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Abstract

The wetting and dewetting of surfaces by fluids is pervasive in our nature, but
also plays a crucial role in many technical processes and applications. Examples
include coating and printing, microfluidics and lab-on-a-chip technologies, as well
as cooling in certain reactor geometries or other process industry installations. In
general, dynamic wetting processes can be represented as multiphase flows, which
can be described mathematically with the aid of the Navier-Stokes equations. In
addition, jump conditions are needed to connect the flow of the different fluids or
phases across their interfaces, on which a surface tension is applied. If a dynamic
contact line occurs besides the liquid-gas interfaces, where liquid and gas touch the
solid surface, a slightly different modeling approach is followed. For this purpose,
the Navier-Stokes equations are additional complemented by a transport equation
for flow advection. This transport equation originates from an algebraic volume of
fluid approach, that leads to an one-field formulation of the problem. The model
is completed by appropriate initial and boundary conditions, where the dynamic
contact angle enters as a boundary condition. The resulting model is a system of
partial differential equations, which is used in the simulation based optimization of
wetting processes. The considered optimization problems belong to the class of op-
timal control problems, in which an objective function is optimized with respect to
a state and a control. For existence and uniqueness statements, the differentiability
of the related control-to-state mapping is required, where LP-maximal regularity of
the underlying linear two-phase problem is acquired. Proving the differentiability
is a central part of this work, where the control consists of an initial velocity field
and an over the whole domain distributed component on the right side of the mo-
mentum equation. This creates a basis to solve optimal control problems of wetting
processes with gradient-based optimization methods. However, the common ap-
proach of solving the constrained optimization problem by means of the Lagrangian
function is difficult in the context of partial differential equations and unsuitable
for our wetting model. Hence, we follow a sensitivity approach and formally derive
sensitivity equations for the continuous flow problem. State equations and sensi-
tivity equations are now solved numerically with suitable discretization methods,
since an analytical solution for this type of problem is not yet known. Therefore,



the two-phase solver interFoam, which originates from the OpenFOAM library, is
adapted to the effect that the state equations and the respective sensitivity equa-
tions are solved simultaneously. The developed method is tested on a benchmark
test case, which is motivated by gravure printing. For good printing results, it is
essential to remove excess ink from the printing plate, except for a thin film that
remains. For this purpose, a steel strap is pulled over the surface, which is also
called a doctor blade. Numerical results are presented exemplary for a parameter
identification problem and the optimization with respect to geometric aspects for
the above-mentioned wetting process.



Zusammenfassung

Das Be- und Entnetzen von Oberflichen durch Fluide ist in unserer Natur allge-
genwértig, spielt aber auch in vielen technischen Prozessen und Anwendungen eine
entscheidende Rolle. Beispiele dafiir sind das Beschichten und Drucken, Mikroflu-
idik und Lab-on-a-Chip-Technologien oder auch das Kiihlen in bestimmten Reak-
torgeometrien oder anderen Anlagen der Prozessindustrie. Im Allgemeinen kon-
nen dynamische Benetzungsvorginge als Mehrphasenstromungen dargestellt wer-
den, die sich mathematisch mithilfe der Navier-Stokes-Gleichungen beschreiben
lassen. Zusitzlich werden Sprungbedingungen benétigt, die die Stromung der ver-
schiedenen Fluide oder Phasen iiber ihre Grenzflichen hinweg verbinden, an welchen
zusétzlich eine Oberflichenspannung anliegt. Kommt neben den Fliissigkeits-Gas-
Grenzflichen eine dynamische Kontaktlinie vor, an der Fliissigkeit und Gas die
Festkorperoberfliche beriihren, wird ein etwas anderer Modellierungsansatz ver-
folgt. Hierfiir werden die Navier-Stokes-Gleichungen um eine zusitzliche Trans-
portgleichung ergénzt, welche die Advektion der Strémung beschreibt. Die Trans-
portgleichung wird fiir einen algebraischen Volume-of-Fluid-Ansatz bendtigt, der zu
einer Ein-Feld-Formulierung des Problems fiihrt. Das Modell wird durch geeignete
Anfangs- und Randbedingungen vervollstindigt, wobei der dynamische Kontakt-
winkel als Randbedingung eingeht. Es entsteht ein System partieller Differential-
gleichungen, welches in die simulationsbasierte Optimierung von Benetzungsvorgén-
gen einfliefst. Die betrachteten Optimierungsprobleme gehéren zu der Klasse der
Optimalsteuerungsprobleme, in denen eine Zielfunktion beziiglich eines Zustan-
des und einer Steuerung bzw. Kontrolle optimiert wird. Fiir Existenz- und
Eindeutigkeitsaussagen wird die Differenzierbarkeit der zugehorigen Steuerungs-
Zustands-Abbildung bendtigt, wobei LP-maximale Regularitdt des zugrundeliegen-
den linearen Zweiphasenproblems erarbeitet wird. Die Differenzierbarkeit zu zeigen
ist ein zentraler Bestandteil dieser Arbeit, wobei sich bei den theoretischen Betrach-
tungen die Kontrolle aus einem initialen Geschwindigkeitsfeld und einer {iber dem
gesamtem Gebiet verteilten Kontrolle auf der rechten Seite der Impulsgleichung
zusammensetzt. Damit wird eine Basis geschaffen, um Optimalsteuerungsproble-
me von Benetzungsprozessen mit Methoden der ableitungsbasierten Optimierung
zu 16sen. Jedoch gestaltet sich die Losung eines restringierten Optimierungspro-
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blems mit partiellen Differentialgleichungen als Nebenbedingungen im Kontext
von Benetzungsproblemen als schwierig und kann nicht wie iiblich mithilfe der
Lagrange-Funktion geldst werden. Daher verfolgen wir einen Sensitivitdtsansatz
und leiten formal Sensitivitdtsgleichungen fiir das kontinuierliche Stromungsproblem
her. Zustandsgleichungen und Sensitivitétsgleichungen werden nun numerisch mit
geeigneten Diskretisierungsverfahren gelost, da eine analytische Losung fiir solche
Probleme bislang nicht bekannt ist. Dafiir wird der aus der OpenFOAM-Bibliothek
stammende zwei-Phasen Loser interFoam dahingehend angepasst, dass simultan zu
den Zustandsgleichungen auch die zugehdrigen Sensitivitatsgleichungen gelost wer-
den. Das entwickelte Verfahren wird an einem Demonstratorbespiel getestet, welches
durch den Tiefdruck motiviert ist. Fiir ein gutes Druckergebnis ist es essenziell,
iiberschiissige Farbe bis auf einen diinnen Film von der Druckplatte zu entfernen.
Zu diesem Zweck wird ein Stahlband iiber die Oberfliche gezogen, welches auch als
Rakel bekannt ist. Numerische Ergebnisse werden beispielhaft fiir ein Parameter-
identifikationsproblem und die Optimierung hinsichtlich geometrischer Aspekte fiir
den genannten Benetzungsprozess dargestellt.
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CHAPTER 1

Introduction

In this thesis, we investigate the modeling and simulation based optimization of
multiphase flow in the context of wetting phenomena. Wetting is something, that
surrounds us every day. In nature, but also in many technical applications. One of
the most famous examples from nature is the lotus flower, where the so-called lotus
effect can be observed. A droplet of water almost completely rolls off a lotus leaf
and can form a contact angle of about 170 degrees with the leaf. This impressively
shows how the wetting behavior of a droplet can be changed by the structure of
the surface. Such examples from nature serve as a pattern for state-of-the-art tech-
nologies, such as superhydrophobic, dirt-repellant or icephobic surfaces. Another
example, where we can observe different wetting behaviors is a simple water droplet
running down a window. FEveryone has already observed these small droplets,
which find their way down, merge with other droplets to form larger ones, pinning
again and again, or are distracted in a certain direction for example by a moving
car. Various wetting phenomena underlie this seemingly trivial process and a deep
knowledge of the underlying physics is indispensable to use the natural role models
for technical applications. Some of these fundamental questions are addressed by
the collaborative research center (CRC) 1194 ,Interaction of Transport and Wetting
Processes. As the name already suggests, the CRC investigates wetting processes,
where heat or mass transport occurs parallel to momentum transport and where
complex fluids or structured surfaces are used. The joint work of mathematicians,
physicists, engineers and experimentalists gives the possibility to synergize different
disciplines and create a reliable and valid model of complex wetting processes. As
far as we know, such complex wetting processes are not yet understood in detail
and the mathematical description is incomplete, especially for the flow behavior at
the three-phase contact line.



Chapter 1. Introduction

To investigate such complex processes, extensive experiments are necessary in-
volving large parameter studies. These are often very costly and impractical, why
they are replaced by numerical simulations. Therewith, a large number of virtual
experiments can be performed with a minor effort of time and material. However,
these only make sense if we have a correspondingly expressive and realistic model,
which we can use to verify experimental results and optimize material or operation
parameters in a second step. At best, this leads to improved experimental results. In
order to achieve such improvements, the number of simulations can quickly become
very large if many parameter settings need to be checked or the number of different
parameters is large. Without sophisticated optimization algorithms, this can hardly
be calculated in a reasonable time, even with today’s computing capacities. The
analysis and investigations regarding simulation and targeted influencing of wetting
processes, done with methods from optimal control theory, are addressed in this
thesis to support decision-making processes and improve technical applications.

1.1 What is Wetting?

Wetting is the formation of an interface between a liquid and a solid surface and
is often modeled as a multiphase flow problem. Here, the term multiphase relates
to the different aggregation states of a fluid, so there can occur gaseous, liquid or
solid phases. In our case, we define a wetting process as the interaction between a
two-phase flow and a solid, not deformable surface. The two-phase flow typically
consists of a liquid and a gas phase, or two different fluids. At least one of these
phases is in contact with the solid surface. A distinction is made between static
and dynamic wetting. While in the static case an equilibrium between the involved
forces is reached and a static interface and contact angle is formed, the dynamic
wetting describes the motion of a fluid onto a substrate. There, a dynamic contact
line is shifted with the passage of time and different contact angles arise. This leads
to an advancing contact angle during wetting and a receding one during dewetting.
So we can summarize, that wetting dynamics deal with the time evolution of
moving contact lines on solid surfaces, which describes for instance the spreading
of fluids onto a substrate [33].

The mathematical formulation of wetting phenomena is dependent on the
considered length scale. We roughly distinguish between the macro-, the micro-
and the nanoscale, whereby intermediate states are also described in literature.
The classical continuum model approach allows the description of a wide range
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of macroscopic phenomena, while molecular models mainly cover the microscopic
and nanoscopic scale. Although we can also achieve a very high resolution with
the use of continuum models, they are unable to reproduce these microscopic
and nanoscopic phenomena. These have to be included as physical constants or
boundary conditions to the model. There also exist hybrid approaches, so-called
Hybrid-Atomistic-Continuum approaches, which try to cover a wider range of
length scales. In this work, we will focus on macroscopic formulations. Then, the
mathematical model of a wetting process, or more precisely of multiphase flow, is
governed by the Navier-Stokes equations together with jump conditions to connect
the flow of the different fluids or phases at their interfaces. In its description, the
classification of the investigated fluids is crucial. There exist different equations
for incompressible or compressible fluids, for viscous or non viscous fluids, for
Newtonian or non-Newtonian fluids and of course, also for a creeping, laminar or
turbulent flow behavior.

With a valid model, the scope of wetting applications is very widespread. For
example, wetting processes play an important role in functional printing, for Lab-
on-a-Chip technologies and for the optimization of airplane wings or car bodies.
As this thesis is part of the research topics within the CRC 1194, we focus on a
wetting process that is essential for functional printing. Printing electronical devices
requires an extraordinary precision on a relatively small length scale since conductive
elements must not touch each other. Gravure printing is most suitable for such high-
precision printing tasks and is for example also used to print banknotes. Here, the
doctor blading is a very important sub-process. A doctor blade is a sharp steel band
that is scratched over the engraved printing form to remove the excessive ink. In this
way, the ink remains almost exclusively inside the engraved cups and only reaches
those areas on the print medium that are to be printed on. This is a crucial point
when printing the smallest electronic connections, for example, because otherwise
undesirable power bridges would occur and would disturb the printed device. A
specific wetting behavior is thereby pursued and leads to the following questions.
How should material parameters be chosen to reach a specific wetting behavior, for
example to reach a prescribed spreading? How can we influence the film formation in
our printing process with changing geometrical quantities like the inclination angle
of the doctor blade or the shape of the doctor blade itself? Generally, how can we
calculate an optimal solution for this type of wetting phenomena mathematically?
Among others, these are the questions that will be answered within this work.
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1.2 Related Work

Multiphase problems are the subject of active research as they are very important
for many technical processes. While the efforts for single fluids and free boundary
problems are already advanced, the multiphase case is based on these results and
was therefore only able to develop properly in the last few decades. Let us get a little
overview of how the topic has developed. The Navier-Stokes equations describing
fluid flow have been studied by many mathematicians. Mathematical questions are
the existence, uniqueness and stability of solutions, so it is of interest if a problem
is well posed. Then, there are also questions concerning the regularity of solutions
as well as appropriate solution concepts and the qualitative properties of solutions,
e.g., stability, long time behavior or equilibrium conditions. An early comprehensive
work was provided by TEMAM in [91], who proved basic ideas for existence and
uniqueness results of the single fluid Navier-Stokes equations. Since we can not
mention all of the numerous works concerning the Navier-Stokes equations, we will
focus on results where surface tension occurs. In the case of a bounded domain,
existence results local in time for the corresponding free boundary problem were for
example derived by SOLONNIKOV, who mentioned existence of the problem in the
L? Sobolev-Slobodetskii space in a series of papers, see e.g., [87] and further paper
cited therein, by SCHWEIZER for a semigroup setting [80] and by MOGILEVSKII
together with SOLONNIKOV, who covered the case of Holder spaces [60, 87]. More
recent results were provided by SHIBATA and SHIMIZU in [83, 86], who showed
local existence and uniqueness in the case of a perturbed infinite layer or halfspace
as initial domain and for a setting with anisotropic Sobolev spaces W2, where
2<p<ooand n < g < oo. Global existence results were for example provided by
BEALE in [9], if the initial state and the initial velocity are close to equilibrium and
gravity and surface tension effects are included. Here a layer of viscous, incompress-
ible fluid in an ocean of infinite extend was assumed, bounded by a lower solid and
an upper free surface. These works paved the way towards more evolved multiphase
flow problems. Based on Lagrangian coordinates, DENISOVA established existence
and uniqueness results of local strong solutions for a two-phase case where one of
the domains is bounded in [22] and together with SOLONNIKOV for a transformed
problem with an implicit representation of the free boundary, see [23]. Further
relevant results were for example developed by ABELS in [1] and TANAKA in [90].
Furthermore, PRUSS and SIMONETT showed local well-posedness of the underlying
linear problem by means of L,-maximal regularity [70], which forms the basis of
our differentiability investigations of the control-to-state operator. Moreover, they
prove that the interface as well as the solution becomes instantaneously real analytic.
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Besides the theoretical aspects, the numerical considerations of the introduced
problem formulation and their implementations are considered in the present work,
which is assigned to the research field Computational Fluid Dynamics (CFD).
This is unavoidable, since the Navier-Stokes equations can be solved analytically
just in very specific cases. Also in our case, we have to solve them numerically.
Here, the consistency between the continuous and the discretized model equations
as well as respective solution procedures are of special interest. The origin of
CFD can be traced back to the late 1950s and early 1960s years [93], with the
aim to move away from experimental studies and empirical correlations to more
general applicable and accurate mathematical models of engineering systems. One
of the first numerical methods, which was able to treat the full Navier-Stokes
equations, was the marker-and-cell (MAC) method, introduced 1965 by HARLOW
and WELSCH in [38]. Here, rudimental multiphase flows, at first only with a free
boundary, could be solved. From this, the volume of fluid (VOF) method was
developed at the beginning of the 1980s and first described by HIRT and NICHOLS,
see [42], where the originally used tracking of particles was replaced by a marker
function advected with a transport equation. To overcome the lack of interface
diffusion over numerous cells, which resulted from the cell-averaged marker function
[93], the VOF method was adapted with different interface reconstructions, e.g., by
AsHGRIZ and P00 in [6] or later by SCARDOVELLI and ZALESKI in [78], to name
only a few of them. Besides the MAC and VOF method, other numerical methods
were developed over the course of time, such as front-tracking by UNVERDI and
TRYGGVASON [97] as well as the level-set method by OSHER and SETHIAN [63] or
the phase-field approach by KOBAYASHI [54], but we will not go into details here.

With the great progress in CFD, also the optimization of flow problems came
into focus, especially optimal control of fluid flow. The difficulties of multiphase
flow problems are, that we have to deal with highly nonlinear partial differen-
tial equations (PDEs), small length and short time scales and that the phase
boundaries are part of the solution. PDE constrained optimization embodies
analysis, discretization, and the development of dedicated optimization methods
for minimization problems constrained by partial differential equations [96]. For
the optimization theory, especially the differentiability of the functionals and the
constraints is required to fulfill necessary and sufficient optimality conditions. The
derivative based optimization is more efficient than derivative-fee methods and
appropriate for our problem formulation. There are many differentiability results
but primarily for the single phase case, for the multiphase case without surface
tension or for representations with a diffuse interface model. Various optimal
control problems for the single phase time-dependent Navier-Stokes equations were
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for example treated in [2, 31, 40, 95] and numerous other contributions. An optimal
control problem of a binary fluid described by its density distribution without
surface tension is investigated in [8]. Based on the thermodynamically consistent
diffuse interface model, GARCKE, HINZE and KAHLE derived necessary optimality
conditions for the time-discrete and the fully discrete optimal control problem
with respect to distributed and boundary controls [32]. Compared to the sharp
interface approach, the interface is assigned a transition region with finite thickness,
which leads to a thin interfacial layer. However, research about differentiability
properties of the two-phase Navier-Stokes equations are quite rare. The main
challenges in this case are the moving interface and the surface tension. To the
best of our knowledge, this is the first work providing differentiability properties
of control-to-state mappings for sharp interface models of two-phase Navier-Stokes
flow with surface tension, previously published in [25]. In our case, the solid-gas or
solid-liquid interface maintains its shape, because the solid is not flexible. Moreover,
there is also a very interesting field of research which deals with flexible solids
where the location of the solid can change in response to fluid flow, see [10, 39].
This sub-discipline of multiphase flow includes Fluid-Solid interactions, but it is
beyond the scope of this thesis. It is still worth mentioning, because a technique
similar to ours was recently used in [39] to show differentiability properties for
shape optimization of fluid-structure interaction, but with the difference of using a
different fix point argument.

Different numerical approaches for the optimal control of two-phase flows are
discussed in [17] by BRAACK et al., especially a level-set technique and an Allan-
Cahn phase-field model. The challenge herein is the treatment of the interface,
whereby care must be taken to ensure a sufficiently sharp interface between the two
phases with appropriate consideration of the surface tension forces. Also for this
challenge, the present work aims to give a consistent numerical formulation and to
provide an optimization framework for wetting phenomena. But there are still a lot
of open questions regarding wetting dynamics. An example is the moving contact
line paradox, which was recently investigated by FRICKE, also a member of the CRC
1194. He observed, that the classical no-slip condition at solid boundaries seems to
be incompatible with dynamic wetting phenomena [30]. Despite the intensive work
done in this field of research in recent years and the knowledge already gained,
there is still much to be done. With our work we would like to contribute to
a better understanding of multiphase problems and especially make a profitable
contribution in the field of derivative calculations of the incompressible Navier-
Stokes equations with surface tension. Furthermore, our results provide new insights
to the optimization of problems involving moving contact lines.
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1.3 Outline of the thesis

We have seen that optimization of wetting phenomena requires the investigation of
multiphase flow which is described by the Navier-Stokes equations. Chapter 2 con-
tains a detailed derivation and description of such multiphase flow problems with
different approaches. First, a standard description is given where the Navier-Stokes
Equations are supplemented by jump conditions to connect the flow of the differ-
ent fluids or phases at their interface. Afterwards, we present the volume of fluid
approach, an equivalent representation without resorting to jump conditions. Here,
the different fluids or phases are treated as one single fluid with an inhomogeneous
density and viscosity distribution in the domain. The advection of the interface
is described with an additional transport equation. This leads to one single set of
equations that represent the flow. Additionally, we will have a closer look to the
treatment of surface tension, appropriate boundary conditions as well as the contact
line between the different fluids and the solid surface. In Chapter 3, the optimal
control problem is introduced. Since we pursue a derivative based optimization ap-
proach, the sensitivity equations of the problem have to be determined and a rigorous
investigation of differentiability results for the control-to-state mapping is necessary.
Therewith, we have all ingredients to formulate a sensitivity-based optimization al-
gorithm for wetting problems. Analytical solutions of the Navier-Stokes equations
are available just in very specific cases, for which reason they are usually solved nu-
merically. The numerical solution of the introduced problem is subject of Chapter
4, where we present the spatial discretization of the domain with the Finite Volume
method, a temporal discretization and some numerical solution procedures to han-
dle the Navier-Stokes equations as well as the additional transport equation from
the VOF model. Furthermore, the simulation with OpenFOAM is mentioned and
how governing equations, initial and boundary conditions are treated. In Chapter
5, results from the optimization theory and numerical considerations are combined
to optimize the doctor blading process, which exemplifies a wetting process. Differ-
ent optimization problems are applied to a test case, designed for the investigation
of various wetting phenomena. Besides solving parameter identification problems,
the shape of the doctor blade and other domain variations are optimized to ob-
tain good printing results. After presenting some numerical results, we conclude
with a summary of our investigations and an outlook on future work in Chapter
6. Moreover, the developers documentation of the implemented OpenFOAM code
should be mentioned, which is discussed in Appendix B. Here, a walk through the
OpenFOAM code as well as compile options and user specifications shall help to
reproduce numerical results and apply the developed solver to own optimization
problems.
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CHAPTER 2

Description of Multiphase Flow

In this chapter we derive the governing equations for fluid flow. Therefore, some
basic notations and definitions of function spaces are required, which are provided in
the first section and will be frequently used throughout the thesis. Afterwards, we
describe the representation of a two-phase domain, before we come to the fundamen-
tal conservation equations of fluid flow. Starting from a standard description, we
will successively build up a comprehensive model for multiphase flow with a sharp
interface separating immiscible fluids or phases respectively. Established results of
existence and uniqueness are presented for the classical description with jump con-
ditions and possible boundary conditions are described. If the fluid interface touches
the outer boundary, further contact line dynamics come into play, which are dis-
cussed in detail subsequently. Then, an equivalent formulation is presented with the
Volume of Fluid approach, where additional equations and boundary conditions en-
ter the model and the treatment of surface tension is modified. The formulations are
based on the continuum hypothesis, the hypothesis of sharp interfaces and neglect-
ing intermolecular forces. The continuum hypothesis declares that the density of a
fluid volume can be well approximated with a smooth function p, if the dimensions
of the volume are above a few tens of nanometers [93]. As the dimensions range
from micro- till millimeters in this work, the hypothesis is an acceptable assump-
tion. The sharp interface hypothesis indicates that a sharp interface separates the
different phases, for example a liquid and a gas, or two different liquids. This means
that the thickness of the interface is vanished and that the fluid properties generally
change across the interface. In addition, the neglect of intermolecular forces includes
ignoring forces like electrostatic attractions between atoms or molecules. But note
that van der Waals forces are implicitly treated by their most important effect, the
capillarity, which enters as surface tension in our model [93].
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2.1 Basic Notations and Definitions

Although numerical techniques are used to calculate an explicit solution of the flow
system for exclusive test cases, we nevertheless need a suitable solution theory for the
governing equations of fluid flow. We will need the basic theory for the derivation of
differentiability results in Chapter 3.3, which in turn are fundamental for the theory
of derivative-based optimization of the considered flow problems. In general, we can
not expect that PDEs have solutions in a strong sense, what also applies to the
Navier-Stokes equations. Therefore the concept of weak solutions is used, which can
be seen as an extension of a classical solution. While we use C-spaces of continuous
functions in the classical solution theory for ordinary partial differential equations,
we further need Lebesgue, Sobolev and Bochner spaces to deal with time dependent
PDEs. In the following, we introduce the conventional definitions for these infinite
dimensional function spaces, see e.g. [102, 92], and recapitulate important and useful
theorems.

2.1.1 Function Spaces for Fluid Flow

Let Q C R™ be an open domain with n € N. We denote the set of continuous
functions on Q by C(Q). For k € N, the set C*() contains additionally continuous
derivatives up to order k. Furthermore, we write C>°() := (N, oy C*(€2) for the set
of infinitely many times differentiable functions. Another important representative
of these spaces is the so-called set of test functions C§°(€2), the set of infinitely many
times differentiable functions with compact support

C5o(Q) :={p e C(9) : supp(yp) is compact in Q},

where the support of a function ¢ is defined as supp(¢) :={x € Q : ¢(x) #0} C Q.
Moreover, we define the set of 8-Hdlder continuous functions with 3 € (0,1] as

CHP(Q):={peC*Q) : 3C >0 st. [D*p(z) — D*p(y)| < Clz —y|°
Ve,y € Q and |a| =k}.
The function space C%1(Q) is called the set of Lipschitz continuous functions on
and hence, a C%!-boundary is called Lipschitz boundary. For the purpose of clarity,

we write BC(Q) for the space of bounded continuous functions on Q and BUC()
for the space of bounded uniformly continuous functions on 2, both equipped with

10
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the supremum norm

BC(Q):={p € C(Q) : ¢ is bounded and continuous on N},
BUC(Q) :={p € C(Q) : ¢ is bounded and uniformly continuous on 2} .

Analogously to the C spaces, BC*(Q) and BUC¥(Q) are defined as the space of
k—times continuously differentiable functions with bounded continuous or bounded
and uniformly continuous derivatives up to order k. Note that boundedness and

uniform continuity are automatically satisfied if {2 becomes compact, so that in this
case BC*(Q) and BUC*(Q) conform to C*(Q).

The Lebesgue space of measurable functions on 2, whose members are Lebesgue-
integrable to the power p, is denoted by LP(€2) with 1 < p < oo

L7(Q) = {f:Q—HR" : /Q|f(33)|pdx<oo}.

(LP(2), ||| e () defines a Banach space, if it is equipped with the following norm

1/p
I fllzr () == </Q |f(x)|P d:z:) )

Let further L>°(Q2) denote the space of measurable functions on 2, which are essen-
tially bounded, i.e., we define

L>(Q) := {f : Q= R" : ess sup|f(x)] de < oo a.e.}.
e

L>(Q) is complete equipped with the norm || f[|z(q) := ess sup,¢q |f(x)| dz and
therefore again a Banach space. With L], () we denote the space of all measurable
functions f € C'(Q), which are integrable over each compact subset K C (2, hence
f € LYK) for all K.

By W*P(Q), with £ > 1 and 1 < p < oo, we denote the well known Sobolev space
of functions admitting weak derivatives up to order k in L?(Q) by

WFP(Q) := {f € LP(Q) : D% € LP(Q) for all |a| <k},

where D are the weak partial derivatives of order |a| < k, for a multiindex a =
(a1,...;a) € NI with order |af := Y7 | a;. For 1 < p < oo, we equip W*P(Q)

11
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with the norm

1/p

flwerey:= | X [ 1D s ao

la|<k
and W*°°(Q) is equipped with the norm

Ilf Il o0 () lm‘ﬁfiHDa (93)||L°°(Q)-
Note, that all Sobolev spaces W*®(Q) are Banach spaces. In the case p = 2, we
write as usual H*(Q) := W*2(Q). H*(Q) is a Hilbert space, since it is complete
with respect to the norm induced by the scalar product. To treat boundary values
of functions in Sobolev spaces, we introduce the space Wéc’Q(Q) as the closure of
Cg°(2) with respect to the norm || - ||y .0 (). Moreover we set

HEQ) = W2 (Q).

Inhomogeneous boundary values are treated with the trace operator concerning
functions in W*?(Q), where the following proposition holds [3].

Proposition 2.1. Assume an open and bounded domain Q@ C R™ with Lipschitz
boundary 0. For k € N and 1 < p < oo, there exists a unique bounded linear
operator T : WEP(Q) — LP(0SY), such that 7f = floa for all f € WFP(Q)NC(Q).

Proof. For a proof of this proposition we refer e.g., to [3]. O

Remark 2.2. 1. We call 7f the trace of f on 09,
2. The trace operator is continuous: ||7f| zr@aq) < c7||fllwrr ) with ¢ >0,
3. For bounded Lipschitz domains applies: H}(Q) = {f EHY Q) : 7f = O},
4. The trace operator cannot be continuously extended to L?((2).

Beside the standard Sobolev spaces W*P(Q) with k € N, a generalization to inter-
mediate Sobolev spaces of fractional order will be necessary to treat questions of
existence and uniqueness within this work. Therefore, we introduce the Sobolev-
Slobodetskii spaces W*P(£) with s > 0, which coincide with W*?(Q) for integer
values of s. For s > 0 and s ¢ N, the fractional Sobolev-Slobodetskii spaces W*P(2)
are equipped with the norm

Do p 1/p
I lhwrioy = i + 35 ([ [ 2RO a0 ay)

lee|=[s]

12



2.1. Basic Notations and Definitions

Here, s — [s] denotes the largest integer smaller than s, where [s] = s — |s|. The
fractional order Sobolev spaces are also described with so-called spaces of Bessel
potentials [3]. The Bessel potential spaces of order s are denoted by H*?(2), where
1 <p < oo and s € R. Hence, they are an extension of the Hilbert spaces H*(12) to
the non integer case. For k € Ny and 1 < p < oo it holds that H*P(Q) = WkP((Q).
Therewith, we define the homogeneous Sobolev space HbP (Q) by

H'7(Q) = {[f € Lioe(?) : [Vllzr(e) < o0},

equipped with the norm
1/p

n
1y = 19 ooy = | S 1D 1o
j=1

For sufficiently smooth domains, the intermediate spaces can also be represented
by the so-called Besov spaces B®*79(Q) and it holds W*P(Q}) = B*PP(Q) if s > 0
and s ¢ N [3]. Besov spaces are especially useful in the study of boundary-value
problems. For p,q = 2 they also coincide with the Bessel potential spaces.

A further class of function spaces are the Bochner spaces, which generalize the
LP spaces to functions over general Banach spaces. They are very useful when
dealing with time dependent PDEs, since they allow us in some way to decouple
the variables in time and space. Before we can define the Bochner spaces, another
concept of measurability has to be introduced.

Definition 2.3. Let X be a separable Banach space. A function f : [0,T] 2 t —
f(t) € X is called strongly measurable, if there exists a sequence of step functions
(sk)ren : [0,T] = X such that

IIsk(t) — f()|[|x — 0 for almost all t € [0,T].

This is used for the definition of Banach space valued Lebesgue spaces, also de-
noted as Bocher spaces.

Definition 2.4. Let X be a separable Banach space and I := [0,T] an interval in
R. For 1 <p < oo, we define the Bochner-Lebesgue space by

LP(I; X) := < f : I — Xstrongly measurable : /Hf(t)”f)’( dt < oo
1

13
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with the norm
1/p

1w = / 17 ()11 dt
I

To describe relations and dependencies of the introduced function spaces and the
functions defined on it, various embedding theorems exist. In the following, we will
develop some results useful for our studies, starting from the normed spaces X and
Y. By L(X,Y), we denote the space of bounded linear operators F : X — Y,
equipped with the operator norm

[Fllxy := sup [Fully < oo.
[lull x=1

We write £(X) := L(X, X) as customary. With X* := £(X,R) we define the dual
space of X. Note, that £(X,Y) is a Banach space if Y is one. For such linear
operators between Banach spaces we introduce further concepts of differentiability.
Let X and Y be Banach spaces and U C X open.

Definition 2.5 (Directional Derivative). The mapping F : U — Y is called direc-
tionally differentiable in u € U, if there exists the limit

dF (u,h) = lim %(F(quth) —Fu) ey

t—0+t

for all h € X. dF(u,h) is called directional derivative of F in the direction h.

Moreover, if a directional derivative is bounded and linear, i.e., F'(u) € £(X,Y)
with F'(u) : X 3 h — dF(u, h), F is called Gateaux differentiable in w. This is also
used in the next definition.

Definition 2.6 (Fréchet Derivative). The mapping F : U — Y s called Fréchet
differentiable in w € U, if there exists an operator F' € L(X,Y) and a mapping
r(u,-) : X =Y such that

F(u+h) = F(u) + F'h+r(u,h) Vhe X :u+hel,

and for the remainder term r applies

It by o g g o
17| x

Then, F' is called the Fréchet derivative of F in u.

14
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2.1.2 Differential Operators and Theorems

To describe the announced equations, we need to introduce some further fundamen-
tal notations and definitions of operators, see e.g., [81]. Let Q C R™, n € {2,3},
be a bounded Lipschitz domain with boundary 0€2. The gradient of a continuous
differentiable function y : 2 — R with respect to = € () is denoted by

0z,y()
Vy(x) = : € R".
I,y(@)

As customary, we write 9,y for the partial derivative of y with respect to the variable
x;. The vector gradient of a differentiable vector field y : 2 — R™ is denoted by

Vy1 (CL‘)T
Vy(x) = : e R™*™.

Vya(z)"
With 0,y we denote the derivative in the direction of the outer unit normal v of 9
Oy(z) = Vy(z) - v(z), for x € O

In the following, we will also use the time derivative % with the short notation 0yy.
Furthermore, we will use the following standard notations for differential operators

Ay(e) =D 02,,0(@),  Voy@) =div y(@) =3 du,y(e);.

Here, Ay is the Laplace operator and V -y the divergence of y € Q. Moreover, it
holds

where the operator is applied component wise to a vector field.

A fundamental theorem in analysis for differential equations is Banach’s fixed
point theorem. It forms the basis of further important results like the implicit
function theorem or the Picard-Lindelof theorem and provides the existence and
uniqueness of fixed points.

15
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Theorem 2.7 (Banach’s Fixed Point Theorem). Let X be a Banach space,
0 #£ K C X a closed set and T : K — K a contraction mapping, which means that
for 0 < © < 1 it applies

[Tz —Ty|| < Ollz —y| Va,y € K.
Then, T admits a unique fized point in K.
Proof. A proof can for example be found in [81]. O

The theorem is valid in infinite-dimensional spaces, even in general complete met-
ric spaces. Furthermore, no convexity assumption is needed. To prove Fréchet
differentiability of control-to-state mappings in the framework of PDE-contrained
optimization, the following implicit function theorem is an important tool [41].

Theorem 2.8 (Implicit Function Theorem). Let X,Y,Z be Banach spaces and let
F: G — Z be a continuously Fréchet differentiable map from an open set G C X XY
to Z. Let (Z,5) € G be such that F(Z,5) = 0 and that Fy(Z,9) € L(X,Y) has a
bounded inverse. Then there exists an open neighborhood Ux (z) x Uy (§) C G of
(Z,9) and a unique continuous function w : Ux(Z) — Y such that

() w(@) =9

(ii) For all x € Ux (Z) there exists exactly one y € Uy (§) with F(z,y) = 0, namely

y =w(x).

Moreover, the mapping w : Ux(Z) — Y is continuously Fréchet differentiable with
derivative

w'(z) = F (v, w(x))  Fe(z,w(z)).

If F: G — Z is m-times continuously Fréchet differentiable then also w : Ux (Z) —
Y is m-times continuously Fréchet differentiable.

Proof. The proof can be found in [106]. O

Our investigations are mostly done in R? or R? so we have to deal with surface
and volume integrals, frequently in the same equation. To overcome this problem,
we apply the divergence theorem to convert surface and volume integrals into the
respective other. The divergence theorem, as well known as Gauss’s theorem, is the
most important theorem in integral calculus of R™. It is the n-dimensional analogon
to the fundamental theorem of calculus for functions of one variable. The theorem
enables to replace a volume integral of a vector field by a surface integral [29].

16
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Theorem 2.9 (Divergence Theorem). Let Q C R™ be a compact subset with a
smooth boundary, v : 000 — R"™ the outer unit normal field and U D Q an open
subset of R™. Then the following equation holds for every continuously differentiable
vector field F: U — R"™

/divF(m) d"z = /F(x) -v(x) ds. (2.1)
EIy)

Q

Proof. See for example paragraph 15 in [29]. O

From a physical point of view, the divergence theorem states that the outward
flux of a vector field through a closed surface is equal to the volume integral of
the divergence over the region inside the surface [29]. Even if the boundary of
is not smooth but contains low dimensional singularities like edges or vertexes and
the vector field F' is not continuously differentiable in a full vicinity around 2, the
divergence theorem still holds [56].

2.2 Conservation Equations

Conservation equations are the mathematical formulation of fundamental physical
laws. They describe the conservation of a quantity in a closed system. Conservation
equations for mass, momentum and energy, together with state equations, lead to
a full description of macroscopic fluid flow. Since the focus of this thesis is on
impulse transport, temperature changes do not play a role and therefore energy
conservation can be neglected. At this point, however, it should be noted that the
energy conservation equation is assumed to be fulfilled for all further investigations.
But it is not necessary to solve the energy equation explicitly to find the velocity
and the pressure, unless the material properties are functions of the temperature,
which is not the case in our problem formulation.

2.2.1 Conservation of Mass

The principle of conservation of mass states, that mass cannot be created or de-
stroyed [93]. Let V' be a volume that is fix in space. We assume, that the continuum
hypothesis holds, which declares that the density of a fluid volume can be well
approximated with a continuous function p.

17
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_ Surface S

Volume V

—

Figure 2.1. Stationary control volume V with surface S [93].

The mass M of the volume is then calculated as integral of the density p over V'

M:/pdv.
v

Applying the conservation theory, a change of mass in the volume is a result of mass
transport across its boundary S. Based on Reynolds transport theorem, the mass
flux through a surface element ds is the product of p and the velocity w of a small
mass volume dv, multiplied with the outward normal n

d d
%M—%/pdv——/pu-nds.
v s

See Figure 2.1 for the notations. Now we apply the divergence theorem, equation
(2.1), to convert the surface integral to a volume integral and obtain

%/pdv+/V~(pu) dv =0.
v %

For a volume that is fix in space, we can additional take the derivative inside the
integral

/ [Oep + V- (pu)] dv = 0.

v

For any arbitrary volume V', this equation is true, if the argument of the integral is
equal to zero. This leads to the partial differential equation of mass conservation,

18
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which has the following coordinate free vector form
Op+V - (pu) =0. (2.2)

In the case of incompressible fluids the density does not change over time, so the
mass conservation equation simplifies to

V.-u=0, (2.3)

which we will denote as continuity equation in the following.

2.2.2 Conservation of Momentum

The principle of momentum conservation indicates, that the rate of change of fluid
momentum in a fixed volume V is the difference in momentum flux across the
boundary S plus the net forces acting on V' [93]. This results in

/ = /(pu@u) nds—l—/fdv—i-/T n ds. (2.4)

\%4

The net forces acting on the volume are composed of the total body force on V' and
the total surface force on S. The body force f per unit volume can for example in-
clude the gravitational force, centrifugal and Coriolis forces, electromagnetic forces,
etc. Surface forces are pressures, normal and shear stresses, surface tension, etc.
[28]. The term of the total surface force contains a symmetric stress tensor T [93],
where n multiplied with T is the force on a surface element ds with a normal n. For
Newtonian fluids, the stress may be assumed to be a linear function of the rate of
strain S [93]

T=(—p+ AV -u)I+2u8S, (2.5)

where p is the pressure, A the second coefficient of viscosity, I the unit tensor,
the viscosity and S = 1(Vu+ Vu') the rate of strain or deformation tensor [93]. If
we assume Stokes’ hypothesis to hold, we can choose A = —(%)u [93], which is also
referred to be the dilatation viscosity.

By applying the divergence theorem to equation (2.4), similar to the approach for
mass conservation in Section 2.2.1, we receive the following expression

O(pu) = -V - (puu)+ f+V-T. (2.6)
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If we use the definition of the substantial derivative, equation (2.6) corresponds
exactly to Cauchy’s equation of motion and is valid for any continuous medium
[93]. Together with the selected stress tensor, equation (2.5), Cauchy’s equation of
motion results in the momentum equation for fluid flow

O(pu) + V- (puu)=f—Vp+V(AV - u) + V- (2uS). (2.7)

As already mentioned, we focus on incompressible fluids in this work. This implies
a divergence-free velocity field, so the term containing A vanishes. This term is only
of importance for compressible fluids. Another point are the gravitational forces we
referred to briefly. Usually, gravity can be neglected if the length scale of the problem
is well below the capillary length I, = \/o/(Ap g), see for example [30], where o
is the surface tension coefficient, Ap = pa — p; the density difference between two
phases and g the gravitational acceleration. This is not the case in the macroscopic
wetting processes we consider, so the gravitational acceleration has to be taken into
account in our further investigation with f = pg. Considering these two aspects we
obtain the following momentum equation

p(Ou~+u-Vu)+Vp=V-(2uS) + pg. (2.8)

The attentive reader will notice from this representation, that the first two terms
look different now. Due to the assumption of mass conservation (2.2), it holds

O(pu) + V- (pu@u) = p(Opu+u - Vu) + u(Op + V - (pu)) = p(Qyu + u - Vu).

This even applies to non-constant densities, as long as equation (2.2) holds. Thus,
the convective terms within equation (2.7) and (2.8) are equivalent analytically. But
note, they can lead to slightly different numerical approximations [93].

2.2.3 Navier-Stokes Equations

The Navier'-Stokes? equations are a nonlinear system of second order partial
differential equations. They fully describe the macroscopic fluid flow and are based
on the conservation equations introduced before.

For a given domain Q C R", n € {2,3}, a constant fluid density p > 0 and a
dynamic viscosity p > 0, the incompressible Navier-Stokes equations consist of the

1Claude Louis Marie Henri Navier, 1785 - 1836
2George Gabriel Stokes, 1819 - 1903
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following momentum and continuity equations [81], here for the case with gravity

p(Opu + u - Vu) + Vp = pAu + pg,

V-u=0. 29)

The fluid velocity w : 2 x I — R"™ and the pressure p : 2 x I — R are unknown.
So we obtain four partial differential equations with four unknowns for the three
dimensional case. The Navier-Stokes equations are nonlinear because of the
convective term (u - V)u. Additional boundary conditions, e.g. a no-slip condition
for the velocity, and an initial velocity field complement problem (2.9) to be local
well posed [74]. Up to now, a global analytical solution of the Navier-Stokes
equations in the general three dimensional case was not verified. But there are
extensive statements of existence, uniqueness and regularity for two dimensions [70].

Note, often a simplified version of the Navier-Stokes equations is used. If we want
to describe a very slow flow, the absolute value of the velocity is small everywhere.
Then, neglecting the nonlinear convective term is a reasonable simplification which
leads to the so-called Stokes equations [81]. Here, effects due to inertia are com-
pletely ignored. Another special case are the Euler equations, where the viscosity
is assumed to be very small so the diffusion term of equation (2.9) vanishes. These
equations are for example used to describe inviscid fluids or problems with large
length scales [81]. Furthermore, laminar flows, such as a pipe flow, can be repro-
duced very well with this model. However, the simplification of the model is also
accompanied by the fact that turbulence can not be represented with the Euler equa-
tions. In consequence, both simplifications are not valid for possibly highly dynamic
wetting processes, so we have to deal with the full Navier-Stokes equations.

2.3 Standard Description of Two-phase Flow

For our considerations, we start with the description of a two-phase problem without
the contact angle problem. We consider the case of two viscous incompressible
capillary Newtonian fluids, which are separated by a hypersurface I'. In Figure 2.2,
we see a time dependent interface I'(¢) which separates our domain Q C R"*1 n <1,
into two open sets Q1 (t) and Qa(t), where  := Q; (£)UQa(¢) and T'(t) := Qy (£)NQa(¢)
with ¢ € I :=[0,T]. Moreover, we denote the normal field on I'(¢) by v(t, -), pointing
from € (t) into Q2(¢) [70]. The utilized formulation of such a two-phase problem
with sharp interfaces is based on the formulation by Priiss and Simonett in [70] and
will be presented in the following.
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Qa(t)
v(t,z)

Qi (t) I(t)

Figure 2.2. Interface I'(t) separates open sets Q1 (¢) and Q2 ().

With the previous introduced conservation equations we can summarize the math-
ematical model of a two-phase fluid flow. Therefore, we have to solve the Navier-
Stokes equations in every bulk phase ;(¢) with a constant density p; and viscosity
iy i=1,2

pi(Ou + u - Vu) — p;Au+ Vp = pg in Q;(t),
V-u=0 in Q;(¢).

Together with the Navier-Stokes equations, we need jump conditions to connect the
flow of the different fluids or phases at their interface. The first condition (2.10)
describes the continuity of velocities on both sides of the interface, while the second
condition (2.11) can be seen as the balance of forces across the interface. It applies

[ul =0 on I'(t), (2.10)
—[S(u, p; pi)v] = okv on I'(t). (2.11)

Here, S(u,p; pi;) := —pl+ p;(Vu+Vu ) is the viscous stress tensor on ;(t) respec-
tively with ¢ = 1,2, 0 > 0 is a given surface tension coefficient and x is the mean
curvature of the interface. For a sufficiently smooth I'(¢) the mean curvature is given
by k(t,-) = —divru(t,-). The brackets [-] denote the jump across the interface in
direction of v, which is defined as

[o](t, z) = hlir(r)l+(¢(t’ x + hvr) — ¢(t,x — hvr)), forx e T'(¢),t € I.

—

The second jump condition, equation (2.11), illustrates the effect of surface tension,
which introduces a discontinuity in the normal component of the jump of the viscous
stress tensor [S(u, p; p;)v] proportional to the mean curvature  [70]. Furthermore,
there is an additional condition on the interface, which ensures the transport of the
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2.3. Standard Description of Two-phase Flow

interface by the fluid velocity
V=u'v on I'(t),

where V' denotes the normal velocity of the interface. This condition is also called
the kinematic boundary condition, although it should rather be seen as an interface
condition. It implies that fluid particles cannot cross the interface [70]. Besides
the mentioned interface conditions, appropriate initial conditions belongs to the
model. In our case an initial velocity field and the initial position of the interface
are required. In summary, we need to solve the following problem with i = 1,2

pi(Ou + u - Vu) — u;Au+ Vp = pg in Q,(t),
V-u=0 in ,(t),
[u] =0 on I'(t),
—[S(u, p; pi)v] = okv on IT'(t), (2.12)
V=u'v on I'(¢),
u(0) = ug on (0),
I'(0) = T.

Problem (2.12) is a free boundary or rather a moving boundary problem, due to
the fact that the position of I" is part of the problem and that there are no fixed
domains §2;. For a clearer representation, we introduce the following notation we
will use frequently in the further investigations, where ygq, denotes the indicator
function of the set ;

p=pixa, + P2XQ., M= H1XQ, + H2X0y- (2.13)

Note, that this formulation includes no boundary conditions for an outer boundary
09Q. This part of the problem description will be considered in Section 2.5, after we
presented some existence and uniqueness results for problem (2.12).

Existence and Uniqueness

Results for the existence and uniqueness of the two-phase Navier-Stokes equations
with surface tension are for example derived from PRrRUss and SIMONETT in |70, 68|
and from KOHNE et al. in [55] for bounded fluid domains. As we stated before, this
is only possible under a certain regularity. In this case, existence and uniqueness
is shown by means of LP-maximal regularity, which we will define in Section 3.3.2
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more precisely. The initial interface I'y is assumed to be close to a halfplane and is
described with the help of a graph of a function hy on R™. A so-called smallness
condition is placed on this initial interface function hg and the initial velocity wug,
which guarantees sufficiently small data. With the compatibility conditions, the ini-
tial data are proven to fulfill necessary conditions of being a solution of the problem.
Therewith, PRUsS and SIMONETT show the following result, see [70], which at first
is only valid for a homogeneous right side of the momentum equation, but can also
be applied to the case with gravity using a small correction.

Theorem 2.10 (Existence, Uniqueness and Regularity of problem (2.12)).
(a) Assume that p > n+3. Then there exists ¢g = £¢(tg) > 0 for a giventy > 0, such
that for any initial values (ug, hg) € W2=2/PP(Qq, R* 1) x W3=2/PP(R™), satisfying
the following compatibility conditions

[uD(uo)vo — (g D(uo)vo)e] =0, divug =0 on Q, [ug] =0,
with D(ug) := Vug + (Vug)T, and the smallness condition
[uollw2-2/p0(20) + 1R0llws—2/p.0@n) < €0,

problem (2.12) has a classical solution (u,p,T") on (0,%o).
(b) The solution (u,p,[p],h) is unique in the following function class

E(to) := {(u, p,m h) € E1(to) % E2(to) x Es(to) x Ea(to) : [p] =7},

with Bi(to) := {u € H"P(I; LP(R" R 1)) 0 LP(I; H*P(R™H, R*TY)) : [u] = 0},

(to) :=
Eo(to) := LP(I; HP(R" 1)),
Es(to) := W'/2=V/E02(1 LP(R™)) N LP(1; W VPP(R™)),
Ey(to) := W2V E0)h2(1; LP(R™)) 0 HYP(1; W2~ 1/PP(R™))

N W1/2—1/(2p)71)([; H2,p(Rn)) N LP(I; W3—1/p7p(Rn)).

(¢) I'(t) is the graph of a function h(t) on R", M = ;¢ 4, ({t} x I'(2)) is a real
analytic manifold, and with O = {(t,z,y) : t € (0,%p),z € R™,y # h(t,x)}, the
function (u,p) : O — R"*2 is real analytic.

The extensive proof can be found in [70]. Therein, the approach is to transform
the free boundary problem to a problem with fixed interface, which is also denoted
as direct mapping method [69]. We will make use of this result later for our differ-
entiability results of a two-phase flow problem see Section 3.3.
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2.4 Related One-Field Formulation

As we have seen in the previous sections, the macroscopic fluid flow can be modeled
with the aid of conservation equations like conservation of mass and momentum.
In general, these equations have to be solved for every phase separately and jump
conditions are used to couple the solutions at the interfaces. In contrast to this
approach, it is possible to write one set of governing equations for the whole flow
domain occupied by the various phases, without resorting to jump conditions. The
various phases are treated as one single fluid with variable material properties that
change abruptly at the phase boundary [93]. These so-called one-field or one-fluid
methods differ in their indicator functions and the related advection, where an
indicator function specifies how the fluid is distributed in a domain.

Thereby we also distinguish between sharp interface and diffuse interface models.
Established sharp interface methods are for example the level-set method [89, 82],
or the volume of fluid (VOF) method [42]. While the interface is the zero-level set
of an additional state variable ¢ in the level-set method, the VOF method defines
the interface as sharp transition between zero and one, where for example the liquid
filled region is set to one and the gaseous phase region is set to zero. In contrast to
the continuous level-set function, this results in a non-continuous indicator function
within the VOF approach. However, this disadvantage is compensated by the useful
property, that the VOF approach holds an inherent mass conservation of the dif-
ferent phases. An example for a diffuse interface model is the phase-field approach,
where the interface has a finite thickness and is described in a thermodynamically
consistent way. This results in a more smooth transition of material and transport
quantities. The methods also differ in how the surface tension is modeled [18], what
we will discuss in more detail in Section 2.4.2. In this work we will consider the
volume of fluid method, where we use a phase fraction function « as indicator func-
tion. The method will be described in the next section for the case of a gas and a
liquid phase.

2.4.1 Volume of Fluid Approach

The VOF approach belongs to the interface capturing methods, where the dis-
continuity of the interface is computed as part of the solution. Here, no special
treatment is employed to take care of the interface itself. That means, that the
interface is not explicitly introduced into the solution using appropriate interface
relations. Hence, no a priori assumptions on the nature of the fluid interface are
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Chapter 2. Description of Multiphase Flow

required, which has the beneficial effect, that also strong topology changes can
be handled like the breakup of fluid [72]. In the numerical solution, the interface
capturing methods can lead to a not sharp interface, since it may be smeared
over several grid elements when time advances. But nevertheless, the one-field
formulation of the Navier-Stokes equations has the big advantage, that it allows to
use numerical methods developed for single-phase flows [93]. We will discuss these
methods in Chapter 4.

For the physical model, we assume Q C R",n = {2,3}, is a physical domain,
composed of a liquid phase region €; and a gas phase region €, with Q = Q;(¢)UQ,(¢)
for t € [0,T] = I. Define the indicator function a: R” x I — [0,1] as

1 ifzxe Ql(t),

ale,t) = { 0 if z€Qyt). (2.14)

This indicator function is a step function, which is neither continuous nor differ-
entiable or weakly differentiable. But « has a distributional derivative, which will
be important for the theoretical investigations in Chapter 3.3.6. For the numerical
consideration, « is approximated by integrating over a certain volume, which we
will discuss in Chapter 4.1.1. With the integral we avoid the singular nature of the
step function, leading to values « € (0,1) within the respective volumes. Then, the
gradient of « exists at the interface and the normal vector of the interface can be
approximated with respect to « [76] by
Va(z,t)

vr(x,t) = Na(. 0] on I'(t). (2.15)

With this definition, the curvature can be written in terms of derivatives of «

Va(z,t)
[Va(z,t)]

Note, that the curvature is only defined at the interface I'. For the density and
viscosity in 2 we define

k(z,t) = —div vr(a,t) = —div on I'(t). (2.16)

p(a) = ap + (1 —a)pq, (2.17)
pla) = o + (1 — a)pg, (2.18)

where p; and p, as well as y; and pg are constant values for the respective phase.
Note, that density and viscosity are also discontinuous at the interface I', due to
their dependency of «.
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In a dynamic system, the fluid moves through the domain. Hence, the gas-liquid
interface is transported with the velocity field. This motion is described with a scalar
advection equation, which we also denote as a-transport equation. With the above
definition of the density, equation (2.17), and the assumption of a divergence-free
velocity field, the following hyperbolic transport equation results from the conser-
vation of mass, see equation (2.2)

Oa+ V- (au) =0 (2.19)

In Appendix A.1 we provide a detailed derivation of this equation. Due to the
absence of diffusive terms in the scalar transport equation, the phase fraction field «
remains discontinuous across the interface I'(¢). This leads to challenges in numerical
considerations, since oscillations or numerical diffusion can occur. With appropriate
methods, this can be counteracted and will be discussed in more detail in Chapter 4.

The VOF method also distinguishes between a geometric and an algebraic ap-
proach. In the algebraic approach, the interface is solely implicitly given by the
phase fraction function a. Contrary to the algebraic approach, the interface is ex-
plicitly reconstructed within the geometric VOF method. But this is associated
with a considerably larger computational effort in numerical investigations, espe-
cially in the case of unstructured meshes. Extensive studies regarding the geometric
approach are carried out in [59]. Summarized, the interface position in the applied
VOF method is captured implicitly introducing the phase indicator function « for
one of the phases along with its corresponding transport equation. In consequence,
our flow system is appended by a transport equation with another state variable «
in addition to the Navier-Stokes equations, which are itself only solved for velocity
and pressure. We consider this one-field formulation since it plays a fundamental
role for the numerical consideration of the problem mentioned in Chapter 4.

2.4.2 Modeling the Surface Tension

In methods based on the one-fluid or one-field formulation where an indicator
function is defined for the whole domain, no jump conditions arise anymore, in
which the surface tension was located mathematically before. But the surface
tension plays an important role for the modeling of multiphase flow. It is the
surface energy per unit area of a fluid and keeps the fluid shape. So it has a big
impact on the accuracy of the solution. Instead of the use of jump conditions, the
surface tension is added as a body force to the discrete version of the Navier-Stokes
equations [93]. The standard approach in this case is the continuous surface force
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(CSF) method, introduced by BRACKBILL et al. in 1992 [18].

In general, the surface tension is a function of temperature and the equilibrium
surface tension depends on the pair of contacting materials [84]. For the given
problem we assume, that the temperature does not change in time. According to
that, effects like the Marangoni Effect are neglected for the moment. Then the
surface tension force is given by f, integrated over a surface part S. By using the
divergence theorem, see Theorem 2.9, the following surface integral is converted to
a volume integral, to involve the force as body force into the momentum equation

S/fg dsv/faés dv,

with Dirac distribution dg. The singular terms dg form the counterpart of the jump
conditions in the classical description and it can be shown that both formulations
are equivalent [93]. For a constant surface tension coefficient o, the surface tension
force can be replaced by the term okv

fobs = orVdg,

where x is the curvature and v the normal of the interface. When we replace
the interface normal by (2.15) and approximate the Dirac distribution dg by |Val/,
which corresponds to the CSF approach according to [93], we obtain the following
statement

fo0s =~ orVa.

Hence, with this expression we arrive at the following approximation of the momen-
tum equation (2.8) including the surface tension [18]

p(Oru + u - Vu) — pAu — pg + Vp = okVau. (2.20)

In summary, the VOF representation of the introduced multiphase problem con-
sists of the state equations (2.20), (2.3) and (2.19), the additional equations for
density and viscosity (2.17) and (2.18) as well as appropriate initial conditions for
the three state variables velocity u, pressure p and phase fraction a. Due to the
interface capturing character of this formulation and the fact, that all variables are
defined for the whole domain, €2 is not dependent on the time anymore.
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Summarized we obtain

p(Oru+u - Vu) — pAu — pg + Vp = okVa in Qx I,
Vou=0 in Qx 1,
dia+ V- (au)=0 in Qx1I,

! (au) (2.21)
pra+ps(l—a)=p in Qx I,

o+ pg(l—a) =p in Q x I,

) =
(u,p,a)(0) = (u,p,a)o  in Q(0).

Note, that this problem, similar to problem (2.12), does not contain boundary
conditions for an outer boundary 0f). This part of the problem formulation will
be treated in the following sections and is also not yet taken into account for the
theoretical investigations of the optimization problems in chapter 3. Hence, differ-
entiability results are derived in Section 3.3 for problem (2.12) and (2.21), in both
cases without boundary conditions and without the contact line problem. This is
already a challenging task and has not yet been investigated, so far as we know.
The full VOF system with appropriate boundary conditions including a dynamic
contact angle treatment will be applied for the numerical considerations and the
applications, dealing with in the Chapters 4 and 5.

2.5 Boundary Conditions

So far, we did not considered an outer boundary of our domain, although it is an
important part of wetting problems. From now on we suppose a bounded domain
Q with Lipschitz boundary 02, which is filled with two different fluids or phases.

Figure 2.3. A two-phase domain with outer boundary 99 [69].
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As depicted in Figure 2.3, only one fluid touches the outer boundary, so no contact
line between the fluids and a solid surface is included at this point. Remember, that
we say boundary if we talk about the outer boundary 02 and indicate the boundary
between the different fluids as interface I'. The most common boundary condition
for viscous fluid flow is the no-slip condition, a homogeneous Dirichlet condition for
both the normal and the tangential component of the velocity

u=0 on 0N. (2.22)

If there is an additional movement of the outer boundary, e.g. a tangential wall
velocity Uyair, the fluid velocity is set equal to the velocity of 02

u = Uwall on Jf).

The two conditions are valid for viscous, incompressible fluids and imply, that the
fluid sticks to the boundary [93]. In case that viscous stresses are absent, so when
we consider inviscid fluids, the fluid can slip freely at the wall and only the normal
velocity is equal to that of the wall [93]. Then, a Navier-slip boundary condition is
more suitable, which introduces an artificial slip with slip length L > 0 and holds
for the tangential velocity component wu; by

ut + L(Svaq): =0 on 0f). (2.23)

Here, vsq denotes the normal of the outer boundary and S = 1(Vu + Vu') again
the rate of strain or deformation tensor. Only the tangential part of the product is
taken as well. The slip length L is the distance at which the velocity would vanish if
it is extrapolated inside the wall [93]. Again, the right hand side of equation (2.23)
is set to Uyqu, if there is a tangential wall velocity. The normal component of the
velocity is equal to zero, or, in case of U, # 0, equal to the respective value

u'voo =0 on 0. (2.24)

The difference between the no-slip and the Navier-slip condition is clearly shown
in Figure 2.4. While the normal and tangential velocity components are equal to
zero at the wall if the no-slip condition holds, see the left graph in Figure 2.4, there
is a small tangential velocity component at the wall if the Navier-slip condition is
applied, see the right graph in Figure 2.4. This allows the flow to slip a bit along
the solid surface and a difference between the velocity of the wall and the tangent
velocity of the liquid near the wall may occur. In fact, this slip plays an important
role for the simulation of real experiments, since the simple no-slip condition is
not able to reproduce most of the experimental results in not ideal systems. The
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Vo Voq

Ut

B 2l

Figure 2.4. No-slip (L = 0) on the left and Navier-slip (0 < L < c0) on the right.

Ut

slip length depends on the characteristics of the system. A value in the scope of
nanometers is suitable for the wetting phenomena considered in this work, since
the flow processes close to the contact line take place in the order of a few to tens
of micrometers [88]. Note, that from a numerical point of view the real slip length
can not necessarily be resolved, then a slip length in order of the mesh size is most
efficient [72]. Since these wetting problems mainly deal with inviscid or very low
viscosity fluids, applying the Navier-slip condition is appropriate and will be consid-
ered in the numerical applications. But there is another reason, why the Navier-slip
condition is more suitable in our case. We want to include a three phase contact
line in our model, which implies a dynamic contact angle behavior at the boundary.
As already known from literature [45] and shown in detail by Mathis Fricke in his
dissertation [30], the no-slip boundary condition causes a stress singularity when
approaching the contact line and results in a divergence of viscous stresses. This
prevents its displacement and is called the moving contact line paradox. However,
the Navier-slip condition allows the liquid to move as it slips on the solid surface. A
detailed insight to the treatment of dynamic contact lines is given in the next section.

Another important role in fluid dynamics play inflow and outflow boundary con-
ditions, e.g. of special interest in streaming channels or if just a part of the liquid
filled domain is considered [93]. Then, artificial boundaries have to be defined for
the numerical solution even if the physical problem relates to a larger domain. As
inflow condition, a velocity field is prescribed in most of the cases, whereas realistic
outflow boundaries are more challenging. Here, a balance has to be found between
enlarging the domain to have minimal influence on the upstream flow and keeping
the computational costs as low as possible. A standard outflow condition is the
so-called do-nothing condition, a homogeneous Neumann condition for both, the
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velocity and the pressure at the outflow boundary, defined as
(uVu —pI) -vgo =0  on ON. (2.25)

This condition allows for in- and outflow simultaneously, hence a possible backflow
at the outflow boundary is also taken into account. Another inflow boundary with a
special inflow condition is not used in the following, so we will not go into it further.
The outflow condition (2.25) becomes important in our numerical investigations in
Chapter 5 and is reasonable, since the outflow region is far away from the area of
interest.

2.6 Dynamic Contact Line Treatment

If besides an interface between different phases and an outer boundary additionally
a contact to a solid surface comes into play, we have to consider further hydrody-
namic aspects. This is the case because we no longer have just an interface but also
a boundary with a three phase contact point between three different phases in two
dimensions, or a three phase contact line in the three dimensional case. We write
> for this part of the outer boundary. Therefore we need to expand our previous
models by further equations, in particular by further boundary conditions.

Before introducing suitable equations, we have to examine the different concepts
of contact angles. We distinguish between the so-called actual or microscopic
contact angle and the macroscopic one. While the microscopic contact angle relates
to the surface roughness, the macroscopic contact angle is defined as the angle
between the plane surface, that approximates the liquid-gas interface in the vicinity
of the contact line, and the solid surface. It is usually assumed to be equal to the
static one, even for non-zero contact line speed [84]. Note that the macroscopic
contact angle also differs from the apparent contact angle, which is defined as the
angle formed by free and solid surfaces far from the contact line. But the main
role in the description of the hydrodynamic characteristics of wetting phenomena
belongs to the macroscopic contact angle [84], the one we mean when we speak of
contact angles in the following.

In a stationary system, a fluid has a specific static contact angle, which depends on
the material properties of the fluid and the solid surface. For homogeneous, smooth
and flat surfaces the equilibrium contact angle 6, is described with the Young’s
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equation [104] as follows
o1g c08(be) + 051 = 054,

where we write oy, for the surface energy of the liquid-gas interface, o for the
surface energy of the solid-liquid interface and o4, for the surface energy of the
solid-gas interface. The surface energy o;4 is what we will refer to in the following
as the surface tension o. The relation of the different surface energies and the
equilibrium or static contact angle is depicted in Figure 2.5.

Olg

Osl

Figure 2.5. Equilibrium contact angle according to Young’s law.

For an equilibrium contact angle 6. equal to 0 we talk about complete wetting,
while the case 0 < 6, < 7 is called partial wetting. If there are further forces acting
on the droplet, a more dynamic behavior of the liquid-gas interface can be observed.
Imagine a droplet running down the window. The shape of the droplet is no longer
the same as for a droplet in equilibrium, it is tilted in some way. In direction of
motion, the contact angle is greater than on the other side. We call them advancing
and receding contact angles. The advancing contact angle is defined as the largest
static contact angle before the three phase contact line starts to move, hence wetting
the surface, while the receding angle is defined as the smallest static contact angle
before the three phase contact line starts receding, hence dewetting the surface [50].
These two angles are also specific for certain materials and can be measured by
experiments. Hence, the more realistic way of considering wetting or dewetting is
to take a dynamic contact angle into account. A static contact angle works for
static contact lines, but is non-physical when they move. In practice, more or less
complicated empirical models have been developed, based on the observations, that
the dynamic contact angle increases with increasing the contact line velocity and
that the dynamic contact angle increases more rapidly for more viscous liquids [52].
Almost all models are based on the capillary number Ca, defined as

1 Uel
C’a:M <.

Ulg

where y; is the dynamic viscosity of the liquid phase, u.; the velocity of the contact
line and 07, again the surface tension of the liquid-gas interface. A well recommended
model is the Kistler model, which uses the following Hoffman equation to describe
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the dynamic contact angle 64 [52, 43|

Ca 0.706
64 = fir(Ca) = arccos {1 ~ 2 tanh [5-16 <1+1310> ] } |

Here, fy is the so-called Hoffman function. This relation applies only to complete
wetting. For an equilibrium contact angle 6. > 0, the Hoffman function has to be
shifted secondary as follows

04 = fu[Ca+ fi"(0.)] . (2.26)

To calculate the inverse of Hoffman’s empirical function fy ! Kistler’s model uses
an approximation by the Hoffman-Voinov-Tanner law, which is a simpler empirical
model for the dynamic contact angle, but applies only to small contact angles.
Therein, the dynamic contact angle is described as

03 — 03 = c1Ca, (2.27)

where ¢t > 0 is a constant depending on the material properties [100]. If we
assume complete wetting, i.e., 6. = 0, and set the equilibrium contact angle 6. as
our dynamic contact angle 64 in equation (2.27), we obtain for the inverse Hoffman
function in (2.26) the following expression

The Kistler model holds for the whole range of wetting, i.e., for 8 € [0°,180°],
and for a wide range of Capillary numbers and contact line velocities. So this
universal model is appropriate for our problems and will be used in the numerical
studies. Other well known models are Shikhmurzaev’s model, which is based on
Shikhmurzaev’s interface formation model, but requires further phenomenological
constants coming from experimental data [85]. Or the Cox model, which establishes
a connection with the physical slip length [19].

We append the dynamic contact angle from Kistler and Hoffmann to our model
formulation as boundary condition. We have to note, that this additional boundary
condition leads to a mathematically overdetermined problem which, however,
works well in practice and is widely used. Within the numerical considerations
of the problem, the dynamic contact angle is a parameter in the correction of
the interface normal vp at the three phase contact point or line, see Section 4.4.1
for a description of the exact formula. The dynamic contact angle model works
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2.6. Dynamic Contact Line Treatment

together with the Navier-slip boundary condition from Section 2.5, which is needed
to allow the fluid to move along the wetted surface [19]. Since there is no generally
accepted dynamic contact angle model, there is also a wide range of applications
with other approaches. An example is a generalization of the Navier-slip boundary
condition, called generalized Navier boundary condition, proposed by QIAN et al.
in [71]. This approach considers not only the tangential viscous stress, but also
the uncompensated Young stress and therefore combines the microscopic with the
macroscopic contact angle. No separate contact angle treatment is necessary when
using the generalized Navier boundary condition. The dynamic contact angle is
obtained from the model, which is a great advantage of this method. Recently, it is
mainly used in several works together with diffuse interface models [103, 14].

If we come back to our example with the droplet skidding on a window, there is
still another effect that can be observed. The droplet does not move continuously,
it may stop from time to time. A so-called contact line hysteresis can be observed
when it holds 0, < 6 < 6,, where 6, is the advancing contact angle and 6,
the receding one. This phenomena can for example be treated with two separate
dynamic contact angle models for receding and advancing contact lines, as described
in [33]. We will not consider this effect since it brings a further complexity to the
system.

Finally, we have to solve a multiphase flow problem with a sharp interface I'
between the different fluids and a contact point or line ¥ between the fluids and a
solid surface. A schematic graph of the considered scenario is shown in Figure 2.6.

Bp

Figure 2.6. A two-phase domain with interface and contact points.
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Chapter 2. Description of Multiphase Flow

The outer boundary 0f2 is split into a Dirichlet part Bp, a Navier-slip part By
and a natural outflow part Bp, with 02 = Bp U By U Bo. Here, the Navier-slip
part By also contains the dynamic contact line X(¢) = 9I'(¢t) := I'(¢) N 99, where
the contact angle condition holds. Note, that the outer boundary does not change
in time, but the interface I" does. For a stable solution theory, we assume that OS2
is a Lipschitz boundary. Then the following boundary conditions can be added to
the problems (2.12) and (2.21)

u=20 on Bp,
(uVu —pI) - vgo =0 on Bo(t),
u'vgg =0 on By (t),
uy — L(Svaq): =0 on By (t),

fu [Ca+ f7"(0.)] = 0a on X(t).
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CHAPTER 3

Optimal Control of Two-phase
Flow

In this chapter we introduce the optimal control problem with respect to the
two-phase Navier-Stokes equations with surface tension. The general goal of
optimal flow control problems is of course to optimize flow processes. They aim
to achieve the best possible flow behavior regarding for example fluid velocity,
vorticity or material parameters, as well as optimize geometrical aspects or the
temperature. Optimal flow control can be achieved in several ways. For example,
boundary control can be used to separate different fluids or fluid phases in a
controlled manner, forcing the interface into a desired position [17]. Another
optimal control problem in the context of two-phase flow is shape control to achieve
an optimal domain design. Shaping the wing of an aircraft to create a suitable
flow behavior such as drag reduction [79, 61] or forming a special tube to minimize
power dissipation inside [65, 64] are examples for that.

Due to the complexity of our state equations, a solution of the optimal control
problem and the resulting optimality system is difficult with a straight forward one-
shot approach. A gradient-based optimization algorithm, schematically shown in
Figure 3.1, is therefore used to calculate an optimal solution. The graph points out
all iteration steps we will develop in the next sections and chapters. We will start
with introducing a general optimal control problem in Section 3.1. The described
controls and states refer to step one and two of the algorithm in Figure 3.1. The
targeted optimization procedure is a sensitivity approach, which is introduced in
Section 3.2 and provides sensitivity equations. In step four, the sensitivity equations
have to be solved analogously to the primal state equations, which were solved in
step three. The steps three and four are not covered in this chapter directly. Since,
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Chapter 3. Optimal Control of Two-phase Flow

Initialize the control variables

l

Initialize the state variables

Y

Y

Nonlinear solver for the state equations

l

Multiple linear solves for
the sensitivity variables

Y

4 A

Gradient of the functional using sensitivities

\ J

l

Optimization algorithm to determine
new values for the control variables

Y
No Test for convergence of
the optimization algorithm
l Yes

Optimal states, sensitivi-
ties and control variables

Figure 3.1. Schematic diagram of a gradient-based optimization algorithm [36].

there does not exist an analytical solution for the considered state equations, we have
to resort to a numerical solution of the discrete two-phase Navier-Stokes system with
surface tension and the sensitivity equations, discussed in detail in Chapter 4. We
need the sensitivities as well to calculate the gradient of the objective functional,
which belongs to step five. The problem formulation and sensitivity approach are
mostly based on the first chapter of [41] and [36]. In Section 3.3, we continue with
introducing the weak formulation of the problem and the concept of LP-maximal
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3.1. Optimal Control Problem

regularity, which we will use later in the section to show the differentiability of the
related control-to-state mapping. These parts are based on results we developed in
[25]. Thereby, we follow an approach which was introduced by PRUSS and SIMONETT
[70] to show well posedness of the underlying linear problem by means of LP-maximal
regularity. Afterwards, a sensitivity system is derived for the example of optimizing
the flow with respect to the liquid viscosity, see Section 3.4. This sensitivity system
is the basis for our own numerical sensitivity solver, we present in Section 4.4.2 and
Appendix B.2. In the end of the current chapter, in Section 3.5, a summary of
the so far developed gradient-based optimization algorithm is shown, including step
six, seven and eight of Figure 3.1. Here, we will also discuss the different ways of
solving the nonlinear and discrete optimization problem with their advantages and
disadvantages.

3.1 Optimal Control Problem

In general, we have to deal with an optimal control problem, which has the form

yEIQL%Qj(?/»‘I) subject to  C(y,q) =0, ¢ € Qaa- (3.1)
Here, j : Y x Q — R is the objective functional, y € Y the state variable and ¢ € @
the control variable, where Y and () are Banach spaces. The state variable in the
introduced two-phase flow problem consists of different physical quantities and
varies depending on the representation we use. In the classical description based on
PRrUss and SIMONETT, the state is composed of the velocity and the pressure, i.e.,
y = (u,p) with y € Y C L2(I; L>(Q)") x L*(I; L?(Q2)), I = [0,t]. However, in the
equivalent VOF representation the phase fraction is added to the state variable,
ie, y = (u,p,a) with y € Y C L?(I; L2(Q)") x L*(I; L*(Q)) x L*(I; L*(2)). We
will use both cases in our theoretical investigations in Section 3.3. The exact spaces
will also be defined there.

The control variable ¢ could be a material parameter, for instance, the viscosity
of the liquid phase. Besides material parameters, structural properties are also
feasible control variables, such as the shape of the domain or parts of it. The
nonempty closed set (,q of admissible controls contains further equality and/or
inequality constraints for the control and provides e.g., lower and upper bounds
of q. The treatment of state constraints would also be possible, but will not be
considered in the following.
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Chapter 3. Optimal Control of Two-phase Flow

C:Y x Q — Z is an operator that describes the behavior of the flow mathemat-
ically, where Z is also a Banach space. We denote C(y,q) = 0 as the state equation
system of our optimization problem. The PDE system comprises all equations used
for one of our wetting process representations, i.e., (2.12) or (2.21). We assume that
C' is continuously Fréchet differentiable, that the state equations C(y,q) = 0 have a
unique solution y(g) € Y for each ¢ € @ and that Cy(y, q) € L(Y, Z) has a bounded
inverse. Then, the well known implicit function theorem, see Theorem 2.8, can be
applied to define a continuously differentiable control-to-state mapping [41] by

y:Q—Y, g—y(g) suchthat C(y(q),q) =0.

We will prove the differentiability of our problem-specific control-to-state mapping
in Section 3.3, since it is not that trivial in our case.

The objective function of our problem depends on the application and can vary.
Reaching a desired state for one or more of the state variables, or minimizing the
vorticity inside the flow, are just two practical examples. Inserting the above defined
control-to-state map into the objective functional j(y, ¢) results in the reduced ob-
jective functional j(y(q),q), which does not directly depend on the state anymore.
If we additionally suppose, that ¢ — j(y(q),q) is Fréchet differentiable, we obtain
the following reduced optimization problem instead of (3.1)

Iqréi(gi(q) = j(y(q),q) st. q€ Qaa (P)

3.2 Sensitivity Approach

Following a gradient-based optimization approach, the derivative of the objective
functional j, or more precisely of the reduced objective functional j, is needed.
The classical one-shot approach of setting up a Lagrange functional and solving
the coupled optimality system, resulting from the first-order necessary optimality
condition, at once is not practicable in our case. Instead, an iterative treatment
is required, where we have two possibilities for the computation of the desired
derivative. On the one hand, we can choose a sensitivity approach, where we
compute the derivative of the reduced objective functional with respect to every
control variable. Sensitivities are directional derivatives and indicate, how the state
variables are effected by changes of the control variables. This is feasible as long as
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3.2. Sensitivity Approach

the dimension of ¢ is small, since the effort grows linearly in the dimension of Q.
On the other hand we can apply an adjoint approach, where we derive the adjoint
problem and solve one adjoint equation together with the primal problem. This
approach is to the best advantage for high dimensional controls, since only a single
set of equations has to be solved, independent of the dimension of q. However,
this is at the expense of high implementation effort, since the adjoint systems must
be solved backward in time for unsteady problems. The exemplary optimization
problem we investigate in this work has a one dimensional control, so a sensitivity
approach is reasonable and we have to solve the sensitivity system only once.
The solution of optimization problems with higher dimensional controls will be
presented at the appropriate place if it is necessary. In the following, we give a
brief survey over the sensitivity approach from [41].

As we already mentioned, we utilize the reduced objective functional j for our
approach, which only depends on the control ¢

The sensitivity, hence the directional derivative of the reduced objective function j
is obtained by applying the chain rule. For ¢ € () and a direction s € @ this yields

dj(q,8) = jy(y(9), D)y (9)s + jq(y(a), q)s- (3.2)

Jy and j, represent the partial derivatives of the objective functional with respect
to the state and the control and y'(q) is the derivative of the state y with respect
to q. We call d5y := dy(q, s) = ¥/(¢)s the state sensitivity in direction s.

Calculating the terms j, (y(q), ¢) and j4(y(q), ¢) is easily done in most of the cases,
since the objective function is typically simple, for example linear or quadratic. This
also applies in our case. The challenge is how to determine the derivative of the state
y with respect to ¢ and thus the sensitivities of our system. To obtain this gradient,
we can differentiate the equations C(y(q),¢) = 0 in direction s, also with the chain
rule

Cy(y(q), )05y + Cy(y(q), q)s = 0. (3.3)

For a ¢ = (q1,..-,qn),n € N, we have to solve this system for all s € B, where B is a
basis of Q. So the effort of calculating the whole operator y'(q) grows linearly with
the dimension of @) and equally also the effort to calculate the whole derivative of
the objective function.
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Chapter 3. Optimal Control of Two-phase Flow

Following the sensitivity approach, we have seen that we not only need the
derivative of the objective function, but also have to take into account differentia-
bility results for the state equations. In our case, this applies to the wetting system
C(y,q), equipped with some control variables ¢. In order to place our sensitivity
calculations on a solid theoretical foundation, we will have a closer look at the
existence and uniqueness of differentiability results for the control-to-state mapping
in the next section.

But first another comment to this approach. There is the possibility to calculate
the derivatives with the help of a difference quotient approximation. That means,
we calculate the state at a value g + ts close to ¢ for a small ¢ and obtain

J(q)s ~ y(g + tst) —yla) (3.4)
The derivative of the state equations, which were calculated in this way, can again
be used to calculate the derivative of the objective function. With this approach
we get a good approximation for the sensitivities in most of the cases. Analogously
we can apply this method directly to the objective function, without calculating
the sensitivities separately. But then we always require an additional solution of
the flow system for each control parameter. Several derivative-free algorithms go
this way, but then they usually perform worse than derivative-based methods. In
our case, the more precise derivative based approach is chosen and the difference
quotient is merely used to test and verify the sensitivity calculations in Chapter 5
as well as for the optimization problems with domain transformations.

3.3 Differentiability of the Control-to-State
Mapping

This section contains the important task of proving Fréchet differentiability of
the solution operator involving the governing equations of two-phase flow. Since
the respective PDEs are not limited to the application of wetting phenomena,
we state that we derive differentiability results for a general two-phase problem,
which is described with the PDE system given in (2.12), and for an equivalent
VOF formulation of the problem, given in (2.21). Here we have to note, that the
differentiability is shown only for the unbounded case and for special controls.
Nevertheless, the PDEs have to be solved in an a priori unknown domain, where
the moving boundary between the different fluids is part of the problem. In
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3.3. Differentiability of the Control-to-State Mapping

general, those problems are more difficult to solve than in a prescribed domain, for
which reason the solution approach is to transform the problem with the moving
interface into a fixed domain [69]. More details are presented in the Sections 3.3.3
to 3.3.6, after we introduced the weak formulation of the problems and addressed
the regularity assumptions, which we employ to show that the solution operator is
Fréchet differentiable.

In the following, we investigate optimization problems with respect to an initial
velocity field ug and a distributed control ¢ on the right hand side of the momentum
equation. Based on the problem formulation (2.12) and the definition (2.13), our
so-called control-to-state operator reads

p(Ou+u-Vu) — pAu+Vp=c in Q(t),
V-u=0 in Q(t),
[ul =0 on I'(¢),
—[S(u,p; w)v] = okv on I'(¢), (3.5)
V=u'v on I'(t),
u(0) = ug on Q(0),
r'(0) =To.

Remember, we have to solve this PDE system with respect to the velocity u and the
pressure p, and denote the viscous stress tensor as S(u,p; 1) = —pIl + pu(Vu+Vu').
System (3.5) is a free boundary problem without the contact angle problem. PRUSS
and SIMONETT state, that methods based on comparison principles, variational
inequalities and viscosity solutions do not seem well-adapted in the presence of
surface tension [69]. Additionally, the moving interface renders a variational analysis
difficult. To show well-posedness of problem (2.12), where the surface tension plays a
dominant role, they apply a different approach, the so-called direct mapping method,
and follow the idea of maximal regularity. This means that the original problem is
first transformed to a problem with fixed interface to establish the regularity of a
solution. We follow the same approach to show the differentiability of our control-
to-state mapping. This is done first for the transformed problem and then also in
the physical coordinates by using the findings and performing similar steps as for
showing well-posedness of the not differentiated problem. The approach is reflected
in the following sections, where we start with presenting the approach of LP-maximal
regularity. Then we show the transformation to a flat interface, followed by the proof
of well-posedness and differentiability of the transformed state. In the third step
we use these results to transform back and verify the differentiability of the original
problem, in consideration of the corresponding regularities. Furthermore, we derive

43



Chapter 3. Optimal Control of Two-phase Flow

differentiability results for the volume of fluid type formulation in Section 3.3.6,
based on the former results.

3.3.1 Weak Formulation

Since the pressure is generally discontinuous at the interface in the case of various
phases, differentiability results in a strong sense are only valid outside the interface
region. So we expect only results in the weak sense at the interface, and therefore
the weak formulation of the problems is required. Note, that we will consider the
problems in n + 1 dimensions, since we want our interface to have n dimensions,
which is always one dimension lower than the full domain.

A weak form can be calculated by using test functions from suitable spaces. The
governing equations are multiplied with the test functions and the product is inte-
grated over the whole domain, applying partial integration if it is necessary. The
weak form of problem (2.12) is then given as follows. For all ¢ € C}(R"+1;R"+1)
and all ¥ € C}(R"*1) it holds

(0(pu) + V- (pu@u) — ) "o+ (S(u,p; ) : Vo) dz = / okv' @ ds, (3.6)
R+ ()

(V-u) ¢ de=0. (3.7)

Rn+1

Here, also the jump conditions are incorporated, so this formulation considers the
first four equations from (2.12). Since the one-field formulation also brings in dis-
continuities of the phase-field variable, the weak form of the VOF representation is
mandatory to show the differentiability of the respective control-to-state mapping
and for the derivation of sensitivity equations in 3.3.6. Hence, if we express the
phases by a phase indicator field «, we obtain for all ¢ € C}(R"T!;R"*!) and all
Y € CLH(R™1) the formulation

(@1 (p()u) + div(p(a)u @ u))(t, z,y) " p(z,y)

Rn+1

+ S(u, ¢ p(@))(t, 2, y) : Vo(x,y)) d(z,y) (3.8)

- . Ve(tazay)T .
- ah\‘né | G|V€<t,$,y)| (DQD dlv(@)I)(x,y)Va(t,x,y) d(l‘,y),
Rn+1

44



3.3. Differentiability of the Control-to-State Mapping

/ div(u) ¢ dz = 0, (3.9)

]Rn-*—l

where we use the indicator function « from (2.14) as well as density and viscosity
defined in (2.17), (2.18). Moreover, « fulfills the transport equation (2.19) and v is
a suitable smoothed normal computed from Ve, defined later in Section 3.3.6 with
equation (3.65).

3.3.2 LP-maximal Regularity

Maximal regularity is a powerful tool to prove existence and uniqueness of solutions
to linear and nonlinear evolution equations [69]. It is the question of how to define
function spaces E(I) and F([I), such that £ : E(I) — F(I) x E, is an isomorphism
[69]. In this context, E., denotes the time-trace space of E(I). The spaces are
different for different problems, so we have to define them separately for every
problem we study.

Let A be a linear operator with domain D(A) C X, where X is a Banach space.
We introduce maximal LP-regularity for the inhomogeneous initial value problem

a(t) + Aut) = f(t), tel, u0)=u, (3.10)

in LP(I; X), where I = Ry or (0,a) for some a >0, f: I — X and 1 < p < oo.
Then the maximal LP-regularity of problem (3.10) is as follows [69].

Definition 3.1. Suppose the operator A : D(A) C X — X is closed and densely
defined with D(A) is the domain of A. Then, A € MRP(I; X) — and we say that
there is maximal LP-regularity for (3.10) — if for each f € LP(I; X) there exists
a unique solution v € HYP(I; X) N LP(I; D(A)) satisfying (3.10) a.e. in I, with
Ug = 0.

Hence, with MR (I; X) we denote the class of all operators A that admit maximal
LP-regularity to the given problem. The corresponding setting of function spaces
for our problem is presented at the appropriate place, see (3.19) and (3.22). Once
we know the maximal regularity setting for A, in this case within the framework of
LP spaces, we can apply the contraction mapping principle to obtain local solutions
and a generalized version of the implicit function theorem to show the smooth de-
pendency of the local solutions on the data [69]. Therewith, we can prove Fréchet
differentiability of the control-to-state mapping as defined in 2.6.
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Chapter 3. Optimal Control of Two-phase Flow

3.3.3 Transformation to a Flat Interface

For the further investigations, the initial interface I'g is considered as graph of a
sufficiently smooth function hg : R™ — R, so it holds

{(z,y) eR" X R : y=ho(x)},
{(z,y) ER" X R : y < ho(x)},
{(z,y) eR" xR : y > ho(z)}.

()
02(0)

Then the interface for ¢ € I can be expressed as
[(t) = {(z, h(t,x)) : v €R"},

with h :[0,%0] x R™ — R, the final time to > 0 and h(0,-) = hg, see Figure 3.2.

Yy
Ma(t) y = h(t,x)
Q1(t)

Figure 3.2. Interface parameterized with a function h(t,z), inspired by [16].

Furthermore, we define R"*! and the halfspaces Rl“ as

R = {(z,y) eR" xR : y #0},

R = {(2,y) ER" xR : +y > 0}.
Our goal is now to transform problem (3.5) to the halfspaces R’:t!, which are not
dependent on the time ¢ anymore. Therefore, it is reasonable to reformulate the unit
interface normal and interface curvature as well as the normal velocity of I' using
the height function. For the unit normal of the interface at the point (x, h(t,z)) we

obtain

o (t,) = vlt 0, ht,2) = —— IVlh(t — ( —Vhl(t,x) )
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3.3. Differentiability of the Control-to-State Mapping

Here, Vh(t, z) denotes the gradient vector of h with respect to € R™. Analogously,
for the normal velocity V' we derive

V(t,x) = Oy(x, h(t,x)) v(t, z, h(t,x))

- ¢1+|VIW Contrn ) (177

Bih(t, x)

1+ [Vh(t,z)]2

If we assume that h(t,-) is two times differentiable, Ah denotes the Laplacian of
h with respect to € R"® and V2h denotes the Hessian matrix of all second order
derivatives of h, the curvature of I'(t) can be rewritten as

R o : Vh(t,z)
R(t,x) = k(t,z, h(t,x)) = —divro(t, z) = div, = Ah — Gg(h),
(t,x) = K( (t,z)) ro(t, x) ( 1+|Vh(t,x)|2> k(h)
(3.11)
with
|Vh|2AR VhTV2hVh

G = T [VRR)VI+[VAE — (L+[VAP2)2

A derivation of this expression can be found for example in [16, Appendix]|. Now
we also want to use the height function h to describe our state equations. With the
following transformation, I'(¢) becomes a flat interface at y = 0, where ¢t € T

( ) ul(tvx7h(ta$)+y)
N | oty : N _ .
U(t,.’ﬂ,y) - < lf)(t T > 9 with U(taxvy) - .
un(t,z, h(t,z) +y) | (3.12)
and  W(t, 2, y) = unt1(t, 2, h(t, 2) + y),
p(t,z,y) = p(t,z, h(t,z) +y).

Analogously, we transform the density and viscosity of the domain by

pty,y) = p(tz, h(t, x) +y) = Xgr+1 (2, 9)p1 + Xt (2, 9) P2,
ity y) = p(t,x, h(t, @) + y) = Xgnor (2, 9) 1+ X (2, ) o

Remember, (z,y) € R*"*! with z € R” and y € R, y # 0. To derive the transformed
state equations, we will first have a look at the required partial derivatives of the

47



Chapter 3. Optimal Control of Two-phase Flow

transformed state variables. For j, k = 1,...,n it holds [70]

8juk = 8j17k - 8jh8y’f}k, 8n+1u;€ = 8yf}k,
8jun+1 = @uﬁ — 8jh6yu?, 8n+1un+1 = ay?fl,
Ojp = 0;p — 0;hdyp, Ony1p = Oyp,
at’LLk = 8,5’[% - 8th8y@k, 5tun+1 = 8t12/ - 8th8y111,

Aug = Ay — 2(Vh - Vi) dyb + (14 |Vh|?)0; 0 — AhD, by,
Atpiy = Agth — 2(Vh - Vi) 0y + (14 |[VA[*) 020 — Ahdyib.

Then, the transformed momentum equations, separated for v and w, result in

P05 — pOshdyd + p (0 - V)o — (VAT 9)0y0 + w0y0)
— [ (Ag® = 2(Vh - V3)0y0 + 0,0 + |VA[? 0,0 — AhDyD) + Vap — 0,pVh = éq,

PO — pOshdy + p (9 - V)i — (VAT 0)9yt + 100y )
— i (Ap —2(Vh -V ) W+ O3 + [Vh|*00) — AhDyD) + Oyp = ¢,

where ¢ = (&;,¢,) denotes the transformed control for the respective components.
For the transformed version of the continuity equation we obtain

div, o + 0y — Vh' 0,0 = 0.

Now we derive the transformed interface conditions, which are the counterparts to
the jump conditions in (3.5). The first jump condition can be easily transformed in

[a] = 0.

For the transformation of the second jump condition, we need the transformed
version of the deformation tensor D(u) = Vu + Vu', which is given by D(@, h) =
D(v,w, h). Here it applies

T

AT ~T
D(a,h) = Vi + Vi — (Vh‘zy“ ) - (Vh%v‘“ ) . (3.13)

Then we obtain for the individual components © and @ the following transformed
jump conditions, see [70]

VAT [p] + [V + (V20) )IVA — [V [8,0]
—(VR [30,0])Vh + [0, 0] Vh — [30,0] — [V 0] = —o(Ah — G(h))Vh,
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3.3. Differentiability of the Control-to-State Mapping

5] — 2[10,0] + VR [38,0] + VA [aV 0] — |[VA[*[a0,0] = o(Ah — G (R)).

Remark 3.2. With the transformed deformation tensor, equation (3.13), the com-
patibility condition introduced in Theorem 2.10 can equivalently be written as

[AD (i, ho) Do — (g D(io, ho)Do)o] = 0,

T (3.14)
P—— — —Vho(x
where 7y := 0(0,z) = m( 10( ))_

For the transformed version of the kinematic condition V = (u'v)|r, we insert the
transformed normal velocity V' and the transformed unit interface normal & from
above

NG -(fit|th|2 VA +1|Vh|2 ((@T’w) < _1Vh >)|F'

If we use the trace operator 7 at the interface y = 0, providing 79(z) = ¥(x,0) and
analogously 7w (z) = @w(x,0), we end up with the following equation

Oth — T = —(10) ' Vh.

This transport equation describes the evolution of h [16].

All the resulting equations above can be written with the linear terms on the left
hand side and the nonlinearities on the right hand side. For a clearer representation
we then write the nonlinearities with

Fy(0,,p,h) = i (—2(Vh - V)00 + |Vh|*0)0 — Ahd,0) + 8,pVh

+p (= (0 V)i + (VAT 9)0yd — w0yd) + pOshdyd,

Fy (0,1, h) = i (=2(Vh - V)0 + [Vh|*0;0 — Ahdyb)
+p (= (0 Vo) + (VRT9)0y0 — 00ya) + poghdyb,

Fy(0,h) = Vh'9,0,
Go(0,d, [p], h) = —[@(Va0 + (V20) DIVA + [VAI2[20,0] + (VR [20,0]) VA

— [0, W]Vh + ([p] — o(Ah — G.(h))) Vh,

G (0,9, h) = =Vh[p0,0] — VR [pV,0] + [Vh*[20,0] — oGk (h),

H(d,,h) = —(19) " Vh.
(3.15)
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Note that almost all terms are polynomials in (9, @, p, [p], h) and in the derivatives
of (0,1, p, h), with coefficients of first order, except the terms in G (h). Moreover,
all terms are linear with respect to second derivatives and G, (h) is the pointwise
superposition of a smooth function with Vi and V2h [25]. In summary, we obtain
the following transformed version of problem (3.5) by

POl — pAG + Vp = ¢+ F(a,p, h) in R+,
Vi = Fy(0,h) in R+,
—[20y0] — [aV2w] = Go (0,10, [p],h) ~ on R™,
—2[p0yw] + [p] — cAh = Gy (0,0, h) on R", (3.16)
[a] =0 on R"
Oh — 7w = H(D,w, h) on R”,

for t > 0 and with F(a4,p,h) = (F5(0,w,p, h), Fg(0,w,h)). This is a quasilinear
system and can be shortly written as

L(ﬁ,ﬁ, [[ﬁ]]vh) = (é-l—F(ﬂ, Aah)de(ﬂa h)va(av [[ﬁ]]ah)va(ﬁ’h)aH(ﬁa h))v

A ) (3.17)
(4(0), h(0)) = (o, ho)-

For the next step we fix the nonlinear right hand sides of problem (3.16) and write
the following linearized system instead of (3.17)

L(ﬂaﬁ7r7 h) = (fa fdagvagu)agh)? (’EL(O),h(O)) = (ﬂ07h0)7 (318)

where we substitute [p] = r. This fix point formulation is also denoted as a Stokes
problem with given inhomogeneities (f, f4, gv, guw, grn) and free boundary.

3.3.4 Well-posedness and Differentiability of the Transformed State

With the introduced transformation, our control-to-state operator or control-to-state
mapping is now given as the mapping (4o, ¢) € Ug(ho) x Us(to) — (4,0, [D],h) €
E(t), which maps the initial transformed controls iy and ¢ to the state variables
@, p and h. How the spaces U (hg) and Ug(tg) are defined will be presented soon.
First, we recapitulate the function spaces incorporated in E(tp), which were already
introduced for the existence and uniqueness results of the two-phase flow description
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3.3. Differentiability of the Control-to-State Mapping

by PRUsS and SIMONETT in 2.3. It holds

Ei(to) :={a € H'P(I; LP(R"*1 R"*1)) N LP(I; H*P(R™1 R™H1)) : [a] = 0},
Eo(to) :=LP(I; HYP(R"1)),

Ey(to) :=W*/2=YEPhp(T;, [P(R™)) N LP(I; WiL/PP(R™)),

Ey(to) :=W?2=Y/ P2, LP(R™)) N HYP(I; W2~ 1/PP(R™))

AW/ @ohe (1 g2 (R™)) O L2 (1 W3 H/PP(R™)),

E(to) :=={(a,p,r,h) € E1(to) x Ea(to) x E3(to) x Ea(to) : [P] = r}.
(3.19)
The space E(tg) is equipped with the natural norm

||<’IAL,}5,’I“, h)”]E(to) = ”ﬁ’HH‘h(to) + Hﬁ”]Ez(to) + HTH]Ea(to) + ||h||E4(to)'

Our aim is now to show differentiability of this control-to-state map, first for the
case ¢ = 0, then also for ¢ # 0. Therefore, some underlying results have to be
presented and modified if necessary, to apply an appropriate fixed point argument
to (3.17). We start with the following theorem, which holds for (@, p, [p], k) € E(to)
resulting from (3.17), with I = (0,¢) and for ¢ = 0, i.e., also for ¢ = 0.

Theorem 3.3. Let p >n+3, ¢ =0 and let
Uy := W22/pp(RPFL R U, = WE2/PP(RY). (3.20)
Then for any to > 0 there exists £y = £9(tg) > 0 such that for all initial values
(40, ho) € Ug x Uy,
satisfying, with ug(xz, ho(z) +y) = Go(x,y), the compatibility conditions
[1D(uo)vo — (v D(uo)vo)vo] =0, div ug =0, [ug] =0, (3.21)

as well as the smallness condition

l[tollu, + l[hollu, < €o
there ezists a unique solution of the transformed problem (3.17) with

Moreover, (i,p, [p],h) € E(ty) depends continuously on (g, ho) € Uy x Uy, satisfying
the compatibility conditions (3.21).
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Chapter 3. Optimal Control of Two-phase Flow

Proof. The detailed proof can be found in Theorem 6.3 in [70]. O

Another result, which is important for the fixed point argumentation, is the fol-
lowing LP-maximal regularity result for the linearized problem (3.18), see [70].

Theorem 3.4. Let 1 < p < oo be fized, p # {3/2,3} and assume that p;, j1; are
positive constants. For arbitrary to > 0, I = (0,tg), let Eq1(to),...,Es(to) be defined
by (3.19) and set Uy, Uy, as in (3.20). Moreover, set

Fl to = Lp([, Lp(Rn+1,Rn+l)),

(to)
(to)
F(to) = W2~ P2 ([ LP(RY, R™T)) 0 LP(L; W VPR, R, (3.22)
(to)
(to)

Then, for all initial values (Gg, hg) € Uy X Uy and (f, fa,9,9n) € F(to) with g =
(9v, gw) satisfying the following compatibility conditions

div 49 = f4(0) on R™1 [ag] =0 onR™ ifp>3/2, (3.23)
[—p0y o] — [aVato] = g0 (0) on R™ ifp >3, (3.24)

there exists a unique solution (4, p, [p], h) € E(to) of (3.18) and the solution map
(f, fa:9: gn o, ho) € F(to) x Ua x Up = (@, p, [P, h) € E(to)

18 cONtINUOUS.

Proof. This follows from Theorem 5.1 and Lemma 6.1, (e) in [70]. O

At this point, we also introduce spaces with a left subscript 0, which indicate that
the corresponding variables vanish on the boundary of the relevant domain. We
denote these spaces by

oE(to) := {(&,p,r, h) € E(tp) : 4(0) =0, r(0) =0, h(0) =0},
OF(tO) = {(fa fdagvagungh) € F(tO) : fd(o) =0, g(O) =0, gh(o) = 0} :

Then, the following corollary is obtained immediately for homogeneous initial data:

Corollary 3.5. Let p > 3 and choose E(to), F(to), oE(to) and oF(to) as above with
initial value 0 for all components that admit a trace at t = 0. Then, problem (3.18)
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3.3. Differentiability of the Control-to-State Mapping

has a unique and continuous solution map
(fa fd7g7gha0a0) S OF(tO) X Uﬂ X Uh — (1}‘7]3? [[ﬁ]]) h) € O]E(to)

Moreover, the following properties of the right hand sides of problem (3.16), sum-
marized in (3.15), are used for the fixed point argument:

Lemma 3.6. Let p > n + 3 and set for (4,p,r,h) € E(tg)
N(ﬁ7ﬁ7 T, h) = (F(ﬂ7ﬁ7 h)? Fd(ﬁa h)7 G(ﬂ7 T, h)7 H(ﬁ, h))7 (325)

with F = (Fy, Fy), G = (G4, Gy), Fq and H defined in (3.15). Then the mapping
N : E(to) — F(to) is well defined and real analytic, more precisely,

N e C¥(E(to), F(to)), N(0)=0, DN(0)=0.
Moreover,
DN(ﬁ'vﬁ7 T, h) € ‘C(OE(tO)v OF(tO)) v (ﬂ,ﬁ, T, h’) € E(tO)v

where DN denotes the Fréchet derivative of N and C¥ is as usual the space of real
analytic functions.

Proof. See proposition 6.2 in [70]. O

To show the main differentiability result for the transformed problem, we need an
analogue result for the spaces of the initial values:

Lemma 3.7. Let p > n+ 3, Uy, Uy, as defined in (3.20) and set
Uﬂ’C = {ﬁo = (@07’@0) e Uy : [[ﬁoﬂ = 0}
Then, with G = (G4, Gg) and H defined in (3.15), the mappings

(tio, ho) € Uy x Uy, = 0 Vhg € W22/PP(RHL), (3.26)
(110, ho) € Ug,e x Uy, = H{(0g, ho) € W2=3/PP(R"), (3.27)
(119,70, ho) € Uy x WIT2/PP(R™) x U}, = G(iig, 70, ho) € WI2/PP(R™)  (3.28)

are real analytic and the first derivatives vanish in (g, 1o, ho) = 0.

Proof. We proved these statements in Lemma 6 in [25]. O
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Chapter 3. Optimal Control of Two-phase Flow

Furthermore, the following extension of Banach’s fixed point theorem, based on
Theorem 2.7, will be applied, which gives sufficient conditions for solvability.

Theorem 3.8. (a) Let U, W, Z be real Banach spaces, let A € L(Z,W) be an iso-
morphism and set M := ||A*1||£(WVZ). Let By C Z be a nonempty closed convex
set and By C U be a nonempty set. Moreover, let K : By x By — W be Lipschitz
continuous with

K (z,u) — K(Z,0)|lw < Ly||z — 2|z + Lullu —@llv Y (2,u),(Z,4) € Bz x By
and assume that
A 'K(z,u) € By VY(z,u)€ Bz xBy and ML, < 1. (3.29)
Then for all w € By the equation
Az = K(z,u)

has a unique solution z = z(u) € Bz and

_ L,M _ _
lz(w) — z(@)||z < m\\u—u\\(] Yu,% € By. (3.30)

(b) Assume in addition that By is a relatively open convex subset of u* + Up C U,
where Uy, is a closed linear subspace of U. Note, if U, = U is admitted, then
By C U is convex and open. Moreover, assume that K : By X By — W is Fréchet
differentiable. Then By > u — z(u) € Z is Fréchet differentiable, where §z4 :=
Dz(u)d is for any d € U, the unique solution of the problem

Abzqg = D, K (z(u),u)dzq + D, K (2(u), u)d. (3.31)

If DK : Bz x By — L(Z x Ur,W) is Lipschitz continuous, then also Dz : By —
LUy, Z) is Lipschitz continuous. If K : By x By — W is k-times Fréchet differ-
entiable, then By > u > z(u) € Z is k-times Fréchet differentiable and if D¥K is
Lipschitz continuous on By x By, then Dz is Lipschitz continuous on By.

Proof. Again, the appropriate proof can be found in [25], Theorem 7. O

Applying this theorem to the linearized Stokes problem (3.18) and the quasilinear
system (3.17), we end up with the following extension of Theorem 3.3. This is the
main differentiability outcome for the transformed problem formulation, which we
will prove with the results shown so far.
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3.3. Differentiability of the Control-to-State Mapping

Theorem 3.9. Let p > n + 3 and consider any to > 0. Let E(tg) and F(to) be
defined as in (3.19) and (3.22) and set with I = (0,to)

Uy = W2T2/pp(R™HE RO Uy, o= WE2/P2(R™),
3.32
Us(to) := Fi(to) = LP(I; LP(R™H1, R 1)), (332
Then, for any to > 0 there exists €9 = £o(to) > 0 such that for all data
(ﬁo, ho, 6) € Uy x Uy, x Ué(to)

satisfying the transformed compatibility condition (3.14) as well as the smallness
condition
l[dollus + [[hollu,, + llelluaie) < €o, (3.33)

there ewxists a unique solution of the transformed problem (3.17) with
(@, p, [p], 1) € E(to)-
Moreover, the mapping
{(tig, ho, &) € UgxUpxUgs(tg) : (tig, ho, &) satisfy (3.14),(3.33)} — (4, p, [P], h) € E(to)
is continuous and infinitely many times differentiable with respect to (g, ¢).

Proof. The idea is to extend the arguments in [70] and apply Theorem 3.8 to the
transformed formulation (3.17). Let z = (4, p, 7, h) € E(tp) and write (3.17) as

Lz=N(2)+(2,0), (a(0),h(0)) = (a0, ho), (3.34)

with N defined in (3.25). Let further (4o, ho) satisfy (3.14) and (3.33), where &
will be adjusted later. Following [70], we first construct z* = 2* (g, ho) € E(¢o) that
satisfies the equation

Lz" =(0,f3,9%91), (@7(0),h*(0)) = (@, ho), (3.35)

where (0, %, 9%, g5) € F(to) resolves the compatibility conditions (3.23) and (3.24).
Then we can write (3.34) equivalently as

Lz = N(i-l— Z*(ﬁ(), h())) + (67 0) - LZ*(’LAL(), h()) = K(g, ’ll(), h(), é), zZE (]]E(to). (336)

The construction of z* can be accomplished as in [70]. Suppose that the initial
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Chapter 3. Optimal Control of Two-phase Flow

values (4o, ho) satisfy the first compatibility condition in (3.14) and set
ro(@o, ho) = [po] := [A(Pg D(iio, ho)2o)] + o (Ahg — Gie(ho)).

The right hand side consists of several terms of G(iyg,0,ho) in (3.28) and thus
Lemma 3.7 yields that the above mapping (i, ho) € Ug x Uy, — [po] = ro(tio, ho) €
W1=2/PP(R") is real analytic. Moreover, it is easy to check that the following
compatibility conditions hold

—[ady 0] — [V o] = Gy(to, [Po], ho) on R”, (3.37)
—2[0ywo] + [Po] — cAhy = G (o, ho) on R”™.
Now let D,, = —A be the Laplacian in L?(R") with domain H*?(R") and set
g*(t) := e PG (g, ro(tio, ho), ho), g5 (t) := e~ P H (g, ho).
By the real analyticity of ro (g, ho) and Lemma 3.7 the mappings

(tig, ho) € Ug x Uy, = Gliig, 7o(tio, ho), ho) € W'2/PP(R™),
(ti0, ho) € Uy x Uy, = H (g, ho) € W23/PP(R™)

are real analytic. Now maximal LP-regularity for D,, yields, see e.g. [27, Lem. 8.2]

g* € HYP(I;W—1=YPP(R)) N LP(I; WIV/PP(R™)) < Fa(to),
gy € H'P(LWTYPP(R™) N LY (I;W2THPP(R™)) < Fa(to),

where the imbeddings follow by real interpolation and g*, g; are real analytic in
(tip, ho) € Uy x Uy,. (3.37) ensures that (3.24) holds for g*. Next, let

- (1) Rype tPn+18 9] Vhy in RTH,
C =
¢ R_etPnt1€ 4] Vhe in R™H,
where £, € L(W?2/pp (R W2-2/pP(R™H1)) are extension operators and R
are the restrictions to R, Now (g, ho) € Ug x Uy, — 6 Vhg € W2—2/pP (R 1)
is by Lemma 3.7 real analytic. By LP-regularity for D41 ¢ € HVP(I; LP(R™1)) N
LP(I; H*?(R"+1)) and thus
f; = 8,/62 S ]Fg(to) with f;(O) = Fd(f}o, ho)

is real analytic with respect to (g, ho) € Ug x Up. Therefore, also (3.23) holds
for f; and we conclude that R* := (0, f5, 9%, 95.) € F(ty) satisfies the compatibility
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3.3. Differentiability of the Control-to-State Mapping

conditions (3.23), (3.24) and by construction (ug, ko) € Uz x Uy — R* € F(to)
is real analytic. Hence, by Theorem 3.4 the linear problem (3.35) has a unique
solution z* = z*(4o, ho) that is real analytic and by Lemma 3.7 the first derivative
vanishes in 0, i.e., Dz*(0,0) = 0.

Now counsider (3.36). By construction of z* the right hand side of (3.36) is in
oF(to). Denote by Ly € L(oE(to),0F(to)) the restriction of L which is an isomor-
phism by Corollary 3.5. Hence, (3.36) can be written as

Loz = N(5+Z* (ao, ho)) + (é, O) —Lz* (1?60, ]’Lo) =: K(i, g, ho, é), zZ € QE(to). (338)
To apply Theorem 3.8 we set now with suitable €y > 0 and § > 0

By (é0) := {(tig, ho, ¢) € Uy x Uy x Ue(to) : (To, ho, ¢) satisfy (3.14), (3.33)},
Bz(9) :={z € oE(to) : ”2”015(750) <4},

where £, > 0 will be adjusted later. By Lemma 3.6 and the properties of z* we
know, that the right hand side

(2,’&0, ho, é) S OE(to) X Uﬁ X Uh X Ué(to) — K(g, ﬂo, ho,é) S F(to) (339)

is real analytic with K(0) = 0 and Dz 4,,1,) K (0) = 0. Hence, the Lipschitz constant
L, of K with respect to z is arbitrary small close to 0 and the Lipschitz constant of
K with respect to (i, ho,¢) is L, = 2 close enough to 0. Note, that the Lipschitz
constant with respect to ¢ is 1. This implies, if we set § = 4M & for £g small enough
with M = || Ly || £(oF(to) oE(to)), that K has the Lipschitz constants L, = 1/(2M)
and L, = 2 on Bz(0) x By(ép). Hence, for all (2, g, ho,é) € Bz(8) x By(éo) it
holds

||L(;1K<2§ g, ho, é) HOE(to)
~ R . 1 R (3.40)
< ML |2 ok (to) + M Lu(||tollu, + [1Rollu, + ll€llu, o)) < F0+2Mey =0

This shows, that the mapping LglK(é;ﬁo,ho,é) is a contraction for the given
initial values. Thus, (3.29) is satisfied and (3.38) has by Theorem 3.8 for all
(T, ho, ¢) € By (o) a unique solution Z = Z(tog, ho,¢) € Bz(d) satisfying the Lip-
schitz stability (3.30). Since also the real analytic operator z*(ig, ho) € E(to) is
Lipschitz continuous on By (&), the solution z(dg, ho, ¢) = Z 4+ z* € E(tp) is unique
and Lipschitz continuous on By (&p). Now let (4, h,¢*) € By(€p) be arbitrary.
Then {(do, h,¢) € By(ép)} is a relatively open subset of an affine subspace of
Us x Up x Ug(to). Since (3.39) is real analytic, it follows from Theorem 3.8, b) that
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Chapter 3. Optimal Control of Two-phase Flow

Z(to, h§, ¢) € oE(to) is infinitely many times differentiable with respect to (do, ¢)
and the same holds for z(ag, b, ¢) = Z + 2* € E(to). O

3.3.5 Differentiability of the Original Problem

Once we have shown differentiability for the transformed problem, we want to come
back to the original formulation. Therefore, we transfer the results from Theorem
3.9 to problem (3.5). For a hg € Uy, the following function spaces are defined

Uy (ho) := W2=2/PP(R™I\D(0), R"Y),  U,(to) := LP(I; HYP(R™H, R L)),
(3.41)

Here, the initial interface is no flat surface at y = 0 anymore, so we write R*+1\T'(0)
instead of R"*! for h in U,. Another point we utilize in our further investigations
is, that only the gradient of the pressure occurs, so the transformed pressure p(t, )
is only determined up to a constant. Due to this fact, we select from now on without
restriction the unique representative satisfying

p € Eq(to), / p(t,z,0—)dx =0 fora.a. t € (0,t). (3.42)
(1,1

Note, that the jump of p, always denoted as [p], is uniquely determined in (3.17).
With the convention from (3.42) and by the trace theorem, we find a Poincaré
constant Cp > 0 with

1D M e @nsny < CrUBE ) 1w @nsny + 1B lwa-1/0.0gn))- (3.43)

Now we define the back transformation to the original problem, see (3.12), and
obtain the following preparatory result.

Theorem 3.10. Let (4,p, [p], h) € E(to), ho € Up, uo € Uy(ho), and consider

u(t,x,y) = ’LAL(t,ZC,y - h(t,.’b)), p(tvxvy) = ﬁ(t,x,y - h(t,.’b)), (344)
UO(‘T; y) = ﬂO(xa y— ho(ﬂ]))
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3.3. Differentiability of the Control-to-State Mapping

Then there exist constants C(||h||g,,)) > 0 and C(||ho|lv, ) such that

1/p
Jullwrncrsgrss oy + ([ 10 ronyei ey @) < Clblg Nallzs
1/p
</I Hp(t)”Zl,p(RnJrl\p(t)’Rwﬂ) dt) < C(||h||E4(t0))||ﬁH]E2(t0)7

1/p
</I |H[p(t)]]||€v1—1/p,p(r(t)) dt) < C(Hh||1E4(to))H[[ﬁﬂHLP(I;Wlfl/p’p(Rn))a
[dollu, < C(llhollu) w0l (ho)-
Proof. We showed this relations in [25] by using appropriate imbeddings. O

With the described back transformation we can further formulate a first differ-
entiability result for the mapping from the transformed variables to the original
ones.

Lemma 3.11. Consider the transformation (3.44), where we choose for p €
Eo(to), [P] € Es(to) the unique representative p satisfying (3.42). Then for all
D € [p,o0) the mapping

(4,5, [p], h) € E(to) — u € C(I; LP(R™H! R 1)) (3.45)
is continuously differentiable with derivative
(0w, 0p, [0p], 6h) € E(to) — ou(t, z,y) = 0u(t, z, y—h(t, x))—0yu(t, x, y—h(t,x))oh(t, z).

Let £4 € L(HMP(RETY), HVP(R™ 1)) be extension operators for 1 = 1,2 and set

ﬂ:l: (t’ ) = g:l:/&(ta ')7 U+ (ta €L, y) = ’&:i: (ta Th(t) (I7 y))a (3 4:6)
ﬁi (ta ) = giﬁ(t7 ')7 pi(t7 x, y) = ﬁi(t Th(t) (xa y))

Then the mappings
(@, p, [, h) € E(to) = ux € LP(I; HVP(R™ R ), (3.47)
(@, p, [p], h) € E(to) = px € LP(I; LP(R™*1)) (3.48)

are continuously differentiable with derivative

(54, 6p, [69], ) € E(to) (gZI) (t,z,y)
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- <2ZI) (t,2,y = hit,z)) - 9y (Zi) (t, 2,y — h(t, z))5h(t, z).

Proof. The proof of this lemma is somewhat technical and can be found in [25].
Here, we also used appropriate imbeddings, provided by Lemma 9 within the cited
paper, and the results from Theorem 3.10. O

Before we come to the main result for the not transformed problem, there is a
further Lemma we need to proof the differentiability of the original problem.

Lemma 3.12. Let U.(to) = LP(I; HYP(R"*1)). Then the mapping
(c,h) € Ue(ty) x Eg(to) — é(c, h) € Ug(to) (3.49)
with é(e, h)(t,z,y) = c(t,z,y + h(t,x)) is continuously differentiable with derivative
(0c,6h) € Uc(to) x Eyq(to) — dclt, z,y + h(t,x)) + Oyc(t, z,y + h(t, z))dh(t, z).
Proof. Compare to the proof of Lemma 11 in [25]. O

In conclusion we obtain the following existence and differentiability result for the
original data (ug, ho, ¢).

Theorem 3.13. Let p > n+ 3 and Uy, (ho), Uc(to) be defined by (3.41). Then, for
any to > 0 there exists g = eo(tg) > 0 such that for all data

(ho, C) e Uy x Uc(to), Uug € Uu(ho)

satisfying the compatibility condition (3.21) as well as the smallness condition

[wollv, (o) + 1hollu, + llellu. ko) < €0 (3.50)

there ezists a unique solution of the transformed problem (3.17) with
(@,p, [P], h) € E(to).
Moreover, for any ho with ||ho|lu, < eo the mapping
{(uo,c) € Uu(ho) x Uc(to) : (uo, ho,c) satisfy (3.21), (3.50)} — (a,p, [p], h) € E(to)

is continuously differentiable. By the chain rule in Lemma 3.11, also the original

state (u,q) depends continuously differentiable on (ug,c) with the spaces given in
(3.45), (3.47), (3.48).
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3.3. Differentiability of the Control-to-State Mapping

Proof. We adapt the fixed point argument in the proof of Theorem 3.9. Let
éle, h) (b, z,y) = c(t, z,y + h(t, z)). (3.51)

The only difference compared to the situation in Theorem 3.9 results from the fact,
that é(c, h) now depends additionally on h. Hence, the fixed point equation (3.38)
changes to

Loz = K(E, ug, ho, é(C, zZ+ Z*(ﬁo, ho))), zZ € OE(tO). (352)

Let €9 > 0 be as in Theorem 3.9. Then we have
lléCe, W)llu, = llellu,, (3.53)

and the last estimate in Theorem 3.10 shows that for ¢y > 0 small enough the
smallness condition (3.50) implies (3.33). Note, (3.53) holds independently of h.
Hence, for all (ug, ho, ¢) satisfying (3.50) we have (&g, ho, é(c, b)) € By (éo) and thus
by (3.40)

Ly K (210, ho, &) || om(r) < 6.

Finally, the Lipschitz constant of K (Z; g, ho, ¢) with respect to ¢ is 1 and the map-
ping (3.49) with (3.51) is by Lemma 3.12 continuously differentiable. Moreover, the
Lipschitz constant with respect to h is bounded by ||c[|y, (+,) < €0. Hence, for g9 > 0
small enough, (3.52) is a contraction and the existence, uniqueness and continuous
differentiability follow as in the proof of Theorem 3.9. Lemma 3.11 and the chain
rule yield now the continuous differentiability of the original state (u, q) with respect
to (ug, c) for the spaces given in (3.45), (3.47) and (3.48). O

3.3.6 Results for the Volume of Fluid-type Formulation

With the differentiability result we obtained for the classical formulation of a two-
phase problem, we are now able to show also the differentiability of the volume
of fluid-type formulation of the problem, see equation (2.21). Again, we do not
consider an outer boundary of our domain, so we do not need to take the boundary
conditions into account. Only the extended state equations and initial conditions are
considered. Since the phase indicator « is in general discontinuous at the interface,
the results are expected in the weak topology of measures and the sensitivity of
« is a measure concentrated along the interface. We will close the section with a
sensitivity system for the VOF formulation, which invokes measure-valued solutions
of the linearized transport equation.
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Based on a solution (u, p), which fulfills (2.12), and the corresponding sensitivities
(du, dp), we will now show the differentiability of the volume of fluid-type formulation
of the control-to-state mapping. Therefore, let the phase indicator o : R"*1 —
[0,1] be a distributional solution of the a-transport equation (2.19) and with an
appropriate initial condition, so it holds

Ko+ V-(ua) =0 inIxR"™  a0)=1g, onR" . (3.54)

Then we can define uniquely a continuous mapping (z,y) — X(¢;z,y), where
X (t; z,y) satisfies the characteristic equation

WX (t;x,y) =u(t, X (t;x,y), tel, X(0;z,y)=(x,y). (3.55)

In order to deal with the sensitivity equation of (3.54), it will be beneficial to
consider measure-valued solutions of the general equation

0;6a+ V- (uda) =b inI xR  §a(0)=day on R*HL, (3.56)

In the following, we denote by M;,.(R"*1) the space of locally bounded Radon
measures. Further we define M;,.(R"*!) —weak* as the space of all locally bounded
Radon measures with weak convergence. Then we obtain

Proposition 3.14. Let v € LY(I;WLo(RH1; R ). Then, for any
Sag € Mioe(R™f 1), there exists a unique distributional solution of (3.56) in
C(I; Myoe(R™1) — weak*), given by

t
Salt) = X (£)(5ag) + /X (t — 5)(b(s)). (3.57)
0

Here, X is the forward flow defined by (3.55) and dop = X (t)(dcv) is the measure
satisfying

o(z,y) dbas(z,y) = / O(X (t:2,y)) ddao(e,y) ¥ € Cu(R™),
Rrt1 Rt

Proof. See [25] and [67] for the detailed proof. O

Therewith, we can show the following important proposition, which states the
differentiability of the control-to-state map for the state variable a and gives a
formulation for the sensitivity equation of the a-transport equation.
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3.3. Differentiability of the Control-to-State Mapping

Proposition 3.15. If 4 € Ey(t), [4] = 0 and u is given by (3.44), then (3.54) has
a unique solution given by

a(t, X(t2,y)) = Lo, o) (2, y) (3.58)

and thus «(t,-) = lg,t). Moreover, for eg from Theorem 3.13 and any ho with
lhollu, < eo the mapping

{(u0,¢) € Uu(ho) x Ue(to) : (uo, ho, ) satisfy (3.21), (3.50)}
— a € O(F; Mie(R™) — weak”)

is continuously differentiable. The derivative
(Sug, 6¢) € Uy(ho) x Ue(to) — da € C(I; Mipe(R™1) — weak*)
is given by the unique measure-valued solution of
0da+ V- (uda)=—-V-(ua) inI xR §a(0)=0 onR"L.  (3.59)
Finally, da satisfies
/ d(z,y)doa(t)(z,y) = /¢(x,h(t,x))5h(t,x) dx. (3.60)
Rn+1 R™

Proof. It 4 € E;(tg), [4] = 0 and w is given by (3.44), then it holds that u €
C(L; Whee (R, R *1)) by the following imbeddings, see [25, Lem. 9]

Ei(to) — C(I; BUCY (R R"1)) N C(I; BUC(R" !, R" 1)), (3.61)
E4(tg) — CY(I; BC*(R™)) N C(I; BC*(R™)). (3.62)

Following [4, Prop. 2.2] and [26, Cor. II.1], it is well known that (3.58) provides the

unique weak solution in L} (I x R"*1) of the following problem

loc
da+u-Va=0 inIxR"™  «0)=1g,0 onR""

Since V - (u) = 0 almost everywhere, it is also a distributional solution of (3.54),
which is unique by Proposition 3.14.

Let now (ug, ho, ), (dug,0,dc) € U, x Up x Ue(hg) be such that (ug, ho,c) and

(uo, ho, ¢)+(dug, 0, 0c) satisfy the conditions of Theorem 3.13. Denote by (4, p, [P], k)
the unique solution of (3.17) for data (ug, ho, c) and by (4°, p®, [5°], h*) the one for

63



Chapter 3. Optimal Control of Two-phase Flow

data (ug, ho, ¢) + s (0ug, 0,0¢). Let (u,p) and (u®, p®) be the corresponding states in
physical coordinates according to (3.12) and let a = 1g, (1), @ = Lo (¢) be the corre-
sponding solutions of (3.54). Finally, let (du, dh,dp) be the directional derivatives,
hence sensitivities, in direction (dug,0,d¢), which exist by Theorem 3.13. We show
that s

af —

— da  in C(I; Mjpe(R™1) — weak*) as s — 0, (3.63)

s
where da solves (3.59). Let ¢ € C.(R"!) be arbitrary. Then

/a_a(twy)aﬁ(my (z,y) //””) d(z,y)

Rn+1

— o(x, h(t,z))oh(t, x) dx
R
as s — 0 uniformly in ¢ € I, where we have used the differentiability result of
Theorem 3.13. Moreover, it is obvious that the middle term is continuous with
respect to t. Hence, (3.63) is proven and we have only to show that d« solves (3.59).
To this end, let ¢ € CH(I x R™*!) be arbitrary. Since «,a® are distributional
solutions of (3.54), we have

s

! :/ / = (o + (u- V)p) =52 + o’ (27 - V)g) (2, y) d(w, y) dt

I Rn+1

— / / — (O + (u- V)p)oa + a(du - V)p) (t,z,y) d(x,y) dt

I ]Rn+1

as s — 0. For the limit transition, we have used u € C(I; WHo°(R"H1)), (3 63) and
that by Theorem 3.13 o® = lg.() — a = lgg) in L2 (I x R"*!) and “=% — §u
in C(I; LP(R™*1)). Hence, da is a distributional solution of (3.59), Wthh is unique
by Proposition 3.14. O

What we have shown so far holds only for the a-transport equation and a solution
(u,p) of the classical formulation (2.12). Now we also want to take the full VOF-
type formulation into account, where the next step is to express the surface tension
term by using the phase indicator « such that its sensitivities can be expressed by
using the measure da. Therefore, we rewrite the surface tension term within the
weak formulation (3.6).
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3.3. Differentiability of the Control-to-State Mapping

Lemma 3.16. Let o € CH(R"T1;R"+1). Then, one has the following identity with
the curvature (t) of I'(t) according to (3.11)

/ (o) (t,2,9) "ol ) dS(z,y)
r(t)

:/a ding( Vh(t,z) ) <_Vh1(t’x)>Tgp(x,h(t,x))da;

i 1+ |Vh(t, 2)|?
(Vh(t,I)T,—l) . Vh(t,m)
IO (Dp(z, h(t,x)) — div(p)(z, h(t, x))l)( ) ) dx.

(3.64)
Proof. The result follows from the definition of k and integration by parts [25]. [

To compute the interface normal from Ve, we use the definition of distributional
derivatives and obtain

Lemma 3.17. Let ¢ € CL(R" L, R" 1), Then it holds

- / (e, 1) TValt, z,y) d(z,y) = / (e, 9)Tw(t, 2, y) dS(z, )

R+ r(t)
—Vh(t
= [t neonT (V) as
]Rn
Proof. See [25] for the necessary equation transformations. O

For the further considerations we now assume a d € (0,1/2) and

U € CH(-LD). bolarsa-a =1 Us(—5)=vals) VscR [us(s)ds=1.
R
and set
6e(.9) = - vs(/<) [ vatai/e)
=1

We use this definitions to define a smoothed normal v, computed from Vo, which
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is not necessarily of unit length
vtay) == [ 640 - @) Valt,2,5) dz5)
Rn+1
Then we obtain by Lemma 3.17

Vet 2, y) = / 6:((%,9) — (2, 9))(t, 7. 5) dS(E. §)

r(t)
= [ o mie.a) - (V) o
J

Let us further assume that
[Vh|<1—-6 on x+[—e¢e"™

Then we have by the definition of ¢.

ve(t,z, h(t, z) R[H% i —x)/€) (‘v}‘l(t’j)> di.

The variation of v, is
Sty y) = — / 6. ((7,§) — (2,4))Vdoa(t) (&, 7).
Rn+l

with the measure-valued solution of (3.59).

(3.65)

(3.66)

(3.67)

(3.68)

Two further lemmas are helpful to show the equivalence between the classical and
the VOF-type formulation. The corresponding proofs can be both found in [25].

Lemma 3.18. Let (3.66) hold. If h € C(I; BC*(R"™)), then there is a C > 0 such

that
|ve(t, 2, h(t,x)) — (=Vh(t,z),1)T| < Ce V(t,z) € I x R".

On compact subsets the error is o(c).

Lemma 3.19. Let (3.66) hold. If 6h € C(I; BC*(R™)), then there is a C > 0 such

that

|6ve(t, @, h(t,2)) — (=V6oh(t,x),1)T| < Ce V(t,z) €I xR™
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3.3. Differentiability of the Control-to-State Mapping

On compact subsets the error is o(e).

Now we can show, that the unique solution (u,p) of (2.12) satisfies the VOF-type
formulation, which consists of the a-transport equation (3.54), the weak formulation
(3.8) and (3.9) as well as the definitions (2.17) and (2.18).

Theorem 3.20. If (3.66) holds for the solution (u,p) of (2.12) according to
Theorem 3.13, which is satisfied for ¢ > 0 small enough, then it satisfies the
VOF-type formulation (3.8), (3.9) and (3.54).

Let vice versa (u,p,«) be a solution of the VOF-type formulation (3.8), (3.9)
and (3.54), where a(t) is the indicator function of a domain Qq(t) = {(x,y) €
R*” xR : y = h(t,x)}. If (u,p,h) has the regularity as in Theorem 3.13, then
(u,p, h) coincides with the solution of (2.12) according to Theorem 3.183.

Proof. Let (u,p) be the solution of (2.12) according to Theorem 3.13. Then it
solves clearly also the weak formulation (3.6) and (3.7). Since the solution of (3.54)
is a = 1q,(t) by Proposition 3.15, the formulations (3.8), (3.9), (3.54) and (3.6),
(3.7) are equivalent if the right hand side of (3.8) coincides with the surface tension
force term (3.64). To show this, we note that Lemma 3.17 yields for any € > 0

1% x T
Rll JM(D@ —div(o))(z,y)Val(t, z,y) d(x,y)

vV, X T T
/O—M(D@diV(gD)I)(x,h(t,z))(—Vhl(t,z)) d.

Rn

Now the uniform convergence of v.(t, z, h(t,x)) to (_v}ll(t’x)) for € \( 0 by Lemma
3.18 yields the convergence of the above term to (3.64).

Let vice versa (u, p, &) be a solution of the VOF-type formulation (3.8), (3.9) and
(3.54) such that (u,p, h) satisfies the regularity assumptions of Theorem 3.13. Then
again a = 1g, (), where the normal velocity of T'() is u"v. Moreover, [u] = 0 on
['(t) by the regularity of u and clearly the first two PDEs in (2.12) follow. Finally,
the jump condition in the third line of (2.12) follow from (3.8), (3.9) and (3.54), or
equivalently from (3.6) and (3.7), by choosing test functions of the form

SQT(t7 Z, y) = ¢(t7 $)¢r(y - h(tv 1‘)) (369)
with ¢ € C2°(I x R R"™), 4 (s) = ¥(s/7), ¥ € C2((=1,1)), ¥ > 0, ¥(0) = 1,
P(—s) = 9(s) and letting 7\, 0. O
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The last step remaining is to justify the following VOF-type formulation for com-
puting the sensitivities (du, Jp).

/ (9 (p(e)du) + div(p(a) (Ju ® u+ u ® du)) + dc) " d(t, z,y)

IxRn+1
+ [ SEuopue): Vet

IxRn+1
[ [ o= o0u™ @+ V) dbale) o)t (3.70)

I Rnt1
- [ [ 18t Vedsale) e i

I Rnt1

. (51/8T 5V€T1/EVET .
= gl\% - / o < P |V€3> (Dy — div(p))Vad(t, x,y)
IxRn+1

.
/ 022 (Dy — div(p))Vdda(t)(z,y) Vo € CX(I x R R,

IxRn+1 ‘V6|
div(ou)yd(t,z,y) =0 Vi € CHI x R™T), (3.71)

IxRn+1
da satisfies (3.59), (3.72)
ou(0) = duyg, (3.73)

where v, and v, are given by (3.67) and (3.68). Due to the limited spatial regularity
of 0;u, we have to state time derivatives on the interface in weak form. The following
lemma is still necessary for the prove of the hereafter theorem.

Lemma 3.21. Let ¢ € CH(R™ TR, Then

- / (z,y) TV dba(t)(z, )
R+

—Vh(t,z)

:R[ 0,0z, h(t,z))T ( ! >6h(t, ) + (2, ht,z)) T (—vaz(u ””)) dz

= / div(¢)(x, h(t, x))oh(t, z) dz.

Rn

Proof. The lemma can be proofed by the definition of distributional derivatives and
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3.3. Differentiability of the Control-to-State Mapping

integration by parts, see [25]. O

With that we are able to show the main result for the sensitivities of the VOF-type
formulation we stated with (3.70)—(3.73).

Theorem 3.22. Let (u, q) be the solution of (2.12) according to Theorem 3.13 and
let (3.66) hold, which is satisfied for g > 0 small enough. Moreover, let (0u,dp) be
the sensitivities of (u,p) in Theorem 8.13 corresponding to (dug,oc). Then (du,dp)
solve the linearized VOF-type system (3.70)—(3.73).

Let vice versa (u,p, ) be a solution of the VoF-type formulation (3.8), (3.9) and
(3.54), where a(t) is the indicator function of a domain Qy(t) = {(z,y) e R™ xR :
y = h(t,z)}. If (u,p,h) has the regularity as in Theorem 3.18 and (du,d0p,dc) is a
solution of (3.70)—(3.73) such that (du,dp) has the regularity as in Theorem 3.13,
then (0u,dp) coincide with the sensitivities according to Theorem 3.13.

Proof. Let (ug, ho, c), (dug,0,dc) € Uy(hg) x Up, x U.(tp) be such that (ug, ho,c)
and (ug, ho, ¢) + (dug, 0, dc) satisfy the conditions of Theorem 3.13. Denote now by
(@, p, [P], k) the unique solution of (3.17) for data (ug, ho,c) and by (4°, p*, [p°], h®)
the one for data (ug, ho, ¢)+$ (dug, 0, 6c). Let (u, p) and (u®, p*) be the corresponding
states in physical coordinates according to (3.12) and let a = 1q, (1), @® = 1gs(4) be
the corresponding solutions of (3.54). Finally, let (du,dh,dp) be the directional
derivatives (sensitivities) in direction (dug,0,dc) which exist by Theorem 3.13. By
the differentiability result of Theorem 3.13 we know that with the extensions u4, p+
in (3.46) the following holds, see (3.45), (3.47) and (3.48)

RSN in C(I; LP(R™1; R™1Y), (3.74)
S
T sy in LP(I; HPL(R™H RPH)), (3.75)
S
PLPE  5py in LP(I; LP (R R ). (3.76)

We derive now the different terms in (3.70). Therefore we define

Qs ={(t,z,y): o’ =a}, Qf:={(t,z,y):a’(t) # a}.

We have for arbitrary ¢ € C2(I x R*T1; R

/ %1 ((p(ozs)us — p(a)u)T&g(p + p(a‘g)(us)T(us -Vp) — p(a)uT(u . ch)) d(t,z,y)

IxRn+1
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By (3.74) and (3.75) we obtain for the first summand

[ 5 (@) = )T a 4 pla)((w) (@ - Te) — o (- T9)) dit )

Qs

— —(p(@)du" dp + p(a)(du (u- Vo) +u' (6u- Vo)) d(t,z,y)

IxRn+1
= [ @p(e)sn) + div(pla) (buu+ u e su) gt ).

IxRn+1

For the second summand we have by Theorem 3.13

/ -1 ((pla®)u® — pla)u) " Orp + p(a®) (u®) T (u® - Vo) — p(a)u’ (u- V) d(t, z,y)

s
Qg
max(h(t,x),h*(t,x))
-1 s T s\T(, s T
- ((pru® — pau) " 0o + p1(u®) ' (u® - Vi) — pau’ (u- Vo)) d(t,2,y)
IxXR™ h(t,x)
max(h(t,z),h°(t,x))
-1
+ [ / ((p2u® = pru) TOpp + pa(u®) T (w® - Vi) = pru” (u- Vo)) d(t, z,y)
IXRn R (t,2)
— / (p2 — p1)u’ (Oup +u- Vo) (t,z, h(t,x))0h(t, z) d(t, z)
IxXR"™

(p2 — p1)u’ (5’t90 +u- V‘P)d&“(t)(% y) dt,
I Rn+1

where we have used equation (3.60) in the last step.
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For the next term in (3.70) we note that

E(S(uﬁps; u(e®)) = S(u, p; p(a))) : V) d(t, z,y)

IxRn+1

= [ 480 —up — pin(a))  Vid(t,a,y) &)
Qs

+ [0 i) - Stupn(a)  Vod(t.a.),
o

Now (8.75) and (3.76) yield

/%(S(us—u,p —pip(e)) : Vod(t,z,y) — /S5u op; p(e)) : Ve d(t, 2, y).

Qs IxRn+1

Moreover, by using (3.61) and Theorem 3.9 we have

/ L (s, 0% u(0®)) — S(u,pr (@) : Vit 2, )

s
Qg
) max(h(t,z),h’(t,z))
= / ; / (S(uivpi;ul)_S(UJmer;MZ) V(pd(t7$ay)
IxR" h(t,z)
) max(h(t,z),h*(t,xz))
+ / 5 / (S(uf, piipe) — S(u—,p—; 1)) : Vo d(t, z,y)
IxR" he (t,z)
— — / [S(u, p; w(@))|(t, 2, h(t, x))0h(t, z) : V(t,x, h(t,x)) d(t, x)
IxR"

. / / 1S(u, s p(@))] : Vip doar(t) (. y) .

I Rn+1

Here, we have used (3.60) and the imbedding (3.61) in the last step. Finally, the
surface tension term (3.64) has by Theorem 3.13 and with the abbreviations

Bt ) = (—Vhl(t,x))’ 55t ) = (—wg(t,x)>
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as well as imbedding (3.62) the following directional derivative

2
/ o (5|V _ 61/|3> (t,z) (D — div(o)I)(t,z, h(t,z))i(t, ) d(t, x)
IxR"
DT
+ / am (ay(DSD —div()I)(t, =, h(t,z))oh(t, z)i(t, x) (3.78)
IxR"

+ (Dg — div(@) D) (t, @, h(t, 2))o0(t, 2) ) d(t, ).

Now the first integral on the right hand side of (3.70) converges to the first intergal
in (3.78) by first applying Lemma 3.17 and then Lemmas 3.18 and 3.19. By using
first Lemma 3.21, where we have to note that v.(t,z,y) depends close to I'(t) only
on x by (3.66), and then Lemma 3.18 as well as the fact that Vdh is continuous by
(3.62), the second integral on the right hand side of (3.70) converges to the second in-
tergal in (3.78). (3.71) and (3.73) are obvious and (3.72) follows by Proposition 3.15.

Let vice versa (u,p,a) be a solution of the VOF-type formulation (3.8), (3.9)
and (3.54) and (du,dp,da) a solution of (3.70)—(3.73) with the regularities as in
Theorem 3.13. By Theorem 3.20, (u,p, h) coincides with the solution of (2.12) in
Theorem 3.13 and (3.59) implies by Proposition 3.15 that da and dh correspond to
each other via (3.60). Hence, (3.70)—(3.73) ensure that (u, p) satisfy the linearization
of (2.12) on (t) and that do provides for given du the correct dh. It remains to
show that (3.70)—(3.73) implies the correct linearized jump condition. Denote the
tested surface tension term from (3.64) for ¢ € C°(I x R*;R" 1) by

N . Vh(t,z) —Vh(t,z)) |
K(o) = [ oaiv, (T ) (40) ot 0)die o)
IxR"™
The jump condition in strong form is equivalent to
= [ ot ISw i bt )] (T dita) = K(h56) (370
I xR™
for all ¢ € C(I x R*;R*""1) with S(u,p;u) = —pI + u(Vu + Vu'). In the

transformed variables the jump condition reads

- / ot 2) T [8(@ p, b @) (¢, 0)] (~VRED) dt, z) = K (hs )
IxR™
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for all ¢ € C°(I x R";R™"*!), where with the notation of the transformed defor-

mation tensor, see (3.13), S(a,p, h; i) = —pI + g@D(4,h). Thus, the sensitivities
éu, 6p, Oh satisfy the linearized jump condition

- / ot )" (1005, B, b 1) - (63,65, 8R) (t,,0)] (~¥4(5)
IxR" (3.80)

+ (S, po s @) (8, 0))(“V°5 ) ) dit, ) = Ok (hs @) - S

for all ¢ € C(I x R™;R"™1). We show now, that under the regularity ensured
by Theorem 3.13, (3.80) is implied by the weak formulation (3.70) by using test
functions of the form

@T(tvx’y) = ¢(t733)1/17(y - h(t,l‘)) (381)

with ¢ € C2°(I x R"; R, 4. (s) = ¢(s/71), ¥ € CX((—1,1)), ¥ > 0, ¥(0) = 1,
(—s) = 9(s) for 7\, 0. Then

Ver(ta,y) = iy — h(t.2)) (VD) St )T+ e (y = bt 2) (V)
Opr(t,m,y) = —d(t, 2)Y.(y — h(t, 2))Ouh(t, ) + Opp(t, )1, (y — h(t, x)).

We test the weak form (3.8) also in time and rewrite it in the transformed variables.
This results in

/ ((Oe(p()u) + div(p(c)u @ u) (t,z,y) "¢ + S(u,p; p) : Vo) d(t, z,y) =

IxRn+1

(—[)(3}, y)a" (8t<p(t, x,y+ h(t,x)) +a-Veo(t,z,y + h(t, x))) (3.82)

IxRn+1

+ S(ﬁ,ﬁ, h; ﬂ)(tvxvy) : v@(tama Y+ h(ta ‘T))) d(t,(ﬂ, y) = K(ha 50('7 K h(? )))

For the right hand side we have used that as in the proof of Theorem 3.20 the right
hand side of (3.8) coincides with (3.64). For the test function (3.81) we obtain

Ovpr(t,x,y + h(t,z)) + 0 - Vor(t,z,y + h(t,z))
= —o(t, 2)Y} () (Deh(t, z) + v Vh(t,x) — w) + ¥r(y)(Bed(t, x) +v - V(t, 2)).

Moreover, for any (z,y) € I'(f) and (z(t),y(t)) with (z'(¢),y'(t)) = u(z(¢),y(¢)),
(z(?),y(t)) = (z,7) one has y(t) — h(t,z(t)) = 0 and thus

0=y'(t) = Oih(t, x(t)) — Oxh(t, x(t))2'(t)
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= w(t,x(t),y(t) — Qeh(t,z(t)) — v(t, 2(t), y(1)) T VAt 2(t)).
Hence,
atSDT(tv T,y + h(tv .’E)) +a- VC,OT(t, z,y + h(tv 1’)) = ’l/)‘r(y)(atd)(ta x) +v- V(b(ta (ﬂ))

and inserting ¢, in (3.82) yields

| (Coeni™ e w)@ott,a) + o Tolt,z)

IxRn+1

+ 8, i ) ¢ (00t 200! () (T + e () (TAG) ) ) dlt s y) = K (hs ).

We have already observed that the right hand side of (3.8) coincides with (3.64)
and the right hand side of (3.70) with the derivative (3.78) of (3.64). Since K (h; ¢)
corresponds to using ¢, in (3.64), 9, K (h;¢) - 6h can be expressed as the sum of
the right hand side of (3.70) with ¢ = ¢, and of the right hand side of (3.8) with
¢ = —0yp,0h (note again that ¢, depends on h). Similarly, taking the derivative
of the left hand side of (3.82) corresponds to the sum of the left hand side of (3.70)
with ¢ = ¢, and of the left hand side of (3.82) with ¢ = —0,¢.0h (note that ¢,
depends on h), which results in

/ (=@, )6 ) (307 (Du6 (k) + v - Vot @) + T (Ou(t,2) + 6v - Vo(t, )

IxRn+1
+ Oa S (s, i ) (. 0) - (6, 8p, o) : (6(t )0l () (7)) + 0, () (TO))

S, b 1) (@,0) = $(t, )0 (y) (V57 ) dit 2. ) = OuK (i 9) - Oh.

Note, we differentiate equivalently the middle term of (3.82) in transformed vari-
ables. By the assumed regularity for 7 N\, 0, all terms containing the factor ¢, (y)
tend to zero and the remaining terms converge to

/ (=195, B 1 ) (2, 0) - (6, 69, 5h)]  (~)
IxR"™

— [8(a, p, by 1) (0] : (*V‘*g(tv@))qb(t, ) d(t,z) = 0K (h; ¢) - Sh.

This is exactly the linearized jump condition (3.80). O
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3.4 Sensitivity System with respect to Liquid Viscosity

The former section yields fundamental theoretical results for the two-phase system
with jump conditions and also treat the VOF approach for special controls. In the
following, we will extend the results for a further control, the liquid viscosity u;,
in a formal way. Extensive proofs of existence and uniqueness for this problem
are skipped, as this would go beyond the scope of this work. However, further
investigations are planned for the future. The reason why we add this part at this
point is, that we will apply the sensitivity equations with respect to the material
parameter u; to the doctor blading test case in Chapter 5. So we will now formally
establish the sensitivity system for the state equations in (2.21), which consists of
the momentum equation (2.20), the continuity equation (2.3) and the transport
equation (2.19). For a clearer representation we define C := (C1,C?,C%,C*,C°)T
with

Ch23 .= p(dyu + u - Vu) — pAu — pg + Vp — 0kVa,
ct=V. u,
C® = 0+ V - (au).

Here we have to remember, that the density p and the viscosity p also depend on
the phase fraction «, see equations (2.17) and (2.18), so it holds

pla) = apr+ (1 —a)py,
(o) = apm + (1 — a)uy.

The goal is to find the sensitivities dy of the state variables y = (u,p,«) with
respect to the control ¢ = y;. Hence, the sensitivities are defined as
Sy d(u,p,a)  (du dp da
y T dq - dqa dq’ dq ’
d d d
gu =Y op = —p, ja = 22
dq dq
In order to solve equation (3.3), we have to determine the two terms Cy(y(¢), ¢) and
Cq(y(q),q). We start with the second one. The only term in C' containing the liquid
viscosity is the diffusion term —pAwu, where p; is incorporated in p, see equation
(2.18). For the viscosity it holds

aﬂl:u’(a7 .ul) =
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Then, we obtain by direct formal differentiation of the state equations C'»® with
respect to the control parameter ¢ = y; the following partial derivatives

0,,CH %3651 = —alu, 0y, C*op = 0, 0,,C°8u; = 0.
This results in

Cy(y(9),9)dq = (—alAu,0,0). (3.83)

For the calculation of Cy(y(q), ¢), we formally differentiate the equations with the
help of product and chain rule again. The challenging part is the momentum equa-
tion, where some preparatory considerations must be made. As we already stated
above, density and viscosity depend on the phase fraction variable «. Therefore, we
obtain the following derivatives with respect to «

pl = Oaqp = P1 — Pg,

= Oapr = pu — fig,
where p;, p, and py, p, are constant values. Then the derivative of C1® with
respect to the individual state variables yield

0u,CH235u = p (040u + du - Vu+ u - Vou) — pAdu,
0,C*u =V - bu,
0,C%0u =V - (a du),

9,C"*36p = Vép,

0,C%6p = 0,
9,0%6p = 0,

0o CH236a = p'da(Opu + u - Vu) — p'dalu — p'da g — o(K'Va + k Vi),
9,C*5ar = 0,

0aC%6a = 0100+ V - (6 w).

Some of the terms within this derivatives still need to be examined in more detail,
e.g. the curvature term in the representation of 9,C*?36a. Just as density and
viscosity, the curvature also depends on the phase fraction «, see equation (2.16).
As we stated in the referenced equation, the curvature can be expressed in terms
of minus the divergence of the interface normal vr, if the interface I" is sufficiently
smooth. This is the case, if " is a Lipschitz boundary, since then the outer normal
vector vr exists almost everywhere. Furthermore, the interface normal vr itself can
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be calculated with the help of the phase fraction field o and leads to

Va

H:—V'VF:—V'w.

(3.84)
To find a representation for the derivative of the curvature x with respect to the
phase fraction variable o, we add a small constant € > 0 to the denominator of the
fraction to avoid numerical difficulties in regions where Va = 0. Furthermore, this
will match our numerical considerations in Chapter 4. This results in

Va Va
D Ok = =0,V — . (9, ).
" " Vol +¢ < Va|+5>

The last equality results from the linearity of the divergence operator. Now let’s
have a closer look at the argument of divergence. Applying the quotient rule, we
obtain

, Vo Véa(|Val +¢) — Va T
“|Va|+e (IVa| +¢€)2 '

Altogether, the derivative of the curvature is

Via(|Va| +¢) — Va%
(IVa| +¢)?

K = 0uk = —V - (3.85)

Note, that we can calculate the curvature only at the interface, since it is only
defined there. Outside the interface region, in Q\I', the curvature becomes zero and
therefore the surface tension term is also equal to zero.

Altogether, we end up with the following derivative of our state equations with
respect to the state y = (u, p, @)

poa dyu+ p (0pdu+ du - Vu+ u - Vou) + p'da u - Vu
—uAdu — p'daAu+ Vip — p'da g — o(k'Va + k Via)
V- du

0o+ V- (o du+ da w)
(3.86)

Cy(y(a),q)0y =

This leads to the following formulation of the sensitivity system with the addi-
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tional control term

poa Opu+ p (0;6u + du - Vu+u - Vou) + pda u- Vu — uAdu
—p'dalAu+ Vép — p'da g —o(k'Va+ k Véa) — aAu = 0,
V:dou=0,
Oda+ V- (a du+ da u) = 0.

(3.87)

With system (3.87), we can calculate our sensitivities du, op and dc, where solving
this system means to solve equation (3.3). This system also needs appropriate initial
and boundary conditions to complete the description. We require

(du, dp, 6cx)(0) = (du, dp, dar)p  in 2(0)
and as boundary conditions we obtain
dou=0, Viép=0, Véa=0 on IN(t).

These sensitivity boundary conditions result, if we assume Dirichlet BCs for the
velocity and Neumann BCs for the pressure and phase fraction. Once both, the
state variables and the sensitivities are calculated, the objective functional value
and the derivative of the objective function can be calculated for the respective
control. The objective function we mainly consider in our optimization problems is
a tracking type functional. It measures the difference between the actual state y and
a desired state yq through the L2-norm in space and time. The objective function
then reads

. 1 2
i,q) = §Hy - deL2(I><Q)'
For the derivatives with respect to the state and the control we obtain

Iy, @) =y — Ya,
jq(ya q) = 0

Using these results for j,, j, and the sensitivities dy, obtained from system (3.87),
the derivative of the reduced objective function with respect to the control ¢ can be
calculated, see (3.2)

dj(y(q)a Q) = (y — Yd, 5y) = (y — Yd, 5u, 5]9, 6a)

Therewith, the control ¢ can be updated for the next optimization step, as we will
see in the next section.
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3.5 Sensitivity-based Optimization Algorithm

In this subsection, we show the general structure of a gradient-based optimization
algorithm using sensitivities, inspired by [36, p. 58]. Here, we assume that the
control is a vector ¢ € RN, N € N. Hence, the sensitivity calculations of the
following algorithm has to be exercised for n = 1,..., N. The algorithm stops, if a
prescribed stopping criteria is fulfilled and a satisfactory convergence is achieved.

Algorithm 3.1 Sensitivity-based Optimization Algorithm

Initialize control variables with ¢° € RY

For k=0,1,2,...:

Determine state y* = y(¢*) by solving the state equations C(y*,¢*) =0
Determine the sensitivities dy* by solving the N linear sensitivity systems

=W N =

Cy(y*, 4" )0yp + Ce (44" ) =0, n=1,..,N
5: Compute the gradient of the objective functional, for n = 1,...;, N, by solving

dj R T N A T

— = Iy a7y, + g (Y7 q7)

dgy;

6: Determine the increment in the control parameters, e.g., in a simple gradient
method with an appropriate chosen size (3 from

dj

51]2:_ PR
q 5kdq£

n=1..,N

: Update the control variables with ¢*t1 = ¢* + §¢*

-3

Note, that each iteration of this optimization algorithm requires at least one
evaluation of the flow system. Once, the function evaluation j(¢*) and the derivative
% are known, this first order optimization algorithm can be executed. Nevertheless,
more sophisticated methods could be used to determine the increment of the controls
5¢" in step 6, for example a quasi Newton approach such as the BFGS method [36].
Although the method approximates the Hessian matrix iteratively, we would prefer
to avoid the application of second order derivatives. If the objective function is of a
specific form, for example a tracking type function, there is the possibility to utilize
more specialized methods such as the Gauss-Newton method. In Chapter 5, more
precisely in Section 5.2.2 and 5.3, we will discuss this subject in more detail and we
will see the justification for this approach. At the moment, different methods are
imaginable in step 6.
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As we already stated before, solving the investigated flow control problem
exactly is not possible due to the complexity of the state equations and therefore
approximative solutions must be considered. Now the question is, when this
discretization takes place. In general, two different proceedings are possible,
first-discretize-then-optimize or first-optimize-then-discretize. If we follow an first-
discretize-then-optimize approach, the continuous flow equations are discretized
at first. Then, the discrete flow equations are differentiated to obtain a discrete
sensitivity system. A popular way to obtain the discrete sensitivity equations is to
use automatic differentiation techniques, see e.g., [44]. The other possibility is to
follow the first-optimize-then-discretize approach. Here, the sensitivity equations
are obtained at the continuous PDE level and then the results are discretized.
Solving the discretized sensitivity equations provides a discrete approximation
of the sensitivities. In general, the discrete sensitivities from the first-discretize-
then-optimize and the first-optimize-then-discretize approach do not conform,
but they should converge to their continuous counterparts respectively, as the
grid size goes to zero [36]. The same applies to the gradients of the discretized
objective functionals, since they are calculated from the discrete sensitivities. Both
approaches can also be applied analogously to adjoint variables, see e.g., [75].

There are good arguments for both of these ways and it depends on the prob-
lem formulation itself, the software requirements and not least on the user, which
method is selected. An advantage of the first-discretize-then-optimize approach is
the consistency of functional gradients. Discretizing the differentiated functionals
does not necessarily yield the true gradients, but differentiating the discrete func-
tionals still leads to the exact gradients of the discrete state equations and therefore
also to the exact gradient of the discrete objective function [36]. In the case of the
first-optimize-then-discretize approach, this drawback can be overcome with error
estimators and adequate mesh refinement. However, the advantage of the second
approach is the ease of realization. The more complex the flow system, the more
time-consuming automatic differentiation is to implement and to solve. If in our case
an interface and a three-phase contact line are added to the standard flow equations,
then a lot of equations have to be differentiated automatically. Furthermore, due to
its modular structure the targeted software offers ideal conditions for discretizing the
individual equations operator-wise. Surely, care must be taken to ensure that the
state and sensitivity equations are discretized as accurately as possible, otherwise
the discrete approximations of the state and the sensitivities will not be consistent.
Therefore, we discretize and implement the system in a similar way to the original
system and make use of the modular structure of the existing solver and operator
implementations. More details will be discussed in Section 4.3.
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Numerical Solution

In times of high computational power the solution of the complex PDE systems
describing multiphase flow with direct numerical simulations (DNS) is preferable
and well feasible. It was mainly used and advanced for the application of homo-
geneous fluids and as a standard tool for turbulence problems. In this thesis we
follow the DNS approach although we have a predominant laminar flow regime,
since the equations, governing the fluid flow in the several phases, are highly
nonlinear and the position of the phase boundaries has to be found as a part of the
solution. Turbulent effects that might occur are captured by solving the previous
equations on a sufficiently fine mesh. There are exact analytical solutions only for
the simplest problems, for example the steady-state motion of bubbles and droplets
in Stokes flow [93]. For the more sophisticated questions, a numerical treatment
with discretization is indispensable.

We start in 4.1 with a description of the finite volume discretization, see Section
4.1.1, and the temporal discretization using an implicit Euler method, see Section
4.1.2. Based on these methods, the discretized equations are derived for the primal
equation system in Section 4.1.3, using various operator discretizations and inter-
polation schemes. The numerical solutions of the a-transport equation with the
compression approach and a flux-corrected transport algorithm as well as of the
Navier-Stokes equations with a pressure-correction method follow in the Sections
4.2.1 and 4.2.2. The discretization and solution of the sensitivity system is subse-
quently discussed in Section 4.3. Afterwards, Section 4.4 contains a description of
the applied software, where we first point out some special simulation characteristics
of OpenFOAM in Section 4.4.1 and then discuss the main implementation facts of
the new implemented sensitivity solver interSensFoam, based on the OpenFOAM
inherent incompressible flow solver interFoam, see Section 4.4.2.
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4.1 Discretization

When we talk about discretization of our problem, we always mean a finite-
dimensional formulation of the problem. This includes the discretization of the
solution domain as well as the discretization of the equations. The discretization
of the solution domain is divided in a spatial and a temporal discretization. We
use the finite volume method (FVM) as spatial discretization and the implicit
Euler method for the temporal discretization, both described in detail in the next
sections. The aim of discretizing the equations is to obtain a discrete system of
algebraic equations, which can be solved by standard linear solvers. Since we have
to deal with nonlinear PDEs of second order, the discretization practice should be
also second order accurate in space and time, if possible.

In general, we use an Eulerian frame of reference for our quantities of interests,
which is widely used in fluid dynamics. That means, that all variables are given
on fixed points in space in the discrete setting. As a consequence, the varibles
are represented as a function of the position x and the time ¢, e.g. the velocity is
represented as u(z,t). In contrast, the Lagrangian approach describes the motion
of individual fluid particles following their path lines, without a fixed grid.

4.1.1 Finite Volume Discretization

In the presence of fluid, it is advantageous and common to investigate a defined
spatial range filled with fluid, called control volume. We know these control volumes
already from the description of the conservation equations and we follow this idea
also in our discretization approach. With the finite volume method, the continuous
solution domain € is transformed into the approximated domain Q" with mesh size
h, partitioned into finitely many control volumes V;

Q"= JVicR?Y, forie{l,..,n},neNde {23}

In the following, we will also denote Q" as mesh and V; as cells. This approximation
provides a finite number of non-overlapping cells bounded by a finite number of
planar faces f. The discrete values of the variables are calculated at the cell centers
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as volume averages over the control volumes. For a quantity ¢ then it holds

1
o = |v;-|v/_¢(”3) du,

Here, 1), is the cell-centered approximation of . It can be shown, that this piece-
wise constant approximation of the cells is second-order accurate, if the value v, is
associated with the cell centroid z. of the control volume, see e.g. in [59]. Since all

dependent variables share the same control volumes, we have a so-called collocated
arrangement. This has some advantages over a staggered grid, where the different
variables are stored at both the cell centers of the control volumes and the cell faces,
especially for complex geometries and discontinuous variables [28].

Figure 4.1. Two control volumes with common boundary face f [62].

In Figure 4.1, P and N are the centroids of two adjacent cells and d is the
distance between P and N. We write ¢p and 1y for the cell-centered values of
a variable v, if we need to distinguish between the owner and the neighbor cell,
and 9y for the face-centered value. The intersection between d and f does not
necessarily have to coincide with the face center point of f. The face area vector
St is normal to the face f with the magnitude equal to the area of the face itself.
A distinction is made between internal and boundary cells.

Remember, with the help of the divergence theorem, see Theorem 2.9, we are able
to convert the volume integrals into surface integrals. This is used to discretize the
governing equations. As a consequence, we not only need the cell-centered values
of the variables but also face-centered values. Face-centered variables are obtained
from the cell-centered variables by interpolation. Various interpolation schemes are
available for this purpose. They differ regarding order of accuracy, boundedness
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and the degree of diffusiveness they produce. Two prominent representatives of
interpolation schemes are the linear interpolation, also called central differencing
and the upwind differencing scheme, we will introduce in the following.

Central Differencing (CD)

The face-centered values are calculated by

wf,cd:fm¢P+(1—fz>¢N, YN
_- " "
“" PN a
P IF; N

This linear interpolation scheme is second order accurate, but solutions are possibly
unbounded and oscillatory [20].

Upwind Differencing (UD)

The face-centered value is equal to the upstream cell-centered value
Vpp<0 f———2
(N

W [ ¥p for ¢y >0, Vp .
Tud = gy for ¢y <0. StV es0

P f N

Here, ¢ is defined as the mass flux which enters the face f, see equation (4.7)
for computational details. This interpolation scheme is first order accurate and
bounded, but diffusive [20].

Blended Differencing (BD)

This higher order differencing schemes is a mixture of the central and the upwind
scheme and aims to preserve both boundedness and accuracy of the solution [20]

Viva = (1= Ap)Vsud + Mgy ca- (4.1)

Inserting the upper schemes leads to the following expression, which only depends
on the face-centered values ¥ p and ¥

Vrpa = [(1 = Ay) max(sgn(dy),0) + Ay fo]top
+ [(1 = Ay) max(—sgn(¢ys),0) + Ay (1 — fo)]Yn.
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We naturally denote by sgn(¢ys) the sign of the flux ¢;. Various possibilities can
be selected for the limiter Ay, e.g. Minmod [73], SuperBee [73] or vanLeer [98]. We
will discuss these limiters in detail, if we need them, at the appropriate place.

Linear Upwind Differencing (LUD)

Furthermore, there exist schemes using more than the direct neighboring cells. An
example for such a second order upwind differencing scheme is the so-called linear
upwind differencing scheme. It is a second order extension of the upwind interpola-
tion scheme with a possible explicit correction based on the local cell gradient. The
face values of a variable ¥ can be calculated with

" 7 { VYp+ 5(¥p —hpp) = 2p — $hpp  for ¢y >0,
FREZ g + Ly — ) = 2w — Sown for oy <0,

The second order accuracy results again in an unbounded scheme. With the help of
a gradient or slope limiter function, this drawback can be overcome. By multiplying
the second term with a well-designed function, this scheme detects strong gradients
or changes in slope leading to oscillations, and switches locally to a simple upwind
method. This yields a second order accurate and bounded scheme, which belongs
to the TVD schemes. Note, since another cell-centered value is needed in upstream
direction for this scheme, a careful handling of arbitrarily unstructured meshes is
necessary.

4.1.2 Temporal Discretization

The time is discretized into a series of time intervals, also called time steps. The
size of a time step is At. Let ¢ denote the time in a given time interval I := [0, T].
In the following we will use the notation

¥°:=1)(t) value at the previous time t (o: old),
Y™ i=1(t + At) value at the actual time (n: new).

For the temporal discretization, the implicit Euler time differencing scheme is
utilized. It is first-order accurate in time, guarantees boundedness and is uncondi-
tionally stable [57]. Then the temporal terms are discretized as

Y —y°
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In computational fluid dynamics the Courant-Friedrichs-Lewy (CFL) condition is
often used for the discretization of time dependent partial differential equations. It
can be seen as a measure of the maximum number of mesh cells a given quantity
can move through per time step. The CFL condition is defined as

0= < (4.3)
with velocity u, discrete time step At and mesh size Ax. The dimensionless number
C' is called the Courant number. For the stability of the explicit Euler method, a
CFL number limit Cp. = 1 is necessary. Otherwise, it results in the propagation
and amplification of numerical errors. The implicit Euler method is less sensitive
to numerical instabilities, hence a larger value of Ci,,x is possible. But due to the
solution procedure we choose for the a-transport equation, a CFL number limit is
still necessary. Here, the fluxes are calculated and corrected in an explicit manner,
details will follow in Section 4.2.1, which requires a strict time step limit during
the numerical calculations. Hence, a maximal Courant number of Cp.x = 1 is
postulated for all further investigations, if not stated otherwise.

In our simulations, an adaptive time step control is beneficial to get the largest
possible time step without violating the CFL number limit [57]. We set

At = min {min [min (C'gaXAto, <1 + A\ Cg”) At()) ,)\2Af01| ,Atmax} , (4.4)

with an initial time step Aty. Moreover, A\; and As are dumping factors to avoid
large changes of the time step [57], and At,.x is a maximal time step size the user
can select.

4.1.3 Discretization of Equations

The considered conservation equations can be written in form of a general transport
equation. We will start with a general formulation, since it contains all relevant
operators and terms, which we also need for the discretization of our state equations.
For a variable 1) and a velocity field u the general transport equation in conservation
form is

O+ V- (u) = V- (uVip) = Sy,

where S, is a source term depending on ).
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To obtain a discrete version of the general transport equation, and therefore also
of the governing equations, we have to integrate over a time interval At and an
arbitrary control volume V, see e.g. [28], which results in the following integral

form
t+AL t+At
/ /[3,5111 + V- (uwp) =V - (uV)] dv dt = / /Sw dv dt. (4.5)
t v t Vv

For the discretization of the equations we will take a closer look at the individual
terms and their operators in the following. Again, we write the subscript c
for cell-centered values and the subscript f for face-centered values, while the
superscript o stands for the previous time step and n for the actual one. An
important tool to reformulate the equations in a discrete way is the Gauss theorem,
which we already introduced in Section 2.1.2.

The discretization of the temporal term we already discussed in the section before,
see equation (4.2). Of course, the other variables in equation (4.5) are also assigned
to the actual or previous time step, which will be presented with the discrete versions
of the individual state equations. The second term in equation (4.5) is the convective
term, calculated by the divergence of ui. As discrete version we obtain

[ 9w o= [ ) evas = 3785 (w)y =32 8p sty = 3 oy, (46)
% av ! ! f

where v is the outer normal of OV and the mass flux through a face is defined as
¢f = Sf-uf. (4.7)
For the diffusion term, the third term in equation (4.5), it holds
[ 900y do= [@vu) v ds =385 0V = 3 Sy (V).
% ov f f

The term (V) is the gradient normal to the face, which is also denoted as the
surface normal gradient. At the face f, it is calculated by

(V) = VR, (48)

where d is again the distance between the owner cell P and the neighbor cell N. The
face values of the other variables are calculated with the differencing schemes we
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introduced in Section 4.1.1. Which difference scheme is used will be specified at the
relevant place. Since the source term on the right hand side of equation (4.5) varies,
we will also treat them at the appropriate time. In some notations the Laplacian
operator arises, but in our case it is replaced by the divergence of the gradient,
since the viscosity is not constant. For this reason it is not necessary to consider
it separately. For the full Navier-Stokes equations, the cell-centered gradient of a
quantity is also required. The gradient is discretized as

(V)p = ﬁ S S,
f

Now we will combine the separate operator discretizations to match our state
equations. The goal is to represent the discretized equations only with cell-centered
values of the owner and neighbor cell of the respective face of the cell, to obtain a
system of equations, depending only on cell-centered values again. For the resulting
equations, we will subsequently present suitable solution procedures in 4.2.

a-Transport Equation

Remember that we defined the phase fraction function « as a characteristic function
in Chapter 2.4, see equation (2.14). For the discretization we integrate this quantity
over the volume corresponding to a computational control volume V;. The liquid
fraction field is now given by

1
aei(z,t) = /a(x,t) dv. (4.9)
Vil
Vi
Is there a cell completely filled with liquid, the liquid fraction «.; is equal to one
and if the cell is completely filled with gas, the liquid fraction a.; is equal to zero.

In any other case, a.; adopts a value between zero and one.

Figure 4.2. Exemplary discretized phase fraction field a.
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4.1. Discretization

Figure 4.2 shows an excerpt of a discrete phase fraction field, where the red
curve displays the real interface, represented by a thin belt of cells with values
between zero and one. Since with the algebraic VOF approach no reconstruction
of the interface is used and an unstructured mesh discretization is straightforward.
Hence, more complex geometries do not require any special treatment.

Due to the formulation as a one-field problem with the VOF approach, the phase
fraction is transported with the a-transport equation through the domain, see equa-
tion (2.19), which involves some difficulties. The main challenge is, that we have
to transport a discontinuous indicator function « that should imply a sharp inter-
face between the different phases. Of course, this function can also adopt values
between zero and one on a discrete level, but then it also has to be ensured that this
transition zone, normally consisting of not more than one cell, remains limited and
does not smear out. A solution in this context is offered by the surface compression
approach, which is for example described by RUSCHE in [76]. The idea of this ap-
proach is, that an additional term prevents the smearing out of the interface over
more and more cells. Therefore, a relative velocity between the phases is defined
and integrated into the transport equation by a so-called compression term. This
artificial term was introduced by JASAK and WELLER [49] with V - (a(1 — a@)u,.) to
reduce spurious currents around the interface. wu, is the compression velocity, we
also denote as relative velocity, and was originally defined as

Ur = U1 — U2,

where wuy is for example the velocity of the liquid phase and us the velocity of the
gaseous phase. The problem is, that u, can not be determined in the frame of the
classical VOF approach, because there is only a single velocity u for both phases
[53]. For the solution of the a-transport equation, we need to approximate this
velocity and respectively the cell face flux ¢,. In Section 4.4.1 we will see how this
is implemented in OpenFOAM. Note, due to the term «(1—«), the compression term
acts only in close proximity to the interface, if « is between zero and one. In this
region, the term limits the smearing of the interface because of the compensation of
the diffusive fluxes [53]. Together with the surface compression term, we now have
to solve the following extended a-transport equation

Oa+ V- (au)+ V- (ol = a)u,) =0. (4.10)

The formal derivation of equation (4.10) can be found in Appendix A.1. In integral
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form, this equation can be written as

/@adv—k/(au)~udv—|—/[a(l—a)uT]-Vdv:&

Vi oV oV

Without loss of generality, we will consider only one single control volume V', so
we will write V' instead of V; and o, instead of a.; in the following. Again, the
subscript f denotes the face-centered values of the variables, with f € 9V. Then
we obtain as discretized a-transport equation with compression term

a?—ag 1 § o n 1 § o.n n
e 1 g (4.11)
=~ A&t Ef (630} + ¢2a’t(1 —a})] .

Here, we used the implicit Euler method for the time derivative, see equation (4.2),
and the convective discretization from equation (4.6). The time discretization is
implicit, since we use of from the actual time step. In contrast, the velocity fields
u} and ug are taken from the previous time step, wherefore we can substitute them
together with the surface area vector Sy by ¢% or respectively ¢7, see equation (4.7).
Remember, since we are in a multidimensional setting, we consider the sum of the
fluxes over all cell faces f. How the fluxes ¢% and ¢7 can exactly be interpolated
and how to calculate the different a’f, we will discuss in more detail later in Section
4.2.1 when the numerical solution of the advection equation is presented.

Momentum Equation

To derive the discrete version of the momentum equation, some small equation
transformations have to be made for a more efficient numerical evaluation. Based
on equation (2.20), we rewrite the convective and the Laplacian term and obtain

Oilpu) + V- (pu@u) = —=Vp+ V- (uVu) + V- (uVu') + pg + okVa.  (4.12)

Then, the integral form of equation (4.12) over a control volume V results in

V/at(,m) dv+/(pu®u)~ydsV/Vpdv+/(uVu)~1/ds

ov oV

+ /(MVUT)'V ds—|—/pg dv—|—/cmVoz dv.
ov v 1%
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4.1. Discretization

While forming the integrals, the Gauss theorem was used at three places to substitute
the divergence with a surface integral. Most of the terms can be discretized with the
operators introduced in the beginning of this section. The pressure term will be also
treated as surface force, see equation (4.13), which corresponds to a conservative
approach and is standard in the FV discretization context. A non-conservative
approach, preserving the volumetric form, would create a global mesh dependent
error [28]. Within the last term, the curvature appears. As stated in Chapter 2.3,
the curvature « is calculated as the negative divergence of the interface normal. In a
discrete setting, this corresponds to the negative divergence of the face unit normal
flux of a cell, we with interface normal v¢, and it holds

. (Va)f
ndv:f/voudv:f S¢-ve, with vy = ——=.
V/ J ; ff T (Ve

Here, (Va)y is the surface normal gradient as in equation (4.8). Using the implicit
Euler time scheme of Section 4.1.2 and the discretized operators from above, the
discrete momentum equation for the actual time step can be derived as follows

p%u}f’ — p(}—’u%’ n o, n n n n
v f f

+ Y upSy - (Vu)f + (0"g)plV]+ (ox™) p(Va™)p| V.
7
(4.13)

Note, the convective term can be discretized as in equation (4.6), since a kind of
linearization is performed by using an existing velocity field u° from the former time
step. For sufficiently small time steps it holds with a fixed point argument

(pu @ u)" ~ p"u® @u". (4.14)

Furthermore, the second part of the diffusion term is considered at the old time
step, since this term will be used in another way in Section 4.4.1. We can further
transform equation (4.13) in

7un

pnun 7po ul . . . . u?
PR PR 145 iy = ~(@)elvI+ Sugs s
f f
o o T
n Uy —U n n n
Sy (B )+ el + (o) e (Ta eIV,
f
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Chapter 4. Numerical Solution

where we again use the flux representation for velocities from the old time step at
some point and the definition of the surface normal gradient. If no divergence occurs
within a term, we can simply consider the face-centered values, as it is done for the
last three terms in the momentum equation.

Continuity Equation

The discretized continuity equation applies
[V =35 up =Y g =0
v f f

Note, that we do not solve this equation per se, we rather use it to correct a not
divergence-free velocity field, obtained in a first step of the solution procedure of
the momentum equation. A detailed description follows in 4.2.2.

4.2 Numerical Solution Procedures

In this section, we present solution procedures for the a-transport equation and
the Navier-Stokes equations. A summary of the solution algorithm as it is used in
the standard OpenFOAM implementation can be found in [53, Algorithm 1]. This
algorithm is the basis of the sensitivity solver, that we will present in the end of
the chapter.

The goal of the discretization is to obtain a system of linear algebraic equations,
divided in values for the owner and the neighbor cell. In general, we obtain the fol-
lowing linear equation formulation for the respective equations, where ¥ represents
one of the solution variables

ap@bg—&—Zan% = Rp. (416)
N

The above equation refers to a certain control volume with cell values ¥p and
neighboring cell values ¢¥y. Rp is known, since it contains all terms with known
variable values. Overall, one obtains a system of the form

Ay" =R.

This system of algebraic equations can be solved with appropriate methods, we will

92



4.2. Numerical Solution Procedures

present among others in the next subsections. Since the resulting coefficient matrix
A is usually sparse, iterative methods are preferred. If additionally ap and an
depend on 1, a fixed point iteration is necessary. The first step, however, is to set
up this system and reach a formulation only based on the cell centered variables.

4.2.1 Numerical Solution of the a-Transport Equation

The numerical solution of the extended a-transport equation (4.11) is based on a
flux-corrected transport (FCT) algorithm, introduced for one-dimensional problems
in [15] and extended for multiple dimensions in [105]. Besides the challenge of solving
such an advection equation for multiple phases while keeping the interface sharp,
the boundedness of the a-field is of importance. A pure first order upwind method
would lead to a smearing of the interface due to numerical diffusion, while higher
order schemes have the disadvantage that they are unstable and produce numerical
oscillations [34]. The idea of a FCT method is to use a flux limiter formulation of the
problem to maintain a bounded solution. In the case of one-dimensional problems,
a global boundedness constraint can be formulated for the discretization weights,
which is not available in the case of multidimensional problems. Alternatively, the
FCT method introduce local limiting of fluxes in multidimensional problems and for
arbitrary cell shapes. This is achieved by splitting the advective fluxes into a lower
order bounded flux and hence diffusive scheme, and a higher order anti-diffusive
correction [21]. Therewith both the diffusiveness of the upwind scheme and the
instability of the higher order scheme can be eliminated [34], while the solution stays
bounded. This leads to an iterative procedure, where we calculate an intermediate
value of « using the lower order monotonic scheme by upwind interpolation. Then,
this value is corrected with an anti-diffusive flux. Since applying this flux completely
would result in an unstable higher order flux, a correction factor or limiter A is
introduced. Starting from equation (4.11), a rearrangement according to the cell-
centered phase fraction value at the actual time o results in

Oég 1 o, n o.n n
f (4.17)
At

=af— 7 Z (0507 + @20t (1 — a})] .
f

Similar to the splitting of interpolation schemes in equation (4.1), the fluxes of the
a-values of the first part in the second term of equation (4.17) are split into a lower
order bounded part calculated with upwind differencing and a higher order scheme.
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The higher order scheme is indicated with the subscript ho and will be specified
precisely later on. The a-values within the compression term is also provided with a
suitable interpolation scheme, denoted with the subscript ic, which is also clarified
later. This leads to the following expanded formulation

a:r: - O[g |V| Z ;a?,ud + (b;(a?,ho - a}iud) + gbga?,ic(l - a?,ic)] . (418)

Based on this formulation, lets define

o . Jo._n
(I)a,bd = ¢f01f,ud,

o o/ .n n o.n n (419)
(I)(x corr = djf(af,ho - af,ud) + ¢raf,ic(1 - O[f,ic)'

Here, the subscript bd notifies the bounded flux, in our case obtained with an upwind
differencing scheme, and the subscript corr of the second mentioned flux indicates
the anti-diffusive correction flux. This one is defined as the difference between
the a-values calculated with a higher order scheme and the face value obtained by
upwind interpolation, plus the compression flux. Without the surface compression
approach, the definition of the bounded and correction flux would be the same, just
without the compression term. Note, the correction flux is negative in the case of
ingoing flow into a control volume and analogously positive, if the fluid is leaving
the cell. With the next step, the FCT method introduces a limiter A in equation
(4.18), which is locally limiting the fluxes to maintain a bounded solution. Then,
equation (4.18) can be rewritten as

ac - ag ‘V‘ Z a,bd + A (I)?x corr) (420)
In the following, we will describe how we calculate the flux limiter .

Determination of the Limiter with MULES

The limiter formulation we use is MULES, which is short for multidimensional uni-
versal limiter with explicit solution and was introduced by WELLER in [101]. We
mention this method here, since it is originally used in the OpenFOAM solver im-
plementations, we will discuss in detail in Chapter 4.4. As already mentioned above,
the new a”-value shall be calculated as convex combination of an upwind flux and
a higher order correction flux, but with an explicit treatment of the a-values. To
ensure that no new extrema are introduced into the solution after applying the
anti-diffusive fluxes, so-called limiters weight these fluxes. Due to the name of the
method we use, these limiters are denoted as Ay in the following section. Therefore,
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first the local minimal and maximal a-values are calculated for the respective time

Qmin = min(af;, ad),

Omax = max(al, a?),

where o = a$% and af; are all the phase fraction values of the neighbors by face for
the respective control volume. Since the flux-corrected approach aims to bound the

a-values to the interval [a,b] = [0,1], the local extrema are again corrected by the
limits

a?nin = max(a, amin),

ab . = min(b, tmax)-

For all new centered phase fraction values the following condition must be valid now

m1n S O[ < O‘mwx

Inserting equation (4.20) in this condition results in
1) 2
b
Oéfrlin S Oég |V| Z a,bd + )‘M@a corr) S Qmax:

Lets consider the lower (1) and upper (2) limit separately

(1) g Q/IJ( Qmin — + Zq) ,bd < - Z)‘M(I)?x,corra
f
Z)‘Mq)acorr—%( Qmax — & —|—Z<I)

Then, the upper and lower bounds for the face-based limited correction fluxes can
already be calculated. They are defined as

.V
Q . At( min — & +Zq)abd7

- _ v
Q * At( max +Z@

95



Chapter 4. Numerical Solution

QT and Q~ are cell-centered values. Now, they have to fulfill the condition

_Qt < ZAM% corr < Q7. (4.21)

This condition guarantees a bounded solution of the transported phase fraction field
™. The next step is to calculate the inflows and outflows for each CV. Therefore,
we consider incoming and outgoing fluxes of a cell separately. We define the sum of
all incoming and outgoing fluxes in a cell as

Z min(0, 7, .,..) (incoming fluxes),

Z max (0, 7, ., (outgoing fluxes).

Analogously we define the sum of the limited incoming and outgoing fluxes as

St =~ Z min(0, Ay @5, o) (incoming limited fluxes),

o,corT

= Z max(0, Ay P2 ) (outgoing limited fluxes).

In order to fulfill equation (4.21), which means not to create a new maximum or min-
imum, the difference of the sums of all limited outgoing fluxes and limited incoming
fluxes have to be between —Q1 and Q~

—QT <S8 -8t<Q.

If we assume R™ and R~ are cell-centered limiters and replace ST when considering
the lower bound —Q™ and analogously replace S~ when considering the upper bound
()~ , we obtain the two relations

ST —-St>8 —RtPT>-QF,
Q >SS -St>RrR P -S*.

So these relations are true, if we calculate R* by

RT := max {0 min(1, Q—F;;_S)} ,
R~ :=max {0 min(1, W)} .
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Then the MULES limiter is calculated in the way, that this face-based limiter needs
to prevent the actual CV from falling under the minimum value and the neighboring
cells from rising above the maximum value. This gives us a division of the face-based
limiters R* in values from the actual cell and the neighboring cells, resulting in

a,corr =

min[Ay, min(RF, Ry)] for @2 < 0.

a,corr

{min[)\M,min(Rc_,RE)] for @2 >0,
Ay =

The calculation of the limiters is iterative and starts with Ay; = 1 for all faces.
After a predefined number of iterations (N —cor) the algorithm stops and uses these
limiters for the correction, hence for limiting the anti-diffusive fluxes. Therewith,
the new cell-centered phase fraction field values « are calculated for every control
volume of our domain. Since fractional a-values only appear in the vicinity of the
interface, the limiter \j; is only here of importance. Away from the transition
region the value is equal to zero [24]. This results in a complete upwind scheme
for the advected phase fraction field everywhere outside the interface region. Since
the MULES is fundamentally explicit, a strict Courant number limit is necessary as
already mentioned in Section 4.1.2.

Appropriate Interpolation Schemes

Now we still have to take a closer look at the utilized interpolation schemes,
we already mentioned in equation (4.18). Here, we distinguish between three
interpolation schemes, whereby they refer in each case to the entire convective
term. This means, that we use the mentioned scheme to calculate the respective
face value for the whole flux (¢a)s. The scheme for the first convective term
PG a is clear, here a classical upwind interpolation is used as described in Section
4.1.1. For the higher order scheme, indicated by ¢%a% ,,, a van Leer scheme is used
and for the compression part ¢7a’;; (1 —af;.) the so-called interfaceCompression
scheme is applied. Now we will specify the last two in more detail.

To calculate the face value of a representative flux field ¢f, a mixture of the in-
troduced central and upwind interpolation schemes can be chosen, what we denoted
as blended differencing, see equation (4.1). Then we obtain

wf = (1 — /\w)wf,ud + Adﬂ/’f,acﬁ (4.22)

The mentioned discretization schemes differ in the choice of the limiter function. We
choose Ay = Ay for inducing the van Leer scheme introduced in [98]. The symmetric
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van Leer limiter function is defined as

] . . B
Api(r) = T with rlggo Ai(r) = 2.

Here, the argument 7 of the flux limiter function represents the ratio of gradients
on the solution mesh and, according to [48], can be calculated by

4. (Vo) _ 4. (Vo)r _
d-(Vo)s ON — dp
with corresponding flux ¢ and d as defined in Section 4.1.1. The BD scheme together

with a vanLeer limiter belongs to the total variation diminishing (TVD) schemes,
since it is well known that the total variation of the solution decreases monoton-

)

ically in this case. Furthermore, it is second order accurate and bounded. The
representation with cell-centered values then applies [20]

YN —¥p

U = v+ R (L= () (1 = A, (4.23)

where the step function ((¢y) is defined by

[ 1 for ¢y >0,
S(es) = { -1 for ¢y <O.

The second discretization scheme is the so-called interfaceCompression scheme, spe-
cially adapted to the compression term, which we indicate with Ay, = A;.. Here, the
limiter function is calculated by

Nielwp, ) = min (max {1 - max [vI=20p(1 = 6p), V1= 40w (1= ¥n)] 0} 1)

see [53], which is also a bounded limiter scheme. Inserting \;. into equation (4.23),
again leads to the desired interpolation scheme.

In summary, the numerical solution of the a-transport equation includes several
components or steps that aim to provide a stable, accurate and bounded solution
of the new cell-centered phase fraction value . The smearing out of the interface
is prevented by the surface compression approach and the boundedness is ensured
by the numerical solution with MULES. In our case, the a-field has to be bounded
between zero and one, so this approach seems to be recommended and works very
well. Furthermore, MULES is constructed to additionally treat source terms on the
right hand side of the a-transport equation, if this is required. For the calculation
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of the a-sensitivity, this approach is not recommended, since the da-values do
not have to be bounded by two predefined values. How this changes the solution
procedure will be treated in Section 4.3.

Besides the flux-corrected approach, there are very efficient other methods to solve
the advection equation. For example, the piecewise linear interface construction
(PLIC) by VAN WACHEM and SCHOUTEN [99] is based on a geometrical reconstruc-
tion of the interface, which, however, is associated with a higher computational effort
and is impractical for unstructured or arbitrary meshes. Also the compressive in-
terface capturing scheme for arbitrary meshes (CICSAM) by UBBINK [94] is a good
option, which is a high resolution differencing scheme based on the idea of approx-
imating the donor-acceptor flux and using a normalized variable diagram (NVD)
[34]. The method is completely mass conservative, but it has to be mentioned, that
the Courant number limit has to be very strict [34], which can lead to significantly
higher computational costs.

4.2.2 Numerical Solution of the Navier-Stokes Equations

The numerical solution of the incompressible Navier-Stokes Equations is complicated
by the absence of a separate pressure equation [28]. A widely used approach are the
so-called pressure-correction methods, which are utilized to overcome this difficulty.
Here, a temporary velocity field is calculated in a first step, ignoring the pressure
gradient and further source terms. Then, the solution is projected into a space
of divergence-free velocity fields [93]. The idea behind this approach is, that the
pressure-velocity coupling is much stronger than the non-linear convective coupling
for small time steps [58]. Therefore, only the terms containing the velocity u at
the actual time step are considered, the velocity at the old time step, the pressure
term, gravitational forces and the surface tension part are neglected in a first step.
Then, a pressure equation is solved to iteratively calculate the new pressure and
correct the velocity field. Since velocity and pressure equation are solved one after
the other, we also speak of a segregated pressure-based approach. Next, we will
introduce two representatives of such pressure-velocity coupling methods and their
fields of application. The description is manly based on results in [28] and [47].

Pressure-Velocity Coupling

One possible method to calculate the numerical solution of the momentum equation
is the semi-implicit method for pressure linked equations (SIMPLE), introduced
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by Patankar and Spalding in 1972 [66]. The SIMPLE algorithm is an iterative
method and works fine for steady state simulations [28]. If transient problems are
considered, the pressure-implicit with splitting of operators (PISO) algorithm [46],
an extension of the SIMPLE algorithm, is more favorable. Here, an additional
pressure correction equation is solved compared to SIMPLE. Since we want to
solve transient problems, we will focus on PISO in the following, but having in
mind, that we can simplify the procedure to SIMPLE with neglecting the pressure
correction. Within the implementations, this can be controlled by an additional
parameter. The advantage of using an implicit procedure here is, that time step
constraints are often not necessary and therefore these procedures are more efficient
[28]. However, since we mainly consider time-dependent problems, we have to make
sure that the transient solution also satisfies the nonlinear equations at each time
step and therefore the time step must become sufficiently small.

We will now introduce the PISO algorithm first in a general manner, and then
apply it to our specific case. Remember, n is the indicator of the time step. Within
the pressure-velocity loop we now introduce the superscript m, which counts the
number of iterations. They are denoted as outer iterations, while an inner iteration
means here solving a linear system with fixed coefficients in every outer interation
step. Then, m = 0 corresponds to the old time level, for example of the velocity
u°, and after finishing the pressure-velocity loop we obtain the velocity ™ = u™ at
the new time. In general, the discretized and linearized momentum equation from
equation (4.15) can also be written as follows

Au™ = H — Vp™, (4.24)

where A includes the coefficients of the current velocity components and H contains
all other terms, also those which can be written explicitly as functions of u° from
the former time step. Then we can rearrange the above equation as follows

m_ﬂ_l m
u™ =~ AVp. (4.25)

From this equation we calculate a momentum predictor, which means that we cal-
culate a velocity field without the influence of the pressure by

wo= "1 (4.26)

We correct this predicted velocity v* iteratively with the help of the pressure equa-
tion. Therefore, our velocity field has to fulfill also the continuity equation. When
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applying the divergence to equation (4.25), we obtain

1
Voun=V-u—V-[=vpm).

Since we assume a divergence free velocity field, hence V - u = 0 at the end of the
iteration loop, we can set V - u™ = 0 and the equation simplifies to

V-u"=V- (1me) . (4.27)
A

This is a Poisson equation for the pressure, called pressure equation, and provides
a velocity fulfilling the continuity equation. We have to solve this equation for the
pressure p”*, while we take the predicted velocity u*, calculated in a step before.
Afterwards, the velocity field also needs to be corrected, which is done using
equation (4.25) in an explicit manner. Then, the PISO loop iterates over solving
the pressure equation (4.27) and correcting the velocity field with equation (4.25)
until a predefined number of correction steps N, is reached.

Starting from equation (4.15), we will now formulate A and H for our problem.
For the calculation of the momentum predictor u*, we will first consider only the
temporal, viscous and advective terms; the pressure, surface tension and gravity
terms are neglected at the moment. Hence, we start with the following equation

n n o o n n o o T
phut — phu U e WY — U . ul —u
r PAt r P|V|+pr¢fuf:Zufo N|d| P+Z“fsf( N|d| P) :
f f f
(4.28)

Note, as we have seen in Section 2.4.1, the density and viscosity are dependent on
the phase fraction field o within the two-phase flow setting. Since the a-transport
equation is solved for the new time step before solving the momentum equation in
the numerical procedure, density and viscosity can be already updated with the a-
value from the new time step, which is actually done in our numerical investigations.
Another point to mention is, that the nonlinear differential equations were linearized
before discretization, cf. (4.14). Then we adapt the indices and define

m

R 3 S s, 1 R

T m n

A= A7 V| + proruf — ufoT. (4.29)
! f

In A we find all terms concerning the actual time step. Remember, that A can also
be divided in coefficients of the owner and the neighboring cells, as seen in equation
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(4.16). We set

A=apup + Z anuy;. (4.30)
N

How ap and an are exactly defined is described in [24]. For a better understanding
of the following steps we will note, that ap and ay are each multiplied with the
reciprocal of |V|, so we can omit this factor in the following. We now want to
rearrange equation (4.28) to the actual velocity at the current cell center u3. Then
we obtain

m PPUP ufy
apup = At |V| Zﬂfsf ( > ZQN“N

)
<
5
H
|

(4.31)

with

H = P?ZP \V\Z“ < ) ZaNuN (4.32)

H contains the terms calculated at the old time as well as the convective and
diffusion terms evaluated at all nearest neighboring cells. Therefore, H can already
be calculated explicitly. The notation of terms with A and H is auxiliary to match
with the OpenFOAM implementation of the PISO algorithm, see Appendix B.2 for
more details.

The next step is to include the gravitational and the surface tension term on the
right hand side of equation (4.31), to calculate the predicted velocity field u}. This
results in

wh = " (gr | (os")p(Va™)p

ap ap ap

For numerical stability reasons, the flux of u}, is calculated from this, i.e. the terms
are interpolated to the cell faces and multiplied with the face areas. Then we obtain

« H 1 n 1 N n o .n
o =Sy (ap)f " ()fsf (gl + (ap)f o5, N B )

ap
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With this flux, the pressure equation (4.27) is solved to obtain p™

(alp>f Sy (Vp™)s

The face value of the pressure gradient is evaluated as in equation (4.15) by the
sum of the pressure on the cell faces. Equation (4.34) can be solved explicitly
for p™, using a numerical method appropriate for elliptic equations. The resulting
linear system can be solved efficiently for example with the preconditioned conjugate
gradient (PCG) method, see [77, 28] for more details. These calculations are called
the inner iterations, while iterating over the coupling terms, we call the PISO loop,
is denoted as outer iteration. The pressure serves in the case of incompressible flows
as an operator, which projects the not divergence-free velocity onto a divergence-
free velocity field, hence it ensures continuity. When the PISO loop is finished, the

Vg5 =V- (4.34)

velocity is corrected with the right pressure gradient and a predicted velocity field
as in equation (4.25) by

o7 =0~ (ar) 51 @ 439

ap
Altogether, we solved the discretized problem by constructing a predicted velocity
field and then correcting it using PISO to time advance the pressure and velocity
fields. We call equation (4.26) the predictor step and equation (4.27) the corrector
step.

To match the description we chose to describe the general PISO algorithm, solving
the predictor equation (4.26) and the pressure equation (4.27), we end up with the
following formulation for A and H

A= ap,
H=H+(p"g)p+ (ox")p(Va")p.

Remember, A includes the coefficients of the current velocity components, but in
this case only for the considered control volume. Hence A is a diagonal matrix.
All other terms are collected in H, also those which can be written explicitly as
functions of u° from the former time step and terms calculated with values from
neighboring cells. Hence, H is a matrix also with off-diagonal entries.

For the sake of completeness we note, that we will mention an algorithm called
PIMPLE when we present the numerical results with OpenFOAM in Chapter 5.4.
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PIMPLE is a combination of SIMPLE and PISO. Depending on the setting of a
certain value, the corresponding algorithm is selected. Since we consider mainly
transient problems, we will always use the PISO algorithm described above.

4.3 Discretization and Numerical Solution of the
Sensitivity Equations

For the implementation of the sensitivity equations we follow the Optimize-then-
Discretize approach. Here, the continuous sensitivity equations are discretized
with suitable numerical tools, instead of deriving the discrete problem. Although
this leads to inexact derivatives of the sensitivity equations, we can reach a good
consistency with the derivatives of the continuous problem with the appropriate
choice of discretization procedures. In our case, a simultaneous solving of state and
sensitivity equations is pursued. This means, in every time step, the sensitivity
equations are solved right after calculating the state variables. This will ensure
that discrete sensitivities are consistent with the continuous ones. Furthermore,
we will use similar discretization and interpolation schemes for the various terms.
However, at some points there are differences between solving the state equations
and the sensitivity equations numerically, which we will discuss in more detail below.

Analogously to the discretized primal equation, the discretized sensitivity equation
of the a-transport equation has the following form

da —dal 1 o n 1 os mn

Since we use the velocity field of the old time step in the discretized primal advection
equation, see (4.11), we here also use the old velocity sensitivity du® and the old
velocity u. The state variable « is used from the new time step. After rearranging
this equation, we get an implicit formulation for da,

n 6ag 1 o n 1 o n
f !

o 1 o n 1 o n
f f
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The numerical solution of this equation differs from the solution of the primal
a-transport equation. Here, we do not use the flux-corrected transport algorithm
MULES, we introduced in Section 4.2.1. The reason is, that the sensitivities da do
not need to be corrected to that effect, that they have to be bounded between 0
and 1. Quite the opposite is the case, we expect to get high values for da at the
interface. Instead, the discretized da-transport equation is solved straightforward
with an upwind scheme and the symmetric Gauss-Seidel algorithm as smoother.
Details to the Gauss-Seidel algorithm can be found for example in [77], Chapter 4.

For the solution of the differentiated momentum and continuity equation, we
again choose the PISO algorithm, since we also want to calculate two variables, the
sensitivity of the velocity du and the sensitivity of the pressure dp. Here, we have
to be particularly careful with the surface tension term. A poor estimate of the
curvature, and hence the surface tension term, can often cause unphysical velocities
around the interface [7]. This in turn leads to very high du values at the interface
and a convergence to the difference quotient is questionable.

The PISO method is simultaneously used as for the primal equations due to
consistency reasons and can be modified with a few steps to match the sensitiv-
ity equations. The disctretized version of the sensitivity equations of momentum
and continuity can be derived from the conservative form, see the sensitivity sys-
tem (3.87). In this formulation, the control term originating from the sensitivity
approach is added as source term on the right hand side. Simultaneously to the
Laplacian term within the primal equation, we use for the discretized momentum
sensitivity equation the following representation

aAu=V - [a(Vu+Vu')] =V (aVu)+ V- (aVu").

Then, the integral form of the momentum and continuity sensitivity equations is

/p’@t(éau) dv + /5‘t(p5u) dv + /(p5u®u) v ds+ /(pu@éu) v ds
1% \%

ov oV

+/p’ (5au®u)~1/dsf/(,chSu)oudsf/(pV(SuT)'yds

ov ov ov
- /(u’5aVu) cvds — /(,u’(;aVuT) ‘v ds
ov ov
= —/Vép dv + /p’5ozg dv — /(auchonoz) cvds + /cchSoz dv
1% 1% ov v
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+ /(aVu) vds+ [ (@Vu')-v ds,
ov

V -du dv=0.

!
/

Here we used for the first curvature term the fact, that the curvature is the negative
divergence of the interface normal, see equation (3.84). Moreover, the Laplacian
within the diffusion term was replaced by the deformation tensor within this repre-
sentation. With the discrete operators presented in Section 4.1.3 we then obtain

/(Snn_(soo " Su™ — 02 0ul
pp(dapulp aPuP)|V|+pP Up — Pp uP|V|_’_Zp‘/f§a}L¢fu}L

At At 7
+Zp?5’f - duuy + Zp?Sf “upou’y — Zu’fo S0af(Vu™)y
f f !
=Y WSy (Vour)p =Yy -6 (V)| =Y upSy - (Vou©)f
! ! !
+H(Vop")plV] = (p'9)pbap|V]+ ) _(ovréa™) Sy - (Va);
f
—(ok™)p(Voa™)p|V| — Z afSy(Vu")y — Za?Sf(Vu”)JI =0,
f !
> 8- duf =0.
f

Here we can see that the discrete version of the sensitivity equations are similar to the
primal ones, with some additional advection terms. Since we formulate all additional
terms in an explicit manner, the main procedure of PISO can be transferred and the
additional terms can be treated as source terms. So simultaneously, the first step is
to define only the terms containing the velocity sensitivity du in A. We obtain

n n
A =LER Y| S sy duug + Y 7S - jou
/ ! (4.39)
=Y Sy - (Véu")y.
f
All other terms concerning the primal temporal, convective and diffusion terms are
collected in H. Here, also the control term enters the expression, since this also
results from the diffusion term. Furthermore, the neighboring terms stemming from
splitting A into coeflicients of the owner and neighboring cells as in (4.30), are added
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to H. This results in

_PpOup pp(dapup — dapup) L onom
H:==E2L V] - ~ V|- zf:pf(safgsz (4.40)
+ > pSp Sl (Vut) g+ Sy - 6 (Vur) =Y ppSy - (Voul)f
f f f
Y aFSHVU) 4> S (Vut) [ =) anuR.
f f N

To perform PISO, the source terms are again added to H, which leads to
A:=ap, (4.41)

1
H:=H+ (p'g)pda’p — Gl Z(ou}éa")fo (Va™) s + (o) p(Véa™)p. (4.42)
f

4.4 Software

Solving the governing equations, in particular the Navier-Stokes equations, requires
a careful and well elaborated numerical approach for correct and reliable simulation
results. For this purpose we use the free, open source C++ program library
OpenFOAM, which is implemented for the numerical simulation of continuum
mechanical transport problems. Besides the standard use as CFD tool for the
solution of flow problems, other physical areas are also covered such as structural
mechanics, electromagnetism, combustion and heat conduction. OpenFOAM,
where FOAM stands for Field Operation And Manipulation, offers more than
hundred solvers and numerous custom extensions exist. For the discretization of
the PDEs three different approaches are available, which are the Finite Volume
Method, the Finite Element Method and the Finite Difference Method. Turbulent
flow behavior can be simulated by means of Large Eddy Simulation, Reynolds
Averaged Navier Stokes modeling or Direct Numerical Simulation (DNS).

OpenFOAM was originally developed and implemented by Henry Weller and
Hrvoje Jasak at the Imperial College in London, see e.g., [47]. The open source
character and a pretty active and smart developer community in the scientific
world as well as in the industry are very beneficial. Just as helpful are the various
inherent features like automatic dimension control and strong tools for pre- and
post-processing. Meanwhile, there exist three development branches of Open-
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FOAM with slightly different core areas. All investigations and implementations in
this work are based on the OpenFOAM-6 version from the OpenFOAM Foundation.

In this thesis we are especially interested in the solver family interFoam, based
upon the algebraic volume of fluid method. Associated solvers are designed for
two-phase flow of incompressible fluids and conduce to the capturing and handling
of a moving contact line on a fixed mesh. An extension to the multiphase case
is available. First ideas and implementations of this solver family go back to
Onno Ubbink in 1997 [94] and were extended by Henrik Rusche in 2002 [76]. The
algebraic VOF solver interFoam is widely used in industry and for scientific issues.
Implementation details about interFoam can be found in Appendix B. In addition
to the advantageous reasons already mentioned, the software was also chosen
because of the affiliation to the collaborative research center 1194. A common
software is here mandatory to cooperate and therefore, OpenFOAM was used
as cross-project software platform for simulation and analysis of various wetting
phenomena. As example, we refer to the recent studies about the well-known
capillary rise benchmark [35].

Besides OpenFOAM, Matlab is also an an important software for this thesis.
While OpenFOAM provides the numerical simulation of the flow processes, Matlab
is mainly used for the optimization procedures. We use Matlab version R2019a. The
connection between OpenFOAM and Matlab is mainly done via unix commands,
called in matlab to run OpenFOAM from the bash terminal. However, Matlab is
often also used the other way around for post-processing of OpenFOAM simulations
or for visualizing complex correlations. This is advantageous because OpenFOAM
does not have its own graphical user interface. Although ParaView is mainly used
to display the simulation results, Matlab is applied if further calculations have to be
made with the simulation results that go beyond OpenFOAM’s own post-processing
tools.

4.4.1 Simulation Characteristics with OpenFOAM

Due to numerical limitations, several adjustments of the presented model equations
are necessary for the implementation, which will discussed for the OpenFOAM solver
interFoam in this section.
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Regarding the a-transport equation

The VOF approach, the interFoam solver is based on, does not exactly rely on the
original VOF method by Hirt and Nichols [42], because the velocity of the liquid
is not assumed to be equal to the mixed velocity [53]. With this assumption, the
surface compression approach is derived, where an additional compression term
supplements the a-transport equation. Within this compression term, the relative
velocity wu, appears, which is not given by default, because there is only one velocity
u assumed for the whole domain. The face flux velocity within the transition region
Of

Uy) s = min | ¢y -
(ur)s ( ‘wf wfm)

where the coefficient ¢, weights the compression flux [53]. Within our numerical
calculations we always set ¢, = 1. Then, we are able to calculate ¢, of the respective

is then in interFoam approximated by the term

time step with

Or = (ur)s - Uy, (4.43)

employing vy, which is introduced below in (4.44).

Regarding the momentum equation

To solve the momentum equation we use a coupling of velocity and pressure, which
does not guarantee a divergence-free velocity field all along. Therefore, we have to
use the full momentum equation (2.7), with A = —($)p and S = §(Vu + Vu').
Then we obtain

2
PO+ V- (pu@w) + V- (GuV -ul) = V- (u(Vu +Vu')) = =Vp + f.

()

To match the implementations in interFoam, the diffusion term is further converted
in the following form

(4) = V- GV ul) = V- (uVu) ~ V- (47u)

= —V-(uVu)-V- [u(VuT—gv-uI)]

— V- (uVu) - V- [M (vuT - ;tr(VuT)Iﬂ .
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In the last step we used, that for an arbitrary vector a applies
V-a=tr(Va)=tr(Va').

Note, the same adaption is also applied to the control term of the momentum sen-
sitivity equation.

Regarding the curvature

The discrete curvature was defined as the negative divergence of the face unit normal
flux, which we denote with v;. In the implementations, a stabilization factor dx
is used within the normalization of the phase fraction gradient. We denote the
stabilized normal with 7y and the stabilized curvature with k. Then it holds

(Va)y

7|(Voz)f| o Sy, (4.44)

F;:fVﬁf, with ﬁf:

where Sy is the face area vector again. The stabilization factor 0 accounts for the
nonuniformity of the grid, where N is the number of computational cells [20]. It is

defined as
oy = —_ with e=10"*%
N(ZNW /3 w1 g = .
N

Regarding the Pressure Term

Instead of the pressure p, a modified version p,, is considered, which also includes
a hydrostatic term

Pm =P —pg- <.

This formulation goes back to RUSCHE [76] and aims to enable a more efficient nu-
merical treatment due to removing possibly steep gradients arising from hydrostatic
effects. To insert the modified pressure into the momentum equation, we rearrange
the equation and take the gradient

P=DpPmt+pg- T
Vp =Vpm +pg+g-xVp.
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For the momentum equation (4.12) it then holds

Opu+V - (pu@u) = —(Vpm +pg+g-2Vp) + V- (u(Vu+ Vu')) + pg + okVa
& Opu+V-(puRu) = —Vpm —g-xVp+ V- (u(Vu+Vu')) + okVa.

Note, that this modification does not change the numerical solution procedure we
presented in Section 4.2.2.

Regarding the Contact Angle Boundary Condition

Boundary conditions are used in continuum mechanics models also to describe the
hydrodynamic properties in the immediate vicinity of the three-phase contact line.
In our case, the contact angle comes as boundary condition of the phase fraction
field into play, regardless of whether it is a static or a dynamic one. As we have seen
in Chapter 2.6, we use for example the Kistler and Hoffmann model to describe the
dynamic contact angle ;. Within the interFoam solver family, prescribed contact
angles are introduced by correcting the interface normal vp at the corresponding
boundary. The corrected interface normal is denoted by or and the normal of the
substrate is denoted as vg. Then, the correction is as follows [5]

vr —vs(vr - vs)
|I/1'* — I/S(VF . Vs)|

Urls := vscos(b4) + sin(64).

This corrected interface normal is subsequently used to calculated new curvature
values in boundary cells adjacent to the interface. And in turn, the altered
curvature is taken into account when calculating the momentum equation. Inside
the domain, the correction has no impact on the normal of the interface, it holds
Urlo = vp. Note, that this correction is also performed, if we have a prescribed
static contact angle or a dynamic contact angle calculated with another model
approach.

Another crucial factor when calculating the dynamic contact angle is the contact
line velocity u . This can be done in different ways. We decided to take the velocity
from the center of the cells at the contact line, as recommended in [33]. An advantage
here is, that this choice also enables non-axisymmetric simulations and can be easily
implemented.
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4.4.2 Implementation of Sensitivity Solver interSensFoam

The discretization and numerical solution procedures of the sensitivity equations of
the problem were already discussed in Section 4.3 as well as some implementation
details of interFoam right before. Now we give a short insight, how the interSens-
Foam solver is adapted to solve the primal and sensitivity equations with respect to
a specific control, the liquid viscosity p;. The section is easier to follow if the solver
is already known. Further details on the solver can be found in Appendix B.2.

As we stated before, we discretize and implement the sensitivity system in a
similar way to the original PDE system. Then, the solution of the sensitivity
equations occurs directly after solving the primal equations in every time step.
Similar to the original interFoam solver, the a-transport equation and hence the
da-sensitivity equation are solved separately from the Navier-Stokes equations. The
distribution of the volume fraction field is calculated ahead of the PISO algorithm,
which calculates the actual velocity and pressure fields [53]. All files which are
relevant for calculating da are stored in the folder with the name VOF, concerning
the volume of fluid representation of the problem. Here, the flux calculation and
main solution steps are implemented within a header file called dAlphaEqgn.H.
The files for solving the sensitivities du and dp can be found in the main folder
interSensFoam. While the temporal, the convective and the diffusive terms of
the primal momentum equation are written in a file with the name UEqn.H, the
differentiated terms for solving dU are contained in a modified version, which is
denoted as dUEqn.H. The calculation of the momentum predictor flux J¢* and
the PISO loop itself are implemented within the file dPEqn.H, where also the
source terms are added. Depending on the control ¢, further terms enter the
du-dp-equation, since we also need to take the derivative of the states with respect
to the control into account. In our case, we added a modified version of the term
from equation (3.83) on the left hand side of the momentum sensitivity equation,
since the considered control, the liquid viscosity, originates from the diffusion term
of the primal momentum equation. This control term therefore enters in dUEqn.H
as additional source term. For another kind of control, a different term would have
to be used at this place.

We summarized the ingredients of the primal momentum equation and their
derivatives in Table 4.1. Here, we divided the equation into the terms contained
in dUEqn.H and those contained in dPEqn.H, always presented with the corre-
sponding terms from the primal equations. Note, that the control term does not
have a counterpart in the original momentum equation. The description is on a
formal level, code details and OpenFOAM specific notations of the interSensFoam
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solver can be found in Appendix B.

Primal term Derivative
d(p ) p' Oy(bor u)
+ Oi(p du)
+V-(pu®u) + V- (p dau®u)
+ V- (pdu®u)
+ V- (pu®du)
UEqu.H — V- (u Vu) - V- (i da Vu)
— V- (n Véu)
— V- (uVul) — V- (i SaVu')
— V- (pVouh)
+V-(3puV-ul) + V(34 baV-ul)
+V-(3pV-oul
— V- (a Vu)
— V- (aVu)'
— Vpm — Vpm
pEqu! |8 XVp —g-xp' Voa dPEqn.H
+o0 Kk Va — 0o V- (v da) Va
+ o k Véa

Table 4.1. Primal system and its derivatives in interSensFoam.

Now we present the main characteristics of interSensFoam and summarize
the solution procedure in Algorithm 4.1 at the end of the chapter. The main
steps are implemented in a file with the name interSensFoam.C. Here, also the
header files mentioned above are included at appropriate places. As basis, we take
algorithm 1 from [53], supplemented with sensitivity calculations and ideas from [58].

After introducing the initial fields together with appropriate boundary conditions
(step 1) and calculating the time step (step 2) as well as the actual viscosity
and density field (step 3) the main solution cycling starts with solving the
a-transport equation in step 4. The corresponding files are alphaEqnSubCycle.H
and alphaEqn.H. Here, a sub cycling within the time step is possible. That means,
that the a-value is calculated for N sup sub time steps. The number Ny sy is
chosen by the user, but always set equal to one in our case. A compression flux
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is created and solved with MULES, we already described in detail in Section
4.2.1. Updating the a-fluxes, the curvature and the density with the new a-value
also belongs to solving the a-transport equation. Back in the main script, a
current viscosity field is calculated in step 5. Then the solution of the momentum
and continuity equation is prepared in step 6 with the construction of A and
‘H within the UEqn.H file. See Section 4.2.2 for more details. The PISO loop
itself is performed in the file pEqn.H, which corresponds to step 7. The number
of correction steps is defined through the user by Ngop.. Within the PISO loop,
the first step is to calculate a flux predictor ¢* and use this not divergence-free
flux next to solve the pressure equation. The resulting intermediate pressure is
taken to correct the velocity field, which can also be understood as a projection
of u* to a divergence-free velocity field. Of course, we also have to update the
boundary field to agree with the required boundary conditions. Right after solving
the primal state equations, the sensitivity equations are solved. Again we start
with the da-transport equation in step 8. For the calculation of d«, the mentioned
flux is calculated while using an upwind differencing scheme for the face-centered
values. Then, the Gauss-Seidel algorithm is performed as linear equation solver.
No further limiter algorithm is applied, compare to Section 4.3. In contrast, the
differentiated momentum and continuity equation are solves analogously to the
primal equations with the PISO algorithm. Therefore, the operators A and H are
again constructed in step 9, before the actual PISO loops starts in step 10. Here,
the same sub steps are performed as for the primal equations, the difference is in
the definition of A and H, see Section 4.3. Then we calculated all required variables
for the current time step. The new solver iteration starts again with calculat-
ing the new time step at step 2, until the predefined end time is reached, see step 11.

A section before, some solver adaptions were presented to connect the discretized
equations and numerical solution procedures with the source code implemented in
OpenFOAM. Some of the interFoam specific adaptions were also taken for the im-
plementation of interSensFoam. In addition to the stabilized curvature, a modified
pressure sensitivity is considered. Within the implementation, this leads to a slightly
different term with the gravitational acceleration. The formal derivative, as it is then
also implemented in interSensFoam, can be found in Table 4.1. Exactly as in the
original interFoam implementation, the additional terms for diffusion are consid-
ered, which are supposed to represent a possibly not divergence-free velocity field
within the PISO loop. Further details of implementation, for example the meaning
and content of the various other header files in interSensFoam.C, can be found in a
walk through the code in Appendix B.2.
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Algorithm 4.1 Solution procedure of sensitivity solver interSensFoam

1:
2:

11:

Set initial and boundary conditions for u, p, @ and the sensitivity fields du, ép, da
Set time step. If time step is variable, calculate At with (4.4) in accordance to
the CFL condition (4.3)

: Update p and p with actual phase fraction field « according to (2.17) and (2.18)
: Solve a-transport equation for o

a) Calculate compression flux ¢, with equation (4.

Calcul ion fl ith ion (4.43

(b) Perform a-correction N, _cop times
(i) Define or update flux &, = @4 g + Py, corr from equation (4.19)
(if) Solve equation (4.17) explicitly with MULES

(c) Calculate p"¢™ with new a”-value

(d) Calculate 7} and the curvature i", see equation (4.44)

(e) Determine density p™ with equation (2.17)

: Correct viscosity with equation (2.18)
: Construct A and H with equations (4.29) and (4.32)
: Perform PISO loop N + 1 times to calculate state variables v and p

(a) Solve the flux predictor ¢* with equation (4.33)
(b) Solve the pressure equation with equation (4.34)
(c) Correct the velocity with new pressure field, see equation (4.35)

(d) Update boundary conditions

: Solve da-sensitivity equation (4.37) for da with upwind scheme

(a) Define flux d¢°a™ + ¢™da™
(b) perform Gauss-Seidel algorithm with upwind scheme

(c) Calculate 0¢™ with new da™

: Construct A and H for sensitivities with equations (4.29) and (4.32)
10:

Perform PISO loop N.o + 1 times to calculate sensitivities du and dp

(a) Solve the flux predictor d¢* as in equation (4.33)

(b) Solve the pressure equation as in equation (4.34)

(c¢) Correct the velocity sensitivity with new pressure sensitivity as in (4.35)
(d) Update boundary conditions for sensitivity fields

Go to step (2) or finish calculation with predefined time step
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Optimization of Doctor Blading

Now we come to an application of the described problem. We consider a wetting
process that is motivated by gravure printing. Gravure printing is a comparatively
complex and expensive process, but good replicability and high printing velocities
are characteristic and a high printing accuracy can be achieved. It is used, for
example to print stamps and banknotes, to print on special substrates such as foil
or metal or even to print electronically conductive layers. In a gravure printing
process, see Figure 5.1, a gravure cylinder is rotating through a reservoir filled with
ink, where the engraved surface is completely wetted with the ink. Slightly above,
a sharp steel band, called a doctor blade, is clamped into a holder and pressed onto
the printing form at a specific angle. Through the rotating movement, the doctor
blade is pulled over the surface and removes the excessive ink from the cylinder
before it is printed onto a substrate. This sub process is essential for good printing
results and part of every printing or coating task.

The material, shape and position of the doctor blade are mainly based on expert
knowledge and often, a lot of experiments are necessary to find the right doctor
blade for a particular application. Hence, we want to use various optimization
techniques for optimizing the doctor blading process to achieve better printing re-
sults. This means for example to reducing print failures like air inclusions, fluid
accumulations or particles which arise through material abrasion, to achieve faster
printing rates and preserving a uniform lubrication film on the printing form. We
aim to accomplish these goals through parameter identification, where we search
feasible parameter settings in an optimal way, and by optimizing geometrical issues
concerning the doctor blade itself.
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Impression roller

ﬁavure cylinder

Figure 5.1. Full gravure printing process with zoom to the doctor blade.

In Section 5.1, we describe the physical aspects of such a printing process, es-
pecially of the doctor blading sub process. Then, we present the mathematical
abstraction as a test case in Section 5.2. On the one hand, this section contains the
geometrical setup and different initial scenarios for the fluid. On the other hand,
a validation case is presented in Section 5.2, where general parameter settings and
solver adjustments are discussed and the simulation results are compared to some
experimental results. Moreover, central optimization questions are pointed out in
Subsection 5.2.2, which provide the basis for the formulation of the objective func-
tions and control variables of the respective optimization problems. The first class of
optimization problems we consider are parameter identification problems. In these
kind of problems the control of the problem is a material parameter, that we want
to determine for a desired state. The second class of optimization tasks concerns
the geometry of the doctor blade, in which also mesh transformations appear. In
Section 5.3, the complete optimization framework with Matlab and OpenFOAM is
described, where the optimization algorithm itself, a classical Gauss-Newton algo-
rithm, is run with Matlab and a transient simulation is executed in OpenFOAM
therein. Finally, in Section 5.4, we present and discuss numerical results for the
optimization problems we introduced before. This is divided into the optimization
of the liquid viscosity in Subsection 5.4.1, the optimization of the gap height in
Subsection 5.4.2 and the optimization of the vorticity in Subsection 5.4.3.
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5.1 Physics of the System

In this subsection we take closer look to the physical background of the doctor
blading sub process and its influencing factors. Shape and material of the doctor
blade and the gravure cylinder are crucial variables of the doctor blading process.
We start with describing the gravure cylinder, which has a layered structure.
Two layers of copper are electroplated onto a steel core, where the upper layer is
machinable copper so that the print design can be engraved. On the engraving,
the cylinder is thinly coated with chrome [51]. The doctor blade is typically a
thin metal band of thickness dpp and an extension in the length of the cylinder.
Depending on the application, other materials are also commonly used like plastic
or rubber. In our application two types of materials are considered. For most of
the investigations, a simple steel doctor blade is assumed. But for the comparison
with some experimental results in Section 5.2, a transparent doctor blade made of
plexiglass is considered, providing multiple viewpoints of the intriguing occurences
around it. Of special importance is also the tip of the doctor blade, since the shape
influences the behavior of the printing fluid. A new doctor blade has a rounded
tip, which deforms in practical use, due to a grinding-in process that sharpens the
doctor blade. The resulting shape depends on the contact pressure, which is the
pressure the doctor blade is pressed against the printing form surface with, and the
inclination angle 6 by which the doctor blade is deflected from vertical [11]. In our
further investigations, we use the inclination angle 6 as well as the gap height dggy
between the tip of the doctor blade and the printing form as variable geometry
parameter.

In addition, the printing ink is an important influencing factor in gravure printing.
The fluid must be applied to engraved cups in the cylinder surface, so the viscosity
of the ink should be very low. In literature, viscosities of ; = 0.05...0.2 Pa-s are
recommended for the gravure printing process. For the design of the test case and
the optimization framework, the simplest case is considered, a Newtonian fluid that
does not contain any particles or surfactants. Different fluids fulfill this demand,
primarily simple water. Another approximately Newtonian fluid that has proven
useful in experimental studies is silicone oil. Material values for density, viscosity
and surface tension of these two fluids can be found in Table 5.1. A surrounding
temperature of 25 °C is assumed. The material properties of the gaseous phase are
also given, which corresponds to normal air for now.
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Material Property Unit Water Silicone Oil Air
Density p [g m~3] 997 963 1
Kinematic viscosity ¥~ [m? s7!'] 1-107¢ 1-1074 1.48-107°
Surface tension o [N m™] 0.07 0.02

Table 5.1. Material properties of air, water and silicone oil [11].

Note, the surface tension of water and silicon oil refers to the contact with air
in Table 5.1. Furthermore, we only denoted values for the kinematic viscosity al-
though we also use the dynamic viscosity within the theoretical and experimental
investigations. The following relation applies as usual

p="79-p.

Another important factor of influence is the particular contact angle, that every
fluid has when it comes in contact with a solid surface. For our investigations we
use a mean static contact angle 6. of 62.09°(+1.58°) for a water droplet, sitting on
a gravure cylinder, see Figure 5.2. This macroscopic contact angle was measured
by JULIAN SCHAFER, a former colleague within the CRC 1194. The mean static

Figure 5.2. Example for static contact angle of a water droplet.

contact of silicone oil on a gravure cylinder is much smaller with around 25°(£5°).
Unfortunately, this value was not measured during the experimental investigations.
Luckily, there are a lot of different silicone oils available, all with slightly different
values for the static contact angle. So we assume that we find a silicone oil, which
fulfills this declaration. Furthermore, due to the dominant inertial forces of silicone
oil and the application of a dynamic contact angle model, where the contact angle
has a certain parameter range in which it can be adjusted, the inexact value of this
angle can be leveled out. The advancing and receding contact angles of silicone oil
are also necessary for the simulation with a dynamic contact angle. These contact
angles could not be measured with the existing measurement methods as well, but
the choice of plus and minus ten degree is quite realistic, which leads to an advancing
contact angle of §, = 35° and a receding contact angle of 6, = 15°.
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5.2. The Doctor Blading Test Case

5.2 The Doctor Blading Test Case

In a first step, just a small vicinity around the tip of the doctor blade is simulated.
For this purpose we consider the following geometric setup, here for the 2D case.

N
Fout

FD

outleti—

D —_—
F(:yl Ucyl

Figure 5.3. Geometry of doctor blading test case and velocity boundary conditions.

The domain has an expansion of 1 mm in x-direction, 0.5 mm in y-direction and
also 1 mm in z-direction, when we consider the three dimensional case. The outline
of the doctor blade also belongs to the outer boundary of the domain. The doctor
blade is inclined with a specific angle # and the lower wall has the tangential
velocity ey When the fluid has passed through the gap between the tip of the
doctor blade and the lower wall, it flows out of the domain on the right border
'Y .. There we have a Neumann boundary condition for the velocity. At the left,
the upper and the lower boundary, we have Dirichlet boundary conditions for wu.
Though, we differ between homogeneous Dirichlet boundary conditions at I'” and
3,1- Note that the homogeneous BCs correspond to a no-slip
boundary condition, which is valid for the left border and the upper end of the
domain. The inhomogeneous Dirichlet condition at the lower wall I‘gﬂ represents
the velocity of the rotating gravure cylinder. The slightly curved surface is thereby
approximated by a plain interface. This is acceptable since the diameter of the
gravure cylinder is with around 20 cm much larger than the considered extension of
the domain. At the surface or outline of the doctor blade, a Navier-slip boundary
conditions is applied to the velocity, which issuing this boundary is denoted by
I'NS. In the following, we differentiate between two initial scenarios for the fluid.

inhomogeneous at I'

In a first scenario, Figure 5.4, we assume an ink reservoir in front of the doctor
blade, where a film has already been formed on the cylinder surface. The initial film
only approximates the actual film, so a short period of time must elapse before a
steady state is reached with this scenario and a uniform lubrication film is formed.
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Figure 5.4. Szenario 1. Figure 5.5. Szenario 2.

On the left side of the doctor blade is enough ink, that the steady state can be
maintained for a while. In this scenario, the behavior of the fluid within the ink
reservoir and the film thickness behind the doctor blade is primarily of interest.
In the second scenario, Figure 5.5, a droplet is bladed with no initial film behind
the doctor blade. This case is more dynamic because less fluid is available. Here,
the focus is on the three phase contact between the droplet, the air and the lower
wall as well as on the behavior of the fluid on the doctor blade’s surface inside the
gap between the tip of the doctor blade and the moving wall. This case is more
interesting in three dimensions and the basis for the validation with experimental
data, we present in the next section.

5.2.1 Validation with Experimental Data

To compare and validate our simulation results with experimental data, a test stand
was build under the scope of the Collaborative Research Centre 1194. A detailed
description of the test stand and the resulting experimental outcomes can be
found in the dissertation of THORTEN BITsCH [11] and the common paper [12]. In
close cooperation, an experimentally and numerically suitable setup was developed
and a good agreement could be reached. Some phenomena, observed for the first
time in the experiments, could be reproduced within the simulations. We describe
the setup, the parameter and solver adjustments and main outcomes in the following.

Scenario 2, see Figure 5.5, forms the basis of this investigation, where a three
dimensional simulation is compared to movies obtained from experiments. The
inclination angle of the doctor blade is set to 8 = 25°. That corresponds to an
angle of 65° between the doctor blade and the cylinder surface, which is also used
in the experiments. We neglect the deflection of the doctor blade and the resulting
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5.2. The Doctor Blading Test Case

reduction of the blade angle, which can occur due to contact pressure [11]. The
cylinder has a velocity of uey = 0.115 m s~!. This value occurs, if a gravure
cylinder of 22 cm diameter is operated with 10 rotations per minute. For the fluid,
a silicone oil with a viscosity of ¥ = 100 ¢St is used. Further material parameters
can be taken from Table 5.1. The domain has an outer extension of 1.1 x 0.4 x 0.8

cm. The start configuration of the simulation is shown in Figure 5.6, where the

droplet is sitting right in front of the doctor blade.

Figure 5.6. Different views of the 3D droplet simulation.

The mesh is generated with a block structure, where the domain is subdivided
in five blocks, see the blue numerary in Figure 5.7. In addition, the red numerary
indicates the label of the corners. The number of mesh cells is 372000 and the block
structure induces hexagonal, more or less orthogonal cells, see Figure 5.8. This
corresponds to 130 cells in z-direction, 55 cells in y-direction in front of the doctor
blade, 5 cells within the gap and 25 cells behind the doctor blade, the latter two also
in y-direction, as well as 80 cells in z-direction. The size of the cells varies slightly,
since a grading of the cells was used in z- and y-direction by a factor of 2 to reduce
the number of cells in areas, in which the fluid is not expected to be present.

Figure 5.7. Block structure of the domain. ~ Figure 5.8. 3D mesh of the whole domain.
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The simulation runs for 30 milliseconds. Then, the entire droplet volume is passed
through the gap between the doctor blade and the lower wall and leaves the domain
at the outflow border. The time steps itself vary, since we choose an adjustable
time step size. Then the solver calculates the maximum time step depending on the
maximal CFL number the user set. In our case, we selected Cpax = 1, see Table 5.2.
The solution of the a-transport equation is calculated with MULES as described in
Chapter 4.2.1, where the number of iteration loops calculating the limiter, denoted as
nLimiterIter, is set as usual to 3. The PIMPLE loop, used to solve the momentum
equation with velocity-pressure coupling, is run without a momentum predictor
step and no nonorthogonal corrector steps, which are preferably used for heavy
nonorthogonal meshes. All further relevant solver adjustments were summarized
in Table 5.2. Check Sections 4.2.1 and 4.2.2 as well as Appendix B.1 for further
parameter descriptions.

Parameter Value Notes

Cinax 1 Maximal Courant number for the whole simulation
Ca,max 1 Maximal Courant number for the a-transport equation
Ca 1 Interface compression weighting parameter

No corr 2 Number of a-corrector steps

N, sub 1 Number of a-sub cycles

Neorr 3 Maximal number of PISO loops

Table 5.2. Numerical parameter and solver setup for the 3D simulation.

In addition, the individual discretization schemes are listed below in Table 5.3.
Details to the schemes were also presented in Chapter 4.

Term Discretization Scheme

Temporal derivative Implicit Euler method

Convection term Linear upwind scheme

Diffusion term Linear interpolation with explicit nonorthogonal correction
a-transport, term Van Leer scheme and interface compression scheme
Gradient Linear interpolation with a central differencing scheme

Surface normal gradient Linear interpolation with explicit nonorthogonal correction

Table 5.3. Discretization schemes for the individual terms.
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Besides the solver settings mentioned above, a choice of the initial fields for the
phase fraction field «, denoted in OpenFOAM as alpha.water, for the velocity wu,
denoted as U, and for the pressure p, denoted as p_rgh, is necessary and of special
interest to simulate this kind of wetting process. We follow the description in Section
5.1 and choose for the dynamic contact angle model an equilibrium contact angle
of 6. = 25°, written within the a-field, with advancing angle 6, = 35° and receding
angle 0, = 15°. Simultaneously, a Navier-slip boundary condition is set for the
velocity at the respective borders, in OpenFOAM denoted as patches, to allow the
dynamic behavior of the three phase contact line. Note, at the lower wall, where
a tangential wall velocity is assumed, this is not necessary since we already allow
and fix a velocity greater than zero in this case. The slip length for the Navier-
slip condition is set to half of the cell size, which is an appropriate choice in this
case. Additionally, BCs for the pressure are claimed by the solver, although this is
actually determined by the other constraints. For this reason, OpenFOAM supplies
the so-called fixedFluxPressure condition, which adjusts the pressure depending on
given flux at the respective faces. A summary of the boundary conditions with
OpenFOAM conforming designations is given in Table 5.4.

Patch alpha.water p_rgh U
left Wall zeroGradient fixedFluxPressure partialSlip
outletWall zeroGradient totalPressure inletOutlet

movingWall dynamicContactAngle fixedFluxPressure translatingWallVelocity
upperWall dynamicContactAngle fixedFluxPressure partialSlip

atmosphere inletOutlet totalPressure pressurelnletOutlet Velocity

Table 5.4. Setup of OpenFOAM boundary conditions for the doctor blading test case.

Note, the original name of the dynamic contact angle BC is dynamicAlphaCon-
tactAngle, which was shortened a bit within the table due to limited space.

Observations

When comparing the initial simulation setup, see Figure 5.10, with the picture of
the real droplet, see Figure 5.9, some differences become apparent. On the one
hand, the shape of the droplets varies. While the simulated droplet is perfectly
round, the real droplet is already shifted. This comes from a longer start-up phase
in the experiments. Due to mesh complexity reasons, the domain in the simulation
is kept as small as possible and therefore the movement of the droplet starts right
infront of the doctor blade. Furthermore, we were unable to reproduce the surface
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Figure 5.9. Droplet real experiment. Figure 5.10. Droplet 3D simulation.

structure. While the real printing form surface is uniformly engraved with cups in
the range of tens of micrometers, the simulated surface is plain without any kind of
structure. This, of course, makes a difference when it comes to the exact behavior
at the three phase contact line on the printing plate. But as this validation study
focuses more on the overall the general behavior of the droplet, the interaction with
the doctor blade and the film formation behind the doctor blade, we can disregard
this in good conscience for the moment. Furthermore, it is not possible to resolve
the exact behavior of the three phase contact line in interaction with the cups using
the existing videos with a view from above. Additional experimental and numerical
studies on this are advisable and were recently advanced within the CRC 1194.

Despite the described differences, we can observe a similar behavior of film for-
mation in the simulations such as seen in the videos of the experiments. At first,
this regards the general appearance of the fluid film, compare Figure 5.11 and 5.12.

Figure 5.11. Bladed droplet with a trans-  Fjgyre 5.12. Bladed droplet in simulation.
parent doctor blade.
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It can be observed, that the shape of the top of the advancing films as well
as their width agree while the fluid flows out of the domain. In [11], the author
describes an approximately logarithmic behavior of the advancing film front, which
can also be reproduced within the simulations.

In addition, an instability at the edge of the doctor blade was observed within
the experiments, that could be further investigated by the simulations. Some
snapshots of the three dimensional simulation are depicted in Figure 5.13, which
should contribute to a better understanding of the described observations. The
order is from top left to bottom right. The color of the droplet shows the velocity
distribution on the surface of the droplet, where the color range from a velocity
value of 0 in blue to a value 0.1 m s~! in red. After about 30 milliseconds, the
droplet has disappeared out of the domain.

Figure 5.13. Snapshots of the droplet simulated in 3D.
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As was also seen in the experiments, a liquid ribbon with a width corresponding
to the size of the drop appeared on the moving cylinder surface by the penetration
of liquid from the drop into the gliding channel. The width of the ribbon coincided
with the endpoints of the contact lines of the drop. Due to the continuous loss
of liquid from the drop, the contact lines of the drop on the cylinder and on the
doctor blade steadily contracted. Remarkable at this point is, the 3D simulations
could show, that a negative pressure occurs at the edges of the droplet. This
has not been described in this way before. Once the proceeding contact angle
approached a critical value, the droplet loses the contact to the cylinder as expected.

Both in the physical experiment and in the simulation we can further observe,
that after the droplet has been bladed, fluid remains behind and under the doctor
blade. This is in line with expectations, since not all of the fluid is removed from the
surface due to the surface tension and the small contact angle. In practice, this gen-
erates serious fluid accumulations over time at the doctor blade, which can also lead
to problems, especially when printing for a longer period of time. Further results,
especially concerning the pressure distribution at the edges of the doctor blade and
within the gap between the top of the doctor blade and the printing form, will
be presented soon in a paper within the framework of a cooperation in the CRC 1194.

For now, this should be enough to ensure that we can use the interFoam solver
to simulate a nontrivial part of the gravure printing procedure, the doctor blading
process. The next step is to not only describe and observe the problem, but also its
control and optimization.

5.2.2 Optimization Objectives

Optimizing the doctoring process as an exemplary application of a wetting pro-
cess, is a main goal of this thesis. Optimization means in this case to improve
particular aspects of the printing process. In the following we aim to clarify this
statement and define some central questions that should be answered in the re-
mainder of this chapter and give us suitable objective functions for our optimization.

Experimental investigations showed, that shape and thickness of the lubrication
film behind the doctor blade are, among other things, determined by the viscosity
of the printing fluid and the gap height between the tip of the doctor blade and
the printing form [37]. We define the shape, and in this regard especially the film
thickness, as our quantity of interest (QOI) and use the final time state of the
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5.2. The Doctor Blading Test Case

simulations for the objective function. To optimize the size of this QOI, we consider
the phase fraction «. The « value indicates where the domain is filled with the fluid
and can therefore be used to calculate for example the film thickness at a predefined
position behind the tip of the doctor blade. Then, the goal of the optimization is to
reach a desired film thickness at the chosen position, depending on a control variable
of the optimization problem. One control is the printing fluid viscosity p; and the
other one is the gap height dgg. Therewith, we control our solution with respect
to the phase fraction field « for a fixed end time T and a desired state ay as follows

. 1
o) =5 [ lae.1) - aul? d. (1)
Qba

The objective function states that we have to choose the material parameter y; such
that the phase fraction field «(x, T') is close to a desired field oy for a particular part
of the domain €4 in the mean square sense. If we are only interested in the film
thickness, i.e., the height of the fluid film at a specific position in z-direction, Qpq
only consists of a single belt of cells orthogonal to the defined position. However, it is
also the possibility to consider a larger area, for example the whole fluid film volume
behind the doctor blade. We consider both cases in our numerical studies. Overall,
two different optimization problems arise, whereas the numerical results of them
are presented in Chapter 5.4. The first is optimizing the area behind the doctor
blade with respect to the fluid viscosity pu; to correspond to a predefined form. And
the second is finding the optimal gap height for a specific film thickness in a pre-
defined distance behind the doctor blade, this time with a fixed viscosity of the fluid.

Another interesting question is the behavior of the flow itself. Many printing
failures can occur if the flow is too brisk. We deliberately do not refer to turbulence in
this context, since although the fluid behaves agilely, it does not reach the Reynolds
numbers that classify a turbulent regime. Moreover, the mathematical model does
not include a special turbulence treatment. But agile behavior of the ink leads to
different problems while the printing process, for example air inclusions or fluid
accumulations. To avoid these failures we use a measure of turbulence, the vorticity
w. It is calculated with the curl of the flow velocity u

w:=curlu =V x u.

Hence, we define the vorticity w as another QOI. A theoretical foundation of this
kind of optimization problem is given in [2].
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The resulting optimization problem is then

1
min _ j,(y, with  jo(y,q) = =||vort(y, ¢)||*. 5.2
Soin ey, q) Ju(y,a) = 5llvort(y, g)ll (5.2)
How we solve these optimization problems in practice, will be examined in the next
section.

5.3 Optimization Framework

Our optimization algorithm is based on the general approach for solving optimization
problems, we stated in 3.5. As we have just seen in Section 5.2.2, all objective
functions have a least squares structure. Due to the structure of the problems, we
can apply a modification of Newton’s method, the Gauss-Newton algorithm, to solve
the optimization problem. It is used to solve nonlinear least squares problems by
minimizing the sum of squared function values. The major advantage of this method
is, that second derivatives, which can be challenging to compute, are not required
[13]. Only the first derivative of the objective function is necessary. We consider a
problem with the following structure

o | )
min j(z) with j(z) = llJ(@)[

k

Then we determine the search direction s* € R™ by solving the Gauss-Newton

equation
J/(mk)TJ/<xk)sk _ —J/(xk)TJ(xk)7

where z* is the current solution and the new solution is obtained by z**! = 2% +¢; s*
with an appropriate step size ¢ > 0.

If we go back to the optimization problem we stated in Section 3.1, the corre-
sponding discretization of problem (P) has the form

min j"(y"(¢"),q") st " € Qg (P")
qheQh

The control is pointwise bounded with the lower bound ¢, and the upper bound g,

o <qx)<q  inQ.
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So we assume a convex set

Qaa ={¢€R" : ¢ <q< g},

where ¢, < g, € R™ and all inequalities are to be understood component-wise. For
this problem, we formulate the optimization framework in Algorithm 5.1, . Starting
with an initial control ¢°, the following main steps are exercised for k = 0,1,2, ...
until a satisfactory convergence is achieved:

Algorithm 5.1 General Optimization Framework for Wetting Problems

: Initialize control variable ¢°

: Calculate initial state with OpenFOAM simulation with ¢°

: Start optimization loop

: For k=0,1,2,...:

: Solve state equations by OpenFOAM simulation to obtain the corresponding
state y* = y(q")

: Compute the gradient of J with respect to the control ¢*, J' := dqu(qk)

Tt W N =

: (a) by determining sensitivities 6y* with interSensFoam and use equation (3.2)
: (b) by calculating the difference quotient, see Chapter 3.2
: Calculate Gauss-Newton step to determine the increment of control:

© 0w N O

5q" = — (7)) T (M) I()

10: Set the step size ¢ € {1,1,,...} such that j(¢* + t,6¢%) < j(¢")
11: Update the control with ¢+ = ¢* + t,,6¢"*
12: Return to step 5 or stop, if a satisfactory convergence criterion is achieved

Note, the lower and upper bounds can also be integrated with an adequate choice
of a projection. Furthermore, each iteration of the optimization algorithm requires
at least one solution of the whole flow process. If we use the sensitivity solver inter-
SensFoam in step 7, the derivatives are calculated together with the state equations,
which is more favorable than calculating an additional perturbed state for the dif-
ference quotient in step 8. The Gauss-Newton step is calculated in step 9 to find the
actual search direction. Furthermore, the step size is controlled in step 10 by halfing
the step as long as the new residual is greater than the old one. If such a step size
ty is found, the control can be updated and the algorithm repeats the calculation
of state and sensitivity equations. Convergence is achieved, if a prescribed stopping
criteria is fulfilled. This is for example the case, if the residuum, hence the square
value of the objective function, is small enough. Then, the necessary first order
optimality condition is fulfilled and a local optimum found.
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The above optimization algorithm is composed of an outer initialization and op-
timization framework, implemented in Matlab, and an inner simulation part, where
the state equations and the sensitivities are calculated numerically with the Open-
FOAM solver interSensFoam. The framework and the inherent coupling mechanisms
are schematically depicted in Figure 5.14.

matlab
Initialize Update Error
- t
control Compute j"f—] C_";’lmel”ti W [ control - =Pl small
variables di*(y"(g"),q") variables enough
unix- read
commands text files write into
OpenFOAM
Solve flow system dictionaries
CM(y"(g"),q") =0

and calculate sensitivities [

Sy = (6ul, 6ph, 60 Optimization loop

OpenFoam

Figure 5.14. Coupling of Matlab and OpenFOAM simulations.

Many extensions of this rough framework are imaginable. To speed up the compu-
tational time, a multilevel approach could be favorable. The main idea of a multilevel
optimization problem is to solve a major part of the iterations on a comparatively
coarse discretization. First if it is necessary, a refinement of the mesh takes place,
which can also be a local one. The optimization starts with a coarse mesh hy and
generates adaptive mesh refinements hj with the corresponding discretization of P",
which leads to the problem

qhiréighkjh’“ (" (¢"), ") st g™ € Qu. (Ph*)
Due to the fact, that most of the state evaluations can be executed with a much
smaller number of cells, the computational cost are reduced significantly and
thus the overall execution time of the optimization as well. Furthermore, with a
variation of the optimization method itself, the range of possible objective functions
can be enlarged. However, this may entail the necessity of higher derivatives and is
outside the scope of this thesis.

The optimization framework presented in this section can solve parameter iden-
tification problems, where only the liquid viscosity is controlled at the moment.
Further controls, like other material parameter, operational parameter or geometri-
cal aspects are also conceivable for the future. But therefore, also the OpenFOAM
solver interSensFoam has to be adapted with respect to the sensitivity equations.
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To overcome the lack of appropriate sensitivity equations, we calculate the deriva-
tives of the state equations for the optimization problems involving a change of the
geometry with the difference quotient, see (3.4). The numerical results of the opti-
mization problems concerning wetting problems, that we discussed in Section 5.2.2,
are presented in the next section.

5.4 Numerical Optimization Results

We now revisit the optimization objectives, that we formulated in Section 5.2.2.
As we already mentioned, we consider three optimization problems. The first
optimization problem is a parameter identification problem, where a desired fluid
film has to be achieved by controlling the liquid viscosity, see Section 5.4.1. The
second problem concerns the optimization of the fluid film height at a specific point
behind the doctor blade, where the gap height between the tip of the doctor blade
and the printing form is the control variable, see Section 5.4.2. And finally we
present the optimization of the vorticity within the ink chamber with respect to
the inclination angle of the doctor blade in Section 5.4.3.

The underlying simulations are similar to the simulation we used in our validation
case in Section 5.2.1. One difference is, that we primarily calculate the optimiza-
tion problems in a two dimensional setting. This only changes the dilatation in
z-direction within the simulation setting, all material and operational parameter,
the solver adjustments and boundary conditions of the state variables remain the
same. The parametrization of the domain with blocks and the numbering of vertices
and faces can also be adopted, since a 2D simulation in OpenFOAM means that
only a single cell is used in z-direction. For the two dimensional version of the mesh
we then obtain 18600 mesh cells, where the size of the cells is the same as in Section
5.2.1. Another aspect to consider is the initial distribution of the fluid, where the
first scenario is employed in all three optimization problems. Fluid parameter can
vary, since the liquid viscosity is the control variable in the first case. Furthermore,
for the numerical simulations within the first optimization problem, the developed
OpenFOAM solver interSensFoam is used. Similar to the well known application in-
terFoam, which we use for the other two optimization problems instead, it is a solver
for two incompressible and immiscible phases using finite volume discretization on
collocated grids, additionally featured with the calculation of sensitivities for the
state variables. See Section 4.4.2 and Appendix B.2 for more details. Therefore, an
additional initial setup is required for the sensitivity fields du, dp and d«, we denote
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as dAlpha, dU and dP_rgh within the simulation. The corresponding boundary
conditions are partly the same as the BCs of the primary fields from Table 5.4, and
are presented in the following Table 5.5.

Patch name dAlpha dP_rgh dU
left Wall zeroGradient fixedFluxPressure partialSlip
outletWall  zeroGradient totalPressure inletOutlet

movingWall zeroGradient fixedFluxPressure noSlip
upperWall  zeroGradient fixedFluxPressure partialSlip

atmosphere  zeroGradient totalPressure pressurelnletOutlet Velocity

Table 5.5. Setup of boundary conditions for the sensitivity solver.

This is a recommended setup for the sensitivity fields with the available boundary
conditions implemented in OpenFOAM. Next we present the mentioned optimiza-
tion problem in more detail and show the numerical results.

5.4.1 Optimization of the Liquid Viscosity

An important role in printing processes is the choice of the printing liquid. Printing
liquids, also called inks, are very complex due to non-newtonian behavior and color
pigments contained. We do not consider their full complexity here, but we examine
how the viscosity of the printing fluid affects the film formation behind the doctor
blade. Therefore, we choose as desired viscosity p; = 1-1072 m2s~!, resulting in a
specific film behind the doctor blade, and optimize the calculated film with respect
to the liquid viscosity to perfectly match the desired state. The objective function
(5.1) fits to this question, where Q4 is set as the part of the domain, which lies
behind the tip of the doctor blade. For the control p; we define the following lower
and upper bounds

Ga=1-10"*m%™ !, ¢ =1-10"2 m?%!
and set the initial control to
@ =5-10"3m% L

Note, the unity of the viscosity belongs to the dynamic one. As convergence tol-
erance we choose a value of 107 for the residuum of the objective function. The
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Gauss-Newton algorithm provides the following result

Iter. Funct.-Eval. q = Residual
0 1 5.0000e-03  1.2143e+01
1 4 2.1554e-03  3.6828e+00
2 6 1.2013e-03  2.5485e-01
3 7 9.7934e-04  3.3790e-03
4 8 9.9805e-04  2.9651e-05
5 9 9.9985e-04  1.7512e-07

Table 5.6. Result of the Gauss-Newton algorithm.

Table 5.6 shows, that the Gauss-Newton algorithm reaches a sufficiently accurate
result after only a few iterations. In five iterations, nine function evaluations are
necessary to match the desired viscosity. Then, a residual below the defined tolerance
of 1076 is reached, where the residual indicates the value of the objective function.
This value should converge to zero, since we considered as objective function a
tracking type function as in equation (5.1). Note, that this is a local minimum. For
the simulation we obtain the following results, where we focus on the quantity of
interest, hence the fluid film behind the doctor blade.

Figure 5.15. Initial state in Q4. Figure 5.16. Optimized state in Q4.

The Figures 5.15 and 5.16 show the initial and optimal simulation results, only
for the area ;4 behind the doctor blade. A closer look reveals, that the shape of
the fluid film for the optimized state is a little different from the one for the initial
state. That is what we expected for liquids with different viscosity. Furthermore,
the optimized state coincides perfectly with the desired state, that we preliminary
calculated for a specific desired liquid viscosity. Of course, this should be the case
since the material parameters of optimized and desired state match very closely, see
Table 5.6.
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Additionally, the sensitivity calculations provide the following results, first
depicted for the phase fraction field a and then for the velocity U.

Figure 5.17. Field alpha.water. Figure 5.18. Field dAlpha.

The sensitivity of «, see Figure 5.18, reflects the variation of the phase fraction
field and matches the position of the interface in Figure 5.17. Note, the interface
on the left hand side of the doctor blade smears out slightly due to necessary
solver adaptions, we discuss in more detail in Appendix B.2. Also the velocity
sensitivity in Figure 5.20 shows the variation of the velocity field in Figure 5.19,
where the highest values occurring at the moving wall and the tip of the doctor blade.

dU Magnitude
0 s T ae ons
e

Figure 5.19. Field U. Figure 5.20. Field dU.

The velocity sensitivities agree well with the corresponding difference quotients
with a variance of around ten percent. In Figure 5.21 can be observed, that inter-
SensFoam reproduces the main aspects of the difference quotient and in particular
also at the interface and at the boundaries. This confirms, that the implemented
solver calculates the correct derivatives of the state equations with the sensitivity
approach and that the applied numerical methods are suitable in the context of this
wetting process.

136



5.4. Numerical Optimization Results

dUx interSensFoam dUx difference quotient

dUy interSensFoam dUy difference quotient

Figure 5.21. Comparison of velocity sensitivity components with the difference quotient.

5.4.2 Optimization of the Gap Height

The task of this optimization problem is to find the optimal gap height for a given
film thickness behind the doctor blade. Here, the gap height dgpy is the distance
between the tip of the doctor blade and the lower wall, the latter representating
the printing form. The question of a predefined gap height is more a coating
than a printing task, but in this context many applications can be found where
an exact thickness of the fluid film after doctor blading is of importance. Hence,
the QOI is again concerning the fluid film, resulting in objective function (5.1).
In this case, however, only at a certain point behind the doctor blade, in fact at
a distance of 0.2 mm to the tip of the doctor blade, confer to Figure 5.22. The
red bar represents the film thickness at the specific point. This is an arbitrary
value that takes into account a flattening of the film just behind the tip of the
doctor blade, to obtain a value as representative as possible for a constant film
thickness. As fluid, normal water is assumed, see Table 5.1 for the respective mate-
rial properties, and a tangential wall velocity of u.,; = 1m s™! is set to the lower wall.

Besides the procedure we described for the former optimization problem,
geometrical optimization issues arise in this problem formulation as well. Due to
the change of the gap height, the outer domain, and therefore the mesh, has to
be adapted in every iteration step of the optimization algorithm. To preserve the
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\

Figure 5.22. Position of QOI (red bar).

1

0.2 mm

number and order of cells in every new simulation, we abstain from remeshing and
use a transformation function instead. This economizes computational costs and
prevents a change in number and order of mesh elements. One possible meshing
routine in OpenFOAM, which is also the most widely used, is called blockMesh.
Here, the domain is subdivided in blocks, where different cell sizes can be applied.
This is only the case if they match on their common boundaries. The block
structure of the three dimensional version of the test case can be seen in Figure 5.7.
Now, the transformation function compresses and stretches the outer corners of the
respective blocks to create a movement of the doctor blade in vertical direction. In
the following we have a closer look to the transformation.

We denote €(t) as the reference domain. The deformation of €(t) is given by
the diffeomorphism Q x I — R, 7: (z,t) — Q7 (t), where Q7(¢) is the transformed
domain and 7 € C*(Q,Q7). Then it holds

z7(t) = 7(x,t) = = + f(z,t),

for z™ € Q7 and z € Q. Here, f is the displacement function describing the
variation of a vertex within the respective spatial direction.

Now we apply the presented transformation to our specific test case configuration,
hence to the block structure of our mesh. In a first step, the whole domain is
triangulated as shown in Figure 5.23.

We define the set of domain corners as

V=10"3m-

0 0.55 0.65 1 0 0.55 0.65 1 0.566 1 0 0.37
0/’\ 0 J/’\ 0o /'\0/’\0.02/°\0.02/’\0.02/°\0.02/)°’\ 0.2 )'\0.2/)'\0.4)’\ 04 ’
Then the reference domain is defined as the convex hull of this set

Q = conv(VT).
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11 12

9 10
5 6 \7 8
1 2 3 -

Figure 5.23. Triangulation of the domain in 2D

The set of nodes, spanning the individual triangulation segments in Figure 5.23, is

1N\ /2\ 72\ /3\ /3\ [/3\ /7 8 12 5\ 1"
T =<2, 16].|3].{7|.[4].[8]).[8]).[wo],|11],|6
5/ \5) \6/ \6/ \8) \7/ \o 9 5 12

For all cells in the respective segment of T'(2), the following transformation function
is applied to the mesh points v; = (z,3)7 € V;

7(vi) = vi for i € {1,...,4},
T(vi) = yi—a+ ¢ for i € {5,..., 8},
7(vi) =y + (¢" — ) for i € {9, ...,12},

where ¢* is the current control. Note, that we differ between the cells within the
triangulation segments under and above the doctor blade. The nodes one to four
do not change their position, only the y-component of the nodes five to twelve are
offset against the new control value ¢¥. The same transformation can be done in
x-direction or both in x- and y-direction. Then the displacement has to be added
to the respective spatial component.

To initialize the optimization problem, we choose the following lower and upper
bounds for the control

¢a=1-10"m, ¢ =1-10"*m.

Starting from the initial gap height ¢° = 5-107° m, a desired state with the gap
height ¢q; = 2-107° m has to be achieved. Again, the desired state was simu-
lated before the optimization to calculate the residual. The numerical results of
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the Gauss-Newton algorithm are presented in Table 5.7. After six iteration steps,
where altogether eleven function evaluations were executed, the optimization loop
converges at the desired state.

Tter. Funct.-Eval. ¢g=dgy  Residual

0 1 0.0500  3.9133e-10
1 2 0.0209  2.4387e-12
2 i} 0.0182  6.4717e-14
3 7 0.0185  4.8778e-14
4 8 0.0189  2.6606e-14
5 10 0.0196  3.0451e-15
6 11 0.0200  7.0849e-19

Table 5.7. Result of the Gauss-Newton algorithm.

The initial and optimized state are depicted in Figures 5.24 and 5.25. The varying
fluid level on the left side of the doctor blade, within the fluid reservoir, stems from
differences in the time taken to reach a steady state. Due to the reduced gap height,
this state is achieved earlier. Then, the fluid level has no further influence on the
film thickness until the fluid reservoir is exhausted.

Figure 5.24. Initial state gap height. Figure 5.25. Optimized state gap height.

5.4.3 Optimization of the Vorticity

Within the context of gravure printing, the improvement of printing failures is
a challenging task. One of these printing failures are air bubbles, which are
implicated into the ink and can negatively affect the printing result. At high
printing speeds, the fluid may even begin to foam, a worst case scenario for
printers. Now the question is, if and how we can influence the printing result
positively, without slowing down the velocity of the printing process. We select
the inclination angle of the doctor blade as the control variable and choose
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the vorticity as objective. This is due to the fact that the vorticity is an indi-
cator for the turbulent behavior in front of the doctor blade, within the ink reservoir.

The optimization problem is solved with the objective function for vorticity, see
equation (5.2). Again, the outer boundary moves within the optimization loop,
hence the transformation introduced for the optimization of the gap height is used
here again. The control variable is the inclination angle 6 in this case. We initialize
the optimization problem with the following lower and upper bounds for 6

o =5° q,=40°.

As initial inclination angle we set ¢° = 25°. For this problem, no desired state
has to be calculated. The optimization algorithm reaches a minimum value for the
residual after seven Gauss-Newton iterations. Therefore, the state equations had
to be evaluated 40 times. A minimal vorticity value was reached for an inclination
angle of 0,,; = 11.63°. The results are summarized in Table 5.8.

Iter. Funct.-Eval. qg=10 Residual
0 1 2.5000e+01  8.0302e+-00
1 2 2.2681e+01  5.5489e+-00
2 3 1.7784e+01  2.4625e+00
3 4 1.4643e+01  1.3865e+00
4 5 1.2756e+01  1.1536e+00
5 6 1.1582e+01  1.0721e+00
6 13 1.1629e+01  9.8272e-01
7 40 1.1629e+01  9.8229e-01

Table 5.8. Numerical results with the Gauss-Newton method.

It is noticeable, that the residual is considerably larger than in the optimization
problems before. The reason for that is the objective function, since we minimize
the norm of the vorticity itself and not associated with a desired state. Table 5.8 as
well as the graphical representations in Figure 5.26 and Figure 5.27 reinforce, that
the vorticity of the velocity field within the ink reservoir can be reduced by a factor
of 10 by changing the inclination angle of the doctor blade. This shows, that we
can significantly influence and, at best, considerably improve the gravure printing
process by using appropriate optimization procedures.
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Figure 5.26. Initial state vorticity. Figure 5.27. Optimized state vorticity.
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CHAPTER 6

Conclusion

This thesis deals with the gradient based optimization of two-phase flow problems
in the context of wetting phenomena. We developed an optimization framework
for the simulation and optimization of such problems, where the application comes
from gravure printing. Two different aspects were addressed. On the one hand
the theoretical basement, showing existence for the derivative of the corresponding
control-to-state mapping, supposing an LP-maximal regularity setting of the under-
lying linear problem. Therefore, two different problem formulations, a two-phase
formulation with jump conditions and an equivalent one-field approach using the
volume of fluid method, were considered. For both formulations we could show that
the respective control-to-state mapping of an optimization problem with respect to
a distributed control on the left hand side of the momentum equation and to an ini-
tial velocity field is continuous and infinitely many times differentiable with respect
to the mentioned controls. On the other hand, extensive numerical simulations and
optimizations were performed for the doctor blading test case and provided new
insights to the underlying wetting phenomena. With a full three dimensional sim-
ulation we could reproduce corresponding experimental results and were able to
confirm an observed instability, which was not described in the literature before.
Furthermore we could show, that the simulation based optimization works for non-
trivial wetting processes such as gravure printing and can help to improve and even
to optimize the printing results. The developed optimization framework combines
an optimization algorithm implemented in Matlab with DNS calculations performed
in OpenFOAM. To apply a sensitivity approach for calculating the derivatives of
the states, required for the optimization method, we had to modify and extend the
incompressible two-phase solver interFoam from the OpenFOAM software library.
Therefore, the numerical methods had to be adapted to solve the differentiated
equations adequately. The efforts were combined in the new solver interFensFoam.
The optimization framework was tested on several exemplary optimization prob-
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lems, which included parameter identification and the optimization of geometrical
aspects. Note, that the findings can easily be transferred to the multiphase case,
when instead the basic interFoam solver the multiphase extension multiphaselnter-
Foam is used for the simulations and the optimization. Even in the case of more
than two phases, only interfaces between two phases need to be considered, which
is covered by the findings we obtained in this thesis.

Outlook

In this work we have solved only one small piece of the puzzle and a lot of work
can still be done. Based on the investigations carried out, further research fields
concerning theoretical aspects, for example the development of differentiability
results for more complex models and in the presence of uncertainties. The com-
plexity of the model can be increased by structured surfaces, by extensive fluids,
thinking about non-newtonian fluids and fluids with particles or surfactants, or
by considering the influence of temperature. Taking the temperature into account
leads to phase changes at the interface due to evaporation or vaporisation and
further effects in material parameters, like the Marangoni effect of surface tension
or nonconstant densities and viscosities within the phases.

Furthermore, we have concrete ideas about how to proceed with the constructed
test case. At the moment, only a small vicinity around the tip of the doctor blade
is considered, although controls, for example the viscosity of the printing fluid, also
have an impact on the overall printing process. The test case should therefore be
extended for a larger setup. First investigations and results were reached including
the complete gravure cylinder and ink reservoir. The challenging part is here to
combine the different length scales, concerning the three phase contact line effects
on a um-scale and the geometrical setup adjustments on a cm-scale. This can
for example be handled with mindful adaptive mesh refinement. Another point to
mention is, that the surface of the printing forms are anything other than plain in
a realistic scenario. On the one hand, they have a certain surface roughness with
grooves, furrows, ridges and channels. And on the other hand, there are engraved
cups which receive the ink for the printed design. We do not consider these cases in
our thesis due to its complexity, but first investigations were also done to simulate
an engraved surface with OpenFOAM.
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Also regarding the optimization itself there are still some possible improvements.
The dimension of the control is less, so it is reasonable to apply a sensitivity ap-
proach. Increasing the dimension of control variables or including domain variations
within an OpenFOAM application, for example to consider real shape optimization
problems, requires an adjoint approach. Moreover uncertainties in material and op-
erational parameters could be taken into account by means of robust optimization
techniques. This is very reasonable, since the material parameters are susceptible
to uncertainties for example the liquids due to temperature variations or the steel
doctor blade due to manufacturing reasons. Taking uncertainties into account leads
to a bilevel structure of the optimization problem, where the minimization is done
with worst case values of the objective function and the constraints. These are in
turn obtained through a maximization problem, considering all relevant realizations
of uncertain parameters in a given uncertainty set. Hence, we have to solve a maxi-
mization problem within a minimization problem. These considerations significantly
increase the complexity of the problem, what makes the application of reduced mod-
els absolutely recommendable. Proper Orthogonal Decomposition is a well known
approach for this part of the problem, which should be investigated for the opti-
mization of wetting phenomena in following works. Furthermore, optimal design of
experiments is a promising optimization problem, considered for the optimization
of wetting phenomena, especially in the context of the CRC. This approach aims to
reduce the number of expensive and challenging experimental setups significantly.
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CHAPTER A

Derivation of Equations

A.1 Derivation of a-Transport Equation

In Section 2.2.1 we mentioned, that conservation of mass is described by
Op+ V- (pu) =0. (A1)

Introducing the density field from equation (2.17) into equation (A.1) and assuming
p1, pg are constant, we obtain

dp(a) +V - (pla) u) =0

& O(patp(l—a)+V-((patp(l-—a))u) =0
O (pra+pg—pga)+ V- (pautpu—p,au)=0
9((pr = pg) @) +V - ((pr — pg) @ u+ pgu) =0
(p1 = pg) O+ V- ((p1 — pg) @ u) + pgV - u = 0.

t o0

With the assumption of a divergence-free velocity field, i.e., V-u = 0, we obtain the
following transport equation

O+ V- (au) = 0. (A.2)

Equation (A.2) also comes from the idea that, as the interface moves, the shape
of the region occupied by each phase changes, but each fluid particle retains its
identity. Thus, the material derivative of «, following the motion of a particle, is
equal to zero. This implies

da

E:(’“)ta—i—vyVa:O.
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A.2 Derivation of compressed a-Transport Equation

In Section 4.1.3 we introduced a compressed a-transport equation. There, an artifi-
cial compression term is added to the original a-transport equation (2.19). Without
loss of generality, we defined our phase fraction value « as the value of one of the
phases, e.g., the liquid one, and the velocity as the velocity of the corresponding
phase. So we write the transport equation as

Orayp + 'V - (Oqul) =0. (A.3)

In the original VOF approach by HIRT and NicHOLS [42], the velocity in this equa-
tion is assumed to be equal to the mixed velocity, i.e., u; = u, which is only valid
without numerical diffusion. To overcome this lack, HENRY WELLER, one of the
OpenFOAM developer, defined the mixed velocity u and the relative velocity w,. for
a liquid and a gaseous phase by

u=oqu + agug = aqu; + (1 — ag)uy,

Up = U — Ug.
The addition of these two equations yield
au; = aqu + (1 — ap)u,.

Inserting this expression in equation (A.3) results in the desired compressed a-
transport equation, we introduced in Section 4.4.1 with equation (4.10)

Oy +V - (aqu) + V - [upay(1 — oy)] = 0.
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CHAPTER B

Developer Documentation
interSensFoam

Appendix B contains further informations about the developed OpenFOAM solver
interSensFoam. This is an extension of Section 4.4.2 and aims to a deeper un-
derstanding of the source code to be able to apply it to its own test cases. Since
interSensFoam is an extension of the OpenFOAM inherent solver interFoam, with-
out omitting any part of the code, it can be also used as documentation of interFoam.
But note, we do not promise a complete and final description of the solver. All ex-
tensions in comparison to the original solver are color-marked at the corresponding
location. We start with a collection of the important variables and constants used
in OpenFOAM, then we will have a walk through the code of interSensFoam and
in the end we will describe the setup and compilation options of a test case with
interSensFoam.

B.1 Variables and Constants

It follows a description of all used variables and constants in a theoretical and
practical way. They can be assigned to a scalar or more sophisticated classes as

e vol...Field: A field defined at cell centers.
e surface...Field: A field defined on cell faces.

Note, that all these fields consist of values for the internal field and also for the
boundary patches. As dimension set we use SI units. Furthermore, some basic
OpenFOAM operations are listed.
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B.2. Walkthrough the OpenFOAM code

B.2 Walkthrough the OpenFOAM code

The new solver interSensFoam is based on the interFoam solver family from Open-
FOAM. Most of the following descriptions are directly deduced from the source
code. Furthermore, we used the OpenFOAM wiki (https://openfoamwiki.net/, ac-
cessed August 2023) and the source code guide from the OpenFOAM Foundation
(https://cpp.openfoam.org/dev/, accessed August 2023). As we already stated in
Chapter 4.4, we use version OpenFOAM-6. We find the underlying code when
following the path

‘ openfoam6/applications/solvers/multiphase/interFoam

In the source code, interFoam is presented as a solver for two incompressible,
isothermal immiscible fluids using a VOF (volume of fluid) phase fraction based
interface capturing approach. The momentum and other fluid properties are of
the 'mixture’ and a single momentum equation is solved. Turbulence modeling
is generic, e.g., laminar, RAS or LES may be selected. Several extensions of
interFoam already exist, e.g., for the multiphase case or with miscible fluids. We
will not consider these extensions in our investigations.

In this thesis, we introduced an extension of interFoam, called interSensFoam, in
which, in addition to the primary equations, the associated sensitivity equations are
solved. Therefore, the main interFoam.C-file was changed as well as several header
files. Furthermore, some header files were added to the main interFoam folder and
the corresponding VOF folder. The latter one contains calculations regarding the
phase fraction field and the a-transport equation. All relevant folders and files
were renamed to make sure they contain new content, e.g., the folder interFoam is
now denoted as interSensFoam. We summarized all changes in Figure B.1, where
files written in green are completely new and files written in red were modified for
running with interSensFoam. Additionally, we use some conventions in the following
description, in order to have a better overview. Header files were introduced in
violet color and written in italics, when appearing in the text. Also written in
italics are all further scripts and dictionaries. A green color is used to identify
constants, coefficients and variables occurring within the calculations. And keywords
mentioned in bold will refer to bash commands.
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E interSensFoam
- E interMixingFoam

L

@ Make

files
options

— alphaSuSp.H

— createDPhi.H

' I createRhoDPhi.H

- tPhi.H i
correctPhi — createSensFields.H

B .crfeateFleIds.l.-I - dContinuityErrs.H
 initCorrectPhi.H + L dPEgn.H

I interSensFoam.C | dUDIffQuot.H

- PEan.H - dUEqgn.H

— rhofs.H  initDContinuityErrs.H

— UEgn.H L readDtransportProperties.H

) voF

alphaCourantNo.H
alphaEqgn.H
alphaEgnSubCycle.H
createAlphaFluxes.H
setDeltaT.H
setRDeltaT.H

dAlphaControls.H

createDAIphaFluxes.H
+ E
dAlphaEgn.H

Figure B.1. Structure of interSensFoam.

Access to the full source code of interSensFoam you will find here

‘ https://tudatalib.ulb.tu-darmstadt.de/handle /tudatalib /4021

Following the README file will setup the solver and you can start with your opti-
mization. Appropriate examples are also included in this repository. To understand
and reconstruct the doctor blading test case, visit the following repository

‘ https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib /4118

154



B.2. Walkthrough the OpenFOAM code

InterSensFoam.C

We start with explaining the main file interSensFoam.C. In the beginning of the file
a lot of header files are included. Some of these header files just provide routines
for a specific operation, other header files already calculate variables.

33 Created by Elisabeth Diehl, 10.04.2018

37 #include "fvCFD.H"

38 #include "dynamicFvMesh.H"

39 #include "CMULES.H"

40 #include "EulerDdtScheme.H"

41 #include "localEulerDdtScheme.H"

42 #include "CrankNicolsonDdtScheme.H"

43 #include "subCycle.H"

44 #tinclude "immiscibleIncompressibleTwoPhaseMixture.H"
45 #include "turbulentTransportModel.H"

46 #include "pimpleControl.H"

47 #include "fvoptions.H"

48 #include "CorrectPhi.H"

49 #include "fvcSmooth.H"

50
51;‘;*************************************;;
52

53 int main(int argc, char *argv[])

54 {

55 #include "postProcess.H"

56 #include "setRootCaselists.H"

57 #include "createTime.H"

58 #include "createDynamicFvMesh.H"

59 #include "initContinuityErrs.H"

60 #include "initDContinuityErrs.H" J /NEW
61 #include "createDyMControls.H"

62 #include "createFields.H"

63 #include "createSensFields.H" / /NEW
64 #include "createAlphaFluxes.H"

65 #include "createDAlphaFluxes.H" [ /NEW
66 #include "initCorrectPhi.H"

67 #include "createUfIfPresent.H"

68

69 turbulence->validate();

70

71 if (ILTS)

72 {

73 #include "CourantNo.H"

74 #include "setInitialDeltaT.H"

75 3

76

77 f}f***********************************;;
78 Info<< "\nStarting time loop\n" << endl;

Figure B.2. File interSensFoam.C, partl.
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80 while (runTime.run())
82 #include "readDyMControls.H"
84 if (LTS)

86 #include "setRDeltaT.H"
87 3
88 else

90 #include "CourantMo.H"

91 #include "alphaCourantNo.H"
92 #include "setDeltaT.H"

93 }

95 runTime++;

97 Info<< "Time = " << runTime.timeName() << nl << endl;
99 // --- Pressure-velocity PIMPLE corrector loop
100 while (pimple.loop())

{

102 if (pimple.firstIter() || moveMeshOuterCorrectors)
{
104 mesh.update();

106 if (mesh.changing())

107 {

108 // Do not apply previous time-step mesh compression flux
189 J// if the mesh topolegy changed

110 if (mesh.topoChanging())

112 talphaPhilCorr@.clear();
113 }

114

115 gh = (g & mesh.C()) - ghRef;
116 ghf = (g & mesh.Cf()) - ghRef;
117

118 MRF.update();

119

120 if (correctPhi)

121 {

122 // Calculate absolute flux
123 // from the mapped surface velocity
124 phi = mesh.Sf() & UF();
125

126 #include "correctPhi.H"
127

128 // Make the flux relative to the mesh motion
129 fvc: :makeRelative(phi, U);
130

131 mixture.correct(};

132 }

Figure B.3. File interSensFoam.C, part2.
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133

134 if (checkMeshCourantNo)

135

136 #include "meshCourantNo.H"
137 }

138 }

139 1

140

141 #include "alphaControls.H"

142 #include "alphaEgnSubCycle.H"

143

144 // Calculate alpha sensitivity

145 #include "dAlphaEgn.H" / /NEW
146

147 mixture.correct();

148

149 #include "UEgqn.H"

150

151 [/ --- Pressure corrector loop

152 while (pimple.correct()})

153

154 #include "pEgqn.H"

155 1

156

157 // Calculate velocity and pressure sensitivity
158 #include "dUEqn.H" / /NEW
159

160 while (pimple.correct()})

161 {

162 #include "dPEgn.H" / /NEW
163 1

164

165 if (pimple.turbCorr())

166 {

167 turbulence->correct(};

168 }

169 }

170

171 // Calculation of dU with difference quotient duU
172 /[#include "dAlphaControls.H"

173 //#include "dUDiffQuot.H"

174

175 runTime.write();

176

177 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
178 << " ClockTime = " << runTime.elapsedClockTime()} << " s"
179 << nl << endl;

180

181 }

182

183 Info<< "End\n" << endl;

184

185 return 0;

186 }

Figure B.4. File interSensFoam.C, part3.
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We start with a description of the included header-files.

fuCFD.H brings in the most fundamental tools for performing finite volume
calculations by including a bunch of other files, each of which represents a building
block of the finite volume technique.

dynamicFvMesh.H introduces an abstract base class for geometry and topology
changing fvMesh.

CMULES.H CMULES stands for multidimensional universal limiter for explicit
corrected implicit solution and is a routine to solve the convective-only transport
equation. It uses an explicit universal multi-dimensional limiter to correct an
implicit conservative and bounded solution, obtained by using rigorously bounded
schemes such as implicit Euler in time and upwind in space. Input parameters are
the variable to solve, the normal convective flux and the actual explicit flux of the
variable.

EulerDdtScheme.H contains a routine for the temporal derivative with an ex-
plicit or implicit Euler scheme, using only the current and previous time step values.

localEulerDdtScheme.H contains the local time step temporal derivative ba an
first-order explicit or implicit Euler scheme, used for pseudo transient solutions of
steady-state problems. Note, the local Euler time scheme is not supported by our
solver.

CrankNicolsonDdtScheme.H contains an implicit routine for the second-order
Crank-Nicolson temporal derivative using the current and previous time-step fields
as well as the previous time-step temporal derivative. Note, the CrankNicolson
time scheme is not supported by our solver.

subCycle. H performs a subCycleTime on a field.

immiscibleIncompressible TwoPhaseMizture.H contains a two-phase incompressible
transport model. For this purpose, the two header files interfaceProperties. H and
twoPhaseMizture. H are included.

turbulent TransportModel. H contains type definitions for the turbulence as well
as RAS and LES models for incompressible flow, based on the standard laminar
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transport package.

pimpleControl. H contains the PIMPLE control class to supply convergence informa-
tion and checks for the PIMPLE loop. It provides time-loop control methods which
exit the simulation once convergence criteria have been reached. It also provides
PIMPLE-loop control methods, which exit the iteration once corrector convergence
criteria have been met. It may also be used to for PISO-based algorithms, as PISO
controls are a sub-set of PIMPLE controls.

fuOptions.H contains options to apply the finite volume method.

CorrectPhi. H provides flux correction functions to ensure continuity. It is required
during start-up, restart, mesh-motion etc., when non-conservative fluxes may
adversely affect the prediction-part of the solution algorithm, which is the part
before the first pressure solution, ensuring continuity. This is particularly impor-
tant for VOF and other multi-phase solver in which non-conservative fluxes cause
unboundedness of the phase fraction.

fueSmooth.H provides the functions smooth, spread and sweep, which use the
FaceCellWave algorithm to smooth and redistribute the first field argument.

After the introduction of the described header files, the main function starts with:
int main(int argc, char xargv|[])
Here, argc (argument count) indicates the number of arguments sent to the
program and argv (argument vector) contains these arguments. Inside the

function, we need to include some other short routines, which already execute the
first calculations:

postProcess.H includes the application functionObjects to post-process existing
results. This part of the code is only of interest, if we want to use function objects
to calculate output variables.

setRootCase.H checks if arge and argv fit together. Furthermore, the root path and
case path are checked for availability and correctness.

createTime.H creates the time.
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createDynamicFvMesh.H creates the mesh, depending on the time.

initContinuityErrs. H declares and initializes the cumulative continuity error
cumulativeContErr = 0.

initDContinuityErrs. H declares and initializes the cumulative continuity error for
the sensitivities
cumulativeDContErr = 0.

createDyM Controls. H includes createControl. H to read solution controls (pisoCon-
trol, pimpleControl, simpleControl), and includes createTimeControls.H to read
the control parameters used by setDeltaT (adjustTimeStep (default: false), maxCo
(default: 1), maxDeltaT (default: great), which are defined in the file controlDict).
Furthermore the boolean variables correctPhi (in dependence of mesh movement),
checkMeshCourantNo (default: false) and moveMeshOuterCorrectors (default:
false), are set. Note: this file only determines if a variable/routine is used or not.
No values or fields are read yet, only a default is set in some cases.

createFields. H includes first the header file createRDeltaT.H , which is used to create
a reciprocal local face time-step field for the LTS model. Local time stepping is
used, if a local Euler technique is used as time scheme, which we will not use in
our investigations. Nevertheless, a temporal volScalarField trDeltaT is created.
Then, the fields p_rgh and U are read. With this field information, the flux phi is
calculated in the create Phi.H header file. Furthermore, the transport properties are
read, which involves the volScalarFields alphal, alpha2 and the dimensionedScalar
fields rhol, rho2. Then the volScalarField rho and the surfaceScalarField rhoPhi
are calculated
rho = alphal % rhol + alpha2 * rho2,

rhoPhi = rho * phi.

After constructing the user specific turbulence scheme, the gravitational acceleration
coefficient g is included with readGravitationalAcceleration.H. The dimensioned-
Scalar hRef is initialized and therewith the following fields are calculated in gh.H

ghRef = —mag(g) * hRef,
gh =g & C() — ghRef,
ghf = g & Cf() — ghRef.
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With gh, the pressure p is calculated without the hydrostatic term by
p = p_rgh + rho * gh.

createSensFields. H is inspired by the former file and initializes the sensitivity fields
dU, dP_rgh and dAlpha. Moreover, the flux of the velocity sensitivity is created in
the included header file create DPhi.H and denoted as dPhi. Then, the header files
readDtransportProperties. H and createRhoDPhi.H are included, where the first one
calculates the dimensionedScalar fields dMu, gradRho and gradMu and the second
header file creates the surfaceScalarField rhoDPhi with

rhoDPhi = rho * dPhi.

Similar to the primal field, also the pressure sensitivity dP is calculated without
the hydrostatic term.

create AlphaFluzes. H creates some initial fields relating to the a-transport equa-
tion and used for the solution procedure MULES. Here, the surfaceScalarField al-
phaPhil0 and the temporal surfaceScalarField talphaPhilCorr0 are initialized. It
holds

alphaPhil0O = phi x alphal.

createDAlphaFluzes. H initializes the surfaceScalarField dAlphalPhi, which is calcu-

lated as
dAlphaPhi = phi * dAlpha 4+ dPhi x alphal.

initCorrectPhi.H defines a temporary volScalarField field rAU, we need later in
dPEqgn.H, and calls the function CorrectPhi. This function guaranties that the total
inflow and outflow of mass is conserved with introducing the volScalarField pcorr,
which only plays a role if the mesh moves or the mesh topology changes. Further-
more, continuity errors are calculated and printed by including continuityErrs.H,
with
contErr = div(phi),
sumLocalContErr = deltaT x mag(contErr),
globalContErr = deltaT * contErr,

cumulativeContErr = Z globalContErr.

create UfIfPresent.H Creates and initializes the velocity field Uf if required, more
precisely if mesh.dynamic() is true.
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Next, a function is executed to validate the turbulence fields after construction
and update derived fields as required

turbulence —> validate ()

If there is no local time stepping ('LTS), the following two header files are further
included.

CourantNo.H calculates and outputs the mean and maximum Courant number

1 Phi
CoNum = = * max ) & deltaT,
2 V()
meanCoNum = 1 * M x deltaT,

2 XV0
where sumPhi = )" mag(phi).
7

setInitialDeltaT-H sets the initial time step corresponding to the time step adjust-
ment algorithm as in setDeltaT.H described below.

Now, the time loop starts. Within a while loop the time is incremented until
the end time is reached or an other termination or error criterion is matched.
Before the time is incremented, further header files are included inside the while loop:

readDyM Controls. H additionally includes read TimeControls.H: and actually sets
the given values for the variables adjustTimeStep, maxCo, maxDeltaT, correctPhi,
checkMeshCourantNo and moveMeshOuterCorrectors.

setRDeltaT.H will be included if local time stepping (LTS) is allowed and imposes
many variables concerning the local time step setting. If no LTS is allowed, the
following three header files are included instead of this one.

CourantNo.H see above.

alphaCourantNo.H calculates and outputs the mean and maximum Courant
numbers, used for calculating the phase fraction field a.

setDeltaT.H resets the time step to maintain a constant maximum Courant number
in case of the choice of an adjustable time step in the controlDict dictionary. The
reduction of the time step is immediate, while an increase is damped to avoid
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unstable oscillations. Then the time step is set corresponding to equation (4.4)
with )\1 = 0.1 and )\2 =1.2.

The first solved state equation is the a-transport equation. This calculation is
embedded in the file alphaEqnSubCycle.H, where a possible a-sub cycling within
the actual time step is started, if the user chose a value nAlphaSubCycles > 1.
Within the file alphaFEqnSubCycle.H, the additional field rhoPhiSum is created in
the case of subcycling. Furthermore, totalDeltaT is then set as the whole time step.
Inside the subcycling or directly, if no subcycling is chosen, the file alphaEqn.H
is included, which solves the a-transport equation for a. See Section 4.2 for a
detailed description of the numerical solution. As result, we obtain the new values
for alphal, alpha2, alphaPhil0 and rhoPhi. Subsequent, the density is updated
with the new a-value. Directly after solving the a-transport equation, the first
sensitivity equation is solved. With dAlphaEgn.H we include the Ja-sensitivity
equation. This position is selected to have access to the velocity and flux fields of
the old time step, as they also occur in the primal a-transport equation. Note, to
match the correct sensitivities, we had to simplify the solution of the a-transport
equation to use only an upwind scheme for the convective part. This is similar to
the corrector step within the MULES algorithm, although the MULES algorithm is
not applied in this case. Furthermore, the compression term is neglected for now,
since this causes instabilities when solving the associated sensitivity equation. Here,
the linearization of the relative velocity wu, is the critical part. The simplification of
the numerical solution of the a-transport equation leads to a slighty smearing out
of the interface, but this is needed for the code to run stable and for the senstivities
to match the real derivatives in good consonance. Exactly as in alphaFqn.H, the
convective terms in dAlphaEqgn.H are solved with an upwind differencing scheme.
As output we obtain the new dAlpha field for the actual time. Furthermore, the
variables dAlphaPhi and rhoDPhi are calculated.

After solving the da-sensitivity equation, other fields depending on «, such as the
viscosities, are updated with the following expression

mixture. correct ()

Then, the calculation of the momentum and continuity equation starts with
including UEqgn.H , where the coefficient matrices A and H are set up as in (4.29)
and (4.32) inside the fvVectorMatrix UEqn. The PISO procedure itself will be
carried out in pEgn.H. Herein, not only the pressure equation is solved, but also the
corrector step is executed for the velocity. As result, the fields p_rgh, phi, U and p
are calculated, see Section 4.2.2 for a detailed describtion of the PISO algorithm.
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The next step is repeating the inner PIMPLE loop also for the momentum and
continuity sensitivity equation. Again, this is similar to solving the corresponding
primal equations and follows directly after the primal PISO loop terminates. In
dUFEqn.H, the derivatives of the temporal, the convective, the diffusion and the
control term are set up. Therefore, we use the same operators as for the primal
equations. In Table B.5, the sensitivity terms from the fvVectorMatrix dUEqn are
set opposite to the corresponding terms in UEqn.

UEqgn dUEqn
fvm::ddt(rho,U) gradRho*fvc::ddt(dAlpha, U)
+ fvm::ddt(rho, dU)
+ fvm::div(rhoPhi, U) + gradRho*fvc::div(dAlphaPhi, U)

+ fve::div(rhoDPhi, U)
+ fvm::div(rhoPhi, dU)
+ turbulence-> + turbulence->divDevRhoReff(rho, dU)
divDevRhoReff(rho, U) — gradMu*fvc::laplacian(dAlpha, U)
— gradMu* fvc::div(dAlpha*dev2(T(fve::grad(U))))
— fvc:laplacian(alphal, U)*dMu
— fve:div(alphal*dev2(T(fve::grad(U))))*dMu

Table B.5. OpenFOAM implementation for UEgn.H and dUEqn.H

Here, two code terms without counterpart appear in dUEqn in comparison
to UEqn. These represent the derivatives of the Navier-Stokes equations with
respect to the control, as formally derived in equation (3.83). Since we want to
treat the equations as similar as possible to the original implementation, also the
compressible part of the diffusion term occurs. Therefore, the control term consists
of two terms in the implementation.

When solving the dPEqn in dPEgn.H, the operators dUEqn.A() and dUEqn.H()
appear, which coincides with the equations (4.39) and (4.40) respectively. They were
used to create the volVectorField dHby A, which is used to calculate the momentum
predictor (4.26). The flux of this field is denoted by dPhiHbyA. Then, the right
hand side of the momentum equation, hence the gravitational and surface tension
term, is created in dPhig and added to dPhiHbyA, which is in turn used within the
pressure equation. Altogether, we obtain dP_rgh, dPhi, dU and dP. For the terms
in dPEq we obtain the following expression, presented in Table B.6.
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PEqn dPEqgn
— fveusnGrad(p _rgh) — fveisnGrad(dP _rgh)
— ghf*fvei:snGrad(rho) — gradRho*ghf*fvc::snGrad(dAlpha)

+ mixture.surfaceTensionForce()  + (1/2e-9)*(surfaceTensionForceplus

— surfaceTensionForceminus)

Table B.6. OpenFOAM implementation for pEgn.H and dPEqgn.H.

The pressure term in this Table B.6 is shown as the surface normal gradient of
p_rgh and respectively of dP _rgh. Within the source code, the term only appears
in this form when using a momentum predictor for the PISO loop, otherwise we use
the Laplacian operator to calculate the pressure as well as the pressure sensitivity
with the pressure equation, see equation (4.27). In Table B.6, the surface tension
force term appears with the third term in pEqn as

mixture.surfaceTensionForce ()

which is implemented in interfaceProperties. H with the following code line

fvc::interpolate (sigmaK ())*fvc::snGrad(alphal)

Here, sigmakK() is calculated by

sigmaK = sigma () * K

K = —fvc::div(nHatf)

nHatf = nHatfv & Sf

nHatfv = gradAlphaf/(mag(gradAlphaf) + deltaN)
gradAlphaf = fvc::interpolate (grad(alphal))

deltaN = le—8/pow(average(alphal.mesh().V()), 1.0/3.0)

where sigma() is the surface tension coefficient o and K is the curvature x of the
interface. These calculations agree with the curvature model presented in Section
4.4.1. For the sensitivities, this terms need to be differentiated with respect to the
phase fraction «, see equation (3.85). Here, a critical point is the derivative of the
curvature, for which we need the derivative of the interface normal, denoted within
the implementations as dNHatf and dNHatfv. The exact calculation has proven to
be extremely difficult and is currently solved with the difference quotient.

Another point to mention is, that it is appropriate to relax the calculated dU-
and dP _rgh-values in some cases, which is done with the following code line at the
appropriate places.

dUEqn. relax ()

dPEqn. relax ()
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In the end of dPEqn.H, the header file dContinuityErrs.H is included. This
new implemented header file calculates and displays the quantities dContErr,
sumLocalDContErr, globalDContErr and cumulativeDContErr analogously to the
primal continuity errors and will not be explained in more detail here. With this,
dPEgn.H ends and at the same time the PISO loops terminates. After writing
the actual execution time, the calculations for the new time step start. This is
executed until the final time is reached or any other termination criterion is achieved.

In Figure B.1, two further header files appear, dUDiffQuot.H and dAlphaCon-
trols. H. We will not explain them in detail, because they are not actually part of
the current implementation. Both header files can be used to calculate the difference
quotient of the state variables and were used for testing the sensitivities. They may
be useful for geometrical optimization issues, so they are still part of the solver.
However, they are commented out for the sensitivity calculations done within the
mentioned optimization problems. Moreover, the interSensFoam solver is not yet
adapted for mesh movement. For the primal equations, the respective solver parts
are included, but the sensitivity fields still need to be adjusted at the appropriate
places.

B.3 Compile Options and User Specifications

In the following, we will explain the usage of interSensFoam and summarize with
which solver specifications the different possible optimization problems are solved.
We start with a standard test case for interFoam. In Figure B.5, the general
structure of a test case is shown, where we use the same color code as before.
The files highlighted in red have been modified, the files highlighted in green are new.

Besides the initial fields for the phase fraction alpha.water, the velocity U and the
modified pressure p_rgh, we also need initial fields for the sensitivities. As already
mentioned, the sensitivity fields are denoted as dAlpha, dU and dP_rgh and are
also stored within the 0 folder, see Figure B.5. Furthermore, we have to do some
file modifications in the files controlDict, fuSchemes and fuSolution we will specify
in the following.
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E test case
~ E system

— blockMeshDict

— controlDict

— decomposeParDict
~ fvSchemes

— fvSolution

— setFieldsDict

- [j constant
-9

I transportProperties
L turbulenceProperties

- o

::EE::x:E::.orig E dAlpha
+ dpP
p_rgh du
u
 Allclean
=~ Allrun

Figure B.5. Structure of a test case for interSensFoam.

File Modifications

The additional fields dAlpha, dU and dP are similar to the primal initial fields in
content and structure. That means they have the same field class and therefore
appropriate boundary conditions have to be defined for the single patches, see
for example Table 5.5. However, we need to pay attention to the correct field
denotation in the preamble and the correct choice of the dimension set. You can
find the corresponding dimension in section B.1.

Within the file controlDict, the name of the application has to be adapted to in-
terSensFoam and a careful choice of the time step size is recommendable. Further-
more, additional divergence schemes has to be added in fuSchemes for the convection
terms. These are used to calculate the divergence of the single terms, by which the
sensitivity equations were extended in interSensFoam. Hence, these modifications
can be made once for all test cases calculated with the solver once. Other diver-
gence schemes are also conceivable, but not yet tested in practice. The following
additional entries have to be provided in the divSchemes sub dictionary.
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divSchemes
{
div (dPhi,alpha) Gauss vanLeer;
div (phi,dAlpha) Gauss upwind;
div (dAlphaPhi,U) Gauss linearUpwind grad(U);
div (rhoPhi,dU) Gauss linearUpwind grad(dU);
div (rhoDPhi ,U) Gauss linearUpwind grad (U);
div (((rho*nuEff)x*dev2(T(grad(dU))))) Gauss linear;
div ((alpha.watersdev2 (T(grad(U))))) Gauss linear;
div ((dAlphaxdev2(T(grad(U))))) Gauss linear;

Then we also have to define matrix solvers for the additional equations in fvSo-
lution. The parameter settings within fvSolution should be chosen in dependence
of the considered problem. Here, the matrix solver of the individual sensitivity
equations are selected and the parameter and error tolerances are set. It is
recommended to choose the same solvers and tolerances for the sensitivity variables
as for the primal variables. Also the controls for the PIMPLE algorithm has to be
set in this dictionary. It is sufficient to define one set of parameters for both the
primal and the sensitivity loop.

In this work, we distinguish between the optimization with respect to a material
parameter, more precisely the viscosity of the liquid phase, and with respect to
geometrical aspects, which refer to the gap height and the inclination angle of the
doctor blade. The resulting optimization problems differ in their objective function,
calculated with Matlab, and in their control variables. Only for the optimization of
the liquid viscosity, see Section 5.4.1, it is possible to calculate the sensitivities with
the new solver interSensFoam. If the geometrical aspects are optimized, we have to
calculate the derivatives with the difference quotient, since the corresponding shape
derivatives are not implemented yet. This is also done with the Matlab framework
with the original interFoam solver used for simulations. Note that two varying post
processing routines are required for the different optimization objectives. If we are
interested in an area behind the doctor blade, we also have to define a cell Zone with
a topoSetDict in the folder system. Furthermore, we have to determine the values
within this zone for the alpha.water field and the dAlpha field with the help of the
function object volFieldValue, defined in the controlDict. If only the film thickness
at a certain position is required, we use the file singleGraph in the system folder to
calculate the respective quantity for every time step.
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General

Q Physical domain, composed of a liquid-phase and a gas-phase region {;

and Qg, Q = Q U,

Boundary of the domain

Q
2

Liquid-gas interface
Time horizon, I = [0,T]
Interface normal
Interface curvature
Total body force
Viscous stress tensor
Phase fraction

R U E R~

Transformed variables

Physical Quantities

u [m s~1] Velocity

P [kg m~! s72] Pressure

t [s] Time

p [g m~3] Density

Y [m? s71] Kinematic viscosity viscosity
u [kg m~—! s71] Dynamic viscosity

o [N m~!] Surface tension coefficient

g [m s72] Gravitational acceleration
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List of Symbols

Function Spaces

() Space of continuous functions on 2

Ck(Q) Space of m times continuously differentiable functions on

C§° () Space of infinitely many times continuously differentiable functions
on {2 with compact support

CrP(Q) Space of S-Holder continuous functions on 2

BC(Q) Space of bounded continuous functions on 2 equipped with the

supremuin norm

BUC(Q) Space of bounded uniformly continuous functions on € equipped
with the supremum norm

Lr(Q) Standard Lebesgue space on (2

L>(Q) Lebesgue space of essentially bounded functions on §2
Wkp(Q) Sobolev space on

WP () Closure of C§°(€2) in WkP(Q)

H*(Q) Sobolev Hilbert space on , short for W#2(Q)

HE(Q) Sobolev Hilbert space on  with homogeneous boundary conditions
WsP(Q) Sobolev-Slobodeckij space on 2

H*(Q) Sobolev-Slobodeckij Hilbert space on 2, short for W*2(£2)

H*P(Q) Bessel potential spaces

HYP(Q) Homogeneous Sobolev space

L (I; X) Bochner-Lebesgue space

oW*P(I; X) Sobolev-Slobodeckij space with homogeneous derivatives
MRP(I; X) Class of maximal LP-regularity operators

Mioe(X) Space of locally bounded Radon measures
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Discretization Variables

Qh

Ve
(oF
0o
o

Coy

Am

Discretized domain

Arbitrary fixed control volume, V' C 2
Surface area evaluated at the faces

Variable calculated at the cell center

Variable calculated at a cell face

Variable at the old time ¢

Variable at the actual time ¢ + At

Face flux, calculated from the velocity
Compression flux coefficient

Phase fraction limiter calculated with MULES

Optimization Variables

Qad

Uo

dpp

dan

M

Objective functional
State variable

Control variable

Set of admissible controls
Initial velocity field

Distributed control

Thickness of the doctor blade

Gap height between doctor blade and printing form

Inclination angle of the doctor blade

Viscosity of the liquid phase
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List of Symbols

Acronyms

BC Boundary Condition

CFD Computational Fluid Dynamics

CFL Courant-Friedrich-Lewy

CRC Collaborative Research Centre

CSF Continuum Surface Force

Cv Control Volume

DNS Direct Numerical Simulation

FCT Flux-Corrected Transport

FVM Finite Volume Method

MULES  Multidimensional Universal Limiter for Explicit Solution
PCG Preconditioned Conjugate Gradient (Method)

PDE Partial Differential Equation

PISO Pressure Implicit with Splitting of Operators

QOI Quantity of Interest

SIMPLE  Semi-Implicit Method for Pressure Linked Equations
TPCL Three Phase Contact Line

VOF Volume of Fluid
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