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Abstract

Binary neutron star (BNS) mergers are fascinating astrophysical events that are likely respon-
sible for the production of about half of the heavy elements in the universe. The nuclear
equation of state (EOS) plays a crucial role in the dynamics of BNS mergers. However, it is
highly uncertain due to the lack of knowledge on nuclear interaction at high densities. Binary
neutron star mergers emit gravitational waves (GWs) and produce an optical transient called
kilonova (KN) which is powered by the radioactive decay of freshly synthesized heavy nuclei.
This makes them ideal sources for multi-messenger observations providing valuable information
about the dynamics of the merger and the properties of the ejected matter. By comparing the
predictions of numerical simulations of BNS mergers with multi-messenger observations, it is
possible to derive constraints for the EOS at high densities. This makes BNS mergers incredibly
useful laboratories for studying the EOS at very high densities.
The first part of this thesis investigates the influence of the EOS on BNS mergers in a system-

atic way. We perform three-dimensional (3D) general-relativistic hydrodynamics simulations
with eight different EOS models, where we systematically vary the effective mass, incompress-
ibility, symmetry energy, and saturation point of nuclear matter. By analyzing the relationship
of these nuclear matter properties with the evolution of the merger remnant, post-merger GW
signal, and ejecta, we uncover novel insights into the connection between the EOS and the
outcome of BNS mergers. We find, that the deformation of the massive neutron star (NS) after
the merger is related to the incompressibility, which has implications for the post-merger GW
signal and mass ejection. Furthermore, we identify correlations of the tidal and shock-heated
dynamical ejecta components with the incompressibility and effective mass.
The second part of this work concerns long-term simulations of the accretion disk phase

of BNS mergers. The largest component of the ejecta in a BNS merger originates from the
post-merger accretion disk. Thus, it is necessary to perform numerical simulations for multiple
seconds to obtain a complete picture of the ejected matter. However, running 3D simulations for
such long times requires a huge amount of computational resources. We circumvent this issue
by simulating the accretion-disk phase of the merger in two dimensions (2D) while assuming
axisymmetry which greatly reduces the computational cost of the simulations. To consistently
link a 2D simulation of the accretion disk to a 3D simulation of the merger, we create the
2D initial data using the configuration of the merger remnant from the 3D simulation. We
describe the methods we use for the axisymmetric simulations and the creation of the initial
data. Moreover, we perform several tests of these methods and discuss the results.
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Zusammenfassung

Verschmelzungen von binären Neutronensternen (BNS) sind faszinierende astrophysikalische
Ereignisse, die wahrscheinlich für die Produktion von etwa der Hälfte der schweren Elemente
im Universum verantwortlich sind. Die nukleare Zustandsgleichung (ZG) spielt eine entschei-
dende Rolle bei der Dynamik von BNS-Verschmelzungen. Sie ist jedoch aufgrund mangelnder
Kenntnisse über die nukleare Wechselwirkung bei hohen Dichten höchst unsicher. Binäre Neu-
tronensternverschmelzungen senden Gravitationswellen (GW) aus und erzeugen eine optische
Erscheinung namens Kilonova, die durch den radioaktiven Zerfall frisch synthetisierter schwerer
Kerne angetrieben wird. Dies macht sie zu idealen Quellen für Multi-Messenger-Beobachtungen,
die wertvolle Informationen über die Dynamik der Verschmelzung und die Eigenschaften der
ausgestoßenen Materie liefern. Durch den Vergleich der Vorhersagen numerischer Simulationen
von BNS-Verschmelzungen mit Multi-Messenger-Beobachtungen ist es möglich, Einschränkun-
gen für die ZG bei hohen Dichten abzuleiten. Dies macht BNS-Verschmelzungen zu unglaublich
nützlichen Laboratorien für die Untersuchung der ZG bei sehr hohen Dichten.
Der erste Teil dieser Arbeit untersucht den Einfluss der ZG auf BNS-Verschmelzungen auf

systematische Weise. Wir führen dreidimensionale (3D) allgemein-relativistische Hydrody-
namiksimulationen mit acht verschiedenen ZG-Modellen durch, wobei wir systematisch die
effektive Masse, Inkompressibilität, Symmetrieenergie und den Sättigungspunkt der Kern-
materie variieren. Durch die Analyse der Beziehung dieser Kernmaterieeigenschaften mit
der Entwicklung des Verschmelzungsüberrests, dem GW-Signal nach der Verschmelzung und
den Ejekta gewinnen wir neue Erkenntnisse über den Zusammenhang zwischen der ZG und
dem Ergebnis von BNS-Verschmelzungen. Wir stellen fest, dass die Deformation des massere-
ichen Neutronensterns nach der Verschmelzung mit der Inkompressibilität zusammenhängt,
was Auswirkungen auf das GW-Signal und den Massenauswurf nach der Verschmelzung hat.
Darüber hinaus identifizieren wir Korrelationen zwischen den Gezeiten- und schock-erhitzten
dynamischen Ejekta-Komponenten mit der Inkompressibilität und der effektiven Masse.
Der zweite Teil dieser Arbeit behandelt Langzeitsimulationen der Akkretionsscheibenphase

von BNS-Verschmelzungen. Die größte Komponente der Ejekta bei einer BNS-Verschmelzung
stammt aus der Akkretionsscheibe nach der Verschmelzung. Daher ist es notwendig, numerische
Simulationen für mehrere Sekunden durchzuführen, um ein vollständiges Bild der ausgestoße-
nen Materie zu erhalten. Die Durchführung von 3D-Simulationen über so lange Zeiträume
erfordert jedoch eine große Menge an Rechenressourcen. Wir umgehen dieses Problem, indem
wir die Akkretionsscheibenphase der Verschmelzung in zwei Dimensionen (2D) simulieren,
wobei wir Rotationssymmetrie annehmen, was die Rechenkosten der Simulationen erheblich
reduziert. Um eine 2D-Simulation der Akkretionsscheibe konsistent mit einer 3D-Simulation
der Verschmelzung zu verknüpfen, erstellen wir die 2D-Ausgangsdaten unter Verwendung
der Konfiguration des Verschmelzungsüberrests aus der 3D-Simulation. Wir beschreiben die
Methoden, die wir für die achsensymmetrischen Simulationen und die Erstellung der Aus-
gangsbedingungen verwenden. Außerdem führen wir mehrere Tests dieser Methoden durch

v



und diskutieren die Ergebnisse.
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1. Introduction

Neutron stars (NSs) are fascinating objects that offer exciting opportunities to gain new
insights in various areas of modern physics. They were first theorized by Baade & Zwicky
(1934) as the final stage in the life of massive stars. As the most compact class of stellar objects
outside of black holes (BHs), the gravity of NSs has to be described by the laws of general
relativity (GR). However, unlike BHs, they are mostly made of neutrons. The inside of NSs
reaches extreme densities exceeding even the densities of atomic nuclei. This makes them
invaluable astrophysical laboratories to study matter under extreme conditions. An important
subclass of NSs are the so-called pulsars. These are rapidly spinning and highly magnetized
NSs which emit a beam of electromagnetic radiation observable from Earth in regular pulses
(hence the name). In 1967, Jocelyn Bell and Antony Hewish discovered a signal of pulsar for
the first time and thereby confirmed Bade and Zwicky’s hypothesis (Hewish et al., 1968).
Eight years later, Hulse and Taylor measured a pulsar signal exhibiting systematic variations

in the arrival time of the pulses Hulse & Taylor (1975). They deduced that the pulsar was in
orbit with another NS. This discovery led to the confirmation of another theoretical prediction:
the existence of gravitational waves (GWs), first proposed by Einstein in 1916 (Einstein, 1916).
Gravitational waves carry away energy and angular momentum of the binary partners resulting
in a decrease in their orbital period In 1982, this effect was confirmed by the continuous
observation of the Hulse-Taylor binary (Taylor & Weisberg, 1982).
Gravitational waves cause the fabric of spacetime itself to stretch and squish periodically. The

relative displacement of two test masses due to the passage of GWs is very small, making GW
detections extremely challenging, even for strong sources. During most of a binary’s lifetime,
its gravitational radiation is thus too weak to be measurable on earth. However, as two compact
objects (e.g., NSs or BHs) spiral ever closer towards each other, their GW luminosity rises and
peaks at the moment of the merger. In 2015 – almost 100 years after the theoretical prediction
of GWs – the LIGO interferometers directly detected the GW signal from the merger of a binary
BH system for the first time (Abbott et al., 2016). In 2017 following the observation of the
GW signal GW170817, originating from a binary neutron star (BNS) merger (Abbott et al.,
2017a,b). By 2017, a third GW observatory, Virgo, was online. This enabled the triangulation
of the origin of the signal and led to the observation of multiple electromagnetic transients
along with the GW detection (Andreoni et al., 2017; Arcavi et al., 2017; Coulter et al., 2017;
Cowperthwaite et al., 2017; Díaz et al., 2017; Drout et al., 2017; Evans et al., 2017; Hu
et al., 2017; Valenti et al., 2017; Kasliwal et al., 2017; Lipunov et al., 2017; Pian et al., 2017;
Pozanenko et al., 2018; Smartt et al., 2017; Tanvir et al., 2017; Troja et al., 2017; Utsumi et al.,
2017). This is the only detection of a gravitational and electromagnetic signal from the same
source to this day and led to a plethora of valuable information for nuclear and astrophysics.
At the end of the inspiral of two BNSs, they collide violently with orbital speeds of roughly

40% the speed of light (see, e.g., Radice et al., 2020). The two NS fuse into a new massive
compact object. For most binary systems, this remnant collapses to a BH either immediately

1



1. Introduction

or after a delay, ranging from a few milliseconds up to a few hours (see, e.g., Fan et al.,
2013). Only very light BNS mergers leave a stable NS behind. As the stars collide, shock
waves heat the matter at the collisional interface up to 1011 K and the outwards-facing sides
of NS become tidally disrupted. The matter expelled from the collision forms an accretion
disk surrounding the newly formed central object. Ejected matter can become unbound, on
dynamic timescales, due to the mechanisms mentioned above. During later stages, 10 − 30% of
the matter in the accretion disk can be unbound by magneto-hydrodynamical (MHD) effects,
neutrino interactions, and the recombination of free nucleons. In the ejecta, radioactive isotopes
are produced by nuclear reactions. This is called nucleosynthesis. The outcome depends on the
hydrodynamical history and initial composition of the ejecta.
Already in 1957, Burbidge et al. (1957) proposed the existence of the so-called rapid neutron-

capture process (r process) from the distribution of heavy elements in the solar system. However,
the astrophysical site of the r-process was unclear for 60 years. During the r process, nuclei
capture neutrons faster than they undergo β-decay, creating very neutron-rich isotopes. The
energy set free by the radioactive decay of the newly synthesized nuclei induces a characteristic
electromagnetic emission from the ejecta lasting for multiple days, known as kilonova (KN)
(Li & Paczyński, 1998; Kulkarni, 2005; Metzger et al., 2010; Kasen et al., 2013; Tanaka &
Hotokezaka, 2013; Rosswog, 2013). In the days following GW170817, the electromagnetic
transient AT2017gfo was observed in near-infrared to ultraviolet wavelengths which matched
the predictions for a KN. The light curve confirmed the production of r-process elements,
and thereby NS mergers as one of the sites of the r process (see, e.g., Rosswog et al., 2018;
Kawaguchi et al., 2018). However, other sources might be responsible for the early r-process
enrichment of the galaxy (see, e.g., Côté et al., 2019; Molero et al., 2021).
At the extreme densities inside NSs, the matter consists mostly of free neutrons and protons.

Their mean free path is so short that the strong interaction has a large influence on the
thermodynamical properties of the matter. As a result, the high density equation of state (EOS)
is highly uncertain and topic of current research (see, e.g., Lattimer & Prakash, 2016). The
dynamics and outcome of BNS mergers depend sensitively on the nuclear EOS because it
determines the resoponse of matter to compressen (see, e.g., Janka & Bauswein, 2022, for
a review on the role of the EOS in BNS mergers). On one hand, this means that a better
understanding of the nuclear EOS is critical to understand the role of BNS mergers in the r-
process enrichment of galaxies. On the other hand, this makes merger simulations an excellent
tool for studying nuclear physics. Hydrodynamical simulations of mergers, which take the EOS
as input, predict observables such as the emission of GWs and ejection of matter. Constraints
on the EOS can be found, by comparing these predictions with astrophysical observations.
The EOS determines how NSs respond to tidal forces during the late inspiral, leaving a

detectable imprint in the GW signal (see, e.g., Chatziioannou, 2020; Dietrich et al., 2021).
This effect was measured in GW170817 and led to important constraints on the EOS (see, e.g.,
Abbott et al., 2018; De et al., 2018). After the merger, the newly formed remnant is heavily
deformed and rotates rapidly, resulting in further GW emission (see, e.g., Stergioulas et al.,
2011; Bauswein et al., 2012; Takami et al., 2015). Even though this post-merger signal could
not be measured in 2017 because it lay outside the frequency range of LIGO and Virgo, future
GW observations with third-generation detectors will be able to detect post-merger signals
for nearby events (Chatziioannou et al., 2017). The spectrum of these signals can provide
new exciting insights to the EOS at very high densities (see, e.g., Baiotti, 2019). Besides the
GW signal, the observation of AT2017gfo offered additional information about the merger
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dynamics, which can be used to infer the properties of the EOS. The evolution of the luminosity
and spectrum of KNe depend on the ejecta mass, velocity, spatial distribution, and composition
(see, e.g., Metzger, 2020). The ejecta properties depend on the merger dynamics and thus
on the nuclear EOS. Therefore, the observations of electromagnetic transients can be used
alongside the detection of GW to constrain the EOS from merger events.
There are numerous EOSmodels available for use in computational simulations of supernovae

and compact object mergers. They are based on various approximate and phenomenological
descriptions of the nuclear interaction and, as such, are constructed from fundamentally
different sets of parameters. Many studies aim to quantify nuclear physics uncertainties in
numerical simulations by employing a selection of different EOS models (see, e.g., Sekiguchi
et al., 2016; Radice et al., 2018; Nedora et al., 2021b), thereby varying many characteristics of
the EOS at the same time. However, understanding the role of individual aspects of the nuclear
EOS in BNS mergers is difficult, if not impossible, with this approach.
This thesis aims to systematically investigate the influence of the EOS on BNS mergers based

on nuclear matter properties. We investigate the dynamical evolution and the GW emission of
the merger, as well as the properties of ejected matter, including the post-merger phase.
In the first part of this thesis, we perform multiple general relativistic hydrodynamical

simulations of neutron-star mergers, with different EOS models constructed from Skyrme-type
interactions (Lattimer & Swesty, 1991; Schneider et al., 2017). By adjusting the Skyrme
parameters, we systematically vary the nuclear matter properties. For each EOS obtained
this way, calculate the gravitational wave signal and dynamical ejection of matter from the
simulations and relate their properties to the EOS used.
The second part of the thesis is dedicated to the ejection of matter from the accretion

disks of BNS mergers on long timescales. The largest part of the ejected matter (see, e.g.,
Fujibayashi et al., 2023) stems from the late-time evolution of the accretion disk, taking place
over several seconds. Therefore, simulating the entire mass ejection history of a BNS merger is
very computationally expensive, especially when multiple models need to be run for parameter
studies. The computational expenses can be scaled down by reducing the dimensionality. After
the dynamical phase of the merger, the remnant is roughly cylindrically symmetric and can
be approximated by a two-dimensional description. Axisymmetric simulations of BH- and
NS-accretion disk systems based on artificial initial conditions have been performed in several
works (see, e.g., Fernández & Metzger, 2013; Metzger & Fernández, 2014; Just et al., 2015;
Fernández et al., 2020; Just et al., 2021). However, to obtain the full mass ejection history of a
BNS merger, both the dynamic and the accretion disk phases need to be consistently simulated.
To achieve this, we use initial data based on a previously performed 3D simulation.
The thesis is structured as follows: In Chapter 2, we explain the BNS mergers in more detail

and introduce the relevant physical concepts, including the nuclear EOS. Chapter 3 describes
the mathematical formulations of general relativity and hydrodynamics used in numerical
simulations and givens an overview of the methods used for their solution. The results of the
thesis’ first part investigating the effect of nuclear matter properties in BNS merger simulations
are layed out in Chapter 4. In Chapter 5, we describe our simulation framework for numerical
relativity (NR) simulations in axisymmetry using the cartoon method and our method for the
creation of two-dimensional initial data of the post-merger system. Furthermore, we present a
first test simulation of a BNS-merger remnant. Finally, we summarize our results and give an
outlook in Chapter 6.
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2. Physical background

2.1. Dynamics of merging neutron stars

Coalescing binary neutron stars (BNSs) are spectacular astrophysical events with far-reaching
consequences for the chemical evolution of galaxies and several exciting multi-messenger
observables that can give new insights into the fields of nuclear physics, neutrinos, and gen-
eral relativity. The merger of two orbiting neutron stars (NSs) has multiple phases that are
dominated by different physical effects. Figure 2.1 shows a sketch of the possible evolution
phases of the remnant and their outcomes. After the inspiral, the binary neutron stars collide

Figure 2.1.: Overview of the different stages during BNS mergers and the possible evolution paths
of the remnant. Figure adapted from Radice et al. (2020).

and form a new central object which promptly collapses to a black hole (BH) if it is massive
enough. Otherwise, they produce a highly deformed and oscillating massive NS. In this case,
tidal torques and shocks originating at the merger interface expel matter that gathers in an
accretion disk around the central object. Initially, the dynamics of the post-merger phase
are dominated by remnant oscillations and the emission of gravitational waves (GWs). After
∼ 10 − 20 ms, the oscillations and GW emission die down and the dynamics of the disk are
driven by the neutrino emission. In the center of the accretion disk remains either a metastable
massive NS or a BH if a delayed collapse occurs. After 500ms - 1 s, neutrino cooling becomes
ineffective and magneto-hydrodynamically (MHD) induced viscosity dominates the evolution
of the accretion disk.
The inspiral and merger dynamics are described in detail Section 2.1.1. Section 2.1.2

explains the different evolutionary paths that the merger remnant can take and finally the
evolution of the accretion disk is detailed in Section 2.1.3. This chapter mostly follows Radice
et al. (2020); Janka & Bauswein (2022).
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2. Physical background

2.1.1. Inspiral and merger

A binary system of two massive stars will eventually evolve into a BNS system after both stars
undergo supernova explosions. The orbital motion of the NSs leads to the emission of GWs
which carries away orbital energy and angular momentum. Consequently, the separation of
NSs decreases continuously. This effect was measured for the first time for a binary NS system
including pulsar, known as the Hulse-Taylor binary (Hulse & Taylor, 1975). The observed
decrease of the orbital period matched the prediction from general relativity exactly which was
the first indirect observation of GWs (Taylor & Weisberg, 1982). The orbital motion of BNSs can
be approximately treated in the post-Newtonian approximation of general relativity (Blanchet,
2014) or in the effective one-body approach (Buonanno & Damour, 1999). Finite-size effects
are not important during most of the binary’s evolution. However, as the NSs’ separation
shrinks, their tidal deformation becomes relevant (see Section 2.2.1). Finally, the NSs merge,
resulting in a violent collision forming a massive compact object. In 2017, the so-called “chirp
signal” (see Section 2.2.1) from the inspiral of two coalescing NSs was measured for the first
time with the gravitational wave detectors LIGO and Virgo (Abbott et al., 2017a).
The fate of the resulting remnant depends on various factors (see Section 2.1.2). If the

newly formed massive compact object survives the merger and remains a NS, a larger amount
of matter is expelled and forms an accretion disk. Shocks heat the matter to T ∼ 100 MeV at
the merger interface. The two cores of the original NSs do not immediately merge due to their
angular momentum and the increase in pressure as the maximum density increases. Instead,
they start oscillating and only merge slowly while the hot material at the merger interface is
redistributed to the outer layers of the remnant. On the timescale of tens of milliseconds, the
hot matter forms a ring shape. The maximum temperature typically is reached at densities
between 2 − 3 × 1014 g cm−3. Meanwhile, shocks can not penetrate the central region of the
massive NS, due to the high sound speed at supra-nuclear densities. Therefore, the core of the
massive NS stays comparably cold.
This period is highly sensitive to the nuclear equation of state (EOS). The EOS describes the

pressure of the fluid as a function of its density, temperature, and composition and therefore
it governs the contraction of the remnant core and its oscillations (see Section 2.4 for more
detail). The bounces continue to expel matter from the remnant for up to ∼ 100 ms as long as
the remnant does not collapse to a BH (Nedora et al., 2019). Initially, the remnant exhibits a
strong bar-shaped deformation that is mostly responsible for the emission of GWs. However, a
one-sided deformation can develop as the cores merge (Paschalidis et al., 2015). In this case,
the remnant develops a “bump” of high density on one side and a region of lower density and
higher temperature on the opposite side. How long it takes for this transition to occur is linked
to the EOS and can have a large impact on the emission of GWs, the disk mass, and the ejection
of matter in the early disk phase. Figure 2.2 shows the remnant 15ms after the merger for two
simulation with identical BNS masses but different EOS. In the simulation shown in the left
panel, a bar-shaped deformation of the NS core is visible while in the simulation shown in the
right panel, the bar-shaped deformation has been replaced by a one-sided deformation.

2.1.2. Fate of the remnant

As described above, the newly formed remnant can either promptly collapse to a BH or form a
metastable massive NS. In the case of a prompt collapse, the BH swallows almost all matter
dispelled from the merger. The remaining matter typically collects in an accretion disk with
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Figure 2.2.: Deformed massive NS in the center of the accretion disk for two different EOS. Shown
is the density distribution in the equatorial plane 15 ms after the merger. The black
lines show the contours with ρ = 5 × 1014 g cm−3.

very low mass and the amount of unbound material is negligible. The maximum total mass
that does not result in a collapse, the so-called threshold mass, depends on the nuclear EOS. It
can be inferred from multi-messenger observations and can thus be used to constrain the EOS,
which was done for the event in 2017 by several works (Margalit & Metzger, 2017; Rezzolla
et al., 2018; Shibata et al., 2019; Most et al., 2020; Nathanail et al., 2021). A uniformly
rotating NS can be ∼ 20% heavier than the maximum mass allowed by the EOS where the
upper limit on the rotation is set by the mass-shedding limit of the outer layers of the NS
(Paschalidis & Stergioulas, 2017). However, shortly after the merger, the remnant is supported
by differential rotation and can thus reach even higher masses. In such cases, the NS core
contracts and the remnant collapses to BH on the timescale of a few to tens of milliseconds, as
angular momentum and energy are redistributed or lost. In the context of merger remnants, a
NS supported by uniform and differential rotation is referred to as supra-massive NS (SMNS)
and hyper-massive NS (HMNS), respectively. Which of these three scenarios – prompt collapse,
HMNS, or SMNS – happens depends on the total mass, the mass ratio, and the EOS.

2.1.3. Evolution of the accretion-disk

During the first few milliseconds, matter is expelled from the merging NSs by tidal torques
and shocks at the merger interface. A large fraction of this matter is still gravitationally bound
and therefore stays within ∼ 100 km of the remnant. If the central newly formed NS is not
collapsing promptly after the merger, this matter forms an accretion disk. Oscillations in the
NS keep ejecting matter into the disk for several tens of milliseconds after the merger as long
as the massive NS does not collapse. The final disk mass depends on the EOS and the mass
ratio of the BNS system (see, e.g., Fernández & Metzger, 2016; Radice et al., 2018; Nedora
et al., 2021b). Larger mass ratios favor more efficient mass ejection from tidal torques and
therefore larger disk masses. The influence of the EOS is not as straightforward. For softer EOS,
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the BNSs collide more violently and consequently eject more mass from the contact surface.
At the same time, the initial NSs has a smaller tidal deformability and therefore eject more
matter due to tidal torques. These two effects are competing and the overall impact of the EOS
is not clear and depends on the mass ratio.
The bar-shaped deformation in the center of the newly formed massive NS launches two

spiral arms into the disk. This can be seen in the left panel of Fig. 2.2. However, as the
bar-shaped deformation disappears a one-armed spiral arm can form (see the right panel).
Initially, the two cores of the original BNSs oscillate against each other in the center of the
newly formed massive NS, which unbinds matter with each bounce. The ejection of this matter
proceeds through the disk due to angular momentum transport in the spiral arms (Nedora
et al., 2019). Furthermore, additional matter can be unbound by the spiral arms due to shock
heating in the disk. The disk bulk is dominated by cooling due to neutrino emissions and is very
close to weak equilibrium. The emitted neutrinos are partially reabsorbed in the region directly
above the NS and in the outer layers of the disk leading to net neutrino heating which can
unbind a small amount of matter (see, e.g., Perego et al., 2014). If the massive NS collapses
to a BH a large fraction (≳ 50%) of the disk is swallowed almost immediately. This results in
a drop in the maximum density to ∼ 1012 g cm−3. At the same time, the neutrino irradiation
is reduced because most of the neutrino emission stems from the hot interface of the NS and
the disk. Furthermore, the spiral arms disappear and the disk becomes more axisymmetric.
Consequently, the ejection of matter due to neutrino absorption and remnant oscillations stops.
On timescales of ∼ 1 s, the disk evolution is determined by an effective viscosity driven by

MHD effects, most importantly, the magneto-rotational instability (MRI) (Balbus & Hawley,
1991). After 10-20ms, GWs have dampened the bar mode in the NS and neutrino emission
becomes the most relevant cooling mechanism. The neutrino emission carries away the internal
energy generated by viscous heating. However, due to the transport of angular momentum
by the MRI, the disk expands outward and matter falls into the BH. Consequently, the disk
temperature drops and neutrino cooling becomes less efficient. After ∼ 1 s the disk reaches
a low enough temperature (kBT ≲ 2 − 3 MeV), the viscous heating outweighs the neutrino
cooling, and viscosity-driven mass ejection occurs (Fujibayashi et al., 2018). This effect unbinds
10 − 30% of disk mass.

2.2. Gravitational waves

During the inspiral and early post-merger phase of coalescing NSs, large amounts of energy
are emitted by GWs. Figure 2.3 shows a schematic representation of a power-density spectrum
together with the corresponding waveform of a GW signal emitted during a BNS merger. The
signal continuously evolves towards larger frequencies during the inspiral and undergoes a
sudden change at the merger after which the spectrum is dominated by a large peak at even
higher frequencies. Each phase of GW emission carries interesting information about the
merger dynamics and can be used to constrain the EOS at nuclear and supra-nuclear densities.
For an introduction to the mathematical description of GW see Section 3.1.5. The inspiral
signal and what can be learned from it is described in Section 2.2.1. Section 2.2.2 details the
post-merger GW emission.
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2.2. Gravitational waves

2.2.1. Insprial gravitational wave signal

The orbit of binary compact objects, such as NSs and BHs decreases with time due to the
emission of GWs. For most of the binary’s evolution, it can be approximated as an adiabatic
system and treated in the post-Newtonian approximation to general relativity, which is an
expansion in the relative velocity v

c ≪ 1 of the binary partners and thus only valid for large
separations. During this phase, the GW frequency is twice the orbital frequency (at leading
order). As the orbit shrinks, the orbital velocity and consequently the frequency of the emitted
GWs increases (see red line in Fig. 2.3). From the GW signal the chirp mass, defined as

M := (MAMB)3/5

(MA +MB)1/5 (2.1)

and the mass ratio q = MA
MB
can be deduced. The subscripts A and B are referring to the two

stars in the binary withMA > MB , i.e., q ≥ 1. For the last thousands of orbits, the stars inspiral
toward one other, emitting a GW signal that rises in amplitude and frequency until it reaches
a maximum named the “chirp” (see the waveform in Fig. 2.3). At merger, the frequency is
∼ 1.5 − 2 kHz. When the separation of the NS becomes sufficiently small, they become tidally
deformed which has a measurable impact on the emission of gravitational waves (see, e.g.,
Shibata, 2015). The tidal deformability Λ of a NS quantifies the quadrupolar deformation of a
star due to the tidal field of its binary companion and has a strong dependence on the EOS
(see Section 2.4.3). A larger tidal deformability accelerates the late inspiral and leads to faster
orbital velocities. At leading post-Newtonian order this effect is described by the reduced tidal
deformability

Λ̃ = 16
13M

−5
[︂
(MA + 12MB)M4

AΛA + (MB + 12MA)M4
BΛB

]︂
. (2.2)

"chirp"

Figure 2.3.: Example of a power-density spectrum of a GW signal emitted during a BNS merger.
The inspiral waveform can be analytically described by post-Newtonian methods and
the effective one-body approach (red part of the spectrum) while numerical relativity
has to be employed to follow the late inspiral, merger, and post-merger signal (shown
in blue). The top right corner shows the corresponding waveform of the GW strain.
Figure from Radice et al. (2020).
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The dimensionless tidal love number k2 = 3
2C

5Λ and the tidal coupling constant
κT

2 = 3M−5
[︂
MBM

4
AΛA +MAM

4
BΛB

]︂
(2.3)

are related quantities which are also often used in the literature, where C = M
R is the compact-

ness parameter. For equal mass binaries, κT
2 and Λ̃ are related by κT

2 = 3
16 Λ̃.

From the measurement of the gravitational wave signal GW170817, the chirp mass, the
mass ratio, and the reduced tidal deformability of the original BNSs where constraint to be
M = 1.186(1)M⊙, q ∈ [1, 1.34], and Λ̃ ≲ 800, respectively (Abbott et al., 2017a, 2019). The
constraints on the tidal parameters are not as tight because they are most sensitive to the GW
signal at high frequencies where the signal-to-noise ratio of ground-based GW detectors is
lower. These measurements deliver valuable constraints on the EOS and new insights on the
origin of r-process elements, especially if combined with the observation of electromagnetic
counterparts.

2.2.2. Post-merger gravitational wave signal

After the merger, the violent oscillations of the newly formed remnant continue to emit
gravitational waves. The luminosity of the GW signal in the post-merger phase is larger than
during the inspiral but it is emitted at higher frequencies (≳ 1 kHz), as seen in the spectrum in
Fig. 2.3. The sensitivity of ground-based detectors like Ligo and Virgo declines in this frequency
range which is why the post-merger signal could not be measured for GW170817. Nonetheless,
observations of post-merger GWs might be possible in the near future with third-generation
GW telescopes for very nearby events (Chatziioannou et al., 2017).
The post-merger spectrum is typically made up of several oscillation modes. The dominant

mode due to the quadrupolar deformation of the remnant produces a pronounced peak at
frequencies ∼ 2 − 4 kHz and is usually called f2 or fpeak. Several works (Stergioulas et al.,
2011; Bauswein et al., 2012; Bauswein & Janka, 2012; Hotokezaka et al., 2013a; Takami et al.,
2014, 2015; Rezzolla & Takami, 2016; Kiuchi et al., 2020) have found correlations of f2 and
the tidal deformability or R1.6, the radius of a cold, non-rotating (TOV) star with a fixed mass
of 1.6M⊙. A measurement of the f2 peak could thus provide important constraints on the EOS.
Several other modes have been identified in numerical relativity (NR) simulations. While the
primary f2 mode can be active for more than 30ms, the secondary modes decay after ∼ 10 ms.
Their origin is still topic of active research but is most likely related to the collision of the
NSs (see, e.g., Baiotti, 2019). The f2 peak, on the other hand, is mostly determined by the
orbital frequency of the stars at merger, which is why it depends on the low-density physics
of R1.6 and Λ̃. Apart from the measurement of the peak frequencies in the GW spectrum,
valuable information about the fate of the remnant can be obtained from the detection of the
post-merger signal. While the ring-down signal after the formation of a BH will be most likely
at too high frequencies to be measurable, the presence or absence of a post-merger signal can
be used to constrain the threshold mass for prompt collapse, when combined with the mass
information from the inspiral phase.

2.3. Ejection of matter

The ejection of matter is one of the most important outcomes of BNS mergers. Throughout
the different phases of the merger and post-merger, matter can be ejected which possibly
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undergoes various nucleosynthesis processes. We give an overview of the different ejecta
mechanisms during the merger and disk phase in Section 2.3.1. So far, BNS mergers are the
only observationally confirmed source of r-process elements in the universe. Section 2.3.2 gives
an overview of r-process nucleosynthesis and observational constraints. The electromagnetic
counterpart, driven by radioactive decay in the ejecta is the most promising observation
accompanying future GW observations. In Section 2.3.3, we discuss the kilonova (KN) and
how light curves are related to the ejecta properties as well as other counterparts. Sections
2.3.1, 2.3.2, and 2.3.3 are mostly based on Radice et al. (2020); Janka & Bauswein (2022),
Cowan et al. (2021), and Fernández & Metzger (2016), respectively.

2.3.1. Ejecta mechanisms

The most crucial parameters for the KN are the total mass, velocity, and composition of the
ejected matter (see Section 2.3.3). In the expanding ejecta, heavy elements are synthesized via
the r process for which the abundance of free neutrons is crucial. Since the ejecta are charge
neutral and initially only consist of protons and neutrons, the electron fraction Ye is equal to the
proton fraction and is often used to quantify the neutron-richness of the ejecta. Thus, the final
ejecta composition is mostly dependent on the electron fraction (see Section 2.3.2). Neutron
star matter is (like the name suggests) mostly composed of free neutrons. However, weak
reactions (electron/positron captures, neutrino absorptions, and β-decays) tend to increase the
electron fraction of the initially neutron-rich material.
Neutron-star mergers eject matter due to a variety of mechanisms that operate on different

timescales. The ejecta are commonly grouped in dynamical ejecta, which become unbound
during the first ∼ 10ms after the merger, and secular ejecta, which are ejected on timescales
up to several seconds. However, both dynamic and secular ejecta can be further grouped into
multiple components based on their ejection mechanisms which each unbind different amounts
of matter with differing compositions. Figure 2.4 displays the different ejecta components and
their respective timescale. The mechanisms operating on dynamical timescales can unbind
between 10−4 and 10−2M⊙ with velocities ranging from v ≈ 0.1 − 0.3c (see, e.g., Hotokezaka
et al., 2013b,a; Radice et al., 2018; Nedora et al., 2021b). Close to the time of the merger, tidal
torques disrupt the outer layers of the merging NSs. A part of this matter, commonly called
the tidal ejecta, becomes unbound and escapes from the remnant without being exposed to
shocks. Therefore, it only experiences relatively low temperatures and weak reactions only
have a minor influence and the electron fraction stays below 0.1. In a merger with a large
mass ratio, the smaller star is torn apart by the larger one, resulting in more tidal ejecta.
The second component of the dynamical ejecta is the result of direct interactions of colliding

NSs. The collision of the NSs launches a shock wave into the surrounding debris which unbinds
matter. These ejecta are typically called the shocked or shock-heated ejecta. They reach
very high temperatures (T > 10 MeV) and thus positron and neutrino captures increase their
electron fraction (see Section 2.3.2). This results in a broad distribution of Ye ranging from
0.1 to 0.5. An accretion disk is formed in the equatorial plane from debris originating from
the tidal disruption of the BNSs. The higher densities of the disk bulk shield the expanding
unbound matter from neutrino irradiation. Closer to the rotational axis, on the other hand, the
density quickly drops and the flux of neutrinos is larger. Therefore, matter expanding in the
polar direction is exposed to more intensive neutrino irradiation increasing its electron fraction.
As a result, the electron fraction is correlated with the polar angle. This can be seen in Fig. 2.5
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Figure 2.4.: Ejecta components and their respective timescale. On dynamical timescales, tidal
torques, and shock heating eject matter from the outer regions of the NSs and
the collision interface. In the early post-merger phase, spiral waves and neutrino
interactions unbind matter from the remnant. After more than ∼ 100 ms, viscous
heating in the accretion disk leads to the ejection of 10−30% of the disk on timescales
of seconds. Recombination of nucleons into alpha particles provides additional energy
that assists in the ejection of matter. Courtesy of Dirk Martin.

which shows the distribution of the electron fraction in a numerical merger simulation 10ms
after the merger.
A small fraction of the shocked ejecta (∼ 10−5 − 10−6M⊙) can be accelerated to mildly

relativistic velocities (v ≳ 0.6c). Despite its low mass, this matter might produce observable
features in the electromagnetic counterpart (see Section 2.3.3).
The dynamical ejecta are followed by the so-called secular ejecta. During the early disk phase

(∼ 10-100ms after the merger) the newly-formed massive NS exhibits an oscillating double
core structure. As the remnant reaches minimum compactness during the oscillation matter
becomes unbound. This launches spiral waves into the accretion disk which transport angular
momentum and heat the disk (Nedora et al., 2019, 2021b). This component is sometimes called
the spiral wave wind. It is occasionally attributed to the dynamical ejecta because they have a
similar origin and properties but the ejection of matter due to the bounces of the central NS
can continue for up to ∼ 100ms and eject up to ∼ 10−2M⊙ as long as no BH is formed. These
ejecta typically have velocities between 0.1−0.2c and their electron fraction distribution usually
shows a peak at Ye ≈ 0.3 (Nedora et al., 2019, 2021b). A word of caution is in order regarding
the spiral wave wind because it was so far only found in simulations with the WhiskyTHC code
which might artificially enhance the neutrino heating above the disk. In the first few tens of
milliseconds, neutrinos are emitted in vast amounts and partially reabsorbed in outer layers
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Figure 2.5.: Distribution of the electron fraction in the xz plane of a numerical merger simulation
∼ 10 ms after the merger. The electron fraction Ye of the dynamically ejected material
is correlated with the polar angle. Black contours roughly mark the locations of the
disk and the central massive NS.

of massive NS and disk, especially close to the poles. This drives an outflow of material with
comparably high electron fractions (Ye ≳ 0.35) and low mass (10−4 − 10−3M⊙). While this
neutrino-driven wind is often mentioned as a separate ejecta component, it is usually hard to
separate from the other components ejected on similar timescales. Instead, the importance of
neutrino heating for the ejection of matter increases with larger polar angles, which is why we
simply refer to the mass ejected due to oscillations of the remnant, and neutrino absorption as
“early disk ejecta”.
The largest contribution to the ejecta mass becomes unbound on the timescales of seconds

(see, e.g., Fernández &Metzger, 2013;Metzger & Fernández, 2014; Just et al., 2015; Fujibayashi
et al., 2020a, 2023). The MRI results in an effective viscosity which transports angular
momentum outwards and generates heat in the disk through the dissipation of kinetic energy
(Fernández & Metzger, 2013; Metzger & Fernández, 2014; Just et al., 2015, 2021; Siegel &
Metzger, 2018; Fujibayashi et al., 2020a,b,c, 2023; Hayashi et al., 2022; Fahlman & Fernández,
2022; Kiuchi et al., 2022). Furthermore, the recombination of nucleons into alpha particles and
heavier nuclei contributes an additional source of heating at late times (Fernández & Metzger,
2013; Siegel & Metzger, 2017, 2018). Eventually, as the accretion rate drops and neutrino
cooling becomes inefficient the disk expands and becomes partially unbound. This is usually
referred to as the viscous or viscosity-driven ejection mechanism and can eject matter for up to
10 s (Fujibayashi et al., 2023). As the disk expands, nucleons recombine to α particles which
can enhance the heating in the disk on similar timescales. The velocity of the viscous ejecta
is comparably slow v ≈ 0.1c. Their electron fraction is determined by a competition of the
expansion, electron/positron capture, and neutrino absorption timescales and typically lies
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between 0.25 − 0.5 (see, e.g., Fujibayashi et al., 2020c; Just et al., 2021). If a BH is formed
before the start of the viscous disk phase, the mass of the secular ejecta is similar to that of the
dynamic ejecta but if the central NS remains stable, the viscous ejecta are substantially more
massive by up to two orders of magnitude (Fujibayashi et al., 2023).

2.3.2. r-process nucleosynthesis

Elements heavier than iron are predominantly synthesized by neutron-capture reactions because
charged-particle reaction cross-sections become very small due to the coulomb repulsion of
heavier nuclei. As nuclei capture neutrons, they become unstable and decay via β-decays. The
combination of β-decays and neutron captures eventually builds up heavy elements. In the
abundance distribution of elements heavier than iron in the solar system, a series of three
double peaks can be found (see Fig. 2.6). The double-peak structure is caused by the existence

Figure 2.6.: Atomic abundance pattern of the solar system. Color-shaded regions mark the
nucleosynthesis process that is responsible for the production of the majority in the
respective mass number range. Light elements up to iron are made in the primordial
nucleosynthesis and stellar burning. The double-peak structures in the remaining heavy
elements hint towards the production of heavy elements by two separate nucleosynthesis
processes, the r and s processes. Courtesy of Julia Bliss.

of two different neutron-capture processes (Burbidge et al., 1957), the rapid and the slow
neutron-capture process (r and s process), each responsible for the production of roughly half
the heavy elements in the universe. Both processes create heavy elements by a combination
of neutron captures and β-decays. However, in the r process the neutron-capture timescale
is much faster then the β-decay timescale (τn ≪ τβ) while the opposite is true for the s
process (τn ≫ τβ). Figure 2.7 shows a sketch of the nucleosynthesis paths of the r and s
processes. During the s process each time a neutron is captured it is followed by a β decay so
the nucleosynthesis runs along the valley of stability. The r process involves very neutron-rich
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Figure 2.7.: Sketch of the nucleosynthesis paths of the r and s processes. Black and gray squares
mark stable nuclei and isotopes with measured masses (Wang et al., 2017), respectively.
The inset in the top-left corner shows how the different paths of the two processes
result in two separate abundance peaks.

isotopes close to the neutron drip line because nuclei capture multiple neutrons before a β
decay occurs. After the neutron captures freeze out, the nuclei decay to stability. Nuclei with
closed neutron shells (at N = 50, 82, and 126) have larger binding energies compared to
isotopes close to them in the nuclear chart. Consequently, they are more abundant during
the nucleosynthesis (marked by colored squares in the inset in Fig. 2.7). Due to the different
paths of the s and r process, this accumulation of matter occurs at different mass numbers
and therefore forms two separate peaks in Fig. 2.6. Spectra of several metal-poor (metal-poor
indicates old) stars show an abundance pattern, that matches the r-process abundances in the
solar system (Sneden et al., 2008). However, the lighter trans-iron elements in these r process
enhanced stars show a star-to-star scatter, indicating some variance in the production site or
a separate production site that only produces a limited r process (see, e.g., Travaglio et al.,
2004; Hansen et al., 2014).
The s process requires relatively low neutron densities (nn ≈ 108 cm−3) (Busso et al., 1999)

over an extended period and is believed to take place in asymptotic giant branch stars (see,
e.g., Käppeler et al., 2011). It is relatively well understood since it involves nuclei close to
stability with well-known properties. The r process takes place in explosive environments
with extremely high neutron densities (nn ≈ 1024 − 1028 cm−3) and involves exotic nuclei with
unknown properties, far away from isotopes with measured masses (shown as gray squares in
Fig. 2.7). Until 2017, it was unclear which astrophysical site provides these extreme conditions,
but the spectral evolution of the KN AT2017gfo revealed the presence of lanthanides in the
ejecta of a BNS merger (see Section 2.3.3), thereby confirming BNS mergers as one of the sites
of the r process. However, the detection of r-process elements in the spectra of metal-poor
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stars hints towards other sources that might have contributed to the r-process enrichment in
the early galaxy (see, e.g., Côté et al., 2019; Molero et al., 2021).
The r process starts with the formation of seed nuclei with A ≲ 60, predominantly by

α-capture reactions and neutron captures for very low electron fractions. As the ejecta expand,
their density and temperature drop, leading to the freeze-out of charged particle reactions.
Below 3GK, the mass numbers of seed nuclei are primarily raised by neutron captures. The
efficiency of this process is determined by the ratio of neutrons to seed nuclei nS . The production
of lanthanides requires nS ≳ 50 to be produced, while actinides require nS ≳ 150. A large
neutron-to-seed ratio can be reached either by high entropies (“hot” r process) or low electron
fractions (“cold” r process) (Freiburghaus et al., 1999; Arcones & Martínez-Pinedo, 2011). In
high entropy conditions, the triple-α reaction (α+ α+ α →12 C + γ) which forms the starting
point of the seed nuclei production is inefficient, leading to a lower seed abundance and thus
higher nS . However, all ejecta from BNS mergers have low entropies (≲ 30kB/baryon) (see,
e.g., Radice et al., 2020). In this case, the nucleosynthesis outcome is mostly determined
by the electron fraction of the ejected material. Low electron fractions limit the formation
of α particles due to the lack of free protons. If Ye ≲ 0.2, heavy r-process nuclei with a
solar-system-like pattern (including lanthanides) are synthesized. However, if Ye ≳ 0.3, only a
lighter r-process nuclei with a small fraction of lanthanides are created. The transition between
the two scenarios is very sharp and lies approximately at Ye = 0.25.
The electron fraction in the ejecta of BNS mergers is mostly determined by weak reactions,

depending on the fluid elements’ trajectory and hydrodynamical history. Most of the fluid
elements unbound during and after themerger stem from the inner crust region of the initial NSs
which features densities around 1014 g cm−3. Their electron fraction is set by the neutrino-less
beta equilibrium which lies close to Ye ≈ 0.05 at these densities. Due to the high temperatures
reached in the merger remnant, large amounts of electron-positron pairs are created and
subsequently captured by nucleons. Furthermore, vast amounts of electron and electron anti-
neutrinos are emitted from the remnant and partially reabsorbed by the expandingmatter. Since
neutrons are much more abundant, positrons and electron antineutrinos are more frequently
captured than their respective antiparticles. Consequently, the electron fraction evolves towards
more proton-rich compositions and might even become larger than Ye = 0.5. For a detailed
analysis of the electron fraction in NS merger ejecta, see, e.g., Just et al. (2021).

2.3.3. Kilonovae

The decay of the unstable heavy elements synthesized in the r process heats the escaping
matter as it escapes. This drives an electromagnetic transient with a characteristic light curve.
However, the radiation can not escape immediately from the ejecta because initially scattering
and absorption processes trap photons within the expanding material making it opaque to
electromagnetic radiation. The opacity κ of the material relates the photons mean free path
λ to the density of the ejecta via λ = (ρκ)−1 and depends on the composition of the ejecta
and the temperature. As the matter expands, its density and temperature drop until photons
can eventually escape. A simple model based on a spherically symmetric ejecta component
with massM , velocity v, opacity κ, in homologous expansion can be used to estimate the key
features of the electromagnetic transient (Metzger et al., 2010; Fernández & Metzger, 2016):
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The peak time can be estimated by the diffusion timescale which is given by

τdiff ≈ ρκR2

3c ≈ ρκ(vt)2

3c , (2.4)

with the radius R = vt and the density ρ ≈ 3M
4πR3 ≈ 3M

4π(vt)3 . This results in

tpeak ≈
(︃
Mκ

4πcv

)︃1/2
≈ 2.7 d

(︃
M

10−2M⊙

)︃1/2 (︃ κ

1 cm2g−1

)︃1/2 (︃ v

0.1c

)︃−1/2
. (2.5)

Intuitively, slower expanding, more massive ejecta and more opaque ejecta become transparent
later. For typical masses and velocities, the KN light curve peaks around 1-10 days, depending
on the opacity. The heating rate due to the decay of r-process nuclei can be estimated by
ϵ̇ ≈ ε1010(t/d)−1.3 and is relatively independent of the electron fraction (Metzger et al., 2010).
The thermalization efficiency ε < 1 accounts for energy lost due to escaping γ rays and neutrinos
(see, e.g., Barnes et al., 2016). After the peak time, the luminosity is approximately given by
the total energy deposition rate L(t) ≈ Mϵ̇(t). With this, the peak luminosity can be estimated
by

Lpeak ≈Mϵ̇(tpeak) ≈ 1041 ergs−1ε

(︃
M

10−2M⊙

)︃0.35 (︃ κ

1 cm2g−1

)︃−0.65 (︃ v

0.1c

)︃0.65
. (2.6)

Due to the peak luminosity being roughly 3 orders of magnitude above typical luminosities
of Novae, Metzger et al. (2010) coined the term kilonova. The effective peak temperature is
given by the Stefan-Boltzmann law

Tpeak ≈
(︄
Lpeak
σR2
peak

)︄1/4

≈ 3460 Kε1/4
(︃

M

10−2M⊙

)︃−0.17 (︃ κ

1 cm2g−1

)︃−0.41 (︃ v

0.1c

)︃−0.09
, (2.7)

where σ is the Stefan-Boltzmann constant. Equations (2.5) to (2.7) show, that the opacity of
the ejecta plays a critical role in the KN light curve and spectrum. The opacity of the ejecta
originates from a combination of a large number of Doppler-broadened atomic transitions
which are not well known individually (see, e.g., Tanaka et al., 2018). The exact opacity and
its dependence on the composition can therefore only be modeled approximately. However, it
is generally accepted that the presence of lanthanides or actinides in the ejecta leads to orders
of magnitude higher opacity due to the high line density of atoms with open f-shells. Thus,
the opacity of the ejecta is high (κ ≳ 10 − 100 cm2g−1) when full r-process nucleosynthesis
has occurred, yielding a pattern similar to the r-process abundances observed in the solar
system or in metal-poor stars. If instead only a weak r-process, which stops around the second
peak, develops, the opacity is dominated by open d-shell nuclei and is closer to κ ≈ 1 cm2g−1.
Consequently, the corresponding KN peaks within a day and is bright and blue. In contrast,
if lanthanides are present the emission is shifted to the near-infrared and peaks later and
dimmer.
The emission of AT2017gfo reached peak brightness (∼ 1042 ergs−1) in the visible spectrum

within the first day. On the timescale of ∼ 10 days, the bolometric luminosity1 dropped
to ∼ 1040 ergs−1 with the a power-law scaling indicating radioactive decays (∼ t−1.3) while
1A body’s bolometric luminosity is its total frequency integrated energy output per unit time.
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simultaneously shifting towards near-infrared wavelengths (Smartt et al., 2017; Cowperthwaite
et al., 2017). More complicated models that take into account multiple ejecta components
with different properties and spatial distributions have been used to infer the ejecta properties
from AT2017gfo with varying results (see, e.g., Villar et al., 2017; Perego et al., 2017; Waxman
et al., 2018; Metzger, 2020; Nakar, 2020; Hotokezaka & Nakar, 2020). Most of them obtain
the best fit by including at least two components: a fast "blue” (i.e., low lanthanide fraction)
component, and a slower “red” (i.e., including lanthanides) component. These predictions
do not line up with ejecta properties, extracted from numerical simulations (see, e.g., Siegel,
2019; Nedora et al., 2021b), which typically predict fast, low-Ye (i.e., high lanthanide fraction)
dynamical eject and slower moving secular ejecta with higher Ye.
The spectral evolution of AT2017gfo was captured at different times after the merger, span-

ning from the near-infrared to the ultraviolet (see, e.g., Pian et al., 2017). During the first
couple of days, the spectrum resembled a black body with only a few absorption features dis-
cernible. Watson et al. (2019) showed that an absorption feature at ∼ 800 nm originates most
likely from the absorption lines of Strontium. In the later phases, the spectra are dominated by
absorption features and hints towards the existence of Lanthanum and Cerium (Domoto et al.,
2022).
Alongside the KN, a short γ-ray burst (sGRB) was detected with a delay of 1.7 s (Abbott et al.,

2017b). Short γ-ray bursts are emitted from powerful, narrowly collimated, relativistic jets,
driven by magnetic fields and possibly aided by neutrino annihilation (see, e.g., Nakar, 2020).
The jet is launched from BNS remnants, either by an BH-torus system (Blandford & Znajek,
1977; Ruiz et al., 2016) or a magnetized NS (Zhang & Mészáros, 2001; Fan et al., 2013; Lasky
et al., 2014). The interaction of the jet with the previously launched KN ejecta drives shocks,
producing intense forward-beamed gamma-ray emission, visible as sGRB on Earth if it lies in
the beam direction. The weak nature of the sGRB observed in 2017 led to the conclusion, that
it was observed off-axis (Xie et al., 2018; Lazzati et al., 2018). On longer timescales (weeks to
years), the jet and the KN ejecta interact with the interstellar medium (ISM) resulting in an
afterglow in the radio to X-ray (see, e.g., Piran et al., 2013; Nakar, 2020). Metzger et al. (2015)
pointed out that if even a small fraction of free neutrons survive the r-process nucleosynthesis,
their decay would significantly alter the electromagnetic transient during the first hours after
the merger. This could be the case for a very small ejecta component with velocities of ≳ 0.6c,
which is present in the dynamical ejecta in many simulations (see, e.g., Dean et al., 2021, and
references therein). However, the low mass of the fast ejecta makes them hard to resolve due
to the finite resolution of numerical simulations. Interactions of these fast ejecta with the ISM
are also a possible explanation of the rebrightening of the KN X-ray afterglow ∼ 900 d after the
merger (Troja et al., 2020; Nedora et al., 2021a).

2.4. The nuclear equation of state

The mathematical description of the fluid dynamics in BNS mergers is mostly given by conserva-
tion laws (see Section 3.2). However, an extra equation relating the pressure to the density of
the fluid is needed to close the system of equations. This is the EOS, which describes howmatter
responds to compression, usually in the form of an equation for the pressure as a function
of the fluid’s density, thermal energy, and composition. It is determined by the interactions
of the particle constituents of the fluid. Therefore, the EOS connects the microphysics of the
strong, weak, and electromagnetic interactions with the macrophysics of hydrodynamics and
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general relativity. Section 2.4.1 gives an overview of the statistical-mechanics basics of EOS
models and is based on Huang (1987). In Section 2.4.2, we summarize the ingredients of
EOS for astrophysical applications. The high density EOS is highly uncertain, so some form
of parametrization of its properties is needed to compare different models. We outline two
classes of parameters in Section 2.4.3: properties of isolated cold NSs and nuclear matter
properties. Finally, we give an overview of two commonly used models for the calculation of
uniform nuclear matter in Section 2.4.4.

2.4.1. Statistical mechanics basics

The macrophysical description of a system is given by thermodynamical variables, such as
the temperature T or the pressure P . Their relations can be derived from thermodynamic
potentials, (i.e., the internal energy U as a function of the entropy S, volume V , and particle
number N). In the context of merging NSs simulations it is usually more convenient to express
the thermal state of a system in terms of the temperature, not the entropy. The appropriate
thermodynamical potential is therefore the free energy F (T, V,N)which is given by a Legendre
transformation of the internal energy

F = U − TS . (2.8)

The microphysical interactions are described by quantum mechanics and are determined by the
systems Hamiltonian H. The statistical properties of a system described by H can be expressed
by the partition function

Z = Tr
(︃

exp
(︃

− H

kBT

)︃)︃
, (2.9)

where kB is Boltzmann’s constant and Tr denotes the trace. The free energy is then given by

F = −kbT ln(Z) . (2.10)

Once the free energy is known, other thermodynamic quantities, such as the pressure P ,
entropy S, and the chemical potentials µi can be derived from its derivatives.

2.4.2. Equations of state for astrophysical applications

In the context of astrophysical hydrodynamical simulations, the thermodynamic state of the
fluid is evolved locally, so it is necessary to express all relevant thermodynamic quantities
in an intensive way. This includes the internal energy density ϵ = U/V or specific internal
energy ε = ϵ/ρ and the entropy per baryon s = S/N . The rest mass of the astrophysical
fluid is almost exclusively determined by its baryonic constituents (protons and neutrons)
which can be bound in nuclei. The baryonic rest-mass density is given by ρ = mn, where
n = (Np+Nn)

V is the baryon particle density andm a constant reference mass, called mass factor.
Since neutrons and protons have slightly different masses the mass factor should in principle
be composition dependent. Instead, the mass difference is usually included in the energy
density (see, e.g., Section 2.4.4) and the mass factor is kept constant. Note that different codes
might use different mass factors, e.g., the average nucleon mass or the atomic mass unit. For
hydrodynamical simulations, it is only important, that the same mass factor is used consistently
throughout the simulation and analysis. The number density of a specific particle species ni is
related to its abundance Yi = ni/n.
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The cores of NSs are mostly composed of free neutrons and protons due to the high densities
ρ ≳ 1014 g cm−3 (although the occurrence of hyperons (see, e.g., Tolos & Fabbietti, 2020) and
deconfined quark matter has been theorized (see, e.g., Blaschke & Chamel, 2018; Alford et al.,
2019)). In this regime, the EOS is governed by the strong interaction and highly uncertain
(see Section 2.4.3). Due to the charge neutrality of the interstellar medium, the abundance of
protons (including those bound in nuclei) is equal to the electron fraction Ye, i.e.

np = Yen , (2.11)
nn = (1 − Ye)n . (2.12)

In BNS mergers, weak reactions (electron/positron captures, neutrino absorptions, and β-
decays) change Ye and are thus crucial in determining the chemical composition. However, due
to the very small interaction cross sections of neutrinos, they fall out of thermal equilibrium in
the outer layers of the remnant NS and thus need to be treated separately from the EOS by a
radiation transport model (see Section 3.3).
At densities below∼ 1014 g cm−3, nucleons start to form structures and recombine into nuclei.

A possible way to account for this is in the single nucleus approximation (SNA), which assumes
that these structures can be represented approximately by a representative nucleus. In the SNA
the free-energy contribution of the representative nuclei is described by a liquid-drop model
and made up of a bulk energy (e.g. calculated with a density functional, see Section 2.4.4),
a surface term, and a coulomb contribution which depend on the nucleus’ density, volume,
and proton fraction. By minimizing the total free energy, in terms of the free parameters, the
nucleus; properties are determined. At lower densities, the approximation of the SNA starts
to break down, because an ensemble of nuclei appears. The abundances of the nuclei can
be approximated by the statistical equilibrium of nuclear reactions, called nuclear statistical
equilibrium (NSE). In NSE, the chemical potential of an isotope i with charge and mass
numbers Z and A is determined by the chemical potentials of protons and neutrons µn,p:

µi = Zµp + (A− Z)µn . (2.13)

While NSE, describes the contribution of bound nuclei at low densities in a more sophisticated
way, the SNA captures changes in the shape and composition of the nucleus and interactions
between the nucleus and its surrounding medium of lower density. For temperatures below
T ≲ 0.5 MeV, a fluid element falls out of NSE, and a nuclear reaction network is needed to track
its composition accurately. While reaction networks are crucial to determine the contribution
of BNS mergers to the chemical evolution of galaxies and to predict the electromagnetic
counterpart of the event, the assumption of NSE is usually sufficient for the modeling of the
merger dynamics.
Unlike neutrinos, electrons, positrons, and photons can be assumed to be in thermodynamic

equilibrium with the baryonic matter during the merger and post-merger phases of merging
BNSs. Electrons and positrons are usually treated as ideal Fermi gas and their contribution
to the total pressure, energy, and entropy can be calculated by evaluating Fermi integrals
(see, e.g., Lattimer & Swesty, 1991). The contribution of photons can be modeled by a simple
blackbody emission and calculated analytically. See, e.g., Timmes & Arnett (1999) for more
details on non-baryonic contributions to the EOS
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2.4.3. Characterizing the high-density equation of state

The densities inside NSs can reach up to 1015 g cm−3. Under these extreme conditions, we
assume that matter consists of free neutrons, protons, and electrons. These states are referred
to as uniform and non-uniform nuclear matter, respectively. Because of the nucleons’ small
mean free paths, the strong interaction has a significant influence on the EOS of uniform
nuclear matter. However, an exact ab-initio description, especially at very high densities (ρ ≳
5×1014 g cm−3), is currently not possible due to the strong nature of nuclear interactions. Chiral
effective field theory (EFT) offers a good description of nuclear matter at intermediate densities
(ρ ≲ 5 × 1014 g cm−3), but the error estimates of calculations in chiral EFT become very large
at densities above ∼ 3 − 5 × 1014 g cm−3 (see, e.g., Hammer et al., 2020). Furthermore, solving
the nuclear many-body problem at the relevant finite temperatures and isospin asymmetries
requires a large amount of computational resources and has only been achieved recently
(Carbone & Schwenk, 2019; Keller et al., 2021, 2023). In the absence of ab-initio descriptions,
astrophysical applications rely on phenomenological models, such as Skyrme-type interactions
(see, e.g., Lattimer & Swesty, 1991; Schneider et al., 2017) or the relativistic mean-field
approximation (see, e.g., Shen et al., 1998a; Steiner et al., 2013; Banik et al., 2014).
The stellar properties of isolated non-rotating NSs (e.g., its radius or tidal deformability) are

often used to characterize an EOS in a model-independent way. Since NSs are extremely dense,
their gravitational potential has to be described by general relativity. Their stellar structure
is described by the Tolman–Oppenheimer–Volkoff (TOV) equations (Oppenheimer & Volkoff,
1939):

dP
dr = −Mϵ

r2

(︃
1 + P

ϵ

)︃(︄
1 + 4πr3P

M

)︄(︃
1 − 2M

r

)︃−1
, (2.14)

dM
dr = 4πr2ϵ , (2.15)

for the pressure P and enclosed massM at radius r. TOV stars are cold, and their composition is
determined by neutrinoless weak equilibrium. Therefore, the EOS reduces to a simple function
of one argument, for example, the energy density as a function of pressure. Integrating
Eqs. (2.14) and (2.15) with a specific initial condition (e.g. the central pressure) from the
center of the NS up to its surface yields its pressure and density profiles, as well as its radius R
and total massM(R). By varying the initial condition one obtains a relation between the mass
and radius of cold NSs that always exhibits a maximum mass (see, e.g., Fig. 4.3). Both, the
density profile of a single star as well as the mass-radius relation are uniquely correlated to the
EOS (up to the maximum density in the NSs). The tidal deformability of a NS (see Section 2.2)
is obtained by solving the following equation (Hinderer, 2008)

r
dy
dr = − y2 − y

[︄
r − 4πr3(ϵ− P )

r − 2M

]︄

− 4πr
r − 2M

[︃(︃
5ϵ+ 9P + (ϵ+ P )

c2
s

)︃
r2 − 6

4π

]︃

+ 4
[︄
M + 4πr3P

r − 2M

]︄2

, (2.16)

for the quantity y along side Eqs. (2.14) and (2.15). y is an auxiliary parameter related to the
gravitational field and cs is the speed of sound given by c2

s = dP
dϵ . The tidal deformability can

21



2. Physical background

then be obtained by evaluating the following expression:

Λ = 16
15(1 − 2C)2[2 + 2C(y − 1) − y]×

{2C(6 − 3y + 3C(5y − 8))

+ 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1 − 2C)2[2 − y + 2C(y − 1)] log(1 − 2C)}−1 , (2.17)

with the compactness parameter C = M(R)/R and y = y(R).
Astrophysical observations have delivered several constraints on the properties of TOV stars.

The observations of heavy pulsars (Antoniadis et al., 2013; Arzoumanian et al., 2018; Fonseca
et al., 2021) have put lower limits on the maximum NS mass and information obtained from
X-ray pulse-profile modeling of the pulsars PSR J0030+0451 and PSR J0740+6620 (Miller
et al., 2019, 2021; Riley et al., 2019, 2021) was used to constrain their radius. The GW
signal GW170817 gave valuable constraints on the reduced tidal deformability of the merging
stars (see Section 2.2). Furthermore, the observation of the electromagnetic counterpart of
GW170817, indicated, that the merger remnant was initially a HMNS that collapse to a BH
after a short amount of time, which puts an upper limit on the maximum NS mass (see, e.g.,
Margalit & Metzger, 2017; Rezzolla et al., 2018).
TOV-related quantities, such as the radius or tidal deformability of a NS with a characteristic

mass (often 1.4 or 1.6M⊙), or the maximum allowed NS mass, are useful characteristics to
describe the influence of the EOS on the dynamics of BNS mergers. Since merging BNSs
systems initially consist of two effectively isolated NSs, TOV properties naturally correlate
with the outcome of the merger. The tidal deformability has a large influence because it is the
most important factor during the late inspiral and therefore also impacts the early post-merger
phase (see, e.g., Radice et al., 2020). Furthermore, the velocity of the NSs at the merger is
determined by the radii of the NS and has a large impact on the shock-heated ejecta and the
early post-merger phase (see, e.g., Hotokezaka et al., 2013b). Finally, these quantities are a
general measure of the “stiffness” of an EOS which is important for the post-merger evolution
of the remnant (see Section 4.2).
However, there are some aspects of the EOS that can not be described by TOV parameters.

The massive NSs resulting from the merger is hot and no longer in weak equilibrium and its
central density is larger than that of isolated NSs. Meanwhile, the properties of a TOV star can
only describe the cold beta-equilibrium EOS at lower densities. Nonetheless, several works
have found that the peak frequencies of the post-merger GW signal are correlated to the tidal
deformability or the radius of TOV stars and have developed several fit formulae (see, e.g.,
Bauswein & Stergioulas, 2015; Takami et al., 2015; Rezzolla & Takami, 2016; Kiuchi et al.,
2020). Some studies have developed similar fit formulae for the mass of the dynamical ejecta
or the disk as functions of TOV parameters (see, e.g., Nedora et al., 2021c; Henkel et al., 2023).
However, these are much more uncertain, because the ejection of matter depends on several
mechanisms which in turn depend on different EOS properties (see Section 2.3).
The so-called nuclear matter properties offer a different approach to the characterization

of the EOS. The energy per particle of symmetric, uniform nuclear matter has a theoretical
minimum close to n ≈ 0.16 fm−3 (ρ ∼ 2.5 × 1014 g cm−3) called the saturation density n0. The
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energy density can be expanded around the saturation density and isospin symmetry:
E

A
= ϵ

n
= −B + 1

2Kχ
2 + S(χ)β2 + O(χ3) + O(β4) (2.18)

where χ = (n−n0)
3n0

and β = nn−np

n = 1 − 2Ye are the expansion parameters. The expansion
coefficients of symmetric nuclear matter are the binding energy B and the incompressibility K.
The behavior away from isospin symmetry is defined by the symmetry energy term S(χ) which
we define as the exact difference of the energy of pure neutron matter to symmetric matter:

S(χ) = Esym(χ) = E

A
(β = 0) − E

A
(β = 1) ≈ 1

2
∂2E/A

∂β2

⃓⃓⃓⃓
⃓
β=0

. (2.19)

It can also be expanded in χ

S(χ) = Sv + Lχ+ 1
2Ksymχ

2 + O(χ3) , (2.20)

with the symmetry energy at saturation Sv, the slope parameter L, and the curvature parameter
Ksym. The expansion parameters B,K, Sv, L, and Ksym are often referred to as nuclear matter
properties. Their role is indicated in Fig. 2.8. The energy per particle of symmetric nuclear
matter exhibits a minimum at the saturation density n0 and the binding energy B. The
incompressibility K measures the curvature at the minimum and the symmetry energy Esym
is defined as the difference of the energy per particle of symmetric nuclear matter and pure
neutron matter.
Nuclear matter properties are a universally applicable and well-known tool to describe any

EOS close to the saturation density. This means, that, similar to the properties of TOVs, they
are not optimally suited to describe the cores of massive NSs which can reach up to 8 times the

Figure 2.8.: Sketch of the energy per particle of symmetric nuclear matter and pure neutron matter.
The role of the binding energy, symmetry energy, and incompressibility are indicated.
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saturation density. However, unlike TOV parameters, different nuclear matter parameters are
sensitive to different density regimes and therefore provide a more detailed description of the
EOS’ density dependence. Furthermore, they also parametrize the composition dependence.
The influence of nuclear matter properties in BNS mergers is mostly unexplored. Only recently
Most & Raithel (2021) have studied the impact of the slope parameter L on the post-merger
GW emission and the ejection of matter.

2.4.4. Phenomenological models

Directly deriving an EOS from an ab-initio microphysical description of the nuclear interaction,
is not possible for the extreme densities present in NSs. Therefore, simulations of supernova
and compact-object mergers require the use of phenomenological models to cover all the
necessary densities. A popular choice are models based on Skyrme interactions (see, e.g., Stone
& Reinhard, 2007) such as the widely used Lattimer & Swesty (LS) EOS (Lattimer & Swesty,
1991). Skyrme interactions are constructed from a zero-range interaction in the mean field
approximation from which a parametrized energy-density functional (EDF) is derived. The
EDF depends on the particle density n, the proton fraction x, the temperature T , and several
free parameters. These parameters are usually fit to experimental data and astrophysical
observations. The LS EOS, as well as the Schneider-Roberts-Ott (SRO) EOS code (Schneider
et al., 2017, 2018) used in this thesis, is based on a Skyrme EDF of the form (Lattimer &
Swesty, 1991)

ϵ(n, x, T ) =
∑︂

t

τt(n, x, T )
2m∗

t (n, x) − xn∆

+ [a+ 4bx(1 − x)]n2 + cn1+δ . (2.21)

The first term gives the kinetic-energy contribution to the internal energy with the index t
summing over isospin degrees of freedom (i.e., t ∈ [p, n]) and is modeled as a non-interacting
nucleon gas with the effective mass m∗. The second term contains the mass difference of
protons and neurons ∆. The last two terms parametrize nucleon interactions based on the
parameters a, b, c and δ. A nucleon’s motion in a potential that depends on momentum and
energy is approximated by the motion of a quasi-nucleon with mass m∗ in a mean field that
depends on density. The effective mass is, therefore, density and proton-fraction dependent.
Note that the first term of Eq. (2.21) not only includes the thermal energy at finite temperatures
but also the contribution of the degeneracy energy at zero temperature because the kinetic
energy density τ approaches a non-zero value in the limit of T → 0:

τt(n, x, T = 0) = (3πnt)5/3

5π2 . (2.22)

On top of the contribution from uniform nuclear matter, the LS and SRO EOS include non-
uniform nuclear matter, α particles, heavy nuclei, electrons, and photons. See Lattimer &
Swesty (1991) and Schneider et al. (2017) for more details.
Another popular approach for the creation of EOS for astrophysics is the relativistic mean-

field (RMF) model (Shen et al., 1998b,a, 2011). Several commonly used EOS models are based
on the RMF approach, such as the Shen (Shen et al., 1998a), DD2 (Banik et al., 2014), and
the SFHo EOS (Steiner et al., 2013). In RMF theory, the properties of uniform nuclear matter
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2.4. The nuclear equation of state

are derived from a parametrized Lagrangian density, incorporating the strong interaction via
meson exchanges. The coupling constants of the meson exchange terms and the meson masses
are free parameters, which are fitted to experimental data. The Shen EOS is constructed from
the TM1 parameter set (Sugahara & Toki, 1994), which is fitted to ground–state properties of
stable as well as unstable nuclei. Similarly to Skyrme EDFs, the energy density includes a kinetic
energy term with an effective mass m∗. However, unlike the non-relativistic Skyrme functional,
the single particle kinetic energy is given by the relativistic expression ϵt =

√︂
k2 + m∗

t
2.
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3. Simulating neutron star mergers

Simulations of BNS mergers require the modeling of baryon matter (neutrons, protons, and
nuclei), leptonic matter (electrons, positrons, and neutrinos), photons, and the dynamic
spacetime (i.e. the metric fields). The dynamics of curved spacetimes in the presence of matter
source terms are described by Einstein’s equations. To be able to numerically solve them they
need to be expressed as an initial value problem which is described in Section 3.1. Baryons,
electrons, positrons, and photons can be considered to be in thermodynamic equilibrium and
can thus be described as a single perfect fluid, the properties of which are fully determined by
the EOS (see Section 2.4). Section 3.2 describes the relativistic version of Euler’s equations
which determine the fluid dynamical evolution. This leaves the treatment of neutrinos, which
need to be modeled by a radiation transport scheme as described in Section 3.3. Finally, in
Section 3.4, we summarize the methods used in the simulations described in the following
chapters. This section follows the unit convention c = G = 1 and uses the Einstein sum
convention as well as the typical convention where Greek indices and roman indices indicate
summation over 4 spacetime and 3 spatial dimensions, respectively.

3.1. Numerical relativity

Neutron stars and black holes are highly compact objects with strong gravitational fields,
that need to be described by general relativity (GR). The Newtonian gravitational potential
can be determined by solving Poisson’s equation for a given matter distribution. Einstein’s
equations describe the dynamic evolution of the metric fields, which depends not only on the
matter distribution but also on their current state, since they have intrinsic degrees of freedom,
in the form of gravitational waves. Therefore, the simulation of compact object mergers
requires the computational evolution of Einstein’s equations alongside the hydrodynamic
equations (see Section 3.2). This section gives an overview of the methods of NR, the field
of research that studies the evolution of Einstein’s equations with numerical methods, and is
based the monographies on the subject by Baumgarte & Shapiro (2021) and Shibata (2015).
In Section 3.1.1, we describe the 3+1 decomposition of spacetime, a useful concept for the
formulation of initial value problems in GR. In Section 3.1.3, we describe how the gauge
freedom of GR can be used in numerical relativity (NR) simulations by choosing a gauge that
avoids the appearance of singularities. Section Section 3.1.2 details the BSSN formulation of
Einstein’s equations, a commonly used formulation in numerical simulations of GR. Finally,
Section 3.1.5 explains the formalism used to describe GWs and how they are extracted from
NR simulations.
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3. Simulating neutron star mergers

3.1.1. 3+1 decomposition

In physics, numerical simulations are usually based on differential equations, that describe
the time evolution of a system, given an initial condition. This is known as an initial value
problem. For example, hydrodynamical simulations start from an initial condition describing
the distribution of matter, momentum, and energy in a bounded area of space. However, due
to the absence of the concept of absolute time, the concept of initial conditions cannot be
extended to GR in such a simple fashion.
The first step to formulating an initial value problem is to define a coordinate time t as

a scalar function of spacetime. The hypersurfaces of constant coordinate time Σt create a
foliation of spacetime that is sketched in Fig. 3.1. The local ratio of proper time and coordinate

Figure 3.1.: Foliation of spacetime based on a coordinate time t.

time is called the lapse function α and given by

α = − (∇µt∇µt)−1/2 , (3.1)

where ∇µ denotes the covariant derivative. The timelike, and future-directed normal to Σt is
given by

nµ = −αgµν∇νt , (3.2)
with nµn

µ = −1. The 4-metric gµν induces a 3-metric γµν onto the slices Σ given by

γµν = gµν + nµnν , (3.3)

which raises and lowers the indices of purely spatial tensors. We can now define a vector tµ
with tµ∇µt = 1 as

tµ = αnµ + βµ , (3.4)
where βµ can be any vector orthogonal to nµ and is thus purely spacelike. It turns out tµ is
a useful choice for the time base vector because the vector tµdt connects two neighboring
hypersurfaces Σt and Σt+dt. Accordingly, we chose the spatial coordinates xi(t) and xi(t+ dt)
such, that they are connected by tµdt. The vector βµ measures the amount by which the spatial
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3.1. Numerical relativity

coordinates are shifted within a slice with respect to the normal vector and is thus called
shift-vector. Note that the choice of lapse function and shift vector is equivalent to the choice
of the coordinate system (see Section 3.1.3 for more detail). With these definitions in place,
the spacetime line element can be rewritten as

ds2 = α2dt2 + γij

(︂
dxi + βidt

)︂ (︂
dxj + βjdt

)︂
. (3.5)

We can now express the following 4-vectors/tensors in the new coordinate base:

tµ = (1, 0, 0, 0) , (3.6)
βµ = (0, βi) , (3.7)
nµ = α−1(1,−βi) , (3.8)

gµν =
[︄
−α2 + βiβi βi

βi γij

]︄
. (3.9)

Furthermore, it is useful to express the determinant of the 4-metric g in terms of the determinant
of the 3-metric γ:

g = −α2γ . (3.10)
Now that we have defined a distinction between space and time, we need an equivalent to

the time derivative, that customarily determines the evolution of initial value problems. In the
case of the 3+1 decomposition, this is given by the Lie-derivative along tµ, Lt which describes
the change of tensors along world lines with constant coordinates xi. The Lie-derivative of a
vector vµ along a curve with the tangential vector uµ is given by

Lu + vµ = uν∂νv
µ − vν∂νu

µ . (3.11)

Our partial time derivative is therefore given by

Lt = αLn + Lβ , (3.12)

with
(Lnγ)µν = −2αKµν , (3.13)

which defines the purely spatial tensor Kij , called the extrinsic curvature. Equation (3.12) can
be rewritten in terms of our coordinate basis as(︂

∂t − βk∂k

)︂
γij = −2αKij + γik∂jβ

k + γjk∂iβ
k . (3.14)

Next, an equation specifying Kij in terms of the matter and energy distribution has to be
derived from Einstein’s equations

Rµν − 1
2Rgµν = 8πTµν , (3.15)

where Rµν and R are the Ricci tensor and the Ricci scalar and Tµν is the energy-momentum
tensor (see Section 3.2). Note that Einstein’s equations are second-order differential equations
for gµν , so we are looking for an equation that specifies the first time derivative of the extrinsic
curvature and thereby the second time derivative of γij . We can use nµ and γij to project out
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the spatial and timelike components of Eq. (3.15) (for a detailed derivation see, e.g., Shibata
(2015)). The energy-momentum tensor decomposes to

Tµν = Enµnν + Sµnν + Sνnµ + Sµν . (3.16)

Contracting Eq. (3.15) twice with nµ yields the Hamiltonian constraint equation

R−KijK
ijj +K2 = 16πE , (3.17)

where K = γijKij is the trace of Kij . Projecting once with nµ and once with γij yields the
momentum constraint equations:

∇iK
i
j − ∇jK = 8πSj , (3.18)

where we have used∇i, the covariant derivatives associated to γij . Equations (3.17) and (3.18)
are elliptic equations and do not contain time derivatives, so they are not the evolution
equation for the extrinsic curvature we are looking for. Instead, they are conditions, that need
to be fulfilled on all spatial hypersurfaces and have to be solved to construct initial data (see
Section 5.3). Furthermore, it is useful to define H andM i as the residual of the Hamiltonian
and momentum constraint equations. Mathematically, the constraint violation should stay zero
if the initial conditions satisfy the constraint equations and the system is evolved according
to Einstein’s equations. However, due to numerical inaccuracies, this is only approximately
the case in numerical simulations. It is common to compute the violation of the constraint
equations to monitor the spacetime evolution.
Finally, we obtain the equation specifying the evolution of Kij by contracting Einstein’s

equations twice with γij:(︂
∂t − βk∂k

)︂
Kij = − 8πα

[︃
Sij − 1

2γij(S − E)
]︃

+ α
(︂
−2KikK

k
j +KKij

)︂
+ αRij − ∇i∇jα

+Kik∂jβ
k +Kjk∂iβ

k , (3.19)

with S = γijSij , the trace of Sij .
Equations (3.14) and (3.19) are known as the ADM equations (Arnowitt et al., 2008). They

specify the time derivatives for the fields γij and Kij needed for the evolution of the spacetime
in an initial value problem and are thus referred to as the evolution equations in the context of
NR.

3.1.2. The BSSN formulation

The evolution and constraint equations, Eqs. (3.14) and (3.17) to (3.19), introduced in
Section 3.1.1 enable the formulation of Einstein’s equations as an initial value problem but they
are not strongly hyperbolic. Strong hyperbolicity is needed for the problem to be well-posed
because it ensures that the solution does not grow faster than exponentially with respect to
the initial data (see, e.g., Kreiss & Lorenz, 1989). Since the formulation of the ADM equations,
a lot of effort has been devoted to finding a hyperbolic form of the ADM equations. The
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3.1. Numerical relativity

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of Einstein’s equations (Shibata &
Nakamura, 1995; Baumgarte & Shapiro, 1998; Brown, 2009) achieves strong hyperbolicity via
a conformal decomposition of the 3-metric together with several other modifications.
The conformal decomposition is an often-used formulation in NR based on writing the spatial

metric as the product of a scalar conformal factor and a conformal metric γ̃. In the BSSN
formulation, the conformal factor ϕ and conformal metric are defined as

ϕ = 1
12 ln γ (3.20)

γ̃ij = e−4ϕγij . (3.21)
Here, the conformal factor ϕ appears in an exponential form but there are other conventions
(see, e.g., Section 3.1.3 and Section 5.3). Furthermore, the contraction of the Christoffel
symbols Γ̃i

jk associated to γ̃
Γ̃i = γ̃jkΓ̃i

jk (3.22)
are promoted to independently evolved variables. In addition to ϕ, γ̃ij , and Γ̃i, the evolved
fields include K and Ãij = e−4ϕAi. The evolution equations are given by (see, e.g., Brown,
2009)

∂⊥ϕ = 1
6∂kβ

k − 1
6αK (3.23)

∂⊥γ̃ij = −2αÃij − 2
3 γ̃ij∂kβ

k (3.24)

∂⊥K = α

(︃
ÃijÃ

ij + 1
3K

2
)︃

− γij∇i∇jα+ 4π(S + E) (3.25)

∂⊥Ãij = e−4ϕ [α (Rij − 8πSij) − ∇i∇jα]TF

− 2
3Ãij∂kβ

k + α
(︂
KÃij − 2ÃikÃ

k
j

)︂
(3.26)

∂⊥Γ̃i = γ̃jk∂j∂kβ
i + 2

3Γ̃i
jk∂lβ

l

+ 1
3∇̃i

(︂
∂kβ

k
)︂

− 2Ãij
∂jα+ 2αÃjkΓ̃i

jk

+ 12αÃij
∂jϕ− 4

3α∇̃i
K − 16παγ̃ijSj , (3.27)

where the operator ∂⊥ is shorthand for ∂t − Lβ and the notation [. . . ]TF indicates that the
term is made trace free with respect to the conformal metric. Equations (3.25) and (3.27)
contain the Hamiltonian and momentum constraint equations, respectively. Since they are
equal to zero, their addition does not change the solution, but it turns out that it is crucial for
the hyperbolicity of the equations (Brown, 2009).

3.1.3. Choosing a coordinate system

The lapse function and shift vector are not constrained by the Einstein equations. Instead, they
can be freely chosen and represent the freedom of coordinate choice in GR. In NR simulations,
they are usually chosen in a way to avoid unwanted properties related to singularities.
The lapse function can be evolved in such a way that it tends to zero at the singularity in

the center of an BH. This way, the proper time does not advance in the center of the BH, even
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if the coordinate time does, and the singularity is never reached, thus making it possible to
evolve the interior of BH. This property is called singularity avoidance and is crucial for the
successful evolution of BH spacetimes. One possible choice is the maximal slicing condition
which corresponds to the choice K = 0 = ∂tK. It introduces an equation for α:

∇i∇iα = 8παS + E

2 + αAijA
ij , (3.28)

where Aij = Kij − 1
3K is the traceless part of Kij . The choice K = 0 is equivalent to

∆νn
ν and thus prohibits the focusing of the timelike normals and hence, the appearance of

irregular regions in the spatial hypersurfaces. However, in numerical simulation, it leads to a
phenomenon called horizon stretching (see Shibata, 2015, for more detail) ). However, it is
still employed in the context of initial data generation (see Section 5.3). Many simulations
instead use the 1+log slicing condition given by

(∂t − βi∂i)α = −αK . (3.29)

Experience has shown, that this choice has a similarly strong singularity avoidance property.
A useful condition for the shift is the minimal distortion condition. Using the conformal

decomposition given by
γij = ψ4γ̃ij , (3.30)

it can be written as
∇̃i

(︂
δtγ̃

ij
)︂

= 0 , (3.31)

which results in an elliptic equation for the shift:

∇̃i∇̃iγ̃jkβ
k + 1

3∇̃j∇̃iβ
i + R̃jiβ

i

− 2Ãij

(︄
∇̃i
α− α

√
γ

∇̃i√
γ

)︄
− 4

3α∇̃jK = 16παSj , (3.32)

where ∇̃i and R̃ij are the covariant derivative and Ricci tensor associated with the conformal
metric γ̃ and Ãij = ψ−4Aij . It can be shown, that this choice corresponds to a minimal change
of the coordinate distortion, hence the name.
A common gauge choice for the use with the BSSN formulation of Einstein’s equations, is

the 1+log slicing condition, Eq. (3.29), and the Gamma-driver or moving puncture gauge for
the shift. The latter is similar to the minimal distortion condition but takes the form of two
hyperbolic equations: (︂

∂t − βk∂k

)︂
βi = 3

4b
i (3.33)(︂

∂t − βk∂k

)︂
bi = ∂tΓ̃

i − ηbi , (3.34)

where bi is an auxiliary field that is independently evolved by Eq. (3.34) and η is a damping
constant, that can be adjusted to suppress unphysical oscillations of the shift vector. The fact
that these equations are hyperbolic instead of elliptic like Eq. (3.32) lowers the computational
cost of their solution.
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3.1. Numerical relativity

3.1.4. Solving Einstein’s equations numerically

The solutions to Einstein’s equations in the 3+1 decomposition are always smooth, so their
numerical integration is not as complicated as for hydrodynamical conservation laws (see
Section 3.2.2) and can be performed with standard finite difference methods. Finite difference
methods usually approximate a derivative by calculating the derivative of a high-order Lagrange
polynomial interpolant. We typically use 4th-order centered finite-difference stencils given by

∂xv(xi) ≈ vi−2/4 − 2vi−1 − 2vi+1 + vi+2/4
3∆x , (3.35)

for a field v on a discrete grid xi with grid spacing ∆x. No special treatment needs to be
applied except for the shift advection equations (3.33) and (3.34), which require the use of
upwind stencils (i.e. stencils, that are biased in the direction of the advection) to achieve stable
evolutions.

3.1.5. Gravitational Waves

Accelerated masses cause the emission of gravitational waves – ripples in spacetime – which
were already predicted by Albert Einstein in 1916 (Einstein, 1916). They are wave-like
perturbations of the metric gµν which can be described as small deviations from the Minkowski
metric ηµν in vacuum,

gµν = ηµν + hµν . (3.36)
In the limit of linearized gravity (|hµν | ≪ 1) together with the gauge conditions

hµ0 = hµ
µ = 0 (transverse traceless gauge) , (3.37)

∇µh
µν = 0 , (3.38)

one obtains a homogeneous wave equation for the perturbation hµν:

∇σ∇σhµν = 0 . (3.39)

Only two degrees of freedom remain for hµν , representing the two polarization states of GWs.
For GWs traveling along the z-axis in a Cartesian coordinate system, hµν takes the form

hµν =

⎡⎢⎢⎢⎣
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎤⎥⎥⎥⎦ . (3.40)

The relative displacement of two test masses in free fall due to the passing of GWs is proportional
to h+ and h×, so they are called the GW strain and can be thought of as the wave’s amplitude.
To extract GW waveforms and spectra we employ the Newman-Penrose formalism (Newman

& Penrose, 1962), following Sect. 5 of Hinder et al. (2013) for its practical implementation.
The starting point of the procedure is the Weyl tensor given by the traceless part of the Riemann
tensor (associated with the 4-metric)

Cµνσρ = Rµνσρ − 1
2R (gµσRνρ − gµρRνσ − gνσRµρ + gνρRµσ) , (3.41)
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which has 10 independent components. It can be expressed by the five complex Newman-
Penrose scalars given by the contractions with the vectors of a suitable null tetrad (lµ, kµ,mµ, m̄µ),
where lµ and kµ are respectively radially outgoing and ingoing null vectors and m̄µ is the
complex conjugate ofmµ. The second time derivative of the GW strain polarization components
ḧ+ and ḧ× can then be related to the fourth scalar Ψ4 by:

ḧ+ − iḧ× = Ψ4 =
∞∑︂

l=2

l∑︂
m=−l

Clm −2Ylm(θ, ϕ) , (3.42)

where Ψ4 was expanded in weighted spherical harmonics of spin weight -2, −2Ylm(θ, ϕ). The
expansion coefficients Clm are extracted at multiple finite coordinate radii inside the simulation
domain and extrapolated to null infinity along outgoing radial null geodesics. From them, the
strain components h+ and h× are obtained by performing the time integration with the “fixed
frequency integration” (FFI) method (Reisswig & Pollney, 2011). Finally, the power spectral
density (PSD) of the signal is given by

h̃(f) =

⌜⃓⃓⎷⃓⃓⃓h̃+(f)
⃓⃓⃓2

+
⃓⃓⃓
h̃×(f)

⃓⃓⃓2
2 , (3.43)

with the frequency-domain strain components

h̃+,×(f) =
∫︂ ∞

0
h+,×(t)e−i2πft dt . (3.44)

3.2. Relativistic hydrodynamics

The fluid motion of NS collisions is described by the conservation equations of a relativistic
perfect fluid in a curved spacetime (called the relativistic Euler equations). In Section 3.1, we
already introduced a framework for evolving curved spacetimes numerically. While the fluid is
in principle made from a huge number of interacting particles, described by kinetic theory, it is
in practice much more useful to approximate it, in the form of a perfect fluid obeying Euler’s
equation (see, e.g., Chapter 2 of Rezzolla & Zanotti (2013), for a detailed derivation). Euler’s
equation describes the conservation of energy and momentum

∇νT
µν = 0 (3.45)

and the rest-mass conservation (also known as the continuity equation)
∇µ(ρuµ) = 0 , (3.46)

where ρ is rest-mass density and uµ is the fluids 4-velocity field. The fluid’s energy and
momentum are described by the energy-momentum tensor of a perfect fluid

Tµν = ρhuµuν + pgµν , (3.47)
where h = 1+ε+ p

ρ is the relativistic specific enthalpy and p is the pressure. Inserting Eq. (3.47)
into Eq. (3.46) gives the relativistic Euler equations:

uµ∇µuν + 1
ρh

(gµ
ν + uµuν) ∇µp = 0 (3.48)

uµ∇µϵ+ ρh∇µu
µ = 0 . (3.49)
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Equations (3.46), (3.48) and (3.49) are 6 independent equations containing 7 free variables:
ρ, uµ, ϵ, and p. The set of equations is closed by the EOS, which gives a relation for the pressure
in terms of the other thermodynamic variables (see Section 2.4). Note that the conservation
laws hold for any kind of perfect fluid and are thus independent of the microphysical interaction
of the particles, which is entirely represented by the EOS. As mentioned in Section 2.4.2, most
realistic microphysical EOS models are formulated in terms of the baryon-number density
which is converted to a rest-mass density via a constant mass factor. This means that, in
practice, Eq. (3.46) actually describes the conservation of the total baryon number.

3.2.1. The Valencia formulation

While Eqs. (3.46), (3.48) and (3.49) describe the fluid dynamics of BNS mergers, they are
not well suited for numerical integration. The main reason is that shocks, i.e., discontinuities,
can appear in the solution of the conservation equations whenever fluid elements collide
supersonically. In the presence of shocks, several mathematical and numerical problems arise,
from which the necessity for special numerical methods arises (see, e.g., LeVeque, 1992, for
a detailed explanation). One class of numerical schemes commonly used to simulate fluid
dynamics in the presence of shocks are the so-called “high-resolution shock-capturing” or HRSC
schemes (see Section 3.2.2 which require the evolved equations to be of the form

∂tU + ∂iF i(U) = S(U) , (3.50)

which is commonly called the flux-conservative form. The vector U describes the state of the
fluid and F i and S are the flux and source vectors, respectively, which do not contain any
derivatives of U . The state vector U is made up of the conserved variables which in turn are
built from the primitive variables ρ, ϵ, and the 3-velocities vi.
In the Valencia formulation of hydrodynamics (Banyuls et al., 1997), the conserved variables

are given by

U =

⎛⎜⎝D̃Sj̃

τ̃

⎞⎟⎠ = √
γ

⎛⎜⎝ D
Sj

τ(= E −D)

⎞⎟⎠ = √
γ

⎛⎜⎝ ρW
ρhW 2vj

ρhW 2 − p− ρW

⎞⎟⎠ . (3.51)

where we have introduced the Lorentz factor

W = αut = 1√︁
1 − vivi

(3.52)

and the 3-velocities
vi = ui

W
+ βi

α
. (3.53)

To reduce numerical error, the conserved internal energy density τ = E −D is evolved instead
of the conserved energy density E. The flux vectors and the source vector are given by

F i =

⎛⎜⎜⎝
(︁
αvi − βi

)︁
D̃

αS̃
i
j − βiS̃j

α
(︂
S̃

i − D̃vi
)︂

− βiτ̃

⎞⎟⎟⎠ , (3.54)
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and

S =

⎛⎜⎝ 0
1
2αS̃

ik
∂jγik + S̃i∂jβ

i − Ẽ∂jα

αS̃
ij
Kij − S̃

k
∂kα

⎞⎟⎠ , (3.55)

respectively. Here we recognize the source terms E, Si, and Sij = S̃ij/
√
γ from Section 3.1.1.

Strictly speaking, the momenta Si and the internal energy τ are not conserved, since they are
coupled to the spacetime through the source terms S. For a multi-component fluid, the density
of each component obeys a separate continuity equation. In our simulations, we actually evolve
the total density D and the proton density Dp = YeD.

3.2.2. Solving Euler’s equations numerically

As mentioned at the beginning of the previous section, HRSC schemes are often used for solving
equations in flux-conservative form. In this section, we summarize the basic concepts of HRSC
finite volume methods based on Riemann solvers. Finite volume methods evolve cell averages
of the conserved quantities by solving the so-called Riemann problem at the cell boundaries
and date back to Godunov (1959). In the following, we explain the basic concept of finite
volume methods for a one-dimensional function u obeying a conservation law ∂tu+∂xf(u) = 0
using Godunov’s method. Finite volume schemes approximate the exact solution u on a grid of
cells centered around xi = i∆x at finite timesteps tn = n∆t. In this example, the grid spacing
∆x and timestep ∆t are constants but the method can be adapted to higher dimensions and
more complicated grid structures. The function u is approximated as a piecewise constant
function, where un

i is the average of u in the ith cell at time tn:

un
i = 1

∆x

∫︂ xi+∆x/2

xi−∆x/2
u(tn, x)dx . (3.56)

The solution of u at a cell boundary can thus be represented as

u(tn, x) =
{︄
un

i for x < xi + ∆x/2
un

i+1 for x > xi + ∆x/2 . (3.57)

The value in the next timestep un+1
i is then exactly given by

un+1
i = un

i − ∆t
∆x

(︂
Fi+1/2 − Fi−1/2

)︂
, (3.58)

where Fi±1/2 denotes the integral from tn to tn+1 of the flux f over the cell boundary at
x = xi ± 1

2∆x. The type of fluid configuration shown in Eq. (3.57) is called Riemann problem
and the solutions are known exactly. They contain three types of non-linear hydrodynamical
waves propagating from the position of the initial discontinuity: rarefaction waves, contact
discontinuities and shocks (see, e.g., Rezzolla & Zanotti, 2013, for a detailed description).
The fluxes Fi±1/2 can thus be calculated exactly, by solving the Riemann problem at each
cell interface. This approach requires the waves to be entirely contained in one cell at each
timestep, i.e.,

∆t ≤ ∆x
c
, (3.59)
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3.3. Neutrino transport

where c is the speed of sound of the fluid. This criterion is called the Courant–Friedrichs–Lewy
(CFL) criterion (Courant et al., 1928) and needs to be fulfilled by any numerical scheme for the
solution of hyperbolic differential equations. In practice, the timestep in a simulation is set to

∆t = CCFL
∆x
c
. (3.60)

The constant CCFL < 1 is generally known as the CFL or Courant factor. Note that in NR
simulations, the CFL condition is determined by the speed of light which should always be
larger than the fluid’s speed of sound.
A general finite-volume scheme usually uses an approximation to the exact solution of the

Riemann problem and a so-called reconstruction operator. It can be divided into three steps:

(i) It begins with the reconstruction step by calculating the primitive variables on each cell
interface. Higher order accuracy can be achieved by approximating the variables with
polynomials of higher order, taking multiple grid cells near the interface into account.
Many reconstruction operators, such as themonotonicity-preserving scheme (MP) (Suresh
& Huynh, 1997), have been developed to ensure high-order reconstruction while avoiding
the creation of artificial extrema in the presence of discontinuities.

(ii) Next, the fluxes at the cell boundaries are calculated from the reconstructed variables
and used to compute the conservative variables at the new time step. In general, this is
not done by exactly solving the Riemann problem. Instead, an approximation is used,
resulting in so-called approximate Riemann solvers, such as the HLLE solver (Einfeldt,
1988).

(iii) Finally, the primitive variables are recovered on the new time level (the "recovery step").
Given that the equation of state needs to be evaluated in the calculation of the conserved
variables, this stepmay not be an easy problem to solve andmust be addressed numerically,
i.e. by the use of a Newton-Raphson scheme. Because the calculation of realistic EOS
requires a relatively large amount of computational effort, they are supplied in tabulated
form and evaluated with interpolation.

3.3. Neutrino transport

While neutrinos are of great dynamical importance in supernovae, they are not as relevant for
the dynamics of BNS mergers. However, as described in Section 2.3.2, they are vital for the
composition of the ejected matter and thus for the KNe.
The emission and reabsorption of neutrinos change the composition and the energy and

momentum content of the fluid which corresponds to source terms in Eqs. (3.45) and (3.46):

∇µ
(︁
np,nuµ)︁ = ±R (3.61)
∇νT

µν = Quµ , (3.62)

where np,n are respectively the proton and neutron number densities, and R and Q are the
source terms due to neutrino interactions: R is the net lepton number exchange rate due to
the absorption and emission of electron neutrinos and antineutrinos, while Q is the net energy
deposition rate due to the absorption and emission of (anti-) neutrinos of all flavors. Baryon
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3. Simulating neutron star mergers

number conservation dictates, that the source terms for the number density of neutrons and
protons must sum to zero. To consistently calculate the source terms, the neutrino phase-space
distribution function f(xµ, pµ) has to be evolved as a function of spacetime and the neutrino
momenta pµ. The evolution is described by the relativistic collisional Boltzmann equation
(Lindquist, 1966)

pµ
(︃
∂µf − Γν

µσp
σ ∂f

∂pν

)︃
=
(︃df

dt

)︃
coll

, (3.63)

where the collisional source term
(︂

df
dt

)︂
coll
includes the interaction of the neutrinos the fluid

and with themselves. The treatment of neutrinos in BNS merger simulations is challenging. On
one hand, numerically solving of Eq. (3.63) is computationally very expensive. On the other
hand, an approximative description is not trivial because the simulation domain includes vastly
different regions regarding the neutrino’s interaction with matter: Inside of NSs, neutrinos
are trapped, i.e. their mean free path is much smaller than the NS radius. They are therefore
in thermal equilibrium with the baryonic matter and only slowly diffuse out of the NS via a
random walk. Outside of the NS the density and thus the probability for interactions between
neutrinos and baryons drops sharply. These two regimes are called trapped and free streaming
regimes.

3.3.1. Leakage scheme

A neutrino leakage scheme is an approximation to a full radiation transport scheme (van
Riper & Lattimer, 1981; Ruffert et al., 1995; Rosswog & Liebendörfer, 2003). It separates
the computational domain into the trapped and free streaming regimes and connects them
by interpolation in the transition region. In the following, we summarize the key features
of the leakage scheme used in the simulations presented in this thesis. For a more detailed
description see Galeazzi et al. (2013) and references therein.
Most numerical simulations only take electrons and positrons as leptonic degrees of freedom

into account (see Loffredo et al., 2023, though, for a very recent work that treats muons
as separate degrees of freedom). Therefore, the neutrino can be approximately represented
by three species: Electron neutrinos νe, electron antineutrinos ν̄e, and a combined species
representing µ and τ neutrinos and antineutrinos, usually simply named νx. In the trapped
regime, the diffusion rates QDI and RDI are calculated by estimating the diffusion timescale
based on the diffusion timescale tdiff, where I is either νe, ν̄e, or νx:

tdiff = DλI(EI)τ2
I (EI) , (3.64)

The optical depths τI are defined as the integral of the inverse mean free path λI along a line
of sight towards the NS

τI(EI) =
∫︂ ds
λI(EI) , (3.65)

with the neutrino energy EI , and the proper line element ds. D is a tuning parameter. The
value of this parameter was suggested as 3 by Ruffert et al. (1995); Rosswog & Liebendörfer
(2003) by random walk arguments. Calibration against more sophisticated transport methods
led to a larger value of 6 (O’Connor & Ott, 2010). In practice, leakage implementations need
an approximative scheme to evolve the optical depths. The scheme used for the simulations
performed as part of this thesis is explained in Neilsen et al. (2014). Despite being fairly simple,
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3.3. Neutrino transport

the scheme is effective in tracking the evolution of the optical depth in the complex geometry
of BNS mergers.
The mean free path λI is the result of the combination of several scattering and absorption

processes. These are the important processes (and the ones included in our simulations):
(i) coherent neutrino scattering on heavy nuclei with mass number A

ν +A → ν +A , ν = νe, ν̄e, νx

(ii) elastic neutrino scattering on free nucleons
ν + [n, p] → ν + [n, p] , ν = νe, ν̄e, νx

(iii) and absorption of electron neutrinos and antineutrinos on free nucleons
νe + n → e− + p ,

ν̄e + p → e+ + n .

The total mean free path is given by summing up all the contributions to the inverse mean free
path of the above-listed processes which are schematically given by

λ−1
(νI+b) = nbσ(νI+b) , (3.66)

for a process with baryonic target b and neutrino of flavor νI . The cross sections σνI ,b are
approximated by analytical formulas based on the local fluid density, energy, and composition.
The approximate emission rates and luminosities per baryon in the free-streaming regime, RFI

and QFI are also analytically and locally calculated and include the following neutrino-emission
processes:
(i) electron and positron captures

e+ + n → p+ ν̄e ,

e− + p → n+ νe ,

(ii) electron-positron pair annihilation
e+ + e− → ν̄ + ν ,

(iii) and plasmon decay
γ → ν̄ + ν .

See Appendix A of Galeazzi et al. (2013), for the analytic formulas of the neutrino scattering
and capture cross sections and emission rates. Finally, the effective rates ReffI and QeffI are
obtained via interpolation between the free streaming and the trapped regimes by

ReffI = RFI

(︄
1 + RFI

RDI

)︄−1

(3.67)

and the equivalent for QeffI . The source terms R and Q in Eqs. (3.61) and (3.62) are then
obtained via

R = Reffνe −Reffν̄e (3.68)
Q = Qeffνe +Qeffν̄e +Qeffνx . (3.69)
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3. Simulating neutron star mergers

3.3.2. M0 absorption scheme

The leakage scheme described above only treats the emission of neutrinos. However, outside
of the disk and in the polar regions, of the remnant, neutrino absorption plays an important
role (see, e.g., Just et al., 2021). For this reason, we employ a simple zeroth-moment (M0)
transport scheme for free streaming neutrinos, detailed in Appendix A of Radice et al. (2016).
Moment-based neutrino transport schemes are a popular method based on the expansion of
the neutrino distribution functions angular dependence (Thorne, 1981; Shibata et al., 2011).
The scheme tracks the neutrino number densities nI and average energies in the fluid rest

frame EI . The number current (i.e. the first moment of f) for a given neutrino flavor I is given
by

Jµ
I =

∫︂
fpµ d3p

−p0
, (3.70)

with nI = −uµJ
µ
I . Neglecting neutrino scattering, Jµ

I obeys the equation

∇µJ
µ
I = ReffI − κaInI . (3.71)

Here ReffI are the effective emission rates obtained from the leakage scheme and κaI are their
absorption opacities. To close the scheme, we assume that the free-streaming neutrinos are
streaming radially outwards in the fluids rest frame. Mathematically this is expressed as

Jµ
I = nIk

µ = nI(uµ + rµ) , (3.72)

where rµ is a radial unit-vector orthogonal to the fluid four-velocity (i.e. rµuµ = 0). Equa-
tion (3.72) can be solved together with approximate equations for the EI on a series of
independent radial rays using a finite volume scheme. Subsequently, the source terms

Rabs = κaνenνe − κaν̄enν̄e (3.73)
Qabs = κaνenνeEνe + κaν̄enν̄eEν̄e (3.74)

are interpolated to the Cartesian gridnuaed to nuaynamicnuawhere the average neutrino
energies in the laboratory rest frame Ei are given by EI = −EIkµt

µ.

3.4. Simulation setup

The simulations we employ to model BNS systems are carried out in the open-source framework
of the EinsteinToolkit (ET) suite1 (Haas et al., 2020; Löffler et al., 2012), itself based on
the Carpet computational toolkit (Goodale et al., 2003).
To handle general relativistic hydrodynamics we employ the open-source WhiskyTHC2 code

(Radice & Rezzolla, 2012; Radice et al., 2014a,b). It solves Euler’s equations for the balance of
energy and momentum, coupled to conservation laws for the neutron and proton densities.
Neutrino emission and absorption are modeled with a leakage (Galeazzi et al., 2013; Neilsen
et al., 2014) scheme and the so-called “M0” scheme of Radice et al. (2016), respectively. These
are both “grey” (i.e. energy integrated) schemes evolving three neutrino species: electron
1einsteintoolkit.org
2whiskycode.org
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3.4. Simulation setup

neutrinos νe, electron antineutrinos ν̄e and heavy neutrinos νx, which accounts for all others
(anti-) neutrino flavors. Furthermore, the M0 scheme evolves the distribution function of
neutrinos on a ray-by-ray grid, which we setup consisting of 2048 rays uniformly spaced in
latitude and longitude with a radial resolution ∆r ≈ 244 m.
In our setup, WhiskyTHC employs a finite-volumes scheme for the discretization of the

hydrodynamic quantities. The scheme reconstructs primitive variables with the fifth-order MP5
method (Suresh & Huynh, 1997), from which numerical fluxes are computed with the HLLE
flux formula (Harten et al., 1983), augmented with a positivity-preserving flux limiter (Hu
et al., 2013; Radice et al., 2014b) in order to handle the transition to vacuum regions (which
we fill with an atmosphere of density ρatmo ≈ 1.24 × 103 g cm−3).
The hydrodynamics is coupled to a dynamically-evolved spacetime. Einstein’s equations are

written in the BSSN formulation (Shibata & Nakamura, 1995; Baumgarte & Shapiro, 1998;
Brown, 2009), and discretized with fourth-order finite-differences stencils by the McLachlan
code (Brown et al., 2009). We furthermore choose the “1+log” and “Gamma-driver” gauge
conditions (see, e.g., Baumgarte & Shapiro, 2021).
The time evolution is performed by the strong-stability-preserving RK3 integrator (Got-

tlieb & Shu, 1998) using a method-of-lines scheme. The time step is determined by the
Courant–Friedrich–Lewy (CFL) criterion taking the speed of light as the maximum propagation
speed. The CFL factor is chosen to be 0.15.
The mesh for our simulations is handled by the Carpet code (Schnetter et al., 2004), which

employs a “moving boxes” Berger-Oliger adaptive mesh refinement (AMR) scheme (Berger
& Oliger, 1984; Berger & Colella, 1989). We employ a Cartesian-coordinates computational
domain made of 7 refinement levels. The resolution on the finest level is 0.128M⊙ ≈ 189 m
and the full grid spans 1024M⊙ ≈ 1512 km in each direction. To reduce the computational
cost, we only evolve the z ≥ 0 part of the domain and impose reflecting boundary conditions
at z = 0.
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4. Impact of the equation of state in neutron
star mergers

In studies of binary neutron star (BNS) mergers, the influence of the equation of state (EOS) on
the dynamics is often correlated to a single quantity describing the EOS. Such quantities are for
example the radius of a cold non-rotating neutron star (NS) of a specific mass or the (reduced)
tidal deformability (see Section 2.4.3). These approaches encapsulate the stiffness of the EOS
and have been successful in describing the peak frequencies of the post-merger gravitational
wave (GW) emission, typically within a 10% error (Bauswein et al., 2012; Bauswein & Janka,
2012; Hotokezaka et al., 2013a; Takami et al., 2014, 2015; Rezzolla & Takami, 2016), as well
as the threshold mass to prompt collapse (Margalit & Metzger, 2017; Rezzolla et al., 2018;
Shibata et al., 2019; Most et al., 2020; Nathanail et al., 2021). Recently it has been extended to
features of the remnant-disk system and the dynamical ejecta (see, e.g., Nedora et al., 2021c;
Henkel et al., 2023). However, a single quantity can only be a first approximation of the full
density dependence of the pressure.

The so-called nuclear matter properties offer a universally applicable and well-known de-
scription of the properties of any EOS close to saturation density. The expansion parameters
which are important for the pressure of cold nuclear matter are the incompressibility K and
the slope and curvature of the symmetry energy L (see Section 2.4.3 for an introduction).
Furthermore, the effective mass m∗ is important for the pressure at zero temperature as well
as for the thermal pressure. See Section 2.4.4 for an overview of how m∗ enters in Skyrme
type and relativistic mean field models.

In this part of the thesis, we individually vary different nuclear matter properties in the EOS
and perform three-dimensional BNSs merger simulations in full general relativity (GR). We
explore their influence on the remnant structure, GW emission, and ejection of matter. To this
end, we employ 8 EOS models created with the SROEOS code (Schneider et al., 2017, 2018),
enabling us to selectively study the impact of the effective nucleon mass, the incompressibility
parameter, the symmetry energy, and the saturation point. A similar approach was used in
numerical simulations of supernovae (Schneider et al., 2019; Yasin et al., 2020). The results
have been published in Jacobi et al. (2023). Section 4.1 introduces the basic properties of
the EOS tables and BNS merger simulations and explains the post-processing techniques used
to analyze them. The results of the simulations are reported in Sections 4.2 to 4.4, which
describe the dynamics of the merger and post-merger phases, the post-merger gravitational
wave emission, and the properties of the ejected material.
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EOS m∗

mn
B K Sv L ρ0

[MeV] [MeV] [MeV] [MeV] [1014 g cm−3]
LS175† 1.0 16.0 175 29.3 73.7 2.57
LS220† 1.0 16.0 220 29.3 73.7 2.57
LS255† 1.0 16.0 255 29.3 73.7 2.57
m∗

0.8 0.8 16.0 220 29.3 79.3 2.57
m∗
S 0.634 16.0 220 29.3 86.5 2.57

(m∗K)S 0.634 16.0 281 29.3 86.5 2.57
(m∗KEsym)S 0.634 16.0 281 36.9 109.3 2.57
SkShen 0.634 16.3 281 36.9 109.4 2.41
Shen 0.634 16.3 281 36.9 110.8 2.41

Table 4.1.: Nuclear matter properties for all employed EOS tables. The nuclear matter parameters
B, K, Sv, and L are given in MeV, the saturation density ρ0 is given in g cm−3.

4.1. Methods

4.1.1. Equation of state models

To explore the impact of specific nuclear matter properties, we use the open-source SROEOS
code (Schneider et al., 2017, 2018), which is based on a liquid droplet model with Skyrme-type
nucleon-nucleon interactions as given in Eq. (2.21). To describe the density dependence of m∗,
we use the prescription of Lattimer et al. (1985), given by

1
2m∗ = 1

2m + αn , (4.1)

where α is a free model parameter. By adjusting the 4 Skyrme parameters we can systematically
varyB,K, Sv, and n0. The slope of the symmetry energyL, as well as higher-order contributions
to the symmetry energy, can not be varied independently this way. Instead, by fixing the zeroth
order contribution Sv, the full symmetry energy Esym is varied, including higher order terms.
Finally, we adjust the effective mass m∗ at saturation density by changing α.
The expansion parameters, which are most important for the pressure inside NSs are the

incompressibility K and the effective mass m∗ The effective mass also determines the thermal
contribution. The L parameter (and higher-order contributions to the symmetry energy) also
affects the pressure. However, since we can not vary it independently, we focus only on K and
m∗. Moreover, Most & Raithel (2021) recently investigated the role of the L parameter in BNS
mergers. To explore the impact of these parameters we use nine EOS tables. Eight of the tables
were created with the SROEOS code, six of which were first used in Yasin et al. (2020) while
two are newly calculated by Sabrina Huth specifically for this work. Finally, the ninth EOS is
the classical Shen EOS (Shen et al., 1998b) Their nuclear matter properties are summarized in
Table 4.1. With each of these EOS, we systematically vary one nuclear matter property at a
time.
Following Yasin et al. (2020), we use the table LS220† as the fiducial model which is based

on the same Skyrme parametrization as the LS220 EOS. Its incompressibility parameter is
K = 220 MeV and its effective mass is not density-dependent and simply given by the neutron
massm∗ = mn = 939.5654 MeV. First, we vary theK parameter to 175 and 255MeV, resulting

44



4.1. Methods

0 2 4 6 8 10
 [1014 g cm 3]

1.0

1.5

2.0

P/
P L

S2
20

(T
=

0)

100

101

102

P(
T

=
0)

 [1
033

 e
rg

 c
m

3 ]

LS175
LS220
LS255
m *

0.8

m *
s

(m * K)s
(m * K Esym)s
SkShen
Shen

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
n [fm 3]

100

101

102

P(
T

=
0)

 [M
eV

 fm
3 ]

Figure 4.1.: Pressure versus density at T = 0 and Ye = 0.1 for the EOS used in this thesis. The
lower panel shows the curves normalized to the pressure in the fiducial model LS220†

for comparison.

in the EOS LS175† and LS255†, respectively. These values represent the upper and lower
bounds predicted by chiral effective field theory calculations (Hebeler et al., 2011; Drischler
et al., 2016, 2019). Second, we change the effective nucleon mass at saturation density to
m∗ = 0.8mn (m∗

0.8) and m∗ = 0.634mn (m∗
S). The choice of m∗ = 0.634mn is motivated

by the Shen EOS. Finally, starting from m∗
S, we also change the remaining nuclear matter

properties to match the values of the Shen EOS, starting with K = 281 MeV, followed by
the symmetry energy Esym = 36.9 MeV, and finally also the value of the saturation density
ρ0 = 2.43×1014 g cm−3 and the binding energyB = 16.3 MeV. This results in the EOS (m∗K)S,
(m∗KEsym)S, and SkShen. We also include the original Shen EOS for comparison.
Figure 4.1 shows the pressure versus density at T = 0 and Ye = 0.1 for all the employed EOS.

The pressure is given by the derivative of the energy density with respect to the particle density.
Therefore, the incompressibility is related to the slope of the pressure at zero temperature
(see Eq. (2.18)). Increasing K leads to larger pressure at densities above ρ0, but also smaller
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pressures below ρ0 (compare LS175†, LS220†, and LS255† in Fig. 4.1). Changing the symmetry
energy also changes the slope parameter L, which enters the pressure in a density-independent
term (see Eq. (2.20)). Thus it has a relatively large effect close to saturation density but smaller
at higher densities (compare (m∗K)S and (m∗KEsym)S in Fig. 4.1).
Finally, the effective mass influences the degeneracy pressure which is given by (Lattimer &

Swesty, 1991)

P (T = 0) =
∑︂

t

(︃5
3

1
2m∗ − 1

2m

)︃
τt(T = 0) + Pint (4.2)

where Pint is the pressure due to the interaction terms and τt(T = 0) is given by the Fermi
momentum (see Eq. (2.22)). Since the effective mass enters inversely in Eq. (4.2), decreasing
the effective mass increases the cold pressure. The effect is significant over the full range of
densities in the NS (ρ > 1014 g cm−3) and increases slightly towards higher densities (compare
LS220†, m∗

0.8, and m∗
S in Fig. 4.1).

In addition to the cold pressure, the high-density EOS depends on the temperature. This
dependence is often described by the thermal index Γth given by (see, e.g., Bauswein et al.,
2010)

Γth := 1 + Pth
ϵth

= 1 + P − Pcold
ρ (ε− εcold)

, (4.3)

where ϵth = ρεth is the thermal internal energy density. The subscript cold refers to the
values at zero temperature, which are obtained from the EOS. For a non-interacting gas of
non-relativistic fermions, the thermal index is determined by the density dependence of the
effective mass (see, e.g., Constantinou et al., 2015; Lattimer & Prakash, 2016):

Γth = 5
3 − n

m∗
∂m∗

∂n
, (4.4)

Chiral effective field theory calculations have found this to be a good approximation for the
thermal index. Several previous works investigated thermal effects in binary compact object
mergers in isolation by changing the thermal pressure independently from the cold EOS
(see, e.g., Bauswein et al., 2010; Hotokezaka et al., 2013b; Raithel et al., 2021). However,
by changing the effective mass, we vary the temperature dependence of the EOS while also
changing the cold pressure. In Fig. 4.2, the thermal index inside the NSs is shown versus density
for the three values of the effective mass used in our simulations. Due to the parametrization
of the effective mass (Eq. (4.1)), lowering the effective mass at saturation density increases the
thermal index. However, it should be noted that recent results from chiral effective field theory
imply that the thermal index might decrease with rising density (Carbone & Schwenk, 2019;
Keller et al., 2021).
Figure 4.3 shows the TOV mass-radius relation for all of the EOS. As described above, the

influence of changing the incompressibility mostly influences the pressure at densities close
to n0 which translates to a large influence in the radius of NSs with high masses (compare
LS175†, LS220†, and LS255† or m∗

S and (m∗K)S in Fig. 4.3). Varying the symmetry energy
mostly changes the pressure close to saturation density and thus has a large effect on the radii
of low mass NSs. The effective mass impacts intermediate to high mass NSs but has less of
an effect at high masses compared to the incompressibility. The radii of NS with a mass of
1.365M⊙ are marked by solid circles. These are the radii of the NSs in the initial data of the
simulations (see Section 4.1.2).
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Figure 4.2.: Thermal index Γth for LS220†, m∗
0.8, and m∗

S. The black line shows the thermal index
for the Shen EOS. Though the value of the effective mass at saturation density is the
same as in m∗

S, the thermal index is different due to the different implementations of
the microphysics.

4.1.2. Simulation overview

We perform one simulation for each EOS in Table 4.1. Each model initially consists of two
irrotational identical M = 1.364M⊙ NSs on quasi-circular orbits with an initial separation
of 45 km. This combination corresponds to a chirp mass of 1.188M⊙ and is thus compatible
with the GW source of GW170817. This orbital separation corresponds to an inspiral phase of
2 − 3 orbits before the merger. The initial data for all the selected simulations are constructed
using the spectral elliptic solver LORENE (Gourgoulhon et al., 2001). In the construction of the
initial data, the minimum temperature slice of the EOS table is used and the composition is
determined by the neutrinoless beta-equilibrium.
An overview of the simulations is compiled in Table 4.2. Each simulation is run for at least

40ms post-merger. The only exceptions are the models LS175† and LS220†. In LS175† a BH
is formed almost immediately after the merger so barely any mass is ejected. In LS220† the
remnant collapses after ∼ 8ms which is enough time to eject matter and form an accretion
disk. However, the mass ejection and GW emission stop completely after 30ms. In all other
models, the remnant is a massive NS which stays stable for the duration of the simulation and
is surrounded by an accretion disk.
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Figure 4.3.: The mas-radius relation of cold non-rotating NSs for the EOS used in this thesis. The
circles mark the radii of the NSs in the initial data for the simulations.

4.1.3. Postprocessing methods

We define the NS as the region where the rest mass density is larger than 1013 g cm−3. Since
the gauge is evolved dynamically during the simulation we need to compare simulation data
in a gauge-independent way. For this, we divide all grid cells in a snapshot of a simulation
into 100 uniformly spaced density bins up to 1015 g cm−3. The quantity of interest A is then
averaged in each bin, weighted by the conserved rest mass density D:

|A|ρ =
∫︁

ρbin
AD d3x∫︁

ρbin
D d3x

, (4.5)

where ρ is the rest mass density of the bin and ∫︁ρbin indicates the integral over all cells in thedensity bin.
Furthermore, we make use of the complex azimuthal mode decomposition given by (Pascha-

lidis et al., 2015; East et al., 2016a,b; Radice et al., 2016; Nedora et al., 2021b)

Cm =
∫︂
De−imϕ dxdy (4.6)

to study the deformation of the remnant.
We extract ejecta properties on a detection sphere with a 300 km coordinate radius. The

Bernoulli criterion is used to determine whether a fluid element is unbound. It is defined by
−hut > h∞, where h∞ = limρ,T →0 h is the asymptotic specific enthalpy Foucart et al. (2021).
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EOS tBH tend Mdisk f1 f2 RNS Λ̃
[ms] [ms] [M⊙] [kHz] [kHz] [km]

LS175† 0.46 0.67 - 0.00 0.00 12.16 361.03
LS220† 8.03 33.06 0.05 2.14 3.08 12.69 606.15
LS255† - 42.87 0.23 2.01 2.64 12.98 660.69
m∗

0.8 - 44.94 0.14 1.87 2.82 12.95 699.63
m∗
S - 46.96 0.23 1.90 2.53 13.23 759.28

(m∗K)S - 49.05 0.26 1.79 2.41 13.52 982.63
(m∗KEsym)S - 47.45 0.23 1.72 2.30 14.06 1090.64
SkShen - 54.09 0.23 1.66 2.25 14.49 1295.42
Shen - 55.32 0.24 1.68 2.24 14.55 1221.11

Table 4.2.: Overview of all models and their key results, including the simulated time tend, time
until collapse to a black hole (BH) tBH, disk mass at the end of the simulation Mdisk,
frequencies of the two most prominent peaks in the post-merger GW spectrum f1 and
f2, and radius RNS and reduced tidal deformability Λ̃ of the NSs in the initial data of
our simulations.

Accordingly, the asymptotic velocity of an ejected fluid element is defined as v∞ =
√︃

1 −
(︂

h∞
hut

)︂2.
This criterion is less restrictive than the geodesic criterion −ut > 1, which does not take the
ejecta’s thermal and binding energy into account. Typically, the ejection rate of matter meeting
the geodesic criterion stops after ∼ 10ms post-merger and roughly corresponds to the fluid
elements ejected by dynamical processes (see Section 4.3 for further discussion). We use the
geodesic criterion to separate dynamic and disk wind ejecta. Following Nedora et al. (2021b);
Combi & Siegel (2023), we define fluid elements fulfilling the geodesic criterion as dynamical
ejecta. Ejecta that only satisfy the Bernoulli, but not the geodesic criterion are defined as
disk ejecta. For an in-depth discussion of different ejection criteria and their impact see, e.g.,
Foucart et al. (2021).

4.2. Merger and post-merger dynamics

The remnant dynamics depend sensitively on the EOS due to multiple effects. In the following
section, we describe the dynamics of the merger and post-merger and point out where and how
the EOS affects the dynamics. During the merger, two effects are responsible for the ejection
of matter and disk formation: Shocks originating at the contact interface of the NSs and tidal
disruption on the opposite side. However, these two effects depend differently on the EOS.
Already before the merger, the structure of the initial BNSs is determined by the EOS.

Stiffer EOS (for example due to a larger K, larger Esym or smaller m∗) lead to larger NS radii
(see Fig. 4.3) and therefore an earlier merger because the NSs come into contact at larger
separations (Radice et al., 2020) and with smaller velocities. Directly after the merger, the
two NS cores bounce and begin to oscillate against each other in the newly formed remnant.
With a stiffer EOS, the contraction is halted earlier and the oscillation amplitude is smaller.
Both effects lead to a more violent merger for softer EOS and have a large impact on the disk
formation and amount of ejected material due to shock heating (Hotokezaka et al., 2013b).
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4. Impact of the equation of state in neutron star mergers

The response of the BNSs to tidal deformation depends on the NS structure and thus on
the cold EOS. Generally, large NSs have a larger tidal deformability, but the incompressibility
parameter plays a particularly important role. Larger incompressibilities lead to a steeper
pressure-density curve (see Fig. 4.1). Therefore, the maximum density in the NS is reduced
but at the same time, the density in the outer layers is increased. This effect can be seen by
comparing the NSs in the initial data of LS255† and m∗

0.8 because they have almost identical
radii (see Fig. 4.3). Figure 4.4 shows their spatial mass distribution dM

dr = 4πρr2 versus the
radius. Due to the higher incompressibility of LS255†, more mass is located at larger radii. As
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Figure 4.4.: Spatial mass distribution in the initial NSs in LS255† and m∗
0.8. Due to the higher

incompressibility of LS255†, more mass is located at larger radii.

we will see in Section 4.3, this leads to a more massive tidal ejecta component.
Whether the remnant collapses is determined by the initial masses of the NSs and the EOS.

As the two cores of the original NSs combine after the merger, the remnant’s central density and
pressure rise. This process is either halted when the pressure becomes high enough to balance
the NS’ self-gravity, in which case a semi-stable NS remains in the center, or the contraction
continues until the formation of a BH. The duration of the gravitational contraction changes
depending on the slope of the pressure with respect to the density, i.e., the incompressibility.
If central pressure rises only slowly with the density, the central density keeps increasing for
longer before the contraction is halted. On the other hand, if the pressure-density gradient
is steep, the contraction is halted sooner. Therefore, smaller incompressibilities lead to lower
threshold masses and shorter delays until the collapse of hyper-massive NSs (HMNSs).
During this initial phase of contraction, the remnant is highly deformed and oscillates, where

the dominant deformation mode being a m = 2 bar-shaped deformation. However, after
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4.2. Merger and post-merger dynamics

some time the m = 1 deformation can become relevant for gravitational wave emission, disk
formation, and matter ejection (Bernuzzi et al., 2014; Kastaun & Galeazzi, 2015; Paschalidis
et al., 2015; East et al., 2016a,b; Lehner et al., 2016; Radice et al., 2016; Nedora et al., 2019,
2021b). When this transition occurs, depends on the complicated non-linear oscillations of
the remnant NS, which are determined by the EOS. As we will see in the next section, the
transition from a dominant m = 2 to a dominant m = 1 mode might be connected to the
pressure-density, i.e., the incompressibility.

During the merger, the initially cold NS matter is heated to ∼ 10 − 100 MeV by shocks
originating from the interface of the collision. The high-density NS cores remain comparatively
cool because the shocks do not penetrate them. As the colder cores merge, the hot matter
is redistributed into a ring shape at densities of approximately 1 − 5 × 1014 g cm−3. This
evolution can be seen in Fig. 4.5, which shows temperature profiles inside the remnant in
m∗

0.8 at approximately 0.5, 3, and 10ms post-merger. Because the center of the NS is cold and
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Figure 4.5.: Temperature profiles inside the remnant in m∗
0.8 at approximately 0.5, 3, and 10 ms

post-merger. Density contours of 1013, 1014, and 5 × 1014 g cm−3 are show in white.

very dense, the cold pressure dominates and thermal contributions to the pressure are not
relevant in this region. However, the thermal pressure plays a significant role in the hot ring
close to saturation density and even becomes larger than the cold pressure in the outer layers
of the NS as can be seen in Fig. 4.6. Thermal effects are therefore especially important for
disk formation and matter ejection but their impact on the post-merger gravitational wave
emission is small (see, e.g., Bauswein et al., 2010; Hotokezaka et al., 2013a). Hotokezaka et al.
(2013b) found competing effects of the thermal index on the amount of mass ejection: On
one hand, larger values of Γth increase the effectiveness of shock heating, resulting in more
shock-heated ejecta. On the other hand, higher thermal pressures result in a less compact
remnant which is therefore rotating slower. This reduces the torque exerted from the NS on the
disk and consequently the amount of ejecta from the early remnant-disk system. By varying
the effective mass, we change both the cold and the thermal pressure. Therefore, the explicit
effect of changing the thermal index can not be observed independently in our simulations.
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Figure 4.6.: Average thermal, cold, and total pressure for LS220†, roughly 4 ms after the merger.
The thermal contributions to the pressure become relevant close to the saturation
density.

4.2.1. Comparison of different effective masses and incompressibilities

First, we compare the fiducial model LS220† with the simulations based on variations of the
effective nucleon mass m∗ (m∗

S and m∗
0.8) and incompressibility K (LS255† and LS175†). The

time evolution of the maximum density inside the NS is shown in Fig. 4.7. The massive NS
is initially in a highly deformed state and oscillating, as seen in the maximum density. For
LS220†, several bounces occur with increasing amplitude before the central object collapses
to a BH, at roughly 8ms after the merger. In the model LS175†, a BH is formed immediately
after the merger due to the lower pressure at high density. If the pressure in the center of the
NS is large enough to stop the contraction of the remnant before collapse, the oscillation of
the massive NS dies down after approximately 10 - 20ms as the newly formed remnant settles
into a more axisymmetric configuration. Both decreasing the effective mass (e.g., m∗

0.8) or
increasing the incompressibility (LS255†) leads to this outcome. In general, the final central
density is larger for EOS with lower pressures at high density.
The initial NSs in LS255† and m∗

0.8 have almost the same radius and tidal deformability (see
Table 4.1). This leads to almost identical NS velocities at the merger and consequently, their
initial bounce and the early evolution of their central densities are qualitatively very similar.
However, the dependency of the pressure on density is steeper in LS255†, due to the higher
incompressibility. Therefore, the contraction of the NS stops already after ∼ 10 ms, while
the central density in m∗

0.8 keeps rising for longer. In Fig. 4.8, the m = 1 and 2 deformation
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Figure 4.7.: Maximum density (upper panel) and average remnant temperature (lower panel)
versus time.

calculated with Eq. (4.6) is shown. All models undergo the change from a dominating m=2
to a dominant m=1 mode at different times. In LS255†, (m∗K)S, and (m∗KEsym)S, the
transition occurs already after roughly 9, 15, and 17ms, respectively, which is significantly
earlier compared to the other models. This could also be an effect of the steep pressure-density
gradient due to the higher incompressibilities. The m = 2 deformation of the NS is the most
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Figure 4.8.: Complex azimuthal m = 1 and 2 decomposition of the density in the xy-plane
calculated with Eq. (4.6). Solid and dashed lines correspond to the m = 2 and m = 1
modes, respectively. The transition to a dominant m = 1 mode happens first for
LS175†, followed by (m∗KEsym)S, and (m∗K)S.

efficient source of post-merger GW emission (see Section 4.4).
The lower panel of Fig. 4.7 shows the evolution of the average temperature inside the

remnant as a function of time. In LS220† the remnant is heated up much more than in the
non-collapsing cases due to the increasingly violent oscillations. Non-collapsing remnants
with larger maximum densities generally also have larger temperatures because stiffer EOS
result in a less violent merger and reduced shock heating. However, the models with smaller
effective mass show a deviation from this trend, as can be seen by comparing LS255† and
m∗
S. The LS255† EOS exhibits lower pressures for all densities compared to m∗

S (see Fig. 4.1).
Therefore, the central density in LS255† is higher than inm∗

S. Nonetheless, its average remnant
temperature is lower. This is because the thermal index Γth is larger in the simulations with
lower effective mass which increases the shock heating efficiency (Hotokezaka et al., 2013b).
Figure 4.9 shows the average temperature (upper panel) and thermal pressure (lower panel)

versus density inside the remnant 4ms after the merger. Since the EOS exhibit different thermal
indices, the thermal pressure is not always higher for hotter remnants. This effect can be seen
by comparing m∗

0.8 and LS255†, which have comparable temperature profiles. However, the
thermal pressure in m∗

0.8 is ∼ 25% higher than in LS255†, because m∗
0.8 has a smaller effective

mass. Therefore, lowering the effective mass has two competing effects on the thermal pressure
of the remnant. On one hand, the thermal pressure is increased due to the influence of the
effective mass on the thermal index. On the other hand, lowering the effective masses reduces
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4.2. Merger and post-merger dynamics

the cold pressure which results in reduced shock heating and consequently lower temperatures
and thermal pressures. Figure 4.9 shows that the second effect is stronger, i.e., reducing m∗

generally results in a lower thermal pressure. Note, however, that this result might change if
the density dependence of effective mass is different from Eq. (4.1).
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Figure 4.9.: The average thermal pressure (upper panel) and temperature (lower panel) versus
density inside the NS approximately 4 ms after the merger. The cells are sorted
into density bins and for each bin, the mass-weighted average of the pressure or
temperature is calculated according to Eq. (4.5).

4.2.2. Comparison of Shen and SkShen

Next, we change nuclear matter properties to the values of the Shen EOS (Shen et al., 1998a)
in multiple steps. We start with the effective mass (m∗

S) and change the incompressibility
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((m∗K)S), the symmetry energy ((m∗KEsym)S), and finally also the binding energy and sat-
uration density (SkShen). By comparing the simulation results EOS we can evaluate the
importance of the changed parameters.
Due to the increased incompressibility the cold pressure in (m∗K)S is larger than m∗

S above
saturation density but lower below saturation density (see Fig. 4.1). Similar to LS255† this
results in a significantly lower central density. Furthermore, the steeper density dependence of
the pressure in (m∗K)S results in a faster decrease in the oscillations, and thus the average
temperature in the remnant stays lower than in m∗

S after ∼ 10 ms.
The EOS (m∗K)S and (m∗KEsym)S differ only in the symmetry energy. Increasing the

symmetry energy also increases the slope of the symmetry energy L (see Table 4.1), and
therefore the pressure. Comparing the cold pressure in (m∗K)S and (m∗KEsym)S in Fig. 4.1
shows that the effect is small in the center of the remnant but becomes large at low densities
(ρ ≲ 2 × 1014 g cm−3). Thus, the density in the core of the NSs in (m∗KEsym)S and (m∗K)S is
almost the same. The time evolution of the average remnant temperature (Fig. 4.7), shows that
the temperature in (m∗KEsym)S is smaller than in (m∗K)S. This is due to the larger pressure
at lower densities in (m∗KEsym)S, which results in reduced shock heating at the merger.
Also changing the binding energy and saturation density results in the model SkShen. The

cold pressure in SkShen is roughly 10% to 15% higher compared to (m∗KEsym)S (see Fig. 4.1)
which results in a slightly lower central density.
SkShen and the original Shen EOS are as close as possible in terms of their nuclear matter

properties at saturation density. However, there are some differences between them. First, the
cold pressure in SkShen is larger at high densities. The reason for the considerable difference
is that the nuclear matter properties are an expansion around saturation density. Thus, close
to the saturation density, the pressure is similar in both EOS, but it diverges at larger densities.
Second, the thermal index of the Shen EOS is lower compared to SkShen, even though it is
almost exactly the same in all four SROEOS models that use the Shen effective mass value. This
is expected because, as explained in Section 4.2.1, matching the effective mass at saturation
density does not reproduce the thermal index if the density dependence of the effective mass
is different. Due to the increased pressure at high densities, the central density in the model
Shen is larger than in SkShen. The average remnant temperature, however, is larger in SkShen
because it has a larger thermal index, resulting in more effective shock heating (Hotokezaka
et al., 2013b). Considering the large deviation in Fig. 4.1 the evolutions of the remnants in the
models SkShen and Shen are remarkably similar.

4.2.3. Accretion disk structure

Figure 4.10 shows the evolution of the diskmass for all simulations except LS175†. The diskmass
is defined as the total rest mass outside of the NS, i.e., the region with ρ < ρNS = 1013 g cm−3.
The disk masses at the end of the simulations are listed in Table 4.2. We note that the hierarchy
of the disk masses depends on the definition of the NS surface because a large fraction of the
disk mass is located in the transition region between the disk and NS. To illustrate this effect,
we show the disk masses for the definition ρ < 1012 g cm−3 as the dotted lines in Fig. 4.10.
This has a larger effect on the disk masses of the simulations with larger incompressibility, i.e.,
LS255†, (m∗K)S, and (m∗KEsym)S.
The formation of the accretion disk depends on the EOS properties due to multiple effects:

The most important factor for the disk mass is the fate of the merger remnant. In LS175†, the
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Figure 4.10.: Evolution of the disk mass for all simulations except LS175†. Solid and dotted lines
correspond to different definitions of the disk contour.

central collapses to BH almost immediately after the merger, so no disk is formed. The BH
formation in LS220† is delayed long enough for a disk to form. However, roughly half of the
disk mass is swallowed at the collapse. For non-collapsing mergers, the relation of the disk
mass to the EOS is more complicated. On one hand, the disk mass originating from the tidal
disruption of the NSs is larger for stiffer EOS. For a softer EOS, on the other hand, matter
ejection due to shock heating is enhanced. Furthermore, the remnant is more compact and
rotates faster (see, e.g., Bernuzzi, 2020; Nedora et al., 2021b) which also increases the disk
mass. In addition to the EOS at zero temperature, thermal effects have to be considered. A
larger thermal index enhances the amount of matter ejected to the disk because of shock
heating (see Section 4.2.1). It is thus hard to find a correlation between the disk mass and
specific nuclear matter properties.
At the end of the simulations that do not form a BH the disk mass is close to 0.25M⊙. The

only exception ism∗
0.8 with a disk mass of ∼ 0.14M⊙. The disk in LS255† is particularly massive

in comparison to the other models, especially in the first ∼ 20ms after the merger. This is
surprising because as described in the previous chapter, the evolution of the massive NS in
LS255† is most comparable to m∗

0.8. Therefore, one would expect, that the two simulations
also exhibit similar disk masses. This apparent contradiction is partially resolved if the inner
boundary of the disk is defined by ρ < 1012 g cm−3 (dotted lines in Fig. 4.10). In this case, the
disk mass at the end of LS255† is much closer to the one in m∗

0.8. However, the peculiarly fast
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initial growth of the disk persists.

Figure 4.11.: Mass-weighted histogram of the electron fraction, entropy, and temperature in the disk
at t = 30 ms. Dotted lines show the histograms when matter with ρ > 1012 g cm−3

is excluded. The histograms are split into two panels for better readability. The
colors denote the different models and have the same meaning as in Figs. 4.7 to 4.10.

Even though the evolution of the masses of the accretion disk varies for the different EOS, the
composition and structure of the disk are relatively similar in all non-collapsing simulations. The
mass-weighted histogram of the electron fraction and entropy in the disk at t = 30 ms is shown
in Fig. 4.11. All histograms show a triple peak structure, typical for equal mass BNS mergers
(Nedora et al., 2021b). The peak at the lowest entropy and electron fraction corresponds to the
interface between the remnant and the disk. The dotted lines in Fig. 4.10 show the histograms
for the matter at densities below 1012 g cm−3 which lack this high temperature, low entropy,
and low electron fraction tail. The second peak at s ≈ 4 − 8 kB /baryon and Ye ≈ 0.1 − 0.2
represents the bulk of the disk. The disk bulk has densities between 1010 − 1012 g cm−3 and
extends to roughly 100 km. For most simulations, the main peaks in the electron fraction
and entropy are located at Ye = 0.16 and s = 7.5 kB/nucleon. The largest deviations from
this trend are LS220† and LS255†. Since the central object in LS220† is a BH, the hot and
dense interface to the NS is missing, so there are no spiral arms in the disk. Furthermore,
the strong neutrino irradiation from the central NS is also missing. Therefore, the disk has
lower temperatures, entropies, and electron fractions. Due to the higher incompressibility of
LS255†, a larger fraction of the disk is located closer to the massive NS. This effectively shifts
the average bulk entropy and energy toward lower values. The same is true for (m∗K)S and
(m∗KEsym)S, however, to a lesser extent.
The third peak with high electron fractions and entropies is due to the matter outside of

the main bulk of the disk. During the disk evolution, this matter becomes partially unbound.
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Thus its composition matches that of the disk wind ejecta in Fig. 4.13 (see Section 4.3 for an
extended discussion).

4.3. Ejecta properties

The mass ejection in BNS mergers occurs through multiple channels. These can be separated
into two categories: dynamic and disk (or secular) ejecta. The former are expelled within a few
milliseconds after the merger, while the latter are ejected over timescales of 10ms up to 10 s
(see, e.g., Fujibayashi et al., 2023). In order to distinguish the different ejecta components, we
show the ejecta composition of the m∗

S model in Fig. 4.12. The ejecta properties are extracted

0 10 20 30 40
t tmerg [ms]

0.0

0.1

0.2

0.3

0.4

Y e

020406080
 [ ]

10 8

10 7

10 6

10 5
Mej [M ]

Figure 4.12.: Cumulative mass-weighted histogram of ejecta properties in model m∗
S until the end

of the simulation. Left panel: Two-dimensional histogram of the electron versus the
time after the merger. The time corresponds to the time at which the ejecta cross
the detection sphere at 300 km. The dashed contour marks the transition point from
dynamical ejecta to shock-heated ejecta. Right panel: Two-dimensional histogram
of the electron fraction versus the polar angle. The dashed vertical lines show the
angles marked in Fig. 4.14.

on a sphere at 300 km as outlined in Section 4.1.3. The left and right panels show the 2D
histograms of the ejecta electron fraction versus time and angle of ejection, respectively. We
use m∗

S as an example here but note that most other simulations show similar trends to the
ones discussed below. As described in Section 4.1.3, we define the dynamical ejecta as matter
that fulfills the geodesic criterion, while matter that fulfills the Bernoulli criterion but not the
geodesic criterion is associated with the disk ejecta. This division is shown by the dashed
contour in Fig. 4.12. The same division is used in Nedora et al. (2021b); Combi & Siegel
(2023). Note, however, that the distinction is only approximate as the transition from dynamical
ejecta to disk ejecta happens continuously between 5-10ms after the merger. As outlined in
Section 2.3, the dynamical ejecta are comprised of two components: Matter unbound by tidal
torques and matter ejected by shock heating at the interface of the merger. We thus further
divide the dynamical ejecta into the tidal and shock-heated components. Dynamical ejecta are
counted toward the tidal component if their electron fraction is smaller than 0.1 and towards
the shock-heated component otherwise.
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Figure 4.13 shows the accumulated mass histogram of the ejecta electron fractions, entropies,
and asymptotic velocities. The simulations are split into two groups (upper and lower panels)
for better readability. Dashed lines show the dynamical ejecta and solid lines the disk ejecta.

Figure 4.13.: Mass-weighted histogram of the electron fraction, entropy, and asymptotic velocity of
the ejected matter. Solid and dotted lines represent dynamical ejecta and disk ejecta,
respectively. The colors denote the different models and have the same meaning as
in Figs. 4.7 to 4.11.

Tidal torques remove matter from the outer layers of the NSs and expel it in the equatorial
direction. If the tidal ejecta do not experience significant shock heating, they consist of almost
pure cold NS matter (Ye < 0.1) and have low entropies (s < 10). This part is visible in the
lower left corners of both panels in Fig. 4.12 and forms a peak at low electron fractions and
entropies in Fig. 4.13. A fraction of the tidally removed matter can be reprocessed by shocks
and thus counts towards the shock-heated ejecta component. In (m∗KEsym)S, SkShen, and
Shen, this effect removes almost all of the tidal ejecta.
The shock-heated ejecta component reaches much higher temperatures and entropies com-

pared to the tidal ejecta. Therefore, positron and electron-neutrino captures increase the
electron fraction of the matter to Ye ≈ 0.2 − 0.4. It is visible in the left panel of Fig. 4.12 as
large bulk of matter at roughly 6 - 10ms after merger. A small part of the shock-heated ejecta is
responsible for the high velocity tail in the right panels of Fig. 4.13. As discussed in Section 2.3,
these ejecta can lead to additional observable features in the kilonova (KN) and is larger for
softer EOS.
After the NSs merge, an accretion disk forms from debris around the newly created remnant.

This system can eject matter through multiple mechanisms depending on the lifetime of the
remnant. On timescales above 100ms, a sizable fraction of the disk can become unbound by
magnetically induced viscosity (Fernández & Metzger, 2013; Metzger & Fernández, 2014; Just
et al., 2015, 2021; Fujibayashi et al., 2018, 2020c,b,a, 2023; Hayashi et al., 2022; Fahlman
& Fernández, 2022) and recombination of nucleons into alpha particles and heavier nuclei
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(Fernández & Metzger, 2013; Siegel & Metzger, 2017, 2018). However, our simulations do not
include effective viscosity or magnetohydrodynamics and only last for 40-50ms post-merger.
On the simulated timescales, the mass ejection in the early post-merger phase is primarily

driven by the oscillating double-core structure in the massive NS. With each bounce, matter
becomes unbound as the central density reaches a minimum (Nedora et al., 2019, 2021b;
Combi & Siegel, 2023). The left panel of Fig. 4.12 shows several such bursts of matter ejection
after t ≈ 10 ms. Furthermore, winds driven by neutrino absorption (Dessart et al., 2009; Perego
et al., 2014; Just et al., 2015; Radice et al., 2018) expel matter from the early post-merger
remnant. Above the disk, the matter is irradiated by a strong flux of neutrinos stemming from
the hot remnant-disk interface (see, e.g., Perego et al., 2014). This increases the electron
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Figure 4.14.: Net neutrino heating timescale, Eq. (4.7), for the model m∗
S in the xz plane at

t − tmerg ≈ 25 ms. The dashed white lines mark the polar angles between θ =
45◦ − 75◦, corresponding to the dotted lines in the right panel of Fig. 4.12. The
outer and inner accretion disk boundaries are approximately marked by the 1010 and
1013 g cm−3 density contours which are plotted in white.

fraction and internal energy of the ejecta. In LS220†, after the HMNS collapses the neutrino
radiation is strongly reduced and the matter ejection due to the NS’s oscillation stop, so the
ejection of matter stops after t > 20 ms.
Neutrino heating plays a major role in the early post-merger phase. The timescale of the

neutrino heating τν is given by the ratio of the conserved internal energy density τ = E −D
and the local net neutrino heating rate Qν = QM0ν −QLeakν :

τν = 1
αW

E −D

QM0ν −QLeakν

, (4.7)

where α and W are approximate corrections for the gravitational redshift of the neutrinos.
In Fig. 4.14, we show the net neutrino heating timescale in the xz plane of the model m∗

S at
t− tmerg ≈ 25 ms. Directly above the massive NS the neutrino heating is very strong. However,
the density in the polar direction is low, so the neutrino heating unbinds only a small amount
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4. Impact of the equation of state in neutron star mergers

of matter in this region. This matter is ejected toward the polar direction with relatively high
velocities and electron fractions. Initially, the oscillations of the massive NS ejects matter also
in the equatorial direction. The dense bulk of the disk shields the matter in the equatorial plane
outside the disk from neutrino irradiation. Therefore, the equatorial ejecta have lower electron
fractions (Ye ≈ 0.2 − 0.25). Furthermore, the energy deposition by neutrinos is reduced, so the
amount of mass ejected in this direction decreases continuously as the oscillations of the massive
NS die down. In the diagonal direction (θ ≈ 45 − 75◦), heating due to neutrino absorption
is stronger. This region is marked by dotted lines in Fig. 4.12 and Fig. 4.14. The neutrino
heating in this area enhances the mass outflow significantly and increases its electron fraction.
This part of the ejecta is responsible for the peaks at Ye ≈ 0.3 in Fig. 4.13. With time the
disk becomes thinner and more transparent to neutrinos. As a result, the neutrino-enhanced
outflow becomes more proton-rich and moves closer to the equatorial plane.
In Table 4.3 the masses of all discussed ejecta components at t− tmerg = 40 ms are given for

all simulations. The tidal, shock-heated, and disk ejecta masses are visualized in Fig. 4.15.
The mass of the tidal ejecta varies between 10−6 − 4.3 × 10−3M⊙. In the models (m∗KEsym)S,
SkShen, and Shen, the tidal ejecta are “overtaken” by the shock-heated component early on,
so almost no material with Ye < 0.1 remains. The tidal ejecta mass is significantly larger
for LS255† and (m∗K)S compared to the other models. This suggests that increasing the
incompressibility enhances the effectiveness of the tidal ejection mechanism as described in
Section 4.2. Figure 4.16 shows the tidal arms in the xy plane shortly after merger for LS175†,
LS220†, and LS255†. The size of the tidal arms grows with the incompressibility. Comparing
M
ej
tidal for models LS220†,m∗

0.8, andm∗
S indicates that reducing the effective mass also increases

the tidal ejecta component, though the influence is not as strong as that of the incompressibility.
This can be seen in Fig. 4.17, which shows the distribution of the electron for the models
LS220†, m∗

0.8, and m∗
S ∼ 16ms after the merger. The tidal ejecta (red regions) are slightly

more massive for lower effective masses. Even though the mass of the tidal dynamical ejecta
component is relatively small in comparison to the other components it plays a significant role
because it can produce actinides. This is not only important for the galactic chemical evolution

Model M
ej
tot M

ej
dyn M

ej
tidal M

ej
shock M

ej
disk M

ej
v∞>0.6c

[10−3M⊙] [10−3M⊙] [10−3M⊙] [10−3M⊙] [10−3M⊙] [10−6M⊙]
LS255† 7.096 1.995 0.403 1.592 5.101 0.665
LS220† 5.307 1.706 0.104 1.603 3.601 4.597
m∗

0.8 7.717 1.249 0.138 1.111 6.469 2.050
m∗
S 9.372 1.097 0.184 0.913 8.275 0.362

(m∗K)S 8.645 1.360 0.430 0.930 7.285 0.385
(m∗KEsym)S 5.887 0.905 0.021 0.883 4.982 0.467
SkShen 7.939 0.554 0.004 0.550 7.384 0.079
Shen 9.527 0.645 0.001 0.645 8.882 0.066

Table 4.3.: Masses of the different ejecta components at t − tmerg = 40 ms. Dynamic (M ej
dyn)

and disk ejecta (M ej
disk) are defined by the geodesic criterion (Section 4.1.3). Tidal

(M ej
tidal) and shock heated dynamical ejecta are (M ej

shock) distinguished by Ye < 0.1
and Ye > 0.1, respectively.
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Figure 4.15.: Masses of the tidal, shock-heated, and disk ejecta components.

but also the KN light curve, which might show signatures of fission reactions if very heavy
elements are produced.
The mass of the shock-heated dynamical ejecta shows a strong correlation with the effective

mass. LS255† and LS220† exhibit the largest amount of shock-heated ejecta, followed by
m∗

0.8 and then m∗
S, (m∗K)S, and (m∗KEsym)S. This is visible in Fig. 4.17. The amount of

shock-heated ejecta (green regions) is larger for lower effective masses. Note, however, that
only a fraction of the shock-heated material is ejected in the equatorial plane and thus visible
in the plot. SkShen and Shen exhibit an even smaller amount of shock-heated ejecta. This
might be due to the different saturation densities and/or binding energies. Note that this study
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Figure 4.16.: Density distribution in the xy plane for the models LS175†, LS220†, and LS255†

shortly after the merger. The size of the tidal arms is largest for LS255† and smallest
for LS175†. In LS175†, the central object already has collapsed so the tidal ejecta
will be almost completely swallowed by the BH.
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Figure 4.17.: Distribution of the electron for the models LS220†, m∗
0.8, and m∗

S ∼ 16 ms after the
merger. Red regions show the low Ye tidal ejecta while green regions are the ejecta
driven by shock-heating. Note that only a fraction of the shock-heated material is
ejected in the equatorial plane. Thus, most of the shock-heated ejecta are not visible
in this plot.

represents only a small sample of models and does not include asymmetric binary mergers. A
larger sample of models is thus necessary to confirm these findings.
The evolution of the mass ejection rate for the disk component is shown in Fig. 4.18. We

find, that the mass ejection in the disk phase is more effective while the m = 2 bar-shaped
deformation of the remnant drives two spiral arms into the disk (see Fig. 4.8). The model
LS255† exhibits a period of low mass ejection after ∼ 15−20 ms that lasts approximately 20ms.
A similar feature is visible for (m∗KEsym)S after ∼ 25ms, lasting approximately 10ms. Both
correlate well with periods of low m = 2 deformations of the remnant with a delay of ∼ 10ms
which is roughly the time it takes ejecta to travel to the detection radius at 300 km. Later, a
one-armed spiral wave, driven by the m = 1 deformation, appears, resulting in an increased
mass ejection rate. Similar results were found by Nedora et al. (2019, 2021b). Note, however,
that the mass ejection is still ongoing at the end of all simulations except LS175† and LS220†,
and is expected to be further enhanced by viscous effects on timescales of seconds. Thus, the
secular mass ejection is not fully captured in our simulations.
We implemented a tracer particle scheme to follow the ejected matter in a Lagrangian frame.

We describe the tracer-particle method in general and a novel tracer-distribution scheme we
implemented in Appendix A. The trajectory and the history of the hydrodynamical quantities
recorded along the path are used to calculate the detailed nucleosynthesis outcome with a
nuclear reaction network. These calculations will be performed in the near future.

4.4. Gravitational wave emission

Figure 4.19 shows the + mode of the GW strain for all simulations except LS175†, since
no significant post-merger signal is produced after the prompt collapse. We only show the
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Figure 4.18.: Mass ejection rate for the disk ejecta component as a function of time.

l = m = 2 mode, since it is by far the most dominant mode. It shows the low-frequency
pre-merger phase (t < 0), as well as the post-merger phase (t > 0). The latter consists of two
periods. A transition period (t ≲ 3 ms), during which the system readjusts from the inspiral
of two NSs to one rotating and oscillating massive NS, and the longer ring-down phase that
follows, during which the amplitude gradually decreases (see, e.g., Baiotti, 2019). The GW
signal stops abruptly after the collapse of the HMNS in LS220†. In LS255† and (m∗KEsym)S
and (m∗K)S, the GW amplitude drops within the first 10-15ms while it decreases more slowly
within 20-30ms in m∗

0.8, m∗
S SkShen, and Shen. This decrease in the amplitude is directly

linked to them = 2 deformation of the massive NS (see Fig. 4.8). As described in Section 4.2.3,
the m = 2 deformation decreases much faster in the simulations with higher incompressibility.
Future detections of post-merger GWs could therefore be used to constrain the slope of the
pressure at high densities.
The post-merger GW time-frequency spectrograms (upper panels) and the corresponding

Fourier spectra (lower panels) of the simulations are shown in Fig. 4.20. The thin lines in the
Fourier spectra represent the full spectrum, while the thick lines are produced by excluding
the pre-merger GW signal. Initially, several frequencies are present but they decay within
approximately 5 milliseconds (Takami et al., 2015; Rezzolla & Takami, 2016). Afterward, the
spectrum is dominated by a single frequency, often called f2. This frequency has been identified
and studied in many previous works (Stergioulas et al., 2011; Bauswein et al., 2012; Bauswein
& Janka, 2012; Hotokezaka et al., 2013a; Takami et al., 2014, 2015; Rezzolla & Takami, 2016)
and is attributed to the quadrupole mode of the NS (Bauswein et al., 2012; Bauswein & Janka,
2012). The solid vertical lines show the maximum of the Fourier spectra, while the dotted lines
follow the time-dependent maximum frequency.
The following effects can be seen in the time-frequency spectrograms:
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Figure 4.19.: Waveforms of the GW signals for all simulations except LS175†.

• In LS220†, the post-merger signal shows a “chirp-like” behavior (the peak frequency rises
quickly) shortly before the remnant collapses to a BH. This is because the rotational
velocity of the HMNS increases significantly as it collapses.

• In the first 10ms of the post-merger GW emission, the f2 frequency can vary slightly. This
is especially visible for the stiffest EOS, (m∗K)S, (m∗KEsym)S, SkShen, and Shen. For
these, the f2 frequency increases until t ≈ 5 ms and subsequently decreases again until
t ≈ 10 ms. A similar effect is described by Rezzolla & Takami (2016). They determine
the frequency during the transient phase separately from the ring-down phase and label
it f2,i.
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4.4. Gravitational wave emission

• After the initial transient phase, a continuous shift of the f2 emission towards higher
frequencies is visible for m∗

0.8 and m∗
S. A similar but weaker increase is visible for m∗

S,
SkShen, and Shen. In these models, gravitational wave amplitude stays high for an
extended period. The GWs carry away angular momentum, the NS contracts and this
leads to a higher f2 (Maione et al., 2017).

Similar trends can be seen in the spectrograms in Rezzolla & Takami (2016); Dietrich et al.
(2017); Maione et al. (2017).
The second most prominent peak is the so-called f1 peak (sometimes also called f−), which

always lies at lower frequencies than the f2 peak and disappears after ∼ 5ms (Stergioulas et al.,
2011; Takami et al., 2014, 2015; Rezzolla & Takami, 2016). Its origin has been attributed to the
interaction of the f2 and the quasi-radial f0 mode (named f2−0) (Stergioulas et al., 2011) as
well as the orbital motion of antipodal bulges rotating around the central remnant with a slower
frequency (thus called fspiral) (Bauswein & Stergioulas, 2015). Depending on the remnant
compactness, either one or both frequencies might be present (Bauswein & Stergioulas, 2015;
Bauswein et al., 2016; Rezzolla & Takami, 2016; Maione et al., 2017; Kiuchi et al., 2020).

Figure 4.20.: Post-merger GW Fourier spectra and corresponding time-frequency spectrograms.
The thin lines in the Fourier spectra show the full spectrum, while the thick lines are
produced by excluding the pre-merger GW signal. Dashed and solid vertical lines mark
the position of the f1 and f2 peak frequencies extracted from the time-independent
Fourier spectra, and dotted lines show the time-dependent peak frequency extracted
from the time-frequency map.
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We define f1 independently of its origin as the second highest peak with a frequency at least
400Hz below the f2 peak. The extracted f1 peaks are marked by a dashed vertical line in
Fig. 4.20.
The f1 and f2 frequencies for all simulations are listed in Table 4.2. They span from f2 =

2.24 kHz for Shen to f2 = 3.10 kHz for LS220† and f1 = 1.66 kHz for SkShen to f1 = 2.14 kHz
for LS220† where softer EOS generally produce larger frequencies. Decreasing the effective
mass and increasing the incompressibility and symmetry energy lowers the pressure in the
center of the NS. This decreases the density, which in turn reduces f2 (Bauswein et al., 2012;
Bauswein & Janka, 2012). By changing the nuclear matter properties to the values of the Shen
EOS (i.e., the progressionm∗

S, (m∗K)S, (m∗KEsym)S, SkShen), both peak frequencies approach
those of the Shen simulation. Both the Fourier spectra and the time-frequency spectrograms of
models Shen and SkShen are very similar. Especially the position and width of the f1 and f2
peaks as well as the amplitude and time dependence of the spectrogram match almost perfectly.
This implies, that the EOS-impact on the post-merger GW emission is well described by the
nuclear matter properties of the EOS, while the details of the microphysics and methods (i.e.,
relativistic mean field and Skyrme density functionals) only play a minor role. It will thus be
possible to directly constrain the properties of nuclear matter with future measurements of the
post-merger GW spectra based on numerical simulations of BNS mergers.
Many works have found that the f2 frequency is highly correlated with the properties of the

high-density EOS. Takami et al. (2015); Rezzolla & Takami (2016); Bauswein et al. (2016);
Kiuchi et al. (2020) have provided fit formulae relating f1 and f2 with various TOV properties.
In Fig. 4.21, we compare their fit formulae with our results. The plot in the lower right corner
shows the residuals of the fit function. All fit formulae predict the correct frequencies within an
uncertainty of 5-10%. However, some trends in the difference can be identified. Fit formulae for
f2 (solid symbols connected with solid lines in the lower right panel) underestimate the value for
f2 in LS220† and overestimate it in LS255† and m∗

S, (m∗K)S, (m∗KEsym)S, SkShen, and Shen.
The fit from Kiuchi et al. (2020) performs better, but also uses the most fit parameters. The fits
for f1 perform relatively well for the models withm∗/m < 1 but overestimate the frequency for
LS255† and LS220†. Our collection of simulations is too small to make quantitative predictions
for the peak frequencies. However, we plan to increase the number of models. Therefore,
we will potentially be able to enhance the accuracy of universal relations in the future by
incorporating additional parameters describing the equation of state (EOS) into the fits.
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Figure 4.21.: Comparison of the post-merger GW spectrum with various fit formulae from the
literature. Top left: Fit formulae for f2 versus κT

2 (or Λ̃ = 16/3κT
2 , see Section 2.2.1)

from Rezzolla & Takami (2016), Eq. (23) (labeled RT) and Kiuchi et al. (2020),
Eq. (5.4) (labeled K). Rezzolla & Takami (2016) also provide a fit, Eq. (20), for
f1 which is shown as diamonds. Top right: Fit formula for f2 versus R1.6 from
Bauswein et al. (2016), Eq. (2) (labeled B). Bottom left: Fit formula for f1 versus
the compactness parameter C from Takami et al. (2015), Eq. (25) (labeled T). They
also provide an uncertainty band shown in gray. Bottom right: Relative deviations of
the fits. Solid symbols connected with solid lines represent fits for f2, while straight
and diagonal crosses connected with dashed lines represent fits for f1. The colors
denote the different models and have the same meaning as in Figs. 4.7 to 4.11.
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5. Long-term modeling of the post-merger
system

In the age of multi-messenger astronomy, BNS merger events such as GW170817 are among the
most promising candidates for the source of r-process elements in the galaxy. Understanding
the mass-ejection mechanisms of such events is crucial to interpret their electromagnetic
emissions. These mechanisms can take place on time scales of a few milliseconds to a few
seconds (see Section 2.3). Therefore, it is necessary to evolve simulations of BNS mergers for
multiple seconds. Simulations in 3D with realistic neutrino transport and good resolution are
mostly limited to a few hundred milliseconds. Only recently a few 3D simulations of BH-NS
mergers and BNS mergers evolving the system for more than one second were performed
Hayashi et al. (2022); Kiuchi et al. (2022). However, long-time simulations in three dimensions
with sufficient resolution require immense computational resources. This makes it impossible
to perform large sets of 3D simulations for parameter studies, e.g., to investigate the effect of
the EOS.
After a few tens of milliseconds, the merger remnant and the surrounding accretion disk

have settled into an approximately axisymmetric configuration. In this work, we exploit
this configuration to evolve the post-merger system under the assumption of axisymmetry.
Axisymmetric simulations of BH- and NS-accretion disk systems have been performed in several
works (Dessart et al., 2009; Fernández & Metzger, 2013; Metzger & Fernández, 2014; Just et al.,
2015, 2016; Lippuner et al., 2017; Fujibayashi et al., 2017, 2018, 2020a,b, 2023; Fernández
et al., 2020; Shibata et al., 2021). However, to obtain the full mass ejection history of a BNS
merger, the dynamic and the accretion disk phases need to be simulated consistently. To
achieve this, we create the initial data for the 2D simulations based on previously performed
3D simulations. After simulating the 3D system for a sufficient amount of time (∼ 50 ms), the
hydrodynamic state of the remnant is averaged around the system’s rotational axis, which
produces the initial data for the 2D simulation. This technique has been employed with great
success by Fujibayashi et al. (2017, 2018, 2020c, 2023) and Shibata et al. (2021). Based on
these initial data, we perform two 2D simulations of the post-merger accretion-disk phase in a
BNS merger. Unfortunately, we encounter a numerical instability in our fiducial model, which
leads to a crash of the simulation after ∼ 600 ms. Thus, this part of the thesis is still a work in
progress.
This project was done together with Federico Guercilena and in collaboration with Bruno

Giacomazzo, Wolfgang Kastaun, Takami Kuroda, and Martin Obergaulinger.
In Section 5.1, we describe the cartoon method which we use to realize a cylindrically

symmetric simulation setup. We perform several tests of our implementation of the cartoon
method which we describe in Section 5.2. In Section 5.3, we explain the creation of initial data
for the post-merger simulations. Finally, we show the preliminary results of the two-dimensional
simulations in Section 5.4.
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5.1. The cartoon method

Simulations of axisymmetric systems in numerical relativity (NR) are typically based on
curvilinear (typically cylindrical) coordinate systems which require the implementation of a
mostly new code base (see, e.g., Section 2.4 of Shibata, 2015, for more details). This is not only
cumbersome but also problematic if the goal is to evolve the inspiral, merger, and post-merger
phase of BNSs consistently because different codes might employ different approximations,
e.g., for the treatment of neutrinos. The so-called “cartoon method” (Alcubierre et al., 2001) is
a numerical technique to impose axisymmetry on a system while using Cartesian coordinates. It
is therefore relatively straightforward to implement in an existing three-dimensional, Cartesian-
coordinates-based code.
The cartoon method uses a Cartesian grid with a single interior cell in the y direction while

the number of grid cells in the x and z directions are similar to what is typically used in
3D simulations. The physical domain thus only covers the xz plane. To be able to evaluate
derivatives in the y direction, three layers of ghost zones are added on each side of the grid
in the y direction. Figure 5.1 shows a slice of the computational grid parallel to the xy plane

y

xx'

φ

(x,y,z)

Figure 5.1.: Sketch of the cartoon method. Red squares, white squares, and white circles correspond
to grid cells in the xz plane, cartoon ghost zones, and conventional ghost zones,
respectively. Boundary conditions in the y directions are obtained by interpolation on
the xz plane.

with red squares, white squares, and white circles corresponding to grid cells in the xz plane,
cartoon ghost zones, and conventional ghost zones, respectively. Note that for simplicity, the
number of grid points in the x direction is reduced and only one layer of cartoon ghost zones is
shown. To mimic cylindrical symmetry the cartoon ghost zones are filled by rotating the data
from the xz plan. The value of a scalar grid function A at the coordinates (x, y, z) in a cartoon
ghost zone (i.e. y ̸= 0) is given by

A(x, y, z) = A(x′ :=
√︂
x2 + y2, 0, z) . (5.1)

Evaluating the right-hand side usually requires interpolation on the x axis. Vector and tensor
grid functions are treated the same way, except for the fact that a rotation around the z axis is
applied before the interpolation step:

Aij...(x, y, z) = Ri
i′(ϕ)Rj

j′(ϕ) . . . Ai′j′...(x′, 0, z) , (5.2)

where ϕ = arctan(x
y ) is the rotation angle and Ri

j(ϕ) is the corresponding rotation matrix.
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The main downside of the cartoon method is the additional source of numerical error which
is created by the interpolation step. Specifically problematic is the region close to the z axis.
Most of the interpolation points x′ are close to a grid point since x is usually much larger than
the extent of the cartoon ghost zones y. However, for grid points close to the z axis, x and y
are of comparable magnitude and the x′ lie in the middle of two grid points on the xz plane.
Interpolation routines can lead to large errors if a low-order interpolation scheme is used. For
high-order schemes on the other hand, the Runge phenomenon (Runge, 1901) can become
problematic in regions where the interpolated grid function has steep gradients. Since spacetime
grid functions are typically smooth, their interpolations are well-behaved. Hydrodynamical
quantities, however, can exhibit discontinuities, which can become problematic. This is usually
not an issue, since Euler’s equations can be evolved in cylindrical coordinates while the
cartoon method is only needed for the evolution of the spacetime. Such an approach was for
example used by Fujibayashi et al. (2017, 2018, 2020a,b,c, 2023) and Shibata et al. (2021).
Unfortunately, there is no implementation of cylindrical coordinates in WhiskyTHC. Instead, we
apply the cartoon method to both the hydrodynamical and the spacetime grid functions. Our
implementation of the cartoon method draws upon the version found in the EinsteinToolkit
Haas et al. (2020) which has been modified by Federico Guercilena.

5.2. Test cases

To gauge the accuracy of our implementation of the cartoon method for use with both hy-
drodynamical and spacetime variables, we select two test cases. The first tests the stability
of the method by evolving flat space, constant density initial data over long time scales, in a
way reminiscent of the robust stability test for spacetimes codes (Alcubierre et al., 2004). The
second test case instead involves the simulation of an isolated cold NS and is meant to gauge
the method’s accuracy. The results of the two tests are presented in Sections 5.2.1 and 5.2.2.

5.2.1. Constant density

The computational domain for this test consists of a small region with xmax = zmax ≈ 24 km.
Initially, the domain is filled with a homogeneous stationary gas of density ρ0 ≈ 6.18 ×
105 g cm−3 modeled by the DD2 EOS (Banik et al., 2014). The spacetime variables are set to
their flat space values, i.e., γij = diag(1, 1, 1), βi = Kij = 0, and α = 1. Technically, this is
not consistent with the hamiltonian constraint equation, Eq. (3.17) but the violation is very
small as long as we choose a small initial density. This system should stay stationary during
numerical evolution. We evolve this system with the cartoon method for approximately 500ms.
Figure 5.2 shows the evolution of the minimum and maximum density in the left panel and the
evolution of the total baryon mass in the system in the right panel. The distribution of matter
readjusts very slightly within the first ∼ 60ms. However, the density varies by less than 0.005
% during this time and the total baryon mass stays conserved up to 0.001%. Since the system
acts as expected, we conclude that our numerical scheme produces a stable evolution.

5.2.2. Isolated neutron star

In this test case, we perform two simulations of an isolated cold non-rotating NS with a central
density of 7.91 × 1014 g cm−3. The star is modeled by an ideal gas EOS with adiabatic index
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Figure 5.2.: Evolution of the minimum and maximum density (left panel) and total baryon mass
in the domain (right panel) for the constant density test case. Both are normalized to
their initial value.

Γ = 2 and polytropic constant K = 100. One simulation employs first-order and the other
third-order Lagrangian interpolation for the cartoon method. In Figure 5.3, we show the
change of the maximum density and total baryon mass in the simulation. In the simulation with
first-order interpolation, the Tolman–Oppenheimer–Volkoff (TOV) star is oscillating, leading to
a variation of ∼ 10% in the central density. Furthermore, the violation of mass conservation is
quite strong as∼ 1.4% of the total mass in the domain is lost within 100ms. The central density
in the simulation with third-order interpolation only varies by ∼ 5% and the mass conservation
is improved by almost an order of magnitude over the test with first-order interpolation. While
this represents a noteworthy enhancement, it would be preferable to see an even smaller
violation of mass conservation. This could potentially be achieved by higher order interpolation
or the use of special interpolation methods, such as the ENO or WENO interpolation (Harten
et al., 1987; Liu et al., 1994). For the time being, however, third-order interpolation is sufficient
for a preliminary test simulation of a BNS post-merger system.
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Figure 5.3.: Central density (left panel) and mass conservation (right panel) in the TOV test cases
with first and third-order cartoon interpolation.
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5.3. Realistic post-merger initial data

Since the inspiral and the merger of BNSs are intrinsically three-dimensional phenomena,
they can not be simulated in axisymmetry. Instead, initial data of the remnant-torus system is
needed. The methods typically used to create such initial data can be split into two categories:
it can be either created by relying on analytic or semi-analytic models or by remapping data
from a three-dimensional simulation.
Artificial initial data is typically created by imposing a hydrodynamical equilibrium configu-

ration and by specifying certain parameters such as the mass and spin of the central object
and the disk. Examples of such initial data where used in, e.g., Fernández & Metzger (2013);
Metzger & Fernández (2014); Just et al. (2015); Lippuner et al. (2017); Fernández et al.
(2020); Fujibayashi et al. (2020a,b); Just et al. (2021). Since these parameters can be chosen
directly, this method can be better suited for studies that systematically investigate a large set
of disk and remnant properties. However, these models often make several assumptions, such
as constant electron fraction and/or entropy in the disk, which might not be justified.
The other type of method derives the initial conditions for the two-dimensional simulation

directly from snapshots of three-dimensional simulations by averaging hydrodynamical quanti-
ties along circles around the z axis. This method preserves the realistic state of the disk and
remnant, including the full radial and vertical distribution of the density, electron fraction,
internal energy, and angular momentum. Therefore, the full evolution of the merger as well
as the complete mass ejection history of the merger can be modeled consistently. The main
disadvantage is that a 3D simulation has to be run for each BNS configuration and choice of
microphysical parameters which is computationally expensive. Similar methods have been
employed by, Dessart et al. (2009) in simulations with Newtonian gravity and by Fujibayashi
et al. (2017, 2018, 2020a, 2023), and Shibata et al. (2021) in full GR. In this study, we use
initial data that is derived by averaging snapshots from three-dimensional simulations.
The initial data we intend to create has to specify the hydrodynamical state of the configu-

ration, the geometric quantities specifying the gravitational field, and the gauge parameters.
However, simply averaging all these quantities in the three-dimensional simulation and using
them as initial values in the two-dimensional simulation leads to inconsistencies. The metric
fields need to be consistent with the constraint equations (see Section 3.1.1) and the hydrody-
namical state is constrained by the EOS. To fulfill these constraints we only need a limited
number of hydrodynamical variables. Subsequently, the geometric variables can be derived
by solving the general relativistic constraint equations Eqs. (3.17) and (3.18) and choosing
gauge conditions. Finally, all other hydrodynamical quantities can be calculated from the EOS.
We discuss the averaging procedure for the hydrodynamical variables in Section 5.3.1 and the
procedure to determine the geometric variables in Section 5.3.2.

5.3.1. Hydrodynamical variables

The hydrodynamical state of the system can be specified by a set of variables that describe
the rest-mass density, energy density, momentum density, and composition. For example, the
primitive density ρ, electron fraction Ye, temperature T , and 3-velocities vi are possible choices
and would be a good choice in a Newtonian simulation. In our case however, the conserved
variables are a better choice, i.e., D̃, D̃p = YeD̃, Ẽ, and S̃i (see Section 3.2.1). This choice
has two advantages: first, by fixing S̃i, the momentum constraint equations decouple from
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5. Long-term modeling of the post-merger system

the conformal factor and can thus be solved without iteration (see Section 5.3.2); second, the
integral of the averaged quantities should change only due to the source terms in Eq. (3.55)
and should thus have the same value before and after the transition to 2D. This is specifically
the case for the total baryon mass which is conserved and should thus be constant during both
phases of the simulation. Furthermore, we need to average the six optical-depths grid functions
τ

(0,1)
(e,a,x) (see Section 3.3) to specify the state of the neutrino leakage scheme. Finally, we also
average S̃ = √

γS, the trace of the hydrodynamical stress times the volume factor. In principle,
S can be derived by performing a full recovery of the primitive variables but instead, we use the
averaged S̃ in solving the equations for the gauge condition. While this is an approximation,
our tests have shown that it produces consistent results.
To average a variable defined on a three-dimensional Cartesian grid A(cart)(x, y, z), the first

step is to interpolate A onto a three-dimensional cylindrical grid A(cyl)(r, ϕ, z). If A is a vector
or tensor quantity (e.g., Aij) its components need to be rotated in this step:

A
(cyl)
ij = Ri′

iR
j′

jA
(cart)
i′j′ , (5.3)

where the Ri
j is the rotation matrix associated with ϕ. Next, the interpolated and rotated

variable is averaged over the ϕ coordinate. The quantities D̃, D̃p, Ẽ, Sĩ, and S̃ are averaged
directly:

⟨A⟩ (r, z) = 1
2π

∫︂ 2π

0
dϕA(r, ϕ, z) , (5.4)

while the optical depths are first weighted with the density D̃:

⟨τ⟩ (r, z) = 1
2π
⟨︂
D̃
⟩︂ ∫︂ 2π

0
dϕτ(r, ϕ, z)D̃(r, ϕ, z) . (5.5)

During a 3D simulation, the central object of the remnant can drift away from the coordinate
origin. This can be caused by numerical errors or asymmetric mass ejection. To account for
this, we shift the coordinate origin to the minimum of the lapse function before we perform
the averaging procedure. We use the lapse function as a proxy for the center of mass of the
system since it is typically smooth and therefore less susceptible to fluctuations.

5.3.2. Spacetime variables

Apart from the hydrodynamical quantities, the initial data has to contain information about
the geometry of the spacetime, corresponding to initial values for the 3-metric γij and the
extrinsic curvature Kij (see Section 3.1.1). Since both are symmetric tensors they have twelve
independent components in total. There are four constraint equations, resulting in eight
remaining degrees of freedom which need to be fixed. Furthermore, the gauge conditions
need to be specified which determine the initial value for the gauge parameters α and βi (see
Section 3.1.3). This section details how these are calculated following the methods described
in Shibata (1999) and Shibata (2015).
In the initial data creation we employ the conformal transverse traceless decomposition. We

assume conformal flatness (i.e., the conformal decomposition is performed with with a flat
conformal metric γ̃ij = ηij) and the absence of the trace and transverse part of the extrinsic
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curvature. In Cartesian coordinates, the flat metric ηij simply reduces to a Kronecker delta δij .
The 3-metric and the conformal metric are related by the conformal factor ψ:

γij = ψ4δij , (5.6)

where δij is the flat space 3-metric. Since we employ Cartesian coordinates, the covariant
derivative associated with the conformal metric ∇̃i can be replaced by simple partial derivatives
∂i and the corresponding Laplace operator ∆̃ = ∇̃i∇̃i can be replaced by the flat-space
Lagrangian ∆ = δij∂i∂j . Next, we decompose the extrinsic curvature into its trace K and a
traceless part Aij:

Kij = Aij + 1
3Kγij = ψ−2Āij + 1

3Kγij , (5.7)

where Āij is a rescaling of Aij with ψ2. Note that Āij is a different rescaling compared to
the one used in the definition of the minimal distortion condition in Section 3.1.3. It can be
decomposed further into a transverse part ĀTTij and a longitudinal part Ā

L
ij (relative to the

conformal metric γ̃ij) which can be written in terms of a vector fieldWi:

Āij = Ā
L
ij + Ā

TT
ij (5.8)

Ā
L
ij = ∂iWj + ∂jWi − 2

3 γ̃ij∂kW
k (5.9)

We assume that the trace and the transverse traceless part of the extrinsic curvature vanish
(K = 0 = Ā

TT
ij ). The assumption of conformal flatness effectively reduces the number of

undetermined components by five, since we specify the six components of γij but introduce
a new variable ψ. Furthermore, since ĀTTij is divergence-free (∇̃

i
Ā
TT
ij = 0) and traceless

(γ̃ijĀ
TT
ij = 0) it is fully specified by two functions. Finally, K = 0 is a scalar equation and

thus all eight free components are fixed. The remaining quantities are ψ and Wi which are
determined by the constraint equations.
We can express the constraint equations in terms of the variables of the conformal transverse

traceless decomposition and the conserved hydrodynamical quantities. The Hamiltonian
constraint equation (3.17) becomes

∆ψ = 2πẼψ−1 − 1
8ψ

−7ĀijĀ
ij (5.10)

and the momentum constraint equations (3.18) become

∆Wi + 1
3∂i∂jW

j = 8πS̃j . (5.11)

Following Shibata (1999), we simplify the expression (5.11) further by decomposingWi into
a vector potential Bi and a scalar potential χ by

Wi = 7
8Bi − 1

8
[︂
∂iχ+ (∂iBk)xk

]︂
. (5.12)

The momentum constraint equations are then recast into two simple Poisson-type equations:

∆Bi = 8πS̃i , (5.13)
∆χ = −8πS̃ix

i . (5.14)
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To determine the gauge parameters we employ the maximal-slicing gauge condition for the
lapse and the minimal-distortion condition for the shift vector (see Section 3.1.3). Together
with the Hamiltonian constraint equation (5.10), the maximal-slicing gauge condition (3.28)
becomes

∆(αψ) = 2παψ−1(Ẽ + 2S̃) + 7
8αĀijĀ

ij
ψ−7 . (5.15)

Note that, in principle, S = ρh
(︁
W 2 − 1

)︁
+ 3p should be consistently obtained from the EOS.

However, this would require a full recovery of the primitive variables. Instead, we approximate
S̃ with the azimuthal average from the three-dimensional simulation Section 5.3.1).
The minimal distortion gauge condition can be expressed as

δij∆βj + 1
3∂i∂jβ

j = Ji , (5.16)

with
Ji := 16παψ−6Sĩ + 2ψ−6Āijδ

jk
(︂
∂kα− 6αψ−1∂kψ

)︂
. (5.17)

Note that Eq. (5.16) has the same structure as Eq. (5.11) so we can apply the same decomposi-
tion as in Eq. (5.12):

βi = 7
8Pj − 1

8(∂jη + (∂jPk)xk) , (5.18)

with the new auxiliary potentials Pi and η for which we obtain

∆Pi = Ji , (5.19)
∆η = −Jix

i . (5.20)

Finally, we end up with ten Poisson-like equations: the Hamiltonian constraint equation (5.10),
the momentum constraint equations (5.13) and (5.14), the gauge condition for the lapse (5.15)
and the gauge condition for the shift (5.19) and (5.20). To solve these we employ the BiCgStab
method (van der Vorst, 1992) where the cartoon method (see Section 5.1) is used to calculate
partial derivatives in the y direction.
The full process for constructing the initial metric fields can be summarized as follows. We

start by solving the momentum constraint equations Eqs. (5.13) and (5.14) to obtain χ and
Bi. Since their source terms only depend on S̃i, we can solve the equations directly. From χ
and Bi we can recoverW and thus Āij . Next, we solve the Hamiltonian constraint equation
Eq. (5.10) to obtain ψ and Eq. (5.15) to obtain α. Since the source term in Eq. (5.10) depends
on ψ and the source term in Eq. (5.15) depends on α, their solutions need to be calculated
iteratively. Lastly, the shift is determined by solving Eqs. (5.19) and (5.20) and γij and Kij are
recovered from ψ and Āij with

γij = ψ4δij , (5.21)
Kij = ψ−2Āij . (5.22)
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model EOS neutrino treatment tend [ms] Mdisk [M⊙] Mej [M⊙]
DD2_2D DD2 Leakage + M0 605.9 7.90 × 10−2 5.79 × 10−3

DD2_2D_noν DD2 none 618.9 1.56 × 10−1 3.68 × 10−3

Table 5.1.: List of the key features of the axisymmetric accretion disk models. Given are the total
simulation time tend, the disk mass Mdisk after 400 ms, and the ejected mass Mej after
600 ms.

5.4. Long-term post-merger simulations in 2D

We perform two long-term axisymmetric simulations to test the setup described in Sections 5.1
and 5.3. Table 5.1 lists the models and their key features. Since our methods are very similar to
those presented in Fujibayashi et al. (2017, 2018, 2020c), we perform 2D simulations similar
to the models labeled DD2-135M in Fujibayashi et al. (2020c), to compare our simulation setup
with theirs. Specifically, the model DD2-135M-v0 is similar to our model DD2_2D because both
models do not include a viscosity prescription. The initial data for our 2D simulations are
based on a 3D simulation with the simulation setup described in Section 3.4. The simulation is
based on the model DD2(high) presented in Sekiguchi et al. (2015) which was used for the
creation of 2D initial data in Fujibayashi et al. (2017, 2018, 2020c). Our initial data is created
from a snapshot taken ∼ 55 ms after the merger. The corresponding 2D simulation is labeled
DD2_2D in Table 5.1. Furthermore, we perform another 2D simulation with the same initial
data but without neutrino emission or absorption, which we label DD2_2D_noν.
In Section 5.4.1, we compare 2D the initial data to the 3D simulation it is based on. We analyze

the evolution of the disk in Section 5.4.2 and the amount of ejected matter in Section 5.4.3.
Unfortunately, the simulation DD2_2D crashes after ∼ 600 ms. In Section 5.4.4 we describe the
numerical instability that causes the crash and discuss possible solutions.

5.4.1. Comparison of the initial data

In the following section, we analyze the initial data produced for the model DD2_2D. Figure 5.4
shows the density in the xy plane of the 3D simulation in the iteration from which the 2D
initial data was created. At this point, the massive NS has relaxed to a fairly axisymmetric
configuration. The accretion disk is relatively axisymmetric as well, except for the presence
of a spiral arm that results in a slightly asymmetric disk shape. The corresponding density
distribution in the xz plane is shown in the top-left panel of Fig. 5.5. Several density jumps
are visible in the disk due to the spiral wave. Furthermore, the region above the NS exhibits a
turbulent mixture of inflowing and outflowing matter. The lower left panel shows the initial
data in the 2D simulation. The matter distribution is well reproduced, except for the spiral
waves and the turbulent flow in the polar direction, which are smoothed out. In Figure 5.6, we
show the averaged 2D initial data along the equatorial plane, together with the corresponding
profiles along the x axis of the snapshot from the 3D simulation. For better comparability, the
coordinate origin of the 3D profiles is shifted to the minimum of the lapse, as described in
Section 5.3. The top-left panel of figure Fig. 5.6 shows the conserved density D̃. Since the
conserved variables are directly averaged, the profiles in 2D and 3D are very similar, especially
in the center of the NS. In the outer layers, as well as in the accretion disk, the 3D data
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Figure 5.4.: Snapshot of the density in the xy plane of the 3D simulation before the transition to
2D. The distribution of the matter is approximately axisymmetric.

is not perfectly axisymmetric and thus shows some small deviations from the average. The
top-right panel shows the conformal factor ψ. Since the 3D simulation is performed in the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism, we calculate the conformal factor
as ψ = eϕ, where ϕ is the conformal factor used in the BSSN formalism. Unlike the conserved
density, the conformal factor is not directly averaged. Therefore, the profiles do not match
exactly. This is expected for two reasons. As shown above, the averaging procedure removes
some turbulent features and therefore, slightly reduces the momentum densities Si. This
affects the source terms in Eq. (5.11), and thus indirectly Eq. (5.10) for the conformal factor.
Furthermore, the boundary condition for the conformal factor at a large distance from the
remnant is given by ψ = 1 (or ϕ = 0 in the case of the BSSN formulation). However, since
the domain in the 2D simulation is much larger and the domain is cylindrical, the boundary
conditions are effectively different compared to the 3D simulations.
After the initial data is created and the constraint and gauge equations are solved, the

primitive density ρ is recovered by inverting Eq. (3.51). Since ψ differs between the 3D and 2D
data, the primitive density ρ inside the NS is slightly larger in the 2D data. The center-left and
center-right panels of Fig. 5.6 show the internal energy ε and the temperature T , respectively.
The internal energy ε is slightly smaller in the 2D data than in the 3D data for reasons similar to
those described above. While the difference is negligible for ρ or ε, the temperature inside the
remnant is significantly affected. This can be explained by the following reasoning. In the NS

80



5.4. Long-term post-merger simulations in 2D

Figure 5.5.: Density distribution in the xz plane for the 3D and 2D models at the transition time
step and 40 ms later. Top left: 3D simulation at the point of transition. Bottom left:
2D simulation initial data. Top right: 3D simulation 40 ms after the transition time
step. Bottom right: 2D simulation initial data 40 ms after initialization.

center, the internal energy is dominated by the degeneracy energy, while the thermal energy
is comparatively small. As the density is slightly lower in 2D, so is the degeneracy energy.
At the same time, the total internal energy is slightly larger. Consequently, the thermal part
of the internal energy, and hence the temperature, has to be much larger to compensate for
the difference. This results in the temperature in the center of the NS being roughly twice as
high as in the 3D data. However, this is not important for the dynamics of the system because
the thermal contribution to the internal energy and pressure inside the NS core is negligible.
Finally, the lower two panels of Fig. 5.6 show the distribution of the rotational velocity vy and
the distribution of the electron fraction Ye. Both are reproduced well after the transition to 2D.

5.4.2. Evolution of the remnant

In Fig. 5.7, we show the evolution of several quantities for the models DD2_2D and DD2_2D_noν.
Initially, the remnant is not in a perfect equilibrium state, due to the differences in the gauge
choices during the creation of the initial data and the evolution with the BSSN formalism. Thus,
it readjusts within the first 5-10ms causing small oscillations in the massive NS. This can be
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Figure 5.6.: Comparison of several quantities in the 2D initial data and the 3D simulation at the
time of transition. From top left to bottom right: Conserved density, conformal factor,
specific internal energy, temperature, rotational velocity, and electron fraction.

seen in the evolution of the maximum density and minimum lapse, shown in the top-left and
top-right panels of Fig. 5.7, respectively. Though the change is small, the oscillations cause the
ejection of matter, as described in Section 5.4.3.
To gauge if the evolution of the remnant is well reproduced by the 2D simulation, we compare

the model DD2_2D with the 3D simulation it is based on. For this purpose, we continue the 3D
simulation to t− tmerg ≈ 95 ms. In the right panels of Fig. 5.5, we show the density distribution
in the xz plane at the end of the 3D simulation together with the density in the 2D model, 40ms
after the start of the simulation. In both simulations, the vertical thickness of the accretion disk
has shrunken slightly because neutrino emission reduces the disk temperature and therefore
its pressure.
The density in the polar region is lower in the 2D simulation compared to the 3D simulation

due to a fast outflow developing around the z axis in the 2D simulation. Figure 5.8 shows the
radial velocity vr for the models DD2_2D and DD2_2D_noν 80ms after the start of the simulation.
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Figure 5.7.: Time series of several quantities detailing the instability, that arises in DD2_2D.
Top left: maximum density, top right: minimum of the lapse function, bottom left:
maximum of the absolute value of the Hamiltonian constrain violation H, bottom
right: total baryon mass in the simulation domain.
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Figure 5.8.: Radial velocity in the simulations DD2_2D (left panel) and DD2_2D_noν (right panel).

The comparison shows that this outflow does not develop in the absence of neutrinos. We thus
assume that it is driven by neutrino absorption. Note, that the density close to the z axis is
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so low that the amount of matter ejected by this outflow is comparably small (see Fig. 5.11).
Although neutrino-driven outflows also develop in 3D simulations, they typically do not form
a continuous wind. Instead, the outflow is pulsed due to the asymmetry of the massive NS
and the spiral arms in the disk, which can not exist in axisymmetric simulations. Moreover,
2D simulations are prone to launch outflows toward the polar directions due to the enforced
symmetry. Thus, it is not surprising, that the 2D simulation develops a steady outflow, while
the 3D simulation does not.
The evolution of the disk mass in DD2_2D and DD2_2D_noν is shown in the left panel of

Fig. 5.9. Analogously to Fujibayashi et al. (2020c), we define the disk as all matter with density

101 102

t [ms]

0.08

0.10

0.12

0.14

0.16

M
di

sk
 [M

]

DD2_2D
DD2_2D_no

101 102

t [ms]

20

40

60

80

100

L
 [1

051
 e

rg
 s

1 ]

Figure 5.9.: Evolution of the disk mass (left panel) and the total neutrino luminosity (right panel)
for DD2_2D and DD2_2D_noν. Note that the disk mass is defined as the mass of all
matter with densities below 1012 g cm−3, so it also includes the ejected matter.

below 1012 g cm−3. Compared to the model DD2-135M of Fujibayashi et al. (2020c), the initial
disk mass is ∼ 25% lower in our model. Furthermore, in both their model and ours, about
half of the disk is accreted onto the massive NS after ∼ 500ms (or more precisely into the
region with ρ > 1012 g cm−3). Note that while a fraction of the disk is ejected, it is significantly
smaller in comparison to the one that is accreted.
The right panel of Fig. 5.9 shows the total neutrino luminosity, i.e., the sum of the luminosities

over all neutrino species. We find that the neutrino luminosity in our simulation is initially ∼
25% larger in our model DD2_2D compared to the model DD2-135M-v0 of Fujibayashi et al.
(2020c). After 400ms the luminosity has decreased by roughly 70% in both models. Note
that Fujibayashi et al. (2020c) define the neutrino luminosities as the volume integral over
the neutrino leakage rates, while we define it as the surface integral of the neutrino fluxes
at r ≈ 750 km. Thus, our definition includes the reduction of the luminosity due to neutrino
absorption.

5.4.3. Mass ejection

Figure 5.10 shows the mass ejection rate and the total amount of mass ejected for the models
DD2_2D and DD2_2D_noν, where the mass ejection rate is extracted by integrating the mass
flux over the surface of a sphere with a radius of 8,000 km. In DD2_2D, the amount of ejected
mass is roughly 2-3 times higher compared to DD2-135M-v0. This is most likely due to the
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different ejecta content in the initial conditions. In our simulations, the initial conditions
contain a substantial amount of ejecta that have not left the domain of the 3D simulation at the
time of the transition. Figure Fig. 5.11 shows the mass ejection rate per polar angle d

dθM
ej at

t ≈ 80 ms for both of our 2D models, where the mass ejection rate per polar angle is given by
d
dθM

ej = 2π (αvr − βr)D√
γr2 sin θ . (5.23)

The large outer wave of ejecta is present in both DD2_2D and DD2_2D_noν because it is driven
by the initial conditions as described above. After the first burst, the mass ejection rate in
DD2_2D_noν drops off while a neutrino-driven outflow develops in DD2_2D. Figure 5.11 shows,
that the ejection angles of the neutrino-driven ejecta are similar to the angles found for the early
post-merger ejecta the 3D models in Section 4.3. The black dashed lines in Fig. 5.10 show the
difference of the ejecta masses in DD2_2D and DD2_2D_noν. Since the two models only differ
in the neutrino treatment, the difference in their mass-ejection rate can be seen as a rough
estimate of the purely neutrino-driven ejecta mass in DD2_2D. After 600ms, the mass ejection
rate in the model DD2-135M-v0 of Fujibayashi et al. (2020c) has dropped to 10−3M⊙ s−1. At
the end of our simulations, however, the neutrino-driven outflow is still ongoing and the mass
ejection rate is still high (∼ 5 × 10−3M⊙ s−1). This is most likely due to differences in the
neutrino treatment.

5.4.4. Instability

As mentioned above, the simulation DD2_2D crashes after ∼ 600ms due to an instability that
develops in the center of the NS. It can be first seen in the evolution of the maximum density
in Fig. 5.7, which suddenly increases after ∼ 390 ms and afterward abruptly drops. The lower
left panel of Fig. 5.7 shows the constraint violation stays relatively low, even after 400ms and
only later becomes large. This points toward a failure caused by the hydrodynamical evolution
of the system. Figure 5.12 shows the development of the density inside the NS core in detail:
The central density rises by a few percent (top panels) and subsequently drops (bottom-left

100 200 300 400 500 600
t [ms]

10 3

10 2

M
ej

 [M
 s

1 ]

DD2_2D
DD2_2D_no

100 200 300 400 500 600
t [ms]

10 4

10 3

10 2

M
ej

 [M
]

difference

Figure 5.10.: Mass ejection rate (left panel) and total amount of mass ejected as a function of
time (right panel). The dashed black lines show the difference between the models
DD2_2D and DD2_2D_noν.
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5. Long-term modeling of the post-merger system
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Figure 5.11.: Mass ejection rate per polar angle for DD2_2D and DD2_2D_noν at t ≈ 80 ms.

panel). This causes large unphysical density oscillations (bottom-left panel) that eventually
disrupt the NS (bottom-right panel). Eventually, the conservation of the total baryon mass in
the simulation is violated, as can be seen in the bottom-right panel of Fig. 5.7. We are unsure
what causes this instability and plan to further investigate it in the future.
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Figure 5.12.: Snapshots of the instability developing in the density.

86



5.4. Long-term post-merger simulations in 2D

Once these issues have been addressed, our framework will allow us to extend 3D simulations
to multiple seconds. In this way, we will be able to consistently obtain the full mass ejection
history of BNS mergers. This is essential for assessing the full abundance pattern of the ejecta
and therefore potential features in the KN lightcurve and spectrum and to understand the role
of mergers in the r-process enhancement of galaxies. Thus, we plan to connect the project
discussed in Chapter 4 with the 2D simulation framework, which will enable us to gauge the
influence of the EOS on the full post-merger mass ejection.
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6. Summary and outlook

Merging binary neutron stars are unique and exciting events, not only for astrophysicists but
also astronomers, nuclear physicists, and particle physicists. These cataclysmic events emit
gravitational waves (GWs) and result in the ejection of neutron-rich material. This material
undergoes r-process nucleosynthesis, leading to the production of heavy elements and the
kilonova (KN). The GW waveform and the KN lightcurve and spectrum depend sensitively on
the nuclear equation of state (EOS). This makes binary neutron star (BNS) mergers very useful
for studying the EOS by comparing the predictions of numerical models with multi-messenger
observations. However, at the same time, it means that knowledge of the EOS is vital for our
understanding of the role of BNS mergers in the r-process enrichment of galaxies. Therefore,
a systematic approach is needed to characterize the effect of the EOS on the merger and
post-merger dynamics. Moreover, to obtain a complete picture of the ejecta properties of BNS
mergers and their dependence on the EOS, it is imperative to simulate all phases of matter
ejection consistently, including the post-merger accretion-disk phase.

In the first part of the thesis, we systematically investigated the influence of different nuclear
matter properties in BNS-merger simulations. To this end, we employed 8 different Skyrme-
based EOS models. We used the LS220 Skyrme parameters as fiducial model(Lattimer &
Swesty, 1991) and systematically changed the effective mass, incompressibility, symmetry
energy, and nuclear saturation point. A BNS merger simulation was performed for each EOS
and analyzed the merger dynamics, the GW signal, and the properties of the dynamical ejecta.
In this way, we were able to directly assess the impact of the nuclear matter properties on the
merger and the associated multi-messenger observables.
A special focus was set on the effective mass and the incompressibility. Increasing the

incompressibility or decreasing the effective mass increases the overall pressure inside neutron
stars (NSs), i.e., it makes the EOS stiffer. The effective mass impacts the pressure at all densities
inside the NS while the incompressibility mostly influences the pressure at very high densities,
i.e., in the innermost core of NSs. Both parameters directly impact whether the merger remnant
promptly collapses to a black hole (BH) or the time until a delayed BH formation. Furthermore,
our results showed that the post-merger GW peak frequency is correlated to both parameters.
Our findings indicate that several aspects of the merger dynamics exhibit a correlation only

with one of the parameters. Specifically, we discovered that larger incompressibilities result in a
more rapid cessation of the NS contraction and a quicker transition to a one-armed spiral-wave
mode, which has implications for the emission of GWs and the ejection of matter during the
early post-merger phase. In contrast, increasing the effective mass does not exhibit the same
dampening effect. Additionally, we analyzed the dependence of the dynamical ejecta mass on
the EOS. To this end, we separated the tidal and shock-heated ejecta components, as they are
expelled through distinct mechanisms and thus depend differently on the EOS. Our findings
reveal that the amount of matter ejected through tidal forces increases significantly with larger
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incompressibilities and only slightly with smaller effective masses. Conversely, the mass of the
shock-heated ejecta decreases with smaller effective masses, but does not display a correlation
with the incompressibility. These results demonstrate that certain dynamics in an BNS merger
depend on specific density regimes of the EOS. We thus conclude that the stiffness of an EOS
needs to be viewed as a density-dependant property, i.e., an EOS can be soft at lower densities
(e.g., close to the saturation density) but stiff at large densities.
Furthermore, we assessed whether the nuclear matter properties at saturation density

accurately describe the influence of the EOS on BNS mergers. To this end, we employed a
Skyrme functional based on the Shen EOS (Shen et al., 1998a) that was first used in Yasin et al.
(2020). The resulting SkShen EOS exhibits the same saturation point and matches the Shen
EOS’ effective mass, incompressibility, and symmetry energy at saturation density. Thus it is
similar to the Shen EOS at the saturation density but diverges at high densities. Despite these
differences, the remnant evolution and the amount of matter ejected in the SkShen and Shen
EOS models are relatively similar, and their post-merger GW spectrum is almost identical.
This study showed the potential of our method for examining the relationship between the

detailed features of the EOS and the merger outcome. However, further simulations with more
variations of the EOS parameters will be required to validate the trends we found and to make
quantitative statements. Our study was restricted to symmetric BNS systems, so it will be
interesting to investigate asymmetric configurations as well.

The second part of this thesis focuses on simulating BNS mergers over several seconds. A
significant amount of the material ejected during a BNS merger originates from the post-merger
accretion disk. However, it is currently not feasible to simulate the entire post-merger phase
and matter ejection in three dimensions due to the immense computational cost. To address
this issue, we have implemented a simulation framework based on the cartoon method, which
allows us to simulate axisymmetric systems using the same code as in the 3D simulations while
significantly reducing computational resources.
In order to derive axisymmetric initial conditions of the post-merger remnant, we averaged

3D hydrodynamic quantities around the rotational axis at 55ms post-merger and consistently
construct the metric fields in the conformal flat approximation. This enables us to consistently
extend BNS-merger simulations until the end of the post-merger phase without the need for
excessive computational power. As a test of our implementation, we applied this method to a
simulation of a neutron-star accretion-disk system resulting from a symmetric BNS merger.
Our results align with previous studies in the literature. However, we found the ejected
matter to be significantly larger, possibly due to differences in the way we treated neutrinos.
Unfortunately, we encountered numerical difficulties that must be resolved before our setup
can be used for further studies. Additionally, the primary mechanism for mass ejection in
the post-merger phase is viscous heating caused by magneto-hydrodynamical (MHD) effects,
which are typically approximated by a viscosity prescription. Therefore, it will be necessary to
incorporate a viscous heating scheme into our simulation setup. With these advancements, we
will be able to follow the whole mass-ejection history of BNS mergers. This will enable us to
investigate the influence of the EOS on the r-process enhancement of the universe.

In the near future, the rapid advancement in the field of compact-object merger simulations,
along with the potential of new multi-messenger observations, will lead to significant advances
in our understanding of the EOS at extremely high densities as well as the role of neutron star
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mergers in the production of heavy elements. The fourth observing run of LIGO, Virgo, and
Kagra, which is set to begin in May of this year, is anticipated to detect the GW signal of multiple
BNS mergers. It is projected that a few of these detections will also include the post-merger
signal and maybe in some cases they will be accompanied by the observation of a KN transient.
To effectively constrain the nuclear EOS from future multi-messenger observations, it is crucial
to explore its role in BNS mergers in more detail through numerical simulations that encompass
both the merger and post-merger accretion-disk phase. Our research presents novel ways to
quantify the influence of the EOS in BNS mergers and contributes to a better understanding of
their relationship to the properties of nuclear matter.
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A. Fluid tracers

Nucleosynthesis calculations are usually performed following escaping fluid elements in a
Lagrangian picture (i.e. in a frame commoving with the fluid). The Lagrangian description
offers two main benefits: The abundances of synthesized nuclei are simply advected with the
fluid, i.e., except for changes due to nuclear reactions, they are conserved in a Lagrangian
frame, except for changes due to nuclear reactions. Furthermore, if ejecta escape the simulation
domain or the simulation is stopped, no further information about the thermodynamic history
of the ejecta is available, even though r-process nucleosynthesis takes place on much longer
timescales. However, the expansion of a fluid element that has escaped from the remnant can
be reasonably well approximated under the assumption of adiabatic homologous expansion.
The transition from the Eulerian picture of the grid-based simulations to a Lagrangian

description is usually made with so-called tracer particles – massless particles that do not
interact with the fluid except for being advected by it. The path of each tracer particle is
obtained by integrating the advection-velocity field V i = αvi + β. The temperature, density,
and other relevant quantities are recorded along the path by interpolation. The path along
with the recorded quantities is usually referred to as trajectory. Explosive nucleosynthesis
calculations are performed with a reaction network code that uses trajectories as input (see,
e.g., Hix & Thielemann (1999), for an overview of reaction networks). By performing network
calculations for a large number of tracer particles, the full nucleosynthesis in the ejecta can be
determined. Calculating the total mass-averaged abundance pattern or the heating rate due to
nuclear reactions requires that a mass is assigned to each tracer.
An important question is how many tracers are necessary to track the fluid’s movement

with enough resolution. While tracer particles are treated as point masses, they are meant to
represent a small but finite volume of the fluid. Furthermore, as the tracer is advected, this
volume deforms and is potentially “spaghettified” by turbulent fluid motion. After some time,
the fluid element might be so spread out that it can not be represented by a point-like tracer
anymore. To overcome this issue, the number of tracers needs to be high enough to properly
resolve the fluid and the distribution across the fluid needs to be even.
There are two choices when it comes to the integration of the tracer paths: Either one

initializes the tracers at the beginning of the simulation and calculates their movement during
the simulation (in situ) (see, e.g., Bovard et al., 2017) or one uses the output of the simulation
to evolve the tracers in post-processing (see, e.g., Fujibayashi et al., 2020a). Usually, the state
of the fluid is not saved in every iteration of the simulation, since this would require a very large
amount of storage space. Instead, the output is saved in fixed intervals of ∼ 1ms. Therefore,
the in-situ evolution of the tracers is more accurate while the accuracy of the post-processing
method relies on the timestep of the simulation output. The downside of the in-situ method is,
that there is no way to predict, which regions of the initial NSs will be ejected, so the tracers
must be distributed evenly in the outer regions of the NSs. This results in most of the tracers
still being bound inside the remnant at the end of the simulation. Thus, a very large number of
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A. Fluid tracers

tracers needs to be placed initially, to ensure that the ejecta are properly resolved. Moreover, if
a part of the ejecta ends up being underresolved, it cannot be corrected without rerunning the
simulation from the moment of tracer initialization on.
When the tracers are calculated in post-processing, one can select the initialization point

freely. Specifically, tracer particles can be initialized at the end of their trajectory and integrated
backward in time. This guarantees, that all the ejecta are sufficiently well resolved by tracer
particles. Furthermore, if the only purpose of the tracer particles is to calculate the nucleosyn-
thesis in the ejected matter, the integration can be stopped once the fluid element reaches
temperatures high enough to be considered in β-equilibrium (usually 10GK). This reduces the
fluid element distortion described above for the following reasons: First, the evolution of the
tracers is as short as possible. Second, the density of the tracers generally increases during
the integration and therefore the volume it represents shrinks. Third, the fluid motion outside
of the remnant is usually less turbulent. The last point also means that the post-processing
method’s lower time resolution is not as problematic since the trajectories of the tracers are
more linear. In summary, integration backward in time is the best method for calculating
tracers in post-processing. This conclusion was also reached by Sieverding et al. (2023) in the
context of supernova simulations. Note, however, that the tracer particle method can also be
used to analyze the fluid motion in the post-merger remnant (see, e.g., Bovard & Rezzolla,
2017; Kastaun et al., 2016). In this case, the high time resolution of in-situ tracers is necessary
to follow the complicated turbulent fluid motion.
If the duration of the simulation is long and/or the simulated domain is small, the ejected

matter might escape the simulation before its end. In this case, simply initializing all tracers at
the last simulation step neglects potentially large parts of the ejecta. We, therefore, initialize
tracers in regular intervals ∆t on a sphere with a large radius R and determine the mass of
the tracers based on the radial mass flux at their initial position,

dm
dΩ = R2Dvr∆t , (A.1)

where we have assumed that α ≈ 1 and βi ≈ 0 at large distances from the remnant. Each tracer
represents an area or cell on the sphere with a solid angle ∆Ω = sin θ∆θ∆ϕ, where θ and ϕ
are the polar and azimuthal angles, respectively. The tracer mass is obtained by integrating
Eq. (A.1) over the cell represented by the tracer. A similar approach is used by the authors of
Fujibayashi et al. (2020a). At the end of the simulation, we initialize a second set of tracers
inside the sphere of radius R where their mass is assigned based on the local density. This way,
we capture all of the ejected matter while still being able to use backward time integration.
Two paradigms exist for the distribution of tracers at the initialization step: Either the tracer

density is constant or it is correlated to the local mass density. In the first case, all tracers
represent roughly the same volume, in the second case they represent roughly the same mass.
On one hand, it is intuitive to assign each tracer the same amount of mass, since this way, each
tracer contributes equally to the final abundance pattern. On the other hand, the production of
some elements can exclusively take place in low-density regions, which would be underresolved
if the tracer distribution was based on density. We, therefore, use the following prescription to
set the initial position of the tracers:

1. Distribute the tracers on the sphere with even spacing in ϕ and in cos(θ). This way, each
tracer initially represents the same solid angle ∆Ω = sin(θ)∆ϕ∆θ.
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2. Associate a mass m to all tracers by integrating Eq. (A.1) over the area on the sphere
represented by the tracer.

3. Replace each tracer with m > mthresh by 4 new tracers, where mthresh is a constant
threshold mass.

4. Repeat the previous step until the mass associated with all tracers is smaller than mthresh.
5. Shift the initial position of each tracer by a random within its area on the sphere.

The threshold mass is adjusted, such that the procedure detailed above results in roughly the
desired number of tracers. Finally, we randomly shift each tracer within its cell to get rid of
the artificially directional bias created by the regular grid introduced in step 1. This results
in a distribution where all tracers represent at most a mass of mthresh, but the resolution in
low-density regions is still reasonably high. Note that it is important for the scheme, that the
integration in step 2 is based on multiple points for each tracer since the initial distribution of
tracers is quite coarse. Thus, large fractions of the ejecta mass can be neglected if Eq. (A.1) is
only evaluated in the center of the cell represented by the tracer.
The same prescription is used for the batch of tracers distributed within the domain at the

last timestep of the simulation, with the following exceptions: tracers are initially equally
spaced in x, y, and z, their mass is assigned by integrating the density over the volume they
represent, and, if a tracer’s mass is above mthresh, it is split into 8 new tracers instead of 4.

Figure A.1.: Distribution of tracers ejected at t− tmerg = 30 ms on a “Mollweide” projection of
the northern hemisphere in the model LS255†. The heatmap shows the radial mass
flux per unit area. Top and bottom panels show the tracer distribution before and
after the random shift is applied, respectively.
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A. Fluid tracers

Figure A.1 shows an example of the distribution of∼ 1500 tracers resulting from the algorithm
outlined above. The tracers are distributed on the surface of a sphere at ∼ 1500 km at
t− tmerg = 30 ms in the model LS255† (see Section 4.1.1). The top and bottom panels show
the tracer distribution before and after the random shift (step 5) is applied, respectively. The
heatmap corresponds to the radial mass flux per unit area, Eq. (A.1). The tracer density is
higher in the equatorial regions with higher mass ejection rates but still high enough in the
regions with low mass ejection rates.
The time evolution of the tracer trajectories is performed with the explicit Runge-Kutta

method of order 5 presented in Dormand & Prince (1980) and implemented in the solve_ivp
method of the SciPy python package (Virtanen et al., 2020). The relevant hydrodynamical
quantities are interpolated in space and time using linear interpolation.
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