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Figure S1. (a) Full range of HRXRD scan for 20 nm HEO thin films on MAO, MgO and STO 

substrates. (b) XRR of 2000 laser shots of HEO on three substrates.  



 

 

Figure S2. Thickness dependence of HEO thin films on various substrates: MgO (a) and MAO 

(b).  



 

Figure S3. Thickness dependence of HEO thin films on MAO substrates: (a) 20 nm, (b) 10 nm. 



 

Figure S4. TEM micrograph of HEO deposited on MAO substrate. A complete lattice 

coherency between the substrate and film can be observed.  



 

 

Figure S5. TEM micrograph of HEO (right) deposited on STO substrate (left). Lattice 

mismatch at the substrate-film interface could be observed, along with region of lattice 

continuity. 

 



 

Figure S6. TEM micrograph along with corresponding FFTs of HEO deposited on STO. 

Coexistence of spinel and rocksalt phases is observed. 



 

Figure S7. Elemental distribution maps of HEO on STO indicating no elemental segregation 

at the interior or interface of the HEO film. 

  



 

Figure S8.  (a) Comparison of the O-K edge EELS data for HEO deposited on the three 

different substrates. The results indicate that spinel-HEO is the major phase, which is present 

in a similar amount in all the three cases. (b) Reference spectrum of bulk spinel-HEO. 

  



 
Figure S9. Cross-sectional HAADF-STEM images of as-prepared (left) and annealed (right) 

HEO films grown on MgO substrate. The regions 1, 2 and 3 correspond to the spinel-HEO 

phase, rocksalt-HEO phase and MgO substrate, respectively, as can be identified by the FFT 

patterns, which are observed in both as-prepared and the annealed samples. 

 

  



 

Figure S10. In-plane (a) and out-of-plane (b) MT curves of 20 nm HEO films deposited on 

different substrates measured at 500 Oe.  



 

 

Figure S11. (a) Comparison of coercivity (Hc) among the HEO thin films and bulk HEO. (b) 

Virgin MH curve (out-of-plane) of 20 nm HEO on MAO at 5 K.  



 

Figure S12. MFM of 20 nm HEO on MAO substrate. Cyan circle denotes the typical maze-

like domain structure that highlights the perpendicular magnetic anisotropy, while the white 

rectangular area indicates the component with in-plane magnetization.   



Ceramic target preparation. The powder precursor of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 

spinel was synthesized with the use of the modified Pechini sol-gel method. As starting 

chemicals, nitrates of all of the considered cations were used: Co(NO3)2·6H2O (Alfa 

Aesar, 98-102%), Cr(NO3)3·9H2O (Riedel-de Haën, ≥98%), Fe(NO3)3·9H2O (Sigma 

Aldrich ≥98%), Mn(NO3)2·4H2O (Alfa Aesar, 98%), and Ni(NO3)2·6H2O (Alfa Aesar, 

99.9985%). Citric acid monohydrate (Alfa Aesar 99.5+%) and ethylene glycol (EG) 

were used to respectively create the chelate of the cations and ensure polycondensation. 

The molar ratio of all the cations, citric acid, and EG in the mixture was 1:2:4. Initially, 

the nitrates were dissolved in demineralized water, and citric acid and EG were added. 

The mixture was then put on a magnetic stirrer, with heating plate set initially to 150 °C 

(esterification step). After obtaining a clear solution, the temperature was increased to 

300 °C. The obtained gels were then calcined at 700 °C for 6 h, which was followed by 

a slow cooling (in the furnace), yielding fine, nanosized powders.  

 

  

 


