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Abstract

This thesis focuses on neural network based modeling of stochastic dynamical systems with
applications in the context of autonomous driving. We define three goals for the model that
must be achieved with low computational cost due to the use of low-compute and energy-
constrained chips in autonomous vehicles. First, our model must accurately capture the
data uncertainty, which is also referred to as the aleatoric uncertainty. The data uncertainty
cannot be reduced by collecting more data since we only have partial information. In
essence, we are unable to observe all states, such as the driver’s intention. To illustrate
this, consider a vehicle approaching a junction with the choice of turning left or right. If
the driver does not use an indicator, we cannot determine which direction he will follow.
Second, the model must account for interactions between different traffic participants, as
traffic is highly interactive. Modeling interactions between traffic participants is vital for
accurate traffic forecasting, as the actions of one traffic participant can impact the actions
of other traffic participants. For example, imagine a scenario where one vehicle is merging
into the lane of another vehicle. Both vehicles need to interact and adjust their speed to
accommodate the lane merging. Lastly, as it is impossible to include all traffic scenarios in
the training data set, the model needs to account for model uncertainty that arises from
the lack of knowledge, which is also known as epistemic uncertainty. Model uncertainty
is especially important for traffic scenarios that have not been observed during training.
Without accounting for model uncertainty, the model is limited to modeling the intrinsic
data uncertainty.
Throughout this thesis, we introduce several advancements to Deep State-Space Models
(DSSMs) that address the challenges of capturing intrinsic data uncertainty, modeling
interactions, and incorporating model uncertainty, all while ensuring low computational
cost. DSSMs extend state-space models towards neural transition and emission models.
A DSSM describes a partially observable system where each emission is generated by a
corresponding latent state. The dynamics of the latent states follow a Markovian structure,
where the state at each time point is dependent solely on the previous time point’s state.
Due to the use of nonlinear neural networks in the transition and emission models, DSSMs
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offer high modeling capacity. Moreover, the stochasticity in the transition and emission
models allows DSSMs to effectively capture the inherent data uncertainty.
After an introduction and reviewing relevant background material, we focus in the first part
of the thesis on fully observed dynamical systems before transitioning to partially observed
systems in the subsequent parts. Classical frameworks for simulating stochastic dynamical
systems heavily rely on Monte Carlo sampling. As we demonstrate in this thesis, accurate
prediction necessitates many particles, which induces a prohibitively high computational
cost. To address this issue, we propose an alternative method that is computationally
efficient and avoids the need for extensive Monte Carlo sampling. Our method relies on
an assumed density approach to approximate the predictive distribution of the model.
Specifically, we approximate the model’s predictive distribution as a Gaussian at each
time step. We estimate its moments by progressive moment matching horizontally in the
time direction and vertically through neural network layers. Our proposed method is
computationally more efficient than existing numerical integration schemes, as it exploits
the layered structure of neural networks. This unimodal approximation lays the foundation
for more complex approximations in the later parts. To assess the efficacy of our approach,
we explore the application of our method in different domains.
In the second part of this thesis, we focus on partially observable systems and extend our
framework towards deterministic uncertainty modeling with interacting agents, where
each agent represents a vehicle in an autonomous driving setting. As a graph can capture
the relations between different agents, we use a DSSM with graph neural networks in the
transition model. Moreover, we extend our deterministic moment matching scheme to ac-
commodate the multimodal nature of traffic forecasting. We demonstrate the applicability
of our proposed framework on different autonomous driving datasets.
Finally, we address the challenge of incorporating model uncertainty into DSSMs, which
is the uncertainty arising from the lack of knowledge. We achieve this by introducing
uncertainty over the neural network weights in the transition model. However, accounting
for both data and model uncertainty during inference is computationally expensive, as
it requires marginalization over both sources of uncertainty. To address this pain point,
we extend our deterministic approximation framework towards uncertainty propagation
rules that account for both sources of uncertainty. We provide benchmarks on different
domains that demonstrate the applicability of our model as a general-purpose tool.
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Zusammenfassung

In dieser Dissertation liegt der Fokus auf der Modellierung dynamischer Systeme im
Kontext des autonomen Fahrens mithilfe neuronaler Netze. Dabei legen wir drei Anfor-
derungen an das Modell fest, die aufgrund der Verwendung von leistungsarmen und
energiesparenden Chips in autonomen Fahrzeugen mit geringen Rechenkosten erfüllt
werden müssen. Die erste Anforderung besteht darin, dass unser Modell die aleatorische
Unsicherheit präzise erfassen muss. Diese Unsicherheit kann nicht durch das Sammeln
zusätzlicher Daten reduziert werden. Sie entsteht, da wir nicht in der Lage sind, alle
Zustände vollständig zu beobachten, wie zum Beispiel die Absicht des Fahrers. Um dies
zu veranschaulichen, betrachten wir ein Fahrzeug, das sich einer Kreuzung nähert und
die Wahl hat, nach links oder rechts abzubiegen. Wenn der Fahrer keinen Blinker ver-
wendet, können wir nicht vorhersagen, in welche Richtung er abbiegen wird. Die zweite
Anforderung besteht darin, dass das Modell die Interaktionen zwischen verschiedenen
Verkehrsteilnehmern berücksichtigen muss. Die Modellierung dieser Interaktionen ist
entscheidend für die Verkehrsvorhersage, da die Handlungen eines Verkehrsteilnehmers
die Handlungen anderer Verkehrsteilnehmer beeinflussen können. Ein Beispiel hierfür ist
eine Situation, in der ein Fahrzeug in die Spur eines anderen Fahrzeugs einfädelt. Beide
Fahrzeuge müssen miteinander interagieren und ihre Geschwindigkeit anpassen, um das
Einfädeln zu ermöglichen. Schließlich muss unser Modell die epistemische Unsicherheit
berücksichtigen, die aus dem Mangel an Wissen resultiert, da unser Trainingsdatensatz
nicht alle möglichen Verkehrsszenarien abdecken kann. Die Berücksichtigung der epis-
temischen Unsicherheit ist besonders wichtig für Verkehrsszenarien, die während des
Trainings nicht beobachtet wurden. Ohne diese Unsicherheit einzubeziehen, ist das Modell
auf die Modellierung der aleatorischen Unsicherheit beschränkt.
Um diese Herausforderungen zu bewältigen und gleichzeitig einen geringen Rechen-
aufwand zu gewährleisten, stellen wir verschiedene Erweiterungen für neuronale Zu-
standsraummodelle vor. Ein Zustandsraummodell beschreibt ein teilweise beobachtetes
System, bei dem jede Emission von einem entsprechenden latenten Zustand erzeugt wird.
Die Dynamik der latenten Zustände folgt einer Markov-Struktur, bei der der Zustand

vi



zu jedem Zeitpunkt ausschließlich vom Zustand des vorherigen Zeitpunkts abhängt. Die
Stochastizität im Zustandsraummodel ermöglicht es uns, die aleatorische Unsicherheit zu
modellieren.
Nach einer Einleitung und der Vorstellung relevanter Hintergrundinformationen konzen-
trieren wir uns im ersten Teil der Dissertation zunächst auf vollständig beobachtbare Syste-
me, bevor wir zu teilweise beobachtbaren Systemen übergehen. Klassische Methoden zur
Simulation stochastischer dynamischer Systeme verwenden oft Monte-Carlo-Simulationen.
In dieser Dissertation zeigen wir, dass eine genaue Vorhersage eine hohe Zahl von Partikeln
erfordert, was zu hohen Rechenkosten führt. Um dieses Problem zu lösen, schlagen wir
eine alternative Methode vor, die rechenintensive Monte-Carlo-Simulationen vermeidet.
Unsere neue Methode verwendet eine Gauß-Verteilung zur Approximation der Vorhersage-
verteilung in jedem Zeitschritt. Die Momente der Gauß-Verteilung im nächsten Zeitschritt
werden als eine Funktion der Momente im vorherigen Zeitschritt bestimmt. Dabei werden
die Momente horizontal in Zeitrichtung und vertikal durch die Schichten der neuronalen
Netze propagiert. Unsere vorgeschlagene Methode ist rechnerisch effizienter als beste-
hende numerische Integrationsverfahren, da sie die schichtweise Struktur neuronaler
Netze ausnutzt. Um die Effektivität unseres Ansatzes zu bewerten, untersuchen wir die
Anwendung unserer Methode in verschiedenen Domänen.
Im zweiten Teil der Dissertation konzentrieren wir uns auf teilweise beobachtbare Systeme
und erweitern unsere Methode aus dem vorherigen Teil der Dissertation, um dynamische
Systeme mit interagierenden Agenten zu modellieren. Hierbei repräsentiert jeder Agent
ein Fahrzeug in einer autonomen Fahrumgebung. Da ein Graph Beziehungen zwischen
Agenten modellieren kann, verwenden wir neuronale Netze, die auf die Modellierung von
Graphen spezialisiert sind. Zusätzlich erweitern wir die unimodale Approximation, die im
ersten Teil der Dissertation vorgestellt wurde, zu einer multimodalen Approximation. Wir
zeigen die Anwendbarkeit unserer Erweiterungen anhand verschiedener Datensätze im
Kontext der Verkehrsvorhersage.
Im letzten Teil der Dissertation führenwir Unsicherheiten in den Gewichten der neuronalen
Netze ein, um die epistemische Unsicherheit zu modellieren. Ohne Berücksichtigung der
epistemischen Unsicherheit ist die Modellierung auf aleatorische Unsicherheit beschränkt.
Die Berücksichtigung sowohl der epistemischen als auch der aleatorischen Unsicherheit ist
rechnerisch aufwendig, da über beide Unsicherheitsquellen während der Inferenz margi-
nalisiert werden muss. Wir erweitern unsere Methode aus dem ersten Teil der Dissertation
zur Schätzung der Vorhersageverteilung, um den Einsatz von neuronalen Netzen mit
stochastischen Gewichten zu ermöglichen. Wir demonstrieren die Anwendbarkeit unserer
Erweiterungen anhand von Experimenten in verschiedenen Domänen.
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1. Introduction

Autonomous driving is a challenging task that can be split into three subproblems. First,
the surrounding environment needs to be perceived, which involves, for example, tracking
vehicles with onboard cameras and other sensors [1, 2]. Subsequently, it is necessary
to reason about the future trajectories of surrounding traffic participants [3, 4, 5, 6,
7, 8]. Finally, autonomous vehicles must decide which action to take while ensuring
safety requirements [9, 10, 11]. However, there are also approaches that address these
subproblems together. For instance, some methods directly forecast the future behavior of
traffic participants based on sensor data [12, 13] or learn a policy from raw data [14]
and mitigates modeling the behaviour of surrounding traffic participants.
This thesis focuses on modeling complex dynamical systems using observations from a
perception module. Our emphasis lies in modeling the dynamical aspects of the system,
and we do not delve into the processing steps involved in handling image or radar data.
More concretely, we endeavor to answer the following question:
How can we efficiently model dynamical systems with interacting agents while accounting for
both data and model uncertainty?

To address this question, we define three goals that the model must achieve, as depicted in
Fig. 1.1. It is crucial to accomplish these goals with low cost in order to ensure efficiency.
Efficiency plays a vital role in the context of traffic forecasting because autonomous vehicles
need to reason in real-time while making computations on low-energy and low-compute
chips. Although high-compute chips for vehicles are available, their cost and energy
consumption limit their adoption [15]. Therefore, there is a strong demand for efficient
algorithms that can operate effectively on low-compute chips [16].
The first goal of the model is to accurately capture the data uncertainty [17], which is also
known as aleatoric uncertainty [18, 19]. The data uncertainty arises from the intrinsic
variability of the data, which cannot be reduced even if we collect more data. Traffic
forecasting is an inherently stochastic task with high data uncertainty as not all states
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can be observed, such as the intentions of other traffic participants. Without the ability to
observe intentions, we cannot rule out various hypotheses about the future. For instance,
consider a vehicle approaching a junction with the possibility to turn left or right. If the
driver does not use the indicator, we cannot determine which direction the driver will
follow. It is crucial to capture all possible hypotheses, as overlooking even one can lead to
potentially catastrophic scenarios.
Second, the model needs to consider interactions between different traffic participants.
Traffic is a highly interactive system, and the actions of one traffic participant influence
the actions of other traffic participants. For instance, if a driver is already in the process of
merging into a lane, it can cause hesitation in another driver who intends to make a lane
change into that same lane. Ignoring these interactions will result in an imprecise model.
Third, the model must capture the model uncertainty [17] that arises from the lack
of knowledge, also known as epistemic uncertainty [18, 19]. In contrast to the data
uncertainty, the model uncertainty can be reduced by collecting more data. However, due
to the vast number of possible traffic scenarios, it is impossible to include all of them in
the training data. Consequently, the model should handle novel and unseen scenarios by
exhibiting higher model uncertainty. This higher model uncertainty prevents the model
from making overly confident predictions in unfamiliar situations, enabling cautious and
adaptive decision-making in autonomous driving applications [20].

(a) Data uncertainty. (b) Interactions. (c) Model uncertainty.

Figure 1.1.: We define three key goals for probabilistic dynamical system models in the
context of autonomous driving: (a) capturing the data uncertainty, (b) model-
ing interactions, and (c) incorporating model uncertainty. Moreover, we need
to achieve these goals with limited computational resources.
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1.1. Contributions

The contributions of this thesis lead to a model that achieves the three aforementioned
goals, i.e., capturing data uncertainty, accounting for interactions, and incorporating
model uncertainty. We achieve these three goals with low computational cost. We rely
on Deep State-Space Models (DSSMs) that provide a principled solution for modeling an
unknown dynamical process. In short, DSSMs extend State-Space Models (SSMs) towards
neural transition and emission models. SSMs are a model class for dynamical systems
that assumes that each observation is emitted by a latent variable [21, 22]. The latent
variables are coupled via first-order Markovian dynamics, i.e., the state at each time
point depends solely on the previous time point’s state. The dynamics in latent space are
described via the transition model, while the relationship between the latent and observed
state is captured by the emission model. By relying on DSSMs, we are able to effectively
capture the inherent uncertainty present in the data. These models explicitly account for
it through the stochasticity in the transition and emission models. Below is a summary of
the contributions of this thesis.
(i) Assumed Density Approximation: We propose an algorithm for approximating the pre-
dictive distribution of a DSSM, which enables accurate predictions with low computational
cost. Our algorithm, called Bidimensional Moment Matching (BMM), models the predictive
distribution as a Gaussian at each time step. To address the intractable expectation and
covariance integrals, we perform moment matching along two dimensions: (i) horizon-
tally across time and (ii) vertically across the layers of the neural network. In order to
apply the BMM algorithm, the first two output moments for each neural net layer and
the expected Jacobian for the entire network must be computed. Output moments are
available in the literature for affine transformation, ReLU activation, and exponential
activation. We introduce a novel approximation to the expected Jacobian by assuming
decoupled activations across layers. Moreover, to enable the prediction of multimodal
distributions, we introduce a Gaussian Mixture Model (GMM) over the initial latent state
and apply the BMM algorithm to each mixture component individually. By accounting for
multiple modes, we can more accurately capture the uncertainty in the data.
(ii) Interaction Modeling: As the relations between agents can be expressed as a graph,
we propose Graph Neural Networks (GNNs) as a building block for DSSMs. A benefit of
GNNs over standard feed-forward neural nets is their ability to handle a variable number
of agents. To apply the BMM algorithm to DSSMs with GNN layers, we need to be able to
calculate the output moments of commonly used GNN layers. We derive moment matching
rules for GNN layers, such as the agent-wise affine transformation or mean aggregation.
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For scenarios involving many interacting agents, the covariance matrix calculation can
become computationally unfeasible, as each pair of agents needs to have its covariance
modeled. To tackle this challenge, we introduce several sparse covariance approximations.
(iii) Weight Uncertainty: DSSMs can capture only the intrinsic data uncertainty, also known
as aleatoric uncertainty. To account for the model uncertainty that arises from limited
knowledge, we introduce uncertainty over the neural network weights in the transition
model. We adopt an independent and identically distributed (iid) Gaussian distribution
to model the learnable weight distribution and investigate two distinct weight sampling
techniques. The first technique involves resampling the weights at each time step, while
the second technique involves sampling the weights only once at the initial time step.
We derive an extension of the BMM algorithm for both sampling methods and output
moments for neural net layers with weight uncertainty.

1.2. Outline

We outline the thesis in Fig. 1.2. After reviewing relevant background material in Chap. 2
we introduce our contributions in three chapters.

Figure 1.2.: Structure of the thesis. Chap. 2 provides an overview of relevant background
material. Chap. 3, 4, and 5 form the main parts. We highlight the problem,
the proposed solution, and our key contribution in the main chapters. We
conclude the thesis in Chap. 6.
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In Chap. 3, we focus on unimodal approximations for fully observed dynamical systems and
introduce the BMM algorithm, which enables an accurate approximation of the predictive
distribution with low computational cost. We support this chapter with experiments in
three different domains: (i) stochastic recurrent layers, (ii) time series classification, and
(iii) modeling of fully observed systems. This chapter is based on the article [23] that was
published in the IEEE Transactions on Pattern Analysis and Machine Intelligence.
In Chap. 4 we introduce GNNs in the transition model in order to account for interactions.
We extend the BMM algorithm towards GNNs and multimodal predictions. We conduct
experiments on different traffic forecasting datasets. This chapter is based on the article
[24] that was published in the Transactions on Machine Learning Research.
In Chap. 5 we introduce uncertainty over the weights to account for model uncertainty.
We derive moment matching rules for probabilistic layers and extend the BMM algorithm
towards uncertainty propagation rules that account for both data and model uncertainty.
We conduct experiments in three domains: (i) stochastic recurrent layers, (ii) filtering,
and (iii) modeling of partially observed systems. This chapter is based on a preprint [25]
that is submitted to the IEEE Transactions on Pattern Analysis and Machine Intelligence.
We conclude the thesis and give an outlook in Chap. 6.
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2. Background

We review relevant background material before we introduce our extensions to DSSMs.
In Sec. 2.1, we provide an introduction to DSSMs. Approximations to the transition
kernel and Gaussian filtering form the basis of our deterministic approximation of the
predictive distribution. The transition kernel describes the distribution of a given point in
time conditioned on a past state, while Gaussian filtering allows us to reason about the
latent distribution. We review approximation methods for the transition kernel in Sec.
2.2 and Gaussian filtering in Sec. 2.3. We introduce graph neural nets in Sec. 2.4, which
we use for interaction modeling. Lastly, we review in Sec. 2.5 probabilistic neural nets, a
model class that incorporates model uncertainty.

2.1. Deep State-Space Models

State-Space Models (SSM) are a model class for dynamical systems [21], [22] that as-
sume that each Dy-dimensional observed variable yt ∈ RDy is emitted by a latent Dx-
dimensional latent variable xt ∈ RDx . The latent variables are coupled via first-order
Markovian dynamics, i.e., the state at time point xt only depends on the state of the pre-
vious time point xt−1. Typically the observed state yt−1 does not contain all the necessary
information to predict the next observed state yt. Consider the case of traffic forecasting
in which the observed state yt contains the position of a vehicle but not its velocity or
acceleration data. We can then supply the latent state xt with the missing information to
allow for accurate forecasts about the next time point. Consequently, SSMs are a flexible
model class that allows us to make reliable forecasts about complex systems. More formally,
the generative model of a SSM can be expressed as

x0 ∼ p(x0), (2.1)
xt+1 ∼ p(xt+1|xt), (2.2)

yt ∼ p(yt|xt). (2.3)

6



Above, p(x0) is the initial distribution, p(xt+1|xt) is the transition model, and p(yt|xt) is
the emission model. The stochasticity in the transition and emission models describes the
intrinsic data uncertainty.
A Deep State-Space Model (DSSM) is a SSM with neural networks in the transition and
emission models. Commonly, these are modeled as input-dependent Gaussians [26, 27].
However, there exists also concurrent work that proposes more expressive distributions
[28]. Finally, there exists work that couples state-space models with gated recurrent
neural networks [29, 30] whose gating mechanism can help in learning long-term effects.

2.2. Transition Kernel

We provide background on how to compute the t-step transition kernel, p(xt|x0) with
t > 1, which allows us to propagate the latent state forward in time for general state-space
models. It is defined by the following recurrence

p(xt|x0) =
∫︂

p(xt|xt−1)p(xt−1|x0)dxt−1, (2.4)

where p(xt|xt−1) follows Eq. 2.2. Except for simple dynamical systems, such as linear
ones [22], there exists no analytical solution, since the distribution p(xt−1|x0) has to be
propagated through the transition model p(xt|xt−1).
Various approximations to the transition kernel have been proposed that can be split into
two groups: (i) Monte Carlo (MC) based approaches [31, 32, 33] and (ii) deterministic
approximations based on Assumed Densities (AD) [34]. While MC based approaches can,
in the limit of infinitely many samples, approximate arbitrarily complex distributions,
they are often slow in practice, and their convergence is difficult to assess. In contrast,
deterministic approaches often build on the assumption that the t-step transition kernel can
be approximated by a Gaussian. This assumption can be justified if the transition model
can be locally approximated by a linear Gaussian and the observations are sufficiently
densely sampled [35]. The AD approach approximates the t-step transition kernel as

p(xt|x0) ≈
∫︂

p(xt|xt−1)N (µt−1,Σt−1)dxt−1

≈ N (µt,Σt), (2.5)

where the latent state xt is recursively approximated as a Gaussian with mean µt ∈ RDx

and covariance Σt ∈ RDx×Dx . This simplifies the calculations for solving Eq. 2.4 to
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approximating the first two moments. There exist generic numerical integration schemes
such as cubature or linearization to approximate the intractable integrals [36, 34, 37].
However, as we will show in this thesis, standard integration schemes scale unfavorably
with increasing dimensionality in terms of integration error and time requirements.

2.3. Gaussian Filtering

In filtering applications, we are interested in the distribution p(xt|y1:t), where y1:t =
{y1, . . . , yt} denotes the past observations. We denote with the upper index x the moments
of xt ∼ N (µx

t ,Σ
x
t ) and with upper index y the moments of yt ∼ N (µy

t ,Σ
y
t ). For deep

state-space models, the filtering distribution becomes analytically intractable due to the
use of nonlinear neural networks in the transition and emission models. To approximate
this distribution, we use a general Gaussian Filter [22]. This approximation involves
iterating through a prediction and an update step, which we will describe in the following.
In concurrent literature [38], the term prior is used to refer to p(xt|y1:t−1). Building upon
this line of research, we introduce the term joint prior to describe p(xt, yt|y1:t−1).
Prediction: Approximate the prior p(xt|y1:t−1) with

p(xt|y1:t−1) =
∫︂

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

≈
∫︂

p(xt|xt−1)N (µx
t−1,Σ

x
t−1)dxt−1

≈ N (µx
t|t−1,Σ

x
t|t−1), (2.6)

where p(xt+1|xt) refers to the transition model defined in Eq. 2.2. We arrive at Eq. 2.6
by multiple rounds of moment matching. First, we approximate the filtering distribution
p(xt−1|y1:t−1) as a Gaussian, and then we approximate the prior p(xt|y1:t−1) as another
Gaussian. Here, the index t|t′ denotes prior moments, i.e., the moments at time step t
conditioned on the observations up to time step t′. If t = t′, we omit the double index.
Update: Approximate the joint prior p(xt, yt|y1:t−1)

p(xt, yt|y1:t−1) = p(yt|xt)p(xt|y1:t−1)
≈ p(yt|xt)N (µx

t|t−1,Σ
x
t|t−1)

≈ N

⎛⎝⎡⎣µx
t|t−1

µy
t|t−1

⎤⎦ ,

⎡⎣Σx
t|t−1 Σxy

t|t−1

Σyx
t|t−1 Σy

t|t−1

⎤⎦⎞⎠ , (2.7)
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where Σxy
t|t−1 ∈ RDx×Dy is the cross-covariance between xt and yt and the distribution

p(yt|xt) is defined in Eq. 2.3. Building a Gaussian approximation to the joint prior (Eq.
2.7) can be performed by similar numerical integration schemes as discussed in Sec. 2.2,
i.e., cubature or linearization. Afterwards, we can calculate the filtering distribution
p(xt|y1:t) by conditioning the joint prior on the observation yt

p(xt|y1:t) ≈ N (µx
t ,Σ

x
t ), (2.8)

where Eq. 2.8 can be obtained from Eq. 2.7 by standard Gaussian conditioning [22]. The
resulting distribution has the below moments

µx
t = µx

t|t−1 +Kt(yt − µy
t|t−1), (2.9)

Σx
t = Σx

t|t−1 −KtΣ
y
t|t−1K

⊤
t , (2.10)

where Kt ∈ RDx×Dy is the Kalman gain

Kt = Σxy
t|t−1

(︂
Σy
t|t−1

)︂−1
. (2.11)

Prior work in the context of DSSM and Gaussian filters [28] encodes observations into
a latent space with an invertible neural net and then relies on a linear SSM formulation
to be able to solve the filtering equations exactly. To the best of our knowledge, no prior
work applies Gaussian filters to general DSSMs.

2.4. Graph Neural Networks

Graph neural networks (GNNs) have emerged as a powerful method for interaction model-
ing [39, 40, 41]. Given a set of agents and relational information in the form of a graph,
each agent corresponds to one node in the graph that is equipped with a set of features.
The relation between the agents is encoded via the edges, and information exchange
between the agents takes place by sending messages along the edges. By performing
multiple rounds of message-passing, information can flow along the graph. This allows for
interactions between non-adjacent agents.
More formally, we define the structure of our GNN as follows. For M agents, a GNN
receives as inputs a set of node features x = {xm}Mm=1, where x ∈ RMDx and xm ∈ RDx ,
and a set of edges E = {em,m′}Mm,m′=1 which is part of the context variable I ∈ RDI . The
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edge attribute em,m′ has a binary encoding, where em,m′
= 1 if agent m and agent m′

are related. The GNN output is an update of the node features, i.e., z = GNN(x, I) with
z ∈ RMDz , and consists of the following two steps that may be repeated multiple times:
1. For each agent m, receive message xNm ∈ RDx by aggregrating information from
neighboring agents:

xNm = AGG
(︂
{xm′ |em,m′

= 1}
)︂
= AGG (x, I) , (2.12)

where {xm′ |em,m′
= 1} denotes the set of all neighbours of nodem. The aggregation

operation AGG : RMDx × RDI → RDx is permutation invariant, i.e., it does not
change when the ordering of the inputs is swapped and generalizes to a varying
number of inputs. A commonly used aggregation operation that we also apply in
our work is the mean function.

2. For each agent m, update the node information:

zm = UPDATE(xm, xNm , I), (2.13)

where UPDATE : RDx × RDx × RDI → RDz is typically implemented by a neural
network.

A simple form of an interacting dynamical system takes the features of each agent at its
current position and connects agents within a predefined radius with edges. The GNN
operation updates each agent’s position and velocity information by taking information of
the adjacent traffic participants into account.

2.5. Probabilistic Neural Networks

We refer to a neural network as probabilistic if it accounts for uncertainty over the weights.
This includes a broader class of models than those in the Bayesian formalism. The classical
Bayesian formalism defines a prior p(w|ϕ) with hyperparameters ϕ over the weights
w ∈ RDw and a likelihood p(D|w) of observing the data D. The posterior p(w|D) is the
quantity of interest. During posterior inference, the hyperparameters ϕ of the prior are
kept constant. As an analytical solution to the posterior is intractable, either Markov Chain
Monte Carlo (MCMC) [42] or Variational Inference (VI) [43] is used. VI introduces an
approximate posterior q(w) and maximizes the Evidence Lower Bound (ELBO)

Eq(w)[log p(D|w)]− KL(q(w)|p(w|ϕ)). (2.14)
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An alternative to the Bayesian formalism consists of first introducing noise over the weights
and marginalizing it out in the subsequent step

argmax
ϕ

log

∫︂
p(D|w)p(w|ϕ)dw, (2.15)

which is also known as Type-II Maximum Likelihood (ML) or empirical Bayes. This is not
a Bayesian method as the prior p(w|ϕ) is learned. In contrast, the prior is kept constant in
the Bayesian formalism. Notably, [44] learned the prior while inferring the posterior over
the neural network weights using VI. Maximizing the marginal likelihood has been used
in various machine learning applications, such as evidential deep learning [45, 46, 47],
prior networks [48, 49], or PAC-based deep learning [50, 51, 52].
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3. An Assumed Density Approximation for
Fully Observed Dynamical Systems with
Deep Gaussian Transition Models

In this chapter, we derive a novel deterministic approximation to the transition kernel for
fully observed dynamical systems driven by Deep Gaussian Transition Models (DGTMs). Our
novel approximation allows for accurate and calibrated predictions with low computational
cost. This solution builds the first step towards deterministic modeling of more complex
dynamical systems that can be used for traffic forecasting.
A DGTM models the dynamics of an environment with a mean update function governing
the deterministic component and a covariance update function governing the instanta-
neous distortions. In essence, the covariance update function models the inherent data
uncertainty. Both update functions are parameterized by deep neural networks. We focus
on DGTMs with residual connections, which have a large potential to provide an attractive
tool to the machine learning community. These models exhibit strong theoretical links
to Neural Ordinary Differential Equations (NODEs) [53], Neural Stochastic Differential
Equations (NSDEs) [54], and Gaussian Processes (GPs) [55, 56].
We focus on a central observation: when dynamics is governed by a DGTM, accurate
approximation of the transition kernel with Monte Carlo (MC) sampling requires a pro-
hibitively large sample set, i.e., computation time. We present a newmethod that allows for
a deterministic approximation of the transition kernel. This method offers well-calibrated
prediction uncertainties while requiring much fewer computational resources compared
to traditional Monte Carlo sampling techniques. As visualized for a toy case in Fig. 3.1,
DGTM predictions with MC sampling require a large sample set to catch up with the
calibration level of our deterministic method.
We summarize our contributions as follows:
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Figure 3.1.: Our deterministic approximation provides well-calibrated uncertainty scores
with a computational cost equal to 12 particles. Reaching a comparable level
of calibration by Monte Carlo sampling demands at least 64 particles.

(i) Performing Bidimensional Moment Matching (BMM) to approximate the intractable
expectation and covariance integrals: horizontally across time and vertically across
the layers of mean and covariance update neural nets.

(ii) Using Steins’s lemma to simplify the calculation of covariances while matching
moments across time.

(iii) Approximating the expected Jacobian of a neural net accurately while matching
moments across layers.

We investigate the numerical properties of the BMM algorithm in Sec. 3.4 and provide
benchmarks against well-established baselines in Sec. 3.5 on various applications.

3.1. Deep Gaussian Transition Models

We are concerned with the model family that describes the dynamics of aDx−dimensional
stochastic process xt as a deep Gaussian transition model with the below form

xt+1 ∼ N (xt+1|xt + f(xt)∆t,diag(r(xt))∆t). (3.1)

Above, f : RDx → RDx is the mean update function that governs the deterministic
component of the DGTM. The covariance update function r : RDx → RDx

+ models the
stochasticity of the system. We assume that both f(xt) and r(xt) are neural nets with
varying numbers of hidden layers and activation functions. We use the shorthand notation
w = {wf , wr} to represent the set of all weights, where wf corresponds to the weights of
the mean update and wr corresponds to the weights of the covariance update. Further,
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∆t ∈ R+ is the time step size. We assume an evenly spaced discretization, though the time
step size∆t can be chosen dynamically if desired. The residual structure, i.e., xt+f(xt)∆t,
allows for better gradient flow and eases the learning problem [57].
We can interpret the transition model (Eq. 3.1) as a discretized NSDE [54]. This in-
terpretation allows us to access the t-step transition kernel p(xt|x0, w) by solving the
Fokker-Planck-Kolmogorov (FPK) equation, which is a potentially high-dimensional partial
differential equation with an often intractable solution. As the transition kernel is necessary
for likelihood-based parameter inference schemes as well as for uncertainty quantification,
various approximations of p(xt|x0, w) have been proposed, e.g., MC based approaches
[31, 32, 33], methods based on approximate solutions to the FPK equation [58, 59], or
deterministic approximations based on an assumed density [34]. Prior work in the context
of NSDEs [54, 60] commonly approximates the transition kernel via MC methods. As we
find out that sampling noise impairs the predictive calibration (see Fig. 3.1), we derive
a novel deterministic approximation of the transition kernel, which efficiently exploits
the layered structure of neural networks. To make our writing concise, we exclude the
dependence on w in the subsequent text unless it is necessary for defining the loss function.
Instead, we use a shorter notation, denoted as p(xt|x0, w) = p(xt|x0).

3.2. Bidimensional Moment Matching

As our approximation of the transition kernel performs moment matching in two directions:
(i) time and (ii) layer depth, we term our method Bidimensional Moment Matching (BMM).
We craft our solution in three steps: (i) approximating the process distribution at every
discretization point as a Gaussian, (ii) analytically marginalizing out the transition noise
from moment matching update rules, and (iii) approximating the intractable terms in the
moment calculations.
Since the transition noise injects randomness to any arbitrarily small time interval, the
solution of any DGTM with mean and covariance update networks with at least one hidden
layer is analytically intractable. As noted in Sec. 2.2, we may express the t-step transition
kernel for a given x0 as a series of nested integrals p(xt|x0) =

∫︁
p(xt|xt−1)p(xt−1|x0)dxt−1.

This expression needs to be solved recursively for a given x0 with p(x1|x0) given by Eq.
3.1. Prior work [61, 60] evaluates this intractable recurrence relation via MC integra-
tion. After sampling multiple trajectories, the dependence on the previous time step can
be marginalized out, resembling the transition kernel approximation in the simulated
maximum likelihood method [31, 32].
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3.2.1. Assumed Process Density

As the solution to the nested integrals, which describes the t-step transition kernel of a
DGTM (Eq. 2.4), is intractable for non-trivial architectures, we approximate the transition
kernel at every step t by a Gaussian p(xt|x0) ≈ N (µt,Σt), with mean µt ∈ RDx and
covariance Σt ∈ RDx×Dx . This approximation simplifies the problem to calculating the
first two moments of the transition kernel. Plugging the Assumed Density (AD) into
the recurrence relation for estimation of p(xt|x0), as defined in Eq. 2.4, i.e., p(xt|x0) =∫︁
p(xt|xt−1)p(xt−1|x0)dxt−1, amounts to approximating the transition kernel at every time
point by matching moments progressively in the time direction. We refer to this chain of
operations as Horizontal Moment Matching (HMM).
Calculating µt and Σt does not appear to be a simpler problem at first sight than solving
Eq. 2.4. However, it is possible to obtain a more pleasant expression by reparametrizing
the transition kernel p(xt|x0) as

ζt−1 ∼ N(ζt−1|0, I), xt−1 ∼ N (xt−1|µt−1,Σt−1),

xt = xt−1 + f(xt−1)∆t+
√︁
diag(r(xt−1))∆tζt−1, (3.2)

where I is the identity matrix with appropriate dimensionality and √
· is the Cholesky

decomposition. We arrive at the following view of the first moment of p(xt|x0) using the
law of the unconscious statistician

µt = E[xt−1 + f(xt−1)∆t+
√︁
diag(r(xt−1))∆tζt−1]

= µt−1 + E[f(xt−1)]∆t, (3.3)

where E[f(xt)] ∈ RDx is the expected value of f(xt). In order to derive a tractable
expression for the variance Σt = E[xtx⊤t ] − E[xt]E[xt]⊤, we first evaluate the second
central moment

E[xtx⊤t ] = E
[︁
(xt−1+f(xt−1)∆t)(xt−1+f(xt−1)∆t)⊤

]︁
+ diag (︁E[︁r(xt−1)]︁)︁∆t, (3.4)

since E[ζt−1] = 0 and E[ζt−1ζ⊤t−1] = I. Using the bilinearity of the covariance operator, we
obtain the below solution to the second moment of p(xt|x0)

Σt = Σt−1+Cov[f(xt−1)]∆t2+Cov[f(xt−1), xt−1]∆t+

Cov[f(xt−1), xt−1]
⊤∆t+ diag (E[r(xt−1)])∆t, (3.5)

where Cov[f(xt)] ∈ RDx×Dx is the covariance of f(xt), Cov[xt, f(xt)] ∈ RDx×Dx is the
cross-covariance between the arguments, and E[r(xt)] ∈ RDx is the expected value of
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r(xt). Eq. 3.3 and 3.5 have no closed form solution for neural nets and require numerical
approximation. Moment matching solutions along similar lines have been developed
earlier for SDEs [34, 36], which rely on standard numerical integration schemes. In
contrast, we develop in the following sections an integration scheme that efficiently uses
the layered structure of neural nets, resulting in a more accurate and faster method.

3.2.2. Computing the Moments of the Update Functions

In the following discussion, we focus on approximating the output moments of the mean
update f(xt). We do not delve into the details of the covariance update r(xt), as its
moments can be approximated in the same manner. After applying the HMM scheme,
the terms E[f(xt)] and Cov[f(xt)] amount to the first two moments of a random variable
obtained by propagating xt ∼ N (µt,Σt) through the neural net

f(xt) = uL(uL−1(. . . u2(u1(xt)) . . .)), (3.6)

composed of a chain of L simple functions (layers) ul : RDx,l−1 → RDx,l , where xlt ∈ RDx,l

are the features at layer l at time step t. These functions are typically an alternation of
affine transformations and nonlinear activations. Calculating the moments of f(xt) is
analytically intractable due to the nonlinear activations. We approximate this computation
by another round of moment matching, this time by propagating the input noise through
the neural net. We define the input as x0t = xt and the output as xLt = f(xt). To
approximate the distributions at each layer, we recursively approximate them as Gaussians

p(ul(x
l−1
t )) = p(xlt) ≈ N (E[xlt],Cov[xlt]) (3.7)

with mean E[xlt] ∈ RDx,l and covariance Cov[xlt] ∈ RDx,l×Dx,l . The moments at the
last layer L correspond to the expected value of f(xt), which is denoted as E[xLt ] =
E[f(xt)], and its covariance, denoted as Cov[xLt ] = Cov[f(xt)]. We refer to applying this
approximation throughout all neural net layers as Vertical Moment Matching (VMM). We
provide moments E[xlt] and Cov[xlt] for commonly used layers in Sec. 3.3.
A similar approach has been applied earlier to Bayesian Neural Nets (BNN) for random
weights in various contexts such as expectation propagation [62, 63], deterministic
variational inference [44], and evidential deep learning [47]. To our knowledge, no prior
work has applied this approach to propagating input uncertainty through a deterministic
network in the dynamics modeling context.
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3.2.3. Computing the Cross-Covariance

The term Cov[xt, f(xt)] corresponds to the cross-covariance between the input xt, which
is a random variable, and its transformation with the mean update f(xt). Due to the
same reasons as the mean and covariance of f(xt), this cross-covariance term cannot be
analytically calculated except for trivial mean update functions. However, cross-covariance
is not provided as a direct outcome of VMM. As being neither a symmetric nor a positive
semi-definite matrix, an inaccurate approximation of cross-covariance may impair numer-
ical stability. Applying Stein’s lemma [64] for the first time in the context of matching
moments of a neural net, we obtain a form that is easier to approximate

Cov[xt, f(xt)] = ΣtE[∇xtf(xt)]
⊤, (3.8)

where E[∇xtf(xt)] ∈ RDx×Dx is the expected Jacobian. The covariance Σt is provided
from the previous time step, but the expected Jacobian needs to be calculated. Applying
the chain rule, the expectation of the derivative of a neural net with respect to a random
input reads

E[∇xtf(xt)] = E[∇xL−1
t

uL(x
L−1
t ) . . .∇xtu1(xt)], (3.9)

which is also intractable. We facilitate computation by making the assumption that the
mutual information between nonlinear feature maps of different layers is small∫︂

p(xlt, x
l′
t ) log

{︄
p(xlt, x

l′
t )

p(xlt)p(x
l′
t )

}︄
dxltdx

l′
t ≈ 0, (3.10)

for all pairs (l, l′) with l ̸= l′ and 1 ≤ l, l′,≤ L. Applying this assumption of decoupled
activations on Eq. 3.9, we get

E[∇xtf(xt)] ≈
1∏︂

l=L

E[∇xl−1
t

ul(x
l−1
t )], (3.11)

where E[∇xl−1
t

ul(x
l−1
t )] ∈ RDx,l×Dx,l−1 is the expected Jacobian of ul(xl−1t ).

We test this assumption empirically by feeding a random input x ∼ N(0, I) into a neural
net with two fully-connected and equally wide hidden layers of width H with Dropout
in between. We provide a detailed discussion on the Dropout layer in the context of
DGTMs in Sec. 3.3.3. Using the non-parametric entropy estimation toolbox1 [65], we can
1https://github.com/gregversteeg/NPEET
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Figure 3.2.: Nonlinear activations get statistically independent as the network width
increases, supporting our assumption in Eq. 3.11. Imagine amatrix containing
mutual information between all pairs of nonlinear activations xlt in a two-
hidden-layer neural net. Group its entries into blocks as shown in panel (a): the
diagonal (A) gives the entropy of an activation, the within-layer off-diagonal
block (B) gives the dependence of sibling activations, the cross-layer off-
diagonal (C) gives the dependence of activations in different layers. As seen
in panel (b), the average mutual information in blocks (B) and (C) decreases
sharply with increasing layer widthH . Solid lines and shaded areas represent
average mutual information and its standard deviation over 100 repetitions.
We show an example of thematrix with all pairwisemutual information values
for a hidden layer width of 16 neurons in panel (c).

efficiently estimate the mutual information between all pairs of hidden layer activations.
As depicted in Fig. 3.2b, the mutual information between activations at different layers as
well as within a layer shrinks fast when the hidden layers become wider. For a hidden
layer width of 16, the mutual information between different layers is by a factor of ∼100
smaller than the average entropy in a layer. For a hidden layer width of practical use, such
as 64 neurons, the mutual information between different layers is already by a factor of
∼1000 smaller than the average entropy in a layer.
Now the problem reduces to taking the expectations of the individual gradient terms.
Despite being intractable, these expectations can be efficiently approximated by reusing
the outcomes of the VMM step in Eq. 3.7 as follows

E[∇xl−1
t

ul(x
l−1
t )] ≈

∫︂
∇xl−1

t
ul(x

l−1
t )N (E[xl−1t ],Cov[xl−1t ])dxl−1t . (3.12)
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We attain a deterministic approximation to Stein’s lemma by taking the covariance Σt

from VMM and the expected gradient from Eq. 3.12:

Cov[xt, f(xt)]≈Σt

(︄
1∏︂

l=L

E[∇xl−1
t

ul(x
l−1
t )]

)︄⊤
. (3.13)

We refer to applying this approximation throughout all neural net layers as Backward
Vertical Moment Matching (BVMM). We provide the expected Jacobian E[∇xl−1

t
ul(x

l−1
t )]

for commonly used layers in Sec. 3.3.

3.2.4. The Bidimensional Moment Matching Algorithm

Given an observed initial value x0, our deterministic method approximates the transi-
tion kernel p(xt|x0) as a Gaussian p(xt|x0) ≈ N (µt,Σt). The moments are recursively
calculated via HMM by applying the moment matching rules (Eq. 3.3 and 3.5) in time
direction. We approximate E[f(xt)], Cov[f(xt)], and diag (E[r(xt)]) via VMM as defined
in Sec. 3.2.2. The cross-covariance Cov[xt, f(xt)] is obtained via Eq. 3.13. We refer to
our method as Bidimensional Moment Matching (BMM) and provide its pseudocode in
Alg. 1. The BMM algorithm uses the Vertical Moment Matching (VMM) algorithm as a
subroutine for which we provide pseudocode in Alg. 2

Algorithm 1 Bidimensional Moment Matching (BMM)
Inputs: f(xt) ▷ Mean update

r(xt) ▷ Covariance update
x0 ▷ Initial value
t ▷ Horizon

Outputs: Approximate transition kernel p(xt|x0)
µ0,Σ0 ← x0, Iϵ ▷ Initialize, with ϵ ∈ R+ being a small number
for time step t′ ∈ {0, · · · , t− 1} do ▷ Horizontal Moment Matching

E[f(xt′ )],Cov[f(xt′ )],Cov[xt′ , f(xt′ )]← VMM(f, µt′ ,Σt′ ) ▷ VMM for mean update
E[r(xt′ )], _, _← VMM(r, µt′ ,Σt′ ) ▷ VMM for covariance update
µt′+1 ← µt′ + E[f(xt′ )]∆t ▷ Mean at t′ + 1 (Eq. 3.3)
Σt′+1 ← Σt′ +Cov[f(xt′ )]∆t2 +Cov[xt′ , f(xt′ )]∆t+

Cov[f(xt′ ), xt′ ]∆t+ diag (E[r(xt′ )])∆t
▷ Covariance at t′ + 1 (Eq. 3.5)

p(xt′+1|x0)← N (µt′+1,Σt′+1) ▷ Transition kernel at t′ + 1
end for
return p(xt|x0)
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Algorithm 2 Vertical Moment Matching (VMM)
Inputs: f(xt) ▷ Neural net

µt ▷ Mean
Σt ▷ Covariance

Outputs: Approximate moments E[f(xt)],Cov[f(xt)] and cross-covariance Cov[xt, f(xt)]
E[x0

t ],Cov[x0
t ]← µt,Σt ▷ Input distribution

p(x0
t )← N (E[x0

t ],Cov[x0
t ])

for layer index l ∈ {1, · · · , L} do
See Sec. 3.3 for expectation, covariance, and Jacobian of different layers
E[xl

t]← E[ul(x
l−1
t )] ▷ Expectation at layer l (Eq. 3.7)

Cov[xl
t]← Cov[ul(x

l−1
t )] ▷ Covariance at layer l (Eq. 3.7)

J l
t ← E[∇

xl−1
t

ul(x
l−1
t )] ▷ Jacobian at layer l (Eq. 3.12)

p(xl
t)← N (E[xl

t],Cov[xl
t]) ▷ Distribution at layer l (Eq. 3.7)

end for
E[f(xt)]← E[xL

t ] ▷ Mean of f(xt)
Cov[f(xt)]← Cov[xL

t ] ▷ Covariance of f(xt)

Cov[xt, f(xt)]← Σt

(︂∏︁1
l=L J l

t

)︂⊤
▷ Cross-covariance (Eq. 3.13)

return E[f(xt)],Cov[f(xt)],Cov[xt, f(xt)]

3.3. Moments of Layers and their Derivatives

Given the VMM output of the previous layer xlt that we approximate as a Gaussian
p(xlt) ≈ N (E[xlt],Cov[xlt]), we show below how the output moments and the expected
Jacobian can be calculated for three common layer types: (i) linear layer, (ii) ReLU
activation, and (iii) Dropout. Additionally, we provide a discussion about the implications
of the Dropout layer and how it can be used to make BMM a tighter approximation.

3.3.1. Linear Layer

A linear layer applies an affine transformation
xl+1
t = Al+1xlt + bl+1, (3.14)

where Al+1 ∈ RDx,l+1×Dx,l and bl+1 ∈ RDx,l+1 correspond to the transformation matrix
and bias at layer l + 1. The output moments are analytically tractable

E[xl+1
t ] = Al+1E[xlt] + bl+1, (3.15)

Cov[xl+1
t ] = Al+1Cov[xlt](A

l+1)⊤. (3.16)
The expected Jacobian is a constant

E[∇xl
t
ul+1(x

l
t)] = Al+1. (3.17)
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3.3.2. ReLU Activation

The output moments of nonlinear activations are analytically not tractable. However, for
many types of nonlinearities in widespread use exist tight approximations. For instance,
the moments of the ReLU function

xl+1
t = max(0, xlt), (3.18)

can be approximated as depicted below [44]

E[xl+1
t ] ≈

√︂
diag(Cov[xlt])SR

(︃
E[xlt]/

√︂
diag(Cov[xlt])

)︃
, (3.19)

Cov[xl+1
t ] ≈

√︂
diag(Cov[xlt])diag(Cov[xlt])⊤F (E[xlt],Cov[xlt]), (3.20)

where SR : R → R+ is the elementwise Soft ReLU (SR) function, defined as SR(x) =
ϕ(x)+xΦ(x). We denote ϕ : R → R+ and Φ : R → R+ as the Probability Density Function
(PDF) and Cumulative Distribution Function (CDF) of a standard Gaussian variable. The
function F : RDx,l × RDx,l×Dx,l → RDx,l×Dx,l is defined as

F (E[xlt],Cov[xlt]) =
(︂
A(E[xlt],Cov[xlt]) + exp−Q(E[xlt],Cov[xlt])

)︂
. (3.21)

In order to keep the thesis self-contained, we detail the functions A : RDx,l ×RDx,l×Dx,l →
RDx,l×Dx,l and Q : RDx,l × RDx,l×Dx,l → RDx,l×Dx,l below and refer to [44] for the
derivation. After introducing the dimensionless vector ϵlt = E[xlt]/

√︂
diag(Cov[xlt]), the

function A(E[xlt],Cov[xlt]) is estimated as

A(E[xlt],Cov[xlt]) = SR(ϵlt)SR(ϵlt)⊤ + ρlt(Cov[x
l
t])Φ(ϵ

l
t)Φ(ϵ

l
t)
⊤, (3.22)

with ρlt : RDx,l×Dx,l → RDx,l×Dx,l defined as

ρlt(Cov[x
l
t]) = Cov[xlt]/

(︃√︂
diag(Cov[xlt])

√︂
diag(Cov[xlt])⊤

)︃
. (3.23)

The i, j-th element of Q(E[xlt],Cov[xlt]) can be estimated as:

Q(E[xlt],Cov[xlt])i,j =
ρlt,i,j

2glt,i,j(1 + ρ̄t,i,j)

(︂
(ϵlt,i)

2 + (ϵlt,j)
2
)︂
−

arcsin(ρlt,i,j)− ρlt,i,j

ρt,i,jglt,i,j
ϵlt,iϵ

l
t,j − log

(︄
glt,i,j
2π

)︄
, (3.24)
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with the shorthand notation glt = arcsin(ρlt) + ρlt ⊘ (1 + ρ̄lt), and ρ̄lt =
√︂

1− ρlt ⊙ ρlt. We
denote with ⊘,⊙ elementwise division, multiplication.
Since activation functions are applied elementwise, off-diagonal entries of the expected
gradient are zero. The diagonal of the Jacobian of the ReLU function is the expected
Heaviside step function [44]

diag
(︂
E
[︂
∇xl

t
ul+1(x

l
t)
]︂)︂

≈ Φ

(︃
E[xlt]/

√︂
diag(Cov[xlt])

)︃
. (3.25)

3.3.3. Dropout

Dropout is defined as the elementwise mapping

xl+1
t = xlt ⊙ βl

t/q, (3.26)

where βl
t ∈ RDx,l is a random variable consisting of Bernoulli(q) distributed entries. The

moments are available as

E[xl+1
t ] = E[xlt], (3.27)

Cov[xl+1
t ] = Cov[xlt] + diag

(︃
1− q

q

(︂
Cov[xlt] + (E[xlt])(E[xlt])⊤

)︂)︃
. (3.28)

We obtain the first moment by using the independence between xlt and βl
t

E[ul+1(x
l
t)] = E[xlt ⊙ βl

t/q] = E[xlt]E[βl
t]/q = E[xlt]. (3.29)

We derive diagonal and off-diagonal entries in Cov[ul+1(x
l
t)] separately. We obtain for

i = j

Cov[ul+1(x
l
t)]i,i = E

[︂
(ul+1(x

l
t)i)

2
]︂
− E[ul+1(x

l
t)i]

2

=
1

q2
E
[︂
(xlt,i)

2
]︂
E
[︂
(βl

t,i)
2
]︂
− E[xlt,i]2

= E
[︂
(xlt,i)

2
]︂
− E[xlt,i]2 +

1− q

q
E
[︂
(xlt,i)

2
]︂

= Cov[xlt]i,i +
1− q

q

(︂
Cov[xlt] + (E[xlt])(E[xlt])⊤

)︂
i,i

(3.30)
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and for i ̸= j

Cov[ul+1(x
l
t)]i,j = E

[︂
ul+1(x

l
t)iul+1(x

l
t)j

]︂
− E[ul+1(x

l
t)i]E[ul+1(x

l
t)j ]

=
1

q2
E
[︂
xlt,ix

l
t,jβ

l
t,iβ

l
t,j

]︂
− E[xlt,i]E[xlt,j ]

= E
[︂
xlt,ix

l
t,j

]︂
− E[xlt,i]E[xlt,j ]

= Cov[xlt]i,j . (3.31)

The Jacobian of the Dropout layer is the identity matrix

E
[︂
∇xl

t
ul+1(x

l
t)
]︂
= E

[︂
Iβl

t/q
]︂
= I. (3.32)

Dropout tightens the Gaussian assumption

As shown in the above equations, Dropout increases the value of the diagonal entries in the
covariance matrix relative to its off-diagonal entries. Consequently, Dropout is helpful to
reduce the correlation coefficient between different activations in the same layer, making
their sum approach the normal distribution due to the Central Limit Theorem (CLT).
As Dropout is added, we see in Fig. 3.3a the covariance matrix at a hidden layer to be
dominated by its diagonal values, which results in an approximately Gaussian output
as shown in Fig. 3.3b. Though Dropout does not strictly guarantee total decorrelation,
i.e., negligible off-diagonal covariances compared to diagonal ones, we observe in our
experiments this assumption to be a good approximation for neural networks layer widths
of practical relevance.
In Sec. 3.2.3, we discussed how an increasing layer width results in a decrease in themutual
information between activations within the same layer, as well as between different layers.
This observation is presented in Fig. 3.2b, where we visualize the mutual information
between different neurons for varying layer widths. For a layer width of 16, the mutual
information within a layer is approximately 10 times smaller than the average entropy in
that layer. Furthermore, for neural networks with layers containing more than 64 neurons,
the mutual information is approximately 100 times smaller. As shown in Fig. 3.2c the
mutual information is dominated by its diagonal values for a layer width of 16.
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(a) Intermediate activation.
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(b) Output distribution.

Figure 3.3.: Dropout reduces the correlation coefficient between different activations.
We pass a multivariate normal distributed random vector through a neural
net with three 50-neuron-wide hidden layers with ReLU activation. The off-
diagonals of the covariance matrix of the activation map are suppressed
when Dropout is used after each ReLU activation, as shown in panel (a)
for an intermediate layer and panel (b) for the output layer. Decorrelation
of a large number of co-variates makes a normal distribution an accurate
approximation of their sum due to the central limit theorem.

3.4. Numerical Properties

We investigate the numerical properties of the BMM algorithm in terms of integration
error, approximation error of the expected Jacobian, computation cost, and generalization
to multiple modes. We compare cubature as an alternative choice to VMM, which is
a standard numerical method for approximating the expectation of a smooth function
with respect to a normal distribution. Our empirical findings demonstrate that VMM has
favorable computational properties over cubature.

3.4.1. Cubature

Cubature estimates the expected value of a nonlinear function f(x) with respect to a
Gaussian x ∼ N (µ,Σ) as a weighted sum of point mass evaluations∫︂

f(x)N (µ,Σ)dx ≈
U∑︂
i=1

ωif(µ+
√
Σξi). (3.33)
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The coefficients ωi ∈ R and ξi ∈ RDx are predetermined by a heuristic that aims to spread
the particles in a maximally information-preserving way. There exist multiple heuristics for
choosing ωi and ξi. In this thesis, we use the commonplace heuristic Unscented Transform
(UT) [66], which evaluates the above expression as a sum of U = 2Dx + 1 elements for a
Dx−dimensional input space.

3.4.2. Approximation Error.

In Fig. 3.4a, we compare VMM and cubature in approximating E[f(x)] for a normally
distributed input x and the effect of neural net width and input/output dimensionality on
approximation accuracy for a randomly initialized neural net f(x).
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(a) Integration error comparison.

21 23 25 27

Dimensionality Dx

10 4

10 3

Re
la

tiv
e 

Er
ro

r 

Backward VMM

24

25

26

27

28

29

Hidden Layer W
idth H

(b) Error of expected Jacobian.

Figure 3.4.: Comparison of VMM versus cubature in terms of relative error. We generate
a randomly initialized neural net f(x). The dimensionalities of x and f(x)
are equal and vary in the horizontal axis. The neural net f(x) has three fully-
connected layers of varying widths color-coded according to the heatmap,
ReLU activation, and Dropout with rate 0.2. As cubature cannot handle a ran-
dom f(x) and discontinuous activations, we evaluate it with tanh activation
and without Dropout. We aim to approximate the intractable expectation
e =

∫︁
f(x)N (x|µ,Σ)dx, where µ ∼ N (0, I) and Σ ∼ W(I, dim(I)) with

Wishart distribution W . We repeat the experiment 512 times and report the
average relative error ||e− ê||2/||e||2 in panel (a), where e is represented by
averaging over 10million MC simulations and ê is approximated via cubature
and VMM, respectively. In panel (b), we report the average relative error of
the true Jacobian E[∇xf(x)], which is obtained by the Monte Carlo simula-
tion, and our approximate Jacobian obtained by backward vertical moment
matching.
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For low dimensionalities, the relative error of VMM is approximately equal to cubature.
The approximation error of VMM shrinks with increasing hidden layer width and dimen-
sionality. This is expected since summing a larger number of decorrelated variables makes
the assumption of normally distributed intermediate activations more accurate due to the
central limit theorem [67]. Similarly, we observe the approximation error of the expected
Jacobian by Backward VMM to decrease with increasing input dimensionality and hidden
layer width as shown in Fig. 3.4b.

3.4.3. Computational Cost.

It requiresO(STHDx+STH2) computations to propagate S particles with dimensionality
Dx along T time steps when dynamics are governed by a DGTM with hidden layer width
H. The first term is due to the computational cost of the H × Dx-dimensional affine
transformation in the first layer. The second term O(STH2) is due to the computational
cost of the H ×H-dimensional affine transformations in the subsequent hidden layers,
which require O(H2) computations. Our method BMM approximates the S → ∞ limit,
while requiring only O(THD2

x + TH2Dx + TH3) computations. The first two terms are
due to the computational cost of the H ×Dx-dimensional affine transformation in the first
layer. The third term is due to the computational cost of the H ×H-dimensional affine
transformations in the subsequent hidden layers. Replacing VMM with cubature in our
framework results in an algorithm requiring O(THD2

x + TH2Dx + TD3
x) computations.

Cubature requires at least O(Dx) DGTM evaluations, which causes the additional factor
Dx in the first two terms. The third term arises from the Cholesky decomposition of the
input, as shown in Eq. 3.33 during point selection. We visualize in Fig. 3.5 the wall
clock time of VMM and cubature as a function of dimensionality and hidden layer width.
Dimensionality sets a bottleneck for cubature while it barely affects VMM. Contrarily, VMM
gets significantly slower as the hidden layer width increases while the computational cost
of cubature remains similar. VMM is adaptable to setups requiring high learning capacity
by building narrow and deep architectures. However, dimensionality is an external factor
that limits the applicability of cubature.
As shown in Fig. 3.5, VMM has a runtime of approximately 10ms for an input dimension-
ality and hidden layer width up to 128 for architectures with three hidden layers, which is
sufficient for most applications. In case larger neural network architectures are required,
the runtime can be reduced by sparse covariance approximations, which we discuss in
Chap. 4.
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Figure 3.5.: We measure the computation time of the numerical experiment in Sec. 3.4.2
and report its average as a function of input dimensionality.

3.4.4. Multimodal Processes.

Deterministic prediction of unimodal densities with DGTMs is an unsolved problem of its
own. We restrict our focus in this chapter to unimodal solutions as the first inevitable step
towards multimodal solutions. That being said, our method can generalize to multiple
modes under mild assumptions. For instance, if training sequences come with the ground-
truth knowledge of the modality they belong to, a separate unimodal DGTM can be fit to
each mode, and their mixture can be used during prediction. If modality assignments are
not known a priori, an initial clustering step can be applied. We visualize prediction results
in Fig. 3.6 on the bimodal double-well dynamics after clustering the training data and
training a separate DGTM on each mode. Beyond that, we introduce in Chap. 4 another
method to approximate multimodal distributions. In short, we model the predictive
distribution as a Gaussian Mixture Model (GMM), and the distribution of the GMM at the
initial time step is modeled by an auxiliary neural net. We then apply the BMM algorithm
to each component separately.

3.5. Experiments

We demonstrate in four different experiments that DGTMs can be used for a broad range
of scenarios. In Sec. 3.5.2, we use DGTMs as a stochastic recurrent layer for neural
networks. We demonstrate the performance of DGTMs as a stochastic recurrent layer on
eight different UCI datasets. Then we benchmark DGTMs on time series classification
tasks on the MNIST and IMDB datasets in Sec. 3.5.3. In Sec. 3.5.4, we use DGTMs
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Figure 3.6.: Multimodal predictions with a DGTM applied to double-well potential dynam-
ics: xt+1 = xt + 4xt(1− x2t )∆t+

√
∆ζt. We train a separate model on each

mode and predict with BMM in panel (a) and with DGTM-MC in panel (b).

for dynamical system modeling. We benchmark on three different datasets that enable
a comparison to the state-of-the-art methods for learning-based modeling of dynamics.
Lastly, we compare in Sec. 3.5.5 our method against Monte Carlo sampling for modeling
high dimensional dynamics. We provide details regarding the evaluation in Sec. 3.5.1.

3.5.1. Evaluation Criteria

The prediction quality is assessed in terms of Mean Squared Error (MSE), Negative Log-
Likelihood (NLL), Expectation of Coverage Probability Error (ECPE), as well as the Expected
Calibration Error (ECE). Both ECPE and ECE measure the calibration of the uncertainty
estimates of our model, i.e., how well the predictive distribution covers the true data
distribution. The ECPE is a suitable metric when the target variable is continuous, while
the ECE is suitable when the target is discrete, i.e., classification tasks. ECPE measures
the absolute difference between true confidence and the empirical coverage probability as
[68]

ECPE =
1

J

J∑︂
j=1

|p̂j − pj |, (3.34)

where pj and p̂j is the true frequency and empirical frequency, respectively. Loosely
speaking, ECPE is small if p percent of the data lies in the predicted p-percent confidence
interval. We choose J = 10 equally spaced confidence levels between 0 and 1. By taking
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the average over all test samples xi ∈ Dtest, which lie in a predicted confidence interval,
the empirical frequency is estimated as

p̂j =

∑︁|Dtest|
i I{xi ≤ F̂

−1
i (pj)}

|Dtest|
. (3.35)

In contrast to [68], we consider in our work the case of multivariate predictors, which
complicates the estimation of the predicted inverse cumulative distribution function F̂−1i (p).
If xi is normally distributed, we can analytically estimate F̂−1i (p) as a function of model
outputs µi andΣi. As discussed by [69], wemay define the cumulative distribution function
as the probability that a sample lies inside the ellipsoid determined by its Mahalanobis
distance. The ellipsoidal region is analytically obtained as

(xi − µi)
TΣ−1i (xi − µi) ≤ χ2

Dx
(p) = F̂

−1
i (p), (3.36)

where χ2
Dx
is the chi-squared distribution with Dx degrees of freedom.

The ECE is commonly used for assessing the calibration quality for classification tasks. It
measures the difference between the fraction of predictions that are correct (accuracy)
and the mean of the probabilities (confidence) for a probability interval, called a bin. We
use J = 10 equally spaced bins. As an example, bin number six contains all predictions
within the probability range [0.5, 0.6). We use the calculation procedure as proposed in
[70]

ECE =

J∑︂
j=1

|Bj |
N

|acc(Bj)− conf(Bj)|, (3.37)

whereN is the number of samples, Bj is the set of predictions whose prediction confidence
falls into the j-th bin, acc(Bj) is the average accuracy in the j-th bin, and conf(Bj) is the
average confidence in the j-th bin.

3.5.2. Stochastic Recurrent Layers

DGTMs can be used as a general-purpose layer for neural networks, just as neural ODEs
[53]. Similarly, [71] proposed stochastic dynamical models as a layer and optimized
the evidence lower bound by taking samples. This idea was further expanded by [54]
to encompass continuous stochastic dynamical systems. In contrast to prior work, we
overcome the need to take samples and propose an alternative training objective based
on maximum likelihood estimation. We demonstrate its application on a regression task.
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Given an input x ∈ RDx , we aim to predict the target value y ∈ R. We propagate the input
x = x0 through the DGTM for a varying flow time t and obtain as a result xt, from which
we predict y. The mapping from x0 to xt can be interpreted as a stochastic recurrent layer.
We formulate the probability of observing the target value conditioned on the input as

p(y|x0, wf , wr, wy)=

∫︂
p(y|xt, wy)p(xt|x0, wf , wr)dxt, (3.38)

where p(xt|x0, wf , wr) is determined by the underlying DGTM with parameters wf and
wr. We approximate the solution to the above integral with our proposed BMM scheme.
We further assume that the mapping from xt to y is linear with parameters wy. A linear
mapping allows us to analytically marginalize out xt from the above expression. We learn
the parameters wf , wr, wy by Maximum Likelihood Estimation (MLE)

argmax
wf ,wr,wy

E [p(y|x0, wf , wr, wy)] . (3.39)

We vary the time t between 2 and 8 seconds and choose ∆t = 0.5 seconds.

Datasets

We use eight UCI datasets1, which have varying input dimensionality Dx and size N .
These datasets are commonplace used for benchmarking stochastic models such as neural
networks [72, 62] as well as Gaussian Processes [56, 73, 74]. We use the experimental
setup as defined in [62]. We use 20 random splits, where 90% of the data are used for
training, and 10% are used for testing. We use for all datasets a batch size of 32.

Baselines

We benchmark our method (BMM) against different DGTM variants as well as against
commonly used neural regression models. Our DGTM variants have 103Dx+51 parameters.
We use a neural mean update function with one hidden layer of size 40 with 81Dx + 40
parameters and a neural covariance update function with one hidden layer of size 10 with
21Dx + 10 parameters. After propagating an input for a defined time horizon, we use an
affine transformation with Dx + 1 parameters in order to map the DGTM prediction to
the regression target. The dropout rate has been adjusted for each dataset separately.
1https://archive.ics.uci.edu/datasets
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(i) DGTM-MC [71]: Monte Carlo sampling-based prediction with DGTM. We use for
DGTM-MC 2(2Dx + 1) particles, as it equals the number of function evaluations for
DGTM-Cubature.
(ii) Cubature: A variant of ours using cubature in place of VMM to approximate µt+1 in
Eq. 3.3 and covariance Σt+1 in Eq. 3.5.
(iii) DVI [44]: DVI is an inference technique for Bayesian neural nets. In this model class,
one arrives at a probabilistic model by allowing for uncertainty over the weights. The
evidence lower bound is approximated in a deterministic manner by applying moment
matching rules. DVI has 100Dx + 202 parameters. This makes the DGTM variants slightly
more parameter efficient as Dx ≤ 50 in all experiments. DVI has the computational
cost of O(H3), where H is the hidden layer width. For comparison, our method has the
computational cost of O(TH3) as described in Sec. 3.4.3.
(iv) Dropout [72]: This method introduces stochasticity by applying a Bernoulli distributed
masking scheme in the affine layers. This method has the least parameters: 50Dx + 101.
Dropout has the computational cost of O(SH2), where S corresponds to the number of
MC evaluations.
Dropout and DVI are strongly linked, as Dropout can be interpreted as the sampling-based
version of DVI [75]. In consequence, given a limited computational budget, Dropout can
lead to high gradient variance during training, which can result in deteriorated solutions.
Both DVI and Dropout assume a probabilistic model by injecting noise over the neural
net weights, which corresponds to the noise due to the lack of knowledge. Our proposed
model captures data uncertainty, which corresponds to irreducible uncertainty of the
data-generating process, and model uncertainty. Data uncertainty is modeled via the
covariance update function and model uncertainty via Dropout. As our model captures
both noise sources in contrast to Dropout and DVI, we expect our model to quantify
uncertainty more accurately in terms of lower NLL. Looking ahead, in Chap. 5, we will
explore more flexible approaches to incorporate model uncertainty beyond fixed Dropout
rates. Specifically, we will introduce learnable weight uncertainty as a way to account for
model uncertainty. Furthermore, when our method is used as a layer for regression tasks,
we can adjust the model capacity by increasing the flow time while keeping the number of
weights constant. Contrarily, the model capacity of DVI, as well as of Dropout, is fixed by
the architecture. In consequence, DVI and Dropout have the same disadvantages compared
to our method from a modeling perspective, i.e., they are less parameter efficient, do not
model input noise, and cannot be used out-of-the-box for dynamical stochastic systems.
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Results

We report NLL in Tab. 3.1 and RMSE in Tab. 3.2. Despite the fact that DGTMs are
dynamical systems, they can achieve competitive results as a layer. DGTM-BMM shows
decreasing RMSE and NLL with increasing flow time since the expressiveness increases.
DGTM-BMM has lower NLL than DVI in five datasets and the same NLL in one dataset.
We account the increased performance of our model to its higher parameter efficiency and
capability of modeling both noise sources, i.e., parameter and input noise. Increasing the
integration time leads in some datasets to degraded predictive performance for the MC
and cubature DGTM variants. We attribute the improved prediction accuracy of BMM over
cubature to its reduced approximation error, as demonstrated in Fig. 3.4a. We observe in
Fig. 3.7 the ECPE of our method BMM to decrease or to be on par with DGTM-MC. When
using our method only for training and instead performing testing by drawing samples,
we observe the same calibration levels as directly testing with our method. This indicates
a tight approximation of BMM since the same uncertainty calibration is reached as the
infinite particle limit at a lower computational cost.
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Figure 3.7.: Cost-benefit analysis of calibration on the regression task for a flow time
of 8 seconds. One particle is equal to one MC simulation along a trajectory.
BMM is our proposed method, Cubature is our method that uses cubature
for VMM, the orange line is training and prediction with MC sampling, and
the blue line is training with our method and prediction with MC sampling.
We show mean and standard deviation over 10 runs.

32



Table 3.1.: Negative log-likelihood values of 8 benchmark datasets. We report average
and standard error over 20 runs.

Boston Energy Concrete Wine Red Kin8nm Power Naval Protein

Dropout [72] 2.46(0.06) 1.99(0.02) 3.04(0.02) 0.93(0.01) -0.95(0.01) 2.80(0.01) -3.80(0.01) 2.89(0.00)
DVI [44] 2.41(0.02) 1.01(0.06) 3.06(0.01) 0.90(0.01) -1.13(0.00) 2.80(0.00) -6.29(0.04) 2.85(0.00)

DGTM-MC [71]
Integration Time: 2s 2.62(0.04) 1.63(0.05) 3.19(0.03) 1.01(0.01) -1.15(0.01) 2.97(0.01) -4.01(0.01) 2.88(0.01)
Integration Time: 4s 2.60(0.05) 1.33(0.08) 3.22(0.03) 1.01(0.01) -1.12(0.01) 2.99(0.01) -4.01(0.02) 2.89(0.01)
Integration Time: 8s 2.66(0.07) 0.96(0.06) 3.24(0.02) 1.06(0.01) -1.06(0.01) 3.01(0.01) -4.00(0.02) 2.93(0.01)

DGTM-Cubature (Ours, Ablation)
Integration Time: 2s 2.74(0.05) 1.79(0.02) 3.31(0.02) 0.98(0.01) -0.89(0.00) 2.85(0.01) -3.87(0.01) 2.92(0.00)
Integration Time: 4s 2.63(0.05) 1.45(0.02) 3.30(0.02) 0.98(0.01) -0.98(0.01) 2.85(0.01) -4.18(0.04) 2.89(0.01)
Integration Time: 8s 2.56(0.08) 1.42(0.02) 3.28(0.02) 0.99(0.01) -0.97(0.01) 2.86(0.01) -4.32(0.07) 2.90(0.00)

DGTM-BMM (Ours, Proposed)
Integration Time: 2s 2.45(0.02) 1.18(0.07) 3.00(0.01) 0.97(0.01) -1.14(0.00) 2.81(0.01) -3.92(0.01) 2.85(0.00)
Integration Time: 4s 2.41(0.02) 0.82(0.06) 2.92(0.02) 0.96(0.01) -1.21(0.01) 2.81(0.01) -4.01(0.01) 2.77(0.01)

Integration Time: 8s 2.37(0.03) 0.70(0.06) 2.92(0.02) 0.93(0.02) -1.22(0.00) 2.80(0.01) -4.45(0.02) 2.76(0.01)

Table 3.2.: RMSE values of 8 benchmark datasets. We report average and standard error
over 20 runs.

Boston Energy Concrete Wine Red Kin8nm Power Naval Protein

Dropout [72] 2.97(0.19) 1.66(0.04) 5.23(0.12) 0.62(0.01) 0.10(0.00) 4.02(0.04) 0.01(0.00) 4.36(0.01)

DVI [44] - - - - - - - -

DGTM-MC [71]
Integration Time: 2s 3.97(0.14) 2.68(0.07) 6.14(0.10) 0.66(0.01) 0.08(0.00) 4.42(0.03) 0.01(0.00) 4.67(0.01)
Integration Time: 4s 3.65(0.15) 2.38(0.19) 6.02(0.08) 0.66(0.01) 0.08(0.00) 4.45(0.03) 0.01(0.00) 4.66(0.01)
Integration Time: 8s 3.84(0.19) 0.73(0.08) 6.18(0.13) 0.68(0.01) 0.09(0.00) 4.56(0.03) 0.01(0.00) 4.77(0.02)

DGTM-Cubature (Ours, Ablation)
Integration Time: 2s 4.34(0.16) 2.08(0.06) 6.49(0.10) 0.64(0.00) 0.10(0.00) 4.15(0.03) 0.01(0.00) 4.51(0.02)
Integration Time: 4s 3.80(0.15) 1.37(0.03) 6.08(0.09) 0.64(0.00) 0.09(0.00) 4.17(0.03) 0.01(0.00) 4.44(0.02)
Integration Time: 8s 3.49(0.15) 1.12(0.04) 5.99(0.09) 0.64(0.00) 0.09(0.00) 4.16(0.03) 0.01(0.00) 4.44(0.02)

DGTM-BMM (Ours, Proposed)
Integration Time: 2s 3.41(0.13) 2.23(0.09) 5.47(0.10) 0.64(0.01) 0.08(0.00) 4.07(0.03) 0.01(0.00) 4.63(0.01)
Integration Time: 4s 3.17(0.14) 1.40(0.18) 5.26(0.10) 0.64(0.00) 0.08(0.00) 4.11(0.04) 0.01(0.00) 4.48(0.00)
Integration Time: 8s 3.26(0.15) 0.87(0.13) 5.12(0.09) 0.63(0.00) 0.08(0.00) 4.07(0.03) 0.01(0.00) 4.45(0.00)
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3.5.3. Time Series Classification

In time series classification, we aim to predict the label y ∈ {1, 2, . . . ,K} after observing
the time series U = {ut}T−1t=0 for T time steps. We treat the observations ut ∈ RDu as
inputs to a latent DGTM with an input-dependent transition model p(xt+1|xt, ut, wf , wr)
with parameters wf and wl. The probability of observing the label y is

p(y|U,wf , wr, wy) =

∫︂
p(y|xT , wy)p(xT |U,wf , wr)dxT , (3.40)

with the marginal distribution

p(xT |U,wf , wr) =

∫︂ T−1∏︂
t=0

p(xt+1|xt, ut, wf , wr)p(x0)dx0, . . . , xT−1. (3.41)

Our algorithm BMM allows us to approximate the marginal p(xT |U,wf , wr, wy). The
conditional distribution p(y|xT , wy) is modeled as a linear layer with parameters wy

followed by softmax in order to map xT to the distribution over class labels. Following
[44], the output moments of the softmax layer can be closely approximated, which
allows us to compute the target distribution p(y|U,wf , wr, wy) via moment matching. The
parameters wf , wr, wy are inferred by MLE similarly as in Eq. 3.39.

Datasets

We benchmark on two datasets:
(i) MNIST: This dataset consists of 60k training and 10k testing images of single digits
between 0 and 9. Each image has size 28× 28. We treat the images as time series with
length 28 and dimensionality 28. We use a batch size of 10.
(ii) IMDB: This dataset consists of 37500 training and 12500 testing sequences. Each
sequence corresponds to a movie review and has varying length between 2 and 652 words.
We follow the tutorial1 for selecting hyperparameters (e.g. batch size, word dictionary
size) since (i) it is easy to reproduce, and (ii) has already been applied in the existing
literature [76], where it was shown to be capable of highlighting differences between
models and inference strategies. We generate for each run a word dictionary of size
1000 and omit sequences that are longer than 500 words, which are in total 3 omitted
sequences. We use a batch size of 50.
1https://www.kaggle.com/code/arunmohan003/sentiment-analysis-using-lstm-pyt
orch
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Baselines

We use the same DGTM variants as in the previous section, i.e., DGTM-MC and DGTM-
Cubature. We use mean update neural networks with two hidden layers and covariance
update neural networks with one hidden layer. We choose a hidden layer size of 50 and a
latent dimensionality of 32. Additionally, we compare against two competitive time series
classification models:
(i) LSTM: We use a stacked LSTM consisting of two LSTMs with a hidden layer size of 64.
(ii) Transformer: Our Transformer architecture follows the original work1. We use 2
Transformer encoder layers with hidden size 64 and 2 attention heads.
The DGTM/LSTM/Transformer models have 11k/62k/53k parameters for the MNIST
experiment and 40k/130k/120k parameters for the IMDB experiment.

Results

We present time series classification results in Tab. 3.3. Our model DGTM-BMM achieves
the same level of performance as LSTM despite having fewer parameters and not being
tailored towards modeling long-term effects, demonstrating the applicability of our model
as a general-purpose tool. Our proposed model DGTM-BMM outperforms DGTM-MC
and DGTM-Cubature. Furthermore, it is worth noting that for the IMDB dataset, it is not
possible to train DGTM-Cubature when using a GPU with 40GB memory due to an Out of
Memory (OOM) error. We observe the Transformer model to be outperformed by LSTM
and DGTM-BMM due to possible overparameterization.
Our experimental results also hold when varying the hyperparameters. When rerunning
the IMDB experiment with an increased word dictionary of size 10k, a batch size of 250,
and a simple (one layer) architecture with 32 neurons and applying Dropout (0.25), we
can increase the performance of all methods by up to 3% without changing the relative
ranking between the methods.

1https://pytorch.org/tutorials/beginner/transformer_tutorial.html
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Table 3.3.: Results for different time series classification tasks. We report average and
standard error over 10 runs. ECE is reported in percent.

MNIST IMDB
ACC NLL ECE ACC NLL ECE

LSTM 98.19(0.05) 0.06(0.00) 2.16(0.07) 85.61(0.12) 0.34(0.00) 15.17(0.11)

Transformer 95.87(0.21) 0.13(0.01) 5.12(0.20) 82.33(0.41) 0.40(0.01) 17.59(0.28)

DGTM-MC [71] 81.60(0.53) 0.58(0.01) 20.00(0.30) 84.92(0.07) 0.35(0.00) 16.72(0.09)
DGTM-Cubature (Ours, Ablation) 95.16(0.81) 0.19(0.03) 9.19(1.07) OOM OOM OOM
DGTM-BMM (Ours, Proposed) 98.11(0.16) 0.06(0.03) 2.52(0.09) 85.87(0.16) 0.33(0.00) 15.48(0.12)

3.5.4. Dynamical System Modeling

As DGTMs describe dynamical systems, they are a natural choice for dynamical system
modeling. We may calculate the joint distribution of a trajectory X = {xt}Tt=0 governed
by the DGTM in Eq. 3.1, which is observed on T + 1 time points, as

p(X|wf , wr) = p(x0, . . . , xT |wf , wr) = p(x0)
T−1∏︂
t=0

N (xt+1|xt + f(xt)∆t,diag(r(xt))∆t).

(3.42)
Given a set of trajectories, the parameters wf , wr can be inferred by MLE as in Eq. 3.39.
This training objective requires one-step predictions and no Monte Carlo approximations.
We instead propose multi-step training with our method BMM to improve long-term
predictions. In contrast to the standard training objective, multi-step training propagates
the state forward in time without receiving any feedback, mimicking the behavior during
test time. Since we want to use the same objective during training and test time, we opt
for directly maximizing the Predictive Log-Likelihood (PLL) during training

PLL(X|wf , wr) = PLL(x0, . . . , xT |wf , wr) = log p(x0) +
T∑︂
t=1

log p(xt|x0, wf , wr), (3.43)

where the transition kernel p(xt|x0, wf , wr) for some t > 0 can be efficiently approximated
with our algorithm BMM. The observation that using one-step ahead predictions in training
is not sufficient to obtain reliable multi-step ahead predictions during testing has also been
made in [77] where the authors propose a scheduled sampling strategy to gradually switch
from single to multi-step ahead predictions during training. Multi-step ahead training
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has also been successfully applied for spatio-temporal forecasting[78] and model-based
planning [79]. Given the state x0, the PLL aims at optimizing the average marginal
log-likelihood log p(xt|x0, wr, wf ), while the standard objective aims at optimizing the
joint likelihood log p(x1, . . . , xT |x1, wf , wr). The PLL is most useful for tasks that can be
solved by assessing the marginal distributions only. An important application class that
falls into this category is in the context of autonomous driving, in which the marginal
distributions of traffic participants at a given time horizon are often sufficient to control
the car [80]. As a consequence, many papers in the autonomous driving literature report
as evaluation metrics the performance of their method at fixed time intervals which match
our PLL objective [81, 82, 83]. In contrast, optimizing the joint log-likelihood is preferred
for tasks that require sampling realistic-looking trajectories, as it is done in sentence
generation [84].

Datasets

We benchmark on three datasets:
(i) Lotka-Volterra: We choose stochastic Lotka-Volterra equations as in [85]

xt+1 =

⎡⎣xt,1
xt,2

⎤⎦+

⎡⎣2xt,1 − xt,1xt,2

xt,1xt,2 − 4xt,2

⎤⎦∆t+

⌜⃓⃓⃓
⎷
⎡⎣0.05 0.03

0.03 0.09

⎤⎦∆tζt.

We generate 128 paths with a small step size of∆t = 10−5 seconds. Afterward, we coarsen
the dataset such that 200 equally spaced observations between 0− 10 seconds remain.
The first 100 observations are used for training, and the remaining 100 observations for
testing. We use a batch size of 16 and a prediction horizon of 10 steps.
(ii) Beijing Air Quality: The atmospheric air-quality dataset1 from Beijing [86] consists of
hourly measures over the period 2014-2016 at three different locations. The air quality
is characterized by 10 different features at each location. Including the timestamp, we
obtain in total 34 features. We follow [87] for designing the experimental setup. The first
two years are used for training, and we test on the first 48 hours in the year 2016. We use
a batch size of 16 and a prediction horizon of 10 steps for training.
(iii) 3-DOF-Robot: The 3-DOF-Robot dataset2 [88] consists of multiple trajectories with
length 14000, 3 input, and 9 output dimensions, recorded with a sampling rate of 1kHz.
1https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data
2https://owncloud.tuebingen.mpg.de/index.php/s/3THSfyBgFrYykPc?path=%2F
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The dataset was recorded at two different operating modes: (i) 50 recordings of low-
frequency oscillations and (ii) 50 recordings of high-frequency. We train on the first 38
trajectories and validate on the next 3 trajectories using the low-frequency recordings. We
use as a test set the final 9 low-frequency trajectories (IID) and the final 9 high-frequency
recordings (Transfer). We use a batch size of 16 and a prediction horizon of 16 steps for
training.

Baselines

We use the same DGTM variants as in the previous section, i.e., DGTM-MC and DGTM-
Cubature, and train them on multi-step predictions. We use mean update neural networks
with two hidden layers and covariance update neural networks with one hidden layer. The
hidden layer size is 100 for Beijing Air Quality and 50 for the other datasets. Similarly, as
in the previous section, we use LSTM/Transformer models and modify them to predict a
deterministic or stochastic output. The stochastic output of both models follows a Gaussian
distribution for which we predict the mean and variance at each prediction step. We train
LSTM/Transformer models on one-step predictions as we found multi-step training to
produce deteriorated results due to high variance. Additionally, we compare against:
(i) DGTM-One-Step: A DGTM trained on one-step predictions. The training objective is
deterministically tractable (see Eq. 3.42). Testing is done with Monte Carlo rollouts.
(ii) NODE [53]: A neural ODE that has no stochastic component. We report only MSE.
(iii) diffWGP [87]: A SDE as the predictive mean and covariance of a GP, the state of the
art of differential equation modeling with GPs.
The DGTM/NODE/LSTM/Transformer models have 3k/3k/42k/122k parameters for the
Lotka-Volterra, 24k/17k/61k/132k parameters for the Beijing Air Quality, and 5k/4k/57k
/220k parameters for the 3-DOF-Robot dataset.

Results

As shown in Tab. 3.4, BMM outperforms all baselines in all datasets with respect to both
NLL and MSE, with the only exception of NLL in the 3-DOF-Robot (IID) dataset and MSE in
the weather dataset in which it performs second best. BMM proves to make more accurate
predictions than both DGTM-MC and diffWGP, probably due to the improved stability of
the training process thanks to its deterministic objective. This outcome is despite the fact
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Table 3.4.: Forecasting results for different dynamical system modeling tasks. We report
average and standard error over 10 runs.

Lotka-Volterra Air Quality 3-DOF-Robot
IID Transfer

MSE NLL MSE NLL MSE NLL MSE NLL

LSTM (Deterministic) 1.86(0.02) - 1.59(0.08) - 0.05(0.00) - 2.67(0.05) -
Transformer (Deterministic) 1.94(0.04) - 1.41(0.12) - 0.21(0.02) - 3.52(0.17) -
LSTM (Stochastic) 2.41(0.09) 5.32(0.14) 2.37(0.04) 55.79(0.43) 0.43(0.03) 9.49(0.23) 3.03(0.06) 131(6)
Transformer (Stochastic) 2.19(0.06) 5.03(0.06) 2.49(0.05) 55.43(0.44) 0.31(0.01) 10.07(0.41) 3.62(0.16) 144(9)
NODE [53] 1.98(0.04) - 1.85(0.15) - 0.04(0.00) - 3.78(0.12) -
diffWGP [87] - - 2.39(0.04) 46.921(0.75) - - - -

DGTM-MC [71] 2.07(0.11) 4.95(0.44) 1.90(0.07) 43.84(0.75) 0.04(0.00) 21.69(1.75) 4.69(0.13) 1821(12)
DGTM-One-Step (Ours, Ablation) 2.44(0.14) 5.38(0.27) 1.75(0.09) 62.53(0.96) 0.05(0.00) 23.40(1.34) 4.43(0.11) 1437(25)
DGTM-Cubature (Ours, Ablation) 1.91(0.08) 4.84(0.19) 1.45(0.04) 37.84(0.39) 0.04(0.00) 5.65(0.33) 4.18(0.13) 352(27)
DGTM-BMM (Ours, Proposed) 1.75(0.03) 4.35(0.15) 1.44(0.10) 34.30(0.50) 0.03(0.01) 7.27(1.31) 2.31(0.08) 102(12)

that diffWGP models the transition noise as a Wishart process, while DGTM models the
transition noise as a normal distribution with diagonal covariance. Our results indicate
that using a one-step training objective may hinder learning long-term relations, as DGTM-
One-Step performs worse than DGTM-Cubature and our method in all datasets. Our
model outperforms LSTM/Transformer on stochastic time-series modeling tasks. While we
cannot rule out other causes, this might be due to the different objectives when designing
the architectures: DGTM are targeted towards stochastic dynamical systems, while LSTM/
Transformer architectures aim to capture long-term effects that are more frequent in
language modeling tasks than in the data sets used in this experiment. We observe in
all datasets that changing the Transformer/LSTM architecture from a deterministic to
stochastic output results in higher MSE. A deterministic multi-step training objective for
these two methods seems to be a promising future research direction.
Compared to the previous regression task, our method improves stronger on its baselines
in terms of uncertainty calibration. As shown in Fig. 3.8, the BMM algorithm reaches
a level of uncertainty calibration, which is prohibitively costly for MC sampling. MC
sampling requires more than 50 roll-outs in all three applications to match the ECPE,
which our deterministic BMM provides. We observe BMM to bring smaller ECPE than
cubature in three of the four plots at a comparable or less computational cost.

1After correspondence with the authors, we present the correct NLL for diffWGP. In the original paper, an
unknown issue caused a shift in the NLL.
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(a) Lotka-Volterra.
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(c) Robot, IID.
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Figure 3.8.: Cost-benefit analysis of calibration with different methods. One particle
is equal to one MC simulation along a trajectory. BMM is our proposed
method, Cubature is our method that uses cubature for VMM, the orange line
is training and prediction with MC sampling, and the blue line is training with
our method and prediction with MC sampling. We show mean and standard
deviation over 10 runs.

3.5.5. High Dimensional Dynamics

In this experiment, we compare our inference scheme against Monte Carlo Sampling
when varying the dimension Dx and the number of Monte Carlo Samples S.

Dataset

We use a Dx-dimensional Ornstein-Uhlenbeck process xt+1 = xt + (λ− xt)∆t+ Γ
√
∆tζt

for data generation. The term λ ∈ RDx is sampled from a normal distribution λ ∼ N (0, I)
and Γ ∈ RDx×Dx is sampled from a Wishart distribution Γ ∼ W(I, dim(I)). We vary
the dimensionality between Dx = 2 and Dx = 512. We generate 100 paths for each
dimensionality with a length of T = 10s and ∆t = 0.1s.

Baselines

We compare our method DGTM-BMM against DGTM-MC using a DGTM with one hidden
layer in the mean update neural net and a constant covariance update. The hidden layer
size is Dx, and the covariance update has dimensionality Dx ×Dx. We train the DGTM
on one-step predictions, which is a deterministically tractable training objective (see Eq.
3.42). After training, we use BMM as well as MC sampling for testing. This enables a fair
comparison between both methods as the same DGTM is used during test time.
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Results

We present our main findings in Fig. 3.9a. First, we observe that, for all methods, the
ECPE drops when the number of dimensions increases. The increasing complexity of
the problem might explain this; the Ornstein-Uhlenbeck process is described by O(D2

x)
many parameters, while the size of the dataset scales with O(Dx). Next, using a MC
sampling strategy with S = Dx particles, which has the same computational complexity
as our method (see Sec. 3.4.3), results in uncalibrated predictions regardless of the chosen
dimension. Even though Monte Carlo sampling can come close to the ECPE levels of
BMM, it never reaches the same ECPE level of BMM, even when using S = D4

x particles.
Furthermore, we frequently encounter an OOM error on a CPU and 32GB memory for
DGTM-MC for high dimensions and costly sampling strategies beyond S = Dx. This can
be seen by the early stopping of solid lines in Fig. 3.9a and 3.9b. Lastly, we observe in
Fig. 3.9b that MC sampling can give satisfactory results if the quantity of interest is the
mean, i.e., not the covariance. In such cases, the sampling strategy S =

√
Dx can give an

approximation of the true mean with less than 1% of relative error.
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Figure 3.9.: Comparison of BMM to MC in terms of ECPE (left) and relative error (right)
as a function of the dimensionality of x. We calculate the relative error as
1
K

∑︁K
k=1 ||ek − ek̂||2/||ek||2, where ek is the true mean at time step k and êk

is the predicted mean. The dotted black line is our method BMM, and the
solid lines represent MC sampling. The color of the solid lines indicates the
number of particles S as a function of the dimensionality Dx. The dashed
line is the sampling strategy S = Dx, which has the same computational
complexity as our method O(D2

x). We show the mean over 20 runs.
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3.6. Summary

We proposed a computationally efficient and deterministic approximation of the transition
kernel for DGTMs. Our method enables accurate prediction at a moderate computational
cost. We presented a general-purpose methodological contribution that is applicable
beyond the use cases demonstrated in our experiments.
In the following chapters, we will present several extensions of our method. These include:
(i) modeling latent dynamical systems instead of fully observed ones, (ii) modeling multiple
modes that allow for capturing complex behavior, (iii) interaction modeling between
different agents, (iv) reducing computational costs through low-rank approximations of
the covariance, (v) introducing weight uncertainty to account for model uncertainty.
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4. Cheap and Deterministic Inference for
Deep State-Space Models of Interacting
Dynamical Systems

Many dynamical systems, such as traffic flow [89, 90], fluid dynamics [91] or human
motion [92], involve interactions between agents. Graph Neural Networks (GNN) [39]
have recently emerged as a powerful tool in these settings since they allow learning the
dynamics of interacting systems from data only. Recent research has made great advances
in modeling deterministic complex systems by being able to extrapolate from systems with
a small number of agents and short time horizons to systems with a high number of agents
and long time horizons. These methods have been successfully applied to a number of
physical systems covering fluids, rigid solids, and deformable materials [93]. However,
for many real-world applications, predicting a single future trajectory for each agent is
not enough since the stochasticity in the dynamical system has significant consequences.
For instance, in autonomous driving, the driver’s intention (e.g. overtaking, turning, lane
changing) is a hidden factor that may induce different modes of driving trajectories.
In the deep learning literature, multiple architectures have been successfully applied to
partially observable dynamical systems with two prominent classes being (i) recurrent
methods that apply a fixed transition model repeatedly at each time step [95, 96], and (ii)
history-based methods that aggregate information from the past using either convolutional
filters [97, 98] or attention modules [84, 99]. Recurrent methods capture the system’s
internal state at each time point t in a latent state xt. Predicting the output in this manner
respects the causal order of the dynamical system, i.e., the latent state xt of time point t is
needed to compute the latent state xt+1 at the next time point t+1. For interacting systems,
the latent space grows linearly with the number of agents, requiring a high number of MC
samples, which can make these methods prohibitively slow. To the best of our knowledge,
numerical integration schemes have not been explored for multi-agent dynamical systems.
In contrast, probabilistic history-based methods directly predict the distribution over future
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Ground Truth
Prediction: Mode 1

Weight: 0.12
Prediction: Mode 2

Weight: 0.74
Prediction: Mode 3

Weight: 0.14

Figure 4.1.: We approximate the predictive distribution of aGraph Deep State-SpaceModel
(GDSSM) as a Gaussian mixture distribution via deterministic moment match-
ing rules. Given historical information in the form of observed trajectories
(dashed lines), our proposed GDSSM architecture predicts future dynam-
ics while taking interactions between traffic participants into account. We
present the true future trajectories (left-most plot) as solid lines. For each
mode and traffic participant, we show the predicted 95% confidence interval
of our model (three right-most plots). Our model accounts for interactions;
for example, the brown vehicle is only entering the roundabout if the blue
vehicle is staying in the roundabout (Mode 1). If the blue vehicle is leaving
the roundabout, the entering lane for the brown vehicle is blocked by the blue
vehicle (Mode 2, Mode 3), and the brown car has to wait. The ground truth
data and the map come from the rounD dataset [94].

trajectories, mitigating the sampling overhead. However, this approach makes the learning
problem hard as the model needs to learn the future distribution for multiple time steps
ahead. Complex models (e.g. large neural networks) are often necessary to account for
this. This can prevent their usage in embedded systems with limited memory capacity.
In this chapter, we present a novel approach for modeling stochastic dynamical systemswith
interacting agents that is able to generate expressive multimodal predictive distributions
over future trajectories in a runtime and memory-efficient manner. We model the unknown
stochastic dynamical system as a Deep State-Space Model (DSSMs) in which the shared
dynamics of all agents are modeled in a joint latent space using GNNs. The stochasticity
in the transition and emission models of the DSSM captures the intrinsic data uncertainty.
We remark that we do not focus on incorporating model uncertainty in this chapter.
Instead, we defer the discussion of model uncertainty to Chap. 5. Our model belongs to
the family of recurrent neural networks, and we replace the expensive MC operations
during training and testing by extending the previously introduced BMM algorithm (see
Chap. 3) to the case of DSSMs with interactions and multiple modes. We use GNNs in the
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transition model to account for interactions. In addition, to handle multiple modes, we
introduce a Gaussian Mixture Model (GMM) over the initial latent state. By approximating
the predictive distribution in a multimodal manner, we can achieve a more accurate
representation of the data uncertainty. We independently apply our moment matching
rules for each mixture component to arrive at multimodal predictive distributions over
future trajectories. In autonomous driving, the initial latent state is often estimated
from historical information and can provide information about the drivers’ intentions [3].
Conditioned on the initial latent state, the predictive distribution can often be accurately
modeled with a unimodal distribution [12, 83]. Finally, as a wide variety of dense traffic
scenarios exist, the high number of agents can result in prohibitively large GMM covariance
matrices as their size grows quadratically with the number of traffic participants. We
address this problem by proposing structured covariance approximations.
We summarize our contribution as follows:
(i) We derive output moments for GNN layers, which makes GNNs applicable to moment
matching algorithms. This leads to the first deterministic inference scheme for deep
state-space models for interacting systems.

(ii) We introduce a GMM distribution over the initial latent states that results in multi-
modal predictive distributions over future trajectories.

(iii) We propose structured approximations to the GMM covariance matrices that can
reduce the computational complexity of our approach fromO(M3) toO(M2), where
M is the number of agents.

In our experiments, we benchmark our proposed model on two challenging autonomous
driving datasets. Our results demonstrate that our deterministic model has strong empirical
performance compared to state-of-the-art alternatives. We visualize the predictive output
distribution for a real-world traffic scenario on a roundabout with multiple agents in Fig.
4.1. The future distribution is multimodal, as traffic participants can leave the roundabout
from several exits. Our model is capable of predicting multiple modes, which we efficiently
approximate as a GMM, and takes interactions into account using GNNs.
To gain further insights into our model and inference scheme, we examine the impact
of individual contributions in an ablation study. We also provide an empirical runtime
study of our covariance approximations. Our findings indicate that sparse covariance
approximations reduce the computational complexity by a factor of up to 100, which makes
them favorable for applications with limited computational resources. We conclude our
experiments by studying the generalization capabilities of our model on out-of-distribution
data, e.g., traffic environments that have not been observed during training.
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4.1. Graph Deep State-Space Models

We aim to model stochastic dynamical interactions between agents following complex
behavioral patterns, such as traffic interactions. We extend deep state-space models to
interacting systems by proposing Graph Deep State-Space Models (GDSSM), which use
graph neural networks in the transition model to capture interactions between agents.
We define our probabilistic model in this section and then introduce a novel scheme for
efficient and deterministic training and predictions in the subsequent section.
We are interested in modeling the dynamics ofM interacting agents with deep state-space
models using a coupled latent space. In other words, instead of using a Dx-dimensional
latent space for each agent, we assume that the agents share a latent space of size
MDx. Since (i) the number of agents can vary between scenes, (ii) the transition model
should be agnostic to the order of the agents, and (iii) it is challenging to parameterize
high-dimensional latent spaces, we use GNNs in the transition model.
More formally, we denote the state of agent m at time step t as xmt ∈ RDx and the set of
all state variables as xt = {xmt }Mm=1. The dynamical system follows a DSSM (see Sec. 2.1)
with a Deep Gaussian Transition model (DGTM)

x0 ∼ p(x0|I), (4.1)
xt ∼ N (xt|xt−1 + f(xt−1, I),diag (r(xt−1, I))) , (4.2)
yt ∼ N (yt|g(xt),diag (s(xt))) , (4.3)

where I ∈ RDI is the context variable that encodes auxiliary information, such as historical
or relational information. The emission model follows a Gaussian distribution with mean
g : RMDx → RMDy and variance s : RMDx → RMDy

+ , where g(xt) and s(xt) are both
neural networks with arbitrary architecture and parameters wg and ws. The mean update
f : RMDx × RDI → RMDx and the covariance update r : RMDx × RDI → RMDx

+ are
implemented with the help of graph neural networks

f(xt, I) =

⎡⎢⎢⎢⎣
f̃(x1t , x

N1
t , I)
...

f̃(xMt , xNM
t , I)

⎤⎥⎥⎥⎦ , (4.4) r(xt, I) =

⎡⎢⎢⎢⎣
r̃(x1t , x

N1
t , I)
...

r̃(xMt , xNM
t , I)

⎤⎥⎥⎥⎦ , (4.5)

with parameters wf and wr. The agent-specific mean update is denoted by f̃ : RDx ×
RDx × RDI → RDx and the variance by r̃ : RDx × RDx × RDI → RDx

+ . Both implement
the update function as general graph neural networks (see Sec. 2.4). The message to
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node m at time step t is denoted as xNm
t ∈ RDx and contains aggregated information of

the states from all neighboring agents. A deterministic variant of our model, e.g., setting
r(xt, I) = 0, has been successfully used for learning surrogate models for complex physical
systems [93]. We further assume that it is sufficient to couple the latent dynamics across
the agents (Eq. 4.2) and keep the emission model (Eq. 4.3) independent across agents.
Note that our transition model consists of a single aggregation and update step, which is
sufficient if the data is densely sampled such that the information flow between agents is
fast compared to the evolution of the state dynamics. However, extending the model to
multiple message-passing steps per time point is also straightforward by stacking multiple
GNN layers in the mean and covariance update function.
Furthermore, we note that although the transition noise factorizes across agents, correla-
tions between agents emerge since the mean and the variance depend not only on the
state of them-th agent but also on the states of all neighboring agents. After a aggregation
steps, our GNN model accounts for correlations between agent m and agent m′ provided
they are connected by a path that is at most a steps long. In contrast, methods that
only take the state of the m-th agent into account do not lead to any correlations, while
methods that take the state of all other agents into account lead to a fully correlated
covariance matrix after one time step.
To complete the probabilistic description of our model, we further specify the distribution
of the initial latent state x0 ∈ RMDx with a Gaussian Mixture Model (GMM)

v ∼ Cat([π1(I), . . . , πV (I)]), (4.6)
x0 ∼ N (x0|µ0,v(I),diag(Σ0,v(I))), (4.7)

where Cat([π1(I), . . . , πV (I)]) is a categorical distribution with V mixture components.
Each component is specified by its weight πv : RDI → R+, mean µ0,v : RDI → RMDx , and
diagonal covariance Σ0,v : RDI → RMDx

+ . The weights π1:V form a standard V -simplex.
We use a GNN, which we refer to as the embedding model h : RDI → RV+2VMDx with
weights wh, to model the initial state distribution

h(I) =

⎡⎢⎢⎢⎣
π1:V (I)

µ0,1:V (I)

Σ0,1:V (I)

⎤⎥⎥⎥⎦ . (4.8)

We assume that the context variable I contains relational information as a set of edges as
well as historical information for each agent in the form of an observed trajectory. In a
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sense, the embedding model acts hereby as a filter, which learns a distribution over the
initial latent state from past observations.
In autonomous driving, the initial latent state can be connected to the drivers’ intention
[3]. The context information I is often insufficient to rule out different hypotheses about
the future, e.g., does the car behind us want to overtake in the next five seconds or not.
Using a mixture model allows us to incorporate different hypotheses into the model in a
principled manner, which will ultimately lead to multimodal predictive distributions.
State-space models and graph neural networks have been previously combined for multi-
agent trajectory forecasting by [100]. In contrast to our work, the authors (i) use a
different model definition by applying recurrent neural networks and a non-Gaussian
density in the transition model and (ii) perform Monte Carlo sampling during inference
which can lead to slow convergence. The following section shows that our model definition
allows for more efficient training by performing deterministic moment matching rules.
We compare against Monte Carlo alternatives in our experiments.

4.2. Deterministic Approximations for GDSSMs

This section presents our novel inference scheme for GDSSMs that enables efficient and
deterministic training and predictions. In Sec. 4.2.1, we first give a short overview of exist-
ing inference techniques and compare it to our scheme, which aims at directly maximizing
the predictive log-likelihood of future trajectories. The predictive log-likelihood cannot
be computed in closed form. We propose an efficient and deterministic approximation to
it in Sec. 4.2.2 that relies on the BMM algorithm (see Chap. 3). Our moment matching
rules necessitate the computation of output moments and expected Jacobians of graph
neural network layers. We present output moments for commonly used layers in Sec.
4.2.3. As our algorithm approximates the output distribution at each time step with a
Gaussian mixture distribution over all agents, the resulting covariance matrix for each
mixture component can become computationally intractable for a large number of traffic
participants. The reason for this is the need to calculate the covariance between all pairs
of different traffic participants. We address this pain point in Sec. 4.2.4 by proposing
sparse approximations to the covariance.
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4.2.1. Parameter Inference

For the sake of brevity, we denote the set of all weights as w = {wf , wr, wg, ws, wh}. The
training objective of classical inference methods for state-space models can be formalized
as depicted below

log p(y1, . . . , yT |I, w)=log

∫︂
p(x0|I, wh)

T∏︂
t=1

p(xt|xt−1, I, wf , wr)×

p(yt|xt, wg, ws)dx0, . . . , dxT , (4.9)

which aims at directly maximizing the log-likelihood of the data. In the above equation,
the term p(xt|xt−1, I, wf , wr) is defined in Eq. 4.2 and p(yt|xt, wg, ws) in Eq. 4.3. This
quantity can only be computed in closed form if the emission and transition model are
linear Gaussians. In our case, the transition model is parameterized by a graph neural
network and the emission model by a standard neural network.
Therefore, most existing methods apply either a particle filter [101], variational inference
[26, 27], or a combination of both [102, 103, 104] to approximate the log-likelihood.
These approaches have in common that they require learning a proposal distribution
q(x0, . . . , xT |y1, . . . , yT ). In particle filtering, the proposal distribution is recursively de-
fined by the importance function q(xt|x0, . . . , xt−1, y1, . . . , yt) and is optimal in terms of
variance by setting it to the true filtering distribution [105]. Variational inference aims to
find the best approximation to the true posterior within the chosen variational family by
minimizing the Kullback-Leibler (KL) divergence between the true and approximate poste-
rior [106], while variational sequential Monte Carlo seeks to minimize the KL divergence
on an extended sampling space [104].
However, the proposal distribution is only used as an auxiliary tool during inference and
is discarded during test time. For many tasks [81, 82, 83], the quantity of interest is the
Predictive Log-Likelihood (PLL)

PLL(y1, . . . , yT |I, w) =
T∑︂
t=1

log p(yt|I, w) (4.10)

=

T∑︂
t=1

log

∫︂
p(x0|I, wh)p(xt|x0, I, wf , wr)p(yt|xt, wg, ws)dx0, xt,
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where the transition kernel p(xt|x0, I, wf , wr) is defined in Eq. 2.4. Due to the same
reasons as discussed in Sec. 3.5.4, we opt for directly optimizing the predictive log-
likelihood

argmax
w

E [PLL(y1, . . . , yT |I, w)] , (4.11)

with respect to the parameters w. In short, the predictive log-likelihood propagates the
latent state forward in time without receiving feedback from the observations, mimicking
the behavior during test time. In contrast to the predictive log-likelihood objective in the
previous chapter (Eq. 3.43), we now address a latent dynamical system and condition the
predictive log-likelihood on the context variable I. As a consequence, we need not only to
marginalize out all intermediate time steps but also all of the latent states.
For the sake of brevity, we omit the dependence on the weights w in the remainder of this
chapter. This omission is motivated by the fact that the weight dependence was solely
relevant for defining our loss function.

4.2.2. Approximating the Predictive Log-Likelihood

We are interested in the predictive log-likelihood PLL(y1, . . . , yT |I), which describes the
predictive log-likelihood of all traffic participants up to time step T . In order to calculate
it, we need to solve the nested set of integrals given in Eq. 4.10. The BMM algorithm
allows us to approximate the distribution p(xt|I) =

∫︁
p(xt|x0, I)p(x0|I)dx0 in case that

the initial state x0 has a Gaussian distribution. However, in our model formulation, the
initial latent state x0 follows a GMM to allow for multimodality. In order to account for
that, we approximate the marginal latent distribution p(xt|I) as another GMM with as
many components V as the distribution of initial state

p(xt|I) ≈
V∑︂

v=1

πv(I)p(xt,v|I). (4.12)

To approximate each mixture component p(xt,v|I), the BMM algorithm is applied individ-
ually to each component

p(xt,v|I) ≈ N (µx
t,v(I),Σx

t,v(I)), (4.13)

where µx
t,v(I) ∈ RMDx and Σx

t,v(I) ∈ RMDx×MDx are the mean and covariance of the v-th
mixture component at the t-th time step in latent space. Assuming a GMMat the initial state
allows us to efficiently obtain multimodal predictions while being computationally efficient:
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We obtain multimodal distributions by marginalizing over the mixture components, and
we compute each component efficiently by applying the BMM algorithm. Finally, we
approximate the predictive distribution p(yt|I) as a GMM

p(yt|I) =
∫︂

p(yt|g(xt),diag(s(xt)))p(xt|I)dxt

≈
V∑︂

v=1

πv(I)N (µy
t,v(I),Σ

y
t,v(I)), (4.14)

where µy
t,v(I) ∈ RMDy and Σy

t,v(I) ∈ RMDy×MDy are the mean and covariance of the
v-th mixture component at the t-th time step in the observed space. These two moments
are available as

µy
t,v(I) = E[g(xt,v)], (4.15)

Σy
t,v(I) = Cov[g(xt,v)] + diag (E[s(xt,v)]) , (4.16)

which is a direct outcome of the law of the unconscious statistician. We present the
pseudocode for computing p(yt|I) using our method in Algorithm 3.

Algorithm 3 Bidimensional Moment Matching in Latent Space (BMMLS)
Inputs: f(xt, I) ▷ Mean update

r(xt, I) ▷ Covariance update
g(xt) ▷ Mean emission
s(xt) ▷ Covariance emission
h(I) ▷ Embedding model
t ▷ Horizon
I ▷ Context variable

Outputs: Approximate predictive distribution p(yt|I)
µ0,1:V (I),Σ0,1:V (I), πv(I) = h(I) ▷ GMM at initial step, Eq. 4.8
for mixture component v ∈ {1, · · · , V } do
Solve with BMM (Alg. 1)
for time step t′ ∈ {0, · · · , t− 1} do ▷ Horizontal Moment Matching

µx
t′+1,v

← µt′ (I) + E[f(xt′ , I)] ▷ Eq. 3.3
Σx

t′+1,v
← Σt′ (I)+Cov[f(xt′ , I)]+Cov[xt′ , f(xt′ , I), ]+Cov[xt′ , f(xt′ , I)]⊤+ diag (E[r(xt′ , I)]) ▷ Eq. 3.5

end for
µy
t,v(I)← E[g(xt,v)] ▷ Eq. 4.15

Σy
t,v(I)← Cov[g(xt,v)] + diag (E[s(xt,v)]) ▷ Eq. 4.16

end for
return

∑︁V
v=1 πv(I)N (µy

t,v(I),Σ
y
t,v(I))

We note that this approximation becomes exact for locally linear Gaussian transition and
emission models, as stated in Thm. 1.
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Theorem 1. The predictive distribution p(yt|I) is analytically computed as

p(yt|I) =
V∑︂

v=1

πv(I)N (µy
t,v(I),Σ

y
t,v(I)),

for a GDSSM with the below generative model

v ∼ Cat([π1(I), . . . , πV (I)]),
x0 ∼ N (µ0,v(I), diag(Σ0,v(I))),
xt ∼ N (xt|xt−1 + f(t, v, I)xt−1, diag (r(t, v, I))) ,
yt ∼ N (yt|g(t, v, I)xt, diag (s(t, v, I))) ,

where f(t, v, I), r(t, v, I), g(t, v, I), s(t, v, I) are time t, component v, and context I depend-
ing matrices with appropriate dimensionality.

Proof. The proof is straightforward as the output moments of the transition and emission
model are analytically tractable. We provide details in App. A.1.

For general transition and emission models, the quality of this scheme depends on two
factors: (i) how well the transition and emission model can be approximated in a locally
linear fashion and (ii) if the covariance matrix Σx

t,v is small enough over the time horizon
t. Our experiments show that the approximation works well and further illustrate its
behavior on a small toy dataset in Fig. 4.2. Finally, Gaussian mixture models have also
been successfully used for filtering problems [107] where moment matching is performed
for each component individually in the prediction step.

4.2.3. Output Moments of Graph Neural Network Layers

In order to use the BMM framework, we need to be able to calculate the first two output
moments as well as the expected Jacobian of graph neural network layers. In the following,
we derive the analytic expression of the output moments and expected Jacobian for the
common graph neural net layers: (i) node-wise affine transformation and (ii) mean
aggregation. Output moments for the standard affine transformation and ReLU activation
are provided in Sec. 3.3.
Let xl,mt ∈ RDx,l be the node features at layer l of nodem at time step t and xlt = {xl,mt }Mm=1

the set of all node features with xlt ∈ RMDx,l . For the sake of brevity, we omit the index
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Figure 4.2.: Predictions after training on a one-dimensional, multimodal toy problem.
Solid black lines represent the ground truth dynamics with three modes of
equal probability. For our model, we report for each predictedmode themean,
95% confidence interval, and mixture weight. We set the dimension of the
latent space to Dx = 3 and vary (from left to right) the number of modes V
in the model from 1 to 4. For V < 3, the number of modes is too small, and
we observe mode-covering behavior. For V ≥ 3, our model can recover the
ground truth dynamics. If the number of components is too high (V = 4), the
mixture weights of redundant components are set to zero.

of the mixture component v. In the previous chapter, we used a normal distribution to
approximate the distribution at each layer, i.e., p(xlt) ≈ N (E[xlt],Cov[xlt]). In this notation,
the input xmt is represented as x0,mt . The update and aggregation functions at layer l are
denoted as ul : RMDx,l−1 → RMDx,l and ul,AGG : RMDx,l × RI → RMDx,l , respectively. We
denote the mean and covariance of a graph withM nodes at layer l and time step t as

E[xlt]=

⎡⎢⎢⎢⎣
E[xl,1t ]
...

E[xl,Mt ]

⎤⎥⎥⎥⎦ , (4.17) Cov[xlt]=

⎡⎢⎢⎢⎣
Cov[xl,1t ] . . . Cov[xl,1t , xl,Mt ]
... . . . ...

Cov[xl,Mt , xl,1t ] . . . Cov[xl,Mt , xl,Mt ]

⎤⎥⎥⎥⎦ , (4.18)

where E[xl,mt ] ∈ RDx,l and Cov[xl,mt , xl,m
′

t ] ∈ RDx,l×Dx,l . A typical GNN architecture (see
Sec. 2.4) consists of alternating aggregation steps, in which information from neighbors
is collected, and update steps, in which the features of the node are updated. For the
aggregation step, we derive the output moments for the commonly used mean aggregation
operation. For the update step, we assume that the neural network is built as a sequence
of affine transformations and nonlinearities. The output moments of nonlinear activations
are applied independently across agents. As a consequence, their rules do not change
when used in the GNN setting, and we can reuse the rules derived in Sec. 3.3.2. Hence it
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remains open to derive the output moments for affine transformations, as they are used in
GNNs. We note that the mean aggregation and the node-wise affine transformation are
special cases of a standard affine layer (see. Sec. 3.3)

Node-Wise Affine Transformation

The node-wise affine transformation is applied simultaneously to each node m at layer l
using a transformation matrix Al+1 ∈ RDx,l+1×Dx,l and a bias bl+1 ∈ RDx,l+1 . The node-
wise affine transformation can be understood as a standard affine transformation that acts
on the set of all nodes xlt as

xl+1
t =

⎡⎢⎢⎢⎢⎢⎢⎣
Al+1 0 . . . 0

0 Al+1 . . . 0
... ... . . . ...
0 0 . . . Al+1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
xl,1t

xl,2t
...

xl,Mt

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
bl+1

bl+1

...
bl+1

⎤⎥⎥⎥⎥⎥⎥⎦
= (IM ⊗Al+1)⏞ ⏟⏟ ⏞

Â
l+1

xlt + (1M ⊗ bl+1)⏞ ⏟⏟ ⏞
b̂
l+1

, (4.19)

where IM is the identity matrix with shape M ×M , 1M is a vector of ones with shape
M × 1, and ⊗ is the Kronecker product. The moments of node-wise affine transformation
are analytically available as

E[xl+1
t ] = Â

l+1E[xlt] + b̂
l+1

, (4.20)
Cov[xl+1

t ] = Â
l+1

Cov[xlt](Â
l+1

)⊤. (4.21)

Similarly, as for the standard affine transformation, the expected Jacobian of node-wise
affine transformation is analytically available as

E[∇xl
t
ul+1(x

l
t)] = Â

l+1
. (4.22)

Mean Aggregation

Let the message to node m at layer l and time step t be xl,Nm
t that we approximate as a

Gaussian xl,Nm
t ∼ N (E[xl,Nm

t ],Cov[xl,Nm
t ]). A commonly used aggregation operation is
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the mean aggregator
xl,Nm
t =

1

|Nm|
∑︂

m′∈Nm

xl,m
′

t . (4.23)

Let xl,Nt be the set of all messages, i.e. xl,Nt = {xl,Nm
t }Mm=1, that we also approximate

as a Gaussian xl,Nt ∼ N (E[xl,Nt ],Cov[xl,Nt ]). The mean aggregation can be equivalently
written as a linear transformation

xl,Nt = ul,AGG(xlt, I) = (A⊗ IDx,l
)⏞ ⏟⏟ ⏞

Âl

xlt. (4.24)

Above, A ∈ RM×M denotes the row normalized adjacency matrix, which summarizes the
edge information E in matrix format and IDx,l

denotes the identity matrix with dimen-
sionality Dx,l ×Dx,l. The Kronecker product expands the adjacency matrix accordingly to
the Dx,l-dimensional node features. Hence, the mean aggregation corresponds to a linear
transformation with a weight matrix consisting ofM ×M blocks, where each block is a
diagonal matrix of shape Dx,l ×Dx,l. Its moments are analytically available as

E[xl,Nt , I] = ÂlE[xlt], (4.25)
Cov[xl,Nt , I] = Âl

Cov[xlt](Â
l
)⊤. (4.26)

The expected Jacobian is available as

E
[︂
∇xl

t
ul,AGG(xlt, I)

]︂
= Âl

. (4.27)

4.2.4. Sparse Covariance Approximation

For settings with a large number of agentsM or with a high-dimensional state xl,mt , the
application of the BMM algorithm can become computationally expensive. In the following,
we review the computational complexity of the BMM algorithm for GDSSMs. We assume
that the GNN model consists of a mean aggregation step followed by multiple node-wise
affine transformations and nonlinearities, which is the same architecture that we employ
later on in our experiments. The mean aggregation is done for each of theDx latent states
independently, and we denote the maximum hidden layer width as H.
Computing the nonlinearities is cheap as the operation acts elementwise, and their effect
on the runtime can be neglected during this analysis. The other two operations (see Sec.
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Figure 4.3.: Groupings of the covariance matrix for graph structured data. Consider the
example graph with M = 5 agents, which is depicted in the left panel. Each
agent has dimensionality Dx. In the middle panel, we show the covariance
matrix between all agents, which consists of 5× 5 blocks, where each block
has dimensionality Dx ×Dx.

4.2.3) can be described by affine operations for which the weight matrices are heavily
structured; the mean aggregation step corresponds to a weight matrix consisting ofM×M
diagonal blocks, the node-wise affine transformation to a block-diagonal weight matrix
withM blocks of shapeH×H. Propagation of the full covariance matrix through a neural
network (forward cost) has the computational complexity of O(M2H3 + M2H2Dx +
M2HD2

x + M3D2
x), where the first term is due to the cost of the H × H-dimensional

node-wise affine transformations in the hidden layers, the second and third term are
due to the cost of the H × Dx-dimensional node-wise affine transformation after the
aggregation operation, and the fourth term is due to the aggregation operation.
The computational cost of the expected Jacobian is O(MH3 +MH2Dx +M2D2

x), and
we give its derivation in the following. Let the expected Jacobian of the aggregation
operation be E[JAGGt ] and the product of the expected Jacobians of the subsequent neural
net layers E[JNETt ] =

∏︁
E[∇xl

t
ul+1(x

l
t)]. The expected Jacobian of the neural net layers

E[JNETt ] is block-diagonal with M blocks of shape Dx × Dx and its computation takes
O(MH3 +MH2Dx) time. Multiplying E[JAGGt ] with E[JNETt ] results in a fully populated
matrix where each entry can be computed by a single dot product due to the structure of
its factors, and its computation contributes with O(M2D2

x) to the runtime.
Consequently, the total cost is dominated by the forward cost, O(M2H3 +M2H2Dx +
M2HD2

x +M3D2
x), when using the full covariance matrix. For reference, taking a Monte

Carlo approach has the computational complexityO(SMH2+SMHDx+SM2Dx) where
S is the number of Monte Carlo samples. Since the computational cost quickly becomes
intractable due to the cubic dependence with respect to the number of agents in the
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forward pass, we next propose different sparse approximations to the covariance matrix.
Independent of the chosen approximation, the cost of the expected Jacobian remains
unchanged, as it does not depend on the covariance matrix.
(i) Full: Model the full covariance matrix.
Forward cost: O(M2H3 +M2H2Dx +M2HD2

x +M3D2
x).

Total cost: O(M2H3 +M2H2Dx +M2HD2
x +M3D2

x).
(ii) Main Diagonal: Keep the diagonal entries in the covariance blocks, which corresponds
to the blue line in Fig. 4.3.
Forward cost: O(MH2 +MHDx +M2Dx).
Total cost: O(MH3 +MH2Dx +M2D2

x).
(iii) Main Blocks: Keep the block-diagonal blocks in the covariance matrix, which corre-
sponds to the orange blocks and blue lines in Fig. 4.3.
Forward cost: O(MH3 +MH2Dx +MHD2

x +M2D2
x).

Total cost: O(MH3 +MH2Dx +MHD2
x +M2D2

x).
(iv) All Diagonals: Structure the covariance in blocks of shape M × M and keep the
diagonal entries in each block, which corresponds to the blue and red lines in Fig. 4.3.
Forward cost: O(M2H2 +M2HDx +M3Dx).
Total cost: O(M2H2 +M2HDx +M3Dx +MH3 +MH2Dx +M2D2

x).
Note that setting the off-diagonal blocks to zero, as done in Main Blocks andMain Diagonal,
corresponds to an independence assumption between the agents and leads to a runtime
reduction from O(M3) to O(M2).
Finally, it is important to note that the covariance matrix only has the same structure as
the graph after the first time step. Agents that are not connected via an edge can still have
a non-zero cross-covariance at time step t, provided that they are connected by a path that
is at most t steps long. In our applications, this leads to non-sparse covariances after a few
time steps since the number of agents is small compared to the time horizon. We present
the covariance matrix at three different time steps for an exemplary scene in Fig. 4.4. The
covariance matrix has an approximately diagonal shape for a short prediction horizon of
one second. As the prediction horizon increases, the covariance matrix becomes more
complex and is no longer dominated by its diagonal entries. If required, we could further
increase the information spread across agents by using an architecture with multiple
aggregation steps within the GNN module.
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(a) Example scene.
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(b) Covariance at 1 s.
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(c) Covariance at 3 s.
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(d) Covariance at 5 s.

Figure 4.4.: We visualize an example scene from the rounD dataset [94] and the co-
variance matrix in the latent space at different time steps for the case of
a unimodal initial distribution. In the left plot, dashed lines represent the
observed history, and solid lines represent the true future trajectories.

4.3. Experiments

We provide experiments on two challenging autonomous driving datasets. The first
experiment (Sec. 4.3.2) conducts an ablation study, while the second experiment (Sec.
4.3.3) benchmarks our model against state-of-the-art methods. We provide a runtime
analysis and a benchmark of our proposed sparse covariance approximations in Sec. 4.3.4.
In Sec. 4.3.5, we analyze the generalization capabilities of our model by benchmarking
it on novel and unseen traffic environments. We provide details about the evaluation
procedure in Sec. 4.3.1.
We provide details about the training in App. A.2, and the architecture for the embedding,
transition, and emission models in App. A.5.

4.3.1. Evaluation Criteria

As evaluation metrics, we use the Root Mean Squared Error (RMSE) and the Negative
Log-Likelihood (NLL) at fixed time intervals (1s, 2s, 3s, 4s, 5s). We define the RMSE in
the multi-agent setting as

RMSE(t) =

⌜⃓⃓⎷ 1

N

N∑︂
n

M(n)∑︂
m

(ymt,n − E[ŷmt,n])T (ymt,n − E[ŷmt,n])
M(n)

, (4.28)

where N is the number of snippets in the dataset,M(n) is the number of agents in the
n-th snippet, ymt,n is the true location of the m-th agent at time point t of the n-th snippet,
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and ŷmt,n the corresponding predicted location. We assume that the probabilistic predictor
performs model averaging before making its final prediction. This score only evaluates the
goodness of the first moment and does not take any information about higher moments
into account.
In contrast, the NLL is a strictly proper scoring rule [108] that we define in the multi-agent
setting as

NLL(t) = − 1

N

N∑︂
n

M(n)∑︂
m

log p(ymt,n|I)
M(n)

. (4.29)

For deterministic GDSSMs, we approximate p(ymt,n|I) directly with the method that we
introduced in Sec. 4.2. For GDSSMs that do not follow an assumed density approach, we
approximate p(ymt,n|I) via Monte Carlo integration.

4.3.2. rounD

The rounD dataset1 [94] consists of vehicle trajectories recorded at different roundabouts
in Germany. As the roundabouts involve many interactions among vehicles, we expect the
predictive distributions to be multimodal and highly complex. We use the recordings from
the roundabout in Neuweiler near Aachen for training and testing purposes. The dataset
consists of 13,129 tracked objects recorded at 25Hz in 22 sessions, amounting to a total
recording time of 6.6 hours. We remove pedestrians, bicycles, as well as parked vehicles
from the dataset, as their influence on the vehicle behavior patterns in the roundabouts is
negligible. After dataset curation, we are left with 12,715 tracked objects. We downsample
the recordings by a factor of five and construct a dataset consisting of eight-second-long
segments with 50% overlap, resulting in 5405 snippets. We use the first three seconds as
the track history, which is part of the context variable I, and the following five seconds as
the prediction horizon. The first 18 recording sessions, corresponding to 4,314 snippets,
are used for training and validation. The final four recording sessions, corresponding to
1,091 snippets, are used for testing.
We build the connection graph by connecting vehicles with an Euclidean distance of less
than 30meters. The dataset has been recorded with drones, and we keep the original
global coordinate system.

1https://www.round-dataset.com
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Baselines

We compare our method with multiple baseline models. For each baseline, we remove one
key assumption of our model. We cite papers that employ similar ideas as appropriate. We
did not reimplement these works but performed an ablation study in which we replaced
specific components of our model in the interest of a fair comparison. Furthermore, we
compare different training strategies as an alternative to maximizing the PLL and analyze
the multimodality of our model.
(i) Model:
(i.i) GDSSM: Our model as proposed in Sec. 4.2.
(i.ii) Non-Recurrent GNN (e.g. [109, 80]): This architecture receives the context variable

I, performs one round of message passing, and subsequently outputs one normal
distribution for each of the next five seconds without using a recurrent architecture.

(i.iii) No Latent Noise (e.g. [93]): We remove the noise from the latent dynamics (Eq. 4.2)
while keeping the emission model unchanged. The uncertainty can no longer be
propagated forward in time as the emission model acts independently for each time
point.

(i.iv) Linearity (e.g. [110]): We remove all nonlinearities from the latent dynamics.
We keep the nonlinear neural networks to parameterize the emission model in
order to map the dynamics into a latent space in which the system can be linearly
approximated.

(i.v) No Interactions (e.g. [26]): Our model with a diagonal adjacency matrix, i.e., we
remove all edges from the graphs. This model neglects interactions between traffic
participants.

(ii) Modes:
(ii.i) V Modes: We vary the number of mixture components V in the GMM prior (Eq.

4.6) in order to test the effect of multimodality.
(ii.ii) ∞ Modes: This alternative does not follow an assumed density approach, i.e., the

marginal latent distribution p(xt|I) is not approximated as a GMM with a bounded
number of modes. Instead, p(xt|I) is approximated by simulating a large number
of trajectories, where each trajectory can follow a different mode [31]. We set the
number of particles to 100.
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(iii) Objectives:
(iii.i) PLL/Det.: We train the model on the predictive log-likelihood (Eq. 4.10) and use

our deterministic approximations for GDSSM as proposed in Sec. 4.2.
(iii.ii) PLL/MC: We train the model on the predictive log-likelihood (Eq. 4.10) and take an

assumed density approach by approximating the predictive distribution (Eq. 4.14)
as a GMM. The intractable integrals are solved via Monte Carlo (MC) integration.
One forward pass through our model amounts to approximately the computational
cost of 12 Monte Carlo simulations. For a fair comparison, we use 16 particles during
training, which is more costly than training with our proposed moment propagation
algorithm, and test with 100 particles. We use the same amount of particles for all
MC based methods.

(iii.iii) ELBO/MC (e.g. [26]): The model is trained by maximizing the Evidence Lower Bound
(ELBO). We give a description of this loss function in App. A.3. The approximate
posterior is a filtering distribution that models the latent state as a normal distribution.
We propagate the latent state forward in time direction via Monte Carlo sampling.

(iii.iv) MCO/MC (e.g. [103]): The model is trained by maximizing the Monte Carlo Objec-
tive (MCO), which combines particle filters with variational inference. We give a
description of this loss function in App. A.3. The proposal distribution is a filter-
ing distribution, and we propagate the particles in time direction via Monte Carlo
sampling.

Results

We provide benchmark results of all methods in Tab. 4.1. First, we compare our determin-
istic training and testing scheme (GDSSM PLL/Det.) against its Monte Carlo alternative
(GDSSM PLL/MC). Though Monte Carlo based training is more costly than training with
BMM, the Monte Carlo results are significantly outperformed by our method. Our results
indicate that our deterministic approach leads to more effective approximations compared
to Monte Carlo sampling despite the approximation error we obtain by our deterministic
moment matching scheme. One potential explanation for our finding is that the Monte
Carlo approaches suffer under a high variance since the latent space for multi-agent
settings grows linearly with the number of agents.
When changing the training objective from the PLL to ELBO/MC or MCO/MC, we observe
that the performance is comparable to PLL/MC for the prediction horizon of 1 second. For
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longer prediction horizons, the performance of the models that are trained on ELBO/MC
or MCO/MC degrades quicker compared to the model trained on PLL. We believe that this
behavior can be explained by the mismatch between training and testing objectives. When
training on MCO/MC or ELBO/MC, the model obtains feedback from the observations
via the proposal distribution, while during testing, it has to produce multi-step ahead
predictions without receiving any feedback from the observations.
Next, we study if our method can capture multimodality by increasing the number of
components in the GMM prior. It is worth noting that GMMs can approximate arbitrarily
complex distributions when the number of components is chosen high enough. In our
experiments, we observe that an increase of components significantly decreases the NLL,
making the GMM prior a vital ingredient of our method and suggesting that the true
predictive distribution is highly multi-modal. If the number of components is chosen
too small, our model adjusts its uncertainty predictions accordingly. For example, we
observe in Fig. 4.1 the uncertainty of the orange agent increases as the vehicle is close
to the exit of the roundabout. The high predictive uncertainty can be explained by two
potential future outcomes: the orange vehicle can leave the roundabout or stay inside.
Consequently, our model learns to compensate if the number of components is picked
too low, which in turn allows us to trade accuracy for computational runtime. When
using tailored implementations, one can easily scale up to a larger number of components
since their computations can be parallelized without any hurdles. We further note that
the RMSE is less affected by the choice of the number of modes and stays within two
standard errors. Since the RMSE value measures the error between the true value and the
expected value of the predictive distribution, this result suggests that the expected value
can already be modeled well by predictive distributions with very few modes (actually,
one mode seems to suffice for this).
We proceed to compare our model to a simpler alternative in which the dynamics are
assumed to be linear, which allows calculating the moments of the transition model exactly
and in closed form [55]. In contrast, our approach GDSSM, approximates the nonlinear
dynamics in a local linear way by using deterministic moment matching results. We find
that our approach achieves lower RMSE and NLL, which can most likely be attributed to
the higher modeling flexibility of our proposed model class.
Our ablation study further shows that discarding latent noise and removing interactions
between traffic participants results in higher RMSE and NLL. Compared to modeling the
dynamics in a non-recurrent manner, our model achieves a similar RMSE and outperforms
its competitor in terms of NLL.
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Table 4.1.: rounD results. We report average and standard error over 10 runs.
Non Recur. GDSSM GDSSM GDSSM GDSSM GDSSM GDSSM GDSSM GDSSM GDSSM GDSSM
GNN No Lat. Noise Linear No Interaction
1 Mode ∞ Modes ∞ Modes 1 Mode 1 Mode 1 Mode 1 Mode 1 Mode 2 Modes 3 Modes 4 Modes
PLL/Det. ELBO/MC MCO/MC PLL/Det. PLL/Det. PLL/Det. PLL/MC PLL/Det. PLL/Det. PLL/Det. PLL/Det.

RM
SE

1 s 0.72(0.02) 1.53(0.04) 0.95(0.04) 1.22(0.08) 0.88(0.02) 0.91(0.03) 0.90(0.02) 0.79(0.02) 0.75(0.02) 0.74(0.03) 0.73(0.03)

2 s 1.90(0.02) 3.42(0.09) 2.43(0.09) 2.33(0.08) 2.12(0.03) 2.10(0.04) 2.09(0.02) 1.87(0.03) 1.84(0.03) 1.82(0.03) 1.80(0.04)

3 s 3.54(0.03) 5.99(0.14) 4.55(0.16) 3.88(0.07) 3.88(0.05) 3.69(0.06) 3.60(0.04) 3.36(0.03) 3.35(0.03) 3.35(0.03) 3.33(0.04)

4 s 5.26(0.04) 9.24(0.26) 7.62(0.27) 5.58(0.08) 6.13(0.09) 5.39(0.13) 5.37(0.05) 5.08(0.04) 5.15(0.09) 5.14(0.08) 5.06(0.04)

5 s 7.20(0.05) 11.59(0.41) 11.24(0.41) 7.65(0.10) 8.83(0.13) 7.56(0.23) 7.65(0.06) 7.24(0.05) 7.34(0.12) 7.35(0.19) 7.29(0.09)

NL
L

1 s 1.90(0.01) 2.62(0.04) 2.79(0.06) 2.96(0.08) 1.95(0.08) 1.67(0.07) 2.82(0.03) 1.48(0.05) 1.34(0.08) 1.36(0.04) 1.21(0.05)

2 s 3.25(0.02) 4.45(0.07) 4.21(0.03) 3.85(0.10) 3.93(0.13) 3.37(0.08) 4.11(0.02) 2.91(0.03) 2.93(0.07) 2.93(0.06) 2.79(0.09)

3 s 4.40(0.02) 5.64(0.09) 5.21(0.03) 5.05(0.13) 5.11(0.19) 4.34(0.08) 4.67(0.09) 3.87(0.02) 4.01(0.07) 3.77(0.10) 3.83(0.08)

4 s 5.13(0.02) 6.59(0.13) 6.01(0.03) 6.17(0.16) 6.01(0.22) 4.93(0.09) 5.01(0.07) 4.46(0.03) 4.52(0.11) 4.21(0.15) 4.34(0.18)

5 s 5.71(0.02) 6.98(0.14) 6.73(0.04) 7.24(0.20) 6.80(0.22) 5.51(0.10) 5.41(0.05) 5.05(0.04) 4.82(0.24) 4.59(0.15) 4.27(0.23)

4.3.3. NGSIM

The Next Generation Simulation (NGSIM) dataset1 [111] consists of vehicle trajectories
recorded at 10Hz at two different highways, US-101 and I-80, in the United States. The
dataset is commonly used for benchmarking traffic forecasting methods and allows us to
compare our method against the prior art. We adopt the experimental setup of [112] and
use both highway scenarios. As provided in the original publication, we employ a local
coordinate system that is centered around an ego-vehicle. We split the scenarios into three
15 minute long time spans resembling mild, moderate, and congested traffic conditions
and downsample each trajectory by a factor of two. The test set consists of a fourth of all
trajectories randomly sampled from both locations. As in the rounD experiment, we split
each trajectory into eight-second-long segments, where the first three seconds are used as
the track history and the following five seconds as the prediction horizon.
Similarly, as in [113, 114, 115], we introduce a connection graph based on the lane
position of each vehicle. Each vehicle has at most six connections to other vehicles, which
are the nearest vehicles in front/behind on the same/left/right lane. The vehicles on the
outermost lanes have a maximum of four neighbors, as there are no neighbors to the left
or right.

1https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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Baselines

We compare our approach with the following methods:
(i) Constant Velocity [116]: This method uses a linear state-space model together with a
Kalman filter in order to make predictions. It does not take interactions between agents
into account.
(ii) Convolutional Social (CS)-LSTM [112]: Interactions between vehicles are modeled by
introducing a grid and applying a convolutional layer on top. Dynamics are modeled by a
deterministic LSTM, which predicts the mean and the variance of a normal distribution at
each time step.
(iv) Spatio-Temporal (ST)-LSTM [117]: Interactions are modeled with a spatio-temporal
graph structure, i.e., a graph with a position and time depending component. Dynamics
are modeled by a deterministic LSTM that predicts the mean and the variance of a normal
distribution at each time step. To the best of our knowledge, this is the only GNN based
method that also reports NLL.
(iv) Multiple Futures Prediction (MFP) [3]: A recurrent model with deterministic transition
dynamics. Stochasticity is introduced via the initial state and noisy observations that are
fed back into the dynamical model. Interactions are modeled by an attention module.

Results

We provide benchmark results of our proposed model in Tab. 4.2. Similar to the experi-
ments on the rounD dataset in Sec. 4.3.2, we observe that (i) deterministic training and
testing is more efficient than its Monte Carlo based alternative and (ii) increasing the
number of modes improves the performance.
Next, we compare our method, using one component in the GMM prior only, with all
other unimodal prediction methods. We can observe that our approach outperforms
its competitors in terms of NLL. Furthermore, our method gives similar RMSE as other
methods and is only outperformed by MFP. However, in contrast to the other methods in
the benchmark, MFP reports the best RMSE over 5 Monte Carlo samples, which makes it
difficult to draw a fair conclusion.
We subsequently increase the number of modes for our model and for MFP. In terms of
NLL, our method achieves superior results when it comes to long-term predictions (3s, 4s,
5s), while MFP performs better for short-term predictions (1s, 2s). Accurate long-term
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prediction of the agents in a driving scene is crucial for high-level autonomous driving,
as an accurate environment model is a prerequisite for the precise planning of driving
controls. For instance, advanced driver-assistance systems usually use time horizons
between 3s and 5s for driver warnings and emergency brakes, while autonomous cars aim
for a time horizon of 5s or longer in order to ensure safe and comfortable rides [118].

Table 4.2.: NGSIM results. We report average and standard error over 10 runs. For MFP,
we report the best RMSE values over 5 Monte Carlo samples.

Const. Vel. CS-LSTM ST-LSTM MFP MFP GDSSM GDSSM GDSSM GDSSM GDSSM
1 Mode 1 Mode 1 Mode 1 Mode 4 Modes 1 Mode 1 Mode 2 Modes 3 Modes 4 Modes

PLL/MC PLL/Det. PLL/Det. PLL/Det. PLL/Det.

RM
SE

1 s 0.75 0.61 0.51 0.54(0.00) 0.54(0.00) 0.56(0.00) 0.53(0.01) 0.55(0.00) 0.55(0.01) 0.57(0.02)
2 s 1.81 1.27 1.21 1.16(0.00) 1.17(0.00) 1.27(0.02) 1.18(0.01) 1.22(0.01) 1.23(0.02) 1.24(0.04)
3 s 3.16 2.09 2.01 1.90(0.00) 1.91(0.00) 2.11(0.03) 1.98(0.02) 2.02(0.02) 2.05(0.03) 2.06(0.04)
4 s 4.80 3.10 3.01 2.78(0.00) 2.75(0.00) 3.16(0.04) 2.99(0.03) 3.03(0.04) 3.06(0.05) 3.05(0.06)
5 s 6.70 4.37 4.31 3.83(0.01) 3.78(0.01) 4.47(0.05) 4.29(0.04) 4.33(0.07) 4.33(0.07) 4.35(0.08)

NL
L

1 s 0.80 0.58 0.90 0.73(0.01) -0.65(0.01) 0.64(0.04) 0.19(0.02) -0.12(0.02) -0.15(0.03) -0.16(0.03)
2 s 2.30 2.14 2.41 2.33(0.01) 1.19(0.01) 2.10(0.10) 1.61(0.02) 1.37(0.02) 1.35(0.02) 1.32(0.02)
3 s 3.21 3.03 3.25 3.17(0.01) 2.28(0.01) 2.92(0.11) 2.42(0.02) 2.23(0.02) 2.23(0.02) 2.19(0.02)

4 s 3.89 3.68 3.61 3.77(0.01) 3.06(0.00) 3.54(0.10) 3.02(0.02) 2.88(0.02) 2.88(0.02) 2.82(0.02)

5 s 4.44 4.22 4.36 4.26(0.00) 3.69(0.00) 4.04(0.10) 3.50(0.02) 3.42(0.02) 3.41(0.02) 3.36(0.02)

4.3.4. Covariance Approximations

In this section, we provide a detailed runtime analysis for different covariance approxima-
tions and study their impact on the predictive performance.

Runtime

We visualize the runtime of different covariance approximations, as well as the runtime of
the Monte Carlo alternative in Fig. 4.5 as a function of input dimensionality and number
of agents. We use the same NSDE architecture as in our experiments on the rounD and
NGSIM dataset. For the Monte Carlo alternative, we visualize the runtime for 16 particles,
as we use the same number of particles for training in Sec. 4.3.2 and 4.3.3.
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We first confirm that propagation of the full covariance matrix is more costly than any of
the proposed approximations. In fact, our sparse covariance approximations can reduce
the runtime up to a factor of 100 for systems with a large number of agents and a high
input dimensionality. As we derived in Sec. 4.2.4, when using the BMM algorithm with
a full covariance matrix or the All Diagonals approximation, the computational cost
shows a cubic dependence on the number of agents. In contrast, the Main Diagonal
approximation, the Main Blocks approximation, as well as MC based predictions have a
quadratic dependence on the number of agents. This makes these two approximations
an attractive alternative to MC based predictions, when systems with a high number of
agents need to be modeled with a limited computational budget.
For systems with a moderate input dimensionality (≈ 8) and number of agents (≈ 16),
all of our proposed approximations require only up to 5ms in order to compute the
distribution at the next time point, which corresponds to the cost of 5-10 Monte Carlo
simulations.
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Figure 4.5.: Wallclock time for output moment calculation for the latent dynamics using
GNNs with three hidden layers of size 24 for different covariance approxi-
mations (from left to the right). For each approximation, we plot the runtime
as a function of the input dimensionality Dx and number of agents M . The
GNNs are initialized at random, and we report the average runtime over 100
repetitions.
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Benchmark

Next, we study the effect of different covariance approximations on the performance. We
report the results for the case of a unimodal GDSSM. The results are depicted in Tab. 4.3.
We report here our main findings.
First, modeling the full covariance matrix results in the best performance in terms of the
lowest RMSE and NLL. Second, the All Diagonals approximation performs the best among
the covariance approximations. It achieves comparable RMSE as the full solution but falls
slightly behind in NLL when the system is highly interactive (see rounD dataset). In this
setting, it outperforms the other two sparse approximations with respect to NLL. This
behavior might be explained by the assumptions made in the covariance approximation:
it is the only approximation that allows for correlations between agents as its structure
only neglects dependencies between latent features.
Third, the differences in performances between the full solution and the different ap-
proximations with respect to RMSE lie between one and two standard errors. Modeling
the main diagonal only can thus be sufficient for applications with low computational
resources and high demand for accuracy by accepting a slight loss in calibration. For these
applications, the runtime can be reduced from O(M3) to O(M2).

Table 4.3.: Test performance for different covariance approximations on the rounD and
NGSIM dataset for the unimodal case. We report average and standard error
over 10 runs.

rounD NGSIM
Full Main Diagonal Main Blocks All Diagonals Full Main Diagonal Main Blocks All Diagonals

RM
SE

1 s 0.79(0.02) 0.82(0.02) 0.83(0.04) 0.78(0.02) 0.53(0.01) 0.54(0.01) 0.55(0.01) 0.53(0.01)

2 s 1.87(0.02) 1.88(0.02) 1.89(0.05) 1.87(0.02) 1.18(0.01) 1.18(0.02) 1.19(0.02) 1.19(0.02)

3 s 3.36(0.03) 3.40(0.02) 3.38(0.06) 3.34(0.02) 1.98(0.02) 1.99(0.03) 2.05(0.03) 1.99(0.02)

4 s 5.08(0.04) 5.07(0.04) 5.09(0.07) 5.05(0.03) 2.99(0.03) 2.98(0.04) 3.07(0.04) 2.97(0.03)

5 s 7.24(0.05) 7.25(0.06) 7.30(0.08) 7.25(0.05) 4.29(0.04) 4.34(0.05) 4.54(0.06) 4.32(0.04)

NL
L

1 s 1.48(0.05) 1.77(0.06) 1.79(0.05) 1.69(0.03) 0.19(0.02) 0.24(0.04) 0.22(0.03) 0.18(0.03)

2 s 2.91(0.03) 3.34(0.04) 3.35(0.06) 3.25(0.02) 1.61(0.02) 1.63(0.03) 1.64(0.03) 1.59(0.03)

3 s 3.87(0.02) 4.27(0.03) 4.28(0.05) 4.18(0.02) 2.42(0.02) 2.44(0.02) 2.46(0.03) 2.43(0.02)

4 s 4.46(0.03) 5.00(0.02) 5.01(0.05) 4.92(0.02) 3.02(0.02) 3.04(0.02) 3.06(0.04) 3.01(0.02)

5 s 5.05(0.04) 5.69(0.02) 5.68(0.06) 5.64(0.05) 3.50(0.02) 3.59(0.02) 3.62(0.03) 3.57(0.02)
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4.3.5. Out-of-Distribution Testing

We analyze the generalization capabilities of our model by testing it on out-of-distribution
data, e.g., traffic environments that have not been observed during training. For this
experiment, we reuse the rounD dataset [94] since it consists of recordings at three differ-
ent roundabouts. Here, each roundabout corresponds to a separate traffic environment.
We select one recording from each roundabout (Kackerstrasse in Aachen, Thiergarten
in Alsdorf, and Neuweiler near Aachen) and apply the same data curation steps as in
Sec. 4.3.2. In order to generalize between different traffic environments, we change the
experimental setup as follows:
(i) Local coordinate system: We transform the data into a local coordinate system, which is
centered at the ego-vehicle and is oriented to the heading direction of the ego-vehicle.
(ii) Include map information to the context variable I: We extract a local map around the
ego-vehicle, which spans a rectangle with a length of 74meters and a width of 44meters.
Afterward, we apply binary masking to the map, which divides the image into drivable and
non-drivable areas. Our task is to jointly model all vehicles that lie within this rectangle.
More details on the preprocessing can be found in App. A.4.

Results

We analyze the generalization capabilities of our model by comparing the following
strategies: (i) training on two traffic environments and testing on a third distinct traffic
environment, (ii) directly training the model on the test traffic environment, and (iii)
training on all traffic environments. In order to enable a fair comparison, the data for
each traffic environment is split into non-overlapping training and test sets.
We present the results for different traffic environments in Tab. 4.4. The first column in
Tab. 4.4 describes the RMSE and NLL when we train our model on the traffic environments
Thiergarten (T) and Neuweiler (N) and test it on the traffic environment Kackertstrasse (K).
The second column describes the predictive performance by using scenes from the same
traffic environment (K) for training and testing. The third column describes the predictive
performance by training on all three traffic environments (KNT) and testing on the traffic
environment K. The remaining columns benchmark the generalization capabilities on the
traffic environments T and N and are set up in an analogous fashion.
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Table 4.4.: Test performance on different traffic environments on the rounD dataset using
our method GDSSM (1 mode). We vary the test traffic environment and the
training traffic environment. We report average and standard error over 10
runs. Kackertstrasse=K, Thiergarten=T, Neuweiler=N.

Test K T N
Train TN K KTN KN T KTN KT N KTN

RM
SE

1 s 2.12(0.09) 1.88(0.05) 1.55(0.04) 1.42(0.04) 1.49(0.05) 1.21(0.04) 2.98(0.12) 2.02(0.07) 1.55(0.04)

2 s 4.56(0.13) 3.73(0.05) 3.34(0.09) 2.82(0.05) 2.53(0.09) 2.27(0.04) 5.82(0.19) 3.38(0.06) 3.02(0.09)

3 s 7.51(0.24) 6.05(0.17) 5.62(0.20) 4.42(0.12) 3.67(0.12) 3.35(0.07) 8.96(0.24) 4.89(0.13) 4.91(0.18)

4 s 10.57(0.34) 8.65(0.26) 7.99(0.17) 6.75(0.18) 5.33(0.15) 5.00(0.16) 12.44(0.33) 6.81(0.14) 6.91(0.18)

5 s 13.00(0.31) 12.02(0.43) 10.73(0.27) 9.97(0.40) 7.59(0.29) 7.41(0.27) 14.86(0.42) 8.77(0.19) 8.69(0.31)

NL
L

1 s 4.11(0.07) 4.02(0.04) 3.13(0.06) 3.35(0.06) 3.16(0.06) 2.88(0.06) 4.75(0.07) 3.84(0.04) 3.21(0.08)

2 s 5.36(0.10) 4.84(0.03) 4.66(0.09) 4.22(0.04) 3.99(0.07) 3.65(0.04) 5.82(0.09) 4.60(0.05) 4.42(0.09)

3 s 6.55(0.17) 5.97(0.07) 6.42(0.17) 5.49(0.10) 4.98(0.11) 4.50(0.05) 7.32(0.17) 5.55(0.04) 5.68(0.09)
4 s 7.71(0.20) 7.07(0.14) 7.57(0.21) 7.20(0.09) 6.38(0.19) 5.89(0.13) 8.65(0.18) 6.79(0.11) 6.71(0.08)

5 s 8.63(0.18) 8.14(0.18) 8.08(0.15) 8.54(0.12) 7.45(0.21) 6.84(0.11) 9.11(0.18) 7.54(0.22) 7.04(0.14)

In all experiments, we observe that the performance increases from (i) using different
training environments for training and testing to (ii) using the same environment for
training and testing and (iii) using all environments for training. The difference in
performance between (i) and (ii) is moderate for the locations K and T demonstrating that
our model is capable of generalizing to unseen traffic environments during testing. For
location N, the performance difference is increased, which can be explained by studying
the locations in more detail: N is a multi-lane roundabout with congested traffic, and the
roundabouts K and T are single-lane with moderate traffic. In consequence, the out-of-
domain test on the traffic environment N is more challenging. We visualize exemplary
predictions of our model GDSSM in Fig. 4.6.
We note that GDSSMs do not consider model uncertainty, which refers to the uncertainty
arising from insufficient knowledge. Despite not accounting for this source of uncertainty,
we can see in Fig. 4.6 that the predictions made by our GDSSMs model are realistic, as
the vehicles remain within their lanes. However, we believe that incorporating model
uncertainty into the system can lead to further improvements in predictive performance
when dealing with out-of-distribution traffic environments.
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Prediction: Mode 1
Weight: 0.40

Prediction: Mode 2
Weight: 0.60

(a) Kackertstrasse.

Prediction: Mode 1
Weight: 0.57

Prediction: Mode 2
Weight: 0.43

(b) Thiergarten.

Figure 4.6.: Predictions of our model GDSSM (2 modes) on out-of-domain traffic environ-
ments, i.e. the training and testing traffic environments are distinct. Given the
history of each traffic participant (dashed lines), we visualize the predicted
95% confidence interval. Solid lines represent the true future trajectory.

4.4. Summary

In this chapter, we proposed GDSSMs in which the latent dynamics of the agents are
coupled via GNNs in order to capture interactions among multiple agents. We derived mo-
ment matching rules for GNN layers that allow for deterministic inference and introduced
a GMM prior over the initial latent states in order to allow for multimodal predictions.
Both together lead to an efficient and stable algorithm that is able to produce complex
and nonlinear predictive distributions. We confirmed that our novel method shows strong
empirical performance on two challenging autonomous driving datasets.
Finally, we proposed sparse approximations to the covariance matrix considering the
computational limits of real-world vehicle control units. Depending on the required
calibration, our approximations can lead to a significant reduction of the runtime without
impeding accuracy.
Up to this point, we focused on two main objectives: accurately capturing data uncertainty
and modeling interactions between agents while keeping computational requirements low.
In the next chapter, we will address the last goal of accurately capturing model uncertainty.
This is crucial as it allows us to account for the uncertainty that arises from the lack of
knowledge.

70



5. Sampling-Free Probabilistic Deep
State-Space Models

Modeling unknown dynamics from data presents challenges due to the need to consider
both the intrinsic uncertainty of the underlying process and the model uncertainty. Data
uncertainty, also known as aleatoric uncertainty, is essential to represent the inherent
stochasticity of the system [19, 18]. Contrarily, model uncertainty, also known as epistemic
uncertainty, is crucial for addressing the uncertainty arising from the lack of knowledge.
In the context of autonomous driving, model uncertainty becomes especially important.
Due to the vast number of potential traffic scenarios, it is impossible to include all possible
scenarios in the training data. When faced with novel and unseen scenarios, the model
should exhibit higher model uncertainty compared to scenarios that have already been
observed in the training data. This model uncertainty ensures that the model does not
make overly confident predictions in unfamiliar situations, allowing for more cautious and
adaptive decision-making in autonomous driving applications.
DSSMs provide a principled approach for modeling the data uncertainty in an unknown
dynamical process. In the previous chapter, we used neural networks with deterministic
weights to model the mean and covariance update functions of the DSSM. While this
approach allows for significant flexibility, it is also limited to capturing data uncertainty
and does not account for model uncertainty.
Most prior works that take model uncertainty into account make either the simplifying
assumption that the transition dynamics are noiseless [119, 120] or that the dynamics are
fully observed [18, 121]. Many real-world applications do not satisfy both assumptions
and can lead to miscalibrated uncertainties.
There also exists a large body of work for state-space models [122, 123, 124] that
use Gaussian Processes to model state transition kernels instead of probabilistic neural
networks. While these methods respect both sources of uncertainty, they do not scale
well with the size of the latent space. Finally, there is the notable exception of [50] that
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aims at learning deep dynamical systems that respect both sources of uncertainty jointly.
However, this approach requires to marginalize over the latent states and the neural
network weights via plain Monte Carlo, which is infeasible for noisy transition dynamics
and contradicts the goal of accurate predictions with low computational cost.
This chapter addresses the open problem of learning unknown dynamics from data that
jointly account for data and model uncertainty. We propose an extension of DSSMs that we
call Probabilistic DSSMs (ProDSSMs). ProDSSMs use neural mean and covariance update
functions that account for the uncertainty over the weights of the neural networks. This
allows us to capture model uncertainty by attaching uncertainty to the neural net weights
while addressing data uncertainty through the deep state-space formulation. To keep
things concise, we do not discuss the integration of GNNs into our ProDSSM framework
in this chapter. However, our ProDSSM framework is compatible with GNNs, and we
consider their integration as a promising avenue for future research. Instead, we focus on
feed-forward neural networks and present ProDSSMs as a versatile tool. While ProDSSMs
provide us with highly adaptable predictive distributions, the process of inference becomes
more challenging due to the combination of uncertainty in both the weights and the latent
dynamics.
We summarize our contribution as follows:
(i) We derive output moments for layers that take weight uncertainty into account,
which makes ProDSSMs applicable to moment matching algorithms.

(ii) We investigate two distinct weight sampling techniques. The first technique involves
resampling the weights at each time step (see Fig. 5.1a), while the second technique
involves sampling the weights only once at the initial time step (see Fig. 5.1b). We
derive an extension of the BMM algorithm for both sampling methods.

(iii) We present an approximation to the general Gaussian filter specifically designed for
ProDSSMs (see Fig. 5.1c).

An empirical study complements the chapter (see Sec. 5.4) that begins with an in-
depth examination of each individual building block, showcasing their unique strengths.
Afterward, we integrate all components and apply our approach to two well-established
dynamical modeling benchmark datasets. Our method particularly excels in demanding
situations, such as those involving noisy transition dynamics or high-dimensional outputs.
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Figure 5.1.: We simulate a dynamical system p(xt+1|xt, wt) with uncertainty over the
weights wt ∼ p(wt). We visualize Monte Carlo simulations as orange solid
lines. Our deterministic approximation scheme is shown in blue, where the
solid line depicts themean and the shaded area is the 95% confidence interval.
We compare two different sampling strategies in panels (a) and (b). In panel
(a), we resample at each time step the weights, while in panel (b), the weights
are sampled only at the initial time step. In panel (c), we move the dynamical
system to a latent space and introduce an emission model p(yt|xt). We
compare our filtering distribution with the true latent state (orange). The true
latent trajectory lies within the 95% confidence interval of the approximate
filtering distribution.

5.1. Probabilistic Deep State-Space Models

This section presents our Probabilistic Deep State-Space Model (ProDSSM) family. Our
model can account for model uncertainty by attaching uncertainty to the neural network
weights and for data uncertainty by building on the deep state-space formalism. By
integrating both sources of uncertainties, our model family promises well-calibrated
uncertainties.
Following [125], we consider two variants of propagating the weight uncertainty along a
trajectory: the local and global approach. For the local approach, we resample the weights
at each time step (see Fig. 5.1a). Contrarily, for the global approach, we sample the
weights only once at the initial time step and keep them fixed for all remaining time steps
(see Fig. 5.1b).
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The transition and emission model of ProDSSMs are defined as follows

x0 ∼ p(x0), (5.1)
w0 ∼ p(w0|ϕ), (5.2)

xt+1 ∼ N (xt + f(xt, wt),diag(r(xt, wt))) , (5.3)

wt+1 ∼

{︄
p(wt+1|ϕ), if Local
δ(wt+1 − w0), if Global

(5.4)

yt ∼ N (g(xt),diag (s(xt))) , (5.5)

where xt ∈ RDx is the latent state, wt ∈ RDw are the weights, f : RDx×Dw → RDx is
the mean update, r : RDx×Dw → RDx

+ is the covariance update, g : RDx → RDy is the
emission mean, and s : RDx → RDy

+ is the emission variance. We further model the weight
distribution p(wt|ϕ) as a Gaussian distribution

p(wt|ϕ) = N (µw
t ,Σ

w
t ), (5.6)

with mean µw
t ∈ RDw and covariance Σw

t ∈ RDw×Dw . Both together define the hyperpa-
rameters ϕ = {µw

t ,Σ
w
t }Tt=0 of our model, where T is the horizon.

In the following, we extend the BMM algorithm towards ProDSSMs and Gaussian filters.
Our algorithmic advances are general and can be combined with both weight uncertainties
propagation schemes. To make our writing concise, we exclude the dependence on ϕ in
the subsequent text unless it is necessary for defining the loss function.

5.2. Deterministic Approximations for ProDSSMs

ProDSSMs address two types of uncertainty: model uncertainty through weight uncer-
tainty and data uncertainty through the use of the SSM formalism. Joint marginalization
over the weights and the latent dynamics presents a significant inference challenge. To
this end, we extend the BMM algorithm towards ProDSSMs in Sec. 5.2.1. In contrast to
Chap. 4, we do not use an embedding model to infer the initial latent distribution. Instead,
we infer the latent distribution with our novel approximation to the Gaussian filter. We
introduce our approximation to the Gaussian filter in Sec. 5.2.2, where we also discuss the
advantages and disadvantages of using Gaussian filters compared to embedding models.
Our algorithmic advances allow for fast and sample-free inference with low compute and
lay the basis for our deterministic training objective that we present in Sec. 5.2.3. During
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test time, we are interested in computing the predictive log-likelihood. We present our
approximation to the predictive log-likelihood and describe the corresponding algorithm
in Sec. 5.2.4. Our approximations necessitate the computation of output moments and
expected Jacobians of probabilistic neural network layers. We present output moments
for commonly used layers in Sec. 5.2.5.

5.2.1. Extending the Bidimensional Moment Matching Algorithm

In this section, we extend the BMM algorithm towards ProDSSMs. In contrast to the
previous chapters, we need to account for the correlation between the weights and states.
In order to avoid cluttered notation, we introduce the augmented state zt = [xt, wt] that is
a concatenation of the latent state xt and weight wt, with dimensionality Dz = Dx +Dw.
First, we present a general approach for propagating moments in the time direction. Then,
we provide detailed instructions on computing the mean, covariance, and cross-covariance
of the update functions.

Assumed Process Density

We follow the assumed density approach (see Sec. 2.2) and obtain a Gaussian approxima-
tion p(zt+1|z0) ≈ N (µz

t+1,Σ
z
t+1) to the t-step transition kernel with mean µz

t ∈ RDz and
covariance Σz

t ∈ RDz×Dz . The mean and the covariance have the structure

µz
t =

⎡⎣µx
t

µw
t

⎤⎦ , (5.7) Σz
t =

⎡⎣ Σx
t Σxw

t

Σwx
t Σw

t

⎤⎦ , (5.8)

where Σx
t ∈ RDx×Dx is the covariance of xt and Σxw

t ∈ RDx×Dw is the cross-covariance
between xt and wt.
(i) Local Weights: We obtain the update rules for the mean and covariance of the augmented
state in the time direction by rewriting them as a function of the weights and latent state
(see Sec. 3.2.1 for more details)

µz
t+1 =

⎡⎣µx
t + E[f(zt)]

µw
t+1

⎤⎦ , (5.9) Σz
t+1 =

⎡⎣Σx
t+1 0

0 Σw
t+1

⎤⎦ , (5.10)
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where the covariance Σx
t+1 is a function of prior moments

Σx
t+1 = Σx

t +Cov[f(zt)] + Cov[f(zt), xt] + Cov[xt, f(zt)] + diag(E[r(zt)]). (5.11)

The moments of the weights µw
t and Σw

t are given, and the cross-covariance Σxw
t is zero

due to the resampling step. We are now left with approximating the output moments of
f(zt) and r(zt), as well as the cross-covariance Cov[f(zt), xt].
(ii) Global Weights: Similarly, we can derive the update rules for the case of global weights

µz
t+1 =

⎡⎣µx
t + E[f(zt)]

µw
t

⎤⎦ (5.12) Σz
t+1 =

⎡⎣Σx
t+1 Σxw

t+1

Σwx
t+1 Σw

t

⎤⎦ . (5.13)

Mean µw
t and covariance Σw

t are constant. The covariance Σx
t+1 can be approximated in a

similar manner as described in Eq. 5.11. As for the case of local weights, we are now left
with calculating the output moments of f(zt) and r(zt), as well as the cross-covariance
Cov[f(zt), xt]. Additionally, we need also to compute the cross-covariance

Σxw
t+1 = Cov[xt + f(zt), wt] = Σxw

t +Cov[f(zt), wt]. (5.14)

For a standard DSSM architecture, the number of weights exceeds the number of latent
dimensions. Since the mean and the covariance over the weights are not updated over
time, the computational burden of computing Σz

t is dominated by the computation of the
cross-covariance Σxw

t . This covariance becomes zero for the local approach due to the
resampling step at each time point. Consequently, the local approach exhibits reduced
runtime and memory complexity compared to the global approach. Next, we describe
how to approximate all moments and cross-covariance terms.

Computing the Moments and Cross-Covariance terms of the Update Functions

In the following, we focus on the approximation of the mean, covariance, and cross-
covariance terms for the mean update f(zt) and omit the discussion on the covariance
update r(zt) as our findings are general and can be applied in a similar manner to r(zt).
Our approximation extends the Vertical Moment Matching (VMM) algorithm from Sec.
3.2.2 towards ProDSSMs. Typically, neural networks are a composition of L simple
functions (layers) that allows us to write the output as f(zt) = uL(. . . u1(z0t ) . . .), where
zlt ∈ RDz,l is the augmented state at layer l at time point t. We denote the input as z0t = zt.
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The state xl−1t ∈ RDx,l−1 at layer l − 1 is updated via the function ul : RDz,l−1 → RDx,l

while the weights are not changed

zlt =

⎡⎣xlt
wt

⎤⎦ =

⎡⎣ul(xl−1t , wt)

wt

⎤⎦ . (5.15)

We omit the layer index for the weights wt, as they are not altered in the intermediate
layers. As in Sec. 3.2.2, we approximate the output distribution of each layer recursively

p(zlt) ≈ N (E[zlt],Cov[zlt]), (5.16)
where E[zlt] ∈ RDz,l and Cov[zlt] ∈ RDz,l×Dz,l are the mean and covariance of zlt. For
global weights, we calculate the full covariance matrix of Cov[zlt] as the cross-covariance
between xlt and wt changes after each layer. Contrarily, for local weights, we need only
to calculate the covariance of xlt and omit the remaining terms. By following this recipe,
we can approximate the expected value E[f(zt)] = E[xLt ], as well as the covariance term
Cov[f(zt)] = Cov[xLt ] and the cross-covariance Cov[f(zt), wt] = Cov[xLt , wt].
We are now left with approximating the cross-covariance Cov[f(zt), xt]. Using Stein’s
lemma and Backward Vertical Moment Matching (BVMM) (see Sec. 3.2.3) the cross-
covariance is approximated as

Cov[f(zt), xt] ≈ ∇zL−1
t

uL(z
L−1
t )

1∏︂
l=L−1

E

⎡⎣∇zl−1
t

ul(z
l−1
t )

∇zl−1
t

wt

⎤⎦⎡⎣ Σx
t

Σwx
t

⎤⎦ . (5.17)

Here, E[∇zl−1
t

ul(z
l−1
t ) ∇zl−1

t
wt]
⊤ ∈ RDz,l×Dz,l−1 represents the expected Jacobian at layer

l. The expected Jacobian for each layer follows a structured and sparse matrix

E

⎡⎣∇zl−1
t

ul(z
l−1
t )

∇zl−1
t

wt

⎤⎦ =

⎡⎣E[∇xl−1
t

ul(z
l−1
t )] E[∇wtul(z

l−1
t )]

0 I

⎤⎦ , (5.18)

where E[∇xl−1
t

ul(z
l−1
t )] ∈ RDx,l×Dx,l−1 and E[∇wtul(z

l−1
t )] ∈ RDx,l×Dw are the expected

Jacobians of ul(zl−1t ). These Jacobians are calculated by taking the derivative with respect
to xl−1t and wt, respectively. Furthermore, the expected Jacobian E[∇xl−1

t
wt] ∈ RDw×Dx,l−1

is zero and E[∇wtwt] ∈ RDw×Dw is the identity matrix I. The product of all expected
Jacobians in Eq. 5.17 has the same structure as the Jacobian of each layer, which makes
calculating the product computationally efficient. For the case of global weights, we must
calculate the full product in Eq. 5.17. Contrarily, for the case of local weights, it is sufficient
to calculate E[∇xl−1

t
ul(z

l−1
t )] as Σwx

t is zero.
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5.2.2. Gaussian Filtering

Our approximation to the filtering distribution, p(zt|y1:t), follows the Gaussian filter (see
Sec. 2.3). In contrast to prior work, we extend the filtering step to the augmented state
consisting of the latent dynamics and the weights. In standard architectures, the number
of latent states is small compared to the number of weights, which makes filtering in our
new scenario more demanding. We address this challenge by applying our deterministic
moment matching scheme that propagates moments across neural network layers. Addi-
tionally, we combine it with our previously derived approximation to the t-step transition
kernel p(zt+1|z0) from Sec. 5.2.1. We also verify empirically in Sec. 5.4.2 that standard
numerical integration schemes are not well suited for filtering tasks of this type.
The Gaussian filter alternates between the prediction and the update step. In the follow-
ing, we explain in more detail how our deterministic moment matching scheme can be
integrated into both steps. For the prediction step (see Eq. 2.6), we can reuse the assumed
density approach that we just derived in order to compute a Gaussian approximation to
the distribution p(zt|y1:t−1).
For the update step, we need to find a Gaussian approximation to the joint distribution of
the augmented state zt and observation yt conditioned on y1:t−1 (see Eq. 2.7)

p(zt, yt|y1:t−1) ≈ N

⎛⎝⎡⎣µz
t|t−1

µy
t|t−1

⎤⎦ ,

⎡⎣Σz
t|t−1 Σzy

t|t−1

Σyz
t|t−1 Σy

t|t−1

⎤⎦⎞⎠ . (5.19)

Here, the index t|t′ denotes prior moments, i.e., the moments at time step t conditioned
on the observations up to time step t′. If t = t′, we omit the double index. The mean
and the covariance of the latent state zt are known from the prediction step, while their
equivalents of the emission yt are available as

µy
t|t−1 = E[g(xt)], (5.20) Σy

t|t−1 = Cov[g(xt)] + diag(E[s(xt)]), (5.21)
with xt ∼ N (µx

t|t−1,Σ
x
t|t−1). These moments can be approximated with layerwise moment

propagation, as described in the previous section. Finally, we facilitate the computation of
the cross-covariance Σyz

t|t−1 be using Stein‘s lemma [64]

Σyz
t|t−1 = Cov[g(xt), zt] = E[∇xtg(xt)]Σ

xz
t|t−1. (5.22)

where the expected Jacobian E[∇xtg(xt)] of the mean emission function cannot be com-
puted analytically. As in the previous chapter, we approximate it by BVMM, which reduces
the computation to estimate the expected Jacobian per layer.
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Once we have calculated the joint distribution, we approximate the conditional as another
normal distribution, p(zt|y1:t) ≈ N (µz

t ,Σ
z
t ), as shown in Eq. 2.11. For the global approach,

the Kalman gain Kt = Σzy
t (Σy

t )
−1, is dense and the updated covariance matrix Σz

t of
augmented state zt is also dense. As a consequence, the weights wt have a non-zero
correlation after the update, and the overall variance gets reduced. For the local approach,
only the distribution of the states xt will be updated since the lower block of the gain
matrix is zero. The weight distribution, as well as the cross-covariance between the states
and weights, is hence not affected by the update step.
In the previous chapter, we relied on an embedding model to infer the latent distribution
from past observations. Training a separate neural net to infer the latent state decouples
the transition model and the filtering distribution. We believe that using the Gaussian
filter instead of the embedding model is advantageous for parameter inference because it
allows the gradient signal to be backpropagated from the filtering step to the transition
model. We observe the Gaussian filter to result in a better model fit in our experiments in
Sec. 5.4.3. However, incorporating map information or other contextual details into our
Gaussian filtering algorithm is not a straightforward task.

5.2.3. Parameter Inference

We train the ProDSSMs by fitting the hyperparameters ϕ to a dataset D. The hyperparame-
ters ϕ describe the weight distribution. For the sake of brevity, we introduce the shorthand
notation p(w0:T |ϕ) = p(w|ϕ) to refer to the weights at all time steps with arbitrary horizon
T . We propose to train the ProDSSM on a Type-II Maximum A Posteriori (MAP) objective
(see [17] Chap. 5.6)

argmax
ϕ

log

∫︂
p(D|w)p(w|ϕ)dw + log p(ϕ). (5.23)

This objective is also termed as predictive variational Bayesian inference by [52] as it
directly minimizes the Kullback-Leibler divergence between the true data generating
distribution and the predictive distribution, which we aim to learn. Compared to other
learning objectives, Eq. 5.23 provides better predictive performance, is more robust to
model misspecification, and provides a beneficial implicit regularization effect for over-
parameterized models. We refer to [51, 126, 52] that studies this learning objective for
probabilistic neural nets in more detail from a theoretical as well as an empirical point of
view.
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The typically hard to evaluate likelihood p(D|ϕ) =
∫︁
p(D|w)p(w|ϕ)dw can be closely

approximated with our deterministic moment matching routines. The exact form of the
likelihood hereby depends on the task at hand, and we specify in our experiments how
the likelihood can be closely approximated for regression problems in Sec. 5.4.1 and for
dynamical system modeling in Sec. 5.4.3.
We are now left with defining the hyper-prior p(ϕ). Remember, ϕ defines the weight
distribution that is defined by its two first moments µw = µw

0:T and Σw = Σw
0:T . In order

to arrive at an analytical objective, we model each entry in p(ϕ) independently. We define
the hyper-prior of the i-th entry of the mean as a standard Normal

log p(µw
i ) = logN (µw

i |0, I) = −1

2
(µw

i )
2 + const. (5.24)

and, assuming that the covariance is diagonal, chose the Gamma distribution for the
(i, i)-th covariance entry

log p(Σw
ii) = logGa(Σw

ii |α = 1.5, β = 0.5) =
1

2
log Σw

ii −
1

2
Σw
ii + const., (5.25)

where α is the shape parameter and β is the rate parameter. We insert the above hyper-prior
of the mean and covariance into log p(ϕ) and arrive at

log p(ϕ) = log p(µw) + log p(Σw) =
1

2

Dw∑︂
i=1

log Σw
ii −(µw

i )
2 −Σw

ii +const., (5.26)

which leads to a total of 2Dw hyperparameters, i.e., one for the mean and one for the
variance of each weight.
In contrast, the classical Bayesian formalism keeps the prior p(w|ϕ) constant during
learning and the posterior p(w|D) is the quantity of interest. As an analytical solution to
the posterior is intractable, either Markov Chain Monte Carlo (MCMC) [42] or Variational
Inference (VI) [43] is used. It is interesting to note that the only difference between our
formulation and the objective in VI, with a suitable prior choice, is the position of the
logarithm in the likelihood p(D|ϕ). Please see App. B.1 for more details. However, we
are not aware of any prior work that applies VI in the context of ProDSSMs. Closest to
our method is most likely [18] that approximates the posterior over the weights for fully
observed stochastic dynamical systems, i.e., without latent states.
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5.2.4. Approximating the Predictive Log-Likelihood

During test time, we are interested in the predictive log-likelihood at time step t condi-
tioned on the observations y−H:0 = {y−H . . . . , y0}, which we denote as PLL(yt|y−H:0) =
log p(yt|y−H:0). The predictive log-likelihood is computed as

PLL(yt|y−H:0) = log

∫︂
p(yt|zt)p(zt|z0)p(z0|y−H:0)dz0, zt,

= log

∫︂
p(yt|zt)p(zt|y−H:0)dzt. (5.27)

Above, p(z0|y−H:0) is the filtering distribution, p(zt|z0) is the t-step transition kernel and
p(zt|y−H:0) the t-step marginal. Prior work on general deep SSMs [27, 29, 26] relies on
auxiliary networks in order to approximate the filtering distribution and then uses MC
integration in order to compute predictive distribution. Contrarily, we replace the need for
auxiliary networks and MC integration with our deterministic moment matching scheme.
Key to computing PLL(yt|y−H:0) is an accurate approximation of the predictive distribution
p(yt|y−H:0). We approximate it by a series of Gaussian approximations:

p(yt|y−H:0) ≈
∫︂

p(yt|zt)p(zt|z0)N (µz
0,Σ

z
0)dz0, zt

≈
∫︂

p(yt|zt)N (µz
t|0,Σ

z
t|0)dzt

≈ N (µy
t|0,Σ

y
t|0), (5.28)

where the Gaussian N (µz
0,Σ

z
0) approximates the filtering distribution. Its computation is

described in Sec. 5.2.2. We obtain the distributionN (µz
t|0,Σ

z
t|0) as an approximation to the

t-step marginal p(zt|y−H:0) in Eq. 5.27 by propagating the augmented latent state forward
in time as described in Sec. 5.2.1. Finally, we approximate the predictive distribution
p(yt|y−H:0) with the Gaussian N (µy

t|0,Σ
y
t|0) in Eq. 5.28, which can be done by another

round of moment matching as also outlined in Eq. 5.20 and 5.21.
We present pseudo-code for approximating the predictive distribution in Alg. 4 that
relies on Alg. 5 to approximate the filtering distribution p(z0|y−H:0) ≈ N (z0|µz

0,Σ
z
0) Both

algorithms explicitly do a resampling step for the local weight setting. In practice, it is
not necessary, and we omit the calculation. In our algorithmic description, we use for the
local approach the same weight distribution p(wt) = p(w0) = N (µw

0 ,Σ
w
0 ) for every step.
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Algorithm 4 Deterministic Inference (DetInf)
Inputs: f(xt, wt) ▷ Mean update

r(xt, wt) ▷ Covariance update
g(xt) ▷ Mean emission
s(xt) ▷ Covariance emission
p(z−H) ▷ Initial distribution
y−H:0 ▷ Observations

Outputs: p(yT |y−H:0) ≈ N (µy
T |0,Σ

y
T |0) ▷ Predictive Distribution

µz
0,Σ

z
0 ← DetFilt(f, r, g, s, p(z−H), y−H:0)

for time step t ∈ {0, · · · , T − 1} do
µx
t+1|0 ← µx

t|0 + E[f(zt)] ▷ Eq. 5.9 and 5.12
Σx

t+1|0 ← Σx
t|0 +Cov[f(zt)] + Cov[f(zt), xt] + Cov[xt, f(zt)] + diag(E[r(zt)]) ▷ Eq. 5.10 and 5.13

if Local then µw
t+1|0,Σ

w
t+1|0,Σ

xw
t+1|0 ← µw

−H ,Σw
−H , 0 ▷ Eq. 5.9 and 5.10

if Global then µw
t+1|0,Σ

w
t+1|0,Σ

xw
t+1|0 ← µw

t ,Σw
t ,Σxw

t +Cov[f(zt), wt] ▷ Eq. 5.12, 5.13, and 5.14
p(zt+1|y−H:0)← N (µz

t+1|0,Σ
z
t+1|0)

end for
µy
T |0 ← E[g(xT )] ▷ Eq. 5.20

Σy
T |0 ← Cov[g(xT )] + diag(E[s(xT )]) ▷ Eq. 5.21

return N (µy
T |0,Σ

y
T |0)

Algorithm 5 Deterministic Filtering (DetFilt)
Inputs: f(xt, wt) ▷ Mean update

r(xt, wt) ▷ Covariance update
g(xt) ▷ Mean emission
s(xt) ▷ Covariance emission
p(z0) ▷ Initial distribution
y1:T ▷ Observations

Outputs: p(zT |y1:T ) ≈ N (µz
T ,Σz

T ) ▷ Filtering Distribution
p(z0|y1:0)← p(z0)
for time step t ∈ {0, · · · , T − 1} do

µx
t+1|t ← µx

t + E[f(zt)] ▷ Eq. 5.9 and 5.12
Σx

t+1|t ← Σx
t +Cov[f(zt)] + Cov[f(zt), xt] + Cov[xt, f(zt)] + diag(E[r(zt)]) ▷ Eq. 5.10 and 5.13

if Local then µw
t+1|t,Σ

w
t+1|t,Σ

xw
t+1|t ← µw

0 ,Σw
0 , 0 ▷ Eq. 5.9 and 5.10

if Global then µw
t+1|t,Σ

w
t+1|t,Σ

xw
t+1|t ← µw

t ,Σw
t ,Σxw

t +Cov[f(zt), wt] ▷ Eq. 5.12, 5.13, and 5.14
µy
t+1|t ← E[g(xt)] ▷ Eq. 5.21

Σy
t+1|t ← Cov[g(xt)] + diag(E[s(xt)]) ▷ Eq. 5.20

Σyz
t+1|t ← E[∇xt+1g(xt+1)]Σxz

t+1|t ▷ Eq. 5.22
Kt+1 ← Σzy

t+1|t(Σ
y
t+1|t)

−1 ▷ Eq. 2.11
µz
t+1 ← µz

t+1|t +Kt+1(yt+1 − µy
t+1|t) ▷ Eq. 2.9

Σz
t+1 ← Σz

t+1|t −Kt+1Σ
y
t+1|tK

T
t+1 ▷ Eq. 2.10

p(zt+1|y1:t+1)← N (µz
t+1Σ

z
t+1)

end for
return N (µz

T ,Σz
T )
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5.2.5. Output Moments of Probabilistic Neural Network Layers

In order to use our extension of the BMM framework for ProDSSMs, we need to be able to
calculate the first two output moments as well as the expected Jacobian of probabilistic
layers. We refer to a layer as probabilistic if it accounts for the uncertainty over the
weights. Below, we present the output moments for the linear layer and ReLU activation
function for the global as well as local approach.

Output Moments of the Linear Layer

A linear layer applies an affine transformation

xl+1
t = Al+1

t xlt + bl+1
t , (5.29)

where the transformation matrix Al+1
t ∈ RDx,l+1×Dx,l and bias bl+1

t ∈ RDx,l+1 are both
part of weights (Al+1

t , bl+1
t ) ∈ wt. We note that the set of all transformation matrices and

biases {(Al
t, b

l
t)}Ll=1 define the weights wt. As the cross-covariance matrix Cov[xlt, wt] is

non-zero for global weights, the transformation matrix Al+1
t , bias bl+1

t , and state xlt are
assumed to be jointly normally distributed.
The i-th output xl+1

t,i ∈ R of the affine transformation is calculated as

xl+1
t,i =

Dx,l∑︂
m=1

al+1
t,i,mxlt,m + bl+1

t,i , (5.30)

where al+1
t,i,j is (i, j)-th entry in Al+1

t and bl+1
t,i is the i-th entry in bl+1

t . Given the above
update rule, we can calculate the output moments of the affine transformation as

E[xl+1
t,i ] =

Dx,l∑︂
m=1

E[al+1
t,i,mxlt,m] + E[bl+1

t,i ], (5.31)

Cov[xl+1
t,i , xl+1

t,j ] =

Dx,l∑︂
m,n=1

Cov[al+1
t,i,mxlt,m, al+1

t,j,nx
l
t,n] +

Dx,l∑︂
m=1

Cov[bl+1
t,i , al+1

t,j,mxlt,m]+

Dx,l∑︂
m=1

Cov[al+1
t,i,mxlt,m, bl+1

t,j ] + Cov[bl+1
t,i , bl+1

t,j ], (5.32)
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Cov[xl+1
t,i , wt,j ] =

Dx,l∑︂
m=1

Cov[al+1
t,i,mxlt,m, wt,j ] + Cov[bl+1

t,i , wt,j ], (5.33)

which is a direct result of the linearity of the Cov[·, ·] operator. In order to compute the
above moments, we need to calculate the moments of a product of correlated normal
variables, E[al+1

t,i,mxlt,m],Cov[al+1
t,i,mxlt,m, al+1

t,j,nx
l
t,n], and Cov[al+1

t,i,mxlt,m, wt,j ].
Below, we provide the recipe for calculating these quantities. We give a detailed derivation
in App. B.2. We make use of Isserlis‘ theorem [127] and obtain the output moments of a
product of correlated normal variables are calculated as

E[al+1
t,i,mxlt,m] = Cov[al+1

t,i,m, xlt,m] + E[al+1
t,i,m]E[xlt,m], (5.34)

Cov[al+1
t,i,mxlt,m, al+1

t,j,nx
l
t,n] = Cov[al+1

t,i,m, al+1
t,j,n]Cov[x

l
t,m, xlt,n]+

Cov[al+1
t,i,m, al+1

t,j,n]E[x
l
t,m]E[xlt,n]+

Cov[xlt,m, xlt,n]E[al+1
t,i,m]E[al+1

t,j,n]+

Cov[al+1
t,i,m, xlt,n]Cov[x

l
t,m, al+1

t,j,n]+

Cov[al+1
t,i,m, xlt,n]E[xlt,m]E[al+1

t,j,n]+

Cov[xlt,m, al+1
t,j,n]E[a

l+1
t,i,m]E[xlt,n], (5.35)

Cov[al+1
t,i,mxlt,m, wt,j ] = Cov[al+1

t,i,m, wt,j ]E[xlt,m] + Cov[xlt,m, wt,j ]E[al+1
t,i,m]. (5.36)

The above results are exact and hold for both local and global weights as long as xlt and wt

follow a normal distribution. For local weights the cross-covariance terms Cov[al+1
t,i,m, al+1

t,j,n]

and Cov[xlt,m, al+1
t,j,n] are zero. Setting these cross-covariance terms in Eq. 5.35 to zero

recovers the result from [44].
The expected Jacobian is analytically available

E[∇xl
t
ul+1(z

l
t)] = E[Al+1], (5.37)

E[∇Al+1
t

ul+1(z
l
t)] = I ⊗ E[xl]⊤, (5.38)

E[∇bl+1
t

ul+1(z
l
t)] = I, (5.39)

where I is the identity matrix with shape Dx,l+1 ×Dx,l+1 and ⊗ is the Kronecker product.
The product I⊗E[xl]⊤ results in a matrix with shapeDx,l+1×(Dx,l+1Dx,l). The remaining
entries in the Jacobian E[∇wtul+1(z

l
t)], i.e., the derivatives with respect to the unused

weights, are zero.
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Output Moments of the ReLU Activation

The ReLU activation function applies element-wise the max-operator to the latent states
while the weights stay unaffected

xl+1
t = max(0, xlt). (5.40)

Mean E[xl+1
t ] and covariance Cov[xl+1

t ] of the state xl+1
t are provided in Sec. 3.3. Using

Stein’s lemma [64], we calculate the cross-covariance after the ReLU activation as

Cov[xl+1
t , wt] = E[∇xl

t
ul+1(z

l
t)]Cov[x

l
t, wt], (5.41)

where E[∇xl
t
ul+1(z

l
t)] is the expected Jacobian of the ReLU activation. The expected

Jacobian is equal to the expectation of the Heaviside function, as described in Sec. 3.3. As
the ReLU function involves no learnable weights, the Jacobian E[∇wtul+1(z

l
t)] is zero.

5.3. Runtime

We analyze the theoretical runtime of our algorithm in Sec. 5.3.1 and then measure its
wall clock time in Sec. 5.3.2.

5.3.1. Theoretical Runtime

We first investigate the runtime for simulating forwards in time and, secondly, the runtime
for filtering applications. We further assume that we have a ProDSSM with maximal
hidden layer width H and that the dimensions of Dx and Dy are less than or equal to H.
Independent of the weight modeling scheme, predicting the next observation xt+1 condi-
tioned on the latent state xt is done by propagating the state through a series of affine
transformations and nonlinear activities. The affine transformations scale polynomially
with the hidden layer width, whereas the nonlinearities are elementwise operations and
can be neglected.
Approximating the first two output moments by MC simulation requires propagating S
particles, resulting thus in a total cost of O(SH2). Our method approximates the S → ∞
limit.
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For global weights, the computational cost of our method is O(H4 +DwH
2) where Dw

is the number of weight parameters. The first term, O(H4), is due to the computational
cost of the covariance Cov[Al+1

t xlt, A
l+1
t , xlt] ∈ RH×H , where the computation of each

matrix entry scales with O(H2) (see Eq. 5.32). The second term, O(DwH
2), is due to the

cross-covariance Cov[Al+1
t xlt, w

l
t] ∈ RH×W , where the computation of each entry scales

with O(H) (see Eq. 5.33). Similarly, calculating the product of Jacobians in Eq. 5.17 has
the computational cost of O(DwH

2).
For local weights, the weights and the states are independent. As a result, we can simplify
the computation of the first term to Cov[Al+1

t xlt, A
l+1
t , xlt] = E[Al

t]Cov[x
l
t, x

l
t]E[Al+1

t ]⊤

and the second term, Cov[Al+1
t xlt, w

l
t] becomes zero. Furthermore, when calculating the

expected Jacobian, we can omit the derivatives with respect to the weights. This leads to
a runtime reduction to O(H3).
Our filtering algorithm necessitates O(H3) computations to approximate the output
moments of the emission independent of the weight modeling scheme. For global weights
approximating the cross-covariance between the emissions and augmented latent state
involves O(H3 +DwH

2) computations. Forming the gain matrix involves O(H3 +DwH
2)

computations. The first term is caused by inverting the covariance matrix of the emissions,
and the second term is caused by multiplying the inverse covariance matrix with the cross-
covariance of the augmented latent state (see Eq. 2.11). Lastly, updating the moments
of latent state (see Eq. 2.10) involves O(H(H +Dw)

2) computations which is the most
time-consuming step and dominates the total runtime. Similarly, the computational cost
of our algorithm for local weights can be derived and has a total cost of O(H3).

5.3.2. Measured Runtime

We visualize in Fig. 5.2 the wallclock time of our method for approximating the mean and
covariance of the observation yt+1 conditioned on the mean and covariance of the latent
state xt at the prior time step. Additionally, we visualize the runtime of the MC baseline
with different sampling strategies as a function of the dimensionality D = Dx = Dy = H.
The early stops indicate when we run out of memory. We conduct the experiment on a
CPU with 32GB memory. For S = D particles, the MC baseline has the same theoretical
runtime as our method for local weights. In practice, we observe our method for local
weights to be faster than the MC baseline with S = D when we include the runtime of
the weight sampling procedure. When we exclude the runtime of the weight sampling
procedure, our method is faster for D > 64. Furthermore, our method for global weights
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is slower and runs out of memory earlier than all baselines. We leave optimizing the
runtime of our method for global weights as a direction for future work.
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(a) MC runtime including sampling.
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(b) MC runtime measured without sampling.

Figure 5.2.: We visualize the runtime of approximating mean µy
t+1 and covarianceΣy

t+1 of
the observation yt+1 conditioned on the augmented state zt at the prior time
step with mean µz

t and covariance Σz
t . We vary on the x-axis the dimension-

ality D. We use the same dimensionality for the observation yt and latent
state xt, i.e., Dx = Dy = D. We use randomly initialized transition and emis-
sion models with one hidden layer of width H = D. The solid/dashed line
represents the runtime of our deterministic approximation for local/global
weights. The colored lines represent the runtime of the MC approximation
with varying number of particles S as a function of dimensionality D. In the
left panel, we take into account the runtime of the weight sampling procedure
for the MC baseline. In the right panel, we ignore the runtime of the weight
sampling procedure.

5.4. Experiments

By taking model and data uncertainty into account, ProDSSMs can produce flexible and
well-calibrated predictions over a wide range of scenarios. Core to our algorithm is a
new moment matching scheme that can be applied for assumed density approximation
(see Sec. 5.2.1) and for Gaussian filtering (see Sec. 5.2.2). In our experiments, we first
analyze each of these algorithmic advances in isolation before putting everything together.
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For this, we first explore in Sec. 5.4.1 our assumed density approximation in the context
of stochastic recurrent layers on eight UCI datasets. Then, we study our approximation to
the Gaussian Filter in Sec. 5.4.2 on a nonlinear filtering task. We connect both steps and
benchmark our full method in Sec. 5.4.3 on two well-established dynamical modeling
datasets. Finally, we summarize our empirical findings in Sec. 5.5.

5.4.1. Stochastic Recurrent Layers

We first demonstrate the usefulness of our uncertainty propagation scheme as proposed
in Sec. 5.2.1 on a regression task with inputs x ∈ RDx and outputs y ∈ R, similarly to the
experiment in Sec. 3.5.2. We interpret the input as the latent state at the initial time step,
x = x0. Conditioned on the initial latent state, we can calculate the predictive distribution
p(y|x0, ϕ) as

p(y|x0, ϕ) =
∫︂

p(y|xT )p(xT |x0, w0)p(w0|ϕ)dw0, xT . (5.42)

The transition kernel p(xT |x0, w0) is defined by Eq. 5.3, and the emission model p(y|xT )
follows Eq. 5.5. The mapping from x0 to xT can be interpreted as a deep stochastic layer.
As the latent state is given, the filtering step of our algorithm becomes futile.
The dataset D = {(xn0 , yn)}Nn=1 consists of N input-output tuples. The likelihood term
p(D|ϕ) in Eq. 5.23 is given by

p(D|ϕ) =
N∏︂

n=1

p(yn|xn0 , ϕ), (5.43)

where p(yn|xn0 , ϕ) follows Eq. 5.42.

Datasets

We use the same datasets as in Sec. 3.5.2. In short, we use eight UCI datasets with
varying input dimensionality and size. We follow Sec. 3.5.2 for the design of the network
architecture. The mean/covariance functions are neural nets with one hidden layer and
40/10 hidden units. The observation function is a single linear layer.
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Baselines

We compare different variants of our method ProDSSM and provide benchmarks against
the baselines from Sec. 3.5.2.
(i) ProDSSM variants:
• Det. vs MC: We may approximate Eq. 5.42 either via Monte Carlo (MC) simulation
or by using our Deterministic (Det.) method that we introduced in Sec. 5.2.1. We
vary the number of particles, i.e., MC simulations, during training and test time.

• Local vs. Global: In the local approach, the weights are resampled at each step.
Contrarily, the weights are sampled once at the initial step and then kept constant
throughout the remaining steps in the global approach (see. Eq. (5.4)).

(ii) DGTM: Our model from Sec. 3.5.2.
(iii) Dropout [72]: This method uses a single feed-forward neural net to predict the output,
i.e., it does not rely on continuous depth layers. Stochasticity is introduced by applying a
Bernoulli distributed masking scheme in all affine layers.
(iv) DVI [44]: This method proposes a deterministic inference scheme for Bayesian neural
nets. Uncertainty is introduced by allowing for weight uncertainty over the neural net
weights. Similarly as Dropout, this method uses a feed-forward neural net.

Results

We report the Negative Log-Likelihood (NLL) in Tab. 5.1, and the Root Mean Squared Error
(RMSE) in Tab. 5.2.
First, we compare the local and the global weight approach using our deterministic
approximation scheme. For five datasets, the differences between both methods are less
than one standard error. For the remaining three datasets, the global variant did not
converge within the time limit of 72 hours, and it is therefore outperformed by its local
alternative. We use a time limit for the training runs in order to limit our carbon footprint.
This is motivated by the high computational cost of the deterministic approximation for
the global weight setting. The time limit is a multiple of 24 and at least 10× the runtime
of the deterministic approximation for the local setting. For training, we use a NVIDIA
Tesla V100 with 32GB.
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Table 5.1.: Negative log-likelihood for 8 datasets. We report average and standard error
over 20 runs. Results marked by * did not converge within 72 hours.

Boston Energy Concrete Wine Red Kin8nm Power Naval Protein

Dropout 2.46(0.06) 1.99(0.02) 3.04(0.02) 0.93(0.01) -0.95(0.01) 2.80(0.01) -3.80(0.01) 2.89(0.00)
DVI 2.41(0.02) 1.01(0.06) 3.06(0.01) 0.90(0.01) -1.13(0.00) 2.80(0.00) -6.29(0.04) 2.85(0.00)
DGTM 2.37(0.03) 0.70(0.06) 2.92(0.02) 0.93(0.02) -1.22(0.00) 2.80(0.01) -4.45(0.02) 2.76(0.01)

ProDSSM: MC, Local
Train: 8 || Test: 32 2.42(0.03) 0.47(0.03) 3.02(0.02) 0.96(0.01) -1.25(0.00) 2.85(0.01) -5.88(0.09) 2.86(0.01)
Train: 8 || Test:128 2.41(0.02) 0.44(0.03) 3.01(0.03) 0.95(0.01) -1.28(0.00) 2.83(0.01) -5.91(0.08) 2.84(0.01)
Train: 32 || Test: 32 2.38(0.03) 0.47(0.06) 3.06(0.03) 0.95(0.01) -1.27(0.01) 2.82(0.01) -6.08(0.07) 2.81(0.01)
Train: 32 || Test:128 2.37(0.02) 0.43(0.04) 2.99(0.01) 0.93(0.01) -1.29(0.01) 2.79(0.01) -6.10(0.07) 2.77(0.01)

Train: 128 || Test: 32 2.42(0.04) 0.45(0.05) 3.09(0.04) 0.96(0.01) -1.26(0.01) 2.83(0.01) -6.15(0.07) 2.83(0.01)
Train: 128 || Test:128 2.36(0.03) 0.42(0.04) 3.00(0.03) 0.93(0.01) -1.30(0.01) 2.79(0.01) -6.17(0.07) 2.77(0.01)

ProDSSM: MC, Global
Train: 8 || Test: 32 2.49(0.02) 0.56(0.03) 3.08(0.02) 0.96(0.01) -1.22(0.01) 2.85(0.01) -6.16(0.05) 2.89(0.01)
Train: 8 || Test:128 2.46(0.02) 0.54(0.03) 3.06(0.01) 0.94(0.01) -1.24(0.01) 2.83(0.01) -6.19(0.05) 2.87(0.01)
Train: 32 || Test: 32 2.50(0.06) 0.52(0.06) 3.08(0.02) 0.96(0.01) -1.22(0.01) 2.84(0.01) -6.18(0.07) 2.81(0.01)
Train: 32 || Test:128 2.44(0.05) 0.50(0.06) 3.03(0.02) 0.93(0.01) -1.25(0.01) 2.81(0.01) -6.22(0.07) 2.77(0.01)

Train: 128 || Test: 32 2.44(0.04) 0.54(0.05) 3.10(0.04) 0.97(0.02) -1.22(0.01) 2.83(0.01) -6.28(0.05) 2.82(0.01)
Train: 128 || Test:128 2.41(0.04) 0.50(0.05) 3.03(0.02) 0.93(0.01) -1.25(0.01) 2.80(0.01) -6.30(0.04) 2.77(0.01)

ProDSSM: Det., Local 2.33(0.03) 0.43(0.04) 3.00(0.03) 0.92(0.01) -1.30(0.00) 2.79(0.01) -5.52(0.03) 2.76(0.01)

ProDSSM: Det., Global 2.34(0.02) 0.44(0.03) 2.99(0.04) 0.92(0.00) -1.27(0.01)* 2.79(0.01) -4.75(0.08)* 2.82(0.01)*

Next, we compare the local and global weight approach using an MC approximation and
varying the number of particles. We observe lower NLL and RMSE as we increase the
number of particles. In order to achieve good predictive performance, a high number of
particles is required. The local variant is in five datasets, while the global variant is only
in three datasets among the best-performing methods. We conjecture that the difference
in performance can be attributed to the higher gradient variance for the global variant,
which makes training more difficult.
Using 128 MC samples and focusing on the local weight variant, MC sampling and our
deterministic approximation perform en par except for the Naval dataset. There is little
uncertainty in the Naval dataset, and the better performance of the MC variant can most
likely be attributed to numerical issues. Our deterministic approximation is computation-
ally more efficient, and restricting the MC approach to the same computational budget
would result in approximately 12 samples, which is insufficient for good performance.
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Table 5.2.: RMSE for 8 datasets. We report average and standard error over 20 runs.
Results marked by * did not converge within 72 hours.

Boston Energy Concrete Wine Red Kin8nm Power Naval Protein

Dropout 2.97(0.19) 1.66(0.04) 5.23(0.12) 0.62(0.01) 0.10(0.00) 4.02(0.04) 0.01(0.00) 4.36(0.01)

DVI - - - - - - - -
DGTM 3.26(0.15) 0.87(0.13) 5.12(0.09) 0.63(0.00) 0.08(0.00) 4.07(0.03) 0.01(0.00) 4.45(0.00)

ProDSSM: MC, Local
Train: 8 || Test: 32 3.17(0.14) 0.43(0.01) 5.48(0.10) 0.64(0.00) 0.07(0.00) 4.14(0.03) 0.01(0.00) 4.63(0.02)
Train: 8 || Test:128 3.14(0.13) 0.42(0.03) 5.36(0.11) 0.64(0.00) 0.07(0.00) 4.07(0.03) 0.01(0.00) 4.56(0.02)
Train: 32 || Test: 32 3.11(0.13) 0.41(0.01) 5.48(0.11) 0.63(0.01) 0.07(0.00) 4.04(0.03) 0.01(0.00) 4.46(0.01)
Train: 32 || Test:128 3.11(0.13) 0.41(0.01) 5.43(0.11) 0.63(0.00) 0.07(0.00) 4.00(0.03) 0.01(0.00) 4.39(0.01)
Train: 128 || Test: 32 3.05(0.12) 0.41(0.01) 5.21(0.08) 0.64(0.01) 0.07(0.00) 4.04(0.03) 0.01(0.00) 4.44(0.02)
Train: 128 || Test:128 3.04(0.12) 0.41(0.01) 5.18(0.09) 0.63(0.00) 0.07(0.00) 4.00(0.03) 0.01(0.00) 4.37(0.02)

ProDSSM: MC, Global
Train: 8 || Test: 32 3.39(0.13) 0.47(0.01) 5.66(1.00) 0.64(0.00) 0.07(0.00) 4.15(0.03) 0.01(0.00) 4.70(0.04)
Train: 8 || Test:128 3.27(0.12) 0.46(0.01) 5.60(0.10) 0.63(0.00) 0.07(0.00) 4.09(0.03) 0.01(0.00) 4.62(0.03)
Train: 32 || Test: 32 3.17(0.14) 0.45(0.02) 5.50(0.10) 0.64(0.00) 0.07(0.00) 4.09(0.03) 0.01(0.00) 4.44(0.01)
Train: 32 || Test:128 3.15(0.13) 0.44(0.02) 5.44(0.10) 0.63(0.00) 0.07(0.00) 4.04(0.03) 0.01(0.00) 4.39(0.01)
Train: 128 || Test: 32 3.16(0.12) 0.46(0.01) 5.53(0.07) 0.64(0.00) 0.07(0.00) 4.05(0.03) 0.01(0.00) 4.40(0.01)
Train: 128 || Test:128 3.14(0.12) 0.45(0.01) 5.46(0.08) 0.63(0.00) 0.07(0.00) 4.01(0.03) 0.01(0.00) 4.36(0.02)

ProDSSM: Det., Local 2.99(0.13) 0.41(0.01) 5.24(0.12) 0.63(0.00) 0.07(0.00) 3.99(0.03) 0.01(0.00) 4.35(0.02)

ProDSSM: Det., Global 3.05(0.11) 0.42(0.02) 5.24(0.14) 0.63(0.00) 0.07(0.00)* 4.01(0.03) 0.01(0.00)* 4.57(0.03)*

Lastly, we compare our method against established baselines. ProDSSM with local weights
is for five out of eight datasets among the best-performing methods in terms of NLL,
thereby outperforming its competitors. We observe ProDSSM to outperform the DGTM
baseline that we introduced in Sec. 3.5.2. For the DGTM baseline, we relied on Dropout
layers to incorporate model uncertainty. Consequently, the DGTM baseline uses a single
parameter, the Dropout rate, to account for model uncertainty. In contrast, for ProDSSM,
we model a distribution over each weight with two parameters: mean and variance. The
improved predictive performance of ProDSSM, as compared to DGTM, can be attributed
to its capability to capture model uncertainty more accurately.
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5.4.2. Filtering

Next, we benchmark our new moment matching propagation scheme from Sec. 5.2.2 for
Gaussian filters on a standard filtering task.

Datasets

In order to ensure that this experiment only evaluates the performance with respect to
the filtering task, we use a two-step approach for creating data. In the first step, we create
probabilistic ground-truth models; in the second step, we apply our newly created models
in order to generate data for the filtering task.
Step 1: We first train DSSM and our two ProDSSM variants on the kink dataset, which
describes a nonlinear dynamical system with varying emission noise s = {0.008, 0.08, 0.8}.
See also Sec. 5.4.3 for more details. In total, we obtain nine trained models with three
different emission noise levels and three different model variants.
Step 2: For each trained model, we construct a new dataset by simulating trajectories
with a (Pro-)DSSM. Each trajectory has length T = 120, and we simulate 10 trajectories
per dataset. We assess the performance by calculating the NLL and RMSE of observing
the true latent state on these nine datasets. The transition and emission models in this
experiment are thereby fixed to the ground truth dynamics from Step 1.

Baselines

We benchmark our filtering algorithm against two established baselines.
(i) Unscented Kalman Filter (UKF): This filter and our method share similarities as they are
both instances of the Gaussian filter (see. Sec. 2.3). In contrast to our moment propagation
approach, the intractable integrals are solved by using the unscented transform that is a
numerical integration scheme [22].
(ii) Neural Filter (NF): In DSSM literature [27], it is common practice to train a neural
net based filter with the generative model by maximizing ELBO. During training, we fix
the transition and emission model to the ground truth from Step 1. We follow [26] for
network design and use a recurrent neural net architecture that produces a sample xt at
each time step t as a function of the prior latent state xt−1 and the observation yt.
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Results

We report results in Tab. 5.3. We observe for all methods that with increasing emission
noise, it becomes more difficult to infer the latent distribution from the observations. For
deterministic weights, our method performs on par with UKF, while NF is outperformed
for medium and higher noise levels.
When switching to probabilistic weight modeling methods, the UKF has higher RMSE and
NLL compared to our deterministic method for middle and high emission noise. Increas-
ing the emission noise makes learning the dynamics more challenging and, as a result,
leads to higher weight uncertainties. We can also observe this behavior empirically: For
low/middle/high observation noise, the average variance of the weights is 0.10/0.29/0.60
for local weights and 0.05/0.26/0.49 for global weights. As a consequence, the integration
steps in the Gaussian filter become more difficult for increasing noise levels, and the
performance of the UKF method deteriorates. In contrast, our newly introduced moment
matching scheme performs well across the complete range of noise levels. This observation
aligns with our findings from Chap. 3, where we observed that the accuracy of the BMM
algorithm is not harmed by an increasing dimensionality. We can interpret the uncertainty
over the weights as an increase in dimensionality.

Table 5.3.: NLL and MSE on a nonlinear filtering dataset. We report average and standard
error over 10 runs.

s = 0.008 s = 0.08 s = 0.8

MSE NLL MSE NLL MSE NLL

De
t.

NF 0.01(0.00) -0.87(0.08) 0.08(0.01) 0.25(0.10) 0.73(0.19) 1.23(0.11)
UKF 0.01(0.00) -0.89(0.05) 0.07(0.00) 0.09(0.05) 0.49(0.08) 1.03(0.08)

Ours 0.01(0.00) -0.88(0.04) 0.07(0.01) 0.10(0.04) 0.46(0.07) 1.00(0.08)

Lo
c. UKF 0.02(0.01) -0.85(0.06) 0.12(0.02) 0.64(0.20) 1.35(0.15) 3.10(0.46)

Ours 0.01(0.00) -0.90(0.02) 0.07(0.03) 0.08(0.03) 0.44(0.05) 1.00(0.05)

Gl
ob
. UKF 0.01(0.00) -0.91(0.01) 0.27(0.06) 2.89(0.83) 1.18(0.25) 3.56(0.89)

Ours 0.01(0.00) -0.89(0.02) 0.06(0.02) 0.12(0.03) 0.48(0.04) 0.98(0.06)
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5.4.3. Dynamical System Modeling

Our proposed model family, ProDSSM, is a natural choice for dynamical system modeling,
where we aim to learn the underlying dynamics from a dataset D = {Y n}Nn=1 consisting
of N trajectories. For simplicity, we assume that each trajectory Y n = {ynt }Tt=1is of length
T . Using the chain rule, the likelihood term p(D|ϕ) in Eq. (5.23) can be written as

p(D|ϕ) =
N∏︂

n=1

T−1∏︂
t=1

p(ynt+1|yn1:t, ϕ), (5.44)

where we can approximate the predictive distribution p(ynt+1|yn1:t, ϕ) in a deterministic
way as discussed in Sec. 5.2.4.

Datasets

We benchmark our method on two different datasets. The first dataset is a well-established
learning task with synthetic nonlinear dynamics, and the second dataset is a challenging
real-world dataset.
(i) Kink [122]: We construct three datasets with varying degrees of difficulty by varying
the emission noise level. The transition model is given by N (xt+1|fkink(xt), 0.052) where
fkink(xt) = 0.8 + (xt + 0.2)[1− 5/(1 + e−2xt)] is the kink function. The emission model
is defined as N (yt|xt, s), where we vary s between {0.008, 0.08, 0.8}. We simulate for
each value of s 10 trajectories of length T = 120. We follow the experimental protocol as
defined in [124] and perform 10 training runs where each run uses data from a single
simulated trajectory only. The mean function is realized with a neural net with two
hidden layers and 50 hidden units, and the variance is a trainable constant. For MC based
ProDSSM variants, we use 64 samples during training. The cost of our deterministic
approximation for the local approach is ≈50 samples. We compare the performance of
the different methods with respect to model uncertainty, i.e., epistemic uncertainty, by
evaluating if the learned transition model p(xt+1|xt) covers the ground-truth dynamics.
In order to calculate NLL and MSE, we place 70 evaluation points on an equally spaced
grid between the minimum and maximum latent state of the ground truth time series
and approximate for each point xt the mean E[xt] =

∫︁
f(xt, wt)p(wt)dwt and variance

Cov[xt] =
∫︁
(f(xt, wt)− E[xt])2p(wt)dwt using 256 Monte Carlo samples.
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This dataset is commonly used for benchmarking GP based dynamical models [122, 124].
To the best of our knowledge, it has not been used in the context of DSSMs prior to this
work.
(ii) Mocap: We follow [119] for preprocessing and designing the experimental setup. We
extract the dataset from the CMU motion capture library1. It consists of 23 sequences
from a single person. We use 16 sequences for training, 3 for validation, and 4 for
testing. Each sequence consists of measurements from 50 different sensors. We follow
[119] for designing the network architecture and training process, i.e., we use only
the first three observations to infer the latent distribution. For MC based ProDSSM
variants, we use 32 samples during training and 256 during testing. The cost of our
deterministic approximation for the local approach is approximately 24 samples. For
numerical comparison, we compute NLL and MSE on the test sequences.

Baselines

We use the same ProDSSM variants as in our deep stochastic layer experiment (Sec. 5.4.1).
Additionally, we compare the Gaussian filter with the embedding model in order to infer
the latent state. Furthermore, we compare against well-established baselines from GP and
neural net based dynamical modeling literature.
(i) ProDSSM variants:
• GF vs. EM: We compare two approaches for modeling the latent state distribution.
The first approach uses the Gaussian Filtering (GF) algorithm, as proposed in Sec.
5.2.2. The second approach involves a neural network based Embedding Model (EM).
These embedding models have been introduced in Chap. 4 for traffic forecasting
applications.

(ii) DSSM: This method is equal to ProDSSM when removing the weight uncertainty. We
use our deterministic moment matching algorithm together with Gaussian Filtering to
train the DSSM model.
(iii) VCDT [122]: This method relies on GPs to model a SSM. The distribution of the latent
state is forward propagated via sampling. Training is performed using doubly stochastic
variational inference jointly over the GP posterior and the latent states.

1http://mocap.cs.cmu.edu/
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(iv) Laplace GP [124]: A GP based dynamical model that applies stochastic variational
inference for the Gaussian process posterior and the Laplace approximation over the latent
states.
(v) ODE2VAE [119]: The dynamics are modeled as latent neural ordinary differential
equations. Stochasticity is introduced by accounting for uncertainty over the weights. An
additional neural net is used to approximate the latent distribution of the initial latent
state, and the model does not account for transition noise.
(vi) E-PAC-Bayes-Hybrid [50]: The dynamics is modeled as a neural stochastic differential
equation and accounts for data and model uncertainty. Marginalization over the latent
states and the weights is performed using Monte Carlo sampling. This method focuses
on integrating prior knowledge, either in the form of physics or by transfer learning
across similar tasks, into the dynamics, hence the term Hybrid. For the kink dataset, we
reimplement this method without using prior knowledge.

Results

First, we analyze the results on the kink dataset. We visualize the learned mean function
of the transition model in Fig. 5.3. The confidence intervals capture the mean of the
true transition model. The model uncertainty increases with increasing noise levels. We
observe increased uncertainty for xt < −3 and xt > 1. It is important to note that these
regions lie outside of the training data. This finding suggests that our model accurately
captures model uncertainty, demonstrating its reliability in scenarios beyond the training
distribution.
We present the numerical results of this benchmark in Tab. 5.4. For low (s = 0.008)
and middle emission noise (s = 0.08), all of our ProDSSM variants achieve on-par per-
formance with existing GP based dynamical models and outperform ODE2VAE. For high
emission noise (s = 0.8), our ProDSSM variants perform significantly better than previous
approaches. The MC variants achieve for low and middle noise levels the same perfor-
mance as the deterministic variants. As the noise is low, there is little function uncertainty,
and few MC samples are sufficient for accurate approximations of the moments. If the
emission noise is high, the marginalization over the latent states and the weights becomes
more demanding, and the MC variant is outperformed by its deterministic counterpart.
Furthermore, we observe that for high observation noise, the local weight variant of our
ProDSSM model achieves lower NLL than the global variant. We cannot report results for
DSSM since this model does not account for model uncertainty.
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Figure 5.3.: For increasing noise level s, we observe increased model uncertainty. We
visualize the true mean function f(xt) as an orange solid line and the latent
states as black dots. The blue solid line is the expected value of the learned
mean function, and the shaded area represents the 95% confidence interval.

On the Mocap dataset, our best-performing ProDSSM variant, which is the local weight
variant with deterministic inference, outperforms all baselines. Notably, it even outper-
forms E-PAC-Bayes-Hybrid, which uses an additional dataset from another motion-capture
task in order to learn the prior distribution over the neural network weights. Furthermore,
we observe our best-performing ProDSSM variant to outperform its non-probabilistic coun-
terpart, denoted as DSSM. For a fair comparison, we trained DSSM with our deterministic
moment matching algorithm and used the Gaussian filter to infer the distribution over the
latent states. This configuration closely resembles our top-performing ProDSSM variant.
We further note that the ProDSSM variant with global weights and deterministic inference
was not able to converge within the time limit.
When comparing the kink dataset and the Mocap dataset, the differences between the
MC and deterministic ProDSSM variants become more pronounced. The Mocap dataset
has a higher dimensionality, requiring a larger number of MC samples for accurate
approximations.
Furthermore, we observe that in both datasets, replacing the Gaussian filtering algorithm
with a neural embedding model to infer the latent state distribution from observations
leads to a deterioration in performance.
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Table 5.4.: NLL and MSE for different dynamical system modeling tasks. We report
average and standard error over 10 runs. Results marked by * did not converge
within 120 hours.

Kink Mocap
s = 0.008 s = 0.08 s = 0.8

MSE NLL MSE NLL MSE NLL MSE NLL

VCDT - -1.53(0.31) - 1.10(0.72) - 4.16(1.97) - -
Laplace GP - -1.35(0.04) - -0.36(0.08) - 1.08(0.15) - -
ODE2VAE 0.01(0.00) -0.07(0.46) 0.02(0.00) 0.29(0.43) 0.22(0.05) 4.11(1.42) 8.09(0.62) -
E-PAC-Bayes-Hybrid 0.02(0.00) -0.67(0.07) 0.05(0.00) 0.47(0.11) 0.41(0.07) 1.13(0.12) 7.84(0.44) 253.64(20.01)
DSSM - - - - - - 7.87(0.69) 64.65(1.27)

ProDSSM variants
GF, MC, Local 0.00(0.00) -1.46(0.04) 0.04(0.01) -0.44(0.06) 0.28(0.05) 0.82(0.11) 10.36(0.67) 74.74(1.68)
GF, MC, Global 0.00(0.00) -1.50(0.07) 0.04(0.01) -0.46(0.10) 0.31(0.05) 1.13(0.24) 10.65(1.25) 71.42(1.70)
GF, Det., Local 0.00(0.00) -1.50(0.03) 0.04(0.01) -0.41(0.07) 0.22(0.04) 0.54(0.07) 6.98(0.17) 61.99(0.53)

GF, Det., Global 0.00(0.00) -1.53(0.03) 0.03(0.01) -0.47(0.07) 0.22(0.05) 0.72(0.17) 21.29(0.82)* 67.34(1.28)*
EM, Det., Local 0.00(0.00) -0.47(0.22) 0.02(0.00) -0.11(0.29) 0.24(0.04) 1.26(0.37) 9.83(1.43) 61.85(1.27)

5.5. Pros and Cons of Different ProDSSM Variants

In this section, we discuss the advantages and disadvantages of different ProDSSM variants
with respect to their theoretical properties as well as our experimental findings.
First, we compare the local and global variants of our approach. In the local variant, we
resample the weight at each time step, while, for the global variant, we keep the weights
fixed for the complete trajectory. Independently of the chosen inference scheme, our
experiments did not find a clear winner, provided that both variants converged. However,
the local variant is mathematically more convenient as it decorrelates subsequent time
steps. This property can be exploited for sample-free inference, where it results in a
lower computational burden. Our empirical evidence confirms that this variant leads to
more feasible solutions, whereas the global alternative is much slower and often did not
converge in a reasonable amount of time.
Focusing on the local approach, we can observe that our moment matching inference
scheme outperforms its MC counterpart when using the same computational budget.
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Disregarding runtime constraints, the MC variant still fails to surpass the performance of
its deterministic alternative, indicating that (i) the Gaussian assumption is appropriate
and (ii) the approximation error of our propagation scheme is negligible.
Despite the increased computational complexity of the global approach, we believe it
warrants further exploration due to its ability to facilitate uncertainty decomposition
[18], i.e., allowing for the separation of data and model uncertainty. In contrast, the local
approach does not support uncertainty decomposition, as both sources of uncertainty are
intertwined at each time step. Moreover, the global approach could be beneficial when
transitioning from discrete to continuous dynamical systems. In such cases, it is desirable
to achieve a parsimonious solution that works well across various numerical solvers and
step sizes.
Lastly, we observed the Gaussian filtering algorithm to outperform the neural embedding
model in two different experiments. However, incorporating contextual information, for
example, map information, into the Gaussian filtering algorithm is not a straightforward
task.

5.6. Summary

In this chapter, we proposed ProDSSMs, a general framework for modeling unknown
dynamical systems that respect data and model uncertainty. Inference for this model class
is hard since we need to propagate the uncertainty over the neural network weights and
the latent states along a trajectory. We addressed this challenge by introducing a novel
inference scheme that exploits the internal structure of ProDSSMs and enjoys sample-free
inference. Our algorithm is general and can be applied to a variety of tasks and account
for different weight sampling strategies.
In our experiments, we observed that our deterministic algorithm with local weights
achieves better predictive performance in terms of lower NLL and MSE than its sampling-
based counterpart under a fixed computational budget. Furthermore, we observed
ProDSSMs to outperform their non-probabilistic counterparts in terms of predictive per-
formance.
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6. Conclusion

This thesis presented several extensions to the DSSM framework, aiming to address the
central question that we raised in Sec. 1:
How can we efficiently model dynamical systems with interacting agents while accounting for
both data and model uncertainty?

Solving this question is crucial as accurately modeling the surrounding environment, i.e.,
the dynamical system, is an important step towards achieving fully autonomous vehicles.
Once the surrounding environment is accurately and reliably modeled, autonomous
vehicles can make informed decisions about which actions to take.
In the following, we discuss in Sec. 6.1 how each of our contributions helps to answer
the aforementioned question. Additionally, we discuss open problems as well as novel
applications beyond autonomous driving in Sec. 6.2.

6.1. Summary

We introduced multiple extensions to the DSSM framework that focused on different parts
of the aforementioned key question.
In Chap. 3 we addressed the goal of efficiently capturing data uncertainty. We intro-
duced the BMM algorithm that efficiently approximates the predictive distribution of a
DGTM as a Gaussian. A DGTM represents the transition model of a DSSM. The BMM
algorithm established the foundation for modeling DSSMs and opened the door for more
advanced assumed density approximations beyond the simple unimodal Gaussian in the
later chapters. We demonstrated that the BMM algorithm achieved excellent predictive
performance on various tasks, such as time series classification and dynamical system
modeling, compared to its Monte Carlo variant as well as established baselines with low
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computational cost. Additionally, we compared the BMM algorithm to standard numeri-
cal integration techniques and found it to be more accurate and faster. Notably, unlike
standard numerical integration methods, the accuracy of the BMM algorithm improves as
the input dimensionality and network complexity increase.
In Chap. 4 our primary focus was modeling interacting agents. If we ignore the interactions
between different agents, our forecasts will be inaccurate. We introduced GNNs as a
building block for DSSMs and derived moment matching rules for commonly used GNN
layers in order to make the BMM algorithm applicable. Beyond that, we enhanced
the efficiency of the BMM algorithm by introducing sparse covariance approximations.
Furthermore, we improved the accuracy of our model by representing the predictive
distribution of a DSSM as a GMM instead of a single Gaussian. By adopting a GMM, we
effectively account for the multimodal nature of traffic forecasting. For instance, it enables
us to capture different hypotheses about driver intentions, resulting in a more accurate
representation of the data uncertainty. We conducted experiments on two real-world
traffic forecasting datasets to evaluate the performance of our proposed model and our
extensions to the BMM algorithm. The results demonstrated the strong performance of
our approach.
In Chap. 5 we focused on the task of incorporating model uncertainty into the DSSM
framework. To do so, we introduced weight uncertainty to the transition model of the
DSSM. Weight uncertainty allows us to model the uncertainty stemming from the lack
of knowledge, known as epistemic uncertainty. By accounting for both data uncertainty
and model uncertainty, our model becomes more accurate, resulting in a lower NLL.
Additionally, we observed an increase in model uncertainty for inputs that were not part of
the training data during the dynamical system modeling experiment on the kink dataset.
This increased uncertainty can help to prevent overconfident predictions for novel traffic
scenarios that were not encountered during training. To model the distribution over the
weights, we used iid Gaussians. We derived moment matching rules for probabilistic
layers, enabling efficient inference and making the BMM algorithm applicable to DSSMs
with weight uncertainty. A key challenge was accounting for the correlations between the
weights and the states when deriving the extended moment matching rules. We found
that our algorithm was significantly more accurate than standard numerical integration
methods for DSSMs with weight uncertainty. This aligns with the observation from Chap.
3 that the accuracy of the BMM algorithm is not affected by increasing dimensionality,
unlike standard numerical integration methods. To evaluate our model and the extensions
to the BMM algorithm, we conducted experiments on various tasks, including filtering
and dynamical system modeling. The results demonstrated the strong performance of our
approach.
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In summary, our extensions enable efficient modeling of dynamical systems with interacting
agents within the DSSM framework. By considering both data uncertainty and model
uncertainty, our model effectively captures the stochastic nature of traffic forecasting,
leading to improved predictive performance in terms of lower NLL and RMSE. However,
despite these advancements, there are still unresolved problems and questions, which we
discuss in the next section.

6.2. Outlook

In this section, we discuss open research questions of our proposed framework and present
potential solutions. Beyond that, we discuss potential future applications.
(i) Determining the Number of Modes: In Chap. 4 we used a neural network to infer the
distribution of the initial latent state, assuming a fixed number of modes. However, the
appropriate number of modes varies depending on the scenario. For instance, scenarios
with a high number of traffic participants require a larger number of modes to effectively
model future outcomes compared to scenarios with fewer participants. Therefore, a
valuable enhancement to our proposed framework would be to extend the embedding
model towards a variable number of modes rather than a fixed number.
(ii) Contextual Information and the Gaussian Filter: In Chap. 5 we introduced a novel
algorithm to infer the latent state distribution by employing our approximation to the
Gaussian filter. Notably, the inference of the latent distribution solely relies on past
observations and does not take into account any contextual information. This is in contrast
to our approach presented in Chap. 4, where we used a neural network to approximate
the latent distribution. This neural network incorporated contextual information, such as
the map or interactions between agents. Incorporating contextual information is crucial
for generating realistic predictions. Since the embedding model becomes obsolete when
using our Gaussian filter, we need to explore alternative methods of including the context
information. One potential approach is to include contextual information as an additional
input to the transition model.
(iii) Weight Uncertainty for GNNs: In Chap. 5 we proposed ProDSSMs that extend DSSMs
towards transition models with uncertainty over their weights. We focused on applications
with feed-forward neural nets. It remains an open task to extend our ProDSSM framework
towards GNNs.
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(iv) Weight Uncertainty beyond the Transition Model: In Chap. 5 we introduced weight
uncertainty in the transition model. However, it is still unclear whether including weight
uncertainty in the transition model alone is sufficient or if we also need to consider weight
uncertainty in the emission model. Additionally, if we use an embedding model to infer
the latent distribution, as we did in Chap. 4, it remains to be explored whether we should
incorporate weight uncertainty into the embedding model as well.
(v) Continuous-Time Systems: Our proposed BMM algorithm can also be applied to
continuous-time systems, such as neural ODEs [53] and SDEs [60]. This extension is
particularly useful for applications that involve irregularly sampled observations.
(vi) Transformers and DSSMs: Transformers [84] are a popular neural network architecture
that has significantly advanced many machine learning applications, including text gener-
ation [128] and image generation [129]. An interesting research direction is to extend
our BMM algorithm to the transformer architecture, which offers two potential benefits:
(i) reduced sample variance during transformer training due to our BMM algorithm and
(ii) potentially improved predictive performance for DSSMs by using transformer archi-
tectures. In Sec. 3.5.4, we benchmarked DGTMs based on feed-forward neural networks
against transformers. However, in this experiment, we did not observe any advantage
of using transformers over feed-forward neural networks. It is worth noting that this
experiment was performed on a task involving fully observed dynamical systems. For
partially observed systems, transformers might provide an advantage through the use
of the cross-attention module [84]. For instance, the cross-attention module allows the
transition model to pay attention to contextual information such as the map.
(vii) Applications beyond Traffic Forecasting: Our proposed BMM algorithm has the potential
to be employed as a subroutine in various applications other than traffic forecasting. In
the context of variational autoencoders [130], it can replace the sampling step in evidence
maximization. Another potential application is using the BMM algorithm for multi-step
training of diffusion models [131].
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A. Supplementary Material for Chap. 4

A.1. Proof of Theorem 1

Theorem 1. The predictive distribution p(yt|I) is analytically computed as

p(yt|I) =
V∑︂

v=1

πv(I)Nµy
t,v(I),Σ

y
t,v(I)),

for a GDSSM with the below generative model

v ∼ Cat([π1(I), . . . , πV (I)]),
x0 ∼ N (µ0,v(I), diag(Σ0,v(I))),
xt ∼ N (xt|xt−1 + f(t, v, I)xt−1, diag (r(t, v, I))) ,
yt ∼ N (yt|g(t, v, I)xt, diag (s(t, v, I))) ,

where f(t, v, I), r(t, v, I), g(t, v, I), s(t, v, I) are time t, component v, and context I depend-
ing matrices with appropriate dimensionality.

Proof. The proof is straightforward as the output moment of the transition and emission
model are analytically available

p(yt|I) =
∫︂

p(yt|v, xt, I)p(xt|v, x0, I)p(v, x0|I)dvdx0dxt

=
V∑︂

v=1

πv(I)
∫︂

p(yt|v, xt, I)p(xt|v, x0, I)N (µ0,v(I),diag(Σ0,v(I)))dx0dxt

=
V∑︂

v=1

∫︂
p(yt|v, xt, I)N (µx

t,v(I),Σx
t,v(I))dxt
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=
V∑︂

v=1

πv(I)N (µy
t,v(I),Σ

y
t,v(I)).

The moments at time step t of a linear time-depending dynamical system are analytically
available as [22]

µx
t,v(I) =

t∏︂
t′=1

(︁
I + f(t′, v, I)

)︁
µx
0,v(I),

Σx
t,v(I) =

[︄
t∏︂

t′=1

(I + f(t′, v, I))

]︄
diag(Σx

0,v(I))

[︄
t∏︂

t′=1

(I + f(t′, v, I))⊤
]︄

+

t−1∑︂
t′=1

[︄
t∏︂

t′′=t′+1

(I + f(t′′, v, I))

]︄
diag(r(t′, v, I))

[︄
t∏︂

t′′=t′+1

(I + f(t′′, v, I))⊤
]︄

+ diag(r(t, v, I))

We obtain the same expression via the BMM algorithm, which is easy to prove by inserting
the locally linear system into Eq. 3.3 and 3.5. Finally, mean µy

t,v(I) and covariance Σy
t,v(I)

of the output at time step t are available as [22]

µy
t,v(I) = E[g(t, v, I)xt] = g(t, v, I)µx

t,v(I),
Σy
t,v(I) = Cov[g(t, v, I)xt] + diag (E[s(t, v, I)])

= g(t, v, I)Σx
t,v(I)g(t, v, I)⊤ + diag (s(t, v, I)) .

A.2. Training Details

We train all models with the ADAM optimizer and stochastic mini-batches. We use a batch
size of 4 and a learning rate of 0.0001. In order to accelerate the training of multi-modal
GDSSMs we initialize the transition and observation neural nets with the pretrained
versions of the uni-modal GDSSMs.
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A.2.1. rounD

We train deterministic models (GDSSM Det. and Non Recur. GNN) for 50k weight updates.
For the MC based models (GDSSM MC) we use 100k weight updates. The dataset contains
4,314 training and 1,091 testing snippets. We do not use a separate validation dataset as
we observed no overfitting.

A.2.2. NGSIM

We train all models for 1000k updates on the NGSIM dataset. The dataset contains
5,922k/860k/1,505k train/validation/test snippets. We validate the models on 1k random
minibatches from the validation dataset after every 10k weight updates.

A.2.3. Out-of-Distribution Testing

We train all models for 50k weight updates. The dataset consists of three sub-datasets
with 254/ 251/ 137 snippets, where 80% of each sub-dataset are used for training and the
remaining 20% for testing. Due to the small size of the sub-datasets we observed overfitting.
We address this by using the last 20% of each training sub-dataset for validation. We
validate the model after every 1k weight updates.

A.3. Alternative Parameter Inference Methods

In contrast to Sec. 2.5, we review parameter inference methods for latent dynamical
systems, as we used them for our baselines in Sec. 4.3.2. One commonly used inference
method in the context of machine learning circumvents maximizing the log-likelihood
and instead maximizes the Evidence Lower Bound (ELBO)

ELBO(y1, . . . , yT |I) = Eq(x0,...,xT )

[︃
log

p(y1, . . . , yT , x0, . . . , xT |I)
q(x0, . . . , xT )

]︃
, (A.1)

that involves learning an approximation q(x0, . . . , xT ) to the intractable smoothing distri-
bution p(x0, . . . , xT |y1, . . . , yT , I) [26].
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A tighter bound to the log-likelihood log p(y1, . . . , yT |I) can be obtained by calculating
the importance weighted log-likelihood, which we refer to as the Monte Carlo Objective
(MCO) [103, 132]

MCO(y1, . . . , yT |I) = Eq(x0,...,xT )

[︄
log

1

S

S∑︂
s=1

p(y1, . . . , yT , x0,s, . . . , xT,s|I)
q(x0,s . . . , xT,s)

]︄
, (A.2)

where S is the number of Monte Carlo samples and xt,s is the s-th sample at time step t.
For state-space models, recent work combined the MCO with particle filters [102, 104].

A.4. Experimental Setup for Out-of-Distribution Testing

A.4.1. Dataset Construction

We construct a dataset that consists of three different traffic environments. We select
one recording from the roundabout in Kackertstrasse (K) in Aachen, one recording from
the roundabout in Thiergarten (T) in Alsdorf, and one recording from the roundabout in
Neuweiler (N) near Aachen. We use the same preprocessing procedure as in Sec. 4.3.2. We
remove pedestrians, bicycles, and parked vehicles from each traffic environment. There
remain 319/264/389 tracked objects over a time span of 0.3/0.3/0.15 hours at the traffic
environments K/T/N. We downsample the recordings by a factor of 5 and then construct
for each traffic environment a dataset that consists of 8 s long snippets with 50% overlap.
The first three seconds are used as the track history, and the following five seconds as the
prediction horizon. We obtain 254/251/137 snippets for the traffic environments K/T/N.
For each traffic environment, we use the first 80% snippets for training and the remaining
20% snippets for testing.

A.4.2. Map Processing

The map processing follows existing work in the domain of traffic forecasting [133, 80].
Given an ego-vehicle and its history, we first calculate the heading of the vehicle. The
heading is calculated as the average heading direction over the last 0.2 observed seconds.
The position and the heading direction jointly define the Region-of-Interest (ROI) on the
map. The ROI is a rectangle with a length of 74 meters and a width of 44 meters, which
is centered at the ego-vehicle and oriented according to the heading of the ego-vehicle.
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We further convert the RGB image into a binary road image. We visualize the processed
map information in Fig. A.1b

Ego Vehicle
Heading
Relevant Map Information

(a) Full map with ego-vehicle.

Ego Vehicle
Heading

(b) Rotated, cropped, and masked map information.

Figure A.1.: Processing of map information.
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A.5. Network Architectures

We use neural network architectures without a world model (see Fig. A.2) for the experi-
ments in Sec. 4.3.2, 4.3.3, and 4.3.4.
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(a) Mean update function
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(b) Covariance update function
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(c) Observation mean function
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Adjacency
M ×M
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Mean
M × V × 4

Covariance
M × V × 4

(d) Embedding model

State
M × 4

Observation
M × 2

Adjacency
M ×M

FC-30 + Tanh

Mean Aggregator

FC-64 + Tanh

FC FC+ Exp

Mean
M × 4

Covariance
M × 4

(e) Approximate posterior

Figure A.2.: Architectures without map information. For fully connected layers we give
the number of output neurons.

The embedding model receives the history of allM agents. This history is 3 seconds long
with a time step of 0.2 seconds and consists of two-dimensional coordinates. The output of
the embedding model is a GMM with V mixture components. We use the mean aggregator
in the embedding model as well as the mean and covariance update functions. Mean and
covariance update functions are neural networks that conduct at each prediction step
one round of message passing and then calculate the output. The emission model uses a

109



neural net for the mean function g(xt) and a constant vector for s(xt). The approximate
posterior is used in Sec. 4.3.2 for the baselines that are trained on the ELBO or MCO.
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(a) Mean update function
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(b) Covariance update function
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(c) Observation mean function
History+Encoded Map

M × 30+ 256
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FC-512 + Tanh
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Mean Aggregator
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Mean
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(d) Embedding model

Masked Map
500× 300

Conv-1-6+ReLU+MaxPool

Conv-6-12+ReLU+MaxPool

Conv-12-24+ReLU+MaxPool

FC

Encoded Map
256

(e) Map encoder

Figure A.3.: Architectures with map information. For fully connected layers we give the
number of output neurons. For convolutional layers we give the number of
input channels and output channels.

In the experiments in Sec. 4.3.5, we use an architecture with a world model (see Fig.
A.3). It closely follows the architectures in Fig. A.2. We add an additional neural net,
which encodes the masked map of size 500x300 into a flattened 256-dimensional vector.
This map embedding is used as an additional input to the embedding model.
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B. Supplementary Material for Chap. 5

B.1. Similarities between ELBO and Predictive Variational
Bayesian Inference

The classical Bayesian formalism defines a prior p(w|ϕ) with hyperparameters ϕ over the
weights w ∈ RDw and a likelihood p(D|w) of observing the data D. The posterior p(w|D)
is the quantity of interest. During posterior inference, the hyperparameters ϕ of the prior
are kept constant. As an analytical solution to the posterior is intractable, either Markov
Chain Monte Carlo (MCMC) [42] or Variational Inference (VI) [43] is used. VI introduces
an approximate posterior q(w) and maximizes the Evidence Lower Bound (ELBO)

Eq(w)[log p(D|w)]− KL(q(w)|p(w|ϕ)). (B.1)
Commonly, the approximate posterior is modeled as a Gaussian distribution [44]. The
KL-divergence between two Gaussians q = N (µw,Σw) and p = N (µw

p ,Σ
w
p ) with dimen-

sionality Dw is available in closed form as

KL(q|p) = 1

2

[︁
log

Σw
p

Σw
−D + Tr((Σw

p )
−1Σw) + (µw

p − µw)T (Σw
p )
−1(µw

p − µw)
]︁
, (B.2)

where µi denotes the i-th entry of the mean vector of q. We further assume that q is
modeled with a diagonal covariance and the i-th entry of the diagonal is denoted with
Σii. For the case of a standard normal prior p(w|ϕ) = N (0, I), the KL-divergence between
the prior and approximate posterior takes the below form

KL(q|p) = 1

2

Dw∑︂
i=1

− log Σw
ii +Σw

ii + (µw
i )

2 − const., (B.3)

which is equivalent to the negative hyper-prior in Eq. 5.26. We summarize that the ELBO
is equivalent to our proposed training objective in Eq. 5.23 up to the position of the
logarithm in the likelihood term.
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B.2. Moments of a Product of Correlated Normal Variables

We are interested in calculating the moments of a product of correlated normal vari-
ables, E[al+1

t,i,mxlt,m],Cov[al+1
t,i,mxlt,m, al+1

t,j,nx
l
t,n], and Cov[al+1

t,i,mxlt,m, wt,j ]. In the following,
we assume that all variables are jointly normally distributed.
The expectation E[al+1

t,i,mxlt,m] follows from the definition of the covariance

Cov[al+1
t,i,m, xlt,m] = E[al+1

t,i,mxlt,m]− E[al+1
t,im]E[xlt,m]. (B.4)

Contrarily, computing the cross-covariance Cov[al+1
t,i,mxlt,m, al+1

t,j,nx
l
t,n] is more sophisticated.

In order to avoid cluttered notation, we omit in the derivation the time and layer index.
The arguments ai,m, xm, aj,n, xn are normally distributed [ai,m, xm, aj,n, xn] ∼ N (µ,Σ)
with mean and covariance

µ =

⎡⎢⎢⎢⎢⎢⎢⎣
µai,m

µxm

µaj,n

µxn

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.5)

Σ =

⎡⎢⎢⎢⎢⎢⎢⎣
Σai,m,ai,m Σai,m,xm Σai,m,aj,n Σai,m,xn

Σxm,ai,m Σxm,xm Σxm,aj,n Σxm,xn

Σaj,n,ai,m Σaj,n,xm Σaj,n,aj,n Σajn,xn

Σxn,ai,m Σxn,xm Σxn,aj,n Σxn,xn

⎤⎥⎥⎥⎥⎥⎥⎦ . (B.6)

We first calculate the expectation of the product of four Gaussian random variables

E[ai,mxmaj,nxn] = E[(ai,m − µai,m + µai,m)(xm − µxm + µxm)

(aj,n − µaj,n + µaj,n)(xn − µxn + µxn)]

= E[(āi,m + µai,m)(x̄m + µxm)(āj,n + µaj,n)(x̄n + µxn)], (B.7)
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where the accent x̄ denotes the centered version of the random variable x. We execute
the product and arrive at

E[ai,mxmaj,nxn] = µai,mµxmµaj,nµxm +
˂˂˂˂˂˂˂˂˂˂
µai,mµxmµaj,nE[x̄n]+

˂˂˂˂˂˂˂˂˂˂
µai,mµxmµxmE[āj,n] +˂˂˂˂˂˂˂˂˂˂

µai,mµaj,nµxmE[x̄m]+

˂˂˂˂˂˂˂˂˂˂
µxmµaj,nµxmE[āi,m] + µai,mµxmE[āj,nx̄n]+
µai,mµaj,nE[x̄mx̄n] + µai,mµxnE[x̄māj,n]+

µxmµaj,nE[āi,mx̄n] + µxmµxnE[āi,māj,n]+

µaj,nµxnE[āi,mx̄m] +˂˂˂˂˂˂˂˂˂
µai,mE[x̄māj,nx̄n]+

˂˂˂˂˂˂˂˂˂
µxmE[āi,māj,nx̄n] +˂˂˂˂˂˂˂˂˂

µaj,nE[āi,mx̄mx̄n]+

˂˂˂˂˂˂˂˂˂
µxnE[āi,mx̄māj,n] + E[āi,mx̄māj,nx̄n]. (B.8)

Due to Isserlis‘ theorem [127], any odd central moment of a product of centered Gaussian
random variables is zero. In order to calculate E[āi,mx̄māj,nx̄n] we make once more use
of Isserlis‘ theorem and arrive at

E[āi,mx̄māj,nx̄n] = E[āi,mx̄m]E[āj,nx̄n] + E[āi,māj,n]E[x̄mx̄n] + E[āi,mx̄n]E[x̄māj,n].
(B.9)

Plugging everything together, we arrive at a tractable expression for the expectation of
four Gaussian random variables

E[ai,mxmaj,nxn]=µai,mµxmµaj,nµxn +Σai,m,xmΣaj,n,xn+

Σai,m,xmµaj,nµxn +Σaj,n,xnµai,mµxm+

Σai,m,aj,nΣxm,xn +Σai,m,aj,nµxmµxn+

Σxm,xnµai,mµaj,n +Σai,m,xnΣxm,aj,n+

Σai,m,xnµxmµaj,n +Σxm,aj,nµai,mµxn . (B.10)

Given the above result, we can calculate the covariance as

Cov[ai,mxm, aj,nxn] = E[ai,mxmaj,nxn]−E[ai,mxm]E[aj,nxn]
= Σai,m,aj,nΣxm,xn +Σai,m,aj,nµxmµxn+

Σxm,xnµai,mµaj,n +Σai,m,xnΣxm,aj,n+

Σai,m,xnµxmµaj,n +Σxm,aj,nµai,mµxn . (B.11)
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We obtain the result for Cov[alt,i,mxlt,m, wt,j ] by setting xn = 1 and aj,n = wj in Eq. B.11

Cov[ai,mxm, wj ] =˂˂˂˂˂˂˂Σai,m,wjΣxm,1 +Σai,m,wjµxm+

˂˂˂˂˂˂˂Σxm,1µai,mµaj +˂˂˂˂˂˂˂Σai,m,1Σxm,wj+

˂˂˂˂˂˂˂
Σai,m,1µxmµwj +Σxm,wjµai,m

= Σai,m,wjµxm +Σxm,wjµai,m . (B.12)
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