Supporting Information

High-entropy sulfides as highly effective catalysts for the oxygen evolution reaction

Ling Lin, Ziming Ding, Guruprakash Karkera, Thomas Diemant, Mohana Veerraju Kante, Daisy Agrawal, Horst Hahn, Jasmin Aghassi, Maximilian Fichtner, Ben Breitung* and Simon Schweidler*

Figure S1. Exemplary top-view SEM images of HESs

a)	HAADF	s	Ti	Fe	Co	Ni	Mo	Mn
	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm
b)	HAADF	S	Ti	Fe	Co	Ni	Mo	Cu
2			T					
с,	HAADF	S		Fe	Co	NI	MO	Cu
	100 nm 100	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm
d)	HAADF S	S	Ti	Fe	Co	Ni	Мо	Ag
		100 nm	100 nm	100 nm	100 nm	100 nm	<u>1</u> 00 nm	100 nm
e)	HAADF	S	Π	Fe	Co	Ni	Cu	
	100 nm	<u>100 nm</u>	100 nm	100 nm	100 nm	<u>100 nm</u>	<u>10</u> 0 nm	
f)	HAADF	S	Fe	Ni 🤐	Mn 🛫	Co	Cu	
	0		1	de pre	10	100		
	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm	
g)	HAADF	S	Fe	Ni	Mn	Ti	Cr	
	<u>100 nm</u>	100 nm	100 nm	100 nm	100 nm	100 nm	100 nm	

Figure S2. STEM-EDX mapping of a) HESMoMn, b) HESMoCu, c) HESMoCu-1, d) HESMoAg-1, e) HESCu, f) HES2CoCu, g) HES2TiCr.

Figure S3. Exemplary top-view SEM image of IrO2

Figure S4. CV curves at different scan rates (5, 10, 20, 40, and 60 mV s⁻¹) of a) HES1CoCr and b) HES2CoCr. c) Current density differences (Δj) of HES1CoCr and HES2CoCr from CV curves plotted against the scan rate. The C_{dl} can be determined from the linear slope.

Figure S5. Multi-step chronopotentiometry of HESMo and HES2CoCu at current densities of 10, 20 and 50 mA cm^{-2} .

Figure S6. XPS detail spectra of HESMo in the a) Ni 2p, b) Co 2p, c) Fe 2p and d) O 1s region.

Materials	Method	Mass ratio [%]
HESMo	Expected value	Ti 5.5 Fe 12.8 Co 13.5 Ni 20.2 Mo 11.0 S 36.9
	ICP-OES	Ti 5.6 Fe 13.3 Co 13.6 Ni 19.8 Mo 10.2 S 28.5 undefined part 9.0
	EDX	Ti 5.2 Fe 12.2 Co 12.9 Ni 17.9 Mo 9.0 S 42.7
HESMoMn	Expected value	Ti 4.6 Mn 10.5 Fe 10.7 Co 11.3 Ni 16.9 Mo 9.2 S 36.9
	ICP-OES	Ti 4.7 Mn 10.7 Fe 12.0 Co 12.2 Ni 17.1 Mo 8.6 S 31.4 undefined part 3.3
	EDX	Ti 4.8 Mn 11.0 Fe 11.4 Co 12.0 Ni 16.5 Mo 9.0 S 35.2
HESMoCu	Expected value	Ti 4.5 Fe 10.5 Co 11.1 Ni 16.6 Cu 12.0 Mo 9.0 S 36.3
	ICP-OES	Ti 4.2 Fe 11.4 Co 12.1 Ni 17.4 Cu 13.3 Mo 8.9 S 32.4 undefined part 0.3
	EDX	Ti 4.6 Fe 10.0 Co 10.8 Ni 14.8 Cu 11.9 Mo 8.2 S 39.8
HESMoCu-1	Expected value	Ti 4.7 Fe 10.9 Co 11.4 Ni 17.1 Cu 12.3 Mo 9.3 S 34.3
	ICP-OES	Ti 4.8 Fe 11.3 Co 11.7 Ni 17.0 Cu 12.7 Mo 8.7 S 33.6 undefined part 0.2
	EDX	Ti 4.5 Fe 10.2 Co 10.6 Ni 14.7 Cu 14.8 Mo 8.3 S 36.9
HESMoAg-1	Expected value	Ti 4.3 Fe 10.0 Co 10.5 Ni 15.8 Mo 8.6 Ag 19.3 S 31.5

Table S1. Stoichiometry of HESs from ICP-OES and EDX analysis.

	ICP-OES	Ti 4.5 Fe 10.1 Co 10.2 Ni 16.0 Mo 7.8 Ag 0.7 S 27.7 undefined part 23.0
	EDX	Ti 4.5 Fe 9.8 Co 10.2 Ni 14.9 Mo 8.2 Ag 16.1 S 36.2
HESCu	Expected value	Ti 5.3 Fe 12.4 Co 13.1 Ni 19.5 Cu 14.1 S 35.6
	ICP-OES	Ti 5.0 Fe 11.7 Co 12.3 Ni 17.4 Cu 14.5 S 17.8 undefined part 21.3
	EDX	Ti 5.2 Fe 11.1 Co 12.2 Ni 16.4 Cu 16.6 S 38.6

The expected values are calculated using the synthetic compositions listed in **Table 1**. The measurement results are largely in line with expectations. Although the Ag content of HESMoAg-1 and some S contents determined by ICP-OES are lower than expected, these missing contents are probably contained in an undefined part, such as undetectable precipitates insoluble in aqua regia. When further analyzed by combining the EDX results, the ratios of the elements are essentially close to the expected values.

Table S2. Comparison of OER performance among HESMoMn and some reported transition metalsulfides or derivatives with glassy carbon working electrode in alkaline media.

Catalysts	Overpotential [mV]	Tafel slope	Reference
	@10 mA cm ⁻²	[mV dec⁻¹]	
TiFe ₂ Co ₂ Ni ₃ MoMn ₂ S ₁₂	288	43.6	This work
hierarchical porous Ni3S4	307	67	[1]
CoS/CNT composite	330	142	[2]
Mo-N/C@MoS2	390	72	[3]
3% Ni-doped CuS	390	96.8	[4]
CuCo ₂ S ₄ nanosheets	310	86	[5]
$Ni_{1.29}Co_{1.49}Mn_{0.22}S_4$	348	65	[6]
$Co_{1-x}Ni_xS_2$ -graphene composite	330	47	[7]
FeNiS ₂ nanosheets	310	46	[8]
Ti-Fe mixed sulfide nanoboxes	350	55	[9]

Table S3. Summary of effects on catalytic performance.

Abbreviation	Composition	Structure	Effect on OER performance
HESMo	$TiFe_2Co_2Ni_3MoS_{10}$	Pnma	The catalytic OER performance can be improved by incorporating Mo
			into the multi-metal high entropy system.
HESMoMn	$TiFe_2Co_2Ni_3MoMn_2S_{12}$	Pnma	The introduction of Mn slightly reduces the overpotential.
HESMoCu	$TiFe_2Co_2Ni_3MoCu_2S_{12}$	Pnma	Compared with HESCu, the overpotential is greatly reduced by
			introducing Mo.

HESMoCu-1	$TiFe_2Co_2Ni_3MoCu_2S_{11}$	Pnma	Compared with HESMoCu, changing Cu precursor from CuS (Cu ²⁺) to
			Cu ₂ S (Cu ¹⁺) results in a significant increase in overpotential.
HESMoAg-1	$TiFe_2Co_2Ni_3MoAg_2S_{11}$	Pnma	Similar poor OER performance is observed for HESMoAg-1 and
			HESMoCu-1. Incorporation of the +1 metal cations Cu or Ag leads to a
			significant deterioration of the OER activity, which may be due to the
			lack of formation of efficient catalytically active species of these metal
			ions.
HESCu	$TiFe_2Co_2Ni_3Cu_2S_{10}$	Pnma	Compared with HESMo, the overpotential is clearly increased by
			replacement of Mo by Cu.
HES1CoCr	MnFeNiCoCrS₅	Pnma	HES1CoCr (M:S = 1:1) shows a bit better OER activity than
			HES2CoCr (M:S = 1:2), which could be attributed to the higher
			proportion of cations.
HES2CoCr	MnFeNiCoCrS ₁₀	Pa-3	Crystal structures (Pa-3 and Pnma) of the nanoparticles hardly affect
			the ECSA.
HES2CoCu	MnFeNiCoCuS ₁₀	Pa-3	Replacing Cr with Cu causes very slight reduction in overpotential.
HES2TiCr	MnFeNiTiCrS ₁₀	Pa-3	Replacing Co with Ti results in relatively higher overpotential, possibly
			due to stronger synergistic effect between other transition metals and
			Co than Ti.

References

 [1] K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B. W. Mao, X. Zhang, J. Fransaer, *Adv. Funct. Mater.* 2019, 29, 1900315.

[2] K.Prabakaran, M. Lokanathan, B. Kakade, Appl. Surf. Sci. 2019, 466, 830.

[3] I. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. Zhang, S. Mu, *Adv. Funct. Mater.* **2017**, *27*, 1702300

- [4] J. Kundu, S. Khilari, K. Bhunia, D. Pradhan, Catal. Sci. Technol. 2019, 9, 406.
- [5] M. Chauhan, K. P. Reddy, C. S. Gopinath, S. Deka, ACS Catal. 2017, 7, 5871.
- [6] Y. Xu, A. Sumboja, A. Groves, T. Ashton, Y. Zong, J. A. Darr, RSC Adv. 2020, 10, 41871.
- [7] H. Han, K. M. Kim, H. Choi, G. Ali, K. Y. Chung, Y. R. Hong, J. Choi, J. Kwon, S. W. Lee, J. W. Lee, J.
 H. Ryu, T. Song, S. Mhin, *ACS Catal.* **2018**, *8*, 4091.
- [8] J. Jiang, S. Lu, H. Gao, X. Zhang, H. Q. Yu, Nano Energy 2016, 27, 526.
- [9] J. W. Nai, Y. Lu, X. Y. Yu, J. Mater. Chem. A **2018**, 6, 21891.