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Abstract

With the rapid growth in the adoption and democratization of advanced data analysis tech-
niques such as Machine Learning (ML) and Artificial Intelligence (AI), it is imperative to
address the privacy concerns arising from the inherent pervasive collection and utilization
of sensitive information. In this context, cryptographic secure computation techniques play
a crucial role as they enable data analysis while upholding the confidentiality of the input
data. These techniques however come with a significant performance overhead compared to
plaintext computation. Moreover, some phases of the analysis process, e.g., data preparation,
parameter determination, and quality evaluation, have not been adequately considered by the
cryptographic community. As a consequence, state-of-the-art secure computation protocols
for privacy-preserving data analysis and machine learning nowadays are often not yet ready
for being deployed in real-world applications.

In this thesis, we start by investigating the deficiencies of existing secure computation-based
solutions for data analyses. Based on our analysis, we take an end-to-end approach to
design, implement, and evaluate practical privacy-preserving protocols tailored for specific
use cases. We thereby focus on two directions: The first part investigates privacy-preserving
protocols for a general class of ML algorithms, namely clustering. The clustering protocols
we design combine cryptographic techniques and protocol optimizations with the real-world
requirements of plaintext clustering. The second part introduces efficient secure computation
protocols for two concrete data analysis applications from the medical domain: The matching
of compatible donors and patients for kidney donations and epidemiological modeling. Our
solutions critically incorporate interdisciplinary insights.

Practical Privacy-Preserving Clustering. Clustering, an unsupervised ML technique that
enables the identification of underlying patterns and structures within data, has a wide range
of applications in diverse fields such as health care, marketing, and finance. To ensure the
privacy of sensitive input data, numerous secure computation protocols have been proposed
for privacy-preserving clustering in recent years. Unfortunately, evaluating their suitability for
specific applications and comparing them in terms of privacy guarantees, efficiency, and quality
is often complex due to variations in underlying plaintext clustering algorithms, cryptographic
techniques, security models, as well as intended participant scenarios and use cases. We
systematize the state-of-the-art in privacy-preserving clustering, introduce criteria on how to
assess the suitability of a protocol for a specific use case, and lay out open research questions
that need to be solved to make private clustering practical for real-world applications.

Based on the results of our systematization, we introduce the first practical and fully privacy-
preserving density-based clustering protocol. In contrast to the K-means clustering algorithm,
which is commonly used as a baseline in previous private clustering protocols, our private
density-based clustering protocol flexibly determines the number of clusters that suits the
input data well and is insensitive to outliers. This makes it much more attractive for real-world
applications than a private K-means protocol. One application is the distributed ML training
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concept, Federated Learning (FL), which is susceptible to backdoor attacks manipulating
the model in addition to inference attacks extracting information about the training data
used. We devise a novel defense mechanism for FL based on our privacy-preserving density-
based clustering protocol.

This part of the thesis is based on the following three publications:

[HMSY21] A. HEGDE, H. MÖLLERING, T. SCHNEIDER, H. YALAME. “SoK: Efficient privacy-preserving
clustering”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2021.4 (2021).
Online: https:/ / ia . cr / 2021 / 809. Code: https:/ / encrypto . de / code / SoK _

ppClustering, S. 225–248. CORE Rank A. Appendix A.

[BCE+21] B. BOZDEMIR, S. CANARD, O. ERMIS, H. MÖLLERING, M. ÖNEN, T. SCHNEIDER. “Privacy-
preserving density-based clustering”. In: ASIA Conference on Computer and Com-
munications Security (ASIACCS). Online: https://ia.cr/2021/612. Code: https://
encrypto.de/code/ppDBSCAN. ACM, 2021, S. 658–671. CORE Rank A. Appendix B.

[NRC+22] T. D. NGUYEN, P. RIEGER, H. CHEN, H. YALAME, H. MÖLLERING, H. FEREIDOONI, S. MAR-
CHAL, M. MIETTINEN, A. MIRHOSEINI, S. ZEITOUNI, F. KOUSHANFAR, A.-R. SADEGHI,
T. SCHNEIDER. “FLAME: Taming backdoors in federated learning”. In: USENIX
Security Symposium (USENIX Security). Online: https://ia.cr/2021/025. USENIX,
2022, S. 1415–1432. CORE Rank A*. Appendix C.

Privacy-Preserving Health Care Data Analysis. A particularly important area for privacy
research is health care data analysis due to the highly sensitive nature of medical information
and the strong regulatory requirements for data privacy. Secure computation alleviates
the trade-off between data usability and privacy by enabling insightful data analyses while
still maintaining the privacy and trust of patients, ultimately advancing the quality of care
and medical outcomes. We address two important health care data analysis applications
in this work. Firstly, we design a novel secure computation protocol addressing the Kidney
Exchange Problem (KEP). Secondly, we introduce the problem and first solutions for privacy-
preserving epidemiological modeling.

The goal of the KEP is to arrange a series of mutual exchanges between donor-patient pairs.
These patients are in need of a kidney donation and unfortunately only have incompatible
donors in their own social network. Our secure computation protocol SPIKE finds a locally
optimal set of exchange cycles of compatible donors and patients and improves privacy com-
pared to currently deployed centralized approaches. Our approach can reduce legal burdens
by keeping patient data locally private and significantly improves efficiency and medical
robustness compared to that of the previous state-of-the-art by Breuer et al. (CODASPY’22).

The second highly relevant health care application that we address in this thesis is epidemio-
logical modeling. It predicts the spread of an infectious disease and facilitates the discovery
of effective containment strategies. So far, however, epidemiological models often suffer from
the lack of precise information about physical contacts, hindering an accurate prediction. We
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present the RIPPLE framework, in which we formally define privacy-preserving epidemio-
logical modeling. It enables running epidemiological simulations on the up-to-date contact
graph of participants without affecting their individual privacy. Additionally, we present two
practical instantations with different security and efficiency trade-offs that can run distributed
simulations with half a million people in just a few minutes.

This part of the thesis is based on the following publication and technical report:

[BHK+22] T. BIRKA, K. HAMACHER, T. KUSSEL, H. MÖLLERING, T. SCHNEIDER. “SPIKE: Secure and
private investigation of the kidney exchange problem”. In: BMC Medical Informatics
and Decision Making 22.1 (2022). Online: https://arxiv.org/abs/2204.09937. Code:
https://github.com/encryptogroup/ppke, S. 253. CORE Rank B. Appendix D.

[GHJ+23] D. GÜNTHER, M. HOLZ, B. JUDKEWITZ, H. MÖLLERING, B. PINKAS, T. SCHNEIDER,
A. SURESH. “Privacy-preserving epidemiological modeling on mobile graphs”.
https://ia.cr/2020/1546. Code: https://zenodo.org/record/6599225. 2023.
Appendix E.

Overall, this thesis contributes to make privacy-preserving clustering and secure computation
protocols for medical analyses more practical for real-world usage.
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Zusammenfassung

Die rasante Zunahme der Akzeptanz und die Demokratisierung von fortschrittlichen Daten-
analysetechniken wie Maschinellem Lernen (ML) und Künstlicher Intelligenz (KI) macht es
zwingend erforderlich, sich mit den damit einhergehenden Datenschutzbedenken zu befas-
sen, die sich aus der allgegenwärtigen Erfassung und Nutzung sensibler Daten ergeben. In
diesem Zusammenhang spielen kryptographische Techniken eine entscheidende Rolle, da sie
Datenanalysen unter Wahrung der Privatheit von Daten ermöglichen. Diese Techniken sind
jedoch im Vergleich zu Klartextberechnungen mit erheblichen Effizienzeinbußen verbunden.
Darüber hinaus wurden einige Phasen von Datenanalyseprozessen von der aktuellen For-
schung zu sicheren kryptografischen Protokollen nicht angemessen berücksichtigt. Es fehlen
zum Beispiel typischerweise die Datenaufbereitung, die Festlegung der Parameterwerte und
die Auswertung der Analyseergebnisse mit Hinblick auf ihre Qualität. Infolgedessen sind
existierende Ansätze in diesem Bereich, der im Englischen privacy-preserving data analysis
oder privacy-preserving machine learning genannt wird, noch nicht für den Einsatz in realen
Anwendungen geeignet.

In dieser Dissertation untersuchen wir zunächst bestehende kryptographische Protokolle für
die sichere Datenanalyse auf mögliche Einschränkungen in ihrer praktischen Einsetzbarkeit in
realen Anwendungen. Auf Grundlage unserer Analyse entwerfen, implementieren und evalu-
ieren wir maßgeschneiderte sichere Protokolle zur Wahrung der Privatheit von Daten. Dabei
betrachten wir alle Phasen des betrachteten Anwendungsfalls, um eine praktische Einsetzbar-
keit zu forcieren. Wir konzentrieren uns auf zwei thematische Schwerpunkte: Der erste Teil
dieser Arbeit untersucht sichere Protokolle für eine allgemeine Klasse von ML-Algorithmen,
die Clusteranalyse. Dabei werden kryptographische Techniken und Protokolloptimierungen
mit den praktischen Anforderungen der Clusteranalyse von Klartextdaten kombiniert. Im zwei-
ten Teil dieser Arbeit werden effiziente Protokolle für die sichere Mehrparteienberechnung
in zwei konkreten Datenanalyseanwendungen aus dem medizinischen Bereich vorgestellt:
Das Matching von kompatiblen SpenderInnen und PatientInnen für Nierenspenden und die
epidemiologische Modellierung. Unsere Lösungen beziehen essenzielle Erkenntnisse aus dem
medizinischen Bereich mit ein.

Effiziente Clusteranalyse unter Wahrung der Privatheit. Clustering, eine sogenannte nicht
überwachte ML-Technik, ermöglicht die Identifizierung von Mustern und Strukturen in Daten.
Die Technik findet Anwendung in vielen verschiedenen Bereichen wie dem Gesundheitswesen,
dem Marketing und dem Finanzsektor. Um die Vertraulichkeit sensibler Eingabedaten zu
gewährleisten, wurden in den letzten Jahren zahlreiche sichere kryptographische Protokolle
für die Durchführung von Clusteranalysen unter Wahrung der Privatheit der Eingabedaten
vorgestellt. Diese Protokolle basieren jedoch auf unterschiedlichen Klartext-Clusteranalyse
Algorithmen und Sicherheitsmodellen, verwenden verschiedene kryptographische Techniken
und wurden für unterschiedliche Szenarien oder spezifische Anwendungsfälle entwickelt. Die-
se Faktoren erschweren die Vergleichbarkeit der Ergebnisse und damit auch die Beurteilung
ihrer Eignung für bestimmte Anwendungen. Wir systematisieren den Stand der Forschung
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im Bereich der sicheren Protokolle für Clusteranalysen unter Wahrung der Privatheit der
Eingabedaten. Dabei stellen wir Kriterien vor, anhand derer die Eignung eines Protokolls für
einen bestimmten Anwendungsfall beurteilt werden kann, und erfassen offene Forschungs-
probleme, die gelöst werden müssen, um private Clusterbildung für reale Anwendungen
praktikabel zu machen.

Basierend auf den Ergebnissen unserer Systematisierung stellen wir das erste effiziente
kryptographische Protokoll für eine dichtebasierte Clusteranalyse vor, dass die Privatheit
der Eingabedaten vollständig wahrt. Im Gegensatz zum K-means-Algorithmus, der anderen
kryptographischen Protokollen zur sicheren Clusteranalyse oft zugrunde liegt, bestimmt
unser sicheres dichtebasiertes Clusteranalyse-Protokoll flexibel die Anzahl der Cluster, die zu
den Eingabedaten passt, und ist unempfindlich gegenüber Ausreißern in den Eingabedaten.
Dies macht es für viele reale Anwendungen attraktiver und praktisch einsetzbarer als ein
K-means-basiertes Protokoll. Ein Anwendungsbeispiel ist das verteilte ML-Trainingskonzept
Federated Learning (FL), das anfällig für sogenannte Backdoor- und Inferenzangriffe ist.
Backdoor-Angriffe versuchen das Modell zu beschädigen oder zu manipulieren, während Infe-
renzangriffe versuchen, Informationen über die verwendeten Trainingsdaten zu extrahieren.
Wir entwickeln ein neuartiges Verteidigungssystem für FL, das auf unserem dichtebasierten
Clustering-Protokoll basiert, und FL gegen beide Arten von Angriffen robuster macht.

Dieser Teil der Dissertation basiert auf den folgenden drei Publikationen:

[HMSY21] A. HEGDE, H. MÖLLERING, T. SCHNEIDER, H. YALAME. “SoK: Efficient privacy-preserving
clustering”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2021.4 (2021).
Online: https:/ / ia . cr / 2021 / 809. Code: https:/ / encrypto . de / code / SoK _

ppClustering, S. 225–248. CORE Rank A. Appendix A.

[BCE+21] B. BOZDEMIR, S. CANARD, O. ERMIS, H. MÖLLERING, M. ÖNEN, T. SCHNEIDER. “Privacy-
preserving density-based clustering”. In: ASIA Conference on Computer and Com-
munications Security (ASIACCS). Online: https://ia.cr/2021/612. Code: https://
encrypto.de/code/ppDBSCAN. ACM, 2021, S. 658–671. CORE Rank A. Appendix B.

[NRC+22] T. D. NGUYEN, P. RIEGER, H. CHEN, H. YALAME, H. MÖLLERING, H. FEREIDOONI, S. MAR-
CHAL, M. MIETTINEN, A. MIRHOSEINI, S. ZEITOUNI, F. KOUSHANFAR, A.-R. SADEGHI,
T. SCHNEIDER. “FLAME: Taming backdoors in federated learning”. In: USENIX
Security Symposium (USENIX Security). Online: https://ia.cr/2021/025. USENIX,
2022, S. 1415–1432. CORE Rank A*. Appendix C.

Privatheit von Daten in medizinische Anwendungen. Ein besonders wichtiger Bereich für
die Datenschutzforschung sind Datenanalysen im medizinischen Kontext, da diese Informatio-
nen hochsensibler Natur sind und sie zudem strengen gesetzlichen Datenschutzanforderungen
unterliegen. Kryptographische Protokolle ermöglichen in diesem Zusammenhang eine über-
zeugende Vereinbarkeit von Datennutzbarkeit und Datenschutz, indem sie aufschlussreiche
Datenanalysen ermöglichen und gleichzeitig die Privatheit der medizinischen Daten und
somit das Vertrauen der Patienten wahren. Dies kann letztlich zu einer verbesserten Qualität
der Pflege und medizinischen Versorgung führen. In dieser Arbeit befassen wir uns mit zwei
wichtigen medizinischen Anwendungen. Zum einen entwerfen wir ein neuartiges sicheres
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Protokoll für die Berechnung von Nierenspenderaustauschen. Zusätzlich definieren wir zum
ersten Mal das Problem der epidemiologischen Modellierung unter Wahrung der Privatheit
der Kontaktdaten und präsentieren erste Lösungsansätze für dieses Problem.

Das Ziel des Nierenspenderaustauschs ist es, Nierenspenden zwischen Spender-Patienten-
Paaren zu arrangieren. Diese Patienten benötigen eine Nierenspende und haben nur inkom-
patible Spender in ihrem eigenen sozialen Netzwerk. Unser kryptographisches Protokoll
SPIKE findet eine lokal optimale Lösungsmenge von Austauschzyklen zwischen kompatiblen
Spendern und Patienten und verbessert den Schutz der Privatheit der Daten im Vergleich zu
den derzeit eingesetzten zentralisierten Ansätzen. Zudem verringert es möglicherweise die
rechtlichen Hürden für medizinische Institutionen einem solchen Programm beizutreten, da
die Patientendaten lokal beim Datenhalter verbleiben können. Zusätzlich verbessert SPIKE die
Effizienz und die medizinische Robustheit im Vergleich zum bisherigen Stand der Forschung
von Breuer et al. (CODASPY’22) erheblich.

Die zweite wichtige medizinische Anwendung, mit der wir uns in dieser Arbeit befassen, ist die
epidemiologische Modellierung. Sie ermöglicht es, die Ausbreitung einer Infektionskrankheit
vorherzusagen und erleichtert die Entwicklung wirksamer Eindämmungsstrategien. Bislang
leiden epidemiologische Modelle jedoch häufig unter dem Mangel an präzisen Informationen
über physische Kontakte in einer Population, was eine genaue Vorhersage erschwert. Wir
stellen das RIPPLE-Framework vor, in dem wir die Anforderungen an eine verteilte epide-
miologische Modellierung definieren. Es ermöglicht die Durchführung epidemiologischer
Simulationen auf dem aktuellen Kontaktgraphen der Teilnehmer, ohne deren individuelle
Privatsphäre zu beeinträchtigen. Darüber hinaus stellen wir zwei konkrete Instanziierungen
von RIPPLE vor, die unterschiedliche Kompromisse in Bezug auf Sicherheit und Effizienz
bieten. Mit ihnen können verteilte Simulationen mit einer halben Million Menschen in nur
wenigen Minuten durchgeführt werden.

Dieser Teil der Dissertation basiert auf einer Publikation und einem technischen Bericht:

[BHK+22] T. BIRKA, K. HAMACHER, T. KUSSEL, H. MÖLLERING, T. SCHNEIDER. “SPIKE: Secure and
private investigation of the kidney exchange problem”. In: BMC Medical Informatics
and Decision Making 22.1 (2022). Online: https://arxiv.org/abs/2204.09937. Code:
https://github.com/encryptogroup/ppke, S. 253. CORE Rank B. Appendix D.

[GHJ+23] D. GÜNTHER, M. HOLZ, B. JUDKEWITZ, H. MÖLLERING, B. PINKAS, T. SCHNEIDER, A. SU-
RESH. “Privacy-preserving epidemiological modeling on mobile graphs”. https://
ia.cr/2020/1546. Code: https://zenodo.org/record/6599225. 2023. Appendix E.

Insgesamt trägt diese Arbeit dazu bei, kryptographische Protokolle für Cluster- und medizini-
sche Datenanalysen praktikabler für den Einsatz in realen Anwendungen zu machen.
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My Contributions

This thesis is based on four peer-reviewed publications and one technical report currently
under submission. All five works are results of fruitful collaborations with my supervisor Prof.
Dr.-Ing. Thomas Schneider (Technical University of Darmstadt) and a large set of excellent
researchers: Beyza Bozdemir (EURECOM/Gen Digital), Timm Birka (Technical University
of Darmstadt), Sébastien Canard (Orange Labs/Télécom Paris), Huili Chen (University of
California San Diego), Orhan Ermis (EURECOM/Luxembourg Institute of Science and Tech-
nology), Hossein Fereidooni (Technical University of Darmstadt), Daniel Günther (Technical
University of Darmstadt), Aditya Hegde (IIIT Bangalore/Johns Hopkins University), Marco
Holz (Technical University of Darmstadt/FITKO), Kay Hamacher (Technical University of
Darmstadt), Benjamin Judkewitz (Charité-Universitätsmedizin), Tobias Kussel (Technical
University of Darmstadt/DKFZ German Cancer Research Center), Farinaz Koushanfar (Uni-
versity of California San Diego), Samuel Marchal (Aalto University/F-Secure/WithSecure),
Azalia Mirhoseini (Google/Anthropic), Markus Miettinen (Technical University of Darmstadt),
Thien Duc Nguyen (Technical University of Darmstadt), Melek Önen (EURECOM), Benny
Pinkas (Bar-Ilan University/Aptos Labs), Phillip Rieger (Technical University of Darmstadt),
Ahmad-Reza Sadeghi (Technical University of Darmstadt), Ajith Suresh (Technical University
of Darmstadt/Technology Innovation Institute), Hossein Yalame (TU Darmstadt), and Shaza
Zeitouni (Technical University of Darmstadt). I am immensely grateful to all my collaborators
for their significant contributions as well as invaluable advice and continuous inspiration
that has fueled my motivation throughout my PhD journey. In the following, I will detail my
contributions in our papers.

Chapter 2 is based on three publications: [BCE+21; HMSY21b; NRC+22]. [HMSY21b] is
joint work with Aditya Hegde, Thomas Schneider, and Hossein Yalame. The publication is the
result of Aditya’s internship in the ENCRYPTO group in 2020 which I jointly supervised with
Hossein. Hossein had the initial idea for the project, while I analyzed, categorized, and system-
atized more than 50 papers introducing secure computation protocols for privacy-preserving
clustering. Moreover, I identified the requirements for private clustering from a security,
efficiency, and functional perspective. Additionally, I developed a guideline for choosing
suitable private clustering protocols based on the respective application and its requirements.
Hossein identified the four relevant private clustering protocols for benchmarking. He and
Aditya analyzed their security and privacy properties as well as their efficiency with respect
to asymptotic communication and computation complexity. I contributed to the design and
setup of the experimental evaluation, while Aditya was in charge of the implementation and
benchmarking. Moreover, Aditya and I jointly identified open challenges for the real-world
deployment of private clustering schemes based on our insights from the literature and
experiments. Thomas guided our research and provided continuous feedback during the full
scope of the project and for the paper write-up. [BCE+21] is the result of a collaboration
with Beyza Bozdemir, Sébastien Canard, Orhan Ermis, Melek Önen, and Thomas Schneider.
I contributed significantly to this publication by designing and implementing the secure
two-party computation protocol for ppDBSCAN. Beyza designed ppTRACLUS by suggesting
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an approximation of the distance measure. I also led and executed the benchmarking of the
implementation with respect to clustering quality and efficiency and did the experimental
and theoretical comparison to related work. Beyza and Orhan tested the approximation’s
effect on the clustering quality. Further, I reviewed related work on private clustering and
Beyza surveyed related literature on privacy-preserving trajectory analysis. Orhan, Sébastien,
Melek, and Thomas were general advisors to the project and provided continuous feedback
in all phases of the project. [NRC+22] is joint work with Thien Duc Nguyen, Phillip Rieger,
Huili Chen, Hossein Yalame, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia
Mirhoseini, Shaza Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schnei-
der. While Thien led the design of FLAME and proposed the high-level design of Private
FLAME, I led the Secure Multi-Party Computation (SMPC) protocol design for the HDBSCAN
approximation and Hossein Yalame led the design of the mixed MPC protocols for secure
aggregation and clipping. Huili worked on the formalization of the backdoor defense strate-
gies and their security guarantees. Phillip was in charge of the complete implementation
and benchmarking (except for parts stated and referenced in the paper taken from existing
works), while Thien, Hossein Yalame, and I provided advice for the respective parts that
we designed. I also contributed to systematizing related work on backdoor and inference
attacks as well as secure aggregation on federated learning and its shortcomings. Further,
Thien was the main coordinator/lead for the write-up to which also Phillip, Hossein Yalame,
Markus, and I contributed. Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia
Mirhoseini, Shaza Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider
were general advisors to this project and provided continuous feedback in all phases.

Chapter 3 is based on [BHK+22; GHJ+23]. [BHK+22] is joint work with Timm Birka, Kay
Hamacher, Tobias Kussel, and Thomas Schneider. This publication is the result of the Bachelor
thesis of Timm that I co-supervised with my other co-authors. Based on my initial idea,
Tobias and I outlined the project structure and guided the protocol design. Tobias and Timm
specified the medical requirements for the compatibility assessment of donors and patients.
All three of us contributed to the design, conduction, and experimental evaluation of our
SMPC protocol addressing the KEP based on Timm’s implementation of the protocol. Kay
and Thomas led the research project. [GHJ+23] is joint work with Daniel Günther, Marco
Holz, Benjamin Judkewitz, Benny Pinkas, Thomas Schneider, and Ajith Suresh. Benjamin
had the initial idea for the project, while I led the definition of the requirements for a
privacy-preserving epidemiological modeling system as well as the design of all aspects of the
concrete instantiations that trade-off between different security assumptions and efficiency
requirements. Morevover, I investigated different attack scenarios that guided the design of
the instantiations. Marco and Daniel defined the details for the private information retrieval
instantiation. Ajith optimized the communication overhead of the PIRsum protocol. Together
with Ajith and Daniel, I defined the experimental evaluation setup and parameters, while
Oliver Schick and Nora Khayata implemented and ran the micro-benchmarks. Benjamin,
Benny, Thomas, and Ajith provided continuous feedback and advise during the different
phases of the project and paper write-up.
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1 Introduction

In recent years, the constantly growing adoption of Machine Learning (ML) and Artificial Intel-
ligence (AI) across industries as well as many aspects of individuals’ everyday life has brought
forth a pressing need to address the thereby inherently arising privacy concerns [CSR+20; De
21; LDS+21]. ML models require vast amounts of data to be trained for deriving meaningful
insights and support decision-making processes [ZPWV17; RHW19]. This automatically con-
flicts with the privacy requirements of individuals’ sensitive information. Privacy, in the context
of data analysis, encompasses the protection of personal data from unauthorized access, the
preservation of confidentiality, and the mitigation of biases or discrimination [Ric21].

By safeguarding privacy, individuals can be shielded from potential harm, e.g., arising from
data breaches or misuse. Moreover, having appropriate privacy protection mechanisms in
place enables individuals to maintain control over their personal information, empowering
them to make informed decisions regarding data usage and sharing. This aspect plays a crucial
role in fostering trust. When individuals are confident that their personal data is handled
securely, they are more likely to engage in data sharing and collaborative efforts [Acq14,
p. 79; MKA04; DH06]. This, in turn, leads to the creation of more comprehensive and
diverse data analysis, ultimately improving the accuracy, fairness, and generalizability of ML
models [BG18; Tre18; YKX22].

Beyond these crucial societal and ethical considerations, even pure financial business interests
call for the development of effective privacy-sensitive approaches towards data analyses:
Various regulations such as the General Data Protection Regulation (GDPR)1 in the European
Union, the California Consumer Privacy Act (CCPA)2 in California, and the Personal Informa-
tion Protection and Electronic Documents Act (PIPEDA)3 in Canada define strict standards
for the collection, storage, and use of personal data. These regulations include provisions for
obtaining explicit consent, ensuring data minimization, and guaranteeing the right to erasure.
They threaten businesses with severe financial penalization. For example, in 2019, the Federal
Trade Commission (FTC) filed a case against Facebook Inc. for mishandling of user data
and deceptive privacy practices which resulted in a settlement requiring Facebook to pay a
record fine of $5 Billion [FTC19]. Despite comprehensive adjustments to its privacy policies
and practices that were also included in this settlement, the company’s subsidiary Meta
Platforms Ireland Limited was again convicted by the European Data Protection Board (EDPB)

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
2https://oag.ca.gov/privacy/ccpa
3https:/ / www . priv . gc . ca / en / privacy - topics / privacy - laws - in - canada / the - personal -

information-protection-and-electronic-documents-act-pipeda/

1

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://oag.ca.gov/privacy/ccpa
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
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to pay =C1.2 Billion for non-GDPR compliant data transfers of user data from the EU to the
US in 2023 [DPC23].

Having those aspects in mind, utilizing Privacy-Enhancing Technologies (PETs) [HZNF15] in
ML is a promising avenue as they enable to gain valuable insights from the large amount of
data available nowadays while simultaneously also ensuring provably secure privacy protec-
tion [TCBK20; CP21; SKKT22; NC23]. Examples are anonymization [Swe02], anonymous
communication [Cha81], encryption [DR99; Gen09], access control mechanisms [SV00], and
differential privacy [DR+14]. In the scope of this thesis, we focus on protecting data privacy
during computation, i.e., extracting insights from data without revealing the underlying raw
input data. Thinking a step further, secure computation can also reduce bias and protect
against discrimination by hiding individual’s sensitive attribute values and limiting access to
only aggregated results [Ric21]. Especially when legal regulations explicitly address PETs
in the future, the utilization of ML without falling under data privacy regulations – because
no access to personal data is required – may significantly simplify the usage of ML-driven
applications for companies [HR22; TMSS22].

The most prominent cryptographic techniques for secure computation can be categorized
in two types: Homomorphic Encryption (HE) [Gen09] and Secure Multi-Party Computa-
tion (SMPC) [Yao82]. Both offer provably secure computation guarantees based on either
computationally hard problems or information theoretic guarantees and non-collision as-
sumptions removing the need for a trusted third party to have access to the data and run
the computation. HE enables to compute directly on encrypted data without the need for
decryption. SMPC enables multiple parties to jointly compute arbitrary functions on their
private data while leaking nothing beyond what can be inferred from the output.

Despite these promising properties for privacy-preserving data analysis, using HE and SMPC
comes with multiple challenges which is why Privacy-Preserving Machine Learning (PPML)
is far from being usable in practice yet:

• Challenge C1: Cryptography incurs a significant performance overhead with respect to
computation and/or communication. The required computational resources, specialized
hardware, and infrastructure constrains the practical deployment.

• Challenge C2: Knowledge about those techniques is still a niche, while implementing
such mechanisms and protocols requires a high level of expertise as faulty implementa-
tions can lead to a complete break of the security guarantees. Implementations and
frameworks provided by researchers are only prototypes that are not suited to be used
for industrial purposes, but they can provide guidance for industry-scale implementa-
tions given they are well-documented and explained.

• Challenge C3: PPML systems developed by the privacy research community often lack an
interdisciplinary approach, resulting in a limited understanding of the complete scope
of ML training or inference processes and state-of-the-art results from ML research. As
a consequence, some of the proposed systems may not be practical as they overlook

2
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important aspects such as pre- and post-processing, which are essential for making the
systems deployable in real-world applications.

• Challenge C4: Organizations must comply with strict data protection regulations,
which is often designed to be technology-neutral to accommodate new develop-
ments [TMSS22]. However, this approach also creates legal uncertainty in the context
of PPML as existing privacy legislation has not yet provided clear guidelines and certifi-
cations for the data privacy regulations compliant usage of secure computation [HR22].

An orthogonal approach to using cryptographic techniques for PPML is Federated Learning
(FL), a prominent distributed ML paradigm introduced by Google’s ML research [MMR+17].
FL enables multiple data owners to jointly train a model while keeping their data locally
private. Compared to PPML training protocols based on HE or SMPC such as [XJL19; KVH+21;
TKTW21], FL is significantly more efficient. Several advanced open-source frameworks have
been developed for FL4, making it a promising solution for avoiding the challenges of HE-
and SMPC-based systems discussed above. But, FL has been found to be vulnerable to
manipulation and data leakage [NSH19; BVH+20; LYZY20; WSR+20; XHCL20]. These
attacks can destroy model performance [BVH+20; LYZY20], insert backdoors leading to
attacker-steered predictions [BVH+20; WSR+20; XHCL20], or leak private information about
the training data [NSH19]. As a result, additional protective measures are necessary to fully
guarantee privacy when using FL.

In this dissertation, we seek to address parts of the aforementioned technical challenges
C1, C2, and C3 for PPML with HE and SMPC as well as the vulnerabilities of FL. Due to
the non-technical focus of challenge C4, we do not address it here, but discuss it in the
scope of future research in Section 4.2.2. Our focus lies on clustering, a prominent class
of ML algorithms that organizes data into groups based on similarities or patterns within
the data. Clustering finds applications in diverse areas, such as marketing for customer
segmentation and behavior analysis [TPH16; KBSC18], health care for patient and treatment
profiling and disease diagnosis [GKK+02; XWRJ13], and finance for fraud detection [Sab12;
SHA+19]. To safeguard the highly sensitive information involved, we analyze and design
fully privacy-preserving, efficient, and practical clustering protocols. Moreover, we look at
two specific data analysis applications from the health care domain that require exceptionally
high privacy protection as they deal with highly sensitive health care data.

Through our efforts, we aspire to make meaningful contributions to the advancement of PPML
with the ultimate goal of enabling its widespread deployment on a large scale. To do so, we first
analyze the shortcoming of existing solutions for private clustering and the aforementioned
health care use cases with respect to efficiency and usability. Then, we design, implement,
and benchmark improved solutions that address some of those limitations. Our concrete
use case related protocols from the health care domain incorporate domain knowledge from
the medical field, while the clustering protocols build upon the requirements of plaintext
clustering. By leveraging this expertise, we aim to develop protocols that not only prioritize
privacy but also provide practical solutions that integrate real-world requirements of the ML

4For example, https://fedml.ai/ and https://www.tensorflow.org/federated.
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Thesis Overview

C1 — Efficiency C2 — Usability C3 — Interdisciplinarity
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Section 3.1.1:
• Hybrid SMPC for the Kidney
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Section 2.1.1:
• Identification and qualitative and

quantitative comparison of
state-of-the-art private clustering
protocols

• Guideline for choosing a suitable
private clustering protocol for an
application

• Open-source implementations of
the two state-of-the-art secure
computation protocols for
Meanshift and an hierachical
clustering including benchmark
data and utils

Section 2.1.2:
• Parameter selection guideline for

privacy-preserving DBSCAN
clustering with distributed/private
data

• Open-source implementation of
privacy-preserving DBSCAN
clustering

Section 3.1.1:
• Open-source implementation for

the KEP

Section 3.1.2:
• Open-source implementation of

building blocks of our
epidemiological modeling
instantiations

Section 2.1.1:
• Full clustering process

identification based on in-depth ML
literature review

• Definition of clustering quality
requirements, measures, and
benchmark data sets from plaintext
clustering

Section 2.1.2:
• Collaboration with Orange S.A. on

a trajectory clustering use case

Section 3.1.1:
• Collaboration with computational

biologists of the Technical
University of Darmstadt

Section 3.1.2:
• Collaboration with a neurobiologist

of the Charité —
Universitätsmedizin Berlin

Figure 1.1: Overview of our results for the three technical challenges towards practical
privacy-preserving clustering and health care data analyses: efficiency (C1),
understandability/usability for practitioners (C2), and interdisciplinarity (C3).

community and medical experts. Figure 1.1 provides an overview of how we address the three
identified technical challenges for privacy-preserving data analysis throughout this thesis.

In the following, we first present the PETs that are used in this dissertation in Section 1.1.
In Section 1.2, we outline the structure of this thesis and summarize our contributions. We
conclude this chapter by a statement about open access to our work in Section 1.3.

1.1 Encrypted and Distributed Data Processing Techniques

Privacy-Enhancing Technologies (PETs) are a class of techniques that use cryptographic prim-
itives, statistical concepts, or hardware components and aim to support data confidentiality,
as well as integrity and availability while allowing for meaningful data utilization [HZNF15].
The Organisation for Economic Co-operation and Development (OECD) lists 14 PETs in its
report about emerging PETs in 2023 [OEC23]. Those techniques are used to design secure
computation protocols that securely realize the envisioned use case without having plaintext
access to the input data [Yao82]. In an ideal world, such a functionality could be realized by
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c = f (a, b)Alice Bob

Trusted Third Party

c c

a b

Figure 1.2: Ideal functionality of a secure computation protocol: The two parties Alice
and Bob send their respective private inputs a and b to a trusted third party
that computes the function f on the inputs and returns the result c to both
parties. Alternatively, the result can also be returned to either Alice, Bob, or
another additional party.5

sharing the input data with a trusted entity which then securely computes the function on
behalf of the data owners and only the results are output to the intended parties. However, in
reality external third parties are rarely trusted. Thus, secure computation protocols emulate
the ideal functionality as shown in Figure 1.2 without relying on a trusted party. A protocol is
considered to be secure when an adversary cannot gain any additional information beyond
what can be learned in the ideal world [Can00; Lin17].

In this section, we summarize three cryptographic and one hardware-based technique that
are relevant for this work and can process data “under encryption”: SMPC, HE, Trusted
Execution Environments (TEEs), and Private Information Retrieval (PIR). Additionally, we
explain FL, a state-of-the-art paradigm for privacy-aware distributed ML training.

Secure Multi-Party Computation (SMPC) is a class of cryptographic techniques that enable
two or more mutually distrusting parties to jointly compute an arbitrary function f on their
private inputs without revealing any information related to individual inputs to other parties.
Starting as theoretical concept about 45 years ago [Sha79; Yao82; GMW87], SMPC research
has made significant progress, e.g., [BMR90; KS08; ZRE15], leading to the first practical de-
ployments of SMPC-protocols these days: Meta uses SMPC for lift measures of advertisement
campaigns [Rey22], J.P. Morgan Chase uses SMPC for inventory matching [PAD+23], and
Google and Apple use SMPC for their COVID-19 exposure notification systems [AG21].

Prominent examples of SMPC techniques are Yao’s Garbled Circuits (GCs) [Yao86] and
arithmetic or Boolean secret-sharing based on the Goldreich-Micali-Wigderson (GMW) proto-
col [GMW87]. GCs enable to securely evaluate Boolean circuits among two parties with their
respective inputs in a constant number of rounds. In contrast, two-party linear secret sharing
computation based on the GMW protocol has a round complexity linear in the multiplicative
depth of the circuit. While there are many more SMPC protocols, e.g., [Sha79; BGW88;
BMR90; DKL+13; AFL+16; CCPS19], those two examples already demonstrate that depending
on the nature and complexity of the required computations, efficiency can greatly be affected
based on the chosen SMPC technique. It has actually been shown that for some application
and scenarios it is most efficient to combine multiple SMPC techniques [DSZ15; BDST22].

5For simplicity, we present the two-party case, but the ideal functionality trivially extends to more parties.
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For this reason it is far from trivial to design practically efficient SMPC-based applications
and often requires detailed domain knowledge.

Another aspect that has to be considered when designing an SMPC protocol is the adversarial
behavior. A semi-honest (aka passive or honest-but-curious) adversary is assumed to correctly
follow the protocol specifications while trying to maximize its information gain [Lin20].
Although being relatively weak, this security model is still the de facto standard used in many
works on PPML [SS08; JVC18; RWT+18; SAA19; BCD+20; TMW+20; PSSY21; HLC+22;
HLHD22] as it offers a favorable trade-off between efficiency and privacy. Moreover, it often
forms the first step towards stronger security models [Kol06; Lin17; EKR+18]. Additionally,
it ensures protection against curious administrators, accidental data leakage, and reduces
the impact of a potential data breach [Lin17]. Legal requirements as well as financial
interest can also be sufficient to enforce semi-honest behavior by service providers or other
data owners [BDST22]. In contrast, a malicious adversary may arbitrarily deviate from
the protocol [Lin20]. Covert security is slightly weaker than malicious security as it only
guarantees that malicious behavior is detected with certain probability [Lin20]. A few works
establish hybrid security models, assuming some parties to behave semi-honestly while
others might act maliciously [LMSP21; CGOS22; DWT+23; XHZ+23]. In this work, we
focus on semi-honest security.

Next to running SMPC-protocols among multiple-parties, another approach is to consider
an outsourcing scenario. In this setup, the input data is secret-shared among two or more
computing parties that run the computation. Outsourcing can be beneficial in scenarios
where data owners lack sufficient computation capacity or bandwidth for SMPC, leading
them to use cloud providers instead [KR11]. However, the computing parties have to be
trusted to be non-colluding.

Homomorphic Encryption (HE) schemes enable to perform computations on encrypted
data without the need for decryption. With HE, data owners can encrypt their data and
outsource computations to untrusted entities, e.g., cloud servers, who perform calculations
on the encrypted data without access to the plaintext input data. The encrypted results are
sent back to the data owners who decrypt and obtain the final result.

An HE scheme consists of the following four algorithms [Gen09; GHS12]:

• KeyGen(λ) −→ (pk, sk): Given the security parameter λ, the key generation algo-
rithm KeyGen generates a public key pk and a secret key sk.

• Enc(pk, m) −→ c t: Given the public key pk and a plaintext message m, the encryption
algorithm Enc encrypts m and returns a ciphertext c t.

• Dec(sk, c t) −→ m: Given the secret key sk and a ciphertext c t, the decryption algo-
rithm Dec decrypts the ciphertext to obtain the original plaintext message m.

6
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• Eval(pk, C , c t1, . . . , c tk) −→ c t ′: The evaluation algorithm Eval takes as input the public
key pk, a circuit C , and a set of encrypted inputs c t1, . . . , c tk, where each ciphertext
c t i encrypts a plaintext message mi , i ∈ [k]. It performs computation on the encrypted
values and returns c t ′ = Enc(pk, C(m1, . . . , mk)).

In 2009, Gentry [Gen09] proposed the first Fully Homomorphic Encryption (FHE) scheme,
which supports an unlimited number of both multiplications and additions thanks to a novel
bootstrapping technique. This technique involves re-scaling the noise level in ciphertexts
which increases with the number of possible computations. This is in theory sufficient to
express any computable function, but the significant computational overhead of state-of-the-
art HE schemes remains a bottleneck for its wide-spread usage [AAUC18].

Trusted Execution Environments (TEEs) such as Intel Software Guard Extensions [MAB+13;
CD16; MAA+16] and ARM TrustZone-based Trusted Execution Environments (TEE) solu-
tions [HGX+17; PS19] are isolated data processing environments. They are designed to
protect the confidentiality, authenticity, and integrity of code and data even in the presence
of potentially compromised operating systems [SAB15; SMS+22]. TEEs are constructed
with dedicated hardware components and/or software-based mechanisms [SAB15; CSFP20].
Trustworthiness and correct behavior of a TEE environment can be remotely verified using
attestation mechanisms [SAB15]. In recent years, the security guarantees of TEEs have
come under scrutiny due to the discovery and publication of various vulnerabilities, such
as fault-based [QWLQ19], side-channel [BMD+17; WCP+17], and (micro-)architectural
attacks [GESM17; CZK+18]. These weaknesses have raised concerns about the overall security
of TEEs calling for a critical examination of their protection mechanisms [CSFP20; MRRL23].

Private Information Retrieval (PIR) refers to a cryptographic technique enabling clients
to privately retrieve elements from a database, without disclosing their specific queries to
the database owner. The ideal functionality of PIR is illustrated in Figure 1.3. While a
straightforward solution would be to download the entire database, this approach incurs high
communication costs. Therefore, efficient PIR schemes aim at minimizing the communication
cost. Computational single-server PIR (cPIR), introduced by Kushilevitz and Ostrovsky [KO97],
assumes a computationally bounded adversary and often employs HE in recent cPIR schemes,
such as [ALP+21; CHK22; MW22; HHC+23]. However, achieving obliviousness requires
computationally expensive HE operations on each database block, leading to substantial
computational overhead. Alternatively, multi-server PIR approaches, like [DHS14; GI14;
DHS17; KOR19; GSW21; GHPS22; MZRA22], rely on multiple non-colluding servers that
hold (partial) copies of the database. These schemes are generally more computationally
efficient, thanks to utilizing only XOR operations and query compression techniques such
as Function Secret Sharing (FSS) [BGI15], but they require communication between the
client and all servers.
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PIRClient Database Owner
D[i] + leakage(D)

Index i D[1], . . . ,D[N]

Figure 1.3: Ideal functionality for Private Information Retrieval (PIR) where a client privately
requests the i-th database block D[i] from a public database D with N blocks
without revealing the index i and the retrieved block D[i] to the database owner.
The client receives the requested block D[i] and might also obtain some additional
information about the database.

Federated Learning (FL) is a distributed ML paradigm that enables collaborative model
training without requiring to centrally store the training data. In FL, a central aggregator
coordinates the training process among a typically large set of heterogeneous clients each pos-
sessing their own private dataset. The data held by these clients is typically non-independent
and identically (non-IID) distributed. They utilize their data to train local model updates
which are then aggregated by the central aggregator into an improved global model. The
aggregation can, for example, be done by (weighted) averaging [MMR+17].

From a security and privacy perspective, FL has however been found to be vulnerable to two
types of attacks [JFK20]:

• Manipulation, e.g., [BBG19; BCMC19; BVH+20; JFK20; TTGL20; WSR+20; XHCL20]:
Clients involved in the FL process might try to manipulate the model to either reduce
accuracy or even steer the model into specific directions. For example, backdoor attacks
inject a hidden pattern or trigger, known as a backdoor or Trojan, into the global model.
These backdoors can be designed to become active under specific conditions or input
patterns, compromising the integrity and functionality of the trained model. When
the manipulated model is deployed, an adversary can exploit the backdoor to achieve
unauthorized access or perform targeted misclassifications.

• Training Data Inference, e.g., [MSDS19; NSH19; JFK20; ZZCY20]: Inference attacks on
FL aim at extracting sensitive information about individual client data by analyzing
the individual local updates (potentially in combination with outputs or responses
of the global model). Adversaries can exploit statistical information, such as model
probabilities or confidence scores, to infer details about the training data or even
reconstruct individual data points.

Bagdasaryan et al. [BVH+20] claimed that successfully defending against backdoor attacks is
in inherent conflict with training data privacy.

1.2 Thesis Outline

The following chapters summarize our contributions for the design of efficient cryptographic
protocols that enable practical privacy-preserving clustering and medical data analyses.
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Additionally, we give context information and provide an overview about related work, as
well as recent advancements that followed our work.

The remainder of this thesis consists of the following two main chapters. Figure 1.1 sum-
marizes how our work addresses the technical challenges for practical privacy-preserving
clustering and health care data analysis.

Chapter 2: In Section 2.1.1, we present our Systematization of Knowledge (SoK) [HMSY21b]
of the state-of-the-art secure computation protocols for privacy-preserving clustering.
We provide the first exhaustive comparative evaluation of 59 secure protocols for eight
plaintext clustering algorithms with respect to their privacy guarantees, computation
and communication efficiency, as well as clustering quality. Our work also features
open-source implementations of two of the most advanced private clustering schemes
by Cheon et al. [CKP19] and Meng et al. [MPOT21] that were previously not publicly
available. Our repository at https://encrypto.de/code/SoK_ppClustering includes
nine clustering benchmark datasets from [Ult05; GP10] representing various typical
clustering challenges for future extensions of our work to new private clustering schemes.
Additionally, we define the requirements for the practical usability of privacy-preserving
clustering protocols in real-world applications with private/distributed input data based
on an in-depth ML literature research for plaintext clustering. Based on these results, we
identify limitations in the existing privacy-preserving clustering protocols and outline
three major areas for improvement: The need for secure protocols for additional
clustering algorithms, the missing coverage of the full clustering process beyond the
core clustering, and enhanced efficiency. Moreover, we introduce a guideline enabling
ML practitioners to select a suitable privacy-preserving clustering protocol for their
respective application in three steps without requiring in-depth cryptographic expertise.

Building upon the results of our SoK, we present a privacy-preserving SMPC protocol
for Density-based Spatial Clustering of Applications with Noise (DBSCAN) [BCE+21] in
Section 2.1.2. This protocol addresses aspects of all three of the aforementioned major
improvement areas: It is the first fully-privacy preserving solution for the DBSCAN
clustering algorithm, offers a high level of flexibility as can detect clusters of any shape,
and it is insensitive to outliers [EKSX+96]. Moreover, we lay out how to set the two
input parameters of privacy-preserving DBSCAN for applications with distributed data:
The first parameter defines the maximal distance between two data records to be
considered as neighbors belonging to the same cluster, while the second parameter
determines the minimal cluster size. Meaningful parameter selection is a crucial
part of the pre-processing as it significantly influences the clustering result’s quality.
With respect to efficiency, we optimize our protocol by combining different Secure
Two-Party Computation (2PC) techniques [DSZ15] based on the operation type and
conversion cost in each part of the computation. Additionally, we re-design the original
plaintext clustering algorithm by leveraging the inherent obliviousness requirement of
secure computation protocols for effectively parallelizing distance computation and the
neighborhood determination in a Single Instruction, Multiple Data (SIMD) fashion. We
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demonstrate our protocol’s usability on a trajectory clustering use case in the context
of a collaboration with Orange S.A.

In Section 2.1.3, we further demonstrate the practicality of our privacy-preserving
DBSCAN protocol by using it for approximating the computationally expensive
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
algorithm [CMS13] for the FL [MMR+17] defense system FLAME [NRC+22]. Our
benchmarking demonstrates that our approximation is able to defend manipulations by
backdoor attacks [BVH+20; XHCL20] equally well as the original plaintext variant while
additionally providing protection against data privacy breaches caused by inference
attacks [MSDS19; NSH19].

Chapter 3: This part of our thesis focuses on privacy-preserving analyses in the health care
domain. Interestingly, we found that these protocols encounter comparable challenges
as private clustering, specifically, practicality issues arising from insufficient efficiency
and a lack of understanding regarding requirements of the medical side. Hence, we
transferred some of our insights from Chapter 2 for the design of practical SMPC
protocols for two concrete health care applications.

SPIKE [BHK+22] in Section 3.1.1 addresses the Kidney Exchange Problem (KEP) which
computes exchange cycles of compatible pairs of patients and donors for living kidney
donations. By carefully combining three 2PC techniques [DSZ15] based on cycle
depth, the dominance of (non-)linear operations, and conversion costs, we significantly
optimize communication and computation overhead. This optimization leads to a
three to five orders of magnitude improvement in runtime efficiency compared to
previous works [BMWM20; BMW22], depending on the exchange cycle size. Our
collaboration with computational biology research facilitated the extension of the
compatibility assessment by four additional factors, enhancing the medical robustness
of the output solution compared to [BMWM20; BMW22]. These enhancements enable
to scale the matching process to significantly more donor-patient pairs within reasonable
time. Moreover, SPIKE offers a technical solution to comply with legal data protection
requirements, potentially enabling also small medical institutions to participate in
kidney exchange programs that were previously excluded due to complicated policy-
based data protection measures.

In Section 3.1.2, we introduce the problem of privacy-preserving epidemiological
modeling [GHJ+23], which extends beyond the scope of contact tracing [AMX+20;
TPH+20] on which privacy research has mainly focused so far. Unlike contact tracing,
which alerts individuals after encountering a person who tested positive for COVID-19,
privacy-preserving epidemiological modeling adopts an ex ante perspective, predicting
the spread of an infectious disease. This proactive approach enables policy makers
and governments to make informed decisions regarding public health measures for
containing infectious diseases. Our RIPPLE framework addresses the challenge of
limited recent contact information faced by epidemiological models and potentially
leading to imprecise simulations. By leveraging data collected from mobile devices
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about close physical proximity, RIPPLE enables the privacy-preserving simulation of
disease spread on the most up-to-date contact graph. To demonstrate practicality,
we provide two instantiations of RIPPLE using either TEE or PIR, including open-
source prototype implementations and microbenchmarks. Similar to Section 3.1.1, we
again collaborated with medical experts, working closely with a neurobiologist during
the design phase, to ensure compatibility with commonly used compartment-based
epidemiological models [Bra08; ŠBC+21].

Chapter 4 concludes the thesis and provides an outlook on potential future work.

1.3 Open Access

The all papers in this dissertation are available on the IACR Cryptology ePrint Archive or
arXiv.org. Additionally, we open-sourced the code of three of the peer-reviewed publications
under the liberal MIT license and will open-source the code of RIPPLE [GHJ+23] upon
acceptance. The code of our SoK can be found at https://github.com/encryptogroup/
SoK_ppClustering, the code of our privacy-preserving density-based clustering is available
at https://github.com/encryptogroup/ppdbscan, and the code of SPIKE is accessible
at https://github.com/encryptogroup/ppke. By ensuring that our research results are
accessible to everyone, we want to encourage replication, verification, and further improve-
ments not only by academic research but also for real-world deployments (cf. Challenge C2 —
Usability in Figure 1.1). Thereby, we hope to contribute to the practicality and widespread
adoption of secure computation for data analysis in the near future.
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2 Practical Privacy-Preserving Clustering

Clustering is a prominent unsupervised Machine Learning (ML) technique aiming at
grouping similar items into groups while different items should end up in different
clusters [XW05; XT15]. It allows to identify inherent patterns, relationships, anoma-
lies within datasets, and also can also be used for data organisation, summarization,
and segmentation [PJ89; RF07; DXLL09; ZL09].

Definition 2.0.1 (Clustering). Let’s consider a dataset of N data records, denoted by
{x1, x2, ..., xN}, where each element x i , i ∈ [N] belongs to a d-dimensional space. The goal
of a clustering is to find a partition of this dataset into K clusters, denoted by {C1, C2, ..., CK},
such that the partition maximizes homogeneity in the clusters and external separation between
different clusters using a distance metric m.

Clustering offers manifold applications in various domains of everyday life involving highly
sensitive information: Health care providers can use clustering to personalize treatment
plans for individual patients or to identify high-risk patient groups and develop targeted
interventions for those that share specific medical conditions such as cardiovascular diseases
or mental health disorders [MMW+10; CMC+11; TPK15; TKRM22]. However, even health
record data of a single patient is often not centrally stored but distributed among different
health institutions and specialists [BTS+15] who cannot simply share the data due to legal
requirements such as the Health Insurance Portability and Accountability Act (HIPAA)1 in
California. Generally, running analyses over a broader database, i.e., from different sources,
improves generalizability and robustness. Similar issues can also be observed when employ-
ing clustering for detecting fraudulent activities in financial transactions that can only be
detected when monitoring activities across multiple accounts at different financial institu-
tions [Sab12; SHA+19]. Other examples are competing business interest for the analyses
of social networks, customer segmentation, and recommendation systems for marketing
purposes [SKKR02; MSST07; KBSC18]. For such use cases, secure computation protocols
can be a promising solution.

59 papers present various ideas how to privately realize clustering using either Homomorphic
Encryption (HE) or Secure Multi-Party Computation (SMPC) (cf. Section 1.1). However,
those works often compare to only very few other works or even not at all. Additionally, they
are based on different plaintext clustering algorithms (which are differently well suited for
different clustering challenges), have different input parameters, consider different security

1https://www.hhs.gov/hipaa/index.html
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models, accept some leakage that is claimed to be unproblematic, etc. All these factors make
those protocols very hard to compare and to understand — even with expertise on secure
computation — which protocol is best for which use case. It becomes an impossible challenge
for ML practitioners that would like to use secure computation in a black box manner to get
both data utility and privacy.

Outline. In this chapter, we first present our contributions for systematizing the state-of-
the-art of privacy-preserving clustering and for the first efficient, fully private, and practical
density-based clustering protocol including an application to robust Federated Learning (FL)
in Section 2.1. We then put our efforts into context to related research in Section 2.2.

2.1 Our Contributions

In private clustering, we make two major contributions: In Section 2.1.1, we present our
Systematization of Knowledge (SoK) of the state-of-the-art in private clustering. This specifi-
cally includes that we outline the first systematic approach for the selection of a well suited
secure computation-based clustering protocol based on specific application requirements.
Moreover, we also point out research gaps that often hinder the so far existing solutions to be
deployable in real-world systems and, thus, should be addressed by future works. We use the
insights gained in our SoK in Section 2.1.1 for the design of the first fully privacy-preserving
density-based clustering scheme ppDBSCAN which we present in Section 2.1.2. Our protocol
is not only practically efficient, but also tolerant to outliers and can automatically determine
the number of required clusters based on the inherent structure of the input data. Additionally,
we adapted our generic ppDBSCAN protocol such that it can be used to effectively defend
against both backdoor and inference attacks in FL in Section 2.1.3.

2.1.1 Systematization of Knowledge for Privacy-Preserving Clustering

This thesis offers a significantly improved understanding of private clustering protocols based
on secure computation techniques (cf. Section 1.1). It provides the first systematic theoretical
and empirical evaluation of previous works conducted within the following publication:

[HMSY21] A. HEGDE, H. MÖLLERING, T. SCHNEIDER, H. YALAME. “SoK: Efficient privacy-
preserving clustering”. In: Proceedings on Privacy Enhancing Technologies
(PoPETs) 2021.4 (2021). Online: https://ia.cr/2021/809. Code: https://
encrypto.de/code/SoK_ppClustering, S. 225–248. CORE Rank A. Ap-
pendix A.

Subsequently, we will begin by presenting our systematization factors, followed by an intro-
duction to our guideline outlining a selection process consisting of three steps to identifying
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Figure 2.1: Approximating a patient’s data from leaked information in [KR07].

appropriate private clustering protocols for specific applications. Finally, we will discuss the
open research questions that have emerged from our comprehensive analysis.

A State-of-the-Art Assessment was urgently needed for the area of privacy-preserving
clustering considering the 59 secure computation-based protocols that have been published
in the last decades. As all secure computation protocols, an ideal private clustering scheme
should offer three properties: (1) full privacy, (2) efficiency, and (2) high clustering quality.
We will discuss those aspects in the context of this work in the following.

By full privacy we mean the fulfillment of an ideal functionality as shown in Figure 1.2,
where the function f is the respective clustering algorithm. Secure clustering protocols
emulate the trusted third party and perform the computation “under encryption” without
revealing any information beyond what can be inferred from the output. However, several
existing works fail to fulfill these requirements, leaking intermediate values in pursuit of
improved efficiency. This can have severe implications, including the potential disclosure
of specific data records [LHLX12].

Let’s consider an example discussed by Liu et al. [LHLX12] and also explored in our
work [BCE+21] (cf. Section 2.1.2): Certain Density-based Spatial Clustering of Applications
with Noise (DBSCAN)-based protocols like [KR07] intentionally disclose which elements
are similar (i.e., identified as neighbors due to being below a specific distance threshold)
to improve efficiency. In this scenario, we have two hospitals, H1 and H2, aiming to cluster
patients based on their medical parameters. A subset of their data is depicted in Figure 2.1,
showing the data records belonging to three patients P1, P2, and P3 of hospital H1, and the
data record of patient P4 of H2. The data records of the first hospital are too dissimilar
to be directly assigned to a cluster, whereas patient P4’s data from the second hospital
H2 is sufficiently similar to the data of all three patients from the first hospital H1 to be
considered as their neighbors. When the secure computation protocol leaks information
about which elements are neighbors, H1 can deduce the medical parameters of patient
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P4. This example illustrates that privacy preservation for input data cannot be guaranteed
if any information is leaked.

Efficiency is not solely a concern limited to private clustering; it is a general challenge faced
by secure computation protocols. These protocols introduce substantial computation and
communication overheads due to the utilization of cryptographic techniques and interactive
nature of some techniques that require communication between the parties to realize some
operations. Hence, it is essential to carefully design and optimize such protocols with
regards to their communication and computation complexity. Additionally, for a concrete
assessment of efficiency, benchmarking a reference implementation against previous works
on the same or at least similar hardware and identical setup configurations can provide a
valuable insights about practical usability.

The evaluation of clustering quality is based on the proximity within clusters and the separation
between different clusters, which cannot be measured using accuracy scores commonly
employed in supervised ML algorithms like neural networks. This distinction arises from the
fundamental difference between supervised and unsupervised ML approaches. In supervised
ML such as neural networks, labeled training datasets are used to train models for inference
on new data, enabling classifications, predictions, etc. On the other hand, unsupervised ML,
such as clustering, does not involve model training or labeled data; instead, it seeks inherent
patterns within the data. Consequently, quality assessment in clustering relies on the chosen
definition of proximity, and different algorithms may produce significantly varied clustering
outputs without being inherently incorrect since there is no universally “correct” solution
(also known as ground truth in ML terminology). To enable as similar quality assessment
as the accuracy measure for supervised ML, synthetic datasets have been created that are
used to benchmark and compare clustering algorithms for particular clustering challenges
(varying density, outliers, specific cluster shapes, etc.).

Taking these aspects into account, we identified the following seven key factors along which
we systematized the existing works (cf. Tabelle 3 in [HMSY21b] in Appendix A):

1. Secure Computation Technique: Existing private clustering protocols fall into two cate-
gories: Those exclusively based on HE and those solely based on SMPC. Additionally, a
few works have adopted a hybrid approach, combining an SMPC-based part with an
HE-based component in the protocol. Typically, HE protocols introduce a higher com-
putational overhead compared to SMPC protocols, whereas SMPC protocols necessitate
more communication due to the inherent interactivity among the participating parties.

2. Security Model: The majority of works in the field of private clustering operate in the
semi-honest security model and only a small number addresses the malicious security
model. Additionally, a significant portion of works fail to explicitly define their chosen
security model, thereby leaving it unspecified.

3. Participant Scenarios: Regarding the participants involved, privacy-preserving clustering
schemes can be categorized into two main scenarios. The first scenario involves classical
outsourcing, where two computing cloud servers undertake the computation on behalf
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of the data owners. The second scenario corresponds to the classical multi-party
computation setup. Many existing works in private clustering focus on the case of two
data owners conducting the computation directly between themselves, while other
protocols go with an arbitrary number of data owners. Additionally, certain schemes
rely on the assistance of a semi-trusted third party.

4. Privacy: As mentioned earlier, an ideal privacy-preserving clustering scheme should
ensure full privacy. However, our analysis showed that only a limited number of
protocols currently provide this guarantee, while others inadvertently leak intermediate
states, such as centroids or intermediate cluster assignments.

5. Data Partitioning: Many private clustering scenarios involve that data is distributed
among multiple data owners. Considering the perspective of the entire dataset,
this distributed data can be categorized as horizontally, vertically, or arbitrarily
distributed. Horizontal distribution means that each data owner possesses com-
plete data records, while vertical distribution means that data owners have val-
ues for specific parameters across all data records. Arbitrary data distribution
combines aspects of both. Certain private clustering protocols are tailored for
either horizontal or vertical data distribution, while others can accommodate a
mix of horizontal and vertical, i.e., arbitrary, data partitioning.

6. Efficiency: As previously mentioned, cryptographic protocols introduce significant per-
formance overhead in terms of communication and computation. Therefore, it is crucial
to optimize these protocols to ensure their practicality and feasibility. It is important
to note that the efficiency of protocols that leak intermediate information cannot be
meaningfully compared to those that provide full privacy guarantees. Our analysis
reveals that, on average, four out of the ten fully private protocols, namely, [CKP19;
MRT20; BCE+21; MPOT21], offer the highest efficiency. The other six protocols either
utilize outdated additively HE or have been experimentally shown to be slower than the
four other works. Among the fully private protocols, K-means and Mean-shift exhibit
superior efficiency in terms of communication, with K-means also outperforming others
in terms of computation.

7. Plaintext Clustering Algorithm: The field of privacy research has covered only eight plain-
text clustering algorithms: K-means [Ste56], K-medoids [Zha07], Gaussian Mixture
Model (GMM)-based clustering [BSC+97], Mean-shift [FH75], DBSCAN [EKSX+96],
Hierarchical Clustering (HC) [ELLS11, S. 71–110], BIRCH [ZRL96], and Affinity Propa-
gation [FD07]. It is important to note that no clustering algorithm can be universally
considered superior to others (cf. Table 2.1). In our experimental evaluation of the four
most efficient clustering protocols, we also conducted a quality benchmark analysis.
The results revealed that the ppDBSCAN protocol [BCE+21] offers the highest clus-
tering quality on average, followed by the hierarchical clustering schemes. K-means
and Mean-shift, on the other hand, exhibited comparatively lower quality results with
significant variation across different datasets.
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Guideline — The Protocol Selection for Applications can be done using the systematization
criteria listed above. They formed the basis for our guideline given the requirement of a
specific application.

• Step 1 — Application Requirements Analysis: Our guideline begins by specifying the
requirements of the application that we aim to realize through the use of a privacy-
preserving clustering protocol. It outlines the desired levels of (a) computational
efficiency, (b) communication efficiency, (c) security, (d) participant scenario including
the (e) number of involved parties, (f) privacy guarantees, and (g) characteristics
of the clustering process. Additionally, it is beneficial to prioritize these aspects in
order of importance.

• Step 2 — Incompatibility Elimination: With the outcomes of step 1, we can eliminate
protocols that do not meet the application’s specific requirements. For instance, if
the application requires a multi-party computation scenario but cannot guarantee
a non-collusion assumption due to competitive relationships among the parties, all
SMPC-based protocols must be disregarded. Similarly, in scenarios where high cluster-
ing quality is vital and non-convex clusters are anticipated, density-based clustering
protocols can be a favorable option.

• Step 3 — Final Selection: In this step, the most appropriate private clustering scheme is
chosen from the remaining compatible options. The selection process considers the
key factors that are most relevant to the application at hand and identifies the protocol
that demonstrates the best performance in those aspects.

We refer to [HMSY21b, Section 3.3] for more details. There, we also discuss example
applications to showcase the selection process.

Three Major Open Research Directions were identified by us as part of our systematization
efforts. They require future exploration to enhance the practicality of private clustering.

More Clustering Algorithms: Expanding the typical scope of secure computation protocols,
we go a step further by considering practicality from a ML standpoint. In alignment with
existing literature on plaintext clustering, an ideal clustering algorithm should possess the
following capabilities: 1) the ability to handle arbitrarily shaped clusters, 2) scalability for
large datasets, 3) efficient integration of new data records without re-clustering previous
ones, 4) compatibility with numerical (discrete and continuous) and nominal variables, and
5) effective handling of outliers. Furthermore, the algorithm should exhibit: 6) insensitivity
to the order of input data records, 7) reasonable storage requirements, 8) minimal input
parameters, and 9) the ability to handle high-dimensional data records. The assessment of
a clustering protocol’s performance with respect to these properties is determined by the
underlying plaintext algorithm, as demonstrated in Table 2.1, which showcases the strengths
and weakness of the eight algorithms privacy research focused on so far. No clustering
algorithm is generally superior to others which is why we need privacy-preserving solutions
for more clustering algorithms. Concretely, it would be beneficial to develop protocols that
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K-means K-medoids GMM Mean-shift DBSCAN
→ Sect. 2.1.2

HCa BIRCH Aff. Prop.

Cluster Shapes − − − + + ◦ − −
Large Datasets ◦ − ◦ − − − + −
Update Input Data + + + ◦ + − + −
Nominal Variables − + − − + + − +
Outliers − ◦ ◦ − + ◦ + +
Input Order + + + + ◦ + − +
Storage + − + + + − + −
# Parameters − − − ◦ ◦ − ◦ ◦

a Single/Complete Linkage.

Table 2.1: Comparison of plaintext clustering algorithms. + indicates that the clustering
algorithm performs well with respect to the indicated aspect, ◦ indicates an
average performance and − indicates that it has some weaknesses. The DBSCAN
algorithm [EKSX+96] underlying our ppDBSCAN protocol [BCE+21] is highlighted
in gray. Please refer to [HMSY21b, Section 2.1] in Appendix A for more details.

have mostly parameters independent of the input data, are resilient to noisy input, and can
effectively handle data originating from diverse distributions.

E2E Perspective: Beyond executing the clustering process itself, clustering involves multiple
other steps: a data preparation (e.g., cleaning, normalization, and scaling), the selection
of relevant features, the best suited clustering algorithm, its input parameter values, and
distance measures, as well as a quality evaluation. So far, privacy research has merely focused
on “translating” an algorithm into a secure variant which neglects aforementioned aspects.
To make privacy-preserving clustering practical, we however need to enable usability for non-
cryptographic experts. Thus, we need to develop easily assessable solutions that can simply
be plugged in into applications without having ML experts to deal with extending/designing
cryptographic protocols themselves.

Memory Efficiency: While research on SMPC and HE often centers around communication
and computation overhead optimization, it is important to recognize that these techniques
also impose significant memory requirements due to their inherent operations. For example,
the storage of intermediate values as well as ciphertexts (which are typically larger than their
plaintext counterparts) contributes to the overall memory usage. Our experimental results
have revealed that memory usage can become a bottleneck for commodity server hardware,
highlighting the necessity for efforts in optimizing memory utilization to further enhance the
efficiency and practicality of private clustering. For example, the two HE-based hierarchical
clustering protocols by Meng et al. [MPOT21] already need about 13 and 60 GBs of RAM for
a small dataset with N = 200 data records, each of dimension d = 8, and K = 10 clusters
and more than 128 GBs memory for a dataset with N = 65536 data records of dimension
d = 4, and K = 20 clusters.

Impact. Our systematization efforts address two significant gaps in advancing the prac-
ticality of privacy-preserving clustering research. Firstly, we identified and theoretically
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and experimentally evaluated the most promising protocols, providing insights into their
respective trade-offs. This enables a better understanding of the strengths and limitations
of each protocol. Secondly, we have developed a practical guideline that can be utilized by
ML practitioners to select an appropriate protocol for their specific clustering application
without requiring secure computation expertise. Beyond, we have highlighted the existing
research challenges that need to be addressed to facilitate the transition of privacy-preserving
clustering from the research domain to real-world applications. Our work was also presented
to the ML community as a contributed talk [HMSY21a] at the Privacy in Machine Learning
Workshop of the Conference on Neural Information Processing Systems (NeurIPS).

2.1.2 Privacy-Preserving Density-based Clustering

This thesis presents the first fully privacy-preserving and efficient density-based clustering
protocol within the following publication:

[BCE+21] B. BOZDEMIR, S. CANARD, O. ERMIS, H. MÖLLERING, M. ÖNEN, T. SCHNEIDER.
“Privacy-preserving density-based clustering”. In: ASIA Conference on Com-
puter and Communications Security (ASIACCS). Online: https://ia.cr/2021/
612. Code: https://encrypto.de/code/ppDBSCAN. ACM, 2021, S. 658–671.
CORE Rank A. Appendix B.

Compared to previous fully privacy-preserving clustering schemes, e.g., [CKP19; MRT20;
MPOT21], our ppDBSCAN offers a higher level of flexibility. It dynamically determines
the appropriate number of clusters based on the input data, accommodates clusters of
arbitrary shapes, and remains robust in the presence of outliers. These properties make
our protocol highly practical for real-world deployments, particularly in scenarios where
data is distributed among multiple data owners. In such cases, it becomes challenging to
pre-define the number of clusters or predict the data distribution, making our protocol a
valuable solution. Next, we summarize the underlying plaintext algorithm and then delve
into two optimizations that facilitate parallelized computations of the clustering process,
leading to improved computational efficiency.

DBSCAN is a density-based clustering algorithm that aims to identify clusters of data records
based on their density distribution in the feature space. It operates by grouping together data
records in dense areas while separating them from regions of lower density [EKSX+96].

The clustering process of the DBSCAN clustering algorithm [EKSX+96] is sketched in Fig-
ure 2.2. In step 1 , the algorithm iterates through all input records and checks if they have
at least minPts neighbors within distance ε. Such input records are called core elements and
form a cluster with their neighbors shown in step 2 . In a recursive step 3 , the neighborhood
of neighbors of a core element are analyzed as well. Points that are reachable from a core
point, either directly or through a chain of core points, are considered part of the same cluster.
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1 2 3

Figure 2.2: Clustering process of DBSCAN [EKSX+96] based on the maximum distance ε
between two elements to be considered as neighbors. An element with at least
minPts neighbors forms a cluster. We set minPts= 4 in this example.

Points that do not satisfy the criteria of a core element and are not reachable from any core
element are marked as noise.

The algorithm does not require specifying the number of clusters in advance and is capa-
ble of detecting clusters of arbitrary shape. It can handle datasets with varying densities
and is robust to outliers.

We introduce an optimized hybrid SMPC-based protocol for DBSCAN that combines Yao’s
Garbled Circuits [Yao82] for non-linear operations with and Arithmetic secret sharing based
on the Goldreich-Micali-Wigderson (GMW) protocol [GMW87] protocol for linear operations
(cf. Section 1.1). Additionally, we optimize computation by two parallelizations that we
summarize in the following. Moreover, we outline how DBSCAN’s parameters can be set
when data is not centrally stored but distributed among multiple data owners.

Our Parallelized Distance Computation improves the runtime efficiency in ppDBSCAN. In
plaintext DBSCAN, an iteration over the dataset is performed to identify the neighborhood
for each data record. Let’s denote a specific data record by Pd . To determine its neighbors, we
need to compute and compare the pairwise distance d between Pd and all other input data
records with respect to a threshold ε. In order to optimize this step, we decouple it in our
privacy-preserving version ppDBSCAN from the clustering process and compute the pairwise
distances beforehand, i.e., we first compute all pair-wise distances and continue then with the
actual clustering process. In this manner, we reduce the overhead by half since the distance
computation is performed only once per input record pair instead of running it twice, which
would be necessary if the results were not stored. We further enhance the computational
efficiency by performing the distance computation in parallel using a Single Instruction,
Multiple Data (SIMD) approach, where the distance between Pd and other data records
is calculated concurrently. Specific to the Euclidean Distance, a typically chosen distance
measure, we propose to replace it by its squared variant and use the squared radius ε2 for
the neighborhood determination [ETLP13]. This effectively avoids the expensive square root
computation without affecting the clustering result.

Our Parallelized Clustering results from the obliviousness requirement of secure compu-
tation protocols. The original DBSCAN algorithm employs a queue structure in plaintext to
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expand the neighborhood of a data record which already forms a cluster by itself. The objec-
tive is to investigate and incorporate the neighborhoods of neighboring data records into the
cluster if they also meet the minimum density requirement. However, in secure computation, it
is crucial for all computations to be oblivious, ensuring they are independent of the input data.
Naively implementing a queue structure would inadvertently require to expose information
about the distances between inputs and the density of regions in the input space, which is not
acceptable from a privacy standpoint. Alternatively, a few constructions, e.g., in [ZE13; KS14],
have been proposed that realize data structures like queues in a fully privacy-preserving man-
ner, but they come with impractical performance overheads for many real-world applications
due the needed expensive primitives such as Oblivious RAM (ORAM) [TJS19; Shi20].

To address this problem, we proposed a solution that avoids using a queue. Instead, we
iterate through all input data records, ensuring obliviousness in the secure computation.
However, this approach results in a cubic complexity of the SMPC protocol in the input
dataset size N , which is computationally expensive. As a point of comparison, plaintext
DBSCAN has a runtime complexity of O(N log N) when spatial indexing method is used
for the neighborhood queries [EKSX+96]. To mitigate the runtime overhead of our SMPC
protocol, we introduce two optimizations:

1. The obliviousness requirement requires to iterate over the full input data set instead
of using a queue for recursive neighborhood checks. This allows us to perform those
checks in a SIMD-fashion, leveraging parallel computation techniques that reduce
storage requirements and improve runtime.

2. We limit the number of iterations for the recursive neighborhood search of cluster
elements to a constant value, denoted as maxIterations. This constant represents the
maximum depth or length of consecutive neighborhood chains that are investigated.
Figure 2.3 illustrates the influence of a predetermined number of iterations on the
detection of very elongated clusters (Figure a) in contrast to circular clusters (Figure b).
Based on our benchmark results using five datasets (including four datasets selected
based on previous work and one synthetic trajectory dataset based on location data
from mobile phones provided by Orange S.A.), we found that terminating the process
after only maxIterations = 4 iterations is safe, as it does not result in any missed
cluster records. Furthermore, for datasets where elongated clusters are expected,
we propose an alternative approach. After each neighborhood expansion, a privacy-
preserving check can be implemented to verify if the cluster has been updated. If no
update has occurred, the expansion is terminated, and the clustering process proceeds
to the next unvisited input data record. Although this approach leaks one bit of
information per iteration/check, it can be acceptable in certain applications considering
the improved efficiency it offers.

Meaningful Parameter Estimation is often overlooked in papers on private clustering,
which poses a significant challenge as those values directly impacts the quality of the cluster-
ing output (cf. Section 2.1.1). In the case of ppDBSCAN, there are two parameters to consider:
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(a) (b)

Figure 2.3: Effect of a fixed number of iterations in ppDBSCAN. If the value is set too low,
elongated clusters (as depicted on the left side) cannot be detected, while dense
circular clusters (as shown on the right side) can still be identified effectively.

the squared radius ε2 and the minimal cluster size minPts. Even in scenarios where data is
distributed among multiple data owners, ppDBSCAN’s parameters can still be effectively set:
In many cases, they can be derived from the specific use case itself. We discuss two concrete
examples in our paper (cf. [BCE+21, Section 4.3.3]). As fallback, Ester et al. [EKSX+96]
recommend to set minPts= N

100 , where N is the dataset size. Similarly, when the neighbor-
hood radius is not given by the application, it can be approximated by a sorted k-distance
graph [EKSX+96]. We propose two options to do so: If a data owner holds a sufficiently
representative dataset, they can compute k =minPts/

Ni
n , where Ni is the data owner i’s input

data. Alternatively, the sorted k-distance graph can also be computed under SMPC or a secure
aggregation protocol can be employed. More details are given in [BCE+21, Section 4.3.3].

Impact. With our optimizations, we achieve a clustering time of approximately 420 seconds
for a dataset of 400 data records using ppDBSCAN in a semi-honest two-party computation
setup and a LAN network with 10 Gbit/s and 0.2 ms Round-Trip Time (RTT) (cf. [BCE+21,
Sections 5.3 and 5.4] for more details). In our comprehensive survey [HMSY21b] paper
that is also part of this thesis (cf. Section 2.1.1), we demonstrate that ppDBSCAN surpasses
all other state-of-the-art private clustering protocols in terms of clustering quality. Only one
protocol proposed by Mohassel et al. [MRT20] outperforms ppDBSCAN in terms of runtime,
but it is based on K-means, a clustering algorithm that is in contrast to DBSCAN highly
sensitive to outliers, limited to handling convex clusters, and requires prior knowledge of the
number of clusters. Thus, ppDBSCAN offers the best trade-off between clustering quality and
computational overhead. Moreover, considering that ppDBSCAN’s input parameters can be
appropriately chosen in a distributed setting, our work is highly suitable for real world appli-
cations. We demonstrate this by studying a concrete use case in collaboration with researchers
from Orange S.A., in which we apply ppDBSCAN for clustering trajectories to identify typical
travelling routes (cf. [BCE+21, Sections 4.4 and 5]).
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2.1.3 Robust FL with Private Clustering

This thesis uses the private clustering protocol in Section 2.1.2 for our FL backdoor defense
called FLAME such that it also impedes inference attacks within the following publication:

[NRC+22] T. D. NGUYEN, P. RIEGER, H. CHEN, H. YALAME, H. MÖLLERING, H. FEREI-
DOONI, S. MARCHAL, M. MIETTINEN, A. MIRHOSEINI, S. ZEITOUNI, F. KOUSHAN-
FAR, A.-R. SADEGHI, T. SCHNEIDER. “FLAME: Taming backdoors in feder-
ated learning”. In: USENIX Security Symposium (USENIX Security). Online:
https://ia.cr/2021/025. USENIX, 2022, S. 1415–1432. CORE Rank A*.
Appendix C.

According to Bagdasaryan et al. [BVH+20], there exists an inherent conflict between privacy
and security in FL. The authors argue that detecting malicious clients attempting to manipulate
the model requires analyzing and comparing local updates, which however might compromise
data privacy by revealing information about the contributing client’s training data. In the
subsequent paragraph, we describe how we transformed the Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) [CMS13]-based component of our
backdoor defense FLAME into an efficient SMPC protocol. This adaptation illustrates that FL
can be strengthened to withstand both types of attacks effectively.

FLAME’s Plaintext Backdoor Defense focuses on filtering local updates for “poisoned”
contributions, i.e., updates that attempt to manipulate the global model, intentionally causing
it to misclassify attacker-selected inputs in a manner predetermined by the attacker. This
manipulation strategy is also called a backdoor injection [BVH+20]. FLAME’s baseline idea is
to combine two defense strategies to get the best of both worlds: Large impact manipulations
will be easy to detect when comparing multiple local updates in one update iterations
assuming that the majority of updates is benign. Manipulations that have a low impact and
are meant to move the model slowly into the envisioned direction can be de-oriented by a
small amount of normally distributed noise. FLAME first filters the first type of attacks by
combining HDBSCAN [CMS13] and clipping. Then, it adds differentially private noise for
making the second types of attacks meaningless.

Realizing HDBSCAN [CMS13] for private FLAME in an SMPC protocol requires an approx-
imation for efficiency reasons. Plaintext FLAME uses HDBSCAN as it does not require to
specify the maximal distance between two data records to be considered as neighbors in
advance. Instead, HDBSCAN generates a Minimum Spanning Tree (MST) that encompasses
all possible distances. This MST is then utilized to detect dense regions, forming clusters,
while disregarding noisy data records as outliers. This approach enables HDBSCAN to form
clusters with different densities and irregular shapes. In contrast, DBSCAN as discussed in
Section 2.1.2, requires to pre-define the maximum distance among two data records to be
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considered as neighbors for forming a cluster and, therefore, has a fixed density across all
clusters making it slightly less flexible as HDBSCAN.

However, building a MST has quadratic complexity (e.g., using Prim’s algorithm [KV72])
and is already very expensive in the plaintext domain. Hence, an SMPC protocol results
in an infeasible overhead especially considering that known plaintext optimizations cannot
be used as computation must be oblivious. Instead, we approximate HDBSCAN by using
our ppDBSCAN protocol from Section 2.1.2. In ppDBSCAN, the squared maximal distance
ε2 [EFG+09] is uniformly fixed for all clusters in contrast to HDBSCAN. We select the value
using a binary search.

Impact. Our benchmarks showed that private FLAME with the ppDBSCAN-based approx-
imation not only matches plaintext FLAME’s defense performance but in some cases even
outperforms the plaintext version with respect to the detection rate of manipulated updates.
For example, it detects all manipulations in our benchmarks with the CIFAR-10 dataset while
plaintext FLAME has a True Negative Rate (TNR) of 86.2% (cf. [NRC+22] in Appendix C for
more details). Moreover, our implementation demonstrated acceptable runtimes considering
the large dimensions that are typical for FL in combination with the inherent overhead of
SMPC. For example, the largest model with about 20 Million parameters and 100 clients
needs about 6 hours for one iteration in a semi-honest Secure Two-Party Computation (2PC)
setup and a LAN network with 10 Gbit/s and 0.2 ms RTT. Our protocol is agnostic to the
used SMPC technique and inherits its security guarantees. To summarize, our DBSCAN-
based approximation enables an efficient and effective backdoor defense while strengthening
data privacy on client level. Our findings invalidate the claim made by Bagdasaryan et
al. [BVH+20] that privacy and security are fundamentally incompatible in FL and cannot
be achieved simultaneously. Notably, as companies, including Google with their keyboard
application [ZRX+23], are starting to actively deploy FL systems, ensuring the security and
privacy of such systems has become critical. Our private FLAME offers a significant step
towards enhancing the trustworthiness of these existing and future FL systems, without
compromising the privacy of training data across distributed sources.

2.2 Related Work

In this section, we begin by giving an overview of prior work in the field of Privacy-Preserving
Machine Learning (PPML) SoKs and privacy-preserving clustering in Section 2.2.1. Then, in
Section 2.2.2, we delve into the subsequent research that followed the publications pre-
sented in this chapter.
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2.2.1 Previous Work

In the following, we put our works in context to earlier systematizations of knowledge in the
context of PPML as well as privacy-preserving secure clustering.

SoKs for PPML. To the best of our knowledge, no previous work has surveyed or system-
atized secure computation protocols for privacy-preserving clustering. After a few very early
works on privacy-preserving data mining [VBF+04; YBDN11], the advent of ML and its inher-
ent privacy concerns have fostered a plethora of secure protocols for different ML algorithms
that have subsequently been reviewed and systematized: Especially deep learning gained
a lot of attention and resulted in many systematization efforts, e.g., in [CL18; ZCWS18;
RRK19; ABB+20; BDC20; LYW+20; MTV+20; TCBK20; AZL+21; KT21; PTC+21]. Kiss et
al. [KNL+19] provide a systematic review of private decision tree evaluation, while Har-
alampieva et al. [HRP20] focus on private image classification tasks. The privacy issues of FL
led to the design of privacy-enhancing measures like secure aggregation protocols tailored
to its requirements, which were then also systematized by multiple researchers [FMM+21;
YZH21]. Other works, such as [PMSW18; CSR+20; Yan20; KMA+21; LDS+21; XBJ21], take
a broader perspective by systematizing security and privacy issues, attacks, and defenses in
ML or FL in general.

Privacy-Preserving Clustering. In our SoK in [HMSY21b] in Appendix A, we have con-
ducted a thorough analysis of previous research on secure computation-based private cluster-
ing. Hence, we only provide a brief summary here and encourage interested readers to refer
to our paper for more comprehensive information.

In total, we have identified 59 publications and technical reports that primarily fo-
cus on secure variants of eight plaintext clustering algorithms: K-means [Ste56], K-
medoids [Zha07], Gaussian Mixture Model (GMM)-based clustering [BSC+97], Mean-
shift [FH75], DBSCAN [EKSX+96], HC [ELLS11, S. 71–110], BIRCH [ZRL96], and Affinity
Propagation [FD07]. These works propose cryptographic protocols to ensure privacy, utilizing
either HE, SMPC techniques, or a combination of both.

However, among these publications, ten works stand out for achieving full privacy preservation
without leaking intermediate information. These ten works are: [BO07; ZE13; RSB+15;
JA18; KC18; CKP19; MRT20; BCE+21; KMSY21; MPOT21].

Among the ten fully privacy-preserving works, our ppDBSCAN protocol [BCE+21], the SMPC-
based K-means protocol by Mohassel et al. [MRT20], the HE-based Mean-shift protocol
by Cheon et al. [CKP19], and the hierarchical clustering protocol combining both HE and
SMPC by Meng et al. [MPOT21]2 demonstrate the best performance in terms of trade-offs

2Note that subsequent to the publication of our SoK paper [HMSY21b], Meng et al. [MPOT21] published their
work on SMPC-based hierarchical clustering. It is important to mention that their work was already available as
a pre-print which served as the basis for our own research.
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between clustering quality and communication and computation efficiency. While ppDBSCAN,
[MRT20], and [MPOT21] are two-party computation protocols, [CKP19] operates in an
outsourcing setting where a single data owner encrypts their data and sends it to an untrusted
party for computation in the encrypted domain.

[MRT20] exhibits the best asymptotic communication and computation complexity consider-
ing dataset size, number of clusters, and data dimension. It also concretely outperforms all
other schemes in terms of runtime. For instance, on larger datasets (N > 8192 data records)
in a LAN network with 1Gbps and a roundtrip time (RTT) of 1 ms, it is up to two orders of
magnitude faster than the second fastest protocol by Cheon et al. [CKP19]. Our ppDBSCAN
protocol [BCE+21] offers the second best concrete runtimes on small datasets (N < 200
data records), being on average 14× slower than [MRT20] over LAN and 2.5× slower over
WAN (100 Mbps, RTT 100 ms). The performance gap narrows with an increasing number of
clusters since the communication complexity of ppDBSCAN is independent of the number of
clusters, whereas [MRT20] and [CKP19] are affected by it.

Regarding communication, [CKP19] performs best for datasets with more than 150 data
records and at least 10 clusters, as the data can be encrypted in a single ciphertext with
efficient packing. For smaller datasets, [MRT20] has about half the communication cost
of [CKP19], as the latter cannot effectively utilize ciphertext packing for those.

Our ppDBSCAN protocol [BCE+21] achieves the best clustering quality across different
datasets, demonstrating good performance for clusters with arbitrary shapes, noisy datasets,
and high cluster variance. While [MRT20] excels in terms of efficiency, it exhibits weaknesses
in clustering quality due to the underlying sensitivity of the K-means algorithm to noise and
its ability to only detect convex-shaped clusters. Cheon et al.’s Mean-shift protocol [CKP19]
achieves similar clustering quality as the K-means protocol by Mohassel et al. [MRT20]. The
private HC-based approach proposed by Meng et al. [MPOT21] encounters difficulties when
dealing with high cluster variance, resulting in the possibility of incorrect cluster merges.

Overall, there is no superior private clustering protocol, highlighting the need for future work,
as identified in our comprehensive review (cf. Table 2.1 and [HMSY21b] in Appendix A), to de-
sign privacy-preserving variants for additional state-of-the-art plaintext clustering algorithms.
These variants should consider not only performance measures but also practical deployment
issues, such as data preparation and parameter value settings in a multi-party setup.

2.2.2 Subsequent Work

Next, we present an overview of recent SoK papers and surveys in the field of PPML and
novel secure computation protocols for privacy-preserving clustering that have been pub-
lished after our works. Furthermore, we provide a contextualization of these new works in
relation to our own results.
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Algorithm Paper PETs Participant Scenario Data Output Efficiency

K-means [BO07, CCS’07] HE+ASS 2PC a final centroids − −
[RSB+15, CIC’15] HE Outsourcing, 2 Servers h final centroids − −
[JA18, SAC’18] HE Outsourcing, 1 Server x final centroids −
[KC18, CLOUD’18] HE Outsourcing, 2 Servers x cluster sizes − −
[MRT20, PETS’20] GC Outsourcing, 2 Servers or 2PC h final centroids ++

Mean-shift [CKP19, SAC’19] HE Outsourcing, 1 Server x final centroids −
Affinity Propagation [KMSY21, SECRYPT’21] ASS Outsourcing or MPC a final clusters −
DBSCAN [ZE13, S&P’13] GC 2PC h cluster labels, centroids/size possible −

[BCE+21, ASIACCS’21] GC+ASS Outsourcing, 2 Servers or 2PC a cluster labels, centroids/size possible +
HC [MPOT21, CCSW’21] HE+GC 2PC h final dendogram -

Table 2.2: Overview of fully privacy-preserving clustering protocols in comparison to our
ppDBSCAN (highlighted in gray and bold, cf. Section 2.1.2). HE is homomorphic
encryption [Gen09], ASS is arithmetic secret sharing [GMW87], RSS is replicated
secret sharing [AFL+16], and GC is garbled circuits [Yao86]. v indicates vertically
partitioned data, i.e., the data owners hold the values for a subset of parameters
from all data records. h indicates horizontally partitioned data, where the data
owners hold complete data records with all parameters, a is arbitrarily partitioned
data, and x indicates the scheme has only one data owner. +/− rates the com-
putational efficiency in comparison to each other. For more details please refer
to [HMSY21b] in Appendix A.

SoKs for PPML. Cabrero-Holgueras and Pastrana [CP21] investigated the latest secure
computation protocols for deep learning especially focusing on exploring efficiency and
practicality from an ML practitioners’ point of view, similar to our own work. Mann et
al. [MWCB22] present an exhaustive investigation of private neural network inference systems
and outline limitations for large scale deployments. Then just recently, Ng et al. [NC23]
expanded on the research conducted by [CP21], presenting a comprehensive overview of the
most recent advancements. [NC23] also includes detailed analyses of results that addressed
individual linear and non-linear components of neural networks. In an extension of Kiss et
al.’s work [KNL+19] on private decision tree inference, Chatel et al. [CPTH21] expanded the
scope to include training as well.

Additional recent SoK papers have focused on specific Privacy-Enhancing Technologies (PETs)
for PPML. For instance, Panzade et al. [PT22] explored functional encryption, while [PTH21;
PTC+21; Lau22] delved into HE. Sagar et al. [SK21] analyzed PPML solutions in the outsourc-
ing scenario, and Kuzniewski et al. [KMS22] examined PPML open-source implementations.
Zalonis et al. [ZAGK22] focused on private ML in medical applications.

To cover the growing body of research on improved privacy in FL, Mansouri et al. [MOJC23]
and Liu et al. [LGY+22] presented detailed reviews of recent developments in secure aggre-
gation for FL. Song et al. [SWRH23] systematically placed SMPC-based distributed training
in comparison to FL with a focus on privacy.

Privacy-Preserving Clustering. Wei et al. [WTC22] introduce an honest-majority Secure
Three-Party Computation (3PC) protocol for K-means clustering using replicated secret-
sharing [AFL+16] in the semi-honest security model. Although the protocol claims to be fully
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privacy-preserving, the division building block used, inspired by Wagh et al. [WTB+21], leaks
the range of the denominator. In an experimental comparison using FALCON [WTB+21] as
the implementation framework, Wei et al.’s protocol outperforms Mohassel et al.’s K-means
protocol [MRT20] by approximately 20× in terms of computation time and an average factor
of 65× for datasets of size N = {104, 105} in a localhost setup. A performance improvement
is expected considering that Mohassel et al.’s protocol is a 2PC protocol, while Wei et al.’s
protocol is a 3PC protocol. In comparison, our ppDBSCAN [BCE+21] is slower than Mohassel
et al.’s protocol [MRT20], and consequently, also slower than Wei et al.’s protocol [WTC22].
However, in terms of clustering quality, ppDBSCAN remains superior due to the underlying
K-means algorithm of Wei et al. [WTC22].

Zhang et al. [ZHS+22] propose a private K-means protocol utilizing multi-key homomorphic
encryption (HE) with two variations: A multi-party computation scenario involving multiple
data owners conducting the computation alongside a helper server, and an outsourcing
scenario where the full computation is done among two servers. However, their comparison
protocol discloses the distances between the compared data records to either data owners
or one of the servers and reveals the comparison result to the other server. Similarly, their
secure minimum protocol exposes the comparison result to one of the servers. The authors
neither provide theoretical nor experimental comparisons against previous state-of-the-art
approaches. Moreover, the accuracy results demonstrate a significant decline of over 10%
when compared to plaintext K-means. In summary, our ppDBSCAN [BCE+21] offers stronger
privacy guarantees and superior clustering quality compared to Zhang et al.’s protocol.

Recently, Shriram et al. [SKK+23] introduced an interesting new direction in private cluster-
ing. They developed the first 3PC protocol for approximative local clustering of distributed
graphs using a heat-kernel PageRank vector [CS18]. In contrast to previous works like
ppDBSCAN [BCE+21], their focus is on local clustering, which involves finding similar data
records to a specific input element in order to form a cluster. This approach is distinct from
global clustering methods that aim to cluster the entire dataset and which we looked at in
the scope of this thesis.

We summarize key aspects our ppDBSCAN in comparison to other fully privacy-preserving
global clustering protocols in Table 2.2. None of the subsequent works are included as they
either leak information [WTC22; ZHS+22] or are designed for local clustering [SKK+23].
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Artificial Intelligence (AI) and Machine Learning (ML) hold great promise for various in-
dustries and aspects of life. For example, in the health care sector, the analysis of medical
data has emerged as a strong driver for advancements in the field of medicine [KTS+17;
LCL+18; DK19; MP19; NA20]. This is primarily due to the increase of available medical data
thanks to digitisation efforts [Esp98; BTS+15; KTS+17], advancements in computational
power [DBH18; MP19], and the development of sophisticated algorithms [ZJYC02; KTS+17;
NA20]. We believe that the integration and analysis of diverse datasets distributed among
multiple sources [BTS+15] can open up new possibilities for extracting valuable insights and
improving health care outcomes:

P1 - Comprehensive Patient Profile: Combining data from different health care providers,
medical institutions, and research studies creates a comprehensive view of patients’
medical histories, treatments, and outcomes. This supports health care professionals to
make better-informed decisions and develop personalized treatment plans based on a
broader range of information.

P2 - Fairness and Bias Reduction: Including diverse data from various sources allows health
care professionals and researchers to identify and address biases related to factors
such as ethnicity, socioeconomic status, or geographic location promoting a deeper
understanding of health care disparities and supports the development of interventions
and policies aimed at reducing bias and improving health care equity for all individuals.

P3 - Identification and Analysis of New/Rare Diseases: New or rare diseases or conditions
may not be well-documented in a single health care facility. By pooling data from
multiple sources, it becomes easier to identify and study these rare cases, leading to
better understanding, early diagnosis, and treatment strategies.

P4 - Macro-perspective on Health Situation: Aggregated data from various sources can pro-
vide insights into population health trends, prevalence rates of diseases, and patterns
of health behaviors. This information is valuable for public health agencies and policy-
makers to develop targeted interventions and allocate resources efficiently. Moreover,
with the aggregated information it becomes easier to detect anomalies in single regions
early on that might indicate an outbreak of a new disease.

P5 - Realistic Evidence: Sufficiently large and diverse real-world evidence of patient expe-
riences and treatment outcomes complements controlled clinical trials and provides
valuable insights into how treatments perform in real-life settings, helping to bridge
the gap between research and practice [SAD+16].
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Due to its highly sensitive nature, it is clear that health care data must not simply be shared
among different data holding entities. This is also reflected in multiple strong privacy
regulations for health care data like Health Insurance Portability and Accountability Act
(HIPAA) or the European Health Data Space (EHDS)1 (which is expected to be introduced as
regulation in 2025).

Outline. In this chapter, we start by presenting a novel secure computation protocol for
the Kidney Exchange Problem (KEP) and a new privacy research problem in the context
of epidemiological modeling in Section 3.1. Our Secure Multi-Party Computation (SMPC)
protocol for the KEP in Section 3.1.1 addresses P3 by enabling the participation of differ-
ent medical institutions in kidney exchange programs. This allows them to merge their
data while maintaining the privacy of patient and donor information locally at each data
holder. Additionally, it contributes to enhancing fairness (P2) by increasing the chances for
patients in need of a kidney donation to find compatible donors. Moving on to our privacy-
preserving epidemiological modeling framework in Section 3.1.2, it effectively tackles P3 and
P4. This framework empowers epidemiologists to conduct experiments that model various
potential outcome scenarios for new or raw diseases, considering different parameter values.
By incorporating recent contact graph information, our framework significantly improves
the accuracy of these simulations, empowering decision-makers to make better informed
choices regarding resource allocation and potential containment measures. Furthermore,
our framework may also serve P5 by identifying erroneous assumptions when comparing the
simulations’ predictions with the actual outcomes retrospectively. This aspect contributes to
refining and improving future epidemiological modeling efforts. In Section 3.2, we provide a
comprehensive contextualization of our results by examining prior related work and reviewing
subsequent studies that followed upon our work.

3.1 Our Contributions

Within the domain of privacy-preserving medical analysis of distributed data, our work makes
two key contributions: Firstly, in Section 3.1.1, we introduce our novel SMPC-based protocol
for the KEP. This protocol offers improved robustness and efficiency compared to existing ex-
pensive state-of-the-art solutions in the field [BMWM20; BMW22]. Secondly, in Section 3.1.2,
we outline our contributions to privacy-preserving epidemiological modeling. We defined
and introduced this novel research problem, and provided two concrete instantiations as
proposed solutions. Both our contributions provide specific and pragmatic privacy-preserving
approaches in the field of health care data analysis that effectively safeguard the confidentiality
of sensitive data while facilitating the utilization of distributed medical data.

1https://health.ec.europa.eu/ehealth- digital- health- and- care/european- health- data-
space_en
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3.1.1 SPIKE: A Secure and Private Investigation of the Kidney Exchange problem

This thesis improves upon previous work [BMWM20; BMW22] on secure computation pro-
tocols that address the KEP: We introduce Secure and Private Investigation of the Kidney
Exchange Problem (SPIKE), a more efficient and robust hybrid SMPC-protocol, that was
presented in the following publication:

[BHK+22] T. BIRKA, K. HAMACHER, T. KUSSEL, H. MÖLLERING, T. SCHNEIDER. “SPIKE:
Secure and private investigation of the kidney exchange problem”. In: BMC
Medical Informatics and Decision Making 22.1 (2022). Online: https://arxiv.
org/abs/2204.09937. Code: https://github.com/encryptogroup/ppke,
S. 253. CORE Rank B. Appendix D.

In the following, we summarize the Kidney Exchange Problem (KEP) and present our privacy-
preserving Secure Two-Party Computation (2PC) protocol, SPIKE, which offers a solution
to the KEP while ensuring data privacy. We highlight the enhancements we have made to
improve the medical robustness in terms of likelihood of a successful transplant of SPIKE
compared to previous approaches [BMWM20; BMW22]. Additionally, we present our hy-
brid 2PC sub-protocols that combine Garbled Circuits (GCs) [Yao86] with Goldreich-Micali-
Wigderson (GMW)-style Boolean and arithmetic secret sharing [GMW87] (cf. Section 1.1).
For the design of these, we successfully used the insights we gained in the design phase of
ppDBSCAN (cf. Section 2.1.2). The result, SPIKE, offers an efficient and private solution
tailored specifically for the KEP.

The KEP as defined by Abraham et al. [ABS07] and Roth et al. [RSÜ04] is typically modelled
as an optimization problem on a directed graph structure. It refers to the situation where
multiple patients in need of kidney transplants have a willing but incompatible living donors.
In kidney exchange programs, this situation is solved by forming a cycle — as shown in
Figure 3.1 for a cycle size of 2 — among those pairs of incompatible patients and donors such
that in the end each patient receives a kidney from a compatible donor. To solve the KEP
and form such a cycle, a prominent approach is to use integer programming (e.g., [ABS07;
CKVR13]) in the plaintext. Thereby, the goal is typically to maximize the number of trans-
plants, but also other aspects such as medical constraints, cycle size, waiting time can be
taken into account [ALR+17; BVM+21].

As patients are located in different hospitals, their data is not centrally stored and legal
requirements enforce a high burden. Especially smaller medical facilities might therefore not
be able to join the process reducing the chances for patients to find a compatible donor. Secure
computation offers a solution to compute a KEP matching suggestion without compromising
data privacy and, thus, can enable more institutions and patients to join KEP programs.
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Figure 3.1: Illustration of a kidney exchange cycle involving two donor-patient pairs, which
is also called crossover exchange. On the left side, there are two incompatible
pairs, and on the right side, they exchange donors and patients to form a com-
patible matching.

Improved Medical Robustness refers to the likelihood that an output kidney exchange cycle
results in successful transplants. Cancellations pose a challenge in living kidney donations
through “exchange cycles” as patients and donors may drop out for various reasons, ultimately
causing the entire cycle to fail [PCCS18]. Factors contributing to these dropouts include
medical considerations where health complications or changes in health status can make
individuals ineligible for donation or transplants. Psychological factors, such as anxiety,
fear, or uncertainty, can lead to withdrawal due to emotional apprehensions regarding
the procedure. Additionally, personal circumstances, like financial constraints or family
commitments, can impact individuals’ ability to participate in the exchange cycle. These
factors collectively contribute to the cancellation issues observed in living kidney donation
exchange programs [PCCS18].

An algorithmic solution to the KEP evaluates compatibility based on quantifiable (often
medical) factors, but those are often not exhaustive for efficiency reasons or even infeasible to
compute since the KEP is NP-complete [BMW23]. While a final evaluation by medical experts
is crucial to ensure that no important detail is overlooked due to the vital nature of the matter,
the absence of essential factors in the algorithmic pre-evaluation can result in increased
rejection rates during the manual check of exchange cycles by the experts. Thus, to enhance
the robustness of SPIKE’s results, we add four additional medical parameters to the ABO blood
type and Human Leukocyte Antigens (HLA) crossmatch used in previous work [BMWM20;
BMW22]: HLA match, age, weight, and sex [Ope97; WSB+00; EHB+03; ALR+17; MKA+17].
Additionally, we restrict the size of exchange cycles to 2 or 3 in our benchmarks which
reduces the impact of dropouts. This aligns well with practical feasibility aspects such as the
availability of medical personnel and surgery capacity, since all transplants within one cycle
should ideally be performed simultaneously at the same or nearby hospitals [ABS07; PCCS18].
With this in mind, we now shift our focus to discussing our core contributions, specifically the
secure computation protocols designed for these parameter checks. We refer the reader to
our paper [BHK+22] in Appendix D for more information about the biological background.
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Figure 3.2: Overview of SPIKE’s four phases [BHK+22]. It outputs a set of mutually exclusive
exchanges cycles with the highest compatibility scores while donors’ and patients’
data remains private.

Tailored Combinations of SMPC Techniques enhance the efficiency of SPIKE, a flexible
secure computation-based approach to the KEP. It comprises four distinct phases shown in
Figure 3.2: (1) Compatibility Graph Computation, (2) Cycle Detection, (3) Cycle Evaluation,
and (4) Solution Evaluation. For each of these phases, we have designed efficient 2PC
protocols, envisioning a scenario where two semi-honest servers carry out the computation
on behalf of multiple data owners (i.e., medical institutions) within a classical outsourcing
setup (cf. Section 1.1). Similar as for ppDBSCAN (cf. Section 2.1.2), we hereby effectively
combine multiple different SMPC techniques: GCs [Yao86] and arithmetic and Boolean
secret sharing. Note that SPIKE follows a greedy strategy for efficiency reasons that might
output a “locally” optimal set of exchange cycles instead of the global optimum of all possible
set of exchange cycles. We argue that this is sufficient because, in practice, donors and
patients are expected to have sparse compatibility. Therefore, SPIKE is likely to output the
true global optimum or a solution very close to it, even when using the greedy approach.
Our intuition was recently validated by Breuer et al. [BMW23] who tested SPIKE on real-
world data from the United Network for Organ Sharing (UNOS)2. Their results indicate that
SPIKE’s output contains on average about 75% to 80% of the globally optimal matches of
donors and patients for a dataset with 50 to 200 pairs in total. In the following, we provide
an overview of our 2PC sub-protocols developed for each phase. The modular structure
of SPIKE allows for easy modification to incorporate additional medical factors or cater
to specific expert requirements.

2https://unos.org/
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1. Compatibility Graph Computation encompasses the process of first checking for all
combinations of each patient P with each donor D for general incompatibility due to a
potential HLA mismatch (cf. Table 4 in [BHK+22]). Subsequently, the quality of the
match is evaluated based on HLA matching (cf. Table S1 in [BHK+22]), ABO blood
group (cf. Table S1 in [BHK+22]), age (cf. Table S4 in [BHK+22]), sex (cf. Table
S5 in [BHK+22]), and weight (cf. Table S6 in [BHK+22]). To quantify the quality of
the combination of P and D in one score, all factors are combined using a weighted
summation (cf. Table 5 in [BHK+22]).

For each of the six factors, we employ categorization labels such as A for optimal fit,
B for good fit, or Eq for identical age classes, among others. This process primarily
involves performing comparisons or equality checks and subsequently categorizing the
results using multiplexers. Our micro-benchmarks indicate that the evaluation of this
phase is most efficient with a Boolean GMW instantiation [GMW87] (cf. Section 1.1),
which avoids any conversion costs. Only the weighted summation of quality scores
is performed using Arithmetic sharing, as it is the most efficient method for linear
operations. We additionally optimize this phase by computing the comparisons in
a Single Instruction, Multiple Data (SIMD) fashion, effectively reducing both mem-
ory and runtime overhead.

2. Cycle Detection involves calculating the number of potential exchange cycles based
on the input of the desired cycle length (typically 2 or 3 for practical reasons). To
accomplish this, an unweighted adjacency matrix is generated from the compatibility
graph obtained in Phase 1 (cf. Tables 6 and S7 in [BHK+22]). The matrix entries
indicate the number of paths of the desired length that start at vertex i and end at
vertex j. For cycles, the entries lie on the diagonal since the start and end vertices
are the same. The total number of potential exchange cycles is obtained by summing
the entries on the diagonal and correcting it for duplicated (“congruent”) cycles (cf.
Table 6 in [BHK+22]).

To optimize this process, the unweighted adjacency matrix is efficiently computed using
the Boolean GMW protocol [GMW87] (cf. Section 1.1). Then, to perform the necessary
linear operations for computing the number of cycles, we convert the representation to
Arithmetic GMW, ensuring efficient execution.

3. Cycle Evaluation returns a descending list of unique exchange cycles based on their
compatibility score, which represents the likelihood of their success according to the
evaluated criteria. The process begins by computing the relevant circuits (cf. Table 7
in [BHK+22]). These circuits must have the correct length, be mutually exclusive (i.e.,
not containing the same patient/donor pairs), and consist only of compatible donor and
patient pairs. Following this, the sorting is performed using a k-Nearest Neighbors (kNN)
protocol inspired by Järvinen et al. [JLL+19] (cf. Table S8 in [BHK+22]).

To optimize efficiency, we disclose the output of phase 2, which is the number of existing
exchange cycles. This number is then used as the value of k for the subsequent sorting
with kNN, narrowing down the sorting space to the required scope. We argue that
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this approach is acceptable as the number of exchange cycles is an aggregated value
and not directly linked to individual identities. This interpretation aligns with the
legal perspective: For example, Article 4 of the General Data Protection Regulation
(GDPR) considers personal information as “any information relating to an identified or
identifiable natural person”.3

The computational complexity of identifying exchange cycles depends on three factors:
The number of donor-patient pairs, their compatibility as they define the number
of potential exchange cycles, and the desired length of the cycles. Considering the
non-linear nature of many operations (such as comparisons and multiplexers) that
dominate this phase, as well as the depth of the circuits, we have chosen a GC-based
instantiation [Yao86] (cf. Section 1.1). This decision is driven by the constant number
of communication rounds of GCs.

4. Solution Evaluation determines the set of exchange cycles with the highest likelihood of
success (cf. Tables 9 and S12 in [BHK+22]). It is crucial that these cycles are disjoint,
as each donor can only be matched with one patient (cf. Table S11 in [BHK+22]).

Considering the circuit depth involved in finding the set with the maximum likelihoods,
we have instantiated the former using GCs [Yao86] (cf. Section 1.1). On the other
hand, our micro-benchmarks have shown that achieving disjointness is most efficient
using Boolean GMW [GMW87] (cf. Section 1.1).

Impact. As of July 16, 2023, the demand for kidney donations in the US remains substantial,
with more than 90000 individuals on the waiting list, according to the Organ Procurement
and Transplantation Network of the U.S. Department of Health & Human Services [PN23].
The average waiting time for a kidney donation is between 3 to 5 years [Fun23]. However, the
number of transplants performed annually is relatively low, with less than 20 000 transplants
from deceased donors and less than 7000 transplants from living donors conducted each
year [PN23]. The considerable gap between the number of individuals requiring a kidney
transplant and the limited availability of organs emphasizes the pressing need for an expansion
in living kidney donations. One potential solution to address this challenge is the wider
implementation of kidney exchange programs. By facilitating the exchange of kidneys between
compatible donors and recipients, these programs have the potential to increase the pool of
available organs and improve the chances of finding suitable matches. However, stringent
privacy regulations for medical data can pose challenges for smaller health care institutions
hindering them to participate in those programs due to limited resources to address the
associated bureaucratic burden. Secure computation-based solutions like SPIKE can serve as
a gateway for these entities by offering provable data privacy. By potentially enabling more
institutions to participate, they have the potential to increase the number of kidney donations
and democratize health care by enabling a wider access.

3https://gdpr-info.eu/art-4-gdpr/.
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SPIKE itself represents an important step towards making private KEP practical for real-world
deployment. This is due to its significantly improved efficiency compared to the previous
state-of-the-art [BMWM20; BMW22]. It outperforms the runtime of the Threshold Paillier-
based KEP protocol [BMWM20] by a factor of about 30 000× with 9 pairs and a cycle length
of 3. In addition, when compared to the SMPC-based approach [BMW22], it demonstrates
an average runtime improvement of approximately 400× for 40 pairs and a cycle length of 3.
Furthermore, it is more robust thanks to the inclusion of additional medical factors.

3.1.2 Privacy-Preserving Epidemiological Modeling

Within the context of this thesis, we addressed the issue of privacy-preserving epidemiological
modeling. The initial results were presented as a poster [GHJ+22] at the ACM Conference
on Computer and Communications Security (CCS) and our final results can be found in the
following technical report:

[GHJ+23] D. GÜNTHER, M. HOLZ, B. JUDKEWITZ, H. MÖLLERING, B. PINKAS, T. SCHNEI-
DER, A. SURESH. “Privacy-preserving epidemiological modeling on mobile
graphs”. https://ia.cr/2020/1546. Code: https://zenodo.org/record/
6599225. 2023. Appendix E.

We first motivate the problem of privacy-preserving epidemiological modeling. Then, we
present our framework RIPPLE which formalizes the requirements of privacy-preserving
epidemiological modeling. Subsequently, we summarize our two practical instantiations: One
is based on Trusted Execution Environments (TEE) while the other relies on cryptographic
techniques. In this scope, we also introduced PIR-SUM, a novel Private Information Retrieval
(PIR) construction (cf. Section 1.1), returning the sum of the results of multiple PIR queries
that might be of independent interest.

Privacy-Preserving Epidemiological Modeling goes beyond contact tracing for which
the privacy research community has shown great interest during the COVID-19 pan-
demic [AMX+20; CFG+20; CG20; HMA+20; IF20; TPH+20; Vau20; ABIV21; HMM+21; PR21;
RBS21b]. While contact tracing takes a backward perspective when identifying individuals
after they have come into contact with infected persons to mitigate the spread of the disease,
epidemiological modeling simulates the spread of the disease in the future. This modeling has
proven to be a valuable tool for governments and decision-makers in determining effective
containment measures, particularly during the COVID-19 pandemic [MMA+20]. However,
the accuracy of predictions in this research field is reduced due to the limited availability
of precise contact information for the population [MHJ+08; REE08; SKL+10]. Privacy-
Enhancing Technologies (PETs) can be a valuable mean for the creation of decentralized
systems providing access to accurate recent contact information for epidemiological modeling
without compromising the privacy of individual contacts.
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Figure 3.3: Overview of the RIPPLE Framework in [GHJ+23]. In step 1 , the mobile devices
of the participants collect anonymous encounter tokens during interactions. In
step 2 , the research institute begins a simulation by broadcasting the initializa-
tion parameters. In step 3a , the participants securely upload their infection

likelihood to the servers. In step 3b , the servers securely compute the cumula-
tive infection likelihood per participant. In step 3c , the participants retrieve their
cumulative infection likelihood. In step 4 , the aggregate results (#S,#E,#I,#R)
are sent to the research institute.

RIPPLE realizes epidemiological modeling on recent contact information, running in a
distributed fashion across mobile devices. These devices record encounters in the physical
world similar to contact tracing apps like Germany’s Corona-Warn-App4. The system en-
compasses three types of entities: A research institute, participants with mobile devices that
contribute their contact information, and a set of one or more communication servers. The
research institutes orchestrates the simulation, sets its parameters, and receives the simulation
output. The participants are responsible for recording physical encounters and running the
distributed simulation on their individual mobile devices. To facilitate communication among
the participants for simulating infections, the communication servers establish anonymous
channels through which messages can be exchanged.

We envision a hybrid security model: While it is realistic to assume that the research institute
and communication server(s) behave semi-honestly as they are instantiated by governments
or public health care institutes, we cannot assume this for all participants. For this reason, we
assume in our work that some participants might deviate from the protocol to gain additional
information, but do not try to manipulate or torpedo the simulation results. We recognize that
it might be an interesting direction for future work to address stronger security models.

RIPPLE consists of four phases: Token Generation, Simulation Initialization, Simulation
Execution, and Result Aggregation. The system overview is given in Figure 3.3, while Figure 2
in [GHJ+23] provides a detailed protocol description. The Token Generation means the
encounter information collection phase executed by mobile devices similar to contact tracing
apps. During the Simulation Initialization phase, the research institute defines the parameters
of a simulation and broadcasts the necessary information for running a simulation to the

4https://www.coronawarn.app/en/
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participants. Result Aggregation is a simple aggregation step of binary vectors which can be
instantiated with a generic state-of-the-art secure aggregation protocol [ETLP13; FMM+21;
KÖB21]. In the third phase, the Simulation Execution, the participants exchange anonymous
messages indicating the likelihood of infections between each other. This is the critical step
from a privacy perspective as it contains several pitfalls that we summarize next.

Linking Identities and Sybil Attacks are two attacks by participants trying to extract
information about the contact graph that led the design of our instantiations. Let’s imagine
we do the simulation phase in a straightforward fashion: Each participant computes a
likelihood taking its collected encounter information as input to a formula provided by the
research institute. Then, it anonymously sends the likelihood to the other participant it has
met. This second participant receives such likelihoods from all participants it encountered
during the simulated time period, aggregates them, and updates its infection status if the
aggregated likelihood surpasses a certain threshold defined by the research institute. The
main challenge is ensuring anonymous message exchanges between participants. But, if
two participants meet multiple times and their encounter information is used in multiple
simulations, the infection likelihoods between those encounters and simulations may correlate
which is observable by the receiving participant. We call this information leakage a linking
identities attack. To defend against this attack, we suggest that the receiver is only permitted
to access the aggregated likelihood of all messages it receives.

To circumvent the aggregation and be able to access and analyse individual infection likeli-
hoods, malicious participants might use multiple mobile devices to collect different encounters
one-by-one. We call this a sybil attack. A registration process linked to individual tokens
issued by governments can be an effective countermeasure that prevents an adversary from
creating dummy identities.

Our Instantiations of the RIPPLE framework are called RIPPLETEE and RIPPLEPIR. They
offer different trade-offs in terms of security assumptions and efficiency.

RIPPLETEE’s (cf. Figure 6 in [GHJ+23] in Appendix E) security relies on a TEE (cf. Section 1.1)
at the mobile devices of each participant. The infection likelihood is securely stored, processed,
and encrypted within the TEE of the sender. The TEE also guarantees are secure transmission
through an anonymous communication channel to the intended recipient. The recipient
runs the decryption and aggregation process within their own TEE. This approach ensures
that participants in the communication do not have knowledge of the identities of other
participants and can only access aggregated infection likelihoods. By implementing these
measures, the system effectively safeguards against linking identity attacks, preserving the
privacy and anonymity of the participants involved.

RIPPLEPIR (cf. Figure 8 in [GHJ+23] in Appendix E) is constructed based on cryptographic
protocols and their respective security guarantees. The foundation of RIPPLEPIR is a generic
multi-server PIR scheme such as [KO97; DHS14; DHS17; ACLS18; GH19; CK20; GHPS22],
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PIR− SUMClient
Server S1

Server S2∑︁

i∈τD[qi] + leakage(D)

Queries q1, . . . , qτ D[1], . . . ,D[N]

D[1], . . . ,D[N]

Figure 3.4: Ideal functionality of PIR− SUM where a client privately requests τ distinct
database blocks by queries q1, . . . , qτ from a public database D with N blocks
without revealing the queries qi , i ∈ [τ] to the PIR-servers. The client receives
the sum of the requested database blocks

∑︁

i∈τD[qi] and might also obtain some
additional information about the database. Depending on the underlying PIR
scheme more than two non-colluding PIR servers can be involved and they might
not hold the entire database.

which allows a client to retrieve a specific element from a database without revealing which
element was requested to the non-colluding servers holding the database (cf. Section 1.1 and
Figure 1.3). Within RIPPLEPIR, a novel construction called PIR− SUM is utilized. The ideal
functionality is shown in Figure 3.4. This construction extends the functionality of multi-server
PIR by restricting the client to retrieve only the aggregated sum of multiple queried blocks from
the database, without disclosing the individual blocks to the participant or revealing which
specific blocks were queried to the server(s). By leveraging PIR− SUM, RIPPLEPIR achieves the
desired privacy protection against linking identity attacks. PIR− SUM is defined as follows:

Definition 3.1.1 (PIR− SUM). Client Ci has a set of τ distinct indices denoted by Q =
{q1, . . . , qτ} and wants to retrieve res =

∑︁

i∈τD[qi], where D is a database with N elements of
ℓ-bits. D is held in the clear by two or more servers that do not learn any information about Q.

Our PIR− SUM construction ensures security against linking identity attacks in RIPPLEPIR.
The details of our instantiation of PIR− SUM in [GHJ+23] are omitted here as the final
optimized protocol is not part of our contributions. However, the concept, definition, and
earlier versions of PIR− SUM are part of our contributions within this thesis.

Impact. The availability of recent and accurate contact information would significantly
enhance the precision of epidemiologists’ predictions regarding the trajectory of infectious
diseases. This, in turn, would greatly influence the decision-making process of public health
authorities when devising strategies for managing public health care. The significance of
up-to-date contact data extends beyond extraordinary situations like the COVID-19 pandemic
and encompasses various regular procedures, including the development of vaccination
strategies and resource allocation for hospitals, personnel, and financial budgets.

Our microbenchmarks for the two instantiations serve as compelling evidence that the
implementation of our protocols on an industry-scale can result in practical and usable
systems. For example, our prototype implementation shows that RIPPLETEE runs a simulation
of 14 days with half a million participants in less than 4.5 minutes, while RIPPLEPIR also takes
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only about 7 minutes. We assume a LAN setup with 10 Gbit/s and 0.1 s Round-Trip Time (RTT)
between the PIR servers. Those numbers do not include the upload and download by the
clients as those times can significantly vary between mobile devices. Both systems can be
seamlessly integrated into existing contact tracing applications, leveraging the infrastructure
that is already in place. The successful demonstration of our proof-of-concept highlights
the feasibility of deploying our privacy-preserving epidemiological modeling in real-world
scenarios, ultimately hopefully contributing to the enhancement of public health measures.

Our PIR− SUM building block might be of independent interest for usage in other contexts. It
goes beyond secure aggregation protocols that were, for example, explored in the context of
smart metering [KDK11; ETLP13] and Federated Learning (FL) [FMM+21; KÖB21; MOJC23]
as it hides not only the individual responses but also the queries. This might be interesting
in tax auditing processes, where government authorities need to verify the total income
or expenditure of individuals or entities. Currently, such verification requires revealing
detailed evidence of financial transaction information, which compromises privacy. With the
utilization of PIR− SUM, a privacy-preserving audit process can be enabled. The protocol
computes the sum of different transactions without exposing individual financial information
or which queries were made. This approach serves dual purposes: On one hand, it allows tax
authorities to verify overall income or expenditure without harming the privacy of individual
taxpayers’ financial data. On the other hand, it empowers authorities to conduct audits
without alerting potential tax evaders. A real-world study by Bogdanov et al. [BKK+16]
illustrates the practical usefulness of secure computation for investigating financial data. In
their research, the authors privately analyze students’ tax payments and study data to explore
the relationship between graduation time and students working during their studies.

3.2 Related Work

In this subsection, we put SPIKE [BHK+22] and RIPPLE [GHJ+23] in context to previous
work in Section 3.2.1. Then, we discuss the latest research findings that followed upon
our work in Section 3.2.2.

3.2.1 Previous Work

We start by presenting two earlier works on privacy-preserving approaches to the KEP,
before summarizing related work on contact tracing and other privacy research results in
the context of epidemiology.

Secure Computation Protocols for Solving the KEP. Before SPIKE [BHK+22], the problem
of privacy-preserving kidney exchange protocols was addressed by two works by Breuer et
al. [BMWM20; BMW22]. In their initial work [BMWM20], the authors introduced the
problem to the privacy community and proposed a privacy-preserving protocol based on
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a Threshold variant of the Paillier Homomorphic Encryption (HE) scheme [FPS01]. This
protocol is designed for a multi-party computation scenario involving an arbitrary number of
incompatible donor-patient pairs assumed to behave semi-honestly. Concurrently to SPIKE,
Breuer et al. presented another secure multi-party computation (SMPC) protocol for the
KEP in their subsequent work [BMW22]. This protocol utilizes the Ben-Or-Goldwasser-
Wigderson (BGW) [BGW88] based on Shamir’s Secret Sharing [Sha79] in an outsourcing
scenario. Both protocols by Breuer et al. construct an adjacency matrix which is then
used to find an exchange cycle set that maximizes the number of compatible patient-donor
pairs. However, the exhaustive “search” strategy employed in their first protocol [BMWM20]
has an exponential computation overhead, leading to a runtime of 13 hours for only 9
donor-patient pairs with a LAN network with 1Gb/s bandwidth and 1ms latency. In their
second protocol [BMW22], Breuer et al. significantly improved efficiency by reformulating
the problem to a maximum weight matching for finding “cross-matches” of size two, i.e.,
exchange cycles are limited to exactly two donor-patient pairs. With an implementation that
uses three computing parties in the outsourcing scenario, the second protocol successfully
finds cross-matches for 13 pairs in 16 minutes.

In both of their studies [BMWM20; BMW22], Breuer et al. focus solely on the HLA crossmatch
and the ABO blood group (cf. [BHK+22, Section Background] in Appendix D) when evaluating
compatibility. However, SPIKE expands on this approach by incorporating four additional
factors (HLA match, age, weight, sex). This can enhance the medical robustness of the output
matching, thereby increasing the likelihood for a positive decision of the medical experts
to proceed with the transplants as suggested by the SPIKE’s output. Similar to the second
work [BMW22], SPIKE’s modular structure also allows to dynamically include or exclude
pairs of donors and patients as they may drop out or newly join over time without having to
re-run all four phases for all inputs. Moreover, SPIKE offers significantly improved efficiency
compared to both prior works. This is thanks to our fine-tuned SMPC protocols that efficiently
combine GCs and Boolean and Arithmetic GMW (cf. Section 1.1) based on cycle depth and
operation (non-)linearity such that communication and computation overhead is optimized.
Concretely, SPIKE requires 1.59 seconds for the matching with all six medical factors of
9 donor-patient pairs and a cycle length of 3 instead of the 13 hours of [BMWM20] with
only two medical parameters. With 40 donor-patient pairs and a cycle length of two, SPIKE
completes in 3.6 minutes, while the approach by Breuer et al. [BMW22] takes 25 hours in a
LAN setup with 1Gb/s bandwidth and 1ms RTT.

Contact Tracing and Privacy-Preserving Medical Data Analyses. To the best of our knowl-
edge, our work introduces privacy-preserving distributed epidemiological modeling on real
contact graphs to the privacy community for the first time, with no previous solutions to
this problem. Araki et al. [AFO+21] present a honest majority Secure Three-Party Compu-
tation (3PC) protocol for privacy-preserving graph analysis in an outsourcing scenario and
name epidemiological modeling as potential application. However, collusion between two
of the computing parties can result in the complete reconstruction of the contact graph. In
contrast, our work allows to run such simulations in a fully distributed manner among a large
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set of mobile devices without the need to rely on the non-collusion between servers. This can
foster trust motivating more people to join the simulation.

During the COVID-19 pandemic in 2020, the privacy and security challenges of contact
tracing gained significant attention [AMX+20; CIY20; Fra20; TPH+20; Vau20; NMD+22],
which served as a source of inspiration for our work. In the context of contact tracing
applications, two main design approaches emerged: Decentralized and centralized design
architectures, each with its own advantages and disadvantages, leading to intense discussions
especially on the respective privacy guarantees [Vau20]. Decentralized systems do not collect
or process sensitive information centrally, so that contacts of infected persons are determined
locally on users’ mobile devices [Con20; Vau20; NMD+22]. Examples of such decentralized
systems include [CKL+20; CFG+20; TPH+20; AG21; ABIV21; PR21]. On the other hand,
centralized systems involve a central authority in the computation and data storage process,
such as the generation of tokens in physical encounters [Vau20], or the determination and
information of contacts [NMD+22]. Examples of centralized contact tracing systems are [IF20;
SH20]. There are also hybrid designs and alternative approaches that have been explored,
like [DPT20; TSS+20; BDH+21; RBS21b]. Ahmed et al. [AMX+20] and Wen et al. [WZL+20]
have comprehensively surveyed and compared multiple contact tracing apps, and Sun et
al. [SWX+21] have analyzed the security and privacy aspects of contact tracing apps on
Android operating systems using their COVIDGUARDIAN tool accessing potential risks by
static program and data flow analyses.

Beyond contact tracing, cryptographic research has also investigated other aspects of privacy-
preserving data analysis in the context of infectious diseases. For instance, during the COVID-
19 pandemic, Lueks et al. [LGV+21] introduced CrowdNotifier, a presence tracing system that
notifies users in a privacy-preserving manner if they have come into contact with someone
who tested positive. Lighthouses [RBS21a] is an extension of the decentralized contact tracing
architecture by Apple and Google [AG21]. It provides warnings to users about super-spreader
locations. PRISC [FZWX23] presents an idea for computing a heatmap indicating the infection
likelihood for different locations. Similarly, Bampoulidis et al. [BBH+22] give a private set
intersection protocol that combines location data of mobile devices provided by mobile
network operators with information about infected individuals input by health authorities for
infection hotspot detection. Barsocchi et al. [BCC+21] introduce an indoor localization system
incorporating a GDPR-based access control system to safeguard personal data. The system’s
purpose is to guide users through public spaces, such as supermarkets, while ensuring they
maintain maximum distance from others, thus encouraging social distancing.

In the broader context of health care and bioinformatics, Barni et al. [BFK+09a; BFK+09b;
BFK+09c; BFL+11] and Mansouri et al. [MBÖE20] have presented multiple secure evalua-
tion protocols specifically focused on the classification of ElectroCardioGram (ECG) signals.
Moreover, other works address privacy-preserving solutions for medical imaging [KMRB20;
TÖHL22], genomic data analysis [DHSS17; TS18; TWSH18; ST19; ICÖ21; HKST22], and bio-
metric feature analysis, including biometric identification [EFG+09; SSW09; SZ13; BCF+14;
DSZ15; TNK+19]. Ciceri et al. [CMÖE19] discuss the development of HE- and SMPC-based
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classification systems for arrhythmia detection and stress management. Additionally, Cre-
mones et al. [CVC+23] provide a comprehensive exploration of various aspects related to the
practical usability of FL in real-world health care applications.

3.2.2 Subsequent Work

In this subsection, we compare SPIKE to three publications that were released in parallel or
subsequently. Then, we also discuss two follow-up works of RIPPLE.

Secure Computation Protocols for Solving the KEP. Concurrently to our work, Brügge-
mann et al. [BBK+22] presented an SMPC protocol for approximative maximum weight
matching and mentioned kidney exchange as one of its potential applications. It offers high
efficiency and the protocol guarantees to return half of the maximally possible weight in
the worst case. The authors do not evaluate the effect of their approximation with respect
to kidney exchange. Their protocol’s functionality corresponds to SPIKE’s procedure when
the cycle length is set to two. Brüggemann et al.’s reported benchmarks cannot be directly
compared to ours as they instantiate their protocol in a honest-majority 3PC setting with
MP-SDPZ [Kel20] while we use 2PC.

Later, Breuer et al. [BHP+22] presented a follow-up work addressing the KEP with an integer
programming approach. This new protocol builds on BGW [BGW88] with Shamir’s Secret
Sharing [Sha79] and is designed for an outsourcing scenario (cf. Section 1.1), involving three
or more computing parties holding the secret-shared medical information of donor-patient
pairs. The authors build up upon the plaintext Branch-and-bound algorithm introduced
in [LD10], which divides the global optimization problem into multiple sub-problems in a
tree structure for improved efficiency. Each sub-problem is then addressed using the privacy-
preserving Simplex algorithm protocol proposed by Toft [Tof09]. Similar as their first work
in [BMWM20], this new approach can handle arbitrary cycle lengths, but offers significantly
faster runtimes for cycle sizes larger than 12 donor-patient pairs. For instance, the protocol
only takes 6 minutes for a execution with a cycle size of 3 and 12 donor-patient pairs, while
the re-implementation of [BMWM20] (with the original HE scheme replaced by Shamir’s
Secret Sharing) requires 4 hours in a LAN setting with a bandwidth of 1GB/s and a RTT
of 1ms. However, this enhanced efficiency comes with a trade-off as the protocol leaks the
structure of the Branch-and-Bound tree with respect to the pruning information and the
number of Simplex iterations of each sub-problem.

Recently, Breuer et al. [BMW23] presented a follow-up work that directly builds upon SPIKE’s
greedy strategy and proposes a new SMPC protocol for an approximate solution to the KEP.
Unlike SPIKE, their protocol does not reveal the number of existing exchange cycles, making
it more privacy-preserving in this aspect. Instead of using the set of all possible exchange
cycles in each iteration, [BMW23] optimize complexity by evaluating the maximum weight
for each subset first. The authors implement their protocol using MP-SPDZ [Kel20] and
replicated secret-sharing [AFL+16] with three computing parties assuming an honest majority.
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Benchmark results show that [BMW23] is significantly faster than the 2PC-instantiation
of SPIKE for matching more than 10 donor-patient pairs. For example, they report that
they outperform SPIKE by a factor of 12.8× for 15 pairs in a LAN setting with 1 GB/s
bandwidth and 1 ms RTT. Breuer et al. [BMW23] also conduct a quality evaluation using a
self-implemented plaintext version of SPIKE and report slightly better performance for their
approach, which they attribute to considering cycles of length 2 and 3, while SPIKE focuses
on cycles of either length 2 or 3.

Regarding robustness, both [BBK+22] and [BHP+22] focus solely on the HLA crossmatch
and the ABO blood group as compatibility criteria between donors and patients. In contrast,
[BMW23] follows SPIKE’s approach and enhances the robustness of the matching process
by incorporating additional factors such as sex, age, HLA match, but also the geographic
closeness and the calculated panel reactive antibody (CPRA) score of the patient.

We summarize key aspects of previous and subsequent related work in comparison to
SPIKE in Table 3.1.

Paper PETs Participant Scenario Cycle Length Exact Privacy Efficiency

Breuer et al. [BMWM20, WPES’20] Paillier MPC A ✓ − −
Breuer et al. [BMW22, CODASPY’22] SSS/BGW MPC/Outsourcing 2 ✓ −
SPIKE [BHK+22, BMC’22] GCs & GMW 2PC Outsourcing Aa ✗ +
Brüggemann et al. [BBK+22, WPES’22] ASS MPC 2 ✗ ++
Breuer et al. [BHP+22, PST’22] SSS/BGW MPC/Outsourcing A ✓ ++
Breuer et al. [BMW23] ASS MPC 2 + 3 ✗ ++

a Cycle size is an input to the protocol and fixed during a matching.

Table 3.1: Comparative overview of related work on secure computation protocols addressing
the KEP. Paillier is a threshold variant of the Paillier encryption scheme [FPS01],
SSS/BGW is the BGW [BGW88] based on Shamir’s secret sharing [Sha79], GCs
are Yao’s Garbled Circuits [Yao86], GMW is arithmetic and Boolean secret sharing
based on the GMW protocol [GMW87], and ASS is an arbitrary arithmetic linear
secret sharing scheme. The protocols have either a multi-party computation
(MPC) or a two-party computation (2PC) scenario with or without outsourcing.
A are exchanges cycles of arbitrary length. ✓ indicates whether the protocol
finds a globally optimal solution to the KEP, ✗ is a greedy strategy. is full
privacy, while reveals the number of existing exchange cycles, and leaks
pruning information and number of Simplex iterations for each sub-problem.
+/− rates the computational efficiency in comparison to each other. Note that
[BHP+22; BBK+22; BMW23] have not been experimentally compared which
is why we cannot directly compare their concrete computation efficiency. Our
SPIKE (cf. Section 3.1.1) is highlighted in gray and bold.

Privacy-Preserving Epidemiological Data Analysis. To go beyond epidemiological mod-
eling and contact tracing, Martinico et al. [MAZW22] propose Glass-Vault an extension to
centralized contact tracing applications that enables general-purpose privacy-preserving anal-
ysis of data from infected users. Going into a similar direction, Cheng et al. [CLK23] present
a theoretical concept for a data collection platform based on SMPC for privacy-preserving
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epidemiological data analysis. The authors concentrate on analyzing the relationship be-
tween the number of users, colluding and non-colluding servers, and the desired privacy
guarantees. Although Glass-Vault [MAZW22] and Cheng et al. [CLK23] both aim at en-
abling privacy-preserving epidemiological data analysis, the two works do not reference
or compare each other.
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In this chapter, we conclude this thesis by summarizing our main results in Section 4.1.
We also look ahead to possible future research in Section 4.2, suggesting areas that can be
explored further based on the findings of this thesis.

4.1 Summary

This thesis focused on advancing the field of privacy-preserving data analysis to make it more
practical for real-world applications. We accomplished this through several key contributions
that address the three of the four challenges towards practical Privacy-Preserving Machine
Learning (PPML) discussed in Chapter 1 that are solvable with technical means: C1 (Effi-
ciency), C2 (Usability), and C3 (Interdisciplinarity). Firstly, we addressed challenges C2
and C3 with a comprehensive survey and systematization of the current state-of-the-art in
privacy-preserving clustering. Building upon these insights, we addressed C1, C2, and C3 with
our efficient and fully privacy-preserving density-based clustering protocol capable of produc-
ing high quality results for various clustering problems including trajectory clustering and
robust Federated Learning (FL) (cf. Chapter 2). Moreover, we introduced privacy-preserving
solutions for two highly relevant data analysis challenges on distributed data in the health
care domain for which we closely collaborated with computational biologists and a neurobi-
ologist (C3) (cf. Chapter 3). Both results offer optimized efficiency (C1) and open-source
implementations (C2). To conclude, our work identified and solved multiple open research
questions that impeded real-world usability: We significantly enhanced privacy guarantees
and efficiency in terms of communication and computation, addressed previously overlooked
pre- and post-processing tasks in distributed data settings, and provided guidance on selecting
and adapting secure computation protocols to suit specific application requirements. Our
results represent a significant step towards making privacy-preserving data analysis more
practical and applicable in diverse real-world scenarios.

Practical Clustering. In [HMSY21b], we conducted a thorough assessment of the state-
of-the-art secure computation protocols for privacy-preserving clustering. This involved
analyzing 59 publications and technical reports, evaluating aspects such as privacy guar-
antees, efficiency, participant scenarios, data partitioning, and clustering quality. We also
provided a guideline for selecting the most suitable private clustering protocol for specific
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applications without the need for in-depth cryptographic expertise. Based on our find-
ings, we identified three key areas for future research in the area of secure computation
protocols for privacy-preserving clustering: Additional secure protocols for state-of-the-art
plaintext clustering methods, for pre- and post-processing, and overall efficiency improve-
ment for communication, computation, and memory consumption. Our contributions lead to
better usability by Machine Learning (ML) practitioners (C2) and are based on the require-
ments of the ML community (C3).

Drawing from these insights, we then developed the first fully privacy-preserving and practical
Secure Multi-Party Computation (SMPC) protocol for Density-based Spatial Clustering of
Applications with Noise (DBSCAN) in [BCE+21], referred to as ppDBSCAN. This protocol
offers good clustering quality, as it can detect clusters of arbitrary shapes, handle outliers
effectively, and flexibly determine the number of clusters based on input data. Notably,
ppDBSCAN only requires two input parameters: The maximal distance between two input
records to be considered as neighbors and the minimal cluster size. Both can often be set
based on specific applications or approximated one of the data owners are jointly using an
SMPC protocol. This makes our protocol highly adaptable to a wide range of real-world
applications. Multiple optimizations lead to practical efficiency (C1) that can be verified with
our open-source implementation (C2). Additionally, we showcased the practical usability of
ppDBSCAN in a trajectory clustering use case (C3) and in a defense system in [NRC+22] that
safeguards against privacy attacks and manipulation attempts in the context of FL.

In summary, our research in the scope of this thesis significantly enhanced the state-of-the-art
in privacy-preserving clustering and the results mark an important step towards making
privacy-preserving clustering truly practical for real-world applications.

Health Care Applications. In [BHK+22], we proposed the SMPC protocol SPIKE addressing
the Kidney Exchange Problem (KEP) in close collaboration with computational biologists (C3).
It realizes the matching between donors and patients through weighted summation of six
compatibility scores. SPIKE’s open-source prototype implementation outperforms previous
privacy-preserving KEP protocols in computation, with gains of two to five orders of magnitude
in a LAN setting with cycle sizes of 2 or 3 (C1 + C2). The expanded compatibility evaluation
enhances the robustness of matchings, while improved efficiency enables its use in large
matching pools, potentially benefiting more patients in need of a donation (C2).

Additionally, we introduced the concept of privacy-preserving epidemiological modeling
in [GHJ+23] and defined its requirements in our RIPPLE framework. Furthermore, we
presented, implemented, and evaluated two specific open-source instantiations based on
Trusted Execution Environments (TEE) or Private Information Retrieval (PIR) (C2). With
our work on epidemiological modeling, we aim to contribute to the field of epidemiological
research by enabling access to recent contact information in a privacy-preserving manner
for more accurate simulations of infectious disease spread and the potential effects of inter-
ventions. Our work is the result of a collaboration with a neurobiologist of the Charité —
Universitätsmedizin Berlin (C3).
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4.2 Future Work

In the following, we outline directions for potential follow-up work for privacy-preserving
clustering in Section 4.2.1 and for health care data analyses in Section 4.2.2: We recommend
to realize additional clustering techniques with Homomorphic Encryption (HE) or SMPC,
adopting an end-to-end approach that encompasses pre- and post-processing steps alongside
the core clustering process, and focusing on developing solutions that are practical and
accessible for ML practitioners.

4.2.1 Real-World Privacy-Preserving Clustering

In Section 2.1.1, we already summarized the limitations of existing secure computation pro-
tocols for privacy-preserving clustering which we identified in our Systematization of Knowl-
edge (SoK) in [HMSY21b]. Here, we provide more details and introduce additional ideas.

Latest Advancements in Plaintext Clustering Research. Until now, privacy research has
adapted merely eight clustering algorithms into privacy-preserving versions. However, no
single clustering algorithm excels in all aspects, such as efficiency and clustering quality, across
various clustering problems. Furthermore, these algorithms vary in the input parameters they
demand, and determining suitable values when data is distributed among multiple owners
can be more challenging for one than the other. To address this, a broader range of plaintext
clustering algorithms should be transformed into privacy-preserving variants using HE or
SMPC, ensuring compatibility with diverse application needs.

In addition to designing plaintext clustering algorithms optimized for different clustering
challenges, the field of ML research has explored various aspects that have not yet received at-
tention in the cryptographic community. For instance, online/incremental clustering methods
have been developed to process streaming data or sequentially arriving data, enabling contin-
uous updates to the clustering model as new data points are received [CCFM97; BH06]. This
idea is highly relevant for secure computation-based clustering protocols, where efficiency is
crucial. Moreover, multi-view clustering deals with datasets that have multiple representations
or “views” of the same underlying data, combining information from these views to produce a
more accurate and robust clustering result [CLL+22]. Similarly, multi-modal clustering [BJ07]
involves clustering data from different modalities, such as text, images, and numerical data,
which aligns well with the concept of distributed data in the context of private clustering.
These examples demonstrate the need for interdisciplinary efforts with ML researchers to
identify the required privacy-preserving solutions for different real-world clustering problems
and settings, and to prioritize privacy, efficiency, and quality requirements accordingly.
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Pre- and Post-processing. Pre- and post-processing are essential steps in the clustering pro-
cess that aim to enhance the quality and effectiveness of the clustering results. Pre-processing
involves various data preparation tasks, such as data cleaning, normalization, and feature
selection, to ensure the data is suitable for clustering algorithms. It also includes the selection
of an appropriate clustering algorithm and determining the values for its input parameters.

On the other hand, post-processing focuses on refining the clustering output to improve its
overall quality. This can involve handling noise, merging small clusters to avoid overfitting,
or improving cluster boundaries for better interpretability. Additionally, a crucial aspect of
post-processing is evaluating the clustering quality, which can be challenging in unsupervised
settings without labeled data. In such cases, internal clustering quality measures are often
employed, which assess the similarity of elements assigned to the same cluster and the
separateness of different clusters.

In the context of privacy-preserving clustering, addressing these pre- and post-processing
steps becomes even more complex due to the constraints imposed by distributed/privately
held data. Most of the aforementioned aspects have never been considered in the existing
private clustering literature. Instead, the existing secure clustering protocols focus only on the
core clustering process. Hence, they are mostly not yet ready to be deployed for real-world
applications due to the missing steps. Therefore, privacy research should take an end-to-end
perspective, considering the whole life-cycle of a clustering process when designing secure
protocols, to ensure the obtained clusters are meaningful, interpretable, and of high quality
for the specific application’s requirements.

Comparability and Usability. In the future, ML practitioners are likely to decide upon the
adoption of privacy-preserving clustering, making it essential to ensure maximum usability.
This involves several crucial aspects: Firstly, the secure computation protocols should be easily
comparable, e.g., based on the seven key factors identified in our SoK in [HMSY21b] (cf. Sec-
tion 2.1.1), which include the used secure computation technique, the security model, the
participant scenario, privacy guarantees, data partitioning, efficiency, and the plaintext cluster-
ing algorithm. Secondly, protocols must be user-friendly and adaptable to specific application
requirements without requiring cryptographic expertise. Thirdly, while the cryptographic
community often aims at improving communication and computation overhead, our research
highlights that memory consumption can also become a bottleneck. Therefore, future private
clustering protocols should consider memory optimization as well. All aforementioned factors
emphasize the importance of open-source implementations and standardized benchmarks to
facilitate and accelerate the adoption of privacy-preserving clustering solutions in practice.

4.2.2 PETs for Medical Data Analyses

In this section, we outline potential directions for future research in both secure protocols for
the KEP and privacy-preserving epidemiological modeling. Moreover, we also highlight gen-
eral avenues for future work on privacy-preserving data analyses in the health care domain.
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Stronger Security Models. Until now, our SPIKE protocol [BHK+22] and related works
have focused on the semi-honest security model, assuming adversaries honestly follow the
protocol while attempting to gain additional information. While this may suffice for many
scenarios, such as joint computation among generally trusted large, intra-national, or intra-
European medical institutions that cannot centralize data due to legal requirements, there
are situations that demand stronger security models. An example could be computations
involving health care data of EU citizens across different jurisdictions [Eur21]. Brüggemann
et al. [BBK+22] and Breuer et al. [BMW23]’s works implemented their secure computation
protocols with replicated secret sharing by Araki et al. [AFL+16] within the MP-SPDZ frame-
work [Kel20]. As MP-SPDZ also implements multiple maliciously secure SMPC techniques,
these existing implementations can be readily adapted to the malicious security model with
minimal implementation overhead. While SPIKE’s protocol is agnostic to the underlying
SMPC technique, a full re-implementation would be required to achieve malicious security
since the ABY framework [DSZ15] used in our work provides only semi-honest security. How-
ever, implementing the existing protocols as they are straightforwardly with a maliciously
secure SMPC techniques might result in sub-optimal efficiency. Similarly, our instantiations
of RIPPLE [GHJ+23] did not account for potential manipulations by clients, which may
be crucial when running simulations on a country scale with millions of users. Therefore,
we advocate for further research efforts to design efficient solutions with stronger security
guarantees for both applications.

KEP Optimization Goal, Approximation Effect, and Extended Functionalities. To address
the KEP, two previous works by Breuer et al. [BMWM20; BMW22] focused on maximizing the
number of kidney transplants. SPIKE [BHK+22] and the recent work by Breuer et al. [BMW23]
introduced additional compatibility evaluation criteria to enhance the expected medical
robustness of the output exchange cycles. SPIKE achieves this by maximizing the weighted
sum of the criteria, allowing medical experts to fine-tune the weights accordingly. However,
there are numerous other aspects that could be integrated into the optimization process.
For example, Biró et al. [BVM+21] highlighted that many European countries prioritize the
number of transplants in their kidney exchange programs as the primary optimization goal.
Additionally, they also use criteria such as the minimal length of selected exchange cycles or
waiting time of patients in need for donation as supplementary objectives or constraints in
living donation kidney exchange programs.

Going beyond the combination of multiple optimization goals, there also are national
differences in allowed or preferred exchange cycle sizes, policies regarding altruistic do-
nations (donors without a patient in need), or rules about multiple (half-)compatible
donors registering for one patient [BVM+21]. Advanced privacy-preserving approaches
can be designed to incorporate these various optimization goals and tailor the protocols to
meet specific national requirements, including the development of interfaces to facilitate
interactions across national borders.
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Collaborations with Medical and Legal Experts. In this paragraph, we touch upon a general
aspect for privacy-preserving data analysis in health care domain, but also in other fields.
Medical research plays a crucial role in society, with significant potential for advancements
through data analysis and machine learning. Utilizing these tools can lead to valuable insights
in diagnostics and treatments, ultimately improving patient outcomes. However, strict privacy
regulations pose challenges by imposing stringent requirements to protect patients’ personal
information. While these regulations are essential for safeguarding patient privacy, they can
limit the size and diversity of datasets available for medical research. Finding a balance
between protecting patient privacy and enabling valuable medical research is therefore critical.
Privacy-Enhancing Technologies (PETs) can offer promising solutions to address this issue as
they allow to analyze and derive insights from distributed/private medical datasets while
preserving patient privacy. But only with a collaborative approach it is possible to create
actually useful systems: Firstly, joined efforts can effectively identify the most relevant and
urgent medical use cases where privacy requirements currently hinder the optimal usage of
available distributed medical data. Secondly, leveraging the combined expertise fosters the
creation of tailored systems that offer provably secure privacy guarantees and, importantly,
incorporate practical requirements based on the input of medical experts. This ensures that
the resulting systems are usable and useful for the medical experts who will be utilizing the
systems for their work and research at the end.

Secure computation techniques present a promising solution to preserve privacy while en-
abling data analysis, but they have not yet been explicitly addressed by legislation [HR22],
cf. challenge C4 in Chapter 1. As a result, their deployment in health care data analysis
currently faces legal uncertainties. To support the practical usage of new privacy-preserving
technologies like secure computation, legislation should provide certifications and guidelines
that define their legal requirements and ensure their lawful implementation in health care
and other domains [HR22].

4.2.3 Recent Results in SMPC Research

In the last years, the field of SMPC has seen multiple fundamental improvements affect-
ing the design of hybrid SMPC protocols. For example, function-dependent preprocessing,
as in [CCPS19; PSSY21; BHS+23], offers efficiency benefits if all preprocessing is linked
to a specific functionality. Similarly, Silent OT Extension [BCG+19] significantly reduces
communication cost of Oblivious Transfers [ALSZ17] a cryptographic primitive used in
many SMPC techniques [DSZ15]. Those advancements have an effect on how to design
efficient hybrid protocols mixing those SMPC techniques. The Secure Two-Party Computa-
tion (2PC) framework ABY [DSZ15] that we use for ppDBSCAN (cf. Section 2.1.2), FLAME
(cf. Section 2.1.3), and SPIKE (cf. Section 3.1.1) does not implement those latest develop-
ments. Thus, the efficiency of our protocols can be further optimized by accounting for those
recent results in their design.
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SoK: Efficient Privacy-preserving Clustering
Abstract: Clustering is a popular unsupervised machine
learning technique that groups similar input elements
into clusters. It is used in many areas ranging from busi-
ness analysis to health care. In many of these applica-
tions, sensitive information is clustered that should not
be leaked. Moreover, nowadays it is often required to
combine data from multiple sources to increase the qual-
ity of the analysis as well as to outsource complex com-
putation to powerful cloud servers. This calls for efficient
privacy-preserving clustering. In this work, we systemat-
ically analyze the state-of-the-art in privacy-preserving
clustering. We implement and benchmark today’s four
most efficient fully private clustering protocols by Cheon
et al. (SAC’19), Meng et al. (ArXiv’19), Mohassel et
al. (PETS’20), and Bozdemir et al. (ASIACCS’21) with
respect to communication, computation, and clustering
quality. We compare them, assess their limitations for
a practical use in real-world applications, and conclude
with open challenges.
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1 Introduction
In today’s world, machine learning (ML) algorithms are
widely used to categorize and classify large amounts of
data. Applications range from spam filtering over fraud
detection, stock market analysis to health diagnostic [1–
4]. Moreover, many large IT companies, including Mi-
crosoft, Facebook, Google, and Apple, collect massive
amounts of data to perform analyses for their commer-
cial benefit [5]. Clustering is a popular unsupervised
learning technique and plays a crucial role in data pro-
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cessing and analysis. It divides a set of given input data
into subgroups of elements with similar properties.

Cluster analysis is being utilized in various fields
with extremely sensitive data such as medical imag-
ing [4] and market research [6], to name a few. More-
over, data protection regulations such as the General
Data Protection Regulation (GDPR) in the EU and
the Health Insurance Portability and Accountability Act
(HIPAA) in the US prohibit companies from sharing
sensitive user information. Nevertheless, combining data
from different sources, e.g., different hospitals, broadens
the database and offers more meaningful, credible, and
high-quality clustering results. Additionally, it is often
needed to outsource the expensive clustering of large
amounts of data to powerful cloud servers. These re-
quirements emphasize the need for privacy-preserving
clustering to preserve the privacy of data.

Consequently, a series of efforts have been made
to protect the privacy of sensitive input data in clus-
tering through two paradigms for secure computation
that can also be combined. The first paradigm lever-
ages homomorphic encryption (HE) [7–9]. HE allows
to directly compute functions on encrypted data. The
second paradigm uses secure multi-party computation
(MPC) [10, 11]. MPC allows mutually distrusting par-
ties to collaboratively compute a joint function over
their respective private data. However, these works only
cover a few clustering algorithms so far: K-means, K-
medoid, Mean-shift, Gaussian Mixture Models Cluster-
ing (GMM), Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN), hierarchical clustering
(HC), Affinity Propagation, and Mean-shift. Moreover,
we found that only ten works (cf. Tab. 1) provide full
privacy protection according to the ideal functionality
for privacy-preserving clustering, i.e., they leak nothing
beyond the output (cf. §3.1).

Even revealing little and at the first glance minor
information during the clustering can have severe conse-
quences for the data privacy of individuals. For example,
when using clustering for the segmentation of medical
images [4] between two hospitals, revealing the cluster
sizes and assignments in each clustering iteration leaks
information about how many patients with similar char-
acteristics are input by the other party even before the
clustering stabilizes and a final result is reached. Unin-
tended common characteristics between patients might



SoK: Efficient Privacy-preserving Clustering 226

Algorithm Paper PETs Scenario Data Output Efficiency

K-means [12, CCS’07] HE+ASS 2PC a final centroids 7†

[13, CIC’15] HE Outsourcing, 2 Servers h final centroids 7†

[14, SAC’18] HE Outsourcing, 1 Server − final centroids 7?

[15, CLOUD’18] HE Outsourcing, 2 Servers − cluster sizes 7†

MPC-KMeans [11, PETS’20] GC Outsourcing, 2 Servers or 2PC h final centroids 3

Mean-shift HE-Meanshift [9, SAC’19] HE Outsourcing, 1 Server − final centroids 3

Affinity Propagation [16, SECRYPT’21] ASS Outsourcing or MPC a final clusters 7‡

DBSCAN [17, S&P’13] GC 2PC h cluster labels, centroids/size possible 7¶

ppDBSCAN [18, ASIACCS’21] GC+ASS Outsourcing, 2 Servers or 2PC a cluster labels, centroids/size possible 3

Hierachical Clustering PCA/OPT [19, ArXiv’19] HE+GC 2PC h final dendogram 3

† Computationally expensive due to use of Paillier’s HE and no parallelization.
? Costly computation due to use of bit-wise encryption. MPC-KMeans [11] outperforms this scheme by 5000× for 400 data records.
‡ [18] is 194× faster than this scheme for 400 data records.
¶ [18] is 5× faster than this scheme for a dataset size of 500 data records.
Table 1. Fully privacy-preserving clustering protocols (cf. §3.1). HE is homomorphic encryption [7], ASS is arithmetic secret shar-
ing [20], and GC is garbled circuits [21]. v indicates vertically partitioned data, i.e., the data owners hold the values for a subset of
parameters from all data records. h indicates horizontally partitioned data, where the data owners hold complete data records with all
parameters, a is arbitrarily partitioned data, and “ − ” indicates the scheme has only one data owner. Schemes that were implemented
and benchmarked in §4 are highlighted in gray.

be leaked even though they are only temporarily as-
signed to one cluster (due to these characteristics which
would not have been revealed in the final result). An
even more severe privacy breach is demonstrated in [22]
where leaking the results of comparison of distances be-
tween data records and a threshold can enable to ac-
curately approximate the original data record held by
another party. With this, complete patient records could
be extracted when clustering medical data. To summa-
rize, it is difficult to concretely determine the effects
of leaking intermediate information in advance for all
possible constellations. Hence, privacy research should
focus on designing efficient private clustering protocols
that do not leak anything beyond what can be inferred
from the output, i.e., provide full privacy.
Related Work. Privacy-preserving machine learning
(PPML) is a hot topic in recent privacy research [23–26].
To provide a better overview over the exploding research
field, several surveys have been done. Haralampieva et
al. [27] survey existing frameworks in the context of pri-
vate image classification. An overview about frameworks
for private neural network inference is given in [28]. Pro-
tocols used for private machine learning training are
investigated in [29]. Similarily, Tanuwidjaja et al. [30]
summarize existing works on privacy-preserving deep
learning and issues when using these schemes as well as
possible attacks on private deep learning. Kiss et al. [31]
systematically review the state-of-the-art approaches to
private decision tree evaluation.

All previous surveys focus on privacy-preserving su-
pervised learning where a training dataset with labelled
samples (i.e., known input-output pairs) is used to train
a model that can later be used to classify new data

records. In contrast, our survey focuses on clustering, a
popular unsupervised machine learning (ML) technique,
which detects unknown patterns in unlabelled data so
no “training” of a model is needed. In our work, we sys-
tematically survey and evaluate the state-of-the-art in
private clustering using secure computation techniques.

An orthogonal line of research uses differential pri-
vacy (DP) to protect privacy-preserving machine learn-
ing (PPML), including clustering [32–37], against infor-
mation leakage. Abadi et al. [38] and Shokri et al. [39]
provide comprehensive surveys on differentially private
deep learning. Generally, the noise added to achieve DP
reduces utility whereas secure computation has higher
complexity. Hence, DP-based and secure computation-
based protocols are not directly comparable and we
leave a survey on DP-based clustering for future work.
Our Contributions and Outline. After presenting
the preliminaries of privacy-preserving clustering in §2,
our Systematization of Knowledge (SoK) paper provides
the following core contributions:
− The first comprehensive review and analysis of exist-
ing techniques and protocols used for privacy-preserving
clustering with respect to security models, privacy limi-
tations, efficiency, and further aspects. We also provide
guidelines on how to choose an appropriate privacy-
preserving clustering scheme for a specific applica-
tion (§3).
− An empirical evaluation of the four most efficient and
fully private clustering schemes [9, 11, 18, 19], cf. Tab. 1,
on a range of criteria, including clustering quality, se-
curity and privacy, and runtime/communication over-
head (§4). Based on these insights, we provide an analy-
sis of the practicality of the four protocols for real-world
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applications based on our results from the benchmark-
ing (§5).
− An implementation of the clustering protocol of [9]
and [19] in C++17. Implementations of the remaining
two protocols that we also evaluate [11, 18] are publicly
available. Our code is available at https://encrypto.de/
code/SoK_ppClustering.

2 Preliminaries

2.1 Clustering

Clustering is a well-known unsupervised machine learn-
ing (ML) technique, i.e., it deals with detecting un-
known patterns in unlabeled data. Concretely, it groups
similar input records (internal homogeneity) in clusters
while records belonging to different clusters should be
maximally different (external separation) [40–42].

Clustering consists of four components: feature se-
lection/normalization, a proximity measure to deter-
mine similarity/dissimilarity, the clustering algorithm,
and the output assessment [41, 42]. However, most prior
works on privacy-preserving clustering mainly focus on
a specific clustering algorithm. For example, the proxim-
ity measure is typically chosen to enable efficient com-
putation using cryptographic techniques [14, 19]. Fur-
thermore, mostly continuous values are considered while
clustering can generally be applied to any kind of vari-
able (i.e., also discrete or nominal values) [42].

Clustering algorithms can be split in two classes:
hard and soft (fuzzy) clustering. In hard clustering, each
input data record is assigned to exactly one cluster. In
soft clustering, data records can be assigned to several
clusters with a certain probability. All works on privacy-
preserving clustering that we investigated in this work
except from [43] have only tackled hard clustering.

Properties of Good Clustering. Records are as-
signed to the same cluster given they are similar. How-
ever, (dis)similarity heavily depends on the chosen prox-
imity measure. Additionally, clustering algorithms were
designed having specific problems in mind such that
they exhibit biases that affect their performance when
the assumed conditions are not fulfilled. Therefore, ac-
cording to Xu and Wunsch [41], no clustering algorithm
is universally superior and a good clustering algorithm
should be able to cope with: 1) arbitrarily shaped clus-
ters, 2) large datasets, 3) updates with new records
without having to cluster old records again, 4) numeri-
cal (i.e., discrete and continuous) and nominal variables,

(a) (b) (c) (d) (e) (f) (g) (h)

1) Cluster Shapes − − ◦ + + − − −
2) Large Datasets ◦ − − − − − + ◦
3) Update Input Data + − − ◦ + + + +
4) Nominal Variables − + + − + + − −
5) Outliers − + ◦ − + ◦ + ◦
6) Input Order + + + + ◦ + − +
7) Storage + − − + + − + +
8) # Parameters − ◦ − ◦ ◦ − ◦ −
Full privacy 3 3 3 3 3 7 7 7

Table 2. Comparison of clustering algorithms with respect to
the aspects explained in §2.1: (a) K-means, (b) Affinity Prop-
agation, (c) Single/Complete Linkage HC, (d) Mean-shift, (e)
DBSCAN, (f) K-medoid, (g) BIRCH, and (h) GMM. + denotes
that the clustering algorithm performs well with respect to the
indicated aspect, ◦ denotes an average performance, and − in-
dicates that it has some weaknesses. 3 indicates that a fully
privacy-preserving clustering protocol is available and 7 that it
is not available yet.

and 5) outliers. Furthermore, it should: 6) be insensitive
to the order of input records, 7) provide acceptable stor-
age requirements, and 8) minimize the number of input
parameters. Finally, it should also be able to handle 9)
high-dimensional data records.

Clustering Algorithms

In the context of privacy-preserving cluster-
ing, four different types of clustering have been
studied so far: partitioning-based [8, 11, 14, 16],
distribution-based [44, 45], density-based [18, 46, 47],
and hierarchical clustering [19, 48–50]. In the following,
we summarize these four clustering types and com-
pare the respective algorithms w.r.t. the properties
listed before in §2.1. Due to space limitations, we only
provide the details of this evaluation for the three al-
gorithms [51–53] for which fully private protocols were
proposed (cf. §3.2) and that we benchmark in §4. De-
tails of the other algorithms are given in Appx. A.
Partitioning-based Clustering. Partitioning-based clus-
tering splits the input into K non-overlapping clusters.
Typically, an initial random partition is iteratively im-
proved given an objective function [54].

A well-known example is K-means [51]. It has a com-
putational complexity of O(NKt) and a space complex-
ity of O(N) [40] for dataset size N , K clusters, and t

clustering iterations. Furthermore, K-means can only
cluster convexly-shaped clusters, cannot to appropri-
ately handle outliers, and requires to pre-determine the
number of clusters K [40]. If the initial partitioning,
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i.e., the centroid initialization, is done at random, K-
means is not deterministic. It may converge to a local
optimum [55]. The input order does not affect the clus-
tering result. As the centroids are determined by averag-
ing, K-means is not suitable for nominal variables [56].
New data records typically require only a few additional
clustering iterations because they normally do not sig-
nificantly change the result. Other partitioning-based
clustering algorithms that were investigated in the con-
text of privacy-preserving clustering are the closely re-
lated K-medoids [57], Kernel K-means [58], Possibilistic
C-means [43], as well as Affinity Propagation [16].
Hierarchical Clustering. Hierarchical Clustering (HC)
algorithms can be classified into agglomerative and divi-
sive approaches. In agglomerative algorithms, each data
record forms an own cluster in the beginning and the
clusters are then iteratively merged together based on
their proximity. Divisive algorithms follow the oppo-
site approach and start with all elements in one cluster
which is then iteratively split up [52, p. 71-72]. HC al-
gorithms output a binary tree/dendrogram1 where each
leaf represents a record and nodes indicate a merge of
two similar clusters into one. The root combines all
records into a single cluster [40].

As divisive HC exhibits an immense overhead for ex-
amining the optimal splits (2N−1 − 1 possibilities [40],
where N is the dataset size), mostly agglomerative al-
gorithms have been observed in practice. Traditionally,
three merging methods were used: (1) single, (2) com-
plete, and (3) average linkage. Single linkage merges
the two clusters with the closest two elements, com-
plete linkage merges the two clusters whose maximally
distant pair of elements are closest among all pairs of
clusters, and average linkage merges the two clusters
that have the smallest average of all pairwise distances
of their elements [52, p. 76-77] [59].

Naive HC has computation complexity O(N3) and
space complexity O(N2) [42]. Some HC-based algo-
rithms (e.g., single linkage) cannot detect some clus-
ter shapes. They do not incorporate a notion of noise,
but are relatively insensentive to outliers. HC requires
to pre-determine the number of clusters K that are ob-
tained by cutting the tree at the respective level [40]. HC
needs a restructuring of the tree if new data records are
added after the first clustering. Nevertheless, HC can
handle any type of variable and the input order does
not affect the result.

1 A dendogram is a graph representing a tree structure.

Density-based Clustering. These algorithms use a
density-based neighborhood notion such that input
records that lay together in a dense area form a clus-
ter. Examples are Mean-shift [53] and DBSCAN [60].
Mean-shift has time complexity O(N2t), where N is the
dataset size and t is the number of iterations, which
makes it inefficient for large datasets. It can handle
any cluster shape and flexibly determine the number
of clusters K based on the input data. Additionally, the
input order does not affect the results. However, the
value of the bandwidth h in the Kernel Density Esti-
mator (KDE) used in Mean-shift can significantly af-
fect its performance. A too large h merges distinct clus-
ters while a too small h splits one cluster into multiple
smaller groups. The performance also deteriorates for
high dimensional data due to the “curse of dimension-
ality” in the KDE. Similarly, noisy features can hamper
the performance [61]. Mean-shift does not incorporate a
notion of noise. An update with new records can change
the KDE and the local maximas, thus requiring a re-
run of the entire algorithm. However, in practice, the
new points can be assigned to the cluster containing
the nearest mode if the change in the KDE is not sig-
nificant.

Density-Based Spatial Clustering of Applications
with Noise (DBSCAN [62]) specifically recognizes noisy
elements and marks them as outliers. It detects arbitrar-
ily shaped clusters and flexibly determines the number
of clusters in a dataset based on two input parameters,
namely the minimal cluster size and the maximal dis-
tance between two clusters. Especially the second pa-
rameter can be difficult to determine and DBSCAN can-
not correctly handle clusters with significantly different
densities [63]. Generally, if appropriate distance mea-
sures are chosen, any type of parameter can be clustered.
Moreover, the input order does only affect the clustering
result in exceptional cases where border elements lay in
the range of more than one cluster. If additional data
records shall be clustered after a first clustering was fin-
ished, their neighbors have to be determined to assess if
they can be added to previously created clusters. Oth-
erwise, they may create a new cluster with other out-
liers, but no completely new clustering is needed. Naive
DBSCAN needs O(N) memory and has computation
complexity O(N2) [62, 63].
Distribution-based Clustering. Distribution-based clus-
tering algorithms assume that clusters are drawn from
an unknown mixture of distributions and aim at ap-
proximating the original distributions (i.e., the type and
parameters) as well as the number of different distri-
butions (i.e., the number of clusters) [41, 42]. A well-
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known example for distribution-based clustering algo-
rithms are Gaussian Mixture Models (GMM) using the
Expectation-Maximization (EM) algorithm [64].
Comparison of Clustering Algorithms. Modifica-
tions proposed for the clustering algorithms to fix some
weaknesses of the original often introduce other prob-
lems. Therefore, it is difficult to evaluate them with re-
spect to the general requirements for clustering algo-
rithms (cf. §2.1).

In Tab. 2, we compare the eight baseline clustering
algorithms for which privacy-preserving protocols have
been proposed with respect to the properties of good
clustering algorithms listed in §2.1. We did not include
the effect of property 9), i.e., high dimensionality, be-
cause it is often not directly linked to the clustering
algorithm. Instead, a large number of variables often
requires using feature reduction techniques.

2.2 Cryptographic Building Blocks

In the following, we summarize secure computation
techniques and respective security models.
Secure Computation. There are two main paradigms
for secure computation: Homomorphic encryption (HE)
and multi-party computation (MPC). HE [7, 65, 66]
enables operations on a set of ciphertexts such that
the resulting ciphertext contains the result of a func-
tion on the corresponding plaintexts. MPC allows two
or more mutually distrusting parties to jointly com-
pute a function on their private inputs. Two well-known
generic approaches for MPC are based on garbled cir-
cuits (GC) [21] and secret-sharing (SS) [20, 67]. As
an example for a SS-based technique, the GMW pro-
tocol [20] represents a function as Boolean/Arithmetic
circuit and the values are secret-shared using XOR or
Arithmetic secret sharing (ASS). Another type of SS is
Shamir’s secret sharing (SSS) [67].
Security Models. Two main security models have
been considered in privacy-preserving clustering: In the
semi-honest/passive security model, the adversary [68]
is assumed to honestly follow the protocol, but tries to
learn additional information about the private inputs
of other parties. Though this model is weaker than the
malicious model, that even protects against deviations
from the protocol specification, it facilitates practically-
efficient applications especially for privacy-preserving
machine learning (PPML) [69]. Full threshold security
means that up to N−1 parties can collude without jeop-
ardising privacy while honest majority security requires
the majority of the parties to not collude.

3 Privacy-preserving Clustering
In this section, we first define privacy-preserving clus-
tering. Then, we categorize and analyse the exist-
ing privacy-preserving clustering protocols to conclude
which protocols offer good efficiency with strong privacy
guarantees. Afterwards, we discuss possible applications
and provide indications on how to choose appropriate
privacy-preserving clustering schemes for these.

3.1 Functionality and Requirements

In an ideal world with a trusted third party (TTP),
all involved parties send their input data to the TTP.
The TTP then performs the clustering and returns the
output to the parties. The output can vary depending on
the application requirements and clustering algorithm.
For example, the output can be the cluster centroids or
it can be the cluster label for each data record.

We identified the following requirements for privacy-
preserving clustering:
Privacy. According to the ideal functionality a privacy-
preserving clustering protocol must not leak information
other than what can be derived from the output of the
protocol to be considered as fully privacy-preserving.
Importantly, this includes that all operations must be
obliviously realized and all intermediate results must be
kept private.
Efficiency. A privacy-preserving clustering scheme must
be efficient in terms of communication and runtime.
This means that it must scale well with respect to the
dataset size N , the number of clusters K, and the di-
mensionality d of the input records.
Clustering Quality: A privacy-preserving clustering
scheme must offer a good clustering quality of the re-
sults independent of a dataset’s properties. Specifically,
the requirements of good clustering listed in §2.1 should
be fulfilled.
Flexibility. A privacy-preserving clustering scheme
should ideally be flexibly usable for outsourcing [70] and
multi-party computation. In an outsourcing scenario,
one or multiple data owners outsource their data and
the computation to untrusted non-colluding parties [70].
Here, the data owners can even be malicious (cf. §2.2).
In multi-party computation, several parties interactively
compute the clustering on their joint dataset.
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3.2 Existing Private Clustering Protocols

In this subsection, we categorize the existing works on
privacy-preserving clustering with respect to the un-
derlying plaintext clustering algorithm, security model,
scenarios for which protocols where designed, data dis-
tributions, used secure computation techniques as well
as privacy and efficiency (cf. §3.1). We discuss the
strengths and weaknesses of these schemes with respect
to these criteria. Tab. 3 contains on overview of all
59 works on privacy-preserving clustering with secure
computation techniques that we are currently aware of.
It indicates the respective security model, used secure
computation techniques, common types of leakages of
intermediate values, the type of output, which and how
many parties are involved in the protocol, the data par-
tition, and other issues.
Plaintext Clustering Algorithms. Eight clustering
algorithms have been investigated in the context of
privacy-preserving clustering: K-means (including the
two variants Kernel K-means [58] and Possibilistic C-
means [43]), K-medoids [57, 71], GMM [44, 45], Mean-
shift [9], DBSCAN [22, 46, 47, 72–76], baseline agglom-
erative HC (e.g., single linkage or complete linkage) [19,
48–50, 77, 78], BIRCH [79, 80], and Affinity Propaga-
tion [16, 81]. The vast majority of works focuses on the
simple K-means algorithm [8, 11–15, 82–106], which en-
ables an efficient parallelization of computation through
packing with homomorphic encryption [8, 88, 95] or
amortization through batched oblivious transfers [11].
However, as discussed in §2.1, K-means can be used
only for very specific applications where the number
of clusters is known in advance and the clusters are
convexly shaped. We gave an overview of the strengths
and weaknesses of these plaintext clustering algorithms
in Tab. 2. Generally, the choice of the plaintext clus-
tering algorithm heavily affects the quality of the clus-
tering result. Some works on privacy-preserving cluster-
ing exactly reproduce the original algorithms and hence
achieve the same accuracy, e.g., [19, 44, 45, 82]. Oth-
ers deviate from the original algorithms such as when
updating the centroids in K-means due to, e.g., normal-
ization/quantization/specific encodings of the plaintext
space [8, 9, 14, 22, 88, 95], adaptations of the original
algorithm [14], or approximations [14, 43] which either
enhance efficiency or are needed because of the under-
lying secure computation techniques.
Security Models. All works except for [16, 96, 105]
consider only the semi-honest security model (cf. §2.2).
A few even do not explicitly define their security
model [43, 48, 57, 58, 71, 100, 108]. The semi-honest

security model assumes that the adversary correctly fol-
lows the protocol while trying to gain additional infor-
mation. However, this strong assumption is not always
realistic. Concretely, the use of protocols that are se-
cure against semi-honest adversaries is only acceptable
in specific applications where the participants already
generally trust each other but are legally not allowed to
share data, e.g., hospitals conducting medical analysis
or central banks for financial analytics on country-level.
We discuss the requirements and implications of appli-
cations on the choice of a privacy-preserving clustering
scheme in more detail in §3.3.
Scenarios. Generally, privacy-preserving clustering
protocols have been designed for two scenarios: Firstly,
multi-party computation (MPC, [16, 44–46, 50, 57, 71,
72, 74–76, 82, 85, 87, 89, 91, 94, 96, 99–101, 103]) with
the special case of two-party computation (2PC, [11–
13, 19, 22, 48, 49, 73, 74, 77–80, 83, 84, 86, 93]), where
two or more data owners jointly perform a secure com-
putation protocol ideally such that nothing beyond the
output is leaked to each other (cf. §3.1). Some of these
protocols [50, 75, 76, 88, 95, 100, 103] also involve one
or more additional (semi-trusted) entities, e.g., repre-
sented by servers, that assist in the computation. In
contrast, other protocols were designed for the out-
sourcing scenario where one or more data owners out-
source computation (and storage) to external parties
who ideally perform the clustering for them without
learning anything about the input data [8, 9, 14, 15,
43, 47, 58, 90, 92, 97, 98, 102, 104–106, 108]. As out-
sourcing aims at using external resources, data owners
should not be involved in the execution of the proto-
col and can go offline, but this is often not fulfilled, e.g.,
in [43, 47, 97, 98, 104, 105, 108]. Some MPC/2PC proto-
cols can also be used for an outsourcing scenario where
the data owners secret share their data among multi-
ple non-colluding parties who then perform the cluster-
ing [8, 11, 105]. However, whether a 2PC/MPC cluster-
ing protocol is usable for outsourcing heavily depends
on its design. This is hindered if data owners are actively
involved by computing on plaintext input data, e.g.,
[22, 44–46, 48, 49, 72–75, 82, 88], or a data owner needs
to perform intermediate decryptions, e.g., [86, 91, 95].
Data Partition. The data to be clustered in a pri-
vate manner can be partitioned in three ways when pro-
vided by multiple parties. It is horizontally partitioned
when each data owner holds complete (but different)
data records [9, 13, 44, 45, 47, 49, 50, 73, 75, 77, 78, 84–
86, 91, 92, 94–96, 98, 99, 101–103, 105, 106, 108]. The
data is vertically partitioned when data owners hold mu-
tually different parameters of the same data records [44,
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Algorithm Scheme Privacy Security PETs L1 L2 L3 L4 O1 O2 O3 Interactivity (Scenario) Data Other issues

K-means

[82, KDD’03] 7 HE+blinding (7)1 7 7 7 7 3 7 all data owners (≥ 3) v

[83, KDD’05] 7 HE+ASS+GC 3 3 7 7 3 3 7 2PC a wrong division
[84, ESORICS’05] 7 HE or OPE 7 3 3 7 7 3 7 2PC h

[12, CCS’07] 3 HE+ASS 3 3 3 7 7 3 7 2PC a

[85, SECRYPT’07] 7 blinding 7 3 7 7 3 3 7 all data owners v/h
[86, AINAW’07] 7 HE+ASS+OPE 3 7 7 7 3 3 7 2PC h

[87, PAIS’08] 7 ASS 3 3 7 7 3 3 7 all data owners (≥ 4) v

[88, WIFS’09] 7 HE 7 3 7 3 3 7 7 data owners + 1 server h

[89, KAIS’10] 7 HE+ASS 3 3 7 7 3 7 7 all data owners h

[90, PAISI’10] 7 SS 3 7 7 7 3 3 7 Outsourcing ≥ 3 servers a

[91, ISPA’10] 7 HE 3 3 7 7 7 3 7 all data owners v/h
[92, WIFS’11] 7 HE+GC 3 7 3 3 3 7 7 Outsourcing, 3 servers h

[93, ISI’11] 7 HE+ASS (7)1 7 7 7 3 7 7 2PC v

[94, TM’12] 7 SSS 7 7 3 7 7 3 7 all data owners h distance calculation unclear
[95, JIS’13] 7 HE 7 3 3 7 3 7 7 data owners + 2 servers h

[96, ICDCIT’13] 7 SSS+ZKP 7 7 3 7 7 3 7 all data owners h

[97, ASIACCS’14] 7 HE 7 7 7 7 3 3 7 outsourcing, 1 data owner + 1 server − insecure HE [107]
[98, MSN’15] 7 HE 7 7 7 3 7 7 7 outsourcing, data owners + 1 server h insecure HE [107]
[99, IJNS’15] 7 HE 7 7 7 7 7 3 7 all data owners h

[13, CIC’15] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers h

[100, ICACCI’16] 7 N/A SS 7 7 7 7 3 7 7 arbitrary number of servers a

[101, ISPA’16] 7 blinding 7 7 7 3 7 3 7 all data owners (≥ 3) h

[102, SecComm’17] 7 HE 3 7 7 3 7 3 7 outsourcing, ≥ 4 servers h

[103, TII’17] 7 HE 7 7 7 7 7 7 7 data owners + 1 server h

[14, SAC’18] 3 HE 3 3 3 3 7 3 7 Outsourcing, 1 server −
[15, CLOUD’18] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers − distance calculation unclear
[108, CCPE’19] 7 N/A HE 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h insecure HE [107]
[104, TCC’19] 7 HE 3 7 7 3 3 7 7 Outsourcing, 1 data owner +≥ 1server(s) −
[105, Inf. Sci.’20] 7 ( )2 HE+GC 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h

[106, SCN’20] 7 HE+SKC 3 7 7 3 7 3 7 Outsourcing, 3 servers h

[11, PETS’20] 3 GC 3 3 3 7 7 3 7 2PC/Outsourcing h

[8, TKDE’20] 7 HE 3 73 3 7 7 3 7 Outsourcing, 2 servers a

Kernel K-means [58, KAIS’16] 7 N/A PKC 3 7 7 7 3 7 7 Outsourcing, 1 server − security model
Possibilistic C-means [43, TBD’17] 7 N/A HE 7 7 7 7 3 3 7 Outsourcing, 1 data owner + 1 server −

K-medoids [57, SMC’07] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search
[71, CCSEIT’12] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search

GMM [45, KAIS’05] 7 blinding 3 3 7 7 3 7 7 all data owners h

[44, DCAI’19] 7 ASS 3 3 7 7 3 7 7 all data owners (> 2) v/h
Affinity Propagation [81, INCoS’12] 7 HE + blinding 3 3 7 3 3 7 7 all data owners v

[16, SECRYPT’21] 3 / ASS+GC 3 3 3 3 3 7 7 all data owners/Outsourcing a

Mean-shift [9, SAC’19] 3 HE 3 3 3 3 3 7 7 Outsourcing, 1 server −

DBSCAN

[72, ISI’06] 7 blinding 3 3 7 3 7 7 7 all data owners v lack of complete protocol
[73, ADMA’07] 7 HE+blinding 3 7 7 3 3 7 7 2PC v/h
[74, IJSIA’07] 7 PKC+blinding 3 3 7 3 3 7 7 all data owners v

[75, ITME’08] 7 HE+blinding 3 7 7 3 3 7 7 data owners + 1 server h

[22, TDP’13] 7 HE+blinding 3 7 7 3 3 7 7 2PC a

[17, S&P’12] 3 / 5 GC 3 3 3 3 3 3 7 2PC h

[46, SIBCON’17] 7 HE+PKC 3 3 7 3 3 7 7 all data owners v cluster expansion missing
[47, PRDC’17] 7 HE 3 7 7 3 7 7 7 outsourcing, all data owners + 1 server h

[76, AI’18] 7 HE 3 7 7 3 3 7 7 data owners + 1 server a uses absolute distance
[18, ASIACCS’21] 3 ASS+GC 3 3 3 3 3 (3)4 7 2PC/Outsourcing a

HC

[77, SDM’06] 7 HE+ASS+GC 3 3 7 3 7 3 7 2PC h

[50, TKDE’07] 7 blinding or SKC 3 3 7 3 3 7 7 data owners + 1 server h SKC not semantically secure
[49, TDP’10] 7 HE+GC 3 3 7 3 3 3 7 2PC h

[48, ISI’14] 7 N/A HE 3 7 7 3 3 3 7 2PC v

[78, ISCC’17] 7 HE 3 3 7 3 7 7 3 2PC v/h
[19, ArXiv’19] 3 HE & GC 3 3 3 3 7 3 3 2PC h

BIRCH [79, SDM’06] 7 HE+ASS 3 3 7 3 7 7 7 2PC v

[80, ADMA’07] 7 HE+ASS 3 3 7 3 7 7 7 2PC a

1 Of the parameters hold by the respective data owner.
2 Assuming max. 1 party deviates from the protocol.
3 Leaks partial information about cluster sizes.
4 Not implemented, but possible.
5 Can be used with any security model of GCs.

Table 3. History overview of privacy-preserving clustering using secure computation techniques. Privacy indicates if fully privacy pro-
tection according to the ideal functionality for privacy-preserving clustering (§3.1) is provided (7: leakage; 3: no leakage). is the
semi-honest security model, is the malicious security model, N/A indicates that no security model was defined. HE is homomorphic
encryption, ASS additive secret sharing, SSS Shamir’s secret sharing, GC garbled circuits, OPE oblivious polynomial evaluation, PKC
public-key cryptography, SKC symmetric-key cryptography, ZKP zero-knowledge proof, blinding is the use of random values for blind-
ing, and other types of secret sharing are summarized by SS. v indicates that the data that shall be clustered is vertically distributed,
i.e., the data owners hold the values for a subset of parameters from all data records. h indicates horizontally partitioned data where
the data owners hold complete data records with all parameters, and a is arbitrary data partitioning. L1 leaks intermediate centroids,
L2 intermediate cluster sizes, L3 other intermediate values (e.g., intermediate cluster assignments or distance comparison results), and
L4 the number of clustering iterations. O1 outputs the final cluster labels/assignments, O2 outputs the final centroids, and O3 outputs
the final dendogram/tree structure. The schemes with the best privacy guarantees are marked in bold (we do not consider the num-
ber of clustering iterations as a severe leakage as it can be easily avoided, cf. §3.2). The efficient and fully private schemes that we
implemented and benchmarked in §4 are highlighted in gray.
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46, 48, 57, 71–74, 78, 79, 82, 85, 87–89, 91, 93]. An ar-
bitrary partitioning is a mix of both vertical and hori-
zontal data splitting [8, 12, 22, 76, 80, 83, 90, 100]. A
realistic data partition depends on the specific applica-
tion. We discuss this matter in more detail in §3.3.
Used Secure Computation Techniques. Existing
privacy-preserving clustering protocols use two main
cryptographic techniques. First, there is a range of
works that use homomorphic encryption (HE), e.g., [8,
14, 48, 76, 78, 84, 97, 104], but most of them tend to
be relatively slow due to the expensive cryptographic
operations. Another research direction uses multi-party
computation (MPC) techniques like Yao’s Garbled Cir-
cuits [21], blinding with random numbers, and secret
sharing to achieve better efficiency [11, 16, 18, 44, 45, 72,
83, 94]. These schemes tend to have better runtimes, but
higher communication than using HE. However, some
MPC techniques [10] also have to rely on non-collusion
assumptions between (a subset of) the computing par-
ties which can make them more difficult to deploy in
real-world applications. Other protocols use a mix of
these techniques aiming at combining the strengths of
both approaches [12, 19, 46, 77, 79, 103].
Privacy. As discussed in §1, information leakage can
cause severe privacy infringement. Ideally, no informa-
tion beyond what can be extracted from the final output
should be derivable (cf. §3.1). However, most of the pro-
posed privacy-preserving clustering schemes leak inter-
mediate values like the intermediate centroids [43, 84,
85, 88, 94, 97, 98, 100, 105, 108], cluster assignments [43,
57, 58, 71, 83, 86, 87, 89–91, 97, 98, 100, 102–106, 108],
and/or cluster sizes [8, 57, 71] in each clustering itera-
tion of K-means or K-medoids, thus, failing to provide
full privacy protection. Similarly, both private GMM
schemes [44, 45] leak the intermediate covariance ma-
trices, means, and probability values for each Gaussian
distribution. Many schemes originating from a round-
based clustering algorithm such as K-means or GMM
leak the number of clustering iterations until conver-
gence, e.g., [12, 13, 15, 43–45, 82, 83, 94, 100]. However,
this issue can be avoided by clustering for a fixed num-
ber of iterations independent of the input which must
be large enough to reach a good clustering result. How-
ever, this results in a longer runtime as more iterations
are done than normally with a convergence check. Also
most DBSCAN-based and HC-based schemes leak infor-
mation, e.g., distances between data records [46, 50], the
comparison results of distances [48, 72, 75, 79, 80], clus-
ter assignments [22, 46, 47, 49, 73, 75, 76, 79, 80], cluster
sizes [22, 47, 73, 75, 76], or may even leak concrete in-
put records for specific data constellations [73, 77] to

at least one of the involved parties (independent of the
party’s data ownership). All in all, we only identified ten
clustering protocols shown in Tab. 1 that provide fully
privacy guarantees (maximally leaking the number of
clustering iterations): [9, 11–19].
Efficiency. As stated before, homomorphic encryption-
based protocols such as [14, 48, 76, 78, 84, 97, 104] tend
to be computationally expensive and, thus, slower than
MPC-based schemes, e.g., [11, 18, 44, 45, 72, 94], which
require more communication. Due to space limitations,
we will focus here on the ten protocols that provide
full privacy (cf. §3.1) and compare them in terms of
efficiency. Kim and Chang [15] observe an about 2.85×
runtime improvement compared to [13] thanks to a more
efficient secure comparison. They as well as Bunn and
Ostrovsky [12] use the Paillier encryption scheme with-
out any parallelization making it expensive and slow
compared to the other more optimised protocols which
use, for example, packing or batching of operations [11].
The K-means protocol by Mohassel et al. [11] was exper-
imentally compared to [14] and [18]. It outperforms the
K-means protocol by Jäschke et al. [14] by five orders
of magnitude on a dataset with 400 elements thanks to
an efficient batching and the usage of GC instead of
HE. It is also 19× faster on the same dataset than the
private DBSCAN protocol of Bozdemir et al. [18], but
DBSCAN often achieves significantly better clustering
quality [18]. [18] runs about 13 minutes for clustering
500 elements while Zahur and Evans [17] report more
than 550 minutes for their private DBSCAN protocol
with 480 records. [18] is also 194× faster than the fully-
private affinity propagation protocol by Keller et al. [16]
thanks to the use of optimized combinations of GC and
ASS. No direct comparison between [9, 11, 19] was done
so far.
Choice for Benchmarks. To summarize, the MPC-
based protocol of Mohassel et al. [11] is the most ad-
vanced private K-means scheme w.r.t. privacy and effi-
ciency. Meng et al. [19] and Cheon et al. [9] provide the
only schemes that offer fully private single and complete
linkage HC/Mean-shift. Bozdemir et al. [18] propose the
most efficient fully privacy-preserving DBSCAN proto-
col. In §4, we focus on these four works by comparing
their computation and communication efficiency, secu-
rity and privacy, and clustering quality.

3.3 Private Clustering Applications

Privacy-preserving clustering can be generally used for
two main purposes: to protect sensitive data when out-
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sourcing the computation and storage and/or when mul-
tiple data owners provide input data to the clustering.
For each of these scenarios, we discuss a few example
applications in the following to give a guideline on how
to choose appropriate private clustering protocols.
Example Applications. Multiple data owners who
jointly cluster their combined data is an instance of
multi-party computation (MPC). In the financial mar-
ket, clustering is used to automatically detect correla-
tions between securities’ stock prices in pair trading,
i.e., for investment strategies that leverage discrepan-
cies between typically correlated securities [109, 110].
Additionally, it is used for outlier detection to identify
credit card, insurance, or tax frauds and insider trad-
ing [3, 111]. In this context, it is typically necessary to
cluster data from several sources like competing (invest-
ment) banks or insurance companies to detect suspicious
behavior [112]. Thereby, the different entities might hold
information about the same customer, i.e., they have
vertically partitioned data. Furthermore, clustering can
be used by companies for enhancing marketing mea-
sures, e.g., by market segmentation or personalization of
recommendation systems [113, 114]. A larger database
increases the quality and reliability of the result but
business secrets and customer data must be protected.
In such scenarios, a horizontal data partitioning where
the companies provide data from different customers is
more plausible. Additionally, clustering is also used in
medical research and diagnosis [115, 116]. In this con-
text, using data from several sources, e.g., several hos-
pitals, reduces potential bias caused by demographics,
ethnicities, or cultures.
MPC. For the aforementioned applications, the parties
can always safely trust themselves. Thus, full thresh-
old security (i.e., security against up to N − 1 col-
lusions, cf. §2.2) as provided by some MPC tech-
niques [117, 118] would be an interesting option. Un-
fortunately, only Keller et al. [16] and schemes based
on a threshold secret sharing (like SSS (cf. §2.2)) with
the respective threshold can offer this. Additionally,
again only Keller et al. [16] provide full privacy guaran-
tees against malicious adversaries (cf. §2.2). However,
if the other partners involved are generally trusted but
strictly regulated by data protection laws like HIPAA
or GDPR, hindering them from directly sharing data,
a 2PC- or MPC-based clustering protocol with hon-
est majority and secure against semi-honest adversaries,
e.g., [9, 11, 19], might be sufficient and provides signif-
icantly better efficiency than MPC techniques that are
secure against full threshold semi-honest or malicious
adversaries [119].

Outsourcing. While running “generic” MPC protocols
is the most straightforward approach to securely clus-
ter on the joint database of data owners, it suffers from
high computation and communication costs and might
be practically infeasible for a large number of data own-
ers as MPC protocols often scale quadratically in the
number of parties. A more efficient alternative can be
to outsource the evaluation.2 Thereby, the data owners
(e.g., competing companies conducting market analy-
ses) might prefer to not rely on a non-collusion assump-
tion needed for MPC-based protocols such as [11] where
multiple providers must be found and trusted not to col-
lude. Hence, in such a situation an HE-based outsourc-
ing scheme like [9, 14] might be advantageous. Addition-
ally, in an outsourcing scenario, no data owner should
be required to be online or actively involved in the com-
putation. This can only be achieved by some proto-
cols: [11, 13–16, 18, 19, 37, 43, 58, 90, 92, 100, 102, 106].
Privacy vs. Efficiency. Furthermore, there exists a
trade-off between data leakage and efficiency. Schemes
that can leak complete data records (e.g., [73, 74])
should not be used. When generally trusted parties like
hospitals are involved, leaking less critical information
like the number of iterations (cf. §3.2) might be accept-
able to reduce runtime. However, as pointed out in §1,
it is not always possible to fully understand and antic-
ipate the effects of leaking intermediate results. Gener-
ally, MPC-based protocols are considered to be faster
but require more communication than HE-based proto-
cols. We will give more insight on the efficiency of the
four most efficient fully private clustering schemes in §4.
Algorithm Characteristics. Finally, another impor-
tant aspect for choosing the right private clustering
scheme are the input parameters. For instance, K-
means, K-medoid, GMM, and HC require the number of
clusters as input. This is not an issue when the number
of clusters is fixed by the application, e.g., if the goal
is to split bank customers’ behavior into benign and
suspicious. However, a more fine-grained analysis might
be needed when different types of malicious behavior
can occur that significantly differ from each other (e.g.,
credit card, tax, or insurance fraud), but it is unclear in
advance how many untypical behaviors can occur. Clus-
tering might even be used to detect and differentiate
these outliers in the first place. In such a case, a proto-
col that originates from affinitey propogation, DBSCAN
or Mean-shift should be chosen as they will flexibly de-
tect the number of clusters. Furthermore, some algo-

2 A single data owner might of course also outsource clustering.
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rithms like K-means and GMM can only detect clusters
of convex shapes, while DBSCAN can detect arbitrar-
ily shaped clusters [41]. If new data arrives regularly, it
might be beneficial to avoid recomputing the complete
clustering by using K-means-, K-medoid-, DBSCAN-, or
GMM-based protocols (e.g., [8, 11, 43, 44, 46]). Then,
different private clustering schemes give different out-
puts, e.g., centroids [8, 11] or dendograms [19]. For ex-
ample, a medical analysis detecting typical character-
istics for a specific disease should output centroids as
they represent these characteristics. Additionally, cen-
troids also allow to assign new data to the created clus-
ters later on which is not possible with only the cluster
labels.

To conclude, the following aspects need to be ex-
amined when deciding upon a private clustering pro-
tocol: scenario (MPC vs. outsourcing), security/privacy
requirements, trust level among the data owners, data
distribution and splitting, and the plaintext clustering
algorithm’s characteristics (e.g., required input param-
eters that can be anticipated in advance). Based on this
information, our extensive summary in Tab. 3 can help
to choose an appropriate protocol.

4 Evaluation
In this section, we compare the clustering quality (§4.1),
security and privacy (§4.2), and efficiency (§4.3) of
the four most efficient fully private clustering proto-
cols [9, 11, 18, 19] identified in §3.2. Details about these
protocols are provided in Appx. B.
Software Details. We implemented all four proto-
cols in C++17 and instantiate all cryptographic building
blocks with a security level of 128 bits. We instantiate
all algorithms with optimal parameters to assess their
performance assuming perfect conditions. All our imple-
mentations are single threaded for a fair comparison of
the efficiency of protocols.
MPC-KMeans [11]. In the remainder of this work, we
call the private K-means protocol by Mohassel et al. [11]
MPC-KMeans. We use the publicly available implemen-
tation3 from the authors of [11] with default parameter
values. Specifically, the statistical security parameter is
λ = 40, the computational security parameter κ = 128,
and the bitlength ` = 32.

3 https://github.com/osu-crypto/secure-kmean-clustering

HE-Meanshift [9].We call the private Mean-shift pro-
tocol by Cheon et al. [9] HE-Meanshift. The implemen-
tation uses the HEAAN library [120] with the same pa-
rameters as [9] providing 128-bit security. Specifically,
the degree of the polynomial modulus of the plaintext
ring Nc is set to 217 and the ciphertext modulus qL is
set to 21480. Thus, the number of plaintext slots in each
ciphertext is 216. Unless explicitly stated, we set the de-
gree parameter for the kernel Γ = 6, the MinIdx degree
parameter t = 5, and the Inv iteration parameter ζ = 5.
PCA/OPT [19]. We call the baseline private HC pro-
tocol by Meng et al. [19] PCA (complete linkage) and
its extension OPT (single linkage). The implementation
uses the ABY framework [10] for Yao’s garbled circuits
and the libpaillier library [121] for Paillier with identi-
cal parameters as [19]. Specifically, the symmetric-key
security parameter is κ = 128 bits and the size of the
RSA modulus in Paillier encryption is κpub = 2048 bits.
The statistical security parameter is λ = 40.
ppDBSCAN [18]. We call the privacy-preserving DB-
SCAN protocol by Bozdemir et al. [18] ppDBSCAN. We
use the publicly available C++ implementation4 pro-
vided by the authors which is based on the ABY frame-
work [10]. The computational security parameter is set
to κ = 128 bits and the bitlength ` = 32 bits. The pa-
rameter maxIterations was set to 4 as also done in [18].

4.1 Clustering Quality

In this section, we evaluate the clustering quality of the
four fully private clustering protocols.
Datasets. We use nine datasets from the well-known
FCPS [122] and Graves [123] collections designed for
benchmarking clustering algorithms. They also include
the ground truth separation [124]. In Tab. 4, we sum-
marize four of these datasets for which we present the
results of the quality evaluation. The results of our eval-
uation on the remaining 5 datasets are given in Appx. D.
Metrics for Clustering Quality. We measure the
quality of the clustering result using clustering qual-
ity indices. As no single index is superior [125], we
use four well-known indices: Adjusted Rand Index
(ARI) [126], Adjusted Mutual Information (AMI) [127],
Silhouette Index (SI) [128], and Calinski-Harabasz In-
dex (CHI) [129]. SI and CHI measure the output clus-
ters’ separation and compactness while ARI and AMI

4 https://encrypto.de/code/ppDBSCAN
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Dataset N d K Property

Hepta 212 3 7 Well-defined clusters
Lsun 400 2 3 Different shapes
Chainlink 1000 3 2 Non-linearly separable clusters
Dense 200 2 2 Different cluster variances

Table 4. Datasets used for evaluating clustering quality, where N
is the dataset size, d is the dimension of the data records, and K
is the number of clusters.
compare the output clusters to the known ground truth
to evaluate the clustering quality [125].

The results for the algorithms with random initial-
ization, MPC-KMeans and HE-Meanshift are averaged
over 10 runs. The iterative algorithms MPC-KMeans,
HE-Meanshift, KMeans++, and Mean-shift are run for
20 iterations. The number of clustersK for the K-Means
and HC protocols, i.e., MPC-KMeans and PCA/OPT,
is set to the number of clusters in the ground truth.
HE-Meanshift modifies the Mean-shift algorithm to run
the mean-shift process on a small and random subset
of datapoints, called dusts, to improve efficiency. The
number of dusts is set to the largest power of 2 greater
than or equal to the number of clusters, to ensure effi-
ciency while maintaining the quality of the clustering.
Original vs. Private Algorithm. We also compare
the differences in clustering quality between the pri-
vate clustering protocols and the original plaintext al-
gorithms to evaluate the error arising by using privacy
preserving techniques. PCA, OPT and ppDBSCAN are
identical to plaintext HC with complete and single link-
age and DBSCAN respectively which is why we do not
include the results for their plaintext implementations
here. The underlying computations in MPC-KMeans
are identical to the standard K-means protocol except
for differences in the initialization of the centroids. We
evaluate this effect using the plaintext KMeans++ [130]
algorithm (a variant of K-Means with an improved clus-
ter initialization where the centroids are initialized with
data records far apart from each other). HE-Meanshift,
in contrast, introduces several modifications to the stan-
dard Mean-shift algorithm [53] to make the computa-
tion HE friendly, e.g., using a polynomial kernel and
adopting dust-sampling for efficient mode-seeking. We
compare the clustering quality of HE-Meanshift to a
plaintext implementation of Mean-shift to evaluate the
combined effect of the changes.

Fig. 1 summarises the results of our evaluation of
the clustering quality with the four quality indices.
Hepta Dataset. All algorithms achieve a relatively
good clustering quality. PCA, OPT and ppDBSCAN
output exactly the ground truth and achieve the best
scores on the four indices. MPC-KMeans has a slightly

worse clustering quality than the HC algorithms. HE-
Meanshift achieves significantly lower scores and its high
standard deviation in comparison to KMeans++ and
Mean-shift indicates that the initialization of dusts has
a significant impact on the clustering quality.
Lsun Dataset. OPT and ppDBSCAN output exactly
the ground truth and, thus, achieve the maximal scores
for the ARI and AMI. While the output of PCA sig-
nificantly differs from the ground truth, it is notewor-
thy that it achieves similar scores as OPT and ppDB-
SCAN on the SI and CHI that measure internal clus-
ter properties, i.e., separation and compactness. HE-
Meanshift again shows large standard deviations due
to the random initialization. The poor clustering qual-
ity achieved by MPC-KMeans and KMeans++ on the
ARI and AMI is due to the non-convexly shaped clus-
ters in the ground truth where K-means does not work
well. The best scores achieved by HE-Meanshift are sig-
nificantly higher than their plaintext counterparts, pos-
sibly due to favourable (random) initialization for the
non-convexly shaped clusters in some of the runs.
Chainlink Dataset. OPT and ppDBSCAN have the
same output as the groundtruth and achieve the high-
est ARI and AMI scores though the presence of non-
linearly separable clusters in the dataset leads to lower
SI and CHI scores. The remaining algorithms perform
poorly. A poor clustering quality of MPC-KMeans and
KMeans++ is expected since K-Means does not work
well on non-linearly separable clusters.
Dense Dataset.MPC-KMeans, HE-Meanshift, ppDB-
SCAN, KMeans++, and Mean-shift achieve good scores
on all indices while the HC protocols, i.e., PCA and
OPT, have significantly lower scores in comparison. In-
tuitively, the poor clustering quality of HC-based proto-
cols can be attributed to the large variance in one of the
clusters of the Dense dataset. This can cause incorrect
merging of clusters since clusters are merged based on
their proximity, which can be large when the variance
of the cluster is high.
Conclusion. ppDBSCAN consistently achieves the
highest scores and is able handle different shapes, non-
linear clusters, and high cluster variance well. PCA and
OPT achieve a relatively good clustering quality on
three out of four datasets, but they (completely) fail on
the Dense dataset. The K-Means and Mean-shift pro-
tocols have comparable clustering quality that heavily
varies between different datasets. The K-means-based
protocols can only cluster very specific datasets that
do not contain non-convexly shaped and non linearly-
separable clusters.
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HE-Meanshift tends to have large standard devia-
tions which indicate a strong dependency on dust ini-
tialization. However, the highest score achieved by HE-
Meanshift is comparable to that of plaintext Mean-shift
which indicates that the modifications introduced for its
HE-friendly computation do not decrease accuracy. In
contrast, MPC-KMeans has a small standard deviation
and achieves a similar clustering quality to KMeans++,
which shows that the randomness used for centroid ini-
tialization has a smaller impact on final output.

4.2 Security & Privacy

In this section, we discuss the security and privacy of
the four clustering protocols.
Security Model w.r.t Scenario. All four works are
in the static semi-honest security model i.e., the adver-
sary can corrupt some of the parties at the onset of
the computation and correctly follows the protocol de-
scription, but attempts to learn information about the
private inputs of the honest parties.

MPC-KMeans, PCA/OPT, and ppDBSCAN con-
sider the outsourced two-party computation setting
where multiple data owners secret share their input
among two non-colluding servers to privately cluster
the dataset. In contrast, in HE-Meanshift, a single data
owner outsources its computation to a single server.

Informally, a protocol is said to be secure if anything
that can be computed by a party participating in the
protocol can also be derived from the input and output
of this party. This is formalized by using a simulator
which generates a view that is indistinguishable from a
real protocol execution given the party’s input and out-
put [132]. MPC-KMeans [11] and PCA/OPT [19] pro-
vide such a formal proof of security.

The security of HE-Meanshift [9] follows directly
from the security of the used CKKS encryption scheme
since only the input and final output are sent. We note
that the recent attack on the CKKS scheme by Li and
Micciancio [133] does not affect the security of HE-
Meanshift, as discussed by Cheon et al. [134]. Specif-
ically, the attack requires access to a decryption oracle
which is not available to the server in the outsourced
single-server computation setting.

Similarly, the security of ppDBSCAN [18] follows
directly from the security of the employed secure two-
party computation techniques, specifically GC and ASS
(cf. §2.2), as no intermediate values are opened and the
conversions are provably secure [10].

Leakage from Outputs. Provable security of the pro-
tocols ensures that the computation does not leak any-
thing more than what is revealed in an ideal world where
a trusted third party obtains the inputs, computes the
clustering functionality and returns the output. How-
ever, the information leaked from the clustering output
is not captured in the security definition and we discuss
this in the following.

HE-Meanshift outputs the cluster labels for every
record in the dataset. However, this is not a privacy
concern since the protocol is intended to be used in the
outsourced single-server computation setting where the
entire dataset is known to the client.

MPC-KMeans and ppDBSCAN can be adapted to
output either the cluster centroids or cluster labels.
MPC-KMeans also outputs the number of iterations for
the clustering to converge which is related to the dis-
tribution of the underlying dataset. We have already
discussed how to avoid this leakage in §3.2.

The PCA/OPT algorithms output a point-agnostic
dendrogram in addition to the cluster centroids. The
point-agnostic dendrogram is intended to be a privacy-
preserving variant of the dendrogram output by a plain-
text HC algorithm since the latter provides the com-
plete merging history which leaks information in a set-
ting with multiple data owners. The point-agnostic den-
drogram is computed by first applying a random and
private permutation on the input records to fuzz the
merging history and by retaining the metadata of only
sufficiently large clusters. Intuitively, this allows obtain-
ing useful metadata akin to the plaintext computation
while still preserving privacy. However, it is unclear how
to formalize/measure the information leakage from the
protocol output.

4.3 Efficiency

Asymptotic Analysis. First, we compare the asymp-
totic runtime, communication, and round complexity of
the four investigated private clustering protocols and
depict the results in Tab. 5. Asymptotically, MPC-
KMeans is the most efficient with respect to commu-
nication and runtime in terms of dataset size N , input
records’ dimension d and number of clusters K.
Hardware Details. All experiments are run on two
machines (one for each party) each equipped with a 2.8
GHz Intel Core i9-7960X processor running Linux, 32
vCPUs and 128 GB RAM. We consider two network
settings. The LAN setting has bandwidth 1 Gbps and
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(a) Adjusted Rand Index (ARI)

(b) Adjusted Mutual Information (AMI)

(c) Silhouette Index (SI)

(d) Calinski-Harabasz Index (CHI)

Fig. 1. Clustering quality evaluation of the fully-private clustering protocols MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19],
and ppDBSCAN [18] evaluated on datasets Hepta (red), Lsun (blue), Chainling (purple), and Dense (green). As comparison to the
plaintext clustering algorithms (shaded bars), we also include KMeans++ and Mean-shift from Python Scikit-learn [131]. Each subfigure
(a-d) corresponds to a different clustering quality index: ARI, AMI, SI, and CHI (cf. §4.1) and larger values indicate better clustering
quality. The values are averaged over 10 runs and the error bar shows the standard deviation.
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Protocol Runtime Communication Rounds

MPC-KMeans [11] Θ(NK(d+ `)t) Θ
(
NK(d`2 + `κ)t

)
Θ(dlogKet)

HE-Meanshift [9] Θ
(
(NKdd

2t)/(Nc log d)
)

Θ(NdKdκ) 2
PCA [19] Θ(N3λ) Θ(N3λκ) Θ(N2)
OPT [19] Θ(N2(λ+ d)) Θ(N2(λκ+ κpub)) Θ(N2)

ppDBSCAN [18] Θ(N2(N + d)) Θ(N2`κ) O(N3)

Table 5. Asymptotic runtime, communication, and round complexity of the private clustering protocols MPC-KMeans [11], HE-
Meanshift [9], PCA/OPT [19], and ppDBSCAN [18]. N is the dataset size, d is the dimension, ` is the bitlength of the data records,
K is the number of clusters, Kd is the number of dusts used in HE-Meanshift, κ = 128 is the computational security parameter,
λ = 40 is the statistical security parameter, Nc is the number of plaintext slots in CKKS, κpub = 2048 is the size of the RSA modulus
in Paillier encryption [65].

RTT 1 ms while the WAN setting has bandwidth 100
Mbps and RTT 100 ms.
Benchmarks. We evaluate the efficiency of the four
privacy-preserving clustering protocols and their scala-
bility to large datasets, datasets with many clusters, and
multi-dimensional data. We generate synthetic datasets
with N ∈ {50, 100, 150, 200, 250} data points of dimen-
sion d ∈ {2, 8} and bitlength ` = 32, and number of
clusters K ∈ {2, 5}. We run the protocols on all possible
combinations of the above described parameters. The it-
erative protocols MPC-KMeans and HE-Meanshift are
run for 5 iterations to reach a comparable clustering
quality and enabling a fair comparison of their efficiency.

To analyze the scalability of the protocols to
large multi-dimensional datasets, we generate a syn-
thetic collection of large datasets with parameters
N ∈ {213, 214, 215, 216}, d ∈ {1, 2, 4, 8, 16} and K ∈
{2, 5, 10, 15, 20}. The memory consumption of MPC-
KMeans was too large (greater than 128 GB) to bench-
mark on datasets where N · d > 219. Similarly, the
memory consumption of PCA/OPT [19] and ppDB-
SCAN [18] was too large even for the smallest dataset
with N = 213, d = 1, and K = 2 due to the usage of
the memory intensive ABY framework [10]. We thus ex-
clude these protocols from our benchmarks on the large
datasets. Fig. 4 in Appx. C presents the memory con-
sumption of our implementations of the protocols for a
small and large dataset.
Communication. We plot the communication costs in
the bottom rows of Fig. 2 (small datasets) and Fig. 5 in
Appx. C (large datasets).

The communication cost for HE-Meanshift is iden-
tical across different small datasets (Fig. 2) because
the entire dataset can be encrypted in one ciphertext.
This inefficient packing of the dataset leads to HE-
Meanshift’s communication being 2× higher than that
of MPC-KMeans on average for small datasets. How-

ever, for large datasets (Fig. 5), HE-Meanshift’s com-
munication cost is up to 11.5× lower than that of MPC-
KMeans on average due to optimal packing. The com-
munication cost of PCA is 6× higher than that of ppDB-
SCAN on average while the communication of ppDB-
SCAN is 2× higher than that of OPT on average.
While the communication cost increases linearly in the
input records’ dimension d for HE-Meanshift, d does
not have a significant effect on the communication of
MPC-KMeans since the communication during the as-
signment of input records to clusters is independent of
d. This phase has the highest communication complex-
ity and dominates the overall communication cost. In
Fig. 5(f) HE-Meanshift’s communication for K = 10
and K = 15 is identical as both use the same number
of dusts Kd = 16 and hence send the same number of
ciphertexts. The communication costs of PCA/OPT are
independent of the input records’ dimension d while the
communication costs of PCA/OPT and ppDBSCAN are
independent of the number of clusters K.
Runtimes. We plot the LAN runtimes in the top row
of Fig. 2 (small datasets) and Fig. 5 in Appx. C (large
datases), and the WAN runtimes for small datasets in
Fig. 3 in Appx. C, all averaged over 10 runs.

MPC-KMeans has the lowest runtime and is up to
700× faster than HE-Meanshift on small datasets and
9.5× faster than HE-Meanshift on large datasets over
LAN. Thus, HE-Meanshift scales well to large, multi-
dimensional datasets due to lower communication costs,
but is not suitable for small datasets. As expected, the
runtime of MPC-KMeans in Fig. 5(b) is marginally af-
fected by increasing the dimension of the input records
d since its assignment of the input records (which is the
bottleneck of the protocol) to the clusters is independent
of d. On the other hand, the runtime of HE-Meanshift is
linear in d since it directly affects the number of cipher-
texts and the efficiency of the bootstrapping operation.
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Fig. 2. LAN runtimes in seconds (top row) and communication in MiB (bottom row) of the fully-private clustering protocols
MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19], and ppDBSCAN [18] for varying dataset size N , input records’ dimension d,
number of clusters K, and bitlength ` = 32. In (a) and (d) d = 8 and K = 10, in (b) and (e) N = 200 and K = 10, and in (c) and
(f) N = 200 and d = 8.

ppDBSCAN’s average runtime is 14× higher over LAN
and 2.5× higher over WAN than that of MPC-KMeans.
However, since ppDBSCAN’s runtime is independent of
the number of clusters, this gap in runtime diminishes
with the increase in number of clusters. OPT and PCA
have similar runtimes wich are 15× higher than that of
ppDBSCAN on average over LAN, even though OPT
has less communication. Moreover, OPT has the high-
est runtime on average over WAN. One possible rea-
son for this might be higher concrete computation costs
for OPT which is not captured by the asymptotic com-
plexity but highlighted due to benchmarking on small
datasets.

5 Real-world Application and
Open Challenges

In this section, we discuss the challenges that need to be
solved to make privacy-preserving clustering practical
for real-world applications.

Parameters. In a privacy-preserving setting, it is typi-
cally impossible to perform a preliminary analysis of the
data since it is distributed among multiple data owners
and not available to a single party. However, to set pa-
rameters like the number of clustersK for K-Means (i.e.,
in MPC-KMeans [11]) and HC (i.e., in PCA/OPT [19]),
the distance parameter ε for ppDBSCAN [18], or the
number of dusts for HE-Meanshift [9], insights about
the dataset are often needed to achieve high clustering
quality. We also observed in our experimental evaluation
that the degree of the kernel and the value of the MinIdx
parameter in HE-Meanshift has significant impact on
the clustering quality by amplifying the distances be-
tween data records. In specific cases, some parameters
like the number of clusters K can be given by the ap-
plication (cf. §3.3). But this is not the case for less in-
tuitive parameters like the initial distribution specifica-
tions of GMM or the neighborhood radius in DBSCAN.
Only ppDBSCAN [18], out of the four protocols that
we benchmarked, can determine these parameters when
they are not fixed by the application and inputs are
provided by more than one party.
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Secure Clustering Quality Evaluation. The issue of
dataset-dependent parameters is amplified by the lack of
secure clustering quality evaluation techniques. Specif-
ically, plaintext clustering algorithms are often simply
run several times with a range of different parameter
values and the best output is selected based on the
score of a clustering quality index. This is not possi-
ble in privacy-preserving clustering. Firstly, as in plain-
text clustering, no ground truth is known, so metrics
like ARI or AMI that compare to the ground truth can-
not be used. Secondly, as the private clustering result is
typically split among the data owners or only consists
of the centroids, the clusters’ compactness and the sep-
aration between different clusters cannot be measured
without additional secure computation. Thus, also in-
ternal indices like SI and CHI cannot be used easily.
The inherent overhead of secure computation makes it
expensive to perform multiple runs with different pa-
rameter values.
Clustering Quality and Efficiency. Clustering al-
gorithms that make minimal assumptions about the
shape of clusters and are robust to outliers are espe-
cially important in the case of privacy-preserving clus-
tering, because it is impossible to analyze the dataset
or remove noisy records before clustering. None of the
privacy-preserving clustering protocols we consider in-
vestigate soft clustering (cf. §2.1) and only ppDBSCAN
has the notion of noise. The K-means-based protocols,
i.e., MPC-KMeans, are very sensitive to outliers. Ad-
ditionally, as shown by our quality evaluation in §4.1
and as discussed in §2.1, K-means only succeeds on
clustering convexly shaped clusters which is not the
case for all datasets. HE-Meanshift’s clustering qual-
ity also strongly fluctuates depending on the dataset’s
properties (cf. §4.1). This is especially problematic for
privacy-preserving clustering where the dataset distri-
bution is often not known in advance. In contrast, hi-
erarchical clustering like PCA/OPT is less sensitive to
noise and more flexible with respect to the data distribu-
tion, i.e., the cluster shapes. However, as shown in §4.3,
PCA/OPT cannot be run on large datasets while MPC-
KMeans and HE-Meanshift scale significantly better
to large datasets. Our evaluation shows that ppDB-
SCAN performs well on different types of datasets while
also having lower runtimes than other protocols (except
MPC-KMeans).
Recommendations. Among the protocols we evalu-
ate, MPC-KMeans seems to be the most efficient alter-
native when clustering large multi-dimensional datasets.
HE-Meanshift might be a better choice when a single
resource-constrained data-owner outsources clustering

to a more powerful server over a high-latency and low-
bandwidth network. For smaller datasets, ppDBSCAN
seems to be the best option which performs well on a
variety of dataset types and also achieves low runtimes.
However, choosing the input parameter ε that deter-
mines the maximum distance between two data records
to be considered as neighbors requires domain expertise
and partial information about the dataset. This can be
avoided by using MPC-KMeans which only requires set-
ting the more intuitive number of clusters K which in
some cases is also given by the application (cf. §3.3).
Open Challenges. To summarize, for practical appli-
cation, privacy-preserving clustering protocols must be
(1) efficient in terms of runtime and communication,
(2) memory efficient, (3) only have parameters that are
mostly independent of the input data, (4) insensitive
to noise, and (5) flexible to cluster data of any dis-
tribution with high quality. Unfortunately, none of the
state-of-the-art works can fulfill all these requirements
simultaneously. Additionally, there is the need for a se-
cure clustering quality evaluation to assess the quality
of a clustering result run in a privacy-preserving man-
ner. Finally, privacy-research has not tackled privacy-
preserving soft clustering.

6 Conclusion
In this work, we systematically surveyed and ana-
lyzed the state-of-the-art in privacy-preserving cluster-
ing. We benchmarked and compared four efficient pro-
tocols [9, 11, 18, 19] that securely realize four different
clustering algorithms, with respect to clustering quality,
communication, and runtime to investigate their practi-
cality for real-world applications. Finally, we discussed
open challenges to make privacy-preserving clustering
practical.

ACKNOWLEDGEMENTS
We thank Oliver Schick for his support with implement-
ing PCA/OPT [19]. This project received funding from
the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram (grant agreement No. 850990 PSOTI). It was co-
funded by the Deutsche Forschungsgemeinschaft (DFG)
– SFB 1119 CROSSING/236615297 and GRK 2050 Pri-
vacy & Trust/251805230, and by the BMBF and the
HMWK within ATHENE.



SoK: Efficient Privacy-preserving Clustering 241

References
[1] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu, “On Network-level

Clusters for Spam Detection.” in NDSS, 2010.
[2] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V.

Karamouzis, and D. I. Fotiadis, “Machine learning appli-
cations in cancer prognosis and prediction,” Computational
and Structural Biotechnology Journal, 2015.

[3] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A Survey
of Anomaly Detection Techniques in Financial Domain,” in
Future Generation Computer Systems, 2016.

[4] F. Masulli and A. Schenone, “A fuzzy clustering based
segmentation system as support to diagnosis in medical
imaging,” Artificial Intelligence in Medicine, 1999.

[5] S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli,
“User profiles for personalized information access,” in The
adaptive web, 2007.

[6] A. Chaturvedi, J. D. Carroll, P. E. Green, and J. A. Ro-
tondo, “A feature-based approach to market segmentation
via overlapping k-centroids clustering,” Journal of Market-
ing Research, 1997.

[7] C. Gentry and D. Boneh, A fully homomorphic encryption
scheme. Stanford university Stanford, 2009.

[8] W. Wu, J. Liu, H. Wang, J. Hao, and M. Xian, “Secure
and efficient outsourced K-means clustering using fully ho-
momorphic encryption with ciphertext packing technique,”
in TDKE, 2020.

[9] J. H. Cheon, D. Kim, and J. H. Park, “Towards a practical
cluster analysis over encrypted data,” in SAC, 2019.

[10] D. Demmler, T. Schneider, and M. Zohner, “ABY - A
framework for efficient mixed-protocol secure two-party
computation,” in NDSS, 2015.

[11] P. Mohassel, M. Rosulek, and N. Trieu, “Practical privacy-
preserving K-means clustering,” in PETS, 2020.

[12] P. Bunn and R. Ostrovsky, “Secure two-party K-means
clustering,” in CCS, 2007.

[13] F.-Y. Rao, B. K. Samanthula, E. Bertino, X. Yi, and
D. Liu, “Privacy-preserving and outsourced multi-user K-
means clustering,” in CIC, 2015.

[14] A. Jäschke and F. Armknecht, “Unsupervised Machine
Learning on Encrypted Data,” in SAC, 2018.

[15] H. Kim and J. Chang, “A privacy-preserving k-means clus-
tering algorithm using secure comparison protocol and
density-based center point selection,” in International Con-
ference on Cloud Computing, 2018.

[16] H. Keller, H. Möllering, T. Schneider, and H. Yalame,
“Balancing quality and efficiency in private clustering with
affinity propagation,” in SECRYPT, 2021.

[17] S. Zahur and D. Evans, “Circuit structures for improving
efficiency of security and privacy tools,” in IEEE S&P,
2013.

[18] B. Bozdemir, S. Canard, O. Ermis, H. Möllering, M. Önen,
and T. Schneider, “Privacy-preserving density-based clus-
tering,” in ASIACCS, 2021.

[19] X. Meng, D. Papadopoulos, A. Oprea, and N. Triandopou-
los, “Private two-party cluster analysis made formal & scal-
able,” arXiv:1904.04475v2, 2019.

[20] O. Goldreich, S. Micali, and A. Wigderson, “How to play
any mental game,” in STOC, 1987.

[21] A. C.-C. Yao, “How to generate and exchange secrets,” in
FOCS, 1986.

[22] J. Liu, L. Xiong, J. Luo, and J. Z. Huang, “Privacy pre-
serving distributed DBSCAN clustering,” in Transactions
on Data Privacy, 2013.

[23] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow: Secure TensorFlow infer-
ence,” in IEEE S&P, 2020.

[24] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta,
A. Rastogi, and R. Sharma, “CrypTFlow2: Practical 2-party
secure inference,” in CCS, 2020.

[25] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa, “Delphi: A cryptographic inference service for
neural networks,” in USENIX Security, 2020.

[26] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.
0: Improved mixed-protocol secure two-party computation,”
in USENIX Security, 2021.

[27] V. Haralampieva, D. Rueckert, and J. Passerat-Palmbach,
“A systematic comparison of encrypted machine learning
solutions for image classification,” in PPMLP, 2020.

[28] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and
H. Yalame, “MP2ML: A mixed-protocol machine learning
framework for private inference,” in ARES, 2020.

[29] L. Song, H. Wu, W. Ruan, and W. Han, “SoK: Training
machine learning models over multiple sources with privacy
preservation,” in arXiv:2012.03386, 2020.

[30] H. C. Tanuwidjaja, R. Choi, S. Baek, and K. Kim,
“Privacy-preserving deep learning on machine learning as
a service—a comprehensive survey,” in IEEE Access, 2020.

[31] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schnei-
der, “SoK: modular and efficient private decision tree eval-
uation,” in PETS, 2019.

[32] U. Stemmer, “Locally private K-means clustering,” in
ACM-SIAM Symposium on Discrete Algorithms, 2020.

[33] L. Ni, C. Li, X. Wang, H. Jiang, and J. Yu, “DP-
MCDBSCAN: Differential privacy preserving multi-core
DBSCAN clustering for network user data,” in IEEE Ac-
cess, 2018.

[34] M.-F. Balcan, T. Dick, Y. Liang, W. Mou, and H. Zhang,
“Differentially private clustering in high-dimensional Eu-
clidean spaces,” in ICML, 2017.

[35] D. Su, J. Cao, N. Li, E. Bertino, M. Lyu, and H. Jin, “Dif-
ferentially private K-means clustering and a hybrid ap-
proach to private optimization,” in TOPS, 2017.

[36] D. Su, J. Cao, N. Li, E. Bertino, and H. Jin, “Differen-
tially private K-means clustering,” in Data and Application
Security and Privacy, 2016.

[37] W. Wu and H. Huang, “A DP-DBSCAN clustering algo-
rithm based on differential privacy preserving,” in Com-
puter Engineering and Science, 2015.

[38] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang, “Deep learning with
differential privacy,” in CCS, 2016.

[39] R. Shokri and V. Shmatikov, “Privacy-preserving deep
learning,” in CCS, 2015.

[40] D. Xu and Y. Tian, “A comprehensive survey of clustering
algorithms,” in Annals of Data Science, 2015.

[41] R. Xu and D. Wunsch, “Survey of clustering algorithms,”
in TNN, 2005.



SoK: Efficient Privacy-preserving Clustering 242

[42] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering:
A review,” in ACM Computing Surveys, 1999.

[43] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “PPHOPCM:
privacy-preserving high-order possibilistic c-means algo-
rithm for big data clustering with cloud computing,” IEEE
Transactions on Big Data, 2017.

[44] M. Hamidi, M. Sheikhalishahi, and F. Martinelli, “Privacy
preserving Expectation Maximization (EM) clustering con-
struction,” in DCAI, 2019.

[45] X. Lin, C. Clifton, and M. Zhu, “Privacy-preserving cluster-
ing with distributed EM mixture modeling,” in Knowledge
and Information Systems, 2005.

[46] I. V. Anikin and R. M. Gazimov, “Privacy preserving DB-
SCAN clustering algorithm for vertically partitioned data in
distributed systems,” in International Siberian Conference
on Control and Communications, 2017.

[47] M. S. Rahman, A. Basu, and S. Kiyomoto, “Towards out-
sourced privacy-preserving multiparty DBSCAN,” in PRDC,
2017.

[48] I. De and A. Tripathy, “A secure two party hierarchical
clustering approach for vertically partitioned data set with
accuracy measure,” in Recent Advances in Intelligent Infor-
matics, 2014.

[49] G. Jagannathan, K. Pillaipakkamnatt, R. Wright, and
D. Umano, “Communication-efficient privacy-preserving
clustering,” in Transactions on Data Privacy, 2010.

[50] A. İnan, S. V. Kaya, Y. Saygın, E. Savaş, A. A. Hintoğlu,
and A. Levi, “Privacy preserving clustering on horizontally
partitioned data,” in TDKE, 2007.

[51] H. Steinhaus, “Sur la division des corp materiels en par-
ties,” in Bulletin L’Académie Polonaise des Science, 1956.

[52] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, “Cluster
analysis,” in Wiley, 2011.

[53] K. Fukunaga and L. Hostetler, “The estimation of the gra-
dient of a density function, with applications in pattern
recognition,” in TIT, 1975.

[54] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, “A
distribution-based clustering algorithm for mining in large
spatial databases,” in ICDE, 1998.

[55] J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical
comparison of four initialization methods for the K-means
algorithm,” in Pattern Recognition Letters, 1999.

[56] Zhexue Huang and M. K. Ng, “A fuzzy k-modes algorithm
for clustering categorical data,” in TFS, 1999.

[57] J. Zhan, “Privacy preserving K-medoids clustering,” in
SMC, 2007.

[58] K.-P. Lin, “Privacy-preserving kernel K-means clustering
outsourcing with random transformation,” Knowledge and
Information Systems, 2016.

[59] A. K. Jain and R. C. Dubes, Algorithms for clustering data.
Prentice-Hall, 1988.

[60] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-
based algorithm for discovering clusters in Large spatial
databases with noise.” in SIGKDD, 1996.

[61] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, “A weighted
adaptive mean shift clustering algorithm.”

[62] M. Ester, “Density-based clustering,” in Encyclopedia of
Database Systems. Springer, 2009.

[63] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander,
“OPTICS: ordering points to identify the clustering struc-

ture,” in ACM SIGMOD, 1999.
[64] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum

likelihood from incomplete data via the EM algorithm,” in
Journal of the Royal Statistical Society, 1977.

[65] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in EUROCRYPT, 1999.

[66] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomor-
phic encryption for arithmetic of approximate numbers,” in
ASIACRYPT, 2017.

[67] A. Shamir, “How to share a secret,” in Communication of
the ACM, 1979.

[68] O. Goldreich, Foundations of cryptography: volume 2, basic
applications. Cambridge university press, 2009.

[69] P. Mohassel and Y. Zhang, “SecureML: A system for scal-
able privacy-preserving machine learning,” in IEEE S&P,
2017.

[70] S. Kamara and M. Raykova, “Secure outsourced computa-
tion in a multi-tenant cloud,” in IBM Workshop on Cryp-
tography and Security in Clouds, 2011.

[71] S. K. Dash, D. P. Mishra, R. Mishra, and S. Dash, “Pri-
vacy preserving K-medoids clustering: An approach towards
securing data in mobile cloud architecture,” in Conference
on Computational Science, Engineering and Information
Technology, 2012.

[72] A. Amirbekyan and V. Estivill-Castro, “Privacy preserving
DBSCAN for vertically partitioned data,” in Intelligence
and Security Informatics, 2006.

[73] K. A. Kumar and C. P. Rangan, “Privacy preserving DB-
SCAN algorithm for clustering,” in Advanced Data Mining
and Applications, 2007.

[74] W.-j. Xu, L.-s. Huang, Y.-l. Luo, Y.-f. Yao, and W. Jing,
“Protocols for privacy-preserving DBSCAN clustering,” in
International Journal of Security and Its Applications, 2007.

[75] D. Jiang, A. Xue, S. Ju, W. Chen, and H. Ma, “Privacy-
preserving DBSCAN on horizontally partitioned data,” in
International Symposium on IT in Medicine and Education,
2008.

[76] N. Almutairi, F. Coenen, and K. Dures, “Secure third party
data clustering using φ data: Multi-user order preserving
encryption and super secure chain distance matrices,” in
International Conference on Innovative Techniques and
Applications of Artificial Intelligence, 2018.

[77] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright,
“A new privacy-preserving distributed K-clustering algo-
rithm,” in SDM, 2006.

[78] M. Sheikhalishahi and F. Martinelli, “Privacy preserving
clustering over horizontal and vertical partitioned data,” in
Symposium on Computers and Communications, 2017.

[79] P. K. Prasad and C. P. Rangan, “Privacy preserving
birch algorithm for clustering over vertically partitioned
databases,” in Workshop on Secure Data Management,
2006.

[80] K. Prasad and P. Rangan, “Privacy preserving birch algo-
rithm for clustering over arbitrarily partitioned databases,”
ADMA, 2007.

[81] X. Zhu, M. Liu, and M. Xie, “Privacy-preserving affinity
propagation clustering over vertically partitioned data,”
in International Conference on Intelligent Networking and
Collaborative Systems, 2012.



SoK: Efficient Privacy-preserving Clustering 243

[82] J. Vaidya and C. Clifton, “Privacy-preserving K-means
clustering over vertically partitioned data,” in SIGKDD,
2003.

[83] G. Jagannathan and R. N. Wright, “Privacy-preserving
distributed K-means clustering over arbitrarily partitioned
data,” in SIGKDD, 2005.

[84] S. Jha, L. Kruger, and P. McDaniel, “Privacy preserving
clustering,” in ESORICS, 2005.

[85] S. Samet, A. Miri, and L. Orozco-Barbosa, “Privacy pre-
serving K-means clustering in multi-party environment,” in
SECRYPT, 2007.

[86] C. Su, F. Bao, J. Zhou, T. Takagi, and K. Sakurai,
“Privacy-preserving two-party K-means clustering via se-
cure approximation,” in AINA, 2007.

[87] M. C. Doganay, T. B. Pedersen, Y. Saygin, E. Savaş, and
A. Levi, “Distributed privacy preserving K-means clustering
with additive secret sharing,” in International Workshop on
Privacy and Anonymity in Information Society, 2008.

[88] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk,
“Privacy-preserving user clustering in a social network,”
in Information Forensics and Security, 2009.

[89] J. Sakuma and S. Kobayashi, “Large-scale k-means cluster-
ing with user-centric privacy-preservation,” in Knowledge
and Information Systems, 2010.

[90] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V.
Jawahar, “Efficient privacy preserving K-means clustering,”
in Pacific-Asia Workshop on Intelligence and Security Infor-
matics, 2010.

[91] T.-K. Yu, D. Lee, S.-M. Chang, and J. Zhan, “Multi-party
K-means clustering with privacy consideration,” in ISPA,
2010.

[92] M. Beye, Z. Erkin, and R. L. Lagendijk, “Efficient privacy
preserving K-means clustering in a three-party setting,” in
Information Forensics and Security, 2011.

[93] Z. Lin and J. W. Jaromczyk, “Privacy preserving two-party
K-means clustering over vertically partitioned dataset,” in
ISI, 2011.

[94] S. Patel, S. Garasia, and D. Jinwala, “An efficient approach
for privacy preserving distributed K-means clustering based
on shamir’s secret sharing scheme,” in Trust Management
VI, 2012.

[95] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk,
“Privacy-preserving distributed clustering,” in EURASIP
Journal on Information Security, 2013.

[96] S. Patel, V. Patel, and D. Jinwala, “Privacy preserving dis-
tributed K-means clustering in malicious model using zero
knowledge proof,” in Distributed Computing and Internet
Technology, 2013.

[97] D. Liu, E. Bertino, and X. Yi, “Privacy of outsourced K-
means clustering,” in ASIACCS, 2014.

[98] X. Liu, Z. L. Jiang, S. M. Yiu, X. Wang, C. Tan, Y. Li,
Z. Liu, Y. Jin, and J. Fang, “Outsourcing two-party privacy
preserving K-means clustering protocol in wireless sensor
networks,” in MSN, 2015.

[99] S. J. Patel, D. Punjani, and D. C. Jinwala, “An efficient
approach for privacy preserving distributed clustering in
semi-honest model using elliptic curve cryptography,” Inter-
national Journal of Network Security, 2015.

[100] V. Baby and N. S. Chandra, “Distributed threshold K-
means clustering for privacy preserving data mining,” in

ICACCI, 2016.
[101] Z. Gheid and Y. Challal, “Efficient and privacy-preserving

K-means clustering for big data mining,” in IEEE Trust-
Com/BigDataSE/ISPA, 2016.

[102] H. Rong, H. Wang, J. Liu, J. Hao, and M. Xian, “Out-
sourced k-means clustering over encrypted data under mul-
tiple keys in spark framework,” in Security and Privacy in
Communication Networks, 2017.

[103] K. Xing, C. Hu, J. Yu, X. Cheng, and F. Zhang, “Mutual
privacy preserving K-means clustering in social participa-
tory sensing,” in TII, 2017.

[104] J. Yuan and Y. Tian, “Practical privacy-preserving MapRe-
duce based K-means clustering over large-ccale dataset,” in
TCM, 2019.

[105] Z. L. Jiang, N. Guo, Y. Jin, J. Lv, Y. Wu, Z. Liu, J. Fang,
S. Yiu, and X. Wang, “Efficient two-party privacy-
preserving collaborative k-means clustering protocol sup-
porting both storage and computation outsourcing,” Infor-
mation Sciences, 2020.

[106] Y. Zou, Z. Zhao, S. Shi, L. Wang, Y. Peng, Y. Ping, and
B. Wang, “Highly secure privacy-preserving outsourced k-
means clustering under multiple keys in cloud computing,”
in Security and Communication Networks, 2020.

[107] Y. Wang, “Notes on two fully homomorphic encryp-
tion schemes without bootstrapping.” Cryptology ePrint
Archive, Report 2015/519.

[108] Y. Cai and C. Tang, “Privacy of outsourced two-party k-
means clustering,” Concurrency and Computation: Practice
and Experience, 2019.

[109] S. M. Sarmento and N. Horta, “Enhancing a pairs trad-
ing strategy with the application of machine learning,” in
Expert Systems with Applications, 2020.

[110] R. Adusumilli, “DBSCAN Clustering for Trading,” 2020,
https://towardsdatascience.com/dbscan-clustering-for-
trading-4c48e5ebffc8.

[111] S. Panigrahi, A. Kundu, S. Sural, and A. K. Majumdar,
“Credit card fraud detection: A fusion approach using
dempster–shafer theory and bayesian learning,” in Infor-
mation Fusion, 2009.

[112] A. Sangers, M. van Heesch, T. Attema, T. Veugen,
M. Wiggerman, J. Veldsink, O. Bloemen, and D. Worm,
“Secure Multiparty PageRank Algorithm for Collaborative
Fraud Detection,” in FC, 2019.

[113] A. Chaturvedi, J. Carroll, P. Green, and J. A. Rotondo,
“A feature-based approach to market segmentation via
overlapping k-centroids clustering,” Journal of Marketing
Research, 1997.

[114] Y. S. Cho, S. C. Moon, S. C. Noh, and K. H. Ryu, “Im-
plementation of personalized recommendation system us-
ing k-means clustering of item category based on rfm,” in
ICMIT, 2012.

[115] Q. Guo, X. Lu, Y. Gao, J. Zhang, B. Yan, D. Su, A. Song,
X. Zhao, and G. Wang, “Cluster Analysis: A New Approach
for Identification of Underlying Risk Factors for Coronary
Artery Disease in Essential Hypertensive Patients,” in Sci-
entific Reports, 2017.

[116] F. Masulli and A. Schenone, “A fuzzy clustering based
segmentation system as support to diagnosis in medical
imaging,” Artificial Intelligence in Medicine, 1999.



SoK: Efficient Privacy-preserving Clustering 244

[117] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko,
“MOTION - A framework for mixed-protocol multi-
party computation,” Cryptology ePrint Archive, Report
2020/1137.

[118] M. Keller, “MP-SPDZ: a versatile framework for multi-
party computation,” in CCS, 2020.

[119] A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation
of quantized neural networks,” PETS, 2020.

[120] “HEAAN,” https://github.com/snucrypto/HEAAN, 2020.
[121] “Paillier library,” http://acsc.cs.utexas.edu/libpaillier, 2010.
[122] A. Ultsch, “Clustering with SOM,” in Workshop on Self-

Organizing Maps, 2005.
[123] D. Graves and W. Pedrycz, “Kernel-based fuzzy clustering

and fuzzy clustering: A comparative experimental study,” in
Fuzzy Sets and Systems, 2010.

[124] M. Gagolewski, “Benchmark suite for clustering algorithms
version 1,” 2020, https://github.com/gagolews/clustering
_benchmarks_v1.

[125] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez,
and I. Perona, “An extensive comparative study of cluster
validity indices,” Pattern Recognition, 2013.

[126] L. Hubert and P. Arabie, “Comparing partitions,” Journal
of Classification, 1985.

[127] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic
measures for clusterings comparison: Variants, properties,
normalization and correction for chance,” Journal of Ma-
chine Learning Research, 2010.

[128] P. Rousseeuw, “Silhouettes: A graphical aid to the inter-
pretation and validation of cluster analysis,” Journal of
Computational and Applied Mathematics, 1987.

[129] T. Caliński and J. Harabasz, “A dendrite method for clus-
ter analysis,” in Communications in Statistics-theory and
Methods, 1974.

[130] D. Arthur and S. Vassilvitskii, “K-means++: The advan-
tages of careful seeding,” ACM-SIAM Symposium on Dis-
crete Algorithms, 2007.

[131] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learn-
ing in Python,” JMLR, 2011.

[132] Y. Lindell, “How to simulate it–a tutorial on the simulation
proof technique,” Tutorials on the Foundations of Cryptog-
raphy, 2017.

[133] B. Li and D. Micciancio, “On the security of homomorphic
encryption on approximate numbers,” Cryptology ePrint
Archive, Report 2020/1533.

[134] J. H. Cheon, S. Hong, and D. Kim, “Remark on the se-
curity of CKKS scheme in practice,” Cryptology ePrint
Archive, Report 2020/1581.

[135] B. J. Frey and D. Dueck, “Clustering by passing messages
between data points,” Science, 2007.

[136] X. Liu, M. Yin, J. Luo, and W. Chen, “An improved affin-
ity propagation clustering algorithm for large-scale data
sets,” in International Conference on Natural Computation,
2013.

[137] F. Shang, L. Jiao, J. Shi, F. Wang, and M. Gong, “Fast
affinity propagation clustering: A multilevel approach,”
Pattern Recognition, 2012.

[138] D. Dueck, Affinity propagation: clustering data by passing
messages, 2009.

[139] A. Rodriguez and A. Laio, “Clustering by fast search and
find of density peaks,” Science, 2014.

[140] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An
efficient data clustering method for very large databases,”
ACM SIGMOD, 1996.

[141] C. E. Rasmussen et al., “The infinite Gaussian mixture
model,” in NIPS, 1999.

[142] X. He, D. Cai, Y. Shao, H. Bao, and J. Han, “Laplacian
regularized gaussian mixture model for data clustering,”
IEEE Transactions on Knowledge and Data Engineering,
2010.

[143] J. P. Patist, W. Kowalczyk, and E. Marchiori, “Maintain-
ing gaussian mixture models of data streams under block
evolution,” in International Conference on Computational
Science, 2006.

[144] R. C. Pinto and P. M. Engel, “A fast incremental gaussian
mixture model,” PloS one, 2015.

[145] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song,
“Bootstrapping for approximate homomorphic encryption,”
in EUROCRYPT, 2018.

[146] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Nu-
merical method for comparison on homomorphically en-
crypted numbers,” in ASIACRYPT, 2019.

A Discussion of Strengths and
Weaknesses of Additional
Clustering Algorithms

Affinity Propagation. Affinity Propagation [135] is a de-
terministic partitioning-based clustering algorithm that has a
computational complexity of O(N2t) and space complexity of
O(N2), where N is the dataset size and t the number of cluster-
ing iterations [136]. It flexibly determines the required number of
clusters based on the input data such that outliers that do not fit
into any cluster form a a cluster on their own [135]. The cluster-
ing result is independent of the input order of the data records,
as Affinity Propagation always iterates through the complete
dataset in each iteration. Affinity Propagation requires the in-
put of a preference value for each input record that indicates its
likelihood to be chosen as exemplar (similar to a centroid in K-
means) of a cluster. If the preference values are not well chosen, it
can lead to suboptimal clustering results [137]. If all records are
equally likely the preference values are set to the same value for
all records, e.g., the median or minimum of the distances [135].
The respective distance measure can be freely chosen, thus, also
any variable type could be clustered [138]. On the downside,
Affinity Propagation can only detect spherical clusters [139] and
a re-clustering is needed if new data records are added to the
input dataset after it has already been clustered, as this changes
the responsibility and availability matrices.
BIRCH. Balanced Iterative Reducing and Clustering using Hi-
erarchies (BIRCH) is a divisive HC algorithm [140]. Its compu-
tation and space complexity is linear in the dataset size [40].
Generally, BIRCH is relatively insensitive to noisy elements as
it allows to remove elements in sparse regions [40, 140]. Because
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each input record is processed incrementally and inserted into
the subtree representing the assigned closest cluster, BIRCH can
handle new data records well, but is affected by the input or-
der [40, 140]. Moreover, it can only detect convexly shaped clus-
ters with records with metric attributes [40, 140]. Additionally,
BIRCH requires to input a threshold for the maximal cluster size
and the branching factor of the tree. If the number of cluster K
is not given, all sub-clusters in the tree are returned.
GMM. Gaussian Mixture Models (GMM) Clustering is
a distribution-based clustering algorithm that uses the
Expectation-Maximization (EM) algorithm [64, 141]. GMM has
a computational complexity of O(NKd3t), where N is the
dataset size, K is the number of cluster, d is the data dimension,
and t the number of clustering iterations and its space complex-
ity is also linear in N [142–144]. The assumption of a Gaussian
distribution of cluster elements restricts the type of the variables
to real numbers. GMM fails when clusters have specific constel-
lations, e.g., when one cluster is surrounded by another one, or
if the clusters are not convexly shaped. It takes the number of
clusters K as input and is relatively sensitive to the selection of
the initial parameters of the cluster distributions [41]. Although
GMM does not explicitly acknowledge the notion of noise, its
result is relatively insensitive to outliers [40, 54], but Keller et
al. [16] demonstrate that outliers can still cause significant mis-
classifcations and incorrect merges between different clusters.
As it process the whole data set in each iteration, GMM is not
affected by the input order. A few new data records can be clus-
tered by GMM with only a few additional iterations.

B Summaries of Fully-Private
Clustering Protocols

MPC-KMeans [11].Mohassel et al. [11] propose a secure two-
party K-means (cf. §2.1) protocol in the semi-honest security
model using the ABY framework [10] for secure two-party com-
putation. We call this protocol MPC-KMeans in the following.
MPC-KMeans can also be used in an outsourcing scenario [70]
where multiple data owners outsource the clustering to two non-
colluding servers. The authors also propose a multi-party variant
where parties first locally run the plaintext K-means on their lo-
cal datasets and then proceed to securely compute the joint clus-
tering result based on the previously determined local centroids
of all parties.

In the two-party protocol, each data owner runs the plain-
text K-means algorithm on its local datasets to compute K

2 local
clusters. The centroids of these clusters are then secret-shared
and used to initialize the centroids for the clustering over the
combined dataset.

MPC-KMeans’ building blocks are optimized for two com-
putational settings: the amortized setting where the same func-
tion is evaluated multiple times on different inputs and the adap-
tive setting where the inputs to multiple evaluations of the func-
tion depend on the output of previous evaluations. Intuitively,
the updates of the centroids are non-adaptive in one cluster-
ing iteration but adaptive across several iterations. Therefore,
the authors introduce efficient protocols for secure multiplica-
tion and the calculation of the squared Euclidean distance in

the adaptive amortized setting. They also propose an efficient
protocol for computing the index of the minimum element in a
list of t values using a recursive tree evaluation of a customized
Garbled Circuit. This increases the number of rounds by dlog te,
but it reduces the communication costs by a factor of 2. MPC-
KMeans terminates when the difference between new and old
centroids is less than a predefined threshold.

The authors use the squared Euclidean distance. They also
benchmark the Manhattan distance ( max

i∈[1,d]
|xi − yi|, where d is

the dimension) and Chessboard distance (
∑d

i=1 |xi − yi|), but
show that computing squared Euclidean distance in the adap-
tive amortized setting is faster than the other two distances. The
computation is done on fixed point numbers using the truncation
method of [69] where each party locally truncates its share with
an error of at most one bit in the least significant bit of the frac-
tional part. The authors show that truncation has a negligible
impact on the accuracy of clustering.
HE-Meanshift [9]. Cheon et al. [9] propose a HE-friendly
variant of the Mean-shift clustering algorithm (cf. §2.1) in the
semi-honest security model using the fully homomorphic encryp-
tion (FHE) scheme CKKS [66, 145]. We call this protocol HE-
Meanshift in the following. The protocol is designed for the out-
sourced computation setting where a single, possibly resource-
constrained, data owner securely outsources the computation to
a server.

CKKS computes on real numbers, but it supports only ad-
dition and multiplication. Thus, HE-Meanshift replaces the non-
polynomial operations in Mean-shift by polynomial operations.
The gradient ascent algorithm used in Mean-shift for mode-
seeking requires computing the derivative of the kernel. The
authors of [9] propose the HE-friendly polynomial kernel Ghe
shown in Eq. 1. Given the degree parameter Γ ∈ N, the deriva-
tive of Ghe can be computed with a constant multiplicative fac-
tor using Γ + 1 multiplications and 2 subtraction operations.

Ghe(x, y) = (1− ‖x− y‖2)2Γ+1
. (1)

HE-Meanshift uses a fixed bandwidth parameter h = 1 in
the kernel density estimator (KDE) used to compute the den-
sity function in Mean-shift. h is a smoothing parameter for the
density function and it is the only parameter for the classical
Mean-shift algorithm. Although h is fixed in HE-Meanshift, the
Γ parameter still offers some flexibility by amplifying the dis-
tance between the data points.

Due to the computation overhead of FHE, the authors
adopt a random sampling strategy called dust sampling which
involves sampling Kd points called dusts from the dataset to re-
duce the O(N2) complexity of the original Mean-shift algorithm.
HE-Meanshift then performs the mode-seeking on the dusts in-
stead on all points in the dataset. Recall that modes are points
corresponding to local maxima in the KDE and represent ar-
eas of high density. In Mean-shift, each point is mapped to the
cluster containing the closest mode and the number of clusters
is equal to the number of distinct modes. Thus, HE-Meanshift
can use a relatively low value for Kd that is at least equal to the
number of clusters K to compute all clusters in the dataset. This
not only improves the efficiency of the mode-seeking but also re-
duces the costs for bootstrapping, which is now proportional to
Kd. However, setting Kd requires prior information about the



SoK: Efficient Privacy-preserving Clustering 246

number of clusters in the dataset in contrast to the plaintext
Mean-shift where only a value for h is needed.

After a predefined number of iterations, each point in the
input dataset is assigned a cluster label based on the final value
of the dusts. Since two or more sampled dusts might converge
to the same mode and hence the same cluster, HE-Meanshift
uses a secure PointLabeling algorithm to robustly assign records
to clusters. The Inv and MaxIdx protocols of [146] are used for
division and comparison.

HE-Meanshift does not require communication except from
sending and receiving the data to/from the untrusted processing
party. It is usable for a single data owner outsourcing the clus-
tering. However, the protocol is not usable for most outsourcing
scenarios where multiple data owners cluster their joint data
since the encrypted output can be decrypted only by a single
data owner.
PCA/OPT [19]. Meng et al. [19] introduce two-party privacy-
preserving hierarchical clustering (HC) protocols with single and
complete linkage (cf. §2.1) in the semi-honest security model
using additively homomorphic encryption [65] and Yao’s Gar-
bled Circuits [21]. In contrast to the protocols discussed be-
fore in §3, they do not return the resulting clusters/its indices,
but a dendrogram (cf. §2.1) indicating the clustering’s merging
history and metadata containing statistical information about
each merge like the new cluster’s size and a representative el-
ement/centroid. To limit information leakage through this re-
turned metadata, the protocols output only metadata of suffi-
ciently large merges or of the final clusters.

In the baseline protocol, called PCA, the two parties cal-
culate the pairwise squared Euclidean distances between the
clusters using the additively homomorphic property of Paillier
encryption [65]. Then, both parties get access to the plaintext
values of the distance matrix blinded with random values such
that they can collaboratively cluster the input elements and up-
date the merging dendrogram leveraging two GC-protocols that
determine the minimum/maximum distance.

The authors introduce an extension of PCA called OPT
that reduces HC’s computation complexity of O(N3), whereN is
the dataset size, with single linkage by leveraging the symmetry
of the minimum distance. This accelerates the search for the
next pair of clusters that have to be merged by a factor of N .

PCA can also be extended to the outsourcing scenario [70]
where an arbitrary number of data owners secret share their in-
put data among two non-colluding servers that run the privacy-
preserving clustering. However, an extension to more than two
servers is not straightforward due to the usage of GCs.
ppDBSCAN [18]. Bozdemir et al. [18] propose a privacy-
preserving DBSCAN [60] protocol in the semi-honest security
setting using the ABY framework [10]. We call this protocol
ppDBSCAN in the following. ppDBSCAN can either be used
as secure two-party computation protocol or in an outsourcing
scenario with two computing parties, e.g., servers, and an arbi-
trary number of data owners. The authors point out that the
post-processing can be adapted to provide an arbitrary output,
e.g., cluster labels, cluster sizes, etc. By assessing the needed
recursive depth of the neighborhood exploration ppDBSCAN’s
complexity can be reduced to a low cubic complexity (from nor-
mal cubic complexity). All computations are done on integers.

Initially, the data owners arithmetically share their input
records among the two non-colluding parties (which are poten-

tially represented by themselves). Then, the pair-wise squared
Euclidean distances are computed between all data records in
Arithmetic Sharing [20] to assess which elements have suffi-
ciently many neighbors (i.e., lie in a dense area) to form a clus-
ter. The results are stored as binary values to enhance the the
efficiency of the clustering process mostly done with GC [21].
Additionally, the distance computation and the cluster expan-
sion is also parallelized with SIMD operations.

C Additional Benchmarking
Results

Fig. 3 summarizes the WAN runtimes of the fully private cluster-
ing protocols on small datasets. Fig. 4 depicts the memory con-
sumption of the fully private clustering protocols for a small and
large dataset. Fig. 5 summarizes the runtime of HE-Meanshift
and MPC-KMeans on large datasets over LAN network.
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Fig. 3. WAN runtime in seconds of the private clustering pro-
tocols MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19],
and ppDBSCAN [18] for varying dataset size N , K=2 clusters,
dimension d = 8, and bitlength ` = 32.

Fig. 4. Memory consumption in GB of the privacy-preserving
clustering protocols ppDBSCAN [18], PCA/OPT [19], HE-
Meanshift [9], and MPC-KMeans [11] for a small (N = 200, d =
8,K = 10) and large (N = 65536, d = 4,K = 20) dataset.
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D Additional Clustering Quality
Evaluation

We compare the clustering quality on nine widely used datasets:
Hepta (Tab. 6), Lsun (Tab. 7), Target (Tab. 8), Wingnut
(Tab. 9), Tetra (Tab. 10), Chainlink (Tab. 11), and EngyTime
(Tab. 12) from [122]; and Dense (Tab. 13) and ZigZag Noisy
(Tab. 14) from [123]. Each dataset has different characteristics
such as different cluster shapes or different densities.

Algorithm ARI AMI SI CHI

Ground Truth - - 0.883 519.937
MPC-KMeans 0.869 0.946 0.754 292.539
KMeans++ 1.0 1.0 0.883 519.937
HE-Meanshift 0.667 0.834 0.603 156.518
Mean-shift 1.0 1.0 0.883 519.937
ppDBSCAN 1.0 1.0 0.609 384.439
OPT 1.0 1.0 0.883 519.937
PCA 1.0 1.0 0.883 519.937

Table 6. Hepta

Algorithm ARI AMI SI CHI

Ground Truth - - 0.609 384.439
MPC-KMeans 0.405 0.524 0.653 485.003
KMeans++ 0.405 0.524 0.653 485.003
HE-Meanshift 0.434 0.537 0.234 220.118
Mean-shift 0.366 0.445 0.589 293.479
ppDBSCAN 1.0 1.0 0.609 384.439
OPT 1.0 1.0 0.609 384.439
PCA 0.405 0.529 0.641 458.157

Table 7. Lsun

Algorithm ARI AMI SI CHI

Ground Truth 1 - - 0.260 27.869
Ground Truth 2 - - 0.249 0.494
MPC-KMeans 0.534 0.615 0.678 709.651
KMeans++ 0.611 0.639 0.742 738.291
HE-Meanshift 0.215 0.311 0.383 101.586
Mean-shift 0.626 0.645 0.766 590.057
ppDBSCAN 1.0 1.0 0.249 0.494
OPT 1.0 1.0 0.249 0.494
PCA 0.207 0.377 0.506 90.502

Table 8. Dataset Target

Algorithm ARI AMI SI CHI

Ground Truth - - 0.630 1061.016
MPC-KMeans 0.417 0.326 0.567 805.066
KMeans++ 0.425 0.334 0.570 815.492
HE-Meanshift 0.475 0.451 0.373 611.832
Mean-shift 0.638 0.538 0.621 1027.873
ppDBSCAN 1.0 1.0 0.630 1061.016
OPT 1.0 1.0 0.630 1061.016
PCA 1.0 1.0 0.630 1061.016

Table 9. Dataset Wingnut

Algorithm ARI AMI SI CHI

Ground Truth - - 0.726 418.391
MPC-KMeans 0.961 0.975 0.689 390.920
KMeans++ 1.0 1.0 0.726 418.391
HE-Meanshift 0.518 0.587 0.124 109.916
Mean-shift 1.0 1.0 0.726 418.391
ppDBSCAN 0.94 0.94 0.694 391.819
OPT 0.000 0.000 -0.436 1.472
PCA 0.987 0.982 0.718 409.221

Table 10. Dataset Tetra

Algorithm ARI AMI SI CHI

Ground Truth - - 0.179 250.865
MPC-KMeans 0.088 0.065 0.525 718.934
KMeans++ 0.087 0.064 0.525 718.788
HE-Meanshift 0.132 0.160 0.262 353.929
Mean-shift 0.223 0.272 0.405 574.488
ppDBSCAN 1.0 1.0 0.179 250.865
OPT 1.0 1.0 0.179 250.865
PCA 0.313 0.388 0.463 575.488

Table 11. Chainlink

Algorithm ARI AMI SI CHI

Ground Truth 1 - - 0.557 2921.700
Ground Truth 2 - - 0.577 3075.082
MPC-KMeans 0.844 0.783 0.578 3158.931
KMeans++ 0.843 0.783 0.578 3158.931
HE-Meanshift 0.801 0.720 0.198 1681.223
Mean-shift 0.833 0.769 0.578 3176.809
ppDBSCAN 0.612 0.493 -0.416 115.717
OPT 0.000 0.000 0.479 8.044
PCA 0.042 0.150 0.472 1318.72

Table 12. Dataset EngyTime

Algorithm ARI AMI SI CHI

Ground Truth - - 0.740 433.656
MPC-KMeans 0.756 0.713 0.790 497.182
KMeans++ 0.768 0.723 0.790 499.284
HE-Meanshift 0.838 0.779 0.540 277.155
Mean-shift 0.784 0.725 0.699 309.728
ppDBSCAN 0.935 0.904 0.762 503.083
OPT 0.000 0.019 0.490 15.626
PCA 0.257 0.348 0.631 231.817

Table 13. Dense

Algorithm ARI AMI SI CHI

Ground Truth 1 - - -0.050 30.858
Ground Truth 2 - - 0.500 317.869
MPC-KMeans 0.497 0.636 0.489 321.627
KMeans++ 0.519 0.655 0.540 362.227
HE-Meanshift 0.498 0.648 0.538 368.285
Mean-shift 0.542 0.699 0.510 351.971
ppDBSCAN 1.0 1.0 -0.050 30.858
OPT 1.0 1.0 -0.040 30.858
PCA 0.521 0.672 0.504 371.251

Table 14. Dataset ZigZag Noisy
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ABSTRACT
Clustering is an unsupervised machine learning technique that
outputs clusters containing similar data items. In this work, we in-
vestigate privacy-preserving density-based clustering which is, for
example, used in financial analytics and medical diagnosis. When
(multiple) data owners collaborate or outsource the computation,
privacy concerns arise. To address this problem, we design, imple-
ment, and evaluate the first practical and fully private density-based
clustering scheme based on secure two-party computation. Our pro-
tocol privately executes the DBSCAN algorithm without disclosing
any information (including the number and size of clusters). It
can be used for private clustering between two parties as well as
for private outsourcing of an arbitrary number of data owners to
two non-colluding servers. Our implementation of the DBSCAN
algorithm privately clusters data sets with 400 elements in 7 min-
utes on commodity hardware. Thereby, it flexibly determines the
number of required clusters and is insensitive to outliers, while
being only factor 19x slower than today’s fastest private K-means
protocol (Mohassel et al., PETS’20) which can only be used for spe-
cific data sets. We then show how to transfer our newly designed
protocol to related clustering algorithms by introducing a private
approximation of the TRACLUS algorithm for trajectory clustering
which has interesting real-world applications like financial time
series forecasts and the investigation of the spread of a disease like
COVID-19.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •Com-
puting methodologies→ Cluster analysis.
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Private Machine Learning, Clustering, Secure Computation
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1 INTRODUCTION
The availability of vast amounts of data and cloud computing power
nowadays has lead to hype around machine learning (ML). Super-
vised ML techniques like neural networks use labeled data records
(i.e., known input-output pairs) to train a model later utilized, e.g.,
for the classification of new records. In contrast, unsupervised ML
techniques have no “training” phase and aim at detecting unknown
patterns and structures in the unlabeled input data. Clustering is a
widespread unsupervised ML technique that partitions data into
groups of elements with similar properties. It has many privacy-
critical applications where sensitive business or personal data must
be protected spanning from financial analytics over market research
to medical diagnoses [1, 25, 55].

For such analyses, data from several sources is often needed, for
example, from competing (investment) banks or insurance compa-
nies to detect suspicious behavior [62] or from several hospitals to
get a diverse data set that is not biased due to diverse backgrounds
and demographics. Generally, clustering more data from several
sources commonly enhances the quality of analyses. Moreover, it
can be attractive to outsource computation and data due to high
requirements for storage and costly computation. However, in both
collaborative analyses and when outsourcing computation, the
sensitive input data requires protection against untrusted servers
and other data owners. Secure computation techniques can protect
against these parties to preserve data privacy.

Several optimized private clustering protocols using secure com-
putation have already been proposed for the well-known K-means
algorithm [48, 70]. However, K-means is relatively simple and can
only cluster specific data. It only detects convexly shaped clusters
such that it is only suitable for specific data collections. Addition-
ally, the number of clusters K needs to be determined in advance
which requires domain knowledge. Access to just a subset of the
input data makes it difficult to determine K. Also, K-means does
not include the notion of noise and its result is highly sensitive to
outliers as it has to assign every input to a cluster. Hence, even if a
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record does not fit into any cluster, it will be assigned to the least
distant one and heavily affect this cluster’s centroid (i.e., the mean
of all assigned elements).

Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is a more flexible clustering algorithm introduced by
Ester et al. in [19] to address the weaknesses of previously known
clustering algorithms like K-means. DBSCAN is able to detect ar-
bitrarily shaped clusters. Additionally, the number of clusters is
flexibly determined such that it fits to the data. The algorithm is
insensitive to outliers and specifically marks them as noise. Fig. 1
demonstrates the advantages of DBSCAN over K-means on four
different data sets.

TRACLUS [44], an extension of DBSCAN, is specifically de-
signed for clustering trajectories (i.e., sequences of multidimen-
sional points). Trajectories intuitively do not form convex clusters.
Furthermore, as trajectories often have different lengths, K-means
cannot straightforwardly cluster them, because it requires the same
fixed number of parameters for all inputs.

Private trajectory clustering can be a valuable mean for finan-
cial time series forecasts [28, 53] which are used by investors for
decision making and rely on the input of sensitive business data.
Additionally, it can be used for the privacy-preserving analysis of
location data collected by telecommunication providers to optimize
the services of the travel industry by determining typical travel-
ing routes. Another interesting application is the analysis of the
movement of (infected) people to control the spread of COVID-
19 while maintaining privacy in accordance to regulations like
the GDPR. In this context, it enables to detect people who used
similar routes while the service provider cannot learn individual
movements. Moreover, policy makers could use privacy-preserving
trajectory clustering to privately determine if people comply to
social distancing in the current pandemic before deciding about
further regulations.
Need for Full Privacy-preservation. As we will discuss in §2,
many previous “private” clustering protocols leak information be-
yond the output. We now demonstrate why leaking such intermedi-
ate information can cause a severe privacy breach using an example
from [46].

Liu et al. [46] demonstrate how leaking which elements are
neighbors, as done in [42], can be used to approximate data records
of other parties. We depict the attack in Fig. 2. Let us consider two
data owners, Alice and Bob, who hold a horizontally partitioned

Figure 1: Comparison of clustering results with K-means
and DBSCAN.

𝐴

𝐵!

𝐵"

𝐵#

Data records of Bob
Data records of Alice

ϵ

Figure 2: Approximating data records of other parties from
leaked information (cf. [46]). 𝜖 is a DBSCAN parameter in-
dicating the maximal distance between two data records to
be considered as neighbors (cf. §3.1).

data set, i.e., different data records that must not be leaked to each
other. Bob holds three data records 𝐵1, 𝐵2, and 𝐵3 that are too
far from each other (i.e., their mutual distances are greater than
𝜖 , cf. §3.1) to create a cluster themselves. However, when Alice
holds a data record 𝐴 that lies exactly in the intersection of the
neighborhoods of 𝐵1, 𝐵2, and 𝐵3 indicated by the circles with radius
𝜖 , Bob learns that all three of his data records are neighbors of the
same element of Alice. From this information and if this intersection
is small, Bob can accurately approximate 𝐴.

To summarize, such information leakage beyond the cluster-
ing output can cause serious privacy infringements, and hence
should be avoided. In this work, we provide the first fully privacy-
preserving DBSCAN algorithm that does not leak any information
beyond the output of the clustering.

Our Contributions and Outline
After summarizing related works in §2, we provide the following
contributions:
• Fully private DBSCAN:We design and implement the first
fully private DBSCAN scheme based on secure two-party
computation (S2PC) that achieves the same clustering quality
as the plaintext algorithm (cf. §5.2). For this, we introduce
dedicated protocols for all components of DBSCAN including
a partial parallelization (cf. §4.3). Our solution can be used for
clustering between two parties that want to keep their inputs
private as well as for outsourcing scenarios where many data
owners secret-share their private input records among two
non-colluding servers [37] (cf. §4.1). Due to the usage of
generic S2PC, our protocols leak no information beyond the
output. They can flexibly be used for arbitrarily partitioned
inputs (cf. §4.3.1) and complemented with arbitrary private
post-processing of the output (cf. §4.3.5).
• Privacy-preserving trajectory clustering:We show that
our protocols can be used for the privacy-preserving de-
sign of particular instantiations of density-based clustering
schemes by introducing the first privacy-preserving trajec-
tory clustering protocol based on the TRACLUS algorithm.
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TRACLUS is a DBSCAN-based scheme optimized for clus-
tering trajectories, for which we design and implement an
approximated distance to improve its secure computation
efficiency (cf. §4.4).
• Open-source implementation and comprehensive em-
pirical evaluation: We benchmark our implementation1
and show that our protocols have practical runtimes on pub-
lic data sets (cf. §5.4). We compare the efficiency of privacy-
preserving DBSCAN to state-of-the-art privacy-preserving
solutions of the simpler and limited K-means algorithm [34,
48] (cf. §5.3). Furthermore, we show that our approximated
TRACLUS distance has similar clustering quality as the orig-
inal distance on public and real-world data sets (cf. §5.2.2).

2 RELATEDWORK
In this section, we discuss related work on privacy-preserving K-
means and DBSCAN clustering. Moreover, we give a brief overview
on privacy-preserving trajectory analysis.
K-means. Privacy-preserving K-means clustering protocols were
intensively discussed in the literature. They use different techniques
like homomorphic encryption (HE), random blinding, various se-
cure two-party computation (S2PC) and multi-party computation
(MPC) techniques, and combinations of the aforementioned.

Most early works assume that all parties have access to a subset
of the plaintext input and require that data owners actively partici-
pate in the clustering. Private K-means clustering on horizontally
partitioned data, i.e., each party holds a subset of the data records,
was addressed in [23, 35, 60]. [60, 68] investigate private K-means
clustering on vertically partitioned data, i.e., the data owners hold
the values of disjoint subsets of attributes of all data records. A flex-
ible mix of both partitioning types is called arbitrary partitioning
covered in [13, 32]. Unfortunately, many proposed schemes leak
intermediate values such as centroids [23, 35, 45, 60, 68], clusters’
sizes [23, 60], merging patterns [31], use incorrect calculations [32],
or require active participation of the data owner [45] (which makes
them not suitable for the outsourcing scenario). Another research
direction leverages differential privacy [8, 63–65] to protect individ-
uals’ data, but these works trade accuracy for better performance.
Only the following works provide full privacy guarantees while
achieving a high accuracy: [13, 34, 48].

Bunn and Ostrovsky [13] create a two-party private K-means
protocol using additive homomorphic encryption (AHE) in com-
bination with S2PC for arbitrarily partitioned data. However, the
usage of expensive AHE results in impractical runtimes.

Jäschke et al. [34] use fully homomorphic encryption (FHE) for
a protocol that enables a data owner to outsource the K-means
computation in a privacy-preserving way. To improve runtime,
they simplify the required calculation of the original K-means clus-
tering by approximating the centroid determination and distance
comparisons, but still the overhead is far from practical for larger
data sets.

Mohassel et al. [48] provide an efficient privacy-preserving K-
means protocol in the semi-honest security model using Yao’s Gar-
bled Circuits. In their work, they improve efficiency by utilizing
that K-means requires to calculate the same distance function with
1https://encrypto.de/code/ppDBSCAN

one fixed input, namely a point of the input data, to all (repeatedly
updated) centroids.
DBSCAN. Although density-based clustering has several advan-
tages as detailed in the beginning of §1, its privacy-preserving
realization is barely studied.

Anikin and Gazimov [5] design a privacy-preserving DBSCAN
protocol between an arbitrary number of parties with vertically
partitioned data in the semi-honest security model. Their scheme
uses additive blinding and HE. Besides expensive encryption oper-
ations, their protocol requires all parties to have plaintext access
to the data records, to be online, and to communicate extensively
which makes it not applicable to a privacy-preserving outsourc-
ing scenario. Additionally, one party executes the main part of the
computation and obtains the plaintext distances between the input
records, cluster assignments, and hence, cluster sizes. The authors
do neither provide a concrete instantiation of their protocol nor a
performance evaluation.

Similar reasoning applies for [4, 36, 42, 46, 72] who assume
vertically/horizontally partitioned data and for [3, 46] with arbi-
trary data partitioning. They use HE, blinding with random values,
and/or partially trusted third parties to protect data privacy. How-
ever, they leak information like cluster sizes and neighborhood
patterns [3, 36, 42, 46, 57] or distances between input records [4].
Under specific circumstances, the leaked information can be used
to concretely identify other parties’ input records [42, 46]. In [72],
complete data records are revealed when they belong to a clus-
ter. Again, no implementation and performance evaluation were
performed in these works.

Rahman et al. [57] introduce a privacy-preserving DBSCAN pro-
tocol using key-HE2 for an outsourcing scenariowhere an untrusted
server conducts the clustering with the help of the data owners.
Unfortunately, it leaks information such as the clusters’ sizes and
neighborhood patterns to the server. Again, no implementation and
performance evaluation were performed in that work.

In [51, 71], the authors leverage differential privacy [22] to pro-
tect the privacy of individuals’ data records. In these works, the
data owner performs the clustering, and an untrusted party later
requests access to parts of the results. This scenario is not trans-
ferable to executing the clustering with inputs from two or more
parties. Moreover, the level of noise added to the distance in each
parameter dimension depends on the privacy requirements and
will inevitably affect the meaningfulness of the data and, hence, the
quality of the clustering result.

To summarize, all existing protocols on private density-based
clustering assume that the involved parties have access to a frac-
tion of the plaintext input data (meaning that the data owners
actively participate in the protocol), use differential privacy (sacri-
ficing accuracy), are not fully private (leaking information), and/or
make heavy use of public-key cryptography (making the protocol
inefficient and not scalable). Our protocol is the first to be fully
precise (i.e., the same clustering quality as with plaintext DBSCAN
is achieved), fully private, and efficient for both the data owners and
server(s). It is usable in the outsourcing scenario and for two-party
computation (cf. §4.1).
2Such a HE scheme allows to combine ciphertexts created with different keys to
produce an encryption of the sum of the messages decodable with sum of the keys.
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Trajectory Analysis. Very few previous studies investigate the
problem of private trajectory analysis. Private-Hermes [54] and
Hermes++ [40] use anonymisation techniques to generate crafted,
realistic fake trajectories to allow users to securely query mobility
(trajectory) data sets. Other works such as [2, 26, 52] explore the
problem of private ride sharing which consists of finding a match
between parts of trajectories. To the best of our knowledge, no
previous work has investigated private trajectory clustering. Our
privacy-preserving TRACLUS protocol is the first that enables fully
privacy-preserving and efficient trajectory clustering between two
data owners and in the outsourcing scenario.

3 PRELIMINARIES
In this section, we introduce the original DBSCAN algorithm and
its adaptation TRACLUS. We also give the cryptographic building
blocks used in our protocols.

3.1 Clustering
3.1.1 DBSCAN. Density-based Spatial Clustering of Applications
with Noise (DBSCAN) [19] relies on a density-based neighborhood
notion. Elements that are located with many other elements in a
dense area form a cluster while data records in a sparse area are
marked as noise. This intuition is realized by determining core points
that have at least minPts other elements in a range of 𝜖 around
them. The range can be quantified with any distance measure. All
elements that are located in the neighborhood of a core point 𝑝 are
directly density-reachable from 𝑝 . If an element 𝑞 is connected via
a chain of core points 𝑝1𝑝2 ...𝑝𝑧 , with 𝑝𝑧 = 𝑞, where each 𝑝𝑖+1 is
directly density-reachable from 𝑝𝑖 , then𝑞 is called density-reachable.
All points in the chain have to be core points except from𝑞. A cluster
consists of a core point 𝑝 and all density-reachable elements from
𝑝 . Elements of a cluster that are not core elements but belong to the
neighborhood of a core element are border elements. If an element
is neither a core element nor a border element it is marked as noise.

As mentioned above, DBSCAN has two parameters minPts and
𝜖 .minPts determines how many data records need to lie in a neigh-
borhood to form a cluster. The larger the value ofminPts, the more
elements are marked as noise while the clusters get more dominant.
Ester et al. [19] suggest minPts = 4 for 2-dimensional data, Sander
et al. [61] recommend minPts = 2 · dim where dim denotes the
dimensionality of the data, but depending on the application, data
set size, and the noisiness of data, the optimal value can vary. 𝜖
determines the maximum distance between two data records to be
considered as neighbors. A large value of 𝜖 results in large clusters
whereas a small value of 𝜖 marks many elements as noise.

DBSCAN can be applied on data of an arbitrary dimension. Its
worst case complexity in the cleartext is O(𝑛2), where 𝑛 is the
number of input elements.

3.1.2 TRACLUS. TRAjectory CLUStering (TRACLUS) [44] opti-
mizes DBSCAN for sequences of multidimensional points (trajec-
tories) and consists of two phases: partitioning and grouping. In
the partitioning phase, the algorithm divides trajectories into sub-
trajectories that are called line segments. Each line segment is rep-
resented by two points. The partitioning phase ensures that the
output is close to the original trajectory (preciseness) and that the

 

 

  

Figure 3: TRACLUS’ tripartite distance. 𝐿𝑖 and 𝐿𝑗 denote two
line segments with start points 𝑠𝑖 /𝑠 𝑗 and end points 𝑒𝑖 /𝑒 𝑗
(cf. [44]).

number of line segments created is minimal (conciseness). After-
wards in the grouping (clustering) phase, TRACLUS uses DBSCAN
with the same parameters (minPts is namedminLns for the minimal
number of line segments). An optimal 𝜖 value can be determined
with simulated annealing [38]: It is set to the value that minimizes
the entropy of the clustering [44].

For the neighborhood determination, TRACLUS uses a special
tripartite distance that is illustrated in Fig. 3:

𝑑𝑖𝑠𝑡 (𝐿𝑖 , 𝐿𝑗 ) = 𝑤⊥ · 𝑑𝑖𝑠𝑡⊥ +𝑤 ∥ · 𝑑𝑖𝑠𝑡 ∥ +𝑤\ · 𝑑𝑖𝑠𝑡\ , (1)
where 𝐿𝑖 and 𝐿𝑗 are two line segments. The perpendicular distance
𝑑𝑖𝑠𝑡⊥ measures the vertical distance between 𝐿𝑖 and 𝐿𝑗 . The parallel
distance 𝑑𝑖𝑠𝑡 ∥ is the horizontal distance between 𝐿𝑖 and 𝐿𝑗 . The
angular distance 𝑑𝑖𝑠𝑡\ measures the directional difference between
𝐿𝑖 and 𝐿𝑗 . The components are weighted with 𝑤⊥, 𝑤 ∥ , and 𝑤\
(set to 1 by default) and summed up. See [44] for more details. In
§4.4, we give a secure computation-friendly approximation of the
tripartite TRACLUS distance.

3.2 Clustering Quality Indices
To evaluate the quality of a clustering method, several quality as-
sessment measures have been proposed. We employ the commonly
used Adjusted Rand Index (ARI), Silhouette Coefficient (SC), and
Density-Based Clustering Validation (DBCV).

3.2.1 Adjusted Rand Index (ARI). The ARI [29] is an external clus-
tering validation index. External means in this context that the
real partitioning, called the ground truth, must be known. It takes
two partitionings as an input and evaluates how many input pairs
are assigned to the same cluster by both partitionings, how many
pairs are assigned to different clusters by both, and how many
pairs belong to the same cluster in one partitioning but to different
clusters in the other. Additionally, it corrects the count for chance.
The ARI is 1 for a perfect clustering. Worse clustering results yield
smaller ARIs.

3.2.2 Silhouette Coefficient (SC). As clustering is an unsupervised
machine learning technique, a ground truth is normally not avail-
able. The most frequently used methodology to evaluate the quality
of the clustering result is the silhouette analysis [59]. This method-
ology analyzes the resulting clusters by evaluating the similarity
between the elements within the cluster and the elements of other
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clusters. The output is called the silhouette coefficient (SC) which is
close to 1 for a good clustering.

Although SC allows insights about how tightly elements are
clustered, it does not take outliers that remain unclustered, called
noise, into account. Thus, a penalty is needed to measure the SC
with noise as described in [49]. Let 𝑛 be the data set size and 𝑢 be
the number of not clustered elements. Then, multiplying the SC
with (𝑛 − 𝑢)/𝑛 gives the SC with noise penalty, 𝑆𝐶noise.

3.2.3 Density-Based Clustering Validation (DBCV). Anothermethod
specially designed to assess the quality of density-based cluster-
ing algorithms is the DBCV [49]. In contrast to the standard SC,
DBCV also takes noise into account. Similar to the other evaluation
metrics, a higher DBCV indicates a good clustering quality.

3.3 Secure Two-Party Computation
Secure computation allows two or multiple parties to securely com-
pute on private inputs. In this work, we use secure two-party com-
putation (S2PC) techniques. Typically, S2PC is used for two-party
applications, where two parties provide private inputs. Alterna-
tively, it can be extended to an outsourcing scenario [37], where an
arbitrary number of input parties secret-share their private input
data among two non-colluding servers. Secret-sharing allows to
split data into two random-looking values called secret-shares and
each of the two servers obtains one of these shares. To recover the
data, both servers would have to put their shares together (which by
the non-collusion assumption they do not do). The two servers then
jointly evaluate a function using S2PC on the shares without being
able to learn anything about the inputs or intermediate values.

The non-collusion assumption could be avoided by using homo-
morphic encryption (HE) [22] but currently available HE schemes
have a significant computational overhead as they use expensive
cryptographic primitives. Alternatively, usingmore than two servers
with tolerating one corruption yields better efficiency, e.g., [14, 47],
but have a larger attack surface as the corruption of any pair of
the multiple servers is sufficient to break privacy. Therefore, S2PC
is a reasonable trade-off between security and efficiency. Still, our
protocols in §4 are general and can easily be extended to more than
two parties/servers using hybrid secure multi-party computation
frameworks [14, 47].
Security Model. We consider the semi-honest security model
where the two non-colluding parties honestly follow the proto-
col while attempting to collect information about the other party’s
private inputs. This security model also protects against passive
attacks by curious administrators or accidental data leakage. The
non-collusion assumption can, e.g., be guaranteed between two
competing companies as it is in their interest to not give their cus-
tomer’s data to the competitor and to protect their business secrets.
Additionally, in an outsourcing scenario where one or several data
owners outsource the expensive computation to (cloud) servers, it is
reasonable to assume that the two servers are semi-honest, because
cloud providers are strictly regulated and threatened with severe
financial damage. Moreover, their reputation is damaged when ma-
licious behavior is detected. Hence, it is in the providers’ economic
interest to behave semi-honestly. In the outsourcing scenario, our
protocols in §4 are even secure against any number of malicious
data owners who can arbitrarily deviate from the protocol [37]. We

provide concrete examples how several applications can be realized
with S2PC in §4.
ABY.We use the S2PC framework ABY [16] that implements three
types of S2PC protocols, namely Yao’s Garbled Circuits [73], Boolean
GMW [24], and Arithmetic sharing, which is a generalization of
GMW, including state-of-the-art optimizations. Moreover, it enables
flexible conversions between the three sharing types. ABY supports
Single Instruction Multiple Data (SIMD) operations that efficiently
apply the same functionality on multiple inputs in parallel. SIMD
operations reduce memory usage and evaluation time. We use Yao’s
Garbled Circuits (i.e., Yao sharing) and Arithmetic sharing in this
work (cf. §B for details).

4 PRIVACY-PRESERVING DENSITY-BASED
CLUSTERING

In this section, we present our protocols for privacy-preserving
DBSCAN (ppDBSCAN) clustering, which for the first time provides
scalability with respect to data set size, the number of clusters, and
input records’ dimension as well as full privacy while maintaining
the clustering quality of the plaintext algorithm. We extend our
protocol to the private clustering of trajectories using the TRACLUS
algorithm (ppTRACLUS).

4.1 Application Scenarios
As already indicated in §3.3, our ppDBSCAN and ppTRACLUS can
be used in two application scenarios:
• Two-party Computation (2PC): Here, two data owners
privately perform the clustering on their vertically or hori-
zontally partitioned data. In such a classical secure two-party
computation, each of them runs one semi-honest party it-
self. The data owners could, for example, be two banks who
jointly investigate credit card frauds.
• Outsourcing: Here, one or multiple data owners outsource
their data as random-looking secret-shares (cf. §3.3) to two
non-colluding semi-honest parties (e.g., cloud servers) that
perform the private clustering via S2PC. The data owners
want to hide their sensitive data from any other party. As ex-
plained in §3.3, it is in the cloud providers’ interest to behave
semi-honestly and to not collude. The data owners can even
be malicious and arbitrarily deviate from the protocol [37].
Considering the application examples in §1, the data owners
can be, for example, multiple hospitals that join forces to
improve medical diagnosis or a telecommunication provider
that lawfully wants to monetize location information of cus-
tomers by selling privacy-preserving analytics to the travel
industry. To analyze people’s movements in a pandemic, a
governmental institution and a non-profit organization like
the EFF3 could operate the two non-colluding servers.

In the following, a party denotes one of the two non-colluding and
semi-honest parties that perform the privacy-preserving clustering.

4.2 Notation
We use the following notation in the remainder of this work: A
multiplexer gate (MUX) is denoted by 𝑎?𝑏:𝑐 which corresponds to
3https://www.eff.org
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if 𝑎 then 𝑏; else 𝑐 . An AND gate is denoted by ∧ and an OR gate
by ∨.

4.3 Privacy-preserving DBSCAN
In this section, we present our secure two-party computation (S2PC)
protocol for fully privacy-preserving DBSCAN including a partial
parallelization of the clustering. A discussion on its security prop-
erties is given in §C.

4.3.1 Flexible Inputs. Initially, the data owners use Arithmetic
sharing (cf. §3.3) to secret-share their data among each of the two
parties. Each of the two parties collects the secret-shares of the
inputs it receives from all data owners in a vector 𝑋 that is input
to the clustering. Additionally, the two processing parties can also
be provided with secret-shares of DBSCAN’s parameters minPts
and 𝜖 (cf. §3.1) such that they do not know them in the clear.

Note that the usage of Arithmetic sharing for the input data that
shall be clustered enables an arbitrary number of data owners to
easily join the clustering as no encryption key is needed. Moreover,
our ppDBSCAN can support any data splitting, i.e., horizontally
or vertically distributed data or an arbitrary mix of both, because
thanks to the Arithmetic sharing the data owners can simply secret-
share the attributes of the data records they are holding and send
these shares to the two parties who can sort them according to the
respective data records for the clustering.4

After receiving all shares from the data owners, the clustering
starts. DBSCAN can be split into two main building blocks, the
distance calculation and the clustering process, for which we design
novel S2PC protocols enabling a partial parallelization.

Listing 1: Privacy-preserving Squared Euclidean Distance
(SED) calculation.

1 Input : v e c t o r X / / n−dim . v e c t o r with inpu t data
2 𝜖2 / / sq . t h r e s h o l d
3 Output : d i s t / / n−dim . v e c t o r with SIMD − va l u e s :
4 / / d i s t [ l ] = ( SED (X[ k ] ,X[ l ] )< 𝜖2), 0 ≤ 𝑘 < 𝑛 ∗ /
5
6 sharedElements = combineToSIMD (X)
7 Vector d i s t ;
8 for ( i =0 ; i < n ; i ++) :
9 simdElement = [X[ i ] ] ∗ n / / n c o p i e s o f X[ i ]
10 sed = 0
11 for ( j =0 ; j < dim ; j ++) :
12 temp = sharedElements [ j ] − simdElement [ j ] / / Arithm
13 sed += temp ∗ temp
14 d i s t [ i ] = sed < 𝜖2 / / Yao
15 return d i s t

4.3.2 Parallelized Distance Calculation. In DBSCAN, pairwise dis-
tances between all input records are calculated to determine neigh-
borhoods. In general, any distance measure can be used. Ester et
al. [19] originally use the Euclidean distance (ED), but for more
efficient evaluation we use the squared Euclidean distance (SED)
which is common for S2PC, e.g., privacy-preserving face recogni-
tion [17]. To determine if two elements are neighbors, the ED of two
4Even the data set size can be hidden from the two processing parties by using dummy
data records, but one has to ensure that the added data records do not change the
clustering result. One option can be to duplicate data records in combination with
increasing the value ofminPts. Also the number of parameters per data record can
be hidden by adding dummy parameters that are set to the same value for all input
records such that they do not affect the clustering result.

input values 𝑥 and 𝑦 has to be smaller than 𝜖 which is equivalent
to 𝑆𝐸𝐷 (𝑥,𝑦) < 𝜖2.

List. 1 presents our private SED protocol. To massively parallelize
the computation, each party combines its secret-share of the 𝑗th
coordinates of each data record in 𝑋 with combineToSIMD(..) in one
SIMD arithmetic share (cf. §3.3) and collects these SIMD-shares in
a 𝑗-dimensional vector sharedElements. For every execution of the
for loop in Line 8, a 𝑗-dimensional vector simdElement is created by
each party where the 𝑗th entry contains 𝑛 times its secret-share of
the 𝑗 th coordinate of the 𝑖th input, where 𝑛 denotes the data set size.
In Lines 11-13, the SED is jointly calculated between the two parties.
Then, they jointly compare the result to the threshold 𝜖2 and only
the comparison result (secret-shared between the two parties) is
saved in the vector 𝑑𝑖𝑠𝑡 to reduce the storage requirement to 1 bit
per input record pair for each party. Given the symmetry of the
distance measure, this approach causes an overhead as it calculates
𝑛2 instead of ≈ 0.5𝑛2 distances. But this is compensated by enabling
parallel distance computation and a partial parallelization of the
clustering which substantially reduces memory consumption and
improves runtime. For multiplications and additions, Arithmetic
sharing is most efficient (addition can even be done for free), and
we convert the resulting shared SED to Yao sharing for efficient
comparison [16].

We point out that further optimizations for distance calculations
from [33, 48] can improve the runtime and/or communication costs
of our protocol. However, as our experiments in §5.4 show, com-
puting SEDs is only a small fraction of the total complexity, so we
did not implement further optimizations.

4.3.3 Parameter Estimation. As described in §3.1, DBSCAN has
two parameters: 𝜖 (now 𝜖2 because of the SED) determines the
maximal distance between two input records to consider them as
neighbors, and minPts is the minimal cluster size.

The minimal cluster sizeminPts is strongly dependent on the re-
spective use case. For example, if for the containment of COVID-19
contact restrictions have been put into place andmeetings with only
less than 10 people are allowed, minPts could be set to 10 to check
if and how many “illegal” meetings happened. We recommend to
choose minPts based on the use case and its privacy requirements
as well as the data set size. Generally, it is advantageous to aim for
larger clusters (i.e., to choose a sufficiently large minimal cluster
sizeminPts) as they generalize better and leak less information. For
our DBSCAN experiments in §5, we follow the recommendation
by [19] and setminPts = 𝑛

100 (resp.minPts = 4 for the smaller data
set), where 𝑛 is the data set size.

Similarly, for some use cases the value for 𝜖2 might already be
given by the application itself: When investigating the movements
of people for the containment of COVID-19, 𝜖2 can be set to 2
meters similarly as it is done in contact tracing apps [66]. Alterna-
tively, 𝜖2 can be estimated by plotting a sorted 𝑘-distance graph
as suggested in [19]. In an outsourcing scenario with a single data
owner, the data owner can determine the value of 𝜖2 locally. When
several data owners provide input data and the data is expected to
be approximately independent and identically distributed, it can
be sufficient that one data owner 𝐷𝑂𝑖 plots the graph with his
data setting 𝑘 = minPts/𝑛𝑖𝑛 , where 𝑛𝑖 denotes the size of 𝐷𝑂𝑖 ’s
input set. The proportion 𝑛𝑖

𝑛 and 𝑛 itself may also be approximated.
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Otherwise, the data owners can also agree on a value for 𝜖2 after
each data owner analyzed its data locally by a secure aggregation
of their local results.5 Furthermore, the calculation of a 𝑘-distance
graph and determination of 𝜖2 can also be realized with a secure
computation ahead of the clustering. However, such a secure com-
putation protocol for calculating 𝜖2 is not the focus of our work and
we leave it open for future work. Some works have already inves-
tigated private sorting [27, 33] and computing of the 𝑘-th nearest
neighbor [15, 33, 56].

The minimal possible 𝑘 is 2 and the minimal meaningful value
for minPts is 3. As noted in the beginning of §4.3, both parameters
can be secret-shared and no information is leaked.

Listing 2: Shared input element.
1 c lass SharedInputRecord ( minPts , / / ( minimal ne ighborhood

s i z e
2 s p l i t t e dD ) : / ∗ ( n−dim . v e c t o r with s u b s e t o f s p l i t t e d

d i s t ou tpu t by L i s t i n g 1 ) ∗ /
3 c l u s t e r I d = 0
4 i sNo i s e = 0
5 notProcessed = 1
6 Vector ne ighbors = s p l i t t e dD
7 va l idNe ighborhoodS i ze = minPts < hamming_weight (

s p l i t t e dD )

4.3.4 Partially Parallelized & Private Clustering. To make DBSCAN
fully private, it is not sufficient to have a private distance calculation,
but also all intermediate information such as the clusters’ sizes,
assignment patterns, and number of clusters must not be leaked as
these can contain sensitive information.

The plaintext DBSCAN clustering is given in §A.We significantly
reduce the overhead of the neighborhood queries for every record
by calculating all distances in a parallelized fashion before starting
the clustering instead of doing it several times for every single
record like in the plaintext. For every input record, each party
creates an object of SharedInputRecord (cf. List. 2) which contains
its secret-shares of the object’s attributes’ values. The secret-shares
of the results of the comparison of the record’s distances to all other
records with 𝜖2 are stored in𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 . The combined secret-shares
of both parties of validNeighborhoodSize denote if an input has more
thanminPts neighbors, i.e., whether it is a core element (cf. §3.1). It
follows thatminPts has to be one less than in the plaintext DBSCAN
to obtain the same clustering result.

Each party collects all objects of SharedInputRecord in a vector
sharedElements and inputs it into our private clustering protocol in
List. 3. In Lines 7 to 14 in List. 3, the parties jointly check if the data
record 𝑒𝑙𝑒𝑚 was assigned to a cluster before and, if this is not the
case, they check if 𝑒𝑙𝑒𝑚 is a core element such that it creates a new
cluster or it is marked as noise. If a new cluster is created, the unclus-
tered neighbors of 𝑒𝑙𝑒𝑚 are also added to this cluster (Lines 23-26 in
List. 3). If the neighbors themselves are core elements, their neigh-
bors also have to be analyzed and added to the cluster (Lines 28-36
in List. 3) as they are density-reachable (cf. §3.1). In plaintext DB-
SCAN, this is realized with a queue which leaks neighborhood pat-
terns (cf. Lines 19-24 in List. 4). Therefore, for a privacy-preserving
realization, all elements always have to be checked instead to obliv-
iously expand a cluster. This allows us to parallelize these steps
5Secure aggregation protocols have been thoroughly investigated in the context of
smart metering, e.g., [18, 21, 43].

Listing 3: Privacy-preserving DBSCAN (ppDBSCAN) with
partial parallelization.

1 Input : v e c t o r sharedElements / ∗ n−dim . v e c t o r with
Sha r e d I npu tR e c o r d s ( c f . L i s t i n g 2 ) ∗ /

2 Output : sharedElements
3
4 / / c l u s t e r i n g in Yao
5 c u r r e n tC l u s t e r I d = 0
6 for each elem in sharedElements :
7 elem . c l u s t e r I d = elem . no tProcessed ?
8 ( elem . va l idNe ighborhoodS i ze ? c u r r e n tC l u s t e r I d : 0 ) :
9 elem . c l u s t e r I d
10 i sCoreElement = elem . va l idNe ighborhoodS i ze∧
11 elem . no tProcessed
12 elem . i sNo i s e = elem . no tProcessed ?
13 ( ! elem . va l i dNe igborhoodS i ze ) : elem . i sNo i s e
14 elem . no tProcessed = 0
15
16 s I sCoreElement = [ isCoreElement ] ∗ n / / n c o p i e s
17 sCu r r en tC lu s t e r I d = [ c u r r e n tC l u s t e r I d ] ∗ n / / n c o p i e s
18
19 for ( i =0 ; i < max I t e r a t i on s ; i ++) :
20 / ∗ c r e a t e SIMD va l u e s with th e va lue o f th e

r e s p e c t i v e a t t r i b u t e o f a l l s ha r edE l emen t s ∗ /
21 sC l u s t e r I d s , s I sNo i se , sNotProcessed ,

sVa l idNe ighborhoodS ize = combineSharesToSIMD (
sharedElements )

22
23 sVa l idNe ighbor = ( ( s I sNo i s e∨sNotProcessed )∧

s I sCoreElement )∧elem . ne ighbors
24 sC l u s t e r I d s = sVa l idNe ighbor ? sCu r r en tC lu s t e r I d :

s C l u s t e r I d s
25 sNotProcessed = sVa l idNe ighbor ? 0 : sNotProcessed
26 s I sNo i s e = sVa l idNe ighbor ? 0 : s I sNo i s e
27 / / check i f ne ighborhood s i z e and i f v a l i d n e i ghbo r
28 sNeighborsAreCoreElement = sVa l idNe ighbor ?

sVa l idNe ighborhoodS ize : 0
29
30 for ( k =0 ; k < n ; k++) :
31 sUpdateResultDistanceComp =
32 sNeighborsAreCoreElement∧sharedElements [ k ] .

ne ighbors
33 elem . ne ighbors [ k ] = ORTREE(

sUpdateResultDistanceComp ) ? 1 : elem . ne ighbors [ k ]
34
35 / / s p l i t simd va l u e s and update sha r edE l emen t s
36 updateSharedElements ( { s I sNo i se , sNotProcessed } ,

sharedElements )
37 updateSharedElements ( { s C l u s t e r I d s } , sharedElements )
38 c u r r e n tC l u s t e r I d = cu r r e n tC l u s t e r I d + isCoreElement / /

Arithm
39 return sharedElements

shown in Lines 19 to 36 in List. 3 with SIMD operations. However,
as 𝑒𝑙𝑒𝑚’s neighbors are changing, one has to repeat the loop start-
ing in Line 19 in List. 3 maximally 𝑛 times to accommodate the
neighbors of neighbors that are core elements through the update
in Line 33 in List. 3. This would increase the complexity of the pro-
tocol to O(𝑛3) to make it fully oblivious. But depending on the data
distribution few maxIterations are already sufficient. This yields a
complexity of O(𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 · 𝑛2). In our tests on the data sets
used in §5, setting𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 4 detects all clusters correctly.
Generally, many iterations are only needed if clusters consist of core
elements that are chained in a row; thus, simply speaking, if clusters
are particularly elongated. If the data owners cannot estimate the
needed maxIterations in advance, a privacy-preserving check can
be added that tests if the vector elem.neighbors in Line 33 in List. 3

Session 7A: Privacy (II)  ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

664



changed in the last iteration (or after a specific number of itera-
tions). This leaks one bit of information to the two parties to inform
them if they have to continue further iterations. This additional
information leaks only vaguely how the input data is distributed
which can be acceptable for applications as a trade-off for better
efficiency. The function 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑆ℎ𝑎𝑟𝑒𝑠𝑇𝑜𝑆𝐼𝑀𝐷 (..) takes a vector
with 𝑛 𝑆ℎ𝑎𝑟𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑐𝑜𝑟𝑑s as input and combines their 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑-,
𝑖𝑠𝑁𝑜𝑖𝑠𝑒-,𝑛𝑜𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑-, and 𝑣𝑎𝑙𝑖𝑑𝑁𝑒𝑖𝑔𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑆𝑖𝑧𝑒-values to SIMD
shares each containing 𝑛-values. 𝑢𝑝𝑑𝑎𝑡𝑒𝑆ℎ𝑎𝑟𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (..) does
the opposite, it takes SIMD shares as input, splits them, and updates
the corresponding 𝑆ℎ𝑎𝑟𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑐𝑜𝑟𝑑’s objects.

All bit-operations of our ppDBSCAN protocol in List. 3 are done
in Yao sharing and the addition in Line 38 is done with Arithmetic
sharing to optimize efficiency [16]. Furthermore, note that List. 3 is
independent of the number of clusters and the dimensionality of
the input. Only the distance calculation in §4.3.2 is influenced by
the dimensionality while the number of clusters has no effect on
the performance of ppDBSCAN. Its clustering’s complexity solely
depends on the input data set’s size 𝑛.

4.3.5 Flexible Output and Post-Processing. Note that our protocol
is applicable for both the outsourcing scenario where one or more
(possibly malicious) data owners outsource computation to two
non-colluding semi-honest (cloud) servers as well as for two-party
applications (cf. §3.3 and §4.1). In both scenarios, the output can be
provided to a third party, one or multiple data owners, or one of
the servers depending on the use case.

Furthermore, the output of a clustering can flexibly be adapted to
the application without leaking intermediate results. For example,
the clustering can return a cluster label for each data record. Alter-
natively or additionally, it can return the average (i.e., centroid) or
medoid of each cluster, or the number of clusters and respective
cluster sizes.

Our secure two-party computation (S2PC) protocols for ppDB-
SCAN allow to realize each of these options as well as any further
post-processing in a secure and efficient way by simply defining
what is sent back to the respective parties that shall receive the
output and optionally securely evaluating a post-processing circuit
via S2PC.

4.4 Privacy-preserving TRACLUS
In this section, we provide a S2PC protocol for privacy-preserving
trajectory clustering. For trajectory clustering with our privacy-
preserving clustering protocol based on TRACLUS (cf. §3.1.2), we
assume that the data owners hold a horizontally split data set,
i.e., each data owner holds full trajectories.6 They locally run the
TRACLUS partitioning phase and outsource the clustering phase
by providing arithmetic secret-shares (cf. §B) of the line segments
to the two processing parties.

Simplified and Approximated Distance Measure. As described in
§3.1.2, the computation of the TRACLUS distance involves complex
operations like sine computations which are relatively expensive
in S2PC (cf. §3.1.2). In order to ensure data privacy and execute the
6Considering, e.g., the use case of collecting humanmovements trajectories for analysis
purposes related to the containment of COVID-19, this trajectory data is typically
collected by telecommunication providers such that assuming horizontally split data
is plausible [9].

clustering phase in an efficient manner, we simplify this distance
calculation using an approximation. Afterwards, ppDBSCAN — as
presented in List. 3 — is executed.

As the Euclidean Distance (ED) is the most common measure
used for trajectory clustering [12], we propose to replace TRACLUS’
original distance with a combination of EDs. The perpendicular,
parallel, and angular distances are still partially taken into account
when using the EDs between each pair of points of the two line
segments. As already explained in §4.3.2, ED can be replaced by the
Squared Euclidean Distance (SED). Therefore, given line segment
𝐿𝑖 with start point 𝑠𝑖 = (𝑥𝑠𝑖 , 𝑦𝑠𝑖 ) and end point 𝑒𝑖 = (𝑥𝑒𝑖 , 𝑦𝑒𝑖 ) and
similar for line segment 𝐿𝑗 , our approximated distance measure
realized with arithmetic sharing for privacy-preserving TRACLUS
(ppTRACLUS) is defined as:

𝑑𝑝𝑝𝑡𝑟𝑎𝑐 (𝐿𝑖 , 𝐿𝑗 ) =𝑆𝐸𝐷 (𝑠𝑖 , 𝑠 𝑗 ) + 𝑆𝐸𝐷 (𝑠𝑖 , 𝑒 𝑗 )+
𝑆𝐸𝐷 (𝑒𝑖 , 𝑠 𝑗 ) + 𝑆𝐸𝐷 (𝑒𝑖 , 𝑒 𝑗 ) .

To summarize, the two processing parties first jointly compute
𝑑𝑝𝑝𝑡𝑟𝑎𝑐 and compared it then to 𝜖 ′ in order to check whether two
line segments are neighbors.7

5 EXPERIMENTAL EVALUATION
In this section, we present the experimental results of our ppDB-
SCAN and ppTRACLUS. We run the experiments with four public
data sets and one private real-world data set to show clustering
quality and to benchmark runtime and communication costs. Addi-
tionally, we compare to previous work on private K-means to show
the practicability of our ppDBSCAN.

5.1 Experimental Setup
Server Configuration. We implement our protocols using the
ABY framework [16] (cf. §3.3) which is written in C++ and uses
64-bit precision. The experiments are performed on two separate
servers each equipped with Intel Core i9-7960X CPUs with 2.8 GHz
and 128 GB RAM. As in an outsourcing scenario, the two servers
are well-connected over a 10 Gbit/s LAN with 0.2 ms RTT.
Scenario. As detailed in §4.1, ppDBSCAN can be run in an out-
sourcing or a 2PC scenario. Moreover, the data to be clustered can
be arbitrarily split among the data owners for ppDBSCAN. For
ppTRACLUS, we require a horizontal data splitting to enable each
data owner to locally execute the partitioning phase. In our bench-
marks, we secret-share and outsource all data records to the two
non-colluding servers to assess the efficiency and quality of our
ppDBSCAN and ppTRACLUS. This models an outsourcing scenario
with a single data owner, but we stress that the clustering (and
hence its efficiency and quality) is independent of the number of
data owner(s) and the data splitting between the data owner(s) in
the outsourcing scenario as well as of the data splitting between the
two parties in the 2PC scenario. It follows that our experimental
results are directly transferable to other scenarios and more data
owners as long as the data set size, the number of parameters, and
the number of clusters is equal to our reported setting.
Data Sets. For the evaluation of our private clustering protocols, we
use five data sets from different sources. Two are chosen based on
7We indicate the 𝜖 of ppTRACLUS with 𝜖′ to unambiguously differentiate it from the
𝜖2 used in ppDBSCAN.
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(a) Lsun (b) S1

Figure 4: Ground truth of data sets Lsun and S1.

Table 1: Clustering quality evaluation.

Data Set K-means DBSCAN
Lsun 0.4386 1.0
S1 0.9254 0.9757

previous work on private K-means [34, 48] to evaluate and compare
the efficiency and practicality of our ppDBSCAN. Additionally, we
evaluate the clustering quality of our simplification of the original
TRACLUS distance with a real world data set that contains location
data extracted frommobile phones and two public data sets, namely
the Hurricane and the Deer data sets used in the original TRACLUS
paper [44].
• Lsun: The Lsun data set [67] in Fig. 4a was used in [34, 48]
for evaluating private K-means protocols. It contains 400 2-
dimensional data points. Its ground truth contains 3 clusters
with different variances and cluster distances. The clusters
have 200, 100, and 100 elements.
• S1: S1 [20] in Fig. 4b is a 2-dimensional synthetic data set
with 5 000 samples that can be split into 15 spherical Gaussian
clusters with between 300 and 350 elements. The clusters
have an overlap of 9%. The set was used in [48, 65] to evaluate
private K-mean protocols.
• Travel: This “synthetic" data set (not related to real indi-
viduals) is a 2-dimensional trajectory data corresponding to
location of people’s mobile phones. It has been created and
provided by Orange S.A.8, a major telecom provider, based
on anonymized indicators of real trajectories. It consists of
40 000 line segments.
• Hurricane: This data set [44] has 2-dimensional track data
of Atlantic hurricanes from 1950 to 2006. It has 608 trajecto-
ries with 18 343 line segments.
• Deer: This data set [44] corresponds to 2-dimensional move-
ments of deers in 1995. There exist 32 trajectories which
correspond to 20 033 line segments.

Encoding. The Lsun data set consists of rational numbers. Similarly
as in previous work [34], we scaled the data to an integer repre-
sentation with a factor of 106 to use efficient S2PC protocols on
integers [16]. The S1, Deer, Hurricane, and Travel data sets were
already represented by integers.
8https://www.orange.fr

5.2 Clustering Quality
In the following, we compare the clustering quality of the output
of DBSCAN (which is exactly realized by ppDSCAN) to the results
of the well-known K-means algorithm on the data sets Lsun and
S1. Afterwards, we demonstrate that our simplified TRACLUS dis-
tance (cf. §4.4) provides a better clustering quality than the original
tripartite distance of TRACLUS (cf. §3.1.2) on our tested data sets.

5.2.1 Comparison between DBSCAN and K-means. As clustering
is an unsupervised ML technique, it is normally not possible to cal-
culate an accuracy, meaning the proportion of correct predictions/
classifications in supervised machine learning. However, Lsun and
S1 are artificial data sets, created to benchmark machine learning
algorithms, so their ground truths are known. For this reason, we
are able to evaluate the clustering quality of the outputs of K-means
and DBSCAN with the Adjusted Rand Index (ARI, cf. §3.2) which is
a widely used external clustering quality measure [6, 69].

For a fair comparison, we provide both clustering algorithms
with optimal values for their parameters. For K-means, centroids are
initialized at random, and we provide the right amount of clusters
(𝐾 = 3/15). For DBSCAN, we choose the parameters as described
in §4.3.3: 𝜖 = 2 × 1011 and minPts = 4 with Lsun, 𝜖 = 2.25 × 109
and minPts = 50 with S1.

Note that we use the Squared Euclidean Distance for DBSCAN
such that the output of DBSCAN is equal to the output of ppDB-
SCAN. Thus, the insights derived from the clustering quality eval-
uation in this section are directly transferable to the clustering
quality of ppDSBCAN.

The results shown in Tab. 1 are averaged across 10 experiments.
DBSCAN finds a better partitioning than K-means for both data
sets. Especially for Lsun, DBSCAN performs significantly better
than K-means. This is easily explainable by the data distribution
of both data sets (cf. Fig. 4a and Fig. 4b). K-means cannot correctly
split Lsun, because it only detects convex clusters which works
relatively well for the mostly round shaped clusters in S1, but not
for the two rectangular shaped ones in Lsun.

5.2.2 Validation of Simplified and Approximated TRACLUS Dis-
tance. We compare the clustering quality of ppTRACLUS with the
original TRACLUS. As no ground truth is known for the trajectory
data sets Hurricane, Deer, and Travel, we rely for this on well es-
tablished internal clustering quality indices [6, 41]: the Silhouette
Coefficient (SC) [59], SCnoise, and Density-Based Clustering Valida-
tion (DBCV) [41] (cf. §3.2). We conduct experiments with various
values for 𝜖 ′ and minLns for the Hurricane data set [44], the Deer
data set [44], and the Travel data set. As in [44], the optimal values
for 𝜖 ′ and minLns are computed with simulated annealing. The 𝜖 ′
values differ for TRACLUS and ppTRACLUS because of the differ-
ent distance measures. Note that all 𝜖 ′ for an Experiment 𝑖 ∈ {1, 2}
result in the same entropy level in simulated annealing.

Tab. 2 contains the results for the Hurricane data set. In Ex-
periment 1, TRACLUS outputs one cluster less than ppTRACLUS.
Moreover, the number of elements marked as noise and the num-
ber of clusters are larger with ppTRACLUS than with the original
plaintext TRACLUS. Nevertheless, we observe that ppTRACLUS
outputs better results with respect to SC, SCnoise, and DBCV than
the original TRACLUS. Results for the Deer data are given in §D.1.
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Table 2: Clustering quality assessment for TRACLUS and ppTRACLUS on the Hurricane data set. For all scores larger values
are better (best marked in bold).

Data Set Score Experiment 1 Experiment 2
TRACLUS ppTRACLUS TRACLUS ppTRACLUS

Hurricane

(𝜖 ′, minLns) (24, 5) (5000, 5) (4, 5) (2250, 5)
# of Clusters 2 3 11 13
Noise 129 150 597 645
SC 0.27 0.87 0.44 0.79
SCnoise 0.27 0.86 0.42 0.76
DBCV 0.72 0.97 0.64 0.76

Table 3: Results of Experiment 1 of the clustering quality as-
sessment for TRACLUS, ppTRACLUS, and ppTRACLUS’ on
the Travel data set. The best results are marked in bold.

Experiment 1
TRACLUS ppTRACLUS ppTRACLUS’

(𝜖 ′, minLns) (4200, 3) (450 × 106, 3) (450 × 106, 3)
# of Clusters 1 2 48
Noise 796 13092 13506
SC N/A 0.83 0.98
SCnoise N/A 0.56 0.65
DBCV N/A 0.67 0.37

Tab. 3 contains the results of Experiment 1 of ppTRACLUS and
TRACLUS for the Travel data set. Tab. 6 in §D.1 contains the re-
sults of Experiment 2 of ppTRACLUS and TRACLUS for the Travel
data set. We notice the same behavior with respect to the quality
evaluation metrics as for the Hurricane and Deer data sets shown
in Tab. 2 and Tab. 5 in §D.1. In Experiment 1, the number of input
records marked as noise by ppTRACLUS is larger than the number
of elements marked as noise by the original plaintext TRACLUS.
However, when fine-tuning the values of 𝜖 ′ and minLns, it is possi-
ble to decrease the number of elements marked as noise (cf. Tab. 6
in §D.1 and §5.4 in [44]). Both algorithms output relatively few
clusters while this particular data set (illustrating peoples’ travel
patterns) may need more precision (i.e., more clusters). One illus-
trative example is the identification of typical routes between two
locations A and B. In this example and for this particular data set,
ppTRACLUS groups all line segments in one cluster because of its
expansion method (cf. Line 19 of List. 3). We propose to reduce
𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to 1 in order to take only the first-level neighbors
into account and to obtain a larger variety of clusters (containing
trajectories that reach B by passing through different locations
𝐿𝑖 , 0 ≤ 𝑖 ≤ 𝑚𝑎𝑥𝐿𝑜𝑐) and call this adaption ppTRACLUS’. We run
the same two experiments for ppTRACLUS’. Our results show that
the number of clusters increases with good results for SC, SCnoise,
and DBCV.

To summarize, our simplified and approximated distance mea-
sure 𝑑𝑝𝑝𝑡𝑟𝑎𝑐 tends to create a greater number of clusters (resulting
in smaller clusters in average) and marks more elements as out-
liers. Nevertheless, our quality evaluation with well-established
clustering quality indices surprisingly gives even better results for

the three analyzed data sets showing that its performance is com-
parable to the original tripartite distance measure of TRACLUS.

Intuition for better Clustering Quality of ppTRACLUS. Intuitively,
our approximated distance𝑑𝑝𝑝𝑡𝑟𝑎𝑐 summarizes all possible location-
based differences between two line segments while the original
tripartite distance explicitly focuses on horizontal, vertical, and
angular distance. Hence, the original distance might unnecessarily
amplify differences of the three different distance types although
those might be partially equalized when considering the combined
effect as done by 𝑑𝑝𝑝𝑡𝑟𝑎𝑐 . It follows that our approximation might
generalize better than the original which could be the reason for the
better clustering results. To conclude, ppTRACLUS with our𝑑𝑝𝑝𝑡𝑟𝑎𝑐
offers efficient privacy protection with high clustering quality.

5.3 Runtime Comparison and Evaluation
In this section, we compare the runtime of our ppDBSCAN to two
state-of-the-art fully privacy-preserving clustering schemes pre-
sented in [34, 48]. These two works focus on the K-means algorithm
which is significantly less powerful than DBSCAN and, thus, often
yields worse clustering results than DBSCAN (cf. §1). We do on
purpose not experimentally compare to the previous works on pri-
vate DBSCAN as all of these works leak intermediate information
whereas our protocol does not (cf. §2) . Moreover, none of these
works was implemented and experimentally evaluated.

Tab. 4 contains the runtimes of two state-of-the-art private K-
means protocols [34, 48] with the Lsun data set and of [48] with the
S1 data set. Both works use a better network than we do: [34] uses
a single Intel i7-3770 with 3.4 GHz and 20 GB RAM. [48] ran their
experiments locally on an Intel Core i7, 2.6 GHz with 12 GB RAM
over a simulated LAN with 10 Gbit/s and 0.02 ms RTT. For both
works, we present the best achieved runtimes, which is in [48] an
exact calculation with 15/30 iterations. [34] simplifies the original
K-means algorithm to get rid of divisions with encrypted denomi-
nators that are originally needed to update the centroids as they
are expensive to realize with HE. Their fastest approximation needs
15.47 h for one iteration but it takes 40 iterations until convergence
and sacrifices some accuracy for this speed-up. Our runtime for
Lsun is averaged across 10 experiments. Because of time constraints,
we approximate the overall runtime of our protocol for the S1 data
set by multiplying the average runtime of one iteration by the data
set size and adding the average distance calculation time. We use
the same DBSCAN parameters as in §5.2.
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Table 4: Runtime comparison of private clustering schemes.

Algorithm Privacy-preserving K-means ppDBSCAN
Data Set Jäschke et al. [34] Mohassel et al. [48] This work
Lsun 25.79 days 22.21𝑠 420.72𝑠
S1 - 1, 472.60𝑠 620, 912.70𝑠
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Figure 5: Runtimes and communication of our ppDBSCAN
and ppTRACLUS.

Tab. 4 shows that our ppDBSCAN is about 19x (for Lsun) and
422x (for S1) slower than the private K-means protocol of [48], but
more than 5 000x faster than the HE-based private K-means protocol
of [34] on the small data set Lsun. While in K-means optimizations
like batching [48] reduce runtime, making DBSCAN fully private
adds additional computation compared to the plaintext algorithm.
Again, we want to emphasize that DBSCAN is more complex than K-
means but also more powerful since it can detect arbitrarily shaped
clusters, automatically determine the required number of clusters,
and handle noise, which results in a higher clustering quality.

5.4 Scalability
Although DBSCAN has an inherent worst case complexity of O(𝑛2),
it is one of the most used clustering algorithms because of its fa-
vorable properties. Making it private inherently implies additional
overhead. Still, our protocol is practical as shown in Fig. 5 (exact

numbers are provided in §D). The complexities for computing the
two distances scale quadratically in the data set size, while the
clustering has a low cubic complexity.

The squared Euclidean distance (SED) is applied on 2-dimensional
data, 𝑑𝑝𝑝𝑡𝑟𝑎𝑐 on 4-dimensional line segments. maxIterations is set
to 4. As discussed in §4.3.4, an increase of the inputs’ dimension
will only affect the runtime and communication of the distance
calculation, but not of the clustering process. The distance calcu-
lation scales linearly in the dimensionality of the input records.
Moreover, a larger number of clusters does not change our clus-
tering and therefore also not the clustering’s costs. To summarize,
the private clustering component of ppDBSCAN is independent of
the number of clusters and the data dimensionality. In contrast,
private K-means [34, 48] requires to newly calculate the distances
to the centroids in every iteration, such that its efficiency is heavily
affected by an (1) increased input dimension, (2) a higher number of
clusters (i.e., more centroids), and (3) it leaks the number of clusters
𝐾 by design.

6 CONCLUSION
In this work, we presented the first fully private DBSCAN based on
secure two-party computation. We designed efficient protocols for
ppDBSCAN and introduced a partial parallelization for the cluster-
ing. Furthermore, we showed that our protocols can be extended
to other density-based clustering algorithms by introducing the
first private trajectory clustering which has interesting real-world
applications for financial time series forecasts or analyzing people’s
movements in a pandemic. We designed a S2PC-friendly approxi-
mated distance measure for trajectories and evaluated its quality
showing that it can even offer a better clustering quality than the
original TRACLUS distance. Finally, we demonstrated ppDBSCAN’s
efficiency in terms of runtime and communication with benchmarks
on real-world and public data sets and compared its overhead to
state-of-the-art private K-means [34, 48] whose limitations we over-
come.
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A PLAINTEXT DBSCAN CLUSTERING
List. 4 shows the plaintext DBSCAN clustering as described in §3.1.
For each unclassified data record 𝑒𝑙𝑒𝑚 (i.e., it was not assigned
to a cluster yet) of the input data set, it is checked if 𝑒𝑙𝑒𝑚 has at
least minPts neighbors (i.e., at least minPts elements in a radius
of 𝜖 , cf. Line 9). If this is the case, a new cluster 𝑐 containing 𝑒𝑙𝑒𝑚
and its neighbors is created in Lines 10 to 12. Otherwise, 𝑒𝑙𝑒𝑚 is
considered as outlier and marked as noise (cf. Line 14). The func-
tion 𝑒𝑥𝑝𝑎𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (..) recursively iterates through all neighbors
of 𝑒𝑙𝑒𝑚 and the neighbors of the neighbors to check if they are
unclassified and core elements (cf. Line 21). If this is the case, they
will also be added to cluster 𝑐 .

Listing 4: Plaintext DBSCAN Clustering
1 Input : input , eps , minPts
2 Output : c l u s t e r s
3
4 dbscan ( vec to r data , eps , minPts ) :
5 vec to r c l u s t e r s
6 for each elem in input :
7 i f ( elem . i s U n c l a s s i f i e d ( ) ) : / / no c l u s t e r a s s i g n e d
8 ne ighbors = elem . getNeighbors ( )
9 i f ( | ne ighbors | >= minPts ) : / / b i g enough ?
10 c = new C lu s t e r ( )
11 c l u s t e r s . push ( c )
12 expandClus ter ( elem , neighbors , eps , minPts , c )
13 else : / / n o i s e
14 elem [ i ] . markAsNoise ( )
15 return c l u s t e r s
16
17 expandClus ter ( p , queue , eps , minPts , c ) :
18 c . add ( p )
19 while ( queue . notEmpty ( ) ) :
20 q = queue . pop ( )
21 i f ( q . i s U n c l a s s i f i e d ( ) && | q . ge tNeighbors ( ) | > minPts ) :
22 queue . append ( q . ge tNeighbors ( ) )
23 i f ( q . i s U n c l a s s i f i e d ( ) | | q . i sNo i s e ( ) ) :
24 c . add ( q )

B S2PC TECHNIQUES
Garbled Circuits. Yao’s Garbled Circuits (GC) [73] allow to se-

curely evaluate Boolean circuits between two parties. One party,
called garbler, encrypts the gates of the circuit using random keys
for each wire and sends it (now called garbled circuit) together with
the keys associated to his inputs to the other party, called evaluator.
The evaluator receives the keys associated to his inputs via Obliv-
ious Transfer (OT) [7, 30, 50] from the garbler. After decrypting
the garbled circuit, the parties jointly decode the output keys. ABY
includes state-of-the-art optimizations like Free-XOR [39], fixed-
key AES [11], and Half-Gates [74]. XOR gates are for free and AND
gates cost 2^ bits of communication in an input-independent setup
phase, where ^ = 128 is the symmetric security parameter [16].

Arithmetic Sharing. Arithmetic sharing uses additive shares of
𝑙-bit integers in the ring Z2𝑙 . To share the secret value 𝑥 , the data
owner (who can be one of the parties) chooses a random value
𝑟 ∈𝑅 Z2𝑙 and sets ⟨𝑥⟩𝐴𝑖 = 𝑥−𝑟 and ⟨𝑥⟩𝐴𝑖−1 = 𝑟 . Party 𝑃𝑖 receives share
⟨𝑥⟩𝐴𝑖 and party 𝑃𝑖−1 gets ⟨𝑥⟩𝐴𝑖−1. When provided with both shares,
any party can reconstruct the secret by addition of the shares. While
secure addition can be executed locally, secure multiplication with
arithmetic shares requires interaction andmultiplication triples [10]
that can be efficiently precomputed with OTs [16] or homomorphic
encryption [58].

Conversions. Converting an Arithmetic share to Yao sharing
(A2Y) costs 6𝑙^ communication bits and 12𝑙 AES operations [16].
Yao to Arithmetic (Y2A) sharing conversion costs 𝑙^ + (𝑙2 + 𝑙)/2
and 6𝑙 AES operations. Both conversions require two messages. 𝑙 is
the bit-length of the Arithmetic share.

C SECURITY DISCUSSION
In this section, we sketch why ppDBSCAN (§4.3) and ppTRACLUS
(§4.4) are privacy-preserving, i.e., a semi-honest adversary learns
nothing beyond what can be inferred from the output of the proto-
cols. Generally, the security of ppDBSCAN and ppTRACLUS follows
directly from the provable security of the used S2PC techniques
(cf. §B): Yao’s Garbled circuits (GC) [73] and Arithmetic sharing [24].

At the beginning of the protocol, the data owners secret-share
their input data records among them (2PC) or among two non-
colluding parties (Outsourcing [37]). Hence, those have only access
to indistinguishable random secret-shares that do not leak any-
thing about the input data. Parameters can similarly be input as
random secret-shares that do not leak any information. In the first
step, the distance calculation (cf. §4.3.2 for ppDBSCAN and §4.4 for
ppTRACLUS), no secret-shares are opened and only conversions
between Arithmetic sharing and Yao’s GC are run which are prov-
ably secure [16]. Similar reasoning applies for the second phase, the
clustering (cf. §4.3), if𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is set to the data set size 𝑛. To
enhance efficiency,𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 can be fixed or it can be checked
in a privacy-preserving manner using secure computation if the
vector 𝑒𝑙𝑒𝑚.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 has changed. This, however, leaks one bit of
information implying some information about the data distribution
(e.g., how elongated clusters can be).

To summarize, ppDBSCAN and ppTRACLUS can be instantiated
fully privacy-preserving such that all information remain secret-
shared during the execution of the entire protocol.

D BENCHMARK RESULTS
In this section, we provide more details and additional results of
our benchmarks of ppDBSCAN and ppTRACLUS.

D.1 Additional Experiments for Clustering
Quality of ppTRACLUS

Tab. 5 presents the results of TRACLUS and ppTRACLUS on the
Deer data set. It contains the number of clusters created from the
Deer data set which are equal with TRACLUS and ppTRACLUS.
When only one cluster is found, SC and DBCV cannot be computed.
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Table 5: Clustering quality assessment for TRACLUS and ppTRACLUS on the Deer data set. For all scores larger values are
better (best marked in bold).

Data Set Score Experiment 1 Experiment 2
TRACLUS ppTRACLUS TRACLUS ppTRACLUS

Deer

(𝜖 ′, minLns) (400, 3) (1 × 106, 3) (282, 3) (550 × 103, 3)
# of Clusters 1 1 2 2
Noise 1 480 20 1333
SC N/A N/A 0.089 0.36
SCnoise N/A N/A 0.089 0.34
DBCV N/A N/A 0.47 0.79

Nevertheless, having only one cluster does not necessarily mean
that the quality of the clustering algorithm is low. It simply says
that the algorithm found only one group of similar elements.

Tab. 6 contains the results of Experiment 2 of TRACLUS, ppTR-
ACLUS, and ppTRACLUS’ on the Travel data set.

Table 6: Results of Experiment 2 of the clustering quality as-
sessment for TRACLUS, ppTRACLUS, and ppTRACLUS’ on
the Travel data set. The best results are marked in bold.

Experiment 2
TRACLUS ppTRACLUS ppTRACLUS’

(𝜖 ′, minLns) (47 × 103, 3) (13.5 × 109, 3) (13.5 × 109, 3)
# of Clusters 1 1 2
Noise 0 359 361
SC N/A N/A 0.82
SCnoise N/A N/A 0.81
DBCV N/A N/A 0.98

D.2 Runtime and Communication Costs
Tab. 7 contains the runtimes (in seconds) and Tab. 8 contains the
communication costs (in MB) of the SED, the approx. distance of
TRACLUS, and clustering averaged over 10 experiments. The SED
distance is applied on 2-dimensional data, the approx. TRACLUS
distance on 4-dimensional line segments. maxIterations is set to 4.

Table 7: Runtimes for ppDBSCAN/ppTRACLUS.

Runtimes (s)
Data Set
Size n

Squared
Euclidean
Distance

Appr.
TRACLUS-
Distance

Density-
based

Clustering
100 2.36 4.36 10.9
200 8.04 14.82 58.43
300 17.35 28.94 171.12
400 29.03 45.39 391.69
500 44.17 64.98 750.284
600 61.04 86.91 1317.70
700 79.76 113.07 2043.01
800 102.99 144.09 2970.52
900 125.82 177.48 4187.54
1000 157.07 208.92 5682.425

Table 8: CommunicationCosts for ppDBSCAN/ppTRACLUS.

Communication (MB)
Data Set
Size n

Squared
Euclidean
Distance

Appr.
TRACLUS-
Distance

Density-
based

Clustering
100 144 328 460
200 575 1317 3566
300 1294 2968 11912
400 2300 5280 28090
500 3594 8253 54694
600 5176 11889 94315
700 7044 16185 149548
800 9201 21143 222983
900 11645 26762 317214
1000 14376 33043 434835
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Abstract

Federated Learning (FL) is a collaborative machine learning
approach allowing participants to jointly train a model with-
out having to share their private, potentially sensitive local
datasets with others. Despite its benefits, FL is vulnerable to
so-called backdoor attacks, in which an adversary injects ma-
nipulated model updates into the federated model aggregation
process so that the resulting model will provide targeted false
predictions for specific adversary-chosen inputs. Proposed
defenses against backdoor attacks based on detecting and
filtering out malicious model updates consider only very spe-
cific and limited attacker models, whereas defenses based on
differential privacy-inspired noise injection significantly dete-
riorate the benign performance of the aggregated model. To
address these deficiencies, we introduce FLAME, a defense
framework that estimates the sufficient amount of noise to be
injected to ensure the elimination of backdoors. To minimize
the required amount of noise, FLAME uses a model cluster-
ing and weight clipping approach. This ensures that FLAME
can maintain the benign performance of the aggregated model
while effectively eliminating adversarial backdoors. Our eval-
uation of FLAME on several datasets stemming from appli-
cation areas including image classification, word prediction,
and IoT intrusion detection demonstrates that FLAME re-
moves backdoors effectively with a negligible impact on the
benign performance of the models.

1 Introduction
Federated learning (FL) is an emerging collaborative machine
learning trend with many applications, such as next word
prediction for mobile keyboards [39], medical imaging [49],
and intrusion detection for IoT [44] to name a few. In FL,
clients locally train models based on local training data and
then provide these model updates to a central aggregator who
combines them into a global model. The global model is then
propagated back to the clients for the next training iteration.

∗Emails: {ducthien.nguyen, ahmad.sadeghi}@trust.tu-darmstadt.de

FL promises efficiency and scalability as the training is
distributed among many clients and executed in parallel.
In particular, FL improves privacy by enabling clients to
keep their training data locally [38]. Despite its benefits,
FL has been shown to be vulnerable to so-called poisoning
attacks where the adversary manipulates the local models
of a subset of clients participating in the federation so that
the malicious updates get aggregated into the global model.
Untargeted poisoning attacks merely aim at deteriorating
the performance of the global model and can be defeated by
validating the performance of uploaded models [12]. In this
paper, we therefore focus on the more challenging problem
of backdoor attacks [7, 45, 57, 59], i.e., targeted poisoning
attacks in which the adversary seeks to stealthily manipulate
the resulting global model in a way that attacker-controlled
inputs result in incorrect predictions chosen by the adversary.
Deficiencies of existing defenses. Existing defenses against
backdoor attacks can be roughly divided into two cate-
gories: The first one comprises anomaly detection-based ap-
proaches [4,9,22,51] for identifying and removing potentially
poisoned model updates. However, these solutions are effec-
tive only under very specific adversary models, as they make
detailed assumptions about the attack strategy of the adversary
and/or the underlying distribution of the benign or adversarial
datasets. If these very specific assumptions do not hold, the
defenses may fail. The second category is inspired by differen-
tial privacy (DP) techniques [7,56], where individual weights1

of model updates are clipped to a maximum threshold and
random noise is added to the weights for diluting/reducing
the impact of potentially poisoned model updates on the ag-
gregated global model. In contrast to the first category, DP
techniques [7,56] are applicable in a generic adversary model
without specific assumptions about adversarial behavior and
data distributions and are effective in eliminating the impact
of malicious model updates. However, straightforward ap-
plication of DP approaches severely deteriorates the benign

1Parameters of neural network models typically consist of ’weights’ and
’biases’. For the purposes of this paper, however, these parameters can be
treated identically and we will refer to them as ’weights’ for brevity.
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performance of the aggregated model because the amount of
noise required to ensure effective elimination of backdoors
also results in significant modifications of individual weights
of benign model updates [7, 57].

In this paper, we develop a resilient defense against back-
doors by combining the benefits of both defense types without
suffering from the limitations (narrow attacker model, assump-
tions about data distributions) and drawbacks (loss of benign
performance) of existing approaches. To this end, we intro-
duce an approach in which detection of anomalous model
updates and tuned clipping of weights are combined to mini-
mize the amount of noise needed for backdoor removal of the
aggregated model while preserving its benign performance.
Our Goals and Contributions. We present FLAME, a re-
silient aggregation framework for FL that eliminates the im-
pact of backdoor attacks while maintaining the benign per-
formance of the aggregated model. This is achieved by three
modules: DP-based noising of model updates to remove back-
door contributions, automated model clustering approach to
identify and eliminate potentially poisoned model updates,
and model weight clipping before aggregation to limit the
impact of malicious model updates on the aggregation result.
The last two modules can significantly reduce the amount of
random noise required by DP noising for backdoor elimina-
tion. In particular, our contributions are as follows:

• We present FLAME, a defense framework against back-
door attacks in FL that is capable of eliminating back-
doors without impacting the benign performance of the
aggregated model. Contrary to earlier backdoor defenses,
FLAME is applicable in a generic adversary model, i.e.,
it does not rely on strong assumptions about the attack
strategy of the adversary, nor about the underlying data
distributions of benign and adversarial datasets (§4.1).

• We show that the amount of required Gaussian noise
can be radically reduced by: a) applying our clustering
approach to remove potentially malicious model updates
and b) clipping the weights of local models at a proper
level to constrain the impact of individual (especially
malicious) models on the aggregated model. (§4.3)

• We provide a noise boundary proof for the amount of
Gaussian noise required by noise injection (inspired by
DP) to eliminate backdoor contributions (§5).

• We extensively evaluate our defense framework on real-
world datasets from three very different application areas.
We show that FLAME reduces the amount of required
noise so that the benign performance of the aggregated
model does not degrade significantly, providing a crucial
advantage over state-of-the-art defenses using straight-
forward injection of DP-based noise (§7).

As an orthogonal aspect, we also consider how the privacy of
model updates against an honest-but-curious aggregator can
be preserved and develop a secure multi-party computation

approach that can preserve the privacy of individual model
updates while realizing our backdoor defense approach (§8).

2 Background and Problem Setting
2.1 Federated Learning
Federated Learning [38, 50] is a concept for distributed ma-
chine learning that links n clients and an aggregator to col-
laboratively build a global model G. In a training iteration
t ∈ {1, . . . ,T}, each client i ∈ {1, . . . ,n} locally trains a local
model Wi with p parameters (indicating both weights and
biases) w1

i , . . . ,w
p
i based on the previous global model Gt−1

using its local data Di and sends it to the aggregator which
aggregates the received models Wi into the global model Gt .

Several aggregation mechanisms have been proposed re-
cently: 1) Federated Averaging (FedAvg) [38], 2) Krum [9],
3) Adaptive Federated Averaging [42], and 4) Trimmed mean
or median [60]. Although we evaluate FLAME’s effective-
ness on several aggregation mechanisms in §7.1, we generally
focus on FedAvg in this work as it is commonly applied
in FL [21, 28, 39, 44, 47, 50, 54] and related work on back-
door attacks [7, 22, 51, 57, 59]. In FedAvg, the global model
is updated by averaging the weighted models as follows:
Gt = Σn

i=1
si×Wi/s, where si = ∥Di∥,s = Σn

i=1si. However, in
practice, a malicious client might provide falsified informa-
tion about its dataset size (i.e., a large number) to amplify
the relative weight of its updates [57]. Previous works often
employed equal weights (si = 1/n) for the contributions of all
clients [7, 51, 59]. We adopt this approach in this paper, i.e.,
we set Gt = Σn

i=1
Wi/n. Further, other state-of-the-art aggrega-

tion rules, e.g., Krum [9], Adaptive Federated Averaging [42],
and Trimmed mean or median [60] also do not consider the
sizes of local training datasets by design.

2.2 Backdoor Attacks on Federated Learning
In backdoor attacks, the adversary A manipulates the local
models Wi of k compromised clients to obtain poisoned mod-
els W ′i that are then aggregated into the global model Gt and
thus affect its properties. In particular, A wants the poisoned
model G′t to behave normally on all inputs except for spe-
cific attacker-chosen inputs x ∈ IA (where IA denotes the
so-called trigger set) for which attacker-chosen (incorrect)
predictions should be output. Figure 1 shows common tech-
niques used in FL backdoor attacks, including 1) data poison-
ing, e.g., [45,51,59], where A manipulates training datasets of
models, and 2) model poisoning, e.g., [7, 57] where A manip-
ulates the training process or the trained models themselves.
Next, we will briefly discuss these attack techniques.
Data Poisoning. In this attack, A adds manipulated data
DA to the training datasets of compromised clients i by flip-
ping data labels, e.g., by changing the labels of a street sign
database so that pictures showing a 30 km/h speed limit
are labeled as 80 km/h [51], or, by adding triggers into data
samples (e.g., a specific pixel pattern added to images [59])
in combination with label flipping. We denote the fraction

1416    31st USENIX Security Symposium USENIX Association



Compromised clients

Benign clients

𝐺𝑡
Federated 
Averaging

SGWSGWSGW 𝑊𝑗𝐷𝑗 Train

SGWSGW 𝑊𝑖
′𝐷𝑖

′ Train

Data poisoning

𝐺𝑡−1

Constraining Scaling

Model poisoning

Figure 1: An overview of backdoor attacks.

of injected poisoned data DA
i in the overall poisoned train-

ing dataset D′i of client i as Poisoned Data Rate (PDR), i.e.,
PDRi = |D

A
i |/|D′i|.

Model Poisoning. This attack technique requires that A can
fully control a number of clients. A poisons the training
datasets of these clients and manipulates how they execute
the training process by modifying parameters and scaling
the resulting model update to maximize the attack impact
while evading the aggregator’s anomaly detector [7, 57]. This
is done by (1) scaling up the weights of malicious model
updates to maximize attack impact (e.g., model-replacement
attack [7], or, projected gradient descent (PGD) attack with
model replacement [57]), or, scaling down model updates to
make them harder to detect (e.g., train-and-scale [7] ) and
(2) constraining the training process itself to minimize the
deviation of malicious models from benign models to evade
anomaly detection (e.g., constrain-and-scale attack [7]).

2.3 Adversary Goals and Capabilities
The goals of the adversary are two-fold:

Impact: The adversary A aims to manipulate the global
model G so that the modified model G′ provides incorrect pre-
dictions f (G′,x) = c′ ̸= f (G,x) for any inputs x ∈ IA , where
IA is the so-called trigger set consisting of specific attacker-
chosen inputs and c′ denotes the incorrect prediction chosen
by the adversary.

Stealthiness: To make the poisoned model G′ hard to detect
by aggregator A, it should closely mimic the behavior of G
on all other inputs not in IA , i.e.:

f (G′,x) =
{

c′ ̸= f (G,x) ∀x ∈ IA
f (G,x) ∀x /∈ IA

(1)

Additionally, to make poisoned models as indistinguishable
as possible from benign models, the distance (e.g., euclidean)
between a poisoned model W ′ and a benign model W must be
smaller than a threshold η denoting the distinction capability
of the anomaly detector of aggregator A, i.e., dist(W,W ′)< η.
The adversary can estimate this distance by comparing the
local malicious model to the global model or to a local model
trained on benign data.

Adversarial Capabilities. In this paper, we make no spe-
cific assumptions about the adversary’s behavior. We assume

that the adversary A has full control over k < n
2 clients and

their training data, processes, and parameters [7, 59]. We de-
note the fraction of compromised clients as Poisoned Model
Rate PMR = k

n . Furthermore, A has full knowledge of the
aggregator’s operations, including potentially applied back-
door defenses. However, A has no control over any processes
executed at the aggregator nor over the honest clients.

2.4 Preliminaries
HDBSCAN [11] is a density-based clustering algorithm
that uses the distance of data points in n-dimensional space
to group data points that are located near each other together
into a cluster. Hereby the number of clusters is determined
dynamically. Data points that do not fit to any cluster are
considered outliers. However, while HDBSCAN’s predeces-
sor DBSCAN [19] uses a predefined maximal distance to
determine whether two points belong to the same cluster,
HDBSCAN determines this maximal distance for each clus-
ter independently, based on the density of points. Thus, in
HDBSCAN, neither the maximal distance nor the total num-
ber of clusters need to be predefined.
Differential Privacy (DP). DP is a privacy technique that
aims to ensure that the outputs do not reveal individual data
records of participants. DP is formally defined as follows:

Definition 1 ((ε,δ)-differential privacy). A randomized al-
gorithm M is (ε,δ)-differentially private if for any datasets
D1 and D2 that differ on a single element, and any subset of
outputs S ∈ Range(M ), the following inequality holds:

Pr[M (D1) ∈ S ]≤ eε ·Pr[M (D2) ∈ S ]+δ.

Here, ε denotes the privacy bound and δ denotes the proba-
bility of breaking this bound [18]. Smaller values of ε and
δ indicate stronger privacy. A commonly used approach to
enforce differential privacy is adding random Gaussian noise
N(0,σ2) to the output of the algorithm [3, 18].

3 Problem Setting and Objectives
Backdoor Characterization. Following common practice
in FL-related papers (e.g., [7, 12, 22]), we represent Neural
Networks (NNs) using their weight vectors, in which the
extraction of weights is done identically for all models by
flattening/serializing the weight/bias matrices in a predeter-
mined order. Figure 2 shows an abstract two-dimensional
representation of the weight vectors of local models com-
pared to the global model Gt−1 of the preceding aggregation
round. Each model Wi can be characterized with two factors:
direction (angle) and magnitude (length) of its weight vector
(w1,w2, . . . ,wp). The angle between two updates Wi and Wj
can be measured, e.g., by using the cosine distance metric ci j
as defined in (2) while their magnitude difference is measured
by the L2-norm ei j as defined in (3).

ci j = 1− WiWj

∥Wi∥
∥∥Wj

∥∥ = 1− ∑p
k=1 wk

i wk
j√

∑p
k=1(w

k
i )

2
√

∑p
k=1(w

k
j)

2
(2)
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Figure 2: Weight vectors of benign and backdoored models.

ei j =
∥∥Wi−Wj

∥∥=

√
p

∑
k=1

(wk
i −wk

j)
2 (3)

Benign and backdoored local models are shown in blue and
red colors and are labeled with Wi or W ′i , respectively. Note
that the benign models are typically not identical due to the
potentially partially non-iid nature of their training data.

The impact of the adversarial goal (injection of a backdoor)
causes a deviation in the model parameters that manifests
itself as a difference in the direction and/or magnitude of the
backdoored model’s weight vector in comparison to benign
models, e.g., the deviations among local models and to the
global model Gt−1 of the previous aggregation round. Since
the adversary has full control over the training process of
compromised clients, he can fully control these distances, e.g.,
by changing the direction (in the case of W ′1) or magnitude
(in the case of W ′2) of the backdoored models’ weight vectors.

Figure 2 also shows three kinds of backdoored models re-
sulting from different types of backdoor attacks. The first type
W ′1 has a similar weight vector, but a large angular deviation
from the majority of local models and the global model. This
is because such models are trained to obtain high accuracy
on the backdoor task, which can be achieved by using a large
poisoned data rate (PDR) or a large number of local training
epochs (cf. Distributed Backdoor Attack (DBA) [59]). The
second backdoor type W ′2 has a small angular deviation but
a large magnitude to amplify the impact of the attack. Such
models can be crafted by the adversary by scaling up the
model weights to boost its effect on the global model (cf.
Model-replacement attack in [7]). The third backdoor type
W ′3 has a similar weight vector as benign models, the angular
difference and the magnitude are not substantially different
compared to benign models and, thus less distinguishable
from benign models. Such stealthy backdoored models can
be crafted by the adversary by carefully constraining the train-
ing process or scaling down the poisoned model’s weights (cf.
Constrain-and-scale attack [7] or FLIoT attack [45]).
Defense Objectives. A generic defense that can effectively
mitigate backdoor attacks in the FL setting needs to fulfill
the following objectives: (i) Effectiveness: To prevent the
adversary from achieving its attack goals, the impact of back-
doored model updates must be eliminated so that the aggre-
gated global model does not demonstrate backdoor behavior.
(ii) Performance: Benign performance of the global model

must be preserved to maintain its utility. (iii) Independence
from data distributions and attack strategies: The defense
method must be applicable to generic adversary models, i.e.,
it must not require prior knowledge about the backdoor attack
method, or make assumptions about specific data distributions
of local clients, e.g., whether the data are iid or non-iid.

4 FLAME Overview and Design
We present the high-level idea of FLAME and the associated
design challenges to fulfill the objectives identified in §3.

4.1 High-level Idea
Motivation. Earlier works (e.g., Sun et al. [56]) use differen-
tial privacy-inspired noising of the aggregated model for elim-
inating backdoors. They determine the sufficient amount of
noise to be used empirically. In the FL setting this is, however,
challenging, as one cannot in general assume the aggregator to
have access to training data, in particular to poisoned datasets.
What is therefore needed is a generic method for determining
how much noise is sufficient to remove backdoors effectively.
On the other hand, the more noise is injected into the model,
the more its benign performance will be impacted.
FLAME Overview. FLAME estimates the noise level re-
quired for backdoor removal in the FL setting without exten-
sive empirical evaluation and having access to training data
(this noise bound is formally proven in §5). In addition, to
effectively limit the amount of required noise, FLAME uses a
novel clustering-based approach to identify and remove adver-
sarial model updates with high impact and applies a dynamic
weight-clipping approach to limit the impact of models that
the adversary has scaled up to boost their performance. As
discussed in §3, one cannot guarantee that all backdoored
models can be detected since the adversary can fully control
both the angular and magnitude deviation to make the models
arbitrarily hard to detect. Our clustering approach therefore
aims to remove models with high attack impact (having larger
angular deviation) rather than all malicious models. Fig. 3
illustrates the high-level idea of FLAME consisting of the
above three components: filtering, clipping, and noising. We
emphasize, however, that each of these components needs
to be applied with great care, since, a naïve combination of
noising with clustering and clipping leads to poor results as
it easily fails to mitigate the backdoor and/or deteriorates the
benign performance of the model, as we show in §C. We de-
tail the design of each component and its use in the FLAME
defense approach in §4.3.

4.2 Design Challenges
To realize the high-level idea presented above, we need to
solve the following technical challenges.
C1- Filtering out backdoored models with large angular
deviations in dynamic scenarios. As discussed in §3, the
weight vector of a well-trained backdoored model, W ′, has a
higher angular difference in comparison to weight vectors of
benign models W . FLAME deploys a clustering approach to
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Figure 3: High-level idea of FLAME defense.

identify such poisoned models and remove them from FL ag-
gregation (detailed in §4.3.1). The effect of clustering-based
filtering is shown in Fig. 3a where model W ′1 is removed from
the aggregated model as it does not align with the directions
of benign models. In contrast to existing clustering-based de-
fenses, we need an approach that can also work in a dynamic
attack setting, i.e., the number of injected backdoors is un-
known and may vary between training rounds. To this end, we
make a key observation: clustering approaches using a fixed
number of clusters ncluster for identifying malicious models
are inherently vulnerable to attacks with varying numbers of
backdoors2 nbackdoor. This is because the adversary can likely
cause at least one backdoor model to be clustered together
with benign models due to the pigeonhole principle by simul-
taneously injecting nbackdoor ≥ ncluster backdoors. We seek
to solve this challenge by employing a clustering solution
that dynamically determines the clusters for model updates,
thereby allowing it to adapt to dynamic attacks.
C2-Limiting the impact of scaled-up backdoors. To limit
the impact of backdoored models that the adversary artificially
scales up to boost the attack (e.g., W ′2 in Fig. 2), the weight
vectors of models with high magnitudes can be clipped [56].
The effect of clipping is shown in Fig. 3a where the weight
vectors of all models with a magnitude beyond the clipping
bound S (in particular, backdoored model W ′2) are clipped to
S by scaling down the weight vectors. The resulting clipped
weight vectors are shown on the left side of Fig. 3b. The
challenge here is how to select a proper clipping bound with-
out empirically evaluating its impact on the training datasets
(which are not available in the FL setting). If the applied clip-
ping bound is too large, an adversary can boost its model W ′

by scaling its weights up to the clipping bound, thereby maxi-
mizing the backdoor impact on the aggregated global model
G. However, if the applied clipping bound is too small, a large
fraction of benign model updates W will be clipped, thereby
leading to performance deterioration of the aggregated global

2We consider two backdoors to be independent if they use different
triggers.

model G on the main task. We tackle this challenge in §4.3.2,
where we show how to select a clipping bound that can not
be influenced by the adversary and that effectively limits the
impact of scaled-up backdoored models.
C3-Selecting suitable noise level for backdoor elimination.
As mentioned in §4.1, FLAME uses model noising that ap-
plies Gaussian noise with noise level σ to mitigate the ad-
versarial impact of backdoored models (e.g., W ′3 in Fig. 2).
Similar to the clipping bound, however, also here the noise
level σ must be carefully selected, as it has a direct impact on
the effectiveness of the defense and the model’s benign per-
formance. If it is too low, the aggregated model might retain
backdoor behavior after model noising, rendering the defense
ineffective, while excessive noise will degrade the utility of
the aggregated model. To address this challenge, we develop
an approach for reliably estimating a sufficient but minimal
bound for the applied noise in §5.

4.3 FLAME Design
As discussed in §4.1, our defense consists of three main com-
ponents: filtering, clipping, and noising. Figure 4 shows these
components and the workflow of FLAME during training
round t. Algorithm 1 outlines the procedure of FLAME. In
the rest of this section, we detail the design of these compo-
nents to resolve the challenges in §4.2.
Algorithm 1 FLAME

1: Input: n, G0, T ▷ n is the number of clients, G0 is the initial
global model, T is the number of training iterations

2: Output: G∗T ▷ G∗T is the updated global model after T iterations
3: for each training iteration t in [1,T ] do
4: for each client i in [1,n] do
5: Wi← CLIENTUPDATE(G∗t−1) ▷ The aggregator

sends G∗t−1 to Client i who trains G∗t−1 using its data Di locally
to achieve local modal Wi and sends Wi back to the aggregator.

6: (c11, . . . ,cnn)← COSINEDISTANCE(W1, . . . ,Wn) ▷
∀i, j ∈ (1, . . . ,n), ci j is the cosine distance between Wi and W j

7: (b1, . . . ,bL)← CLUSTERING(c11, . . . ,cnn) ▷ L is the
number of admitted models, bl is the index of the lth model

8: (e1, . . . ,en) ← EUCLIDEANDIS-
TANCES(G∗t−1,(W1, . . . ,Wn)) ▷ ei is the Euclidean distance
between G∗t−1 and Wi

9: St ←MEDIAN(e1, . . . ,en) ▷ St is the adaptive clipping
bound at round t

10: for each client l in [1,L] do
11: W c

bl
← Gt−1 +(Wbl −Gt−1) ·MIN(1,γ) ▷ Where γ

(= St/ebl ) is the clipping parameter, W c
bl

is the admitted model
after clipped by the adaptive clipping bound St

12: Gt ← ∑L
l=1 W c

bl
/L ▷ Aggregating, Gt is the plain global

model before adding noise

13: σ← λ ·St where λ = 1
ε ·

√
2ln 1.25

δ ▷ Adaptive noising level

14: G∗t ← Gt +N(0,σ2) ▷ Adaptive noising

4.3.1 Dynamic Model Filtering
The Model Filtering component of FLAME utilizes a dy-
namic clustering technique based on HDBSCAN [11] that
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Figure 4: Illustration of FLAME’s workflow in round t.
identifies poisoned models with high angular deviations
from the majority of updates (e.g., W ′1 in Fig. 3a). Existing
clustering-based defenses [9, 51] identify potentially mali-
cious model updates by clustering them into two groups where
the smaller group is always considered malicious and thus
removed. However, if no malicious models are present in the
aggregation, this approach may lead to many models being
incorrectly removed and thus a reduced accuracy of the ag-
gregated model. These approaches also do not protect against
attacks in which adversary A simultaneously injects multi-
ple backdoors by using different groups of clients to inject
different backdoors. If the number of clusters is fixed, there
is the risk that poisoned and benign models end up in the
same cluster, in particular, if models with different backdoors
differ significantly. Consequently, existing model clustering
methods do not adequately address challenge C1 (§4.2). Fig. 5
shows the behavior of different clustering methods on a set of
model updates’ weight vectors. Fig. 5a shows the ground truth
of an attack scenario where A uses two groups of clients: one
group is used to inject a backdoor, whereas the other group
provides random models with the goal of fooling clustering-
based defenses. Fig. 5b shows how in this setting, K-means
(as used in Auror [51]) fails to successfully separate benign
and poisoned models as all poisoned models end up in the
same cluster with the benign models.

To overcome the limitations of existing defenses, we de-
sign our clustering solution and ensure that: (i) it is able to
handle dynamic attack scenarios where multiple backdoors
are injected simultaneously, and (ii) it minimizes false posi-
tives of poisoned model identification. In contrast to existing
approaches that try to place poisoned models into one cluster,
our approach considers each poisoned model individually as
an outlier, so that it can gracefully handle multiple simultane-
ous backdoors and thus address challenge C1.

FLAME uses pairwise cosine distances to measure the
angular differences between all model updates and applies the
HDBSCAN clustering algorithm [11]. The advantage here is
that cosine distances are not affected even if the adversary
scales up model updates to boost their impact as this does not
change the angle between the updates’ weight vectors. Since
the HDBSCAN algorithm clusters the models based on their
density of the cosine distance distribution and dynamically
determines the required number of clusters, we leverage it for

Benign

BackdooredRandom

(a) Ground truth

Accepted

Rejected

(b) K-means

Cluster A

Cluster BCluster C

(c) HDBSCAN

Accepted

Rejected (Outliers)

(d) FLAME
Figure 5: Comparison of clustering quality for (a) ground truth, (b)
using K-means with 2 clusters as in Auror [51], (c) straightforward
applied HDBSCAN and (d) our approach as in FLAME.

our dynamic clustering approach. We describe HDBSCAN
and how we apply it in detail in §E. In particular, HDBSCAN
labels models as outliers if they do not fit into any cluster.
This allows FLAME to effectively handle multiple poisoned
models with different backdoors by labeling them as outliers.
To realize this, we set the minimum cluster size to be at least
50% of the clients, i.e., n

2 + 1, so that the resulting cluster
will contain the majority of updates (which we assume to
be benign, cf. §2.3). All remaining (potentially poisoned)
models are marked as outliers. This behavior is depicted in
Fig. 5d where all the models from Clusters B and C from
Fig. 5c are considered as outliers. Hence, to the best of our
knowledge, our approach is the first FL backdoor defense that
is able to gracefully handle also dynamic attacks in which the
number of injected backdoors may vary. The clustering step
is shown in lines 6-7 of Alg. 1 where L models are retained
after clustering.

4.3.2 Adaptive Clipping and Noising
As discussed in §4.2 (challenges C2 and C3), determining
a proper clipping bound and noise level for model weight
clipping and noising is not straightforward. We present our
new approach for selecting an effective clipping bound and
reliably estimating a sufficient noise level that can effectively
eliminate backdoors while preserving the performance of the
main task. Furthermore, our defense approach is resilient to
adversaries that dynamically adapt their attacks.
Adaptive Clipping. Fig. 6 shows the variation of the average
L2-norms of model updates of benign clients in three differ-
ent datasets (cf. §6) over subsequent training rounds. We can
observe that the L2-norms of benign model updates become
smaller in later training rounds. To effectively remove back-
doors while minimizing the impact on benign updates, the
clipping bound S needs to be dynamically adapted to this
decreasing trend of the L2-norm. Recall that clipping is per-
formed after clustering by scaling down model weights so that
the L2-norm of the scaled model becomes smaller or equal
to the clipping threshold. We describe how FLAME deter-
mines a proper scaling factor for each model update Wi in
tth training round as follows: Given the index set (b1, . . .bL)
of the models admitted by the clustering method (line 7 of
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Figure 6: L2-norms of model updates depending on the num-
ber of training rounds for different datasets.
Alg. 1), the aggregator first computes the clipping bound
St as the median of the L2-norms of all n model updates:
St = MEDIAN(e1, . . . ,en). It should be noted that for deter-
mining the clipping bound, the rejected models are also con-
sidered to ensure that even if benign models were filtered,
the computed median St is still determined based on benign
values. However, after determining the clipping bound, only
the admitted models W1, . . . ,WL are considered for later pro-
cessing. The scaling factor for the lth admitted model is com-
puted as γ = St

ebl
where ebl is the L2-norm of the model up-

date Wbl . Clipping scales down model updates as follows:
W c

bl
= Gt−1 +(Wbl −Gt−1) ·MIN(1,γ) (detailed in line 8-11

of Alg. 1) where the multiplication is computed coordinate-
wise. It is worth noting that weighting contributions (i.e.,
adjusting scaling factor) based on client data sizes is insecure.
As we point out in §2.1, the reported dataset sizes by clients
cannot be trusted, i.e., the adversary can lie about their dataset
sizes to maximize attack impact [57]. Hence, we follow com-
mon practice in literature and weight the contributions of all
clients equally regardless of their dataset size [7,9,12,59]. By
using the median as the clipping bound St , we ensure that St is
always in the range of the L2-norms between benign models
and the global model since we assume that more than 50% of
clients are benign (cf. §2.3). We evaluate the effectiveness of
the clipping approach in §B.2.

Adaptive Noising. It has been shown that by adding noise
to a model’s weights, the impact of outlier samples can be
effectively mitigated [17]. Noise can also be added to poi-
soned samples (special cases of outliers) used in backdoor
injection. The more noise is added to the model during the
training process, the less responsive the model will be to the
poisoned samples. Thus, increasing model robustness against
backdoors. Eliminating backdoors utilizing noise addition
is conceptually the same in a centralized or federated set-
ting (e.g., [7, 17]): In both cases, noise is added to the model
weights to smooth out the effect of poisoned data (cf. Eq. 5).
The challenge is to determine as small a noise level as possible
to eliminate backdoors and at the same time not deteriorate
the benign performance of the model. As we discuss in detail
in §5.1, the amount of noise is determined by estimating the
sensitivity based on the differences (distances) among local
models, which can be done without access to training data.
We then add Gaussian noise to the global model Gt to yield
a noised global model G∗t as follows: G∗t = Gt +N(0,σ2),
see Lines 13-14 of Alg. 1 for more details. This ensures

that backdoor contributions are effectively eliminated from
the aggregated model. In particular, we show in §5.1 how
the noise-based backdoor elimination technique can be trans-
ferred from a centralized to a federated setting by analysing
the relationship between aggregated Gaussian noise applied to
the global model and individual noising of each local model.

5 Security Analysis

5.1 Noise Boundary Proof of FLAME
In this section, we provide a proof to corroborate that
FLAME can neutralize backdoors in the FL setting by apply-
ing strategical noising with bound analysis on the noise level.
We first formulate the noise boundary guarantee of FLAME
in Theorem 1. Subsequently, we explain related parameters
and prove how the noise level bound for σ can be estimated.
This is done by generalizing theoretical results from previous
works [17,18] to the FL setting. Then, we show how the filter-
ing and clipping component of FLAME helps to effectively
reduce the noise level bound in Theorem 2. We provide a
formal proof for linear models and extend the proof to DNNs
using empirical evaluation. This is because providing formal
proof for DP-based backdoor security for DNN models is still
an open research problem even for centralized settings.

Theorem 1. A (ε,δ)-differentially private model with param-
eters G and clipping bound St is backdoor-free if random
Gaussian noise is added to the model parameters yielding a
noised version G∗ of the model: G∗← G+N(0,σ2

G) where
the noise scale σG is determined by the clipping bound St and

a noise level factor λ: σG← λ ·St and λ = 1
ε ·

√
2ln 1.25

δ .

We explore the key observation that an ML model with a
sufficient level of differential privacy is backdoor-free. With
this new definition of backdoor-free models in the DP domain,
the main challenge to defeat backdoors in the FL setting is
to decide a proper noise scale for the global model without
knowledge of the training datasets. Furthermore, we need
to minimize the amount of noise added to the global model
to preserve its performance on the main task. None of the
prior DP-based FL backdoor defense techniques provide a
solution to the noise determination problem [56]. For the first
time, FLAME presents an approach to estimate the proper
noise scale that ensures the global model is backdoor-free.
The noise boundary proof in Theorem 1 consists of two steps:
Step 1 (S1). By introducing the data hiding property of DP
(Def. 1) and its implication as the theoretical guarantee for
backdoor-free models. We also discuss function sensitivity
(Def. 2) which is an important factor for selection of the DP
parameters (ε,δ).
Step 2 (S2). We show how FLAME generalizes backdoor
elimination from centralized setting to federated setting with
theoretical analysis of the noise boundary (Eq. 5 and 6).
FLAME is the first FL defense against backdoors that pro-
vides noise level proof with bounded backdoor effectiveness.
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(S1) DP foundations and re-interpretation as Backdoor-
free. As discussed in §2.4, by definition, DP makes the differ-
ence between data points indistinguishable. FLAME lever-
ages this property of DP for backdoor elimination. In par-
ticular, we can consider D1 and D2 in Def. 1 as the benign
and backdoored dataset. The inequality of DP suggests that
algorithm M has a high probability of producing the same
outputs on the benign and the poisoned dataset, meaning that
the backdoor is eliminated. The noise level σ is determined
based on the DP parameters (ε,δ) and the sensitivity of the
function f defined below:

Definition 2 (Sensitivity). Given the function f : D → Rd

where D is the data domain and d is the dimension of the
function output, the sensitivity of the function f is defined as:

∆ = max
D1, D2 ∈ D

|| f (D1)− f (D2)||2, (4)

where D1 and D2 differs on a single element ||D1−D2||1 = 1.

As shown in Lemma 1 [18], this definition can be extended
to datasets differing by more than one element, i.e., can be
generalized to the DP in the multiple-point-difference setting.
(S2) Generalizing backdoor resilience from centralized to
federated setting (FLAME). In the centralized setting, the
defender has access to the model to be protected, the benign
dataset, and the outlier (backdoored) samples. As such, he
can estimate the sensitivity ∆ for (ε,δ)-DP. When applying

Gaussian noise with the noise scale σ = ∆
ε

√
2ln 1.25

δ , the de-
fender can enforce a lower bound on the prediction loss of the
model on the backdoored samples for backdoor elimination
[28]. However, this robustness rationale cannot be directly
transferred from the centralized setting to the FL setting since
the defender in the federated scenario (i.e., aggregator) only
has access to received model updates, but not the datasets to
estimate the sensitivity ∆ for the global model.

FLAME extends DP-based noising for backdoor elimina-
tion to the federated setting based on the following observa-
tion: if one can ensure that all aggregated models are benign
(i.e., backdoor-free), then it is obvious that the aggregated
global model will also be backdoor-free. This intuition can
be formally proven if the FL aggregation rule is Byzantine-
tolerant. To ensure that any backdoor potentially present in
the model is eliminated and the aggregated model is benign,
a sufficient DP noise level is added to individual local mod-
els. However, since the local models are independent, adding
noise to each local model is mathematically equivalent to
the case where aggregated noise is added to the global model.
This is conceptually equivalent to the conventional centralized
setting, for which it has been formally shown that DP noise
can eliminate backdoors [17]. In the following, we therefore
show that adding DP noise to local models is equivalent to
adding ‘aggregated’ DP noise to the global model.

We write the standard deviation of noise for the local mod-
els in the form σi← αi·ei

ε ·
√

2ln 1.25
δ where αi =

∆i
ei

, ∆i and ei

is the sensitivity and the L2 norm of the model Wi, respectively.
Mathematically, the FL system with FLAME has:

G∗ =
1
n

Σn
i=1W ∗i =

1
n
[ Σn

i=1 Wi +N(0,σ2
i )]

=
1
n

Σ2
i=1Wi +

1
n

Σn
i=1N(0,σ2

i )

=
1
n

Σ2
i=1Wi +N(0,

1
n

Σn
i=1σ2

i )

= G+N(0,σ2
G)

(5)

in which W ∗i are local models and G∗ the global model after
adding noise N(0,σ2

i ). Equation 5 represents the fact that
adding DP noise to each local model (i.e., Wi +N(0,σ2

i )) is
equivalent to adding an ‘aggregated’ DP noise on the global
model (i.e., G+N(0,σ2

G)). More specifically, this equivalent
Gaussian noise on the global model is the sum of Gaus-
sian noise applied on each local model with a scaling factor
NG = 1

n Σn
i=1Ni. Here, NG and Ni are random variables with

distribution N(0,σ2
G) and N(0,σ2

i ), respectively. As such, we
can compute the equivalent noise scale for the global model:

σ2
G =

1
n2 Σn

i=1σ2
i = (

1
ε

√
2ln

1.25
δ

)2 · 1
n2 Σn

i=1∆2
i

= (
1
ε

√
2ln

1.25
δ

)2 · 1
n2 Σn

i=1α2
i e2

i . (6)

Equation 6 describes the relation between the DP noise added
on FLAME’s global model and the DP noise added on each
local model. This noise scale relation in Eq. 6 together with
the transformation in Eq. 5 enable FLAME to provide guaran-
teed security for the global model against backdoors, thereby
addressing Challenge C3 .

In Alg. 1, we use the median of Euclidean distances ei as the
upper bound St to clip the admitted local models (line 9-11).
We hypothesize that the sensitivity of a model Wi is positively
correlated with its weight magnitude |Wi| (see Theorem 2
for details). In the case of linear models, the sensitivity ∆
has a linear relation with the model weight |−→w | (see Eq. 8).
Therefore, we use the following approximation:

1
n2 Σn

i=1α2
i e2

i =
1
n2 Σn

i=1∆2
i ≈ S2

t ,

where St is the weight clipping bound. Having substituted the
above approximation into Eq. 6, we can compute the noise
scale of DP that FLAME deploys on the global model NG:

σG ≈
St

ε

√
2ln

1.25
δ

(7)

This concludes the proof of Theorem 1.
FLAME’s adaptive noising step applies the Gaussian noise
with the noise scale computed in Eq. 7 on the global model
for backdoor elimination as shown in Alg. 1, line 13-14. Note
that FLAME’s noising scheme is adaptive since the clipping
bound St is obtained dynamically in each tth epoch.

Next, we present Theorem 2 and justify how FLAME de-
sign reduces the derived noise level with step 3 (S3) below.
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(S3) Clustering and clipping components in FLAME help
to reduce the DP noise boundary. Recall that FLAME pro-
tects the FL system against backdoor attacks using three steps:
clustering, clipping, and adding DP noise. The overall work-
flow of FLAME is shown in Fig. 4. If multiple backdoors
exist in the FL system, the first two steps (clustering and clip-
ping) can remove a subset of backdoors as shown in Fig. 3a.
Note that the remaining backdoors are ‘closer’ to the benign
model updates in terms of both magnitude and direction. This
gives us the intuition that removing the remaining backdoors
by adding DP noise becomes easier (i.e., the noise scale σG
is smaller) after the first two steps of FLAME.

We can see from Theorem 1 that the Gaussian noise scale σ
required for backdoor resilience increases with the sensitivity
of each local model ∆i. We describe two characteristics of the
model parameter W , i.e., direction and magnitude in §4. We
discuss how these two factors impact the sensitivity of the
model defined in Eq. 4 below.
Theorem 2. Backdoor models with large angular deviation
from benign ones, or with large parameter magnitudes have
high sensitivity values ∆.

Proving DP-based backdoor security for DNN models is
still an open problem, even in the centralized setting. We,
therefore, adopt a common approach in literature (e.g., [17])
by providing theoretical proof for linear models and validating
it for DNNs empirically.

Proof : for a linear model f where the function output is
determined by the inner product of model weight vector −→w
and the data vector −→x , we have

f (w; x) =−→w ·−→x = |w| · |x| · cosθ, (8)
where θ =<−→w ,−→x > is the angle between two vectors. In this
case, it is straightforward to see that if the backdoor attack
changes the parameter magnitude |w| or the direction θ of
the model f , the resulting poisoned model f ′ has a large
sensitivity value based on the definition in Eq. 4.

This analysis suggests that backdoor models with large an-
gular deviations or with large weight magnitudes have a high
sensitivity value ∆. Recall that FLAME deploys dynamic
clustering (§4.3.1) to remove poisoned models with large
cosine distances, and employs adaptive clipping (§4.3.2) to
remove poisoned models with large magnitudes. Therefore,
the sensitivity of the remaining backdoor models is lower
compared to the one before applying these two steps. As a re-
sult, FLAME can use a small Gaussian noise to eliminate the
remaining backdoors after applying clustering and clipping,
which is beneficial for preserving the main task accuracy.

We empirically show how the noise scale for backdoor
elimination changes after applying each step of FLAME. Par-
ticularly, we measure the smallest Gaussian noise scale σ
required to defeat all backdoors (i.e., BA = 0%) in three set-
tings: i) No defense components applied (which is equivalent
to the previous DP-based defense [7, 18]); ii) After applying
dynamic clustering; iii) After applying both dynamic cluster-
ing and adaptive clipping (which is the setting of FLAME).

Table 1: Effect of clustering and clipping in FLAME on
minimal Gaussian noise level σ for backdoor elimination in
the NIDS scenario, in terms of Backdoor Accuracy (BA) and
Main Task Accuracy (MA).

σ
Only

Noising
After

Clustering
After Clustering

& Clipping
BA MA BA MA BA MA

0.01 100.0% 100.0% 0.0% 80.5% 0.0% 100.0%
0.08 3.5% 66.7% 0.0% 66.7% 0.0% 100.0%
0.10 0.0% 54.2% 0.0% 66.1% 0.0% 87.6%

We conduct this comparison experiment on the IoT-Traffic
dataset (cf. §6). For each communication round, 100 clients
are selected where k = 40 are adversaries. We remove the
backdoor by adding Gaussian noise N(0,σ2) to the aggre-
gated model. Table 1 summarizes the evaluation results in the
above three settings. We can observe from the comparison
results that the noise scale required to eliminate backdoors de-
creases after individual deployment of clustering and clipping.
This corroborates the correctness of Theorem 2.

5.2 Attack and Data Distribution Assumption
In FLAME, we do not make specific assumptions about
the attack and data distribution compared to the existing
clustering-based defenses. Let X = (X1, . . . ,Xb) be a set of dis-
tributions of benign models (W1, . . . ,Wn−k) where b≤ n− k.
The deviation in X is caused by the diversity of the data. Let
X ′ = (X ′1, . . . ,X

′
a) be a set of distributions of poisoned mod-

els (W ′1, . . . ,W
′
k) where a≤ k. The deviation in X ′ is caused

by the diversity of the benign data and backdoors (e.g., poi-
soned data or model crafting). Existing works assume that
X ′i ≈X ′j (∀i, j : 1≤ i, j≤ a) (see e.g., [22] or X ′ ̸=X [9,51]).
However, this assumption does not hold in many situations
because (i) there can be one or multiple attackers injecting
multiple backdoors [7], or (ii) the adversary can inject one
or several random (honeypot) models having a distribution
X ′r that is significantly different from X ∪ (X ′ \X ′r), and (iii)
the adversary can control how much the backdoored mod-
els deviate from benign ones as discussed in §3. Therefore,
approaches that purely divide models into two groups, e.g.,
K-means [51] will incorrectly classify models having distri-
bution X ′r into the malicious group and all remaining models
(having distributions drawn from (X ∪ (X ′ \X ′r)) into the be-
nign group. As a result, all backdoored models having dis-
tributions drawn from (X ′ \X ′r) are classified as benign, as
demonstrated in Fig. 5b. In contrast, FLAME does not rely
on such specific assumptions (the adversary can arbitrarily
choose X ′). If the distribution X ′i of a poisoned model is simi-
lar to benign distributions in X , FLAME will falsely classify
X ′i as being. But if the distribution X ′j of a poisoned model is
different from the distributions in X , FLAME will identify X ′j
as an outlier and classify the associated model as malicious.
To identify deviating and thus potentially malicious models,
FLAME leverages the HDBSCAN algorithm to identify re-
gions of high density in the model space. Any models that are
not located in the dense regions will be categorized as out-
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liers, as shown in Fig. 5d. As discussed in §3, FLAME aims
to remove models with distributions X ′j that have a higher
attack impact compared to models with distribution X ′i . It is
worth noting, however, that the impact of such remaining back-
doored models will be eliminated by the noising component
as shown in §5.1
Striking a balance between accuracy and security: Clus-
tering and DP-based approaches affect model accuracy as
discussed in §4.2 (Challenges C2 and C3). In particular, an ap-
proach that aims to maximize the number of filtered malicious
models may lead to many false positives, i.e., many benign
models being filtered out. Moreover, applying a very low clip-
ping bound or a very high level of injected noise will degrade
model accuracy. To address these problems, FLAME is con-
figured so that the clustering component removes only models
with high attack impact rather than all malicious models, i.e.,
it aims to remove the first backdoor type W ′1 as shown in
Fig. 3. In addition, FLAME carefully estimates the clipping
bound and noise level to ensure backdoor elimination while
preserving model performance. As discussed in §4.3.2, the
L2-norms of model updates depend on the number of training
rounds, dataset types, and type of backdoors. Consequently,
the clipping threshold and noise level should be adapted to
L2-norms. We therefore apply the median of the L2-norms of
model updates as the clipping bound St (cf. Lines 9-11 of Alg.
1). This ensures that St is always computed between a benign
local model and the global model since we assume that more
than 50% of clients are benign (cf. §2.3). Further, estimating
noise level based on St (cf. Lines 13-14 of Alg. 1) also pro-
vides a noise boundary that ensures that the global model is
resilient against backdoors as discussed in §5.1. Moreover,
our comparison of potential values for St presented in §B.2
and §B.3 shows that the chosen clipping bound and noise
level provide the best balance between accuracy and security,
i.e., FLAME eliminates backdoor while retaining the global
model’s performance on the main task.

6 Experimental Setup
We conduct all the experiments using the PyTorch deep learn-
ing framework [2] and use the source code provided by Bag-
dasaryan et al. [7], Xie et al. [59] and Wang et al. [57] to
implement the attacks. We reimplemented existing defenses
to compare them with FLAME.
Datasets and Learning Configurations. Following recent
research on poisoning attacks on FL, we evaluate FLAME
in three typical application scenarios: word prediction [35,
38–40], image classification [13, 49, 50], and an IoT intrusion
detection [44,47,48,54] as summarized in Tab. 2. Verification
of the effectiveness of FLAME against state-of-the-art attacks
in comparison to existing defenses (cf. Tab. 3 and Tab. 4) are
conducted on these three datasets in the mentioned application
scenarios. Experiments for evaluating specific performance
aspects of FLAME are performed on the IoT dataset as it
represents a very diverse and real-world setting with clear

Table 2: Datasets used in our evaluations.
Application Datasets #Records Model #params
WP Reddit 20.6M LSTM ∼20M
NIDS IoT-Traffic 65.6M GRU ∼507k

IC
CIFAR-10 60k ResNet-18 Light ∼2.7M
MNIST 70k CNN ∼431k
Tiny-ImageNet 120k ResNet-18 ∼11M

security implications.
Evaluation Metrics. We consider a set of metrics for evalu-
ating the effectiveness of backdoor attack and defense tech-
niques as follows: BA - Backdoor Accuracy indicates the
accuracy of the model in the backdoor task, i.e., it is the frac-
tion of the trigger set for which the model provides the wrong
outputs as chosen by the adversary. The adversary aims to
maximize BA, while an effective defense prevents the adver-
sary from increasing it. MA - Main Task Accuracy indicates
the accuracy of a model in its main (benign) task. It denotes
the fraction of benign inputs for which the system provides
correct predictions. The adversary aims at minimizing the
effect on MA to reduce the chance of being detected. The
defense system should not negatively impact MA. TPR - True
Positive Rate indicates how well the defense identifies poi-
soned models, i.e., the ratio of the number of models correctly
classified as poisoned (True Positives - TP) to the total num-
ber of models being classified as poisoned: TPR = T P

T P+FP ,
where FP is False Positives indicating the number of benign
clients that are wrongly classified as malicious. TNR - True
Negative Rate indicates the ratio of the number of models
correctly classified as benign (True Negatives - TN) to the
total number of benign models: TNR = T N

T N+FN , where FN is
False Negatives indicating the number of malicious clients
that are wrongly classified as benign.

7 Experimental Results
In this section, we evaluate FLAME against backdoor attacks
in the literature (§7.1) and demonstrate that our defense mech-
anism is resilient to adaptive attacks (§7.2). In addition, we
show the effectiveness of each of FLAME’s components in
§B and FLAME overhead in §D. Finally, we evaluate the
impact of the number of clients (§7.3) as well as the degree
of non-IID data (§7.4).

7.1 Preventing Backdoor Attacks
Effectiveness of FLAME. We evaluate FLAME against
the state-of-the-art backdoor attacks called constrain-and-
scale [7], DBA [59], PGD and Edge-Case [57] and an untar-
geted poisoning attack [20] (cf. §F) using the same attack
settings as in the original works with multiple datasets. The
results are shown in Tab. 3. FLAME completely mitigates the
constrain-and-scale attack (BA = 0%) for all datasets. More-
over, our defense does not affect the Main Task Accuracy
(MA) of the system as MA reduces by less than 0.4% in all
experiments. The DBA attack as well as the Edge-Case at-
tack [57] are also successfully mitigated (BA = 3.2%/4.0%).
Further, FLAME is also effective against PGD attacks (BA =

1424    31st USENIX Security Symposium USENIX Association



Table 3: Effectiveness of FLAME against state-of-the-art
attacks for the respective dataset, in terms of Backdoor Accu-
racy (BA) and Main Task Accuracy (MA). All metric values
are reported as percentages.

Dataset No Defense FLAME
Attack BA MA BA MA

Constrain-and-scale [7] Reddit 100 22.6 0 22.3
CIFAR-10 81.9 89.8 0 91.9
IoT-Traffic 100.0 100.0 0 99.8

DBA [59] CIFAR-10 93.8 57.4 3.2 76.2
Edge-Case [57] CIFAR-10 42.8 84.3 4.0 79.3
PGD [57] CIFAR-10 56.1 68.8 0.5 65.1
Untargeted Poisoning [20] CIFAR-10 - 46.72 - 91.31

Table 4: Effectiveness of FLAME in comparison to state-of-
the-art defenses for the constrain-and-scale attack on three
datasets, in terms of Backdoor Accuracy (BA) and Main Task
Accuracy (MA). All values are percentages.

Defenses Reddit CIFAR-10 IoT-Traffic
BA MA BA MA BA MA

Benign Setting - 22.7 - 92.2 - 100.0
No defense 100.0 22.6 81.9 89.8 100.0 100.0
Krum [9] 100.0 9.6 100.0 56.7 100.0 84.0
FoolsGold [22] 0.0 22.5 100.0 52.3 100.0 99.2
Auror [51] 100.0 22.5 100.0 26.1 100.0 96.6
AFA [42] 100.0 22.4 0.0 91.7 100.0 87.4
DP [18] 14.0 18.9 0.0 78.9 14.8 82.3
Median [60] 0.0 22.0 0.0 50.1 0.0 87.7
FLAME 0.0 22.3 0.0 91.9 0.0 99.8

0.5 %). It should be noted that suggesting words is a quite
challenging task, causing the MA even without attack to be
only 22.7%, aligned with previous work [7].

We extend our evaluation to various backdoors on three
datasets. For NIDS, we evaluate 13 different backdoors (Mirai
malware attacks) and 24 device types (78 IoT devices). The
results show that FLAME is able to mitigate all backdoor
attacks completely while achieving a high MA=99.8%. We
evaluate 5 different word backdoors for WP, and 90 differ-
ent image backdoors for IC, which change the output of a
whole class to another class. In all cases, FLAME success-
fully mitigates the attack while still preserving the MA.
Comparison to existing defenses. We compare FLAME
to existing defenses: Krum [9], FoolsGold [22], Auror [51],
Adaptive Federated Averaging (AFA) [42], Median [60] and a
generalized differential privacy (DP) approach [7, 40]. Tab. 4
shows that FLAME is effective for all 3 datasets, while pre-
vious works either fail to mitigate backdoors or reduce the
main task accuracy. Krum, FoolsGold, Auror, and AFA do not
effectively remove poisoned models and BA often remains
at 100%. Also, some defenses make the attack even more
successful than without defense. Since they remove many
benign updates (cf. §B) but fail to remove a sufficient number
of poisoned updates, these defenses increase the PMR and,
therefore, also the impact of the attack. Some defenses, e.g.,
Krum [9], Auror [51] or AFA [42] are not able to handle
non-iid data scenarios like Reddit. In contrast, FoolsGold is
only effective on the Reddit dataset (TPR = 100%) because
it works well on highly non-independent and identically dis-

tributed (non-IID) data (cf. §9). Similarly, AFA only mitigates
backdoors on the CIFAR-10 dataset since the data are highly
IID (each client is assigned a random set of images) such that
the benign models share similar distances to the global model
(cf. §9). Additionally, the model’s MA is negatively impacted.
The DP-based defense is effective, but it significantly reduces
MA. For example, it performs best on the CIFAR-10 dataset
with BA = 0, but MA decreases to 78.9% while FLAME in-
creases MA to 91.9% which is close to the benign setting (no
attacks), where MA = 92.2%.
Effectiveness of FLAME’s Components. Further, we have
also conducted an extensive evaluation of the effectiveness of
each of FLAME’s components. Due to space limitations, we
would like to refer to §B for the details.

7.2 Resilience to Adaptive Attacks
Given sufficient knowledge about FLAME, an adversary may
seek to use adaptive attacks to bypass the defense components.
In this section, we analyze such attack scenarios and strategies
including changing the injection strategy, model alignment,
and model obfuscation.
Changing the Injection Strategy. The adversary A may at-
tempt to inject several backdoors simultaneously to execute
different attacks on the system in parallel or to circumvent the
clustering defense (cf. §2.2). FLAME is also effective against
such attacks (cf. Fig. 5). To further investigate the resilience of
FLAME against such attacks, we conduct two experiments:
1) assigning different backdoors to malicious clients and 2)
letting each malicious client inject several backdoors. To
ensure that each backdoor is injected by a sufficient number
of clients, we increased the PMR for this experiment. We
conducted these experiments with n = 100 clients of which
k = 40 are malicious on the IoT-Traffic dataset with each type
of Mirai attack representing a backdoor. First, we evaluate
FLAME for 0,1,2, 4, and 8 backdoors, meaning that the num-
ber of malicious clients for each backdoor is 0,40,20,10, and
5. Our experimental results show that our approach is effec-
tive in mitigating the attacks as BA = 0%±0.0% in all cases,
with TPR = 95.2%±0.0%, and TNR = 100.0%±0.0%. For
the second experiment, 4 backdoors are injected by each of
the 40 malicious clients. Also, in this case, the results show
that FLAME can completely mitigate the backdoors.
Model Alignment. Using the same attack parameter values,
i.e., PDR (cf. §2.2), for all malicious clients can result in high
distances between benign and poisoned models. Those high
distances can be illustrated as a gap between poisoned and be-
nign models, s.t. the clustering can separate them. Therefore,
a sophisticated adversary can generate models that bridge the
gap between them such that they are merged to the same clus-
ter in our clustering. We evaluate this attack on the IoT-Traffic
dataset for k = 80 malicious clients and n = 200 clients in
total. To remove the gap, each malicious client is assigned a
random amount of malicious data, i.e., a random PDR ranging
from 5% to 20%. As Tab. 5 shows, when we apply model
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Table 5: Resilience to model alignment attacks in terms of
Backdoor Accuracy (BA), Main Task Accuracy (MA), True
Positive Rate (TPR), True Negative Rate (TNR) in percent.

BA MA TPR TNR
Model Filtering 100.0 91.98 0.0 33.04
FLAME 0.0 100.0 5.68 33.33

filtering only, our clustering component cannot identify the
malicious clients well (TPR = 0%), resulting in BA = 100%.
However, when we apply FLAME, although TPR remains
low (5.68%) FLAME still mitigates the attack successfully
(BA reduces from 100% to 0%). This can be explained by the
fact that when the adversary A tunes malicious updates to be
close to the benign ones, the attack’s impact is reduced and
consequently averaged out by our noising component.
Model Obfuscation. A can add noise to the poisoned models
to make them difficult to detect. However, our evaluation
of such an attack on the IoT-Traffic dataset shows that this
strategy is not effective. We evaluate different noise levels to
determine a suitable standard deviation for the noise. Thereby,
we observe that a noise level of 0.034 causes the models’
cosine distances in clustering to change without significantly
impacting BA. However, FLAME can still efficiently defend
this attack: BA remains at 0% and MA at 100%.

7.3 Effect of Number of Clients
Impact of Number of Malicious Clients. We assume that
the number of benign clients is more than half of all clients
(cf. §2.2) and our clustering is only expected to be successful
when PMR = k

n < 50% (cf. §4.3.1). We evaluate FLAME for
different PMR values. Figure 7 shows how BA, TPR, and TNR
change in the IC, NIDS, and WP applications for PMR values
from 25% to 60%. It shows that FLAME is only effective
if PMR < 50% so that only benign clients are admitted to
the model aggregation (TNR = 100%) and thus BA = 0%.
However, if PMR > 50%, FLAME fails to mitigate the attack
because the majority of poisoned models will be included
resulting in low TNR. Interestingly, FLAME accepted all
models for PMR = 50% (TPR = 0% and TNR = 100%). For
the IC application, since the IC data are non-IID, poisoned
models are not similar. Therefore, some poisoned models
were excluded from the cluster resulting in a high TPR even
for PMRs higher than 50%. However, the majority of poisoned
models were selected resulting in the drop in the TNR.

Varying number of clients in different training rounds.
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Figure 7: Impact of the poisoned model rate PMR = k

n on the
evaluation metrics. PMR is the fraction of malicious clients k
per total clients n.
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(b) Network Intrusion Detection
Figure 8: Impact of the number of clients on FLAME

In general, FLAME is a round-independent defense, i.e., it
does not use information from previous rounds such as which
clients were excluded in which rounds. Therefore, FLAME
will not be affected if the number of clients or number of
malicious clients varies as long as the majority of clients
remain benign. To demonstrate this, we simulate realistic sce-
narios in which clients can join and drop out dynamically.
We conducted an experiment where during each round, the
total number of available clients is randomly selected. As the
result, the number of malicious clients will also be random.
In this experiment, we used a population of 100 clients in

total, out of which 25 are malicious. In each round, a ran-
dom number (from 60 to 90) of clients are selected, so that
the fraction of malicious clients (PMR) varies in each round.
Figure 8 shows the experimental results. One can see that
the proportion of malicious clients (PMR) does not affect the
effectiveness of FLAME, i.e., the backdoor is completely re-
moved (BA = 0%) in every round. Since all poisoned models
are detected, their negative effect on the aggregated model
is removed. Therefore, the MA with FLAME is better than
the one without defense, and is almost always 100 % aligned
with the results in Tab. 4.

7.4 Impact of the Degree of non-IID Data
Since clustering is based on measuring differences between
benign and malicious updates, the distribution of data among
clients might affect our defense. We conduct two experiments
for both Constrain-and-scale and Edge-Case PGD on the
CIFAR-10 dataset. For Reddit and IoT datasets, changing the
degree of non-IID data is not meaningful since the data have a
natural distribution as every client obtains data from different
Reddit users or traffic chunks from different IoT devices.
Following previous works [20,57], we vary the degree of non-
IID data DegnIIDby changing the fraction of images belonging
to a specific class assigned to clients. In particular, we divide
the clients into 10 groups corresponding to the 10 classes of
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Figure 9: Impact of degree of non-IID data on FLAME for
constrain-and-scale using the DegnIID and for the Edge-Case
PGD attack using the α parameter of the Dirichlet distribution.
CIFAR-10. The clients of each group are assigned a fixed
fraction of DegnIIDof the images from its designated image
class, while the rest of the images will be assigned to it at
random. Consequently, the data distribution is random, i.e.,
completely IID if DegnIID = 0% (all images are randomly
assigned) and completely non-IID if DegnIID = 100% (a client
only gets images from its designated class).

Figure 9a shows the evaluation results for the constrain-
and-scale attacks. Although FLAME does not detect the poi-
soned models for very non-IID scenarios, it still mitigates the
attack as the BA remains 0% for all values of DegnIID. For low
DegnIID, FLAME effectively identifies the poisoned models
(T NR = 100%) and the MA remains on almost the same level
as without defense. As shown in Fig. 9b, FLAME also miti-
gates the Edge-Case PGD attack effectively for all α values of
the Dirichlet distribution and the MA also stays on the same
level as without defense. However, since not all poisoned
models are detected, a higher σ is determined dynamically
to mitigate the constrain-and-scale backdoor, resulting in a
slightly reduced MA for DegnIID ≥ 0.7 (MA is 91.9% for
DegnIID = 0.6, and is reduced to 91.0% for DegnIID = 1.0).
Note that Fig. 9 shows the evaluation results in a training
round t where the global model Gt is close to convergence [7],
thus even though the TNR decreases with a large value of
DegnIID, the drop of MA with FLAME is not substantial.

8 Privacy-preserving Federated Learning
A number of attacks on FL have been proposed that aim to
infer from parameters of a model the presence of a specific
training sample in the training dataset (membership inference
attacks) [41, 46, 52], properties of training samples (property
inference attacks) [23,41], try to assess the proportion of sam-
ples of a specific class in the data (distribution estimation
attacks) [58]. Inference attacks by the aggregator As are sig-
nificantly stronger, as As has access to the local models [43]
and can also link gained information to a specific user, while
the global model anonymizes the individual contributions.

Aggregator A
Dynamic 

Clustering
Adaptive 
Clipping

Adaptive 
Noising

𝐺𝑡

Client 𝑖

〈𝑋〉𝑖
𝐴

〈𝑋〉𝑖
𝐵

External Server B

Dynamic 
Clustering

Adaptive 
Clipping

〈𝑋〉𝐵

〈𝑋〉𝐴
Arithmetic

shares

STPC STPC

Global
model

Updated 
global model

𝐺𝑡−1
∗

𝐺𝑡
∗

Figure 10: Overview of private FLAME in round t using
Secure-Two-Party Computation (STPC).
Therefore, enhanced privacy protection for FL is needed that
prohibits access to the local model updates.
Adversary Model (privacy). In this adversary type, As at-
tempts to infer sensitive information about clients’ data Di
from their model updates Wi [23, 41, 46, 52] by maximizing
the information φi = INFER(Wi) that As gains about the data
Di of client i by inferring from its corresponding model Wi.
Deficiencies of existing defenses. Generally, there are two ap-
proaches to protect the privacy of clients’ data: differential pri-
vacy (DP; [18]) and cryptographic techniques such as homo-
morphic encryption [24] or multi-party computation [14]. DP
is a statistical approach that can be efficiently implemented,
but it can only offer high privacy protection at the cost of
a significant loss in accuracy due to the noise added to the
models [6, 61]. In contrast, cryptographic techniques provide
strong privacy guarantees as well as high accuracy at the cost
of reduced efficiency.
Private FLAME. To securely implement FLAME using
STPC, we use an optimized combination of three promi-
nent STPC techniques as implemented with state-of-the-art
optimizations in the ABY framework [14]. Fig. 10 shows
an overview of private FLAME. It involves n clients and
two non-colluding servers, called aggregator A and external
server B. Each client i ∈ {1, ...,n} splits the parameters of its
local update Wi into two Arithmetic shares ⟨X⟩Ai and ⟨X⟩Bi ,
such that Wi = ⟨X⟩Ai + ⟨X⟩Bi , and sends ⟨X⟩Ai to A and ⟨X⟩Bi
to B. A and B then privately compute the new global model
via STPC. We co-design the distance calculation, clustering,
adaptive clipping, and aggregation of FLAME (cf. Alg. 1)
of FLAME as efficient STPC protocols.To further improve
performance, we approximate HDBSCAN with the simpler
DBSCAN [10] to avoid the construction of the minimal span-
ning tree in HDBSCAN as it is very expensive to realize with
STPC. See §G for more details on private FLAME evaluation
of its accuracy and performance.

9 Related Work
In general, existing backdoor defenses can roughly be divided
into two main categories. The first one aims to distinguish
malicious updates and benign updates by 1) clustering model
updates [9,15,22,29,33,34,51], 2) changing aggregation rules
[25, 60], and 3) using root dataset [4]. The second category is
based on differential privacy techniques [7,56]. Next, we will
discuss these points in detail.
Clustering model updates. Several backdoor defenses, such
as Krum [9], AFA [42], and Auror [51], aim at separat-
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ing benign and malicious model updates. However, they
only work under specific assumptions about the underly-
ing data distributions, e.g., Auror and Krum assume that
data of benign clients are iid. In contrast, FoolsGold and
AFA [42] assume that benign data are non-iid. In addition,
FoolsGold assumes that manipulated data are iid. As a re-
sult, these defenses are only effective under specific circum-
stances (cf. §7.1) and cannot handle the simultaneous in-
jection of multiple backdoors (cf. §4.3.1). Moreover, such
defenses cannot detect stealthy attacks, e.g., where the ad-
versary constrains their poisoned updates within benign up-
date distribution such as Constrain-and-scale attacks [7]. In
contrast, FLAME does not make any assumption about the
data distribution, clipping, and noising components can also
mitigate stealthy attacks, and FLAME can defend against
injection of multiple backdoors (cf. §4.3.1).
Changing aggregation rules. Instead of using FedAvg [38],
Yin et al. [60] and Guerraoui et al. [25] propose using the
median parameters from all local models as the global model
parameters, i.e., Gt = MEDIAN(W t

1 , . . . ,W
t
n). However, the

adversary can bypass it by injecting stealthy models like W ′3
(cf. Fig. 2), in which the parameters of poisoned model will
be selected to be incorporated into the global model. Further,
our evaluation in §7.1 shows that Median also reduces the
performance of the model significantly.
Using root data. Although FLTrust [12] can defend against
byzantine clients (with arbitrary behavior) and detect poison-
ing attacks including backdoors, it requires the aggregator to
have access to a benign root dataset. Baffle [4] utilizes clients
using their own data to evaluate the performance of the ag-
gregated model to detect backdoors. However, this approach
has two limitations, e.g., (i) the backdoor triggers are only
known to the attacker, i.e., one cannot ensure that the benign
clients would have such trigger data to activate the backdoor,
and (ii) Baffle does not work in a non-IID data scenario with
a small number of clients as clients cannot distinguish deficits
in model performance due to the backdoor from lack of data.
Differential Privacy-based approaches. Clipping and nois-
ing are known techniques to achieve differential privacy
(DP) [18]. However, directly applying these techniques to
defend against backdoor attacks is not effective because
they significantly decrease the Main Task Accuracy (§7.1)
[7]. FLAME tackles this by i) identifying and filtering out
potential poisoned models that have a high attack impact
(cf. §4.3.1), and ii) eliminating the residual poison with an
appropriate adaptive clipping bound and noise level, such that
the Main Task Accuracy is retained (cf. §4.3.2).

10 Conclusion
In this paper, we introduce FLAME, a resilient aggregation
framework for FL that eliminates the impact of backdoor at-
tacks while maintaining the performance of the aggregated
model on the main task. We propose a method to approximate
the amount of noise that needs to be injected into the global

model to neutralize backdoors. Furthermore, in combination
with our dynamic clustering and adaptive clipping, FLAME
can significantly reduce the noise scale for backdoor removal
and thus preserve the benign performance of the global model.
In addition, we design, implement, and benchmark efficient se-
cure two-party computation protocols for FLAME to ensure
the privacy of clients’ training data and to impede inference
attacks on client updates.
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A Datasets and Learning Configurations
Word Prediction (WP). We use the Reddit dataset of Novem-
ber 2017 [1] with the same settings as state-of-the-art works
[7, 38, 40] for comparability. In particular, each user in the
dataset with at least 150 posts and not more than 500 posts is
considered as a client. This results in 80 000 clients’ datasets
with sizes between 298 and 32 660 words.

The model consists of two LSTM layers and a linear output
layer [7, 38]. To be comparable to the attack setting in [7],
we evaluate FLAME on five different backdoors, each with
a different trigger sentence corresponding to a chosen output.
Image Classification (IC). For image classification, we use
mainly the CIFAR-10 dataset [31], a standard benchmark
dataset for image classification, in particular for FL [38] and
backdoor attacks [7, 8, 42]. It consists of 60 000 images of
10 different classes. The adversary aims at changing the pre-
dicted label of one class of images to another class of images.
We use a lightweight version of the ResNet18 model [26] with
4 convolutional layers with max-pooling and batch normaliza-
tion [7]. The experimental setup consists of 100 clients and
uses a PMR of 20%. In addition to the CIFAR-10 dataset, we
also evaluate FLAME’s effectiveness on two further datasets
for image classification. The MNIST dataset consists of 70 000
handwritten digits [32]. The learning task is to classify images
to identify digits. The adversary poisons the model by misla-
beling labels of digit images before using it for training [51].
We use a convolutional neural network (CNN) with 431000
parameters. The Tiny-ImageNet 3 consists of 200 classes and
each class has 500 training images, 50 validation images, and
50 test images. We used ResNet18 [26] model.
Network Intrusion Detection System (NIDS). We test
backdoor attacks on IoT anomaly-based intrusion detec-
tion systems that often represent critical security applica-
tions [5, 16, 27, 30, 44, 45, 55]. Here, the adversary aims at
causing incorrect classification of anomalous traffic patterns,
e.g., generated by IoT malware, as benign patterns. Based
on the FL anomaly detection system DÏoT [44], we use
three datasets called DIoT-Benign, DIoT-Attack, and UNSW-
Benign [44,53] from real-world home and office deployments
(four homes and two offices located in Germany and Aus-
tralia). DIoT-Attack contains the traffic of 5 anomalously
behaving IoT devices, infected by the Mirai malware [44].
Moreover, we collected a fourth IoT dataset containing com-
munication data from 24 typical IoT devices (including IP
cameras and power plugs) in three different smart home set-
tings and an office setting. Following [44], we extracted

3https://tiny-imagenet.herokuapp.com
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Table 6: Effectiveness of the clustering component, in terms
of True Positive Rate (TPR) and True Negative Rate (TNR), of
FLAME in comparison to existing defenses for the constrain-
and-scale attack on three datasets. All values are in percentage
and the best results of the defenses are marked in bold.

Defenses Reddit CIFAR-10 IoT-Traffic
TPR TNR TPR TNR TPR TNR

Krum 9.1 0.0 8.2 0.0 24.2 0.0
FoolsGold 100.0 100.0 0.0 90.0 32.7 84.4
Auror 0.0 90.0 0.0 90.0 0.0 70.2
AFA 0.0 88.9 100.0 100.0 4.5 69.2
FLAME 22.2 100.0 23.8 86.2 59.5 100.0
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Figure 11: Effectiveness of FLAME’s clipping bound in
terms of Backdoor Accuracy (BA) and Main Task Accuracy
(MA). S is the clipping bound and med the L2-norm median.
device-type-specific datasets capturing the devices’ commu-
nication behavior. We simulate the FL setup by splitting
each device type’s dataset among several clients (from 20
to 200). Each client has a training dataset corresponding to
three hours of traffic measurements containing samples of
roughly 2 000-3 000 communication packets. The learning
model consists of 2 GRU layers and a fully connected layer.

B Effectiveness of FLAME’s Components
B.1 Effectiveness of the Clustering Component
We show the results for the clustering component in Tab. 6.
As shown there, our filtering achieves TNR = 100% for the
Reddit and IoT-Traffic datasets, i.e., FLAME only selects
benign models in this attack setting. Recall that the goal of
clustering is to filter out the poisoned models with high attack
impact, i.e., not necessarily all poisoned models (cf. §4.1).
This allows FLAME to defend backdoor attacks effectively,
even if not all poisoned models are filtered. For example,
although for the CIFAR-10 dataset in Tab. 6 the TNR is not
100 % (86.2%), the attack is still mitigated by the noising
component, such that the BA is 0 % (cf. Tab. 4).

B.2 Effectiveness of Clipping
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Figure 12: Impact of different noise level factors on the Back-
door Accuracy (BA) and Main Task Accuracy (MA).
Fig. 11 demonstrates the effectiveness of FLAME’s dynamic
clipping where S is the median of L2-norms compared to a
static clipping bound [7] and different choices for a dynamic
clipping boundary (i.e., median, half of median, median mul-
tiplied by 1.5). The experiments are conducted for the IoT-
Traffic dataset, which is non-iid. Fig. 11a and Fig. 11b show
that a small static bound S = 0.5 is effective to mitigate the
attack (BA = 0%), but MA drops to 0% rendering the model
useless. Moreover, a higher static bound like S = 10 is ineffec-
tive as BA = 100% if the Poisoned Data Rate (PDR) ≥ 35%.
In contrast, FLAME’s dynamic clipping threshold performs
significantly better as BA consistently remains at 0% while
MA remains high (cf. Fig. 11c and Fig. 11d).

B.3 Effectiveness of Adding Noise
Fig. 12 shows the impact of adding noise to the intermediate
global models with respect to different noise level factors λ to
determine the standard deviation of the noise σ dynamically
based on the median L2-norm of the updates St as σ = λSt .
As it can be seen, increasing λ reduces the BA, but it also
negatively impacts the performance of the model in the main
task (MA). Therefore, the noise level must be dynamically
tuned and combined with the other defense components to
optimize the overall success of the defense. The noise level

factor is determined by λ = 1
ε

√
2ln 1.25

δ for (ε,δ)-DP. We use
standard DP parameters and set ε = 3705 for IC, ε = 395 for
the NIDS and ε = 4191 for the NLP scenario. Accordingly,
λ = 0.001 for IC and NLP, and λ = 0.01 for the NIDS sce-
nario. The DP budget is dependent on the considered dataset
scenario. It is determined based on the median of the dataset
sizes of the clients and the size of the model used. It can thus
be empirically determined by the aggregator. Analogous to
determining the clipping boundary S (cf. 4.3.2), using the
median ensures that the used dataset size is within the range
of benign values.

C Naïve Combination
Furthermore, we test a naïve combination of the defense com-
ponents by stacking clipping and adding noise (using a fixed
clipping bound of 1.0 and a standard deviation of 0.01 as
in [7]) on top of a clustering component using K-means. How-
ever, this naïve approach still allows a BA of 51.9% and a MA
of 60.24%, compared to a BA of 0.0% and a MA of 89.87%
of FLAME in the same scenario for the CIFAR-10 dataset.
Based on our evaluations in §7.1, it becomes apparent that
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FLAME’s dynamic nature goes beyond previously proposed
defenses that consist of static baseline ideas, which FLAME
significantly optimizes, extends, and automates to offer a com-
prehensive dynamic and private defense against sophisticated
backdoor attacks.

D Overhead of FLAME
We evaluated FLAME for 6 different device types from the
IoT dataset. In this experiment, only benign clients partici-
pated and the model was randomly initialized. The highest
observed overhead was 4 additional rounds. In average, 1.67
additional training rounds were needed to achieve at least 99%
of the MA that was achieved without applying the defense,
i.e., FLAME does not prevent the model from converging.

E HDBSCAN
HDBSCAN [11] is a density-based clustering technique that
classifies data samples in different clusters without prede-
fined the maximum distance and the number of clusters. In
the following, we describe HDBSCAN in detail, following
the implementation of McInnes et al. [36, 37]. However,
we focus on the behavior of HDBSCAN for the parame-
ters that FLAME uses, i.e., when min_cluster_size=N/2+
1 and min_samples=1, e.g., because of the choice for
min_cluster_size we skip parts that deal with multiple
clusters. HDBSCAN first uses the given distances to build a
minimal spanning tree (MST), where the vertices represent
the individual data points and the edges are weighted by the
distances between the respective points. Then it uses the MST
to build a binary tree where the leaf nodes represent the ver-
tices of the MST and the non-leaf nodes represent the edges of
the MST. For this, first, all vertices are considered as separate
trees (of size 1). For this, first, all vertices are considered as
separate trees (of size 1) and then, starting from the edge with
the lowest weight, iteratively the trees are merged by creating
a non-leaf-node for each edge of the MST and set the (previ-
ously not connected) subtrees containing the endpoints of the
edge as children for the new node (represented by calling the
function make_binary_tree. In the next step, HDBSCAN
collects all nodes of the binary tree as candidates, that cover
at least N/2+1 data points. Since only non-leaf nodes fulfill
the requirement of covering at least N/2+1 data points, each
cluster candidate is based on a node, representing an edge in
the MST. It uses the weight of the edge and the number of
covered points to calculate a so-called stability value. Then
HDBSCAN uses the stability value to determine the cluster
candidate with the most homogeneous density and returns this
candidate as majority cluster. Finally, it assigns the cluster
label to all data points inside this cluster and labels all points
outside of this cluster as noise.

F Effectiveness of FLAME against untargeted
poisoning attacks

Another attack type related to backdooring is untargeted poi-
soning [8, 9, 20]. Unlike backdoor attacks that aim to incorpo-
rate specific backdoor functionalities, untargeted poisoning
aims at rendering the model unusable. The adversary uses
crafted local models with low Main Task Accuracy to dam-
age the global model G. Fang at el. [20] propose such an
attack bypassing state-of-the-art defenses. Although we do
not focus on untargeted poisoning, our approach intuitively
defends it since, in principle, this attack also trade-offs attack
impact against stealthiness. To evaluate the effectiveness of
FLAME against this attack, we test the Krum-based attack
proposed by [20] on FLAME. Since [20]’s evaluation uses
image datasets, we evaluate FLAME’s resilience against it
with CIFAR-10. The evaluation results show that although
the attack significantly damages the model by reducing MA
from 92.16% to 46.72%, FLAME can successfully defend
against it and MA remains at 91.31%.

G Performance of Private FLAME
For our implementation, we use the STPC framework
ABY [14] which implements the three sharing types, includ-
ing state-of-the-art optimizations and flexible conversions and
the open-source privacy-preserving DBSCAN by Bozdemir
et al. [10]. All STPC results are averaged over 10 experiments
and run on two separate servers with Intel Core i9-7960X
CPUs with 2.8 GHz and 128 GB RAM connected over a 10
Gbit/s LAN with 0.2 ms RTT.
Approximating HDBSCAN by DBSCAN. We measure the
effect of approximating HDBSCAN by DBSCAN including
the binary search for the neighborhood parameter ε. The
results show that our approximation has a negligible loss
of accuracy. For some applications, the approximation even
performs slightly better than the standard FLAME, e.g., for
CIFAR-10, private FLAME correctly filters all poisoned mod-
els, while standard FLAME accepts a small number (TNR =
86.2%), which is still sufficient to achieve BA = 0.0%.
Runtime of Private FLAME. We evaluate the runtime in
seconds per training iteration of the cosine distance, Euclidean
distance + clipping + model aggregation, and clustering steps
of Alg. 1 in standard (without STPC) and in private FLAME
(with STPC). The results show that private FLAME causes a
significant overhead on the runtime by a factor of up to three
orders of magnitude compared to the standard (non-private)
FLAME. However, even if we consider the largest model
(Reddit) with K = 100 clients, we have a total server-side
runtime of 22 081.65 seconds (≈ 6 hours) for a training itera-
tion with STPC. Such runtime overhead would be acceptable
to maintain privacy, especially since mobile phones, which
would be a typical type of clients in FL [38], are not always
available and connected so that there will be delays in syn-
chronizing clients’ model updates in FL. These delays can
then also be used to run STPC. Furthermore, achieving prov-
able privacy by using STPC may even motivate more clients
to contribute to FL in the first place and provide more data.
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Abstract 

Background: The kidney exchange problem (KEP) addresses the matching of patients in need for a replacement 
organ with compatible living donors. Ideally many medical institutions should participate in a matching program to 
increase the chance for successful matches. However, to fulfill legal requirements current systems use complicated 
policy-based data protection mechanisms that effectively exclude smaller medical facilities to participate. Employing 
secure multi-party computation (MPC) techniques provides a technical way to satisfy data protection requirements 
for highly sensitive personal health information while simultaneously reducing the regulatory burdens.

Results: We have designed, implemented, and benchmarked SPIKE, a secure MPC-based privacy-preserving KEP 
protocol which computes a locally optimal solution by finding matching donor–recipient pairs in a graph structure. 
SPIKE matches 40 pairs in cycles of length 2 in less than 4 min and outperforms the previous state-of-the-art protocol 
by a factor of 400× in runtime while providing medically more robust solutions.

Conclusions: We show how to solve the KEP in a robust and privacy-preserving manner achieving significantly more 
practical performance than the current state-of-the-art (Breuer et al., WPES’20 and CODASPY’22). The usage of MPC 
techniques fulfills many data protection requirements on a technical level, allowing smaller health care providers to 
directly participate in a kidney exchange with reduced legal processes. As sensitive data are not leaving the institu-
tions’ network boundaries, the patient data underlie a higher level of protection than in the currently employed (cen-
tralized) systems. Furthermore, due to reduced legal barriers, the proposed decentralized system might be simpler to 
implement in a transnational, intereuropean setting with mixed (national) data protecion laws.
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Introduction
Around 7% of U.S. adults are affected by chronic kidney 
disease [1]. With the increasing age of the population 
in most countries, end-stage renal disease constitutes a 
rapidly increasing challenge for health care systems [2]. 
Humans are able to live a normal life with at least one 
functioning kidney [3]. However, when both kidneys of 
a person are malfunctioning, this person requires kidney 

replacement therapy to survive, i.e., either dialysis or the 
donation of a functioning kidney.

Transplantations of deceased donor organs unfortu-
nately imply long waiting times, as transplant waiting lists 
grow, given that the number of donations significantly 
exceed supply [4]. The other option is to find a living 
person that is willing to donate one of their kidneys. In 
general, living donor donations result in shorter waiting 
times and tend to have better long term outcomes com-
pared to deceased donor donations [5]. Unfortunately, 
finding a willing, living donor does not guarantee (medi-
cal) compatibility with the recipient. Hence, the living 
donor exchange system was introduced in 1991 [6], which 
allows recipients with incompatible living donors, in the 
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following referenced as pairs, to exchange their donors, 
such that ideally each recipient can receive a compat-
ible kidney donation. In most European kidney exchange 
programs the kidney transplantations of an exchange are 
executed simultaneously. Simultaneous operations limit 
the length of exchange cycles due to scarcity of medical 
staff. Additionally, exchanges of an exchange cycle that 
were initially deemed compatible in SPIKE can still be 
deemed incompatible after the required further assess-
ment done by medical professionals. In case of longer 
exchange cycles, this leads to more pairs not receiving 
a kidney due to the failing of the whole exchange cycle. 
For these reasons, many European countries with kidney 
exchange programs limit the length of cycles to L = 3 or 
even L = 2 , ensuring a practical feasibility [7]. In order 
for SPIKE to be applicable in European kidney exchange 
programs1, we decided to limit the maximum length of 
cycles to L = 3.

In this work, we consider a scenario, in which several 
pairs exchange their donors in a cyclic fashion, so that 
each donating pair receives a compatible kidney. These 
cycles are called exchange cycles [7].

As a first step for finding possible exchange cycles, we 
have to evaluate the donors’ and recipients’ medical data 
to determine compatibility between pairs. Afterwards, 
we have to identify possible exchange cycles. This prob-
lem is known as the kidney exchange problem (KEP) 
[7] and can be described as finding cycles in a directed 
graph, where each vertex represents a pair and a directed 
edge describes the compatibility between two pairs. A 
schematic view of the protocol can be seen in Fig. 1.

The process requires the analysis of highly sensitive 
medical health data, which makes it crucial that no infor-
mation is leaked accidentally or to unauthorized person-
nel. Thus, the KEP requires the implementation of strong 
privacy-preserving solutions, where the plaintext health 
information remains locally at each medical institution 
and the analysis is only run on “encrypted” data, which is 
leaking no sensitive data beyond the output: an exchange 
cycle with high transplantation success likelihood.2 Note 
that such a distributed solution also enhances security 
against data breaches, as having to attack multiple par-
ties is significantly harder than a single target. Similarly, 
it also simplifies the compliance with regulatory require-
ments potentially complicating or even prohibiting data 
sharing among facilities.

Contributions and outline
In this work, we provide the following contributions:

• Efficient Privacy-Preserving Kidney Exchange proto-
col: We design and implement SPIKE, a distributed, 
privacy-preserving protocol for solving the kid-
ney exchange problem in the semi-honest security 
model. In contrast to the current state-of-the-art [9, 
10], SPIKE improves efficiency as well as the medical 
compatibility matching by considering additional fac-
tors, namely, age, sex, human leukocyte antigens, and 
weight, that significantly affect compatibility between 
potential donors and recipients and is, thus, more 
robust than previous solutions by reducing the risk of 
failing procedures.

• Comprehensive Empirical Evaluation: We implement 
and extensively benchmark SPIKE and show that it 
significantly improves runtimes and communication 
costs compared to the state-of-the-art. We achieve 
about 30000× speedup over [9] and 400× over [10] 
thanks to our carefully optimized hybrid secure 
multi-party computation (MPC) protocols. Further, 
we provide additional (micro-) benchmarks and net-

Compatibility Graph

SPIKE – Privacy-Preserving Kidney Exchange Protocol
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Fig. 1 Overview of our privacy-preserving kidney exchange protocol 
SPIKE. The best set of exchange cycles are calculated, while the 
patients’ data remain strictly private

1 For example, France and Sweden only accept a cycle Length of L = 2 , while 
Spain, the Netherlands, and the United Kingdom accept longer cycles but pre-
fer L = 2 . For details see [8] and [7].
2 This cycle still requires a final check by medical experts.
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work settings to further demonstrate scalability and 
practicality of SPIKE.

• Open-source Implementation: SPIKE is available 
under the GNU LGPL v3 license3 here: https:// encry 
pto. de/ code/ PPKE.

Related work
In this section, we summarize the related work on the 
Kidney Exchange Problem (KEP) with and without con-
sidering data privacy.

Robust KEP solutions
One major issue in kidney exchange programs is the 
potential cancellation of transplantations after hav-
ing already determined exchange cycles of compatible 
donors and recipients. Reasons for such cancellations 
are manifold, e.g., a donor withdraws his consent, as his 
non-compatible relative has already received a kidney via 
the waiting list from a deceased donor in the meantime 
[11]. These issues call for robust solutions to the KEP, i.e., 
flexibility for recipient/donor dropouts and including as 
much as possible medical factors that can be algorithmi-
cally evaluated.

Carvalho et al. [12] propose three policies that are able 
to cope with dropouts within an kidney exchange cycle. 
One takes the costs (or missed gains) of planned trans-
plants that do not proceed into account to find a solution 
with high probability of being successfully executed. The 
other two policies investigate strategies for recovering 
exchange cycles after dropouts. The plaintext algorithms 
in [12] are computationally expensive and, thus, cannot 
be trivially realized as secure computation protocols.

Ashby et  al. [13] introduce a calculator for determin-
ing compatibility in kidney exchange, which they use 
to evaluate the importance of various medical factors, 
such as age, sex, obesity, weight, height, human leuko-
cyte antigen (HLA) mismatches and ABO blood groups 
(see “Medical Background” Section). In our work, we 
increase the robustness of our privacy-preserving kidney 
exchange protocol by including the additional impor-
tant biomedical factors from [13]. Furthermore, we rec-
ommend to use cycle sizes of two or three to reduce the 
impact of withdrawals [11]. The size is also beneficial for 
practical considerations with respect to medical staff and 
other resources needed for transplantations, as all opera-
tions of one exchange cycle should ideally be executed 
simultaneously. This recommendation reflects current 
best practices [14].

Privacy‑preserving linear programming
Most currently used KEP solutions are based on Integer 
Linear Programming (ILP) formulations of the optimi-
zation problem. However, due to its superpolynomial 
complexity this is a largely unsolved space in the domain 
of privacy-preserving protocols. While multiple works 
considered secure linear programming using MPC (e.g., 
[15–17]), to our knowledge no results considering inte-
ger linear programming where some or all variables are 
not elements of a continuous field but must be integers. 
This research gap exsists for a good reason: Most exact 
ILP solving algorithms are based on “Branch and Bound” 
methods [18–20]. These methods find hyperplanes in the 
parameter space enclosing possible solutions, thus, prun-
ing large sections of the parameter space. Unfortunately, 
a direct translation into the privacy-preserving realm 
would be vulnearble to timing attacks, hence insecure. 
Circuit-based MPC methods must exhibit deterministic 
runtimes, regardles of the specific inputs. Unfortunately, 
this disqualifies the privacy-preserving ILP approach for 
this work, as the presented algorithms inherently contain 
integer values in boundary conditions (e.g., encoding the 
graph structure).

Privacy‑preserving KEP protocols
Just two works, both by Breuer et al. [9, 10], investigate 
how to solve the kidney exchange problem in a decentral-
ized privacy-preserving manner. Both consider the semi-
honest security model.

Privacy‑preserving KEP protocol with HE
The first protocol [9] uses homomorphic encryption 
(concretely, a threshold variant of the Paillier cryptosys-
tem [21]). It instantiates a computing party for each pair 
of a non-compatible donor and recipient at the providing 
hospital, thus, effectively creating a multi-party computa-
tion (MPC) protocol.

The protocol first pre-computes a set of all possi-
ble exchange constellations independent of any input 
data. Cycles of all lengths up to 3 are computed (but an 
arbitrary value could be chosen). Next, the pairs jointly 
compute an adjacency matrix with the pair-wise com-
patibility based on HLA crossmatching and ABO blood 
groups. Combining the results with the exchange constel-
lations, the graph with the maximal size is delivered as 
the output. The protocol’s runtime scales exponentially 
with the number of pairs: starting with a runtime of 14 

3 https:// www. gnu. org/ licen ses/ lgpl-3.0
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seconds for two pairs it increases to 13 h for nine pairs. 
Unfortunately, such runtimes are prohibitive for practical 
deployment.

Privacy‑preserving KEP protocol with Shamir’s secret 
sharing
In a concurrent work to ours, Breuer et  al. [10] intro-
duced a privacy-preserving KEP protocol for crosso-
ver kidney exchanges with polynomial computation 
complexity. “Crossover” hereby means that the kidney 
exchange is done among two pairs, i.e., the exchange 
cycle size is limited to two in contrast to [9]. This limita-
tion, however, enables a significant efficiency improve-
ment for matchings with more than 13 pairs. For 
example, with 15 pairs it reduces the runtime of the old 
protocol [9] from 8.5 h to 30 min. Additionally, the new 
protocol enables a dynamic setting, where donor-recip-
ient pairs can be added/removed from the exchange 
graph at any point in time. On the technical side, the 
authors replace HE and fully rely on a MPC-tech-
nique called Shamir’s Secret Sharing (SSS) [22] imple-
mented with the MP-SPDZ framework [23]. Beyond the 
dynamic setting and the change to MPC, the new pro-
tocol employs the graph matching algorithm by Pape 
and Conradt [24] for better efficiency in the matching 
between compatible donors and recipients.

Our privacy-preserving KEP protocol SPIKE offers 
significantly improved runtimes for real-world deploy-
ment. Our runtimes outperform the measured runt-
imes of previous works [9, 10], e.g., by a factor of 
hundreds/thousands for 9 recipient-donor pairs with a 
cycle length of 2. This is due to an efficient symbiosis 
of three MPC techniques and protocol optimizations 
that we will detail in the next section. Furthermore, 
we improve the robustness of SPIKE by including four 
additional biological factors notably impacting the 
transplantation success rate [13]. Thus, our protocol 
focuses on high medical quality rather than pure size, 
while also significantly improving efficiency.

Background
In this work, we present a privacy-preserving solution 
to the kidney exchange problem (KEP). We interpret the 
KEP as an optimization problem, specifically finding 
cycles with a maximal coverage of nodes on a compati-
bility graph and a maximal aggregated edge weight. The 
graph is constructed according to medical compatibil-
ity factors. This section gives the required background 
information to understand the underlying aspects of 
biomedicine, graph theory, as well as the used privacy-
preservation techniques of secure multi-party compu-
tation (MPC).

Medical background
In the following, we introduce the medical background, 
i.e., biological factors used in our protocol that cause 
general immunological incompatibility or influence 
success likelihood for a kidney transplantation.

General immunological compatibility
While many medical factors are involved in the definite 
assessment of donor-recipient compatibility, some can be 
algorithmically determined. For example, one key factor 
in avoiding allograft rejection—immunological compati-
bility—can be evaluated following evidence-based guide-
lines. Our kidney exchange protocol uses a specific form 
of immunological compatibility, the HLA crossmatch, as 
a transplant prohibiting factor.

Human leukocyte antigens crossmatch
The human immune system is responsible for the protec-
tion of the organism against potentially harmful invad-
ers (called pathogens). Antigens are molecular structures 
often found on the surface of pathogens, but also natu-
rally occurring in the body. Antibodies can attach to 
those structures, preventing the pathogens from docking, 
thus inhibiting their harmful effect. One important group 
of endogenous antigens, which occur in varying numbers 
in every human, forming the immunological “fingerprint” 
the immune system recognizes as normal, are the human 
leukocyte antigens. Out of the three classes of HLA [25], 
only classes I and II are of interest in this work.

With a HLA crossmatch general compatibility between 
recipient and donor can be determined: The human 

Table 1 HLA split antigens assessed for biomedical donor – 
recipient compatibility testing in SPIKE

Class I Class II

HLA‑A HLA‑B HLA‑DR HLA‑DQ

A23 B38 B60 DR11 DQ5

A24 B39 B61 DR12 DQ6

A25 B44 B62 DR13 DQ7

A26 B45 B63 DR14 DQ8

A29 B49 B64 DR15 DQ9

A31 B50 B65 DR16

A32 B51 B71 DR17

A33 B52 B72 DR18

A34 B54 B75

A66 B55 B76

A68 B56 B77

A69 B57

A74 B58
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leukocyte antigens of a donor are matched against exist-
ing human leukocyte antibodies of a possible recipient 
[26]. HLA crossmatch positive kidney transplants carry 
a significantly higher risk of antibody-mediated rejection 
or allograft rejection due to already existing antibodies 
[27, 28]. Modern immunosupressants might make such a 
procedure possible [29], but those cases require special-
ized, in-depth medical assessment and are out of scope of 
a general, algorithmic evaluation.

Following Eurotransplant’s guidelines [26], we consider 
HLA groups, which are also most frequently screened 
in preparation for kidney replacement therapy [30]: the 
HLA encoded at HLA-A, -B, and -DR loci. Addition-
ally, we consider the HLA-DQ coded antigens, which 
are related to some cases of antibody-mediated rejection 
[31]. The full list of HLA considered in SPIKE can be seen 
in Table 1.

Match quality estimation
Additionally to the previously introduced procedure that 
prevents immunological incompatibility, we strive to 
find the medically best/most robust solution to the kid-
ney exchange problem – that includes maximal survival 
probability. For that, we calculate a match quality index, 
based on the following additional medical factors: 

(i) HLA match

 Additionally to the HLA crossmatch, HLAs influ-
ence the probability of a successful transplantation. 
Concretely, it increases if the donor has a subset 
or the same HLA as the recipient. The number of 
“mismatches” is associated with increased allograft 
rejection rates, as the probability that a recipient 
develops antibodies to those mismatched antigens 
increases [32]. HLA mismatches do not consti-
tute exclusion criteria, as immunosupressants can 
reduce the rejection probability. The use of immu-
nosupressants, however, is itself linked to higher 
rejection rates [32–34]. Special importance comes 
to the HLA-DQ group, as mismatches of it are 
strongly linked to antibody-mediated rejections 
[31].

 Each person can inherit up to two types of HLA per 
group. Hence, at most two mismatches can occur 
per group [35]. The impact of HLA mismatches can 
be categorized in four bins: having no mismatch, a 
very rare case and mostly occurring in twin donor-
recipient pairs, having 1–2 mismatches, having 3–4 
mismatches, and, worst of all, having more than 
5 mismatches [32]. The last group shows a more 
than 6% cumulative risk for death with a function-

ing graft during the first year. We weight HLA mis-
matches according to those four categories.

(ii) ABO blood type
 The ABO blood type system is based on the presence 

or absence of two types of antigens on the surface 
of the red blood cells [36]. The absence of both type 
A and type B antigens mark blood type O, the pres-
ence of both mark blood type AB, and the presence 
of only one mark blood type A and B, respectively. 
Receiving blood with an incompatible blood type 
leads to blood clumping due to an immune reaction 
and a possibly failed procedure. Compatible pair-
ings are given in Table 2.

 By pre-processing the donor organ, grafts from ABO 
incompatible donors are possible [37], although 
linked to severe adversary reactions during the first 
year post transplantation. These reactions include a 
higher risk of allograft loss, severe viral infections, 
antibody-mediated rejections, and postoperative 
bleeding. After this first year, however, the long-
term survival rate is comparable to ABO compat-
ible transplants [37].

(iii) Age
 According to Waiser et  al. [38], also age disparity 

influences allograft survival post transplant. The 
authors examined the role of age of the donor and 
recipient using two categories: junior participants 
aged below 55 years and seniors participants older 
than 55 years. The results show that intra-categori-
cal transplants show the best outcomes, followed by 
pairings of junior donors and senior recipients. The 
worst outcomes were observed for pairings with 
senior donors and junior recipients.

(iv) Sex
 As shown by Zhou et  al. [39], the combination of 

donor-recipient sexes impact the transplant suc-
cess probability. The worst allograft survival rates 
were observed in male recipients for female donor 
organs, while same-sex pairs performed slightly 
better than female recipients for male donor organs.

(v) Weight
 Recipients, who received a kidney from a donor, who 

weighs less, have higher chances of allograft loss 
than other recipients [40]. El-Agroudy et  al. [41] 

Table 2 ABO compatibility [36]

Blood group Can receive from Can donate to

O O O, A, B, AB

A O, A A, AB

B O, B B, AB

AB O, A, B, AB AB
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reason that the allograft loss for recipients with kid-
neys from lighter donors might be caused by the 
kidney being unable to support the body functions 
of a heavier recipient.

Graph theory
We represent the structure of the kidney exchange prob-
lem (KEP), as a (bipartite) graph problem. A graph G con-
sists of a set of vertices V and an edge set E connecting 
the vertices. Technically, we deal with a bipartite graph, 
i.e., consisting of two different sets of vertices (donors 
and recipients), but as those register pairwise for the 
kidney exchange, we can “collapse” each donor-recipient 
pair into one vertex in V . If two vertices v,u ∈ V are con-
nected by an edge, then (v,u) ∈ E . We consider a directed 
graph with directed edges from v to u. Furthermore, we 
use weighted edges by associating a scalar weight to each 
edge, according to its “importance” in the network. The 
weights represent the degree of medical compatibility. 
We only allow positive edge weights.

Our goal is to find all cycles within the graph. A cycle 
c is a list of vertices {v1, v2, ..., vm} , where an edge exists 
from vertex vi to vi+1 for i ∈ {1, ...,m− 1} and, to close the 
“loop”, from vertex vm back to vertex v1 . In a vertex dis-
joint cycle, each vertex appears at most once within the 
cycle. We define the length of a cycle as the number of 
edges that are used to form that cycle.

One representation of a (weighted) graph structure is 
the adjacency matrix, a square matrix A with one row/
column for each vertex. If an edge exists between vertices 
i and j, then, the entry aij = w , with w > 0 being the edge 
weight and aij = 0 otherwise. This work uses the fact that 
by raising the adjacency matrix to the ℓ th power, one can 
quickly compute the number of paths between two verti-
ces with a given length ℓ . That means, that vertices i and 
j are connected by (Aℓ)ij paths of length ℓ . The diagonal 
elements give the number of cycles of length ℓ by finding 
paths starting and ending on the same vertex.

Secure computation
Secure computation techniques enable multiple parties 
to securely evaluate an arbitrary function on their pri-
vate inputs. Ideally nothing is leaked beyond what can be 
inferred from the output. A secure computation protocol 
must be able to realize this functionality without rely-
ing on a trusted party. To verify its security, it is typically 
compared to the so-called ideal functionality, which is a 
trusted third party that runs the computation on behalf 
of the data owners.

Privacy research has mainly worked on two para-
digms for secure computation: Homomorphic Encryp-
tion  (HE) and Secure Multi-Party Computation (MPC). 
HE schemes are special public-key encryption schemes 

that allow to realize (some limited) mathematical opera-
tions under encryption. However, they tend to be com-
puting intensive making them (yet) often unsuitable for 
real-world applications. In contrast, MPC techniques 
are typically more efficient with respect to computation, 
as they are mainly based on efficient symmetric encryp-
tion and secret sharing. Additionally, MPC protocols 
can compute arbitrary functions. They are typically split 
into a setup and an online phase, where the setup phase 
is independent of the input data and, thus, can be pre-
computed. This separation enables to significantly speed 
up the time-critical online phase as pre-computation can 
be done in idle times when input data is not yet available. 
However, MPC involves two or more parties, who jointly 
evaluate the desired function in a secure manner, hence, 
it requires communication among the parties. Both para-
digms have already been used in the context of privacy-
preserving genome-wide association studies [42–44], as 
well as other applications in the health care area [45–48].

To have provably secure privacy guarantees while 
achieving practical efficiency, SPIKE efficiently combines 
multiple MPC techniques, which we introduce in the 
following.

Secure multi‑party computation (MPC)
Introduced by Andrew Yao’s seminarial work “How to 
Generate and Exchange Secrets” [49] in 1986, secure 
Multi-Party Computation (MPC) was considered a theo-
retical field first. MPC are cryptographic protocols that 
can securely compute an arbitrary function among two 
or more parties on their private inputs. Enabled by the 
rapid development of computer hardware and the devel-
opment of the first MPC compiler “Fairplay” [50], first 
practical uses were demonstrated around the year 2004. 
Since then, MPC is a flourishing research field and due 
to novel protocols and optimizations, such as “Free XOR ” 
[51] or “Halfgates” [52], practical applications in many 
fields were shown [45, 53, 54].

In this work, we rely on three well established secure 
two-party computation techniques, i.e., the secure com-
putation protocols are run among exactly two parties: 
Arithmetic Secret Sharing ( A ), Boolean Sharing ( B ), 
both based on [55], and Yao’s Garbled Circuits (Y), origi-
nally introduced in [49]. Each technique differs in how it 
creates (shares) and reconstructs secrets, but also how 
(efficiently) certain types of operations can be realized.

Secure outsourcing
Although we use two-party MPC to perform the com-
putation, any number of parties can provide input data. 
This method of secure outsourcing [56] works by all data 
owners secret sharing their data and sending one share 
to each of the two non-colluding computation servers. 
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Secret sharing, thereby, means that the sensitive data is 
split into two random looking shares and each of the two 
computation servers receives only one of those. Specifi-
cally, a single computing server cannot infer any informa-
tion about the secret input data from its share. Instead, 
the sensitive information can only be obtained when 
the secret shares of both servers are combined. The two 
computing servers, then, perform the actual secure com-
putation on behalf of the data owners on the random 
looking secret shares, while not being able to learn any-
thing about the private input data. To summarize, in the 
outsourcing scenario an arbitrary number of data owners 
can participate without leaking/uploading any sensitive 
information to an external party.

This scenario has three main benefits:

• The communication of N-party MPC scales at least 
linearly, often quadratic in the number of participat-
ing parties [57]. By outsourcing the N-party compu-
tation to M ≪ N  parties, here M = 2 , the complex-
ity is improved substantially.

• As the input owners do not participate in the compu-
tation itself, the outsourced protocol provides secu-
rity against malicious data owners [56]. At most they 
can corrupt the correctness of the calculation, but 
not the privacy.

• The location of the computation servers can be 
chosen pragmatically, e.g., two locations with high 
bandwidth and low latency network connection. Of 
course, the computation servers are assumed to not 
collude.

• Compared to N-party MPC setups, two-party MPC 
requires to trust exactly one computation server. A 
data owner can also run one himself. Using N > 2 
non-colluding parties can be more efficient [58, 59], 
but ensuring the non-collusion among all N parties is 
more challenging/might not be realistic. Full thresh-
old N-party MPC schemes [60], i.e., where all but 
one party can be compromised, significantly reduces 
efficiency/increase communication.4 To summarize, 
outsourcing to two non-colluding servers offers a 
good trade-off between efficiency and security.

Security model
In our work, we consider the semi-honest security model, 
where the two computation servers are assumed to be 
honestly following the protocol, while trying to learn as 
much information as possible. By “honestly following 
the protocol” we, thereby, mean that they adhere to the 
specifications of the protocol, e.g., they do not manipu-
late local calculations or provide inconsistent data. 
Additionally, the two computation servers are assumed 
to not collude. This security model provides protection 
against curious personnel or accidental data leakage and 
the omission of a trusted third party further reduces the 
impact of a potential data breach. Although weaker than 
the malicious security model, where the parties might 
arbitrarily deviate from the protocol, the semi-honest 
security model is sufficient for our use case, as hospitals 
are generally trusted, but legally not allowed to simply 
share the data among each other. Furthermore, the semi-
honest security model enables significantly more effi-
cient computation than the malicious model and, hence, 
provides a good efficiency-privacy trade-off. While the 
European Data Protection Board recommends security 
against malicious adversaries when performing joint 
calculations with parties under jurisdiction of insecure 
countries [62], the semi-honest security model is the 
predominant model in data protection concepts for fed-
erated medical research5. Hence, it is a valuable security 
model in our application scenario. Previous works on 
privacy-preserving KEP protocols [9, 10] are also in the 
semi-honest security model.

Notation
In the following, 〈x〉si denotes a secret share of x shared 
using MPC technique s ∈ {A,B,Y } and held by party Pi , 
where i ∈ {0, 1}.

Yao’s garbled circuits
(Y)

Yao’s Garbled Circuits enable two parties, called the 
garbler and the evaluator, to securely evaluate a function 
f represented as Boolean circuit, i.e., a directed acyclic 

Table 3 Garbled AND gate
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4 As mentioned above, the communication of MPC protocols generally 
scales quadratically in the number of parties, thus, more parties significantly 
increase communication cost. When considering full threshold security, 
runtimes significantly increase as well. The state-of-the-art MPC framework 
MOTION [60] which offers full threshold security provides several bench-
marks comparing to the two-party MPC framework ABY [61]. In a LAN set-
ting, it takes ABY less than 0.1 seconds (online runtime) to securely compute 
an AES-128 circuit with two parties while MOTION requires at least twice 
(resp. four times) the time with three (resp. five) parties. 5 For examples see [63] and [64] (in German language).
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graph, where the nodes are logic gates and the edges 
(called wires) are the Boolean in- and outputs. For func-
tional completeness AND and XOR gates are sufficient. 
The garbler generates random keys for each possible state 
of each wire kw0 , k

w
1 ∈ {0, 1}κ , where κ is the symmetric 

security parameter (set to κ = 128 in our implementa-
tion) and w is the respective wire. For all input combina-
tions of each gate in the circuit, it uses the input keys to 
encrypt the corresponding output key (cf.  Table  3). The 
order of the four ciphertexts is then permuted randomly 
and the garbled circuit is sent to the evaluator together 
with the keys associated to the garbler’s input. As those 
keys look random, the evaluator cannot extract any infor-
mation about the input of the garbler. Next, the evalu-
ator engages in an oblivious transfer [65, 66] to receive 
the keys for his input without revealing it to the garbler. 
Equipped with all keys, it evaluates the garbled circuit 
to receive the circuit’s output keys, which the parties 
jointly decode. Thanks to several optimizations, e.g., [51, 
52, 67], Y requires no communication for the evaluation 
of an XOR gate and only 1.5κ bits of communication for 
AND gates. Y needs a constant number of communication 
rounds independent of the circuit depth.

Boolean and arithmetic secret sharing
(B/A)

In Additive Arithmetic Secret Sharing ( A ) operations 
on ℓ-bit inputs are done in an algebraic ring Z2ℓ , where ℓ 
is the bit length. Although the technique can also be used 
among an arbitrary number of parties [68], we focus here 
on the two party setting as introduced by Goldreich et al. 
[55].

To share a secret value x, party Pi , i ∈ {0, 1} , gener-
ates a random value r ∈R Zp and sets its arithmetic 
share to �x�Ai = r . Then, Pi also determines party P1−i ’s 
share �x�A1−i = x − r mod 2ℓ and sends it to P1−i . To 
reconstruct the secret, one needs to know both shares 
and compute x = �x�A0 + �x�A1 mod 2ℓ . Boolean Secret 
Sharing ( B ) describes the special case, where ℓ = 1 , viz. 
Z2 = {0, 1}.

Note that a share 〈x〉Ai  (resp. 〈x〉Bi  ) is random and does 
not leak anything about the secret x. Secure addition 
(respectively, XORing in B ) can be executed locally, that 
is without communication between the parties. Secure 
multiplication (respectively, AND in B ) is done in an inter-
active protocol among the two parties using so-called 
multiplication triples [61, 69, 70]. Using only addition 
and multiplication (similarly, AND and XOR ) arbitrary 
functions can be calculated.

ABY framework
All three MPC techniques are implemented in the state-
of-the-art secure two-party computation framework ABY 

[61], which we use in our experiments6. Additionally, 
ABY also contains efficient conversions between them 
and supports Single Instruction Multiple Data (SIMD) 
operations to parallelize identical operations on different 
data, while reducing memory usage and runtime. Arith-
metic Secret Sharing in ABY is performed on the ring 
Z2ℓ , that is with 2ℓ elements, where ℓ is the bitlength of 
the data type (most often ℓ = 32bit ). A recent work by 
Patra et al. [53] improves [61] by making the online com-
munication of scalar multiplication independent of the 
vector dimensions and reducing online communication 
for AND gates with two inputs in B by a factor of 2. Unfor-
tunately, these protocols have been implemented only 
very recently in MOTION2NX [72], which is why we use 
[61] in our implementation.

Methods
In this section, we first define the privacy-preserving 
Kidney Exchange problem (KEP) and its requirements. 
Then, we present our solution, which we name SPIKE, 
consisting of tailored modular secure MPC protocols and 
include a complexity analysis.

Problem statement
Figure 2 shows the ideal functionality for solving the pri-
vacy-preserving KEP in a provably secure way. Assum-
ing the (not realistic) availability of a trusted third party 
(TTP), hospitals send the data of recipients and donors 
to the TTP, which calculates cycles of pairs of recipients 
and donors with the highest probability to be compatible. 

IDs Ideal TTP

IDs
IDs

IDs

Fig. 2 Ideal functionality for a secure privacy-preserving protocol 
solving the kidney exchange problem (KEP)

6 Note that our protocols in Section “Methods” can also be instantiated with 
other MPC frameworks. For example, an instantiation with MP-SPDZ would 
also enable the switch to a malicious security model but at the costs of sig-
nificantly reduced efficiency [71]. However, considering the security and effi-
ciency requirements discussed in the Subsections “Outsourcing Data-Model” 
and “Security Model”, 2-party MPC with the ABY framework offers the best 
trade-off.
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Then, the TTP returns for each recipient the information 
about his/her donor to the respective hospital. Note that 
a final evaluation must still be done by medical experts. A 
privacy-preserving KEP protocol is meant for automatiz-
ing and, thus, accelerating, the process of the creation of 
the kidney exchange cycles.

Requirements We define the following requirements for 
a secure privacy-preserving KEP protocol:

• Privacy The privacy-preserving KEP protocol must 
realize the same functionality as described in the 
ideal functionality, while removing the problem-
atic assumption of a TTP, i.e., it must leak nothing 
beyond what can be inferred from the output.

• Efficiency The privacy-preserving KEP protocol must 
be efficient in terms of communication and compu-
tation, such that it can be run in reasonable time on 
standard server hardware.

• Decentralization The privacy-preserving KEP pro-
tocol must be decentralized, i.e., the highly sensitive 
medical information of donors and patients must 
remain locally at the respective medial institution 
(inherently being compliant with the data minimisa-
tion principle).

• Adaptability for Medical Experts The priva-cy-
preserving KEP protocol must be flexibly adaptable 
for medical experts with respect to the selection of 
biological factors for the algorithmic evaluation of 
compatibility. They must be able to adjust the weight-
ing between the included factors and cycle lengths 
according to state-of-the-art medical advancements. 
The protocol must be easily extendable to new fac-
tors and additional HLA groups.

SPIKE: a MPC‑based privacy‑preserving KEP protocol
In this section, we provide the building blocks for our 
Secure and Private Investigation of the Kidney Exchange 
problem: SPIKE. It fulfills above requirements (see also 
the overview of the phases in Fig. 1).

First, we explain the matching phase, which analyzes 
the compatibility between donors and recipients using 
six biological factors presented in the "Background" sec-
tion. Then, we continue with the determination of the 
number of potential exchange cycles given a cycle length. 
The third phase computes the probability of a success-
ful transplantation based on the matching results for all 
potential exchange cycles. In the final phase, we output 
a robust set of disjoint exchange cycles, i.e., with a high 
probability for compatibility. The final result contains a 
combination of disjoint exchange cycles that maximizes 
the likelihood of as many transplantation as possible 
being successful. The weight of a cycle c is denoted by 

wc where a higher value indicates a higher likelihood of a 
transplantation being successful. Thus, the weight of a set 
of disjoint cycles C , i.e., the likelihood for as many trans-
plantation being successful in the set, can be described 
as the sum of all cycles wci for i ∈ {1, . . . , |C|} in the set. 
The weight of a cycle is determined by the sum over all 
edge weights we in the cycle. Finally, the weight of an edge 
is determined by the sum over the results of all match-
ing criterion which are multiplied by a weight which can 
be assigned by medical experts to highlight certain bio-
medical factors. Note that we write this computation as a 
dot product between a vector �p(k , l) and �w where �p(k , l) 
contains the results of the matching between pair k and l 
in vector form and �w the respective weights of each crite-
rion. Equation  (1) describes the previous conditions. To 
achieve the described result, we greedily select disjoint 
cycles in decreasing priority according to the weight of 
each individual cycle.

Note that our solution is a local optimum which is com-
puted with a greedy algorithm while the solutions by 
Breuer et  al. [9, 10] are globally optimal. We argue that 
a locally optimal solution is sufficient in our application 
scenario for two reasons: First, we assume that the locally 
optimal results are in close proximity of the global opti-
mum, as real world data sets will likely show sparse com-
patibility and the additional medical compatibility factors 
considered by SPIKE will increase the solution quality. 
Second, the additional expert evaluation following the 
algorithmic matching will most likely introduce a much 
higher variance in the chosen solution. The empirical 
evaluation of those two claims are interesting points for 
further research requiring real-world kidney exchange 
data sets. The protocol presented by Breuer et  al. [10] 
enables usage in a dynamic setting, i.e., a setting in which 
donor-recipient pairs are put together in a pool where 
pairs come and go over time. They run their matching 
protocol on a subset of the pairs of the pool and, after-
wards, evaluate the resulting compatibility graph. By 
design, SPIKE enables usage in a dynamic setting, too, 
since each part of the protocol can be executed indepen-
dently of the others parts as long as they receive the out-
put of the previous parts. Such a dynamic setting can also 
be adapted to an outsourcing scenario. Each input party 
has their own pool of donor-recipient pairs where they 
can select a random subset of pairs and send them to the 
computing parties.

(1)max

|C|

i=1

:=wci

|cLen|

j=1

�p(k , l) · �w
j

:=wej i
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Notation
We use Boolean operators to concisely present our MPC 
protocols: ∧ is AND , ∨ is OR , ¬ is Not , and ⊕ is XOR . 0/1 
are False/True. |x| indicates the length of a vector x, i.e., 
the number of elements. Non trivial variable names in 
protocols are written in sans serif , function names (and 
calls) monospaced . Branching, implemented with MUX 
(multiplexer) Gates, is displayed using ternary notation: 
condition ? true statement : false statement.

Compatibility matching
The first phase of SPIKE is called compatibility matching. 
In this phase, we compare the pair-wise general compat-
ibility and match quality of all donors and recipients with 
respect to human leukocyte antibodies and antigens, 
ABO blood group compatibility, age, sex, and weight. The 
output of this phase is a weighted compatibility graph, 
where the edge weights indicate the probability of com-
patibility for each pair.

We present the main protocols for the compatibility 
assessment in the following. The subprotocols for assess-
ing the individual matching criteria HLA mismatches, 
ABO blood type, age, sex, and weight are given as Addi-
tional file 1: Tables S1–S6 in the Appendix.

The HLA crossmatch subprotocol is shown in Table 4. 
It tests whether the human leukocyte antigens of the 
donor are unsuitable to the human leukocyte antibodies 
of the recipient rendering them incompatible.

The subprotocol takes a vector with the antigens 
of a donor hlad and a vector with the antibodies of the 
recipient ahlar as input. The number of observed HLA, 
denoted by |HLA| , is publicly known. A vector comp 
stores whether the recipient possesses an antibody 
against any of the donor’s HLA (cf. Line 3). For enhanced 
efficiency, we parallelize this comparison as Single 
Instruction, Multiple Data (SIMD) operation, such that 
all HLA matches of one patient are computed in just one 
step. Afterwards, the overall compatibility (i.e., no anti-
gen-antibody mismatch was found) is computed with 
OR gates in a tree structure, to reduce the (multiplica-
tive) dephts of the circuit from |HLA| to log2(|HLA|) . To 
prepare for further processing, we invert combined and 
return it as result of the HLA crossmatching in Line 6.

In Table 5, we present our MPC protocol that combines 
the results of the evaluated six medical criteria influenc-
ing the compatibility of a kidney donation into a weighted 

adjacency matrix indicating the donor-recipient compat-
ibility, named compG.

It takes a vector pairs containing all possible pairs 
of donors and recipients and a vector w with a weight 
for each criteria (i.e., how much it influences the over-
all probability for good compatibility compared to the 
other factors) as input. Lines  4 to  6 additively combine 
the computed weighted probability of each compatibility 
criterion and assign it to the respective edge represent-
ing the donor of the i-th pair and the patient of the j-th 
pair, where i  = j and i, j ∈ {0, . . . , |pairs| − 1} . In Line 7, 
we additionally check whether the i-th donor and the 
j-th patient exhibit general immunological compatibil-
ity using the HLA crossmatch subprotocol (cf. Table 4). 
If this is the case, we store the result of the edge weight 
at the respective index, otherwise, we store the secret 
shared constant 0.

MPC Cost. The two sections in Table 4 evaluate |HLA| 
AND gates (as SIMD) and log2(|HLA|) OR

7 gates, respec-
tively. Finally, we invert combined once. This results in 
a circuit depth of log2(|HLA|)+ 1 and a total number of 
AND gates of 2× |HLA| . Boolean sharing ( B ) is used in 
this protocol, as Boolean operations are performed and 
the circuit depths is low, thanks to the SIMD vectoriza-
tion [61].

To fully assess the matching quality (Table  5), all cri-
teria have to be evaluated for each recipient, i.e., Table 4 
and Additional file  1: Tables  S1,  S2, S4, and  S6 are run 
|pairs|2 times. Then, in Table  5, we additionally evalu-
ate five multiplications, five additions, one comparison, 
one AND gate, and one MUX gate. Due to the arithmetic 
operations in this protocol, the results of the compat-
ibility evaluation protocols must be converted between 
B  and A.

Table 4 matchHLA(〈hlad〉B : vector, 〈ahlar〉B : vector) → int Table 5 computeCompatibilityGraph(〈pairs〉B : vector, 〈w〉A : 
vector) → weighted adjacency matrix

7 
A ∨ B = 1⊕ ((1⊕ A) ∧ (1⊕ B))
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Cycle computation
The second phase of SPIKE computes the number of pos-
sible kidney exchange cycles given a concrete input cycle 
length8 from the compatible donors and recipients that 
were output by the compatibility matching. Our MPC 
protocol for this part is shown in Table 6.

Table  6 takes the secret shared weighted compatibil-
ity graph compG as input. The desired length of cycles 
cLen is public. We first compute the unweighted adja-
cency matrix in Line 2 (cf. Additional file 1: Table S7, in 
the Appendix). For the unweighted matrix, we compute 
the cLen-th power using a naïve implementation9. The 
entries in this resulting matrix indicate how many paths 
of length cLen start at vertex i and end at vertex j. For 
cycles, the entries are on the diagonal, as start- and end-
vertex are identical. Following this thought, the sum of 
the entries of the diagonal is the total number of cycles 
with the given cycle length cLen . Note that this number 
contains duplicates, namely, “congruent” cycles that are 
the same, but were found via a different start/end ver-
tex.10 We remove the duplicates later in Additional file 1: 
Table S9 (described in the Appendix).

MPC Cost. Table  6 contains mostly arithmetic opera-
tions ( |pairs|3 multiplications and (|pairs|3 − |pairs|2 
additions), however, the computation of the unweighted 
adjacency matrix is most efficiently performed in  B 
|pairs|2 comparisons and MUX gates). For that reason we 
convert compG from A to B (cf.  Line  1) and back (in 
Additional file 1: S7).

Cycle evaluation
The third phase of SPIKE then identifies the most likely 
successful unique exchange cycles consisting of com-
patible pairs of donors and recipients and sorts them in 
descending order with respect to their weight.

Our first subprotocol for this phase, shown in Table 7, 
finds all exchange cycles of the desired length (includ-
ing duplicates) and computes the weight of each cycle. 
This weight is the sum of all included weighted edges. 
As mentioned before, the weight associated with an 
exchange cycle indicates the probability of the transplan-
tation being successfully carried out, i.e., its robustness.

The subprotocol takes the secret shared compatibility 
graph compG output by Table 5, the currently analyzed 
exchange cycle cCycle , its secret shared weight weight , 
a secret shared counter valid , which tracks the number 
of edges in cCycle , and a vector of secret shared tuples 
allCycles , which will be consecutively filled with all 
possible exchange cycles and the corresponding sum of 
weights. In a recursive execution of Subprotocol  7, this 
vector is filled, as explained in detail in the following. 
The desired output cycle length cLen and the number of 
recipient-donor pairs |pairs| are public. Contrary to the 
protocols in [9, 10], the output number of cycles |cycles| 
found in  Table  6 is revealed for efficiency reasons. We 
consider this leakage as acceptable since it leaks only a 
very high-level aggregate property, generally not allow-
ing the inference of the compatibility graph’s topology11. 

Table 6 determineNumberCycles(〈compG〉
A : matrix) → 

number of cycles
Table 7 findCycles(〈compG〉

Y : matrix, cCycle : vector, 
〈allCycles〉Y : vector, 〈weight〉Y : int, 〈valid〉Y : int) → vector of tuples

8 As discussed in the Related Work, we recommend 2 to 3 to foster robust-
ness.
9 Even though exhibiting a cubic runtime complexity, this part’s perfor-
mance is negligible compared to the following parts (cf. Fig.  4), hence, an 
optimization is not vital.
10 Cycle (A, B, C) and cycle (B, C, A) are duplicates, but cycle (C, B, A) is 
not.

11 Exceptions are fully connected and unconnected graphs, as well as for 
|cycles| = 1 at pathological graph topologies. The first topologies have no 
security implication whatsoever and the later can, e.g., be easily avoided by 
introducing a check ensuring that the output is only revealed when more 
cycles have been found.
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In the legal sense, the revealed number is considered 
non-sensitive as well, as it is an aggregated, anonymized 
datum.

Table 7 first checks if the currently analyzed exchange 
cycle cCycle already has the desired length cLen . If this 
is the case, the weight of the last edge is added to the 
respective sum of this cycle’s weights in Line 2. Next, 
each valid cCycle is added to allCycles with its respec-
tive sum of weights. A cCycle is valid, if it is closed 
(cf. Lines 3–4). An invalid cycle is associated with weight 
zero (cf. Line 5). Note that a weight of zero does not con-
tribute to the solution, hence a cycle with weight zero 
is never considered for a solution. In Line 8, the opera-
tions done in Lines 2–3 are reverted to restore the state 
of cCycle before the last edge was added, i.e., the weight 
of the last edge is subtracted from weight and valid is 
decreased by 0 (no edge) or 1 (edge).

Cycles that do not have the desired length yet are han-
dled in Lines 10–21. For these exchange cycles, the sub-
protocol checks whether they are already part of cCycle , 
as each vertex may only appear at most once (cf. Line 11). 
If it is not included, the weight of the edge from the pre-
vious to the new vertex is added by increasing cCycle ’s 
weight and counter 〈valid〉Y , and the new vertex is added 
to cCycle (cf. Lines 14–16). Afterwards, Table 7 is recur-
sively called again with the newly added vertex. Once the 
function returns, we revert the operations done before to 
be able to analyze the next cycle (cf. Lines 18–19).

The second subprotocol of the cycle evaluation 
(cf. Additional file 1: Table S9 in the Appendix) removes 
duplicates from the exchange cycles set. It extracts 
#unique = ⌊

#cycles
cLen ⌋ cycles and returns the k cycles with 

the highest probability for a successful transplantation.
Table  8 combines the previously discussed subproto-

cols. It first calculates the sum of weights for each cycle 
with Table 7 (findCycles) and sorts the result using Addi-
tional file  1: Table  S8 (kNNSort), such that only the k 
cycles with the largest weight are output. Those are all 

valid cycles, possibly including duplicates. Afterwards, 
the protocol removes all duplicates within the k cycles.

MPC Cost. The complexity of Subprotocol  7 depends 
on the number of pairs |pairs| , cLen , and the number 
of possible cycles |allCycles| . It is most efficient in Y ,  
as the MUX gates are not independent, thus, creating a 
deep circuit of depth O(|allCycles| × |cycles| × cLen) . 
For removing duplicates and extracting the 
most robust k exchange circuits, we evaluate 
#cycles× (#unique+

∑#cycles
i=0 (cLen× (cLen− 1))  ) 

comparisons, #cycles × 
∑#cycles

i=0 ((cLen× (cLen− 1))) 
AND gates, #cycles × 

∑#cycles
i=0 (cLen− 1) OR gates, 

#cycles ×#unique× (1+ cLen)+ #cycles MUX gates. 
This step is most efficient with Y , as the circuit is very deep. 
Thus, the complete cycle evaluation routine is most efficient 
in Y , as each of our subroutines is most efficient in Y.

Solution evaluation
The fourth phase of SPIKE determines the final output, 
a set of disjoint exchange cycles exhibiting the highest 
probability for a successful transplantation. As a pair of 
donor and recipient can only be involved in one exchange 
cycle, the output sets must be vertex disjoint. Thus, the 
resulting set contains a combination of disjoint exchange 
cycles that greedily maximizes the number of exchanges 
with respect to the likelihood of the transplantation being 

Table 8 evaluateCycles(〈compG〉
Y : matrix) → vector of 

tuples
Table 9 evalSolution(〈filteredCycles〉Y : vector of tuples) → 
tuple(int, vector of vectors)
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successful. Note that we find a locally optimal solution, 
which might differ from the globally optimal solution12. 
The locally optimal solution is computed using a greedy 
algorithm. This last part of SPIKE is shown in Table 9.

Table  9 takes a secret shared vector of tuples 
filteredCycles with all valid unique cycles and their 
respective weights, the number of valid cycles |unique| , 
and the cycle length cLen as input. The number of pairs 
|pairs| is a public variable as before.

It checks each valid cycle cCycle whether it is disjoint 
from all other previously analyzed cycles in tempSet . 
The MPC subprotocol for testing the disjointness is 
given in Additional file  1:  S11 in the Appendix. If it is 
disjoint, cCycle is added to the set of potential solutions 
(Lines 16–22). Finally, the set with the highest weight is 
returned. Details of the corresponding MPC protocol can 
be found in Additional file 1: Table S12 in the Appendix.

MPC Cost. In total, we evaluate |unique|2 ADD 
gates, |unique|2 × cLen2 + |unique| comparisons, 
4 × |unique|2 + |unique| MUX , and |unique|2 × cLen2 
OR gates. The solution evaluation is most efficient in Y 
, as there are only few arithmetic operations and mostly 
comparisons.

Complexity assessment
In Table  10, the asymptotic complexities for the four 
phases of SPIKE are given.

The most important parameters of the first part, the 
Compatibility Matching shown in the first section of the 
table, are the number of HLA (cf. Background) |HLA| 
and the number of pairs |pairs| . In the default con-
figuration, |HLA| is 50. For the second phase, the domi-
nant parameter is the number of pairs |pairs| . In the 
third section of Table  10, the asymptotic complexity 
for the Cycle Evaluation is given. The relevant param-
eters here are the number of pairs |pairs| , the total num-
ber of cycles |allCycles| = |pairs|cLen , the number of 
existing cycles |cycles| , the number of unique cycles 
|unique| = ⌊

|cycles|
cLen ⌋ , the length of cycles cLen , and the 

factor k (i.e, the number of cycles with highest prob-
ability for successful transplantation), and the number of 
elements in cyclesSet, |cyclesSet| of Table 8. The most 
important parameters of the last phase, the Solution 
Evaluation, are the number of unique cycles |cycles| , and 
the length of cycles cLen.

Overall, the asymptotic complexity of SPIKE is:

The most most important parameters are the number of 
pairs |pairs| , the number of considered HLA |HLA| , the 
length of cycles cLen , and the number of unique cycles 
|cycles|.

O(|pairs|2 × |HLA| + cLen× |pairs|3 + |cycles|3 × cLen2).

Table 10 Complexity assessment

Phase Name Protocol Time complexity

Part 1 Compatibility matching Table 4 O(|HLA|)

Additional file 1: Table S1 O(|HLA|)

Additional file 1: Table S2 O(1)

Additional file 1: Table S4 O(1)

Additional file 1: Table S5 O(1)

Additional file 1: Table S6 O(1)

Table 5 O(|pairs|2 × |HLA|)

Part 2 Cycle computation Additional file 1: Table S7 O(|pairs|2)

Table 6 O(cLen× |pairs|3)

Part 3 Cycle evaluation Additional file 1: Table S10 O(1)

Table 7 O(|pairs|cLen)

Additional file 1: Table S8 O(|cyclesSet| × k × cLen)

Additional file 1: Table S9 O(|cycles|2)

Table 8 O(|pairs|cLen)

Part 4 Solution evaluation Additional file 1: Table S11 O(|cycles| × cLen)

Additional file 1: Table S12 O(cycles|2)

Table 9 O(|cycles|3 × cLen2)

12 Calculation of a global solution is provably a NP-hard problem [73].
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Results
All benchmarks were run on two servers equipped with 
Intel Core i9-7960X processors and 128 GB RAM. They 
are connected via 10Gb/s LAN with a median latency of 
1.3ms. All benchmarks are averaged over 10 runs.

Network setups
To provide meaningful performance benchmarks for a 
variety of real-world settings, we envision two network 
settings for the privacy-preserving KEP protocol that we 
describe in the following. In addition, for the compari-
son to the works of Breuer at al. [9, 10], we replicated 
their network setting with 1Gb/s bandwidth and 1ms 
of latency.

LAN
The high-bandwidth, low latency network scenario, here 
referred to as LAN, is the most relevant real-world sce-
nario for our application. In Germany, most (larger) 
medical institutions utilize high-bandwidth Internet 
connections. In the case of most university hospitals the 
German Research Network (“Deutsches Forschungsnetz” 
DFN13) provides dedicated, high bandwidth communi-
cation networks. Our LAN benchmarks are performed 
using a 10Gb/s connection with an average latency of 
1.3ms.

WAN
One benefit of a MPC-based privacy-preserving KEP 
solution could be reduced legal and regulatory data pro-
tection requirements, due to the high security level of 
the computation itself. This would allow smaller, local 
hospitals and medical practices to directly participate in 
the kidney exchange. Those institutions might be con-
nected via residential Internet access. For that scenario, 
we benchmarked SPIKE in a reduced-bandwidth, high 
latency network. A bandwidth restriction to 100Mb/s 
with added latency of 100ms was implemented using the 
tc14 command to simulate the WAN network. The high 
latency was chosen to take packet loss due to unreliable 
connections into account.

Performance benchmarks
Figure  3 shows the total runtime of SPIKE for vary-
ing numbers of pairs, both network settings, and cycle 
lengths L = 2 and L = 3 . The full results are in the Addi-
tional file 1: Tables S13–S20 in the Appendix.

During the evaluation of longer cycles ( L ≥ 3 ) RAM 
utilization proved itself to be a bottleneck for execu-
tion. For those scenarios, we benchmarked up to RAM 
exhaustion and extrapolated the runtimes according to 
the underlying power-law complexity. The extrapola-
tion is shown with a dashed line. The sudden increase in 
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13 https:// dfn. de/ 14 https:// man7. org/ linux/ man- pages/ man8/ tc.8. html
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runtime for L = 3 between 12 and 13 pairs occurs due to 
swapping.

As a general result, the expected polynomial relation-
ship between the number of pairs and the overall runtime 
can be observed, reflected in the power-law develop-
ment in the semilog graphs. For L = 2 , we achieve a total 
runtime of under 4min for 40 pairs, thus, demonstrat-
ing real-world applicable performance. The WAN set-
ting increases the overall runtime by less than an order 
of magnitude. Calculation times under 20min for 40 pairs 
in this setting render the participation feasible for phy-
sicians with residential Internet connections. To find a 
solution for larger cycle lengths, the exponent in the time 
complexity increases, increasing the runtimes signifi-
cantly. But even then 25 pairs are computable in around 
1 h. Extrapolated to data set sizes of 100 pairs, SPIKE is 

able to finish the calculation for cycle length L = 2 in just 
over 2 h15.

Figure 4 shows the runtimes of the individual parts of 
the algorithm ( L = 2 ). It is clearly visible, that the medi-
cal compatibility testing and graph creation, as well as the 
cycle computation quickly become negligible compared 
to the runtimes of cycle evaluation and the evaluation 
of the global solution. The duration of online and offline 
phases are in the same order of magnitude. By execut-
ing the phases separately, a 134% performance increase 
in the online execution can be achieved, compared to the 
accumulated runtime (cf. Fig. 3).
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15 Based on a power function f (x) = a · xb + c fit with the parameters 
a = 0.003563, b = 4.673 and c = 1005 giving the runtime in milliseconds.
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Comparison to state‑of‑the‑art
In Fig.  5, we compare the runtime of our implementa-
tion for L = 2 and L = 3 with two implementations 
from Breuer et  al. [9, 10]. The first implementation [9] 
uses a Threshold Homomorphic Encryption scheme 
and enables to solve the privacy-preserving KEP with 
arbitrary cycle length, as in SPIKE. The maximum cycle 
size is set to L = 3 in their benchmarks. The second one 
[10] is based on three-party honest majority Shamir’s 
Secret Sharing using the MP-SPDZ framework and lim-
its its cycle length to L = 2 . The performance data for 
both implementations is taken from the referenced 
publications.

Our implementation, as well as the MP-SPDZ based 
state-of-the-art [10], shows a polynomial-bound power-
law graph. The Homomorphic Encryption-based 
implementation shows clearly an exponential runtime 
development, increasing rapidly. For 9 pairs, the maxi-
mum number of pairs benchmarked in the original 
publication [9], our implementation achieves a 29828× 
speedup. For L = 2 , our implementation performs 414× 
better than the MP-SPDZ-based implementation [10].

To improve the medical quality of the donor-recipient 
matching, we implemented additional matching criteria, 
as described in the “Background” section. As we have 
seen in Fig.  4, the performance impact of the compat-
ibility matching algorithm is negligible compared to the 
runtime of the remaining algorithmic parts. However, 
in Fig. 6 we compare the performance difference between 
the reduced set of medical matching criteria and the full 
set. For small number of pairs there is a transient phase, 

where the runtime of the full set rises faster. After this 
transient phase, both curves assume nearly the same 
slope. In the plots for the WAN network model, the 
latency-induced “baseline” runtime can be observed.

A comparison of communication size between SPIKE 
and [9, 10] for cycle lengths L = 3 and L = 2 is included 
in the appendix in Additional file 1: Tables S16 and S17. 
For L = 2 and 40 pairs, SPIKE requires 40× less commu-
nication than [10]. For L = 3 and 9 pairs (the maximum 
number of pairs evaluated by [9]), SPIKE require 104.1× 
less communication than [9].

Discussion
Security guarantees
Our privacy-preserving kidney exchange protocol, 
SPIKE, is implemented using the ABY [61] MPC frame-
work, guaranteeing computational semi-honest secu-
rity in a two-party setting. An adversary A can corrupt 
at most one of the two computing parties. A is assumed 
to follow the protocol specification and gets access to 
all messages of the corrupted party (sent and received), 
while trying to extract private information. This security 
model is standard in the privacy research community and 
protects against two security concerns: (1) inadvertent 
disclosure of sensitive data and (2) full data disclosure 
in case of a breach in one of the parties (in comparison 
to a centralized computation). The latter concern is a 
detriment of all centralized or trusted third party based 
approaches. This coupled with complex legal barriers 
are the driving forces behind the German Medical Infor-
matics Initiative’s16,17 decision to promote decentralized 
data holding and processing. In the outsourcing scenario 
with two computation parties and an arbitrary number of 
data sources, both computation parties must not collude. 
However, an arbitrary number of data sources is allowed 
to collude or behave maliciously, without breaking the 
security guarantees. Note, that MPC only gives privacy 
guarantees for the computation, whereas maliciously 
formed inputs might lead to incorrect outputs. For a 
“holistic” data privacy perspective, please see [74].

While this adversarial model is not sufficient for all 
applications, e.g., computations with parties in different 
jurisdictions [62], it suits our setting, namely the joint 
computation among large, intra-national or intra-Euro-
pean medical institutions. Both semi-honest behaviour, 
as well as the non-collusion assumption, can be enforced 
by legal and regulatory means and build the predominant 
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16 https:// www. mediz ininf ormat ik- initi ative. de/
17 The German Medical Informatics Initiative is the federal research initia-
tive to enable medical data sharing and secondary use between all university 
medical centers in Germany.
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basis for data protection concepts in (German) federated 
medical research networks.

Furthermore, several real-world industry projects dem-
onstrate that the non-collusion assumption of MPC is 
practical. For example, Mozilla Firefox starts to deploy 
MPC-based privacy-preserving collection for Telemetry 
data [75, 76] and Bosch is developing a MPC platform 
for smart homes and anonymous driving [77, 78]. Many 
more examples can be found in the MPC alliance18 which 
is a consortium of industry peers working on MPC. Even 
in the German medical informatics realm employed 
MPC solutions are able to work in a (non-colluding) two-
party setting [79].

For a full description of the cryptographic assumptions 
and guarantees inherited by the primitives used in ABY, 

we refer to the respective section in the Appendix and 
the original ABY publication [61].

While all data, including the association to the various 
data sources are considered to be private data and are 
protected by the aforementioned guarantees, we consider 
the number of donor-recipient pairs, as well as the maxi-
mum number of cycles in the graph, as public informa-
tion. This choice has important performance impacts, 
however, if the numbers of pairs are to be considered pri-
vate as well, the real numbers can be hidden by padding 
each input array to a fixed length with dummy entries.

Real‑world deployability
This work introduces a protocol for finding a solution 
for the kidney exchange problem in a privacy-preserving 
fashion. As demonstrated in the performance bench-
marks and the security discussion, it meets all initially 
determined requirements for a secure privacy-preserving 
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18 https:// www. mpcal liance. org/
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solution to the KEP w.r.t privacy, efficiency, decentraliza-
tion, and adaptability for medical experts.

Concretely, it enables real-world periodic batch-pro-
cessing for a significantly larger number of donor-recip-
ient pairs and a practical cycle length of L = 2 and L = 3 
compared to previous work [9, 10], even in residential 
network settings. This allows even residential nephrology 
experts to participate in kidney exchanges, hence, pro-
viding a better medical care for their patients. However, 
SPIKE requires a significant amount of communication, 
thus, it is not yet ready for the usage of metered or cell 
data connections in a two-party computation protocol, 
which might be an interesting direction for future work. 
In contrast, SPIKE is already practical for an outsourcing 
scenario, where mobile clients secret share their data of 
100 donor-recipient pairs among two non-colluding serv-
ers or cloud entities. But we also point out that larger sets 
of, e.g., 300 pairs are not practical yet due to the, although 
improved, but still limited scalability of our protocol. To 
run SPIKE on even larger datasets, two strategies are 
possible: (1) reducing the interval of calculation, hence, 
effectively reducing the participating pairs, or (2) parti-
tioning on less sensitive features, such as “blood type” 
and running the computation on smaller data chunks in 
parallel. The first approach, however, results in a smaller 
set of pairs considered in the matching while the second 
change likely increases the number of mismatches that 
will not pass the final check by medical experts.

By using state-of-the-art provably secure cryptographic 
techniques, the privacy of sensitive medical informa-
tion of donors and recipients is fully protected by clearly 
defined hardness assumptions of mathematical prob-
lems. Furthermore, by pursuing a completely decentral-
ized approach without a trusted third party, the risk of 
data leakages in case of a data security incident at one 
participating facility is significantly reduced, compared 
to a breach in a central computation node or repository. 
This is especially important for quasi-identifying medical 
fields19. Often times, quasi-identifiers are not anonymiz-
able, as they loose too much utility in the process. 
Hence, secure decentral storage and processing of non-
anonymized data is increasingly important especially 
considering current efforts of simplified international 
data usage, such as the proposed European Health Data 
Space (EHDS) [80].

Allowing medical professionals to choose many param-
eters of the algorithm to adapt to new evidence-based 
guidelines or specific situational constraints ensures 

flexibility and maintainability for future application. 
The compatibility matching algorithm is configurable 
by choosing the considered HLA, as well as the weights 
of the chosen medical factors. This explicitly allows the 
deactivation of chosen comparisons. Due to the clear 
architecture boundaries in the open source imple-
mentation, additional checks and criteria can easily be 
included. Many hierarchically ordered optimization goals 
employed in current KEP solutions [7] can be included in 
SPIKE via a more involved weight calculation. One open 
research question is to quantify a possible transplanta-
tion success rate difference between globally optimal KEP 
solvers and our locally optimal solution. We argue, that 
the medical uncertainty, that can not easily be evaluated 
via algorithms, e.g., number and positions of renal arter-
ies [81], might be larger than the uncertainty introduced 
by our local solution. To answer this highly relevant 
question a cross-examination of followed-up real world 
kidney-exchanges would be required and is left as future 
work.

While meeting all formal requirements, SPIKE falls 
short in two aspects: First, we observe a high memory 
consumption during the computation. This is expected, 
as this protocol was optimized for runtime performance. 
The reason is that hardware costs are typically not a 
prohibiting factor for meeting data protection regula-
tions. Note that we use only standard hardware for our 
benchmarks. For a real-world deployment, it is realistic 
to assume a deployment on servers with significantly 
higher capacity. Thus, we argue that this aspect does not 
jeopardize the adoption in the intended use cases. How-
ever, improvements in this regard are still desirable. For 
example, developing internal batch processing of graph 
clusters and the employment of space-optimized data 
structures might be worthwhile opportunities for further 
research. An interesting direction for future work can 
be to explore the compatibility with recent advances in 
MPC-based graph analysis for breadth-first search [82] 
scaling linearly in the number of vertices. Second, the 
developed software components are research artifacts 
and fulfil a prototypical function. For real-world adoption 
the implementation of widespread medical standards, 
e.g., HL7 FHIR R420, audit- and authentication capabili-
ties, integration in medical research pipelines, creation of 
deployment packages, and lastly full (legal) documenta-
tion must be pursued. This is, however, not in the scope 
of this work.

20 https:// www. hl7. org/ fhir/ R4/

19 Quasi-Identifier are groups of fields, that do not include the traditional 
fields of identifying data, such as names and birth dates. Nevertheless, the 
combination of fields in a quasi-identifier is rare enough to identify individual 
patients.



Page 19 of 21Birka et al. BMC Medical Informatics and Decision Making          (2022) 22:253  

Conclusion
In this work, we introduced SPIKE, the currently most 
efficient privacy-preserving Kidney Exchange Problem 
(KEP) protocol. Using provably secure cryptographic 
techniques, SPIKE provides highest data protection guar-
antees for patients’ sensitive medical data without relying 
on a trusted third party, while allowing a decentralized 
computation of a locally optimal solution to the kidney 
exchange problem. In the absence of privacy-preserving 
Integer Linear Programming (ILP) solving algorithms, we 
implement approximate, adaptable medical compatibility 
matching algorithms, giving medical professionals the 
flexibility to accommodate updated guidelines and the 
specific situational constraints.

Our optimized protocols achieve a 30000× and 400× 
speedup compared to the current state-of-the-art [9, 10] 
for cycle lengths of L = 3 and L = 2 , respectively. With 
a total runtime of under 4min for 40 pairs at L = 2 and 
around 1 h for 25 pairs at L = 3 , we demonstrate suffi-
cient performance for deploying it for some real-world 
applications.

However, we note that kidney exchange programs 
typically consider up to 300 pairs per run [83] which 
is not yet feasible for SPIKE since our protocol does 
not scale sufficiently well in the number of participat-
ing donor-recipient pairs leading to unsatisfactory 
runtimes beyond 170 pairs (for L = 2 ). Additionally, 
memory usage is another aspect that needs more future 
work. To summarize, SPIKE is not yet a routine solution 
ready for deployment for large scale kidney exchange 
programs, however, it offers the most efficient state-of-
the-art solution to the problem. In this sense, it makes 
an important contribution towards moving into the 
direction of practical large-scale privacy-preserving 
solutions.

We also hope that the advancements in privacy protec-
tion and application performance will already allow more 
medical facilities to participate in kidney exchanges on a 
smaller scale, thus increasing the recipients’ chances for 
timely and potentially live-saving surgery.
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Appendix
Additional MPC Subprotocols

This part of the Appendix contains additional protocols of our MPC-based

PPKE solution, SPIKE, that are similar to the ones presented in the main

part and, thus, referred to the appendix.

Additional Protocols for the Compatibility Matching

This subsection presents additional subprotocols for the compatibility

matching phase.

Supplementary Table 1 evalHLA(〈hlad〉B:
vector,〈hlar〉B: vector) → int

1: 〈mm〉B ← {〈0〉B}|HLA|

2: for i = 0, . . . , |HLA| − 1 do
3: 〈mm〉B ← 〈hlad〉B[i]⊕ 〈hlar〉B . SIMD
4: end for
5: 〈sum〉B ← HammingW({〈0〉B}|HLA|, 〈mm〉B)
6: 〈c〉B ← 〈sum〉B < 〈5〉B
7: 〈b〉B ← 〈sum〉B < 〈3〉B
8: 〈a〉B ← 〈sum〉B == 〈0〉B
9: return 〈a〉B ?

〈A〉B
(
〈b〉B ? 〈B〉B :

(
〈c〉B ? 〈C〉B : 〈0〉B

))

HLA Antigen Comparison
In Supplementary Table 1, we compare the HLA antigens of the potential

recipient and donor and determine the number of HLA mismatches. It takes

two vectors hlad and hlar with the HLA antigens of the donor and recipient

respectively as input. The number of |HLA| is public, as it is a fixed value.

The vector mm indicates the HLA mismatches of the donor and the

recipient. A mismatch occurs if either donor or recipient has a HLA antigen

that the other does not have (cf. Line 3). For enhanced efficiency, we

parallelize the comparison as SIMD operation, such that the vector mm is

computed in a single step. Afterwards, the number of HLA mismatches is

determined with a Hamming Weight Circuit (cf. Line 5). Based on the

number of mismatches, the subprotocol outputs an indicator for the quality

of the pairing w.r.t. the HLA antigens: Class A is an optimal fit with no

mismatches, class B is a good fit, and class C is an acceptable fit with 3-4

mismatches (cf. Lines 6-9).

MPC Cost

Line 3 in Supplementary Table 1 evaluates |HLA|×XOR gates (as SIMD).

Line 5 evaluates one Hamming Distance circuit. Lines 6-9 contain three

comparison and three MUX gates. Thus, the circuit’s multiplicative depth is

7, which is determined by the number of AND gates on the longest path.

Naively, using Yao’s Garbled Circuits (Y) seems to be most efficient.

However, considering that Table 4 is done in B sharing, the conversion cost

outweigh the benefits of using Y instead of B, thus, B is used here as well.

Supplementary Table 2 evalABO(〈bgd〉B : vector,
〈bgr〉B : vector) → int

1: 〈a〉B ← ¬
((
〈bgr〉B[0]⊕〈bgd〉B[0]

)
∨
(
〈bgr〉B[1]⊕〈bgd〉B[1]

))

2: 〈b〉B ←
(
〈bgr〉B[1] ∧ ¬〈bgd〉B[0]

)
∨
(
〈bgr〉B[0] ∧ ¬〈bgd〉B[1]

)

3: 〈v〉B ← 〈a〉B ∨ 〈b〉B
4: return 〈v〉B ? 〈bestage〉B : 〈0〉B

ABO blood group comparison
Supplementary Table 2 contains the privacy-preserving evaluation of the

compatibility of ABO blood groups of a donor and a recipient. It takes two

two-bit vectors as input: bgd ∈ {0, 1}2 is the blood group of the donor

and bgr ∈ {0, 1}2 is the blood group of the recipient. The blood group

encoding is shown in Supplementary Table 3. Lines 1-2 ensure that the

blood group of recipient and donor are compatible, i.e., they have to be

either equal, bgr[1] > bgd[0], or bgr[0] > bgd[1] (cf. Table 2).

Supplementary Table 3 Encoding of the different blood groups.

Encoding Blood Group

00 O
01 A
10 B
11 AB

MPC Cost

Here, we evaluate 14 XOR gates and five AND gates in total per

donor/recipient pair. As XOR gates can be locally evaluated, they are “for

free”. Therefore, the AND gates and circuit depth determine, which MPC

protocol is most efficient. B is slightly more efficient than Y since the

circuit depth is smaller than the number of total AND gates.

Supplementary Table 4 evalAge(〈ad〉B: int, 〈ar〉B: int)
→ int
1: 〈eq〉B ← 〈ad〉B == 〈ar〉B
2: 〈yg〉B ← ¬〈ad〉B ∧ 〈ar〉B
3: return 〈yg〉B ?(

〈eq〉B ? 〈A〉B : 〈B〉B
)

:
(
〈eq〉B ? 〈A〉B : 〈0〉B

)

Age Comparison
Supplementary Table 4 evaluates the compatibility of a donor and recipient

based on their age group. It takes the age group of the donor 〈ad〉B and

the age group of the recipient 〈ar〉B as input. Line 1 checks if they are in

the same age group and Line 2 evaluates whether the donor is in a younger

age group than the recipient. Afterwards, we compute the respective weight

of this donor and recipient constellation. Similarly, as in Supplementary

Table 1, class A indicates an optimal match, class B a good match, and

Eq denotes that recipient and donor are in the same age group.

MPC Cost

Supplementary Table 4 contains one comparison, one inversion, one AND

gate, and three MUX gates. As Line 1 and Line 2 are independent, similarly

as the two MUX gates in Line 3, the circuit depth is 3. Thus, this

subprotocol is slightly more efficient in B than in Y.

Supplementary Table 5 evalSex(〈sd〉B: int, 〈sr〉B: int)
→ int
1: 〈eq〉B ← 〈sd〉B == 〈sr〉B
2: 〈fdmr〉B ← 〈sd〉B ∧ ¬〈sr〉B
3: return 〈fdmr〉B ?(

〈eq〉B ? 〈A〉B : 〈0〉B
)

:
(
〈eq〉B ? 〈A〉B : 〈B〉B

)

Sex Comparison
Supplementary Table 5 evaluates the compatibility of a donor and recipient

based on their sex. It takes two secret shares 〈sd〉B and 〈sr〉B as input,

which represent the sex of the donor and recipient, respectively. In Line 1,

the subprotocol determines if the pair shares the same sex. Line 2 checks

whether the donor is female and the recipient male. As final step, the

output weight of this donor and recipient constellation is computed, i.e.,

the optimal combination (”Class A”) with equal sex receives the highest

weight, while a female donor and a male recipient are assigned the lowest

weight (0).

MPC Cost

Supplementary Table 5 evaluates one comparison, one inversion, one AND,

and three MUX gates. As Line 1 and Line 2, as well as two of the MUX gates

in Line 3, are independent, we have a circuit depth of 3. Thus,

Supplementary Table 5 is slightly more efficient in B than in Y.

Weight Comparison
Supplementary Table 6 evaluates the compatibility of a donor and recipient

based on their weight. It takes two secret shares as input: 〈wd〉B and
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Supplementary Table 6 evalWeight(〈wd〉B: int, 〈wr〉B:
int) → int

1: return 〈wd〉B < 〈wr〉B ? 〈0〉B : 〈A〉B

〈wr〉B , which represent the weight of the donor and recipient, respectively.

If the donor weighs less than the recipient, it returns a secret shared 0,

otherwise, it indicates a good fit (i.e., class ”A” w.r.t. criteria weight).

MPC Cost

We evaluate only one comparison gate. As the evaluation of a single

comparison is more efficient in Y than in B [1], Y would be more efficient.

However, the conversion cost outweigh this benefit, which is why B is used

for this subprotocol as in the previous comparison protocols.

Additional Protocols for the Cycle Computation

Supplementary Table 7 removeWeights(〈compG〉B:
matrix) → matrix

1: 〈uG〉A ← matrix ∈ 〈0〉A|pairs|

2: for i = 0, . . . , |pairs| − 1 do
3: for j = 0, . . . , |pairs| − 1 do
4: 〈uG〉A[i][j]←

b2a(〈compG〉B[i][j] > 〈0〉B ? 〈1〉B : 〈0〉B
5: end for
6: end for
7: return 〈uG〉A

Weight Removal
In Supplementary Table 7, we compute the unweighted compatibility graph,

which is used for determining the number of cycles for the desired cycle

length. It takes the weighted compatibility graph compG as input. The

number of donor-recipient pairs |pairs| is public. In Line 4, we remove the

edge weights: If it is greater than 0, it is set to 1, otherwise to 0. As

preparation for later processing, a conversion to A is done.

MPC Cost

The subprotocol shown in Supplementary Table 7 evaluates |pairs|2
comparisons, MUX gates, and conversions. The comparisons and MUX gates

are independent, which results in a circuit depth of 2. Due to the total

number of AND gates, which is 2× |pairs|, this subprotocol is most efficient

in B.

kNN Sort Protocol
Our next MPC subprotocol shown in Supplementary Table 8 is a k-nearest

neighbor sort (a slightly adapted version of the protocol in [2]) that

identifies the k most robust cycles (i.e., with the highest likelihood to result

in successful transplantations).

It takes a secret shared vector of tuples cyclesSet with exchange cycles and

their respective weights and k as input. The length of cycles cLen is a

public parameter. First, the subprotocol iterates over all cycles in

|cyclesSet| to perform an insertion sort. Each cycle and the respective

weight are added to sortedC and sortedW if its weight is one of the k

highest weights (cf. Lines 11 to 27). Thus, the final sortedW and sortedC

are sorted in decreasing order with respect to the weights of cycles.

MPC Cost

This subprotocol evaluates |cyclesSet| × k comparisons and

|cyclesSet| × k × (1 + cLen) MUX gates. It is most efficient in Y due to

depth of the circuit determined by the number of AND gates.

Duplicate Removal
Supplementary Table 9 removes all duplicated exchange cycles and outputs

the remaining |unique| = b |cycles|
cLen c cycles.

It takes a secret shared vector of tuples sortedCycles as input, which

contains cycles and weights sorted according to the respective weights (i.e.,

the output by Supplementary Table 8). The number of existing cycles

Supplementary Table 8 kNNSort(〈cyclesSet〉Y : vector
of tuples, k: int) → vector of cycles

1: 〈sortedW〉Y ← ∅
2: 〈sortedC〉Y ← ∅
3: for i = 0, . . . , k do
4: 〈sortedW〉Y .append(〈0〉Y )
5: 〈vertices〉Y ← ∅
6: for j = 0, . . . , cLen− 1 do
7: 〈vertices〉Y .append(|〈pairs〉Y |)
8: end for
9: 〈sortedC〉Y .append(〈vertices〉Y )

10: end for
11: for i = 0, . . . , |cyclesSet| − 1 do
12: 〈sortedW〉Y [k]← 〈cyclesSet〉Y [i][0]
13: 〈sortedC〉Y [k]← 〈cyclesSet〉Y [i][1]
14: for j = 0, . . . , k − 1 do
15: 〈sel〉Y ← 〈sortedW〉Y [j] > 〈sortedW〉Y [j − 1]
16: 〈tmp1〉Y ← 〈sortedW〉Y [j]
17: 〈tmp2〉Y ← 〈sortedW〉Y [j − 1]
18: 〈sortedW〉Y [j]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
19: 〈sortedW〉Y [j − 1]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
20: for l = 0, . . . , cLen− 1 do
21: 〈tmp1〉Y ← 〈sortedC〉Y [j][l]
22: 〈tmp2〉Y ← 〈sortedC〉Y [j − 1][l]
23: 〈sortedC〉Y [j][l]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
24: 〈sortedC〉Y [j − 1][l]←

〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
25: end for
26: end for
27: end for
28: 〈result〉Y ← ∅
29: for i = 0, . . . , |cycles| − 1 do
30: 〈result〉Y .append(tuple(〈sortedW〉Y [i], 〈sortedC〉Y [i]))
31: end for
32: return 〈result〉Y
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|cycles|, the number of unique cycles |unique|, and the cycle length cLen

are public parameters. For each cycle c1 in sortedCycles, it is checked if it

is equal to any other cycle c2 (cf. Lines 6 to 13). If this is the case, its

weight is set to 0 (cf. Line 15). To each equality, it is evaluated if the

vertex of c1 at index l and the vertex of c2 at index (l + k) mod cLen

are identical (cf. Line 9). With Supplementary Table 8, sortedCycles is

sorted and only the |unique| cycles with the highest weight are returned.

The number of unique cycles is |unique| = b |cycles|
cLen c.

MPC Cost

Supplementary Table 9 has |cycles| ×∑|cycles|
i=0 (cLen× (cLen− 1))

comparisons and AND gates, |cycles| ×∑|cycles|
i=0 (cLen− 1) OR gates,

|cycles| MUX gates. Including Supplementary Table 8, this results in

|cycles| × |unique| comparison and MUX gates, and an additional

|cycles| × |unique| × (1 + cLen) MUX gates. This subprotocol is most

efficient in Y due to the depth of the circuit created by AND gates.

Supplementary Table 9 removeDuplicates(〈sortedCycles〉Y :
vector of tuples) → vector of cycles

1: for i = 0, . . . , |cycles| − 1 do
2: 〈c1〉Y ← 〈sortedCycles〉Y [i][1]
3: 〈combDup〉Y ← 〈0〉Y
4: for j = 0 : i do
5: 〈c2〉Y ← 〈sortedCycles〉Y [j][1]
6: for k = 1, . . . , cLen− 1 do
7: 〈duplicate〉Y ← 〈1〉Y
8: for l = 0, . . . , cLen− 1 do
9: 〈same〉Y ←

〈c1〉Y [l] == 〈c2〉Y [(l + k) mod cLen]
10: 〈duplicate〉Y ← 〈duplicate〉Y ∧ 〈same〉Y
11: end for
12: 〈combDup〉Y ← 〈combDup〉Y ∨ 〈duplicate〉Y
13: end for
14: end for
15: 〈sortedCycles〉Y [i][0]←

〈isDuplicate〉Y ? 〈0〉Y : 〈sortedCycles〉Y [i][0]
16: end for
17: return kNNSort(〈sortedCycles〉Y , |unique|)

Supplementary Table 10 #TotalCycles() → int

1: |allCycles| ← |pairs|
2: for i = 1, . . . , cLen− 1 do
3: |allCycles| ← |allCycles| · (|pairs| − i)
4: end for
5: return |allCycles|

Total Number of Cycles

Supplementary Table 10 computes the maximum number of cycles that can

exist in the compatibility graph. Each vertex must appear at most once in a

cycle, which limits the number of possible cycles. As the numbers of pairs

|pairs| and the cycle length cLen are public, computation can be done on

plaintext.

Additional Protocols for the Solution Evaluation

Disjoint Cycles

Supplementary Table 11 computes whether a cycle cCycle does not join

vertices with other cycles of a set of cycles cycles. It takes as input the set

of secret shared cycles cycles, the secret shared cycle cCycle, and the

number of cycles in cycles count. If another cycle shares a vertex with

cCycle, disJ is set to 1 (cf. Line 10). In Line 12, we invert the result for

further evaluation.

MPC Cost

In this subprotocol, we evaluate |cycles| × cLen (cf. Line 6). In Line 10, we

evaluate log2(cLen) OR gates. At the end, we evaluate one XOR gate. As

Supplementary Table 11 disjointSet(〈cycles〉B: vec-
tor of tuples, 〈cCycle〉B: vector, count: int) → Boolean

1: 〈disJ〉B ← ∅
2: for i = 0, . . . , count− 1 do
3: 〈c〉B ← 〈cycles〉B[i][1]
4: for j = 0, . . . , cLen− 1 do
5: for k = 0, . . . , cLen− 1 do
6: 〈tmp〉B ← 〈c〉B[j] == 〈cCycle〉B[k]
7: 〈disJ〉B.append(〈tmp〉B)
8: end for
9: end for

10: 〈disJ〉B ← ORTREE(〈disJ〉B)
11: end for
12: return ¬〈disJ〉B[0]

the number of total AND gates is greater than the depth of the circuit, this

subprotocol is most efficient in B.

Supplementary Table 12
findMaximumSet(〈cyclesSets〉Y : vector of tuples,
〈cycleW〉Y : vector) → tuple

1: 〈weights〉Y ← ∅
2: 〈tmp〉Y ← ∅
3: for i = 0, 1 do
4: 〈weights〉Y .append(〈0〉Y )
5: 〈sets〉Y ← ∅
6: for j = 0, . . . |unique| − 1 do
7: 〈vertices〉Y ← ∅
8: for j = 0, . . . cLen− 1 do
9: 〈vertices〉Y .append(〈|pairs|〉Y )

10: end for
11: 〈tmp〉Y .append(〈vertices〉Y )
12: end for
13: 〈sets〉Y .append(〈tmp〉Y )
14: end for
15: for i = 0, . . . , |unique| − 1 do
16: 〈weights〉Y [1]← 〈cycleW〉Y [i]
17: 〈sets〉Y [1]← 〈cycleSets〉Y [i]
18: 〈sel〉Y ← 〈weights〉Y [1] > 〈weights〉Y [0]
19: 〈tmp1〉Y ← 〈weights〉Y [1]
20: 〈tmp2〉Y ← 〈weights〉Y [0]
21: 〈weights〉Y [1]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
22: 〈weights〉Y [0]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
23: for j = 0, . . . , |unique| − 1 do
24: 〈tmp1〉Y ← 〈sets〉Y [1][j]
25: 〈tmp2〉Y ← 〈sets〉Y [0][j]
26: 〈sets〉Y [1][j]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
27: 〈sets〉Y [0][j]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
28: end for
29: end for
30: return (〈weights〉Y [0], 〈sets〉Y [0])

Maximum Set
Supplementary Table 12 computes the set of cycles with the highest sum of

weights, thus, the set of cycles with the highest probability for successful

transplantations. Note that we do not compute the globally optimal

solution, but a local optimum.

The subprotocol takes a secret shared vector of tuples cycles and a secret

shared vector weights as input. cycles contains all sets of disjoint cycles and

weights contains the respective weights of the each set. The number of

pairs |pairs| and the number of unique cycles |unique| are public

parameters. This subprotocol is a slight variation of Table 8 adapted to

here used data structures.

The parameter k is fixed to 1 since we look for the set with the highest weight.
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MPC Cost

This protocols evaluates |unique| comparison and 2|unique|2 + 2|unique|
MUX gates. Due to the large number of MUX gates in combination with the

number of AND gates determining the depth of the circuit, it is most

efficient in Y sharing.

Communication Improvement with ABY2.0

Implementing SPIKE in ABY2.0 [3] can further decrease the

communication cost. As the respective protocols were implemented only

very recently in MOTION2NX [4], we use ABY [1] in our benchmarks to

show practicality and additionally discuss the improvements that can be

achieved with ABY2.0 in the following.

ABY2.0’s improvements for secure multiplication with two inputs decreases

the communication of the first and second part, the compatibility matching

and the cycle computation. The improvements to conversions between

different sharing types additionally benefit the first and the second part, as

these parts contain the most conversions between B and A. Further, the

optimizations for matrix multiplications are beneficial for the second part.

Concretely, the communication of the protocol in Table 5 decreases from

3× `2 + 24× `+ 2× `× κ bits to 23× `+ `× κ bits in every iteration

of the inner loop (without considering the subprotocols). Similarly, the

communication of the protocol in Table 6 can be reduced from

`× ( `
2 + 2× κ+ 4× |pairs|3 + 1.5) bits to `× (κ+ 2× |pairs|3 + 3)

bits, where ` is the bitlength and κ is the security parameter.

ABY Security Assumptions and Guarantees

The ABY MPC framework [1] provides mixed-abstraction building blocks

for the creation of highly efficient hybrid-protocol MPC applications in a

semi-honest adversary setting. Independent of the specific circuit design, a

number of base-OTs are executed in the beginning to setup OT Extensions.

The used base-OT primitive [5] guarantees security under the

Computational Diffie-Hellman (CDH) hardness assumption. Being closely

related to the discrete logarithm problem, this assumption is known to not

be quantum resistant. The OT Extension [6, 7] primitive uses fixed-key

AES modeled as a random permutation. While still considered secure in a

semi-honest setting, theoretical attacks in the active security setting have

been demonstrated [8]. Furthermore, ABY relies on the random oracle

assumption, implemented by the SHA256 hash function. Similarly, Yao’s

Garbled Circuits [9] (denoted by Y in our protocols) directly rely on the

random permutation assumptions, while Arithmetic and Boolean

Sharing [10] (denoted by A/B in our protocols) indirectly rely on those

assumptions as a source of randomness. Those protocols can achieve

information-theoretical security given a true correlated randomness source.

Detailed Benchmark Results

Supplementary Tables 13 to 15 show the detailed benchmark results for the

setup and online phase in all three described network settings (A: LAN +

10Gb/s, B: LAN + 1Gb/s, C: WAN) and a cycle length of L = 2.

Supplementary Tables 18 and 19 show the results for a cycle length of

L = 3.

Supplementary Table 20, finally, compares the benchmark results of both

reduced medical compatibility factor set and the full set. This benchmark

was performed in the two network settings A and C, as above.
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Supplementary Table 13 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN, and for cycle length L = 2. This table contains the aggregated
total costs and the individual costs of Phase 1 (Compatibility Matching).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

2 0.1 0 0.021 0.021 0.78 0.04 0.039 2.1
4 1.1 0.1 0.052 0.051 1.7 0.075 0.08 3.1
6 3.4 0.3 0.1 0.11 2.5 0.15 0.15 4.3
8 5.6 0.4 0.13 0.17 3 0.17 0.18 4.4

10 12.7 0.8 0.22 0.24 4 0.28 0.29 5.8
12 19.5 1 0.37 0.34 4.4 0.46 0.37 6.6
14 55.8 2.3 0.61 0.68 7.4 0.8 0.88 12
16 95.4 3.4 0.94 1.1 11 1.2 1.3 15
18 159 5.1 1.4 1.6 15 1.8 1.9 18
20 412.1 11.8 2.9 4.9 34 4.2 7.4 30
22 617.8 16.6 4.2 5.2 47 6.3 6.4 36
24 823.3 21.1 5.5 6.7 64 8.4 8.5 42
26 1,104.8 27 7.2 8.7 81 11 11 49
28 1,281.6 30.2 8.3 10 93 13 13 53
30 1,608.3 36.5 10 13 120 17 17 59
32 2,202.9 48.3 14 19 150 24 24 71
34 2,999.7 63.8 18 22 200 33 33 85
36 3,971.7 82.2 24 26 260 44 43 100
38 5,036.2 101.8 29 35 320 57 57 120
40 6,394 126.6 37 45 400 75 75 140

Phase 1: Compatibility Matching

2 0 0 0.0071 0.0065 0.31 0.015 0.015 0.85
4 0.1 0 0.0093 0.0087 0.42 0.016 0.015 0.85
6 0.2 0 0.012 0.013 0.52 0.017 0.017 0.85
8 0.4 0 0.016 0.016 0.62 0.019 0.018 0.84

10 0.6 0 0.02 0.021 0.62 0.021 0.021 0.85
12 0.8 0 0.026 0.025 0.65 0.024 0.024 0.85
14 1.2 0 0.031 0.032 0.72 0.028 0.028 0.86
16 1.5 0 0.036 0.038 0.75 0.034 0.031 0.86
18 1.9 0 0.047 0.045 0.82 0.033 0.033 0.86
20 2.4 0 0.053 0.054 0.85 0.039 0.039 0.88
22 2.9 0.1 0.055 0.065 0.87 0.045 0.046 0.88
24 3.4 0.1 0.071 0.073 0.9 0.05 0.049 0.89
26 4 0.1 0.075 0.083 1 0.051 0.056 0.9
28 4.6 0.1 0.077 0.085 1 0.059 0.06 0.91
30 5.3 0.1 0.081 0.088 1.1 0.068 0.067 0.97
32 6.1 0.1 0.084 0.09 1.1 0.071 0.069 0.98
34 6.8 0.1 0.087 0.092 1.1 0.079 0.083 0.97
36 7.7 0.1 0.093 0.099 1.2 0.085 0.089 0.97
38 8.6 0.2 0.093 0.11 1.2 0.091 0.098 0.99
40 9.5 0.2 0.094 0.11 1.2 0.1 0.1 1
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Supplementary Table 14 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN, and for cycle length L = 2. This table contains individual costs of
Phase 2 and 3 (Cycle Computation and Evaluation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Phase 2: Cycle Computation

2 0 0 0.0099 0.0099 0.43 0.013 0.012 0.75
4 0.2 0 0.013 0.013 0.54 0.014 0.014 0.76
6 0.4 0.1 0.02 0.02 0.83 0.017 0.018 0.76
8 0.9 0.1 0.028 0.031 1 0.021 0.021 0.85

10 1.7 0.2 0.043 0.047 1.2 0.024 0.027 0.77
12 2.8 0.3 0.06 0.059 1.3 0.033 0.031 0.79
14 4.3 0.4 0.082 0.087 1.6 0.034 0.04 0.8
16 6.2 0.5 0.1 0.12 1.8 0.047 0.048 0.82
18 8.6 0.7 0.12 0.12 1.8 0.048 0.054 0.84
20 11.6 0.8 0.13 0.14 2 0.063 0.061 0.87
22 15.3 1 0.13 0.17 2 0.075 0.072 0.9
24 19.6 1.2 0.15 0.19 2.9 0.078 0.083 1.1
26 24.6 1.5 0.17 0.23 3.2 0.088 0.1 1.3
28 30.5 1.7 0.19 0.27 5 0.1 0.11 2.4
30 37.2 2 0.22 0.3 4.8 0.11 0.12 2
32 44.8 2.3 0.24 0.35 5.7 0.12 0.14 2.2
34 53.4 2.6 0.27 0.42 6.5 0.13 0.15 2.3
36 63 3 0.3 0.48 7.1 0.13 0.16 2.3
38 73.7 3.4 0.34 0.55 7.9 0.14 0.17 2.3
40 85.6 3.8 0.38 0.63 8.8 0.16 0.18 2.4

Phase 3: Cycle Evaluation

2 0.1 0 0.0023 0.0027 0.022 0.0086 0.0082 0.3
4 0.7 0.1 0.019 0.02 0.29 0.026 0.03 0.35
6 2.2 0.1 0.054 0.061 0.56 0.068 0.07 0.47
8 3.8 0.2 0.066 0.1 0.74 0.089 0.096 0.48

10 8.6 0.4 0.12 0.13 1.2 0.14 0.16 0.56
12 13.4 0.5 0.21 0.2 1.6 0.22 0.2 0.66
14 35 0.9 0.38 0.41 3.6 0.37 0.43 0.94
16 57.3 1.3 0.62 0.66 5.6 0.6 0.69 1.2
18 90.2 1.8 0.98 1 8.5 0.87 0.95 1.4
20 181.2 3.3 1.9 2.2 17 1.7 1.9 2.3
22 255.2 4.4 2.7 2.9 23 2.4 2.5 3
24 332.8 5.3 3.6 3.8 30 3.1 3.1 3.7
26 431.8 6.5 4.7 4.9 39 4 4 4.5
28 514.4 7.2 5.5 5.7 46 4.7 4.7 5.3
30 635.1 8.4 6.9 7.3 57 6 5.9 6.4
32 815.8 10.4 8.9 12 73 7.5 9.7 8
34 1,037.4 12.8 11 12 92 9.4 9.3 10
36 1,292.4 15.4 15 14 110 12 10 12
38 1,567.8 18 18 19 140 14 14 15
40 1,894.4 21.2 22 23 170 18 18 18
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Supplementary Table 15 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN and for cycle length L = 2. This table contains individual costs of
Phase 4 (Solution Evaluation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 4: Solution Evaluation

2 0 0 0.002 0.0016 0.0071 0.0038 0.0037 0.22
4 0.2 0 0.01 0.01 0.42 0.02 0.021 1.2
6 0.5 0.1 0.019 0.019 0.63 0.044 0.045 2.2
8 0.5 0.1 0.018 0.019 0.62 0.045 0.045 2.2

10 1.8 0.2 0.043 0.041 0.96 0.088 0.088 3.6
12 2.4 0.2 0.078 0.055 0.84 0.18 0.11 4.3
14 15.4 0.9 0.12 0.15 1.5 0.37 0.39 9.4
16 30.4 1.6 0.18 0.26 2.5 0.55 0.55 12
18 58.2 2.6 0.27 0.44 4 0.8 0.84 15
20 216.9 7.6 0.84 2.5 14 2.4 5.4 26
22 344.5 11.2 1.3 2 21 3.8 3.9 31
24 467.5 14.5 1.7 2.7 30 5.2 5.3 36
26 644.4 19 2.3 3.5 38 7.2 7.4 42
28 732.1 21.1 2.5 3.9 41 8.3 8.4 44
30 930.7 26 3.2 4.8 53 11 11 50
32 1,336.2 35.5 4.5 5.7 73 16 14 60
34 1,902.1 48.2 6.4 9.2 100 23 23 72
36 2,608.7 63.7 8.7 12 140 32 32 86
38 3,386.1 80.2 11 16 180 43 43 100
40 4,404.4 101.4 15 21 230 57 57 120
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Supplementary Table 16 and Supplementary Table 17 compare the

communication size for cycle lengths L = 2 and L = 3 of this work to [11]

and [12], respectively.

Supplementary Table 16 Comparison of total communication
cost for cycle length L=2.

Pairs Communication [MiB]

Pairs This Work Breuer et al. 2022

10 13.4 759
20 423.9 13,311.9
30 1,644.8 71,679.7
40 6,520.6 266,238.8

Supplementary Table 17 Comparison of total communication
cost for cycle length L=3.

Pairs Communication [MiB]

Pairs This Work Breuer et al. 2020

3 0.6 0.4
5 4.3 40
7 20.5 200
9 54.1 5,632

15 2,107.3 –
18 9,644.8 –
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Supplementary Table 18 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN and for cycle length L = 3. This table contains the aggregated total
costs and the individual costs of Phases 1 and 2 (Compatibility Matching and Cycle Computation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

3 0.5 0.1 0.029 0.028 0.97 0.054 0.056 2.2
5 4 0.3 0.096 0.11 2.2 0.13 0.15 2.9
7 19.7 0.7 0.26 0.27 4.1 0.3 0.34 4.3
9 52.6 1.5 0.63 0.66 7.3 0.63 0.73 5.3

11 182.5 3.3 2 2.1 19 1.9 2 9.4
13 1,215.8 16.3 12 13 110 12 12 34
15 2,084.4 22.8 21 23 180 19 20 45
17 5,428.5 58.1 52 56 440 54 54 93
18 9,537.2 107.6 88 95 740 100 100 150

Phase 1: Compatibility Matching

3 0.1 0 0.0079 0.0075 0.32 0.015 0.015 0.85
5 0.1 0 0.011 0.01 0.42 0.016 0.016 0.85
7 0.3 0 0.014 0.014 0.52 0.018 0.018 0.85
9 0.5 0 0.019 0.018 0.61 0.019 0.02 0.85

11 0.7 0 0.023 0.024 0.64 0.023 0.023 0.86
13 1 0 0.029 0.029 0.72 0.025 0.024 0.86
15 1.3 0 0.034 0.036 0.74 0.029 0.029 0.86
17 1.7 0 0.041 0.043 0.77 0.035 0.034 0.87
18 1.9 0 0.042 0.049 0.82 0.035 0.034 0.87

Phase 2: Cycle Computation

3 0.1 0 0.013 0.012 0.54 0.014 0.013 0.76
5 0.4 0 0.018 0.019 0.83 0.016 0.016 0.76
7 1.1 0.1 0.029 0.031 1 0.019 0.019 0.77
9 2.2 0.2 0.052 0.053 1.3 0.024 0.023 0.77

11 3.8 0.3 0.072 0.079 1.5 0.026 0.029 0.78
13 6.2 0.4 0.1 0.11 2 0.032 0.034 0.84
15 9.3 0.5 0.1 0.13 1.8 0.036 0.04 0.81
17 13.4 0.7 0.12 0.15 2 0.049 0.049 0.86
18 15.8 0.8 0.13 0.16 2.2 0.047 0.054 0.91

Supplementary Table 19 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN and for cycle length L = 3. This table contains the individual costs
of Phases 3 and 4 (Cycle and Solution Evaluation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Phase 3: Cycle Evaluation

3 0.3 0 0.0061 0.0068 0.1 0.022 0.022 0.42
5 3.4 0.2 0.06 0.071 0.6 0.089 0.1 0.53
7 17.9 0.6 0.2 0.21 2 0.22 0.27 0.71
9 49.1 1.2 0.54 0.56 4.8 0.53 0.63 1.1

11 172.4 2.6 1.8 2 16 1.7 1.7 2.2
13 1,005.9 9.1 11 12 89 9.1 9.1 9.6
15 1,773.8 12.8 19 21 160 16 16 16
17 4,213.3 26.5 47 50 370 38 38 39
18 6,735.8 42 79 82 590 65 65 65

Phase 4: Solution Evaluation

3 0 0 0.0024 0.0022 0.011 0.0038 0.0059 0.22
5 0.1 0 0.0083 0.0082 0.32 0.014 0.014 0.75
7 0.5 0.1 0.016 0.017 0.54 0.039 0.04 1.9
9 0.8 0.1 0.024 0.025 0.64 0.057 0.056 2.6

11 5.5 0.4 0.078 0.087 1 0.19 0.19 5.5
13 202.7 6.9 0.81 1.4 14 2.4 2.5 22
15 300 9.5 1.1 1.8 18 3.6 3.7 27
17 1,200.1 30.9 4.1 6 64 15 16 53
18 2,783.8 64.8 9.2 13 150 36 36 87
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Supplementary Table 20 Comparison of the setup and online runtimes of SPIKE for the reduced medical factor compatibility
matching and the full set in the two main networking configurations A: LAN + 10Gb/s, C: WAN.

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A C A C

Reduced Medical Factor Set

2 0.1 0 0.0084 0.34 0.045 3
50 14.9 0.3 0.14 1.7 0.26 3.4

100 59.8 1.1 0.29 4.4 0.81 4.4
150 134.7 2.5 0.55 8.5 1.9 5.8
200 239.5 4.4 0.91 15 3.8 7.7
250 374.4 6.9 1.4 23 6.4 11
300 539.2 9.9 2 31 9.4 14
350 734 13.4 2.5 41 14 20
400 958.8 17.5 3.2 53 18 26
450 1,213.6 22.1 4.2 65 25 32
500 1,498.3 27.3 5.3 80 31 37
550 1,813.1 33 6.3 96 38 48
600 2,157.8 39.3 7.2 110 45 56
650 2,532.5 46.1 9 130 53 64

Full Medical Factor Set

2 0.1 0 0.013 0.88 0.047 3.4
50 44 11.8 0.51 4.6 1 5.2

100 177.1 47.1 1.3 14 4.7 12
150 399.2 105.9 2.8 29 12 24
200 710.5 188.3 5.1 48 22 41
250 1,110.9 294.3 7.6 71 35 64
300 1,600.4 423.8 12 100 51 92
350 2,179.1 576.8 14 140 66 120
400 2,846.8 753.4 18 180 86 160
450 3,603.7 953.5 23 230 110 200
500 4,449.6 1,177.2 28 280 140 250
550 5,384.7 1,424.4 35 340 170 300
600 6,408.9 1,695.2 41 410 200 350
650 7,522.2 1,989.5 48 480 240 420
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Since 2020, governments all over the world have used a variety of containment measures to control the spread of COVID-19, such as
contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those
policies before they are implemented. Unfortunately, their predictive accuracy is hampered by the scarcity of relevant empirical data,
specifically detailed social contact graphs. As this data is inherently privacy-critical, there is an urgent need for a method to perform
powerful epidemiological simulations on real-world contact graphs without disclosing sensitive information.

In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework that enables the execution of standard
epidemiological models for infectious disease on a population’s most recent real contact graph while keeping all contact information
privately and locally on the participants’ devices. As underlying building block, we present PIR-SUM, a novel extension to private
information retrieval that allows users to securely download the sum of a set of elements from a database rather than individual
elements. We provide a proof-of-concept implementation of our protocols demonstrating that a 2-week simulation over a population
of half a million can be finished in 7 minutes, with each participant communicating less than 50 KB of data.

CCS Concepts: • Security and privacy → Privacy-preserving protocols; Social network security and privacy; Information
accountability and usage control; Privacy protections.
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1 INTRODUCTION

The COVID-19 pandemic has profoundly affected people’s daily lives, posing significant challenges such as increased
mental illness, balancing childcare, homeschooling, and work, an increase in domestic abuse cases, and many more [91,
119, 128]. Governments all over the world have taken a variety of steps to restrict the spread of the virus to save human
lives and keep the economic system working. Those range from closing institutions, such as schools, to country-wide
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lockdowns. Despite these courageous efforts, the global number of infections skyrocketed, and COVID-19 claimed far
too many lives. Aside from highly lethal diseases like COVID-19, many other infectious diseases have emerged and
have had a significant impact on human life over time. For example, since 2022 incidences of mpox (previously known
as monkeypox) in Europe have increased to the point that quarantine measures have been implemented [23, 34, 56].

In the context of COVID-19, contact tracing apps are being used all over the world to notify contacts of potential
infections [108, 113]. Unfortunately, contact tracing has a fundamental limitation: It only notifies contacts of an infected
person after the infection has been detected, i.e., typically after a person develops symptoms, is tested, receives the test
result, and can connect with previous contacts [85, 123]. Tupper et al. [123] report that in British Columbia in April
2021, this process ideally took five days, reducing new cases by only 8% compared to not using contact tracing. They
conclude that contact tracing must be supplemented with multiple additional containment measures to effectively
control disease spread.

In contrast, we consider epidemiological modeling, which allows predicting the spread of an infectious disease in
the future and has received a lot of attention [59, 133]. Epidemiological modeling allows to assess the effectiveness
of containment measures by mathematically modeling their impact on the spread, aiding governments in selecting
effective strategies [120]. For example, Davis et al. [40] predicted in early 2020 that COVID-19 would infect 85% of the
British population without any containment measures in place, causing a massive overload of the health system (13-80×
the capacity of intensive care units). Their forecast also indicated that short-term interventions such as school closures,
social distancing, and so on would not effectively reduce the number of cases. As a result, the British government decided
to implement a lockdown in March 2020, effectively reducing transmissions and stabilising the health system [120].

With access to detailed information about a population’s size, density, transportation, and health care system,
epidemiological modeling could accurately forecast disease transmission in a variety of situations [2]. Especially precise,
up-to-date information about movements and physical interactions in space and time is crucial for precisely forecasting
transmission as well as the impact of various control measures before being implemented [76]. In practice, these
simulations may quickly model a future disease’s spread, calculate the projected number of infections when specific
actions are taken, and divert the spread to specific areas.

However, data on personal encounters in the real-world is very scarce and, thus the impact of containment measures
can only be approximated so far [2, 53, 76]. This lack of data is primarily owing to the fact that encounter data has
generally been acquired by surveys, which do not accurately reflect reality [48, 76], e.g., random encounters in public
transport or shopping malls. Moreover, social interaction patterns change over time and sometimes even rapidly, as
we have seen with social distancing measures, rendering collected contact information outdated. Hence, none of the
existing data permits realistic simulations on the actual person-to-person social contact graph. Epidemiologists desire
the full physical interaction graph of a population from a modeler’s standpoint. Yet, strict data protection regulations
such as in democratic states, honoring privacy rights, hinder accurate tracking of interpersonal contacts.

To address the issue of obtaining the most recent contact data while protecting individuals’ privacy, we present
RIPPLE, the first privacy-preserving framework for epidemiological modeling that allows precise simulations of disease
spread based on current physical contact information while taking into account deployed control measures and without
leaking any information about individuals’ contacts. RIPPLE provides a privacy-preserving method for collecting
real-time physical encounters and can compute arbitrary compartment-based epidemiological models1 on the most
recent contact graph of the previous days in a privacy-preserving manner. RIPPLE can be used to investigate the effect
1 The implementation of concrete simulation functions is outside the scope of this work and referred to medical experts. More details on epidemiological
modeling are given in §2.
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of containment measures not only for COVID-19, but for any infectious diseases. We anticipate that our framework’s
privacy guarantee will encourage more people to participate, allowing epidemiologists to compute more accurate
simulations that will eventually help to develop effective containment measures against diseases in the future.

Our Contributions. This paper introduces RIPPLE (cf. Fig. 1), a framework that expands the scope of privacy research
from contact tracing to epidemiological modeling. While contact tracing only warns about potential infections in
the past, epidemiological modeling can predict the spread of infectious diseases in the future. Anticipating the effects
of various control measures allows for the development of informed epidemic containment strategies and political
interventions prior to their implementation.

time steps

#
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Research Institute

3b
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3a 2

1
4

ΣAnonymous
Communication Participants

1 Mobile app collects anonymous encounter tokens during interactions. 2 Research Institute begins the simulation by providing
initialization parameters. 3a Participants securely upload infection likelihood to servers. 3b Servers securely compute cumulative
infection likelihood per participant. 3c Participants retrieve their cumulative infection likelihood. 4 The aggregate results
(#S,#E,#I,#R) are sent to the Research Institute.

Fig. 1. Overview of RIPPLE Framework.

RIPPLE uses a fully decentralised system similar to the federated learning paradigm [93], fostering trust and
widespread participation, and encouraging participants to contribute representative contact information. All participant
data, such as encounter location, time, and distance, are kept locally on the participants’ devices. Communication
among participants occurs through anonymous channels facilitated by a group of semi-honest central servers.

RIPPLE offers two methods for privacy-preserving epidemiological modeling, each covering different use cases.
The first method, RIPPLETEE, relies on the presence of a Trusted Execution Environment (TEE) on participants’ mobile
devices. The second method, RIPPLEPIR, eliminates this assumption by utilising cryptographic primitives like Private
Information Retrieval (PIR). Along the way, we develop a multi-server PIR extension enabling clients to retrieve the sum
of a set of elements (in our case, infection likelihoods) from a database without learning anything about individual entries.

We assess the practicality of our methods by benchmarking core components using a proof of concept implementation.
Our results show that, with adequate hardware, both protocols scale up to millions of participants. For instance, simulat-
ing 14 days with 1million participants takes less than 30minutes to complete.We summarize our contributions as follows:
(1) We present RIPPLE, the first privacy-preserving framework to perform epidemiological modeling on contact

information stored on mobile devices. RIPPLE formalises the notion of privacy-preserving epidemiological modeling
and defines privacy requirements.

(2) For epidemiological simulations using real-world contact data acquired with participants’ mobile devices, we present
two techniques – RIPPLETEE and RIPPLEPIR – that combine anonymous communication techniques with either
TEEs or PIR and anonymous credentials.
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(3) We propose PIR-SUM, an extension to existing PIR schemes, that allows a client to download the sum of 𝜏 distinct
database entries without learning the values of individual entries or revealing which entries were requested.

(4) We demonstrate the practicality of our framework by providing a detailed performance evaluation using our open
source implementation of RIPPLE.

2 RELATED WORK & PRELIMINIARIES

This section discusses related works addressing privacy challenges in the context of infectious diseases as well as
necessary background information on contact tracing and epidemiological modeling, including a clarification of the
differences between the two. An overview of the (cryptographic) primitives used in this work is presented in §A.

2.1 Privacy-preserving Solutions in the Context of Infectious Diseases

CrowdNotifier [89] notifies visitors of (large) events about an infection risk when another visitor reported SARS-
CoV-2 positive after the event, even if they have not been in close proximity of less than 2 meters. To protect user
privacy, it follows a distributed approach where location and time information is stored encrypted on the user’s device.
Bampoulidis et al. [13] introduce a privacy-preserving two-party set intersection protocol that detects infection hotspots
by intersecting infected patients, input by a health institute, with customer data from mobile network operators.

CoVault [42] is a data analytics platform based on secure multi-party computation techniques (MPC) and trusted
execution environments (TEEs). The authors discuss the usage of CoVault for storing location and timing information
of people usable by epidemiologists to analyse (unique) encounter frequencies or linkages among two disease outbreak
clusters while preserving privacy.

Al-Turjman and David Deebak [4] integrate privacy-protecting health monitoring into a Medical Things device
that monitors the health status (heart rate, oxygen saturation, temperature, etc.) of users in quarantine with moderate
symptoms. Only in the event of an emergency is medical personnel notified. Pezzutto et al. [107] optimize the distribution
of a limited set of tests to identify as many positive cases as possible, which are then isolated. Their system can be
deployed in a decentralized, privacy-aware environment to identify individuals who are at high risk of infection.
Barocchi et al. [14] develop a privacy-preserving architecture for indoor social distancing based on a privacy-preserving
access control system. When users visit public facilities (e.g., a supermarket or an airport), their mobile devices display
a route recommendation for the building that maximizes the distance to other people. Bozdemir et al. [19] suggest
privacy-preserving trajectory clustering to identify typical movements of people allowing to detect forbidden gatherings
when contact restrictions are in place.

Contact Tracing. A plethora of contact tracing systems has been introduced and deployed since the outbreak of the
pandemic [3, 35, 113]. They either use people’s location (GPS or telecommunication provider information) or measure
proximity (via Bluetooth LE). Most systems can be categorized into centralized and decentralized designs [125]. In a
centralized contact tracing system (e.g., [68, 118]), computations such as the generation of the tokens exchanged during
physical encounters are done by a central party. This central party may also store some contact information depending
on the concrete system design. In contrast, in decentralized approaches (e.g., [24, 108, 122]), computation and encounter
information remain (almost completely) locally at the participants’ devices.

Contact tracing focuses on determining contacts of infected people in the past. In contrast, epidemiological modeling,
which we consider in this work, forecasts the spread of infectious diseases in the future. Thus, epidemiological modeling
goes beyond established contact tracing systems. They share some technical similarities (specifically, the exchange of
Manuscript submitted to ACM
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encounter tokens), but on top of anonymously recording the contact graph, simulations have to be run on it. Similarly,
presence tracing and hotspot detection are concerned with “flattening the curve” in relation to infections in the past. In
contrast, epidemiological modeling is a tool for decision-makers to evaluate the efficacy of containment measures like
social distancing in the future, allowing them to “get ahead of the wave”.

2.2 Epidemiological Modeling

There are several options to model a disease mathematically. The popular compartment models [20, 21, 55, 61, 64, 66,
114, 133] capture the spread with a few continuous variables linked by simple differential equations. A prominent
example is the SEIR model [45, 66, 74, 133] with four compartments to which people are assigned, namely, susceptible (S),
exposed (E), infectious (I), and recovered (R). For each simulated time interval, the number of people assigned to each
class is computed. While such models are useful for capturing macroscopic trends and also used in state-of-the-art
epidemiological research, e.g., [32, 117], the basic approaches condense complex individual behaviour into few variables,
thus, limiting the simulation’s predictive power [92, 104]. Agent-based epidemiological models [54], on the other hand,
initialise a large number of agents with a set of individual properties (e.g., location or age). These agents then interact
according to a set of interaction rules (e.g., location-based or age-based) to simulate disease spread. The simulations are
carried out in many time steps. Combining both directions, i.e., using agents in a compartment model, allows for a more
realistic model of individual behaviour for forecasting disease transmission in a population. Many such simulations with
varying parameters are run in parallel to simulate the effect of various policy interventions (e.g., reducing interactions
between agents of a certain age, capping the maximum number of allowed contacts, or vaccinating a selected group of
agents). The aggregated number of agents assigned to the same “infection class” (e.g., susceptible, exposed, infectious,
and recovered for the SEIR model) is then computed for each simulation step.

A crucial question is how to model the agents’ individual contact behaviour. Older models relied on survey-based
contact matrices, which included information such as the average number of contacts in a given age range [76]. This is
already a significant improvement over treating all people the same. However, aggregated network statistics cannot
recreate the dynamics of a real complex network graph, as evidenced by the prevalence of super-spreaders with far
more contacts than the average [80]. Thus, using the real-world contact graph between all individual members of the
population would be ideal from an epidemiological standpoint.

Privacy-Preserving Epidemiological Modeling from Contact Tracing. If contact information collected through contact
tracing apps was centralised, an up-to-date full contact graph could be constructed for epidemiological simulations.
However, contact information is highly sensitive information that should not be shared. Contact information collected
via mobile phones can reveal who, when, and whom people meet, which is by itself sensitive information and must
be protected. Moreover, such information also enables to derive indications about the financial situation [16, 90, 116],
personality [97], life-partners [6], and ethnicity [6]. One can think about many more examples: By knowing which
medical experts are visited by a person, information about the health condition can be anticipated; contact with members
of a religious minority as well as visits to places related to religion might reveal a religious orientation, etc. Thus, it
would be ideal to enable precise epidemiological simulations without leaking any individual contact information.

One way to achieve privacy-preserving epidemiological modeling from contact tracing apps is to let each participant
(i.e., each device using the contact tracing app) secretly share its contact information between a set of non-colluding
servers, which can then jointly run simulations using techniques like secure multi-party computation (MPC), cf. §A. In
fact, Araki et al. [9] show how to run graph algorithms on secret shared graphs via MPC efficiently. Even though such a
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non-collusion assumption is common in the crypto community, the general public in some countries may have difficulty
trusting a system in which all contact information is disclosed if the servers collude. In contrast, RIPPLE distributes
trust among all participants in such a way that they can keep their own contact information local while simulating the
spread of disease by sending messages to each other anonymously. Furthermore, only aggregated simulation results will
be shared with a research institute, so no data directly relating to a single identity will be shared. This approach mimics
the baseline idea of Federated Learning [93] and prominent contact tracing designs supported by Apple and Google.2

The increased trust level of a distributed design fosters the crucial broad adoption of such a system in the population.
To the best of our knowledge, RIPPLE is the first framework that allows the execution of any agent-based compartment

model on the distributed real contact graph while maintaining privacy.

3 THE RIPPLE FRAMEWORK

RIPPLE’s primary goal is to facilitate the assessment of various combinations of potential containment measures
proposed by epidemiologists and the government. Rather than implementing measures in real-life and analyzing their
impact afterwards, our focus is on finding a balance between the benefits and drawbacks of these measures. Examples of
such measures include mandating face masks in public places, limiting the size of gatherings, closing specific institutions
or stores, and even implementing curfews and regional lockdowns.

Participants in RIPPLE collect personal encounter data anonymously and locally store it on their mobile devices such
as cell phones, similar to privacy-preserving contact tracing apps. However, for epidemiological modeling, RIPPLE
must also derive a contact graph without leaking sensitive personal information in order to compute simulations of
disease spread, which may involve multiple sets of containment measures for some time period, such as two weeks. In
almost every country, we can find a 6-hour period during the night when the majority of the population sleeps and
mobile devices are idle, connected to the Internet via WiFi, and possibly charging, i.e., an ideal time window for running
RIPPLE simulations. The results can then be analysed by medical experts to learn more about the disease or by political
decision-makers to determine the most promising containment measures to implement.

To acquire representative and up-to-date physical encounter data, widespread public usage of RIPPLE would be ideal,
similar to contact tracing apps. One way to encourage this is to piggyback RIPPLE on the official contact tracing applica-
tions used by several countries. Politicians, on the other hand, can motivate residents beyond the intrinsic incentive of
supporting public health by coupling the use of RIPPLE with additional benefits such as discounted or free travel passes.

3.1 System and Threat Model

RIPPLE comprises of p participants, denoted collectively by P, a research institute RI who is in charge of the epidemio-
logical simulations, and a set of MPC servers C responsible for anonymous communication among the participants.

We assume that the research institute and MPC servers are semi-honest [60], which means they correctly follow
protocol specifications while attempting to learn additional information. The semi-honest MPC servers are also used to
establish an anonymous communication channel. We discuss the security of the anonymous communication channel in
more detail in §B.3. A protocol is considered to be secure if nothing is leaked beyond what can be inferred from the output.
Though the semi-honest security model is not the strongest security model, it provides a good trade-off between privacy
and efficiency, which is why it is commonly used in the design of several practical privacy-preserving applications such
as privacy-preserving machine learning [26, 94, 96, 105], genome/medical research [115, 121, 127], and localization
services [71, 124]. It also protects against passive attacks by curious administrators and accidental data leakage.
2 https://covid19.apple.com/contacttracing
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Furthermore, it is quite often the first step toward developing protocols with stronger privacy guarantees [11, 87]. We
believe this is a reasonable assumption in our setting because the research institute and the servers will be controlled/run
by generally trusted entities such as governments or (public) medical research centres, potentially in collaboration with
NGOs such as the EFF3 or the CCC4.

Parameter Description

P Set of all participants; P = {P1, . . . ,Pp}
RI Research Institute
C Communication Servers {S0, S1, S2}

paramsim simulation parameters defined by RI

𝑁sim # distinct simulations (executed in parallel)
𝑁step # steps per simulation
classinf infection classes; classinf = {class1inf , . . . , class

Ninf
inf }

𝐼 s𝑖 P𝑖 ’s infection class in simulation step s ∈ [0, 𝑁step]
E𝑖 Encounter tokens of P𝑖
𝐸max
𝑖 #max. encounters by P𝑖 in pre-defined time interval
𝐸avg average number of encounters

^ computational security parameter ^ = 128
𝑟𝑒 Unique token for encounter 𝑒 ∈ [0, 𝐸max]
𝛿𝑟𝑒𝑖 P𝑖 ’s infection likelihood w.r.t. token 𝑟𝑒
Δ𝑖 P𝑖 ’s cumulative infection likelihood
𝑚𝑒
𝑖 metadata of an encounter 𝑒 by P𝑖

(pk𝑖 , sk𝑖 ) P𝑖 ’s public/private key pair
𝜎𝑒𝑖 . P𝑖 ’s signature on message about encounter 𝑒

Entities

Simulations

Protocols

Table 1. Notations used in RIPPLE.

Given the importance of effective contain-
ment measures, we expect motivated partici-
pants to contribute to epidemiological model-
ing. However, assuming complete honesty
from all millions of potential participants
is unrealistic. Therefore, we also consider a
client-malicious security model [25, 84] for
the participants in P, in which some of the
participants are malicious and may deviate
from the protocol to gather additional infor-
mation about their encounters. Malicious be-
haviour can actively try to hamper or even
destroy the correctness of the simulation.
However, in the scope of this work, we con-
centrate on the aforementioned deviations
for additional information gain, leaving the
problem of developing efficient countermea-
sures against correctness attacks to future
work. Tab. 1 summarises the notations used
in this work.

3.2 Phases of RIPPLE

RIPPLE consists of four phases shown in Fig. 1: i) Token Generation, ii) Simulation Initialization, iii) Simulation Ex-
ecution, and iv) Result Aggregation. While RIPPLE can be applied to any compartment-based epidemiological modeling
of infectious diseases (see §2.2), we will explain RIPPLE using the SEIR model [45, 74] and the COVID-19 virus as an
example. For simplicity, we assume that each participant has installed an app that emulates RIPPLE on their mobile
device, and they enter attributes like workplace, school, regular eateries, and cafes locally within the app (resp. the
app could make suggestions for those based on the user’s frequent locations).

Fig. 2 summarises the phases of the RIPPLE framework in the context of a single simulation setting. Multiple simula-
tions can be executed in parallel. The concrete number of simulation runs with the same parameters or different param-
eters should be determined by epidemiologists. Note that simulations are run on collected data, e.g., from the last days,
and not on real-time encounter information. This combines efficiency with maximally up-to-date encounter information.

1 - Token Generation: During a physical encounter, participants exchange data via Bluetooth LE to collect anony-
mous encounter information (Fig. 3a), similar to contact tracing [65, 108, 122]. These tokens are stored locally on the
devices of the users and do not reveal any sensitive information (i.e., identifying information) about the individuals
involved. In addition to these tokens, the underlying application will collect additional information on the context of
3 https://www.eff .org 4 https://www.ccc.de/en/
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the encounter known as “metadata" for simulation purposes. This varies depending on the underlying instantiation of
the protocol and can include details such as duration, proximity, time, and location. To generate the metadata, a set of
standard labels (e.g., restaurants, bars, gyms) can be automatically assigned to a location derived from Google maps.
The metadata can be used to include or exclude different encounters in the simulation phase, allowing the effect of
containment measures to be modelled (e.g., restaurant closings by excluding all encounters that happened in restaurants).
The token generation phase is not dependent on the simulation phase, so no simulation-dependent infection data is
exchanged. The token generation phase is modelled as an ideal functionality Fgen that will be instantiated later in §4.

1 - Token Generation

• P𝑖 ∈ P executes Fgen all the time (on its mobile device), collecting encounter data of the form (𝑟𝑒 ,𝑚𝑒 ) with 𝑒 < 𝐸max
𝑖 .

2 - Simulation Initialization

• P𝑖 ∈ P receives paramsim from RI and locally sets 𝐼 1𝑖 = 𝐼 init𝑖 .

3 - Simulation Execution

For each simulation step s ∈ [𝑁step ], P𝑖 ∈ P execute the following:

• Filter out encounters using paramsim to obtain encounter set Es𝑖 .

• For each token 𝑟𝑒 ∈ Es𝑖 , compute the infection likelihood 𝛿𝑟𝑒𝑖 locally using the formula from RI.

• Invoke Fesim with the input {𝛿𝑟𝑒𝑖 }𝑟𝑒 ∈Es𝑖 and obtain Δs
𝑖 =

∑
𝑟𝑒 ∈Es𝑖

𝛿𝑟𝑒𝑖 .

• Update the infection class 𝐼 s𝑖 using Δs
𝑖 and the guidelines from RI.

4 - Result Aggregation

For each simulation step s ∈ [𝑁step ], execute the following:
• P𝑖 ∈ P prepares {v1i , . . . , v

Ninf
i }s with vki = 1 if 𝐼 s𝑖 = classkinf and vki = 0 otherwise, for 𝑘 ∈ [𝑁inf ].

• Invoke Fagg with inputs {v1i , . . . , v
Ninf
i }s to enable RI obtain the tuple {C1

inf, . . . ,C
Ninf
inf }s, whereCk

inf =
∑
P𝑖 ∈P

vki for𝑘 ∈ [𝑁inf ].

Protocol RIPPLE

Fig. 2. RIPPLE Framework (for one simulation setting).

Running Example: Assume that a participant, Alice, takes the bus to pick up her daughter from school. There are several
other people on this bus – for simplicity, we call them Bob1, . . . , Bobx. As part of the token generation phase, Alice’s
phone exchanges unique anonymous tokens with the devices of the different Bobs. Now, two weeks later, it is night,
and the national research institute (RI) wants to run a simulation covering 14 days to see what effect closing all schools
would have on the disease’s spread. To accomplish this, the RI notifies all registered participants’ applications to run a
simulation using encounter data from the previous two weeks.

2 - Simulation Initialization: The research instituteRI initiates the simulation phase by sending a set of parameters,
denoted by paramsim, to the participants in P. The goal is to “spread" a fictitious infection across 𝑁sim different
simulation settings. To begin a simulation, each participant P𝑖 is assigned to an infection class 𝐼 init𝑖 ∈ classinf (e.g.,
{S}usceptible, {E}xposed, {I}nfectious, {R}ecovered for the SEIR model) as specified in paramsim. For each individual
simulation, paramsim defines a set of containment measures, such as school closings and work from home, which the
Manuscript submitted to ACM
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participants will use as filters to carry out the simulation in the next stage.5 In addition, RI publishes a formula to
calculate the infection likelihood 𝛿 . The likelihood is determined by several parameters in the underlying modeling,
such as encounter distance and time. For example, this likelihood might range from 0 (no chance of infection) to
100 (certain to get infected).

Running Example: Assume Alice is designated as infectious, while Bob1 is designated as susceptible by RI. The other
participants Bob2, . . . , Bobx are also assigned to an infection class (S, E, I, or R). To simulate containment measures,
the RIPPLE-app now employs filters defined in paramsim. Using the information provided by the participants6, the
application may automatically filter out encounters that would not happen if a containment measure were in place,
such as encounters in school while simulating school closings.

3 - Simulation Execution: Once the RI initialises the simulation, 𝑁step simulation steps (steps 3a , 3b , 3c in Fig. 1)
are performed for each of the 𝑁sim simulation settings (e.g., 𝑁step = 14 days). Without loss of generality, consider the
first simulation step and let 𝑁sim = 1. The simulation proceeds as follows:

1) Participant P𝑖 ∈ P filters out the relevant encounters based on the containment measures defined by RI. Let the
corresponding encounter tokens be represented by the set E𝑖 .

2) For each token 𝑟𝑒 ∈ E𝑖 , P𝑖 computes the infection likelihood 𝛿𝑟𝑒𝑖 using the formula from RI, i.e., the probability
that P𝑖 infects the respective participant he met during the encounter with identifier token 𝑟𝑒 .

3) Participants use the likelihood values 𝛿 obtained in the previous step to execute an ideal functionality called Fesim,
which allows them to communicate the 𝛿 values anonymously through a set of MPC servers C. Furthermore, it
allows each participant P𝑗 to receive a cumulative infection likelihood, denoted by Δ 𝑗 , based on all of the encounters
they had on the day being simulated, i.e., Δ 𝑗 =

∑
𝑟𝑒 ∈E 𝑗

𝛿𝑟𝑒𝑗 . In this case, 𝛿𝑟𝑒𝑗 denotes the infection likelihood computed

by participant P𝑓 and communicated to P𝑗 for an encounter between P𝑓 and P𝑗 with identifier token 𝑟𝑒 . As will be
discussed later in §3.3, Fesim must output the cumulative result rather than individual infection likelihoods because
the latter can result in a breach of privacy.

4) Following the guidelines set by the RI, P𝑗 updates its infection class 𝐼 𝑗 using the cumulative infection likelihood Δ 𝑗

acquired in the previous step.

These steps above are repeated for each of the 𝑁step simulation steps in order and across all the 𝑁sim simulation settings.

Running Example: Let the simulated containment measure be the closure of schools. As Alice is simulated to be infectious,
Alice’s phone computes the infection likelihood for every single encounter it recorded on the day exactly two weeks
ago (Day 1) except those that occurred at her daughter’s school. Following that, Alice’s phone combines the computed
likelihood of each encounter with the corresponding unique encounter token to form tuples, which are then sent
to the servers instantiating the anonymous communication channel. Using the encounter token as an address, the
servers anonymously forward the likelihood to the person Alice has met, for example, Bob1 (cf. Fig. 3b). Likewise, Bob1
receives one message from each of the other participants he encountered and obtains the corresponding likelihood
information. Bob1 aggregates all likelihoods he obtained from his encounters on Day 1 and checks the aggregated
result to a threshold defined by the RI to see if he has been infected in the simulation7.

5 Note, that potential alternatives (e.g., visiting a bar after restaurant closings) are not covered in this model. 6 This may also include location data
obtained from the mobile app., e.g., Check In and Journal fields in the Corona-Warn contact tracing app. 7 Bob1 obtains only the aggregated likelihood
in the actual protocol.
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4 - Result Aggregation: For a given simulation setting, each participant P𝑖 ∈ P will have its infection class 𝐼 s𝑖
updated at the end of every simulation step s ∈ [𝑁step]. The goal of this phase is to allow RI to obtain the aggregated
number of participants per class (e.g., #S, #E, #I, #R) for each simulated time step. For this, we rely on a Secure

Aggregation functionality, denoted by Fagg, which takes a 𝑁inf-tuple of the form {v1i , . . . , v
Ninf
i }s from each participant

for every simulation step s and outputs the aggregate of this tuple over all the p participants to RI. In this case, vki
is an indicator variable for the 𝑘-th infection class, which is set to one if 𝐼 s𝑖 = classkinf and zero otherwise. Secure
aggregation [50, 81, 86, 86] is a well-studied building block in cryptography these days, particularly in the context of
federated learning, and there are numerous solutions proposed for various settings, such as using TEEs, a semi-trusted
server aggregating ciphertexts under homomorphic encryption, or multiple non-colluding servers that aggregate secret
shares. In this work, we consider Fagg to be a black box that can be instantiated using multiple existing solutions.

dkc9

b1kq

(a) Token Generation

Sent: 
dkc9

Sent: 
b1kq

Received: 
dkc9 
b1kq

simulated

(b) Simulation

Fig. 3. Token Generation and Simulation phases in RIPPLE.

Running Example: All participants will know their
updated infection class at the end of Day 1’s simula-
tion round, and they will prepare a 4-tuple of the form
{vS, vE, vI, vR} representing their updated infection class
in the SEIR model. Participants will then engage in a se-
cure aggregation protocol that determines the number
of participants assigned to each infection class, which
is then delivered to the RI. Then, the second simulation
round begins, which replicates the procedure but this
time using encounters from 13 days ago, i.e., Day 2. The
RI obtains the aggregated number of participants for each
of the simulated 14 days, i.e., a simulation of how the disease would spread if all schools had been closed in the previous
14 days (cf. graph in Fig. 1).

3.3 Privacy Requirements

1
1
1

Fig. 4. Linking Identities Attack. Alice
and Bob had several encounters, but Al-
ice and Charlie only had one.

Keeping the contact graph private requires that the participants remain unaware
of any unconscious interactions. This means they cannot find out if they had
unconscious contact with the same person more than once or how often they
did. We remark that an insecure variant of RIPPLE, in which each participant
P𝑖 receives the infection likelihood 𝛿𝑒𝑖 for all of its encounters 𝑒 ∈ 𝐸𝑖 separately
(instead of the aggregation of all), will not meet this requirement as described
next.

Linking Identities Attacks. To demonstrate this, observe that when running
multiple simulations (with different simulation parameters paramsim) on the same
day, participants will use the same encounter tokens and metadata from the token generation phase in each simulation.
If a participant P𝑖 (Alice) can see the infection likelihood 𝛿𝑖 of each of her interactions separately, P𝑖 can look for
correlations between those likelihoods to see if another participant P𝑗 (Bob) was encountered more than once. We call
this a Linking Identities Attack and depict it in Fig. 4, where, for simplicity, the infection likelihood accepts just two
values: 1 is a high infection likelihood and 0 is a low one.
Manuscript submitted to ACM
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Consider the following scenario to help clarify the issue: Alice and Bob work together in the same office. As a
result, they have numerous conscious encounters during working hours. However, in their spare time, they may be
unaware that they are in the same location (e.g., a club) and may not want the other to know. Even if they do not see
each other, their phones constantly collect encounters. Assume the RI sent the participants a very simple infection
likelihood formula that simply returns 0 (not infected) or 1 (infected). Furthermore, since the data is symmetric, both
Alice and Bob have the same metadata (duration, distance, etc.) about their conscious and unconscious encounters. Let
Bob be modelled as infectious in the first simulation. As a result, he will send a 1 for each (conscious and unconscious)
encounter he had (including those with Alice). If multiple simulations are run on the same day (i.e., with the same
encounters), Alice will notice that some encounters, specifically all conscious and unconscious encounters with Bob,
always have the same infection likelihood: If Bob is not infectious, all will return a 0; if Bob is infectious, all will return
a 1. Thus, even if Alice had unconscious encounters with Bob, she can detect the correlations between the encounters
and, as a result, determine which unconscious encounters were most likely with Bob.

The more simulations she runs, the more confident she becomes because the infection state for multiple simulations
is a unique fingerprint. Since every participant knows the formula, this attack can be extended to complex infection
likelihood functions as well. While it may be more computationally expensive than the simple case, Alice is still able to
identify correlations. This attack also works even if all of the encounters were unconscious. In such situations, Alice
may not be able to trace related encounters to a single person (Bob), but she can infer that they were all with the same
person (which is more than learning nothing). To avoid a Linking Identities attack, RIPPLE ensures that in a simulation
phase, each participant receives just an aggregation of all infection likelihoods of their encounters. It cannot be avoided
that participants can understand that when “getting infected” someone of their contacts must have been in contact
with a (simulated) infectious participant. As this is only a simulated infection, we consider this leakage acceptable.

11

Fig. 5. Sybil Attack.

Sybil Attack. While the Linking Identities Attack is already possible for semi-
honest adversaries, malicious participants may go even further to circumvent the
aggregation mechanism that prevents access to individual infection likelihoods.
They could, for example, construct many sybils, i.e., multiple identities using several
mobile devices, to collect each encounter one by one and then conduct a Linking
Identities Attack with the information.

A registration system can be used to increase the costs of performing sybil attacks,
i.e., to prevent an adversary from creating many identities. This assures that only
legitimate users are allowed to join and participate in the simulation. In a closed ecosystem, such as a cpmpany, this can
be achieved by letting each member receive exactly one token to participate in the simulation. On a larger scale at the
national level, one can let each citizen receive a token linked to a digital ID card. In such authentication mechanisms,
anonymous credentials (cf. §A) can be used to ensure anonymity.

Inference Attacks. Note that although RIPPLE mimics the spirit of Federated Learning (FL) [93], it is not susceptible
to so-called inference attacks [52, 99] in the same sense as FL. First of all, RIPPLE only reveals the final output (to a
research institute RI) and no individual updates/results that ease information extraction. However, the analysis results
provided to RI (cf. §3.1) contain information about the spread of the modeled disease in a specific population (otherwise
it would be meaningless to run the simulation). The ideal functionality does not cover leakage from the final output
but protects privacy during the computation. Thus, anything that might be inferred from the output is not considered
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in our security model. We argue that it is in the public interest to provide such aggregated information to the RI for
deciding upon effective containment measures against infectious diseases.

4 INSTANTIATING Fesim
In this section, we propose two instantiations of Fesim that cover different use cases and offer different trust-efficiency
trade-offs. Our first design, RIPPLETEE (§4.1), assumes the presence of trusted execution environments (TEEs) such as
ARM TrustZone on the mobile devices of the participants. In our second design, RIPPLEPIR (§4.2), we eliminate this
assumption and provide a software only solution using cryptographic techniques such as private information retrieval.

4.1 RIPPLETEE

The deployment of the entire operation in a single designated TEE would be a simple solution to achieving the ideal
functionality Fesim. However, given the massive amount of data that must be handled in a large-scale simulation with
potentially millions of users, TEE resource limitations are a prohibitive factor. Furthermore, since the TEE would contain
the entire population’s contact graph, it would be a single point of failure and an appealing target for an attack on TEE’s
known vulnerabilities. RIPPLETEE (Fig. 6), on the other hand, leverages the presence of TEEs in participants’ mobile
devices but in a decentralised manner, ensuring that each TEE handles only information related to the encounters made
by the respective participant.

72 1

0
3

Anonymous Communication

4

6

5

Fig. 6. RIPPLETEE Overview. Messages in red denote addi-
tional steps needed for malicious participants.

Before going into the details of RIPPLETEE, we will go over
the Fanon functionality (cf. §B.3) that we will use in our instanti-
ation. We define it as follows: Fanon allows two participants, P𝑖
and P𝑗 , to send messages to each other anonymously via a set of
communication servers C. The set C consists of one server act-
ing as an entry node (Nentry), receiving messages from senders,
and one server acting as an exit node (Nexit), forwarding mes-
sages to receivers. In Fanon, sender P𝑖 does not learn to whom
the message is sent, and receiver P𝑗 does not learn who sent
it. Similarly, the servers in C will be unable to link receiver and
sender of a message. Anonymous communication (cf. §A) is an
active research area, e.g., [1, 5, 51, 63], and Fanon in RIPPLETEE
can be instantiated using any of these efficient techniques.

4.1.1 The RIPPLETEE Protocol.

Token Generation (steps 0 to 1 in Fig. 6): During the pre-computation phase, the TEE of each participant P𝑖 ∈ P
generates a list of fresh unique public/private keys (pk𝑒𝑖 , sk𝑒𝑖 ) for all possible encounters 𝑒 ∈ [𝐸max

𝑖 ]. The keys can
be pre-generated and stored, e.g., on the day before. The newly generated public keys are then sent by P𝑖 ’s TEE to
the exit node Nexit (step 0 in Fig. 6) to enable anonymous communication (cf. §B.3) via Fanon later in the protocol’s
simulation part.

During a physical encounter 𝑒 , P𝑖 and P𝑗 exchange two unused public keys pk𝑒𝑖 and pk𝑒𝑗 (step 1 in Fig. 6). Simulta-
neously, both participants compute and record metadata𝑚𝑒 , such as the time, location, and duration of the encounter,
and store this information alongside the received public key.
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Additional measures are required for malicious participants to ensure that the participants are exchanging public
keys generated by the TEEs: After obtaining the new public keys from P𝑖 , the exit node Nexit signs them and returns
the signatures to P𝑖 after checking that it is connecting directly with a non-corrupted TEE (step 0 in Fig. 6). During a
physical encounter, P𝑗 will provide the corresponding signature, denoted by 𝜎𝑒𝑗 along with pk𝑒𝑗 so that the receiver P𝑖
can verify that the key was correctly generated by P𝑗 ’s TEE (step 2 in Fig. 6).

Simulation Execution. (steps 2 to 7 in Fig. 6): All local computations, including infection likelihood calculation
and infection class updates, will be performed within the participants’ TEEs. In detail, for each encounter 𝑒 involving
participants P𝑖 and P𝑗 , the following steps are executed:
– P𝑖 ’s TEE computes 𝛿𝑟𝑒𝑖 and encrypts it using the public key pk𝑒𝑗 of P𝑗 obtained during the token generation phase.
Let the ciphertext be 𝑐𝑒𝑖, 𝑗 = Encpk𝑒𝑗 (𝛿

𝑟𝑒
𝑖 ) (step 2 in Fig. 6).

– P𝑖 ’s TEE establishes a secure channel with the entry node Nentry of C via remote attestation and uploads the tuple
(pk𝑒𝑗 , 𝑐𝑒𝑖, 𝑗 ) (step 3 in Fig. 6).

– The tuple (pk𝑒𝑗 , 𝑐𝑒𝑖, 𝑗 ) traverses through the servers in C and reaches the exit nodeNexit (step 4 in Fig. 6, instantiation
details for the anonymous communication channel are given in §B.3).

– If the public key pk𝑒𝑖 has already been used in this simulation step8, Nexit discards the tuple (step 5 in Fig. 6).
– Otherwise, Nexit uses pk𝑒𝑗 to identify the recipient P𝑗 and sends the ciphertext 𝑐𝑒𝑖, 𝑗 to P𝑗 (step 6 in Fig. 6).

After receiving the ciphertexts for all of the encounters, P𝑗 ’s TEE decrypts them and aggregates the likelihoods to
produce the desired output (step 7 in Fig. 6).

4.1.2 Security of RIPPLETEE. First, we consider the case of semi-honest participants. During the token generation
phase, since the current architecture in most mobile devices does not allow direct communication with a TEE while
working with Bluetooth LE interfaces, participant P𝑖 can access both the sent and received public keys before they
are processed in the TEE. However, unique keys are generated per encounter and do not reveal anything about an
encounter’s identities due to the security of the underlying Fgen functionality, which captures the goal of several contact
tracing apps in use.

The Fanon functionality, which implements an anonymous communication channel utilising the servers in C, aids in
achieving contact graph privacy by preventing participants from learning to/from whom they are sending/receiving
messages. While the entry node learns who sends messages to it, it does not learn who receives them. Similarly, the exit
node Nexit has no knowledge of the sender but learns the recipient using the public key. Regarding confidentiality,
participants in RIPPLETEE have no knowledge of the messages being communicated because they cannot access the
content of the TEEs and the TEEs communicate directly to the anonymous channel. Furthermore, servers in C will not
have access to the messages as they are encrypted.

For the case of malicious participants, they could send specifically crafted keys during the token generation phase
instead of the ones created by their TEE. However, this will make the signature verification fail and the encounter will
get discarded. Furthermore, a malicious participant may reuse public keys for multiple encounters. This manipulation,
however, will be useless because the exit nodeNexit checks that each key is only used once before forwarding messages
to participants. During the simulation phase, all data and computation are handled directly inside the TEEs of the
participants, so no manipulation is possible other than cutting the network connection, i.e., dropping out of the
simulation, ensuring correctness. Dropouts occur naturally when working with mobile devices and have no effect on
privacy guarantees.
8 This step is not required for semi-honest participants.
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4.2 RIPPLEPIR

In the following, we show how to get rid of RIPPLETEE’s assumption of each participant having a TEE on their mobile
devices. If we simply remove the TEE part of RIPPLETEE and run the same protocol, decryption and aggregation of a
participant’s received infection likelihoods would be under their control. Thus, the individual infection likelihoods
of all encounters would be known to them, leaking information about the contact graph (cf. §3.3). To get around this
privacy issue, we need to find another way to aggregate the infection likelihoods so that only the sum, not individual
values, can be derived by the participants.

Private Information Retrieval (PIR, cf. §A) is one promising solution for allowing participants to retrieve infection
likelihoods sent to them anonymously. PIR enables the private download of an item from a public database D held byM

servers without leaking any information to the servers, such as which item is queried or the content of the queried item.
However, classical PIR is unsuitable for our needs because we need to retrieve the sum of 𝜏 items from the database
rather than the individual ones. As a result, we introduce the ideal functionality Fpirsum (Fig. 7), which is similar to a
conventional PIR functionality but returns the sum of 𝜏 queried locations of the database as a result. For the remainder
of this section, we consider Fpirsum to be an ideal black-box and will discuss concrete instantiations in §5.

Fpirsum interacts withM servers, denoted by C, and participant P𝑖 ∈ P.
Input: Fpirsum receives 𝜏 indices denoted by Q = {𝑞1, . . . , 𝑞𝜏 } from P𝑖 and a database D from C.
Output: Fpirsum sends

∑𝜏
𝑗=1 D[𝑞 𝑗 ] to P𝑖 as the output.

Functionality Fpirsum

Fig. 7. Ideal functionality for PIR-SUM (semi-honest).
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Fig. 8. RIPPLEPIR Overview.

4.2.1 The RIPPLEPIR Protocol.

Token Generation (step 1 in Fig. 8): During a physical encounter
𝑒 among participants P𝑖 and P𝑗 , they generate and exchange
unique ^-bit random tokens denoted by 𝑟𝑒𝑖 and 𝑟𝑒𝑗 . Both partici-
pants, like in RIPPLETEE, record the metadata𝑚𝑒 as well. Thus,
at the end of a simulation step s ∈ [𝑁step] (e.g., a day), P𝑖 holds
a list of sent encounter tokens 𝐸s𝑖 = {𝑟𝑒𝑖 }𝑒∈E𝑖 , where E𝑖 is the
complete (sent/received) set of encounters of P𝑖 , and a list of re-
ceived tokens, denoted by 𝑅s𝑖 = {𝑟𝑒𝑗 }𝑒∈E𝑖 . Looking ahead, these
random tokens will be used as addresses for communicating the
corresponding infection likelihood among the participants.

Simulation Execution (steps 2 to 6 in Fig. 8): For local com-
putations like encounter filtering and infection likelihood cal-
culation, the steps for an encounter 𝑒 between P𝑖 and P𝑗 are:
• P𝑖 blinds each 𝛿𝑟𝑒𝑖 computed with the corresponding random token 𝑟𝑒𝑗 received from P𝑗 and obtains the ciphertext

𝑐𝑒𝑖, 𝑗 = 𝛿
𝑟𝑒
𝑖 +H(𝑟𝑒𝑗 | |ssim | |0) mod 2𝑙 . Further, it computes the destination address for the ciphertext as 𝑎𝑖, 𝑗 = H(𝑟𝑒𝑗 | |ssim | |1).

Here, H() is a cryptographic hash function and ssim ∈ [𝑁sim] denotes the current simulation setting. (step 2 in Fig. 8)
To prevent the exit node Nexit from linking messages from different simulations, ssim is utilized in H() to generate
unique (ciphertext, address) tuples for the same encounters across multiple simulation settings.
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• P𝑖 sends the tuple (𝑐𝑒𝑖, 𝑗 , 𝑎𝑖, 𝑗 ) anonymously toNexit with the help of the servers in C.Nexit discards all the tuples
with the same address field (𝑎𝑖, 𝑗 ). (step 3 to 4 in Fig. 8, instantiation details for the anonymous communication
channel are given in §B.3)

As a server in C,Nexit locally creates the database D for the current simulation step using all of the (𝑎𝑖, 𝑗 , 𝑐𝑒𝑖, 𝑗 ) tuples
received (part of step 4 in Fig. 8). A naive solution of inserting 𝑐𝑒𝑖, 𝑗 using a simple hashing of the address 𝑎𝑖, 𝑗 will not
provide an efficient solution in our case since we require only one message to be stored in each database entry to have
an injective mapping between addresses and messages. This is required for the message receiver to precisely download
the messages that were sent to them. Using simple hashing, this would translate to a large database size to ensure a
negligible probability of collisions. Instead, in RIPPLEPIR, we use a novel variant of a garbled cuckoo table that we call
arithmetic garbled cuckoo table (AGCT, cf. §4.2.3), with 𝑎𝑖, 𝑗 as the insertion key for the database.

Once the database D is created, Nexit sends it to the other servers in C based on the instantiation of Fpirsum (cf. §5).
Each P𝑗 ∈ P will then participate in an instance of Fpirsum with the PIR servers C sharing a database D. P𝑗 uses the
addresses of all its sent encounters from 𝐸s𝑗 , namely H(𝑟𝑒 | |ssim | |1), as the input to Fpirsum and obtains the blinded
cumulative infection likelihood, denoted by Δ̂ 𝑗 , as the output (step 5 in Fig. 8). The cumulative infection likelihood, Δ 𝑗 ,
is then unblinded as Δ 𝑗 = Δ̂ 𝑗 −

∑
𝑟𝑒 ∈ 𝐸s

𝑗
H(𝑟𝑒 | |ssim | |0) mod 2𝑙 concluding the current simulation step (step 6 in Fig. 8).

4.2.2 Security of RIPPLEPIR. Except for the database constructions at exit nodeNexit and the subsequent invocation of
the Fpirsum functionality for the cumulative infection likelihood computation, the security guarantees for semi-honest
participants in RIPPLEPIR are similar to those of RIPPLETEE.

0 1 N-1

...

2

0 1 N-1

...

2

0 1 N-1

...

2

Fig. 9. Insertion into the Arithmetic Garbled Cuckoo Table (AGCT). H1 and H2
are two hash functions. {𝑘1,𝑚1} and {𝑘2,𝑚2} are key-value pairs where the
key is used to determine the address of the data in the database.

Unlike RIPPLETEE,Nexit in RIPPLEPIR can-
not identify the message’s destination from
the address as it is only known by the re-
ceiving participant. Further, participants ob-
tain their cumulative infection likelihood di-
rectly via the Fpirsum functionality, ensuring
that Nexit cannot infer the participant’s en-
counter data and, thus, contact graph privacy.

Malicious participants in RIPPLEPIR, as op-
posed to RIPPLETEE, can tamper with the pro-
tocol’s correctness by providing incorrect in-
puts. However, as stated in the threat model
in §3, we assume that malicious participants
in our framework will not tamper with the
correctness and will only try to learn addi-
tional information. A malicious participant
could re-use the same encounter token for multiple encounters during token generation which would result in multiple
tuples with the same address. However, as stated in the protocol,Nexit will discard all such tuples, effectively removing
the malicious participant from the system. Another potential information leakage caused by a participant re-using
encounter tokens is that the entry point of the anonymous communication channel will be able to deduce that multiple
participants, say P𝑖 and P𝑗 , had an encounter with the same participant. This is not an issue in our protocol because we
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instantiate the Fanon functionality using a 3-server oblivious shuffling scheme (cf. §B.3), where all the servers except
Nexit will not see any messages in the clear, but only see secret shares.

4.2.3 Arithmetic Garbled Cuckoo Table (AGCT). We design a variant of garbled cuckoo tables ([109], cf. §A) that we
term arithmetic garbled cuckoo table (AGCT) to reduce the size of the PIR database while ensuring a negligible collision
probability. It uses arithmetic sharing instead of XOR-sharing to share database entries and the details are presented next.

Let’s assume two key-message pairs {𝑘1,𝑚1} and {𝑘2,𝑚2}9 shall be added to database 𝐷 with 𝑁 bins and two hash
function H1 and H2 to determine the insertion addresses. The insertion process works as follows:
1. Insertion of {𝑘1,𝑚1}:
a) Compute 𝑎1 = H1 (𝑘1) mod 𝑁 and 𝑎2 = H2 (𝑘1) mod 𝑁 .
b) Check if bins 𝑎1, 𝑎2 are already occupied. Let’s assume this is not the case.
c) Compute the arithmetic sharing of the message𝑚1: ⟨𝑚1⟩0 = 𝑟1 ∈𝑅 Z2ℓ and ⟨𝑚1⟩1 =𝑚1 − ⟨𝑚1⟩0 mod 2ℓ .
d) Insert 𝐷 [𝑎1] = ⟨𝑚1⟩0, 𝐷 [𝑎2] = ⟨𝑚1⟩1.

2. Insertion of {𝑘2,𝑚2}:
a) Compute 𝑏1 = H1 (𝑘2) mod 𝑁 and 𝑏2 = H2 (𝑘2) mod 𝑁 .
b) Check if bins 𝑏1 and 𝑏2 are already occupied. Let’s assume 𝑏1 = 𝑎1, i.e., the first bin is already occupied, but bin 𝑏2

is free.
c) Compute the arithmetic sharing 𝑚2 with ⟨𝑚2⟩0 = ⟨𝑚1⟩0 as 𝑏1 = 𝑎1. Then, the other share is ⟨𝑚2⟩1 = 𝑚2 −
⟨𝑚2⟩0 mod 2ℓ .

d) Insert 𝐷 [𝑏1] = ⟨𝑚2⟩0 and 𝐷 [𝑏2] = ⟨𝑚2⟩1.
Double Collision: Now the question is how to handle the insertion of a database entry if both addresses determined by

the two hash functions are already occupied. An easy solution is to pick different hash functions s.t. no double collision
occurs for all 𝑛 elements that shall be stored in the database. Alternatively, Pinkas et al. [109] demonstrate for a garbled
cuckoo table how to extend the database by 𝑑 + _ bins, where 𝑑 is the upper bound of double collisions and _ is an error
parameter, such that double collisions occur with a negligible likelihood. For details, please refer to [109, §5].

5 PIR-SUM: INSTANTIATING Fpirsum
So far, the discussion has focused on RIPPLE as a generic framework composed of multiple ideal functionalities that could
be efficiently instantiated using state-of-the-art privacy-enhancing technologies. In this section, we will concentrate on
instantiating our novel Fpirsum functionality (Fig. 7) using three semi-honest MPC servers. In particular, we have three
servers S0, S1, and S2, and we design the PIRsum protocol to instantiate the Fpirsum functionality.

The problem statement in our context is formally defined as follows: Participant P𝑖 ∈ P has a set of 𝜏 indices denoted
by Q = {𝑞1, . . . , 𝑞𝜏 } and wants to retrieve res =

∑
𝑞∈Q D[𝑞] mod 2ℓ . In this case, D is a database with 𝑁 elements of

ℓ-bits each that is held in the clear by both the servers S1 and S2. The server S0 aids in the computation performed by
the servers S1 and S2. Furthermore, we assume a one-time setup (cf. §B.1) among the servers and P𝑖 that establishes
shared pseudorandom keys among them to facilitate non-interactive generation of random values and, thus, save
communication [9, 26, 105].

9 𝑘 corresponds to a key and𝑚 to a message in our application.
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5.1 Overview of PIRsum protocol

At a high level, the idea is to use multiple instances of a standard 2-server PIR functionality [18, 33], denoted by F 2S
pir ,

and combine the responses to get the sum of the desired blocks as the output. D𝑚 = D +𝑚 mod 2ℓ denotes a modified
version of the database D in which every block is summed with the same ℓ-bit mask𝑚, i.e., D𝑚 [𝑖] = D[𝑖] +𝑚 for
𝑖 ∈ [𝑁 ]. The protocol proceeds as follows:
– S1 and S2 non-interactively sample 𝜏 random mask values {𝑚1, . . . ,𝑚𝜏 } such that

∑𝜏
𝑗=1𝑚 𝑗 = 0.10

– S1, S2, and P𝑖 execute 𝜏 instances of F 2S
pir in parallel, with servers using D𝑚 𝑗 as the database and P𝑖 using 𝑞 𝑗 as the

query for the 𝑗-th instance for 𝑗 ∈ [𝜏]. The result obtained by P𝑖 from the 𝑗-th F 2S
pir instance is denoted by res𝑗 .

– P𝑖 locally computes
∑𝜏

𝑗=1 res𝑗 to obtain the desired result.
The details for instantiating F 2S

pir using the standard linear summation PIR approach [33] are provided in §C. The
approach requires P𝑖 to communicate 𝑁 · 𝜏 bits to the servers, which is further reduced in RIPPLEPIR as shown in §5.3.

Malicious participants. Recall from our threat model (cf. §3.1) that a malicious participant may deviate from the
protocol to gain additional knowledge but does not try to harm correctness. For example, it could use the same query,
say 𝑞 𝑗 , in all 𝜏 instances and retrieve only the block corresponding to 𝑞 𝑗 by dividing the result by 𝜏 . We use a simple
verification scheme over the F 2S

pir functionality to prevent these manipulations. Its details are presented next.
For malicious participants, we want to ensure that P𝑖 used a distinct vector ®b (representing a PIR query 𝑞 𝑗 , cf. §C)

during the 𝜏 parallel instances. One naive approach is to have S1 and S2 compute the bitwise-OR of all the 𝜏 bit query
vectors ®b1, . . . , ®b𝜏 , and then run a secure two-party computation protocol to compare the number of ones in the resultant
vector to 𝜏 . We use the additional server S0 to further optimize this step. S1 and S2 send randomly shuffled versions of
their secret shared bit vectors to S0, who reconstructs the shuffled vectors and performs the verification locally. This
approach leaks no information to S0 because it has no information about the underlying database D. The verification
procedure is as follows:
– S1 and S2 non-interactively agree on a random permutation, denoted by 𝜋 .
– S𝑢 sends 𝜋 ( [®b 𝑗 ]𝑢 ) to S0 for 𝑗 ∈ [𝜏] and 𝑢 ∈ {1, 2}.
– S0 locally reconstructs 𝜋 (®b 𝑗 ) = 𝜋 ( [®b 𝑗 ]1) ⊕ 𝜋 ( [®b 𝑗 ]2), for 𝑗 ∈ [𝜏]. If all the 𝜏 bit vectors are correctly formed and
distinct, it sends Accept to S1 and S2. Else, it sends abort.
Note that the verification using P0 will incur a communication of 2𝜏𝑁 bits among the servers. Furthermore, the

above verification method can be applied to any instantiation of F 2S
pir that generates a boolean sharing of the query bit

vector among the PIR servers and computes the response as described above, e.g., the PIR schemes of [17, 18, 33].

5.2 Instantiating Fpirsum
The formal protocol for PIRsum in the case of malicious participants is provided in Fig. 10 and is based on a variant
of the standard 2-server PIR functionality F 2S

pir (as will be discussed in HYB2 below). In PIRsum, the servers S1, S2 and
the participant P𝑖 run 𝜏 instances of F 2S

pir in parallel, one for each query 𝑞 ∈ Q. Following the execution, P𝑖 receives
D[𝑞] + r𝑞 whereas S𝑢 receives r𝑞, [𝑞]𝑢 , for 𝑢 ∈ {1, 2} and 𝑞 ∈ Q. P𝑖 then adds up the received messages to get a masked
version of the desired output, i.e,

∑
𝑞∈Q D[𝑞] +maskQ withmaskQ =

∑
𝑞∈Q r𝑞 . S1, S2 computemaskQ in the same way.

10 These masks are sampled for each participant.
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Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞 ] for distinct queries, else res = ⊥.

Computation

1. For each 𝑞 ∈ Q,
a. S1, S2 and P𝑖 invoke F2Spir (cf. HYB2 in proof of Lemma 5.1) with the inputs D, 𝑞.

b. Let r𝑞, [𝑞 ]𝑢 denote the output of S𝑢 , for 𝑢 ∈ {1, 2} and D[𝑞 ] + r𝑞 denote the output of P𝑖 .

2. P𝑖 computes res′ =
∑
𝑞∈Q (D[𝑞 ] + r𝑞 ) , while S1, S2 computes maskQ =

∑
𝑞∈Q r𝑞 .

3. S1, S2 and S0 invokes Fvrfy on the secret shares of queries, denoted by { [𝑞 ]𝑢 }𝑞∈Q,𝑢∈{1,2} , to check the distinctness of the
queries in Q.

4. If Fvrfy returns Accept, S1, S2 sends maskQ to P𝑖 , who computes res = res′ − maskQ . Otherwise, abort.

Protocol PIRsum

Fig. 10. PIRsum Protocol.

The protocol could be completed by S1 and S2 sending maskQ to P𝑖 , then P𝑖 unmasking its value to obtain the
desired output. However, before communicating the mask, the servers must ensure that all queries in Q are distinct, as
shown in Fpirsum (Fig. 11). For this, S1, S2 use their share of the queries 𝑞 ∈ Q and participate in a secure computation
protocol with S0. We capture this with an ideal functionality Fvrfy, which takes the secret shares of 𝜏 values from S1
and S2 and returns Accept to the servers if all of the underlying secrets are distinct. Otherwise, it returns abort.

5.2.1 Security of PIRsum Protocol. Fig. 11 presents the ideal functionality for PIRsum in the context of malicious
participants. In this case, Fpirsum first checks whether all the queries made by the participant P𝑖 are distinct. If yes, the
correct result is sent to P𝑖 ; otherwise, ⊥ is sent to P𝑖 .

Fpirsum interacts with servers in C, and participant P𝑖 ∈ P.
Input: Fpirsum receives 𝜏 indices denoted by Q = {𝑞1, . . . , 𝑞𝜏 } from P𝑖 and a database D from C.
Computation: Fpirsum sets 𝑦 =

∑𝜏
𝑗=1 D[𝑞 𝑗 ] if all the queries in Q are distinct. Else, it sets 𝑦 = ⊥.

Output: Fpirsum sends 𝑦 to P𝑖 .

Functionality Fpirsum

Fig. 11. PIR-SUM functionality (malicious participants).

Lemma 5.1. Protocol PIRsum (Fig. 10) securely realises the Fpirsum ideal functionality (Fig. 11) for the case of malicious

participants in the {F 2S
pir , Fvrfy}-hybrid model.

Proof. The proof follows with a hybrid argument based on the three hybrids HYB0, HYB1, and HYB2 discussed
below. Furthermore, any secure three-party protocol can be used to instantiate Fvrfy in RIPPLE.

We use a standard 2-server PIR functionality, denoted by F 2S
pir , to instantiate Fpirsum. The guarantees of F 2S

pir , however,
are insufficient to meet the security requirements of Fpirsum, so we modify F 2S

pir as a sequence of hybrids, denoted by
HYB: The modification is carried out in such a way that for a malicious participant P𝑖 , each hybrid is computationally
indistinguishable from the one before it. F 2S

pir is equal to the first hybrid HYB0. We use the hybrid HYB2 instead of
F 2S
pir , and we omit introducing a different notation for the same for simplicity.
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HYB0: Let F 2S
pir denote a 2-server PIR ideal functionality for our case, with servers S1 and S2 acting as database holders

and P𝑖 acting as the client. For a database D held by S1 and S2 and a query 𝑞 held by P𝑖 , F 2S
pir returns D[𝑞] to P𝑖 , but S1

and S2 receive nothing.
HYB1: We modify F 2S

pir so that it returns D[𝑞] + r to P𝑖 , and S1, S2 receive r, where r is a random value from the domain
of database block size, such that addition of r to the database blocks respects the underlying distribution. In other words,
the modification can be thought of as the standard F 2S

pir being executed over a database Dr = D + r rather than the
actual database D. This modification leaks no additional information regarding the query to the servers because they
will receive random masks that are independent of the query 𝑞. Furthermore, from the perspective of P𝑖 with no prior
knowledge of the database D, HYB1 will be indistinguishable from HYB0 because the values it sees in both cases are
from the same distribution. As a result, HYB0 ≈ HYB1.
HYB2: Looking ahead, in PIRsum, the servers S1, S2 and the participant P𝑖 run 𝜏 instances of F 2S

pir in parallel, one for
each query 𝑞 ∈ Q. As shown in Fpirsum (Fig. 11), the servers must ensure that all of the queries in Q are distinct. For
this, we modify F 2S

pir in HYB1 to additionally output a secret share of the query 𝑞 to each of S1 and S2. Because the
servers S1 and S2 are assumed to be non-colluding in our setting, this modification will leak no information about the
query 𝑞 to either server. Since the output to P𝑖 remains unchanged, HYB1 ≈ HYB2 from P𝑖 ’s perspective. □

5.3 Reducing participant’s communication

PIRsum in RIPPLEPIR can be implemented using two approaches with different trade-offs to minimize participants’ com-
munication and computation. PIRIsum (Fig. 12) prioritizes low communication over computation, while PIRIIsum (Fig. 13)
reduces both the computational and communication overhead of the participant by involving an additional server S0 ∈ C.

5.3.1 PIRIsum (Fig. 12). In this approach, we instantiate F 2S
pir using PIR techniques based on Function Secret Sharing

(FSS) [17, 18, 36]. To retrieve the 𝑞-th block from the database, P𝑖 uses FSS on a Distributed Point Function (DPF) [58]
that evaluates to a 1 only when the input 𝑞 is 1 and to 0 otherwise. P𝑖 generates two DPF keys 𝑘1 and 𝑘2 that satisfy
the above constraint and sends one key to each of the servers S1 and S2. The servers S1 and S2 can then locally expand
their key share to obtain their share for the bit vector ®b and the rest of the procedure proceeds similarly to the naive
linear summation method discussed in §5.1 (more details on Linear Summation PIR are given in §C). The key size for
a database with 𝑁 blocks using the optimised DPF construction in [18] is about _ log2 (𝑁 /_) bits, where _ = 128 for
an AES-based implementation. Fig. 12 provides the formal details of the PIRIsum protocol.

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞 ]

Computation S1 and S2 sample 𝜏 randommask values {𝑚1, . . . ,𝑚𝜏 } ∈ Z𝜏2ℓ such that
∑𝜏

𝑗=1𝑚 𝑗 = 0. For each𝑞 ∈ Q, execute:

1. S1, S2 locally compute D𝑚𝑞 = D +𝑚𝑞 .

2. Execute DPF protocol [18] (verifiable DPF for malicious participants) with P𝑖 as client with input 𝑞. Server S𝑢 obtains [®b𝑞 ]𝑢
with b𝑗𝑞 = 1 for 𝑗 = 𝑞 and b𝑗𝑞 = 0 for 𝑗 ≠ 𝑞, for 𝑢 ∈ {1, 2}.

Verification Let {®b𝑞1 , . . . , ®b𝑞𝜏 } denote the bit vectors whose XOR-shares are generated during the preceding steps.

3. Servers verify correctness of 𝑞 𝑗 , 𝑗 ∈ [𝜏 ], by executing the Ver algorithm of the verifiable DPF protocol [18] (cf. §B.4). It
outputs Accept to S1 and S2 if 𝑞 𝑗 has exactly 1 one and (𝑁 − 1) zeroes. Else, it outputs abort.

Protocol PIRIsum

Manuscript submitted to ACM



20 Günther and Holz, et al.

4. S𝑢 computes [®b𝑐 ]𝑢 = ⊕𝑞∈Q [®b𝑞 ]𝑢 , for 𝑢 ∈ {1, 2}.

5. S1 and S2 non-interactively agree on random permutation 𝜋 .

6. S𝑢 sends 𝜋 ( [®b𝑐 ]𝑢 ) to S0, for 𝑢 ∈ {1, 2}.

7. S0 locally reconstructs 𝜋 (®b𝑐 ) = 𝜋 ( [®b𝑞 ]1 ) ⊕𝜋 ( [®b𝑞 ]2 ) , sends Accept to S1 and S2, if 𝜋 (®b𝑐 ) has exactly 𝜏 ones, abort otherwise.

Output Transfer Send ⊥ to P𝑖 if verifiable DPF or S0 generated abort during verification. Otherwise, proceed as follows:

8. S𝑢 sends [𝑦𝑞 ]𝑢 =
𝑁⊕
𝑗=1
[b𝑗𝑞 ]𝑢D𝑚𝑞 [ 𝑗 ] to P𝑖 , for 𝑞 ∈ Q,𝑢 ∈ {1, 2}.

9. P𝑖 locally computes res =
∑
𝑞∈Q ( [𝑦𝑞 ]1 ⊕ [𝑦𝑞 ]2 ) .

Fig. 12. PIRIsum Protocol.

Security. For semi-honest participants, the security of protocol PIRIsum directly reduces to that of the 2-server PIR
protocol in [18]. However, as mentioned in [18], a malicious participant could generate incorrect DPF keys, compromising
the scheme’s security and correctness. To prevent this type of misbehaviour, Boyle et al. [18] present a form of DPF
called “verifiable DPF”, which can assure the correctness of the DPF keys created by P𝑖 at the cost of an increased
constant amount of communication between the servers.

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞 ]

Computation S1 and S2 sample 𝜏 random mask values {𝑚1, . . . ,𝑚𝜏 } ∈ Z𝜏2ℓ such that
∑𝜏

𝑗=1𝑚 𝑗 = 0. For each 𝑞 ∈ Q, execute
the following:

1. S1, S2 locally compute D𝑚𝑞 = D +𝑚𝑞 , i.e., D𝑚𝑞 [ 𝑗 ] = D[ 𝑗 ] +𝑚𝑞 , for 𝑗 ∈ [𝑁 ].

2. P𝑖 , S1, S2 sample random \𝑞 ∈ [𝑁 ].

3. P𝑖 computes and sends 𝑞′ = 𝑞 − \𝑞 to S0.

4. Servers execute DPF protocol [18] with S0 as client with input 𝑞′. Server S𝑢 obtains [®b𝑞′ ]𝑢 with b𝑗
𝑞′ = 1 for 𝑗 = 𝑞′ and

b𝑗
𝑞′ = 0 for 𝑗 ≠ 𝑞′ , for 𝑢 ∈ {1, 2}.

5. S𝑢 locally applies \𝑢 on [®b𝑞′ ]𝑢 to generate [®b𝑞 ]𝑢 , for 𝑢 ∈ {1, 2}.

Verification Let {®b𝑞1 , . . . , ®b𝑞𝜏 } denote the bit vectors whose XOR-shares are generated during the preceding steps:

6. S𝑘 computes [®b𝑐 ]𝑘 = ⊕𝑞∈Q [®b𝑞 ]𝑘 , for 𝑢 ∈ {1, 2}.

7. S1 and S2 non-interactively agree on random permutation 𝜋 .

8. S𝑢 sends 𝜋 ( [®b𝑐 ]𝑢 ) to S0, for 𝑢 ∈ {1, 2}.

9. S0 locally reconstructs 𝜋 (®b𝑐 ) = 𝜋 ( [®b𝑞 ]1 ) ⊕ 𝜋 ( [®b𝑞 ]2 ) . It sends Accept to S1 and S2, if 𝜋 (®b𝑐 ) has exactly 𝜏 ones. Else, it
sends abort.

Output Transfer Send ⊥ to P𝑖 if S0 generated abort during verification. Otherwise, proceed as follows:

10. S𝑢 sends [𝑦𝑞 ]𝑢 =
𝑁⊕
𝑗=1
[b𝑗𝑞 ]𝑢D𝑚𝑞 [ 𝑗 ] to P𝑖 , for 𝑞 ∈ Q,𝑢 ∈ {1, 2}.

11. P𝑖 locally computes res =
∑
𝑞∈Q ( [𝑦𝑞 ]1 ⊕ [𝑦𝑞 ]2 ) .

Protocol PIRIIsum
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Fig. 13. PIRIIsum Protocol.

While using verifiable DPFs in PIRIsum ensures that the 𝜏 bit vectors generated by P𝑖 are valid, it does not ensure that
the bit vectors ®b1, . . . , ®b𝜏 correspond to 𝜏 distinct locations in the database D. However, we leverage the correctness
guarantee of verifiable DPFs to reduce the communication cost for verification, as discussed in §5.1, §B.4, and §C. In
detail, all 𝜏 bit vectors ®b1, . . . , ®b𝜏 , i.e., the PIR queries, that are available in a secret-shared form among S1 and S2 are
now guaranteed to have exactly one 1 in them, with the remaining bit positions being 0. To ensure distinctness, S1 and
S2 XOR all their respective 𝜏 shares locally to obtain the secret-share of a single vector ®b𝑐 = ⊕𝜏

𝑘=1
®b𝑘 . The problem now

boils down to determining whether or not ®b𝑐 has exactly 𝜏 bit positions set to 1. This can be accomplished by servers
S1 and S2 agreeing on a random permutation 𝜋 and reconstructing 𝜋 (®b𝑐 ) to S0 and allowing S0 to perform the check,
as in the naive approach (cf. §5.1).

Computation Complexity (#AES operations). In PIRIsum, the participant P𝑖 must perform 4 · log2 (𝑁 /_) AES operations
as part of the key generation algorithm for each of the 𝜏 instances of F 2S

pir over a database of size 𝑁 , where _ = 128 for
an AES-based implementation. Similarly, S1 and S2 must perform log2 (𝑁 /_) AES operations for each of the 𝑁 DPF
evaluations. We refer to Table 1 in [18] for more specifics.

5.3.2 PIRIIsum (Fig. 13). In this approach, we use the server S0 to reduce the computation and communication of the
participant P𝑖 in PIRIsum. The idea is that S0 plays the role of P𝑖 for the PIR protocol in PIRIsum. However, P𝑖 cannot
send its query 𝑞 to S0 in clear because it would violate privacy. As a result, P𝑖 selects random values 𝑞′, \𝑞 ∈ [𝑁 ] such
that 𝑞 = 𝑞′ +\𝑞 . In this case, 𝑞′ is a shifted version of the index 𝑞, and \ is a shift correction for 𝑞. P𝑖 sends 𝑞′ to S0 and \𝑞
to both S1 and S2. The remainder of the computation until output retrieval will now take place solely among the servers.

The servers run a DPF instance [18] with S0 acting as the client and input query 𝑞′. At the end of the computation,
S1 and S2 obtain the bit vector ®b𝑞′ , which corresponds to 𝑞′. However, as discussed in PIRIsum, the servers require an
XOR sharing corresponding to the actual query 𝑞 in order to continue the computation. S1 and S2 do this by using the
shift correction value \𝑞 received from P𝑖 . Both S1 and S2 will perform a right cyclic shift of their ®b𝑞′ shares by \𝑞
positions. A negative value for \𝑞 indicates a cyclic shift to the left.

It is easy to see that the XOR shares obtained after the cyclic shift correspond to the bit vector ®b𝑞 . To further optimise
P𝑖 ’s communication, P𝑖 and servers S1, S2 non-interactively generate a random shift correction values \𝑞 using the
shared-key setup (cf. §B.1), and only the corresponding 𝑞′ values are sent to S0. The rest of the protocol is similar to
PIRIsum, and the formal protocol is shown in Fig. 13. In terms of malicious participants, PIRIIsum has an advantage over
PIRIsum as there is no need to use a verifiable DPF to protect against malicious P𝑖 , because the semi-honest server S0
generates the DPF key instead of P𝑖 .

Improving Verification Costs in PIRIIsum. A large amount of communication is used in both PIRsum protocols to protect
against malicious participants. More specifically, in Step 8 of Fig. 13 (resp., Step 8 of Fig. 12), 2𝑁 bits are sent to S0 to
ensure the distinctness of the queries made by the participant P𝑖 . We note that allowing a small amount of leakage to
S0 could improve this communication and is discussed next.

Consider the following modification to the PIRIIsum protocol. Instead of sampling \𝑞 for each query 𝑞 ∈ Q (cf. Step 2
in Fig. 13), P𝑖 , S1, and S2 sample only one random shift value \ and use it for all 𝜏 instances. Since the queries must be
distinct, P𝑖 is forced to send distinct 𝑞′ values to S0 in Step 3 of Fig. 13. If not, S0 can send abort to S1 and S2 at this
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step, eliminating the need for communication-intensive verification. The relative distance between the queried indices
would be leaked to S0 as a result of this optimization. In concrete terms, if we use the same \ value for any two queries
𝑞𝑚, 𝑞 𝑗 ∈ Q, then 𝑞𝑚 − 𝑞𝑛 = 𝑞′𝑚 − 𝑞′𝑛 . Because S0 sees all 𝑞′ values in the clear, it can deduce the relative positioning
of P𝑖 ’s actual queries. However, since S0 has no information about the underlying database D, this leakage may be
acceptable for some applications.

Stage PIRIsum PIRIIsum

P𝑖 to servers in C 2𝜏 (_ + 2) log2 (𝑁 /_) + 4𝜏_ 𝜏 log2 𝑁
Server to server 0 2𝜏 (_ + 2) log2 (𝑁 /_) + 4𝜏_

Servers in C to P𝑖 𝜏 · 2ℓ 𝜏 · 2ℓ
+ Verification (mal.) 2𝑁 + 2 + 𝛿 2𝑁 + 2

Table 2. Summary of communication costs in bits between participants P𝑖 and a
server S𝑗 ∈ C for PIRsum. _ denotes the AES key size (_ = 128 in [17]), ℓ denotes
the block size in bits (ℓ = 128 in this work), and 𝛿 denotes the constant involved
in the verifiable DPF approach enabling malicious security [18] (cf. §C).

5.3.3 Summary of communication costs. Tab. 2
summarises the communication cost for our
two PIRsum approaches for instantiating
Fpirsum over a database of size 𝑁 with 𝜏 PIR
queries per client.

6 EVALUATION

In this section, we evaluate and compare the
computation and communication efficiency of
our two RIPPLE protocols presented in §4. A
fully-fledged implementation, similar to exist-
ing contact tracing apps, would necessitate collaboration with industry partners to develop a real-world scalable system
for national deployment. Instead, we provide a proof-of-concept implementation and micro benchmark results for all
major building blocks.11 Moreover, we do not measure the speed of the communication link between the participants
and the servers. We focus on the simulation phase for benchmarking, which is separate from the token generation phase.
The simulations can ideally be done overnight while mobile phones are charging and have access to a high-bandwidth
WiFi connection. According to studies [129, 131], sleeping habits in various countries provide a time window of several
hours each night that can be used for this purpose.

Setup and Parameters. We run the benchmarks on the server-side with three servers (two for FSS-PIR and one
as a helper server as discussed in §5.3) with Intel Core i9-7960X CPUs@2.8 GHz and 128 GB RAM connected with
10 Gbit/s LAN and 0.1 s RTT. The client is a Samsung Galaxy S10+ with an Exynos 9820@2.73 GHz and 8GB RAM.
As Android does not allow third-party developers to implement applications for Android’s TEE Trusty [7], we use
hardware-backed crypto operations already implemented by Android instead. We use the code of [73] to instantiate
FSS-PIR. We implement the AGCT in C++ and follow previous work on cuckoo hashing [112] by using tabulation
hashing for the hash functions.

We instantiate our protocols in RIPPLE with ^ = 128 bit security. We use RSA-2048 as the encryption scheme in
RIPPLETEE since Android offers a hardware-backed implementation. We omit the overhead of remote attestation for the
sake of simplicity. For RIPPLEPIR, we use the FSS-PIR scheme of [18, 73] as the baseline and the addresses are hashed
with SHA-256 and trimmed to 40− 1 + log2 (p · 𝐸avg) bits, where p is the number of participants and 𝐸avg represents the
average number of encounters per participant per simulation step. We set 𝐸avg = 100 while benchmarking based on
numbers provided by research on epidemiological modeling [43, 98]. To avoid cycles when inserting 𝑛 messages into
the AGCT (cf. §4.2.3), we set its size to 10𝑛. This can be further improved as discussed in §4.2.3 [109, 111, 112]. A typical
simulation step corresponds to one day, such that 14 simulation steps can simulate two weeks.
11 Note that we are not attempting to create the most efficient instantiation. More optimizations will undoubtedly improve efficiency, and our protocols
can be heavily parallelized with a large number of servers. Instead, our goal here is to demonstrate the viability of RIPPLE protocols for large-scale
deployment.
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1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§4.1) 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

RIPPLEPIR: PIRIsum (§5.3.1) 51.63 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

RIPPLEPIR: PIRIIsum (§5.3.2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

RIPPLETEE (§4.1) 0.02 0.19 0.96 1.92 9.60 19.20 38.40 96.00 192.00 384.00
RIPPLEPIR (§5) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00

Entities Protocol
Population (p)

Participants in P
(in KB)

Servers in C
(in GB)

Table 3. Communication costs per simulation step in our RIPPLE instantiations.

6.1 Communication Complexity

In this section, we look at the communication costs that our protocols incur. To analyse the scalability of our protocols,
we consider p participants ranging from thousand (1K) to twenty million (20M). Tab. 3 summarises the communication
costs of each participant as well as the communication servers (C) for one simulation step in a specific simulation. One
simulation step includes all protocol steps, beginning with participants locally computing their infection likelihood 𝛿
and ending with them obtaining their cumulative infection likelihood Δ for that step.

50 100 250 500

100

200

300

400

500

𝐸avg

Comm. (in KB) RIPPLETEE
PIRI

sum

PIRII
sum

Fig. 14. Participant’s communication with varying
𝐸avg for a population of p =10M.

6.1.1 Participant Communication. As shown in Tab. 3, a participant
in RIPPLETEE requires just 16KB of total communication in every sim-
ulation step, and this is independent of the population size. This is
because each participant will only send and receive infection likeli-
hood messages related to its encounters. While the value in the table
corresponds to an average of 100 encounters (𝐸avg = 100), we depict
the participants’ communication in Fig. 14 with varied average number
of encounters 𝐸avg ranging from 10 to 500 for a population of 10M.
Note that a 2-week simulation with 𝐸avg = 500 can be completed by
a participant in RIPPLETEE with roughly 1MB communication.

Unlike RIPPLETEE, participant communication in both PIRIsum and
PIRIIsum increases for larger populations as the corresponding database
size increases. The communication, however, is only sub-linear in the
database size12.

In particular, the participant’s communication in PIRIsum ranges from 51.63KB to 98.06KB, with the higher cost
over RIPPLETEE attributed to the size of DPF keys used in the underlying FSS-PIR scheme [18], as discussed in §5.
The communication in PIRIIsum, on the other hand, is about 3.5KB for all participant sizes we consider. This reduced
communication is due to the optimization in PIRIIsum, which offloads the DPF key generation task to the helper server S0
(cf. §5.3.2). A participant in PIRIsum send approximately 7MB of data for a 2-week simulation for a 10M population with
𝐸avg = 500, whereas it is only 0.25MB in the case of PIRIIsum.

10 50 100 250 500

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.3.1) 6.24 34.99 73.22 193.79 403.83

RIPPLEPIR: PIRIIsum (§5.3.2) 0.35 1.76 3.53 8.87 17.81

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.3.1) 7.32 40.38 84.02 220.78 457.81

RIPPLEPIR: PIRIIsum (§5.3.2) 0.35 1.78 3.57 8.98 18.01

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.3.1) 8.40 45.78 94.81 247.77 511.79

RIPPLEPIR: PIRIIsum (§5.3.2) 0.36 1.80 3.62 9.08 18.22

Population p Protocol
𝐸avg

100K

1M

10M

Table 4. Communication (in KB)/participant/simulation step for varying average
numbers of encounters 𝐸avg and population sizes p.

Tab. 4 provides the communication cost for
a participant for multiple population sizes in

12 DB size of 10𝑛, where 𝑛 is the number of messages, and communication costs of RIPPLEPIR can be reduced by optimizing the database size by
extending the database by only 𝑑 + _ bins, where 𝑑 is the upper bound of double collisions and _ is an error parameter (cf. §4.2.3 and [109]).
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RIPPLETEE, PIRIsum, and PIRIIsum, while vary-
ing the average number of encounters 𝐸avg per
simulation step from 10 to 500. The commu-
nication cost in RIPPLETEE is independent of
the population size and grows linearly in 𝐸avg.
A similar trend can be seen in RIPPLEPIR
with the exception that the cost increases sub-
linearly with the population size due to the
use of FSS-based PIR scheme in RIPPLEPIR.

6.1.2 Server Communication. The servers’
communication is primarily attributed to the
anonymous communication channel that they
have established, which provides unlinkability
and, thus, privacy to the messages of the participants. As discussed in §B.3, in order to communicate 𝑀 messages
through the channel, the servers must communicate 2𝑀 messages in RIPPLETEE, and 3𝑀 messages in RIPPLEPIR. When
it comes to concrete values, however, the server communication in RIPPLEPIR is half that of RIPPLETEE, as shown in
Tab. 3. This is due to the larger message size in RIPPLETEE as a result of the use of public-key encryption.

2M 5M 10M 20M

100

200

300

Population (p)

Comm. (in GB)

RIPPLETEE
RIPPLEPIR
RIPPLEPIR★

Fig. 15. Communication costs for servers per simulation step
for varying population. ★ denotes the results for optimized
bit addresses in RIPPLEPIR (cf. Tab. 5).

For a population of 10M, the servers in RIPPLETEE must com-
municate 192GB of data among themselves, whereas RIPPLEPIR
requires 96GB. Setting the proper bit length for the address field
in the messages can further reduce communication. For example,
a population of 20M with 𝐸avg = 100 can be accommodated
in a 70-bit address field. Using this optimization will result in
an additional 23 % reduction in communication at the servers,
as shown in Tab. 5. Fig. 15 captures these observations better,
and Tab. 5 and Tab. 4 in the next subsection provide a detailed
analysis of the concrete communication costs.

6.1.3 Communication Micro Benchmarks. Tab. 5 details the com-
munication costs per simulation step at various stages in our
instantiations of RIPPLE. We find that a participant’s commu-
nication costs are very low compared to the overall costs. In RIPPLETEE, a participant communicates at most 268 KB
and incurs a runtime of 92 seconds over a two-week simulation over a population of one million. In PIRIIsum, the cost is
reduced to 100 KB and 40 seconds of runtime. Communication increases to 1.2 MB in PIRIsum due to the participant’s
handling of DPF keys.

Finally, Tab. 5 does not include costs for verification against malicious participants since they can be eliminated
using server S0 (cf. §5.3.2) or sketching algorithms similar to those in [18].

6.2 Computation Complexity

This section focuses on the runtime, which includes time for computation and communication between entities. Tab. 6
summarizes the computation time with respect to a participant P𝑖 for a two-week simulation over a population of
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1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§4.1)a 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80
RIPPLEPIR:  (§4.2) 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20
RIPPLEPIR: G# (§4.2) 2.30 2.34 2.38 2.39 2.41 2.43 2.44 2.45 2.46 2.48

RIPPLETEE (§4.1) 0.02 0.19 0.96 1.92 9.60 19.20 38.40 96.00 192.00 384.00
RIPPLEPIR -  (§4.2) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00
RIPPLEPIR - G# (§4.2) 0.01 0.07 0.36 0.72 3.62 7.28 14.63 36.75 73.88 148.50

RIPPLETEE (§4.1) 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40

PIRIsum -  (§5.3.1) 51.36 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

PIRIsum - G# (§5.3.1) 26.48 32.64 37.69 39.82 44.77 47.05 49.38 52.33 54.77 57.26

PIRIIsum (§5.3.2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

Stages of RIPPLE Protocol
Population (p)

Message Generation
by P𝑖 ∈ P
(in KB)

Secure Shuffle by C
(in GB)

Output Computation
by P𝑖 ∈ P
(in KB)b

 - 128-bit address for RIPPLEPIR and G# - 40 − 1 + log2 (p · 𝐸avg) bit address for RIPPLEPIR.
aIncludes registration of public keys with the exit nodeNexit. bincludes message download, decryption/PIR queries, summation.

Table 5. Detailed communication costs per simulation step in RIPPLE.

half a million. The longer computation time in RIPPLETEE, as shown in Tab. 6, is due to the public key encryption
and decryption that occurs within the mobile device’s TEE. This cost, however, is independent of population size
and scales linearly with the average number of encounters, denoted by 𝐸avg. In particular, for a 14-day simulation
with a population of half a million, P𝑖 in RIPPLETEE needs approximately 43.7 seconds to perform the encryption and
decryption tasks and may require additional time for the remote attestation procedure, which is not covered in our
benchmarks. P𝑖 ’s computation time in RIPPLEPIR, on the other hand, is significantly lower and is at most 5milliseconds
for PIRIIsum, while it increases to around 165 milliseconds for PIRIsum. The increased computation time in PIRIsum is due
to DPF key generation, which scales sub-linearly with population size.

RIPPLETEE 80.00 - 3040.00 1.12 - 42.56

PIRIsum 0.30 11.73 4.8e-2 4.26e-3 0.16 6.72e-4

PIRIIsum 0.30 3.0e-3 4.8e-2 4.26e-3 4.2e-5 6.72e-4

Per Simulation Step Per Simulation (𝑁step = 14)
Message

Generation
(in ms)

PIR
Queries
(in ms)

Output
Computation

(in ms)

Message
Generation
(in sec)

PIR
Queries
(in sec)

Output
Computation

(in sec)

Table 6. Average participant computation times per simulation step distributed across various tasks. Values are obtained using a
mobile for a population of p = 500K with 𝐸avg = 100.

In Fig. 16, we plot the overall runtime of our two instantiations in RIPPLE for a full simulation of 2 weeks over
various populations ranging from 1K to 500K. After a population of 100K, the runtime of RIPPLEPIR begins to exceed
that of RIPPLETEE due to an increase in database size, which results in longer data transfer times. More details regarding
computation time are presented in Tab. 7. Note that the runtimes in Fig. 16 include runtime for computation and
communication of the secure shuffle among the servers for anonymous communication and among servers and clients
for the PIR in RIPPLEPIR.
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1K 10K 50K 100K 500K 1M

RIPPLETEE (§4.1) 1.12 1.12 1.12 1.12 1.12 1.12
RIPPLEPIR: (§4.2) 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3

RIPPLETEE (§4.1) 0.70 5.20 25.38 60.77 211.47 493.33★a

RIPPLEPIR (§4.2) 0.78 6.65 32.36 71.17 386.68 1542.30★

RIPPLETEE (§4.1) 44.66 44.66 44.66 44.66 44.66 44.66

PIRIsum (§5.3.1) 32.31 32.33 32.34 32.35 32.36 32.37

PIRIIsum (§5.3.2) 32.20 32.20 32.20 32.20 32.20 32.20

Stages of RIPPLE Protocol
Population (p)

Message Generation
by P𝑖 ∈ P (in sec)

Secure Shuffle by C
(in sec)

Output Computationb
(in sec)

a★ denotes system crash due to memory. bincludes message download, decryption/PIR queries,
summation.
Table 7. Detailed computation costs per simulation (𝑁step = 14, i.e., 14 days) in RIPPLE.

6.2.1 Computation Micro Benchmarks. Tab. 7 contains the computation costs per simulation at the different stages of
our instantiations of RIPPLE’s. As visible, data transfer time as part of anonymous communication through servers
accounts for the majority of computation time and begins to affect overall performance as the population grows. Our
system crashed due to memory constraints after a population of 500K while running the experiments, which is due to
the fact that our implementation requires to store the whole PIR database in the memory and its size increases linearly
with the number of participants. This will not be the case in a real-world deployment of powerful servers, which are
equipped with more internal memory and additionally can store parts of the database on hard disks. Similar as w.r.t.
communication, participants’ computation costs are very low in comparison to the overall costs.

10K 50K 100
K

500
K

100

200

300

400

Population (p)

Time. (in sec)

RIPPLETEE
RIPPLEPIR

Fig. 16. Runtime per simulation in RIPPLE (14 days).

6.2.2 Battery Usage. The token generation phase in RIP-
PLE consumes the most amount of mobile battery as this
phase is active throughout the day. This usage could be op-
timized by mobile OS providers like Apple and Google, as
discussed by Vaudenay et al. [126] and Avitabile et al. [12]
in the context of contact tracing apps. Their technology
enables an app to run in the background, thus, significantly
improving battery life, which is otherwise not possible for
a standard third-party mobile application. Additionally,
RIPPLE could offer users the choice to only participate
in simulations while charging in order to not cause any
unwanted battery drain.

6.2.3 Comparison to Related Work. Note that no experi-
mental comparison to related work is (and can be) done, as RIPPLE is the first distributed privacy-preserving epidemio-
logical modeling system. Established contact tracing apps, such as the SwissCovid13, the German Corona-Warn-App14,
or the Australian COVIDSafe15 only record contacts for notifying contacts of infected people. Concretely, contact
tracing basically relates to RIPPLE’s token generation phase, while the other three phases (simulation initialization,

13 https://github.com/SwissCovid 14 https://www.coronawarn.app/en/ 15 https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
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simulation execution, and result aggregation, cf. §3.2) are not covered by any contact tracing system. Crucially, the
main contribution of our work is how to realize the simulation execution, which has never been done before. Hence,
due to differences in the fundamental functionalities, no meaningful comparison between the systems is possible.

6.2.4 Code availability. Available at DOI: 10.5281/zenodo.6599225.
Summmary. Our benchmarking using the proof-of-concept implementation demonstrated the RIPPLE framework’s
viability for real-world adaptation. One of the key benefits of our approaches is that participants have very little work
to do. The system’s efficiency can be further improved with appropriate hardware and optimized implementations.
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A CRYPTOGRAPHIC PRIMITIVES USED

In the following, we provide an overview about the (cryptographic) primitives and other techniques used in this work.
Anonymous Communication. To simulate the transmission of the modelled disease, RIPPLE requires anonymous
messaging between participants. Mix-nets [30] and protocols based on the dining cryptographer (DC) problem [29] were
the first approaches to anonymous messaging. A fundamental technique underlying mix-nets is the execution of an
oblivious shuffling algorithm that provides unlinkability between the messages before and after the shuffle. In a mix-net,
so-called mix servers jointly perform the oblivious shuffling so that no single mix server is able to reconstruct the
permutation performed on the input data. Past research established a wide variety of oblivious shuffle protocols based
on garbled circuits [47, 67, 130], homomorphic encryption [67], distributed point functions [1], switching networks [95],
permutation matrices [83, §4.1], sorting algorithms [83, §4.2], and re-sharing [83, §4.3+4.4]. Recently, the works of [9]
and [51] proposed efficient oblivious shuffling schemes using a small number of mix net servers.
Trusted Execution Environment (TEE). RIPPLETEE (§4.1) requires a TEE on the mobile devices of participants. TEEs
are hardware-assisted environments that provide secure storage and execution of code on sensitive data which is isolated
from the normal execution environment. Data stored in a TEE is secure even if the operating system is compromised,
i.e., it offers confidentiality, integrity, and access control [49, 72]. Widely adopted TEEs are Intel SGX [69] and ARM
TrustZone [10] (often used on mobile platforms [100]). Using TEEs for private computation has been extensively
investigated, e.g., [15, 101]. A process called remote attestation allows external parties to verify that its private data
sent via a secure channel is received and processed inside the TEE using the intended code [31, 70].
Private Information Retrieval (PIR). The first computational single-server PIR (cPIR) scheme was introduced by
Kushilevitz and Ostrovsky [82]. Recent cPIR schemes [8, 57] use homomorphic encryption (HE). However, single-server
PIR suffers from significant computation overhead since compute intensive HE operations have to be computed on each
of the database block for each PIR request. In contrast, multi-server PIR relies on a non-collusion assumption between
multiple PIR servers and uses only XOR operations [17, 18, 33, 36, 37] making it significantly more efficient than cPIR.
Cuckoo Hashing. In RIPPLEPIR (§4.2), messages of participants have to be stored in a database 𝐷 . To do so, a hash
function 𝐻 can be used to map an element 𝑥 into bins of the database: 𝐷 [𝐻 (𝑥)] = 𝑥 . However, as we show in §4.2,
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RIPPLEPIR requires that at most one element is stored in every database location which renders simple hashing
impracticable [110]. Cuckoo hashing uses ℎ hash functions 𝐻1, . . . , 𝐻ℎ to map elements into bins. It ensures that each
bin contains exactly one element. If a collision occurs, i.e., if a new element is to be added into an already occupied bin,
the old element is removed to make space for the new one. The evicted element, then, is placed into a new bin using
another of the ℎ hash functions. If the insertion fails for a certain number of trials, the element is inserted into a special
bin called stash which is allowed to hold more than one element. Pinkas et al. [110] show that for ℎ = 2 hash functions
and 𝑛 = 220 elements inserted to 2.4𝑛 bins, a stash size of 3 is sufficient to have a negligible error probability.
Garbled Cuckoo Table (GCT). As RIPPLEPIR uses key-value pairs for the insertion into the database, a combination
of garbled Bloom filters [46] with cuckoo hashing [75, 102], called Garbled Cuckoo Table [109], is needed. Instead of
storing 𝑥 elements in one bin as in an ordinary cuckoo table, in a GCT, ℎ XOR shares of 𝑥 are stored at the ℎ locations
determined by inputting 𝑘 into all ℎ hash functions. E.g., with ℎ = 2, if one of these two locations is already in use, the
XOR share for the other (free) location is set to be the XOR of 𝑥 and the data stored in the used location. In §4.2.3, we
introduce a variant of GCT called arithmethic garbled cuckoo table (AGCT) that uses arithmetic sharing over the ring
Z2ℓ instead of XOR sharing. For a database with 2.4𝑛 entries where 𝑛 is the number of elements inserted, Pinkas et
al. [109] show that the number of cycles is maximally log2 𝑛 with high probability.
SecureMulti-Party Computation (MPC).MPC [132] allows a set of mutually distrusting parties to jointly compute an
arbitrary function on their private inputs without leaking anything but the output. In the last years, MPC techniques in
various securitymodels have been introduced, extensively studied, and improved, e.g., in [38, 44, 88]. These advancements
significantly enhance the efficiency of MPC making it more and more practical for real-world applications. Due to the
practical efficiency it can provide, various works [9, 22, 27, 78, 79, 106] have recently concentrated on MPC for a small
number of parties, especially in the three and four party honest majority setting tolerating one corruption. In RIPPLE,
we employ MPC techniques across three servers to enable an anonymous communication channel (cf. §B.3) and to
develop efficient PIRsum protocols (cf. §5).
Anonymous Credentials. To protect against sybil attacks (cf. §3.3), i.e., to hinder an adversary from creating multiple
identities that can collect encounter information to detect correlations among unconscious encounters, we suggest
to use anonymous credentials such that only registered participants can join RIPPLE. In this manner, the registration
process can, for example, be linked to a passport. Such a registration system increases the cost to create (fake) identities.
Chaum [28] introduced anonymous credentials where a client holds the credentials of several unlinkable pseudonyms.
The client can then prove that it possesses the credentials of pseudonyms without the service provider being able to
link different pseudonyms to the same identity. Additionally, anonymous credentials allow to certify specific properties
like the age. Several instantiations for anonymous credentials have been proposed, e.g., Microsoft U-Prove [103].

B BUILDING BLOCKS IN RIPPLE

This section contains details about the building blocks used in the RIPPLE framework, such as shared-key setup,
collision-resistant hash functions, anonymous communication channels, and Distributed Point Functions.

B.1 Shared-Key Setup

Let 𝐹 : {0, 1}^ ×{0, 1}^ → 𝑋 be a secure pseudo-random function (PRF), with co-domain𝑋 being Z2ℓ and C′ = C∪{P𝑖 }
for a participant P𝑖 ∈ P. The following PRF keys are established among the parties in C′ in RIPPLE:

– 𝑘𝑖 𝑗 among every 𝑃𝑖 , 𝑃 𝑗 ∈ C′ and 𝑖 ≠ 𝑗 .
Manuscript submitted to ACM



Privacy-Preserving Epidemiological Modeling on Mobile Graphs 33

– 𝑘𝑖 𝑗𝑘 among every 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ∈ C′ and 𝑖 ≠ 𝑗 ≠ 𝑘 .
– 𝑘C′ among all the parties in C′.

To sample a random value 𝑟𝑖 𝑗 ∈𝑅 Z2ℓ non-interactively, each of 𝑃𝑖 and 𝑃 𝑗 can invoke 𝐹𝑘𝑖 𝑗 (𝑖𝑑𝑖 𝑗 ). In this case, 𝑖𝑑𝑖 𝑗 is a
counter that 𝑃𝑖 and 𝑃 𝑗 maintain and update after each PRF invocation. The appropriate sampling keys are implied by
the context and are, thus, omitted.

B.2 Collision Resistant Hash Function

A family of hash functions {H : K × L → Y} is said to be collision resistant if, for all probabilistic polynomial-
time adversaries A, given the description of H𝑘 , where 𝑘 ∈𝑅 K , there exists a negligible function 𝑛𝑒𝑔𝑙 () such that
Pr[(𝑥, 𝑥 ′) ← A(𝑘) : (𝑥 ≠ 𝑥 ′) ∧ H𝑘 (𝑥) = H𝑘 (𝑥 ′)] = 𝑛𝑒𝑔𝑙 (^), where 𝑥, 𝑥 ′ ∈𝑅 {0, 1}𝑚 and𝑚 = poly(^).

B.3 Anonymous Communication Channel

This section describes how to instantiate the Fanon functionality used by RIPPLE for anonymous communication, as
discussed in §4. We start with the protocol for the case of RIPPLEPIR and then show how to optimize it for the use in
the RIPPLETEE protocol. Recall from §4.2 that in RIPPLEPIR, participants in P upload a set of messages from which a
database D must be constructed at the end by S1 and S2. The anonymous communication is required to ensure that
neither S1 nor S2 can link the source of the message even after receiving all messages in clear, which may not be in
the same order. To tackle this problem, we use an approach based on oblivious shuffling inspired by [9, 51], which is
formalised next.

Problem Statement. Consider the vector ®𝑚 = {𝑚1, . . . ,𝑚𝜏 } of 𝜏 messages with𝑚 𝑗 ∈ Z2ℓ for 𝑗 ∈ [𝜏]. We want servers
S1 and S2 to obtain 𝜋 ( ®𝑚), where 𝜋 () denotes a random permutation that neither S1 nor S2 knows. Furthermore, an
attacker with access to a portion of the network and, hence, the ability to monitor network data should not be able to
gain any information about the permutation 𝜋 ().

In RIPPLEPIR, the vector ®𝑚 corresponds to the infection likelihoodmessages of the form (𝑎𝑖, 𝑗 , 𝑐𝑒𝑖, 𝑗 ) that each participant
P𝑖 ∈ P sends over the network (cf. §4.2). W.l.o.g., we let P𝑖 have the complete ®𝑚 with them. The protocol makes use of
the third server S0 in our setting and proceeds as follows:
1. P𝑖 generates an additive sharing of ®𝑚 among S0 and S1:
a) P𝑖 , S0 sample random ®⟨𝑚⟩1 ∈𝑅 Z𝜏2ℓ .
b) P𝑖 computes and sends ®⟨𝑚⟩2 = ®𝑚 − ®⟨𝑚⟩1 to S1.

2. S0 and S1 agree on a random permutation 𝜋01 and locally apply 𝜋01 to their shares. Let 𝜋01 ( ®𝑚) = 𝜋01 ( ®⟨𝑚⟩1) +
𝜋01 ( ®⟨𝑚⟩2).

3. S0, S1 perform a re-sharing of 𝜋01 ( ®𝑚), denoted by ®𝑚01, by jointly sampling a random ®𝑟01 ∈𝑅 Z𝜏2ℓ and setting
®⟨𝑚01⟩1 = 𝜋01 ( ®⟨𝑚⟩1) + ®𝑟01 and ®⟨𝑚01⟩2 = 𝜋01 ( ®⟨𝑚⟩2) − ®𝑟01.

4. S1 sends ®⟨𝑚01⟩2 to S2. Now, ( ®⟨𝑚01⟩1, ®⟨𝑚01⟩2) forms an additive sharing of ®𝑚01 among S0 and S2.
5. S0 and S2 agree on a random permutation 𝜋02 and apply 𝜋02 to their shares. Let 𝜋02 ( ®𝑚01) = 𝜋02 ( ®⟨𝑚01⟩1) +
𝜋02 ( ®⟨𝑚01⟩2).

6. S0 sends 𝜋02 ( ®⟨𝑚01⟩1) to S2, who reconstructs 𝜋02 ( ®𝑚01).
7. S2 generates an additive-sharing of 𝜋02 ( ®𝑚01), denoted by ®𝑚02, among S1 and S2, by jointly sampling ®⟨𝑚02⟩1 ∈𝑅 Z𝜏2ℓ

with S1 and locally setting ®⟨𝑚02⟩2 = 𝜋02 ( ®𝑚01) − ®⟨𝑚02⟩1.
8. S2 sends ®⟨𝑚02⟩2 to S1, who locally compute the output as ®𝑚02 = ®⟨𝑚02⟩1 + ®⟨𝑚02⟩2.
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Anonymous Communication in RIPPLETEE. As discussed in §4.1, the server S2 is only required to have the complete set
of messages in the clear but in an unknown random order. As a result, in the case of RIPPLETEE, only the first permutation
(𝜋01 in Step 2) is sufficient and steps 5-8 are no longer required. Furthermore, in addition to the communication by S1 in
step 4, S0 sends its share of ®𝑚01 to S2, who can then reconstruct ®𝑚01 = 𝜋01 ( ®𝑚).

Security Guarantees. As discussed in §3.1, we assume that the MPC servers S𝑖 , 𝑖 ∈ [2], that also instantiate the
anonymous communication channel are semi-honest. We claim that the protocol described above will produce a random
permutation of the vector ®𝑚 that neither S1 nor S2 is aware of. To see this, note that ®𝑚02 = 𝜋02 ( ®𝑚01) = 𝜋02 (𝜋01 ( ®𝑚))
and both S1 and S2 know only one of the two permutations 𝜋01 and 𝜋02, but not both. Furthermore, the re-sharing
performed in step 3 and the generation of additive shares in step 6 above ensures that an attacker observing the traffic
cannot relate messages sent and received.

As we also consider a client-malicious security model [25, 84], where some clients might deviate from the protocol to
gain additional information, we also have to take into consideration how the clients could manipulate the communication
to break anonymity. For RIPPLETEE, this is trivial: The TEE ensures that clients’ messages are correctly generated and
uploaded. For RIPPLEPIR, a malicious client could manipulate how many messages it uploads. However, messages with
addresses that are already used will be dropped by the exit servers, i.e., effectively removing the malicious client from
the system. A receiver will never fetch messages with unknown, random addresses. Furthermore, the servers use secure
communication channels and even send freshly re-shared shares. Hence, considering the discussed aspects/assumptions,
classical attacks on anonymous communication such as flooding [39] are not relevant for our model.

B.4 Distributed Point Functions (DPF)

Consider a point function 𝑃𝛼,𝛽 : Z2ℓ → Z2ℓ ′ such that for all 𝛼 ∈ Z2ℓ and 𝛽 ∈ Z2ℓ ′ , 𝑃𝛼,𝛽 (𝛼) = 𝛽 and 𝑃𝛼,𝛽 (𝛼 ′) = 0 for all
𝛼 ′ ≠ 𝛼 . That is, when evaluated at any input other than 𝛼 , the point function 𝑃𝛼,𝛽 returns 0 and when evaluated at 𝛼 it
returns 𝛽 .

An (𝑠, 𝑡)-distributed point function (DPF) [36, 58] distributes a point function 𝑃𝛼,𝛽 among 𝑠 servers in such a way that
no coalition of at most 𝑡 servers learns anything about 𝛼 or 𝛽 given their 𝑡 shares of the function. We use (2, 1)-DPFs in
RIPPLE to optimize the communication of PIR-based protocols, as discussed in §5.3. Formally, a (2, 1)-DPF comprises of
the following two functionalities:

– Gen(𝛼, 𝛽)→ (𝑘1, 𝑘2). Output two DPF keys 𝑘1 and 𝑘2, given 𝛼 ∈ Z2ℓ and 𝛽 ∈ Z2ℓ ′ .
– Eval(𝑘, 𝛼 ′) → 𝛽′. Return 𝛽′ ∈ Z2ℓ ′ , given key 𝑘 generated using Gen, and an index 𝛼 ′ ∈ Z2ℓ .

A (2, 1)-DPF is said to be correct if for all 𝛼, 𝑥 ∈ Z2ℓ , 𝛽 ∈ Z2ℓ ′ , and (𝑘1, 𝑘2) ← Gen(𝛼, 𝛽), it holds that

Eval(𝑘1, 𝑥) + Eval(𝑘2, 𝑥) = (𝑥 = 𝛼) ? 𝛽 : 0.

A (2, 1)-DPF is said to be private if neither of the keys 𝑘1 and 𝑘2 leaks any information about 𝛼 or 𝛽 . That is, there exists
a polynomial time algorithm that can generate a computationally indistinguishable view of an adversary A holding
DPF key 𝑘𝑢 for 𝑢 ∈ {1, 2}, when given the key 𝑘𝑢 .

As mentioned in [18, 36], a malicious participant could manipulate the Gen algorithm to generate incorrect DPF keys
that do not correspond to any point function. While [36] used an external non-colluding auditor to circumvent this
issue in the two server setting, [18] formalised this issue and proposed an enhanced version of DPF called Verifiable
DPFs. In addition to the standard DPF, a verifiable DPF has an additional function called Ver that can be used to ensure
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the correctness of the DPF keys. In contrast to Eval, Ver in a (2, 1)-verifiable DPF is an interactive protocol between the
two servers, with the algorithm returning a single bit indicating whether the input DPF keys 𝑘1 and 𝑘2 are valid.

A verifiable DPF is said to be correct if for all 𝛼 ∈ Z2ℓ , 𝛽 ∈ Z2ℓ ′ , keys (𝑘1, 𝑘2) ← Gen(𝛼, 𝛽), the verify protocol Ver
outputs 1 with probability 1. Ver should ensure that no additional information about 𝛼 or 𝛽 is disclosed to the party in
possession of one of the DPF keys. Furthermore, the probability that Ver outputs 1 to at least one of the two servers for
a given invalid key pair (𝑘′1, 𝑘′2) is negligible in the security parameter ^.

Recent results in the area of (verifiable) DPFs [41, 77] might be an interesting direction for future work to further
enhance the efficiency of our RIPPLEPIR construction.

Communication Complexity. Using the protocol of Boyle et. al. [18], a (2, 1)-DPF protocol for a point function with
domain size 𝑁 has key size (_+2) · log(𝑁 /_) +2 ·_ bits, where _ = 128 for an AES based implementation. The additional
cost in the case of verifiable DPF is for executing the Ver function, which has a constant number of elements in [18].
Furthermore, as stated in [18], the presence of additional non-colluding servers can improve the efficiency of Ver, and
we use S0 in the case of PIRIsum, as discussed in §5.3.1. We refer to [18] for more details.

C PIR-SUM PROTOCOL DETAILS

This section provides additional details of our PIRsum protocols introduced in §5.1. We begin by recalling the security
guarantees of a 2-server PIR for our setting [33, 62]. Informally in a two-server PIR protocol, where the database D is
held by two non-colluding servers S1 and S2, a single server S𝑢 ∈ {S1, S2} should not learn any information about the
client’s query. The security requirement is formally captured in Definition C.1.

Definition C.1. (Security of 2-server PIR) A PIR scheme with two non-colluding servers is called secure if each of the
servers does not learn any information about the query indices.

Let 𝑣𝑖𝑒𝑤 (S𝑢 ,Q) denote the view of server S𝑢 ∈ {S1, S2} with respect to a list of queries, denoted by Q. We require
that for any database D, and for any two 𝜏-length list of queries Q = (𝑞1, . . . , 𝑞𝜏 ) and Q′ = (𝑞′1, . . . , 𝑞′𝜏 ), no algorithm
whose run time is polynomial in 𝜏 and in computational parameter ^ can distinguish the view of the servers S1
and S2, between the case of participant P𝑖 using the queries in Q ({𝑣𝑖𝑒𝑤 (S𝑢 ,Q)}𝑢∈{1,2} ), and the case of it using Q′
({𝑣𝑖𝑒𝑤 (S𝑢 ,Q′)}𝑢∈{1,2} ).

Linear Summation PIR for F 2S
pir with optimized Communication. This section describes Chor et al.’s 2-server

linear summation PIR protocol [33], as well as how to optimize communication using DPF techniques discussed
in Appendix B.4. To retrieve the 𝑞-th block from database D of size 𝑁 , the linear summation PIR proceeds as follows:
• Participant P𝑖 prepares an 𝑁 -bit string ®b𝑞 = {b1𝑞, . . . , b𝑁𝑞 } with b𝑗𝑞 = 1 for 𝑗 = 𝑞 and b𝑗𝑞 = 0 and 𝑗 ≠ 𝑞, for 𝑗 ∈ [𝑁 ].
• P𝑖 generates a Boolean sharing of ®b𝑞 among S1 and S2, i.e., P𝑖 and S1 non-interactively sample the random [®b𝑞]1 ∈𝑅
{0, 1}𝑁 and P𝑖 sends [®b𝑞]2 = ®b𝑞 ⊕ [®b𝑞]1 to S2.

• S𝑢 , for 𝑢 ∈ {1, 2}, sends [𝑦]𝑢 =
𝑁⊕
𝑗=1
[b𝑗𝑞]𝑢D[ 𝑗] to P𝑖 .

• P𝑖 locally computes D[𝑞] = [𝑦]1 ⊕ [𝑦]2.
The linear summation PIR described above requires communication of 𝑁 + 2ℓ bits, where ℓ denotes the size of each
data block in D.
Optimizing Communication using DPFs. Several works in the literature [18, 36, 58, 62] have used DPFs (cf. Appen-
dix B.4) as a primitive to improve the communication in multi-server PIR. The idea is to use a DPF to allow the servers
S1 and S2 to obtain the XOR shares of an 𝑁 -bit string ®b that has a zero in all positions except the one representing the
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query 𝑞. Because DPF keys are much smaller in size than the actual database size, this method aids in the elimination of
𝑁 -bit communication from P𝑖 to the servers, as in the aforementioned linear summation PIR.
To query the 𝑞-th block from a database D of size 𝑁 ,
– Participant P𝑖 executes the key generation algorithm with input 𝑞 to obtain two DPF keys, i.e., (𝑘1, 𝑘2) ← Gen(𝑞, 1).
– P𝑖 sends 𝑘𝑢 to S𝑢 , for 𝑢 ∈ {1, 2}.
– S𝑢 , for 𝑢 ∈ {1, 2}, performs a DPF evaluation at each of the positions 𝑗 ∈ [𝑁 ] using key 𝑘𝑢 and obtains the XOR
share corresponding to bit vector ®b𝑞 .
– S𝑢 expands the DPF keys as [b𝑗𝑞]𝑢 ← Eval(𝑘𝑢 , 𝑗 ) for 𝑗 ∈ [𝑁 ].

– S𝑢 , for 𝑢 ∈ {1, 2}, sends [𝑦]𝑢 =
𝑁⊕
𝑗=1
[b𝑗𝑞]𝑢D[ 𝑗] to P𝑖 .

– P𝑖 locally computes D[𝑞] = [𝑦]1 ⊕ [𝑦]2.
For the case of semi-honest participants, we use the DPF protocol of [18] and the key size is 𝑂 (_ · log(𝑁 /_)) bits,

where _ = 128 is related to AES implementation in [18].
To prevent a malicious participant from sending incorrect or malformed keys to the servers, we use the verifiable

DPF construction proposed in [18] for the case of malicious participants. This results only in a constant communication
overhead over the semi-honest case. Furthermore, as noted in [18], we use the additional server S0 for a better
instantiation of the verifiable DPF, removing the need for interaction with the participant P𝑖 for verification. We provide
more information in Appendix B.4 and refer the reader to [18] for all details.
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