
Received: 23 December 2021 | Revised: 17 January 2023 | Accepted: 20 March 2023

DOI: 10.1002/jgt.22964

ART I C LE

Automated testing and interactive
construction of unavoidable sets for graph
classes of small path‐width

Oliver Bachtler1 | Irene Heinrich2

1Optimization Research Group,
Technische Universität Kaiserslautern,
Kaiserslautern, Germany
2Graphs and Groups, Technische
Universität Darmstadt, Darmstadt,
Germany

Correspondence
Irene Heinrich, Graphs and Groups,
Technische Universität Darmstadt,
Darmstadt, Germany.
Email: heinrich@mathematik.tu-
darmstadt.de

Funding information
European Research Council

Abstract

Let  be a class of graphs with a membership test,

∈k , and let k be the class of graphs in  of path‐
width at most k. We present an interactive framework

that finds an unavoidable set for k, which is a set of

graphs  such that any graph in k contains an

isomorphic copy of a graph in  . At the core of our

framework is an algorithm that verifies whether a set

of graphs is, indeed, unavoidable for k. While

obstruction sets are well‐studied, so far there is no

general theory or algorithm for finding unavoidable

sets. In general, it is undecidable whether a finite set of

graphs is unavoidable for a given graph class. However,

we give a criterion for termination: our algorithm

terminates whenever  is locally checkable of bounded

maximum degree and  is a finite set of connected

graphs. For example, l‐regular graphs, l‐colourable
graphs, and H ‐free graphs are locally checkable

classes. We put special emphasis on the case that  is

the class of cubic graphs and tailor the algorithm to this

case. In particular, we introduce the new concept of

high‐degree‐first path‐decompositions, which enables

highly efficient pruning techniques. We exploit our

framework to prove a new lower bound on the path‐

J Graph Theory. 2023;104:289–319. wileyonlinelibrary.com/journal/jgt | 289

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.

mailto:heinrich@mathematik.tu-darmstadt.de
mailto:heinrich@mathematik.tu-darmstadt.de
https://wileyonlinelibrary.com/journal/jgt

width of cubic graphs. Moreover, we determine the

extremal girth values of cubic graphs of path‐width k

for all ∈k {3, …, 10} and all smallest graphs which take

on these extremal girth values. Further, we present a

new constructive characterisation of the extremal cubic

graphs of path‐width 3 and girth 4.

KEYWORD S

cubic graph, girth, path‐width, unavoidable structure

1 | INTRODUCTION

A set of graphs is unavoidable for a graph class if every graph in the class contains an
isomorphic copy of a graph in the set. Unavoidable sets are extensively used in

⊳ recursive algorithms and inductive proofs, for example, [5, 18],
⊳ structural graph theory, where unavoidable sets give insights into the possible composition

of graphs, see [10] for an example, and
⊳ interactive proofs, for example, Appel and Haken's proof of the famous 4‐colouring

conjecture, cf. [1, 2].

While discharging [13] is a tool to find unavoidable structures for colouring problems and
Ramsey theory [11] studies unavoidable sets in extremal graph theory, there is no generic approach
for finding or checking whether a given set is unavoidable. Frequently, tedious case distinctions are
necessary to prove that some set is indeed unavoidable for a considered class, cf. [6, 18]. We
contribute a new automated method to this sparse list of techniques to find unavoidable sets.

We present an interactive framework for the automatic construction and testing of
unavoidable sets parametrised by path‐width. More precisely, let a class  with a membership
test and a number ∈k be given and let

 ≔ ∈G G k{ : is of path‐width at most }.k

At the core of our framework is an algorithm which investigates the hypothesis that a set of
graphs  is unavoidable for k. We prove that the algorithm terminates for a large variety of
graph classes, for example, if  is the class of all ℓ‐regular graphs for some ∈ℓ and the
graphs in  are connected.

The algorithm's role in the framework is the following: the framework starts with a
(potentially empty) set of graphs and runs the algorithm on it. If the set is not unavoidable, the
provided counterexample can be used to extend the set of structures, either by adding the graph
itself or a subgraph. This is the interactive part of the framework since the desired or useful
unavoidable structures often depend on the application. This process is repeated until the set of
structures is unavoidable.

As an application of our framework, we combine it with combinatorial techniques to prove
a new lower bound on the path‐width of certain cubic graphs. Such lower bounds are

290 | BACHTLER and HEINRICH

invaluable to speed up exact path‐width computations. Moreover, we give a complete list of all
girth‐extremal cubic graphs of small path‐width.

1.1 | High‐level description of the algorithm and challenges

Roughly speaking, our algorithm searches for a minimum counterexample to the hypothesis
that  is unavoidable for k. We faced two major challenges on our way to a practically
applicable algorithm: a very large search space and the fact that, in general, it is undecidable
whether a finite set of graphs is unavoidable for a given graph class, even if the class is
decidable and of path‐width 2 (see Lemma 3.5). To reduce the search space we exploit a natural
linear vertex‐ordering which is given by a path‐decomposition and we make strong use of
isomorphism rejection (see also the rest of this paragraph as well as Section 3). Concerning the
undecidability, we give a general criterion which allows us to guarantee termination whenever
 is locally checkable and of bounded maximum degree and the graphs in  are connected.
Note that, amongst many others, the following graph classes are locally checkable: bipartite
graphs, ℓ‐colourable graphs, and H ‐free graphs.

To be a bit more precise, the algorithm runs in phases. After the ith phase, it either

⊳ returns a counterexample of order k i+ , or
⊳ returns unavoidable, guaranteeing that there is no counterexample to the hypothesis, or
⊳ guarantees that there is no counterexample of order k i+ and proceeds with phase i + 1.

In essence, the algorithm checks graphs ∈G k by simulating the traversal of a smooth
path‐decomposition (see [4] or Section 2 of this paper). It manages a queue that, at the
beginning of phase i, contains all pairs of the form U H(,) which satisfy that

⊳ H is a subgraph of some graph ∈G k which has a smooth path‐decomposition withU as its
ith bag. In particular, V H k i| ()| = + ,

⊳ H contains all information provided by the bags precedingU in the path‐decomposition, and
⊳ H is a potential subgraph of a counterexample to  being unavoidable for k.

The algorithm checks for the current pair U H(,) whether adding edges to H results in a
graph in k that avoids all graphs in  . If this is the case, then the obtained graph is returned
as a certificate that  is not unavoidable for k. Otherwise, U H(,) is replaced by multiple
pairs U H(′, ′), where H′ is a supergraph of H of order V H| ()| + 1. If no pairs remain in the
queue, without a counterexample being found, then the algorithm guarantees that  is
unavoidable for k.

To drastically limit the amount of additional pairs created, we heavily rely on isomorphism
rejection to prune the resulting search tree. To avoid a combinatorial explosion, we introduce the
new concept of high‐degree‐first path‐decompositions. These turn out to be invaluable when tailoring
the algorithm to cubic graphs since they allow us to impose strong restrictions on the next bag in the
path‐decomposition (U′ in the above notation). The results of this optimisation can be seen in
Table 1, where the last two rows contain the amount of pairs regarded by the base algorithm and the
one employing both isomorphism rejection and high‐degree‐first path‐decompositions.

As already mentioned, checking a set for being unavoidable is undecidable, see Lemma 3.5.
However, we give a criterion ensuring termination.

BACHTLER and HEINRICH | 291

Theorem 1.1. Let  be a locally checkable graph class of bounded maximum degree,  a
finite set of connected graphs, and ∈k . There is an algorithm which decides whether  is
unavoidable for k or not. In the latter case, the algorithm returns a counterexample of the
smallest order.

The class is locally checkable if membership can be tested using a global vertex labelling (with
a constant amount of bits at each vertex) and a local verifier which sees a ball of a fixed radius
around a vertex. A graph is in  if and only if the verifier accepts at every vertex. This allows us to
locally check global properties. For example, for the class of bipartite graphs we assign each vertex a
bit whose value determines its side of the partition. The verifier checks whether the neighbours of a
vertex are assigned the other value. A precise definition is given in Section 2.

Note that Courcelle's theorem [12] implies Theorem 1.1. However, it does not provide an explicit
algorithm since encoding a bound on the path‐width in monadic second‐order logic uses access to the
forbidden minors, which exist by [22], but are unknown for values larger than 2. Moreover, our
algorithm has more desirable runtime properties than the one which exists according to [12] (the
decision procedure of Courcelle's theorem has nonelementary complexity [17]).

1.2 | Consequences in structural graph theory

Inductive proofs in structural graph theory are our main motivation for the research on
unavoidable subsets and, indeed, our new framework allows us to prove various structural
results. The girth of a graph is the minimum length amongst its cycles. Consider the following
example: let be the class of cubic graphs and write i for the set C C{ , …, }i3 , whereCℓ denotes a
cycle on ℓ vertices. To investigate the maximal girth values of cubic graphs in relation to their
path‐width, we define ξ k() as the maximal girth of a cubic graph of path‐width k.

For the case k = 3 we first check whether all cubic graphs of path‐width 3 have a triangle by
running the algorithm on 3 and k = 3. It returns the K3,3 which has girth 4. We extend the set
3 to 4. The algorithm returns unavoidable, and ξ (3) = 4. With our implementation of
this method,1 we find the value of ξ k() for k = 3, …, 7, as shown in Table 1.

Combining our algorithmic formalisms with combinatorial techniques, we prove a new
bound on ξ which is stronger than the bound in [9] (see also the further related work)

TABLE 1 Computational results for cubic graphs of path‐width k and unavoidable structures  .

k 3 3 4 5 5 6 6 7

 3 4 4 4 5 5 6 6

Result K3,3 Unavoidable Unavoidable Petersen Unavoidable Heawood Unavoidable Unavoidable

Pairs base 6 5 81 12,484 3841 – – –

Pairs cubic 3 2 3 7 5 15 9 19

Note: The row “Pairs base” contains the amount of pairs regarded by the base version of the algorithm while the row “Pairs
cubic” shows how many are left after the use of isomorphism rejection and tailoring the algorithm to cubic graphs. The three
dashed cells contain no values as the algorithm did not terminate in a reasonable time on our machines.

1GitLab repository containing an implementation of our algorithm for checking whether a set  is unavoidable for k , https://gitlab.rlp.
net/obachtle/testing-unavoidable-sets-for-small-path-width, October 2022.

292 | BACHTLER and HEINRICH

https://gitlab.rlp.net/obachtle/testing-unavoidable-sets-for-small-path-width
https://gitlab.rlp.net/obachtle/testing-unavoidable-sets-for-small-path-width

whenever the path‐width is less than 26, that is, in all practically relevant cases when it comes
to computing the path‐width.

Theorem 1.2. For all ∈ ≥k 3 the following inequality is satisfied:

≤ξ k k()
2

3
+

10

3
.

Moreover we prove the upper bounds on the girth in Theorem 1.3, which are an
improvement on the bound in Theorem 1.2 for ≤k 13.

Theorem 1.3. The values of ξ for small values of k are shown in the table below:

Additionally, ≤ξ k k() − 2 holds for all ≥k 10.

The precise values for ≤k 10 are obtained by proving upper bounds which are attained by
the graphs in Table 2. In fact, we can give a complete list of the minimal graphs of path‐width k
and girth ξ k() for all ∈k {3, …, 10}.

Theorem 1.4. For ∈ ⧹k {3, …, 10} {4} there is a unique smallest graph of path‐width k

and girth ξ k(). There are two smallest graphs of path‐width 4 and girth 4. See Table 2.

A d g(,)‐cage is a minimal d‐regular graph of girth g. The study of cages dates back to [24]. A
recent survey on this topic is [15]. If d = 3, then there is a unique g(3,)‐cage for all
∈g {3, …, 8}. Clearly, if a cubic cage of girth ξ k() has path‐width k, then it appears in the table.

Several of the graphs in Table 2 are cages: the K3,3, the Petersen graph, the Heawood graph, and
the Tutte–Coxeter graph.

As a further application of our algorithm we obtain that the graphs in K G G{ , , …, }3,3 1 6 (see
Figure 2) are unavoidable for the class of cubic graphs of path‐width 3 and girth 4. We exploit
this to prove the following classification.

Theorem 1.5.

(i) Every 3‐connected cubic graph of path‐width 3 and girth 4 can be obtained from a K3,3

by a finite number of the construction steps κ1 and κ2 (see Figure 2).
(ii) Every cubic graph of path‐width 3 and girth 4 can be constructed from a K3,3 by

applying a finite number of the construction steps κ κ, …,1 6 (see Figure 2).

TABLE 2 All smallest graphs of path‐width k and girth ξ k().

3 4 5 6 7 8 9 10

K3,3 Cube Petersen Heawood Pappus McGee Tutte– G (10)

Twisted cube Coxeter

Note: The top row specifies the value of k while the bottom one contains the graphs. Here G10 denotes the unique cubic graph of
path‐width 10 and girth 8. We refer to Figure 1 for drawings of these graphs.

BACHTLER and HEINRICH | 293

1.3 | Further related work

A recent introduction to locally checkable proofs is [16]. We refer to [4] for an introduction to
path‐ and tree‐width. Bodlaender and Koster [7] survey lower bounds for tree‐width, amongst
them is the following result of Chandran and Subramanian [9]. If G is a cubic graph of girth at

FIGURE 2 Reductions for graphs of path‐width 3 and girth 4: if a graph of path‐width 3 and girth 4 contains
one of the graphsGi (consisting of the black and red vertices and black edges) as a subgraph, then the reduction
ρi replaces the all black vertices and edges on the left side by the ones on the right side. The inverse operation is
the construction step κi.

FIGURE 1 All graphs of path‐width k and girth ξ k() for ∈k {3, 4, 5, 6, 7, 8, 9, 10}. First row: K3,3, cube,
twisted cube, Petersen graph, Heawood graph. Middle row: Pappus graph, McGee graph, Tutte–Coxeter graph.
Last row: Two drawings of the unique graph of girth 8 and path‐width 10, which we denote by G (10).

294 | BACHTLER and HEINRICH

least g, path‐width k, and tree‐width t , then ≥ ≥ ∕ k t e g((+ 1)) 2 − 2g−1 (−1) 2 −2 , where e

denotes Euler's number.2 Theorems 1.2 and 1.3 are stronger than this exponential bound
whenever the path‐width is less than 26. Our bounds provide a proper improvement in the
context of path‐width computations.

1.4 | Outline

Section 2 contains basic notation and preliminary results. In particular, we introduce the new
concept of high‐degree‐first path‐decompositions. In Section 3, we give a detailed discussion of
the algorithm that checks whether a set is unavoidable for a path‐width bounded class.
Section 4 contains the proofs of Theorems 1.2 to 1.5.

2 | PRELIMINARIES

2.1 | Basic notation

The notation for this paper is based on [14], but we briefly summarise what we need here. All graphs
are nonempty, finite, and simple. We writeuv for an edge with endsu and v and E v() denotes the set
of edges incident to the vertex v. The set of neighbours of v inG is N v()G or N v(). A path is a graph
P withV P v v() = { , …, }n1 and E P v v v v() = { , …, }n n1 2 −1 , for which we write P v v= … n1 . The order
V P| ()| of a path P is denoted by P| | and its length is  P E P P= | ()| = | | − 1. If u and v are distinct
vertices of a tree T , then uTv is the unique path in T joining u and v. If ≥uTv| | 3, then we set

≔u Tv uTv u v˚ ˚ − { , }. We write G H+ for the disjoint union of two graphs G and H . The empty
graph on n vertices is denoted by En and Kr r,1 2

is the complete bipartite graph with parts of size r r,1 2.
The girth of G is the minimum length of a cycle in G. We set

→

↦

≥ξ

k g g k

: ,

max{ : there is a simple cubic graph of girth and path‐width }.

3

Let G and H be two graphs and φ be a bijection with domain V G(). For ⊆U V G() and
⊆F E G() we define ≔ ∈φ U φ u u U() { () : } and ≔ ∈φ F φ u φ v uv F() { () () : }. We write φ G()

for the graph with vertex set φ V G(()) and edge set φ E G(()). The map φ is an isomorphism
from G to H if H φ G= (). The graph G is isomorphic to H , denoted ≅G H , if an isomorphism
from G to H exists. If φ G G() = , then φ is an automorphism of G. The automorphisms of a
graph G form a group and any subgroup Γ of this group acts naturally on V G(). Let ∈v V G().
The orbit of v is the set ≔ ∈v φ v φ{ () : Γ}Γ . The stabiliser of v is ≔ ∈φ φ v vΓ { Γ : () = }v .

2.2 | Path‐decompositions and path‐width

Let G be a graph, P n= 1… ′ a path, and  ∈ ⊆V i P= { : } 2i
V G() . The pair P(,) is a path‐

decomposition of G if:

2The bound in [9] is more general since graphs of average degree d are considered. We inserted d = 3 and added the inequality ≥k t to
emphasise the connection to Theorems 1.3 and 1.2.

BACHTLER and HEINRICH | 295

(i) every vertex ∈v V G() is contained in some set Vi ,
(ii) for each edge ∈uv E G() there exists a set Vi such that ⊆u v V{ , } i , and
(iii) the set ∈i v V{ : }i induces a subpath of P for all ∈v V G().

The sets Vi are bags of the decomposition and the width of P(,) is ∈V i Pmax{| | : } − 1i .
Furthermore, the path‐width of G is the minimal width of any of its path‐decompositions. A
path‐decomposition P(,) of width k is smooth if all bags have cardinality k + 1 and
∩V V k| | =i i+1 for all ≤ i n1 < ′. Any graph of path‐width k allows for a smooth width k path‐

decomposition [4]. Barring few exceptions, all path‐decompositions occurring in the remainder
of this paper are smooth and adhere to the naming convention in the definition above, that is,
their path is P n= 1… ′ and their bags are  ∈V i P= { : }i .

For ∈i n{1, …, ′ − 1}, we say that a vertex v enters bag Vi+1 if it is the unique vertex in
⧹V Vi i+1 . Analogously, v leaves Vi if it is the unique vertex in ⧹V Vi i+1. Moreover, we define the

graph associated with Vi as

≔
≤ ≤












G G V E G V− ([]).i
j i

j i
1

Intuitively, Gi contains all information provided by the bags preceding Vi as it has (exactly)
the edges incident to vertices that have left already. Note that if v leaves Vi , then
G G E v v= + () +i i i+1 +1 for some new vertex vi+1. We say u is a new neighbour of v if v is
the vertex leaving Vi and ∈ ⧹u N v N v() ()G Gi i+1

. Thus, the new neighbours of v are exactly those
vertices u in Gi+1 for which uv is an edge of G that was not already present in Gi.

In this paper,  is a graph class and  is a finite set of graphs. We set

 

 

≔ ∈ ≤

≔ ≅ ⊆ ∈

G G k

G S S G S

{ : pw() } and

super() { : ′ for some }.

k

With this, the question whether  is unavoidable for k translates to  ⊆ super()?k

2.3 | Locally checkable graphs

The following definition is closely related to the class LCP(Θ(1)) in [19]: Let G be a graph. For
∈v V G() and ≥r 0 let ≔ ≔ ∈ ≤B v B v u V G d u v r() () { () : (,) }G

r r .

(i) A proof forG is a map →V G: () {0, 1}* that assigns each vertex a binary string. Its size is
the maximum amount of bits in any v().

(ii) A verifier is a map

 ∈ →G v G G v V G: {(, ,) : is a graph, is a proof for , ()} {0, 1}.

It is local if there exists a constant ≥r 0 such that

 G v G B v B v v G v(, ,) = ([()], [()],) for all , , .r r

Here B[] denotes the restriction of to B.

296 | BACHTLER and HEINRICH

(iii) A graph class  is locally checkable if there is a local verifier  and some ∈s such that
⊳ for all ∈G there is a proof of size at most s such that  G v(, ,) = 1 for all

∈v V G(),
⊳ for all ∉G and all proofs for G there exists a ∈v V G() such that  G v(, ,) = 0, and
⊳ the verifier is invariant under isomorphism, that is, for a bijection φ we have that
 G v(, ,) = 1 implies that  φ G φ φ v((), (), ()) = 1, where φ () is the map

→φ φ G() : () {0, 1}* with φ φ v v()(()) = ().
We say that  accepts proof for G if  G v(, ,) = 1 for all ∈v V G().

Examples for locally checkable graph classes are l‐regular graphs (using r = 1, s = 0),
bipartite and, more generally, l‐colourable graphs (r = 1,  s l= log), and graphs without an

(induced) subgraph H






(r = log

Hdiam()

2
,)s = 0 .

2.4 | High‐degree‐first path‐decompositions

In the following, we prove that we can make strong assumptions on the path‐decompositions of
cubic graphs without loss of generality. These serve as a powerful tool for both tailoring our
algorithm to cubic graphs and proving results on the girth of cubic graphs by hand.

Observation 2.1. Let P(,) be a smooth path‐decomposition of G and let
∈i n{1, …, ′ − 1}. If ⊆N v V G() ()G i for some ∈v Vi , then there exists a smooth path‐

decomposition P(,) of G such that V W=j j for ≤j i, and v leavesWi .

Proof. Let ∈v Vi be such a vertex and assume that some other vertex ≠u v leaves Vi .
Replacing v by u in all bags of index greater than i yields another path‐decomposition
P(,) ofG as all edges with v as an end are already covered by the bags up toVi . It is also

smooth, satisfies V W=j j for ≤j i, and v leaves the bagWi as required. □

Lemma 2.2. Let P(,) be a smooth path‐decomposition of G, let ∈i n{1, …, ′ − 1}. If Gi
contains a vertex v with ⧹ ≤N v N v| () ()| 1G Gi , then there is a smooth path‐decomposition
P(,) of G with V W=j j for j i< , ⧹ ⧹V V W W=i i i i−1 −1 and v leavesWi .

Proof. Let v be as in the statement and assume that ≠u v is the vertex leaving Vi . If
⊆N v V G() ()G i , then we apply Observation 2.1 to obtain the claim.

Hence, we assume there exists a vertex ∈ ⧹w N v V G() ()G i and let Vj be the bag of the
lowest index containing w. By assumption, we have j i> and Observation 2.1 lets us
assume that v leaves Vj or Vj is the last bag. We describe how to obtain the desired path‐
decomposition P(,) in case the bag Vj+1 exists, making note of what would change if it
does not in parentheses. The process is illustrated in Figure 3.

First, we delete the bag Vj, connecting Vj−1 to Vj+1 (if it exists). Note that if a bag
uniquely covers an edge ofG, then the vertex entering and the one leaving it are an end of
this edge, otherwise the bag before or after would have done this as well. The result is a
path‐decomposition of G vw− (G w−). This step is marked in red in the figure.

Next, we replace all occurrences of v in the bagsV V, …,i j−1 by w. As all these bags only
contain v, they continue to have k + 1 elements. Also the now neighbouring bags Vj−1

BACHTLER and HEINRICH | 297

and Vj+1 have k vertices in common. Since we only removed v from bags and all its
neighbours but w already shared a bag before Vi , this is a path‐decomposition of G vw−

(now also in the case that Vj was the last bag, where Vj−1 contains all neighbours of w).
Finally, we insert the bag ∪ ⧹V V w x′ = { } { }i−1 , where x is the vertex in ⧹V Vi i−1 ,

between Vi−1 and Vi to make the decomposition smooth and turn it into one of G as this
bag contains both v and w. This completes the construction and the proof. □

By iteratively applying this lemma to a smooth path‐decomposition of a cubic graph G, we
may assume that the vertex leaving bag Vi has degree at least 2 in Gi, whenever such a vertex
exists. If, additionally, a degree 3 vertex is chosen to leave whenever present, we obtain a
decomposition as defined below.

Definition 2.3. Let P(,) be a path‐decomposition of a cubic graph G and, for
∈i n{1, …, ′}, let

≔ ∈d d v v Vmax{ (): }.i G ii

Then P(,) is called high‐degree‐first (hdf) or an hdf‐decomposition if the vertex vi leaving
the ith bag satisfies

d v d d v d() = 3 if = 3 and () = 2 if = 2.G i i G i ii i

3 | DECIDING UNAVOIDABILITY FOR GRAPHS OF
BOUNDED PATH ‐WIDTH ALGORITHMICALLY

We start this section with a toy example that illustrates the by‐hand method we automate and is
illustrated in Figure 4. Let  be the class of all cubic graphs. We prove that the set  C C= { , }3 4

is unavoidable for the class 3 of cubic graphs of path‐width at most 3. To this end, let P(,) be
a smooth width‐3 path‐decomposition of a graph ∈G 3. Let v and v′ be the vertices leaving the
bagsV1 andV2, respectively. Since v leavesV1 (and has degree 3), we obtain ⧹N v V v() = { }G 1 . If v′
is a neighbour of v, then it has two other neighbours in ⧹V v{ ′}2 . Consequently, v and v′ have a
common neighbour and G contains a C3. Otherwise, v′ is the vertex entering V2. In this case,

⧹ ⧹N v V v V v(′) = { ′} = { }G 2 1 and we obtain a C4. Altogether, it follows that ξ (3) = 4.

FIGURE 3 The path‐decomposition constructed in the proof of Lemma 2.2.

298 | BACHTLER and HEINRICH

Outline of this chapter: We formally introduce the basic version of our algorithm in Section 3.1.
To make the algorithm practically applicable, we describe how isomorphism rejection can be
exploited to speed up the run time in Section 3.2. We show that the general problem of deciding
whether a finite set of graphs is unavoidable for a graph class is undecidable and we prove our
termination result (Theorem 1.1) in Section 3.3. In Section 3.4 we employ our concept of high‐
degree‐first decompositions to obtain a further speed‐up for our algorithm if it is applied to a
subclass of cubic graphs. Finally, in Section 3.5 we discuss how our algorithm can be adapted to
check if a set of graphs is an unavoidable set of minors (respectively, induced subgraphs).

3.1 | The base algorithm

We describe an algorithm that answers the question whether  ⊆ super()k , that is, whether 
is unavoidable for k, by implementing the proof technique illustrated in the toy example
above. The only requirement on  is that it is given together with a membership test. By
checking all graphs of order at most k explicitly, we may assume that  only contains graphs
with at least k + 1 vertices. This ensures that all graphs in  of path‐width at most k have a
smooth path‐decomposition of width k.

Recall the naming conventions for path‐decompositions introduced in Section 2. For each
smooth path‐decomposition P(,) of a graph G and each ∈i n{1, …, ′} we say that G contains
V G(,)i i . A pair U H(,) is good if every ∈G k containing it satisfies ∈G super(). We remark
that any pair U H(,) with ∈H super() is good. This holds as any graph G containing U H(,)

has H as a subgraph. As a preparation for the formal description and the correctness proof of
our algorithm, we show the following lemma.

Lemma 3.1. LetG be a graph with path‐decomposition P(,) containing the pair U H(,).
Let φ be a bijection with domain V G().

(i) Renaming the vertices of G according to φ, both in G and in its path‐decomposition,
yields an isomorphic graph ≅φ G G() with path‐decomposition ∈P φ V i P(, { () : })i .

(ii) The graph φ G() contains the pair φ U φ H((), ()).
(iii) If ∅V V(, (,))1 1 is a good pair, then  ⊆ super()k .

FIGURE 4 An illustration of the by‐hand method for the example of cubic graphs of path‐width at most 3.
The vertex v v= 1 leaves the first bag, so it is adjacent to v v v, ,2 3 4. For the vertex v′ leaving the second bag, we
can, by symmetry, assume that v v′ = 2 or v v′ = 5. The first case yields a C3, the second a C4.

BACHTLER and HEINRICH | 299

Proof. Statements (i) and (ii) are immediate from the respective definitions. For (iii),
consider a graph ∈G k with a smooth path‐decomposition of width k. In particular, the
graph G1 associated with V1 is ∅V(,)1 . The graph G contains ∅V V(, (,))1 1 and, hence,

∈G super(). □

We are now ready to describe the algorithm, whose pseudocode can be found in Algorithm
3.1. Given a graph class  with a membership test, ∈k , and a finite set of graphs  ,
the algorithm manages a queue Q of pairs U H(,). By Lemma 3.1(i) we may assume
that ≔V G V u u v v() = { , …, , , … }k n1 1 ′ and the first bag of the path‐decomposition is
V u u v= { , …, , }k1 1 1 . Therefore, the queue is initialised with ∅V V(, (,))1 1 . We maintain the
following invariant:

 ⊆If all pairs in the queue are good, then super().k (1)

This holds initially by Lemma 3.1(iii) and, once the queue is empty, we may return that  is
unavoidable. The algorithm iteratively removes a pair U H(,) from the queue. To maintain
(1), the algorithm needs to ensure that any graph ∈G containing U H(,) is in super(). Such a
graph has a smooth path‐decomposition withU as a bag with associated graph H . If this is the last
bag in the path‐decomposition, then G is obtained from H by adding edges between vertices ofU
and the algorithm checks all such augmentations to see if one of them avoids  . Should this occur,
it returns it as a counterexample. Otherwise, the decomposition does not end with the bagU and
the algorithm checks all options for the next bag and its corresponding graph, adding these new
pairs to the queue. If any option for a subsequent pair is good, then so is the original.

300 | BACHTLER and HEINRICH

Theorem 3.2. The answer returned by Algorithm 3.1 is correct.

Proof. We first prove that V H u u v v() = { , …, , , …, }k H k1 1 | |− for every pair U H(,) in the
queue. Furthermore, we define the path‐decomposition of U H(,) for such pairs, which is
a smooth path‐decomposition P(,) of H of width k with last bagU . For ∅V V(, (,))1 1 the
claim on the vertex set holds and we use a path of length 0 with bag V1 as our
decomposition. Now let U H(′, ′) be a pair added in the iteration in which U H(,) was
removed. As ∪V H V H v(′) = () { }i+1 for i H k= | | − and ∉v V H()i+1 , we get
H H| ′| = | | + 1 and V H(′) satisfies the claim. To obtain the decomposition of U H(′, ′),
we extend the one of U H(,) by adding an additional vertex to the end of the path‐width
bagU′. This decomposition has width k and is smooth as U k| ′| = + 1 andU ,U′ differ in
exactly one vertex.

Next, we prove that the results returned are correct. If the algorithm returns a graph
H E+ ′ in Line 8, then  ∈ ⧹H E+ ′ super(). It has path‐width at most k, since the
path‐decomposition of U H(,) has width k with last bag U , which is also a path‐
decomposition for H E+ ′. Therefore, it suffices to check that  ⊆ super()k in case the
algorithm returns unavoidable.

We verify this by inductively proving the following invariant: before any iteration of
the while loop (1) holds. We have already argued that (1) holds for the initialisation ofQ,
by renaming the vertices and using Lemma 3.1(iii). If, before the first iteration, the single
pair in Q is removed, then this pair is good and (1) holds. So it is true before the first
iteration of the while loop.

Now assume that the invariant holds up to iteration l and regard the queue before
iteration l + 1. In iteration l only a single element U H(,) was removed from Q.
Consequently, it suffices to prove that U H(,) is good if all newly added pairs are. To
verify this, let ∈G k be a graph containing U H(,) with corresponding decomposition
P(,). First assume that U is the last bag of this decomposition, that is, G H E= + ′ for

some ⊆ ∈ ≠E xy x y U x y′ { : , , }. The algorithm regards this graph in some iteration of
the for loop in Line 6. Since it does not terminate in this iteration and ∈G , we have

∈G super().
Now assume that the path‐decomposition ofG does not end with the bagU . LetU′ be

the subsequent bag. We know that, for i H k= | | − ,V H u u v v() = { , …, , , …, }k i1 1 . Thus vi+1

is not in V H() and we can assume that the element that enters U′ is vi+1 by
Lemma 3.1(ii). (Simply choose a mapping φ that is the identity restricted to H and maps
the vertex that enters U′ to vi+1.) Denote the vertex leaving U by u, then the graph H′

associated with the bag U′ has the form H E v+ ′ + i+1 where ⊆ ∈ ⧹E uy y U u′ { : { }} is
the set of edges between u and its new neighbours. The algorithm regards the set

⧹ ∪U U u v′ = { } { }i+1 in the for loop in Line 10 and also looks at the graph H′ in Line 12.
Since ∈G k, it is an element of  that contains U H(′, ′). If ∈H′ super(), then

∈G super() and if it is not, then U H(′, ′) is added to the queue. In this case, we have
assumed it is a good pair and G contains it, meaning that G is in super(). □

The algorithm remains correct if we remove the check whether there exists a graph ∈G

containing U H(′, ′) in Line 14. It is used to reduce the amount of pairs added to the queue.
Should this condition be hard to check, it can be omitted. Heuristics may be used instead as
long as they are correct in case they return a negative answer. For example, if  is the class of
cubic graphs, we can check whether H′ is subcubic.

BACHTLER and HEINRICH | 301

3.2 | Isomorphism rejection

Now that we have proven the base algorithm to be correct, we demonstrate how to drastically
improve the running time by exploiting isomorphism rejection, which reduces the amount of
pairs added in each iteration (see also Table 1).

Lemma 3.3. For a bijection φ with domain V H(), the pair U H(,) is good if and only if
the pair φ U φ H((), ()) is good.

Proof. Let φ U φ H((), ()) be a good pair and G be a graph containing U H(,). Let φ be
the extension of φ to V G(), where φ v v() = for all ∈ ⧹v V G V H() (). By Lemma 3.1(ii)
the graph φ G() contains the pair φ U φ H((), ()) which is good. Hence ∈φ G¯ () super()

and ≅φ G G() , which implies ∈G super(). This shows that U H(,) is good. The missing
direction follows by regarding φ−1. □

As a consequence of Lemma 3.3 we can improve our base algorithm: we only need to add
pairs U H(′, ′) to Q for which the queue does not already have an element of the form
φ U φ H((′), (′)) for some ∈φ U HAut(,).

What we describe now are special cases of Lemma 3.3 that can be checked before Line 14.
Assume we are in the iteration in which the pair U H(,) is removed from the queue. We denote
the set of automorphisms of H that stabilise U as a set by U HAut(,). For convenience, the
automorphisms φ in U HAut(,) are called U H(,)‐maps and we note that U HAut(,) is a
subgroup of the automorphism group of G. We use these maps to eliminate certain pairs
without needing to regard them. To facilitate this, the set U HAut(,) is computed directly after
the pair U H(,) is removed.

Our goal is to optimise all three for loops in Lines 6, 10, and 12 by reducing the amount of
potential counterexamples, candidates for subsequent bags, and associated graphs regarded.
See Algorithm 3.2 for the pseudocode of the algorithm with these additions.

First, we improve the for loop in Line 6 in which the algorithm looks for counterexamples.
If we have checked an edge set ⊆ ∈ ≠E xy x y U x y′ { : , , }, then we do not need to check the
sets φ E(′) for ∈φ U HAut(,). This holds as ≅H E φ H E H φ E+ ′ (+ ′) = + (′).

Second, we reduce the amount of candidates for the next bag in Line 10. By using U H(,)‐maps,
we can reduce the amount of pairs that are regarded. Let ∈φ U HAut(,) with φ v u() = for someu
and v in U and let φ be the extension of φ to ∪V H v() { }i+1 where φ v v() =i i+1 +1. We set

⧹ ∪U U u v′ = { } { }i+1 and ⧹ ∪U U v v″ = { } { }i+1 . By Lemma 3.3 we know that if the pair U H(″, ″) is
good if and only if φ U φ H((″), (″)) is, where φ U U(″) = ′. Hence, if for all ⊆ ⧹Y U u′ { } the pair
U H(′, ′) with ∈H H v uy y Y′ = + + { : ′}i+1 is good, then the same holds for the pairs U H(″, ″)

where ∈H H v vy y Y″ = + + { : ″}i+1 with ⊆ ⧹Y U v″ { }. To see this, let H″ be of the form above,
then ∈ ∈φ H φ H φ v φ vy y Y H v uy y φ Y(″) = () + () + ({ : ″}) = + + { : (″)}i i+1 +1 . But as

⊆ ⧹ ⧹φ Y φ U v U u(″) ({ }) = { }, the graph φ H(″) is a candidate for H′ and this pair is good by
assumption.

This means that we only need to regard the case where u leaves, so the pairs U H(′, ′) above,
and can disregard the pairs withU″ altogether. In other words, it suffices to regard one vertex
from each orbit (where the group U HAut(,) acts on V H()). We may thus replace the for loop
iterating over all ∈u U by one that iterates over the set ≔ ∈U u u U{ : }U HAut(,) . (Notice that
elements of U HAut(,) stabilise U as a set, so any representative of this orbit can be chosen.)

302 | BACHTLER and HEINRICH

Thirdly, we reduce the amount of vertex sets that are checked in Line 12. Assume the next
bag is ⧹ ∪U U u v′ = { } { }i+1 . We do not need to add a pair U H(′, ′) for a set Y ′ if we have already
added the pair U H(′, ″) for a set Y″ and there exists an H U(,)‐map φ with φ Y Y(′) = ″ and
φ u u() = . To see this, observe that the pair U H(′, ′) is good if and only if the pair
φ U φ H((′), (′)) is, where φ is, again, the extension of φ to vi+1 with φ v v() =i i+1 +1. By
assumption we have that φ U U(′) = ′. Denote the set ∈uy y Y{ ′ : ′ ′} by E′ and ∈uy y Y{ ″ : ″ ″}

by E″. But, since φ H E φ H v H v H E(′ − ′) = (+) = + = ″ − ″i i+1 +1 and φ E E(′) = ″, we get
that φ H H(′) = ″. Consequently, we may ignore all sets φ Y(′), for any map φ in the stabiliser

∈U H φ U H φ u uAut(,) = { Aut(,) : () = }u , upon adding the pair U H(′, ′) in Line 12.

Remark 3.4. Since ⋅U H U H u|Aut(,)| = |Aut(,) | | |u
U HAut(,) holds by the orbit‐stabiliser

theorem we know that, assuming a reasonable size of U HAut(,), either the orbit or the
amount of graphs that can be eliminated in Line 12 is large.

BACHTLER and HEINRICH | 303

3.3 | Achieving termination

This section is dedicated to the proof of Theorem 1.1.

3.3.1 | Undecidability of the general problem

Before we begin with the termination proof, we show that the problem of deciding whether a
finite set of graphs is unavoidable for a graph class is undecidable.

Lemma 3.5. It is undecidable to determine whether a set of graphs  is unavoidable for a
graph class  even if  is a finite set of connected graphs and  is decidable and contains
graphs of path‐width at most 2.

Proof. We describe a reduction from the Post Correspondence Problem which is known
to be undecidable [21]. Let x x, …, N1 and y y, …, N1 be strings over a b{ , }. Let I be the set of
finite sequences in N{1, …, } and →f I: be an enumeration of I . A solution is an
element i i(, …,)k1 of I such that x x y y… = …i i i ik k1 1

.
For ∈n let P v v= …n n1 be the path of length n and set G P=n n if f n() is a solution.

Otherwise, set G P v v= +n n n n+2 +2 . Hence, all Gn have path‐width at most 2 and they
contain a C3 exactly in the latter case. We define  ∈G n= { : }n , which is decidable.
Consequently,  C= { }3 is unavoidable for  if and only if no path is in  , which is
equivalent to there being no solution. □

3.3.2 | Modified algorithm for locally checkable classes

Assume that  is a locally checkable class with verifier  and size s, all graphs ∈G have a
maximum degree at most Δ, and  contains only connected graphs.

Before we modify our algorithm, let us observe a few basic properties. For a pair U H(,),
where ⊆U V H(), we set ≔ ∈L v H d v U d{ : (,) > }U H

d
H(,) . First, we show that if we have not

found an unavoidable structure in a pair, then vertices at large distance to the last bag are
irrelevant for  being unavoidable.

Observation 3.6. Let G be a graph containing a pair U H(,). If ∉H super() and
≔ ∈D S Smax{diam() : }, then for any ⊆S G′ with ≅ ∈S S′ we have that

⊆S G L′ − U H
D
(,) .

Proof. Let ⊆S G′ with ≅ ∈S S′ . If ∩ ≠ ∅V S L(′) U H
D
(,) , then there exists

a vertex ∈v S′ such that d v U D(,) > . Hence, any vertex ∈u S′ satisfies
≥d u U d v U d u v(,) (,) − (,) > 0 and ∩ ∅V S U(′) = . Since U separates H U− and

G V H− () in G and S′ is connected, we get that ⊆S H U′ − , contradicting that
∉H super(). □

304 | BACHTLER and HEINRICH

Next we prove a similar result for vertices that are needed to check containment in the class  .

Observation 3.7. Let U H(,) be a pair, ∈G be a graph containing U H(,), and be a
proof for G. We have that

⊳ for all ∈v L U H
r
(,) the verifier satisfies  G v H V H v(, ,) = (, [()],) and

⊳ for all ∈ ⧹v V G L() U H
r
(,) we obtain   ⧹G v G L V G L v(, ,) = (− , [()],), where

⊆L L U H
r

(,)
2 .

Proof. Let ∈v H and ≔B B v()G
r . If d v U r(,) > , then ⊆ ⧹B H U G V H U− = [()]

since U separates H U− and G V H− (). Consequently,  G v G B(, ,) = ([],

 B v H B B v H V H v[],) = ([], [],) = (, [()],). Otherwise, if ∈v H and
≤d v U r(,) or ∉v H , then ⊆B G L− and we get that  G v(, ,)

   ⧹G B B v G L B B v G L V G L v= ([], [],) = ((−)[], [],) = (− , [()],). □

Now we are ready to describe the adjustments for Algorithm 3.2. We use the verifier to
check membership in  (in Line 10) and extendability (in Line 22). To do this, we associate
each pair of U H(,) with a set of proofs U H(,) that result in all vertices in L U H

r
(,) being

accepted by. If no such proof exists, then, by Observation 3.7, no graph in  contains U H(,).
When checking for counterexamples, we check ∈H E+ ′ by determining whether accepts
some proof in U H(,) for H E+ ′.

Intuitively, this causes the algorithm to terminate since it allows us to exclude pairs U H(′, ′)

(with corresponding proofs) that coincide close to the vertices in U′. Due to the bound on the
maximum degree, the amount of such vertices is finite and so is the amount of graphs. We now
make this argument precise.

We remark that any pair U H(,) added to the queue now satisfies that

⊳ ∉H′ super(),
⊳ there exists a smooth path‐decomposition Q(,) of H with last bag U , and
⊳ ≠ ∅U H(,) and  H v(, ,) = 1 for all ∈v L U H

r
(,) and ∈ U H(,).

The first two parts were true before and the last one holds due to our implementation of the
extendability test.

We extend our terminology for pairs to triples U H(, ,), where ∈ U H(,): a graph G

contains U H(, ,) if it contains U H(,) and there exists a proof that accepts forG which satisfies
V H[()] = . Such a triple is good if any graph containing it is in super(). We observe that

U H(,) is good if and only if U H(, ,) is good for all ∈ U H(,). Lemma 3.3 generalises directly:

Corollary 3.8. For a bijection φ with domain V H(), the triple U H(, ,) is good if and
only if the triple φ U φ H φ((), (), ()) is good.

We can now formulate the main result of this section, which allows us to exclude pairs from
being added to the queue and provides us with a proof for Theorem 1.1 as a corollary.

Theorem 3.9. Let U H(, ,) and U H(′, ′, ′) be two triples. Set

≔ ∈ ≔ ≔ ≔D S S d D r L L L Lmax{diam() : }, max{ , 2 }, , and ′ .U H
d

U H
d

(,) (′, ′)

BACHTLER and HEINRICH | 305

Assume that

⊳ U H(,) was added to the queue by the algorithm and
⊳ there exists a bijection ⧹ → ⧹φ V H L V H L: () (′) ′ satisfying φ U U() = ′,

φ H L H L(−) = ′ − ′, and ⧹ ⧹φ V H L V H L()[(′) ′] = ′[(′) ′].

If U H(, ,) is good, then so is U H(′, ′, ′).

Proof. Let G′ be a graph containing U H(′, ′, ′). By definition, we obtain a path‐
decomposition P(′, ′) ofG′ with P n′ = 1 … ′ such thatV U′ = ′j andG H′ = ′j for some j.
Additionally, we know that there is a proof ′ such that  G v(′, ′,) = 1 for all ∈v G′

and V H′[(′)] = ′.
We extend the bijection φ to H by choosing the images of L such that
∩ ∅φ L V G() (′) = . Regard the graph

≔ ∪G φ H G L() (′ − ′)

We see that ∩φ V H V G L V H L(()) (′ − ′) = (′ − ′), V G() is the disjoint union of
φ V H(()) and V G V H(′ − (′)), and G φ L G L− () = ′ − ′. In the following, we show that
G is in k and contains the triple φ U φ H φ((), (), ()).

We construct a smooth path‐decomposition of G of width k that contains φ U() as a
bag with associated graph φ H(). To this end, let Q(,) be a smooth path‐decomposition
of H with the last bagW U=l . Define ≔P n l j1 … ′ + − and let  contain the sets

≔
∈

∈





V
φ W i l

V i l n j l

() for {1, …, },

′ for { + 1, …, ′ − + }.i
i

i j l+ −

Notice that V φ U U V= () = ′ =l j, giving us a smooth decomposition of width k if it is a
path‐decomposition. Moreover,G φ H= ()l , soG contains the pair φ U φ H((), ()). We now
verify the properties of a path‐decomposition to get that G has path‐width at most k and
contains φ U φ H((), ()).

Let ∈v G. If ∈v φ H() then ∈v φ W V() =i i for some ≤i l and, otherwise,
∈v G V H′ − (′) and v enters a bag V ′i for i j> , placing it in Vi l j+ − . For an edge
∈uv E G() we get that uv is covered by a bagV φ W= ()i i with i l< if u is in φ H U(−), as

it leaves one of the first l − 1 bags. If this is not the case, we may assume that both u and
v are either in G V H′ − (′) or inU′. This means that uv is an edge of G′ and covered by a
bag V ′i with ≥i j. Hence uv is covered by the bag Vi l j+ − . Finally, note that the set

∈i v V{ : }i can be written as ≤ ∈ ∪ ≥ ∈i l v φ W i l v V{ : ()} { : ′ }i i j l+ − , making it the union

of two paths. If both sets are nonempty, then ∈ ∩ ⧹ ∪v φ V H V G V H U U(()) ((′) (′) ′) = ′

and l is in both sets. Thus, P(,) is a path‐decomposition.
As a next step, we verify that ∈G by exhibiting a proof for G that  accepts and

which satisfies φ H φ[()] = (). This shows that ∈G and that G contains the triple
φ U φ H φ((), (), ()). We define

≔
∈




v
φ v v φ H

v
()

()() if (),

′() otherwise.

306 | BACHTLER and HEINRICH

Note that ⧹ ⧹ ⧹V H L φ V H L V H L[(′) ′] = ()[(′) ′] = ′[(′) ′], yielding ⧹V G φ L[() ()] =

⧹ ⧹V G L V G L[(′) ′] = ′[(′) ′]. Using Observation 3.7 we conclude that



 

 

∈



G v

φ H φ v H φ v v L

G φ L V G φ L v G v

(, ,)

=
((), (),) = (, , ()) if ,

(− (), [() \ ()],) = (′, ′,) otherwise

φ U φ H
r−1
((), ())

and in both cases  G v(, ,) = 1.
In summary, G contains φ U φ H φ P((), (), ()), which is a good triple. Hence, we can

find a subgraph ⊆S G′ with ≅ ∈S S′ . By Observation 3.6 we know that
⊆ ⊆ ⊆S G L G L G L G′ − − = ′ − ′ ′φ U φ H

D
((), ()) and the triple U H(′, ′, ′) is good. □

Proof of Theorem 1.1. Theorem 3.9 shows that we can eliminate certain triples: if we
added a pair U H(,) to the queue and we are currently regarding a pair U H(′, ′) for which
there exists a bijection φ with φ U U() = ′ and φ H L H L(−) = ′ − ′, then we can modify
U H(′, ′) by removing all elements φ () for ∈ U H(,). If the set U H(′, ′) is empty

after these removals, then we need not add it to the queue again, since all triples
U H(′, ′, ′) for ∈ U H′ (′, ′) are good or in the queue to be checked as such.
This limits the pairs that are added to the queue to a finite amount. The bound Δ on

the maximum degree on graphs in  gives us a bound on the vertices in H L− ,
namely, k v(+ 1)Δ(Δ − 1) =:d−1 . Hence, the amount of pairs U H(,) with distinct graphs
H L− that we add to the queue is finite as well. Additionally, a pair is only added again if
it has a proof that was not checked previously. Since there are at most 2sv proofs for a
graph H , we only add a finite amount of pairs to the queue and the algorithm
terminates. □

3.3.3 | Runtime analysis

In this subsection we analyse the runtime of our algorithm to show that it is elementary and, in
particular, it is better than the runtime obtained by Courcelle's theorem.

The iterations of the outer loop are bounded by the amount of pairs U H(,) we add to the
queue. These are limited to one per potential graph H L− (of which there are at most ≔x v2v

2

many) and each of these can be added up to 2sv times, once for every proof.
Both determining automorphisms as well as checking whether H has a subgraph in  can be

bounded by   v v(| | !)2 by checking all permutations of the vertices of H L− . As a result,
the runtime is dominated by that of the inner while loops, which contain these expensive operations.
The while loop in Line 8 is iterated at most 2 k(+1)2

many times, the one in Line 19 is iterated at most
k(+ 1)2k times. (We reference Algorithm 3.2 despite the fact that we are analysing the modified
version from the previous paragraph because their basic structure is the same.)

We bound the runtime of these two loops, starting with the former, for which we get
  vT v v(2 () + | | !)sv 2 , where T () be a bound on the runtime of  when faced with a
neighbourhood of size at most v. To see this, note that the first addend originates from the
check whether a graph is in  , by seeing whether one of the proofs associated with the pair is
accepted by the vertices of H L− . The second addend covers both the check whether a
subgraph in  exists and the removal of further elements from  .

BACHTLER and HEINRICH | 307

The latter loop's runtime is in   vT v v v x(2 () + | | ! +)s v(+1) 2 2 . Here we note that the
creation of H′ also requires us to determine the new potential proofs for it. This means we need
to regard at most 2s v(+1) new proofs, each of which can each be checked in  vT(()) time,
giving us the first term. The second covers the check ∉H′ super() as well as the adjustment
of the set  . Together with the last term, it also accounts for the comparison with previously
seen pairs (canonise and compare).

3.3.4 | Necessity of the adjustments to the algorithm

To wrap up, we show that our adjustments to the algorithm were necessary to achieve termination
and that omitting the requirement on the degree yields an example for which the algorithm no longer
terminates. Since local checkability was essential for the correctness of the adjustments we made,
dropping this assumption forces us to revert to the original version, for which termination is not
guaranteed. We note that in case a counterexample exists the algorithm always terminates, returning
one of the smallest sizes. However, if the graphs in  are, indeed, unavoidable, then the algorithm, in
its general form, need not terminate. As an example consider the class  in which every graph
consists of one or more components, each of which is the union of a path P with a triangle K where

∩V K V P v() () = { } and v is an end of P. We set  K= { }3 and k = 2. The reason the algorithm does
not terminate for this set is that the triangle can appear arbitrarily late in a path‐decomposition. This
is an example of a class with a bounded maximum degree and it is also locally checkable, a proof of
which can be obtained by making use of [20, Lemma 2.1] which allows us to orient the path towards
the end with the triangle in every component.

If we remove the requirement on bounded maximum degree, we can still use our modified
algorithm, since we only needed the bound on the degree to estimate the amount of pairs that
are added to the queue. But there can now be infinitely many such pairs, as illustrated by the
following example. Regard the class  which contains all graphs that consist of two stars
connected by a single edge (and disjoint unions of these). Every component of a graph in this
class has diameter 3, making it locally checkable. By choosing k = 1 and  to contain a path of
length 3, we obtain an example for which the algorithm does not terminate. Any path‐
decomposition of a graph ∈G starts by covering the edges in one of the two stars, followed by
the edge connecting it to the second, and ending with the edges of this star. Consequently, the
path of length 3 can appear arbitrarily late in the path‐decomposition again.

3.4 | Tailoring the algorithm to cubic graphs

Aside from making use of general properties of cubic graphs, such as that V G| ()| is even and
E G V G| ()| = | ()|

3

2
, hdf decompositions are immensely helpful in speeding up the algorithm.

More precisely, when regarding a pair U H(,), Lemma 2.2 lets us choose the vertex to leaveU if
H has a vertex of degree at least 2, eliminating the need to iterate over U entirely.

Theorem 3.10. Instead of iterating over the set ≔ ∈U u u U{ : }U HAut(,) , it suffices to
choose a single vertex of degree at least 2, if such a vertex is present, in the case that 
contains only cubic graphs.

308 | BACHTLER and HEINRICH

Proof. To see that this holds, recall the proof of Theorem 3.2. There we proved the
invariant that  ⊆ super()k if all pairs in the queue are good. More precisely, we
showed that in the iteration where we remove the pair U H(,), this pair is good if all the
newly added ones are. Consequently, we need to show that a pair U H(,) is already good
if we only add pairs of form U H(′, ′) for which ⧹ ∪U U u v′ = { } { }i+1 for some vertex u of
degree at least 2 in H . (If H has no such vertex, the algorithm remains unchanged.)

In this situation, where u and U′ are defined as above, let ∈G k be a graph
containing U H(,) with corresponding path‐decomposition P(,) and U V= i . Assume,
without loss of generality, that vj is the vertex entering bag j for ∈j i{2, …, + 1}. We
know that ∈G super() if U is the last bag in the decomposition, so we may assume
there is a subsequent bag Vi+1. By applying Lemma 2.2, we get a smooth path‐
decomposition P(,) of G such that V W=j j for all j i< , ⧹ ⧹V V W W=i i i i−1 −1 , and u

leaves Wi . Let φ be a bijection on V G() with φ = idV G V G| () ()i i−1 −1
that maps the unique

vertices entering Wi and Wi+1 to vi and vi+1. This gives us that φ G() contains the pair
φ W φ H((), ())i i+1 +1 where Hi+1 is the graph associated withWi+1. Since the vertex leaving
Vi−1 and Wi−1 coincide and φ u u() = , we get that φ W U() =i and φ W U() = ′i+1 . (Note
that φ u u() = follows from the fact that d u() > 0H , which implies that it is not the vertex
entering Vi .)

The graph H φ H′ = ()i+1 is of the form ∈H v uy y Y+ + { : }i+1 , where ⊆ ⧹Y U u{ }. If
∈H′ super(), then ∈G super() and we may assume this is not the case. As the set Y

is in  , it is regarded by the algorithm and added to the queue unless there is already an
element ψ U ψ H((′), (′)) contained in it. In either case, the pair U H(′, ′) is good by
assumption and thus both φ G() and G are in super(). □

3.5 | Unavoidable minors and induced subgraphs

Our algorithm can easily be extended to a test for unavoidable minors or induced subgraphs.
We only need the following adaption of the definition of super() to the set that contains all
graphs with a minor or an induced subgraph in  . In these cases a pair U H(,) is good if H has
a minor in  , respectively, if H U− has a subgraph in  since this subgraph is inevitably
induced. Our termination proof carries over to the induced subgraph case.

4 | PATH ‐WIDTH AND GIRTH OF CUBIC GRAPHS

In this sectionG is a cubic graph of path‐width k and girth g. We show that large girth necessitates a
large path‐width. We determined all smallest graphs of path‐width k and girth ξ k(). These can be
found in Table 2, where we used the complete list of small cubic graphs [8] and checked the path‐
width using SageMath [23]. We prove that the graphs in Table 2 maximise the possible girth amongst
all cubic graphs of path‐width k by providing sharp upper bounds in these cases. Moreover, we prove
that a cubic graph of path‐width k is of girth at most k +

2

3

10

3
.

Before we start formally proving Theorems 1.2 and 1.3, let us briefly sketch how these proofs
work. First, we gather information about the graphs Gi for the initial bags, by counting both the
connected components of these graphs as well as their amount of vertices of degree 0 to 3. To limit
the possible cases and to obtain particularly simple ones with few degrees 2 and 3 vertices, we use hdf

BACHTLER and HEINRICH | 309

path‐decompositions. From this we can deduce that a cycle is present by the kth bag and at least two
exist by bag k + 2. Theorem 1.2 is obtained by regarding the last bag l for whichGl contains at most
one cycle and uses the small amount of vertices that can lie on cycles at all to deduce thatGl+1 has a
short cycle. For Theorem 1.3 we show that Gi is a forest for all ≤i g − 2 and then combine this
knowledge with our degree and component counts to go through the graphs Gg−1 to Gg+3 to find a
short cycle.

We now begin with the formal proof. Recall that hdf path‐decompositions allow us to assume that
degree 2 or 3 vertices, if present, leave a bag. These are useful when determining the structure of the
graphs Gi for the initial bags of the decomposition. The extended graph of G is defined as

≔G G E+ .k
ext

+1

This lets us extend the path‐decomposition of G by letting the vertices in the last bag leave
while adding the new degree 0 ones. We call such a path‐decomposition an extended
decomposition ofG. By starting with a hdf path‐decomposition ofG, this can easily be made hdf
as well. This extension allows us to ensure that the decomposition has enough bags so that
sufficiently many associated graphs exist. For the remainder of this section, we denote G ext by
H and assume that the path‐decomposition P(,) is an extended decomposition of G that is
also hdf. We begin by describing the degree distribution in the associated graphs. Set

≔ ∈ ∈ ∈d v H d v j j i n|{ : () = } for {0, 1, 2, 3} and {1, …, ′}.j
i i

Hi

We write ti for the amount of nontrivial components of Hi, where nontrivial means not of
order 1. To determine the degrees, we proceed by induction on i. We regard Hi+1, assuming that
the claim holds for Hi and Hi+1 is of the form H E v v+ () +i i+1.

Lemma 4.1. Let ∈i n{1, …, ′}. If Hi is a forest, then:

(i) ≥d 1i
0 .

(ii) d i t= − 1 + 2i
i1 .

(iii) at most one component of Hi contains vertices of degree 2, no subpath of Hi contains
more than two degree 2 vertices, and ≤d 3i

2 .
(iv) d i= − 1i

3 .

Proof. For i = 1 the claim holds as ≅H G E= k1 1 +1. Assume that the claim holds up to
some index ≥i 1 and let H H E v v= + () +i i i+1 +1 be acyclic. We note that d v() = 0H i+1i+1

and Property (i) follows. Furthermore, the vertices of degree 3 in Hi are exactly those that
have left prior bags, so d v() < 3Hi

. Since Hi+1 is acyclic, v and all new neighbours of v are
in different components of Hi. Thus no new neighbour of v has degree 2 in Hi, as
otherwise v does too, by hdf, and they lie in the same component of Hi by Property (iii).
So d d i= + 1 =i i

3
+1

3 and (iv) holds.
Next, we remark that the handshaking lemma yields the following equation, where

κ H()i+1 denotes the number of components of Hi+1:

d d d V H κ H d d d t+ 2 + 3 = 2(| ()| − ()) = 2 + 2 + 2 − 2 .i i i
i i

i i i
i1

+1
2
+1

3
+1

+1 +1 1
+1

2
+1

3
+1

310 | BACHTLER and HEINRICH

From this we deduce that d d t= + 2i i
i1

+1
3
+1 and Property (ii) is satisfied.

This only leaves (iii). First assume d > 0i
2 , in which case d v() = 2Hi

by hdf and it has a
unique new neighbour u. If d u() = 1Hi

, then d u() = 2Hi+1
but u is part of the same

component as the remaining degree 2 vertices of Hi. The condition that at most two
degree 2 vertices lie on any path in Hi is ensured by the existence of a vertex whose
removal separates all of them. Such a vertex also separates the vertices of degree 2 in Hi+1

as u is a neighbour of the prior degree 2 vertex v. If u does not have degree 1, the claim
follows directly.

If d = 0i
2 , then all degree 2 vertices of Hi+1 are new neighbours of v that had degree 1

in Hi. Consequently, there are at most three such vertices, they all lie in the same
component of Hi+1, and they are separated by v. □

Lemma 4.2. Let ∈i n{1, …, ′}. If Hi contains a unique cycle, then there exists a
∈j i i{ , + 1} such that Hj contains a unique cycle and satisfies the following properties:

(i) ≥d 1j
0 .

(ii) d j t= − 3 + 2j
j1 .

(iii) at most one component of Hj contains vertices of degree 2 and ≤d 3j
2 .

(iv) d j= − 1j
3 .

Proof. Property (i) is satisfied because vj has degree 0 in Hj, for all j. The claim holds for
i = 1 since H1 is always acyclic. Assume that it holds up to some ≥i 1 and let
H H E v v= + () +i i i+1 +1 contain a unique cycle. The graph Hi thus contains at most one
cycle and we first assume it is acyclic, letting us apply Lemma 4.1.

If d v() = 2Hi
, then the new neighbour u of v is in the same component as v in Hi

and t t=i i+1 . The claim holds for j i= + 1 when d u() = 1Hi
: here d j= − 1j

3 ,
d j t= − 3 + 2j

j1 , ≤d d= 3j i
2 2 , and all degree 2 vertices are in the same component.

This leaves the case that d u() = 2Hi
, where Hi+1 does not satisfy the properties as

it has i + 1 vertices of degree 3. However, by hdf, u is the next vertex to leave
and H H v= +i i i+2 +1 +2. Here, Hi+2 satisfies d i= + 1i

3
+2 , d i t= − 1 + 2i

i1
+2 , and

≤d d= − 2 1i i
2
+2

2 , completing this case.
We may now assume that ≤d v() 1Hi

and d = 0i
2 . As Hi+1 has a unique cycle, either

one new neighbour is in the same component as v in Hi and the remaining ones are in
different components or no new neighbour is in the same component as v and exactly
two of them share a component. In either case, d i=i

3
+1 and at most three degree 2

vertices are present in Hi+1, which share a component. For the degree 1 vertices, note that
any new neighbour of v has degree 0, resulting in a new vertex of degree 1, or it has
degree 1, reducing their amount by one. However, every neighbour of degree 1 except
one also decreases the amount of nontrivial trees, as there is a unique cycle. This shows
Property (ii).

We are left with the case that Hi is not acyclic, which means it contains a unique cycle
and the induction hypothesis applies. This gives us that either Hi+1 satisfies the degree
properties, and we are done, or Hi does. We may assume the latter. The only new degree 3
vertex is v since connecting two vertices of degree 2 would result in a new cycle. If
d v() = 2Hi

, its neighbour has degree 0 or it has degree 1 and is in a different component.
This increases the amount of degree 1 vertices by one or decreases their amount and the

BACHTLER and HEINRICH | 311

amount of nontrivial trees by one each. Otherwise, ≤d v() 1Hi
and Hi has no degree 2

vertices. The new neighbours now have degree 1 and are in different components of Hi or
degree 0 and the properties hold once more. □

Observation 4.3. The graph Hk is not a forest and Hk+2 has more than one cycle.

Proof. Suppose Hk is acyclic. Lemma 4.1 states that ≥k H d2 = | | +k
k
3

≥d d k t+ 2 − 1 + 2k k
k1 0 , which is a contradiction since ≥k 3. Similarly, if Hk+2 has at

most one cycle, then it has exactly one and either Hk+2 or Hk+3 satisfy the degree
properties of Lemma 4.2. Using these we obtain ≥k H d d2 + 2 = | | + +k

k k
+2 3 1

≥d k t2 + 2 + 1k
k0 or ≥k H k t2 + 3 = | | 2 + 2 + 3k k+3 , which is a contradiction in both

cases. □

We are now ready to prove our first bound: Theorem 1.2.

Proof of Theorem 1.2. To prove this result, we need to show that ≤g k +
2

3

10

3
for the

graph G of path‐width k and girth g. Regard the extended graph H of G. Let l be the
maximal index such that Hl contains at most one cycle. By Observation 4.3 we have that
≤l k + 1. Since Hl contains either no cycle, and Lemma 4.1 applies, or it contains exactly

one, and Lemma 4.2 can be used, we get that d l= − 1l
3 and ≤d 3l

2 . (Note that Hl+1

contains multiple cycles, so Lemma 4.2 actually applies to Hl.) This lets us estimate the
amount of vertices of degree at least 2 in Hl+1: if d > 0l

2 , then at most one edge is added in
the transition to Hl+1 by hdf. Since at least one end of such an edge has degree 2, we
obtain ≤d d d d+ + + 1l l l l

3
+1

2
+1

3 2 . On the other hand, if d = 0l
2 , then at most one new

degree 3 and three new degree 2 vertices are created. This yields ≤d d d+ + 4l l l
3
+1

2
+1

3 .
Combined these give us that

≤d d d l+ + 4 = + 3.l l l
3
+1

2
+1

3

Let C and C′ be two distinct cycles in Hl+1. If they are disjoint, then ≤C C l| | + | ′| + 3,
yielding

≤ ≤g
l k+ 3

2 2
+ 2.

Otherwise, C′ contains a path Q between two nonadjacent vertices of C. Using this path

and C, we obtain two cycles of which one has length at most  Q+
C| |

2
. We estimate

≤ ≤Q d d C l C| | + − | | + 2 + 5 − | |l l
3
+1

2
+1 to get ≤g C| | and ≤g l C+ + 4 − | | =

C| |

2

l + 4 −
C| |

2
. Consequently,

≤g k
2

3
+

10

3

since C l| | = + 4 −
C| |

2
holds for C l| | = +

2

3

8

3
. The bound from the disjoint cycle case is

strictly better than this one and, hence, the result follows. □

312 | BACHTLER and HEINRICH

In the following, we demonstrate that our bounds are tight for small values of k. In
preparation, we make the following observations.

Observation 4.4. The neighbours of a vertex v of degree at most 2 in Hi are of degree 3.

Proof. Note that Hi only contains edges incident to vertices that have left one of the first
i − 1 bags. Therefore, at least one end of any edge is of degree 3. □

Observation 4.5. If Hi is a forest and Q is a path in Hi, then

≤ { }Q i d t| | + 2 + min , 2 − .i
i2

If an end of Q has degree 2, then this bound improves by 2 to

≤ { }Q i d t| | + min , 2 − .i
i2

Proof. The pathQ has at most 2 vertices of degree 1, the remaining ones are of degree 2
or 3. By Lemma 4.1, Hi has d i= − 1i

3 and at most two of degree 2 lie on Q. Also, any
nontrivial component contains at least one degree 3 vertex by Observation 4.4. This gives
us that ≤Q d d t| | 2 + min{ , 2} + [− (− 1)]i i

i2 3 , which is the first inequality.

If one end, say v has degree 2, then at most one vertex of degree 1 is inQ. Additionally,
both neighbours of v have degree 3 by Observation 4.4 and at most one of them is on Q.
Consequently ≤Q d d t| | 1 + min{ , 2} + [− 1 − (− 1)]i i

i2 3 , completing the proof. □

Observation 4.6. If H H E v v= + () +i i i+1 +1, Hi is a forest, and ≤i g − 2, then no new
neighbour of v is in the same component as v in Hi.
Proof. Suppose that u is a new neighbour of v and in the same component of Hi as v. Let
Q be the path joining v and u in Hi. If d = 0i

2 , then ≤ ≤Q i t g| | + 2 − − 1i by
Observation 4.5. If ≥d 1i

2 , then vdeg () = 2Hi
by hdf. Again Observation 4.5 yields

≤ ≤Q i d t g| | + min{ , 2} − − 1i
i2 . In both cases, the edge vu causes a cycle of length

g g− 1 < , which is a contradiction. □

Next, we show that high girth necessitates many acyclic‐associated graphs.

Lemma 4.7. For ≤i g − 2, Hi is a forest.

Proof. For i = 1 the claim holds since ≅H Ek1 +1. Assume the claim holds for some
≤i g − 3. If i = 1, then ≥V H V G k V H| ()| > | ()| + 1 = | ()|1 and, hence, H2 exists. If
≥i 2, then ≥d 1i

1 by Lemma 4.1 and since any vertex of H is isolated or of degree 3, the
graph Hi+1 exists. Let v be the vertex that leavesVi . It holds that H H E v v= + () +i i i+1 +1.

First note that Observation 4.6 shows that no new neighbour of v is part of the
same component as v in Hi. In particular, if d v() = 2Hi

, then Hi+1 is acyclic. This leaves
the case that d v() < 2Hi

. Since the path‐decomposition is hdf, we know that d = 0i
2 and

there are multiple new neighbours of v. In case two of them are in the same component of

BACHTLER and HEINRICH | 313

Hi, we get a short cycle by noticing that the path between these neighbours has order at most
≤i t g+ 2 − − 2i by Observation 4.5, which is a contradiction. Thus Hi+1 is a forest. □

With these tools at hand, we can now prove Theorem 1.3.

Proof of Theorem 1.3. The graphs found in Table 2 show that ξ k() takes at least the
value specified above and it suffices to prove that it is not larger. To this end we show that
≤g k + 1 in general, ≤g k if ≥k 4, ≤g k − 1 if ≥k 7, and ≤g k − 2 if ≥k 10. This

proves the equalities for the values specified above and shows that ≤ξ k k() − 2 for
≥k 10.
We know that H H, …, g1 −2 are acyclic by Lemma 4.7. In this proof, we look at the

possibilities that arise for the subsequent associated graphs, starting with Hg−1. Since
Hg−2 is a forest, Lemma 4.1 implies d g= − 3g

3
−2 , d g t= − 3 + 2g

g1
−2

−2, and ≥d 1g
0
−2 .

Therefore

≤ d d k g g g t k g t1 + = + − 2 − (− 3) − (− 3 + 2) = + 4 − − 2 .g g
g g0

−2
2
−2

−2 −2

Rearranging yields ≤ ≤g k t k+ 3 − 2 + 1g−2 proving the first of the four inequalities.
For the remainder of this proof, we may assume ≥g k − 1 and ≥k 4, ≥g 5. Using the

former, we get ≤t 2g−2 and t = 1g−2 if ≥g k.
Let H H E v v= + () +g g g−1 −2 −1. Since Hg−2 has g − 3 vertices of degree 3, v is not one

of them and it has new neighbours. By Observation 4.6, any new neighbour is in a
component different from v. In particular, if d v() = 2Hg−2

, then Hg−1 is acyclic. Assume

that v has degree at most 1 in Hg−2 which implies d = 0g
2
−2 by hdf. If all new neighbours

of v are in different components of Hg−2, then Hg−1 is acyclic. In analogy to the proof of
Lemma 4.7, if two new neighbours are in the same component, then the path between
them has order at most g t− g−2 by Observation 4.5. This implies t = 1g−2 and the path
has length exactly g − 1 and contains all degree 3 vertices. We conclude that d v() = 0Hg−2

in this case and Hg−1 is acyclic if d v() = 1Hg−2
.

If v is isolated, then there either is a unique cycle of length g in Hg−1 or the third new
neighbour of v is also in the same component of Hg−2 as the other two. In the first case,
Hg−1 has one nontrivial component and satisfies d g= − 2g

3
−1 , d = 2g

2
−1 , and

d g= − 2g
1
−1 . Otherwise, if v has all three neighbours u u u, ,1 2 3 in the same component

T , the paths u Tui j are of order at least g − 1 for ≤ ≤i j1 < 3. Consequently, all three of
them contain all g − 3 vertices of degree 3 in Hg−2 and differ only in their ends. Hence,
Hg−1 contains a cycle of length at most 4 and ≤g 4, contradicting our assumption.

This completes the inequality ≤g k for ≥k 4: If g k= + 1, then t = 1g−2 and
d = 0g

2
−2 , d = 1g

0
−2 . By the above we get that d v() = 1Hg−2

results in a small cycle as v has
a new neighbour in its component. If, otherwise, d v() = 0Hg−2

, then all three neighbours
of v in Hg−1 lie in the same component of Hg−1, which is a contradiction.

The first part of this proof showed the bounds for ∈k {3, 4, 5, 6} and described Hg−1,
which we recall again below. From now on we may assume that ≥k g, 7 and need to
verify the last two inequalities. Our next goal is to describe H H E w v= + () +g g g−1 . We
saw that there are two options for Hg−1:

314 | BACHTLER and HEINRICH

H t d g d gis acyclic with = 1, = − 2, and = org g
g g

−1 −1 3
−1

1
−1 (2)

H t d d g dhas a unique cycle , = 1, = = − 2, = 2.g g
g g g

−1 −1 3
−1

1
−1

2
−1

(3)

Note that we used Lemma 4.1 to obtain t = 1g−1 in Option (2), which holds since Hg−1 has
≤k g g+ − 1 2 vertices in total and ≥d 1g

0
−1 . The last inequality is also true for Option

(3) and all associated graphs in general, which is why we omit writing it each time.
Furthermore, ≤d 2g

0
−1 in both cases, using the above cardinality argument.

Let us start with Option (3). We know here that d w() = 2Hg−1
and we denote its

unique new neighbour by u. If u has degree 0, then

≤ ≤

H t d d g d

d

has a unique cycle , = 1, = = − 1, = 1, and

1 2.

g g
g g g

g

3 1 2

0

(4)

Otherwise, u lies in the same component as w and we obtain a path of length at most 2

between two vertices of C. This yields a cycle of length at most + 2
C| |

2
and we get

≤g + 2
g

2
or ≤g 4, a contradiction.

If Hg−1 is acyclic, there are more options. For ease of notation, let T be the nontrivial
component of Hg−1. First assume that d w() = 2Hg−1

and let u be its unique new

neighbour. If u is in T , then ≤wTu g| | − 1 by Lemma 4.1 since ≤d 1g
2
−1 , a contradiction.

Thus, u has degree 0 and

H t d g d d g

d

is acyclic with = 1, = − 1, = 0, = + 1, and

= 1

g g
g g g

g

3 2 1

0

(5)

by Lemma 4.1. Here we have used that ≥g k − 1 to obtain that d = 0g
2 , in particular, this

case does not occur if g k= .
This just leaves the case that ≤d w() 1Hg−1

, giving us d = 0g
2
−1 . Assume first that

d w() = 1Hg−1
. Should both new neighbours of w have degree 0, then Hg is acyclic, and we

are in Option (5). Otherwise, let ∈u T be a new neighbour of w. Again we use
Observation 4.5 to see that ≤uTw g| | and obtain a cycle C of length exactly g in
H uw+g−1 . Should the second new neighbour of w also be in T , we obtain a path of
length at most 2 between two vertices of C, yielding girth at most 4, just as above. This
does not occur, so Hg contains a unique cycle of length g and checking the values d j

g

shows that we are in Option (4).
We are left with the situation where d w() = 0Hg−2

. Because ≤d 2g
0
−1 at least two of its new

neighbours, say u u,1 2 are in T . We first argue that the third neighbour, u3, is not. If this were
the case, then each of the three paths u Tui j for ≤ ≤i j1 < 3 would yield a cycle when
combined with u wui j. Thus each of these paths contains at least g − 1 vertices, at least g − 3

of which have degree 3. Since Hg−1 only has g − 2 such vertices and ≥g 7, we get the
existence of a vertex ∈t T that occurs on all three paths. We assume that the order u Tt| |i is

maximised foru3, then ≤u Tt u Tt g| ˚ ˚| + | ˚ ˚| (− 3)1 2
2

3
since there are only g − 3 degree 3 vertices

BACHTLER and HEINRICH | 315

other than t in Hg−1. But this means that ≤u Tu u Tt u Tt g| | = | ˚ ˚| + | ˚ ˚| + 3 + 11 2 1 2
2

3
. Hence

≤g g + 2
2

3
or ≤g 6, contradicting our assumption.

Consequently u3 has degree 0 and Hg has a unique cycle u Tu wu1 2 1 of length at most
g + 1, giving us the final option in which

H t d g d d g dhas a unique cycle, = 1, = − 1, = 2, = − 1, = 1.g g
g g g g
3 2 1 0

(6)

The last equality follows once more from the fact that Hg has k g+ vertices, so g k= − 1

in this case.
We now have several possible options for Hg and we begin by taking a look at Option (4),

which is the only one relevant for the case that k g= . Here d x() = 2Hg
and the identical

argumentation to before shows that the new neighbour of x has degree 0 and Hg+1 still has a
unique cycle of length g and d g=g

3
+1 , d = 0g

2
+1 , d g=g

1
+1 , and ≤ ≤d1 2g

0
+1 .

We claim that this suffices to prove the third inequality. Suppose g k= , then we
already know we are in Option (4). Hence, Hg+1 is of the form described above and
d = 1g

0 . We regard Hg+2. If the degree 0 vertex leaves, all its neighbours, u u u, ,1 2 3 say, are
in the same component as the cycle C. Suppose u1 and u2 have minimal distance in C,
then there exists a path of length at most g

3
between them and we obtain a cycle of length

+ 4
g

3
by extending it to use u yu1 2. (Note that all degree 1 vertices of Hg+1 are adjacent to

a degree 3 one by Observation 4.4 and all degree 3 vertices are on C.) This yields ≤g 6, a
contradiction. Hence, d y() = 1Hg+1

and it has at least one neighbour u in the same

component as the cycle. But now we get a cycle of length at most + 3
g

2
which again

yields ≤g 6, proving the ≤g k − 1 for ≥k 7.
For the final inequality (≤g k − 2 if ≥k 10), we can update our assumptions to

g k= − 1, and ≥k 10, so ≥g 9. With this we finish the description of the options for
Hg+1. The option described above is

H t d d g d dhas a unique cycle, = 1, = = , = 0, = 2.g g
g g g g

+1 +1 3
+1

1
+1

2
+1

0
+1

(7)

For Option (5), we denote the nontrivial tree of Hg by T . If the vertex of degree 0
leaves, then it has all three neighbours, u u u, ,1 2 3 say, in T . As each path u Tui j contains at
least g − 1 vertices, it has g − 3 degree 3 vertices. As before, this yields a vertex t

common to all paths as ≥g 9 since Hg only has g − 1 many in total. The analogous

argumentation yields a path, say u Tu1 2 of order at most g(− 2) + 3
2

3
and thus a cycle of

length g +
2

3

8

3
. Hence ≤g 8, contradicting our assumption.

As a result, d x() = 1Hg
. If x has two neighbours in T , then the three paths between x

and these neighbours would share a common vertex and the short path from above yields
a contradiction again. So x has one new neighbour of degree 0 and the other one inT . Let
u be this neighbour, then ≤uTx g| | + 1 by Observation 4.5 and we obtain

H t d d d d ghas a unique cycle and = = = 1, = = .g g
g g g g

+1 +1 2
+1

0
+1

3
+1

1
+1

(8)

316 | BACHTLER and HEINRICH

Finally, we regard Option (6), which again contains a unique cycle C. Here,
d x() = 2Hg

and x has a unique new neighbour u. If ∉u T , then this coincides with
Option (8). Otherwise, if ∈u T , we obtain a path between two vertices of C. If
C g| | = + 1, then C contains all vertices of degrees 3 and 2 in Hg, giving this path length
3. Otherwise, if C g| | = , this path potentially has length 4. In either case, we obtain a

cycle of length at most ≤+ 3 + 4
g g+ 1

2 2
and this yields ≤g 8, a contradiction.

The next graph is H H E z v= + () +g g g+2 +1 +2. For Hg+1 only the two Options (7) and
(8) remain, and we start with the latter. Here we have d z() = 2Hg+1

by hdf and z is on the
unique cycle C. Thus, if C g| | = , then we either end up with a unique cycle of length g or
G contains a cycle of length at most + 3

g

2
, contradicting ≥g 9. If C g| | = + 1, a unique

cycle of length g + 1 remains or a cycle of length at most + 2
g + 1

2
is present, which is a

contradiction. Consequently,

H d d g d dhas a unique cycle and = = + 1, = 0, = 1.g
g g g g

+2 3
+1

1
+1

2
+1

0
+1

(9)

If Hg+1 is as specified in (7), then d z()Hg+1
results in a path of length 4 between two

vertices of C, which we have already seen to cause ≤g 8. So z has degree 1 and its new
neighbours have degree 0 as otherwise we obtain a path of length 3 between two vertices
of C. This leaves the unique cycle of length g intact and results in g g+ 1, 0, + 1, 1

vertices of degree 3, 2, 1, 0, letting us include it in Option (9).
Now we can wrap up the proof by regarding Hg+3. Since only Option (9) remains for Hg+2,

it has a unique cycleC. If a vertex of degree 1 leaves, then it is in the same component asC in
Hg−2 and at least one of its new neighbours is in this component as well. This yields a cycle of

length at most + 4
g

2
or + 3

g + 1

2
in Hg+3, which is a contradiction to ≥g 9 in either case.

Should the degree 0 vertex leave, we get that all three of its neighbours are in the component of

Hg−2 containing C and we find a new cycle of length at most + 5
g

3
or + 4

g + 1

3
. Again this

contradicts ≥g 9 and the proof is complete. □

We obtain Theorem 1.4 as a direct consequence of Theorem 1.3 and the values of Table 2.
As a further example of an application of our algorithm, we prove Theorem 1.5, which gives

a constructive characterisation of the class of all cubic graphs of path‐width 3 which are
extremal with respect to ξ .

Proof of Theorem 1.5. Let G be a cubic graph of path‐width 3 and girth 4. Running
Algorithm 3.1 for k = 3,  the class of all cubic girth‐4‐graphs, and
 K G G G= { , , , …, }3,3 1 2 6 confirms that  is unavoidable for 3. If ≅G K3,3, then the
empty sequence yields the desired statement. Therefore, we may assume that G contains
one of the graphs G G, …,1 6 as a subgraph.

Fix ∈i {1, …, 6} and assume thatG′ is obtained fromG by the reduction ρi. We leave it to
the reader to check that G′ is a simple cubic graph of girth 4. If ∈i {1, 2, 3, 5}, then G′ is a
minor ofG and, hence,G′ is of path‐width 3. For ∈i {4, 6} the path‐width remains 3 as well,
though checking this is technical and does not yield a lot of insight. Roughly speaking, one
contracts the graph Gi to a K4, which we call M , and takes a path‐decomposition for this
resulting minor, which still has width 3. This decomposition contains a bag containing M

BACHTLER and HEINRICH | 317

and since this is not a separator of the graph, it must be at an end of the path‐decomposition.
Finally, one argues about the structure of path‐decomposition ofG M− , which is simplified
by using the hdf concept. This decomposition is then extended to one of G′.

As a result, G′ is a smaller graph that satisfies all the necessary properties to use
induction, proving Theorem 1.5(ii). For Part (i), we note that the graphsG G, …,3 6 exhibit
a 2‐edge separator and cannot be a subgraph ofG ifG is 3‐connected. Thus, we only need
to verify that the reductions ρ1 and ρ2 preserve 3‐connectivity.

To see that this is the case, regard ≔R G uv u v′ − { , ′ ′} for two edges uv and u v′ ′ of G′.
If both edges are inGi, then R remains connected. Let H be the unchanged part ofG, that
is, ≔H G V G− ()i . We may thus assume that at least one edge we delete is in H . But H
is 2‐edge‐connected since a bridge of H extends to a 2‐edge‐separator ofG since there are
only three edges between H and Gi. This means that R is connected unless both deleted
edges are in H . In this final case, H is either connected, and we are done, or it
decomposes into two components K1 and K2. But since G uv u v− { , ′ ′} is connected, these
components have neighbours in Gi, so they also remain connected in G′. □

5 | CONCLUSION AND FUTURE RESEARCH

We successfully automated the approach of working one's way through a path‐decomposition
to show that a set of graphs is unavoidable. The algorithm proved its use in practice. For
example, it verified that C C C{ , , …, }3 4 7 is unavoidable for cubic graphs of path‐width at most 7.
These computational results led us to new insights on ξ k(). A further use of the algorithm can
be found in [3, Lemma 29], where it is used to show that any cubic graph of path‐width at most
4 contains one of the five specific graphs as a subgraph. This is used to prove the
3‐decomposition conjecture for 3‐connected cubic graphs of path‐width at most 4.

The most obvious question is whether our framework can be generalised to provide an algorithm
which verifies unavoidable sets for graph classes of bounded tree‐width. A starting point would be to
order the bags of a rooted smooth tree‐decomposition such that bags of the highest distance to the
root are considered first. Observe that also the highest‐degree‐first‐concept transfers to tree‐width.
The expected problem with this approach is that the search space becomes too large.

Furthermore, it would be desirable to extend the list of girth‐extremal graphs of path‐width k.

ACKNOWLEDGEMENTS
The research leading to these results has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme (EngageS:
grant agreement No. 820148). Open Access funding enabled and organized by Projekt DEAL.

REFERENCES
1. K. Appel and W. Haken, Every planar map is four colorable. Part I: Discharging, Illinois J. Math. 21 (1977),

no. 3, 429–490. https://doi.org/10.1215/ijm/1256049011
2. K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. Part II: Reducibility, Illinois J. Math.

21 (1977), no. 3, 491–567. https://doi.org/10.1215/ijm/1256049012
3. O. Bachtler and I. Heinrich, Reductions for the 3‐decomposition conjecture. Version 2. 2022. arXiv:

2104.15113 [math.CO]. https://doi.org/10.48550/arXiv.2104.15113
4. H. L. Bodlaender, A partial k‐arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209

(1998), no. 1, 1–45. https://doi.org/10.1016/S0304-3975(97)00228-4

318 | BACHTLER and HEINRICH

https://doi.org/10.1215/ijm/1256049011
https://doi.org/10.1215/ijm/1256049012
https://doi.org/10.48550/arXiv.2104.15113
https://doi.org/10.1016/S0304-3975(97)00228-4

5. H. L. Bodlaender, B. A. Burton, F. V. Fomin, and A. Grigoriev, Knot diagrams of treewidth two, Version 2.
2019. arXiv: 1904.03117 [cs.DS]. https://doi.org/10.48550/arXiv.1904.03117

6. H. L. Bodlaender, B. Burton, F. V. Fomin, and A. Grigoriev, Knot diagrams of treewidth two, Graph‐
Theoretic Concepts in Computer Science, 46th International Workshop on Graph‐Theoretic Concepts in
Computer Science, WG 2020, Lecture Notes in Computer Science (I. Adler, and H. Müller, eds.), 12301,
Springer, Cham, Switzerland, 2020, pp. 80–91. https://doi.org/10.1007/978-3-030-60440-0_7

7. H. L. Bodlaender and A. M. C. A. Koster, Treewidth computations II. Lower bounds, Inform. and Comput.
209 (2011), no. 7, 1103–1119. https://doi.org/10.1016/j.ic.2011.04.003

8. G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. Mélot, House of graphs: A database of interesting graphs,
Discrete Appl. Math. 161 (2013), no. 1, 311–314. https://doi.org/10.1016/j.dam.2012.07.018

9. L. S. Chandran and C. R. Subramanian, Girth and treewidth, J. Combin. Theory Ser. B. 93 (2005), no. 1,
23–32. https://doi.org/10.1016/j.jctb.2004.05.004

10. M. Chudnovsky, R. Kim, S.‐I. Oum, and P. Seymour, Unavoidable induced subgraphs in large graphs with no
homogeneous sets, J. Combin. Theory Ser. B. 118 (2016), 1–12. https://doi.org/10.1016/j.jctb.2016.01.008

11. D. Conlon, J. Fox, and B. Sudakov, Recent developments in graph Ramsey theory, Surveys in Combinatorics,
London Mathematical Society Lecture Note Series (A. Czumaj, et al, ed.), vol. 424, Cambridge University Press,
Cambridge, UK, 2015, pp. 49–118. https://doi.org/10.1017/CBO9781316106853.003

12. B. Courcelle, The monadic second‐order logic of graphs. I. Recognizable sets of finite graphs, Inform. and
Comput. 85 (1990), no. 1, 12–75. https://doi.org/10.1016/0890-5401(90)90043-H

13. D. W. Cranston and D. B. West, An introduction to the discharging method via graph coloring, Discrete
Math. 340 (2017), no. 4, 766–793. https://doi.org/10.1016/j.disc.2016.11.022

14. R. Diestel, Graph theory, Fifth. Graduate Texts in Mathematics (S. Axler, and K. Ribet, eds.), vol. 173,
Springer, Heidelberg, 2016. https://doi.org/10.1007/978-3-662-53622-3

15. G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Combin. (2012), Dynamic Survey no. 16, 1–55. https://doi.
org/10.37236/37

16. L. Feuilloley, Introduction to local certification, Discrete Math. Theoret. Comput. Sci. 23 (2021), no. 3.
https://doi.org/10.46298/dmtcs.6280

17. M. Frick and M. Grohe, The complexity of first‐order and monadic second‐order logic revisited, Annals of
Pure and Applied Logic (I. Moerdijk, ed.), 130.1. Papers presented at the 2002 IEEE Symposium on Logic in
Computer Science (LICS), Elsevier, Amsterdam, Netherlands, 2004, pp. 3–31.https://doi.org/10.1016/j.apal.
2004.01.007

18. E. Fuchs, L. Gellert, and I. Heinrich, Cycle decompositions of pathwidth‐6 graphs, J. Graph Theory. 94
(2020), no. 2, 224–251. https://doi.org/10.1002/jgt.v94.2

19. M. Göös and J. Suomela, Locally checkable proofs in distributed computing, Theory Comput. 12 (2016), no.
19, 1–33. https://doi.org/10.4086/toc.2016.v012a019

20. A. Korman, S. Kutten, and D. Peleg, Proof labeling schemes, Distrib. Comput. 22 (2010), no. 4, 215–233.
https://doi.org/10.1007/s00446-010-0095-3

21. E. L. Post, A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc. 52 (1946), no. 4, 264–268.
https://doi.org/10.1090/S0002-9904-1946-08555-9

22. N. Robertson and P. D. Seymour, Graph minors. X.X. Wagner's conjecture, J. Combin. Theory Ser. B. 92.2
(2004), 325–357. Special Issue Dedicated to Professor W.T. Tutte. https://doi.org/10.1016/j.jctb.2004.08.001

23. The Sage Developers, SageMath, the Sage mathematics software system, Version 9.0. 2020 https://www.
sagemath.org

24. W. T. Tutte, A family of cubical graphs, Math. Proc. Cambridge Philos. Soc. 43 (1947), no. 4, 459–474.
https://doi.org/10.1017/S0305004100023720

How to cite this article: O. Bachtler and I. Heinrich, Automated testing and interactive
construction of unavoidable sets for graph classes of small path‐width, J. Graph Theory.
2023;104:289–319. https://doi.org/10.1002/jgt.22964

BACHTLER and HEINRICH | 319

https://doi.org/10.48550/arXiv.1904.03117
https://doi.org/10.1007/978-3-030-60440-0_7
https://doi.org/10.1016/j.ic.2011.04.003
https://doi.org/10.1016/j.dam.2012.07.018
https://doi.org/10.1016/j.jctb.2004.05.004
https://doi.org/10.1016/j.jctb.2016.01.008
https://doi.org/10.1017/CBO9781316106853.003
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/j.disc.2016.11.022
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.37236/37
https://doi.org/10.37236/37
https://doi.org/10.46298/dmtcs.6280
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1002/jgt.v94.2
https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1016/j.jctb.2004.08.001
https://www.sagemath.org
https://www.sagemath.org
https://doi.org/10.1017/S0305004100023720
https://doi.org/10.1002/jgt.22964

	Automated testing and interactive construction of unavoidable sets for graph classes of small path-width
	1 INTRODUCTION
	1.1 High-level description of the algorithm and challenges
	1.2 Consequences in structural graph theory
	1.3 Further related work
	1.4 Outline

	2 PRELIMINARIES
	2.1 Basic notation
	2.2 Path-decompositions and path-width
	2.3 Locally checkable graphs
	2.4 High-degree-first path-decompositions

	3 DECIDING UNAVOIDABILITY FOR GRAPHS OF BOUNDED PATH-WIDTH ALGORITHMICALLY
	3.1 The base algorithm
	3.2 Isomorphism rejection
	3.3 Achieving termination
	3.3.1 Undecidability of the general problem
	3.3.2 Modified algorithm for locally checkable classes
	3.3.3 Runtime analysis
	3.3.4 Necessity of the adjustments to the algorithm

	3.4 Tailoring the algorithm to cubic graphs
	3.5 Unavoidable minors and induced subgraphs

	4 PATH-WIDTH AND GIRTH OF CUBIC GRAPHS
	5 CONCLUSION AND FUTURE RESEARCH
	ACKNOWLEDGEMENTS
	REFERENCES

