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Abstract

In this thesis, we consider three different model problems on one-dimensional networks

with applications in gas, water supply, and district heating networks, as well as bacte-

rial chemotaxis. On each edge of the graph representing the network, the dynamics are

described by partial differential equations. Additional coupling conditions at network

junctions are needed to ensure basic physical principles and to obtain well-posed systems.

Each of the model problems under consideration contains an asymptotic parameter ε > 0,

which is assumed to be small, describing either a singular perturbation, different modeling

scales, or different physical regimes. A central objective of this work is the investigation of

the asymptotic behavior of solutions for ε→ 0. Moreover, we focus on suitable numerical

approximations based on Galerkin methods that are still viable in the asymptotic limit

ε = 0 and preserve the structure and basic properties of the underlying problems.

In the first part, we consider singularly perturbed convection-diffusion equations on

networks as well as the corresponding pure transport equations arising in the vanishing

diffusion limit ε → 0, in which the coupling conditions change in number and type. This

gives rise to interior boundary layers at network junctions. On a single interval, corre-

sponding asymptotic estimates are well-established. A main contribution is the transfer

of these results to networks. For an appropriate numerical approximation, we propose a

hybrid discontinuous Galerkin method which is particularly suitable for dominating con-

vection and coupling at network junctions. An approximation strategy is developed based

on layer-adapted meshes, leading to ε-uniform error estimates.

The second part is dedicated to a kinetic model of chemotaxis on networks describing

the movement of bacteria being influenced by the presence of a chemical substance. Via

a suitable scaling the classical Keller-Segel equations can be derived in the diffusion limit.

We propose a proper set of coupling conditions that ensure the conservation of mass and

lead to a well-posed problem. The local existence of solutions uniformly in the scaling

can be established via fixed point arguments. Appropriate a-priori estimates then enable

us to rigorously show the convergence of solutions to the diffusion limit. Via asymptotic

expansions, we also establish a quantitative asymptotic estimate.

In the last part, we focus on models for gas transport in pipe networks starting from the

non-isothermal Euler equations with friction and heat exchange with the surroundings.

An appropriate rescaling of the equations accounting for the large friction, large heat

transfer, and low Mach regime leads to simplified isothermal models in the limit ε → 0.

We propose a fully discrete approximation of the isothermal Euler equations using a mixed

finite element approach. Based on a reformulation of the equations and relative energy

estimates, we derive convergence estimates that hold uniformly in the scaling to a parabolic

gas model. We finally extend some ideas and results also to the non-isothermal regime.





Zusammenfassung

In dieser Arbeit betrachten wir drei verschiedene Modellprobleme auf eindimensionalen

Netzwerken mit Anwendung in Gas-, Wasser-, und Fernwärmenetzwerken sowie in bakte-

rieller Chemotaxis. Auf jeder Kante des Graphen, welcher das Netzwerk beschreibt, ist die

Dynamik durch eine partielle Differentialgleichung beschrieben. Zusätzliche Kopplungs-

bedingungen an inneren Knoten werden zur Erhaltung von physikalischen Grundprinzi-

pien gebraucht. Jedes der drei Modellprobleme enthält einen asymptotischen Parameter

ε > 0, der entweder eine singuläre Störung, verschiedene Größenskalen oder physikalische

Regimes beschreibt. Zentrales Ziel der Arbeit ist die Untersuchung des asymptotischen

Verhaltens von Lösungen für ε→ 0. Darüber hinaus betrachten wir geeignete numerische

Approximationen basierend auf Galerkin Verfahren, die auch für ε = 0 gültig sind und die

Struktur sowie grundlegende Eigenschaften der Probleme erhalten.

Im ersten Teil befassen wir uns mit singulär gestörten Konvektions-Diffusionsgleichungen

auf Netzwerken und die dazugehörigen Transportgleichungen, die wir im Grenzwert ε→ 0

für verschwindene Diffusion erhalten. Die Anzahl und der Typ von Kopplungsbedingungen

ändern sich, was zu Grenzschichten an inneren Netzwerkknoten führt. Auf einem Inter-

vall sind zugehörige asymptotische Abschätzungen wohlbekannt. Ein wesentlicher Beitrag

unserer Arbeit ist die Erweiterung auf Netzwerke. Für die numerische Approximation

schlagen wir eine hybride Discontinuous Galerkin Methode vor, die besonders für domi-

nierende Konvektion sowie die Kopplung an Netzwerkknoten geeignet ist. Eine adaptive

Approximationsstrategie auf layer-adapted Gittern liefert ε-uniforme Fehlerschranken.

Im zweiten Teil der Arbeit geht es um ein kinetisches Modell für Chemotaxis auf Netz-

werken, welches die Fortbewegung von Bakterien unter Einfluss einer chemischen Substanz

beschreibt. Mittels einer geeigneten Reskalierung erhalten wir das klassische Keller-Segel

Modell im Diffusionsgrenzwert. Wir schlagen geeignete Kopplungsbedingungen an Netz-

werkknoten vor, die zu einem wohlgestellten Problem führen. Die lokale Existenz von

Lösungen uniform in ε kann mittels Fixpunktargumenten gezeigt werden. A-priori Schran-

ken erlauben es uns dann die Konvergenz von Lösungen zum Diffusiongrenzwert zu zeigen.

Wir leiten außerdem eine quantitative asymptotische Abschätzung her.

Im letzten Teil der Arbeit untersuchen wir Modelle für den Gastransport in Rohrnetz-

werken. Ausgehend von den nicht-isothermen Eulergleichungen mit Reibung und Wärme-

austausch mit der Umgebung führt eine geeignete Reskalierung hinsichtlich großer Rei-

bung, hohemWärmeaustausch und kleiner Geschwindigkeiten zu vereinfachten isothermen

Modellen im Grenzwert ε → 0. Wir analysieren eine gemischte Finite Elemente Metho-

de für den isothermen Gastransport. Mittels relativen Energieabschätzungen können wir

Konvergenz des Verfahrens mit Raten uniform in ε zeigen. Schließlich erweitern wir unsere

Betrachtungen auf den nicht-isothermen Fall.
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Introduction

Partial differential equations on networks model a variety of processes of interest. In this

thesis, we consider three different model problems with applications to gas networks, water

supply and district heating networks, and bacterial chemotaxis on networks. Part of this

work was developed within the Collaborative Research Center TRR 154 on Mathematical

modelling, simulation, and optimization using the example of gas networks.

A network is described as a one-dimensional graph that consists of vertices connected

by edges. On each edge, the dynamics of interest is modeled by partial differential equa-

tions. In order to obtain a well-posed problem, additional coupling conditions at interior

vertices connecting the solutions in the edges are needed. The derivation of a proper set of

conditions ensuring that basic physical principles hold, in particular conservation of mass,

is crucial. The main focus of this work is on asymptotic aspects, i.e., all model problems

contain a scaling parameter ε > 0, which is assumed to be small, describing either a sin-

gular perturbation, different length or time scales, or different physical regimes. We are

interested in the well-posedness of the problems, i.e., in the existence and uniqueness of

solutions as well as the stability with respect to data, uniformly in the scaling parame-

ter ε. The investigation of the asymptotic behavior of solutions for ε → 0 is a central

objective of this work. We also focus on the appropriate numerical approximation of the

model problems based on Galerkin methods that, in particular, preserve the underlying

structure and basic properties. This enables us to exploit techniques from the continuous

analysis for the error estimation of the methods. Special emphasis is on the asymptotic

behavior and stability, in particular, the schemes should still be viable in the asymptotic

limit ε = 0.

Let us now give a brief overview of the content and main contributions of each chapter.

A self-contained and thorough introduction to each of the three model problems under

consideration is given at the beginning of the corresponding chapter.

Chapter 1: Transport and convection-diffusion equations on networks

In the first chapter, we consider singularly perturbed convection-diffusion equations on

networks and the corresponding pure transport equations that arise in the vanishing diffu-

sion limit ε→ 0. Applications can be found in the context of water supply, district heating,

and gas networks. The well-posedness of both problems can be established via semigroup

theory. We are particularly interested in the asymptotic behavior of solutions. An essential

feature of this problem is that coupling conditions at network junctions change in number

and type in the limit ε = 0 leading to additional interior layers. On a single interval and for
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appropriate initial conditions, it is well-known that solutions to the convection-diffusion

problem converge to the limiting transport problem with order O(
√
ε) in the L∞(L2)-norm

[8]. A main contribution of our work is the extension of this observation to networks. Our

results were published together with a complete analysis of the pure transport and the

convection-diffusion problem in

H. Egger and N. Philippi. On the transport limit of singularly perturbed

convection-diffusion problems on networks. Math. Methods Appl. Sci., 2021.

The second part of this chapter is dedicated to an appropriate numerical approximation.

We propose a hybrid discontinuous Galerkin (dG) method that is particularly well-suited

for convection-dominated problems and can handle the coupling conditions at network

junctions. Moreover, it yields a viable approximation for the transport limit ε = 0. The

hybrid-dG scheme for the pure transport problem was first presented in

H. Egger and N. Philippi. A hybrid discontinuous Galerkin method for trans-

port equations on networks. In Finite volumes for complex applications IX—

methods, theoretical aspects, examples—FVCA 9, Bergen, Norway, June 2020,

volume 323 of Springer Proc. Math. Stat., Springer, Cham, 2020.

A complete analysis on the continuous level, as well as error estimates for the method, are

given therein. In a second publication

H. Egger and N. Philippi. A hybrid-dG method for singularly perturbed

convection-diffusion equations on pipe networks. ESAIM: M2AN, 2023.

we then investigated the hybrid-dG semi-discretization for singularly perturbed convection-

diffusion equations on networks. We proposed a suitable approximation strategy on layer-

adapted meshes, which are a well-known tool to handle boundary layers [109], and we

provided ε-uniform error estimates. As a new aspect in this thesis, we give a complete

analysis of the fully discretized problem using a dG approach for the time discretization,

leading to high-order approximations for all values of ε ≥ 0.

Chapter 2: Kinetic chemotaxis and diffusion limits on networks

The second chapter is concerned with chemotaxis on networks describing the movement of

bacteria or cells that is influenced by the presence of a chemical substance. Applications

can be found in dermal wound healing and the growth of slime molds. A way to model these

processes is by kinetic equations where variables additionally depend on the velocity [99].

In the diffusion limit, chemotaxis can be described by the classical Keller-Segel equations

[66, 69], which can be derived from the kinetic model by an appropriate scaling and

asymptotic expansions [19]. On networks, coupling conditions at interior vertices ensuring

the conservation of mass are needed. We propose suitable conditions that converge to the

corresponding ones for the Keller-Segel system on networks; see e.g. [9, 113]. The main

focus of this chapter is the asymptotic analysis of the kinetic model and its diffusion limit

on networks. We show the local existence of solutions uniformly in the scaling via Banach’s

2



fixed point theorem and standard arguments. Suitable a-priori estimates enable us to show

that solutions converge to weak solutions of the Keller-Segel system on networks in the

diffusion limit ε → 0. Moreover, by exploiting asymptotic expansions [27], we derive a

quantitative asymptotic estimate stating that solutions to the kinetic model converge to

the diffusion limit with order O(
√
ε) in the L∞(L2)-norm. The content of this chapter is

joint work with Herbert Egger, Kathrin Hellmuth, and Matthias Schlottbom. A publication

is in preparation.

Chapter 3: Gas Transport in pipe networks

In the last chapter, we focus on models for gas transport in pipe networks starting from

the non-isothermal Euler system with quadratic friction law and heat exchange with the

surroundings. A suitable rescaling of the equations to the relevant scales in gas networks,

i.e., long pipes and time scales, large friction and heat transfer, as well as small velocities

(low Mach), leads to simplified models [15]. In the limit ε→ 0, we obtain a parabolic gas

transport model that is widely used and has been thoroughly investigated [3, 105], whereas

an intermediate simplification is given by the isothermal Euler equations with friction.

In the first part of this chapter, we consider the isothermal gas transport in pipe net-

works. The stability and, in particular, the asymptotic behavior of solutions has recently

been investigated in [37]. The analysis therein is based on a suitable reformulation of

the model equations having an “energy structure” that allows the use of relative energy

estimates [26] for measuring the distance between (perturbed) solutions. Here, we present

a suitable numerical approximation of the isothermal gas transport model based on a

mixed finite element approach in space and an implicit Euler time discretization that, in

particular, yields a viable approximation method for the parabolic problem in the limit

ε = 0 and preserves the underlying structure of the system. This in turn allows us to use

the relative energy for deriving rigorous error estimates with convergence rates that are

uniform in the scaling parameter ε and hold under the assumption that sufficiently regular

subsonic solutions bounded away from vacuum exist. This result was published in

H. Egger, J. Giesselmann, T. Kunkel, and N. Philippi. An asymptotic-

preserving discretization scheme for gas transport in pipe networks. IMA

Journal of Numerical Analysis, 2022.

The second part of this chapter is dedicated to the extension of the main ideas to the

non-isothermal gas transport in pipe networks. Suitable coupling conditions at junctions

that ensure basic physical principles are introduced. Moreover, we propose a structure-

preserving discretization scheme that extends the mixed finite element method for the

isothermal gas transport and is complemented with a hybrid discontinuous Galerkin ap-

proach for the additional entropy transport. This method fulfills global balance laws and

can be shown to dissipate energy under the assumption of subsonic flow bounded away

from vacuum. A rigorous asymptotic analysis as well as the derivation of error estimates

for the proposed method might be possible with similar techniques as for the isothermal

gas transport but is left for future research. The results concerning the non-isothermal

gas transport are first presented in this thesis.

3





1
Transport and convection-diffusion

equations on networks

Transport processes in network structures model various physical phenomena including

the transport of gas mixtures in pipe networks [78], the contaminant transport in water

supply networks [85] or networks of 1D cracks [96], as well as the heat transport in district

heating networks [64]. Related problems also appear in the modeling of traffic flow [55].

This chapter is devoted to the analysis and the numerical treatment of transport and

convection-diffusion problems on finite networks described by one-dimensional graphs. In

the following, we give an overview of the content and highlight the main contributions.

Problem setting

Let us first consider a single edge or interval on which the transport is described by

a(x)∂tu(x, t) + b∂xu(x, t) = 0, x ∈ (0, ℓ), t > 0 (1.1)

with u being the quantity of interest, e.g., the fraction of one gas component in the gas

mixture, the concentration of the contaminant solved in the water flow, or the water

temperature. The parameters a > 0 and b > 0 then model the network topology and the

background flow. Equation (1.1) has to be complemented by suitable initial as well as

boundary data at the inflow boundary x = 0 of the edge, i.e.,

u(0, t) = ĝ(t), t > 0. (1.2)

Adding diffusion to (1.1) leads to the following problem

a(x)∂tu
ε(x, t) + b∂xu

ε(x, t) = ε∂xxu
ε(x, t), x ∈ (0, ℓ), t > 0, (1.3)

uε(x, t) = ĝ(t), x ∈ {0, ℓ}, t > 0 (1.4)

with diffusion parameter ε > 0 that is assumed to be small. In contrast to the pure

transport problem, boundary data now has to be prescribed at both ends of the edge.



1. Transport and convection-diffusion equations on networks

Asymptotic analysis

We are particularly interested in the behavior of solutions to (1.3)–(1.4) for vanishing

diffusion ε → 0. It is well-known that the obsolete boundary condition at the outflow

boundary x = ℓ in the limit problem (1.1)–(1.2) leads to a boundary layer. Initial layers are

also possible but can be avoided by appropriate compatibility conditions on the boundary

and initial data. Moreover, the derivatives of the convection-diffusion solution blow up

within the boundary layer, i.e.,

|∂nt ∂kxuε(x, t)| ≤ C(1 + ε−keb(ℓ−x)/ε), (1.5)

see [77, 104]. In contrast to the limiting pure transport problem (1.1)–(1.2), where solu-

tions are smooth but violate the boundary condition at the outflow boundary x = ℓ. It is

well-known that the following asymptotic estimate holds

∥uε(t)− u(t)∥L2(0,ℓ) ≤ C
√
ε. (1.6)

The proof is based on the construction of suitable boundary layer functions. We refer

to [8] for the original reference and to [109, Ch. II.2] for a complete investigation of the

asymptotic behaviour on a single interval.

Extension to networks

In this chapter, we consider transport problems on networks described by finite, connected,

and directed graphs, and assume that (1.1) and (1.3) are satisfied on all edges which are

identified by intervals. Additional coupling conditions at interior vertices are needed in

order to connect the solutions in the individual edges and to ensure the conservation

of mass. The well-posedness of both problems on networks can be established using

semigroup theory. We refer to [46, 100] for a comprehensive overview. Semigroup methods

for flow problems on networks have been widely investigated in the literature; see [94] for

a thorough study of general evolution problems. Transport processes similar to (1.1) on

networks were considered in [33, 79], wave and diffusion phenomena in [80], and convection-

diffusion problems similar to (1.3) on networks in [96]. As the change in the number of

boundary conditions on a single interval indicates, we also have a change in the number,

but also in the type, of coupling conditions at network junctions in the asymptotic limit

of vanishing diffusion ε → 0. This leads to additional interior layers at junctions, more

precisely at the outflow boundary of each edge. As a main result of this chapter, we show

that the asymptotic estimate (1.6), as well as the bounds on the derivatives (1.5), carry

over to networks. Related singularly perturbed problems on networks have been considered

by other authors, we refer to [60] for the study of a general class of coupling conditions

and to [4] for results concerning the optimal control. Singularly perturbed stationary

reaction-diffusion problems on networks have been investigated in [82], and, very recently,

a singularly perturbed stationary convection-diffusion problem on networks with non-

constant coefficients has been analyzed in [83]. Vanishing diffusion approximations for

scalar conservation laws in the context of traffic flow have been considered in [21].
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Numerical approximation

The numerical approximation of pure transport and singularly perturbed convection-

diffusion equations on networks is another main focus of this chapter. We first consider the

spatial semi-discretization and apply a hybrid discontinuous Galerkin approach. Discon-

tinuous Galerkin (dG) methods are well-suited for convection-dominated problems due to

the build-in upwind mechanism for the transport part. We refer to [29] for a comprehen-

sive overview. The hybrid variant of the dG method introduces additional hybrid variables

at all grid points. Neighboring elements then only couple via these hybrid variables; see

[20] for the original reference and [45, 53] for the application of a hybrid-dG method to

convection-diffusion problems in dimension d = 2, 3. It turns out that this method allows

for a very natural handling of the coupling conditions at network junctions. Moreover,

by formally setting ε = 0 we obtain a viable method for the limiting transport problem.

In order to obtain a fully discrete scheme, we need a suitable time discretization. For a

balanced approximation order in space and time, we employ a high order dG method; see

[48, 117].

Error analysis

We are particularly interested in the case of vanishing diffusion ε→ 0, where we know from

(1.5) that the derivatives of the convection-diffusion solution blow up within the boundary

and interior layers. Hence, a straightforward error analysis as elaborated in [29, 117]

does not yield ε-uniform convergence on uniform grids. A standard way to overcome

this issue is the use of layer-adapted meshes. We refer to [109] for a profound survey.

Various numerical methods on such meshes were studied in the literature. Finite element

approximations on layer-adapted meshes were widely investigated, e.g., by [24, 34, 107]

and in the context of higher-order methods by [110]. Discontinuous Galerkin schemes on

different layer-adapter meshes were considered by [114, 122]. In [83], an upwind finite

difference method for a singularly perturbed stationary convection-diffusion problem on

networks with a suitably set up Shishkin mesh on each edge was analyzed. In this work,

we utilize a layer-adapted mesh similar to the one proposed by Gartland in [56] and later

investigated in [108]. By defining a transition point x∗(ε) ≈ ε log(1/ε), we split each edge

into two parts, a smooth part (0, x∗(ε)) away from the boundary layer where the derivatives

of uε up to a desired order are bounded, and a layer part (x∗(ε), ℓ). The spatial mesh is

then chosen to be uniform in the smooth part and geometrically refined in the layer part.

The choice of this transition point simplifies the error analysis on this layer-adapted mesh

significantly, compared to the classical analysis on Shishkin-type meshes; see e.g. [110].

Since we know from the asymptotic estimate (1.6) that the solution to the pure transport

problem is already a good approximation for small ε, we define the approximation ũεh to

the convection-diffusion problem adaptively as

ũεh =

{
uεh, ε ≥ h2k,

u0h, ε < h2k
(1.7)

7



1. Transport and convection-diffusion equations on networks

with uεh being the solution to the hybrid-dG method for ε > 0 on the layer-adapted

mesh, u0h being the corresponding solution for ε = 0 on a uniform mesh, and k being the

polynomial approximation order. This choice enables us to show the following ε-uniform

error estimate

∥uε(tn)− ũεh(t
n)∥L2 ≤ Cmax(hk+1,min(

√
ε, hk)) + C ′τk+1/2, (1.8)

which holds under verifiable smoothness assumptions on the solution uε. Here, tn are

the time grid points. For this approximation strategy, we can verify that the number

of elements in the layer-adapted mesh is of optimal order O(h−1). Let us note that the

convergence rate in time in (1.8) is suboptimal by a factor 1/2 in comparison to the results

for the dG time-stepping obtained in [48, 117]. The numerical tests presented at the end of

this chapter, however, indicate an optimal order convergence in time. It might be possible

to prove this by other techniques in the context of Runge-Kutta methods since the dG

time-stepping can be shown to be equivalent to the Radau IIA Runge-Kutta scheme; see

[1, 119]. Finally, let us stress that all results are valid for single intervals as well as finite

networks of general topology which can also include cycles.

Main contributions

Before going into the details, let us briefly summarize the main contributions presented in

this chapter.

• We extend the well-known asymptotic estimate (1.6) for single intervals to networks.

The main difficulty in the analysis is the additional boundary layers at the interior

vertices of the network that arise from the change in the number and type of coupling

conditions. Since the values of the solution at network junctions are not known a-

priori, the asymptotic analysis requires a delicate choice of boundary layer functions

in order to handle the interior layers. This result was published together with a

complete analysis of the pure transport and the convection-diffusion problem in

H. Egger and N. Philippi. On the transport limit of singularly perturbed

convection-diffusion problems on networks. Math. Methods Appl. Sci.,

2021.

• We propose a hybrid-dG method that is particularly well-suited for convection-

dominated problems and can handle the coupling conditions at network junctions.

The hybrid-dG scheme for the pure transport problem was first presented in

H. Egger and N. Philippi. A hybrid discontinuous Galerkin method for

transport equations on networks. In Finite volumes for complex applica-

tions IX—methods, theoretical aspects, examples—FVCA 9, Bergen, Nor-

way, June 2020, volume 323 of Springer Proc. Math. Stat., pages 487–495.

Springer, Cham, 2020.

A complete analysis of the transport problem on the continuous level and an error es-

timate on uniform meshes has been given therein. The hybrid-dG semi-discretization

8



1.1. Model problems

for the singularly perturbed convection-diffusion problem on networks, the corre-

sponding approximation strategy (1.7) on the layer-adapted mesh, and the uniform

error estimate (1.8) were proposed and investigated in

H. Egger and N. Philippi. A hybrid-dG method for singularly perturbed

convection-diffusion equations on pipe networks. ESAIM: M2AN, 2023.

As a new aspect not contained in this publication, we give a complete analysis of

the fully discretized problem using a dG approach for the time discretization.

Outline

In Section 1.1 we present the pure transport and the convection-diffusion problem on net-

works and establish their well-posedness via semigroup theory. Section 1.2 is dedicated

to the asymptotic analysis. The main result is the extension of the asymptotic estimate

(1.6) to networks. Further, we derive bounds on the derivatives similar to (1.5), which will

later be needed for the error analysis of our numerical scheme. The numerical approxima-

tion is discussed in Section 1.3. We first investigate the spatial semi-discretization via a

hybrid-dG approach, before we consider the full discretization using the dG time-stepping

method. The main result of this section is the uniform error estimate (1.8) employing the

adaptive approximation strategy (1.7) on a layer-adapted spatial mesh. In Section 1.4 we

illustrate our theoretical findings with some numerical tests. We conclude this chapter

with a short discussion and an outlook.

1.1. Model problems

The first section is based on our publication [40]. We present the pure transport problem

and the convection-diffusion problem on networks. Suitable coupling conditions at network

junctions are proposed leading to well-posed problems. We start by introducing the basic

notation that will be used throughout this chapter.

1.1.1. Notation and function spaces

Following the notation from previous publications, see e.g. [39], a network is described

by a finite, connected, and directed graph G = (V, E) with vertices V = {v1, . . . , vm} and

edges E = {e1, . . . , el} ⊂ V × V. Let us note that networks can include cycles. For each

vertex v ∈ V we define the set of incident edges by E(v) = {e ∈ E : e = (v, ·) or e = (·, v)}.
We further distinguish between boundary vertices V∂ = {v ∈ V : |E(v)| = 1} and interior

vertices V0 = V\V∂ with |E(v)| denoting the cardinality of the set E(v). In order to

indicate the start and end vertex of an edge e = (vi, vj), let us introduce the outward

normal on the network by ne(vi) = −1, ne(vj) = 1, and ne(v) = 0 for v ∈ V\{vi, vj}. An

illustration of the notation for a simple network is given in Figure 1.1. Each edge e ∈ E is

9



1. Transport and convection-diffusion equations on networks

v1 v2

v3

v4 v5

v6

e1

e2 e3

e4

e5e6

Figure 1.1.: A network with edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), e4 = (v4, v5),

e5 = (v4, v6), and e6 = (v6, v2), boundary vertices V∂ = {v1, v5}, and inte-

rior vertices V0 = {v2, v3, v4, v6}. The incident edges to the vertex v2 are

collected in the set E(v2) = {e1, e2, e6}, which can be split into the sets

E in(v2) = {e1, e6} and Eout(v2) = {e2} of edges carrying flow into or out of

the vertex v2. The inflow and outflow boundary vertices of the network are

given by V in
∂ = {v1} and Vout

∂ = {v5}.

identified by an interval e ≃ (0, ℓe) with ℓe > 0 being the length of the edge. The space of

square-integrable functions on the network can then be defined by

L2(E) = L2(e1)× · · · × L2(el) = {u : ue ∈ L2(0, ℓe) for all e ∈ E}

with ue = u|e denoting the restriction of a function u onto the edge e. The associated

scalar product and norm are given by

(u,w)L2(E) =
∑

e∈E
(u,w)L2(e) and ∥u∥2L2(E) = (u, u)L2(E).

In a similar way, we can define the broken Sobolev spaces of piecewise smooth functions

on the network by

Hk
pw(E) = {u : ue ∈ Hk(e) for all e ∈ E}.

Let us note that functions in Hk
pw(E) are continuous along edges for k ≥ 1 but may be

discontinuous at junctions. We thus denote by H1(E) the space of functions in H1
pw(E)

that are additionally continuous across junctions. Each u ∈ H1(E) takes a unique value

u(v) at v ∈ V which belongs to the space ℓ2(V) of possible vertex values.

1.1.2. Transport problem

We are now in the position to introduce the transport problem on a network G = (V, E).
On each edge e ∈ E the dynamics is described by

ae(x)∂tue(x, t) + be∂xue(x, t) = 0, x ∈ (0, ℓe), t > 0. (1.9)

Like on a single interval, we need one boundary condition at the inflow boundary of each

edge. We thus introduce for each interior vertex v ∈ V0 the sets of edges carrying flow

into or out of the vertex by

E in(v) = {e ∈ E(v) : bene(v) > 0} and Eout(v) = {e ∈ E(v) : bene(v) < 0},

10



1.1. Model problems

respectively. Moreover, the spaces of inflow and outflow boundary vertices are defined by

V in
∂ = {v ∈ V∂ : bene(v) < 0} and Vout

∂ = {v ∈ V∂ : bene(v) > 0};

see Figure 1.1 for an illustration where the flow and the edge direction coincide. We

prescribe Dirichlet conditions at the network inflow boundary, i.e.,

ue(v, t) = ĝv(t), v ∈ V in
∂ , e ∈ E(v), t > 0. (1.10)

At interior vertices, however, we need additional conditions that couple the solutions in

incident edges. Since one boundary condition is required for each outflow edge, we set

ue(v, t) = ûv(t), v ∈ V0, e ∈ Eout(v), t > 0 (1.11)

with mixing value ûv determined by the solutions in inflow edges, i.e.,

ûv(t) =

∑
e∈Ein(v) beue(v, t)∑

e∈Ein(v) be
, v ∈ V0, t > 0. (1.12)

We call ûv hybrid variable in the sequel. The transport problem on networks is now fully

described by (1.9)–(1.12) when complemented by suitable initial data.

Let us now state some assumptions on the parameters a and b as well as the boundary

data ĝ that are supposed to hold throughout this chapter.

Assumption 1.1. Let a ∈ Hm+1
pw (E) with 0 < a ≤ ae(x) ≤ a as well as |∂jxae(x)| ≤ ā for

all x ∈ (0, ℓe), e ∈ E , and j ≤ 2m for some m ≥ 0. Further, let be ≥ b > 0 be constant

and positive for all edges e ∈ E , i.e., the flow direction corresponds to the direction of the

edges, and it holds that ∑
e∈E(v)

bene(v) = 0 (B)

at all interior vertices v ∈ V0, which ensures the conservation of the background flow at

junctions. Moreover, the boundary data satisfies ĝ ∈ Cm+1([0, tmax]; ℓ2(V∂)) up to some

time point tmax > 0, and ∂nt ĝ(0) = 0 for 0 ≤ n ≤ m.

Remark 1.2. Together with the conservation condition (B) for the background flow the

coupling conditions (1.11)–(1.12) guarantee conservation of mass at junctions. The re-

striction on b being positive could easily be relaxed to b being bounded away from zero,

because otherwise (1.9) degenerates to an ordinary differential equation. The assumption

on the boundary data ĝ ensures consistency with trivial initial data u(0) = 0 which in

turn avoids the occurrence of initial layers.

Example 1.3 (Contaminant transport in water supply networks).

The transport of a solved contaminant in a water supply network can be modeled by

(1.9)–(1.12). The concentration of the contaminant is then given by u and we assume that

the contaminant is injected into the network at inflow boundary vertices v ∈ V in
∂ . Since

water is an incompressible fluid with a constant density, the conservation of mass principle

implies that the averaged flow velocity modeled by be is constant in each pipe e ∈ E and

that condition (B) is satisfied at junctions. The parameter a equals 1 in this example.

Hence, Assumption 1.1 is fulfilled. A possible scenario is investigated in Section 1.4.1.
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1. Transport and convection-diffusion equations on networks

As a first step of our analysis, we now establish the well-posedness of the pure transport

problem on networks (1.9)–(1.12).

Theorem 1.4. Let Assumption 1.1 hold. Then, (1.9)–(1.12) has a unique solution

u ∈ Cm+1([0, tmax];L
2(E)) ∩ C0([0, tmax];H

m+1
pw (E)), û ∈ Cm([0, tmax]; ℓ2(V0))

with initial condition being chosen as u(0) = 0. Moreover, “mass” is conserved up to flux

over the network boundary, i.e.,

d

dt
(au(t), 1)L2(E) =

∑
v∈Vin

∂

beĝv(t)−
∑

v∈Vout
∂

beue(v, t), (1.13)

and “energy” is dissipated due to mixing at junctions, i.e.,

d

dt
∥a1/2u(t)∥2L2(E) =

∑
v∈Vin

∂

be|ĝv(t)|2 −
∑

v∈Vout
∂

be|ue(v, t)|2 (1.14)

−
∑

v∈V0

∑
e∈Ein(v)

be|ue(v, t)− ûv(t)|2.

Proof. In order to show well-posedness, we transform (1.9)–(1.12) into an inhomogeneous

abstract Cauchy problem of the form

z′(t) = Az(t) + f(t), t > 0, z(0) = z0 (iACP)

with operator (A,D(A)) on a reflexive Banach space X . For f ∈ C1([0, tmax];X ) and

z0 ∈ X , existence of a unique solution z ∈ C1([0, tmax];X ) ∩ C0([0, tmax];D(A)) is guar-

anteed if (A,D(A)) is the generator of a strongly continuous semigroup; see [46, Ch.VI,

Cor. 7.6]. This in turn can be verified using a variant of the Lumer-Phillips theorem for

reflexive Banach spaces that can be found in [46, Ch. II, Cor. 3.20].

Step 1 (Transformation into (iACP)). As a first step, we transform (1.9)–(1.12) into

a problem with homogeneous inflow boundary data. For this let us introduce a function

w(t) ∈ H1(E) ∩H2
pw(E) for 0 ≤ t ≤ tmax, which is affine linear on every edge and satisfies

w(v, t) = ĝv(t) at v ∈ V in
∂ and w(v, t) = 0 at v ∈ V\V in

∂ . Then, any solution of (1.9)–(1.12)

can be split into u = z − w with z satisfying

ae(x)∂tze(x, t) + be∂xze(x, t) = fe(x, t) (1.15)

for all x ∈ (0, ℓe), e ∈ E with fe(x, t) = ae(x)∂twe(x, t)+be∂xwe(x, t). Moreover, z vanishes

at the network inflow boundary due to the construction of w, i.e.,

ze(v, t) = 0, v ∈ V in
∂ , e ∈ E(v). (1.16)

Since w vanishes at junctions, z satisfies the same coupling conditions (1.11)–(1.12) as the

original solution u, i.e.,

ze(v, t) = ẑv(t), v ∈ V0, e ∈ Eout(v) (1.17)

with mixing value

ẑv(t) =

∑
e∈Ein(v) beze(v, t)∑

e∈Ein(v) be
. (1.18)
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1.1. Model problems

At the initial time, we have z(0) = 0. Then, z solves (iACP) with z(0) = 0 on the Hilbert

space X := L2(E) with norm and scalar product defined by

∥z∥X := ∥a1/2z∥L2(E) and (z, w)X := (az, w)L2(E), (1.19)

which are well-defined since a is strictly positive and uniformly bounded from below and

above by Assumption 1.1. Note that each Hilbert space is a reflexive Banach space. The

operator (A,D(A)) is given by

D(A) := {z ∈ H1
pw(E) : z satisfies (1.16)–(1.18) for some ẑ ∈ ℓ2(V0)}, (1.20)

which is a dense subspace of X , and

A : D(A) ⊂ X → X , Az|e := − be
ae
∂xze. (1.21)

On each edge e ∈ E the source term satisfies f ∈ C1([0, tmax];X ) by construction of w.

Step 2 (Application of the Lumer-Phillips theorem). In order to establish the

existence of a unique solution to (iACP), we have to verify that (A,D(A)) is the generator

of a strongly continuous semigroup. According to [46, Ch. II, Cor. 3.20] (A,D(A)) even

generates a contraction semigroup if (A,D(A)) is dissipative, i.e.,

∥(λ−A)z∥X ≥ λ∥z∥X for all λ > 0, z ∈ D(A) (1.22)

and λ−A is surjective for some λ > 0. For each z ∈ D(A) it holds that

(Az, z)X = −(b∂xz, z)L2(E) = −
∑

v∈V

∑
e∈E(v)

1
2be|ze(v)|

2ne(v) =
∑

v∈V
(∗).

Using the coupling conditions (1.17)–(1.18) we find that at interior vertices v ∈ V0 the

right-hand side equals

(∗) =
∑

e∈Eout(v)

1
2be|ze(v)|

2 −
∑

e∈Ein(v)

1
2be|ze(v)|

2 ≤ 0,

where we used that by definition of ẑ as mixing value (1.18), the flow conservation condition

(B), and Jensen’s inequality, the first term can be estimated by

∑
e∈Eout(v)

be|ẑv|2 =
∑

e∈Eout(v)
be

∣∣∣∑e∈Ein(v) beze(v)∑
e∈Ein(v) be

∣∣∣2
≤
∑

e∈Eout(v)
be

∑
e∈Ein(v) be|ze(v)|2∑

e∈Ein(v) be
≤
∑

e∈Ein(v)
be|ze(v)|2.

Since z vanishes at inflow boundary vertices by (1.16) and be > 0, we find that

(Az, z)X ≤
∑

v∈Vin
∂

1
2be|ẑv|

2 −
∑

v∈Vout
∂

1
2be|ze(v)|

2 ≤ 0.

This immediately implies that (1.22) is satisfied for all λ > 0, since

∥(λ−A)z∥X ∥z∥X ≥ ((λ−A)z, z)X = (λz, z)X − (Az, z)X ≥ λ∥z∥2X . (1.23)
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1. Transport and convection-diffusion equations on networks

It remains to show that λ − A is surjective for some λ > 0. On each edge e ∈ E and for

every y ∈ X we can solve (λ−A)|eze = λze +
be
ae
∂xze = ye analytically, and obtain

ze(x) = ze(0)e
−λ

∫ x
0 ae(s) ds/be +

∫ x

0

ae(s)
be

ye(s)e
−λ

∫ x
s ae(σ) dσ/be ds. (1.24)

Using the fact that ze(0) = ze(v) = 0 for v ∈ V in
∂ by (1.16) as well as ze(0) = ze(v) = ẑv for

v ∈ V0, e ∈ Eout(v) by (1.17) with ẑv specified as mixing value (1.18), finding ẑv reduces

to solving the following linear system of equations∑
e∈Eout(v)

beẑv −
∑

e=(vie, v)∈Ein(v)

beẑviee
−λae(ℓe)/be =

∑
e∈Ein(v)

∫ ℓe

0

ae(s)
be

ye(s)e
−λ

∫ x
s ae(σ) dσ/be ds.

The system matrix can be seen to be strictly diagonally dominant due to the flow conser-

vation condition (B) and the bounds on the parameters in Assumption 1.1. Consequently,

the system is uniquely solvable and the nodal values (ẑv)v∈V0 are uniquely determined. It

holds that z ∈ D(A) by its construction in (1.24), so we proved that λ − A is surjective

for λ > 0. Consequently, [46, Ch. II, Cor. 3.20] implies that (A,D(A)) generates a con-

traction semigroup. This in turn guarantees well-posedness of (iACP), i.e., the existence

of a unique solution z ∈ C1([0, tmax];X ) ∩ C0([0, tmax];D(A)).

Step 3 (Well-posedness and regularity). By the construction and regularity of w

we obtain the existence of a solution u = w − z of (1.9)–(1.12) with

u ∈ C1([0, tmax];L
2(E)) ∩ C0([0, tmax];H

1
pw(E)).

Uniqueness can be deduced from the fact that the difference of two solutions z = u1 − u2
of (1.9)–(1.12) satisfies (iACP) with f ≡ 0 and z0 ≡ 0. Since (iACP) is well-posed as

shown above, this implies z ≡ 0.

Higher regularity of the solution in turn follows from the fact that by differentiating

(1.9)–(1.12) with respect to time we find that ∂nt u is also a solution with boundary data

∂nt ĝ and initial data ∂nt u(0) = 0. Due to the regularity and compatibility conditions on ĝ

in Assumption 1.1, we obtain

∂nt u ∈ C1([0, tmax];L
2(E)) ∩ C0([0, tmax];H

1
pw(E)) for all 0 ≤ n ≤ m,

i.e., u ∈ Cm+1([0, tmax];L
2(E)). Using the fact that ∂xue = ae

be
∂tue and the regularity

assumption on a, we find that u ∈ C0([0, tmax];H
m+1
pw (E)). From the definition of the

mixing values ûv in (1.12) we then deduce that û ∈ Cm([0, tmax]; ℓ2(V0)) by the trace

theorem, which eventually yields the desired regularity of the solution.

Step 4 (Conservation of mass and energy identity). Conservation of mass (1.13)

follows by integrating (1.9) over each edge e ∈ E , summing up, and using the boundary

and coupling conditions (1.10)–(1.12), i.e.,

d

dt
(au(t), 1)L2(E) = −(b∂xu(t), 1)L2(E) = −

∑
v∈V

∑
e∈E(v)

beue(v, t)

=
∑

v∈Vin
∂

beĝv(t)−
∑

v∈Vout
∂

beue(v, t).
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In a similar manner, multiplying (1.9) with u and integrating over the network yields

d

dt
∥a1/2u(t)∥2L2(E) = 2(a∂tu(t), u(t))L2(E) = −2(b∂xu(t), u(t))L2(E)

= −
∑

v∈V
be|ue(v, t)|2ne(v)

=
∑

v∈Vin
∂

be|ĝv(t)|2 −
∑

v∈Vout
∂

be|ue(v, t)|2 −
∑

v∈V0

(∗∗)

using the boundary condition (1.10). The latter term equals

(∗∗) =
∑

e∈Ein(v)
be|ue(v, t)|2 −

∑
e∈Eout(v)

be|ue(v, t)|2

=
∑

e∈Ein(v)
be(|ue(v, t)|2 − |ûv(t)|2)

=
∑

e∈Ein(v)
be|ue(v, t)− ûv(t)|2 + 2

∑
e∈Ein(v)

(
beue(v, t)ûv(t)− be|ûv(t)|2

)
,

where we used (1.11) as well as the flow conservation condition (B). The last term in

the last line vanishes due to the fact that ûv does not depend on e ∈ E(v) and that∑
e∈Ein(v) beue(v, t) =

∑
e∈Ein(v) beûv(t) by (1.12), which then leads to (1.14). This con-

cludes the proof of Theorem 1.4.

1.1.3. Convection-diffusion problem

The pure transport problem does not account for diffusive effects and might thus not

capture all features of the process. As a next step, we therefore consider the incorporation

of diffusion. On each edge e ∈ E we assume that

ae(x)∂tu
ε
e(x, t) + be∂xu

ε
e(x, t) = ε∂xxu

ε
e(x, t) (1.25)

holds for all x ∈ (0, ℓe) and t > 0 with small diffusion coefficient ε > 0 being constant.

Note that with minor changes in the arguments, it is also possible to choose ε to be

space-dependent. Dirichlet conditions are prescribed at the whole network boundary, i.e.,

uεe(v, t) = ĝv(t), v ∈ V∂ , e ∈ E(v), t > 0. (1.26)

At interior vertices we now enforce continuity by

uεe(v, t) = ûεv(t), v ∈ V0, e ∈ E(v), t > 0, (1.27)

which is caused by the infinite spread of diffusion, as well as conservation of the total flux∑
e∈E(v)

(
beu

ε
e(v, t)− ε∂xu

ε
e(v, t)

)
ne(v) = 0, v ∈ V0, e ∈ E(v), t > 0, (1.28)

ensuring conservation of mass at junctions. When complemented with suitable initial data,

the convection-diffusion problem on networks is fully described by (1.25)–(1.28).

Remark 1.5. At each junction v ∈ V0 the number of coupling conditions (1.27)–(1.28)

equals |E(v)| + 1, which suffices to enforce continuity of the solution and to guarantee

15



1. Transport and convection-diffusion equations on networks

conservation of mass at junctions. In contrast to the coupling conditions (1.11)–(1.12) for

the transport problem, which account for |Eout(v)|+1 conditions and only ensure outflow

continuity and conservation of mass. We thus observe a change not only in the type

but also in the number of coupling conditions in the limit of vanishing diffusion ε → 0.

This eventually leads to boundary layers at the outflow boundary of each pipe. A closer

investigation will be given in Section 1.2, and an illustration can be found in Figure 1.2.

With similar arguments as for the transport problem, we can show well-posedness of

the convection-diffusion problem (1.25)–(1.28) via semigroup theory.

Theorem 1.6. Let Assumption 1.1 hold. Then, for any ε>0 there exists a unique solution

uε ∈ Cm+1([0, tmax];L
2(E)) ∩ C0([0, tmax];H

2m+2
pw (E) ∩H1(E)),

ûε ∈ Cm([0, tmax]; ℓ2(V0))

of (1.25)–(1.28) with initial condition uε(0) = 0. Moreover, “mass” is conserved up to

flux over the network boundary, i.e.,

d

dt
(auε(t), 1)L2(E) =

∑
v∈V∂

(
− beĝv(t) + ε∂xu

ε
e(v, t)

)
ne(v), (1.29)

and “energy” is dissipated due to diffusion, i.e.,

1

2

d

dt
∥a1/2u(t)∥2L2(E) =− ε∥∂xuε(t)∥2L2(E) (1.30)

−
∑

v∈V∂

(
1
2beĝv(t)− ε∂xu

ε
e(v, t)

)
ĝv(t)ne(v).

Proof. Similar to the transport problem on networks, we can prove the well-posedness of

(1.25)–(1.28) by transforming it into an abstract Cauchy problem (iACP).

Step 1 (Transformation into (iACP)). Let us first transform (1.25)–(1.28) into a

problem with homogeneous boundary data by introducing a function w(t) ∈ H1(E) which
is constructed as follows: On a network that has at least one interior vertex, we define

we as quadratic polynomial for all v ∈ V∂ , e ∈ E(v) with we(v, t) = ĝv(t) for v ∈ V∂ and

we(v0, t) = 0, ∂xwe(v0, t) = 0 for v0 = e ∩ V0. On the remaining edges, we set we ≡ 0. If

the network consists of only one edge then w is affine linear with w(v, t) = ĝ(t) for v ∈ V∂ .

We can then split any solution uε to (1.25)–(1.28) into uε = w − z with z solving

ae(x)∂tze(x, t) + be∂xze(x, t)− ε∂xxze(x, t) = fe(x, t), x ∈ (0, ℓe), e ∈ E . (1.31)

The right hand side is given by fe(x, t) := ae(x)∂twe(x, t) + be∂xwe(x, t)− ε∂xxwe(x, t) for

each e ∈ E , and satisfies f ∈ C1([0, tmax];L
2(E)) due to the construction of w and the

regularity of ĝ. At the network boundary z vanishes, i.e.,

ze(v, t) = 0, v ∈ V∂ , e ∈ E(v), (1.32)

and at interior vertices z satisfies the same coupling conditions (1.27)–(1.28) as the original

solution uε due to the construction of w. Moreover, z(0) = 0. The problem for z can then

16



1.1. Model problems

be rewritten as (iACP) with spaces X := L2(E) equipped with norm and scalar product

introduced in (1.19), operator (A,D(A)) defined by

D(A) := {z ∈ H2
pw(E) : z satisfies (1.32) and (1.27)–(1.28) for some ẑ ∈ ℓ2(V0)},

which is a dense subspace of X , and

A : D(A) ⊂ X → X , Az|e := − 1
ae
(be∂xze − ε∂xxze).

The source term and initial condition in (iACP) are given by f above and z0 = 0.

Step 2 (Application of the Lumer-Phillips theorem). As a next step, we will

verify that (A,D(A)) generates a contraction semigroup. First, we show that (A,D(A))

is dissipative, i.e., satisfies (1.22). For z ∈ D(A) it holds that

(Az, z)X = −(b∂xz − ε∂xxz, z)L2(E)

= −ε∥∂xz∥2L2(E) −
∑

v∈V

∑
e∈E(v)

(
1
2be|ze(v)|

2 − ε∂xze(v)ze(v)
)
ne(v).

The first term is negative, and since z vanishes at the network boundary v ∈ V∂ due

to (1.32) it remains to estimate the second term at interior vertices v ∈ V0. Using the

coupling conditions (1.27)–(1.28) and the flow conservation condition (B) we find that

−
∑

v∈V0

∑
e∈E(v)

(
1
2be|ze(v)|

2 − ε∂xze(v)ze(v)
)
ne(v)

= −
∑

v∈V0

1
2 |ẑv|

2
∑

e∈E(v)
bene(v) +

∑
v∈V0

ẑv
∑

e∈E(v)
ε∂xze(v)ne(v) = 0,

which ultimately yields

(Az, z)X = −ε∥∂xz∥2L2(E) ≤ 0.

This in turn implies that (1.22) holds for all λ > 0 due to (1.23). It remains to verify that

λ−A is surjective for some λ > 0. By (1.23) and the Lax-Milgram Lemma, the problem

λz −Az = f can be shown to have a unique weak solution

z ∈ H1
0 (E) := {w ∈ H1(E) : w(v) = 0 for all v ∈ V∂}

for all f ∈ X , i.e., z solves

(aλz, w)L2(E) − (bz, ∂xw)L2(E) + (ε∂xz, ∂xw)L2(E) = (af, w)L2(E) (1.33)

for all w ∈ H1
0 (E). Note that the coupling condition (1.27) is strongly enforced in the space

H1
0 (E), whereas the coupling condition (1.28) appears naturally in (1.33). The nodal values

(ẑv)v∈V0 are well-defined for H1(E)-functions due to the trace theorem. We further see

that z ∈ H2
pw(E) by integrating (1.31) over each edge e ∈ E since f ∈ X = L2(E). This

shows that z ∈ D(A), which then implies surjectivity of λ − A for λ > 0. Hence, all

conditions of [46, Ch. II, Cor. 3.20] are satisfied, and (A,D(A)) generates a contraction

semigroup, which in turn guarantees well-posedness of (iACP).

Step 3 (Well-posedness and regularity). Well-posedness and higher regularity of

the solution are obtained with the same arguments as in Step 3 of the proof of Theorem 1.4.
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1. Transport and convection-diffusion equations on networks

Again, the regularity and construction of w yields the existence of a solution uε = w−z to

(1.25)–(1.28) with uε ∈ C1([0, tmax];L
2(E)) ∩ C0([0, tmax];H

1(E) ∩ H2
pw(E)). Uniqueness

follows from the fact that the difference of two solutions z = uε1 − uε2 of (1.25)–(1.28)

satisfies (iACP) with z0 ≡ 0 and f ≡ 0, whose unique solution is z ≡ 0.

By differentiating (1.25)–(1.28) with respect to time, we find that ∂nt u
ε is also a solution

for boundary data ∂nt ĝ and initial data ∂nt u
ε(0) = 0. Due to the regularity and compatibil-

ity conditions on ĝ in Assumption 1.1, semigroup theory yields the existence of a unique so-

lution ∂nt u
ε ∈ C1([0, tmax];L

2(E))∩C0([0, tmax];H
2
pw(E)∩H1(E)) for all 0 ≤ n ≤ m, which

immediately implies uε ∈ Cm+1([0, tmax];L
2(E)). By the trace theorem we deduce that

ûε ∈ Cm([0, tmax]; ℓ2(V0)). Using the fact that ε∂xxu
ε
e = ae∂tu

ε
e + be∂xu

ε
e and the bounds

on a and its derivatives in Assumption 1.1, we find that u ∈ C0([0, tmax];H
2m+2
pw (E)).

Step 4 (Conservation of mass and energy equality). Conservation of mass (1.29)

follows from integrating (1.25) over each edge, summing up and use the boundary and

coupling conditions (1.26)–(1.28), more precisely

d

dt
(auε(t), 1)L2(E) = −(b∂xu

ε(t)− ε∂xxu
ε(t), 1)L2(E)

= −
∑

v∈V

∑
e∈E(v)

(
beu

ε
e(v, t)− ε∂xu

ε
e(v, t)

)
ne(v)

= −
∑

v∈V∂

(
beĝv(t)− ε∂xu

ε
e(v, t)

)
ne(v).

In the same spirit, multiplying (1.25) with uε and integrating over the network yields

1

2

d

dt
∥a1/2uε(t)∥2L2(E) = (a∂tu

ε(t), uε(t))L2(E)

= −(b∂xu
ε(t), uε(t))L2(E) + (ε∂xxu

ε(t), uε(t))L2(E)

= −ε∥∂xuε(t)∥2L2(E) −
∑

v∈V

∑
e∈E(v)

(
1
2be|u

ε
e(v, t)|2 − ε∂xu

ε
e(v, t)u

ε
e(v, t)

)
ne(v)

= −ε∥∂xuε(t)∥2L2(E) −
∑

v∈V∂

∑
e∈E(v)

(
1
2beĝv(t)− ε∂xu

ε
e(v, t)

)
ĝv(t)ne(v),

where we applied integration-by-parts onto the last term in the second line and used the

fact that ∂xu
εuε = 1

2∂x|u
ε|2. The contributions at interior vertices cancel due to the

coupling conditions (1.27)–(1.28). This concludes the proof of Theorem 1.6.

1.2. Asymptotic analysis

This section is devoted to the analysis of the asymptotic behavior of solutions uε to the

convection-diffusion problem on networks (1.25)–(1.28) for vanishing diffusion ε→ 0 and

is based on our publication [40]. The main result is the extension of the well-known

asymptotic estimate (1.6) for singularly perturbed convection-diffusion problems on a sin-

gle interval to networks.

Theorem 1.7. Let Assumption 1.1 hold, and let uε be the solution to (1.25)–(1.28) with

ε > 0 and u the solution to (1.9)–(1.12) with initial conditions uε(0) = u(0) = 0. Then,

∥uε − u∥L∞(0,tmax;L2(E)) ≤ C
√
ε (1.34)
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1.2. Asymptotic analysis

with a constant C that only depends on tmax and the bounds on the parameters in As-

sumption 1.1 but is independent of ε.

Before we prove this theorem, we state some auxiliary results that are needed for the

proof as well as for later investigations.

1.2.1. Auxiliary results

In the following, we will derive bounds on the solution to the convection-diffusion problem

on networks and its derivatives, which will then be needed for the proof of the main result

and later on for the analysis of the numerical approximation. A key step for this is the

derivation of a weak maximum principle on networks.

Lemma 1.8 (Maximum principle). Let Assumption 1.1 hold, and let

u ∈ C1([0, tmax];L
2(E)) ∩ C0([0, tmax];H

2
pw(E) ∩H1(E))

be a given function that satisfies

ae(x)∂tue(x, t) + be∂xue(x, t)− ε∂xxue(x, t) ≥ 0, x ∈ (0, ℓe), e ∈ E , (1.35)

ue(v, t) ≥ 0, v ∈ V∂ , e ∈ E(v), (1.36)∑
e∈E(v)

ε∂xue(v, t)ne(v) = 0, v ∈ V0 (1.37)

for all 0 < t < tmax with initial value u(0) ≥ 0. Then, ue(x, t) ≥ 0 for all 0 ≤ x ≤ ℓe, e ∈ E
and 0 ≤ t ≤ tmax.

Proof. Following standard procedure [49], we multiply (1.35) with w = min(u, 0) and

integrate over the network to find that

0 ≥ (a∂tu,w)L2(E) + (b∂xu,w)L2(E) − (ε∂xxu,w)L2(E)

= (a∂tu,w)L2(E) − (bu, ∂xw)L2(E) + (ε∂xu, ∂xw)L2(E), (1.38)

where we applied integration-by-parts to the second and third terms in the first line.

Contributions at interior vertices v ∈ V0 vanish due to the continuity of u and w across

junctions, condition (B), and (1.37), whereas contributions at boundary vertices v ∈ V∂

vanish due to w(v) = 0 which holds by (1.36). Let us now define the set

E−(t) = {x ∈ [0, ℓe1 ] : ue1(x, t) < 0} × · · · × {x ∈ [0, ℓel ] : uel(x, t) < 0}

of the spatial domain where u is negative at time t. Then, w(t) ≡ u(t) on E−(t) and

w(t) ≡ 0 and ∂xw(t) ≡ 0 on its complement due to the definition of w. From this and the

inequality (1.38) we deduce that

0 ≥ (a∂tu(t), u(t))L2(E−(t)) − (bu(t), ∂xu(t))L2(E−(t)) + (ε∂xu(t), ∂xu(t))L2(E−(t))

≥ (a∂tu(t), u(t))L2(E−(t))
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1. Transport and convection-diffusion equations on networks

Figure 1.2.: Snapshots of solutions u and uε to the transport (blue, solid) and the

convection-diffusion problem (red, dashed) on a tripod network with edges

e1, e2 carrying flow into and edge e3 carrying flow out of the interior vertex

for a larger (left) and a smaller (right) value of ε. The change in coupling

conditions and the occurrence of boundary layers are clearly visible.

at time t, where we used that the third term in the first line is positive, and the second

term vanishes. This holds since bu∂xu = 1
2b∂x|u|

2 and by integrating this expression the

vertex contributions cancel out due to continuity of u at junctions, flow condition (B), and

the fact that u ≡ 0 on the boundary of E−(t) by definition and (1.36). Integrating with

respect to time then leads to

0 ≥
∫ t

0
(a∂tu(s), u(s))L2(E−(s)) ds =

∫ t

0

1

2

d

dt

∫
E−(s)

a(x)|u(x, s)|2 dx ds

=

∫
E−(t)

1

2
a(x)|u(x, t)|2 dx.

Note that the first equality holds due to the fundamental theorem of calculus, the fact

that u vanishes on the boundary of E−(s) for all 0 < s < t, and E−(0) = { } since u(0) ≥ 0.

From a(x) ≥
¯
a > 0 we can then conclude that u ≡ 0 on E−(t) for all 0 ≤ t ≤ tmax and

thus u ≥ 0 .

We are now in the position to derive bounds on the solution of (1.25)–(1.28) and its

derivatives using similar arguments as in [77, 104], where the stationary and the time-

dependent convection-diffusion problem on an interval were investigated; also see [115].

An illustration of the behavior of the convection-diffusion solution is given in Figure 1.2.

Lemma 1.9. Let Assumption 1.1 hold, and let uε be the solution to (1.25)–(1.28) with

initial condition uε(0) = 0. Then,

|∂nt ∂jxuεe(x, t)| ≤ C(1 + ε−je−be(ℓe−x)/ε) (1.39)

holds for all n ≤ m, j ≤ 2(m − n) + 1, and 0 ≤ x ≤ ℓe, e ∈ E , 0 < t < tmax with a

constant C that is independent of ε.
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Proof. We divide the proof into two steps, where we first show (1.39) for j = 0 and n ≥ 0.

Bounds on higher derivatives can then in a second step be derived via induction over j.

Step 1 (Boundedness of uε and its time derivatives). We first show that uε and

∂nt u
ε are uniformly bounded independently of ε, which follows from the weak maximum

principle with standard arguments. We define a function w with

we(x, t) := max v∈V∂ , 0≤s≤tmax |ĝv(s)| ± uε(x, t)

for e ∈ E , which by construction satisfies the conditions from Lemma 1.8. It immediately

follows that w ≥ 0 and we conclude that uε can be bounded by the maximum of its

boundary data. By differentiating (1.25) n-times with respect to time, we see that ∂nt u
ε

also solves (1.25)–(1.28) with boundary data ∂nt ĝ and initial data ∂nt u
ε(0) = 0. The same

argument applies again and it turns out that ∂nt u
ε can be bounded by the maximum norm

of ∂nt ĝ. The bounds for higher spatial derivatives are then established via induction over

j in the next step.

Step 2 (Induction over j). Let us now assume that (1.39) holds for all n ≤ m and

0 ≤ i ≤ j − 1. We show that it then also holds for j and all n ≤ m. As a first step we

prove that |∂nt ∂
j
xuεe(ℓe, t)| ≤ cε−j . By the mean value theorem, we know that there exists

y ∈ (ℓe − ε, ℓe), so that

∂nt ∂
j
xu

ε
e(y, t) =

1

ε

(
∂nt ∂

j−1
x uεe(ℓe, t)− ∂nt ∂

j−1
x uεe(ℓe − ε, t)

)
≤ cε−j ,

which holds due to the induction hypothesis. By differentiating (1.25) with respect to

space and time we find that

ae(x)∂t∂
n
t ∂

j−1
x uεe(x, t) + be∂x∂

n
t ∂

j−1
x uεe(x, t)− ε∂xx∂

n
t ∂

j−1
x uεe(x, t) = f εe (x, t) (1.40)

with right-hand side given by

f εe (x, t) = −
j−1∑
i=1

(
j − 1

i

)
∂ixae(x)∂

j−i−1
x ∂nt u

ε
e(x, t).

Using (1.40) and the fundamental theorem of calculus we deduce that

∂nt ∂
j
xu

ε
e(ℓe, t) = ∂nt ∂

j
xu

ε
e(y, t) +

∫ ℓe

y
∂xx∂

n
t ∂

j−1
x uεe(x, t) dx (1.41)

= ∂nt ∂
j
xu

ε
e(y, t) + ε−1

∫ ℓe

y
ae(x)∂

n+1
t ∂j−1

x uεe(x, t) + be∂
n
t ∂

j
xu

ε
e(x, t)− f εe (x, t) dx

≤ cε−j + max
x∈(y,ℓe)

(
|ae(x)∂n+1

t ∂j−1
x uεe(x, t)|+ |f εe (x, t)|

)
+ max

x∈(y,ℓe)
2ε−1be|∂nt ∂j−1

x uεe(x, t)|

≤ c′ε−j .

Note that the last three terms in the third line are bounded by c′′ε−j due to the induction

hypotheses and the bounds in Assumption 1.1. We now fix a time point 0 ≤ t ≤ tmax and

define on each edge e ∈ E a function we(x) := ∂nt ∂
j
xuεe(x, t), which by (1.40) is a solution

to the ordinary differential equation

bewe(x)− εw′
e(x) = ηεe(x) := −ae(x)∂n+1

t ∂j−1
x uεe(x, t) + f εe (x, t) (1.42)
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1. Transport and convection-diffusion equations on networks

with value at the endpoint of the edge given by we(ℓe) = ∂nt ∂
j
xuεe(ℓe, t). The right-hand

side can be estimated by

|ηεe(x)| ≤ c(1 + ε−(j−1)e−be(ℓe−x)/ε), (1.43)

using the induction hypothesis and the bounds in Assumption 1.1. Solving (1.42) by means

of the variation-of-constants-formula, we find that

we(x) = we(ℓe)e
−be(ℓe−x)/ε + ε−1

∫ ℓe

x
e−be(σ−x)/εηe(σ) dσ

≤ c′ ε−je−be(ℓe−x)/ε + ε−1

∫ ℓe

x
e−be(σ−x)/εc(1 + ε−(j−1)e−be(ℓe−σ)/ε) dσ

≤ c′ ε−je−be(ℓe−x)/ε + cε−je−be(ℓe−x)/ε(ℓ− x) + c
be
(1− e−be(ℓ−x)/ε)

≤ c′′(1 + ε−je−be(ℓe−x)/ε),

where we used (1.41) and (1.43) throughout the estimations. This shows that (1.39) holds

for j and all n ≤ m. By induction, the proof of Lemma 1.9 is completed.

1.2.2. Proof of Theorem 1.7

The proof of Theorem 1.7 for a single pipe is given in [109, p.159-166]; see [8] for the

original reference. The main idea is to introduce a boundary layer function wε which

approximates the difference between the convection-diffusion and the transport solution

with accuracy O(
√
ε), i.e., we split the error into

∥uε − u∥L∞(0,tmax;L2(E)) ≤ ∥uε − u− wε∥L∞(0,tmax;L2(E)) + ∥wε∥L∞(0,tmax;L2(E)) (1.44)

and want to show that both terms on the right-hand side can be estimated by C
√
ε with

a constant that is independent of ε. We proceed similarly as on a single pipe, but since

the construction of the boundary layer function is more involved on networks, we present

the complete proof.

Step 1 (Construction of boundary layer function). Let us define the boundary

layer function wε on e = (vie, v
o
e) ∈ E by

wε
e(x, t) := (ûvoe (t)− ue(v

o
e , t))e

−be(ℓe−x)/ε. (1.45)

Note that at boundary vertices V∂ the nodal value ûv does formally not exist, but for ease

of notation we set ûv = ĝv at v ∈ V∂ . The particular construction of the boundary layer

function is motivated in Figure 1.2. We immediately see that wε solves

be∂xw
ε
e − ε∂xxw

ε
e = 0 (1.46)

and further satisfies

∥wε∥L∞(0,tmax;L2(E)) ≤ c
√
ε. (1.47)
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1.2. Asymptotic analysis

By the error splitting (1.44) it remains to estimate the norm of the remainder ηε :=

uε − u − wε for which we find by inserting ηε into the convection-diffusion equation,

testing with ηε, and integrating over the network that

1

2

d

dt
∥a1/2ηε∥2L2(E) = (a∂tη

ε, ηε)L2(E) (1.48)

= −(b∂xη
ε, ηε)L2(E) + (ε∂xxη

ε, ηε)L2(E) + (ε∂xxu, η
ε)L2(E) − (a∂tw

ε, ηε)L2(E)

= (i) + (ii) + (iii) + (iv).

Here, we used that u, uε and wε satisfy (1.9), (1.25) and (1.46), respectively. Before we

estimate the terms (i)− (iv), we investigate the remainder ηε in more detail.

Step 2 (Investigation of ηε). In the following, we compute the values of ηε at initial

time t = 0 and at all vertices v ∈ V of the network. At t = 0 it holds that ηε(0) = 0 since

uε(0) = u(0) = 0. Let us note that this also holds true as long as uε and u have the same

initial condition. At inflow boundary vertices v ∈ V in
∂ and corresponding edges e = (v, voe)

we find that

ηε(v, t) = ĝv(t)− ĝv(t)− (ĝv(t)− ue(v, t))e
−beℓe/ε ≤ cε, (1.49)

since the transport solution does not depend on ε and e−beℓe/ε can be estimated by c′ε. At

outflow boundary vertices v ∈ Vout
∂ with corresponding edges e = (vie, v), however, η

ε(v, t)

vanishes, more precisely

ηε(v, t) = ĝv(t)− ue(v, t)− (ĝv(t)− ue(v, t)) = 0. (1.50)

It remains to investigate the values of ηε at interior vertices v ∈ V0 for which we find that

ηεe(v, t) = ûεv(t)− ûv(t), e = (vie, v) ∈ E in(v), (1.51)

ηεe(v, t) = ûεv(t)− ûv(t)− (ûvoe (t)− ue(v
o
e , t))e

−beℓe/ε, e = (v, voe) ∈ Eout(v). (1.52)

Step 3 (Estimation of (i)− (iv)). We are now in the position to estimate the terms

in (1.48) by exploiting the properties of ηε derived in the previous step.

Estimation of (i). Using the fact that ∂xη
εηε = 1

2∂x|η
ε|2 the first term equals

(i) = −(b∂xη
ε, ηε)L2(E) = −

∑
v∈V

∑
e∈E(v)

1
2be|η

ε
e(v)|2ne(v) =

∑
v∈V

(∗).

At inflow boundary vertices v ∈ V in
∂ we conclude from (1.49) that (∗) ≤ cε, whereas at

outflow boundary vertices it holds that (∗) = 0 by (1.50). At interior vertices v ∈ V0 using

(1.51)–(1.52) and the flow conservation condition (B) we find that

(∗) =
∑

Eout(v)

1
2be
(
ûεv − ûv − (ûvoe − ue(v

o
e))e

−beℓe/ε
)2 −∑

Ein(v)

1
2be
(
ûεv − ûv

)2
=
∑

Eout(v)

1
2be(û

ε
v − ûv)

2 + 1
2be(û

ε
v − ûv)(ûvoe − ue(v

o
e))e

−beℓe/ε

+ 1
2be(ûvoe − ue(v

o
e))

2e−2beℓe/ε −
∑

Ein(v)

1
2be
(
ûεv − ûv

)2 ≤ cε.
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1. Transport and convection-diffusion equations on networks

The first term in the second line and the last term in the third line cancel because of the

flow conservation condition (B). Additionally, we used the uniform boundedness of uε

shown in Lemma 1.9. Overall, we obtain (i) ≤ cε.

Estimation of (ii). Applying integration-by-parts, the second term in (1.48) can be

transformed into

(ii) = (ε∂xxη
ε, ηε)L2(E) = −(ε∂xη

ε, ∂xη
ε)L2(E) +

∑
v∈V

∑
e∈E(v)

ε∂xη
ε(v)ηε(v)ne(v)

= −ε∥∂xηε∥2L2(E) +
∑

v∈V
(∗∗).

The first term is negative and will be needed later on for stability. Before we estimate (∗∗)
at boundary and interior vertices, let us evaluate the spatial derivative of the boundary

layer function wε, i.e.,

∂xw
ε
e(v) =

be
ε
(ûv − ue(v)) ≤ cε−1, e ∈ E in(v), (1.53)

∂xw
ε
e(v) =

be
ε
(ûvoe − ue(v

o
e))e

−beℓe/ε ≤ c′, e = (v, voe) ∈ Eout(v). (1.54)

For e ∈ Eout(v) we can deduce from Lemma 1.9 that ∂xu
ε
e(v) is uniformly bounded inde-

pendently of ε. Together with (1.54) this yields uniform bounds for ηεe(v). At boundary

vertices, using (1.49)–(1.50), we can therefore conclude that∑
v∈V∂

(∗∗) =
∑

v∈Vin
∂

ε∂xη
ε
e(v)η

ε
e(v)ne(v) ≤ cε.

At interior vertices, (1.51)–(1.52) leads to

(∗∗) =
∑

e∈E(v)

ε∂xη
ε
e(v)(û

ε
e(v)− ûe(v))ne(v) +

∑
e∈Eout(v)

ε∂xη
ε
e(v)(ûvoe − ue(v

o
e))e

−beℓe/ε.

The fact that ∂xη
ε
e(v) is bounded independently of ε for e ∈ Eout(v) allows us to bound

the second term by cε2. The first term can be split into the following three terms∑
e∈E(v)

ε∂xu
ε
e(v)(û

ε
e(v)− ûe(v))ne(v)−

∑
e∈E(v)

ε∂xue(v)(û
ε
e(v)− ûe(v))ne(v)

−
∑

e∈E(v)
ε∂xw

ε
e(v)(û

ε
e(v)− ûe(v))ne(v) = (a) + (b) + (c).

The first term (a) vanishes due to the coupling conditions (1.27)–(1.28) and the flow

conservation condition (B), which together imply that
∑

e∈E(v) ε∂xu
ε
e(v)ne(v) = 0. By the

boundedness of u, ∂xu and uε independent of ε, the second term (b) can be bounded by cε.

Using (1.53)–(1.54) the last term can be rewritten as

(c) =−
∑

e∈Ein(v)
be(ûv − ue(v))(û

ε
e(v)− ûe(v))

+
∑

e∈Eout(v)
be(ûvoe − ue(v

o
e))e

−beℓe/ε(ûεe(v)− ûe(v)).

The first term on the right-hand side vanishes due to the coupling conditions (1.11)–(1.12)

and the flow conservation (B). The fact that u and uε are bounded independently of ε

allows us to estimate the second term by cε. In total, we obtain (ii) ≤ cε.
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1.3. Numerical approximation

Estimation of (iii). The third term in (1.48) can be estimated by

(iii) = (ε∂xxu, η
ε)L2(E) = −(ε∂xu, ∂xη

ε)L2(E) +
∑

v∈V

∑
e∈E(v)

ε∂xue(v)η
ε
e(v)ne(v)

≤ ε
2∥∂xu∥

2
L2(E) +

ε
2∥∂xη

ε∥L2(E) +
∑

v∈V

∑
e∈E(v)

ε∂xue(v)η
ε
e(v)ne(v),

where we applied integration-by-parts and used Young’s inequality. The first term can be

bounded by cε, the second term absorbed into (ii) and the contributions at the junctions

can also be estimated by cε due to the uniform boundedness of ∂xu and ηε. Overall, we

find that (iii) ≤ cε.

Estimation of (iv). Applying Young’s inequality to the last term in (1.48) yields

(iv) = −(a∂xw
ε, ηε)L2(E) ≤ 1

2∥a
1/2∂tw

ε∥2L2(E) +
1
2∥a

1/2ηε∥2L2(E).

On each edge e ∈ E the first term can further be estimated by

∥a1/2∂twε∥2L2(e) =

∫ ℓe

0
ae(∂tûvoe − ∂tue(v

o
e))

2e−2be(ℓe−x)/ε ≤ cε,

because ∂tu, ∂tû are uniformly bounded independently of ε by Lemma 1.9. Since the graph

is finite, this estimate extends to the whole network.

Step 4 (Application of Grönwall’s Lemma). By (1.48) and the estimates for the

appearing terms (i)− (iv), we obtain

1

2

d

dt
∥a1/2ηε∥2L2(E) ≤ cε+

1

2
∥a1/2ηε∥2L2(E).

Integrating over (0, t) and applying Grönwall’s Lemma, see e.g. [116, Lemma 2.7], imme-

diately leads to

∥ηε(t)∥2L2(E) ≤ 2acetε ≤ 2acetmaxε (1.55)

for all 0 < t < tmax, since η
ε(0) = 0. The error splitting (1.44) and the estimate for wε

in (1.47) then yield (1.34) with a constant C that depends on tmax and the bounds in

Assumption 1.1 but which is independent of ε.

The proof of Theorem 1.7 concludes our analytical considerations. In the next section,

we focus on a suitable numerical approximation with special emphasis on asymptotic

stability for vanishing diffusion ε→ 0.

1.3. Numerical approximation

In the following, we investigate the numerical approximation of the pure transport and

the convection-diffusion problem on networks described by (1.9)–(1.12) and (1.25)–(1.28),

respectively. We first propose and analyze the spatial semi-discretization by a hybrid

discontinuous Galerkin approach that turns out to be particularly well-suited for handling
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1. Transport and convection-diffusion equations on networks

the convection-dominated regime and the coupling conditions at network junctions. After

that, we present the fully discrete scheme, where we apply the discontinuous Galerkin

method also for the time discretization. In order to overcome convergence issues due to

boundary and interior layers and degenerate derivatives of the convection-diffusion solution

uε, see Section 1.2, we investigate the numerical treatment for vanishing diffusion ε → 0

by layer-adapted meshes. This section is based on our publications [39, 41].

1.3.1. Mesh and approximation spaces

We split each edge e ≃ (0, ℓe) ∈ E into sub-intervals 0 = x1e < x2e < · · · < xMe
e = ℓe and

collect them in the spatial mesh

Th = {T i
e = (xi−1

e , xie) : i = 1, ..,Me, e ∈ E}.

The local and global mesh sizes are denoted by hie = xie − xi−1
e and h = maxe,i h

i
e. We

also write hT for the size of T ∈ Th and define hloc|T = hT . For each T = (xin, xout) ∈ Th
we call xin the inflow and xout the outflow boundary of T , since by Assumption 1.1 the

direction of the edges coincides with the flow direction. We collect the inflow and outflow

boundaries of all elements T ∈ Th in the sets ∂T in
h and ∂T out

h , respectively. Let us further

introduce the outward normal on the mesh by n|T (xin) = −1 and n|T (xout) = 1. The set

of interior grid points is given by

Xh = {xie : i = 1, . . . ,Me − 1, e ∈ E}.

Note that Gh = (V ∪ Xh, Th) can be understood as a refinement of the original graph

G = (V, E). We will thus treat all grid points in V ∪ Xh in the same manner. On the

spatial mesh Th, let us now define the following discrete space

Wh = {wh ∈ L2(E) : wh|T ∈ Pk(T ) for all T ∈ Th}

with Pk being the space of polynomials of degree ≤ k. We now seek to approximate

the solutions uε(t) and u(t) at 0 ≤ t ≤ tmax by a discrete function in Wh that can be

discontinuous at grid points. In order to approximate the corresponding nodal values at

V0 ∪ Xh, we further introduce the space of hybrid variables

Ŵh = {ŵh ∈ ℓ2(V ∪ Xh) : ŵh(v) = 0 for all v ∈ V∂}.

Note that the hybrid variables at all boundary vertices are set to zero and have only been

introduced for ease of notation. In comparison to the continuous problems where hybrid

variables only existed at network junctions v ∈ V0, we now additionally introduced them at

all interior mesh points xie ∈ Xh. An illustration of their placement is given in Figure 1.3.

Let us further introduce the mesh-dependent scalar products

(u,w)Th =
∑

T∈Th
(u,w)L2(T ), ⟨u,w⟩∂Th =

∑
T i
e∈Th

u(xi−1
e )w(xi−1

e ) + u(xie)w(x
i
e)
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1.3. Numerical approximation

Figure 1.3.: Placement of hybrid variables indicated in (cyan, circles) in a simple spatial

mesh with two sub-intervals per edge for the network depicted in Figure 1.1.

with corresponding norms ∥w∥2Th = (w,w)Th and |w|2∂Th = ⟨w,w⟩∂Th . The latter scalar

product and norm can also be defined on the sets ∂T in
h and ∂T out

h . We will also make use

of the broken Sobolev spaces on Th that are given by

Hk
pw(Th) = {w ∈ L2(E) : w|T ∈ Hk(T ) for all T ∈ Th}

with corresponding norms ∥w∥2
Hk

pw(Th)
=
∑

T∈Th ∥w∥
2
Hk(T )

.

1.3.2. Semi-discrete hybrid-dG method

Let us first introduce and analyze the spatial semi-discretization using a hybrid discontin-

uous Galerkin approach.

Problem 1.10. Find uεh ∈ C1([0, tmax];Wh), û
ε
h ∈ C0([0, tmax]; Ŵh) with u

ε
h(0) = 0 and

(a∂tu
ε
h(t), wh)Th + bh(u

ε
h(t), û

ε
h(t);wh, ŵh) + εdh(u

ε
h(t), û

ε
h(t);wh, ŵh) = lεh(t;wh) (1.56)

for all wh ∈Wh, ŵh ∈ Ŵh and 0 < t < tmax with bilinear and linear forms defined by

bh(vh, v̂h;wh, ŵh) := −(bvh, ∂xwh)Th + ⟨nbvuph , wh − ŵh⟩∂Th , (1.57)

dh(vh, v̂h;wh, ŵh) := (∂xvh, ∂xwh)Th − ⟨n∂xvh, wh − ŵh⟩∂Th (1.58)

+ ⟨n(vh − v̂h), ∂xwh⟩∂Th + ⟨ α
hloc

(vh − v̂h), wh − ŵh⟩∂Th ,

lεh(t;wh) := −⟨nbĝ(t), wh⟩Vin
∂

+ ε⟨nĝ(t), ∂xwh⟩V∂
+ ε⟨ α

hloc
ĝ(t), wh⟩V∂

. (1.59)

Furthermore, we denote by nbvuph = max(nb, 0)vh + min(nb, 0)v̂h the convective upwind

flux, by hloc|T = hT the local mesh size for T ∈ Th, and by α > 0 a stabilization parameter.

Remark 1.11. By formally setting ε = 0, Problem 1.10 yields a viable approximation

for the pure transport problem on networks described by (1.9)–(1.12). In particular, the

method is able to handle the change in the number and type of coupling conditions in the

transition from the convection-diffusion to the pure transport problem. One may thus call

the scheme formally asymptotic preserving.

Basic properties

Let us collect some basic properties of the method described in Problem 1.10.
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1. Transport and convection-diffusion equations on networks

Lemma 1.12. The bilinear forms defined in (1.57) and (1.58) satisfy

bh(wh, ŵh;wh, ŵh) =
1
2 |b

1/2(wh − ŵh)|2∂Th ,
dh(wh, ŵh;wh, ŵh) = ∥∂xwh∥2Th + | α

hloc
(wh − ŵh)|2∂Th

for all discrete functions wh ∈Wh, ŵh ∈ Ŵh.

Proof. For the bilinear form bh we find that

bh(wh, ŵh;wh, ŵh) = −(bwh, ∂xwh)Th + ⟨nbwup
h , wh − ŵh⟩∂Th

= −1
2⟨nbwh, wh⟩∂Th + ⟨nbwh, wh − ŵh⟩∂T out

h
+ ⟨nbŵh, wh − ŵh⟩∂T in

h

= 1
2 |b

1/2wh|2∂Th − ⟨bwh, ŵh⟩∂Th + 1
2 |b

1/2ŵh|2∂Th
= 1

2 |b
1/2(wh − ŵh)|2∂Th ,

where we used that |b1/2ŵh|∂T in
h

= |b1/2ŵh|∂T out
h

due to the flow conservation condition (B)

and the fact that ŵh(v) = 0 for all v ∈ V∂ . The equation for dh immediately follows from

its definition, since for vh = wh, v̂h = ŵh the second and third terms in (1.58) cancel.

As a next step, we investigate the well-posedness of the semi-discrete method as well as

the uniform boundedness of its solution.

Lemma 1.13. Let Assumption 1.1 hold. Then, Problem 1.10 has a unique solution

uεh ∈ Cm+1([0, tmax];Wh), ûεh ∈ Cm([0, tmax]; Ŵh)

for all ε ≥ 0. Moreover, ∥∂nt uεh(t)∥Th ≤ C for all 0 ≤ n ≤ m and 0 ≤ t ≤ tmax with a

constant C only depending on ĝ and the bounds in Assumption 1.1, but not on ε and Th.

Proof. By testing (1.56) with wh = 0, ŵh = χx for x ∈ Xh ∪ V0 we find a unique rep-

resentation of ûεh in terms of uεh. From Lemma 1.12 we deduce that bh + εdh is elliptic

on Wh × Ŵh. The hybrid variables can thus be eliminated from the semi-discrete prob-

lem on the algebraic level. Now, choosing a suitable basis of the finite-dimensional space

Wh, we can transform (1.56) into an ordinary differential equation for uεh. The existence

of a unique solution uεh ∈ C1([0, tmax];Wh), û
ε
h ∈ C0([0, tmax]; Ŵh) then follows from

the Picard-Lindelöf theorem; see e.g. [116, Theorem 2.2]. By differentiating (1.56) with

respect to time we obtain higher regularity of the solution with the same arguments.

It remains to verify the uniform boundedness of the solution uεh and its time deriva-

tives. For this let us define a function gh(t) ∈ H1(E) for all 0 ≤ t ≤ tmax, so that

gh(t)|e ∈ P1(e) for all e ∈ E , gh(v, t) = ĝv(t) at v ∈ V∂ , and gh(v, t) = 0 at v ∈ V0. Note

that gh ∈ Cm+1([0, tmax];Wh) due to the regularity of ĝ. We further set ĝh(x, t) = gh(x, t)

at x ∈ Xh ∪ V0 and ĝh(v, t) = 0 at v ∈ V∂ , i.e., ĝh ∈ Cm+1([0, tmax]; Ŵh). We can then

write the solution to Problem 1.10 as uεh = gh − zεh, û
ε
h = ĝh − ẑεh with (zεh, ẑ

ε
h) satisfying

(a∂tz
ε
h(t), wh)Th + bh(z

ε
h(t), ẑ

ε
h(t);wh, ŵh) + εdh(z

ε
h(t), ẑ

ε
h(t);wh, ŵh) (1.60)

= (a∂tgh(t), wh)Th + (b∂xgh(t), wh)Th

+ ε(∂xgh(t), ∂xwh)Th − ε⟨n∂xgh(t), wh − ŵh⟩∂Th
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1.3. Numerical approximation

for all wh ∈ Wh, ŵh ∈ Ŵh, where we used the continuity of gh within edges and across

junctions as well as the fact that gh = ĝ at the network boundary. Now, by testing (1.60)

with (zεh, ẑ
ε
h) and multiplying by 2 we find that

d

dt
∥a1/2zεh(t)∥2Th + |b1/2(zεh − ẑεh)|2∂Th + ε∥∂xzεh∥2Th + ε|( α

hloc
)1/2(zεh − ẑεh)|2∂Th

≤ ∥a1/2∂tgh(t)∥2Th + | b
a1/2

∂xgh(t)|2Th + ∥a1/2zεh(t)∥2Th + ε∥∂xgh(t)∥2Th
+ ε∥∂xzεh(t)∥2Th + ε|(hloc

α )1/2∂xgh(t)|2∂Th + ε|( α
hloc

)1/2(zεh(t)− ẑεh(t))|2∂Th ,

where we used the discrete stability of the bilinear forms in Lemma 1.12 to estimate the

left-hand side of (1.60), and Cauchy-Schwarz and Young’s inequality for the right-hand

side. Note that the first and the last term in the last line can be absorbed into the first

line. Integrating over (0, t) and applying Grönwall’s lemma, see e.g. in [116, Lemma 2.7],

then yields

∥a1/2zεh(t)∥2Th ≤ et∥a1/2zεh(0)∥2Th + et
∫ t

0

(
∥a1/2∂tgh(s)∥2Th + | b

a1/2
∂xgh(s)|2Th

+ε∥∂xgh(s)∥2Th + ε|(hloc
α )1/2∂xgh(s)|2∂Th

)
ds

with zεh(0) = gh(0). Due to the definition of gh, the bounds on the parameters in Assump-

tion 1.1 and the fact that ε and hloc are supposed to be small, we can bound the right-hand

side by a constant that depends on ĝ and ∂tĝ but not on ε and Th. Since uεh = gh−zεh, this
already yields boundedness of uεh. Observing that ∂nt u

ε
h solves (1.56) with boundary data

∂nt ĝ, we can show boundedness of ∂nt u
ε
h independent of ε and Th in the same way.

Finally, we verify the consistency of the proposed method, which means that the exact

solution of the transport problem (1.9)–(1.12) and convection-diffusion problem (1.25)–

(1.28) also solve Problem 1.10 for ε = 0 and ε > 0, respectively.

Lemma 1.14. Let (u, û) and (uε, ûε) be the solutions to (1.9)–(1.12) and (1.25)–(1.28)

with initial values u(0) = 0 and uε(0) = 0, respectively. We set û(x) = u(x) and

ûε(x) = uε(x) for x ∈ Xh and ûε(v) = û(v) = 0 for v ∈ V∂. Then, (u, û) and (uε, ûε)

solve (1.56) for all wh ∈Wh, ŵh ∈ Ŵh for ε = 0 and ε > 0, respectively.

Proof. We test the bilinear form bh with wh and ŵh ≡ 0 and observe that

bh(u
ε, ûε;wh, 0) = −(buε, ∂xwh)Th + ⟨nbuε,up, wh⟩∂Th = (b∂xu

ε, wh)Th − ⟨nbĝ, wh⟩Vin
∂
,

since uε is continuous within edges and across junctions by (1.27) and therefore

nbuε,up = nbuε at Xh∪V0∪Vout
∂ and uε = ĝ at V in

∂ . This identity also holds for (u, û), since

u is continuous within edges and outflow continuous across junctions, see (1.11), which

suffices to ensure nbuup = nbu. Consequently, (u, û) solves (1.56) for all wh ∈ Wh and

ŵh ≡ 0 and ε = 0. In the same manner, testing the bilinear form dh with wh and ŵh ≡ 0

we find that

dh(u
ε, ûε;wh, 0) = (∂xu

ε, ∂xwh)Th − ⟨n∂xuε, wh⟩∂Th
+ ⟨n(uε − ûε), ∂xwh⟩∂Th + ⟨ α

hloc
(uε − ûε), wh⟩∂Th

= −(∂xxu
ε, ∂xwh)Th + ⟨nuε, ∂xwh⟩V∂

+ ⟨ α
hloc

uε, wh⟩V∂
,
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1. Transport and convection-diffusion equations on networks

where we applied integration-by-parts to the first term in the first line. Note that element

boundary contributions cancel with the second term in the first line. Due to the continuity

of uε at interior mesh points and across vertices, the first and second terms in the second

line vanish except at the network boundary. Comparing with lεh(t;wh) in (1.59), we find

that (uε, ûε) solves (1.56) for all wh ∈ Wh and ŵh ≡ 0 and ε > 0. It remains to verify

the variational identities for ŵh ∈ Ŵh when testing (1.56) with wh ≡ 0, ŵh = χx for

x ∈ V0 ∪ Xh. They readily follow from the coupling conditions (1.11)–(1.12) as well as

(1.27)–(1.28). This concludes the proof.

Preliminary error estimate

We are now in the position to derive a first localized error estimate for the semi-discrete

scheme given in Problem 1.10.

Lemma 1.15. Let Assumption 1.1 hold and tmax > 0. Further, let (u0, û0) and (uε, ûε)

be the solutions to (1.9)–(1.12) and (1.25)–(1.28) with initial condition u0(0) = uε(0) = 0,

and let (uεh, û
ε
h) be the corresponding solution to Problem 1.10 for ε ≥ 0. Then,

∥uε(t)− uεh(t)∥2L2(E) ≤ C
∑

T∈Th
(εh2kT + h2k+2

T )∥uε∥2H1(0,t;Hk+1(T )) (1.61)

for all 0 ≤ t ≤ tmax, ε ≥ 0 and k ≤ m with constant C being independent of ε and Th.

Proof. Following [117, Ch. 12] we introduce the upwind projection πh : H1
pw(E) →Wh by

πhw(x
i
e−) = w(xie) for all i = 1, . . . ,Me, e ∈ E , (1.62)∫

T
(w − πhw) p dx = 0 for all p ∈ Pk−1(T ), T ∈ Th, (1.63)

where πhw(x
i
e−) = lims→0, s>0 πhw(x

i
e − s) denotes the upwind value of πhw. The projec-

tion error can be estimated by standard estimates; see [72, App. C]. More precisely, for any

element T = (xin, xout) ∈ Th and function w ∈ Hk+1(T ) we have πhw(x
out) = w(xout) and

∥w − πhw∥L2(T ) ≤ Chk+1
T ∥w∥Hk+1(T ),

∥∂xw − πh∂xw∥L2(T ) ≤ ChkT ∥w∥Hk+1(T ), (1.64)

|w(xin)− πhw(x
in)| ≤ Ch

k+1/2
T ∥w∥Hk+1(T ),

|∂xw − ∂xπhw|∂T ≤ Ch
k−1/2
T ∥w∥Hk+1(T ).

We can then split the error uε − uεh into a projection and a discrete component, i.e.,

∥uε(t)− uεh(t)∥L2(E) ≤ ∥uε(t)− πhu
ε(t)︸ ︷︷ ︸

=:ηh(t)

∥L2(E) + ∥uεh(t)− πhu
ε(t)︸ ︷︷ ︸

=:eh(t)

∥L2(E).

Note that we understand πhu
ε pointwise in time. The projection error ηh can be estimated

by (1.64) and summing over all elements T ∈ Th. It remains to investigate the discrete

error component. We set ûεv = 0 at v ∈ V∂ and ûεx = uε(x) at x ∈ Xh, as well as π̂hu
ε = ûε.
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1.3. Numerical approximation

By testing (1.56) with wh = eh and ŵh = êh and using consistency of the method, see

Lemma 1.14, we find that

1

2

d

dt
∥a1/2eh(t)∥2Th = (a∂teh(t), eh(t))Th = −bh(eh(t), êh(t); eh(t), êh(t))

− εdh(eh(t), êh(t); eh(t), êh(t)) + (a∂tηh(t), eh(t))Th

+ bh(ηh(t), η̂h(t); eh(t), êh(t)) + εdh(ηh(t), η̂h(t); eh(t), êh(t))

= (i) + · · ·+ (v).

By the discrete stability of the bilinear forms given in Lemma 1.12, it holds that

(i) + (ii) = −1
2 |b

1/2(eh(t)− êh(t))|2∂Th − ε∥∂xeh(t)∥2Th − ε|( α
hloc

)1/2(eh(t)− êh(t))|2∂Th .

Using Cauchy-Schwarz and Young’s inequality, the projection error estimates (1.64), as

well as the fact that ∂tπhu
ε = πh∂tu

ε, we can estimate the third term by

(iii) ≤ 1
2∥a

1/2∂tη(t)∥2Th + 1
2∥a

1/2eh(t)∥2Th
≤ 1

2C
∑

T∈Th
h2k+2
T ∥∂tuε(t)∥2Hk+1(T ) +

1
2∥a

1/2eh(t)∥2Th .

By the properties of the upwind projection πh we find that

(iv) = −(ηh(t), ∂xeh(t))Th + ⟨nbηuph (t), eh(t)− êh(t)⟩∂Th = 0,

where the first term vanishes due to (1.63) and the second term since ηuph = 0 which follows

from (1.62). Using Cauchy-Schwarz and Young’s inequality as well as the discrete trace

inequality, see e.g. [120], we can estimate the last term by

(v) = ε(∂xηh(t), ∂xeh(t))Th − ε⟨∂xηh(t), eh(t)− êh(t)⟩∂Th
+ ε⟨ηh(t)− η̂h(t), ∂xeh(t)⟩∂Th + ε⟨ α

hloc
(ηh(t)− η̂h(t), eh(t)− êh(t))⟩∂Th

≤ ε∥∂xeh(t)∥2Th + ε|( α
hloc

)1/2(eh(t)− êh(t))|2∂Th + ε
2∥∂xηh(t)∥

2
Th

+ ε
2(C

2
tr + α)|h−1/2

loc (ηh(t)− η̂h(t))|2∂Th + ε
2 |(

hloc
α )1/2∂xηh(t)|2∂Th .

The first two terms cancel with (i) + (ii), whereas the remaining terms can be estimated

using the error estimates (1.64) for the upwind projection. In summary, we obtain

d

dt
∥a1/2eh(t)∥2Th ≤ ∥a1/2eh(t)∥2Th +

∑
T∈Th

(
Ch2k+2

T ∥∂tuε(t)∥2Hk+1(T ) + C ′εh2kT ∥uε(t)∥2Hk+1(T )

)
.

Intergrating over (0, t) and applying Grönwall’s lemma, see e.g. [116, Lemma 2.7], yields

∥a1/2eh(t)∥2Th ≤ et∥a1/2eh(0)∥2Th + C ′′et
∑

T∈Th
(εh2kT + h2k+2

T )∥uε∥2H1(0,t;Hk+1(T )).

Note that eh(0) = 0 since uεh(0) = πhu
ε(0) and a ≥ a by Assumption 1.1. This concludes

the proof of Lemma 1.15.
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1. Transport and convection-diffusion equations on networks

Remark 1.16. On uniform meshes hT ≈ h the localized error estimate (1.61) in Lemma 1.15

yields order optimal convergence for the pure transport problem, i.e.,

∥u0 − u0h∥L∞(0,tmax;L2(E)) ≤ Chk+1.

For small ε > 0, however, the derivatives of uε degenerate as shown in Lemma 1.9, and

(1.61) leads to

∥uε − uεh∥L∞(0,tmax;L2(E)) ≤ Cε(εh
k + hk+1)

with a constant Cε that depends on ε and, in particular, blows up for ε→ 0. Consequently,

(1.61) does not provide ε-uniform convergence estimates on uniform meshes. We can

overcome this issue by using suitably adapted meshes; see Section 1.3.4.

1.3.3. Fully discrete hybrid-dG method

For the time discretization, we apply the discontinuous Galerkin time-stepping method

as presented in [117, Ch. 12]. We consider discrete time points 0 = t0 < t1 < · · · <
tN = tmax with local and global time step sizes τn = tn − tn−1 and τ = maxn τ

n,

and denote by Sτ = {(tn−1, tn] : n = 1, . . . , N} the corresponding temporal mesh. We

search for piecewise polynomials in time of degree ≤ k and define for w ∈ Pk(Sτ ), i.e.,

w|(tn−1,tn] ∈ Pk((t
n−1, tn]) for all n = 1, . . . , N , the following expressions

w(tn+) = lim
s→0,s>0

w(tn + s) and [w]n = w(tn+)− w(tn),

denoting the downwind limit value and the jump over the time interface at tn. We now

propose the following fully discretized scheme.

Problem 1.17. Find uε,τh ∈ Pk(Sτ ;Wh) and û
ε,τ
h ∈ Pk(Sτ ; Ŵh) with u

ε,τ
h (0) = 0, so that∫ tn

tn−1

(
(a∂tu

ε,τ
h (t), wτ

h(t))Th + bh(u
ε,τ
h (t), uε,τh (t);wτ

h(t), ŵ
τ
h(t)) (1.65)

+ εdh(u
ε,τ
h (t), uε,τh (t);wτ

h(t), ŵ
τ
h(t))

)
dt+ (a[uε,τh ]n−1, wτ

h(t
n−1
+ ))Th

=

∫ tn

tn−1

lεh(t;w
τ
h(t)) dt

holds for all wτ
h ∈ Pk((t

n−1, tn];Wh), ŵ
τ
h ∈ Pk((t

n−1, tn]; Ŵh) and n = 1, . . . , N with

bilinear and linear forms bh, dh, l
ε
h defined in (1.57)–(1.59).

Remark 1.18. Just like the semi-discrete method, the fully discrete scheme is formally

asymptotic preserving, i.e., by setting ε = 0 in (1.65) the solution of Problem 1.17 yields

a viable approximation for the pure transport problem on networks (1.9)–(1.12).

Basic properties

Let us first investigate the well-posedness and consistency of the fully discrete method.
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1.3. Numerical approximation

Lemma 1.19. Let Assumption 1.1 hold. Then, Problem 1.17 is well-posed for all ε ≥ 0.

Proof. By choosing a basis of the trial spaces Pk((t
n−1, tn];Wh) and Pk((t

n−1, tn]; Ŵh),

equation (1.65) can be transformed into a linear system of equations for which solvability

is equivalent to the uniqueness of solutions to the homogeneous system. We thus have to

show that for fixed n = 1, . . . , N and uε,τh (tn−1) = 0 equation (1.65) with zero right-hand

side has a unique solution. Testing with wh = uε,τh , ŵh = ûε,τh and using the discrete

stability of the bilinear forms in Lemma 1.12, we find that∫ tn

tn−1

(
(a∂tu

ε,τ
h , uε,τh )Th + 1

2 |b
1/2(uε,τh − ûε,τh )|2∂Th + ε|( α

hloc
)1/2(uε,τh − ûε,τh )|2∂Th (1.66)

+ ε∥∂xuε,τh ∥Th
)
dt+ (a[uε,τh ]n−1, uε,τh (tn−1

+ ))Th ≤
∫ tn

tn−1

lh(t;u
ε,τ
h ) dt = 0.

We further observe that∫ tn

tn−1

(a∂tu
ε,τ
h , uε,τh )Th dt+ (a[uε,τh ]n−1, uε,τh (tn−1

+ ))Th (1.67)

= 1
2∥a

1/2uε,τh (tn)∥2Th + 1
2∥a

1/2uε,τh (tn−1
+ )∥2Th − (auε,τh (tn−1), uε,τh (tn−1

+ )).

The last term vanishes for uε,τh (tn−1) = 0, and the solution uε,τh of the homogeneous system

thus satisfies

1
2∥a

1/2uε,τh (tn)∥2Th + 1
2∥a

1/2uε,τh (tn−1
+ )∥2Th +

∫ tn

tn−1

(
1
2 |b

1/2(uε,τh − ˆuε,τh )|2∂Th (1.68)

+ε|( α
hloc

)1/2(uε,τh − ûε,n)|2∂Th + ε∥∂xuε,τh ∥Th
)
dt = 0.

This yields uniqueness for ε > 0. In the case ε = 0, i.e., for the pure transport problem, we

can only conclude that u0,τh (tn) = u0,τh (tn−1
+ ) = 0 as well as 1

2 |b
1/2(u0,τh (t)− û0,τh (t))|2∂Th = 0.

In order to obtain uniqueness, we test (1.65) with wh = πτ (e−tu0,τh ), ŵh = πτ (e−tû0,τh )

with πτ being the L2-projection in time. The first and the fourth term on the left-hand

side of (1.65) then equal∫ tn

tn−1

(a∂tu
0,τ
h , wh) dt+ (a[u0,τh ]n−1, wh(t

n−1
+ ))Th =

∫ tn

tn−1

(a∂tu
0,τ
h , e−tuh) dt

=

∫ tn

tn−1

1
2e

−t∥u0,τh ∥2Th dt+
1
2e

−t∥u0,τh (t)∥2Th
∣∣∣tn
tn−1

=

∫ tn

tn−1

1
2e

−t∥u0,τh ∥2Th dt,

where we used that the second term in the first line and the second term in the second

line both vanish due to (1.68). Again, using the property of the L2-projection as well as

Lemma 1.12, we find that the second term on the left-hand side of (1.65) equals∫ tn

tn−1

bh(u
0,τ
h , û0,τh ;wh, ŵh) dt =

∫ tn

tn−1

1
2e

−t|b1/2(u0,τh − û0,τh )|2∂Th dt = 0,

which holds due to (1.68). In summary, we obtain∫ tn

tn−1

1
2e

−t∥u0,τh ∥2Th dt = 0,

from which we conclude that u0,τh = 0, i.e., uniqueness of the solution for ε = 0.
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1. Transport and convection-diffusion equations on networks

A key ingredient for our analysis is the consistency of the fully discrete scheme, which

almost readily follows from the consistency of the semi-discrete method.

Lemma 1.20. Let (u0, û0) and (uε, ûε) be the solutions to (1.9)–(1.12) and (1.25)–(1.28)

with initial values u0(0) = uε(0) = 0, respectively. We set û0(x) = u0(x) and ûε(x) = uε(x)

for x ∈ Xh and û0(v) = ûε(v) = 0 for v ∈ V∂. Then, (u0, û0) and (uε, ûε) solve (1.65) for

ε = 0 and ε > 0, respectively. Moreover, the corresponding semi-discrete solution (uεh, û
ε
h)

to Problem 1.10 also satisfies (1.65) for all ε ≥ 0.

Proof. We observe that∫ tn

tn−1

(a∂tu
ε, wh)Th dt+ ([uε]n−1, wh(t

n−1
+ ))Th =

∫ tn

tn−1

(a∂tu
ε, wh)Th dt,

since uε is continuous in time for ε ≥ 0. The same holds for the semi-discrete solution uεh.

Since u0 and uε are consistent with the semi-discrete scheme, see Lemma 1.14, consistency

of the fully discrete scheme then immediately follows by integrating (1.56) over time.

Preliminary error estimate

By splitting the error into a spatial and a temporal component, and using Lemma 1.15

for the former, we can prove the following localized error estimate.

Lemma 1.21. Let (u0, û0) and (uε, ûε) be the solutions to (1.9)–(1.12) and (1.25)–(1.28),

respectively, and let (uε,τh , ûε,τh ) be the corresponding solution to Problem 1.17. Then,

∥uε(tn)− uε,τh (tn)∥2L2(E) ≤ C
∑
T∈Th

(εh2kT + h2k+2
T )∥uε∥2H1(0,tn;Hk+1(T )) + C ′τ2k+1 (1.69)

for all n = 1, . . . , N and ε ≥ 0. The constants C,C ′ are independent of ε, Th, and τ .

Proof. We split the error into a spatial and a temporal error component, i.e.,

∥uε(tn)− uε,τh (tn)∥L2(E) ≤ ∥uε(tn)− uεh(t
n)∥L2(E) + ∥uεh(tn)− uε,τh (tn)∥L2(E)

with (uεh, û
ε
h) being the corresponding semi-discrete solution to Problem 1.10. Then,

Lemma 1.15 yields an estimate for the first term. For the second term, we will show

∥uεh(tn)− uε,τh (tn)∥L2(E) ≤ Cτk+1/2∥uεh∥Hk+1(0,tn;L2(E)) ≤ C ′τk+1/2, (1.70)

where the second inequality already follows from the bounds on the semi-discrete solution

in Lemma 1.13. In order to prove the first inequality, we introduce the L2-projection in

time by πτ : L2(0, tmax) → Pk(S
τ ) such that∫ tn

tn−1

(w − πτw)p dt = 0 for all p ∈ Pk((t
n−1, tn]), n = 1, . . . , N,

and we understand πτuεh and πτ ûεh pointwise in space. We split the error into a projection

and a discrete component, i.e.,

∥uεh(tn)− uε,τh (tn)∥L2(E) ≤ ∥uεh(tn)− πτuεh(t
n)︸ ︷︷ ︸

=:ητh(t
n)

∥L2(E) + ∥uε,τh (tn)− πτuεh(t
n)︸ ︷︷ ︸

=:eτh(t
n)

∥L2(E).
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1.3. Numerical approximation

The projection error ητh can be estimated by standard estimates leading to

∥ητh(tn)∥L2(E) ≤ Cτk+1/2∥uεh∥Hk+1(0,tn;L2(E)) ≤ C ′τk+1/2,

see [72, App.C], where the second inequality again follows from the bounds in Lemma 1.13.

It remains to investigate the discrete error. Testing (1.65) with wτ
h = eτh, ŵ

τ
h = êτh yields∫ tn

tn−1

(a∂te
τ
h, e

τ
h)Th dt+ (a[eτh]

n−1, eτh(t
n−1
+ ))Th (1.71)

=−
∫ tn

tn−1

(
bh(e

τ
h, ê

τ
h; e

τ
h, e

τ
h) + εdh(e

τ
h, ê

τ
h; e

τ
h, e

τ
h)
)
dt+

∫ tn

tn−1

lεh(t; e
τ
h) dt

−
∫ tn

tn−1

(a∂tπ
τuεh, e

τ
h)Th dt− (a[πτuεh]

n−1, eτh(t
n−1
+ ))Th

−
∫ tn

tn−1

(
bh(π

τuεh, π
τ ûεh; e

τ
h, e

τ
h) + εdh(π

τuεh, π
τ ûεh; e

τ
h, e

τ
h)
)
dt

= (i) + · · ·+ (vii).

By Lemma 1.12 the first two terms equal

(i) + (ii) = −
∫ tn

tn−1

(
1
2 |b

1/2(eτh − êτh)|2∂Th + ε∥∂xeτh∥2Th + ε| α
hloc

(eτh − êτh)|2∂Th
)
dt ≤ 0.

The definition of the L2-projection then leads to

(vi) + (vii) = −
∫ tn

tn−1

(
bh(u

ε
h, û

ε
h; e

τ
h, e

τ
h) + εdh(u

ε
h, û

ε
h; e

τ
h, e

τ
h)
)
dt

=

∫ tn

tn−1

(a∂tu
ε
h, e

τ
h)Th dt+ (a[uεh]

n−1, eτh(t
n−1
+ ))Th −

∫ tn

tn−1

lεh(t; e
τ
h) dt,

where we used consistency of the method, which was established in Lemma 1.20. The last

term cancels with (iii). The first two terms together with (iv) + (v) then equal∫ tn

tn−1

(a∂tη
τ
h, e

τ
h)Th dt+ (a[ητh]

n−1, eτh(t
n−1
+ ))Th

=−
∫ tn

tn−1

(aητh, ∂te
τ
h)Th dt+ (aητh(t

n), eτh(t
n))Th

− (aητh(t
n−1
+ ), eτh(t

n−1
+ ))Th + (a[ητh]

n−1, eτh(t
n−1
+ ))Th

= (aητh(t
n), eτh(t

n))Th − (aητh(t
n−1), eτh(t

n−1
+ ))Th .

Note that the first term in the second line vanishes due to the definition of the projection

and the fact that a does not depend on the time. Summing (1.71) over n leads to

∑n

i=1

∫ ti

ti−1

(a∂te
τ
h, e

τ
h)Th dt+ (a[eτh]

i−1, eτh(t
i−1
+ ))Th (1.72)

≤
∑n

i=1
(aητh(t

i), eτh(t
i))Th − (aητh(t

i−1), eτh(t
i−1
+ ))Th .
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1. Transport and convection-diffusion equations on networks

The left-hand side of (1.72) equals

(lhs) = 1
2∥a

1/2eτh(t
n)∥2Th +

∑n−1

i=1

(
1
2∥a

1/2eτh(t
i)∥2Th − 1

2∥a
1/2eτh(t

i
+)∥2Th + (a[eτh]

i, eτh(t
i
+))Th

)
− 1

2∥a
1/2eτh(t

0
+)∥2Th + (a[eτh]

0, eτh(t
0
+))Th

= 1
2∥a

1/2eτh(t
n)∥2Th +

∑n−1

i=1

1
2∥a

1/2[eτh]
i∥2Th + 1

2∥a
1/2eτh(t

0
+)∥2Th − (aeτh(t

0), eτh(t
0
+))Th .

For the right-hand side of (1.72) we find by using Young’s inequality that

(rhs) = (aητh(t
n), eτh(t

n))Th −
∑n−1

i=1
(aη(ti), [eτh]

i)Th − (aητh(t
0), eτh(t

0
+))Th

≤ ∥a1/2ητh(tn)∥2Th + 1
4∥a

1/2eτh(t
n)∥2Th +

∑n−1

i=1

(
∥a1/2η(ti)∥2Th + 1

4∥a[e
τ
h]

i∥2Th
)

+ ∥a1/2ητh(t0)∥2Th + 1
4∥a

1/2eτh(t
0
+)∥2Th .

Together, this yields

1
4∥a

1/2eτh(t
n)∥2Th + 1

4

∑n−1

i=1
∥a1/2[eτh]i∥2Th ≤ ∥a1/2eτh(t0)∥2Th + ∥a1/2ητh(tn)∥2Th

+
∑n−1

i=1
∥a1/2η(ti)∥2Th + ∥a1/2ητh(t0)∥2Th .

From standard projection error estimates, see [72, App. C], and the bounds on a in

Assumption 1.1 we deduce

∥a1/2eτh(tn)∥2Th ≤ ∥a1/2eτh(tn)∥2Th +
∑n−1

i=1
∥a1/2[eτh]i∥2Th ≤ Cτ2k+1∥uεh∥2Hk+1(0,tn;L2(E)),

where we used the fact that ∥a1/2eτh(t0−)∥Th = 0, since uε,τh (0) = πτuεh(0). Since a ≥ ā > 0,

this proves (1.70).

Remark 1.22. The convergence rate in time stated in Lemma 1.21 is sub-optimal by a

factor of 1/2. In [48, Ch. 69, Thm. 69.18] and [117, Ch. 12, Thm. 12.1] the authors showed

an optimal order error estimate for the dG time-stepping applied to the parabolic problem

∂tu+Au = f , where the spatial operator A is supposed to be elliptic and continuous with

respect to a certain norm. For the proof, they used an upwind projection in time similar to

the one that was utilized for the proof of the preliminary error estimate for the semi-discrete

scheme in Lemma 1.15. Since our problem degenerates to a hyperbolic one for ε→ 0, the

assumptions on A do not hold uniformly in ε. Applying the upwind projection is thus not

leading to optimal order convergence rates uniformly in ε. In particular, we do not obtain

reasonable error estimates in the limit ε = 0. However, this does not happen in the lowest

order case of k = 0 in time, which corresponds to the implicit Euler time-stepping, since the

upwind projection in time equals the pointwise interpolation at the endpoint of each time

interval. For higher order k ≥ 1, we ensure ε-uniform convergence estimates by using the

L2-projection in time, but ultimately lose 1/2 order. Moreover, in [117, Ch. 12, Thm. 12.2]

error estimates in the L2-norm in time could be derived from the error estimates at the time

grid points. A key assumption is that the spatial operator A is symmetric, which is not

the case here. So far, we were not able to transfer these results to our problem. It might be

possible to analyze our method in the framework of Runge-Kutta methods and derive order

36



1.3. Numerical approximation

optimal error estimates as well as superconvergence results at the time grid points since

the dG time-stepping using the Radau quadrature to approximate the time intervals can

be shown to be equivalent to the Radau IIA Runge-Kutta method; see [1, 119]. We refer to

[63, Ch. IV.5] for the analysis of implicit Runge-Kutta methods.

1.3.4. ε-Uniform error estimates

As outlined in Remark 1.16, the localized error estimate (1.69) in Lemma 1.21 for the fully

discrete hybrid-dG method does not yield ε-uniform error estimates on uniform meshes

hT ≈ h, since derivatives of the exact solution blow up at the outflow boundary of the

edges; see Lemma 1.9. To overcome this issue we will set up a suitably adapted mesh on

which we can derive ε-uniform convergence under reasonable regularity assumptions on

the solution.

Construction of the layer-adapted mesh

The starting point for the construction of the adapted spatial mesh is a quasi-uniform

mesh T 0
h with step size hT ≈ h for all T ∈ T 0

h . We now distinguish between two cases.

If ε < h2k, i.e., ε is very small compared to h, then we keep the uniform mesh and set

Th = T 0
h . If ε ≥ h2k we construct a layer-adapted mesh similar to the one proposed by

Gartland in [56], which is fine close to the outflow boundary of each pipe and coarse away

from it. More precisely, for every e ∈ E we introduce a transition point

x∗e = ℓe −
k + 1

be
ε log(1/ε). (1.73)

In [0, x∗e] we take the corresponding grid points from the uniform coarse mesh T 0
h and add

the transition point x
M∗

e
e = x∗e, where M

∗
e indicates the number of grid points in [0, x∗e].

Note thatM∗
e ≤ ℓeh

−1. All points in the coarse part are collected in T ε,1
h . In the boundary

layer region (x∗e, ℓe] the grid points are defined recursively by

hie = εhebe(ℓe−xi
e)/ε(k+1), xi−1

e = xie − hie, i ≤Me with xMe
e = ℓe. (1.74)

The indexMe is chosen so that x
M∗

e+1
e is the last point that is strictly larger x∗e. We collect

these points in T ε,2
h . The full mesh is then given by T ε

h = T ε,1
h ∪ T ε,2

h and we set Th = T ε
h .

An illustration of the layer-adapted mesh is given in Figure 1.4. Note that we will use a

uniform temporal mesh Sτ with τn ≈ τ in both cases.

ε-Uniform error estimate

Let us now set up a suitable approximation strategy exploiting the previously introduced

layer-adapted mesh, which leads to the following ε-uniform error estimates.

Theorem 1.23. Let Assumption 1.1 hold, and let (u0, û0) be the solution to (1.9)–(1.12)
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T 0
h

0 ℓe

T ε
h

0 ℓex∗e

Figure 1.4.: Quasi-uniform mesh T 0
h for a single interval (top) and corresponding layer-

adapted mesh T ε
h = T ε,1

h ∪ T ε,2
h (bottom) with layer region (x∗e, ℓ

e) in cyan.

and (uε, ûε) be the solution to (1.25)–(1.28) with u0(0) = uε(0) = 0. We define

ũε,τh :=

{
u0,τh , ε < h2k,

uε,τh , ε ≥ h2k
(1.75)

with (u0,τh , û0,τh ) being the solution to Problem 1.17 for ε = 0 on T 0
h × Sτ and (uε,τh , ûε,τh )

being the solution to Problem 1.17 for ε > 0 on T ε
h × Sτ . Then,

∥uε(tn)− ũε,τh (tn)∥L2(E) ≤ Cmax(hk+1,min(
√
ε, hk)) + C ′τk+1/2 (1.76)

holds for all n = 1, . . . , N . Moreover, the number of elements in T ε
h is bounded by C ′′h−1

for all ε > 0. The constants C,C ′, C ′′ are independent of ε, Th and τ .

Proof. We consider both cases ε < h2k and ε ≥ h2k separately and exploit the construction

of the layer-adapted mesh and of the approximation ũε,τh in the investigations.

Case 1 (ε < h2k). By the triangle inequality, we can split the error into

∥uε(tn)− ũε,τh (tn)∥L2(E) ≤ ∥uε(tn)− u0(tn)∥L2(E) + ∥u0(tn)− u0,τh (tn)∥L2(E),

where we inserted the definition of ũε,τh given in (1.75). For the first term, we use the

asymptotic estimate in Theorem 1.7, i.e.,

∥uε(tn)− u0(tn)∥L2(E) ≤ c
√
ε,

whereas the second term can be estimated by the localized error estimate (1.69) in

Lemma 1.21 which yields in the case ε = 0 on the uniform mesh T 0
h that

∥u0(tn)− u0,τh (tn)∥L2(E) ≤ c′hk+1 + C ′τk+1/2.

Overall, by combining the two estimates, we obtain (1.76) for the case ε = 0.

Case 2 (ε ≥ h2k). By the localized error estimate given in Lemma 1.21 it holds that

∥uε(tn)− uε,τh (tn)∥2L2(E) ≤ c′
∑

T∈Th
(εh2kT + h2k+2

T )∥uε∥2H1(0,tn;Hk+1(T )) + C ′τ2k+1

with constants c′, C ′ that are independent of ε, Th and τ . Moreover, by Lemma 1.9 we

know that for T i
e = (xi−1

e , xie) it holds that∫ tn

0

∫
T i
e

|∂st ∂jxuεe(x, t)|2 dx dt ≤
∫ tn

0

∫
T i
e

c2(1 + ε−je−be(ℓe−x)/ε) dx dt

≤ c2tnhT i
e
(1 + ε−je−be(ℓe−xi

e)/ε)
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for s = 0, 1 and j ≤ k + 1. For T i
e ∈ T ε,1

h , i.e., xie ≤ x∗e as defined in (1.73), we can

immediately deduce that∫ tn

0

∫
T i
e

|∂nt ∂jxuεe(x, t)|2 dx dt ≤ 2c2tnhie.

Hence, by summing over T ∈ T ε,1
h it follows that∑

T∈T ε,1
h

(εh2kT + h2k+2
T )∥uε∥2H1(0,tn;Hk+1(T )) ≤ c′′(tn)(εh2k + h2k+2).

For T i
e = (xi−1

e , xie) ∈ T ε,2
h , i.e., xi−1

e ≥ x∗e, the spatial mesh is defined recursively by (1.74).

Similarly as above, the bounds (1.39) yield for small ε that∑
T i
e∈T

ε,2
h

(ε(hie)
2k + (hie)

2k+2)∥uε∥2H1(0,tn;Hk+1(T i
e))

≤
∑

T i
e∈T

ε,2
h

c′′(tn)(ε(hie)
2k + (hie)

2k+2)

∫ xi
e

xi−1
e

ε−2(k+1)e2be(ℓe−x)/ε dx = (i) + (ii).

Inserting the definition of hie = εhebe(ℓe−xi
e)/ε(k+1) then yields for the first term

(i) =
∑

T i
e∈T

ε,2
h

ε−1h2ke2kbe(ℓe−xi
e)/ε(k+1)

∫ xi
e

xi−1
e

e2be(ℓe−x)/ε dx

≤
∑

e∈E
ε−1h2k

∫ ℓe

x∗
e

e2be(ℓe−x)/ε(k+1) dx ≤
∑

e∈E
h2k k+1

be
≤ c′′′h2k.

The second term can be estimated in a similar way, i.e.,

(ii) =
∑

T i
e∈T

ε,2
h

h2k+2e2kbe(ℓe−xi
e)/ε(k+1)

∫ xi
e

xi−1
e

e2be(ℓe−x)/ε dx

≤
∑

e∈E
h2k+2(ℓe − x∗e) ≤ c′′′′h2k+2.

Finally, combining the estimates for T ε,1
h and T ε,2

h yields (1.76) in the case ε ≥ h2k.

Bound on number of elements in T ε
h . It remains to derive a bound on the number

of elements in T ε,2
h . Following the arguments in [56, p.645] and [110, p.8], we first show

that the number of elements MS in
⋃

e∈E(x
S
e , ℓe) ∩ T ε,2

h with Shishkin transition point

xSe = ℓe − k+1
be
ε log(1/h) can be bounded by ch−1. It holds that

MS =
∑

e∈E

∑
i:xS

e <xi
e≤ℓe

hi−1
e

hie

hie
hi−1
e

. (1.77)

By the definition of the mesh sizes in (1.74) and of the Shishkin transition point, we find

hie ≤ εhebe(ℓe−xS
e )/ε(k+1) = ε

and the first fraction can thus be estimated by

hi−1
e

hie
= ebeh

i
e/ε(k+1) ≤ ebe/(k+1).
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Inserting this into (1.77) and using the construction of the mesh (1.74) yields

MS =
∑

e∈E

∑
i:xS

e <xi
e≤ℓe

ebe/(k+1)hie(εh)
−1e−be(ℓe−xi−1

e )/ε(k+1)

≤
∑

e∈E
ebe/(k+1)(εh)−1

∫ ℓe

xS
e

e−be(ℓe−x)/ε(k+1) dx

≤
∑

e∈E
ebe/(k+1) k+1

be
h−1 ≤ ch−1.

The last estimate holds since the network is finite. It remains to investigate the number

of elements M∗ in
⋃

e∈E(x
∗
e, x

S
e )∩T ε,2

h . By construction of the mesh in (1.74) we conclude

that hT ≥ ε for T ⊂ (x∗e, x
S
e ). Consequently, the number of elements is larger than∑

e∈E
(xSe − x∗e)/ε ≤

∑
e∈E

k+1
be

(log(1/ε)− log(1/h)) ≤ |E|(2k − 1)k+1
b log(1/h),

where we used that ε ≥ h2k, which is crucial in order to get a bound that is independent

of ε. In summary, the number of elements in T ε,2
h can be bounded by

c(h−1 + log(1/h)) ≤ c′h−1,

and since the number of elements in the coarse part T ε,1
h is bounded by c′′h−1 by con-

struction, we obtain the desired bound for T ε
h .

1.4. Numerical illustration

In order to illustrate our theoretical findings, we conclude this chapter with some nu-

merical experiments. We first consider the contaminant transport in water described in

Example 1.3, before we have a look at the transport of gas mixtures. We both verify the

asymptotic estimate from Theorem 1.7 as well as the uniform error estimate for the fully

discrete hybrid-dG approximation presented in Theorem 1.23.

1.4.1. Contaminant transport in water supply networks

As a test instance, we consider the GasLib-11 network that consists of 11 pipes and vertices

with 3 entries, 2 exits, and one loop. The topology is depicted in Figure 1.5. We assume

that each edge has length ℓe = 1. From Example 1.3 we know that ae = 1 in all edges

e ∈ E , since water is an incompressible fluid with a constant density. Moreover, the flow

velocities are constant in each pipe and given by

be1 = be2 = be5 = be6 = be9 = 2, be3 = be8 = be10 = be11 = 1, be4 = be7 = 3,

so that the flow conservation condition (B) at junctions is satisfied. We choose

ĝv1(t) =
2

t3max

t3, ĝv4(t) = ĝv7(t) = 0, ĝv10(t) =
3

2t4max

t4, ĝv11(t) =
5

2t3max

t3
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v8 v9

v11
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e8

e7

e11

e10

e2 e9

e3

Figure 1.5.: GasLib-11 network from [112].

Figure 1.6.: Solution to the convection-diffusion problem for ε = 0.05 (red, dashed) and

the limiting transport problem for ε = 0 (blue, solid). Discontinuities at

junctions in the transport limit are clearly visible. They are smoothed out

for small ε > 0 by diffusion, leading to the expected boundary layers at the

network outflow boundaries and interior vertices. Outside of the layer regions,

both solutions more or less coincide.

as boundary data, which are compatible with trivial initial conditions uε(0) = u0(0) = 0

and fulfill Assumption 1.1 for m = 2. As time horizon we pick tmax = 6. For the numerical

approximation, we set k = 2, i.e., piecewise quadratic polynomials in space and time. The

stabilization parameter in (1.65) is chosen as α = 1.

Asymptotic estimate. At all network junctions having more than one ingoing pipe,

i.e., at v3, v8 and v9, we expect the solution of the pure transport problem to be discontin-

uous and the solution to the convection-diffusion problem to have interior layers for small

ε. Moreover, at all outflow boundary vertices, we predict boundary layers. An illustration

of this behavior for the chosen data is given in Figure 1.6. We now compare the solutions

to Problem 1.17 for ε > 0 and ε = 0 on a fine grid with h = τ = 10−2. For solving

the convection-diffusion problem we use the corresponding layer-adapted mesh in order to
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1. Transport and convection-diffusion equations on networks

ε 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

err 8.608e-1 2.538e-1 7.155e-2 2.229e-2 7.039e-3 2.225e-3 7.037e-4 2.225e-4

rate - 0.530 0.550 0.506 0.501 0.500 0.500 0.500

Table 1.1.: Error and convergence rates between solutions to Problem 1.17 for different

values of ε > 0 and the pure transport limit ε = 0 on a grid with h = τ = 10−2.

resolve the boundary layers. The error is computed by

err = maxn=0,...,N ∥uεh(tn)− u0h(t
n)∥L2(E).

Our observations are displayed in Table 1.1, and we clearly see the asymptotic convergence

of order O(
√
ε) that was shown in Theorem 1.7 on the continuous level.

Discretization error. Let us now investigate the convergence behavior of the hybrid-

dG method for various choices of ε ≥ 0 as well as mesh sizes. For our choice of parameters

and data, the error estimates from Theorem 1.23 are valid with k = 2. The dG time-

stepping method with quadratic polynomials was implemented as Radau IIA Runge-Kutta

method with 3 steps. Both methods are equivalent when approximating all integrals in

the dG method using the corresponding Radau quadrature rule. For details, we refer to

[1, 119]. In order to give an estimate on the error, we generate a reference solution on a

finer mesh T ref
h with Nref uniform time steps, where T ref

h is given by the layer-adapted

mesh T ε
h for ε > 0 and the uniform mesh T 0

h for ε = 0, both obtained by two uniform

refinements of the finest mesh considered in our tests. The number of reference time steps

Nref equals two times the number of time steps applied in the finest mesh. The error is

then approximated by

∥uε − ũεh∥ref = maxn=0,...,Nref
∥uεref (tn)− Iref ũ

ε
h(t

n)∥L2(E)

with Iref being the interpolation operator onto the reference mesh. In the tests depicted

in Figure 1.7 we choose h = τ , i.e., the uniform spatial and the time step size coincide.

The left plot in Figure 1.7 shows the error for ũεh = uεh on the layer-adapted mesh T ε
h ,

which is relevant in the regime ε ≥ h2k. We observe second-order convergence as indicated

by the uniform error estimate (1.76) in Theorem 1.23. Only for ε = 10−5 on a coarse mesh,

we have a slight increase in the convergence, which can be justified by the fact that the

diffusion term can be considered as a perturbation for small ε and large h. The number of

elements in the Shishkin part (xSe , ℓe) of the layer-adapted mesh T ε
h is at most 4h−1 with

not more than 5 extra elements per edge in the transition region (x∗e, x
S
e ).

In the right plot in Figure 1.7 we see the error for the transport approximation ũεh = u0h
on the uniform mesh T 0

h . This case is relevant in the regime ε < h2k. Theorem 1.23

yields ∥uε − u0h∥ref ≤ Cmax(hk+1,
√
ε) + C ′τk+1/2. If ε is small compared to h, we

see a convergence of order k + 1 = 3. When
√
ε becomes the dominating term in the

error estimate, i.e., when h becomes smaller and smaller compared to ε, we observe a

saturation that culminates in a constant error. There is no suboptimality in convergence

for the time discretization visible indicating that our estimates are not sharp. In the limit
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1.4. Numerical illustration

ε = 0 we observe a slight increase in the convergence rate, which might be caused by the

superconvergence properties of the Radau IIA Runge-Kutta method; see [63, Ch. IV.5].
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Figure 1.7.: (Left) Error for ũεh = uεh on layer-adapted mesh T ε
h with τ = h. (Right) Error

for ũεh = u0h on uniform mesh T 0
h with h = τ .

1.4.2. Transport of gas mixtures in pipe networks

Let us present a second numerical test that is motivated by the transport of gas mixtures

in pipe networks. In comparison to the previous experiment, the parameter ae in the

model equations (1.9) and (1.25) will now depend on the spatial position in the network.

The steady flow of gas in a pipe network can be modeled by the following system

∂xme(x) = 0, (1.78)

Ae(x)∂xpe(x) = − λ

2De(x)
|me(x)|ve(x) (1.79)

for x ∈ (0, ℓe), e ∈ E with me, pe, ve denoting mass flow rate, pressure, and flow velocity

of the gas, Ae, De being cross-sectional area and diameter of the pipe, and λ is a friction

parameter. The gas density ρ is a function of the pressure and vice versa, i.e., p = p(ρ),

and me = Aeρeve. At pipe junctions v ∈ V0, conservation of mass and energy is ensured

by the following coupling conditions∑
e∈E(v)

mene(v) = 0 and pei(v) = pej (v) for all v ∈ V0, ei, ej ∈ E(v). (1.80)

At network boundary vertices V∂ either the mass flow rate or the density has to be pre-

scribed. Note that in order to get a unique solution, the density has to be fixed at least at

one vertex v ∈ V∂ . This model, which is also known as the Weymouth equations, is widely

used for simulation and optimization of gas flow in pipe networks; see e.g. [78]. Note that

a solution can be computed explicitly. We now assume that the gas is a mixture of j com-

ponents that have the averaged density ρ and are transported within the total gas flow.

Then, (1.9)–(1.12) models the transport of the gas mixture with ui being the fraction of
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Figure 1.8.: (Left) Solution to the Weymouth equations (1.78)–(1.80) on the network

topology depicted in Figure 1.5. (Right) The corresponding solution to the

transport problem for ε = 0 (blue, solid) and the convection-diffusion prob-

lem for ε = 0.1 (red, dashed) on the same network with reversed direction of

edges e3 and e8. The expected discontinuities and boundary layers at network

junctions v5, v6, and v9 as well as at the outflow boundary vertices v4 and v7
are clearly visible.

the i-th component for i = 1, .., j−1 and 1−
∑j−1

i=1 u
i being the fraction of j-th component.

The corresponding densities of the gas components are given by ρui, i = 1, .., j − 1 and

ρ(1−
∑j−1

i=1 u
i). The parameters a and b in (1.9)–(1.12) and (1.25)–(1.28) equal

ae = Aeρe and be = me for all e ∈ E .

Assumption 1.1 is satisfied since be = me is constant in each pipe e ∈ E due to (1.78) and

conserved at junctions due to (1.80), i.e., condition (B) is fulfilled. Moreover, ae = Aeρe
is supposed to be uniformly bounded from below and above and sufficiently smooth. Let

us now again consider the network structure from Figure 1.5 and assume that each edge

has length ℓe = 1, diameter De = 1 and cross-sectional area Ae = π(De/2)
2. As boundary

data for the gas flow we prescribe the mass flow at the inflow boundary vertices v ∈ V in
∂

and the gas density at the outflow boundary vertices v ∈ Vout
∂ , more precisely

m(v1) = 2, ρ(v4) = 2, ρ(v7) = 1, m(v10) = 1, m(v11) = 1

with the density to pressure relation p(ρ) = c2ρ, where c is the speed of sound that is

rescaled to 1. The solution to (1.78)–(1.80) that corresponds to this choice of boundary

data is shown in Figure 1.8 (left). The flow rate in the edges e3 and e8 is negative, i.e.,

the direction of the flow and the edge do not coincide. For simplicity, we thus change the

direction of the edges e3 und e8, so that Assumption 1.1 holds. Let us now assume that

the gas is a mixture of two components with fractions u1 and u2 = 1− u1. The boundary

data for u1 is chosen as

ĝv1(t) =
1

2t3max

t3, ĝv4(t) =
1

2
, ĝv7(t) =

3

4
, ĝv10(t) =

1

4t4max

t4, ĝv11(t) =
3

4t3max

t3.

An illustration of the corresponding solution on the network, where the direction of the

edges e3 und e8 is changed, is given in Figure 1.8 (right). We performed the same ex-

periments for the asymptotic and the discretization error as in the previous section and

obtained similar results. We thus omit their presentation here.
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1.5. Discussion and outlook

Let us conclude this chapter with a short discussion on open problems and possible future

research directions.

Asymptotic analysis. The consideration of more general coupling conditions as pro-

posed in [60] and, in particular, a corresponding asymptotic analysis might be of interest.

We expect that all results transfer with no major difficulties. Moreover, nonlinear prob-

lems and their asymptotic convergence in different metrics could be considered. We think

of models appearing in the context of traffic flow [55] or cross-diffusion systems [75]. A

possible tool for the analysis is given by entropy methods; see [75] for an introduction.

Similar techniques will also be exploited for the analysis of a numerical scheme for gas

flow in pipe networks in Chapter 3.

Numerical approximation. Some open problems appeared in the investigation of

the numerical approximation. The error analysis of the fully discrete method given by

Problem 1.17 in the spirit of [48, 117], which was presented in Section 1.3.3, only yielded

a suboptimal convergence rate in time. A thorough analysis via techniques for Runge-

Kutta methods might restore order optimal estimates and even lead to superconvergence

results; we refer to [63, Ch. IV.5] for a comprehensive overview of implicit Runge-Kutta

methods. Moreover, for some numerical tests not presented here, we observed superconver-

gence in space for the lowest-order approximation with piecewise linear polynomials in the

diffusion-dominated regime. This behavior could be worth investigating. Furthermore,

our way of handling transport problems on networks by introducing additional hybrid

variables at junctions could in principle be applied to other discretization approaches like

standard discontinuous Galerkin, upwind finite differences, or streamline upwind Petrov-

Galerkin (SUPG) methods. Possible other research directions include the application of

our numerical method to problems with more general coupling conditions or nonlinear

problems.
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2
Kinetic chemotaxis and

diffusion limits on networks

The movement of bacteria and microorganisms, or more generally cells, is influenced by

external stimuli. If they react to the presence of a chemical substance, the process is

called chemotaxis. If the chemical substance acts as an attractor, we speak of positive

chemotaxis and call the substance chemoattractant. Chemotactic phenomena are widely

studied, in particular for Escherichia coli [2] and various slime mold species [32], but they

also appear in other biological phenomena like embryological development, where cells

migrate to form complex organisms [32], and in the immune system, where leukocytes

react to substances present at the center of inflammation, e.g., bacterial toxins [121]. We

are particularly interested in chemotactic processes on one-dimensional networks. These

problems find application, e.g., in dermal wound healing and the growth of slime molds.

Dermal wound healing. The structural component of the skin is the so-called extra-

cellular matrix (ECM) which is a 3D network of fibrous proteins such as collagen. If the

skin is injured, the fibroblasts create a new provisional ECM and, driven by chemotaxis,

migrate on the ECM to fill the wound. Certain diseases, such as diabetes, can cause

wounds to heal extremely slowly or not at all. The use of artificial scaffolds that consist of

networks of crossed polymeric threads can accelerate wound healing. These scaffolds are

inserted into the wound supporting the fibroblasts to migrate. Chemotaxis on networks

allows us to model this process. Here, the network represents the artificial scaffold and

the evolution equations approximate the propagation of the fibroblasts on this scaffold;

for details we refer to [14] and the references therein.

Slime molds. Driven by chemotaxis, the slime mold Physarum polycephalum grows in

a network structure. Thickened irregular nodes are connected by thin tubes that are used

for the transport of nutrients and the transfer of chemical signals through the organism.

The interesting characteristic is that it grows in the shortest path manner toward food

or other attractors. A possible way to model this growth process is to consider a fixed

network that connects attractors with each other and to approximate the evolution by

chemotaxis on this predefined network; see [9] and the references therein.



2. Kinetic chemotaxis and diffusion limits on networks

Problem setting

On the microscopic level, we model chemotaxis by kinetic equations; see e.g. [19, 99, 102].

We assume that the evolution of the bacteria or cell density u(x,w, t) at the point x ∈
X = (0, ℓ) and time t ≥ 0 having velocity w ∈ W = (−1, 1) is described by

∂tu(x,w, t) + w∂xu(x,w, t) = σ(x)
(
ū(x, t)− u(x,w, t)

)
+ αw∂xc̄(x, t)ū(x, t) (2.1)

with ū = 1
2

∫
W u(w) dw being the velocity average of the bacteria density. The transport

part on the left-hand side describes the movement in a straight line with velocity w ∈ W,

whereas the right-hand side models a spontaneous reorientation called tumbling. We

distinguish between aimless reorientation and chemotactically oriented tumbling, which is

driven by the presence of a chemoattractant with concentration c̄. Here, the bar symbol

is misused to indicate that c̄ does not depend on the velocity. The chemoattractant itself

is produced by the bacteria and we assume that

∂tc̄(x, t)−D∂xxc̄(x, t) + δc̄(x, t) = γū(x, t) (2.2)

for x ∈ X and t ≥ 0. Here, D is the diffusion coefficient, and δ and γ are the decay and

production rate, respectively. The equations (2.1)–(2.2) have to be complemented with

suitable boundary conditions. We assume that the chemoattractant and the bacteria are

confined to X, which is modeled by no-flux boundary conditions for c̄, i.e.,

∂xc̄(x, t) = 0 for x ∈ {0, ℓ}, t > 0. (2.3)

For the kinetic transport equation (2.1) we need one boundary condition at the inflow

boundary of the phase space Q = X × W which depends on the moving direction; see

Figure 2.2 for an illustration. We prescribe the following reflection condition

u(x,w, t) = u(x,−w, t) for (x,w) ∈ {0} × (0, 1] ∪ {ℓ} × [−1, 0), t > 0, (2.4)

which ensures that bacteria do not leave the domain X. Local existence of solutions to

(2.1)–(2.4) can be shown by standard arguments for nonlinear evolution equations; see

e.g. [49]. For the kinetic chemotaxis model in dimension d = 3, no global existence results

are available if the tumbling depends on ∇c̄; see [19, 70]. In dimension d = 1, however,

there are more promising results. In [67, 68, 71] a general class of kinetic models for

chemotaxis on the full state space X = R is studied with W = {−1, 1}. The tumbling has

a general structure depending on c̄ and ∂xc̄. The local existence of solutions is proven via

the method of characteristics or the vanishing viscosity method and fixed point arguments.

Furthermore, suitable conditions for the tumbling are derived in order to guarantee the

global existence of solutions. Let us note that these conditions are, however, not satisfied

for the choice in (2.1). In this work, we only consider the local in time existence of

solutions.

Asymptotic analysis and diffusion limit

We introduce a small parameter ε > 0 and make the following assumptions:
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• The aimless tumbling occurs more frequently than the chemotactically oriented tum-

bling, i.e., we set σε = σ/ε.

• The mean free path between tumbling events goes to zero, i.e., we rescale the bacteria

density by uε(x,w, t) = u(x,w, t/ε).

This leads to the rescaled kinetic transport equation

ε2∂tu
ε + εw∂xu

ε = σ(ūε − uε) + εαw∂xc̄
εūε. (2.5)

The dynamics of the chemoattractant c̄ ε = c̄ is not affected by the scaling, i.e.,

∂tc̄
ε −D∂xxc̄

ε + δc̄ ε = γūε. (2.6)

We refer to [19, 27] for details. By formal asymptotic expansions, the classical Keller-Segel

equations, which are given by

∂tū
0 − ∂x(ā∂xū

0 − χ̄∂xc̄
0ū0) = 0, (2.7)

∂tc̄
0 −D∂xxc̄

0 + δc̄ 0 = γū0 (2.8)

with coefficients ā =
∫
W σ−1w2 dw and χ̄ =

∫
W ασ−1w2 dw, can be obtained in the diffu-

sion limit ε → 0. Note that the bacterial density ū0 = ū0(x, t) does not depend on the

velocity anymore. This model was first introduced by Keller and Segel [76] and has been

widely investigated in the literature; a good overview can be found in [66, 69]. Let us

note that in dimension d = 1 solutions to (2.7)–(2.8) can be shown to exist globally in

time [97], whereas in d = 2, 3 a finite time blow-up can occur; see [69] and the references

therein. A purely formal derivation of the limit problem in d = 1 for W = {−1, 1} given

by a Keller-Segel type equation is provided in [68], whereas the rigorous convergence of

solutions uε to the limit ū0 is investigated in [71]. The proof is based on the derivation

of ε-independent a-priori bounds and asymptotic expansions. For similar results in the

multidimensional case let us refer to [19, 71]. The asymptotic analysis and the derivation

of quantitative convergence rates by asymptotic expansions are based on arguments from

[5, 27] where the neutron transport was investigated. Here, we closely follow the approach

of [43] for stationary monokinetic linear transport problems in dimension d = 3, which is

based on variational arguments and energy estimates. This will turn out to be particularly

well-suited for the extension to networks.

Extension to networks

We consider networks described by finite, directed, and connected graphs. Edges are iden-

tified as intervals and (2.5)–(2.6) are assumed to hold on each edge. In order to connect

the solutions across network junctions, additional coupling conditions are required that

ensure the conservation of mass for uε and c̄ ε. For a proper choice of these conditions,

the local existence of solutions can be established by semigroup theory [46, 100], Galerkin

approximations [49], and fixed point arguments [49]. Recently, a kinetic model for chemo-

taxis on networks with flux-limited chemotactically oriented tumbling was considered in
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2. Kinetic chemotaxis and diffusion limits on networks

[10] leading to the corresponding flux-limited Keller-Segel model in the diffusion limit

[103]. The authors proposed a set of coupling conditions at network junctions and for-

mally derived the corresponding ones for the limiting Keller-Segel problem proposed in [9].

However, no rigorous asymptotic analysis was given. The Keller-Segel model on networks

was then further investigated in [44] and local and global in time existence of solutions

were proven. A hyperbolic-parabolic model for chemotaxis was studied in [14, 59, 61, 89].

By writing the system in Riemann variants, one recovers the kinetic model considered by

[68] with velocity w ∈ W = {−1, 1}. This model was extended to networks and suitable

coupling conditions were proposed that ensured conservation of mass. The coupling for the

chemoattractant, however, differed from the corresponding coupling conditions proposed

in [9, 10, 44]. The local existence of solutions was proven via semigroup theory and fixed

point arguments. Moreover, conditions that guarantee global existence were derived, e.g.,

the smallness of initial data [59] or positivity of solutions [61]. So far a rigorous asymptotic

analysis for the kinetic chemotaxis model on networks to its diffusion limit seems to be

missing to the best of our knowledge and we attempt to close this gap with our work.

Main contributions

Let us now summarize the main contributions of this chapter, which are not yet published

and are first presented here. This is joint work with Herbert Egger, Kathrin Hellmuth and

Matthias Schlottbom, a publication is in preparation.

• We extend the rescaled kinetic model for chemotaxis (2.5)–(2.6) to networks and

propose suitable coupling conditions at network junctions that ensure the conserva-

tion of mass. We then establish the existence of solutions up to a time point T > 0

uniformly for all ε > 0 via Banach’s fixed point theorem and standard arguments.

Moreover, based on energy estimates we derive a-priori estimates for the local solu-

tions that are uniform in ε and play a crucial role in the asymptotic analysis.

• Based on the a-priori estimates we then prove that solutions converge to correspond-

ing weak solutions of the Keller-Segel system on networks in the diffusion limit ε→ 0.

Moreover, for suitably regular parameters and data we show the following quantita-

tive convergence estimate

∥uε − ū0∥L∞(0,T ;L2) + ∥c̄ ε − c̄ 0∥L∞(0,T ;H1) ≤ Cε1/2. (2.9)

The proof is based on energy estimates and asymptotic expansions. We closely follow

[27, 43] where the Neutron transport in dimension d = 3 and its diffusion limit were

investigated. In [27], however, no energy estimates are used, whereas in [43] only

the stationary problem was considered.

Outline

In Section 2.1 we introduce the kinetic model for chemotaxis on networks and propose suit-

able coupling conditions at junctions. The local existence of solutions is then established
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2.1. Model problem

in Section 2.2 and a-priori estimates are derived that will be crucial for the asymptotic

analysis presented in Section 2.3. Therein, we first present the Keller-Segel model on

networks, before we rigorously show the convergence of solutions. Finally, we prove the

quantitative asymptotic estimate (2.9), and close this chapter with a discussion of open

problems and an outlook on further research directions.

2.1. Model problem

In the first section, we present the rescaled kinetic model for chemotaxis on networks and

propose suitable coupling conditions at network junctions. We start by introducing the

basic notation that will be used throughout this chapter.

2.1.1. Notation and function spaces

Following the notation from Chapter 1, a network is described by a finite, connected, and

directed graph G = (V, E) with vertices V = {v1, . . . , vm} and edges E = {e1, . . . , el} ⊂
V ×V. We allow for a rather general topology that can include circles. The set of incident

edges to a vertex v ∈ V is given by E(v) = {e ∈ E : e = (v, ·) or e = (·, v)}. If a vertex has

only one incident edge, it belongs to the set of boundary vertices V∂ = {v ∈ V : |E(v)| = 1}
with |E(v)| denoting the cardinality of E(v). Otherwise, the vertex is contained in the set

of interior vertices V0 = V\V∂ . In order to indicate the start and the end of an edge e ∈ E ,
we define the outward normal n with n|e = ne that for e = (vi, vj) ∈ E takes the values

ne(vi) = −1, ne(vj) = 1, and ne(v) = 0 for v ∈ V\{vi, vj}.

Moreover, we introduce the sets of edges pointing into or out of each vertex v ∈ V by

E in(v) = {e ∈ E : ne(v) = 1} and Eout(v) = {e ∈ E : ne(v) = −1},

and the sets of ingoing and outgoing boundary vertices by

V in
∂ = {v ∈ V∂ : ne(v) = −1} and Vout

∂ = {v ∈ V∂ : ne(v) = 1}.

An illustration is given in Figure 2.1. Every edge e ∈ E is identified by an interval

e = (0, ℓe) with ℓe > 0 being the length of the edge. We abuse the notation E =
∏

e∈E(0, ℓe)

for the state space and further introduce the velocity space W = (−1, 1) and the phase

space Q = E ×W on the network. The inflow and outflow boundaries of the phase space

depend on the velocity and are given by

Qin
∂ = V in

∂ × (0, 1] ∪ Vout
∂ × [−1, 0) and Qout

∂ = V in
∂ × [−1, 0) ∪ Vout

∂ × (0, 1].

For each interior vertex v ∈ V0 the sets of edges carrying flow into or out of the vertex

also depend on the velocity and we introduce

Qin(v) = E in(v)× (0, 1] ∪ Eout(v)× [−1, 0),

Qout(v) = E in(v)× [−1, 0) ∪ Eout(v)× (0, 1].
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2. Kinetic chemotaxis and diffusion limits on networks

v1 v2

v3

v4 v5

v6

e1

e2 e3

e4

e5e6

Figure 2.1.: A network with edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), e4 = (v4, v5),

e5 = (v4, v6), and e6 = (v6, v2), boundary vertices V∂ = {v1, v5}, and inte-

rior vertices V0 = {v2, v3, v4, v6}. The incident edges to the vertex v2 are

collected in the set E(v2) = {e1, e2, e6}, which can be split into the sets

E in(v2) = {e1, e6} and Eout(v2) = {e2} of edges pointing into or out of the

vertex v2. The ingoing and outgoing boundary vertices of the network are

given by V in
∂ = {v1} and Vout

∂ = {v5}.

0 ℓ

1

−1

Figure 2.2.: Inflow and outflow boundary for a single pipe e = (0, ℓ) and velocity space

W = (−1, 1) depicted in (red, solid) and (blue, dotted), respectively.

An illustration of the in- and outflow boundary for a single edge is provided in Figure 2.2.

Let us further introduce function spaces on the network. The spaces of square-integrable

functions on the state and the phase space are given by

L2(E) = {c̄ : c̄e ∈ L2(0, ℓe) for all e ∈ E},
L2(Q) = {u : ue ∈ L2((0, ℓe)× (−1, 1)) for all e ∈ E},

respectively, where c̄e = c̄|e denotes the restriction onto the edge e ∈ E and the bar

symbol indicates that the function c̄ does not depend on the velocity w. We also use the

bar symbol to denote the velocity average of a function u ∈ L2(Q) by

ū =
1

2

∫
W
u(w) dw.

The L2-scalar products and norms are given by

(c̄, ϕ̄)L2(E) =

∫
E
c̄(x)z̄(x) dx and ∥c̄∥2L2(E) = (c̄, c̄)L2(E),

(u, z)L2(Q) =

∫
Q
u(x,w)z(x,w) d(x,w) and ∥u∥2L2(Q) = (u, u)L2(Q),

where we abbreviate∫
E
c̄(x) dx =

∑
e∈E

∫ ℓe

0
c̄e(x) dx and

∫
Q
u(x,w) d(x,w) =

∫
E

∫
W
u(x,w) dw dx.
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2.1. Model problem

Other Lp-spaces can be defined in the same manner. We will further make use of the

following abbreviations∫
Qin

∂

u(w, t) dw =
∑

v∈Vin
∂

∫ 1

0
ue(v, w, t) dw +

∑
v∈Vout

∂

∫ 0

−1
ue(v, w, t) dw,∫

Qin(v0)
u(v0, w, t) dw =

∑
e∈Ein(v0)

∫ 1

0
ue(v0, w, t) dw +

∑
e∈Eout(v0)

∫ 0

−1
ue(v0, w, t) dw

with v0 ∈ V0 that can similarly be defined for Qout
∂ and Qout(v0). The broken Sobolev

spaces on the state space of the network are given by

Hk
pw(E) = {c̄ ∈ L2(E) : c̄e ∈ Hk(0, ℓe) for all e ∈ E}

with associated norm and scalar product

(c̄, ϕ̄)Hk
pw(E) =

∑
e∈E

(c̄e, ϕ̄e)Hk(0,ℓe) and ∥c̄∥2Hk
pw(E) = (c̄, c̄)Hk

pw(E).

Note that functions in Hk
pw(E) are continuous within edges for k > 1/2, but might be

discontinuous at network junctions. We thus denote by

H1(E) = {c̄ ∈ H1
pw(E) : c̄ei(v) = c̄ej (v) for all v ∈ V0, ei, ej ∈ E(v)}

the space of H1
pw(E)-functions that are additionally continuous at network junctions. Each

c̄ ∈ H1(E) then takes a unique value c̄(v) at v ∈ V0.

For t ≥ 0 and some Banach space X with norm ∥·∥X , the corresponding Bochner spaces

are defined in the usual manner, i.e., the space of measurable functions with values in X

is given by Lp(0, t;X) and equipped with the norm

∥u∥pLp(0,t;X) =

∫ t

0
∥u(s)∥pX ds, 1 ≤ p <∞, and ∥u∥L∞(0,t;X) = ess sup

0≤s≤t
∥u(s)∥X .

In the same spirit, the spaces of weakly differentiable functions in time with values in X

are given by W k,p(0, t;X), and Hk(0, t;X) for p = 2, equipped with their natural norms.

Furthermore, we introduce the spaces Ck([0, t];X) equipped with the norms

∥u∥Ck([0,t];X) = max
i≤k, 0≤s≤t

∥u(i)(s)∥X

that include all k-times continuously differentiable functions in time with values in X.

2.1.2. Kinetic model for chemotaxis on networks

We are now in the position to introduce the kinetic model for chemotaxis on networks.

Let G = (V, E) be as above. On each edge e ∈ E and for some T > 0 we assume that the

bacteria density uε and concentration of the chemoattractant c̄ ε satisfy

ε2∂tu
ε
e + εw∂xu

ε
e + σe(u

ε
e − ūεe) = εαew∂xc̄

ε
e ū

ε
e in (0, ℓe)× (−1, 1)× (0, T ), (2.10)

∂tc̄
ε
e −De∂xxc̄

ε
e + δec̄

ε
e = γeū

ε
e in (0, ℓe)× (0, T ). (2.11)
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2. Kinetic chemotaxis and diffusion limits on networks

For the bacteria density uε we further require that

uεe(v, w, t) = uεe(v,−w, t) for (v, w) ∈ Qin
∂ , e ∈ E(v), t ∈ (0, T ) (2.12)

at the network inflow boundary, and

uεe(v, w, t) = ûεv(|w|, t) for v ∈ V0, (e, w) ∈ Qout(v), t ∈ (0, T ) (2.13)

at network junctions with mixing value defined by

ûεv(|w|, t) =
1

|E(v)|

(∑
e∈Ein(v)

uεe(v, |w|, t) +
∑

e∈Eout(v)
uεe(v,−|w|, t)

)
. (2.14)

The initial condition is chosen as

uε(0) = ūI on Q. (2.15)

The concentration c̄ ε is assumed to satisfy

∂xc̄
ε
e (v, t) = 0 for v ∈ V∂ , e ∈ E(v), t ∈ (0, T ) (2.16)

at the network boundary. Additionally, we impose coupling conditions at junctions by

c̄ εei(v, t) = c̄ εej (v, t) for v ∈ V0, ei, ej ∈ E(v), t ∈ (0, T ), (2.17)∑
e∈E(v)

De∂xc̄
ε
e (v, t)ne(v) = 0 for v ∈ V0, t ∈ (0, T ). (2.18)

Finally, at the initial time we set

c̄ ε(0) = c̄I on E . (2.19)

Remark 2.1. As for a single interval, we need to prescribe one boundary condition at

each end of every edge for the chemoattractant c̄ ε and one boundary condition at the

inflow boundary of each edge for the bacteria density uε. Moreover, we assume that the

network is closed, which is guaranteed by no-flux boundary condition (2.16). The coupling

conditions (2.17)–(2.18) for c̄ ε ensure the continuity of the solution and the conservation of

mass at network junctions. Furthermore, we assume that bacteria entering a vertex v ∈ V
do not change their speed and leave the vertex through one of the incident edges e ∈ E(v)
with the same probability. At the network boundary, this is modeled by the reflection

boundary condition (2.12), and at the junctions by the mixing conditions (2.13)–(2.14)

that also guarantee the conservation of mass.

For the rest of this chapter, we make the following assumptions on the parameters and

data that could, however, be relaxed to some extent.

Assumption 2.2. Let σ ∈ L∞(E) with 0 < σmin ≤ σe(x) ≤ σmax for all 0 ≤ x ≤ ℓe, e ∈ E
and further let αe, De, δe, γe ≥ 0 be constant on each edge e ∈ E and bounded from above

by αmax, Dmax, δmax, γmax > 0. Additionally, let 0 < Dmin ≤ De. Moreover, let 0 < ε ≤ 1

be constant. Further, let ūI , c̄I ∈ H1(E) be independent of ε and let the compatibility

condition D∂xxc̄I − δc̄I + γūI ∈ H1(E) hold.
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2.2. Existence of solutions

2.2. Existence of solutions

As a first step of our analysis, we state and prove the existence of a unique solution

(uε, c̄ ε) to (2.10)–(2.19) up to a certain time point T > 0 independent of ε and establish

corresponding a-priori estimates.

Theorem 2.3. Let Assumption 2.2 hold. Then, there exists a time point T > 0 so that

for all ε > 0 the system (2.10)–(2.19) has a unique solution

uε ∈ C1([0, T ];L2(Q)) ∩ C0([0, T ];Z),

c̄ ε ∈W 1,∞(0, T ;H1(E)) ∩H2(0, T ;L2(E)) ∩H1(0, T ;H2
pw(E)).

The solution space Z for the bacteria density uε is defined by

Z := {z ∈ L2(Q) : w∂xz ∈ L2(Q), z satisfies (2.12)− (2.14)}. (2.20)

Moreover, the following a-priori bounds hold

(a) ∥uε∥C0([0,T ];L2(Q)) ≤ C,

(b) ∥uε − ūε∥L2(0,T ;L2(Q)) ≤ Cε,

(c)
∑

v∈V0

∫ T
0

∫
Qin(v) |w|

∣∣uε(v, w, t)− ûεv(|w|, t)
∣∣2 dw dt ≤ Cε,

(d) ∥c̄ ε∥L∞(0,T ;H1(E)) + ∥c̄ ε∥H1(0,T ;L2(E)) + ∥c̄ ε∥L2(0,T ;H2
pw(E)) ≤ C,

(e) ∥ε∂tuε∥C0([0,T ];L2(Q)) ≤ C,

(f) ∥w∂xuε∥L2(0,T ;L2(Q)) ≤ C

with a generic constant C that only depends on T and the bounds in Assumption 2.2, but

not on ε. Finally, the global balance laws∫
Q
uε(x,w, t) d(x,w) =

∫
E
ūI(x) dx, (2.21)∫

E
c̄ ε(x, t) dx =

∫
E
c̄I(x) dx+

∫ t

0

∫
E
γūε(x, s)− δc̄ ε(x, s) dx ds (2.22)

are valid for all 0 ≤ t ≤ T .

Outline of the proof. In order to prove the local existence of solutions, we follow

standard procedure: We linearize the nonlinear system (2.10)–(2.19) and replace uε on

the right-hand sides of (2.10) and (2.11) by a function zε ∈ C1([0, T ];L2(Q)). Then,

the kinetic transport and the parabolic problem for the chemoattractant decouple. The

well-posedness of both linearized systems and suitable a-priori bounds are established sep-

arately in Section 2.2.1 and 2.2.2. Via a fixed point argument, we then show the existence

of solutions to (2.10)–(2.19) that satisfy the a-priori bounds (a)–(f) in Section 2.2.3. For

ease of presentation, let us in the following choose a-priori T ≤ 1.

55



2. Kinetic chemotaxis and diffusion limits on networks

2.2.1. Linearized problem for the chemoattractant

Let zε be given. On each edge e ∈ E we consider

∂tc̄
ε
e −De∂xxc̄

ε
e + δec̄

ε
e = γez̄

ε
e in (0, ℓe)× (0, T ) (2.23)

complemented by the network boundary and coupling conditions (2.16)–(2.18) and initial

condition (2.19). Note that this system does not depend on uε anymore. Well-posedness

is guaranteed by the following result.

Lemma 2.4. Let Assumption 2.2 hold and let zε ∈ C1([0, T ];L2(Q)) with zε(0) = ūI .

Then, there exists a unique solution

c̄ ε ∈W 1,∞(0, T ;H1(E)) ∩H2(0;T ;L2(E)) ∩H1(0, T ;H2
pw(E))

to (2.23) with boundary and coupling conditions (2.16)–(2.18) and initial condition (2.19)

that satisfies

∥∂tc̄ ε∥2L2(0,T ;L2(E)) + ∥∂xxc̄ ε∥2L2(0,T ;L2(E)) + ∥c̄ ε∥2L∞(0,T ;H1(E)) + ∥∂xc̄ ε∥2L4(0,T ;L∞(E))

≤ C
(
∥c̄I∥2H1(E) + T∥z̄ε∥2C0([0,T ];L2(E))

)
, (2.24)

∥∂ttc̄ ε∥2L2(0,T ;L2(E)) + ∥∂txxc̄ ε∥2L2(0,T ;L2(E)) + ∥∂tc̄ ε∥2L∞(0,T ;H1(E)) + ∥∂txc̄ ε∥2L4(0,T ;L∞(E))

≤ C ′(∥D∂xxc̄I − δc̄I + γūI∥2H1(E) + T∥∂tz̄ε∥2C0([0,T ];L2(E))
)

(2.25)

with constants C, C ′ that are independent of ε and T ≤ 1.

Proof. The existence of a unique solution

c̄ ε ∈ L∞(0, T ;H1(E)) ∩H1(0, T ;L2(E)) ∩ L2(0, T ;H2
pw(E))

to (2.23), (2.16)–(2.19) can be proven by Galerkin approximations and energy estimates;

see [44, Lemma B.1]. Moreover,

∥∂tc̄ ε∥2L2(0,T ;L2(E))+ ∥c̄ ε∥2L∞(0,T ;H1(E))≤ C
(
∥c̄I∥2H1(E)+ T∥z̄ε∥2C0([0,T ];L2(E))

)
(2.26)

with a constant C that only depends on the bounds on D, δ, and γ in Assumption 2.2.

The estimate for ∂xxc̄
ε in (2.24) can be derived from (2.23) and the bounds on ∂tc̄

ε and

c̄ ε in (2.26). By interpolation theory [6, Thm. 5.1.2, Thm. 6.4.5] and embedding results

in dimension d = 1 [28] one can see that

L∞(0, T ;L2(E)) ∩ L2(0, T ;H1
pw(E)) ↪→ L4(0, T ;H3/4

pw (E)) ↪→ L4(0, T ;L∞(E))

are continuous. From (2.26) we can thus deduce that

∥∂xc̄ ε∥2L4(0,T ;L∞(E)) ≤ C ′(∥c̄I∥2H1(E) + T∥z̄ε∥2C0([0,T ];L2(E))
)

with C ′ being independent of ε and T since T ≤ 1 is assumed a-priori. In summary,

this yields the estimate (2.24). The higher regularity of the solution and the estimate

(2.25) for ∂tc̄
ε then follow by the same arguments, since ∂tc̄

ε solves (2.23) with right-hand

side ∂tz̄
ε ∈ C0([0, T ];L2(E)), network boundary and coupling conditions (2.16)–(2.18) and

initial condition ∂tc̄
ε(0) = D∂xxc̄I − δc̄I + γūI ∈ H1(E) due to (2.23) and (2.19), the fact

that zε(0) = ūI , and Assumption 2.2.
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2.2.2. Linearized kinetic problem

Let zε as above and c̄ ε be the corresponding solution to (2.23), (2.16)–(2.19). We assume

ε2∂tu
ε
e + εw∂xu

ε
e + σe(u

ε
e − ūεe) = εαew∂xc̄

ε
e z̄

ε
e in (0, ℓe)× (−1, 1)× (0, T ) (2.27)

on each edge e ∈ E with network boundary and coupling conditions (2.12)–(2.14) and

initial condition (2.15). The existence of a unique solution and corresponding a-priori

estimates are provided by the following lemma.

Lemma 2.5. Let Assumption 2.2 hold and let zε ∈ C1([0, T ];L2(E)) with zε(0) = ūI be

given, and c̄ ε be the corresponding solution to (2.23), (2.16)–(2.19). Then, there exists a

unique solution

uε ∈ C1([0, T ];L2(Q)) ∩ C0([0, T ];Z)

to (2.27), (2.12)–(2.15) with Z defined in (2.20) that satisfies for all 0 ≤ t ≤ T

∥uε(t)∥2L2(Q) +
∑

v∈V0

∫ t

0

∫
Qin(v)

ε−1|w||uε(v, w, s)− ûεv(|w|, s)|2 dw ds (2.28)

+ ε−2∥σ1/2(uε − ūε)∥2L2(0,t;L2(Q)) ≤ ∥ūI∥2L2(E) + ∥σ−1/2αw∂xc̄
εz̄ε∥2L2(0,t;L2(Q)),

∥ε∂tuε(t)∥2L2(Q) ≤ ∥w∂xūI − αw∂xc̄I ūI∥2L2(Q) (2.29)

+ ∥εασ−1/2w(∂txc̄
εz̄ε + ∂xc̄

ε∂tz̄
ε)∥2L2(0,t;L2(Q)).

Proof. Step 1 (Existence of a unique solution). We rewrite (2.27), (2.12)–(2.15) as

an abstract inhomogeneous Cauchy problem of the form

d

dt
uε(t) = (Aε + Bε)uε(t) + f ε(t) for 0 ≤ t ≤ T, uε(0) = ūI (iACP)

with operators (Aε,D(Aε)) and (Bε,X ) given by

Aε : D(Aε) ⊂ X → X , Aεuε := −1

ε
w∂xu

ε,

Bε : X → X , Bεuε := − σ

ε2
(uε − ūε),

spaces X := L2(Q) and D(Aε) := Z with Z defined in (2.20), and right-hand side

f ε(t) := ε−1αw∂xc̄
ε(t)z̄ε(t).

Note that D(Aε) is dense in X , i.e., Aε is densely defined. Since ūI ∈ H1(E) is independent
of w ∈ W by Assumption 2.2 and thus in D(Aε) and f ε ∈ H1(0, T ;X ) due to Lemma 2.4

and the regularity of zε, the existence of a unique solution

uε ∈ C1([0, T ];X ) ∩ C0([0, T ];D(Aε))

to (iACP) is guaranteed by [46, Ch.VI, Cor. 7.6] if (Aε + Bε,D(Aε)) generates a strongly

continuous semigroup (S(t))0≤t≤T on X , which will be verified in the sequel.
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Step 1.1 (Aε and (Aε)∗ are dissipative). By definition of Aε it holds that

(Aεz, z)X =− 1

ε
(w∂xz, z)X = −

∫
Q

1

2ε
w
d

dx
|z(x,w)|2 d(x,w) (2.30)

=−
∑

v∈V

∑
e∈E(v)

∫
W

1

2ε
w|ze(v, w)|2 ne(v) dw.

Since z ∈ D(Aε) satisfies the reflection boundary condition (2.12) at the network inflow

boundary Qin
∂ we observe that

−
∑

v∈V∂

∫
W

1

2ε
w|ze(v, w)|2ne(v) dw (2.31)

= −
∫
Qin

∂

1

2ε
w|z(−w)|2 n dw −

∫
Qout

∂

1

2ε
w|z(w)|2 n dw = 0

by definition of the inflow and outflow boundary of the phase space Q. At network

junctions v ∈ V0 we deduce from the coupling condition (2.13) that

−
∑

e∈E(v)

∫
W

1

2ε
w|ze(v, w)|2 ne(v) dw = −

∫
Qin(v)

1

2ε
w|z(v, w)|2 n(v) dw (2.32)

−
∫
Qout(v)

1

2ε
w|ẑv(|w|)|2 n(v) dw = (a1) + (a2).

By definition of Qout(v) and the mixing value in (2.14) the second term equals

(a2) = −
∑

e∈Ein(v)

∫ 0

−1

1

2ε
w|ẑv(|w|)|2 dw +

∑
e∈Eout(v)

∫ 1

0

1

2ε
w|ẑv(|w|)|2 dw

=

∫ 1

0

1

2ε
wẑv(|w|)

(∑
e∈E(v)

ẑv(|w|)
)
dw

=
∑

e∈Ein(v)

∫ 1

0

1

2ε
wẑv(|w|)ze(v, w) dw −

∑
e∈Eout(v)

∫ 0

−1

1

2ε
wẑv(|w|)ze(v, w) dw

=

∫
Qin(v)

1

2ε
wẑv(|w|)z(v, w)n(v) dw,

where we used that ẑv does not depend on e ∈ E(v) and that
∑

e∈E(v) 1/|E(v)| = 1. In

summary, we obtain

(a1) + (a2) =−
∫
Qin(v)

1

2ε
w|z(v, w)|2 n(v) dw +

∫
Qin(v)

1

ε
wẑv(|w|)z(v, w)n(v) dw

+

∫
Qout(v)

1

2ε
w|ẑv(|w|)|2 n(v) dw

=−
∫
Qin(v)

1

2ε
w|z(v, w)− ẑv(|w|)|2 n(v) dw

= −
∫
Qin(v)

1

2ε
|w||z(v, w)− ẑv(|w|)|2 dw, (2.33)

where we used that∫
Qout(v)

1

2ε
w|ẑv(|w|)|2n(v) dw = −

∫
Qin(v)

1

2ε
w|ẑv(|w|)|2n(v) dw.
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From (2.30)–(2.33) we can then conclude that for z ∈ D(Aε) it holds

(Aεz, z)X =−
∑

v∈V0

∫
Qin(v)

1

2ε
|w||z(v, w)− ẑv(|w|)|2 dw ≤ 0. (2.34)

Since X is a Hilbert space, this implies that (z, (Aε)∗)X ≤ 0 holds as well. Moreover, from

∥(λ−Aε)z∥X ∥z∥X ≥ ((λ−Aε)z, z)X = (λz, z)X − (Aεz, z)X ≥ λ∥z∥2X

then immediately follows that Aε and (Aε)∗ are dissipative; see [46, Ch. II, Def. 3.13].

Step 1.2 (Aε is closed). Let (yn)n ⊂ rg(λ − Aε) be a sequence in the range of the

operator λ−Aε : D(Aε) → X for some λ > 0 with yn = (λ−Aε)zn and yn → y ∈ X . We

then have

∥ym − yn∥2X = ∥(λ−Aε)(zm − zn)∥2X
= ∥λ(zm − zn)∥2X − 2λ(Aε(zm − zn), zm − zn)X + ∥Aε(zm − zn)∥2X
≥ ∥λ(zm − zn)∥2X + ε−2∥w∂x(zm − zn)∥2X ,

where we used that (Aεz, z)X ≤ 0 for all z ∈ D(Aε). Consequently, (zn) is a Cauchy

sequence in the space D(Aε) that is a Hilbert space equipped with the scalar product

(u, z)D(Aε) = (u, z)L2(Q) + (w∂xu,w∂xz)L2(Q) and the corresponding norm. Hence, (zn)

converges in D(Aε) with limit z ∈ D(Aε) and (λ−Aε)z = y. We have thus shown that the

range rg(λ − Aε) is closed in X for some λ > 0, which by [46, Ch. II, Prop. 3.14] implies

that the dissipative operator (Aε,D(Aε)) is closed.

Step 1.3 (Aε + Bε generates a strongly continuous semigroup). From Step 1.1 and

Step 1.2 we can conclude that (Aε,D(Aε)) is the generator of a contraction semigroup;

see [46, Ch. II, Cor. 3.17]. Since Bε is linear and bounded by ∥Bε∥ ≤ 2σmax/ε
2, the bounded

perturbation theorem [46, Ch. III, Thm. 1.3] yields that (Aε + Bε,D(Aε)) then generates

a strongly continuous semigroup.

Step 2 (A-priori estimates). Let us now derive a-priori estimates for the solution

uε to (2.27), (2.12)–(2.15) respectively (iACP) via energy estimates. Multiplying (iACP)

with uε and integrating over Q× (0, t) with 0 ≤ t ≤ T yields

1

2

∫ t

0

d

dt
∥uε(s)∥2L2(Q) ds = (Aεuε, uε)L2(0,t;L2(Q)) + (Bεuε, uε)L2(0,t;L2(Q))

+ (f ε, uε)L2(0,t;L2(Q)) = (i) + (ii) + (iii).

We know from (2.34) that

(i) = −
∑

v∈V0

∫ t

0

∫
Qin(v)

1

2ε
|w|
∣∣uε(v, w, s)− ûεv(|w|, s)

∣∣2 dw ds,

since uε(t) ∈ D(Aε) for all 0 ≤ t ≤ T . Moreover,

(ii) = −(
σ

ε2
(uε − ūε), uε)L2(0,t;L2(Q)) = −ε−2∥σ1/2(uε − ūε)∥2L2(0,t;L2(Q)),
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2. Kinetic chemotaxis and diffusion limits on networks

where we used that the velocity average of uε − ūε is zero. Since f̄ ε = ε−1αw∂xc̄ εz̄ε = 0,

the third term can be estimated by Hölder’s and Young’s inequality, more precisely

(iii) = (f ε − f̄ ε, uε − ūε)L2(0,t;L2(Q)) = (f ε, uε − ūε)L2(0,t;L2(Q))

≤ ε2

2
∥σ−1/2f ε∥2L2(0,t;L2(Q)) +

1

2ε2
∥σ1/2(uε − ūε)∥2L2(0,t;L2(Q)),

where the last term can be absorbed into (ii). In summary, this yields (2.28).

In order to derive the estimate (2.29) we observe that ∂tu
ε is mild solution to (iACP)

with right-hand side ∂tf
ε ∈ L2(0, T ;X ) and initial condition

∂tu
ε(0) = ∂tu

ε
I := −ε−1w∂xūI − ε−1αw∂xc̄I ūI ∈ L2(Q),

which holds due to (2.27), (2.19), (2.15), and the fact that zε(0) = ūI , which is independent

of w ∈ W by Assumption (2.2). To be able to apply the energy estimates, we approximate

the right-hand side ∂tf
ε by a sequence of functions (∂tf

ε
n)n ⊂ H1(0, T ;X ) with f̄ εn(t) = 0

and the initial condition by (∂tu
ε
I,n)n ⊂ D(Aε) so that

∥f εn − f ε∥L2(0,T ;X ) → 0 and ∥∂tuεI,n − ∂tu
ε
I∥X → 0 for n→ ∞. (2.35)

We denote the corresponding classical solution to (iACP) for ∂tf
ε
n and ∂tu

ε
I,n by ∂tu

ε
n,

which satisfies ∂tu
ε
n ∈ C1([0, T ];X )∩C0([0, T ];D(Aε)) by the same arguments as in Step 1.

Moreover, since the mapping (∂tf
ε, ∂tu

ε
I) 7→ ∂tu

ε is linear and
(
S(t)

)
0≤t≤T

is strongly

continuous, we have

maxt∈[0,T ] ∥∂tuεn(t)− ∂tu
ε(t)∥X → 0 for n→ ∞. (2.36)

By similar energy estimate as for uε derived above, testing with ∂tu
ε
n now leads to

∥∂tuεn(t)∥2L2(Q) ≤ ∥∂tuεI∥2L2(Q) + ε2∥σ−1/2∂tf
ε
n∥2L2(0,t;L2(Q)).

Via (2.35)–(2.36) and the triangle inequality, we finally deduce that

∥∂tuε(t)∥2L2(Q) ≤ ∥∂tuεI∥2L2(Q) + ε2∥σ−1/2∂tf
ε∥2L2(0,t;L2(Q)),

which shows (2.29) and concludes the proof of Lemma 2.5.

2.2.3. Proof of Theorem 2.3

By using the results for the linearized problems derived in Lemma 2.4 and 2.5, we are now

in the position to establish the existence of a unique solution to (2.10)–(2.19) via a fixed

point argument and show the corresponding a-priori bounds (a)–(f).

Step 1 (Existence of solutions). Let us define the mapping

Φ : ST → C1([0, T ];L2(Q)), zε 7→ uε

with uε solving (2.27), (2.12)–(2.15) for c̄ ε solution to (2.23), (2.16)–(2.19) on the space

ST := {zε ∈ C1([0, T ];L2(Q)) : zε(0) = ūI , ∥zε∥2ε,T ≤ CS}
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for some constant CS and with ε-weighted norm defined by

∥zε∥2ε,T := ∥zε∥2C0([0,T ];L2(Q)) + ε2∥∂tzε∥2C0([0,T ];L2(Q)).

By Lemma 2.4 and 2.5, Φ is well-defined.

Step 1.1 (Φ(ST ) ⊂ ST ). Let uε = Φ(zε) for zε ∈ ST . Then, by (2.15) it holds that

uε(0) = ūI . Moreover, by (2.28)–(2.29) we obtain

∥uε∥2ε,T ≤ ∥ūI∥2L2(E) + ∥ασ−1/2w∂xc̄
εz̄ε∥2L2(0,T ;L2(Q)) + ∥w∂xūI − αw∂xc̄I ūI∥2L2(Q)

+ ∥εασ−1/2w(∂txc̄
εz̄ε + ∂xc̄

ε∂tz̄
ε)∥2L2(0,T ;L2(Q))

≤ ∥ūI∥2L2(E) +
α2
max

σmin
∥∂xc̄ ε∥2L4(0,T ;L∞(E))∥z

ε∥2L4(0,T ;L2(Q))

+ ∥w∂xūI − αw∂xc̄I ūI∥2L2(Q) + 2α2
max

σmin

(
∥ε∂txc̄ ε∥2L4(0,T ;L∞(E))∥z

ε∥2L4(0,T ;L2(Q))

+ ∥∂xc̄ ε∥2L4(0,T ;L∞(E))∥ε∂tz
ε∥2L4(0,T ;L2(Q))

)
,

where we applied the triangle and Hölder’s inequality. By (2.24)–(2.25) we have

∥∂xc̄ ε∥2L4(0,T ;L∞(E)) ≤ C
(
∥c̄I∥2H1(E) + T∥z̄ε∥2C0([0,T ];L2(E))

)
,

∥ε∂txc̄ ε∥2L4(0,T ;L∞(E))≤ C ′
(
∥ε(D∂xxc̄I − δc̄I + γūI)∥2H1(E)+ T∥ε∂tz̄ε∥2C0([0,T ];L2(E))

)
.

This enables us to estimate

∥uε∥2ε,T ≤ ∥ūI∥2L2(E) + ∥w∂xūI − αw∂xc̄I ūI∥2L2(Q)

+ C ′′T 1/2∥zε∥2C0([0,T ];L2(Q)) + C ′′′T 1/2∥ε∂tzε∥2C0([0,T ];L2(Q))

with constants C ′′, C ′′′ that only depend on ∥zε∥C0([0,T ];L2(Q)) and ∥ε∂tzε∥C0([0,T ];L2(Q)),

the initial data, and the bounds on the parameters, that are all bounded independently of ε

by Assumption 2.2 and since zε ∈ ST . Consequently, for CS large enough but independent

of ε, more precisely CS > ∥ūI∥2L2(E) + ∥w∂xūI −αw∂xc̄I ūI∥2L2(Q), and T sufficiently small,

but also independent of ε, it holds that ∥uε∥2ε,T ≤ CS , i.e., u
ε ∈ ST .

Step 1.2 (Φ is a contraction). Let (uε1, c̄
ε
1 ) and (uε2, c̄

ε
2 ) be the solutions for zε1 and

zε2 ∈ ST , respectively. Then, u
ε
1−uε2 solves (2.27), (2.12)–(2.15) with zero initial condition

and right-hand side f ε = εαw(∂xc̄
ε
1 z̄

ε
1 − ∂xc̄

ε
2 z̄

ε
2) in (2.27). Proceeding similarly as above,

(2.28)–(2.29) yield

∥uε1 − uε2∥2ε,T ≤ ∥σ−1/2αw(∂xc̄
ε
1 z̄

ε
1 − ∂xc̄

ε
2 z̄

ε
2)∥2L2(0,T ;L2(Q))

+ ε2∥σ−1/2αw(∂txc̄
ε
1 z̄

ε
1 + ∂xc̄

ε
1∂tz̄

ε
1 − ∂txc̄

ε
2 z̄

ε
2 − ∂xc̄

ε
2∂tz̄

ε
2)∥2L2(0,T ;L2(Q)) = (i) + (ii).

Applying the triangle and Hölder’s inequality, the first term can be estimated by

(i) ≤ 2α2
maxσ

−1
min

(
∥∂xc̄ ε1∥2L4(0,T ;L∞(E))∥z

ε
1 − zε2∥2L4(0,T ;L2(Q))

+ ∥∂xc̄ ε1 − ∂xc̄
ε
2∥2L4(0,T ;L∞(E))∥z

ε
2∥2L4(0,T ;L2(Q))

)
.
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From (2.24) we further conclude that

∥∂xc̄ ε1∥2L4(0,T ;L∞(E))∥z
ε
1 − zε2∥2L4(0,T ;L2(Q)) ≤ C1T

1/2∥zε1 − zε2∥2C0([0,T ];L2(Q)),

∥∂xc̄ ε1 − ∂xc̄
ε
2∥2L4(0,T ;L∞(E))∥z

ε
2∥2L4(0,T ;L2(Q)) ≤ C2T

3/2∥zε1 − zε2∥2C0([0,T ];L2(Q)).

In the same way, we estimate

(ii) ≤ 2ε2α2
max

σmin

(
∥∂txc̄ ε1 z̄ε1 − ∂txc̄

ε
2 z̄

ε
2∥2L2(0,T ;L2(E)) + ∥∂xc̄ ε1∂tz̄ε1 − ∂xc̄

ε
2∂tz̄

ε
2)∥2L2(0,T ;L2(E))

)
,

where we applied the triangle inequality. Hölder’s inequality and (2.25) then allows us to

estimate the first term by

ε2∥∂txc̄ ε1 z̄ε1 − ∂txc̄
ε
2 z̄

ε
2∥2L2(0,T ;L2(E)) ≤ 2∥ε(∂txc̄ ε1 − ∂txc̄

ε
2 )∥2L4(0,T ;L∞(E))∥z

ε
1∥2L4(0,T ;L2(Q))

+ 2∥ε∂txc̄ ε2∥2L4(0,T ;L∞(E))∥z
ε
1 − zε2∥2L4(0,T ;L2(Q))

≤ C3T
3/2∥ε(∂tzε1−∂tzε2)∥2C0([0,T ];L2(Q)) + C4T

1/2∥zε1 − zε2∥2C0([0,T ];L2(Q)).

In a similar manner, (2.24) yields for the second term

ε2∥∂xc̄ ε1∂tz̄ε1 − ∂xc̄
ε
2∂tz̄

ε
2)∥2L2(0,T ;L2(E)) ≤ 2∥∂xc̄ ε1 − ∂xc̄

ε
2∥2L4(0,T ;L∞(E))∥ε∂tz

ε
1∥2L4(0,T ;L2(Q))

+2∥∂xc̄ ε2∥2L4(0,T ;L∞(E))∥ε(∂tz
ε
1 − ∂tz

ε
2)∥2L4(0,T ;L2(Q))

≤ C5T
3/2∥zε1 − zε2∥2C0([0,T ];L2(Q)) + C6T

1/2∥ε(∂tzε1 − ∂tz
ε
2)∥2C0([0,T ];L2(Q)).

By carefully tracking the constants, we see that C1 – C6 only depend on ∥zεi ∥C0([0,T ];L2(Q))

and ∥ε∂tzεi ∥C0([0,T ];L2(Q)), i = 1, 2, which are bounded independently of ε since zε1, z
ε
2 ∈ ST ,

as well as the bounds on the initial data and parameters that are independent of ε by

Assumption 2.2. In summary, we can thus estimate

∥uε1 − uε2∥2ε,T ≤ CT 1/2∥zε1 − zε2∥2ε,T .

Consequently, there exists a time point T sufficiently small but independent of ε so that

Φ is a contraction.

Step 1.3 (Φ has a fixed point). For T sufficiently small but independent of ε and all ε > 0

the mapping Φ has a fixed point in ST by Banach’s fixed point theorem, i.e., (2.10)–(2.19)

has a solution

uε ∈ C1([0, T ];L2(Q)) ∩ C0([0, T ];Z),

c̄ ε ∈W 1,∞(0, T ;H1(E)) ∩H2(0, T ;L2(E)) ∩H1(0, T ;H2
pw(E))

up to T that satisfies

∥uε∥2ε,T = ∥uε∥2C0([0,T ];L2(Q)) + ε2∥∂tuε∥2C0([0,T ];L2(Q)) ≤ CS ,

where CS does not depend on ε. This already proves the a-priori bounds (a) and (e).

Step 2 (A-priori bounds). Let us now verify the remaining a-priori bounds. The

bound (d) on c̄ ε directly follows from (2.24), (a), and Assumption 2.2. The bounds (b)
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and (c) are a direct consequence of (2.28), since the right-hand side can be bounded

independently of ε due to (a), (d), and Assumption 2.2, more precisely

∥σ−1/2αw∂xc̄
εūε∥L2(0,T ;L2(Q)) ≤ σ−1

minα
2
max∥∂xc̄ ε∥L2(0,T ;L∞(Q))∥ūε∥L∞(0,T ;L2(Q)) ≤ C,

where we applied Hölder’s inequality and used the embedding H1
pw(E) ↪→ L∞(E) in di-

mension d = 1. In order to verify (f), we deduce from (2.10) that

∥w∂xuε∥L2(0,T ;L2(Q)) ≤ ∥ε∂tuε∥L2(0,T ;L2(Q)) + ∥σ
ε
(uε − ūε)∥L2(0,T ;L2(Q))

+ ∥αw∂xc̄ εūε∥L2(0,T ;L2(Q)) ≤ C,

where we used that the first term on the right-hand side is bounded by (e), the second

term by (b), and the last term can be bounded as above.

Step 3 (Proof of the mass balances). We integrate (2.10) over Q and obtain

d

dt

∫
Q
ε2uε(x,w, t) d(x,w) =−

∫
Q
εw∂xu

ε(x,w, t) d(x,w) +

∫
Q
εαw∂xc̄

εūε d(x,w)

−
∫
Q
σ(x)(uε(x,w, t)− ūε(x,w, t)) d(x,w)

=−
∑

v∈V

∑
e∈E(v)

∫
W
εwuεe(v, w, t)ne(v) dw = 0,

where we used that the velocity average of uε − ūε and w∂xc̄
εūε is zero, and that the sum

over the vertices vanishes due to the reflection boundary condition (2.12) at the network

inflow boundary and the mixing condition (2.13)–(2.14) at network junctions. Integrating

over (0, t) then yields (2.21). Similarly, integrating (2.11) over E leads to

d

dt

∫
E
c̄ ε(x, t) dx =

∫
E
D∂xxc̄

ε(x, t)− δc̄ ε(x, t) + γūε(x, t) dx

=
∑

v∈V

∑
e∈E(v)

De∂xc̄
ε(v, t)ne(v) +

∫
E
γūε(x, t)− δc̄ ε(x, t) dx.

The sum over the vertices vanishes due to the no-flux boundary conditions (2.16) at the

network boundary and the coupling condition (2.18) at the network junctions. Integrating

over (0, t) proves the mass balance (2.22) for c̄ ε.

Remark 2.6. Local solutions to (2.10)–(2.19) can be extended in time with initial condi-

tions uε(T ) ∈ Z and c̄ ε(T ) ∈ H1(E). However, the time of existence T that we obtain in

the fixed point argument of the proof can go to zero. Theorem 2.3 thus only guarantees

the local existence of solutions uniformly in ε up to a time point T that is independent

of ε. However, by replacing (2.10) with

ε2∂tu
ε
e + εw∂xu

ε
e + σ(uεe − ūεe) = εαewb(∂xc̄

ε
e )ū

ε
e, in (0, ℓe)× (−1, 1)× (0, T )

on each edge e ∈ E with cut-off function b that can be chosen, e.g., as

b(u) = max(B,min(−B, u))

for some constant B > 0, one can show via energy estimates that the bounds (a) and (e)

hold for all time points T > 0, which implies the existence of global solutions.
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2. Kinetic chemotaxis and diffusion limits on networks

2.3. Asymptotic analysis

This section is dedicated to the analysis of the asymptotic behavior of solutions (uε, c̄ ε) to

(2.10)–(2.19) for ε→ 0. We first introduce the limiting problem for ε = 0, whose solution

is denoted by (ū0, c̄ 0). In a second step, we show that (uε, c̄ ε) → (ū0, c̄ 0) and then derive

quantitative convergence rates.

2.3.1. The limit problem

The limit problem of (2.10)–(2.19) for ε→ 0 is given by the classical Keller-Segel system

on networks [9, 44]. On each edge e ∈ E it holds that

∂tū
0
e − ∂x(āe∂xū

0
e − χ̄e∂xc̄

0
e ū

0
e) = 0 in (0, ℓe)× (0, T ), (2.37)

∂tc̄
0
e −De∂xxc̄

0
e + δec̄

0
e = γeū

0
e in (0, ℓe)× (0, T ) (2.38)

with network boundary conditions

āe(v)∂xū
0
e(v, t)− χ̄e(v)∂xc̄

0
e (v, t)ū

0
e(v, t) = 0 for v ∈ V∂ , e ∈ E(v), t ∈ (0, T ), (2.39)

∂xc̄
0
e (v, t) = 0 for v ∈ V∂ , e ∈ E(v), t ∈ (0, T ), (2.40)

and coupling conditions at network junctions v ∈ V0 given by

ū0ei(v, t) = ū0ej (v, t) for ei, ej ∈ E(v), t ∈ (0, T ), (2.41)

c̄ 0ei(v, t) = c̄ 0ej (v, t) for ei, ej ∈ E(v), t ∈ (0, T ), (2.42)

as well as∑
e∈E(v)

(
āe(v)∂xū

0
e(v, t)− χ̄e(v)∂xc̄

0
e (v, t)ū

0
e(v, t)

)
ne(v) = 0 for t ∈ (0, T ), (2.43)∑

e∈E(v)
De∂xc̄

0
e (v, t)ne(v) = 0 for t ∈ (0, T ). (2.44)

At the initial time, we have

ū0(0) = ūI on E , (2.45)

c̄ 0(0) = c̄I on E . (2.46)

The coefficients ā and χ̄ are defined by

āe(x) := σe(x)
−1

∫
W
w2 dw and χ̄e(x) := αeσe(x)

−1

∫
W
w2 dw (2.47)

for x ∈ (0, ℓe) and e ∈ E .

Sufficiently regular solutions (ū0, c̄ 0) that satisfy (2.37)–(2.46) in a pointwise sense, e.g.,

continuously differentiable in time and twice continuously differentiable in space, can be

characterized by the following weak formulation.
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2.3. Asymptotic analysis

Lemma 2.7. Let (ū0, c̄ 0) be a sufficiently regular solution to (2.37)–(2.46). Then,

⟨∂tū0, ψ̄⟩+ (ā∂xū
0 − χ̄∂xc̄

0ū0, ∂xψ̄)L2(0,T ;L2(E)) = 0, (2.48)

(∂tc̄
0, ϕ̄)L2(0,T ;L2(E)) + (D∂xc̄

0, ∂xϕ̄)L2(0,T ;L2(E)) (2.49)

+(δc̄ 0, ϕ̄)L2(0,T ;L2(E)) = (γū0, ϕ̄)L2(0,T ;L2(E))

holds for all test functions ψ̄, ϕ̄ ∈ L2(0, T ;H1(E)) with ⟨·, ·⟩ denoting the duality bracket

in L2(0, T ;H(E)∗)× L2(0, T ;H1(E)).

Proof. Multiplying (2.37) by ψ̄ ∈ L2(0, T ;H1(E)) and integrating over E × (0, T ) yields

0 = (∂tū
0, ψ̄)L2(0,T ;L2(E)) − (∂x(ā∂xū

0 − χ̄∂xc̄
0ū0), ψ̄)L2(0,T ;L2(E))

= (∂tū
0, ψ̄)L2(0,T ;L2(E)) + (ā∂xū

0 − χ̄∂xc̄
0ū0, ∂xψ̄)L2(0,T ;L2(E))

−
∑

v∈V

∑
e∈E(v)

∫ T

0

(
āe(v)∂xū

0
e(v, t)− χ̄e(v)∂xc̄

0
e (v, t)ū

0
e(v, t)

)
ψ̄e(v, t)ne(v) dt,

where we applied integration-by-parts in space to the second term in the first line. The

contributions at network boundary vertices v ∈ V∂ vanish due to the boundary condition

(2.39) and at interior vertices v ∈ V0 due to the coupling condition (2.43) and the fact

that ψ̄ is continuous over junctions. Consequently, (ū0, c̄ 0) satisfies (2.48) since L2(E) ⊂
H1(E)∗. Testing (2.38) with ϕ̄ ∈ L2(0, T ;H1(E)) and integrating over E × (0, T ) leads to

0 = (∂tc̄
0, ϕ̄)L2(0,T ;L2(E)) − (D∂xxc̄

0, ϕ̄)L2(0,T ;L2(E)) + (δc̄ 0 − γū0, ϕ̄)L2(0,T ;L2(E)).

Applying integration-by-parts in space to the second term yields

−(D∂xxc̄
0, ϕ̄)L2(0,T ;L2(E)) = (D∂xc̄

0, ∂xϕ̄)L2(0,T ;L2(E))

−
∑

v∈V

∑
e∈E(v)

∫ T

0
De∂xc̄

0
e (v, t)ϕ̄e(v, t)ne(v) dt.

The contributions at the boundary vertices v ∈ V∂ vanish due to the no-flux boundary

condition (2.40) and at the interior vertices v ∈ V0 due to the coupling condition (2.44)

and the fact that ϕ̄ is continuous over junctions. This shows that (ū0, c̄ 0) satisfies (2.49),

and concludes the proof.

The equations (2.48)–(2.49) are also well-defined for less regular functions. We call a

pair of functions

ū0 ∈ L2(0, T ;H1(E)) ∩H1(0, T ;H1(E)∗),
c̄ 0 ∈ L∞(0, T ;H1(E)) ∩H1(0, T ;L2(E)),

that satisfies (2.48)–(2.49) for all ψ̄, ϕ̄ ∈ L2(0, T ;H1(E)) and ū0(0) = ūI , c̄
0(0) = c̄I , a

weak solution to (2.37)–(2.46).

Theorem 2.8. Let Assumption 2.2 hold. Then, there exists a unique local weak solution

(ū0, c̄ 0) to (2.37)–(2.46). Under the additional reasonable assumption of positive initial

data, one can even guarantee the global existence of a unique weak solution.

Proof. One can show the local existence of weak solutions by Galerkin approximation,

energy estimates, and fixed point arguments. Global existence can then be verified by

deriving sharper estimates for solutions exploiting positivity and mass conservation. For

details we refer to [44, Thm. 3.1 and Thm. 3.2].
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2. Kinetic chemotaxis and diffusion limits on networks

2.3.2. Convergence to the limit problem

Let us now investigate the asymptotic behavior of (uε, c̄ ε) for ε→ 0.

Theorem 2.9. Let Assumption 2.2 hold and let (uε, c̄ ε) be the unique solution to (2.10)–

(2.19) in the sense of Theorem 2.3. Then, there exists a weakly convergent subsequence

with limit (ū0, c̄ 0) that is the (unique) weak solution to (2.37)–(2.46).

Proof. Step 1 (Convergent subsequences). From the bounds (a), (d), and (f), and the

Banach-Alaoglu Theorem, see e.g. [25], we conclude that (uε, c̄ ε) has a weakly convergent

subsequence with limit

(u0, c̄ 0) ∈ L2(0, T ;L2(Q))×H1(0, T ;L2(E)) ∩ L2(0, T ;H1(E) ∩H2
pw(E)),

so that w∂xu
0 ∈ L2(0, T ;L2(Q)) and

uε ⇀ u0 weakly in L2(0, T ;L2(Q)), (2.50)

w∂xu
ε ⇀ w∂xu

0 weakly in L2(0, T ;L2(Q)), (2.51)

c̄ ε ⇀ c̄ 0 weakly in H1(0, T ;L2(E)) ∩ L2(0, T ;H1(E) ∩H2
pw(E)). (2.52)

It further holds that H1(0, T ;L2(E)) ∩ L2(0, T ;H1(E) ∩H2
pw(E)) is compactly embedded

in L2(0, T ;H1(E)) by the Aubin-Lions lemma; see e.g. [111, Lemma 7.7]. Hence,

c̄ ε → c̄ 0 strongly in L2(0, T ;H1(E)), (2.53)

which immediately follows from (2.52). From (b) and the weakly lower semicontinuity of

norms, we can further deduce that u0 is independent of w, since

∥u0 − ū0∥L2(0,T ;L2(Q)) ≤ lim infε ∥uε − ūε∥L2(0,T ;L2(Q)) = 0.

In the following, we thus write u0 = ū0. From (2.51) we further deduce that ∂xu
0 =

∂xū
0 ∈ L2(0, T ;L2(E)). On each edge e = (0, ℓe) ∈ E let us now define the trace operator

that evaluates a function at the start or end of e by

γv : Ze → L2(W × (0, T )), ue 7→ ue(v)

for v ∈ {0, ℓe} with Ze = {ue ∈ L2(e × W × (0, T )) : w∂xue ∈ L2(e × W × (0, T ))} and

w-weighted norms associated to the spaces given by

∥ue∥2Ze
= ∥ue∥2L2(e×W×(0,T )) + ∥w∂xue∥2L2(e×W×(0,T )) and ∥|w|1/2u∥L2(W×(0,T )).

By the fundamental theorem of calculus we then see that at the start of the edge it holds

|w|ue(0)2 = |w|ue(x)2 −
∫ x

0
|w|∂x

(
ue(s)

2
)
ds = |w|ue(x)2 − 2

∫ x

0
|w|ue(s)∂xue(s) ds.

Integrating over e×W × (0, T ) and applying Hölder’s and Young’s inequality to the last

term yields

∥|w|1/2ue(0)∥2L2(W×(0,T )) ≤ (1 + ℓ−1
e )∥ue∥2L2(e×W×(0,T )) + ∥w∂xue∥2L2(e×W×(0,T )).
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2.3. Asymptotic analysis

The same holds at the end ℓe of the edge. Consequently, γv is continuous. From the fact

that uε and w∂xu
ε are bounded by (a) and (f) we can then conclude

uεe(v)⇀ ū0e(v) weakly in L2(W × (0, T ))

associated with the norm ∥|w|1/2u∥L2(W×(0,T )) for all v ∈ V, e ∈ E(v). This also allows us

to introduce the value û0v as the weak limit of ûεv which was defined as the mixing value

in (2.14) for v ∈ V0. Note that û0v does not depend on w anymore. Then, the coupling

condition (2.13) and (c) yield

∥ū0e(v)− û0v∥2L2(0,T ) = ∥|w|1/2(ū0e(v)− û0v)∥2L2(W×(0,T ))

≤ lim infε ∥|w|1/2(uεe(v)− ûεv)∥2L2(W×(0,T )) → 0

for ε→ 0 and all v ∈ V0, e ∈ E(v), i.e., ū0 is continuous across network junctions.

Step 2 (Convergence to the limit). Let us now show that the limit (ū0, c̄ 0) is the

weak solution to the limit problem (2.37)–(2.46), i.e., (ū0, c̄ 0) solves the weak formulation

(2.48)–(2.49) and satisfies ū0(0) = ūI and c̄ 0(0) = c̄I .

Step 2.1 ((ū0, c̄ 0) solves (2.49)). Let ϕ̄ ∈ L2(0, T ;H1(E)). It then holds that

(∂tc̄
0, ϕ̄)L2(0,T ;L2(E)) + (D∂xc̄

0, ∂xϕ̄)L2(0,T ;L2(E)) + (δc̄ 0 − γū0, ϕ̄)L2(0,T ;L2(E))

= limε

(
(∂tc̄

ε, ϕ̄)L2(0,T ;L2(E)) + (D∂xc̄
ε, ∂xϕ̄)L2(0,T ;L2(E)) + (δc̄ ε − γūε, ϕ̄)L2(0,T ;L2(E))

)
= 0

by (2.50) and (2.52), i.e., (ū0, c̄ 0) solves (2.49). The last equation holds by testing (2.11)

with ϕ̄ and integrating over E × (0, T ), which leads to

0 = (∂tc̄
ε, ϕ̄)L2(0,T ;L2(E)) − (D∂xxc̄

ε, ∂xϕ̄)L2(0,T ;L2(E)) + (δc̄ ε − γū0, ϕ̄)L2(0,T ;L2(E)).

Applying integration-by-parts in space to the second term then yields

−(D∂xxc̄
ε, ∂xϕ̄)L2(0,T ;L2(E)) = (D∂xc̄

ε, ϕ̄)L2(0,T ;L2(E))

−
∑

v∈V

∑
e∈E(v)

∫ T

0
De∂xc̄

ε
e (v, t)ϕ̄e(v, t)ne(v) dt.

The contributions at the boundary vertices v ∈ V∂ vanish due to the no-flux boundary

condition (2.16) and at the interior vertices v ∈ V0 due to the coupling condition (2.18)

and the fact that ψ̄ is continuous over junctions.

Step 2.2 (c̄ 0(0) = c̄I). Testing with ϕ̄0 ∈ C1([0, T ];H1(E)) so that ϕ̄0(T ) = 0 and

applying integration-by-parts in time, we can conclude from (2.49) that

0 = (∂tc̄
0, ϕ̄0)L2(0,T ;L2(E)) + (D∂xc̄

0, ∂xϕ̄0)L2(0,T ;L2(E)) + (δc̄ 0 − γū0, ϕ̄0)L2(0,T ;L2(E))

=− (c̄ 0, ∂tϕ̄0)L2(0,T ;L2(E)) − (c̄ 0(0), ϕ̄0(0))L2(E) + (D∂xc̄
0, ∂xϕ̄0)L2(0,T ;L2(E))

+ (δc̄ 0 − γū0, ϕ̄0)L2(0,T ;L2(E)).
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2. Kinetic chemotaxis and diffusion limits on networks

With similar arguments as above and by applying integration-by-parts in time we have

0 = limε

(
− (c̄ ε, ∂tϕ̄0)L2(0,T ;L2(E)) − (c̄I , ϕ̄0(0))L2(E) + (D∂xc̄

ε, ∂xϕ̄0)L2(0,T ;L2(E))

+ (δc̄ ε − γūε, ϕ̄0)L2(0,T ;L2(E))

)
=− (c̄ 0, ∂tϕ̄0)L2(0,T ;L2(E)) − (c̄I , ϕ̄0(0))L2(E) + (D∂xc̄

0, ∂xϕ̄0)L2(0,T ;L2(E))

+ (δc̄ 0 − γū0, ϕ̄0)L2(0,T ;L2(E)),

where we used that c̄ ε(0) = c̄I by (2.19). As ϕ0(0) is arbitrary, comparing the terms yields

c̄ 0(0) = c̄I . Since c̄I ∈ H1(E) by Assumption 2.2 and ū0 ∈ L2(0, T ;L2(Q)), by standard

existence and regularity theory [49] we find that, additionally, c̄ 0 ∈ L∞(0, T ;H1(E)).

Step 2.3 ((ū0, c̄ 0) solves (2.48)). Let ψ̄ ∈ C∞
0 ([0, T ];C∞

pw(E) ∩ H1(E)) with C∞
pw(E)

denoting the set of edgewise smooth functions on the network. It then holds that

(w∂xū
0, σ−1w∂xψ̄)L2(0,T ;L2(E)) = limε(w∂xu

ε, σ−1w∂xψ̄)L2(0,T ;L2(Q))

= limε

(
− (ε∂tu

ε, σ−1w∂xψ̄)L2(0,T ;L2(Q)) − (ε−1(uε − ūε), w∂xψ̄)L2(0,T ;L2(Q))

+ (αw∂xc̄
εūε, σ−1w∂xψ̄)L2(0,T ;L2(Q))

)
= limε

(
(i)ε + (ii)ε + (iii)ε

)
(2.54)

by (2.51) and (2.10). Let us consider the terms separately. Applying integration-by-parts

in time and using the fact that ψ̄ and its derivatives vanish at t = 0, T yields

(i)ε = (εuε, σ−1w∂txψ̄)L2(0,T ;L2(Q)) ≤ εσ−1
min∥u

ε∥L2(0,T ;L2(Q))∥∂txψ̄∥L2(0,T ;L2(Q)) → 0

for ε→ 0 due to (a). Since the velocity average of wūε∂xψ̄ is zero, it holds that

(ii)ε = (ε−1w∂xu
ε, ψ̄)L2(0,T ;L2(Q)) −

∑
v∈V

∑
e∈E(v)

∫ T

0

∫
W
ε−1wuεe(v, w, t)ψ̄e(v, t)ne(v) dw dt

= (ii.1)ε +
∑

v∈V
(ii.2)εv, (2.55)

where we applied integration-by-parts in space. By (2.10) the first term equals

(ii.1)ε =− (∂tu
ε, ψ̄)L2(0,T ;L2(Q)) − (ε−2σ(uε − ūε), ψ̄)L2(0,T ;L2(Q))

+ (ε−1αw∂xc̄
εūε, ψ̄)L2(0,T ;L2(Q)) = −(∂tu

ε, ψ̄)L2(0,T ;L2(Q)).

Note that the last term in the first line and the first term in the second line vanish since

their velocity average is zero. In order to estimate the second term in (2.55), we distinguish

between network boundary and interior vertices. For the former, we find by the reflection

boundary condition (2.12) at Qin
∂ that

∑
v∈V∂

(ii.2)εv = −
∫ T

0

(∫
Qin

∂

ε−1wuε(−w, t)ψ̄(t)n dw +

∫
Qout

∂

ε−1wuε(w, t)ψ̄(t)n dw
)
dt = 0.

68



2.3. Asymptotic analysis

Here, we used that ψ̄ is independent of the velocity w. At network junctions v ∈ V0, the

coupling conditions (2.13)–(2.14) and the fact that ψ̄ is continuous over the junctions yield

(ii.2)εv = −
∫ T

0
ε−1ψ̄(v, t)

(∫
Qin(v)

wuε(v, w, t)n(v) dw +

∫
Qout(v)

wûεv(w, t)n(v) dw
)
dt = 0,

since by definition of the mixing value in (2.14) it holds that∫
Qout(v)

wûεv(|w|, t)n(v) dw = −
∑

e∈E(v)

∫ 1

0
wûεv(|w|, t) dw

= −
∑

e∈E(v)

∫ 1

0
w

1

|E(v)|
(∑

e∈Ein(v)
uεe(v, |w|, t) +

∑
e∈Eout(v)

uεe(v,−|w|, t)
)
dw

= −
∑

e∈Ein(v)

∫ 1

0
wuεe(v, w, t) dw +

∑
e∈Eout(v)

∫ 0

−1
wuεe(v, w, t) dw

= −
∫
Qin(v)

wuε(v, w, t)n(v) dw,

where we used that
∑

e∈E(v) 1/|E(v)| = 1. From (2.55) we can then conclude that

(ii)ε = −(∂tu
ε, ψ̄)L2(0,T ;L2(Q)) = (uε, ∂tψ̄)L2(0,T ;L2(Q)) → (ū0, ∂tψ̄)L2(0,T ;L2(Q)) (2.56)

for ε → 0, where we applied integration-by-parts in time and used (2.50). For the third

term in (2.54) we exploit (2.50) and the fact that ∂xc̄
0 ∈ L2(0, T ;L2(Q)) in order to obtain

(iii)ε = (αw∂xc̄
0ūε, σ−1w∂xψ̄)L2(0,T ;L2(Q)) + (αw(∂xc̄

ε − ∂xc̄
0)ūε, σ−1w∂xψ̄)L2(0,T ;L2(Q))

→ (ασ−1w2∂xc̄
0ū0, ∂xψ̄)L2(0,T ;L2(Q))

for ε→ 0, where we used that the second term vanishes since

(αw(∂xc̄
ε − ∂xc̄

0)ūε, σ−1w∂xψ̄)L2(0,T ;L2(Q))

≤ ασ−1
min∥∂xc̄

ε − ∂xc̄
0∥L2(0,T ;L2(Q))∥ūε∥L2(0,T ;L2(Q))∥∂xψ̄∥L∞(0,T ;L∞(E)) → 0

for ε→ 0 which holds due to (2.53) and (a). In summary, we find that

(w∂xū
0, σ−1w∂xψ̄)L2(0,T ;L2(Q))=(ū0, ∂tψ̄)L2(0,T ;L2(Q))+(ασ−1w2∂xc̄

0ū0, ∂xψ̄)L2(0,T ;L2(Q)).

Since ∂xc̄
0 ∈ L∞(0, T ;L2(E)) and ū0 ∈ L2(0, T ;H1(E)) ⊂ L2(0, T ;L∞(E)), the term on

the left-hand side and the second term on the right-hand side are well-defined and bounded

for ψ̄ ∈ L2(0, T ;H1(E)), i.e., ū0 has a weak time derivative ∂tū
0 ∈ L2(0, T ;H1(E)∗).

Replacing ψ̄ by its representative in L2(0, T ;H1(E)) and due to the definition of the

coefficients in (2.47) we see that (ū0, c̄ 0) solves (2.48).

Step 2.4 (ū0(0) = ūI). From the above considerations, we know that

ū0 ∈ L2(0, T ;H1(E)) ∩H1(0, T ;H1(E)∗),

which yields ū0 ∈ C0([0, T ];L2(E)); see e.g. [11, Thm. II.5.12]. Consequently, evaluations

at t = 0 are well-defined. Testing (2.48) with ψ̄0 ∈ C∞([0, T ];C∞(E)) so that ∂kt ψ̄0(T ) = 0

for all k ≥ 0 and applying integration-by-parts in time yields

−(ū0, ∂tψ̄0)L2(0,T ;L2(E)) − (ū0(0), ψ̄0(0))L2(E) (2.57)

+(ā∂xū
0 − χ̄∂xc̄

0ū0,∂xψ̄0)L2(0,T ;L2(E)) = 0.
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Let us now revisit the computations from above with test function ψ̄0. Starting from

(2.54), we consider the terms (i)ε–(iii)ε separately. For the first term, we obtain

(i)ε = −(ε∂tu
ε, σ−1w∂xψ̄0)L2(0,T ;L2(Q))

= (εuε, σ−1w∂txψ̄0)L2(0,T ;L2(Q)) + (εūI , σ
−1w∂xψ̄0(0))L2(Q)

≤ εσ−1
min∥u

ε∥L2(0,T ;L2(Q))∥∂txψ̄0∥L2(0,T ;L2(E)) + εσ−1
min∥ūI∥L2(E)∥∂xψ̄0(0)∥L2(E) → 0

for ε → 0 by (a), where we used the initial condition (2.15) for uε. All computations for

(ii)ε remain valid. Starting from (2.56) it now holds that

(ii)ε = (ii.1)ε = −(∂tu
ε, ψ̄0)L2(0,T ;L2(Q)) = (uε, ∂tψ̄0)L2(0,T ;L2(Q)) + (ūI , ψ̄0(0))L2(E)

→ (ū0, ∂tψ̄0)L2(0,T ;L2(Q)) + (ūI , ψ̄0(0))L2(E)

for ε→ 0 by (2.50) and (2.15). The computations for (iii)ε are also still valid. In summary,

we obtain

(w∂xū
0, σ−1w∂xψ̄0)L2(0,T ;L2(Q)) = (ū0, ∂tψ̄0)L2(0,T ;L2(Q)) + (ūI , ψ̄0(0))L2(E)

+ (ασ−1w2∂xc̄
0ū0, ∂xψ̄0)L2(0,T ;L2(Q)),

which is by definition of the coefficients in (2.47) equivalent to

−(ū0, ∂tψ̄0)L2(0,T ;L2(E)) − (ūI , ψ̄0(0))L2(E) + (ā∂xū
0 − χ̄∂xc̄

0ū0, ∂xψ̄0)L2(0,T ;L2(E)) = 0.

Since ψ̄(0) is arbitrary, comparing with (2.57) shows that ū0(0) = ūI . This concludes the

proof of Theorem 2.9.

2.3.3. Quantitative convergence estimates

We will now establish quantitative convergence rates for (uε, c̄ ε) → (ū0, c̄ 0) under the

following additional assumptions:

(A1) σ ∈W 1,∞(E) with |σ′e(x)| ≤ σmax for all 0 ≤ x ≤ ℓe, e ∈ E ,

(A2) ā∂xūI − χ̄∂xc̄I ūI ∈ H0(div; E)

with H0(div; E) = {c̄ ∈ H1
pw(E) :

∑
e∈E(v) c̄e(v)ne(v) = 0 for all v ∈ V}. One can then

show that the weak solution to the limit problem (2.37)–(2.46) enjoys higher regularity;

see [44, Theorem 3.4].

Lemma 2.10. Let Assumption 2.2 and (A1)–(A2) hold. Then, the solution (ū0, c̄ 0) to

the limit problem (2.37)–(2.46) from Theorem 2.8 additionally satisfies

ū0 ∈ H1(0, T ;H1(E)) ∩ L2(0, T ;H2
pw(E)),

c̄ 0 ∈W 1,∞(0, T ;H1(E)) ∩ L∞(0, T ;H2
pw(E)).

Let us now state the second main result of this section.
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Theorem 2.11. Let Assumption 2.2 and (A1)–(A2) hold and let (uε, c̄ ε) be the solution

to (2.10)–(2.19) in the sense of Theorem 2.3 satisfying the bounds (a)–(f) uniformly in ε

up to the time point T and let (ū0, c̄ 0) be the corresponding solution to the limit problem

(2.37)–(2.46). Then,

∥uε − ū0∥L∞(0,T ;L2(Q)) + ∥c̄ ε − c̄ 0∥L∞(0,T ;H1(E)) ≤ Cε1/2

holds with a constant C that is independent of ε.

Proof. The proof follows the arguments in [43]. We make use of the asymptotic expansions

uε = ū0 + εu1 + ϕε with u1 := −σ−1w∂xū
0 + ασ−1w∂xc̄

0ū0,

c̄ ε = c̄ 0 + η̄ε.

These equations in fact define the remainder terms ϕε and η̄ε. Since ū0 and c̄ 0 do not

depend on ε, u1 is bounded independently of ε. By (A1) and the regularity of the limit

solution, we see that u1 ∈ H1(0, T ;L2(Q)) ∩ L2(0, T ;H1
pw(Q)). Due to the continuous

embedding H1 ↪→ C0 in dimension d = 1, pointwise evaluations in space or in time are

well-defined. It remains to show that ϕε and η̄ε tend to zero as ε → 0 with appropriate

rates.

Step 1 (Investigation of η̄ε). Inserting the expansion of c̄ ε into (2.11) and using the

fact that c̄ ε solves (2.10)–(2.19) and c̄ 0 solves (2.37)–(2.46), we find that η̄ε is solution to

∂tη̄
ε
e −De∂xxη̄

ε
e + δeη̄

ε
e = γeϕ̄

ε
e in (0, ℓe)× (0, T ),

∂xη̄
ε
e(v, t) = 0 for v ∈ V∂ , e ∈ E(v), t ∈ (0, T ),

η̄εei(v, t) = η̄εej (v, t) for v ∈ V0, ei, ej ∈ E(v), t ∈ (0, T ),∑
e∈E(v)

De∂xη
ε
e(v, t)ne(v) = 0, for v ∈ V0, t ∈ (0, T ),

η̄ε(0) = 0 on E .

Here, we used that ū1 = 0 and hence ϕ̄ε = ūε−ū0. With similar arguments as in Lemma 2.4

one can see that

∥η̄ε∥L∞(0,T ;H1(E)) + ∥∂tη̄ε∥L2(0,T ;L2(E)) + ∥∂xxη̄ε∥L2(0,T ;L2(E)) ≤ C∥ϕ̄ε∥L2(0,T ;L2(E)), (2.58)

which can be shown by appropriate energy estimates; see [44, LemmaB.1]. By the con-

tinuous embedding H1 ↪→ L∞ in dimension d = 1 we further have

∥∂xη̄ε∥L2(0,T ;L∞(E)) ≤ C∥η̄ε∥L2(0,T ;H2
pw(E)) ≤ C ′∥ϕ̄ε∥L2(0,T ;L2(E)). (2.59)

Note that all constants are independent of ε.

Step 2 (Investigation of ϕε). Since uε solves (2.10) and ū0 solves (2.37), we have

ε2∂tϕ
ε
e + εw∂xϕ

ε
e + σ(ϕεe − ϕ̄εe) = εαew∂xc̄

ε
e ū

ε
e − ε2∂tū

0
e − εw∂xū

0
e

− ε3∂tu
1
e − ε2w∂xu

1
e − εσ(u1e − ū1e) = f εe
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2. Kinetic chemotaxis and diffusion limits on networks

with right-hand side defined by

f εe := εαew(∂xc̄
ε
e ū

ε
e − ∂xc̄

0
e ū

0
e)− ε2

(
∂x(āe∂xū

0
e − χ̄eū

0
e∂xc̄

0
e ) + w∂xu

1
e

)
− ε3∂tu

1
e.

Here, we used the fact that ū1 = 0 and εσu1 = −εw∂xū0 + εαwū0∂xc̄
0. Note that by

regularity of (uε, c̄ ε) and (ū0, c̄ 0) it holds that f ε ∈ L2(Q). At the network inflow boundary

(v, w) ∈ Qin
∂ we deduce from the reflection boundary condition (2.12) for uε that

ϕεe(v, w) = uεe(v, w)− ū0e(v)− εu1e(v, w) = uεe(v,−w)− ū0e(v) = ϕεe(v,−w).

Here, we used that u1(v, w) = u1(v,−w) = 0 due to the boundary condition (2.39) for

(ū0, c̄ 0) and the definition of ā and χ̄ in (2.47). At the junctions v ∈ V0 of the network,

the coupling conditions (2.13)–(2.14) and (2.41) for uε and ū0 yield

ϕεe(v, w) = ûεv(|w|)− ū0e(v)− εu1e(v, w)

=
1

|E(v)|

(∑
e′∈Ein(v)

ϕεe′(v, |w|) +
∑

e′∈Eout(v)
ϕεe′(v,−|w|)

)
− εu1e(v, w)

for (e, w) ∈ Qout(v). We additionally used that by (2.43) and (2.47) we have∑
e∈Ein(v)

u1e(v, |w|) +
∑

e∈Eout(v)
u1e(v,−|w|, t)

= |w|
∑

e∈E(v)

(
− σ−1

e (v)∂xū
0
e(v, t) + αeσ

−1
e (v)ū0e(v, t)∂xc̄

0
e (v, t)

)
ne(v) = 0.

Consequently, the remainder ϕε solves the following system: On each edge e ∈ E it holds

ε2∂tϕ
ε
e + εw∂xϕ

ε
e + σe(ϕ

ε
e − ϕ̄εe) = f εe in (0, ℓe)× (−1, 1)× (0, T ) (2.60)

with inflow boundary conditions

ϕεe(v, w, t) = ϕεe(v,−w, t) for (v, w) ∈ Qin
∂ , e ∈ E(v), t ∈ (0, T ), (2.61)

coupling conditions at v ∈ V0

ϕεe(v, w, t) = ϕ̂εv(|w|, t)− εu1e(v, w, t) for (e, w) ∈ Qout(v), t ∈ (0, T ) (2.62)

with mixing value

ϕ̂εv(|w|, t) =
1

|E(v)|
(∑

e∈Ein(v)
ϕεe(v, |w|, t) +

∑
e∈Eout(v)

ϕεe(v,−|w|, t)
)
, (2.63)

and initial condition

ϕε(0) = −εu1(0) on Q. (2.64)

Step 3 (Energy estimates for ϕε). By multiplying (2.60) with ϕεe, integrating over

(0, ℓe)× (−1, 1)× (0, t) with 0 ≤ t ≤ T and summing over all edges e ∈ E , we obtain

ε2

2
∥ϕε(t)∥2L2(Q) −

ε2

2
∥ϕε(0)∥2L2(Q) + ∥σ1/2(ϕε − ϕ̄ε)∥2L2(0,t;L2(Q)) (2.65)

= −
∑

v∈V

∑
e∈E(v)

∫ t

0

∫
W

ε

2
w|ϕεe(v, w, s)|2ne(v) dw ds+ (f ε, ϕε)L2(0,t;L2(Q))

= (i) + (ii).
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We proceed by estimating the two terms on the right-hand side.

Estimation of (i). At the network inflow boundary Qin
∂ condition (2.61) yields

−
∑

v∈V∂

∫ t

0

∫
W

ε

2
w|ϕεe(v, w, s)|2ne(v) dw dt

= −
∫ t

0

(∫
Qin

∂

ε

2
w|ϕεe(−w, s)|2 n dw +

∫
Qout

∂

ε

2
w|ϕεe(w, s)|2 n dw

)
ds = 0.

At junctions v ∈ V0, however, by using the coupling condition (2.62) we find that

−
∑

e∈E(v)

∫ t

0

∫
W

ε

2
w|ϕεe(v, w, s)|2ne(v) dw ds = −

∫ t

0

(∫
Qin(v)

ε

2
w|ϕεe(v, w, s)|2n(v) dw

+

∫
Qout(v)

ε

2
w
∣∣ϕ̂εv(|w|, s)− εu1e(v, w, s)

∣∣2n(v) dw) ds = (a) + (b)

The term (b) can be further split into

(b) = −
∫ t

0

∫
Qout(v)

ε

2
w
(
|ϕ̂εv(|w|, s)|2 − 2εu1e(v, w, s)ϕ̂

ε
v(|w|, s) + |εu1e(v, w, s)|2

)
n(v) dw ds

= (b1) + (b2) + (b3).

The definition of the mixing value in (2.63) and Jensen’s inequality enable us to estimate

(b1) =
∑

e∈E(v)

∫ t

0

∫ 1

0

ε

2
w|ϕ̂εv(|w|, s)|2 dw ds

≤
∫ t

0

( ∑
e∈Ein(v)

∫ 1

0

ε

2
w|ϕεv(v, w, s)|2 dw +

∑
e∈Eout(v)

∫ 1

0

ε

2
w|ϕεv(v,−w, s)|2 dw

)
ds

=

∫ t

0

∫
Qin(v)

ε

2
w|ϕεv(v, w, s)|2 n(v) dw,

where we used that ϕ̂εv does not depend on e ∈ E(v). Consequently, (a) + (b1) ≤ 0. Since

u1 = −σ−1w∂xū
0 + ασ−1wū0∂xc̄

0, we have

(b2) =

∫ t

0

(∫ 1

0
ε2w2ϕ̂εv(|w|, s) dw ·

∑
e∈E(v)

(
− σ−1

e (v)∂xū
0
e(v, s)

+αeσ
−1
e (v)ū0e(v, s)∂xc̄

0
e (v, s)

)
ne(v)

)
ds = 0.

The sum vanishes due to the coupling condition (2.43) for (ū0, c̄ 0) and the definition of the

coefficients ā and χ̄ in (2.47). Since u1 is bounded independently of ε by Lemma 2.10, the

remaining term can be estimated by (b3) ≤ Cε3 with a constant C that does not depend

on ε. In summary, we conclude that (i) ≤ Cε3.

Estimation of (ii). Using the fact that f̄ ε = 0 since w∂xu1 = −∂x(ā∂xū0 − χ̄ū0∂xc̄
0)

and ū1 = 0, the second term can be expanded by

(f ε, ϕε)L2(0,t;L2(Q)) = (f ε, ϕε − ϕ̄ε)L2(0,t;L2(Q))

≤ 1
2∥σ

−1/2f ε∥2L2(0,t;L2(Q)) +
1
2∥σ

1/2(ϕε − ϕ̄ε)∥2L2(0,t;L2(Q)),
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2. Kinetic chemotaxis and diffusion limits on networks

where we applied Hölder’s and Young’s inequality. The last term can be absorbed into

the right-hand side of (2.65). Now, dividing (2.65) by ε2, and using our findings for (i)

and (ii) we obtain

∥ϕε(t)∥2L2(Q) ≤ ∥ϕε(0)∥2L2(Q) + Cε+ ε−2∥σ−1/2f ε∥2L2(0,t;L2(Q)).

It remains to estimate the norm of f ε for which the triangle inequality yields

ε−2∥σ−1/2f ε∥2L2(0,t;L2(Q)) ≤ ∥σ−1/2αw(∂xc̄
εūε − ∂xc̄

0ū0)∥2L2(0,t;L2(Q))

+ ε2∥σ−1/2∂x(ā∂xū
0 − χ̄ū0∂xc̄

0) + σ−1/2w∂xu1∥2L2(0,t;L2(Q))

+ ε4∥σ−1/2∂tu1∥2L2(0,t;L2(Q))

= (c1) + (c2) + (c3).

The third term can be estimated by (c3) ≤ O(ε4) since ∂tu1 is bounded independently

of ε by construction and Lemma 2.10. Similarly, the second term can be estimated by

(c2) ≤ O(ε2) since ū0 and c̄ 0 as well as their derivatives are bounded independently of ε.

It remains to investigate the first term for which we find that

(c1) ≤ α2
maxσ

−1
min

(
∥∂xc̄ ε − ∂xc̄

0∥2L2(0,t;L∞(E))∥u
ε∥2L∞(0,t;L2(Q))

+ ∥∂xc̄ 0∥2L∞(0,t;L∞(E))∥ū
ε − ū0∥2L2(0,t;L2(E))

)
.

Note that ∂xc̄
0 ∈ L∞(0, t;L∞(E)) due to the regularity of c̄ 0 in Lemma 2.10 and the

continuous embedding H1 ↪→ L∞ in dimension d = 1. Moreover, ∥uε∥2L∞(0,t;L2(Q)) ≤ C by

the a-priori bound (a). By the definition of the remainder η̄ε we have

∥∂xc̄ ε − ∂xc̄
0∥2L2(0,t;L∞(E)) = ∥∂xη̄ε∥2L2(0,t;L∞(E)) ≤ C∥ϕ̄ε∥2L2(0,t;L2(E)) ≤ C∥ϕε∥2L2(0,t;L2(Q)),

where we additionally used (2.59). Moreover, using that ϕ̄ε = ūε− ū0 due to the definition

of ϕε and the fact that ū1 = 0, we can estimate

∥ūε − ū0∥2L2(0,t;L2(E)) = ∥ϕ̄ε∥2L2(0,t;L2(E)) ≤ ∥ϕε∥2L2(0,t;L2(Q)).

In summary, we thus obtain

∥ϕε(t)∥2L2(Q) ≤ ∥ϕε(0)∥2L2(Q) + Cε+ C ′
∫ t

0
∥ϕε(s)∥2L2(Q) ds.

By (2.64) and the definition of u1 we have ∥ϕε(0)∥2L2(Q) = ∥εu1(0)∥2L2(Q) ≤ Cε2. Note

that pointwise evaluations of u1 in time are well-defined due to the regularity of the limit

solution; see Lemma 2.10. Applying Grönwall’s Lemma [116, Lemma 2.7] then yields

∥ϕε(t)∥2L2(Q) ≤ C ′′ε

with a constant C ′′ that is independent of ε. From (2.58) we can then deduce that

∥c̄ ε − c̄ 0∥L∞(0,T ;H1(E)) = ∥η̄ε∥L∞(0,T ;H1(E)) ≤ C∥ϕ̄ε∥L2(0,T ;L2(E)) ≤ C ′′ε1/2.

This concludes the proof of Theorem 2.11.

We are now at the end of our investigations for the kinetic chemotaxis on networks.

Some open problems arose in the course of this chapter, which will be discussed in the

following.
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2.4. Discussion and outlook

Let us end this chapter with a short discussion of open problems and possible future

research directions.

Existence of global solutions. In Theorem 2.3 we only proved the local existence

of solutions up to a time point T that is, however, independent of ε. The proof was

based on energy estimates and fixed point arguments. We expect the need for other

techniques in order to verify global existence of solutions. In [44], the Keller-Segel model

on networks was investigated and global solutions were derived by highly exploiting the

positivity and mass conservation property that led to sharper bounds on solutions, which

were crucial for the proof. In [71], the global existence of solutions for a general class

of kinetic models for chemotaxis on the real line with velocity space W = {−1, 1} was

proven by deriving sharper estimates via the fundamental solution to the heat equation

and the Fourier transform. However, the assumptions on the tumbling kernel therein are

not satisfied by our model. Let us also refer to [59, 61] where a hyperbolic-parabolic model

for chemotaxis on networks was studied and global existence of solutions was derived for

small initial data or positive solutions. The possible extension of these results leaves room

for future research.

Optimal asymptotic convergence. In the asymptotic convergence result in Theo-

rem 2.11 we lose a factor O(ε1/2) at the network junctions in the estimation of (i) in Step 3

of the proof. A similar phenomenon also appeared in [43], where the stationary monoki-

netic linear transport problem on a domain in dimension d = 3 with Dirichlet boundary

data and its asymptotic convergence to the diffusion limit were investigated. With L2-

energy estimates, the same convergence reduction appeared at the domain boundary but

could be overcome by an alternative L∞-analysis. It seems not surprising that our analysis

also leads to a convergence reduction, but it might be possible to apply similar techniques

to restore the full order.

General coupling conditions. Our coupling conditions for the kinetic model (2.10)–

(2.19) are a special case of the more general ones proposed in [10]. More precisely, the

coupling for the chemoattractant c̄ ε is identical, whereas a more general mixing condition

is prescribed for the bacteria density uε, i.e., at v ∈ V0 it is assumed that

uεe(v, w, t) =
∑

e′∈Ein(v)
ξve,e′u

ε
e′(v, |w|, t) +

∑
e′∈Eout(v)

ξve,e′u
ε
e′(v,−|w|, t)

holds for (e, w) ∈ Qout(v) and t > 0 with ξve,e′ ≥ 0 and
∑

e∈E(v) ξ
v
e,e′ = 1 ensuring the

conservation of mass at junctions. Our coupling conditions correspond to the choice

ξve,e′ = 1/|E(v)|. Similar general mixing conditions were considered in [14, 61]. The exten-

sion of our results to these more general coupling conditions could be of interest.

Numerical approximation. So far, we have not considered a proper numerical ap-

proximation of the kinetic chemotaxis model on networks. In particular, the asymptotic

behavior of discrete solutions toward the diffusion limit is of interest. Galerkin methods

based on PN -like approximations could be investigated; we refer to [42] where the sta-

tionary radiative transfer equation on a domain in dimension d = 2, 3 was considered.
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The transfer to networks where coupling conditions play a crucial role and the asymptotic

behavior for ε → 0 needs to be studied. In [10] the numerical approximation of a kinetic

model for chemotaxis on networks via relaxation methods was considered and a suitable

incorporation of the coupling at network junctions was proposed. The diffusion limit,

i.e., the Keller-Segel model on networks, was investigated in [9, 44], where the numerical

treatment by a finite volume and a finite element approach was considered, respectively.

Finally, the consideration of other kinetic equations (on networks) and corresponding

asymptotic investigations leave room for further research; let us refer to the survey [101].
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3
Gas transport in pipe networks

The modeling, simulation, and optimization of gas transport in pipe networks are of high

practical and scientific interest. In the course of the energy transition, new challenges

arise which make fundamental research in this field even more important. This chapter

contributes to the analysis and numerical approximation of transient gas flow models and

their simplifications, which then in turn can be useful for the operation and optimal control

of gas networks [15, 78, 98].

Problem setting

We consider the non-isothermal Euler system with friction and heat exchange with the

surroundings on a single pipe of length ℓ. The balance equations for mass, momentum,

and energy are given by

a∂tρ+ ∂xm = 0, (3.1)

∂tm+ ∂x(aρv
2 + ap) = − λ

2d
|m|v, (3.2)

∂tE + ∂x(v(E + ap)) = −αa
d
(θ − θ0)− λ

2d
|m|v2, (3.3)

see [15]. The space- and time-dependent variables of interest are the gas density ρ, the

gas velocity v and mass flux m = aρv, the gas pressure p, its temperature θ, and the

total energy density E = 1
2aρv

2 + aρe with e being the specific internal energy. The

parameters a and d denote the cross-sectional area and diameter of the pipe, whereas λ

and α are the friction and heat transfer coefficients. The ambient temperature is given

by θ0 and is assumed to be constant. To close the system, we prescribe e, p, and θ as

functions of density ρ and specific entropy s via

e = e(ρ, s) with p = ∂ρe(ρ, s)ρ
2 and θ = ∂se(ρ, s). (3.4)

We refer to [17, 58] for further details on the thermodynamic modeling.

The typical situation in networks is long pipes and time scales motivating the rescaling

x→ x/ε2 and t→ t/ε2 with a scaling parameter ε > 0 that is assumed to be small. After
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the division by ε2 in (3.1)–(3.3) we see that λ/ε2 → λ = O(1/ε2) and α/ε2 → α = O(1/ε2),

i.e., friction and heat exchange with the ambient medium are large. Let us now introduce

the following rescaled quantities

τ = εt, w =
1

ε
v, γ = ε2

λ

2d
, β = ε2α

a

d
,

which correspond to a long time, low Mach, as well as the large friction and heat transfer

regime. This leads to the following rescaled non-isothermal gas transport model

a∂τρ+ ∂xm = 0, (3.5)

ε2∂τm+ ∂x(ε
2aρw2 + ap) = −γ|m|w, (3.6)

ε3∂τE
ε + ε3∂x(w(E

ε + ap)) = −β(θ − θ0)− ε3γ|m|w2 (3.7)

with rescaled total energy density Eε = 1
2ε

2aρw2 + aρe(ρ, s). Details on the rescaling can

be found in [15]. In the limit ε → 0 the third equation (3.7) reduces to θ = θ0, i.e., an

isothermal regime. In this case, the specific entropy s can be expressed as a function of the

density ρ by (3.4) and so can the internal energy e and the pressure p. The two remaining

equations (3.5)–(3.6) then yield the following parabolic system

a∂τρ+ ∂xm = 0, (3.8)

a∂xp = −γ|m|w, (3.9)

that is closed via the state relation p = p(ρ). This model is widely used in the community to

model gas transport in long pipes and pipe networks [3]. Existence results are established

both on a single pipe [30, 105] and on networks [113] based on a reformulation of (3.8)–

(3.9) into a single doubly degenerate parabolic equation of second-order. The uniqueness

of solutions is a more delicate issue and seems to be not completely settled yet; see [113]

and the discussion therein. Since ε3 converges faster to zero than ε2, an intermediate

simplification is given by the rescaled isothermal Euler system with friction

a∂τρ+ ∂xm = 0, (3.10)

ε2∂τm+ ∂x(ε
2aρw2 + ap) = −γ|m|w. (3.11)

The formal rescaling in the isothermal regime for gas pipelines and networks has also

been investigated in [98]. Local existence of smooth solutions for appropriate data and

constitutive relations can be guaranteed for both the non-isothermal and the isothermal

model; see [95] and the references therein. An investigation for the isothermal gas transport

in pipe networks is given in [62]. Due to the stabilizing effect of large friction and heat

transfer, solutions in gas pipelines and networks are expected to remain smooth for all

time. A rigorous justification of this observation seems to be missing up to date.

Isothermal gas transport

In the first part of this chapter, we consider the isothermal gas transport in pipe net-

works. We assume that (3.10)–(3.11) are satisfied on each pipe. In order to prescribe
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the behavior at entries, exits, and junctions of the network, appropriate boundary and

coupling conditions are required; see e.g. [35, 106]. As a basis for the analysis and nu-

merical approximation of our model problem, we use a suitable weak characterization of

solutions that turns out to have the structure of a dissipative Hamiltonian system. This

particular structure allows for a simple proof of global balance laws. We refer to [92, 118]

for similar structures that arise in the context of port-Hamiltonian modeling. The stabil-

ity of solutions with respect to perturbations in parameters and data, in particular the

asymptotic behavior of solutions for ε → 0, has been studied in [37]. The key for the

investigations therein was the underlying energy structure of the problem which allowed

the use of so-called relative energy estimates to measure the distances between (perturbed)

solutions and by that derive stability. Relative energy estimates are a well-known tool for

the analysis of quasi-linear evolution problems. A summary of results concerning parabolic

equations can be found in [75] and an introduction to the application for hyperbolic bal-

ance laws in [26]. An example for the investigation of asymptotic limits via relative energy

estimates is given in [52], where low Mach limits of Euler and Navier-Stokes equations are

considered. The parabolic limit to the isothermal Euler equations with linear damping

was also studied in [74, 87, 91].

Main contributions

Let us now give an overview of the main contributions presented in this chapter. The

focus lies on a suitable numerical approximation of the isothermal gas transport that

preserves the underlying structure of the problem. This in turn yields the foundation for a

convergence analysis. In the second part, we investigate the non-isothermal gas transport

and extend some results from the isothermal case.

Structure-preserving discretization of the isothermal gas transport

The first main contribution of this chapter is the proposition and rigorous analysis of a

suitable numerical method for the isothermal gas transport model (3.10)–(3.11) on pipe

networks. The results have been published in

H. Egger, J. Giesselmann, T. Kunkel, and N. Philippi. An asymptotic-

preserving discretization scheme for gas transport in pipe networks. IMA

J. Numer. Anal., 2022.

The variational formulation of model equations allows for a structure-preserving discretiza-

tion via Galerkin projection [36]. For the spatial discretization, we use a mixed finite ele-

ment approach and approximate the density ρ with a piecewise constant function ρh and

the mass flux m with a piecewise linear function mh. The method is then complemented

by the implicit Euler time-stepping leading to a fully discrete scheme that resembles the

standard approximation for related wave propagation problems [57, 73]. A closely related

scheme for isothermal flow problems on networks has been proposed in [35, 36]; also see

[18, 90] for similar approaches. Our method is formally asymptotic preserving, i.e., by
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3. Gas transport in pipe networks

setting ε = 0 we obtain a viable approximation of the parabolic limit problem (3.8)–(3.9)

on networks. A rigorous convergence analysis leads to the following error estimate

∥ρ(τn)− ρnh∥2L2 + ε2∥m(τn)−mn
h∥2L2 +

n∑
k=1

∆τ∥m(τk)−mk
h∥3L3 ≤ C(h2 +∆τ2) (3.12)

with h and ∆τ being the spatial and temporal mesh size, respectively, and ρnh, m
n
h the

discrete solutions at the time point τn. This result holds under the assumption of subsonic

flow and sufficiently smooth solutions, which are in particular bounded away from the

vacuum. Moreover, no shocks or discontinuities are allowed, which is reasonable for gas

flow in pipe networks where typical flow velocities are around 10 − 20m/s [98]. Let us

stress that the error estimate (3.12) holds uniformly for all ε ≥ 0 sufficiently small, in

particular also for the limit ε = 0. The key for the proof is the preserved energy structure

of the method that allows us to derive discrete stability of the scheme via relative energy

estimates, where we closely follow the continuous stability analysis derived in [37]. Relative

energy techniques have been successfully used for the analysis of numerical schemes in

the literature, we refer to [50, 54, 84] and [7] for the application to the compressible

Navier-Stokes equations and to the Euler equations in the large friction limit, respectively.

Numerical tests demonstrate the validity of the error estimate (3.12).

Extension to the non-isothermal gas transport

The second part of this chapter is dedicated to the extension of some ideas and results

for the isothermal gas transport in pipe networks to the non-isothermal regime. The

content is first presented in this thesis. On each pipe, we assume that (3.5)–(3.7) hold

and complement the equations by suitable boundary conditions at the network boundary

and coupling conditions at interior junctions that ensure basic physical principles, i.e.,

conservation of mass, no energy production, and no entropy dissipation. The choice of

the correct set of coupling conditions, however, seems to be not fully settled. We refer

to [22, 23, 65, 86] for different proposals and corresponding investigations. The system

(3.5)–(3.7) can be reformulated and a corresponding variational characterization of smooth

solutions turns out to have a similar “energy structure” as the isothermal model, which

allows for a simple proof of global balance laws. A rigorous stability and asymptotic

analysis, however, is not yet available and left for future research.

We then focus on a suitable numerical approximation. We propose a structure-preserving

discretization via a Galerkin method based on the variational formulation, which extends

the mixed finite element scheme for the isothermal gas transport. For the approximation

of the additional entropy transport we use a hybrid discontinuous Galerkin approach that

is particularly well-suited for handling coupling conditions at network junctions; see Chap-

ter 1 and [39]. By setting ε = 0 we obtain a viable scheme for the parabolic limit problem.

Moreover, discrete global balance laws are valid and the method can be shown to dissipate

energy under the assumption of subsonic flow bounded away from vacuum. Numerical

tests on a simple network are presented for illustration. An error analysis in the spirit of

the isothermal gas approximation might be possible but remains to be investigated. Our
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3.1. Isothermal gas transport

approach is not standard for the numerical approximation of inviscid compressible flow

problems, which has been studied intensively in the literature. Finite volume methods are

most commonly used and a rather complete theory has been developed for scalar conser-

vation laws. Only partial results are however available for systems; we refer to [81, 88]

and the references therein. A higher-order generalization of finite volume schemes is pro-

vided by discontinuous Galerkin methods [31]. For the approximation of gas flow in pipe

networks, finite volume methods based on local Riemann solvers are a common approach.

We refer to [93] for the application to the isothermal Euler system. The extension to the

non-isothermal regime, however, seems not fully settled; some approaches in this direction

can be found in [13, 65].

Outline

In Section 3.1 we introduce the isothermal gas transport model on pipe networks and

investigate its basic properties. Moreover, we revisit some results from [37] and present the

main assumptions that will be made throughout the first part of this chapter. Section 3.2

is dedicated to the numerical approximation of the isothermal gas transport. The main

result is the rigorous error estimate (3.12) of our proposed mixed finite element method.

We then focus on the extension of ideas and results to the non-isothermal gas transport.

The model problem on pipe networks and its basic properties are presented in Section 3.3,

whereas a suitable structure-preserving discretization is proposed in Section 3.4 and the

proof of discrete global balance laws is given therein. We conclude this chapter with some

numerical tests illustrating our theoretical findings, which are presented in Section 3.5.

3.1. Isothermal gas transport

In this section, we consider the isothermal gas transport in pipe networks. We present the

model problem and introduce suitable coupling conditions at network junctions. Then,

basic properties as well as the asymptotic behavior of solutions are investigated under

suitable assumptions that are reasonable for gas flow in pipe networks.

3.1.1. Preliminaries

Let us first introduce the notation which will be used throughout this chapter and present

a transformation of the model equations.

Notation and function spaces

Following the notation from previous publications [39] and Chapter 1.1.1, we represent

the gas network by a finite, directed, and connected graph G = (V, E) with vertices

V = {v1, . . . , vm} and edges or pipes E = {e1, . . . , el} ⊂ V × V. We allow for a rather
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3. Gas transport in pipe networks

general topology that, in particular, can include cycles. Every pipe is identified by an

interval (0, ℓe) with ℓe depicting its length. For each vertex v ∈ V we collect all incident

edges in the set E(v) = {e ∈ E : e = (v, ·) or e = (·, v)}. Moreover, the set of vertices

is split into the sets of boundary vertices V∂ = {v ∈ V : |E(v)| = 1} and interior vertices

V0 = V\V∂ with |E(v)| denoting the cardinality of E(v). To each edge e = (vi, vj) we

associate two numbers ne(vi) = −1 and ne(vj) = 1 to indicate its start and end vertex,

and we set ne(v) = 0 for all v ∈ V\{vi, vj}. An illustration of a network is given in Fig-

ure 3.1. Let us further introduce the space of square-integrable functions on the network

v1 v2

v3

v4 v5

v6

e1

e2 e3

e4

e5e6

Figure 3.1.: A network with edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), e4 = (v4, v5),

e5 = (v4, v6), and e6 = (v6, v2), boundary vertices V∂ = {v1, v5}, and interior

vertices V0 = {v2, v3, v4, v6}. The set E(v2) = {e1, e2, e6} contains all incident

edges to the vertex v2.

by L2(E) = {u : ue ∈ L2(0, ℓe) for all e ∈ E} with ue = u|e. The corresponding scalar

product and norm are given by

(u,w)L2(E) =
∑

e∈E
(u,w)L2(0,ℓe) and ∥u∥2L2(E) = (u, u)L2(E),

and we will make use of the short-hand notation (u,w)E = (u,w)L2(E). Other Lp spaces

on networks can be defined in the same way. Occasionally, we abbreviate∫
E
u(x) dx =

∑
e∈E

∫ ℓe

0
ue(x) dx.

Similarly, we define by Hk
pw(E) = {u : ue ∈ Hk(0, ℓe) for all e ∈ E} the broken Sobolev

spaces on the network with associated scalar products and norms

(u,w)Hk
pw(E) =

∑
e∈E

(u,w)Hk
pw(0,ℓe), ∥u∥2Hk

pw(E) = (u, u)Hk
pw(E).

By standard embedding theory for fractional Sobolev spaces [28], functions in Hk
pw(E) are

continuous along edges for k > 1/2 but may be discontinuous at network junctions. We

thus denote by H1(E) the corresponding space of functions in H1
pw(E) that are additionally

continuous across junctions. Each u ∈ H1(E) then takes a unique value u(v) at v ∈ V
which belongs to the space ℓ2(V) of possible vertex values.

Transformation of model equations

In the following, we transform the rescaled isothermal gas transport model (3.10)–(3.11)

into a system having the structure of a dissipative Hamiltonian system. By the chain rule
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3.1. Isothermal gas transport

of differentiation, it holds that

ε2∂τw = ε2∂τ

(m
aρ

)
=
ε2

aρ
∂τm− ε2

aρ2
m∂τρ

= − 1

aρ

(
∂x
(
ε2aρw2 + ap(ρ)

)
+ γ|m|w

)
+

ε2

a2ρ2
m∂xm

= − ε2

aρ
∂x(wm) +

ε2

aρ
w∂xm− 1

ρ
∂xp(ρ)− γ|w|w

= −ε
2

2
∂xw

2 − 1

ρ
∂xp(ρ)− γ|w|w,

where we used (3.10)–(3.11) and the fact that ∂x(wm) = w∂xm + ∂xwm, as well as

w∂xw = 1
2∂xw

2. We further introduce the pressure potential

P : R+ → R, P (ρ) := ρ

∫ ρ

1

p(r)

r2
dr,

for which we find that

∂xP
′(ρ) = ∂x

(∫ ρ

1

p(r)

r2
dr +

p(ρ)

ρ

)
=
p(ρ)

ρ2
∂xρ+

∂xp(ρ)

ρ
− p(ρ)

ρ2
∂xρ =

∂xp(ρ)

ρ
.

We can then replace (3.11) by

ε2∂τw + ∂x
(ε2
2
w2 + P ′(ρ)

)
= −γ|w|w.

By introducing a new variable h = hε := ε2

2 w
2 + P ′(ρ) being the total specific enthalpy of

the system, we finally obtain the following reformulated equations

a∂τρ+ ∂xm = 0, (3.13)

ε2∂τw + ∂xh
ε = −γ|w|w. (3.14)

For solutions that are sufficiently regular, both systems (3.10)–(3.11) and (3.13)–(3.14)

are equivalent.

3.1.2. Model problem

We assume that (3.13)–(3.14) hold on each pipe e ∈ E of the network, i.e.,

ae∂τρe + ∂xme = 0, (3.15)

ε2∂τwe + ∂xh
ε
e = −γe|we|we (3.16)

for 0 < x < ℓe, e ∈ E , and τ > 0 with

me = aeρewe and hεe =
ε2

2
w2
e + P ′(ρe). (3.17)

At the boundary vertices, we prescribe Dirichlet data for the total specific enthalpy, i.e.,

hεe(v, τ) = ĥv∂(τ), v ∈ V∂ , e ∈ E(v), τ > 0. (3.18)
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3. Gas transport in pipe networks

In order to couple the solutions across the network junctions, we require that∑
e∈E(v)

me(v, τ)ne(v) = 0, v ∈ V0, τ > 0, (3.19)

hεe(v, τ) = ĥεv(τ), v ∈ V0, e ∈ E(v), τ > 0. (3.20)

An additional degree of freedom ĥεv has been introduced at all junctions v ∈ V0 in order to

enforce continuity of the total specific enthalpy hε. The coupling conditions (3.19)–(3.20)

ensure the conservation of mass and energy at interior vertices. A pair of functions

ρ, w ∈ C1([0, τmax];L
2(E)) ∩ C0([0, τmax];H

1
pw(E))

is called a classical solution of (3.15)–(3.20) up to time τmax > 0 if the above equations

are satisfied in a pointwise sense. Note that the mass flux m(τ) lies in the space

H(div; E) = {r ∈ H1
pw(E) :

∑
e∈E(v)

re(v)ne(v) = 0 ∀ v ∈ V0} (3.21)

of functions in H1
pw(E) that are additionally conserved at network junctions for all τ > 0.

3.1.3. Weak formulation

The analysis and numerical approximation of the model problem (3.15)–(3.20) is based on

the following weak characterization of solutions.

Lemma 3.1. Let (ρ, w) be a classical solution to (3.15)–(3.20). Then,

(a∂τρ(τ), q)E + (∂xm(τ), q)E = 0, (3.22)

(ε2∂τw(τ), r)E − (hε(τ), ∂xr)E + (γ|w(τ)|w(τ), r)E = −
∑

v∈V∂

ĥv∂(τ)re(v)ne(v) (3.23)

holds for all q ∈ L2(E), r ∈ H(div; E) and τ > 0.

Proof. Multiplying (3.15)–(3.16) with suitable test functions q ∈ L2(E) and r ∈ H(div; E),
integrating over each edge e ∈ E , and summing up immediately yields the first equation

(3.22). In order to verify the second equation (3.23), we additionally apply integration-

by-parts to the second term, i.e.,

(∂xh
ε, r)E = −(hε, ∂xr)E +

∑
v∈V

∑
e∈E(v)

hεe(v)re(v)ne(v).

The contributions at interior vertices v ∈ V0 vanish due to the continuity condition (3.20)

for hε and the fact that r ∈ H(div; E).

Note that the coupling condition (3.19) for the mass flux is strongly enforced in the

space H(div; E), whereas the coupling condition (3.20) for the total specific enthalpy is

weakly imposed in the variational formulation (3.22)–(3.23) via integration-by-parts.
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3.1. Isothermal gas transport

3.1.4. Basic properties

The associated physical energy of the system (3.15)–(3.20) is given by the functional

Hε(ρ, w) :=
∑

e∈E

∫ ℓe

0
ae

(ε2
2
ρe(x)w

2
e(x) + P (ρe(x))

)
dx. (3.24)

The state variables (ρ, w) and co-state variables (hε,m), also called energy and co-energy

variables, are linked via the variational derivatives of the energy functional, i.e.,

δρHε(ρ, w) = ahε and δwHε(ρ, w) = ε2m. (3.25)

This reveals the underlying “energy structure” of the system (3.22)–(3.23), which can also

be written in the following abstract form

Cε∂τu+ (J +R(u))zε(u) = b∂ , (3.26)

zε(u) = (Cε)−1(Hε)′(u) (3.27)

with state variables u = (ρ, w), co-state variables zε(u) = (hε,m), and operators

⟨Cεu, v⟩ := (aρ, q)E + (ε2w, r)E , ⟨J zε(u), v⟩ := (∂xm, q)E − (hε, ∂xq)E ,

⟨R(u)zε(u), v⟩ := (γ|w|w, r)E , ⟨b∂ , v⟩ := −
∑

v∈V∂

ĥv∂re(v)ne(v).

Here, v = (q, r) is a time-independent test function and ⟨·, ·⟩ denotes the duality bracket

for the corresponding function spaces. The operator Cε is positive definite, J is skew-

symmetric, and R(u) is positive semi-definite. This structure turns out to be essential for

our analysis and can be preserved under Galerkin projection. Moreover, it allows for a

simple proof of the following global balance laws.

Lemma 3.2. Any classical solution (ρ, w) to (3.15)–(3.20) satisfies

d

dτ

∫
E
aρ(x, τ) dx = −

∑
v∈V∂

me(v, τ)ne(v), (3.28)

d

dτ
Hε(ρ(τ), w(τ)) +D(ρ(τ), w(τ)) = −

∑
v∈V∂

ĥv∂(τ)me(v, τ)ne(v) (3.29)

with dissipation functional

D(ρ, w) :=

∫
E
aγρ(x)|w(x)|3 dx. (3.30)

Consequently, mass is conserved up to flux over the network boundary and a change in

total energy is only caused by friction at pipe walls and flux over the boundary.

Proof. The mass balance (3.28) immediately follows by testing (3.22) with q = 1. The con-

tributions at interior vertices then vanish since m ∈ H(div; E). By formal differentiation

of the energy functional and exploiting the identities (3.25), we find that

d

dτ
Hε(ρ, w) = (δρHε, ∂τρ)E + (δwHε, ∂τw)E = (ahε, ∂τρ)E + (ε2m, ∂τw)E

= (hε, ∂xm)E − (γ|w|w,m)E −
∑

v∈V∂

ĥv∂re(v)ne(v)− (∂xm,h
ε)E ,

where we used (3.22)–(3.23) in the third identity. The first and the last term on the

right-hand side cancel. This yields the energy identity (3.29).
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3. Gas transport in pipe networks

3.1.5. Main assumptions

For the analysis of the isothermal gas transport, we make the following assumptions.

(A1) The pressure potential P : R+ → R is smooth and strongly convex with

P ′′(ρ) ≥ cP , (3.31)

which holds for all relevant densities
¯
ρ ≤ ρ ≤ ρ̄ for constants ρ̄,

¯
ρ > 0.

(A2) The parameters a and γ are edgewise constant and bounded by 0 <
¯
a ≤ ae ≤ ā and

0 <
¯
γ ≤ γe ≤ γ̄ for all e ∈ E . Moreover, ε is constant and bounded by 0 ≤ ε ≤ ε̄. It

further holds that

ρP ′′(ρ) ≥ 4ε̄2|w|2 (3.32)

for all
¯
ρ ≤ ρ ≤ ρ̄ and |w| ≤ 3w̄/2.

(A3) For all 0 ≤ ε ≤ ε̄ there exists a classical solution (ρ, w) of (3.15)–(3.20) that satisfies

0 <
¯
ρ ≤ ρe(x, τ) ≤ ρ̄ and |we(x, τ)| ≤ w̄

for all 0 ≤ x ≤ ℓe, e ∈ E and 0 ≤ τ ≤ τmax. We call such solutions subsonic bounded

state solutions.

In order to obtain quantitative convergence rates, we additionally assume higher regularity

of the solution in the analysis of the numerical scheme in Section 3.2.

(A4) The solutions in (A3) are bounded independently of ε in W 2,∞(0, τmax;L
2(E))2 and

W 1,∞(0, τmax;H
1(E))2.

Remark 3.3. Assumption (A1) implies strict monotonicity of the pressure function p(ρ)

since P ′′(ρ) = p′(ρ)/ρ, which is a natural thermodynamic requirement and guarantees

that the isothermal Euler equations are a hyperbolic system [26, Ch. 4.8]. The speed of

sound is defined as c(ρ) =
√
p′(ρ) =

√
ρP ′′(ρ); see [58, Ch.III.1]. Hence, the assumptions

(A2) and (A3) ensure that the flow is subsonic. Note that (3.32) is automatically satis-

fied for ε̄ ≤ 1
3w̄

√
¯
ρcP . Moreover, the densities are bounded away from the vacuum. In

this case, exactly one boundary condition at each end of every pipe is needed; see [123].

Consequently, (3.18)–(3.20) give the correct number of boundary and coupling conditions.

Under standard operating conditions in a gas network, solutions are assumed to be suf-

ficiently smooth. Moreover, the scaling suggests that solutions are close to the parabolic

model for which solutions exist under suitable assumptions on parameters and data; we

refer to [113]. Assumptions (A3)–(A4) can thus be considered reasonable.

3.1.6. Relative energy

Under the assumptions (A1)–(A2), the energy functional Hε defined in (3.24) is uniformly

convex with respect to an ε-weighted L2-norm, which will be shown in Lemma 3.4 below.
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3.1. Isothermal gas transport

This important property allows us to use the concept of relative energy in order to measure

the distance between exact and perturbed solutions to (3.15)–(3.20). Let u = (ρ, w) and

û = (ρ̂, ŵ) be two pairs of functions. The relative energy is then defined as

Hε(u|û) := Hε(u)−Hε(û)− ⟨(Hε)′(û), u− û⟩ (3.33)

and equals the second-order remainder of the Taylor expansion of Hε. Before we collect

important properties, we introduce the following ε-weighted norms

∥u∥2ε := ∥ρ∥2L2(E) + ε2∥w∥2L2(E) and ∥u∥ε,∞ := ∥ρ∥L∞(E) + ε∥w∥L∞(E) (3.34)

that will be used throughout this chapter.

Lemma 3.4. Let assumptions (A1)–(A2) hold. Then, the energy functional Hε defined

in (3.24) is well-defined, smooth and uniformly convex on the set of admissible states

AS := {(ρ, w) ∈ L∞(E)2 :
¯
ρ ≤ ρ ≤ ρ̄, |w| ≤ 3w̄/2}

with respect to the ε-weighted L2-norm defined in (3.34). It further holds that

crel∥u− û∥2ε ≤ Hε(u|û) ≤ Crel∥u− û∥2ε for all u, û ∈ AS, (3.35)

i.e., the relative energy is positive and introduces a distance measure that is equivalent to

∥ · ∥2ε. Moreover, for all x ∈ L∞(E)2, y ∈ L2(E)2 it holds that〈
((Hε)′′(u)− (Hε)′′(û))x, y

〉
≤ C∥u− û∥ε∥x∥ε,∞∥y∥ε. (3.36)

The constants crel, Crel, C only depend on the bounds in the assumptions (A1)–(A2).

Proof. Let us first prove that Hε is uniformly convex and that the lower bound in (3.35)

holds. In order to show the latter, we define F (s) := Hε(su+ (1− s)û) for 0 ≤ s ≤ 1. By

Taylor’s theorem and the chain rule, we find that

Hε(u|û) = F (1)− F (0)− F ′(0) = 1
2F

′′(s∗) = 1
2⟨(H

ε)′′(u∗)(u− û), (u− û)⟩ (3.37)

holds for some 0 < s∗ < 1 and u∗ := s∗u + (1 − s∗)û, which lies in the set AS due to its

convexity. An closer investigation of (Hε)′′ reveals that

(Hε)′′(u) =

(
δρρHε δρwHε

δwρHε δwwHε

)
=

(
aP ′′(ρ) aε2w

aε2w aε2ρ

)
. (3.38)

Using this, Young’s inequality, and the assumptions (A1)–(A2), we can estimate

(u− û)⊤(Hε)′′(u∗)(u− û) = aP ′′(ρ∗)(ρ− ρ̂)2 + 2aε2w∗(ρ− ρ̂)(w − ŵ) + aε2ρ∗(w − ŵ)2

≥ aP ′′(ρ∗)(ρ− ρ̂)2 − νaε2 |w
∗|2
ρ∗ (ρ− ρ̂)2 − 1

νaε
2ρ∗(w − ŵ) + aε2ρ∗(w − ŵ)2

≥ (1− ν
4 )aP

′′(ρ∗)(ρ− ρ̂)2 + (1− 1
ν )aε

2ρ∗(w − ŵ)2

≥ (1− ν
4 )¯
acP (ρ− ρ̂)2 + (1− 1

ν )¯
aε2

¯
ρ(w − ŵ)2.
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3. Gas transport in pipe networks

By integrating over all edges e ∈ E and choosing ν = 2 we obtain the uniform convexity of

Hε with respect to ∥ ·∥ε as well as the lower bound in (3.35) with crel = min(
¯
acP /2,

¯
a
¯
ρ/2).

The upper bound in (3.35) readily follows from (3.37)–(3.38) using the fact that P is

smooth, the bounds in AS, and Hölder’s and Young’s inequality. It remains to prove the

second assertion (3.36). It holds that

⟨(Hε)′′(u)− (Hε)′′(û))x, y⟩ = (a(P ′′(ρ)− P ′′(ρ̂))x1, y1)E + (aε2(w − ŵ)x1, y2)E

+ (aε2(w − ŵ)x2, y1)E + (aε2(ρ− ρ̂)x2, y2)E

≤ Cā∥ρ− ρ̂∥L2(E)∥x1∥L∞(E)∥y1∥L2(E) + ā∥ε(w − ŵ)∥L2(E)∥x1∥L∞(E)∥εy2∥L2(E)

+ā∥ε(w − ŵ)∥L2(E)∥εx2∥L∞(E)∥y1∥L2(E) + ā∥ρ− ρ̂∥L2(E)∥εx2∥L∞(E)∥εy2∥L2(E),

where we used that P is smooth and its derivatives are bounded on AS. By the definition

of the ε-weighted norms, we can conclude (3.36).

3.1.7. Asymptotic analysis

For completeness and later reference, let us recall the main result of [37], where the general

stability of solutions to (3.15)–(3.20) with respect to perturbations in model parameters

and initial and boundary data was studied. We present the asymptotic estimate, which

is a special case of the more general stability estimate given in [37, Thm. 18], and provide

a brief sketch of the proof since similar techniques will later be used for the convergence

analysis of the proposed numerical method in Section 3.2.

Theorem 3.5. Let (A1)–(A3) hold and let (ρε, wε) and (ρ0, w0) be classical solutions

to (3.15)–(3.20) for ε > 0 and ε = 0, respectively, having the same boundary data h∂
and initial data ρε(0) = ρ0(0) and wε(0) = w0(0). Moreover, let (ρ0, w0) be bounded in

W 1,∞(0, τmax;L
∞(E))2 and let additionally w0 be bounded in L∞(0, τmax;H

1
pw(E)). Then,

∥ρε(τ)− ρ0(τ)∥2L2(E) + ε2∥wε(τ)− w0(τ)∥2L2(E) +

∫ τ

0
∥wε(s)− w0(s)∥3L3(E) ds ≤ C0e

c0τε3

holds for all 0 < τ < τmax. Moreover, if |wε|, |w0| ≥
¯
w > 0, then

∥ρε(τ)− ρ0(τ)∥2L2(E) + ε2∥wε(τ)− w0(τ)∥2L2(E) +

∫ τ

0
∥wε(s)− w0(s)∥2L2(E) ds ≤ C ′

0e
c′0τε4.

All constants only depend on the bounds in (A1)–(A3) and the bounds on (ρ0, w0).

Sketch of the proof. We only sketch the main ideas of the proof, which is based on the

abstract energy structure (3.26)–(3.27) that allows us to use the relative energy introduced

in (3.33) for measuring the distance between the two solutions (ρε, wε) and (ρ0, w0). We

can understand the solution to the parabolic limit problem as a perturbed solution to

(3.26)–(3.27) for ε > 0, i.e., u0 = (ρ0, w0) solves

Cε∂τu
0 + (J +R(u0))zε(u0) = b∂ + res0, (3.39)

zε(u0) = (Cε)−1(Hε)′(u0) (3.40)
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3.2. Numerical approximation of the isothermal gas transport

with residual

⟨res0, v⟩ := (ε2∂τw
0, r)E − ( ε

2

2 (w
0)2, ∂xr)E (3.41)

defined for test functions v = (q, r) ∈ L2(E)×H(div; E). Now, formally differentiating the

relative energy Hε(uε|u0) with respect to time yields

d

dτ
Hε(uε|u0) = ⟨(Hε)′(uε)− (Hε)′(u0), ∂τu

ε − ∂τu
0⟩ (3.42)

+ ⟨(Hε)′(uε)− (Hε)′(u0)− (Hε)′′(u0)(uε − u0), ∂τu
0⟩.

Using the fact that uε and u0 solve (3.26)–(3.27) and (3.39)–(3.40), respectively, the first

term equals

⟨(Hε)′(uε)−(Hε)′(u0), ∂τu
ε − ∂τu

0⟩ = ⟨Cε∂τu
ε − Cεu0, zε(uε)− zε(u0)⟩

= −⟨R(uε)−R(u0), zε(uε)− zε(u0)⟩+ ⟨res0, zε(uε)− zε(u0)⟩,

where we used the skew-symmetry of J and the fact that both problems have the same

boundary data. The statements of Theorem 3.5 then immediately follow from the norm

equivalence for the relative energy (3.35) and by applying Grönwall’s Lemma, see e.g.

[116, Lemma 2.7], to (3.42) under the following three assumptions:

(E1) ⟨(Hε)′(uε)− (Hε)′(u0)− (Hε)′′(u0)(uε − u0), ∂τu
0⟩ ≤ C1Hε(uε|u0),

(E2) −⟨R(uε)−R(u0), zε(uε)− zε(u0)⟩ ≤ C2Hε(uε|u0)− 2D(uε|u0),

(E3) ⟨res0, zε(uε)− zε(u0)⟩ ≤ C3Hε(uε|u0) +D(uε|u0) + C4ε
3

with relative dissipation functional defined by

D(uε|u0) := 1
8

∑
e∈E

∫ ℓe

0
aeγeρ

0
e(|wε

e|+ |w0
e |)(wε

e − w0
e)

2 dx ≥ 1
8¯
a
¯
γ
¯
ρ∥wε − w0∥3L3(E). (3.43)

Let us note that if |wε|, |w0| ≥
¯
w > 0, then D(uε|u0) can alternatively be estimated by

D(uε|u0) ≥ 1
4¯
a
¯
γ
¯
ρ
¯
w∥wε − w0∥2L2(E). (3.44)

The estimate (E3) of the residual can then be improved to C5ε
4 instead of C4ε

3 leading

to the better asymptotic estimate stated in Theorem 3.5. Let us stress that the additional

dissipation provided by friction is crucial for the stability of the problem. For the sake of

completeness the verification of (E1)–(E3) is presented in Appendix A.1.

3.2. Numerical approximation

For the discretization of the isothermal gas transport model (3.15)–(3.20), we propose

a mixed finite element method for the spatial semi-discretization complemented by an

implicit Euler time-stepping. As we will see, this allows to preserve the underlying energy

structure of the problem. The content of this section is based on our publication [38].
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3. Gas transport in pipe networks

3.2.1. Mesh and approximation spaces

On every edge e ∈ E we define the spatial grid points by xie = ihe for i = 0, . . . ,Me with

local and global mesh sizes he = ℓe/Me and h = maxe∈E he, respectively. The complete

spatial mesh is then given by

Th = {T i
e = (xi−1

e , xie) : i = 1, . . . ,Me, e ∈ E}

and we introduce the approximation spaces on Th by

Qh = P0(Th) and Rh = P1(Th) ∩H(div; E)

with Pk being the space of piecewise polynomials of degree ≤ k. The space Qh consists

of piecewise constant densities, whereas the space Rh contains all piecewise linear fluxes

that are continuous within edges and satisfy the conservation condition (3.19) at network

junctions. We further denote by Πh : L2(E) → Qh and Ih : H(div; E) → Rh the L2-

orthogonal projection and the linear interpolation operator, which are defined via∫
T
q −Πhq dx = 0 for all T ∈ Th, q ∈ L2(E),

Ihr(x
i
e) = r(xie) for all i = 0, . . . ,Me, e ∈ E , r ∈ H(div; E).

Let us note that the conservation property (3.19) is preserved under linear interpolation,

i.e., Ihr ∈ H(div; E). For the time discretization, we make use of the discrete time points

τn = n∆τ, n = 0, . . . , N with ∆τ = τmax/N . The backward difference quotient is denoted

by d̄τu
n = (un − un−1)/∆τ , where we abbreviate un = u(τn).

3.2.2. Structure-preserving discretization scheme

For the approximation of the solution to (3.15)–(3.20), we propose the following method.

Problem 3.6. Let ρ0h = Πhρ(0), m
0
h = Ihm(0). Then, for n = 1, . . . , N find ρnh ∈ Qh,

mn
h ∈ Rh so that

(ad̄τρ
n
h, qh)E + (∂xm

n
h, qh)E = 0, (3.45)

(ε2d̄τw
n
h , rh)E − (hnh, ∂xrh)E + (γ|wn

h |wn
h , rh)E = −

∑
v∈V∂

ĥv∂(τ)re(v)ne(v) (3.46)

holds for all qh ∈ Qh and rh ∈ Rh. For abbreviation, we introduced

wn
h = wh(ρ

n
h,m

n
h) =

mn
h

aρnh
and hnh = hεh(ρ

n
h,m

n
h) =

ε2

2

(mn
h

aρnh

)2
+ P ′(ρnh). (3.47)

Remark 3.7. The above scheme (3.45)–(3.47) preserves the energy structure of the weak

formulation (3.22)–(3.23) and can thus be written as an abstract system of the form

(3.26)–(3.27). Basic properties like the balance laws in Lemma 3.2 are thus conserved as

we will see below. The coupling conditions at network junctions are incorporated just

like in the weak formulation, i.e., the conservation condition (3.19) on the mass flux m is
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3.2. Numerical approximation of the isothermal gas transport

strongly enforced in the space Rh whereas the continuity condition (3.20) on the enthalpy

h is weakly imposed in (3.46). Moreover, by formally setting ε = 0 we obtain a viable

scheme for the parabolic limit problem, which, however, does not coincide with the method

proposed in [113] that is based on a reformulation of the model equations into a single

parabolic equation of second-order.

For the rest of this section, we make the following additional assumption.

(A3h) There exists a discrete solution (ρnh,m
n
h)0≤n≤N to Problem 3.6 that satisfies

¯
ρ ≤ ρnh(x) ≤ ρ̄ and |wn

h(x)| ≤ 3w̄/2

for all 0 ≤ x ≤ ℓe, e ∈ E and n = 0, . . . , N with wh = mh
aρh

.

This assumption allows us to estimate distances between discrete solutions via the relative

energy since (ρnh, w
n
h) ∈ AS, i.e., the statements of Lemma 3.4 are valid. Moreover, global

balance laws immediately hold for the discrete solution.

Lemma 3.8. Let (A1)–(A2) and (A3h) hold with (ρnh,m
n
h)0≤n≤N being a corresponding

solution to Problem 3.6. Then,∫
E
ad̄τρ

n
h(x) dx = −

∑
v∈V∂

mn
h(v)ne(v), (3.48)

d̄τHε(ρnh, w
n
h) +D(ρnh, w

n
h) ≤ −

∑
v∈V∂

ĥv∂(τ
n)mn

h(v)ne(v) (3.49)

holds for all n = 1, . . . , N with dissipation functional defined in (3.30).

Proof. The discrete mass balance (3.48) immediately follows by testing (3.45) with qh = 1.

The contributions for interior vertices vanish since mn
h ∈ H(div; E). Let us abbreviate

unh = (ρnh, w
n
h) in the following. Due to the convexity of Hε on AS we have

Hε(unh)−Hε(un−1
h ) ≤ ⟨(Hε)′(unh), u

n
h − un−1

h ⟩.

From this we can conclude that

d̄τHε(ρnh, w
n
h) ≤ (δρHε(ρnh, w

n
h), d̄τρ

n
h)E + (δwHε(ρnh, w

n
h), d̄τw

n
h)E

= (hnh, ad̄τρ
n
h)E + (mn

h, ε
2d̄τw

n
h)E

= −(hnh, ∂xm
n
h)E + (hnh, ∂xm

n
h)E − (γ|wn

h |wn
h ,m

n
h)E −

∑
v∈V∂

ĥv∂(τ
n)mn

h(v)ne(v)

= −D(ρnh, w
n
h)−

∑
v∈V∂

ĥv∂(τ
n)mn

h(v)ne(v).

Here, we used the variational identities (3.25) for the energy as well as the equations

(3.45)–(3.46). Since d̄τρ
n
h and ∂xm

n
h are piecewise constant, d̄τρ

n
h = ∂xm

n
h holds pointwise

due to (3.45), i.e., we can test (3.45) with any L2-function. This proves (3.49).

91



3. Gas transport in pipe networks

3.2.3. Uniform error estimate

We are now in the position to state the main result of this section.

Theorem 3.9. Let (A1)–(A4) hold with (ρ, w) being a corresponding subsonic bounded

state solution to (3.15)–(3.20) and m = aρw. Moreover, let (A3h) hold with (ρnh,m
n
h) being

a corresponding discrete solution to Problem 3.6. Then,

∥ρ(τn)− ρnh∥2L2(E) + ε2∥m(τn)−mn
h∥2L2(E) +

n∑
k=1

∆τ∥m(τk)−mk
h∥3L3(E) ≤ C(h2 +∆τ2)

holds for all n = 1, . . . , N with a constant C that only depends on the bounds in the

assumptions, but not on ε, h or ∆τ .

Remark 3.10. Since the constant C in the above statement is independent of ε, the error

estimate holds uniformly in ε, in particular also in the limit ε = 0. We thus obtain optimal

convergence behavior which is asymptotically preserved. The validity of the Theorem,

however, is conditional on the existence of a subsonic bounded state solution to (3.15)–

(3.20) and a discrete solution to Problem 3.6 satisfying Assumption (A3h). In practical

computations, the latter can be checked explicitly.

3.2.4. Proof of the uniform error estimate

The proof of Theorem 3.9 is based on relative energy estimates exploiting the preserved

energy structure of the numerical method, which allows us to proceed similarly as in the

proof of Theorem 3.5. Let us first give the key steps (Step 1 – Step 3). The proofs of

Lemma 3.13 and Lemma 3.15 stated in Step 3, which are quite technical, are postponed

to Section 3.2.5.

Step 1 (Error splitting). Following the standard procedure in the error analysis for

Galerkin methods, we introduce projections

ρ̂nh = ρ̂h(τ
n) := Πhρ(τ

n) and m̂n
h = m̂h(τ

n) := Ihm(τn)

of the exact solution (ρ,m). Recall that Πh is the L2-orthogonal projection onto Qh and

Ih the piecewise linear interpolation onto Rh. By applying the triangle inequality we can

then split the error into a projection error and a discrete error component, i.e.,

∥ρ(τn)− ρnh∥Lp(E) ≤ ∥ρ(τn)− ρ̂nh∥Lp(E) + ∥ρ̂nh − ρnh∥Lp(E), (3.50)

∥m(τn)−mn
h∥Lp(E) ≤ ∥m(τn)− m̂n

h∥Lp(E) + ∥m̂n
h −mn

h∥Lp(E) (3.51)

for 1 ≤ p ≤ ∞. Both components are now estimated separately in Step 2 and Step 3.

Step 2 (Estimation of the projection error). The following estimates can be

derived by standard arguments; see e.g. [12, Ch. 4] or [72, App.C].
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3.2. Numerical approximation of the isothermal gas transport

Lemma 3.11. Let z ∈W 1,p(T ) for T ∈ Th and 1 ≤ p ≤ ∞. Then,

∂x(Ihz) = Πh(∂xz), ∥Πhz∥L∞(T ) ≤ ∥z∥L∞(T ), and ∥Ihz∥L∞(T ) ≤ ∥z∥L∞(T ). (3.52)

Furthermore,

∥z −Πhz∥Lp(T ) ≤ Ch∥∂xz∥Lp(T ) and ∥z − Ihz∥Lp(T ) ≤ C ′h∥∂xz∥Lp(T ) (3.53)

hold with constants C,C ′ that are independent of z, p and h.

Proof. The first property in (3.52), also known as commuting diagram property, follows

from the properties of the projections and the fundamental theorem of calculus, i.e.,

Πh(∂xz) = h−1
T

∫
T
Πh(∂xz) dx = h−1

T

∫
T
∂xz dx = h−1

T

(
z(xi)− z(xi−1)

)
= ∂x(Ihz)

with T = (xi−1, xi) and hT = xi − xi−1. Since Πhz is constant, it holds that Πhz = z(ξ)

for some ξ ∈ T . Due to the definition of Ih we have |Ihz(x)| ≤ max(|z(xi)|, |z(xi−1)|) for
x ∈ T . From this, we can immediately deduce the L∞-bounds on the projections. The

error estimates (3.53) can be shown by standard arguments and found in the references

stated above.

From the previous lemma, we can derive estimates for the projection error components.

Lemma 3.12. Let (A1)–(A4) hold. Then, for all n = 1, . . . , N it holds that

∥ρ(τn)− ρ̂nh∥2L2(E) + ε2∥m(τn)− m̂n
h∥2L2(E) +

n∑
k=1

∆τ∥m(τk)− m̂k
h∥3L3(E) ≤ Ch2 (3.54)

with a constant C that only depends on the bounds in the assumptions but not on ε, h

or ∆τ . Moreover, the projections are bounded by
¯
ρ ≤ ρ̂nh ≤ ρ̄ and |m̂n

h| ≤ āρ̄w̄. For any

0 < h ≤ h0 sufficiently small it further holds that |ŵn
h | ≤ 3w̄/2 with ŵn

h = m̂n
h/aρ̂

n
h.

Proof. Since the network is the sum of the elements T ∈ Th, the first two terms in (3.54)

can immediately be estimated by the previous lemma using the extra regularity of the

exact solution provided by (A4) as well as the bounds in (A3). For the third term in

(3.54) we see that∑n

k=1
∆τ∥m(τk)− m̂k

h∥3L3(E) ≤
∑n

k=1
∥m(τk)− m̂k

h∥L∞(E)∥m(τk)− m̂k
h∥2L2(E)

≤ 2Cτmaxāρ̄w̄h
2,

where we exploit the fact that
∑n

k=1∆τ = τmax as well as the bounds on m and m̂n
h and

the projection error estimates (3.53). The bounds on ρ̂nh and m̂n
h immediately follow from

the construction of the projections, the bounds (3.52), and assumption (A3). Using the

triangle inequality, we can estimate ŵn
h by

∥ŵn
h∥L∞(E) ≤ ∥w(τn)− ŵn

h∥L∞(E) + ∥w(τn)∥L∞(E),

where the latter term is bounded by w̄ due to (A3). For the former term, we find that

∥w(τn)− ŵn
h∥L∞(E) ≤

1

¯
a
¯
ρ
∥m(τn)− m̂n

h∥L∞(E) +
āρ̄w̄

¯
ρ2

∥ρ(τn)− ρ̂nh∥L∞(E) ≤ Ch

by (3.53) and (A3)–(A4). For sufficiently small h we obtain the desired bounds on ŵn
h .
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Step 3 (Estimation of the discrete error). The main challenge for our analysis

is the estimation of the discrete error components. We proceed similarly to the proof of

the asymptotic estimates in Theorem 3.5. We use the relative energy (3.33) to measure

the distance between (ρnh,m
n
h) and the projections (ρ̂nh, m̂

n
h), which are both in the set

AS of admissible states for sufficiently small 0 < h ≤ h0 due to (A3h) and the bounds

in Lemma 3.12. We understand the projections as perturbed solutions to Problem 3.6

satisfying (3.45)–(3.46) with residuals on the right-hand side defined by

⟨resn1 , qh⟩ := (ad̄τ ρ̂
n
h, qh)E + (∂xm̂

n
h, qh)E , (3.55)

⟨resn2 , rh⟩ := (ε2d̄τ ŵ
n
h , rh)E − (ĥnh, ∂xrh)E + (γ|ŵn

h |ŵn
h , rh)E +

∑
v∈V∂

ĥv∂(τ
n)qh(v)ne(v) (3.56)

for qh ∈ Qh, rh ∈ Rh with ŵn
h = m̂n

h/aρ̂
n
h and ĥnh = 1

2ε
2(ŵn

h)
2 + P ′(ρ̂nh). We now first

estimate the discrete time derivative of the relative energy by exploiting the energy struc-

ture of the problem. In the second step, we successively give estimates for all appearing

terms. Finally, the application of a discrete Grönwall-type lemma yields the desired error

estimate.

Lemma 3.13. Let (A1)–(A2) hold and let ukh, û
k
h ∈ AS for k = n− 1, n. Then,

d̄τHε(unh|ûnh) ≤ ⟨(Hε)′(unh)− (Hε)′(ûnh)− (Hε)′′(ûnh)(u
n
h − ûnh), d̄τ û

n
h⟩ (3.57)

+ ⟨(Hε)′(unh)− (Hε)′(ûnh), d̄τu
n
h − d̄τ û

n
h⟩

+ C∥d̄τ ûnh∥ε,∞
(
Hε(unh|ûnh) +Hε(un−1

h |ûn−1
h )

)
+ C ′∥d̄τ ûnh∥ε,∞∥ûnh − ûn−1

h ∥2ε

is valid with constants C, C ′ that are independent of ε, ∆τ and ukh, û
k
h.

The proof of this technical result is postponed to Section 3.2.5.

Remark 3.14. Note that the first two lines also appeared in the estimate of the continuous

time derivative of the relative energy in (3.42). The additional terms in the last line of

(3.57) are thus perturbations caused by the time discretization. Let us also mention that

the above result only depends on strong convexity and smoothness of the energy functional

but not on the particular functions ukh, û
k
h.

It now remains to estimate the terms on the right-hand side of (3.57). The first two

lines also appear in (3.42) and we exploit the energy structure of (3.45)–(3.46) as we have

done in the proof of Theorem 3.5. This leads to the following estimate. Since the proof is

quite technical it will also be postponed in Section 3.2.5.

Lemma 3.15. Under the assumptions of Theorem 3.9 it holds that

d̄τHε(unh|ûnh) ≤ CHε(unh|ûnh) + C ′Hε(un−1
h |ûn−1

h ) + 1
∆τ (h− ĥh, ρh − ρ̂h)E

∣∣τn
τn−1

(3.58)

+ C ′′(h2 +∆τ2)− 1
2D(unh|ûnh)

for all 0 ≤ n ≤ N with unh = (ρnh,m
n
h), û

n
h = (ρ̂nh, m̂

n
h), and relative dissipation functional

defined in (3.43). Note that h is the total specific enthalpy of the exact solution (ρ, w).
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We are now in the position to complete the proof of Theorem 3.9. By multiplying (3.58)

with ∆τ and summing over the time steps, we obtain

Hε(unh|ûnh) ≤ Hε(u0h|û0h) + ∆τ
∑n

k=1

(
C1Hε(ukh|ûkh) + C2Hε(uk−1

h |ûk−1
h ) (3.59)

+ C3(h
2 +∆τ2)− 1

2D(ukh|ûkh)
)
+ (h− ĥh, ρh − ρ̂h)E

∣∣τn
0
.

The last term in the second line vanishes at τ = 0 since ρ0h = ρ̂0h. By Hölder’s and Young’s

inequality, we further deduce that

(h(τn)− ĥnh, ρ
n
h − ρ̂nh)E ≤ 1

2c
−1
rel∥h(τ

n)− ĥnh∥2L2(E) +
1
2crel∥ρ

n
h − ρ̂nh∥2L2(E)

≤ C4h
2 + 1

2H
ε(unh|ûnh), (3.60)

where we used the norm equivalence for the relative energy (3.35) as well as the fact that

∥h(τn)− ĥnh∥L2(E) ≤ Cε2∥w(τn)− ŵn
h∥L2(E) + C ′∥ρ(τn)− ρ̂nh∥L2(E)

≤ C ′′ε2∥m(τn)− m̂n
h∥L2(E) + C ′′′∥ρ(τn)− ρ̂nh∥L2(E) ≤ C ′′′′h

holds by the projection error estimates and bounds in Lemma 3.12 as well as (A1)–(A4)

with constants that only depend on the bounds in the assumptions. The last term in (3.60)

can be absorbed into the left-hand side (3.59). We can now apply the discrete Grönwall

Lemma A.1 with

an = Hε(unh|ûnh), bn = 2τmaxC3(h
2 +∆τ2) + C4h

2, c = 2max(C1, C2), d
n = D(unh|ûnh).

Since a0 = 0 by the choice of initial data, bn ≥ 0 and nτ ≤ τmax, we obtain

Hε(unh|ûnh) + ∆τ
∑n

k=1
D(ukh|ûkh) ≤ C(h2 +∆τ2)

with a constant C that only depends on the bounds in the assumptions and τmax but is

independent of ε. The equivalence of norms for the relative energy (3.35) and the estimate

for the relative dissipation functional (3.43) then yield

∥ρnh − ρ̂nh∥2L2(E) + ε2∥wn
h − ŵn

h∥2L2(E) +
∑n

k=1
∆τ∥wn

h − ŵn
h∥3L3(E) ≤ C ′(h2 +∆τ2).

Due to the uniform boundedness of ρnh, ρ̂
n
h and wn

h , ŵ
n
h , the same estimate holds for wn

h , ŵ
n
h

replaced by mn
h, m̂

n
h. Together with the estimate for the projection error in Lemma 3.12,

the error splitting (3.50)–(3.51) yields the final error estimate and concludes the proof of

Theorem 3.9.

3.2.5. Proof of the technical results

Let us now present the proofs of Lemma 3.13 and Lemma 3.15.
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Proof of Lemma 3.13

For ease of notation, we write H = Hε. In the first step, we rearrange the terms and apply

Taylor’s theorem leading to

d̄τH(unh|ûnh) = 1
∆τ

(
H(unh)−H(un−1

h )−H(ûnh) +H(ûn−1
h )

− ⟨H′(ûnh), u
n
h − ûnh⟩+ ⟨H′(ûn−1

h ), un−1
h − ûn−1

h ⟩
)

= ⟨H′(unh), d̄τu
n
h⟩ − ∆τ

2 ⟨H′′(u∗h) d̄τu
n
h, d̄τu

n
h⟩ − ⟨H′(ûnh), d̄τ û

n
h⟩+ ∆τ

2 ⟨H′′(û∗h) d̄τ û
n
h, d̄τ û

n
h⟩

− ⟨H′(ûnh), d̄τu
n
h − d̄τ û

n
h⟩ − 1

∆τ ⟨H
′(ûnh)−H′(ûn−1

h ), un−1
h − ûn−1

h ⟩,

where u∗h := ξunh + (1 − ξ)un−1
h and û∗h := ξ̂ûnh + (1 − ξ̂)ûn−1

h denote intermediate values

for some ξ, ξ̂ ∈ (0, 1). Note that u∗h, û
∗
h ∈ AS. As the next step we add and subtract the

terms ⟨H′(unh), d̄τ û
n
h⟩, ⟨d̄τH′(ûnh), u

n
h − ûnh⟩, and ⟨H′′(ûnh)(u

n
h − ûnh), d̄τ û

n
h⟩, which yields

d̄τH(unh|ûnh) = ⟨H′(unh)−H′(ûnh), d̄τu
n
h − d̄τ û

n
h⟩ (3.61)

+ ⟨H′(unh)−H′(ûnh)−H′′(ûnh)(u
n
h − ûnh), d̄τ û

n
h⟩

− ∆τ
2 ⟨H′′(u∗h)d̄τu

n
h, d̄τu

n
h⟩+ ∆τ

2 ⟨H′′(û∗h) d̄τ û
n
h, d̄τ û

n
h⟩

− ⟨d̄τH′(ûnh)−H′′(ûnh) d̄τ û
n
h, u

n
h − ûnh⟩+∆τ⟨d̄τH′(ûnh), d̄τu

n
h − d̄τ û

n
h⟩.

The first two lines already appear in the desired estimate (3.57). By applying Taylor’s

theorem again the last two lines equal

(∗) =− ∆τ
2 ⟨H′′(u∗h)d̄τu

n
h, d̄τu

n
h⟩+ ∆τ

2 ⟨H′′(û∗h) d̄τ û
n
h, d̄τ û

n
h⟩

− ⟨(H′′(û∗∗h )−H′′(ûnh)) d̄τ û
n
h, u

n
h − ûnh⟩+∆τ⟨H′′(û∗∗h )d̄τ û

n
h, d̄τu

n
h − d̄τ û

n
h⟩

with û∗∗h = ξ∗∗ûnh + (1− ξ∗∗)ûn−1
h ∈ AS for some ξ∗∗ ∈ (0, 1). Adding and subtracting the

terms ∆τ⟨H′′(u∗h)d̄τ û
n
h, d̄τu

n
h⟩ and

∆τ
2 ⟨H′′(u∗h)d̄τ û

n
h, d̄τ û

n
h⟩ then leads to

(∗) =− ∆τ
2 ⟨H′′(u∗h)d̄τu

n
h, d̄τu

n
h⟩+∆τ⟨H′′(u∗h)d̄τ û

n
h, d̄τu

n
h⟩ − ∆τ

2 ⟨H′′(u∗h)d̄τ û
n
h, d̄τ û

n
h⟩

+∆τ⟨
(
H′′(û∗∗h )−H′′(u∗h)

)
d̄τ û

n
h, d̄τu

n
h⟩+ ∆τ

2 ⟨
(
H′′(û∗h)−H′′(û∗∗h )

)
d̄τ û

n
h, d̄τ û

n
h⟩

+ ∆τ
2 ⟨
(
H′′(u∗h)−H′′(û∗∗h )

)
d̄τ û

n
h, d̄τ û

n
h⟩ − ⟨(H′′(û∗∗h )−H′′(ûnh)) d̄τ û

n
h, u

n
h − ûnh⟩.

Due to the convexity of H on the set AS, which was shown in Lemma 3.4, the first line is

non-positive. The last two lines can then be estimated using (3.36). We obtain

(∗) ≤ C
(
∥d̄τ ûnh∥ε,∞∥u∗h − û∗∗h ∥ε∥unh − un−1

h ∥ε + ∥d̄τ ûnh∥ε,∞∥û∗ − û∗∗h ∥ε∥ûnh − ûn−1
h ∥ε

+ ∥d̄τ ûnh∥ε,∞∥u∗ − û∗∗h ∥ε∥ûnh − ûn−1
h ∥ε + ∥d̄τ ûnh∥ε,∞∥ûnh − û∗∗h ∥ε∥unh − ûnh∥ε

)
.

The appearing expressions can then be further estimated by

∥u∗h − û∗∗h ∥ε ≤ ∥unh − ûnh∥ε + ∥ûnh − ûn−1
h ∥ε + ∥un−1

h − ûn−1
h ∥ε,

∥unh − un−1
h ∥ε ≤ ∥unh − ûnh∥ε + ∥ûnh − ûn−1

h ∥ε + ∥un−1
h − ûn−1

h ∥ε,
∥û∗h − û∗∗h ∥ε ≤ ∥ûnh − ûn−1

h ∥ε, ∥ûnh − û∗∗h ∥ε ≤ ∥ûnh − ûn−1
h ∥ε.

From the norm equivalence (3.35) for the relative energy we can then deduce the desired

estimate (3.57).
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Proof of Lemma 3.15

In the following, we consider the estimate (3.57) for the discrete time derivative of the

relative energy in Lemma 3.13 and estimate the three lines on the right-hand side of

(3.57) separately. We abbreviate them by

(ℓ1) := ⟨(Hε)′(unh)− (Hε)′(ûnh)− (Hε)′′(ûnh)(u
n
h − ûnh), d̄τ û

n
h⟩,

(ℓ2) := ⟨(Hε)′(unh)− (Hε)′(ûnh), d̄τu
n
h − d̄τ û

n
h⟩,

(ℓ3) := C∥d̄τ ûnh∥ε,∞
(
Hε(unh|ûnh) +Hε(un−1

h |ûn−1
h )

)
+ C ′∥d̄τ ûnh∥ε,∞∥ûnh − ûn−1

h ∥2ε.

Estimation of the first line (ℓ1). The definition of Hε in (3.24) yields

(Hε)′(unh)− (Hε)′(ûnh)− (Hε)′′(ûnh)(u
n
h − ûnh) =

(
aP ′(ρnh|ρ̂nh) +

1
2aε

2(wn
h − ŵn

h)
2

aε2(ρnh − ρ̂nh)(w
n
h − ŵn

h)

)

with P ′(ρnh|ρ̂nh) := P ′(ρnh)−P ′(ρ̂nh)−P ′′(ρ̂nh)(ρ
n
h−ρ̂nh). By Taylor’s theorem, we can estimate

P ′(ρnh|ρ̂nh) ≤ |P ′′′(ρ∗h)|(ρnh − ρ̂nh)
2 ≤ C(ρnh − ρ̂nh)

2

with intermediate value ρ∗h = ξρnh + (1 − ξ)ρ̂nh for some ξ ∈ (0, 1). The latter inequality

holds since the pressure potential P is smooth due to (A1) and ρnh and ρ̂nh are bounded

due to (A3h) and Lemma 3.12, respectively. Moreover, by Young’s inequality we have

aε2(ρnh − ρ̂nh)(w
n
h − ŵn

h) ≤ 1
2 āε|ρ

n
h − ρ̂nh|2 + 1

2 āε
3|wn

h − ŵn
h |2.

This enables us to estimate

(ℓ1) ≤ C ′∥unh − ûnh∥2ε∥d̄τ ûnh∥ε,∞ ≤ C ′′Hε(unh|ûnh),

where we used that

∥d̄τ ûnh∥ε,∞ ≤ ∥∂τ ûh∥L∞(0,τmax;L∞(E;∥·∥ε,∞)) ≤ ∥∂τu∥L∞(0,τmax;L∞(E;∥·∥ε,∞)) ≤ C ′′′

by the construction of the projections, Lemma 3.11, and assumption (A4).

Estimation of the third line (ℓ3). Using Taylor’s theorem, the properties of the

projections, and (A4), we find that

∥ûnh − ûn−1
h ∥2ε ≤ C∆τ2∥∂τ ûnh∥2L∞(tn−1,tn;∥·∥ε) ≤ C ′∆τ2∥∂τu∥2L∞(tn−1,tn;∥·∥ε) ≤ C ′′∆τ2.

Together with the estimate for ∥d̄τ ûnh∥ε,∞ from above, (ℓ3) can be estimated by

(ℓ3) ≤ C ′′(Hε(unh|ûnh) +Hε(un−1
h |ûn−1

h )) + C ′′′∆τ2.

Estimation of the second line (ℓ2). The term in the second line of (3.57) also

appears in the continuous estimate for the relative energy in (3.42). Hence, we proceed

97



3. Gas transport in pipe networks

similarly as in the proof of Theorem 3.5 and exploit the energy structure of (3.45)–(3.46).

As before, the relations (3.25) for the variational derivatives of the energy yield

(ℓ2) = (ad̄τρ
n
h − ad̄τ ρ̂

n
h, h

n
h − ĥnh)E + (ε2d̄τw

n
h − ε2d̄τ ŵ

n
h ,m

n
h − m̂n

h)E

=− (∂xm
n
h − ∂xm̂

n
h, h

n
h − ĥnh)E − ⟨resn1 , hnh − ĥnh⟩+ (hnh − ĥnh, ∂xm

n
h − ∂xm̂

n
h)E

− (γ|wn
h |wn

h − γ|ŵn
h |ŵn

h ,m
n
h − m̂n

h)E − ⟨resn2 ,mn
h − m̂n

h⟩

=− (γ|wn
h |wn

h − γ|ŵn
h |ŵn

h ,m
n
h − m̂n

h)E − ⟨resn1 , hnh − ĥnh⟩ − ⟨resn2 ,mn
h − m̂n

h⟩
= (ℓ2.1) + (ℓ2.2) + (ℓ2.3),

where we used that (ρnh,m
n
h) solves (3.45)–(3.46) and (ρ̂nh, m̂

n
h) can be understood as per-

turbed solution with residuals given by (3.55)–(3.56). Note that since d̄τρ
n
h and ∂xm

n
h

as well as d̄τ ρ̂
n
h and ∂xm̂

n
h are all piecewise constant, (3.45) and the corresponding per-

turbed equation can be tested with any L2-function. Let us now estimate the three terms

(ℓ2.1), (ℓ2.2), and (ℓ2.3) separately.

Estimation of (ℓ2.1). We observe that

γ|wn
h |wn

h − γ|ŵn
h |ŵn

h = 2γ

∫ 1

0
|ŵn

h + ξ(wn
h − ŵn

h)| dξ (wn
h − ŵn

h),

since (|ξ|ξ)′ = 2|ξ|. The integral can further be estimated from below and above by

|wn
h |+ |ŵn

h |
4

≤
∫ 1

0
|ŵn

h + ξ(wn
h − ŵn

h)| dξ ≤
|wn

h |+ |ŵn
h |

2
. (3.62)

The upper estimate follows directly from the triangle inequality. The lower estimate can

be shown by minimizing the functional F (wn
h) :=

∫ 1
0 |ŵn

h + ξ(wn
h − ŵn

h)| dξ for fixed ŵn
h .

Since F takes its minimum for wn
h = −ŵn

h , it holds that∫ 1

0
|ŵn

h + ξ(wn
h − ŵn

h)| dξ ≥ minF (wn
h) =

1
4 |ŵ

n
h |+ 1

4 |w
n
h |.

We can further write

mn
h − m̂n

h = aρnhw
n
h − aρ̂nhŵ

n
h = a(ρnh − ρ̂nh)w

n
h + aρ̂nh(w

n
h − ŵn

h),

which together with the previous considerations leads to

(γ|wn
h |wn

h − γ|ŵn
h |ŵn

h)(m
n
h − m̂n

h) = 2aγwn
h

∫ 1

0
|ŵn

h + ξ(wn
h − ŵn

h)| dξ (ρnh − ρ̂nh)(w
n
h − ŵn

h)

+2aγρ̂nh

∫ 1

0
|ŵn

h + ξ(wn
h − ŵn

h)| dξ (wn
h − ŵn

h)
2 = (i) + (ii).

Using (3.62) and Young’s inequality we deduce that

(i) ≥ −1
4aγρ̂

n
h(|wn

h |+ |ŵn
h |)(wn

h − ŵn
h)

2 − 2aγ
(wn

h)
2

ρ̂nh
(|wn

h |+ |ŵn
h |)(ρnh − ρ̂nh)

2,

(ii) ≥ 1
2aγρ̂

n
h(|wn

h |+ |ŵn
h |)(wn

h − ŵn
h)

2.
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With the bounds in (A3h), Lemma 3.12, and assumption (A3), this finally yields

(ℓ2.1) ≤ −
∑

e∈E

∫ ℓe

0
(i) + (ii) dx

≤ −1
4

∑
e∈E

∫ ℓe

0
aeγeρ̂

n
h(|wn

h |+ |ŵn
h |)(wn

h − ŵn
h)

2 dx+ 5āγ̄ w̄3

¯
ρ ∥ρnh − ρ̂nh∥2E

≤ −2D(unh|ûnh) + CHε(unh|ûnh)

with relative dissipation functional D(·|·) defined in (3.43).

Estimation of (ℓ2.2). From the definition of res1 in (3.55) and the fact that d̄τ ρ̂
n
h and

∂xm̂
n
h are piecewise constant we conclude that resn1 = ad̄τ ρ̂

n
h + ∂xm̂

n
h holds pointwise and

can thus be tested with any L2-function. We find that

(ℓ2.2) = −⟨resn1 , hnh − ĥnh⟩ = −(ad̄τ ρ̂
n
h + ∂xm̂

n
h, h

n
h − ĥnh)E

= −(ad̄τ ρ̂
n
h − a∂τ ρ̂

n
h, h

n
h − ĥnh)E − (a∂τ ρ̂

n
h + ∂xm̂

n
h, h

n
h − ĥnh)E .

The last term vanishes due to the definition of the projections and the commuting diagram

property in (3.52) as well as equation (3.22), which imply that

(a∂τ ρ̂
n
h, q)E + (∂xm̂

n
h, q)E = 0 for all q ∈ L2(E). (3.63)

Applying Hölder’s and Young’s inequality to the first term yields

−(ad̄τ ρ̂
n
h − ∂τ ρ̂

n
h, h

n
h − ĥnh)E ≤ ā2

2 ∥d̄τ ρ̂
n
h − ∂τ ρ̂

n
h∥2L2(E) +

1
2∥h

n
h − ĥnh∥2L2(E).

Taylor’s theorem allows us to estimate the first term by

ā2

2 ∥d̄τ ρ̂
n
h − ∂τ ρ̂

n
h∥2L2(E) ≤

ā2

4 ∆τ
2∥∂ττ ρ̂nh∥2L∞(τn−1,τn;L2(E))

≤ ā2

4 ∆τ
2∥∂ττρ(τn)∥2L∞(τn−1,τn;L2(E)) ≤ C∆τ2,

where we used the property of the projection Πh in (3.52) as well as assumption (A4). In

order to handle the second term, we observe that

|hnh − ĥnh| =
∣∣ ε2
2 (|w

n
h |2 − |ŵn

h |2) + P ′(ρnh)− P ′(ρ̂nh)
∣∣ ≤ Cε2|wn

h − ŵn
h |+ C ′|ρnh − ρ̂nh|

with constants that only depend on the bounds in the assumptions, where we used (A3h),

the bounds on the projections in Lemma 3.12, and the fact that P is smooth by (A1). By

the norm equivalence of the relative energy (3.35) it then holds that

∥hnh − ĥnh∥2L2(E) ≤ C ′′Hε(unh|ûnh).

In summary, the term (ℓ2.2) can be estimated by

(ℓ2.2) ≤ C∆τ2 + C ′Hε(unh|ûnh).

Estimation of (ℓ2.3). By definition of res2 in (3.56) it holds that

(ℓ2.3) =− ⟨resn2 ,mn
h − m̂n

h⟩ = −(ε2d̄τ ŵ
n
h ,m

n
h − m̂n

h)E + (ĥnh, ∂xm
n
h − ∂xm̂

n
h)E

− (γ|ŵn
h |ŵn

h ,m
n
h − m̂n

h)E −
∑

v∈V∂

ĥv∂(τ
n)(mn

h(v)− m̂n
h(v))ne(v).
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Since (ρ, w) solves (3.22)–(3.23), we can add (3.23) tested with r = mn
h− m̂n

h to (ℓ2.3) and

obtain

(ℓ2.3) = (ε2∂τw
n − ε2d̄τ ŵ

n
h ,m

n
h − m̂n

h)E − (hn − ĥnh, ∂xm
n
h − ∂xm̂

n
h)E (3.64)

+ (γ|wn|wn − γ|ŵn
h |ŵn

h ,m
n
h − m̂n

h)E = (i) + (ii) + (iii).

Here, we abbreviate ρn = ρ(τn), wn = w(τn), mn = m(τn) and hn = h(τn). In the

following, we estimate the terms (i) − (iii) separately and exploit the projection error

estimates (3.53) in order to get convergence rates. By applying Hölder’s and Young’s

inequality, the first term can be estimated by

(i) ≤ ε2

2 ∥∂τw
n − d̄τ ŵ

n
h∥2L2(E) +

ε2

2 ∥m
n
h − m̂n

h∥2L2(E).

The second term on the right-hand side can be further estimated by CHε(unh|ûnh) due to the
norm equivalence (3.35). The constant C only depends on the bounds in the assumptions

and Lemma 3.12. For the first term in this expansion, applying the triangle inequality

and the projection error estimates (3.53), we deduce that

ε2

2 ∥∂τw
n − d̄τ ŵ

n
h∥2L2(E) ≤ ε2∥∂τwn − ∂τ ŵ

n
h∥2L2(E) + ε2∥∂τ ŵn

h − d̄τ ŵ
n
h∥2L2(E)

≤ C
(
∥ρn − ρ̂nh∥2L2(E) + ∥∂τρn − ∂τ ρ̂

n
h∥2L2(E) + ∥mn − m̂n

h∥2L2(E) + ∥∂τmn − ∂τm̂
n
h∥2L2(E)

)
+ C ′∆τ2∥ε∂ττ ŵ∥2L∞(τn−1,τn;L2(E)) ≤ C ′′h2 + C ′′′∆τ2

with constants that only depend on the bounds in the assumptions and Lemma 3.12. In

summary, we find that

(i) ≤ CHε(unh|ûnh) + C ′(h2 +∆τ2).

Using the fact that (3.45) can be tested with any L2-function as well as (3.63) we find for

the second term in (3.64) that

(ii) = (hn − ĥnh, ad̄τρ
n
h − a∂τ ρ̂

n
h)E

= (hn − ĥnh, ad̄τρ
n
h − ad̄τ ρ̂

n
h)E + (hn − ĥnh, ad̄τ ρ̂

n
h − a∂τ ρ̂

n
h)E .

The second term in this expansion can be estimated by Hölder’s and Young’s inequality

(hn − ĥnh, ad̄τ ρ̂
n
h − a∂τ ρ̂

n
h)E ≤ 1

2∥h
n − ĥnh∥2L2(E) +

ā2

2 ∥d̄τ ρ̂
n
h − ∂τ ρ̂

n
h∥2L2(E) ≤ C(h2 +∆τ2),

since |hn − ĥnh| ≤ C|εwn − εŵn
h | + C ′|ρn − ρ̂nh| holds due to the fact that P is smooth by

assumption (A1). All constants only depend on the bounds in the assumptions and in

Lemma 3.12. The rates follow from the projection error estimates (3.53). For the first

term, we utilize the discrete integration-by-parts formula

d̄τu
nvn = −un−1d̄τv

n + 1
∆τ (u

nvn − un−1vn−1),

which yields

(hn − ĥnh, ad̄τρ
n
h − ad̄τ ρ̂

n
h)E = −(d̄τh

n − d̄τ ĥ
n
h,aρ

n−1
h − aρ̂n−1

h )E

+ 1
∆τ (h− ĥh, aρh − aρ̂h)E

∣∣τn
τn−1 .
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3.2. Numerical approximation of the isothermal gas transport

By Hölder’s and Young’s inequality, we further deduce that

−(d̄τh
n − d̄τ ĥ

n
h, aρ

n−1
h − aρ̂n−1

h )E ≤ 1
2∥d̄τh

n − d̄τ ĥ
n
h∥2L2(E) +

ā2

2 ∥ρ
n−1
h − ρ̂n−1

h ∥2L2(E).

The second term can be estimated by CHε(un−1
h |ûn−1

h ) due to the norm equivalence (3.35),

whereas the first term can be split into

∥d̄τhn − d̄τ ĥ
n
h∥2L2(E) ≤ 3

(
∥d̄τhn − ∂τh

n∥2L2(E) + ∥∂τhn − ∂τ ĥ
n
h∥2L2(E) + ∥∂τ ĥnh − d̄τ ĥ

n
h∥2L2(E)

)
.

By Taylor’s theorem, the projection error estimates (3.53) and the bounds in the assump-

tions, the individual terms can be estimated by

∥d̄τhn − ∂τh
n∥2L2(E) ≤ C∆τ2∥∂ττh∥2L∞(τn−1,τn;L2(E)) ≤ C ′∆τ2,

∥∂τhn − ∂τ ĥ
n
h∥2L2(E) ≤ C ′h2∥∂τhn∥2H1(E) ≤ C ′h2,

∥∂τ ĥnh − d̄τ ĥ
n
h∥2L2(E) ≤ C∆τ2∥∂ττ ĥh∥2L∞(τn−1,τn;L2(E)) ≤ C ′∆τ2,

where we used that ∥∂ττhh∥ and ∥∂ττ ĥh∥ can be estimated by the bounds for the time

derivatives of ρ and m in (A4). Overall, we find that

(ii) ≤ CHε(unh|ûnh) + C ′(h2 +∆τ2) + 1
∆τ (h− ĥh, aρh − aρ̂h)

∣∣τn
τn−1 .

It remains to estimate the third term (iii) in (3.64). Note that we need to be careful with

the asymptotic parameter ε and are going to exploit the extra stability provided by the

relative dissipation functional in (ℓ2.1). First, we expand

(iii) = (γ(|wn| − |ŵn
h |)(wn − ŵn

h),m
n
h − m̂n

h)E + (γ|ŵn
h |(wn − ŵn

h),m
n
h − m̂n

h)E

+ (γ(|wn| − |ŵn
h |)ŵn

h ,m
n
h − m̂n

h)E = (iii.1) + (iii.2) + (iii.3).

Hölder’s and Young’s inequality as well as the bounds in the assumptions and in Lemma 3.12

enable us to estimate

(iii.1) ≤ āγ̄ρ̄∥(wn − ŵn
h)

2∥L3/2(E)∥w
n
h − ŵn

h∥L3(E) + āγ̄ρ̄∥(wn − ŵn
h)

2∥L2(E)∥ρnh − ρ̂nh∥L2(E)

≤ 2
3(āγ̄ρ̄)

3/2δ−3/2∥wn − ŵn
h∥3L3(E) +

1
3δ

3∥wn
h − ŵn

h∥3L3(E) + Ch2 + C ′Hε(unh|ûnh)

≤ C ′′(δ)h3 + 1
4D(unh|ûnh) + Ch2 + C ′Hε(unh|ûnh)

for some δ > 0 sufficiently small so that the second term in the second line can be

bounded by the relative dissipation functional (3.43). Here, we used the projection er-

ror estimates (3.53) and the norm equivalence for the relative energy (3.35). Similarly, we

estimate

(iii.2) + (iii.3) ≤ 1
2δ′ γ̄w̄∥w

n
h − ŵn

h∥2L2(E) +
1
2δ

′∥(mn
h − m̂n

h)|ŵn
h |1/2∥2L2(E).

By the projection error estimates (3.53) the first term can be bounded by C(δ′)h2. The

second term equals

1
2δ

′∥(mn
h − m̂n

h)|ŵn
h |1/2∥2L2(E) = δ′āρ̄

∑
e∈E

∫ ℓe

0
(wn

h − ŵn
h)

2ρ̂nh|ŵn
h | dx+ C(δ′)∥ρnh − ρ̂nh∥2L2(E)

≤ 1
4D(unh|ûnh) + C ′(δ′)Hε(unh|ûnh),
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3. Gas transport in pipe networks

which holds for δ′ > 0 small enough due to the definition of D(·|·) in (3.43). In summary,

we obtain

(ℓ2.3) ≤ CHε(unh|ûnh) + C ′Hε(un−1
h |ûn−1

h ) + C ′′(h2 +∆τ2) + 1
∆τ (h− ĥh, aρh − aρ̂h)

∣∣τn
τn−1 .

The final estimate for (ℓ2) then follows from the separate estimates for (ℓ2.1) − (ℓ2.3),

which then together with the estimates for the other two lines (ℓ1) and (ℓ2) yields the

assertion of Lemma 3.15.

This completes the proof of Theorem 1.23 and closes our investigations for the isothermal

gas transport in pipe networks.

3.3. Non-isothermal gas transport

In this section, we aim to extend some of the ideas and results from the previous sections to

the non-isothermal gas transport in pipe networks. In particular, we derive a reformulation

of the governing equations (3.5)–(3.7) and propose a suitable set of coupling conditions at

interior junctions. It turns out that the resulting system has a similar “energy structure”

allowing for a simple proof of global balance laws.

3.3.1. Preliminaries

We make use of the notation introduced in Section 3.1.1 and again start with deriving a

different set of equations that allows us to alternatively characterize smooth solutions of

(3.5)–(3.7) on a single pipe. As a first step, we observe that the variational derivatives of

the total energy density Eε(ρ, w, s) := 1
2ε

2aρw2 + aρe are given by

δρE
ε = ahε, δwE

ε = ε2m, δsE
ε = aρθ, (3.65)

where we used the constitutive equations (3.4) and introduced the total specific enthalpy

hε = ε2

2 w
2 + e+ p

ρ . By (3.5)–(3.6) we further find that

ε2∂τw = ε2∂τ (
m
aρ) =

ε2

aρ∂τm− ε2

aρ2
m∂τρ = −1

ρ∂x(ε
2ρw2 + p)− γ|w|w + ε2

a2ρ2
m∂xm.

Using the relations for the specific internal energy (3.4), one can see that

1
ρ∂xp = ∂x(

p
ρ) +

p
ρ2
∂xρ = ∂x(

p
ρ) + δρe∂xρ = ∂x(

p
ρ + e)− θ∂xs.

We further observe that

1
ρ∂x(ρw

2)− m
a2ρ2

∂xm = w
aρ∂xm+ ρw

ρ ∂xw − w
aρ∂xm = w∂xw = 1

2∂x(w
2).

In summary, this shows that

ε2∂τw + ∂xh
ε − θ∂xs = −γ|w|w.
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3.3. Non-isothermal gas transport

From (3.5), (3.65), and the above equation we deduce

d

dτ
Eε = δρE

ε∂τρ+ δwE
ε∂τw + δsE

ε∂τs

= ahε∂τρ+ ε2m∂τw + aρθ∂τs

= −hε∂xm−m∂xh
ε − γm|w|w +mθ∂xs+ aρθ∂τs

= −∂x(mhε)− γ|m|w2 +mθ∂xs+ aθρ∂τs.

By (3.7) we know that

ε3
d

dτ
Eε =− ε3∂x(w(E

ε + ap))− β(θ − θ0)− ε3γ|m|w2

=− ε3∂x
(
ε2

2 mw
2 + aρwe+ awp

)
− β(θ − θ0)− ε3γ|m|w2

=− ε3∂x(mh
ε)− β(θ − θ0)− ε3γ|m|w2.

Comparing the two equations for d
dτE

ε shows that

ε3aρ∂τs+ ε3m∂xs = −β θ − θ0

θ

must hold and we can replace (3.7) by this equation, leading to the following system

a∂tρ+ ∂xm = 0, (3.66)

ε2∂τw + ∂xg
ε − (θ − θ0)∂xs = −γ|w|w, (3.67)

ε3aρ∂τs+ ε3m∂xs = −β θ − θ0

θ
, (3.68)

where we introduced a new variable, the specific free enthalpy or specific Gibb’s free energy

gε := hε − θ0s =
ε2

2
w2 +

p

ρ
+ e− θ0s. (3.69)

For sufficiently smooth solutions the system (3.66)–(3.68) is equivalent to the original

system (3.5)–(3.7) with constitutive equations (3.4).

3.3.2. Model problem

We now turn to describing the full model on the pipe network. Let (3.66)–(3.68) be

satisfied on each edge e ∈ E , i.e.,

ae∂τρe + ∂xme = 0, (3.70)

ε2∂τwe + ∂xg
ε
e − (θe − θ0)∂xse = −γe|we|we, (3.71)

ε3aeρe∂τse + ε3me∂xse = −βe
θe − θ0

θe
(3.72)

for all 0 < x < ℓe, e ∈ E and τ > 0 with

me = aeρewe, gεe =
ε2

2
w2
e +

p(ρe, se)

ρe
+ e(ρe, se)− θ0se, θe = θ(ρe, se). (3.73)
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2 1 1 2

2 2 1 1

in | out out | in

in | in out | out

Figure 3.2.: Number of boundary conditions that are needed for different flow situations.

The arc direction corresponds to the flow direction.

The system has to be complemented by suitable boundary and coupling conditions. In

the subsonic regime, which is assumed to be of relevance in gas pipelines, two boundary

conditions have to be prescribed at the inflow boundary of each pipe, while only one

condition is needed at the outflow boundary [123]; see Figure 3.2 for an illustration. Let

us thus introduce the sets

V in
∂ (τ) = {v ∈ V∂ : me(v, τ)ne(v) < 0} and Vout

∂ (τ) = {v ∈ V∂ : me(v, τ)ne(v) > 0}

of inflow and outflow boundary vertices at time τ ≥ 0. Moreover, for each interior vertex

v ∈ V0 we define the sets

E in(v, τ) = {e ∈ E(v) : me(v, τ)ne(v) > 0},
Eout(v, τ) = {e ∈ E(v) : me(v, τ)ne(v) < 0}

of edges carrying flow into or out of the vertex. Note that the above spaces depend on the

time τ in comparison to the corresponding spaces introduced in Chapter 1.1.2. The choice

of appropriate boundary conditions that give rise to a well-posed problem is in general

not an easy task; a review can be found in [123]. At the network boundary, we prescribe

gεe(v, τ) = ĝv∂(τ), v ∈ V∂ , e ∈ E(v), τ > 0, (3.74)

se(v, τ) = ŝv∂(τ), v ∈ V in
∂ (τ), e ∈ E(v), τ > 0. (3.75)

In order to ensure basic physical principles at network junctions, we impose the following

coupling conditions∑
e∈E(v)

me(v, τ)ne(v) = 0, v ∈ V0, τ > 0, (3.76)

gεe(v, τ) = ĝεv(τ), v ∈ V0, e ∈ E(v), τ > 0, (3.77)

se(v, τ) = ŝv(τ) v ∈ V0, e ∈ Eout(v, τ), τ > 0 (3.78)

with mixing value

ŝv(τ) =

∑
e∈Ein(v,τ)me(v, τ)se(v, τ)ne(v)∑

e∈Ein(v,τ)me(v, τ)ne(v)
, v ∈ V0, τ > 0. (3.79)

The first coupling condition (3.76) guarantees conservation of mass at junctions and en-

sures that m ∈ H(div; E) defined in (3.21). By introducing additional degrees of freedom

ĝεv and ŝv at interior vertices v ∈ V0, the second condition (3.77) enforces continuity of the

free enthalpy, wheres the third condition (3.78) ensures outflow continuity of the specific
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3.3. Non-isothermal gas transport

entropy which ultimately guarantees conservation of entropy at junctions. We then call

any triple of functions

ρ, w, s ∈ C1([0, τmax];L
2(E)) ∩ C0([0, τmax];H

1
pw(E))

a classical solution of (3.70)–(3.79) if the model equations are satisfied in a pointwise sense

up to some τmax > 0.

Remark 3.16. The fact that entropy is conserved at network junctions might not be

physically correct since we would expect that entropy is produced due to the mixing. The

coupling condition (3.78)–(3.79) for the entropy could be replaced by

η(se(v, τ)) = η̂v(τ) v ∈ V0, e ∈ Eout(v, τ), τ > 0 (3.80)

with mixing value

η̂v(τ) =

∑
e∈Ein(v,τ)me(v, τ)η(se(v, τ))ne(v)∑

e∈Ein(v,τ)me(v, τ)ne(v)
, v ∈ V0, τ > 0 (3.81)

for some convex and strictly monotonically increasing function η : R → R. This condition
now allows for entropy production at junctions if η ̸= id.

Example 3.17 (Ideal gas). Let us consider the case of a simple ideal gas that fulfills the

following thermodynamic relations

p = Rρθ, e = cvθ =
R

γ − 1
θ

with specific heat at constant volume cv = R
γ−1 , specific gas constant R = µR, where

R = 8.314 J
molK is the universal gas constant and µ the mole-mass fraction, as well as

1 < γ ≤ 5/3; see [58, Ch. III.1]. Let us note that γ = 5/3 corresponds to a monatomic gas

in dimension 3. From (3.4) we deduce that

e(ρ, s) = ργ−1es/cv and θ(ρ, s) = c−1
v e(ρ, s) = c−1

v ργ−1es/cv .

The latter relation can be transformed to

s(ρ, θ) = cv log

(
cvθ

ργ−1

)
.

The function η : R → R, s 7→ es/cv is convex and strictly monotonically increasing. For

this choice the coupling conditions (3.80)–(3.81) correspond to a mixing of the quantity

cvθ/ρ
γ−1 and entropy will be produced at network junctions.

3.3.3. Weak formulation

Our analysis and numerical approximation for the non-isothermal gas transport in pipe

networks are again based on a weak characterization of classical solutions.
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Lemma 3.18. Any classical solution (ρ, w, s) of (3.70)–(3.79) satisfies

(a∂τρ, q)E + (∂xm, q)E = 0, (3.82)

(ε2∂τw, r)E − (gε, ∂xr)E − ((θ − θ0)∂xs, r)E + (γ|w|w, r)E = −
∑
v∈V∂

ĝv∂re(v)ne(v), (3.83)

(ε3aρ∂τs, z)E + (ε3m∂xs, z)E = −(β
θ − θ0

θ
, z)E (3.84)

for all q, z ∈ L2(E), r ∈ H(div; E) and 0 < τ < τmax.

Proof. The weak formulation immediately follows from multiplying (3.70)–(3.72) with

q, r, z, integrating over each edge e ∈ E and summing up. In the second equation, we

further apply integration-by-parts to the second term, i.e.,

(∂xg
ε, r)E = −(gε, ∂xr)E +

∑
v∈V

∑
e∈E(v)

gεe(v)re(v)ne(v).

The contributions at interior vertices v ∈ V0 vanish due to the continuity of gε by (3.77)

and the fact that r ∈ H(div; E).

3.3.4. Basic properties

Let us now derive some properties of solutions to the non-isothermal gas transport problem.

Energy structure and formal asymptotics to the parabolic limit

We associate the following exergy or ballistic free energy functional

Hε(ρ, w, s) =
∑

e∈E

∫ ℓe

0
ae

(ε2
2
ρew

2
e + ρee(ρe, se)− ρeseθ

0
)
dx (3.85)

to the system (3.70)–(3.79); see [47, Ch. 1.3]. The variational derivatives are given by

δρHε = agε, δwHε = ε2m, δsHε = aρ(θ − θ0). (3.86)

Similar to the isothermal case, we call (ρ, w, s) the state and (gε,m, ρ(θ − θ0)) the cor-

responding co-state variables; these will play an important role in the following consid-

erations. By formally setting ε = 0 in (3.72) we observe that θ(ρ, s) = θ0 is constant.

Consequently, s = s(ρ; θ0) is a function of ρ only. The inversion of this equation is always

possible since ∂sθ(ρ, s) > 0 holds under the assumption that the gas is in a local thermo-

dynamic equilibrium, which implies that θ(ρ, s) is invertible w.r.t. s ; see [58, Ch. III.1.1].

Moreover, the pressure p = p(ρ) then also depends on ρ only. We further deduce from

(3.4) that

e(ρ, s) =

∫ ρ

1

p(r)

r2
dr + θ0s. (3.87)
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The exergy functional thus becomes

H0(ρ, w) =
∑

e∈E

∫ ℓe

0
aeρe

∫ ρe

1

p(r)

r2
dr dx =

∑
e∈E

∫ ℓe

0
aP (ρe) dx

with pressure potential P (ρ) = ρ
∫ ρ
1

p(r)
r2

dr that was already introduced in Section 3.1.1.

In the limit ε = 0, the system (3.70)–(3.72) thus reduces to the transformed parabolic gas

transport model that on each edge e ∈ E is given by

ae∂τρe + ∂xme = 0,

∂xP
′(ρe) = −γe|we|we,

with s = s(ρ; θ0) and associated energy H0. Here, we used that for ε = 0 we have

g0 =
p

ρ
+ e(ρ, s)− θ0s =

p

ρ
+

∫ ρ

1

p(r)

r2
dr = P ′(ρ)

by (3.87). The coupling conditions for the mass flux m and the free enthalpy g in (3.76)–

(3.77) reduce to the corresponding ones for the parabolic limit problem, i.e., m ∈ H(div; E)
and ρ being continuous across junctions; compare with (3.15)–(3.20) for ε = 0 and [113].

From the previous considerations, we see that the system (3.82)–(3.84) has an “energy

structure” and can be written as the following abstract system

Cε∂τu+ J (u)zε(u) +Rε(u)zε(u) = b∂ , (3.88)

zε(u) = (Cε)−1(Hε)′(u) (3.89)

with state variables u = (ρ, w, s), co-state variables zε(u) = (gε,m, ρ(θ− θ0)), and opera-

tors defined by

⟨Cεu, v⟩ := (a∂τρ, q)E + (ε2∂τw, r)E + (a∂τs, z)E ,

⟨J (u)zε(u), v⟩ := (∂xm, q)E − (gε, ∂xr)E − (
∂xs

ρ
ρ(θ − θ0), r)E + (

∂xs

ρ
m, z)E ,

⟨Rε(u)zε(u), v⟩ := (γ
|w|
ρ
m, r)E + (

β

ε3ρ2θ
ρ(θ − θ0), z)E ,

⟨b∂ , v⟩ := −
∑

v∈V∂

ĝv∂re(v)ne(v),

where v = (q, r, z) ∈ L2(E) × H(div; E) × L2(E) is a test function. Note that the third

equation (3.84) was divided by ρ. The operator Cε is positive definite, Rε(u) is positive

semi-definite, and J (u) is skew-symmetric. In comparison to the abstract form (3.26)–

(3.27) of the isothermal gas equations, both systems have a similar structure, but the

operator J now depends on the state variable u.

Global balance laws

Based on the weak formulation of the equations and the above relations between state and

co-state variables, one can immediately derive the following global balance laws.
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Lemma 3.19. Let (ρ, w, s) be a classical solution to (3.70)–(3.79). Then,

d

dτ

∫
E
aρ dx = −

∑
v∈V∂

me(v)ne(v) (3.90)

d

dτ
Hε(ρ, w, s) = −

∑
v∈V∂

ĝv∂me(v)ne(v)−
∫
E
γ|m|w2 dx−

∫
E

β

ε3
(θ − θ0)2

θ
dx, (3.91)

d

dτ

∫
E
aρs dx = −

∑
v∈V∂

me(v)se(v)ne(v)−
∫
E

β

ε3
θ − θ0

θ
dx. (3.92)

If the coupling conditions for the entropy are replaced by (3.80)–(3.81), it holds that

d

dτ

∫
E
aρs dx ≤ −

∑
v∈V∂

me(v)se(v)ne(v)−
∫
E

β

ε3
θ − θ0

θ
dx. (3.93)

Remark 3.20. The total mass of the system is conserved up to flux over the network

boundary. The change in total exergy of the system is only caused by flux over the net-

work boundary and dissipation by friction at pipe walls and by heat exchange with the

ambient medium. The total entropy changes only due to flux over the network boundary

and temperature exchange with the ambient medium. Depending on the choice of cou-

pling conditions (3.78)–(3.79) or (3.80)–(3.81), entropy is either conserved or produced at

network junctions.

Proof. The conservation of mass (3.90) immediately follows from equation (3.82) by testing

with q = 1. The appearing contributions at interior junctions vanish due to the coupling

condition on the mass flux (3.76). In order to prove the energy identity (3.91), we use that

d

dτ
Hε(ρ, w, s) = (∂τρ, ag

ε)E + (∂τw, ε
2m)E + (∂τs, aρ(θ − θ0))E

holds due to the relations in (3.86). Using the test functions q = gε, r = m, z = ε−3(θ−θ0)
in the variational identities (3.82)–(3.84) then leads to

d

dτ
Hε(ρ, w, s) =− (∂xm, g

ε)E + (gε, ∂xm)E + ((θ − θ0)∂xs,m)E − (γ|w|w,m)E

−
∑
v∈V∂

ĝv∂me(v)ne(v)− (m∂xs, θ − θ0)E − (β
θ − θ0

θ
, ε−3(θ − θ0))E .

By canceling the terms with opposite sign, we obtain equation (3.91). Choosing q = s,

r = 0, and z = ε−3 in (3.82)–(3.84) directly leads to

d

dτ

∫
E
aρs dx = (a∂τρ, s)E + (ε3aρ∂τs, ε

−3)E

= −(∂xm, s)E − (ε3m∂xs, ε
−3)E − (β

θ − θ0

θ
, ε−3)E

= −
∑

v∈V

∑
e∈E(v)

me(v)se(v)ne(v)−
∫
E

β

ε3
θ − θ0

θ
dx.
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The contributions at v ∈ V0 vanish due to (3.78)–(3.79), more precisely∑
e∈E(v)

me(v, τ)se(v, τ)ne(v) =
∑

e∈Eout(v,τ)

me(v)ŝv(τ)ne(v) +
∑

e∈Ein(v,τ)

me(v, τ)se(v, τ)ne(v)

=
∑

e∈Eout(v,τ)
me(v, τ)ne(v)

∑
e′∈Ein(v,τ)me′(v, τ)se′(v, τ)ne′(v)∑

e′∈Ein(v,τ)me′(v, τ)ne′(v)

+
∑

e∈Ein(v,τ)
me(v, τ)se(v, τ)ne(v) = 0.

Here, we additionally used the fact that by (3.76) we have∑
e∈Ein(v,τ)

me(v, τ)ne(v) = −
∑

e∈Eout(v,τ)
me(v, τ)ne(v).

If the entropy coupling conditions are replaced by (3.80)–(3.81), it holds that

−
∑

e∈E(v)
me(v, τ)se(v, τ)ne(v) = −

∑
e∈Eout(v,τ)

me(v, τ)η
−1(η̂v(τ))ne(v)

−
∑

e∈Ein(v,τ)
me(v, τ)se(v, τ)ne(v)

=−
∑

e∈Eout(v,τ)
me(v, τ)ne(v) η

−1
(∑

e′∈Ein(v,τ)me′(v, τ)η(se′(v, τ))ne′(v)∑
e′∈Ein(v,τ)me′(v, τ)ne′(v)

)
−
∑

e∈Ein(v,τ)
me(v, τ)se(v, τ)ne(v)

≥−
∑

e∈Eout(v,τ)
me(v, τ)ne(v)

∑
e′∈Ein(v,τ)me′(v, τ)η

−1(η(se′(v, τ)))ne′(v)∑
e′∈Ein(v,τ)me′(v, τ)ne′(v)

−
∑

e∈Ein(v,τ)
me(v, τ)se(v, τ)ne(v) = 0,

where we applied Jensen’s inequality and used the fact that η−1 exists and is concave since

η is convex and strictly monotonically increasing.

3.4. Numerical approximation

For the discretization of the system (3.70)–(3.79), we extend the mixed finite element

method proposed in Section 3.2 and in [38] for the isothermal gas transport to the non-

isothermal regime. A hybrid discontinuous Galerkin approach with upwinding is used to

approximate the additional transport equation (3.72) for the entropy. Such methods have

shown to be especially suitable for handling the coupling conditions at network junctions;

see Chapter 1.3 and [39].

3.4.1. Mesh and approximation spaces

We approximate the density ρ and the entropy s by piecewise constant and the mass flux

m by piecewise linear, edgewise continuous functions in space on the spatial mesh

Th = {T i
e = (xi−1

e , xie) : i = 1, . . . ,Me, x
0
e = 0, xMe

e = ℓe, e ∈ E}.
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3. Gas transport in pipe networks

Figure 3.3.: A simple spatial mesh with two sub-intervals per pipe for the network given

in Figure 3.1. The degrees of freedom for density and entropy are depicted in

(cyan, bar) and for the mass flux in (red, dot). The placement of the hybrid

variables is illustrated in (blue, star).

The grid points are given by xie = ihe, i = 0, . . . ,Me with local and global mesh sizes

denoted by he = ℓe/Me and h = maxe∈E he. Interior grid points are collected in the set

Xh = {xie : i = 1, . . . ,Me − 1}.

We further introduce the outward normal n on the mesh Th that takes the values

n|T i
e
(xi−1

e ) = −1 and n|T i
e
(xie) = 1 for i = 1, . . . ,Me, e ∈ E .

The spatial approximation spaces are defined by

Qh = P0(Th), Rh = P1(Th) ∩H(div; E), and Zh = P0(Th)

with Pk(Th) denoting the space of piecewise polynomials of degree ≤ k on the mesh. More-

over, we introduce additional degrees of freedom called hybrid variables at all vertices and

interior grid points that lie in the space Ẑh = ℓ2(V∪Xh); compare with Chapter 1.3. In Fig-

ure 3.3 we present an illustration of the degrees of freedom for density, mass flux, entropy,

and the hybrid variables. The discrete time steps are given by τn = n∆τ, n = 0, . . . , N

with ∆τ = τmax/N and we abbreviate un = u(τn). In order to approximate the time

derivative, we will make use of the backward difference quotient d̄τu
n = (un − un−1)/∆τ .

Let us further introduce the following grid- and time-dependent scalar products

(u,w)Th =
∑

T∈Th
(u,w)L2(T ), ⟨u,w⟩∂Th =

∑
T∈Th

∑
x∈∂T

u|T (x)w|T (x)

with ∂T i
e = {xi−1

e , xie} being the element boundary of T i
e = (xi−1

e , xie), as well as

⟨u,w⟩
∂T in,n

h
=
∑

T∈Th

∑
x∈∂T in,n

un
∣∣
T
(x)wn

∣∣
T
(x),

⟨u,w⟩∂T out,n
h

=
∑

T∈Th

∑
x∈∂T out,n

un
∣∣
T
(x)wn

∣∣
T
(x),

where the in- and outflow boundary of T ∈ Th at time τn is defined by

∂T in,n = {x ∈ ∂T : mn
h(x)n|T (x) ≤ 0} and ∂T out,n = {x ∈ ∂T : mn

h(x)n|T (x) > 0}.

Note that mn
h is edgewise continuous. Similarly, the network inflow and outflow boundary

at time τn will be denoted by V in,n
∂ and Vout,n

∂ , respectively, i.e., for v ∈ V∂ it holds that

v ∈ V in,n
∂ if mn

h(v)ne(v) < 0 and v ∈ Vout,n
∂ if mn

h(v)ne(v) > 0.
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3.4. Numerical approximation of the non-isothermal gas transport

3.4.2. Structure-preserving discretization scheme

For the approximation of solutions to (3.70)–(3.79), we propose the following method.

Problem 3.21. Let ρ0h ∈ Qh, m
0
h ∈ Rh, and s

0
h ∈ Zh be given. Then, for n = 1, . . . , N

find ρnh ∈ Qh, m
n
h ∈ Rh, s

n
h ∈ Zh, ŝ

n
h ∈ Ẑh so that ŝnh(v) = ŝv∂(τ

n) at v ∈ V in,n
∂ and

(ad̄τρ
n
h, qh)Th + (∂xm

n
h, qh)Th = 0, (3.94)

(ε2d̄τw
n
h , rh)Th − (gε,nh , ∂xrh)Th − ⟨(θnh − θ0)(ŝnh − snh), rhn⟩∂T in,n

h
(3.95)

+(γ|wn
h |wn

h , rh)Th +
∑

v∈V∂

gv∂(τ
n)rh(v)ne(v) = 0,

(ε3aρn−1
h d̄τs

n
h, zh)Th + ⟨ε3mn

h(ŝ
n
h − snh), z

dw
h n⟩∂Th + (β

θnh − θ0

θnh
, zh)Th = 0 (3.96)

for all qh ∈ Qh, rh ∈ Rh and zh ∈ Zh, ẑh ∈ Ẑh with wn
h , g

ε,n
h , and θnh being functions of

the discrete approximations ρnh,m
n
h, and s

n
h, i.e.,

wn
h =

mn
h

aρnh
, gε,nh =

ε2

2
(wn

h)
2 +

p(ρnh, s
n
h)

ρnh
+ e(ρnh, s

n
h)− θ0snh and θnh = θ(ρnh, s

n
h).

The convective downwind flux is defined by mn
hz

dw
h n = max(mn

hn, 0)ẑh +min(mn
hn, 0)zh.

Let us note that the structure of the weak formulation (3.82)–(3.84) is preserved by the

above scheme. Moreover, by formally setting ε = 0 we obtain a viable method for the

parabolic limit problem, which equals the method provided by Problem 3.6 for ε = 0. The

coupling condition for the mass flux (3.76) is strongly included in the approximation space

Rh, whereas the continuity of the free enthalpy (3.77) is weakly included in (3.46). The

mixing condition for the entropy at junctions (3.78)–(3.79) is enforced by the additional

hybrid variables ŝh and ẑh and thus naturally included in the method. More precisely, by

formally testing (3.96) with zh = 0 and ẑh = χv for v ∈ V0, we find that

ŝnh(v) =

∑
e∈Ein(v,τn)m

n
h,e(v)s

n
h,e(v)ne(v)∑

e∈Ein(v,τn)m
n
h,e(v)ne(v)

, (3.97)

i.e., ŝnh(v) equals the mixing value (3.79) and serves as upwind value for all outgoing pipes.

Remark 3.22. When one wants to replace the coupling conditions for the entropy by

(3.80)–(3.81), the method can be modified as follows: We replace equation (3.95) by

(ε2d̄τw
n
h , rh)Th − (gε,nh , ∂xrh)Th − ⟨(θnh − θ0)

η(ŝnh)− η(snh))

η′(snh)
, rhn⟩∂T in,n

h
(3.98)

+(γ|wn
h |wn

h , rh)Th +
∑

v∈V∂

gv∂(τ
n)rh(v)ne(v) = 0

and equation (3.96) by

(ε3aρn−1
h η′(snh)d̄τs

n
h, zh)Th + ⟨ε3mn

h(η(ŝ
n
h)− η(snh)), z

dw
h n⟩∂Th (3.99)

+(βη′(snh)
θnh − θ0

θnh
, zh)Th = 0.
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3. Gas transport in pipe networks

Note that since η is a strictly monotonically increasing function, it holds that η′(s) > 0

for all s. Again, testing (3.99) with zh = 0, ẑh = χv, v ∈ V0, we find that

η(ŝnh(v)) =

∑
e∈Ein(v,τn)m

n
h,e(v)η(s

n
h,e(v))ne(v)∑

e∈Ein(v,τn)m
n
h,e(v)ne(v)

, (3.100)

which equals the mixing value (3.81).

3.4.3. Discrete balance laws

Next, we show that the solution (ρnh,m
n
h, s

n
h) of Problem 3.21 satisfies discrete global

balance laws. In order to do so, we make the following assumptions:

(B1) There exist constants
¯
ρ, ρ̄ > 0 so that

¯
ρ ≤ ρnh ≤ ρ̄ for all n = 0, . . . , N .

(B2) The function (ν, s) 7→ ẽ(ν, s) with ν = 1/ρ and ẽ(ν, s) := e(ρ, s) is strictly convex

and there exists a constant 0 < ζ ≤ 1 so that

(ẽ′′(ν, s)(x, y), (x, y)) ≥ ζ δνν ẽ(ν, s)x
2

for all x, y, and all ρ = 1/ν and s.

(B3) The flow satisfies the subsonic condition

1
2ε

2(ρnhw
n
h)

2 ≤ ζ δνν ẽ(ν
∗
h, s

∗
h)

for all ν∗h = ξ1
1
ρnh

+ (1− ξ1)
1

ρn−1
h

, s∗h = ξ2s
n
h + (1− ξ2)s

n−1
h with ξ1, ξ2 ∈ (0, 1) and all

n = 0, . . . , N .

Remark 3.23. Following common practice, see e.g. [17, 58], we write the internal energy

in terms of the specific volume ν = 1/ρ instead of the density ρ. It then holds that

δν ẽ(ν, s) = −p̃(ν, s) = −p(ρ, s), δsẽ(ν, s) = θ̃(ν, s) = θ(ρ, s). (3.101)

Assumption (B2) corresponds to one of the basic assumptions in thermodynamics, namely

that the flow is in a local thermodynamic equilibrium. Assumption (B3) enforces the flow

to be subsonic since the speed of sound c is defined by

c = ν
√
δνν ẽ(ν, s).

We refer to [58, Ch. III.1.1] for details. The assumptions are reasonable for flow in pipe

networks, which is supposed to be subsonic, and for the example of an ideal gas, which

will be demonstrated in the following example.

Example 3.24. Let us revisit the case of a simple ideal gas from Example 3.17 which

fulfills the following thermodynamic relations

p = Rρθ and e = cvθ =
R

γ − 1
θ.

112



3.4. Numerical approximation of the non-isothermal gas transport

From (3.4) and (3.101) we deduce that

e(ρ, s) = ργ−1es/cv and ẽ(ν, s) = ν1−γes/cv .

Differentiating ẽ twice with respect to ν and s shows that

(x, y)⊤ẽ′′(ν, s)(x, y) = (γ − 1)γν−1−γes/cvx2 − 2(γ − 1)c−1
v ν−γes/cvxy + c−2

v ν1−γes/cvy2.

By applying Young’s inequality, the second term on the right-hand side can then further

be estimated by

2(γ − 1)c−1
v ν−γes/cvxy ≥ −(1− ζ)(γ − 1)γν−1−γes/cvx2 − 1

1−ζ
γ−1
γ c−2

v ν1−γes/cvy2.

We now require that 1
1−ζ

γ−1
γ < 1 and 0 < ζ ≤ 1, which is satisfied for 0 < ζ < 1

γ .

Consequently, ẽ is a strongly convex function that satisfies assumption (B2).

Theorem 3.25. Let the assumptions (B1)–(B3) hold. Then, a solution (ρnh,m
n
h, s

n
h) of

Problem 3.21 satisfies the following discrete global balance laws∫
E
aρnh dx =

∫
E
aρn−1

h dx−∆τ
∑

v∈V∂

mn
h(v)ne(v), (3.102)

Hε(ρnh,m
n
h, s

n
h) ≤ Hε(ρn−1

h ,mn−1
h , sn−1

h )−∆τ
∑

v∈V∂

ĝv∂(τ
n)mn

h(v)ne(v)

−∆τ

∫
E
aγρnh|wn

h |3 dx−∆τ

∫
E

β

ε3
(θnh − θ0)2

θnh
dx, (3.103)∫

E
aρnhs

n
h dx =

∫
E
aρn−1

h sn−1
h dx−∆τ

∫
E

β

ε3
θnh − θ0

θnh
dx

−∆τ
(
⟨mn

h, s
n
hn⟩Vout,n

∂
+ ⟨mn

h, s∂(τ
n)n⟩Vin,n

∂

)
. (3.104)

If the equations (3.95)–(3.96) in Problem 3.21 are replaced by (3.98)–(3.99), the corre-

sponding solution (ρnh,m
n
h, s

n
h) satisfies the mass and energy balance (3.102) and (3.103)

as well as the following entropy balance∫
E
aρnhs

n
h dx ≥

∫
E
aρn−1

h sn−1
h dx−∆τ

∫
E

β

ε3
θnh − θ0

θnh
dx

−∆τ
(
⟨mn

h, s
n
hn⟩Vout,n

∂
+ ⟨mn

h, ŝ∂(τ
n)n⟩Vin,n

∂

)
, (3.105)

i.e., entropy at junctions is produced instead of conserved.

Proof. Conservation of mass. The first identity (3.102) follows directly from testing (3.94)

with qh = 1, i.e.,∫
E
ad̄τρ

n
h dx = −

∫
E
∂xm

n
h dx = −

∑
v∈V

∑
e∈E(v)

mn
h(v)ne(v).

The contributions at interior vertices vanish since mn
h ∈ Rh ⊂ H(div; E).
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Dissipation of exergy. By definition of the exergy in (3.85) it holds that

d̄τHε(ρnh, w
n
h , s

n
h) =

1
∆τ

∫
E
a ε2

2 (ρ
n
h(w

n
h)

2 − ρn−1
h (wn−1

h )2)

+ aρnhe(ρ
n
h, s

n
h)− aρn−1

h e(ρn−1
h , sn−1

h )− (aρnhs
n
h − aρn−1

h sn−1
h )θ0 dx

= (ad̄τρ
n
h,

ε2

2 (w
n
h)

2 + e(ρnh, s
n
h)− snhθ

0)Th + 1
∆τ

∫
E
a ε2

2 ρ
n−1
h ((wn

h)
2 − (wn−1

h )2) dx

+ 1
∆τ

∫
E
aρn−1

h (e(ρnh, s
n
h)− e(ρn−1

h , sn−1
h )) dx− 1

∆τ

∫
E
aρn−1

h (snh − sn−1
h )θ0 dx

= (i) + (ii) + (iii) + (iv).

Let us first consider the term (iii). By assumption (B2) and (3.101) we observe that

enh − en−1
h ≤ δν ẽ

n
h(ν

n
h − νn−1

h ) + δsẽ
n
h(s

n
h − sn−1

h )− ζδνν ẽ(ν
∗
h, s

∗
h)(ν

n
h − νn−1

h )2

≤ pnh
ρnhρ

n−1
h

(ρnh − ρn−1
h ) + θnh(s

n
h − sn−1

h )− ζδνν ẽ∗h
(ρnhρ

n−1
h )2

(ρnh − ρn−1
h )2

with ν∗h = ξ1
1
ρnh

+ (1− ξ1)
1

ρn−1
h

, s∗h = ξ2s
n
h + (1− ξ2)s

n−1
h for some ξ1, ξ2 ∈ (0, 1), where we

abbreviated enh = e(ρnh, s
n
h) and ẽ

∗
h = ẽ(ρ∗h, s

∗
h). From this we directly deduce that

(iii) ≤ (ad̄τρ
n
h,

pnh
ρnh
)Th + (aρn−1

h d̄τs
n
h, θ

n
h)Th − 1

∆τ

∫
E
a

ζδνν ẽ∗h
(ρnh)

2ρn−1
h

(ρnh − ρn−1
h )2 dx

= (iii.1) + (iii.2) + (iii.3).

We observe that

(i) + (iii.1) = (ad̄τρ
n
h, g

ε,n
h )Th and (iv) + (iii.2) = (aρn−1

h d̄τs
n
h, θ

n
h − θ0)Th .

It remains to estimate the last term (iii.3) together with (ii), i.e.,

(ii) + (iii.3) = 1
∆τ

∫
E
a ε2

2 ρ
n−1
h ((wn

h)
2 − (wn−1

h )2)− 1
∆τ

∫
E
a

ζδνν ẽ∗h
(ρnh)

2ρn−1
h

(ρnh − ρn−1
h )2 dx.

Let us note that

a ε2

2 ρ
n−1
h ((wn

h)
2 − (wn−1

h )2) = aε2ρnhw
n
h(w

n
h − wn−1

h )

− aε2(ρnh − ρn−1
h )wn

h(w
n
h − wn−1

h )− a ε2

2 ρ
n−1
h (wn

h − wn−1
h )2.

The first term equals ∆τε2d̄τw
n
hm

n
h. Under assumption (B3) and using Young’s inequality,

we can show that the remaining terms are negative, i.e,

− ζδνν ẽ∗h
(ρnh)

2ρn−1
h

(ρnh − ρn−1
h )2 − ε2(ρnh − ρn−1

h )wn
h(w

n
h − wn−1

h )− ε2

2 ρ
n−1
h (wn

h − wn−1
h )2

≤ − ε2

2
(ρnhw

n
h)

2

(ρnh)
2ρn−1

h

(ρnh − ρn−1
h )2 + ε2

2
(wn

h)
2

ρn−1
h

(ρnh − ρn−1
h )2

+ ε2

2 ρ
n−1
h (wn

h − wn−1
h )2 − ε2

2 ρ
n−1
h (wn

h − wn−1
h )2 = 0,

which allows us to estimate (ii) + (iii.3) ≤ (ε2d̄τw
n
h ,m

n
h)Th . Overall, we obtain

d̄τHε(ρnh, w
n
h , s

n
h) ≤ (ad̄τρ

n
h, g

ε,n
h )Th + (ε2d̄τw

n
h ,m

n
h)Th + (aρn−1

h d̄τs
n
h, θ

n
h − θ0)Th . (3.106)
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Testing (3.94) with gε,nh ∈ L2(E), (3.95) with mn
h ∈ Rh, and (3.96) with ε−3(θnh − θ0) ∈ Zh

then yields

d̄τHε(ρnh, w
n
h , s

n
h) ≤− (∂xm

n
h, g

ε,n
h )Th + (gε,nh , ∂xm

n
h)Th + ⟨(θnh − θ0)(ŝnh − snh),m

n
hn⟩∂T in,n

h

− (γ|wn
h |wn

h ,m
n
h)Th −

∑
v∈V∂

ĝv∂(τ
n)mn

h(v)ne(v)

− ⟨mn
h(ŝ

n
h − snh), (θ

n
h − θ0)n⟩

∂T in,n
h

− (β
θnh − θ0

θnh
, ε−3(θnh − θ0))Th

=−
∑
v∈V∂

ĝv∂(τ
n)mn

h(v)ne(v)−
∫
E
γaρnh|wn

h |3 dx−
∫
E

β

ε3
(θnh − θ0)2

θnh
dx.

Let us note that (3.94) can formally be tested with L2-functions since d̄τρ
n
h as well as

∂xm
n
h are piecewise constant and (3.94) thus holds pointwise.

Balance of entropy. By formally testing (3.94) with rh = snh ∈ Qh and (3.96) with

zh = ε−3 ∈ Zh, ẑh = 0, we estimate

1
∆τ

∫
E
aρnhs

n
h − aρn−1

h sn−1
h dx = (ad̄τρ

n
h, s

n
h)Th + (aε3ρn−1

h d̄τs
n
h, ε

−3)Th

=− (∂xm
n
h, s

n
h)Th − ⟨mn

h(ŝ
n
h − snh), n⟩∂T in,n

h
− (β

θnh − θ0

θnh
, ε−3)Th

=− ⟨mn
hs

n
h, n⟩∂Th − ⟨mn

h(ŝ
n
h − snh), n⟩∂T in,n

h
− (β

θnh − θ0

θnh
, ε−3)Th

=− ⟨mn
hs

n
h, n⟩Vout,n

∂
− ⟨mn

hŝ
v
∂(τ

n), n⟩Vin,n
∂

− (β
θnh − θ0

θnh
, ε−3)Th ,

where the contributions at interior vertices and grid points cancel due to the fact that ŝh
equals the upwind value within pipes and the mixing value (3.97) at junctions, and mn

h is

continuous, from which we can conclude that ⟨mn
hŝ

n
h, n⟩∂T in,n

h \V∂
= −⟨mn

hs
n
h, n⟩∂T out,n

h \V∂
.

Balance laws for η. Conservation of mass trivially holds since the first equation (3.94)

is unchanged. In order to prove that the energy balance (3.91) is still valid, we start from

(3.106) and test (3.94) with gε,nh ∈ L2(E) which is an admissible test function, (3.98) with

mn
h ∈ Rh and (3.99) with ε−3(θnh − θ0)/η′(snh) ∈ Zh and ẑh = 0. This leads to

d

dτ
Hε(ρnh, w

n
h , s

n
h) ≤ −(∂xm

n
h, g

ε,n
h )Th + (gε,nh , ∂xm

n
h)Th − (γ|wn

h |wn
h ,m

n
h)Th

+ ⟨(θnh − θ0)(η(ŝnh)− η(snh))/η
′(snh),m

n
h n⟩∂T in,n

h
−
∑

v∈V∂

ĝv∂(τ
n)mn

h(v)ne(v)

− ⟨mn
h(η(ŝ

n
h)− η(snh)), (θ

n
h − θ0)/η′(snh)n⟩∂T in,n

h
− (ε−3β(θnh − θ0)/θnh , θ

n
h − θ0)Th .

By canceling the terms with opposite signs, we already obtain the energy balance (3.91).

Similarly as above, we find

1
∆τ

∫
E
aρnhs

n
h − aρn−1

h sn−1
h dx = (ad̄τρ

n
h, s

n
h)Th + (aρn−1

h η′(snh)d̄τs
n
h, η

′(snh)
−1)Th

=− (∂xm
n
h, s

n
h)Th − ⟨mn

h(η(ŝ
n
h)− η(snh)), η

′(snh)
−1n⟩

∂T in,n
h

− (β
θnh − θ0

θnh
, ε−3)Th
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Since snh is piecewise constant, the first term equals −⟨mn
h, s

n
h n⟩∂Th . Using thatmn

hn < 0 at

∂T in,n
h and that η is convex, i.e., η(ŝnh)−η(snh) ≥ η′(snh)(ŝ

n
h−snh), and strictly monotonically

increasing, i.e., η′(snh) > 0, we can estimate the second term by

−⟨mn
h(η(ŝ

n
h)− η(snh)), η

′(snh)
−1n⟩

∂T in,n
h

≥ −⟨mn
h(ŝ

n
h − snh), n⟩∂T in,n

h
.

At interior grid points Xh it holds that ŝnh is given by the upwind value andmn
h is continuous

within edges, we can thus conclude that −⟨mn
hŝ

n
h, n⟩∂T in,n

h \V = ⟨mn
hs

n
h, n⟩∂T out,n

h \V . At

interior junctions v ∈ V0, however, it holds that

−
∑

e∈Eout(v,τn)
mn

h,e(v)ŝ
n
h,e(v)ne(v)

= −
∑

e∈Eout(v,τn)
mn

h,e(v)ne(v)η
−1
(∑

e′∈Ein(v,τn)m
n
h,e′(v)η(s

n
h,e′(v))ne′(v)∑

e′∈Ein(v,τn)m
n
h,e′(v)ne′(v)

)
≥
∑

e∈Ein(v,τn)
mn

h,e(v)s
n
h,e(v)ne(v),

where we used the fact that η(ŝnh) is given by the mixing value (3.100), that η−1 is concave,

as well as Jensen’s inequality. In summary, we thus find that

−⟨mn
hŝ

n
h, n⟩∂T in,n

h \V∂
≥ ⟨mn

hs
n
h, n⟩∂T out,n

h \V∂
.

Together with the previous considerations we can thus estimate

−(∂xm
n
h, s

n
h)Th − ⟨mn

h(ŝ
n
h − snh), η

′(snh)
−1n⟩

∂T in,n
h

≥ −⟨mn
h, s

n
h n⟩∂Th − ⟨mn

h(ŝ
n
h − snh), n⟩∂T in,n

h

≥ −⟨mn
h, s

n
hn⟩Vout,n

∂
− ⟨mn

h, ŝ∂(τ
n)n⟩Vin,n

∂
,

i.e., additional entropy is produced at junctions due to mixing. This yields (3.93).

This concludes our theoretical investigations for the non-isothermal gas transport in

pipe networks. Open questions that occurred will be discussed at the end of this chapter.

3.5. Numerical illustration

Let us conclude this chapter with some numerical experiments illustrating our theoret-

ical findings. We again consider the GasLib-11 network from Chapter 1.4 depicted in

Figure 3.4. This network consists of 11 pipes and vertices from which 5 are boundary

vertices. We assume that all pipes have the rescaled length ℓ = 1, diameter d = 1, and

cross-sectional area a = π/4. According to the data in [112] that corresponds to the

GasLib-11 network, the length of the pipes is about 55 km with diameters of 0.5m. Rel-

evant time scales range from hours to days and usual mass fluxes are 10 − 20m/s [98].

This corresponds to a scaling parameter ε ≈ 0.1− 0.01.
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Figure 3.4.: GasLib-11 network from [112].

3.5.1. Isothermal gas transport

We first consider the isothermal gas transport and choose γ = 1 as the friction coefficient.

We assume that the pressure-to-density relation is given by p(ρ) = c2ρ, which holds for an

ideal gas in the isothermal regime, with the rescaled speed of sound c = 1. As boundary

conditions, we prescribe the enthalpy at the network boundary vertices by

hv1∂ (τ) = 0.2 sin(2πτ/τmax)
3 + 1, hv4∂ (τ) = 0.3 sin(2πτ/τmax)

3 + 1,

hv7∂ (τ) = hv10∂ (τ) = hv11∂ (τ) = 1

for a time horizon τmax = 5. The initial conditions are given by the stationary states

corresponding to the boundary data at τ = 0. Let us note that for ε ≪ 1, fixing the

enthalpy at the boundary vertices is more or less equivalent to fixing the density since

hε = ε2

2 w
2 + P ′(ρ) ≈ P ′(ρ). We solve the nonlinear system of equations, which we obtain

from (3.45)–(3.46) after choosing suitable basis functions for the discrete spaces, using

Newton’s method. In our computations, we obtained convergence within 4 − 5 steps up

to a tolerance of 10−12.

Asymptotic convergence

In order to illustrate the asymptotic estimate from Theorem 3.5, we compare the solutions

for different ε > 0 with the solution to the parabolic limit problem ε = 0. Since we cannot

explicitly compute the exact solutions, we approximate them using the method proposed

in Problem 3.6 for small mesh sizes h and ∆τ . Our results are shown in Table 3.1. The

distances depicted therein are computed as

dist(u) = max
n=0,...,N

∥uε,nh − u0,nh ∥L2(E)

with u = ρ or u = m. For ε sufficiently small, we obtain second-order convergence with

respect to ε in density and also in mass flux. These observations are in accordance with

the theoretical findings from Theorem 3.5, where a second-order convergence in ε was

proven if the velocities are bounded away from zero. Although in our scenario velocities

change sign, we still observe this convergence.
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ε 1 10−1 10−2 10−3 10−4 10−5 10−6

dist(ρ) 1.22e-1 6.62e-3 6.92e-5 6.98e-7 6.98e-9 6.98e-11 6.98e-13

rate – 1.27 1.98 2.00 2.00 2.00 2.00

dist(m) 5.35 8.32e-1 6.56e-2 9.20e-4 9.54e-6 9.54e-8 9.56e-10

rate – 0.81 1.10 1.85 1.98 2.00 2.00

Table 3.1.: Distance to the parabolic limit and convergence rate with respect to ε. The

mesh sizes are chosen as h = ∆τ = 2−6.

ε = 1

errh(ρ) 5.41e-2 4.55e-2 3.41e-2 2.38e-2 1.57e-2 9.89e-3

rate – 0.25 0.42 0.52 0.60 0.66

errh(m) 3.90e-2 3.35e-2 2.35e-2 1.64e-2 1.10e-2 7.06e-3

rate – 0.22 0.51 0.52 0.58 0.64

ε = 10−1

errh(ρ) 1.07e-2 5.76e-3 3.02e-3 1.56e-3 7.99e-4 4.06e-4

rate – 0.90 0.93 0.95 0.96 0.97

errh(m) 4.03e-2 2.41e-2 1.38e-2 7.61e-3 4.06e-3 2.11e-3

rate – 0.74 0.81 0.85 0.91 0.94

ε = 10−2

errh(ρ) 9.34e-3 4.78e-3 2.46e-3 1.25e-3 6.30e-4 3.17e-4

rate – 0.97 0.96 0.98 0.99 0.99

errh(m) 3.53e-2 2.10e-2 1.53e-2 7.88e-3 4.40e-3 2.39e-3

rate – 0.75 0.45 0.96 0.84 0.88

ε = 10−3

errh(ρ) 9.34e-3 4.77e-3 2.46e-3 1.25e-3 6.30e-4 3.16e-4

rate – 0.97 0.96 0.98 0.99 0.99

errh(m) 3.53e-2 2.19e-2 1.89e-2 1.06e-2 9.76e-3 4.84e-3

rate – 0.69 0.21 0.83 0.12 1.01

ε = 0

errh(ρ) 9.34e-3 4.77e-3 2.46e-3 1.25e-3 6.30e-4 3.16e-4

rate – 0.97 0.96 0.98 0.99 0.99

errh(m) 3.53e-2 2.20e-2 1.89e-2 1.08e-2 9.95e-3 5.27e-3

rate – 0.68 0.22 0.81 0.12 0.92

Table 3.2.: Error and convergence rates with respect to h for different values of ε. Space

and time discretization with h = ∆τ = 2−3−r in refinement r = 0, . . . , 5.

Error estimates

We also investigate the simulation errors and convergence rates of the numerical scheme

given in Problem 3.6 for different scaling parameters ε ≥ 0. Since the exact solution to

(3.15)–(3.20) is not known, the numerical errors are approximated by

errh(u) = max
n=1,...,N

∥unh − unh/2∥L2(E)

with u = ρ or u = m and unh/2 denoting the solution on a finer mesh with h = h/2

and ∆τ = ∆τ/2 at the same time point τn = n∆τ in time. The results are depicted in

Table 3.2. As theoretically proven in Theorem 3.9, we observe linear convergence for the
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density for all choices of the scaling parameter ε sufficiently small, in particular also for

the parabolic limit ε = 0. Linear convergence can also be seen for the mass flux for ε

sufficiently small, but not too close to the limit ε = 0, which is also in accordance with

Theorem 3.9. Let us further highlight that the observed errors in the density are more or

less identical for ε = 10−2, 10−3 and ε = 0, which underlines the asymptotic convergence

behavior of the exact solutions to the parabolic limit.

3.5.2. Non-isothermal gas transport

Let us now focus on the non-isothermal gas transport in pipe networks. We consider a

simple ideal gas, see Example 3.17 and 3.24, and choose γ = 5/3 which corresponds to a

monatomic gas in dimension 3. Let us recall that e(ρ, s) = ργ−1es/cv with cv = R
γ−1 and

R = µR with R = 8.314 J
molK being the universal gas constant. As rescaled mole-mass

fraction we choose µ = 1 mol
kg . Similarly, we can write the entropy s as function of density ρ

and temperature θ, i.e., s(ρ, θ) = cv log(cvθ)−R log(ρ). We choose the rescaled parameters

ℓe = 1, de = 1, ae = π2/4, βe = 1, γe = 1 for all e ∈ E , a constant ambient temperature

of θ0 = 1 and a time horizon of τmax = 5. As boundary conditions we set

[gv1∂ (τ), gv4∂ (τ), gv7∂ (τ), gv10∂ (τ), gv11∂ (τ)] = [0.2 sin(2πτ/τmax)
3 + 1, 0.3 sin(2πτ/τmax)

3 + 1,

1, 1, 1] ·
(
e(1, s(1, 1)) + ∂ρe(1, s(1, 1))− s(1, 1)

)
,

ŝv∂(τ) = s(1, 1) for all v ∈ V in
∂ (τ).

The initial condition is given by the corresponding stationary solution to the boundary

conditions at time τ = 0. By choosing a suitable basis for the discrete spaces Qh, Rh

and Zh, we solve in each time step n = 1, . . . , N the system (3.94)–(3.96) using Newton’s

method, which usually converged within 4 steps using a tolerance up to 10−10 in our

simulation.

Discrete balance laws

As a first step, we illustrate the validity of the discrete balance laws (3.102)–(3.104) for

various choices of 0 < ε ≤ 1, which corresponds to different time and length scales. The

results are displayed in Table 3.3 with

∆Mh(τ
n) :=

∫
E
aρnh − aρ0h dx+∆τ

∑n

j=1

∑
v∈V∂

mj
h(v)ne(v),

∆Hε
h(τ

n) := Hε(ρnh, w
n
h , s

n
h)−Hε(ρ0h, w

0
h, s

0
h) + ∆τ

∑n

j=1

∑
v∈V∂

ĝv∂(τ
j)mj

h(v)ne(v)

+ ∆τ
∑n

j=1

∫
E
γaρjh|w

j
h|

3 +
β

ε3
(θjh − θ0)2

θjh
dx,

∆Sε
h(τ

n) :=

∫
E
aρnhs

n
h − aρ0hs

0
h dx+∆τ

∑n

j=1

∫
E

β

ε3
θjh − θ0

θjh
dx

+∆τ
∑n

j=1

(
⟨mj

h, s
j
hn⟩Vout,j

∂
+ ⟨mj

h, s
j
∂n⟩Vin,j

∂

)
.
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ε 1 2−1 2−2 2−3 2−4

∆Mh(τmax) -3.33e-16 1.47e-15 2.22e-15 0 -1.55e-15

∆Hε
h(τmax) -1.82e-1 -6.03e-2 -6.06e-2 -6.06e-2 -6.06e-2

∆Sε
h(τmax) 2.49e-14 4.17e-14 4.03e-11 1.66e-8 1.99e-5

Table 3.3.: Differences ∆Mh(τmax), ∆Hε
h(τmax), ∆Sε

h(τmax) in total mass, exergy and

entropy at time τmax = 5 for h = ∆τ = 2−6.

ε 1 2−1 2−2 2−3 2−4

∆Mh(τmax) -2.11e-15 -2.22e-15 1.89e-15 -1.22e-15 -6.12e-16

∆Hε
h(τmax) -1.82e-1 -6.01e-2 -6.06e-2 -6.06e-2 -6.06e-2

∆Sε
h(τmax) 5.89e-5 1.13e-1 6.66e-1 6.70e-1 6.70e-1

Table 3.4.: Differences ∆Mh(τmax), ∆Hε
h(τmax), ∆Sε

h(τmax) in total mass, exergy and

entropy at time τmax = 5 for h = ∆τ = 2−6 for coupling conditions (3.80)–

(3.81) with η chosen as in Example 3.17.

They are in accordance with our theoretical findings from Theorem 3.25. In a second

experiment, we changed to coupling conditions for the entropy to (3.80)–(3.81) with func-

tion η(s) = es/cv chosen as in Example 3.17. The method described in Problem 3.6 is

changed according to Remark 3.22. Our findings are depicted in Table 3.4. Let us stress

that entropy is now produced at junctions in comparison to the previous test.

Asymptotic convergence

Although a rigorous asymptotic analysis is not yet available, let us present a numerical

test. We compare the solutions for different ε > 0 with the solution to the parabolic limit

ε = 0. We measure the distance by

dist(u) = max
n=0,...,N

∥uε,nh − u0,nh ∥L2(E)

for u = ρ,m, s on a fine mesh. Our results are depicted in Table 3.5. For ε sufficiently

ε 1 10−1 10−2 10−3 10−4 10−5 10−6

dist(ρ) 2.67e-1 4.98e-2 2.31e-4 7.82e-7 8.24e-9 8.28e-11 8.29e-13

rate – 0.73 2.33 2.47 1.98 2.00 2.00

dist(m) 3.28 2.86e-1 1.49e-2 1.19e-3 3.17e-5 3.19e-7 3.19e-9

rate – 1.06 1.28 1.10 1.57 2.00 2.00

dist(s) 4.57 5.32e-1 1.81e-3 6.22e-6 6.17e-8 6.17e-10 6.17e-12

rate – 0.93 2.47 2.46 2.00 2.00 2.00

Table 3.5.: Distance to the parabolic limit and convergence rate with respect to ε. The

mesh sizes are chosen as h = ∆τ = 2−6.
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small the solutions are very close. We also displayed the convergence rates which for small

ε indicate a second-order convergence.

3.6. Discussion and outlook

To conclude this chapter, we discuss our results and open questions and give an outlook

on possible future research directions.

Isothermal gas transport. The first part of this chapter was dedicated to the isother-

mal gas transport in pipe networks. For an appropriate numerical approximation, we

proposed the mixed finite element method given in Problem 3.6 using basis functions

of the lowest order. The extension to higher-order polynomials and, in particular, the

analysis of the discretization error by using similar techniques based on relative energy es-

timates could be of interest. We also see a lot of potential in analyzing structure-preserving

Galerkin methods for other nonlinear problems that have an underlying “energy structure”

by relative energy techniques.

Another topic that might be worth investigating is concerned with an alternative proof

of the well-posedness of the parabolic gas model. In [113], the existence of weak solu-

tions is shown based on the reformulation of the problem to the degenerate second-order

parabolic equation. A Galerkin approximation of the corresponding weak formulation

yields convergent subsequences whose limits turn out to be weak solutions. It would be

of interest to alternatively consider the approximation of the parabolic problem provided

by our method for ε = 0. It might then be possible to show that the limit also yields a

weak solution to the corresponding variational formulation (3.22)–(3.23).

Finally, the application of our method to calibration and optimal control problems

arising in the context of gas networks leaves room for future research [78].

Non-isothermal gas transport. We proposed a suitable transformation of the model

equations. The corresponding weak formulation (3.82)–(3.84) turned out to have an en-

ergy structure that could be written as an abstract system of the form (3.88)–(3.89). In

particular, the problem had a similar structure as the reformulated isothermal gas trans-

port model (3.26)–(3.27), but with one crucial difference, namely the skew-symmetric

matrix J depended on the state u. However, a rigorous asymptotic analysis is not yet

available. It might be possible to estimate the difference between the solution uε =

(ρε, wε, sε) to the non-isothermal gas transport (3.70)–(3.79) and the parabolic limit solu-

tion u0 = (ρ0, w0, s0 = s0(ρ0)), which can again be understood as a perturbed solution to

(3.82)–(3.84), with similar techniques as for the isothermal case in Section 3.1.7. In order

to use the relative exergy that is given by

Hε(uε|u0) := Hε(uε)−Hε(u0)− ⟨Hε(u0), uε − u0⟩

with exergy functional defined in (3.85) as a distance measure, we have to ensure that

Hε(·|·) is equivalent to some norm, i.e., the exergy Hε is strongly convex with respect to

a norm. In the isothermal case, this was true under a subsonic condition, and we expect
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that under similar conditions like (B1)–(B3), i.e., close to the parabolic limit, this also

holds in the non-isothermal case. For research in similar directions, we refer to [16, 51]

where the exergy was used to investigate the weak-strong uniqueness for the Navier-Stokes

and the full Euler system, respectively.

The next step could then be a rigorous error analysis of the method proposed in Prob-

lem 3.21. Since the energy structure is preserved by the discretization scheme, it might

be possible to investigate the error and convergence with similar techniques as in the

isothermal case presented in Section 3.2.
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Conclusion

In this thesis, we considered three examples of partial differential equations on networks

that each contained an asymptotic parameter ε describing either a singular perturbation,

different modeling scales, or different physical regimes. The problem type and the type of

asymptotics differed forcing us to use various techniques and approaches for the analysis.

Let us summarize the focus areas and main tools, as well as comment on some open

questions and possible next steps. A detailed discussion and outlook for each of the three

model problems can be found at the end of the corresponding chapter.

Existence of solutions. In Chapter 1 and 2 we provided existence results of solutions

to the corresponding problems under consideration. As a main tool, we exploited semi-

group theory, which turned out to be particularly well-suited for problems on networks.

Energy estimates based on weak characterizations of solutions and fixed point arguments

in the case of nonlinear equations then enabled us to derive the existence and uniqueness

of solutions uniformly in the scaling parameter ε. For the kinetic chemotaxis model in

Chapter 2, however, we could only prove local existence. The extension to global results

is a possible next step for our research; we expect the need for other techniques.

Asymptotic analysis. One main focus of this work was the investigation of the behav-

ior of solutions for ε → 0. Different techniques were applied for the asymptotic analysis.

In Chapter 1 and 2 we made use of suitable boundary layer functions and asymptotic

expansions in order to derive quantitative estimates. A-priori bounds on solutions uni-

formly in the scaling parameter ε were crucial for the analysis of the kinetic chemotaxis

model. The investigation of more general coupling conditions, as well as nonlinear models

in the context of traffic flow or cross-diffusion systems and other kinetic equations (on

networks) opens up further research fields. For the isothermal gas transport model in

Chapter 3, however, we needed different tools. Based on a suitable transformation of

the equations and a weak characterization of solutions having an “energy structure”, we

exploited relative energy estimates to obtain an asymptotic estimate. The extension to

the non-isothermal model, which has a similar “energy structure”, seems possible, but

remains to be studied.

Numerical approximation. Based on weak characterizations of solutions, we consid-

ered Galerkin methods that preserved the underlying structure and the basic properties

of the model problems. Moreover, methods were still viable in the asymptotic limit ε = 0.

A special emphasis was on the proper handling of the coupling conditions at network

junctions. Introducing additional hybrid variables at vertices and grid points turned out

to be particularly well-suited. The application of similar methods to other (nonlinear)



Conclusion

problems on networks is of great interest. Moreover, a suitable numerical approximation

of the kinetic chemotaxis model on networks, that is still viable in the diffusion limit ε = 0,

has not been considered yet and is thus a possible next step for our research.

Error analysis. In order to analyze the error of the proposed numerical methods, we

faced different challenges. In Chapter 1 boundary and internal layers made the use of

layer-adapted meshes on the edges of the network necessary, leading to ε-uniform error

estimates. The particular construction and proposed approximation strategy could be

applied to other problems (on networks) forming layers for small scalings. A completely

different error analysis was performed for the isothermal gas transport in Chapter 3. Based

on the “energy structure” of our model problem that was inherited by the mixed finite

element method for the isothermal gas transport, we used relative energy estimates to

measure the discretization error. We further hope to analyze the error of the numerical

method for the non-isothermal gas transport with similar techniques. This is, however,

left for future research. In general, relative energy estimates are an extremely useful tool

for the error analysis of (structure-preserving) discretization schemes and could be applied

to other nonlinear problems having an “energy structure”.
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A
Appendix

A.1. Verification of (E1)–(E3) in the proof of Theorem 3.5

For the sake of completeness, we show that the estimates (E1)–(E3) are valid for uε =

(ρε, wε) and u0 = (ρ0, w0) solving (3.26)–(3.27) and (3.39)–(3.40), respectively.

Verification of (E1). By definition of Hε in (3.24) it holds that

(Hε)′(uε)− (Hε)′(u0)− (Hε)′′(u0)(uε − u0) =

(
aP ′(ρε|ρ0) + 1

2aε
2(wε − w0)2

aε2(ρε − ρ0)(wε − w0)

)

with P ′(ρε|ρ0) := P ′(ρε)−P ′(ρ0)−P ′′(ρ0)(ρε−ρ0). Applying Taylor’s theorem then yields

P ′(ρε|ρ0) ≤ |P ′′′(ρ∗)|(ρε − ρ0)2 ≤ C(ρε − ρ0)2

with intermediate value ρ∗ := ξρε + (1 − ξ)ρ0 for some ξ ∈ (0, 1). The latter inequality

holds since the pressure potential P is smooth and ρ is bounded due to (A1) and (A3).

Young’s inequality further enables us to estimate

aε2(ρε − ρ0)(wε − w0) ≤ 1
2 āε|ρ

ε − ρ0|2 + 1
2 āε

3|wε − w0|2,

which then leads to

⟨(Hε)′(uε)−(Hε)′(u0)− (Hε)′′(u0)(uε − u0), ∂τu
0⟩

≤ C ′∥∂τu0∥ε,∞∥uε − u0∥2ε ≤ C1Hε(uε|u0)

with ε-weighted norms defined in (3.34). In the last step we used the norm equivalence

(3.35) for the relative energy and the fact that u0 is bounded in W 1,∞(0, τmax;L
∞(E))2.

Verification of (E2). Since (|ξ|ξ)′ = 2|ξ|, it holds that

γ|wε|wε − γ|w0|w0 = 2γ

∫ 1

0
|w0 + ξ(wε − w0)| dξ (wε − w0).

The integral can further be estimated from below and above by

|wε|+ |w0|
4

≤
∫ 1

0
|w0 + ξ(wε − w0)| dξ ≤ |wε|+ |w0|

2
. (A.1)



1. Appendix

The upper estimate is an immediate consequence of the triangle inequality. The lower

estimate can be shown by minimizing the functional F (wε) :=
∫ 1
0 |w0 + ξ(wε −w0)| dξ for

fixed w0. Since F takes its minimum for wε = −w0, we have∫ 1

0
|w0 + ξ(wε − w0)| dξ ≥ minF (wε) = 1

4 |w
0|+ 1

4 |w
ε|.

We can further write

mε −m0 = aρεwε − aρ0w0 = a(ρε − ρ0)wε + aρ0(wε − w0),

which together with the previous considerations yields

(γ|wε|wε − γ|w0|w0)(mε −m0) = 2aγwε

∫ 1

0
|w0 + ξ(wε − w0)| dξ (ρε − ρ0)(wε − w0)

+2aγρ0
∫ 1

0
|w0 + ξ(wε − w0)| dξ (wε − w0)2 = (i) + (ii).

From (A.1) and Young’s inequality we deduce that

(i) ≥ −1
4aγρ

0(|wε|+ |w0|)(wε − w0)2 − 2aγ (wε)2

ρ0
(|wε|+ |w0|)(ρε − ρ0)2,

(ii) ≥ 1
2aγρ

0(|wε|+ |w0|)(wε − w0)2.

With the bounds in (A2)–(A3), we finally obtain

−⟨R(uε)−R(u0), zε(uε)− zε(u0)⟩ ≤ −
∑

e∈E

∫ ℓe

0
(i) + (ii) dx

≤ −1
4

∑
e∈E

∫ ℓe

0
aeγeρ

0(|wε|+ |w0|)(wε − w0)2 dx+ 4āγ̄ w̄3

¯
ρ ∥ρε − ρ0∥2E

≤ −2D(uε|u0) + C2Hε(uε|u0)

with relative dissipation functional defined by (3.43).

Verification of (E3). Inserting the definition of the residual in (3.41) yields

⟨res0, zε(uε)− zε(u0)⟩ = (ε2∂τw
0,mε −m0)E − ( ε

2

2 (w
0)2, ∂x(m

ε −m0))E = (iii) + (iv).

The first term can be estimated using Hölder’s and Young’s inequality, the bounds in

(A2)–(A3) as well as the fact that mε −m0 = a(ρε − ρ0)wε + aρ0(wε −w0) which leads to

(iii) ≤ 1
2 āw̄

(
ε4∥∂τw0∥2L2(E) + ∥ρε − ρ0∥2L2(E)

)
+ 8

3
(āρ̄)3/2

(3
¯
a
¯
γ
¯
ρ)1/2

ε3∥∂τw0∥3/2
L3/2(E)

+ 1
16¯
a
¯
γ
¯
ρ∥wε − w0∥3L3(E) ≤ CHε(uε|u0) + 1

2D(uε|u0) + C ′ε3,

where the latter inequality follows from (3.35), (3.43), the bounds on ∂τu
0, and the finite-

ness of the network. If |wε|, |w0| ≥
¯
w > 0, we can alternatively estimate

(iii) ≤ 1
2 āw̄

(
ε4∥∂τw0∥2L2(E) + ∥ρε − ρ0∥2L2(E)

)
+ 8 ā2ρ̄2

¯
a
¯
γ
¯
ρ
¯
wε

4∥∂τw0∥2L2(E) (A.2)

+ 1
16¯
a
¯
γ
¯
ρ
¯
w∥wε − w0∥2L2(E) ≤ CHε(uε|u0) + 1

2D(uε|u0) + C ′ε4,
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using (3.44) instead of (3.43). Similarly, by applying integration-by-parts we find that

(iv) = (ε2w0∂xw
0,mε −m0)E ≤ CH(uε|u0) + 1

2D(uε|u0) + C ′ε3,

where C ′ now depends on ∥∂xw0∥L2(E) which is bounded by assumption. This estimate

can again be improved if the velocities are bounded away from zero. In summary, this

proves (E3).

A.2. Discrete Grönwall lemma

In the proof of the uniform convergence result from Theorem 3.9 in Chapter 3, we make

use of the following discrete version of the Grönwall lemma.

Lemma A.1. Let an, bn, dn ≥ 0 for n = 0, . . . , N , and let ∆τ > 0 with c∆τ < 1 for a

given c > 0. Moreover, for all 1 ≤ n ≤ N it holds that

an +
∑n

k=1
∆τdk ≤ a0 + bn + c

∑n

k=1
∆τ(ak + ak−1). (A.3)

Then,

an +∆τ
∑n

k=1
dk ≤ a0 + bn + c∆τe

2nc∆τ
1−c∆τ

(
a0 +

∑n

k=1
e

(1−2k)c∆τ
1−c∆τ (2a0 + bk + bk−1)

)
.

Proof. Let us introduce

sn :=
∑n

k=1
(ak + ak−1), s0 = a0, and w :=

1− c∆τ

1 + c∆τ
.

and rewrite (A.3) as

an − c∆τsn ≤ a0 + bn −
∑n

k=1
∆τdk. (A.4)

By defining ãn := wnsn we observe that

ãn − ãn−1 = wnsn − wn−1sn−1 = wn−1(wsn − sn−1)

= wn−1(1 + c∆τ)−1(sn − c∆τsn − sn−1 − c∆τsn−1)

= wn−1(1 + c∆τ)−1
(
(an − c∆τsn) + (an−1 − c∆τsn−1)

)
≤ wn−1(1 + c∆τ)−1(a0 + bn −

∑n

k=1
∆τdk + a0 + bn−1 −

∑n−1

k=1
∆τdk

)
,

where we used (A.4) for the last inequality. Summing up over n then leads to

ãn ≤ ã0 +
∑n

k=1
wk−1(1 + c∆τ)−1

(
2a0 + bk + bk−1 −

∑k

j=1
∆τdj −

∑k−1

j=1
∆τdj

)
.

Since ã0 = a0 and ãn = wnsn as well as dj ≥ 0, we see that

sn ≤ w−na0 + w−n
∑n

k=1
wk−1(1 + c∆τ)−1

(
2a0 + bk + bk−1

)
.
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1. Appendix

In order to estimate the terms on the right-hand side, we make use of the fact that

w−n =
(
1+c∆τ
1−c∆τ

)n
=
(
1 + 2c∆τ

1−c∆τ

)n ≤ e2nc∆τ/(1−c∆τ),

which follows from the exponential series. From this, we immediately conclude that

w−nwk−1(1 + c∆τ)−1 =
(
1+c∆τ
1−c∆τ

)n−k
(1− c∆τ)−1 ≤ e

(2(n−k)+1)c∆τ
1−c∆τ ,

where we additionally used that (1 − c∆τ)−1 = 1 + c∆τ
1−c∆τ ≤ ec∆τ/(1−c∆τ). Inserting into

(A.4) yields

an +∆τ
∑n

k=1
dk ≤ a0 + bn + c∆τe

2nc∆τ
1−c∆τ

(
a0 +

∑n

k=1
e

(1−2k)c∆τ
1−c∆τ (2a0 + bk + bk−1)

)
,

which already proves the assertion.
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Translated from the French by Alan Craig.

[28] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional

Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.

[29] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods,

volume 69. Springer Science & Business Media, 2011.

[30] J. I. Diaz and F. de Thélin. On a nonlinear parabolic problem arising in some models

related to turbulent flows. SIAM J. Math. Anal., 25(4):1085–1111, 1994.
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[33] B. Dorn, M. Kramar Fijavž, R. Nagel, and A. Radl. The semigroup approach to

transport processes in networks. Phys. D, 239:1416–1421, 2010.

[34] R. G. Durán and A. L. Lombardi. Finite element approximation of convection

diffusion problems using graded meshes. Appl. Numer. Math., 56:1314–1325, 2006.

[35] H. Egger. A robust conservative mixed finite element method for isentropic com-

pressible flow on pipe networks. SIAM J. Sci. Comput., 40(1):A108–A129, 2018.

[36] H. Egger. Structure preserving approximation of dissipative evolution problems.

Numer. Math., 143(1):85–106, 2019.

[37] H. Egger and J. Giesselmann. Stability and asymptotic analysis for instationary gas

transport via relative energy estimates. Numer. Math., 153(4):701–728, 2023.

[38] H. Egger, J. Giesselmann, T. Kunkel, and N. Philippi. An asymptotic-preserving

discretization scheme for gas transport in pipe networks. IMA J. Numer. Anal.,

2022.

[39] H. Egger and N. Philippi. A hybrid discontinuous Galerkin method for transport

equations on networks. In Finite volumes for complex applications IX—methods,

theoretical aspects, examples—FVCA 9, Bergen, Norway, June 2020, volume 323 of

Springer Proc. Math. Stat., pages 487–495. Springer, Cham, 2020.

[40] H. Egger and N. Philippi. On the transport limit of singularly perturbed convection-

diffusion problems on networks. Math. Methods Appl. Sci., 44(6):5005–5020, 2021.



[41] H. Egger and N. Philippi. A hybrid-dG method for singularly perturbed convection-

diffusion equations on pipe networks. ESAIM: M2AN, 57(4):2077–2095, 2023.

[42] H. Egger and M. Schlottbom. A mixed variational framework for the radiative

transfer equation. Math. Models Methods Appl. Sci., 22(3):1150014, 30, 2012.

[43] H. Egger and M. Schlottbom. Diffusion asymptotics for linear transport with low

regularity. Asymptot. Anal., 89(3-4):365–377, 2014.
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