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Abstract

Nuclear structure is complex. A successful and widely used approach to describe atomic
nuclei is nuclear density functional theory. It stands out from a range of existing methods
by being applicable to all nuclei thanks to its mild computational scaling, at the same time
generally reproducing properties of known nuclei accurately, and being rooted in fundamental
theorems. However, for various applications higher accuracy than achieved at present and
reliable uncertainty estimates are needed. In addition, extrapolations into territory without
experimental data are potentially uncontrolled. How to improve the predictive power of energy
density functionals is not clear though due to their largely empirical nature.

This is different for ab initio many-body approaches that employ nuclear interaction models
based on chiral effective field theory, which provides by construction a recipe for improvement.
While ab initio methods, which are more microscopic than density functional theory, are now
able to target heavy and open-shell nuclei thanks to tremendous progress in the last decades,
the treatment of both at the same time still poses a significant computational challenge.
Moreover, the agreement of predictions with experimental results is at present not as good as
for energy density functionals.

Therefore, a unification of ab initio approaches and nuclear energy density functionals
would be welcome. The idea studied in this thesis is to extend conventional Skyrme functionals,
which consist of short-range terms, with terms that describe long-range pion exchange from
chiral effective field theory at the Hartree-Fock level. Hartree terms are incorporated essentially
exactly and Fock terms are included by converting them to quasi-local form by employing a
density-matrix expansion.

The first part of this work consists in a detailed examination of density-matrix expansions
for the use in nuclear structure calculations. We investigate various choices and expansion
schemes for scalar contributions. Fock energies from pion exchanges are generally well ap-
proximated by all variants considered. The use of the density-matrix expansion for chiral
pion contributions is therefore supported by this investigation. Nevertheless we find different
possibilities to improve over established implementations. This includes using variants that
do not truncate at two derivatives in every functional term and using adjusted expansion
coordinate schemes for three-nucleon interactions. For scalar-isovector energies we observe the
separate treatment of neutrons and protons to be important. The results are found to apply
under broad conditions, although self-consistency is not yet tested.

The second part of this work is a study focusing on the actual construction of hybrid energy
density functionals consisting of chiral and phenomenological Skyrme terms. We discuss the
form of the included contributions and the parameter optimization protocol and construct the
GUDE family of functionals. When including pion contributions beyond next-to-leading order
in the chiral expansion, we find significant improvements over a reference Skyrme functional
constructed following the same protocol. In particular, nuclear masses are better reproduced.
We analyze the importance of different pion contributions and identify which terms drive
the observed improvements, allowing us to set up a functional with the minimal number of
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chiral terms necessary. Since pions are incorporated without adding further optimization
parameters to the functionals, the improvements can be attributed to the functional form of
these terms. Our work therefore suggests that the considered chiral contributions constitute
useful ingredients for ab initio energy density functionals.



Zusammenfassung

Dichtematrixentwicklungen und neue nukleare
Energiedichtefunktionale basierend auf chiraler effektiver Feldtheorie

Kernstruktur ist komplex. Ein erfolgreicher und weit verbreiteter Ansatz zur Beschreibung
von Atomkernen ist Dichtefunktionaltheorie. Sie ragt aus einer Reihe existierender Methoden
heraus, da sie dank ihres geringen Rechenaufwands auf alle Kerne anwendbar ist, gleichzeitig
Eigenschaften vermessener Kerne im Allgemeinen akkurat reproduziert und auf fundamentalen
Theoremen beruht. Allerdings werden für verschiedene Anwendungen eine höhere Genauigkeit
als derzeit erreichbar und zuverlässige Unsicherheitsabschätzungen benötigt. Darüber hinaus
sind Extrapolationen in Bereiche ohne experimentelle Daten potenziell unkontrolliert. Wie
die Vorhersagekraft von Energiedichtefunktionalen verbessert werden kann, ist jedoch wegen
ihrer großteils empirischen Natur unklar.

Anders verhält es sich für Ab-Initio-Vielteilchenmethoden, die nukleare Wechselwirkungs-
modelle verwenden, die auf chiraler effektiver Feldtheorie basieren, welche per Konstruktion
ein Rezept für Verbesserungen liefert. Während Ab-Initio-Methoden, die mikroskopischer sind
als Dichtefunktionaltheorie, heute dank enormer Fortschritte in den letzten Jahrzehnten auf
schwere Kerne und solche mit teilweise gefüllten Schalen angewendet werden können, stellt
die Beschreibung von Kernen mit beiden Eigenschaften immer noch eine signifikante Rechen-
herausforderung dar. Zudem ist die Übereinstimmung von Vorhersagen mit experimentellen
Resultaten derzeit nicht so gut wie für Energiedichtefunktionale.

Daher wäre eine Vereinigung des Ab-Initio-Ansatzes und nuklearer Energiedichtefunk-
tionale willkommen. Die in dieser Arbeit untersuchte Idee ist die Erweiterung konventioneller
Skyrme-Funktionale, die aus kurzreichweitigen Termen bestehen, mit Termen, die den langre-
ichweitigen Pionenaustausch aus chiraler effektiver Feldtheorie auf dem Hartree-Fock-Level
beschreiben. Hartree-Terme werden im Wesentlichen exakt berücksichtigt und Fock-Terme wer-
den durch Umwandlung in quasi-lokale Form mittels einer Dichtematrixentwicklung inkludiert.

Der erste Teil dieser Arbeit besteht in einer detaillierten Untersuchung von Dichtematrix-
entwicklungen für die Verwendung in Kernstrukturrechnungen. Wir untersuchen verschiedene
Wahlmöglichkeiten und Entwicklungsschemata für skalare Beiträge. Pionenaustausch-Fock-
Energien werden im Allgemeinen für alle betrachteten Varianten gut approximiert. Die
Verwendung von Dichtematrixentwicklungen für chirale Pionenbeiträge wird daher durch
diese Untersuchung gestützt. Nichtsdestoweniger finden wir verschiedene Möglichkeiten zur
Verbesserung gegenüber etablierten Implementierungen. Dazu gehört das Verwenden von Vari-
anten, die nicht bei zwei Ableitungen in jedem Funktionalterm trunkieren, und die Verwendung
angepasster Koordinatenschemata für Drei-Nukleon-Wechselwirkungen. Für Skalar-Isovektor-
Energien beobachten wir, dass die getrennte Behandlung von Neutronen und Protonen wichtig
ist. Diese Resultate sind unter umfassenden Bedingungen gültig, auch wenn Selbstkonsistenz
noch nicht getestet ist.

Der zweite Teil dieser Arbeit ist eine Studie, die sich auf die eigentliche Konstruktion
hybrider Energiedichtefunktionale, die aus chiralen und phänomenologischen Skyrme-Termen
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bestehen, fokussiert. Wir diskutieren die Form der enthaltenen Beiträge und das Parameterop-
timierungsprotokoll und konstruieren die GUDE-Familie von Funktionalen. Wenn Pionen-
beiträge jenseits der ersten nach der führenden Ordnung in der chiralen Entwicklung berück-
sichtigt werden, finden wir signifikante Verbesserungen gegenüber einem Referenz-Skyrme-
Funktional, das nach demselben Protokoll konstruiert ist. Insbesondere Kernmassen werden
besser reproduziert. Wir analysieren die Wichtigkeit der verschiedenen Pionenbeiträge und
identifizieren, welche Terme die beobachteten Verbesserungen bewirken, was es uns erlaubt,
ein Funktional mit der minimalen Anzahl notwendiger chiraler Terme zu bilden. Da die Pi-
onen ohne zusätzliche Optimierungsparameter in die Funktionale eingebaut werden, können
die Verbesserungen auf die funktionale Form dieser Terme zurückgeführt werden. Unsere
Arbeit legt daher nahe, dass die betrachteten chiralen Beiträge nützliche Bestandteile für
Ab-Initio-Energiedichtefunktionale darstellen.



v



Contents

1 The nuclear many-body problem 1
1.1 Chiral effective field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Ab initio approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Nuclear density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Quest for energy density functionals from first principles . . . . . . . . . . . . 10
1.5 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Basics of many-body theory 15
2.1 Variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 One-body density matrix and product states . . . . . . . . . . . . . . . . . . . 16
2.3 Hartree-Fock theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Hartree-Fock-Bogoliubov theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Density-matrix expansions 27
3.1 Nuclear one-body density matrices . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 General introduction to density-matrix expansions . . . . . . . . . . . . . . . 30
3.3 Second-order density-matrix expansions . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Considered density-matrix expansion variants . . . . . . . . . . . . . . 33
3.3.2 Square of the density matrix . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Expansion coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Nucleon-nucleon force exchange energies . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Yukawa exchange energies . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Semi-analytical energy-density-functional expressions . . . . . . . . . . 55
3.4.3 Gogny exchange energies . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.4 Combining density-matrix expansions . . . . . . . . . . . . . . . . . . 59

3.5 Three-nucleon force exchange energies . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 Density-matrix expansions for three-nucleon forces . . . . . . . . . . . 62
3.5.2 Two-pion exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.3 Intermediate-range and long-range exchange energies . . . . . . . . . . 68

3.6 Note on expansions of vector parts of one-body density matrices . . . . . . . . 72
3.7 Summary and guidance for ab initio energy density functionals . . . . . . . . 72

4 Semi-phenomenological hybrid energy density functionals 75
4.1 Form of the energy density functionals . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Conventional parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Chiral interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.3 Chiral long-range Hartree terms . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 Chiral long-range Fock terms . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



CONTENTS vii

4.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Hartree-Fock-Bogoliubov calculations . . . . . . . . . . . . . . . . . . . 82
4.2.2 Note on symmetry projection . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 Optimization of Skyrme and pairing parameters . . . . . . . . . . . . . 85

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.1 Obtained parametrizations . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.2 Investigation of improved functionals and construction of “min. chiral”

functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.3 Global comparison to experiment . . . . . . . . . . . . . . . . . . . . . 95
4.3.4 Shell structure and deformation properties . . . . . . . . . . . . . . . 98

4.4 Analysis of chiral contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Conclusions and outlook 109

A Appendix 115
A.1 List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Detailed values for obtained functionals . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 127





1
The nuclear many-body problem

The standard model of particle physics describes our current understanding of elementary
particles and their fundamental interactions. It is believed that ordinary matter, mostly
consisting of electrons as well as up- and down-quarks bound into neutrons and protons,
makes up about 5% of the total energy budget of today’s universe [1]. Nuclear physics deals
with interactions amongst neutrons and protons, collectively referred to as nucleons, and
phenomena resulting therefrom. Nowadays most commonly nucleons occur in form of atomic
nuclei. These are compact microscopic objects consisting of up to a few hundred nucleons
bound together. See Fig. 1.1 for an overview of nuclei known experimentally (in 2012) and
predicted to exist theoretically. Nuclei together with electrons constitute the building blocks of
which larger objects such as atoms and molecules are composed. Also, nucleons can directly be
bound into macroscopically large objects, namely into neutron stars that are kept together by
the attractive gravitational force [1]. When focusing on the nuclear physics of those systems,
one typically considers the idealized system of homogeneously spread out nucleons over an
infinite volume, called infinite nuclear matter (INM).1 We encounter INM again later, but this
thesis mainly focuses on the description of finite nuclei.

The fundamental interaction of quarks is described by the quantum field theory called
quantum chromodynamics (QCD) for the strong interaction (and quantum electrodynamics
for the electromagnetic one). It can directly be used to perturbatively calculate properties
of processes taking place at high energy scales such as deep inelastic scattering of a lepton
on a hadron [4] or states such as heavy quarkonia [5]. Nuclei however are characterized by
significantly lower energy scales. In this regime the strong coupling constant is large and
prohibits converging perturbative calculations. Therefore, a different approach is needed to
calculate finite nuclei. One possibility lies in solving QCD on a lattice, which acts as a non-
perturbative regularization scheme [6]. However, such calculations are (computationally) very
demanding and have thus so far only been applied to the lightest nuclei using unphysical quark
masses [7]. One can instead make use of the fact that at low energies individual quarks are
not the relevant degrees of freedom, but instead they occur confined into hadrons, the most
stables ones of which are the nucleons introduced above. Therefore, a description of finite
nuclei at lower resolution, namely in terms of nucleons and their interactions, is expected
to be sufficient to high accuracy. Note that at even smaller energy scales, e.g., to describe
vibrational excitations on top of nuclear ground states, one can switch to other effective degrees
of freedom such as phonons [8].

This work deals with the intermediate energy regime characteristic for the description
of nuclear ground states. We do not consider here the calculation of nuclear dynamics, i.e.,
reactions between different nuclei as they occur for instance in scattering experiments at

1See Appendix A.1 for a list of acronyms used throughout this thesis.
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2 CHAPTER 1 – THE NUCLEAR MANY-BODY PROBLEM

Figure 1.1: Chart of nuclides. Stable nuclei are shown in black, unstable nuclei known according
to the 2012 atomic mass evaluation [2] are shown in green. The differently colored lines show the
driplines as predicted with different covariant energy density functionals, which mark the limits of the
existence of nuclei as bound objects. Only even-even nuclei are shown. Figure taken from Ref. [3].

particle accelerators and in nuclear fusion (e.g., see Refs. [9, 10]). Instead we deal with the
nuclear structure problem where the goal is to calculate static properties of nuclei. Particular
interest is on ground-state properties of nuclei such as their mass.

The situation in the nuclear structure community is at present generally as follows. For
nuclei relatively close to the valley of stability, i.e. the region where nuclei are stable against
radioactive decay, observables have been experimentally determined with very high precision.
Thus, comparison to experiment in this regime helps clarify the validity and accuracy of
a chosen theoretical approach. For very exotic nuclei, i.e. those far away from stability,
experimental results are not (yet) available. Such nuclei are important for processes taking
place in astrophysical sites, such as r-process nucleosynthesis [11]. These regimes can at
the moment only be accessed via theoretical calculations. To give meaningful predictions
theoretical uncertainty quantification is crucial, which constitutes an active field of research
for the different methods that are being used to tackle the nuclear many-body problem [12–14].

A standard approach to the many-body problem consists of considering the stationary
Schrödinger equation for the nucleons that form the nucleus of interest. As the nuclear
interaction originates in the fundamental strong interaction only as a residual effect,2 the
derivation of a nuclear interaction potential from QCD is difficult, and the interaction between
the nucleons has to be described by some potential model. The modern standard approach
is chiral effective field theory (EFT), which is rooted in the symmetries of QCD, see Sec. 1.1.
The solution of the Schrödinger equation, in which the potential enters, for many interacting
particles is highly nontrivial. Different systematically improvable approximate methods are
briefly discussed in Sec. 1.2, where we also discuss successes and challenges of these approaches,

2The strong interaction acts on quarks and gluons but nucleons have vanishing color charge and therefore
do not feel the strong force directly. Instead, the nuclear force arises as a residual effect thereof, which can
be modeled as the exchange of massive mesons between the nucleons. This is analogous to the appearance of
van-der-Waals forces between electrically neutral molecules [15] and in contrast to the case of the electrostatic
Coulomb potential which can be directly calculated from quantum electrodynamics, see e.g., Ref. [16].
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which are generically referred to as ab initio approaches as they are based on first principles
through the use of chiral EFT [17].

A different approach to the nuclear many-body problem, density functional theory (DFT),
is discussed in Sec. 1.3. It can be thought of as describing the nucleus at somewhat lower
resolution, where the degrees of freedom are not individual nucleons but rather the density
distributions of these particles [18]. This is the numerical method used to tackle the nuclear
structure problem in the present work. For DFT, the solution of the relevant equations is
numerically much simpler than in ab initio approaches. Thus, with these methods one can
calculate nuclei throughout the entire nuclear chart. In fact, the predicted limits of nuclear
existence (called driplines) as shown with lines in Fig. 1.1 have been obtained with a version of
nuclear DFT. However, the connection of energy density functionals (EDFs) to QCD is much
less clear than in the case of chiral-EFT potentials. This makes a systematic improvement of
nuclear energy density functionals hard, and constitutes a main reason for the interest of the
nuclear theory community in the construction of EDFs from first principles, which we discuss
in Sec. 1.4. This thesis can be located in that subfield of nuclear physics.

We note that several other nuclear-structure methods exist, which are often less microscopic
than ab initio methods. Examples are the interacting shell model [19], halo effective field
theory [20], and the microscopic-macroscopic method [21], a phenomenologically adjusted
approach based on the semi-empirical mass formula. These are not considered in this thesis.
An overview of the contents of the main chapters of this thesis is provided in Sec. 1.5 at the
end of the present Chapter.

1.1 Chiral effective field theory

Chiral EFT is the modern approach to describe interactions between nucleons in free space.
The idea of EFTs has first been formulated in pioneering work by Weinberg [22]. It originates
in the observation that using suitable degrees of freedom to describe a system is crucial to
obtain a computationally manageable theory. The construction principle is then roughly given
as follows [15, 23, 24]: After selecting the relevant degrees of freedom, one writes down the
most general Lagrangian compatible with the symmetries of the underlying theory, i.e., with
the symmetries of QCD in case of the nuclear force. Then one needs to find a scheme to assess
the importance of the different contributions. This is given by a power counting scheme where
the different terms are associated to different powers ν in an expansion in Q/Λb. Here, Q is a
typical small momentum scale entering the diagram of interest (the soft scale) and Λb is the
(high) breakdown scale (hard scale) of the expansion. This is the scale around which degrees
of freedom omitted in the EFT are expected to become important. In other words, an EFT
describes explicitly only interactions with momenta below the hard scale (i.e., interactions
over distances larger than the inverse hard scale).

The advantage of this EFT construction is that because of the power counting one can
obtain an approximation to the interaction of interest by keeping only (finitely many) terms up
to a certain power ν in the expansion.3 This approximation can be refined by including terms
up to larger orders. This explains why a clear separation of scales is decisive for constructing
a useful EFT.

3Of course, this only works if the allowed values of ν are bounded from below. In chiral EFT this is given
as a consequence of the spontaneous breaking of chiral symmetry in QCD [15].
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Because of the power counting, one can estimate the contribution of neglected terms, which
allows for an uncertainty estimate of calculations with an interaction at given order [24]. There
exist simpler [24, 25] and more involved schemes [14, 26] to estimate these uncertainties and
further research in this direction is ongoing. In the case of chiral EFT, this is the dominant
uncertainty (e.g. compared to uncertainties from EFT parameter determination) [24].

In the case of nuclear physics at relatively low energies, nucleons constitute suitable degrees
of freedom to construct an EFT since individual quarks are not resolved at these energy scales
due to confinement. Using nucleons as only degrees of freedom gives rise to so-called pionless
EFT (see e.g. Ref. [27]). It is valid for momenta below the pion mass mπ. Pions can be
identified with the Goldstone bosons belonging to the spontaneously broken chiral symmetry
of QCD [15]. Because up- and down-quarks are not fully massless, the chiral symmetry is not
exact and pions have finite mass, too. Therefore, the nuclear force has finite range in contrast
to the Coulomb interaction mediated by massless photons. When pions are also included as
degrees of freedom in the EFT, the breakdown scale is increased to the order of the rho meson
mass, Λb ∼ 0.5 − 1 GeV4 [24, 28]. The resulting theory is called chiral EFT. The nuclear
potentials are obtained using chiral perturbation theory that describes the interaction between
pions and nucleons. In the scheme first proposed by Weinberg [29, 30] the resulting interaction
between nucleons is then treated fully non-perturbatively (e.g., in the Lippmann-Schwinger
equation) as it describes inherently non-perturbative phenomena such as bound states [15, 23,
27].

While alternative approaches have been discussed (e.g., see Refs. [23, 27, 31]), most chiral-
EFT-based studies are carried out using Weinberg power counting in which the importance
of diagrams is assessed by naive dimensional analysis yielding [15, 27]

ν = −4 + 2m+ 2L+
∑
i

∆i (1.1)

for a connected irreducible diagram with m nucleons and L loops. The sum goes over all
interaction vertices in the diagram with

∆i = di +
ni

2
− 2 , (1.2)

where di denotes the number of derivatives and ni the number of nucleon fields at a given
vertex i. In this counting scheme, leading order (LO) is given by ν = 0. The resulting
diagrams for the first few orders of chiral interactions are shown in Fig. 1.2 and the related
analytical expressions are given for instance in momentum-space representation in Ref. [32]
and references therein.

One can distinguish two groups of interaction vertices in chiral EFT: contacts involving
only nucleons and vertices involving pions. The latter give rise to pion exchange interactions
between nucleons, which describe the long-range part of the nuclear force. Short-range contact
interactions encapsulate two kinds of physics: contributions from exchange particles heavier
than pions, i.e., degrees of freedom not explicitly resolved by chiral EFT [32], and terms
from higher orders in the expansion which are neglected when working at a certain finite
order. Note that the contacts are also necessary to renormalize the perturbatively calculated
potential [23]. This is typically not carried out explicitly as the strength of the contact
interactions is determined anyway by fitting to data (implicit renormalization) [33].

4Natural units (ℏ = c = 1) are used throughout this thesis.
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Figure 1.2: Contributions to the nuclear potential in deltaless chiral EFT. Solid lines represent
nucleons and dashed lines pions. The different markers denote interaction vertices with contributions
of different orders ∆i to the power counting. Figure taken from Ref. [24].

In EFTs many-body forces arise naturally. These encapsulate the effect of successive
two-body forces which are separated by a distance below the resolution scale of the EFT [34].
While according to the power counting, one would expect three-body forces in chiral EFT
to first arise for ν = 2, i.e., at next-to-leading order (NLO), it has been shown that these
contributions cancel exactly and thus three-nucleon (3N) forces first contribute at N2LO [28]
as depicted in Fig. 1.2.

They can be relatively important, namely contributing about 20% to the binding energy
of light nuclei [34]. Furthermore, they are necessary to obtain saturation, meaning here a
minimum in the energy per particle as a function of density, close to the empirical saturation
region in symmetric nuclear matter [28]. With nucleon-nucleon (NN) forces only no minimum
is obtained or only at significantly too high densities [35].

In practice, many different nuclear potentials have been obtained from chiral EFT. They
can differ from each other in various aspects such as the following.

1. One can distinguish two flavors of chiral EFT depending on whether delta resonances
are included as explicit degrees of freedom or not. The ∆ resonances are relatively
low lying excitations of the nucleons; the mass difference is m∆ −mN ≈ 293 MeV [15].
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Figure 1.2 shows the chiral interaction diagrams for the deltaless case. In this case
some potential parameters acquire unnaturally large values due to the not explicitly
included ∆ excitations. The chiral order-by-order convergence pattern becomes more
systematic when considering deltafull interactions [36]. Then, additional terms have to
be considered and 3N forces contribute already at NLO.

2. Terms are included up to different orders in the chiral expansion. At present the most
accurate potentials are constructed at fifth order for NN forces5 [37, 38] and fourth order
for 3N forces [28].

3. The interactions are not unique with respect to the regularization scheme necessary
when the potentials are iterated in calculations beyond the mean-field level [39]. Cutting
off high momenta is consistent with the fact that the theory is valid only for momenta
Q < Λb [23].

4. Potentials differ in the fitting strategies used to fix the parameters, which appear in
contact interactions and pion exchanges. They are referred to as low-energy constants
(LECs). While one can fit to data from up-to-few-body systems only (such as NN phase
shifts, e.g., see Ref. [40]), more recent works also incorporate information from heavier
nuclei [41, 42] or infinite matter [43]. Newer developments include the usage of an
importance-weighted ensemble of interactions instead of a single one [44].

5. The potentials can be unitarily transformed; when other operators and wavefunctions
are transformed accordingly, this leaves observables unchanged. One can make use of
this fact by transforming the potentials in a way that makes them more suitable for
the application of many-body methods discussed in the following Section. Today, the
standard tool employed to this end is called similarity renormalization group (SRG) [45].6

A main, unsolved issue in chiral EFT is the observation that some observables are not
properly renormalized in Weinberg’s prescription [24, 27]. There are several other open
challenges, for instance related to regularization, power counting and LEC fitting, see Refs. [27,
38, 48] for overviews. Note also that in spite of successful applications of chiral EFT, see e.g.,
next Section, it is not clear if the chiral expansion actually converges [49–51].

1.2 Ab initio approaches

To describe ground states of atomic nuclei based on a nuclear interaction potential one needs
to solve the A-particle Schrödinger equation, in which the potential enters. For meaningful
predictions it is important that the equation is solved in a controlled fashion. Different
systematically improvable many-body methods have been developed. When used together
with a potential obtained from first principles such as chiral-EFT interactions, discussed in
the previous Section, such methods give rise to so-called ab initio approaches.

5Selected sixth-order contributions are also taken into account.
6The SRG is employed to decouple high- and low-momentum parts of the potentials. This allows to describe

low-energy physics without taking irrelevant high-momentum dynamics into account but induces many-body
forces [46], which in practice are truncated at the two- or three-body level. The truncation is justified as the
SRG preserves the initial chiral-EFT many-body hierarchy [47]. Truncating introduces an error. Hence, one
tries to find a “sweet spot” between improved many-body convergence and sizable induced many-body forces.
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While two-, three-, and four-body systems can be solved to high accuracy for example
in form of Lippmann-Schwinger and Faddeev(-Yakubovsky) equations using partial wave
decomposition, see e.g. Refs. [52–54], systems with more particles are more involved. Here we
briefly discuss a few employed methods.

In the no-core shell model (NCSM), the many-body Schrödinger equation is set up in
form of a matrix eigenvalue equation [55]. This is done by constructing the many-body space
via a basis of Slater determinants built from a truncated single-particle basis, e.g., harmonic
oscillator (HO) orbitals. The Schrödinger equation is solved quasi exactly in that space by
large-scale matrix diagonalization. While all nucleons are treated as active degrees of freedom
(unlike in other shell model approaches), the main approximation lies in the truncation of
the single-particle basis. Because the matrix dimension grows exponentially in the number of
single-particle orbitals and heavier nuclei require larger bases, the NCSM can currently only
be employed up to about 16O [55, 56]. By pre-selecting only those Slater determinants that
are expected to be important, one can reach heavier nuclei like 40Ca [57]. This approach is
referred to as importance-truncated NCSM [58].

While NCSM and all approaches discussed in the next paragraph work in configuration
space, there are also some methods that represent the wavefunction in coordinate space. They
use Monte Carlo techniques to sample the quantities of interest and are therefore collectively
called Quantum Monte Carlo methods. These approaches are at present limited in reach to a
similar mass region as the NCSM. See Refs. [59, 60] for details on these methods.

Heavier nuclei are at present reached only by methods that do not solve the many-body
problem exactly in a given many-body space. Thereby, they are able to achieve a polynomial
scaling in the basis size improving over the exponential scaling of the NCSM [61]. All these
methods have in common that they start out from some approximation to the ground state,
in this context referred to as reference state. Typical reference states are mean-field solutions,
i.e., Slater determinants with the minimal energy for the given potential, see Ch. 2 for details.
On top of the reference state, corrections are included via different expansions. Since the
corrections are not captured by the mean-field solution, they are referred to as correlations.
Accordingly, the many-body methods are called correlation or many-body expansion meth-
ods [62, 63]. Such methods include many-body perturbation theory (MBPT), the coupled
cluster (CC) method, the in-medium SRG (IMSRG), and self-consistent Green’s function
theory [61]. For example the CC method uses an exponential ansatz for the exact many-body
wavefunction,

|ΨCC⟩ = eT |Φref⟩ , (1.3)

where |Φref⟩ denotes the reference state and the cluster operator T is expanded in terms
of particle-hole excitations. The standard approach in nuclear physics is to truncate the
cluster operator at the two-particle-two-hole level (CC with singles and doubles). Schemes to
partially consider triples exist, but taking them into account fully is currently in general too
computationally expensive [64].

Ab initio calculations can generally get ground-state energies correct approximately at the
1% level [65]. Recent progress in the field of ab initio approaches includes pushing descriptions
towards heavy [44, 66–68] and doubly open-shell [69–74] nuclei. While the former constitutes
more of a technical challenge, the latter is achieved by employing hybrid approaches and
extensions such as valence-space and multi-reference IMSRG. They allow for more efficiently
describing collective (static) correlations than the correlation expansions alone can, which by
construction excel at capturing dynamic correlations involving only few particles [61, 75]. See
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Figure 1.3: Nuclei calculated with ab initio methods up to 2020. The color coding shows up to
which year the different calculations were published. This is to be compared to the reach of nuclear
DFT calculations that can tackle all known nuclei and beyond. Figure taken from Ref. [61].

Fig. 1.3 for an overview of nuclei that have been calculated with ab initio methods up to 2020.
In addition, higher-order, i.e., more precise, variants of existing many-body methods have
been developed [64, 76, 77].

A key feature of ab initio approaches to nuclear structure is that both the used interactions
obtained from chiral EFT, see Sec. 1.1, and the solution methods as discussed above are
systematically improvable. These are important ingredients for a rigorous uncertainty estimate
for the obtained results by assessing the size of missing higher-order contributions.

However, due to their huge numerical cost, ab initio methods are not yet ready to be
employed in large-scale, high-precision calculations of nuclear ground-state observables. This is
related to the fact that calculations for heavy and open-shell nuclei are particularly expensive.
Even if one could overcome this computational challenge, it is unclear whether ab initio
calculations are going to be able to globally compete with less microscopic methods regarding
the accuracy they can achieve. At present, they generally cannot [28, 61, 64, 65]. In the next
Section, we discuss a successful less microscopic method that possesses a milder scaling with
particle number: density functional theory.

1.3 Nuclear density functional theory

Nuclear density functional theory7 [83, 84] constitutes currently the most microscopic theo-
retical framework that can be used in global surveys of atomic nuclei thanks to its favorable
computational scaling [85]. It is rooted in the seminal work by Hohenberg and Kohn proving

7Some authors make a distinction between nuclear density functional theory and the nuclear energy density
functional method, e.g. see Refs. [78, 79]; others do not, e.g. see Refs. [80–82]. We do not make this distinction
in the present document.
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the existence of a universal functional of the density which, when minimized for fixed particle
number, gives the ground state density and energy of a many-body system confined in an
external potential [86]. While this is most commonly employed for the description of electronic
systems, later works extended the existence proof to self-bound systems as constituted by
atomic nuclei [87–90]. However, the form of the universal functional is unknown in either case.
In practice most calculations are carried out in the Kohn-Sham formulation of DFT [91], which
allows for an efficient description of the (non-interacting) kinetic energy of the system [92] and
of shell effects [93] by expressing the density of interest in terms of auxiliary single-particle
orbitals of an independent-particle system. In this scheme, interactions take place only via
self-consistent mean fields.

Such calculations are formally similar to Hartree-Fock (HF) calculations used as a first
step of ab initio approaches. The crucial difference between the two strategies lies in the
employed Hamiltonian. Ab initio calculations use potentials that describe the interaction
between free nucleons, e.g., as obtained from chiral EFT. Therefore, in this case the mean-
field solution is only a first approximation to the true nuclear ground state that then gets
refined by employing a correlation expansion method as explained in Sec. 1.2. In contrast,
the functionals used in nuclear DFT are models of the interaction in the nuclear medium,
meaning they are supposed to include the effect of the other nucleons in the nucleus already
at the mean-field level. Therefore, no (computationally more expensive) expansion method
has to be employed subsequently and the DFT solution to the nuclear many-body problem is
given by the mean-field solution itself. See Ch. 2 for details on mean-field calculations.

In other words, the explicit correlation treatment integral to ab initio methods is in DFT
replaced by an implicit representation of correlations encoded in the form of the EDF. In
nuclear physics different empirical ansatze have been established for the form of the functional.
In the non-relativistic sector, the Skyrme [94] and Gogny [95] EDFs are based on effective
nucleon-nucleon interactions. Note that these effective interactions cannot be given in terms
of true potentials because they contain terms with explicit density dependences. Thus, one
instead uses the term pseudopotential [78, 84]. Genuine energy functionals (not derived from
an underlying pseudopotential) include the Fayans [96], the SeaLL1 [97], or the BCPM [98]
functionals. Different forms are also available in covariant DFT (also called relativistic DFT),
see e.g., Refs. [99, 100]. See Ref. [81] for a discussion on the necessity of a relativistic approach
to nuclear EDFs. Here we limit ourselves to non-relativistic functionals.

Each EDF has of order ten parameters that are optimized by fitting to experimental data,
typically to ground-state properties of finite nuclei. This gives rise to different parametrizations
even for a given functional form. As an example, we mention an overview of 240 Skyrme
parametrizations published in Ref. [101].

Empirical EDFs have been successfully employed to describe nuclear bulk properties and
some spectroscopic features throughout the known table of nuclides, except for the lightest
nuclei. Examples include the UNEDF1 Skyrme parametrization [102], which describes both
ground states globally and fission barriers well and reproduces ab initio results for trapped
neutron drops, and the Fy(∆r) Fayans parametrization [96], which correctly predicts the
non-trivial neutron number dependence of charge radii in the calcium isotopic chain, the
description of which constitutes a challenge for ab initio approaches. Because of the mild
scaling with mass number, EDFs can also be used to predict the location of driplines far
outside the reach of present-day experiments [3, 103, 104].

These achievements are in significant parts linked to using increasingly sophisticated
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parameter optimization protocols but it is widely believed that this avenue has been explored to
such a degree that further improvements, necessary for instance for the description of r-process
nucleosynthesis [105–110] or of single-particle energies [111], need to come from elsewhere [111–
113]. The two most obvious routes are the explicit treatment of static correlations via switching
from single-reference DFT, as used in this work, to a multi-reference (beyond mean-field)
framework [18, 84, 95, 114, 115] and the extension of the form of the employed EDFs, which
is what this thesis deals with.

In the former direction many different approaches have been worked out over the years.
These include approximate projection techniques such as the Lipkin-Nogami (LN) method to
restore particle number symmetry, which is broken in Hartree-Fock-Bogoliubov (HFB) theory
(see Sec. 2.4), and more elaborate schemes like the generator coordinate method which treats
correlations through the mixing of mean-field states [84]. In particular the latter approaches are
computationally very expensive. Note that there exist different, partially unsolved, difficulties
when switching to multi-reference calculations related for instance to non-integer powers of
the densities in the functionals [18, 78, 116]. In the present work, we abstain from using
beyond-mean-field frameworks and do not restore any broken symmetries.

Regarding extending the form of the EDFs, we note that all successful nuclear EDFs have
in common that, while their forms are guided by physical considerations, there is no clear path
how to improve the functionals. This is related to a missing unifying construction principle
(cf. EFTs discussed in Sec. 1.1). Therefore, different empirical strategies have been pursued to
extend the functionals’ forms (see e.g., Refs. [117–123]). They often consist in adding similar
or higher-order terms to existing EDF structures and typically involve introducing additional
adjustable parameters.

Properly fitting such parameters is a non-trivial task since they cannot always be well
constrained with available experimental data, see also Ch. 4. In addition, this does not address
the phenomenological nature of the EDFs, which is the root cause for potentially uncontrolled
extrapolations outside the fitting regions [11, 104, 113, 124, 125]. Therefore, firmly connecting
nuclear EDFs to an underlying theory would be beneficial. In the following Section we discuss
this in more detail.

1.4 Quest for energy density functionals from first
principles

As detailed in Sec. 1.3 nuclear DFT is successful, but based on empirical EDFs. This compli-
cates improvements of the functionals and uncertainty estimates, which makes extrapolations
potentially unreliable. As discussed in Sec. 1.2, these points can be addressed in the framework
of ab initio approaches. However, they are at present not able to be applied to the whole
nuclear chart, unlike EDFs, due to high associated computational costs and they reproduce
experimental results in general worse than EDFs. Such observations created the idea to root
or inform EDFs in microscopic interaction models or build EDFs fully from first principles
based on a unifying construction principle.

While different ideas to formulate an effective field theory for EDFs have been dis-
cussed [126–131], none of them has been implemented yet. Recasting EDFs as EFTs would
offer guidance for more accurate functionals, as well as greater control of their uncertainties
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and limits (e.g., toward the driplines), and would fill a gap in the tower of EFTs describing
strong interaction phenomena [129].

Alternatively, one can remain within the overall framework of nuclear DFT while seeking
guidance from microscopic ab initio theories. By employing interactions derived from chiral
EFT, ab initio calculations become systematically improvable by going to higher orders in
the chiral expansion. In addition, the chiral expansion provides a way to assess the model
uncertainty itself while for phenomenological EDFs one only assesses the uncertainty from
fitting the parameters. Different ideas for how to combine ab initio approaches and nuclear DFT
exist [65, 82, 85, 97, 98, 132–143]. The approaches include determining EDF parameters [97,
136, 137, 142, 143] or even the form of some functional terms [98, 133, 134, 140] based on ab
initio calculations and ideas to fully determine the form of the functional from a microscopic
interaction model [85, 132, 138].

In this work, we follow a hybrid strategy first suggested in Refs. [65, 135]. It consists in
adding terms arising from long-range pion exchanges as described by chiral EFT interactions at
the HF level on top of a conventional Skyrme EDF structure whose parameters are subsequently
refitted. The pion terms are incorporated by making use of so-called density-matrix expansions
(DMEs); see Ch. 3 for details. EDFs obtained in this fashion have a much more involved
density dependence than conventional Skyrme EDFs. There are two motivations for this
strategy.

First, the form of the Skyrme EDF corresponds to calculating HF energies from contact
interactions. Following chiral EFT, the first additional degree of freedom that appears when
increasing the resolution of the description of the considered systems are pions exchanged
between the nucleons. Note that while this is reminiscent of switching from pionless to chiral
(i.e., pionfull) EFT in ab initio calculations, where the pions are necessary for a reasonable
description of all but the lightest nuclei, this analogy is unfortunately somewhat misleading as
EDFs describe interactions in the nuclear medium and are not simple free-space interactions.
In addition, Skyrme EDF parameters are optimized to reproduce experimental data of finite
nuclei. Thus, while one can reasonably expect adding pions explicitly to a Skyrme EDF can
lead to a more accurate description of nuclear properties, it is not clear from the outset if such
improvement can actually be observed.

Second, a complementary viewpoint is obtained by noticing that ab initio calculations
with chiral EFT interactions often build correlations on top of an initial mean-field solution,
see Sec. 1.2. In our approach, we employ the same interactions but instead of generating
correlations via the many-body method, we adjust the short-range part of the interactions.
This is because the dominant bulk correlations in nuclei, e.g., in expansions around HF,
appear to be short-range in nature [144] and are therefore expected to be mimicable by
contact interactions. On the other hand, the use of unmodified long-range interactions in a
low-resolution EDF is justified by the observation that renormalization-group evolution only
modifies the short-distance physics [145]. Note that this second viewpoint is similar to ideas
considered in Ref. [146], where the authors attempt to capture triples excitations from coupled
cluster theory by carrying out CCSD calculations using an interaction in which they adjust
the strength of the three-body contact. Renormalizing also two-body contacts to mimic the
effect of doubles and then performing mean-field calculations would be the next step in that
framework. This has similarities to the strategy discussed here, although Skyrme contact
interactions differ in several aspects from chiral-EFT contacts.

The semi-phenomenological hybrid strategy was implemented in a series of papers, Refs. [135,
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140, 145, 147–149]. While encouraging improvements over EDFs without chiral terms were
observed, the dependency of the results on the order of the chiral interactions showed large
variability and puzzling systematics [140]: first, the inclusion of 3N forces worsened the results,
and second, at leading order, which naively might be expected to have the biggest effect,
no overall improvement was found. This is particularly surprising as the leading-order NN
one-pion exchange constitutes the interaction with the longest range in the chiral expansion
and hence is supposedly the most difficult to be correctly described by a conventional (zero-
range) Skyrme pseudopotential. This thesis addresses these aspects by a careful assessment of
both density-matrix expansions themselves and the construction of the hybrid EDFs; see next
Sec. 1.5 for details on the scope of this work. This also addresses a key question in formalizing
an EFT for EDFs: the pion as a long-range degree of freedom is missing in practice from
empirical EDFs, but is it needed to reach greater accuracy for bulk properties or describing
dripline physics?

1.5 Scope of this thesis

Both nuclear DFT and ab initio methods with potentials obtained from chiral EFT have
been applied very successfully. However, both methods face, albeit complementary, issues.
Hence, a way forward might lie in combining the two approaches in a clever way, see also
the previous Sec. 1.4. A recently developed semi-phenomenological hybrid scheme to obtain
nuclear EDFs was applied with promising outcomes [140] but requires further study and more
careful investigation.

In the hybrid approach a simplified phase-space-averaging DME [135, 145] is used to
convert Fock contributions from chiral-EFT NN and 3N pion-exchange potentials into a form
suitable for a local EDF. Since the DME is applied at the HF level and the EDFs are eventually
implemented at the HFB level, we discuss these mean-field methods in some detail in Ch. 2.

There could be several reasons for the partially puzzling behaviors observed for the hybrid
EDFs [140], including potentially suboptimal choices for the DME. Therefore, Ch. 3 deals
with density-matrix expansions. We introduce them in detail and extensively investigate
different DME variants and choices, both for NN and for 3N forces. In particular, we focus
on the accurate reproduction of Fock energies due to chiral pion exchanges. The results show
that DMEs are generally able to approximate exact Fock energies for chiral interactions well.
Nevertheless, we identify different handles for improving the accuracy of DMEs.

In Ch. 4 we carefully revisit the construction of hybrid EDFs that incorporate chiral physics
via a DME. To perform these investigations we construct a new set of nuclear EDFs which
we dub “Germany-USA DME EDFs” (GUDE8 for short). We discuss the functionals’ forms,
the optimization of their parameters, and apply the EDFs in ground-state calculations along
the entire nuclear chart. We study in detail the dependence of the results on the order of the
employed chiral interaction and identify which terms are crucial to obtain improvement over
EDFs without pion-exchange terms. In particular, this allows us to construct an EDF with a
minimal number of chiral terms added to a Skyrme EDF obtaining significant improvement
in the description of nuclear masses.

8gude [gu:d@] is a common greeting in the Hessian dialect of German that is spoken in Darmstadt, among
other places.
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We conclude by summarizing our findings and giving an extensive outlook regarding
possible future studies and developments in Ch. 5. We discuss different possibilities for
constructing further improved EDFs and mention related challenges.

The contents of this thesis have partially been published in Refs. [150, 151]. In particular
this pertains to the following parts of the thesis: Section 1.3 has been published in significantly
shortened form as part of Ref. [151], Sec. 1.4 is partially based on both Refs. [150, 151].
Sections 3.2 to 3.4 and 3.7 are largely based on Ref. [150]. Similarly, Chapter 4 is largely
based on Ref. [151].

This thesis presents the main work I have conducted during my doctoral studies. In
addition, during this time I have also contributed to studies on the use of tensor factorization
techniques, namely the singular value decomposition, for ab initio calculations. Results have
been presented in Refs. [152, 153].





2
Basics of many-body theory

2.1 Variational principle

Nuclear many-body structure theory deals with finding solutions to the stationary Schrödinger
equation, which reads in bra-ket notation

H |Ψi⟩ = Ei |Ψi⟩ (2.1)

where the Hamiltonian H describes the interactions between the A nucleons in a nucleus. Here
we sort the eigenstates according to their energy, i.e., |Ψ0⟩ refers to the ground state of the
system. Now consider a trial many-body state |Ψ⟩. Expanding it in the exact eigenstates of
H, which form an orthonormal basis of the Hilbert space, gives:

|Ψ⟩ =
∑
i

ci |Ψi⟩ . (2.2)

With this its energy expectation value is given by

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

=

∑
i |ci|2Ei∑
i |ci|2

⩾

∑
i |ci|2E0∑
i |ci|2

= E0 (2.3)

with the exact ground-state energy E0. Therefore, the solution of the variational problem

δE[Ψ] = 0 , (2.4)

i.e., minimizing E[Ψ], in some variational subspace yields an upper limit to the ground-state
energy of the system. If the variational space was the whole Hilbert space, the exact ground-
state energy and wavefunction would be recovered.

In practice one needs to choose a finite subset of the Hilbert space to perform the variational
search. One possibility consists in minimizing over the set of fermionic product states. We
discuss properties of such states, in particular with respect to the one-body density matrix
(OBDM), in Sec. 2.2. One refers to such a minimization as Hartree-Fock theory, which we
consider in Sec. 2.3. It is used to tackle the many-body problem in several different fields,
one of them being nuclear theory. In nuclear physics pairing correlations play a particularly
important role. These can be elegantly treated by an extension of HF theory which is called
Hartree-Fock-Bogoliubov theory. We discuss it in Sec. 2.4. HF and HFB theory are used both
as a standalone method in the context of energy density functionals, see Sec. 1.3, and as a
starting point for other approaches, e.g., in the ab initio context (Sec. 1.2).

15
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2.2 One-body density matrix and product states

Consider a normalized arbitrary state of a quantum-mechanical system, denoted by |Ψ⟩. It
can be associated to a OBDM ρ that can be expressed in operator form in an arbitrary
single-particle basis as [154]

ρ̂ =
∑
i,j

|i⟩ ρij ⟨j| , (2.5)

where the matrix elements are given by

ρij = ⟨Ψ|a†jai|Ψ⟩ . (2.6)

Equation (2.6) is written in second quantization, where a†i creates a particle in state |i⟩ and
ai annihilates it. With the vacuum state |0⟩ this reads

a†i |0⟩ = |i⟩ , (2.7)

ai |i⟩ = |0⟩ . (2.8)

The coordinate-space representation of ρ̂ is given by

ρ(x1σ1,x2σ2) = ⟨x1σ1|ρ̂|x2σ2⟩ =
∑
ij

ϕi(x1σ1)ρijϕ
∗
j (x2σ2) (2.9)

with normalized single-particle wavefunctions

ϕi(xσ) = ⟨xσ|i⟩ . (2.10)

Here, x denotes the position and σ denotes potential discrete variables such as spin. The
OBDM is Hermitian,

ρ∗ij = (⟨Ψ|a†jai|Ψ⟩)∗ = ⟨Ψ|a†iaj |Ψ⟩ = ρji , (2.11)

ρ(x1σ1,x2σ2)
∗ = ρ(x2σ2,x1σ1) . (2.12)

We can use it to write the expectation value of a one-body operator Ô as [154]

⟨Ψ|Ô|Ψ⟩ = Tr[Oρ] . (2.13)

One can also define a two-particle density matrix where [155]

ρijkl = ⟨Ψ|a†ka
†
l ajai|Ψ⟩ (2.14)

and, analogously, higher-body density matrices.

The simplest many-body states that one can build for a collection of A nucleons (a nucleus)
are product states of single-nucleon states. As nucleons are fermions due to them possessing
spin = 1/2, no single-particle state can be occupied by more than a single nucleon according to
the Pauli principle. Therefore, a fermionic many-body wavefunction has to be antisymmetric
under the exchange of two particles. Therefore, fermionic product states, here denoted by |Φ⟩,
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are identified with so-called Slater determinants. In coordinate space they read

Φ(x1σ1, . . . ,xAσA) =
1√
A!

∣∣∣∣∣∣∣
ϕ1(x1σ1) . . . ϕA(x1σ1)

...
. . .

...
ϕ1(xAσA) . . . ϕA(xAσA)

∣∣∣∣∣∣∣ . (2.15)

In second quantization the Pauli principle is enforced via the anti-commutation relations for
the fermionic annihilation and creation operators,

{ai, aj} = {a†i , a
†
j} = 0 , (2.16)

{ai, a†j} = δij . (2.17)

Then, a Slater determinant simply reads [154]

|Φ⟩ =
A∏
i=1

a†i |0⟩ . (2.18)

When |Ψ⟩ is a Slater determinant, i.e., |Ψ⟩ = |Φ⟩, the two-body density matrix fully
factorizes into products of OBDMs of the system [62]:

ρijkl = ρikρjl − ρjkρil . (2.19)

This holds similarly for higher-body density matrices. Therefore, the OBDM contains the
full information about a system described by a Slater determinant [155] and there is, up to a
phase factor, a one-to-one correspondence between ρ and |Φ⟩ [154]. In mean-field approaches
the wavefunction is of product form and thus the OBDM plays a particularly important
role in these approaches. When switching to the basis from which the Slater determinant is
constructed (e.g., HF orbitals), the OBDM is diagonal with

ρij =

1 if i = j ≤ A ,

0 else
(2.20)

and then

ρ(x1σ1,x2σ2) =
A∑
i=1

ϕi(x1σ1)ϕ
∗
i (x2σ2) (2.21)

with the sum running over occupied single-particle states and A denoting the particle number
of the system.

For product states the OBDM is idempotent [154, 156, 157], i.e., it fulfills

ρ̂2 = ρ̂ . (2.22)

This means it projects on the space of occupied single-particle states (so-called hole orbitals).
Note that one refers to the unoccupied states as particle orbitals. In coordinate-space repre-
sentation Eq. (2.22) reads

ρ(x1σ1,x2σ2) =
∑
σ3

∫
dx3 ρ(x1σ1,x3σ3)ρ(x3σ3,x2σ2) . (2.23)
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By considering only the diagonal (x1 = x2, σ1 = σ2) we obtain the integrated, spin-summed
idempotency constraint:

A =
∑
σ1,σ3

∫
dx1dx3 ρ(x1σ1,x3σ3)ρ(x3σ3,x1σ1) . (2.24)

Before we continue with a discussion of Hartree-Fock theory, let us introduce a few defini-
tions and notations we are going to use. The (local) density ρ(x) and the kinetic density τ(x)

can be written for a product state as

ρ(x) =
A∑
i=1

∑
σ

|ϕi(xσ)|2 , (2.25)

τ(x) =
A∑
i=1

∑
σ

|∇ϕi(xσ)|2 . (2.26)

While we always denote single-particle wavefunctions with an explicit spin degree of freedom
in this work, one could make notation more compact by denoting wavefunctions as having
two spin components. Along these lines we write the OBDM as a matrix in spin space, i.e.,

ρ(x1,x2) =

(
ρ(x1 ↑,x2 ↑) ρ(x1 ↑,x2 ↓)
ρ(x1 ↓,x2 ↑) ρ(x1 ↓,x2 ↓)

)
. (2.27)

Additionally, we employ the short-hand notation

ρ(x) = ρ(x,x) (2.28)

for the local part of the OBDM.

2.3 Hartree-Fock theory

HF theory deals with solving the variational equation Eq. (2.4) in the space spanned by Slater
determinants |Φ⟩. The derivation of the HF equations presented here follows Refs. [154, 158].
For an alternative derivation using an explicit representation of a transformation among Slater
determinants see, e.g., Ref. [159].

We start from the idempotency condition for a one-body density matrix belonging to a
product state, i.e. ρ2 = ρ, as discussed in the previous Section. Since we wish to vary only in
the space spanned by Slater determinants,

(ρ+ δρ)2 = ρ+ δρ , (2.29)

where terms quadratic in the infinitesimal variation δρ vanish. This directly gives

δρ = ρδρ+ δρρ . (2.30)

Left-multiplying with ρ yields
ρδρρ = 0 (2.31)
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and similarly one obtains
(1− ρ) δρ (1− ρ) = 0 . (2.32)

These equations signal that to stay within the space of Slater determinants only variations in
the particle-hole and hole-particle blocks of the OBDM are allowed (since ρ is a projector on
the hole space).

This allows us to rewrite the differential of Eq. (2.4) as

0 = δE =

A∑
i=1

∑
j>A

(Fijδρji + Fjiδρij) , (2.33)

where we have introduced the Fock matrix F with matrix elements

Fij =
∂E

∂ρji
. (2.34)

Since the variations in the allowed blocks are arbitrary, Eq. (2.33) simplifies to

Fji = Fij = 0 ∀ i ≤ A, j > A . (2.35)

Because unitary transformations among the particles or among the holes leave the one-body
density matrix and the many-body state unchanged, we can extend Eq. (2.35) to requiring
the Fock matrix to be diagonal according to

Fij = εiδij . (2.36)

To find the basis that fulfills this equation, in practice we represent the Fock matrix in some
single-particle basis {|j⟩} and solve for the transformation coefficients Dij that transform this
basis into the desired HF basis {|ϕi⟩ = b†i |0⟩} via

b†i =
∑
j

Dija
†
j . (2.37)

In this way we obtain the Hartree-Fock equations∑
k

FjkDik = εiDij (2.38)

for the single-particle states |ϕi⟩. They have the form of a single-particle Schrödinger equation,
where the Fock matrix acts as single-particle Hamiltonian and εi are the resulting single-
particle energies. As E and therefore F depend on the occupied orbitals however, the HF
equations are coupled and correspond to a nonlinear eigenvalue problem. Therefore in practice
they are solved iteratively. Since in HF theory the whole many-body system is characterized
by single particle orbitals that arise from an effective single-particle Hamiltonian that describes
the interaction with all particles in the system, HF and related theories are referred to as
mean-field approaches. The resulting approximation to the ground-state energy, the HF energy,
is finally obtained by evaluating E using the obtained HF Slater determinant |ΦHF⟩:

EHF = ⟨ΦHF|H|ΦHF⟩ . (2.39)
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Two-body interactions

We now consider the case where the Hamiltonian of the system H consists of a one-body part
T (giving the HF kinetic energy) and a two-body interaction V . In second quantization this
reads for an arbitrary single-particle basis

H =
∑
ij

Tija
†
iaj +

1

4

∑
ijkl

Vijkla
†
ia

†
jalak (2.40)

with matrix elements

Tij = ⟨i|T |j⟩ , (2.41)

Vijkl = ⟨ij|V |kl⟩ . (2.42)

The antisymmetrized interaction matrix elements are given by

Vijkl = Vijkl − Vijlk . (2.43)

Then,

EHF =
∑
ij

Tij ⟨ΦHF|a†iaj |ΦHF⟩+
1

4

∑
ijkl

Vijkl ⟨ΦHF|a†ia
†
jalak|ΦHF⟩

=
∑
ij

Tijρji +
1

2

∑
ijkl

Vijklρkiρlj , (2.44)

where we made use of the antisymmetry Vijkl and of properties of the OBDM, detailed in
Sec. 2.2. With Eq. (2.34) we get

Fij = Tij + Γij = Tij +
∑
kl

Vikjlρlk (2.45)

with the so-called self-consistent (or HF) field Γ [154, 160]. Plugging this into Eq. (2.36) and
comparing with Eq. (2.44) in the HF basis yields that the HF energy is not just the sum of
the single-particle energies,

EHF =
A∑
i=1

εi −
1

2

A∑
i,j=1

Vijij . (2.46)

Staying in the HF basis we can split the interaction contribution to EHF as given by
Eq. (2.44), namely

WHF =
1

2

A∑
i,j=1

Vijij = WH +WF , (2.47)

into the Hartree (direct) and Fock (exchange) energy, respectively given by

WH =
1

2

A∑
i,j=1

⟨ϕiϕj |V |ϕiϕj⟩ , (2.48)

WF = −1

2

A∑
i,j=1

⟨ϕiϕj |V |ϕjϕi⟩ . (2.49)
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By inserting completeness relations we can switch to coordinate space. For a translationally
invariant local two-body interaction,

⟨x1x2|V (σ1,σ2, τ1, τ2)|x′
1,x

′
2⟩ = ⟨r|V (σ1,σ2, τ1, τ2)|r⟩ δ(r− r′)δ(R−R′) , (2.50)

where we introduced relative and center-of-mass coordinates

r = x1 − x2 and R =
1

2
(x1 + x2) (2.51)

and their primed analogs. In Eq. (2.50) we also made the dependence of the nuclear interaction
on spin and isospin explicit. With this Hartree and Fock energy read

WH =
1

2
Trστ12

∫
dRdr ⟨r|V (σ1,σ2, τ1, τ2)|r⟩ρ(1)

(
R− r

2

)
ρ(2)

(
R+

r

2

)
, (2.52)

WF = −1

2
Trστ12

∫
dRdr ⟨r|V (σ1,σ2, τ1, τ2)|r⟩P στ

12 ρ
(1)
(
R− r

2
,R+

r

2

)
ρ(2)

(
R+

r

2
,R− r

2

)
.

(2.53)

The index 1 (2) denotes on which part of the two-body product space the OBDMs and the
potential V act, i.e. 1 (2) refers to the spin and isospin space of “particle 1” (“particle 2”),
Trστ12 denotes a trace over the whole product space, and

P στ
12 = P σ

12P
τ
12 =

1 + σ1 · σ2

2

1 + τ1 · τ2
2

(2.54)

is the two-particle spin and isospin exchange operator [135].
One can split the Hartree-Fock energy arising from a three-body interaction in analogy to

Eqs. (2.47), (2.52), and (2.53) into direct, single-, and double-exchange terms, see Sec. 3.5 for
details.

Density-dependent pseudopotentials

Above we discussed the case of genuine two- and three-nucleon interactions. These are used
in ab initio methods that deal with interaction models describing the free-space interaction
between nucleons. The situation is different in nuclear DFT where interaction models describe
the interaction between nucleons in the nuclear medium. To this end, interactions with an
explicit density dependence (so called pseudopotentials) are typically used. These cannot be
cast into the potential forms discussed above. However, we can still derive HF equations for
such pseudopotentials by considering variations with respect to the orbitals instead of the
OBDM.

For simplicity we assume here that the energy can be written as a spatial integral over a
quasi-local energy density

E =

∫
dR E(R) , (2.55)

which depends only on the local density ρ(R) and the kinetic density τ(R) like in classic
applications of Kohn-Sham DFT [92]. Additional densities, as they enter in the EDFs we
are going to consider in Ch. 4, can be included straightforwardly. We derive here the HF
equations in coordinate space similar to the presentation in Ref. [154] but we do not restrict
ourselves to a particular form of the energy density.
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Slater determinants are built from A normalized single-particle orbitals ϕi. We impose the
normalization constraint by amending Eq. (2.4) with Lagrange multipliers εi:

δĒ = δ

(
E −

A∑
i=1

εi
∑
σ

∫
dR |ϕi(Rσ)|2

)
= 0 . (2.56)

Let us first consider the differential of the energy only. It is given by

δE =
A∑
i=1

∑
σ

∫
dR

[
δE

δϕ∗
i (Rσ)

δϕ∗
i (Rσ) +

δE

δϕi(Rσ)
δϕi(Rσ)

]

=

A∑
i=1

∑
σ

∫
dR

{[
δE

δρ(R)

δρ(R)

δϕ∗
i (Rσ)

+
δE

δτ(R)

δτ(R)

δϕ∗
i (Rσ)

]
δϕ∗

i (Rσ)

+

[
δE

δρ(R)

δρ(R)

δϕi(Rσ)
+

δE

δτ(R)

δτ(R)

δϕi(Rσ)

]
δϕi(Rσ)

}
, (2.57)

where we used the chain rule. From Eqs. (2.25) and (2.26) we get

δρ(R)

δϕ∗
i (Rσ)

= ϕi(Rσ) , (2.58)

δτ(R)

δϕ∗
i (Rσ)

= −∆ϕi(Rσ) , (2.59)

and the analogous equations for the conjugate orbitals. To obtain Eq. (2.59) the derivative
rule for functionals that depend on derivatives was employed. Now we can write Eq. (2.56) as

δĒ =

A∑
i=1

∫
dR

{[
δE

δρ(R)
− δE

δτ(R)
∆− εi

]
[ϕi(Rσ)δϕ∗

i (Rσ) + ϕ∗
i (Rσ)δϕi(Rσ)]

}
= 0 .

(2.60)

By considering ∂Ē/∂ϕ∗
i (Rσ) we obtain from Eq. (2.60) the Hartree-Fock equations[

δE

δρ(R)
− δE

δτ(R)
∆

]
ϕi(Rσ) = εiϕi(Rσ) . (2.61)

2.4 Hartree-Fock-Bogoliubov theory

There are several experimental facts that suggest pairing correlations, which cannot be ex-
plained in a pure Hartree-Fock picture, play an important role in nuclei [154, 161, 162]. Among
those is the odd-even staggering observed for nuclear binding energies, i.e., the fact that masses
of odd nuclei are almost always larger than the average of the masses of the two adjacent
even isotopes (with same neutron or proton number). This can be explained by the formation
of energetically favored neutron-neutron and proton-proton pairs in nuclei. One can show
that short-range attractive two-nucleon forces can be responsible for the formation of such
nucleon pairs with vanishing total angular momentum [163]. Breaking up a nucleonic pair is
energetically disfavored; this can be seen in spectra of even-even nuclei which start with an
energy range (of about 1 MeV) that contains only few excited states. For odd nuclei this does
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not hold since there one nucleon remains unpaired and can therefore be excited more easily.
Note that for nuclei with N ≈ Z, where neutron and proton Fermi surface are close to one

another, also pairing between neutrons and protons may become important [161, 164]. In this
work however, we restrict ourselves to same-species pairing.

One possibility to include an explicit treatment of pairing correlations in a mean-field
approach is called Hartree-Fock-Bogoliubov theory. It generalizes HF by considering medium
effects not only via the self-consistent field Γ, which captures particle-hole correlations, but
also via a pairing field ∆ that describes particle-particle correlations. Unlike for instance in
the HF+Bardeen-Cooper-Schrieffer approach, the HFB method handles the construction of
the desired single-particle basis and the evaluation of their pairing correlations consistently
and takes into account their interdependence [154, 165].

Like HF theory, the HFB approach is also a variational method. Here, however, the
variation is performed in the space of generalized product states [154]: instead of products of
single-particle states one considers products of single-quasiparticle states, where the quasipar-
ticle operators are given by a Bogoliubov transformation,

βj =
∑
i

(
U∗
ijai + V ∗

ija
†
i

)
, (2.62)

β†
j =

∑
i

(
Uija

†
i + Vijai

)
. (2.63)

We require that βj , β
†
j are fermionic operators. Therefore, the transformation matrix

W =

(
U V ∗

V U∗

)
(2.64)

has to be unitary. Then, we write the generalized product states as

|Φ⟩ =
∏
i

βi |0⟩ . (2.65)

Note that unlike for Slater determinants, the product in Eq. (2.65) is not restricted. The
states defined in Eq. (2.65) are quasiparticle vacua,

βi |Φ⟩ = 0 ∀ i , (2.66)

and can be uniquely related to the (normal) one-body density matrix ρ and the pairing tensor
κ with matrix elements

ρij = ⟨Φ|a†jai|Φ⟩ =
(
V ∗V T

)
ij
, (2.67)

κij = ⟨Φ|ajai|Φ⟩ =
(
V ∗UT

)
ij
. (2.68)

One can decompose the Bogoliubov transformation into three subsequent unitary transfor-
mations: a transformation of the particle operators amongst themselves (from an initial basis
represented by {a†i} to the canonical basis {b†i}), a special Bogoliubov transformation that
mixes creation and annihilation operators only between pairs of single-particle states (which
we label with i and −i), and a transformation amongst the resulting quasiparticle operators.
The first and third transformation do not mix creation and annihilation operators. In the
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canonical basis, the product state Eq. (2.65) reads for an even particle number

|Φ⟩ =
∏
i>0

(
ui + vib

†
ib

†
−i

)
|0⟩ (2.69)

with u2i +v2i = 1 [158, 160]. An HF state has ui, vi ∈ {0, 1} but for an HFB state ui and vi can
attain values in between. Thus, the representation Eq. (2.69) nicely shows that many-body
states in HFB theory break particle-number symmetry.

The goal is now to find the coefficients of the Bogoliubov transformation such that the
energy expectation value of the resulting product state is minimized. This is analogous to the
HF case and gives rise to the HFB equations. Below, we sketch the derivation for two-body
interactions following Refs. [158, 166]. The case of density-dependent forces is not discussed
in this Section, it proceeds by analogously extending the HF variational principle. Instead we
consider the HFB equations as they are obtained explicitly for EDFs of the GUDE form in
Sec. 4.2.1.

Two-body interactions

With Eqs. (2.62), (2.63), (2.67), and (2.68) one can write the energy expectation value obtained
from evaluating the Hamiltonian, Eq. (2.40), for the product state, Eq. (2.65), as

E[Φ] =
∑
ij

Tijρji +
1

2

∑
ijkl

Vijklρkiρlj −
1

4

∑
ijkl

Vijklκ
∗
jiκkl . (2.70)

Because |Φ⟩ does not correspond to a fixed particle number, we impose the required particle
number on average,1 i.e.,

Tr[ρ] = A , (2.71)

by amending the variational equation Eq. (2.4) with a Lagrange multiplier:

δ(E − λTr[ρ]) = 0 . (2.72)

After defining the HF field as in the HF case,

Γij =
∑
kl

Vikjlρlk , (2.73)

and the pairing field as

∆ij =
1

2

∑
kl

Vijklκkl , (2.74)

the variation of Eq. (2.70) with respect to ρ and κ then yields the HFB equations:(
T + Γ− λ ∆

−∆∗ −T ∗ − Γ∗ + λ

)(
Ui

Vi

)
= εi

(
Ui

Vi

)
. (2.75)

In analogy to the HF case [Eq. (2.38)] Eq. (2.75) constitutes a nonlinear eigenvalue problem.
The eigenvectors consist of Ui and Vi that denote columns of U and V , respectively, and the

1In practice one has two separate conditions for proton and neutron number.



2.4 HARTREE-FOCK-BOGOLIUBOV THEORY 25

eigenvalues are the real quasiparticle energies εi. One can show that for every eigenvector(
Ui

Vi

)
the vector (

V ∗
i

U∗
i

)
is also an eigenvector and belongs to the eigenvalue −εi. For each such solution pair one
uses only one eigenvector in setting up the quasiparticle basis {β†

i } as the other eigenvector
corresponds to the adjoint quasiparticle operator [154, 167].





3
Density-matrix expansions

Density-matrix expansions have been devised as a tool to translate an energy contribution
from nuclear interactions into an energy density functional that depends only on (quasi-)local
densities1 [168, 169]. This translation takes places at the Hartree-Fock level.

The Fock energy depends on the full off-diagonal one-body density matrix, see Eq. (2.53),
which therefore constitutes a key object for this work. In Sec. 3.1, we discuss properties of
the OBDM for nuclei and infinite nuclear matter that go beyond the ones mentioned already
in Sec. 2.2. The idea of the before-mentioned translation is to approximate the OBDM in
terms of different local densities by applying a DME. The essential idea of DMEs is that the
nonlocality that is present in the off-diagonal OBDM becomes manageable by factorizing it
into universal functions. The only dependence on the system of interest is then encoded in a
momentum scale that determines the fall-off of these functions and in the local densities that
multiply these functions. Details on the procedure are given in Sec. 3.2.

The Hartree energy depends on local densities from the outset, see Eq. (2.52). One could
however attempt to further simplify it by transforming it to a local functional (in the sense
of the energy integrand depending only on one three-dimensional position variable instead of
more). This can for instance be achieved by using a simple Taylor expansion for the density.
In Ref. [170] it is demonstrated that this works well when considering the direct energy arising
from the Gogny D1S interaction, but to achieve an accuracy of at most a few MeV this requires
going at least to fourth order in the expansion. Also one may naturally expect this strategy to
perform worse when considering an interaction with a larger range such as one-pion exchange
arising in chiral EFT. Using a DME for the Hartree energy is also not considered useful as
the fall-off of the nonlocality in the Hartree and Fock contributions behaves differently both
with respect to the range and to the dependence on direction [169, 171] and can result in
large errors in self-consistent calculations that treat both direct and exchange terms via the
DME. In any case, the exact treatment of the Hartree contribution is in practice relatively
straightforward since the direct Coulomb contribution is already treated exactly in most EDF
implementations. Thus, we focus exclusively on Fock energies in this Chapter.

In Sec. 3.3 we discuss several DME variants and elaborate on different choices in the
expansion of OBDMs and their squares. The latter are of particular importance for exchange
energies arising from nucleon-nucleon forces. We investigate the performance of the DME
variants in reproducing exact NN exchange energies in Sec. 3.4. We focus on Yukawa exchange
energies as arising from one-pion exchange at leading order in chiral EFT as this constitutes the
chiral interaction with the longest range and is therefore expected to be the toughest test for
DMEs. A few other cases of interest, such as the Coulomb interaction including a comparison

1The qualifier quasi refers to the fact that the functional may not only depend on densities that depend
on single-particle orbitals [such as ρq(R)], but also on densities that depend on derivatives thereof.
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to results from molecular physics, are also considered. For exchange energies from 3N forces
additional complications arise and more choices than in the NN sector have to be made. This
is discussed in Sec. 3.5, where we consider 3N two-pion exchange at next-to-next-to-leading
order (N2LO) in the chiral expansion. After a short note on the vector part of the OBDM in
Sec. 3.6, we summarize our findings in Sec. 3.7. In there, we also present lessons learned for
the construction of EDFs based on realistic nuclear interactions using DMEs.

Note that all investigations in this Chapter isolate the role of the DME by performing
non-self-consistent tests only. The construction of EDFs using a DME is discussed in Ch. 4.

The contents of Secs. 3.2 to 3.4 and 3.7 have largely been published as Ref. [150]. They
build on the study conducted in Ref. [172], in which we investigated DMEs using HO orbitals.

3.1 Nuclear one-body density matrices

Decomposing the one-body density matrix

With the notation introduced in Eq. (2.27) the OBDM of nuclear systems is commonly split
into Hermitian scalar and vector parts [145], respectively denoted by ρ and s,

ρ(x1,x2) =
1

2
[ρ(x1,x2) + s(x1,x2) · σ] (3.1)

with

ρ(x1,x2) = Trσ[ρ(x1,x2)] , (3.2)

s(x1,x2) = Trσ[ρ(x1,x2)σ] , (3.3)

where the traces are in spin space only and σ is the vector containing the spin Pauli matrices.
The diagonal versions ρ(x) = ρ(x,x) and s(x) = s(x,x) are referred to as density and spin
density, respectively [83]. They differ with respect to their behavior under time reversal [117]
(here denoted by a superscript T ):

ρT (x) = ρ(x) , (3.4)

sT (x) = −s(x) . (3.5)

As a consequence, the spin density vanishes in time-reversal invariant systems (such as even-
even nuclei), which are the only ones considered in this work, and the off-diagonal part of s
also contributes very little to the total binding energy of such systems. This is demonstrated
in Tab. 3.1, which contains Hartree and Fock energies in 208Pb calculated with the finite-range
parts of the Gogny D1S interaction. The energies are given for the different scalar/vector-
isoscalar/isovector channels. The terms isoscalar and isovector refer to sums and differences
of neutron and proton quantities, e.g.,

ρ0(x) = ρn(x) + ρp(x) , (3.6)

ρ1(x) = ρn(x)− ρp(x) . (3.7)

In here, we split the OBDM into separate parts for neutrons and protons. This happens
in analogy to Eq. (2.27) but without block-off-diagonal parts in isospin space as we assume
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Table 3.1: Hartree and Fock energies in 208Pb calculated with the finite-range parts of the Gogny
D1S interaction in different channels. All energies are in MeV and are taken from Ref. [170].

ρ20 ρ21 s20 s21

Hartree −12294.8 373.3 0 0
Fock −595.0 −32.3 0.6 0.2

single-particle states do not mix neutrons and protons:

ρ(x1,x2) =

(
ρn(x1,x2) 0

0 ρp(x1,x2)

)
. (3.8)

For instance, for a product state

ρq(x) =

Aq∑
i=1

∑
σ

|ϕq,i(xσ)|2 , (3.9)

where the particle species is identified by q and Aq denotes the particle number for that species.

The isoscalar density corresponds to the total (mass) density of the system, while the
isovector density describes the neutron excess, i.e. the neutron skin of the nucleus. Thus,
the scalar-isoscalar contributions are by far the largest ones in finite nuclei, see Tab. 3.1.
Note that the vector part of the OBDM is even small in odd nuclei because it essentially
only gets contributions from the last (unpaired) nucleons. It completely vanishes (including
the off-diagonal contributions) in the approximation that the single-particle wavefunctions of
spin-orbit partners are identical in spin-saturated nuclei [135], i.e. those which correspond to
closed main (HO) shells.

For later reference we show here how the OBDM of a nucleus containing two particle
species is split similarly to Eq. (3.1),

ρ(x1,x2) =
1

4
[ρ0(x1,x2) + ρ1(x1,x2)τz + s0(x1,x2) · σ + s1(x1,x2) · στz] , (3.10)

where we assumed that the single-particle states do not mix neutrons and protons and τz
is the third isospin Pauli matrix. The scalar-isoscalar, scalar-isovector, vector-isoscalar, and
vector-isovector parts are obtained via traces in spin and isospin space as

ρ0(x1,x2) = Trστ [ρ(x1,x2)] , (3.11)

ρ1(x1,x2) = Trστ [ρ(x1,x2)τz] , (3.12)

s0(x1,x2) = Trστ [ρ(x1,x2)σ] , (3.13)

s1(x1,x2) = Trστ [ρ(x1,x2)στz] . (3.14)

Note that when assuming that protons and neutrons do not mix, scalar parts of the OBDM of
time-reversal invariant systems are purely real and vector parts purely imaginary [173]. Then
the Hermiticity of the OBDM reduces to

ρt(x1,x2) = ρt(x2,x1) , (3.15)

st(x1,x2) = −st(x2,x1) . (3.16)
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Infinite nuclear matter

We end this Section by discussing unpolarized homogeneous infinite nuclear matter, for which
the form of the OBDM can be calculated analytically. For this system, we can choose plane-
wave states as single-particle states. In finite volume V the spatial part of their normalized
wavefunctions is given by

ϕq,i(x1) =
1√
V

exp(ikq,i · x1) , (3.17)

where allowed momenta kq,i ≤ kqF occur for two states each (spin up and down). In the limit
of infinite volume the scalar part of the OBDM (the vector part vanishes by construction) is
then obtained from transforming the sum over occupied states into the corresponding integral,

ρq(x1,x2) = lim
V→∞

∑
i∈occ

ϕq,i(x1)ϕ
∗
q,i(x2) = 2

∫
dk

(2π)3
Θ(kqF − k) exp(ik · (x1 − x2)) . (3.18)

By setting x1 = x2 we obtain the INM relation of Fermi momentum kqF and density:

kqF =
(
3π2ρq

)1/3
. (3.19)

Using this after evaluating Eq. (3.18) gives

ρq(x1,x2) =
3j1(k

q
Fr)

kqFr
ρq , (3.20)

where ji(x) denotes the ith spherical Bessel function of the first kind. This expression is going
to be a starting point for the construction of DMEs which we introduce in the next Section.

3.2 General introduction to density-matrix expan-
sions

In HF theory (see Sec. 2.3) the full off-diagonal OBDM enters in the exchange contribution
to the energy of the system. While exchange energies due to NN interactions can be treated
exactly, that is, up to overall model space truncations, the exact treatment of 3N interactions
in heavy systems poses a computational challenge. Hartree-Fock calculations with chiral
Hamiltonians, which are used as a first step in ab initio approaches, handle 3N interactions
in heavy nuclei by introducing an additional truncation. They take only matrix elements for
certain combinations of single-particle orbitals into account [67]. For EDF calculations this
is typically not done; instead we incorporate here 3N interactions by using density-matrix
expansions.

The original DME, which we will refer to as NV-DME below, was introduced by Negele
and Vautherin in their seminal papers, Refs. [168, 169], as a more sophisticated alternative
for approximating one-body density matrices than the simple Slater approximation [174]. It
allows one to approximate the nonlocal OBDM in terms of quasi-local densities by factorizing
the nonlocality into universal functions. Applying it to the expression for the exchange energy
facilitates its calculation, as we will see in Sec. 4.1.4 and clarifies how phenomenological
zero-range Skyrme interactions are connected to the underlying nuclear forces. While several
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other DME variants have been subsequently developed (see Sec. 3.3.1), a consistent extension
beyond HF in MBPT is not yet available [144].

In the following we show schematically how DMEs arise as more involved approximations
to the OBDM of a particle species q than truncated Taylor expansions. Here and in most of
the remaining parts of this Chapter we restrict ourselves to the scalar part of the OBDM since
it contributes far more to the total energy of a nucleus than the vector part, see Sec. 3.1. We
switch from single-particle coordinates x1 and x2 to relative and center-of-mass coordinates
defined by Eq. (2.51) and write ρq(R; r) as a shorthand for

ρq(R+ r/2,R− r/2) = ρq(x1,x2) . (3.21)

Note that in this notation the local density is

ρq(R) = ρq(R; 0) . (3.22)

With this notation a naive approximation for the scalar part of the OBDM, which factorizes
its nonlocality, is given by a Taylor expansion about R truncated at order nmax,

ρq(R; r) ≈
nmax∑
n=0

1

n!

(r
2
·∇12

)n
ρq(R1,R2)

∣∣∣∣∣
R1=R2=R

, (3.23)

where ∇12 = (∇1−∇2) and ∇1 (∇2) acts on R1 (R2). However, this approximation performs
poorly at large values of r, for which the OBDM is expected to vanish. This condition can
be enforced by multiplying each term of the Taylor expansion by a function πnmax

n (kr) that
vanishes faster than 1/rn for large r (using notation similar to that in Refs. [155, 175]):

ρq(R; r) ≈
nmax∑
n=0

πnmax
n (kr)

n!

(r
2
·∇12

)n
ρq(R1,R2)

∣∣∣∣∣
R1=R2=R

. (3.24)

Here we have introduced the momentum scale k, which determines the fall-off in the off-
diagonal direction of the OBDM. If we further impose

πnmax
n (x) = 1 +O

(
xnmax−n+2

)
, (3.25)

the first nmax terms of the quasi-local approximation Eq. (3.24) match the first nmax terms of
the Taylor series of ρq(R; r). Specifically, the m-th term in the Taylor expansion of Eq. (3.24)
is proportional to

(r ·∇12)
mρq(R1,R2) for m ≤ nmax ,

(rk)m−n(r ·∇12)
nρq(R1,R2) for m > nmax .

The most well-known example of such approximations is the Slater approximation [174],
which is often used in calculations of the Coulomb exchange energy [83]. It consists in using
the INM expression for the OBDM, Eq. (3.20), also at every point in a finite nucleus. The
momentum scale entering Eq. (3.20) is replaced by the local density approximation for the
Fermi momentum (cf. Eq. (3.19)),

kqF(R) =
[
3π2ρq(R)

]1/3
. (3.26)
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In the following we use
kF = kqF(R) (3.27)

as a short-hand notation. In the language of Eq. (3.24) the Slater approximation amounts to
including only the n = 0 term with

π0
0(x) =

3j1(x)

x
(3.28)

and k = kF, i.e.,

ρq(R; r) ≈ 3j1(kFr)

kFr
ρq(R) . (3.29)

By construction, the Slater approximation becomes exact in the limit of homogeneous infinite
nuclear matter.

Several other approximations to the density matrix are built around the Slater approx-
imation by adding correction terms that vanish in INM. This can be expressed nicely by
regrouping certain terms in Eq. (3.24) yielding (using notation similar to Refs. [135, 145])

ρq(R; r) ≈
nmax∑
n=0

Πn(kr)

n!
rα1 · · · rαnPα1...αn

n (R) . (3.30)

Here and in the following, a summation over repeated Greek indices denoting spatial compo-
nents is implied. The Π functions are normalized according to Πn(0) = 1, and the quasi-local
density combinations Pα1...αn

n (R) are chosen such that the Taylor expansions of the exact
ρq(R; r) and of Eq. (3.30) agree up to order nmax (as before). Then all terms of Eq. (3.30)
except for the zeroth vanish in nuclear matter if Π0(x) = 3j1(x)/x and k → kF in that limit.
Approximations with these properties are the ones we refer to as density-matrix expansions
around the INM limit.

Different DME variants differ in their choices of momentum scales k and in their Π functions.
As the Taylor series of Eq. (3.30) is supposed to match the exact ρq(R; r) only up to order
nmax, the higher-order terms in the Π functions can be chosen rather unrestrictedly. These
choices can lead to significantly varying convergence behaviors with respect to nmax [170]. As
the density combinations Pα1...αn

n (R) are determined from a constraint on the Taylor series,
they can in principle differ for different DME variants. This occurs for instance when nmax = 4

is considered. For studies of DMEs at fourth order see e.g. Refs. [170, 176].
In general DMEs perform well at smaller r values and degrade as r increases, but even

then, they are superior to straightforward truncations of the Taylor expansion of the density
matrix, Eq. (3.23). Additionally, one may expect that DMEs reproduce the exact OBDM
better in the interior of a typical nucleus (so for small R) than in the nuclear surface because
there the resemblance to INM is worse and the omitted higher-order terms are more relevant.

The notation of Eq. (3.30) has the advantage that the Π functions do not depend on the
truncation order nmax unlike the πnmax

n functions used in Eq. (3.24). However, the notation
is somewhat abstract. To make it a bit more explicit we give here as an example the general
expression for second-order DME (i.e., a DME with nmax = 2) used in this work:

ρq(R; r) ≈ Π0(kr)ρq(R) + iΠ1(kr)rα jq,α(R)

+
Π2(kr)

2
rαrβ

[
1

4
∇α∇βρq(R)− τq,αβ(R) +

1

5
δαβk

2ρq(R)

]
, (3.31)
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where the components of the current density and kinetic density tensor are given by

jq,α(R) = − i

2
∇12,αρq(R1,R2)

∣∣∣∣
R1=R2=R

, (3.32)

τq,αβ(R) = ∇1,α∇2,βρq(R1,R2)|R1=R2=R . (3.33)

The current density vanishes in INM because there ρq(R1,R2) = ρq(R2,R1) and thus the
∇12 derivative vanishes. Plugging Eq. (3.20) into Eq. (3.33) gives

τq,αβ(R) =
1

5
δαβk

2ρq(R) (3.34)

for INM and thus the expression in brackets in Eq. (3.31), i.e.,2

Pαβ
2 (R) =

[
1

4
∇α∇βρq(R)− τq,αβ(R) +

1

5
δαβk

2ρq(R)

]
(3.35)

vanishes as well, so that only the zeroth term of Eq. (3.31) remains as desired for the INM
limit.

Finally, we note that the scalar part of the OBDM typically only has a minor dependence
on the direction of the nonlocality r [135, 168]. Therefore, often DMEs are formulated using
an angular average with respect to r. This leads to the simpler expression

ρq(R; r) ≈
nmax∑
n=0

′ Πn(kr)

n!(n+ 1)
rnPn(R) , (3.36)

where the prime indicates that the sum only runs over even values of n (as the angular average
cancels all odd-n terms).

Continuing with our example from above we obtain for a DME of order nmax = 2:

ρq(R; r) ≈ Π0(kr)ρq(R) +
Π2(kr)

6
r2
[
1

4
∆ρq(R)− τq(R) +

3

5
k2ρq(R)

]
, (3.37)

with the kinetic density
τq(R) = τq,αα(R) . (3.38)

3.3 Second-order density-matrix expansions

3.3.1 Considered density-matrix expansion variants

In this Section we explore different DMEs with nmax ≤ 2, which have been developed in
the past. The quasi-local densities appearing in such approximations are those known from
standard second-order Skyrme EDFs. Higher-order DMEs could be useful in the context
of higher-order Skyrme-like EDFs [117] as they have the potential to be more accurate, see
Refs. [170, 176] for related studies. Note however that this depends strongly on the DME

2For all DME variants considered here Π0(x) = 1− x2/10 +O(x4) and thus they all come with the same
Pαβ

2 . If the quadratic term of the Taylor expansion of Π0(x) was different, Pαβ
2 would be different, too (so

that the approximation matches the Taylor series of the exact OBDM up to second order).
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Table 3.2: DME variants investigated in this work. For each DME the order nmax, the expansion
momentum scale k, and the Π functions for the scalar parts of the OBDM are given. For the definitions
of kF, kFC, and G(x, Y ) see Eqs. (3.26), (3.39), and (3.40), respectively. J4(x) is the fourth (cylindrical)
Bessel function of the first kind. An asterisk (∗) indicates that the marked Π function does not need to
be specified as the corresponding term vanishes. The sixth column (INM) shows whether the specified
DME reproduces the exact OBDM for nuclear matter. The seventh column (r → ∞) indicates if the
DME vanishes in the large-r limit. The last column (II) indicates if the DME-approximation to the
OBDM obeys integrated idempotency. The symbol ∼ denotes DMEs which violate the constraint by
less than 20 % in the investigated cases. See text for details.

DME nmax k Π0(x) Π2(x) INM r → ∞ II

Slater [174] 0 kF
3j1(x)

x
- ! ! !

PSA [135, 145] 2 kF
3j1(x)

x

3j1(x)

x
!

NV [168, 169] 2 kF
3j1(x)

x

105j3(x)

x3
! ! !

SVCK [177] 2 kF
3j1(x)

x

945j4(x)

x4
! ! !

DT [170] 2 kF
3j1(x)

x
exp
(
−x2

16

)
! !

CB [178, 179] 2 kFC
3j1(x)

x
∗ ! ! ∼

BZ [179] 2 kFC
96J4

(√
2x
)

x4
∗ ! ∼

Gaussian [179, 180] 2 kFC exp
(
−x2

10

)
∗ ! ∼

MG [181] 2 kFC G(x, 21.5) ∗ ! ∼

variant. The DMEs considered here are listed in a unifying notation with their respective
references in Tab. 3.2. Although a couple of them do not use Π0(x) = 3j1(x)/x, hence not
reproducing the correct INM limit, see Tab. 3.2, we still refer to all of them as DMEs for
simplicity.

We restrict ourselves to angular-averaged DMEs as given in Eqs. (3.36) and (3.37). Hence,
we only list Π0(x) and (where applicable) Π2(x) in Tab. 3.2. Lifting this restriction has the
potential for better accuracy, too [170]. The DMEs considered here all use as their momentum
scales either the standard local density approximation to the Fermi momentum as defined in
Eq. (3.26)3 or an alternative introduced in Ref. [178] which is given by

kFC = kqFC(R) =

{
5

3ρq(R)

[
τq(R)− 1

4
∆ρq(R)

]}1/2

. (3.39)

With the latter choice the second-order term in Eq. (3.37) vanishes identically and Π2(x) does
not need to be specified. Thus, using this momentum scale can be viewed as incorporating the
second-order contribution into the zeroth-order term. Additionally, it coincides with the regular

3See Ref. [182] for phenomenological adjustments of this momentum scale.
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Fermi momentum in nuclear matter, hence not changing the corresponding limit. However, in
principle, the term enclosed in square brackets in Eq. (3.39) can become negative and thus kFC
imaginary. This is clearly unphysical and can lead to diverging exchange energies.4 In practice
we find that kFC is almost always real, which has been also found in molecular systems [184,
185]. None of the systems considered in this work produces imaginary values for kFC, but for
future applications one should be aware of the possibility.

We now proceed to give a few remarks regarding some of the considered DME variants at
second order, for more details on the variants we refer the reader to the references listed in
Tab. 3.2:

1. We employ the phase-space-averaging (PSA) density-matrix expansion in the simplified
version described in Ref. [145] (also called INM-DME [135]). This is the variant that has
been used in Ref. [140] to enrich a Skyrme-like EDF with density-dependent coupling
functions originating from long-range parts of chiral NN+3N interactions and which we
use to the same purpose in Ch. 4.

The full PSA-DME takes the anisotropy of the local momentum distribution into account,
leading to a more complicated expansion momentum scale. The authors of Refs. [135,
145] note that the anisotropy is especially pronounced in the surface of the nucleus and
hence consider it only for the vector part of the OBDM which sharply peaks there.

The envelope of the PSA-DME Π2 function falls off like 1/r2 for large r, meaning that it
falls off just too slow to yield a density matrix that vanishes in the large-r limit. As we
will see later, this is not an issue for approximating exchange energies from finite-range
forces, but it can be one in other situations.

2. The NV-DME is the “original” DME as formulated by Negele and Vautherin [168, 169],
on which subsequent DME developments build. Other DME variants were developed by
altering k or the Π functions utilizing the freedom coming from only the first nmax terms
of the Taylor series of the OBDM being unambiguously determined for a DME of order
nmax. For NV-DME, the authors of Ref. [175] showed that replacing the Π functions
by exponentials having the same low-order dependence on the argument leads to almost
indistinguishable results when applied to exchange energies arising from the Gogny D1S
interaction [186].

3. In the DT approach we use the INM limit for the model density (ρ̄tv in Ref. [170]) and set
the parameter a to the same value as in Ref. [170], a = 4/kF. Note that the DT-DME,
unlike the other variants, has originally been formulated without the angular averaging
we use here. Then Π1(x) = exp(−x2/16) also contributes.

4. A whole class of DMEs based on the momentum scale kFC was developed by Bhaduri
and Zaifman in Ref. [179] (recovering also the CB- and Gaussian DMEs) by assuming
different relations between the density and the kinetic density of the nucleus under
consideration. Here, we refer to the particular version rated best by them as BZ-DME.

5. It has been argued that the Gaussian approximation is favored by information theory
as it is based on the least biased phase-space distribution function subject to yielding
the correct density and kinetic density distributions [187].

4Using the asymptotic behavior of Bessel functions for large arguments [183], one can show that Fock
energies arising from one-pion exchange diverge when k2

FC < −m2
π/4 for CB-DME and k2

FC < −m2
π/8 for

BZ-DME. For Gaussian and MG-DME all imaginary kFC values lead to diverging Fock energies.
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In addition to the version used here, the Gaussian approximation has been developed in
a form that uses the kinetic density tensor and the density’s Hessian matrix instead of
their scalar counterparts in Eq. (3.39) [188], effectively amounting to using a momentum
scale tensor kFC,αβ(R).

6. In the original construction [181], the modified Gaussian (MG) approximation uses

Π0(x) = G(x, Y ) =

(
1− x2

Y

)
e−(

1
10

− 1
Y )x

2
. (3.40)

The value of the parameter Y > 10 then depends on the considered system and is
obtained by enforcing that the approximated density matrix fulfills the integrated-
idempotency constraint (as described below). This leads to the equation

1

Aq

∫
dR

ρq(R)2

kqFC(R)
3 =

2

π3/2

(
1

5
− 2

Y

)3/2
[
1− 3

Y
5 − 2

+
15

4
(
Y
5 − 2

)2
]−1

, (3.41)

which gets solved numerically for Y .

We observe in our calculations that the resulting values of Y do not vary much throughout
the whole mass range of nuclei, thus we do not employ a specific value of Y for each
nucleus. Instead, we always consider a value of Y = 21.5, which we obtained as an
average over neutrons and protons in the nuclei considered in Sec. 4.3. The resulting
energies are almost indistinguishable.5

7. A modification of the Gaussian approximation similar in spirit to the MG approach has
been proposed in Ref. [189]. This approximation uses kFC and

Π0(x) =
√

1 + ax4 exp(−x2/10) (3.42)

with a getting determined via the integrated-idempotency constraint. We find that
the resulting values of a are very sensitive to system details. In particular, a becomes
negative for INM leading to imaginary Π0(x) for large x. In our calculations the impact of
this modification was minor, improving the results in the isovector sector but worsening
them in the isoscalar case. For these reasons we do not consider this approximation
here.

We now turn to a short investigation of the integrated idempotency constraint given in
Eq. (2.24). After splitting the OBDM into scalar and vector parts as in Eq. (3.1) and making
use of the tracelessness of Pauli matrices we obtain a condition equivalent to Eq. (2.24):

Aq =
1

2

∫
dx1dx2[ρq(x1,x2)ρq(x2,x1) + sq(x1,x2) · sq(x2,x1)] . (3.43)

As we consider here only the scalar part of the OBDM we check this constraint for the different
DMEs for the case of spin-saturated nuclei where sq(R; r) ≡ 0. Using Eq. (3.15) then reduces
Eq. (3.43) to

Aq =
1

2

∫
dx1dx2 ρq(x1,x2)

2 . (3.44)

5For INM, Eq. (3.41) has three solutions: Y ≈ −37.1, 22.8, 47.9.
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The square of the scalar part of the OBDM (hereafter referred to as density-matrix square)
is calculated according to the usual prescription [170, 185] that is neglecting terms of higher-
than-second order [in agreement with the truncation order of Eq. (3.37)]:

ρq(R; r)2 ≈ Π0(kr)
2ρq(R)2 +

Π0(kr)Π2(kr)

3
r2
[
1

4
∆ρq(R)− τq(R) +

3

5
k2ρq(R)

]
. (3.45)

We call this the truncated square of the density matrix. When calculating the square in this
way only the Slater approximation as well as the NV- and SVCK-DMEs fulfill the integrated-
idempotency constraint exactly. On the other hand, the PSA-DME violates this constraint
maximally: in this case the right-hand side of Eq. (3.44) is infinite. We should also point out
that the original version of the MG approximation obeys Eq. (3.44) by construction and our
modification only leads to a minor deviation. The Gaussian approximation also violates the
constraint only very mildly. For CB- and BZ-DME the relative deviation is smaller than 20 %
in our test cases. Since DMEs constitute approximations, one may consider slight deviations
from exact integrated idempotency as acceptable.

In Tab. 3.2 we summarize the integrated idempotency results, which for some of the
considered DME variants were already given in Refs. [135, 185, 190], and also list which
DMEs yield the correct INM and r → ∞ limits. Note that while most DMEs vanish for
r → ∞, the type of fall-off is incorrect: it should be exponential [182, 191] but none of
the Π functions fall off exponentially. We remark here that for systems where time-reversal
invariance is broken, one can impose an additional constraint coming from the fact that for
local interactions the HF energy is invariant under transforming the single-particle orbitals
with a position-dependent phase [192, 193]. The PSA-DME fulfills this local gauge invariance
constraint trivially [145]. For other DME variants one can use this constraint to fix the Π

functions for odd orders, see e.g. Ref. [175]. In the present work this is of no concern since we
only consider time-reversal-invariant systems.

We end this Section by noting that all of the considered DMEs can be re-expressed in an
orbital-free form by assuming some relation τ(ρ,∇ρ, . . . ) and in a completely local form by
assuming [τ − 1

4∆ρ](ρ), e.g., see Ref. [189]. This could be useful for applications to other types
of EDFs than Skyrme EDFs but requires further study.

3.3.2 Square of the density matrix

For time-reversal-invariant systems the current density jq,α(R) vanishes as a consequence
of Eq. (3.15) [194]. Thus, in these cases the conventional, truncated way of calculating the
density-matrix square, Eq. (3.45), which was obtained by averaging the density matrix with
respect to the orientation of r and then squaring it, has the feature of being identical to the
expression one obtains from first squaring the density matrix [as given by Eq. (3.31)] and then
performing the angular average, i.e.,

⟨ρq(R; r)⟩2Ωr
=
〈
ρq(R; r)2

〉
Ωr

. (3.46)

Here ⟨. . . ⟩Ωr indicates averaging over the direction of r. However, for certain DME variants
Eq. (3.45) also possesses the undesirable characteristic of yielding a negative-valued square
for some values of R and r.

Figure 3.1 contains an example of such behavior: We show the density-matrix square for
neutrons in 132Sn as a function of the nonlocality r for two values of R, 5 fm (just in the
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Figure 3.1: Normalized density-matrix square for two values of R in 132Sn for different DMEs. The
underlying orbitals are obtained from a self-consistent HF calculation with the SLy4 EDF.

surface of the nucleus, see Fig. 3.3) and 6.7 fm (quite far into the surface of the nucleus). The
underlying single-particle orbitals are generated from a self-consistent HF calculation using
the SLy4 EDF [195]. In addition to the exact square in solid black, Fig. 3.1 includes the Slater
approximation and the NV-DME as defined in Tab. 3.2. For R = 6.7 fm, where the second-
order correction is much larger (relative to the zeroth-order term), the NV-DME significantly
underestimates the value of the square and becomes negative for 2.8 fm ≲ r ≲ 5.9 fm.

Therefore, we additionally employ an alternative approach for squaring the density matrix.
It was briefly investigated in Ref. [178] and consists in considering the full square of the
angle-averaged density matrix, Eq. (3.37), (hence the approximation cannot get negative):

ρq(R; r)2 ≈
{
Π0(kr)ρq(R) +

Π2(kr)

6
r2
[
1

4
∆ρq(R)− τq(R) +

3

5
k2ρq(R)

]}2

. (3.47)

Whereas this equation is not in agreement with the truncation order of Eq. (3.37) and thus
contains some but not all of the fourth-order terms, it effectively shifts the region where the
DME approximation is poor to larger r values compared to the previously applied truncated
squaring prescription. This can be seen in the lower panel of Fig. 3.1, where this approach is
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labeled as NV2. Such behavior can turn out useful when approximating expressions where the
large-r behavior is damped, e.g., exchange energies from finite-range forces as considered in
Sec. 4.3. In the following we refer to the same treatment of the square for PSA-, SVCK-, and
DT-DMEs as PSA2-, SVCK2-, and DT2-DMEs, respectively. The other investigated DME
variants have no contribution from Π2, hence Eq. (3.45) and Eq. (3.47) yield identical results
in those cases.

We note that this treatment of the square makes the DMEs no longer fulfill the integrated
idempotency. In addition, the statement that squaring and angular averaging commute is no
longer true:

⟨ρq(R; r)⟩2Ωr
̸=
〈
ρq(R; r)2

〉
Ωr

. (3.48)

In the particular case of the PSA-DME the truncated squaring approach yields a density-
matrix square that vanishes for large r, but the PSA2-DME does not (see also the related
remark in Sec. 3.3.1). We also note that while still being constructed from the standard
quasi-local Skyrme densities, the full-square DME variants lead to EDFs with more than two
derivatives in some terms (as do all DMEs with the kFC momentum scale).

In the first panel of Fig. 3.2 we show the exact isoscalar density-matrix square for the
132Sn calculation considered above after averaging over all angles. The general shape is rather
well reproduced by all considered DMEs. Therefore, we do not show the DME approximations
themselves but instead their differences to the exact square. They are displayed in the other
panels of Fig. 3.2: the zeroth-order Slater approximation in the top-right panel, DMEs using
kF with the common truncated-square approach, Eq. (3.45), in the second row, and with full
squares, Eq. (3.47), in the third row, and DMEs with kFC in the last row. The same order
and grouping is used in other figures below.

The improvement when going beyond the zeroth-order Slater approximation is clearly
visible for all DMEs using kF and in particular for the CB-DME, which reproduces the
exact square extremely well. While the improvement is especially pronounced for small r as
can be expected from the Taylor series, NV-, SVCK-, and DT-DME (and their full-square
counterparts) approximate the exact square worse at large values of r and R. This does
not occur for the DMEs employing kFC, but instead they (with the exception of CB-DME)
overestimate the square at r ≈ 2.5 fm except for R in the surface of the nucleus. This effect
is particularly pronounced for the Gaussian approximation and is probably related to these
DMEs not yielding the correct INM limit since this is a suitable approximation in particular
in the nuclear interior where higher-order corrections are expected to be less relevant. Since
in the end we want to employ DMEs to approximate Fock energies, we also need to take the
interaction (and volume elements appearing in the integrals) into account. This changes the
picture somewhat and is discussed in detail in Sec. 3.4.

3.3.3 Expansion coordinates

Up until now we have expanded the density matrices in the relative coordinate r around the
center of mass R. However, other choices are possible. It is useful to choose the expansion
point to be located on the line connecting the two positions of interest, x1 and x2. Then, the
nonlocality can be fully expressed in terms of only one coordinate, r. This is not generally
possible when dealing with 3N forces, see Sec. 3.5, and constitutes one of the reasons why
applying a DME for such interactions is much more involved. For now we deal only with NN
forces and are thus able to express the nonlocality only in terms of r. We refer to the general
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Figure 3.2: First panel: exact angle-averaged isoscalar density-matrix square in 132Sn. Other panels:
differences of DME approximations of this square and the exact square itself. The underlying orbitals
are obtained from a self-consistent HF calculation with the SLy4 EDF.
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expansion point in between x1 and x2 as

va = ax1 + (1− a)x2 (3.49)

where a ∈ [0, 1] determines the exact expansion point. For a = 1/2 one recovers the center of
mass R used in the previous sections and for a = 0 the expansion is about the position of the
second particle. For this expansion point the analogous expression to Eq. (3.31) for a DME
of order nmax = 2 reads

ρq(va; r) = ρq(va + (1− a)r,va − ar)

≈ Π0(kr)ρq(va) + Π1(kr)rα

[(
1

2
− a

)
∇αρ(va) + ijq,α(va)

]
+

Π2(kr)

2
rαrβ

[(
1

2
− a+ a2

)
∇α∇βρq(va) + (1− 2a)i∇αjq,β(va)

− τq,αβ(va) +
1

5
δαβk

2ρq(va)

]
. (3.50)

Averaging over the direction of r yields

ρq(va; r) ≈ Π0(kr)ρq(va) +
Π2(kr)

6
r2
[(

1

2
− a+ a2

)
∆ρq(va) + (1− 2a)i∇ · jq(va)

− τq(va) +
3

5
k2ρq(va)

]
, (3.51)

which simplifies to Eq. (3.37) when a = 1/2.

For a ̸= 1/2, angular averaging and squaring do not commute even for time-reversal-
invariant systems. Both for the truncated and the full squaring prescription,

⟨ρq(va; r)⟩Ωr
⟨ρq(va; r)

∗⟩Ωr
̸=
〈
|ρq(va; r)|2

〉
Ωr

, (3.52)

as a term proportional to (∇ρq)
2 is missing on the left-hand side of Eq. (3.52).

Nevertheless, Eq. (3.51) and an accordingly adjusted momentum scale kqF(va) were used
in Ref. [185] in time-reversal-invariant molecular systems with the NV-DME, and a = 0 was
found to lead to a much improved reproduction of the exact Coulomb exchange energies
compared to the usual a = 1/2 choice. An optimization routine gave basically the same value
(a = 0.00638) as the best fit for their considered systems [185]. While we are able to reproduce
a similar behavior in our test systems when using the Coulomb interaction, we do not see this
improvement for one-pion exchange, see Sec. 3.4.1 for details.

Moreover, it is not clear how to extend the DME variants that use kFC to a = 0 because
for Π2 to not contribute one needs an adjusted momentum scale,

k̃qFC(x2) =

{
5

3ρq(x2)

[
τq(x2)−

1

2
∆ρq(x2)

]}1/2

(3.53)

(note the prefactor 1/2 instead of 1/4 in front of ∆ρq). This k̃qFC is often imaginary [185],
which is unphysical and can lead to diverging exchange energies. For these reasons we only
consider DMEs about R for NN forces (except for Sec. 3.4.1 as noted).
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3.4 Nucleon-nucleon force exchange energies

We now proceed to apply the different DME variants discussed in Secs. 3.3.1 and 3.3.2 to the
nonlocal densities in the exchange energy arising from a local NN interaction in coordinate
space. This energy is given in Eq. (2.53) and reads with the notation introduced in this
Chapter:

WF = −1

2
Trστ12

∫
dRdrρ(1)(R;−r)ρ(2)(R; r) ⟨r|V (σ1,σ2, τ1, τ2)|r⟩P στ

12 (3.54)

After breaking up the OBDMs as in Eq. (3.10) the exchange energy reads

WF = − 1

32
Trστ12

∫
dRdr

[
ρ0(R;−r) + ρ1(R;−r)τ (1)z + s0(R;−r) · σ(1)

+ s1(R;−r) · σ(1)τ (1)z

][
ρ0(R; r) + ρ1(R; r)τ (2)z + s0(R; r) · σ(2)

+ s1(R; r) · σ(2)τ (2)z

]
⟨r|V (σ1,σ2, τ1, τ2)|r⟩P στ

12 . (3.55)

Depending on the spin and isospin structure of the interaction, different bilinears of the OBDM
parts survive in Eq. (3.55) after carrying out the traces.

To test the different DMEs we insert these approximations into Eq. (3.55) and compare
the resulting energies to the exact exchange energy. Before we can do that we need to specify
both the system (which enters the OBDMs) and the interaction. Let us start with discussing
the former.

We start with comparing different DMEs with the same single-particle orbitals generated
from a self-consistent HF calculation employing the SLy4 parametrization of the Skyrme
EDF [195] without pairing. This enables a clean comparison, but we point out that the
orbitals used are not self-consistent with the EDF and DME. The HF equations are solved
using the code hfbrad [196], which works directly on a spherical coordinate-space grid. The
step size is set to 0.1 fm. Reducing the step size to 0.025 fm changes the obtained total
energies of the HF calculation at most in the per-mill regime. This precision is sufficient for
the present application. We made sure the code and the implementation of the outputted
orbitals into our DME routines work as intended by comparing against results obtained with
orbitals from hosphe [197] and hfodd [198]. The DME implementations themselves were
benchmarked against the second-order results of Ref. [170], the LO results of Ref. [149], and
the one-pion-exchange Fock expressions of Refs. [199, 200]. We consider in total 11 closed-shell
nuclei, ranging from light to heavy and from N = Z to very asymmetric: 16O, 24O, 40Ca, 48Ca,
54Ca, 56Ni, 60Ca, 80Zr, 100Sn, 132Sn, and 208Pb. All of these nuclei are closed-shell, hence their
ground states are treated as being time-reversal invariant and Π1 does not contribute even
without the angular-average approximation. For three example nuclei the isoscalar density
distributions are displayed as solid lines in Fig. 3.3. The other lines correspond to other orbital
sets which we use later to check how sensitive our findings are to orbital details.

Regarding the interaction for which we investigate the Fock energies we restrict ourselves
to NN forces for now because the inclusion of 3N forces involves dealing with two relative
coordinates in the OBDMs (instead of one), which means that even more approximations and
choices need to be considered. We consider them in Sec. 3.5.

DMEs are naturally formulated in coordinate space. Thus, using them together with
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Figure 3.3: Isoscalar density distributions of selected closed-shell nuclei. Solid lines correspond to
orbitals from a self-consistent HF calculation with the SLy4 EDF, dashed lines correspond to orbitals
from an isotropic HO with ℏω = 10 MeV, and dash-dotted lines correspond to orbitals obtained from
a self-consistent HF calculation with the 1.8/2.0 (EM) interaction [201].

momentum-space interactions requires explicitly evaluating a Fourier transform (e.g., see
Refs. [202, 203]) which hinders linking observations with the form of the Π functions. For
coordinate-space interactions a Fourier transform is not necessary and the analysis is more
straightforward. Therefore, we consider only interactions formulated in coordinate space.

3.4.1 Yukawa exchange energies

As DMEs are less accurate for large values of the relative distance r, a good description of
the exchange energy arising from long-range interactions is particularly challenging. In chiral
EFT, the interaction with the longest range is one-pion exchange, which appears already at
leading order in the expansion (see Sec. 1.2), meaning that it should be particularly relevant
according to the underlying power counting. Investigating one-pion exchange is also interesting
because the inclusion of this term in Ref. [140] did not improve the functional’s reproduction
of experimental binding energies (unlike for higher order, shorter-range terms). We want to
investigate here if the DME implementation might be responsible for this behavior before
revisiting the functional construction itself in Ch. 4.

The one-pion exchange piece with the longest range is described by a central Yukawa
interaction, which in coordinate space reads:

⟨r|V (σ1,σ2, τ1, τ2)|r⟩ = WLO
S (r)σ1 · σ2τ1 · τ2 , (3.56)

with the radial dependence

WLO
S (r) =

m3
π

12π

(
gA
2Fπ

)2 e−mπr

mπr
, (3.57)

where we use gA = 1.29, Fπ = 92.4 MeV, and mπ = 138.03 MeV for the axial-vector coupling
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constant, the pion decay constant, and the pion mass, respectively [204]. To regularize the
interaction it is multiplied with a local regulator function f(r),

WLO
S (r) → WLO

S (r)f(r) . (3.58)

While other coordinate-space regulator forms are available, e.g., see Ref. [25], we choose
here [204–206]

f(r) = 1− exp

(
− r4

R4
0

)
, (3.59)

where the spatial cutoff R0 specifies up to which value of r the short-distance part of the
potential is smoothly cut off. We first consider R0 = 1.2 fm. While regulators are not needed
at the HF level, they suppress large short-distance contributions [39, 207] that would otherwise
have to be absorbed into the Skyrme parameters. They can also be employed to smoothly
turn on the long-distance interactions.

The tensor part of one-pion exchange has a shorter range than the central piece and its
exchange energy involves only the vector part of the OBDM, so we do not consider it here.
Applying a DME to the short-range piece of one-pion exchange (whether described by a
smeared-out delta function or an actual one) works very well because of its short range. In a
scheme where a proper delta function is used all DME variants even yield the same (exact)
functional with density-independent couplings like in a Skyrme EDF.

Inserting Eq. (3.56) into Eq. (3.55) yields for the WLO
S exchange energy

WF = −1

8

∫
dRdr

[
9|ρ0(R; r)|2 − 3|ρ1(R; r)|2 − 3|s0(R; r)|2 + |s1(R; r)|2

]
WLO

S (r)f(r) .

(3.60)

We consider the first two terms (which depend on the scalar parts of the OBDM) and refer to
them as the scalar-isoscalar energy W0,

W0 = −9

8

∫
dRdr |ρ0(R; r)|2WLO

S (r)f(r) , (3.61)

and scalar-isovector energy W1,

W1 =
3

8

∫
dRdr |ρ1(R; r)|2WLO

S (r)f(r) . (3.62)

The question we want to investigate now is how well do the different DME variants of Secs. 3.3.1
and 3.3.2 approximate these energies.

Scalar-isoscalar energy

We begin by considering the scalar-isoscalar Yukawa exchange-energy integrand W0, defined
as

W0(R, r) =
9

8

∫
dΩR dΩrR

2r2|ρ0(R; r)|2WLO
S (r)f(r) , (3.63)

and pick 132Sn as our first test case. The 132Sn isoscalar (matter) density distribution is
shown as the solid yellow line in Fig. 3.3. The exact integrand W0, displayed in the first
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panel of Fig. 3.4, has the largest contributions at about r ≈ 1.5 fm over the whole R range,
which mostly reflects the nature of the regularized interaction, and peaks at R ≈ 4.7 fm,
which is close to the peak of R2ρ0(R)2 at R ≈ 4.6 fm, the expected peak position for an
exactly separable OBDM. These features are rather well reproduced by the integrands that
are obtained when replacing |ρ0(R; r)|2 in Eq. (3.63) by its different DME approximations.
Therefore, we do not show the DME integrands themselves but instead their differences to
the exact integrand. They are depicted in the other panels of Fig. 3.4.

Several trends are clearly visible from the integrand differences in Fig. 3.4: The second-
order DMEs (besides the Gaussian approximation) locally reproduce the exact integrand
significantly better than the zeroth-order Slater approach, highlighting the improvement due
to the inclusion of higher-order terms. In particular, the region where relevant deviations
first occur gets shifted from r ≈ 1 fm in the Slater case to r ≈ 1.5 fm for the other DMEs.
In all cases the largest differences arise close to or in the surface of the nucleus. This can
probably be attributed to the larger relevance of missing higher-order terms compared to the
situation in the interior of the nucleus. Comparing the second and third rows of panels in
Fig. 3.4 reveals that the additional term in the full-square DMEs is particularly relevant in
the surface where it flips the sign of the differences for r ≳ 4 fm. Interestingly, this is not
always an improvement locally but the global scalar-isoscalar energy W0 is always closer to
the exact result for the full square than for the truncated-squares approach due to (possibly
fortuitous) cancellations in the former case. We provide the ratio of the DME-approximated
W0 and the exact counterpart in the top-right corner of each panel.

Regarding these global energies, all considered DME variants approximate the exact values
remarkably well with SVCK2- and MG-DMEs performing best: both yield values that deviate
less than 1% from the exact result. Somewhat surprisingly, the Slater approximation follows
next despite the inferior quality in local reproduction of the integrand. Again, this can be
attributed to cancellations of regions of overestimation and underestimation. We also note
that while the Gaussian approximation overestimates the integrand throughout the nuclear
interior, yielding the worst energy reproduction, it provides an extremely good description of
the integrand in the surface.

In other nuclei, the results are very similar. This can be seen from the left panel in
Fig. 3.5 where we show for each DME variant the average ratio of approximated (WDME

0 ) and
exact (W exact

0 ) scalar-isoscalar energies over the 11 test nuclei and a bar that ranges from the
smallest to the largest ratio observed. Underneath each bar the values of three individual
nuclei (corresponding to the density distributions shown in Fig. 3.3) are highlighted, showing
that smaller ratios (typically corresponding to worse energy reproductions) almost always
occur for lighter nuclei.

As before, all ratios are notably close to unity and the full-square variants of the DMEs
reproduce the exact energies better than the corresponding truncated-square versions. Ad-
ditionally, the spread of the ratios is smaller for the full squares. Again, the reproduction
is particularly good for SVCK2- and MG-DME and on average it is worst for the Gaussian
approximation.

A detailed breakdown into the individual nuclei is given in Fig. 3.6 where the WDME
0 /W exact

0

ratios are shown for every considered nucleus separately. The general trend towards a better
reproduction of the exact scalar-isoscalar energy for heavier considered systems is clearly
visible. Exceptions are BZ- and Gaussian DMEs. This can be understood from the fact
that these DMEs perform poorer in the nuclear interior which grows in size and thus in
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Figure 3.4: First panel: exact scalar-isoscalar exchange-energy integrand obtained for a regularized
Yukawa interaction in 132Sn. Other panels: differences of DME approximations of this integrand and
the exact integrand itself. In every difference panel the value of the ratio of the DME-approximated
energy and the exact energy is shown in the top right corner. The underlying orbitals are obtained
from a self-consistent HF calculation with the SLy4 EDF. All DMEs are used with separate momentum
scales for neutrons and protons.
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Figure 3.5: Ratios of DME-approximated and exact exchange-energy contributions for a regularized
Yukawa interaction. For every DME variant the average over a set of nuclei is shown together with a
bar ranging from the smallest to the largest ratio observed. Below each bar, the results for selected
nuclei are given. The underlying orbitals are obtained from a self-consistent HF calculation with the
SLy4 EDF. The left panel shows the results for the scalar-isoscalar contributions, where 11 closed-shell
nuclei are considered (see text); the right panel shows the results for the scalar-isovector contributions
(from 6 closed-shell nuclei). In both panels the DMEs are used with separate momentum scales for
neutrons and protons.

Figure 3.6: Ratios of DME-approximated and exact scalar-isoscalar exchange-energy contributions
for a regularized Yukawa interaction. Results are given for 11 closed-shell nuclei where the underlying
orbitals are obtained from a self-consistent HF calculation with the SLy4 EDF. DMEs are used with
separate momentum scales for neutrons and protons.
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significance when going to heavier nuclei. Since the other DMEs have their weaknesses mostly
in the surface, they work better for larger mass numbers. Note that some DME variants (like
SVCK2) do remarkably well even for the lightest systems considered.

We find almost identical, though slightly worse, results when approximating the NV-
DME Π functions with exponentials as proposed in Ref. [175]. This approximation could be
useful for implementations in numerical EDF codes. For the MG-DME the results are almost
indistinguishable when using the average value of the parameter Y = 21.5 as done here and
when using specific values for each nucleus based on the integrated-idempotency constraint as
described in Sec. 3.3.1.

In summary, using DMEs to approximate the scalar-isoscalar energies W0 works remarkably
well for the considered closed-shell systems and the investigated Yukawa interaction. The
dependence on orbitals and interaction is investigated below. Refined improvement from
few-percent accuracy for some DME variants to the 1% level can be realized by switching to
full-square DMEs or other variants, in particular to SVCK2- and MG-DME.

Scalar-isovector energy

The right panel of Fig. 3.5 contains the ratios for the scalar-isovector energies W1 as given by
Eq. (3.62). Here only the 6 asymmetric nuclei (with N ≠ Z) in our set are considered since
the isovector energies are completely negligible for the symmetric nuclei. For most DMEs the
ratios WDME

1 /W exact
1 are further away from the ideal value of unity than in the isoscalar case.

This can be understood when comparing the shape of the isoscalar part of the OBDM, which
is a bulk quantity, to that of the isovector part, which is basically a neutron-excess density
matrix. Thus, the region contributing the most to the isovector integral is located much closer
to the nuclear surface where omitted higher-order corrections are expected to be more relevant.
This is also clearly visible for 132Sn when comparing the scalar-isoscalar integrand W0 in the
first panel of Fig. 3.4 with the scalar-isovector integrand W1, which is defined as

W1(R, r) =
3

8

∫
dΩR dΩrR

2r2|ρ1(R; r)|2WLO
S (r)f(r) , (3.64)

and is depicted in the first panel of Fig. 3.7. In addition, the energy contributions stem on
average from a larger r value in the isovector case for all considered nuclei, which again makes
an accurate description harder when using DMEs.

Nevertheless, the general trends are very similar for the isovector and the isoscalar energies.
Notable exceptions are the BZ- and the Gaussian DME because their overestimations in the
nuclear interior (also reflected in them not yielding the correct INM limit) matter less for the
isovector part. This is also reflected in the detailed breakdown into the individual nuclei given
in Fig. 3.8.

Overall, our results show that DMEs do not perform as well for scalar-isovector energies
as for scalar-isoscalar energies, with typical accuracies being around 10%. For the considered
asymmetric nuclei the magnitude of the scalar-isovector energies is on average only 1.3% of
the scalar-isoscalar contributions. Therefore, the worse accuracy in the isovector case has no
relevant effect on the total energy reproduction, though it might be important when looking
at non-bulk quantities.
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Figure 3.7: First panel: exact scalar-isovector exchange-energy integrand obtained for a regularized
Yukawa interaction in 132Sn. Other panels: differences of DME approximations of this integrand and
the exact integrand itself. Approximations obtained with isoscalar momentum scales for both neutron
and proton density matrices are labeled with “–k0F” next to the abbreviated DME name. In every
difference panel the value of the ratio of the DME-approximated energy and the exact energy is shown
in the top right corner. The underlying orbitals are obtained from a self-consistent HF calculation
with the SLy4 EDF.

Figure 3.8: Ratios of DME-approximated and exact scalar-isovector exchange-energy contributions
for a regularized Yukawa interaction. Results are given for 6 asymmetric closed-shell nuclei where the
underlying orbitals are obtained from a self-consistent HF calculation with the SLy4 EDF. DMEs are
used with separate momentum scales for neutrons and protons.

Isoscalar expansion momentum scale

So far, the results have been obtained by expanding neutron and proton density matrices
separately as described in Sec. 3.2 and subsequently forming the isoscalar and isovector parts
by the appropriate sums, Eqs. (3.6) and (3.7). However, this procedure yields EDFs where
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the terms that are normally isospin invariant (such as those proportional to ρ20) also contain
isospin-dependent parts, though their isospin symmetry is still conserved [135]. Hence one
might want to utilize another possibility that is to expand both the isoscalar and isovector
parts as a whole. Then Eq. (3.37) becomes

ρt(R; r) ≈ Π0(kr)ρt(R) +
Π2(kr)

6
r2
[
1

4
∆ρt(R)− τt(R) +

3

5
k2ρt(R)

]
, (3.65)

where t = 0, 1. Using different momentum scales for the isoscalar and isovector expansions
leads to additional complications. Therefore, we follow Ref. [175] and simply use the isoscalar
variants of Eqs. (3.26) and (3.39),

k0F(R) =

[
3π2

2
ρ0(R)

]1/3
, (3.66)

k0FC(R) =

{
5

3ρ0(R)

[
τ0(R)− 1

4
∆ρ0(R)

]}1/2

, (3.67)

for all OBDM parts. Then, this prescription is equivalent to using Eq. (3.37) but with the same
momentum scale for both neutrons and protons. Because knF(C)(R) ≈ k0F(C)(R) ≈ kpF(C)(R)

one may expect the results to not be significantly different for either of the momentum scales.
But in the particular case of pure isovector quantities using k0F(R) or k0FC(R) could be much
worse as this effectively results in approximating the difference of neutron and proton density
matrices with a momentum scale that assumes their similarity. This can also be viewed as
employing a single-species procedure to approximate the neutron-skin density matrix, which
almost never behaves like a single-species density matrix.

This is confirmed by the panels in the second row of Fig. 3.7, which display the differences
between DME-approximated and exact scalar-isovector integrands W1. We show them for
the NV- and NV2-DMEs, both for separate neutron/proton momentum scales and for the
isovector momentum scale k0F. The expected much larger (local) deviations in the latter case
are clearly visible. This is similar for the other DMEs that are not displayed and translates
also to the energy ratios WDME

1 /W exact
1 .

In the right panel of Fig. 3.9 we show these ratios, but unlike in Fig. 3.5 here the values are
obtained by using the isoscalar variants of the momentum scales. The results are much worse
for the isoscalar momentum scale: the average ratios range from 0.37 to 1.53 and are in all
cases further away from unity than with separate momentum scales. On the other hand, the
scalar-isoscalar energies are almost identical for isoscalar (Fig. 3.9) and separate momentum
scales for the two species (Fig. 3.5). As explained, both observations are expected.

Whether one deems using DMEs with isoscalar momentum scales acceptable or not in
light of these findings depends very much on the case at hand. The poor accuracy of the
very small scalar-isovector energies effectively does not matter when one is only interested in
a good description of the total energies,6 but again this might not be true for isovector and
differential quantities, such as differences along isotope chains.

6For some DMEs the total energy reproduction is even slightly better with the isoscalar momentum scale
due to cancellations of errors between scalar-isoscalar and scalar-isovector energies.
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Figure 3.9: Same as Fig. 3.5 without the ratios for individual nuclei. Unlike in Fig. 3.5, here both
panels show expansions with isoscalar momentum scales. Note the different axis scale of this figure
when comparing to other figures.

Dependence on orbitals

Here we want to answer the question whether the results reported above depend sensitively
on details of the orbitals. The orbitals used so far were obtained from self-consistent HF
calculations with the SLy4 EDF. We now switch to orbitals from a simple isotropic harmonic
oscillator with frequency ℏω = 10 MeV. As can be seen in Fig. 3.3 they are quite well suited
to provide a less realistic counterpart to the SLy4 orbitals. We consider the same 11 (6) nuclei
as before for the scalar-isoscalar (scalar-isovector) energies.

Changing back to expansions with separate momentum scales for neutrons and protons
we show the ratios WDME

0 /W exact
0 and WDME

1 /W exact
1 in Fig. 3.10. For both scalar-isoscalar

and scalar-isovector energies the results are very similar to the SLy4 results given in Fig. 3.5.
The main difference is that the spread between the smallest and the largest ratios is typically
slightly smaller in the case of HO orbitals but the ranking of the DME variants according to
the accuracy of their Yukawa exchange energy reproduction is very similar.

As an additional check we use orbitals obtained from spherical HF calculations based on a
chiral low-momentum two- plus three-nucleon interaction [201], 1.8/2.0 (EM), which has been
used widely in ab initio calculations of medium-mass nuclei. The HF orbitals are expanded
in an HO basis with ℏω = 16 MeV and emax ≤ 12, and the three-body configurations are
included up to E3max ≤ 16. Again, we consider the same nuclei as before. For selected nuclei,
the corresponding isoscalar density distributions are shown in Fig. 3.3. Figure 3.11 shows
that the DME performance is very similar for these orbitals, with slightly larger spread and
slightly worse energy reproduction.

Overall these investigations strongly indicate that previous findings regarding the accuracy
of reproducing Yukawa exchange energies are generally true, i.e., do not sensitively depend on
orbitals.
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Figure 3.10: Same as Fig. 3.5 without the ratios for individual nuclei. The nuclei are given in terms
of orbitals from an isotropic HO with ℏω = 10 MeV.

Figure 3.11: Same as Fig. 3.5 without the ratios for individual nuclei. The nuclei are given in terms
of orbitals from a self-consistent HF calculation with the 1.8/2.0 (EM) interaction.

Dependence on interaction

Exchange energies from interactions with shorter ranges are expected to be better reproduced
by DMEs. Our tests confirm such behavior. In particular, DMEs are exact in the limit of
vanishing interaction range. But what about the opposite limit? Consider

WLO
S (m, r) =

m3
π

12π

(
gA
2Fπ

)2 e−mr

mπr
, (3.68)

where the parameter m is the reciprocal of the interaction range. One-pion exchange is
obtained for m = mπ and the infinite-range limit (i.e., the Coulomb interaction) for m = 0.
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Figure 3.12: Ratio of DME-approximated and exact scalar-isosclar exchange-energy contribution for
a regularized Yukawa interaction. The parameter m corresponds to the reciprocal of the interaction
range. The values are averages over 11 closed-shell nuclei obtained from a self-consistent HF calculation
with the SLy4 EDF. Density-matrix expansions are used with separate momentum scales for neutrons
and protons and the expansions are about the two-particle center of mass R except for the cases
marked with “–x2” where instead they are about the position of one particle. Extra points on the left
show the result at m = 0 without regulators.

In Fig. 3.12 we plot the scalar-isoscalar energy ratios WDME
0 /W exact

0 for this interaction as
a function of m, where again each point is averaged over the same 11 nuclei obtained from SLy4
EDF orbitals as before. The interaction is also regularized as before [see Eqs. (3.58) and (3.59)].
The energy ratios are shown for m = 0, 10, 25, 50, 85, 138.03, 200, and 300 MeV. In addition,
for each DME a single additional point, which corresponds to the value at m = 0 without
regulators, i.e., to the Coulomb interaction, is drawn on the very left. Figure 3.12 contains
the results for Slater-, NV-, NV2-, and CB-DMEs. The behavior for the other second-order
DMEs with kF (kFC) is similar to the NV/NV2 (CB) trends.

For large interaction ranges the DME exchange-energy integrals, Eqs. (3.61) and (3.62),
have to be carried out up to very high r values to obtain converged results. This is especially
important for full-square DMEs because their oscillations with significant amplitudes occur
for particularly large r in regions of small expansion momenta. For one-pion exchange (m =

138.03 MeV) these regions are damped, but when the interaction falls off much more slowly
they contribute non-negligibly. Thus, we calculate the integrals for m ≤ 25 MeV analytically
without the regulator by employing a strategy proposed in Ref. [208] and add to that the
correction from the regulator, which can easily be calculated numerically due to its short range.
Details on this procedure and the relevant analytical expressions are given below in Sec. 3.4.2.

As expected, the NV-DME results significantly deteriorate with increasing interaction
range (i.e., decreasing m) and even more so do the NV2-DME results. This is in agreement
with results from Ref. [178]. The worse accuracy for the full-square variant is due to the
unwanted large-r bump of the expansion (see Fig. 3.1 for an example) getting probed more
for larger interaction ranges.

We consider here also DMEs around x2 as discussed in Sec. 3.3.3, which have been
reported to yield good results with the Coulomb interaction in molecular systems [185]. These
are labelled with an additional “–x2” in Fig. 3.12. While they perform worse for small
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Figure 3.13: Investigated local regulators. The regulator given in Eq. (3.59) in shown for different
values of the cutoff R0 and the EKM regulator, Eq. (3.69), is shown for R0 = 1.0 fm.

ranges, the NV-DME about x2 produces much better results for large interaction ranges than
its conventional counterpart. This is despite the angle averaging being performed before
squaring the density matrix. The opposite order of these two operations yields a different
expression for expansions about x2 and should also be investigated in the future. The improved
energy reproduction also holds when neglecting the regulator and agrees qualitatively with the
molecular-physics result of Ref. [185] despite the different considered systems. This confirms
the the low sensitivity on the considered orbitals observed above.

As elaborated on in Sec. 3.3.3, generalizing DMEs that use kFC to expansions about x2

leads to complications and hence we give the CB-DME results only about R. We observe that
the CB-DME accuracy is significantly less range dependent than the second-order kF-DMEs.
The performance of the Slater approximation (which is the same for expansions about R and
x2) is even less range dependent.

We also note that for PSA- and PSA2-DME the energies are infinite in the Coulomb limit,
independent of the expansion point, due to insufficient convergence of these DME variants,
see also the corresponding remark in Sec. 3.3.1. Depending on the asymptotic behavior of the
orbitals, the Coulomb exchange integrals can diverge for any full-square DME, see Ref. [178]
for an example.

The Yukawa interaction considered in the previous subsections contains another length
scale in addition to m: the regulator cutoff R0, see Eq. (3.59). To investigate the influence
of cutoff, we investigate the same local regulator as before, but now with different cutoffs
R0 = 1.0 fm, 1.4 fm, and 1.6 fm, and the EKM regulator [25]

f(r) =

[
1− exp

(
− r2

R2
0

)]6
(3.69)

with cutoff R0 = 1.0 fm. See Fig. 3.13 for a plot of the different regulators. Note that
R0 = 1.0 fm for the EKM regulator corresponds roughly to R0 ≈ 1.6 fm in Eq. (3.59).

In Figs. 3.14 to 3.17 we show results for the different cutoffs and regulators. The figures
show that larger cutoffs correspond to a worse overall reproduction of exact exchange energies
and a larger spread of the accuracies for different systems. These observations agree with
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Figure 3.14: Same as Fig. 3.5 without the ratios for individual nuclei. Values are shown here for a
regulator cutoff R0 = 1.0 fm.

Figure 3.15: Same as Fig. 3.14 but for a cutoff R0 = 1.4 fm.

expectations as the regulators cut off only short-distance parts of the interaction so that only
the long-distance parts, where DMEs do not work as well, contribute to the energy.

Summing up, for not-too-long-range NN forces such as one-pion exchange, DMEs around
the center of mass R yield the best results. This is not the case for the Coulomb interaction
where for instance in the case of the NV-DME expanding about x2 is superior.

3.4.2 Semi-analytical energy-density-functional expressions

In the previous Section we considered the scalar-isoscalar DME exchange-energy contribution
for regularized Yukawa interactions with very long ranges m−1. As explained a straightforward
numerical calculation of the exchange energy integrals is challenging for some DMEs due to
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Figure 3.16: Same as Fig. 3.14 but for a cutoff R0 = 1.6 fm.

Figure 3.17: Same as Fig. 3.14 but for the EKM regulator, given in Eq. (3.69), with cutoff R0 = 1.0 fm.

the oscillatory nature of the integrands. Instead we calculate the energy by splitting it into
two parts,

W0 = W∞
0 −W reg

0 , (3.70)

where
W∞

0 = −9

8

∫
dRdr |ρ0(R; r)|2WLO

S (m, r) (3.71)

is the exchange-energy contribution without regulators and

W reg
0 = −9

8

∫
dRdr |ρ0(R; r)|2WLO

S (m, r)[1− f(r)] (3.72)

contains the whole regulator dependence.
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The integrals in W reg
0 can easily be carried out numerically even for very large interaction

ranges as [1− f(r)] has a very short range. To tackle W∞
0 , which is for small m (especially

for full-square DMEs) much harder to calculate numerically, we split it further according to

W∞
0 = −9

8

m2
π

12π

(
gA
2Fπ

)2 ∫
dR

∑
a,b=n,p

{
I00(m, ka, kb)ρa(R)ρb(R)

+ I02(m, ka, kb)ρa(R)

[
1

4
∆ρb(R)− τb(R) +

3

5
k2bρb(R)

]
(3.73)

+ I22(m, ka, kb)

[
1

4
∆ρa(R)− τa(R) +

3

5
k2aρa(R)

][
1

4
∆ρb(R)− τb(R) +

3

5
k2bρb(R)

]}
,

where ka, kb can be set either to the individual momentum scales for neutrons and protons
or to the isoscalar momentum scale for both species and the Iij functions depend on the
considered DME variant. Zeroth-order DMEs have contributions only from I00, second-order
DMEs have additional contributions from I02, and I22 contributes only for full-square variants.

The Iij functions are calculated analytically by evaluating the integrals

I00(m, ka, kb) = 4π

∫
dr r2Π0(kar)Π0(kbr)

e−mr

r
, (3.74)

I02(m, ka, kb) =
4π

3

∫
dr r4Π0(kar)Π2(kbr)

e−mr

r
, (3.75)

I22(m, ka, kb) =
4π

36

∫
dr r6Π2(kar)Π2(kbr)

e−mr

r
. (3.76)

To this end we apply the method outlined in Ref. [208] and obtain after some analytical sim-
plifications the following expressions. They are checked against their numerical counterparts
for different values of m, ka, and kb. For the Slater approximation [or any other DME that
uses Π0(x) = 3j1(x)/x] the I00 function reads

I00(m, ka, kb) =
3π

4k3ak
3
b

{
2kakb

[
3
(
k2a + k2b

)
−m2

]
+
[
−3
(
k2a − k2b

)2
+ 6m2

(
k2a + k2b

)
+m4

]
artanh

(
2kakb

k2a + k2b +m2

)
+ 8m

[(
k3a − k3b

)
arctan

(
ka − kb

m

)
−
(
k3a + k3b

)
arctan

(
ka + kb

m

)]}
. (3.77)

The other Iij functions for NV(2)-DME read

I02(m, ka, kb) = − 35π

48k3ak
7
b

{
4kakb

[
−22k2ak

2
b + 15k4a + 3k4b + 6m2

(
−13k2a + k2b

)
+ 3m4

]
− 6
[(
k2a − k2b

)2(
5k2a + k2b

)
+ 3m2

(
−15k4a + 6k2ak

2
b + k4b

)
+ 3m4

(
5k2a + k2b

)
+m6

]
artanh

(
2kakb

k2a + k2b +m2

)
+ 48mk3a

[
3
(
k2a − k2b

)
− 5m2

][
arctan

(
ka − kb

m

)
− arctan

(
ka + kb

m

)]}
,

(3.78)
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Figure 3.18: Same as Fig. 3.5 without the ratios for individual nuclei. Energies are shown for the
finite-range parts of the Gogny D1S interaction.

and

I22(m, ka, kb) =
175π

1536k7ak
7
b

(
4kakb

{
7
(
k2a + k2b

)[
−22k2ak

2
b + 15

(
k4a + k4b

)]
−m2

[
134k2ak

2
b + 141

(
k4a + k4b

)]
− 69m4

(
k2a + k2b

)
− 15m6

}
+ 6
{
−7
(
k2a − k2b

)2[
6k2ak

2
b + 5

(
k4a + k4b

)]
+ 28m2

[
5
(
k6a + k6b

)
+ 3
(
k4ak

2
b + k2ak

4
b

)]
+ 14m4

[
6k2ak

2
b + 5

(
k4a + k4b

)]
+ 28m6

(
k2a + k2b

)
+ 5m8

}
artanh

(
2kakb

k2a + k2b +m2

)
+ 768m

[(
k7a − k7b

)
arctan

(
ka − kb

m

)
−
(
k7a + k7b

)
arctan

(
ka + kb

m

)])
.

(3.79)

Note that for the case of a single isoscalar momentum scale, i.e., the special case ka = kb,
a Mathematica package to obtain these expressions was published in Ref. [209]. For ka = kb,
our equations agree with the ones outputted by that package.

3.4.3 Gogny exchange energies

As an additional test, we explore the DME performances for the finite-range parts of the
Gogny D1S interaction [186], a successful phenomenological pseudopotential that was also
considered in DME studies of Refs. [170, 175]. The finite-range parts are given by a sum of
two Gaussians which contribute with different signs to the exchange energy. The results are
shown in Fig. 3.18 for expansions with individual momentum scales for neutrons and protons
and in Fig. 3.19 for expansions using isoscalar momentum scales for both species.

As for the Yukawa interaction the scalar-isovector energy reproduction is much worse
when using the isoscalar momentum scale (except for the PSA2-DME). One difference to
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Figure 3.19: Same as Fig. 3.18 but for expansions with isoscalar momentum scales.

the Yukawa-interaction results lies in the improvement from using full squares rather than
truncated squares, which is smaller here. This is because the additional term in the full square
affects mainly the large-r behavior, which is not much probed by the Gaussians. In addition,
the ratios obtained for the Slater approximation depend significantly more on the nucleus in
the present case. This indicates that the cancellations of large local under- and overestimations
as present in this approximation (see, e.g., Fig. 3.4) can be quite sensitive to system details.

We show the DME accuracies for the scalar-isosclar energy from every individual Gaussian
in the D1S interaction (using individual momentum scales) in Fig. 3.20. Unsurprisingly, the
energy reproduction is better for the Gaussian with the shorter range. Overall, the accuracies
given in Fig. 3.20 are better than the total accuracies shown in Fig. 3.18. This is due to
cancellations between the two terms. These cancellations change the ranking of the DMEs
according to their accuracy in minor details when comparing to the Yukawa results shown in
Fig. 3.5 but the overall conclusions of this work are still valid.

3.4.4 Combining density-matrix expansions

While in general the reproduction of exact (Yukawa) exchange energies is very good for all
considered DMEs, different DMEs perform particularly well in different parts of the nucleus,
see, e.g. Fig. 3.4 and related discussion. One can therefore try to combine different DMEs
to achieve an even better reproduction of the exact integrands. We demonstrate this here
for the CB-DME, which works particularly well in the nuclear interior, and the Gaussian
approximation, which is well suited for the nuclear surface (see also Ref. [179]).

The idea is to use the ratio ξ = kF/kFC to differentiate the surface from the interior. In
nuclear matter ξ = 1, which therefore approximately holds in the center of the nucleus, while
in the surface we observe ξ < 1. Because for both CB- and Gaussian DME only Π0 contributes
at second order, we simply interpolate between the two cases, i.e., we use Eq. (3.37) as before
with k = kFC but replace Π0(x) with

Π̃0(ξ, x) = I(ξ)ΠCB
0 (x) + [1− I(ξ)]ΠGaussian

0 (x) . (3.80)
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Figure 3.20: Same as Fig. 3.18 but only scalar-isoscalar energy ratios WDME
0 /W exact

0 are shown. The
left panel shows results when only taking the Gaussian with the shorter range into account, the right
panel show results for the Gaussian with the longer range only.

Figure 3.21: Same as Fig. 3.5 without the ratios for individual nuclei. In addition, results are shown
for two different combinations of CB- and Gaussian DME. See text for details.

I(ξ) labels the interpolating function that fulfills I(0) ≈ 0 and I(1) = 1. Π̃0(ξ, x) reduces
to ΠCB

0 (x) for INM and hence describes the OBDM of INM correctly. We show in Fig. 3.21
that an almost perfect scalar-isoscalar energy reproduction (with very small variation between
different nuclei) can be achieved for instance with the following choices:

I1(ξ) = exp
(
−
(
ξ−20 − 1

)2)
, (3.81)
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I2(ξ) =
2

3
[1 + exp(−25(ξ − 1))]−1 +

2

3
exp
(
−625(ξ − 1)2

)
. (3.82)

Also the scalar-isovector energy is on average better reproduced with this approach than with
any considered DME.

3.5 Three-nucleon force exchange energies

As detailed in Sec. 1.2, three-nucleon forces first enter at N2LO in deltaless chiral EFT. They
can be separated into contact interaction, one-pion exchange, and two-pion exchange. We
concentrate ourselves on the latter since these are the only terms included in the EDFs of
Ref. [140] and Ch. 4. Also the other terms are of shorter range and include less off-diagonal
OBDMs that need to be expanded. Hence, we expect them to be less of a challenge for DMEs.
Note that in deltafull chiral EFT there are additional three-body terms already at NLO. They
have the same structure as N2LO two-pion exchange (with the exception that the VC,1 part,
see Sec. 3.5.2, does not contribute).

One can split the N2LO two-pion exchange into three parts: a short-range piece (SR; that
is proportional to two delta functions), an intermediate-range piece (IR; one delta function and
one function with finite range), and a long-range piece (LR; two finite-range functions). We
only consider IR and LR parts in the following as DMEs work very well for SR interactions.

As interactions are symmetric under the exchange of particles we can write the three-body
potential V schematically as

V = V (1) + V (2) + V (3) , (3.83)

where V (i) is symmetric under exchange of j and k (i ̸= j ≠ k ̸= i). With two-particle exchange
operators Pij one can then express the whole interaction in terms of one component [202],

V = V (1) + P23P13V
(1)P13P23 + P23P12V

(1)P12P23 . (3.84)

The HF energy arising from a 3N force is in analogy to the NN case [Eqs. (2.47) to (2.49)]
given by

W
(3N)
HF =

1

6

A∑
i,j,k=1

⟨ϕiϕjϕk|VA123|ϕiϕjϕk⟩ (3.85)

with the three-body antisymmetrizer

A123 = (1 + P13P12 + P23P12)(1− P12) . (3.86)

With Eq. (3.84) one obtains after some algebraic manipulations [202]

W
(3N)
HF =

1

2

A∑
i,j,k=1

⟨ϕiϕjϕk|V (1)(1− 2P12 − P23 + 2P23P12)|ϕiϕjϕk⟩ . (3.87)

We split this into direct and exchange energies, given by

W
(3N)
H =

1

2

A∑
i,j,k=1

⟨ϕiϕjϕk|V (1)|ϕiϕjϕk⟩ , (3.88)
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W
(3N)
F = W

(3N)
SE +W

(3N)
DE , (3.89)

respectively. Single-exchange (SE) and double-exchange (DE) energies are given by

W
(3N)
SE = −1

2

A∑
i,j,k=1

⟨ϕiϕjϕk|V (1)(2P12 + P23)|ϕiϕjϕk⟩ , (3.90)

W
(3N)
DE =

A∑
i,j,k=1

⟨ϕiϕjϕk|V (1)P23P12|ϕiϕjϕk⟩ . (3.91)

For a translationally invariant local interaction the energies read in coordinate space

W
(3N)
H =

1

2
Trστ123

∫
dx1dx2dx3 V

(1)(r12, r13)ρ
(1)(x1)ρ

(2)(x2)ρ
(3)(x3) , (3.92)

W
(3N)
SE = −Trστ123

∫
dx1dx2dx3 V

(1)(r12, r13)P
στ
12 ρ

(1)(x2,x1)ρ
(2)(x1,x2)ρ

(3)(x3)

− 1

2
Trστ123

∫
dx1dx2dx3 V

(1)(r12, r13)P
στ
23 ρ

(1)(x1)ρ
(2)(x3,x2)ρ

(3)(x2,x3) , (3.93)

W
(3N)
DE = Trστ123

∫
dx1dx2dx3 V

(1)(r12, r13)P
στ
23 P

στ
12 ρ

(1)(x3,x1)ρ
(2)(x1,x2)ρ

(3)(x2,x3) , (3.94)

where we suppressed the spin-isospin dependence of the interaction

V (1)(r12, r13) = ⟨r12, r13|V (1)(σ1,σ2,σ3, τ1, τ2, τ3)|r12, r13⟩ (3.95)

as a shorthand notation and
rij = xi − xj . (3.96)

3.5.1 Density-matrix expansions for three-nucleon forces

To investigate the DME performance only single- and double-exchange energies are of interest
since the direct energy does not depend on the full off-diagonal OBDM. The goal of this
Section is not to conduct a complete study of DMEs applied to 3N forces, but instead to
focus on the challenges and choices that come into play due to the more involved Eqs. (3.93)
and (3.94) compared to their NN counterpart Eq. (3.54).

This means that as before, we will only consider terms that depend solely on the scalar
parts of the OBDMs after splitting them as in Eq. (3.10). This is because the vector parts of
the OBDMs typically contribute very little to the total energy, see also Sec. 3.1. We restrict
ourselves to approximations where terms of higher than second order (to be understood as
before but now with respect to the product of three density matrices) are neglected, i.e., we use
here only approximations with truncated cubes. For the most part, we are going to look only
at purely isoscalar contributions. As noted before considering expansions with an isoscalar
momentum scale is a reasonable ansatz for these cases, which we make use of here since it
shortens the resulting equations. In addition, we will consider only PSA-DME.

In other words, the focus of this Section is on the impact of expansion coordinate choices.
In Secs. 3.3.3 and 3.4.1 we discussed possible choices for the point around which one expands
the OBDMs in the NN case. As the 3N energies depend on two relative coordinates, one can
not only pick different expansion points here but also different expansion variables and schemes.
To illustrate the variety of possible options we briefly list choices made in the literature.
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The authors of Ref. [202] consider the use of Jacobi coordinates, i.e., R123, ri, rjk (with
i ̸= j ̸= k ̸= i), where

ri = xi −Rjk (3.97)

with the corresponding two- and three-body center-of-mass coordinates being defined as

Rjk =
xj + xk

2
= R123 −

ri
3
, (3.98)

R123 =
x1 + x2 + x3

3
. (3.99)

For instance in the case of the second contribution to the single-exchange energy, Eq. (3.93),
they expand in r23 about R23 and subsequently employ a modified DME to expand the result
in r1 about R123. For double exchange, Eq. (3.94), they consider two alternative approaches,
namely using the same set of Jacobi coordinates for the expansion of every OBDM and using
a different set of Jacobi coordinates for every OBDM, which requires re-expressing them in
terms of a single coordinate set after performing the expansions. Note that because no pair
of density matrices in the double-exchange energy is evaluated at the same positions, the
employed angle averaging introduces an additional approximation even when expanding about
the average of the two arguments of a density matrix. In other words, one does not profit
from Eq. (3.46) unlike in the NN case.

In Ref. [149] different approaches are used for different terms with the general idea to
minimize the number of performed expansions. This involves in some cases using an angle-
averaged DME about xi for expanding ρt(xi,xj) and in other cases a combined DME and
Taylor expansion, as detailed below, in rij and rk about xk.

All coordinate and expansion choices we discuss now can be seen as extensions of the
discussion in Sec. 3.3.3. There, we considered expanding ρq(x1,x2) in r12 about a generalized
expansion point va. When applying an analogous strategy to other OBDMs appearing in the
same integrand, we need to express the local densities evaluated at the different expansion
points in terms of local densities at a joint point. Otherwise we would not end up with a local
energy density functional.

Therefore, we consider the following procedure: First apply a second-order DME in rij
about

vij
a = axi + (1− a)xj . (3.100)

to ρq(xi,xj) = ρq(v
ij
a + (1− a)rij ,v

ij
a − arij). This yields

ρq(xi,xj) ≈ Π0(krij)ρq(v
ij
a ) + Π1(krij)rij,α

[(
1

2
− a

)
∇αρq(v

ij
a ) + ijq,α(v

ij
a )

]
+

Π2(krij)

2
rij,αrij,β

[(
1

2
− a+ a2

)
∇α∇βρq(v

ij
a ) + (1− 2a)i∇αjq,β(v

ij
a )

− τq,αβ(v
ij
a ) +

1

5
δαβk

2ρq(v
ij
a )

]
. (3.101)

as given in Eq. (3.50). Then perform a Taylor expansion of the local densities in Eq. (3.101)
in

Nij
a = vij

a −E (3.102)

about the joint expansion point E, which remains unspecified at this point. We truncate the



64 CHAPTER 3 – DENSITY-MATRIX EXPANSIONS

Taylor series such that we keep only up to quadratic terms in {rij ,Nij
a } ⊗ {k,∇} (except for

the dependence hidden in the Π functions). For instance, for the first term

ρq(v
ij
a ) ≈ ρq(E) +Nij

a ·∇ρq(E) +
1

2

(
Nij

a ·∇
)2
ρq(E) . (3.103)

The results of Ref. [170] indicate that this is a good approximation, in particular compared
to the DME accuracy. Other approaches are possible, e.g. the use of a modified DME as
mentioned above [202].

Overall, the procedure followed here gives for time-reversal-invariant systems (where jq ≡ 0)

ρq(xi,xj) ≈ Π0(krij)

[
ρq(E) +Nij

a ·∇ρq(E) +
1

2

(
Nij

a ·∇
)2
ρq(E)

]
+Π1(krij)rij,α

(
1

2
− a

)[
∇αρq(E) +Nij

a ·∇∇αρq(E)
]

+
Π2(krij)

2
rij,αrij,β

[(
1

2
− a+ a2

)
∇α∇βρq(E)− τq,αβ(E) +

1

5
δαβk

2ρq(E)

]
.

(3.104)

The DME momentum scale k would need to be evaluated at the DME expansion point vij
a to

be consistent to before. Instead we use

k = k(E) ≈ k(vij
a ) (3.105)

because derivative correction terms would be of order three or higher when plugged into
Eq. (3.104).

To simplify the result one can perform an average with respect to the solid angle of rij
justified by the typically minor dependence of the scalar part of the OBDM on it [135, 168].
Then,

ρq(xi,xj) ≈ Π0(krij)

[
ρq(E) +Nij

a ·∇ρq(E) +
1

2

(
Nij

a ·∇
)2
ρq(E)

]
+

Π2(krij)

6
r2ij

[(
1

2
− a+ a2

)
∆ρq(E)− τq(E) +

3

5
k2ρq(E)

]
(3.106)

in agreement with the result from Ref. [149].

3.5.2 Two-pion exchange

Three-nucleon two-pion exchange at N2LO VC can be split according to its LEC structure:

VC = VC,1 + VC,3 + VC,4 . (3.107)

The individual parts read [210]

V
(1)
C,1(r12, r13) = A1τ2 · τ3 σ2 · r̂12 σ3 · r̂13Z(r12)Z(r13) , (3.108)

V
(1)
C,3(r12, r13) = A32τ2 · τ3{Q12(r12), Q13(r13)} , (3.109)

V
(1)
C,4(r12, r13) = A42iτ1 · (τ2 × τ3)[Q12(r12), Q13(r13)] , (3.110)
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where the newly introduced functions are

Z(r) =
mπr

3
[1− T (r)]Y (r) , (3.111)

Qij(r) = [Sij(r)T (r) + σi · σj ]Y (r)− σi · σj∆(r) , (3.112)

Sij(r) = 3σi · r̂σj · r̂− σi · σj , (3.113)

Y (r) =
e−mπr

mπr
, (3.114)

T (r) = 1 +
3

mπr
+

3

(mπr)2
, (3.115)

∆(r) =
4π

m3
π

δ(r) . (3.116)

The constants are given by

A1 =
g2Am

6
πc1

16π2F 4
π

, A3 =
g2Am

6
πc3

1152π2F 4
π

, A4 = −
g2Am

6
πc4

2304π2F 4
π

. (3.117)

The two-pion exchange expressions agree with Ref. [149]. Note the last line in eq. (21) of
Ref. [140] should have a + instead of a − to agree with these expressions.

Here, we use gA = 1.27,mπ = 138 MeV, Fπ = 92.4 MeV, c1 = −0.57 GeV−1, c3 =

−3.87 GeV−1, and c4 = 2.89 GeV−1 [149, 211]. To regularize the interactions, we multiply all
Yukawa functions Y (r) with a local regulator function f(r),

Y (r) → Y (r)f(r) . (3.118)

We choose here

f(r) =

[
1− exp

(
− r2

R2
0

)]6
, (3.119)

where the spatial cutoff is set to R0 = 1.0 fm [25, 140]. We use a three-dimensional delta
distribution for δ(r), which simplifies some of the equations, see below. This is in agreement
with the choice of Refs. [140, 149]. Other schemes use a smeared-out delta function, see e.g.,
Ref. [212].

As a consequence of the spin-isospin structure given in Eqs. (3.108) to (3.110) both the
direct and the first contribution to the single-exchange energy vanish after carrying out the
traces. We introduce

cos θ12,13 = r̂12 · r̂13 , (3.120)

δabc = δt,aδt′,bδt′′,c (3.121)

and carry out the traces in Eqs. (3.93) and (3.94). The resulting contributions that depend
only on scalar parts of the OBDM read (see also Ref. [149])

WC,1
SE = −1

8
AC,1

∫
dx1dx2dx3

∑
t,t′,t′′

ρt(x1)ρt′(x3,x2)ρt′′(x2,x3)(3δ000 − δ011)

× Z(r12)Z(r13) cos θ12,13 , (3.122)
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WC,1
DE =

1

16
AC,1

∫
dx1dx2dx3

∑
t,t′,t′′

ρt(x3,x1)ρt′(x1,x2)ρt′′(x2,x3)

× (3δ000 + 3δ110 − δ101 − δ011)Z(r12)Z(r13) cos θ12,13 , (3.123)

WC,3
SE = −3

2
AC,3

∫
dx1dx2dx3

∑
t,t′,t′′

ρt(x1)ρt′(x3,x2)ρt′′(x2,x3)(3δ000 − δ011)

×
[
T (r12)Y (r12)T (r13)Y (r13)

(
3 cos2 θ12,13 − 1

)
+ Y (r12)Y (r13)− Y (r12)∆(r13)

−∆(r12)Y (r13) + ∆(r12)∆(r13)] , (3.124)

WC,3
DE =

3

4
AC,3

∫
dx1dx2dx3

∑
t,t′,t′′

ρt(x3,x1)ρt′(x1,x2)ρt′′(x2,x3)(3δ000 + 3δ110 − δ101 − δ011)

×
[
T (r12)Y (r12)T (r13)Y (r13)

(
3 cos2 θ12,13 − 1

)
+ Y (r12)Y (r13)− Y (r12)∆(r13)

−∆(r12)Y (r13) + ∆(r12)∆(r13)] , (3.125)

WC,4
SE = 0 , (3.126)

WC,4
DE = 3AC,4

∫
dx1dx2dx3

∑
t,t′,t′′

ρt(x3,x1)ρt′(x1,x2)ρt′′(x2,x3)(3δ000 − δ110 − δ101 − δ011)

×
[
1

2
T (r12)Y (r12)T (r13)Y (r13)

(
1− 3 cos2 θ12,13

)
+ Y (r12)Y (r13)− Y (r12)∆(r13)

−∆(r12)Y (r13) + ∆(r12)∆(r13)

]
. (3.127)

We split these energies further according to their isospin and interaction structures:

WLR
SE,tt′t′′ = WZZ

SE,tt′t′′ +W TY TY
SE,tt′t′′ +W Y Y

SE,tt′t′′ , (3.128)

WLR
DE,tt′t′′ = WZZ

DE,tt′t′′ +W TY TY
DE,tt′t′′ +W Y Y

DE,tt′t′′ , (3.129)

W IR
F,tt′t′′ = W Y∆

SE,tt′t′′ +W Y∆
DE,tt′t′′ . (3.130)

These are single-exchange energies from long-range terms, double-exchange energies from
long-range terms, and energies from intermediate-range terms. In the latter case we do not
distinguish between single and double exchange as their structure is identical when actual
delta distributions are used. The indices tt′t′′ refer to the isospin structure.

Two examples of the terms on the right-hand side of Eqs. (3.128) to (3.130) read

WZZ
SE,000 = −3

8
AC,1

∫
dx1dx2dx3 ρ0(x1)ρ0(x3,x2)ρ0(x2,x3)Z(r12)Z(r13) cos θ12,13 , (3.131)

W Y∆
DE,110 =

(
−9

4
AC,3 + 3AC,4

)∫
dx1dx2dx3 ρ1(x3,x1)ρ1(x1,x2)ρ0(x2,x3)

× [Y (r12)∆(r13) + ∆(r12)Y (r13)] , (3.132)

where the latter contains contributions from both WC,3
DE and WC,4

DE . Other cases are named in
analogy.

We consider different approximation schemes for the three groups given by Eqs. (3.128)
to (3.130). In all cases, we keep only terms up to second order and local densities are evaluated
either at x1 or R123, but other choices are of course possible. In detail the considered expansion
schemes are:
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1. for LR SE:

(a) DME of ρt(x2,x3) in r23 about R23, local densities Taylor expanded about x1

(b) DME of ρt(x2,x3) in r23 about R23, local densities Taylor expanded about R123

2. for LR DE:

(a) angle-averaged DME of ρt(x2,x3) in r23 about R23, of ρt(x1,x2) and ρt(x1,x3)

about x1, local densities Taylor expanded about x1

(b) non-angle-averaged DME of ρt(x2,x3) in r23 about R23, of ρt(x1,x2) and ρt(x1,x3)

about x1, local densities Taylor expanded about x1

(c) DME of ρt(xi,xj) in rij about Rij , local densities Taylor expanded about x1

(d) DME of ρt(xi,xj) in rij about Rij , local densities Taylor expanded about R123

3. for IR:

(a) angle-averaged DME of ρt(x1,xi) in r1i about x1 [for the term proportional to
∆(r1j) with 1 ̸= i ̸= j]

(b) non-angle-averaged DME of ρt(x1,xi) in r1i about x1 [for the term proportional to
∆(r1j) with 1 ̸= i ̸= j]

(c) DME of ρt(x1,xi) in r1i about R1i [for the term proportional to ∆(r1j) with
1 ̸= i ̸= j], local densities Taylor expanded about x1

(d) DME of ρt(x1,xi) in r1i about R1i [for the term proportional to ∆(r1j) with
1 ̸= i ̸= j], local densities Taylor expanded about R123.

The list above contains schemes that are not marked as either angle-averaged nor non-angle-
averaged. This is because for such schemes the two options, i.e., Eqs. (3.104) and (3.106),
yield the same result. Cases labelled (a) are the ones used in Ref. [140]. The resulting analytic
expressions for these cases are provided in Ref. [149].

As an example case we show for Eq. (3.131) how we proceed in calculating the energy
according to prescription 1.(a): Using Eq. (3.104) with a = 1/2, N23

1/2 = −r1, and E = x1

yields

WZZ
SE,000 ≈ −3

8
AC,1

∫
dx1dr12dr13 Z(r12)Z(r13) cos θ12,13 ρ0(x1)

×
{
Π0(kr23)

[
ρ0(x1)− r1 ·∇ρ0(x1) +

1

2
(r1 ·∇)2ρ0(x1)

]
+

Π2(kr23)

2
r23,αr23,β

[
1

4
∇α∇βρ0(x1)− τ0,αβ(x1) +

1

5
δαβk

2ρ0(x1)

]}2

≈ −3π2AC,1

∫
dx1dr12dr13dcos θ12,13 r

2
12r

2
13 Z(r12)Z(r13) cos θ12,13 ρ0(x1)

×
[
Π0(kr23)

2

(
ρ0(x1)

2 +
1

3
r21

{
ρ0(x1)∆ρ0(x1) + [∇ρ0(x1)]

2
})

+
Π0(kr23)Π2(kr23)

6
r223 ρ0(x1)

[
1

4
∆ρ0(x1)− τ0(x1) +

3

5
k2ρ0(x1)

]]
. (3.133)
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In the second step we truncated all terms at second order. The coordinates in the integrand
are related to each other via

4r21 = r212 + r213 + 2r12r13 cos θ12,13 , (3.134)

r223 = r212 + r213 − 2r12r13 cos θ12,13 . (3.135)

Expressions can get quite involved. One such example is scheme 2.(b) which gives

W TY TY
DE,101 ≈ 6π2(AC,3 − 2AC,4)

∫
dx1dr12dr13dcos θ12,13 r

2
12r

2
13

×

[
Π̃000ρ0ρ1

(
ρ1 +

1

6
r21∆ρ1

)
+

Π̃100

6
r1 · r12ρ1(∇ρ0 ·∇ρ1)

+
Π̃010

6
r1 · r13ρ0(∇ρ1)

2 +
Π̃110

12
r12 · r13ρ1(∇ρ0 ·∇ρ1)

+
Π̃200

6
r212ρ

2
1

(
1

2
∆ρ0 − τ0 +

3

5
k2ρ0

)
+

Π̃020

6
r213ρ0ρ1

(
1

2
∆ρ1 − τ1 +

3

5
k2ρ1

)
+

Π̃002

6
r223ρ0ρ1

(
1

4
∆ρ1 − τ1 +

3

5
k2ρ1

)]
× T (r12)Y (r12)T (r13)Y (r13)

(
1− 3 cos2 θ12,13

)
, (3.136)

where we suppressed the dependence of the local densities on x1 and used the definition [149]

Π̃ijl = Πi(kr12)Πj(kr13)Πl(kr23) . (3.137)

The coordinate scalar products can be expressed in terms of the integration variables by using

r1 =
r12 + r13

2
, (3.138)

r23 = r13 − r12 . (3.139)

Note that Eq. (3.136) contains Π1 functions. For PSA-DME [145],

Π1(x) =
3j1(x)

x
. (3.140)

For many other DME variants the Π1 function had never been defined. When Π0(x) =

Π1(x) = Π2(x), as fulfilled by PSA-DME, prescription 2.(b) equals 2.(c) and 3.(b) equals
3.(c).

3.5.3 Intermediate-range and long-range exchange energies

To test the approximation schemes explained in Sec. 3.5.2, we need to select which systems to
consider. Here we pick 16O, 48Ca, 132Sn, and 208Pb. As before we use single-particle orbitals
generated from a self-consistent HF calculation employing the SLy4 parametrization of the
Skyrme EDF [195] without pairing. The orbitals are obtained with the code hosphe which
solves the HF equations by expanding single-particle orbitals in a spherical HO basis [197].
We set the basis size to 16 HO shells, which yields sufficiently realistic orbitals for the given
application. The basis frequency is set according to ℏω = 1.2× 41A−1/3 MeV [197].
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Figure 3.22: Ratios of DME-approximated and exact scalar-isoscalar exchange-energy contributions
for the long-range parts of a two-pion-exchange three-nucleon interaction. Results are given for 4
closed-shell nuclei where the underlying orbitals are obtained from a self-consistent HF calculation
with the SLy4 EDF. The left panel shows single-exchange energies, the right panel double-exchange
energies. Values are shown with circles ( ) for schemes (a), with squares ( ) for schemes (b), and
with diamonds ( ) for scheme 2.(d). All values are obtained with the PSA-DME with an isoscalar
momentum scale. For PSA-DME, schemes 2.(b) and 2.(c) are identical.

For the long-range terms, we show ratios of DME-approximated and exact exchange ener-
gies in Fig. 3.22. As stated before, we consider here only scalar-isoscalar energies. For both
SE (left panel) and DE (right panel), the better performance of the DMEs for heavier systems
is clearly visible and in agreement with expectations. In the SE case the energy reproduc-
tion is very good for scheme 1.(a) for all considered nuclei, while scheme 1.(b) significantly
underestimates the true value, in particular for 16O it misses about half of the energy.

For DE, there is no scheme which works very well for all nuclei, but the hierarchy of
approximation schemes is the same throughout all considered nuclei. In particular, case 2.(d)
performs best. This is plausible when comparing to case 2.(c), which differs from 2.(d) only
in the Taylor part of the expansion. Cubic terms are the leading terms that are neglected in
the Taylor series. For 2.(c) the distances, over which the Taylor series are carried out, are r1,
r12/2, and r13/2. For 2.(d) these are r1/3, r2/3, and r3/3. By using

r1 = −r2 − r3 , (3.141)

r1i = −2

3
ri −

1

3
rj (3.142)

for 1 ̸= i ̸= j ̸= 1, one can express the cubic sums of these distances in the same set of
coordinates, namely in r2, r3, and

cos θ2,3 = r̂2 · r̂3 . (3.143)

The cubic sum for the distances corresponding to 2.(c) is larger than the cubic sum for 2.(d)
for cos θ2,3 = 1 and cos θ2,3 = 0. For cos θ2,3 = −1 the 2.(c) cubic sum is larger than the
2.(d) sum for r2 ≲ 2r3/3 and r2 ≳ 3r3/2. In other words, the phase space for which scheme
2.(c) corresponds to Taylor expansions over smaller cubic distances than scheme 2.(d) is small.
Thus, it is plausible that 2.(d) performs better.
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Figure 3.23: Ratios of DME-approximated and exact scalar-isoscalar double-exchange-energy con-
tributions for different long-range parts of a two-pion-exchange three-nucleon interaction. Results are
given for 4 closed-shell nuclei where the underlying orbitals are obtained from a self-consistent HF
calculation with the SLy4 EDF. The left panel shows energies obtained with scheme 2.(a), the right
panel energies obtained with 2.(d). Values are shown with filled symbols ( , ) for the ZZ interaction
part, with half-filled ones ( , ) for TY TY , and with empty ones ( , ) for Y Y . All values are
obtained with the PSA-DME with an isoscalar momentum scale.

Note that setting up a similar argument for LR SE is not straightforward because there
both local and non-local densities are Taylor expanded and it is not obvious if these expansions
are of equal importance. The observation that 1.(a) does much better than 1.(b) suggests that
schemes in which local densities are expanded as little as possible are preferable for LR SE.

When splitting up the LR SE energies further into the different interaction parts as in
Eq. (3.128), scheme 1.(a) is consistently better than 1.(b) for all parts. Interestingly, for
double exchange the scheme quality depends on the considered interaction part, which have
different radial and angular dependences, see Eqs. (3.123), (3.125), and (3.127). This is shown
in Fig. 3.23, of which the left panel shows how well the DE energy for the different interaction
parts is reproduced with scheme 2.(a), the right panel shows the same for 2.(d). In the former
case, the exact energy due to TY TY is most poorly reproduced, while in the latter case this
term works best. For 2.(b) (not shown), TY TY energies are reproduced better than ZZ, but
worse than Y Y . These observations demonstrate that the quality of expansion schemes found
here might not directly carry over to three-body forces of other form or even only forces of
the same form with different LECs.

We now switch to the intermediate-range terms. For these, the ratios of DME-approximated
and exact exchange energies are shown in Fig. 3.24. Scheme 3.(b) performs clearly better than
the other ones and does well even for 16O. As for LR SE, the best scheme does not involve an
expansion of the local density. This also applies to 3.(a), but the angle average in its DME
leads to the observed energy underestimation.

We now consider the total scalar-isoscalar Fock energy from intermediate- and long-range
force parts combined. In Fig. 3.25 we show the ratios between DME-approximated and exact
exchange energies for three different expansion scheme combinations. These are:

• the “Navarro Pérez” combination: This is used in the EDFs of Ref. [140] with the
expressions obtained in Ref. [149]. It consists of schemes 1.(a), 2.(a), and 3.(a).
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Figure 3.24: Ratios of DME-approximated and exact scalar-isoscalar exchange-energy contributions
for the intermediate-range parts of a two-pion-exchange three-nucleon interaction. Results are given for
4 closed-shell nuclei where the underlying orbitals are obtained from a self-consistent HF calculation
with the SLy4 EDF. Values are shown with circles ( ) for scheme 3.(a), with squares ( ) for scheme
3.(b), and with diamonds ( ) for scheme 3.(d). All values are obtained with the PSA-DME with an
isoscalar momentum scale. For PSA-DME, schemes 3.(b) and 3.(c) are identical.

Figure 3.25: Ratios of DME-approximated and exact scalar-isoscalar exchange-energy contributions
for the combination intermediate-range and long-range parts of a two-pion-exchange three-nucleon
interaction. Results are given for 4 closed-shell nuclei where the underlying orbitals are obtained from
a self-consistent HF calculation with the SLy4 EDF. Values are shown with red circles ( ) for the
“Navarro Pérez” scheme combination, with turquoise squares ( ) for the “consistent” combination, and
with blue diamonds ( ) for the “best scheme per term” combination. All values are obtained with the
PSA-DME with an isoscalar momentum scale.

• the “consistent” combination, which consists of the schemes where OBDMs are expanded
about their midpoints and all local densities are expanded about x1. These are schemes
1.(a), 2.(c), and 3.(c). Remember that for PSA-DME 2.(c) equals 2.(b) and 3.(c) equals
3.(b).

• the “best scheme per term” combination. For this the individually best schemes as
obtained above are used, namely 1.(a), 2.(d), and 3.(b).
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For all schemes the deviations to the exact scalar-isoscalar energies are at most at the
few-percent level. Except for the light 16O nucleus, the “consistent” combination performs
best. Both other combinations overestimate the exact energies always by about 2 to 3 %.
Somewhat surprisingly, the “best scheme per term” combination performs least well (except
in 16O). This is because the errors for the different terms add up in an unfavorable fashion as
LR DE is attractive, while LR SE and IR exchange are repulsive. On the other hand, errors
turn out to cancel almost fully for the “consistent” scheme in 48Ca and 132Sn. Note that the
LR SE contribution is typically about an order of magnitude larger than the other two.

As in the NN case using an isoscalar momentum scale for approximating scalar-isovector
energies does not work as well as for scalar-isoscalar energies. For instance, for scheme 1.(a) in
132Sn the ratio WLR, DME

SE,011 /WLR, exact
SE,011 ≈ 0.89, while WLR, DME

SE,000 /WLR, exact
SE,000 ≈ 1.02. However,

similar to the NN case, scalar-isovector contributions are in size about two orders of magnitude
smaller than the scalar-isoscalar contributions, so that the less accurate reproduction of the
energies involving isovector OBDM parts does not have a significant effect. This holds at least
for bulk properties such as total energies but might be different when looking at non-bulk
quantities.

3.6 Note on expansions of vector parts of one-body
density matrices

Up to now we discussed only density-matrix expansions for the scalar part of the OBDM.
Existing DME variants for the vector part include the NV- [168, 169], PSA- [135, 145], and
DT-DME [170]. While the relative quality of the reproduction of the exact energies when
applying these DMEs is worse for vector than for scalar energies, the vector part normally
contributes only very little to the total energy as alluded to in Sec. 3.1. Thus, overall, the
absolute error induced by using a DME for the scalar parts is typically much larger than the
error induced from the vector ones. This is explicitly demonstrated for instance in Ref. [170].
This also explains why there has been much less focus on developing approximations for the
vector part of the OBDM than for the scalar part.

For the same reason, we do not investigate DMEs for the vector parts of OBDMs in this
work. We just note here that because the vector part of the OBDM is not a bulk quantity unlike
the scalar part, different aspects may be considered when constructing an approximation. For
instance, the anisotropy of the local momentum distribution becomes important. A variant of
the PSA-DME has been developed which takes this explicitly into account [135, 171]. Note
that even the simplified PSA-DME performs better at second order for the vector OBDM
parts than NV- and DT-DME [170].

3.7 Summary and guidance for ab initio energy den-
sity functionals

Density-matrix expansions allow to approximate off-diagonal OBDMs in terms of (quasi-)local
densities by factorizing the nonlocality into universal functions. Therefore, they can be used
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to convert exchange energies from (realistic) nuclear interactions into a form corresponding
to a local EDF. In this Chapter, we have carried out a detailed re-examination of DMEs and
compared several zeroth- and second-order DMEs for scalar parts of OBDMs, focusing on the
accurate non-self-consistent reproduction of exact exchange energies in closed-shell nuclei.

In general, all considered DMEs approximate the investigated NN exchange energies very
well and different DME choices generally lead to tolerable variations. Of those DMEs that do
not lead to more than two derivatives in any EDF term (like conventional Skyrme EDFs) we
find best energy reproduction for the Slater approximation, although locally it approximates
the energy integrands worse than second-order DMEs. When allowing for EDF terms with
more than two derivatives, but still using only the standard Skyrme densities, one can also
employ the full-square DMEs. These perform better than their truncated-square counterparts
and the ones that use kFC as their momentum scale. Overall we find best results for the
SVCK2- and MG-DMEs, although the latter yields the wrong INM limit. If necessary, one
can obtain even better results by deviating from the DME approach in a narrow sense and
combining different DME variants as exemplified in Sec. 3.4.4.

Regarding a good reproduction of scalar-isovector energies we find that it is crucial to
treat neutrons and protons separately in DMEs. Using a single isoscalar momentum scale can
lead to results wrong by more than 50%, though the effect on the total exchange energy is
very small due to the small absolute size of isovector contributions.

For 3N forces even more choices have to be made regarding the DME than in the NN
sector. Again, overall, the different schemes approximate the investigated exchange energies
well. Except for light systems we find that the “consistent” expansion scheme performs best,
although partially benefiting from cancellation of errors.

The findings of this Chapter are robust in the sense that they hold along the entire nuclear
mass range, are confirmed also for less realistic orbital shapes, and are valid for different
regulators and interaction ranges (except for very-long-range interactions, see Sec. 3.4.1).
All these results are based on non-self-consistent tests and should therefore be regarded as
provisional. For instance, it is at this stage unclear how local errors in the reproduction of
exchange-energy integrands (e.g., see Slater approximation in Fig. 3.4) influence the results
of the self-consistency loop in an EDF calculation of nuclei. Hence, one of next steps is to
implement the findings of this work into EDFs like the ones discussed in the next Chapter.

However, our findings indicate that DMEs work very well for nuclear NN and 3N interac-
tions with respect to approximating (bulk) exchange energies with high accuracy. Hence, we
believe the present findings suggest the EDF improvement coming from an enhanced DME
treatment will be minor, especially considering that the Skyrme couplings get refitted after
incorporating the DME in the approach discussed in this thesis. Therefore, in the construction
of the EDFs detailed in Ch. 4, we stick to the DME choices made in previous work, Ref. [140].

If fine (local) details matter or very high accuracy is needed, several refinement possibilities
exist as shown here. In general, EDF practitioners can test the performance of the DME
variant of their choice by switching to one of the other variants discussed here. If the results
are quantitatively very similar, this suggests that further EDF improvements need to come
from elsewhere, and not from DME improvements. Such self-consistent tests of different
DME variants are not carried out in the present work. In addition, we did not test DMEs
for vector parts of the OBDM and did not consider DME terms with an odd number of
derivatives that are relevant in not-time-reversal-invariant systems. These topics are left for
future investigations.





4

Semi-phenomenological hybrid
energy density functionals

One approach to combining ab initio approaches to nuclear structure and DFT is given by a
semi-phenomenological hybrid strategy for building EDFs. This strategy has led to promising
results [140] but requires further investigation. We discussed the general idea of this approach
and the motivation behind it in Sec. 1.4. In one sentence the idea can be summarized as
extending a traditional Skyrme EDF structure by long-range pion-exchange terms derived
from chiral EFT at the HF level.

The chiral Fock contributions are included in terms of a DME. Our results obtained in
Ch. 3 put the DME applicability for long-range pion contributions on a solid footing, showing
that different DME choices generally lead to tolerable variations. Therefore, we stick here to
the choices made in Ref. [140] regarding the DME implementation. This is despite isovector
contributions and some 3N terms not being well reproduced. However, these are small and
therefore are not expected to be of concern at the present accuracy levels.

In this Chapter we turn our attention to the construction and optimization of functionals
according to the hybrid strategy. We do this by generating the GUDE family of functionals,
which includes several improvements and corrections compared to the earlier work of Ref. [140].
We begin by discussing the structure of the EDFs including the chiral contributions in Sec. 4.1.
Nuclear properties are determined from the functionals by solving the corresponding HFB
equations. The numerical setup is discussed in Sec. 4.2, where we also elaborate on the param-
eter optimization that is crucial to obtain a quantitatively successful EDF. We discuss which
parameters are optimized, the used experimental data set, and the optimization algorithm.
The results of the optimizations are presented in Sec. 4.3. We give the obtained GUDE
parametrizations and investigate their performance by comparing against experimental data
for even-even nuclei. In particular, we construct a GUDE variant which reproduces the main
improvements found in this work by adding only a minimal number of terms arising from
pion exchanges. Section 4.4 contains a detailed analysis of the order-by-order behavior of the
functionals in the GUDE family. It turns out that the relevance of terms in our approach does
not agree with naive expectations based on the power counting employed in chiral EFT. We
investigate the reasons for this behavior. We end by summarizing our findings in Sec. 4.5.

Note that the contents of this Chapter have in large parts been published as Ref. [151].
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4.1 Form of the energy density functionals

The EDFs we construct in this work can be split into six parts according to

E = Eχ
H + Eχ

F + ESkyrme + Epair + ECoulomb + Ekin . (4.1)

The conventional part of the EDFs consists of the latter four terms, which we discuss in
Sec. 4.1.1.

In Sec. 4.3 we construct a conventional functional, below labelled as “no chiral”, that
contains only these four terms and serves as a reference functional for comparing the perfor-
mance of the other EDFs that we construct following the same optimization protocol. These
additionally contain the first two terms in Eq. (4.1), Eχ

H and Eχ
F, which represent the Hartree

and Fock energy from pion exchanges, respectively. The expressions for the pion exchanges
which enter the definitions of Eχ

H and Eχ
F are taken directly from interactions derived from

chiral EFT at different orders, see Sec. 4.1.2. Because the low-energy constants of the pion
exchanges are determined from few-body data [211] and are not adjusted in the present work,
the additional inclusion of these terms does not lead to an increase in the number of adjustable
functional parameters. See Secs. 4.1.3 and 4.1.4 for details regarding the pion Hartree and
Fock terms.

While the structure of the functionals constructed here agrees with the one from Ref. [140],
we introduce several changes and improve various aspects in the construction and optimization
of the functionals compared to that work. These changes, stated in detail in the following
Sections, are mostly driven by the idea to enable a cleaner comparison of the functionals
constructed at (different) chiral orders.

4.1.1 Conventional parts

Here we discuss the parts of the GUDE structure that corresponds to a conventional Skyrme
EDF. The Skyrme part itself reads

ESkyrme =
∑
t=0,1

∫
dR

[
Cρρ
t (ρ0)ρ

2
t + Cρτ

t ρtτt + Cρ∆ρ
t ρt∆ρt + Cρ∇J

t ρt∇ · Jt + CJJ
t Jt,abJt,ab

]
,

(4.2)

where
Cρρ
t (ρ0) = Cρρ

t0 + Cρρ
tDρ

γ
0 . (4.3)

Summations over spacial indices a, b are implied. The coupling constants Cρρ
t0 , Cρρ

tD, Cρτ
t ,

Cρ∆ρ
t , Cρ∇J

t , CJJ
t and the exponent γ constitute parameters that are adjusted to data as

described in Sec. 4.2.3. In Eq. (4.2), we have suppressed the dependence on the position R of
the (quasi-)local densities. They read [83, 213]

ρt(R) = ρt(R,R) , (4.4)

τt(R) = ∇ ·∇′ρt(R,R′)
∣∣
R′=R

, (4.5)

Jt,ab(R) = − i

2

(
∇a −∇′

a

)
st,b(R,R′)

∣∣∣∣
R′=R

(4.6)
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Jt(R) = εabcJt,ab(R)ec , (4.7)

where ec is the unit vector in the Cartesian direction c and the different OBDM parts (ρt, st)
were introduced in Eqs. (3.11) to (3.14). The (quasi-)local densities are referred to as density
ρ, kinetic density τ , spin-current tensor J , and spin-orbit current (or vector spin current) J.

Since we only apply our EDFs for calculations of even-even nuclei, which are assumed to
be time-reversal invariant, time-odd densities are not taken into account in the construction.
The Skyrme structure given in Eq. (4.2) agrees with the one used in Ref. [112, 140]. It is
generalized compared to EDFs that are truly derived from an underlying Skyrme interaction.
One can convert it into notation used for those EDFs by applying the formulas given e.g. in
Refs. [83, 173] to convert the couplings Cuv

t into ti, xi,W0 parameters. Note that the tensor
part of ESkyrme corresponds to the case of a Skyrme force with only central and no tensor
parts, cf. Ref. [213].

Within the HFB framework, the pairing contribution to our EDFs is given in the mixed-
pairing prescription [214] as

Epair =
1

4

∑
q=n,p

∫
dRV q

0

[
1− 1

2

ρ0(R)

ρs

]
ρ̃2q(R) , (4.8)

where ρs = 0.16 fm−3 is chosen as the empirical saturation density, which is approached in
the center of heavy nuclei, so that pairing is somewhat weakened in the center [83, 214]. The
pairing densities ρ̃q(R) are related to the pairing tensor via [173]

ρ̃q(R) = −2
∑
σ

σκq(Rσ,R−σ) . (4.9)

The pairing tensor can be written as [173]

κq(Rσ,R′σ′) = ⟨Φ|aq,R′,σ′aq,R,σ|Φ⟩ , (4.10)

cf. Eq. (2.68).
The neutron and proton pairing strengths V n

0 and V p
0 are adjusted to data as described

in Sec. 4.2.3. Because of the zero range of the underlying effective pairing force, a cutoff of
Ecut = 60 MeV to truncate the quasiparticle space is employed. This cutoff was missing in
the implementation of Ref. [140]. Thus, in that work the quasiparticle space was truncated
implicitly only, via the finite size of the employed basis.

The Coulomb energy is obtained here as in Refs. [102, 112, 140, 215]: the Hartree term
is calculated exactly using the Gaussian substitution method [216, 217] and the exchange
term is calculated with the Slater approximation [174]; see Ref. [218] for an assessment of the
accuracy of these methods. Overall, the Coulomb contribution reads [196]

ECoulomb = −3e2

4

∫
dR

(
3

π

)1/3

ρp(R)4/3 +
e2

2

∫
dRdR′ ρp(R)ρp(R

′)

|R−R′|
. (4.11)

We use e2 = 1.439978408596513.
The kinetic energy is given by

Ekin =

∫
dR

ℏ2

2m
τ0(R) , (4.12)
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with ℏ2/(2m) = 20.73553 MeV fm2.

4.1.2 Chiral interactions

For the construction of the EDFs we consider pion exchanges at different orders in the chiral
expansion up to N2LO both with and without the explicit inclusion of intermediate ∆ isobars
as well as with and without 3N forces. Chiral EFT interactions contain pion exchanges and
contact interactions. We take only the finite-range parts of the pion exchanges explicitly into
account.1 Expressions for the corresponding interaction terms in coordinate space are given
in Refs. [140, 149]. The low-energy constants that appear are taken from the determination of
Ref. [211] (columns “Q2, no ∆” and “Q2, fit 1” of Table 1 therein). Note that we use gA = 1.27

and hA = 3gA/
√
2 as chosen in Ref. [211]. The previous implementation [140] used the Fock

coefficient functions derived in Ref. [149] for which the slightly inconsistent combination of
gA = 1.29 with low-energy constants from Ref. [211] had been considered. The finite-range
interactions are regularized by multiplying them with the local regulator function

f(r) =

[
1− exp

(
− r2

R2
c

)]n
, (4.13)

where we choose Rc = 1.0 fm and n = 6 (cf. [25]). Investigating the choice of the regularization
scheme is left for future work.

Contact interactions as well as correlations involving pions beyond the HF level are assumed
to be effectively captured by the EDFs by adjusting the parameters of ESkyrme and Epair to
data from finite nuclei.

4.1.3 Chiral long-range Hartree terms

The Hartree terms from the pion exchanges are included essentially exactly by evaluating the
corresponding integrals. Since we consider only even-even nuclei, the spin density vanishes
due to time-reversal symmetry so that only the central part of the NN interactions contribute
and Eq. (2.52) reduces to

Eχ
H =

1

2

∑
t=0,1

∫
dRdrVt(r)ρt

(
R+

r

2

)
ρt

(
R− r

2

)
. (4.14)

To make use of the capability of HFBTHO, which uses many analytic properties of Gaussian
matrix elements in an HO basis [219], to solve the HFB equations for potentials given by sums
of Gaussians [220], we approximate the central chiral potentials as

V0(r) = VC(r) → ṼC(r) =

N∑
i=1

(
Wi −

Hi

2

)
e−r2/µ2

i , (4.15)

V1(r) = WC(r) → W̃C(r) = −
N∑
i=1

Hi

2
e−r2/µ2

i . (4.16)

A similar idea was implemented in Ref. [221]. Together with Bi = Mi = 0 (which do not
contribute here due to time-reversal invariance of the considered systems) Eqs. (4.15) and (4.16)

1For the 3N forces, we do not include one-pion-exchange terms, which consist of both a pion exchange and
a contact interaction. This is in agreement with the choice of Refs. [140, 149].
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correspond to a Gogny-like interaction,

VG =
N∑
i=1

(Wi +BiPσ −HiPτ −MiPσPτ )e
−r2/µ2

i . (4.17)

Note that in Eqs. (4.15) to (4.17) we correct several mistakes compared to Eqs. (30) to (33)
of Ref. [140]. The wrong equations in Ref. [140] led to an incorrect implementation of the
Hartree terms in the functionals constructed therein. This is because the chiral potentials were
approximated by Gaussians according to the equations of Ref. [140] but the implementation
into the functionals follwed the correct equations of Ref. [220].

To reproduce the behavior of the regulator [Eq. (4.13)] at the origin, the conditions

HN = −
N−1∑
i=1

Hi , WN = −
N−1∑
i=1

Wi (4.18)

are imposed. The remaining free parameters Wi, Hi, µi are obtained by a fitting routine.
As in Ref. [140], N = 5 Gaussians are used here as a compromise between accuracy of

the approximation and computational requirements for evaluating and storing the resulting
integrals [222]. The Gaussians used in Ref. [140] were obtained by simultaneously fitting all
13 parameters for the isoscalar VC and isovector WC potentials. Here, we fit first only the 9
parameters for the isoscalar potential VC since it contributes significantly more to the energy
of finite nuclei than its isovector counterpart. We keep the resulting Gaussian widths µi fixed
for the subsequent fitting of the remaining 4 parameters of the isovector potential WC . We
obtain the parameters of the Gaussians by χ2 minimizations where the loss functions are given
by

χ2 =
∑
r

{
r2
[
Ṽt(r)− Vt(r)

]}2
, (4.19)

which are evaluated on an evenly spaced grid from r = 0 to 8 fm with step width 0.125 fm.
We include the r2 prefactor in the definition of the χ2 to account for the increased importance
of larger r due to the presence of the volume element in the Hartree energy, Eq. (4.14). This
factor had not been included in the determination of the Gaussian parameters in Refs. [140,
222]. We provide the Gaussian parameters obtained in the new fit in Tab. A.1 in the Appendix.

In Figs. 4.1 and 4.2 we plot r2[Vt(r)− Ṽt(r)] including contributions up to including N2LO
in the chiral expansion (without explicitly resolved ∆ excitations). The new fitting strategy
improves the fit of VC without a significant degradation in fitting WC . When evaluating
the Hartree energy expectation value in 208Pb the difference between the value obtained
with the exact and the approximated potential at N2LO is about 5 MeV (on a total Hartree
energy of about 4000 MeV) with the Gaussian parameters obtained in this work. This is a
significant improvement over the difference of 37 MeV obtained with the Gaussian parameters
of Refs. [140, 222]. Similar improvements are obtained for the fits of the potentials at other
chiral orders. For these comparisons the underlying single-particle orbitals were generated
from a self-consistent HF calculation with the SLy4 EDF [195] using the code HOSPHE [197].

Note that it is not clear if and how the observed improvements translate into improvements
of the constructed EDFs. This is because the Skyrme parameters are fitted to data after adding
the terms originating in the chiral potentials and this fitting can (partly) compensate the
errors from the non-perfect Gaussian approximations. For the same reason it is also hard to
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Figure 4.1: r2-weighted difference between isoscalar central potential at N2LO in the chiral expansion
and its approximations by sums of five Gaussians according to Eq. (4.15). Both the approximation of
Refs. [140, 222] and the one obtained here are shown.

Figure 4.2: Same as Fig. 4.1 but for the isovector potential.

gauge a priori the impact of other changes we introduced compared to Ref. [140].

For later reference we introduce a notation for contributions arising when performing a
Taylor expansion of one density entering Eq. (4.14) in the relative coordinate r about the
argument of the other density. We write

Eχ
H =

∑
t=0,1

∫
dR

∞∑
n=0

T ρ∆nρ
t ρt(R)∆nρt(R) (4.20)

with

T ρ∆nρ
t = 2π

∫
dr r2Vt(r)

r2n

(2n+ 1)!
. (4.21)

Finally, we recall that there are no Hartree contributions from the long-range parts of 3N
forces at the orders we consider.
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4.1.4 Chiral long-range Fock terms

The GUDE functionals include pion-exchange Fock contributions in a quasi-local form which
is achieved by using a DME. One starts from the expression for the Fock energy, which is
for local NN forces given in Eq. (2.53). As studied in Ch. 3, a DME allows to approximately
rewrite the OBDM as a sum of terms in which the non-locality is factored out. After applying
the DME and carrying out the traces and the integral in the non-locality r one obtains a
quasi-local approximation for the Fock energy, which leaves only one integral to be carried
out numerically. For the NN forces used here it reads [149]

Eχ
F,NN =

∑
t=0,1

∫
dR

{
gρρt (ρ0)ρ

2
t + gρτt (ρ0)ρtτt + gρ∆ρ

t (ρ0)ρt∆ρt + gJJ,2t (ρ0)Jt,abJt,ab

+ gJJ,1t (ρ0)[Jt,aaJt,bb + Jt,abJt,ba]
}
. (4.22)

As before we consider only terms that contribute in time-reversal invariant systems. Note that
while Ref. [149] uses separate functions gJJ,1t and gJJ,3t multiplying Jt,aaJt,bb and Jt,abJt,ba,
respectively, these turn out to be identical [135]. This is in agreement with the situation
obtained for the Skyrme tensor force, cf. Ref. [223]. Note also that Jt,aa ≡ 0 when axial
symmetry is conserved [166], which is the case for all calculations performed in this work.
Equation (4.22) looks very similar to the Skyrme part of the functional, Eq. (4.2). However,
in Eq. (4.22) the prefactors of the density bilinears (the g coefficient functions guvt ) are not
constants (whose values are determined by fitting to data) but functions of the isoscalar density
ρ0 and are fixed once one picks a chiral interaction model and a DME variant.

From a computational point of view, using a DME does not provide a significant benefit
when considering only chiral NN interactions,2 but it is a suitable strategy to make the addition
of 3N interactions feasible. For those interactions the equation for the Fock contributions is
determined analogously to the NN case by starting from Eqs. (3.93) and (3.94) and reads [149]

Eχ
F,3N =

∫
dR

{
gρ

3
0(ρ0)ρ

3
0 + gρ

2
0τ0(ρ0)ρ

2
0τ0 + gρ

2
0∆ρ0(ρ0)ρ

2
0∆ρ0 + gρ0(∇ρ0)2(ρ0)ρ0∇ρ0 ·∇ρ0

+ gρ0ρ
2
1(ρ0)ρ0ρ

2
1 + gρ

2
1τ0(ρ0)ρ

2
1τ0 + gρ

2
1∆ρ0(ρ0)ρ

2
1∆ρ0 + gρ0ρ1τ1(ρ0)ρ0ρ1τ1

+ gρ0ρ1∆ρ1(ρ0)ρ0ρ1∆ρ1 + gρ0(∇ρ1)2(ρ0)ρ0∇ρ1 ·∇ρ1

+ ρ0ϵcab
[
gρ0∇ρ0J0(ρ0)∇cρ0J0,ab + gρ0∇ρ1J1(ρ0)∇cρ1J1,ab

]
+ ρ1ϵcab

[
gρ1∇ρ1J0(ρ0)∇cρ1J0,ab + gρ1∇ρ0J1(ρ0)∇cρ0J1,ab

]
+ ρ0

[
gρ0J

2
0 ,1(ρ0)J0,aaJ0,bb + gρ0J

2
0 ,2(ρ0)J0,abJ0,ab + gρ0J

2
0 ,3(ρ0)J0,abJ0,ba

]
+ ρ0

[
gρ0J

2
1 ,1(ρ0)J1,aaJ1,bb + gρ0J

2
1 ,2(ρ0)J1,abJ1,ab + gρ0J

2
1 ,3(ρ0)J1,abJ1,ba

]
+ ρ1

[
gρ1J0J1,1(ρ0)J1,aaJ0,bb + gρ1J0J1,2(ρ0)J1,abJ0,ab + gρ1J0J1,3(ρ0)J1,abJ0,ba

]}
.

(4.23)

In the actual HFB calculations with HFBTHO the g coefficients are approximated with

2This is because the NN Fock terms could also be incorporated essentially exactly in the same fashion as
the Hartree terms. This is common practice for Gogny EDFs.
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interpolation functions of the form

guvt (ρ0) → g̃uvt (ρ0) = g̃uvt (0) +
N∑
i=1

ai arctan(biρ
ci
0 )

i , (4.24)

guvw(ρ0) → g̃uvw(ρ0) = g̃uvw(0) +

N∑
i=1

ai arctan(biρ
ci
0 )

i , (4.25)

where N = 3 and the coefficients g̃
uv(w)
t (0), ai, bi, ci are fitted separately for each g coefficient.

For details on the interpolation see Ref. [140]. Note that Eq. (47) therein contains an error
which is corrected in Eqs. (4.24) and (4.25) above.

In this work we stick to the choice of Refs. [140, 149] and use the (simplified) PSA-
DME [135, 145] and the “Navarro Pérez” expansion scheme as discussed in Sec. 3.5 for the
3N forces. The DME is applied to the isoscalar and isovector parts of the one-body density
matrix using an isoscalar momentum scale, which works well for the former, but not for the
latter. However, the isovector Fock contributions are small and again we expect the Skyrme
parameter fitting to partly compensate the errors. We leave the investigation of the impact of
making different choices for the DME, discussed in Ch. 3, in the EDF construction for future
work.

Note that some of the 3N Fock terms used in Ref. [140] were incorrect; these have been
corrected in the present work. We provide the resulting interpolation parameters entering
Eqs. (4.24) and (4.25) in Tabs. A.2 and A.3 and introduce the notation

wuv
t (ρ0) = Cuv

t (ρ0) + g̃uvt (ρ0) (4.26)

for the combination of Skyrme coefficient and NN g coefficient function of the same kind. In
addition, we use

W uv
t (ρ0) = Cuv

t (ρ0) + T uv
t + g̃uvt (ρ0) + g̃ρ0utvt(ρ0)ρ0 (4.27)

for the combination of Skyrme coefficient, Taylor-expanded Hartree contribution, as well as
NN and 3N g coefficient functions of the same kind.

4.2 Numerical methods

4.2.1 Hartree-Fock-Bogoliubov calculations

We obtain nuclear ground states based on the EDFs described in the previous subsections
by performing HFB calculations. By varying the EDF, Eq. (4.2), with respect to the single-
particle orbitals in analogy to the derivation of the HF equations for density-dependent forces
discussed in Sec. 2.3, one obtains the HFB equations for the GUDE functionals. They read
[cf. Eq. (2.75)] (

h h̃

h̃ −h

)(
Ui

Vi

)
=

(
ε+ λ 0

0 ε− λ

)(
Ui

Vi

)
, (4.28)

where we introduced the fields h and h̃. Here and below we suppress the dependence of the
orbitals, densities, and fields on position R and spin for brevity. The pairing field is obtained
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from the variation with respect to ρ̃q as

h̃q =
1

2
V q
0

(
1− 1

2

ρ0
ρs

)
ρ̃q , (4.29)

where q depends on whether the field acts on the neutron or proton state. The field h, which
belongs to the particle-hole part of the EDF, can be expressed in agreement with standard
notation for Skyrme HFB equations [166, 167, 196] in terms of the effective mass field M , the
HF field U ,3 the spin-orbit field B, and (for protons) the Coulomb field Vc:

hq = −∇Mq∇+ Uq +
1

2i
(∇aσbBq,ab +Bq,ab∇aσb) + δqpVc , (4.30)

where Einstein summation convention is employed for the spacial indices.
We obtain Mq from varying the EDF with respect to τq:

Mq =
ℏ2

2m
+
∑
t=0,1

[
Stqw

ρτ
t (ρ0)ρt + gρ

2
t τ0(ρ0)ρ

2
t

]
+ S1qg

ρ0ρ1τ1(ρ0)ρ0ρ1 . (4.31)

To keep the equations relatively compact we introduce the sign factor

Stq =
∂τt
∂τq

=

−1 when t = 1 and q = p ,

1 else ,
(4.32)

which holds analogously for other kinds of densities.
From varying with respect to ρq we get

Uq =
∑
t=0,1

[
Stq2w

ρρ
t (ρ0)ρt + wρρ

t (ρ0)
′
ρ2t + Stqw

ρτ
t (ρ0)τt + gρτt (ρ0)

′
ρtτt + Stq2w

ρ∆ρ
t (ρ0)∆ρt

+ gρ∆ρ
t (ρ0)

′
ρt∆ρt + gρ∆ρ

t (ρ0)
′
ρt∆ρ0 + gρ∆ρ

t (ρ0)
′′
ρt(∇ρ0)

2 + StqC
ρ∇J
t ∇ · Jt

+ gJJ,2t (ρ0)
′
Jt,abJt,ab + gJJ,1t (ρ0)

′
Jt,abJt,ba + Stq

∫
dR′ Vt(|R−R′|)ρt(R′)

]
− 1

8
V q
0

1

ρs
ρ̃2q +

δEχ
F,3N

δρq
, (4.33)

where primes denote derivatives with respect to ρ0. We abstain from explicitly stating the very
lengthy result for δEχ

F,3N/δρq that can be obtained similarly by applying functional derivative
rules and do not show terms depending on Jt,aa, which vanish for axial symmetry [166].

Variation with respect to Jq,ab gives rise to

Bq,ab =
∑
t=0,1

Stq

{
2CJJ

t Jt,ab + 2gJJ,2t (ρ0)Jt,ab + 2gJJ,1t (ρ0)Jt,ba + Cρ∇J
t ρt

+ ρ0ϵiabg
ρ0∇ρtJt(ρ0)∇iρt + ρ1ϵiabg

ρ1∇ρ1−tJt(ρ0)∇iρ1−t

+ ρ02
[
gρ0J

2
t ,2(ρ0)Jt,ab + gρ0J

2
t ,3(ρ0)Jt,ba

]
+ ρ1

[
gρ1J0J1,2(ρ0)J1−t,ab + gρ1J0J1,3(ρ0)J1−t,ba

]}
. (4.34)

3The HF field U (or Uq) is not to be confused with the upper component of the HFB orbital Ui.
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Lastly, the Coulomb field reads

Vc = −e2
(
3

π

)1/3

ρ1/3p + e2
∫
dR′ ρp(R

′)

|R−R′|
. (4.35)

For vanishing chiral contributions the fields given above agree with the usual results for a
Skyrme interaction as given in Ref. [166] after identifying the representation of the Skyrme
EDF in terms of couplings Cuv

t with the traditional notation using ti, xi,W0 parameters. The
conversion formulas are given e.g. in Refs. [83, 173, 224].

The HFB equations [Eq. (4.28)] are solved with the DFT code HFBTHO which expands the
single-particle wavefunctions in a harmonic-oscillator basis in cylindrical coordinates [166, 217,
218, 220]. For calculations of ground states bases without axial deformation are used. In all
cases the basis consists of 20 HO shells and the spherical frequency ω0 of the HO basis is
set according to the empirical formula ω0 = 1.2× 41/A1/3 MeV [217] unless noted otherwise.
The HFB equations are then solved by iteratively diagonalizing the HFB Hamiltonian in
configuration space, while evaluation of the potentials and densities is performed in coordinate
space [166]. The iterative procedure is carried out until either self-consistency is reached
(determined in terms of the norm of the difference of the HFB matrix of subsequent steps
being smaller than ε) or a certain number of steps have been carried out and the result is
flagged as unconverged, see later for details. HFB solutions are obtained using the kick-off
mode of HFBTHO in which an axial quadrupole deformation constraint is applied during at
most the first 10 HFB iteration steps to guide the solution towards the desired local minimum,
then the constraint is lifted [217, 220].

4.2.2 Note on symmetry projection

The axially symmetric HFB calculations carried out here break particle-number symmetry
(see discussion in Sec. 2.4), rotational symmetry, and translational symmetry. In this work, we
abstain from restoring any symmetries. Doing this exactly requires the use of computationally
expensive frameworks.

Translational symmetry is commonly approximately restored by subtracting a center-of-
mass correction (proportional to 1/A) to the kinetic energy [83]. This works well for nuclei
in the medium-mass regime and beyond. However, this approximate correction has several
issues, see e.g., Refs. [102, 225]. In particular it causes conceptual problems for calculations of
nuclear fission, where a nucleus splits into fragments, as it is not additive in particle number.
Hence, the center-of-mass correction was dropped in the construction of the functionals of
Refs. [102, 112, 140] and we also do not take it into account.

In Ref. [140], particle number projection was approximated with a variant of the Lipkin-
Nogami prescription derived for a seniority-pairing interaction with an adjusted effective
strength [226]. In Ref. [227] it was shown that this scheme compared well against the numeri-
cally expensive variation-after-projection scheme in well-deformed nuclei, but not near closed
shells; see also Ref. [228]. In addition to the lack of consistency between the actual pairing
interaction and the one used for the LN scheme, the LN scheme is not variational. For these
reasons, we drop this prescription and work at the HFB level only. Note that the UNEDF1-
HFB parameterization of the Skyrme EDF was also performed without the seniority-based
LN scheme of its parent UNEDF1 and its performance was only slightly worse [79].

Rotational symmetry is also not restored here. It is known to add up to a few MeV of
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correlation energy, in particular for very deformed states [78]. Such statements are made for
a given EDF parametrization though. The missing restorations can therefore be expected to
be partially compensated by the EDF parameter optimization that we discuss below.

Future development of this work’s EDFs should nevertheless involve revisiting restoration
of the broken symmetries. This is a topic of ongoing research due to the computational
complexity of projection techniques and different issues thereof as mentioned above. See
Ref. [18] for an overview.

4.2.3 Optimization of Skyrme and pairing parameters

ESkyrme and Epair contain in total 15 parameters Cuv
t , γ, and V q

0 which need to be determined
from fitting to data. Note that Eχ

H and Eχ
F are free of adjustable parameters. Thus, the number

of optimization parameters is the same for functionals constructed here with and without chiral
terms. The volume parameters Cρρ

t0 , C
ρρ
tD, C

ρτ
t , and γ can be related to properties of infinite

nuclear matter. Expressing the exponent γ in terms of INM parameters at saturation gives

γ =

{
−(K −Kfr)− 9

(
E − Esat,fr +

Pfr

ρc

)
+

ℏ2

2m

[
4
(
M∗−1

s −M∗−1
s,fr

)
− 3
]
Cρ2/3c +Aγ(uc)

}
/{

9

(
E − Esat,fr +

Pfr

ρc

)
+

3ℏ2

2m

[
2
(
M∗−1

s −M∗−1
s,fr

)
− 3
]
Cρ2/3c +Bγ(uc)

}
, (4.36)

where quantities indexed “fr” represent the contributions from the finite-range Hartree terms
to the INM parameters (see Ref. [229]). P denotes the pressure of symmetric matter at
saturation density, C = 3/5 · (3π2/2)2/3, and uc = (3π2ρc/2)

1/3/mπ. The expressions for
Aγ(uc) and Bγ(uc) are given in Appendix C of Ref. [148]. The equations for the other volume
parameters can easily be obtained from the ones given in Ref. [148] by adding the respective
contributions from the finite-range Hartree terms [229].

Proceeding in this way we express the volume parameters via saturation density ρc, sat-
uration energy E, incompressibility of symmetric nuclear matter K, isoscalar effective mass
M∗

s , symmetry energy at saturation density asym, its slope Lsym, and isovector effective mass
M∗

v . As in previous works [102, 112, 140, 215] we do not optimize the isovector effective mass,
which is known to be poorly constrained by typical data sets [215], but instead keep it fixed
at its SLy4 value, M∗−1

v = 1.249. This leaves 14 parameters to be optimized.
Using INM properties at saturation density as optimization parameters instead of EDF

volume parameters allows us to impose physically motivated constraints on these parameters
and is expected to allow the GUDE functionals to also describe infinite matter reasonably
well.4 The bounds that we impose are not allowed to be violated in our optimization procedure.
We take the same bounds as in Refs. [102, 112, 140, 215] except for K and Lsym. For the
incompressibility K we extend the allowed range to [180, 260] MeV based on the analysis of
Ref. [230] using different forces from chiral EFT, which obtained a range of [182, 262] MeV,
and a study assessing the nuclear matter properties of Skyrme EDFs, which used [200, 260]
MeV based on different experimental and empirical results [101]. For the slope parameter Lsym

4In finite nuclei, densities typically reach up to saturation density. Using constraints at much higher
densities could be problematic because of the restricted density dependence of Skyrme EDFs, which might
then lead to a significant deterioration of the description of finite nuclei. Note that the analysis of Ref. [101]
seems to be in agreement with these considerations. The authors find that multiple Skyrme parametrizations
do not pass a constraint employing information beyond twice saturation density despite them passing all other
considered tests.
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Table 4.1: Parameters optimized in this work and their bound constraints.

x lower bound upper bound

ρc (fm−3) 0.15 0.17
E (MeV) −16.2 −15.8
K (MeV) 180 260
M∗−1

s 0.9 1.5
asym (MeV) 28 36
Lsym (MeV) 30 80
Cρ∆ρ
0 −∞ ∞

Cρ∆ρ
1 −∞ ∞

Cρ∇J
0 −∞ ∞

Cρ∇J
0 −∞ ∞

CJJ
0 −∞ ∞

CJJ
1 −∞ ∞

V n
0 −∞ ∞

V p
0 −∞ ∞

Table 4.2: Characteristics of the components of the loss function. ni is the number of data points
for each data type i and wi is the inverse weight. For the latter, all units are MeV except Rp which is
in fm.

i Esph Edef ∆n ∆p Rp E∗

ni 29 47 7 6 28 4
wi 1.95 0.227 0.0457 0.0703 0.0177 0.85

we use [30, 80] MeV based on the overlapping region of different experimental and theoretical
constraints, see Refs. [231, 232]. Collectively we denote our set of optimization parameters as
x. The parameters and their ranges are summarized in Tab. 4.1.

They are determined by minimizing a loss function, which is given by a weighted sum of
squared errors:

χ2(x) =

DT∑
i=1

ni∑
j=1

(
si,j(x)− di,j

wi

)2

, (4.37)

where si,j(x) are the EDF predictions and di,j the data. DT is the number of different data
types. In this work we consider ground-state energies of spherical (Esph) and deformed (Edef)
nuclei, neutron (∆n) and proton (∆p) odd-even staggerings, proton point radii (Rp), and fission
isomer excitation energies (E∗), therefore DT = 6. For every data type i we employ a different
inverse weight wi that represents the expected errors in describing the different observables [79,
233]. Rather than the somewhat arbitrary values set in Ref. [140], we choose for the weights
the estimates determined from the Bayesian calibration of the UNEDF1 functional [234]; see
Tab. 4.2 for the numerical values. This choice is justified by the fact that the data types
contained in our fit data set are the same as for UNEDF1. In addition, the form of the
functionals (at least for our reference EDF without contributions from chiral EFT) as well as
the employed optimization protocol are similar. Thus, we consider those posterior estimates
as good proxies also for the functionals considered here.

Table 4.2 also contains a brief overview of the experimental data di,j considered as part of
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Figure 4.3: Experimental data used for optimization of EDF parameters. All even-even nuclei of
which the ground-states binding energies are given in the 2020 atomic mass evaluation [235] (excluding
evaluated masses) are depicted in gray. Nuclei included in the fit protocol are shown with different
red and blue symbols depending on the considered data types.

the χ2 and Fig. 4.3 shows in detail which data types are considered for which nuclei5 and the
used values are given in Tabs. A.4 to A.9. The experimental data is similar to the data used in
Refs. [112, 140]. However, we exclude single-particle level splittings from the data set. These
were introduced in Ref. [112] together with removing the restriction of CJJ

0 = CJJ
1 = 0 for the

tensor part of UNEDF1 in an attempt to improve the description of nuclear shell structure.
The reported standard deviations for the tensor coefficients were quite large and the observed
improvement of the shell structure relatively small. Because the blocking calculations carried
out to determine the single-particle structure are numerically expensive, we therefore decide
to remove the the single-particle level splittings from the data set. With those exceptions, we
consider the same data types for the same nuclei as in Refs. [112, 140]. The sources for the
experimental data are listed in the following.

We determine nuclear ground-state energies Esph and Edef (here collectively referred to as
E) according to

E = −(Eato − Eel) (4.38)

from atomic binding energies Eato collected in the 2020 atomic mass evaluation (AME) [235].
For the electronic binding energies we assume [235]

Eel =
(
14.4381Z2.39 + 1.55468× 10−6Z5.35

)
eV . (4.39)

Neutron odd-even staggerings are determined for a nucleus with Z protons and N neutrons

5In the data set 62Ni and 64Ni are assumed to be spherical. However, the global ground-state calculations
discussed in Sec. 4.3.3 show that for the GUDE functionals their ground states are deformed. The differences
in energy between the spherical and the deformed solutions are not large (at most about 0.4 MeV). Regardless,
in the future the classification of these nuclei in the optimization data set should be adjusted.
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from the experimental ground-state energies according to [112]

∆n(Z,N) =
1

2

[
∆(3)

n (Z,N − 1) + ∆(3)
n (Z,N + 1)

]
(4.40)

with the three-point mass indicator [228]

∆(3)
n (Z,N) =

1

2
[2E(Z,N)− E(Z,N − 1)− E(Z,N + 1)] . (4.41)

Proton odd-even staggerings are determined analogously.
We use data for charge radii rch from Ref. [236]. For 56Ni, which had not been measured

yet, we take the value determined in Ref. [237]. The charge radii are converted into proton
point radii according to [140]

R2
p = r2ch − r2p − N

Z
r2n , (4.42)

where we use the 2018 Committee on Data of the International Science Council recommended
value for the proton charge radius rp = 0.8414 fm [238] and the 2022 Particle Data Group
average for the neutron charge radius square r2n = −0.1155 fm2 [239].

For the fission isomer energies we use as before the values collected in Ref. [240].
The EDF predictions si,j(x) are obtained for given values of the parameters x at every

optimization step by solving HFB equations with the setup explained in Sec. 4.2.1. The value
of the quadrupole moment used to initialize the kick-off mode is computed by assuming a
ground-state deformation of β2 = 0.3 for deformed nuclei and a fission isomer deformation of
β2 = 0.6. See Ref. [234] for a detailed analysis on the role of the quadrupole values concluding
that sensitivity to the precise values is quite low. In total, 81 HFB calculations are performed
at every optimization step: 77 for the ground states of the nuclei in the data set, for which
no axial basis deformation is used, and 4 for the fission isomers, which are calculated with
an axial basis deformation parameter of β = 0.4. The calculations are initialized from the
solution of the Schrödinger equation for a Woods–Saxon potential whose deformation is chosen
in agreement with the basis deformation. If an HFB calculation does not converge after 500
iteration steps, it is aborted and flagged as unconverged.

We use the average neutron (proton) HFB pairing gap as EDF prediction for neutron
(proton) odd-even staggering. While this is an approximation [241], actually determining
odd-even mass differences would require calculating ground states of odd nuclei for which
additional EDF terms enter due to broken time-reversal invariance and the determination of
odd ground states via blocking calculations is much more involved than calculating ground
states of even-even nuclei [242].

To find the parameter set x for which χ2(x) is minimized within the bound constraints
discussed above we employ the derivative-free optimization algorithm POUNDERS [243, 244]. It
solves the nonlinear least squares problem by constructing a quadratic model for each term
in the χ2. The resulting quadratic model for the χ2 is assumed to be valid only within a
certain trust region. Minimizing the model in this region yields a solution candidate point.
Then new quadratic models are constructed around this point and the trust region is updated.
In this way an iterative optimization procedure is obtained, see Ref. [244] for details on the
algorithm. POUNDERS needs significantly fewer iteration steps to converge to a minimum than
a conventional Nelder-Mead optimization routine [215, 243].

At every iteration step, the trust region is essentially a hypersphere around the current
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candidate point (in a space where the different optimization parameters are scaled as described
in Ref. [243]). The hypersphere’s radius shrinks when getting closer to the minimum. Some-
times POUNDERS shrinks this radius too quickly despite the current candidate point not being
sufficiently close to the optimum yet. In such scenarios restarting POUNDERS from the current
candidate point helps to accelerate the convergence and allows it to possibly jump to another
valley in the parameter landscape. Therefore, we restart the optimization every 150 iteration
steps and in doing so set the trust region radius back to its initial value of ∆0 = 0.1.

We use the parameter sets obtained at different orders in the chiral expansion in Ref. [140]
as starting points for the optimization of the corresponding GUDE functionals constructed
here. For the reference “no chiral” functional we start the optimization from the UNEDF2
parameters [112]. For a few EDFs we carry out the optimizations more than once employing
also other Skyrme parametrizations as starting points (namely SLy4 [195], SkM∗ [245], and
NRAPR [246]).6 We find that if those optimization runs converge, they converge to the same
solutions as the other optimizations. This gives us confidence that the parametrizations we
obtain constitute global optima (within the employed bound constraints).

Because we carry out these optimizations with a reduced HFB accuracy (ε = 10−4) to
save on runtime, we perform a final optimization of every EDF for at most 100 optimization
iteration steps with the HFB convergence criterion set to ε = 10−5. This is the same value
we also use in Sec. 4.3 to predict observables with the EDFs. We start this final optimization
from the best solution candidate found until then and use ∆0 = 0.05. Only parameter sets
that yield no unconverged calculations are eligible as final parametrizations.

4.3 Results

4.3.1 Obtained parametrizations

The parameter values obtained from the optimizations described in Sec. 4.2.3 are given in
Tab. 4.3. Parameters that ended up at their bounds are underlined. We provide the EDF
parameters with larger precision in Tabs. A.10 and A.11, both in their explicit representation
and equivalently in terms of INM properties. We refer to the Skyrme-type GUDE functional
without any chiral terms as “no chiral”. The other GUDE EDFs are labelled according to
up to which order chiral terms are included and whether they include interaction terms with
explicitly resolved intermediate ∆ excitations and 3N forces. We categorize the EDFs according
to their properties discussed in the next paragraphs: we refer to the “no chiral” functional as
class 0, to the LO and NLO functionals collectively as class 1, and to the remaining functionals
as class 2. This latter class contains also a functional labelled “min. chiral”. It is constructed
with the idea of adding as few terms as possible to the “no chiral” version while still obtaining
an EDF that behaves like a member of class 2. Details of the construction of this functional
are discussed in Sec. 4.3.2. In Tab. 4.3, the different classes are indicated by vertical lines.
The “reduced Rc,3N” functional, which is also included in this Table, is discussed in Sec. 4.4.

6Because the original SLy4 parametrization does not use the mixed pairing prescription employed here,
the pairing strengths are adjusted for the SLy4 starting point: we start these optimizations with V n

0 = V p
0 =

−258.2 MeV fm3. Also, the SLy4 EDF does not contain tensor terms; thus we set CJJ
0 = CJJ

1 = 0. The NRAPR
EDF does not include pairing at all. For the corresponding starting point we pick V n

0 = V p
0 = −280 MeV fm3

similar to the choice made in Ref. [243]. The same choice is made for SkM∗.
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Table 4.3: Parameters of the different GUDE variants obtained in this work. Values that are underlined correspond to cases where the minimum was
attained at a parameter bound. ρc is given in fm−3, E, K, asym, and Lsym are in MeV, the surface coefficients Cρ∆ρ

t , Cρ∇J
t and CJJ

t are in MeV fm5, and
the pairing strengths V q

0 are in MeV fm3. The last row gives the value of the loss function (4.37) at the minimum.

class 0 class 1 class 2
no chiral LO NLO N2LO N2LO+3N NLO∆ NLO∆+3N N2LO∆ N2LO∆+3N min. chiral reduced Rc,3N

ρc 0.15463 0.15430 0.15423 0.15779 0.15749 0.15571 0.15615 0.15606 0.15681 0.15832 0.15905
E −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.830 −15.817
K 260 260 260 222.2 215.2 240.8 230.9 236.0 222.4 223.6 215.6
M∗−1

s 0.9788 0.9579 0.9641 0.9048 0.9027 0.9 0.9 0.9 0.9057 0.9173 0.9622
asym 29.95 30.98 30.99 28.07 28.45 28.43 28.63 28.37 28.60 28.58 28.82
Lsym 41.4 59.6 58.9 34.1 30 30 30 30 30 30 30

Cρ∆ρ
0 −41.4 −37.5 −38.4 24.5 9.4 18.5 8.2 27.0 10.9 22.5 −10.1

Cρ∆ρ
1 −6.4 −25.0 −15.1 −83.2 −21.6 −12.9 −3.4 −17.3 −5.6 −38.8 −31.8

Cρ∇J
0 −62.3 −72.9 −74.2 −82.6 −88.3 −65.5 −77.7 −65.3 −86.3 −61.4 −128.5

Cρ∇J
1 11.0 18.1 15.5 −39.3 18.6 17.5 23.5 14.9 19.7 3.4 27.6

CJJ
0 −43.4 −75.1 −75.8 −53.4 −78.1 −100.4 −97.4 −103.3 −83.7 −38.8 −70.1

CJJ
1 −30.1 −15.0 −12.3 12.3 1.3 −10.2 −8.0 −11.0 −2.6 −4.2 28.5

V n
0 −218.4 −219.9 −220.9 −207.2 −209.1 −205.8 −207.2 −206.5 −209.1 −206.5 −222.5

V p
0 −259.9 −263.0 −263.2 −246.4 −255.5 −251.9 −253.7 −252.5 −255.3 −249.4 −267.4

γ 0.467 0.546 0.541 0.358 0.320 0.432 0.385 0.418 0.352 0.363 −0.225

χ2 122.4 144.9 145.5 89.3 88.7 86.2 89.1 86.5 90.7 87.4 90.4
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Figure 4.4: Energy per particle in infinite nuclear matter for selected GUDE functionals constructed
in this work. For each EDF, both pure neutron matter and symmetric nuclear matter energies are
shown. The bound constraints on saturation density, saturation energy, and symmetry energy employed
in the optimization of the EDFs are also depicted. For comparison, we show the 1σ uncertainty bands
from a calculation employing a chiral Hamiltonian by Drischler et al. for ρ0 ⩾ 0.05 fm−3 [231].

We start with a discussion of the INM parameters of the different GUDE variants. The
saturation energy E ends up at its upper bound7 for almost all optimized functionals. This
also holds for the value of the incompressibility K for classes 0 and 1. For class 2 the
incompressibility acquires lower values inside the allowed parameter range. All other considered
nuclear matter parameters also indicate a qualitative difference between classes 0 and 1 on
the one hand and class 2 on the other hand: the variation of the INM parameters within these
groups is much smaller than the difference between them. The main parameter difference
between class 0 and class 1 lies in an increased value of the slope parameter Lsym for the chiral
functionals. When going to the class 2 functionals Lsym gets significantly reduced and ends
up at its lower bound for most of the EDFs, with a correspondingly lower asym parameter.
These reductions follow approximately the known empirical correlations, see, e.g., Ref. [232].
Note that for some of the EDFs the inverse isoscalar effective mass M∗−1

s attains its lower
bound, too. While M∗−1

s = 0.9 is relatively low compared to typical values [101], this value
was also obtained for UNEDF0 [215].

In Fig. 4.4 we show the energy per particle for pure neutron matter and symmetric nuclear
matter for four functionals constructed in this work, one each from class 0 and 1 and two from

7Note that for the N2LO+3N (obtained value of E: −15.801) and N2LO∆ (−15.8001) EDFs the value of
E did not quite end up at the bound when the optimizations finished. Given that these values are very close to
the bounds we expect that letting POUNDERS run longer would lead to parameter sets where these parameters
are right at the bound.
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class 2. The differences between the EDFs are very small up to about saturation density. This
is not surprising since this region is probed by finite nuclei and hence strongly constrained by
the fit to experimental data. The differences between the different classes become much more
pronounced for ρ0 ≳ ρc, in particular for neutron matter. This region is not probed by finite
nuclei, which is also why the deviation from the additionally given ab initio result observed
for class 2 in this density regime for neutron matter is not surprising. The plotted uncertainty
bands have been obtained by Drischler et al. [231] based on the MBPT calculations from
Ref. [43] with a chiral NN+3N Hamiltonian at next-to-next-to-next-to-leading order with
momentum cutoff 500 MeV [247] and 3N forces fit to saturation. The difference of the EDFs
to the ab initio results that is visible for symmetric matter is a consequence of the saturation
energy bounds employed in this work, which are not obeyed by the ab initio results. Note that
the curves for the two class 2 representatives, the N2LO∆+3N and the “min. chiral” variant,
are very close to each other even for ρ0 > ρc. This holds analogously for other EDFs from the
same class.

Overall, and in particular within the classes as defined above, the description of INM at
saturation density and below shows a large consistency between the different functionals. This
may be considered surprising given that the chiral contributions are quite different in size
depending on the chiral order. However, it indicates that the optimization of the Skyrme and
pairing coefficients to data can to a large degree wash out the effect of the additional terms.
We return to this issue in Sec. 4.4.

In Tab. 4.3 we also provide the value of the γ exponent for the different EDFs. Compared
to the “no chiral” variant it is larger for class 1, but smaller for class 2, indicating that the
density-dependent terms absorb different physics for the two classes. Along the same lines
we note that at every order γ is smaller by about 0.05 for functionals including chiral 3N
contributions.

For all GUDE variants the generally observed hierarchy of pairing strengths |V p
0 | >

|V n
0 | [228, 248] holds. The somewhat weaker strengths obtained for the class 2 EDFs when

comparing to the other classes is in agreement with the lower M∗−1
s values for class 2 [83].

Note that a direct comparison of the surface parameters of the different GUDE variants
makes little sense because the chiral contributions to the corresponding terms depend on the
functional and are not included in the Cuv

t values given in Tab. 4.3.
Based on starting optimization runs of the same GUDE variant from different initial

points [12] we find that the parameters of the isovector part of the EDF8 are relatively ill-
constrained with our optimization protocol. This is in agreement with observations made in
other nuclear EDF optimizations [112, 113, 215, 229, 249]. To better determine the isovector
parameters the optimization data set has to be augmented; see also Ch. 5. Also the CJJ

0

parameter seems poorly constrained. To quantify these statements a rigorous statistical
analysis should be carried out in future work.

The last row of Tab. 4.3 contains the value of the loss function χ2 at the optimum. For
the “no chiral” EDF it is around 120. Adding the chiral terms at LO (and NLO) according
to the construction described in Sec. 4.1 worsens the χ2 at the minimum: it attains values
around 145. This stems from a slightly worse description of ground-state and fission isomer
energies.

However, the additional inclusion of chiral terms at N2LO or of the ∆ contributions at NLO

8We use established, but imprecise terminology here referring to terms depending on isovector densities as
the isovector part of the EDF although the corresponding energy density is an isoscalar.
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Table 4.4: Exact scalar Hartree energies and differences of scalar Hartree energies calculated with
Taylor expansions of the densities up to a given order [cf. Eq. (4.20)] and the corresponding exact
energies (all in MeV). The densities are generated from calculations with the SLy4 EDF. Results are
given for the chiral pion exchanges considered here at N2LO and for the finite-range parts of the Gogny
D1S functional [186].

Differences at order
Interaction Nucleus Exact energy 0 2 4

Chiral N2LO
48Ca −759 −118 22 −9
208Pb −3937 −290 40 −15

Gogny D1S
48Ca −9827 −433 27 −4
208Pb −47695 −1028 49 −7

reduces the χ2 at the minimum to about 90. In particular experimental energies of spherical
nuclei in the fitting set are better described by the class 2 functionals. The root-mean-square
deviation (RMSD) for those is 2.5 MeV for the “no chiral” EDF, but only 1.6 MeV for the
class 2 GUDE variants. The other data types in the χ2 are typically either slightly improved
or are equally well described when comparing to the “no chiral” functional.

We note that the N2LO EDF constitutes a slight deviation to these general trends (which
can also been seen from some of the parameter values listed in Tab. 4.3): it describes the radii
in the χ2 worse than all other EDFs but proton odd-even staggerings are much improved.

4.3.2 Investigation of improved functionals and construction of “min. chiral”
functional

As discussed in the previous section and further in Sec. 4.3.3 we observe an improvement over
the “no chiral” functional when going to EDFs that include chiral terms entering at N2LO
(or NLO when including interactions with explicit ∆ excitations). It turns out that only a
small subset of the terms that contribute at these orders is actually necessary to achieve the
improvement.

First, the inclusion of chiral isovector contributions is not required. This is hardly surprising
given that the Skyrme part of the EDFs contains 6 parameters contributing solely to the
isovector part which is to be compared to 7 parameters for the isoscalar terms, but the
isoscalar energy contributions are at least an order of magnitude larger than the isovector
ones [170]. The similar amount of parameters for the two EDF parts suggests one may expect
a similar relative precision for the corresponding energy contributions. The resulting absolute
deviations would then be much bigger for isoscalar energies. Thus, one can expect omitting
chiral isovector contributions does not significantly impact the description of bulk properties of
finite nuclei (after refitting the EDF parameters). Of course this is amplified by the inadequacy
of the optimization data set to accurately fix the EDF isovector parameters.

Performing an optimization of an EDF as described by Eq. (4.1) but taking into account
from the chiral side only Fock contributions up to N2LO yields a class-1-like functional
which suggests that the switch to class 2 is due to the Hartree terms. Indeed N2LO (NLO
with ∆s) is the first order which for even-even systems has isoscalar pion-exchange Hartree
contributions. These are by far the largest chiral contributions to the energy. In Tab. 4.4 we
show the expectation values of the exact Hartree energy from pion-exchange contributions up
to N2LO in the chiral expansion. They are obtained with densities generated from calculations
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Figure 4.5: Contributions to gρρ0 arising at different chiral orders. We show contributions at LO,
NLO, and N2LO calculated from the interaction specified in Sec. 4.1.2 using the PSA-DME. In addition,
we show the LO contribution when using the Slater approximation instead of the PSA-DME.

performed with the code HOSPHE [197] employing the SLy4 EDF [195]. Additionally, we
provide the difference to these exact values for energies that we obtain when Taylor expanding
one density entering the Hartree energy, see Eq. (4.20). For comparison we also provide
the analogous numbers obtained with the finite-range parts of the Gogny EDF in the D1S
parametrization, see Ref. [170] for a more extensive study.

One can see that the energies obtained with the Taylor series converge relatively slowly
towards the exact values. In particular when going to second order in the Taylor expansion
the approximated value is still off by about 40 MeV in 208Pb. The second-order expression
for the energy has a Skyrme-like structure (density bilinears consisting of up to second-order
densities multiplied with constant prefactors). Therefore, one may expect that a Skyrme EDF
cannot fully account for the chiral Hartree contributions at N2LO if they are left out (as is the
case for classes 0 and 1). It is thus conceivable that class 2 GUDE variants behave differently
from classes 0 and 1.9

Carrying out the optimization of an EDF where in the chiral part only the isoscalar
Hartree contributions entering at N2LO are included leads to a functional with χ2 ≈ 112 at
the minimum, which is clearly larger than the values observed for class 2. For this EDF the
pairing strengths take a non-physical value V q

0 ≈ 40 MeV fm3. These observations suggest
another term is additionally needed to reproduce the class 2 behavior.

In Fig. 4.5 we show the contributions to the gρρ0 coefficient arising at different chiral
orders, but the following discussion applies also similarly to other g coefficients. The total gρρ0
coefficient at a given order is the sum of all depicted contributions ∆gρρ0 up to that order. The
LO contribution shows a strong density dependence with its value at ρ0 = 0 being about 5
times as large as the value at ρ0 = ρc. The contributions at NLO and N2LO are much smaller
and their density dependence is much weaker, which is why their effects can be easily captured
by simply adjusting Skyrme coefficients. In principle even the strongly density-dependent LO

9Note that the argument put forward above is not a direct proof because the fitting of the EDF parameters
may shuffle around contributions among more terms than the ones technically entering the Taylor-expanded
energy.



4.3 RESULTS 95

coefficient could be quite well mimicked by a Skyrme EDF due the presence of the Cρρ
tDρ

γ
0

term but since this term has to capture several different types of unresolved physics [116],
one may expect that adding the LO gρρ0 contribution explicitly still has a relevant effect.
Optimizing an EDF with both isoscalar chiral long-range Hartree contributions at N2LO and
Fock contributions at LO yields a functional belonging to class 2 as desired.

We showed in Sec. 3.4 that Fock energies from a Yukawa interaction can be well approxi-
mated by using the Slater approximation instead of the more involved PSA-DME applied for
the GUDE functionals so far. However this comes at the price of a worse local reproduction
of the Yukawa Fock energy density essentially everywhere in the nucleus. Using the Slater
approximation instead of the PSA-DME reduces the amount of non-vanishing isoscalar NN g

coefficient functions from five to one. We show the non-zero gρρ0 coefficient at LO in Fig. 4.5.
We find that the resulting EDFs differ by similar amounts as other functionals in class 2 differ
from each other. Therefore it seems safe to use the simpler Slater approximation in the present
EDF construction, at least for bulk properties.10

We refer to the EDF constructed according to Eq. (4.1) including for Eχ
H only the isoscalar

NN pion-exchange Hartree contribution entering at N2LO and as Eχ
F the isoscalar NN pion-

exchange Fock contribution at LO (described by the Slater approximation) as the “min. chiral”
GUDE variant. The parameters obtained when optimizing this functional are given in Tab. 4.3
and with higher precision in Appendix A.2, where we also provide the parameters used in the
interpolations for the chiral Hartree and Fock contributions according to Eqs. (4.15) and (4.24).
The INM parameters and the χ2 value at the optimum are in the ranges of the other class 2
functionals (see Tab. 4.3) indicating that the “min. chiral” variant indeed also belongs to this
class. This explicitly demonstrates that the two identified terms are enough to achieve the
improvement over classes 0 and 1.

4.3.3 Global comparison to experiment

We now investigate the performance of the different functional variants in the GUDE family
obtained in Sec. 4.3.1 by calculating the ground states of even-even nuclei included in the
2020 AME [235]. We include all 663 nuclei with actual measured masses, leaving out those
for which only evaluated masses are available. Every nucleus is calculated five times with
HFBTHO in kick-off mode setting the initial deformation constraint to β = −0.2,−0.1, 0, 0.1, 0.2

respectively. This is done so that oblate deformed, spherical, and prolate deformed solutions
are considered as possible ground states for every nucleus. The HFB calculations are carried
out until they are converged (typically within at most about 100 HFB iteration steps) or until
the amount of unconverged calculations for a given functional does not get further reduced for
at least 800 HFB steps. For most GUDE variants only about a handful of the 3315 calculations
end up unconverged at the end of this procedure. The N2LO EDF is the only exception from
this rule: even after more than 3000 HFB steps 111 calculations are still unconverged. Note
however that only 4 of those constitute the calculation with lowest binding energy for the
corresponding nucleus and for every nucleus at least one calculation is converging.

For every nucleus, we pick among the converged calculations the one with the lowest
energy as a first ground-state candidate and apply on it two filters to exclude unphysical
solutions. Whenever a filter is triggered, the calculation with the next-lowest energy for the

10When leaving out the regulator for the Fock contribution, the resulting coefficient can be evaluated
analytically, see Sec. 3.4.2. Then one also obtains a class 2 EDF, which is an option if one does not want to
use the g coefficient interpolation.
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Table 4.5: Deviations of ground-state energies, two-neutron and two-proton separation energies (all
in MeV), and charge radii (in fm) calculated with the different GUDE variants and the corresponding
experimental values. For every observable root-mean-square deviations and mean deviations are
provided. The values are calculated from all even-even nuclei with Z ⩾ 8 included in the experimental
data sets, see text for details on those.

no chiral LO NLO N2LO N2LO+3N NLO∆

RMSD

E 2.11 2.09 2.13 1.56 1.41 1.47
S2n 0.86 0.85 0.89 0.74 0.73 0.73
S2p 0.74 0.74 0.77 0.61 0.61 0.60
rch 0.024 0.024 0.025 0.024 0.023 0.022

Mean dev.

E 0.630 0.532 0.560 0.324 0.302 0.369
S2n 0.089 0.093 0.094 −0.060 −0.015 0.001
S2p −0.027 −0.036 −0.044 0.153 0.082 0.064
rch −0.0092 −0.0093 −0.0090 −0.0017 0.0003 −0.0018

NLO∆+3N N2LO∆ N2LO∆+3N min. chiral reduced Rc,3N

RMSD

E 1.50 1.42 1.53 1.45 1.43
S2n 0.75 0.73 0.77 0.75 0.76
S2p 0.62 0.59 0.64 0.63 0.67
rch 0.022 0.023 0.023 0.022 0.022

Mean dev.

E 0.393 0.296 0.387 0.293 0.205
S2n 0.010 −0.006 −0.003 −0.015 −0.029
S2p 0.053 0.073 0.069 0.081 0.096
rch −0.0025 −0.0006 −0.0014 −0.0010 0.0014

same nucleus is considered instead. First we do not consider solutions with E/A < −11 MeV.
This filter turns out to be triggered only a few times by calculations with EDFs that include
interactions with explicit ∆ isobars in the chiral terms. Second we apply a filter to remove
solutions with unphysically large deformations. This is done by applying the 1.5 interquartile
range rule, which is a simple measure to detect outliers of a distribution [250], on the values
of the deformation parameter β2 of all remaining ground state candidates. The β2 parameter
is much less mass-number dependent than the axial quadrupole moment of the nucleus Q20

and is related to it according to

β2 =

√
π

5
Q20/

(
AR2

m
)

(4.43)

with the root-mean-square matter point radius Rm. The deformation filter is in practice
triggered at most for two nuclei per EDF.11

We compare the resulting ground-state energies against the values extracted from the
2020 AME (taking into account an electronic binding energy correction as mentioned before).
Table 4.5 contains the corresponding root-mean square and mean deviations obtained for
nuclei with Z ⩾ 8. We also give the deviations of the two-neutron (S2n) and two-proton (S2p)

11Interestingly, one nucleus where the deformation filter is triggered for all EDFs with chiral terms is the
unbound 8Be, for which a superdeformed state is energetically favored by the calculations. This is in agreement
with the usual picture of this resonance as a two-α molecule [251]. However of course the predicted energies
are quite far away from the experimental result similar to the situation in other very light nuclei.
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Figure 4.6: Distributions of ground-state energy differences between calculated and experimental
results. They are shown for the “no chiral” and “min. chiral” GUDE functionals in bins with a width of
1 MeV each. Note that the last bin contains also values with an energy difference larger than 10.5 MeV.

separation energies obtained from the same data set, and of the charge radii from Ref. [236].
GUDE variants of the same class behave very similar for all these quantities with the only
exception being somewhat larger mean deviations observed for separation energies for the
N2LO functional compared to other class 2 EDFs.

While classes 0 and 1 perform similarly, an improvement is observed for all observables
when going to class 2. In particular, the ground-state energy RMSD is significantly reduced by
roughly 30% from 2.1 MeV for classes 0 and 1 to about 1.5 MeV for the various class 2 EDFs.
The mean deviation ⟨Etheo − Eexp⟩ is almost halved down to 0.3 MeV, indicating that the
energies are less biased towards underbinding for class 2. This can also be seen in Fig. 4.6,12

which shows the histogram of the quantity Etheo−Eexp. Calculations which produce extremely
underbound nuclei (those at the very right of the distribution) occur much less often for the
class 2 “min. chiral” functional than for the reference “no chiral” EDF. Such cases correspond
mostly to very light nuclei. For the class 2 variants almost half of all nuclei are described with
a mass error of less than 0.5 MeV. Note that while the binding energies included in the χ2 are
described better by class 0 than by class 1, the performance on all even-even nuclei binding
energies is very similar for these two classes.

In the upper row of Fig. 4.7 we show ground-state energy residuals for four GUDE vari-
ants.13 One can clearly see that the class 2 EDFs describe energies around the N = 82 and
N = 126 shell closures much better than the classes 0 and 1 variants. We note that due to
the parameter optimization involved in the construction of every functional it is not clear if
the additional chiral terms entering the class 2 functionals are actually directly improving
the description of (near-)closed-shell nuclei or if they instead improve the open shells and
indirectly allow the parameter optimization to yield a better reproduction of closed shells. In
addition, the observed underbinding for light nuclei is reduced for the class 2 variants.

12Note that this and following figures contain also nuclei with Z < 8, unlike the values provided in Tab. 4.5.
13The outlier that can be seen at N = 146 in the case of N2LO∆+3N is 234Ra. For that functional the

prolate solution has an energy relatively close to experiment and all the other nuclei of the radium chain are
prolate in the calculations, too. But for 234Ra the prolate solution is not (quite) converged and thus the oblate
solution is assumed as the ground state, but its energy is higher by about 5 MeV.
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Figure 4.7: Differences of ground-state energies (upper panels) and charge radii (lower panels) for
even-even nuclei between values obtained with selected GUDE variants and experiment.

For both two-neutron and two-proton separation energies class 2 EDFs give a small im-
provement over classes 0 and 1: the RMSD values are reduced by about 12%. In addition,
the bias on S2n values is almost completely gone while it is increased for S2p. We depict
two-neutron separation energies for the “no chiral” and “min. chiral” functionals in Fig. 4.8.
This shows that their description is improved for some light nuclei and around the N = 82,
126 (and N = 40 sub-) shell closures. Not very surprisingly this agrees mostly with the regions
where ground-state energies are improved.

The strength of a few shell closures is overpredicted by all GUDE variants. This can be
seen in form of sudden color changes in Fig. 4.8 and leads to the spikes visible for ground-
state energies in Fig. 4.7. In Fig. 4.9 we present two-neutron separation energies along the
thorium isotopic chain, where such behavior is clearly visible at N = 126 (i.e., A = 216). The
predictions at and around the shell closure are significantly improved for class 2 functionals,
but large deviations with experiment still persist. Note that the underprediction of two-
neutron separation energies for nuclei just above the shell closure also occurs for other EDFs,
for instance when performing calculations with UNEDF2 [112] with even larger magnitude.
Further away from the shell closure, measured values are in excellent agreement with theoretical
predictions for all GUDE variants. Note that 232Th is part of the optimization data set.

The description of charge radii is least affected by the additional chiral terms added in
class 2. This can also be seen in the lower row of panels of Fig. 4.7. Charge radii are only
slightly better described for N ≈ 40 to 100 and their mean deviation is slightly closer to zero
for class 2.

4.3.4 Shell structure and deformation properties

To investigate the quality of the GUDE family with respect to nuclear shell structure we
compute single-particle levels using blocking calculations; see Refs. [102, 242] for details on
the procedure. While other strategies to extract single-particle energies exist, using block-



4.3 RESULTS 99

N

20

40

60

80

100

Z

no chiral

0 20 40 60 80 100 120 140 160
N

0

20

40

60

80

100

Z

min. chiral

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sth
eo

2n
Sex

p
2n

(M
eV

)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sth
eo

2n
Sex

p
2n

(M
eV

)
Figure 4.8: Differences of two-neutron separation energies between calculated and experimental
results for even-even nuclei. They are shown for the “no chiral” and “min. chiral” GUDE variants.

ing calculations at the HFB level is both logically consistent with the construction of the
functionals at the HFB level and helps with reducing systematic errors when comparing with
experiment [102]. Calculations use the same setting for the HO basis as before namely with 20
full, spherical shells. In this context one should be reminded that single-particle energies are
not observables but extracted in a model-dependent way from experiment [252, 253]. Here we
compare to the values given in Ref. [254]. Furthermore, it is well known that the single-particle
shell structure depends strongly on beyond mean-field effects such as particle-vibration cou-
plings [255–258]. As a consequence, blocking calculations should not be expected to perfectly
match “experimental” single-particle data in closed shell nuclei. They are simply meant as a
validation check to guarantee that basic features of the nuclear shell structure are properly
reproduced.

As an illustrative example, we show in Fig. 4.10 the obtained neutron single-particle spectra
of 208Pb for selected GUDE EDFs representative of the different classes. One can make the
following general observations. First, the single-particle levels turn out to be largely insensitive
to the GUDE variant. In particular, no significant difference of the shell structure is visible
when comparing class 2 EDFs with classes 0 and 1. Second, the obtained shell gaps in 208Pb
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Figure 4.9: Two-neutron separation energies for the thorium isotopic chain.
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Figure 4.10: Single-particle spectrum for neutrons in 208Pb for a selection of GUDE functionals.
Figure taken from Ref. [151].

are in good agreement with the ones extracted from experiment and a little better reproduced
than for the UNEDF1 functional. Third, the level ordering of the occupied neutron orbitals
is also in slightly better agreement with experiment. These qualitative conclusions apply to
other doubly closed shell nuclei and suggest a decent reproduction of the shell structure by
the GUDE functionals.

Next, we test deformation properties of the EDFs on the standard fission benchmark case
of 240Pu. The HFB calculations are carried out in a deformed HO basis with 30 shells included
and with the HO frequency and basis deformation optimized for that nucleus; see Ref. [259]
for details. A constraint on the octupole moment is imposed during the first 10 iterations to
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Figure 4.11: Deformation energy of 240Pu as a function of the axial quadrupole moment. Calculations
assume axial symmetry. Figure taken from Ref. [151].

ensure the fission goes through the most likely pathway. Calculations assume axial symmetry.
In Fig. 4.11 we show the deformation energy, i.e., the energy difference between the

configuration with given deformation and the ground state, as a function of the quadrupole
moment for selected GUDE functionals as well as for UNEDF1 for comparison. Including
triaxiality typically reduces the height of the first fission barrier by about 2 MeV [216, 259],
see also the difference of the UNEDF1 curves in Ref. [102] and Ref. [140]. Note that Ref. [102]
in addition to performing triaxial calculations also allows for reflection asymmetry, but this
has no relevant effect on the first barrier [259]. Hence, the overall agreement with values
extracted from experiment [260] is in fact very good for all considered GUDE variants.14

The energy of the fission isomer E∗ is predicted too low by about 1 MeV compared to the
value used in the optimization set (2.8 MeV) [240]. Seeing that the results for UNEDF1,
UNEDF2, and the DME EDFs of Ref. [140] agree very well with this experimental value,
this is probably a consequence of the reduced weight of fission isomer energies in the present
optimization protocol. Note that a newer experimental estimate for the fission isomer energy
of 2.25 MeV [261] is closer to the GUDE values.

For values of Q20 larger than the value at the fission isomer state a clear difference between
results obtained for classes 0 and 1 and class 2 emerge as already observed for other quantities
in this paper. We may speculate that such differences are the result of a competition between
bulk and shell effects. Table 4.3 and Fig. 4.12 show that the symmetry energy asym and the
surface coupling function Wsurf (defined below), respectively, differ substantially for the classes
0 and 1 and class 2 parametrizations. For classes 0 and 1, the value of the symmetry energy is
asym ≈ 30 MeV while it is asym ≈ 28.5 MeV for class 2 EDFs. The surface coupling function,
which contains the full contribution to the isoscalar surface energy (Skyrme plus chiral terms),

14This holds in particular when keeping in mind that the experimental uncertainty for the fission barrier
(which is not an observable) is usually estimated to be of the order of 1 MeV [259].
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Figure 4.12: Wsurf for different GUDE variants.

is given by
Wsurf(ρ0) = W

(∇ρ)2

0 (ρ0) +W ρ∆ρ
0,
∫ (ρ0) , (4.44)

where

W ρ∆ρ
0,
∫ (ρ0) = −W ρ∆ρ

0 (ρ0)−
∂W ρ∆ρ

0 (ρ0)

∂ρ0
ρ0 (4.45)

arises from integrating by parts:∫
dRW ρ∆ρ

0 (ρ0)ρ0∆ρ0 =

∫
dRW ρ∆ρ

0,
∫ (ρ0)∇ρ0 ·∇ρ0 . (4.46)

Wsurf is for intermediate densities much stronger for class 2 functionals than for classes 0 and 1.
Together, asym and Wsurf will impact the surface and surface-symmetry contributions to the
bulk energy, which are known to be key drivers of deformation properties [262, 263]. At the
same time, Fig. 4.10 also shows a small but visible difference in the neutron shell structure
between class 2 and the other GUDE variants functionals, with the N = 126 shell gap being a
little smaller for class 2. Such differences will be amplified as deformation increases and this
could play a role in the deformation energy.

4.4 Analysis of chiral contributions

In this section we analyze why the only significant effects we obtain from including chiral
interactions explicitly into the GUDE functionals occur for the switch from class 1 to class 2,
i.e., at N2LO (NLO when including ∆ isobars explicitly) in the chiral expansion.

As stated in Sec. 4.3, only little change over the reference “no chiral” EDF is seen when
going to LO in the present construction, see especially Tab. 4.5. This is not surprising since
one-pion exchange is known to largely average out for bulk properties [148, 264] because at
this order pions enter at the mean-field level only through Fock contributions, which are small.
For non-bulk quantities such as behaviors along isotopic chains, small differences between the
“no chiral” and LO EDFs are visible, see for instance the oxygen chain shown in Fig. 4.13.
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Figure 4.13: Ground-state energies of oxygen isotopes for selected GUDE variants. We also show
experimental and evaluated results as provided in Ref. [235].

At NLO pions enter at the HF level only through Fock and isovector Hartree contributions.
Since these are very small and can be captured well by Skyrme terms due to the weak density
dependence of the resulting g coefficients, see, e.g., Fig. 4.5, the almost identical performance
of the LO and NLO functionals is to be expected.

When going to N2LO a significant improvement, in particular for the global description
of ground-state energies, is achieved. The detailed analysis of Sec. 4.3.2 indicates that the
interplay of two contributions is responsible for this. The attractive pion Hartree contribution
at N2LO is large and apparently cannot be completely mimicked by Skyrme terms only. Its
addition together with LO Fock terms leads to the improvement.

While the incompressibility is at its upper bound for classes 0 and 1, it is much smaller
for the N2LO EDF (and the other class 2 ones), see Tab. 4.3. This is probably a consequence
of the strongly attractive central isoscalar two-pion exchange entering at N2LO in the chiral
expansion; see for example Ref. [35], where the second derivative of the energy per particle at
ρ0 ≈ 0.16 is strongly reduced at N2LO in calculations employing only chiral NN forces.

This observation raises the question whether the additional chiral terms in class 2 lead
to a better description of experiment by themselves or whether the improvement is realized
indirectly by moving the unbounded optimum “closer” to the bound constraint region and
thereby reducing the achievable χ2 values within this region. To address this issue one
could perform an unconstrained optimization for the different GUDE functionals. Preliminary
unconstrained optimizations suggest that the latter mechanism is the dominant one because the
difference of the obtained χ2 values largely (but not fully) seems to vanish for the unbounded
optima. Note however that these conclusions are preliminary, since for some of the EDFs
competing minima seem to occur during the unbounded optimizations and sometimes the
unconstrained optima seem to correspond to situations where some INM parameters attain
values far away from physically expected regions (e.g., Lsym ≈ 5 MeV). We leave the resolution
of these issues for future work.

Similar improvement as for the N2LO EDF is observed for the NLO∆ EDF. This reflects
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Figure 4.14: W ρρ
0 for different GUDE variants.

that in ∆-full chiral EFT the dominant two-pion-exchange contribution is promoted from
N2LO to NLO [211]. At N2LO∆ some additional attraction is brought in. For the interactions
used here the additional contributions (which in ∆-less chiral EFT partly would only occur at
even higher orders [265]) are similar in size as the difference between the chiral contributions
at N2LO and NLO∆. The GUDE functionals are generally not sensitive to such differences
on a qualitative level; see Tab. 4.5.

All statements made above dealt with chiral NN interactions only. The inclusion of 3N
forces does not seem to have a significant effect on the description of nuclei and INM at
any considered order; see Sec. 4.3.15 In ab initio calculations, 3N forces are important for
a quantitative reproduction of nuclei, are key for shell structure and for the limits of bound
nuclei [34, 266]. For instance, for the oxygen isotopes, the additional repulsion from 3N
forces moves the location of the predicted neutron drip line in agreement with experiment [70,
267–270]. In Fig. 4.13 we show the ground-state energies of oxygen isotopes as predicted by a
few GUDE functionals. Comparing the N2LO∆+3N results with the other EDFs shows that
including 3N forces does not move the location of the neutron drip line for the EDFs. Similar
conclusions hold for the other GUDE variants with 3N forces. In agreement with other EDF
calculations [104], all EDFs constructed in this work predict 28O to be the heaviest oxygen
isotope stable against emitting two neutrons while experimentally it is 24O.

The crucial difference between the negligible role of 3N forces observed here and their rele-
vant effects in ab initio calculations lies in the fact that the EDFs constructed here yield good
saturation properties also without the presence of chiral 3N forces – see Tab. 4.3 and Fig. 4.4
– while they are absolutely necessary to achieve reasonable saturation in calculations of INM
employing chiral interactions [201, 271]. In such ab initio calculations, the role of 3N forces is
already visible at the HF level, so one could have expected an impact also here. The fact that
this is not the case suggests the fitted EDF terms can compensate missing 3N pion exchanges
in the density regime relevant for finite nuclei (at least their volume contributions).

For the terms which depend only on ρ0 this is illustrated in Fig. 4.14, which shows W ρρ
0 for

different GUDE functionals. The curves for N2LO with and without 3N forces are basically on
15A slight exception is given at N2LO. However, the N2LO functional seems to be somewhat of an outlier

while N2LO+3N behaves like other class 2 EDFs.
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top of each other signalling that for the EDF without 3N pion exchanges the Skyrme part of
the EDF mostly takes over the role of the 3N terms (see also the different γ values in Tab. 4.3).
This observation correlates well with the original reason to introduce a density-dependent
coefficient into nuclear EDFs, namely to replace a genuine 3N interaction [272].

The observation that fitting the EDF parameters can almost fully compensate missing 3N
pion exchanges is in apparent contradiction with the wrong drip line position observed for
the oxygen chain. In other words the question is why the GUDE family predicts the wrong
drip line location even though the functionals either explicitly contain or are essentially able
to effectively encapsulate chiral 3N physics. One simple explanation is the lack of sufficiently
neutron-rich nuclei in the experimental data set used in the optimization meaning that the
optimization might simply “not know” of the importance of the 3N pion exchanges for these
regions of the nuclear chart. Since chiral 3N contributions grow with increasing neutron
number [266, 267, 273], the description of nuclei closer to stability might not be significantly
altered but drip lines might be much improved when optimizing an EDF with chiral 3N
contributions using an experimental data set containing more asymmetric nuclei. While in
many cases experimental information on very neutron-rich isotopes is not yet available, this is
expected to change with next-generation radioactive isotope beam facilities such as FRIB [11]
or FAIR [274]. Another reason is the importance of beyond mean-field effects that are known
to significantly impact the nuclear structure in light nuclei [275, 276].

The choice of the regulator used for the chiral interactions may also matter. Typical
non-local regulators for the 3N force yield more repulsion in pure neutron matter than local
ones [207]. The GUDE functionals use local regulators, see Sec. 4.1.2. In neutron matter one
can mimic the effect of the non-local regulators by employing local ones with small coordinate-
space cutoffs [207]. Thus, we construct a series of EDFs following the GUDE protocol at
N2LO+3N but with reduced cutoffs for the 3N terms until we reach Rc,3N = 0.3 fm (which
corresponds roughly to 0.5 fm for the regulator used in Ref. [207]). The cutoff for the NN
contributions is kept unchanged at 1.0 fm. The resulting functional is labeled “reduced Rc,3N”.
It is very similar to class 2 functionals in terms of χ2, most INM parameters, and global
behavior. See Tabs. 4.3 and 4.5 for detailed values.16 As shown in Fig. 4.13 the “reduced
Rc,3N” functional locally behaves somewhat different from the class 2 variants, but it does
also not predict the correct dripline location. This is linked to its low value of γ ≈ −0.22,17

which indicates that the fit largely compensates the additional repulsion brought in via the 3N
forces. Again, an adjusted optimization data set might lead to larger effects from the different
3N contributions.

As alluded to above, the existence of strict bounds that we impose on some EDF parameters
during their optimization somewhat complicates the analysis of the effect of different chiral
contributions. Some conclusions drawn in the present section might thus not hold in other
optimization settings.

16The obtained M∗−1
s , pairing strengths, and some surface parameters differ from typical class 2 values. In

fact, the significantly different parameter landscape is the reason why it was necessary to reduce the 3N cutoff
over several steps in the construction of the “reduced Rc,3N” functional. Note that couple of very light nuclei
do not converge for this functional.

17This value is significantly lower than usual values for Skyrme EDFs, which typically have γ ≈ 1/6 to
1/3 [83]. Note that this is not concerning though as the contributions from the chiral forces are not accounted
for in the GUDE γ values.
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4.5 Summary

In this Chapter we constructed semi-phenomenological EDFs, dubbed GUDE, consisting of
pion exchanges taken from chiral EFT at different orders and a phenomenological Skyrme
part. The long-range pion-exchange interactions are included at the Hartree-Fock level (using
a DME for the Fock contributions) without adjustment and thereby do not change the number
of free EDF parameters. The GUDE functionals with chiral terms perform significantly better
than a reference Skryme functional without chiral terms constructed within the same protocol,
especially in terms of accurately describing ground-state energies while at the same time giving
physically plausible properties for INM. In particular, the description of light nuclei and nuclei
around shell closures is improved. Due to the parameter optimization carried out for every
EDF it is however not clear if the inclusion of pion exchanges is directly responsible for this
or if a more complicated indirect mechanism is at play. In any case the improvements can
be traced back to the combination of two terms: Fock contributions from one-pion exchange
at leading order in the chiral expansion and Hartree contributions from two-pion exchange
at N2LO. This is demonstrated with the “min. chiral” variant of the GUDE EDFs which
contains only those two terms in addition to the phenomenological part and achieves similar
improvements as observed for the other class 2 GUDE functionals, which contain additional
terms stemming from pion exchanges.

Conversely, adding only pion-exchange terms at LO or NLO does not give any improvement.
While it might seem like a contradiction to the chiral EFT power counting – according to
which the importance of additional terms is reduced with every higher order included – it
may simply result from the fact that we include pion exchanges only at the HF level, i.e.,
beyond-mean field effects from pions are not explicitly included and the structure of the
contact interactions present in the EDFs does not change with increasing order unlike in
chiral EFT. Along similar lines, including long-range 3N forces does not yield significant
improvement because the optimization procedure of the (density-dependent) contact terms in
the traditional part of our EDFs allows to approximately capture their effects.

The order-by-order systematics of the GUDE functionals shows much less variability and
surprising behavior compared to what was observed in Ref. [140], where functionals had been
constructed following the same strategy as used here. In particular, we consider it promising
that the inclusion of chiral long-range 3N forces does not lead to a worsening of the EDFs,
unlike before. We attribute this to the different improvements, bugfixes, and other changes
established in the present work. The analysis carried out in Sec. 4.4 mostly explains the
obtained order-by-order behavior. In some regards further insight is still needed. For instance,
the detailed mechanism how the improvement is realized at N2LO (and why some LO terms
are additionally needed which on their own do not provide improvement) is still unclear. We
believe that insight might be gained from performing optimizations without imposing bound
constraints on INM properties.

Going beyond NLO in the present construction does not only improve the description
of finite nuclei, it also considerably changes properties of INM as shown in Tab. 4.3. The
incompressibility K is significantly reduced and isovector parameters also change strongly.
The decrease of the slope parameter Lsym is particularly strong, with it typically ending up
at our optimization protocol’s lower bound of 30 MeV.

However, in current EDFs isovector terms are generally poorly constrained [113, 277];
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the present work is no exception. This is not of significant consequence when comparing
to bulk properties of experimentally accessible nuclei as done here, but limits the predictive
power for applications to extreme neutron-rich conditions in astrophysics. Examples are mass
calculations for r-process nucleosynthesis [109, 125] and neutron-star [278–280] calculations.
This is because the size of isovector contributions grows significantly when going to very
neutron-rich systems. We discuss possible measures against these problems as part of the next
Ch. 5, with which we conclude this thesis.





5
Conclusions and outlook

Nuclear density functional theory is a well established method to describe properties of atomic
nuclei. In its standard formulation (Kohn-Sham DFT [91]) it corresponds to a mean-field
calculation based on an energy density functional that is adjusted to nuclear data, see also
Ch. 2. Thanks to its favorable computational scaling, it can be applied to nuclei throughout
the entire nuclear chart. EDFs have been successfully applied for global predictions of nuclear
masses, but also to describe properties of individual nuclei. Among those are cases where
other approaches have not been able to conform with the experimentally determined values.

However, a clear strategy how to further improve EDFs is not known. This might be
remedied by constructing EDFs truly from first principles. Different strategies have been
proposed to this end [126–131], but none of them has yet been successfully carried out. The
present work follows a related strategy [65, 135, 140, 145, 147–149]. It consists in amending
a conventional empirical Skyrme EDF with HF long-range terms arising in the exchange of
pions between nucleons as described by chiral EFT, which provides a systematic framework for
the construction of nuclear potentials based on the symmetries of the underlying fundamental
theory, namely QCD. This strategy was discussed in detail in Sec. 1.4.

We mention here only that the chiral Fock terms are included in quasi-local form by means
of a density-matrix expansion. In Ch. 3 we carried out an extensive investigation of DMEs
finding that exact exchange energies from pion exchanges are generally well approximated
by all DME variants considered. We identify different possibilities to obtain even better
approximations. This entails an improved treatment of scalar-isovector parts of OBDMs and
the use of adjusted expansion schemes for 3N interactions. A more detailed summary of
the DME investigation was given in Sec. 3.7. For the construction of semi-phenomenological
hybrid EDFs according to the strategy outlined above we stick to the DME choices made in
Ref. [140], which we expect to be adequate for the present application.

The construction of those functionals, here referred to as the GUDE family, was carried
out in Ch. 4. We find that the global reproduction of ground-state energies of atomic nuclei
is significantly improved once pions are included at N2LO (or at NLO when also explicitly
including ∆ isobars) in the chiral expansion. In particular, we find that the joint inclusion
of isoscalar one-pion-exchange Fock terms at LO (by means of the Slater approximation)
and isoscalar Hartree terms arising from two-pion exchange at N2LO are responsible for the
observed improvement. This is exemplified by the good performance of the “min. chiral”
functional which contains no other chiral terms. These statements are based on a comparison
to a reference functional without any chiral terms that is constructed according to the same
protocol. The parameter optimization is set up such that properties of INM are restricted to
physically plausible values. Therefore, our results do not necessarily suggest that the inclusion
of pion exchanges improves the description of nuclear masses per se. Instead, they show
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that it is the simultaneous description of finite nuclei and infinite matter that profits from
considering pions as explicit degrees of freedom. See Sec. 4.5 for a more detailed summary of
the investigation of the GUDE functionals.

Here we abstain from repeating the points discussed in detail in that Sections. Instead
we discuss open question and issues and consider different possible directions of future work.
This includes different ideas on how to build less empirical, improved functionals starting from
the ones presented in this thesis.

Contributions from chiral effective field theory

While we find that the reproduction of ground-state energies is strongly improved when adding
pions according to the present strategy, other investigated observables of finite nuclei, namely
charge radii, shell structure, and deformation properties, show a much smaller or no significant
improvement. Developing a better understanding of this would be advantageous to make
further progress in developing the applied hybrid approach.

We have also left the study of the dependence of the EDFs on the chiral interactions
including their regulators for future work. In addition, ab initio calculations that employ
coordinate-space versions of chiral interactions use smeared-out delta functions instead of true
delta distributions to describe regularized contact interactions [204–206]. This corresponds to
the assumption of working at a finite resolution scale. The GUDE family is based on Skyrme
EDFs, which correspond to (partially density-dependent) in-medium contact interactions. It
could be of interest to replace these zero-range contacts with smeared out ones to better
connect to regularized finite-range terms.

Also, it would be of interest to investigate if adding pion-exchange terms, in particular those
included in the “min. chiral” variant, to functionals of other type, gives similar improvement
as observed here. This is difficult to analyse a priori since it is not always clear what kind of
physics is already described by existing functional structures such as the finite-range Gaussians
that are used in Gogny EDFs.

For similar reasons it is also hard to phenomenologically address an important question in
formalizing an EFT for EDFs, namely if pions constitute a degree of freedom that has to be
explicitly included. The present study shows that including pions that are exchanged between
nucleons can yield more accurate EDFs, but at the moment it is not clear how an eventual
EFT for EDFs will be formulated. It is conceivable that it will use the densities themselves
(instead of individual nucleons) as degrees of freedom [85, 129] which renders the meaning of
pion exchange in such a framework unclear.

A similar problem arised in this work: the inclusion of chiral 3N pion exchanges did not
yield EDFs that behave significantly differently from EDFs where only chiral NN forces are
present. The investigation carried out in Sec. 4.4 suggests that the other terms in the GUDE
functionals can partially compensate missing 3N forces. This is in agreement with the original
reason to introduce density-dependent contacts into Skyrme EDFs [272].

The missing effects from including 3N interactions could also be related to choices made
in the DME used to include the 3N forces. In Sec. 3.5 we investigated it in some detail
in non-self-consistent tests. An extension to self-consistent tests might thus be useful. In
addition, one should further study the application of DMEs to 3N interactions. This could
be in terms of considering other DME variants than the PSA-DME or by not truncating
the density-matrix cubes that occur to second-order terms only. For NN interactions, we
carried out such investigations in Ch. 3 and found that the reproduction of exact Fock energies
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can indeed be improved (albeit starting from a level that seems satisfactory for the present
applications). In particular, we found that isovector energies can be strongly improved over
the implementation used in Ref. [140] and in Ch. 4 by expanding neutron and proton OBDMs
separately with individual momentum scales instead of jointly.

In this work, we included as chiral 3N contributions only the ones stemming from inter-
mediate-range and long-range two-pion exchange. The inclusion of 3N one-pion exchange,
which is of intermediate range, should also be considered [149]. Moreover, different regular-
ization schemes should be explored. In ab initio calculations the inclusion of 3N forces is
crucial to correctly predict the location of the neutron drip line in the oxygen chain, see the
related discussion in Sec. 4.4. In the present work, adding chiral 3N terms does not help. In
fact, the behaviour of the EDFs in INM suggests that the GUDE variants without chiral 3N
contributions behave as if they contain the 3N physics anyway due to the presence of the
density-dependent Skyrme contact. However, this statement does not necessarily apply to
surface terms. Therefore, a 3N-interaction effect might be visible if the optimization data
set is amended by experimental information on sufficiently neutron-rich nuclei close to the
dripline as the 3N terms might help to describe this data. The Skyrme coefficient adjustment
could then improve the description of other regions of the nuclear chart.

Here we discussed including contributions into EDFs from chiral EFT only at the HF level.
How to do that at higher orders in MBPT is at present unclear, although different strategies
are being discussed, see e.g., Refs. [65, 85, 129]. This would constitute a major step towards
a true ab initio EDF.

Optimization data set

All GUDE variants underbind nuclei on average as shown by their positive mean deviations
for ground-state energies. This seems to be because the EDFs over-predict the strength of
shell closures. As the χ2 optimization tries to balance all errors out, it leads to (single-)closed-
shell nuclei typically being significantly overbound and nuclei further away from shell closures
being underbound. This might be remedied by increasing the amount of data from open-
shell nuclei in the fit or by adjusting the data weights in the optimization. One could also
extend the optimization data by explicitly including separation energies. This could help with
their description and would therefore have significant impact on nucleosynthesis yields from
r-process calculations [106, 108, 110].

The use of differential quantities as fit observables was also found to be useful in a study of
Fayans functionals: the authors of Ref. [96] find that charge radius staggering is more sensitive
to pairing (at least for the Fayans form of the pairing contributions) than energy staggering,
which is used in this thesis.

Adding ground-state data for very neutron-rich nuclei, which is expected to become avail-
able in the not-too-distant future, should allow to better constrain isovector terms of the
EDFs. These are at present poorly constrained, but are relevant in particular for applications
to astrophysics. In addition, including experimental data on neutron skins or dipole polariz-
abilities [277, 281–283] in the data set, possibly combined with fitting to ab initio results for
neutron drops [207, 284–286], is expected to reduce the uncertainties of the isovector terms.
See Refs. [102, 112, 286, 287] for examples of EDF calculations of neutron drops. Surface
properties can also be targeted by matching to ab initio calculations of perturbed nuclear
matter, see Ref. [288].
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Other parts of the functionals

It might also be advisable to simply reduce the number of free isovector parameters in the
functionals. This would allow for speeding up the parameter optimization as the dimension of
the parameter space, in which the minimum has to be found, would be reduced. The speed-
up could be utilized to more easily investigate the effect of individual changes to the EDF
construction as presented in this Chapter by reoptimizing the EDF parameters after every
incorporated change. In the GUDE functionals there are 6 purely isoscalar parameters and 5
purely isovector ones (the exponent γ contributes to both sectors and the pairing strengths
also have mixed contributions). However, isoscalar energies are typically about an order of
magnitude larger than isovector ones (as can for instance be seen from the Bethe-Weizsäcker
mass formula [97]). Following the sensible assumption that the number of parameters is
positively correlated with the achievable accuracy, this suggests that one should be able
to reduce the number of isovector parameters without significant loss in accuracy for total
energies. Note that if the number of free parameters is changed, the Bayesian information
criterion could be applied like in Ref. [289] to determine if changes in RMSDs reflect more
than just the changed number of parameters. Studies that investigate natural sizes of Skyrme
parameters [290, 291] could also be of interest in this context.

The Coulomb contributions to the EDFs are free of adjustable parameters. However, this
does not mean it could not be improved. The GUDE functionals treat the Coulomb Fock
energy in the Slater approximation. As shown in Sec. 3.4.1, using the NV-DME instead is
more accurate (when expanding about the position of one particle). Another possibility lies in
calculating the Coulomb contributions (Hartree and Fock) essentially exactly by approximating
the Coulomb potential as a sum of Gaussians [218], similar to how the chiral Hartree terms
are treated already. Due to the infinite range of the Coulomb interaction, a relatively large
number of Gaussians is needed though for an accurate representation. Reference [218] uses
nine Gaussians.

Corrections to the Coulomb interaction could also be taken into account. These include a
correction arising from the finite site of nucleons [292], from vacuum polarization [292], and
the relativistic Breit correction due to finite light speed [293]. As shown in the cited references,
the size of these electromagnetic contributions in 208Pb is about 7 MeV, 4 MeV, and 2 MeV,
respectively. While the EDF parameter fitting partially compensates this, certain observables
like mirror nuclei mass differences might be particularly sensitive to such corrections.

The arc-like behavior of charge radii in the calcium isotopic chain is correctly predicted
by functionals that use Fayans pairing and fit to differential charge radii [96]. Skyrme EDFs
and ab initio calculations do not describe this behavior correctly [96, 294, 295]. This indicates
that the pairing part of the GUDE functionals should be improved. However, little is known
about the particle-particle component of the nuclear effective interaction [296]. See Refs. [134,
297] for studies on pairing from chiral NN and 3N interactions. To prevent issues with self-
pairing [298] that become problematic in the calculation of odd nuclei, the particle-particle
part of the EDF should be based on the same interaction as the particle-hole part. This
would require larger adjustments of the EDF structure. Note that self-pairing occurs also for
conventional functional parametrizations.

A related topic are self-interaction issues [298], by which the GUDE family may also be
plagued. For the chiral contributions this is because Fock contributions are included via a
DME but the Hartree contributions are included quasi-exactly by approximating the chiral
potentials as sums of Gaussians. However, this could be remedied by also treating the Fock
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terms (at the same chiral order) quasi-exactly, which does not lead to significant computational
overhead. In this work, we used the DME because this simplifies the inclusion of 3N forces
in EDF frameworks. However, their inclusion did not lead to significant improvement and
they could thus be left out at the present stage (like in the N2LO GUDE version), see related
discussion above.

Correlations beyond mean-field approaches

Our work shows that the explicit inclusion of long-range pion-exchange interactions from chiral
EFT at the HF level into a Skyrme EDF improves the description of finite nuclei. This suggests
that such terms will be relevant when generating an EDF completely from first principles. It
might be necessary to account for effects of different types of correlations explicitly to create
such an EDF.

Collective correlations may be expected to be captured by going beyond the mean-field
description. However, different instabilities and pathologies occur when EDFs not derived
from actual Hamiltonians are used in those frameworks [115]. Therefore, functionals of the
GUDE form could not directly be used. Among other things, one would need to remove the
terms that correspond to a density-dependent pseudopotential or at least replace them by a
density dependence only in terms of integer powers, see Refs. [299, 300]. Note that it might
be possible to “back-translate” a density-dependent pseudopotential into an actual one by
reverse engineering the potential by means of reversely applying the Slater approximation or
similar. Another possibility lies in replacing the density-dependent terms by a 3N interaction.
This is carried out by using a phenomenological form fitted to data with promising results
in Ref. [301]. It would therefore be of interest if using the ab initio 3N pion exchanges as
done in this thesis allows to successfully leave out the density-dependent terms (possibly in
conjunction with introducing a true 3N contact interaction). This would also give further
insight in necessary physical content for the construction of successful nuclear EDFs. Another
density dependence that is currently present in the GUDE functionals stems from using the
DME for the chiral Fock contributions. Incorporating the pion exchanges quasi-exactly also
in the Fock part, see discussion above, would address possible related issues. Note that some
beyond-mean-field effects can also be captured by different approximate schemes while staying
at the single-reference level; see Sec. 4.2.2 for a related discussion.

Including effects from short-distance correlations from resummed ladder diagrams as de-
scribed by Brueckner-Hartree-Fock theory should be simpler then switching to a beyond-mean-
field approach: in Ref. [144] density-dependent Skyrme terms generated from a counterterm
expansion capturing such correlations were computed. A next step towards ab initio EDFs
could therefore be the inclusion of such terms.

Uncertainty quantification and emulators

For practical applications, correlated uncertainties (or better, distributions) for the EDF
parameters should be determined. They could be estimated using Bayesian inference, see
Refs. [113, 234, 302] for example applications to EDFs. This would allow to carry through the
uncertainty estimates when applying functionals of the GUDE family in other calculations.
Such a Bayesian scheme could also be extended to incorporate expectations for INM parameters
via prior distributions in the optimization instead of imposing them as hard parameter bounds
as done here. Note that the authors of Refs. [101] conclude that information from infinite
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matter should not just be used at saturation density but instead at different densities (within
the validity of the EDF approach).

Determining posterior parameter distributions requires a lot of EDF evaluations. Therefore,
using techniques to cheaply emulate the calculations are necessary [113, 234, 302]. Having
such emulators available would also be very beneficial to investigate other EDF adjustments
as discussed in this Chapter, as this would allow to reoptimize the EDF parameters often and
so the effect of individual EDF changes could be more easily analyzed. Basis extrapolation
techniques might also help; see Refs. [122, 303] for EDF applications and Refs. [304, 305]
for a machine learning approach used with NCSM calculations. Employing them would also
address the fact that the present calculations are not fully converged with respect to basis size
in some heavy nuclei. The quality of the obtained results in heavy nuclei is good anyway. This
is likely related to the fact that heavy nuclei are also present in the optimization data set and
hence the fit “knows” about the finite basis size. Nevertheless, actually converged calculations
would be preferable, in particular in view of EDFs fully determined from first principles.

Finally. . .

While the path to ab initio EDFs still lies mostly in the dark, the work presented in this thesis
tried – and hopefully did – to shed some light on it. Especially the significant improvement
found when adding chiral pion exchange terms to Skyrme EDFs is promising and suggests pion
exchanges could be relevant ingredients for a desired ab initio EDFs. Many exciting avenues
are still to be explored.
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Appendix

A.1 List of acronyms

Here we give an overview of acronyms used in this thesis. Most acronyms that label variants
of density-matrix expansions (see Tab. 3.2) or energy density functionals are not listed here.

3N three-nucleon
AME atomic mass evaluation
CC coupled cluster
DE double exchange
DFT density functional theory
DME density-matrix expansion
EDF energy density functional
EFT effective field theory
GUDE Germany-USA DME EDF
HF Hartree-Fock
HFB Hartree-Fock-Bogoliubov
HO harmonic oscillator
IMSRG in-medium similarity renormalization group
INM infinite nuclear matter
IR intermediate-range
LEC low-energy constant
LN Lipkin-Nogami
LO leading order
LR long-range
MBPT many-body perturbation theory
NCSM no-core shell model
NLO next-to-leading order
N2LO next-to-next-to-leading order
NN nucleon-nucleon
OBDM one-body density matrix
PSA phase-space-averaging
QCD quantum chromodynamics
RMSD root-mean-square deviation
SE single exchange
SR short-range
SRG similarity renormalization group
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A.2 Detailed values for obtained functionals

Here we provide the interpolation coefficients and experimental data used for the construction
of the different GUDE functionals as explained in Secs. 4.1, 4.2, and 4.3.2. We give the
coefficients used for approximating the long-range NN potentials by sums of Gaussians in the
implementation of the Hartree energy (see Sec. 4.1.3 for details) in Tab. A.1 and the coefficients
used for approximating the g coefficient functions entering the NN and 3N long-range Fock
contributions (see Sec. 4.1.4 for details) in Tabs. A.2 and A.3. The data that enters the χ2

[Eq. (4.37)] is given in Tabs. A.4 to A.9.
In addition, we provide in Tabs. A.10 and A.11 the parameters obtained from the EDF

optimizations with larger precision than in Tab. 4.3.

Table A.1: Coefficients used for approximating the central NN potentials up to different chiral
orders by sums of Gaussians according to Eqs. (4.15) and (4.16). These approximations are used
when determining Hartree energies from long-range NN forces. At LO there is no Hartree contribution
from central long-range NN forces. Values marked with ∗ are determined from the other coefficients
following Eq. (4.18). µi are given in fm; Wi and Hi are in MeV.

Order Parameter i = 1 i = 2 i = 3 i = 4 i = 5

NLO
µi 1.861 1.123 0.592 0.547 0.523
Wi 0.321 5.889 −135.515 297.855 ∗
Hi 0.643 11.777 −271.031 595.710 ∗

N2LO
µi 1.668 1.028 0.557 0.519 0.494
Wi −2.568 −67.480 1311.972 −2370.681 ∗
Hi 1.577 13.128 −529.648 1110.926 ∗

NLO∆
µi 1.628 1.011 0.556 0.514 0.485
Wi −2.092 −58.508 915.404 −1548.760 ∗
Hi 2.223 28.540 −616.435 1140.924 ∗

N2LO∆
µi 1.525 0.976 0.581 0.507 0.455
Wi −3.420 −85.755 559.105 −748.259 ∗
Hi 2.747 37.365 −270.799 379.888 ∗

min. chiral
µi 1.668 1.028 0.557 0.519 0.494
Wi −3.356 −74.044 1576.796 −2926.144 ∗
Hi 0 0 0 0 0
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Table A.2: Coefficients used for approximating the NN g coefficient functions at different chiral orders according to Eq. (4.24). These approximations are
used when determining Fock energies from long-range NN forces. g̃uvt (0) and ai are given in MeV fm3 for the gρρt coefficients and in MeV fm5 for the other
coefficients; bi are in fm3ci ; ci are unitless.

Order Coeff. g̃uvt (0) a1 b1 c1 a2 b2 c2 a3 b3 c3

LO

gρρ0 −97.079 −26.334 1.160 0.787 −15.463 12.061 0.517 50.452 7.710 0.394

gρρ1 32.360 8.778 1.160 0.787 5.154 12.061 0.517 −16.817 7.710 0.394

gρ∆ρ
0 −135.329 13.408 6.818 0.547 108.740 8.090 0.337 −39.506 6.365 0.381

gρ∆ρ
1 45.110 −4.469 6.818 0.547 −36.247 8.090 0.337 13.169 6.365 0.381

gρτ0 541.314 −53.632 6.818 0.547 −434.961 8.090 0.337 158.022 6.365 0.381

gρτ1 −180.438 17.877 6.818 0.547 144.987 8.090 0.337 −52.674 6.365 0.381

gJJ,20 511.615 −61.254 5.481 0.551 −365.930 7.883 0.337 128.583 5.205 0.363

gJJ,21 −170.538 20.418 5.481 0.551 121.977 7.883 0.337 −42.861 5.205 0.363

gJJ,10 −496.761 2.713 2.182 1.967 424.360 7.577 0.339 −169.369 3.874 0.265

gJJ,11 165.587 −0.904 2.182 1.967 −141.453 7.577 0.339 56.456 3.874 0.265

NLO

gρρ0 −92.414 −28.350 1.209 0.756 −12.945 13.391 0.533 47.833 7.893 0.397

gρρ1 18.113 14.799 1.660 0.727 −8.892 6.832 0.490 −5.112 11.436 0.425

gρ∆ρ
0 −133.746 51.826 0.091 0.354 139.152 7.637 0.341 −57.752 5.942 0.339

gρ∆ρ
1 41.059 −10.248 0.791 0.431 −48.978 8.068 0.348 25.518 5.437 0.314

gρτ0 534.984 −335.837 0.056 0.354 −556.291 7.637 0.341 230.744 5.942 0.339

gρτ1 −164.235 40.915 0.790 0.431 195.724 8.065 0.348 −101.894 5.436 0.314

gJJ,20 529.575 −57.846 4.922 0.542 −380.591 7.819 0.338 134.029 4.915 0.348

gJJ,21 −175.125 19.073 5.028 0.543 126.067 7.825 0.338 −44.277 4.973 0.351

gJJ,10 −493.051 4.138 1.560 1.692 424.222 7.574 0.339 −171.182 3.873 0.266

gJJ,11 169.297 −0.277 7.971 3.165 −141.668 7.594 0.339 55.358 3.818 0.260

N2LO

gρρ0 −79.108 −3.432 44.960 0.819 −22.040 1.814 0.593 36.334 7.990 0.396

gρρ1 70.310 −19.631 2.125 0.758 11.298 8.128 0.466 −21.219 6.918 0.381

gρ∆ρ
0 −130.284 18.461 0.474 0.386 139.063 7.723 0.342 −60.934 5.783 0.334

gρ∆ρ
1 53.187 −10.110 2.497 0.489 −48.841 8.091 0.348 22.537 5.748 0.319
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Table A.2: Continued

Order Coeff. g̃uvt (0) a1 b1 c1 a2 b2 c2 a3 b3 c3

N2LO

gρτ0 521.136 −73.855 0.474 0.386 −556.197 7.723 0.342 243.692 5.783 0.334

gρτ1 −212.747 40.422 2.498 0.489 195.244 8.090 0.348 −90.060 5.746 0.319

gJJ,20 572.310 −60.009 3.625 0.521 −424.700 7.787 0.341 159.184 4.504 0.308

gJJ,21 −136.240 39.531 0.709 0.640 157.807 7.873 0.341 −96.846 3.709 0.264

gJJ,10 −484.386 8.572 1.058 1.346 422.202 7.566 0.339 −176.112 3.791 0.265

gJJ,11 166.408 −0.678 3.083 2.248 −141.061 7.578 0.339 56.249 3.806 0.263

NLO∆

gρρ0 −60.147 −3.167 50.494 0.829 −31.522 1.937 0.590 35.523 8.131 0.398

gρρ1 52.379 −7.073 2.459 0.812 6.943 10.194 0.493 −17.755 7.515 0.390

gρ∆ρ
0 −126.451 30.275 0.721 0.413 158.521 8.292 0.352 −82.741 5.721 0.309

gρ∆ρ
1 48.934 −5.369 2.358 0.474 −45.249 7.777 0.342 18.820 5.854 0.337

gρτ0 505.803 −121.101 0.721 0.413 −634.086 8.292 0.352 330.963 5.721 0.309

gρτ1 −195.738 21.469 2.359 0.474 180.903 7.778 0.342 −75.215 5.853 0.337

gJJ,20 574.645 −59.569 3.413 0.516 −432.712 7.802 0.341 164.158 4.531 0.304

gJJ,21 −143.022 30.181 0.693 0.684 159.723 7.876 0.341 −91.222 3.835 0.265

gJJ,10 −486.530 7.308 1.134 1.414 422.779 7.568 0.339 −174.819 3.815 0.265

gJJ,11 168.823 −0.321 6.352 2.944 −141.672 7.592 0.339 55.365 3.845 0.261

N2LO∆

gρρ0 −68.314 −3.596 44.454 0.820 −29.168 1.822 0.606 36.973 7.927 0.396

gρρ1 62.107 −16.764 1.967 0.746 7.379 9.002 0.464 −16.983 7.496 0.386

gρ∆ρ
0 −129.479 29.112 0.670 0.402 164.128 8.498 0.354 −84.813 5.917 0.307

gρ∆ρ
1 50.622 −8.624 2.324 0.486 −46.907 7.900 0.345 21.081 5.761 0.328

gρτ0 517.916 −116.447 0.670 0.402 −656.514 8.498 0.354 339.251 5.917 0.307

gρτ1 −202.490 34.477 2.325 0.486 187.512 7.900 0.345 −84.238 5.760 0.328

gJJ,20 580.393 −64.418 3.070 0.514 −444.277 7.854 0.342 173.647 4.549 0.296

gJJ,21 −138.925 24.449 0.809 0.812 158.223 7.856 0.341 −92.646 3.698 0.263

gJJ,10 −481.221 10.313 0.990 1.276 421.391 7.563 0.339 −178.018 3.758 0.265
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Table A.2: Continued

Order Coeff. g̃uvt (0) a1 b1 c1 a2 b2 c2 a3 b3 c3

N2LO∆ gJJ,11 168.009 −0.420 4.647 2.641 −141.531 7.587 0.339 55.577 3.849 0.262

min. chiral
gρρ0 −97.070 −18.405 8.936 0.664 −193.220 −1.755 0.343 188.980 2.680 0.232

other 0 0 0 0 0 0 0 0 0 0

Table A.3: Coefficients used for approximating the 3N g coefficient functions at different chiral orders according to Eq. (4.25). These approximations are
used when determining Fock energies from long-range 3N forces. g̃uvw(0) and ai are given in MeV fm6 for the gρ

3
0 and gρ0ρ

2
1 coefficients and in MeV fm8 for

the other coefficients; bi are in fm3ci ; ci are unitless.

Order Coeff. g̃uvw(0) a1 b1 c1 a2 b2 c2 a3 b3 c3

N2LO

gρ
3
0 71.577 −433.605 2.311 0.694 349.194 5.746 0.436 −52.185 10.952 0.368

gρ0ρ
2
1 −71.571 126.250 3.021 0.806 −63.991 8.820 0.504 6.055 18.810 0.418

gρ
2
0τ0 425.441 928.610 3.461 0.544 2750.361 6.273 0.381 −2267.742 9.377 0.381

gρ0ρ1τ1 −15.529 183.567 1.298 0.667 −784.702 4.396 0.343 391.108 11.307 0.397

gρ
2
1τ0 −141.822 −76.279 55.391 0.723 127.158 22.884 0.539 −13.319 5.727 0.650

gρ
2
0∆ρ0 88.874 964.634 1.079 0.512 1202.961 10.231 0.409 −1351.031 4.764 0.297

gρ0ρ1∆ρ1 −59.288 −663.804 12.319 0.467 825.625 2.870 0.229 −179.127 1.941 0.383

gρ
2
1∆ρ0 −29.634 −44.125 1.730 0.545 −27.748 8.737 0.345 43.810 8.489 0.425

gρ0(∇ρ0)2 649.397 182.875 9.969 0.667 −1279.198 5.309 0.418 609.158 5.180 0.318

gρ0(∇ρ1)2 −216.466 −60.958 9.969 0.667 426.399 5.309 0.418 −203.053 5.180 0.318

gρ0∇ρ0J0 −603.235 −712.600 1.860 0.517 −327.224 11.989 0.351 679.538 8.413 0.406

gρ0∇ρ1J1 201.078 237.533 1.860 0.517 109.075 11.989 0.351 −226.513 8.413 0.406

gρ1∇ρ1J0 −67.032 11.504 0.653 0.419 73.676 7.219 0.343 −34.420 5.246 0.329

gρ1∇ρ0J1 201.090 238.673 2.093 0.465 −18.630 5.287 0.235 −142.782 8.132 0.381

gρ0J
2
0 ,2 33.020 507.691 3.827 0.536 1745.313 6.629 0.389 −1350.934 9.247 0.379

gρ0J
2
1 ,2 −279.115 −312.085 2.840 0.527 −56.249 18.819 0.364 238.968 12.743 0.433

gρ1J0J1,2 −22.033 123.137 1.161 0.476 209.397 10.975 0.405 −185.858 6.970 0.329
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Table A.3: Continued

Order Coeff. g̃uvt (0) a1 b1 c1 a2 b2 c2 a3 b3 c3

N2LO
gρ0J

2
0 ,3 −37.902 −343.268 3.998 0.533 −1256.184 6.583 0.385 964.445 9.350 0.380

gρ0J
2
1 ,3 280.762 86.793 3.354 0.637 317.869 4.639 0.356 −308.210 9.858 0.389

gρ1J0J1,3 25.281 −91.743 1.380 0.503 −174.413 6.907 0.348 143.686 6.789 0.380

NLO∆

gρ
3
0 0.007 −322.680 2.172 0.683 316.975 5.495 0.438 −59.455 11.311 0.378

gρ0ρ
2
1 −0.000 101.874 2.498 0.756 −95.436 6.475 0.478 15.788 14.671 0.404

gρ
2
0τ0 −0.040 918.350 3.279 0.517 3751.450 6.373 0.367 −2776.249 9.227 0.380

gρ0ρ1τ1 0.015 −321.517 3.572 0.521 −1307.531 6.394 0.376 973.370 9.139 0.379

gρ
2
1τ0 0.004 −108.914 2.486 0.531 −111.653 10.799 0.342 116.832 10.203 0.417

gρ
2
0∆ρ0 0.005 −70.109 4.621 0.829 −354.301 6.258 0.497 252.976 13.304 0.408

gρ0ρ1∆ρ1 −0.002 28.850 4.905 0.820 129.308 6.764 0.506 −94.459 13.466 0.409

gρ
2
1∆ρ0 0.001 −10.383 1.551 0.616 28.059 6.383 0.467 −13.799 12.830 0.403

gρ0(∇ρ0)2 318.846 −93.264 4.285 0.727 −165.288 7.951 0.534 57.096 15.274 0.416

gρ0(∇ρ1)2 −106.282 31.088 4.285 0.727 55.096 7.951 0.534 −19.032 15.274 0.416

gρ0∇ρ0J0 0.025 −500.981 1.845 0.514 −571.774 9.958 0.343 583.941 7.985 0.400

gρ0∇ρ1J1 −0.008 166.994 1.845 0.514 190.591 9.958 0.343 −194.647 7.985 0.400

gρ1∇ρ1J0 0.000 −13.703 2.103 0.533 −12.500 9.933 0.343 13.811 8.539 0.410

gρ1∇ρ0J1 −0.003 95.921 2.103 0.533 87.501 9.933 0.343 −96.678 8.539 0.410

gρ0J
2
0 ,2 −0.026 467.014 3.602 0.515 2082.300 6.426 0.371 −1526.085 9.318 0.380

gρ0J
2
1 ,2 0.012 −227.443 2.689 0.523 −230.933 11.732 0.343 241.043 11.396 0.423

gρ1J0J1,2 0.003 −65.944 2.938 0.512 −270.738 6.152 0.368 200.944 8.660 0.379

gρ0J
2
0 ,3 0.018 −299.281 3.589 0.509 −1514.810 6.415 0.364 1088.085 9.486 0.382

gρ0J
2
1 ,3 −0.009 156.495 2.512 0.518 172.827 11.489 0.342 −175.201 10.877 0.418

gρ1J0J1,3 −0.002 41.267 3.073 0.510 198.776 6.072 0.362 −143.560 8.891 0.381

N2LO∆

gρ
3
0 70.077 −395.595 2.322 0.695 313.109 5.773 0.436 −45.574 10.866 0.366

gρ0ρ
2
1 −70.072 113.853 3.070 0.812 −51.613 9.558 0.517 3.263 25.361 0.445

gρ
2
0τ0 429.181 801.787 3.495 0.550 2288.313 6.242 0.383 −1920.582 9.411 0.382
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Table A.3: Continued

Order Coeff. g̃uvt (0) a1 b1 c1 a2 b2 c2 a3 b3 c3

N2LO∆

gρ0ρ1τ1 −18.010 217.447 1.250 0.598 −651.293 4.096 0.339 298.263 11.897 0.401

gρ
2
1τ0 −143.061 −71.039 2.950 0.598 145.015 9.809 0.428 −26.299 8.817 0.295

gρ
2
0∆ρ0 87.013 886.884 1.081 0.509 1121.859 10.098 0.406 −1247.766 4.839 0.300

gρ0ρ1∆ρ1 −58.051 −647.843 11.833 0.459 838.141 2.764 0.225 −195.285 1.934 0.367

gρ
2
1∆ρ0 −29.013 −42.023 1.741 0.543 −25.026 9.192 0.344 41.024 8.627 0.426

gρ0(∇ρ0)2 611.446 163.102 9.986 0.666 −1160.804 5.290 0.417 549.506 5.089 0.315

gρ0(∇ρ1)2 −203.814 −121.795 14.685 0.499 520.353 1.925 0.252 −198.801 1.892 0.333

gρ0∇ρ0J0 −603.238 −652.638 1.861 0.517 −262.942 −12.392 0.352 612.345 8.457 0.407

gρ0∇ρ1J1 201.079 −217.546 −1.861 0.517 87.647 12.392 0.352 −204.115 8.457 0.407

gρ1∇ρ1J0 −67.031 9.312 0.740 0.421 73.211 7.221 0.341 −33.214 5.482 0.339

gρ1∇ρ0J1 201.080 265.394 2.036 0.446 −64.429 3.501 0.235 −128.399 8.051 0.377

gρ0J
2
0 ,2 36.543 447.602 3.860 0.540 1480.040 6.671 0.392 −1156.794 9.261 0.379

gρ0J
2
1 ,2 −280.288 −285.965 2.853 0.527 −34.692 22.217 0.374 214.712 12.878 0.433

gρ1J0J1,2 −24.381 122.600 1.187 0.469 223.887 11.111 0.404 −193.483 7.355 0.333

gρ0J
2
0 ,3 −41.322 −303.153 4.047 0.537 −1057.730 6.627 0.389 821.965 9.368 0.380

gρ0J
2
1 ,3 281.894 128.853 3.170 0.575 −268.420 11.629 0.443 46.671 9.522 0.295

gρ1J0J1,3 27.558 −87.482 1.405 0.512 −169.185 7.097 0.345 138.337 6.856 0.380
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Table A.4: Ground-state energies of deformed nuclei used in GUDE optimization data set. See main
text for details on the data source.

Number Z N Edef (MeV)

1 108 156 −1925.60791
2 106 154 −1907.95996
3 104 152 −1889.61975
4 102 154 −1897.63623
5 102 152 −1884.59338
6 102 150 −1870.30261
7 100 156 −1901.58997
8 100 154 −1890.02966
9 100 152 −1877.97302

10 100 150 −1864.57471
11 100 148 −1850.60657
12 100 146 −1836.17053
13 98 156 −1891.20447
14 98 154 −1880.36853
15 98 152 −1869.09021
16 98 150 −1856.88000
17 98 148 −1843.88513
18 98 146 −1830.35461
19 98 144 −1816.30310
20 96 150 −1846.97034
21 96 148 −1834.99280
22 96 146 −1822.49829
23 96 144 −1809.43518
24 94 146 −1812.64392

Number Z N Edef (MeV)

25 94 144 −1800.46362
26 92 146 −1800.92725
27 92 144 −1789.64783
28 92 142 −1777.80481
29 90 142 −1765.96716
30 72 104 −1418.38916
31 70 108 −1431.22510
32 70 100 −1377.74121
33 68 104 −1391.19385
34 68 102 −1378.67602
35 66 102 −1362.57422
36 66 100 −1350.45764
37 66 98 −1337.69824
38 66 96 −1323.76904
39 66 94 −1309.11780
40 66 92 −1293.70984
41 66 90 −1277.68945
42 64 98 −1321.45752
43 64 96 −1308.97620
44 64 94 −1295.58166
45 64 92 −1281.28418
46 64 90 −1266.31262
47 64 88 −1251.17102

Table A.5: Ground-state energies of spherical nuclei used in GUDE optimization data set. See main
text for details on the data source.

Number Z N Esph (MeV)

48 82 132 −1662.72424
49 82 130 −1653.94751
50 82 128 −1644.98450
51 82 126 −1635.86194
52 82 124 −1621.75610
53 82 122 −1606.93787
54 82 120 −1591.62598
55 82 118 −1575.79370
56 82 116 −1559.46765
57 50 82 −1102.67541
58 50 74 −1049.78967
59 50 72 −1035.35547
60 50 70 −1020.37073
61 50 68 −1004.78314
62 50 66 −988.51361

Number Z N Esph (MeV)

63 50 64 −971.40478
64 50 62 −953.35748
65 50 58 −914.48700
66 28 36 −561.71606
67 28 34 −545.22082
68 28 32 −526.80499
69 28 30 −506.41803
70 28 28 −483.95416
71 20 30 −427.48959
72 20 28 −415.98260
73 20 26 −398.75470
74 20 24 −380.94119
75 20 22 −361.87714
76 20 20 −342.03360
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Table A.6: Proton point radii used in GUDE optimization data set. See main text for details on
the data source.

Number Z N Rp (fm)

77 82 132 5.51054
78 82 130 5.49202
79 82 128 5.47280
80 82 126 5.45277
81 82 124 5.44142
82 82 122 5.43117
83 82 120 5.42102
84 82 118 5.41127
85 82 116 5.40223
86 50 74 4.61569
87 50 72 4.60496
88 50 70 4.59281
89 50 68 4.57954
90 50 66 4.56455

Number Z N Rp (fm)

91 50 64 4.54874
92 50 62 4.53293
93 50 58 4.49713
94 28 36 3.78398
95 28 34 3.76525
96 28 32 3.73549
97 28 30 3.69753
98 28 28 3.64216
99 20 30 3.43994

100 20 28 3.39764
101 20 26 3.41457
102 20 24 3.43602
103 20 22 3.42430
104 20 20 3.39135

Table A.7: Neutron odd-even staggerings used in GUDE optimization data set. See main text for
details on the data source.

Number Z N ∆n (MeV)

105 100 152 0.50015
106 90 142 0.68158
107 92 144 0.56900
108 72 104 0.67688

Number Z N ∆n (MeV)

109 66 98 0.67862
110 50 74 1.25031
111 50 70 1.31630

Table A.8: Proton odd-even staggerings used in GUDE optimization data set. See main text for
details on the data source.

Number Z N ∆p (MeV)

112 96 148 0.56650
113 92 142 0.60651
114 90 142 0.73727

Number Z N ∆p (MeV)

115 76 90 1.16116
116 68 102 0.50403
117 66 94 0.72778

Table A.9: Fission isomer excitation energies used in GUDE optimization data set. See main text
for details on the data source.

Number Z N E∗ (MeV)

118 92 144 2.7500
119 92 146 2.5576

Number Z N E∗ (MeV)

120 94 146 2.800
121 96 146 1.900
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Table A.10: Parameters of five GUDE variants obtained in this work. Values are given with larger
precision than in Tab. 4.3. The first block contains infinite nuclear matter properties, the second block
contains volume parameters, the third block contains surface and pairing parameters. ρc is given in
fm−3; E, K, asym, and Lsym are in MeV; M∗−1

s and γ are unitless; Cρρ
t0 and V q

0 are in MeV fm3; Cρρ
tD

are in MeV fm3+3γ ; Cρτ
t , Cρ∆ρ

t , Cρ∇J
t , and CJJ

t are in MeV fm5.

no chiral LO NLO N2LO N2LO+3N

ρc 0.154627 0.154303 0.154226 0.157794 0.157487
E −15.800000 −15.800000 −15.800000 −15.800000 −15.800617
K 260.000000 260.000000 260.000000 222.156593 215.169356
M∗−1

s 0.978840 0.957868 0.964136 0.904830 0.902703
asym 29.947210 30.978217 30.986839 28.074821 28.451480
Lsym 41.403904 59.557448 58.929019 34.060157 30.000000

γ 0.467263 0.546481 0.540882 0.357776 0.319539
Cρρ
00 −561.5747594 −493.058565 −498.957047 −478.951236 −501.232886

Cρρ
10 256.474663 175.5386526 204.9642334 235.1914767 261.8034818

Cρρ
0D 771.7501242 768.0645082 766.3179039 833.5514478 764.6499675

Cρρ
1D −181.0432405 33.9369989 24.91377541 −121.3307494 −130.2450028

Cρτ
0 −2.837616483 −16.19027949 −14.20939783 −18.20934566 −9.398965365

Cρτ
1 −36.34101224 −35.72605432 −38.58578858 −31.95034503 −37.2770355

Cρ∆ρ
0 −41.360849 −37.545052 −38.371795 24.465063 9.378165

Cρ∆ρ
1 −6.374070 −25.027970 −15.125440 −83.185726 −21.558434

Cρ∇J
0 −62.313931 −72.932104 −74.231821 −82.640190 −88.285325

Cρ∇J
1 10.977633 18.125119 15.511063 −39.280488 18.589884

CJJ
0 −43.423512 −75.136767 −75.772409 −53.445835 −78.114179

CJJ
1 −30.103491 −15.011692 −12.348909 12.327645 1.315540

V n
0 −218.419432 −219.915977 −220.892183 −207.226762 −209.130669

V p
0 −259.856128 −263.026416 −263.198016 −246.409462 −255.482939
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Table A.11: Parameters of the remaining five GUDE variants obtained in this work. Values are
given with larger precision than in Tab. 4.3. The first block contains infinite nuclear matter properties,
the second block contains volume parameters, the third block contains surface and pairing parameters.
ρc is given in fm−3; E, K, asym, and Lsym are in MeV; M∗−1

s and γ are unitless; Cρρ
t0 and V q

0 are in
MeV fm3; Cρρ

tD are in MeV fm(3+3γ); Cρτ
t , Cρ∆ρ

t , Cρ∇J
t , and CJJ

t are in MeV fm5.

NLO∆ NLO∆+3N N2LO∆ N2LO∆+3N min. chiral

ρc 0.155710 0.156150 0.156059 0.156813 0.158321
E −15.800000 −15.800000 −15.800103 −15.800000 −15.830489
K 240.808221 230.949151 236.005642 222.416912 223.630207
M∗−1

s 0.900000 0.900000 0.900000 0.905720 0.917315
asym 28.428459 28.626512 28.369537 28.602820 28.577424
Lsym 30.000000 30.000000 30.000000 30.000000 30.000000

γ 0.431779 0.384940 0.418363 0.352279 0.362663
Cρρ
00 −440.938936 −469.857840 −414.369856 −458.396247 −448.578043

Cρρ
10 284.2839153 288.3043756 279.5242635 285.9589989 286.4499084

Cρρ
0D 809.5512233 767.9004022 811.1521308 748.3282038 779.7312893

Cρρ
1D −173.2073388 −151.3897111 −170.0986457 −140.0288978 −194.6211393

Cρτ
0 −14.09619566 −9.524118645 −15.9958227 −6.596697455 −10.8373869

Cρτ
1 −37.74910965 −39.96450129 −34.99292774 −38.73238976 −43.55936377

Cρ∆ρ
0 18.539204 8.200442 26.968500 10.902157 22.529940

Cρ∆ρ
1 −12.897887 −3.446181 −17.334941 −5.618126 −38.778743

Cρ∇J
0 −65.546615 −77.680867 −65.286022 −86.266268 −61.387891

Cρ∇J
1 17.547827 23.477143 14.859272 19.740384 3.420560

CJJ
0 −100.354612 −97.434124 −103.341411 −83.747600 −38.769379

CJJ
1 −10.200099 −8.006188 −10.985856 −2.583113 −4.165623

V n
0 −205.784648 −207.169326 −206.505020 −209.097262 −206.524796

V p
0 −251.862481 −253.725925 −252.490376 −255.283726 −249.407466
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