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Abstract

The wetting and dewetting of surfaces by �uids is pervasive in our nature, but

also plays a crucial role in many technical processes and applications. Examples

include coating and printing, micro�uidics and lab-on-a-chip technologies, as well

as cooling in certain reactor geometries or other process industry installations. In

general, dynamic wetting processes can be represented as multiphase �ows, which

can be described mathematically with the aid of the Navier-Stokes equations. In

addition, jump conditions are needed to connect the �ow of the di�erent �uids or

phases across their interfaces, on which a surface tension is applied. If a dynamic

contact line occurs besides the liquid-gas interfaces, where liquid and gas touch the

solid surface, a slightly di�erent modeling approach is followed. For this purpose,

the Navier-Stokes equations are additional complemented by a transport equation

for �ow advection. This transport equation originates from an algebraic volume of

�uid approach, that leads to an one-�eld formulation of the problem. The model

is completed by appropriate initial and boundary conditions, where the dynamic

contact angle enters as a boundary condition. The resulting model is a system of

partial di�erential equations, which is used in the simulation based optimization of

wetting processes. The considered optimization problems belong to the class of op-

timal control problems, in which an objective function is optimized with respect to

a state and a control. For existence and uniqueness statements, the di�erentiability

of the related control-to-state mapping is required, where Lp-maximal regularity of

the underlying linear two-phase problem is acquired. Proving the di�erentiability

is a central part of this work, where the control consists of an initial velocity �eld

and an over the whole domain distributed component on the right side of the mo-

mentum equation. This creates a basis to solve optimal control problems of wetting

processes with gradient-based optimization methods. However, the common ap-

proach of solving the constrained optimization problem by means of the Lagrangian

function is di�cult in the context of partial di�erential equations and unsuitable

for our wetting model. Hence, we follow a sensitivity approach and formally derive

sensitivity equations for the continuous �ow problem. State equations and sensi-

tivity equations are now solved numerically with suitable discretization methods,

since an analytical solution for this type of problem is not yet known. Therefore,
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the two-phase solver interFoam, which originates from the OpenFOAM library, is

adapted to the e�ect that the state equations and the respective sensitivity equa-

tions are solved simultaneously. The developed method is tested on a benchmark

test case, which is motivated by gravure printing. For good printing results, it is

essential to remove excess ink from the printing plate, except for a thin �lm that

remains. For this purpose, a steel strap is pulled over the surface, which is also

called a doctor blade. Numerical results are presented exemplary for a parameter

identi�cation problem and the optimization with respect to geometric aspects for

the above-mentioned wetting process.



Zusammenfassung

Das Be- und Entnetzen von Ober�ächen durch Fluide ist in unserer Natur allge-

genwärtig, spielt aber auch in vielen technischen Prozessen und Anwendungen eine

entscheidende Rolle. Beispiele dafür sind das Beschichten und Drucken, Mikro�u-

idik und Lab-on-a-Chip-Technologien oder auch das Kühlen in bestimmten Reak-

torgeometrien oder anderen Anlagen der Prozessindustrie. Im Allgemeinen kön-

nen dynamische Benetzungsvorgänge als Mehrphasenströmungen dargestellt wer-

den, die sich mathematisch mithilfe der Navier-Stokes-Gleichungen beschreiben

lassen. Zusätzlich werden Sprungbedingungen benötigt, die die Strömung der ver-

schiedenen Fluide oder Phasen über ihre Grenz�ächen hinweg verbinden, an welchen

zusätzlich eine Ober�ächenspannung anliegt. Kommt neben den Flüssigkeits-Gas-

Grenz�ächen eine dynamische Kontaktlinie vor, an der Flüssigkeit und Gas die

Festkörperober�äche berühren, wird ein etwas anderer Modellierungsansatz ver-

folgt. Hierfür werden die Navier-Stokes-Gleichungen um eine zusätzliche Trans-

portgleichung ergänzt, welche die Advektion der Strömung beschreibt. Die Trans-

portgleichung wird für einen algebraischen Volume-of-Fluid-Ansatz benötigt, der zu

einer Ein-Feld-Formulierung des Problems führt. Das Modell wird durch geeignete

Anfangs- und Randbedingungen vervollständigt, wobei der dynamische Kontakt-

winkel als Randbedingung eingeht. Es entsteht ein System partieller Di�erential-

gleichungen, welches in die simulationsbasierte Optimierung von Benetzungsvorgän-

gen ein�ieÿt. Die betrachteten Optimierungsprobleme gehören zu der Klasse der

Optimalsteuerungsprobleme, in denen eine Zielfunktion bezüglich eines Zustan-

des und einer Steuerung bzw. Kontrolle optimiert wird. Für Existenz- und

Eindeutigkeitsaussagen wird die Di�erenzierbarkeit der zugehörigen Steuerungs-

Zustands-Abbildung benötigt, wobei Lp-maximale Regularität des zugrundeliegen-

den linearen Zweiphasenproblems erarbeitet wird. Die Di�erenzierbarkeit zu zeigen

ist ein zentraler Bestandteil dieser Arbeit, wobei sich bei den theoretischen Betrach-

tungen die Kontrolle aus einem initialen Geschwindigkeitsfeld und einer über dem

gesamtem Gebiet verteilten Kontrolle auf der rechten Seite der Impulsgleichung

zusammensetzt. Damit wird eine Basis gescha�en, um Optimalsteuerungsproble-

me von Benetzungsprozessen mit Methoden der ableitungsbasierten Optimierung

zu lösen. Jedoch gestaltet sich die Lösung eines restringierten Optimierungspro-
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blems mit partiellen Di�erentialgleichungen als Nebenbedingungen im Kontext

von Benetzungsproblemen als schwierig und kann nicht wie üblich mithilfe der

Lagrange-Funktion gelöst werden. Daher verfolgen wir einen Sensitivitätsansatz

und leiten formal Sensitivitätsgleichungen für das kontinuierliche Strömungsproblem

her. Zustandsgleichungen und Sensitivitätsgleichungen werden nun numerisch mit

geeigneten Diskretisierungsverfahren gelöst, da eine analytische Lösung für solche

Probleme bislang nicht bekannt ist. Dafür wird der aus der OpenFOAM-Bibliothek

stammende zwei-Phasen Löser interFoam dahingehend angepasst, dass simultan zu

den Zustandsgleichungen auch die zugehörigen Sensitivitätsgleichungen gelöst wer-

den. Das entwickelte Verfahren wird an einem Demonstratorbespiel getestet, welches

durch den Tiefdruck motiviert ist. Für ein gutes Druckergebnis ist es essenziell,

überschüssige Farbe bis auf einen dünnen Film von der Druckplatte zu entfernen.

Zu diesem Zweck wird ein Stahlband über die Ober�äche gezogen, welches auch als

Rakel bekannt ist. Numerische Ergebnisse werden beispielhaft für ein Parameter-

identi�kationsproblem und die Optimierung hinsichtlich geometrischer Aspekte für

den genannten Benetzungsprozess dargestellt.
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CHAPTER 1

Introduction

In this thesis, we investigate the modeling and simulation based optimization of

multiphase �ow in the context of wetting phenomena. Wetting is something, that

surrounds us every day. In nature, but also in many technical applications. One of

the most famous examples from nature is the lotus �ower, where the so-called lotus

e�ect can be observed. A droplet of water almost completely rolls o� a lotus leaf

and can form a contact angle of about 170 degrees with the leaf. This impressively

shows how the wetting behavior of a droplet can be changed by the structure of

the surface. Such examples from nature serve as a pattern for state-of-the-art tech-

nologies, such as superhydrophobic, dirt-repellant or icephobic surfaces. Another

example, where we can observe di�erent wetting behaviors is a simple water droplet

running down a window. Everyone has already observed these small droplets,

which �nd their way down, merge with other droplets to form larger ones, pinning

again and again, or are distracted in a certain direction for example by a moving

car. Various wetting phenomena underlie this seemingly trivial process and a deep

knowledge of the underlying physics is indispensable to use the natural role models

for technical applications. Some of these fundamental questions are addressed by

the collaborative research center (CRC) 1194 �Interaction of Transport and Wetting

Processes�. As the name already suggests, the CRC investigates wetting processes,

where heat or mass transport occurs parallel to momentum transport and where

complex �uids or structured surfaces are used. The joint work of mathematicians,

physicists, engineers and experimentalists gives the possibility to synergize di�erent

disciplines and create a reliable and valid model of complex wetting processes. As

far as we know, such complex wetting processes are not yet understood in detail

and the mathematical description is incomplete, especially for the �ow behavior at

the three-phase contact line.
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Chapter 1. Introduction

To investigate such complex processes, extensive experiments are necessary in-

volving large parameter studies. These are often very costly and impractical, why

they are replaced by numerical simulations. Therewith, a large number of virtual

experiments can be performed with a minor e�ort of time and material. However,

these only make sense if we have a correspondingly expressive and realistic model,

which we can use to verify experimental results and optimize material or operation

parameters in a second step. At best, this leads to improved experimental results. In

order to achieve such improvements, the number of simulations can quickly become

very large if many parameter settings need to be checked or the number of di�erent

parameters is large. Without sophisticated optimization algorithms, this can hardly

be calculated in a reasonable time, even with today's computing capacities. The

analysis and investigations regarding simulation and targeted in�uencing of wetting

processes, done with methods from optimal control theory, are addressed in this

thesis to support decision-making processes and improve technical applications.

1.1 What is Wetting?

Wetting is the formation of an interface between a liquid and a solid surface and

is often modeled as a multiphase �ow problem. Here, the term multiphase relates

to the di�erent aggregation states of a �uid, so there can occur gaseous, liquid or

solid phases. In our case, we de�ne a wetting process as the interaction between a

two-phase �ow and a solid, not deformable surface. The two-phase �ow typically

consists of a liquid and a gas phase, or two di�erent �uids. At least one of these

phases is in contact with the solid surface. A distinction is made between static

and dynamic wetting. While in the static case an equilibrium between the involved

forces is reached and a static interface and contact angle is formed, the dynamic

wetting describes the motion of a �uid onto a substrate. There, a dynamic contact

line is shifted with the passage of time and di�erent contact angles arise. This leads

to an advancing contact angle during wetting and a receding one during dewetting.

So we can summarize, that wetting dynamics deal with the time evolution of

moving contact lines on solid surfaces, which describes for instance the spreading

of �uids onto a substrate [33].

The mathematical formulation of wetting phenomena is dependent on the

considered length scale. We roughly distinguish between the macro-, the micro-

and the nanoscale, whereby intermediate states are also described in literature.

The classical continuum model approach allows the description of a wide range

2
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of macroscopic phenomena, while molecular models mainly cover the microscopic

and nanoscopic scale. Although we can also achieve a very high resolution with

the use of continuum models, they are unable to reproduce these microscopic

and nanoscopic phenomena. These have to be included as physical constants or

boundary conditions to the model. There also exist hybrid approaches, so-called

Hybrid-Atomistic-Continuum approaches, which try to cover a wider range of

length scales. In this work, we will focus on macroscopic formulations. Then, the

mathematical model of a wetting process, or more precisely of multiphase �ow, is

governed by the Navier-Stokes equations together with jump conditions to connect

the �ow of the di�erent �uids or phases at their interfaces. In its description, the

classi�cation of the investigated �uids is crucial. There exist di�erent equations

for incompressible or compressible �uids, for viscous or non viscous �uids, for

Newtonian or non-Newtonian �uids and of course, also for a creeping, laminar or

turbulent �ow behavior.

With a valid model, the scope of wetting applications is very widespread. For

example, wetting processes play an important role in functional printing, for Lab-

on-a-Chip technologies and for the optimization of airplane wings or car bodies.

As this thesis is part of the research topics within the CRC 1194, we focus on a

wetting process that is essential for functional printing. Printing electronical devices

requires an extraordinary precision on a relatively small length scale since conductive

elements must not touch each other. Gravure printing is most suitable for such high-

precision printing tasks and is for example also used to print banknotes. Here, the

doctor blading is a very important sub-process. A doctor blade is a sharp steel band

that is scratched over the engraved printing form to remove the excessive ink. In this

way, the ink remains almost exclusively inside the engraved cups and only reaches

those areas on the print medium that are to be printed on. This is a crucial point

when printing the smallest electronic connections, for example, because otherwise

undesirable power bridges would occur and would disturb the printed device. A

speci�c wetting behavior is thereby pursued and leads to the following questions.

How should material parameters be chosen to reach a speci�c wetting behavior, for

example to reach a prescribed spreading? How can we in�uence the �lm formation in

our printing process with changing geometrical quantities like the inclination angle

of the doctor blade or the shape of the doctor blade itself? Generally, how can we

calculate an optimal solution for this type of wetting phenomena mathematically?

Among others, these are the questions that will be answered within this work.

3
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1.2 Related Work

Multiphase problems are the subject of active research as they are very important

for many technical processes. While the e�orts for single �uids and free boundary

problems are already advanced, the multiphase case is based on these results and

was therefore only able to develop properly in the last few decades. Let us get a little

overview of how the topic has developed. The Navier-Stokes equations describing

�uid �ow have been studied by many mathematicians. Mathematical questions are

the existence, uniqueness and stability of solutions, so it is of interest if a problem

is well posed. Then, there are also questions concerning the regularity of solutions

as well as appropriate solution concepts and the qualitative properties of solutions,

e.g., stability, long time behavior or equilibrium conditions. An early comprehensive

work was provided by Temam in [91], who proved basic ideas for existence and

uniqueness results of the single �uid Navier-Stokes equations. Since we can not

mention all of the numerous works concerning the Navier-Stokes equations, we will

focus on results where surface tension occurs. In the case of a bounded domain,

existence results local in time for the corresponding free boundary problem were for

example derived by Solonnikov, who mentioned existence of the problem in the

L2 Sobolev-Slobodetskii space in a series of papers, see e.g., [87] and further paper

cited therein, by Schweizer for a semigroup setting [80] and by Mogilevskii

together with Solonnikov, who covered the case of Hölder spaces [60, 87]. More

recent results were provided by Shibata and Shimizu in [83, 86], who showed

local existence and uniqueness in the case of a perturbed in�nite layer or halfspace

as initial domain and for a setting with anisotropic Sobolev spaces W 2,1
p,q , where

2 < p <∞ and n < q <∞. Global existence results were for example provided by

Beale in [9], if the initial state and the initial velocity are close to equilibrium and

gravity and surface tension e�ects are included. Here a layer of viscous, incompress-

ible �uid in an ocean of in�nite extend was assumed, bounded by a lower solid and

an upper free surface. These works paved the way towards more evolved multiphase

�ow problems. Based on Lagrangian coordinates, Denisova established existence

and uniqueness results of local strong solutions for a two-phase case where one of

the domains is bounded in [22] and together with Solonnikov for a transformed

problem with an implicit representation of the free boundary, see [23]. Further

relevant results were for example developed by Abels in [1] and Tanaka in [90].

Furthermore, Prüss and Simonett showed local well-posedness of the underlying

linear problem by means of Lp-maximal regularity [70], which forms the basis of

our di�erentiability investigations of the control-to-state operator. Moreover, they

prove that the interface as well as the solution becomes instantaneously real analytic.
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Besides the theoretical aspects, the numerical considerations of the introduced

problem formulation and their implementations are considered in the present work,

which is assigned to the research �eld Computational Fluid Dynamics (CFD).

This is unavoidable, since the Navier-Stokes equations can be solved analytically

just in very speci�c cases. Also in our case, we have to solve them numerically.

Here, the consistency between the continuous and the discretized model equations

as well as respective solution procedures are of special interest. The origin of

CFD can be traced back to the late 1950s and early 1960s years [93], with the

aim to move away from experimental studies and empirical correlations to more

general applicable and accurate mathematical models of engineering systems. One

of the �rst numerical methods, which was able to treat the full Navier-Stokes

equations, was the marker-and-cell (MAC) method, introduced 1965 by Harlow

and Welsch in [38]. Here, rudimental multiphase �ows, at �rst only with a free

boundary, could be solved. From this, the volume of �uid (VOF) method was

developed at the beginning of the 1980s and �rst described by Hirt and Nichols,

see [42], where the originally used tracking of particles was replaced by a marker

function advected with a transport equation. To overcome the lack of interface

di�usion over numerous cells, which resulted from the cell-averaged marker function

[93], the VOF method was adapted with di�erent interface reconstructions, e.g., by

Ashgriz and Poo in [6] or later by Scardovelli and Zaleski in [78], to name

only a few of them. Besides the MAC and VOF method, other numerical methods

were developed over the course of time, such as front-tracking by Unverdi and

Tryggvason [97] as well as the level-set method by Osher and Sethian [63] or

the phase-�eld approach by Kobayashi [54], but we will not go into details here.

With the great progress in CFD, also the optimization of �ow problems came

into focus, especially optimal control of �uid �ow. The di�culties of multiphase

�ow problems are, that we have to deal with highly nonlinear partial di�eren-

tial equations (PDEs), small length and short time scales and that the phase

boundaries are part of the solution. PDE constrained optimization embodies

analysis, discretization, and the development of dedicated optimization methods

for minimization problems constrained by partial di�erential equations [96]. For

the optimization theory, especially the di�erentiability of the functionals and the

constraints is required to ful�ll necessary and su�cient optimality conditions. The

derivative based optimization is more e�cient than derivative-fee methods and

appropriate for our problem formulation. There are many di�erentiability results

but primarily for the single phase case, for the multiphase case without surface

tension or for representations with a di�use interface model. Various optimal

control problems for the single phase time-dependent Navier-Stokes equations were
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for example treated in [2, 31, 40, 95] and numerous other contributions. An optimal

control problem of a binary �uid described by its density distribution without

surface tension is investigated in [8]. Based on the thermodynamically consistent

di�use interface model, Garcke, Hinze and Kahle derived necessary optimality

conditions for the time-discrete and the fully discrete optimal control problem

with respect to distributed and boundary controls [32]. Compared to the sharp

interface approach, the interface is assigned a transition region with �nite thickness,

which leads to a thin interfacial layer. However, research about di�erentiability

properties of the two-phase Navier-Stokes equations are quite rare. The main

challenges in this case are the moving interface and the surface tension. To the

best of our knowledge, this is the �rst work providing di�erentiability properties

of control-to-state mappings for sharp interface models of two-phase Navier-Stokes

�ow with surface tension, previously published in [25]. In our case, the solid-gas or

solid-liquid interface maintains its shape, because the solid is not �exible. Moreover,

there is also a very interesting �eld of research which deals with �exible solids

where the location of the solid can change in response to �uid �ow, see [10, 39].

This sub-discipline of multiphase �ow includes Fluid-Solid interactions, but it is

beyond the scope of this thesis. It is still worth mentioning, because a technique

similar to ours was recently used in [39] to show di�erentiability properties for

shape optimization of �uid-structure interaction, but with the di�erence of using a

di�erent �x point argument.

Di�erent numerical approaches for the optimal control of two-phase �ows are

discussed in [17] by Braack et al., especially a level-set technique and an Allan-

Cahn phase-�eld model. The challenge herein is the treatment of the interface,

whereby care must be taken to ensure a su�ciently sharp interface between the two

phases with appropriate consideration of the surface tension forces. Also for this

challenge, the present work aims to give a consistent numerical formulation and to

provide an optimization framework for wetting phenomena. But there are still a lot

of open questions regarding wetting dynamics. An example is the moving contact

line paradox, which was recently investigated by Fricke, also a member of the CRC

1194. He observed, that the classical no-slip condition at solid boundaries seems to

be incompatible with dynamic wetting phenomena [30]. Despite the intensive work

done in this �eld of research in recent years and the knowledge already gained,

there is still much to be done. With our work we would like to contribute to

a better understanding of multiphase problems and especially make a pro�table

contribution in the �eld of derivative calculations of the incompressible Navier-

Stokes equations with surface tension. Furthermore, our results provide new insights

to the optimization of problems involving moving contact lines.
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1.3 Outline of the thesis

We have seen that optimization of wetting phenomena requires the investigation of

multiphase �ow which is described by the Navier-Stokes equations. Chapter 2 con-

tains a detailed derivation and description of such multiphase �ow problems with

di�erent approaches. First, a standard description is given where the Navier-Stokes

Equations are supplemented by jump conditions to connect the �ow of the di�er-

ent �uids or phases at their interface. Afterwards, we present the volume of �uid

approach, an equivalent representation without resorting to jump conditions. Here,

the di�erent �uids or phases are treated as one single �uid with an inhomogeneous

density and viscosity distribution in the domain. The advection of the interface

is described with an additional transport equation. This leads to one single set of

equations that represent the �ow. Additionally, we will have a closer look to the

treatment of surface tension, appropriate boundary conditions as well as the contact

line between the di�erent �uids and the solid surface. In Chapter 3, the optimal

control problem is introduced. Since we pursue a derivative based optimization ap-

proach, the sensitivity equations of the problem have to be determined and a rigorous

investigation of di�erentiability results for the control-to-state mapping is necessary.

Therewith, we have all ingredients to formulate a sensitivity-based optimization al-

gorithm for wetting problems. Analytical solutions of the Navier-Stokes equations

are available just in very speci�c cases, for which reason they are usually solved nu-

merically. The numerical solution of the introduced problem is subject of Chapter

4, where we present the spatial discretization of the domain with the Finite Volume

method, a temporal discretization and some numerical solution procedures to han-

dle the Navier-Stokes equations as well as the additional transport equation from

the VOF model. Furthermore, the simulation with OpenFOAM is mentioned and

how governing equations, initial and boundary conditions are treated. In Chapter

5, results from the optimization theory and numerical considerations are combined

to optimize the doctor blading process, which exempli�es a wetting process. Di�er-

ent optimization problems are applied to a test case, designed for the investigation

of various wetting phenomena. Besides solving parameter identi�cation problems,

the shape of the doctor blade and other domain variations are optimized to ob-

tain good printing results. After presenting some numerical results, we conclude

with a summary of our investigations and an outlook on future work in Chapter

6. Moreover, the developers documentation of the implemented OpenFOAM code

should be mentioned, which is discussed in Appendix B. Here, a walk through the

OpenFOAM code as well as compile options and user speci�cations shall help to

reproduce numerical results and apply the developed solver to own optimization

problems.
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CHAPTER 2

Description of Multiphase Flow

In this chapter we derive the governing equations for �uid �ow. Therefore, some

basic notations and de�nitions of function spaces are required, which are provided in

the �rst section and will be frequently used throughout the thesis. Afterwards, we

describe the representation of a two-phase domain, before we come to the fundamen-

tal conservation equations of �uid �ow. Starting from a standard description, we

will successively build up a comprehensive model for multiphase �ow with a sharp

interface separating immiscible �uids or phases respectively. Established results of

existence and uniqueness are presented for the classical description with jump con-

ditions and possible boundary conditions are described. If the �uid interface touches

the outer boundary, further contact line dynamics come into play, which are dis-

cussed in detail subsequently. Then, an equivalent formulation is presented with the

Volume of Fluid approach, where additional equations and boundary conditions en-

ter the model and the treatment of surface tension is modi�ed. The formulations are

based on the continuum hypothesis, the hypothesis of sharp interfaces and neglect-

ing intermolecular forces. The continuum hypothesis declares that the density of a

�uid volume can be well approximated with a smooth function ρ, if the dimensions

of the volume are above a few tens of nanometers [93]. As the dimensions range

from micro- till millimeters in this work, the hypothesis is an acceptable assump-

tion. The sharp interface hypothesis indicates that a sharp interface separates the

di�erent phases, for example a liquid and a gas, or two di�erent liquids. This means

that the thickness of the interface is vanished and that the �uid properties generally

change across the interface. In addition, the neglect of intermolecular forces includes

ignoring forces like electrostatic attractions between atoms or molecules. But note

that van der Waals forces are implicitly treated by their most important e�ect, the

capillarity, which enters as surface tension in our model [93].
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Chapter 2. Description of Multiphase Flow

2.1 Basic Notations and De�nitions

Although numerical techniques are used to calculate an explicit solution of the �ow

system for exclusive test cases, we nevertheless need a suitable solution theory for the

governing equations of �uid �ow. We will need the basic theory for the derivation of

di�erentiability results in Chapter 3.3, which in turn are fundamental for the theory

of derivative-based optimization of the considered �ow problems. In general, we can

not expect that PDEs have solutions in a strong sense, what also applies to the

Navier-Stokes equations. Therefore the concept of weak solutions is used, which can

be seen as an extension of a classical solution. While we use C-spaces of continuous

functions in the classical solution theory for ordinary partial di�erential equations,

we further need Lebesgue, Sobolev and Bochner spaces to deal with time dependent

PDEs. In the following, we introduce the conventional de�nitions for these in�nite

dimensional function spaces, see e.g. [102, 92], and recapitulate important and useful

theorems.

2.1.1 Function Spaces for Fluid Flow

Let Ω ⊂ Rn be an open domain with n ∈ N. We denote the set of continuous

functions on Ω by C(Ω). For k ∈ N, the set Ck(Ω) contains additionally continuous

derivatives up to order k. Furthermore, we write C∞(Ω) :=
⋂
k∈N C

k(Ω) for the set

of in�nitely many times di�erentiable functions. Another important representative

of these spaces is the so-called set of test functions C∞0 (Ω), the set of in�nitely many

times di�erentiable functions with compact support

C∞0 (Ω) := {ϕ ∈ C∞(Ω) : supp(ϕ) is compact in Ω} ,

where the support of a function ϕ is de�ned as supp(ϕ) := {x ∈ Ω : ϕ(x) 6= 0} ⊂ Ω.

Moreover, we de�ne the set of β-Hölder continuous functions with β ∈ (0, 1] as

Ck,β(Ω) :=
{
ϕ ∈ Ck(Ω) : ∃C > 0 s.t. |Dαϕ(x)−Dαϕ(y)| ≤ C|x− y|β

∀x, y ∈ Ω and |α| = k} .

The function space C0,1(Ω) is called the set of Lipschitz continuous functions on Ω

and hence, a C0,1-boundary is called Lipschitz boundary. For the purpose of clarity,

we write BC(Ω) for the space of bounded continuous functions on Ω and BUC(Ω)

for the space of bounded uniformly continuous functions on Ω, both equipped with
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the supremum norm

BC(Ω) := {ϕ ∈ C(Ω) : ϕ is bounded and continuous on Ω} ,
BUC(Ω) := {ϕ ∈ C(Ω) : ϕ is bounded and uniformly continuous on Ω} .

Analogously to the C spaces, BCk(Ω) and BUCk(Ω) are de�ned as the space of

k−times continuously di�erentiable functions with bounded continuous or bounded

and uniformly continuous derivatives up to order k. Note that boundedness and

uniform continuity are automatically satis�ed if Ω becomes compact, so that in this

case BCk(Ω) and BUCk(Ω) conform to Ck(Ω).

The Lebesgue space of measurable functions on Ω, whose members are Lebesgue-

integrable to the power p, is denoted by Lp(Ω) with 1 ≤ p ≤ ∞

Lp(Ω) :=

{
f : Ω→ Rn :

∫
Ω

|f(x)|p dx <∞
}
.

(
Lp(Ω), ‖·‖Lp(Ω)

)
de�nes a Banach space, if it is equipped with the following norm

‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|p dx
)1/p

.

Let further L∞(Ω) denote the space of measurable functions on Ω, which are essen-

tially bounded, i.e., we de�ne

L∞(Ω) :=

{
f : Ω→ Rn : ess sup

x∈Ω
|f(x)| dx <∞ a.e.

}
.

L∞(Ω) is complete equipped with the norm ‖f‖L∞(Ω) := ess supx∈Ω |f(x)| dx and

therefore again a Banach space. With L1
loc(Ω) we denote the space of all measurable

functions f ∈ C1(Ω), which are integrable over each compact subset K ⊂ Ω, hence

f ∈ L1(K) for all K.

By W k,p(Ω), with k ≥ 1 and 1 ≤ p ≤ ∞, we denote the well known Sobolev space

of functions admitting weak derivatives up to order k in Lp(Ω) by

W k,p(Ω) := {f ∈ Lp(Ω) : Dαy ∈ Lp(Ω) for all |α| ≤ k} ,

where Dα are the weak partial derivatives of order |α| ≤ k, for a multiindex α =

(α1, ..., αn) ∈ Nn0 with order |α| :=
∑n
i=1 αi. For 1 ≤ p < ∞, we equip W k,p(Ω)

11
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with the norm

‖f‖Wk,p(Ω) :=

∑
|α|≤k

∫
Ω

|Dαf(x)|p dx

1/p

and W k,∞(Ω) is equipped with the norm

‖f‖Wk,∞(Ω) := max
|α|≤k

‖Dαf(x)‖L∞(Ω).

Note, that all Sobolev spaces W k,p(Ω) are Banach spaces. In the case p = 2, we

write as usual Hk(Ω) := W k,2(Ω). Hk(Ω) is a Hilbert space, since it is complete

with respect to the norm induced by the scalar product. To treat boundary values

of functions in Sobolev spaces, we introduce the space W k,2
0 (Ω) as the closure of

C∞0 (Ω) with respect to the norm ‖ · ‖Wk,p(Ω). Moreover we set

Hk
0 (Ω) := W k,2

0 (Ω).

Inhomogeneous boundary values are treated with the trace operator concerning

functions in W k,p(Ω), where the following proposition holds [3].

Proposition 2.1. Assume an open and bounded domain Ω ⊂ Rn with Lipschitz

boundary ∂Ω. For k ∈ N and 1 ≤ p < ∞, there exists a unique bounded linear

operator τ : W k,p(Ω)→ Lp(∂Ω), such that τf = f |∂Ω for all f ∈W k,p(Ω)∩C(Ω̄).

Proof. For a proof of this proposition we refer e.g., to [3].

Remark 2.2. 1. We call τf the trace of f on ∂Ω,

2. The trace operator is continuous: ‖τf‖Lp(∂Ω) ≤ cτ‖f‖Wk,p(Ω) with cτ > 0,

3. For bounded Lipschitz domains applies: H1
0 (Ω) =

{
f ∈ H1(Ω) : τf = 0

}
,

4. The trace operator cannot be continuously extended to Lp(Ω).

Beside the standard Sobolev spaces W k,p(Ω) with k ∈ N, a generalization to inter-

mediate Sobolev spaces of fractional order will be necessary to treat questions of

existence and uniqueness within this work. Therefore, we introduce the Sobolev-

Slobodetskii spaces W s,p(Ω) with s > 0, which coincide with W k,p(Ω) for integer

values of s. For s > 0 and s /∈ N, the fractional Sobolev-Slobodetskii spacesW s,p(Ω)

are equipped with the norm

‖f‖W s,p(Ω) := ‖f‖W [s],p(Ω) +
∑
|α|=[s]

(∫
Ω

∫
Ω

|Dαf(x)−Dαf(y)|p

|x− y|n+(s−[s])p
dx dy

)1/p

.
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Here, s − [s] denotes the largest integer smaller than s, where [s] = s − bsc. The

fractional order Sobolev spaces are also described with so-called spaces of Bessel

potentials [3]. The Bessel potential spaces of order s are denoted by Hs,p(Ω), where

1 ≤ p <∞ and s ∈ R. Hence, they are an extension of the Hilbert spaces Hk(Ω) to

the non integer case. For k ∈ N0 and 1 < p <∞ it holds that Hk,p(Ω) = W k,p(Ω).

Therewith, we de�ne the homogeneous Sobolev space Ḣ1,p(Ω) by

Ḣ1,p(Ω) :=
{
f ∈ L1

loc(Ω) : ‖∇f‖Lp(Ω) <∞
}
,

equipped with the norm

‖f‖Ḣ1,p(Ω) := ‖∇f‖Lp(Ω) =

 n∑
j=1

‖Djf‖pLp(Ω)

1/p

.

For su�ciently smooth domains, the intermediate spaces can also be represented

by the so-called Besov spaces Bs;p,q(Ω) and it holds W s,p(Ω) = Bs;p,p(Ω) if s > 0

and s /∈ N [3]. Besov spaces are especially useful in the study of boundary-value

problems. For p, q = 2 they also coincide with the Bessel potential spaces.

A further class of function spaces are the Bochner spaces, which generalize the

Lp spaces to functions over general Banach spaces. They are very useful when

dealing with time dependent PDEs, since they allow us in some way to decouple

the variables in time and space. Before we can de�ne the Bochner spaces, another

concept of measurability has to be introduced.

De�nition 2.3. Let X be a separable Banach space. A function f : [0, T ] 3 t 7→
f(t) ∈ X is called strongly measurable, if there exists a sequence of step functions

(sk)k∈N : [0, T ]→ X such that

‖sk(t)− f(t)‖X → 0 for almost all t ∈ [0, T ].

This is used for the de�nition of Banach space valued Lebesgue spaces, also de-

noted as Bocher spaces.

De�nition 2.4. Let X be a separable Banach space and I := [0, T ] an interval in

R. For 1 ≤ p ≤ ∞, we de�ne the Bochner-Lebesgue space by

Lp(I;X) :=

f : I → Xstrongly measurable :

∫
I

‖f(t)‖pX dt <∞
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with the norm

‖f‖Lp(I;X) :=

∫
I

‖f(t)‖pX dt

1/p

.

To describe relations and dependencies of the introduced function spaces and the

functions de�ned on it, various embedding theorems exist. In the following, we will

develop some results useful for our studies, starting from the normed spaces X and

Y . By L(X,Y ), we denote the space of bounded linear operators F : X → Y ,

equipped with the operator norm

‖F‖X,Y := sup
‖u‖X=1

‖Fu‖Y <∞.

We write L(X) := L(X,X) as customary. With X∗ := L(X,R) we de�ne the dual

space of X. Note, that L(X,Y ) is a Banach space if Y is one. For such linear

operators between Banach spaces we introduce further concepts of di�erentiability.

Let X and Y be Banach spaces and U ⊂ X open.

De�nition 2.5 (Directional Derivative). The mapping F : U → Y is called direc-

tionally di�erentiable in u ∈ U , if there exists the limit

dF (u, h) = lim
t→0+

1

t
(F (u+ th)− F (u)) ∈ Y

for all h ∈ X. dF (u, h) is called directional derivative of F in the direction h.

Moreover, if a directional derivative is bounded and linear, i.e., F ′(u) ∈ L(X,Y )

with F ′(u) : X 3 h 7→ dF (u, h), F is called Gâteaux di�erentiable in u. This is also

used in the next de�nition.

De�nition 2.6 (Fréchet Derivative). The mapping F : U → Y is called Fréchet

di�erentiable in u ∈ U , if there exists an operator F ′ ∈ L(X,Y ) and a mapping

r(u, ·) : X → Y such that

F (u+ h) = F (u) + F ′h+ r(u, h) ∀h ∈ X : u+ h ∈ U,

and for the remainder term r applies

‖r(u, h)‖Y
‖h‖X

→ 0 for ‖h‖X → 0.

Then, F ′ is called the Fréchet derivative of F in u.
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2.1.2 Di�erential Operators and Theorems

To describe the announced equations, we need to introduce some further fundamen-

tal notations and de�nitions of operators, see e.g., [81]. Let Ω ⊂ Rn, n ∈ {2, 3},
be a bounded Lipschitz domain with boundary ∂Ω. The gradient of a continuous

di�erentiable function y : Ω→ R with respect to x ∈ Ω is denoted by

∇y(x) =

 ∂x1
y(x)
...

∂xd
y(x)

 ∈ Rn.

As customary, we write ∂xi
y for the partial derivative of y with respect to the variable

xi. The vector gradient of a di�erentiable vector �eld y : Ω→ Rn is denoted by

∇y(x) =

 ∇y1(x)>

...

∇yd(x)>

 ∈ Rn×n.

With ∂νy we denote the derivative in the direction of the outer unit normal ν of ∂Ω

∂νy(x) = ∇y(x) · ν(x), for x ∈ ∂Ω.

In the following, we will also use the time derivative ∂y
∂t with the short notation ∂ty.

Furthermore, we will use the following standard notations for di�erential operators

∆y(x) =

n∑
j=1

∂2
xjxj

y(x), ∇ · y(x) = div y(x) =

n∑
j=1

∂xj
y(x)j .

Here, ∆y is the Laplace operator and ∇ · y the divergence of y ∈ Ω. Moreover, it

holds

(y(x) · ∇) =

n∑
j=1

y(x)j∂xj
,

where the operator is applied component wise to a vector �eld.

A fundamental theorem in analysis for di�erential equations is Banach's �xed

point theorem. It forms the basis of further important results like the implicit

function theorem or the Picard-Lindelöf theorem and provides the existence and

uniqueness of �xed points.
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Chapter 2. Description of Multiphase Flow

Theorem 2.7 (Banach's Fixed Point Theorem). Let X be a Banach space,

∅ 6= K ⊂ X a closed set and T : K → K a contraction mapping, which means that

for 0 < Θ < 1 it applies

‖Tx− Ty‖ ≤ Θ‖x− y‖ ∀x, y ∈ K.

Then, T admits a unique �xed point in K.

Proof. A proof can for example be found in [81].

The theorem is valid in in�nite-dimensional spaces, even in general complete met-

ric spaces. Furthermore, no convexity assumption is needed. To prove Fréchet

di�erentiability of control-to-state mappings in the framework of PDE-contrained

optimization, the following implicit function theorem is an important tool [41].

Theorem 2.8 (Implicit Function Theorem). Let X,Y, Z be Banach spaces and let

F : G→ Z be a continuously Fréchet di�erentiable map from an open set G ⊂ X×Y
to Z. Let (x̄, ȳ) ∈ G be such that F (x̄, ȳ) = 0 and that Fy(x̄, ȳ) ∈ L(X,Y ) has a

bounded inverse. Then there exists an open neighborhood UX(x̄) × UY (ȳ) ⊂ G of

(x̄, ȳ) and a unique continuous function w : UX(x̄)→ Y such that

(i) w(x̄) = ȳ.

(ii) For all x ∈ UX(x̄) there exists exactly one y ∈ UY (ȳ) with F (x, y) = 0, namely

y = w(x).

Moreover, the mapping w : UX(x̄) → Y is continuously Fréchet di�erentiable with

derivative

w′(x) = Fy(x,w(x))−1Fx(x,w(x)).

If F : G→ Z is m-times continuously Fréchet di�erentiable then also w : UX(x̄)→
Y is m-times continuously Fréchet di�erentiable.

Proof. The proof can be found in [106].

Our investigations are mostly done in R2 or R3 so we have to deal with surface

and volume integrals, frequently in the same equation. To overcome this problem,

we apply the divergence theorem to convert surface and volume integrals into the

respective other. The divergence theorem, as well known as Gauss's theorem, is the

most important theorem in integral calculus of Rn. It is the n-dimensional analogon

to the fundamental theorem of calculus for functions of one variable. The theorem

enables to replace a volume integral of a vector �eld by a surface integral [29].
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2.2. Conservation Equations

Theorem 2.9 (Divergence Theorem). Let Ω ⊂ Rn be a compact subset with a

smooth boundary, ν : ∂Ω → Rn the outer unit normal �eld and U ⊃ Ω an open

subset of Rn. Then the following equation holds for every continuously di�erentiable

vector �eld F : U → Rn∫
Ω

divF (x) dnx =

∫
∂Ω

F (x) · ν(x) ds. (2.1)

Proof. See for example paragraph 15 in [29].

From a physical point of view, the divergence theorem states that the outward

�ux of a vector �eld through a closed surface is equal to the volume integral of

the divergence over the region inside the surface [29]. Even if the boundary of Ω

is not smooth but contains low dimensional singularities like edges or vertexes and

the vector �eld F is not continuously di�erentiable in a full vicinity around Ω, the

divergence theorem still holds [56].

2.2 Conservation Equations

Conservation equations are the mathematical formulation of fundamental physical

laws. They describe the conservation of a quantity in a closed system. Conservation

equations for mass, momentum and energy, together with state equations, lead to

a full description of macroscopic �uid �ow. Since the focus of this thesis is on

impulse transport, temperature changes do not play a role and therefore energy

conservation can be neglected. At this point, however, it should be noted that the

energy conservation equation is assumed to be ful�lled for all further investigations.

But it is not necessary to solve the energy equation explicitly to �nd the velocity

and the pressure, unless the material properties are functions of the temperature,

which is not the case in our problem formulation.

2.2.1 Conservation of Mass

The principle of conservation of mass states, that mass cannot be created or de-

stroyed [93]. Let V be a volume that is �x in space. We assume, that the continuum

hypothesis holds, which declares that the density of a �uid volume can be well

approximated with a continuous function ρ.
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Chapter 2. Description of Multiphase Flow

Figure 2.1. Stationary control volume V with surface S [93].

The mass M of the volume is then calculated as integral of the density ρ over V

M =

∫
V

ρ dv.

Applying the conservation theory, a change of mass in the volume is a result of mass

transport across its boundary S. Based on Reynolds transport theorem, the mass

�ux through a surface element ds is the product of ρ and the velocity u of a small

mass volume dv, multiplied with the outward normal n

d

dt
M =

d

dt

∫
V

ρ dv = −
∫
S

ρu · n ds.

See Figure 2.1 for the notations. Now we apply the divergence theorem, equation

(2.1), to convert the surface integral to a volume integral and obtain

d

dt

∫
V

ρ dv +

∫
V

∇ · (ρu) dv = 0.

For a volume that is �x in space, we can additional take the derivative inside the

integral ∫
V

[∂tρ+∇ · (ρu)] dv = 0.

For any arbitrary volume V , this equation is true, if the argument of the integral is

equal to zero. This leads to the partial di�erential equation of mass conservation,
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2.2. Conservation Equations

which has the following coordinate free vector form

∂tρ+∇ · (ρu) = 0. (2.2)

In the case of incompressible �uids the density does not change over time, so the

mass conservation equation simpli�es to

∇ · u = 0, (2.3)

which we will denote as continuity equation in the following.

2.2.2 Conservation of Momentum

The principle of momentum conservation indicates, that the rate of change of �uid

momentum in a �xed volume V is the di�erence in momentum �ux across the

boundary S plus the net forces acting on V [93]. This results in

d

dt

∫
V

ρu dv = −
∫
S

(ρu⊗ u) · n ds+

∫
V

f dv +

∫
S

T · n ds. (2.4)

The net forces acting on the volume are composed of the total body force on V and

the total surface force on S. The body force f per unit volume can for example in-

clude the gravitational force, centrifugal and Coriolis forces, electromagnetic forces,

etc. Surface forces are pressures, normal and shear stresses, surface tension, etc.

[28]. The term of the total surface force contains a symmetric stress tensor T [93],

where n multiplied with T is the force on a surface element ds with a normal n. For

Newtonian �uids, the stress may be assumed to be a linear function of the rate of

strain S [93]

T = (−p+ λ∇ · u)I+ 2µS, (2.5)

where p is the pressure, λ the second coe�cient of viscosity, I the unit tensor, µ

the viscosity and S = 1
2 (∇u+∇u>) the rate of strain or deformation tensor [93]. If

we assume Stokes' hypothesis to hold, we can choose λ = −( 2
3 )µ [93], which is also

referred to be the dilatation viscosity.

By applying the divergence theorem to equation (2.4), similar to the approach for

mass conservation in Section 2.2.1, we receive the following expression

∂t(ρu) = −∇ · (ρu⊗ u) + f +∇ ·T. (2.6)
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Chapter 2. Description of Multiphase Flow

If we use the de�nition of the substantial derivative, equation (2.6) corresponds

exactly to Cauchy's equation of motion and is valid for any continuous medium

[93]. Together with the selected stress tensor, equation (2.5), Cauchy's equation of

motion results in the momentum equation for �uid �ow

∂t(ρu) +∇ · (ρu⊗ u) = f −∇p+∇(λ∇ · u) +∇ · (2µS). (2.7)

As already mentioned, we focus on incompressible �uids in this work. This implies

a divergence-free velocity �eld, so the term containing λ vanishes. This term is only

of importance for compressible �uids. Another point are the gravitational forces we

referred to brie�y. Usually, gravity can be neglected if the length scale of the problem

is well below the capillary length lc =
√
σ/(∆ρ g), see for example [30], where σ

is the surface tension coe�cient, ∆ρ = ρ2 − ρ1 the density di�erence between two

phases and g the gravitational acceleration. This is not the case in the macroscopic

wetting processes we consider, so the gravitational acceleration has to be taken into

account in our further investigation with f = ρg. Considering these two aspects we

obtain the following momentum equation

ρ(∂tu+ u · ∇u) +∇p = ∇ · (2µS) + ρg. (2.8)

The attentive reader will notice from this representation, that the �rst two terms

look di�erent now. Due to the assumption of mass conservation (2.2), it holds

∂t(ρu) +∇ · (ρu⊗ u) = ρ(∂tu+ u · ∇u) + u(∂tρ+∇ · (ρu)) = ρ(∂tu+ u · ∇u).

This even applies to non-constant densities, as long as equation (2.2) holds. Thus,

the convective terms within equation (2.7) and (2.8) are equivalent analytically. But

note, they can lead to slightly di�erent numerical approximations [93].

2.2.3 Navier-Stokes Equations

The Navier1-Stokes2 equations are a nonlinear system of second order partial

di�erential equations. They fully describe the macroscopic �uid �ow and are based

on the conservation equations introduced before.

For a given domain Ω ⊂ Rn, n ∈ {2, 3}, a constant �uid density ρ > 0 and a

dynamic viscosity µ > 0, the incompressible Navier-Stokes equations consist of the

1Claude Louis Marie Henri Navier, 1785 - 1836
2George Gabriel Stokes, 1819 - 1903
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2.3. Standard Description of Two-phase Flow

following momentum and continuity equations [81], here for the case with gravity

ρ(∂tu+ u · ∇u) +∇p = µ∆u+ ρg,

∇ · u = 0.
(2.9)

The �uid velocity u : Ω × I → Rn and the pressure p : Ω × I → R are unknown.

So we obtain four partial di�erential equations with four unknowns for the three

dimensional case. The Navier-Stokes equations are nonlinear because of the

convective term (u · ∇)u. Additional boundary conditions, e.g. a no-slip condition

for the velocity, and an initial velocity �eld complement problem (2.9) to be local

well posed [74]. Up to now, a global analytical solution of the Navier-Stokes

equations in the general three dimensional case was not veri�ed. But there are

extensive statements of existence, uniqueness and regularity for two dimensions [70].

Note, often a simpli�ed version of the Navier-Stokes equations is used. If we want

to describe a very slow �ow, the absolute value of the velocity is small everywhere.

Then, neglecting the nonlinear convective term is a reasonable simpli�cation which

leads to the so-called Stokes equations [81]. Here, e�ects due to inertia are com-

pletely ignored. Another special case are the Euler equations, where the viscosity

is assumed to be very small so the di�usion term of equation (2.9) vanishes. These

equations are for example used to describe inviscid �uids or problems with large

length scales [81]. Furthermore, laminar �ows, such as a pipe �ow, can be repro-

duced very well with this model. However, the simpli�cation of the model is also

accompanied by the fact that turbulence can not be represented with the Euler equa-

tions. In consequence, both simpli�cations are not valid for possibly highly dynamic

wetting processes, so we have to deal with the full Navier-Stokes equations.

2.3 Standard Description of Two-phase Flow

For our considerations, we start with the description of a two-phase problem without

the contact angle problem. We consider the case of two viscous incompressible

capillary Newtonian �uids, which are separated by a hypersurface Γ. In Figure 2.2,

we see a time dependent interface Γ(t) which separates our domain Ω ⊂ Rn+1, n ≤ 1,

into two open sets Ω1(t) and Ω2(t), where Ω := Ω1(t)∪Ω2(t) and Γ(t) := Ω1(t)∩Ω2(t)

with t ∈ I := [0, T ]. Moreover, we denote the normal �eld on Γ(t) by ν(t, ·), pointing
from Ω1(t) into Ω2(t) [70]. The utilized formulation of such a two-phase problem

with sharp interfaces is based on the formulation by Prüss and Simonett in [70] and

will be presented in the following.
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Chapter 2. Description of Multiphase Flow

Figure 2.2. Interface Γ(t) separates open sets Ω1(t) and Ω2(t).

With the previous introduced conservation equations we can summarize the math-

ematical model of a two-phase �uid �ow. Therefore, we have to solve the Navier-

Stokes equations in every bulk phase Ωi(t) with a constant density ρi and viscosity

µi, i = 1, 2

ρi(∂tu+ u · ∇u)− µi∆u+∇p = ρg in Ωi(t),

∇ · u = 0 in Ωi(t).

Together with the Navier-Stokes equations, we need jump conditions to connect the

�ow of the di�erent �uids or phases at their interface. The �rst condition (2.10)

describes the continuity of velocities on both sides of the interface, while the second

condition (2.11) can be seen as the balance of forces across the interface. It applies

JuK = 0 on Γ(t), (2.10)

−JS(u, p;µi)νK = σκν on Γ(t). (2.11)

Here, S(u, p;µi) := −pI+µi(∇u+∇u>) is the viscous stress tensor on Ωi(t) respec-

tively with i = 1, 2, σ > 0 is a given surface tension coe�cient and κ is the mean

curvature of the interface. For a su�ciently smooth Γ(t) the mean curvature is given

by κ(t, ·) = −divΓν(t, ·). The brackets J·K denote the jump across the interface in

direction of ν, which is de�ned as

JφK(t, x) := lim
h→0+

(φ(t, x+ hνΓ)− φ(t, x− hνΓ)), for x ∈ Γ(t), t ∈ I.

The second jump condition, equation (2.11), illustrates the e�ect of surface tension,

which introduces a discontinuity in the normal component of the jump of the viscous

stress tensor JS(u, p;µi)νK proportional to the mean curvature κ [70]. Furthermore,

there is an additional condition on the interface, which ensures the transport of the
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2.3. Standard Description of Two-phase Flow

interface by the �uid velocity

V = u>ν on Γ(t),

where V denotes the normal velocity of the interface. This condition is also called

the kinematic boundary condition, although it should rather be seen as an interface

condition. It implies that �uid particles cannot cross the interface [70]. Besides

the mentioned interface conditions, appropriate initial conditions belongs to the

model. In our case an initial velocity �eld and the initial position of the interface

are required. In summary, we need to solve the following problem with i = 1, 2

ρi(∂tu+ u · ∇u)− µi∆u+∇p = ρg in Ωi(t),

∇ · u = 0 in Ωi(t),

JuK = 0 on Γ(t),

−JS(u, p;µi)νK = σκν on Γ(t),

V = u>ν on Γ(t),

u(0) = u0 on Ω(0),

Γ(0) = Γ0.

(2.12)

Problem (2.12) is a free boundary or rather a moving boundary problem, due to

the fact that the position of Γ is part of the problem and that there are no �xed

domains Ωi. For a clearer representation, we introduce the following notation we

will use frequently in the further investigations, where χΩi denotes the indicator

function of the set Ωi

ρ = ρ1χΩ1
+ ρ2χΩ2

, µ = µ1χΩ1
+ µ2χΩ2

. (2.13)

Note, that this formulation includes no boundary conditions for an outer boundary

∂Ω. This part of the problem description will be considered in Section 2.5, after we

presented some existence and uniqueness results for problem (2.12).

Existence and Uniqueness

Results for the existence and uniqueness of the two-phase Navier-Stokes equations

with surface tension are for example derived from Prüss and Simonett in [70, 68]

and from Köhne et al. in [55] for bounded �uid domains. As we stated before, this

is only possible under a certain regularity. In this case, existence and uniqueness

is shown by means of Lp-maximal regularity, which we will de�ne in Section 3.3.2

23



Chapter 2. Description of Multiphase Flow

more precisely. The initial interface Γ0 is assumed to be close to a halfplane and is

described with the help of a graph of a function h0 on Rn. A so-called smallness

condition is placed on this initial interface function h0 and the initial velocity u0,

which guarantees su�ciently small data. With the compatibility conditions, the ini-

tial data are proven to ful�ll necessary conditions of being a solution of the problem.

Therewith, Prüss and Simonett show the following result, see [70], which at �rst

is only valid for a homogeneous right side of the momentum equation, but can also

be applied to the case with gravity using a small correction.

Theorem 2.10 (Existence, Uniqueness and Regularity of problem (2.12)).

(a) Assume that p > n+3. Then there exists ε0 = ε0(t0) > 0 for a given t0 > 0, such

that for any initial values (u0, h0) ∈W 2−2/p,p(Ω0,Rn+1)×W 3−2/p,p(Rn), satisfying

the following compatibility conditions

JµD(u0)ν0 − µ(ν>0 D(u0)ν0)ν0K = 0, div u0 = 0 on Ω0, Ju0K = 0,

with D(u0) := ∇u0 + (∇u0)T , and the smallness condition

||u0||W 2−2/p,p(Ω0) + ||h0||W 3−2/p,p(Rn) ≤ ε0,

problem (2.12) has a classical solution (u, p,Γ) on (0, t0).

(b) The solution (u, p, JpK, h) is unique in the following function class

E(t0) := {(u, p, r, h) ∈ E1(t0)× E2(t0)× E3(t0)× E4(t0) : JpK = r},

with E1(t0) := {u ∈ H1,p(I;Lp(Rn+1,Rn+1)) ∩ Lp(I;H2,p(Ṙn+1,Rn+1)) : JuK = 0},

E2(t0) := Lp(I; Ḣ1,p(Ṙn+1)),

E3(t0) := W 1/2−1/(2p),p(I;Lp(Rn)) ∩ Lp(I;W 1−1/p,p(Rn)),

E4(t0) := W 2−1/(2p),p(I;Lp(Rn)) ∩H1,p(I;W 2−1/p,p(Rn))

∩W 1/2−1/(2p),p(I;H2,p(Rn)) ∩ Lp(I;W 3−1/p,p(Rn)).

(c) Γ(t) is the graph of a function h(t) on Rn, M =
⋃
t∈(0,t0)({t} × Γ(t)) is a real

analytic manifold, and with O = {(t, x, y) : t ∈ (0, t0), x ∈ Rn, y 6= h(t, x)}, the
function (u, p) : O → Rn+2 is real analytic.

The extensive proof can be found in [70]. Therein, the approach is to transform

the free boundary problem to a problem with �xed interface, which is also denoted

as direct mapping method [69]. We will make use of this result later for our di�er-

entiability results of a two-phase �ow problem see Section 3.3.
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2.4 Related One-Field Formulation

As we have seen in the previous sections, the macroscopic �uid �ow can be modeled

with the aid of conservation equations like conservation of mass and momentum.

In general, these equations have to be solved for every phase separately and jump

conditions are used to couple the solutions at the interfaces. In contrast to this

approach, it is possible to write one set of governing equations for the whole �ow

domain occupied by the various phases, without resorting to jump conditions. The

various phases are treated as one single �uid with variable material properties that

change abruptly at the phase boundary [93]. These so-called one-�eld or one-�uid

methods di�er in their indicator functions and the related advection, where an

indicator function speci�es how the �uid is distributed in a domain.

Thereby we also distinguish between sharp interface and di�use interface models.

Established sharp interface methods are for example the level-set method [89, 82],

or the volume of �uid (VOF) method [42]. While the interface is the zero-level set

of an additional state variable φ in the level-set method, the VOF method de�nes

the interface as sharp transition between zero and one, where for example the liquid

�lled region is set to one and the gaseous phase region is set to zero. In contrast to

the continuous level-set function, this results in a non-continuous indicator function

within the VOF approach. However, this disadvantage is compensated by the useful

property, that the VOF approach holds an inherent mass conservation of the dif-

ferent phases. An example for a di�use interface model is the phase-�eld approach,

where the interface has a �nite thickness and is described in a thermodynamically

consistent way. This results in a more smooth transition of material and transport

quantities. The methods also di�er in how the surface tension is modeled [18], what

we will discuss in more detail in Section 2.4.2. In this work we will consider the

volume of �uid method, where we use a phase fraction function α as indicator func-

tion. The method will be described in the next section for the case of a gas and a

liquid phase.

2.4.1 Volume of Fluid Approach

The VOF approach belongs to the interface capturing methods, where the dis-

continuity of the interface is computed as part of the solution. Here, no special

treatment is employed to take care of the interface itself. That means, that the

interface is not explicitly introduced into the solution using appropriate interface

relations. Hence, no a priori assumptions on the nature of the �uid interface are
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required, which has the bene�cial e�ect, that also strong topology changes can

be handled like the breakup of �uid [72]. In the numerical solution, the interface

capturing methods can lead to a not sharp interface, since it may be smeared

over several grid elements when time advances. But nevertheless, the one-�eld

formulation of the Navier-Stokes equations has the big advantage, that it allows to

use numerical methods developed for single-phase �ows [93]. We will discuss these

methods in Chapter 4.

For the physical model, we assume Ω ⊂ Rn, n = {2, 3}, is a physical domain,

composed of a liquid phase region Ωl and a gas phase region Ωg with Ω = Ωl(t)∪Ωg(t)

for t ∈ [0, T ] = I. De�ne the indicator function α : Rn × I → [0, 1] as

α(x, t) :=

{
1 if x ∈ Ωl(t),

0 if x ∈ Ωg(t).
(2.14)

This indicator function is a step function, which is neither continuous nor di�er-

entiable or weakly di�erentiable. But α has a distributional derivative, which will

be important for the theoretical investigations in Chapter 3.3.6. For the numerical

consideration, α is approximated by integrating over a certain volume, which we

will discuss in Chapter 4.1.1. With the integral we avoid the singular nature of the

step function, leading to values α ∈ (0, 1) within the respective volumes. Then, the

gradient of α exists at the interface and the normal vector of the interface can be

approximated with respect to α [76] by

νΓ(x, t) =
∇α(x, t)

|∇α(x, t)|
on Γ(t). (2.15)

With this de�nition, the curvature can be written in terms of derivatives of α

κ(x, t) = −div νΓ(x, t) = −div ∇α(x, t)

|∇α(x, t)|
on Γ(t). (2.16)

Note, that the curvature is only de�ned at the interface Γ. For the density and

viscosity in Ω we de�ne

ρ(α) = αρl + (1− α)ρg, (2.17)

µ(α) = αµl + (1− α)µg, (2.18)

where ρl and ρg as well as µl and µg are constant values for the respective phase.

Note, that density and viscosity are also discontinuous at the interface Γ, due to

their dependency of α.
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In a dynamic system, the �uid moves through the domain. Hence, the gas-liquid

interface is transported with the velocity �eld. This motion is described with a scalar

advection equation, which we also denote as α-transport equation. With the above

de�nition of the density, equation (2.17), and the assumption of a divergence-free

velocity �eld, the following hyperbolic transport equation results from the conser-

vation of mass, see equation (2.2)

∂tα+∇ · (αu) = 0 (2.19)

In Appendix A.1 we provide a detailed derivation of this equation. Due to the

absence of di�usive terms in the scalar transport equation, the phase fraction �eld α

remains discontinuous across the interface Γ(t). This leads to challenges in numerical

considerations, since oscillations or numerical di�usion can occur. With appropriate

methods, this can be counteracted and will be discussed in more detail in Chapter 4.

The VOF method also distinguishes between a geometric and an algebraic ap-

proach. In the algebraic approach, the interface is solely implicitly given by the

phase fraction function α. Contrary to the algebraic approach, the interface is ex-

plicitly reconstructed within the geometric VOF method. But this is associated

with a considerably larger computational e�ort in numerical investigations, espe-

cially in the case of unstructured meshes. Extensive studies regarding the geometric

approach are carried out in [59]. Summarized, the interface position in the applied

VOF method is captured implicitly introducing the phase indicator function α for

one of the phases along with its corresponding transport equation. In consequence,

our �ow system is appended by a transport equation with another state variable α

in addition to the Navier-Stokes equations, which are itself only solved for velocity

and pressure. We consider this one-�eld formulation since it plays a fundamental

role for the numerical consideration of the problem mentioned in Chapter 4.

2.4.2 Modeling the Surface Tension

In methods based on the one-�uid or one-�eld formulation where an indicator

function is de�ned for the whole domain, no jump conditions arise anymore, in

which the surface tension was located mathematically before. But the surface

tension plays an important role for the modeling of multiphase �ow. It is the

surface energy per unit area of a �uid and keeps the �uid shape. So it has a big

impact on the accuracy of the solution. Instead of the use of jump conditions, the

surface tension is added as a body force to the discrete version of the Navier-Stokes

equations [93]. The standard approach in this case is the continuous surface force
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Chapter 2. Description of Multiphase Flow

(CSF) method, introduced by Brackbill et al. in 1992 [18].

In general, the surface tension is a function of temperature and the equilibrium

surface tension depends on the pair of contacting materials [84]. For the given

problem we assume, that the temperature does not change in time. According to

that, e�ects like the Marangoni E�ect are neglected for the moment. Then the

surface tension force is given by fσ integrated over a surface part S. By using the

divergence theorem, see Theorem 2.9, the following surface integral is converted to

a volume integral, to involve the force as body force into the momentum equation∫
S

fσ ds =

∫
V

fσδS dv,

with Dirac distribution δS . The singular terms δS form the counterpart of the jump

conditions in the classical description and it can be shown that both formulations

are equivalent [93]. For a constant surface tension coe�cient σ, the surface tension

force can be replaced by the term σκν

fσδS ≈ σκνδS ,

where κ is the curvature and ν the normal of the interface. When we replace

the interface normal by (2.15) and approximate the Dirac distribution δS by |∇α|,
which corresponds to the CSF approach according to [93], we obtain the following

statement

fσδS ≈ σκ∇α.

Hence, with this expression we arrive at the following approximation of the momen-

tum equation (2.8) including the surface tension [18]

ρ(∂tu+ u · ∇u)− µ∆u− ρg +∇p = σκ∇α. (2.20)

In summary, the VOF representation of the introduced multiphase problem con-

sists of the state equations (2.20), (2.3) and (2.19), the additional equations for

density and viscosity (2.17) and (2.18) as well as appropriate initial conditions for

the three state variables velocity u, pressure p and phase fraction α. Due to the

interface capturing character of this formulation and the fact, that all variables are

de�ned for the whole domain, Ω is not dependent on the time anymore.
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Summarized we obtain

ρ(∂tu+ u · ∇u)− µ∆u− ρg +∇p = σκ∇α in Ω× I,
∇ · u = 0 in Ω× I,

∂tα+∇ · (αu) = 0 in Ω× I,
ρlα+ ρg(1− α) = ρ in Ω× I,
µlα+ µg(1− α) = µ in Ω× I,

(u, p, α)(0) = (u, p, α)0 in Ω(0).

(2.21)

Note, that this problem, similar to problem (2.12), does not contain boundary

conditions for an outer boundary ∂Ω. This part of the problem formulation will

be treated in the following sections and is also not yet taken into account for the

theoretical investigations of the optimization problems in chapter 3. Hence, di�er-

entiability results are derived in Section 3.3 for problem (2.12) and (2.21), in both

cases without boundary conditions and without the contact line problem. This is

already a challenging task and has not yet been investigated, so far as we know.

The full VOF system with appropriate boundary conditions including a dynamic

contact angle treatment will be applied for the numerical considerations and the

applications, dealing with in the Chapters 4 and 5.

2.5 Boundary Conditions

So far, we did not considered an outer boundary of our domain, although it is an

important part of wetting problems. From now on we suppose a bounded domain

Ω with Lipschitz boundary ∂Ω, which is �lled with two di�erent �uids or phases.

Figure 2.3. A two-phase domain with outer boundary ∂Ω [69].
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As depicted in Figure 2.3, only one �uid touches the outer boundary, so no contact

line between the �uids and a solid surface is included at this point. Remember, that

we say boundary if we talk about the outer boundary ∂Ω and indicate the boundary

between the di�erent �uids as interface Γ. The most common boundary condition

for viscous �uid �ow is the no-slip condition, a homogeneous Dirichlet condition for

both the normal and the tangential component of the velocity

u = 0 on ∂Ω. (2.22)

If there is an additional movement of the outer boundary, e.g. a tangential wall

velocity Uwall, the �uid velocity is set equal to the velocity of ∂Ω

u = Uwall on ∂Ω.

The two conditions are valid for viscous, incompressible �uids and imply, that the

�uid sticks to the boundary [93]. In case that viscous stresses are absent, so when

we consider inviscid �uids, the �uid can slip freely at the wall and only the normal

velocity is equal to that of the wall [93]. Then, a Navier-slip boundary condition is

more suitable, which introduces an arti�cial slip with slip length L > 0 and holds

for the tangential velocity component ut by

ut + L(Sν∂Ω)t = 0 on ∂Ω. (2.23)

Here, ν∂Ω denotes the normal of the outer boundary and S = 1
2 (∇u +∇u>) again

the rate of strain or deformation tensor. Only the tangential part of the product is

taken as well. The slip length L is the distance at which the velocity would vanish if

it is extrapolated inside the wall [93]. Again, the right hand side of equation (2.23)

is set to Uwall, if there is a tangential wall velocity. The normal component of the

velocity is equal to zero, or, in case of Uwall 6= 0, equal to the respective value

u>ν∂Ω = 0 on ∂Ω. (2.24)

The di�erence between the no-slip and the Navier-slip condition is clearly shown

in Figure 2.4. While the normal and tangential velocity components are equal to

zero at the wall if the no-slip condition holds, see the left graph in Figure 2.4, there

is a small tangential velocity component at the wall if the Navier-slip condition is

applied, see the right graph in Figure 2.4. This allows the �ow to slip a bit along

the solid surface and a di�erence between the velocity of the wall and the tangent

velocity of the liquid near the wall may occur. In fact, this slip plays an important

role for the simulation of real experiments, since the simple no-slip condition is

not able to reproduce most of the experimental results in not ideal systems. The
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2.5. Boundary Conditions

Figure 2.4. No-slip (L = 0) on the left and Navier-slip (0 < L <∞) on the right.

slip length depends on the characteristics of the system. A value in the scope of

nanometers is suitable for the wetting phenomena considered in this work, since

the �ow processes close to the contact line take place in the order of a few to tens

of micrometers [88]. Note, that from a numerical point of view the real slip length

can not necessarily be resolved, then a slip length in order of the mesh size is most

e�cient [72]. Since these wetting problems mainly deal with inviscid or very low

viscosity �uids, applying the Navier-slip condition is appropriate and will be consid-

ered in the numerical applications. But there is another reason, why the Navier-slip

condition is more suitable in our case. We want to include a three phase contact

line in our model, which implies a dynamic contact angle behavior at the boundary.

As already known from literature [45] and shown in detail by Mathis Fricke in his

dissertation [30], the no-slip boundary condition causes a stress singularity when

approaching the contact line and results in a divergence of viscous stresses. This

prevents its displacement and is called the moving contact line paradox. However,

the Navier-slip condition allows the liquid to move as it slips on the solid surface. A

detailed insight to the treatment of dynamic contact lines is given in the next section.

Another important role in �uid dynamics play in�ow and out�ow boundary con-

ditions, e.g. of special interest in streaming channels or if just a part of the liquid

�lled domain is considered [93]. Then, arti�cial boundaries have to be de�ned for

the numerical solution even if the physical problem relates to a larger domain. As

in�ow condition, a velocity �eld is prescribed in most of the cases, whereas realistic

out�ow boundaries are more challenging. Here, a balance has to be found between

enlarging the domain to have minimal in�uence on the upstream �ow and keeping

the computational costs as low as possible. A standard out�ow condition is the

so-called do-nothing condition, a homogeneous Neumann condition for both, the
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Chapter 2. Description of Multiphase Flow

velocity and the pressure at the out�ow boundary, de�ned as

(µ∇u− pI) · ν∂Ω = 0 on ∂Ω. (2.25)

This condition allows for in- and out�ow simultaneously, hence a possible back�ow

at the out�ow boundary is also taken into account. Another in�ow boundary with a

special in�ow condition is not used in the following, so we will not go into it further.

The out�ow condition (2.25) becomes important in our numerical investigations in

Chapter 5 and is reasonable, since the out�ow region is far away from the area of

interest.

2.6 Dynamic Contact Line Treatment

If besides an interface between di�erent phases and an outer boundary additionally

a contact to a solid surface comes into play, we have to consider further hydrody-

namic aspects. This is the case because we no longer have just an interface but also

a boundary with a three phase contact point between three di�erent phases in two

dimensions, or a three phase contact line in the three dimensional case. We write

Σ for this part of the outer boundary. Therefore we need to expand our previous

models by further equations, in particular by further boundary conditions.

Before introducing suitable equations, we have to examine the di�erent concepts

of contact angles. We distinguish between the so-called actual or microscopic

contact angle and the macroscopic one. While the microscopic contact angle relates

to the surface roughness, the macroscopic contact angle is de�ned as the angle

between the plane surface, that approximates the liquid-gas interface in the vicinity

of the contact line, and the solid surface. It is usually assumed to be equal to the

static one, even for non-zero contact line speed [84]. Note that the macroscopic

contact angle also di�ers from the apparent contact angle, which is de�ned as the

angle formed by free and solid surfaces far from the contact line. But the main

role in the description of the hydrodynamic characteristics of wetting phenomena

belongs to the macroscopic contact angle [84], the one we mean when we speak of

contact angles in the following.

In a stationary system, a �uid has a speci�c static contact angle, which depends on

the material properties of the �uid and the solid surface. For homogeneous, smooth

and �at surfaces the equilibrium contact angle θe is described with the Young's
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2.6. Dynamic Contact Line Treatment

equation [104] as follows

σlg cos(θe) + σsl = σsg,

where we write σlg for the surface energy of the liquid-gas interface, σsl for the

surface energy of the solid-liquid interface and σsg for the surface energy of the

solid-gas interface. The surface energy σlg is what we will refer to in the following

as the surface tension σ. The relation of the di�erent surface energies and the

equilibrium or static contact angle is depicted in Figure 2.5.

Figure 2.5. Equilibrium contact angle according to Young's law.

For an equilibrium contact angle θe equal to 0 we talk about complete wetting,

while the case 0 < θe < π is called partial wetting. If there are further forces acting

on the droplet, a more dynamic behavior of the liquid-gas interface can be observed.

Imagine a droplet running down the window. The shape of the droplet is no longer

the same as for a droplet in equilibrium, it is tilted in some way. In direction of

motion, the contact angle is greater than on the other side. We call them advancing

and receding contact angles. The advancing contact angle is de�ned as the largest

static contact angle before the three phase contact line starts to move, hence wetting

the surface, while the receding angle is de�ned as the smallest static contact angle

before the three phase contact line starts receding, hence dewetting the surface [50].

These two angles are also speci�c for certain materials and can be measured by

experiments. Hence, the more realistic way of considering wetting or dewetting is

to take a dynamic contact angle into account. A static contact angle works for

static contact lines, but is non-physical when they move. In practice, more or less

complicated empirical models have been developed, based on the observations, that

the dynamic contact angle increases with increasing the contact line velocity and

that the dynamic contact angle increases more rapidly for more viscous liquids [52].

Almost all models are based on the capillary number Ca, de�ned as

Ca =
µl ucl
σlg

,

where µl is the dynamic viscosity of the liquid phase, ucl the velocity of the contact

line and σlg again the surface tension of the liquid-gas interface. A well recommended

model is the Kistler model, which uses the following Ho�man equation to describe
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Chapter 2. Description of Multiphase Flow

the dynamic contact angle θd [52, 43]

θd = fH(Ca) = arccos

{
1− 2 tanh

[
5.16

(
Ca

1 + 1.31Ca0.99

)0.706
]}

.

Here, fH is the so-called Ho�man function. This relation applies only to complete

wetting. For an equilibrium contact angle θe > 0, the Ho�man function has to be

shifted secondary as follows

θd = fH
[
Ca+ f−1

H
(θe)

]
. (2.26)

To calculate the inverse of Ho�man's empirical function f−1
H

, Kistler's model uses

an approximation by the Ho�man-Voinov-Tanner law, which is a simpler empirical

model for the dynamic contact angle, but applies only to small contact angles.

Therein, the dynamic contact angle is described as

θ3
d − θ3

e = c>Ca, (2.27)

where c> > 0 is a constant depending on the material properties [100]. If we

assume complete wetting, i.e., θe = 0, and set the equilibrium contact angle θe as

our dynamic contact angle θd in equation (2.27), we obtain for the inverse Ho�man

function in (2.26) the following expression

f−1
H

(θe) =
θ3
e

c>
.

The Kistler model holds for the whole range of wetting, i.e., for θ ∈ [0◦, 180◦],

and for a wide range of Capillary numbers and contact line velocities. So this

universal model is appropriate for our problems and will be used in the numerical

studies. Other well known models are Shikhmurzaev's model, which is based on

Shikhmurzaev's interface formation model, but requires further phenomenological

constants coming from experimental data [85]. Or the Cox model, which establishes

a connection with the physical slip length [19].

We append the dynamic contact angle from Kistler and Ho�mann to our model

formulation as boundary condition. We have to note, that this additional boundary

condition leads to a mathematically overdetermined problem which, however,

works well in practice and is widely used. Within the numerical considerations

of the problem, the dynamic contact angle is a parameter in the correction of

the interface normal νΓ at the three phase contact point or line, see Section 4.4.1

for a description of the exact formula. The dynamic contact angle model works
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together with the Navier-slip boundary condition from Section 2.5, which is needed

to allow the �uid to move along the wetted surface [19]. Since there is no generally

accepted dynamic contact angle model, there is also a wide range of applications

with other approaches. An example is a generalization of the Navier-slip boundary

condition, called generalized Navier boundary condition, proposed by Qian et al.

in [71]. This approach considers not only the tangential viscous stress, but also

the uncompensated Young stress and therefore combines the microscopic with the

macroscopic contact angle. No separate contact angle treatment is necessary when

using the generalized Navier boundary condition. The dynamic contact angle is

obtained from the model, which is a great advantage of this method. Recently, it is

mainly used in several works together with di�use interface models [103, 14].

If we come back to our example with the droplet skidding on a window, there is

still another e�ect that can be observed. The droplet does not move continuously,

it may stop from time to time. A so-called contact line hysteresis can be observed

when it holds θa < θ < θr, where θa is the advancing contact angle and θr
the receding one. This phenomena can for example be treated with two separate

dynamic contact angle models for receding and advancing contact lines, as described

in [33]. We will not consider this e�ect since it brings a further complexity to the

system.

Finally, we have to solve a multiphase �ow problem with a sharp interface Γ

between the di�erent �uids and a contact point or line Σ between the �uids and a

solid surface. A schematic graph of the considered scenario is shown in Figure 2.6.

Figure 2.6. A two-phase domain with interface and contact points.
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The outer boundary ∂Ω is split into a Dirichlet part BD, a Navier-slip part BN
and a natural out�ow part BO, with ∂Ω = BD ∪ BN ∪ BO. Here, the Navier-slip

part BN also contains the dynamic contact line Σ(t) = ∂Γ(t) := Γ(t) ∩ ∂Ω, where

the contact angle condition holds. Note, that the outer boundary does not change

in time, but the interface Γ does. For a stable solution theory, we assume that ∂Ω

is a Lipschitz boundary. Then the following boundary conditions can be added to

the problems (2.12) and (2.21)

u = 0 on BD,

(µ∇u− pI) · ν∂Ω = 0 on BO(t),

u>ν∂Ω = 0 on BN (t),

ut − L(Sν∂Ω)t = 0 on BN (t),

fH
[
Ca+ f−1

H
(θe)

]
= θd on Σ(t).
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CHAPTER 3

Optimal Control of Two-phase

Flow

In this chapter we introduce the optimal control problem with respect to the

two-phase Navier-Stokes equations with surface tension. The general goal of

optimal �ow control problems is of course to optimize �ow processes. They aim

to achieve the best possible �ow behavior regarding for example �uid velocity,

vorticity or material parameters, as well as optimize geometrical aspects or the

temperature. Optimal �ow control can be achieved in several ways. For example,

boundary control can be used to separate di�erent �uids or �uid phases in a

controlled manner, forcing the interface into a desired position [17]. Another

optimal control problem in the context of two-phase �ow is shape control to achieve

an optimal domain design. Shaping the wing of an aircraft to create a suitable

�ow behavior such as drag reduction [79, 61] or forming a special tube to minimize

power dissipation inside [65, 64] are examples for that.

Due to the complexity of our state equations, a solution of the optimal control

problem and the resulting optimality system is di�cult with a straight forward one-

shot approach. A gradient-based optimization algorithm, schematically shown in

Figure 3.1, is therefore used to calculate an optimal solution. The graph points out

all iteration steps we will develop in the next sections and chapters. We will start

with introducing a general optimal control problem in Section 3.1. The described

controls and states refer to step one and two of the algorithm in Figure 3.1. The

targeted optimization procedure is a sensitivity approach, which is introduced in

Section 3.2 and provides sensitivity equations. In step four, the sensitivity equations

have to be solved analogously to the primal state equations, which were solved in

step three. The steps three and four are not covered in this chapter directly. Since,
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Initialize the control variables

Initialize the state variables

Nonlinear solver for the state equations

Multiple linear solves for
the sensitivity variables

Gradient of the functional using sensitivities

Optimization algorithm to determine
new values for the control variables

Test for convergence of
the optimization algorithm

Optimal states, sensitivi-
ties and control variables

Yes

No

Figure 3.1. Schematic diagram of a gradient-based optimization algorithm [36].

there does not exist an analytical solution for the considered state equations, we have

to resort to a numerical solution of the discrete two-phase Navier-Stokes system with

surface tension and the sensitivity equations, discussed in detail in Chapter 4. We

need the sensitivities as well to calculate the gradient of the objective functional,

which belongs to step �ve. The problem formulation and sensitivity approach are

mostly based on the �rst chapter of [41] and [36]. In Section 3.3, we continue with

introducing the weak formulation of the problem and the concept of Lp-maximal
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regularity, which we will use later in the section to show the di�erentiability of the

related control-to-state mapping. These parts are based on results we developed in

[25]. Thereby, we follow an approach which was introduced by Prüss and Simonett

[70] to show well posedness of the underlying linear problem by means of Lp-maximal

regularity. Afterwards, a sensitivity system is derived for the example of optimizing

the �ow with respect to the liquid viscosity, see Section 3.4. This sensitivity system

is the basis for our own numerical sensitivity solver, we present in Section 4.4.2 and

Appendix B.2. In the end of the current chapter, in Section 3.5, a summary of

the so far developed gradient-based optimization algorithm is shown, including step

six, seven and eight of Figure 3.1. Here, we will also discuss the di�erent ways of

solving the nonlinear and discrete optimization problem with their advantages and

disadvantages.

3.1 Optimal Control Problem

In general, we have to deal with an optimal control problem, which has the form

min
y∈Y,q∈Q

j(y, q) subject to C(y, q) = 0, q ∈ Qad. (3.1)

Here, j : Y ×Q→ R is the objective functional, y ∈ Y the state variable and q ∈ Q
the control variable, where Y and Q are Banach spaces. The state variable in the

introduced two-phase �ow problem consists of di�erent physical quantities and

varies depending on the representation we use. In the classical description based on

Prüss and Simonett, the state is composed of the velocity and the pressure, i.e.,

y = (u, p) with y ∈ Y ⊂ L2(I;L2(Ω)n) × L2(I;L2(Ω)), I = [0, t]. However, in the

equivalent VOF representation the phase fraction is added to the state variable,

i.e., y = (u, p, α) with y ∈ Y ⊂ L2(I;L2(Ω)n) × L2(I;L2(Ω)) × L2(I;L2(Ω)). We

will use both cases in our theoretical investigations in Section 3.3. The exact spaces

will also be de�ned there.

The control variable q could be a material parameter, for instance, the viscosity

of the liquid phase. Besides material parameters, structural properties are also

feasible control variables, such as the shape of the domain or parts of it. The

nonempty closed set Qad of admissible controls contains further equality and/or

inequality constraints for the control and provides e.g., lower and upper bounds

of q. The treatment of state constraints would also be possible, but will not be

considered in the following.
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C : Y ×Q→ Z is an operator that describes the behavior of the �ow mathemat-

ically, where Z is also a Banach space. We denote C(y, q) = 0 as the state equation

system of our optimization problem. The PDE system comprises all equations used

for one of our wetting process representations, i.e., (2.12) or (2.21). We assume that

C is continuously Fréchet di�erentiable, that the state equations C(y, q) = 0 have a

unique solution y(q) ∈ Y for each q ∈ Q and that Cy(y, q) ∈ L(Y,Z) has a bounded

inverse. Then, the well known implicit function theorem, see Theorem 2.8, can be

applied to de�ne a continuously di�erentiable control-to-state mapping [41] by

y : Q→ Y, q 7→ y(q) such that C(y(q), q) = 0.

We will prove the di�erentiability of our problem-speci�c control-to-state mapping

in Section 3.3, since it is not that trivial in our case.

The objective function of our problem depends on the application and can vary.

Reaching a desired state for one or more of the state variables, or minimizing the

vorticity inside the �ow, are just two practical examples. Inserting the above de�ned

control-to-state map into the objective functional j(y, q) results in the reduced ob-

jective functional j(y(q), q), which does not directly depend on the state anymore.

If we additionally suppose, that q 7→ j(y(q), q) is Fréchet di�erentiable, we obtain

the following reduced optimization problem instead of (3.1)

min
q∈Q

j̄(q) := j(y(q), q) s.t. q ∈ Qad. (P)

3.2 Sensitivity Approach

Following a gradient-based optimization approach, the derivative of the objective

functional j, or more precisely of the reduced objective functional j̄, is needed.

The classical one-shot approach of setting up a Lagrange functional and solving

the coupled optimality system, resulting from the �rst-order necessary optimality

condition, at once is not practicable in our case. Instead, an iterative treatment

is required, where we have two possibilities for the computation of the desired

derivative. On the one hand, we can choose a sensitivity approach, where we

compute the derivative of the reduced objective functional with respect to every

control variable. Sensitivities are directional derivatives and indicate, how the state

variables are e�ected by changes of the control variables. This is feasible as long as
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the dimension of q is small, since the e�ort grows linearly in the dimension of Q.

On the other hand we can apply an adjoint approach, where we derive the adjoint

problem and solve one adjoint equation together with the primal problem. This

approach is to the best advantage for high dimensional controls, since only a single

set of equations has to be solved, independent of the dimension of q. However,

this is at the expense of high implementation e�ort, since the adjoint systems must

be solved backward in time for unsteady problems. The exemplary optimization

problem we investigate in this work has a one dimensional control, so a sensitivity

approach is reasonable and we have to solve the sensitivity system only once.

The solution of optimization problems with higher dimensional controls will be

presented at the appropriate place if it is necessary. In the following, we give a

brief survey over the sensitivity approach from [41].

As we already mentioned, we utilize the reduced objective functional j̄ for our

approach, which only depends on the control q

j̄(q) := j(y(q), q).

The sensitivity, hence the directional derivative of the reduced objective function j̄

is obtained by applying the chain rule. For q ∈ Q and a direction s ∈ Q this yields

dj̄(q, s) = jy(y(q), q)y′(q)s+ jq(y(q), q)s. (3.2)

jy and jq represent the partial derivatives of the objective functional with respect

to the state and the control and y′(q) is the derivative of the state y with respect

to q. We call δsy := dy(q, s) = y′(q)s the state sensitivity in direction s.

Calculating the terms jy(y(q), q) and jq(y(q), q) is easily done in most of the cases,

since the objective function is typically simple, for example linear or quadratic. This

also applies in our case. The challenge is how to determine the derivative of the state

y with respect to q and thus the sensitivities of our system. To obtain this gradient,

we can di�erentiate the equations C(y(q), q) = 0 in direction s, also with the chain

rule

Cy(y(q), q)δsy + Cq(y(q), q)s = 0. (3.3)

For a q = (q1, ..., qn), n ∈ N, we have to solve this system for all s ∈ B, where B is a

basis of Q. So the e�ort of calculating the whole operator y′(q) grows linearly with

the dimension of Q and equally also the e�ort to calculate the whole derivative of

the objective function.
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Following the sensitivity approach, we have seen that we not only need the

derivative of the objective function, but also have to take into account di�erentia-

bility results for the state equations. In our case, this applies to the wetting system

C(y, q), equipped with some control variables q. In order to place our sensitivity

calculations on a solid theoretical foundation, we will have a closer look at the

existence and uniqueness of di�erentiability results for the control-to-state mapping

in the next section.

But �rst another comment to this approach. There is the possibility to calculate

the derivatives with the help of a di�erence quotient approximation. That means,

we calculate the state at a value q + ts close to q for a small t and obtain

y′(q)s ≈ y(q + ts)− y(q)

t
. (3.4)

The derivative of the state equations, which were calculated in this way, can again

be used to calculate the derivative of the objective function. With this approach

we get a good approximation for the sensitivities in most of the cases. Analogously

we can apply this method directly to the objective function, without calculating

the sensitivities separately. But then we always require an additional solution of

the �ow system for each control parameter. Several derivative-free algorithms go

this way, but then they usually perform worse than derivative-based methods. In

our case, the more precise derivative based approach is chosen and the di�erence

quotient is merely used to test and verify the sensitivity calculations in Chapter 5

as well as for the optimization problems with domain transformations.

3.3 Di�erentiability of the Control-to-State

Mapping

This section contains the important task of proving Fréchet di�erentiability of

the solution operator involving the governing equations of two-phase �ow. Since

the respective PDEs are not limited to the application of wetting phenomena,

we state that we derive di�erentiability results for a general two-phase problem,

which is described with the PDE system given in (2.12), and for an equivalent

VOF formulation of the problem, given in (2.21). Here we have to note, that the

di�erentiability is shown only for the unbounded case and for special controls.

Nevertheless, the PDEs have to be solved in an a priori unknown domain, where

the moving boundary between the di�erent �uids is part of the problem. In
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3.3. Di�erentiability of the Control-to-State Mapping

general, those problems are more di�cult to solve than in a prescribed domain, for

which reason the solution approach is to transform the problem with the moving

interface into a �xed domain [69]. More details are presented in the Sections 3.3.3

to 3.3.6, after we introduced the weak formulation of the problems and addressed

the regularity assumptions, which we employ to show that the solution operator is

Fréchet di�erentiable.

In the following, we investigate optimization problems with respect to an initial

velocity �eld u0 and a distributed control c on the right hand side of the momentum

equation. Based on the problem formulation (2.12) and the de�nition (2.13), our

so-called control-to-state operator reads

ρ(∂tu+ u · ∇u)− µ∆u+∇p = c in Ω(t),

∇ · u = 0 in Ω(t),

JuK = 0 on Γ(t),

−JS(u, p;µ)νK = σκν on Γ(t),

V = u>ν on Γ(t),

u(0) = u0 on Ω(0),

Γ(0) = Γ0.

(3.5)

Remember, we have to solve this PDE system with respect to the velocity u and the

pressure p, and denote the viscous stress tensor as S(u, p;µ) = −pI+µ(∇u+∇u>).

System (3.5) is a free boundary problem without the contact angle problem. Prüss

and Simonett state, that methods based on comparison principles, variational

inequalities and viscosity solutions do not seem well-adapted in the presence of

surface tension [69]. Additionally, the moving interface renders a variational analysis

di�cult. To show well-posedness of problem (2.12), where the surface tension plays a

dominant role, they apply a di�erent approach, the so-called direct mapping method,

and follow the idea of maximal regularity. This means that the original problem is

�rst transformed to a problem with �xed interface to establish the regularity of a

solution. We follow the same approach to show the di�erentiability of our control-

to-state mapping. This is done �rst for the transformed problem and then also in

the physical coordinates by using the �ndings and performing similar steps as for

showing well-posedness of the not di�erentiated problem. The approach is re�ected

in the following sections, where we start with presenting the approach of Lp-maximal

regularity. Then we show the transformation to a �at interface, followed by the proof

of well-posedness and di�erentiability of the transformed state. In the third step

we use these results to transform back and verify the di�erentiability of the original

problem, in consideration of the corresponding regularities. Furthermore, we derive
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Chapter 3. Optimal Control of Two-phase Flow

di�erentiability results for the volume of �uid type formulation in Section 3.3.6,

based on the former results.

3.3.1 Weak Formulation

Since the pressure is generally discontinuous at the interface in the case of various

phases, di�erentiability results in a strong sense are only valid outside the interface

region. So we expect only results in the weak sense at the interface, and therefore

the weak formulation of the problems is required. Note, that we will consider the

problems in n + 1 dimensions, since we want our interface to have n dimensions,

which is always one dimension lower than the full domain.

A weak form can be calculated by using test functions from suitable spaces. The

governing equations are multiplied with the test functions and the product is inte-

grated over the whole domain, applying partial integration if it is necessary. The

weak form of problem (2.12) is then given as follows. For all ϕ ∈ C1
0 (Rn+1;Rn+1)

and all ψ ∈ C1
0 (Rn+1) it holds∫

Rn+1

(
∂t(ρu) +∇ · (ρu⊗ u)− c)>ϕ+ (S(u, p;µ)) : ∇ϕ

)
dx =

∫
Γ (t)

σκν>ϕ ds, (3.6)

∫
Rn+1

(∇ · u) ψ dx = 0. (3.7)

Here, also the jump conditions are incorporated, so this formulation considers the

�rst four equations from (2.12). Since the one-�eld formulation also brings in dis-

continuities of the phase-�eld variable, the weak form of the VOF representation is

mandatory to show the di�erentiability of the respective control-to-state mapping

and for the derivation of sensitivity equations in 3.3.6. Hence, if we express the

phases by a phase indicator �eld α, we obtain for all ϕ ∈ C1
c (Rn+1;Rn+1) and all

ψ ∈ C1
c (Rn+1) the formulation∫
Rn+1

(
∂t(ρ(α)u) + div(ρ(α)u⊗ u))(t, x, y)>ϕ(x, y)

+ S(u, q;µ(α))(t, x, y) : ∇ϕ(x, y)
)
d(x, y)

= − lim
ε↘0

∫
Rn+1

σ
νε(t, x, y)>

|νε(t, x, y)|
(Dϕ− div(ϕ)I)(x, y)∇α(t, x, y) d(x, y),

(3.8)
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∫
Rn+1

div(u)ψ dx = 0, (3.9)

where we use the indicator function α from (2.14) as well as density and viscosity

de�ned in (2.17), (2.18). Moreover, α ful�lls the transport equation (2.19) and νε is

a suitable smoothed normal computed from ∇α, de�ned later in Section 3.3.6 with

equation (3.65).

3.3.2 Lp-maximal Regularity

Maximal regularity is a powerful tool to prove existence and uniqueness of solutions

to linear and nonlinear evolution equations [69]. It is the question of how to de�ne

function spaces E(I) and F(I), such that L : E(I) → F(I) × Eγ is an isomorphism

[69]. In this context, Eγ denotes the time-trace space of E(I). The spaces are

di�erent for di�erent problems, so we have to de�ne them separately for every

problem we study.

Let A be a linear operator with domain D(A) ⊂ X, where X is a Banach space.

We introduce maximal Lp-regularity for the inhomogeneous initial value problem

u̇(t) +Au(t) = f(t), t ∈ I, u(0) = u0, (3.10)

in Lp(I;X), where I = R+ or (0, a) for some a > 0, f : I → X and 1 < p < ∞.

Then the maximal Lp-regularity of problem (3.10) is as follows [69].

De�nition 3.1. Suppose the operator A : D(A) ⊂ X → X is closed and densely

de�ned with D(A) is the domain of A. Then, A ∈ MRp(I;X) � and we say that

there is maximal Lp-regularity for (3.10) � if for each f ∈ Lp(I;X) there exists

a unique solution u ∈ H1,p(I;X) ∩ Lp(I;D(A)) satisfying (3.10) a.e. in I, with

u0 = 0.

Hence, withMRp(I;X) we denote the class of all operators A that admit maximal

Lp-regularity to the given problem. The corresponding setting of function spaces

for our problem is presented at the appropriate place, see (3.19) and (3.22). Once

we know the maximal regularity setting for A, in this case within the framework of

Lp spaces, we can apply the contraction mapping principle to obtain local solutions

and a generalized version of the implicit function theorem to show the smooth de-

pendency of the local solutions on the data [69]. Therewith, we can prove Fréchet

di�erentiability of the control-to-state mapping as de�ned in 2.6.
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3.3.3 Transformation to a Flat Interface

For the further investigations, the initial interface Γ0 is considered as graph of a

su�ciently smooth function h0 : Rn → R, so it holds

Γ0 = {(x, y) ∈ Rn × R : y = h0(x)} ,
Ω1(0) = {(x, y) ∈ Rn × R : y < h0(x)} ,
Ω2(0) = {(x, y) ∈ Rn × R : y > h0(x)} .

Then the interface for t ∈ I can be expressed as

Γ(t) = {(x, h(t, x)) : x ∈ Rn} ,

with h : [0, t0]× Rn → R, the �nal time t0 > 0 and h(0, ·) = h0, see Figure 3.2.

Figure 3.2. Interface parameterized with a function h(t, x), inspired by [16].

Furthermore, we de�ne Ṙn+1 and the halfspaces Rn+1
± as

Ṙn+1 = {(x, y) ∈ Rn × R : y 6= 0} ,
Rn+1
± = {(x, y) ∈ Rn × R : ±y > 0} .

Our goal is now to transform problem (3.5) to the halfspaces Rn+1
± , which are not

dependent on the time t anymore. Therefore, it is reasonable to reformulate the unit

interface normal and interface curvature as well as the normal velocity of Γ using

the height function. For the unit normal of the interface at the point (x, h(t, x)) we

obtain

ν̂(t, x) = ν(t, x, h(t, x)) =
1√

1 + |∇h(t, x)|2

(
−∇h(t, x)

1

)
.
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Here, ∇h(t, x) denotes the gradient vector of h with respect to x ∈ Rn. Analogously,
for the normal velocity V we derive

V̂ (t, x) = ∂t(x, h(t, x)) ν(t, x, h(t, x))

=
1√

1 + |∇h(t, x)|2

(
0

∂th(t, x)

)>( −∇h(t, x)

1

)
=

∂th(t, x)√
1 + |∇h(t, x)|2

.

If we assume that h(t, ·) is two times di�erentiable, ∆h denotes the Laplacian of

h with respect to x ∈ Rn and ∇2h denotes the Hessian matrix of all second order

derivatives of h, the curvature of Γ(t) can be rewritten as

κ̂(t, x) = κ(t, x, h(t, x)) = −divΓν̂(t, x) = divx

(
∇h(t, x)√

1 + |∇h(t, x)|2

)
= ∆h−Gk(h),

(3.11)

with

Gk(h) =
|∇h|2∆h

(1 +
√

1 + |∇h|2)
√

1 + |∇h|2
+
∇h>∇2h∇h

(1 + |∇h|2)3/2
.

A derivation of this expression can be found for example in [16, Appendix]. Now

we also want to use the height function h to describe our state equations. With the

following transformation, Γ(t) becomes a �at interface at y = 0, where t ∈ I

û(t, x, y) =

(
v̂(t, x, y)

ŵ(t, x, y)

)
, with v̂(t, x, y) =

 u1(t, x, h(t, x) + y)
...

un(t, x, h(t, x) + y)


and ŵ(t, x, y) = un+1(t, x, h(t, x) + y),

p̂(t, x, y) = p(t, x, h(t, x) + y).

(3.12)

Analogously, we transform the density and viscosity of the domain by

ρ̂(t, x, y) = ρ(t, x, h(t, x) + y) = χRn+1
−

(x, y)ρ1 + χRn+1
+

(x, y)ρ2,

µ̂(t, x, y) = µ(t, x, h(t, x) + y) = χRn+1
−

(x, y)µ1 + χRn+1
+

(x, y)µ2.

Remember, (x, y) ∈ Ṙn+1 with x ∈ Rn and y ∈ R, y 6= 0. To derive the transformed

state equations, we will �rst have a look at the required partial derivatives of the
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transformed state variables. For j, k = 1, ..., n it holds [70]

∂juk = ∂j v̂k − ∂jh∂y v̂k, ∂n+1uk = ∂y v̂k,

∂jun+1 = ∂jŵ − ∂jh∂yŵ, ∂n+1un+1 = ∂yŵ,

∂jp = ∂j p̂− ∂jh∂yp̂, ∂n+1p = ∂yp̂,

∂tuk = ∂tv̂k − ∂th∂y v̂k, ∂tun+1 = ∂tŵ − ∂th∂yŵ,

∆uk = ∆xv̂k − 2(∇h · ∇x)∂y v̂k + (1 + |∇h|2)∂2
y v̂k −∆h∂y v̂k,

∆un+1 = ∆xŵ − 2(∇h · ∇x)∂yŵ + (1 + |∇h|2)∂2
yŵ −∆h∂yŵ.

Then, the transformed momentum equations, separated for v̂ and ŵ, result in

ρ̂∂tv̂ − ρ̂∂th∂y v̂ + ρ̂
(
(v̂ · ∇x)v̂ − (∇h>v̂)∂y v̂ + ŵ∂y v̂

)
− µ̂

(
∆xv̂ − 2(∇h · ∇x)∂y v̂ + ∂2

y v̂ + |∇h|2∂2
y v̂ −∆h∂y v̂

)
+∇xp̂− ∂yp̂∇h = ĉx,

ρ̂∂tŵ − ρ̂∂th∂yŵ + ρ̂
(
(v̂ · ∇x)ŵ − (∇h>v̂)∂yŵ + ŵ∂yŵ

)
− µ̂

(
∆xŵ − 2(∇h · ∇x)∂yŵ + ∂2

yŵ + |∇h|2∂2
yŵ −∆h∂yŵ

)
+ ∂yp̂ = ĉy,

where ĉ = (ĉx, ĉy) denotes the transformed control for the respective components.

For the transformed version of the continuity equation we obtain

divxv̂ + ∂yŵ −∇h>∂y v̂ = 0.

Now we derive the transformed interface conditions, which are the counterparts to

the jump conditions in (3.5). The �rst jump condition can be easily transformed in

JûK = 0.

For the transformation of the second jump condition, we need the transformed

version of the deformation tensor D(u) = ∇u +∇u>, which is given by D(û, h) =

D(v̂, ŵ, h). Here it applies

D(û, h) = ∇û+∇û> −
(
∇h∂yû>

0

)
−
(
∇h∂yû>

0

)>
. (3.13)

Then we obtain for the individual components v̂ and ŵ the following transformed

jump conditions, see [70]

−∇h>Jp̂K + Jµ̂(∇xv̂ + (∇xv̂)>)K∇h− |∇h|2Jµ̂∂y v̂K
−(∇h>Jµ̂∂y v̂K)∇h+ Jµ̂∂yŵK∇h− Jµ̂∂y v̂K− Jµ̂∇xŵK = −σ(∆h−Gκ(h))∇h,
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Jp̂K− 2Jµ̂∂yŵK +∇h>Jµ̂∂y v̂K +∇h>Jµ̂∇xŵK− |∇h|2Jµ̂∂yŵK = σ(∆h−Gκ(h)).

Remark 3.2. With the transformed deformation tensor, equation (3.13), the com-

patibility condition introduced in Theorem 2.10 can equivalently be written as

Jµ̂D(û0, h0)ν̂0 − µ̂(ν̂>0 D(û0, h0)ν̂0)ν̂0K = 0,

div û0 = ∇h>0 ∂yû0, Jû0K = 0,
(3.14)

where ν̂0 := ν̂(0, x) = 1√
1+|∇h0(x)|2

(−∇h0(x)
1

)
.

For the transformed version of the kinematic condition V = (u>ν)|Γ, we insert the

transformed normal velocity V̂ and the transformed unit interface normal ν̂ from

above

∂th√
1 + |∇h|2

=
1√

1 + |∇h|2

(
(v̂>, ŵ)

(
−∇h

1

))
|Γ
.

If we use the trace operator τ at the interface y = 0, providing τ v̂(x) = v̂(x, 0) and

analogously τŵ(x) = ŵ(x, 0), we end up with the following equation

∂th− τŵ = −(τ v̂)>∇h.

This transport equation describes the evolution of h [16].

All the resulting equations above can be written with the linear terms on the left

hand side and the nonlinearities on the right hand side. For a clearer representation

we then write the nonlinearities with

Fv̂(v̂, ŵ, p̂, h) = µ̂
(
−2(∇h · ∇x)∂y v̂ + |∇h|2∂2

y v̂ −∆h∂y v̂
)

+ ∂yp̂∇h
+ ρ̂

(
−(v̂ · ∇x)v̂ + (∇h>v̂)∂y v̂ − ŵ∂y v̂

)
+ ρ̂∂th∂y v̂,

Fŵ(v̂, ŵ, h) = µ̂
(
−2(∇h · ∇x)∂yŵ + |∇h|2∂2

yŵ −∆h∂yŵ
)

+ ρ̂
(
−(v̂ · ∇x)ŵ + (∇h>v̂)∂yŵ − ŵ∂yŵ

)
+ ρ̂∂th∂yŵ,

Fd(v̂, h) = ∇h>∂y v̂,
Gv̂(v̂, ŵ, Jp̂K, h) = −Jµ̂(∇xv̂ + (∇xv̂)>)K∇h+ |∇h|2Jµ̂∂y v̂K + (∇h>Jµ̂∂y v̂K)∇h

− Jµ̂∂yŵK∇h+ (Jp̂K− σ(∆h−Gκ(h)))∇h,
Gŵ(v̂, ŵ, h) = −∇h>Jµ̂∂y v̂K−∇h>Jµ̂∇xŵK + |∇h|2Jµ̂∂yŵK− σGκ(h),

H(v̂, ŵ, h) = −(τ v̂)>∇h.
(3.15)
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Note that almost all terms are polynomials in (v̂, ŵ, p̂, Jp̂K, h) and in the derivatives

of (v̂, ŵ, p̂, h), with coe�cients of �rst order, except the terms in Gκ(h). Moreover,

all terms are linear with respect to second derivatives and Gκ(h) is the pointwise

superposition of a smooth function with ∇h and ∇2h [25]. In summary, we obtain

the following transformed version of problem (3.5) by

ρ̂∂tû− µ̂∆û+∇p̂ = ĉ+ F (û, p̂, h) in Ṙn+1,

∇û = Fd(v̂, h) in Ṙn+1,

−Jµ̂∂y v̂K− Jµ̂∇xŵK = Gv̂(v̂, ŵ, Jp̂K, h) on Rn,
−2Jµ̂∂yŵK + Jp̂K− σ∆h = Gŵ(v̂, ŵ, h) on Rn,

JûK = 0 on Rn,
∂th− τŵ = H(v̂, ŵ, h) on Rn,

û(0) = û0, h(0) = h0

(3.16)

for t > 0 and with F (û, p̂, h) = (Fv̂(v̂, ŵ, p̂, h), Fŵ(v̂, ŵ, h)). This is a quasilinear

system and can be shortly written as

L(û, p̂, Jp̂K, h) = (ĉ+ F (û, p̂, h), Fd(û, h), Gv(û, Jp̂K, h), Gw(û, h), H(û, h)),

(û(0), h(0)) = (û0, h0).
(3.17)

For the next step we �x the nonlinear right hand sides of problem (3.16) and write

the following linearized system instead of (3.17)

L(û, p̂, r, h) = (f, fd, gv, gw, gh), (û(0), h(0)) = (û0, h0), (3.18)

where we substitute Jp̂K = r. This �x point formulation is also denoted as a Stokes

problem with given inhomogeneities (f, fd, gv, gw, gh) and free boundary.

3.3.4 Well-posedness and Di�erentiability of the Transformed State

With the introduced transformation, our control-to-state operator or control-to-state

mapping is now given as the mapping (û0, ĉ) ∈ Uû(h0) × Uĉ(t0) 7→ (û, p̂, Jp̂K, h) ∈
E(t0), which maps the initial transformed controls û0 and ĉ to the state variables

û, p̂ and h. How the spaces Uû(h0) and Uĉ(t0) are de�ned will be presented soon.

First, we recapitulate the function spaces incorporated in E(t0), which were already

introduced for the existence and uniqueness results of the two-phase �ow description
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by Prüss and Simonett in 2.3. It holds

E1(t0) :={û ∈ H1,p(I;Lp(Rn+1,Rn+1)) ∩ Lp(I;H2,p(Ṙn+1,Rn+1)) : JûK = 0},

E2(t0) :=Lp(I; Ḣ1,p(Ṙn+1)),

E3(t0) :=W 1/2−1/(2p),p(I;Lp(Rn)) ∩ Lp(I;W 1−1/p,p(Rn)),

E4(t0) :=W 2−1/(2p),p(I;Lp(Rn)) ∩H1,p(I;W 2−1/p,p(Rn))

∩W 1/2−1/(2p),p(I;H2,p(Rn)) ∩ Lp(I;W 3−1/p,p(Rn)),

E(t0) :={(û, p̂, r, h) ∈ E1(t0)× E2(t0)× E3(t0)× E4(t0) : Jp̂K = r}.
(3.19)

The space E(t0) is equipped with the natural norm

‖(û, p̂, r, h)‖E(t0) = ‖û‖E1(t0) + ‖p̂‖E2(t0) + ‖r‖E3(t0) + ‖h‖E4(t0).

Our aim is now to show di�erentiability of this control-to-state map, �rst for the

case ĉ = 0, then also for ĉ 6= 0. Therefore, some underlying results have to be

presented and modi�ed if necessary, to apply an appropriate �xed point argument

to (3.17). We start with the following theorem, which holds for (û, p̂, Jp̂K, h) ∈ E(t0)

resulting from (3.17), with I = (0, t0) and for c = 0, i.e., also for ĉ = 0.

Theorem 3.3. Let p > n+ 3, ĉ = 0 and let

Uû := W 2−2/p,p(Ṙn+1,Rn+1), Uh := W 3−2/p,p(Rn). (3.20)

Then for any t0 > 0 there exists ε̂0 = ε̂0(t0) > 0 such that for all initial values

(û0, h0) ∈ Uû × Uh

satisfying, with u0(x, h0(x) + y) = û0(x, y), the compatibility conditions

JµD(u0)ν0 − µ(ν>0 D(u0)ν0)ν0K = 0, div u0 = 0, Ju0K = 0, (3.21)

as well as the smallness condition

‖û0‖Uû
+ ‖h0‖Uh

≤ ε̂0

there exists a unique solution of the transformed problem (3.17) with

(û, p̂, Jp̂K, h) ∈ E(t0).

Moreover, (û, p̂, Jp̂K, h) ∈ E(t0) depends continuously on (û0, h0) ∈ Uû×Uh satisfying
the compatibility conditions (3.21).
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Proof. The detailed proof can be found in Theorem 6.3 in [70].

Another result, which is important for the �xed point argumentation, is the fol-

lowing Lp-maximal regularity result for the linearized problem (3.18), see [70].

Theorem 3.4. Let 1 < p < ∞ be �xed, p 6= {3/2, 3} and assume that ρi, µi are

positive constants. For arbitrary t0 > 0, I = (0, t0), let E1(t0), . . . ,E4(t0) be de�ned

by (3.19) and set Uû,Uh as in (3.20). Moreover, set

F1(t0) = Lp(I;Lp(Rn+1,Rn+1)),

F2(t0) = H1,p(I; Ḣ−1,p(Rn+1)) ∩ Lp(I;H1,p(Ṙn+1)),

F3(t0) = W 1/2−1/(2p),p(I;Lp(Rn,Rn+1)) ∩ Lp(I;W 1−1/p,p(Rn,Rn+1)),

F4(t0) = W 1−1/(2p),p(I;Lp(Rn)) ∩ Lp(I;W 2−1/p,p(Rn)),

F(t0) = F1(t0)× F2(t0)× F3(t0)× F4(t0).

(3.22)

Then, for all initial values (û0, h0) ∈ Uû × Uh and (f, fd, g, gh) ∈ F(t0) with g =

(gv, gw) satisfying the following compatibility conditions

div û0 = fd(0) on Ṙn+1, Jû0K = 0 on Rn if p > 3/2, (3.23)

J−µ̂∂y v̂0K− Jµ̂∇xŵ0K = gv(0) on Rn if p > 3, (3.24)

there exists a unique solution (û, p̂, Jp̂K, h) ∈ E(t0) of (3.18) and the solution map

(f, fd, g, gh, û0, h0) ∈ F(t0)× Uû × Uh 7→ (û, p̂, Jp̂K, h) ∈ E(t0)

is continuous.

Proof. This follows from Theorem 5.1 and Lemma 6.1, (e) in [70].

At this point, we also introduce spaces with a left subscript 0, which indicate that

the corresponding variables vanish on the boundary of the relevant domain. We

denote these spaces by

0E(t0) := {(û, p̂, r, h) ∈ E(t0) : û(0) = 0, r(0) = 0, h(0) = 0} ,

0F(t0) := {(f, fd, gv, gw, gh) ∈ F(t0) : fd(0) = 0, g(0) = 0, gh(0) = 0} .

Then, the following corollary is obtained immediately for homogeneous initial data:

Corollary 3.5. Let p > 3 and choose E(t0), F(t0), 0E(t0) and 0F(t0) as above with

initial value 0 for all components that admit a trace at t = 0. Then, problem (3.18)
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has a unique and continuous solution map

(f, fd, g, gh, 0, 0) ∈ 0F(t0)× Uû × Uh 7→ (û, p̂, Jp̂K, h) ∈ 0E(t0).

Moreover, the following properties of the right hand sides of problem (3.16), sum-

marized in (3.15), are used for the �xed point argument:

Lemma 3.6. Let p > n+ 3 and set for (û, p̂, r, h) ∈ E(t0)

N(û, p̂, r, h) := (F (û, p̂, h), Fd(û, h), G(û, r, h), H(û, h)), (3.25)

with F = (Fv̂, Fŵ), G = (Gv̂, Gŵ), Fd and H de�ned in (3.15). Then the mapping

N : E(t0)→ F(t0) is well de�ned and real analytic, more precisely,

N ∈ Cω(E(t0),F(t0)), N(0) = 0, DN(0) = 0.

Moreover,

DN(û, p̂, r, h) ∈ L(0E(t0), 0F(t0)) ∀ (û, p̂, r, h) ∈ E(t0),

where DN denotes the Fréchet derivative of N and Cω is as usual the space of real

analytic functions.

Proof. See proposition 6.2 in [70].

To show the main di�erentiability result for the transformed problem, we need an

analogue result for the spaces of the initial values:

Lemma 3.7. Let p > n+ 3, Uû,Uh as de�ned in (3.20) and set

Uû,c := {û0 = (v̂0, ŵ0) ∈ Uû : Jû0K = 0} .

Then, with G = (Gv̂, Gŵ) and H de�ned in (3.15), the mappings

(û0, h0) ∈ Uû × Uh 7→ v̂>0 ∇h0 ∈W 2−2/p,p(Ṙn+1), (3.26)

(û0, h0) ∈ Uû,c × Uh 7→ H(v̂0, h0) ∈W 2−3/p,p(Rn), (3.27)

(û0, r0, h0) ∈ Uû ×W 1−2/p,p(Rn)× Uh 7→ G(û0, r0, h0) ∈W 1−2/p,p(Rn) (3.28)

are real analytic and the �rst derivatives vanish in (û0, r0, h0) = 0.

Proof. We proved these statements in Lemma 6 in [25].
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Furthermore, the following extension of Banach's �xed point theorem, based on

Theorem 2.7, will be applied, which gives su�cient conditions for solvability.

Theorem 3.8. (a) Let U,W,Z be real Banach spaces, let A ∈ L(Z,W ) be an iso-

morphism and set M := ‖A−1‖L(W,Z). Let BZ ⊂ Z be a nonempty closed convex

set and BU ⊂ U be a nonempty set. Moreover, let K : BZ × BU → W be Lipschitz

continuous with

‖K(z, u)−K(z̃, ũ)‖W ≤ Lz‖z − z̃‖Z + Lu‖u− ũ‖U ∀ (z, u), (z̃, ũ) ∈ BZ ×BU

and assume that

A−1K(z, u) ∈ BZ ∀ (z, u) ∈ BZ ×BU and MLz < 1. (3.29)

Then for all u ∈ BU the equation

Az = K(z, u)

has a unique solution z = z(u) ∈ BZ and

‖z(u)− z(ũ)‖Z ≤
LuM

1−MLz
‖u− ũ‖U ∀u, ũ ∈ BU . (3.30)

(b) Assume in addition that BU is a relatively open convex subset of u∗ + UL ⊂ U ,

where UL is a closed linear subspace of U . Note, if UL = U is admitted, then

BU ⊂ U is convex and open. Moreover, assume that K : BZ ×BU → W is Fréchet

di�erentiable. Then BU 3 u 7→ z(u) ∈ Z is Fréchet di�erentiable, where δzd :=

Dz(u)d is for any d ∈ UL the unique solution of the problem

Aδzd = DzK(z(u), u)δzd +DuK(z(u), u)d. (3.31)

If DK : BZ × BU → L(Z × UL,W ) is Lipschitz continuous, then also Dz : BU →
L(UL, Z) is Lipschitz continuous. If K : BZ × BU → W is k-times Fréchet di�er-

entiable, then BU 3 u 7→ z(u) ∈ Z is k-times Fréchet di�erentiable and if DkK is

Lipschitz continuous on BZ ×BU , then Dkz is Lipschitz continuous on BU .

Proof. Again, the appropriate proof can be found in [25], Theorem 7.

Applying this theorem to the linearized Stokes problem (3.18) and the quasilinear

system (3.17), we end up with the following extension of Theorem 3.3. This is the

main di�erentiability outcome for the transformed problem formulation, which we

will prove with the results shown so far.
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Theorem 3.9. Let p > n + 3 and consider any t0 > 0. Let E(t0) and F(t0) be

de�ned as in (3.19) and (3.22) and set with I = (0, t0)

Uû := W 2−2/p,p(Ṙn+1,Rn+1), Uh := W 3−2/p,p(Rn),

Uĉ(t0) := F1(t0) = Lp(I;Lp(Rn+1,Rn+1)).
(3.32)

Then, for any t0 > 0 there exists ε̂0 = ε̂0(t0) > 0 such that for all data

(û0, h0, ĉ) ∈ Uû × Uh × Uĉ(t0)

satisfying the transformed compatibility condition (3.14) as well as the smallness

condition

‖û0‖Uû
+ ‖h0‖Uh

+ ‖ĉ‖Uĉ(t0) < ε̂0, (3.33)

there exists a unique solution of the transformed problem (3.17) with

(û, p̂, Jp̂K, h) ∈ E(t0).

Moreover, the mapping

{(û0, h0, ĉ) ∈ Uû×Uh×Uĉ(t0) : (û0, h0, ĉ) satisfy (3.14), (3.33)} 7→ (û, p̂, Jp̂K, h) ∈ E(t0)

is continuous and in�nitely many times di�erentiable with respect to (û0, ĉ).

Proof. The idea is to extend the arguments in [70] and apply Theorem 3.8 to the

transformed formulation (3.17). Let z = (û, p̂, r, h) ∈ E(t0) and write (3.17) as

Lz = N(z) + (ĉ, 0), (û(0), h(0)) = (û0, h0), (3.34)

with N de�ned in (3.25). Let further (û0, h0) satisfy (3.14) and (3.33), where ε̂0

will be adjusted later. Following [70], we �rst construct z∗ = z∗(û0, h0) ∈ E(t0) that

satis�es the equation

Lz∗ = (0, f∗d , g
∗, g∗h) , (û∗(0), h∗(0)) = (û0, h0), (3.35)

where (0, f∗d , g
∗, g∗h) ∈ F(t0) resolves the compatibility conditions (3.23) and (3.24).

Then we can write (3.34) equivalently as

Lz̃ = N(z̃+ z∗(û0, h0)) + (ĉ, 0)−Lz∗(û0, h0) =: K(z̃; û0, h0, ĉ), z̃ ∈ 0E(t0). (3.36)

The construction of z∗ can be accomplished as in [70]. Suppose that the initial
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values (û0, h0) satisfy the �rst compatibility condition in (3.14) and set

r0(û0, h0) = Jp̂0K := Jµ̂(ν̂>0 D(û0, h0)ν̂0)K + σ(∆h0 −Gκ(h0)).

The right hand side consists of several terms of G(û0, 0, h0) in (3.28) and thus

Lemma 3.7 yields that the above mapping (û0, h0) ∈ Uû×Uh 7→ Jp̂0K = r0(û0, h0) ∈
W 1−2/p,p(Rn) is real analytic. Moreover, it is easy to check that the following

compatibility conditions hold

−Jµ̂∂y v̂0K− Jµ̂∇xŵ0K = Gv(û0, Jp̂0K, h0) on Rn,
−2Jµ̂∂yŵ0K + Jp̂0K− σ∆h0 = Gw(û0, h0) on Rn.

(3.37)

Now let Dn = −∆ be the Laplacian in Lp(Rn) with domain H2,p(Rn) and set

g∗(t) := e−tDnG(û0, r0(û0, h0), h0), g∗h(t) := e−tDnH(û0, h0).

By the real analyticity of r0(û0, h0) and Lemma 3.7 the mappings

(û0, h0) ∈ Uû × Uh 7→ G(û0, r0(û0, h0), h0) ∈W 1−2/p,p(Rn),

(û0, h0) ∈ Uû × Uh 7→ H(û0, h0) ∈W 2−3/p,p(Rn)

are real analytic. Now maximal Lp-regularity for Dn yields, see e.g. [27, Lem. 8.2]

g∗ ∈ H1,p(I;W−1−1/p,p(Rn)) ∩ Lp(I;W 1−1/p,p(Rn)) ↪→ F3(t0),

g∗h ∈ H1,p(I;W−1/p,p(Rn)) ∩ Lp(I;W 2−1/p,p(Rn)) ↪→ F4(t0),

where the imbeddings follow by real interpolation and g∗, g∗h are real analytic in

(û0, h0) ∈ Uû × Uh. (3.37) ensures that (3.24) holds for g∗. Next, let

c∗d(t) =

{
R+e

−tDn+1E+v̂>0 ∇h0 in Rn+1
+ ,

R−e−tDn+1E−v̂>0 ∇h0 in Rn+1
− ,

where E± ∈ L(W 2−2/p,p(Rn+1
± ),W 2−2/p,p(Rn+1)) are extension operators and R±

are the restrictions to Rn+1
± . Now (û0, h0) ∈ Uû × Uh 7→ v̂>0 ∇h0 ∈ W 2−2/p,p(Ṙn+1)

is by Lemma 3.7 real analytic. By Lp-regularity for Dn+1 c
∗
d ∈ H1,p(I;Lp(Rn+1))∩

Lp(I;H2,p(Ṙn+1)) and thus

f∗d := ∂yc
∗
d ∈ F2(t0) with f∗d (0) = Fd(v̂0, h0)

is real analytic with respect to (û0, h0) ∈ Uû × Uh. Therefore, also (3.23) holds

for f∗d and we conclude that R∗ := (0, f∗d , g
∗, g∗h) ∈ F(t0) satis�es the compatibility
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conditions (3.23), (3.24) and by construction (û0, h0) ∈ Uû × Uh 7→ R∗ ∈ F(t0)

is real analytic. Hence, by Theorem 3.4 the linear problem (3.35) has a unique

solution z∗ = z∗(û0, h0) that is real analytic and by Lemma 3.7 the �rst derivative

vanishes in 0, i.e., Dz∗(0, 0) = 0.

Now consider (3.36). By construction of z∗ the right hand side of (3.36) is in

0F(t0). Denote by L0 ∈ L(0E(t0), 0F(t0)) the restriction of L which is an isomor-

phism by Corollary 3.5. Hence, (3.36) can be written as

L0z̃ = N(z̃+z∗(û0, h0))+(ĉ, 0)−Lz∗(û0, h0) =: K(z̃; û0, h0, ĉ), z̃ ∈ 0E(t0). (3.38)

To apply Theorem 3.8 we set now with suitable ε̂0 > 0 and δ > 0

BU (ε̂0) := {(û0, h0, ĉ) ∈ Uû × Uh × Uĉ(t0) : (û0, h0, ĉ) satisfy (3.14), (3.33)},
BZ(δ) := {z̃ ∈ 0E(t0) : ‖z̃‖

0E(t0) ≤ δ},

where ε̂0, δ > 0 will be adjusted later. By Lemma 3.6 and the properties of z∗ we

know, that the right hand side

(z̃, û0, h0, ĉ) ∈ 0E(t0)× Uû × Uh × Uĉ(t0) 7→ K(z̃; û0, h0, ĉ) ∈ F(t0) (3.39)

is real analytic withK(0) = 0 andD(z̃,û0,h0)K(0) = 0. Hence, the Lipschitz constant

Lz of K with respect to z̃ is arbitrary small close to 0 and the Lipschitz constant of

K with respect to (û0, h0, ĉ) is Lu = 2 close enough to 0. Note, that the Lipschitz

constant with respect to ĉ is 1. This implies, if we set δ = 4Mε̂0 for ε̂0 small enough

with M = ‖L−1
0 ‖L(0F(t0),0E(t0)), that K has the Lipschitz constants Lz = 1/(2M)

and Lu = 2 on BZ(δ) × BU (ε̂0). Hence, for all (z̃, û0, h0, ĉ) ∈ BZ(δ) × BU (ε̂0) it

holds

‖L−1
0 K(z̃; û0, h0, ĉ)‖0E(t0)

≤MLz‖z̃‖0E(t0) +MLu(‖û0‖Uû
+ ‖h0‖Uh

+ ‖ĉ‖Uĉ(t0)) <
1

2
δ + 2Mε̂0 = δ.

(3.40)

This shows, that the mapping L−1
0 K(z̃; û0, h0, ĉ) is a contraction for the given

initial values. Thus, (3.29) is satis�ed and (3.38) has by Theorem 3.8 for all

(û0, h0, ĉ) ∈ BU (ε̂0) a unique solution z̃ = z̃(û0, h0, ĉ) ∈ BZ(δ) satisfying the Lip-

schitz stability (3.30). Since also the real analytic operator z∗(û0, h0) ∈ E(t0) is

Lipschitz continuous on BU (ε̂0), the solution z(û0, h0, ĉ) = z̃ + z∗ ∈ E(t0) is unique

and Lipschitz continuous on BU (ε̂0). Now let (û∗0, h
∗
0, ĉ
∗) ∈ BU (ε̂0) be arbitrary.

Then {(û0, h
∗
0, ĉ) ∈ BU (ε̂0)} is a relatively open subset of an a�ne subspace of

Uû×Uh×Uĉ(t0). Since (3.39) is real analytic, it follows from Theorem 3.8, b) that
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z̃(û0, h
∗
0, ĉ) ∈ 0E(t0) is in�nitely many times di�erentiable with respect to (û0, ĉ)

and the same holds for z(û0, h
∗
0, ĉ) = z̃ + z∗ ∈ E(t0).

3.3.5 Di�erentiability of the Original Problem

Once we have shown di�erentiability for the transformed problem, we want to come

back to the original formulation. Therefore, we transfer the results from Theorem

3.9 to problem (3.5). For a h0 ∈ Uh, the following function spaces are de�ned

Uu(h0) := W 2−2/p,p(Rn+1\Γ(0),Rn+1), Uc(t0) := Lp(I;H1,p(Rn+1,Rn+1)).

(3.41)

Here, the initial interface is no �at surface at y = 0 anymore, so we write Rn+1\Γ(0)

instead of Ṙn+1 for h0 in Uu. Another point we utilize in our further investigations

is, that only the gradient of the pressure occurs, so the transformed pressure p̂(t, ·)
is only determined up to a constant. Due to this fact, we select from now on without

restriction the unique representative satisfying

p̂ ∈ E1(t0),

∫
[−1,1]n

p̂(t, x, 0−) dx = 0 for a.a. t ∈ (0, t0). (3.42)

Note, that the jump of p̂, always denoted as Jp̂K, is uniquely determined in (3.17).

With the convention from (3.42) and by the trace theorem, we �nd a Poincaré

constant CP > 0 with

‖p̂(t, ·)‖H1,p(Ṙn+1) ≤ CP (‖p̂(t, ·)‖Ḣ1,p(Ṙn+1) + ‖Jp̂K‖W 1−1/p,p(Rn)). (3.43)

Now we de�ne the back transformation to the original problem, see (3.12), and

obtain the following preparatory result.

Theorem 3.10. Let (û, p̂, Jp̂K, h) ∈ E(t0), h0 ∈ Uh, u0 ∈ Uu(h0), and consider

u(t, x, y) = û(t, x, y − h(t, x)), p(t, x, y) = p̂(t, x, y − h(t, x)), (3.44)

u0(x, y) = û0(x, y − h0(x)).
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Then there exist constants C(‖h‖E4(t0)) > 0 and C(‖h0‖Uh
) such that

‖u‖W 1,p(I×Rn+1,Rn+1) +

(∫
I

‖u(t)‖pH2,p(Rn+1\Γ(t),Rn+1) dt

)1/p

≤ C(‖h‖E4(t0))‖û‖E1(t0),(∫
I

‖p(t)‖p
Ḣ1,p(Rn+1\Γ(t),Rn+1)

dt

)1/p

≤ C(‖h‖E4(t0))‖p̂‖E2(t0),(∫
I

‖Jp(t)K‖p
W 1−1/p,p(Γ(t))

dt

)1/p

≤ C(‖h‖E4(t0))‖Jp̂K‖Lp(I;W 1−1/p,p(Rn)),

‖û0‖Uû
≤ C(‖h0‖Uh

)‖u0‖Uu(h0).

Proof. We showed this relations in [25] by using appropriate imbeddings.

With the described back transformation we can further formulate a �rst di�er-

entiability result for the mapping from the transformed variables to the original

ones.

Lemma 3.11. Consider the transformation (3.44), where we choose for p̂ ∈
E2(t0), Jp̂K ∈ E3(t0) the unique representative p̂ satisfying (3.42). Then for all

p̃ ∈ [p,∞) the mapping

(û, p̂, Jp̂K, h) ∈ E(t0) 7→ u ∈ C(Ī;Lp̃(Rn+1,Rn+1)) (3.45)

is continuously di�erentiable with derivative

(δû, δp̂, Jδp̂K, δh) ∈ E(t0) 7→ δu(t, x, y) = δû(t, x, y−h(t, x))−∂yû(t, x, y−h(t, x))δh(t, x).

Let E± ∈ L(H l,p(Rn+1
± ), H l,p(Rn+1)) be extension operators for l = 1, 2 and set

û±(t, ·) = E±û(t, ·), u±(t, x, y) = û±(t, Th(t)(x, y)),

p̂±(t, ·) = E±p̂(t, ·), p±(t, x, y) = p̂±(t, Th(t)(x, y)).
(3.46)

Then the mappings

(û, p̂, Jp̂K, h) ∈ E(t0) 7→ u± ∈ Lp(I;H1,p(Rn+1,Rn+1)), (3.47)

(û, p̂, Jp̂K, h) ∈ E(t0) 7→ p± ∈ Lp(I;Lp(Rn+1)) (3.48)

are continuously di�erentiable with derivative

(δû, δp̂, Jδp̂K, δh) ∈ E(t0) 7→
(
δu±
δp±

)
(t, x, y)
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=

(
δû±
δp̂±

)
(t, x, y − h(t, x))− ∂y

(
û±
p̂±

)
(t, x, y − h(t, x))δh(t, x).

Proof. The proof of this lemma is somewhat technical and can be found in [25].

Here, we also used appropriate imbeddings, provided by Lemma 9 within the cited

paper, and the results from Theorem 3.10.

Before we come to the main result for the not transformed problem, there is a

further Lemma we need to proof the di�erentiability of the original problem.

Lemma 3.12. Let Uc(t0) = Lp(I;H1,p(Rn+1)). Then the mapping

(c, h) ∈ Uc(t0)× E4(t0) 7→ ĉ(c, h) ∈ Uĉ(t0) (3.49)

with ĉ(c, h)(t, x, y) = c(t, x, y + h(t, x)) is continuously di�erentiable with derivative

(δc, δh) ∈ Uc(t0)× E4(t0) 7→ δc(t, x, y + h(t, x)) + ∂yc(t, x, y + h(t, x))δh(t, x).

Proof. Compare to the proof of Lemma 11 in [25].

In conclusion we obtain the following existence and di�erentiability result for the

original data (u0, h0, c).

Theorem 3.13. Let p > n + 3 and Uu(h0),Uc(t0) be de�ned by (3.41). Then, for

any t0 > 0 there exists ε0 = ε0(t0) > 0 such that for all data

(h0, c) ∈ Uh × Uc(t0), u0 ∈ Uu(h0)

satisfying the compatibility condition (3.21) as well as the smallness condition

‖u0‖Uu(h0) + ‖h0‖Uh
+ ‖c‖Uc(t0) < ε0 (3.50)

there exists a unique solution of the transformed problem (3.17) with

(û, p̂, Jp̂K, h) ∈ E(t0).

Moreover, for any h0 with ‖h0‖Uh
< ε0 the mapping

{(u0, c) ∈ Uu(h0)× Uc(t0) : (u0, h0, c) satisfy (3.21), (3.50)} 7→ (û, p̂, Jp̂K, h) ∈ E(t0)

is continuously di�erentiable. By the chain rule in Lemma 3.11, also the original

state (u, q) depends continuously di�erentiable on (u0, c) with the spaces given in

(3.45), (3.47), (3.48).
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Proof. We adapt the �xed point argument in the proof of Theorem 3.9. Let

ĉ(c, h)(t, x, y) = c(t, x, y + h(t, x)). (3.51)

The only di�erence compared to the situation in Theorem 3.9 results from the fact,

that ĉ(c, h) now depends additionally on h. Hence, the �xed point equation (3.38)

changes to

L0z̃ = K(z̃; û0, h0, ĉ(c, z̃ + z∗(û0, h0))), z̃ ∈ 0E(t0). (3.52)

Let ε̂0 > 0 be as in Theorem 3.9. Then we have

‖ĉ(c, h)‖Uû
= ‖c‖Uû

(3.53)

and the last estimate in Theorem 3.10 shows that for ε0 > 0 small enough the

smallness condition (3.50) implies (3.33). Note, (3.53) holds independently of h.

Hence, for all (u0, h0, c) satisfying (3.50) we have (û0, h0, ĉ(c, h)) ∈ BU (ε̂0) and thus

by (3.40)

‖L−1
0 K(z̃; û0, h0, ĉ)‖0E(t0) < δ.

Finally, the Lipschitz constant of K(z̃; û0, h0, ĉ) with respect to ĉ is 1 and the map-

ping (3.49) with (3.51) is by Lemma 3.12 continuously di�erentiable. Moreover, the

Lipschitz constant with respect to h is bounded by ‖c‖Uc(t0) < ε0. Hence, for ε0 > 0

small enough, (3.52) is a contraction and the existence, uniqueness and continuous

di�erentiability follow as in the proof of Theorem 3.9. Lemma 3.11 and the chain

rule yield now the continuous di�erentiability of the original state (u, q) with respect

to (u0, c) for the spaces given in (3.45), (3.47) and (3.48).

3.3.6 Results for the Volume of Fluid-type Formulation

With the di�erentiability result we obtained for the classical formulation of a two-

phase problem, we are now able to show also the di�erentiability of the volume

of �uid-type formulation of the problem, see equation (2.21). Again, we do not

consider an outer boundary of our domain, so we do not need to take the boundary

conditions into account. Only the extended state equations and initial conditions are

considered. Since the phase indicator α is in general discontinuous at the interface,

the results are expected in the weak topology of measures and the sensitivity of

α is a measure concentrated along the interface. We will close the section with a

sensitivity system for the VOF formulation, which invokes measure-valued solutions

of the linearized transport equation.
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Based on a solution (u, p), which ful�lls (2.12), and the corresponding sensitivities

(δu, δp), we will now show the di�erentiability of the volume of �uid-type formulation

of the control-to-state mapping. Therefore, let the phase indicator α : Rn+1 →
[0, 1] be a distributional solution of the α-transport equation (2.19) and with an

appropriate initial condition, so it holds

∂tα+∇ · (uα) = 0 in I × Rn+1, α(0) = 1Ω1(0) on Rn+1. (3.54)

Then we can de�ne uniquely a continuous mapping (x, y) 7→ X(t;x, y), where

X(t;x, y) satis�es the characteristic equation

∂tX(t;x, y) = u(t,X(t;x, y)), t ∈ I, X(0;x, y) = (x, y). (3.55)

In order to deal with the sensitivity equation of (3.54), it will be bene�cial to

consider measure-valued solutions of the general equation

∂tδα+∇ · (u δα) = b in I × Rn+1, δα(0) = δα0 on Rn+1. (3.56)

In the following, we denote by Mloc(Rn+1) the space of locally bounded Radon

measures. Further we de�neMloc(Rn+1)−weak∗ as the space of all locally bounded
Radon measures with weak convergence. Then we obtain

Proposition 3.14. Let u ∈ L1(I;W 1,∞(Rn+1;Rn+1)). Then, for any

δα0 ∈ Mloc(Rn+1), there exists a unique distributional solution of (3.56) in

C(Ī;Mloc(Rn+1)− weak∗), given by

δα(t) = X(t)(δα0) +

t∫
0

X(t− s)(b(s)). (3.57)

Here, X is the forward �ow de�ned by (3.55) and δαt = X(t)(δα0) is the measure

satisfying∫
Rn+1

φ(x, y) dδαt(x, y) =

∫
Rn+1

φ(X(t;x, y)) dδα0(x, y) ∀φ ∈ Cc(Rn+1).

Proof. See [25] and [67] for the detailed proof.

Therewith, we can show the following important proposition, which states the

di�erentiability of the control-to-state map for the state variable α and gives a

formulation for the sensitivity equation of the α-transport equation.
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Proposition 3.15. If û ∈ E1(t0), JûK = 0 and u is given by (3.44), then (3.54) has

a unique solution given by

α(t,X(t;x, y)) = 1Ω1(0)(x, y) (3.58)

and thus α(t, ·) = 1Ω1(t). Moreover, for ε0 from Theorem 3.13 and any h0 with

‖h0‖Uh
< ε0 the mapping

{(u0, c) ∈ Uu(h0)× Uc(t0) : (u0, h0, c) satisfy (3.21), (3.50)}
7→ α ∈ C(Ī;Mloc(Rn+1)− weak∗)

is continuously di�erentiable. The derivative

(δu0, δc) ∈ Uu(h0)× Uc(t0) 7→ δα ∈ C(Ī;Mloc(Rn+1)− weak∗)

is given by the unique measure-valued solution of

∂tδα+∇ · (u δα) = −∇ · (δuα) in I × Rn+1, δα(0) = 0 on Rn+1. (3.59)

Finally, δα satis�es∫
Rn+1

φ(x, y) dδα(t)(x, y) =

∫
Rn

φ(x, h(t, x))δh(t, x) dx. (3.60)

Proof. If û ∈ E1(t0), JûK = 0 and u is given by (3.44), then it holds that u ∈
C(Ī;W 1,∞(Rn+1;Rn+1)) by the following imbeddings, see [25, Lem. 9]

E1(t0) ↪→ C(Ī;BUC1(Ṙn+1,Rn+1)) ∩ C(Ī;BUC(Rn+1,Rn+1)), (3.61)

E4(t0) ↪→ C1(Ī;BC1(Rn)) ∩ C(Ī;BC2(Rn)). (3.62)

Following [4, Prop. 2.2] and [26, Cor. II.1], it is well known that (3.58) provides the

unique weak solution in L1
loc(I × Rn+1) of the following problem

∂tα+ u · ∇α = 0 in I × Rn+1, α(0) = 1Ω1(0) on Rn+1.

Since ∇ · (u) = 0 almost everywhere, it is also a distributional solution of (3.54),

which is unique by Proposition 3.14.

Let now (u0, h0, c), (δu0, 0, δc) ∈ Uu × Uh × Uc(h0) be such that (u0, h0, c) and

(u0, h0, c)+(δu0, 0, δc) satisfy the conditions of Theorem 3.13. Denote by (û, p̂, Jp̂K, h)

the unique solution of (3.17) for data (u0, h0, c) and by (ûs, p̂s, Jp̂sK, hs) the one for
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data (u0, h0, c) + s (δu0, 0, δc). Let (u, p) and (us, ps) be the corresponding states in

physical coordinates according to (3.12) and let α = 1Ω1(t), α
s = 1Ωs

1(t) be the corre-

sponding solutions of (3.54). Finally, let (δu, δh, δp) be the directional derivatives,

hence sensitivities, in direction (δu0, 0, δc), which exist by Theorem 3.13. We show

that
αs − α
s

→ δα in C(Ī;Mloc(Rn+1)− weak∗) as s→ 0, (3.63)

where δα solves (3.59). Let φ ∈ Cc(Rn+1) be arbitrary. Then

∫
Rn+1

αs − α
s

(t, x, y)φ(x, y) d(x, y) =

∫
Rn

hs(t,x)∫
h(t,x)

1

s
φ(x, y) d(x, y)

→
∫
Rn

φ(x, h(t, x))δh(t, x) dx

as s → 0 uniformly in t ∈ Ī, where we have used the di�erentiability result of

Theorem 3.13. Moreover, it is obvious that the middle term is continuous with

respect to t. Hence, (3.63) is proven and we have only to show that δα solves (3.59).

To this end, let ϕ ∈ C1
c (I × Rn+1) be arbitrary. Since α, αs are distributional

solutions of (3.54), we have

0 =

∫
I

∫
Rn+1

−
(
∂tϕ+ (u · ∇)ϕ)α

s−α
s + αs(u

s−u
s · ∇)ϕ

)
(t, x, y) d(x, y) dt

→
∫
I

∫
Rn+1

− (∂tϕ+ (u · ∇)ϕ)δα+ α(δu · ∇)ϕ) (t, x, y) d(x, y) dt

as s→ 0. For the limit transition, we have used u ∈ C(Ī;W 1,∞(Rn+1)), (3.63) and

that by Theorem 3.13 αs = 1Ωs(t) → α = 1Ω(t) in L
2
loc(I × Rn+1) and us−u

s → δu

in C(Ī;Lp(Rn+1)). Hence, δα is a distributional solution of (3.59), which is unique

by Proposition 3.14.

What we have shown so far holds only for the α-transport equation and a solution

(u, p) of the classical formulation (2.12). Now we also want to take the full VOF-

type formulation into account, where the next step is to express the surface tension

term by using the phase indicator α such that its sensitivities can be expressed by

using the measure δα. Therefore, we rewrite the surface tension term within the

weak formulation (3.6).
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Lemma 3.16. Let ϕ ∈ C1
c (Rn+1;Rn+1). Then, one has the following identity with

the curvature κ(t) of Γ(t) according to (3.11)∫
Γ(t)

(σκν)(t, x, y)>ϕ(x, y) dS(x, y)

=

∫
Rn

σ divx

(
∇h(t, x)√

1 + |∇h(t, x)|2

)(
−∇h(t, x)

1

)>
ϕ(x, h(t, x)) dx

=

∫
Rn

σ
(∇h(t, x)>,−1)√

1 + |∇h(t, x)|2
(Dϕ(x, h(t, x))− div(ϕ)(x, h(t, x))I)

(
∇h(t, x)

−1

)
dx.

(3.64)

Proof. The result follows from the de�nition of κ and integration by parts [25].

To compute the interface normal from ∇α, we use the de�nition of distributional

derivatives and obtain

Lemma 3.17. Let ψ ∈ C1
c (Rn+1;Rn+1). Then it holds

−
∫

Rn+1

ψ(x, y)>∇α(t, x, y) d(x, y) =

∫
Γ(t)

ψ(x, y)>ν(t, x, y) dS(x, y)

=

∫
Rn

ψ(x, h(t, x))>
(
−∇h(t, x)

1

)
dx.

Proof. See [25] for the necessary equation transformations.

For the further considerations we now assume a δ ∈ (0, 1/2) and

ψδ ∈ C1
c ((−1, 1)), ψδ|[−1+δ,1−δ] ≡ 1, ψδ(−s) = ψδ(s) ∀ s ∈ R,

∫
R

ψδ(s) ds = 1.

and set

φε(x, y) =
1

εn
ψδ(y/ε)

n∏
i=1

ψδ(xi/ε).

We use this de�nitions to de�ne a smoothed normal νε computed from ∇α, which
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is not necessarily of unit length

νε(t, x, y) := −
∫

Rn+1

φε((x̃, ỹ)− (x, y))∇α(t, x̃, ỹ) d(x̃, ỹ). (3.65)

Then we obtain by Lemma 3.17

νε(t, x, y) =

∫
Γ(t)

φε((x̃, ỹ)− (x, y))ν(t, x̃, ỹ) dS(x̃, ỹ)

=

∫
Rn

φε((x̃, h(t, x̃))− (x, y))

(
−∇h(t, x̃)

1

)
dx̃.

Let us further assume that

|∇h| ≤ 1− δ on x+ [−ε, ε]n. (3.66)

Then we have by the de�nition of φε

νε(t, x, h(t, x)) =
1

εn

∫
Rn

n∏
i=1

ψδ((x̃i − xi)/ε)
(
−∇h(t, x̃)

1

)
dx̃. (3.67)

The variation of νε is

δνε(t, x, y) := −
∫

Rn+1

φε((x̃, ỹ)− (x, y))∇dδα(t)(x̃, ỹ), (3.68)

with the measure-valued solution of (3.59).

Two further lemmas are helpful to show the equivalence between the classical and

the VOF-type formulation. The corresponding proofs can be both found in [25].

Lemma 3.18. Let (3.66) hold. If h ∈ C(Ī;BC2(Rn)), then there is a C > 0 such

that

|νε(t, x, h(t, x))− (−∇h(t, x), 1)>| ≤ Cε ∀ (t, x) ∈ I × Rn.

On compact subsets the error is o(ε).

Lemma 3.19. Let (3.66) hold. If δh ∈ C(Ī;BC2(Rn)), then there is a C > 0 such

that

|δνε(t, x, h(t, x))− (−∇δh(t, x), 1)>| ≤ Cε ∀ (t, x) ∈ I × Rn.
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On compact subsets the error is o(ε).

Now we can show, that the unique solution (u, p) of (2.12) satis�es the VOF-type

formulation, which consists of the α-transport equation (3.54), the weak formulation

(3.8) and (3.9) as well as the de�nitions (2.17) and (2.18).

Theorem 3.20. If (3.66) holds for the solution (u, p) of (2.12) according to

Theorem 3.13, which is satis�ed for ε0 > 0 small enough, then it satis�es the

VOF-type formulation (3.8), (3.9) and (3.54).

Let vice versa (u, p, α) be a solution of the VOF-type formulation (3.8), (3.9)

and (3.54), where α(t) is the indicator function of a domain Ω1(t) = {(x, y) ∈
Rn × R : y = h(t, x)}. If (u, p, h) has the regularity as in Theorem 3.13, then

(u, p, h) coincides with the solution of (2.12) according to Theorem 3.13.

Proof. Let (u, p) be the solution of (2.12) according to Theorem 3.13. Then it

solves clearly also the weak formulation (3.6) and (3.7). Since the solution of (3.54)

is α = 1Ω1(t) by Proposition 3.15, the formulations (3.8), (3.9), (3.54) and (3.6),

(3.7) are equivalent if the right hand side of (3.8) coincides with the surface tension

force term (3.64). To show this, we note that Lemma 3.17 yields for any ε > 0

−
∫

Rn+1

σ
νε(t, x, y)>

|νε(t, x, y)|
(Dϕ− div(ϕ)I)(x, y)∇α(t, x, y) d(x, y)

=

∫
Rn

σ
νε(t, x, h(t, x))>

|νε(t, x, h(t, x))|
(Dϕ− div(ϕ)I)(x, h(t, x))

(−∇h(t,x)
1

)
dx.

Now the uniform convergence of νε(t, x, h(t, x)) to
(−∇h(t,x)

1

)
for ε ↘ 0 by Lemma

3.18 yields the convergence of the above term to (3.64).

Let vice versa (u, p, α) be a solution of the VOF-type formulation (3.8), (3.9) and

(3.54) such that (u, p, h) satis�es the regularity assumptions of Theorem 3.13. Then

again α = 1Ω1
(t), where the normal velocity of Γ(t) is u>ν. Moreover, JuK = 0 on

Γ(t) by the regularity of u and clearly the �rst two PDEs in (2.12) follow. Finally,

the jump condition in the third line of (2.12) follow from (3.8), (3.9) and (3.54), or

equivalently from (3.6) and (3.7), by choosing test functions of the form

ϕτ (t, x, y) = φ(t, x)ψτ (y − h(t, x)) (3.69)

with φ ∈ C∞c (I × Rn;Rn+1), ψτ (s) = ψ(s/τ), ψ ∈ C1
c ((−1, 1)), ψ ≥ 0, ψ(0) = 1,

ψ(−s) = ψ(s) and letting τ ↘ 0.
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The last step remaining is to justify the following VOF-type formulation for com-

puting the sensitivities (δu, δp).∫
I×Rn+1

(
∂t(ρ(α)δu) + div(ρ(α)(δu⊗ u+ u⊗ δu)) + δc)>ϕd(t, x, y)

+

∫
I×Rn+1

S(δu, δp;µ(α)) : ∇ϕd(t, x, y)

+

∫
I

∫
Rn+1

(ρ2 − ρ1)u>
(
∂tϕ+ u · ∇ϕ

)
dδα(t)(x, y) dt (3.70)

−
∫
I

∫
Rn+1

[S(u, p;µ(α))] : ∇ϕdδα(t)(x, y)dt

= lim
ε↘0
−

∫
I×Rn+1

σ

(
δν>ε
|νε|
− δν>ε νεν

>
ε

|νε|3

)
(Dϕ− div(ϕ)I)∇αd(t, x, y)

−
∫

I×Rn+1

σ
ν>ε
|νε|

(Dϕ− div(ϕ)I)∇dδα(t)(x, y) ∀ϕ ∈ C2
c (I × Rn+1;Rn+1),

∫
I×Rn+1

div(δu)ψ d(t, x, y) = 0 ∀ψ ∈ C1
c (I × Rn+1), (3.71)

δα satis�es (3.59), (3.72)

δu(0) = δu0, (3.73)

where νε and δνε are given by (3.67) and (3.68). Due to the limited spatial regularity

of ∂tu, we have to state time derivatives on the interface in weak form. The following

lemma is still necessary for the prove of the hereafter theorem.

Lemma 3.21. Let ψ ∈ C1
c (Rn+1;Rn+1). Then

−
∫

Rn+1

ψ(x, y)>∇dδα(t)(x, y)

=

∫
Rn

∂yψ(x, h(t, x))>
(
−∇h(t, x)

1

)
δh(t, x) + ψ(x, h(t, x))>

(
−∇δh(t, x)

0

)
dx

=

∫
Rn

div(ψ)(x, h(t, x))δh(t, x) dx.

Proof. The lemma can be proofed by the de�nition of distributional derivatives and
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integration by parts, see [25].

With that we are able to show the main result for the sensitivities of the VOF-type

formulation we stated with (3.70)�(3.73).

Theorem 3.22. Let (u, q) be the solution of (2.12) according to Theorem 3.13 and

let (3.66) hold, which is satis�ed for ε0 > 0 small enough. Moreover, let (δu, δp) be

the sensitivities of (u, p) in Theorem 3.13 corresponding to (δu0, δc). Then (δu, δp)

solve the linearized VOF-type system (3.70)�(3.73).

Let vice versa (u, p, α) be a solution of the VoF-type formulation (3.8), (3.9) and

(3.54), where α(t) is the indicator function of a domain Ω1(t) = {(x, y) ∈ Rn × R :

y = h(t, x)}. If (u, p, h) has the regularity as in Theorem 3.13 and (δu, δp, δα) is a

solution of (3.70)�(3.73) such that (δu, δp) has the regularity as in Theorem 3.13,

then (δu, δp) coincide with the sensitivities according to Theorem 3.13.

Proof. Let (u0, h0, c), (δu0, 0, δc) ∈ Uu(h0) × Uh × Uc(t0) be such that (u0, h0, c)

and (u0, h0, c) + (δu0, 0, δc) satisfy the conditions of Theorem 3.13. Denote now by

(û, p̂, Jp̂K, h) the unique solution of (3.17) for data (u0, h0, c) and by (ûs, p̂s, Jp̂sK, hs)
the one for data (u0, h0, c)+s (δu0, 0, δc). Let (u, p) and (us, ps) be the corresponding

states in physical coordinates according to (3.12) and let α = 1Ω1(t), α
s = 1Ωs

1(t) be

the corresponding solutions of (3.54). Finally, let (δu, δh, δp) be the directional

derivatives (sensitivities) in direction (δu0, 0, δc) which exist by Theorem 3.13. By

the di�erentiability result of Theorem 3.13 we know that with the extensions u±, p±
in (3.46) the following holds, see (3.45), (3.47) and (3.48)

us − u
s

→ δu in C(Ī;Lp(Rn+1;Rn+1)), (3.74)

us± − u±
s

→ δu± in Lp(I;Hp,1(Rn+1;Rn+1)), (3.75)

ps± − p±
s

→ δp± in Lp(I;Lp(Rn+1;Rn+1)). (3.76)

We derive now the di�erent terms in (3.70). Therefore we de�ne

Ωs := {(t, x, y) : αs = α}, Ωcs := {(t, x, y) : αs(t) 6= α}.

We have for arbitrary ϕ ∈ C2
c (I × Rn+1;Rn+1)∫

I×Rn+1

−1

s

(
(ρ(αs)us − ρ(α)u)>∂tϕ+ ρ(αs)(us)>(us · ∇ϕ)− ρ(α)u>(u · ∇ϕ)

)
d(t, x, y)
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=

∫
Ωs

−1

s

(
ρ(α)(us − u)>∂tϕ+ ρ(α)((us)>(us · ∇ϕ)− u>(u · ∇ϕ))

)
d(t, x, y)

+

∫
Ωc

s

−1

s

(
(ρ(αs)us − ρ(α)u)>∂tϕ+ ρ(αs)(us)>(us · ∇ϕ)− ρ(α)u>(u · ∇ϕ)

)
d(t, x, y)

By (3.74) and (3.75) we obtain for the �rst summand∫
Ωs

−1

s

(
ρ(α)(us − u)>∂tϕ+ ρ(α)((us)>(us · ∇ϕ)− u>(u · ∇ϕ))

)
d(t, x, y)

→
∫

I×Rn+1

−
(
ρ(α)δu>∂tϕ+ ρ(α)(δu>(u · ∇ϕ) + u>(δu · ∇ϕ)

)
d(t, x, y)

=

∫
I×Rn+1

(
∂t(ρ(α)δu) + div(ρ(α)(δu⊗ u+ u⊗ δu))>ϕd(t, x, y).

For the second summand we have by Theorem 3.13∫
Ωc

s

−1

s

(
(ρ(αs)us − ρ(α)u)>∂tϕ+ ρ(αs)(us)>(us · ∇ϕ)− ρ(α)u>(u · ∇ϕ)

)
d(t, x, y)

∫
I×Rn

−1

s

max(h(t,x),hs(t,x))∫
h(t,x)

(
(ρ1u

s − ρ2u)>∂tϕ+ ρ1(us)>(us · ∇ϕ)− ρ2u
>(u · ∇ϕ)

)
d(t, x, y)

+

∫
I×Rn

−1

s

max(h(t,x),hs(t,x))∫
hs(t,x)

(
(ρ2u

s − ρ1u)>∂tϕ+ ρ2(us)>(us · ∇ϕ)− ρ1u
>(u · ∇ϕ)

)
d(t, x, y)

→
∫

I×Rn

(ρ2 − ρ1)u>
(
∂tϕ+ u · ∇ϕ

)
(t, x, h(t, x))δh(t, x) d(t, x)

=

∫
I

∫
Rn+1

(ρ2 − ρ1)u>
(
∂tϕ+ u · ∇ϕ

)
dδα(t)(x, y) dt,

where we have used equation (3.60) in the last step.
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For the next term in (3.70) we note that∫
I×Rn+1

1

s
(S(us, ps;µ(αs))− S(u, p;µ(α))) : ∇ϕ

)
d(t, x, y)

=

∫
Ωs

1

s
(S(us − u, ps − p;µ(α)) : ∇ϕd(t, x, y)

+

∫
Ωc

s

1

s
(S(us, ps;µ(αs))− S(u, p;µ(α)) : ∇ϕd(t, x, y).

(3.77)

Now (3.75) and (3.76) yield∫
Ωs

1

s
(S(us − u, ps − p;µ(α)) : ∇ϕd(t, x, y)→

∫
I×Rn+1

S(δu, δp;µ(α)) : ∇ϕd(t, x, y).

Moreover, by using (3.61) and Theorem 3.9 we have∫
Ωc

s

1

s
(S(us, ps;µ(αs))− S(u, p;µ(α)) : ∇ϕd(t, x, y)

=

∫
I×Rn

1

s

max(h(t,x),hs(t,x))∫
h(t,x)

(S(us−, p
s
−;µ1)− S(u+, p+;µ2) : ∇ϕd(t, x, y)

+

∫
I×Rn

1

s

max(h(t,x),hs(t,x))∫
hs(t,x)

(S(us+, p
s
+;µ2)− S(u−, p−;µ1)) : ∇ϕd(t, x, y)

→ −
∫

I×Rn

[S(u, p;µ(α))](t, x, h(t, x))δh(t, x) : ∇ϕ(t, x, h(t, x)) d(t, x)

= −
∫
I

∫
Rn+1

[S(u, p;µ(α))] : ∇ϕdδα(t)(x, y)dt.

Here, we have used (3.60) and the imbedding (3.61) in the last step. Finally, the

surface tension term (3.64) has by Theorem 3.13 and with the abbreviations

ν̃(t, x) =

(
−∇h(t, x)

1

)
, δν̃(t, x) =

(
−∇δh(t, x)

0

)
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as well as imbedding (3.62) the following directional derivative∫
I×Rn

σ

(
δν̃>

|ν̃|
− δν̃>ν̃ν̃>

|ν̃|3

)
(t, x)(Dϕ− div(ϕ)I)(t, x, h(t, x))ν̃(t, x) d(t, x)

+

∫
I×Rn

σ
ν̃>

|ν̃|

(
∂y(Dϕ− div(ϕ)I)(t, x, h(t, x))δh(t, x)ν̃(t, x)

+ (Dϕ− div(ϕ)I)(t, x, h(t, x))δν̃(t, x)
)
d(t, x).

(3.78)

Now the �rst integral on the right hand side of (3.70) converges to the �rst intergal

in (3.78) by �rst applying Lemma 3.17 and then Lemmas 3.18 and 3.19. By using

�rst Lemma 3.21, where we have to note that νε(t, x, y) depends close to Γ(t) only

on x by (3.66), and then Lemma 3.18 as well as the fact that ∇δh is continuous by

(3.62), the second integral on the right hand side of (3.70) converges to the second in-

tergal in (3.78). (3.71) and (3.73) are obvious and (3.72) follows by Proposition 3.15.

Let vice versa (u, p, α) be a solution of the VOF-type formulation (3.8), (3.9)

and (3.54) and (δu, δp, δα) a solution of (3.70)�(3.73) with the regularities as in

Theorem 3.13. By Theorem 3.20, (u, p, h) coincides with the solution of (2.12) in

Theorem 3.13 and (3.59) implies by Proposition 3.15 that δα and δh correspond to

each other via (3.60). Hence, (3.70)�(3.73) ensure that (u, p) satisfy the linearization

of (2.12) on Ω(t) and that δα provides for given δu the correct δh. It remains to

show that (3.70)�(3.73) implies the correct linearized jump condition. Denote the

tested surface tension term from (3.64) for φ ∈ C∞c (I × Rn;Rn+1) by

K(h;φ) :=

∫
I×Rn

σ divx

(
∇h(t,x)√

1+|∇h(t,x)|2

)(−∇h(t,x)
1

)>
φ(t, x) d(t, x).

The jump condition in strong form is equivalent to

−
∫

I×Rn

φ(t, x)>[S(u, p;µ)(t, x, h(t, x))]
(−∇h(t,x)

1

)
d(t, x) = K(h;φ) (3.79)

for all φ ∈ C∞c (I × Rn;Rn+1) with S(u, p;µ) = −pI + µ(∇u + ∇u>). In the

transformed variables the jump condition reads

−
∫

I×Rn

φ(t, x)>[Ŝ(û, p̂, h; µ̂)(t, x, 0)]
(−∇h(t,x)

1

)
d(t, x) = K(h;φ)
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for all φ ∈ C∞c (I × Rn;Rn+1), where with the notation of the transformed defor-

mation tensor, see (3.13), Ŝ(û, p̂, h; µ̂) = −p̂I + µ̂D(û, h). Thus, the sensitivities

δû, δp̂, δh satisfy the linearized jump condition

−
∫

I×Rn

φ(t, x)>
(

[∂(û,p̂,h)Ŝ(û, p̂, h; µ̂) · (δû, δp̂, δh)(t, x, 0)]
(−∇h(t,x)

1

)
+ [Ŝ(û, p̂, h; µ̂)(t, x, 0)]

(−∇δh(t,x)
0

))
d(t, x) = ∂hK(h;φ) · δh

(3.80)

for all φ ∈ C∞c (I × Rn;Rn+1). We show now, that under the regularity ensured

by Theorem 3.13, (3.80) is implied by the weak formulation (3.70) by using test

functions of the form

ϕτ (t, x, y) = φ(t, x)ψτ (y − h(t, x)) (3.81)

with φ ∈ C∞c (I × Rn;Rn+1), ψτ (s) = ψ(s/τ), ψ ∈ C1
c ((−1, 1)), ψ ≥ 0, ψ(0) = 1,

ψ(−s) = ψ(s) for τ ↘ 0. Then

∇ϕτ (t, x, y) = ψ′τ (y − h(t, x))
(−∇h(t,x)

1

)
φ(t, x)> + ψτ (y − h(t, x))

(∇φ(t,x)
0

)
,

∂tϕτ (t, x, y) = −φ(t, x)ψ′τ (y − h(t, x))∂th(t, x) + ∂tφ(t, x)ψτ (y − h(t, x)).

We test the weak form (3.8) also in time and rewrite it in the transformed variables.

This results in∫
I×Rn+1

(
(∂t(ρ(α)u) + div(ρ(α)u⊗ u)) (t, x, y)>ϕ + S(u, p;µ) : ∇ϕ

)
d(t, x, y) =

∫
I×Rn+1

(
−ρ̂(x, y)û>

(
∂tϕ(t, x, y + h(t, x)) + û · ∇ϕ(t, x, y + h(t, x))

)
(3.82)

+ Ŝ(û, p̂, h; µ̂)(t, x, y) : ∇ϕ(t, x, y + h(t, x))
)
d(t, x, y) = K(h;ϕ(·, ·, h(·, ·))).

For the right hand side we have used that as in the proof of Theorem 3.20 the right

hand side of (3.8) coincides with (3.64). For the test function (3.81) we obtain

∂tϕτ (t, x, y + h(t, x)) + û · ∇ϕτ (t, x, y + h(t, x))

= −φ(t, x)ψ′τ (y)(∂th(t, x) + v>∇h(t, x)− w) + ψτ (y)(∂tφ(t, x) + v · ∇φ(t, x)).

Moreover, for any (x̄, ȳ) ∈ Γ(t̄) and (x(t), y(t)) with (x′(t), y′(t)) = u(x(t), y(t)),

(x(t̄), y(t̄)) = (x̄, ȳ) one has y(t)− h(t, x(t)) = 0 and thus

0 = y′(t)− ∂th(t, x(t))− ∂xh(t, x(t))x′(t)
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= w(t, x(t), y(t))− ∂th(t, x(t))− v(t, x(t), y(t))>∇h(t, x(t)).

Hence,

∂tϕτ (t, x, y + h(t, x)) + û · ∇ϕτ (t, x, y + h(t, x)) = ψτ (y)(∂tφ(t, x) + v · ∇φ(t, x)).

and inserting ϕτ in (3.82) yields∫
I×Rn+1

(
−ρ̂(x, y)û>ψτ (y)(∂tφ(t, x) + v · ∇φ(t, x))

+ Ŝ(û, p̂, h; µ̂) :
(
φ(t, x)ψ′τ (y)

(−∇h(t,x)
1

)
+ ψτ (y)

(∇φ(t,x)
0

)))
d(t, x, y) = K(h;φ).

We have already observed that the right hand side of (3.8) coincides with (3.64)

and the right hand side of (3.70) with the derivative (3.78) of (3.64). Since K(h;φ)

corresponds to using ϕτ in (3.64), ∂hK(h;φ) · δh can be expressed as the sum of

the right hand side of (3.70) with ϕ = ϕτ and of the right hand side of (3.8) with

ϕ = −∂yϕτδh (note again that ϕτ depends on h). Similarly, taking the derivative

of the left hand side of (3.82) corresponds to the sum of the left hand side of (3.70)

with ϕ = ϕτ and of the left hand side of (3.82) with ϕ = −∂yϕτδh (note that ϕτ
depends on h), which results in∫
I×Rn+1

(
−ρ̂(x, y)ψτ (y)

(
δû>(∂tφ(t, x) + v · ∇φ(t, x)) + û>(∂tφ(t, x) + δv · ∇φ(t, x))

)
+ ∂(û,p̂,h)Ŝ(û, p̂, h; µ̂)(x, 0) · (δû, δ̂̂p, δh) :

(
φ(t, x)ψ′τ (y)

(−∇h(t,x)
1

)
+ ψτ (y)

(∇φ(t,x)
0

))
+ Ŝ(û, p̂, h; µ̂)(x, 0) : φ(t, x)ψ′τ (y)

(−∇δh(t,x)
0

))
d(t, x, y) = ∂hK(h;φ) · δh.

Note, we di�erentiate equivalently the middle term of (3.82) in transformed vari-

ables. By the assumed regularity for τ ↘ 0, all terms containing the factor ψτ (y)

tend to zero and the remaining terms converge to∫
I×Rn

(
−[∂(û,p̂,h)Ŝ(û, p̂, h; µ̂)(x, 0) · (δû, δp̂, δh)] :

(−∇h(t,x)
1

)
− [Ŝ(û, p̂, h; µ̂)(x, 0)] :

(−∇δh(t,x)
0

))
φ(t, x) d(t, x) = ∂hK(h;φ) · δh.

This is exactly the linearized jump condition (3.80).
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3.4 Sensitivity System with respect to Liquid Viscosity

The former section yields fundamental theoretical results for the two-phase system

with jump conditions and also treat the VOF approach for special controls. In the

following, we will extend the results for a further control, the liquid viscosity µl,

in a formal way. Extensive proofs of existence and uniqueness for this problem

are skipped, as this would go beyond the scope of this work. However, further

investigations are planned for the future. The reason why we add this part at this

point is, that we will apply the sensitivity equations with respect to the material

parameter µl to the doctor blading test case in Chapter 5. So we will now formally

establish the sensitivity system for the state equations in (2.21), which consists of

the momentum equation (2.20), the continuity equation (2.3) and the transport

equation (2.19). For a clearer representation we de�ne C := (C1, C2, C3, C4, C5)>

with

C1,2,3 := ρ(∂tu+ u · ∇u)− µ∆u− ρg +∇p− σκ∇α,
C4 := ∇ · u,
C5 := ∂tα+∇ · (αu).

Here we have to remember, that the density ρ and the viscosity µ also depend on

the phase fraction α, see equations (2.17) and (2.18), so it holds

ρ(α) = αρl + (1− α)ρg,

µ(α) = αµl + (1− α)µg.

The goal is to �nd the sensitivities δy of the state variables y = (u, p, α) with

respect to the control q = µl. Hence, the sensitivities are de�ned as

δy :=
d(u, p, α)

dq
=

(
du

dq
,
dp

dq
,
dα

dq

)
,

δu :=
du

dq
, δp :=

dp

dq
, δα :=

dα

dq
.

In order to solve equation (3.3), we have to determine the two terms Cy(y(q), q) and

Cq(y(q), q). We start with the second one. The only term in C containing the liquid

viscosity is the di�usion term −µ∆u, where µl is incorporated in µ, see equation

(2.18). For the viscosity it holds

∂µl
µ(α, µl) = α.
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Then, we obtain by direct formal di�erentiation of the state equations C1,..,5 with

respect to the control parameter q = µl the following partial derivatives

∂µl
C1,2,3δµl = −α∆u, ∂µl

C4δµl = 0, ∂µl
C5δµl = 0.

This results in

Cq(y(q), q)δq = (−α∆u, 0, 0) . (3.83)

For the calculation of Cy(y(q), q), we formally di�erentiate the equations with the

help of product and chain rule again. The challenging part is the momentum equa-

tion, where some preparatory considerations must be made. As we already stated

above, density and viscosity depend on the phase fraction variable α. Therefore, we

obtain the following derivatives with respect to α

ρ′ := ∂αρ = ρl − ρg,
µ′ := ∂αµ = µl − µg,

where ρl, ρg and µl, µg are constant values. Then the derivative of C1,...,5 with

respect to the individual state variables yield

∂uC
1,2,3δu = ρ (∂tδu+ δu · ∇u+ u · ∇δu)− µ∆δu,

∂uC
4δu = ∇ · δu,

∂uC
5δu = ∇ · (α δu),

∂pC
1,2,3δp = ∇δp,
∂pC

4δp = 0,

∂pC
5δp = 0,

∂αC
1,2,3δα = ρ′δα(∂tu+ u · ∇u)− µ′δα∆u− ρ′δα g − σ(κ′∇α+ κ ∇δα),

∂αC
4δα = 0,

∂αC
5δα = ∂tδα+∇ · (δα u).

Some of the terms within this derivatives still need to be examined in more detail,

e.g. the curvature term in the representation of ∂αC
1,2,3δα. Just as density and

viscosity, the curvature also depends on the phase fraction α, see equation (2.16).

As we stated in the referenced equation, the curvature can be expressed in terms

of minus the divergence of the interface normal νΓ, if the interface Γ is su�ciently

smooth. This is the case, if Γ is a Lipschitz boundary, since then the outer normal

vector νΓ exists almost everywhere. Furthermore, the interface normal νΓ itself can
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be calculated with the help of the phase fraction �eld α and leads to

κ = −∇ · νΓ = −∇ · ∇α
|∇α|

. (3.84)

To �nd a representation for the derivative of the curvature κ with respect to the

phase fraction variable α, we add a small constant ε > 0 to the denominator of the

fraction to avoid numerical di�culties in regions where ∇α = 0. Furthermore, this

will match our numerical considerations in Chapter 4. This results in

κ′ := ∂ακ = −∂α∇ ·
∇α

|∇α|+ ε
= −∇ ·

(
∂α

∇α
|∇α|+ ε

)
.

The last equality results from the linearity of the divergence operator. Now let's

have a closer look at the argument of divergence. Applying the quotient rule, we

obtain

∂α
∇α

|∇α|+ ε
=
∇δα(|∇α|+ ε)−∇α∇α

T∇δα
|∇α|

(|∇α|+ ε)2
.

Altogether, the derivative of the curvature is

κ′ := ∂ακ = −∇ ·

∇δα(|∇α|+ ε)−∇α∇α
T∇δα
|∇α|

(|∇α|+ ε)2

 . (3.85)

Note, that we can calculate the curvature only at the interface, since it is only

de�ned there. Outside the interface region, in Ω\Γ, the curvature becomes zero and

therefore the surface tension term is also equal to zero.

Altogether, we end up with the following derivative of our state equations with

respect to the state y = (u, p, α)

Cy(y(q), q)δy =


ρ′δα ∂tu+ ρ (∂tδu+ δu · ∇u+ u · ∇δu) + ρ′δα u · ∇u
−µ∆δu− µ′δα∆u+∇δp− ρ′δα g − σ(κ′∇α+ κ ∇δα)

∇ · δu

∂tδα+∇ · (α δu+ δα u)


(3.86)

This leads to the following formulation of the sensitivity system with the addi-
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tional control term

ρ′δα ∂tu+ ρ (∂tδu+ δu · ∇u+ u · ∇δu) + ρ′δα u · ∇u− µ∆δu

−µ′δα∆u+∇δp− ρ′δα g − σ(κ′∇α+ κ ∇δα)− α∆u = 0,

∇ · δu = 0,

∂tδα+∇ · (α δu+ δα u) = 0.

(3.87)

With system (3.87), we can calculate our sensitivities δu, δp and δα, where solving

this system means to solve equation (3.3). This system also needs appropriate initial

and boundary conditions to complete the description. We require

(δu, δp, δα)(0) = (δu, δp, δα)0 in Ω(0)

and as boundary conditions we obtain

δu = 0, ∇δp = 0, ∇δα = 0 on ∂Ω(t).

These sensitivity boundary conditions result, if we assume Dirichlet BCs for the

velocity and Neumann BCs for the pressure and phase fraction. Once both, the

state variables and the sensitivities are calculated, the objective functional value

and the derivative of the objective function can be calculated for the respective

control. The objective function we mainly consider in our optimization problems is

a tracking type functional. It measures the di�erence between the actual state y and

a desired state yd through the L2-norm in space and time. The objective function

then reads

j(y, q) :=
1

2
‖y − yd‖2L2(I×Ω).

For the derivatives with respect to the state and the control we obtain

jy(y, q) := y − yd,
jq(y, q) := 0.

Using these results for jy, jq and the sensitivities δy, obtained from system (3.87),

the derivative of the reduced objective function with respect to the control q can be

calculated, see (3.2)

dj(y(q), q) := (y − yd, δy) = (y − yd, δu, δp, δα).

Therewith, the control q can be updated for the next optimization step, as we will

see in the next section.
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3.5 Sensitivity-based Optimization Algorithm

In this subsection, we show the general structure of a gradient-based optimization

algorithm using sensitivities, inspired by [36, p. 58]. Here, we assume that the

control is a vector q ∈ RN , N ∈ N. Hence, the sensitivity calculations of the

following algorithm has to be exercised for n = 1, ..., N . The algorithm stops, if a

prescribed stopping criteria is ful�lled and a satisfactory convergence is achieved.

Algorithm 3.1 Sensitivity-based Optimization Algorithm

1: Initialize control variables with q0 ∈ RN
2: For k = 0, 1, 2, ... :
3: Determine state yk = y(qk) by solving the state equations C(yk, qk) = 0
4: Determine the sensitivities δykn by solving the N linear sensitivity systems

Cy(yk, qk)δykn + Cqkn(yk, qk) = 0, n = 1, ..., N

5: Compute the gradient of the objective functional, for n = 1, ..., N , by solving

dj

dqkn
= jy(yk, qk)δykn + jqkn(yk, qk)

6: Determine the increment in the control parameters, e.g., in a simple gradient
method with an appropriate chosen size βk from

δqkn = −βk
dj

dqkn
, n = 1, ..., N

7: Update the control variables with qk+1 = qk + δqk

Note, that each iteration of this optimization algorithm requires at least one

evaluation of the �ow system. Once, the function evaluation j(qk) and the derivative
dj
dqk

are known, this �rst order optimization algorithm can be executed. Nevertheless,

more sophisticated methods could be used to determine the increment of the controls

δqk in step 6, for example a quasi Newton approach such as the BFGS method [36].

Although the method approximates the Hessian matrix iteratively, we would prefer

to avoid the application of second order derivatives. If the objective function is of a

speci�c form, for example a tracking type function, there is the possibility to utilize

more specialized methods such as the Gauss-Newton method. In Chapter 5, more

precisely in Section 5.2.2 and 5.3, we will discuss this subject in more detail and we

will see the justi�cation for this approach. At the moment, di�erent methods are

imaginable in step 6.
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As we already stated before, solving the investigated �ow control problem

exactly is not possible due to the complexity of the state equations and therefore

approximative solutions must be considered. Now the question is, when this

discretization takes place. In general, two di�erent proceedings are possible,

�rst-discretize-then-optimize or �rst-optimize-then-discretize. If we follow an �rst-

discretize-then-optimize approach, the continuous �ow equations are discretized

at �rst. Then, the discrete �ow equations are di�erentiated to obtain a discrete

sensitivity system. A popular way to obtain the discrete sensitivity equations is to

use automatic di�erentiation techniques, see e.g., [44]. The other possibility is to

follow the �rst-optimize-then-discretize approach. Here, the sensitivity equations

are obtained at the continuous PDE level and then the results are discretized.

Solving the discretized sensitivity equations provides a discrete approximation

of the sensitivities. In general, the discrete sensitivities from the �rst-discretize-

then-optimize and the �rst-optimize-then-discretize approach do not conform,

but they should converge to their continuous counterparts respectively, as the

grid size goes to zero [36]. The same applies to the gradients of the discretized

objective functionals, since they are calculated from the discrete sensitivities. Both

approaches can also be applied analogously to adjoint variables, see e.g., [75].

There are good arguments for both of these ways and it depends on the prob-

lem formulation itself, the software requirements and not least on the user, which

method is selected. An advantage of the �rst-discretize-then-optimize approach is

the consistency of functional gradients. Discretizing the di�erentiated functionals

does not necessarily yield the true gradients, but di�erentiating the discrete func-

tionals still leads to the exact gradients of the discrete state equations and therefore

also to the exact gradient of the discrete objective function [36]. In the case of the

�rst-optimize-then-discretize approach, this drawback can be overcome with error

estimators and adequate mesh re�nement. However, the advantage of the second

approach is the ease of realization. The more complex the �ow system, the more

time-consuming automatic di�erentiation is to implement and to solve. If in our case

an interface and a three-phase contact line are added to the standard �ow equations,

then a lot of equations have to be di�erentiated automatically. Furthermore, due to

its modular structure the targeted software o�ers ideal conditions for discretizing the

individual equations operator-wise. Surely, care must be taken to ensure that the

state and sensitivity equations are discretized as accurately as possible, otherwise

the discrete approximations of the state and the sensitivities will not be consistent.

Therefore, we discretize and implement the system in a similar way to the original

system and make use of the modular structure of the existing solver and operator

implementations. More details will be discussed in Section 4.3.
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Numerical Solution

In times of high computational power the solution of the complex PDE systems

describing multiphase �ow with direct numerical simulations (DNS) is preferable

and well feasible. It was mainly used and advanced for the application of homo-

geneous �uids and as a standard tool for turbulence problems. In this thesis we

follow the DNS approach although we have a predominant laminar �ow regime,

since the equations, governing the �uid �ow in the several phases, are highly

nonlinear and the position of the phase boundaries has to be found as a part of the

solution. Turbulent e�ects that might occur are captured by solving the previous

equations on a su�ciently �ne mesh. There are exact analytical solutions only for

the simplest problems, for example the steady-state motion of bubbles and droplets

in Stokes �ow [93]. For the more sophisticated questions, a numerical treatment

with discretization is indispensable.

We start in 4.1 with a description of the �nite volume discretization, see Section

4.1.1, and the temporal discretization using an implicit Euler method, see Section

4.1.2. Based on these methods, the discretized equations are derived for the primal

equation system in Section 4.1.3, using various operator discretizations and inter-

polation schemes. The numerical solutions of the α-transport equation with the

compression approach and a �ux-corrected transport algorithm as well as of the

Navier-Stokes equations with a pressure-correction method follow in the Sections

4.2.1 and 4.2.2. The discretization and solution of the sensitivity system is subse-

quently discussed in Section 4.3. Afterwards, Section 4.4 contains a description of

the applied software, where we �rst point out some special simulation characteristics

of OpenFOAM in Section 4.4.1 and then discuss the main implementation facts of

the new implemented sensitivity solver interSensFoam, based on the OpenFOAM

inherent incompressible �ow solver interFoam, see Section 4.4.2.
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4.1 Discretization

When we talk about discretization of our problem, we always mean a �nite-

dimensional formulation of the problem. This includes the discretization of the

solution domain as well as the discretization of the equations. The discretization

of the solution domain is divided in a spatial and a temporal discretization. We

use the �nite volume method (FVM) as spatial discretization and the implicit

Euler method for the temporal discretization, both described in detail in the next

sections. The aim of discretizing the equations is to obtain a discrete system of

algebraic equations, which can be solved by standard linear solvers. Since we have

to deal with nonlinear PDEs of second order, the discretization practice should be

also second order accurate in space and time, if possible.

In general, we use an Eulerian frame of reference for our quantities of interests,

which is widely used in �uid dynamics. That means, that all variables are given

on �xed points in space in the discrete setting. As a consequence, the varibles

are represented as a function of the position x and the time t, e.g. the velocity is

represented as u(x, t). In contrast, the Lagrangian approach describes the motion

of individual �uid particles following their path lines, without a �xed grid.

4.1.1 Finite Volume Discretization

In the presence of �uid, it is advantageous and common to investigate a de�ned

spatial range �lled with �uid, called control volume. We know these control volumes

already from the description of the conservation equations and we follow this idea

also in our discretization approach. With the �nite volume method, the continuous

solution domain Ω is transformed into the approximated domain Ωh with mesh size

h, partitioned into �nitely many control volumes Vi

Ωh :=
⋃
i

Vi ⊂ Rd, for i ∈ {1, ..., n} , n ∈ N, d ∈ {2, 3} .

In the following, we will also denote Ωh as mesh and Vi as cells. This approximation

provides a �nite number of non-overlapping cells bounded by a �nite number of

planar faces f . The discrete values of the variables are calculated at the cell centers
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4.1. Discretization

as volume averages over the control volumes. For a quantity ψ then it holds

ψc =
1

|Vi|

∫
Vi

ψ(x) dv.

Here, ψc is the cell-centered approximation of ψ. It can be shown, that this piece-

wise constant approximation of the cells is second-order accurate, if the value ψc is

associated with the cell centroid xc of the control volume, see e.g. in [59]. Since all

dependent variables share the same control volumes, we have a so-called collocated

arrangement. This has some advantages over a staggered grid, where the di�erent

variables are stored at both the cell centers of the control volumes and the cell faces,

especially for complex geometries and discontinuous variables [28].

Figure 4.1. Two control volumes with common boundary face f [62].

In Figure 4.1, P and N are the centroids of two adjacent cells and d is the

distance between P and N . We write ψP and ψN for the cell-centered values of

a variable ψ, if we need to distinguish between the owner and the neighbor cell,

and ψf for the face-centered value. The intersection between d and f does not

necessarily have to coincide with the face center point of f . The face area vector

Sf is normal to the face f with the magnitude equal to the area of the face itself.

A distinction is made between internal and boundary cells.

Remember, with the help of the divergence theorem, see Theorem 2.9, we are able

to convert the volume integrals into surface integrals. This is used to discretize the

governing equations. As a consequence, we not only need the cell-centered values

of the variables but also face-centered values. Face-centered variables are obtained

from the cell-centered variables by interpolation. Various interpolation schemes are

available for this purpose. They di�er regarding order of accuracy, boundedness
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and the degree of di�usiveness they produce. Two prominent representatives of

interpolation schemes are the linear interpolation, also called central di�erencing

and the upwind di�erencing scheme, we will introduce in the following.

Central Di�erencing (CD)

The face-centered values are calculated by

ψf,cd = fxψP + (1− fx)ψN ,

fx =
fN

PN
=
|xf − xN |
|d|

.

ψP

P N

ψN

f

ψf

This linear interpolation scheme is second order accurate, but solutions are possibly

unbounded and oscillatory [20].

Upwind Di�erencing (UD)

The face-centered value is equal to the upstream cell-centered value

ψf,ud =

{
ψP for φf ≥ 0,

ψN for φf < 0.

ψP

P N

ψN

f

ψf,φf≥0

ψf,φf<0

Here, φf is de�ned as the mass �ux which enters the face f, see equation (4.7)

for computational details. This interpolation scheme is �rst order accurate and

bounded, but di�usive [20].

Blended Di�erencing (BD)

This higher order di�erencing schemes is a mixture of the central and the upwind

scheme and aims to preserve both boundedness and accuracy of the solution [20]

ψf,bd = (1− λψ)ψf,ud + λψψf,cd. (4.1)

Inserting the upper schemes leads to the following expression, which only depends

on the face-centered values ψP and ψN

ψf,bd = [(1− λψ) max(sgn(φf ), 0) + λψfx]ψP

+ [(1− λψ) max(−sgn(φf ), 0) + λψ(1− fx)]ψN .
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We naturally denote by sgn(φf ) the sign of the �ux φf . Various possibilities can

be selected for the limiter λψ, e.g. Minmod [73], SuperBee [73] or vanLeer [98]. We

will discuss these limiters in detail, if we need them, at the appropriate place.

Linear Upwind Di�erencing (LUD)

Furthermore, there exist schemes using more than the direct neighboring cells. An

example for such a second order upwind di�erencing scheme is the so-called linear

upwind di�erencing scheme. It is a second order extension of the upwind interpola-

tion scheme with a possible explicit correction based on the local cell gradient. The

face values of a variable ψ can be calculated with

ψf,lud =

{
ψP + 1

2 (ψP − ψPP ) = 2
3ψP −

1
2ψPP for φf ≥ 0,

ψN + 1
2 (ψN − ψNN ) = 2

3ψN −
1
2ψNN for φf < 0.

The second order accuracy results again in an unbounded scheme. With the help of

a gradient or slope limiter function, this drawback can be overcome. By multiplying

the second term with a well-designed function, this scheme detects strong gradients

or changes in slope leading to oscillations, and switches locally to a simple upwind

method. This yields a second order accurate and bounded scheme, which belongs

to the TVD schemes. Note, since another cell-centered value is needed in upstream

direction for this scheme, a careful handling of arbitrarily unstructured meshes is

necessary.

4.1.2 Temporal Discretization

The time is discretized into a series of time intervals, also called time steps. The

size of a time step is ∆t. Let t denote the time in a given time interval I := [0, T ].

In the following we will use the notation

ψo := ψ(t) value at the previous time t (o: old),

ψn := ψ(t+ ∆t) value at the actual time (n: new).

For the temporal discretization, the implicit Euler time di�erencing scheme is

utilized. It is �rst-order accurate in time, guarantees boundedness and is uncondi-

tionally stable [57]. Then the temporal terms are discretized as

∂tψ =
ψn − ψo

∆t
. (4.2)
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In computational �uid dynamics the Courant-Friedrichs-Lewy (CFL) condition is

often used for the discretization of time dependent partial di�erential equations. It

can be seen as a measure of the maximum number of mesh cells a given quantity

can move through per time step. The CFL condition is de�ned as

C =
u∆t

∆x
≤ Cmax, (4.3)

with velocity u, discrete time step ∆t and mesh size ∆x. The dimensionless number

C is called the Courant number. For the stability of the explicit Euler method, a

CFL number limit Cmax = 1 is necessary. Otherwise, it results in the propagation

and ampli�cation of numerical errors. The implicit Euler method is less sensitive

to numerical instabilities, hence a larger value of Cmax is possible. But due to the

solution procedure we choose for the α-transport equation, a CFL number limit is

still necessary. Here, the �uxes are calculated and corrected in an explicit manner,

details will follow in Section 4.2.1, which requires a strict time step limit during

the numerical calculations. Hence, a maximal Courant number of Cmax = 1 is

postulated for all further investigations, if not stated otherwise.

In our simulations, an adaptive time step control is bene�cial to get the largest

possible time step without violating the CFL number limit [57]. We set

∆t = min

{
min

[
min

(
Cmax

C
∆t0,

(
1 + λ1

Cmax

C

)
∆t0

)
, λ2∆t0

]
,∆tmax

}
, (4.4)

with an initial time step ∆t0. Moreover, λ1 and λ2 are dumping factors to avoid

large changes of the time step [57], and ∆tmax is a maximal time step size the user

can select.

4.1.3 Discretization of Equations

The considered conservation equations can be written in form of a general transport

equation. We will start with a general formulation, since it contains all relevant

operators and terms, which we also need for the discretization of our state equations.

For a variable ψ and a velocity �eld u the general transport equation in conservation

form is

∂tψ +∇ · (uψ)−∇ · (µ∇ψ) = Sψ,

where Sψ is a source term depending on ψ.
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4.1. Discretization

To obtain a discrete version of the general transport equation, and therefore also

of the governing equations, we have to integrate over a time interval ∆t and an

arbitrary control volume V , see e.g. [28], which results in the following integral

form

t+∆t∫
t

∫
V

[∂tψ +∇ · (uψ)−∇ · (µ∇ψ)] dv dt =

t+∆t∫
t

∫
V

Sψ dv dt. (4.5)

For the discretization of the equations we will take a closer look at the individual

terms and their operators in the following. Again, we write the subscript c

for cell-centered values and the subscript f for face-centered values, while the

superscript o stands for the previous time step and n for the actual one. An

important tool to reformulate the equations in a discrete way is the Gauss theorem,

which we already introduced in Section 2.1.2.

The discretization of the temporal term we already discussed in the section before,

see equation (4.2). Of course, the other variables in equation (4.5) are also assigned

to the actual or previous time step, which will be presented with the discrete versions

of the individual state equations. The second term in equation (4.5) is the convective

term, calculated by the divergence of uψ. As discrete version we obtain∫
V

∇ · (uψ) dv =

∫
∂V

(uψ) · ν ds =
∑
f

Sf · (uψ)f =
∑
f

Sf · ufψf =
∑
f

φfψf , (4.6)

where ν is the outer normal of ∂V and the mass �ux through a face is de�ned as

φf := Sf · uf . (4.7)

For the di�usion term, the third term in equation (4.5), it holds∫
V

∇ · (µ∇ψ) dv =

∫
∂V

(µ∇ψ) · ν ds =
∑
f

Sf · (µ∇ψ)f =
∑
f

µfSf · (∇ψ)f .

The term (∇ψ)f is the gradient normal to the face, which is also denoted as the

surface normal gradient. At the face f , it is calculated by

(∇ψ)f =
ψnN − ψnP
|d|

, (4.8)

where d is again the distance between the owner cell P and the neighbor cell N . The

face values of the other variables are calculated with the di�erencing schemes we
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introduced in Section 4.1.1. Which di�erence scheme is used will be speci�ed at the

relevant place. Since the source term on the right hand side of equation (4.5) varies,

we will also treat them at the appropriate time. In some notations the Laplacian

operator arises, but in our case it is replaced by the divergence of the gradient,

since the viscosity is not constant. For this reason it is not necessary to consider

it separately. For the full Navier-Stokes equations, the cell-centered gradient of a

quantity is also required. The gradient is discretized as

(∇ψ)P =
1

|V |
∑
f

Sfψf .

Now we will combine the separate operator discretizations to match our state

equations. The goal is to represent the discretized equations only with cell-centered

values of the owner and neighbor cell of the respective face of the cell, to obtain a

system of equations, depending only on cell-centered values again. For the resulting

equations, we will subsequently present suitable solution procedures in 4.2.

α-Transport Equation

Remember that we de�ned the phase fraction function α as a characteristic function

in Chapter 2.4, see equation (2.14). For the discretization we integrate this quantity

over the volume corresponding to a computational control volume Vi. The liquid

fraction �eld is now given by

αc,i(x, t) =
1

|Vi|

∫
Vi

α(x, t) dv. (4.9)

Is there a cell completely �lled with liquid, the liquid fraction αc,i is equal to one

and if the cell is completely �lled with gas, the liquid fraction αc,i is equal to zero.

In any other case, αc,i adopts a value between zero and one.

Figure 4.2. Exemplary discretized phase fraction �eld α.
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4.1. Discretization

Figure 4.2 shows an excerpt of a discrete phase fraction �eld, where the red

curve displays the real interface, represented by a thin belt of cells with values

between zero and one. Since with the algebraic VOF approach no reconstruction

of the interface is used and an unstructured mesh discretization is straightforward.

Hence, more complex geometries do not require any special treatment.

Due to the formulation as a one-�eld problem with the VOF approach, the phase

fraction is transported with the α-transport equation through the domain, see equa-

tion (2.19), which involves some di�culties. The main challenge is, that we have

to transport a discontinuous indicator function α that should imply a sharp inter-

face between the di�erent phases. Of course, this function can also adopt values

between zero and one on a discrete level, but then it also has to be ensured that this

transition zone, normally consisting of not more than one cell, remains limited and

does not smear out. A solution in this context is o�ered by the surface compression

approach, which is for example described by Rusche in [76]. The idea of this ap-

proach is, that an additional term prevents the smearing out of the interface over

more and more cells. Therefore, a relative velocity between the phases is de�ned

and integrated into the transport equation by a so-called compression term. This

arti�cial term was introduced by Jasak and Weller [49] with ∇ · (α(1− α)ur) to

reduce spurious currents around the interface. ur is the compression velocity, we

also denote as relative velocity, and was originally de�ned as

ur = u1 − u2,

where u1 is for example the velocity of the liquid phase and u2 the velocity of the

gaseous phase. The problem is, that ur can not be determined in the frame of the

classical VOF approach, because there is only a single velocity u for both phases

[53]. For the solution of the α-transport equation, we need to approximate this

velocity and respectively the cell face �ux φr. In Section 4.4.1 we will see how this

is implemented in OpenFOAM. Note, due to the term α(1−α), the compression term

acts only in close proximity to the interface, if α is between zero and one. In this

region, the term limits the smearing of the interface because of the compensation of

the di�usive �uxes [53]. Together with the surface compression term, we now have

to solve the following extended α-transport equation

∂tα+∇ · (αu) +∇ · (α(1− α)ur) = 0. (4.10)

The formal derivation of equation (4.10) can be found in Appendix A.1. In integral
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form, this equation can be written as∫
Vi

∂tα dv +

∫
∂Vi

(αu) · ν dv +

∫
∂Vi

[α(1− α)ur] · ν dv = 0.

Without loss of generality, we will consider only one single control volume V , so

we will write V instead of Vi and αc instead of αc,i in the following. Again, the

subscript f denotes the face-centered values of the variables, with f ∈ ∂V . Then

we obtain as discretized α-transport equation with compression term

0 =
αnc − αoc

∆t
+

1

|V |
∑
f

Sf · uofαnf +
1

|V |
∑
f

Sf · uorαnf (1− αnf )

=
αnc − αoc

∆t
+

1

|V |
∑
f

[
φofα

n
f + φorα

n
f (1− αnf )

]
.

(4.11)

Here, we used the implicit Euler method for the time derivative, see equation (4.2),

and the convective discretization from equation (4.6). The time discretization is

implicit, since we use αnf from the actual time step. In contrast, the velocity �elds

uof and uor are taken from the previous time step, wherefore we can substitute them

together with the surface area vector Sf by φ
o
f or respectively φ

o
r, see equation (4.7).

Remember, since we are in a multidimensional setting, we consider the sum of the

�uxes over all cell faces f . How the �uxes φof and φor can exactly be interpolated

and how to calculate the di�erent αnf , we will discuss in more detail later in Section

4.2.1 when the numerical solution of the advection equation is presented.

Momentum Equation

To derive the discrete version of the momentum equation, some small equation

transformations have to be made for a more e�cient numerical evaluation. Based

on equation (2.20), we rewrite the convective and the Laplacian term and obtain

∂t(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · (µ∇u) +∇ · (µ∇u>) + ρg + σκ∇α. (4.12)

Then, the integral form of equation (4.12) over a control volume V results in∫
V

∂t(ρu) dv +

∫
∂V

(ρu⊗ u) · ν ds =−
∫
V

∇p dv +

∫
∂V

(µ∇u) · ν ds

+

∫
∂V

(µ∇u>) · ν ds+

∫
V

ρg dv +

∫
V

σκ∇α dv.
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4.1. Discretization

While forming the integrals, the Gauss theorem was used at three places to substitute

the divergence with a surface integral. Most of the terms can be discretized with the

operators introduced in the beginning of this section. The pressure term will be also

treated as surface force, see equation (4.13), which corresponds to a conservative

approach and is standard in the FV discretization context. A non-conservative

approach, preserving the volumetric form, would create a global mesh dependent

error [28]. Within the last term, the curvature appears. As stated in Chapter 2.3,

the curvature κ is calculated as the negative divergence of the interface normal. In a

discrete setting, this corresponds to the negative divergence of the face unit normal

�ux of a cell, we with interface normal νf , and it holds∫
V

κ dv = −
∫
V

∇ · ν dv = −
∑
f

Sf · νf , with νf =
(∇α)f
|(∇α)f |

.

Here, (∇α)f is the surface normal gradient as in equation (4.8). Using the implicit

Euler time scheme of Section 4.1.2 and the discretized operators from above, the

discrete momentum equation for the actual time step can be derived as follows∫
V

ρnPu
n
P − ρoPuoP

∆t
dv+

∑
f

ρnfSf · uofunf = −(∇pn)P |V |+
∑
f

µnfSf · (∇un)f

+
∑
f

µnfSf · (∇uo)>f + (ρng)P |V |+ (σκn)P (∇αn)P |V |.

(4.13)

Note, the convective term can be discretized as in equation (4.6), since a kind of

linearization is performed by using an existing velocity �eld uo from the former time

step. For su�ciently small time steps it holds with a �xed point argument

(ρu⊗ u)n ≈ ρnuo ⊗ un. (4.14)

Furthermore, the second part of the di�usion term is considered at the old time

step, since this term will be used in another way in Section 4.4.1. We can further

transform equation (4.13) in

ρnPu
n
P − ρoPuoP

∆t
|V |+

∑
f

ρnfφfu
n
f = −(∇pn)P |V |+

∑
f

µnfSf
unN − unP
|d|

(4.15)

+
∑
f

µnfSf

(
uoN − uoP
|d|

)>
+ (ρng)P |V |+ (σκn)P (∇αn)P |V |,
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where we again use the �ux representation for velocities from the old time step at

some point and the de�nition of the surface normal gradient. If no divergence occurs

within a term, we can simply consider the face-centered values, as it is done for the

last three terms in the momentum equation.

Continuity Equation

The discretized continuity equation applies∫
V

∇ · u dv =
∑
f

Sf · unf =
∑
f

φnf = 0.

Note, that we do not solve this equation per se, we rather use it to correct a not

divergence-free velocity �eld, obtained in a �rst step of the solution procedure of

the momentum equation. A detailed description follows in 4.2.2.

4.2 Numerical Solution Procedures

In this section, we present solution procedures for the α-transport equation and

the Navier-Stokes equations. A summary of the solution algorithm as it is used in

the standard OpenFOAM implementation can be found in [53, Algorithm 1]. This

algorithm is the basis of the sensitivity solver, that we will present in the end of

the chapter.

The goal of the discretization is to obtain a system of linear algebraic equations,

divided in values for the owner and the neighbor cell. In general, we obtain the fol-

lowing linear equation formulation for the respective equations, where ψ represents

one of the solution variables

aPψ
n
P +

∑
N

aNψ
n
N = RP . (4.16)

The above equation refers to a certain control volume with cell values ψP and

neighboring cell values ψN . RP is known, since it contains all terms with known

variable values. Overall, one obtains a system of the form

Aψn = R.

This system of algebraic equations can be solved with appropriate methods, we will
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present among others in the next subsections. Since the resulting coe�cient matrix

A is usually sparse, iterative methods are preferred. If additionally aP and aN
depend on ψ, a �xed point iteration is necessary. The �rst step, however, is to set

up this system and reach a formulation only based on the cell centered variables.

4.2.1 Numerical Solution of the α-Transport Equation

The numerical solution of the extended α-transport equation (4.11) is based on a

�ux-corrected transport (FCT) algorithm, introduced for one-dimensional problems

in [15] and extended for multiple dimensions in [105]. Besides the challenge of solving

such an advection equation for multiple phases while keeping the interface sharp,

the boundedness of the α-�eld is of importance. A pure �rst order upwind method

would lead to a smearing of the interface due to numerical di�usion, while higher

order schemes have the disadvantage that they are unstable and produce numerical

oscillations [34]. The idea of a FCT method is to use a �ux limiter formulation of the

problem to maintain a bounded solution. In the case of one-dimensional problems,

a global boundedness constraint can be formulated for the discretization weights,

which is not available in the case of multidimensional problems. Alternatively, the

FCT method introduce local limiting of �uxes in multidimensional problems and for

arbitrary cell shapes. This is achieved by splitting the advective �uxes into a lower

order bounded �ux and hence di�usive scheme, and a higher order anti-di�usive

correction [21]. Therewith both the di�usiveness of the upwind scheme and the

instability of the higher order scheme can be eliminated [34], while the solution stays

bounded. This leads to an iterative procedure, where we calculate an intermediate

value of α using the lower order monotonic scheme by upwind interpolation. Then,

this value is corrected with an anti-di�usive �ux. Since applying this �ux completely

would result in an unstable higher order �ux, a correction factor or limiter λ is

introduced. Starting from equation (4.11), a rearrangement according to the cell-

centered phase fraction value at the actual time αnc results in

αnc = ∆t

αoc
∆t
− 1

|V |
∑
f

[
φofα

n
f + φorα

n
f (1− αnf )

]
= αoc −

∆t

|V |
∑
f

[
φofα

n
f + φorα

n
f (1− αnf )

]
.

(4.17)

Similar to the splitting of interpolation schemes in equation (4.1), the �uxes of the

α-values of the �rst part in the second term of equation (4.17) are split into a lower

order bounded part calculated with upwind di�erencing and a higher order scheme.
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The higher order scheme is indicated with the subscript ho and will be speci�ed

precisely later on. The α-values within the compression term is also provided with a

suitable interpolation scheme, denoted with the subscript ic, which is also clari�ed

later. This leads to the following expanded formulation

αnc = αoc −
∆t

|V |
∑
f

[
φofα

n
f,ud + φof (αnf,ho − αnf,ud) + φorα

n
f,ic(1− αnf,ic)

]
. (4.18)

Based on this formulation, lets de�ne

Φoα,bd := φofα
n
f,ud,

Φoα,corr := φof (αnf,ho − αnf,ud) + φorα
n
f,ic(1− αnf,ic).

(4.19)

Here, the subscript bd noti�es the bounded �ux, in our case obtained with an upwind

di�erencing scheme, and the subscript corr of the second mentioned �ux indicates

the anti-di�usive correction �ux. This one is de�ned as the di�erence between

the α-values calculated with a higher order scheme and the face value obtained by

upwind interpolation, plus the compression �ux. Without the surface compression

approach, the de�nition of the bounded and correction �ux would be the same, just

without the compression term. Note, the correction �ux is negative in the case of

ingoing �ow into a control volume and analogously positive, if the �uid is leaving

the cell. With the next step, the FCT method introduces a limiter λ in equation

(4.18), which is locally limiting the �uxes to maintain a bounded solution. Then,

equation (4.18) can be rewritten as

αnc = αoc −
∆t

|V |
∑
f

(Φoα,bd + λ Φoα,corr). (4.20)

In the following, we will describe how we calculate the �ux limiter λ.

Determination of the Limiter with MULES

The limiter formulation we use is MULES, which is short for multidimensional uni-

versal limiter with explicit solution and was introduced by Weller in [101]. We

mention this method here, since it is originally used in the OpenFOAM solver im-

plementations, we will discuss in detail in Chapter 4.4. As already mentioned above,

the new αn-value shall be calculated as convex combination of an upwind �ux and

a higher order correction �ux, but with an explicit treatment of the α-values. To

ensure that no new extrema are introduced into the solution after applying the

anti-di�usive �uxes, so-called limiters weight these �uxes. Due to the name of the

method we use, these limiters are denoted as λM in the following section. Therefore,
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�rst the local minimal and maximal α-values are calculated for the respective time

αmin = min(αoN , α
o
c),

αmax = max(αoN , α
o
c),

where αoc = αoP and αoN are all the phase fraction values of the neighbors by face for

the respective control volume. Since the �ux-corrected approach aims to bound the

α-values to the interval [a, b] = [0, 1], the local extrema are again corrected by the

limits

αamin = max(a, αmin),

αbmax = min(b, αmax).

For all new centered phase fraction values the following condition must be valid now

αamin ≤ αnc ≤ αbmax.

Inserting equation (4.20) in this condition results in

αamin

(1)

≤ αoc −
∆t

|V |
∑
f

(Φoα,bd + λMΦoα,corr)
(2)

≤ αbmax.

Lets consider the lower (1) and upper (2) limit separately

(1) ⇔ |V |
∆t

(αamin − αoc) +
∑
f

Φoα,bd ≤ −
∑
f

λMΦoα,corr,

(2) ⇔ −
∑
f

λMΦoα,corr ≤
|V |
∆t

(αbmax − αoc) +
∑
f

Φoα,bd.

Then, the upper and lower bounds for the face-based limited correction �uxes can

already be calculated. They are de�ned as

Q+ :=
|V |
∆t

(αamin − αoc) +
∑
f

Φoα,bd,

Q− :=
|V |
∆t

(αbmax − αoc) +
∑
f

Φoα,bd.
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Q+ and Q− are cell-centered values. Now, they have to ful�ll the condition

−Q+ ≤
∑
f

λMΦoα,corr ≤ Q−. (4.21)

This condition guarantees a bounded solution of the transported phase fraction �eld

αn. The next step is to calculate the in�ows and out�ows for each CV. Therefore,

we consider incoming and outgoing �uxes of a cell separately. We de�ne the sum of

all incoming and outgoing �uxes in a cell as

P+ := −
∑
f

min(0,Φoα,corr) (incoming �uxes),

P− :=
∑
f

max(0,Φoα,corr) (outgoing �uxes).

Analogously we de�ne the sum of the limited incoming and outgoing �uxes as

S+ := −
∑
f

min(0, λMΦoα,corr) (incoming limited �uxes),

S− :=
∑
f

max(0, λMΦoα,corr) (outgoing limited �uxes).

In order to ful�ll equation (4.21), which means not to create a new maximum or min-

imum, the di�erence of the sums of all limited outgoing �uxes and limited incoming

�uxes have to be between −Q+ and Q−

−Q+ ≤ S− − S+ ≤ Q−.

If we assume R+ and R− are cell-centered limiters and replace S+ when considering

the lower bound−Q+ and analogously replace S− when considering the upper bound

Q−, we obtain the two relations

S− − S+ ≥ S− −R+P+ ≥ −Q+,

Q− ≥ S− − S+ ≥ R−P− − S+.

So these relations are true, if we calculate R± by

R+ := max

[
0,min(1,

Q+ + S−

P+
)

]
,

R− := max

[
0,min(1,

Q− + S+

P−
)

]
.
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Then the MULES limiter is calculated in the way, that this face-based limiter needs

to prevent the actual CV from falling under the minimum value and the neighboring

cells from rising above the maximum value. This gives us a division of the face-based

limiters R± in values from the actual cell and the neighboring cells, resulting in

λM =

{
min[λM ,min(R−c , R

+
N )] for Φoα,corr ≥ 0,

min[λM ,min(R+
c , R

−
N )] for Φoα,corr < 0.

The calculation of the limiters is iterative and starts with λM = 1 for all faces.

After a prede�ned number of iterations (Nα−corr) the algorithm stops and uses these

limiters for the correction, hence for limiting the anti-di�usive �uxes. Therewith,

the new cell-centered phase fraction �eld values αnc are calculated for every control

volume of our domain. Since fractional α-values only appear in the vicinity of the

interface, the limiter λM is only here of importance. Away from the transition

region the value is equal to zero [24]. This results in a complete upwind scheme

for the advected phase fraction �eld everywhere outside the interface region. Since

the MULES is fundamentally explicit, a strict Courant number limit is necessary as

already mentioned in Section 4.1.2.

Appropriate Interpolation Schemes

Now we still have to take a closer look at the utilized interpolation schemes,

we already mentioned in equation (4.18). Here, we distinguish between three

interpolation schemes, whereby they refer in each case to the entire convective

term. This means, that we use the mentioned scheme to calculate the respective

face value for the whole �ux (φα)f . The scheme for the �rst convective term

φofα
n
f,ud is clear, here a classical upwind interpolation is used as described in Section

4.1.1. For the higher order scheme, indicated by φofα
n
f,ho, a van Leer scheme is used

and for the compression part φorα
n
f,ic(1 − αnf,ic) the so-called interfaceCompression

scheme is applied. Now we will specify the last two in more detail.

To calculate the face value of a representative �ux �eld ψf , a mixture of the in-

troduced central and upwind interpolation schemes can be chosen, what we denoted

as blended di�erencing, see equation (4.1). Then we obtain

ψf = (1− λψ)ψf,ud + λψψf,cd. (4.22)

The mentioned discretization schemes di�er in the choice of the limiter function. We

choose λψ = λvl for inducing the van Leer scheme introduced in [98]. The symmetric
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van Leer limiter function is de�ned as

λvl(r) :=
r + |r|
1 + |r|

, with lim
r→∞

λvl(r) = 2.

Here, the argument r of the �ux limiter function represents the ratio of gradients

on the solution mesh and, according to [48], can be calculated by

r = 2
d · (∇φ)P
d · (∇φ)f

− 1 = 2
d · (∇φ)P
φN − φP

− 1,

with corresponding �ux φ and d as de�ned in Section 4.1.1. The BD scheme together

with a vanLeer limiter belongs to the total variation diminishing (TVD) schemes,

since it is well known that the total variation of the solution decreases monoton-

ically in this case. Furthermore, it is second order accurate and bounded. The

representation with cell-centered values then applies [20]

ψnf = ψnP +
ψnN − ψnP

2
[1− ζ(φf )(1− λvl)] , (4.23)

where the step function ζ(φf ) is de�ned by

ζ(φf ) =

{
1 for φf ≥ 0,

−1 for φf < 0.

The second discretization scheme is the so-called interfaceCompression scheme, spe-

cially adapted to the compression term, which we indicate with λψ = λic. Here, the

limiter function is calculated by

λic(ψP , ψN ) = min
(

max
{

1−max
[√

1− 4ψP (1− ψP ),
√

1− 4ψN (1− ψN )
]
, 0
}
, 1
)
,

see [53], which is also a bounded limiter scheme. Inserting λic into equation (4.23),

again leads to the desired interpolation scheme.

In summary, the numerical solution of the α-transport equation includes several

components or steps that aim to provide a stable, accurate and bounded solution

of the new cell-centered phase fraction value αnc . The smearing out of the interface

is prevented by the surface compression approach and the boundedness is ensured

by the numerical solution with MULES. In our case, the α-�eld has to be bounded

between zero and one, so this approach seems to be recommended and works very

well. Furthermore, MULES is constructed to additionally treat source terms on the

right hand side of the α-transport equation, if this is required. For the calculation
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of the α-sensitivity, this approach is not recommended, since the δα-values do

not have to be bounded by two prede�ned values. How this changes the solution

procedure will be treated in Section 4.3.

Besides the �ux-corrected approach, there are very e�cient other methods to solve

the advection equation. For example, the piecewise linear interface construction

(PLIC) by van Wachem and Schouten [99] is based on a geometrical reconstruc-

tion of the interface, which, however, is associated with a higher computational e�ort

and is impractical for unstructured or arbitrary meshes. Also the compressive in-

terface capturing scheme for arbitrary meshes (CICSAM) by Ubbink [94] is a good

option, which is a high resolution di�erencing scheme based on the idea of approx-

imating the donor-acceptor �ux and using a normalized variable diagram (NVD)

[34]. The method is completely mass conservative, but it has to be mentioned, that

the Courant number limit has to be very strict [34], which can lead to signi�cantly

higher computational costs.

4.2.2 Numerical Solution of the Navier-Stokes Equations

The numerical solution of the incompressible Navier-Stokes Equations is complicated

by the absence of a separate pressure equation [28]. A widely used approach are the

so-called pressure-correction methods, which are utilized to overcome this di�culty.

Here, a temporary velocity �eld is calculated in a �rst step, ignoring the pressure

gradient and further source terms. Then, the solution is projected into a space

of divergence-free velocity �elds [93]. The idea behind this approach is, that the

pressure-velocity coupling is much stronger than the non-linear convective coupling

for small time steps [58]. Therefore, only the terms containing the velocity u at

the actual time step are considered, the velocity at the old time step, the pressure

term, gravitational forces and the surface tension part are neglected in a �rst step.

Then, a pressure equation is solved to iteratively calculate the new pressure and

correct the velocity �eld. Since velocity and pressure equation are solved one after

the other, we also speak of a segregated pressure-based approach. Next, we will

introduce two representatives of such pressure-velocity coupling methods and their

�elds of application. The description is manly based on results in [28] and [47].

Pressure-Velocity Coupling

One possible method to calculate the numerical solution of the momentum equation

is the semi-implicit method for pressure linked equations (SIMPLE), introduced
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by Patankar and Spalding in 1972 [66]. The SIMPLE algorithm is an iterative

method and works �ne for steady state simulations [28]. If transient problems are

considered, the pressure-implicit with splitting of operators (PISO) algorithm [46],

an extension of the SIMPLE algorithm, is more favorable. Here, an additional

pressure correction equation is solved compared to SIMPLE. Since we want to

solve transient problems, we will focus on PISO in the following, but having in

mind, that we can simplify the procedure to SIMPLE with neglecting the pressure

correction. Within the implementations, this can be controlled by an additional

parameter. The advantage of using an implicit procedure here is, that time step

constraints are often not necessary and therefore these procedures are more e�cient

[28]. However, since we mainly consider time-dependent problems, we have to make

sure that the transient solution also satis�es the nonlinear equations at each time

step and therefore the time step must become su�ciently small.

We will now introduce the PISO algorithm �rst in a general manner, and then

apply it to our speci�c case. Remember, n is the indicator of the time step. Within

the pressure-velocity loop we now introduce the superscript m, which counts the

number of iterations. They are denoted as outer iterations, while an inner iteration

means here solving a linear system with �xed coe�cients in every outer interation

step. Then, m = 0 corresponds to the old time level, for example of the velocity

uo, and after �nishing the pressure-velocity loop we obtain the velocity um = un at

the new time. In general, the discretized and linearized momentum equation from

equation (4.15) can also be written as follows

Aum = H−∇pm, (4.24)

where A includes the coe�cients of the current velocity components and H contains

all other terms, also those which can be written explicitly as functions of uo from

the former time step. Then we can rearrange the above equation as follows

um =
H
A
− 1

A
∇pm. (4.25)

From this equation we calculate a momentum predictor, which means that we cal-

culate a velocity �eld without the in�uence of the pressure by

u∗ =
H
A
. (4.26)

We correct this predicted velocity u∗ iteratively with the help of the pressure equa-

tion. Therefore, our velocity �eld has to ful�ll also the continuity equation. When
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applying the divergence to equation (4.25), we obtain

∇ · um = ∇ · u∗ −∇ ·
(

1

A
∇pm

)
.

Since we assume a divergence free velocity �eld, hence ∇ · u = 0 at the end of the

iteration loop, we can set ∇ · um = 0 and the equation simpli�es to

∇ · u∗ = ∇ ·
(

1

A
∇pm

)
. (4.27)

This is a Poisson equation for the pressure, called pressure equation, and provides

a velocity ful�lling the continuity equation. We have to solve this equation for the

pressure pm, while we take the predicted velocity u∗, calculated in a step before.

Afterwards, the velocity �eld also needs to be corrected, which is done using

equation (4.25) in an explicit manner. Then, the PISO loop iterates over solving

the pressure equation (4.27) and correcting the velocity �eld with equation (4.25)

until a prede�ned number of correction steps Ncorr is reached.

Starting from equation (4.15), we will now formulate A and H for our problem.

For the calculation of the momentum predictor u∗, we will �rst consider only the

temporal, viscous and advective terms; the pressure, surface tension and gravity

terms are neglected at the moment. Hence, we start with the following equation

ρnPu
n
P − ρoPuoP

∆t
|V |+

∑
f

ρnfφfu
n
f =

∑
f

µnfSf
unN − unP
|d|

+
∑
f

µnfSf

(
uoN − uoP
|d|

)>
.

(4.28)

Note, as we have seen in Section 2.4.1, the density and viscosity are dependent on

the phase fraction �eld α within the two-phase �ow setting. Since the α-transport

equation is solved for the new time step before solving the momentum equation in

the numerical procedure, density and viscosity can be already updated with the α-

value from the new time step, which is actually done in our numerical investigations.

Another point to mention is, that the nonlinear di�erential equations were linearized

before discretization, cf. (4.14). Then we adapt the indices and de�ne

A :=
ρnPu

m
P

∆t
|V |+

∑
f

ρnfφfu
m
f −

∑
f

µnfSf
umN − umP
|d|

. (4.29)

In A we �nd all terms concerning the actual time step. Remember, that A can also

be divided in coe�cients of the owner and the neighboring cells, as seen in equation

101



Chapter 4. Numerical Solution

(4.16). We set

A = aPu
m
P +

∑
N

aNu
m
N . (4.30)

How aP and aN are exactly de�ned is described in [24]. For a better understanding

of the following steps we will note, that aP and aN are each multiplied with the

reciprocal of |V |, so we can omit this factor in the following. We now want to

rearrange equation (4.28) to the actual velocity at the current cell center umP . Then

we obtain

aPu
m
P =

ρoPu
o
P

∆t
+

1

|V |
∑
f

µnfSf

(
uoN − uoP
|d|

)>
−
∑
N

aNu
m
N

⇔ umP =
H

aP
, (4.31)

with

H :=
ρoPu

o
P

∆t
+

1

|V |
∑
f

µnfSf

(
uoN − uoP
|d|

)>
−
∑
N

aNu
m
N . (4.32)

H contains the terms calculated at the old time as well as the convective and

di�usion terms evaluated at all nearest neighboring cells. Therefore, H can already

be calculated explicitly. The notation of terms with A and H is auxiliary to match

with the OpenFOAM implementation of the PISO algorithm, see Appendix B.2 for

more details.

The next step is to include the gravitational and the surface tension term on the

right hand side of equation (4.31), to calculate the predicted velocity �eld u∗P . This

results in

u∗P =
H

aP
+

(ρng)P
aP

+
(σκn)P (∇αn)P

aP
.

For numerical stability reasons, the �ux of u∗P is calculated from this, i.e. the terms

are interpolated to the cell faces and multiplied with the face areas. Then we obtain

φ∗f = Sf ·
(
H

aP

)
f

+

(
1

aP

)
f

Sf · (ρng)f +

(
1

aP

)
f

(σκn)fSf
αnN − αnP
|d|

. (4.33)
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With this �ux, the pressure equation (4.27) is solved to obtain pm

∇ · φ∗f = ∇ ·

[(
1

aP

)
f

Sf · (∇pm)f

]
. (4.34)

The face value of the pressure gradient is evaluated as in equation (4.15) by the

sum of the pressure on the cell faces. Equation (4.34) can be solved explicitly

for pm, using a numerical method appropriate for elliptic equations. The resulting

linear system can be solved e�ciently for example with the preconditioned conjugate

gradient (PCG) method, see [77, 28] for more details. These calculations are called

the inner iterations, while iterating over the coupling terms, we call the PISO loop,

is denoted as outer iteration. The pressure serves in the case of incompressible �ows

as an operator, which projects the not divergence-free velocity onto a divergence-

free velocity �eld, hence it ensures continuity. When the PISO loop is �nished, the

velocity is corrected with the right pressure gradient and a predicted velocity �eld

as in equation (4.25) by

φmf = φ∗f −
(

1

aP

)
f

Sf · (∇pm)f . (4.35)

Altogether, we solved the discretized problem by constructing a predicted velocity

�eld and then correcting it using PISO to time advance the pressure and velocity

�elds. We call equation (4.26) the predictor step and equation (4.27) the corrector

step.

To match the description we chose to describe the general PISO algorithm, solving

the predictor equation (4.26) and the pressure equation (4.27), we end up with the

following formulation for A and H

A = aP ,

H = H + (ρng)P + (σκn)P (∇αn)P .

Remember, A includes the coe�cients of the current velocity components, but in

this case only for the considered control volume. Hence A is a diagonal matrix.

All other terms are collected in H, also those which can be written explicitly as

functions of uo from the former time step and terms calculated with values from

neighboring cells. Hence, H is a matrix also with o�-diagonal entries.

For the sake of completeness we note, that we will mention an algorithm called

PIMPLE when we present the numerical results with OpenFOAM in Chapter 5.4.
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PIMPLE is a combination of SIMPLE and PISO. Depending on the setting of a

certain value, the corresponding algorithm is selected. Since we consider mainly

transient problems, we will always use the PISO algorithm described above.

4.3 Discretization and Numerical Solution of the

Sensitivity Equations

For the implementation of the sensitivity equations we follow the Optimize-then-

Discretize approach. Here, the continuous sensitivity equations are discretized

with suitable numerical tools, instead of deriving the discrete problem. Although

this leads to inexact derivatives of the sensitivity equations, we can reach a good

consistency with the derivatives of the continuous problem with the appropriate

choice of discretization procedures. In our case, a simultaneous solving of state and

sensitivity equations is pursued. This means, in every time step, the sensitivity

equations are solved right after calculating the state variables. This will ensure

that discrete sensitivities are consistent with the continuous ones. Furthermore,

we will use similar discretization and interpolation schemes for the various terms.

However, at some points there are di�erences between solving the state equations

and the sensitivity equations numerically, which we will discuss in more detail below.

Analogously to the discretized primal equation, the discretized sensitivity equation

of the α-transport equation has the following form

0 =
δαnc − δαoc

∆t
+

1

|V |
∑
f

Sf · δuofαnf +
1

|V |
∑
f

Sf · uofδαnf . (4.36)

Since we use the velocity �eld of the old time step in the discretized primal advection

equation, see (4.11), we here also use the old velocity sensitivity δuo and the old

velocity u. The state variable α is used from the new time step. After rearranging

this equation, we get an implicit formulation for δαc

δαnc = ∆t

δαoc
∆t
− 1

|V |
∑
f

Sf · δuofαnf −
1

|V |
∑
f

Sf · uofδαnf

 (4.37)

= δαoc −∆t

 1

|V |
∑
f

Sf · δuofαnf −
1

|V |
∑
f

Sf · uofδαnf

 . (4.38)
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The numerical solution of this equation di�ers from the solution of the primal

α-transport equation. Here, we do not use the �ux-corrected transport algorithm

MULES, we introduced in Section 4.2.1. The reason is, that the sensitivities δα do

not need to be corrected to that e�ect, that they have to be bounded between 0

and 1. Quite the opposite is the case, we expect to get high values for δα at the

interface. Instead, the discretized δα-transport equation is solved straightforward

with an upwind scheme and the symmetric Gauss-Seidel algorithm as smoother.

Details to the Gauss-Seidel algorithm can be found for example in [77], Chapter 4.

For the solution of the di�erentiated momentum and continuity equation, we

again choose the PISO algorithm, since we also want to calculate two variables, the

sensitivity of the velocity δu and the sensitivity of the pressure δp. Here, we have

to be particularly careful with the surface tension term. A poor estimate of the

curvature, and hence the surface tension term, can often cause unphysical velocities

around the interface [7]. This in turn leads to very high δu values at the interface

and a convergence to the di�erence quotient is questionable.

The PISO method is simultaneously used as for the primal equations due to

consistency reasons and can be modi�ed with a few steps to match the sensitiv-

ity equations. The disctretized version of the sensitivity equations of momentum

and continuity can be derived from the conservative form, see the sensitivity sys-

tem (3.87). In this formulation, the control term originating from the sensitivity

approach is added as source term on the right hand side. Simultaneously to the

Laplacian term within the primal equation, we use for the discretized momentum

sensitivity equation the following representation

α∆u = ∇ ·
[
α(∇u+∇u>)

]
= ∇ · (α∇u) +∇ · (α∇u>).

Then, the integral form of the momentum and continuity sensitivity equations is∫
V

ρ′∂t(δαu) dv +

∫
V

∂t(ρδu) dv +

∫
∂V

(ρδu⊗ u) · ν ds+

∫
∂V

(ρu⊗ δu) · ν ds

+

∫
∂V

ρ′ (δα u⊗ u) · ν ds−
∫
∂V

(µ∇δu) · ν ds−
∫
∂V

(µ∇δu>) · ν ds

−
∫
∂V

(µ′δα∇u) · ν ds−
∫
∂V

(µ′δα∇u>) · ν ds

= −
∫
V

∇δp dv +

∫
V

ρ′δαg dv −
∫
∂V

(σν′Γδα∇α) · ν ds+

∫
V

σκ∇δα dv
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+

∫
∂V

(α∇u) · ν ds+

∫
∂V

(α∇u>) · ν ds,

∫
V

∇ · δu dv = 0.

Here we used for the �rst curvature term the fact, that the curvature is the negative

divergence of the interface normal, see equation (3.84). Moreover, the Laplacian

within the di�usion term was replaced by the deformation tensor within this repre-

sentation. With the discrete operators presented in Section 4.1.3 we then obtain

ρ′P (δαnPu
n
P − δαoPuoP )

∆t
|V |+ ρnP δu

n
P − ρoP δuoP

∆t
|V |+

∑
f

ρ′fδα
n
fφfu

n
f

+
∑
f

ρnfSf · δunfunf +
∑
f

ρnfSf · unf δunf −
∑
f

µ′fSf · δαnf (∇un)f

−
∑
f

µnfSf · (∇δun)f −
∑
f

µ′fSf · δαnf (∇un)>f −
∑
f

µnfSf · (∇δuo)>f

+(∇δpn)P |V | − (ρ′g)P δα
n
P |V |+

∑
f

(σν′Γδα
n)fSf · (∇αn)f

−(σκn)P (∇δαn)P |V | −
∑
f

αnfSf (∇un)f −
∑
f

αnfSf (∇un)>f = 0,

∑
f

Sf · δunf = 0.

Here we can see that the discrete version of the sensitivity equations are similar to the

primal ones, with some additional advection terms. Since we formulate all additional

terms in an explicit manner, the main procedure of PISO can be transferred and the

additional terms can be treated as source terms. So simultaneously, the �rst step is

to de�ne only the terms containing the velocity sensitivity δu in A. We obtain

A :=
ρnP δu

n
P

∆t
|V |+

∑
f

ρnfSf · δunfunf +
∑
f

ρnfSf · unf δunf

−
∑
f

µnfSf · (∇δun)f .
(4.39)

All other terms concerning the primal temporal, convective and di�usion terms are

collected in H. Here, also the control term enters the expression, since this also

results from the di�usion term. Furthermore, the neighboring terms stemming from

splitting A into coe�cients of the owner and neighboring cells as in (4.30), are added
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to H. This results in

H :=
ρoP δu

o
P

∆t
|V | − ρ′P (δαnPu

n
P − δαoPuoP )

∆t
|V | −

∑
f

ρ′fδα
n
fφu

n
f (4.40)

+
∑
f

µ′fSf · δαnf (∇un)f +
∑
f

µ′fSf · δαnf (∇un)>f −
∑
f

µnfSf · (∇δuo)>f

+
∑
f

αnfSf (∇un)f + +
∑
f

αnfSf (∇un)>f −
∑
N

aNu
m
N .

To perform PISO, the source terms are again added to H, which leads to

A := aP , (4.41)

H := H + (ρ′g)P δα
n
P −

1

|V |
∑
f

(σν′Γδα
n)fSf · (∇αn)f + (σκn)P (∇δαn)P . (4.42)

4.4 Software

Solving the governing equations, in particular the Navier-Stokes equations, requires

a careful and well elaborated numerical approach for correct and reliable simulation

results. For this purpose we use the free, open source C++ program library

OpenFOAM, which is implemented for the numerical simulation of continuum

mechanical transport problems. Besides the standard use as CFD tool for the

solution of �ow problems, other physical areas are also covered such as structural

mechanics, electromagnetism, combustion and heat conduction. OpenFOAM,

where FOAM stands for Field Operation And Manipulation, o�ers more than

hundred solvers and numerous custom extensions exist. For the discretization of

the PDEs three di�erent approaches are available, which are the Finite Volume

Method, the Finite Element Method and the Finite Di�erence Method. Turbulent

�ow behavior can be simulated by means of Large Eddy Simulation, Reynolds

Averaged Navier Stokes modeling or Direct Numerical Simulation (DNS).

OpenFOAM was originally developed and implemented by Henry Weller and

Hrvoje Jasak at the Imperial College in London, see e.g., [47]. The open source

character and a pretty active and smart developer community in the scienti�c

world as well as in the industry are very bene�cial. Just as helpful are the various

inherent features like automatic dimension control and strong tools for pre- and

post-processing. Meanwhile, there exist three development branches of Open-
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FOAM with slightly di�erent core areas. All investigations and implementations in

this work are based on the OpenFOAM-6 version from the OpenFOAM Foundation.

In this thesis we are especially interested in the solver family interFoam, based

upon the algebraic volume of �uid method. Associated solvers are designed for

two-phase �ow of incompressible �uids and conduce to the capturing and handling

of a moving contact line on a �xed mesh. An extension to the multiphase case

is available. First ideas and implementations of this solver family go back to

Onno Ubbink in 1997 [94] and were extended by Henrik Rusche in 2002 [76]. The

algebraic VOF solver interFoam is widely used in industry and for scienti�c issues.

Implementation details about interFoam can be found in Appendix B. In addition

to the advantageous reasons already mentioned, the software was also chosen

because of the a�liation to the collaborative research center 1194. A common

software is here mandatory to cooperate and therefore, OpenFOAM was used

as cross-project software platform for simulation and analysis of various wetting

phenomena. As example, we refer to the recent studies about the well-known

capillary rise benchmark [35].

Besides OpenFOAM, Matlab is also an an important software for this thesis.

While OpenFOAM provides the numerical simulation of the �ow processes, Matlab

is mainly used for the optimization procedures. We use Matlab version R2019a. The

connection between OpenFOAM and Matlab is mainly done via unix commands,

called in matlab to run OpenFOAM from the bash terminal. However, Matlab is

often also used the other way around for post-processing of OpenFOAM simulations

or for visualizing complex correlations. This is advantageous because OpenFOAM

does not have its own graphical user interface. Although ParaView is mainly used

to display the simulation results, Matlab is applied if further calculations have to be

made with the simulation results that go beyond OpenFOAM's own post-processing

tools.

4.4.1 Simulation Characteristics with OpenFOAM

Due to numerical limitations, several adjustments of the presented model equations

are necessary for the implementation, which will discussed for the OpenFOAM solver

interFoam in this section.
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Regarding the α-transport equation

The VOF approach, the interFoam solver is based on, does not exactly rely on the

original VOF method by Hirt and Nichols [42], because the velocity of the liquid

is not assumed to be equal to the mixed velocity [53]. With this assumption, the

surface compression approach is derived, where an additional compression term

supplements the α-transport equation. Within this compression term, the relative

velocity ur appears, which is not given by default, because there is only one velocity

u assumed for the whole domain. The face �ux velocity within the transition region

is then in interFoam approximated by the term

(ur)f = min

(
cα ·

∣∣∣∣ φf|Sf |
∣∣∣∣ , ∣∣∣∣ φf|Sf |

∣∣∣∣
max

)
,

where the coe�cient cα weights the compression �ux [53]. Within our numerical

calculations we always set cα = 1. Then, we are able to calculate φr of the respective

time step with

φr = (ur)f · ν̃f , (4.43)

employing ν̃f , which is introduced below in (4.44).

Regarding the momentum equation

To solve the momentum equation we use a coupling of velocity and pressure, which

does not guarantee a divergence-free velocity �eld all along. Therefore, we have to

use the full momentum equation (2.7), with λ = −( 2
3 )µ and S = 1

2 (∇u + ∇u>).

Then we obtain

ρ∂tu+∇ · (ρu⊗ u) +∇ · (2

3
µ∇ · uI)−∇ · (µ(∇u+∇u>))︸ ︷︷ ︸

(∗)

= −∇p+ f.

To match the implementations in interFoam, the di�usion term is further converted

in the following form

(∗) = ∇ · (2

3
µ∇ · uI)−∇ · (µ∇u)−∇ · (µ∇u>)

= −∇ · (µ∇u)−∇ ·
[
µ

(
∇u> − 2

3
∇ · uI

)]
= −∇ · (µ∇u)−∇ ·

[
µ

(
∇u> − 2

3
tr(∇u>)I

)]
.
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In the last step we used, that for an arbitrary vector a applies

∇ · a = tr(∇a) = tr(∇a>).

Note, the same adaption is also applied to the control term of the momentum sen-

sitivity equation.

Regarding the curvature

The discrete curvature was de�ned as the negative divergence of the face unit normal

�ux, which we denote with νf . In the implementations, a stabilization factor δN
is used within the normalization of the phase fraction gradient. We denote the

stabilized normal with ν̃f and the stabilized curvature with κ̃. Then it holds

κ̃ = −∇ · ν̃f , with ν̃f =
(∇α)f

|(∇α)f |+ δN
· Sf , (4.44)

where Sf is the face area vector again. The stabilization factor δN accounts for the

nonuniformity of the grid, where N is the number of computational cells [20]. It is

de�ned as

δN =
ε(∑

N Vi

N

)1/3
, with ε = 10−8.

Regarding the Pressure Term

Instead of the pressure p, a modi�ed version pm is considered, which also includes

a hydrostatic term

pm := p− ρg · x.

This formulation goes back to Rusche [76] and aims to enable a more e�cient nu-

merical treatment due to removing possibly steep gradients arising from hydrostatic

e�ects. To insert the modi�ed pressure into the momentum equation, we rearrange

the equation and take the gradient

p = pm + ρg · x.
∇p = ∇pm + ρg + g · x∇ρ.
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For the momentum equation (4.12) it then holds

∂tρu+∇ · (ρu⊗ u) = −(∇pm + ρg + g · x∇ρ) +∇ · (µ(∇u+∇u>)) + ρg + σκ∇α
⇔ ∂tρu+∇ · (ρu⊗ u) = −∇pm − g · x∇ρ+∇ · (µ(∇u+∇u>)) + σκ∇α.

Note, that this modi�cation does not change the numerical solution procedure we

presented in Section 4.2.2.

Regarding the Contact Angle Boundary Condition

Boundary conditions are used in continuum mechanics models also to describe the

hydrodynamic properties in the immediate vicinity of the three-phase contact line.

In our case, the contact angle comes as boundary condition of the phase fraction

�eld into play, regardless of whether it is a static or a dynamic one. As we have seen

in Chapter 2.6, we use for example the Kistler and Ho�mann model to describe the

dynamic contact angle θd. Within the interFoam solver family, prescribed contact

angles are introduced by correcting the interface normal νΓ at the corresponding

boundary. The corrected interface normal is denoted by ν̂Γ and the normal of the

substrate is denoted as νS . Then, the correction is as follows [5]

ν̂Γ|S := νS cos(θd) +
νΓ − νS(νΓ · νS)

|νΓ − νS(νΓ · νS)|
sin(θd).

This corrected interface normal is subsequently used to calculated new curvature

values in boundary cells adjacent to the interface. And in turn, the altered

curvature is taken into account when calculating the momentum equation. Inside

the domain, the correction has no impact on the normal of the interface, it holds

ν̂Γ|Ω = νΓ. Note, that this correction is also performed, if we have a prescribed

static contact angle or a dynamic contact angle calculated with another model

approach.

Another crucial factor when calculating the dynamic contact angle is the contact

line velocity ucl. This can be done in di�erent ways. We decided to take the velocity

from the center of the cells at the contact line, as recommended in [33]. An advantage

here is, that this choice also enables non-axisymmetric simulations and can be easily

implemented.
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4.4.2 Implementation of Sensitivity Solver interSensFoam

The discretization and numerical solution procedures of the sensitivity equations of

the problem were already discussed in Section 4.3 as well as some implementation

details of interFoam right before. Now we give a short insight, how the interSens-

Foam solver is adapted to solve the primal and sensitivity equations with respect to

a speci�c control, the liquid viscosity µl. The section is easier to follow if the solver

is already known. Further details on the solver can be found in Appendix B.2.

As we stated before, we discretize and implement the sensitivity system in a

similar way to the original PDE system. Then, the solution of the sensitivity

equations occurs directly after solving the primal equations in every time step.

Similar to the original interFoam solver, the α-transport equation and hence the

δα-sensitivity equation are solved separately from the Navier-Stokes equations. The

distribution of the volume fraction �eld is calculated ahead of the PISO algorithm,

which calculates the actual velocity and pressure �elds [53]. All �les which are

relevant for calculating δα are stored in the folder with the name VOF, concerning

the volume of �uid representation of the problem. Here, the �ux calculation and

main solution steps are implemented within a header �le called dAlphaEqn.H.

The �les for solving the sensitivities δu and δp can be found in the main folder

interSensFoam. While the temporal, the convective and the di�usive terms of

the primal momentum equation are written in a �le with the name UEqn.H, the

di�erentiated terms for solving δU are contained in a modi�ed version, which is

denoted as dUEqn.H. The calculation of the momentum predictor �ux δφ∗ and

the PISO loop itself are implemented within the �le dPEqn.H, where also the

source terms are added. Depending on the control q, further terms enter the

δu-δp-equation, since we also need to take the derivative of the states with respect

to the control into account. In our case, we added a modi�ed version of the term

from equation (3.83) on the left hand side of the momentum sensitivity equation,

since the considered control, the liquid viscosity, originates from the di�usion term

of the primal momentum equation. This control term therefore enters in dUEqn.H

as additional source term. For another kind of control, a di�erent term would have

to be used at this place.

We summarized the ingredients of the primal momentum equation and their

derivatives in Table 4.1. Here, we divided the equation into the terms contained

in dUEqn.H and those contained in dPEqn.H, always presented with the corre-

sponding terms from the primal equations. Note, that the control term does not

have a counterpart in the original momentum equation. The description is on a

formal level, code details and OpenFOAM speci�c notations of the interSensFoam
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solver can be found in Appendix B.

Primal term Derivative

UEqn.H



∂t(ρ u) ρ′ ∂t(δα u)


dUEqn.H

+ ∂t(ρ δu)

+ ∇ · (ρ u⊗ u) + ∇ · (ρ′ δα u⊗ u)

+ ∇ · (ρ δu⊗ u)

+ ∇ · (ρ u⊗ δu)

− ∇ · (µ ∇u) − ∇ · (µ′ δα ∇u)

− ∇ · (µ ∇δu)

− ∇ · (µ ∇u>) − ∇ · (µ′ δα ∇u>)

− ∇ · (µ ∇δu>)

+ ∇ · ( 2
3 µ ∇ · u I) + ∇ · ( 2

3 µ
′ δα ∇ · u I)

+ ∇ · ( 2
3 µ ∇ · δu I)

− ∇ · (α ∇u)

− ∇ · (α ∇u)>

== ==

pEqn.H


− ∇pm − ∇δpm

dPEqn.H
− g · x ∇ρ − g · x ρ′ ∇δα
+ σ κ ∇α − σ ∇ · (ν′Γ δα) ∇α

+ σ κ ∇δα

Table 4.1. Primal system and its derivatives in interSensFoam.

Now we present the main characteristics of interSensFoam and summarize

the solution procedure in Algorithm 4.1 at the end of the chapter. The main

steps are implemented in a �le with the name interSensFoam.C. Here, also the

header �les mentioned above are included at appropriate places. As basis, we take

algorithm 1 from [53], supplemented with sensitivity calculations and ideas from [58].

After introducing the initial �elds together with appropriate boundary conditions

(step 1) and calculating the time step (step 2) as well as the actual viscosity

and density �eld (step 3) the main solution cycling starts with solving the

α-transport equation in step 4. The corresponding �les are alphaEqnSubCycle.H

and alphaEqn.H. Here, a sub cycling within the time step is possible. That means,

that the α-value is calculated for Nα,sub sub time steps. The number Nα,sub is

chosen by the user, but always set equal to one in our case. A compression �ux
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is created and solved with MULES, we already described in detail in Section

4.2.1. Updating the α-�uxes, the curvature and the density with the new α-value

also belongs to solving the α-transport equation. Back in the main script, a

current viscosity �eld is calculated in step 5. Then the solution of the momentum

and continuity equation is prepared in step 6 with the construction of A and

H within the UEqn.H �le. See Section 4.2.2 for more details. The PISO loop

itself is performed in the �le pEqn.H, which corresponds to step 7. The number

of correction steps is de�ned through the user by Ncorr. Within the PISO loop,

the �rst step is to calculate a �ux predictor φ∗ and use this not divergence-free

�ux next to solve the pressure equation. The resulting intermediate pressure is

taken to correct the velocity �eld, which can also be understood as a projection

of u∗ to a divergence-free velocity �eld. Of course, we also have to update the

boundary �eld to agree with the required boundary conditions. Right after solving

the primal state equations, the sensitivity equations are solved. Again we start

with the δα-transport equation in step 8. For the calculation of δα, the mentioned

�ux is calculated while using an upwind di�erencing scheme for the face-centered

values. Then, the Gauss-Seidel algorithm is performed as linear equation solver.

No further limiter algorithm is applied, compare to Section 4.3. In contrast, the

di�erentiated momentum and continuity equation are solves analogously to the

primal equations with the PISO algorithm. Therefore, the operators A and H are

again constructed in step 9, before the actual PISO loops starts in step 10. Here,

the same sub steps are performed as for the primal equations, the di�erence is in

the de�nition of A and H, see Section 4.3. Then we calculated all required variables

for the current time step. The new solver iteration starts again with calculat-

ing the new time step at step 2, until the prede�ned end time is reached, see step 11.

A section before, some solver adaptions were presented to connect the discretized

equations and numerical solution procedures with the source code implemented in

OpenFOAM. Some of the interFoam speci�c adaptions were also taken for the im-

plementation of interSensFoam. In addition to the stabilized curvature, a modi�ed

pressure sensitivity is considered. Within the implementation, this leads to a slightly

di�erent term with the gravitational acceleration. The formal derivative, as it is then

also implemented in interSensFoam, can be found in Table 4.1. Exactly as in the

original interFoam implementation, the additional terms for di�usion are consid-

ered, which are supposed to represent a possibly not divergence-free velocity �eld

within the PISO loop. Further details of implementation, for example the meaning

and content of the various other header �les in interSensFoam.C, can be found in a

walk through the code in Appendix B.2.
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Algorithm 4.1 Solution procedure of sensitivity solver interSensFoam

1: Set initial and boundary conditions for u, p, α and the sensitivity �elds δu, δp, δα
2: Set time step. If time step is variable, calculate ∆t with (4.4) in accordance to

the CFL condition (4.3)
3: Update µ and ρ with actual phase fraction �eld α according to (2.17) and (2.18)
4: Solve α-transport equation for αnc

(a) Calculate compression �ux φr with equation (4.43)

(b) Perform α-correction Nα−corr times

(i) De�ne or update �ux Φα = Φα,bd + Φα,corr from equation (4.19)

(ii) Solve equation (4.17) explicitly with MULES

(c) Calculate ρnφn with new αn-value

(d) Calculate ν̃nf and the curvature κ̃n, see equation (4.44)

(e) Determine density ρn with equation (2.17)

5: Correct viscosity with equation (2.18)
6: Construct A and H with equations (4.29) and (4.32)
7: Perform PISO loop Ncorr + 1 times to calculate state variables u and p

(a) Solve the �ux predictor φ∗ with equation (4.33)

(b) Solve the pressure equation with equation (4.34)

(c) Correct the velocity with new pressure �eld, see equation (4.35)

(d) Update boundary conditions

8: Solve δα-sensitivity equation (4.37) for δαnc with upwind scheme

(a) De�ne �ux δφoαn + φnδαn

(b) perform Gauss-Seidel algorithm with upwind scheme

(c) Calculate δφn with new δαn

9: Construct A and H for sensitivities with equations (4.29) and (4.32)
10: Perform PISO loop Ncorr + 1 times to calculate sensitivities δu and δp

(a) Solve the �ux predictor δφ∗ as in equation (4.33)

(b) Solve the pressure equation as in equation (4.34)

(c) Correct the velocity sensitivity with new pressure sensitivity as in (4.35)

(d) Update boundary conditions for sensitivity �elds

11: Go to step (2) or �nish calculation with prede�ned time step
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Optimization of Doctor Blading

Now we come to an application of the described problem. We consider a wetting

process that is motivated by gravure printing. Gravure printing is a comparatively

complex and expensive process, but good replicability and high printing velocities

are characteristic and a high printing accuracy can be achieved. It is used, for

example to print stamps and banknotes, to print on special substrates such as foil

or metal or even to print electronically conductive layers. In a gravure printing

process, see Figure 5.1, a gravure cylinder is rotating through a reservoir �lled with

ink, where the engraved surface is completely wetted with the ink. Slightly above,

a sharp steel band, called a doctor blade, is clamped into a holder and pressed onto

the printing form at a speci�c angle. Through the rotating movement, the doctor

blade is pulled over the surface and removes the excessive ink from the cylinder

before it is printed onto a substrate. This sub process is essential for good printing

results and part of every printing or coating task.

The material, shape and position of the doctor blade are mainly based on expert

knowledge and often, a lot of experiments are necessary to �nd the right doctor

blade for a particular application. Hence, we want to use various optimization

techniques for optimizing the doctor blading process to achieve better printing re-

sults. This means for example to reducing print failures like air inclusions, �uid

accumulations or particles which arise through material abrasion, to achieve faster

printing rates and preserving a uniform lubrication �lm on the printing form. We

aim to accomplish these goals through parameter identi�cation, where we search

feasible parameter settings in an optimal way, and by optimizing geometrical issues

concerning the doctor blade itself.
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Figure 5.1. Full gravure printing process with zoom to the doctor blade.

In Section 5.1, we describe the physical aspects of such a printing process, es-

pecially of the doctor blading sub process. Then, we present the mathematical

abstraction as a test case in Section 5.2. On the one hand, this section contains the

geometrical setup and di�erent initial scenarios for the �uid. On the other hand,

a validation case is presented in Section 5.2, where general parameter settings and

solver adjustments are discussed and the simulation results are compared to some

experimental results. Moreover, central optimization questions are pointed out in

Subsection 5.2.2, which provide the basis for the formulation of the objective func-

tions and control variables of the respective optimization problems. The �rst class of

optimization problems we consider are parameter identi�cation problems. In these

kind of problems the control of the problem is a material parameter, that we want

to determine for a desired state. The second class of optimization tasks concerns

the geometry of the doctor blade, in which also mesh transformations appear. In

Section 5.3, the complete optimization framework with Matlab and OpenFOAM is

described, where the optimization algorithm itself, a classical Gauss-Newton algo-

rithm, is run with Matlab and a transient simulation is executed in OpenFOAM

therein. Finally, in Section 5.4, we present and discuss numerical results for the

optimization problems we introduced before. This is divided into the optimization

of the liquid viscosity in Subsection 5.4.1, the optimization of the gap height in

Subsection 5.4.2 and the optimization of the vorticity in Subsection 5.4.3.
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5.1 Physics of the System

In this subsection we take closer look to the physical background of the doctor

blading sub process and its in�uencing factors. Shape and material of the doctor

blade and the gravure cylinder are crucial variables of the doctor blading process.

We start with describing the gravure cylinder, which has a layered structure.

Two layers of copper are electroplated onto a steel core, where the upper layer is

machinable copper so that the print design can be engraved. On the engraving,

the cylinder is thinly coated with chrome [51]. The doctor blade is typically a

thin metal band of thickness dDB and an extension in the length of the cylinder.

Depending on the application, other materials are also commonly used like plastic

or rubber. In our application two types of materials are considered. For most of

the investigations, a simple steel doctor blade is assumed. But for the comparison

with some experimental results in Section 5.2, a transparent doctor blade made of

plexiglass is considered, providing multiple viewpoints of the intriguing occurences

around it. Of special importance is also the tip of the doctor blade, since the shape

in�uences the behavior of the printing �uid. A new doctor blade has a rounded

tip, which deforms in practical use, due to a grinding-in process that sharpens the

doctor blade. The resulting shape depends on the contact pressure, which is the

pressure the doctor blade is pressed against the printing form surface with, and the

inclination angle θ by which the doctor blade is de�ected from vertical [11]. In our

further investigations, we use the inclination angle θ as well as the gap height dGH
between the tip of the doctor blade and the printing form as variable geometry

parameter.

In addition, the printing ink is an important in�uencing factor in gravure printing.

The �uid must be applied to engraved cups in the cylinder surface, so the viscosity

of the ink should be very low. In literature, viscosities of µ = 0.05...0.2 Pa·s are
recommended for the gravure printing process. For the design of the test case and

the optimization framework, the simplest case is considered, a Newtonian �uid that

does not contain any particles or surfactants. Di�erent �uids ful�ll this demand,

primarily simple water. Another approximately Newtonian �uid that has proven

useful in experimental studies is silicone oil. Material values for density, viscosity

and surface tension of these two �uids can be found in Table 5.1. A surrounding

temperature of 25 ◦C is assumed. The material properties of the gaseous phase are

also given, which corresponds to normal air for now.
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Material Property Unit Water Silicone Oil Air

Density ρ [g m−3] 997 963 1

Kinematic viscosity ϑ [m2 s−1] 1 · 10−6 1 · 10−4 1.48 · 10−5

Surface tension σ [N m−1] 0.07 0.02

Table 5.1. Material properties of air, water and silicone oil [11].

Note, the surface tension of water and silicon oil refers to the contact with air

in Table 5.1. Furthermore, we only denoted values for the kinematic viscosity al-

though we also use the dynamic viscosity within the theoretical and experimental

investigations. The following relation applies as usual

µ = ϑ · ρ.

Another important factor of in�uence is the particular contact angle, that every

�uid has when it comes in contact with a solid surface. For our investigations we

use a mean static contact angle θe of 62.09◦(±1.58◦) for a water droplet, sitting on

a gravure cylinder, see Figure 5.2. This macroscopic contact angle was measured

by Julian Schäfer, a former colleague within the CRC 1194. The mean static

Figure 5.2. Example for static contact angle of a water droplet.

contact of silicone oil on a gravure cylinder is much smaller with around 25◦(±5◦).

Unfortunately, this value was not measured during the experimental investigations.

Luckily, there are a lot of di�erent silicone oils available, all with slightly di�erent

values for the static contact angle. So we assume that we �nd a silicone oil, which

ful�lls this declaration. Furthermore, due to the dominant inertial forces of silicone

oil and the application of a dynamic contact angle model, where the contact angle

has a certain parameter range in which it can be adjusted, the inexact value of this

angle can be leveled out. The advancing and receding contact angles of silicone oil

are also necessary for the simulation with a dynamic contact angle. These contact

angles could not be measured with the existing measurement methods as well, but

the choice of plus and minus ten degree is quite realistic, which leads to an advancing

contact angle of θa = 35◦ and a receding contact angle of θr = 15◦.
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5.2 The Doctor Blading Test Case

In a �rst step, just a small vicinity around the tip of the doctor blade is simulated.

For this purpose we consider the following geometric setup, here for the 2D case.

Figure 5.3. Geometry of doctor blading test case and velocity boundary conditions.

The domain has an expansion of 1 mm in x-direction, 0.5 mm in y-direction and

also 1 mm in z-direction, when we consider the three dimensional case. The outline

of the doctor blade also belongs to the outer boundary of the domain. The doctor

blade is inclined with a speci�c angle θ and the lower wall has the tangential

velocity ucyl. When the �uid has passed through the gap between the tip of the

doctor blade and the lower wall, it �ows out of the domain on the right border

ΓNout. There we have a Neumann boundary condition for the velocity. At the left,

the upper and the lower boundary, we have Dirichlet boundary conditions for u.

Though, we di�er between homogeneous Dirichlet boundary conditions at ΓD and

inhomogeneous at ΓDcyl. Note that the homogeneous BCs correspond to a no-slip

boundary condition, which is valid for the left border and the upper end of the

domain. The inhomogeneous Dirichlet condition at the lower wall ΓDcyl represents

the velocity of the rotating gravure cylinder. The slightly curved surface is thereby

approximated by a plain interface. This is acceptable since the diameter of the

gravure cylinder is with around 20 cm much larger than the considered extension of

the domain. At the surface or outline of the doctor blade, a Navier-slip boundary

conditions is applied to the velocity, which issuing this boundary is denoted by

ΓNS . In the following, we di�erentiate between two initial scenarios for the �uid.

In a �rst scenario, Figure 5.4, we assume an ink reservoir in front of the doctor

blade, where a �lm has already been formed on the cylinder surface. The initial �lm

only approximates the actual �lm, so a short period of time must elapse before a

steady state is reached with this scenario and a uniform lubrication �lm is formed.
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Figure 5.4. Szenario 1. Figure 5.5. Szenario 2.

On the left side of the doctor blade is enough ink, that the steady state can be

maintained for a while. In this scenario, the behavior of the �uid within the ink

reservoir and the �lm thickness behind the doctor blade is primarily of interest.

In the second scenario, Figure 5.5, a droplet is bladed with no initial �lm behind

the doctor blade. This case is more dynamic because less �uid is available. Here,

the focus is on the three phase contact between the droplet, the air and the lower

wall as well as on the behavior of the �uid on the doctor blade's surface inside the

gap between the tip of the doctor blade and the moving wall. This case is more

interesting in three dimensions and the basis for the validation with experimental

data, we present in the next section.

5.2.1 Validation with Experimental Data

To compare and validate our simulation results with experimental data, a test stand

was build under the scope of the Collaborative Research Centre 1194. A detailed

description of the test stand and the resulting experimental outcomes can be

found in the dissertation of Thorten Bitsch [11] and the common paper [12]. In

close cooperation, an experimentally and numerically suitable setup was developed

and a good agreement could be reached. Some phenomena, observed for the �rst

time in the experiments, could be reproduced within the simulations. We describe

the setup, the parameter and solver adjustments and main outcomes in the following.

Scenario 2, see Figure 5.5, forms the basis of this investigation, where a three

dimensional simulation is compared to movies obtained from experiments. The

inclination angle of the doctor blade is set to θ = 25◦. That corresponds to an

angle of 65◦ between the doctor blade and the cylinder surface, which is also used

in the experiments. We neglect the de�ection of the doctor blade and the resulting
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reduction of the blade angle, which can occur due to contact pressure [11]. The

cylinder has a velocity of ucyl = 0.115 m s−1. This value occurs, if a gravure

cylinder of 22 cm diameter is operated with 10 rotations per minute. For the �uid,

a silicone oil with a viscosity of ϑ = 100 cSt is used. Further material parameters

can be taken from Table 5.1. The domain has an outer extension of 1.1× 0.4× 0.8

cm. The start con�guration of the simulation is shown in Figure 5.6, where the

droplet is sitting right in front of the doctor blade.

Figure 5.6. Di�erent views of the 3D droplet simulation.

The mesh is generated with a block structure, where the domain is subdivided

in �ve blocks, see the blue numerary in Figure 5.7. In addition, the red numerary

indicates the label of the corners. The number of mesh cells is 372000 and the block

structure induces hexagonal, more or less orthogonal cells, see Figure 5.8. This

corresponds to 130 cells in x-direction, 55 cells in y-direction in front of the doctor

blade, 5 cells within the gap and 25 cells behind the doctor blade, the latter two also

in y-direction, as well as 80 cells in z-direction. The size of the cells varies slightly,

since a grading of the cells was used in x- and y-direction by a factor of 2 to reduce

the number of cells in areas, in which the �uid is not expected to be present.

Figure 5.7. Block structure of the domain. Figure 5.8. 3D mesh of the whole domain.
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The simulation runs for 30 milliseconds. Then, the entire droplet volume is passed

through the gap between the doctor blade and the lower wall and leaves the domain

at the out�ow border. The time steps itself vary, since we choose an adjustable

time step size. Then the solver calculates the maximum time step depending on the

maximal CFL number the user set. In our case, we selected Cmax = 1, see Table 5.2.

The solution of the α-transport equation is calculated with MULES as described in

Chapter 4.2.1, where the number of iteration loops calculating the limiter, denoted as

nLimiterIter, is set as usual to 3. The PIMPLE loop, used to solve the momentum

equation with velocity-pressure coupling, is run without a momentum predictor

step and no nonorthogonal corrector steps, which are preferably used for heavy

nonorthogonal meshes. All further relevant solver adjustments were summarized

in Table 5.2. Check Sections 4.2.1 and 4.2.2 as well as Appendix B.1 for further

parameter descriptions.

Parameter Value Notes

Cmax 1 Maximal Courant number for the whole simulation

Cα,max 1 Maximal Courant number for the α-transport equation

cα 1 Interface compression weighting parameter

Nα,corr 2 Number of α-corrector steps

Nα,sub 1 Number of α-sub cycles

Ncorr 3 Maximal number of PISO loops

Table 5.2. Numerical parameter and solver setup for the 3D simulation.

In addition, the individual discretization schemes are listed below in Table 5.3.

Details to the schemes were also presented in Chapter 4.

Term Discretization Scheme

Temporal derivative Implicit Euler method

Convection term Linear upwind scheme

Di�usion term Linear interpolation with explicit nonorthogonal correction

α-transport term Van Leer scheme and interface compression scheme

Gradient Linear interpolation with a central di�erencing scheme

Surface normal gradient Linear interpolation with explicit nonorthogonal correction

Table 5.3. Discretization schemes for the individual terms.
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Besides the solver settings mentioned above, a choice of the initial �elds for the

phase fraction �eld α, denoted in OpenFOAM as alpha.water, for the velocity u,

denoted as U, and for the pressure p, denoted as p_rgh, is necessary and of special

interest to simulate this kind of wetting process. We follow the description in Section

5.1 and choose for the dynamic contact angle model an equilibrium contact angle

of θe = 25◦, written within the α-�eld, with advancing angle θa = 35◦ and receding

angle θr = 15◦. Simultaneously, a Navier-slip boundary condition is set for the

velocity at the respective borders, in OpenFOAM denoted as patches, to allow the

dynamic behavior of the three phase contact line. Note, at the lower wall, where

a tangential wall velocity is assumed, this is not necessary since we already allow

and �x a velocity greater than zero in this case. The slip length for the Navier-

slip condition is set to half of the cell size, which is an appropriate choice in this

case. Additionally, BCs for the pressure are claimed by the solver, although this is

actually determined by the other constraints. For this reason, OpenFOAM supplies

the so-called �xedFluxPressure condition, which adjusts the pressure depending on

given �ux at the respective faces. A summary of the boundary conditions with

OpenFOAM conforming designations is given in Table 5.4.

Patch alpha.water p_rgh U

leftWall zeroGradient �xedFluxPressure partialSlip

outletWall zeroGradient totalPressure inletOutlet

movingWall dynamicContactAngle �xedFluxPressure translatingWallVelocity

upperWall dynamicContactAngle �xedFluxPressure partialSlip

atmosphere inletOutlet totalPressure pressureInletOutletVelocity

Table 5.4. Setup of OpenFOAM boundary conditions for the doctor blading test case.

Note, the original name of the dynamic contact angle BC is dynamicAlphaCon-

tactAngle, which was shortened a bit within the table due to limited space.

Observations

When comparing the initial simulation setup, see Figure 5.10, with the picture of

the real droplet, see Figure 5.9, some di�erences become apparent. On the one

hand, the shape of the droplets varies. While the simulated droplet is perfectly

round, the real droplet is already shifted. This comes from a longer start-up phase

in the experiments. Due to mesh complexity reasons, the domain in the simulation

is kept as small as possible and therefore the movement of the droplet starts right

infront of the doctor blade. Furthermore, we were unable to reproduce the surface
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Figure 5.9. Droplet real experiment. Figure 5.10. Droplet 3D simulation.

structure. While the real printing form surface is uniformly engraved with cups in

the range of tens of micrometers, the simulated surface is plain without any kind of

structure. This, of course, makes a di�erence when it comes to the exact behavior

at the three phase contact line on the printing plate. But as this validation study

focuses more on the overall the general behavior of the droplet, the interaction with

the doctor blade and the �lm formation behind the doctor blade, we can disregard

this in good conscience for the moment. Furthermore, it is not possible to resolve

the exact behavior of the three phase contact line in interaction with the cups using

the existing videos with a view from above. Additional experimental and numerical

studies on this are advisable and were recently advanced within the CRC 1194.

Despite the described di�erences, we can observe a similar behavior of �lm for-

mation in the simulations such as seen in the videos of the experiments. At �rst,

this regards the general appearance of the �uid �lm, compare Figure 5.11 and 5.12.

Figure 5.11. Bladed droplet with a trans-
parent doctor blade.

Figure 5.12. Bladed droplet in simulation.
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It can be observed, that the shape of the top of the advancing �lms as well

as their width agree while the �uid �ows out of the domain. In [11], the author

describes an approximately logarithmic behavior of the advancing �lm front, which

can also be reproduced within the simulations.

In addition, an instability at the edge of the doctor blade was observed within

the experiments, that could be further investigated by the simulations. Some

snapshots of the three dimensional simulation are depicted in Figure 5.13, which

should contribute to a better understanding of the described observations. The

order is from top left to bottom right. The color of the droplet shows the velocity

distribution on the surface of the droplet, where the color range from a velocity

value of 0 in blue to a value 0.1 m s−1 in red. After about 30 milliseconds, the

droplet has disappeared out of the domain.

Figure 5.13. Snapshots of the droplet simulated in 3D.
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As was also seen in the experiments, a liquid ribbon with a width corresponding

to the size of the drop appeared on the moving cylinder surface by the penetration

of liquid from the drop into the gliding channel. The width of the ribbon coincided

with the endpoints of the contact lines of the drop. Due to the continuous loss

of liquid from the drop, the contact lines of the drop on the cylinder and on the

doctor blade steadily contracted. Remarkable at this point is, the 3D simulations

could show, that a negative pressure occurs at the edges of the droplet. This

has not been described in this way before. Once the proceeding contact angle

approached a critical value, the droplet loses the contact to the cylinder as expected.

Both in the physical experiment and in the simulation we can further observe,

that after the droplet has been bladed, �uid remains behind and under the doctor

blade. This is in line with expectations, since not all of the �uid is removed from the

surface due to the surface tension and the small contact angle. In practice, this gen-

erates serious �uid accumulations over time at the doctor blade, which can also lead

to problems, especially when printing for a longer period of time. Further results,

especially concerning the pressure distribution at the edges of the doctor blade and

within the gap between the top of the doctor blade and the printing form, will

be presented soon in a paper within the framework of a cooperation in the CRC 1194.

For now, this should be enough to ensure that we can use the interFoam solver

to simulate a nontrivial part of the gravure printing procedure, the doctor blading

process. The next step is to not only describe and observe the problem, but also its

control and optimization.

5.2.2 Optimization Objectives

Optimizing the doctoring process as an exemplary application of a wetting pro-

cess, is a main goal of this thesis. Optimization means in this case to improve

particular aspects of the printing process. In the following we aim to clarify this

statement and de�ne some central questions that should be answered in the re-

mainder of this chapter and give us suitable objective functions for our optimization.

Experimental investigations showed, that shape and thickness of the lubrication

�lm behind the doctor blade are, among other things, determined by the viscosity

of the printing �uid and the gap height between the tip of the doctor blade and

the printing form [37]. We de�ne the shape, and in this regard especially the �lm

thickness, as our quantity of interest (QOI) and use the �nal time state of the
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simulations for the objective function. To optimize the size of this QOI, we consider

the phase fraction α. The α value indicates where the domain is �lled with the �uid

and can therefore be used to calculate for example the �lm thickness at a prede�ned

position behind the tip of the doctor blade. Then, the goal of the optimization is to

reach a desired �lm thickness at the chosen position, depending on a control variable

of the optimization problem. One control is the printing �uid viscosity µl and the

other one is the gap height dGH . Therewith, we control our solution with respect

to the phase fraction �eld α for a �xed end time T and a desired state αd as follows

jα(y, q) :=
1

2

∫
Ωbd

|α(x, T )− αd|2 dx. (5.1)

The objective function states that we have to choose the material parameter µl such

that the phase fraction �eld α(x, T ) is close to a desired �eld αd for a particular part

of the domain Ωbd in the mean square sense. If we are only interested in the �lm

thickness, i.e., the height of the �uid �lm at a speci�c position in x-direction, Ωbd
only consists of a single belt of cells orthogonal to the de�ned position. However, it is

also the possibility to consider a larger area, for example the whole �uid �lm volume

behind the doctor blade. We consider both cases in our numerical studies. Overall,

two di�erent optimization problems arise, whereas the numerical results of them

are presented in Chapter 5.4. The �rst is optimizing the area behind the doctor

blade with respect to the �uid viscosity µl to correspond to a prede�ned form. And

the second is �nding the optimal gap height for a speci�c �lm thickness in a pre-

de�ned distance behind the doctor blade, this time with a �xed viscosity of the �uid.

Another interesting question is the behavior of the �ow itself. Many printing

failures can occur if the �ow is too brisk. We deliberately do not refer to turbulence in

this context, since although the �uid behaves agilely, it does not reach the Reynolds

numbers that classify a turbulent regime. Moreover, the mathematical model does

not include a special turbulence treatment. But agile behavior of the ink leads to

di�erent problems while the printing process, for example air inclusions or �uid

accumulations. To avoid these failures we use a measure of turbulence, the vorticity

ω. It is calculated with the curl of the �ow velocity u

ω := curl u = ∇× u.

Hence, we de�ne the vorticity ω as another QOI. A theoretical foundation of this

kind of optimization problem is given in [2].
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The resulting optimization problem is then

min
y∈Y,q∈Q

jω(y, q) with jω(y, q) =
1

2
‖vort(y, q)‖2. (5.2)

How we solve these optimization problems in practice, will be examined in the next

section.

5.3 Optimization Framework

Our optimization algorithm is based on the general approach for solving optimization

problems, we stated in 3.5. As we have just seen in Section 5.2.2, all objective

functions have a least squares structure. Due to the structure of the problems, we

can apply a modi�cation of Newton's method, the Gauss-Newton algorithm, to solve

the optimization problem. It is used to solve nonlinear least squares problems by

minimizing the sum of squared function values. The major advantage of this method

is, that second derivatives, which can be challenging to compute, are not required

[13]. Only the �rst derivative of the objective function is necessary. We consider a

problem with the following structure

min
x∈Rn

j(x) with j(x) =
1

2
‖J(x)‖2.

Then we determine the search direction sk ∈ Rn by solving the Gauss-Newton

equation

J ′(xk)TJ ′(xk)sk = −J ′(xk)TJ(xk),

where xk is the current solution and the new solution is obtained by xk+1 = xk+tks
k

with an appropriate step size tk > 0.

If we go back to the optimization problem we stated in Section 3.1, the corre-

sponding discretization of problem (P) has the form

min
qh∈Qh

jh(yh(qh), qh) s.t. qh ∈ Qhad. (Ph)

The control is pointwise bounded with the lower bound qa and the upper bound qb

qa ≤ q(x) ≤ qb in Ω.
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So we assume a convex set

Qad = {q ∈ Rn : qa ≤ q ≤ qb} ,

where qa ≤ qb ∈ Rn and all inequalities are to be understood component-wise. For

this problem, we formulate the optimization framework in Algorithm 5.1, . Starting

with an initial control q0, the following main steps are exercised for k = 0, 1, 2, ...

until a satisfactory convergence is achieved:

Algorithm 5.1 General Optimization Framework for Wetting Problems

1: Initialize control variable q0

2: Calculate initial state with OpenFOAM simulation with q0

3: Start optimization loop
4: For k = 0, 1, 2, ... :
5: Solve state equations by OpenFOAM simulation to obtain the corresponding

state yk = y(qk)
6: Compute the gradient of J with respect to the control qk, J ′ := d

dqJ(qk)

7: (a) by determining sensitivities δyk with interSensFoam and use equation (3.2)
8: (b) by calculating the di�erence quotient, see Chapter 3.2
9: Calculate Gauss-Newton step to determine the increment of control:

δqk = −
(
J ′(qk)TJ ′(qk)

)−1
J ′(qk)TJ(qk)

10: Set the step size tk ∈ {1, 1
2 ,

1
4 , ...} such that j(qk + tkδq

k) < j(qk)
11: Update the control with qk+1 = qk + tkδq

k

12: Return to step 5 or stop, if a satisfactory convergence criterion is achieved

Note, the lower and upper bounds can also be integrated with an adequate choice

of a projection. Furthermore, each iteration of the optimization algorithm requires

at least one solution of the whole �ow process. If we use the sensitivity solver inter-

SensFoam in step 7, the derivatives are calculated together with the state equations,

which is more favorable than calculating an additional perturbed state for the dif-

ference quotient in step 8. The Gauss-Newton step is calculated in step 9 to �nd the

actual search direction. Furthermore, the step size is controlled in step 10 by hal�ng

the step as long as the new residual is greater than the old one. If such a step size

tk is found, the control can be updated and the algorithm repeats the calculation

of state and sensitivity equations. Convergence is achieved, if a prescribed stopping

criteria is ful�lled. This is for example the case, if the residuum, hence the square

value of the objective function, is small enough. Then, the necessary �rst order

optimality condition is ful�lled and a local optimum found.
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The above optimization algorithm is composed of an outer initialization and op-

timization framework, implemented in Matlab, and an inner simulation part, where

the state equations and the sensitivities are calculated numerically with the Open-

FOAM solver interSensFoam. The framework and the inherent coupling mechanisms

are schematically depicted in Figure 5.14.

Figure 5.14. Coupling of Matlab and OpenFOAM simulations.

Many extensions of this rough framework are imaginable. To speed up the compu-

tational time, a multilevel approach could be favorable. The main idea of a multilevel

optimization problem is to solve a major part of the iterations on a comparatively

coarse discretization. First if it is necessary, a re�nement of the mesh takes place,

which can also be a local one. The optimization starts with a coarse mesh h0 and

generates adaptive mesh re�nements hk with the corresponding discretization of P
h,

which leads to the problem

min
qhk∈Qhk

jhk(yhk(qhk), qhk) s.t. qhk ∈ Qhk

ad . (Phk)

Due to the fact, that most of the state evaluations can be executed with a much

smaller number of cells, the computational cost are reduced signi�cantly and

thus the overall execution time of the optimization as well. Furthermore, with a

variation of the optimization method itself, the range of possible objective functions

can be enlarged. However, this may entail the necessity of higher derivatives and is

outside the scope of this thesis.

The optimization framework presented in this section can solve parameter iden-

ti�cation problems, where only the liquid viscosity is controlled at the moment.

Further controls, like other material parameter, operational parameter or geometri-

cal aspects are also conceivable for the future. But therefore, also the OpenFOAM

solver interSensFoam has to be adapted with respect to the sensitivity equations.
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To overcome the lack of appropriate sensitivity equations, we calculate the deriva-

tives of the state equations for the optimization problems involving a change of the

geometry with the di�erence quotient, see (3.4). The numerical results of the opti-

mization problems concerning wetting problems, that we discussed in Section 5.2.2,

are presented in the next section.

5.4 Numerical Optimization Results

We now revisit the optimization objectives, that we formulated in Section 5.2.2.

As we already mentioned, we consider three optimization problems. The �rst

optimization problem is a parameter identi�cation problem, where a desired �uid

�lm has to be achieved by controlling the liquid viscosity, see Section 5.4.1. The

second problem concerns the optimization of the �uid �lm height at a speci�c point

behind the doctor blade, where the gap height between the tip of the doctor blade

and the printing form is the control variable, see Section 5.4.2. And �nally we

present the optimization of the vorticity within the ink chamber with respect to

the inclination angle of the doctor blade in Section 5.4.3.

The underlying simulations are similar to the simulation we used in our validation

case in Section 5.2.1. One di�erence is, that we primarily calculate the optimiza-

tion problems in a two dimensional setting. This only changes the dilatation in

z-direction within the simulation setting, all material and operational parameter,

the solver adjustments and boundary conditions of the state variables remain the

same. The parametrization of the domain with blocks and the numbering of vertices

and faces can also be adopted, since a 2D simulation in OpenFOAM means that

only a single cell is used in z-direction. For the two dimensional version of the mesh

we then obtain 18600 mesh cells, where the size of the cells is the same as in Section

5.2.1. Another aspect to consider is the initial distribution of the �uid, where the

�rst scenario is employed in all three optimization problems. Fluid parameter can

vary, since the liquid viscosity is the control variable in the �rst case. Furthermore,

for the numerical simulations within the �rst optimization problem, the developed

OpenFOAM solver interSensFoam is used. Similar to the well known application in-

terFoam, which we use for the other two optimization problems instead, it is a solver

for two incompressible and immiscible phases using �nite volume discretization on

collocated grids, additionally featured with the calculation of sensitivities for the

state variables. See Section 4.4.2 and Appendix B.2 for more details. Therefore, an

additional initial setup is required for the sensitivity �elds δu, δp and δα, we denote
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as dAlpha, dU and dP_rgh within the simulation. The corresponding boundary

conditions are partly the same as the BCs of the primary �elds from Table 5.4, and

are presented in the following Table 5.5.

Patch name dAlpha dP_rgh dU

leftWall zeroGradient �xedFluxPressure partialSlip

outletWall zeroGradient totalPressure inletOutlet

movingWall zeroGradient �xedFluxPressure noSlip

upperWall zeroGradient �xedFluxPressure partialSlip

atmosphere zeroGradient totalPressure pressureInletOutletVelocity

Table 5.5. Setup of boundary conditions for the sensitivity solver.

This is a recommended setup for the sensitivity �elds with the available boundary

conditions implemented in OpenFOAM. Next we present the mentioned optimiza-

tion problem in more detail and show the numerical results.

5.4.1 Optimization of the Liquid Viscosity

An important role in printing processes is the choice of the printing liquid. Printing

liquids, also called inks, are very complex due to non-newtonian behavior and color

pigments contained. We do not consider their full complexity here, but we examine

how the viscosity of the printing �uid a�ects the �lm formation behind the doctor

blade. Therefore, we choose as desired viscosity µl = 1 · 10−3 m2s−1, resulting in a

speci�c �lm behind the doctor blade, and optimize the calculated �lm with respect

to the liquid viscosity to perfectly match the desired state. The objective function

(5.1) �ts to this question, where Ωbd is set as the part of the domain, which lies

behind the tip of the doctor blade. For the control µl we de�ne the following lower

and upper bounds

qa = 1 · 10−4 m2s−1, qb = 1 · 10−2 m2s−1

and set the initial control to

q0 = 5 · 10−3 m2s−1.

Note, the unity of the viscosity belongs to the dynamic one. As convergence tol-

erance we choose a value of 10−6 for the residuum of the objective function. The
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Gauss-Newton algorithm provides the following result

Iter. Funct.-Eval. q = µl Residual
0 1 5.0000e-03 1.2143e+01
1 4 2.1554e-03 3.6828e+00
2 6 1.2013e-03 2.5485e-01
3 7 9.7934e-04 3.3790e-03
4 8 9.9805e-04 2.9651e-05
5 9 9.9985e-04 1.7512e-07

Table 5.6. Result of the Gauss-Newton algorithm.

Table 5.6 shows, that the Gauss-Newton algorithm reaches a su�ciently accurate

result after only a few iterations. In �ve iterations, nine function evaluations are

necessary to match the desired viscosity. Then, a residual below the de�ned tolerance

of 10−6 is reached, where the residual indicates the value of the objective function.

This value should converge to zero, since we considered as objective function a

tracking type function as in equation (5.1). Note, that this is a local minimum. For

the simulation we obtain the following results, where we focus on the quantity of

interest, hence the �uid �lm behind the doctor blade.

Figure 5.15. Initial state in Ωbd. Figure 5.16. Optimized state in Ωbd.

The Figures 5.15 and 5.16 show the initial and optimal simulation results, only

for the area Ωbd behind the doctor blade. A closer look reveals, that the shape of

the �uid �lm for the optimized state is a little di�erent from the one for the initial

state. That is what we expected for liquids with di�erent viscosity. Furthermore,

the optimized state coincides perfectly with the desired state, that we preliminary

calculated for a speci�c desired liquid viscosity. Of course, this should be the case

since the material parameters of optimized and desired state match very closely, see

Table 5.6.
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Additionally, the sensitivity calculations provide the following results, �rst

depicted for the phase fraction �eld α and then for the velocity U .

Figure 5.17. Field alpha.water. Figure 5.18. Field dAlpha.

The sensitivity of α, see Figure 5.18, re�ects the variation of the phase fraction

�eld and matches the position of the interface in Figure 5.17. Note, the interface

on the left hand side of the doctor blade smears out slightly due to necessary

solver adaptions, we discuss in more detail in Appendix B.2. Also the velocity

sensitivity in Figure 5.20 shows the variation of the velocity �eld in Figure 5.19,

where the highest values occurring at the moving wall and the tip of the doctor blade.

Figure 5.19. Field U. Figure 5.20. Field dU.

The velocity sensitivities agree well with the corresponding di�erence quotients

with a variance of around ten percent. In Figure 5.21 can be observed, that inter-

SensFoam reproduces the main aspects of the di�erence quotient and in particular

also at the interface and at the boundaries. This con�rms, that the implemented

solver calculates the correct derivatives of the state equations with the sensitivity

approach and that the applied numerical methods are suitable in the context of this

wetting process.
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Figure 5.21. Comparison of velocity sensitivity components with the di�erence quotient.

5.4.2 Optimization of the Gap Height

The task of this optimization problem is to �nd the optimal gap height for a given

�lm thickness behind the doctor blade. Here, the gap height dGH is the distance

between the tip of the doctor blade and the lower wall, the latter representating

the printing form. The question of a prede�ned gap height is more a coating

than a printing task, but in this context many applications can be found where

an exact thickness of the �uid �lm after doctor blading is of importance. Hence,

the QOI is again concerning the �uid �lm, resulting in objective function (5.1).

In this case, however, only at a certain point behind the doctor blade, in fact at

a distance of 0.2 mm to the tip of the doctor blade, confer to Figure 5.22. The

red bar represents the �lm thickness at the speci�c point. This is an arbitrary

value that takes into account a �attening of the �lm just behind the tip of the

doctor blade, to obtain a value as representative as possible for a constant �lm

thickness. As �uid, normal water is assumed, see Table 5.1 for the respective mate-

rial properties, and a tangential wall velocity of ucyl = 1m s−1 is set to the lower wall.

Besides the procedure we described for the former optimization problem,

geometrical optimization issues arise in this problem formulation as well. Due to

the change of the gap height, the outer domain, and therefore the mesh, has to

be adapted in every iteration step of the optimization algorithm. To preserve the
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Chapter 5. Optimization of Doctor Blading

Figure 5.22. Position of QOI (red bar).

number and order of cells in every new simulation, we abstain from remeshing and

use a transformation function instead. This economizes computational costs and

prevents a change in number and order of mesh elements. One possible meshing

routine in OpenFOAM, which is also the most widely used, is called blockMesh.

Here, the domain is subdivided in blocks, where di�erent cell sizes can be applied.

This is only the case if they match on their common boundaries. The block

structure of the three dimensional version of the test case can be seen in Figure 5.7.

Now, the transformation function compresses and stretches the outer corners of the

respective blocks to create a movement of the doctor blade in vertical direction. In

the following we have a closer look to the transformation.

We denote Ω(t) as the reference domain. The deformation of Ω(t) is given by

the di�eomorphism Ω× I → Rd, τ : (x, t) 7→ Ωτ (t), where Ωτ (t) is the transformed

domain and τ ∈ C1(Ω,Ωτ ). Then it holds

xτ (t) = τ(x, t) = x+ f(x, t),

for xτ ∈ Ωτ and x ∈ Ω. Here, f is the displacement function describing the

variation of a vertex within the respective spatial direction.

Now we apply the presented transformation to our speci�c test case con�guration,

hence to the block structure of our mesh. In a �rst step, the whole domain is

triangulated as shown in Figure 5.23.

We de�ne the set of domain corners as

V = 10−3 m ·{(
0

0

)
,

(
0.55

0

)
,

(
0.65

0

)
,

(
1

0

)
,

(
0

0.02

)
,

(
0.55

0.02

)
,

(
0.65

0.02

)
,

(
1

0.02

)
,

(
0.566

0.2

)
,

(
1

0.2

)
,

(
0

0.4

)
,

(
0.37

0.4

)}
.

Then the reference domain is de�ned as the convex hull of this set

Ω = conv(V T ).
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5.4. Numerical Optimization Results

Figure 5.23. Triangulation of the domain in 2D

The set of nodes, spanning the individual triangulation segments in Figure 5.23, is

T (Ω) =


1

2

5

 ,

2

6

5

 ,

2

3

6

 ,

3

7

6

 ,

3

4

8

 ,

3

8

7

 ,

7

8

9

 ,

 8

10

9

 ,

12

11

5

 ,

 5

6

12


T

.

For all cells in the respective segment of T (Ω), the following transformation function

is applied to the mesh points vi = (x, y)T ∈ Vi

τ(vi) = yi for i ∈ {1, ..., 4},
τ(vi) = yi−4 + qk for i ∈ {5, ..., 8},
τ(vi) = yi + (qk − q0) for i ∈ {9, ..., 12},

where qk is the current control. Note, that we di�er between the cells within the

triangulation segments under and above the doctor blade. The nodes one to four

do not change their position, only the y-component of the nodes �ve to twelve are

o�set against the new control value qk. The same transformation can be done in

x-direction or both in x- and y-direction. Then the displacement has to be added

to the respective spatial component.

To initialize the optimization problem, we choose the following lower and upper

bounds for the control

qa = 1 · 10−5 m, qb = 1 · 10−4 m.

Starting from the initial gap height q0 = 5 · 10−5 m, a desired state with the gap

height qd = 2 · 10−5 m has to be achieved. Again, the desired state was simu-

lated before the optimization to calculate the residual. The numerical results of
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Chapter 5. Optimization of Doctor Blading

the Gauss-Newton algorithm are presented in Table 5.7. After six iteration steps,

where altogether eleven function evaluations were executed, the optimization loop

converges at the desired state.

Iter. Funct.-Eval. q = dGH Residual
0 1 0.0500 3.9133e-10
1 2 0.0209 2.4387e-12
2 5 0.0182 6.4717e-14
3 7 0.0185 4.8778e-14
4 8 0.0189 2.6606e-14
5 10 0.0196 3.0451e-15
6 11 0.0200 7.0849e-19

Table 5.7. Result of the Gauss-Newton algorithm.

The initial and optimized state are depicted in Figures 5.24 and 5.25. The varying

�uid level on the left side of the doctor blade, within the �uid reservoir, stems from

di�erences in the time taken to reach a steady state. Due to the reduced gap height,

this state is achieved earlier. Then, the �uid level has no further in�uence on the

�lm thickness until the �uid reservoir is exhausted.

Figure 5.24. Initial state gap height. Figure 5.25. Optimized state gap height.

5.4.3 Optimization of the Vorticity

Within the context of gravure printing, the improvement of printing failures is

a challenging task. One of these printing failures are air bubbles, which are

implicated into the ink and can negatively a�ect the printing result. At high

printing speeds, the �uid may even begin to foam, a worst case scenario for

printers. Now the question is, if and how we can in�uence the printing result

positively, without slowing down the velocity of the printing process. We select

the inclination angle of the doctor blade as the control variable and choose
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5.4. Numerical Optimization Results

the vorticity as objective. This is due to the fact that the vorticity is an indi-

cator for the turbulent behavior in front of the doctor blade, within the ink reservoir.

The optimization problem is solved with the objective function for vorticity, see

equation (5.2). Again, the outer boundary moves within the optimization loop,

hence the transformation introduced for the optimization of the gap height is used

here again. The control variable is the inclination angle θ in this case. We initialize

the optimization problem with the following lower and upper bounds for θ

qa = 5◦, qb = 40◦.

As initial inclination angle we set q0 = 25◦. For this problem, no desired state

has to be calculated. The optimization algorithm reaches a minimum value for the

residual after seven Gauss-Newton iterations. Therefore, the state equations had

to be evaluated 40 times. A minimal vorticity value was reached for an inclination

angle of θopt = 11.63◦. The results are summarized in Table 5.8.

Iter. Funct.-Eval. q = θ Residual
0 1 2.5000e+01 8.0302e+00
1 2 2.2681e+01 5.5489e+00
2 3 1.7784e+01 2.4625e+00
3 4 1.4643e+01 1.3865e+00
4 5 1.2756e+01 1.1536e+00
5 6 1.1582e+01 1.0721e+00
6 13 1.1629e+01 9.8272e-01
7 40 1.1629e+01 9.8229e-01

Table 5.8. Numerical results with the Gauss-Newton method.

It is noticeable, that the residual is considerably larger than in the optimization

problems before. The reason for that is the objective function, since we minimize

the norm of the vorticity itself and not associated with a desired state. Table 5.8 as

well as the graphical representations in Figure 5.26 and Figure 5.27 reinforce, that

the vorticity of the velocity �eld within the ink reservoir can be reduced by a factor

of 10 by changing the inclination angle of the doctor blade. This shows, that we

can signi�cantly in�uence and, at best, considerably improve the gravure printing

process by using appropriate optimization procedures.
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Chapter 5. Optimization of Doctor Blading

Figure 5.26. Initial state vorticity. Figure 5.27. Optimized state vorticity.
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CHAPTER 6

Conclusion

This thesis deals with the gradient based optimization of two-phase �ow problems

in the context of wetting phenomena. We developed an optimization framework

for the simulation and optimization of such problems, where the application comes

from gravure printing. Two di�erent aspects were addressed. On the one hand

the theoretical basement, showing existence for the derivative of the corresponding

control-to-state mapping, supposing an Lp-maximal regularity setting of the under-

lying linear problem. Therefore, two di�erent problem formulations, a two-phase

formulation with jump conditions and an equivalent one-�eld approach using the

volume of �uid method, were considered. For both formulations we could show that

the respective control-to-state mapping of an optimization problem with respect to

a distributed control on the left hand side of the momentum equation and to an ini-

tial velocity �eld is continuous and in�nitely many times di�erentiable with respect

to the mentioned controls. On the other hand, extensive numerical simulations and

optimizations were performed for the doctor blading test case and provided new

insights to the underlying wetting phenomena. With a full three dimensional sim-

ulation we could reproduce corresponding experimental results and were able to

con�rm an observed instability, which was not described in the literature before.

Furthermore we could show, that the simulation based optimization works for non-

trivial wetting processes such as gravure printing and can help to improve and even

to optimize the printing results. The developed optimization framework combines

an optimization algorithm implemented in Matlab with DNS calculations performed

in OpenFOAM. To apply a sensitivity approach for calculating the derivatives of

the states, required for the optimization method, we had to modify and extend the

incompressible two-phase solver interFoam from the OpenFOAM software library.

Therefore, the numerical methods had to be adapted to solve the di�erentiated

equations adequately. The e�orts were combined in the new solver interFensFoam.

The optimization framework was tested on several exemplary optimization prob-
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Chapter 6. Conclusion

lems, which included parameter identi�cation and the optimization of geometrical

aspects. Note, that the �ndings can easily be transferred to the multiphase case,

when instead the basic interFoam solver the multiphase extension multiphaseInter-

Foam is used for the simulations and the optimization. Even in the case of more

than two phases, only interfaces between two phases need to be considered, which

is covered by the �ndings we obtained in this thesis.

Outlook

In this work we have solved only one small piece of the puzzle and a lot of work

can still be done. Based on the investigations carried out, further research �elds

concerning theoretical aspects, for example the development of di�erentiability

results for more complex models and in the presence of uncertainties. The com-

plexity of the model can be increased by structured surfaces, by extensive �uids,

thinking about non-newtonian �uids and �uids with particles or surfactants, or

by considering the in�uence of temperature. Taking the temperature into account

leads to phase changes at the interface due to evaporation or vaporisation and

further e�ects in material parameters, like the Marangoni e�ect of surface tension

or nonconstant densities and viscosities within the phases.

Furthermore, we have concrete ideas about how to proceed with the constructed

test case. At the moment, only a small vicinity around the tip of the doctor blade

is considered, although controls, for example the viscosity of the printing �uid, also

have an impact on the overall printing process. The test case should therefore be

extended for a larger setup. First investigations and results were reached including

the complete gravure cylinder and ink reservoir. The challenging part is here to

combine the di�erent length scales, concerning the three phase contact line e�ects

on a µm-scale and the geometrical setup adjustments on a cm-scale. This can

for example be handled with mindful adaptive mesh re�nement. Another point to

mention is, that the surface of the printing forms are anything other than plain in

a realistic scenario. On the one hand, they have a certain surface roughness with

grooves, furrows, ridges and channels. And on the other hand, there are engraved

cups which receive the ink for the printed design. We do not consider these cases in

our thesis due to its complexity, but �rst investigations were also done to simulate

an engraved surface with OpenFOAM.
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Also regarding the optimization itself there are still some possible improvements.

The dimension of the control is less, so it is reasonable to apply a sensitivity ap-

proach. Increasing the dimension of control variables or including domain variations

within an OpenFOAM application, for example to consider real shape optimization

problems, requires an adjoint approach. Moreover uncertainties in material and op-

erational parameters could be taken into account by means of robust optimization

techniques. This is very reasonable, since the material parameters are susceptible

to uncertainties for example the liquids due to temperature variations or the steel

doctor blade due to manufacturing reasons. Taking uncertainties into account leads

to a bilevel structure of the optimization problem, where the minimization is done

with worst case values of the objective function and the constraints. These are in

turn obtained through a maximization problem, considering all relevant realizations

of uncertain parameters in a given uncertainty set. Hence, we have to solve a maxi-

mization problem within a minimization problem. These considerations signi�cantly

increase the complexity of the problem, what makes the application of reduced mod-

els absolutely recommendable. Proper Orthogonal Decomposition is a well known

approach for this part of the problem, which should be investigated for the opti-

mization of wetting phenomena in following works. Furthermore, optimal design of

experiments is a promising optimization problem, considered for the optimization

of wetting phenomena, especially in the context of the CRC. This approach aims to

reduce the number of expensive and challenging experimental setups signi�cantly.
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CHAPTER A

Derivation of Equations

A.1 Derivation of α-Transport Equation

In Section 2.2.1 we mentioned, that conservation of mass is described by

∂tρ+∇ · (ρu) = 0. (A.1)

Introducing the density �eld from equation (2.17) into equation (A.1) and assuming

ρl, ρg are constant, we obtain

∂tρ(α) +∇ · (ρ(α) u) = 0

⇔ ∂t (ρl α+ ρg(1− α)) +∇ · ((ρl α+ ρg(1− α)) u) = 0

⇔ ∂t (ρl α+ ρg − ρg α) +∇ · (ρl α u+ ρgu− ρg α u) = 0

⇔ ∂t((ρl − ρg) α) +∇ · ((ρl − ρg) α u+ ρgu) = 0

⇔ (ρl − ρg) ∂tα+∇ · ((ρl − ρg) α u) + ρg∇ · u = 0.

With the assumption of a divergence-free velocity �eld, i.e., ∇·u = 0, we obtain the

following transport equation

∂tα+∇ · (αu) = 0. (A.2)

Equation (A.2) also comes from the idea that, as the interface moves, the shape

of the region occupied by each phase changes, but each �uid particle retains its

identity. Thus, the material derivative of α, following the motion of a particle, is

equal to zero. This implies

dα

dt
= ∂tα+ u · ∇α = 0.
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Appendix A. Derivation of Equations

A.2 Derivation of compressed α-Transport Equation

In Section 4.1.3 we introduced a compressed α-transport equation. There, an arti�-

cial compression term is added to the original α-transport equation (2.19). Without

loss of generality, we de�ned our phase fraction value α as the value of one of the

phases, e.g., the liquid one, and the velocity as the velocity of the corresponding

phase. So we write the transport equation as

∂tαl +∇ · (αlul) = 0. (A.3)

In the original VOF approach by Hirt and Nichols [42], the velocity in this equa-

tion is assumed to be equal to the mixed velocity, i.e., ul = u, which is only valid

without numerical di�usion. To overcome this lack, Henry Weller, one of the

OpenFOAM developer, de�ned the mixed velocity u and the relative velocity ur for

a liquid and a gaseous phase by

u = αlul + αgug = αlul + (1− αl)ug,
ur = ul − ug.

The addition of these two equations yield

αlul = αlu+ (1− αl)ur.

Inserting this expression in equation (A.3) results in the desired compressed α-

transport equation, we introduced in Section 4.4.1 with equation (4.10)

∂tαl +∇ · (αlu) +∇ · [urαl(1− αl)] = 0.
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Developer Documentation

interSensFoam

Appendix B contains further informations about the developed OpenFOAM solver

interSensFoam. This is an extension of Section 4.4.2 and aims to a deeper un-

derstanding of the source code to be able to apply it to its own test cases. Since

interSensFoam is an extension of the OpenFOAM inherent solver interFoam, with-

out omitting any part of the code, it can be also used as documentation of interFoam.

But note, we do not promise a complete and �nal description of the solver. All ex-

tensions in comparison to the original solver are color-marked at the corresponding

location. We start with a collection of the important variables and constants used

in OpenFOAM, then we will have a walk through the code of interSensFoam and

in the end we will describe the setup and compilation options of a test case with

interSensFoam.

B.1 Variables and Constants

It follows a description of all used variables and constants in a theoretical and

practical way. They can be assigned to a scalar or more sophisticated classes as

� vol...Field: A �eld de�ned at cell centers.

� surface...Field: A �eld de�ned on cell faces.

Note, that all these �elds consist of values for the internal �eld and also for the

boundary patches. As dimension set we use SI units. Furthermore, some basic

OpenFOAM operations are listed.
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B.2 Walkthrough the OpenFOAM code

The new solver interSensFoam is based on the interFoam solver family from Open-

FOAM. Most of the following descriptions are directly deduced from the source

code. Furthermore, we used the OpenFOAM wiki (https://openfoamwiki.net/, ac-

cessed August 2023) and the source code guide from the OpenFOAM Foundation

(https://cpp.openfoam.org/dev/, accessed August 2023). As we already stated in

Chapter 4.4, we use version OpenFOAM-6. We �nd the underlying code when

following the path

openfoam6/applications/solvers/multiphase/interFoam

In the source code, interFoam is presented as a solver for two incompressible,

isothermal immiscible �uids using a VOF (volume of �uid) phase fraction based

interface capturing approach. The momentum and other �uid properties are of

the 'mixture' and a single momentum equation is solved. Turbulence modeling

is generic, e.g., laminar, RAS or LES may be selected. Several extensions of

interFoam already exist, e.g., for the multiphase case or with miscible �uids. We

will not consider these extensions in our investigations.

In this thesis, we introduced an extension of interFoam, called interSensFoam, in

which, in addition to the primary equations, the associated sensitivity equations are

solved. Therefore, the main interFoam.C -�le was changed as well as several header

�les. Furthermore, some header �les were added to the main interFoam folder and

the corresponding VOF folder. The latter one contains calculations regarding the

phase fraction �eld and the α-transport equation. All relevant folders and �les

were renamed to make sure they contain new content, e.g., the folder interFoam is

now denoted as interSensFoam. We summarized all changes in Figure B.1, where

�les written in green are completely new and �les written in red were modi�ed for

running with interSensFoam. Additionally, we use some conventions in the following

description, in order to have a better overview. Header �les were introduced in

violet color and written in italics, when appearing in the text. Also written in

italics are all further scripts and dictionaries. A green color is used to identify

constants, coe�cients and variables occurring within the calculations. And keywords

mentioned in bold will refer to bash commands.
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Figure B.1. Structure of interSensFoam.

Access to the full source code of interSensFoam you will �nd here

https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4021

Following the README �le will setup the solver and you can start with your opti-

mization. Appropriate examples are also included in this repository. To understand

and reconstruct the doctor blading test case, visit the following repository

https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4118
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InterSensFoam.C

We start with explaining the main �le interSensFoam.C. In the beginning of the �le

a lot of header �les are included. Some of these header �les just provide routines

for a speci�c operation, other header �les already calculate variables.

Figure B.2. File interSensFoam.C, part1.
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Figure B.3. File interSensFoam.C, part2.
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Figure B.4. File interSensFoam.C, part3.
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We start with a description of the included header-�les.

fvCFD.H brings in the most fundamental tools for performing �nite volume

calculations by including a bunch of other �les, each of which represents a building

block of the �nite volume technique.

dynamicFvMesh.H introduces an abstract base class for geometry and topology

changing fvMesh.

CMULES.H CMULES stands for multidimensional universal limiter for explicit

corrected implicit solution and is a routine to solve the convective-only transport

equation. It uses an explicit universal multi-dimensional limiter to correct an

implicit conservative and bounded solution, obtained by using rigorously bounded

schemes such as implicit Euler in time and upwind in space. Input parameters are

the variable to solve, the normal convective �ux and the actual explicit �ux of the

variable.

EulerDdtScheme.H contains a routine for the temporal derivative with an ex-

plicit or implicit Euler scheme, using only the current and previous time step values.

localEulerDdtScheme.H contains the local time step temporal derivative ba an

�rst-order explicit or implicit Euler scheme, used for pseudo transient solutions of

steady-state problems. Note, the local Euler time scheme is not supported by our

solver.

CrankNicolsonDdtScheme.H contains an implicit routine for the second-order

Crank-Nicolson temporal derivative using the current and previous time-step �elds

as well as the previous time-step temporal derivative. Note, the CrankNicolson

time scheme is not supported by our solver.

subCycle.H performs a subCycleTime on a �eld.

immiscibleIncompressibleTwoPhaseMixture.H contains a two-phase incompressible

transport model. For this purpose, the two header �les interfaceProperties.H and

twoPhaseMixture.H are included.

turbulentTransportModel.H contains type de�nitions for the turbulence as well

as RAS and LES models for incompressible �ow, based on the standard laminar
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transport package.

pimpleControl.H contains the PIMPLE control class to supply convergence informa-

tion and checks for the PIMPLE loop. It provides time-loop control methods which

exit the simulation once convergence criteria have been reached. It also provides

PIMPLE-loop control methods, which exit the iteration once corrector convergence

criteria have been met. It may also be used to for PISO-based algorithms, as PISO

controls are a sub-set of PIMPLE controls.

fvOptions.H contains options to apply the �nite volume method.

CorrectPhi.H provides �ux correction functions to ensure continuity. It is required

during start-up, restart, mesh-motion etc., when non-conservative �uxes may

adversely a�ect the prediction-part of the solution algorithm, which is the part

before the �rst pressure solution, ensuring continuity. This is particularly impor-

tant for VOF and other multi-phase solver in which non-conservative �uxes cause

unboundedness of the phase fraction.

fvcSmooth.H provides the functions smooth, spread and sweep, which use the

FaceCellWave algorithm to smooth and redistribute the �rst �eld argument.

After the introduction of the described header �les, the main function starts with:

int main ( int argc , char *argv [ ] )

Here, argc (argument count) indicates the number of arguments sent to the

program and argv (argument vector) contains these arguments. Inside the

function, we need to include some other short routines, which already execute the

�rst calculations:

postProcess.H includes the application functionObjects to post-process existing

results. This part of the code is only of interest, if we want to use function objects

to calculate output variables.

setRootCase.H checks if argc and argv �t together. Furthermore, the root path and

case path are checked for availability and correctness.

createTime.H creates the time.
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createDynamicFvMesh.H creates the mesh, depending on the time.

initContinuityErrs.H declares and initializes the cumulative continuity error

cumulativeContErr = 0.

initDContinuityErrs.H declares and initializes the cumulative continuity error for

the sensitivities

cumulativeDContErr = 0.

createDyMControls.H includes createControl.H to read solution controls (pisoCon-

trol, pimpleControl, simpleControl), and includes createTimeControls.H to read

the control parameters used by setDeltaT (adjustTimeStep (default: false), maxCo

(default: 1), maxDeltaT (default: great), which are de�ned in the �le controlDict).

Furthermore the boolean variables correctPhi (in dependence of mesh movement),

checkMeshCourantNo (default: false) and moveMeshOuterCorrectors (default:

false), are set. Note: this �le only determines if a variable/routine is used or not.

No values or �elds are read yet, only a default is set in some cases.

createFields.H includes �rst the header �le createRDeltaT.H , which is used to create

a reciprocal local face time-step �eld for the LTS model. Local time stepping is

used, if a local Euler technique is used as time scheme, which we will not use in

our investigations. Nevertheless, a temporal volScalarField trDeltaT is created.

Then, the �elds p_rgh and U are read. With this �eld information, the �ux phi is

calculated in the createPhi.H header �le. Furthermore, the transport properties are

read, which involves the volScalarFields alpha1, alpha2 and the dimensionedScalar

�elds rho1, rho2. Then the volScalarField rho and the surfaceScalarField rhoPhi

are calculated

rho = alpha1 ∗ rho1 + alpha2 ∗ rho2,
rhoPhi = rho ∗ phi.

After constructing the user speci�c turbulence scheme, the gravitational acceleration

coe�cient g is included with readGravitationalAcceleration.H . The dimensioned-

Scalar hRef is initialized and therewith the following �elds are calculated in gh.H

ghRef = −mag(g) ∗ hRef,
gh = g & C()− ghRef,

ghf = g & Cf()− ghRef.
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With gh, the pressure p is calculated without the hydrostatic term by

p = p_rgh + rho ∗ gh.

createSensFields.H is inspired by the former �le and initializes the sensitivity �elds

dU, dP_rgh and dAlpha. Moreover, the �ux of the velocity sensitivity is created in

the included header �le createDPhi.H and denoted as dPhi. Then, the header �les

readDtransportProperties.H and createRhoDPhi.H are included, where the �rst one

calculates the dimensionedScalar �elds dMu, gradRho and gradMu and the second

header �le creates the surfaceScalarField rhoDPhi with

rhoDPhi = rho ∗ dPhi.

Similar to the primal �eld, also the pressure sensitivity dP is calculated without

the hydrostatic term.

createAlphaFluxes.H creates some initial �elds relating to the α-transport equa-

tion and used for the solution procedure MULES. Here, the surfaceScalarField al-

phaPhi10 and the temporal surfaceScalarField talphaPhi1Corr0 are initialized. It

holds

alphaPhi10 = phi ∗ alpha1.

createDAlphaFluxes.H initializes the surfaceScalarField dAlphaPhi, which is calcu-

lated as

dAlphaPhi = phi ∗ dAlpha + dPhi ∗ alpha1.

initCorrectPhi.H de�nes a temporary volScalarField �eld rAU, we need later in

dPEqn.H, and calls the function CorrectPhi. This function guaranties that the total

in�ow and out�ow of mass is conserved with introducing the volScalarField pcorr,

which only plays a role if the mesh moves or the mesh topology changes. Further-

more, continuity errors are calculated and printed by including continuityErrs.H ,

with

contErr = div(phi),

sumLocalContErr = deltaT ∗mag(contErr),

globalContErr = deltaT ∗ contErr,

cumulativeContErr =
∑

globalContErr.

createUfIfPresent.H Creates and initializes the velocity �eld Uf if required, more

precisely if mesh.dynamic() is true.
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Next, a function is executed to validate the turbulence �elds after construction

and update derived �elds as required

turbu lence −> va l i d a t e ( )

If there is no local time stepping (!LTS), the following two header �les are further

included.

CourantNo.H calculates and outputs the mean and maximum Courant number

CoNum =
1

2
∗max

(
sumPhi

V()

)
∗ deltaT,

meanCoNum =
1

2
∗
∑

sumPhi∑
V()

∗ deltaT,

where sumPhi =
∑
f

mag(phi).

setInitialDeltaT.H sets the initial time step corresponding to the time step adjust-

ment algorithm as in setDeltaT.H described below.

Now, the time loop starts. Within a while loop the time is incremented until

the end time is reached or an other termination or error criterion is matched.

Before the time is incremented, further header �les are included inside the while loop:

readDyMControls.H additionally includes readTimeControls.H: and actually sets

the given values for the variables adjustTimeStep, maxCo, maxDeltaT, correctPhi,

checkMeshCourantNo and moveMeshOuterCorrectors.

setRDeltaT.H will be included if local time stepping (LTS) is allowed and imposes

many variables concerning the local time step setting. If no LTS is allowed, the

following three header �les are included instead of this one.

CourantNo.H see above.

alphaCourantNo.H calculates and outputs the mean and maximum Courant

numbers, used for calculating the phase fraction �eld α.

setDeltaT.H resets the time step to maintain a constant maximum Courant number

in case of the choice of an adjustable time step in the controlDict dictionary. The

reduction of the time step is immediate, while an increase is damped to avoid
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unstable oscillations. Then the time step is set corresponding to equation (4.4)

with λ1 = 0.1 and λ2 = 1.2.

The �rst solved state equation is the α-transport equation. This calculation is

embedded in the �le alphaEqnSubCycle.H , where a possible α-sub cycling within

the actual time step is started, if the user chose a value nAlphaSubCycles > 1.

Within the �le alphaEqnSubCycle.H, the additional �eld rhoPhiSum is created in

the case of subcycling. Furthermore, totalDeltaT is then set as the whole time step.

Inside the subcycling or directly, if no subcycling is chosen, the �le alphaEqn.H

is included, which solves the α-transport equation for α. See Section 4.2 for a

detailed description of the numerical solution. As result, we obtain the new values

for alpha1, alpha2, alphaPhi10 and rhoPhi. Subsequent, the density is updated

with the new α-value. Directly after solving the α-transport equation, the �rst

sensitivity equation is solved. With dAlphaEqn.H we include the δα-sensitivity

equation. This position is selected to have access to the velocity and �ux �elds of

the old time step, as they also occur in the primal α-transport equation. Note, to

match the correct sensitivities, we had to simplify the solution of the α-transport

equation to use only an upwind scheme for the convective part. This is similar to

the corrector step within the MULES algorithm, although the MULES algorithm is

not applied in this case. Furthermore, the compression term is neglected for now,

since this causes instabilities when solving the associated sensitivity equation. Here,

the linearization of the relative velocity ur is the critical part. The simpli�cation of

the numerical solution of the α-transport equation leads to a slighty smearing out

of the interface, but this is needed for the code to run stable and for the senstivities

to match the real derivatives in good consonance. Exactly as in alphaEqn.H, the

convective terms in dAlphaEqn.H are solved with an upwind di�erencing scheme.

As output we obtain the new dAlpha �eld for the actual time. Furthermore, the

variables dAlphaPhi and rhoDPhi are calculated.

After solving the δα-sensitivity equation, other �elds depending on α, such as the

viscosities, are updated with the following expression

mixture . c o r r e c t ( )

Then, the calculation of the momentum and continuity equation starts with

including UEqn.H , where the coe�cient matrices A and H are set up as in (4.29)

and (4.32) inside the fvVectorMatrix UEqn. The PISO procedure itself will be

carried out in pEqn.H . Herein, not only the pressure equation is solved, but also the

corrector step is executed for the velocity. As result, the �elds p_rgh, phi, U and p

are calculated, see Section 4.2.2 for a detailed describtion of the PISO algorithm.
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The next step is repeating the inner PIMPLE loop also for the momentum and

continuity sensitivity equation. Again, this is similar to solving the corresponding

primal equations and follows directly after the primal PISO loop terminates. In

dUEqn.H , the derivatives of the temporal, the convective, the di�usion and the

control term are set up. Therefore, we use the same operators as for the primal

equations. In Table B.5, the sensitivity terms from the fvVectorMatrix dUEqn are

set opposite to the corresponding terms in UEqn.

UEqn dUEqn

fvm::ddt(rho,U) gradRho*fvc::ddt(dAlpha, U)

+ fvm::ddt(rho, dU)

+ fvm::div(rhoPhi, U) + gradRho*fvc::div(dAlphaPhi, U)

+ fvc::div(rhoDPhi, U)

+ fvm::div(rhoPhi, dU)

+ turbulence-> + turbulence->divDevRhoRe�(rho, dU)

divDevRhoRe�(rho, U) − gradMu*fvc::laplacian(dAlpha, U)

− gradMu* fvc::div(dAlpha*dev2(T(fvc::grad(U))))

− fvc::laplacian(alpha1, U)*dMu

− fvc::div(alpha1*dev2(T(fvc::grad(U))))*dMu

Table B.5. OpenFOAM implementation for UEqn.H and dUEqn.H

Here, two code terms without counterpart appear in dUEqn in comparison

to UEqn. These represent the derivatives of the Navier-Stokes equations with

respect to the control, as formally derived in equation (3.83). Since we want to

treat the equations as similar as possible to the original implementation, also the

compressible part of the di�usion term occurs. Therefore, the control term consists

of two terms in the implementation.

When solving the dPEqn in dPEqn.H, the operators dUEqn.A() and dUEqn.H()

appear, which coincides with the equations (4.39) and (4.40) respectively. They were

used to create the volVectorField dHbyA, which is used to calculate the momentum

predictor (4.26). The �ux of this �eld is denoted by dPhiHbyA. Then, the right

hand side of the momentum equation, hence the gravitational and surface tension

term, is created in dPhig and added to dPhiHbyA, which is in turn used within the

pressure equation. Altogether, we obtain dP_rgh, dPhi, dU and dP. For the terms

in dPEq we obtain the following expression, presented in Table B.6.
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pEqn dPEqn

− fvc::snGrad(p_rgh) − fvc::snGrad(dP_rgh)

− ghf*fvc::snGrad(rho) − gradRho*ghf*fvc::snGrad(dAlpha)

+ mixture.surfaceTensionForce() + (1/2e-9)*(surfaceTensionForceplus

− surfaceTensionForceminus)

Table B.6. OpenFOAM implementation for pEqn.H and dPEqn.H.

The pressure term in this Table B.6 is shown as the surface normal gradient of

p_rgh and respectively of dP_rgh. Within the source code, the term only appears

in this form when using a momentum predictor for the PISO loop, otherwise we use

the Laplacian operator to calculate the pressure as well as the pressure sensitivity

with the pressure equation, see equation (4.27). In Table B.6, the surface tension

force term appears with the third term in pEqn as

mixture . sur faceTens ionForce ( )

which is implemented in interfaceProperties.H with the following code line

f v c : : i n t e r p o l a t e ( sigmaK ( ) )* f v c : : snGrad ( alpha1 )

Here, sigmaK() is calculated by

sigmaK = sigma ( ) * K

K = −f v c : : d iv ( nHatf )

nHatf = nHatfv & Sf

nHatfv = gradAlphaf /(mag( gradAlphaf ) + deltaN )

gradAlphaf = fvc : : i n t e r p o l a t e ( grad ( alpha1 ) )

deltaN = 1e−8/pow( average ( alpha1 . mesh ( ) .V( ) ) , 1 . 0 / 3 . 0 )

where sigma() is the surface tension coe�cient σ and K is the curvature κ of the

interface. These calculations agree with the curvature model presented in Section

4.4.1. For the sensitivities, this terms need to be di�erentiated with respect to the

phase fraction α, see equation (3.85). Here, a critical point is the derivative of the

curvature, for which we need the derivative of the interface normal, denoted within

the implementations as dNHatf and dNHatfv. The exact calculation has proven to

be extremely di�cult and is currently solved with the di�erence quotient.

Another point to mention is, that it is appropriate to relax the calculated dU-

and dP_rgh-values in some cases, which is done with the following code line at the

appropriate places.

dUEqn . r e l ax ( )

. . .

dPEqn . r e l a x ( )
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In the end of dPEqn.H, the header �le dContinuityErrs.H is included. This

new implemented header �le calculates and displays the quantities dContErr,

sumLocalDContErr, globalDContErr and cumulativeDContErr analogously to the

primal continuity errors and will not be explained in more detail here. With this,

dPEqn.H ends and at the same time the PISO loops terminates. After writing

the actual execution time, the calculations for the new time step start. This is

executed until the �nal time is reached or any other termination criterion is achieved.

In Figure B.1, two further header �les appear, dUDi�Quot.H and dAlphaCon-

trols.H . We will not explain them in detail, because they are not actually part of

the current implementation. Both header �les can be used to calculate the di�erence

quotient of the state variables and were used for testing the sensitivities. They may

be useful for geometrical optimization issues, so they are still part of the solver.

However, they are commented out for the sensitivity calculations done within the

mentioned optimization problems. Moreover, the interSensFoam solver is not yet

adapted for mesh movement. For the primal equations, the respective solver parts

are included, but the sensitivity �elds still need to be adjusted at the appropriate

places.

B.3 Compile Options and User Speci�cations

In the following, we will explain the usage of interSensFoam and summarize with

which solver speci�cations the di�erent possible optimization problems are solved.

We start with a standard test case for interFoam. In Figure B.5, the general

structure of a test case is shown, where we use the same color code as before.

The �les highlighted in red have been modi�ed, the �les highlighted in green are new.

Besides the initial �elds for the phase fraction alpha.water, the velocity U and the

modi�ed pressure p_rgh, we also need initial �elds for the sensitivities. As already

mentioned, the sensitivity �elds are denoted as dAlpha, dU and dP_rgh and are

also stored within the 0 folder, see Figure B.5. Furthermore, we have to do some

�le modi�cations in the �les controlDict, fvSchemes and fvSolution we will specify

in the following.

166



B.3. Compile Options and User Speci�cations

Figure B.5. Structure of a test case for interSensFoam.

File Modi�cations

The additional �elds dAlpha, dU and dP are similar to the primal initial �elds in

content and structure. That means they have the same �eld class and therefore

appropriate boundary conditions have to be de�ned for the single patches, see

for example Table 5.5. However, we need to pay attention to the correct �eld

denotation in the preamble and the correct choice of the dimension set. You can

�nd the corresponding dimension in section B.1.

Within the �le controlDict, the name of the application has to be adapted to in-

terSensFoam and a careful choice of the time step size is recommendable. Further-

more, additional divergence schemes has to be added in fvSchemes for the convection

terms. These are used to calculate the divergence of the single terms, by which the

sensitivity equations were extended in interSensFoam. Hence, these modi�cations

can be made once for all test cases calculated with the solver once. Other diver-

gence schemes are also conceivable, but not yet tested in practice. The following

additional entries have to be provided in the divSchemes sub dictionary.
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Appendix B. Developer Documentation interSensFoam

divSchemes

{

. . .

d iv ( dPhi , alpha ) Gauss vanLeer ;

div ( phi , dAlpha ) Gauss upwind ;

div ( dAlphaPhi ,U) Gauss l inearUpwind grad (U) ;

div ( rhoPhi ,dU) Gauss l inearUpwind grad (dU) ;

div ( rhoDPhi ,U) Gauss l inearUpwind grad (U) ;

div ( ( ( rho*nuEff )* dev2 (T( grad (dU) ) ) ) ) Gauss l i n e a r ;

d iv ( ( alpha . water*dev2 (T( grad (U) ) ) ) ) Gauss l i n e a r ;

d iv ( ( dAlpha*dev2 (T( grad (U) ) ) ) ) Gauss l i n e a r ;

}

Then we also have to de�ne matrix solvers for the additional equations in fvSo-

lution. The parameter settings within fvSolution should be chosen in dependence

of the considered problem. Here, the matrix solver of the individual sensitivity

equations are selected and the parameter and error tolerances are set. It is

recommended to choose the same solvers and tolerances for the sensitivity variables

as for the primal variables. Also the controls for the PIMPLE algorithm has to be

set in this dictionary. It is su�cient to de�ne one set of parameters for both the

primal and the sensitivity loop.

In this work, we distinguish between the optimization with respect to a material

parameter, more precisely the viscosity of the liquid phase, and with respect to

geometrical aspects, which refer to the gap height and the inclination angle of the

doctor blade. The resulting optimization problems di�er in their objective function,

calculated with Matlab, and in their control variables. Only for the optimization of

the liquid viscosity, see Section 5.4.1, it is possible to calculate the sensitivities with

the new solver interSensFoam. If the geometrical aspects are optimized, we have to

calculate the derivatives with the di�erence quotient, since the corresponding shape

derivatives are not implemented yet. This is also done with the Matlab framework

with the original interFoam solver used for simulations. Note that two varying post

processing routines are required for the di�erent optimization objectives. If we are

interested in an area behind the doctor blade, we also have to de�ne a cell Zone with

a topoSetDict in the folder system. Furthermore, we have to determine the values

within this zone for the alpha.water �eld and the dAlpha �eld with the help of the

function object volFieldValue, de�ned in the controlDict. If only the �lm thickness

at a certain position is required, we use the �le singleGraph in the system folder to

calculate the respective quantity for every time step.
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List of Symbols

General

Ω Physical domain, composed of a liquid-phase and a gas-phase region Ωl
and Ωg, Ω = Ωl ∪ Ωg

∂Ω Boundary of the domain

Γ Liquid-gas interface

I Time horizon, I = [0, T ]

ν Interface normal

κ Interface curvature

f Total body force

S Viscous stress tensor

α Phase fraction

·̂ Transformed variables

Physical Quantities

u [m s−1] Velocity

p [kg m−1 s−2] Pressure

t [s] Time

ρ [g m−3] Density

ϑ [m2 s−1] Kinematic viscosity viscosity

µ [kg m−1 s−1] Dynamic viscosity

σ [N m−1] Surface tension coe�cient

g [m s−2] Gravitational acceleration

169



List of Symbols

Function Spaces

C(Ω) Space of continuous functions on Ω

Ck(Ω) Space of m times continuously di�erentiable functions on Ω

C∞0 (Ω) Space of in�nitely many times continuously di�erentiable functions

on Ω with compact support

Ck,β(Ω) Space of β-Hölder continuous functions on Ω

BC(Ω) Space of bounded continuous functions on Ω equipped with the

supremum norm

BUC(Ω) Space of bounded uniformly continuous functions on Ω equipped

with the supremum norm

Lp(Ω) Standard Lebesgue space on Ω

L∞(Ω) Lebesgue space of essentially bounded functions on Ω

W k,p(Ω) Sobolev space on Ω

W k,p
0 (Ω) Closure of C∞0 (Ω) in W k,p(Ω)

Hk(Ω) Sobolev Hilbert space on Ω, short for W k,2(Ω)

Hk
0 (Ω) Sobolev Hilbert space on Ω with homogeneous boundary conditions

W s,p(Ω) Sobolev-Slobodeckij space on Ω

Hs(Ω) Sobolev-Slobodeckij Hilbert space on Ω, short for W s,2(Ω)

Hs,p(Ω) Bessel potential spaces

Ḣ1,p(Ω) Homogeneous Sobolev space

Lp(I;X) Bochner-Lebesgue space

0W
s,p(I;X) Sobolev-Slobodeckij space with homogeneous derivatives

MRp(I;X) Class of maximal Lp-regularity operators

Mloc(X) Space of locally bounded Radon measures
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Discretization Variables

Ωh Discretized domain

V Arbitrary �xed control volume, V ⊂ Ω

Sf Surface area evaluated at the faces

ψc Variable calculated at the cell center

ψf Variable calculated at a cell face

ψo Variable at the old time t

ψn Variable at the actual time t+ ∆t

φ Face �ux, calculated from the velocity

cα Compression �ux coe�cient

λM Phase fraction limiter calculated with MULES

Optimization Variables

j Objective functional

y State variable

q Control variable

Qad Set of admissible controls

u0 Initial velocity �eld

c Distributed control

dDB Thickness of the doctor blade

dGH Gap height between doctor blade and printing form

θ Inclination angle of the doctor blade

µl Viscosity of the liquid phase
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List of Symbols

Acronyms

BC Boundary Condition

CFD Computational Fluid Dynamics

CFL Courant-Friedrich-Lewy

CRC Collaborative Research Centre

CSF Continuum Surface Force

CV Control Volume

DNS Direct Numerical Simulation

FCT Flux-Corrected Transport

FVM Finite Volume Method

MULES Multidimensional Universal Limiter for Explicit Solution

PCG Preconditioned Conjugate Gradient (Method)

PDE Partial Di�erential Equation

PISO Pressure Implicit with Splitting of Operators

QOI Quantity of Interest

SIMPLE Semi-Implicit Method for Pressure Linked Equations

TPCL Three Phase Contact Line

VOF Volume of Fluid
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