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Abstract
This article develops an approach to unique, strong
periodic solutions to quasilinear evolution equations by
means of the classical Da Prato–Grisvard theorem on
maximal 𝐿𝑝-regularity in real interpolation spaces. The
method is used to show that quasilinear Keller–Segel
systems admit a unique, strong 𝑇-periodic solution in
a neighborhood of 0 provided the external forces are
𝑇-periodic and satisfy certain smallness conditions. A
similar assertion applies to a Nernst–Planck–Poisson
type system in electrochemistry. The proof for the quasi-
linear Keller–Segel systems relies also on a new mixed
derivative theorem in real interpolation spaces, that is,
Besov spaces, which is of independent interest.
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1 INTRODUCTION

The theory of periodic solutions to ordinary and partial differential equations as well as to evo-
lution equations has a very long history and tradition. In this article, we concentrate on periodic
solutions for parabolic evolution equations and more precisely for quasilinear equations. While
the situation in the linear and semilinear setting is rather well-understood, this is not the case for
quasilinear equations. For approaches within the context of fluid dynamics concerning the semi-
linear case, we refer to fundamental articles by Serrin [41], Kozono and Nakao [28], Galdi [16],
Geissert, Hieber and Nguyen [18], and the survey article by Galdi and Kyed [17].
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A characterization of strong periodic solutions for linear abstract evolution equationswithin the
𝐿𝑝-setting for 1 < 𝑝 < ∞was obtained by Arendt and Bu in [4]. Their proof is based on operator-
valued Fourier multipliers for 𝐿𝑝(ℝ;𝑋), where 𝑋 denotes a UMD Banach space.
In this article, we are interested in periodic solutions to quasilinear evolution equations and ask

for conditions such that for a given periodic function 𝑓 of period 𝑇 > 0, the quasilinear equation{
𝑢′(𝑡) +(𝑢(𝑡))𝑢(𝑡) = 𝐹(𝑡, 𝑢(𝑡)) + 𝑓(𝑡), 𝑡 ∈ ℝ,

𝑢(𝑡) = 𝑢(𝑡 + 𝑇), 𝑡 ∈ ℝ
(QACP)

admits a unique, strong, periodic solution of the sameperiod𝑇within a certainmaximal regularity
class. A satisfactory answer to this question was given recently by Hieber and Stinner [24] within
the context of 𝐿𝑝-spaces for 1 < 𝑝 < ∞. The approach in [24] is based on properties of the linear
problem

𝑢′(𝑡) +𝑢(𝑡) = 𝑓(𝑡), 𝑡 ∈ ℝ, 𝑢(𝑡) = 𝑢(𝑡 + 𝑇), 𝑡 ∈ ℝ (PACP)

with 𝑇 = 2𝜋. The operator is said to have the property of maximal periodic 𝐿𝑝-regularity, if for
each 𝑓 ∈ 𝐿𝑝(0, 2𝜋; 𝑋) the system (PACP) has a unique solution 𝑢 within the class

𝑢 ∈ 𝑊1,𝑝(0, 2𝜋; 𝑋) ∩ 𝐿𝑝(0, 2𝜋; 𝐷()).

Arendt and Bu [4] characterized this property for the situation of 1 < 𝑝 < ∞, 𝑋 being a UMD-
space and  ∶ 𝐷() → 𝑋 a closed operator in terms of 𝑖ℤ ⊂ 𝜌() and 𝑘(i𝑘 −)−1 being
-bounded. For general information concerning maximal 𝐿𝑝-regularity, we refer to the mono-
graphs and survey articles by Lunardi [32], Amann [2], Denk, Hieber, Prüss [14], Arendt and Bu
[5], Kunstmann andWeis [31], and Prüss and Simonett [38]. For the theory of critical spaceswithin
the theory of quasilinear evolution equations, we refer to the article by Prüss, Simonett, andWilke
[39].
In the following, we are in particular interested in the case 𝑝 = 1, which is not covered by the

results cited above. Our first aim is to treat quasilinear, periodic problems bymeans of the classical
Da Prato–Grisvard approach [11]. Solutions will be constructed in the maximal regularity space
described precisely below in (1.2).
It was shown very recently in [12] that the classical Da Prato–Grisvard theorem for linear prob-

lems, being valid in particular for the case 𝑝 = 1, is of crucial importance for global existence
results for certain free boundary value problems in the critical space 𝐿1(ℝ+; �̇�

𝑠
𝑝,1
(ℝ+)). Besides

being valid for the case 𝑝 = 1, the Da Prato–Grisvard approach has the further advantage that the
underlying linear operator only needs to be the generator of a bounded analytic semigroup on
an arbitrary Banach space and no conditions on the-boundedness of 𝑘(i𝑘 −)−1 are needed.
More precisely, denote by 0 ∶= (0) the realization of the linear operator associated to

(QACP) on a Banach space𝑋 with domain𝐷(0), assume that−0 is the generator of a bounded
analytic semigroup 𝑒−𝑡0 on 𝑋 and that 0 ∈ 𝜌(0). Let 𝑇 > 0, 𝜃 ∈ (0, 1), 1 ⩽ 𝑝 < ∞ as well as
𝑓 ∶ ℝ → 𝐷0

(𝜃, 𝑝) be 𝑇-periodic with 𝑓|(0,𝑇) ∈ 𝐿𝑝(0, 𝑇; 𝐷0
(𝜃, 𝑝)). Here, 𝐷0

(𝜃, 𝑝) is defined by

𝐷0
(𝜃, 𝑝) ∶=

{
𝑥 ∈ 𝑋 ∶ [𝑥]𝜃,𝑝 ∶=

(
∫

∞

0

‖𝑡1−𝜃0𝑒
−𝑡0𝑥‖𝑝

𝑋

dt
𝑡

)1∕𝑝

< ∞

}
. (1.1)
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Solutions will be constructed in the maximal regularity space

𝔼
per

0
∶= {𝑢 ∈ 𝑊1,𝑝(0, 𝑇; 𝐷0

(𝜃, 𝑝)) ∶ 0𝑢 ∈ 𝐿𝑝(0, 𝑇; 𝐷0
(𝜃, 𝑝)) and 𝑢(0) = 𝑢(𝑇)}, (1.2)

while the data space 𝔽0
is defined as 𝔽0

∶= 𝐿𝑝(0, 𝑇; 𝐷0
(𝜃, 𝑝)). By 𝔹𝜌 ∶= 𝔹

𝔼
per

0 (0, 𝜌), we denote
the centered ball with radius 𝜌 > 0 in the maximal regularity space 𝔼per0

.
Roughly speaking, we will show that if −0 generates a bounded analytic semigroup on 𝑋 as

well as 0 ∈ 𝜌(0), if 𝐹 and 𝑓 fulfill certain regularity and Lipschitz conditions and if also satis-
fies a Lipschitz condition, then there exists a unique 𝑇-periodic solution to (QACP) in 𝐷0

(𝜃, 𝑝)

provided 𝐹(0) and 𝑓 are sufficiently small. For a precise formulation of our first main result, see
Theorem 2.2.
For a different approach to periodic solutions to quasilinear parabolic equations of the form

𝑢𝑡 = 𝑢𝛾(Δ𝑢 + 𝑢 + 𝑓),

we refer to the work of Giga and Mizoguchi [19, 20], where the existence of unique positive peri-
odic solutions for positive right-hand sides 𝑓 was proved under certain assumptions on the first
Dirichlet eigenvalue of −Δ.
In the following, we apply the Da Prato–Grisvard approach to quasilinear Keller–Segel systems

in chemotaxis as well as to a Nernst–Planck–Poisson type system in electrochemistry. This is,
however, not a straightforward task.
To explain our strategy, consider first the Keller–Segel model, which is a typical model to

describe chemotaxis, that is, the direct movement of cells and organisms in response to chem-
ical gradients, see the original paper by Keller and Segel [27]. More precisely, let Ω ⊂ ℝ𝑑, 𝑑 ⩾ 2,
be a bounded domain with smooth boundary and consider the quasilinear chemotaxis system
given by

⎧⎪⎨⎪⎩
𝑛𝑡 = ∇ ⋅ ((𝑛 + 1)𝑚∇𝑛) − ∇ ⋅ (𝑛∇𝑐) + 𝑓𝑛, 𝑥 ∈ Ω, 𝑡 ∈ ℝ,

𝑐𝑡 = Δ𝑐 − 𝑐 + 𝑛 + 𝑓𝑐, 𝑥 ∈ Ω, 𝑡 ∈ ℝ,

𝜕𝑛

𝜕𝜈
= 𝜕𝑐

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ ℝ

(PQKS)

for time periodic functions 𝑓𝑛, 𝑓𝑐.
We now choose 𝑋0 ∶= 𝐿

𝑞

0
(Ω) ×𝑊1,𝑞(Ω) as the underlying ground space, where the first com-

ponent 𝐿𝑞
0
(Ω) ∶= {g ∈ 𝐿𝑞(Ω) ∶ ∫

Ω g dx = 0} denotes the space of functions in 𝐿𝑞(Ω) with mean
value zero, and let𝐴0 ∶= 𝐴(0) be the realization of the linear operator associated to (PQKS) in𝑋0.
Define 𝐷𝐴0

(𝜃, 𝑝) as well as the solution space 𝔼per
𝐴0

accordingly. An application of our approach to
the Keller–Segel equations above is now based on embedding properties of the first component
of the maximal regularity space 𝔼per,1

𝐴0
of the form

𝔼
per,1
𝐴0

↪ 𝐿∞(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω))

for certain values of 𝜃. Here𝐵2𝜃+1𝑞𝑝 (Ω) denotes the Besov space of order 2𝜃 + 1. These spaces appear
naturally at this point because gradients of functions are estimated in𝐵2𝜃𝑞𝑝(Ω), and the latter spaces
coincide with the real interpolation spaces in the present setting.
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We will obtain embeddings of this desired form by developing a general mixed derivative
theorem for sectorial operators 𝐴 in real interpolation spaces in Section 3. The latter reads as

𝑊1,𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞)) ∩ 𝐿𝑝(𝐽; 𝐸1(𝐴)) ↪ 𝐻𝛼,𝑝(𝐽; (𝐷𝐴(𝜃, 𝑞), 𝐸1(𝐴))1−𝛼),

where𝛼 ∈ (0, 1), and (⋅, ⋅)𝛼 represents the complex interpolation functor.Moreover,𝐸1(𝐴)denotes
the domain of the realization of a sectorial operator 𝐴 on the space 𝐷𝐴(𝜃, 𝑞), that is,

𝐸1(𝐴) ∶= {𝑢 ∈ 𝐷(𝐴) ∶ 𝐴𝑢 ∈ 𝐷𝐴(𝜃, 𝑞)}.

For a precise statement of the general mixed derivative theorem in real interpolation spaces, see
Theorem 3.1. This result is of independent interest and can be considered as the counterpart of
the classical mixed derivative theorem for 𝐿𝑝-spaces, now in the context of Besov spaces. In the
case of Ω = ℝ𝑑, it reads as

𝑊1,𝑝(𝐽; 𝐵2𝜃𝑞𝑝(ℝ
𝑑)) ∩ 𝐿𝑝(𝐽; 𝐵2𝜃+2𝑞𝑝 (ℝ𝑑)) ↪ 𝐻𝛼,𝑝(𝐽; 𝐵2𝜃+2−2𝛼𝑞𝑝 (ℝ𝑑)),

where 𝐽 denotes a time interval, 𝛼 ∈ (0, 1), 1 < 𝑝, 𝑞 < ∞ and 0 < 𝜃 < 1.
Combining our approach to quasilinear periodic equations with the mixed derivative theorem

in the situation of boundary conditions enables us to show the following result on strong, periodic
solutions for (PQKS): If 𝑓𝑛 and 𝑓𝑐 are 𝑇-periodic and small enough, then there exists a unique,
periodic solution𝑤 = (𝑛, 𝑐)T ∶ ℝ → 𝐷𝐴0

(𝜃, 𝑝) of (PQKS)with the sameperiod𝑇 andwhich fulfills
𝑤|(0,𝑇) ∈ 𝔹𝑅 for some 𝑅 > 0.
For results on local and global existence as well as blow-up criteria for solutions to the classical

Keller–Segel system, we refer to the articles [6, 25, 26, 30] and the references therein. Existence
results for global, strong solutions have been studied, for example, in [29, 34, 35]. For global exis-
tence and blow-up results for quasilinear Keller–Segel systems with nonlinear diffusion, we refer
to [8] and [6, section 3.6].
As in [25, section 2.5], we consider a version of the quasilinear Keller–Segel system, where

the classical cross diffusion term depends linearly on the cell density. For 𝑚 < 0 the nonlinear
diffusion term appears in a version (see [9, section 4]) of the so-called volume filling models that
have been derived in [37].
Finally, we turn our attention to periodic solutions to Nernst–Planck–Poisson type equations in

electrochemistry. For a bounded domain Ω ⊂ ℝ𝑑, 𝑑 ∈ ℕ, with smooth boundary consider the
system of equations

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = 𝜇𝑢Δ𝑢 + ∇ ⋅ (𝑢∇𝑤) + g𝑢, 𝑥 ∈ Ω, 𝑡 ∈ ℝ,

𝑣𝑡 = 𝜇𝑣Δ𝑣 − ∇ ⋅ (𝑣∇𝑤) + g𝑣, 𝑥 ∈ Ω, 𝑡 ∈ ℝ,

𝑤𝑡 = Δ𝑤 + 𝑢 − 𝑣 + g𝑤, 𝑥 ∈ Ω, 𝑡 ∈ ℝ,

𝜕𝑢

𝜕𝜈
= 𝜕𝑣

𝜕𝜈
= 𝜕𝑤

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ ℝ,

(PNPP)

where g𝑢, g𝑣 and g𝑤 are given time periodic functions. Here 𝑢 and 𝑣 represent concentrations of
oppositely charged ions, and𝑤 denotes the induced electrical potential. For more information on
the Nernst–Planck–Poisson system we refer, for example, to [36] or to [40], where the second ref-
erence emphasizes the electrodiffusion of ions in fluids. In the sequel we presume that 𝜇𝑢, 𝜇𝑣 > 0

are constant, and we set 𝜇𝑢 = 𝜇𝑣 = 1 for simplicity. We note that Prüss, Simonett, and Wilke [39]



STRONG PERIODIC SOLUTIONS TO QUASILINEAR EQUATIONS 1975

obtained solutions for the initial value problem for a Nernst–Planck–Poisson type system in crit-
ical spaces. In [10] Constantin and Ignatova proved global existence and stability results for large
data for a Nernst–Planck–Navier–Stokes system in bounded domains in two dimensions, describ-
ing ionic electrodiffusion in fluids. Bothe, Fischer, and Saal showed in [7] the local existence of
solutions to electrokinetic flows and proved global well-posedness in two dimensions.
In our third main result, we show that if g𝑢, g𝑣, g𝑤 are 𝑇-periodic and small enough, then there

exists a unique, strong solution 𝑧 = (𝑢, 𝑣, 𝑤)T ∶ ℝ → 𝐷𝐵(𝜃, 𝑝) of (PNPP) with the same period 𝑇
that satisfies 𝑧|(0,𝑇) ∈ 𝔹𝑅 for some 𝑅 > 0. Here 𝐷𝐵(𝜃, 𝑝) is defined analogously to 𝐷𝐴0

(𝜃, 𝑝), see
(1.1), with 𝐵 being the realization of the linear operator associated to (PNPP) in the ground space
𝑋0 ∶= 𝐿

𝑞

0
(Ω) × 𝐿

𝑞

0
(Ω) ×𝑊

2,𝑞

𝑁
(Ω) ∩ 𝐿

𝑞

0
(Ω).

The structure of this article is as follows: In Section 2, we briefly recall the Da Prato–Grisvard
theory in the linear setting before presenting its extension to the quasilinear periodic setting. We
then develop amixed derivative theorem to evolution equations acting in real interpolation spaces
in Section 3. Section 4 is dedicated to quasilinear chemotaxis systems; the main result for this
model as well as an analogous result for a physically relevant variant of thismodel are stated there.
In Section 5, we present our main result for the Nernst–Planck–Poisson type system. Finally, the
proofs of the results concerning the Keller–Segel system as well as the Nernst–Planck–Poisson
type system are given in Section 6.

2 A QUASILINEAR EXTENSION OF THE DA PRATO–GRISVARD
APPROACH

We start this section by recalling the periodic version of the linear Da Prato–Grisvard theorem
from [23] and will then study the associated quasilinear problem.
To this end, let− be the generator of a bounded analytic semigroup 𝑒−𝑡 on a Banach space𝑋

with domain𝐷() and assume that 0 ∈ 𝜌(). Let 0 < 𝑇 < ∞, 𝜃 ∈ (0, 1) and 1 ⩽ 𝑝 < ∞. Consider
the space 𝐷(𝜃, 𝑝) defined as in (1.1). Then for 𝑓 ∶ ℝ → 𝐷(𝜃, 𝑝) 𝑇-periodic, we consider the
inhomogeneous Cauchy problem{

𝑢′(𝑡) +𝑢(𝑡) = 𝑓(𝑡), 𝑡 ∈ ℝ,

𝑢(𝑡) = 𝑢(𝑡 + 𝑇), 𝑡 ∈ ℝ.
(PACP)

Formally, a candidate for a solution to (PACP) is given by

𝑢(𝑡) ∶= ∫
𝑡

−∞

𝑒−(𝑡−𝑠)𝑓(𝑠) ds. (2.1)

Furthermore, we define the solution space 𝔼per for (PACP) by

𝔼
per

 ∶= {𝑢 ∈ 𝑊1,𝑝(0, 𝑇; 𝐷(𝜃, 𝑝)) ∶ 𝑢 ∈ 𝐿𝑝(0, 𝑇; 𝐷(𝜃, 𝑝)) and 𝑢(0) = 𝑢(𝑇)}, (2.2)

and we equip it with the norm

‖𝑢‖𝔼per ∶= ‖𝑢‖𝑊1,𝑝(0,𝑇;𝐷(𝜃,𝑝)) + ‖𝑢‖𝐿𝑝(0,𝑇;𝐷(𝜃,𝑝)).
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The underlying data space is defined as

𝔽 ∶= 𝐿𝑝(0, 𝑇; 𝐷(𝜃, 𝑝)).

The following proposition presents a summary of the most essential results of [23, section 2].

Proposition 2.1. Let 𝜃 ∈ (0, 1), 1 ⩽ 𝑝 < ∞, 0 < 𝑇 < ∞ and 𝑓 ∶ ℝ → 𝐷(𝜃, 𝑝) such that
𝑓|(0,𝑇) ∈ 𝐿𝑝(0, 𝑇; 𝐷(𝜃, 𝑝)). Then 𝑢 defined by (2.1) is the unique, strong solution to (PACP), that
is, 𝑢 is the unique 𝑇-periodic function in 𝐶(ℝ;𝑋) that is differentiable in 𝑡 for almost every 𝑡 ∈ ℝ,
satisfies 𝑢(𝑡) ∈ 𝐷() as well as𝑢 ∈ 𝐿𝑝(0, 𝑇; 𝑋), and 𝑢 solves

𝑢′(𝑡) +𝑢(𝑡) = 𝑓(𝑡).

In addition, there exists a constant 𝐶 > 0 such that

‖𝑢‖𝔼per ⩽ 𝐶‖𝑓‖𝐿𝑝(0,𝑇;𝐷(𝜃,𝑝)). (2.3)

We now turn to the quasilinear situation. As above, let −0 ∶= −(0) be the generator
of a bounded analytic semigroup 𝑒−𝑡0 on a Banach space 𝑋 with domain 𝐷(0) as well as
0 ∈ 𝜌(0), and let 𝑇 > 0, 𝜃 ∈ (0, 1), 1 ⩽ 𝑝 < ∞ and 𝑓 ∶ ℝ → 𝐷0

(𝜃, 𝑝) 𝑇-periodic such that
𝑓|(0,𝑇) ∈ 𝐿𝑝(0, 𝑇; 𝐷0

(𝜃, 𝑝)). Recall that the space 𝐷0
(𝜃, 𝑝) is defined by

𝐷0
(𝜃, 𝑝) =

{
𝑥 ∈ 𝑋 ∶ [𝑥]𝜃,𝑝 ∶=

(
∫

∞

0

‖𝑡1−𝜃0𝑒
−𝑡0𝑥‖𝑝

𝑋

dt
𝑡

)1∕𝑝

< ∞

}
.

Equipped with the norm ‖𝑥‖𝜃,𝑝 ∶= ‖𝑥‖ + [𝑥]𝜃,𝑝, the space 𝐷0
(𝜃, 𝑝) is a Banach space and coin-

cides with the real interpolation space (𝑋, 𝐷(0))𝜃,𝑝. Note that [⋅]𝜃,𝑝 is equivalent to the real
interpolation space norm because 0 ∈ 𝜌(0), see [22, Corollary 6.5.5].
Consider the quasilinear periodic Cauchy problem{

𝑢′(𝑡) +(𝑢(𝑡))𝑢(𝑡) = 𝐹(𝑡, 𝑢(𝑡)) + 𝑓(𝑡), 𝑡 ∈ ℝ,

𝑢(𝑡) = 𝑢(𝑡 + 𝑇), 𝑡 ∈ ℝ.
(QACP)

Solutions will be constructed in the adjusted version of the space in (2.2), namely, in

𝔼
per

0
∶= {𝑢 ∈ 𝑊1,𝑝(0, 𝑇; 𝐷0

(𝜃, 𝑝)) ∶ 0𝑢 ∈ 𝐿𝑝(0, 𝑇; 𝐷0
(𝜃, 𝑝)) and 𝑢(0) = 𝑢(𝑇)},

while the data space is

𝔽0
= 𝐿𝑝(0, 𝑇; 𝐷0

(𝜃, 𝑝)).

By𝔹𝜌 ∶= 𝔹
𝔼
per

0 (0, 𝜌)wedenote the centered ballwith radius𝜌 > 0 in the space ofmaximal regular-
ity 𝔼per0

, and𝑀 represents the infimum of all constants 𝐶 > 0 fulfilling (2.3). To simplify notation,
we define the spaces 𝐸1 and 𝐸𝛾 by

𝐸1 ∶= {𝑢 ∈ 𝐷(0) ∶ 0𝑢 ∈ 𝐷0
(𝜃, 𝑝)} and 𝐸𝛾 ∶= (𝐷0

(𝜃, 𝑝), 𝐸1)1− 1
𝑝
,𝑝
,
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that is, we denote by 𝐸1 the domain of the realization of the operator 0 on the space 𝐷0
(𝜃, 𝑝)

and by 𝐸𝛾 the trace space in the resulting setting.
For the sake of clarity we include the assumptions concerning0 once again, and we also state

our assumptions on the right-hand side 𝐹 as well as on the quasilinear operator(⋅).

Assumption Q. Assume that  ∶ 𝐸𝛾 → (𝐸1, 𝐷0
(𝜃, 𝑝)) is a family of closed linear operators

such that

−0 generates a bounded analytic semigroup on 𝑋 and 0 ∈ 𝜌(0), (G0)

and assume that there exist 𝑅 > 0 and 𝐿 > 0 such that

𝐹(⋅, 𝑣(⋅)) ∈ 𝔽0
for all 𝑣 ∈ 𝔹𝑅, (F1)

‖𝐹(⋅, 𝑣(⋅)) − 𝐹(⋅, 𝑣(⋅))‖𝔽0
⩽

1

4𝑀
‖𝑣 − 𝑣‖𝔼per0

, (F2)

where𝑀 denotes the infimum of all constants 𝐶 > 0 fulfilling (2.3), and

‖(𝑣(⋅))𝑤(⋅) −(𝑣(⋅))𝑤(⋅)‖𝔽0
⩽ 𝐿‖𝑣 − 𝑣‖𝔼per0

‖𝑤‖𝔼per0

for all 𝑣, 𝑣, 𝑤 ∈ 𝔹𝑅. (A1)

Our first main result reads then as follows.

Theorem 2.2. Let 𝑇 > 0, 0 < 𝜃 < 1 as well as 1 ⩽ 𝑝 < ∞. Assume Assumption Qis valid and that
𝑓 ∶ ℝ → 𝐷0

(𝜃, 𝑝) is𝑇-periodic. Then there exist constants 𝑟 ⩽ 𝑅 and 𝑐 = 𝑐(𝑇, 𝜃, 𝑝, 𝑟) > 0 such that
if ‖𝐹(⋅, 0)‖𝔽0

⩽ 𝑐 and ‖𝑓‖𝔽0
⩽ 𝑐, then there exists a unique solution 𝑢 ∶ ℝ → 𝐷0

(𝜃, 𝑝) to (QACP)

with the same period 𝑇 and which fulfills 𝑢|(0,𝑇) ∈ 𝔹𝑟.

Proof. We denote by 𝑄 ∶ 𝔹𝑅 → 𝔼
per

0
, 𝑣 ↦ 𝑢 the solution operator of the linear equation

𝑢′(𝑡) +(0)𝑢(𝑡) = (0)𝑣(𝑡) −(𝑣(𝑡))𝑣(𝑡) + 𝐹(𝑡, 𝑣(𝑡)) + 𝑓(𝑡) in (0, 𝑇), 𝑢(0) = 𝑢(𝑇).

The assumptions (F1) and (A1) ensure that the above equation is well-defined, and Proposition 2.1
in conjunction with (G0) implies that there is a unique solution 𝑢 ∈ 𝔼

per

0
.

Let now 𝑣 ∈ 𝔹𝑟 for some 𝑟 ∈ (0, 𝑅]. Making use of (2.3), (A1), and (F2), we get

‖𝑄(𝑣)‖𝔼per0

⩽ 𝑀
(‖((0) −(𝑣(⋅)))𝑣(⋅)‖𝔽0

+ ‖𝐹(⋅, 𝑣(⋅))‖𝔽0
+ ‖𝑓‖𝔽0

)
⩽ 𝑀𝐿‖𝑣‖2

𝔼
per

0

+ 𝑀‖𝐹(⋅, 𝑣(⋅)) − 𝐹(⋅, 0)‖𝔽0
+ 𝑀

(‖𝐹(⋅, 0)‖𝔽0
+ ‖𝑓‖𝔽0

)
⩽ 𝑀𝐿‖𝑣‖2

𝔼
per

0

+
1

4
‖𝑣‖𝔼per0

+ 𝑀
(‖𝐹(⋅, 0)‖𝔽0

+ ‖𝑓‖𝔽0

)
⩽ 𝑀𝐿𝑟2 +

𝑟

4
+𝑀

(‖𝐹(⋅, 0)‖𝔽0
+ ‖𝑓‖𝔽0

)
⩽
𝑟

4
+
𝑟

4
+
𝑟

2
⩽ 𝑟



1978 BRANDT and HIEBER

by setting 𝑟 ∶= min{ 1

4𝑀𝐿
, 𝑅
2
} and assuming additionally that ‖𝐹(⋅, 0)‖𝔽0

, ‖𝑓‖𝔽0
⩽ 𝑐 for 𝑐 ∶= 𝑟

4𝑀
.

Hence, we have proved that 𝑄(𝔹𝑟) ⊂ 𝔹𝑟.
For the above 𝑟 let 𝑣1, 𝑣2 ∈ 𝔹𝑟. The choice of 𝑟 ⩽

𝑅

2
guarantees that

‖𝑣1 − 𝑣2‖𝔼per0

⩽ ‖𝑣1‖𝔼per0

+ ‖𝑣2‖𝔼per0

⩽ 2𝑟 ⩽ 𝑅,

so we may use (A1) in the case of 𝑤 = 𝑣1 − 𝑣2. We then obtain, additionally employing (2.3) and
(F2),

‖𝑄(𝑣1) − 𝑄(𝑣2)‖𝔼per0

⩽ 𝑀
(‖((0) −(𝑣1(⋅)))(𝑣1(⋅) − 𝑣2(⋅))‖𝔽0

+‖((𝑣2(⋅)) −(𝑣1(⋅)))𝑣2(⋅)‖𝔽0

+ ‖𝐹(⋅, 𝑣1(⋅)) − 𝐹(⋅, 𝑣2(⋅))‖𝔽0

)
⩽ 𝑀𝐿‖𝑣1‖𝔼per0

‖𝑣1 − 𝑣2‖𝔼per0

+ 𝑀𝐿‖𝑣1 − 𝑣2‖𝔼per0

‖𝑣2‖𝔼per0

+
1

4
‖𝑣1 − 𝑣2‖𝔼per0

⩽ 2𝑀𝐿𝑟‖𝑣1 − 𝑣2‖𝔼per0

+
1

4
‖𝑣1 − 𝑣2‖𝔼per0

⩽
3

4
‖𝑣1 − 𝑣2‖𝔼per0

by the choice of 𝑟. The solution operator 𝑄 is thus a contraction on 𝔹𝑟, and the contraction map-
ping theorem yields the existence of a unique fixed point in 𝔹𝑟. Denoting the latter one by 𝑢, we
can extend 𝑢 periodically to the whole real line again, as 𝑄(𝑢) = 𝑢 and 𝑢(0) = 𝑢(𝑇), finishing the
proof. □

For convenience, we briefly discuss the semilinear case that can be viewed as a particular
instance of the quasilinear one. The setting basically remains the same apart from the step back to
 with the same properties as in the linear case. We consider 𝑓 ∶ ℝ → 𝐷(𝜃, 𝑝) 𝑇-periodic with
𝑓|(0,𝑇) ∈ 𝐿𝑝(0, 𝑇; 𝐷(𝜃, 𝑝)). The semilinear abstract Cauchy problem is then given by{

𝑢′(𝑡) +𝑢(𝑡) = 𝐹(𝑡, 𝑢(𝑡)) + 𝑓(𝑡), 𝑡 ∈ ℝ,

𝑢(𝑡) = 𝑢(𝑡 + 𝑇), 𝑡 ∈ ℝ.
(SACP)

As in the linear case, the solution 𝑢 will be considered in the space 𝔼per from (2.2), and the data
space is again 𝔽 = 𝐿𝑝(0, 𝑇; 𝐷(𝜃, 𝑝)).
In the sequel, we will again use the notation 𝔹𝜌 ∶= 𝔹

𝔼
per

 (0, 𝜌) to denote the ball in 𝔼
per

 with
center 0 and radius 𝜌 > 0. By𝑀 > 0we still denote the infimum of all constants 𝐶 > 0 that satisfy
(2.3). Compared to Assumption Q, we need to adapt the spaces involved slightly, and the Lipschitz
constant of the right-hand side can be increased by the factor 2. The adjusted assumptions then
are as follows:

− generates a bounded analytic semigroup on 𝑋 and 0 ∈ 𝜌(), (G)

and there is 𝑅 > 0 such that

𝐹(⋅, 𝑣(⋅)) ∈ 𝔽 for all 𝑣 ∈ 𝔹𝑅, and (S1)

‖𝐹(⋅, 𝑣1(⋅)) − 𝐹(⋅, 𝑣2(⋅))‖𝔽 ⩽
1

2𝑀
‖𝑣1 − 𝑣2‖𝔼per for all 𝑣1, 𝑣2 ∈ 𝔹𝑅. (S2)
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The existence result for the semilinear setting can be proved as above, where (G0), (F1), and
(F2) are being replaced by (G), (S1), and (S2), respectively.

Corollary 2.3. Let 𝑇 > 0, 0 < 𝜃 < 1 and 1 ⩽ 𝑝 < ∞. Assume (G), (S1) as well as (S2), and let
𝑓 ∶ ℝ → 𝐷(𝜃, 𝑝) be𝑇-periodic. Then there exist constants 𝑟 ⩽ 𝑅 and 𝑐 = 𝑐(𝑇, 𝜃, 𝑝, 𝑅) > 0 such that
if ‖𝐹(⋅, 0)‖𝔽 ⩽ 𝑐 and ‖𝑓‖𝔽 ⩽ 𝑐, there is a unique solution 𝑢 ∶ ℝ → 𝐷(𝜃, 𝑝) of (SACP) with the
same period 𝑇 and 𝑢|(0,𝑇) ∈ 𝔹𝑅 .

We remark that in contrast to Theorem 2.2, it is possible to choose 𝑟 = 𝑅 in the preceding corol-
lary.

3 THEMIXED DERIVATIVE THEOREM FOR EVOLUTION
EQUATIONS IN REAL INTERPOLATION SPACES

This section presents the mixed derivative theorem for evolution equations in real interpola-
tion spaces. Apart from its general interest, mixed derivative results for the Laplacian in real
interpolation spaces will be needed in our approach to the Keller–Segel system in Section 4.
In the sequel, we denote by (𝑋) the class of sectorial operators in 𝑋, and given 𝐴 ∈ (𝑋), we

define the spectral angle 𝜙𝐴 of 𝐴 by

𝜙𝐴 ∶= inf {𝜙 ∶ 𝜌(−𝐴) ⊃ Σ𝜋−𝜙, sup
𝜆∈Σ𝜋−𝜙

‖𝜆(𝜆 + 𝐴)−1‖ < ∞}.

For details concerning the concepts of operators with bounded∞-calculus, the class of operators
with bounded imaginary powers  as well as -sectorial operators we refer, for example, to
[14, sections 2, 3, and 4] as well as to [38, chapters 3 and 4].
First, let 𝐽 = (0, 𝑇) with 0 < 𝑇 < ∞, or 𝐽 = ℝ+, 𝑌 be a Banach space with the UMD-property

and 𝑝 ∈ [1,∞]. Then the negative derivative operator 𝐵𝑝 in 𝐿𝑝(𝐽; 𝑌) is defined by

(𝐵𝑝𝑢)(𝑡) = −𝑢′(𝑡), 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐷(𝐵𝑝) = 𝑊1,𝑝(𝐽; 𝑌). (3.1)

For 𝐽 = (0, 𝑇) or 𝐽 = ℝ+, a Banach space𝑋 and a differential operator𝐴 on𝑋, we still denote the
realization of 𝐴 on the space 𝐷𝐴(𝜃, 𝑞), which is defined as in (1.1), and the canonical extension of
𝐴 to 𝐿𝑝(𝐽; 𝑋) by𝐴 for convenience. Moreover, similarly as in Section 2, we introduce the notation
𝐸1(𝐴) to denote the domain of the realization of the operator 𝐴 on the space 𝐷𝐴(𝜃, 𝑞), that is,

𝐸1(𝐴) ∶= {𝑢 ∈ 𝐷(𝐴) ∶ 𝐴𝑢 ∈ 𝐷𝐴(𝜃, 𝑞)}.

The main result of this section reads as follows.

Theorem 3.1. Let 𝑋 be a Banach space with the UMD-property, and let 𝐴 ∈ (𝑋) with spectral
angle 𝜙𝐴 < 𝜋

2
be invertible. Let further 𝐽 = (0, 𝑇) or 𝐽 = ℝ+, 1 < 𝑝 < ∞ and 1 < 𝑞 < ∞. Moreover,

let 𝐵𝑝 in 𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞)) be defined as in (3.1), and suppose that the canonical extension of 𝐴 to
𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞)), still denoted by 𝐴, and 𝐵𝑝 commute. Then, for every 𝛼 ∈ (0, 1) it holds that

𝑊1,𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞)) ∩ 𝐿𝑝(𝐽; 𝐸1(𝐴)) ↪ 𝐻𝛼,𝑝(𝐽; (𝐷𝐴(𝜃, 𝑞), 𝐸1(𝐴))1−𝛼).
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The first consequence of the preceding theorem concerns the Laplacian on ℝ𝑑, 𝑑 ∈ ℕ. More
precisely, for 1 < 𝑞 < ∞, let the negative Laplacian −Δ in 𝐿𝑞(ℝ𝑑) be defined by 𝐴𝑢 = −Δ𝑢, with
𝐷(𝐴) = 𝑊2,𝑞(ℝ𝑑). It is well-known that 𝐴 ∈ (𝐿𝑞(ℝ𝑑)) with 𝜙𝐴 = 0, see, for example, [14]. The
same remains valid when considering a shift of the Laplacian, that is, we define 𝐴𝐼 by

𝐴𝐼𝑢 = (𝐼 − Δ)𝑢, 𝐷(𝐴𝐼) = 𝐷(𝐴) = 𝑊2,𝑞(ℝ𝑑).

This implies 𝐷𝐴𝐼
(𝜃, 𝑞) = 𝐵2𝜃𝑞𝑝(ℝ

𝑑) with equivalent norms in view of [38, Proposition 3.4.4]. The
identification of the real interpolation space as a Besov space is classical and can be found, for
example, in [42, Section 2.4.2]. Moreover, 𝐴𝐼 is invertible. The fact that 𝐸1(𝐴𝐼) = 𝐵2𝜃+2𝑞𝑝 (ℝ𝑑) and
an application of Theorem 3.1 then yield the following corollary.

Corollary 3.2. Let 𝑇 > 0, 𝐽 = (0, 𝑇) or 𝐽 = ℝ+, 0 < 𝜃 < 1, 1 < 𝑝 < ∞ and 1 < 𝑞 < ∞. Then for
every 𝛼 ∈ (0, 1) we have the embedding

𝑊1,𝑝(𝐽; 𝐵2𝜃𝑞𝑝(ℝ
𝑑)) ∩ 𝐿𝑝(𝐽; 𝐵2𝜃+2𝑞𝑝 (ℝ𝑑)) ↪ 𝐻𝛼,𝑝(𝐽; 𝐵2𝜃+2−2𝛼𝑞𝑝 (ℝ𝑑)).

The second application concerns the Dirichlet and Neumann Laplacian on bounded domains
with smooth boundaries. In fact, let 𝐺 ⊂ ℝ𝑑 be a bounded domain with boundary of class 𝐶2.
For 1 < 𝑞 < ∞ and 𝐿𝑞(𝐺) we consider the negative Dirichlet Laplacian −Δ𝐷 and the negative
Neumann Laplacian defined by

Δ𝐷𝑢=Δ𝑢,𝐷(Δ𝐷)=𝑊2,𝑞(𝐺) ∩𝑊
1,𝑞

0
(𝐺) and Δ𝑁𝑢=Δ𝑢,𝐷(Δ𝑁)= {𝑢 ∈ 𝑊2,𝑞(𝐺) ∶ 𝜕𝜈𝑢 = 0 on 𝜕𝐺},

respectively. The results in [14] imply that−Δ𝐷 ,−Δ𝑁 ∈ (𝐿𝑞(𝐺))with 𝜙−Δ𝐷 = 𝜙−Δ𝑁 = 0, and it is
well-known that𝐷(Δ𝐷) and𝐷(Δ𝑁) are UMD-spaces. As the Neumann Laplacian is not invertible
on 𝐿𝑞(𝐺), we use again a shift and set

𝐴𝑁,𝐼𝑢 = (𝐼 − Δ)𝑢, with 𝐷(𝐴𝑁,𝐼) = 𝐷(Δ𝑁).

Then 𝐴𝑁,𝐼 ∈ (𝐿𝑞(𝐺)) as well as 𝜙𝐴𝑁,𝐼
= 0.

In the sequel, we use the prescripts 0 and𝑁 to denote Dirichlet and Neumann boundary condi-
tions in the spaces involved, respectively. For 0 < 𝜃 < 1 and 1 < 𝑞 < ∞, [38, Proposition 3.4.4] in
conjunction with [1, chapter 5] leads to 𝐷−Δ𝐷

(𝜃, 𝑞) = 𝐵2𝜃𝑞𝑝(𝐺) if 2𝜃 <
1

𝑞
and 𝐷𝐴𝑁,𝐼

(𝜃, 𝑞) = 𝐵2𝜃𝑞𝑝(𝐺)

provided 2𝜃 < 1 + 1

𝑞
. In addition, we observe that

𝐸1(−Δ𝐷) = {𝑢 ∈ 𝐵2𝜃+2𝑞𝑝 (𝐺) ∶ 𝑢 = 0 on 𝜕𝐺} =∶ 0𝐵
2𝜃+2
𝑞𝑝 (𝐺), and

𝐸1(𝐴𝑁,𝐼) = {𝑢 ∈ 𝐵2𝜃+2𝑞𝑝 (𝐺) ∶ 𝜕𝜈𝑢 = 0 on 𝜕𝐺} =∶ 𝑁𝐵
2𝜃+2
𝑞𝑝 (𝐺).

Employing Theorem 3.1 again, we infer the subsequent result by virtue of [21, Theorem 2.3].

Corollary 3.3. Let 𝑇 > 0, 𝐽 = (0, 𝑇) or 𝐽 = ℝ+, 0 < 𝜃 < 1, 1 < 𝑝 < ∞ and 1 < 𝑞 < ∞.
(a) If 2𝜃 < 1

𝑞
, then for each 𝛼 ∈ (0, 1), 𝛼 ≠ 𝜃 + 1 − 1

2𝑞
,

𝑊1,𝑝(𝐽; 𝐵2𝜃𝑞𝑝(𝐺)) ∩ 𝐿𝑝(𝐽; 0𝐵
2𝜃+2
𝑞𝑝 (𝐺)) ↪

⎧⎪⎨⎪⎩
𝐻𝛼,𝑝(𝐽; 𝐵2𝜃+2−2𝛼𝑞𝑝 (𝐺)), if 2𝜃 + 2 − 2𝛼 < 1

𝑞
,

𝐻𝛼,𝑝(𝐽; 0𝐵
2𝜃+2−2𝛼
𝑞𝑝 (𝐺)), if 2𝜃 + 2 − 2𝛼 > 1

𝑞
.
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(b) If 2𝜃 < 1 + 1

𝑞
, then

𝑊1,𝑝(𝐽; 𝐵2𝜃𝑞𝑝(𝐺)) ∩ 𝐿𝑝(𝐽; 𝑁𝐵
2𝜃+2
𝑞𝑝 (𝐺)) ↪

⎧⎪⎨⎪⎩
𝐻𝛼,𝑝(𝐽; 𝐵2𝜃+2−2𝛼𝑞𝑝 (𝐺)), if 2𝜃 + 2 − 2𝛼 < 1 + 1

𝑞
,

𝐻𝛼,𝑝(𝐽; 𝑁𝐵
2𝜃+2−2𝛼
𝑞𝑝 (𝐺)), if 2𝜃 + 2 − 2𝛼 > 1 + 1

𝑞

for all 𝛼 ∈ (0, 1), 𝛼 ≠ 𝜃 + 1

2
− 1

2𝑞
.

The remainder of this section is dedicated to proving Theorem 3.1.We first collect several useful
properties in the next lemma.

Lemma 3.4. (a) Let 𝑝 ∈ (1,∞), 𝐽 = (0, 𝑇) or 𝐽 = ℝ+, 𝑌 be a Banach space with the UMD-property,
and let 𝐵𝑝 be defined as in (3.1). Then 𝐵𝑝 ∈ ∞(𝐿𝑝(𝐽; 𝑌)) with∞-angle 𝜙∞

𝐵𝑝
= 𝜋

2
.

(b) If 𝑋 is an arbitrary Banach space, 𝐴 ∈ (𝑋) is invertible, 𝜃 ∈ (0, 1) and 1 ⩽ 𝑞 < ∞, then it
holds that 𝐴 ∈ ∞(𝐷𝐴(𝜃, 𝑞)) with∞-angle equal to 𝜙𝐴.
(c) For 𝐴 ∈ (𝑋) define 𝑋𝛼 by 𝑋𝛼 = 𝑋𝐴𝛼 = (𝐷(𝐴𝛼), ‖ ⋅ ‖𝛼), with ‖𝑥‖𝛼 = ‖𝑥‖ + ‖𝐴𝛼𝑥‖ for

0 < 𝛼 < 1. If 𝐴 ∈ (𝑋), then 𝑋𝛼 ≅ (𝑋,𝑋𝐴)𝛼 , 𝛼 ∈ (0, 1), where (𝑋, 𝑋𝐴)𝛼 denotes the complex
interpolation space between 𝑋 and 𝑋𝐴 ↪ 𝑋 of order 𝛼.
(d) Let 𝑋 and 𝑌 be Banach spaces with the UMD-property as well as 𝜃 ∈ (0, 1) and 1 < 𝑞 < ∞.

Then (𝑋, 𝑌)𝜃,𝑞 also has the UMD-property.

Proof of Lemma 3.4. Concerning (𝑎) we refer to [33, Theorem 2.7] for 𝐽 = ℝ+. The case 𝐽 = (0, 𝑇)

readily follows by the subsequent observations. Denoting by 𝐸(0,𝑇) and 𝑅(0,𝑇) the extension and
restriction operator, from 𝐿𝑝(0, 𝑇; 𝑌) → 𝐿𝑝(ℝ+; 𝑌) and 𝐿𝑝(ℝ+; 𝑌) → 𝐿𝑝(0, 𝑇; 𝑌), respectively, we
see that for 𝜆 ∈ ℂ with | arg 𝜆| > 𝜋

2
, the resolvent 𝑅(𝜆, 𝐵𝑝,(0,𝑇)) of 𝐵𝑝,(0,𝑇) can be represented by

𝑅(𝜆, 𝐵𝑝,(0,𝑇)) = 𝑅(0,𝑇)𝑅(𝜆, 𝐵𝑝,ℝ+
)𝐸(0,𝑇).

In conjunction with

𝑓(𝐵𝑝,(0,𝑇))𝑣 = 𝑅(0,𝑇)𝑓(𝐵𝑝,ℝ+
)𝐸(0,𝑇)𝑣, for 𝑣 ∈ 𝐿𝑝(0, 𝑇; 𝑌) and 𝑓 ∈ ∞

0 (Σ𝜃),

this yields the claim for 𝐽 = (0, 𝑇).
Property (𝑏) is a result due to Dore [15]. For (𝑐), we refer, for example, to [14, Theorem 2.5],

while (𝑑) can be found in [2, Theorem III.4.5.2 (vii)]. □

Prior to provingTheorem3.1,we recall the following relations, see, for instance, [14, section 4.4],
and the references therein:

𝐴 ∈ ∞(𝑋) ⊂ (𝑋) ⊂ (𝑋) ⊂ (𝑋) and 𝜙∞
𝐴

⩾ 𝜃𝐴 ⩾ 𝜙
𝐴
⩾ 𝜙𝐴. (3.2)

Proof of Theorem 3.1. We already know that 𝐷𝐴(𝜃, 𝑞) = (𝑋,𝐷(𝐴))𝜃,𝑞 with equivalent norms.
Thanks to 0 ∈ 𝜌(𝐴), the norm of the real interpolation space is equivalent to the homoge-
neous norm [⋅]𝜃,𝑞 by [22, Corollary 6.5.5]. We remark that 𝐷(𝐴) also has the UMD-property,
as 𝐴−1 ∶ 𝑋 → 𝐷(𝐴) is an isomorphism, transferring the UMD-property from 𝑋 to 𝐷(𝐴). Thus,
Lemma 3.4(d) implies that 𝐷𝐴(𝜃, 𝑞)) has the UMD-property, so Lemma 3.4(a) yields that the
negative derivative operator satisfies 𝐵𝑝 ∈ ∞(𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞))) with 𝜙∞𝐵𝑝 =

𝜋

2
.
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Moreover, Lemma3.4(b) implies that𝐴 ∈ ∞(𝐷𝐴(𝜃, 𝑞))with∞-angle less than 𝜋

2
, so employ-

ing the natural extension, we infer that 𝐴 ∈ ∞(𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞))) with∞-angle less than 𝜋

2
. We

then deduce from (3.2) that

𝐴 ∈ (𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞))) and 𝐴 ∈ (𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞))), with-angle less than 𝜋

2
. (3.3)

Summing up,we have verified that𝐵𝑝 ∈ ∞(𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞))),𝐴 ∈ (𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞))) aswell
as 𝜙∞

𝐵𝑝
+ 𝜙

𝐴
< 𝜋, and 𝐵𝑝 and 𝐴 commute by assumption. Therefore, denoting by 𝐴 the oper-

ator 𝐴 on 𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞)), we conclude by the mixed derivative theorem in the version of [38,
Corollary 4.5.10] that

𝑊1,𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞)) ∩ 𝐿𝑝(𝐽; 𝐸1(𝐴)) = 𝐷(𝐵𝑝) ∩ 𝐷(𝐴) ↪ 𝐷(𝐵𝛼𝑝𝐴
1−𝛼).

We argue that the last embedding in the statement of the theorem is valid by an application of
Lemma 3.4(c). The application is legit by recalling (3.3) and in view of 𝐵𝑝 ∈ (𝐿𝑝(𝐽; 𝐷𝐴(𝜃, 𝑞)))

by (3.2). □

4 PERIODIC SOLUTIONS TO THE QUASILINEAR CHEMOTAXIS
SYSTEM

In this section, we show how Theorem 2.2 can be applied to quasilinear chemotaxis systems, that
is, we show the existence of strong time periodic solutions to (PQKS). In addition, we discuss a
slight transform of the model to take into account the physical background.
Throughout this section, let 𝑑 ∈ ℕ, 𝑑 ⩾ 2, and denote by Ω ⊂ ℝ𝑑 a bounded domain with

smooth boundary. Let 𝑓 = (𝑓𝑛, 𝑓𝑐)
T be a given 𝑇-periodic function. Assume first that (𝑛, 𝑐)T is a

𝑇-periodic solution to (PQKS). Integrating the first equation in (PQKS) and using the divergence
theorem as well as the Neumann boundary condition, we infer that

d

dt ∫Ω 𝑛(𝑡, 𝑥) dx = ∫Ω 𝑓𝑛(𝑡, 𝑥) dx = |Ω|𝑓𝑛(𝑡)
is valid for all 𝑡 > 0, where 𝑓𝑛 denotes the spatial average of 𝑓𝑛. For 𝑀(𝑡) ∶= 1|Ω| ∫Ω 𝑛(𝑡, 𝑥) dx
we thus get𝑀(𝑡) = 𝑀(0) + ∫ 𝑡

0 𝑓𝑛(𝑠) ds, so 𝑇-periodicity of 𝑛 yields that𝑀(0) = 𝑀(𝑇) and hence
∫ 𝑇
0 𝑓𝑛(𝑡) dt = 0. The spatial average 𝑓𝑛 of 𝑓𝑛 thus has to have mean 0 in our further analy-
sis. In fact, with 𝐿

𝑞

0
(Ω) denoting the space of functions in 𝐿𝑞(Ω) with spatial average 0, that is,

𝐿
𝑞

0
(Ω) ∶= {g ∈ 𝐿𝑞(Ω) ∶ ∫

Ω g dx = 0}, we will show in Lemma 6.1 that 𝐷1
𝐴0
(𝜃, 𝑝) = 𝐵2𝜃𝑞𝑝(Ω) ∩

𝐿
𝑞

0
(Ω), so the assumption that 𝑓 = (𝑓𝑛, 𝑓𝑐)

T ∶ ℝ → 𝐷𝐴0
(𝜃, 𝑝) is 𝑇-periodic in Theorem 4.2

especially yields that ∫ 𝑇
0 𝑓𝑛(𝑡) dt = 0 in view of 𝑓𝑛(𝑡, ⋅) ∈ 𝐿

𝑞

0
(Ω).

For 𝑝, 𝑞 ∈ (1,∞) and 𝑘 ∈ ℕ we consider 𝐿𝑞
0
(Ω) as above and the Sobolev space with Neumann

boundary condition𝑊𝑘,𝑞

𝑁
(Ω) ∶= {𝑓 ∈ 𝑊𝑘,𝑞(Ω) ∶

𝜕𝑓

𝜕𝜈
= 0 on 𝜕Ω}. The ground space is given by

𝑋0 ∶= 𝐿
𝑞

0
(Ω) ×𝑊1,𝑞(Ω). (4.1)

We denote by Δ𝑁 the Neumann Laplacian on 𝐿𝑞
0
(Ω) with domain 𝐷(Δ𝑁) = 𝑊

2,𝑞

𝑁
(Ω) ∩ 𝐿

𝑞

0
(Ω),

and (Δ𝑁 − 1)1 represents the translated Neumann Laplacian on 𝑊1,𝑞(Ω) with domain given
by 𝐷((Δ𝑁 − 1)1) = 𝑊

3,𝑞

𝑁
(Ω). As we consider the quasilinear setting, for 𝑛 sufficiently smooth
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we also introduce the linearized operator ∇ ⋅ ((𝑛 + 1)𝑚∇) on 𝐿
𝑞

0
(Ω), and it has the domain

𝐷(∇ ⋅ ((𝑛 + 1)𝑚∇)) = 𝑊
2,𝑞

𝑁
(Ω) ∩ 𝐿

𝑞

0
(Ω).

For 𝑤 = (𝑛, 𝑐)T, we now define the operator 𝐴(𝑤) and the right-hand side 𝐹(𝑤) by

𝐴(𝑤) ∶= −

(
∇ ⋅ ((𝑛 + 1)𝑚∇) 0

1 (Δ𝑁 − 1)1

)
, 𝐹(𝑤) ∶=

(
−∇ ⋅ (𝑛∇𝑐)

0

)
. (4.2)

For 𝑤 = (𝑛, 𝑐)T and 𝑧 = (𝑧1, 𝑧2)
T, we thus have

𝐴(0) = −

(
Δ𝑁 0

1 (Δ𝑁 − 1)1

)
and 𝐴(𝑤)𝑧 = −

(
∇ ⋅ ((𝑛 + 1)𝑚∇𝑧1)

𝑧1 + (Δ𝑁 − 1)1𝑧2

)
. (4.3)

For a 𝑇-periodic function 𝑓 = (𝑓𝑛, 𝑓𝑐)
T, we may thus rewrite (PQKS) as{

𝑤′(𝑡) + 𝐴(𝑤(𝑡))𝑤(𝑡) = 𝐹(𝑤(𝑡)) + 𝑓(𝑡), 𝑡 ∈ ℝ,

𝑤(𝑡) = 𝑤(𝑡 + 𝑇), 𝑡 ∈ ℝ.

We next verify that 𝐴0 ∶= 𝐴(0) defined as in (4.3) is within the scope of Section 2.

Lemma 4.1. Let 𝑋0 be as in (4.1). Then the operator −𝐴0 defined as in (4.3) generates a bounded
analytic semigroup 𝑒−𝑡𝐴0 and 0 ∈ 𝜌(𝐴0), that is, it satisfies aspect (G0) of Assumption Q.

Proof. First, we observe that 0 ∈ 𝜌(Δ𝑁), which is due to the underlying space 𝐿𝑞
0
(Ω), as well

as 0 ∈ 𝜌((Δ𝑁 − 1)1) in view of 0 ∈ 𝜌(Δ𝑁 − 1) and Banach scale arguments, see, for example,
[2, Theorem V.1.5.1]. The triangular structure of 𝐴0 yields that 0 ∈ 𝜌(𝐴0).
From results in [14], it follows that the Neumann Laplacian Δ𝑁 generates a bounded analytic

semigroup of angle 𝜋

2
on 𝐿𝑞(Ω), that is, see, for example, [3, Theorem 3.7.11], Σ𝜋 ⊂ 𝜌(Δ𝑁) and

sup
𝜆∈Σ𝜋−𝜀

‖𝜆𝑅(𝜆, Δ𝑁)‖(𝐿𝑞(Ω)) < ∞ (4.4)

for all 𝜀 > 0. We define the projection 𝑃 ∶ 𝐿𝑞(Ω) → 𝐿
𝑞

0
(Ω) onto the closed subspace 𝐿𝑞

0
(Ω) by

Pu ∶= 𝑢 −
1|Ω| ∫Ω 𝑢 dx.

As for all 𝑢 ∈ 𝐷(Δ𝑁), we have 𝑃𝑢 ∈ 𝐷(Δ𝑁) and

𝑃(Δ𝑁𝑢) = Δ𝑢 −
1|Ω| ∫Ω Δ𝑢 dx = Δ𝑢 −

1|Ω| ∫𝜕Ω 𝜕𝜈𝑢 ds = Δ𝑢 = Δ𝑁(Pu)

by virtue of the divergence theorem and the Neumann boundary condition, we deduce the iden-
tity 𝑅(𝜆, Δ𝑁)𝑃 = 𝑃𝑅(𝜆, Δ𝑁) for all 𝜆 ∈ 𝜌(Δ𝑁), see, for example, [3, Proposition B.7]. Given any
𝑓 ∈ 𝐿

𝑞

0
(Ω) ⊂ 𝐿𝑞(Ω), there exists a unique 𝑢 ∈ 𝐷(Δ𝑁) such that (𝜆 − Δ𝑁)𝑢 = 𝑓, so

𝑢 = 𝑅(𝜆, Δ𝑁)𝑓 = 𝑅(𝜆, Δ𝑁)𝑃𝑓 = 𝑃𝑅(𝜆, Δ𝑁)𝑓 ∈ 𝐷(Δ𝑁) ∩ 𝐿
𝑞

0
(Ω).

We thus get for 𝜆 ∈ Σ𝜋−𝜀, 𝜀 > 0, that

‖𝜆𝑅(𝜆, Δ𝑁)𝑓‖𝐿𝑞
0
(Ω) = ‖𝜆𝑅(𝜆, Δ𝑁)𝑓‖𝐿𝑞(Ω),

so by (4.4) and [3, Theorem 3.7.11], Δ𝑁 generates a bounded analytic semigroup on 𝐿𝑞
0
(Ω).
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On the other hand, we deduce from results in [13] that the translated Neumann Lapla-
cian is in the class of operators with bounded imaginary powers on 𝐿𝑞(Ω), that is, −Δ𝑁 + 1 ∈

(𝐿𝑞(Ω)). For 𝑋𝛼 = (𝐷((−Δ𝑁 + 1)𝛼), ‖ ⋅ ‖𝛼) as in Lemma 3.4(c), 𝛼 ∈ ℝ, additionally making
use of 0 ∈ 𝜌(−Δ𝑁 + 1), we then infer by [2, Proposition V.1.5.5] that (−Δ𝑁 + 1)𝛼 ∈ (𝑋𝛼).
This is in particular valid for 𝛼 = 1

2
, and for convenience we denote the corresponding operator

by (−Δ𝑁 + 1)1. By Lemma 3.4(c), it follows that 𝐷((−Δ𝑁 + 1)1) ≅ (𝐿𝑞(Ω),𝑊
2,𝑞

𝑁
(Ω))1∕2. Together

with [1, Theorem 5.2 and (5.2)], this yields that

𝐷((−Δ𝑁 + 1)1) = (𝐿𝑞(Ω),𝑊
2,𝑞

𝑁
(Ω))1∕2 = 𝐻1,𝑞(Ω) = 𝑊1,𝑞(Ω).

Concatenating the previous steps, we argue that (−Δ𝑁 + 1)1 ∈ (𝑊1,𝑞(Ω)), so it follows that
−(−Δ𝑁 + 1)1 = (Δ𝑁 − 1)1 generates a bounded analytic semigroup on𝑊1,𝑞(Ω).
Exploiting the triangular structure and the invertibility of the operators involved, we conclude

that −𝐴0 generates a bounded analytic semigroup on 𝑋0. □

We recall that

𝐷(𝐴0) = 𝐷(Δ𝑁) × 𝐷((Δ𝑁 − 1)1) = 𝑊
2,𝑞

𝑁
(Ω) ∩ 𝐿

𝑞

0
(Ω) ×𝑊

3,𝑞

𝑁
(Ω).

Following Section 2, for 𝑋0 as in (4.1) and 𝐴0 as in (4.3) we define the space 𝐷𝐴0
(𝜃, 𝑝) by

𝐷𝐴0
(𝜃, 𝑝) ∶=

{
𝑥 ∈ 𝑋0 ∶ [𝑥]𝜃,𝑝 ∶=

(
∫

∞

0

‖𝑡1−𝜃𝐴0𝑒
−𝑡𝐴0𝑥‖𝑝

𝑋0

dt
𝑡

)1∕𝑝

< ∞

}
.

Accordingly, we define the solution space by

𝔼
per

𝐴0
∶= {𝑤 ∈ 𝑊1,𝑝(0, 𝑇; 𝐷𝐴0

(𝜃, 𝑝)) ∶ 𝐴0𝑤 ∈ 𝐿𝑝(0, 𝑇; 𝐷𝐴0
(𝜃, 𝑝)) and 𝑤(0) = 𝑤(𝑇)} (4.5)

with norm

‖𝑤‖𝔼per
𝐴0

∶= ‖𝑤‖𝑊1,𝑝(0,𝑇;𝐷𝐴0
(𝜃,𝑝)) + ‖𝐴0𝑤‖𝐿𝑝(0,𝑇;𝐷𝐴0

(𝜃,𝑝)),

and the underlying data space is 𝔽𝐴0
∶= 𝐿𝑝(0, 𝑇; 𝐷𝐴0

(𝜃, 𝑝)). In the sequel for 𝑟 > 0, we denote by
𝔹𝑟 the open ball with center 0 and radius 𝑟 in 𝔼

per

𝐴0
.

We require some additional assumptions on 𝑝 and 𝑞. For some fixed 𝑟 ∈ (1,∞), suppose that

𝑝 > 2𝑟 and 𝑞 > 𝑟

𝑟 − 1
(𝑑 − 1). (4.6)

Our result on strong periodic solutions to the quasilinear chemotaxis system reads as follows.

Theorem 4.2. Let 𝑇 > 0, 0 < 𝜃 < 1, 1 < 𝑝 < ∞ and 1 < 𝑞 < ∞ subject to (4.6) and such that
𝜃 < 1∕2 + 1∕(2𝑞) and 2𝜃 > 𝑑∕𝑞 + 1∕𝑟. Then there are 𝑅 > 0 and 𝑐 = 𝑐(𝑇, 𝜃, 𝑝, 𝑅) > 0 such that
if 𝑓 = (𝑓𝑛, 𝑓𝑐)

T ∶ ℝ → 𝐷𝐴0
(𝜃, 𝑝) is 𝑇-periodic with ‖𝑓‖𝔽𝐴0 ⩽ 𝑐, there exists a unique solution

𝑤 ∶ ℝ → 𝐷𝐴0
(𝜃, 𝑝) of (PQKS) with the same period 𝑇 and 𝑤|(0,𝑇) ∈ 𝔹𝑅 .

Remark 4.3. An analogous result to Theorem 4.2 can be shown for the classical semilinearKeller–
Segel system. We remark that not only the additional assumption (4.6) can then be removed, but
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it is also possible to consider 𝑝 = 1 in this case. In total, we require that 𝜃 ∈ (0, 1), 𝑝 ∈ [1,∞) and
𝑞 ∈ (1,∞) satisfy 𝜃 < 1∕2 + 1∕(2𝑞) and 2𝜃 > 𝑑∕𝑞 or, if 𝑝 = 1, 2𝜃 ⩾ 𝑑∕𝑞.

As 𝑛 and 𝑐 denote a density and a concentration, respectively, it is natural to demand that
𝑛, 𝑐 ⩾ 0. Let𝑓 = (𝑓𝑛, 𝑓𝑐)

T be a given𝑇-periodic function and consider a𝑇-periodic solution (𝑁, 𝐶)
to (PQKS), where𝑁 and𝐶 are nonnegative, implying that𝑁(⋅, 0) and𝐶(⋅, 0) are in particular non-
negative at time 𝑡 = 0. The comparison principle yields that 𝑓𝑛 and 𝑓𝑐 must be nonnegative to
guarantee the nonnegativity of 𝑁 and 𝐶. If we assume that 𝑓𝑛 and 𝑓𝑐 are nonnegative, we inte-
grate the first equation in (PQKS) and make use of the Neumann boundary conditions of 𝑁 and
𝐶 together with the divergence theorem to deduce that for any 𝑡 > 0

d

dt ∫Ω 𝑁(𝑡, 𝑥) dx = ∫Ω 𝑓𝑛(𝑡, 𝑥) dx = |Ω|𝑓𝑛(𝑡),
where 𝑓𝑛 represents the spatial average of 𝑓𝑛 as above. Setting 𝑉(𝑡) ∶= 1|Ω| ∫Ω 𝑁(𝑡, 𝑥) dx, we
observe that 𝑉(𝑡) = 𝑉(0) + ∫ 𝑡

0 𝑓𝑛(𝑡) dt. From the 𝑇-periodicity of 𝑁 it follows that 𝑉(𝑇) = 𝑉(0),
resulting in ∫ 𝑇

0 𝑓𝑛(𝑡) dt = 0, which in turns implies that 𝑓𝑛 ≡ 0 by nonnegativity of 𝑓𝑛. As a result,
it holds that 𝑉(𝑡) = 𝑉(0) =∶ 𝑉 is a constant for each 𝑡 ⩾ 0.
Having clarified the situation for nonnegative density and concentration, we set

𝑛(𝑡, 𝑥) ∶= 𝑁(𝑡, 𝑥) − 𝑉 as well as 𝑐(𝑡, 𝑥) ∶= 𝐶(𝑡, 𝑥) − 𝑉, so it follows that ∫
Ω 𝑛(𝑡, 𝑥) dx = 0,

and (𝑛, 𝑐)T is a solution to

⎧⎪⎨⎪⎩
𝑛𝑡 = ∇ ⋅ ((𝑛 + 𝑉 + 1)𝑚∇𝑛) − ∇ ⋅ ((𝑛 + 𝑉)∇𝑐), 𝑥 ∈ Ω, 𝑡 ∈ ℝ,

𝑐𝑡 = Δ𝑐 − 𝑐 + 𝑛 + 𝑓𝑐(𝑡), 𝑥 ∈ Ω, 𝑡 ∈ ℝ,

𝜕𝑛

𝜕𝜈
= 𝜕𝑐

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ ℝ.

(PQKS-V)

The following result can be shown analogously as Theorem 4.2.

Proposition 4.4. Let 𝑇 > 0, 0 < 𝜃 < 1, 1 < 𝑝 < ∞ and 1 < 𝑞 < ∞ subject to (4.6) and such that
𝜃 < 1∕2 + 1∕(2𝑞) and 2𝜃 > 𝑑∕𝑞. Then there are 𝑅 > 0, 𝑐 = 𝑐(𝑇, 𝜃, 𝑝, 𝑅) > 0 and 𝑉0 such that if
𝑓 = (0, 𝑓𝑐)

T ∶ ℝ → 𝐷𝐴0
(𝜃, 𝑝) is 𝑇-periodic with ‖𝑓‖𝔽𝐴0 ⩽ 𝑐 and 𝑉 < 𝑉0, there exists a unique

solution 𝑤 ∶ ℝ → 𝐷𝐴0
(𝜃, 𝑝) of (PQKS-V) with the same period 𝑇 and 𝑤|(0,𝑇) ∈ 𝔹𝑅 .

5 PERIODIC SOLUTIONS TO A NERNST–PLANCK–POISSON TYPE
SYSTEM

This section is devoted to the study of strong, time periodic solutions to (PNPP) by means of
Corollary 2.3.
Consider Ω ⊂ ℝ𝑑, 𝑑 ∈ ℕ, a bounded domain with smooth boundary, and let g = (g𝑢, g𝑣, g𝑤)T

denote a given 𝑇-periodic function. As in Section 4, we see that ∫ 𝑇
0 g𝑢(𝑡) dt = ∫ 𝑇

0 g𝑣(𝑡) dt = 0, g𝑢
and g𝑣 being the respective spatial averages, is a necessary condition for the existence of strong
solutions, and that it is satisfied for𝑇-periodic g = (g𝑢, g𝑣, g𝑤)T ∶ ℝ → 𝐷𝐵(𝜃, 𝑝). The ground space
in this context is

𝑋0 ∶= 𝐿
𝑞

0
(Ω) × 𝐿

𝑞

0
(Ω) ×𝑊

2,𝑞

𝑁
(Ω) ∩ 𝐿

𝑞

0
(Ω). (5.1)
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Again, Δ𝑁 represents the Neumann Laplacian on 𝐿𝑞
0
(Ω)with domain 𝐷(Δ𝑁) = 𝑊

2,𝑞

𝑁
(Ω) ∩ 𝐿

𝑞

0
(Ω).

Moreover, we denote by Δ2
𝑁
the Neumann Laplacian on 𝐷(Δ𝑁), so its domain is given by

{𝑤 ∈ 𝑊
4,𝑞

𝑁
(Ω) ∶ 𝜕𝜈Δ𝑤 = 0 on 𝜕Ω} ∩ 𝐿

𝑞

0
(Ω).

For 𝑧 = (𝑢, 𝑣, 𝑤)T we define the operator 𝐵 and the right-hand side term 𝐺(𝑧) for the Nernst–
Planck–Poisson type system by

𝐵 ∶= −
⎛⎜⎜⎝
Δ𝑁 0 0

0 Δ𝑁 0

1 −1 Δ2
𝑁

⎞⎟⎟⎠ , 𝐺(𝑧) ∶=
⎛⎜⎜⎝
∇ ⋅ (𝑢∇𝑤)
−∇ ⋅ (𝑣∇𝑤)

0

⎞⎟⎟⎠ . (5.2)

Thus, given a 𝑇-periodic function g = (g𝑢, g𝑣, g𝑤)T, we rewrite (PNPP) as{
𝑧′(𝑡) + 𝐵𝑧(𝑡) = 𝐺(𝑧(𝑡)) + g(𝑡), 𝑡 ∈ ℝ,

𝑧(𝑡) = 𝑧(𝑡 + 𝑇), 𝑡 ∈ ℝ.

We have already argued in Section 4 that Δ𝑁 is invertible and generates a bounded ana-
lytic semigroup in the given setting. It then follows by Banach scale arguments as presented in
[2, chapter 5] that 0 ∈ 𝜌(Δ2

𝑁
) is also valid and that Δ2

𝑁
generates a bounded analytic semigroup

as well. Making use of the triangular structure of 𝐵 as in (5.2), we conclude that 0 ∈ 𝜌(𝐵) holds
true and that −𝐵 generates a bounded analytic semigroup 𝑒−𝑡𝐵 on 𝑋0. In summary, we obtain the
following.

Lemma 5.1. Let 𝑋0 be as in (5.1). Then the operator 𝐵 defined as in (5.2) fulfills assumption (G) as
in Section 2.

The associated trace space is then defined by

𝐷𝐵(𝜃, 𝑝) ∶=

{
𝑥 ∈ 𝑋0 ∶ [𝑥]𝜃,𝑝 ∶=

(
∫

∞

0

‖𝑡1−𝜃𝐵𝑒−tB𝑥‖𝑝
𝑋0

dt
𝑡

)1∕𝑝

< ∞

}
.

The data space is 𝔽𝐵 ∶= 𝐿𝑝(0, 𝑇; 𝐷𝐵(𝜃, 𝑝)), while the corresponding solution space is given by

𝔼
per

𝐵
∶= {𝑧 ∈ 𝑊1,𝑝(0, 𝑇; 𝐷𝐵(𝜃, 𝑝)) ∶ 𝐵𝑧 ∈ 𝐿𝑝(0, 𝑇; 𝐷𝐵(𝜃, 𝑝)) and 𝑧(0) = 𝑧(𝑇)}.

It is endowed with the norm

‖𝑧‖𝔼per
𝐵

∶= ‖𝑧‖𝑊1,𝑝(0,𝑇;𝐷𝐵(𝜃,𝑝))
+ ‖𝐵𝑧‖𝐿𝑝(0,𝑇;𝐷𝐵(𝜃,𝑝))

.

In the subsequent main result of this section, 𝔹𝑟 denotes the open ball with center 0 and radius 𝑟
in 𝔼

per

𝐵
.

Theorem 5.2. Let 𝑇 > 0, 0 < 𝜃 < 1, 1 ⩽ 𝑝 < ∞ and 1 < 𝑞 < ∞ such that 𝜃 < 1∕2 + 1∕(2𝑞). In
addition, let 2𝜃 > 𝑑∕𝑞 or, if 𝑝 = 1, let 2𝜃 ⩾ 𝑑∕𝑞. Then there are 𝑅 > 0 and 𝑐 = 𝑐(𝑇, 𝜃, 𝑝, 𝑅) > 0 such
that if g = (g𝑢, g𝑣, g𝑤)T ∶ ℝ → 𝐷𝐵(𝜃, 𝑝) is 𝑇-periodic with ‖g‖𝔽𝐵 ⩽ 𝑐, there exists a unique solution
𝑧 ∶ ℝ → 𝐷𝐵(𝜃, 𝑝) of (PNPP) with the same period 𝑇 and 𝑧|(0,𝑇) ∈ 𝔹𝑅.
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Note that it is possible to find 𝜃 ∈ (0, 1) and 𝑞 ∈ (1,∞) as required in Theorem 5.2 provided
𝑞 > 𝑑

2
and 𝑞 > 𝑑 − 1.

In contrast to Theorem 4.2, we can deal with the case 𝑝 = 1 in Theorem 5.2. The reason is that
the proof of the latter theorem does not rely on an application of the mixed derivative theorem in
real interpolation spaces, Theorem 3.1, which is in turn needed for the estimates in the proof of
Theorem 4.2. We refer to Lemma 6.3 for further details.

6 PROOF OF THEOREMS 4.2 AND 5.2

In the context of the chemotaxis system and the Nernst–Planck–Poisson type system, we consider
a bounded domainΩ ⊂ ℝ𝑑, 𝑑 ∈ ℕ, with smooth boundary, and we suppose that in addition 𝑑 ⩾ 2

for the chemotaxis system. For convenience we denote the domain by Ω in both cases. In the
sequel, we also use the notation

𝐷𝐴0
(𝜃, 𝑝) = 𝐷1

𝐴0
(𝜃, 𝑝) × 𝐷2

𝐴0
(𝜃, 𝑝) as well as 𝐷𝐵(𝜃, 𝑝) = 𝐷1

𝐵(𝜃, 𝑝) × 𝐷2
𝐵(𝜃, 𝑝) × 𝐷3

𝐵(𝜃, 𝑝).

By virtue of sectoriality of the operators involved, the trace spaces coincide with the real inter-
polation spaces, see, for example, [38, Proposition 3.4.4]. For the following results, we refer, for
example, to [1, 2], see also [39, section 5].

Lemma 6.1. Let 𝜃 ∈ (0, 1), 𝑝 ∈ (1,∞) and 𝑞 ∈ (1,∞). For 𝐷𝐵(𝜃, 𝑝) consider also 𝑝 = 1.
(a) If 𝜃 < 1

2
+ 1

2𝑞
, then

𝐷1
𝐴0
(𝜃, 𝑝) = 𝐵2𝜃𝑞𝑝(Ω) ∩ 𝐿

𝑞

0
(Ω), 𝐷1

𝐵(𝜃, 𝑝) = 𝐷2
𝐵(𝜃, 𝑝) = 𝐵2𝜃𝑞𝑝(Ω) ∩ 𝐿

𝑞

0
(Ω) and 𝐷3

𝐵(𝜃, 𝑝) = 𝑁𝐵
2𝜃+2
𝑞𝑝 (Ω)

with equivalent norms, and the prescript𝑁 denotes a Neumann boundary condition, see Section 3.
(b) If 2𝜃 > 𝑑

𝑞
, then

𝐷2
𝐴0
(𝜃, 𝑝) = {𝑐 ∈ 𝐵2𝜃+1𝑞𝑝 (Ω) ∶ 𝜕𝜈𝑐 = 0 on 𝜕Ω} with equivalent norms.

The following lemma is concerned with estimates for nonlinear terms. For related results on
less regular domains, we refer to [23, Lemma 5.2].

Lemma 6.2. Let 𝐺 be a bounded domain with smooth boundary, 𝜃 ∈ (0, 1), 𝑝 ∈ [1,∞) as well as
𝑞 ∈ (1,∞). If 𝜃 > 𝑑

2𝑞
or, if 𝜃 ⩾

𝑑

2𝑞
in the case 𝑝 = 1, then 𝐵2𝜃𝑞𝑝(𝐺) is a Banach algebra.

Recalling the definitions of 𝔼per
𝐴0

in (4.5), of 𝐴 and 𝐴(0) from (4.2) and (4.3), respectively, we
deduce from Lemma 6.1 that

𝔼
per,1
𝐴0

↪ 𝐿𝑝(0, 𝑇; 𝐵2𝜃+2𝑞𝑝 (Ω)) and 𝔼per,2
𝐴0

↪ 𝐿𝑝(0, 𝑇; 𝐵2𝜃+2𝑞𝑝 (Ω)). (6.1)

By a similar argument, and additionally using the embedding 𝑊1,𝑝(0, 𝑇; 𝑋) ↪ 𝐿∞(0, 𝑇; 𝑋),
which is true for arbitrary Banach spaces 𝑋, we conclude that

𝔼
per,1
𝐴0

↪ 𝑊1,𝑝(0, 𝑇; 𝐵2𝜃𝑞𝑝(Ω)) ↪ 𝐿∞(0, 𝑇; 𝐵2𝜃𝑞𝑝(Ω)) and (6.2)

𝔼
per,2
𝐴0

↪ 𝑊1,𝑝(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω)) ↪ 𝐿∞(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω)).
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Analogously, using that 𝐷3
𝐵
(𝜃, 𝑝) is in particular a subspace of 𝐵2𝜃+2𝑞𝑝 (Ω), we infer that

𝔼
per,1
𝐵

, 𝔼
per,2
𝐵

↪ 𝐿𝑝(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω)) and 𝔼per,3
𝐵

↪ 𝐿𝑝(0, 𝑇; 𝐵2𝜃+2𝑞𝑝 (Ω)) (6.3)

and

𝔼
per,1
𝐵

, 𝔼
per,2
𝐵

↪ 𝑊1,𝑝(0, 𝑇; 𝐵2𝜃𝑞𝑝(Ω)) ↪ 𝐿∞(0, 𝑇; 𝐵2𝜃𝑞𝑝(Ω)) as well as (6.4)

𝔼
per,3
𝐵

↪ 𝑊1,𝑝(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω)) ↪ 𝐿∞(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω)).

As 𝐵2𝜃𝑞𝑝(Ω) ↪ 𝐿∞(Ω) if and only if 2𝜃 > 𝑑

𝑞
, we combine Sobolev’s embedding with (6.2) for the

case 2𝜃 > 𝑑

𝑞
to obtain

𝔼
per,1
𝐴0

↪ 𝐿∞(0, 𝑇; 𝐿∞(Ω)) and 𝔼per,2
𝐴0

↪ 𝐿∞(0, 𝑇; 𝐿∞(Ω)). (6.5)

The next embeddings are more delicate, and their derivation relies on the mixed derivative
Theorem 3.1.

Lemma 6.3. Let 0 < 𝜃 < 1, 2 < 𝑝 < ∞, 1 < 𝑞 < ∞ such that 𝜃 < 1∕2 + 1∕(2𝑞) and 2𝜃 > 𝑑∕𝑞.
(a) Then

𝔼
per,1
𝐴0

↪ 𝐿∞(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω)). (6.6)

(b) If for some fixed 𝑟 ∈ (1,∞) the condition (4.6) holds and if 2𝜃 > 𝑑∕𝑞 + 1∕𝑟, then

𝔼
per,1
𝐴0

↪ 𝐿∞(0, 𝑇;𝑊2,∞(Ω)). (6.7)

Proof. It is well-known that 𝐿𝑞
0
(Ω) is a UMD Banach space. Furthermore, we have already seen

in the proof of Lemma 4.1 that Δ𝑁 generates a bounded analytic semigroup on 𝐿
𝑞

0
(Ω) and that

0 ∈ 𝜌(Δ𝑁); hence −Δ𝑁 ∈ (𝐿𝑞
0
(Ω)) with 𝜙−Δ𝑁 < 𝜋

2
, and it is invertible. In addition, Δ𝑁 and the

negative derivative operator 𝐵𝑝 commute on 𝐿𝑝(0, 𝑇; 𝐷1
𝐴0
(𝜃, 𝑝)).

Recall that (𝐵2𝜃𝑞𝑝(Ω), 𝐵
2𝜃+2
𝑞𝑝 (Ω))1−𝛼 = 𝐵2𝜃+2−2𝛼𝑞𝑝 (Ω) is valid for all 𝛼 ∈ (0, 1). Applying Theo-

rem 3.1 and making use of Lemma 6.1, we infer that

𝔼
per,1
𝐴0

↪ 𝐻𝛼,𝑝(0, 𝑇; 𝐵2𝜃+2−2𝛼𝑞𝑝 (Ω)), (6.8)

and we aim for an embedding of the latter space into 𝐿∞(0, 𝑇; 𝐵2𝜃+1𝑞𝑝 (Ω)). By Sobolev’s embedding
this is possible provided 𝛼 > 1

𝑝
and 𝛼 ⩽

1

2
. Hence, we find such 𝛼 ∈ (0, 1) if 𝑝 > 2, proving the

claim (𝑎).
Concerning (𝑏), we first proceed as in the proof of (𝑎) to deduce that (6.8) is valid. The space

𝐻𝛼,𝑝(0, 𝑇; 𝐵2𝜃+2−2𝛼𝑞𝑝 (Ω)) then is supposed to embed into 𝐿∞(0, 𝑇;𝑊2,∞(Ω)). This is valid provided
𝛼 > 1

𝑝
and 2𝜃 − 2𝛼 > 𝑑

𝑞
. It hence remains to verify that we can find such 𝛼 ∈ (0, 1) under the

assumptions of the lemma.
By 𝑝 > 2𝑟, 𝑟 ∈ (1,∞), there is 𝛼 ∈ (0, 1)with 1

𝑝
< 𝛼 < 1

2𝑟
. Moreover, we derive from the condi-

tion on 𝑞 that 𝑑

𝑞
+ 1

𝑟
< 1 + 1

𝑞
, so it is possible to find 𝜃 ∈ (0, 1) such that 𝑑

𝑞
+ 1

𝑟
< 2𝜃 < 1 + 1

𝑞
. On
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the other hand, we conclude that for the above choice of 𝛼 ∈ (0, 1) it holds that

2𝜃 − 2𝛼 >
𝑑

𝑞
+
1

𝑟
− 2𝛼 >

𝑑

𝑞
,

so (𝑏) is indeed true. □

Proof of Theorem 4.2. We observe that we have already checked (G0) in Lemma 4.1, and we
continue with the verification of (F1). For 𝑅 > 0 let 𝑤 = (𝑛, 𝑐)T ∈ �̄�𝑅. Observe first the identity∫
Ω ∇ ⋅ (𝑛∇𝑐) dx = 0 by an application of the divergence theorem together with the Neumann
boundary conditions, so

∇ ⋅ (𝑛∇𝑐) ∈ 𝐿
𝑞

0
(Ω) (6.9)

holds true for 𝑤 ∈ 𝔹𝑅.
For the rest of this proof, 𝐶 represents a generic constant. By virtue of Lemma 6.1, (6.9), the

Leibniz rule, Lemma 6.2, (6.2), and (6.1), we obtain

‖𝐹(𝑤(⋅))‖𝔽𝐴0 ⩽ ‖ − ∇ ⋅ (𝑛∇𝑐)‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
⩽ ‖∇𝑛‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))‖∇𝑐‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))

+ ‖𝑛‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
‖Δ𝑐‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))

⩽ 𝐶
(‖𝑛‖

𝐿𝑝(0,𝑇;𝐵2𝜃+1𝑞𝑝 (Ω))
‖𝑐‖

𝑊1,𝑝(0,𝑇;𝐵2𝜃+1𝑞𝑝 (Ω))
+ ‖𝑛‖𝑊1,𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))

‖𝑐‖
𝐿𝑝(0,𝑇;𝐵2𝜃+2𝑞𝑝 (Ω))

)
⩽ 2𝐶‖𝑛‖

𝔼
per,1
𝐴0

‖𝑐‖
𝔼
per,2
𝐴0

< ∞,

showing the validity of (F1) for every 𝑅 > 0.
We now take 𝑤,𝑤 ∈ 𝔹𝑅 into account. Similar arguments as for the verification of (F1) and the

choice 𝑅 ⩽
1

16𝑀𝐶
, where𝑀 is defined as in Assumption Q, imply that

‖𝐹(𝑤(⋅)) − 𝐹(𝑤(⋅))‖𝔽𝐴0 ⩽ ‖∇𝑛 ⋅ (∇𝑐 − ∇𝑐)‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω)) + ‖(∇𝑛 − ∇𝑛) ⋅∇𝑐‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
+ ‖𝑛(Δ𝑐 − Δ𝑐)‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω)) + ‖(𝑛 − 𝑛)Δ𝑐‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))

⩽ 2𝐶

(
2‖𝑛‖

𝔼
per,1
𝐴0

‖𝑐 − 𝑐‖
𝔼
per,2
𝐴0

+ 2‖𝑛 − 𝑛‖
𝔼
per,1
𝐴0

‖𝑐‖
𝔼
per,2
𝐴0

)
⩽ 4𝐶𝑅‖𝑤 − 𝑤‖𝔼per

𝐴0

⩽
1

4𝑀
‖𝑤 − 𝑤‖𝔼per

𝐴0

,

so (F2) holds true as well.
We have seen in Lemma 6.1 that 𝑛 ∈ 𝐷1

𝐴0
(𝜃, 𝑝) hasmean value zero and that𝐷2

𝐴0
(𝜃, 𝑝) includes

a homogeneous Neumann boundary condition under the present assumptions. By 𝐸1 we denote
the domain of𝐴 on𝐷𝐴0

(𝜃, 𝑝) and by𝐸𝛾 we denote the trace space in the resulting setting.We have
to verify that for 𝑤 ∈ 𝐸𝛾 and 𝑧 ∈ 𝐸1 the first component of 𝐴(𝑤)𝑧 has mean value zero and the
second component satisfies the Neumann boundary condition. It follows from 𝑧 = (𝑧1, 𝑧2)

T ∈ 𝐸1
that 𝑧1 ∈ 𝐵2𝜃+2𝑞𝑝 (Ω) with 𝜕𝜈𝑧1 = 0 on 𝜕Ω as well as 𝑧2 ∈ 𝐵2𝜃+3𝑞𝑝 (Ω) with 𝜕𝜈𝑧2 = 𝜕𝜈Δ𝑧2 = 0 on 𝜕Ω.
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Recalling (4.3), we then deduce by virtue of the divergence theorem that

∫Ω ∇ ⋅ ((𝑛 + 1)𝑚∇𝑧1) dx = ∫𝜕Ω(𝑛 + 1)𝑚∇𝑧1 ⋅ 𝜈 𝑑𝑆 = 0,

while the second component of 𝐴(𝑤)𝑧 is given by −(𝑧1 + (Δ𝑁 − 1)1𝑧2), and the boundary con-
dition is thus fulfilled. Therefore, 𝐴 ∶ 𝐸𝛾 → (𝐸1, 𝐷𝐴0

(𝜃, 𝑝)) is a well-defined family of closed
linear operators.
We now check that there is 𝑅 > 0 such that (A1) is satisfied. First, by (6.5) there is 𝑐 > 0 such

that for 𝑤 = (𝑛, 𝑐)T ∈ �̄�𝑅

‖(𝑛, 𝑐)T‖(𝐿∞(Ω×(0,𝑇)))2 ⩽ 𝑐‖(𝑛, 𝑐)T‖𝔼per
𝐴0

⩽ 𝑐𝑅.

Setting 𝑅0 ∶=
1

2𝑐
and considering 𝑅 ∈ (0, 𝑅0), we derive that

1

2
⩽ 𝑛 + 1 ⩽

3

2
. (6.10)

By interpolation, we conclude that 𝑊2,𝑞(Ω) ↪ 𝐵2𝜃𝑞𝑝(Ω), and we also observe the embedding
𝑊2,∞(Ω) ↪ 𝑊2,𝑞(Ω) for 𝑞 ∈ (1,∞). A calculation reveals that𝑚(𝑛 + 1)𝑚−1 ∈ 𝐿∞(0, 𝑇;𝑊2,∞(Ω))

is valid provided 𝑛 + 1 > 0 and 𝑛 ∈ 𝐿∞(0, 𝑇;𝑊2,∞(Ω)). For 𝑅 ∈ (0, 𝑅0) and (𝑛, 𝑐)T ∈ �̄�𝑅 we then
have by (6.10) and (6.7) that

‖𝑚(𝑛 + 1)𝑚−1‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
< ∞. (6.11)

Similar arguments as above show that the first component of the difference 𝐴(𝑤)𝑧 − 𝐴(𝑤)𝑧

is contained in 𝐿
𝑞

0
(Ω) for 𝑤,𝑤, 𝑧 ∈ 𝔹𝑅,𝑧 = (𝑧1, 𝑧2)

T. Making use of the latter observation,
Lemma 6.1, Lemma 6.2, (6.11), and the mean value theorem, we get for 𝑤,𝑤, 𝑧 ∈ 𝐵𝑅

‖𝐴(𝑤(⋅))𝑧(⋅) − 𝐴(𝑤(⋅))𝑧(⋅)‖𝔽𝐴0 ⩽ ‖∇ ⋅ ((𝑛 + 1)𝑚∇𝑧1) − ∇ ⋅ ((𝑛 + 1)𝑚∇𝑧1)‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
⩽
(‖𝑚(𝑛 + 1)𝑚−1(∇𝑛 − ∇𝑛)∇𝑧1‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
+ ‖(𝑚(𝑛 + 1)𝑚−1 − 𝑚(𝑛 + 1)𝑚−1)∇𝑛 ⋅∇𝑧1‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
+‖((𝑛 + 1)𝑚 − (𝑛 + 1)𝑚)Δ𝑧1‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω)))

⩽ 𝐶
(‖∇𝑛 − ∇𝑛‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))‖∇𝑧1‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))

+ ‖𝑛 − 𝑛‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
‖∇𝑛‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))‖∇𝑧1‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))

+‖𝑛 − 𝑛‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
‖Δ𝑧1‖𝐿𝑝(0,𝑇;𝐵2𝜃𝑞𝑝(Ω)))

⩽ 𝐶
(‖𝑛 − 𝑛‖

𝐿𝑝(0,𝑇;𝐵2𝜃+1𝑞𝑝 (Ω))
‖𝑧1‖𝐿∞(0,𝑇;𝐵2𝜃+1𝑞𝑝 (Ω))

+ ‖𝑛 − 𝑛‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
‖𝑛‖

𝐿𝑝(0,𝑇;𝐵2𝜃+1𝑞𝑝 (Ω))
‖𝑧1‖𝐿∞(0,𝑇;𝐵2𝜃+1𝑞𝑝 (Ω))

+‖𝑛 − 𝑛‖𝐿∞(0,𝑇;𝐵2𝜃𝑞𝑝(Ω))
‖𝑧1‖𝐿𝑝(0,𝑇;𝐵2𝜃+2𝑞𝑝 (Ω))

)
.
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An application of (6.1), (6.2), and (6.6) together with the shape of 𝔼per,1
𝐴0

then yields that

‖𝐴(𝑤(⋅))𝑧(⋅) − 𝐴(𝑤(⋅))𝑧(⋅)‖𝔽𝐴0 ⩽ 𝐶

(‖𝑛 − 𝑛‖
𝔼
per,1
𝐴0

‖𝑧1‖𝔼per,1
𝐴0

+ ‖𝑛 − 𝑛‖
𝔼
per,1
𝐴0

‖𝑛‖
𝔼
per,1
𝐴0

‖𝑧1‖𝔼per,1
𝐴0

+‖𝑛 − 𝑛‖
𝔼
per,1
𝐴0

‖𝑧1‖𝔼per,1
𝐴0

)
⩽ 𝐶(𝑅 + 2)‖𝑤 − 𝑤‖𝔼per

𝐴0

‖𝑧‖𝔼per
𝐴0

.

In summary, we have shown that (A1) is satisfied for 𝐿 = 𝐿(𝑅) = 𝐶(𝑅 + 2). The assertion of
Theorem 4.2 then follows by an application of Theorem 2.2 and upon noting that 𝐹(0) = 0. □

Proof of Theorem 5.2. We verify Assumptions (S1) and (S2) to apply Corollary 2.3, as we have
already checked (G) in Lemma 5.1. The same argument as in the proof of Theorem 4.2 yields that
for 𝑧 = (𝑢, 𝑣, 𝑤)T ∈ �̄�𝑅,𝑅 > 0, it holds that∇ ⋅ (𝑢∇𝑤),∇ ⋅ (𝑣∇𝑤) ∈ 𝐿

𝑞

0
(Ω). Thus, arguing as in the

verification of (F1), this time using (6.3) and (6.4), we get for 𝑧 ∈ 𝔹𝑅

‖𝐺(𝑧(⋅))‖𝔽𝐵 = ‖∇ ⋅ (𝑢∇𝑤)‖𝔽1
𝐵
+ ‖ − ∇ ⋅ (𝑣∇𝑤)‖𝔽2

𝐵
⩽ 2𝑐

(‖𝑢‖
𝔼
per,1
𝐵

+ ‖𝑣‖
𝔼
per,2
𝐵

)‖𝑤‖
𝔼
per,3
𝐵

< ∞,

where 𝑐 > 0, as for the remainder of the proof, denotes a generic constant.
Considering 𝑧1, 𝑧2 ∈ 𝔹𝑅, rewriting terms suitably as in the verification of (F2) in the proof of

Theorem 4.2 and choosing 𝑅 ⩽
1

16𝑀𝑐
, we obtain

‖𝐺(𝑧1(⋅)) − 𝐺(𝑧2(⋅))‖𝔽𝐵 ⩽ 8𝑐𝑅‖𝑧1 − 𝑧2‖𝔼per
𝐵

⩽
1

2𝑀
‖𝑧1 − 𝑧2‖𝔼per

𝐵
,

implying that (S2) is also satisfied.
We finally deduce the assertion of Theorem 5.2 by observing that𝐺(0) = 0 and by then applying

Corollary 2.3. □
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