diag
(
M̃ei

)H
HHwH

k , L =
(
M̃T ⊗ 1Ntx

)
⊙

(1G ⊗ INtx×Ntx ), N = {1, 2, . . . , Ntx}. Realize that (11d) is non-
convex due the combinatorial selection of phase shifts [f ]n
from F . Similarly, (11b) and (11c) are non-convex as they
depend on f , whereas (11e) is linear. In order to approach
P1, our strategy consists of three stages. In the first stage
(Stage A1), we recast P1 as an SDR program to convexify
(11b), (11c), and (11d), thus resulting in PSDR,1 in (12). After
convexification, the only non-convex constraint that remains
in PSDR,1 is (12b). To find a near-optimal solution, we resort
to the bisection method in the second stage (Stage A2). In
the third stage (Stage A3), we use Cholesky factorization and
randomization to recover f from Y.
Stage A1 (Transformation of P1 to SDR):

PSDR,1 :max
α,Y

α (12a)

s.t. αBkTr
(
Bk,\iY

)
− Tr

(
Bk,iY

)

+ αBkσ
2 ∥wk∥22 ≤ 0,∀k ∈ Ut, (12b)



Tr (DY) ≤ Pmax
tx , (12c)

diag (Y) = δF 1Ntx , (12d)
Y ≽ 0, (12e)
α ≥ 0, (12f)

where Y = ffH , D = LHL, Bk,\i =
∑
j ̸=i bk,jb

H
k,j and Bk,i =

bk,ib
H
k,i are positive semi-definite matrices.

Stage A2 (Bisection search for PSDR,1): Notice that (12b)
is quasi-convex on Y and α because for any α ≥ 0, (12b)
collapses to a convex constraint. Thus, we resort to the bisec-
tion search method [10], [23], [34], where we define an initial
interval

[
α
(0)
L , α

(0)
U

]
for α. Then, we progressively update the

interval depending on the returned solutions for Y. A natural
lower bound is α(0)

L = 0. An upper bound α
(0)
U can be obtained

by assigning the total power to the weakest receiver k ∈ Ut.
Thus, from (12b) we obtain α(0)

U = mink∈Ut

Tr(Bk,iY)
Bkσ

2∥wk∥22
. Further,

since Bk,i and Y are positive semidefinite, Tr
(
Bk,iY

)
≤

Tr
(
Bk,i

)
Tr (Y) holds [35]. Also, Tr (Y) = Tr

(
ffH

)
= NRF

tx .
Therefore, α(0)

U = mink∈Ut

NRF
tx Tr(Bk,i)
Bkσ

2∥wk∥22
. With the initial interval

defined, at every iteration ℓ we set α(ℓ) =
α
(ℓ)
L

+α
(ℓ)
U

2
and

solve P(ℓ)
SDR,1 for Y with the given α(ℓ). At each iteration

ℓ, we update the lower and upper bounds in the following
manner. If P(ℓ)

SDR,1 is feasible, then α
(ℓ+1)
L = α(ℓ). Otherwise,

α
(ℓ+1)
U = α(ℓ). Through this procedure, an ϵ-suboptimal solution

can be obtained within Nbis1 = log2

(
1
ϵ

(
α
(0)
U − α

(0)
L

))
iterations.

Stage A3 (Recovery of f): Let Ŷ represent an ϵ-suboptimal
solution to (12). When Ŷ is rank-1, an optimal solution
Y⋆ = Ŷ has been found to (12). Thus, f⋆ can be recovered
straightforwardly by means of eigen-decomposition. Other-
wise, we resort to a procedure inspired by [36].

Stage A3-1: Any element (n1, n2) of Y can be represented as
[Y]n1,n2

= [f ]n1
[f ]∗n2

. If we define a vector u ∈ CNtx×1 such that
∥u∥22 = uHu = 1, we can express [Y]n1,n2

in terms of u, i.e.,
[Y]n1,n2

=
(
[f ]n1

uT
)(

[f ]∗n2
u∗
)

. Moreover, if we define qn =

[f ]n u, Y can be recast as Y = QTQ∗ with Q = [q1, . . . ,qNtx ].
Stage A3-2: By means of Cholesky factorization, we can

decompose Ŷ as Ŷ = Q̂T Q̂∗, where Q̂ = [q̂1, . . . , q̂Ntx ]. In
Stage A3-1, we assumed that every qn is originated from the
same vector u. Thus, we need to find both f and u that
satisfy qn = [f ]n u, ∀n ∈ N . Since such vectors f and u may
not exist, we aim at finding approximate û and f̂ , such that
q̂n ≈

[
f̂
]
n
û, ∀n ∈ N . Mathematically, this is expressed as

P̂LS,1 :min
û,f̂

Ntx∑

n=1

∥∥∥q̂n −
[
f̂
]
n
û
∥∥∥
2

2
(13a)

s.t. ∥û∥22 = 1, (13b)
[
f̂
]
n
∈ F , ∀n ∈ N , (13c)

where we find û and f̂ with the least error in the 2-norm sense.
Stage A3-3: Minimizing simultaneously both û and f̂ is

challenging. Thus, we generate a random vector û, such that
∥u∥22 = 1. Therefore, we solve

P̂LS,2 : min
[f̂ ]

n
∈F,∀n∈N

Ntx∑

n=1

∥∥∥q̂n −
[
f̂
]
n
û
∥∥∥
2

2
(14)

By expanding (14), we obtain

P̂LS,2 : max
[f̂ ]n∈F,∀n∈N

Ntx∑

n=1

Re
([

f̂
]
n
q̂Hn û

)
. (15)

Note that (15) can be decomposed into Ntx parallel sub-
problems. Further, since zn = q̂Hn û is known in P̂LS,2, we select[
f̂
]
n

such that the real part is maximized. This is equivalent to
choosing

[
f̂
]
n

with the closest phase to z∗n. Therefore, among
the phase rotations in F , we choose the closest to z∗n. To
improve f̂ , we generate Nrand1

vectors ûv with ∥uv∥22 = 1 (v =

1, . . . , Nrand1
), and for each we find its corresponding f̂v. Then,

we select f† among Nrand1
candidates that provides the largest

minimum e-SINR, i.e., f† = arg
f̂1,...,f̂Nrand1

maxmink∈Ut

SINRk
Bk

.
Finally, f† is reshaped to obtain F† = reshape

(
f†
)
. The function

reshape(·) reverses the effect of vec(·).

B. Optimization of M

Assuming that F and {wk}Kk=1 are known, (9) collapses to
P2 :max

α,M
α (16a)

s.t. αBk
∑

j ̸=i

∣∣∣wH
k HkFMej

∣∣∣
2
+ αBkσ

2 ∥wk∥22

−
∣∣∣wH

k HkFMei

∣∣∣
2
≤ 0, ∀k ∈ Ut, (16b)

∥FM∥2F ≤ Pmax
tx , (16c)

α ≥ 0. (16d)
We can equivalently express P2 as,
P2 :max

α,m
α (17a)

s.t. αBk
∑

j ̸=i
mHck,jc

H
k,jm−mHck,ic

H
k,im (17b)

+ αBkσ
2 ∥wk∥22 ≤ 0, ∀k ∈ Ut, (17c)

∥(I⊗ F)m∥22 ≤ Pmax
tx , (17d)

α ≥ 0, (17e)
where ck,i =

(
ei ⊗

(
FHHH

k wk
))

and m = vec (M). Following a
similar procedure as before, the SDR form of (17) is
PSDR,2 :max

α,Z
α (18a)

s.t. αBkTr
(
Ck,\iZ

)
− Tr

(
Ck,iZ

)

+ αBkσ
2 ∥wk∥22 ≤ 0, ∀k ∈ Ut, (18b)

Tr (JZ) ≤ Pmax
tx , (18c)

Z ≽ 0, (18d)
α ≥ 0, (18e)

where Z = mmH , J = (I⊗ F)H (I⊗ F), Ck,\i =
∑
j ̸=i ck,jc

H
k,j

and Ck,i = ck,ic
H
k,i. As in Stage A2, we use the bisec-

tion method to approach (18). In this case, α
(0)
L = 0 and

α
(0)
U = mink∈Ut

Pmax
tx Tr(Ck,i)
Bkσ

2∥wk∥22
. The process is repeated for Nbis2

iterations. At the end of the bisection procedure, we obtain Ẑ

from which m̂ is estimated. If Ẑ is rank-1, then an optimal
solution Z⋆ = Ẑ has been found to (18). Otherwise, we
generate Nrand2

candidates according to m̂v ∼ CN
(
0, Ẑ

)

(v = 1, . . . , Nrand2
) and retain the best-performing candidate

m† = argm̂1,...,m̂Nrand2

maxmink∈Ut

SINRk
Bk

[37], [38]. Finally,
m† is reshaped to obtain M†.



C. Optimization of {wk}Kk=1

Now, we assume that F and M are given. Therefore, we
optimize the analog combiners {wk}Kk=1 as shown in (19)
P3 : max

α,{wk}Kk=1

α (19a)

s.t. αBk
∑

j ̸=i

∣∣∣wH
k HkFMej

∣∣∣
2
+ αBkσ

2 ∥wk∥22

−
∣∣∣wH

k HkFMei

∣∣∣
2
≤ 0, ∀k ∈ Ut, (19b)

∥wk∥22 ≤ Pmax
rx , ∀k ∈ Ut, (19c)

[wk]l ∈ W, l ∈ L, (19d)
α ≥ 0. (19e)

We observe that each combiner can be optimized indepen-
dently since any variation of wk will only affect the SINR of
the k-th receiver. Therefore, we solve K sub-problems P(k)

3 in
parallel. The SDR form of P(k)

3 is
P(k)
SDR,3 : max

α,Wk

α (20a)

s.t. αBkTr
(
P̃k,\iWk

)
− Tr

(
Pk,iWk

)
, (20b)

Tr (Wk) ≤ Pmax
rx , (20c)

diag (Wk) = δW 1Nrx , (20d)
Wk ≽ 0, (20e)
α ≥ 0, (20f)

where Wk = wkw
H
k , Pk,i = HkFMeie

H
i MHFHHk and P̃k,\i =∑

j ̸=iPk,j + Bkσ
2I. Since the combiners wk are analog, we

follow the same procedure used to optimize F. In this case,
the lower bound is α

(0)
Lk

= 0 whereas the upper bound
α
(0)
Uk

= λmax

(
Pk,iP̃

−1
k,\i

)
is the maximum eigenvalue of ma-

trix Pk,iP̃
−1
k,\i. The bisection process is repeated for Nbis3

iterations as explained in Stage A2, upon whose completion
Ŵk is obtained. If Ŵk is rank-1, then W⋆

k = Ŵk is also
optimal to (20). Otherwise we generate Nrand3

candidates ŵk,v

(v = 1, . . . , Nrand3
) for each ŵk as discussed in Stage A3, and

select the best-performing w†
k = argŵk,1,...,ŵk,Nrand3

max SINRk
Bk

.
To further refine F, M, {wk}Kk=1, we sequentially solve

PSDR,1, PSDR,2 and
{
P(k)
SDR,3

}K
k=1

for a number of Niter iter-
ations. Also, since the number of bits Bi to be transmitted can
be arbitrarily large, we use normalized values B̃i in the range
[0, 1], only for optimization purposes. Also, the scaling factors
δF and δW , in Section III, are chosen such that ∥F∥2F = NRF

tx

and ∥wk∥22 = Pmax
rx . Thus, δF = NRF

tx /Ntx and δW = Pmax
rx /Nrx.

VI. PROPOSED SCHEDULING ALGORITHM

Given that scheduling plays a key role in ensuring minimum
latency, in this section, we propose a novel scheduling formu-
lation that aims to minimize both, the number of scheduling
windows and the aggregate inter-group correlation (IGC). We
model the scheduling problem as a Boolean program,

S : min
{µi,i}GT

i=1,{τi,j,l}

GT∑

i=1

µi,i

︸ ︷︷ ︸
first term

+ω

GT−1∑

i=1

GT−1∑

j≥i

GT∑

l>j

ρj,l · τi,j,l
︸ ︷︷ ︸

second term: aggregate IGC

(21a)

s.t.
∑

i≤j<l
ρj,l · τi,j,l ≤ λ · µi,i, ∀i, (21b)

∑

i≤j
µi,j = 1, ∀j, (21c)

∑

j≥i
µi,j ≤ NRF

tx ,∀i, (21d)

µi,j ≤ µi,i, ∀i < j, (21e)
µi,j + µi,l ≤ 1 + τi,j,l, ∀i ≤ j < l, (21f)
µi,j ∈ {0, 1} , (21g)
τi,j,l ∈ {0, 1} . (21h)

Each binary variable µi,j assumes the value of 1 if multicast
group j is scheduled in the i-th window (or 0 otherwise).
The binary variable τi,j,l is 1 if any two multicast groups j

and l have been co-scheduled during the i-th window. Also,

we define ρj,l =

∣∣∣hH
j hl

∣∣∣
∥hj∥2∥hl∥2

as the inter-group correlation
(IGC) between groups j and l, where hj = 1

|Gj |
∑
k∈Gj

vec (Hk)

is the mean channel vector of all receivers k in group j.
The first term in (21a) represents the number of scheduling
windows, whereas the second term is the aggregate IGC, which
is computed in a pair-wise manner and accumulated as a
penalization. If there exist more than a solution that yields
the same optimal amount of scheduling windows, the second
term penalizes the candidates that exhibit large aggregate IGC.
Realize that by minimizing the aggregate IGC, we attempt
to produce scheduling patterns wherein receivers of different
co-scheduled groups are the least correlated (on average),
thereby enhancing the SINR and latency. For every window i,
(21b) restricts the aggregate IGC of the co-scheduled groups
to remain below λ, which is the maximum threshold. Also,
(21c) enforces every group j to be scheduled once, whereas
(21d) restricts the number of groups per window to be at most
NRF

tx . Without loss of generality, (21e) and the condition i < j

imposed on (21a)–(21d) reduce the search space and therefore
the complexity. Further, (21f) binds the variables µi,j and τi,j,l

and ensures consistency among them. Finally, (21g) and (21h)
declare µi,i and τi,j,l as Boolean. In (21a), ω is chosen such
that the first and second term have equal weights on average.

VII. NUMERICAL RESULTS

This section sheds light on the performance of our proposed
scheme HYDRAWAVE (joint group scheduling and precoding).
We focus on two performance metrics: minimum e-SINR and
latency. First, to gain insights into the effectiveness of our
hybrid precoder design, we evaluate its performance against
fully-digital and fully-analog implementations, in which we
leave out the scheduling aspect. Next, we investigate the
impact of different scheduling algorithms on the total latency,
which additionally accounts for the beam-switching delay
between the scheduling windows.
HYDRAWAVE: our proposed scheduling and precoding scheme.
SING: single-group multicasting scheduling serves only one
multicast group per scheduling window.
RAND: random scheduling selects stochastically an allocation
pattern among all possible combinations.
XHAUS: exhaustive search finds the best scheduling policy that
minimizes latency among all the possibilities.
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(a) Fully-digital precoder (NRF
tx = 24)
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(b) Hybrid precoder (NRF
tx = 4)
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(c) Fully-analog precoder (NRF
tx = 4)

Figure 3: Evaluation of e-SINR and latency for different precoders

KT = 4

KT = 8

KT = 16

KT = 32

KT = 64

In simulations, we consider the geometric channel model
with Npaths = 6 propagation paths between the transmitter
and each receiver [39], [40], considering the high density of
reflecting surfaces in an industrial environment. The receivers
are divided equally among all the multicast groups. The nu-
merical results show the average performance over 100 channel
realizations. Table II summarizes the parameters setting.

Table II: Simulations configuration
Parameter Notation & Value
Number of antennas at the transmitter Ntx = 24 (with Ltx = 6)
Number of antennas at the receiver Nrx = {1, 2, 3}
Number of RF chains at the transmitter NRF

tx = 4
Number of shifts at the transmitter DF = 16
Number of phase shifts at the receivers DW = 4
Maximum transmit power Pmax

tx = 20 dBm (100 mW)
Maximum receive power Pmax

rx = 0 dBm (1 mW)
Noise power σ2 = 10 dBm
Number of multicast groups GT = 4
Number of receivers KT = {4, 8, 16, 32, 64}
Bit-stream length B1 = B2 = B3 = B4 = 4 Mbits
Number of bisection procedures Nbis1

= Nbis2
= Nbis3

= 10

Number of randomizations
Nrand1

= 5 ·Ntx

Nrand2
= 100 · |Gt|

Nrand3
= 20 ·Nrx

Number of sequential iterations Niter = 3

1) Performance of Hybrid Precoder without Scheduling:
We compare the performance of the proposed hybrid pre-
coder design against a fully-digital implementation, which
can be obtained as a particular case of our formulation
when NRF

tx = Ntx, Ltx = 1 and F = I. Similarly, we also
consider a fully-analog precoder that can be obtained when
M = I. In this scenario, we consider a single window t′

with a defined scheduling Vt′ , where two multicast groups
are concurrently served. The performance of this scenario is
shown in Fig. 3 and is essentially related to Proposition 2.
We observe that, for a given number of receivers KT , the
minimum e-SINR improves with an increasing number of
receive antennas Nrx, because the beam-steering capability of
each receiver is augmented. Further, for a given Nrx, as the
number of receivers KT increases, the e-SINR reduces since
the total power is distributed accordingly. In terms of latency,
(calculated with (4)), the fully-digital precoder outperforms
the hybrid and fully-analog precoders as it is endowed with a
larger amount of RF chains that allows enhanced interference
reduction, thus promoting higher data rates. However, due to
excessive power consumption and hardware costs of fully-
digital precoders in mmWave frequencies, the hybrid precoder
is a promising candidate with low power consumption and
high performance. For instance, if PRF = 250 mW [41] and

PPS = 30 mW [42] represent the power consumed by a single
RF chain and a single 4-bit-resolution phase shifter (DF = 16),
the instantaneous power consumed by the hybrid and digital
precoders are Phyb = Pmax

tx + NRF
tx PRF + NtxPPS = 1.82 W and

Pdig = Pmax
tx +NRF

tx PRF = 6.10 W, respectively. This reveals an
improvement of 235% on energy consumption and 44%− 232%

on energy efficiency (results excluded due to space limitation).
2) Performance of Hybrid Precoder with Scheduling: Fig. 4

illustrates the performance of HYDRAWAVE, SING, RAND, and
XHAUS. In our scheduling formulation in (21), λ controls
the maximum tolerable aggregate IGC. Thus, in the fully-
digital precoder case, a larger λ can be supported due to
the versatility of the precoder to manage interference. On
the other hand, due to the limited amount of RF chains,
the values of λ used with the hybrid and analog precoders
need to be comparatively smaller. We observe that, in terms
of latency, the fully-digital precoder outperforms the hybrid
and fully-analog implementations. Further, for any precoder
type with a small number of receivers (e.g., KT = 16),
SING produces the greatest latency while XHAUS is optimal
(according to Proposition 3). On the other hand, RAND exhibits
an intermediate performance between SING and XHAUS. As
the number of receivers increases (e.g., KT = 64), the per-
formance gap between SING and XHAUS reduces considerably
because interference becomes more complex to manage, thus
yielding SING optimal in some realizations. On the contrary,
RAND deteriorates since the impact of scheduling becomes
more relevant in the presence of higher interference. When
considering a switching delay of δSW = 0.5 ms between
consecutive windows [7], similar behavior can be observed
except for SING being heavily penalized due to the incapa-
bility of spatial multiplexing. Furthermore, we include the
performance of HYDRAWAVE with different values of λ. In Fig.
4, λopt is obtained upon evaluating several λ and bisecting
the search space until negligible variation is observed. For
the fully-digital precoder, HYDRAWAVE attains near-optimality
when KT = 16. Also, its performance remains within 11%

of the optimal value for KT = {32, 64} when δSW = 0.0, and
within 9% when δSW = 0.5 ms. In the hybrid and fully-analog
cases, the performance of HYDRAWAVE remains in the range
1.5−9.5% and 3.4−11.7% of the optimal XHAUS, respectively. In
the hybrid precoder case, HYDRAWAVE exhibits gains up 32%

higher than SING and up to 102% compared to RAND when
δSW = 0. When δSW = 0.5, the gains are up to 60% and 59%,
respectively. While finding λopt could be time-consuming, we
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(c) Fully-analog precoder
Figure 4: Latency performance of different scheduling schemes with fully-digital, hybrid, and fully-analog precoders.

notice that for a reasonable value of λ = {0.05, 0.1} the fully-
digital and hybrid precoders behave remarkably compared to
XHAUS while outperforming SING and RAND.

VIII. DISCUSSION AND FUTURE WORK

Optimization Parameters: Finding λopt is challenging as it
depends on the channel between the transmitter and receivers,
as well as on the total interference. In order to circumvent this
problem, a system could be trained using deep-learning to map
the inputs to a suitable value of λ. Other possible options are
data clustering and multivariate regression.
Hybrid Precoder Design: Compared to most approaches on
hybrid precoding (multi-user or multicast) in the literature, in
this paper, the hybrid precoder is not obtained as an approx-
imation of the optimal digital implementation. We design the
precoder without any knowledge of the digital implementation.
We presume that the performance of the hybrid precoder can
be further boosted if a better initialization scheme is explored.
Hybrid Precoder Complexity: The worst-case complex-
ity of the hybrid precoder design, when using stan-
dard interior-point methods is Nbis1O

(
G3N6

tx +KGN2
tx

)
+

Nbis2O
((
GNRF

tx

)6
+K

(
GNRF

tx

)2)
+ KNbis3O

(
N6

rx +N2
rx

)
.

Optimal Scheduler: Finding the optimal scheduler is intrin-
sically of combinatorial nature. Alternative relaxations of 0−1

parameters in Proposition 3 based on log, exp, and arctan
functions could be further explored.

IX. CONCLUSION

We investigated the joint optimization of scheduling and
multi-group multicast hybrid precoders to achieve ubiquitous
low-latency mmWave communications in Industry 4.0 set-
tings. We proposed a scheme based on alternate optimiza-
tion, semidefinite relaxation and Cholesky matrix factorization
to design the hybrid precoder. Also, we presented a novel
scheduling formulation that takes into account the number of
RF chains at the transmitter while minimizes the number of
scheduling windows and channel correlation among the co-
scheduled receivers. We corroborated through simulations that
in terms of SINR the hybrid precoder can attain outstanding
performance with a few number of RF chains. In terms of
latency performance, the proposed HYDRAWAVE is capable of
performing within 9.5% of the optimal XHAUS while exhibiting
noticeable advantage over SING and RAND.
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APPENDIX A
DERIVATION OF PROPOSITION 1

Let C⋆k = Ck|Vt′ ,Ft′ ,Mt′ ,wk
, SINR⋆k = SINRk|Vt′ ,Ft′ ,Mt′ ,wk

and ξ⋆
t′ = ξt′|Ut′ ,Ft′ ,Mt′ ,{wk}k∈U

t′
. From (4), the transmission

latency ξ⋆
t′ with known Ut′ ,Ft′ ,Mt′ , {wk}k∈Ut′

is defined as

ξ⋆t′ = max
k∈Ut′

{
Bk

min
{
C⋆k , Cmax

}
}

(A.1a)

= max
k∈Ut′

{
max

{
Bk

C⋆k
,
Bk

Cmax

}}
(A.1b)

=
1

min
k∈Ut′

{
min

{
C⋆k
Bk

,
Cmax

Bk

}} (A.1c)

=
1

min
k∈Ut′

{
log2(1 + β · SINR⋆k)

Bk
,
Cmax

Bk

} (A.1d)

=
1

log2

(
min
k∈Ut′

{
(1 + β · SINR⋆k)

1
Bk , 2

Cmax
Bk

}) . (A.1e)

Because (A.1c) involves extremizations of the same type,
they can be combined. When |Vt| > 1, in general 1+β ·SINR⋆k ≤
2Cmax , due to interference and restricted transmit/receive
power. Further, since log2(·) is monotonically increasing, then,

ξ⋆t′ ∝∼
−1 min

k∈Ut′

{
(1 + β · SINR⋆k)

1
Bk

}
. (A.2)

APPENDIX B
DERIVATION OF PROPOSITION 2

Let ξ⋆
t′ = ξt′|Ut′ and SINR⋆k = SINRk|Ut′ represent the latency

during window t′ and the SINR of receiver k ∈ Ut′ , respectively
when solely Ut is known. Thus, Ft′ ,Mt′ , {wk}k∈Ut′

are be
designed in order to minimize (A.1c), i.e.,

min
Ft′∈ΩF ,Mt′∈ΩM
{wk}k∈U

t′
∈ΩW

1

min
k∈Ut′

{
min

{
C⋆k
Bk

,
Cmax

Bk

}}
,

(B.1)

which is equivalent to
(B.1)
= max

Ft′∈ΩF ,Mt′∈ΩM
{wk}k∈U

t′
∈ΩW

min
k∈Ut′

{
min

{
C⋆k
Bk

,
Cmax

Bk

}}
(B.2a)

(B.1)
= max

Ft′∈ΩF ,Mt′∈ΩM
{wk}k∈U

t′
∈ΩW

min
k∈Ut′

{
C⋆k
Bk

}
(B.2b)

(B.1)
= max

Ft′∈ΩF ,Mt′∈ΩM
{wk}k∈U

t′
∈ΩW

min
k∈Ut′

{
log2

(
1 + β · SINR⋆k

)

Bk

}
(B.2c)

(B.1)
= max

Ft′∈ΩF ,Mt′∈ΩM
{wk}k∈U

t′
∈ΩW

min
k∈Ut′

{
SINR⋆k
Bk

}
(B.2d)



(B.1)
= max

Ft′∈ΩF ,Mt′∈ΩM
{wk}k∈U

t′
∈ΩW

min
i∈Vt′

min
k∈Gi

{
SINR⋆k
Bk

}
, (B.2e)

where (B.2a) collapses to (B.2b) because Cmax does
not depend on Ft′ ,Mt′ , {wk}k∈Ut′

. In (B.2c), since
log2

(
1 + β · SINR⋆k

)
is an injective mapping of SINR⋆k, it

is equivalent to (B.2d). Further, (B.2e) is an alternative
notation for (B.2d).
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Abstract—The omnipresence of IoT devices in Industry 4.0
is expected to foster higher reliability, safety, and efficiency.
However, interconnecting a large number of wireless devices
without jeopardizing the system performance proves challenging.
To address the requirements of future industries, we investi-
gate the cross-layer design of beamforming and scheduling for
layered-division multiplexing (LDM) systems in millimeter-wave
bands. Scheduling is crucial as the devices in industrial settings
are expected to proliferate rapidly. Also, highly performant
beamforming is necessary to ensure scalability. By adopting
LDM, multiple transmissions can be non-orthogonally super-
imposed. Specifically, we consider a superior-importance control
multicast message required to be ubiquitous to all devices and
inferior-importance private unicast messages targeting a subset of
scheduled devices. Due to NP-hardness, we propose BEAMWAVE,
which decomposes the problem into beamforming and scheduling.
Through simulations, we show that BEAMWAVE attains near-
optimality and outperforms other competing schemes.

Index Terms—cross-layer, beamforming, scheduling, unicast,
multicast, layered-division multiplexing, industrial IoT, mmWave.

I. INTRODUCTION

Industry 4.0 envisions automated factories with a massive
number of interconnected industrial internet-of-things (IoT)
devices [1], such as sensors, actuators, programmable logic
devices, and access points. Such degree of interconnectivity
is expected to facilitate ultra-precise control and seamless
coordination, thus enabling extremely efficient and dependable
manufacturing processes [2]. In the existing industrial settings,
the majority of stationary devices are interconnected through
redundant wired connections to guarantee communications
with high reliability. However, with the upsurge of devices in
smart industries, wired solutions will encounter the following
problems: (i) intricate implementation complexity to intercon-
nect a massive number of devices, (ii) increased operational
costs due to hard-wiring, (iii) limited maneuverability of
articulated robots, and (iv) communication infeasibility with
autonomous mobile freight transport. In contrast, wireless
solutions can substantially simplify the deployment complexity
and reduce maintenance costs while promoting the adoption
of more flexible mechanics and mobile apparatus. Thus, the
transformation from wired to wireless infrastructure is an
appealing strategy towards the evolution of industries.

By harnessing millimeter-wave (mmWave) and massive
multiple-input multiple-output (mMIMO), high spectral effi-
ciency has been demonstrated (e.g., [3], [4]). Specifically,
mmWave is an attractive substitute for the saturated sub-6 GHz

spectrum due to broad bandwidth availability. Also, because of
the shorter wavelength, mmWave requires miniature antennas
that can be easily embedded onto small industrial devices.
Further, mmWave exhibits high spatial reuse due to severe
path-loss and sparse propagation, making it ideal for short-
range communications in extremely dense scenarios such as
the industrial settings. Besides, owing to increased degrees
of freedom, mMIMO renders extraordinary interference mit-
igation [5], [6] that enables augmented spectral efficiency
and exceptional multiplexing capability, which are desirable
features to support the future industrial landscape.

In factories of the future, industrial devices will require two
types of information: shared safety/control messages (multi-
cast signal) and private messages (unicast signals). Such a
requirement could be addressed by orthogonal multiple access
(OMA) schemes, wherein multicast and unicast signals would
be transmitted in disjoint time or frequency resources. Nev-
ertheless, with the anticipated escalation, OMA schemes will
struggle to accommodate a large number of devices in orthogo-
nal resources. Thus, non-orthogonal multiple access (NOMA)
schemes are envisaged as a remedy to cope with the scarcity
of radio resources. In particular, NOMA can boost the spectral
efficiency by admitting superposed transmissions in the power
or code domain. Among the plethora of NOMA variants [7],
layered-division multiplexing (LDM) has been recognized as
a promising candidate to meet the growing spectrum demands.
LDM is a power-domain NOMA scheme capable of conveying
multiple layers of information simultaneously while using
the same time-frequency resources. By harnessing LDM in
industrial settings, multicast and unicast information can be
disseminated concurrently without resorting to OMA schemes
such as time/frequency-division multiplexing (T/FDM).

Several NOMA schemes have recently been intertwined
with mmWave and mMIMO, showing remarkable synergy in
many use cases (e.g., [8]–[10]). Also, preliminary studies on
the usage of NOMA [11] and mmWave [12] for smart indus-
tries have shown favorable results. Based on this evidence,
it is expected that by jointly leveraging mmWave, mMIMO
and LDM, the stringent requirements of future industrial
ecosystems can be fulfilled. However, the synthesis of these
technologies poses challenges that require further study when
considered in the context of Industry 4.0.
Challenges: The following summarizes relevant aspects that
need to be considered in the envisaged industrial landscape.



• The maximum number of devices that can be simultaneously
served with individual signals is limited by the number
of radio frequency (RF) chains at the transmitter (e.g.,
base station). Hence, with the forecasted rapid escalation of
devices in industrial sectors [13], the problem aggravates.
Most existing works on beamforming consider sufficient
RF chains to serve all devices, thus rendering scheduling
unnecessary. However, as networks densify, scheduling will
be pivotal in exerting substantial improvement in the system
performance. Thus, considering the cross-layer optimization
of beamforming and scheduling is of utmost importance.

• Multicast and unicast transmissions give rise to conflicting
objectives. From the multicast perspective, the transmitter
consumes lesser power while the spectral efficiency im-
proves when the devices have correlated channels. From
the unicast perspective, we observe the opposite effect,
i.e., correlated channels yield low spectral efficiency while
demanding higher power. As a result, selecting a suitable
set of devices (i.e., scheduling) in superimposed multicast-
unicast LDM systems requires special consideration.

• Problems dealing with cross-layer optimization of beam-
forming and scheduling are challenging to solve due its in-
herent nature of involving integer and continuous variables.

Research problem: Due to safety reasons, the superior-
importance multicast signal (e.g., control messages) is not
subject to scheduling but is required to be ubiquitous to all IoT
devices. Contrastingly, the inferior-importance unicast signals
(e.g., software updates) are conveyed to only a specific subset
of devices (i.e., scheduling) subject to RF chains availability.
As a result, two superimposed beamformers are designed.
One beamformer transmits the control signal to all devices.
The second beamformer caters a selected subset of devices
with private unicast signals, where the selection of devices is
inspired by the max-min criterion.
Related work: Beamforming in LDM systems has been stud-
ied for (i) transmit power minimization [8], [14], [15], (ii) en-
ergy efficiency improvement [16], (iii) joint beamforming and
base station clustering [17], [18], (iv) sum-rate maximization
[19], (v) simultaneous wireless information and power transfer
(SWIPT) [20], [21], and (vi) fairness improvement [22]. To the
best of our knowledge, the cross-layer optimization problem
for joint design of beamforming and scheduling in LDM
systems has not been studied before. Further, the combination
of mmWave, mMIMO and LDM has neither been studied in
industrial settings.
Contributions: Our contributions are the following.

• We formulate a NP-hard problem (P) that jointly optimizes
beamforming and scheduling for multicast-unicast LDM
transmissions, where we impose a signal-to-interference-
plus-noise ratio (SINR) constraint on the multicast signal
to ensure that every IoT device correctly decodes the ubiq-
uitous safety message.

• To solve problem P we propose BEAMWAVE, which de-
composes P into two problems S and D. We propose a
novel scheduling scheme S based on new pair-wise metrics,

PAWN, ROOK, KING, that we devise to guide the deci-
sion. Essentially, these metrics represent the discordance
of co-scheduling two devices together. To solve D, we
devise an approach based on the convex-concave procedure
(CCP). Through simulations, we show that the proposed
BEAMWAVE can attain near-optimality when compared to
an exhaustive search approach.

• We motivate the need for scheduling in LDM systems,
specially when the number of RF chains is insufficient to
serve a significantly larger number of devices (which is
expected in future industrial settings). In addition, we apply
our proposed scheduler S to T/FDM systems to find the
set of devices co-scheduled in the same time or frequency
resource. Through simulations, we show the importance of
scheduling when compared to more trivial schemes such as
random selection.

II. SYSTEM MODEL

We assume a system, where a next-generation Node B
(gNodeB) serves K devices indexed by K = {1, · · · ,K}. The
gNodeB transmits a signal composed of two non-orthogonal
layers. The primary layer is a multicast signal that conveys a
shared control message intended for every device k ∈ K. The
secondary layer is a composite signal consisting of multiple
unicast messages intended for a subset of devices K′ ⊆ K,
where K′ = |K′|. Thus, K′ dual-layer devices are catered with
simultaneous unicast and multicast transmissions, whereas
K − K′ single-layer devices are served with multicast infor-
mation only. The gNodeB possesses a precoder (i.e., transmit
beamformer) consisting of Ntx antennas and NRF

tx << Ntx RF
chains. Without loss of generality, we assume that NRF

tx = K′.
Besides, each IoT device in the system is equipped with a
single RF chain (i.e., NRF

rx = 1) and Nrx antennas.
The downlink signal from the gNodeB is denoted by

x = [B|m]
[
sT |z

]T . The unicast and multicast precoders are
represented by B ∈ CNtx×K′ and m ∈ CNtx×1, respectively.
In addition, s ∈ CK′×1 denotes the unicast symbols for the
dual-layer devices while z ∈ C is the shared multicast symbol
intended for all K devices, with E

{[
sT , z

]H [
sT , z

]}
= I. More

specifically, B = B̃U where B̃ = [b1, . . . ,bK ] ∈ CNtx×K

and U ∈ BK×K′ is a binary matrix. Also, s = UT s̃ where
s̃ = [s1, . . . , sK ]T ∈ CK×1. Concretely, the matrix U selects the
dual-layer devices that will be served with both unicast and
multicast signals. Thus, it must hold that 1TU1 = K′, U1 4 1

and UT 1 4 1. As a result, UUT = diag ([µ1, · · · , µK ]) is a square
matrix whose k-th diagonal element is 1 when k is a dual-
layer device (i.e., µk =

[
UUT

]
k,k

= 1, if k ∈ K′). Otherwise,
µk =

[
UUT

]
k,k

= 0 when k is a single-layer device. Assuming
flat fading, the signal received by device k ∈ K is given by

yk = wH
k Hkmz︸ ︷︷ ︸

yM
k

: multicast signal

+ wH
k Hk

∑

j∈K′
bjsj

︸ ︷︷ ︸
yU
k
: aggregate unicast signal

+wH
k nk,︸ ︷︷ ︸

ηk:noise (1)

where wH
k Hk

∑
j∈K\K′ µjbjsj = 0 since µj = 0, ∀j ∈ K\K′.

Besides, wk ∈ CNrx×1 represents the combiner (i.e., receive
beamformer) of the k-th device, nk ∼ CN

(
0, σ2I

)
symbolizes

circularly symmetric Gaussian noise whereas Hk ∈ CNrx×Ntx



denotes the channel between the gNodeB and the k-th device,
defined as

Hk =

√
NrxNtx

Lk

Lk∑

l=1

ρ
(l)
k arx

(
ψ
(l)
k

)
atx

(
φ
(l)
k

)H
. (2)

Here, Lk is the number of paths in Hk, whereas ψ
(l)
k

and φ
(l)
k represent the angle of arrival (AoA) and an-

gle of departure (AoD) of the l-th path in Hk, respec-
tively. The array vector responses at the k-th device and
gNodeB, in the directions of ψ

(l)
k and φ

(l)
k , are respectively

defined as arx

(
ψ
(l)
k

)
= 1√

Nrx

[
1, · · · , e−j(Nrx−1) 2π

λ
d cos(ψ

(l)
k

)

]T

and atx

(
φ
(l)
k

)
= 1√

Ntx

[
1, · · · , e−j(Ntx−1) 2π

λ
d cos(φ

(l)
k

)

]T
. Also,

d
λ

= 0.5 and ρ
(l)
k is the complex gain of the l-th path in Hk,

which is represented as a random variable following a complex
Gaussian distribution CN (0, 1).

Due to the superposed structure of the transmitted signal,
successive interference cancellation (SIC) is performed by the
dual-layer devices in order to extract multicast and unicast
information. Every device k ∈ K decodes the multicast symbol
first by treating the aggregate unicast signal as noise. In
addition, if k is a dual-layer device (i.e., k ∈ K′), then
the device applies SIC decoding. Essentially, the k-th device
reconstructs the multicast signal yMk using the decoded symbol
z, and then subtracts yMk from yk. Thereupon, the remaining
byproduct consists solely of unicast components (yUk ) and
noise (ηk), from where the dual-layer device can decode its
intended symbol sk. The SINR of the multicast and unicast
signals at the k-th device are respectively defined as

SINRM
k =

∣∣wH
k Hkm

∣∣2
∑
j∈K′

∣∣wH
k Hkbj

∣∣2 + σ2 ‖wk‖22
, ∀k ∈ K, (3)

SINRU
k =

∣∣wH
k Hkbk

∣∣2
∑
j 6=k,j∈K′

∣∣wH
k Hkbj

∣∣2 + σ2 ‖wk‖22
, ∀k ∈ K′. (4)

III. PROBLEM FORMULATION

We present a joint formulation that encompasses the opti-
mization of (i) scheduling, (ii) precoders and (iii) combiners,

P : max
W,m,

B̃,µ

min
k∈K

∣∣wH
k Hkbk

∣∣2 g(µk)∑
j 6=k,j∈K

∣∣wH
k Hkbj

∣∣2 µj + σ2 ‖wk‖22

s.t. C1 :

∣∣wH
k Hkm

∣∣2
∑
j∈K

∣∣wH
k Hkbj

∣∣2 µj + σ2 ‖wk‖22
≥ γmin, ∀k ∈ K,

C2 :
∑

k∈K
‖bk‖22 µk + ‖m‖22 ≤ Ptx,

C3 :
∑

k∈K
µk = K′,

C4 : [wk]l ∈ W, l ∈ L, ∀k ∈ K,
C5 : µk ∈ {0, 1} ,

where g(χ) is defined as

g(χ) =




1, if χ = 1,

∞, if χ = 0.

and W = [w1, · · · ,wK ], B̃ = [b1, · · · ,bK ], µ = [µ1, · · · , µK ].

1
2 8

3 4 5 6 7 9

Unicast 

Multicast

Figure 1: Multicast-unicast LDM system with K = 9 devices.
The multicast signal is intended for all devices whereas only a
subset of K′ = 6 devices is served with private unicast signals.

The objective function of P aims to find the subset K′ ⊆ K
that maximizes the minimum SINRU

k , k ∈ K′. The constraint
C1 requires SINRM

k to be above a threshold γmin for all
devices, whereas C2 limits the transmit power to Ptx. The
constraint C3 selects K′ devices for dual-layer transmissions
while C4 enforces beamforming restrictions on the combiners.
Specifically, only a small number of Lrx constant-modulus
phase shifts are admitted for designing the combiners. Every
phase shift [wk]l is confined to W =

{
δrx, . . . , δrxe

j
2π(Lrx−1)

Lrx

}
,

l ∈ L = {1, . . . , Nrx}1. Finally, C5 enforces the Boolean
nature of µk. We consider limited receive power Prx at each
device. Thus, Prx = ‖wk‖22 =

∑Nrx
l=1

∣∣[wk]l
∣∣2 = Nrxδ2rx, where

δrx =
√
Prx/Nrx.

To solve P, one possibility is to adopt an exhaustive
search approach (XHAUS). This procedure consists in gen-
erating every subset of devices of size K′ from a total
of K, thus yielding J =

(K
K′
)

possibilities for µ, i.e.,
{µ1, · · · ,µJ}. Then, P is solved for each of the combinations,
i.e.,

{
P
(
W,m, B̃,µ1

)
, · · · ,P

(
W,m, B̃,µJ

)}
and the choice

that attains the max-min unicast SINR is selected as optimal.
While XHAUS yields the best scheduling, it is computationally
expensive. Therefore, in Section IV, we propose a scheme,
wherein µ is determined in advance by a novel scheduler.
Then, W,m, B̃ are designed for the resulting selection of
devices2. Problem P is illustrated in Fig. 1.

IV. BEAMWAVE: PROPOSED SCHEME

We divide P into two problems: S (Section IV-A) and D
(Section IV-B). First, S finds a subset K′ of dual-layer de-
vices, thus rendering the binary scheduling variables available.
Subsequently, D designs the precoder and the combiners.

A. Scheduling

Selecting an optimal subset of dual-layer devices K′ that
leads to the maximization of the minimum unicast SINR is
intrinsically of combinatorial nature. In order to circumvent
the exhaustive search, we propose a novel scheduling scheme

1Realize that W consists of equally-distributed phase rotations with mag-
nitude δrx, where Lrx defines the phase resolution.

2Notice that even for a given µ′, the problem P
(
W,m, B̃,µ′

)
is

nonconvex and challenging to solve.



S, which is based on the minimization of an aggregate pairwise
device-specific channel metric. The objective is to find the
variables µ and ν such that fS (ν) is minimized.

S :min
µ,ν

fS (ν) ,
K−1∑

j=1

K∑

l=j+1

θj,l · νj,l

s.t. Q1 : µj ≥ νj,l, ∀j < l,

Q2 : µj + µl ≤ 1 + νj,l, ∀j < l,

Q3 :
K∑

j=1

µj = K′,

Q4 : µj ∈ {0, 1} , ∀j,
Q5 : νj,l ∈ {0, 1} , ∀j < l.

In particular, θj,l denotes a positive metric between two
devices j ∈ K and l ∈ K, representing the discordance of
co-scheduling the two devices. The auxiliary variable νj,l,
assumes the value of 1, if devices j and l are co-scheduled
for dual-layer transmissions. Otherwise, νj,l = 0. As defined
in P, the variable µj denotes with 1 that j ∈ K is a dual-layer
device. The constraints Q1 and Q2 have been included in order
to bind the two sets of variables, i.e., µ and ν. Specifically, Q1

states that νj,l is upper-bounded by µj since νj,l can only be 1

when the devices j and l are co-scheduled. Similarly, Q2 is a
lower bound for νj,l in terms of µj and µl. Besides, Q3 restricts
the maximum number of dual-layer devices to K′. Constraints
Q4 −Q5 denote the Boolean nature of the variables.

We denote the solution of S by (µ?,ν?). In the following,
we propose three metrics θj,l (i.e., PAWN, ROOK, KING), based
on channel correlation and channel energy, which will support
the scheduling decision.
CORR: Channel correlation has been extensively used for

multiuser unicast scheduling in prior literature (e.g., [23]).
Given any two devices j and l, CORR is computed as

θj,l =

∣∣∣hHj hl

∣∣∣
‖hj‖2‖hl‖2

, where hj = vec (Hj). Intuitively, a large
value of 0 ≤ θj,l ≤ 1 implies that the two devices have
correlated channels and therefore they are prone to generate
more interference to each other. CORR has conventionally been
used in a greedy manner, where users/devices are sequentially
chosen based on the cumulative correlation with respect to the
already selected devices. In contrast, herein we use CORR in
combination with our proposed scheduler S, thus allowing to
find the best set K′ of dual-layer devices that renders the least
aggregate pair-wise channel correlation in the sense of fS (ν).
PAWN: We propose this metric as a generalization of CORR,

where we compute the channel correlation between all the
rows of Hj and Hl. For two devices j and l, the metric is
expressed as θj,l =

∑Nrx
n1=1

∑Nrx
n2=1

1
N2

rx

|Hj(n1)H
H
l (n2)|

‖Hj(n1)‖2‖Hl(n2)‖2
, with

Hj(n) denoting the n-th row of Hj . Note that for the special
case of Nrx = 1, CORR and PAWN are equivalent.
ROOK: We devise this metric as a combination of two

components. One of the constituents leverages the channel
energy difference between two devices. The second compo-
nent is the metric PAWN. Thus, ROOK is defined as θj,l =

ω

∣∣∣‖Hj‖2F−‖Hl‖2F
∣∣∣

‖Hj‖2F+‖Hl‖2F
+ (1− ω)∑Nrx

n1=1

∑Nrx
n2=1

1
N2

rx

|Hj(n1)H
H
l (n2)|

‖Hj(n1)‖2‖Hl(n2)‖2

with 0 ≤ ω ≤ 1. The rationale for this metric is that devices with
uncorrelated channel vectors and comparable channel energy
are desirable for scheduling.
KING: We also devise this metric as a combina-

tion of two components. Specifically, we combine PAWN
with the ratio between the channel energy of a device
and the largest channel energy among all the devices.
Thus, θj,l = ω

(
‖Hmax‖2F−‖Hj‖2F
‖Hmax‖2F

+
‖Hmax‖2F−‖Hl‖2F
‖Hmax‖2F

)
+ (1 −

ω)
∑Nrx
n1=1

∑Nrx
n2=1

1
N2

rx

|Hj(n1)H
H
l (n2)|

‖Hj(n1)‖2‖Hl(n2)‖2
, where ‖Hmax‖2F =

maxj∈K ‖Hj‖2F and 0 ≤ ω ≤ 1. In contrast to ROOK, this metric
measures the relative difference with respect to the largest
energy, which compensates for the cases when the devices
have uncorrelated channels but commensurable low energy.
Rationale: Intuitively, the aim of S is to place in K\K′ (i.e.
set of multicast-only devices) those devices that hinder more
significantly the maximization of the minimum unicast SINR.
This is achieved by fS (ν), which aims to minimize the total
discordance of the co-scheduled devices. Whether such devices
(i) have highly-correlated channels among themselves or (ii)
have strongly attenuated channels and thus require high power,
by not including them in K′, the devices in K′ can gain the
highest profit (i.e., the minimum SINRU

k , k ∈ K′ is maximized).

B. Optimization of precoder and combiners

Once the scheduling variables µ? are known, we replace
them in P

(
W,m, B̃,µ?

)
. Thus, the remaining problem

optimizes the unicast and multicast precoders (at the
gNodeB) and combiners (at the devices) as shown in

D : max
W,m,B,

fD (W,B) , min
k∈K′

∣∣wH
k Hkbk

∣∣2
∑
j 6=k,j∈K′

∣∣wH
k Hkbj

∣∣2 + σ2 ‖wk‖22

s.t.

∣∣wH
k Hkm

∣∣2
∑
j∈K′

∣∣wH
k Hkbj

∣∣2 + σ2 ‖wk‖22
≥ γmin, ∀k ∈ K,

∑

k∈K′
‖bk‖22 + ‖m‖22 ≤ Ptx,

[wk]l ∈ W, l ∈ L, ∀k ∈ K, .

where B = B̃U and UUT = diag (µ) as defined in Section
II. Due to coupling between {bk}k∈K′ and {wk}Kk=1, the
optimization of D is challenging. To cope with it, we first
design the combiners {wk}Kk=1 based on the channels {Hk}Kk=1,
which are assumed to be invariant for a few channel uses.
Then, we jointly optimize the unicast precoders {bk}k∈K′ and
the multicast precoder m.

B.1 Optimization of combiners {wk}Kk=1

We define D1 , ∪k∈KD1,k, where

D1,k : max
wk

∥∥∥wH
k Hk

∥∥∥
2

2
s.t.

∣∣[wk]l
∣∣ = δrx, l ∈ L. (8)

Problem D1 designs the combiners {wk}Kk=1 for all IoT
devices in an independent manner. Therefore, each device can
self-optimize its own combiner without need of the gNodeB.
This problem admits a close-form solution that can be ob-
tained using the Lagrange multipliers method. Specifically, the
solution collapses to the principal eigenvector rmax of HkH

H
k .

Then, to enforce the constant-modulus finite-resolution phase



shifts, rmax is projected onto W. Therefore, for the k-th device,
wk is obtained via [wk]l = argmaxφ∈W Re

{
φ∗ [rmax]l

}
, ∀l ∈ L.

The solution of D1 is denoted by W? =
[
w?

1 , · · · ,w?
K

]
.

B.2 Optimization of {bk}k∈K′ and m

Assuming that gk = HH
k w?

k, the objective function of D
depends only on B. Note that fD (W?,B) is the minimum of
several SINRs, which can be translated as a constraint as
D2 : max

B,m,α
α

s.t. R1 :

∣∣gHk bk
∣∣2

∑
j 6=k,j∈K′

∣∣gHk bj
∣∣2 + σ2

∥∥w?
k

∥∥2
2

≥ α, ∀k ∈ K′,

R2 :

∣∣gHk m
∣∣2

∑
j∈K′

∣∣gHk bj
∣∣2 + σ2

∥∥w?
k

∥∥2
2

≥ γmin, ∀k ∈ K,

R3 :
∑
k∈K′ ‖bk‖22 + ‖m‖22 ≤ Ptx.

where R1 − R2 are nonconvex whereas R3 is convex.
Note that D2 poses a difficulty in finding a solution as it

cannot be addressed by known frameworks in its current form.
In the following, we propose a reformulation of the problem
that allows tailoring an algorithm to solve it. In particular, we
transform D2 into a difference-of-convex (DC) programming
problem, where the objective and/or constraints are convex
or DC functions. Then, by harnessing the convex-concave
procedure (CCP), a local optimal solution of the resulting DC
programming problem can be obtained.
Reformulation: With respect to R1, if we bound from above
the denominator with ∑

j 6=k,j∈K′
∣∣gHk bj

∣∣2 + σ2
∥∥w?

k

∥∥2
2
≤ tk and

the numerator from below with
∣∣gHk bk

∣∣2 ≥ rk, then R1 can
be equivalently rewritten as the intersection of the following
constraints

R1 =





R1−1 : rk︸︷︷︸
convex

−
∣∣∣gHk bk

∣∣∣
2

︸ ︷︷ ︸
convex

≤ 0, ∀k ∈ K′,

R1−2 :
∑

j 6=k,j∈K′

∣∣∣gHk bj

∣∣∣
2
+ σ2 ‖w?

k‖22 − tk
︸ ︷︷ ︸

convex

≤ 0, ∀k ∈ K′,

R1−3 : αtk − rk︸ ︷︷ ︸
nonconvex

≤ 0, ∀k ∈ K′.

In addition, we observe that the nonconvex constraint R1−3

can be recast as
R1−3 : (α+ tk)

2 − 4rk︸ ︷︷ ︸
convex

− (α− tk)2︸ ︷︷ ︸
convex

≤ 0,∀k ∈ K′,

which stems from the difference of squares: (x+y)2−(x−y)2
4

=

xy. Adopting a similar procedures as for R1 reformulation,
then R2 can be expressed as,

R2 =





R2−1 : pk︸︷︷︸
convex

−
∣∣∣gHk m

∣∣∣
2

︸ ︷︷ ︸
convex

≤ 0, ∀k ∈ K,

R2−2 :
∑

j∈K′

∣∣∣gHk bj

∣∣∣
2
+ σ2 ‖w?

k‖22 − qk
︸ ︷︷ ︸

convex

≤ 0, ∀k ∈ K,

R2−3 : γminqk − pk︸ ︷︷ ︸
convex

≤ 0,∀k ∈ K.

Observe that R1−2, R2−2, R2−3, R3 are convex whereas R1−1,
R1−3, R2−1 are DC functions. Thus, with the transformations
above, D2 is now a DC programming problem.

Solution: Optimization problems that have convex or DC
objective/constraints can be efficiently tackled by means of
the CCP procedure, which guarantees a stationary solution of
the original problem.

The CCP procedure [24] guarantees a stationary point of
a DC programming problem. The main idea of CCP is to
iteratively solve a sequence of convex subproblems, each
of which is constructed by replacing the concave terms
with first-order Taylor approximations. Consider the DC
programming problem

Z : max
z1,z2

f (z1, z2)

s.t. hi (z1)− gi (z2) ≤, i = 1, · · · , I,
where f (z1, z2) is concave in z1, z2 whereas hi (z1) and
gi (z2) are convex in z1 and z2, respectively. To convexify
Z, the concave terms, i.e. −gi (z2), are linearized. The
resulting convexified DC programming problem is there-
fore expressed as

Z(`) : max
z1,z2

f (z1, z2)

s.t. hi (z1)− g̃i (z2) ≤, i = 1, · · · , I,

where g̃i (z2) = gi

(
z
(`−1)
2

)
+ ∇Tz2gi

(
z
(`−1)
2

)(
z2 − z

(`−1)
2

)

denotes a linearized version of gi (z2) around a given
point z(`−1)

2 . Since every instance of the resulting problem
Z(`) is convex, it can be solved using general-purpose
solvers via interior-point methods. The process is re-
peated iteratively, each time refining the initial point
z
(`−1)
2 ← z2 until a stop criterion is satisfied. Let Nconv

be the maximum number of iterations that Z(`) can be
solved, and let ε ≥ 0 be a small number (e.g., ε = 0.001).
Thus, the iterative process stops when ` = Nconv or∣∣∣f (z1, z2)− f

(
z
(`−1)
1 , z

(`−1)
2

)∣∣∣ ≤ ε. Further, to guarantee
convergence, an initial feasible point (i.e., when ` = 0) is
required, which we discuss in Appendix A.

According to the CCP procedure described above,
to solve D2, we need solve the convex problem D(`)

2

iteratively until a stop criterion is met. Thus, for a
given iteration `, the convex problem D(`)

2 is defined as

D(`)
2 : max

B,m,α
r,t,p,q

α s.t. R1−1
(`),R1−2,R1−3

(`),R2−1
(`),R2−2,R2−3,R3.

R1−1
(`) : rk +

∣∣∣gHk b
(l−1)
k

∣∣∣
2
− 2Re

{
b
(l−1)
k

H
gkg

H
k bk

}
≤ 0, ∀k ∈ K′,

R1−3
(`) : (α+ tk)

2 − 4rk +
(
α(l−1) − t(l−1)

k

)2
−

2
(
α(l−1) − t(l−1)

k

)
(α− tk) ≤ 0,

R2−1
(`) : pk +

∣∣∣gHk m(l−1)
∣∣∣
2
− 2Re

{
m(l−1)Hgkg

H
k m

}
≤ 0, ∀k ∈ K.

At the completion of each iteration `, the obtained solutions
B, m, α, t are passed to B(`), m(`), α(`), t(`), which are used as
the new initializations for the subsequent iteration ` + 1. The
solution of this stage is B? and m?. For completeness, we
summarize in Algorithm the complete optimization procedure
of S and D.



Algorithm: BEAMWAVE optimization
Input: {Hk}Kk=1, γmin, Nconv, ε
Execute:

1: Find µ? by solving the scheduling problem S.
2: Design the combiners

{
w?
k

}K
k=1

for all devices
by solving problem D1,k, ∀k ∈ K.

3: Design the multicast precoder m? and the unicast
precoders

{
b?k
}
k∈K′ by solving D(`)

2 .
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Figure 2: Achievable minimum unicast SINR for varying Ntx

at the gNodeB.

V. SIMULATION RESULTS

Throughout the simulations, we consider the geometric
channel model defined in (2), with L = L1 = · · · = LK = 3 prop-
agation paths. This assumption is compliant with the results
of a measurement campaign in an industrial environment [12],
where the number of propagation paths is usually between
1 to 3. The angles of arrival are uniformly distributed as
ψ
(l)
k ∈ [−π;π] whereas the angles of departure are distributed

as φ
(l)
k ∈ [−π/3;π/3]. The power assigned to the combiners

is Prx = 0 dBm, the noise power is σ2 = 10 dBm, and the
multicast QoS requirement is γmin = 4 (∼ 6 dB). Also, ω = 0.5,
Nconv = 20 and ε = 0.001. The results in this section show the
average performance over 100 simulations. For the selected
settings, in all the channel realizations, we have obtained
feasible solutions. To solve the optimization problems, we
have used CVX. Specifically, CVX and GUROBI were used to
solve the integer linear program S. The convex problem D(`)

2

was solved by means of CVX and SDPT3. In the following,
we examine scenarios, in which we evaluate the performance
of BEAMWAVE.

A. Minimum unicast SINR for various Ntx

Fig. 2 depicts the impact of different Ntx configurations on
the minimum unicast SINR when the total number of devices
in the system is K = 6 and the number of dual-layer devices
K′ = {3, 4, 5} varies. In this case, we have assumed that the
IoT devices are equipped with a single antenna, i.e., Nrx = 1

and the gNodeB can transmit with a maximum power Ptx = 35

dBm.
As a general trend, we observe that increasing the number of

dual-layer devices K′ decreases the minimum unicast SINR.
This occurs because the limited power Ptx at the gNodeB
is divided into a greater number of scheduled devices, thus
reducing the individual allocation of power for each dual-
layer device. Also, serving more dual-layer devices translates

to producing more interference, thus impacting the SINR. On
the contrary, increasing Ntx improves the minimum unicast
SINR. Essentially, a larger Ntx reduces the beamwidth that
can be produced by the antenna array at the gNodeB, thus
allowing to form more directional transmissions with reduced
interference.

Another general trend in Fig. 2 is that XHAUS (exhaustive
search) exhibits the highest performance in all configurations
as it schedules the optimum subset of K′ dual-layer devices.
By leveraging the channel correlation, BEAMWAVE-CORR3

only performs slightly better than RANDOM. Thus, schedul-
ing decisions based solely on the channel correlation are
insufficient to devise an optimal scheduler for LDM systems.
On the contrary, BEAMWAVE-ROOK and BEAMWAVE-KING,
which additionally include channel energy information, clearly
outperform RANDOM. These two schemes achieve up to
60.38% and 77.68% higher SINR, respectively, compared to
RANDOM. Noteworthily, throughout all the results in Fig. 2,
BEAMWAVE-ROOK and BEAMWAVE-KING perform at worst
30.4% and 14.13% below XHAUS, respectively.

B. Minimum unicast SINR for various Nrx

Fig. 3 shows the impact of varying Nrx and Lrx on the
minimum unicast SINR when K = 6, K′ = 5, Ntx = 16,
and Ptx = 35 dBm. In this setting, the IoT devices have
a single RF chain that is connected to Nrx antennas. As a
result, the devices are not capable of implementing any type
of linear processing for interference mitigation but can perform
constrained beamsteering due to constraint C4 in P.

In all subfigures in Fig. 3, we observe that the minimum
unicast SINR improves as the number of receive antennas
increases. With larger Nrx, the devices can shape more di-
rectional reception patterns to mitigate undesired signals. In
particular, up to 60% gain can be achieved with Lrx = 4 when
varying Ntx from 1 to 2. Also, since augmenting Lrx results
in higher-resolution phase shifts, we observe performance
improvement through Fig. 3a to Fig. 3d. In particular, gains
up to 16.00%, 30.70% and 49.47% are achieved when increasing
Lrx from 2 to 4, 4 to 8 and 8 to 16, respectively.

By comparing the performance of the proposed scheduling
schemes under all assessed settings, the scheme that attains
superior performance is BEAMWAVE-KING. In particular,
BEAMWAVE-KING is outperformed by at most 5.60% when
compared to the optimal highly complex XHAUS.

C. Spectral efficiency

In this scenario we consider Nrx = 1, Ntx = 32, ,
Ptx = 45 dBm and a varying number of devices K =

{8, 12, 16, 20, 24, 28, 32, 36}. In particular, the number of sched-
uled dual-layer devices changes according to K′ = K/4. In
Fig. 4, we show the unicast spectral efficiency (SE) attained
by BEAMWAVE. Due to the exponential growth in the number
of scheduling combinations, the results with XHAUS are not

3As mentioned in Section IV-A, when Nrx = 1, PAWN and CORR result
in the same value. For this reason, we observe that BEAMWAVE-CORR and
BEAMWAVE-PAWN attain the same performance.
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Figure 3: Achievable minimum SINR for varying Nrx and Lrx at each IoT device.
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Figure 4: Spectral efficiency performance for varying K and K′ = K/4.

presented in this scenario. However, BEAMWAVE-KING is
taken as reference as it was shown in previous scenarios that
its performance is at most 14.13% below the optimality of
XHAUS. Further, we also use our proposed scheduler with
T/FDM systems.

Note that while RANDOM scheduling performs as equally
well as BEAMWAVE for small K′ (since the generated in-
terference is low), we observe that when K′ is large (e.g.,
K′ = 16) there is a significant performance gap. This shows
that scheduling exerts a critical task, specially in LDM systems
which generate additional inter-layer interference between
unicast and multicast signals. Besides, we observe that LDM
outperforms TDM, where the time allotted for unicast trans-
missions is 25%, 50% and 75% of the total available4. The
remaining time is used for transmitting the multicast signal.
Specifically, in the TDM case, we have also used BEAMWAVE
to make the selection of unicast devices that yields the max-
min SINR.

D. Computational complexity

In Table I, we show the complexity of the benchmarked
schemes. In particular, CS is the complexity of the proposed
scheduler, where M =

K(K+1)
2

is the number of 0− 1 variables
and C = K2 − K + 1 is the number of constraints. As a
reference, we have used the runtime of Vaidya’s algorithm
for the linear program, which GUROBI solves via the branch

4In the TDM case, the IoT devices are served in two time windows. In
the first window, with duration Tm, all IoT devices in K are served with the
multicast control signal. In the second window, with duration Tu, a subset of
devices K′ are served with unicast signals (e.g., software updates), such that
Tm + Tu = 1. In our simulations, we have varied Tu = {0.25, 0.50, 0.75}.

and bound (BnB) procedure. The complexity CD1,k
stems from

the singular value decomposition (SVD) used to obtain the
principal eigenvector, as described in Section IV-B1. Also,
CD2

is derived based on the complexity required by interior
point methods. Finally, CXHAUS, CBEAMWAVE and CRANDOM denote the
overall complexities of the schemes XHAUS, BEAMWAVE and
RANDOM respectively.

Table I: Computational complexity

Notation Complexity
CS O

(
2M (M + C)1.5M

)

CD1,k
O
(
N3

rx

)

CD2
Nconv · O

(
(NtxK′ (K +K′))3.5

)

CRANDOM CD2
+K · CD1,k

CBEAMWAVE CD2 +K · CD1,k
+ CS

CXHAUS
(K
K′
)
· CD2

+K · CD1,k

VI. CONCLUSIONS

In this paper we investigated the cross-layer optimization
of beamforming and scheduling for mmWave LDM systems,
aiming to support future Industry 4.0 scenarios. In particular,
through the adoption of LDM, multiple signal layers can be
transmitted simultaneously using the same radio resources.
For smart factory settings, we assumed that a superior-
importance safety/control multicast message is required to be
ubiquitous to all the devices in the system. In addition, due
to insufficient RF chains, inferior-importance private unicast
information is simultaneously transmitted to a selected group
of scheduled devices with the aim of maximizing the minimum
SINR. Due to NP-hardness of the problem, we proposed



BEAMWAVE which partitions the problem into (i) beamforming
and (ii) scheduling. For device scheduling, we proposed a
novel formulation, where we devised three metrics based on
channel features, namely PAWN, ROOK, and KING to guide
the selection decision. Further, we designed a precoder (i.e.,
transmit beamformer) with remarkable performance adopting
the convex-concave procedure. We showed that our proposed
scheme attains high spectral efficiency and outperforms or-
thogonal multiplexing schemes such as T/FDM.
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APPENDIX A
INITIAL FEASIBLE POINT FOR D2

In order to find B(0), m(0), α(0), t(0) we proceed as follows.
First, let us define a as the power of the multicast precoder
m, such that m =

√
am̂, ‖m̂‖22 = 1. Similarly, we define ak

as the power of the unicast precoder bk, k ∈ K′ such that
bk =

√
akb̂k,

∥∥∥b̂k
∥∥∥
2

2
= 1. Now, we let

{
b̂k

}
k∈K′

be the zero-
forcing precoders [25]. On the other hand, we let m̂ be the
principal eigenvector of the aggregate channels of all users.
Thus, we define
Dini

2 : min
{ak}k∈K′ ,a

∑

k∈K′

∑

j 6=k,j∈K′
aj
∣∣hk,j

∣∣2

s.t.
a |hk|2∑

j∈K′ aj
∣∣hk,j

∣∣2 + σ2
∥∥w?

k

∥∥2
2

≥ γmin, ∀k ∈ K,

∑
k∈K′ ak

∥∥∥b̂k
∥∥∥
2

2
+ a ‖m̂‖22 ≤ Ptx,

where hk,j = gHk b̂j and hk = gHk m. Note that Dini
2 is a

linear programming problem. Also, observe that any feasible
solution for Dini

2 will be feasible for D2. In particular, the
objective function of Dini

2 minimizes the total unicast inter-
ference perceived by all IoT devices (i.e., sum of all terms
in the denominator of R1 in D2). Once Dini

2 is solved, we
obtain a solution

({
a?k
}
k∈K′ , a

?
)

. Harnessing this outcome,
we obtain the initial feasible points for D(0)

2 by defining
b
(0)
k = a?kb̂k, m(0) = a?m̂, t(0)k =

∑
j 6=k,j∈K′ a

?
j

∣∣hk,j
∣∣2+σ2

∥∥w?
k

∥∥2
2
,

α(0) = mink∈K′
a?k|hk,k|2∑

j 6=k,j∈K′ a
?
j |hk,j |2+σ2‖w?k‖22

.
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Abstract—Millimeter-wave self-backhauled small cells are a
key component of next-generation wireless networks. Their dense
deployment will increase data rates, reduce latency, and enable
efficient data transport between the access and backhaul net-
works, providing greater flexibility not previously possible with
optical fiber. Despite their high potential, operating dense self-
backhauled networks optimally is an open challenge, particularly
for radio resource management (RRM). This paper presents,
RadiOrchestra, a holistic RRM framework that models and
optimizes beamforming, rate selection as well as user associa-
tion and admission control for self-backhauled networks. The
framework is designed to account for practical challenges such
as hardware limitations of base stations (e.g., computational
capacity, discrete rates), the need for adaptability of backhaul
links, and the presence of interference. Our framework is
formulated as a nonconvex mixed-integer nonlinear program,
which is challenging to solve. To approach this problem, we
propose three algorithms that provide a trade-off between com-
plexity and optimality. Furthermore, we derive upper and lower
bounds to characterize the performance limits of the system. We
evaluate the developed strategies in various scenarios, showing
the feasibility of deploying practical self-backhauling in future
networks.

Index Terms—radio resource management, self-backhauling,
millimeter-wave, beamforming, scheduling,

I. INTRODUCTION

Network densification, through the deployment of small
cells, is indispensable to meet the increasing user demands for
emerging wireless services [1]. Small cells are realized by low-
cost radio access nodes, known as small base stations (SBSs),
that provide wireless connectivity to undersized geographical
areas [2]. SBSs are strategically installed in close proximity
to the end users, bolstering the quality of experience and
improving the radio access network (RAN) performance. In
this way, dense small cell deployments are expected to increase
data rates, maintain low latency, extend coverage and support
a large number of users, thereby enabling the rollout of a wide
range of new services.

As small cell deployments become denser, more efficient
forms of backhauling data traffic between SBSs and the
core network will be needed [3]. Optical fiber has been
the predominant means for this task, but its installation and
maintenance are costly. Self-backhauling, standardized under
the name of integrated access and backhaul (IAB) [4], is an
innovative technology that promises to reduce costs by sharing

the wireless spectrum in time/frequency/space between RAN
and backhaul links [5]. Small cells with self-backhauling capa-
bilities benefit from a tight integration of access and backhaul
functions, leading to high reconfigurability and facilitating
self-adaptation to a wide range of cases.

Self-backhauled small cells require wide bandwidth to cope
with the growing access-backhaul traffic. The millimeter-
wave spectrum offers the necessary bandwidth to meet this
requirement but it poses challenges, e.g., limited transmission
range. Fortunately, recent advances in beamforming [6] have
overcome the physical drawbacks of millimeter-waves by
taking advantage of the small antennas size that have enabled
large antenna arrays. Thus, millimeter-wave self-backhauled
small cell networks, realized by multi-antenna SBSs, will play
a key role in next-generation wireless networks. Their dense
deployment will reduce costs and enable efficient transport of
massive data traffic between access and backhaul networks.
In addition, the flexibility of millimeter-wave self-backhauled
small cells will provide higher adaptability in various topolo-
gies and network conditions, previously not possible with fiber.

Despite consensus on the potential of millimeter-wave self-
backhauling, designing an optimal system remains an open
research challenge [7], which requires efficient radio resource
management (RRM) across the access and backhaul networks.
To date, the body of work in this area often overlooks practi-
cal challenges inherent to realistic wireless communications
systems, such as discrete modulations and coding schemes
(MCSs), or low computing capabilities of SBSs. Our work
is motivated by the absence of holistic RRM frameworks
providing a realistic model and a practical solution for
millimeter-wave self-backhauled small cells deployments. In
the following, we introduce these challenges and put them in
perspective with the literature.
Challenge 1: Scalable self-backhauling design. The ma-
jority of prior works relies on point-to-point links, e.g., [8],
[9], between macro base station (MBS) and SBSs, which is
unscalable in dense SBS deployments. The scalability issue
is addressed in a handful of works, e.g., [10], [11] assume
that SBSs are capable of multi-layer successive interference
cancellation (SIC). While this assumption simplifies traffic
transport, it involves heavy computational tasks (i.e., SIC)
not suited for SBSs. Thus, to keep SBS economical for the
operators, it is necessary to reduce the computational burden
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Table I: Categorization of related work

Approach Solution Spectrum Network
Access network Backhaul network

Topology Beamforming User
association

Rate
selection

Admission
control Topology Link Medium Beamforming Rate

selection

[20], [21] Joint Sub-6GHz Single-SBS Unicast ✓ ✗ ✓ ✓ N/A N/A N/A N/A N/A
[22]–[25] Joint Sub-6GHz Multi-SBS Unicast ✓ Many ✗ ✗ N/A N/A N/A N/A N/A
[26], [27] Decoupled Sub-6GHz Single-SBS Multicast ✓ ✗ ✗ ✓ N/A N/A N/A N/A N/A

[28] Joint Millimeter-wave Multi-SBS Unicast 3D Many ✗ ✗ N/A N/A N/A N/A N/A
[8], [29] Joint Millimeter-wave Multi-SBS N/A N/A N/A N/A N/A Unicast Adaptive Wireless 2D ✗

[30] Joint Sub-6GHz Multi-SBS Multicast 2D Many ✗ ✗ Unicast Fixed Wired ✗ ✗
[31], [32] Joint Sub-6GHz Multi-SBS Both 2D Many ✗ ✗ Unicast Fixed Wired ✗ ✗
[9], [12] Decoupled Sub-6GHz Multi-SBS Unicast 2D ✗ ✗ ✓ Unicast Unbounded Wired ✗ ✗

[13] Joint Sub-6GHz Multi-SBS Unicast 2D One ✗ ✓ Unicast Fixed Wireless ✗ ✗
[17] Decoupled Millimeter-wave Multi-SBS Unicast 3D Many ✗ ✗ Unicast Adaptive Wireless/TDM 3D ✗
[18] Decoupled Sub-6GHz Multi-SBS Unicast 2D One ✗ ✓ Unicast Adaptive Wireless/SDM 2D ✗
[10] Decoupled Sub-6GHz Multi-SBS Unicast 2D Many ✗ ✗ Multicast Adaptive/SIC Wireless/SDM 2D ✗
[15] Joint Sub-6GHz Multi-SBS Unicast 2D One ✗ ✓ Unicast Adaptive Wireless/SDM 2D ✗

[14], [16] Joint Sub-6GHz Multi-SBS Multicast 2D ✗ ✗ ✗ Unicast Fixed Wireless ✗ ✗
[33] Joint Sub-6GHz Multi-SBS Unicast 2D One ✗ ✓ Unicast Adaptive Wireless/SDM 2D ✗
[19] Joint Sub-6GHz Multi-SBS Unicast 2D Many ✗ ✗ Multicast Adaptive Wireless/TDM 2D ✗
[11] Joint Sub-6GHz Multi-SBS Unicast 2D ✗ ✗ ✗ Unicast Adaptive/SIC Wireless/SDM 2D ✗

Proposed Joint Millimeter-wave Multi-SBS Unicast 3D Many ✓ ✓ Multicast Adaptive Wireless/SDM 3D ✓

The connection between the MBS and SBSs is called backhaul link, which is a convention in small cells literature. However, in a cloud-RAN context, MBSs are called central processors or BBUs,
SBSs are called RRHs, and the connection between MBS and SBSs are called fronthaul links. In Table I, we have considered both kinds of nomenclatures since the problems originated from these
two contexts are essentially the same.

of SBSs by developing practical backhauling mechanisms.
Challenge 2: Adaptive backhaul capacity. Although self-
backhauling relies on wireless media, whose capacity is in-
herently highly variable due to noise and interference, the
assumption of unlimited or fixed capacity prevails in many
prior works, e.g., [9], [12]–[14]. However, it is necessary to
consider the capacity limitation of backhaul links as well as
their variability in real systems.
Challenge 3: User association. It is conventionally assumed
that users are served by a single SBS [13], [15] or by all
SBSs within a given range [9], [12]. While these assumptions
simplify the problem formulation and solution, they are neither
realistic nor optimal. Thus, a general scheme is needed where
users are associated to multiple SBSs in a flexible manner
without considering extremes cases.
Challenge 4: Admission control. Many works assume that all
users can be served simultaneously [14], [16], [17], which is
unrealistic due to limitations in power, number of antennas or
RF chains. Admission control (or user scheduling) is crucial
to guarantee the quality of service requirements for at least a
subset of admitted users, thereby circumventing unfeasibility
issues.
Challenge 5: Discrete data rates. It is usually assumed that
data rates are continuous-valued, e.g., [8], [10], [17]–[19].
However, in practice they are limited to a number of possible
choices, i.e., finite set of MCSs. It is critical to consider
the discreteness of rates since results obtained from solving
problems for continuous values cannot be easily applied to
real systems and are not expected to work properly.

In contrast to prior art, we propose a comprehensive RRM
framework that includes the challenges mentioned above,
allowing us to more realistically validate millimeter-wave self-
backhauled small cell deployments. Our approach makes the
following novel contributions.
Contribution 1: In Section II, we address Challenge 1 by
proposing a simple yet effective clustering mechanism for
SBSs and users that results in multiple non-overlapping virtual
cells or clusters. This allows us to exploit multigroup multicast
beamforming for backhaul traffic transmissions. Our clustering
approach simplifies the backhaul design and reduces hard-
ware/computational requirements at the sending and receiving

nodes.
Contribution 2: In Section II-A and Section II-B we model
Challenge 2, Challenge 3, Challenge 4, Challenge 5 consid-
ering the access-backhaul interdependencies between MBS,
SBSs and users. In Section II-C, we include these challenges
in our formulation to jointly optimize beamforming, user asso-
ciation, rate selection, admission control in the access network
and beamforming, rate selection in the backhaul network for
maximizing the access network downlink weighted sum-rate.
We cast the problem as a nonconvex mixed-integer nonlinear
program (MINLP), which to the best of our knowledge, has
not been investigated before.
Contribution 3: To tackle the nonconvex MINLP, we propose
three formulations and their corresponding algorithms. In
Section IV, we recast the nonconvex MINLP as a mixed-
integer second-order cone program (MISOCP), which can be
solved optimally. Due to the large number of integral variables,
the cost of solving the MISOCP via branch-and-cut (BnC)
techniques is prohibitive. To cope with this issue, in Section
VI we propose a formulation solved via an iterative algorithm
that tackles a SOCP at every instance. In Section VII, a much
simpler SOCP formulation further decreases the complexity
by reducing the number of variables, and optimizing only the
beamformers gains. In particular, the complexity of the latter
algorithm with respect to the former decreases roughly by a
factor equal to the third power of the number of antennas at
the SBS.
Contribution 4: In Section V, we derive an upper bound
to provide insights on the performance gaps and trade-offs
of RadiOrchestra. We also provide a simple lower bound
marking the oerformance. We note that the upper bound is a
novel problem itself that has not been investigated before.
Contribution 5: In Section VIII, we examine RadiOrchestra
exhaustively under several scenarios including transmit power,
number of clusters, and channel estimation errors.

There is a plethora of literature on self-backhauling for sub-
6GHz spectrum, e.g., [19], [32], [33], which assume signals
properties that do not work for millimeter-wave. Many works
have focused on the design of either the backhaul, e.g., [8],
[29], [34], [35] or the access network, e.g., [27], [28] alone.
However, the growth that mobile networks are experiencing
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Problem formulation
Section II

Problem reformulation
• Elimination of additive couplings (Section

III-A)
• Elimination of multiplicative couplings

(Section III-B)
• Incorporation of cuts (Section III-C)

Section III

BnC-MISOCP formulation
• Convexification of nonconvex con-

traints (Section IV-A)
• Remodeling of nonconvex constraints

as inner approximations (Section IV-B)
Section IV

Upper bound
• Ceiling of the objective function

Section V

RnP-SOCP-1 formulation
• Integrality relaxation
• Nonconvex constraints penalization

Section VI

RnP-SOCP-2 formulation
• Predesign of beamforming vectors

Section VII

Figure 1: Overview of the steps to formulate and solve the problem in RadiOrchestra.

calls for heterogeneous networks with wireless backhauling,
which require joint optimization. Considering linear antenna
arrays, many works have optimized beamforming, e.g., [18],
[33]. However, planar arrays are capable of 3D beamforming
and hence are more suitable for dense deployments. The joint
optimization of beamforming and user association (Challenge
3), admission (Challenge 4), or rate selection (Challenge 5),
generally requires solving complex nonconvex MINLPs. Thus,
many works facing these challenges split the problem into
stages and solve them separately. For instance, the integer
variables are eliminated first by assuming a given set of sched-
uled users, e.g., [17], [18]. Then, the nonconvex functions
are linearized and the problem is solved in the continuous
domain. Although simpler to solve, variable decoupling affects
optimality due to interdependencies removal. To meet the
continuously growing demands, resources have to be exploited
more optimally. Therefore, RRM problems need to be solved
as a whole, without relying on variable partitioning which
translates to inefficient radio resource usage.

After a scrupulous study of the state of the art, we found
that the works most related to ours are [10], [19]. Like us, the
authors of [10] assumed a multicast topology in the backhaul
network, with a MBS transmitting multiple signals to various
SBSs using multigroup multicasting beamforming (each signal
carrying the data of a user). Since a single SBS may serve sev-
eral users, SBSs are therefore required to decode many signal
layers via SIC, which entails heavy computational burden for
low-cost SBSs. Further, the decoding order of signals is known
to affect the performance, leading to potential high decoding
errors and making SIC impractical, which was not evaluated
in [10]. The authors of [19] considered multiple SBS groups
served in a multicast manner using time division multiplexing
(TDM), i.e., each group at a time. However, as the number of
clusters grows, the multiplexing time generates longer latency
that is unavoidable as SBSs need to transmit coordinately
to users, making it less practical. In addition, these works
do not consider discrete rates, admission control, millimeter-
wave spectrum and 3D beamforming. For completeness, we
summarize in Table I the related literature on RRM for small
cells.
Overview: Not surprisingly, the inherent couplings among all
the different parameters of the system result in a complex
problem which is difficult to address. However, our frame-

work helps to realize the true potential of self-backhauled
mobile networks, in particular in the presence of real-world
constraints. To the best of our knowledge, this is the first work
that has modeled an integrated access-backhaul system with
such practical constraints and proposed solutions to assess its
performance. The investigated problem is unique and hence
existing solutions are not applicable to it. In the following, we
provide an overview of the steps taken to solve our problem,
from a systems design perspective as well as the mathematical
treatment.
Systems aspect. 3GPP specifications for 5G leave several
design choices to the operators such as spectrum allocation of
backhaul and access. We leveraged these degrees of freedom
to reduce the complexity of the problem while maintaining
a realistic setup. The wireless nature of the access and
backhaul links, coupled with the dense deployment of SBSs
and users, creates a very complex interference environment.
In RadiOrchestra, we choose an out-of-band system where
backhaul and access links use different frequency bands,
thus disentangling the interference between the two networks.
Conventionally, the MBS sends individual backhaul signals to
each SBS thus producing interference, which is handled via
(point-to-point) unicast beamforming. In dense deployments
this solution does not scale well due to the need to multiplex
various data streams. Thus, we propose a clustering strategy
where the MBS divides the SBSs into clusters, which are
served simultaneously via (point-to-multipoint) multigroup
multicast beamforming. This has three advantages: (i) En-
hancing the scalability of self-backhauling by avoiding point-
to-point transmissions which cause higher interference; (ii)
Eliminating the need for heavy signal processing (e.g., SIC
operation) at SBSs [10], [11]; (iii) Reducing hardware re-
quirements and costs since MBS becomes more cost-efficient
only requiring as many RF chains as SBS clusters, which is far
less than the point-to-point topology (i.e., dedicated RF-chain
per link).
Problem formulation and solution. Considering our design
choices above, we model the system and propose solutions in
a series of steps that are demonstrated in Fig. 1. We formulate
a RRM problem for integrated access-backhaul networks con-
sidering real-world constraints, which results in a nonconvex
MINLP with entangled variables (see Section II). We adopt a
series of procedures to simplify the structure of the nonconvex
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Figure 2: Self-backhauled SBSs grouped into clusters. The backhaul exploits multigroup
multicast beamforming for data sharing whereas the access network is based on distributed
unicast beamforming.

Figure 3: SBS clustering allows to merge data of all the served
users into one stream, minimizing interference and simplifying data
decoding at the SBSs.

MINLP without altering its optimality. Thus, we (i) improve
its tractability by eliminating additive binary couplings and
multiplicative mixed-integer couplings, and (ii) reduce the
search space by adding cuts. Although the problem structure
is greatly simplified after these procedures, it still remains a
nonconvex MINLP. However, its more amenable layout allows
us to tailor algorithms for its solution (see Section III). We
transform some of the nonconvex constraints into equivalent
(convex) SOC constraints and remodel others as convex inner
SOC approximations. As a result, we recast the nonconvex
MINLP into a MISOCP, which can be solved optimally
(see Section IV). Although solving the proposed MISOCP
guarantees an optimal solution, it requires a considerable
amount of time due to the numerous integral variables. To
deal with that, which translates to more branches evaluations
by the BnC method, we propose a reformulation based on
relaxation and penalization of the integral variables that only
requires to solve iteratively a SOCP, and is guaranteed to
attain a local optimum (see Section VI). To further simplify
the computational burden and expedite the solving time, we
offer a much simpler reformulation that reduces the number
of continuous variables, where we predesign the access and
backhaul beamforming vectors and only optimize their gains.
As a result, we only solve a low-complexity SOCP problem
iteratively (see Section VII). Finally, we derive an upper
bound for the problem, which we use to characterize the
performance of the developed algorithms (see Section V).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider that data is transported from the core network
to the user equipments (UEs) via a MBS and a deployment
of SBSs as shown in Fig. 2. The SBSs are connected to the
MBS through wireless backhaul links. We assume an out-of-
band full-duplex access-backhaul system, i.e., the backhaul
network (connecting SBSs to the MBS) and the access network
(connecting UEs to SBSs) operate simultaneously employing
orthogonal bands. In the following, we detail the modeling
assumptions.
Backhaul model: We rely on an advantageous clustering
approach, where we divide the SBSs into L non-overlapping
virtual cells or clusters, each formed by B SBSs (as in
distributed antenna systems). In this way, data streams sent

from the MBS to a SBS cluster contain the aggregate content
for all the served UEs in that cluster, as shown in Fig. 3. The
SBSs are deployed in a planned fashion and grouped based on
their proximity. The antenna arrays are oriented towards the
cluster center, as shown in Fig. 4.

Figure 4: SBS distribution and clustering with a MBS transmitting multicast
streams to three different clusters.

Access model: Each UE is pre-associated to a SBS cluster,
based on the geographical distance or a given operator policy.
Without loss of generality, we assume that each cluster has U
UEs. Thus, SBSs in a cluster transmit collaboratively to UEs
only within that cluster. However, not all SBSs are necessarily
involved in serving a particular UE, and not all UEs may
be served. The information for all the served UEs is co-
processed by all SBSs, thus allowing to handle interference
more efficiently.
Channel model: The backhaul links operate over a bandwidth
W backhaul

BW and we assume line-of-sight (LOS) connectivity
since the MBS and SBSs are usually strategically installed
in the planning phase. Besides, the access network operates
over a bandwidth W access

BW and its channels (i.e., between SBSs
and UEs) exhibit multipath scattering containing both line-of-
sight (LOS) and Non-line-of-sight (NLOS) components. Both
access and backhaul channels are modeled according to [36].
Optimization model: In line with the related literature, we
assume that the MBS has knowledge of the access channels
between the SBSs and UEs. In particular, 3GPP specifies
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channel training procedures in the access network that we
can rely upon. In addition, the MBS also knows the backhaul
channels, i.e., between itself and the SBSs. This knowledge
is even simpler to acquire than the access channels since
backhaul links are rather static with small variability. In
summary, the MBS collects knowledge of all the wireless
channels and, accordingly, optimizes all the radio resources
of the system.

For the sake of clarity, variables and parameters used in
the following sections are summarized in Table II.

Table II: Parameters and variables of the system
Parameters and Variables Notation

Number of transmit antennas at the MBS and SBSs NMBS
tx , NSBS

tx

Maximum transmit power at the MBS and SBSs PMBS
tx , PSBS

tx
Number of clusters in the system L
Number of UEs per cluster U
Number of SBSs per cluster B
Number of predefined rate/SINR values JUE, JSBS

Bandwidth of the access and backhaul networks W access
BW , Wbackhaul

BW
Set of clusters L = {1, · · · , L}
Set of SBSs B =

⋃
l∈L Bl

Set of UEs U =
⋃

l∈L Ul
Set of predefined rate/SINR values at SBSs J SBS

Set of predefined rate/SINR values at UEs JUE

Set of UEs in the l-th cluster Ul
Set of SBSs in the l-th cluster Bl

Channel between the MBS and SBS b gb

Channel between SBS b and UE u hb,u

Multicast precoder from the MBS to SBS cluster Bl ml

Unicast precoder from SBS b to UE u wb,u

Binary variable for UE rate/SINR selection αu,j

Binary variable for SBS rate/SINR selection βl,j

Binary variable for UE association κb,u

A. Backhaul Network: Multicast Transmissions from MBS to
SBSs

In the backhaul network, two important aspects are dealt
with. First, rate selection, i.e. choosing appropriate data rates
at which the MBS transmits information to the SBSs. Second,
beamforming, i.e. adjusting the amplitude and phases of the
signals at the MBS to guarantee the selected rates.
Beamforming: The MBS is equipped with a planar array
of NMBS

tx transmit antennas operating on Band 1 used for
communication with the SBSs, which have NSBS

rx = 1 receive
antenna. The MBS transmits as many streams as clusters.
Every stream contains the aggregate data for the served UEs
in their respective clusters (see Fig. 3). The instantaneous
multicast symbol for the SBSs in cluster Bl is denoted by
zl, with E [zl] = 0 and E

[
|zl|22

]
= 1. The beamforming

vector conveying zl is denoted by ml. The composite signal
transmitted from the MBS to all SBS clusters is given by
xMBS =

∑
l∈Lmlzl. The received signal at SBS b ∈ Bl is

expressed as
ySBS
b = gHb xMBS + nb

= gHb mlzl︸ ︷︷ ︸
signal for SBS b

+
∑

l′∈L,l′ ̸=l
gHb ml′zl′

︸ ︷︷ ︸
interference

+ nb︸︷︷︸
noise

, (1)

where gb is the channel between SBS b ∈ Bl and the MBS
whereas nb ∼ CN

(
0, σ2

SBS

)
symbolizes circularly symmet-

ric Gaussian noise. The signal-to-interference-plus-noise ratio
(SINR) at SBS b is

SINRSBS
b =

∣∣gHb ml

∣∣2
∑
l′∈L,l′ ̸=l

∣∣gHb ml′
∣∣2 + σ2

SBS

. (2)

Since all SBSs within a cluster receive the same com-
mon information (i.e. aggregate UE content), the effective
rate/SINR per cluster is determined by the SBS with the
worst conditions. As a result, a more sensible means of
quantifying the maximal SINR per cluster is the following

S̃INR
SBS

l = minb∈Bl

{
SINRSBS

b

}
,∀l ∈ L.

REMARK: This system is known as multigroup multicast
beamforming [37] and has been studied for transmissions from
a MBS/SBS to multiple clusters of UEs. We exploit that same
idea to transmit data streams from the MBS to the SBSs. We
assume that the number of streams that the MBS can handle
is sufficient to serve all SBS clusters, i.e. NMBS

streams ≥ L.
Rate Selection: In practical wireless communications systems,
the set of eligible data rates is finite [38, pp. 64]. These
predefined rates are uniquely identified by their associated CQI
index, and each corresponds to a specific MCS. In addition,
for each rate, a minimum received SINR is required in order to
ensure a target block error rate (BLER) [39]. While the rates
and MCSs are standardized, the corresponding target SINRs
are usually vendor- and equipment-specific. We consider the
target SINRs in [40], which are shown in Table III (in linear
scale) and approximately exhibit increments of twice the
previous rate starting from RSBS

1 = 0.2344 bps/Hz.
Table III: Rates and target SINR values

Coding rate Rate RSBS
j [bps/Hz] SINR ΓSBS

j

120/1024 (QPSK) 0.2344 0.2159
308/1024 (QPSK) 0.6016 0.6610
602/1024 (QPSK) 1.1758 1.7474
466/1024 (QAM) 2.7305 10.6316
948/1024 (QAM) 5.5547 95.6974

In order to assign RSBS
j to the l-th SBS cluster, it is required

that S̃INR
SBS

l ≥ ΓSBS
j , j ∈ J SBS, where J SBS represent

the set of possible rates. To represent the rate assignment, we
introduce the binary variables βl,j ∈ {0, 1} with βl,j = 1
denoting that the SBSs in Bl are allocated RSBS

j . We assume
that all SBS clusters are served, which is ensured through∑
j∈J SBS βl,j = 1,∀l ∈ L and NMBS

streams ≥ L. Thus, to
guarantee the predefined target BLER for cluster Bl, it must

hold that S̃INR
SBS

l ≥∑
j∈J SBS βl,jΓ

SBS
j .

B. Access Network: Distributed Unicast Transmissions from
SBSs to UEs

In the access network, four pivotal aspects are addressed.
First, admission control, i.e. deciding which UEs are served.
Second, rate selection, i.e. choosing data rates for the served
UEs. Third, user association, i.e. determining which subset of
SBSs transmit to a served UE. Fourth, beamforming.
Beamforming and User Association: Each SBS is equipped
with a planar array of NSBS

tx transmit antennas operating on
Band 2 and used for communication with the UEs, which have
NUE

rx = 1 receive antenna. A SBS b ∈ Bl serving a subset of
UEs in Ul transmits multiple unicast signals simultaneously,
each signal targeting a specific UE. The instantaneous unicast
symbol for UE u ∈ Ul is denoted by sl,u, with E [sl,u] = 0

and E
[
|sl,u|22

]
= 1. In addition, the beamforming vector from

SBS b ∈ Bl transmitting sl,u to UE u ∈ Ul is denoted by wb,u.
Therefore, the composite signal that SBS b in Bl sends to
the UEs in Ul is represented by xSBS

b =
∑
u∈Ul wb,usl,uκb,u,
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yUE
u =

∑

b∈Bl

hHb,uwb,usl,uκb,u

︸ ︷︷ ︸
signal for UE u in cluster Ul

+
∑

b∈Bl

∑

u′∈Ul
u′ ̸=u

hHb,uwb,u′sl,u′κb,u′

︸ ︷︷ ︸
interference originated in cluster Ul

+
∑

l′∈L
l′ ̸=l

∑

b′∈Bl′

∑

u′∈Ul′
hHb′,uwb′,u′sl′,u′κb′,u′

︸ ︷︷ ︸
aggregate interference originated in clusters Ul′ ̸=l

+ nu︸︷︷︸
noise

(3)

SINRUE
u =

∣∣∣
∑
b∈Bl

hHb,uwb,uκb,u

∣∣∣
2

∑
u′∈Ul
u′ ̸=u

∣∣∣
∑
b∈Bl

hHb,uwb,u′κb,u′

∣∣∣
2

+
∑
l′∈L
l′ ̸=l

∑
u′∈Ul′

∣∣∣
∑
b′∈Bl′

hHb′,uwb′,u′κb′,u′

∣∣∣
2

+ σ2
UE

. (4)

P ′ : max
ml,wb,u,αu,j ,βl,j ,κb,u

Raccess
w−sum (α) ≡

∑

l∈L

∑

u∈Ul
ωu

∑

j∈JUE

αu,jR
UE
j

s.t. C1 : αu,j = {0, 1} ,∀l ∈ L, u ∈ Ul, j ∈ J UE,

C2 :
∑

j∈JUE

αu,j ≤ 1,∀l ∈ L, u ∈ Ul,

C3 :
∑

l∈L
∥ml∥22 ≤ PMBS

tx ,

C̄4 :
∑

u∈Ul
∥wb,uκb,u∥22 ≤ P SBS

tx ,∀l ∈ L, b ∈ Bl,

C̄5 : SINRUE
u ≥

∑

j∈JUE

αu,jΓ
UE
j ,∀l ∈ L, u ∈ Ul,

C6 : κb,u = {0, 1} ,∀l ∈ L, b ∈ Bl, u ∈ Ul,
C7 :

∑

u∈Ul
κb,u ≤ NSBS

streams,∀l ∈ L, b ∈ Bl,

C8 :
∑

u∈Ul
κb,u ≥ 1,∀l ∈ L, b ∈ Bl,

C9 :
∑

b∈Bl

κb,u ≤ Bmax

∑

j∈JUE

αu,j ,∀l ∈ L, u ∈ Ul,

C10 :
∑

b∈Bl

κb,u ≥ Bmin

∑

j∈JUE

αu,j ,∀l ∈ L, u ∈ Ul,

C11 : βl,j = {0, 1} ,∀l ∈ L, j ∈ J SBS,

C12 :
∑

j∈J SBS

βl,j = 1,∀l ∈ L,

C13 : W access
BW

∑

u∈Ul

∑

j∈JUE

αu,jR
UE
j ≤W backhaul

BW

∑

j∈J SBS

βl,jR
SBS
j ,∀l ∈ L,

C14 :
∑

u∈Ul

∑

j∈JUE

αu,j = Userved,∀l ∈ L,

C̄15 : S̃INR
SBS

l ≥
∑

j∈J SBS

βl,jΓ
SBS
j ,∀l ∈ L,

where κb,u is a binary variable that is 1 when SBS b ∈ Bl
serves UE u ∈ Ul and 0 otherwise. A served UE u ∈ Ul
receives its information from at least Bmin = 1 and at most
Bmax = B SBSs in Bl. The signal received by UE u in Ul is
given by (3), where nu ∼ CN

(
0, σ2

UE

)
and hb,u represents

the channel between SBS b and UE u. Every UE perceives
interference from within its own cluster and from neighboring
clusters. The SINR at UE u in Ul is defined by (4). When
κb,u = 0, no information is sent to the UE. The effective
beamforming vector is κb,u · wb,u, which becomes a zero-
vector for unserved UEs, thus accomplishing the association
between UEs and SBSs.
Rate Selection and Admission Control: Similarly to Section
II-A, the rate assigned to a served UE can only be one within
a set of predefined values. To depict the rate selection for the

UEs, we introduce the binary variables αu,j ∈ {0, 1}. These
variables perform the dual task of admission control and rate
selection, which is ensured by

∑
j∈JUE αu,j ≤ 1,∀l ∈ L, u ∈

Ul, where J UE represents the set of possible rate values. A
UE u is served when

∑
j∈JUE αu,j = 1, meaning that one

rate has been assigned. Otherwise, when
∑
j∈JUE αu,j = 0,

the UE is not served. We denote the rates and target SINRs
for UEs with RUE

j and ΓUE
j , respectively. To assign RUE

j to
UE u, it is required that SINRUE

u ≥ ΓUE
j , j ∈ J UE, for which

we assume the same values shown in Table III in Section III.
Further, not all UEs shall be admitted since each SBS can
support up to NSBS

streams streams simultaneously.
C. Problem Formulation

We investigate the problem of joint optimization of beam-
forming, user association, rate selection, admission control
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Proposition 1. Due to existence of C1 − C2, constraint C̄5 can be equivalently rewritten as
C5 : SINRUE

u ≥ αu,jΓUE
j ,∀l ∈ L, u ∈ Ul, j ∈ J UE.

Proof: Because of C2, there is at most one variable at a time that is 1. As a result, the SINR constraints can be decomposed
into multiple constraints, each being related to only one binary variable.

Proposition 2. Due to existence of C6, constraints C̄4 −C5 can be equivalently rewritten as C17, C18, C19, C20, C̄21, where

C̄4 − C5 =





C17 : pb,u ≥ 0,∀l ∈ L, b ∈ Bl, u ∈ Ul,
C18 :

∑
u∈Ul pb,u ≤ P SBS

tx ,∀l ∈ L, b ∈ Bl,
C19 : pb,u ≤ κb,uP SBS

tx ,∀l ∈ L, b ∈ Bl, u ∈ Ul,
C20 :

∥∥∥
[
2wH

b,u, κb,u − pb,u
]∥∥∥

2
≤ κb,u + pb,u,∀l ∈ L, b ∈ Bl, u ∈ Ul,

C̄21 :

∣∣∑
b∈Bl

hH
b,uwb,u

∣∣2
∑
u′∈Ul
u′ ̸=u

∣∣∑
b∈Bl

hH
b,uwb,u′

∣∣2+∑
l′∈L
l′ ̸=l

∑
u′∈U

l′

∣∣∑
b′∈B

l′
hH

b′,uwb′,u′
∣∣2+σ2

UE

≥ αu,jΓUE
j ,∀l ∈ L, u ∈ Ul, j ∈ J UE,

Proof: See Appendix A.

Proposition 3. Due to existence of C1, constraint C̄21 can be rewritten as C21, where

C21 :
∑

l′∈L

∑

u′∈Ul′

∣∣∣
∑

b′∈Bl′

hHb′,uwb′,u′

∣∣∣
2

+ σ2
UE ≤

(
1 + ΓUE

j

−1) ∣∣∣
∑

b∈Bl

hHb,uwb,u

∣∣∣
2

+ (1− αu,j)2Q2
u,∀l ∈ L, u ∈ Ul, j ∈ J UE,

and Q2
u = P SBS

tx

∑
l′∈L

∑
b′∈Bl′

∥hb′,u∥22 + σ2
UE is an upper bound for the left-hand side (LHS) term of C21.

Proof: See Appendix B.

in the access network and beamforming, rate selection in the
backhaul network aiming to maximize the weighted sum-rate
at the access network (i,e., for the UEs), which is formulated
as P ′ in the previous page.

In P ′, Raccess
w−sum (α) denotes the weighted sum-rate achieved

by all UEs in the access network. Besides, ωu repre-
sents the weight associated to UE u, which can be ad-
justed by the network operator to assign different prior-
ities, for instance, to balance fairness among UEs. For-
mally, the objective function is expressed as Raccess

w−sum (α) ≡
W access

BW

∑
l∈L

∑
u∈Ul ωu

∑
j∈JUE αu,jR

UE
j . However, since

W access
BW is constant, we have redefined it as Raccess

w−sum (α) ≡∑
l∈L

∑
u∈Ul ωu

∑
j∈JUE αu,jR

UE
j without altering the na-

ture of the problem.
Constraints C1, C2, C̄4, C̄5, C6, C7, C8, C9, C10, C14

are related to the access network, C3, C11, C12, C̄15 are
related to the backhaul network whereas C13 is related to
both networks. Constraints C1 − C2 depict the rate selection
for all UEs, constraint C3 restricts the transmit power of
the MBS, constraint C̄4 restricts the transmit power of the
SBSs, constraint C̄5 guarantees that the unicast SINR is larger
than the corresponding target SINR (specified in Table III),
constraints C6 −C8 ensure that each SBS serves at least one
UE but cannot serve more UEs than the number of streams
it can handle, constraints C9 −C10 ensure that each admitted
UE is served by at least Bmin and by at most Bmax SBSs,
constraints C11 − C12 guarantee a rate selection for every
SBS cluster, constraint C13 guarantees that the total access
throughput in a cluster does not exceed the throughput of the
corresponding serving backhaul link, C14 ensures that there
are Userved served UEs per cluster, constraint C̄15 guarantees
that the SINR per SBS cluster is larger than the selected target

SINR (specified in Table III).
REMARK: In the strict sense, the integrality constraints

(i.e., C1, C6, C11) make P ′ nonconvex. Nevertheless, in the
MINLP literature, a MINLP is referred to as nonconvex if it
remains nonconvex even after excluding the integral variables.
Otherwise, it is called convex [41]. In general, both convex and
nonconvex MINLPs are NP-hard but the latter ones are more
challenging to solve. Specifically, P ′ is a nonconvex MINLP
and the nonconvexity nature is conferred by the constraints
C̄4, C̄5, C̄15.

III. PROPOSED PROBLEM REFORMULATION

In this section, we propose a series of transformations to
simplify the nonconvex constraints C̄4, C̄5, C̄15. The resulting
reformulation P (shown in Section III-D) is used in Section
IV, Section VI, Section VII, where we propose three algo-
rithms: BnC-MISOCP, RnP-SOCP-1 and RnP-SOCP-2.
A. Eliminating Additive Coupling between Binary Variables

To deal with the additive coupling of the binary variables
at the right-hand side (RHS) of C̄5 (i.e. sum of variables), we
separate C̄5 into multiple equivalent constraints, as described
in Proposition 1.
B. Eliminating the Multiplicative Coupling between Continu-

ous and Binary Variables
To deal with the multiplicative coupling between the uni-

cast beamforming vectors and binary variables (in the form
wb,uκb,u) in C̄4−C5, we reformulate such interdependencies
as equivalent additive couplings, which are simpler to handle,
as described in Proposition 2. In addition, note that C17 − C20

are convex, whereas C̄21 is a nonconvex mixed-integer nonlin-
ear constraint. To circumvent the involved structure C̄21, we
remodel it (without loss of optimality) harnessing the big-M
method [42], which allows to remove the multiplicative tie
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Proposition 4. Due to existence of C11, constraint C̄15 can be equivalently recast as C15, where

C15 :
∑

l′∈L

∣∣gHb ml′
∣∣2 + σ2

SBS ≤
(
1 + ΓSBS

j

−1) ∣∣gHb ml

∣∣2 + (1− βl,j)2Q2
b ,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

and Q2
b = PMBS

tx ∥gb∥22 + σ2
SBS is an upper bound for the LHS term of C15.

Proof: The proof is along the same lines as the procedures adopted in Proposition 1, Proposition 2 and Proposition 3. Therefore,
it is omitted.

Proposition 5. The nonconvex constraints C21 − C22 can be equivalently expressed as SOC constraints C23 − C25, i.e.,

C21 − C22 =





C23 :
∥∥[h̄Hu W, σUE

]∥∥
2
≤

√
1 + ΓUE

j
−1

Re
{
hHu wu

}
+ (1− αu,j)Qu,∀l ∈ L, u ∈ Ul, j ∈ J UE,

C24 : Re
{
hHu wu

}
≥ αu,j

√
ΓUE
j σUE,∀l ∈ L, u ∈ Ul, j ∈ J UE,

C25 : Im
{
hHu wu

}
= 0,∀l ∈ L, u ∈ Ul, j ∈ J UE.

Proof: See Appendix C.

Proposition 6. The nonconvex constraints C15 − C16 can be recast as the more conservative SOC constraints C26 − C27,
where

C15 − C16 =




C26 :

∥∥[gHb M, σSBS

]∥∥
2
≤

√
1 + ΓSBS

j
−1

Re
{
gHb ml

}
+ (1− βl,j)Qb,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

C27 : Re
{
gHb ml

}
≥ βl,j

√
ΓSBS
j σSBS,∀l ∈ L, b ∈ Bl, j ∈ J SBS.

Proof: See Appendix D.

between the beamformers and binary variables, as described
in Proposition 3. Finally, because constraint C̄15 has a similar
structure as C̄5, we can reformulate it in an equivalent manner,
as described in Proposition 4.
C. Adding Cuts to Tighten the Feasible Set

To reduce the number of branches to be evaluated by
MINLP solvers, we include valid inequalities (cuts) for certain
constraints involving integer variables. Thus, we add the
constraints C16 and C22, defined as
C16 :

∣∣gHb ml

∣∣2 ≥ βl,jΓSBS
j σ2

SBS,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

C22 :
∣∣∣
∑

b∈Bl

hHb,uwb,u

∣∣∣
2

≥ αu,jΓUE
j σ2

UE,∀l ∈ L, u ∈ Ul, j ∈ J UE.

Note that C16 is a lower bound for the multicast SINR
numerator, which becomes tight when the interference term is
zero. This constraint is always satisfied when βl,j are binary
thus reducing the feasible set and tightening the problem
relaxation when the binary variables are recast as real values
(as in the proposed algorithms in Section VI and Section VII).
Adding C16 does not change the nature of the problem nor
affects its optimality. Similarly, C22 is a lower bound for the
unicast SINR numerator.
D. Redefining the Problem

After applying the transformations in Section III-A, Section
III-B and Section III-C, the nonconvex constraints C̄4, C̄5, C̄15

have been replaced by the convex constraints C17, C18, C19,
C20 and the nonconvex constraints C15, C21. In addition, the
nonconvex constraints C16, C22 have been added to contract
the feasible set. Collecting these outcomes, we define P as
P : max

ml,wb,u,pb,u,
αu,j ,βl,j ,κb,u

convex: Raccess
w−sum (α)

s.t. convex: C2 − C3,C7 − C10,C12 − C14,
C17 − C20,

nonconvex: C15 − C16,C21 − C22,
binary: C1,C6,C11.

REMARK: Notice that P is also a nonconvex MINLP and
has the same optimal solution as P ′ since the introduced trans-
formations do not affect the original feasible set. However, the
structure of P is simpler, thus allowing us to tailor algorithms
for solving the problem more efficiently.

IV. BNC-MISOCP: PROPOSED MISOCP FORMULATION

In this section, we recast P as a MISOCP by transforming
the nonconvex constraints into convex ones. We remodel C21−
C22 as convex constraints and replace C15−C16 with convex
inner surrogates.
A. Transforming Nonconvex Constraints into Convex Con-

straints
To deal with the nonconvex constraints C21 − C22, we

recast them as convex conic constraints as they have hidden
convexity. To simplify notation, we first rewrite C21−C22 as

C21 :
∣∣h̄Hu W

∣∣2 + σ2
UE ≤

(
1 + ΓUE

j

−1) ∣∣hHu wu

∣∣2

+ (1− αu,j)2Q2
u,∀l ∈ L, u ∈ Ul, j ∈ J UE,

C22 : αu,jΓ
UE
j σ2

UE ≤
∣∣hHu wu

∣∣2 ,∀l ∈ L, u ∈ Ul, j ∈ J UE,

where
∣∣∑

b∈Bl
hHb,uwb,u

∣∣2 =
∣∣hHu wu

∣∣2 , u ∈ Ul and∑
l′∈L

∑
u′∈Ul′

∣∣∑
b′∈Bl′

hHb′,uwb′,u′
∣∣2 =

∣∣h̄Hu W
∣∣2. In

particular, hu =
[
hHb1,u, · · · ,hHbB ,u

]H
and wu =

[
wH
b1,u

, · · · ,wH
bB ,u

]H
, denote respectively the channels and

beamforming vectors from all SBS in the same cluster that
UE u is located. Further, h̄u denotes the channel between UE
u and all SBSs in the system whereas W is a block diagonal
matrix collecting all beamforming vectors between SBSs and
UEs. After applying these changes, we are in the position of
expressing the nonconvex constraints C21 − C22 as exactly
equivalent SOC constraints, as described in Proposition 5.
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B. Recasting Nonconvex Constraints as Convex Inner Approx-
imations

To circumvent the nonconvex constraints C15, C16, we
replace them by convex surrogates. Assuming that M =
[m1, · · · ,mL], we express C15 as

C15 :
∥∥gHb M

∥∥2
2
+ σ2

SBS ≤
(
1 + ΓSBS

j

−1) ∣∣gHb ml

∣∣2

+ (1− βl,j)2Q2
b ,∀l ∈ L, b ∈ Bl, j ∈ J SBS.

Using this expression, we reformulate C15−C16 as convex
inner SOC approximations, as stated in Proposition 6. If
constraints C26 − C27 are satisfied, then C15 − C16 are
automatically guaranteed because the feasible set of C26−C27

is contained in that of C15 − C16. Therefore, they are called
inner approximations.
C. Summarizing the Changes

After applying the transformations above, we define the
following problem,
P0 : max

ml,wb,u,pb,u,
αu,j ,βl,j ,κb,u

convex: Raccess
w−sum (α)

s.t. convex: C2 − C3,C7 − C10,C12 − C14,
C17 − C20,C23 − C27,

binary: C1,C6,C11,

which is an inner approximation of problem P due to
convexification of its original feasible set upon replacing
C15 − C16 by C26 − C27. Thus, any feasible solution to
P0 will also be feasible to P ′ and P . Here, P0 has Nv =
2LNMBS

tx +2LBUNSBS
tx +2LBU+LJSBS+LUJUE variables,

Nl = 3L+2LU+3LB+2LBU+3LUJUE+LBJSBS linear
constraints and Nc = 1+LBU +LUJUE +LBJSBS convex
constraints. The complexity is O

(
Ns(Nv)

3(Nl +Nc)
)
, where

Ns is the total number of evaluations needed by the mixed-
integer (MIP) solver.

REMARK: Note that P0 is a convex MINLP, and as such
it can be solved optimally by MIP solvers which exploit
BnC techniques to prune infeasible solutions thus reducing
the search space of the problem. Although BnC techniques
can explore the binary space more efficiently and are faster
than exhaustive search, they may still require a considerable
amount of time to find the optimum, specially when the number
of integral variables is large as in P0. Thus, in order to
expedite this process, we propose suboptimal algorithms in
Section VI and Section VII based on integrality relaxation and
penalization.

V. PROPOSED BOUNDS

We derive an upper bound and a lower bound for P0.
The upper bound is defined as a MISOCP whereas the lower
bound is a system- and problem-specific rate value. When
not possible to obtain a solution for P0 (due to high time
complexity), the upper and lower bounds will be used as
benchmarks for the developed algorithms in Section VI and
Section VII.
Upper Bound (UB): While the weighted sum-rate is
a mechanism to balance rates, i.e., to give higher
priorities to the least favored UEs, the actual ag-
gregate rate in the network is given by the sum-
rate Raccess

sum (α) = W access
BW

∑
l∈L

∑
u∈Ul

∑
j∈JUE αu,jR

UE
j

(without the weights). Thus, note that Raccess
sum (α) is re-

lated to constraint C13, which ensures that the access sum-
rate per cluster does not exceed the rate of the serving
backhaul link. Therefore, the access sum-rate Raccess

sum (α)
is bounded from above by the backhaul sum-rate, defined
as Rbackhaul

sum (β) ≜ W backhaul
BW

∑
l∈L

∑
j∈J SBS βl,jR

SBS
j , i.e.,

Raccess
sum (α) ≤ Rbackhaul

sum (β). Since the backhaul sum-rate
depends only on ml and βl,j , the upper bound is given by
PUB : max

ml,βl,j

Rbackhaul
sum (β) s.t. C3,C11,C12,C26,C27,

which is a MISOCP that can be solved optimally. The upper
bound essentially maximizes the backhaul network throughput
without considering the access network requirements. Note
that PUB has Nv = LJSBS + 2LNMBS

tx variables, Nl =
L+LBJSBS linear constraints and Nc = 1+LBJSBS convex
constraints. Thus, its complexity is O

(
Ns(Nv)

3(Nl +Nc)
)
,

where Ns represents the total number of evaluations needed
by the MIP solver.

REMARK: PUB can be interpreted as joint multigroup
multicast beamforming and rate selection, which has not been
investigated before. A similar problem was studied in [43] but
with continuous rates. Although we do not investigate this new
problem alone but in conjunction with the additional access
network constraints, we believe it is important to highlight
its novelty as it represents the discrete counterpart of the
aforementioned problem thus filling a gap in the existing
literature and opening new avenues of research.
Lower Bound (LB): The lower bound is based on the analysis
of P0. From constraint C13, a number of Userved UEs per
cluster needs to be served. In the worst case, these UEs
are allocated the lowest rate possible, which based on Table
III, corresponds to RUE

1 = 0.2344 bps/Hz. With L clusters,
the minimum sum-rate at the access network is defined as
Raccess

sum−min = RUE
1 ·W access

BW ·Userved ·L bps. We underline that
this bound corresponds to the worst possible case in which
the UEs are minimally served while still satisfying the system
constraints.

VI. RNP-SOCP-1: PROPOSED SOCP FORMULATION

This formulation is derived from problem P0. We pro-
pose a relax-and-penalize SOCP algorithm denoted by
RnP-SOCP-1, which iteratively optimizes a SOCP. To cope
with the integrality constraints C1, C6, C11, we replace them
with the intersection of two continuous sets [44], as described
in Proposition 7.

Proposition 7. The constraints C1, C6, C11 can be equiva-
lently expressed as,

C1 =

{
X1 : 0 ≤ αu,j ≤ 1,
Z1 :

∑
l,u,j αu,j − α2

u,j ≤ 0,

C6 =

{
X2 : 0 ≤ κb,u ≤ 1,
Z2 :

∑
l,b,u κb,u − κ2b,u ≤ 0,

C11 =

{
X3 : 0 ≤ βl,j ≤ 1,
Z3 :

∑
l,j βl,j − β2

l,j ≤ 0.

Proof: It is straightforward to see that X1 and Z1 intersect
only at {0, 1}. Thus, we omit further details.

Notice that constraints X1−X3 are convex whereas Z1−Z3

are nonconvex. Considering Proposition 7, we define
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P̃1 : max
Θ∈D

R (α,β,κ) ≜ Raccess
w−sum (α)−λαfα (α)− λβfβ (β)− λκfκ (κ)︸ ︷︷ ︸

nonconvex DC functions

(7)

fα (α) ≜ pα (α) + qα (α) , pα (α) ≜
∑

l∈L

∑

u∈Ul

∑

j∈JUE

αu,j , qα (α) ≜ −
∑

l∈L

∑

u∈Ul

∑

j∈JUE

α2
u,j ,

fβ (β) ≜ pβ (β) + qβ (β) , pβ (β) ≜
∑

l∈L

∑

j∈J SBS

βl,j , qβ (β) ≜ −
∑

l∈L

∑

j∈J SBS

β2
l,j ,

fκ (κ) ≜ pκ (κ) + qκ (κ) , pκ (κ) ≜
∑

l∈L

∑

b∈Bl

∑

u∈Ul
κb,u, qκ (κ) ≜ −

∑

l∈L

∑

b∈Bl

∑

u∈Ul
κ2b,u.

P̃(t)
1 : max

Θ∈D
R̃(t) (α,β,κ) ≜ Raccess

w−sum (α)− λαf̃ (t)α (α)− λβ f̃ (t)β (β)− λκf̃ (t)κ (κ) (8)

f̃ (t)α (α) ≜ pα (α) + q̃(t)α (α) , f̃
(t)
β (β) ≜ pβ (β) + q̃

(t)
β (β) , f̃ (t)κ (κ) ≜ pκ (κ) + q̃(t)κ (κ) .

P1 : max
Θ

Raccess
w−sum (α) s.t. Θ ∈ D︸ ︷︷ ︸

convex

,Z1 − Z3︸ ︷︷ ︸
nonconvex

which is equivalent to P0. Here, Θ = (M,W,p,α,β,κ)
groups all the optimization variables and D denotes the
feasible set spanned by the convex constraints X1−X3,C2−
C3,C7−C10,C12−C14,C17−C20,C23−C27. Although P1

is a nonconvex MINLP, its nonconvexity is only due to simple
polynomial constraints Z1 − Z3, which belong to the class of
difference of convex (DC) functions.

Since P1 is challenging to solve optimally, we aim to obtain
a locally optimal solution. To find a solution for P1, we devise
an algorithm based on the minorization-maximization (MM)
principle. To cope with Z1 − Z3, we include them as penalty
terms in the objective function [45]. Thus, we define P̃1 in (7)
where λα ≥ 0, λβ ≥ 0, λκ ≥ 0. Whenever α, β, κ are not
binary, the functions fα (α), fβ (β), fκ (κ) are positive. By
including them in the objective, they can be used as a measure
of the degree of satisfaction of the binary constraints, with λα,
λβ , λκ representing penalty factors. Problems P1 and P̃1 are
related in the following sense. If Proposition 8 is satisfied, P1

and P̃1 become equivalent [45], [46].

Proposition 8. The optimization problems P1 and P̃1 are
equivalent for sufficiently large values of λα, λβ , λκ, in which
case both problems attain the same optimal value and solution.
Proof: See Appendix E.

To solve P̃1, the complication is in the objective since
fα (α), fβ (β), fκ (κ) are nonconvex DC functions. Thus,
we apply first-order approximations to qα (α), qβ (β), qκ (κ),
and define

q̃(t)α (α) ≜ qα

(
α(t−1)

)
+∇αq

T
α

(
α(t−1)

)(
α−α(t−1)

)
,

q̃
(t)
β (β) ≜ qβ

(
β(t−1)

)
+∇βq

T
β

(
β(t−1)

)(
β − β(t−1)

)
,

q̃(t)κ (κ) ≜ qκ

(
κ(t−1)

)
+∇κq

T
κ

(
κ(t−1)

)(
κ− κ(t−1)

)
,

where q̃(t)α (α) ≥ qα (α), q̃(t)β (β) ≥ qβ (β), q̃(t)κ (κ) ≥ qκ (κ)
are outer linear approximations for qα (α), qβ (β), qκ (κ),
respectively.

Here, α(t−1), β(t−1), κ(t−1) denote a feasible solution (i.e.
reference point for linearization) whereas ∇x represents the

derivative with respect to variable x. Using the MM principle
and constructing a sequence of surrogate functions q̃(t)α (α),
q̃
(t)
β (β), q̃(t)κ (κ) at every iteration t, we solve problem P̃(t)

1

defined in (8), which is a SOCP where f̃
(t)
α (α) ≥ fα (α),

f̃
(t)
β (β) ≥ fβ (β), f̃

(t)
κ (κ) ≥ fκ (κ). In particular, problem

P̃(t)
1 is convex and can be solved using interior-point methods.

By solving P̃(t)
1 iteratively, we show in Proposition 9 and

Proposition 10, that P̃(t)
1 is a global lower bound of P̃1 and

the obtained solution is a KKT point.

Proposition 9. Problem P̃(t)
1 is a global lower bound for P̃1

since R̃(t) (α,β,κ) ≤ R (α,β,κ).
Proof: See Appendix F.

Proposition 10. Starting from a feasible point Θ(0) =(
·, ·, ·,α(0),β(0),κ(0)

)
, the sequence of solutions Θ(t) =(

M(t),W(t),p(t),α(t),β(t),κ(t)
)

, for t ≥ 1, obtained by

iteratively solving P̃(t)
1 constitutes a sequence of enhanced

points for P̃1, which converges to a KKT point.
Proof: See Appendix G.

To solve P̃(t)
1 , a feasible point Θ(0) is needed to guarantee

convergence as explained in Proposition 10. We generate
random initial feasible points and test them for feasibility, as
described in [47]. We use the best of these points as the initial
Θ(0), and iteratively solve P̃(t)

1 as shown in Algorithm 1.

Algorithm 1: Optimization of P1

Step 1: Define Niter, δ, λα, λβ , λκ.
Step 2: Find an initial point Θ(0) =

(
·, ·, ·,α(0),β(0),κ(0)

)

using {0, 1} values.
Step 3: Initialize t = 1.
Step 4: Solve P(t)

1 using Θ(t−1).
Step 5: Assign Θ(t) ← Θ(t−1).
Step 6: Update the iteration index t by one, i.e. t = t+ 1.
Step 7: Verify if the stop criterion is attained. Otherwise,

return to Step 4.

We stop the iterative process when a criterion has been
met, i.e., t = Niter or R̃(t) (α,β,κ) − R̃(t−1) (α,β,κ) ≤ δ.
The computational complexity of P̃(t)

1 is similar to that of
one evaluation of P0. In particular, Nv = 2LNMBS

tx +
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(C3) L1 :
∑

l∈L
t2l ≤ PMBS

tx ,

(C20) L2 :
∥∥[2ŵH

b,uvb,u, κb,u − pb,u
]∥∥

2
≤ κb,u + pb,u,∀l ∈ L, b ∈ Bl, u ∈ Ul,

(C23) L3 : ∥[Sbv, σUE]∥2 ≤
√

1 + ΓUE
j
−1

Re
{ ∑

b∈Bl

cb,uvb,u

}
+ (1− αu,j)Qu,∀l ∈ L, u ∈ Ul, j ∈ J UE,

(C24) L4 : Re
{ ∑

b∈Bl

cb,uvb,u

}
≥ αu,j

√
ΓUE
j σUE,∀l ∈ L, u ∈ Ul, j ∈ J UE,

(C25) L5 : Im
{ ∑

b∈Bl

cb,uvb,u

}
= 0,∀l ∈ L, u ∈ Ul, j ∈ J UE.

(C26) L6 : ∥[Rbt, σSBS]∥2 ≤
√

1 + ΓSBS
j
−1
rb,ltl + (1− βl,j)Qb,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

(C27) L7 : rb,ltl ≥ βl,j
√

ΓSBS
j σSBS,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

2LBUNSBS
tx + 2LBU + LJSBS + LUJUE variables, Nl =

3L+2LU +3LB+2LJSBS+4LBU +5LUJUE+LBJSBS

linear constraints and Nc = 1 + LBU + LUJUE +
LBJSBS convex constraints. Therefore, the complexity is
O
(
Niter(Nv)

3(Nl +Nc)
)
, where Niter is the number of it-

erations.
VII. RNP-SOCP-2: PROPOSED SOCP FORMULATION

This formulation is derived from problem P1. We propose
an alternative relax-and-penalize SOCP algorithm, denoted
by RnP-SOCP-2, whose main characteristic is the reduced
number of optimization variables compared to RnP-SOCP-1,
thus allowing to obtain solutions faster. To decrease the large
number of optimization variables in P1, (essentially dominated
by the number of antennas at the MBS and SBSs) we adopt
a simpler approach in which instead of optimizing high-
dimensional beamforming vectors, we only optimize their
gains.

In particular, we define the variables vb,u and tl as the
gains (i.e., amplitude and phase) of predefined unicast (i.e.,
access) and multicast (i.e., backhaul) beamforming vectors
ŵb,u and m̂l, respectively, such that ml = tlm̂l, wb,u =
vb,uŵb,u, ∥m̂l∥22 = 1, ∥ŵb,u∥22 = 1. We design the unit-
norm unicast beamforming vectors ŵb,u using the zero-forcing
(ZF) criterion. On the other hand, the unit-norm multicast
beamforming vectors m̂l are obtained experimentally upon
evaluating the upper bound PUB for multiple realizations with
varying degrees of shadowing and small-scale fading, and
then taking the average of all these beamforming vectors.
This procedure allows us to obtain a fair estimation of the
multicast beamforming vectors because the SBSs are station-
ary and therefore the MBS-SBS channels geometry do not
change substantially. Thus, the constraints that are affected by
ml = tlm̂l, wb,u = vb,uŵb,u are C3, C20,C23−C27 which are
redefined at the top of this page, where Sb is a block diagonal
matrix containing the combinations of beamformers ŵb,u and
channels for UE u, cb,u = hHb,uŵb,u, Rb = diag

(
gHb M̂

)
,

rb,l = Re
{
gHb m̂l

}
.

After applying these changes, we define,
P2 : max

Θ
Raccess

w−sum (α) s.t. Θ ∈ D︸ ︷︷ ︸
convex

,Z1 − Z3︸ ︷︷ ︸
nonconvex

,

where Θ = (t,v,p,α,β,κ) with D denoting the feasible
set spanned by the constraints L1 − L7,X1 − X3,C2,C7 −
C10,C12 − C14,C17 − C19. In a similar manner as with
P̃1, we define P̃2, and thereupon its linearized version as
P̃(t)
2 , which can be solved via Algorithm 1. P̃(t)

2 is a SOCP
program with Nv = 2L + 4LBU + LJSBS + LUJUE de-
cision variables, which roughly represent half of that used
in BnC-MISOCP and RnP-SOCP-1 (for the evaluated set-
tings). In addition, P̃(t)

2 has Nl = 3L + 2LU + 3LB +
2LBU + 3LUJUE + LBJSBS linear constraints and Nc =
1+LBU +LUJUE +LBJSBS convex constraints. Thus, the
complexity of RnP-SOCP-2 is O

(
Niter(Nv)

3(Nl +Nc)
)
,

with Niter denoting the number of iterations. Further, we note
that RnP-SOCP-2 exhibits reduced complexity compared to
RnP-SOCP-1.

VIII. SIMULATION RESULTS

We evaluate the performance of RadiOrchestra in different
scenarios with varying conditions. Throughout all simulations,
we consider the following default parameters, unless specified
otherwise. The carrier frequency is fc = 41 GHz (V-band
in FR2) with W access

BW = W backhaul
BW = 100 MHz bandwidth

[36]. The channel models are UMa LOS for the backhaul
and UMi LOS/NLOS for the access [36], which include
path-loss, shadowing and small-scale fading. In the system,
there are L = 5 clusters each having B = 3 SBSs and
U = 20 UEs, thus making a total of Btotal = 15 SBSs
and Utotal = 100 UEs. The MBS has a maximum transmit
power of PMBS

tx = 36 dBm and is equipped with a 16 × 4
antenna array (NMBS

tx = 64) whereas the SBSs can transmit
at a maximum power of P SBS

tx = 14 dBm and have smaller
4× 4 arrays (NSBS

tx = 16). We assume that SBSs can support
up to four UEs (NSBS

streams = 4) simultaneously, and there
are Userved = 4 UEs served concurrently (i.e., in one slot)
in each cluster. Further, all UEs have the same priority, i.e.,
ωu = 1

L∗U and
∑
l∈L

∑
u∈Ul ωu = 1. In Table IV, we show

the parameters for each scenario. The algorithms have been
implemented using CVX and MOSEK on a computer with
16GB RAM and a Intel Core i7-6700 processor.
Scenario S1: Optimality gap and computational com-
plexity. We benchmark the algorithms considering a small
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Table IV: Simulation settings

Scenario Backhaul network Access network
NMBS

tx PMBS
tx [dBm] L B Btotal χbackhaul PSBS

tx [dBm] U Utotal Userved χaccess

S1 64 9, 12, . . . , 27 2 3 6 0 6, 10, 14 6 12 3 0

S2
16, 32, 48, 64 15, 18, . . . , 36 1, 2, . . . , 6 3 3, 6, . . . , 18 0 − − − − −

64 15, 18, . . . , 36 5 1, 2, . . . , 6 5, 10, . . . , 30 0 − − − − −
S3 64 15, 18, . . . , 36 5 3 15 0 0, 2, . . . , 14 20 100 4 0

S4 64 18, 27, 36 2, 3, . . . , 6 3 6, 9, . . . , 18 0 14 20 100 4 0

S5 64 36 5 3 15 [0, 1] 14 20 100 4 [0, 1]

S6 64 36 5 3 15 0 14 20 100 4 (slotted) 0
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(a) Varying PMBS
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Figure 5: Evaluation of Scenario S1. We notice the small performance gap of RnP-SOCP-1 and RnP-SOCP-2 with respect to BnC-MISOCP, which is
reasonable considering that their time complexities are smaller by 3 orders of magnitude. Because CVX needs to parse the mathematical model into a suitable
structure for MOSEK, the results showing time complexity consider the raw solving time while neglecting the parsing time. Besides, we note that UB can
be used for quick benchmarking when the access throughput bottleneck is originated by the backhaul network. In addition, we note that LB is loose as it is
agnostic to the network conditions but provides an idea of the worst-case scenario without solving any problem. It becomes valuable when evaluating cases
wherein the transmit power at the MBS or SBSs are limited as in Fig. 5a because under such conditions the lowest rates will very likely be allocated.

setting, with the purpose of obtaining an optimal solution
for BnC-MISOCP within a reasonable amount of time and
compare its performance against that of RnP-SOCP-1 and
RnP-SOCP-2. Fig. 5a, Fig. 5b, Fig. 5c show the access
throughput with various MBS and SBSs transmit powers. In
particular, RnP-SOCP-1 and RnP-SOCP-2 are 5.1% and
9.7% below BnC-MISOCP when P SBS

tx = 14 dBm (see
Fig. 5c). Also, UB becomes tighter with increasing P SBS

tx ,
e.g., within only 9.6% with respect to BnC-MISOCP in Fig.
5c. This occurs because UB only considers the backhaul
throughput optimization, which depends on PMBS

tx . Thus, as
long as the bottleneck is originated in the access network (due
to low transmit power at the SBSs), UB will not capture such
limitations. With higher P SBS

tx , as shown in Fig. 5c, the access
throughput limitation is removed and is shifted to the backhaul
network, where PMBS

tx is varied from a low to a high transmit
power. As a result, in Fig. 5c the access throughput limitation
is dominated by PMBS

tx , where we recognize a high degree of
similarity between UB and BnC-MISOCP. Therefore, UB can

be used as a tight bound to evaluate the performance of the
system whenever the SBSs can transmit at sufficiently high
power.

On the other hand, Fig. 5d and Fig. 5e provide the time
complexities when P SBS

tx = 14 (as in Fig. 5c) showing that
RnP-SOCP-1 and RnP-SOCP-2 are roughly 1000 and 2000
times computationally faster than BnC-MISOCP, respectively.
Similarly, the time complexity of UB is approximately 100
times lighter than that of BnC-MISOCP. This huge difference
is because the complexity of BnC-MISOCP is combinatorial,
i.e., collapsing to exhaustive search in the worst case. Although
this case may not be reached in practice, BnC-MISOCP
requires to solve multiple convex problems to prune the infea-
sible branches and thus abridge the search process. However,
RnP-SOCP-1 and RnP-SOCP-2 circumvent this issue by
relaxing the binary variables, penalizing them and solving
the problem in the continuous domain, which explains their
reduced complexity. Besides, UB has a small number of
optimization variables compared to BnC-MISOCP, explaining
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(a) Backhaul throughput for varying PMBS
tx , NMBS

tx and L when B = 3.

15 18 21 24 27 30 33 36

123456
0

555.47
1110.94
1666.41
2221.88
2777.35

P
MBS

tx
[dBm]B

B
ac

kh
au

l
th

ro
ug

hp
ut

[M
bp

s]

(b) Backhaul throughput for varying B and NMBS
tx when L = 5.

Figure 6: Evaluation of Scenario S2. We note that UB can be used to evaluate multiple network configurations, thus providing insights of potentially optimal
operations points that can be adopted in the planning phase of the network.

UB LB RnP − SOCP − 1 RnP − SOCP − 2

15 18 21 24 27 30 33 36

400

800

1,200

1,600

2,000

2,400

2,800

PMBS
tx [dBm]

A
cc

es
s

th
ro

ug
hp

ut
[M

bp
s]

(a) Varying PMBS
tx |PSBS

tx = 14 dBm

0 2 4 6 8 10 12 14

400

800

1,200

1,600

2,000

2,400

2,800

PSBS
tx [dBm]

A
cc

es
s

th
ro

ug
hp

ut
[M

bp
s]

(b) Varying PSBS
tx |PMBS

tx = 36 dBm

15

27
36

2
8

14

555.47

1,666.41

2,777.35

P
MBS

tx

[dBm]P SBStx [dBm]

A
cc

es
s

th
ro

ug
hp

ut
[M

bp
s]

(c) Varying PMBS
tx and PSBS

tx

15

27
36

2
8

14

555.47

1,666.41

2,777.35

P
MBS

tx

[dBm]P SBStx [dBm]

A
cc

es
s

th
ro

ug
hp

ut
[M

bp
s]

(d) Varying PMBS
tx and PSBS

tx

RUE
1 RUE

2 RUE
3 RUE

4 RUE
5

0.3

0.6

0.9

Rates

Fr
eq

ue
nc

y

(e) PMBS
tx = 36 dBm | PSBS

tx = 2 dBm

RUE
1 RUE

2 RUE
3 RUE

4 RUE
5

0.3

0.6

0.9

Rates

Fr
eq

ue
nc

y

(f) PMBS
tx = 36 dBm | PSBS

tx = 6 dBm

RUE
1 RUE

2 RUE
3 RUE

4 RUE
5

0.3

0.6

0.9

Rates

Fr
eq

ue
nc

y

(g) PMBS
tx = 36 dBm | PSBS

tx = 10 dBm

RUE
1 RUE

2 RUE
3 RUE

4 RUE
5

0.3

0.6

0.9

Rates

Fr
eq

ue
nc

y

(h) PMBS
tx = 36 dBm | PSBS
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Figure 7: Evaluation of Scenario S3. We note that maximizing the access throughput is highly dependent on both backhaul and access network parameters,
which highlights the importance of jointly optimizing them.

its faster solving time. Note that the time complexities grow
with increasing PMBS

tx because a higher PMBS
tx enables the

allocation of a wider range of rates thus needing more eval-
uations, specially by BnC-MISOCP and UB. Further, Fig. 5f
shows the convergence of RnP-SOCP-1 and RnP-SOCP-2
for 5 different realizations. Here, we measured the error of
the binary variables with respect to their rounded versions and
computed the mean squared error (MSE), showing that after
6 or 7 iterations the error converges to zero, i.e., the relaxed
binary variables values become integer.
Scenario S2: Upper bound as a means of network planning.
Since UB is much simpler to solve than BnC-MISOCP (as
shown in Fig. 5d and Fig. 5e), we can use UB in larger settings
to examine multiple configurations of number of antennas,
transmit power, number of clusters and cluster size. From
the planning perspective, these results are valuable as they
allow us to choose suitable operation points for the network.
In Fig. 6a, we show the backhaul throughput (i.e., the objective
of UB) for various combinations of PMBS

tx , NMBS
tx , L, where

the bottommost and uppermost layers represent L = 1 (one
cluster) and L = 6 (six clusters), respectively. We observe that
the backhaul throughput improves with increasing number of

antennas and transmit power because more antennas enhance
the multiplexing capability while a higher power allows trans-
mitting at higher rates. However, when the number of clusters
grows from L = 5 to L = 6, the throughput saturates showing
marginal improvement because the scenario becomes more
interference limited (due to more SBSs deployed). We realize
that with NMBS

tx = 64 antennas, PMBS
tx = 36 dBm transmit

power and L = 5 clusters, the backhaul network can be
operated at its full capacity. In Fig. 6a, we considered B = 3,
but we validate such decision in Fig. 6b, where we illustrate
the backhaul throughput for various combinations of PMBS

tx

and B when L = 5. We note that the throughput decreases
when the cluster size increases from B = 1 to B = 6 because,
to reach more SBSs, higher MBS power is consumed but also
more interference is generated due to more SBSs scattered.
However, a larger SBS cluster is preferred because (i) more
UEs can be served (each SBS can serve a limited number
of UEs) and (ii) UEs can be allocated higher rates by being
connected to more SBSs. With B = 3, still the maximum
backhaul throughput can be achieved.
Scenario S3: Impact of the transmit power. Fig. 7a, Fig.
7b, Fig. 7c and Fig. 7d illustrate how the variation of transmit
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Figure 8: Evaluation of Scenario S4. We note that the overall access throughput can be expanded with more clusters (i.e., more SBSs and UEs). However, this
improvement may saturate beyond a number of clusters due to more interference or insufficient transmit power.

power at the MBS and SBSs impacts the access network
throughput. Fig. 7a shows the case when P SBS

tx = 14 dBm and
PMBS
tx is varied. As observed, the access throughput improves

as the MBS increases its transmit power, which is logical since
the backhaul capacity is naturally expanded with higher power.
Similarly, Fig. 7b shows the case when PMBS

tx = 36 dBm and
P SBS
tx is varied. We note that the access throughput improves

as the SBSs increase their transmit power. This occurs because
higher SBSs power enables UEs to be assigned higher rates.
We observe in Fig. 7a and Fig. 7b that when PMBS

tx = 36
dBm and P SBS

tx = 14, both RnP-SOCP-1 and RnP-SOCP-2
achieve nearly the same performance although RnP-SOCP-2
grows at a slower rate. This slower improvement stems from
the fact that the beamforming vectors for RnP-SOCP-2 are
predesigned and only their gains can be optimized, thus allow-
ing for less flexibility compared to RnP-SOCP-1. Thus, their
performance meet only in the presence of high MBS/SBSs
transmit power. At this point, the gap compared to UB is
14.8% and 16.5% for RnP-SOCP-1 and RnP-SOCP-2,
respectively. Fig. 7c and Fig. 7d show the effect of varying
both P SBS

tx and PMBS
tx . In Fig. 7e, Fig. 7f, Fig. 7g, Fig. 7h, we

show the allocation of UE rates when PMBS
tx = 36 and P SBS

tx

is varied gradually from a low to a high power. At lower P SBS
tx

as in Fig. 7e, the UEs are mainly assigned the lowest rates. As
P SBS
tx becomes higher, it becomes possible to allocate higher

rates to the UEs, as observed in Fig. 7h.
Scenario S4: Impact of the number of clusters. Fig. 8a, Fig.
8b, Fig. 8c show the access throughput when P SBS

tx = 14 dBm
and the number of clusters is varied from L = 2 to L = 6
for different PMBS

tx values. The access throughput improves
with increasing L because more clusters translates to more
served UEs (there are Userved UEs per cluster), and hence the
higher aggregate rate. Besides, higher PMBS

tx also improves
the access throughput because it boosts the backhaul network
capacity. In particular, we observe throughput saturation when
increasing from L = 5 to L = 6, which is consistent with
the behavior observed in Fig. 6a where the backhaul network
throughput was evaluated. Further, we note that RnP-SOCP-1
outperforms RnP-SOCP-2 when PMBS

tx = {18, 27} dBm.
However, for sufficiently high PMBS

tx = 36 dBm, the per-
formance of both are comparable. Besides, we examine the
UE rate allocation in Fig. 8d, Fig. 8e, Fig. 8f and Fig. 8g
assuming PMBS

tx = 18 dBm, P SBS
tx = 14 dBm. We observe

that when the number of clusters is small, e.g. L = 2 (see
Fig. 8d), the rates assigned to the UEs span a wider range
compared to the case when L = 5 (see Fig. 8g). The reason
for this behavior is that more interference is generated in the
backhaul network with L = 5 than with L = 2. In particular,
with L = 2, only two signals are transmitted whereas with
L = 5, five different signals are sent from the MBS, thus
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(d) Imprecise channels

Figure 9: Evaluation of Scenario S5. We have used the model c =
√

1− χ2ĉ+χp to emulate imprecise channel conditions, where c is the estimated channel,
ĉ is the exact access/backhaul channel (but unknown), χ ∈ [0, 1] is the degree at which the perturbation contaminates the channel, and p ∼

(
0, ∥ĉ∥22 I/K

)

is a random perturbation, where K is the length of ĉ. We note the importance of careful provision of the backhaul network because it is the link with highest
importance delivering data to the UEs. A potential disruption affecting this link causes a degradation of the whole network whereas impairments in the
individual access links do not have a significant impact on the overall network performance. We underline a fundamental difference regarding the impact of
imperfect CSI in system models assuming discrete or continuous rates. While CSI variations affect both systems, it has more detrimental consequences in
the discrete-rate case. For instance, in continuous-rate models, a CSI variation will produce a SINR different from the expected thus also affecting the rate.
However, the resulting rate will still be feasible for the model due to being continuous. On the contrary, in discrete-rate models, if the SINR is below the
required target, the data will not be decoded by the SBS/UE thus causing the resulting rate to drop to zero.
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(a) Serving Userved = 4 UEs per cluster per slot.

T5 T10 T15 T20 T25 T30 T35 T40 T45 T50

400

800

1,200

Time slot (Tn)

C
um

ul
at

iv
e

ac
ce

ss
th

ro
ug

hp
ut

pe
r

U
E

[M
bp

s]

(b) Displaying the individual rates of all UEs in cluster U1.

Figure 10: Evaluation of Scenario S6. We observe that it is possible to serve all UEs in a system by allocating them in multiple slots, showing that RadiOrchestra
is scalable. In addition, the UE rates can be adapted to enforce different priorities based on any network policy of the operator. In this example, we aimed
at improving fairness among UEs.

generating more interference at the receiving SBSs. In Fig.
8h, Fig. 8i, Fig. 8j and Fig. 8k we also examine the UE rates
assuming PMBS

tx = 36 dBm, P SBS
tx = 14 dBm. In this case,

the backhaul network has sufficiently high power. As a result,
throughout Fig. 8h, Fig. 8i, Fig. 8j and Fig. 8k, the distribution
of rates remains more or less similar.
Scenario S5: Impact of imprecise channel estimation. Fig.
9a shows the access throughput when the access channels
are estimated perfectly but the backhaul channels inaccurately.
Here, the channel energy variation is represented by ξbackhaul.
Although backhaul channels are generally static due to fixed
positions of MBS and SBS, it is important to test the network
against estimation errors that may arise due to hardware mis-
calibration or impairments. We observe that as the degree of
error in the backhaul channels increases, the access throughput
is affected more severely due to information that cannot be
decoded by the SBSs and therefore not relayed to the UEs.
Further, RnP-SOCP-1 is more robust than RnP-SOCP-2 to
dealing with such imprecisions because RnP-SOCP-2 only
optimizes the beamformers gains, making it less robust to
perturbations. With RnP-SOCP-1 and RnP-SOCP-2, the
throughput decreases 4.2% and 18.4%, respectively when the
channel energy varies within ξbackhaul = 5%, and 10.1% and
58.5%, respectively when the channel energy varies within

ξbackhaul = 10%. Fig. 9b shows the access throughput when
the access channels are estimated inaccurately but the backhaul
channels perfectly, and the error energy is represented by
ξaccess. The access channel may be inaccurately estimated
due to UE mobility, feedback quantization or unmanaged
interference from other networks.

We note that the access throughput with RnP-SOCP-1
and RnP-SOCP-2 only suffers a decay of 9.9% and 31.6%,
respectively, even when the access channels change within
ξaccess = 40%, which is much less compared to the case in Fig.
9a. The reason for this outcome is that a disruption in an access
link may cause only a single UE not being able to decode
its information (since its SINR may decrease). In contrast, a
disruption in a backhaul link may cause many SBSs in a cluster
to be automatically unsupplied, thus making them unable to
deliver data to the UEs. In addition, the multicast topology of
the backhaul network is more susceptible to channel variations,
since the link with the weakest condition limits the data rate
for the whole SBS cluster. On the other hand, Fig. 9c and
Fig. 9d show the access throughput performance when both
the access and backhaul channels contain estimation errors.
Scenario S6: Time-slotted evaluation. We have evaluated
the access throughput considering that all UEs have the
same priorities. However, the UE priorities (weights) can be
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adjusted, for instance, to balance the cumulative throughput
so that all UEs experience a similar degree of fairness over
time. To realize this, we evaluate the algorithms in a slotted
manner. Assuming L = 5, U = 20, Userved = 4, the network
needs 5 slots to allocate the 100 UEs, i.e., in each slot, 20
UEs are simultaneously served with 4 UEs per cluster. In
Fig. 10a, we show the access throughput for RnP-SOCP-1
and RnP-SOCP-2 during 50 slots of equal duration T =
Tn − Tn−1 and assuming that the channel is estimated every
5 slots, i.e., once all the UEs have been served, a new UE
scheduling with a different channel is considered. In particular,
in every cluster, in time slot T1, 4 UEs out of 20 are chosen;
in slot T2, 4 out of 16 are chosen; in slot T3, 4 out of 12 are
chosen, in slot T4, 4 out of 8, and in slot T5 the remaining
4 UEs are served. In slot T6, the weights are updated based
on the cumulative rate the UEs have experienced according
to w

(n)
u = 1

T
∑n

i=1 r
(i−1)
u

(up to normalization), where r(i)u is
the rate of UE u in slot Ti. In slot T6, another 4 UEs out of
20 are chosen (possibly a different UE batch than in slot T1).
The process continues in this manner, updating the weights
every 5 slots. In Fig. 10b, we show the individual cumulative
throughput for all 20 UEs in cluster U1. We realize that the
throughput experienced by the UEs tend to be similar as the
deviation from each other is small, which is achieved due to
the adaption of weights.

IX. CONCLUSIONS

Self-backhauling millimeter-wave networks are a key en-
abler for dense deployments by virtue of reducing costs (not
needing fiber links) and facilitating higher flexibility through
usage of wireless links. However, designing efficient and
practical solutions for such systems are extremely complex
due to the intertwined nature of backhaul and radio access
networks that are not straightforward to model, and intrin-
sically result in complex problems with coupled optimiza-
tion variables that are challenging to solve. In this paper,
RadiOrchestra demonstrated how to tame this complexity
with a series of design choices in the system, and providing
mathematical formulation and optimization of radio resources.
We proposed three formulations and their respective algo-
rithms, BnC-MISOCP, RnP-SOCP-1 and RnP-SOCP-2, to
jointly optimize beamforming, user association, rate selec-
tion and admission control with the aim of maximizing the
access network throughput. Our complexity analysis showed
that RnP-SOCP-1 and RnP-SOCP-2 are less complex than
BnC-MISOCP while the simulation results illustrated that
their performance remained within 16.5% of the upper bound.
We believe this attractive complexity-performance trade-off
is key to potential adaptation of RadiOrchestra in future
systems. RadiOrchestra can be extended in several directions.
In RadiOrchestra we considered that both the access and
backhaul networks operate over a fixed bandwidth. However,
to make the approach more flexible and therefore capable
of dealing with unbalanced channel conditions, bandwidth
optimization could be incorporated as an additional degree of
freedom. Another direction is expanding RadiOrchestra to
be robust against channel imprecisions at both the access and
backhaul networks to ultimately preserve the integrity of data.

While current networks are centralized, enabling distributed
optimization algorithms is desirable due to lower latency.
Thus, a possible direction of expanding RadiOrchestra is to
parallelize the optimization to let each SBS cluster optimize
the resources without a central coordinator.
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APPENDIX A: PROOF OF PROPOSITION 2
In constraints C̄4 and C5, the beamformer wb,u and binary

variable κb,u are tied. This leads to obtain zero-beamformers
for unserved UEs. To ensure the same effect after removing
the multiplicative coupling between wb,u and κb,u, additional
constraints are required. First, we define the auxiliary variable
pb,u representing the power of the beamformer from SBS b
to UE u, which leads us to declare the following constraint,
C17 : pb,u ≥ 0,∀l ∈ L, b ∈ Bl, u ∈ Ul. Considering,
the newly introduced variable, constraint C̄4 is redefined as
C18 :

∑
u∈Ul pb,u ≤ P SBS

tx ,∀l ∈ L, b ∈ Bl. In addition, the
power pb,u of a beamformer needs to be zero for unserved
UEs and positive for served UEs, which is enforced via
C19 : pb,u ≤ κb,uP

SBS
tx ,∀l ∈ L, b ∈ Bl, u ∈ Ul. To

connect the beamformer wb,u and its power pb,u, we define
∥wb,u∥22 ≤ κb,upb,u, which ensures that the beamformer is a
zero-vector when κb,u = 0. Note that ∥wb,u∥22 ≤ κb,upb,u is
nonconvex but it can be recast as a SOC constraint as shown
in the following. Using the difference of squares, the product
κb,upb,u is equivalent to κb,upb,u =

(κb,u+pb,u)
2−(κb,u−pb,u)2
4 ,

which allows us to rearrange ∥wb,u∥22 ≤ κb,upb,u as a new
constraint C20 :

∥∥∥
[
2wH

b,u, κb,u − pb,u
]∥∥∥

2
≤ κb,u + pb,u,∀l ∈

L, b ∈ Bl, u ∈ Ul. After these changes, wb,u and κb,u have
been decoupled while still guaranteeing the same effect as if
coupled. Thus, the product wb,uκb,u can be replaced by wb,u

upon including C17 − C20. The, constraint C̄21 is obtained
after replacing wb,uκb,u by wb,u in C5.
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C21 :
∑

l′∈L

∑

u′∈Ul′

∣∣∣
∑

b′∈Bl′

hHb′,uwb′,u′

∣∣∣
2

+ σ2
UE ≤

(
1 + ΓUE

j

−1) ∣∣∣
∑

b∈Bl

hHb,uwb,u

∣∣∣
2

+ (1− αu,j)2Q2
u,∀l ∈ L, u ∈ Ul, j ∈ J UE.

C21 − C22 =





C23 :
∥∥[h̄Hu W, σUE

]∥∥
2
≤

√
1 + ΓUE

j
−1

Re
{
hHu wu

}
+ (1− αu,j)Qu,∀l ∈ L, u ∈ Ul, j ∈ J UE,

C24 : Re
{
hHu wu

}
≥ αu,j

√
ΓUE
j σUE,∀l ∈ L, u ∈ Ul, j ∈ J UE,

C25 : Im
{
hHu wu

}
= 0,∀l ∈ L, u ∈ Ul, j ∈ J UE.

APPENDIX B: PROOF OF PROPOSITION 3
We follow a similar procedure as in [20].We

exchange positions between the SINR denominator
and the right-hand side (RHS) of C̄21. Then, we
add

∣∣∑
b∈Bl

hHb,uwb,u

∣∣2 to both sides, thus yielding

C̄21 :
(
1 + αu,j

−1ΓUE
j

−1) ∣∣∣
∑

b∈Bl

hHb,uwb,u

∣∣∣
2

≥
∑

l′∈L

∑

u′∈Ul′

∣∣∣
∑

b′∈Bl′

hHb′,uwb′,u′

∣∣∣
2

+ σ2
UE,∀l ∈ L, u ∈ Ul, j ∈ J UE.

To deal with this nonconvex constraint, we first derive
expressions for its two cases.

1 αu,j = 0⇒
∑

l′∈L

∑

u′∈Ul′

∣∣∣
∑

b′∈Bl′

hHb′,uwb′,u′

∣∣∣
2

+ σ2
UE ≤ ∞,∀l ∈ L, u ∈ Ul, j ∈ J UE,

2 αu,j = 1⇒
∑

l′∈L

∑

u′∈Ul′

∣∣∣
∑

b′∈Bl′

hHb′,uwb′,u′

∣∣∣
2

+ σ2
UE ≤

(
1 + ΓUE

j

−1) ∣∣∣
∑

b∈Bl

hHb,uwb,u

∣∣∣
2

,∀l ∈ L,

u ∈ Ul, j ∈ J UE.

In case 1 , the inequality is satisfied by default. Be-
sides, it is possible to find an upper bound Q2

u for∑
l′∈L

∑
u′∈Ul′

∣∣∑
b′∈Bl′

hHb′,uwb′,u′
∣∣2+σ2

UE to prevent using
∞. By harnessing the big-M method, we can equivalently
combine the two cases into C21, shown at the top of this page.
The upper bound Q2

u = P SBS
tx

∑
l′∈L

∑
b′∈Bl′

∥hb′,u∥22 + σ2
UE

is obtained by maximizing the LHS of C21.
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Assuming that x =
[
h̄Hu W, σUE

]
, constraint C21 can be

expressed as

∥x∥22 ≤
(
1 + ΓUE

j

−1) ∣∣hHu wu

∣∣2

+ (1− αu,j)2Q2
u,∀l ∈ L, u ∈ Ul, j ∈ J UE.

Taking the square root at both sides and applying the
Jensen’s inequality to the RHS expression, we obtain√(

1 + ΓUE
j
−1) |hHu wu|2 + (1− αu,j)2Q2

u ≤√
1 + ΓUE

j
−1 ∣∣hHu wu

∣∣+ (1− αu,j)Qu.
When αu,j = 1, the inequality is tight, because the RHS and

LHS of the expression above become equivalent, i.e., ∥x∥2 ≤√
1 + ΓUE

j
−1 ∣∣hHu wu

∣∣. When αu,j = 0, the inequality still

remains valid, i.e. ∥x∥2 ≤
√

1 + ΓUE
j
−1 ∣∣hHu wu

∣∣ + Qu,
because Qu is an upper bound for ∥x∥2. As a result, the

following expression is equivalent to C21

∥x∥2 ≤
√

1 + ΓUE
j
−1 ∣∣hHu wu

∣∣
+ (1− αu,j)Qu,∀l ∈ L, u ∈ Ul, j ∈ J UE.

Notice that the beamforming vectors are invariant to phase
shift. In particular, wu and wue

jθu yield the same received
SINR at the UE u. Thus, it is possible to choose a phase ejθu
such that hHu wu becomes purely real and nonnnegative [48,
ch. 18]. Therefore, the following holds

∥x∥2 ≤
√

1 + ΓUE
j
−1 ∣∣hHu wu

∣∣+ (1− αu,j)Qu ≜



∥x∥2 ≤
√
1 + ΓUE

j
−1

Re
{
hHu wu

}
+ (1− αu,j)Qu,

Re
{
hHu wu

}
≥ 0,

Im
{
hHu wu

}
= 0.

Similarly, constraint C22 can be expressed as

αu,j

√
ΓUE
j σUE ≤

∣∣hHu wu

∣∣ ≜





αu,j

√
ΓUE
j σUE ≤ Re

{
hHu wu

}

Re
{
hHu wu

}
≥ 0,

Im
{
hHu wu

}
= 0.

Combining the results above, constraints C21 − C22 are
remodeled as C23 − C25, shown at the top of this page.

APPENDIX D: PROOF OF PROPOSITION 6
Note that

∣∣gHb ml

∣∣ ≥ Re
{
gHb ml

}
always holds true.

The inequality becomes tight when the phase of gHb ml is
zero [37], [49]. This is, in general, not true unless there is
a single SBS per cluster. Using this conservative relation,
we replace C15 − C16 by C26 − C27, which are defined as

C26 :
∥∥gHb M

∥∥2
2
+ σ2

SBS ≤
(
1 + ΓSBS

j

−1)
Re

{
gHb ml

}2

+ (1− βl,j)2Q2
b ,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

C27 : βl,jΓ
SBS
j σ2

SBS ≤ Re
{
gHb ml

}2
,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

where Q2
b = PMBS

tx ∥gb∥22+σ2
SBS. However, these inequalities

can be recast as the following convex SOC constraints

C26 :
∥∥[gHb M, σSBS

]∥∥
2
≤

√
1 + ΓSBS

j
−1

Re
{
gHb ml

}

+ (1− βl,j)Qb,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

C27 : βl,j

√
ΓSBS
j σSBS ≤ Re

{
gHb ml

}
,∀l ∈ L, b ∈ Bl, j ∈ J SBS,

where the Jensen’s inequality has been applied to C26.
APPENDIX E: PROOF OF PROPOSITION 8

We define the Lagrange dual function of P1 as
ϕ (λα, λβ , λκ) = maxΘ∈D L (α,β,κ, λα, λβ , λκ), where
L (α,β,κ, λα, λβ , λκ) = Raccess

w−sum (α) − λαfα (α) −
λβfβ (β)− λκfκ (κ). In addition, we define

primal : p∗ = max
Θ∈D

min
λα,λβ ,λκ≥0

L (α,β,κ, λα, λβ , λκ)

= max (P1).
dual : d∗ = min

λα,λβ ,λκ≥0
max
Θ∈D

L (α,β,κ, λα, λβ , λκ)
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= min
λα,λβ ,λκ≥0

ϕ (λα, λβ , λκ) .

According to the weak duality theorem, the following holds
p∗ ≤ min

λα,λβ ,λκ≥0
ϕ (λα, λβ , λκ) . (E.1)

Note that fα (α) ≥ 0, fβ (β) ≥ 0, fκ (κ) ≥ 0, for Θ ∈ D .
Thus, the Lagrangian L (α,β,κ, λα, λβ , λκ) is monotonically
decreasing with respect to λα, λβ , λκ when Θ ∈ D . Further,
this means that ϕ (λα, λβ , λκ) is monotonically decreasing
with respect to λα, λβ , λκ and is bounded by the optimal
value of P1. We distinguish the following two cases.

Case 1: Suppose that fα (α0) = 0, fβ (β0) = 0, fκ (κ0) =
0 for some λα0

< ∞, λβ0
< ∞, λκ0

< ∞, implying
that α0, β0, κ0 are binary. Therefore, α0, β0, κ0 are also
feasible to P1. Replacing this solution in the primal problem,
we obtain L (α0,β0,κ0, λα0

, λβ0
, λκ0

) = Raccess
w−sum (α0) ≤

p∗. Now, considering the dual problem and (E.1), we have
that ϕ (λα0

, λβ0
, λκ0

) = L (α0,β0,κ0, λα0
, λβ0

, λκ0
) =

Raccess
w−sum (α0) ≥ p∗, which implies that p∗ = d∗, i.e. strong

duality holds. Based on the previous result, we realize that
ϕ (λα0

, λβ0
, λκ0

) = min
λα,λβ ,λκ≥0

ϕ (λα, λβ , λκ) ,

ϕ (λα, λβ , λκ) = p∗,∀λα ≥ λα0 ,∀λβ ≥ λβ0 ,∀λκ ≥ λκ0 ,

which means that for any λα, λβ , λκ, such that λα0
< λα <

∞, λβ0
< λβ < ∞, λκ0

< λκ < ∞, problems P1 and P̃1

share the same optimal value an optimal solution. Thus, P1

can be solved by means of P̃1 for appropriately chosen large
values of λα, λβ , λκ.

Case 2: Suppose that fα (α0) > 0, fβ (β0) > 0, fκ (κ0) >
0, for λα0

> 0, λβ0
> 0, λκ0

> 0, implying that some
elements of α0, β0, κ0 take values between 0 and 1. From
the dual problem, we have that ϕ (λα0 , λβ0 , λκ0) → −∞.
However, this contradicts the weak duality theorem, which
states that ϕ (λα, λβ , λκ) is bounded from below by the primal
solution, which is at worst zero. Thus, this case is not valid.
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Note that qα (α), qβ (β), qκ (κ) are concave. Therefore,

their first-order approximations q̃(t)α (α), q̃(t)β (β), q̃(t)κ (κ) sat-
isfy qα (α) ≤ q̃

(t)
α (α), qβ (β) ≤ q̃

(t)
β (β), qκ (κ) ≤ q̃

(t)
κ (κ).

Now, we define
g1 (α,β,κ) ≜ Raccess

w−sum (α)− λαpα (α)− λβpβ (β)
− λκpκ (κ) ,

g2 (α,β,κ) ≜ λαqα (α) + λβqβ (β) + λκqκ (κ) ,
g̃
(t)
2 (α,β,κ) ≜ λαq̃

(t)
α (α) + λβ q̃

(t)
β (β) + λκq̃

(t)
κ (κ) .

Considering the expressions above, the objective function
of P̃1 can be rewritten as R (α,β,κ) = g1 (α,β,κ) −
g2 (α,β,κ) whereas the objective of P̃(t)

1 can be rewrit-
ten as R̃(t) (α,β,κ) = g1 (α,β,κ) − g̃

(t)
2 (α,β,κ). Since

g2 (α,β,κ) ≤ g̃
(t)
2 (α,β,κ) then R̃(t) (α,β,κ) is a lower

bound for the objective of P̃1, i.e. R̃(t) (α,β,κ) ≤
R (α,β,κ). Further, the equality holds when α = α(t−1),
β = β(t−1), κ = κ(t−1) showing the bound tightness.
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Realize that Θ(t−1) is a feasible point for P̃(t)
1

whereas Θ(t) is its optimal solution. For iteration
t, we have that R (α,β,κ) ≥ R̃(t) (α,β,κ) and

R
(
α(t−1),β(t−1),κ(t−1)

)
= R̃(t)

(
α(t−1),β(t−1),κ(t−1)

)
.

Using these relations,

R
(
α(t),β(t),κ(t)

)
≥ R̃(t)

(
α(t),β(t),κ(t)

)

≥ R̃(t)
(
α(t−1),β(t−1),κ(t−1)

)
,

= R
(
α(t−1),β(t−1),κ(t−1)

)
,

which shows that
(
α(t),β(t),κ(t)

)
is more optimal

for P1 than
(
α(t−1),β(t−1),κ(t−1)

)
. Further,

R
(
α(t),β(t),κ(t)

)
≥ R

(
α(t−1),β(t−1),κ(t−1)

)
implies

that
(
M(t),W(t),p(t)

)
is equally or more optimal for P1

than
(
M(t−1),W(t−1),p(t−1)) due to linkage with C20,

C23 − C24. Thus, Θ(t) =
(
M(t),W(t),p(t),α(t),β(t),κ(t)

)

is more befitting for P1 than Θ(t−1). As a result, the
sequence of points

{
Θ(t)

}
constitutes a sequence of

enhanced points for P1. In addition,
{
Θ(t)

}
is bounded

because R̃(t) (α,β,κ) is upper-bounded by R (α,β,κ),
and R (α,β,κ) is upper-bounded by the multicast
rate, which is ultimately constrained by the maximum
transmit power from the MBS. By Cauchy’s theorem,
there must exist a convergent subsequence

{
Θ(tn)

}
such that

lim
n→∞

[
R
(
α(tn),β(tn),κ(tn)

)
−R (α⋆,β⋆,κ⋆)

]
= 0, (G.1)

where Θ⋆ = (M⋆,W⋆,p⋆,α⋆,β⋆,κ⋆) is a limit point
for

{
Θ(tn)

}
. Thus, for each iteration t, there exists

some n such that tn ≤ t ≤ tn+1. From (G.1) we obtain

ϵ(tn) = lim
n→∞

[
R
(
α(tn),β(tn),κ(tn)

)
−R (α⋆,β⋆,κ⋆)

]
= 0,

ϵ(tn+1) = lim
n→∞

[
R
(
α(tn+1),β(tn+1),κ(tn+1)

)
−R (α⋆,β⋆,κ⋆)

]
= 0,

ϵ(t) = lim
n→∞

[
R
(
α(t),β(t),κ(t)

)
−R (α⋆,β⋆,κ⋆)

]
,

showing that ϵ(tn) ≤ ϵ(t) ≤ ϵ(tn+1) and
limt→∞R

(
α(t),β(t),κ(t)

)
= R (α⋆,β⋆,κ⋆). Therefore,

each accumulation point Θ⋆ = (M⋆,W⋆,p⋆,α⋆,β⋆,κ⋆) is
a KKT point [32], [50].
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Radio Resource Management Design for RSMA:
Optimization of Beamforming, User Admission, and

Discrete/Continuous Rates with Imperfect SIC
Luis F. Abanto-Leon†, Aravindh Krishnamoorthy‡, Andres Garcia-Saavedra§, Gek Hong Sim†,

Robert Schober‡, and Matthias Hollick†
†Secure Mobile Networking Lab, Technische Universität Darmstadt, Germany

‡Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany §NEC Laboratories Europe, Germany

Abstract—This paper investigates the radio resource management (RRM) design for multiuser rate-splitting multiple access (RSMA),
accounting for various characteristics of practical wireless systems, such as the use of discrete rates, the inability to serve all users,
and the imperfect successive interference cancellation (SIC). Specifically, failure to consider these characteristics in RRM design may
lead to inefficient use of radio resources. Therefore, we formulate the RRM of RSMA as optimization problems to maximize
respectively the weighted sum rate (WSR) and weighted energy efficiency (WEE), and jointly optimize the beamforming, user
admission, discrete/continuous rates, accounting for imperfect SIC, which result in nonconvex mixed-integer nonlinear programs that
are challenging to solve. Despite the difficulty of the optimization problems, we develop algorithms that can find high-quality solutions.
We show via simulations that carefully accounting for the aforementioned characteristics, can lead to significant gains. Precisely, by
considering that transmission rates are discrete, the transmit power can be utilized more intelligently, allocating just enough power to
guarantee a given discrete rate. Additionally, we reveal that user admission plays a crucial role in RSMA, enabling additional gains
compared to random admission by facilitating the servicing of selected users with mutually beneficial channel characteristics.
Furthermore, provisioning for possibly imperfect SIC makes RSMA more robust and reliable.

Index Terms—Beamforming, user admission, discrete rates, rate splitting, imperfect SIC, spectral efficiency, energy efficiency.

✦

1 INTRODUCTION
Rate-splitting multiple access (RSMA) has emerged as

a promising technology capable of outperforming non-
orthogonal multiple access (NOMA) and space-division
multiple access (SDMA), owing to its superior ability to cope
with multiuser interference [1]–[3]. To date, several studies
have demonstrated in various use cases [4] the higher capa-
bilities of RSMA compared to SDMA and NOMA, thus po-
sitioning RSMA as a formidable multiple access candidate
with enormous potential to meet the stringent connectivity
requirements of next-generation wireless communications
systems [5]. A key element to ensure high RSMA perfor-
mance is the radio resource management (RRM) design.
The RRM for RSMA systems has focused chiefly on the
beamforming and power allocation design, which have been
investigated for a plethora of use cases and for different
design goals, such as fairness, sum secrecy rate (SSR), sum
rate (SR), weighted SR (WSR), and weighted energy effi-
ciency (WEE) maximization. For instance, the authors of
[6] studied the beamforming design for WSR maximization
in joint radar and communications, whereas the authors
of [7] developed cooperative beamforming strategies to
maximize the WSR in visible light communications. Also,
the authors of [8], [9] investigated the beamforming de-
sign for WSR maximization in non-orthogonal unicast and
multicast (NOUM) systems. The beamforming design for
rate fairness maximization in cooperative relaying networks
was investigated in [10]. Driven by the same goal, the joint
design of beamforming and the phase shifts of an intelligent
reflecting surface was studied in [11]. Beamforming and
artificial noise design for maximization of the secrecy rate

fairness was investigated in [12]. Besides, the beamforming
design for WEE maximization in unmanned aerial vehicle
networks was studied in [13]. The authors of [14], [15]
investigated the beamforming design for maximization of
respectively the WSR and WEE, whereas the authors of [16]
designed the beamforming for simultaneous WSR and WEE
maximization. Power allocation was investigated for SR,
SSR, and rate fairness maximization in [17]–[19], [20], and
[21], respectively. The body of work on beamforming and
power allocation design of RSMA continues to grow and
show promising results. However, the literature has failed to
investigate several critical characteristics of practical wire-
less systems, i.e., rate discretization, user admission, and
imperfect successive interference cancellation (SIC).

Concerning the first characteristic, most of the literature,
assumed continuous rates modeled by Shannon’s capacity
formula, e.g., [1]–[4], [6], [7], [11]–[21]. This assumption con-
trasts with the predominant use of discrete rates in practical
wireless systems and raises questions as to whether RSMA’s
gains will remain valid when discrete rates are accounted
for. Transmission rates in wireless systems are determined
by the choice of a modulation and coding scheme (MCS),
as specified by 3GPP [22], leading to a finite set of discrete
rates. Employing Shannon’s capacity formula is mathemat-
ically more tractable than assuming discrete rates, hence
its wide adoption. However, it renders continuous-valued
rate upper bounds that cannot be achieved in practice. A
naive solution to this problem is to project the continuous
rates onto the discrete domain, i.e., round them to the
closest feasible discrete rate [23]. However, this may lead
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to performance degradation. Therefore, rate discretization
must be properly accounted for in the RRM design to exploit
the full potential of RSMA. An early study in [24] investi-
gated the impact of beamforming and discrete rates on the
SR of RSMA, and showed that RSMA outperforms SDMA
for discrete rates. However, the proposed design does not
consider predefined MCSs, since the authors assumed con-
tinuous rates and customized the MCSs to achieve a SR close
to the ensemble average, obtained over multiple channel
realizations. A few works investigated the impact of beam-
forming and discrete rates on the performance of SDMA.
For instance, joint beamforming and discrete rate allocation
design was investigated in [25], [26] for SR maximization
and in [27] for WSR maximization. However, these results
are not applicable to RSMA, since RSMA is a more general
framework that includes SDMA as a special case.

Concerning the second characteristic, access policies in
wireless systems typically restrict the number of users
served per time slot, e.g., due to the availability of a limited
number of radio frequency chains. This characteristic is
especially limiting for SDMA, which requires one RF chain
per served user. In contrast, RSMA can support more users
than RF chains are available since RSMA can exploit the
multicast signal to aggregate information for several users.
However, in this case, RSMA degrades severely as the
number of users increases since the multicast signal must
be delivered to all supported users. This condition becomes
a limitation in RSMA and raises the need for selective user
admission. The impact of user admission on performance
has not yet been studied for RSMA, but has been studied
for SDMA and NOMA. For instance, the joint beamforming
and user admission design for SDMA was investigated in
[28] to minimize the transmit power, and in [29] to maximize
the SR and rate fairness. The authors of [30] developed
joint beamforming and user admission strategies for SDMA
to maximize the number of users served. Driven by the
same goal, the authors of [31] designed the power and
subchannel allocation for NOMA. Besides, the joint design
of beamforming, user admission, and discrete rate allocation
for SR maximization of SDMA was investigated in [32].
However, the solutions developed in the preceding studies
are not valid for RSMA. Specifically, user admission for
RSMA differs significantly from that for SDMA and NOMA,
as RSMA delivers information to users via superimposed
multicast and unicast precoders. Unicast precoders benefit
from users with uncorrelated channels because interference
is easier to mitigate, whereas the multicast precoder benefits
from users with correlated channels as this facilitates trans-
mitting shared information. Therefore, given these conflict-
ing objectives, it is important to include the user admission
in the RRM design of RSMA.

Finally, as the last key characteristic, it is important to
account for imperfect SIC. Specifically, the performance of
RSMA is highly dependent on the success of SIC. In practice,
SIC is generally not perfect, which causes unmanaged self-
interference that can compromise performance. Despite the
importance of accounting for imperfect SIC in the RRM
design of RSMA, SIC has been assumed to be perfect in
most of the RSMA literature, with few exceptions. For
instance, the authors of [33] investigated the beamforming
and subcarrier allocation design for SR maximization taking

into account imperfect SIC. However, the proposed design
assumed continuous rates and did not consider user ad-
mission. The impact of imperfect SIC on the SR of RSMA
was investigated in [34], where the authors derived bounds
for power allocation but did not take user admission and
discrete rates into account. Besides, NOMA can also be
affected by imperfect SIC and, therefore, a number of works
have investigated its impact in this context. In particular, for
NOMA, the impact of imperfect SIC and power allocation
was studied in [35]–[37] for SR maximization, and in [38] for
EE maximization.

Motivated by the above discussion, we expect that the
performance of RSMA systems can be significantly im-
proved if the aforementioned characteristics are accounted
for. Thus, we propose to account for discrete rates, user
admission, and imperfect SIC during RRM design in order
to maximize the performance of RSMA in practical systems.
To the best of the authors’ knowledge, RRM design for
RSMA systems considering these characteristics has not
been investigated yet. Due to the widespread adoption
of Shannon’s capacity formula for RRM design, we also
investigate the integration of continuous rates, user admis-
sion, and imperfect SIC, which has also not been studied
before for RSMA systems. We adopt the maximization of
the WSR and WEE as design objectives. This paper makes
the following contributions:

• We formulate two novel RRM problems to maximize
respectively the WSR and WEE of RSMA by jointly opti-
mizing the beamforming, user admission, and private and
common discrete rates, while accounting for imperfect
SIC. The resulting WSR and WEE problems, denoted by
P ′DWSR and P ′DWEE in Section 3.1, are nonconvex mixed-
integer nonlinear programs (MINLPs) and are difficult to
solve. In addition, we formulate problems Q′CWSR and
Q′CWEE in Section 4.1, which represent the continuous-
rate counterparts of P ′DWSR and P ′DWEE, and are also
nonconvex MINLPs.

• In Section 3.2, we propose an optimal mixed-integer
second-order cone program (OPT-MISOCP) algorithm,
which tackles the nonconvexities of P ′DWSR and P ′DWEE

through a series of convex transformations. Specifically,
instead of treating P ′DWSR and P ′DWEE as general non-
convex MINLPs, OPT-MISOCP approximates P ′DWSR and
P ′DWEE as convex MINLPs PDWSR and PDWEE, respec-
tively, which can be solved in a globally optimal manner.
However, circumventing the nonconvexities of P ′DWSR

and P ′DWEE poses the risk of shrinking their feasible set,
possibly resulting in a loss of optimality. Therefore, we
derive an upper bound to evaluate the corresponding loss
in performance and show via simulations that the globally
optimal solutions for PDWSR and PDWEE result in near-
optimal solutions for P ′DWSR and P ′DWEE with negligible
degradation. In addition, the proposed OPT-MISOCP al-
gorithm features customized cutting planes that reduce
the runtime by a factor of 3 − 20 without impacting
performance.

• In Section 4.2, we solve Q′CWSR and Q′CWEE based
on binary enumeration and convex transformations. In
particular, we employ enumeration to list all possible
user admission combinations, thus resulting in multiple
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subproblems. To solve each subproblem, we devise an
optimal successive convex approximation with semidef-
inite relaxation (OPT-SCA-SDR) algorithm, which finds a
Karush-Kuhn-Tucker (KKT) point. In addition, to comply
with the finite set of discrete rates, the continuous rates
obtained by OPT-SCA-SDR are projected, i.e., rounded to
the closest feasible discrete rates.

• Our simulations show that RSMA designed for discrete
rates achieves gains of up to 89.7% (WSR) and 21.5%
(WEE) compared to projecting continuous rates. Also, user
admission proves crucial for RSMA as it yields additional
gains of up to 15.3% (WSR) and 11.4% (WEE) compared
to random user admission when discrete rates are consid-
ered. Furthermore, accounting for imperfect SIC prevents
severe performance degradation by mitigating the impact
of self-interference. Overall, our simulation results reveal
that accounting for characteristics of practical wireless
systems in RRM of RSMA leads to improved exploitation
of the radio resources, and therefore to higher spectral
efficiency (SE) and energy efficiency (EE).
The remainder of this paper is organized as follows.

In Section 2, we present the system model. In Section 3,
considering discrete rates, we formulate and solve the RRM
as optimization problems for maximization of the WSR and
WEE, respectively, while in Section 4, we do the same for
continuous rates. Simulation results are presented in Section
5. Finally, we summarize our conclusions in Section 6.

Notation: In this paper, |a| and the ∥a∥2 represent the
absolute value of scalar a and the ℓ2-norm of vector a,
respectively. AT, AH, Rank (A), Tr (A), and Re {A} and
Im {A} denote the transpose, Hermitian transpose, rank,
trace, and real and imaginary part of matrix A, respectively.
A ≽ 0 indicates that A is a positive semidefinite matrix.
CN×M denotes the space of N ×M complex-valued matri-
ces. I is the identity matrix, j ≜

√
−1 is the imaginary unit,

and E {·} denotes statistical expectation.

2 SYSTEM MODEL
In this section, we present the system model for the

considered RRM optimization problems.

2.0.1 System Architecture: We consider the downlink cellu-
lar system shown in Fig. 1a, where a base station (BS) is
equipped with an antenna array with Ntx elements, which
can consume a maximum transmit power of Pmax

tx . There
are U single-antenna user equipments (UEs), and the BS
admits only K UEs, where K ≤ U . We index the UEs
with the elements of set U , such that |U| = U . The UEs
are distributed within a 120◦ sector and are located at a
maximum distance DBS from the BS. The BS estimates the
channel state information (CSI) using uplink pilots exploit-
ing channel reciprocity. The RRM optimizer at the BS uses
the CSI and other system parameters, such as the maximum
transmit power, to maximize the WSR or WEE.

2.0.2 RSMA Principle: In this section, we revisit the RSMA
principle excluding the UE admission phase for ease of
presentation. As shown in Fig. 1b, every UE has a corre-
sponding message denoted by W̃u, u ∈ U , but only K UEs
out of U are served. Thus, we assume that K UEs are pre-
selected for downlink transmission, and denote this set of
UEs by U ′, such that |U ′| = K , and by UEu the u-th UE in

BS
UE

Admitted ⇒ K UEs

Non-admitted: ⇒ U − K UEs
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(b) RSMA with integrated RRM optimizer
Figure 1: System model and RSMA with integrated RRM optimizer. In
the system, K out of U UEs are admitted for downlink transmission.
The message for the admitted UEs is precoded via rate splitting and
transmitted over the air.

U ′. Now, every UE in U ′ is served with a message denoted
by Wu, u ∈ U ′, which is decomposed into two parts as
Wu ≜

(
W

(p)
u ,W

(c)
u

)
, where W (p)

u and W (c)
u are respectively

referred to as the private and common portions of Wu. The
private portion of UEu is encoded into a symbol su ∈ C
that is transmitted at a rate R(p)

u in an unicast manner. On
the other hand, the common portions W (c)

u of all UEs are
combined and encoded into a symbol s0 ∈ C, which is trans-
mitted at a rate R(c) in a multicast manner to all UEs. The
symbols are assumed to be statistically independent, such
that E

{
sHs

}
= I and s = [s0, s1, . . . , sK ]

T ∈ C(K+1)×1. The
rate portion of R(c) corresponding to UEu is denoted by Cu,
such that R(c) =

∑
u Cu. As a result, UEu is served with

an overall rate of R(p)
u + Cu. Every UE recovers W (c)

u and
W

(p)
u after decoding s0 and su, respectively, which allows

to reassemble message Wu. In addition, each UEu acquires
the common parts W (c)

i ̸=u, corresponding to the other UEs,
which are used for interference decoding and cancellation.
Thus, by adjusting the partitioning ratio of the common and
private portions, W (p)

u and W
(c)
u , of the messages, RSMA

can seamlessly bridge the two extremes of fully treating
interference as noise and fully decoding it [3].

2.0.3 Discrete and Continuous Rates: Practical wireless sys-
tems, as defined, e.g., in cellular standards, support only
a finite set of data rates [22, p. 64]. These predefined rates
are identified by their channel quality indicator (CQI) and
correspond to specific MCSs. For each rate, a target SINR is
required to ensure a given block error rate (BLER) [39]. The
rates and MCSs are typically standardized, e.g., by 3GPP.
However, the target SINRs are specific to the equipment
in use. We denote with J the total number of available
MCSs supported by the system and with J = {1, . . . , J}
the set that indexes them. Hence, for a given discrete rate
Rj , j ∈ J , there is a corresponding target SINR Γj that
must be met to guarantee that rate. In addition, we as-
sume that J is an ordered set, such that Rj+1 > Rj and
Γj+1 > Γj . Thus, if an UE achieves an SINR of Γ, the BS can
allocate any discrete rate Rdis ≜

{
Rj | Γj ≤ Γ, j ∈ J

}
to

the UE. On the contrary, when Shannon’s capacity formula
is used for rate allocation, the BS assigns continuous rate
Rcon ≜ log2

(
1 + Γ

)
.
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3 PROBLEM FORMULATION AND PROPOSED AL-
GORITHM FOR DISCRETE-RATE RSMA

In this section, we formulate and solve the WSR and WEE
maximization problems to optimize the beamforming, user
admission, and discrete rates for imperfect SIC. For ease of
presentation, we summarize the most important parameters
and decision variables in Table 1.

Table 1: Parameters and decision variables of the considered system.
Parameters and Decision Variables Notation

Number of antennas at the BS Ntx
Number of UEs U
Number of admitted UEs K
Number of discrete rates J
Channel between the BS and UEu hu

Noise power σ2

Weight of UEu ωu
Dynamic power consumption of the circuitry Pdyn
Static power consumption of the circuitry Psta
Conversion efficiency of the power amplifier ηeff
Common rate of UEu Cu
Private precoder for UEu wu
Common precoder for all admitted UEs m
Binary variable for private rate selection αu,j
Binary variable for common rate selection κj
Binary variable for UE admission χu
Binary variable for private precoder design µu
Binary variable for common precoder design ψ

3.1 Problem Formulation
We consider two objectives, namely, WSR and WEE max-

imization, and define the corresponding optimization prob-
lems P ′DWSR and P ′DWEE, shown at the bottom of this page.
Specifically, ωu is the weight associated with UEu, which can
be set by the network operator, e.g., to improve rate fairness.
Besides, we define W = [w1, . . . ,wU ], c = [C1, . . . , CU ],
χ = [χ1, . . . , χU ], µ = [µ1, . . . , µU ], α = [α1,1, . . . , αU,J ],
and κ = [κ1, . . . , κJ ]. In addition, ηeff represents the am-
plifier efficiency and Pcir = NtxPdyn + Psta is the power
consumed by the circuitry at the BS, where Pdyn and Psta

denote the dynamic and static parts, respectively [16]. Next,
we discuss the constraints of the above optimization prob-
lems.

3.1.1 User admission: To indicate whether a given UEu is
admitted, we introduce constraint C1 : χu ∈ {0, 1} ,∀u ∈ U ,
i.e., χu = 1 indicates that the BS serves UEu, and χu = 0
otherwise. Further, we have C2 :

∑
u∈U χu = K as the

number of admitted UEs is K . An admitted UE can receive

its message via the common signal only, the private signal
only, or both. To indicate whether an admitted UEu is
served via the private signal, we introduce C3 : µu ∈
{0, 1} ,∀u ∈ U , i.e., µu = 1 indicates that UEu is served via
the private signal, and µu = 0 otherwise. We also include
C4 : µu ≤ χu,∀u ∈ U , to ensure that non-admitted UEs
are not served by a private signal. Naturally, non-admitted
UEs are also not served by the common signal but this
is handled by constraint C12, discussed in Section 3.1.5.
Lastly, we introduce C5 : ψ ∈ {0, 1} to denote whether
the common signal is used.

3.1.2 Beamforming: The BS employs a private precoder
wuµu ∈ CNtx×1 to precode symbol su, and a common
precoder mψ ∈ CNtx×1 to precode symbol s0. The private
precoder is 0 when UEu is not admitted. Thus, the downlink
signal of the BS is given by x =

∑
u∈U wuµusu +mψs0. To

account for the transmit power limitation of the BS, the pre-
coders must satisfy C6 :

∑
u∈U ∥wuµu∥22 + ∥mψ∥22 ≤ Pmax

tx .

3.1.3 Imperfect SIC: The signal received by UEu is ex-
pressed as yu = hH

ux+ ηu, which is equivalent to
yu = hH

umψs0︸ ︷︷ ︸
common signal

y(c)u

+hH
uwuµusu︸ ︷︷ ︸

private signal
y(p)u

+
∑
i ̸=u h

H
uwiµisi︸ ︷︷ ︸

interference
y(int)u

+ ηu︸︷︷︸
noise

,

(1)

where y
(c)
u is the received common signal, y(p)u is the

received private signal, and y
(int)
u is the interference at

UEu. Further, ηu ∼ CN
(
0, σ2

)
denotes additive white

Gaussian noise, and hu ∈ CNtx×1 represents the channel
between the BS and UEu. An admitted UEu utilizes SIC
in order to recover its message from yu. Specifically, UEu
decodes first the common symbol s0 by treating signals
y
(p)
u and y(int)u as noise. Next, UEu reconstructs the received

common signal y(c)u and subtracts it from yu, yielding
ySICu = y

(p)
u + y

(int)
u + ηu, based on which it decodes its

private symbol su. However, removal of y(c)u is not perfect
in practice, which can be caused, e.g., by hardware impair-
ments [34], [35]. Therefore, the signal after imperfect SIC
can be expressed as yiSICu = ∆SICy

(c)
u + y

(p)
u + y

(int)
u + ηu,

P ′DWSRP ′DWEE
: max
W,m,c,χ,µ,α,κ,ψ




fDWSR (c,α) ≜

∑
u∈U ωu

(∑
j∈J αu,jRj + Cu

)

fDWEE (W,m, c,µ,α, ψ) ≜
∑

u∈U ωu(
∑

j∈J αu,jRj+Cu)
1

ηeff
(
∑

u∈U∥wuµu∥22+∥mψ∥22)+Pcir

(linear)
(nonconvex)

s.t. C1 : χu ∈ {0, 1} ,∀u ∈ U , (binary)
C2 :

∑
u∈U χu = K, (linear)

C3 : µu ∈ {0, 1} ,∀u ∈ U , (binary)
C4 : µu ≤ χu,∀u ∈ U , (linear)
C5 : ψ ∈ {0, 1} , (binary)
C6 :

∑
u∈U ∥wuµu∥22 + ∥mψ∥22 ≤ Pmax

tx , (nonconvex)
C7 : αu,j ∈ {0, 1} ,∀u ∈ U , j ∈ J , (binary)
C8 :

∑
j∈J αu,j = µu,∀u ∈ U , (linear)

C9 : SINR(p)
u ≥∑

j∈J αu,jΓj ,∀u ∈ U , (nonconvex)
C10 : κj ∈ {0, 1} ,∀j ∈ J , (binary)
C11 :

∑
j∈J κj = ψ, (linear)

C12 : SINR(c)
u ≥ χu

∑
j∈J κjΓj ,∀u ∈ U , (nonconvex)

C13 : Cu ≥ 0,∀u ∈ U , (linear)
C14 : Cu ≤ χu

∑
j∈J κjRj ,∀u ∈ U , (nonconvex)

C15 :
∑
u∈U Cu =

∑
j∈J κjRj , (linear)

C16 :
∑
j∈J αu,jRj + Cu ≥ Rminχu,∀u ∈ U , (linear)
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where 0 ≤ ∆SIC ≤ 1 is the percentage of the com-
mon signal that is not canceled, i.e., ∆SIC = 0 implies
perfect SIC. As a result, the SINRs of the common and

private signals at UEu are SINR(c)
u =

|hH
umψ|2∑

i∈U |hH
uwiµi|2+σ2

and SINR(p)
u =

|hH
uwuµu|2

|∆SIChH
umψ|2+∑

i̸=u|hH
uwiµi|2+σ2 , respectively.

The exact value of ∆SIC is usually not known by the BS.
Therefore, it must be set properly to avoid performance
degradation, and thus guarantee the target SINRs that en-
able the allocated rates. Typical values for ∆SIC are in the
range of 4% and 10% [35].

3.1.4 Rate selection for the private signals: An UEu receiving
a private signal at a rate Rj , can only decode the message if
SINR(p)

u ≥ Γj , where Γj is the target SINR that guarantees
Rj (for numerical values, see Table 2 in Section 5). To depict
the assignment of private rates, we introduce constraint
C7 : αu,j ∈ {0, 1} ,∀u ∈ U , j ∈ J , where αu,j = 1 indicates
that UEu is served by a private signal transmitted at rate
Rj . In addition, we include C8 :

∑
j∈J αu,j = µu,∀u ∈ U ,

to ensure that a rate is allocated to UEu, if it is served
by the private signal. Further, to associate the discrete
rates and their corresponding target SINRs, we include
C9 : SINR(p)

u ≥ ∑
j∈J αu,jΓj ,∀u ∈ U , which ensures for

UEu a private rate of
∑
j∈J αu,jRj if µu = 1. Note that

µu = 0 does not indicate that UEu is not admitted since
UEu can also be served by the common signal if Cu > 0.

3.1.5 Rate selection for the common signal: An admitted UEu
can only decode the common message transmitted at rate
Rj , if SINR(c)

u ≥ Γj . To this end, we introduce constraint
C10 : κj ∈ {0, 1}, j ∈ J , where κj = 1 indicates that rateRj
is selected. We include C11 :

∑
j∈J κj = ψ to allow for the

possibility that the common rate is zero (see constraint C5).
To unify user admission and the allocation of the common
rate, we add C12 : SINR(c)

u ≥ χu
∑
j∈J κjΓj ,∀u ∈ U , which

results in the common rate
∑
j∈J κjRj for all admitted

UEs. Although the rate portions Cu are not continuous,
they have very fine granularity because rate splitting is
capable of dividing the messages Wu into portions of any
size. Thus, we treat Cu as continuous-valued by adding
C13 : Cu ≥ 0,∀u ∈ U . To keep consistency with user
admission, we include C14 : Cu ≤ χu

∑
j∈J κjRj ,∀u ∈ U ,

to enforce Cu = 0 for non-admitted UEs or when the com-
mon rate is zero (see constraints C5,C11). Moreover, we add
C15 :

∑
u Cu =

∑
j∈J κjRj to guarantee that the sum of all

common portions Cu is equal to the overall common rate.
Finally, we enforce a minimum rate Rmin per admitted UE
by including constraint C16 :

∑
j∈J αu,jRj+Cu ≥ Rminχu.

REMARK 1: Problems P ′DWSR and P ′DWEE are nonconvex
MINLPs, which are challenging to solve. Specifically, the noncon-
vexity is due to constraints C6, C9, C12, C14 and the objective
function fDWEE (W,m, c,µ,α, ψ), which contain quotients
of quadratic functions and multiplicative couplings. Further, a
simple strategy to obtain the SDMA versions of P ′DWSR and
P ′DWEE is to set ψ = 0 because RSMA includes SDMA as a
special case.
3.2 Proposed Algorithm

We propose the OPT-MISOCP algorithm to solve the non-
convex MINLPs P ′DWSR and P ′DWEE. Instead of treating
P ′DWSR and P ′DWEE as general nonconvex MINLPs, we

propose a sequence of transformations to overcome the non-
convexities, thereby transforming the nonconvex MINLPs
P ′DWSR and P ′DWEE to the convex MISOCPs PDWSR and
PDWEE, respectively, whose global optima can be found
using branch-and-bound (BnB) and interior-point methods
(IPMs). Specifically, BnB is used for decomposing the binary
variables of the MISOCP, whereas IPMs are used for solving
the underlying SOCPs. In the following, we describe the
proposed algorithm for P ′DWSR and then we extend it to
P ′DWEE.

3.2.1 Circumventing Integer Multiplicative Couplings: To
cope with the multiplicative coupling between binary vari-
ables in constraints C12, C14, appearing in the form of χuκj ,
we transform such products into the intersection of linear
combinations. We introduce new variables πu,j = χuκj ,
and equivalently rewrite constraints C12, C14 as constraints
D1−D6, shown at the top of the next page (cf. Appendix A).

3.2.2 Circumventing Mixed-Integer Multiplicative Couplings:
To deal with the mixed-integer multiplicative couplings in
constraints C6, C9, D5, appearing in the form of wuµu
and mψ, we reformulate such products as linear relations
without altering the nature of the problem. Thus, constraints
C6,C9,D5 are equivalently rewritten as constraints E1−E5,
shown at the top of the next page (cf. Appendix B).

3.2.3 Circumventing Integer Additive Couplings: The addi-
tive couplings of binary variables in E4, E5, which appear in
the form

∑
j∈J αu,jΓj and

∑
j∈J πu,jΓj , pose a difficulty

for subsequent convexification since multiple binary vari-
ables and their corresponding target SINRs are combined.
However, since the couplings are linear and sum to at most
one, we can handle them by expanding them into several
constraints (i.e., as multiple choice constraints), such that
each of the resulting constraints depends on one binary
variable only. Thus, constraints E4, E5 are equivalently
recast as F1, F2, shown at the top of the next page (cf.
Appendix C).

3.2.4 Reformulating the SINR Constraints via the Big-M
Method: To deal with the disjunctiveness caused by
the binary variables, which lead to different SINR re-
quirements for the admitted and non-admitted UEs,
in F1, F2, we merge these two cases into a sin-
gle one via the Big-M method. Thus, by defin-
ing Wu = [∆SICm,w1, . . . ,wu−1,wu+1, . . . ,wU ] and
L2
max,u = ∥hu∥22 Pmax

tx + σ2, we recast constraints F1, F2 as
G1,G2, shown at the top of the next page (cf. Appendix D).

3.2.5 Convexifying the Private SINR Constraints: Although
constraint G1 is nonconvex due to being a difference of con-
vex (DC) functions, it can be convexified without changing
its feasible set. In fact, constraint G1 can be expressed as H1,
H2, H3, shown at the top of the next page (cf. Appendix E).

3.2.6 Convexifying the Common SINR Constraints: The non-
convex constraint G2 can be replaced by the inner convex
approximations I1, I2, shown at the top of the next page,
which may shrink the original feasible set (cf. Appendix F).

3.2.7 Adding Cutting Planes to Tighten the Feasible Domain:
To reduce the search complexity caused by BnB branching
for the binary variables, we add problem-specific cutting
planes, which do not impact optimality (cf. Appendix G).
We add cuts J1 to tighten the feasible set, which can help
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C12,C14 ⇔





D1 : πu,j ∈ {0, 1} ,∀u ∈ U , j ∈ J , (binary)

D2 : πu,j ≤ χu,∀u ∈ U , j ∈ J , D3 : πu,j ≤ κj ,∀u ∈ U , j ∈ J , (linear)

D4 : πu,j ≥ χu + κj − 1,∀u ∈ U , j ∈ J , (linear)

D5 :
|hH

umψ|2∑
i∈U |hH

uwiµi|2+σ2 ≥
∑
j∈J πu,jΓj ,∀u ∈ U , (nonconvex)

D6 : Cu ≤
∑
j∈J πu,jRj ,∀u ∈ U . (linear)

C6,C9,D5 ⇔





E1 : ∥wu∥22 ≤ µuPmax
tx ,∀u ∈ U , E2 : ∥m∥22 ≤ ψPmax

tx , E3 :
∑
u∈U ∥wu∥22 + ∥m∥

2
2 ≤ Pmax

tx , (convex)

E4 :
|hH

uwu|2
∆2

SIC|hH
um|2+∑

i̸=u,i∈U |hH
uwi|2+σ2 ≥

∑
j∈J αu,jΓj ,∀u ∈ U , (nonconvex)

E5 :
|hH

um|2∑
i∈U |hH

uwi|2+σ2 ≥
∑
j∈J πu,jΓj ,∀u ∈ U . (nonconvex)

E4,E4 ⇔





F1 :
|hH

uwu|2
∆2

SIC|hH
um|2+∑

i̸=u,i∈U |hH
uwi|2+σ2 ≥ αu,jΓj ,∀u ∈ U , j ∈ J , (nonconvex)

F2 :
|hH

um|2∑
i∈U |hH

uwi|2+σ2 ≥ πu,jΓj ,∀u ∈ U , j ∈ J . (nonconvex)

F1,F2 ⇔




G1 :

∥∥[hH
uWu, σ

]∥∥2
2
≤ 1

Γj

∣∣hH
uwu

∣∣2 + (1− αu,j)L2
max,u,∀u ∈ U , j ∈ J , (nonconvex)

G2 :
∥∥[hH

uW, σ
]∥∥2

2
≤ 1

Γj

∣∣hH
um

∣∣2 + (1− πu,j)L2
max,u,∀u ∈ U , j ∈ J . (nonconvex)

G1 ⇔




H1 : Re

{
hH
uwu

}
≥ 0,∀u ∈ U , H2 : Im

{
hH
uwu

}
= 0,∀u ∈ U , (linear)

H3 :
∥∥[hH

uWu, σ
]∥∥

2
≤ 1√

Γj

Re
{
hH
uwu

}
+ (1− αu,j)Lmax,u,∀u ∈ U , j ∈ J . (convex)

G2 ⇔




I1 : Re

{
hH
um

}
≥ 0,∀u ∈ U , (linear)

I2 :
∥∥[hH

uW, σ
]∥∥

2
≤ 1√

Γj

Re
{
hH
um

}
+ (1− πu,j)Lmax,u,∀u ∈ U , j ∈ J . (convex)

accelerating the optimization. In addition, we include J2
as an upper bound of the sum-rate, which facilitates early
stopping:

J1 : Re
{
hH
uwu

}
≥ σ

∑

j∈J
αu,j

√
Γj ,∀u ∈ U , (linear)

J2 :
∑

u∈U

( ∑

j∈J
αu,jRj + Cu

)
≤ (K + 1)RJ . (linear)

REMARK 2: In our simulations, a remarkable improvement in
runtime was observed with the addition of J1 and J2, which
accelerated the optimization 3 − 20 times compared to the case
without them.

3.2.8 Outlining the Algorithm and Its Extension to Solve
P ′DWEE: Recapitulating the results above, problem P ′DWSR

is recast as
PDWSR : max

Θ
fDWSR (c,α) s.t.Θ ∈ C,

where Θ = (W,m, c,χ,µ,α,κ,π, ψ) and C is the
feasible set of Θ defined by C1 − C5,C7,C8,C10,C11,
C13,C15,C16,D1 − D4,D6,E1 − E3,H1 − H3, I1, I2, J1, J2.
Analogous to P ′DWSR, we recast problem P ′DWEE as

PDWEE : min
Θ

1
ηeff

(∑
u∈U ∥wu∥22 + ∥m∥

2
2

)
+ Pcir

∑
u∈U ωu

(∑
j∈J αu,jRj + Cu

) s.t.Θ ∈ C,

where we have transformed the maximization of
fDWEE (W,m, c,µ,α, ψ) into the minimization of its re-
ciprocal 1

fDWEE(W,m,c,µ,α,ψ) . In addition, we have removed
the mixed-integer couplings from the objective function, as
described in Section 3.2.2. As a result, the objective function
of PDWEE is convex. Note that PDWSR and PDWEE are
MISOCPs, which can be solved globally optimal via BnB
and IPMs with off-the-shelf solvers, such as MOSEK and
GUROBI, as the problems are convex in the continuous
variables.

REMARK 3: Due to the inner convexification of the feasible sets
of P ′DWSR (P ′DWEE) in Section 3.2.6, a globally optimal solution
for PDWSR (PDWEE) is feasible for P ′DWSR (P ′DWEE) but not
necessarily globally optimal for P ′DWSR (P ′DWEE). However, such
solution is found to be near-optimal for P ′DWSR (P ′DWEE), as
shown in Section 5.1, where we compare PDWSR against an upper
bound of P ′DWSR, showing a negligible performance loss.

3.2.9 Computational Complexity: Problems PDWSR and
PDWEE involve Nv = (U +1)Ntx +U continuous variables
and Nc = 5UJ + 7U + 4 linear and convex constraints. The
dimension of the underlying SOCP is Nd = 2JNtxU

2 +
U2 + 3UJ + 7U + 2UNtx + 2Ntx for fixed values of the
binary variables. Therefore, the complexities of problems
PDWSR and PDWEE is O

(
NpN

0.5
c N2

vNd
)
, where Np is the

number of solutions evaluated by the BnB solver. The worst-
case for Np is given by Nall

p = JU +
∑K
k=0

(U
k

)
Jk+1. In

practice, Np ≪ Nall
p since BnB methods are capable of

pruning infeasible and suboptimal branches, thus reducing
the search complexity.

4 PROBLEM FORMULATION AND PROPOSED AL-
GORITHM FOR CONTINUOUS-RATE RSMA

In this section, we formulate and solve the WSR and
WEE maximization problems for RSMA to optimize the
beamforming, user admission, and continuous rates, while
accounting for imperfect SIC.
4.1 Problem Formulation

We consider again WSR and WEE maximization as objec-
tives, as in Section 3.1. Thus, we define the corresponding
optimization problems Q′CWSR and Q′CWEE, shown at the
top of the next page. To account for continuous rates, we
have applied the following changes to problems P ′DWSR

and P ′DWEE in Section 3.1. First, we have eliminated binary
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Q′CWSRQ′CWEE
: max
W,m,c,χ,ψ




f ′CWSR (W,m, c) ≜

∑
u∈U ωu

(
log2

(
1 + SINR(p)

u

)
+ Cu

)

f ′CWEE (W,m, c) ≜
∑

u∈U ωu(log2(1+SINR(p)
u )+Cu)

1
ηeff

(
∑

u∈U∥wuχu∥22+∥mψ∥22)+Pcir

(nonconvex)
(nonconvex)

s.t. C1 : χu ∈ {0, 1} ,∀u ∈ U , (binary)
C2 :

∑
u∈U χu = K, (linear)

C5 : ψ ∈ {0, 1} , (binary)
C6 :

∑
u∈U ∥wuχu∥22 + ∥mψ∥22 ≤ Pmax

tx , (nonconvex)
C13 : Cu ≥ 0,∀u ∈ U , (linear)
C17 : Cu ≤ ψχuSmax,∀u ∈ U , (linear)
C18 :

∑
i∈U Ci ≤ log2

(
1 + SINR(c)

u

)
+ (1− χu)Smax,∀u ∈ U , (nonconvex)

C19 : log2
(
1 + SINR(p)

u

)
+ Cu ≥ Rminχu,∀u ∈ U . (nonconvex)

QCWSRn
: max
W,m,c

fCWSRn
(W,m, c) (nonconvex)

s.t. C6 :
∑
u∈U ′

n
∥wu∥22 + ∥m∥

2
2 ≤ Pmax

tx , (convex)
C13 : Cu ≥ 0,∀u ∈ U ′n, (linear)

C18 :
∑
i∈U ′

n
Ci ≤ log2

(
1 +

|hH
um|2∑

i∈U′
n
|hH

uwi|2+σ2

)
,∀u ∈ U ′n, (nonconvex)

C19 : log2

(
1 +

|hH
uwu|2

∆2
SIC|hH

um|2+∑
i̸=u,i∈U′

n
|hH

uwi|2+σ2

)
+ Cu ≥ Rmin,∀u ∈ U ′n, (nonconvex)

C20 : ∥m∥22 ≤ ψ0P
max
tx , (convex)

variables α,κ used for discrete rate selection. Second, we
have reduced the number of binary variables by dropping
µ and only use χ since µ = χ, as rates are continuous.
Hence, we could remove constraints C3,C4,C7 − C12 and
employ Shannon’s capacity formula to redefine constraints
C14,C15,C16. Specifically, we have replaced constraint C14

with C17 : Cu ≤ ψχuSmax,∀u ∈ U , and constraint C15 with
C18 :

∑
i∈U Ci ≤ log2

(
1+SINR(c)

u

)
+(1−χu)Smax,∀u ∈ U ,

where Smax = maxu∈U log2
(
1 +

Pmax
tx

σ2

∥∥hu
∥∥2
2

)
is an upper

bound for the common rate. Note that C18 is tighter when
χu = 1, and therefore the sum of the common rates is
bounded by the minimum common rate of all admitted
UEs. Finally, we have replaced C16 with C19 : log2

(
1 +

SINR(p)
u

)
+ Cu ≥ Rminχu,∀u ∈ U , and also redefined

the objective functions using Shannon’s capacity formula as
f ′CWSR (W,m, c) ≜

∑
u∈U ωu

(
log2

(
1+SINR(p)

u

)
+Cu

)
and

f ′CWEE (W,m, c) ≜
∑

u∈U ωu(log2(1+SINR(p)
u )+Cu)

1
ηeff

(
∑

u∈U∥wuχu∥22+∥mψ∥22)+Pcir
.

REMARK 4: Problems Q′CWSR, Q′CWEE are nonconvex
MINLPs, and compared to P ′CWSR, P ′CWEE, they assume con-
tinuous rates. In addition, their structure is more complex than
that of P ′CWSR, P ′CWEE, as they involve multiplicative couplings
of continuous variables, which were not present in P ′CWSR,
P ′CWEE.
4.2 Proposed Algorithm

To solve Q′CWSR and Q′CWEE, we leverage successive
convex approximation (SCA), semidefinite relaxation (SDR),
and binary enumeration. In particular, we enumerate all
combinations of admitted UEs and then solve the under-
lying nonconvex subproblem for each combination via the
proposed OPT-SCA-SDR algorithm, which finds a KKT
point by exploiting SCA and SDR. In the following, we
describe the proposed algorithm by consideringQ′CWSR and
then we extend it to Q′CWEE.

4.2.1 Enumerating the Binary Variables: Let N be the
total number of combinations of admitted UEs and
N = {1, . . . , N} the set collecting them. Consider-

ing a given combination n ∈ N , problem Q′CWSR

reduces to QCWSRn , shown at the top of this page.
In particular, fCWSRn (W,m, c) ≜

∑
u∈U ′

n
ωu

(
log2

(
1 +

|hH
uwu|2

∆2
SIC|hH

um|2+∑
i̸=u,i∈U′

n
|hH

uwi|2+σ2

)
+ Cu

)
, and U ′n ⊆ U de-

notes the set of admitted UEs in combination n, such that
µu = 1, ∀u ∈ U ′n and |U ′n| = K . For notational simplicity, we
reset the UE indices in U ′n, such that U ′n = {1, . . . ,K}. Here,
constraint C20 is included to eliminate the coupling mψ0 in
an analogous manner as in Section 3.2.2 for constraint E1.
We have not included C17 because it is implied by C18,C20

when ψ0 is given. We adopt ψ0 = 1 for RSMA and ψ0 = 0
for SDMA.

4.2.2 Transforming the Problem via Sublevel and Super-
level Sets: We introduce nonnegative variables γ ∈
RK+ ,ρ ∈ RK+ ,λ ∈ RK+ , τ ∈ RK+ , and β ∈ R+ to
define sublevel and superlevel sets, thereby transform-
ing problem QCWSRn into Q̃CWSRn . In Appendix H,
we show that QCWSRn

and Q̃CWSRn
are equivalent.

Specifically, we bound the private SINRs from below via
|hH

uwu|2
∆2

SIC|hH
um|2+∑

i̸=u,i∈U′
n
|hH

uwi|2+σ2 ≥ γu − 1. Also, we bound

the interference at each UE from above by including
∆2

SIC

∣∣hH
um

∣∣2 + ∑
i̸=u,i∈U ′

n

∣∣hH
uwi

∣∣2 + σ2 ≤ ρu. Following

the same idea, we include |hH
um|2∑

i∈U′
n
|hH

uwi|2+σ2 ≥ τu − 1 and
∑
i∈U ′

n

∣∣hH
uwi

∣∣2 + σ2 ≤ λu to bound the common SINRs
and the interference. Furthermore, we bound the objective
function from below, such that fCWSRn

(W,m, c) ≥ β,
thus defining a new objective function fCWSRn

(β) ≜ β.
Upon applying these transformations toQCWSRn

, we obtain
problem Q̃CWSRn , shown at the top of the next page.

4.2.3 Leveraging Semidefinite Programming: By employ-
ing semidefinite programming and introducing positive
semidefinite variables Wu ∈ CNtx×Ntx and M ∈ CNtx×Ntx ,
which replace wuw

H
u and mmH, respectively, constraints

C6, C20, K1, K2, K4, K5 can be equivalently reformulated to
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Q̃CWSRn : max
W,m,c,γ,ρ,λ,τ ,β

fCWSRn (β) ≜ β

s.t. K1 :
∣∣∣hH
uwu

∣∣∣
2
≥ (γu − 1) ρu,∀u ∈ U ′n, (nonconvex)

K2 : ∆2
SIC

∣∣∣hH
um

∣∣∣
2
+

∑
i ̸=u,i∈U ′

n

∣∣hH
uwi

∣∣2 + σ2 ≤ ρu,∀u ∈ U ′n, (convex)

K3 : β −∑
u∈U ′

n
ωu (log2 (γu) + Cu) ≤ 0, (convex)

K4 :
∣∣∣hH
um

∣∣∣
2
≥ (τu − 1)λu,∀u ∈ U ′n, (nonconvex)

K5 :
∑
i∈U ′

n

∣∣hH
uwi

∣∣2 + σ2 ≤ λu,∀u ∈ U ′n, (convex)
K6 :

∑
i∈U ′

n
Ci − log2 (τu) ≤ 0,∀u ∈ U ′n, (convex)

K7 : Rmin − log2 (γu)− Cu ≤ 0,∀u ∈ U ′n, (convex)
K8 : β ≥ 0, (linear)

C6,C13,C20.

C6,C20,K1,K2,K4,K5 ⇔





L1 :
∑
u∈U ′

n
Tr (Wu) + Tr (M) ≤ Pmax

tx , L2 : Tr (M) ≤ ψ0P
max
tx , (linear)

L3 : (γu − 1) ρu − hH
uWuhu ≤ 0,∀u ∈ U ′n, (nonconvex)

L4 : ∆2
SICh

H
uMhu +

∑
i̸=u,i∈U ′

n
hH
uWihu + σ2 ≤ ρu,∀u ∈ U ′n, (linear)

L5 : (τu − 1)λu − hH
uMhu ≤ 0,∀u ∈ U ′n, (nonconvex)

L6 :
∑
i∈U ′

n
hH
uWihu + σ2 ≤ λu,∀u ∈ U ′n, (linear)

L7 : Wu ≽ 0,∀u ∈ U ′n, (linear)

L8 : M ≽ 0, (linear)

L9 : Rank (Wu) ≤ 1,∀u ∈ U ′n, L10 : Rank (M) ≤ ψ0. (nonconvex)

L3,L5 ⇔





M1 :
Ω̄

(t)
1,u

2 γ2u +
1

2Ω̄
(t)
1,u

ρ2u − ρu − hH
uWuhu ≤ 0,∀u ∈ U ′n, (convex)

M2 :
Ω̄

(t)
2,u

2 τ2u + 1

2Ω̄
(t)
2,u

λ2u − λu − hH
uMhu ≤ 0,∀u ∈ U ′n, (convex)

L9,L10 ⇔
{
M3 : ζ0I−T

(t)
0

H
MT

(t)
0 ≽ 0, M4 : ζuI−T

(t)
u

H
WuT

(t)
u ≽ 0,∀u ∈ U ′n, (convex)

L1 − L10, shown at the top of the next page. In doing so,
the nonconvexity of constraints K1,K4 are circumvented
in part as the quadratic terms on the left-hand side are
linearized. The newly introduced variables also affect con-
straints K2,K5, C6,C20. The positive semidefiniteness of
Wu and M are specified by L7, L8, whereas L9,L10 allow
for the private and common signals to be used or not. Con-
sidering the equivalence between C6,C20,K1,K2,K4,K5

and L1 − L10, we define problem
Q̂CWSRn

: max
Ŵ,M,c,γ,ρ,λ,τ ,β

fCWSRn
(β)

s.t. C13,K3,K6 −K8,L1 − L10,

where Ŵ = (W1, . . . ,WK). We note that Q̂CWSRn is
equivalent to Q̃CWSRn

and QCWSRn
since the feasible set

and objective function are not affected by the applied trans-
formation of the constraints.

4.2.4 Addressing the Nonconvex Constraints: To cope with
the nonconvex constraints L3,L5,L9,L10, we adopt an iter-
ative approach whereby we sequentially approximate these
constraints by convex approximations.
•Quasi-convex constraints: To circumvent the quasi-convex

constraints L3,L5, we replace them with the inner convex
approximations M1,M3, shown at the top of this page,
where t is the iteration index, and Ω̄

(t)
1,u, Ω̄

(t)
2,u, u ∈ U ′n,

are parameters adapted iteratively. In recasting L3,L5 as
M1,M2, we have employed the arithmetic-geometric mean
inequality, which states that ab ≤ a2

2 + b2

2 for a, b ∈ R+.
By introducing a new parameter Φ ∈ R+ and applying
transformations a ←

√
Φa and b ←

√
1
Φb, we obtain

inequality ab ≤ Φ
2 a

2 + 1
2Φb

2, which becomes tight when
Φ = b

a [40]. Note that Φ
2 a

2 + 1
2Φb

2 is a convex overes-
timate of ab, which decouples a and b, allowing to cir-
cumvent the nonconvexity of the product ab. Exploiting
this observation, we introduce parameter Ω̄

(t)
1,u and apply

the parameterized inequality to the product γuρu in L3,

such that γuρu ≤ Ω̄
(t)
1,u

2 γ2u + 1

2Ω̄
(t)
1,u

ρ2u. We proceed in a

similar manner with constraint L5 by introducing Ω
(t)
2,u,

which yields τuλu ≤ Ω̄
(t)
2,u

2 τ2u + 1

2Ω̄
(t)
2,u

λ2u. Next, we replace

products γuρu and τuλu with their respective convex over-

estimates,
Ω̄

(t)
1,u

2 γ2u + 1

2Ω̄
(t)
1,u

ρ2u and
Ω̄

(t)
2,u

2 τ2u + 1

2Ω̄
(t)
2,u

λ2u, thus

yielding M1,M2. In each iteration t, we update the pa-
rameters according to Ω̄

(t)
1,u =

ρ(t−1)
u

γ
(t−1)
u

and Ω̄
(t)
2,u =

λ(t−1)
u

τ
(t−1)
u

making it possible to sequentially adapt the convex approx-
imation. Upon replacing L3,L5 with M1,M2 in problem
Q̂CWSRn , and then solving it, an optimal solution to this
modified problem will be feasible for Q̂CWSRn

, Q̃CWSRn
,

andQCWSRn
since the feasible set of M1,M2 is contained in

that of L3,L5. However, the solution will not necessarily be
globally optimal for Q̂CWSRn

, Q̃CWSRn
, and QCWSRn

due
to the possible reduction of the feasible set caused by the
inner convexification in M1,M2.
• Rank constraints: In order to cope with rank constraints

L9,L10, we adopt the iterative method proposed in [41],
which is described as follows. We first reformulate L9,
L10 as M3, M4, shown at the top of this page. Then, we
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Rproj
u,n =

{
Rj | j = argmin

i∈J
SINR(p)

u,n − Γi,SINR
(p)
u,n ≥ Γi

}
(2)

Cproj
u,n =

{
Cu,n∑

u∈U ′
n
Cu,n

Rj | j = argmin
i∈J

{
min
u∈U ′

n

SINR(c)
u,n

}
− Γi,

{
min
u∈U ′

n

SINR(c)
u,n

}
≥ Γi

}
(3)

penalize the objective function by adding cost function∑
u∈U ′

n∪{0} p
(t)
u ζu, which promotes rank minimization and

enforces M and Wu to have rank at most one, as shown in
Appendix I. The ζu, ∀u ∈ U ′n ∪ {0}, are slack variables and
p
(t)
u ∈ R+, ∀u ∈ U ′n ∪ {0}, represent the penalty weights

in iteration t. Matrices M(t−1) and W
(t−1)
u are the respec-

tive solutions for M and Wu, obtained in iteration t − 1.
Also, T(t)

0 ∈ CNtx×(Ntx−1) is formed by the eigenvectors
of the Ntx − 1 smallest eigenvalues of M(t−1), whereas
T

(t)
u ∈ CNtx×(Ntx−1) is formed by the eigenvectors of the

Ntx − 1 smallest eigenvalues of W(t−1)
u .

4.2.5 Outlining the Algorithm and Its Extension to Solve
Q′CWEE: The transformation of constraints L3,L5,L9,L10

into M1 −M4, leads to the following problem
Q̄(t)

CWSRn
: max
Ŵ,M,c,γ,ρ,

λ,τ ,ζ,β

fCWSRn (β)−∑
u∈U ′

n∪{0} p
(t)
u ζu

s.t. C13,K3,K6 −K8,L1,L2,
L4,L6 − L8,M1 −M4.

On the other hand, to solve Q′CWEE, we introduce the
following problem
Q̄(t)

CWEEn
: max
Ŵ,M,c,γ,ρ,
λ,τ ,ζ,β,θ,δ

fCWEEn
(θ)−∑

u∈U ′
n∪{0} p

(t)
u ζu

s.t. C13,K3,K6 −K8,L1,L2,L4,
L6 − L8,M1 −M4,N1 −N3,

where we employed the same procedure as described in
Section 4.2.1 to Section 4.2.4. Compared to Q̄(t)

CWSRn
, prob-

lem Q̄(t)
CWEEn

features variables θ and δ, convex constraints

N1 :
∑
u∈U ′

n
Tr (Wu) + Tr (M) ≤ ηeffδ, N2 :

Ω̄
(t)
3

2 θ2 +
1

2Ω̄
(t)
3

δ2 + θPcir ≤ β and N3 : θ ≥ 0, and parameter Ω̄
(t)
3 .

In particular, θ is used to bound the objective function
fCWEEn

(W,m, c) from below. Variable δ is used to bound
the transmit power efficiency from above, thereby yielding
constraint N1. The introduction of δ and θ in the objective
function leads to a multiplicative coupling θδ, which is dealt
with in the same manner as in Section 4.2.4, yielding N2.
Also, N3 is added to ensure the positiveness of the objective
function. Parameter Ω̄(t)

3 is updated as Ω̄(t)
3 = δ(t−1)

θ(t−1) and the
objective function is penalized by

∑
u∈U ′

n∪{0} p
(t)
u ζu.

Problems Q̄(t)
CWSRn

and Q̄(t)
CWEEn

are convex and can
be solved optimally via IPMs. Both are solved iteratively,
improving the objective function in each iteration until a
stop criterion is met, i.e., the difference of the objective
function values between successive iterations is less than
a threshold ϵ or the number of iterations exceeds Niter.
In Appendix J, we show that Q̄(t)

CWSRn
and Q̄(t)

CWEEn
con-

verges to a KKT point. Also, by increasing the penalty
weights p(t)u , variables ζu decrease in each iteration, leading
to ζu → 0 and

∑
u∈U ′

n∪{0} p
(t)
u ζu → 0. This causes M

and Wu to have at most rank one, since the Ntx − 1

smallest eigenvalues of these matrices are progressively
squeezed to zero. Assuming that Q̄(t)

CWSRn
converge in

iteration t⋆, we have that M ≈ M(t⋆−1), where M is
the solution in iteration t⋆. Via eigendecomposition of
M, we have M = R̃0Σ0R̃

H
0 , such that R̃0R̃

H
0 = I,

Σ0 = diag (σ0,1, . . . , σ0,Ntx
), and R̃0 = [r0|R0]. Therefore,

T
(t⋆)
0

H
MT

(t⋆)
0 = T

(t⋆)
0

H
[r0|R0]Σ0 [r0|R0]

H
T

(t⋆)
0 , which

can be further reduced to T
(t⋆)
0

H
MT

(t⋆)
0 = [0|I]Σ0 [0|I]H =

diag (σ0,2, . . . , σ0,Ntx
), since T

(t⋆)
0

H
r0 ≈ 0 and T

(t⋆)
0

H
R0 ≈

I. Considering these outcomes and M3, we obtain ζ0I ≽
diag (σ0,2, . . . , σ0,Ntx

), which leads to σ0,2, . . . , σ0,Ntx
→ 0

as ζ0 → 0. Because σ0,1 is not affected by this procedure,
σ0,1 can be different from zero or even zero, i.e., M can
be at most rank-one. Following the same reasoning, we

can obtain equivalent results for T(t⋆)
u

H
WuT

(t⋆)
u , ∀u ∈ U ′n.

The solutions that satisfy L9,L10 are recovered via eigen-
decomposition of M and Wu, i.e., m =

√
σ0,1r0 and

wu =
√
σu,1ru, where σu,1 and ru are the largest eigenvalue

and principal eigenvector of Wu, respectively. The same
analysis can be applied to Q̄(t)

CWEEn
as the constraints are

the same.

4.2.6 Projecting the Continuous Rates: Due to the use of
Shannon’s capacity formula, the rates obtained by solving
Q̄(t)

CWSRn
and Q̄(t)

CWEEn
are continuous. To meet the MCS

specifications, these rates are projected, i.e., approximated
to the closest feasible discrete rates. Thus, the best solution
with projected rates is given by fprojCWSR (W,m, c) ≜
maxn∈N

∑
u∈U ′

n
ωu

(
Rproj
u,n + Cproj

u,n

)
and

fprojCWEE (W,m, c) ≜ maxn∈N
∑

u∈U ωu(log2(1+SINR(p)
u,n)+Cu,n)

1
ηeff

(
∑

u∈U∥wu,n∥22+∥mn∥22)+Pcir
,

where Rproj
u,n and Cproj

u,n are defined in (2) and (3), shown
at the top of this page, whereas Rj , Γj were introduced
in Section 2. In particular, SINR

(p)
u,n and SINR

(c)
u,n are

respectively the highest discrete private and common
SINRs that can be achieved by UEu in U ′n, which are
mapped to their respective discrete rates Rproj

u,n and Cproj
u,n .

Besides, Cu,n, wu,n, and mn are the common rate portion
of UEu, the private precoder of UEu, and the common
precoder of the n-th combination U ′n, respectively. After
evaluating all N combinations of admitted UEs, we pick
the combination that achieves the highest objective function
value.

4.2.7 Computational Complexity: The computational com-
plexities of solving QCWSR and QCWEE are similar, which
is given by O

(
NqN

0.5
c N2

vNd
)
, where Nq = 2

(K
U

)
is the total

number of combinations of admitted UEs, Nc = 9K + 6
is the total number of constraints, Nv = 2KNtx + 9Ntx +
2K + 11 is the number of decision variables, and Nd =
N2

txK
3 +N2

txK
2 + 5KN2

tx +K3 + 3N2
tx +K2 + 2K + 1 is

the dimension of the SDP program.
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Table 2: Rates and target SINRs for various CQIs.
CQI (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modulation QPSK 16QAM 64QAM
Coding rate 0.0762 0.1172 0.1885 0.3008 0.4385 0.5879 0.3691 0.4785 0.6016 0.4551 0.5537 0.6504 0.7539 0.8525 0.9258

Rate (Rj) [bps/Hz] 0.1523 0.2344 0.3770 0.6016 0.8770 1.1758 1.4766 1.9141 2.4063 2.7305 3.3223 3.9023 4.5234 5.1152 5.5547
Target SINR (Γj) 0.1128 0.2159 0.3892 0.6610 1.0962 1.7474 2.8113 4.3321 7.0081 10.6316 16.6648 25.8345 38.4503 60.0620 95.6974

Table 3: Simulation parameters.
Scenario Objective Pmax

tx [dBm] σ2[dBm] Ntx U K ∆SIC ηeff Pdyn[dBm] Psta[dBm] Weights Channels

I WSR 40, 50 30 4 2 2 0 − − − Various [3] Deterministic [3]
II WSR 40, 45, 50 30 4 2 2 0 − − − Various [3] Deterministic [3]
III WSR 30, 40, 50 30 4 2 2 [0, 1] − − − Various [3] Deterministic [3]
IV WEE 30, 40 30 4 2 2 0 0.35 33 38 Various [3] Deterministic [3]

V WSR 40 3GPP [44] 16 2, ..., 6 U 0 − − − Uniform 3GPP [42]
VI WSR 10, . . . , 40 3GPP [44] 16 6 3 0 − − − Uniform 3GPP [42]
VII WEE 40 3GPP [44] 16 2, ..., 6 U 0 0.35 33 38 Uniform 3GPP [42]
VIII WEE 10, . . . , 40 3GPP [44] 16 6 3 0 0.35 33 38 Uniform 3GPP [42]

20 24 28 32 36 40
0

15

30

45

60

75

K = 2

Pmax
tx [dBm]

Ti
m

e
[s

]

OPT-SCA-SDR

OPT-MISOCP

(a) Average runtime of OPT-SCA-SDR
and OPT-MISOCP for U = 4, K = 2,
and uncorrelated channels.

20 24 28 32 36 40
9

11

13

15

17

K = 2

Pmax
tx [dBm]

W
S
R

[b
ps

/H
z] Upper bound

OPT-MISOCP

(b) Average WSR of OPT-MISOCP and
upper bound for U = 4, K = 2, and
uncorrelated channels.

20 24 28 32 36 40
0.5

0.6

0.7

0.8

0.9

1

K = 2

Increasing
rank

Pmax
tx [dBm]

Λ

(c) Average ‘rank-oneness’ of the upper
bound for U = 4, K = 2, and uncorre-
lated channels.

0 5 10 15 20 25 30
16

24

32

40

48

K = 4|Pmax
tx = 40 dBm

Iteration index

W
S
R

[b
ps

/H
z]

(d) Convergence of OPT-SCA-SDR for
10 channel realizations, U = K = 4,
and uncorrelated channels.

Figure 2: Analysis of time complexity, optimality, and convergence.

5 SIMULATION RESULTS
We evaluate the WSR and WEE for several configurations,

varying the number of UEs, number of admitted UEs,
and transmit powers. We consider two cases, namely, two-
user settings (Scenario I to Scenario IV) and multiuser
settings (Scenario V to Scenario VIII). For the first set
of scenarios, we adopt deterministic channels and do not
include user admission to gain insight regarding the impact
of discrete rates, which is done by modifying constraint
C2 as

∑
u∈U χu ≤ K. In particular, we consider a system

consisting of a BS with Ntx = 4 antennas and U = 2 UEs
with channels h1 = [1, 1, 1, 1]

H, h2 =
[
1, ejϕ, ej2ϕ, ej3ϕ

]H
,

where ϕ =
{
π
9 ,

2π
9 ,

3π
9 ,

4π
9

}
controls the similarity of the

channels of the UEs, whereas the noise power is set to
σ2 = 30 dBm, as in [3]. For the second set of scenarios, we
adopt UMi line-of-sight (LOS)/non-LOS (NLOS) channels
[42] with carrier frequency fc = 41 GHz, Np = 4 paths,
bandwidth BW = 100 MHz, noise figure NF = 5 dB, and
noise power σ2 = −174+NF+10 log10(BW/Hz) dBm. For
this case, we consider two types of channels, i.e., correlated
and uncorrelated, in order to assess the performance for
different channel conditions. The uncorrelated and correlate
channels model the cases when the UEs are distributed
across the entire sector of 120◦ and within a narrower sector
of 10◦, respectively. Also, we consider J = 15 MCSs with
target SINRs corresponding to 10% BLER [43], as shown in
Table 2.

For the optimization of Q̄(t)
CWSRn

and Q̄(t)
CWEEn

, we ini-
tialize the variables γu, ρu, τu, λu, δu, θu, ∀u ∈ U , as
γ
(0)
u = 1, ρ(0)u = 1, τ (0)u = 1, λ(0)u = 1, δ(0)u = 1,
θ
(0)
u = 1. In addition, we initialize the penalty factor pu

as p(0)u = 0.01, ∀u ∈ U , which is updated in each iteration

t as p(t+1)
u = min

{
pinc · p(t)u , pmax

}
, where pinc = 4 and

pmax = 1000. As for the stopping criterion, we consider
the threshold ϵ = 0.0001 and the maximum number of
iterations Niter = 120. The simulation results depict the
average over Nch = 100 channel realizations assuming
Rmin = R1 (see Table 2), unless specified otherwise. The
maximum distance between the BS and UEs is DBS = 60
m. The formulated optimization problems are solved using
CVX and MOSEK. The parameter settings employed in the
considered scenarios are specified in Table 3. Furthermore,
we compare the following algorithms.
• OPT-MISOCP: As proposed in Section 3.2 for discrete

rates. By setting ψ = 0, it reduces to SDMA.
• OPT-SCA-SDR: As proposed in Section 4.2 for continu-

ous rates. By setting ψ = 0, it reduces to SDMA.
• RND-MISOCP: Variant of OPT-MISOCP, which assumes

random user admission.
• RND-SCA-SDR: Variant of OPT-SCA-SDR, which as-

sumes random user admission.
• PR-OPT-SCA-SDR: Obtained from OPT-SCA-SDR upon

projecting the rates, as shown in (2) and (3).
• PR-RND-SCA-SDR: Obtained from RND-SCA-SDR upon

projecting the rates, as shown in (2) and (3).
5.1 Complexity, Optimality, and Convergence

In this section, we quantify the runtime complexity of
OPT-MISOCP and OPT-SCA-SDR, evaluate the optimality of
OPT-MISOCP with respect to an upper bound, and analyze
the convergence of OPT-SCA-SDR. For the results shown
in Fig. 2, we consider the WSR problem with uncorrelated
channels for U = 4, K = {2, 4}, weights ω1 = · · · = ω4 = 1,
and Nch = 10 channel realizations.

Runtime complexity: We compare the runtime complexity
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Figure 3: (Scenario I) Two-user SE region of RSMA with discrete and continuous rates for P
max
tx
σ2 = {10, 20} dB. Since OPT-SCA-SDR does not account

for rate saturation, it continues upgrading the private rates, not necessarily leading to improved performance upon rate projection. In contrast, OPT-MISOCP
considers that the rates are bounded and discrete, promoting more appropriate usage of power. Specifically, OPT-MISOCP uses the surplus of power to upgrade
weaker private or common signals, preventing severe rate saturation of other signals.
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Figure 4: (Scenario II) Two-user SE region of RSMA and SDMA with discrete rates using OPT-MISOCP for Pmax
tx
σ2 = {10, 15, 20} dB. The advantage

of RSMA stems from its capability of using the surplus of power to transmit the common signal, even in scenarios with highly uncorrelated channels, which
SDMA is unable to do.

of OPT-MISOCP and OPT-SCA-SDR. In Fig. 2a, we observe
that for the considered parameters, OPT-MISOCP is 4 − 36
times faster than OPT-SCA-SDR since the former exploits
BnB, which circumvents the need of an exhaustive search.
In contrast, OPT-SCA-SDR considers all possible combina-
tions of admitted UEs. Furthermore, OPT-SCA-SDR is an
iterative scheme, which needs to solve multiple instances
of the problem until a stop criterion is met. We notice that
OPT-SCA-SDR needs more time to converge as the transmit
power increases. In particular, higher transit powers facili-
tate higher WSRs, and therefore more iterations are needed
before the stopping criterion is satisfied. On the other hand,
the runtime of OPT-MISOCP remains constant and even
slightly decreases for higher transmit powers. This is due
to constraint J2, introduced in Section 3.2.7, which allows
early stopping.
REMARK 5: We observed that for small numbers of UEs, e.g.,
U = {4, 5}, OPT-MISOCP has an affordable runtime. However,
as U increases beyond these values, the runtime of OPT-MISOCP
grows substantially, as more binary variables are involved. To
keep OPT-MISOCP affordable, it can be combined with a simple
subcarrier allocation policy to avoid co-processing multiple UEs
simultaneously and allowing for parallelization.
Scenario I: Two-User SE Region for Continuous/Discrete RSMA
Rates

Optimality: We compare the WSR performance of
OPT-MISOCP to an upper bound that we devise using
SDR to demonstrate that OPT-MISOCP can yield near-

optimal solutions for P ′DWSR. This upper bound is used
to analyze the impact of the convexification procedure
used in OPT-MISOCP. Since the upper bound has a larger
feasible set due to the rank-one relaxation, it finds so-
lutions that yield higher objective function values than
OPT-MISOCP. However, such solutions are not necessar-
ily feasible for problem PDWSR. In Fig. 2b, we observe
that the performance gap between OPT-MISOCP and the
upper bound is generally small, although it slightly in-
creases to 3% for higher transmit powers. To explain
this result, we show in Fig. 2c, the ratio of the prin-
cipal eigenvalue to the sum of all eigenvalues, which
we denote by Λ, i.e., Λ portrays the ‘rank-oneness’ of
the upper bound solutions. Specifically, it is defined as

Λ = 1
min{1,Rank(X0)}+

∑
u∈U min{1,Rank(Xu)}

∑
u∈U∪{0} λ̂max,u∑

m λ̂m,u
,

where λ̂m,u is the m-th eigenvalue of Xu ≽ 0, u ∈ U ∪ {0}.
Here, Xu is the private precoder for UEu and X0 is the
precoder for the common signal, obtained by the upper
bound. Λ reveals that the upper bound solutions have ranks
higher than one, and therefore are not feasible for problem
PDWSR, thus explaining the performance gap.

Convergence: In Fig. 2d, we show the convergence of
OPT-SCA-SDR for Nch = 10 channel realizations.

In Fig. 3, we compare the SE of RSMA with dis-
crete and continuous rates to investigate the impact of
rate discretization. For all considered cases, OPT-MISOCP
and PR-OPT-SCA-SDR exhibit similar performance when
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Figure 5: (Scenario III) Two-user SE region of RSMA with discrete rates and imperfect SIC using OPT-MISOCP for Pmax
tx
σ2 = {0, 10, 20} dB and

various ∆SIC values. Accounting for potentially imperfect SIC has an enormous performance benefit. In the worst case, RSMA collapses to SDMA, still
providing outstanding performance compared to the case without protection. In the presence of large unmanaged residuals of the common signal, due to an
imperfect SIC, the private rates cannot be guaranteed, thus collapsing to zero due to the inability to fulfill the target SINRs required for successful message
decoding.

Pmax
tx

σ2 = 10 dB. This occurs because the rates obtained by
OPT-SCA-SDR are small due to the low transmit power,
and therefore projection does not have a significant impact.
However, the performance gap between them can become
large when Pmax

tx

σ2 = 20 dB due to the higher rates achieved,
which can lead to more noticeable projection losses. For
instance, the difference is negligible in Fig. 3a, whereas it is
more evident in Fig. 3c. The reason is that the channels be-
come less correlated as ϕ increases, making the common rate
less relevant for OPT-SCA-SDR. This causes OPT-SCA-SDR
to be noticeably impacted by rate projection, as the private
rates may experience heavy saturation while the common
rate remains small. Fig. 3d shows an extreme case with low
channel correlation, which causes OPT-SCA-SDR to opt for
SDMA. In this case, the loss due to projection is higher than
in Fig. 3b and Fig. 3c since the common rate is zero, and the
private rates saturate at RJ (see Table 2). On the other hand,
OPT-MISOCP can prevent rate saturation losses as it takes
the rate discretization into account, and expends its surplus
of power to improve the common rate. For reference, we
have included dirty paper coding (DPC), which is capacity-
achieving for continuous rates [45]. We observe that the
proposed OPT-SCA-SDR can approach the performance of
DPC, especially in Fig. 3d, thus demonstrating that the
proposed OPT-SCA-SDR produces high-quality solutions.
Scenario II: Two-User SE Region with Discrete Rates for RSMA
and SDMA

In Fig. 4, we compare the SE of RSMA and SDMA using
discrete rates to elucidate the performance gap between
them for different transmit powers. In Fig. 4a, RSMA and
SDMA have nearly the same performance when Pmax

tx

σ2 = 10

dB, however, RSMA outperforms SDMA when Pmax
tx

σ2 =
{15, 20} dB. SDMA is unable to cope well with high channel
correlation, showing little improvement even as the transmit
power increases. In contrast, RSMA can take advantage of
high channel correlation to achieve considerable improve-
ment. In Fig. 4b to Fig. 4d, RSMA outperforms SDMA by a
small margin when Pmax

tx

σ2 = {10, 15} dB as the channels
are less correlated, thus making the transmission of the
common signal more expensive. However, RSMA clearly
outperforms SDMA when Pmax

tx

σ2 = 20 dB since SDMA
saturates (i.e., UEs are served at rate RJ = 5.5547 bps/Hz),

whereas RSMA can still improve as it can use the surplus of
power to support a common signal.
Scenario III: Two-User SE Region with Imperfect SIC for RSMA

In Fig. 5, we evaluate the SE of RSMA for various levels
of protection against imperfect SIC as well as without pro-
tection. When we consider protection, we assume a given
∆SIC ̸= 0%, which is taken into account for the optimiza-
tion. Therefore, the BS guarantees the allocated rates for the
UEs up to the selected value of ∆SIC. When we neglect
protection, we assume ∆SIC = 0% for the optimization even
though the UEs may suffer from imperfect SIC. Therefore,
the allocated rates may not be guaranteed. In Fig. 5a and
Fig. 5b, protection against imperfect SIC is considered. We
observe that endowing RSMA with a higher robustness
against imperfect SIC, i.e., larger ∆SIC, produces a more
noticeable decrease in the SE because the private SINRs
are optimized to deal with additional interference due to
∆SIC ̸= 0% (see Section 3.1.3). Also, we observe that values
up to ∆SIC = 4% do not affect the SE performance sub-
stantially while providing adequate protection. However,
RSMA almost collapses to SDMA when ∆SIC = 20%, as the
common rates become very small. In fact, RSMA smartly
switches to SDMA for values larger than ∆SIC = 20%
since the high protection against imperfect SIC prevents
enhancement of the private SINRs. The results for SDMA
are identical to those for RSMA with ∆SIC = 100%. In Fig.
5c and Fig. 5d, we evaluate the impact of not accounting for
imperfect SIC on the WSR performance, where we consider
the same scenarios in Fig. 5a and Fig. 5b, and equal weights,
i.e., ω1 = ω2 = 1. In Fig. 5c, the impact of imperfect
SIC is small when Pmax

tx

σ2 = 0 dB because information is
predominantly transmitted via the common signal which
is not affected by imperfect SIC. When Pmax

tx

σ2 = {10, 20} dB,
the common and private rates increase since higher MCSs
can be selected. This also implies that potential unmanaged
residuals of the common signal may cause the private rates
to collapse more noticeably, e.g., the SE drops from 7.85

bps/Hz to 2.41 bps/Hz (when Pmax
tx

σ2 = 20 dB) and from 4.52

bps/Hz to 3.32 bps/Hz (when Pmax
tx

σ2 = 10 dB). However,
the system performs well when protection against imper-
fect SIC is considered. In particular, for high ∆SIC, RSMA
transitions to SDMA thereby avoiding further private SINRs
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Figure 6: (Scenario IV) Two-user EE region of RSMA with discrete and continuous rates for P
max
tx
σ2 = {0, 10} dB, ηeff = 0.35, Pdyn = 33 dBm, and

Psta = 38 dBm. As it uses the transmit power more judiciously, OPT-MISOCP has a notable advantage over PR-OPT-SCA-SDR, ensuring high discrete
rates with minimal power consumption, leading to improved EE. In contrast, PR-OPT-SCA-SDR is not aware of rate discretization, and therefore the precoders
have larger powers than necessary, which impacts the EE upon rate projection.
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Figure 7: (Scenario V) WSR of RSMA and SDMA as a function of the number of admitted UEs. In Fig. 7a, RSMA|OPT-MISOCP has an advantage of
6.39 bps/Hz (↑ 89.7% gain) and 4.87 bps/Hz (↑ 56.3% gain) with respect to RSMA|PR-OPT-SCA-SDR and SDMA|OPT-MISOCP, respectively, when U = 6.
In Fig. 7b, RSMA|OPT-MISOCP has an advantage of 1.92 bps/Hz (↑ 5.9% gain) and 1.03 bps/Hz (↑ 3.1% gain) compared to RSMA|PR-OPT-SCA-SDR
and SDMA|OPT-MISOCP, respectively, when K = 6.

degradation. In Fig. 5d, we observe the same trend as in
Fig. 5c, although the degradation due to imperfect SIC is
more conspicuous when protection against imperfect SIC
is neglected. This occurs because the channels are highly
uncorrelated, making the private rates even more prominent
than in Fig. 5c, with the consequent potential risk of much
larger degradation in case of SIC failure.
Scenario IV: Two-User EE Region with Continuous/Discrete
Rates for RSMA

In Fig. 6, we compare the EE of RSMA with continuous
and discrete rates to investigate the impact of rate discretiza-
tion. In Fig. 6a to Fig. 6d, the EE of both OPT-MISOCP
and PR-OPT-SCA-SDR improve when Pmax

tx increases from
0 dB to 10 dB, as a higher transmit power allows to
find an improved EE operating point with a better trade-
off between the achieved rates and the expended power.
When Pmax

tx

σ2 = 0 dB (dashed lines), OPT-MISOCP surpasses
PR-OPT-SCA-SDR showing gains as large as 18 bps/kJ/Hz,
particularly when the UE weights are not equal. When
Pmax

tx

σ2 = 10 dB (solid lines), OPT-MISOCP also outperforms
PR-OPT-SCA-SDR although the gap is smaller. The reason
for this effect is that OPT-MISOCP can better exploit the lim-
ited transmit power when Pmax

tx

σ2 = 0 dB as it is able to handle
discrete rates, whereas PR-OPT-SCA-SDR wastes power
yielding rates higher than necessary, thus incurring a loss
after projection. However, when Pmax

tx

σ2 = 10 dB, the power
limitation is alleviated, and therefore PR-OPT-SCA-SDR can
reduce the performance gap with respect to OPT-MISOCP.
We oserve that as channels become less correlated, the EE
of OPT-MISOCP and PR-OPT-SCA-SDR improve because

interference can be handled more effectively and with less
transmit power.
Scenario V: Impact of the Number of Admitted UEs on WSR
Performance

In Fig. 7, we compare the WSR of RSMA and SDMA
when the number admitted UEs varies. In Fig. 7a, we
consider correlated channels, for which we observe that an
increasing number of UEs leads to WSR degradation. This
occurs because the UEs are located in close proximity of
each other, exacerbating interference for every additional
UE admitted. We observe that RSMA|OPT-MISOCP has a
noticeable advantage over SDMA|OPT-MISOCP since it can
exploit the channel similarity via the common signal. We ob-
serve a similar behavior for RSMA|PR-OPT-SCA-SDR and
SDMA|PR-OPT-SCA-SDR although the difference between
them decreases as U increases. Also, not considering rate
discretization can severely affect RSMA|PR-OPT-SCA-SDR,
reducing its performance to the extent of being outper-
formed by SDMA|OPT-MISOCP when U = {5, 6}. In Fig.
7b, we consider uncorrelated channels, for which we ob-
serve that increasing the number of UEs leads to an im-
proved WSR. This is expected as interference is more easily
dealt with in this case. Also, RSMA|PR-OPT-SCA-SDR and
SDMA|PR-OPT-SCA-SDR achieve the same performance be-
cause RSMA does not devise a common signal. However,
RSMA|OPT-MISOCP surpasses SDMA|OPT-MISOCP as it is
able to exploit the surplus of power to devise the common
signal. Besides, SDMA|OPT-MISOCP performs slightly better
than RSMA|PR-OPT-SCA-SDR as it avoids projection losses.
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Figure 8: (Scenario VI) WSR of RSMA and SDMA with optimal and random UE admission as a function of the transmit power. In Fig. 8a,
RSMA|OPT-MISOCP has an advantage of 1.68 bps/Hz (↑ 10.9% gain) and 2.24 bps/Hz (↑ 15.3% gain) with respect to RSMA|PR-OPT-SCA-SDR and
RSMA|RND-MISOCP, respectively, when Pmax

tx = 40 dBm. In Fig. 8b, RSMA|OPT-MISOCP has an advantage of 3.66 bps/Hz (↑ 21.6% gain) with respect
to RSMA|PR-OPT-SCA-SDR and 1.71 bps/Hz (↑ 8.9% gain) with respect to RSMA|RND-MISOCP, when Pmax

tx = 40 dBm.
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Figure 9: (Scenario VII) WEE of RSMA and SDMA as a function of the number of admitted UEs. In Fig. 9a, RSMA|OPT-MISOCP outperforms
RSMA|OPT-PR-SCA-SDR and SDMA|OPT-MISOCP by 44.8 bps/kJ/Hz (↑ 21.5% gain) and 90.1 bps/kJ/Hz (↑ 55.4% gain), respectively, when K = 6. In
Fig. 9b, RSMA|OPT-MISOCP outperforms RSMA|OPT-PR-SCA-SDR by 64.6 bps/kJ/Hz (↑ 10.2% gain), when K = 6.

Scenario VI: Impact of the Transmit Power on the WSR Perfor-
mance

In Fig. 8, we evaluate the WSR as a function of the trans-
mit power. In Fig. 8a, we consider correlated channels, for
which optimal admission leads to a consistently higher WSR
compared to random admission of UEs. Besides, RSMA
outperforms SDMA in all cases due to the high channel
similarity. Specifically, the performance gap widens as the
transmit power increases since higher rates can be allocated
to the common signal, whereas SDMA is hampered by
high interference. We also observe that RSMA|OPT-MISOCP
outperforms RSMA|PR-OPT-SCA-SDR for all considered
cases, whereas RSMA|RND-MISOCP performs similarly to
RSMA|PR-OPT-SCA-SDR even though RSMA|RND-MISOCP
does not control which UEs are admitted. In Fig. 8b, we con-
sider uncorrelated channels, where optimal admission also
facilitates additional gains for both RSMA and SDMA com-
pared to random admission, particularly when the transmit
power is more constrained. Besides, SDMA|OPT-MISOCP
performs marginally better than RSMA|PR-OPT-SCA-SDR
because the latter collapses to SDMA due to the low channel
correlation, thereby experiencing severe saturation upon
rate projection. On the other hand, the gains due to optimal
UE admission tend to diminish for higher transmit powers.
For high transmit powers, RSMA|RND-MISOCP surpasses
RSMA|PR-OPT-SCA-SDR as the former accounts for rate
discretization, thus avoiding losses due to rate projection.
Scenario VII: Impact of the Number of Admitted UEs on WEE
Performance

In Fig. 9, we compare the WEE of RSMA and SDMA as
a function of the number of admitted UEs. In Fig. 9a, we
consider correlated channels, for which RSMA and SDMA
experience a WEE degradation as the number of admitted

UEs increases. This occurs because the transmit power
needs to be distributed among more UEs, thus affecting
the SINRs and the allocated rates. However, RSMA attains
a higher performance than SDMA since RSMA is capa-
ble of harnessing the high channel similarity. Further, we
observe that RSMA|OPT-MISOCP and SDMA|OPT-MISOCP
respectively outperform RSMA|PR-OPT-SCA-SDR and
SDMA|PR-OPT-SCA-SDR by at least 20%. In Fig. 9b, we
consider uncorrelated channels, for which RSMA collapses
to SDMA in most cases, since the common rate is very
small or zero due to a low channel correlation. Further-
more, the common rate improves marginally when the
number of UEs increases, as it requires a substantially
larger transmit power. Specifically, as the number of UEs
increases, utilizing the common signal becomes less energy-
efficient. We observe that RSMA|OPT-MISOCP outperforms
RSMA|PR-OPT-SCA-SDR for all considered values of K .
Scenario VIII: Impact of the Transmit Power on the WEE
Performance

In Fig. 10, we evaluate the WEE as a function of the
transmit power. In Fig. 10a, we consider correlated chan-
nels, for which RSMA outperforms SDMA as it can exploit
the high channel correlation. We also observe that optimal
admission performs significantly better than random ad-
mission, as it allows to select UEs with mutually beneficial
channel characteristics that promote EE gains. In addition,
increasing the transmit power boosts the WEE as improved
operating points can be found. However, this increment
saturates after a certain point, as the power required to
reach higher rates becomes too costly for a marginal gain
in WEE. Besides, RSMA|RND-MISOCP performs similarly
to RSMA|PR-OPT-SCA-SDR since its ability to handle dis-
crete rates compensates indirectly for the random selection
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Figure 10: (Scenario VIII) WEE of RSMA and SDMA with optimal and random UE admission as a function of the transmit power. In Fig. 10a,
RSMA|OPT-MISOCP outperforms RSMA|OPT-PR-SCA-SDR and RSMA|RND-MISOCP by 33.8 bps/kJ/Hz (↑ 10.9% gain) and 29.7 bps/kJ/Hz (↑ 9.5%
gain), respectively, when Pmax

tx = 40 dBm. In Fig. 10b, RSMA|OPT-MISOCP outperforms RSMA|OPT-PR-SCA-SDR and RSMA|RND-MISOCP by 59.3
bps/kJ/Hz (↑ 15.6% gain) and 44.7 bps/kJ/Hz (↑ 11.4% gain), respectively, when Pmax

tx = 40 dBm.

of UEs. In Fig. 10b, we consider uncorrelated channels,
for which we observe that optimal UE admission can
lead to substantial gains. Also, RSMA|OPT-MISOCP and
SDMA|OPT-MISOCP outperform RSMA|OPT-PR-SCA-SDR
and RSMA|RND-PR-SCA-SDR, respectively. Moreover,
RSMA|OPT-PR-SCA-SDR and SDMA|OPT-PR-SCA-SDR ex-
perience a WEE degradation for larger values of the transmit
power because of rate saturation.

6 CONCLUSIONS
In this paper, two new RRM problems were proposed to

investigate the SE and EE of RSMA, taking into account
characteristics of practical wireless systems, namely the use
of discrete rates in contrast to the widely embraced contin-
uous rates, the need for selective UE admission instead of
ubiquitously serving all UEs, and imperfect SIC in lieu of
ideal SIC. In particular, we investigated the maximization
of the WSR and WEE of RSMA as optimization problems
and jointly optimized the beamforming, the UE admission,
and the allocation of discrete rates, while accounting for an
imperfect SIC. Furthermore, given the widespread adoption
of Shannon’s capacity formula for SINR-rate modeling in
RRM designs, we also considered the case of continuous
rates. The considered RRM problems resulted in nonconvex
MINLPs, which are generally difficult to solve. Neverthe-
less, we developed two algorithms capable of finding high-
quality solutions. The first algorithm addresses the RRM
with discrete rates and transforms the nonconvex MINLP
into a MISOCP, which can be solved globally optimally
via BnB and IPMs. This algorithm features custom cutting
planes that reduce the runtime. The second algorithm ad-
dresses the RRM with continuous rates, and solves the non-
convex MINLP using binary enumeration, SDR, and SCA,
converging to a KKT point. We revealed that ignoring the
practical characteristics of wireless systems in RRM design
can have serious repercussions on performance. Specifically,
we demonstrated the importance of accounting for discrete
rates in the RRM model to avoid potentially severe rate
projection losses. In addition, we recognized the importance
of selectivity for UE admission, which yields greater gains,
as it allows to serve UEs with mutually beneficial channel
characteristics that can improve the WSR or WEE. Finally,
our results confirmed the benefits of accounting for imper-
fect SIC to guarantee the allocated rate. Our simulations
show that RSMA designed for discrete rates achieves gains
of up to 89.7% (WSR) and 21.5% (WEE) compared to pro-

jecting continuous rates onto the admissible set of discrete
rates since projection losses are avoided. Furthermore, user
admission proves crucial for RSMA as it yields additional
gains of up to 15.3% (WSR) and 11.4% (WEE) compared to
random user admission when discrete rates are considered.
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APPENDIX A: CIRCUMVENTING INTEGER MULTI-
PLICATIVE COUPLINGS

We introduce new variables πu,j = χuκj , which are
binary due to C1,C10. Therefore, we define D1 : πu,j ∈
{0, 1} ,∀u ∈ U , j ∈ J , and employ the McCormick en-
velopes to linearize the product of binary variables χu, κj
[46]. The product χuκj can be removed if constraints D2 :
πu,j ≤ χu,∀u ∈ U , j ∈ J , D3 : πu,j ≤ κj ,∀u ∈ U , j ∈ J ,
D4 : πu,j ≥ χu + κj − 1,∀u ∈ U , j ∈ J , are added. Further,

we obtain D5 :
|hH

umψ|2∑
i∈U |hH

uwiµi|2+σ2 ≥
∑
j∈J πu,jΓj ,∀u ∈ U ,

and D6 : Cu ≤
∑
j∈J πu,jRj ,∀u ∈ U , upon replacing D1 in

C12, C14.

APPENDIX B: CIRCUMVENTING MIXED-INTEGER
MULTIPLICATIVE COUPLINGS

Let w̃u = wuµu be the effective precoder for UEu. When
µu = 0, then UEu is not served by a private signal since
w̃u = 0. When µu = 1, then UEu is served by a private
signal via precoder w̃u = wu ̸= 0. We can decouple wu and
µu, while obtaining the same effect, by including constraint
E1 : ∥wu∥22 ≤ µuP

max
tx . In a similar manner, we can

decouple m and ψ by including E2 : ∥m∥22 ≤ ψPmax
tx . With

these changes, constraints C6, C9, D5 can be respectively
rewritten as E3 :

∑
u∈U ∥wu∥22 + ∥m∥22 ≤ Pmax

tx , E4 :
|hH

uwu|2
∆2

SIC|hH
um|2+∑

i̸=u,i∈U |hH
uwi|2+σ2 ≥

∑
j∈J αu,jΓj ,∀u ∈ U ,

and E5 :
|hH

um|2∑
i∈U |hH

uwi|2+σ2 ≥
∑
j∈J πu,jΓj ,∀u ∈ U .

APPENDIX C: CIRCUMVENTING INTEGER ADDITIVE
COUPLINGS

For a given UEu, we distinguish the following two cases,
1

∑
j∈J αu,j = 0 (UEu is not served by a private signal)

and 2
∑
j∈J αu,j = 1 (UEu is served by a private signal).

When 1 is true, constraint E4 collapses to SINR(p)
u ≥ 0

since αu,j = 0,∀j ∈ J . When 1 is true, constraint F1

collapses to the intersection of J constraints, i.e., SINR(p)
u ≥

0, ∀j ∈ J , which yields SINR(p)
u ≥ 0, and is equivalent to

E4. We can obtain the same equivalence between E4 and F1

for 2 . Similarly, to prove the equivalence between E5 and
F2, we follow a procedure along the same lines, which we
omit due to space constraints.

APPENDIX D: REFORMULATING THE SINR CON-
STRAINTS VIA THE BIG-M METHOD

By defining Wu = [∆SICm,w1, . . . ,wu−1,wu+1, . . . ,wU ],
constraint F1 can be expressed as

∥∥[hH
uWu, σ

]∥∥2
2
≤

1
αu,jΓj

∣∣hH
uwu

∣∣2 ,∀u ∈ U , j ∈ J , from where two cases

arise: Case 1 αu,j = 1 ⇒
∥∥[hH

uWu, σ
]∥∥2

2
≤ 1

Γj

∣∣hH
uwu

∣∣2

and Case 2 αu,j = 0 ⇒
∥∥[hH

uWu, σ
]∥∥2

2
≤ ∞. Notice

that using ∞ is not necessary as it would suffice to find an
upper bound L2

max,u such that
∥∥[hH

uWu, σ
]∥∥2

2
≤ L2

max,u.
Therefore, the two cases can be integrated into a single
inequality, thus redefining F1 as G1 :

∥∥[hH
uWu, σ

]∥∥2
2
≤

|hH
uwu|2
Γj

+ (1− αu,j)2 L2
max,u,∀u ∈ U , j ∈ J , where

Lmax,u =
√∥∥hu

∥∥2
2
Pmax
tx + σ2. We follow a similar

procedure to transform F2 into G2, which we omit here.

APPENDIX E: CONVEXIFYING THE PRIVATE SINR
CONSTRAINTS

While G1 is nonconvex in its current form, it can be
transformed into a SOC constraint using Jensen’s inequality,

as
∥∥[hH

uWu, σ
]∥∥

2
≤ |h

H
uwu|√
Γj

+ (1− αu,j)Lmax,u, ∀u ∈ U ,

j ∈ J . Note that this inequality and G1 are not equivalent
but both delimit the same feasible domain when αu,j = 1.
When αu,j = 0, the inequality still holds without changing
the feasible set because of the valid upper bound. Be-
sides, since the precoders are invariant to phase shifting,
wu and wue

jθu yield the same SINR. As a result, it is
possible to choose a phase ejθu such that hH

uwu becomes
purely real and nonnegative. Based on this observation,
G1 can be equivalently expressed via constraints H1 :
Re

{
hH
uwu

}
≥ 0,∀u ∈ U , H2 : Im

{
hH
uwu

}
= 0,∀u ∈ U ,

H3 :
∥∥[hH

uWu, σ
]∥∥

2
≤ 1√

Γj

Re
{
hH
uwu

}
+(1− αu,j)Lmax,u,

∀u ∈ U , j ∈ J .

APPENDIX F: CONVEXIFYING THE COMMON SINR
CONSTRAINTS

Note that
∣∣hH
um

∣∣ ≥ Re
{
hH
um

}
always holds true. Using

this relation, we replace G2 with the convex constraints
I1 : Re

{
hH
um

}
≥ 0,∀u ∈ U , and I2 :

∥∥[hH
uW, σ

]∥∥
2
≤

1√
Γj

Re
{
hH
um

}
+ (1− πu,j)Lmax,u,∀u ∈ U , j ∈ J , where

W = [w1, . . . ,wU ]
T. To obtain I2, we can follow the same

procedure as in Appendix E.

APPENDIX G: ADDING CUTTING PLANES TO
TIGHTEN THE FEASIBLE DOMAIN

From E4, H1, H2, we obtain Ĵ1 : Re
{
hH
uwu

}2 ≥∑
j∈J αu,jΓj

(
∆2

SIC

∣∣hH
um

∣∣2+∑
i ̸=u,i∈U

∣∣hH
uwi

∣∣2+σ2
)
,∀u ∈

U , j ∈ J . Assuming zero interference and perfect SIC (i.e.,
∆SIC = 0), we obtain a lower bound for Re

{
hH
uwu

}
defined

as J̆1 : Re
{
hH
uwu

}
≥ σ

√∑
j∈J αu,jΓj ,∀u ∈ U . However,

since the sum of all αu,j is at most one for a given UEu (see
constraints C3,C7,C8), then J̆1 can be equivalently recast as
J1 : Re

{
hH
uwu

}
≥ σ∑

j∈J αu,j
√
Γj , ∀u ∈ U , thus defining

a new set of cuts. Besides, J2 allows to terminate early
the binary variable branching. In particular, if the upper
bound is achieved by some combination of admitted UEs,
the algorithm has found an optimal solution, and therefore
the process is stopped. Although J1, J2 are optional, they
tighten the feasible set of binary variables and accelerate the
search.

APPENDIX H: TRANSFORMING THE PROBLEM VIA
SUBLEVEL AND SUPERLEVEL SETS

We show by contradiction that K1 −K6 are satisfied with
equality at the optimum, thus corroborating that QCWSRn

and Q̃CWSRn are equivalent. Note that K7, K8 are satisfied
automatically, if K1−K6 are tight. We assume that we have
an optimal solution for Q̃CWSRn

with objective function
value β⋆, and denote with γ⋆u, ρ⋆u, τ⋆u , λ⋆u, C⋆u the optimal
values of γu, ρu, τu, λu, Cu corresponding to UEu. We
further assume that at the optimum, K2 for UEu is inactive,
i.e., not tight, allowing for the existence of a strictly smaller
ρ′u < ρ⋆u, for which K2 is also satisfied. However, a smaller
ρ′u implies that there exists a larger γ′u > γ⋆u that satisfies K1,
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allowing for the existence of a larger objective function value
β′ > β⋆ due to K3, hence contradicting the assumption that
we have found an optimum. Similarly, we can assume that
K5 for UEu is inactive, allowing for the existence of λ′u < λ⋆u,
for which K5 is also satisfied. At the same time, this allows
for the existence of τ ′u > τ⋆u that satisfies K4, and therefore
for a larger C ′u > C⋆u due to K6, thus leading to a higher
objective function value and contradicting the assumption
that we have found an optimum. For further reading, the
reader is referred to [47], where similar deductions were
drawn for a different problem. The same analysis can be
extended for QCWEEn

.

APPENDIX I: SOLUTIONS WITH AT MOST RANK ONE

We define the Lagrangian of Q̄(t)
CWSRn

with respect to
M (when ψ = 1, otherwise M = 0) as L = ϕL1

Tr (M) +

ϕL2
Tr (M) +

∑
u ϕ

u
L4
∆2

SICh
H
uMhu − Tr

(
ΦL8

M
)
−

∑
u ϕ

u
M2

hH
uMhu − Tr

(
ΦM3

(
ζ0I−T

(t)
0

H
MT

(t)
0

))
+

h(Ŵ), where h(Ŵ) represents the terms that depend on
Ŵ. Based on the KKT dual feasibility condition, ϕL1

≥ 0,
ϕL2

≥ 0, ΦL8
≽ 0, ΦM3

≽ 0 are the KKT multipliers

4
,

ϕu
M2

are the KKT multipliers associated with constraints
L1, M2 for UEu. By invoking the KKT stationarity
condition, we take the derivative of L with respect to

8
= A + chuh

H
u ,

where A =
(
ϕL1

+ ϕL2

)
I + T

(t)
0 ΦM3

T
(t)
0

H
and

c =
∑
u ϕ

u
L4
∆2

SIC − ϕu
M2

. From the KKT complementary
slackness condition, it must hold that ΦL8

M = 0 and

ΦM3

(
ζ0I−T

(t)
0

H
MT

(t)
0

)
= 0. Applying Sylvester’s

rank inequality to ΦL8
M = 0, we obtain that

Rank
(
ΦL8

)
+ Rank (M) ≤ Ntx. In addition, we note

that ΦL8
is Hermitian with Rank

(
ΦL8

)
≥ Ntx − 1 since A

is positive definite. This results in two possible cases, i.e.,
Rank

(
ΦL8

)
= Ntx and Rank

(
ΦL8

)
= Ntx − 1. When

Rank
(
ΦL8

)
= Ntx then M = 0, implying that the common

signal is not transmitted. Also, Rank
(
ΦL8

)
= Ntx − 1

for some c < 0, which leads to Rank (M) ≤ 1. The same
conclusions can be obtained for Wu, ∀u ∈ U ′n. The same
procedure can be applied to Q̄(t)

CWEEn
as the two problems

are similar, which leads to the same conclusion, i.e., the
ranks of M and Wu, ∀u ∈ U ′n are at most one. For further
reading, we refer to [41], [48]–[50], where similar problems
were considered.

APPENDIX J: CONVERGENCE PROOF

Since Q̂CWSRn
and QCWSRn

are equivalent, in this proof
we employ Q̂CWSRn , which can be expressed as
Q̂CWSRn : max

ν∈X
f (ν) s.t. gi (ν) ≤ 0, i ∈ V,

hj (ν) ≤ 0, j ∈ W,
ℓk (ν) ≤ 0, k ∈ R,

where ν collects all the decision variables of Q̂CWSRn
; X

denotes the feasible set; f (ν) is the objective function;
gi (ν) ≤ 0, i ∈ V , represent constraints L3,L5; hi (ν) ≤
0, i ∈ W , represent constraints L9,L10; ℓk (ν) ≤ 0, k ∈ R,

represent the rest of constraints; and V,W,R are index sets.
Similarly, we express Q̄(t)

CWSRn
as

Q̄(t)
CWSRn

: max
ω∈X̄ (t)

f̄ (ω) s.t. Gi
(
ω,Ω

(t)
i

)
≤ 0, i ∈ V,

Hj (ω) ≤ 0, j ∈ W,
ℓk (ω) ≤ 0, k ∈ R,

where ω collects all the decision variables of Q̄(t)
CWSRn

;
X̄ (t) denotes the feasible set; f̄ (ω) is the objective func-
tion; Gi

(
ω,Ω

(t)
i

)
≤ 0, i ∈ V , represent constraints M1,

M2; and Hj (ω) ≤ 0, j ∈ W , represent constraints
M3, M4. Let ωt denote the solution of Q̄(t)

CWSRn
and let

Ω
(t)
i = Π(ωt−1) , i ∈ V, be the adaptable parameters

in M1, M2, computed as a function Π(·) of the previous
solution ωt−1. Since M1, M2 are inner approximations for
L3, L5, i.e., Gi

(
ω,Ω

(t)
i

)
≥ gi (ω), then X̄ (t) ⊆ X . Also, for

sufficiently large penalty weights p(t)u , constraints M3, M4

ensure X̄ (t) ⊆ X . Therefore, ωt satisfies Q̂CWSRn . Note that
ωt also satisfies Q̄(t+1)

CWSRn
since Ω

(t)
i is updated such that

Gi
(
ωt−1,Ω

(t)
i

)
= gi (ωt−1). Therefore, ωt ∈ X̄ (t) ∩ X̄ (t+1).

This implies that f̄ (ωt+1) ≥ f̄ (ωt), leading to a mono-
tonically non-decreasing sequence

{
f̄ (ωt)

}
. Since X̄ (t) is

compact and Q̄(t)
CWSRn

is limited by a power constraint,
sequence

{
f̄ (ωt)

}
is bounded and converges. In particular,

the collection of solutions for Q̄(t)
CWSRn

define a sequence
{ωt} that converges to an accumulation point ω⋆, i.e.,
ωt → ω⋆, which is a KKT point.

Note that ν is included in ω such that ω = (ν, ζ), where
ζ are the slack variables in M3, M4. Since ω⋆ is an accumu-
lation point of {ωt}, there exists a subsequence {ωmt

} such
that ωmt

→ ω⋆. Hence, it also follows that ωmt−1 → ω⋆.
Upon convergence at ω⋆ = (ν⋆, ζ⋆), variables ζ⋆ = 0
and therefore ν⋆ is also an accumulation point. In addition,
Hj (ω

⋆) = hj (ν
⋆) , j ∈ W , since both enforce feasible sets

with ranks of at most one. Let L = V ∪ W ∪ R such that
V∩W = {∅},W∩R = {∅},R∩V = {∅}. Also, let I ⊇ L be
the set of active constraints of Q̂CWSRn

with respect to ν⋆

and let Imt ⊇ L be the set of active constraints of Q̄(t)
CWSRn

with respect to ωmt
. Now, letting t → ∞ for Q̄(t)

CWSRn
,

we obtain that Gi (ωmt
,Π(ωmt−1)) → Gi (ω

⋆,Π(ω⋆)) =
gi (ω

⋆) = gi (ν
⋆) , i ∈ V ; Hj (ωmt

)→ Hj (ω
⋆) = hj (ω

⋆) =
hj (ν

⋆) , j ∈ W ; and ℓk (ωmt
) → ℓk (ω

⋆) = ℓk (ν
⋆) , k ∈ R.

These limits suggest that there exists an integer T1 for which
Imt
⊆ I,∀t > T1.

Similarly, we have ∇ω f̄ (ωmt
) → ∇ω f̄ (ω

⋆) =
[∇νf (ν

⋆) 0]; ∇ωGi (ωmt
,Π(ωmt−1)) →

∇ωGi (ω
⋆,Π(ω⋆)) = ∇ωgi (ω

⋆) = [∇νgi (ν
⋆) 0], i ∈ V ;

∇ωHj (ωmt
) → ∇ωHj (ω

⋆) = [∇νhj (ν
⋆) 0], j ∈ W ; and

∇ωℓk (ωmt
) → ∇ωℓk (ω

⋆) = [∇νℓk (ν
⋆) 0], l ∈ R,

showing that all constraint gradients of Q̄(t)
CWSRn

converge to their corresponding ones in Q̂CWSRn
. These

results together with the fact that Imt
⊆ I,∀t ≥ T1,

imply that there exists an integer T2 > T1 such that
ωmt

is a regular point of Q̄(t)
CWSRn

when t > T2,
for which the KKT conditions are satisfied, i.e.,
−∇ω f̄ (ωmt

) +
∑
i∈V µ

mt
i ∇ωGi (ωmt

,Π(ωmt−1)) +∑
j∈W ∇ωµ

mt
j Hj (ωmt

) +
∑
k∈R∇ωµ

mt

k ℓk (ωmt
) = 0;

µmt
i Gi (ωmt ,Π(ωmt−1)) = 0, i ∈ V ; µmt

j Hj (ωmt) = 0, j ∈

associated with constraints L , L , L , M , whereas φ

M and equate it to zero, yielding Φ
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W ; and µmt

k ℓk (ωmt
) = 0, k ∈ R; where µmt

l ≥ 0, l ∈ L, are
KKT multipliers.

Considering t > T2, let rt = ∇ω f̄ (ωmt
) and let Dt be

the matrix whose columns are the gradients of the active
constraints, indexed by I . By complementary slackness, it
follows that µmt

l = 0, l /∈ I for t > T2. Thus, the stationarity
condition can be expressed in matrix form as Dtbt = rt,
where bt is formed by the elements in {µmt

l | l ∈ I}, which
are positive. Similarly, we define r = ∇ω f̄ (ω

⋆) and D as the
matrix whose columns are the gradients of the constraints
indexed by I . Thus we have that Dt → D and rt → r,
where Dt and D are full rank for t > T2 due to ωmt

being a regular point at which the set of active gradients
are linearly independent, leading to bt =

(
DT
t Dt

)−1
DT
t rt

and bt →
(
DTD

)−1
DTr. Since µmt

l , l ∈ L, are either
elements from rt or zero, they have a limit which we denote
by µ⋆l , l ∈ L. Thus, letting t → ∞, the KKT conditions of
Q̄(t)

CWSRn
are −∇ω f̄ (ω

⋆)+
∑
i∈I∩V ∇ωµ

⋆
iGi (ω

⋆,Π(ω⋆))+∑
j∈I∩W ∇ωµ

⋆
jHj (ω

⋆) +
∑
k∈I∩R∇ωµ

⋆
kℓk (ω

⋆) = 0;
µ⋆iGi (ω

⋆,Π(ω⋆)) = 0, i ∈ I ∩ V ; µ⋆jHj (ω
⋆) = 0, j ∈

I ∩ W ; and µ⋆kℓk (ω
⋆) = 0, k ∈ I ∩ R. Since f̄ (ω⋆) =

f (ω⋆); Gi (ω⋆,Π(ω⋆)) = gi (ω
⋆) , i ∈ V ; Hj (ω

⋆) =
hj (ω

⋆) , j ∈ W ; and µ⋆l = 0, l /∈ I , we obtain that
−∇ωf (ω

⋆) +
∑
i∈V ∇ωµ

⋆
i gi (ω

⋆) +
∑
j∈W ∇ωµ

⋆
jHj (ω

⋆) +∑
k∈R∇ωµ

⋆
kℓk (ω

⋆) = 0; µ⋆i gi (ω
⋆) = 0, i ∈ V ; µ⋆jhj (ω

⋆) =
0, j ∈ W ; and µ⋆kℓk (ω

⋆) = 0, k ∈ R; which prove that ω⋆ is
a KKT point as the above KKT conditions are the same for
Q̄(t)

CWSRn
. We can arrive to the same conclusion for Q̂CWEEn

and Q̄(t)
CWEEn

. For further reading, we refer to [40].
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