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In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis
dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung
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Abstract

PAC-Bayes is a mathematical framework that can be used to provide performance guarantees for
machine learning algorithms, explain why specific machine learning algorithms work well, and design
new machine learning algorithms. Since the first PAC-Bayesian theorems were proven in the late
1990’s, several impressive milestones have been achieved. PAC-Bayes generalisation bounds have
been used to prove tight error bounds for deep neural networks. In addition, PAC-Bayes bounds
have been used to explain why machine learning principles such as large margin classification and
preference for flat minima of a loss function work well. However, these milestones were achieved in
simple supervised learning problems.

In this thesis, inspired by the success of the PAC-Bayes framework in supervised learning settings,
we investigate the potential of the PAC-Bayes framework as a tool for designing and analysing
bandit algorithms.

First, we provide a comprehensive overview of PAC-Bayes bounds for bandit problems and an
experimental comparison of these bounds. Previous works focused on PAC-Bayes bounds for mar-
tingales and their application to importance sampling-based estimates of the reward or regret of a
policy. On the one hand, we found that these PAC-Bayes bounds are a useful tool for designing
offline policy search algorithms with performance guarantees. In our experiments, a PAC-Bayesian
offline policy search algorithm was able to learn randomised neural network polices with competitive
expected reward and non-vacuous performance guarantees. On the other hand, the PAC-Bayesian
online policy search algorithms that we tested had underwhelming performance and loose cumula-
tive regret bounds.

Next, we present novel PAC-Bayes-style algorithms with worst-case regret bounds for linear bandit
problems. We combine PAC-Bayes bounds with the “optimism in the face of uncertainty” prin-
ciple, which reduces a stochastic bandit problem to the construction of a confidence sequence for
the unknown reward function. We use a novel PAC-Bayes-style tail bound for adaptive martingale
mixtures to construct convex PAC-Bayes-style confidence sequences for (sparse) linear bandits. We
show that (sparse) linear bandit algorithms based on our PAC-Bayes-style confidence sequences
are guaranteed to achieve competitive worst-case regret. We also show that our confidence se-
quences yield confidence bounds that are tighter than competitors, both empirically and theoreti-
cally. Finally, we demonstrate that our tighter PAC-Bayes-style confidence bounds result in bandit
algorithms with improved cumulative regret.
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Zusammenfassung

PAC-Bayes ist ein mathematisches Framework, das verwendet werden kann, um Leistungsgarantien
für Algorithmen für maschinelles Lernen bereitzustellen, zu erklären, warum bestimmte Algorith-
men für maschinelles Lernen gut funktionieren, und um neue Algorithmen für maschinelles Lernen
zu entwerfen. Seit der Beweis der ersten PAC-Bayes’schen Theoreme Ende der 1990er Jahre wur-
den mehrere beeindruckende Meilensteine erreicht. PAC-Bayes-Generalisierungsgrenzen wurden
verwendet, um enge Fehlergrenzen für tiefe neuronale Netze zu beweisen. Darüber hinaus wurden
PAC-Bayes-Schranken verwendet, um zu erklären, warum Prinzipien des maschinellen Lernens wie
die Klassifizierung mit großen Margen und die Bevorzugung flacher Minima einer Verlustfunktion
gut funktionieren. Diese Meilensteine wurden jedoch bei einfachen überwachten Lernproblemen
erreicht.

In dieser Arbeit untersuchen wir, inspiriert vom Erfolg des PAC-Bayes-Frameworks in überwachten
Lernumgebungen, das Potenzial des PAC-Bayes-Frameworks als Werkzeug zum Entwerfen und
Analysieren von Bandit-Algorithmen.

Zunächst bieten wir einen umfassenden Überblick über die PAC-Bayes-Schranken für Bandit-
Probleme und einen experimentellen Vergleich dieser Schranken. Frühere Arbeiten konzentrierten
sich auf PAC-Bayes-Grenzen für Martingale und deren Anwendung auf auf Wichtigkeitsstich-
proben basierende Schätzungen der Belohnung oder des Bedauerns einer Richtlinie. Einerseits
haben wir festgestellt, dass diese PAC-Bayes-Grenzen ein nützliches Werkzeug zum Entwerfen von
Offline-Richtliniensuchalgorithmen mit Leistungsgarantien sind. In unseren Experimenten war ein
PAC-Bayes’scher Offline-Richtliniensuchalgorithmus in der Lage, randomisierte neuronale Netzw-
erkrichtlinien mit wettbewerbsfähiger erwarteter Belohnung und nicht leeren Leistungsgarantien zu
erlernen. Andererseits zeigten die von uns getesteten PAC-Bayes’schen Online-Richtliniensuchalgor-
ithmen eine enttäuschende Leistung und schwache kumulative Bedauernsgrenzen.

Als nächstes stellen wir neuartige Algorithmen im PAC-Bayes-Stil mit Worst-Case-Bedauernsgrenz-
en für lineare Bandit-Probleme vor. Wir kombinieren PAC-Bayes-Schranken mit dem “Optimismus
angesichts der Unsicherheit”-Prinzip, das ein stochastisches Banditenproblem auf die Konstruk-
tion einer Konfidenzfolge für die unbekannte Belohnungsfunktion reduziert. Wir verwenden eine
neuartige Schwanzgrenze im PAC-Bayes-Stil für adaptive Martingalmischungen, um konvexe Kon-
fidenzsequenzen im PAC-Bayes-Stil für (spärliche) lineare Banditen zu konstruieren. Wir zeigen,
dass (spärliche) lineare Banditenalgorithmen, die auf unseren Konfidenzsequenzen im PAC-Bayes-
Stil basieren, garantiert einen kompetitiven Worst-Case-Bedauern erzielen. Wir zeigen auch, dass
unsere Konfidenzsequenzen sowohl empirisch als auch theoretisch engere Konfidenzgrenzen als die
Konkurrenz ergeben. Schließlich zeigen wir, dass unsere engeren Vertrauensgrenzen im PAC-Bayes-
Stil zu Bandit-Algorithmen mit verbessertem kumulativen Bedauern führen.
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Chapter 1

Introduction

PAC-Bayesian (or just PAC-Bayes) theory is a branch of statistical learning theory that can be used
to provide generalisation bounds for machine learning algorithms. The first PAC-Bayesian bounds
were developed by McAllester [121], and took inspiration from Shawe-Taylor and Williamson [165].
Since then, Seeger [158], Catoni [36] and Maurer [118] (amongst many others) have refined the
resulting PAC-Bayesian theory.

PAC-Bayes has recently grown in popularity for several reasons. Compared to classical general-
isation bounds based on uniform laws of large numbers (e.g. [180, 96]), PAC-Bayes bounds are
often very tight. Recently, PAC-Bayes has emerged as one of the few ways to provide non-vacuous
generalisation bounds for deep neural networks [60, 61, 107, 146, 59, 135, 133, 134]. In addition,
PAC-Bayes bounds can be used to design learning algorithms. A natural way to do this is to opti-
mise a PAC-Bayes bound as a learning objective, which will return the model/hypothesis/predictor
with the best generalisation guarantee. This general principle has yielded PAC-Bayesian algorithms
that perform competitively with traditional algorithms (e.g. [14, 67, 170, 143]). Finally, PAC-Bayes
bounds have been used to explain why specific learning strategies, such as large margin classifica-
tion [31, 78, 101, 119] and preference for flat minima [80, 60, 188, 175], lead to good generalisation.
However, these impressive milestones have been achieved in simple supervised learning problems,
such as classification from an i.i.d. sample. It is unclear whether PAC-Bayesian theory can be used
to achieve similarly impressive results in other kinds of learning problems.

Bandits, first introduced by Thompson [171] and later formalised by Robbins [147], are a relatively
simple way to model the problem of decision-making under uncertainty. A bandit algorithm must
learn to choose actions that maximise a reward signal. The uncertainty comes from the fact that the
reward associated with each action is unknown and must be estimated based on previously observed
actions and rewards. Bandit problems are frequently encountered in real-world problems, such as
clinical trials [56], [26], dynamic pricing [124], [127] and recommendation [117], to name just a few.
In many of these applications, one cares about algorithms that can be guaranteed to work well.
There is a rich literature on (analysis of) bandit algorithms (see for instance [33, 104]). However,
PAC-Bayesian theory has barely been used. This observation, and the success of PAC-Bayesian
theory in supervised learning problems, provides the motivation for this thesis.
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The main research question of this thesis is:

How can PAC-Bayesian theory be used to design bandit algorithms with performance
guarantees?

To address this question, we first establish how PAC-Bayes bounds have already been used to
design bandit algorithms or provide performance guarantees for these algorithms. We review the
literature on PAC-Bayesian bandit algorithms and conduct an experimental comparison to identify
the strengths and weaknesses of existing approaches.

Having established what has already been done, we aim to use PAC-Bayes bounds to design new
bandit algorithms that have three characteristics: a) they should have rigorous and non-vacuous
performance guarantees; b) they should perform well in practice, not just in theory; c) they should
be computationally efficient.

1.1 Contributions

This thesis contributes to the fields of PAC-Bayes and bandits. On the one hand, we review and
compare efforts to provide PAC-Bayesian analyses of bandit problems before developing novel PAC-
Bayes bounds and algorithms for various bandit problems. On the other hand, we contribute to
the literature on bandits by developing PAC-Bayes as a tool that can be used to design and analyse
bandit algorithms.

1.1.1 Review and Comparison of Existing PAC-Bayesian Bandit Algorithms

In Chapter 3, we provide a comprehensive overview of existing PAC-Bayes bounds and algorithms
for bandit problems. We perform an experimental comparison in which we compare the tightness of
various bounds, the relative merits of different reward estimates and methods for selecting the prior
in a distribution or data-dependent fashion. As well as providing an overview, we provide some
improved versions of existing results, such as a slightly tighter version of an Efron-Stein PAC-Bayes
bound by Kuzborskij and Szepesvári [97], which holds under weaker assumptions.

1.1.2 Novel PAC-Bayesian Bounds With Adaptive Priors

One of the main theoretical results of this thesis is a general-purpose PAC-Bayes-style tail bound
for martingale mixtures. Like some recently proposed PAC-Bayes bounds by Haddouche and Guedj
[74, 75] and Chugg et al. [43], our new general-purpose PAC-Bayes bound is time-uniform, which
means it holds simultaneously for every sample size. This makes it very well-suited to sequential
learning problems, such as bandits, in which an algorithm must learn by interacting with a stream of
data. Unlike in previous works, we develop PAC-Bayes-style bounds for martingale mixtures which
are indexed by growing (over time) vectors of function values, as opposed to being indexed by entire
functions. A key insight is that at time t, we often only need to place a mixture distribution/prior
over the first t function values rather than over an entire function. Using this approach, we are
able to prove PAC-Bayes bounds where the prior is refined over time as more data is observed.
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1.1.3 Novel PAC-Bayesian Bandit Algorithms With Performance Guarantees

We develop several novel PAC-Bayesian bandit algorithms by combining PAC-Bayes bounds with
the optimism in the face of uncertainty (OFU) principle. The OFU principle reduces a bandit
problem to the problem of constructing a confidence sequence for an unknown reward function.
The performance of the resulting bandit algorithm depends on the size of the confidence sequence,
with smaller confidence sets yielding better empirical performance and stronger regret guarantees.

We use our general-purpose PAC-Bayes-style tail bound for martingale mixtures to construct PAC-
Bayes-style confidence sequences for several bandit problems. These confidence sequences inherit
several nice properties of PAC-Bayes bounds. Firstly, they are quite tight relative to other confi-
dence sequences. Secondly, they allow one to incorporate prior knowledge about the reward function
in the form of a (prior) probability distribution. Regardless of how the prior is chosen, our con-
fidence sets contain the unknown reward function and bandit algorithms that use our confidence
sets enjoy valid frequentist performance guarantees. If the prior is chosen well, then our confidence
sets get smaller, our bandit algorithms perform better and their regret bounds get tighter.

Chapter 1
Introduction

Chapter 2
A Primer on Martingales, Concentration

Inequalities and PAC-Bayes Bounds

Chapter 3
PAC-Bayes Bounds for Bandits: A

Survey and Experimental Comparison

Chapter 4
PAC-Bayes-Style Algorithms for

Linear Bandits

Chapter 5
PAC-Bayes-Style Algorithms for

Sparse Linear Bandits

Chapter 6
Conclusion

Figure 1.1: The structure of this thesis and the relation of the thesis chapters.

We specialise our general results to (sparse) linear bandit problems. In these problems our confi-
dence sets are convex, which means the corresponding upper confidence bounds (UCBs) are found
by solving a convex optimisation problem (maximisation of a linear function over the convex confi-
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dence set). We either calculate the UCBs numerically using convex solvers from the CVXPY library
[52] or resort to analytic upper bounds on the UCBs, which are obtained via Lagrangian duality.
The resulting bandit algorithms have improved empirical performance and come with competitive
cumulative regret bounds.

1.2 Thesis Outline

This thesis is organised into 6 chapters as shown in Figure 1.1. Chapter 2 covers background
material on martingales, concentration inequalities and PAC-Bayes bounds, which are all recurring
themes of this thesis.

In Chapter 3, we review and compare existing PAC-Bayesian bounds and PAC-Bayesian bandit al-
gorithms. In Chapter 4, we present our general-purpose PAC-Bayes-style tail bound for martingale
mixtures and use it to design upper confidence bound algorithms for linear bandits. In Chapter 5,
we re-use our general-purpose tail bound to design algorithms for sparse linear bandits. In Chapter
6, we summarise our results and the contributions of the thesis before describing some directions
for future research.
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Chapter 2

A Primer on Martingales,
Concentration Inequalities and
PAC-Bayes Bounds

This chapter provides the necessary background on PAC-Bayes bounds and martingales. In Sec-
tion 2.1, we introduce martingales and some definitions from measure theory. In Section 2.2, we
introduce Ville’s inequality for non-negative supermartingales and use it to derive a tail bound for
a random walk as an example. In Section 2.3, we introduce PAC-Bayes bounds and the Donsker-
Varadhan change of measure inequality. As an example, we derive a PAC-Bayes bound for mixtures
of random walks.

2.1 Some Probability and Martingale Theory

In this thesis, we will often avoid using measure-theoretic notions, but we will sometimes refer to
measurable functions, σ-algebras, filtrations and sequences of adapted or predictable random vari-
ables. This section aims to: (a) provide some background on these terms; (b) introduce martingales.
The definitions in this section come from [187], [58] and [24].

2.1.1 Probability Spaces

We begin by introducing the notion of a probability space (Ω,D,P). Ω is a set of outcomes and is
called the sample space. D is a σ-algebra (on Ω), which means it is a collection of subsets of Ω that
satisfies: (a) Ω ∈ D; (b) for every set A ∈ D, Ac ∈ D (where Ac := Ω \ A); (c) for every countable
collection of sets A1, A2, · · · ∈ D, ∪nAn ∈ D. P is a probability measure (on D), which means it is a
set function P : D → [0, 1] that satisfies: (a) P(Ω) = 1; (b) for every countable sequence of disjoint
sets A1, A2, . . . ,∈ D, P(∪nAn) =

∑
n P(An).

Probability spaces can be more easily understood through examples. Suppose we conduct a random
experiment, in which we toss a fair coin once. The sample space is Ω = {H,T}, which contains all
outcomes of the experiment (i.e. heads (H) or tails (T )). We can take the σ-algebra to be either
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D0 = {∅, {H,T}} or D1 = {∅, {H}, {T}, {H,T}}. Since the coin is fair, the probability measure
satisfies P(∅) = 0, P({H}) = P({T}) = 1

2 and P(Ω) = 1.

Based on this example, we can think of a σ-algebra as a representation of the information available
at some time. Before we toss the coin, we only know that the outcome ω will be H or T . We can
say whether ω is in ∅ or {H,T}, but we cannot say whether ω is in {H} or {T}. Said another
way, for every set in D0, we can say whether ω is in that set. Therefore, we can think of D0 as
representing the information available before we toss the coin. After tossing the coin, we can also
say whether ω is in each set in D1. We can therefore think of D1 as representing the information
available after we toss the coin.

For a given sample space Ω, we call {∅,Ω} the trivial σ-algebra, which is the smallest σ-algebra on
Ω. In the coin toss example, D0 is the trivial σ-algebra on Ω = {H,T}.

For a given sample space Ω and a collection E of subsets of Ω, one can always construct a smallest
σ-algebra σ(E) that contains all sets in E . See, for example, Lemma 1.8. of [24] for proof. We call
σ(E) the σ-algebra generated by E. If E = {Ω}, (or E = {∅}), then σ(E) is the trivial σ-algebra. If
E is the set of open intervals of the form (a, b), where a < b ∈ R, then σ(E) is the Borel σ-algebra
on R. We denote the Borel σ-algebra on R by B(R). We call the elements of B(R) the Borel sets.

2.1.2 Random Variables

We are now ready to introduce measurable sets, measurable functions and random variables. If a
set A ⊆ Ω is in the σ-algebra D, then we say that A is D-measurable. Since the domain of the
probability measure P is D, the probability P(A) is only defined when A ∈ D. In other words, one
can only measure (the probability of) sets in D, hence the term measurable.

Suppose that we have a sample space Ω and a σ-algebra D. The pair (Ω,D) is called a measurable
space. For a function X : Ω → R and a Borel set B ∈ B(R), the pre-image of B is X−1(B) :=
{ω ∈ Ω : X(ω) ∈ B}, which is the set of outcomes that get mapped into B by the function X. The
function X is called a D/B(R)-measurable function (from (Ω,D) to (R,B(R))) if for every Borel
set B ∈ B(R), X−1(B) ∈ D. A random variable on a probability space (Ω,D,P) is a measurable
function X : Ω → R.

To see why this definition makes sense, consider the probability of a random variable X being less
than or equal to 0. Letting B = (−∞, 0] ∈ B(R), we have

P(X ≤ 0) = P({ω ∈ Ω : X(ω) ∈ B}) = P(X−1(B)).

This probability is only defined when X−1(B) is D-measurable, i.e. when X−1(B) is in the domain
of the probability measure P. If we view P(X ≤ x) as a function of x ∈ R, then this is the usual
cumulative distribution function for the random variable X.

When we work with σ-algebras, we will typically use a σ-algebra generated by a random variable.
For a given random variable X : Ω → R, σ(X) = {X−1(B) : B ∈ B(R)} is the σ-algebra generated
by X. This is the smallest σ-algebra such that X : Ω → R is a measurable function. In the coin
toss example from earlier, if the random variable X is defined as X(H) = 1 and X(T ) = 0, then
the σ-algebra generated by X is D1 = {∅, {H}, {T}, {H,T}}.
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2.1.3 Expectation

We now build up to the definition of conditional expectation. A random variable is called simple
if there exist n > 0, x1, . . . , xn ∈ R and A1, A2, . . . , An ∈ D such that

X(ω) =
n∑

i=1

xiI{ω ∈ Ai}.

The expectation of a random variable X is: a) If X is simple with X(ω) =
∑n

i=1 xiI{ω ∈ Ai},
then E[X] :=

∑n
i=1 xiP(Ai); b) If X ≥ 0, then E[X] = limn→∞ E[Xn], where X1, X2, . . . is a non-

decreasing sequence of simple random variables (X1, X2, . . . can be guaranteed to exist and the
limit is unique (see e.g. Theorem 1.14 of [24]), but we may have E[X] = ∞); c) If X is a random
variable, then E[X] = E[X+]− E[X−], where X+ = max(X, 0) and X− = −min(X, 0).

Now, assume we have a probability space (Ω,D0,P) and a sub-σ-algebra D, which is a σ-algebra
that satisfies D ⊂ D0. For a random variable that is D0-measurable and satisfies E[|X|] < ∞, the
conditional expectation E[X|D] is any random variable V that satisfies: a) V is D-measurable; b)
for all A ∈ D, E[X · I{ω ∈ A}] = E[V · I{ω ∈ A}].

The conditional expectation can be more easily understood through examples. First, suppose that
E[|X|] < ∞ and let D = σ(X). One can verify that V = X satisfies conditions a) and b). Clearly
V = X is D-measurable and E[V · I{ω ∈ A}] = E[X · I{ω ∈ A}] for all A ∈ D when V = X.
Therefore, we have

E[X|σ(X)] = E[X|X] = X.

Now, let D = {∅,Ω} be the trivial σ-algebra. The requirement that V is D-measurable must mean
that V is constant. Since we must have E[X · I{ω ∈ Ω}] = E[V · I{ω ∈ Ω}] =⇒ E[X] = E[V ], we
conclude that E[X|{∅,Ω}] = E[X].

2.1.4 Martingales

Put simply, martingales are sequences of random variables, for which at any point in the sequence,
the conditional expectation of the present value is equal to the previous value.

To define a martingale properly, we need to first define a filtered space (Ω,D, (Dt|t ∈ N),P). As with
a probability space, Ω is the sample space, D is a σ-algebra and P is a probability measure. (Dt|t ∈
N) is a filtration, which means it is a sequence of σ-algebras that satisfies D0 ⊆ D1 ⊆ D2 ⊆ · · · ⊆ D.
We also need to define an adapted random process. A random process (a sequence of random
variables) (Xt|t ∈ N) is adapted to the filtration (Dt|t ∈ N) if for every t ∈ N, Xt is Dt-measurable.
This means that Dt contains all information about Xt (given Dt, Xt is not random anymore). A
random process (Xt|t ∈ N) is predictable if for every t ∈ N, Xt is Dt−1-measurable. A very common
way to define a filtration is to set Dt = σ(X1, . . . , Xt) for a random process (Xt|t ∈ N).

A random process (Mt|t ∈ N) in a probability space (Ω,D,P) is a martingale with respect to
the filtration (Dt|t ∈ N) if: (a) (Mt|t ∈ N) is adapted to (Dt|t ∈ N); (b) E[|Mt|] < ∞; (c);
E[Mt|Dt−1] =Mt−1 for all t. We call property (c) the martingale property.

If instead of the martingale property, we have E[Mt|Dt−1] ≤ Mt−1, then (Mt|t ∈ N) is called
a supermartingale. Similarly, if instead the martingale property, we have E[Mt|Dt−1] ≥ Mt−1,
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then (Mt|t ∈ N) is called a submartingale. If an adapted random process (Xt|t ∈ N) satisfies
E[Xt|Dt−1] = 0 for every t (and E[|Xt|] < ∞), then (Xt|t ∈ N) is called a martingale difference
sequence, because its sum Mt =

∑t
k=1Xk is a martingale.

2.1.5 Basic Definition

In this thesis, we will always assume that there is a (filtered) probability space in background,
but we will not state what the probability space is. Similarly, we typically prefer to use “simpler”
expressions where appropriate. With that in mind, we present a basic definition of a martingale.

A sequence of random variables (Mn|n ∈ N) is a martingale with respect to another sequence of
random variables (Xn|n ∈ N) if, for every n ∈ N: (a) Mn is fully determined by X1, . . . , Xn (i.e.
Mn conditioned on X1, . . . , Xn is non-random); (b) E[|Mn|] <∞; (c) E[Mn|X1, . . . , Xn−1] =Mn−1.

2.2 Concentration Inequalities via Martingale Methods

In this thesis, we are interested martingales as a tool for deriving tail bounds and concentration
inequalities for random variables and random processes. A tail bound for a random variable Z is
an upper bound on the tail probability P(Z > z), for some z ∈ R. Tail bounds for Z can be stated
as equivalent high probability upper bounds on the value of Z. For instance, if we are given the
tail bound P(Z > z) ≤ δ, then we can say that, with probability at least 1 − δ (over the random
draw of Z), Z ≤ z. We will usually work with statements of the second kind.

A concentration inequality for a random variable Z is a high probability upper bound on the
difference between Z and its expected value E[Z] (or another quantity such as its median). In this
thesis, we will typically work with concentration inequalities stated in the form: with probability
at least 1− δ, |Z − E[Z]| ≤ z.

A time-uniform tail bound for a random process (Zt|t ∈ N) is an upper bound on the probability
that at any time t ≥ 1, Zt is greater than a fixed value zt ∈ R, i.e. P(∃t ≥ 1 : Zt > zt). If
we are given the time-uniform tail bound P(∃t ≥ 1 : Zt > zt) ≤ δ, then we can say that, with
probability 1 − δ (over the random draw of (Zt|t ∈ N)), for all t ≥ 1 simultaneously, Zt ≤ zt. A
time-uniform concentration inequality for a random process (Zt|t ∈ N) is a time-uniform tail bound
for (|Zt − E[Zt]||t ∈ N).

2.2.1 Ville’s Inequality for Non-Negative Supermartingales

In this section, we introduce Ville’s inequality for non-negative supermartingales [181], which can
be thought of as a time-uniform version of Markov’s inequality.

Lemma 2.1 (Ville’s inequality for non-negative supermartingales [181]). Let (Mt|t ∈ N) be any
non-negative supermartingale with respect to a filtration (Dt|t ∈ N), which satisfies M0 ≤ 1. For
any δ ∈ (0, 1], we have

P(∃t ≥ 1,Mt > 1/δ) ≤ δ.

Equivalently, with probability at least 1− δ,

∀t ≥ 1 : Mt ≤ 1/δ.
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Ville’s inequality states that with high probability (at least 1− δ), the random process (Mt|t ∈ N)
will never exceed the value 1/δ. In other words, it provides a time-uniform tail bound for (Mt|t ∈ N).
Streamlined proofs of Ville’s inequality can be found in [81] and [75].

As an example, consider the following game. At time t = 0, we are given £1. At each time
t = 1, 2, . . . , with equal probability we either increase or decrease our total money by 5%. The
amount of money we have at time t can be modelled by a non-negative supermartingale. Let

Xt =

{
1.05 with prob. 0.5

0.95 with prob. 0.5
, Mt =

t∏
k=1

Xk, M0 := 1.

(Mt|t ∈ N) is a martingale with respect to the filtration (Dt|t ∈ N), where Dt is the σ-algebra
generated by X1, X2, . . . , Xt, since

E

[
t∏

k=1

Xk

∣∣∣∣Dt−1

]
=

t−1∏
k=1

XkE[Xt|Dt−1] =

t−1∏
k=1

Xk.

Clearly (Mt|t ∈ N) is non-negative andM0 = 1 by definition. We can therefore use Ville’s inequality
to obtain a time-uniform tail bound for the amount of money we have in this game. In Fig. 2.1,
we show 100 random draws of the amount of money in this game over 10000 time steps. We also
plot the tail bound from Ville’s inequality at the confidence level δ = 0.01

Figure 2.1: A time-uniform bound for the amount of money in the game and 100 draws of the
amount of money in the game.

In this simulation, the empirical failure-rate of the tail bound is actually equal to δ = 0.01 (i.e. only
1 out of the 100 random draws ever exceeds £100). Ville’s inequality tells us that as the number
of simulations approaches ∞, this failure-rate will approach a number less than or equal to 0.01.

Suppose we can stop playing the game at any point. The tail bound from Ville’s inequality tells
us something about our chances of making money in this game. If we want to finish the game
with at least £100, we might decide to stop playing as soon as our amount of money reaches or
exceeds £100. The tail bound (at the level δ = 0.01) tells us that, with probability at least 0.99,
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this strategy will fail: our amount of money will never reach or exceed £100 and we will never stop
playing the game.

2.2.2 Tail Bounds For Random Walks

We will now show how to use Ville’s inequality to obtain time-uniform tail bounds for some random
processes that are not necessarily non-negative supermartingales. We present an example, which
is an instance of a time-uniform Chernoff bound [81].

We have a random process (Zt|t ∈ N), which is adapted to a filtration (Dt|t ∈ N). The only
restriction on (Zt|t ∈ N) is that Mt = exp(Zt) must be a non-negative supermartingale with
M0 = 1. This requirement, combined with Jensen’s inequality, implies that (Zt|t ∈ N) is itself a
(not necessarily non-negative) supermartingale, since

E[Zt|Dt−1] = ln(exp(E[Zt|Dt−1])) ≤ ln(E[exp(Zt)|Dt−1]) ≤ Zt−1.

To apply Ville’s inequality to (Zt|t ∈ N), we need to relate the tail probabilities of (Zt|t ∈ N) to
those of (Mt|t ∈ N). Since ex is monotonically increasing in x, for any δ ∈ (0, 1], we have

P(∃t ≥ 1, Zt > ln(1/δ)) = P(∃t ≥ 1, exp(Zt) > 1/δ) ≤ δ. (2.1)

Equivalently, with probability at least 1− δ,

∀t ≥ 0 : Zt ≤ ln(1/δ).

Let (Xt|t ∈ N) be a sequence of independent standard Gaussian random variables and let (Dt|t ∈ N)
be the filtration where Dt = σ(X1, . . . , Xt). We call the sum

∑t
k=1Xk a random walk. To obtain

an upper tail bound for the random walk, we could try the choice Zt =
∑t

k=1Xk. Unfortunately,
Mt = exp(

∑t
k=1Xk) is a submartingale instead of a supermartingale, since

E

[
exp

(
t∑

k=1

Xk

)∣∣∣∣Dt−1

]
= E[exp(Xt)] exp

(
t−1∑
k=1

Xk

)
= exp(1/2) exp

(
t−1∑
k=1

Xk

)
≥ exp

(
t−1∑
k=1

Xk

)
.

(2.2)

From Eq. (2.2), we can see that if we subtract 1/2 from each Xt (i.e. we choose Zt =
∑t

k=1(Xk −
1/2), then Mt = exp(

∑t
k=1(Xk − 1/2)) is a (super)martingale with M0 = 1. We will actually make

a more general choice Zt =
∑t

k=1(λtXk − λ2t /2), where (λt|t ∈ N) is a sequence of fixed positive
real numbers, which also has the property that Mt = exp(Zt) is a (super)martingale with M0 = 1.
One can think of λ1, λ2, . . . as parameters of the resulting tail bounds, which we will optimise to
achieve tighter bounds.

The combination of Eq. (2.1) and Ville’s inequality gives us a tail bound. For any fixed sequence
of positive real numbers (λt|t ∈ N) and any δ ∈ (0, 1], with probability at least 1− δ, we have

∀t ≥ 1;

t∑
k=1

(λtXk − λ2t /2) ≤ ln(1/δ).
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For each t, this can be rearranged to give an upper bound for the random walk
∑t

k=1Xk, which is

t∑
k=1

Xk ≤ λt
2

+
ln(1/δ)

λt
.

Since the right-hand-side does not depend on the random process (Xt|t ∈ N), we can freely optimise
each λt to obtain

t∑
k=1

Xk ≤ min
λt<0

{
λt
2

+
ln(1/δ)

λt

}
=
√
2t ln(1/δ). (2.3)

In Fig. 2.2, we plot 100 random draws of the random walk from t = 1, . . . , 1000 and the tail bound
in Eq. (2.3) at the level δ = 0.01.

Figure 2.2: A time-uniform upper tail bound for a random walk (blue) and 100 draws of the random
walk (purple). With probability at least 0.01 (over the random draw of the purple line), the purple
line should never be above the blue line.

2.3 PAC-Bayes Bounds via Martingale Methods

We are now ready to introduce PAC-Bayes bounds. PAC-Bayes bounds [165, 121, 70, 11] can
be defined as Probably Approximately Correct (PAC) [176] performance bounds for (generalised)
Bayesian learning algorithms. A PAC bound states that, with high probability (probably), the error-
rate of the hypothesis returned by a learning algorithm is upper bounded. If this upper bound on
the error-rate is small, then the hypothesis returned by the learning algorithm is approximately
correct. When PAC bounds are applied to Bayesian learning algorithms, the result is called a
PAC-Bayes bound.

In this thesis, we will not work in the classical PAC learning setting and we will use a broader defi-
nition of what constitutes a PAC-Bayes bound. In the context of this thesis, PAC-Bayes bounds are
uniform tail bounds/concentration inequalities for mixtures of random variables/processes. Here,
the “uniform” part means that a PAC-Bayes bound holds uniformly over mixture distributions.

Suppose that for each value of an integer-valued parameter θ ∈ {1, . . . , 100}, (Xt(θ)|t ∈ N) is
a sequence of independent standard Gaussian random variables. Let (Dt|t ∈ N) be the filtration
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where Dt = σ(X1(1), . . . , X1(100), . . . , Xt(1), . . . , Xt(100)). For each θ and any sequence of positive
real numbers (λt|t ∈ N),

∑t
k=1Xk(θ) is a random walk and Mt(θ) = exp(

∑t
k=1(λtXk(θ) − λ2t /2))

is a non-negative supermartingale with M0 = 1.

To introduce PAC-Bayes bounds, we will show how to derive a PAC-Bayesian upper tail bound for
the mixture of random walks Eθ∼Q[

∑t
k=1Xk(θ)], which is an upper bound on Eθ∼Q[

∑t
k=1Xk(θ)]

that holds with high probability for all mixture distributions Q ∈ P({1, . . . , 100}) simultaneously
(including mixture distributions that depend the values of X1(θ), X2(θ), . . . ). The bound presented
here is an example of a time-uniform PAC-Bayes bound [74, 75, 43]. P({1, . . . , 100}) denotes the
set of probability distributions on the set {1, . . . , 100}. To derive the bound, we will use a very
useful result, which is now standard in the PAC-Bayesian literature.

Lemma 2.2 (Donsker-Varadhan Change of Measure [53, 36]). For any set X , any measurable
function h : X → R and any probability distribution P ∈ P(X ) (i.e. any distribution on X ), such
that Ex∼P [exp(h(x))] <∞, we have

sup
Q∈P(X )

{
E

x∼Q
[h(x)]−DKL(Q||P )

}
= ln

(
E

x∼P
[exp(h(x))]

)
. (2.4)

If h is upper bounded on the support of P , then the supremum is achieved when Q is the Gibbs
distribution Ph, which is defined as

Ph(x) =
P (x) exp(h(x))

Ex∼P [exp(h(x))]
. (2.5)

By rearranging (2.4), we also have

inf
Q∈P(X )

{
E

x∼Q
[h(x)] +DKL(Q||P )

}
= −ln

(
E

x∼P
[exp(−h(x))]

)
. (2.6)

It is now fairly straightforward to obtain a PAC-Bayesian tail bound for Eθ∼Q[
∑t

k=1Xk(θ)]. One
can verify that for any distribution P that does not depend on Xt(θ) for any t or θ, the mixture
of martingales (or martingale mixture) (Eθ∼P [Mt(θ)]|t ∈ N) is also a non-negative supermartingale
with M0 = 1. Using the Donsker-Varadhan change of measure inequality, we have

exp

(
sup
Q

{
E

θ∼Q

[
t∑

k=1

(λtXk(θ)− λ2t /2)

]
−DKL(Q||P )

})
= E

θ∼P
[Mt(θ)]. (2.7)

The left-hand-side of (2.7) must also be a non-negative supermartingale. Using Ville’s inequality,
we have that for any δ ∈ (0, 1], with probability at least 1− δ,

∀t ≥ 1; exp

(
sup
Q

{
E

θ∼Q

[
t∑

k=1

(λtXk(θ)− λ2t /2)

]
−DKL(Q||P )

})
≤ 1/δ. (2.8)
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In other words, this inequality holds simultaneously for all distributions Q. After rearranging (2.8),
we obtain a PAC-Bayes upper tail bound for mixtures of random walks.

E
θ∼Q

[
t∑

k=1

Xk(θ)

]
≤ tλt

2
+
DKL(Q||P ) + ln(1/δ)

λt
.

Note that this tail bound holds for a fixed (before observing X1(θ), X2(θ), . . . ) sequence (λt|t ∈
N). We cannot optimise the right-hand-side of this tail bound with respect to λt because the
optimal value of λt depends on Q (through DKL(Q||P )), which may depend on the observations
X1(θ), X2(θ), . . . . In the interest of obtaining a deterministic upper bound (to plot in Figure 2.3),
we choose P to be a uniform distribution, upper bound the KL divergence by ln(100) and set
λt =

√
2 ln(100/δ)/t, to obtain

E
θ∼Q

[
t∑

k=1

Xk(θ)

]
≤
√
2t ln(100/δ).

Figure 2.3: A time-uniform PAC-Bayes upper tail bound for mixtures of random walks (blue) and
100 draws of the Gibbs mixture of random walks (purple). With probability at least 0.01 (over the
random draw of the purple line), the purple line should never be above the blue line.

In Figure 2.3, we plot 100 random draws of the mixture of random walks Eθ∼Q

[∑t
k=1Xk(θ)

]
, where

Q is the Gibbs distribution with density Q(θ) ∝ exp(λt
∑t

k=1Xk(θ)). Note that the draws of this
mixture of random walks look quite different to the individual random walks in Figure 2.2. For
instance, the Gibbs mixture of random walks is clearly neither a martingale nor a supermartingale,
since its expected value increases over time.
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Chapter 3

PAC-Bayes Bounds for Bandits: A
Survey and Experimental Comparison

This chapter provides an overview of PAC-Bayes bounds for bandit problems and an experimental
comparison of these bounds. Following the literature on PAC-Bayes bounds and algorithms for
bandits, we focus on policy search algorithms that learn a policy from data using reward estimates
based on importance sampling. On the one hand, we found that PAC-Bayes bounds are a useful tool
for designing offline bandit algorithms with performance guarantees. In our experiments, a PAC-
Bayesian offline contextual bandit algorithm was able to learn randomised neural network polices
with competitive expected reward and non-vacuous performance guarantees. On the other hand,
the PAC-Bayesian online bandit algorithms that we tested had loose cumulative regret bounds.
We conclude this chapter by discussing some open research questions about PAC-Bayesian bandit
algorithms, some of which are the subject of subsequent chapters.

3.1 Introduction

At the time of writing, there is neither a detailed overview of PAC-Bayes bounds for bandit problems
nor an experimental comparison of these bounds. It is therefore difficult to know which PAC-Bayes
bandit bounds give the best guarantees or how tight the best bounds are. There are two main
reasons why we believe that now is the right time to review PAC-Bayesian approaches to bandits.
First, PAC-Bayes bounds have recently been used to design effective offline bandit algorithms with
performance guarantees [115, 154]. Second, PAC-Bayes has been growing in popularity due to
numerous successful applications to deep learning. In parallel, there has been growing interest in
bandit algorithms that use deep neural network function approximation. We believe that it is worth
investigating whether PAC-Bayes would be a useful tool for studying these deep bandit algorithms.

The scope of this survey is determined by the selection of PAC-Bayesian approaches to bandits that
can be found in the literature. Consequently, we focus on policy search algorithms that directly
learn a policy from data using reward estimates based on importance sampling. We found that
there were no model-based PAC-Bayesian bandit algorithms, which first model the reward function
and then use this model to learn a policy, so we do not cover these approaches. However, we discuss
the compatibility of PAC-Bayes with other approaches to bandits in Sec.
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PAC-Bayes Bandit Bounds

Reward Bounds Cumulative Regret Bounds

rIS rCIS rWIS ∆IS

Hoeffding Bernstein kl Hoeffding Bernstein kl Efron-Stein Hoeffding Bernstein kl

Figure 3.1: A taxonomy of existing PAC-Bayes bandit bounds. The bounds are first separated into
lower bounds on reward and upper bounds on cumulative regret. At the next level, the bounds are
categorised by the empirical reward/regret estimate that they use. The reward estimates rIS, rCIS,
and rWIS, and the regret estimate ∆IS, are defined in Section 3.4, Appendix 3.4.3 and Section 3.5.
Finally, the bounds are divided according to the concentration inequality that they use in their
proofs. kl is the Binary KL divergence, defined in Section 3.4.

We cover offline and online variants of both multi-armed and contextual bandit problems. We
consider two types of PAC-Bayes bounds: one for offline bandits and one for online bandits. For
offline bandits, we consider lower bounds on the expected reward of a policy learned from historical
data. For online bandits, we consider upper bounds on the cumulative regret suffered by playing a
sequence of policies. The bounds considered in this survey are categorised further in Fig. 3.1.

We only consider stationary, stochastic bandit problems, where the rewards are sampled from fixed
distributions. We do not cover extensions such as restless bandits [185] or adversarial bandits [22].
We also do not cover bandit problems with additional structural assumptions, such as linear bandits
[20].

Findings. We compared the values of the bounds, as well as the performance of bandit algorithms
motivated by the bounds. On the one hand, we found that some of the PAC-Bayes lower bounds
on the expected reward are surprisingly tight, particularly when data-dependent priors are used.
Moreover, we found that directly optimising PAC-Bayes reward bounds can yield effective offline
bandit algorithms. PAC-Bayes appears to be a useful tool for designing offline bandit algorithms
with performance guarantees. On the other hand, we found that the few existing PAC-Bayes cumu-
lative regret bounds are all loose, and that the algorithms motivated by these bounds are noticeably
worse than state-of-the-art methods. The reason for this is that both the bounds and algorithms
rely on loose upper bounds on the variance of importance sampling-based reward estimates.

Related work. PAC-Bayes bounds have been the subject of several tutorials [120], [178], [106], [11],
surveys [70] and monographs [38]. McAllester [120] describes 3 different types of PAC-Bayes bounds
and presents a new application of PAC-Bayes bounds to dropout. Van Erven [178] describes the
relationship between PAC-Bayes bounds and some classical concentration inequalities. Laviolette
[106] describes the history of PAC-Bayes bounds as well as some recent developments. Alquier [11]
gives an overview of PAC-Bayes bounds for supervised learning and an introduction to localised
bounds, fast-rate bounds and bounds for non i.i.d. data and unbounded losses. Guedj [70] surveys
the PAC-Bayes framework, its links to Bayesian methods, and some theoretical and algorithmic
developments. Catoni [38] provides a rich analysis of supervised classification using PAC-Bayes
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bounds. There have been a few experimental comparisons of some PAC-Bayes bounds [63], [135]
in supervised learning problems. There are several books [33], [167], [104] about bandit algorithms
and their performance guarantees. However, none of these resources on bandits cover PAC-Bayes.

Chapter Overview. First, we formally describe the online and offline variants of multi-armed
and contextual bandit problems in Sec. 3.2. In Sec. 3.3, we describe the PAC-Bayesian approach to
the bandit problems introduced in Sec. 3.2. We then provide a structured overview of PAC-Bayes
bounds for bandit problems and some techniques for achieving the tightest bound values. Sec.
3.4 reviews PAC-Bayes lower bounds on the expected reward, Sec. 3.5 reviews PAC-Bayes upper
bounds on the cumulative regret, and Sec. 3.6 reviews techniques for optimising PAC-Bayes bandit
bounds with respect to the prior and other parameters. In Sec. 3.7, we compare the PAC-Bayes
bandit bounds in several experiments. Finally, in Sec. 3.8, we discuss our findings and comment
on some open problems.

Contributions. Our first contribution is a comprehensive overview of existing PAC-Bayes bounds
for bandit problems. Our second contribution is an experimental comparison of PAC-Bayes bounds
and algorithms for bandit problems. We also provide a slightly tighter version of the Efron-Stein
PAC-Bayes bound by Kuzborskij and Szepesvári [97], which holds under slightly weaker conditions.

3.2 Problem Formulation

The goal of all the bandit problems we consider is to select the best policy π from a set of policies
Π, which we call the policy class. In this paper, we are interested in bandit algorithms that return
a probability distribution over the policy class rather than a single policy. P(Π) denotes the set of
all probability distributions over the policy class.

The choice of policy is informed by data. We use Z to denote the observation space. A bandit
algorithm observes or collects a data set of observations DT = {zt}Tt=1. Each zt is drawn from a
distribution Pt over Z. In bandit problems, we may have non-identically distributed data, where
Pt ̸= Pt′ for t ̸= t′. We may also have dependent data, where zt depends on z1, . . . , zt−1. Usually,
we will make Z more explicit. In the simplest case, we observe pairs of actions and rewards, so
Z = A×R where A is a set of actions and R is a set values that the rewards can take.

3.2.1 Policy Search for Multi-Armed Bandits

A multi-armed bandit (MAB) problem is a tuple ⟨A,R,PR⟩. A is a set of actions (or arms), R is
a set of values that the rewards can take and PR(·|a) is a distribution over rewards conditioned on
the action a. A and R are known, but PR is unknown. Throughout this paper, we assume that
the rewards are bounded between 0 and 1, so R ⊆ [0, 1].

A bandit algorithm selects actions through a policy π. In a MAB problem, a policy is a (possibly
degenerate) probability distribution over the set of actions A. π(a) denotes the probability of
selecting action a under the policy π. In the offline MAB problem, an algorithm is given a data
set DT = {(at, rt)}Tt=1. We let Dt−1 = {(ak, rk)}t−1

k=1 denote the first t − 1 elements of DT . Each
action at is sampled from a behaviour policy bt (bt(a) denotes the probability of selecting action a
under the policy bt). Each reward rt is sampled from the reward distribution, given at. In the most
general setting, the sequence of behaviour policies b1, b2, . . . can be arbitrary, as long as bt only
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depends on the previously observed data Dt−1. Some of the PAC-Bayes bounds we will encounter
hold only when the data set DT consists of i.i.d. samples. For these bounds to hold, we require
that the entire data set is drawn using a fixed behaviour policy b, which must be independent of
all the data DT . We always assume that the behaviour policies are known. The expected reward
for a policy π is defined as:

R(π) = E
a∼π(·),r∼PR(·|a)

[r] . (3.1)

For a probability distribution Q ∈ P(Π) over the policy class, the expected reward is R(Q) =
Eπ∼Q [R(π)]. Given a policy class Π and a data set DT , the goal of policy search in the offline
MAB problem is to return a distribution Q∗ ∈ P(Π) that maximises the expected reward:

Q∗ ∈ argmax
Q∈P(Π)

{R(Q)} .

In the online MAB problem, an algorithm must learn and act simultaneously. Policy search in
the online MAB problem proceeds in rounds. At round t, the algorithm selects a distribution
Qt ∈ P(Π) to be played. A policy πt is drawn from Qt and then an action at is drawn from the
policy πt. The algorithm observes a reward rt drawn from the reward distribution PR(·|at). To
guide the selection of Qt at each round, the algorithm can use the action-reward pairs gathered
from previous rounds. In other words, the choice of Qt can depend on the data Dt−1.

The goal of policy search in the online MAB problem is to select a sequence of distributions (over the
policy class) Q1, . . . , QT that minimises the cumulative regret. For a sequence of policies π1, . . . , πT ,
the regret for round t and the cumulative regret are defined as:

∆(πt) = R(π∗)−R(πt), ∆(π1:T ) =

T∑
t=1

∆(πt),

where π∗ ∈ argmaxπ∈Π {R(π)} is an optimal policy. The per-round regret and cumulative regret
for a sequence of distributions Q1, . . . , QT are defined as:

∆(Qt) = R(π∗)−R(Qt), ∆(Q1:T ) =
T∑
t=1

∆(Qt). (3.2)

The goal of minimising cumulative regret brings about a dilemma known as the exploration-
exploitation trade-off. To achieve low cumulative regret, an algorithm must try out lots of policies
to identify which ones have the highest expected reward. However, while it identifies which policies
are the best, it must also limit the number of times it selects a sub-optimal policy.

Example 3.1 (Clinical trial). There are two flu treatments and we are given the results of a clinical
trial where 100 patients have been randomly given either treatment A or treatment B. We want to
decide which treatment is better. This can be modelled as an offline multi-armed bandit problem,
where the actions are the treatment types and the rewards are the outcomes of the treatments. A
PAC-Bayes reward bound could give a lower bound on the success rate of each treatment.

If we wanted to assign treatments to patients sequentially, with the goal of handing out the better
treatment as often as possible, this could be modelled as an online bandit problem. A PAC-Bayes
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cumulative regret bound could tell us (before handing out any treatments) an upper bound on the
gap between the optimal expected number of successful treatments and the expected number of
successful treatments of our allocation strategy.

3.2.2 Policy Search for Contextual Bandits

A contextual bandit (CB) problem is a tuple ⟨S,A,R,PS ,PR⟩. S is a set of states (or contexts),
A is a set of actions, R is a set of values that the rewards can take, PS(·) is a distribution over the
set of states and PR(·|s, a) is a distribution over rewards conditioned on the state s and the action
a. S, A and R are known, but PS and PR are unknown. As in the MAB problem, we assume that
R ⊆ [0, 1] throughout this paper.

In a CB problem, a policy is a function that maps states to probability distributions over the set of
actions A. π(a|s) denotes the probability of selecting action a, given the state s, under the policy
π. The expected reward for a policy π is defined as:

R(π) = E
s∼PS(·),a∼π(·|s),r∼PR(·|s,a)

[r] .

As before, the expected reward for a distribution Q ∈ P(Π) over the policy class is R(Q) =
Eπ∼Q [R(π)]. The distinction between offline and online CB problems is very similar to the MAB
case. In the offline CB problem, a data set DT = {(st, at, rt)}Tt=1 of state-action-reward triples is
available. The states st are sampled from the state distribution PS , the actions at are sampled from
behaviour policies bt(·|st) and the rewards rt are sampled from the reward distribution PR(·|st, at).
Whenever we require an i.i.d. data set, we will assume each action at is drawn from the same, fixed
behaviour policy b(·|st). Given a policy class Π and a data set DT , the goal of policy search in the
offline CB problem is to return a distribution Q∗ ∈ P(Π) that maximises the expected reward.

In round t of the online CB problem, an algorithm selects a distribution Qt. A state st is drawn
from PS , a policy πt is drawn from Qt, an action at is drawn from πt(·|st), and then a reward rt
is drawn from PR(·|st, at). The choice of Qt can depend on the data Dt−1. The goal is to select a
sequence of distributions Q1, . . . , QT that minimises the cumulative regret. Per-round regret and
cumulative regret are defined in the same way as in (3.2).

3.3 PAC-Bayesian Policy Search Algorithms

A PAC-Bayesian approach to the policy search problems described in Sec. 3.2 proceeds as follows.
First, we fix a reference distribution or prior P ∈ P(Π) over the policy class Π. Then we observe
data DT , either a batch of historical data or the data collected in previous rounds, which helps us
to learn another distribution Q ∈ P(Π), which we will call a posterior distribution.

In the context of these policy search problems, a PAC-Bayes bound is an upper bound on either
the difference between R(Q) and an empirical estimate of the reward of Q or the difference between
∆(Q) and an empirical estimate of the regret of Q, which holds uniformly over all posteriors Q.
One of the empirical reward estimates we consider is the importance sampling (IS) estimate, which
is defined as

rIS(π,DT ) =
1

T

T∑
t=1

π(at)

bt(at)
rt. (3.3)
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The IS estimate is an average of the observed rewards weighted by the importance weights π(at)/bt(at).
When upper bounding the difference between R(Q) and rIS(Q,DT ) = Eπ∼Q

[
rIS(π,DT )

]
, we face

challenges that are not present in typical PAC-Bayesian learning settings. For example, the data
DT are often not independent or identically distributed. This challenge can be dealt with using the
martingale methods presented in Chapter 2.

3.3.1 PAC-Bayesian Offline Bandit Algorithms

We continue our introduction to PAC-Bayes bounds for bandits with an example. We present a
PAC-Bayes bound for the expected reward R(Q) in the MAB setting, which was originally proposed
by Seldin et al. [162]. Then, we present an offline bandit algorithm that is motivated by this bound.
In Sec. 3.2.1, we stated that the goal of the offline policy search problem is to choose a distribution
Q∗ ∈ P(Π) that maximises the expected reward, i.e.

Q∗ ∈ argmax
Q∈P(Π)

{
E

π∼Q
[R(π)]

}
.

Since the reward distribution PR is unknown, we cannot directly maximise R(π). However, R(π)
can be estimated from historical data DT by the importance sampling estimate rIS(π,DT ). We
will assume that for all the behaviour policies b1, . . . , bT , the importance weights π(a)/bt(a) are
uniformly (over π, a) bounded above by 1/ϵT . We can maximise rIS(Q,DT ) = Eπ∼Q

[
rIS(π,DT )

]
with respect to Q. However, if the estimate rIS(Q,DT ) greatly overestimates the expected reward
R(Q) for even a single choice of Q, simply maximising the reward estimate may result in overfitting.
When can we guarantee that rIS(Q,DT ) does not greatly overestimate R(Q)? PAC-Bayes bounds
can provide an answer.

Theorem 3.2 (PAC-Bayes Hoeffding-Azuma bound for rIS [162]). For any λ > 0, any δ ∈ (0, 1)
and any probability distribution P ∈ P(Π), with probability at least 1−δ (over the sampling of DT ),
for all distributions Q ∈ P(Π) simultaneously:

R(Q) ≥ rIS(Q,DT )−
λ

8Tϵ2T
− DKL(Q||P ) + ln(1/δ)

λ
.

Thm. 3.2 states that if Q is close to the prior P (as measured by the KL divergence) and rIS(Q,DT )
is high, then with high probability it is guaranteed that R(Q) is also high. We can define an offline
policy search algorithm that returns the distribution Q̂ that maximises the lower bound in Thm.
3.2, and hence has the best performance guarantee. The resulting optimisation problem is

Q̂ ∈ argmax
Q∈P(Π)

{
E

π∼Q
[rIS(π,DT )]−

DKL(Q||P )
λ

}
. (3.4)

The change of measure inequality in Lemma 2.2 shows that the optimisation problem in (3.4) has a

closed-form solution: Q̂(π) ∝ P (π)eλr
IS(π,DT ). When the policy class Π is finite, the normalisation

constant of Q̂ can be calculated by summing over all π ∈ Π. When Π is infinite, one can design
algorithms that approximate Q̂ with variational inference [182], [30] or algorithms that sample from
Q̂ using Monte Carlo methods [16], [25]. Of course, if Π is a complicated (e.g. high-dimensional)
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policy class, then approximating or sampling from Q̂ may be challenging. However, these challenges
are beyond the scope of this survey.

Offline bandit algorithms that learn a policy by maximising a PAC-Bayesian lower bound on the
expected reward are not new. London and Sandler [115] and Sakhi et al. [154] have used better
PAC-Bayes reward bounds, which we will encounter in Section 3.4, to design PAC-Bayesian offline
contextual bandit algorithms that learn policies with performance guarantees.

3.3.2 PAC-Bayesian Online Bandit Algorithms

One can also use PAC-Bayes bounds to design online bandit algorithms. In Section 3.2.1, we
stated that the goal of the online policy search problem is to choose a sequence of distributions
Q1, . . . , QT ∈ P(Π) that minimise the cumulative regret ∆(Q1:T ) (see Equation (3.2)). We can
estimate the regret at round t using the IS regret estimate, which is defined as

∆IS(π,Dt) = rIS(π∗, Dt)− rIS(π,Dt).

We can also obtain a PAC-Bayes Hoeffding-Azuma bound for the IS regret estimate [162] (see
Theorem 3.12), which states that (with high probability)

∀Q ∈ P(Π), ∆(Q) ≤ ∆IS(Q,Dt) +
λ

2tϵ2t
+
DKL(Q||P ) + ln(1/δ)

λ
. (3.5)

We could set each distribution Qt to the minimiser of the bound in (3.5). However, we also need to
consider the effect of each πt ∼ Qt on the subsequent importance weights, and on ϵt in particular.
In Section 3.5, we will see how use PAC-Bayes bounds to obtain PAC-Bayesian online bandit
algorithms that come with cumulative regret bounds.

PAC-Bayes bounds on regret estimates have already been used to design online bandit algorithms
with cumulative regret bounds. Seldin et al. [162, 159] have derived PAC-Bayes bounds for the
IS regret estimate and used them to design online (contextual) bandit algorithms. As we will see,
these algorithms closely resemble the EXP3 and EXP4 algorithms [22].

3.3.3 Relation To Existing Methods

The basic algorithm in (3.4) can provide a new perspective on some well-known principles for policy
search.

Example 3.3 (Relative Entropy Regularisation [90], [137], [23]). Let the policy class be the set of
all deterministic policies. Then Π = A and both Q and P are now individual stochastic policies.
Suppose there is a single behaviour policy b, and set P = b. The optimisation problem in (3.4)
becomes

Q̂ ∈ argmax
Q∈P(A)

{
E

a∼Q
[rIS(a,DT )]−

DKL(Q||b)
λ

}
.

This motivates maximising the IS reward estimate subject to a penalty on the relative entropy
between Q and the behaviour policy b. Relative Entropy Policy Search [136], Trust Region Policy
Optimization [156] and Proximal Policy Optimization [157] are all based upon this principle of
relative entropy regularisation.
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Example 3.4 (Maximum Entropy [86, 87, 190]). Let Π = A. This time, choose the prior P to be
a uniform distribution over A. The KL divergence between Q and a uniform distribution is equal
a constant minus the Shannon entropy H(Q) of Q. The optimisation problem in (3.4) becomes

Q̂ ∈ argmax
Q∈P(A)

{
E

a∼Q
[rIS(a,DT )] +

H(Q)

λ

}
.

This motivates maximisation of a weighted sum of the reward estimate and the entropy of Q,
or alternatively, choosing the policy Q with the highest entropy subject to a constraint that the
reward estimate is sufficiently high. This is essentially equivalent to a classical strategy known as
Boltzmann exploration [89]. In addition, several modern deep reinforcement learning algorithms,
such as Soft Q-learning [72] and Soft Actor-Critic [73], follow the maximum entropy principle.

3.4 PAC-Bayes Reward Bounds

In this section, we give an overview of PAC-Bayes bounds for the expected reward, organised by
the reward estimate used in the bound.

3.4.1 Importance Sampling

We have already encountered the importance sampling (IS) estimate, which was defined in (3.3).
We remind the reader of the assumption that the importance weights π(a)/bt(a) are uniformly
bounded above by 1/ϵT for every t = 1, . . . , T . This can be achieved by constraining the behaviour
policies and/or the policy class Π.

One of the most well-known PAC-Bayes bounds is the PAC-Bayes kl bound, which was proposed
by Seeger [158] and improved by Maurer [118]. The binary KL divergence is defined as:

kl(p||q) := p ln

(
p

q

)
+ (1− p)ln

(
1− p

1− q

)
.

This is the KL divergence between a Bernoulli distribution with parameter p and a Bernoulli
distribution with parameter q, and is defined for p, q ∈ [0, 1] (although it is infinite if q = 0 or
q = 1). Seldin et al. [162] derived the PAC-Bayes kl bound for the IS estimate:

Theorem 3.5 (PAC-Bayes kl bound for rIS[162]). For any δ ∈ (0, 1) and any probability distribu-
tion P ∈ P(Π), with probability at least 1− δ, for all distributions Q ∈ P(Π) simultaneously,

kl
(
ϵT r

IS(Q,DT )
∥∥ ϵTR(Q)

)
≤ DKL(Q||P ) + ln(2

√
T/δ)

T
.

The original PAC-Bayes kl bound holds only for i.i.d. data, yet the bound in Thm. 3.5 holds even
when the behaviour policies are dependent on previous observations. Seldin et al. [162] achieve
this extra generality by using a comparison inequality (Lem. 1 of [161]) that bounds expectations
of convex functions of certain martingale-like sequences by expectations of the same functions of
independent Bernoulli random variables. In this form, the PAC-Bayes kl bound is not so useful;
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we would prefer a lower bound on R(Q). Following Seeger [158], the lower inverse of the binary
KL divergence can be defined as:

kl−1(p,B) := min{q ∈ [0, 1] : kl(p||q) ≤ B}.

With this definition, the PAC-Bayes kl bound for the rIS estimate can be rewritten as:

R(Q) ≥ 1

ϵT
kl−1

(
ϵT r

IS(Q,DT ),
DKL(Q||P ) + ln(2

√
T/δ)

T

)
. (3.6)

We refer to this bound as the PAC-Bayes kl−1 bound. This is the tightest possible lower bound
on R(Q) that can be derived from the PAC-Bayes kl bound. From the definition of kl−1, it is
apparent that this bound is never vacuous (less than 0). Unfortunately, kl−1 has no closed-form
solution. However, it can be calculated numerically to arbitrary accuracy using, for example, the
bisection method. Instead of inverting the binary KL divergence, one can use Pinsker’s inequality
[139], which states that

|p− q| ≤
√
kl(p||q)/2.

We can then obtain a (looser) high probability lower bound on the expected reward:

R(Q) ≥ rIS(Q,DT )−
1

ϵT

√
DKL(Q||P ) + ln(2

√
T/δ)

2T
. (3.7)

We refer to this bound as the PAC-Bayes Pinsker bound. Several authors [119], [174], [170], [146]
have used tighter (than Pinsker’s inequality) bounds on the binary KL divergence to obtain better,
more explicit PAC-Bayes bounds from the PAC-Bayes kl bound. Similar bounds for the IS reward
estimate can be obtained by combining the same techniques with Theorem 3.5.

Seldin et al. [160] provide a PAC-Bayes bound for the IS estimate that depends on the variance
of the reward estimate. The (conditional) average variance of the IS estimate for the policy π is
defined as

V IS(π,DT ) =
1

T

T∑
t=1

E
a′t∼bt,r′t∼PR(·|a′t)

[(
π(a′t)

bt(a′t)
r′t −R(π)

)2
]
.

Note that this is a data-dependent quantity. V IS(π,DT ) is the average variance of the IS esti-
mate given the sequence of behaviour policies that are selected based on the data DT . We write
V IS(Q,DT ) = Eπ∼T

[
V IS(π,DT )

]
. The bound is derived by using Bernstein’s inequality for mar-

tingales instead of the Hoeffding-Azuma inequality.

Theorem 3.6 (PAC-Bayes Bernstein Bound for rIS [160]). For any λ ∈ [0, T ϵT ], any δ ∈ (0, 1) and
any probability distribution P ∈ P(Π), with probability at least 1− δ, for all distributions Q ∈ P(Π)
simultaneously:

R(Q) ≥ rIS(Q,DT )−
λ(e− 2)V IS(Q,DT )

T
− DKL(Q||P ) + ln(1/δ)

λ
.
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Seldin et al. [160] show that the variance for any policy π satisfies V IS(π,DT ) ≤ 1/ϵT . This bound
on the variance leads to the lower bound

R(Q) ≥ rIS(Q,DT )−
λ(e− 2)

TϵT
− DKL(Q||P ) + ln(1/δ)

λ
. (3.8)

The PAC-Bayes bounds for the IS estimate can be compared by examining their rates in T and
ϵT and DKL(Q||P ). The rate at which they degrade as ϵT approaches 0 becomes particularly
important as the action set A grows. For example, if A = {1, . . . ,K} and the behaviour policies
are all uniform, then ϵT ≤ 1/K. Alternatively, if A is a bounded subset of Rd and the behaviour
policies are all uniform, then ϵT ≤ O(1/vol(A)). These examples suggest that if a PAC-Bayes
bound degrades rapidly as ϵT decreases, then the bound may be loose when A is large.

The Pinsker bound in (3.7) has a rate of O(
√
DKL(Q||P )/(ϵT

√
T )), ignoring the ln(

√
T ) term.

For the PAC-Bayes Hoeffding-Azuma bound in Theorem 3.2, it can be shown that the opti-
mal value of λ is proportional to ϵT

√
T . With this choice of λ, this bound also has a rate of

O(
√
DKL(Q||P )/(ϵT

√
T )). The PAC-Bayes Bernstein bound in (3.8) has an improved rate in

ϵT . For a suitable choice of λ, this bound has a rate of O(
√
DKL(Q||P )/

√
ϵTT ). A Taylor ex-

pansion reveals that the PAC-Bayes kl−1 bound in (3.6) decays approximately exponentially in

DKL(Q||P )/(ϵTT ) as rIS(Q,DT )
e exp −DKL(Q||P )−ln(2

√
T/δ)

TϵT rIS(Q,DT )
. Based on these rates, we can expect the

PAC-Bayes Bernstein and PAC-Bayes kl−1 bounds to scale better to large action sets.

Finally, we discuss PAC-Bayes bounds for the IS estimate in the contextual bandit setting. In the
CB setting, the IS estimate is defined as

rIS(π,DT ) =
1

T

T∑
t=1

π(at|st)
bt(at|st)

rt. (3.9)

We still require that 1/ϵT is a uniform bound on the importance weights, though now the importance
weights are π(st|at)/bt(at|st). As in the MAB setting, one can construct martingales containing the
IS estimate that are compatible with the Hoeffding-Azuma, Bernstein and Seldin et al.’s comparison
inequality [161]. Therefore, the same PAC-Bayes Hoeffding-Azuma, PAC-Bayes kl and PAC-Bayes
Bernstein bounds as in Theorems 3.2, 3.5 and 3.6 can be derived. In the CB versions of these
bounds, ϵT and the reward estimate rIS(π,DT ) are just defined slightly differently. A PAC-Bayes
Bernstein bound for the IS estimate in the CB setting was first derived by Seldin et al. [159].

3.4.2 Clipped Importance Sampling

In Section 3.4.1, we saw that all the PAC-Bayes bounds for the IS reward estimate degrade as
the uniform bound 1/ϵT on the importance weights increases. One way to ensure that 1/ϵT is
never too large is to clip the importance weights. Clipped (or truncated) importance sampling was
first proposed by Ionides [82]. The clipped importance sampling (CIS) reward estimate for MAB
problems is defined as

rCIS(π,DT ) =
1

T

T∑
t=1

min

(
π(at)

bt(at)
,
1

τ

)
rt. (3.10)
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By definition, the clipped importance weights are bounded above by 1/τ . However, clipping the
importance weights introduces bias. Let RCIS(π) = EDT

[rCIS(π,DT )] denote the expected value of
the CIS estimate, and let RCIS(Q) = Eπ∼Q[R

CIS(π)]. It can be shown (see Lemma A.2) that the
CIS estimate is biased to underestimate the expected reward, i.e. RCIS(Q) ≤ R(Q).

Therefore, any lower bound on RCIS(Q) is also a lower bound on R(Q), which means the we can
essentially ignore the bias of the CIS estimate if we only require a lower bound on the expected
reward. It is possible to derive PAC-Bayes Hoeffding-Azuma, Bernstein and kl bounds for the CIS
estimate that are almost the same as those for the IS estimate, except that ϵT is replaced by τ .
Under the assumption that there is a single, fixed behaviour policy, Wang et al. [183] have proved
PAC-Bayes Pinsker, Hoeffding-Azuma and Bernstein bounds for the CIS risk (one minus reward)
estimate.

In Appendix A.1.3, we prove the following PAC-Bayes Hoeffding-Azuma bound for the CIS reward
estimate, which holds in the most general setting where the data are drawn from an arbitrary
sequence of behaviour policies.

Theorem 3.7 (PAC-Bayes Hoeffding-Azuma bound for rCIS). For any τ ∈ (0, 1], any λ > 0,
any δ ∈ (0, 1) and any probability distribution P ∈ P(Π), with probability at least 1 − δ, for all
distributions Q ∈ P(Π) simultaneously,

R(Q) ≥ rCIS(Q,DT )−
λ

8Tτ2
− DKL(Q||P ) + ln(1/δ)

λ
. (3.11)

Like λ, the clipping parameter τ must be independent of the data DT . We don’t claim that this
bound is new, since it is essentially a corollary of the PAC-Bayes Hoeffding-Azuma bound for
martingales by Seldin et al. [161]. A PAC-Bayes Bernstein bound for the CIS estimate can also
be derived in the general case where the data are drawn from an arbitrary sequence of behaviour
policies. We define the average variance of the CIS estimate as

V CIS(π,DT ) =
1

T

T∑
t=1

E
a′t∼bt

r′t∼PR(·|a′t)

(min

(
π(a′t)

bt(a′t)
,
1

τ

)
r′t − E a′t∼bt

r′t∼PR(·|a′t)

[
min

(
π(a′t)

bt(a′t)
,
1

τ

)
r′t

])2
 ,
(3.12)

One can show (see Lemma A.4) that the average variance of the CIS estimate satisfies V CIS(π,DT ) ≤
1/τ . In Appendix A.1.5, we prove the following PAC-Bayes Bernstein bound for the CIS estimate.

Theorem 3.8 (PAC-Bayes Bernstein Bound for rCIS). For any τ ∈ (0, 1], any λ ∈ [0, T τ ], any δ ∈
(0, 1) and any probability distribution P ∈ P(Π), with probability at least 1− δ, for all distributions
Q ∈ P(Π) simultaneously,

R(Q) ≥ rCIS(Q,DT )−
λ(e− 2)V CIS(Q,DT )

T
− DKL(Q||P ) + ln(1/δ)

λ
.

Applying the variance bound V CIS(π,DT ) ≤ 1/τ gives

R(Q) ≥ rCIS(Q,DT )−
λ(e− 2)

Tτ
− DKL(Q||P ) + ln(1/δ)

λ
. (3.13)
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This bound is essentially a corollary of the PAC-Bayes Bernstein bound for martingales by Seldin
et al. [161]. A PAC-Bayes kl bound for the CIS estimate has so far only been proven for the case
where the data are all drawn from a fixed behaviour policy. In this case, the CIS estimate is a sum
of independent random variables bounded in [0, 1/τ ]. Therefore, one can apply Seeger’s original
PAC-Bayes kl bound [158] to the CIS estimate, scaled by a factor of τ .

Theorem 3.9 (PAC-Bayes kl bound for rCIS). If the data set DT is drawn from a single, fixed
behaviour policy, then for any τ ∈ (0, 1], any δ ∈ (0, 1) and any probability distribution P ∈ P(Π),
with probability at least 1− δ, for all distributions Q ∈ P(Π) simultaneously,

kl
(
τrCIS(Q,DT )

∥∥ τRCIS(Q)
)
≤ DKL(Q||P ) + ln(2

√
T/δ)

T
.

Since R(Q) ≥ RCIS(Q), one can still use Pinsker’s inequality or the inverse of kl to obtain lower
bounds on R(Q). If we invert the Binary KL divergence, we obtain

R(Q) ≥ 1

τ
kl−1

(
τrCIS(Q,DT ),

DKL(Q||P ) + ln(2
√
T/δ)

T

)
. (3.14)

If we use Pinsker’s inequality, we obtain:

R(Q) ≥ rCIS(Q,DT )−
1

τ

√
DKL(Q||P ) + ln(2

√
T/δ)

2T
. (3.15)

The discussion about rates in Section 3.4.1 applies to the bounds for the CIS estimate, although
the rates in ϵT are now rates in τ . The PAC-Bayes Bernstein and kl−1 bounds both have improved
rates in τ and should therefore be preferred when τ is close to 0.

Next, we will discuss PAC-Bayes bounds for the CIS estimate in the contextual bandit setting. In
the CB setting, the CIS estimate is defined as

rCIS(π,DT ) =
1

T

T∑
t=1

min

(
π(at|st)
bt(at|st)

,
1

τ

)
rt. (3.16)

As in the MAB setting, the CIS estimate is biased to underestimate R(Q) (meaning RCIS(Q) ≤
R(Q)), so we can still essentially ignore it in the one-sided PAC-Bayes reward bounds. The PAC-
Bayes Hoeffding-Azuma and Bernstein bounds for the CIS estimate, in Theorem 3.7 and Theorem
3.8, also hold in the CB setting. When there is a fixed behaviour policy, the CB CIS estimate is still
an average of i.i.d. random variables bounded in [0, 1/τ ], so the PAC-Bayes kl bound in Theorem
3.9 also holds in the CB setting.

3.4.3 Weighted Importance Sampling

We present PAC-Bayes reward bounds for the weighted (or self-normalised) importance sampling
(WIS) estimator. The PAC-Bayes bounds presented in this section are only valid when the data

25



are i.i.d.; for example, when the data set is drawn from a fixed behaviour policy. For the rest of
Section 3.4.3, we assume that this is the case. On the bright side, the bounds in this section do not
require the importance weights to be bounded or clipped. For MAB problems, the WIS estimator
can be defined as

rWIS(π,DT ) =

∑T
t=1

π(at)
b(at)

rt∑T
t=1

π(at)
b(at)

.

The WIS estimate has some pleasing properties. Firstly, when the rewards are bounded between 0
and 1, it always takes values in the range [0, 1], even when the importance weights π(at)/b(at) are
unbounded. Secondly, it is invariant to constant shifts in the importance weights. Therefore, we
only need to know the unnormalised probability mass/density functions of the policies π and b.

The WIS estimator is biased but consistent, meaning its bias decays to 0 as T tends to infinity. Liu
[113] shows that the bias decays to 0 with rate O(1/T ), so we can expect it to be close to 0 as long
as T is reasonably large. One can obtain PAC-Bayes bounds on the difference between rWIS(Q,DT )
and R(Q) by upper bounding both terms in the following bias-concentration decomposition.

R(Q)− rWIS(Q,DT ) = R(Q)−RWIS(Q)︸ ︷︷ ︸
bias

+RWIS(Q)− rWIS(Q,DT )︸ ︷︷ ︸
concentration

. (3.17)

We are not aware of any empirical upper bounds on this bias term that don’t require additional
assumptions on the reward distribution PR. Kuzborskij et al. [98] proved a bound on the bias
term, although it only holds when the rewards are one-hot; there is always one action with reward
1 and all remaining actions have reward 0.

The concentration term can be bounded using PAC-Bayes bounds. Since the WIS estimate is not
a sum of i.i.d. random variables or even the sum of a martingale difference sequence, we cannot
use any of the previously seen PAC-Bayes bounds to bound the concentration term. Kuzborskij
and Szepesvári [97] derived a very general Efron-Stein (ES) PAC-Bayes bound and showed that it
can be used to upper bound the concentration term in Equation 3.17. This bound contains the
semi-empirical ES variance proxy of the WIS estimate. For any real-valued function f(π,DT ), the
corresponding semi-empirical ES variance proxy is defined as

V ES(π,DT ) =

T∑
t=1

E
DT ,D′

T

[(
f(π,DT )− f(π,D

(t)
T )
)2 ∣∣∣∣Dt

]
. (3.18)

D′
T is an independently sampled copy of DT . D

(t)
T is the data set DT , except the tth element is

replaced with the tth element of D′
T . For example, in the MAB setting, (at, rt) is replaced by

an independent copy (a′t, r
′
t). This variance proxy is semi-empirical since it depends on both the

observed data and the distribution of the data. Kuzborskij and Szepesvári [97] derived a PAC-Bayes
bound on the absolute difference between f(Q,DT ) and its expected value F (Q) = EDT

[f(Q,DT )].
When f = rWIS, we obtain the following result.

Theorem 3.10 (Efron-Stein PAC-Bayes Bound for rWIS [97]). If the data set DT is drawn from
a single, fixed behaviour policy, then for any y > 0, any δ ∈ (0, 1) and any probability distribution
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P ∈ P(Π), with probability at least 1− δ, for all distributions Q ∈ P(Π) simultaneously, we have

∣∣rWIS(Q,DT )−RWIS(Q)
∣∣ ≤√2 (y + V ES(Q,DT ))

(
DKL(Q||P ) + 1

2
ln (1 + V ES(Q,DT )/y) + ln(1/δ)

)
.

Theorem 3.10 is actually a slightly tighter version of the second inequality in Theorem 3 of [97],
which holds under weaker assumptions. In the original bound, the factor of 1/2 in front of
ln
(
1 + V ES(Q,DT )/y

)
is replaced with ln(1/δ)/2, which is larger than 1/2 when δ ≤ e−1. The

original bound of Kuzborskij and Szepesvári is only valid when δ ≤ e−2, so the bound in Theorem
3.10 is always slightly tighter. Moreover, this bound holds simultaneously for all distributions Q,
whereas in the original bound of Kuzborskij and Szepesvári, Q must be given by a fixed probability
kernel that maps any data set DT to a distribution ρDT

. We provide a proof of Theorem 3.10 for
general functions f(π,DT ) in Appendix A.1.6.

The semi-empirical ES variance proxy for rWIS(π,DT ) depends on the unknown reward distribution
PR, which means that V ES(Q,DT ) is also unknown. However, Kuzborskij and Szepesvári [97] show
that it can be upper bounded by a quantity that can be computed without knowledge of PR.

Lemma 3.11 (rWIS ES Variance Proxy Upper Bound [97]). For f = rWIS and any π ∈ Π, we have
that:

V ES(π,DT ) ≤ 2VWIS(π,DT ) = 2
T∑
t=1

E
DT ,D′

T

[
w̃2
π,t + ũ2π,t|Dt

]
,

where

w̃π,t =

π(at)
b(at)∑T

k=1
π(ak)
b(ak)

, ũπ,i =

π(a′t)
b(a′t)

π(a′t)
b(a′t)

+
∑

k ̸=t
π(ak)
b(ak)

.

Though VWIS(π,DT ) is still semi-empirical, it does not depend on the reward distribution PR.
Therefore, it can be estimated with arbitrary accuracy if π and b are known. We can combine the
bias-concentration decomposition in Equation 3.17, the Efron-Stein PAC-Bayes bound in Theorem
3.10 and the bound on the ES variance proxy in Lemma 3.11 to obtain the following PAC-Bayes
bound on the expected reward, which holds with probability greater than 1−δ and for all Q ∈ P(Π)
simultaneously.

R(Q) ≥ rWIS(Q,DT )−
∣∣RWIS(Q)−R(Q)

∣∣
−

√
2 (y + 2VWIS(Q,DT ))

(
DKL(Q||P ) + 1

2
ln

(
1 +

2VWIS(Q,DT )

y

)
+ ln(1/δ)

)
. (3.19)

In order to use this bound, we would need to upper bound the bias term
∣∣RWIS(Q)−R(Q)

∣∣.
Ignoring the bias term, the rate of this bound in T depends on the values of VWIS(Q,DT ) and y.
At one extreme, when all policies in the support of Q result in approximately equal importance
weights for every action, we have VWIS(Q,DT ) = O(1/T ). At the other extreme, when policies in
the support of Q result in one importance weight dominating all the others, we have VWIS(Q,DT ) =
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O(1). Therefore, VWIS(Q,DT ) = O(1/Tα) for some α ∈ [0, 1]. If we choose y = O(1/Tα), then the
bound in Equation 3.19 has rate O(

√
DKL(Q||P )/Tα/2).

Now, we discuss the ES PAC-Bayes bound for the WIS estimate in the contextual bandit setting.
In the CB setting, the WIS estimate can be defined as

rWIS(π,DT ) =

∑T
t=1

π(at|st)
b(at|st) rt∑T

t=1
π(at|st)
b(at|st)

.

The ES PAC-Bayes bound in Theorem 3.10 can still be used and one can derive an equivalent to
the bound in Equation 3.19. However, the upper bound on the semi-empirical ES variance proxy
VWIS(π,DT ), as defined in Lemma 3.11, now depends on the unknown state distribution PS . To
rectify this, one can use an alternative bias-concentration decomposition suggested by Kuzborskij
et al. [98]:

R(Q)− rWIS(Q,DT ) = R(Q)−R(Q; s1:T )︸ ︷︷ ︸
concentration of contexts

+R(Q; s1:T )−RWIS(Q; s1:T )︸ ︷︷ ︸
bias

+RWIS(Q; s1:T )− rWIS(Q,DT )︸ ︷︷ ︸
concentration

,

where

R(Q; s1:T ) = E
π∼Q

[
1

T

T∑
t=1

E
a∼π(·|st),r∼PR(·|st,a)

[r]

]
, RWIS(Q; s1:T ) = E

π∼Q

[
E
DT

[
rWIS(π,DT )|s1, . . . , sT

]]
.

The concentration of contexts term can be bounded by, for example, the PAC-Bayes Hoeffding-
Azuma bound. The concentration term can be bounded using a conditional version of the Efron-
Stein PAC-Bayes bound in Theorem 3.10, which holds with high probability over the sampling of
DT given the observed states s1, . . . , sT . The upper bound 2VWIS(π,DT ) on the ES variance proxy,
given the observed states, no longer depends on the state distribution, so it can be estimated with
knowledge of only π and b. Finally, we note that replacing rWIS in Theorem 3.10 with rIS or rCIS

would lead to new ES PAC-Bayes bounds for the IS or CIS estimates. However, this has not yet
been explored in the literature.

3.5 PAC-Bayes Regret Bounds

In this section, we review PAC-Bayes bounds for the cumulative regret ∆(Q1:T ) associated with
a sequence of distributions Q1, . . . , QT over the policy class Π. First, we state some PAC-Bayes
bounds on the expected regret for a single round. Then, we present some PAC-Bayes bounds on
the cumulative regret.

In the MAB setting, we consider the case when the set of actions is finite: A = {1, . . . ,K}. We set
the policy class to be the set of all deterministic policies, so Π = A. In this case, any distribution Q
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over the policy class A is a single stochastic policy. The IS estimate of the reward for a deterministic
policy (an action) a can be defined as

rIS(a,DT ) =
1

T

T∑
t=1

I{at = a}
bt(at)

rt. (3.20)

This coincides with the earlier definition for general policy classes. For this choice of policy class, a
uniform upper bound on the importance weights I{at = a}/bt(at) ≤ 1/ϵT for all t = 1, . . . , T can be
achieved with a uniform lower bound on the behaviour policy probabilities bt(at), i.e. bt(at) ≥ ϵT .
The regret for an action a is defined as

∆(a) = R(a∗)−R(a),

where a∗ is an action that maximises the expected reward. The IS regret estimate for an action a
is defined as

∆IS(a,DT ) = rIS(a∗, DT )− rIS(a,DT ). (3.21)

Seldin et al. [162] [160] showed that a martingale, which is compatible with both the Hoeffding-
Azuma inequality and Bernstein’s inequality, can be constructed from the IS regret estimate. Con-
sequently, one can obtain a PAC-Bayes Hoeffding-Azuma bound and a PAC-Bayes Bernstein bound
on the difference between the expected regret and the IS regret estimate.

Theorem 3.12 (PAC-Bayes Hoeffding-Azuma bound for ∆IS [162, 43]). For any δ ∈ (0, 1), with
probability at least 1− δ, for all distributions Q ∈ P(A) and all t ≥ 1 simultaneously:

∆(Q)−∆IS(Q,Dt) ≤

√
2ln(K/δ)

tϵ2t
.

One can observe several differences between this bound and the PAC-Bayes Hoeffding-Azuma bound
in Theorem 3.2. This bound uses a uniform prior P , and since both Q and P are distributions over
a finite set with K elements, DKL(Q||P ) ≤ ln(K). Hence, the KL divergence has been replaced
with ln(K) (and then added to ln(1/δ)). This bound holds with probability at least 1 − δ for all
t ≥ 1 simultaneously, rather than for a single t ≥ 1. This is achieved by using the time-uniform
extension of Seldin et al.’s [162] original PAC-Bayes Hoeffding-Azuma bound, which can be found
in Corollary 6.5 of [43]. Finally, this bound does not contain λ. This is because, for each t, we have
set λt =

√
2tϵ2t ln(K/δ).

The PAC-Bayes Bernstein bound for the IS regret estimate contains (an upper bound on) the
average variance of the IS regret estimate V IS(a,DT ), which is defined as:

V IS(a,DT ) =
1

T

T∑
t=1

E
a′t∼bt,r′t∼pR(·|a′t)

[(
I{a′t = a∗}
bt(a′t)

r′t −
I{a′t = a}
b(a′t)

r′t −∆(a)

)2
]
,

Seldin et al. show that in both the MAB [160] and CB settings [159], this average variance satisfies
the bound V IS(a,Dt) ≤ 2/ϵt. Using this bound on the variance, the following PAC-Bayes bound
can be derived.
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Theorem 3.13 (PAC-Bayes Bernstein bound for ∆IS [160, 43]). For any δ ∈ (0, 1), with probability
at least 1− δ, for all distributions Q ∈ P(A) and all t ≥ 1 simultaneously, where

ln(K/δ)

2(e− 2)t
≤ ϵt, (3.22)

we have

∆(Q) ≤ ∆IS(Q,Dt) +

√
8(e− 2)ln(K/δ)

ϵtt
.

This bound comes from the time-uniform extension (see Corollary 6.6 of [43]) of Seldin et al.’s
PAC-Bayes Bernstein bound [160]. In this bound we have set λt =

√
tϵtln(K/δ)/(2(e− 2)). The

requirement that λt ∈ [0, tϵt] becomes the requirement on t in Equation 3.22. Following Seldin et
al. [159], [160], we present cumulative regret bounds for a family of MAB algorithms. We define

Qexp
t (a) ∝ P (a)eγtr

IS(a,Dt), Q̃exp
t (a) = (1−Kϵt+1)Q

exp
t (a) + ϵt+1. (3.23)

If ϵt = min(1/
√
tK, 1/K) and γt =

√
tln(K)/K, this strategy is known as EXP3 [22]. Alternatively,

in the limit as γt tends to infinity, we obtain the ϵ-greedy algorithm [21]. Note that ϵt cannot be
greater than 1/K, which is why we truncate it to be less than or equal to 1/K. The first step
towards a cumulative regret bound for the policies Q̃exp

1 , Q̃exp
2 , . . . is to re-write the regret for a

single round as

∆(Q̃exp
t ) = ∆(Qexp

t )−∆IS(Qexp
t , Dt) + ∆IS(Qexp

t , Dt) +R(Qexp
t )−R(Q̃exp

t ). (3.24)

Seldin et al. [160] show that ∆IS(Qexp
t , Dt) ≤ ln(K)/γt and that R(Qexp

t )−R(Q̃exp
t ) ≤ Kϵt+1. If the

PAC-Bayes Hoeffding-Azuma bound in Theorem 3.12 is used to bound ∆(Qexp
t ) −∆IS(Qexp

t , Dt),
then we obtain the following cumulative regret bound.

Theorem 3.14 (PAC-Bayes Hoeffding-Azuma cumulative regret bound [162], [160]). Let ϵt =
min(t−1/4K−1/2, 1/K) and take any γt such that γt ≥ t1/4K−1/2

√
ln(K). For any δ ∈ (0, 1], with

probability at least 1− δ, for all T > K2, we have

T∑
t=1

∆(Q̃exp
t ) ≤ 4

3
T 3/4K1/2(

√
2 ln(K/δ)+

√
ln(K)+ 1)− 4

3
K2(

√
2 ln(K/δ)+

√
ln(K)+

1

4
), (3.25)

and for all 1 ≤ T ≤ K2, we have
T∑
t=1

∆(Q̃exp
t ) ≤ T.

Proof. From the assumption that the rewards are bounded between 0 and 1, we have ∆(Q) ≤ 1
for all Q ∈ P(Π). Whenever t−1/4K−1/2 ≤ 1/K, we have ϵt = t−1/4K−1/2. By rearranging this
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inequality, we can deduce that ϵt = t−1/4K−1/2 when t ≥ K2. Now, for all T > K2, we have

T∑
t=1

∆(Q̃exp
t ) =

K2∑
t=1

∆(Q̃exp
t ) +

T∑
t=K2+1

∆(Q̃exp
t )

≤ K2 +

T∑
t=K2+1

(
∆(Qexp

t )−∆IS(Qexp
t , Dt) + ∆IS(Qexp

t , Dt) +R(Qexp
t )−R(Q̃exp

t )
)

≤ K2 +
T∑

t=K2+1

(√
2ln(K/δ)

tϵ2t
+

ln(K)

γt
+Kϵt+1

)

≤ K2 +

T∑
t=K2+1

t−1/4K1/2(
√
2 ln(K/δ) +

√
ln(K) + 1)

≤ K2 +K1/2(
√

2 ln(K/δ) +
√
ln(K) + 1)

∫ T

K2

t−1/4dt

= K2 +K1/2(
√

2 ln(K/δ) +
√
ln(K) + 1)

4

3
(T 3/4 −K3/2)

=
4

3
T 3/4K1/2(

√
2 ln(K/δ) +

√
ln(K) + 1)− 4

3
K2(

√
2 ln(K/δ) +

√
ln(K) + 1/4).

We can upper bound the sum
∑T

t=K2+1 t
−1/4 by the integral

∫ T
K2 t

−1/4dt because t−1/4 is monoton-
ically decreasing in t.

This cumulative regret bound is of order O(T 3/4K1/2 ln(K)1/2). If the PAC-Bayes Bernstein bound
in Theorem 3.13 is used to bound ∆(ρexpn )−∆IS(ρexpn , Dn), then we obtain the following cumulative
regret bound.

Theorem 3.15 (PAC-Bayes Bernstein cumulative regret bound [160]). Let ϵt = min(t−1/3K−2/3, 1/K)
and take any γt such that γt ≥ t1/3K−1/3

√
ln(K). Define

T̃ =

⌈
K

(
ln(K/δ)

2(e− 2)

)3/2
⌉
.

For any δ ∈ (0, 1], with probability at least 1− δ, for all T > T̃ , we have

T∑
t=1

∆(Q̃exp
t ) ≤ 3

2
(T 2/3 − T̃ 2/3)K1/3(

√
8(e− 2) ln(K/δ) +

√
ln(K) + 1) + T̃ ,

≤ 3

2
T 2/3K1/3(

√
8(e− 2) ln(K/δ) +

√
ln(K) + 1), (3.26)

and for all 1 ≤ T ≤ T̃ , we have
T∑
t=1

∆(Q̃exp
t ) ≤ T.
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The proof of this regret bound is very similar to the proof of Theorem 3.14, so we omit it. The
definition of T̃ and the condition T > T̃ come from Equation (3.22) and the choice of ϵt. This
cumulative regret bound is of order O(T 2/3K1/3 ln(K)1/2). The improved scaling with T and K is
due to the PAC-Bayes Bernstein bound having improved dependence on ϵt. Sadly, this regret bound
has a sub-optimal growth rate in T . Audibert and Bubeck [19] have shown that the cumulative
regret for EXP3 can be upper bounded by a term of order O(

√
TKln(K)). Moreover, Audibert

and Bubeck show that the best possible worst-case regret bound that any algorithm can achieve is
O(

√
TK).

Seldin et al. [160] hypothesise that the PAC-Bayes cumulative regret bound in Theorem 3.15 can
be improved for the EXP3 algorithm with ϵt = min(1/

√
tK, 1/K) and γt =

√
tln(K)/K. They

suggest, and verify empirically, that for this choice of ϵt and γt, the bound on the average variance
can be tightened to V IS(Q̃exp

t , Dt) ≤ 2K. Using this bound on the average variance, the cumulative
regret bound in Theorem 3.15 would become O(

√
TK ln(K)).

To conclude this section, we present a PAC-Bayes cumulative regret bound for contextual bandits
by Seldin et al. [159]. We consider the case when the set of actions is finite with K elements
(A = {1, . . . ,K}) and the set of states is finite with N elements (S = {1, . . . , N}). The policy class
Π is the set of all deterministic policies, which for this problem is the set of all functions from S
to A, of which there are KN . For any distribution Q over Π, there is a corresponding stochastic
policy Q(a|s), where

Q(a|s) = E
π∼Q

[I{π(s) = a}] .

In this setting, the IS reward estimate for a single policy π ∈ Π can be defined as

rIS(π,DT ) =
1

T

T∑
t=1

I{at = π(st)}
bt(at|st)

ri. (3.27)

A lower bound bt(a|s) ≥ ϵt for all s, a ensures that the importance weights are upper bounded by
1/ϵt. Let T (s) =

∑T
t=1 I{st = s} denote the number of times that state s appears in the data set

DT . We define the IS reward estimate for a single state and action as

rIS(s, a,DT ) =
1

T (s)

∑
t=1,...,T :st=s

I{at = a}
bt(at|st)

rt. (3.28)

If T (s) = 0, then rIS(s, a,DT ) = 0. The expected regret for a policy π can be defined as

∆(π) = R(π∗)−R(π),

where π∗ is a policy in Π that maximises the expected reward. The IS regret estimate for a policy
π is defined as:

∆IS(π,DT ) = rIS(π∗, DT )− rIS(π,DT ). (3.29)

Seldin et al. [159] show that, as in the MAB setting, a martingale compatible with Bernstein’s
inequality can be constructed from the CB IS regret estimate. Moreover, the average variance of
the CB IS regret estimate can also be bounded by 2/ϵT . Seldin et al. [159] obtain a PAC-Bayes
Bernstein bound on the difference between the expected regret and the IS regret estimate.
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Theorem 3.16 (CB PAC-Bayes Bernstein bound for ∆IS [159]). For any δ ∈ (0, 1] and any c > 1,
simultaneously for all Q ∈ P(Π) that satisfy

NIQ(S;A) +K(ln(N) + ln(K)) + ln(mT /δ)

2(e− 2)T
≤ ϵT
c2
, (3.30)

with probability at least 1− δ,

∆(Q) ≤ ∆IS(Q,DT ) + (1 + c)

√
2(e− 2) (NIQ(S;A) +K(ln(N) + ln(K)) + ln(mT /δ))

TϵT
, (3.31)

where mT = ln(
√
(e− 2)T/ln(1/δ))/ln(c), and for all Q that do not satisfy (3.30), with the same

probability,

∆(Q) ≤ ∆IS(Q,DT ) +
2 (NIQ(S;A) +K(ln(N) + ln(K)) + ln(mT /δ))

TϵT
. (3.32)

In this PAC-Bayes Bernstein bound, the KL divergence penalty has been replaced with IQ(S;A),
which is the mutual information between states and actions under the policy Q(a|s). Let Q̄(a) =
(1/N)

∑
sQ(a|s) denote the marginal distribution over A that corresponds to Q(a|s) and a uniform

distribution over S. Then IQ(S;A) is defined as

IQ(S;A) =
1

N

∑
s,a

Q(a|s)ln
(
Q(a|s)/Q̄(a)

)
. (3.33)

As shown by Seldin and Tishby [164], there exists a distribution P over Π such that for every Q
over Π, we have

DKL(Q||P ) ≤ NIQ(S;A) +Kln(N) +Kln(K).

We could have also chosen P to be a uniform prior, in which case DKL(Q||P ) ≤ N ln(K). However,
IQ(S;A) ≤ ln(K), so when the number of states N is much larger than the number of actions K,
we have NIQ(S;A) +Kln(N) +Kln(K) ≤ N ln(K). Seldin et al. [159] derive a cumulative regret
bound for a family of contextual bandit algorithms. Let Qt(a) be an arbitrary distribution over A
(for each t). We define

Qexp
t (a|s) ∝ Qt(a)e

γtrIS(s,a,Dt), Q̃exp
t (a|s) = (1−Kϵt+1)Q

exp
t (a|s) + ϵt+1. (3.34)

Using the same regret decomposition as in Equation 3.24, one can obtain a per-round regret bound
for playing Q̃exp

t . Seldin et al. [159] show that ∆IS(Qexp
t , Dt) ≤ ln(1/ϵt+1)/γt, and that R(Qexp

t )−
R(Q̃exp

t ) ≤ Kϵt+1 also holds in the CB setting. If the PAC-Bayes Bernstein bound from Theorem
3.16 is used to bound ∆(Qexp

t ) − ∆IS(Qexp
t , Dt), then we obtain the following per-round regret

bound.
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Theorem 3.17 (CB PAC-Bayes Bernstein per-round regret bound [159]). For any δ ∈ (0, 1] and
any c > 1, with probability at least 1−δ, for all policies Qexp that satisfy Equation 3.30, the expected
per-round regret ∆(Q̃exp

t ) is bounded by

∆(Q̃exp
t ) ≤ (1 + c)

√
2(e− 2)(NIQexp

t
(S;A) +K(ln(N) + ln(K)) + ln(2mt/δ))

tϵt
+

ln(ϵt+1)

γt
+Kϵt+1,

and for all Qexp that do not satisfy Equation 3.30, with the same probability

∆(Q̃exp
t ) ≤

2NIQexp
t

(S;A) +K(ln(N) + ln(K)) + ln(2mt/δ)

tϵt
+

ln(ϵt+1)

γt
+Kϵt+1.

If ϵt = min(t−1/3K−1/3N1/3, 1/K), then this gives a cumulative regret bound of orderO(T 2/3K2/3N1/3),
ignoring log terms. If we were to upper bound DKL(Q||P ) by N ln(K) instead of the mutual in-
formation, then choosing ϵt = min(t−1/3K−2/3N1/3, 1/K) would give a cumulative regret bound of
order O(T 2/3K1/3N1/3) ignoring log terms. Unfortunately, both of these bounds have sub-optimal
scaling with T . For example, ignoring log terms, the EXP4.P algorithm of Beygelzimer et al. [28]
has cumulative regret bounded by O(

√
TKN) in this problem.

3.6 Optimising PAC-Bayes Bandit Bounds

3.6.1 The Choice of Prior

In this section, we give an overview of methods for choosing the prior. We first motivate the utility
of “good” priors, using the PAC-Bayes Hoeffding-Azuma bound from Thm. 3.2 (shown below) as
an example.

R(Q) ≥ rIS(Q,DT )−
λ

8Tϵ2T
− DKL(Q||P ) + ln(1/δ)

λ
.

This lower bound is largest when rIS(Q,DT ) is large and DKL(Q||P ) is close to 0. To achieve this,
P must assign high probability to policies where rIS(Q,DT ) is large. This motivates priors that
either depend on the data set DT (data-dependent priors) or on the distribution of the data set
(distribution-dependent priors). In fact, Dziugaite et al. [59] have shown that data-dependent priors
are sometimes necessary for tight PAC-Bayes bounds. PAC-Bayes bounds with data/distribution-
dependent priors are of practical interest because they can yield tighter performance guarantees.
They are also of theoretical interest because they can yield bounds with improved rates.

We now detail various approaches for deriving PAC-Bayes bounds with data/distribution-dependent
priors. Many of these techniques are compatible with essentially any PAC-Bayes bound. Where
this is the case, we apply them to the PAC-Bayes kl bound for the IS estimate as an example, since
we will later compare the PAC-Bayes kl−1 bound with various priors in our experiments.

Data-Dependent Priors via Sample Splitting

One way to use a data-dependent prior is to split the data set into disjoint subsets DT = D1:m ∪
Dm+1:T , of size m and T −m, for some m < T . The first subset is used to learn a prior PD1:m .
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A PAC-Bayes bound is then evaluated on the second subset with the learned prior. Since PD1:m

does not depend on Dm+1:T , this prior is a valid choice when the bound is evaluated on the second
subset. The PAC-Bayes kl bound with a sample splitting prior is stated below.

Theorem 3.18 (PAC-Bayes kl Bound with Sample Splitting). For any δ ∈ (0, 1) and any prior
PD1:m ∈ P(Π) that may depend on the subset D1:m, with probability at least 1− δ, for all Q ∈ P(Π)
simultaneously

kl
(
ϵT r

IS(Q,Dm+1:T )
∥∥ ϵTR(Q)

)
≤ DKL(Q||PD1:m)

T −m
+

ln(2
√
T −m/δ)

T −m
.

This approach is very flexible, since the data-dependent prior can be learned in any way. We believe
that Seeger [158] was the first to use this technique. Subsequently, it has been used by others, such
as Catoni [36], Ambroladze et al. [14], and Germain et al. [67]. Recently, this approach has been
used to obtain non-vacuous generalisation bounds for deep neural networks [146], [135], [133], [134].

Data-Dependent Priors Selected From a Restricted Set of Priors

Another way to use data-dependent priors is to define a set of priors in advance and then derive
a modified PAC-Bayes bound that holds with high probability simultaneously for all priors in this
set. One can then evaluate the modified PAC-Bayes bound with any prior from this set. The
modified bound will contain an extra penalty that we must pay in order for the bound to hold for
more than one prior.

Suppose we have a countable set of priors {Pi}∞i=1 and we want the PAC-Bayes kl bound to hold
with probability 1− δ for all Pi simultaneously. We have that for each i, with probability at least
1− δi

kl
(
ϵT r

IS(Q,DT )
∥∥ ϵTR(Q)

)
≤ DKL(Q||Pi) + ln(2

√
T/δi)

T
.

By the union bound, this bound holds with probability at least 1−
∑∞

i=1 δi for all Q and all i ∈ N
simultaneously. We can freely choose {δi}∞i=1 such that

∑∞
i=1 δi = δ. Therefore, at the cost of

replacing δ with δi, we can choose the prior in {Pi}∞i=1 that results in the greatest lower bound.

This technique has previously been used to obtain parametric priors with data-dependent param-
eters, e.g. Gaussian priors with data-dependent variance [100], [60]. It can also been derived by
using a prior that is a mixture of several priors P =

∑∞
i=1 piPi [14], [131]. The weights pi must

satisfy pi > 0 and
∑∞

i pi = 1. This results in the same bound with δi = piδ.

A set of priors can be defined by fixing a learning algorithm and then restricting the choice of prior
to be one that is learned from the data using this learning algorithm. If the learning algorithm
is stable, meaning the prior it selects is almost unaffected by small changes to the data, then we
call the learned prior a stable prior. Dziugaite and Roy [61] and Rivasplata et al. [144] proposed
PAC-Bayes bounds with stable priors, where the stability of a prior is characterised by differential
privacy.

Let A : ZT ⇝ P(Π) denote a randomised algorithm that maps a data set DT ∈ ZT to a prior
P ∈ P(Π). Also, let the data set DT consist of T i.i.d. samples.
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Definition 3.19 (Differential privacy). A randomised algorithm A : ZT ⇝ P(Π) is η-differentially
private if for all pairs DT , D

′
T ∈ ZT that differ at only one coordinate, and all measurable subsets

B ⊆ P(Π), we have
P(A(DT ) ∈ B) ≤ eηP(A(D′

T ) ∈ B).

Dziugaite and Roy [61] show that any PAC-Bayes bound that holds for any data-independent
prior P with probability at least 1 − δ′ can be turned into a PAC-Bayes bound that holds for
any η-differentially private prior PDT

with probability at least 1− δ by replacing DKL(Q||P ) with
DKL(Q||PDT

) and replacing ln(1/δ′) with Tη2/2 + η
√
T ln(4/δ)/2 + ln(2/δ).

Theorem 3.20 (PAC-Bayes kl Bound with a Differentially Private Prior [61]). If the data set
DT is drawn from a single, fixed behaviour policy, then for any δ ∈ (0, 1) and any η-differentially
private prior PDT

∈ P(Π), with probability at least 1− δ, for all Q ∈ P(Π) simultaneously:

kl
(
ϵT r

IS(Q,DT )
∥∥ ϵTR(Q)

)
≤
DKL(Q||PDT

) + ln(4
√
T/δ) + Tη2/2 + η

√
T ln(4/δ)/2

T
.

Since differential privacy is defined only for data sets consisting of i.i.d. samples, this bound only
holds when the data are all drawn from a single, fixed behaviour policy (to ensure that the data
are i.i.d.).

Distribution-Dependent Priors

The motivation for using a data-dependent prior was that it would assign high probability to policies
where rIS(π,DT ) is large. Assuming rIS(π,DT ) is close to R(π), we could instead use a prior that
assigns high probability to policies where R(π) is large, such as P (π) ∝ exp(R(π)). This prior
is data-independent, but we cannot calculate the KL divergence between Q and this prior, since
R(π) is unknown. Lever et al. [108], [109] provide a method for upper bounding the KL divergence
between restricted sets of posteriors and distribution-dependent priors.

We restrict ourselves to the Gibbs distributions PβrIS and PβR, which are defined as

PβrIS(π) =
P (π)eβr

IS(π,DT )

Eπ∼P

[
eβrIS(π,DT )

] , PβR(π) =
P (π)eβR(π)

Eπ∼P

[
eβR(π)

] . (3.35)

where β > 0 and P is any data-independent reference distribution. Lever et al. [108] show that

DKL(PβrIS ||PβR) ≤ β
(
rIS(PβrIS , DT )−R(PβrIS) +R(PβR)− rIS(PβR, DT )

)
. (3.36)

Both expected values on the right-hand-side of Equation 3.36 can be upper bounded using any of
the PAC-Bayes bounds for the IS reward estimate, with PβR as the prior. If the Pinsker bound
is used, this results in a quadratic inequality for DKL(PβrIS ||PβR), which holds with probability at
least 1− δ. The solution of this inequality tells us that with probability at least 1− δ, we have

DKL(PβrIS ||PβR) ≤
2β

ϵT
√
2T

√
ln(2

√
T/δ) +

β2

2Tϵ2n
.
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See [108] or [162] for a detailed derivation. This upper bound can be substituted into the PAC-Bayes
kl bound.

Theorem 3.21 (PAC-Bayes kl Lever Bound [108], [162]). For any β > 0 and δ ∈ (0, 1), with
probability at least 1− δ

kl
(
ϵT r

IS(PβrIS , DT )
∥∥ ϵTR(PβrIS)

)
≤ ln(4

√
T/δ)

T
+

β2

2T 2ϵ2T
+
β
√
2ln(4

√
T/δ)

T
√
TϵT

.

Since the PAC-Bayes Pinsker bound, which was used to upper bound the right-hand side of Equation
(3.36), holds when the data are drawn from a sequence of dependent behaviour policies, so does
the PAC-Bayes kl Lever bound. The best value of β will be large enough for rIS(PβrIS , DT ) to be
large, but not so large that the bound is dominated by the β-dependent terms. When using the
distribution-dependent prior PβR, it is still helpful to have an informative reference distribution
P , since then β can be close to 0 and PβrIS will still have high estimated reward. Lever et al.’s
method of upper bounding the distribution-dependent KL divergence can be applied more generally
to other kinds of Gibbs distributions. See [108] or [109] for more information.

In the case where the data DT are i.i.d., Oneto et al. [130] proved a tighter upper bound on
DKL(PβrIS ||PβR). Oneto et al. [130] also proved another PAC-Bayes bound for empirical Gibbs
posteriors. This bound only holds when the data DT are i.i.d., so when there is a single, fixed

behaviour policy. Let P
\t
βrIS

denote the leave-one-out Gibbs distribution, which is defined as

P
\t
βrIS

(π) ∝ P (π) exp

 γ

T

T∑
k=1,k ̸=t

π(ak)

b(ak)
rk

 .

This is the Gibbs distribution PβrIS with the tth datum removed. Following Oneto et al., one can
show that any posterior that is symmetric (meaning it does not depend on the order of the training
data), and has a certain distribution stability property, satisfies the following bound.

Theorem 3.22 (Distribution stability bound [130]). If the data set DT is drawn from a single,
fixed behaviour policy and if the method for selecting the posterior Q and leave-one-out posteriors
Q\t from the data set DT satisfies the distribution stability property

max
a′,r′

{∣∣∣∣∣ E
π∼Q

[
π(a′)

b(a′)
r′
]
− E

π∼Q\t

[
π(a′)

b(a′)
r′
]∣∣∣∣∣
}

≤ γ,

then for all DT , all t ∈ {1, . . . , T}, and with γ that goes to 0 as O(1/T ), then with probability at
least 1− δ, we have

∣∣R(Q)− rIS(Q,DT )
∣∣ ≤ 2γ +

(
4Tγ +

1

ϵT

)√
ln(2/δ)

2T
.
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Oneto et al. show that PβrIS satisfies the distribution stability property with γ ≤ 2β
TϵT

. Therefore,
using Theorem 3.22, we have that, if the data DT are drawn from a single behaviour policy, then
with probability at least 1− δ, we have

∣∣R(PβrIS)− rIS(PβrIS , DT )
∣∣ ≤ 4β

TϵT
+

(
8β

ϵT
+

1

ϵT

)√
ln(2/δ)

2T
. (3.37)

Once again, there is a trade-off between setting β large enough for the empirical reward to be high,
but not so large that the β-dependent penalty terms become too large.

Finally, we present another technique based on algorithmic stability for deriving PAC-Bayes bounds
with certain distribution-dependent priors, which is due to Rivasplata et al. [145]. Let the data set

DT ∈ ZT consist of T i.i.d. samples. Let D
(t)
T be the data set DT , except with it’s tth element zt

replaced with z′t. The hypothesis sensitivity coefficients are defined as:

Definition 3.23 (Hypothesis sensitivity coefficients [145]). Consider a learning algorithm A :
ZT → H that maps a data set to a hypothesis in a separable Hilbert space H. The hypothesis
sensitivity coefficients of A are defined as

γT = sup
t∈[T ]

sup
zt,z′t

{∥∥∥A(DT )−A(D
(t)
T )
∥∥∥
H

}
.

Rivasplata et al. use the posterior QA and the distribution-dependent prior PA, which are defined
as

QA = N (A(DT ), σ
2I), PA = N (EDT

[A(DT )], σ
2I).

The KL divergence between QA and PA is equal to ∥A(DT )− EDT
[A(DT )]∥2H /(2σ

2). Rivasplata
et al. show that if the algorithm A has hypothesis sensitivity coefficients γT , then the output
of the algorithm A(DT ) satisfies a concentration inequality, which implies an upper bound on
DKL(QA||PA). With probability at least 1− δ

∥A(DT )− EDT
[A(DT )]∥H ≤

√
TγT

(
1 +

√
1

2
ln

(
1

δ

))
.

One can then use the union bound to combine any PAC-Bayes bound using the posterior QA and
prior PA with the concentration inequality satisfied by the algorithm A.

Theorem 3.24 (PAC-Bayes kl Hypothesis Sensitivity Bound [145]). If the data set DT is drawn
from a single, fixed behaviour policy, then for any δ ∈ (0, 1) and any algorithm A with hypothesis
sensitivity coefficients γT , with probability at least 1− δ

kl
(
ϵT r

IS(QA, DT )
∥∥ ϵTR(QA)

)
≤ ln(4

√
n/δ)

n
+
nγ2n

(
1 +

√
ln(2/δ)/2

)2
2σ2

.

Unlike the previous techniques using distribution-dependent priors, this time there is no explicit
dependence on a data-independent reference distribution.
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Data-Dependent Approximations of Distribution-Dependent Priors

Distribution-dependent Gibbs priors were first used by Catoni [37]. Catoni proved that the KL
divergence between an arbitrary posterior Q and a distribution-dependent Gibbs prior can be upper
bounded by the KL divergence between Q and an empirical (data-dependent) Gibbs prior. We are
not aware of any way to apply this technique to the PAC-Bayes kl bound. Therefore, we apply the
technique, described in Section 1.3.4. of [38], to the PAC-Bayes Bernstein bound.

We use the distribution-dependent Gibbs distribution PβR and the data-dependent Gibbs distribu-
tion PβrIS (see Equation (3.35)). Catoni showed that DKL(Q||PβR) is related to DKL(Q||PβrIS).

DKL(Q||PβR) = DKL(Q||PβrIS) + β E
π∼Q

[
rIS(π,DT )−R(π)

]
+ ln

(
E

π∼P

[
eβR(π)

])
− ln

(
E

π∼P

[
eβr

IS(π,DT )
])

.

If we could upper bound ln (Eπ∼P [exp(βR(π))]) − ln
(
Eπ∼P

[
exp(βrIS(π,DT ))

])
, then we could

upper bound the difference between DKL(Q||PβR) and DKL(Q||PβrIS). We could then combine
the PAC-Bayes Bernstein bound, using the prior PβR, with the upper bound on DKL(Q||PβR), to
obtain a “localised” PAC-Bayes Bernstein bound for the IS estimate. In Appendix A.1.7, we show
how this can be done, and that the result is the following bound.

Theorem 3.25 (Localised PAC-Bayes Bernstein Bound for rIS [38], [160]). For any λ ∈ [0, T ϵT ],
any β satisfying 0 ≤ β < λ, any δ ∈ (0, 1) and any probability distribution P ∈ P(Π), with
probability at least 1− δ, for all distributions Q ∈ P(Π) simultaneously

R(Q) ≥ rIS(Q,DT )−
(λ2 + β2)(e− 2)

(λ− β)TϵT
−
DKL(Q||PβrIS) + 2ln(1/δ)

λ− β
.

For more information about Catoni’s localisation technique and its consequences, see [38]. Finally,
we describe two more techniques for obtaining PAC-Bayes bounds with data-dependent priors that
are similar to the localisation technique. The first, by London and Sandler [115], also uses a data-
dependent approximation of a distribution-dependent prior. We require i.i.d. data DT = {zt}Tt=1

and we restrict the posterior and prior to be d-dimensional Gaussian distributions. Define

Qθ = N (θ, σ2I), P
θ̂
= N (EDT

[θ̂], σ2I).

θ could be the parameter vector of a parametric policy and θ̂ could be an estimate of the parameters
of the behaviour policy or the optimal policy. Define θ̂ as

θ̂ = argmin
θ

{
1

T

T∑
t=1

L(θ, zt) + λ ∥θ∥22

}
.

London and Sandler [115] show that if L(·, zt) is convex and β-Lipschitz for any zt, then θ̂ satisfies
a concentration inequality. With probability at least 1− δ, we have

||θ̂ − EDT
[θ̂]||22 ≤

β

λ

√
2ln(2/δ)

T
.
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This can be used to upper bound the KL divergence between Qθ and P
θ̂
with high probability.

Theorem 3.26 (PAC-Bayes kl London and Sandler Bound [115]). If the data set DT is drawn
from a single, fixed behaviour policy, then for any δ ∈ (0, 1), with probability at least 1− δ, for all
θ ∈ Rd simultaneously

kl
(
ϵT r

IS(Qθ, DT )
∥∥ ϵTR(Qθ)

)
≤ ln(4

√
T/δ)

T
+

(
||θ − θ̂||2 + (β/λ)

√
2ln(4/δ)/T

)2
2Tσ2

.

This is similar to the PAC-Bayes kl Hypothesis Sensitivity bound in Theorem 3.24. Here though,
the mean of the Gaussian posterior Qθ is unrestricted and the bound contains a data-dependent
penalty term ||θ − θ̂||2. Rivasplata et al. [144] propose another method for deriving PAC-Bayes
bounds with data-dependent Gibbs priors. Using standard PAC-Bayesian proof techniques, one
can show that for any (possibly data-dependent) P ∈ P(Π), with probability at least 1− δ and all
Q ∈ P(Π) simultaneously

R(Q) ≥ rIS(Q,DT )−
DKL(Q||P ) + ln(1/δ)

λ
−

ln
(
EDT Eπ∼P

[
eλ(r

IS(π,DT )−R(π))
])

λ
. (3.38)

At this point, one would typically use Tonelli’s Theorem to swap the order of the expectations w.r.t.
DT and π and then upper bound EDT

[
exp

(
λ
(
rIS(π,DT )−R(π)

))]
. However, we can only swap

the order of the expectations if P does not depend on the data DT . Instead, if we could directly
upper bound ln

(
EDT Eπ∼P

[
exp

(
λ
(
rIS(π,DT )−R(π)

))])
for a data-dependent P , then we would

obtain a PAC-Bayes bound with a data-dependent prior. Following Rivasplata et al. [144], if the
data DT are i.i.d. and the prior is PβrIS , then

ln

(
E
DT

E
π∼P

βrIS

[
eλ(r

IS(π,DT )−R(π))
])

≤ 2

ϵ2T

(
1 +

2λβ

T

)
+ ln

(
1 + e

λ2

2Tϵ2
T

)
.

Combining this with Equation 3.38, we obtain a PAC-Bayes bound with a data-dependent prior.

Theorem 3.27 (PAC-Bayes Hoeffding-Azuma Empirical Gibbs Bound[144]). If the data set DT is
drawn from a single, fixed behaviour policy, then for any λ > 0, any 0 ≤ β ≤ λ, any δ ∈ (0, 1) and
any probability distribution P ∈ P(Π), with probability at least 1− δ, for all distributions Q ∈ P(Π)
simultaneously

R(Q) ≥ rIS(Q,DT )−
2

λϵ2T
− 4β

Tϵ2T
−
DKL(Q||PβrIS) + ln((1 + e

λ2

2Tϵ2
T )/δ)

λ
.

This is similar to the localised PAC-Bayes Bernstein bound. However, this bound only holds for
i.i.d. data and has worse dependence on ϵT .
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Priors Learned From Other Data Sets

PAC-Bayesian meta learning [132], [15], [150], [151], [114], [88], [123], [62] is another line of work
in which priors are learned from data. These methods use data sets from previous learning tasks
to learn a distribution over priors. Flynn et al. [62] propose PAC-Bayes bounds for meta-learning
priors over the policy class for multi-armed bandit problems.

3.6.2 Optimising Bound Parameters

Many PAC-Bayes bounds contain parameters that must be set before observing the data, such as
λ in the PAC-Bayes Bernstein bound in Theorem 3.6. We would like to be able to choose optimal
values of these parameters. However, the optimal values are usually data-dependent. For example,
the optimal λ for the PAC-Bayes Bernstein bound from Theorem 3.6, using V IS(Q,DT ) ≤ 1/ϵT , is

λ∗ = argmin
λ

{
λ(e− 2)

TϵT
+
DKL(Q||P ) + ln(1/δ)

λ

}
=

√
TϵT (DKL(Q||P ) + ln(1/δ))

e− 2
(3.39)

Since Q is (in general) data-dependent, λ∗ is as well. With this choice of λ, we would obtain the
(invalid) bound

R(Q) ≥ rIS(Q,DT )− 2

√
(e− 2) (DKL(Q||P ) + ln(1/δ))

TϵT
(3.40)

In this section we present methods for approximately optimising parameters of PAC-Bayes bounds,
using the PAC-Bayes Bernstein bound as an example. We compare how close each of them is to
the bound in Equation (3.40).

Sample Splitting

One approach is to split the data set into subsets of equal size DT = D1:T/2 ∪ DT/2:T . The first
subset is used to find a good value for λ. For example, we can approximate λ∗ by

λ̂ = argmax
λ

{
max

ρ

{
rIS(ρ,D1:n/2)−

λ2(e− 2)

nϵn
− DKL(ρ||µ) + ln(1/δ)

λ

}}
.

Since the Bernstein bound holds only for λ ∈ (0, T ϵT ], we should take the minimum of λ̂ and
(T/2)ϵT (λ̂ is always positive). The bound is then evaluated on the second subset with λ = λ̂.
Since λ̂ does not depend on DT/2:T , this yields a valid bound.

Theorem 3.28 (PAC-Bayes Bernstein Bound with a Subset λ). For any δ ∈ (0, 1), any prior
P ∈ P(Π) and λ̃ = min(λ̂, (T/2)ϵT ), with probability at least 1−δ, for all Q ∈ P(Π) simultaneously,
we have

R(Q) ≥ rIS(Q,DT/2:T )−
λ̃2(e− 2)

TϵT
− DKL(Q||P ) + ln(1/δ)

λ̃
.
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If λ̂ is an accurate approximation of λ∗, and λ̂ ≤ (T/2)ϵT , then the PAC-Bayes Bernstein bound
evaluated on DT/2:T and with λ = λ̂ is approximately

R(Q) ≥ rIS(Q,DT/2:T )− 2
√
2

√
(e− 2) (DKL(Q||P ) + ln(1/δ))

TϵT
.

Compared to the bound in Equation (3.40), this bound has a factor of
√
2 in front of the penalty

term because it is evaluated using half as many samples.

Union Bounds and Grids

Another approach is to define a grid of parameter values, and then use the union bound to obtain
a PAC-Bayes bound that holds simultaneously for all values in the grid with high probability.
Suppose we choose the following grid Λ = {λ1, . . . , λm} and that

∑m
i=1 δi = δ. We have that for

each i, with probability at least 1− δi

R(Q) ≥ rIS(Q,DT )−
λi(e− 2)

TϵT
− DKL(Q||P ) + ln(1/δi)

λi
.

By a union bound argument, this bound holds for all λi ∈ Λ simultaneously with probability at
least 1− δ. This allows us to choose the best λ ∈ Λ after observing the data.

We may also optimise λ over a continuous interval. For example, say we want the PAC-Bayes bound
to hold with high probability for all λ in the interval [a, b] simultaneously, where 0 < a ≤ b ≤ TϵT .
We can specify a geometric grid Λ = {cka|k ∈ N} ∩ [a, b], where c > 1. The number of elements
in Λ is no more than logc(b/a) = ln(b/a)/ln(c). Using the union bound once more, and with

δi =
ln(b/a)/ln(c)

δ , the PAC-Bayes bound holds for all λ ∈ Λ with probability at least 1− δ. For any
λ ∈ [a, b], there exists a λ′ ∈ Λ with λ′ ≤ λ ≤ cλ′. We can evaluate the bound at this λ′ and then
upper bound the terms containing λ′ with terms containing λ. We then have that with probability
at least 1− δ

R(Q) ≥ rIS(Q,DT )− min
λ∈[a,b]

{
λ(e− 2)

TϵT
+
c
(
DKL(Q||P ) + ln

(
ln(b/a)/ln(c)

δ

))
λ

}
. (3.41)

If the value of λ that optimises the bound in Equation (3.41) is in [a, b], then the bound can be
rewritten as

R(Q) ≥ rIS(Q,DT )− (1 + c)

√√√√(e− 2)
(
DKL(Q||P ) + ln

(
ln(b/a)/ln(c)

δ

))
TϵT

.

This bound is the same as the bound in Equation 3.40, except that there is a factor of 1+ c instead
of 2 in front of the KL divergence penalty and ln(1/δ) has been replaced with ln( ln(b/a)/ln(c)δ )). For
best results, we need to choose a and b such that the optimal λ is in [a, b], but ln(b/a) is not too
large. We should choose c such that 1 + c is close to 2 and 1/ln(c) is small. To choose a suitable a
and b, we can lower and upper bound any data-dependent terms in the equation for the optimal λ∗,
such as DKL(Q||P ) in Equation 3.39. With a =

√
TϵT ln(1/δ)/(e− 2) and b = TϵT , and following

Seldin et al. [161], one can obtain the following theorem.
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Theorem 3.29 (PAC-Bayes Bernstein Bound with a Geometric λ Grid [161]). For any δ ∈ (0, 1),
any prior P ∈ P(Π) and any c > 1, with probability at least 1− δ, simultaneously for all Q ∈ P(Π)
that satisfy √

DKL(Q||P ) + ln(ν/δ)

T (e− 2)V IS(Q,DT )
≤ ϵT ,

we have

R(Q) ≥ rIS(Q,DT )− (1 + c)

√
(e− 2) (DKL(Q||P ) + ln(ν/δ))

TϵT
,

and for all other Q ∈ P(Π) with the same probability, we have

R(Q) ≥ rIS(Q,DT )− 2
DKL(Q||P ) + ln(ν/δ)

TϵT
,

where ν = ln(
√
TϵT (e− 2)/ln(1/δ))/ln(c).

We believe that Langford and Caruana [100] were the first to use a geometric grid. This approach
can be extended to infinite (but countable) grids, which allows us to optimise λ over an interval
[a,∞). For example, see [38] or [161]. One can use the same techniques to optimise the clipping
parameter τ in any of the PAC-Bayes bounds for the CIS estimate from Section 3.4.2. London and
Sandler [115] proved a variant of the PAC-Bayes bound kl bound for the CIS estimate where τ can
be optimised over the interval (0, 1).

3.7 Experimental Comparison

In this section, we compare the values and properties of the presented PAC-Bayes bandit bounds.
In Section 3.7.1, we describe the benchmark tasks on which we evaluate the bounds. Then, we
discuss insights gained from our experiments. In Section 3.7.2, we compare the cumulative regret
bounds. In Section 3.7.3, we compare the reward bounds.

3.7.1 Benchmarks

We use three benchmark tasks: one MAB problem and two CB problems.

MAB Binary Benchmark

The first benchmark is a multi-armed bandit problem with a finite set of actions A = {1, . . . ,K}.
The rewards are always either 0 or 1, and the reward distribution for action ai is a Bernoulli
distribution with parameter pi. The Bernoulli parameters pi are drawn uniformly from the interval
[0, 0.8] and one action always has pi = 0.8. For the policy class Π, we use the set of all deterministic
policies, so Π = A. We report results averaged over several instances of this problem, with different
randomly generated Bernoulli parameters.
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CB Binary Linear Benchmark

The next benchmark is a contextual bandit problem where the optimal policy is a linear function
of the state. The set of states is S = Rd and the set of actions is A = {1, . . . ,K}. The state
distribution PS is a standard Gaussian distribution. The rewards are either 0 or 1. When creating
an instance of this problem, we sample a linear classifier

f(s; θ∗) = argmax
a∈{1,...,K}

{⟨s, θ∗⟩a} .

The weight matrix θ∗ ∈ Rd×K is drawn from a standard Gaussian distribution. ⟨s, θ∗⟩a is the ath
element of ⟨s, θ∗⟩. For a given state s and action a, if a = f(s; θ∗), then the reward is drawn
from a Bernoulli distribution with parameter 0.8. Otherwise, the reward is drawn from a Bernoulli
distribution with parameter 0.2. For the policy class Π, we use

Π =

{
πθ(a|s) =

exp(⟨s, θ⟩a)∑
a′ exp(⟨s, θ⟩a′)

∣∣∣∣θ ∈ Rd×K

}
.

This policy class contains all linear softmax policies.

CB Classification Benchmark

For the final benchmark task, we turned four classification data sets found on OpenML [179] and
the UCI Machine Learning Repository [54] into contextual bandit problems. The states are the
covariates of the classification problem, the actions are predicted class labels and the rewards are
1 if the action matches the true class label and 0 otherwise. In the resulting contextual bandit
problems, S ⊆ Rd, where d is between 7 and 64, and A = {1, . . . ,K}, where K is 10 or 11. See
Appendix A.2.1 for more information about the data sets used. For the policy class, we use multi-
layer perceptrons with two hidden layers of 200 units each. The final layer has a softmax activation
function and the remaining layers have the Elu activation function [45] with α = 1.

3.7.2 Regret Bounds

In Section 3.5, we saw several PAC-Bayes cumulative regret bounds for certain (online) multi-
armed bandit algorithms. We now evaluate these bounds and algorithms as well as the PAC-Bayes
cumulative regret bound that would be possible if the improved bound on the variance of the IS
estimate suggested by Seldin et al. [160] was proven for EXP3.

In the MAB Binary benchmark, with K = 10, we compared the multi-armed bandit algorithms de-
scribed in Equation 3.23 with several settings of γt and ϵt. Motivated by the PAC-Bayes Hoeffding-
Azuma cumulative regret bound, we tested ϵ-greedy with ϵt = min(t−1/4K−1/2, 1/K) and an EXP3-
like algorithm with γt = t1/4K−1/2

√
ln(K) and ϵt = min(t−1/4K−1/2, 1/K). We call these algo-

rithms HA ϵ-greedy and HA EXP3 respectively. Motivated by the PAC-Bayes Bernstein cumulative
regret bound, we tested ϵ-greedy with ϵt = min(t−1/3K−2/3, 1/K) and an EXP3-like algorithm with
γt = t1/3K−1/3

√
ln(K) and ϵt = min(t−1/3K−2/3, 1/K). We call these algorithms Bern ϵ-greedy

and Bern EXP3 respectively. Finally, we run (standard) EXP3 and the UCB1 algorithm [21] for
comparison.
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We evaluate each cumulative regret bound with δ = 0.05. For HA ϵ-greedy and Bern ϵ-greedy,
the ln(K)/γt terms in their cumulative regret bounds (Theorem 3.14 and Theorem 3.15) can be
removed, so we report different bound values for the ϵ-greedy and EXP3-like variants.

Figure 3.2: Comparison of the MAB algorithms and bounds in the MAB Binary benchmark with
K = 10. The left plot shows the average cumulative regret plus/minus 1 standard deviation for
each algorithm. The right plot shows the cumulative regret bounds, each with δ = 0.05. The
EXP3 bound is the cumulative regret bound that would be possible if the improved bound on the
variance, suggested by Seldin et al. [160], was proven. The trivial bound assumes maximum regret
(of 1) at each round.

Message 1. The multi-armed bandit algorithms motivated by the PAC-Bayes Hoeffding-Azuma
and Bernstein cumulative regret bounds all performed poorly compared to EXP3 and UCB1.

Figure 3.2 shows both the actual cumulative regret (left) and the PAC-Bayes bounds on the cu-
mulative regret (right) over 100000 steps. Surprisingly, EXP3 had very similar cumulative regret
to UCB1. HA EXP3, HA ϵ-greedy, Bern EXP3 and Bern ϵ-greedy all had much higher cumulative
regret. The PAC-Bayes cumulative regret bounds for each of these algorithms were loose, each
being approximately a factor of 10 above the actual cumulative regret. On the bright side, the
PAC-Bayes Bernstein regret bounds (blue) were far below the trivial regret bound at T = 100000.
Note that the PAC-Bayes Hoeffding-Azuma regret bounds (green) would eventually drop below
the trivial bound for large enough T . While the hypothetical PAC-Bayes bound for EXP3 is much
lower than the other bounds, it is still quite far above the actual cumulative regret. The average
cumulative regret for EXP3 at T = 100000 was roughly 1100, whereas the bound was roughly
15000.

Message 2. The PAC-Bayes Bernstein cumulative regret bound was non-vacuous for T > 20000,
but both the Hoeffding-Azuma and Bernstein cumulative regret bounds were quite loose. If the
improved bound on the variance of the IS estimate suggested by Seldin et al. [160] was proven for
EXP3, then a much better (though still not really tight) PAC-Bayes cumulative regret bound would
be possible.
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3.7.3 Reward Bounds

In this section, we present our observations about the PAC-Bayes reward bounds for the IS and CIS
estimates. Since we are not aware of a bound on the bias term in the Efron-Stein WIS bound, we
only evaluate it in Appendix A.3.1, assuming the bias is 0. We compare the bounds in the (offline)
MAB Binary and CB Binary Linear benchmarks. In each experiment we optimise each bound with
respect to the posterior Q and then report the value of the bound and the expected reward for
this Q. This allows us to compare the best possible value of each bound as well as which bound
works the best as a learning objective. For details about how we optimise the various bounds with
respect to Q and then evaluate them, see Appendix A.2.2.

We always use a data set of size T = 1000 in the MAB Binary benchmark and T = 10000 in the
CB Binary Linear benchmark. Unless stated otherwise, we use K = 10 for the MAB benchmark,
we use d = 10 and K = 10 for the CB benchmark, and the data set is generated using a uniform
behaviour policy. At the end of Section 3.7.3, motivated by our observations, we evaluate a new
offline PAC-Bayesian bandit algorithm in the CB Classification benchmark.

Insights About Different Bounds

We first investigate which of the PAC-Bayes bounds available for the IS and CIS estimates is best.
We varied the number of actionsK and the number of dimensions d of the state vector to investigate
how each of the bounds scales with K and d. In the MAB benchmark, K varied from 2 to 50. In
the CB benchmark, we ran the experiment twice. First, d was fixed at 10 and K varied from 2 to
50. Then, K was fixed at 10 and d varied from 2 to 50.

Message 3. The PAC-Bayes kl−1 bound gives the greatest lower bound on the expected reward.
The posterior learned by maximising the kl−1 bound achieves the highest expected reward.

Figure 3.3: The bound value and expected reward for each bound in the MAB Binary benchmark.
The number of actions K varies from 2 to 50 along the x axes.

In Figure 3.3 and Figure 3.4, we observe that increasing the number of actions causes the bound
values to decay rapidly. As one would expect, due to its improved dependence on ϵT , the Bernstein
bound decays at a much slower rate than the Hoeffding-Azuma and Pinsker bounds. The kl−1

bound scales up the best to large numbers of actions. As seen in Figure 3.5, increasing the number
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of dimensions of the states appeared to have less effect on the bound values. The PAC-Bayes kl−1

bound consistently gave the greatest bound values and yielded posteriors with the greatest reward.

Figure 3.4: The bound value and expected reward for each bound in the CB Binary Linear bench-
mark. The number of dimensions of the states d is fixed at 10 and the number of actions K varies
from 2 to 50 along the x axes.

Figure 3.5: The bound value and expected reward for each bound in the CB Binary Linear bench-
mark. d varies from 2 to 50 along the x axes and K is fixed at 10.

Insights About Clipping

In this section, we compare the PAC-Bayes kl−1 bound for the IS and CIS estimates. Since clipping
affects the importance weights, which are determined by the behaviour policy, we test the bounds
with several behaviour policies to try and identify if and when clipping is helpful. First, we use a
uniform behaviour policy. Next, we use an informative behaviour policy. In the MAB benchmark
the informative policy was an ϵ-smoothed Gibbs policy.

binf(a) ∝ e10R(a), b̃inf(a) = (1−Kϵ)binf(a) + ϵ.

In the CB benchmark, the informative behaviour policy was another ϵ-smoothed policy.

binf(a|s) ∝ e⟨s,θ
∗⟩a , b̃inf(a|s) = (1−Kϵ)binf(a|s) + ϵ.
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θ∗ is the weight matrix of the unknown linear classifier that generates the rewards. Finally, we use
a randomly generated behaviour policy. In the MAB benchmark, the random behaviour policy was
an ϵ-smoothed probability vector drawn randomly from a symmetric Dirichlet distribution with
α = 1. In the CB benchmark, the behaviour policy was an ϵ-smoothed linear softmax policy with a
weight matrix θ drawn randomly from a standard Gaussian distribution. For both the informative
and random behaviour policies, we used ϵ = 0.01.

Figure 3.6: The expected reward (blue) and bound value (red) for each estimate in the MAB and
CB benchmarks with a uniform behaviour policy.

Figure 3.7: The expected reward and bound value for each estimate in the MAB and CB benchmarks
with an informative behaviour policy.

Message 4. Using the CIS estimate instead of the IS estimate can improve both the bound value
and the expected reward of the learned posterior when the behaviour policy is non-uniform.

Comparing Figure 3.6 and Figure 3.7, we see that the PAC-Bayes kl−1 bound for the IS estimate
yields a lower bound value and lower expected reward with the informative behaviour policy than
with the uniform behaviour policy. When the behaviour policy was uniform, the bound for the CIS
estimate was no better than the bound for the IS estimate. However, when the behaviour policy
was non-uniform, and particularly when it was informative, the kl−1 bound for the CIS estimate
yielded greater bound values and greater expected reward.
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Figure 3.8: The expected reward and bound value for each estimate in the MAB and CB benchmarks
with a random, non-uniform behaviour policy.

Insights About Choosing the Prior

In this section, we evaluate the presented methods for choosing the prior by using them to set the
prior in a PAC-Bayes bound for the IS estimate. For the prior selection methods that work with
any PAC-Bayes bound, we use them with the kl−1 bound, since this appeared to be the best in our
earlier experiments.

Figure 3.9: The expected reward (blue) and bound value (red) for each bound in our comparison
of methods for choosing the prior. DP is the differentially private prior, DS is the distribution
stability bound, LB is the localised Bernstein bound and HAEG is the Hoeffding-Azuma Empirical
Gibbs bound.

In the MAB benchmark, the bounds we compared are: the kl−1 bound with a uniform prior
(Theorem 3.5), the kl−1 bound with a prior learned using a subset of the data (Theorem 3.18),
the kl−1 bound with a differentially-private prior (Theorem 3.20), the kl−1 Lever bound (Theorem
3.21), Oneto et al.’s distribution stability bound (Theorem 3.22), the localised PAC-Bayes Bernstein
bound (Theorem 3.25) and the PAC-Bayes Hoeffding-Azuma Empirical Gibbs bound (Theorem
3.27). We do not evaluate the kl hypothesis sensitivity bound (Theorem 3.24) or the kl London
and Sandler bound (Theorem 3.26) because we are not aware of a suitable learning algorithm with
known hypothesis sensitivity coefficients for the first or a suitable convex and β-Lipschitz function
L for the second. We compare the same bounds in the CB benchmark, but without the localised
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PAC-Bayes Bernstein bound or the PAC-Bayes Hoeffding-Azuma Empirical Gibbs bound. This is
because we cannot calculate DKL(Q||PβrIS) for the linear softmax policy class. In Appendix A.2.3,
we describe how each of these bounds was implemented.

Message 5. A data-dependent prior learned using a subset of the data appears to be the best way
to set the prior.

Figure 3.9 shows the expected reward and bound values for the bounds we compared. In the MAB
benchmark, none of the bounds with data-dependent or distribution-dependent priors achieved
higher reward or higher bound values than the kl−1 bound with a uniform prior. In this problem,
and with a uniform prior, DKL(Q||P ) ≤ ln(K). Since this is already small (relative to ln(1/δ)), it
not so surprising that the more sophisticated priors did not help. The localised Bernstein bound
and the Hoeffding-Azuma Empirical Gibbs bound were both greatest when β = 0. With this choice
of β, the empirical Gibbs prior PβrIS is a uniform prior. The distribution stability bound and the
Hoeffding-Azuma Empirical Gibbs bound were both vacuous, with average values of −3.613 and
−5.608 respectively.

In the CB benchmark, the kl−1 bound with a prior learned from a subset of the data had a greater
expected reward and bound value compared to the kl−1 bound with a standard Gaussian prior.
With the η-differentially private prior, we found that as soon as η is large enough that the prior is
informative, the η-dependent penalty terms become large enough to offset this benefit. The bound
value was greatest when η was very close to 0, and we observe that the expected reward and bound
value for the η-DP prior and the uninformative prior are almost the same. With the Lever and
distribution stability bounds for the Gibbs posterior PβrIS , we found that when β is large enough
for PβrIS to have large empirical reward, the bounds on DKL(PβrIS ||PβR) are large enough to offset
this. Consequently, these two bounds were greatest when β was small, resulting in underfitting,
low expected reward and low bound values. The average bound value for the distribution stability
bound was -3.807. Our results suggest that using a subset of the data to learn a prior appears to
be the best way to set the prior, at least for large enough policy classes.

Insights About Choosing Bound Parameters

We compare the methods presented in Section 3.6.2 for approximately optimising PAC-Bayes
bounds with respect to their parameters. We use each method to set the λ parameter of the
rIS PAC-Bayes Bernstein bound. In both the MAB and CB benchmarks, we compare the Bern-
stein bound with λ learned using a subset of the data (Theorem 3.28) and the Bernstein bound
with λ optimised over a geometric grid (Theorem 3.29).

We compare the grid bound with several choices of the grid parameter c ∈ {1.1, 1.2, 1.5}. We
also compare against some baselines: the kl−1 bound (Theorem 3.5), the Bernstein bound with
a fixed value of λ (Theorem 3.6) and the idealised Bernstein bound with the optimal choice of λ
(Equation (3.40)). For the fixed value of λ, we use λ =

√
TϵT ln(1/δ)/(e− 2), which is equal to the

optimal value when DKL(Q||P ) = 0. The kl−1 bound represents the best parameter-free bound, the
Bernstein bound with a fixed λ represents a naive choice of λ, and the idealised Bernstein bound
is the best bound we could hope to achieve by optimising λ.

In Figure 3.10, we can see that in both the MAB and CB benchmarks, the sample splitting λ
and the grid λ’s all yield almost identical expected reward and bound values. We find that both
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methods of approximately optimising the Bernstein bound w.r.t. λ give worse bound values than
the fixed data-independent choice of λ. Surprisingly, the fixed λ is almost as good as the optimal
λ.

Figure 3.10: The expected reward (blue) and bound value (red) in our comparison of the methods
for choosing the λ parameter of the PAC-Bayes Bernstein bound. B is the Bernstein bound with
a fixed choice of λ, BO is the (invalid) Bernstein bound with the optimal λ, BS is the Bernstein
bound with λ learned using a subset of the data and G 1.1, G 1.2 and G 1.5 are the Bernstein
bound with λ optimised over a geometric grid with c = 1.1, c = 1.2 and c = 1.5.

In Appendix A.3.2, we briefly explore why the fixed value of λ was almost as good as the optimal
value. It turns out that whenever T is large enough for the Bernstein bound to be non-vacuous for
some value of λ, the minimum of the Bernstein bound with respect to λ is flat, which means that
any reasonable data-independent guess for λ is almost as good as the optimum value.

A Method For Offline Bandits

Using the insights gained from the previous experiments, we propose a method for offline contextual
bandit problems and we test it in the Contextual Bandit Classification problem where the policy
class is a set of neural networks.

For the first step of our method, we use the first half of the training data D1:T/2 to learn a diagonal
Gaussian prior over the neural network weights θ by maximising

E
θ∼PD

[
rIS(πθ, D1:T/2)

]
− βDKL(PD||P ) (3.42)

with respect to PD. πθ is a neural network with weights θ. P is a standard Gaussian distribution.
To choose β, we split D1:T/2 into a training set Dtr and a validation set Dval. We learn diagonal

Gaussian priors by maximising Equation 3.42 for β ∈ {10−k|k ∈ {1, . . . , 6}}. We choose the value
of β where the resulting prior PD maximises Eθ∼PD

[rIS(πθ, Dval)]. Next, we learn the clipping
parameter τ . With PD fixed, and using the first half of the training data, we optimise the following
objective with respect to τ :

1

τ
kl−1

(
τrCIS(PD, D1:T/2),

ln(
√
2T/δ)

T/2

)
.
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This approximates the value of τ that would be optimal if we were to use the posterior Q = PD.
Now that we have our data-dependent prior PD and data-dependent τ , we learn the posterior by
maximising the kl−1 bound with respect to Q using the second half of the training data.

1

τ
kl−1

(
τrCIS(Q,DT/2+1:T ),

DKL(Q||PD)) + ln(
√
2T/δ)

T/2

)
. (3.43)

Finally, we evaluate the bound (Equation 3.43) at the learned posterior, using the second half of
the training data and the data-dependent PD and τ .

Figure 3.11: The expected reward (solid bars) and bound value (striped bars) for our proposed
offline bandit algorithm (blue), the TPOEM baseline (green) and the TL2 baseline (red) in the CB
classification benchmark.

We compare the expected reward and bound values of our method against two baselines. The first
baseline is inspired by the POEM algorithm and PAC bound by Swaminathan and Joachims [169].
The POEM PAC bound uses covering numbers to measure the complexity of the policy class. Based
on the covering number bounds for neural networks by Anthony and Bartlett [17], we expect that
the original POEM PAC bound is vacuous for the CB Classification benchmark with our neural
network policy class. Therefore, for a tougher comparison, we compare our proposed method to a
test set bound inspired by the original POEM bound. We call this TestPOEM (TPOEM). Like the
original POEM algorithm, it uses the sample variance of the CIS estimate to regularise the policy
selection. We also compare against a second baseline that is similar to TPOEM, except it uses the
ℓ2 norm of the neural network weights to regularise the policy selection. For TPOEM and TL2,
we use τ = 1/K since in Section 3.7.3 we saw that this was the best choice for uniform behaviour
policies and a good choice for the non-uniform behaviour policies.

Message 6. Our proposed PAC-Bayes offline contextual bandit algorithm can learn neural net-
work policies that achieve competitive expected reward and can provide tighter reward bounds than
TPOEM and TL2.

We test our proposed method, TPOEM and TL2 in the CB Classification benchmark, first with
a data set drawn using a uniform behaviour policy and then with a data set drawn using a more
informative behaviour policy. For each CB Classification problem, we train a neural network
classifier using 10% of the original classification data set. The ϵ-smoothed class probabilities of these
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classifiers, with ϵ = 0.01, are the action probabilities of the informative behaviour policies. Figure
3.11 shows the expected reward and bound values for the three methods. When the behaviour
policy was uniform, our method (blue) learned policies with competitive expected reward while
providing greater bound values than TPOEM (green) and TL2 (red). When the behaviour policy
was informative, our method once again learned policies with competitive expected reward while
providing greater bound values on all except the drive diagnosis problem, where the bound value
for our method and TPOEM were comparable. The bound value for our method on the PenDigits
problem was remarkably tight: the expected reward was 0.94 and the bound value was 0.91.

3.8 Conclusion

We have surveyed and empirically evaluated the available PAC-Bayes reward and regret bounds
for bandit problems. In this section, we discuss our findings and highlight some open problems.

3.8.1 Findings

The results of our offline bandit experiments suggest that PAC-Bayes bounds are a useful tool for
designing offline bandit algorithms with performance guarantees. In Section 3.7, we saw that the
choice of bound, the choice of estimator, and the choice of the prior can each have a large impact
on both the performance of the learned policy and the tightness of the performance guarantee. In
Figure 3.11, we saw that a well-chosen bound, estimator and prior yields an offline bandit algorithm
with competitive performance and very tight performance guarantees - even when the policy class
is a set of neural networks. Similarly good performance guarantees with neural network-based
policies would certainly not be possible with algorithms such as POEM [169], which measure the
complexity of the policy class with covering numbers.

Our survey yields a less positive picture for existing online bandit algorithms. The cumulative regret
bounds presented in Section 3.5 had sub-optimal growth rates in T and the algorithms motivated
by these bounds performed poorly compared to EXP3 and UCB1. However, we believe that it
would be premature to dismiss PAC-Bayes as a tool for designing online bandit algorithms with
cumulative regret bounds. Rather, we believe that these less encouraging findings are indicative of
PAC-Bayesian bandit algorithms being a topic that deserves further exploration. In Section 3.8.2,
we describe several topics for future work that may lead to PAC-Bayesian online bandit algorithms
with improved cumulative regret bounds and improved empirical performance.

3.8.2 Outlook

Tighter PAC-Bayes Bounds For “Better” Estimators

It is known that the WIS estimate often achieves lower mean squared error than the IS estimate
[79]. However, the Efron-Stein PAC-Bayes reward bound for the WIS estimate was looser than
some of the reward bounds that used the IS estimate (see Figure A.1). Whether improved PAC-
Bayes bounds can be derived for the WIS estimate may be a key question to answer. In addition,
it may be worthwhile to investigate PAC-Bayes bounds for other improved reward estimates, such
as the doubly robust estimate [55].
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Improved cumulative regret bounds

The PAC-Bayes Bernstein cumulative regret bound from Thm. 3.15 has a sub-optimal growth rate
of O(T 2/3K1/3 ln(K)1/2) because it uses a loose upper bound on the variance of the IS estimate.
In a follow-up paper, Seldin et al. [163] used a more sophisticated bound on the variance of the
IS estimate to prove a high probability regret bound of order O(

√
TK) (ignoring log terms) for

EXP3. Investigating whether this more-sophisticated variance bound is compatible with PAC-
Bayes analysis is one path towards PAC-Bayesian bandit algorithms with improved cumulative
regret bounds.

Beyond policy search

Following the literature on PAC-Bayesian bandits, we have focused exclusively on policy search
methods, which directly learn a policy from data. However, PAC-Bayes bounds are compatible
with other approaches to bandits. We briefly describe two different kinds of bandit algorithms and
how PAC-Bayes bounds might be incorporated.

Broadly speaking, oracle-based bandit algorithms, such as Epoch-Greedy [102], ILOVETOCON-
BANDIT [6] and SquareCB [64], reduce bandit problems to supervised learning problems, such as
predicting the expected reward of each action. For example, SquareCB is a meta-algorithm that
turns any online regression algorithm into an online contextual bandit algorithm. In addition, if the
online regression algorithm has a regret bound for online regression with an optimal growth rate,
then the resulting online contextual bandit algorithm enjoys a cumulative regret bound with an
optimal growth rate. This is an appealing approach for designing PAC-Bayesian bandit algorithms
because it allows us to utilise PAC-Bayesian supervised learning algorithms, which are plentiful.
For instance, there are PAC-Bayesian algorithms for online regression problems (e.g. [66, 74]) that
are compatible with SquareCB.

Confidence bounds are a key ingredient of online bandit algorithms that follow the optimism in the
face of uncertainty principle (e.g.[21], [48]) and offline bandit algorithms that follow the pessimism
in the face of uncertainty principle (e.g. [142]). Upper/lower confidence bounds are estimates of the
expected reward for each action that, with high probability, are guaranteed to be above/below the
expected reward. In principle, PAC-Bayes bounds could be used to construct confidence bounds
suitable for bandits, though we are not aware of any in the literature. We believe that investigation
of PAC-Bayesian confidence bounds, as well as bandit algorithms that use them, is a fruitful
direction for future work.
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Chapter 4

PAC-Bayes-Style Algorithms for
Linear Bandits

In this chapter, we present PAC-Bayes-style algorithms with worst-case regret guarantees for the
stochastic linear bandit problem. The widely used “optimism in the face of uncertainty” principle
reduces a stochastic bandit problem to the construction of a confidence sequence for the unknown
reward function. The performance of the resulting bandit algorithm depends on the size of the con-
fidence sequence, with smaller confidence sets yielding better empirical performance and stronger
regret guarantees. In this chapter, we use a novel PAC-Bayes-style tail bound for adaptive martin-
gale mixtures to construct confidence sequences which are suitable for stochastic bandits. These
confidence sequences allow for efficient action selection via convex programming. We prove that
a linear bandit algorithm based on our confidence sequences is guaranteed to achieve competitive
worst-case regret. We also show that our confidence bounds are tighter than competitors, both
empirically and theoretically. Finally, we demonstrate that our tighter confidence bounds give
improved performance in several hyperparameter tuning tasks.

4.1 Introduction

The stochastic linear bandit problem is a generalisation of the classical multi-armed bandit problem
[147], which was seen in the previous chapter. In each round t of a stochastic linear bandit problem,
a learner chooses an action at and then receives a stochastic reward rt for its choice of action.
The expected value of each reward is a linear function ϕ(at)

⊤θ∗ of a known feature vector ϕ(at)
associated with the corresponding action, while θ∗ is unknown. The linear bandit problem has
attracted a great deal of attention because it is expressive enough to be a faithful model of many
real-world decision-making problems, such as news recommendation [111] and dynamic pricing [46],
yet it is simple enough to make theoretical analysis tractable.

A popular way to design algorithms for (sparse) linear bandits is to follow the principle of optimism
in the face of uncertainty. This principle states that we should choose actions as if the expected
reward function is as nice as plausibly possible. For linear bandits, the principle can be instantiated
with a confidence sequence Θ0,Θ1, . . . for the parameter vector θ∗ ∈ Θ of the expected reward
function. A confidence sequence is a sequence of subsets of the full parameter space Θ, which is
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Figure 4.1: The upper and lower confidence bounds of CMM-UCB (left), AMM-UCB (middle), and
OFUL [3] (right) for a test function linear in random Fourier features. The bounds from CMM-
UCB and AMM-UCB are visibly closer to the true function (dashed line) than those of OFUL. The
CMM-UCB confidence bounds are slightly tighter than the ones of AMM-UCB.

built iteratively as data becomes available and is constructed such that with high probability over
the observed data, θ∗ is contained in each confidence set Θt. One can then run an upper confidence
bound (UCB) algorithm, which at round t chooses an action at+1 = a by maximising the UCB
maxθ∈Θt

{
ϕ(a)⊤θ

}
.

The popularity of UCB algorithms stems from the fact that they come with worst-case regret
guarantees and often perform well in practice. However, the performance of a UCB algorithm is
intimately tied to the size of the confidence sets it uses. The smaller the subsets in the confidence
sequence, the better the regret bound and, perhaps more importantly, the better the algorithm
performs in practice.

Contributions. In this chapter, we develop a novel general-purpose tail bound for martingale
mixtures, which can be used to construct new confidence sequences. When we specialise our general
results to the linear bandit problem, the maximisation problem to compute the UCB is a convex
program. We maximize the UCB over actions via gradient-based methods, and investigate two
procedures for computing the UCB along with its gradient: (a) Convex Martingale Mixture UCB
(CMM-UCB): We employ a convex solver for the UCB maximisation and calculate its gradients
via differentiable convex optimisation [7]; (b) Analytic Martingale Mixture UCB (AMM-UCB): We
exploit weak Lagrangian duality to obtain an analytic upper bound on the UCB whose gradient
can be computed in closed-form or via standard automatic differentiation procedures.

Figure 4.1 highlights a key observation: both of our UCBs are tighter than those used in the state-
of-the-art OFUL algorithm [3] for stochastic linear bandits. We prove this claim in Section 4.7.1
and verify it empirically in Section 4.8.1. In Section 4.8.2, we evaluate CMM-UCB, AMM-UCB,
OFUL and several other linear bandit algorithms in several hyperparameter tuning problems. We
find that our tighter UCBs result linear bandit algorithms with better performance.

4.2 Related Work

Algorithms with regret guarantees have been developed for several variants of the stochastic linear
bandit problem. [48], [2] and [152] proposed algorithms for a linear bandit problem where the
action set is a fixed, possibly infinite subset of a finite-dimensional vector space. [20] and [42]
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proposed algorithms for linear bandit problems where the action set has finite cardinality, but may
change over time. [3] proposed the OFUL algorithm for linear bandit problems with a changing and
possibly infinite action set, which is essentially the same as the non-sparse linear bandit problem
that we investigate. We consider stochastic linear bandit problems where the reward function is
a composition of a possibly non-linear feature map and a linear function. This can be seen as a
restricted version of the stochastic kernelised bandit problem, where the kernel feature map is finite
dimensional. [168, 177, 41, 35, 155, 112] proposed algorithms with regret guarantees for various
kernelised bandit problems.

In the bandit literature, confidence sets and confidence bounds constructed from online (e.g. non-
i.i.d.) observation points for unknown linear functions have been proposed by [48, 152] and [3].
Online confidence sets/bounds for unknown functions in separable Hilbert spaces and reproducing
kernel Hilbert spaces (RKHSs) have been proposed by [168, 1, 95, 57, 128]. [153] derived online
confidence sets for unknown functions belonging to arbitrary function classes.

We use the term “mixture of martingales”, or martingale mixture, to refer to a martingale of the
form Ev∼P [Mt(v)], where (Mt(v)|t ∈ N) is a collection of martingales indexed by the variable v ∈ V.
Martingale mixtures can be traced back to [49, 148], and have been used to construct confidence
sequences since at least the work of [99]. Proofs of tail bounds for martingale mixtures typically
use the method of mixtures, which was first used by [149] and was later popularised by [50, 51].
Methods for martingale mixtures have seen renewed interest in the sequential testing literature
[81, 91, 141]. Examples of confidence sequences for bandits that use martingale mixtures include
the works of [3, 1, 95, 57, 128]. Unlike in these examples, we construct confidence sequences based
on adaptive martingale mixtures (Ev∼Pt [Mt(v)]|t ∈ N), where the mixture distribution Pt is refined
as more data is acquired with time t.

4.3 Problem Statement and Background

We consider a problem in which a learner plays a game over a sequence of T rounds, where T may
not be known in advance. In each round t, the learner observes an action set At and must choose an
action at ∈ At. The learner then receives a reward rt = ϕ(at)

⊤θ∗+ϵt. The feature map ϕ : A → Rd

is a known function that maps actions to d-dimensional feature vectors, where A =
⋃

tAt. θ
∗ ∈ Rd

is an unknown parameter with Euclidean norm bounded by some known B2 > 0, i.e. ∥θ∗∥2 ≤ B2.
ϵ1, ϵ2, . . . , ϵT are conditionally zero-mean σ-sub-Gaussian noise variables. These assumptions on θ∗

and ϵ1, ϵ2, . . . , ϵT are standard in the linear bandit literature, see e.g. [3].

The goal of the learner is to choose a sequence of actions that maximises the total expected re-
ward, which is equal to

∑T
t=1 ϕ(at)

⊤θ∗ after T rounds. We use cumulative regret, which is the
difference between the total expected reward of the learner and the optimal strategy, to evaluate
the learner. For a single round, we define the regret as ∆(at) = ϕ(a∗t )

⊤θ∗ − ϕ(at)
⊤θ∗, where

a∗t = argmaxa∈At
{ϕ(a)⊤θ∗}. After T rounds, the cumulative regret is ∆1:T =

∑T
t=1∆(at).

In the special case where At = {e1, . . . , ed} is the standard orthonormal basis of Rd and ϕ(a) = a,
we recover the standard multi-armed bandit problem. We focus mainly on linear bandit problems
where the action sets At are continuous subsets of RdA , although our regret analysis applies to any
action sets.
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Confidence Sequences. For any level δ ∈ (0, 1], a (1− δ)-confidence sequence for the parameter
vector θ∗ is a sequence Θ1,Θ2, . . . of subsets of Rd, such that each Θt can be calculated using the
data available just after reward rt is revealed (i.e., a1, r1, . . . , at, rt) and the sequence satisfies

Pa1,a2,...,
r1,r2,...,

[∀t ≥ 1 : θ∗ ∈ Θt] ≥ 1− δ.

A confidence sequence Θ1,Θ2, . . . is thus a sequence of data-dependent confidence sets such that
with high probability over the the random actions and rewards, θ∗ ∈ Θt holds for all t ≥ 1
simultaneously. We remark that the confidence sets in this chapter (and the subsequent chapter)
are random closed sets in the sense of Definition 1.1.1 of [126], which implies that the event θ ∈ Θt

is measurable for any θ ∈ Rd. In other words, given the data a1, r1, . . . , at, rt, we can always say
whether any given θ is in Θt.

4.4 UCB Algorithms for Linear Bandits

We describe here how to transform confidence sets for θ∗ into a UCB algorithm for the linear bandit
problem. Such algorithms have appeared under various names, such as LinRel [20], LinUCB [111]
and OFUL [3]. We refer to this meta algorithm as LinUCB, and give its pseudo-code in Algorithm
1. When we run LinUCB with our confidence sets, we call this algorithm CMM-UCB or AMM-UCB
(see Section 4.6).

Algorithm 1: LinUCB

for t = 0, 1, 2, . . . do
Construct a confidence set Θt from {(ak, rk)}tk=1

Observe next action set At+1

Play next action at+1 = argmaxa∈At+1
{UCBΘt(a)}

Observe next reward rt+1

end

In each round t, the first step is to construct a confidence set Θt from the previous observations
{(ak, rk)}tk=1. If θ

∗ ∈ Θt with high probability, then for any action a,

UCBΘt(a) := max
θ∈Θt

{ϕ(a)⊤θ} (4.1)

is an upper confidence bound (UCB) on ϕ(a)⊤θ∗. Taking minθ∈Θt in (4.1) yields the lower con-
fidence bound LCBΘt(a). Once a confidence set Θt has been constructed and the next action set
At+1 has been observed, the LinUCB algorithm chooses the action

at+1 = argmax
a∈At+1

{UCBΘt(a)} , (4.2)

which maximises the UCB. The remaining challenge lies in the construction of the confidence sets.
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4.5 Confidence Sequences from Martingale Mixtures

In this Section 4.5.1, we develop a general-purpose tail bound for adaptive martingale mixtures.
Then, in Section 4.5.2, we specialise our general result to the stochastic linear bandit setting,
described in Section 4.3, and construct confidence sequences for the parameter θ∗.

4.5.1 General-Purpose Tail Bound for Adaptive Martingale Mixtures

We consider a general setting where we are given a filtration (Dt|t ∈ N), a sequence of adapted
random functions (Zt : R → R|t ∈ N), and a sequence of predictable random variables (λt|t ∈ N).
For a sequence of function values (gt|t ∈ N) (each gt is in R), we define the conditional cumulant
generating function ψt(gt, λt) as

ψt(gt, λt) := ln (E [exp(λtZt(gt))|Dt−1]) ,

where the expectation E is over Zt(gt) and λt (although λt is non-random when conditioned on
Dt−1). We use the shorthand gt := (g1, g2, . . . , gt) and λt := (λ1, λ2, . . . , λt). Let

Mt(gt,λt) = exp

(
t∑

k=1

λkZk(gk)− ψk(gk, λk)

)
. (4.3)

Mt(gt,λt) is a slight generalisation of the martingale used in Appendix B.1 of [153]. One can
show that for any sequence of function values (gt|t ∈ N), (Mt(gt,λt)|t ∈ N) is a martingale and
E[Mt(gt,λt)] = 1 (see Appendix B.1.1). We will now construct an adaptive martingale mixture.

We call a data-dependent sequence of probability distributions (Pt|t ∈ N) an adaptive sequence of
mixture distributions if: (a) Pt is a distribution over gt ∈ Rt; (b) Pt is Dt−1-measurable; (c) the
distributions are consistent in the sense that their marginals coincide, i.e.

∫
Pt(gt)dgt = Pt−1(gt−1)

for all t. These conditions on the sequence of distributions ensure that the martingale mixture
(Egt∼Pt [Mt(gt,λt)]|t ∈ N) is in fact a martingale. In Appendix B.1.1, we verify this and show that
E[Egt∼Pt [Mt(gt,λt)]] = 1. From here, we can use Ville’s inequality for non-negative supermartin-
gales [181] to obtain our general purpose tail bound.

Theorem 4.1 (Tail Bound for Adaptive Martingale Mixtures). For any δ ∈ (0, 1), any sequence
of predictable random variables (λt|t ∈ N), and any adaptive sequence of mixture distributions
(Pt|t ∈ N), with probability at least 1− δ,

ln

(
E

gt∼Pt

[Mt(gt,λt)]

)
≤ ln(1/δ) for all t ≥ 1. (4.4)

We provide a proof of this result in App. B.1.2. Note that if ψk(gk, λk) in (4.3) is replaced by an
upper bound on ψk(gk, λk), the statement of the theorem still holds. We could use the Donsker-
Varadhan change of measure inequality to re-write (4.4) as

sup
Q∈P(Rt)

{
E

gt∼Q

[
t∑

k=1

λkZk(gk)− ψk(gk, λk)

]
−DKL(Q||Pt)

}
≤ ln(1/δ). (4.5)
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This is a PAC-Bayes-style inequality which is time-uniform and uses a data-dependent mixture
distribution (or prior) Pt. Since the supremum in (4.5) is reached when Q(gt) ∝ Pt(gt)Mt(gt,λt),
we can view (4.4) as a PAC-Bayes-style inequality evaluated at this posterior Q. When we construct
our confidence sequence for linear bandits (see Section 4.5.2), we don’t need to introduce a posterior
Q via the Donsker-Varadhan change of measure inequality. However, we do use (4.5) in the proofs
of some of our regret bounds (see Lemma B.16 in Appendix B.4.2).

Theorem 4.1 is closely related to the general-purpose anytime-valid PAC-Bayes bound in Theorem
3.1 of [43]. Like the general-purpose bound in [43], (4.4) would also hold for any collection of non-
negative (super)martingales (Mt(gt,λt)|t ∈ N), indexed by gt and λt, which satisfies M0 ≤ 1. The
main difference is that we consider mixture distributions/priors over function values, which allows
us to derive PAC-Bayes-style inequalities with adaptive sequences of mixture distributions/priors.
PAC-Bayes bounds with somewhat similar adaptive sequences of priors have recently been proposed
by [74, 75].

4.5.2 Confidence sequences for stochastic linear bandits

We now specialise Theorem 4.1 to the stochastic linear bandit setting. For the filtration (Dt|t ∈ N),
we set Dt to be the σ-algebra generated by (a1, r1, . . . , at, rt, at+1). For reasons that will become
clear, we choose Zt(gt) = (gt − ϕ(at)

⊤θ∗)ϵt. Since Z(gt) is linear in the noise variable ϵt, ψt(gt, λt)
can be upper bounded using the sub-Gaussian property of ϵt. We have

ψt(gt, λt) = ln
(
E
[
exp

(
λt(gt − ϕ(at)

⊤θ∗)ϵt
)
|Dt−1

])
≤ λ2tσ

2(gt − ϕ(at)
⊤θ∗)2/2. (4.6)

With this upper bound on ψt(gt, λt), Theorem 4.1 implies that, with probability at least 1− δ

Egt∼Pt

[
exp

{
t∑

k=1

λk(gk − ϕ(ak)
⊤θ∗)(rk − ϕ(ak)

⊤θ∗)− σ2

2
λ2k(gk − ϕ(ak)

⊤θ∗)2

}]
≤ 1

δ
. (4.7)

Since Zf (gt) is linear in gt, this integral has a closed-form solution whenever the mixture distribution
is a Gaussian Pt = N (µt,T t). Although there is a closed-form solution for any predictable sequence
(λt|t ∈ N) (see Appendix B.2.1), we choose λt ≡ 1/σ2, which yields a relatively simple, convex

quadratic constraint for θ∗. Collecting the feature vectors in Φt :=
(
ϕ(a1), . . . , ϕ(at)

)⊤ ∈ Rt×d and
the rewards in the vector rt := (r1, . . . , rt)

⊤, we arrive at (see Appendix B.2.2)

∥Φtθ
∗ − rt∥22 ≤ (µt − rt)

⊤
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln

(
det

(
I +

T t

σ2

))
+ 2σ2 ln

1

δ
=: R2

MM,t.

(4.8)

This inequality has an attractive interpretation. At each step t of the bandit process, the (unknown)
ground-truth reward vector Φ⊤

t θ
∗ lies in a sphere around the observed reward vector rt, with

radius RMM,t. We can think of the mean vector µt as a prediction of the reward vector rt, given
the previous data a1, r1, . . . , at−1, rt−1, at. The covariance matrix T t can be thought of as the
uncertainty associated with the prediction µt. If the distance between µt and rt is close to 0 (i.e.,
µt is a good predictor of rt), then the quadratic “prediction error” term in (4.8) will be close to 0,
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and we can afford to choose T t to be close to zero to minimise the log determinant penalty. In this
situation, (4.8) can give a much tighter constraint than the naive bound ∼ tσ2, especially when σ
is a pessimistic upper bound on the true sub-Gaussian parameter. The naive bound follows from
the fact that ∥Φtθ

∗ − rt∥22 = ∥ϵt∥22, where ϵt = (ϵ1, . . . , ϵt).

Combining the constraint in (4.8) with our assumption ∥θ∗∥2 ≤ B2 yields our confidence sequence.

Corollary 4.2 (Martingale Mixture Confidence Sequence). For any adaptive sequence of mixture
distributions Pt = N (µt,T t), it holds with probability at least 1−δ that for all t ≥ 1 simultaneously
θ∗ lies in the set

Θℓ2
t =

{
θ ∈ Rd

∣∣∣∣ ∥Φtθ − rt∥2 ≤ RMM,t and ∥θ∥2 ≤ B2

}
. (4.9)

The boundaries of the constraints in (4.9) are d-dimensional ellipses, which means the set Θℓ2
t is

the intersection of two d-dimensional ellipses. The leftmost plot on the title page depicts Θℓ2
t for

the case when d = 2.

4.6 Martingale Mixture UCB Algorithms

In this section, we describe our CMM-UCB and AMM-UCB algorithms, which are two different
implementations of LinUCB (Algorithm 1) with our confidence sequence Θℓ2

t from Corollary 4.2.
Both of our algorithms require us to specify the mixture distributions Pt = N (µt,T t) and compute
the radius RMM,t, which appears in (4.9). We highlight some sensible choices for the mixture
distributions in Section 4.6.4 and describe how RMM,t can be computed efficiently in Section 4.6.5.

4.6.1 UCB Computation and Optimisation

To run the LinUCB action selection rule with our confidence sequence, we need to be able to
maximise UCB

Θ
ℓ2
t
(a) with respect to a. When we use our confidence sequence from Corollary 4.2,

the value of the UCB at the action a is the solution of the following convex optimisation problem.

UCB
Θ

ℓ2
t
(a) = max

θ∈Rd
ϕ(a)⊤θ s.t. ∥Φtθ − rt∥2 ≤ RMM,t and ∥θ∥2 ≤ B2. (4.10)

One can also obtain lower confidence bounds (LCBs) by replacing maxθ∈Rd with minθ∈Rd . If the
action sets have finite cardinality, UCB

Θ
ℓ2
t
(a) can be maximised by solving (4.10) for each a ∈ At

and then comparing the solutions.

If the action sets are continuous subsets of RdA , then exact maximisation of UCB
Θ

ℓ2
t
(a) is (in

general) infeasible. For example, consider the case when the feature map ϕ is linear in a. If this
is the case, UCB

Θ
ℓ2
t
(·) is the maximum over a set of linear functions, which is a convex function

of a (see Equation (3.7) in Section 3.2.3 of [32]). Since maximisation of a convex function is in
general NP-hard, exact maximisation of UCB

Θ
ℓ2
t
(a) is NP-hard when ϕ is linear. If ϕ is non-linear,

maximising UCB
Θ

ℓ2
t
(a) is still difficult in general.
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For this reason, when the action sets are continuous subsets of RdA , we approximately maximise
UCB

Θ
ℓ2
t
(a) via gradient-based local search (possibly augmented with several restarts). Note that

this requires that the feature map is differentiable. In summary, to (approximately) run the LinUCB
algorithm with discrete or continuous action sets, we must be able to: (a) compute UCB

Θ
ℓ2
t
(a); (b)

compute the gradient of UCB
Θ

ℓ2
t
(a) with respect to a.

4.6.2 Convex Martingale Mixture UCB Algorithm

Our Convex Martingale Mixture UCB (CMM-UCB) algorithm is based on computing (4.10) using
numerical convex (conic) solvers from the CVXPY library [52, 8]. Note that (4.10) is already
stated in a conic form, which is favourable for conic solvers [32]. Solving (4.10) numerically gives
the tightest UCBs (and LCBs) that can be achieved using our confidence sequence.

To compute the gradient of UCB
Θ

ℓ2
t
(a) with respect to the action a, we use recently developed

methods for differentiating conic programs at their optimum [7], which are implemented in the
cvxpylayers library.

When strong duality holds for (4.10), one could consider using numerical convex solvers to optimise
the Lagrangian dual function with respect to the Lagrange multipliers, which would also yield the
solution of (4.10). An advantage of this approach, which one could call Dual CMM-UCB, it that
the dual problem is a convex optimisation problem with only 2 variables, whereas the primal in
(4.10) has d variables. Unfortunately, the expression for the dual function (see Appendix B.3.1)
contains the inverse of a d×d matrix, so it may in fact be more efficient to solve the primal problem.

4.6.3 Analytic Martingale Mixture UCB Algorithm

Our Analytic Martingale Mixture UCB (AMM-UCB) algorithm uses an analytic upper bound on
the solution of (4.10). The resulting analytic confidence bounds are looser than the numerical
confidence bounds used by CMM-UCB, but are cheaper to evaluate and maximise. Theorem 4.3
states our upper bound on the solution of (4.10).

Theorem 4.3 (Analytic UCB). For all α > 0, we have

UCB
Θ

ℓ2
t
(a) = max

θ∈Θℓ2
t

{
ϕ(a)⊤θ

}
≤ ϕ(a)⊤θ̂α,t +RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a), (4.11)

where θ̂α,t =
(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt,

R2
AMM,t = R2

MM,t + αB2
2 − r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt.

In addition, if Θℓ2
t has an interior point, then for all α > 0, we have

UCB
Θ

ℓ2
t
(a) = max

θ∈Θℓ2
t

{
ϕ(a)⊤θ

}
= min

α>0

{
ϕ(a)⊤θ̂α,t +RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a)

}
.

(4.12)

In Appendix B.3.1, we derive this analytic UCB by partial optimisation of the Lagrangian dual
function. Using strong duality, one can show that the analytic UCB minimised with respect to α is
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equal to UCB
Θ

ℓ2
t
(a). Due to the closed-form expression of the analytic UCB in (4.11), its gradient

with respect to a can be computed with standard automatic differentiation packages. Computing
the gradient (with respect to a) of the optimised analytic UCB in (4.12) is less straightforward,
because the optimal α will in general depend on a. Note that optimising α as in (4.12) is equivalent
to the Dual-CMM approach described in the previous section (although in (4.12) we have already
set one of the optimisation variables/Lagrange multipliers to its optimum value).

4.6.4 Choosing the Mixture Distributions

The mixture distributions in our confidence sequences play a role similar to the priors used in the
PAC-Bayes or luckiness [68, 69] frameworks. Our confidence sequences and regret bounds are valid
for any (Gaussian) choice of the mixture distributions, but if better mixture distributions are used,
then our confidence sequences will get smaller, the performance of our CMM-UCB and AMM-UCB
algorithms with get better and their regret bounds (see Section 4.7) will get tighter.

Choosing the mixture distributions used in CMM-UCB and AMM-UCB is therefore an important
design decision. In the remainder of this section, we first describe some standard choices for the
mixture distributions. The standard mixture distributions allow for more efficient computation of
the radius R2

MM,t (defined in (4.8). Then, we describe a general method for updating the mixture
distributions in a more data-dependent fashion, where the mean µt and covariance T t are refined
using previously observed rewards.

Standard Mixture Distributions. In order for a sequence of Gaussian mixture distributions
(N (µt,T t)|t ∈ N) to be a sequence of adaptive mixture distributions (as defined in Section 4.5.1),
we require: (a) µt and T t can only depend on a1, . . . , at and r1, . . . , rt−1; (b) the first t−1 elements
of µt must be equal to µt−1; (c) the upper left t − 1 × t − 1 block of T t must be T t−1; (d) T t

must be positive (semi-)definite. These conditions are all satisfied if we use a mean vector µt and
covariance matrix T t of the form

µt = [m(a1),m(a2), . . . ,m(at)]
⊤, T t =


k(a1, a1) k(a1, a2) · · · k(a1, at)
k(a2, a1) k(a2, a2) · · · k(a2, at)

...
...

. . .
...

k(at, a1) k(at, a2) · · · k(at, at)

 , (4.13)

where m : A → R is a mean function and k : A×A → R is a positive definite kernel function. Note
that the distribution N (µt,T t) is the marginal distribution of a Gaussian process (GP) [186] with
mean function m and kernel function k, at the actions a1, . . . , at.

For the linear bandit problem, in which we know that the ground-truth reward function values
ϕ(a1)

⊤θ∗, ϕ(a2)
⊤θ∗, . . . come from a linear reward function ϕ(·)⊤θ∗, it is natural to use a linear

mean function m(a) = ϕ(a)⊤θ0 and a linear kernel function k(a, a′) = ϕ(a)⊤Σ0ϕ(a
′) (where Σ0 is

symmetric and positive-definite), since this corresponds to a Gaussian process on linear functions.
By direct computation, the Gaussian mixture distribution with this m and k, and with µt and T t

as in (4.13), is Pt = N (Φtθ0,ΦtΣ0Φ
⊤
t ). When θ0 = 0 and Σ0 = I, we recover what we call the

standard mixture distributions Pt = N (0,ΦtΦ
⊤
t ).
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The mixture distribution Pt = N (Φtθ0,ΦtΣ0Φ
⊤
t ) can also be motivated using Bayesian principles.

Suppose that we believe, in a Bayesian sense, that θ∗ ∼ N (θ0,Σ0). This distribution over θ∗

induces a prior distribution over the vector of function values Φtθ
∗, which is N (Φtθ0,ΦtΣ0Φ

⊤
t ).

This viewpoint merits our decision to call Pt = N (0,ΦtΦ
⊤
t ) the standard mixture distributions,

since this corresponds to a standard Gaussian prior over θ∗.

Adaptive Mixture Distributions. The requirement that the sequence (N (µt,T t)|t ∈ N) is an
adaptive sequence of mixture distributions allows for more general choices of µt and T t than those
seen above. Here, we investigate a method for refining µt and T t based on the previously observed
actions and rewards. As before, m and k are any fixed mean and (positive definite) kernel function.
Each new row and column of T t is set using an adaptive kernel function kt−1. For β > 0, define

kt(a, a
′) := k(a, a′)− kt(a)

⊤ (Kt + βI)−1 kt(a
′),

where kt(a) = [k(a, a1), . . . , k(a, at)]
⊤ and Kt is the kernel matrix whose i, j-th element is k(ai, aj).

The covariance matrix T t of the mixture distribution at time t becomes

T t =


k0(a1, a1) k1(a1, a2) · · · kt−1(a1, at)
k1(a2, a1) k1(a2, a2) · · · kt−1(a2, at)

...
...

. . .
...

kt−1(at, a1) kt−1(at, a2) · · · kt−1(at, at)

 . (4.14)

The tth column and tth row of this matrix depend only on only a1, r1, . . . , at. Our motivation for
this choice of the kernel function is: (a) generalising the usual Bayesian GP posterior covariance,
one can show that if the kernel function k is positive definite, then T t is positive semi-definite; (b)
kt is the Bayesian GP posterior covariance function (with a Gaussian likelihood with variance β).
Each new element of µt is set by evaluating an adaptive mean function mt−1 at the latest action
at. Define

mt(a) := m(a)− kt(a)
⊤ (Kt + βI)−1 (mt − rt) .

The mean µt of the mixture distribution at time t becomes

µt = [m0(a1),m1(a2), . . . ,mt−1(at)]
⊤. (4.15)

The tth element, mt−1(at), depends on only a1, r1, . . . , at, so this is a valid choice for µt. Note that
mt is the Bayesian GP posterior mean function (again with a Gaussian likelihood with variance β).

4.6.5 Efficient Radius Computation

If we compute the squared radius R2
MM,t using the expression in (4.8), then we have to compute

the inverse and determinant of the t× t matrix I +T t/σ
2. We will now show that for any mixture

distribution of the form Pt = N (µt,ΦtΣ0Φ
⊤
t ), where Σ0 is symmetric and positive-definite, we can

re-write the expression for R2
MM,t such that we instead need to compute the inverse and determinant

of a d× d matrix.
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When Pt = N (µt,ΦtΣ0Φ
⊤
t ), the squared radius R2

MM,t is equal to

R2
MM,t = (µt − rt)

⊤
(
I +

ΦtΣ0Φ
⊤
t

σ2

)−1

(µt − rt) + σ2 ln

(
det

(
I +

ΦtΣ0Φ
⊤
t

σ2

))
+ 2σ2 ln(1/δ).

By using the Weinstein–Aronszajn identity, and then doing some algebra, we have

det

(
I +

ΦtΣ0Φ
⊤
t

σ2

)
= det

(
I +

Σ
1/2
0 Φ⊤

t ΦtΣ
1/2
0

σ2

)
= det(Σ0/σ

2) det
(
Φ⊤
t Φt + σ2Σ−1

0

)
.

Using Lemma B.6 with γ = σ2, v = µt − rt and M = ΦtΣ
1/2
0 , we have

(µt − rt)
⊤
(
I +

1

σ2
ΦtΣ0Φ

⊤
t

)−1

(µt − rt) = (µt − rt)
⊤(µt − rt)

− (µt − rt)
⊤ΦtΣ

1/2
0

(
Σ

1/2
0 Φ⊤

t ΦtΣ
1/2
0 + σ2I

)−1
Σ

1/2
0 Φ⊤

t (µt − rt)

= (µt − rt)
⊤(µt − rt)− (µt − rt)

⊤ΦtΣ
1/2
0

(
Σ

1/2
0

(
Φ⊤
t Φt + σ2Σ−1

0

)
Σ

1/2
0

)−1
Σ

1/2
0 Φ⊤

t (µt − rt)

= (µt − rt)
⊤(µt − rt)− (µt − rt)

⊤Φt

(
Φ⊤
t Φt + σ2Σ−1

0

)−1
Φ⊤
t (µt − rt).

The resulting expression for R2
MM,t is rather cumbersome, but the upshot is that we now (only) need

to compute the inverse and determinant of the d×dmatrix Φ⊤
t Φt+σ

2Σ−1
0 . Since, we compute R2

MM,t

at each round t, we can update the inverse of Φ⊤
t Φt + σ2Σ−1

0 incrementally using the Sherman-
Morrison formula [166]. The determinant of Φ⊤

t Φt + σ2Σ−1
0 can be updated incrementally using

the relation

det
(
Φ⊤
t Φt + σ2Σ−1

0

)
= det(Φ⊤

t−1Φt−1 + σ2Σ−1
0 )(1 + ϕ(at)

⊤(Φ⊤
t−1Φt−1 + σ2Σ−1

0 )−1ϕ(at)),

which can be found in Equation (6) in Lemma 11 of [3].

4.7 Theoretical Analysis

In this section, we analyse the tightness of our CMM-UCB and AMM-UCB confidence bounds
relative to the OFUL confidence bounds [3]. We also establish cumulative regret bounds for our
CMM-UCB and AMM-UCB algorithms. First, we state a data-dependent regret bound which illus-
trates how the radius of the analytic UCB from Sec. 4.6.3 influences the regret of both algorithms.
Then, we prove a data-independent regret bound which illustrates the worst-case growth rate of
the cumulative regret, with explicit dependence on the feature vector dimension d and the number
of rounds T . We begin by stating the assumptions (which are standard) under which our analysis
holds.

Assumption 4.4 (Sub-Gaussian noise). LetDk be the σ-algebra generated by (a1, r1, . . . , ak, rk, ak+1).
Each noise variable ϵk is conditionally zero-mean and σ-sub-Gaussian, which means

E [ϵk|Dk−1] = 0, and ∀λ ∈ R, E [exp(λϵk)|Dk−1] ≤ exp(λ2σ2/2).
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Assumption 4.5 (Bounded parameter vector). For some B2 > 0, ∥θ∗∥2 ≤ B2.

Assumption 4.6 (Bounded feature vectors). For some L2 > 0, ∥ϕ(a)∥2 ≤ L2 for all a ∈ A.

Assumption 4.7 (Bounded expected reward). For some C > 0, ϕ(a)⊤θ∗ ∈ [−C,C] for all a ∈ A.

We remark that to run our algorithms and evaluate the data-dependent regret bound in Theorem
4.8, we only need to know (upper bounds on) the sub-Gaussian parameter σ and the norm bound
B2. Note that Assumption 4.5 and Assumption 4.6 together imply that Assumption 4.7 must hold
with C ≤ L2B2. We nevertheless state it as a separate assumption because: (a) this is in line with
the conventions of other linear bandit analyses (e.g. Section 19.3 of [104]); (b) this leaves open the
possibility that a better (than L2B2) value for C is known.

4.7.1 OFUL vs AMM-UCB (and CMM-UCB)

For any α > 0 (in [3], what we call α is called λ), the OFUL UCB [3] states that

ϕ(a)⊤θ∗ ≤ ϕ(a)⊤θ̂α,t +ROFUL,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a),

where ROFUL,t = σ

√
ln

(
det

(
1

α
Φ⊤
t Φt + I

))
+ 2 ln(1/δ) +

√
αB2.

θ̂α,t is defined in (4.11). For any α > 0 and any δ ∈ (0, 1], this statement holds with probability
at least 1 − δ for all t ≥ 1 and all a ∈ At. By comparison, our AMM-UCB holds uniformly over
all t ≥ 0, all a ∈ At and all α > 0 (i.e., we could optimise the AMM-UCB with respect to α in a
data-dependent manner, which would yield our CMM-UCB).

The OFUL UCB is the same as our AMM-UCB, except that the radius quantity RAMM,t is re-
placed with ROFUL,t. The same is true for the LCBs of OFUL and AMM-UCB (with the same
radius ROFUL,t), so we only focus on the UCBs. In Appendix B.3.2, we show that for any history
a1, r1, a2, r2, . . . and any α > 0, we can chose a sequence of Gaussian mixture distributions (of the
form Pt = N (0, cΦtΦ

⊤
t ) for some c > 0) such that RAMM,t < ROFUL,t. This means that the UCBs

of our CMM-UCB and AMM-UCB algorithms are always better than the OFUL UCB.

Note that the mixture distributions which we use to prove this inequality are not necessarily the
the mixture distributions that minimise RAMM,t. With a better choice of the mixture distributions,
RAMM,t will be smaller and the gap between AMM-UCB and OFUL will be greater.

4.7.2 Data-Dependent Regret Bounds

Several authors [48, 3, 153] have shown that the cumulative regret of a UCB algorithm can be
upper bounded by the sum of the widths of the confidence sets or confidence bounds that it uses.
The width of a confidence set Θt at the action a is the difference between the UCB and the LCB
at a (i.e., maxθ∈Θt{ϕ(a)⊤θ}−minθ∈Θt{ϕ(a)⊤θ}). In App. B.4.1, we show that if a1, a2, . . . , aT are
the actions selected by our CMM-UCB algorithm, then

T∑
t=1

∆(at) ≤
T∑
t=1

max
θ∈Θℓ2

t−1

{ϕ(at)⊤θ} − min
θ∈Θℓ2

t−1

{ϕ(at)⊤θ}. (4.16)
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This gives a data-dependent cumulative regret bound for CMM-UCB. AMM-UCB has a similar
data-dependent cumulative regret bound. In App. B.4.1, we show that if a1, a2, . . . , aT are the
actions selected by our CMM-UCB algorithm, then

T∑
t=1

∆(at) ≤
T∑
t=1

AUCB
Θ

ℓ2
t−1

(at)−ALCB
Θ

ℓ2
t−1

(at), (4.17)

where AUCB
Θ

ℓ2
t
(a) is the right-hand-side of (4.11) and ALCB

Θ
ℓ2
t
(a) is the equivalent analytic LCB.

Since, the analytic UCB/LCB is an upper/lower bound on the numerical UCB/LCB, the bound in
Equation (4.17) also holds for the actions selected by CMM-UCB. By substituting in the expressions
for the analytic UCB/LCBs, we obtain the following data-dependent cumulative regret bound for
CMM-UCB and AMM-UCB.

Theorem 4.8. Suppose that assumptions 4.4-4.5 hold. For any adaptive sequence of mixture
distributions Pt = N (µt,T t), any δ ∈ (0, 1), any α > 0 and all T ≥ 1, with probability at least
1− δ, the cumulative regret of both CMM-UCB and AMM-UCB is bounded by

∆1:T ≤
T∑
t=1

2RAMM,t−1

√
ϕ(at)⊤

(
Φ⊤
t−1Φt−1 + αI

)−1
ϕ(at).

A proof is given in App. B.4.1. This regret bound tells us that if we choose an adaptive sequence
of mixture distributions Pt = N (µt,T t), such that the radii RAMM,t are small, then we can expect
to have small cumulative regret.

4.7.3 Data-Independent Regret Bounds

We now state a data-independent cumulative regret bound for the special case when the sequence
of mixture distributions is Pt = N (0, cΦtΦ

⊤
t ), and α = σ2/c, for any c > 0.

Theorem 4.9. Suppose that assumptions 4.4-4.7 hold. If for any c > 0, the sequence of mixture
distributions is Pt = N (0, cΦtΦ

⊤
t ), then for all T ≥ 1, with probability at least 1− δ, the cumulative

regret of both CMM-UCB and AMM-UCB (with α = σ2/c) is bounded by

∆1:T ≤ 2√
ln 2

max

{
C, σ

√
d ln

(
1+

cL2
2T

σ2d

)
+
B2

2

c
+2 ln

1

δ

}√
dT ln

(
1+

cL2
2T

σ2d

)
= O(d

√
T ln(T )).

Proof sketch. Choosing Pt = N (0, cΦtΦ
⊤
t ) and α = σ2/c means that the two quadratic terms

in R2
AMM,t cancel out. We then find a data-independent upper bound for the log det term in

R2
AMM,t. Following [3], the sum of norms

√
ϕ(at)⊤

(
Φ⊤
t−1Φt−1 + αI

)−1
ϕ(at) can upper bounded

using an elliptical potential lemma. The result is the data-independent bound in the statement of
the theorem.

Note that if we choose c ∝ B2, the dependence of the regret bound on B2 is improved from O(B2)
to O(

√
B2). In App. B.4.2, we give a proof of this special case. In addition we also treat a more
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general case when the sequence of mixture distributions is Pt = N (Φtθ0, σ
2
0ΦtΦ

⊤
t ) and α is any

positive number. Focusing on the dependence on d and T , this regret bound (and the more general
one in App. B.4.2) is at most O(d

√
T ln(T )), which matches OFUL and is minimax optimal up to

the ln(T ) factor. If (upper bounds on) σ2, B2, L2 and C are known, then we can evaluate this
cumulative regret bound before running the algorithm.

4.8 Experiments

We evaluate our CMM and AMM confidence bounds and our CMM-UCB and AMM-UCB linear
bandit algorithms. In our experimental evaluation, we want to compare the tightness of our UCBs
against UCBs for linear (reward) functions. We also want to compare the empirical performance of
our CMM-UCB and AMM-UCB algorithms against other linear bandit algorithms with comparable
worst-case regret guarantees.

4.8.1 Upper and Lower Confidence Bounds

First, we evaluate our CMM and AMM confidence bounds. We evaluate their tightness and observe
how the choice of the mixture distribution affects the resulting confidence bounds.

Compared Methods. We evaluate the following upper/lower confidence bounds: (a) CMM-
UCB: our numerical UCBs/LCBs from Section 4.6.2; (b) AMM-UCB: our analytic UCBs/LCBs
from Theorem 4.3; (c) OFUL: the UCBs/LCBs used by the OFUL algorithm [3]; (d) Bayes: a
Bayesian credible interval constructed from the Bayesian posterior for linear regression with a
Gaussian prior and likelihood (see Appendix B.5.1 for details).

Experimental Setup. We conduct experiments on randomly generated linear functions of the
form f(x) = ϕ(x)⊤θ∗, with inputs x ∈ RdX and θ∗ ∈ Rd. In each experiment, θ∗ is drawn from
a standard Gaussian distribution and if necessary scaled down to ∥θ∗∥2 ≤ 10 =: B2. For the
feature map ϕ : RdX → Rd, we use Random Fourier Features (cf. Algorithm 1 of [140]). We
investigate the properties of upper and lower confidence bounds constructed from random data sets
{(xt, yt)}Tt=1, where yt = ϕ(xt)

⊤θ∗+ ϵt, ϵt ∼ N (0, σ2) and σ = 0.1. Unless stated otherwise, we use
the standard mixture distributions Pt = N (0,ΦtΦ

⊤
t ) for our CMM and AMM confidence bounds.

For our AMM confidence bounds and OFUL, we always choose α = σ2. For each confidence bound,
we set δ = 0.01.

UCB/LCB Tightness. Figure 4.1 shows the data {(xt, yt)}Tt=1 and the CMM, AMM and
OFUL UCBs/LCBs for a randomly generated linear function with dX = 1 and d = 20. In
this example, the confidence bounds of CMM-UCB are slightly tighter than those of AMM-
UCB, which are considerably tighter than those of OFUL. Next, we investigate the tightness
of the confidence bounds for functions with higher dimensional inputs (dX = 10), a range of
data set sizes (T ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}) and a range feature vector dimensions
(d ∈ {1, 2, 5, 10, 20, 50, 100}). For each T and d, we sample a random feature map ϕ and weight
vector θ∗ of appropriate size. Then, we sample random training data {(xt, yt)}Tt=1 and random test
points {x′

t}100t=1, where xt and x′
t are drawn uniformly from the dX -dimensional unit hypercube.

Finally, we use the training data to construct confidence bounds with each method and calculate
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the average width at the test points. Figure 4.2 shows the average width of the CMM, AMM and
OFUL confidence bounds with: d = 10 and varying T (left); T = 100 and varying d (right). We
observe the same pattern at every d and T : our CMM confidence bounds are the tightest, followed
by AMM and then OFUL. These results agree with our theoretical comparison of the CMM, AMM
and OFUL confidence bounds (see Section 4.7.1).

Figure 4.2: The confidence bound width for different data set sizes T and feature dimensions d.
We show the mean and standard devation of the widths over 10 runs.

Effect of the Mixture Distributions. Figure 4.3 shows our CMM confidence bounds (left)
and a the Bayesian credible interval (right) for a randomly generated linear function with dX = 1
and d = 20. In each row of Figure 4.3, we use different choices for different for the mixture
distributions/priors. We use equivalent mixture distributions/priors for both methods. If the
Bayesian credible interval uses the prior θ∗ ∼ N (µ0,Σ0), then the mixture distribution for the
CMM confidence bounds is the induced distribution Φtθ

∗, which is Pt = N (Φtµ0,ΦtΣ0Φ
⊤
t ). Note

that, since we are using Gaussian noise to generate the data, the likelihood function for the Bayesian
credible interval is well-specified.

In Figure 4.3 (top row), we see that when the mixture distribution/prior (Pt = N (0, B2ΦtΦ
⊤
t ))

is uninformative, the CMM confidence bounds and the Bayesian credible interval are almost the
same in regions near the data, but the CMM confidence bounds are noticeably better in regions
far away from the data. In the middle row of Figure 4.3, where the mixture distribution/prior
(Pt = N (Φtθ

∗, 0.1ΦtΦ
⊤
t )) is centred at the ground-truth function values/parameter vector, we

observe that the CMM confidence bounds are slightly looser than the Bayesian credible interval. In
the bottom row of Figure 4.3, where the mixture distribution/prior (Pt = N (−Φtθ

∗, 0.1ΦtΦ
⊤
t )) is

misspecified (in a Bayesian sense), the CMM confidence bounds become looser, but still contain the
ground-truth function. In contrast, the Bayesian credible interval no longer contains the ground-
truth function.

In summary, our CMM confidence bounds give valid uncertainty estimates for any mixture dis-
tribution, whereas the Bayesian credible interval may not if the prior is chosen badly. While the
Bayesian credible interval was slightly tighter when the prior was chosen very well, our CMM
confidence bounds provided as good as or tighter intervals otherwise.

69



Figure 4.3: The upper and lower confidence bounds of our CMM-UCB method (left) and Bayesian
posterior credible intervals (right) with different choices of the prior. The top row uses the prior f t ∼
N (0, B2ΦtΦ

⊤
t ) for CMM-UCB and θ∗ ∼ N (0, B2I)) for Bayes. The middle row uses an informative

prior: f t ∼ N (Φtθ
∗, 0.1ΦtΦ

⊤
t ) for CMM-UCB and θ∗ ∼ N (θ∗, 0.1I)) for Bayes. The bottom row

uses a misspecified prior: f t ∼ N (−Φtθ
∗, 0.1ΦtΦ

⊤
t ) for CMM-UCB and θ∗ ∼ N (−θ∗, 0.1I)) for

Bayes.

4.8.2 Linear Bandits

We now investigate whether our tighter (than OFUL) confidence bounds translate to better UCB
algorithms for linear bandits.

70



Compared Methods. (a) CMM-UCB: cf. Section 4.6.2; (b) AMM-UCB: cf. Section 4.6.3; (c)
OFUL: the OFUL algorithm [3]; (d) IDS: the frequentist Information Directed Sampling (IDS)
algorithm [95], specifically the deterministic DIDS-F version; (e) Freq-TS: Thompson Sampling
with posterior covariance inflation [9], which we call Frequentist Thompson Sampling.

Experimental Setup. We use our linear bandit algorithms to optimise the hyperparameters of
a kernel Support Vector Machine (SVM) for three classification data sets from the UCI Machine
Learning Repository [54]: Raisin [44], Maternal [10], and Banknotes. The expected reward function
f∗(a) is the average test set accuracy of a kernel SVM trained using an ARD RBF kernel with
hyperparameters a = (C,γ). C > 0 is the regularisation hyperparameter and γ ∈ RdX is a vector
of lengthscales, where dX is the number of covariates in the classification problem (which is between
4 and 7). The observed reward rt is the validation set accuracy at at. We record the mean test
accuracy (expected reward), which is roughly equivalent to the cumulative regret, and the maximum
test accuracy achieved over T = 500 steps.

For the feature map ϕ, we use a neural network layer with 20 outputs and random weights. We
choose σ = 0.05 for the sub-Gaussian parameter and B2 = 10, which means we are assuming that
f∗(a) ≈ ϕ(a)⊤θ∗ for some ∥θ∗∥2 ≤ 10. We use the standard mixture distributions Pt = N (0,ΦtΦ

⊤
t )

for our CMM-UCB and AMM-UCB algorithms. For AMM-UCB, OFUL, and IDS we set α = σ2.
For algorithm, we set δ = 0.01.

Table 4.1: Average test accuracy and maximum test accuracy of our CMM-UCB, AMM-UCB,
OFUL, IDS and Freq-TS in the SVM hyperparameter tuning problems after T = 500 rounds. We
report the mean and standard deviation over 100 repetitions.

Raisin Maternal Banknotes

Mean Acc Max Acc Mean Acc Max Acc Mean Acc Max Acc

CMM-UCB (Ours) 0.818 ± 0.018 0.893 ± 0.019 0.744 ± 0.020 0.829 ± 0.023 0.954 ± 0.005 1.000 ± 0.000
AMM-UCB (Ours) 0.800 ± 0.017 0.892 ± 0.020 0.736 ± 0.020 0.829 ± 0.023 0.948 ± 0.005 1.000 ± 0.000
OFUL 0.764 ± 0.019 0.891 ± 0.019 0.722 ± 0.019 0.827 ± 0.022 0.929 ± 0.006 1.000 ± 0.000
IDS 0.706 ± 0.048 0.891 ± 0.020 0.714 ± 0.019 0.827 ± 0.024 0.926 ± 0.007 1.000 ± 0.000
Freq-TS 0.527 ± 0.022 0.884 ± 0.019 0.616 ± 0.018 0.823 ± 0.022 0.808 ± 0.012 1.000 ± 0.000

Figure 4.4: The smoothed per-round test accuracy (expected reward) of our CMM-UCB, AMM-
UCB, OFUL, IDS and Freq-TS in the SVM hyperparameter tuning experiments. We show the
mean reward over 100 runs of each experiment, after Gaussian kernel smoothing.
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Results. Figure 4.4 shows the average test accuracy (expected reward) obtained by each bandit
algorithm for each data set and at each round t = 1, . . . , 500. Our CMM-UCB and AMM-UCB
algorihtms outperform all the other methods. From the reward curves of CMM-UCB (blue), AMM-
UCB (orange) and OFUL (green), we observe that CMM-UCB outperforms AMM-UCB, which
outperforms OFUL. Therefore, we conclude that our tighter confidence bounds do indeed lead to
UCB algorithms with improved performance.

4.8.3 Adaptive Mixture Distributions

Finally, we investigate the behaviour of our CMM-UCB and AMM-UCB algorithms when using
the adaptive mixture distributions described in Section 4.6.4.

Experimental Setup. First, we compare our CMM confidence bounds with the standard mix-
ture distributions Pt = N (0,ΦtΦ

⊤
t ) and the adaptive mixture distributions Pt = N (µt,T t), with

µt as in (4.15) and T t as in (4.14)). For the adaptive mixture distributions, we set m(a) = 0,
k(a, a′) = ϕ(a)⊤ϕ(a′) and β = 4σ2. With each choice of the mixture distributions, we plot the
CMM confidence bounds for a randomly generated linear (in Fourier features) function with dX = 1
and d = 20.

Next, we compare the AMM-UCB algorithm with the same standard and adaptive mixture distri-
butions in the SVM hyperparameter tuning problem for the Raisin data set (as described in Sec.
4.8.2). We record the test accuracy and the value of the radius RAMM,t in each round.

Figure 4.5: Our CMM confidence bounds with the standard mixture distributions (purple) and the
adaptive mixture distributions (red).

Results. In Figure 4.5, we observe that our CMM confidence bounds are slightly tighter when
we use the adaptive mixture distributions. In Figure 4.6 (right), we observe that AMM-UCB
achieves slightly higher test accuracy with the adaptive mixture distributions. In Figure 4.6 (left),
we see that the radius RAMM,t is smaller, and therefore the confidence bounds are tighter, with
the adaptive mixture distributions. Interestingly, RAMM,t grows with T when we use the standard
mixture distributions, but appears to be uniformly (over T ) bounded by a constant when we use the
adaptive mixture distributions. Overall, it appears that using the adaptive mixture distributions
leads to slightly tighter confidence bounds and improved bandit algorithms.
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Figure 4.6: The radius RAMM,t (left) and test accuracy (right) for our AMM-UCB algorithm with
the standard mixture distributions (blue) and the adaptive mixture distributions (orange). On the
left, we show the mean and standard deviation of the radius RAMM,t over 10 runs. On the right,
we plot the smoothed mean reward over 10 runs, with Gaussian kernel smoothing.

4.9 Conclusion

In this chapter, we developed a novel PAC-Bayes-style tail bound for adaptive martingale mixtures
and showed that it can be used to construct confidence sequences for linear bandits that allow
for efficient action selection via convex programming. We proved that our CMM-UCB and AMM-
UCB algorithms match the worst-case regret of OFUL. We proved, and verified empirically, that
our confidence bounds are tighter than those used by OFUL. In our expriments, we found that
this allowed our CMM-UCB and AMM-UCB algorithms to achieve greater average and maximum
reward in several hyperparameter tuning problems.

We believe that further investigation into tail bounds (or PAC-Bayes-style bounds as in (4.5))
with adaptive mixture distributions/priors (as described in Section 4.6.4) is an exciting direction
to pursue in future research. Focusing on the application of adaptive mixture distributions to the
linear bandit problem, we suspect that, by using adaptive mixture distributions, it is possible to
obtain data-independent regret bounds for CMM-UCB or AMM-UCB with improved growth rates.

Our data-independent regret bound in Theorem 4.9 used the fact that the radius RAMM,T can be
upper bounded by a data-independent quantity of order O(

√
d ln(T )) (see Appendix B.4.2), when

we use the standard mixture distributions. In Figure 4.6, we saw that RAMM,t does appear to
grow roughly logarithmically with T when we use the standard mixture distributions. However,
we also saw in Figure 4.6 that RAMM,t appears to be bounded by a constant when we use the
adaptive mixture distributions. If, when using adaptive mixture distributions, we could prove a
data-independent bound on RAMM,T of order O(

√
d), then we would be able to improve our data-

independent cumulative regret bounds to O(d
√
T ln(T )) (rather than O(d

√
T ln(T ))). This would

be within a
√
ln(T ) factor of the minimax lower bound Ω(d

√
T ) (see e.g. Theorem 24.1 or Theorem

24.2 of [104] for a lower bound).

A limitation of both the CMM-UCB and AMM-UCB algorithms is that their regret bound grows
linearly in d, so they may not perform well when the feature vectors are high-dimensional. Note
however, that the minimax lower bound Ω(d

√
T ) implies that no algorithm can be guaranteed to

have good worst-case performance in high-dimensional linear bandit problems.
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Chapter 5

PAC-Bayes-Style Algorithms for
Sparse Linear Bandits

5.1 Introduction

In the previous chapter, we developed the Convex Martingale Mixture Upper Confidence Bound
(CMM-UCB) algorithm for stochastic linear bandits. We showed that this algorithm has cumula-
tive regret no worse than O(d

√
T ln(T )), which means it is guaranteed to perform well when the

dimension d of the feature vectors is small relative to the number of rounds T .

However, the linear growth rate of the regret in the feature vector dimension, combined with the
assumption that the reward function is linear in the feature vectors, brings about an unfortunate
trade-off in the selection of the feature map. On the one hand, we would like to choose a low-
dimensional feature map so that the cumulative regret is not too high. On the other hand, we need
to choose a sufficiently high-dimensional feature map so that the expected reward function can be
expressed as a linear function of the feature vectors. Moreover, it is often the case that there are
many candidate features to choose from and it not obvious which should be included in the feature
map. For example, suppose we use a random feature map (e.g. Random Fourier features [140]). It
is likely that many of the features are not useful, but it is not obvious in advance which features
are useful. One would like to be able to allow a linear bandit algorithm to use many features, but
still suffer low regret if it turns out that only a small number of features were useful. This can
achieved by linear bandit algorithms that exploit sparsity.

In sparse stochastic linear bandit problems, the unknown parameter vector θ∗ of the expected
reward function ϕ(a)⊤θ∗ is assumed to contain only a small number (say s) of non-zero elements.
A sparse parameter vector can be much easier to estimate than a non-sparse (or dense) parameter
vector. As a result, one can design algorithms for sparse linear bandit problems that have im-
proved dependence on the dimension d. At the same time, sparsity assumptions are often not too
restrictive because natural data can typically be well-approximated by sparse linear combinations
of appropriate basis functions. All of this means that sparse linear bandits are a suitable model for
real-world bandit problems.
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Figure 5.1: The upper and lower confidence bounds of CMM-UCB (left), SCMM-UCB (left-middle),
RSCMM-UCB (right-middle), and SCMM-UCB Oracle (right) for a test function which is linear
in a 100-dimensional feature map, but whose parameter vector has only 5 non-zero elements.

Contributions. In this chapter, we design and analyse PAC-Bayes-style algorithms for sparse
linear bandits. We re-use our general-purpose tail bound for martingale mixtures from Theorem
4.1 to construct confidence sequences for sparse linear bandits. The maximisation problem to
compute the corresponding upper confidence bounds (UCBs) is still convex, which allows us to
derive modified versions of the CMM-UCB algorithm that exploit sparsity. We propose two sparse
versions of the CMM-UCB algorithm: (a) Sparse Convex Martingale Mixture UCB (SCMM-UCB):
We replace the ∥θ∗∥2 ≤ B2 constraint in the confidence set in Corollary 4.2 with the constraint
∥θ∗∥1 ≤ B1; (b) Restricted Sparse Convex Martingale Mixture UCB (RSCMM-UCB): We add an
initial feature selection phase to the SCMM-UCB algorithm, in which we use the thresholded Lasso
estimate [172, 122, 189] to select a subset of available features.

Figure 5.1 highlights a key finding. When the unknown ground-truth function is sparse and linear,
the upper and lower confidence bounds used by our proposed SCMM-UCB and RSCMM-UCB
algortihms can be much tighter than the confidence bounds used by CMM-UCB. Moreover, they
can be almost as tight as upper and lower confidence bounds that can only be constructed when
the locations of the non-zero elements of θ∗ are known in advance (SCMM-UCB Oracle).

5.2 Related Work

Several variants of the sparse stochastic linear bandit problem have been studied. Abbasi-Yadkori
et al. [5] proposed an online-to-confidence-set conversion and used it design algorithms for a sparse
linear bandit problem where the action set is an arbitrary fixed subset of a finite-dimensional vector
space. Ignoring logarithmic terms, the online-to-confidence-set approach achieves an O(

√
sdT )

regret bound, where s is the number of non-zero elements in θ∗ and T is the number of rounds. A
matching lower bound for this problem was later established by Lattimore and Szepesvári [104].

To achieve regret bounds with better than O(
√
d) dependence on the feature vector dimension,

several authors have studied sparse linear bandits with additional restrictions on the action set,
the feature map ϕ, or the parameter vector θ∗. For the case where the action set is the binary
hypercube and the feature map is the identity function, Lattimore et al. [103] developed the selective
explore-then-commit algorithm, and showed that it has an O(s

√
T ) regret bound. Hao et al. [76]

and Jang et al. [85] proposed explore-the-sparsity-then-commit algorithms that have O(s2/3T 2/3)
regret bounds when the action set spans RdA and the feature map is the identity function. Under
an additional minimum signal condition, meaning each non-zero element of θ∗ satisfies |θ∗i | ≥ m for
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m > 0, Hao et al. [76] and Jang et al. [85] also proposed restricted phase elimination algorithms,
which have O(

√
sT ln(K)) regret bounds when the action set is finite with K elements.

It has recently become popular to study the stochastic contextual linear bandit problem with
sparsity assumptions. In this setting, an action set containing a fixed finite number of feature vectors
is randomly generated at the start of each round. Under suitable conditions on the distribution
from which the actions sets are drawn, Bastani and Bayati [26], Wang et al. [184], Kim and Paik
[92], Oh et al. [129], Ariu et al. [18] and Chakraborty et al. [40] have all proposed algorithms that
achieve regret bounds with O(ln(d)) or O(poly(ln(d))) dependence on the feature vector dimension.

5.3 Problem Statement and Background

We consider the stochastic linear bandit problem with a sparsity assumption. A learner plays a
game over a sequence of T rounds, where T may not be known in advance. In each round t,
the learner must choose an action at ∈ A from a fixed action set A. The learner then receives a
reward rt = ϕ(at)

⊤θ∗ + ϵt. The feature map ϕ : A → Rd is a known function that maps actions to
d-dimensional feature vectors. θ∗ ∈ Rd is an unknown parameter with ℓ1 norm bounded by some
known B1 > 0, i.e. ∥θ∗∥1 ≤ B1. We assume that θ∗ satisfies a hard sparsity property:

∥θ∗∥0 :=
d∑

i=1

I{θ∗i ̸= 0} = s. (5.1)

We consider both simple regret and cumulative regret as objectives of the learner. For a single
round, we define the regret as

∆(at) = ϕ(a∗)⊤θ∗ − ϕ(at)
⊤θ∗, (5.2)

where a∗ = argmaxa∈A{ϕ(a)⊤θ∗}. After T rounds, the simple regret is

∆T := min
t∈{1,...,T}

{∆(at)} = ϕ(a∗)⊤θ∗ − max
t∈{1,...,T}

{
ϕ(at)

⊤θ∗
}
, (5.3)

which is the difference between the maximum of the reward function and the maximum restricted
to the selected actions a1, . . . , aT . After T rounds, the cumulative regret is

∆1:T :=

T∑
t=1

∆(at) =

T∑
t=1

ϕ(a∗)⊤θ∗ − ϕ(at)
⊤θ∗, (5.4)

which is the difference between the total expected reward of the optimal strategy and the learner.
Since a minimum is upper bounded by an average, we have

∆T = min
t∈{1,...,T}

{∆(at)} ≤ 1

T

T∑
t=1

∆(at) =
∆1:T

T
. (5.5)

We design algorithms primarily with cumulative regret bounds in mind, but due to (5.5), this
approach yields simple regret bounds as well.
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Notation. For any integer n ≥ 1, let [n] = {1, . . . , n}. For a set of indices S ⊆ [d], let Sc denote
its complement. For a vector θ ∈ Rd and a set of indices S, let θS ∈ R|S| denote the subvector
with elements indexed by S. Let supp(θ) denote the support of the vector θ, which is the set of
indices where θi ̸= 0. For a matrix A, let νmin(A) and νmax(A) denote its minimum and maximum
eigenvalues.

Lasso Estimation. Let Φt = [ϕ(a1), . . . , ϕ(at)]
⊤ denote the t×d matrix of feature vectors, which

we will call the design matrix. Let rt = [r1, . . . , rt]
⊤ denote the vector of rewards. For a penalty

strength η > 0, we define the regularised Lasso estimate [172] as

θ̂ := argmin
θ∈Rd

{
1

2t
∥Φtθ − rt∥22 + η ∥θ∥1

}
. (5.6)

The Lasso estimate is widely used for both prediction and feature selection in high-dimensional
sparse linear regression problems because: (a) the ℓ1 norm penalty encourages sparse solutions; (b)
(5.6) is a convex program that can be solved efficiently for reasonably large d. We use Ŝ = supp(θ̂)
to denote the support of the Lasso estimate.

In practice, it is not uncommon for the Lasso estimate to have several components that are very
close to 0, but not exactly zero. For this reason, it is a common practice to apply additional
thresholding to remove these small components. For a threshold level τ , which satisfies 0 ≤ τ < m,
the thresholded Lasso estimate (see Eq. (2.7) of [27]) is θ̂

Ŝτ
, where

Ŝτ :=
{
i ∈ {1, . . . , d}||θ̂i| ≥ τ

}
. (5.7)

We use the thresholded Lasso estimate to estimate the support of θ∗ in the feature selection phase
of our RSCMM-UCB algorithm.

Compatibility. In the analysis of the feature selection phase of our RSCMM-UCB algorithm,
we use a compatibility condition [34]. Let S be a set of indices and κ a positive constant. Define

C(S, κ) :=

{
A ∈ Rd×d

∣∣∣∣∀v ∈ Rd such that ∥vSc∥1 ≤ 3 ∥vS∥1 , ∥vS∥21 ≤
|S|v⊤Av

κ2

}
. (5.8)

We say that a matrix Σ satisfies the compatibility condition if Σ ∈ C(S, κ). To understand what
this condition means, suppose that we have a positive-definite matrix Σ with minimum eigenvalue
ν > 0. Since Σ is positive-definite, for all S ⊆ [d] and all vectors v ∈ Rd, we have

|S|v⊤Σv ≥ |S|ν ∥v∥22 ≥ |S|ν ∥vS∥22 ≥ ν ∥vS∥21 .

Therefore, the compatibility condition is a weaker version of positive-definiteness. Roughly speak-
ing, if a matrix Σ satisfies Σ ∈ C(S, κ), then for all for all vectors v in the cone {v ∈ Rd| ∥vSc∥1 ≤
3 ∥vS∥1}, Σ behaves as if it is positive-definite with minimum eigenvalue κ2.
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5.4 Confidence Sequences for Sparse Linear Bandits

The key component of our SCMM-UCB and RSCMM-UCB algorithms are confidence sequences.
We use the general-purpose tail bound for adaptive martingale mixtures from Theorem 4.1 of
Chapter 4 to construct confidence sequences for sparse linear bandits. First, we recall the tail
bound in Theorem 4.1 and the general setting in which it holds.

We are given a filtration (Dt|t ∈ N), a sequence of adapted random functions (Zt : R → R|t ∈ N),
a sequence of predictable random variables (λt|t ∈ N) and a fixed sequence of function values
(gt|t ∈ N). We use the shorthand gt = (g1, . . . , gt) and λt = (λ1, . . . , λt). We call a data-dependent
sequence of probability distributions (Pt|t ∈ N) an adaptive sequence of mixture distributions if: (a)
Pt is a distribution over gt ∈ Rt; (b) Pt is Dt−1-measurable; (c) the distributions are consistent in
the sense that their marginals coincide, i.e.

∫
Pt(gt)dgt = Pt−1(gt−1) for all t. Theorem 4.1 provides

a time-uniform tail bound for the martingale mixture (Egt∼Pt [Mt(gt,λt)]|t ∈ N), where

Mt(gt,λt) = exp

(
t∑

k=1

λkZk(gk)− ψk(gk, λk)

)
, ψt(gt, λt) := ln (E [exp(λtZt(gt))|Dt−1]) . (5.9)

Theorem 4.1 states that, for any level δ ∈ (0, 1], any sequence of predictable random variables
(λt|t ∈ N) and any adaptive sequence of mixture distributions (Pt|t ∈ N), with probability at least
1− δ, we have

∀t ≥ 1, ln

(
E

gt∼Pt

[Mt(gt,λt)]

)
≤ ln(1/δ). (5.10)

This statement is proved in Appendix B.1. If ψk(gk, λk) is replaced by an upper bound on ψk(gk, λk),
the inequality in Equation 5.10 still holds.

5.4.1 SCMM Confidence Sequence

For our first confidence sequence for sparse linear bandits, we specialise the inequality in Equation
5.10 in the same way as in Chapter 4. For the filtration (Dt|t ∈ N), we set Dt to be the σ-algebra
generated by (a1, r1, . . . , at, rt, at+1). We choose Zt(gt) = (gt − ϕ(at)

⊤θ∗)ϵt, λt ≡ 1/σ2 and we use
Gaussian mixture distributions, i.e. Pt = N (µt,T t). This choice of Zt(gt) allows us to upper bound
ψt(gt, λt) by exploiting the sub-Gaussian property of ϵt. These choices of Zt(gt), λt and Pt allow
us to derive a relatively simple convex quadratic constraint for θ∗ from the inequality in Equation
(5.10). As in Section 4.5.2, we have

∥Φtθ
∗ − rt∥22 ≤ (µt − rt)

⊤
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln det

(
I +

T t

σ2

)
+ 2σ2 ln

1

δ
=: R2

MM,t.

(5.11)

See Section 4.5 for the derivation of this inequality. In the previous chapter, we combined the
constraint Equation (5.11) with the constraint ∥θ∗∥2 ≤ B2. This time, we combine the constraint
in Equation (5.11) with the constraint ∥θ∗∥1 ≤ B1.

Corollary 5.1 (SCMM Confidence Sequence). For any adaptive sequence of mixture distributions
Pt = N (µt,T t), it holds with probability at least 1 − δ that for all t ≥ 1 simultaneously θ∗ lies in
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the set

Θℓ1
t =

{
θ ∈ Rd

∣∣∣∣ ∥Φtθ − rt∥2 ≤ RMM,t and ∥θ∥1 ≤ B1

}
. (5.12)

The set Θℓ1
t is the intersection of a d-dimensional ellipse and a d-dimensional ℓ1 ball of radius B1.

The rightmost plot on the title page depicts Θℓ1
t for the case when d = 2. This confidence sequence

is related to the constrained form of the Lasso estimate (see e.g. Equation (11.2) of [77]). In
particular, whenever Θℓ1

t is non-empty, it contains the constrained form of the Lasso estimate.

5.4.2 Restricted SCMM Confidence Sequence

For our second confidence sequence for sparse linear bandits, we incorporate an initial feature
selection phase, which is described in more detail in Section 5.5.2. In the feature selection phase,
we sample T1 actions from a fixed exploration distribution ρ. We then use the exploration data
{(a′t, r′t)}

T1
t=1 to compute the support Ŝτ of the thresholded Lasso estimate θ̂

Ŝτ
. The restricted

feature map is defined as ϕ̃(a) = ϕ(a)
Ŝτ
, which is the vector of only the features corresponding

to the indices in Ŝτ . For validity of this confidence sequence, we require that Ŝτ ⊇ S∗, where
S∗ = supp(θ∗). This ensures that ϕ̃(a)⊤θ∗

Ŝτ
= ϕ(a)⊤θ∗ for all a ∈ A, which means we can

construct a confidence sequence for θ∗
Ŝτ

instead of θ∗. We analyse the conditions under which this

requirement can be guaranteed in Section 5.6.1.

For the filtration (Dt|t ∈ N), we setDt to be the σ-algebra generated by a′1, r
′
1, · · · , a′T1

, r′T1
, a1, r1, . . . ,

at, rt, at+1. This choice of the filtration ensures that the restricted feature map ϕ̃ is D0-measurable.
We choose Zt(gt) = (gt − ϕ̃(at)

⊤θ∗
Ŝτ
)ϵt, λt ≡ 1/σ2 and we use Gaussian mixture distributions

Pt = N (µt,T t). Note that, for every t ≥ 1, µt and T t can depend on all of the exploration
data (and also on ϕ̃). Following the derivation of Equation (5.11) in Section 4.5, one can ob-
tain a similar convex quadratic constraint for θ∗

Ŝτ
. Collecting the restricted feature vectors in

Φ̃t := (ϕ̃(a1), . . . , ϕ̃(a1))
⊤, we have∥∥∥Φ̃tθ

∗
Ŝτ

− rt

∥∥∥2
2
≤ (µt − rt)

⊤
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln det

(
I +

T t

σ2

)
+ 2σ2 ln

1

δ
= R̃2

MM,t.

(5.13)

Using the fact that θ∗
Ŝτ

satisfies the same ℓ1 norm constraint as θ∗, we can obtain a confidence

sequence for θ∗
Ŝτ

by combining (5.13) and ∥θ∗
Ŝτ
∥1 ≤ B1.

Corollary 5.2 (Restricted SCMM Confidence Sequence). For any adaptive sequence of mixture
distributions Pt = N (µt,T t), it holds with probability at least 1−δ that for all t ≥ 1 simultaneously
θ∗
Ŝτ

lies in the set

Θ̃ℓ1
t =

{
θ ∈ R|Ŝτ |

∣∣∣∣ ∥∥∥Φ̃tθ − rt

∥∥∥
2
≤ R̃MM,t and ∥θ∥1 ≤ B1

}
. (5.14)

Θ̃ℓ1
t is the intersection of a |Ŝτ |-dimensional ellipse and a |Ŝτ |-dimensional ℓ1 ball of radius B1.
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5.5 Algorithms for Sparse Linear Bandits

In this section, we describe our proposed sparse linear bandit algorithms. At a high level, each
algorithm runs the LinUCB algorithm (described in Algorithm 1 in Chapter 4) with either the
SCMM or RSCMM confidence sequence.

5.5.1 SCMM-UCB Algorithm

Our first algorithm is called Sparse Convex Martingale Mixture UCB (SCMM-UCB). We run the
LinUCB algorithm with the SCMM confidence sequence from Corollary 5.1. To run the LinUCB
action selection rule the SCMM confidence sequence, we need to be able to maximise UCBΘℓ1

t
(a),

which is the solution of the convex program

max
θ∈Rd

ϕ(a)⊤θ s.t. ∥Φtθ − rt∥2 ≤ RMM,t and ∥θ∥1 ≤ B1. (5.15)

Since UCBΘℓ1
t
(a) is a maximum over a set of linear functions, our discussion on the feasibility of

exact maximisation of UCBΘℓ2
t
(a) from Section 4.6 also applies to UCBΘℓ1

t
(a). If the action set

has finite cardinality, UCBΘℓ1
t
(a) can be maximised exactly. For each a ∈ A, we compute the

numerical solution of (5.15) using convex solvers from the CVXPY library [52, 8], and then select
the action a where the solution is greatest. If the action set is a continuous subset of RdA , then
exact maximisation of UCBΘℓ1

t
(a) is infeasible. We select actions by approximately maximising

UCBΘℓ1
t
(a) via gradient-based local search. To compute the gradient of UCBΘℓ1

t
(a) with respect to

a, we use differentiable convex optimisation methods from the cvxpylayers library [7].

In Chapter 4, we proposed the AMM-UCB algorithm, which used an analytic upper bound on
UCBΘℓ2

t
(a). The analytic upper bound was derived by partial optimisation of the Lagrangian dual

function associated with the convex program in (4.10). In Appendix C.1, we show that one can
use the same approach to obtain an analytic upper bound on the solution of (5.15). However, it is
difficult to find satisfactory values of the Lagrange multipliers in this analytic upper bound, so we
do not pursue this approach any further.

5.5.2 Restricted SCMM-UCB Algorithm

Our second algorithm begins with an initial feature selection phase, in which a restricted feature
map ϕ̃(a) = ϕ(a)

Ŝ
is learned, where Ŝ is an estimate of the support of θ∗. We then run the

SCMM-UCB algorithm using the restricted feature map.

This algorithm is similar to the Restricted Phase Elimination (RPE) algorithm [76] and the RPE
with Warm-PopArt algorithm [85], which both perform an initial feature selection phase and then
run the Phased Elimination algorithm [105] (or OFUL [3] if the action set is a continuous subset
of RdA) using the restricted feature map. While these algorithms use the Lasso or PopArt [85]
estimators to select features, we use the thresholded Lasso estimate. We call our second algorithm
Restricted SCMM-UCB.

The feature selection phase is described in Algorithm 2. We sample T1 actions (and rewards) from
an exploration distribution ρ and then use the collected data {(a′t, r′t)}

T1
t=1 to compute the support

Ŝτ of the thresholded Lasso estimate (see Equation (5.7)) with regularisation parameter η and
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threshold level τ . In Section 5.6.1, we show that for suitable choices of ρ, T1, η and τ , Ŝτ contains
the support of θ∗ and a total of O(s) features with high probability. This means that the original
d-dimensional linear bandit problem is reduced to an O(s)-dimensional linear bandit problem.

Algorithm 2: Thresholded Lasso feature selection

Input: exploration distribution ρ, exploration length T1, regularisation parameter η,
threshold level τ

for t = 1, 2, . . . , T1 do
Play an action a′t ∼ ρ
Observe a reward r′t = ϕ(a′t)

⊤θ∗ + ϵt
end

Compute the Lasso estimate θ̂ = argminθ∈Rd

{
1

2T1
∥ΦT1θ − rT1∥

2
2 + η ∥θ∥1

}
Return: Ŝτ =

{
i ∈ {1, . . . , d}||θ̂i| ≥ τ

}
Choosing the Exploration Distribution. For any exploration distribution ρ (on A), let
Σρ := Ea∼ρ[ϕ(a)ϕ(a)

⊤] denote the population covariance matrix under the distribution ρ and

let Σ̂ρ,T1 := 1
T1

∑T1
t=1 ϕ(a

′
t)ϕ(a

′
t)
⊤ denote the empirical covariance matrix. To guarantee success-

ful feature selection (see Section 5.6.1), we require that Σ̂ρ,T1 satisfies the compatibility condition

Σ̂ρ,T1 ∈ C(S∗, κ) (see Equation 5.8), where S∗ = supp(θ∗) and κ > 0. Using Lemma EC.6 of
[26], this can be guaranteed with high probability if Σρ ∈ C(S∗,

√
2κ) and T1 is sufficiently large.

Since Σρ is symmetric, its eigenvalues are all real. If we choose ρ such that νmin(Σρ) > 0 (which
is possible if and only if the feature vectors (ϕ(a))a∈A span Rd (see Remark 3.2. of [76])), then for
any set of indices S ⊂ [d], we have Σρ ∈ C(S,

√
νmin(Σρ)). This means that, for sufficiently large

T1, Σ̂ρ,T1 ∈ C(S∗,
√
νmin(Σρ)/2). The required sample size T1 decreases as νmin(Σρ) increases (see

Section 5.6.1), so the best choice of ρ is

ρ∗ := argmax
ρ

{νmin(Σρ)} . (5.16)

WhenA is finite, any distribution ρ ∈ P(A) can be expressed as a probability vector p. As discussed
in Remark 4.1. of [76], the minimum eigenvalue of Σρ =

∑
a∈A paϕ(a)ϕ(a)

⊤ is concave in p (see
Example 4.43 of [32]), which means maximising the minimum eigenvalue of Σρ with respect to p
is a convex optimisation problem. In fact, the maximum minimum eigenvalue ν and the optimal
distribution p can be found by solving the semidefinite program

max
ν∈R,p∈R|A|

ν such that
∑
a∈A

paϕ(a)ϕ(a)
⊤ − νI ≻ 0,

∑
a∈A

pa = 1, pa ≥ 0. (5.17)

The matrix inequality means that
∑

a∈A paϕ(a)ϕ(a)
⊤ − νI must be positive definite. This means

that, for finite A, ρ∗ can be computed efficiently using (for example) the CVXPY library [52, 8].
If A is not finite, one can approximate ρ∗ by generating a large (finite) set of random actions
Arand ⊂ A, and then solving (5.17) for p ∈ R|Arand|. Alternatively, one can choose ρ to be a simple
(e.g. uniform) distribution on A that is easy to sample from.
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5.5.3 Choosing the Mixture Distributions

The SCMM-UCB and RSCMM-UCB algorithms both require the user to select the mixture dis-
tributions (Pt|t ∈ N). In the remainder of this section, we describe some choices for the mixture
distributions in the SCMM-UCB and RSCMM-UCB algorithms.

Standard Mixture Distributions for SCMM-UCB. For the SCMM-UCB algorithm, we use
Gaussian mixture distributions Pt = N (µt,Σt), which allows us to use the analytic expression for
the radius RMM,t in Equation (5.11). One can use the Gaussian process-like mixture distributions
described in Section 4.6.4 of Chapter 4. We choose a mean function m : A → R and a positive-
definite kernel function k : A×A → R and then set Pt = N (µt,Σt), where

µt = [m(a1),m(a2), . . . ,m(at)]
⊤, T t =


k(a1, a1) k(a1, a2) · · · k(a1, at)
k(a2, a1) k(a2, a2) · · · k(a2, at)

...
...

. . .
...

k(at, a1) k(at, a2) · · · k(at, at)

 . (5.18)

As discussed in Section 4.6.4, it is natural to choose a linear mean function m(a) = ϕ(a)⊤θ0 and a
linear kernel k(a, a′) = ϕ(a)⊤Σ0ϕ(a), where Σ0 is symmetric and positive-definite. If we setm(a) =
0 and k(a, a′) = ϕ(a)⊤ϕ(a), we recover the standard mixture distributions Pt = N (0,ΦtΦ

⊤
t ).

Sparsity Inducing Mixture Distributions for SCMM-UCB. Despite their convenience,
Gaussian mixture distributions may not be the most suitable choice for sparse linear bandits because
they do not take the sparsity of θ∗ into account. As an alternative, one could start with a sparsity
inducing prior for θ∗ and then set each Pt to be the induced distribution over the function values
Φtθ

∗. Options for the sparsity inducing prior over θ∗ include the spike and slab [125, 65, 84],
and the priors used in the relevance vector machine [173] and in sparse PAC-Bayesian regression
[47, 13, 12, 71].

Such a mixture distribution has attractive properties: (a) it only assigns non-zero probability to
vectors of function values that could be generated by linear functions; (b) it assigns high probability
to function values that could be generated by sparse linear functions. The main issue with using
these priors is that one can no longer use the analytic form for the radius RMM,t in Equation (5.11).
We leave martingale mixture confidence sequences with sparsity inducing mixture distributions as
a challenge to address in future research.

Standard Mixture Distributions for RSCMM-UCB. For the RSCMM-UCB algorithm, we
use Gaussian process-like mixture distributions as in (5.18), which allows us to use the analytic
expression for the radius R̃MM,t in Equation (5.13). We could recover standard mixture distributions
for RSCMM-UCB by choosing

m(a) = 0, k(a, a′) = ϕ̃(a)⊤ϕ̃(a′), (5.19)

where ϕ̃ is the restricted feature map. However, our choice of m and k can depend on all the
exploration data {(a′t, r′t)}

T1
t=1. We therefore propose to set the mixture distribution to the Bayesian
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Gaussian process posterior mean and kernel/covariance, given the exploration data and the Gaus-
sian process prior specified by (5.19), which is

m(a) = ϕ̃(a)⊤(Φ̃⊤
T1
Φ̃T1 + σ2I)−1Φ̃⊤

T1
r′T1

,

k(a, a′) = ϕ̃(a)⊤ϕ̃(a′)− ϕ̃(a)⊤(Φ̃⊤
T1
Φ̃T1 + σ2I)−1Φ̃⊤

T1
Φ̃T1 ϕ̃(a

′).

The corresponding Gaussian process-like mixture distribution is Pt = N (µt,T t), where

µt = Φ̃t(Φ̃
⊤
T1
Φ̃T1 + σ2I)−1Φ̃⊤

T1
r′T1

, T t = Φ̃t(I − (Φ̃⊤
T1
Φ̃T1 + σ2I)−1Φ̃⊤

T1
Φ̃T1)Φ̃

⊤
t . (5.20)

5.6 Theoretical Analysis

In this section, we analyse the behaviour of the SCMM-UCB and RSCMM-UCB algorithms. In
Section 5.6.1 we provide feature selection guarantees for the Thresholded Lasso Feature Selection
procedure described in Algorithm 2. We show that, for sufficiently large T and appropriate values
of η and τ , Algorithm 2 is guaranteed to return the exact support of θ∗.

In Section 5.6.2, we provide data-dependent upper bounds on the simple regret for SCMM-UCB
and RSCMM-UCB. After a number of actions have been selected, these bounds tell us the gap
between the reward of the best selected action and the optimal action. One could our simple regret
bounds to design design stopping criteria, as in e.g. [116, 83].

Finally, in Section 5.6.3, we provide data-independent (cumulative and simple) regret bounds for
SCMM-UCB and RSCMM-UCB, which have explicit dependence on the number of round T , the
feature vector dimension d and the sparsity level s. We begin by stating the assumptions under
which our analysis holds.

Assumption 5.3 (Sub-Gaussian noise). LetDk be the σ-algebra generated by (a1, r1, . . . , ak, rk, ak+1).
Each noise variable ϵk is conditionally zero-mean and σ-sub-Gaussian, which means

E [ϵk|Dk−1] = 0, and ∀λ ∈ R, E [exp(λϵk)|Dk−1] ≤ exp(λ2σ2/2).

Assumption 5.4 (Bounded parameter vector). For some B1 > 0, ∥θ∗∥1 ≤ B1.

Assumption 5.5 (Hard sparsity). For some s ≥ 1, ∥θ∗∥0 = s.

Assumption 5.6 (Minimum signal). For some constant m > 0, |θ∗i | ≥ m for all i ∈ J .

Assumption 5.7 (Bounded feature vectors). For some constants L2 > 0 and L∞ > 0, ∥ϕ(a)∥2 ≤ L2

and ∥ϕ(a)∥∞ ≤ L∞.

Assumption 5.8 (Bounded expected reward). For some C > 0, ϕ(a)⊤θ∗ ∈ [−C,C] for all a ∈ A.

Assumption 5.9 (Feature vectors span Rd). A and ϕ : A → Rd are such that the set of feature
vectors {ϕ(a)|a ∈ A} spans Rd.

Assumptions 5.3, 5.7 and 5.8 are standard in the linear bandit literature. In analyses of linear
bandit algorithms, it is commonly assumed that the norm of θ∗ is bounded (although more often
the ℓ2 norm than the ℓ1 norm). The minimum signal assumption is fairly common when one wishes
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to derive feature selection guarantees, although one could make the case that the combination of the
hard sparsity and minimum signal assumptions is too restrictive to be an accurate way to model low-
dimensional structure in real-world bandit problems. Note that Assumption 5.4 and Assumption
5.7 together imply that Assumption 5.8 must hold with C ≤ B1L∞. We state Assumption 5.8 as
a separate assumption because this leaves open the possibility that a better (than B1L∞) value of
C is known.

5.6.1 Feature Selection Guarantees

Our first result is a feature selection guarantee for the Thresholded Lasso Feature Selection method
in Algorithm 2. We prove Theorem 5.10 in Appendix C.2.

Theorem 5.10 (Feature Selection Guarantee). Suppose that assumptions 5.3, 5.5, 5.6, 5.7 and
5.9 all hold. Choose any δ ∈ (0, 1] and set threshold level equal to τ = m/2. Choose any exploration
distribution ρ, such that νmin(Σρ) > 0. Set η = 2σL∞

√
2 ln(4d/δ)/T1. Choose any T1 such that

T1 ≥ max

(
3

ξ2
ln(d),

1

ξ2
ln(1/δ),

2048s2σ2L2
∞ ln(4d/δ)

m2νmin(Σρ)2

)
, where ξ = min

(
1

2
,
νmin(Σρ)

256sL2
∞

)
.

With probability at least 1− δ, we have

supp(θ∗) = supp(θ̂
Ŝτ
).

Recall that θ̂
Ŝτ

is the thresholded Lasso estimate from Equation (5.7). Theorem 5.10 states that if
we choose a large enough exploration length T1 and suitable values for the regularisation parameter
η and threshold level τ , then Algorithm 2 is guaranteed to return the exact support of θ∗. If
νmin(Σρ) does not depend on the feature vector dimension d, then the minimum exploration length
required is O(ln(d)). This suggests that when d is large, it may be possible to select from d features
using fewer than d samples.

A similar result, which holds under the same assumptions, was recently proven for the standard
Lasso estimate in (the proof of) Theorem 5.2 of [76]. However, the result for the standard Lasso
does not guarantee exact support recovery. It only guarantees that supp(θ∗) ⊆ supp(θ̂) and
|supp(θ̂)| ≤ O(sνmax(

1
T1
Φ⊤
T1
ΦT1)/νmin(Σρ)), which means that the Lasso will select all relevant

features, but may also select many unnecessary features. Theorem 5.10 shows that a stronger
guarantee is possible for the thresholded Lasso. In Theorem C.1 in Appendix C.2, we also show that
a weaker feature selection guarantee (similar to one in [76]) can be obtained with other threshold
levels, including τ = 0 (i.e., the standard Lasso).

The result of Theorem 5.10 has some significant limitations, although these limitations are shared
by other feature selection guarantees for sparse linear bandits [76, 85]. Though the minimum
value of T1 has acceptable growth rates in s and d, it is typically very large, due to several large
multiplicative constants. Moreover, the minimum value of T1 depends on the sparsity level s and
the minimum signal level m, which are often unknown. Due to these limitations, one aim of our
experiments is to determine the performance of Algorithm 2 when T1 is set to much smaller values
than the minimum value in Theorem 5.10.
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5.6.2 Data-Dependent Regret Bounds

We provide data-dependent simple regret bounds for SCMM-UCB and RSCMM-UCB.

Theorem 5.11 (Data-Dependent Simple Regret Bound for SCMM-UCB). Suppose that assump-
tions 5.3-5.4 hold. For any adaptive sequence of mixture distributions Pt = N (µt,T t), any δ ∈ (0, 1]
and all T ≥ 1, with probability at least 1− δ, the simple regret of SCMM-UCB is bounded by

∆T ≤ max
a∈A

{
UCB

Θ
ℓ1
T

(a)
}
−max

t∈[T ]

{
LCB

Θ
ℓ1
T

(at)
}
.

Since the maximum of the SCMM upper confidence bound can be computed or approximated
efficiently, Theorem 5.11 provides an attractive way to certify the quality of the best action selected
by SCMM-UCB. Since this simple regret bound holds uniformly over T ≥ 1 it is highly suitable
for use in stopping criteria. For example, as in [116], one could stop the SCMM-UCB algorithm as
soon as the simple regret bound drops below some tolerance level. The proof of this simple regret
bound is simple. We only need to use basic properties of upper and lower confidence bounds.

Proof.

∆T = ϕ(a∗)⊤θ∗ −max
t∈[T ]

{
ϕ(at)

⊤θ∗
}

≤ UCB
Θ

ℓ1
T

(a∗)−max
t∈[T ]

{
LCB

Θ
ℓ1
T

(at)
}

≤ max
a∈A

{
UCB

Θ
ℓ1
T

(a)
}
−max

t∈[T ]

{
LCB

Θ
ℓ1
T

(at)
}
.

One can show that the RSCMM-UCB algorithm has a similar data-dependent simple regret bound.

Theorem 5.12 (Data-Dependent Simple Regret Bound for RSCMM-UCB). Suppose that as-
sumptions 5.3, 5.5, 5.6, 5.7 and 5.9 all hold. Choose any δ ∈ (0, 1/2] and set threshold level
equal to τ = m/2. Choose any exploration distribution ρ, such that νmin(Σρ) > 0. Set η =
2σL∞

√
2 ln(4d/δ)/T1. Choose any T1 such that

T1 ≥ max

(
3

ξ2
ln(d),

1

ξ2
ln(1/δ),

2048s2σ2L2
∞ ln(4d/δ)

m2νmin(Σρ)2

)
, where ξ = min

(
1

2
,
νmin(Σρ)

256sL2
∞

)
.

For any sequence of mixture distributions Pt = N (µt,Σt), with probability at least 1−2δ, the simple
regret of RSCMM-UCB is bounded by

∆T ≤ max
a∈A

{
UCB

Θ̃ℓ1
T
(a)
}
−max

(
max

t∈{1,...,T1}

{
LCB

Θ̃ℓ1
T
(a′t)

}
, max
t∈{1,...,T−T1}

{
LCB

Θ̃ℓ1
T
(at)

})
.

The main difference here is that the simple regret bound for RSCMM-UCB is only valid when the
restricted feature map ϕ̃ contains all the relevant features. To guarantee that this is the case, we
use the feature selection guarantee in Theorem 5.10, which introduces the requirement that the
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exploration length T1 is sufficiently large. Apart from this detail, the proof of Theorem 5.12 is the
same as the proof of Theorem 5.11, so we omit it.

Since the simple regret guarantee for RSCMM-UCB only holds uniformly for T ≥ T1, it is much less
useful than the simple regret guarantee for SCMM-UCB in Theorem 5.11. Note that the require-
ment of a feature selection guarantee also means that Theorem 5.12 requires more assumptions
than Theorem 5.11.

5.6.3 Data-Independent Regret Bounds

We now state data-independent cumulative regret bounds for our SCMM-UCB and RSCMM-UCB
algorithms, which have explicit dependence on the dimension d and the sparsity level s. Unfortu-
nately, we are not yet able to prove a data-independent regret bound for SCMM-UCB that improves
upon the growth rate (in d) of the equivalent regret bound for CMM-UCB in Chapter 4. The best
we can do is to show that SCMM-UCB performs no worse than CMM-UCB.

Theorem 5.13 (Data-Independent Cumulative Regret Bound for SCMM-UCB). Suppose that
assumptions 5.3, 5.4, 5.7 and 5.8 hold. If for any c > 0, the sequence of mixture distributions
is Pt = N (0, cΦtΦ

⊤
t ), then for all T ≥ 1, with probability at least 1 − δ, the cumulative regret of

SCMM-UCB is bounded by

∆1:T ≤ 2√
ln 2

max

{
C, σ

√
d ln

(
1+

cL2
2T

σ2d

)
+
B2

1

c
+2 ln

1

δ

}√
dT ln

(
1+

cL2
2T

σ2d

)
.

This cumulative regret bound for SCMM-UCB is O(d
√
T ln(T )), which is the same as the regret

bound for CMM-UCB in Theorem 4.9. Using Equation (5.5), this cumulative regret bound implies
that the simple regret of SCMM-UCB is no worse than O(d ln(T )/

√
T ).

We use the cumulative regret bound for CMM-UCB in Theorem 4.9 to prove the regret bound in
Theorem 5.13. Since an ℓ1 ball of radius B1 is a subset of an ℓ2 ball of radius B1, the SCMM
confidence set Θℓ1

t is a subset of the CMM confidence set Θℓ2
t from Corollary 4.2 (if we set the ℓ2

norm upper bound B2 in Θℓ2
t to be equal to B1). This means that

UCB
Θ

ℓ1
t
(a) ≤ UCB

Θ
ℓ2
t
(a) ≤ AUCB

Θ
ℓ2
t
(a),

where AUCB
Θ

ℓ2
t
(at) is analytic UCB from Equation (4.11). A similar statement holds for the LCBs.

As a result, we are able to obtain the same bound on the regret at each round for SCMM-UCB, i.e.

∆(at) ≤ AUCB
Θ

ℓ2
t
(at)−ALCB

Θ
ℓ2
t
(at).

From here, we can follow the proof of Theorem 4.9 in Appendix B.4.2. Using the feature selec-
tion guarantee from Theorem 5.10, we can prove that, if we run the feature selection phase of
RSCMM-UCB for long enough, the cumulative regret of the RSCMM-UCB algorithm grows at
most logarithmically with d.
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Theorem 5.14 (Data-Independent Cumulative Regret Bound for RSCMM-UCB). Suppose that
assumptions 5.3-5.9 all hold. Choose any δ ∈ (0, 1/2] and and set threshold level equal to τ = m/2.
Choose any exploration distribution ρ, such that νmin(Σρ) > 0. Set η = 2σL∞

√
2 ln(4d/δ)/T1.

Choose any T1 such that

T1 ≥ max

(
3

ξ2
ln(d),

1

ξ2
ln(1/δ),

2048s2σ2L2
∞ ln(4d/δ)

m2νmin(Σρ)2

)
, where ξ = min

(
1

2
,
νmin(Σρ)

256sL2
∞

)
.

If for any c > 0, the sequence of mixture distributions is Pt = N (0, cΦ̃tΦ̃
⊤
t ), then for all T ≥ T1,

with probability at least 1− 2δ, the cumulative regret of RSCMM-UCB is bounded by

∆1:T ≤ 2CT1

+
2√
ln 2

max

{
C, σ

√
s ln

(
1+

cL2
2(T − T1)

σ2s

)
+
B2

1

c
+2 ln

1

δ

}√
s(T − T1) ln

(
1+

cL2
2(T − T1)

σ2s

)

Theorem 5.14 states that if the time horizon T is greater than T1, then the RSCMM-UCB algorithm
has cumulative regret bounded by

O
(

s2 ln(d)

m2νmin(Σρ)2
+ s

√
T ln(T )

)
.

If νmin(Σρ) is independent of the dimension d, then the cumulative regret bound for RSCMM-UCB
is O(s2 ln(d) + s

√
T ln(T )). This implies that the simple regret of RSCMM-UCB (for T ≥ T1) is

no worse than O(s2 ln(d)/T + s ln(T )/
√
T ). In the high-dimensional regime, where d and T both

tend to infinity and their ratio d/T is a fixed positive constant, the
√
T terms dominate the regret

bounds and we obtain sublinear O(s
√
T ln(T )) cumulative regret and decaying O(s ln(T )/

√
T )

simple regret. This suggests that RSCMM-UCB ought to work well in sparse high-dimensional
linear bandit problems.

Theorem 5.13 follows from the combination of the feature selection guarantee in 5.10 and the regret
bound for SCMM-UCB in Theorem 5.13. Due to Assumption 5.8, the total regret suffered in the
feature selection phase is no more than 2CT1. Theorem 5.10 guarantees that the restricted feature
map contains all the relevant features and exactly s features in total, which means the original
d-dimensional linear bandit problem is reduced to an s-dimensional linear bandit problem. Finally,
Theorem 5.13 upper bounds the total regret suffered by running the SCMM-UCB algorithm in the
reduced s-dimensional linear bandit problem for the remaining T − T1 rounds.

5.7 Experiments

We evaluate the empirical behaviour of the Thresholded Lasso Feature Selection method in Algo-
rithm 2, our SCMM and RSCMM confidence bounds, and our SCMM-UCB and RSCMM-UCB
algorithms for sparse linear bandits.
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5.7.1 Benchmark Problem

Sparse Linear Reward Function. Our benchmark uses randomly generated linear reward
functions of the form f∗(a) = ϕ(a)⊤θ∗, with actions a ∈ RdA and θ∗ ∈ Rd. The rewards are
corrupted by independent Gaussian noise with variance σ2, so rt = ϕ(at)

⊤θ∗+ϵt and ϵt ∼ N (0, σ2).
This ensures that the noise variables ϵ1, ϵ2, . . . are all σ-sub-Gaussian. We always use σ = 0.1. For
the feature map ϕ : RdA → Rd, we use Random Fourier Features (cf. Algorithm 1 of [140]). With
this choice of ϕ, we have L∞ ≤

√
2/d. The parameter vector θ∗ is generated in two stages: (a)

sample an s-dimensional random vector with elements drawn independently from a Rademacher
distribution (±1 with equal probability); (b) append d−s zeros to obtain an s-sparse d-dimensional
vector that satisfies the minimum signal condition with m = 1.

5.7.2 Feature Selection

We investigate the behaviour of the feature selection procedure in Algorithm 2 in the Sparse Linear
Reward Function, where we can guarantee that assumptions 5.3-5.9 hold. We attempt to verify
that feature selection with the thresholded Lasso estimate can still work well when T1 is smaller
than the theoretically motivated minimum value.

Compared Methods. We compare the feature selection procedure in Algorithm 2 where the
estimate used is: (a) the thresholded Lasso estimate (as suggested in this chapter); (b) the Lasso
estimate (as in [76]); (c) the PopArt estimate (as in [85]).

Experimental Setup. We conduct experiments in the Sparse Linear Reward Function bench-
mark. We always set dA = 50 and we vary d between 64 and 256. We use data sets {(at, rt)}Tt=1

of size T , where T is between 1 and 500. The actions {at}Tt=1 are drawn independently from a
uniform distribution over the hypercube [0, 1]dA , i.e. at ∼ U([0, 1]dA). We use s = 5, which means
that most elements of θ∗ are 0. For the Lasso and thresholded Lasso, we use the theoretically
motivated value η = 2σL∞

√
2 ln(4d/δ)/T1. We vary the threshold level τ between 0.01 and 0.5.

In this setting, the minimum signal level is m = 1, so the value of τ used in Theorem 5.10 is 0.5.
For the PopArt estimate, we use the default values of all parameters.

Results. For each feature selection method, and for each value of T and d, we record the pro-
portions of the indices in supp(θ∗) and supp(θ∗)c which are selected. Ideally, all the indices in
supp(θ∗) are selected (all relevant features are selected) and none of the indices in supp(θ∗)c (no
irrelevant features are selected).

In Figure 5.2, we observe that when the threshold level τ is 0.3 or 0.5, the thresholded Lasso estimate
successfully selects the exact support of θ∗, for all values of d and where T is approximately ≥ 50.
This suggests that it is sometimes possible to achieve exact support selection with a number of
samples that is much smaller than the lower bound in Theorem 5.10. Adding a threshold to the
Lasso estimate had a large impact on its sparsity. When the threshold was close 0.01 or 0.03 and
T was large, the thresholded Lasso estimate sometimes selected more than half of the irrelevant
features. We hypothesise that the proportion of supp(θ∗)c initially increases with T for some
threshold levels because the regularisation strength η decreases as T increases. For all values of
d and where T , the standard Lasso estimate had no elements that were exactly equal to 0, which
meant it always selected every feature.
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Figure 5.2: The proportion of the indices in supp(θ∗) selected (left column) and the proportion
of the indices in supp(θ∗)c selected (right) for the (thresholded) Lasso estimate and the PopArt
estimate. In each plot, the number of samples T varies along the x-axis. The top row shows results
for d = 64, the middle row shows results for d = 128 and the bottom row shows results for d = 256.

For all values of d and where T shown in Figure 5.2, the PopArt estimate was the 0 vector, i.e.
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it never selected any features. The PopArt estimate achieves sparsity by setting every component
of the estimate that cannot be guaranteed to be non-zero (using an infinity norm estimation error
bound) equal to 0. If the sample size T is large enough and the minimum signal assumption is
satisfied, it can be shown that PopArt recovers the exact support of θ∗ (see Theorem 1 of [85]).
However, we find that for smaller values of T , PopArt fails to perform effective feature selection.

5.7.3 Upper and Lower Confidence Bounds

We investigate the tightness and validity of the SCMM and Restricted SCMM upper and lower
confidence bounds. We aim to investigate the growth rates in d of the widths of the SCMM and
Restricted SCMM confidence bounds when the ground truth function is linear and sparse.

Compared Methods. We evaluate the following upper/lower confidence bounds: (a) CMM-
UCB: our numerical UCBs/LCBs from Chapter 4; (b) SCMM-UCB: our UCBs/LCBs from Section
5.5.1; (c) RSCMM-UCB: our Restricted SCMM UCBs/LCBs from Section 5.5.2; (d) SCMM-UCB
Oracle: our UCBs/LCBs from Section 5.5.1, except we use the s-dimensional feature map, which
only contains features where θ∗ has support. CMM-UCB serves as a baseline method, which is not
designed to exploit sparsity. The relative performance of our methods and SCMM-UCB oracle tells
us the price of not knowing which s features to use in advance.

Experimental Setup. We conduct experiments in the Sparse Linear Reward Function bench-
mark. First, we produce plots of the different UCBs and LCBs (see Figure 5.1). We set dA = 1,
d = 100 and s = 5. We use data sets {(at, rt)}Tt=1 of size T = 50. For RSCMM-UCB, we set the
exploration length to T1 = 30. Half of the actions are drawn uniformly from the interval [−4,−1]
and the remaining half are drawn uniformly from the interval [1, 4].

To investigate the growth rates of the widths of different confidence sets (see Figure 5.3), we set
dA = 50, we vary d between 5 and 100, and we set s = 5. We use data sets {(at, rt)}Tt=1 of
size T = 100. The actions {at}Tt=1 are drawn independently from a uniform distribution over the
hypercube [0, 1]dA . For RSCMM-UCB, we set the exploration length to T1 = 50. We record the
average width (UCB minus LCB) at Ttest = 100 randomly drawn test points {a′

t}Ttest
t=1 . Since the

RSCMM-UCB confidence bounds do not necessarily contain the ground truth function with high
probability (because the exploration length T1 is smaller than the theoretically motivated minimum
value), we also record the failure rate of each UCB/LCB. This is the frequency with which the
function values ϕ(a′

t)
⊤θ∗ at the test points a′

t lie outside the interval [LCB(a′
t),UCB(a

′
t)].

With each method, we use Gaussian mixture distributions Pt = N (µt,T t). For CMM-UCB
and SCMM-UCB, we use the standard mixture distributions Pt = N (0,ΦtΦ

⊤
t ). For RSCMM-

UCB, we the mixture distributions in Equation (5.20). SCMM-UCB Oracle use the mixture
distributions Pt = N (0,Φ∗

tΦ
∗
t
⊤), where Φ∗

t is the usual design matrix, except containing only
the columns (features) on which θ∗ has support. In both experiments, we run RSCMM-UCB
η = 2σL∞

√
2 ln(4d/δ)/T1 and τ = 0.5.

Results. Figure 5.3 shows the average width of the CMM-UCB, SCMM-UCB, RSCMM-UCB and
SCMM-UCB Oracle confidence bounds. As we would expect, the SCMM-UCB Oracle confidence
bounds appear to be have the smallest width. Their width does not grow with the feature vector
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dimension. Surprisingly, the RSCMM-UCB confidence bounds appear to have almost exactly the
same width as the SCMM-UCB Oracle confidence bounds and their width also did not grow when
the feature vector dimension was increased from 5 to 100. The SCMM-UCB confidence bounds were
wider than those of RSCMM-UCB, but much narrower than the CMM-UCB confidence bounds
when d was large. In Figure 5.3 (right), we observe that the width SCMM-UCB confidence bounds
grew approximately linearly in ln(d).

In Table 5.1, we see that CMM-UCB, SCMM-UCB and SCMM-UCB Oracle all achieved a failure
rate of 0. However, when the feature vector dimension was d = 100, RSCMM-UCB had an average
failure rate of 0.046, which suggests that the Thresholded Lasso feature selection sometimes fails
to identify the support of θ∗ when the exploration length is too small relative to the dimension. In
this setting, T1 = 50 and d = 100.

Figure 5.3: The confidence set width for different feature dimensions d. On the right, the dimension
is displayed on a logarithmic scale. We show the mean and standard deviation of the widths over
10 runs.

Table 5.1: The confidence set width and the failure rate of the confidence bounds for different
feature vector feature dimensions d. We show the mean and standard deviation over 10 runs.

d = 5 d = 20 d = 100

Width Failure Rate Width Failure Rate Width Failure Rate

CMM-UCB 0.299 ± 0.011 0.000 ± 0.000 1.101 ± 0.031 0.000 ± 0.000 3.886 ± 0.053 0.000 ± 0.000
SCMM-UCB 0.301 ± 0.010 0.000 ± 0.000 0.731 ± 0.057 0.000 ± 0.000 1.300 ± 0.033 0.000 ± 0.000
RSCMM-UCB 0.257 ± 0.030 0.000 ± 0.000 0.253 ± 0.029 0.000 ± 0.000 0.229 ± 0.023 0.046 ± 0.138
SCMM-UCB Oracle 0.301 ± 0.010 0.000 ± 0.000 0.285 ± 0.012 0.000 ± 0.000 0.250 ± 0.009 0.000 ± 0.000

5.7.4 Linear Bandits

We evaluate the SCMM-UCB and RSCMM-UCB algorithms in the Sparse Linear Reward Function
benchmark. We aim to investigate the performance of our linear bandit algorithms and the tightness
of their data-dependent simple regret bounds.

Compared Methods. The methods we compare are: (a) SCMM-UCB: our SCMM-UCB algo-
rithm from Section 5.5.1; (b) RSCMM-UCB: our RSCMM-UCB algorithm from Section 5.5.2; (c)
CMM-UCB: cf. Chapter 4; (d) ESTC: the Explore the Sparsity Then Commit (ESTC) algorithm
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[76] (e) ROFUL: the Restricted Optimism in the Face of Uncertainty Linear bandit algorithm
(ROFUL) [3, 76]. The original ROFUL algorithm uses the standard Lasso to select a restricted
feature map. Since we found that this doesn’t work well in the Sparse Linear Reward Function
benchmark, we run ROFUL with our improved Thresholded Lasso feature selection algorithm to
provide a tougher baseline for RSCMM-UCB.

Experimental Setup. We conduct experiments in the Sparse Linear Reward Function bench-
mark. For our first experiment, we set the action dimension to dA = 5, the feature vector dimension
to d = 50, the sparsity level to s = 5 and the number of rounds to T = 100. Our second experiment
uses a reward function of higher dimension. We set dA = 5, d = 100, s = 5 and T = 200. In both
experiments, the action set is the unit hypercube, i.e. A = [0, 1]dA . We record the values of the
data-dependent simple regret bounds at the final round, but only for the CMM-UCB, SCMM-UCB
and SCMM-UCB Oracle methods. This is because the other methods only give valid simple regret
guarantees when the exploration length is sufficiently large.

For each of our algorithms, we use Gaussian mixture distributions Pt = N (µt,T t). For CMM-UCB
and SCMM-UCB, we use the standard mixture distributions Pt = N (0,ΦtΦ

⊤
t ). For RSCMM-UCB,

we the mixture distributions in Equation (5.20). SCMM-UCB Oracle use the mixture distributions
Pt = N (0,Φ∗

tΦ
∗
t
⊤), where Φ∗

t is the usual design matrix, except containing only the columns
(features) on which θ∗ has support. In both experiments, we use η = 2σL∞

√
2 ln(4d/δ)/T1 in

RSCMM-UCB. For the RSCMM-UCB, ESTC and ROFUL algorithms, which all have an initial
exploration/feature selection phase, we set the exploration length to T1 = 40 in the 50-dimensional
problem and T1 = 60 in the 100-dimensional problem.

Results. Figure 5.4 shows the average simple regret (left) and cumulative regret (right) for each
method in the 50-dimensional problem. SCMM-UCB, RSCMM-UCB and ROFUL all appeared to
reach almost 0 simple regret by approximately T = 50. The simple regret of CMM-UCB decayed
to 0 at a slower rate, but reached almost 0 by T = 100. The simple regret of ESTC reached
approximately 0.04 after the end of the exploration phase T1 = 40, and then remained there.

Figure 5.4: The simple regret (left) and cumulative regret (right) curves for our sparse UCB
algorithms (SCMM-UCB, RSCMM-UCB) compared with CMM-UCB, ESTC, ROFUL and SCMM-
UCB Oracle in the Sparse Linear Reward Function benchmark with feature vector dimension d =
50. We show the mean over 10 runs.
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RSCMM-UCB, ROFUL and ESTC all suffered large cumulative regret during their exploration
phases. As a result, even though it is not designed for sparse linear bandits, CMM-UCB had
smaller cumulative regret that RSCMM-UCB, ROFUL and ESTC at T = 100. SCMM-UCB had
by far the best cumulative regret (excluding the oracle baseline).

Figure 5.5: The simple regret (left) and cumulative regret (right) curves for our sparse UCB
algorithms (SCMM-UCB, RSCMM-UCB) compared with CMM-UCB, ESTC, ROFUL and SCMM-
UCB Oracle in the Sparse Linear Reward Function benchmark with feature vector dimension d =
100. We show the mean over 10 runs.

Figure 5.5 shows the average simple regret (left) and cumulative regret (right) for each method in
the 50-dimensional problem. In the higher-dimensional problem, CMM-UCB had by far the highest
cumulative regret at T = 100. SCMM-UCB still had the lowest cumulative regret (excluding the
oracle baseline), although the gaps between SCMM-UCB and the three methods with exploration
phases were much smaller, which suggests that SCMM-UCB may not scale up to high-dimensional
problems as well as the other three methods.

Table 5.2: The cumulative regret (Cum. Regret), simple regret (Sim. Regret) and simple regret
bound (Sim. Reg. Bnd.) for each algorithm in the Sparse Linear Reward Function benchmark
with feature vector dimension d = 50 (left) and d = 100 (right). We show the mean ± standard
deviation over 10 repetitions.

d = 50, T = 100 d = 100, T = 200

Cum. Regret Sim. Regret Sim. Reg. Bnd. Cum. Regret Sim. Regret Sim. Reg. Bnd.

CMM-UCB 39.705 ± 4.069 0.014 ± 0.011 1.024 ± 0.053 65.524 ± 7.491 0.016 ± 0.008 1.489 ± 0.067
SCMM-UCB 22.965 ± 4.410 0.000 ± 0.001 0.153 ± 0.038 41.851 ± 4.223 0.000 ± 0.001 0.189 ± 0.021
RSCMM-UCB 45.928 ± 2.777 0.000 ± 0.000 - 46.942 ± 2.510 0.000 ± 0.000 -
ESTC 41.268 ± 3.544 0.037 ± 0.028 - 46.459 ± 3.443 0.035 ± 0.024 -
ROFUL 45.225 ± 2.402 0.000 ± 0.001 - 47.121 ± 2.329 0.000 ± 0.000 -
SCMM-UCB Oracle 6.002 ± 1.150 0.000 ± 0.001 0.036 ± 0.009 6.356 ± 1.802 0.000 ± 0.000 0.027 ± 0.006

Table 5.2 shows the cumulative regret, the simple regret and the simple regret bounds for each
method in the final round of each bandit problem. In these problems, the combination of Assump-
tion 5.4 and Assumption 5.7 means that the simple regret of any action is trivially upper bounded
by B1L∞. For the 50-dimensional and 100-dimensional problems, these trivial simple regret bounds
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are 2 and
√
2 ≈ 1.414 respectively. In Table 5.2, we see that the SCMM-UCB simple regret bound

is much tighter than the CMM-UCB simple regret bound, which is vacuous for the 100-dimensional
problem.

5.8 Conclusion

In this chapter, we re-used our general-purpose tail bound for adaptive martingale mixtures to
design new confidence sequences for sparse linear bandits. We proposed the SCMM-UCB algorithm,
which selects actions by maximising upper confidence bounds constructed from martingale mixture
confidence sets with ℓ1 norm constraints. We also proposed the RSCMM-UCB algorithm, which
adds an initial feature selection phase to the SCMM-UCB algorithm.

In our theoretical analysis, we proved that the feature selection phase of RSCMM-UCB, which uses
the Thresholded Lasso estimate, is guaranteed to recover the exact support of a sparse parameter
vector if a minimum signal condition is satisfied and the number of samples is sufficiently large. We
proved data-dependent simple regret bounds for both of our algorithms as well as data-independent
cumulative regret bounds, which have explicit dependence on the dimension d, the sparsity level s
and the number of rounds T . For RSCMM-UCB, we proved an almost dimension-free O(s2 ln(d)+
s
√
T ln(T )) cumulative regret bound.

In our experiments, we found that the feature selection phase of RSCMM-UCB is able perform
successful feature selection even when the sample size is much lower than the theoretically motivated
minimum value. We found that the widths of our SCMM-UCB and RSCMM-UCB confidence
sets grows at much slower rate in d than the width of our CMM-UCB confidence set when the
ground-truth function is sparse. Finally we found that our SCMM-UCB algorithm achieves better
cumulative regret than existing sparse linear bandit algorithms and is able to provide non-vacuous
simple regret guarantees, which could be used to design stopping criteria.

However, the algorithms proposed in this Chapter are not without limitations. The data-independent
regret bound for SCMM-UCB does not have improved dependence on d. Moreover, while SCMM-
UCB had by far the best cumulative regret in the 50 dimensional problem, the gap between the
cumulative regret of SCMM-UCB and the competing sparse methods was much smaller in the 100
dimensional problem. This suggests that SCMM-UCB may have worse dependence on the feature
vector dimension that the other sparse methods. We believe that this is due to our use of Gaussian
mixture distributions, since from Lemma B.16, the radius RMM,T is O(

√
d ln(T )). In future work,

we would like to investigate sparsity inducing mixture distributions (as described in Section 5.5.3).
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Chapter 6

Conclusion

In this thesis, the central aim was to answer the question:

How can PAC-Bayesian theory be used to design bandit algorithms with performance
guarantees?

In Section 6.1, we discuss how each chapter of this thesis helps to answer this question. In Section
6.2, we describe some directions for future research.

6.1 Summary of Contributions

Chapter 3 reviewed existing PAC-Bayesian bandit algorithms and their performance guarantees.
We found that previous works on PAC-Bayesian bandit algorithms focused on PAC-Bayes bounds
for martingales and their application to importance sampling-based estimates of the reward or
regret of a policy. A general principle for designing PAC-Bayesian bandit algorithms is to select
a policy or sequence of policies that optimises one of these PAC-Bayes bounds. On the one hand,
we found this approach can yield offline policy search algorithms with competitive performance
and surprisingly tight performance guarantees - even for neural network-based policies. On the
other hand, we found that online bandit algorithms designed in this way had sub-optimal empirical
performance and sub-optimal regret bounds.

In Chapter 4, we showed that PAC-Bayes bounds can be combined with the “optimism in the
face of uncertainty” principle, which reduces bandit problems to the construction of a confidence
sequence for the unknown reward function. We developed a novel general-purpose PAC-Bayes-style
tail bound for martingale mixtures, which we used to construct convex confidence sequences and
upper confidence bounds (UCBs) for linear bandits. We showed that our PAC-Bayes-style UCBs
are provably tighter than state-of-the-art UCBs constructed with the usual self-normalised bound
for vector-valued martingales [4, 3], which is one of the main building blocks of UCB algorithms
and has been used for over a decade without any substantial changes. We proposed the Convex
Martingale Mixture UCB (CMM-UCB) algorithm, which is a PAC-Bayes-style UCB algorithm for
linear bandits. We proved that CMM-UCB has a regret bound that is minimax optimal up to
logarithmic factors and found that it outperformed competing linear bandit algorithms in several
hyperparameter tuning tasks.
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In Chapter 5, we built upon the approach taken in Chapter 4. We re-used our general-purpose
PAC-Bayes-style tail bound for martingale mixtures to construct confidence sequences and UCBs
for sparse linear bandits. We proposed the Sparse Convex Martingale Mixture UCB (SCMM-
UCB) algorithm, which uses confidence sets with ℓ1 norm constraints, and the Restricted SCMM-
UCB (RSCMM-UCB) algorithm, which adds an initial feature selection phase to the SCMM-UCB
algorithm. We demonstrated that when the reward function is sparse, the confidence bounds used
by our SCMM-UCB and RSCMM-UCB algorithms can be much tighter than the confidence bounds
used by CMM-UCB. We showed that SCMM-UCB in particular achieves better cumulative regret
than competing sparse linear bandit algorithms.

In summary, this thesis reviewed previous works on PAC-Bayesian policy search algorithms and
showed that PAC-Bayes bounds can be used to develop PAC-Bayes-style upper confidence bound
algorithms, which have competitive empirical performance and come with performance guarantees.

6.2 Outlook

In Theorem 4.1, we presented a novel general-purpose tail bound for adaptive martingale mixtures.
In this thesis, we specialised this result to (sparse) linear bandits. We feel that there are many
interesting consequences of our general-purpose tail bound. Here, we highlight one of them.

6.2.1 PAC-Bayes-Style Confidence Sequences for Non-Linear Bandits

A limitation of our bandit algorithms from Chapter 4 and Chapter 5 is that they assume a linear
expected reward function, which may not be a realistic assumption for real-world bandit problems.
However, our general-purpose tail bound in Theorem 4.1 allows us to easily derive confidence
sequences for non-linear reward functions by simply choosing Zt(gt) = (gt − f∗(at))ϵt, where f

∗ is
the non-linear reward function. We briefly describe the case where f∗ lies in a reproducing kernel
Hilbert space (RKHS).

Suppose that the reward function f∗ is a function in an RKHS H, with reproducing kernel k :
A×A → R, and that the RKHS norm of f∗ is bounded, i.e. ∥f∗∥H ≤ BH. If in the specialisation
to linear bandits setting described at the beginning of Section 4.5.2, we instead choose Zt(gt) =
(gt − f∗(at))ϵt, then one can derive an equivalent to Equation (4.8), which is

∥f∗
t − rt∥22 ≤ (µt − rt)

⊤
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln

(
det

(
I +

T t

σ2

))
+ 2σ2 ln

1

δ
=: R2

MM,t,

where f∗
t = [f∗(a1), . . . , f

∗(at)]
⊤ is the vector of the first t ground-truth function values. Letting

f t = [f(a1), . . . , f(at)]
⊤ denote the first t values of an arbitrary f ∈ H, we can construct a familiar-

looking confidence sequence for f∗.

Corollary 6.1. For any adaptive sequence of mixture distributions Pt = N (µt,T t), it holds with
probability at least 1− δ that for all t ≥ 1 simultaneously f∗ lies in the set

Ft =

{
f ∈ H

∣∣∣∣ ∥f t − rt∥2 ≤ RMM,t and ∥f∥H ≤ BH

}
.
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Each Ft is a possibly infinite-dimensional set and the corresponding upper confidence bound
UCBFt(a) := maxf∈Ft {f(a)} is the solution of a possibly infinite-dimensional optimisation prob-
lem. However, due to the RKHS norm constraint in Ft, one can use the representer theorem [93]
to reduce this to a finite-dimensional optimisation problem in weight space (or an equivalent one
over a finite-dimensional vector of function values).

Lemma 6.2. With Ft as defined in Corollary 6.1, UCBFt(a) is the solution of the convex (conic)
program

max
wt+1∈Rt+1

kt+1(at+1)
⊤wt+1 s.t. ∥Kt,t+1wt+1 − rt∥2 ≤ RMM,t, ∥Lt+1wt+1∥2 ≤ BH,

where at+1 = a, kt+1(at+1) = [k(at+1, a1), . . . , k(at+1, at+1)]
⊤, Kt,t+1 is the t× t+ 1 kernel matrix

with i, jth element equal to k(ai, aj) and Lt+1 is any matrix satisfying L⊤
t+1Lt+1 = Kt+1 for the

usual kernel matrix Kt+1 (e.g. Lt+1 could be the right Cholesky factor of Kt+1).

From here, we could use differentiable convex optimisation to compute UCBFt(a) and its gradient
(as in CMM-UCB) or use an analytic upper bound on UCBFt(a) (as in AMM-UCB). This is all
we need to run a kernel bandit version of CMM-UCB or AMM-UCB. While the data-dependent
regret bound in Theorem 4.8 would remain basically unaltered, the data-independent regret bound
in Theorem 4.9 would need to be modified. The main challenge is that the regret bound must now
depend on quantities like the effective dimension (see e.g. [177]) or the maximum information gain
(see e.g. [168]) of the kernel instead of the dimension of the feature vectors, which is d = ∞ for
interesting kernels (e.g. RBF or Matérn).
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Appendix A

Appendix for Chapter 3

A.1 Proofs

A.1.1 M IS
T (π) is a martingale

Lemma A.1. The sequence {XIS
t (π)}Tt=1 defined as

XIS
t (π) =

π(at)

bt(ai)
rt −R(π),

is a martingale difference sequence with respect to {(at, rt)}Tt=1. Moreover, if the importance weights
π(at)/bt(at) are uniformly bounded above by 1/ϵT , then each XIS

t (π) is uniformly bounded in the
range [−R(π), 1/ϵT −R(π)], and the sum of the sequence is

T∑
t=1

XIS
t (π) = T (rIS(π,DT )−R(π)).

Since M IS
T (π) =

∑T
t=1X

IS
t (π), Lemma A.1 shows that M IS

T (π) is a martingale.

Proof of Lemma A.1. We first verify that, for any π ∈ Π, {XIS
t (π)}Tt=1 is a martingale difference

sequence with respect to {(at, rt)}Tt=1.

E
[
XIS

t (π)

∣∣∣∣Dt−1

]
= E

at∼bt,rt∼PR(·|at)

[
π(at)

bt(at)
rt −R(π)

]
,

= E
at∼bt

[
π(at)

bt(at)
E

rt∼PR(·|at)
[rt]

]
−R(π),

= E
at∼π

[
E

rt∼PR(·|at)
[rt]

]
−R(π),

= R(π)−R(π) = 0.
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Next, we verify that each XIS
t (π) is bounded in the interval [−R(π), 1/ϵT − R(π)]. If the impor-

tance weights π(at)/bt(at) are uniformly bounded above by 1/ϵT and the rewards are bounded in
[0, 1], then for any t, (π(at)/bt(at))rt ∈ [0, 1/ϵT ]. Therefore, XIS

t (π) = (π(at)/bt(at))rt − R(π) ∈
[−R(π), 1/ϵT −R(π)].

Finally, we verify that {XIS
t (π)}Tt=1 sums to T (rIS(π,DT )−R(π)).

T∑
t=1

XIS
t (π) =

T∑
t=1

(
π(at)

bt(at)
rt −R(π)

)
= T

(
1

T

T∑
t=1

π(at)

bt(at)
rt −R(π)

)
= T

(
rIS(π,DT )−R(π)

)
.

A.1.2 Bias of the CIS estimate

Lemma A.2 (Bias of the CIS estimate). The expected value of the CIS estimate satisfies

RCIS(ρ) ≤ R(ρ). (A.1)

Proof of Lemma A.2. First, we show that rIS(π,DT ) is an unbiased estimate of R(π). For any
π ∈ Π, any t ∈ 1, . . . , T , and any history Dt−1, we have that

E
at∼bt,rt∼PR(·|at)

[
π(at)

bt(at)
rt

]
= E

at∼bt

[
π(at)

bt(at)
E

rt∼PR(·|at)
[rt]

]
= E

at∼π(·)

[
E

rt∼PR(·|at)
[rt]

]
= R(π).

Therefore, we have

E
DT

[
rIS(π,DT )

]
= E

DT

[
1

T

T∑
t=1

π(at)

bt(at)
rt

]
=

1

T

T∑
t=1

R(π) = R(π).

Finally, we have

E
DT

[
rCIS(π,DT )

]
= E

DT

[
1

T

T∑
t=1

min

(
π(at)

bt(at)
,
1

τ

)
rt

]
≤ E

DT

[
1

T

T∑
t=1

π(at)

b(at)
rt

]
= E

DT

[
rIS(π,DT )

]
= R(π).

Taking the expected value Eπ∼ρ[·] of both sides yields the statement of the lemma. The proof for
the CB case is the same.

A.1.3 Proof of Theorem 3.7

First we state and prove a one-sided version of the Hoeffding-Azuma inequality for supermartingale
difference sequences.
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Lemma A.3 (One-Sided Hoeffding-Azuma inequality). Let X1, . . . , XT be a supermartingale dif-
ference sequence (meaning E[Xt|X1, . . . , Xt−1] ≤ 0 for t = 1, . . . , T ) where each Xt is bounded in
the interval [a, b]. Then for any λ ≥ 0, we have

E
X1,...,Xt

[
eλ

∑T
t=1 Xt

]
≤ e

Tλ2(b−a)2

8 .

Proof of Lemma A.3. First, by Hoeffding’s Lemma (see, for example, Lemma A.1 of [39]), for any
random variable bounded in the interval [a, b] and any λ ∈ R

E
[
eλX

]
≤ eλE[X]+λ2

8
(b−a)2 .

Now, for any λ ≥ 0, we have

E
X1,...,XT

[
eλ

∑T
t=1 Xt

]
= E

X1,...,XT

[
T∏
t=1

eλXt

]
,

= E
X1,...,XT−1

[
E
XT

[
T∏
t=1

eλXt

∣∣∣∣∣ X1, . . . , XT−1

]]
,

≤ E
X1,...,XT−1

[
eλEXT

[XT |X1,...,XT−1]+
λ2

8
(b−a)2

T−1∏
t=1

eλXt

]
,

≤ e
λ2

8
(b−a)2 E

X1,...,XT−1

[
eλ

∑T−1
t=1 Xt

]
.

By iterating the above steps, we obtain

E
X1,...,XT

[
eλ

∑T
t=1 Xt

]
≤

T∏
t=1

e
λ2(b−a)2

8 = e
Tλ2(b−a)2

8 .

Next, we show that the sequence {Y CIS
t (π)}Tt=1, defined as

Y CIS
t (π) = min

(
π(at)

bt(at)
,
1

τ

)
rt −R(π),

is a supermartingale difference sequence with respect to {(at, rt)}Tt=1, and that each term Y CIS
t (π)
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is bounded in the interval [−R(π), 1/τ −R(π)]. First, we have

E
[
Y CIS
t (π)

∣∣∣∣Dt−1

]
= E

at∼bt,rt∼PR(·|at)

[
Y CIS
t (π)

]
,

= E
at∼bt,rt∼PR(·|at)

[
min

(
π(at)

bt(at)
,
1

τ

)
rt −R(π)

]
,

≤ E
at∼bt,rt∼PR(·|at)

[
π(at)

bt(at)
rt −R(π)

]
,

= E
at∼bt

[
π(at)

bt(at)
E

rt∼PR(·|at)
[rt]

]
−R(π),

= E
at∼π(·)

[
E

rt∼PR(·|at)
[rt]

]
−R(π),

= R(π)−R(π) = 0.

Since min (π(at)/b(at|Dt−1), 1/τ) rt ∈ [0, 1/τ ], we have Y CIS
t (π) ∈ [−R(π), 1/τ − R(π)]. There-

fore, the sequence {Y CIS
t (π)}Tt=1 is compatible with the one-sided Hoeffding-Azuma inequality in

Lemma A.3, with a = −R(π) and b = 1/τ − R(π). In addition, we have (λ/n)
∑T

t=1 Y
CIS
t (π) =

λ(rCIS(π,DT )−R(π)).

To prove Theorem 3.7, we begin by using Lemma A.3 with λ(rCIS(π,DT ) − R(π)) and then use
Toelli’s theorem to swap expectations followed by the Donsker-Varadhan change of measure in-
equality (see Equation (2.4)).

E
DT

[
exp(λ(rCIS(π,DT )−R(π)))

]
≤ exp

(
λ2

8Tτ2

)
E

π∼P
E
DT

[
exp(λ(rCIS(π,DT )−R(π)))

]
≤ exp

(
λ2

8Tτ2

)
E
DT

E
π∼P

[
exp(λ(rCIS(π,DT )−R(π)))

]
≤ exp

(
λ2

8Tτ2

)
E
DT

[
exp

(
sup
Q∈P

{
E

π∼Q

[
λ(rCIS(π,DT )−R(π))

]
−DKL(Q||P )

})]
≤ exp

(
λ2

8Tτ2

)

Now, we use Markov’s inequality and take the logarithm of both sides. This tells us that for any
δ ∈ (0, 1], with probability at least 1− δ, we have

E
π∼Q

[
λ(rCIS(π,DT )−R(π))

]
−DKL(Q||P ) ≤ λ2

8Tτ2
+ ln(1/δ).

This inequality can be rearranged into the statement of Theorem 3.7.
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A.1.4 Variance of the CIS estimate

Lemma A.4 (Variance of the CIS estimate). The average variance of the CIS estimate (both the
MAB and CB versions) satisfies

V CIS(π,DT ) ≤
1

τ
.

Proof of Lemma A.4. We let

XCIS
t (π) = min

(
π(at)

bt(at)
,
1

τ

)
rt − E

at∼bt,rt∼PR(·|at)

[
min

(
π(at)

bt(at)
,
1

τ

)
rt

]
. (A.2)

To bound V CIS(π,DT ), we use that fact that the rewards are bounded in the interval [0, 1].

V CIS(π,DT ) =
1

T

T∑
t=1

E
at∼bt,rt∼PR(·|at)

[(
XCIS

t (π)
)2]

,

=
1

T

T∑
t=1

E
at∼bt,rt∼PR(·|at)

[
min

(
π(at)

bt(at)
,
1

τ

)2

rt
2

]
− 1

T

T∑
t=1

E
at∼bt,rt∼PR(·|at)

[
min

(
π(at)

bt(at)
,
1

τ

)
rt

]2
,

≤ 1

T

T∑
t=1

E
at∼bt

[
min

(
π(at)

bt(at)
,
1

τ

)2
]
,

≤ 1

T

T∑
t=1

1

τ
E

at∼bt

[
π(at)

bt(at)

]
,

=
1

T

T∑
t=1

1

τ
=

1

τ
.

A.1.5 Proof of Theorem 3.8

First, we state Bernstein’s inequality for martingales.

Lemma A.5 (Bernstein’s inequality). Let X1, . . . , XT be a martingale difference sequence where
each Xt is bounded in the interval [−b, b], for some b > 0. Then for all λ ∈ [0, 1/b]

E
X1,...,XT

[
eλ

∑T
t=1 Xt−(e−2)λ2

∑T
t=1 EXt [X

2
t |X1,...,Xt−1]

]
≤ 1.

For a proof, see Theorem 1 of [28]. Next, we show that the sequence {XCIS
t (π)}Tt=1, defined in

Equation A.2, is a martingale difference sequence with respect to {(at, rt)}Tt=1, and that each term
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is bounded in the interval [−1/τ, 1/τ ]. For any τ ∈ (0, 1], we have

E
[
XCIS

t (π)

∣∣∣∣Dt−1

]
= E

at∼bt,
rt∼PR(·|at)

[
XCIS

t (π)
]

= E
at∼bt,

rt∼PR(·|at)

[
min

(
π(at)

bt(at)
,
1

τ

)
rt − E

at∼bt,
rt∼PR(·|at)

[
min

(
π(at)

bt(at)
,
1

τ

)
rt

] ]
,

= 0.

For any t ∈ {1, . . . , T}, we have

0 ≤ E
at∼bt,rt∼PR(·|at)

[
min

(
π(at)

bt(at)
,
1

τ

)
rt

]
≤ E

at∼bt,rt∼PR(·|at)

[
π(at)

bt(at)
rt

]
= R(π) ≤ 1.

Since min (π(at)/bt(at), 1/τ) rt ∈ [0, 1/τ ], we have XCIS
t (π) ∈ [−1, 1/τ ] ⊆ [−1/τ, 1/τ ]. To prove

Theorem 3.8, we can follow the final sequence of steps taken in the proof of Theorem 3.7, except
starting from

E
DT

[
exp

(
λ

T∑
t=1

XCIS
t (π)− λ2(e− 2)

T∑
t=1

E
[
(XCIS

t (π))2|Dt−1

])]
≤ 1.

A.1.6 Proof of the Efron-Stein PAC-Bayes Bound (Theorem 3.10)

First, we recall the statement of the theorem. Let f(π,DT ) be a real-valued function, let F (π) =
EDT

[f(π,DT )] denote its expected value and let V ES(π,DT ) denote its semi-empirical Efron-Stein
variance proxy (see Equation (3.18)). If the data set DT consists of independent random variables,
then for any distribution P on Π, any y > 0 and any δ ∈ (0, 1), with probability at least 1− δ (over
the sampling of DT ), we have that for all Q ∈ P(Π)

|f(Q,DT )− F (Q)| ≤

√
2 (y + V ES(Q,DT ))

(
DKL(Q||P ) + 1

2
ln (1 + V ES(Q,DT )/y) + ln(1/δ)

)
.

In the proof, we use some technical lemmas. The first technical lemma is an Efron-Stein concen-
tration inequality by Kuzborskij and Szepesvári [97].

Lemma A.6 (Efron-Stein concentration inequality [97]). Let DT = {Zt}Tt=1 be a collection of
independent random variables. Then for any π ∈ Π and any λ ∈ R, we have

E
DT

[
eλ(f(π,DT )−EDT

[f(π,DT )])−λ2

2
V ES(π,DT )

]
≤ 1.

The second technical lemma allows us to swap the order of a supremum and an exponentiation.
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Lemma A.7. For any set A ⊆ R where sup(A) exists, we have that

esup(A) = sup
(
eA
)
,

where eA = {ea|a ∈ A}.

Proof of Lemma A.7. Let sup(A) = α. Suppose that sup
(
eA
)
< eα. Then there exists an ϵ > 0

such that sup
(
eA
)
≤ eα−ϵ. Therefore, for all a ∈ A, ea ≤ eα−ϵ, and so α− ϵ is an upper bound on

A. This is a contradiction since α is the least upper bound on A.

Now, suppose that sup
(
eA
)
> eα. This means that eα is not an upper bound for eA. Therefore,

there must exist an a ∈ A, where ea > eα, and so a > α. This is a contradiction, since sup(A) = α.
Therefore we must have esup(A) = sup

(
eA
)
.

The third technical lemma allows us to upper bound the supremum of an Gaussian integral/expected
value by the integral of the supremum.

Lemma A.8. For any function g : P(Π) × R → R, such that supQ∈P(Π){g(Q,λ)} < ∞ for all
λ ∈ R, we have

sup
Q∈P(Π)

{∫ ∞

−∞

y√
2π
e−

λ2y2

2 g(Q,λ)dλ

}
≤
∫ ∞

−∞

y√
2π
e−

λ2y2

2 sup
Q∈P(Π)

{g(Q,λ)}dλ.

Proof of Lemma A.8. For every Q ∈ P(Π) and λ ∈ R

y√
2π
e−

λ2y2

2 g(Q,λ) ≤ y√
2π
e−

λ2y2

2 sup
Q∈P(Π)

{g(Q,λ)}.

Therefore, for every Q ∈ P(Π)∫ ∞

−∞

y√
2π
e−

λ2y2

2 g(Q,λ)dλ ≤
∫ ∞

−∞

y√
2π
e−

λ2y2

2 sup
Q∈P(Π)

{g(Q,λ)}dλ.

Therefore, we have

sup
Q∈P(Π)

{∫ ∞

−∞

y√
2π
e−

λ2y2

2 g(Q,λ)dλ

}
≤
∫ ∞

−∞

y√
2π
e−

λ2y2

2 sup
Q∈P(Π)

{g(Q,λ)}dλ.

Proof of Theorem 3.10. Throughout the proof, letA(π,DT ) = f(π,DT )−F (π). Also, letA(Q,DT ) =
Eπ∼Q[A(Q,DT )] and let V ES(Q,DT ) = Eπ∼Q[V

ES(π,DT )].

Using the Donsker-Varadhan change of measure inequality (Equation (2.4)), we have that, for all
λ ∈ R

sup
Q∈P(Π)

{
λA(Q,DT )−

λ2

2
V ES(Q,DT )−DKL(Q||P )

}
= ln

(
E

π∼P

[
eλA(π,DT )−λ2

2
V ES(π,DT )

])
.
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We exponentiate and then take expected values (over DT ) of both sides to obtain

E
DT

[
e
supQ∈P(Π)

{
λA(Q,DT )−λ2

2
V ES(Q,DT )−DKL(Q||P )

}]
= E

DT

[
E

π∼P

[
eλA(π,DT )−λ2

2
V ES(π,DT )

]]
.

We use Tonelli’s theorem to swap the order of the expectations on the right-hand-side. We then
use the Efron-Stein Concentration Inequality in Lemma A.6 to obtain

E
DT

[
e
supQ∈P(Π)

{
λA(Q,DT )−λ2

2
V ES(Q,DT )−DKL(Q||P )

}]
≤ 1.

We use Lemma A.7, multiply both sides by (y/
√
2π)e−

λ2y2

2 for y > 0, and then integrate w.r.t. λ
from −∞ to ∞, which gives∫ ∞

−∞

y√
2π
e−

λ2y2

2 E
DT

[
sup

Q∈P(Π)

{
eλA(Q,DT )−λ2

2
V ES(Q,DT )−DKL(Q||P )

}]
dλ ≤ 1.

We use Tonelli’s theorem to swap the order of the integral and the expected value.

E
DT

[∫ ∞

−∞

y√
2π
e−

λ2y2

2 sup
Q∈P(Π)

{
eλA(Q,DT )−λ2

2
V ES(Q,DT )−DKL(Q||P )

}
dλ

]
≤ 1.

Using Lemma A.8, we can move the integral inside the supremum.

E
DT

[
sup

Q∈P(Π)

{∫ ∞

−∞

y√
2π
e−

λ2y2

2 eλA(Q,DT )−λ2

2
V ES(Q,DT )−DKL(Q||P )dλ

}]
≤ 1.

We can now calculate the integral by rearranging the integrand to get a Gaussian density function.

E
DT

[
sup

Q∈P(Π)

{
y√

y2 + V ES(Q,DT )
e

A(Q,DT )2

2(y2+V ES(Q,DT ))
−DKL(Q||P )

}]
≤ 1.

This holds for all P ∈ P(Π) and y > 0. Now, we fix P and y, and then use Markov’s inequality.
With probability at least 1− δ, and for all Q ∈ P(Π) simultaneously, we have

y√
y2 + V ES(Q,DT )

e
A(Q,DT )2

2(y2+V ES(Q,DT ))
−DKL(Q||P )

≤ 1/δ.

We can rearrange this inequality to obtain the following inequality, that holds with the same
probability

|A(ρ,Dn)| ≤

√
2 (y2 + V ES(ρ,Dn))

(
DKL(ρ||µ) +

1

2
ln (1 + V ES(ρ,Dn)/y2) + ln(1/δ)

)
.

Since y was an arbitrary positive number, we can replace y2 with y to recover the statement of the
Theorem.
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A.1.7 Proof for the Localised PAC-Bayes Bernstein Bound (Theorem 3.25)

This proof follows steps in Section 1.3.4. of [38]. First, we recall the statement of the Theorem.
For any λ ∈ [0, T ϵT ], any β satisfying 0 ≤ β < λ, any δ ∈ (0, 1] and any probability distribution
P ∈ P(Π), with probability at least 1− δ, for all distributions Q ∈ P(Π) simultaneously

R(Q) ≥ rIS(Q,DT )−
(λ2 + β2)(e− 2)

(λ− β)TϵT
−
DKL(Q||PβrIS) + 2ln(1/δ)

λ− β
.

Also, recall that PβR and PβrIS are Gibbs distributions, which are defined as

PβR(π) =
P (π)eβR(π)

Eπ∼P

[
eβR(π)

] , PβrIS(π) =
P (π)eβr

IS(π,DT )

Eπ∼P

[
eβrIS(π,DT )

] .
Proof of Theorem 3.25. As an intermediate step in the proof of the original PAC-Bayes Bernstein
bound, for all λ ∈ [−TϵT , T ϵT ], we have that

E
DT

[
exp

(
sup

Q∈P(Π)

{
λrIS(Q,DT )− λR(Q)−DKL(Q||PβR)

})]
≤ exp

(
λ2(e− 2)

TϵT

)
. (A.3)

Next, we attempt to find a relationship between DKL(Q||PβR) and DKL(Q||PβrIS).

DKL(Q||PβR) = E
π∼Q

[
ln

(
Q(π)

PβR(π)

)]
,

= E
π∼Q

[
ln

(
Q(π)

PβrIS(π)

PβrIS(π)

PβR(π)

)]
,

= DKL(Q||PβrIS) + β E
π∼Q

[
rIS(π,DT )−R(π)

]
+ ln

(
E

π∼P

[
eβR(π)

])
− ln

(
E

π∼P

[
eβr

IS(π,DT )
])

.

The last thing we need is a bound on ln(Eπ∼P [e
βR(π)])− ln(Eπ∼P [e

βrIS(π,DT )]). Using two applica-
tions of the Donsker-Varadhan change of measure inequality (Lemma 2.2), we have that

E
DT

[
exp

(
ln

(
E

π∼P

[
eβR(π)

])
− ln

(
E

π∼P

[
eβr

IS(π,DT )
]))]

= E
DT

[
exp

(
ln

(
E

π∼P

[
eβR(π)

])
+ inf

Q∈P(Π)

{
−βrIS(Q,DT ) +DKL(Q||P )

})]
,

≤ E
DT

[
exp

(
ln

(
E

π∼P

[
eβR(π)

])
− βrIS(PβR, DT ) +DKL(PβR||P )

)]
,

= E
DT

[
exp

(
βR(PβR)−DKL(PβR||P )− βrIS(PβR, DT ) +DKL(PβR||P )

)]
,

= E
DT

[
exp

(
βR(PβR)− βrIS(PβR, DT )

)]
,

≤ exp

(
β2(e− 2)

TϵT

)
.
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The final inequality is obtained by using Equation A.3 with λ = −β. This inequality and the one
in Equation A.3 can be combined using the Cauchy-Schwarz inequality

E
DT

[
exp

(
1

2
sup

Q∈P(Π)

{
(λ− β)(rIS(Q,DT )−R(Q))−DKL(Q||PβrIS)

})]
= E

DT

[
exp

(
1

2
sup

Q∈P(Π)

{
λ(rIS(Q,DT )−R(Q))−DKL(Q||PβR)

})
× exp

(
1

2

[
ln

(
E

π∼P

[
eβR(π)

])
− ln

(
E

π∼P

[
eβr

IS(π,DT )
])])]

,

≤ E
DT

[
exp

(
sup

Q∈P(Π)

{
λ(rIS(Q,DT )−R(Q))−DKL(Q||PβR)

})]1/2
× E

DT

[
exp

(
ln

(
E

π∼P

[
eβR(π)

])
− ln

(
E

π∼P

[
eβr

IS(π,DT )
]))]1/2

,

≤ exp

(
λ2(e− 2)

TϵT

)1/2

exp

(
β2(e− 2)

TϵT

)1/2

,

= exp

(
(λ2 + β2)(e− 2)

2TϵT

)
.

We use Markov’s inequality and then rearrange the result to obtain the statement of the Theorem.

A.2 Further Information About The Experiments

A.2.1 Details About Classification Data Sets

The four data sets (see Table A.1) came from either OpenML (OptDigits, PenDigits and Chars)
or the UCI Machine Learning Repository (DriveDiag). In the UCI Repository, the DriveDiag data
set can be found under its full name: “Dataset for Sensorless Drive Diagnosis Data Set”.

Name OptDigits PenDigits Chars DriveDiag

OpenML ID 28 32 1459 n/a
Size (T ) 4496 8793 8174 46807
Input dim (d) 64 16 7 48
Classes (K) 10 10 10 11

Table A.1: The OpenML ID number, size, input dimensionality and number of classes for all the
data sets we use in the CB Classification benchmark.

In Table A.1, the reported size of each data set is approximately 80% of the size of the original
data set. At the start of each repetition of each experiment, we perform a random 80:20 split. We
use 80% of the data to generate the training data for the offline bandit problem, learn a policy and
then evaluate the reward bound. The remaining 20% of the data are used to estimate the expected
reward of the learned policy. Therefore, the reported data set size reflects the number of examples
used to learn a policy and evaluate a lower bound on the expected reward.
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A.2.2 Details About Bound Optimisation and Evaluation

In the MAB benchmark, we allow Q to be any distribution over A, so each Q is an element of the
standard K-simplex. Unless stated otherwise, P is a uniform prior. For bounds where the optimal
Q is a Gibbs posterior (Hoeffding-Azuma and Bernstein), we use the optimal Gibbs posterior. For
bounds where we do not have a closed-form expression for the optimal Q (Pinsker and kl−1), we
optimise them by gradient ascent. As shown by Reeb et al. [143], the derivatives of kl−1 can be
calculated by differentiating the identity kl(p||kl−1(p,B)) = B.

In the CB benchmark, we restrict Q to be a diagonal Gaussian distribution N (m,σ2I), where
m and σ are d × K-dimensional vectors, over the weight matrix of the linear softmax policy.
Unless stated otherwise, P is a standard Gaussian prior over the weights. We optimise each
bound with respect to Q by stochastic gradient ascent, using the local reparameterisation trick
[94] to calculate stochastic gradients. For the bounds that are linear in the reward estimate (e.g.
Eθ∼N (m,σ2I)[r

IS(πθ, DT )]), this procedure will converge to the mean and variance parameters that

maximise the bound. However, when we approximate Eθ∼N (m,σ2I)[r
IS(πθ, DT )] with a single sample

in the kl−1 bound, this procedure will converge to the mean and variance parameters that maximise

1

ϵT
E

θ∼N (m,σ2I)

[
kl−1

(
ϵT r

IS(πθ, DT ),
DKL(N (m,σ2I)||P ) + ln(2

√
T/δ)

T

)]
,

which may not be the mean and variance parameters that maximise the kl−1 bound. Nevertheless,
the resulting approximately optimal Gaussian posterior still results in a valid bound. In all our
experiments, this approximation appeared to work well.

For the PAC-Bayes Hoeffding-Azuma and Bernstein bounds, we set λ to the (data-independent)
value that would be optimal ifDKL(Q||P ) = 0. In the MAB benchmark we can calculate Eπ∼Q[r

IS(π,DT )]
exactly. In the CB benchmark, when evaluating the bound value, we approximate Eπ∼Q[r

IS(π,DT )]
by averaging over 100 samples from Q.

A.2.3 Details About Implementation of the Priors

We tested the sample splitting prior with a value of m = T/2, meaning half the data were used to
learn a prior and the other half were used to optimise and evaluate a PAC-Bayes bound. To learn
priors from the subset D1:m of the data, we first split D1:m into training data Dtr and validation
data Dval. In the MAB benchmark, we used Dtr to calculate an empirical Gibbs prior

PβrIS(π) ∝ P (π)exp(β
√
Ttrr

IS(π,Dtr)),

for each β in a grid. We selected the value of β where rIS(PβrIS , Dval) was the greatest and then
calculated a final empirical Gibbs prior with this β, and using all the data in D1:m. P was a uniform
prior and we used the grid β ∈ {1, 5, 10}.

In the CB Linear benchmark, we followed the same procedure, but with some small modifications.
We approximated PβrIS with a diagonal Gaussian for each β in the grid {10, 100, 1000}. P was a
standard Gaussian prior over the weights of the linear softmax policy.

When using differentially private priors in the MAB benchmark, we used priors of the form
Pw(a) = exp(wa)/exp(

∑K
a′=1wa′), parameterised by w ∈ RK . wa is the ath element of w. We
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used Preconditioned Stochastic Gradient Langevin Dynamics (PSGLD) [110] to draw w from the
Gibbs distribution with density proportional to p(w)exp(ηEa∼Pw [r

IS(a,DT )]). p(w) was a standard
Gaussian. Due to Corollary 5.2 of [61], Pw is 2η/(TϵT )-differentially private with this w.

In the CB Linear benchmark, we learned Gaussian priors Pw(θ) = N (w, I) over the weight matrix
θ of the linear softmax policy πθ. We used PSGLD to draw w from the distribution with density
proportional to p(w)exp(ηrIS(πw, DT )). p(w) was a standard Gaussian, and Pw is 2η/(TϵT )-
differentially private with this choice of w.

In both benchmarks we drew w’s from Gibbs distributions with η ∈ {0.1
√
TϵT , 0.5

√
TϵT ,

√
TϵT }

and used the one that gave the best bound value, which we justify with the union bound.

To evaluate the kl−1 Lever bound and the distribution stability bound we need to calculate or
sample from the Gibbs distribution PβrIS . In the MAB benchmark, we can calculate PβrIS in
closed-form. In the CB benchmark, we drew samples from PβrIS using PSGLD and approxi-

mated Eπ∼P
βrIS

[rIS(π,DT )] by averages over 100 samples from PβrIS . In both the MAB and CB
benchmarks, and for both bounds, we evaluated the bounds for several Gibbs posteriors with
β ∈ {0.1

√
TϵT , 0.5

√
TϵT ,

√
TϵT } and used the ones that gave the best bound values.

Using the Donsker-Varadhan change of measure inequality in Lemma 2.2, the optimal posterior
for the localised PAC-Bayes Bernstein bound is the Gibbs distribution PλrIS , regardless of the
value of β. We evaluated the bound at λ ∈ {λ̃, 1.5λ̃, 2.0λ̃}, where λ̃ =

√
2TϵT ln(1/δ)/(e− 2)

is the optimal value of λ when β = 0 and DKL(Q||PβrIS) = 0. For each λ, we evaluated the
bound with β ∈ {0, λ/4, λ/2}. We used the (λ, β) pair that gave the best bound value. The
optimal posterior for the PAC-Bayes Hoeffding-Azuma bound with the empirical Gibbs prior is

also the Gibbs distribution PλrIS . We evaluated this bound with λ =
√
2T (ϵ2T ln(1/δ) + 2) and

β ∈ {0, λ/4, λ/2}. This value of λ is approximately the optimal value when DKL(Q||PβrIS) = 0.

A.2.4 Description of the TPOEM and TL2 Baselines

Like the original POEM algorithm [169], TPOEM uses the sample variance of the CIS reward
estimate to regularise the policy selection. Its objective function is

rCIS(πθ, DT )− β

√
vCIS(πθ, DT )

T
, (A.4)

where

vCIS(πθ, DT ) =
1

T − 1

T∑
t=1

(
min

(
πθ(at|st)
b(at|st)

,
1

τ

)
rt − rCIS(πθ, DT )

)2

,

is the sample variance of the CIS estimate. We split the data set into training data Dtr and
validation data Dval such that Dtr contains four times the number of samples in Dval. We maximise
Equation A.4 with respect to the weights θ using the training data, and for each β ∈ {10−k|k ∈
{0, . . . , 5}}. This gives us a set of policies Πβ

Θ with 6 elements (one for each β). Using the validation
data, we evaluate the following bound which is essentially a simpler version of the original POEM
bound that only holds for finite policy classes.
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rCIS(πθ, Dval)−

√
2vCIS(πθ, Dval)ln(2|Πβ

Θ|/δ)
Tval

−
7ln(2|Πβ

Θ|/δ)
τ(Tval − 1)

, (A.5)

where Tval = |Dval| is the number of examples in the validation data set. We choose the policy

πθ ∈ Πβ
Θ that maximises the bound in Equation (A.5). The TL2 baseline uses the ℓ2 norm of the

neural network weights to regularise the policy selection. It uses the objective function

rCIS(πθ, DT )− β ∥θ∥22 , (A.6)

We split the data set into Dtr and Dval with the same relative sizes as with TPOEM. We maximise
Equation A.6 with respect to θ using DT = Dtr and for each β ∈ {10−k|k ∈ {1, . . . , 6}}. This

gives us a set of policies Πβ
Θ with 6 elements. Using Dval, we evaluate a PAC bound based on the

Hoeffding-Azuma inequality.

rCIS(πθ, Dval)−
1

τ

√
ln(|Πβ

Θ|/δ)
2Tval

, (A.7)

We choose the policy πθ ∈ Πβ
Θ that maximises the bound in Equation (A.7).

A.3 Additional Experiments

A.3.1 Experiments With The Efron-Stein PAC-Bayes Bound

We compare the Efron-Stein (ES) PAC-Bayes bound for the rWIS estimate (in Equation (3.19))
against the Hoeffding-Azuma (Theorem 3.2), kl−1 (Equation (3.6)), Pinsker (Equation (3.7)), and
Bernstein (Equation (3.8)) PAC-Bayes bounds for the rIS estimate.

We compare the bounds in the offline MAB Binary benchmark, in which the policy class is the set
of all deterministic policies (i.e. the set of actions). As in our experiments in Section 3.7.3, we
optimise each bound with respect to the posterior Q and then report the value of the bound and
the expected reward for this Q. Details about how we optimise the bounds for the rIS estimate
with respect to Q and then evaluate them can be found in Appendix A.2.2. For convenience, we
re-state the RHS of the ES PAC-Bayes bound for the rWIS estimate from Equation (3.19).

rWIS(Q,DT )−
∣∣RWIS(Q)−R(Q)

∣∣
−

√
2 (y + 2VWIS(Q,DT ))

(
DKL(Q||P ) + 1

2
ln

(
1 +

2VWIS(Q,DT )

y

)
+ ln(1/δ)

)
.

Also, recall that VWIS(π,DT ) was defined as

VWIS(π,DT ) =

T∑
t=1

E
DT ,D′

T

[
w̃2
π,t + ũ2π,t|Dt

]
,
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where

w̃π,t =

π(at)
b(at)∑T

k=1
π(ak)
b(ak)

, ũπ,t =

π(a′t)
b(a′t)

π(a′t)
b(a′t)

+
∑

k ̸=t
π(ak)
b(ak)

.

a′t is an independently sampled copy of at. To evaluate the ES PAC-Bayes bound, we first assume
that the bias

∣∣RWIS(Q)−R(Q)
∣∣ is always equal to 0. Since the reward distribution PR in the

MAB benchmark is actually known, we can estimate
∣∣RWIS(Q)−R(Q)

∣∣ to arbitrary accuracy to
check whether this is a reasonable assumption. Some rough estimates suggest that in the MAB
benchmark with T = 1000, the bias of the WIS estimate is approximately 10−9 or smaller.

Figure A.1: The bound value (left) and expected reward (right) for the Efron-Stein WIS bound
and each of the IS bounds in the MAB Binary benchmark. The number of actions K varies from
2 to 50 along the x axes.

Next, we replace the semi-empirical ES variance proxy VWIS(π,DT ) with a fully empirical estimate.
For t in {1, . . . , T}, we draw m = 1000 actions {a′tk}mk=1 and another m actions {a′′tk}mk=1 from the
behaviour policy b. {a′tk}mk=1 for t = 1, . . . , T are 1000 draws of the ghost sample D′

T and {a′′tk}mk=1

for t = 1, . . . , T are 1000 re-draws of the original sample DT . Then for each policy π ∈ Π, we
calculate

ŵπ,t,k =

π(at)
b(at)∑t

l=1
π(al)
b(al)

+
∑T

l=t+1
π(a′′lk)

b(a′′lk)

, ûπ,t,k =

π(a′tk)
b(a′tk)

π(a′tk)

b(a′tk)
+
∑t−1

l=1
π(al)
b(al)

+
∑T

l=t+1
π(a′′lk)

b(a′′lk)

.

In the ES PAC-Bayes bound, we replace VWIS(π,DT ) with the estimate:

V̂WIS(π,DT ) =
T∑
t=1

1

m

m∑
k=1

ŵ2
π,t,k + û2π,t,k

Note that we only have to calculate V̂WIS(π,DT ) once before we optimise the ES PAC-Bayes bound
with respect to Q. Since the policy class Π is finite with K elements, calculating V̂WIS(π,DT ) for
every π ∈ Π is possible. However, this would obviously not be possible for infinite policy classes.
Strictly speaking, we should replace VWIS(π,DT ) with an upper bound rather than an estimate to
obtain a valid bound, as is done in [98]. Using an estimate rather than an upper bound results in
a (slightly) favourable evaluation of the ES PAC-Bayes bound.
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We always use a data set of size T = 1000, and the data set is generated using a uniform behaviour
policy. We varied the number of actions K from 2 to 50 to investigate how the bounds compare in
MAB problems with different numbers of actions.

Figure A.1 shows the bound value (left) and the expected reward (right) for each of the bounds we
compared at eachK. In the left plot in Figure A.1, we observe that the value of the Efron-Stein WIS
bound is the lowest for K ≤ 10. As K increases above 10, the Efron-Stein WIS bound overtakes
both the IS Pinsker and IS Hoeffding-Azuma bounds. However, for K ≥ 10, the Efron-Stein WIS
bound is vacuous (i.e. less than 0). On the bright side, the Efron-Stein WIS bound appears to work
quite well as a learning objective. In the right plot of Figure A.1, we see that the policy learned
by maximising the Efron-Stein WIS bound achieves close to the highest expected reward.

A.3.2 Insights About Choosing Bound Parameters

Now, we briefly explore why the fixed value of λ was almost as good as the optimal value. Both
the PAC-Bayes Hoeffding-Azuma and PAC-Bayes Bernstein bounds can be written in the form

R(Q) ≥ r(Q,DT )− aλ− DKL(Q||P ) + ln(1/δ)

λ
.

For bounds of this form, the optimal λ is the one that minimises f(λ) = aλ + (DKL(Q||P ) +
ln(1/δ))/λ. One can verify that λ∗ =

√
(DKL(Q||P ) + ln(1/δ))/a. We found that the value of the

PAC-Bayes Bernstein bound at λ̂ =
√
ln(1/δ)/a was almost the same as the bound value at λ∗. It

can be shown that the second derivative of f evaluated at λ∗ is

f ′′(λ∗) = 2a3/2/
√
DKL(Q||P ) + ln(1/δ).

When a is close to 0, f ′′(λ∗) will also be close to 0. Therefore, we can expect f(λ) to be almost
constant in the neighbourhood of λ∗ when a is near 0. For the PAC-Bayes Bernstein rIS bound,
a = (e−2)/TϵT . In the MAB Binary benchmark considered in Section 3.7.3, we had T = 1000 and
ϵT = 0.1, so a ≈ 0.000718. This may explain why the Bernstein bound value at λ̂ was close to the
Bernstein bound value at λ∗. In Figure A.2, we plot f(λ) for the PAC-Bayes Bernstein bound. We
set n ∈ {100, 1000, 10000}, and to match our earlier experiment in the MAB Binary benchmark,
we set ϵT = 0.1, δ = 0.05 and DKL(Q||P ) = ln(K), with K = 10. This is the maximum value of
the KL divergence, which means the difference between λ̂ and λ∗ is maximised.

Figure A.2: f(λ) for a = (e − 2)/(TϵT ) with ϵT = 0.1, δ = 0.05 and DKL(Q||P ) = ln(K). T is
equal to 100 (left), 1000 (middle) and 10000 (right).

In Figure A.2, we see that as T increases (and a decreases) f(λ) becomes almost constant in the
neighbourhood of λ∗. The value of f(λ) at λ̂ and λ∗ is almost the same even for T = 100.
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Appendix B

Appendix for Chapter 4

B.1 Proof of the General-Purpose Tail Bound for Adaptive Mar-
tingale Mixtures

B.1.1 Verifying Martingale Properties

First, we recall the definition of (Mt(gt,λt)|t ∈ N) in Eq. (4.3). We are given a filtration (Dt|t ∈ N),
a sequence of adapted random functions (Zt : R → R|t ∈ N), and a sequence of predictable random
variables (λt|t ∈ N).

A filtration is an increasing sequence of σ-algebras D0 ⊆ D1 ⊆ D2 · · · . Each σ-algebra Dt represents
the information available at time t. (Zt : R → R|t ∈ N) being a sequence of adapted (to the filtration
(Dt|t ∈ N)) functions means that, when conditioned on Dt, Zt is no longer random. (λt|t ∈ N)
being a sequence of predictable random variables means that, when conditioned on Dt−1, λt is no
longer random.

For a sequence of real numbers (gt : t ∈ N), we define

Mt(gt,λt) = exp

(
t∑

k=1

λkZk(gk)− ψk(gk, λk)

)
,

where ψt(gt, λt) is the conditional cumulant generating function

ψt(gt, λt) := ln (E [exp(λtZt(gt))|Dt−1]) .

Lemma B.1. For any sequence of real numbers (gt|t ∈ N), (Mt(gt,λt)|t ∈ N) is a martingale and
E[Mt(gt,λt)] = 1 for all t ∈ N.

125



Proof. For t = 1, we have

E[M1(g1,λ1)|D0] = E [exp(λ1Z1(g1)− ψ1(g1, λ1))|D0]

= E [exp(λ1Z1(g1))|H0] / exp(ψ1(g1, λ1))

= exp(ψ1(g1, λ1))/ exp(ψ1(g1, λ1))

= 1.

Using the tower rule of conditional expectation, we also have

E[M1(g1,λ1)] = E[E[M1(g1,λ1)|D0]] = 1.

Now, we verify the martingale property. For any t ≥ 2, we have

E [Mt(gt,λt)|Dt−1] = E

[
exp

(
t∑

k=1

λkZk(gk)− ψk(gk, λk)

)∣∣∣∣Dt−1

]

= exp

(
t−1∑
k=1

λkZk(gk)− ψk(gk, λk)

)
E [exp (λtZt(gt)− ψt(gt, λt)) |Dt−1]

= exp

(
t−1∑
k=1

λkZk(gk)− ψk(gk, λk)

)
=Mt−1(gt−1,λt−1).

Using the tower rule again, we have for any t ≥ 2

E[Mt(gt,λt)] = E[E[Mt(gt,λt)|Dt−1]] = E[Mt−1(gt−1,λt−1)].

Therefore, we have

E[Mt(gt,λt)] = E[Mt−1(gt−1,λt−1)] = · · · = E[M1(g1,λ1)] = 1.

Lemma B.2. For any adaptive sequence of mixture distributions (Pt|t ∈ N), (Egt∼Pt [Mt(gt,λt)]|t ∈
N) is a martingale and E[Egt∼Pt [Mt(gt,λt)]] = 1 for all t ∈ N.

Proof. For any t ≥ 1, sinceMt(gt,λt) is non-negative and Pt is Dt−1-measurable, Tonelli’s theorem
implies

E
[
Egt∼Pt [Mt(gt,λt)]|Dt−1

]
= Egt∼Pt [E[Mt(gt,λt)|Ht−1]] .

The requirement that the distributions P1, P2, . . . have coinciding marginals, i.e.
∫
Pt(gt)dgt =

Pt−1(gt−1), means that for all t ≥ 2

Egt∼Pt [Mt−1(gt−1,λt−1)] = Egt−1∼Pt−1 [Mt−1(gt−1,λt−1)].
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Using these two results, and the fact that (Mt(gt,λt)|t ∈ N) is a martingale for any sequence
(gt|t ∈ N), we now verify that the martingale mixture (Egt∼Pt [Mt(gt,λt)]|t ∈ N) is a martingale
with expected value 1. For t = 1, we have

E
[
Eg1∼P1 [M1(g1,λ1)]|D0

]
= Eg1∼P1 [E[M1(g1,λ1)|D0]]

= Eg1∼P1 [1]

= 1.

Using the tower rule as before, this also means that E
[
Eg1∼P1 [M1(g1,λ1)]

]
= 1. For any t ≥ 2, we

have

E
[
Egt∼Pt [Mt(gt,λt)]|Dt−1

]
= Egt∼Pt [E[Mt(gt,λt)|Dt−1]]

= Egt∼Pt

[
Mt−1(gt−1,λt−1)

]
= Egt−1∼Pt−1

[
Mt−1(gt−1,λt−1)

]
.

Using the tower rule one more time, we have for any t ≥ 2

E[Egt∼Pt [Mt(gt,λt)]] = E[E[Egt∼Pt [Mt(gt,λt)]|Dt−1]] = E[Egt−1∼Pt−1 [Mt−1(gt−1,λt−1)]].

Therefore, we have
E[Egt∼Pt [Mt(gt,λt)]] = E[Eg1∼P1 [M1(g1,λ1)]] = 1.

B.1.2 Proof of Theorem 4.1

To prove Thm. 4.1, we use Ville’s inequality for non-negative (super)martingales [181] (see Lemma
2.1).

Proof of Thm. 4.1. We choose an arbitrary δ ∈ (0, 1]. From Lemma B.2, for any adaptive sequence
of mixture distributions (Pt|t ∈ N), (Egt∼Pt [Mt(gt,λt)]|t ∈ N) is a martingale and E[Egt∼Pt [Mt(gt,λt)]] =
1. In addition, (Egt∼Pt [Mt(gt,λt)]|t ∈ N) is clearly non-negative. Therefore, using Lemma 2.1, with
probability at least 1− δ

∀t ≥ 1, Egt∼Pt [Mt(gt,λt)] ≤ 1/δ.

Taking the logarithm of both sides yields the statement of Thm. 4.1.

B.2 Closed-Form Gaussian Integration

Here, we calculate the integral in the inequality (see beginning of Sec. 4.5.2):

E
gt∼N (µt,T t)

[
exp

{
t∑

k=1

λk(gk − ϕ(ak)
⊤θ∗)(rk − ϕ(ak)

⊤θ∗)− σ2

2
λ2k(gk − ϕ(ak)

⊤θ∗)2

}]
≤ 1

δ
. (B.1)

127



First, we rearrange the integrand into a more convenient form. For every k, using rk = ϕ(ak)
⊤θ∗+

ϵk, we have

(ϕ(ak)
⊤θ∗ − rk)

2 − (gk − rk)
2 = ϵ2k − (gk − ϕ(ak)

⊤θ∗ − ϵk)
2

= ϵ2k − (gk − ϕ(ak)
⊤θ∗)2 + 2(gk − ϕ(ak)

⊤θ∗)ϵk − ϵ2k

= 2(gk − ϕ(ak)
⊤θ∗)(rk − ϕ(ak)

⊤θ∗)− (gk − ϕ(ak)
⊤θ∗)2.

Therefore, we have that

λk(gk − ϕ(ak)
⊤θ∗)(rk − ϕ(ak)

⊤θ∗)− σ2

2
λ2k(gk − ϕ(ak)

⊤θ∗)2

=
λk
2
(ϕ(ak)

⊤θ∗ − rk)
2 − λk

2
(gk − rk)

2 +
1

2
(λk − σ2λ2k)(gk − ϕ(ak)

⊤θ∗)2.

Equation (B.1) can now be re-written as

E
gt∼N (µt,T t)

[
exp

{
t∑

k=1

λk
2
(ϕ(ak)

⊤θ∗ − rk)
2 − λk

2
(gk − rk)

2 +
1

2
(λk − σ2λ2k)(gk − ϕ(ak)

⊤θ∗)2

}]
≤ 1

δ
.

(B.2)

In the special case where λt ≡ 1/σ2, we have λk − σ2λ2k = 0, which means that 1
2(λk − σ2λ2k)(gk −

ϕ(ak)
⊤θ∗)2 disappears. In addition, and for any λk, (ϕ(ak)

⊤θ∗ − rk)
2 does not depend on gk, so it

can be moved outside the integral.

B.2.1 General λt

Let Λt be the t×t diagonal matrix with diagonal elements λ1, λ2, . . . , λt. Starting from (B.2), taking
the logarithm of both sides, rearranging terms and then writing everything in matrix notation, we
arrive at

(Φtθ
∗ − rt)Λt(Φtθ

∗ − rt) ≤ 2 ln(1/δ) (B.3)

− 2 ln

(
E

gt∼N (µt,T t)

[
exp

(
−1

2
(gt − rt)

⊤Λt(gt − rt) +
1

2
(gt − Φtθ

∗)⊤
(
Λt − σ2Λ2

t

)
(gt − Φtθ

∗)

)])

The expected value inside the logarithm can be re-written as

1√
(2π)t det(T t)

∫
exp

(
− 1

2
(gt − µt)

⊤T−1
t (gt − µt)−

1

2
(gt − rt)

⊤Λt(gt − rt) (B.4)

+
1

2
(gt − Φtθ

∗)⊤
(
Λt − σ2Λ2

t

)
(gt − Φtθ

∗)

)
dgt.

We will calculate the integral by “completing the square”, i.e. rewriting the exponent in the form
−1

2(gt − b)⊤A(gt − b) + c, to recover the integral of a Gaussian density function. For a symmetric
matrix A, we have

−1

2
(gt − b)⊤A(gt − b) + c = −1

2
g⊤
t Agt + b⊤Agt −

1

2
b⊤Ab+ c.

128



We also have

−1

2
(gt − µt)

⊤T−1
t (gt − µt) = −1

2
g⊤
t T

−1
t gt + µ⊤

t T
−1
t gt −

1

2
µ⊤
t T

−1
t µt

−1

2
(gt − rt)

⊤Λt(gt − rt) = −1

2
g⊤
t Λtgt + r⊤t Λtgt −

1

2
r⊤t Λtrt

1

2
(gt − Φtθ

∗)⊤
(
Λt − σ2Λ2

t

)
(gt − Φtθ

∗) =
1

2
g⊤
t

(
Λt − σ2Λ2

t

)
gt − θ∗⊤Φ⊤

t

(
Λt − σ2Λ2

t

)
gt

+
1

2
θ∗⊤Φ⊤

t

(
Λt − σ2Λ2

t

)
Φtθ

∗.

We now equate coefficients to find A, b and c. We find that A is

A = T−1
t + σ2Λ2

t .

Note that A is symmetric. We find that b is

b⊤A = µ⊤
t T

−1
t + r⊤t Λt − θ∗⊤Φ⊤

t

(
Λt − σ2Λ2

t

)
=⇒ Ab = T−1

t µt +Λtrt −
(
Λt − σ2Λ2

t

)
Φtθ

∗

=⇒ b =
(
T−1

t + σ2Λ2
t

)−1 (
T−1

t µt +Λtrt −
(
Λt − σ2Λ2

t

)
Φtθ

∗) .
Finally, we find that c is

c =
1

2
b⊤Ab− 1

2
µ⊤
t T

−1
t µt −

1

2
r⊤t Λtrt +

1

2
θ∗⊤Φ⊤

t

(
Λt − σ2Λ2

t

)
Φtθ

∗

=
1

2

(
T−1

t µt +Λtrt −
(
Λt − σ2Λ2

t

)
Φtθ

∗)⊤ (T−1
t + σ2Λ2

t

)−1 (
T−1

t µt +Λtrt −
(
Λt − σ2Λ2

t

)
Φtθ

∗)
− 1

2
µ⊤
t T

−1
t µt −

1

2
r⊤t Λtrt +

1

2
θ∗⊤Φ⊤

t

(
Λt − σ2Λ2

t

)
Φtθ

∗

Now, we can rewrite and calculate the integral in (B.4) as

exp(c)√
(2π)t det(T t)

∫
exp

(
−1

2
(gt − b)⊤A(gt − b)

)
dgt =

exp(c)
√

(2π)t det(A−1)√
(2π)t det(T t)

= exp(c)

√
det(A−1)

det(T t)

Substituting this into (B.3), we obtain the constraint

(Φtθ
∗ − rt)

⊤Λt(Φtθ
∗ − rt) ≤ −2 ln

exp(c)

√
det(A−1)

det(T t)

+ 2 ln(1/δ)

= −2c+ ln (det(AT t)) + 2 ln(1/δ)

= −
(
T−1

t µt +Λtrt −
(
Λt − σ2Λ2

t

)
Φtθ

∗)⊤ (T−1
t + σ2Λ2

t

)−1 (
T−1

t µt +Λtrt −
(
Λt − σ2Λ2

t

)
Φtθ

∗)
+ µ⊤

t T
−1
t µt + r⊤t Λtrt − θ∗⊤Φ⊤

t

(
Λt − σ2Λ2

t

)
Φtθ

∗ + ln
(
det(I + σ2Λ2

tT t)
)
+ 2 ln(1/δ)
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Note that θ∗ appears on both the left-hand-side and right-hand-side of this inequality. However,
when Λt − σ2Λ2

t is the zero matrix (e.g. when λt ≡ 1/σ2), all the θ∗-dependent terms on the
right-hand-side disappear.

B.2.2 The Special Case λt ≡ 1/σ2

Starting from (B.2), choosing λt ≡ 1/σ2, taking the logarithm of both sides and then rearranging
terms, we arrive at

∥Φtθ
∗ − rt∥22 ≤ −2σ2 ln

(
E

gt∼N (µt,T t)

[
exp

(
− 1

2σ2
(gt − rt)

⊤(gt − rt)

)])
+ 2σ2 ln(1/δ). (B.5)

For any t× t covariance matrix T , let Z(T ) denote the normalising constant of a Gaussian distri-
bution with covariance T , so

Z(T ) =
√
(2π)t det(T ).

For any t-dimensional vectors x and µ, and any t× t covariance matrix T , let p(x|µ,T ) denote the
density function of a Gaussian distribution with mean µ and covariance T , evaluated at x. This
means that

p(x|µ,T ) =
1

Z(T )
exp

(
−1

2
(x− µ)⊤T−1(x− µ)

)
.

We will use the product of Gaussians trick from [138] (Section 8.1.8, Equation 371), which states

p(x|µ1,Σ1)p(x|µ2,Σ2) = p(µ1|µ2,Σ1 +Σ2)p(x|µc,Σc), (B.6)

where
µc =

(
Σ−1

1 +Σ−1
2

)−1
(Σ−1

1 µ1 +Σ−1
2 µ2), Σc =

(
Σ−1

1 +Σ−1
2

)−1
.

We have that

E
gt∼N (µt,T t)

[
exp

(
− 1

2σ2
(gt − rt)

⊤(gt − rt)

)]
= E

gt∼N (µt,T t)

[
Z(σ2I)p(gt|rt, σ2I)

]
= Z(σ2I)

∫
Rt

p(gt|µt,T t)p(gt|rt, σ2I)df t

= Z(σ2I)

∫
Rt

p(µt|rt,T t + σ2I)p(gt|µc,Σc)dgt

= Z(σ2I)p(µt|rt,T t + σ2I)

=

√
det(σ2I)

det(T t + σ2I)
exp

(
−1

2
(µt − rt)

⊤(T t + σ2I)−1(µt − rt)

)
Substituting this into (B.5), the constraint becomes

∥Φtθ
∗ − rt∥22 ≤ σ2(µt − rt)

⊤(T t + σ2I)−1(µt − rt)− 2σ2 ln

(√
det(σ2I)

det(T t + σ2I)

)
+ 2σ2 ln

(
1

δ

)
.

= (µt − rt)
⊤
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln det

(
I +

T t

σ2

)
+ 2σ2 ln

(
1

δ

)
.
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B.3 Computing Upper Confidence Bounds

First, we state and prove some useful lemmas.

Lemma B.3. For any α > 0

(Φtθ − rt)
⊤(Φtθ − rt) + αθ⊤θ −R2

MM,t − αB2
2 = (θ − θ̂α,t)

⊤
(
Φ⊤
t Φt + αI

)
(θ − θ̂α,t)−R2

AMM,t,

where R2
MM,t is the squared radius quantity from Cor. 4.2 and

θ̂α,t =
(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt,

R2
AMM,t = R2

MM,t + αB2
2 − r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt.

Proof. For any symmetric matrix A, we have

(θ − b)⊤A(θ − b) + c = θ⊤Aθ − 2b⊤Aθ + b⊤Ab+ c.

We also have

(Φtθ−rt)
⊤(Φtθ−rt)+αθ

⊤θ−R2
MM,t−αB2

2 = θ⊤
(
Φ⊤
t Φt + αI

)
θ−2r⊤t Φtθ+r⊤t rt−R2

MM,t−αB2
2 .

We can now find A, b and c by equating coefficients. We find that

A = Φ⊤
t Φt + αI,

which is a symmetric matrix. We have

b⊤A = r⊤t Φt

=⇒ Ab = Φ⊤
t rt

=⇒ b =
(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt = θ̂α,t.

Finally, we have

c = −R2
MM,t − αB2

2 + r⊤t rt − b⊤Ab

= −R2
MM,t − αB2

2 + r⊤t rt − r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt

= −R2
AMM,t.

Therefore, we have shown that

(Φtθ − rt)
⊤(Φtθ − rt) + αθ⊤θ −R2

MM,t − αB2
2 = (θ − θ̂α,t)

⊤
(
Φ⊤
t Φt + αI

)
(θ − θ̂α,t)−R2

AMM,t.
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Lemma B.4. For any symmetric, positive definite matrix A ∈ Rd×d, any vectors a, b ∈ Rd, any
R > 0, and any η < 0

max
θ∈Rd

{
a⊤θ + η

(
(θ − b)⊤A(θ − b)−R2

)}
= a⊤b− 1

4η
a⊤A−1a− ηR2.

Proof. Let

f(θ) = a⊤θ + η
(
(θ − b)⊤A(θ − b)−R2

)
The gradient and Hessian of f are

∂

∂θ
f(θ) = a+ 2ηA(θ − b),

∂2

∂θ2 f(θ) = 2ηA.

Since A is positive definite and η < 0, ∂2

∂θ2 f(θ) is negative definite for all θ ∈ Rd. Therefore, any

solution θ∗ of ∂
∂θ f(θ) = 0 must be a maximiser of f(θ). There is a unique solution, which is

θ∗ = b− 1

2η
A−1a.

The maximum is

f(θ∗) = a⊤b− 1

4η
a⊤A−1a− ηR2.

Lemma B.5. For any symmetric, positive definite matrix A ∈ Rd×d, any vectors a, b ∈ Rd, and
any R > 0

min
η<0

{
a⊤b− 1

4η
a⊤A−1a− ηR2

}
= a⊤b+R

√
a⊤A−1a.

Proof. Let

g(η) = a⊤b− 1

4η
a⊤A−1a− ηR2.

The first and second derivatives of g are

d

dη
g(η) =

1

4η2
a⊤A−1a−R2,

d2

dη2
g(η) = − 1

2η3
a⊤A−1a.

Since A is positive definite, d2

dη2
g(η) is positive for all η < 0. Therefore, any negative solution η∗ of

d
dη g(η) = 0 must be a minimiser of g(η). There is a unique (negative) solution, which is

η∗ = − 1

2R

√
a⊤A−1a.

The minimum is
g(η∗) = a⊤b+R

√
a⊤A−1a.
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B.3.1 Analytic UCBs

Here, we prove Theorem 4.3, which states that for all α > 0:

max
θ∈Θℓ2

t

{
ϕ(a)⊤θ

}
≤ ϕ(a)⊤θ̂α,t +RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a), (B.7)

where θ̂α,t =
(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt,

R2
AMM,t = R2

MM,t + αB2
2 − r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt.

Θt is the confidence set at time t in our confidence sequence from Cor. 4.2 and RMM,t is the
radius quantity from Cor. 4.2. As well as proving this statement, we will also show that if Θt has
an interior point, then when the right-hand-side of (B.7) is optimised with respect to α > 0, the
inequality in (B.7) becomes an equality, i.e.

max
θ∈Θℓ2

t

{
ϕ(a)⊤θ

}
= min

α>0

{
ϕ(a)⊤θ̂α,t +RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a)

}
. (B.8)

Proof of Thm. 4.3. We use weak Lagrangian duality to prove the upper bound and strong La-
grangian duality to prove the second part. The convex optimisation problem max

θ∈Θℓ2
t

{
ϕ(a)⊤θ

}
can be stated as

max
θ∈Rd

ϕ(a)⊤θ s.t. (Φtθ − rt)
⊤(Φtθ − rt) ≤ R2

MM,t and θ⊤θ ≤ B2
2 . (B.9)

Rewriting both constraints in the form f(θ) ≤ 0, we can see that the Lagrangian for this problem
is

L(θ, η1, η2) = ϕ(a)⊤θ + η1

(
(Φtθ − rt)

⊤(Φtθ − rt)−R2
MM,t

)
+ η2

(
θ⊤θ −B2

2

)
.

η1 and η2 are called the Lagrange multipliers. The Lagrange dual function (or just dual function)
is

g(η1, η2) = max
θ∈Rd

{L(θ, η1, η2} .

By weak duality, for any η1, η2 ≤ 0, the dual function is an upper bound on the solution of the
primal problem in (B.9), i.e. for any η1, η2 ≤ 0

max
θ∈Θℓ2

t

{
ϕ(a)⊤θ

}
≤ g(η1, η2). (B.10)

Alternatively, (B.10) can be verified by starting from the inequality ϕ(a)⊤θ ≤ L(θ, η1, η2) for all
θ ∈ Θt, η1 ≤ 0, and η2 ≤ 0. The challenge is to set the Lagrange multipliers such that the
dual function has a closed-form expression while being as close as possible to its minimum value
minη1,η2≤0 {g(η1, η2)}. We will now show that for any α > 0, minη≤0 {g(η, αη)} has a closed-form
solution, which is the right-hand-side of (B.7). The Lagrangian, evaluated with the Lagrange
multipliers η and αη, is

L(θ, η, αη) = ϕ(a)⊤θ + η
(
(Φtθ − rt)

⊤(Φtθ − rt) + αθ⊤θ −R2
MM,t − αB2

2

)
.
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Using Lemma B.3, the Lagrangian can be rewritten as

L(θ, η, αη) = ϕ(a)⊤θ + η
(
(θ − θ̂α,t)

⊤
(
Φ⊤
t Φt + αI

)
(θ − θ̂α,t)−R2

AMM,t

)
.

Using Lemma B.4, the dual function evaluated at η and αη is

g(η, αη) = max
θ∈Rd

{
ϕ(a)⊤θ + η

(
(θ − θ̂α,t)

⊤
(
Φ⊤
t Φt + αI

)
(θ − θ̂α,t)−R2

AMM,t

)}
= ϕ(a)⊤θ̂α,t −

1

4η
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a)− ηR2

AMM,t.

Using Lemma B.5, we have

min
η≤0

{g(η, αη)} = min
η≤0

{
ϕ(a)⊤θ̂α,t −

1

4η
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a)− ηR2

AMM,t

}
= ϕ(a)⊤θ̂α,t +RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a).

This concludes the proof of Theorem 4.3. To prove (B.8), we use strong duality. Clearly

min
α>0

min
η≤0

{g(η, αη)} = min
η1,η2≤0

{g(η1, η2)} ,

so if we optimise the upper bound in (B.7) with respect to α, then we will recover the minimum
of the dual function. If strong duality holds, then the minimum of the dual function is equal
to max

θ∈Θℓ2
t

{
ϕ(a)⊤θ

}
. Since max

θ∈Θℓ2
t

{
ϕ(a)⊤θ

}
is a convex optimisation problem, we can use

Slater’s condition to obtain a sufficient condition for strong duality to hold. In particular, if Θℓ2
t

has an interior point, then strong duality holds, which means

max
θ∈Θℓ2

t

{ϕ(a)⊤θ} = min
α>0

min
η≤0

{g(η, αη)}

= min
α>0

{
ϕ(a)⊤θ̂α,t +RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a)

}
.

One can follow the same steps, with a few minor modifications, to prove a similar statement for
lower confidence bounds. For all α > 0

min
θ∈Θℓ2

t

{
ϕ(a)⊤θ

}
≥ ϕ(a)⊤θ̂α,t −RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a).

If Θt has an interior point, then

min
θ∈Θℓ2

t

{
ϕ(a)⊤θ

}
= max

α>0

{
ϕ(a)⊤θ̂α,t −RAMM,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a)

}
.
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B.3.2 OFUL vs AMM-UCB (and CMM-UCB)

We will show that for any value of the parameter α, we can choose a sequence of Gaussian mixture
distributions such that the confidence bounds of AMM-UCB (and therefore also CMM-UCB) are
always tighter than the confidence bounds of OFUL [3].

To do this, we will use the following lemma.

Lemma B.6. For any γ > 0, v ∈ Rt and M ∈ Rt×d, we have

v⊤v − v⊤M
(
M⊤M + γI

)−1
M⊤v = v⊤

(
1

γ
MM⊤ + I

)−1

v.

Proof. We start with the identity

M
(
M⊤M + γI

)
=
(
MM⊤ + γI

)
M .

By post-multiplying both sides with
(
M⊤M + γI

)−1
and pre-multiplying both sides with

(
MM⊤ + γI

)−1
,

we obtain (
MM⊤ + γI

)−1
M = M

(
M⊤M + γI

)−1
. (B.11)

Now, using (B.11), we have

v⊤v − v⊤M
(
M⊤M + γI

)−1
M⊤v = v⊤v − v⊤

(
MM⊤ + γI

)−1
MM⊤v

= v⊤v − v⊤
(
MM⊤ + γI

)−1 (
MM⊤ + γI − γI

)
v

= v⊤v − v⊤v + γv⊤
(
MM⊤ + γI

)−1
v

= v⊤
(
1

γ
MM⊤ + I

)−1

v.

With v = rt and M = Φt, we obtain

r⊤t rt − r⊤t Φt

(
Φ⊤
t Φt + γI

)−1
Φ⊤
t rt = r⊤t

(
1

γ
ΦtΦ

⊤
t + I

)−1

rt.

We will also use the fact that, due to the Weinstein–Aronszajn identity, for any γ > 0

det(γΦ⊤
t Φt + I) = det(γΦtΦ

⊤
t + I). (B.12)

For any α > 0, the OFUL UCB states that

ϕ(a)⊤θ∗ ≤ ϕ(a)⊤θ̂α,t +ROFUL,t

√
ϕ(a)⊤

(
Φ⊤
t Φt + αI

)−1
ϕ(a),

where ROFUL,t = σ

√
ln

(
det

(
1

α
Φ⊤
t Φt + I

))
+ 2 ln(1/δ) +

√
αB2.
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Without loss of generality, suppose we choose α = σ2/c, for some c > 0. With this choice, the
OFUL radius is

ROFUL,t = σ

(√
ln
(
det
( c
σ2

Φ⊤
t Φt + I

))
+ 2 ln(1/δ) +

B2√
c

)
.

For any α > 0 and a Gaussian mixture distribution Pt = N (µt,T t), the squared AMM-UCB radius
is

R2
AMM,t = R2

MM,t + αB2
2 − r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt

= (µt − rt)
⊤
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln

(
det

(
I +

T t

σ2

))
+ 2σ2 ln

(
1

δ

)
+ αB2

2 − r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt.

For AMM-UCB, we will use α = σ2/c and the mixture distribution Pt = N (0t, cΦtΦ
⊤
t ) for each t.

One can verify that this choice satisfies the conditions required for a sequence of adaptive mixture
distributions, so the AMM-UCB is valid with these mixture distributions. With these choices, and
using Lemma B.6 and (B.12), the squared AMM-UCB radius is

R2
AMM,t = r⊤t

( c
σ2

ΦtΦ
⊤
t + I

)−1
rt − r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt +

σ2

c
I

)−1

Φ⊤
t rt (B.13)

+ σ2 ln
(
det
( c
σ2

ΦtΦ
⊤
t + I

))
+ 2σ2 ln

(
1

δ

)
+
σ2B2

2

c

= σ2
(
ln
(
det
( c
σ2

Φ⊤
t Φt + I

))
+ 2 ln

(
1

δ

)
+
B2

2

c

)
.

Using the basic inequality
√
a+ b ≤

√
a+

√
b for a, b ≥ 0, we have

RAMM,t = σ

√
ln
(
det
( c
σ2

Φ⊤
t Φt + I

))
+ 2 ln

(
1

δ

)
+
B2

2

c

≤ σ

(√
ln
(
det
( c
σ2

Φ⊤
t Φt + I

))
+ 2 ln

(
1

δ

)
+
B2√
c

)
= ROFUL,t.

Therefore, the confidence bounds of AMM-UCB, with α = σ2/c and Pt = N (0, cΦtΦ
⊤
t ), are never

looser than the confidence bounds of OFUL with an arbitrary α = σ2/c. Since ln
(
det
(

c
σ2Φ

⊤
t Φt + I

))
+

2 ln
(
1
δ

)
and B2

2/c are strictly positive, there is actually a strict inequality. This means that the
AMM-UCB (and CMM-UCB) confidence bounds are always strictly tighter than the OFUL confi-
dence bounds.

Note that Pt = N (0t, cΦtΦ
⊤
t ) is not necessarily the best choice for the mixture distribution. With a

better choice of the mixture distribution, e.g. a mixture distribution that is chosen using some prior
knowledge about the expected reward function and/or refined using previously observed rewards,
RAMM,t will be smaller and the gap between AMM-UCB and OFUL will be greater.
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B.4 Cumulative Regret Bounds

In this section, we prove the cumulative regret bounds stated in Section 4.7. We prove the data-
dependent regret bound in Thm. 4.8. We also prove the data-independent regret bound in Thm.
4.9 and another data-independent regret bound, which holds for more general choices of the mixture
distributions and the α parameter.

For convenience, we use some more compact notation in this section. For a symmetric positive
semi-definite matrix A and vector x, let

∥x∥A :=
√
x⊤Ax.

Before presenting the proof of the main results, we state some useful lemmas.

Lemma B.7 (Determinant-Trace Inequality [3]). If assumption 4.6 holds (i.e. ∥ϕ(a)∥2 ≤ L2),
then for any γ > 0

ln
(
det
(
γΦ⊤

t Φt + I
))

≤ d ln
(
1 + γtL2

2/d
)
. (B.14)

The Determinant-Trace Inequality in Lemma 10 of [3] is stated in the form

det

(
Φ⊤
t Φt +

1

γ
I

)
≤ (1/γ + tL2

2/d)
d. (B.15)

Since det
(
γΦ⊤

t Φt + I
)
= det

(
Φ⊤
t Φt + (1/γ)I

)
/det ((1/γ)I), the statement in (B.14) follows from

(B.15).

Lemma B.8. For any σ > 0 and any σ0 > 0, define Σt = ( 1
σ2Φ

⊤
t Φt +

1
σ2
0
I)−1. We have

tr(Φ⊤
t ΦtΣt) = σ2d− σ2

σ20
tr(Σt) ≤ σ2d.

Proof. Since Σt is positive-definite, its trace is positive. Now

tr(Φ⊤
t ΦtΣt) = σ2tr

(
1

σ2
Φ⊤
t Φt

(
1

σ2
Φ⊤
t Φt +

1

σ20
I

)−1
)

= σ2tr

((
1

σ2
Φ⊤
t Φt +

1

σ20
I

)(
1

σ2
Φ⊤
t Φt +

1

σ20
I

)−1

− 1

σ20

(
1

σ2
Φ⊤
t Φt +

1

σ20
I

)−1
)

= σ2d− σ2

σ20
tr(Σt)

≤ σ2d.

137



Lemma B.9. For any σ > 0 and any σ0 > 0, the matrix Σt = ( 1
σ2Φ

⊤
t Φt +

1
σ2
0
I)−1 satisfies

tr(Σt) ≤
d

σ20
.

Proof. Let {γi}di=1 denote the eigenvalues of Φ
⊤
t Φt. Since Φ

⊤
t Φt is positive semi-definite, its eigenval-

ues are real and non-negative. From the definition of eigenvalues, one can verify that the eigenvalues
of Σt are { σ2

γi+σ2/σ2
0
}di=1. Using this, we have

tr(Σt) =

d∑
i=1

σ2

γi + σ2/σ20
≤

d∑
i=1

σ2

σ2/σ20
=

d

σ20
.

Lemma B.10. Let ϵt denote the vector containing the first t noise variables (so rt = Φtθ
∗ + ϵt).

For any α > 0, we have

(Φtθ
∗ − rt)

⊤(Φtθ
∗ − rt)− r⊤t rt + r⊤t Φt(Φ

⊤
t Φt + αI)−1Φ⊤

t rt ≤
∥∥∥Φ⊤

t ϵt

∥∥∥2
(Φ⊤

t Φt+αI)−1

+ 2α ∥θ∗∥(Φ⊤
t Φt+αI)−1

∥∥∥Φ⊤
t ϵt

∥∥∥
(Φ⊤

t Φt+αI)−1
.

Proof. Using rt = Φtθ
∗ + ϵt, we have

(Φtθ
∗ − rt)

⊤(Φtθ
∗ − rt) = ϵ⊤t ϵt,

and

−r⊤t rt + r⊤t Φt(Φ
⊤
t Φt + αI)−1Φ⊤

t rt = −(Φtθ
∗ + ϵt)

⊤(Φtθ
∗ + ϵt)

+ (Φtθ
∗ + ϵt)

⊤Φt(Φ
⊤
t Φt + αI)−1Φ⊤

t (Φtθ
∗ + ϵt)

= −ϵ⊤t ϵt − 2θ∗⊤Φ⊤
t ϵt − θ∗⊤Φ⊤

t Φtθ
∗ + θ∗⊤Φ⊤

t Φt(Φ
⊤
t Φt + αI)−1Φ⊤

t Φtθ
∗

+ 2θ∗⊤Φ⊤
t Φt(Φ

⊤
t Φt + αI)−1Φ⊤

t ϵt + ϵ⊤t Φt(Φ
⊤
t Φt + αI)−1Φ⊤

t ϵt

≤ −ϵ⊤t ϵt − 2θ∗⊤Φ⊤
t ϵt + 2θ∗⊤Φ⊤

t Φt(Φ
⊤
t Φt + αI)−1Φ⊤

t ϵt

+ ϵ⊤t Φt(Φ
⊤
t Φt + αI)−1Φ⊤

t ϵt

= −ϵ⊤t ϵt − 2αθ∗⊤(Φ⊤
t Φt + αI)−1Φ⊤

t ϵt + ϵ⊤t Φt(Φ
⊤
t Φt + αI)−1Φ⊤

t ϵt.

Using the Cauchy-Schwarz inequality, we have

|θ∗⊤(Φ⊤
t Φt + αI)−1Φ⊤

t ϵt| ≤ ∥θ∗∥(Φ⊤
t Φt+αI)−1

∥∥∥Φ⊤
t ϵt

∥∥∥
(Φ⊤

t Φt+αI)−1
.
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Therefore

−2αθ∗⊤(Φ⊤
t Φt + αI)−1Φ⊤

t ϵt ≤ 2α ∥θ∗∥(Φ⊤
t Φt+αI)−1

∥∥∥Φ⊤
t ϵt

∥∥∥
(Φ⊤

t Φt+αI)−1
,

and

(Φtθ
∗ − rt)

⊤(Φtθ
∗ − rt)− r⊤t rt + r⊤t Φt(Φ

⊤
t Φt + αI)−1Φ⊤

t rt ≤ ϵ⊤t ϵt − ϵ⊤t ϵt +
∥∥∥Φ⊤

t ϵt

∥∥∥2
(Φ⊤

t Φt+αI)−1

+ 2α ∥θ∗∥(Φ⊤
t Φt+αI)−1

∥∥∥Φ⊤
t ϵt

∥∥∥
(Φ⊤

t Φt+αI)−1

=
∥∥∥Φ⊤

t ϵt

∥∥∥2
(Φ⊤

t Φt+αI)−1
+ 2α ∥θ∗∥(Φ⊤

t Φt+αI)−1

∥∥∥Φ⊤
t ϵt

∥∥∥
(Φ⊤

t Φt+αI)−1
.

Theorem B.11 (Self-Normalised Bound for Vector-Valued Martingales (Theorem 1 of [3])). Let
(Dt|t ≥ 0) be a filtration. Let (ϵt|t ≥ 1) be a real-valued stochastic process such that ϵt is Ht-
measurable and ϵt is conditionally σ-sub-Gaussian for some σ > 0. Let (ϕ(at)|t ≥ 1) be an Rd-
valued stochastic process such that ϕ(at) is Dt−1-measurable. For any δ ∈ (0, 1] and any α > 0,
with probability at least 1− δ

∀t ≥ 0,
∥∥∥Φ⊤

t ϵt

∥∥∥2
(Φ⊤

t Φt+αI)−1
≤ σ2 ln

(
det

(
1

α
Φ⊤
t Φt + I

))
+ 2σ2 ln(1/δ).

Lemma B.12. For any symmetric positive semi-definite matrix A with largest eigenvalue νmax,
we have

∥x∥2A ≤ νmax ∥x∥22 .

Proof. Let {νi}di=1 and {vi}di=1 be the eigenvalues and eigenvectors of A. Since {vi}di=1 form an

orthonormal basis, there are constants {ci}di=1 such that x =
∑d

i=1 civi. We have

∥x∥2A =
d∑

i=1,j=1

cicjv
⊤
i Avj =

d∑
i=1,j=1

νjcicjv
⊤
i vj ≤ νmax

d∑
i=1,j=1

cicjv
⊤
i vj = νmax ∥x∥22 .

Lemma B.13. For all x ≥ 0,

min(1, x) ≤ 1

ln(2)
ln(1 + x).

Proof. Since ln(1 + x)/ ln(2) is monotonically increasing in x, we only need to prove that x ≤
ln(1 + x)/ ln(2) for all x ∈ [0, 1]. For any positive constant a, the function a ln(1 + x) is concave
on the domain [0, 1]. Therefore, if x ≤ a ln(1 + x) at the end points x = 0 and x = 1, then
x ≤ a ln(1 + x) for every x ∈ [0, 1]. At x = 0, we have a ln(1 + x) = 0 for any a, which means
we can choose the smallest a such that 1 ≤ a ln(1 + 1). By rearranging this inequality, we obtain
a ≥ 1/ ln(2).

139



B.4.1 Data-Dependent Regret Bound

First, we show that the cumulative regret of both of our algorithms can be upper bounded by the
sum of the widths of the UCB/LCBs that they use. Let

UCB
Θ

ℓ2
t
(a) = max

θ∈Θℓ2
t

{
ϕ(a)⊤θ

}
, and LCB

Θ
ℓ2
t
(a) = min

θ∈Θℓ2
t

{
ϕ(a)⊤θ

}
.

In words, UCB
Θ

ℓ2
t
(a) and LCB

Θ
ℓ2
t
(a) are the upper and lower confidence bounds used by CMM-

UCB (evaluated at a). Similarly, let

AUCB
Θ

ℓ2
t
(a) = ϕ(a)⊤θ̂α,t +RAMM,t ∥ϕ(a)∥(Φ⊤

t Φt+αI)−1 ,

ALCB
Θ

ℓ2
t
(a) = ϕ(a)⊤θ̂α,t −RAMM,t ∥ϕ(a)∥(Φ⊤

t Φt+αI)−1 .

AUCBΘt(a) and ALCBΘt(a) are the analytic upper and lower confidence bounds used by AMM-
UCB. Lemma B.14 shows that the cumulative regret of CMM-UCB and AMM-UCB can be upper
bounded by the sum of the widths (UCB minus LCB) of the confidence bounds that they use.

Lemma B.14. Suppose the actions a1, a2, . . . are selected by the CMM-UCB algorithm. For any
adaptive sequence of mixture distributions Pt = N (µt,T t) and any δ ∈ (0, 1], with probability at
least 1− δ

∀T ≥ 1,
T∑
t=1

∆(at) ≤
T∑
t=1

UCB
Θ

ℓ2
t−1

(at)− LCB
Θ

ℓ2
t−1

(at). (B.16)

Suppose the actions a1, a2, . . . are selected by the AMM-UCB algorithm. For any adaptive sequence
of mixture distributions Pt = N (µt,T t) and any δ ∈ (0, 1], with probability at least 1− δ

∀α > 0, T ≥ 1,
T∑
t=1

∆(at) ≤
T∑
t=1

AUCB
Θ

ℓ2
t−1

(at)−ALCB
Θ

ℓ2
t−1

(at). (B.17)

Proof. Using Cor. 4.2 (i.e. the fact that Θ1,Θ2, . . . is a confidence sequence), for any adaptive
sequence of mixture distributions Pt = N (µt,T t) and any δ ∈ (0, 1], with probability at least 1− δ

∀a ∈ A, t ≥ 1, LCB
Θ

ℓ2
t−1

(a) ≤ ϕ(a)⊤θ∗ ≤ UCB
Θ

ℓ2
t−1

(a).

Using Thm. 4.3, this implies

∀α > 0, a ∈ A, t ≥ 1, ALCB
Θ

ℓ2
t−1

(a) ≤ ϕ(a)⊤θ∗ ≤ AUCB
Θ

ℓ2
t−1

(a).

Let a1, a2, . . . be the actions selected by CMM-UCB, i.e. at = argmaxa∈At

{
UCB

Θ
ℓ2
t−1

(a)

}
. Then,
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with probability at least 1− δ, we have

T∑
t=1

∆(at) =
T∑
t=1

ϕ(a∗t )
⊤θ∗ − ϕ(at)

⊤θ∗

≤
T∑
t=1

UCB
Θ

ℓ2
t−1

(a∗t )− LCB
Θ

ℓ2
t−1

(at)

≤
T∑
t=1

UCB
Θ

ℓ2
t−1

(at)− LCB
Θ

ℓ2
t−1

(at).

Now, let a1, a2, . . . be the actions selected by AMM-UCB, i.e. at = argmaxa∈At

{
AUCB

Θ
ℓ2
t−1

(a)

}
.

Then, with probability at least 1− δ, we have

T∑
t=1

∆(at) =
T∑
t=1

ϕ(a∗t )
⊤θ∗ − ϕ(at)

⊤θ∗

≤
T∑
t=1

AUCB
Θ

ℓ2
t−1

(a∗t )−ALCB
Θ

ℓ2
t−1

(at)

≤
T∑
t=1

AUCB
Θ

ℓ2
t−1

(at)−ALCB
Θ

ℓ2
t−1

(at).

Since ∀α > 0, a ∈ A and t ≥ 1, AUCB
Θ

ℓ2
t−1

(a) ≥ UCB
Θ

ℓ2
t−1

(a) and ALCB
Θ

ℓ2
t−1

(a) ≤ LCB
Θ

ℓ2
t−1

(a),

(B.16) implies that (B.17) also holds when a1, a2, . . . are the actions selected by CMM-UCB.

Proof of Theorem 4.8. We start by using Lemma B.14. Suppose a1, a2, . . . are the actions selected
by CMM-UCB or AMM-UCB. For any adaptive sequence of mixture distributions Pt = N (µt,T t)
and any δ ∈ (0, 1], with probability at least 1− δ

∀α > 0, T ≥ 1,
T∑
t=1

∆(at) ≤
T∑
t=1

AUCB
Θ

ℓ2
t−1

(at)−ALCB
Θ

ℓ2
t−1

(at).

Using the definitions of AUCB
Θ

ℓ2
t−1

(at) and ALCB
Θ

ℓ2
t−1

(at), we have

∀α > 0, T ≥ 1,
T∑
t=1

∆(at) ≤
T∑
t=1

2RAMM,t−1 ∥ϕ(at)∥(Φ⊤
t−1Φt−1+αI)−1 .

B.4.2 Data-Independent Regret Bound

To establish data-independent regret bounds, we first prove data-independent upper bounds on the
radius RAMM,t and the “norms” ∥ϕ(at)∥(Φ⊤

t−1Φt−1+αI)−1 . Then, we take the data-dependent regret

bound in Lemma B.14 and substitute in these bounds on the radius and the norms.
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Bounding the Radius

Lemma B.15. If, for any c > 0, the sequence of mixture distributions is Pt = N (0t, cΦtΦ
⊤
t ) and

α = c/σ2, then

R2
AMM,t ≤ σ2d ln

(
1 +

ctL2
2

σ2d

)
+
σ2B2

2

c
+ 2σ2ln(1/δ). (B.18)

Proof. In Equation (B.13), we already saw that for this choice of α and the sequence of mixture
distributions, we have

R2
AMM,t = σ2 ln

(
det
( c
σ2

Φ⊤
t Φt + I

))
+
σ2B2

2

c
+ 2σ2ln(1/δ).

To obtain a data-independent upper bound on the radius, all that remains is to upper bound
ln
(
det
(

c
σ2Φ

⊤
t Φt + I

))
by a data-independent quantity. Using Lemma B.7, we have

ln
(
det
( c
σ2

Φ⊤
t Φt + I

))
≤ d ln

(
1 +

ctL2
2

σ2d

)
.

Therefore

R2
AMM,t ≤ σ2d ln

(
1 +

ctL2
2

σ2d

)
+
σ2B2

2

c
+ 2σ2ln(1/δ).

Lemma B.16. If, for any θ0 ∈ Rd and any σ0 > 0, the sequence of mixture distributions is
Pt = N (Φtθ0, σ

2
0ΦtΦ

⊤
t ), then for any δ ∈ (0, 1] and any α > 0, with probability at least 1 − δ, for

all t ≥ 1

R2
AMM,t ≤ σ2d+

σ2

σ20
∥θ∗ − θ0∥22 + σ2dln

(
1 +

tσ20L
2
2

σ2d

)
+ αB2

2 + 4σ2ln(1/δ)

+ σ2dln
(
1 + tL2

2/(αd)
)
+ 2

√
α ∥θ∗∥2

√
σ2dln

(
1 + tL2

2/(αd)
)
+ 2σ2ln(1/δ).

Proof. In App. B.2.2 (see Equation B.5), we saw that the squared radius R2
MM,t can be written as

R2
MM,t = −2σ2 ln

(
E

gt∼N (Φtθ0,σ2
0ΦtΦ⊤

t )

[
exp

(
− 1

2σ2
(gt − rt)

⊤(gt − rt)

)])
+ 2σ2 ln(1/δ). (B.19)

Using the substitution Φtθ = gt, (B.19) is equivalent to

R2
MM,t = −2σ2 ln

(
E

θ∼N (θ0,σ2
0I)

[
exp

(
− 1

2σ2
(Φtθ − rt)

⊤(Φtθ − rt)

)])
+ 2σ2 ln(1/δ). (B.20)
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Using the Donsker-Varadhan change of measure inequality (see Lemma 2.2, and particularly Equa-
tion (2.6)), the first term on the right-hand-side of (B.20) is equal to

inf
Q∈P(Rd)

{
E

θ∼Q

[
(Φtθ − rt)

⊤(Φtθ − rt)
]
+ 2σ2DKL(Q||N (θ0, σ

2
0I))

}
.

If we evaluate this at any specific distribution Q, we obtain an upper bound on the infimum over
Q. We choose Q = N (θ∗,Σt), where Σt = ( 1

σ2Φ
⊤
t Φt +

1
σ2
0
I)−1. Combining everything so far, we

have

R2
MM,t ≤ E

θ∼N (θ∗,Σt)

[
(Φtθ − rt)

⊤(Φtθ − rt)
]
+ 2σ2DKL(N (θ∗,Σt)||N (θ0, σ

2
0I)) + 2σ2 ln(1/δ)

= (Φtθ
∗ − rt)

⊤(Φtθ
∗ − rt) + tr(Φ⊤

t ΦtΣt) +
σ2

σ20
tr(Σt)

− σ2d+
σ2

σ20
∥θ∗ − θ0∥22 + σ2ln

(
det(Σ−1

t )

det((1/σ20)I)

)
+ 2σ2 ln(1/δ). (B.21)

Using Lemma B.8, we have
tr(Φ⊤

t ΦtΣt) ≤ σ2d.

Using Lemma B.9, we have
σ2

σ20
tr(Σt) ≤ σ2d.

Using Lemma B.7, we have

ln

(
det(Σ−1

t )

det((1/σ20)I)

)
= ln

(
det

(
σ20
σ2

Φ⊤
t Φt + I

))
≤ d ln

(
1 +

σ20tL
2
2

σ2d

)
.

The bound on R2
MM,t in (B.21) becomes

R2
MM,t ≤ (Φtθ

∗ − rt)
⊤(Φtθ

∗ − rt) +
σ2

σ20
∥θ∗ − θ0∥22 + σ2d+ σ2d ln

(
1 +

σ20tL
2
2

σ2d

)
+ 2σ2ln(1/δ).

This means that

R2
AMM,t ≤ (Φtθ

∗ − rt)
⊤(Φtθ

∗ − rt) +
σ2

σ20
∥θ∗ − θ0∥22 + σ2d+ σ2d ln

(
1 +

σ20tL
2
2

σ2d

)
+ 2σ2ln(1/δ)

+ αB2
2 − r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt. (B.22)

Finally, using Lemma B.10, then Theorem B.11 and Lemma B.12, and then Lemma B.7, for any
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δ ∈ (0, 1] and any α > 0, with probability at least 1− δ, for all t ≥ 0 simultaneously

(Φtθ
∗ − rt)

⊤(Φtθ
∗ − rt)− r⊤t rt + r⊤t Φt

(
Φ⊤
t Φt + αI

)−1
Φ⊤
t rt

≤
∥∥∥Φ⊤

t ϵt

∥∥∥2
(Φ⊤

t Φt+αI)−1
+ 2α ∥θ∗∥(Φ⊤

t Φt+αI)−1

∥∥∥Φ⊤
t ϵt

∥∥∥
(Φ⊤

t Φt+αI)−1

≤ σ2 ln

(
det

(
1

α
Φ⊤
t Φt + I

))
+ 2σ2 ln(1/δ) + 2

√
α ∥θ∗∥2 σ

√
ln

(
det

(
1

α
Φ⊤
t Φt + I

))
+ 2 ln(1/δ)

≤ σ2d ln

(
det

(
1 +

tL2
2

αd

))
+ 2σ2 ln(1/δ) + 2

√
α ∥θ∗∥2 σ

√
d ln

(
det

(
1 +

tL2
2

αd

))
+ 2 ln(1/δ).

Substituting this into (B.22), we have

R2
AMM,t ≤ σ2d+

σ2

σ20
∥θ∗ − θ0∥22 + σ2dln

(
1 +

tσ20L
2
2

σ2d

)
+ αB2

2 + 4σ2ln(1/δ)

+ σ2dln
(
1 + tL2

2/(αd)
)
+ 2

√
α ∥θ∗∥2

√
σ2dln

(
1 + tL2

2/(αd)
)
+ 2σ2ln(1/δ).

Bounding the Sum of Norms

We use the following upper bound on the sum of the squared norms.

Lemma B.17 (Lemma 11 of [3]). For any α > 0, we have

T∑
t=1

min

(
1, ∥ϕ(at)∥2(Φ⊤

t−1Φt−1+αI)
−1

)
≤ 1

ln(2)
d ln

(
1 +

TL2
2

αd

)
.

In Lemma 11 of [3], 1/ ln(2) ≈ 1.44 is replaced with 2. We achieve an improved constant by using
Lemma B.13 instead of the looser bound min(1, x) ≤ 2 ln(1 + x), for x ≥ 0.

Regret Bounds

We are now ready to prove our data-independent regret bounds.

Proof of Theorem 4.9. Following the same steps as in the proof of Lemma B.14, we can also obtain
the following data-dependent bound on the per-round regret for actions selected by CMM-UCB or
AMM-UCB. For the mixture distributions Pt = N (0t, cΦtΦ

⊤
t ), α = σ2/c and any δ ∈ (0, 1], with

probability at least 1− δ

∀t ≥ 1, ∆(at) ≤ 2RAMM,t−1 ∥ϕ(at)∥(Φ⊤
t−1Φt−1+

σ2

c
I)−1 . (B.23)

From Assumption 4.7 (ϕ(a)⊤θ∗ ∈ [−C,C]), we have another bound on the per-round regret

∆(at) ≤ 2C. (B.24)
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The combination of (B.23) and (B.24) yields

∆(at) ≤ min(2C, 2RAMM,t−1 ∥ϕ(at)∥(Φ⊤
t−1Φt−1+

σ2

c
I)−1)

≤ 2max(C,RAMM,t−1)min(1, ∥ϕ(at)∥(Φ⊤
t−1Φt−1+

σ2

c
I)−1).

Starting with the Cauchy-Schwarz inequality, we have

T∑
t=1

∆(at) ≤

√√√√T

T∑
t=1

∆(at)2 (B.25)

≤

√√√√T
T∑
t=1

4max
(
C2, R2

AMM,t−1

)
min

(
1, ∥ϕ(at)∥2(Φ⊤

t−1Φt−1+
σ2

c
I)−1

)
.

We will now use the upper bound on R2
AMM,t−1 from Lemma B.15. Let U2

AMM,t−1 denote this upper
bound (i.e. the right-hand-side of (B.18)). We have

T∑
t=1

∆(at) ≤

√√√√T
T∑
t=1

4max
(
C2, U2

AMM,t−1

)
min

(
1, ∥ϕ(at)∥2(Φ⊤

t−1Φt−1+
σ2

c
I)−1

)

≤ 2max (C,UAMM,T−1)

√√√√T

T∑
t=1

min

(
1, ∥ϕ(at)∥2(Φ⊤

t−1Φt−1+
σ2

c
I)−1

)

Finally, using the bound on the sum of norms in Lemma B.17, we have

T∑
t=1

∆(at) ≤
2√
ln(2)

max

(
C, σ

√
d ln

(
1 +

c(T − 1)L2
2

σ2d

)
+
B2

2

c
+ 2 ln

(
1

δ

))√
dT ln

(
1 +

cTL2
2

σ2d

)
.

Now, we state and prove a cumulative regret bound that holds for more general choices of the
mixture distributions and the parameter α.

Theorem B.18. Suppose that assumptions 4.4-4.7 hold. If, for any θ0 ∈ Rd and any σ0 > 0,
the sequence of mixture distributions is Pt = N (Φtθ0, σ

2
0ΦtΦ

⊤
t ), then for any δ ∈ (0, 1/2] and any

α > 0, with probability at least 1 − 2δ, for all T ≥ 1 simultaneously, the cumulative regret of
CMM-UCB and AMM-UCB is bounded by

∆1:T ≤ 2√
ln 2

max {C,UAMM,T−1}

√
dT ln

(
1+

L2
2T

αd

)
= O(d

√
T ln(T )),

where

U2
AMM,T−1 ≤ σ2d+

σ2

σ20
∥θ∗ − θ0∥22 + σ2dln

(
1 +

(T − 1)σ20L
2
2

σ2d

)
+ αB2

2 + 4σ2ln(1/δ) (B.26)

+ σ2dln

(
1 +

(T − 1)L2
2

αd

)
+ 2

√
α ∥θ∗∥2

√
σ2dln

(
1 +

(T − 1)L2
2

αd

)
+ 2σ2ln(1/δ).
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Proof. Following the proof of Theorem 4.9, we obtain (with high probability)

T∑
t=1

∆(at) ≤

√√√√T

T∑
t=1

4max
(
C2, R2

AMM,t−1

)
min

(
1, ∥ϕ(at)∥2(Φ⊤

t−1Φt−1+αI)−1

)
.

This time, we use the bound on the radius from Lemma B.16. Let UAMM,T−1 denote this bound
on the radius (i.e. the square root of the right-hand-side of (B.26)). Also, note that this bound on
the radius holds with probability at 1− δ. Since UAMM,T−1 is monotonically increasing with T , we
have

T∑
t=1

∆(at) ≤ 2max (C,UAMM,T−1)

√√√√T

T∑
t=1

min
(
1, ∥ϕ(at)∥2(Φ⊤

t−1Φt−1+αI)−1

)
.

Finally, we use Lemma B.17 to obtain

T∑
t=1

∆(at) ≤
2√
ln 2

max {C,UAMM,T−1}

√
dT ln

(
1+

L2
2T

αd

)
.

We used two inequalities that each hold with probability at least 1−δ. By a union bound argument,
the cumulative regret bound holds with probability at least 1− 2δ.

B.5 Additional Experimental Details

In this section, we present some extra information about the experimental setups.

B.5.1 Bayesian Credible Interval Construction

We attempt to construct a Bayesian credible interval that holds with high probability for all rounds
t ≥ 0, which leads to the most fair comparison with CMM-UCB. However, whilst the CMM-UCB
confidence set holds with high probability over the random draw of the data a1, r1, a2, r2, . . . , the
Bayesian credible interval holds with high probability over the random draw of θ∗ from a prior (for
fixed data a1, r1, a2, r2, . . . ).

For the Bayesian credible interval, we use a Gaussian prior θ∗ ∼ N (µ0,Σ0). We assume a Gaussian
likelihood function, i.e. rewards are of the form rt = ϕ(at)

⊤θ∗ + ϵt, where ϵt ∼ N (0, σ2). The
Bayesian posterior for θ∗ is another Gaussian N (µt,Σt), where

µt = Σt

(
Σ−1

0 µ0 +
1

σ2
Φ⊤
t rt

)
, Σt =

(
1

σ2
Φ⊤
t Φt +Σ−1

0

)−1

.

Using Bayes’ rule, at any round t, we have θ∗ ∼ N (µt,Σt). Therefore

(µt − θ∗)⊤Σ−1
t (µt − θ∗) ∼ χ2(d),
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where χ2(d) is a chi-squared distribution with d degrees of freedom. Let Qd(·) be the quantile
function of the chi-squared distribution with d degrees of freedom. With probability at least 1− δt
(over the random draw of θ∗ from N (µt,Σt)), we have

(µt − θ∗)⊤Σ−1
t (µt − θ∗) ≤ Qd(1− δt). (B.27)

Using a union bound argument, if δt =
6δ

(t+1)2π2 , then
∑∞

t=0 δt = δ, which means (B.27) holds with

probability at least 1 − δ for all t ≥ 0. Therefore, if θ∗ ∼ N (µ0,Σ0), then with high probability,
the following credible sets contain θ∗ for all t ≥ 0 simultaneously.

Θt =

{
θ ∈ Rd

∣∣∣∣(µt − θ∗)⊤Σ−1
t (µt − θ∗) ≤ Qd

(
1− 6δ

(t+ 1)2π2

)}
.

The upper limit of the credible interval at a for this credible set (and the one we use in Figure 4.3)
is

max
θ∈Θt

{
ϕ(a)Tθ

}
= ϕ(a)Tµt +

√
Qd

(
1− 6δ

(t+ 1)2π2

)√
ϕ(a)⊤Σtϕ(a).
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Appendix C

Appendix for Chapter 5

C.1 Analytic SCMM Confidence Bounds

The value of the SCMM upper confidence bound UCB
Θ

ℓ1
t
(a) at a is the solution of the convex

program
max
θ∈Rd

ϕ(a)⊤θ s.t. (Φtθ − rt)
⊤(Φtθ − rt) ≤ R2

MM,t and ∥θ∥1 ≤ B1. (C.1)

This is equivalent to

max
θ+,θ−∈Rd

ϕ(a)⊤(θ+ − θ−) s.t. (Φt(θ
+ − θ−)− rt)

⊤(Φt(θ
+ − θ−)− rt) ≤ R2

MM,t (C.2)

and
d∑

i=1

(θ+i + θ−i ) ≤ B1

and θ+i ≥ 0 and θ−i ≥ 0

By weak Lagrangian duality, the solution of (C.2) is upper bounded by the solution of the dual
problem, which is

min
a≥0,b≥0
c≥0,d≥0

max
θ+,θ−∈Rd

{L(θ+,θ−, a, b, c,d)},

where

L(θ+,θ−, a, b, c,d) = ϕ(a)⊤(θ+ − θ−) + a
[
R2

MM,t − (Φt(θ
+ − θ−)− rt)

⊤(Φt(θ
+ − θ−)− rt)

]
+ b(B1 − 1⊤(θ+ + θ−)) + c⊤θ+ + d⊤θ−,

is the Lagrangian, and a, b, c and d are the Lagrange multipliers. First, we find the maximum
maxθ+,θ−∈Rd{L(θ+,θ−, a, b, c,d)}. We set

∇θ+L = ϕ(a)− 2aΦ⊤
t (Φt(θ

+ − θ−)− rt)− b1+ c = 0 (C.3)

∇θ−L = −ϕ(a) + 2aΦ⊤
t (Φt(θ

+ − θ−)− rt)− b1+ d = 0. (C.4)
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From the KKT condition (or by adding together (C.3) and (C.4)), we obtain

2b1 = c+ d. (C.5)

At the optimal θ+ and θ− (where ∇θ+L and ∇θ−L are both zero), we have (∇θ+L)⊤θ+ = 0 and
(∇θ−L)⊤θ− = 0. Therefore, from (C.3) and (C.4), we have

ϕ(a)⊤θ+ − 2a(Φt(θ
+ − θ−)− rt)

⊤Φtθ
+ − b1⊤θ+ + c⊤θ+ = 0 (C.6)

− ϕ(a)⊤θ− + 2a(Φt(θ
+ − θ−)− rt)

⊤Φtθ
− − b1⊤θ− + d⊤θ− = 0. (C.7)

By adding (C.6) and (C.7), we obtain

ϕ(a)⊤(θ+ − θ−)− b1⊤(θ+ + θ−) + c⊤θ+ + d⊤θ− = 2a(Φt(θ
+ − θ−)− rt)

⊤Φt(θ
+ − θ−). (C.8)

Using (C.8), the Lagrangian at the optimal θ+ and θ− (for any fixed values of the Lagrange
multipliers) can be re-written as

L(θ+,θ−, a, b, c,d) = aR2
MM,t + bB1 − a(Φt(θ

+ − θ−)− rt)
⊤(Φt(θ

+ − θ−)− rt)

+ 2a(Φt(θ
+ − θ−)− rt)

⊤Φt(θ
+ − θ−)

= aR2
MM,t + bB1 + a(Φt(θ

+ − θ−)− rt)
⊤ [2Φt(θ

+ − θ−)− (Φt(θ
+ − θ−)− rt)

]
= aR2

MM,t + bB1 + a(Φt(θ
+ − θ−)− rt)

⊤(Φt(θ
+ − θ−) + rt). (C.9)

Using (C.3), we can find an expression for the difference (θ+ − θ−) at the optimal θ+ and θ−.

(C.3) =⇒ ϕ(a)− 2aΦ⊤
t (Φt(θ

+ − θ−)− rt)− b1+ c = 0

=⇒ Φ⊤
t Φt(θ

+ − θ−) = Φ⊤
t rt +

1
2a(ϕ(a)− b1+ c)

=⇒ θ+ − θ− = (Φ⊤
t Φt)

−1Φ⊤
t rt +

1
2a(Φ

⊤
t Φt)

−1(ϕ(a)− b1+ c). (C.10)

Combining (C.9) and (C.10), for all valid values of a, b, c and d, we have

UCB
Θ

ℓ1
t
(a) ≤ max

θ+,θ−∈Rd
{L(θ+,θ−, a, b, c,d)}

= aR2
MM,t + bB1 + a

[
(Φt(Φ

⊤
t Φt)

−1Φt − I)rt +
1
2aΦt(Φ

⊤
t Φt)

−1(ϕ(a)− b1+ c)
]⊤

·
[
(Φt(Φ

⊤
t Φt)

−1Φt + I)rt +
1
2aΦt(Φ

⊤
t Φt)

−1(ϕ(a)− b1+ c)
]

=: g(a, b, c).

Now we can optimise (minimise) this expression with respect to a. Let

u = Φt(Φ
⊤
t Φt)

−1Φt − I)rt

w = Φt(Φ
⊤
t Φt)

−1Φt + I)rt

v = 1
2Φt(Φ

⊤
t Φt)

−1(ϕ(a)− b1+ c)

=⇒ g(a, b, c) = aR2
MM,t + bB1 + a(u+ 1

av)
⊤(w + 1

av)

= aR2
MM,t + bB1 + au⊤w + 1

av
⊤v + v⊤(u+w). (C.11)

149



We set
dg(a, b, c)

da
= R2

MM,t + u⊤w − 1
a2
v⊤v = 0. (C.12)

Solving for (positive) a, we obtain

a =

√
v⊤v

R2
MM,t + u⊤w

. (C.13)

Substituting (C.13) into (C.11), we obtain

UCB
Θ

ℓ1
t
(a) ≤ min

a≥0
{g(a, b, c)}

=
√
(R2

MM,t + r⊤t (Φt(Φ⊤
t Φt)−1Φt − I)rt)(ϕ(a)− b1+ c)⊤(Φ⊤

t Φt)−1(ϕ(a)− b1+ c)

+ r⊤t Φt(Φ
⊤
t Φt)

−1(ϕ(a)− b1+ c) + bB1. (C.14)

Through the same procedure, one can also deduce that

LCB
Θ

ℓ1
t
(a) ≥ −

√
(R2

MM,t + r⊤t (Φt(Φ⊤
t Φt)−1Φt − I)rt)(ϕ(a) + b1− c)⊤(Φ⊤

t Φt)−1(ϕ(a) + b1− c)

+ r⊤t Φt(Φ
⊤
t Φt)

−1(ϕ(a) + b1− c)− bB1. (C.15)

We can freely set b and c in (C.14), as long as b ≥ 0, c ≥ 0 and 2b1− c ≥ 0 (due to (C.5)). Sadly,
there is no closed-form solution for the (constrained) minimum of the right-hand-side of (C.14)
with respect to b and c. Moreover, it is not clear how to obtain useful upper bounds on UCB

Θ
ℓ1
t
(a)

through specific choices of b and c.

One way to set b and c is as follows. Choose any b ≥ 0 and set choose c = b1. With these choices,
(C.14) becomes

UCB
Θ

ℓ1
t
(a) ≤

√
(R2

MM,t + r⊤t (Φt(Φ⊤
t Φt)−1Φt − I)rt)ϕ(a)⊤(Φ⊤

t Φt)−1ϕ(a)+r⊤t Φt(Φ
⊤
t Φt)

−1ϕ(a)+bB1.

This would be (essentially) the exact solution of (C.1) if we removed the ℓ1 norm constraint in (C.1).
This is not very appealing, because we get an upper confidence bound that completely ignores the
bound on ℓ1 norm of θ∗ (which is probably not very good).

There is at least one more way to set b and c such the upper bound in (C.14) is simplified. The
constraints b ≥ 0 and 0 ≤ c ≤ 2b1 mean that −b1 + c can be any vector v with ∥v∥∞ ≤ b. If
we choose b = ∥ϕ(a)∥∞, then we can choose c such that −b1 + c = −ϕ(a). With this choice, the
bound on the UCB becomes

UCB
Θ

ℓ1
t
(a) ≤ ∥ϕ(a)∥∞B1.

This upper bound is not very useful, because we could obtain the same upper (or lower) bound on
ϕ(a)⊤θ∗ by Hölder’s inequality.

|ϕ(a)⊤θ∗| ≤ ∥ϕ(a)∥∞ ∥θ∗∥1 ≤ ∥ϕ(a)∥∞B1.

In other words, we get an upper confidence bound that completely ignores the data-dependent
constraint in (C.1).
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C.2 Feature Selection Guarantees

Throughout this section, let J = supp(θ∗). We begin by stating an alternative version of Theorem
5.10, which allows for threshold levels 0 ≤ τ < m (which includes the standard Lasso at τ = 0),
but gives a weaker, approximate feature selection guarantee.

Theorem C.1 (Approximate Feature Selection Guarantee). Suppose that assumptions 5.3, 5.5,
5.6, 5.7 and 5.9 all hold. Choose any δ ∈ (0, 1] and any threshold level τ that satisfies 0 ≤ τ < m.
Choose any exploration distribution ρ, such that νmin(Σρ) > 0. Set η = 2σL∞

√
2 ln(4d/δ)/T1.

Choose any T1 such that

T1 ≥ max

(
3

ξ2
ln(d),

1

ξ2
ln(1/δ),

512s2σ2L2
∞ ln(4d/δ)

(m− τ)2νmin(Σρ)2

)
, where ξ = min

(
1

2
,
νmin(Σρ)

256sL2
∞

)
.

With probability at least 1− δ, we have

supp(θ∗) ⊆ supp(θ̂
Ŝτ
), and |supp(θ̂

Ŝτ
)| ≤

72sνmax(
1
T1
Φ⊤
T1
ΦT1)

νmin(Σρ)
.

In contrast to Theorem 5.10, Theorem C.1 does not guarantee that the (thresholded) Lasso estimate
removes all irrelevant features. To prove Theorem 5.10 and Theorem C.1, we establish several
important intermediate results in Section C.2.1 to Section C.2.6. In Section C.2.7 and Section
C.2.8, we combine all of these intermediate results.

C.2.1 Part 1: Useful Properties of Lasso

For S = J and large enough η, the Lasso estimate satisfies the constraint that appears in the
definition of the compatibility condition (see Equation 5.8)).

Lemma C.2 (Lemma 11.1 of [77]). Suppose that η > 2
T1

∥∥Φ⊤
T1
ϵT1

∥∥
∞. The error θ̂ − θ∗ satisfies

∥θ̂Jc − θ∗
Jc∥1 ≤ 3∥θ̂J − θ∗

J∥1. (C.16)

We now state a bound on
∥∥Φ⊤

T1
ϵT1

∥∥
∞, which holds in our setting with conditionally sub-Gaussian

noise variables (i.e. possibly non-i.i.d. noise).

Lemma C.3. For any δ ∈ (0, 2] and any T1 ≥ 1, with probability at least 1− δ/2∥∥∥Φ⊤
T1
ϵT1

∥∥∥
∞

≤
√

2T1σ2L2
∞ ln(4d/δ).

Proof. We can re-write the quantity to be bounded as

∥∥∥Φ⊤
T1
ϵT1

∥∥∥
∞

= max
1≤i≤d

∣∣∣∣∣
T1∑
t=1

ϕi(at)ϵt

∣∣∣∣∣ ,
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where ϕi(at) is the ith element of the d-dimensional feature vector ϕ(at). Since ϵ1, . . . , ϵT1 are
conditionally σ-sub-Gaussian, for any λ > 0 and any i, we have

E

[
exp

(
λ

T1∑
t=1

ϕi(at)ϵt

)]
= E

[
exp

(
λ

T1−1∑
t=1

ϕi(at)ϵt

)
E [exp (λϕi(aT1)ϵT1) |DT1−1]

]

≤ E

[
exp

(
λ

T1−1∑
t=1

ϕi(at)ϵt

)
exp

(
λ2σ2ϕi(aT1)

2

2

)]

≤ E

[
exp

(
λ

T1−1∑
t=1

ϕi(at)ϵt

)
exp

(
λ2σ2L2

∞
2

)]
...

≤ exp

(
T1λ

2σ2L2
∞

2

)
.

Using the Chernoff bounding method, for any τ > 0, we have

P

(
T1∑
t=1

ϕi(at)ϵt > τ

)
= P

(
exp

(
λ

T1∑
t=1

ϕi(at)ϵt

)
> exp(λτ)

)

≤ E

[
exp

(
λ

T1∑
t=1

ϕi(at)ϵt

)]
exp(−λτ)

≤ exp

(
T1λ

2σ2L2
∞

2
− λτ

)
.

By optimising λ, we obtain

P

(
T1∑
t=1

ϕi(at)ϵt > τ

)
≤ exp

(
− τ2

2T1σ2L2
∞

)
.

Setting δ = exp
(
− τ2

2T1σ2L2
∞

)
, we conclude that for any δ ∈ (0, 1], with probability at least 1 − δ,

we have
T1∑
t=1

ϕi(at)ϵt ≤
√
2T1σ2L2

∞ ln(1/δ).

The same procedure can be used to derive the same upper bound on −
∑T1

t=1 ϕi(at)ϵt. By a union
bound argument, with probability at least 1− δ, we have∣∣∣∣∣

T1∑
t=1

ϕi(at)ϵt

∣∣∣∣∣ ≤√2T1σ2L2
∞ ln(2/δ).

This holds for any i ∈ {1, . . . , d}, using the union bound once more, with probability at least 1− δ,
we have ∥∥∥Φ⊤

T1
ϵT1

∥∥∥
∞

= max
1≤i≤d

∣∣∣∣∣
T1∑
t=1

ϕi(at)ϵt

∣∣∣∣∣ ≤√2T1σ2L2
∞ ln(2d/δ).
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C.2.2 Part 2: Population Covariance Satisfies Compatibility

For a distribution ρ on A, let Σρ = Ea∼ρ[ϕ(a)ϕ(a)
⊤].

Lemma C.4. Suppose we choose ρ such that νmin(Σρ) > 0. Then for any set of indices S ⊆ [d],
we have

Σρ ∈ C(S,
√
νmin(Σρ))

Proof. If we choose PA such that νmin(Σ) > 0, then for all vectors v ∈ Rd, we have

∥v∥22 ≤
v⊤Σv

νmin(Σρ)
.

For any S ⊆ {1, . . . , d}, we have

∥vS∥21 ≤ |S| ∥vS∥22 ≤ |S| ∥v∥22 ≤
|S|v⊤Σv

νmin(Σρ)
.

Therefore, for any S, Σρ ∈ C(S,
√
νmin(Σρ)).

Note that it is possible to choose ρ such that νmin(Σρ) > 0 if and only if the feature vectors
(ϕ(a))a∈A span Rd (see Remark 3.2. of [76]). This is where the requirement for Assumption 5.9
comes from.

C.2.3 Part 3: Empirical Covariance Satisfies Compatibility

We use Lemma EC.6 of [26] to derive a lower bound on T1, such that, with high probability,
1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2).

Lemma C.5 (Lemma EC.6 of [26]). Suppose a1, . . . , aT1 are drawn i.i.d. from ρ. Let Σρ =
Ea∼ρ[ϕ(a)ϕ(a)

⊤] and suppose that Σ satisfies νmin(Σρ) > 0. For any T1 ≥ 3
ξ2

ln(d),

P
(

1

T1
Φ⊤
T1
ΦT1 ∈ C

(
J,
√
νmin(Σρ)/2

))
≥ 1− exp(−ξ2T1),

where ξ = min(12 ,
νmin(Σρ)
256sL2

∞
).

As done by [92], we can also derive statements that hold with probability at least 1− δ for any δ ∈
(0, 1]. This introduces another lower bound that T1 must satisfy (which is obtained by rearranging
1− exp(−ξ2T1) ≥ 1− δ).

Corollary C.6. Suppose a1, . . . , aT1 are drawn i.i.d. from ρ. Let Σρ = Ea∼ρ[ϕ(a)ϕ(a)
⊤] and

suppose that Σ satisfies νmin(Σρ) > 0 For any δ ∈ (0, 1] and any T1 ≥ max( 3
ξ2

ln(d), 1
ξ2

ln(2/δ)),

P
(

1

T1
Φ⊤
T1
ΦT1 ∈ C

(
J,
√
νmin(Σρ)/2

))
≥ 1− δ/2. (C.17)
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C.2.4 Part 4: Bounds on ℓ1 Estimation Error and Squared Prediction Error

If 1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2) and η >

2
T1
∥Φ⊤

T1
ϵT1∥∞, we can prove bounds on the ℓ1 estimation

error ∥θ̂ − θ∗∥1 and the squared prediction error ∥ΦT1(θ̂ − θ∗)∥22 that depend only logarithmically

on d. We use the following inequality for the regularised Lasso estimate θ̂ (see Equation (5.6)),
which is stated in the proof of Theorem 11.1 of [77]. In particular, see Eq. (11.23) on page 298 of
[77].

Lemma C.7 ([77]). If η > 2
T1
∥Φ⊤

T1
ϵT1∥∞, and θ̂ is the Lasso estimate, then for any T1 ≥ 1 we

have
∥ΦT1(θ̂ − θ∗)∥22

2T1
≤ η

2
∥θ̂ − θ∗∥1 + η(∥θ̂J − θ∗

J∥1 − ∥θ̂Jc − θ∗
Jc∥1) (C.18)

We also use the following basic inequality.

Lemma C.8. For any x, y ∈ R, we have

2
√
2xy ≤ 1

2
x2 + 4y2.

Proof. We aim to find the smallest constant c > 0, such that

2
√
2xy ≤ 1

2
x2 + cy2.

This is equivalent to
1

2
x2 + cy2 − 2

√
2xy ≥ 0. (C.19)

We first minimise the LHS with respect to x. By setting the derivative of the LHS with respect to
x equal to 0, we obtain

min
x∈R

{
1

2
x2 + cy2 − 2

√
2xy

}
= (c− 4)y2.

If we choose c ≥ 4, then (C.19) is satisfied for all x, y ∈ R.

We can now prove bounds on the estimation and prediction errors.

Lemma C.9. If 1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2), η ≥ 2

T1

∥∥Φ⊤
T1
ϵT1

∥∥
∞, and θ̂ is the Lasso estimate,

then

∥θ̂ − θ∗∥1 ≤
8sη

νmin(Σρ)
, (C.20)

∥ΦT1(θ̂ − θ∗)∥22 ≤
18sη2T1
νmin(Σρ)

. (C.21)
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Proof. We start from the inequality in Lemma C.7 and add η∥θ̂ − θ∗∥1 to both sides to obtain

∥ΦT1(θ̂ − θ∗)∥22
2T1

+ η∥θ̂ − θ∗∥1 ≤
η

2
∥θ̂ − θ∗∥1 + η(∥θ̂J − θ∗

J∥1 − ∥θ̂Jc − θ∗
Jc∥1) + η∥θ̂ − θ∗∥1

=
η

2
∥θ̂ − θ∗∥1 + η(∥θ̂J − θ∗

J∥1 − ∥θ̂Jc − θ∗
Jc∥1)

+ η(∥θ̂J − θ∗
J∥1 + ∥θ̂Jc − θ∗

Jc∥1)

=
η

2
∥θ̂ − θ∗∥1 + 2η∥θ̂J − θ∗

J∥1.

This can be rearranged to give

η

2
∥θ̂ − θ∗∥1 ≤ 2η∥θ̂J − θ∗

J∥1 −
∥ΦT1(θ̂ − θ∗)∥22

2T1
.

Since 1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2), we can apply the compatibility condition to obtain

η

2
∥θ̂ − θ∗∥1 ≤ 2

√
2
∥ΦT1(θ̂ − θ∗)∥2√

T1

η
√
s√

νmin(Σρ)
− ∥ΦT1(θ̂ − θ∗)∥22

2T1
.

We then use the inequality in Lemma C.8, to obtain

η

2
∥θ̂ − θ∗∥1 ≤

4sη2

νmin(Σρ)
+

∥ΦT1(θ̂ − θ∗)∥22
2T1

− ∥ΦT1(θ̂ − θ∗)∥22
2T1

=
4sη2

νmin(Σρ)
.

Multiplying both sides by 2/η, yields the ℓ1 error bound in the statement of the lemma. To prove
the prediction error bound, we start from inequality in Lemma C.7, and obtain

∥ΦT1(θ̂ − θ∗)∥22
2T1

≤ η

2
∥θ̂ − θ∗∥1 + η(∥θ̂J − θ∗

J∥1 − ∥θ̂Jc − θ∗
Jc∥1)

=
η

2
(∥θ̂J − θ∗

J∥1 + ∥θ̂Jc − θ∗
Jc∥1) + η(∥θ̂J − θ∗

J∥1 − ∥θ̂Jc − θ∗
Jc∥1)

≤ 3η

2
∥θ̂J − θ∗

J∥1. (C.22)

Since 1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2), we have

νmin(Σρ)

4s
∥θ̂J − θ∗

J∥21 ≤
∥ΦT1(θ̂ − θ∗)∥22

2T1
≤ 3η

2
∥θ̂J − θ∗

J∥1.

This can be rearranged into a quadratic inequality for ∥θ̂J − θ∗
J∥1.

∥θ̂J − θ∗
J∥1

(
νmin(Σρ)

4s
∥θ̂J − θ∗

J∥1 −
3η

2

)
≤ 0.
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The solution of this inequality is

0 ≤ ∥θ̂J − θ∗
J∥1 ≤

6sη

νmin(Σρ)
.

Substituting the upper bound on ∥θ̂J − θ∗
J∥1 into (C.22), we obtain

∥ΦT1(θ̂ − θ∗)∥22
2T1

≤ 18sη2

2νmin(Σρ)
.

Multiplying both sides by 2T1 yields the prediction error bound in the statement of the lemma.

C.2.5 Part 5: Support Recovery Under The Minimum Signal Condition

Next, we prove that for suitable values of η (which will later require T1 to be sufficiently large) and
suitable values of the threshold level τ , supp(θ∗) ⊆ supp(θ̂

Ŝτ
) ⊆ supp(θ̂).

Lemma C.10. If 0 ≤ τ < m, 1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2), η ≥ 2

T1

∥∥Φ⊤
T1
ϵT1

∥∥
∞, η <

(m−τ)νmin(Σρ)
8s ,

θ∗ satisfies the minimum signal assumption (Assumption 5.6) and θ̂ is the Lasso estimate in (5.6),
then

supp(θ∗) ⊆ supp(θ̂
Ŝτ
) ⊆ supp(θ̂).

Proof. Since η <
(m−τ)νmin(Σρ)

8s , we have

∥θ̂ − θ∗∥∞ ≤ ∥θ̂ − θ∗∥1 ≤
8sη

νmin(Σρ)
< m− τ.

Therefore, for all i ∈ [d], we have

τ −m < θ̂i − θ∗i < m− τ.

For all i ∈ supp(θ∗), we have |θ∗i | ≥ m. For each i ∈ supp(θ∗), if θ∗i ≥ m, then

θ̂i = θ̂i − θ∗i + θ∗i ≥ θ̂i − θ∗i +m > τ −m+m = τ.

Otherwise, if θ∗i ≤ −m, then

θ̂i = θ̂i − θ∗i + θ∗i ≤ θ̂i − θ∗i −m < m− τ −m = −τ.

Therefore, we conclude that for all i ∈ supp(θ∗), we have |θ̂i| > τ . This means that supp(θ∗) ⊆
supp(θ̂

Ŝτ
) must be satisfied.
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Lemma C.11. If τ = m/2, 1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2), η ≥ 2

T1

∥∥Φ⊤
T1
ϵT1

∥∥
∞, η <

mνmin(Σρ)
16s ,

θ∗ satisfies the minimum signal assumption (Assumption 5.6) and θ̂ is the Lasso estimate in (5.6),
then

supp(θ∗) = supp(θ̂
Ŝτ
).

Proof. Since η <
mνmin(Σρ)

16s , we have

∥θ̂ − θ∗∥∞ ≤ ∥θ̂ − θ∗∥1 ≤
8sη

νmin(Σρ)
< m/2 = τ.

Therefore, for all i ∈ [d], we have

−m/2 < θ̂i − θ∗i < m/2.

For all i ∈ supp(θ∗), we have |θ∗i | ≥ m. For each i ∈ supp(θ∗), if θ∗i ≥ m, then

θ̂i = θ̂i − θ∗i + θ∗i ≥ θ̂i − θ∗i +m > −m/2 +m = τ.

Otherwise, if θ∗i ≤ −m, then

θ̂i = θ̂i − θ∗i + θ∗i ≤ θ̂i − θ∗i −m < m/2−m = −τ.

Therefore, for all i ∈ supp(θ∗), we have |θ̂i| > τ , which means i ∈ supp(θ̂
Ŝτ
).

For all i /∈ supp(θ∗), we have θ∗i = 0, which means that

|θ̂i| = |θ̂i − θ∗i | < m/2 = τ.

Therefore, for all i /∈ supp(θ∗), we have |θ̂i| < τ , which means i /∈ supp(θ̂
Ŝτ
). We conclude that

supp(θ∗) = supp(θ̂
Ŝτ
).

C.2.6 Part 6: Sparsity of Lasso Estimate

In the proof their Theorem 5.2, [76] prove an order O(s) upper bound on the number of features
selected by Lasso for sufficiently large T1 and η. This part of the proof closely follows the proof
of Eq. (7.9) in Theorem 7.2 of [29], which states a similar upper bound. We closely follow these
proofs to prove another O(s) upper bound on the number of features selected by Lasso. Since
thresholding can only reduce the number of selected features, this is also an upper bound on the
number of features selected by the thresholded Lasso estimate. The main difference between the
proof of [76] and our own proof is that [76] uses a bound on ∥ΦT1(θ̂ − θ∗)∥22 that holds under a
restricted eigenvalue condition (see Condition A.1 of [76]), whereas we use our prediction error
bound from Lemma C.9, which requires that 1

T1
Φ⊤
T1
ΦT1 satisfies the compatibility condition.
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Lemma C.12. If 1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2), η ≥ 2

T1

∥∥Φ⊤
T1
ϵT1

∥∥
∞, and θ̂ is the Lasso estimate

in (5.6), then

|supp(θ̂
Ĵτ
)| ≤ |supp(θ̂)| ≤

72νmax(
1
T1
ΦT1Φ

⊤
T1
)s

νmin(Σρ)
.

Proof. The requirement

η ≥ 2

T1

∥∥∥Φ⊤
T1
ϵT1

∥∥∥
∞

=
2

T1
max
1≤i≤d

∣∣∣∣∣
T1∑
t=1

ϕi(at)ϵt

∣∣∣∣∣ ,
ensures that

∀i ∈ {1, . . . , d}, −η
2
≤ 1

T1

T1∑
t=1

ϕi(at)ϵt ≤
η

2
.

From the Karush-Kuhn-Tucker (KKT) condition, the solution θ̂ of the Lasso optimisation problem
in (5.6) satisfies

∀θ̂i ̸= 0,
1

T1

T1∑
t=1

ϕi(at)(rt − ϕ(at)
⊤θ̂) = sign(θ̂i)η.

Therefore, for all i where θ̂i ̸= 0, we have

1

T1

T1∑
t=1

ϕi(at)(ϕ(at)
⊤θ∗ − ϕ(at)

⊤θ̂) =
1

T1

T1∑
t=1

ϕi(at)(rt − ϕ(at)
⊤θ̂)− 1

T1

T1∑
t=1

ϕi(at)ϵt

= sign(θ̂i)η −
1

T1

T1∑
t=1

ϕi(at)ϵt.

If sign(θ̂i) = 1, then

sign(θ̂i)η −
1

T1

T1∑
t=1

ϕi(at)ϵt = η − 1

T1

T1∑
t=1

ϕi(at)ϵt ∈ [η/2, 3η/2].

Otherwise, if sign(θ̂i) = −1, then

sign(θ̂i)η −
1

T1

T1∑
t=1

ϕi(at)ϵt = −η − 1

T1

T1∑
t=1

ϕi(at)ϵt ∈ [−3η/2,−η/2].

Combining everything so far, we have established that for all i ∈ {1, . . . , d} where θ̂i ̸= 0, we have∣∣∣∣∣ 1T1
T1∑
t=1

ϕi(at)(ϕ(at)
⊤θ∗ − ϕ(at)

⊤θ̂)

∣∣∣∣∣ ≥ η/2.
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Therefore, we have

1

T 2
1

d∑
i=1

(
T1∑
t=1

ϕi(at)(ϕ(at)
⊤θ∗ − ϕ(at)

⊤θ̂)

)2

≥
∑
i:θ̂i ̸=0

(
1

T1

T1∑
t=1

ϕi(at)(ϕ(at)
⊤θ∗ − ϕ(at)

⊤θ̂)

)2

≥ |supp(θ̂)|η2/4.

We also have

1

T 2
1

d∑
i=1

(
T1∑
t=1

ϕi(at)(ϕ(at)
⊤θ∗ − ϕ(at)

⊤θ̂)

)2

=
1

T 2
1

(ΦT1θ
∗ − ΦT1 θ̂)

⊤ΦT1Φ
⊤
T1
(ΦT1θ

∗ − ΦT1 θ̂)

≤
νmax(

1
T1
ΦT1Φ

⊤
T1
)

T1
∥ΦT1(θ̂ − θ∗)∥22.

Using our prediction error bound in (C.21), we obtain

|supp(θ̂
Ŝτ
)| ≤ |supp(θ̂)| ≤

4ξmax(
1
T1
ΦT1Φ

⊤
T1
)

η2T1
∥ΦT1(θ̂ − θ∗)∥22 ≤

72νmax(
1
T1
ΦT1Φ

⊤
T1
)s

νmin(Σρ)
.

C.2.7 Proof of Theorem 5.10

Proof. We first verify that, with probability at least 1 − δ, the conditions of Lemma C.11 are
satisfied.

Using Lemma C.3, for any δ ∈ (0, 1] and any T1 ≥ 1, with probability at least 1− δ/2

η =
2σL∞

√
2 ln(4d/δ)√
T1

=
2

T1

√
2T1σ2L2

∞ ln(4d/δ) ≥ 2

T1

∥∥∥Φ⊤
T1
ϵT1

∥∥∥
∞
.

Since we have chosen T1 such that

T1 > max

(
3

ξ2
ln(d),

1

ξ2
ln(1/δ),

2048s2σ2L2
∞ ln(4d/δ)

m2νmin(Σρ)2

)
, where ξ = min

(
1

2
,
νmin(Σρ)

256sL2
∞

)
,

The conditions of Corollary C.6 are satisfied. Therefore, with probability at 1 − δ/2, we have
1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2). Finally, since our choice of T1 satisfies

√
T1 >

√
2048s2σ2L2

∞ ln(4d/δ)

m2νmin(Σρ)2
=

32sσL∞
√
2 ln(4d/δ)

mνmin(Σρ)
,

We have

η =
2σL∞

√
2 ln(4d/δ)√
T1

< 2σL∞
√
2 ln(4d/δ)

mνmin(Σρ)

32sσL∞
√

2 ln(4d/δ)
=
mνmin(Σρ)

16s
.
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Combining everything so far, and using the union bound, with probability at least 1 − δ, the
conditions of Lemma C.11 all hold. Therefore, using Lemma C.11, we have

supp(θ∗) = supp(θ̂
Ŝτ
).

C.2.8 Proof of Theorem C.1

Proof. We first verify that, with probability at least 1 − δ, the conditions of Lemma C.12 and
Lemma C.10 are satisfied.

Using Lemma C.3, for any δ ∈ (0, 1] and any T1 ≥ 1, with probability at least 1− δ/2

η =
2σL∞

√
2 ln(4d/δ)√
T1

=
2

T1

√
2T1σ2L2

∞ ln(4d/δ) ≥ 2

T1

∥∥∥Φ⊤
T1
ϵT1

∥∥∥
∞
.

Since we have chosen T1 such that

T1 > max

(
3

ξ2
ln(d),

1

ξ2
ln(1/δ),

512s2σ2L2
∞ ln(4d/δ)

(m− τ)2νmin(Σρ)2

)
, where ξ = min

(
1

2
,
νmin(Σρ)

256sL2
∞

)
,

The conditions of Corollary C.6 are satisfied. Therefore, with probability at 1 − δ/2, we have
1
T1
Φ⊤
T1
ΦT1 ∈ C(J,

√
νmin(Σρ)/2). Finally, since our choice of T1 satisfies

√
T1 >

√
512s2σ2L2

∞ ln(4d/δ)

(m− τ)2νmin(Σρ)2
=

16sσL∞
√
2 ln(4d/δ)

(m− τ)νmin(Σρ)
,

We have

η =
2σL∞

√
2 ln(4d/δ)√
T1

< 2σL∞
√

2 ln(4d/δ)
(m− τ)νmin(Σρ)

16sσL∞
√

2 ln(4d/δ)
=

(m− τ)νmin(Σρ)

8s
.

Combining everything so far, and using the union bound, with probability at least 1 − δ, the
conditions of Lemma C.12 and Lemma C.10 all hold. Using Lemma C.12, we have

|supp(θ̂
Ĵτ
)| ≤ |supp(θ̂)| ≤

72ξmax(
1
T1
ΦT1Φ

⊤
T1
)s

νmin(Σρ)
. (C.23)

Using Lemma C.10, we have

supp(θ∗) ⊆ supp(θ̂
Ŝτ
) ⊆ supp(θ̂).
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Glossary

Notation Description
I{A} Indicator for an event A
π Policy
b Behaviour policy
t Time
st State
at Action
rt Reward
Π Policy class
S State space
A Action space
R Reward space
D Data set
D σ-algebra (generated by a data set)
θ Parameter vector
ϕ Feature map
Φ Design matrix
Q “Posterior” distribution
P “Prior” or mixture distribution

Acronym Description
i.i.d. Independently and identically distributed
PAC Probably Approximately Correct
MAB Multi-armed bandit
CB Contextual bandit
UCB Upper Confidence Bound
LCB Lower Confidence Bound
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