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This paper investigates the asymptotic behavior of the Helmholtz free energy of
mixtures at small compressibility. We start from a general representation for the
local free energy that is valid in stable subregions of the phase diagram. On the
basis of this representationwe classify the admissible data to construct a thermo-
dynamically consistent constitutive model. We then analyze the incompressible
limit, where the molar volume becomes independent of pressure. Here we are
confronted with two problems:

(i) Our study shows that the physical system at hand cannot remain incom-
pressible for arbitrary large deviations from a reference pressure unless its
volume is linear in the composition.

(ii) As a consequence of the 2nd law of thermodynamics, the incompressible
limit implies that the molar volume becomes independent of temperature
as well. Most applications, however, reveal the non-appropriateness of this
property.

According to our mathematical treatment, the free energy as a function of tem-
perature and partial masses tends to a limit in the sense of epi– or Gamma–
convergence. In the context of the first problem, we study the mixing of two flu-
ids to compare the linearitywith experimental observations. The second problem
will be treated by considering the asymptotic behavior of both a general inequal-
ity relating thermal expansion and compressibility and a PDE-system relying on
the equations of balance for partial masses, momentum and the internal energy.

1 INTRODUCTION

As a rule, real world fluids–solutions, electrolytes, fluid mixtures, and so on, but also supposedly pure substances–are
composed of several constituents and are termedmulticomponent fluids. Recently, it has turned out that new energy tech-
nologies require a consistent coupling of flow of matter, diffusion, chemical reactions and further purely mechanical
phenomena. For fluid mixtures, the resulting equations raised new interest also in the PDE community. In fact, only few
results are available for reaction–diffusion systems coupled to fluid dynamical equations. Moreover, these results almost
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all concern so-called idealmixtures. Non-ideal fluidmixtures are treated for example, in [1]. There, the analysis of a general
class–one model was presented, without other restrictions on the thermodynamical potential – in this case the Helmholtz
free energy – than being a function of Legendre–type.1 In [3], the results of [1] for the isothermal case are extended to
incompressible mixtures.
For a physical body, themolar volume 𝜐 expresses howmuch volume is locally available permole. In amulticomponent

system, the amount ofmatter (howmanymoles)which is overall necessary to fill a certain volumedepends on temperature
and pressure, but also on the composition of the mixture. This relationship, called the thermal equation of state, is an
algebraic equation of the form

𝜐 = �̂�(𝑇, 𝑝, 𝑥1, … , 𝑥𝑁) , (1)

in which the variables 𝑇 (absolute temperature), 𝑝 (pressure), and 𝑥 = (𝑥1, … , 𝑥𝑁) (mole fractions, expressing the com-
position) describe the state of the body, and �̂� is a constitutive function.
We define incompressibility of a multicomponent fluid as zero compressibility, that is,

𝜕𝑝�̂�(𝑇, 𝑝, 𝑥1, … , 𝑥𝑁) = 0 , (2)

meaning the pressure–invariance of the molar volume at fixed composition and temperature.
This concept still allows for local changes of the molar volume and the total mass density due to variations of temper-

ature and/or composition. However, in the present paper we prove by rigorous asymptotics that the thermodynamical
stability of the incompressible phase imposes (in a neighborhood of some reference state) the conditions

𝜕𝑇�̂� = 0 and 𝐷2
𝑥,𝑥�̂� = 0 . (3)

In other words, a thermodynamically consistent equation of state for an incompressible fluid mixture does not depend on
temperature and it is linear in the composition,

𝜐 = �̂�(𝑇0, 𝑝0, 𝑥) =

𝑁∑
𝑖=1

𝜐00
𝑖
𝑥𝑖 , (4)

with constants 𝜐001 , … , 𝜐00𝑁 .
2 Similar volume constraints have been used to express incompressibility in [4–6] and [7–9].

Moreover, the definition (2) was also studied in the context of binary Cahn–Hilliard regularization under the notion of
quasi-incompressible fluids; see the Section 4 of [10].
As a consequence, the asymptotic model forbids thermal expansion and nonlinear volume effects in the composition

variable, two conclusions that seem counterintuitive. Indeed, in Section 4 we consider more refined scaling arguments
such that these conclusions can be weakened. To this endwe study the full compressible PDE-system ofmixtures of fluids.
There are flow regimes, where it is necessary to distinguish between the conclusions of thermodynamically consistent
models for compressibility zero, and the behavior of the solutions to the PDE-system that describe multicomponent fluids
at low Mach–number.
It is well known that the chemical potentials for incompressible multicomponent fluids and for compressible mixtures

in the low Mach-number regime are linear in the pressure. In fact, for both cases the chemical potentials of the 𝑁 con-
stituents indexed by 𝑖 = 1, … ,𝑁 can be written as

𝜇𝑖 = �̂�𝑖(𝑇, 𝑝, 𝑥1, … , 𝑥𝑁) = 𝜐00
𝑖
𝑝 + 𝜇0

𝑖
(𝑇, 𝑥1, … , 𝑥𝑁) . (5)

Note that the pressure term in the chemical potentials induces the coupling between transport of matter, diffusion and
chemical reactions. That term leads to a considerable complication of the mathematical analysis. Some analysis of weak
solutions of the same kind of model was also performed in [11].

1 A function 𝑓 defined in an open convex set ⊆ ℝ𝑁 is called of Legendre–type if it is continuously differentiable and strictly convex in and the gradient
of 𝑓 blows up at every point of the boundary of (see [2], Section 26).
2 Depending on the context we shall denote the reference values of temperature and pressure by (𝑇0, 𝑝0), respectively (𝑇R, 𝑝R). We use the superscript
00 (resp. R) to denote the values of thermodynamic functions in the reference state.
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So far we already introduced two constitutive functions, viz. (1) and (5). However, the PDE-system of a fluid mixture
contains further functions of that kind. For example, diffusion fluxes, reaction rates, the heat flux and the specific enthalpy
are likewise given by constitutive functions. In this context there arises the problem of thermodynamic consistency of
the PDE-system because the data for these functions often result from quite different sources. In this paper we derive
all these functions from a potential, the Helmholtz free energy density, with special features such that thermodynamic
consistency is guaranteed. Butwhenwe ask for the origin of the free energy function,we are confrontedwith newproblems
because free energy models are not directly determined in experiments. Exclusively some derivatives of the free energy
are measured. For this reason we shall construct some representation theorems of the free energy function in terms of
independent measurable quantities.

2 THERMODYNAMICS OFMULTICOMPONENT FLUIDS

In this section, a brief introduction of thermodynamic modeling for multicomponent mixtures is given. The model relies
on the treatment that is described in the seminal handbook article by Meixner, [12]. Further details are found in [13, 14]
and [4].

Variables
Consider a multicomponent system consisting of 𝑁 ∈ ℕ chemical species A1,… ,A𝑁 which are assumed to constitute a
fluid phase. Locally, we characterize themixture by the absolute temperature 𝑇, the partial mass densities (𝜌𝑖)𝑖=1,2,…,𝑁 and
the barycentric velocity 𝒗. These quantities are the basic variables of the model.
Total mass density, total mole density and the molar volume are defined by

𝜚 =

𝑁∑
𝑖=1

𝜌𝑖 , 𝑛 =

𝑁∑
𝑖=1

𝜌𝑖
𝑀𝑖

, 𝜐 =
1

𝑛
, (6)

respectively. The positive constants𝑀𝑖 denote the molar masses of the constituents. For brevity in notation we often use
the notation 𝜌 for the vector (𝜌1, … , 𝜌𝑁), while 𝜚 is the total mass density. The molar volume is related to the mass density
by

𝜐 =
𝑀

𝜚
, (7)

where𝑀 denotes the mean molar mass, that is,

𝑀 = 𝑀(𝑥) ∶=

𝑁∑
𝑖=1

𝑀𝑖 𝑥𝑖 , (8)

where the mole fractions are defined as 𝑥𝑖 ∶= 𝑛𝑖∕𝑛 = 𝜌𝑖∕(𝑀𝑖 𝑛).
In single-component fluids the volume is often chosen as the specific volume, namely 𝜐 = 1∕𝜚. In fluid mixtures we

prefer using the volume defined in (7) which is called molar volume, because its physical unit is [m3/ mole].

Equations of balance
In continuum thermodynamics, the relevant equations to determine the variables are balance equations for the partial
masses, the momentum and the internal energy. These balance equations read

𝜕𝑡𝜌𝑖 + div(𝜌𝑖 𝒗 + 𝑱𝑖) = 𝑟𝑖 ,

𝜕𝑡(𝜚𝒗) + div(𝜚𝒗 ⊗ 𝒗 + 𝑝 𝟏 − 𝑺) = 𝜚𝒃 ,

𝜕𝑡(𝜚𝑢) + div(𝜚𝑢 𝒗 + 𝒒) = (−𝑝𝟏 + 𝑺) ∶ ∇𝒗 .

(9)
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Here further quantities do occur that are not in the list of variables: The diffusion fluxes 𝑱1, … , 𝑱𝑁 and the reaction rates
𝑟1, … , 𝑟𝑁 . Moreover, we have the stress which here is decomposed into pressure 𝑝 and its irreversible part 𝑺. The quantity
𝒃 is the external body force acting on the fluid. Finally, there are the specific internal energy 𝑢 and the heat flux 𝒒. Except
for the body force, which is assumed to be given, these objects are called constitutive quantities because they describe the
material behavior of the special fluid mixture at hand.
The diffusion fluxes and the reaction rates are subjected to the constraints

𝑁∑
𝑖=1

𝑱𝑖 = 0 and
𝑁∑
𝑖=1

𝑟𝑖 = 0 , (10)

such that the balance of total mass becomes a conservation law, the continuity equation

𝜕𝑡𝜚 + div(𝜚 𝒗) = 0 . (11)

Note that balance laws are primarily stated for the partial mass densities 𝜌1, … , 𝜌𝑁 . Due to the simple connection 𝜌𝑖 =
𝑀𝑖 𝑛𝑖 , they imply balance laws for the mole densities 𝑛1, … , 𝑛𝑁 as well. However, unlike the total mass 𝜚, the total mole
density 𝑛 is not a conserved quantity if chemical reactions are involved.

Constitutive equations
The constitutive quantities are related to the variables by constitutive equations in a material dependent manner.
We assume the Newtonian viscosity model, where the irreversible part of the stress is linear in the symmetric velocity

gradient, that is,

𝑺 = 𝜆 (div 𝒗) 𝟏 + 2 𝜂 (∇𝒗)sym with 𝜂 ≥ 0, 𝜆 +
2

3
𝜂 ≥ 0 . (12)

The constitutive equations for the diffusion fluxes and the heat flux rely on the laws of Fick, Onsager, and Fourier, where-
upon these quantities are linearly related to the gradients of inverse temperature, 1∕𝑇, and of chemical potentials, 𝜇𝑖 , more
specifically

𝑱𝑖 = −

𝑁∑
𝑗=1

𝑀𝑖,𝑗 ∇
𝜇𝑗

𝑇
+ 𝑙𝑖 ∇

1

𝑇
,

𝑁∑
𝑖=1

𝑀𝑖,𝑗 = 0 for all 𝑗 and
𝑁∑
𝑖=1

𝑙𝑖 = 0 ,

𝒒 = −

𝑁∑
𝑗=1

𝑙𝑗 ∇
𝜇𝑗

𝑇
+ 𝜅∇

1

𝑇
.

(13)

In (13), {𝑀𝑖,𝑗} is a symmetric, positive semi-definite matrix. For its relationship with theOnsager operator, see for instance
[14]. The coefficients 𝑙𝑗 are related to thermo-diffusion (the Soret and the Dufour effect), while 𝜇1, … , 𝜇𝑁 are the (mass-
based) chemical potentials. For details concerning the modern way of deriving appropriate representations of the fluxes,
see [4, 15] and the references given there.
The thermodynamically consistent modeling of the reaction rates assumes them exponentially proportional to reaction

affinities of the form
∑𝑁

𝑖=1
𝛾𝑘
𝑖
𝑀𝑖 𝜇𝑖∕𝑇, in which 𝛾𝑘 is the stoichiometric vector associated with the 𝑘th reaction. If there

are 𝑁R ∈ ℕ0 independent chemical reactions, then a thermodynamically consistent choice is

𝑟𝑖 = −

𝑁R∑
𝑘=1

𝑅𝑘

(
1 − exp(𝛼𝑘

𝑁∑
𝑗=1

𝛾𝑘
𝑗
𝑀𝑗 𝜇𝑗∕𝑇)

)
𝛾𝑘
𝑖
𝑀𝑖 , (14)

in which 𝑅𝑘 and 𝛼𝑘 are some positive functions of the local thermodynamic state. Each reaction conserves the mass, that
is, we have

∑𝑁

𝑖=1
𝛾𝑘
𝑖
𝑀𝑖 = 0.

The crucial constitutive quantity relating the chemical potentials to the main variables is the (Helmholtz) free energy
density. It is defined by the combination 𝜚𝜓 ∶= 𝜚𝑢 − 𝑇 𝜚𝑠 with the internal energy density 𝜚𝑢 and the entropy density 𝜚𝑠.
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In the current context, the most general constitutive function for the free energy density has the form

𝜚𝜓 = 𝜚𝜓(𝑇, 𝜌1, 𝜌2, … , 𝜌𝑁) , (15)

and then the (mass–based) chemical potentials are given by

𝜇𝑖 =
𝜕𝜚𝜓

𝜕𝜌𝑖
for 𝑖 = 1, 2, … ,𝑁 . (16)

If the free energy function (15) were given, the second law of thermodynamics implies rules whereupon the other consti-
tutive quantities can be calculated, viz.

𝑝 = −𝜚𝜓 +

𝑁∑
𝑖=1

𝜌𝑖 𝜇𝑖 , 𝜚𝑢 = −𝑇2 𝜕𝑇(𝜚𝜓∕𝑇) , 𝜚𝑠 = −𝜕𝑇𝜚𝜓 . (17)

A proof of this proposition may be found for instance in [4].
The existence of a free energy function 𝜚𝜓(𝑇, 𝜌1, … , 𝜌𝑁) allowing to apply (16) and (17) is a necessary condition to

formulate constitutive equations for the fluxes and the reaction rates of multicomponent systems. Moreover, the existence
of a free energy function is the guarantor for thermodynamic consistency of thesemodels. But thermodynamic consistency
requires more than the Equations (16) and (17): Additionally, there are some inequalities. Two of them have already been
stated for the Newtonian viscosities, namely (12)2,3. Further inequalities concern the chemical potentials and the specific
internal energy. They read {

𝜕𝜇𝑖
𝜕𝜌𝑗

}
𝑖,𝑗=1,…,𝑁

is symmetric, positive definite and 𝜕𝑢

𝜕𝑇
> 0 . (18)

There is a special case for which the system of PDEs resulting from the balance equations (9) is well studied. This
concerns the class of ideal mixtures. Here, the chemical potentials obey

𝜇𝑖 = �̂�𝑖(𝑇, 𝑝, 𝑥𝑖) = 𝑔𝑖(𝑇, 𝑝) +
𝑅 𝑇

𝑀𝑖
ln 𝑥𝑖 , (19)

where the functions 𝑔1, … , 𝑔𝑁 are the specific Gibbs energies of the pure constituents, 𝑅 is the universal gas constant, and
𝑥𝑖 = 𝑛𝑖∕𝑛 are the mole fractions3. Usually, the specific Gibbs energies are not explicitly given, rather they must be read
off from data tables.
However, there is one exceptional special case. Formixtures of ideal gases, the specific Gibbs energies may be explicitly

calculated from statistical mechanics, resulting in

𝑔𝑖(𝑇, 𝑝) = ℎR
𝑖
− 𝑇 𝑠R

𝑖
+
𝑅 𝑇

𝑀𝑖

[
(𝑧𝑖 + 1)

(
1 −

𝑇0

𝑇

)
− ln

((
𝑇

𝑇0

)𝑧𝑖+1 𝑝0
𝑝

)]
. (20)

Herein, the constants 𝑧𝑖 indicate one-, two- and more-atomic gases according to the numbers 𝑧𝑖 = (3∕2, 5∕2, 3), respec-
tively. The constants ℎR

𝑖
and 𝑠R

𝑖
denote the specific enthalpies and specific entropies, respectively. For many pure sub-

stances, the entropy constants are determined and tabulated. This does not apply for the enthalpy constants. For given
chemical reactions, the relevant combinations (

∑𝑁

𝑖=1 𝛾
𝑘
𝑖
𝑀𝑖ℎ

R
𝑖
)𝑘=1,..,𝑁R only may be determined and can also be found in

tables. In mixtures without both chemical reactions and phase transitions the enthalpy constants are not relevant.

General representation for the free energy, Part 1: Preliminaries
The special choices (19) and (20) are not well suited for the non-ideal case. Thus if we want to study the mathematical
properties of systems that are non-ideal, we are faced with the problem that empirical data do not primarily provide us

3 The construction of 𝜚𝜓 for chemical potentials obeying the additive splitting �̂�𝑖 = 𝑔(𝑇, 𝑝) + 𝑎𝑖(𝑇, 𝑥𝑖) is recalled in Appendix B. It turns out that the
choice of the functions 𝑎𝑖 and 𝑔𝑖 is subject to mathematical restrictions in order to guarantee the compatibility with (16) and the thermodynamic con-
sistency.
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with the free energy density as a function of the basic variables: rather they yield expressions for pressure, specific internal
energy and chemical potentials. Consequently, thermodynamical consistency, expressed by the equations (16), (17) , and
(18), is no longer guaranteed. This observation leads us to the following problem: Find a general representation of the free
energy density in terms of quantities resulting from a combination of theoretical and measured data.
A preliminary problem arises from the fact that empirical data usually do not use 𝑇, 𝜌1, … , 𝜌𝑁 as basic variables.

The reason is that in experiments, temperature 𝑇, pressure 𝑝 and the composition vector, that is, the mole fractions
𝑥 = (𝑥1, … , 𝑥𝑁), are controlled.
While the pressure is related to the basic variables via (17)1, the number fractions obey

𝑥𝑖 =
𝑛𝑖
𝑛
= 𝜐 𝑛𝑖 subject to

𝑁∑
𝑖=1

𝑥𝑖 = 1 . (21)

In order to obtain a representation formula for the free energy, we adopt the change of variables

(𝑇, 𝑛1, … , 𝑛𝑁)⟷ (𝑇, 𝑝, 𝑥1, … , 𝑥𝑁) . (22)

Much easier than (22) is a transformation (𝑇, 𝑛1, … , 𝑛𝑁)⟷ (𝑇, 𝜐, 𝑥1, … , 𝑥𝑁) because the molar volume 𝜐 is introduced
by the simple relation 𝑛𝑖 = 𝜐−1𝑥𝑖 for 𝑖 = 1, … ,𝑁. Therefore we perform the transformation (22) by two steps according to

(𝑇, 𝑛1, … , 𝑛𝑁) ⟷ (𝑇, 𝜐 , 𝑥1, … , 𝑥𝑁) ⟷ (𝑇, 𝑝, 𝑥1, … , 𝑥𝑁) . (23)

Due to the constraint
∑𝑁

𝑖=1 𝑥𝑖 = 1, the number of independent variables does not change here.
For a local thermodynamic quantity 𝑓, given by a constitutive function 𝑓(𝑇, 𝜌1, … , 𝜌𝑁) of the basic variables, we denote

by 𝑓(𝑇, 𝜐, 𝑥1, … , 𝑥𝑁) its representation in the variables (𝑇, 𝜐, 𝑥), and by 𝑓(𝑇, 𝑝, 𝑥1, … , 𝑥𝑁) its representation in the vari-
ables (𝑇, 𝑝, 𝑥).
The change of variables (23)2 needs an additional constitutive equation. This is the so-called thermal equation of state,

relating the pressure to the chosen variables. The most general constitutive law we can expect in the current context is
given by

𝑝 = �̄�(𝑇, 𝜐, 𝑥) ⟷ 𝜐 = �̂�(𝑇, 𝑝, 𝑥) . (24)

The invertibility of (24) is guaranteed by the convexity of the free energy function. A proof of this proposition will follow
below. More comments on the rules of the combined transformations (23) are to be found in Appendix A.
Throughout the present paper, we assume that the molar volume 𝜐 can be calculated or measured in the variables 𝑇

(temperature), 𝑝 (pressure) and 𝑥 (composition). Hence, there is a known function �̂� such that

𝜐 =
1

𝑛
= �̂�(𝑇, 𝑝, 𝑥1, … , 𝑥𝑁) . (25)

If this constitutive equation is given, we can now introduce all thermodynamic quantities as functions of the variables 𝑇,
𝑝, and 𝑥. For example, the partial mass densities obey

𝜌𝑖 = 𝑛𝑀𝑖 𝑥𝑖 =
𝑀𝑖 𝑥𝑖

�̂�(𝑇, 𝑝, 𝑥)
=∶ �̂�𝑖(𝑇, 𝑝, 𝑥) . (26)

A further important application of the transformation rules concerns the specific heat (at constant pressure). Its def-
inition requires the knowledge of both the internal energy function 𝑢 = �̂�(𝑇, 𝑝, 𝑥) and the combination ℎ̂(𝑇, 𝑝, 𝑥) ≡
�̂�(𝑇, 𝑝, 𝑥) + 𝑝�̂�(𝑇, 𝑝, 𝑥)∕𝑀(𝑥), which is called specific enthalpy. Then, the specific heat is defined by

𝑐𝑝(𝑇, 𝑝, 𝑥) = 𝜕𝑇ℎ̂(𝑇, 𝑝, 𝑥) . (27)
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General representation for the free energy, Part 2: Available data
Depending on the chosen data, several representation theorems for 𝜚𝜓 can be derived. Unfortunately, the structure of the
empirical data–base is somehow confusing. Only the use of the variables (𝑇, 𝑝, 𝑥) can be taken for granted. In terms of
these variables, the experimental literature often lists the molar volume, the specific heat and the chemical potentials via
the so–called activity coefficients. These are related to the chemical potentials from (16) by

𝜇𝑖 = 𝜇0
𝑖
+
𝑅 𝑇

𝑀𝑖
ln(𝑥𝑖𝛾𝑖) . (28)

Sometimes 𝜇0
𝑖
is considered as a constant, then the complete (𝑇, 𝑝, 𝑥) dependence is contained in the activity coefficients

𝛾𝑖 . However, one also finds representations of (28) with 𝜇0
𝑖
(𝑇, 𝑝), then 𝛾𝑖 exclusively describes the deviation from ideal

mixtures with respect to the composition (see [16]).
From the theoretical point of viewwemust be especially careful, because here we observe a dependence betweenmolar

volume, specific heat and the chemical potentials. In fact, the pressure dependence of the molar volume already uniquely
determines the pressure dependence of the specific heat and of the chemical potentials. Thus only the use of experimental
data of the kind

𝜐 = �̂�(𝑇, 𝑝, 𝑥), 𝑐𝑝 = 𝑐𝑝(𝑇, 𝑝
0, 𝑥) and 𝜇𝑖 = �̂�𝑖(𝑇, 𝑝

0, 𝑥) (29)

would lead to thermodynamically consistent constitutive laws.
Our representation theorems for the free energy rely on the following data:

(a) The reference pressure 𝑝0 and the reference absolute temperature 𝑇0 > 0,
(b) the molar volume function 𝜐 = �̂�(𝑇, 𝑝, 𝑥),
(c) the specific heat 𝑐𝑝 = 𝑐𝑝(𝑇, 𝑝

0, 𝑥) at a single reference pressure as a function of temperature and composition,
(d) the purely compositional dependence of specific entropy 𝑠 = 𝑠(𝑇0, 𝑝0, 𝑥) and specific enthalpy ℎ̂(𝑇0, 𝑝0, 𝑥) at refer-

ence temperature and pressure.

In this paper, we prefer to use the specific entropy and the specific enthalpy instead of the chemical potentials as given
data. Then the representation theorems for the free energy function assume their simplest form. The functional relations
between the two data sets can be read off from the formulas of Appendix A.

General representations for the free energy, Part 3: Final results
Next, we represent the free energy with respect to the above observations. The proof of the two following propositions is
found in Appendix A.
At first we give the free energy densitywith respect to the variables𝑇, 𝜌, which is needed for themathematical treatment

starting in section 6:

𝑓(𝑇, 𝜌) ∶= 𝜚𝜓(𝑇, 𝜌) = 𝑛(𝜌) ∫
𝑝(𝑇, 𝜌)

𝑝0
�̂�(𝑇, 𝑝′, 𝑥(𝜌)) 𝑑𝑝′ − 𝑝(𝑇, 𝜌)

− 𝜚

(
∫

𝑇

𝑇0
∫

𝜃

𝑇0

𝑐𝑝(𝜃
′, 𝑝0, 𝑥(𝜌))

𝜃′
𝑑𝜃′𝑑𝜃 + 𝑇 𝑠(𝑇0, 𝑝0, 𝑥(𝜌)) − ℎ̂(𝑇0, 𝑝0, 𝑥(𝜌))

)
. (30)

In (30), the notations 𝑛(𝜌) =
∑

𝑖
(𝜌𝑖∕𝑀𝑖) and 𝑥𝑖(𝜌) = 𝜌𝑖∕(𝑀𝑖𝑛(𝜌)) are just needed to switch between (𝑛1, … , 𝑛𝑁) and

(𝜌1, … , 𝜌𝑁), while 𝑝(𝑇, 𝜌) is the representation of the pressure in the main variables following the definition (24). If the
function �̂� is given, the knowledge of the latter function and of its derivatives results from (25), since 𝜋 = 𝑝(𝑇, 𝜌) is the
implicit solution to

𝑛(𝜌) �̂�(𝑇, 𝜋, 𝑥(𝜌)) = 1 . (31)

The representation formula allows to characterize all derivatives of the free energy in terms of the data. For the conve-
nience of the reader, some related identities are recalled in Appendix A.
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The following alternative representation is needed to perform the incompressible limit. It gives the free energy
density with respect to the variables (𝑇, 𝑝, 𝑥). Note that in the (𝑇, 𝑝, 𝑥)−setting, the Gibbs energy 𝑀(𝑥)�̂�(𝑇, 𝑝, 𝑥) =

𝑀(𝑥)�̂�(𝑇, 𝑝, 𝑥) + 𝑝�̂�(𝑇, 𝑝, 𝑥) is the relevant potential,

𝑀(𝑥)�̂�(𝑇, 𝑝, 𝑥) = ∫
𝑝

𝑝0
�̂�(𝑇, 𝑝′, 𝑥) 𝑑𝑝′ − 𝑀(𝑥)

(
∫

𝑇

𝑇0
∫

𝜃

𝑇0

𝑐𝑝(𝜃
′, 𝑝0, 𝑥)

𝜃′
𝑑𝜃′𝑑𝜃 + 𝑇 𝑠(𝑇0, 𝑝0, 𝑥) − ℎ̂(𝑇0, 𝑝0, 𝑥)

)
. (32)

Finally the balance of internal energy needs a representation of the specific enthalpy. It reads

𝑀(𝑥)ℎ̂(𝑇, 𝑝, 𝑥) = ∫
𝑝

𝑝0
(�̂� − 𝑇𝜕𝑇�̂�)(𝑇, 𝑝

′, 𝑥) 𝑑𝑝′ + 𝑀(𝑥)

(
∫

𝑇

𝑇0
𝑐𝑝(𝜃, 𝑝

0, 𝑥) 𝑑𝜃 + ℎ̂(𝑇0, 𝑝0, 𝑥)

)
. (33)

In using the formulae (30), (32), and (33) one must remain aware of the fact that the free energy might not be globally
smooth on the state space, but only piecewise smooth. Phase transitions can occur upon temperature, pressure and com-
position.
Hence, the representation (30) might not be valid globally, but rather in a stable subregion of the state space. By state

space we denote, for the basic variables, the domain

𝒟𝑇,𝜌 = {(𝑇, 𝜌) ∶ 𝑇 > 0, 𝜌1, … , 𝜌𝑁 > 0} . (34)

In stable subregions, thermodynamics requires the strict concavity of the entropy function which, for the free energy, is
equivalent to the two following conditions:

∙ 𝜌 ↦ 𝑓(𝑇, 𝜌) is strictly convex;
∙ 𝑇 ↦ 𝑓(𝑇, 𝜌) is strictly concave.

3 DEFINITION OF INCOMPRESSIBILITY AND RESULTING PROBLEMS

We now consider the asymptotic behavior of the free energy density and the resulting PDE-system for an incompressible
multicomponent fluid.

Definition of incompressibility
Amulticomponent fluid is called incompressible if its molar volume �̂�(𝑇, 𝑝, 𝑥) exhibits only a negligible dependence on
pressure; that is, the derivative 𝜕𝑝�̂� is small compared to some empirical characteristic value. The incompressible limiting
case is defined by

𝜕𝑝�̂�(𝑇, 𝑝, 𝑥) → 0 . (35)

Essentially equivalent definitions are exposed in [4], Section 16, and in [5].
In themathematical literature, the term “incompressible” is a synonym for the relation div 𝐯 = 0, that is, 𝐯 is solenoidal.

Due to the continuity equation, this is equivalent to �̇� = 0 (material derivative).
In conjunction with this definition of incompressibility two different problems will be met. The first problem already

appears for single-component fluids, while the second problem is a feature of fluid mixtures: (i) the famous Boussinesq-
Approximation embodies div 𝐯 = 0 and nevertheless allows thermal expansion, that is, �̇� ≠ 0. (ii) In a mixture, as a rule,
the volume is not conserved. The standard example adds the same volume𝑉 ofwater and ethanol under normal conditions
of temperature and pressure, to obtain a mixture which occupies a volume significantly smaller than 2𝑉.
As we will see, this phenomenon likewise leads to �̇� ≠ 0.

Incompressibility forbids thermal expansion
The incompressible limiting case was carefully discussed by I. Müller in his monograph [14]. In the case of single-
component fluids, he was the first who elaborately described that according to the 2nd law of thermodynamics, the
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incompressible limit (35) implies that 𝜕𝑇�̂�(𝑇, 𝑝) → 0. However, this implication is controversial. We start the discussion
with the fundamental inequalities (18). In Appendix A we show that the inequalities (18) imply the further inequality

(𝜕𝑇�̂�)
2 ≤ −

𝑐𝑝 𝑀

𝑇
𝜕𝑝�̂� , and from (A18)1 we have 𝜕𝑝�̂� = −𝑇 𝜕𝑇�̂� − 𝑝 𝜕𝑝�̂� . (36)

For a single–component fluid, in which case𝑀 is independent of 𝑥, both the inequality (36)1 and (36)2 form the basis of
the treatment by I. Müller in [14]. I. Müller argues as follows. If 𝜕𝑝�̂� = 0, then (36)1 implies that 𝜕𝑇�̂� = 0 as well. Then one
obtains from (36)2 that 𝜕𝑝�̂� = 0.
Particularly the condition 𝜕𝑇�̂� = 0 in an incompressible fluid has become known as the so-called Müller Paradox: It

seems to inevitably forbid the famous Boussinesq-Approximation, whereupon an incompressible fluidmay exhibit thermal
expansion, that is, 𝜕𝑇�̂� ≠ 0. However, at least in liquids the Boussinesq-Approximation is optimally grounded on experi-
mental evidence.
In 2003 and 2004, the phenomenonwas readopted by Bechtel et al. in two papers [17, 18]. Particularly, the authors added

to the consistence problem for the incompressible limit further but different limiting cases and investigated carefully their
thermodynamic consistency.
In 2012,H.Gouin,A.Muracchini&T. Ruggeri again picked up the topic. In the context of the incompressible limit, it was

in this paper that the notionMüller Paradox was introduced. The paper [19] weakens the definition of incompressibility
and introduces the notion of a quasi-thermal incompressible body. Indeed, in [19] the authors exclusively discuss the energy
equation (36)2 but not the inequality (36)1. Nevertheless they provide data for two interesting examples showing that the
pressure–dependence of the internal energy can not be neglected, even if 𝜕𝑝�̂� → 0 is assumed.
In [4] the important role of the inequality (36)1 is also discussed. The authors likewise consider a single–component

fluid and resolve theMüller Paradox on the basis of the PDE-system of motion of an incompressible fluid. In the current
paper we proceed with this discussion in Section 4, but for a multicomponent fluid.

Incompressibility implies a linear dependence of the molar volume function on the composition
In this paragraphwederive a further surprising consequence of the incompressibility definition (35). Ifwe ask for convexity
of 𝜌 ↦ 𝑓(𝑇, 𝜌) also for large deviations of the reference pressure, then the function �̂� must be linear in the composition
variable 𝑥. This can be seen as follows.
By means of (30), we compute the Hessian as a sum of three matrices

𝜕2𝜌𝑖,𝜌𝑗𝑓(𝑇, 𝜌) = 𝐴𝑖𝑗 + 𝐵𝑖𝑗 + 𝐶𝑖𝑗 . (37)

In the variables (𝑇, 𝑝, 𝑥), the expressions for the matrices 𝐴 and 𝐵 are4

�̂�𝑖𝑗 =
�̂�

𝑀𝑖 𝑀𝑗 ∫
𝑝

𝑝0
(𝐷2

𝑥,𝑥�̂�(𝑇, 𝑝
′, 𝑥) [𝑒𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥]) 𝑑𝑝′ ,

�̂�𝑖𝑗 = −
�̂�

𝑀𝑖 𝑀𝑗

(�̂� + 𝐷𝑥�̂� ⋅ [𝑒
𝑖 − 𝑥]) (�̂� + 𝐷𝑥�̂� ⋅ [𝑒

𝑗 − 𝑥])

𝜕𝑝�̂�
.

(38)

With the auxiliary function𝐹(𝑇, 𝑥) ∶= − ∫ 𝑇

𝑇0
∫ 𝜃

𝑇0
(𝑐0𝑝(𝜃

′, 𝑥)∕𝜃′) 𝑑𝜃 𝑑𝜃′ − 𝑇 𝑠00(𝑥) + ℎ̂00(𝑥), which is independent of pres-
sure, we obtain for the matrix 𝐶 the expression

�̂�𝑖𝑗 =
𝑀 �̂�

𝑀𝑖 𝑀𝑗
𝐷2
𝑥,𝑥𝐹[𝑒

𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥] +
�̂�

𝑀𝑖

(
1 −

𝑀

𝑀𝑗

)
𝐷𝑥𝐹 ⋅ [𝑒𝑖 − 𝑥] +

�̂�

𝑀𝑗

(
1 −

𝑀

𝑀𝑖

)
𝐷𝑥𝐹 ⋅ [𝑒𝑗 − 𝑥] . (39)

We note that �̂� = 𝜆 𝜉 ⊗ 𝜉 is a rank–one matrix, where

𝜆 = −
�̂�

𝜕𝑝�̂�
, 𝜉𝑖 ∶=

�̂� + 𝐷𝑥�̂� ⋅ [𝑒
𝑖 − 𝑥]

𝑀𝑖
for 𝑖 = 1, … ,𝑁 . (40)

4 Remark: For a function 𝜙 defined on the surface {(𝑥1, … , 𝑥𝑁) ∶ 𝑥𝑖 ≥ 0,
∑𝑁

𝑖=1 𝑥𝑖 = 1}, the expressions 𝐷𝑥𝜙 ⋅ [𝑒
𝑖 − 𝑥] =

∑𝑁

𝑗=1(𝛿𝑖𝑗 − 𝑥𝑗) 𝜕𝑥𝑗 𝜙 define a
tangential differential operator.
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For 𝜕𝑝�̂� → 0 we have 𝜆 = +∞, and we moreover observe that

�̂�𝑖𝑗 =
�̂�(𝑇, 𝑝0, 𝑥)

𝑀𝑖 𝑀𝑗
(𝑝 − 𝑝0)𝐷2

𝑥,𝑥�̂�(𝑇, 𝑝
0, 𝑥)[𝑒𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥] . (41)

Hence the (𝑇, 𝑝, 𝑥) representation 𝐷2
𝜌,𝜌𝑓 of the Hessian matrix exists as an operator on the subspace {𝜉}⟂, and there it is

given as

𝐷2
𝜌,𝜌𝑓(𝑇, 𝑝, 𝑥) =

�̂�(𝑇, 𝑝0, 𝑥)

𝑀𝑖 𝑀𝑗
(𝑝 − 𝑝0)𝐷2

𝑥,𝑥�̂�(𝑇, 𝑝
0, 𝑥)[𝑒𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥]

+
𝑀(𝑥) �̂�(𝑇, 𝑝0, 𝑥)

𝑀𝑖 𝑀𝑗
𝐷2
𝑥,𝑥𝐹(𝑇, 𝑥)[𝑒

𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥]

+
�̂�(𝑇, 𝑝0, 𝑥)

𝑀𝑖

(
1 −

𝑀(𝑥)

𝑀𝑗

)
𝐷𝑥𝐹(𝑇, 𝑥) ⋅ [𝑒

𝑖 − 𝑥]

+
�̂�(𝑇, 𝑝0, 𝑥)

𝑀𝑗

(
1 −

𝑀(𝑥)

𝑀𝑖

)
𝐷𝑥𝐹(𝑇, 𝑥) ⋅ [𝑒

𝑗 − 𝑥] .

(42)

Due to the condition that 𝐷2
𝜌,𝜌𝑓 is positive definite, the latter matrix must generate a positive operator on {𝜉}⟂. But in the

latter representation, the only contribution varying with pressure is

(𝑝 − 𝑝0)𝐷2
𝑥,𝑥�̂�(𝑇, 𝑝

0, 𝑥)[𝑒𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥] . (43)

We conclude that unless 𝐷2
𝑥,𝑥�̂� = 0, we always can find a contradiction to positive definiteness at finite pressures.

Hence, full exploitation of the inequalities (18) has the following two consequences for the equation of state of an
incompressible fluid:

𝜕𝑇�̂� = 0 and 𝐷2
𝑥,𝑥�̂� = 0 . (44)

In other words, as a direct mathematical consequence of the definition (35), the equation of state for an incompressible
fluid would assume the form:

𝜐 = �̂�(𝑇0, 𝑝0, 𝑥) =

𝑁∑
𝑖=1

𝜐00
𝑖
𝑥𝑖 with constants 𝜐001 , … , 𝜐00𝑁 . (45)

Note that, for a mixture allowing independent vanishing of the constituents, the positivity of volume moreover implies
that the constants 𝜐00 are all positive.

4 THERMAL EXPANSION AND NON–SOLENOIDAL EFFECTS IN INCOMPRESSIBLE
MIXTURES

In this chapter we straighten three items. We show: (i) there is a scaling regime where thermal expansion is possible in
the incompressible limit. (ii) In single-component fluids and in dilute solutions we have div 𝐯 = 0 in that scaling regime.
This is not true in concentrated solutions. (iii) A linear dependence of the molar volume on the composition vector, as
it is indicated in (45), is nevertheless capable to describe the observed non-linear composition dependence of the excess
volume during mixing of different fluids.

The compressible fluid equations
In a first step we rewrite the balance equations (9) with respect to the variables (𝑇, 𝑝, 𝑥) which are best suited to perform
the incompressible limit. To this end the partial mass balances are decomposed into 𝑁 − 1 diffusion equations and the
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balance equation for the total mass of the mixture. Recall the definitions (6), (8) , and (21) to obtain

𝑀𝑖 𝑥𝑖
𝜐

(
ln

(
𝑀𝑖 𝑥𝑖
𝑀(𝑥)

))∙
+ div 𝑱𝑖 = 𝑟𝑖 ,

�̇� − 𝜐 div 𝒗 =
𝜐

𝑀(𝑥)
�̇�(𝑥) ,

𝑀(𝑥)

𝜐
�̇� + ∇𝑝 − div 𝑺 =

𝑀(𝑥)

𝜐
𝒃 ,

𝑀(𝑥)

𝜐
�̇� + div 𝒒 = −𝑝 div 𝒗 + 𝑺 ∶ ∇𝒗 .

(46)

Here we used the material time derivative which is defined by �̇� = 𝜕𝑡𝜓 + 𝒗 ⋅ ∇𝜓. Next, we introduce the general constitu-
tive laws 𝜐 = �̂�(𝑇, 𝑝, 𝑥) and 𝑢 = �̂�(𝑇, 𝑝, 𝑥) = ℎ̂(𝑇, 𝑝, 𝑥) − 𝑝 �̂�(𝑇, 𝑝, 𝑥)∕𝑀(𝑥). The derivatives of ℎ̂ with respect to 𝑇 and 𝑝
are substituted by the equations (A16) and (A18)1 of Appendix A. Then we obtain

𝑀𝑖 𝑥𝑖
𝜐

(
ln

(
𝑀𝑖 𝑥𝑖
𝑀

))∙
+ div 𝑱𝑖 = 𝑟𝑖 ,

𝜕𝑇𝜐 �̇� + 𝜕𝑝𝜐 �̇� − 𝜐 div 𝒗 =
𝜐

𝑀
�̇� −

𝑁∑
𝑗=1

𝜕𝑥𝑗𝜐 �̇�𝑗 ,

𝑀

𝜐
�̇� + ∇𝑝 − div 𝑺 =

𝑀

𝜐
𝒃 ,

𝑀

𝜐
𝑐𝑝 �̇� −

𝑇

𝜐
𝜕𝑇𝜐 �̇� +

𝑀

𝜐

𝑁∑
𝑗=1

𝜕𝑥𝑗ℎ �̇�𝑗 + div 𝒒 = 𝑺 ∶ ∇𝒗 .

(47)

In order to obtain a PDE-system for the variables (𝑇, 𝑝, 𝑥, 𝒗), wemust insert here the various constitutive laws from above:
1. Diffusion fluxes, reaction rates, the irreversible part of stress and the heat flux according to (12) and (13). 2.Molar volume,
specific heat and the specific enthalpy according to the paragraph Available Data.
To study the incompressible limit of these equations, the crucial object is the constitutive function for themolar volume

𝜐.

A simple constitutive equation
We assume that the constitutive equation 𝜐 = �̂�(𝑇, 𝑝, 𝑥) has the form

∑𝑁

𝑖=1
𝜐R
𝑖
𝑥𝑖

�̂�(𝑇, 𝑝, 𝑥)
= 1 − 𝛽𝑇R

(
𝑇

𝑇R
− 1

)
+
𝑝R

𝐾

(
𝑝

𝑝R
− 1

)
, (48)

describing changes of the molar volume due to thermal expansion, elastic compression and changes of the composition.
We have 𝑁 + 2 constants: The quantities 𝜐R

𝑖
> 0 are the molar volumes in a reference state with (𝑇R, 𝑝R), 𝛽 denotes the

thermal expansion coefficient and 𝐾 > 0 is the compression modulus.
The simple constitutive law (48) allows a detailed and sufficient discussion of the incompressible limit.

The incompressible limit equations
In this paragraph we discuss the incompressible limit of both the inequality (36)1 and the PDE-system (47). We follow the
discussion of [4] that is extended here to liquid mixtures.
We consider a mixture with water as the solvent, which is indicated by the lower index S. Then we have 𝜐RS = 1∕55.4

L/mol for 𝑇R = 293K, 𝑝R = 105 Pa (for 𝑥RS = 1). In the neighborhood of this state we have a thermal expansion coefficient
of about 𝛽 = 2.07 ⋅ 10−4 1/K, a bulk modulus of 𝐾 = 2.18 ⋅ 109 Pa and a specific heat of 𝑐𝑝 = 4.18 ⋅ 103 J/kg/K. Moreover,
we need the reference values of viscosity and heat conduction, which are chosen as 𝜂R = 10−3Pa s and 𝜅R = 0.6W/K/m.
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As in [4], we introduce a small parameter 𝜀 ≪ 1 and two parameters 𝛽0, 𝛼0 of order one such that 𝛽 𝑇R = 𝛽0
√
𝜀 and

𝑝R∕𝐾 = 𝛼0𝜀. The choice 𝜀 = 10−4 leads to 𝛽0 = 6.07 and 𝛼0 = 0.46.
Then, up to terms of order 𝜀2, we obtain from (48)

�̂�(𝑇, 𝑝, 𝑥) =

𝑁∑
𝑖=1

𝜐R
𝑖
𝑥𝑖

(
1 + 𝛽0

(
𝑇

𝑇R
− 1

)√
𝜀 +

[
𝛽20 (

𝑇

𝑇R
− 1)2 − 𝛼0

(
𝑝

𝑝R
− 1

)]
𝜀

)
. (49)

The constitutive law (49) is now used to exploit the inequality (36)1. In this section it suffices to simplify the subse-
quent discussion by assuming that the specific that function 𝑐𝑝(𝑇, 𝑝, 𝑥) is given by a positive constant. Then (36)1 may be
calculated in the highest order as

𝛽20 𝜀 <
𝑐𝑝 𝑇

R𝑀S

𝑝R𝜐RS
𝛼0
𝑇R

𝑇

1 +
∑𝑁−1

𝑖=1
(
𝑀𝑖

𝑀S
− 1)𝑥𝑖

1 +
∑𝑁−1

𝑖=1
(
𝜐R
𝑖

𝜐RS
− 1)𝑥𝑖

𝜀 . (50)

Note that the smallness parameter 𝜖 from (49) drops out here.
Next we prepare the PDE-system (47). At first we rewrite the equation (47) in a non–dimensional form. To this end we

introduce dimensionless quantities indicated by a prime: (i) time and space as 𝑡 = 𝑡0𝑡
′, 𝑥 = 𝐿0𝑥

′, (ii) the variables except
the dimensionless mole fractions as 𝑇 = 𝑇R 𝑇′, 𝑝 = 𝑝R 𝑝′, 𝒗 = 𝑣0 𝒗

′ with 𝑣0 ∶= 𝐿0∕𝑡0, (iii) reaction rates, molar volume
and specific enthalpy as 𝑟𝑖 = 𝑀𝑆∕(𝜐

𝑅
𝑆
𝑡0) 𝑟

′
𝑖
, 𝜐 = 𝜐RS 𝜐

′ and ℎ = 𝑝R 𝜐RS ∕(𝑀S 𝑇
R) ℎ′, (iv) the fluxes 𝑱𝑖 = 𝐿0∕𝑡0 𝑀S∕𝜐

R
S 𝑱

′
𝑖
, 𝒒 =

𝜅R𝑇R∕𝐿0𝒒
′, (v) the irreversible part of the stress 𝑺 = 𝜂R∕𝑡0𝑺

′ .
The phenomena that are included in the currentmodel are diffusion, chemical reactions, convective andnon-convective

flow of mass and heat conduction under the force of gravity. These phenomena are weighted by dimensionless charac-
teristic numbers. To perform the incompressible limit, not all possible characteristic numbers are needed. The relevant
numbers in the context of this paper are Mach number, Reynolds number, Froude number, and Fourier number, respec-
tively. They are defined by

Ma2 =
𝐿20 𝑀S

𝑝R𝜐RS 𝑡
2
0

, Re =
𝑀S 𝐿

2
0

𝜂R 𝜐RS 𝑡0
, Fr2 =

𝑣20
𝑏 𝐿0

, Fo =
𝜅R 𝜐RS 𝑡0

𝑀S 𝑐
R
𝑝𝐿

2
0

. (51)

Written in dimensionless quantities and with the characteristic numbers from (51), the PDE-system (47) reads

𝑀𝑖 𝑥𝑖
𝜐

(
ln

(
𝑀𝑖𝑥𝑖
𝑀

))∙
+ div 𝑱𝑖 = 𝑟𝑖 ,

𝜕𝑇𝜐 �̇� + 𝜕𝑝𝜐 �̇� − 𝜐 div 𝒗 =
𝜐

𝑀
�̇� −

𝑁∑
𝑗=1

𝜕𝑥𝑗𝜐 �̇�𝑗 ,

𝑀

𝜐
�̇� +

1

Ma2
∇𝑝 −

1

Re div 𝑺 =
𝑀

𝜐

1

Fr2
𝒆 ,

𝑀

𝜐
𝑐𝑝 �̇� −

𝑇

𝜐
𝜕𝑇𝜐 �̇� +

𝑀

𝜐

𝑁∑
𝑗=1

𝜕𝑥𝑗ℎ �̇�𝑗 + Fo div 𝒒 =
Ma2

Re 𝑺 ∶ ∇𝒗 .

(52)

The primes, indicating the non-dimensional quantities, are dropped here. The unit vector 𝒆 points into the direction of
the gravitational force whose magnitude is 𝑏 = 9.81m/s2.
In order to study the low Mach number limit Ma =

√
𝜀 with finite values of Re and Fo and a fixed ratio Fr2∕Ma, we

formally expand the variables according to

𝑇 = 𝑇0 + 𝑇1Ma +⋯, 𝑝 = 𝑝0 + 𝑝1Ma + 𝑝2Ma
2 +⋯ , 𝑥 = 𝑥0 + 𝑥1Ma +⋯,

𝒗 = 𝒗0 + 𝒗1Ma +⋯,
(53)
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and correspondingly the further constitutive functions in the relevant equation (52)2,3,4. For example, the right-hand side
of (52)2 yields in the highest order

𝜐

𝑀
�̇� −

𝑁∑
𝑗=1

𝜕𝑥𝑗𝜐 �̇�𝑗 = 𝜐RS

⎛⎜⎜⎜⎜⎝
1 +
∑𝑁−1

𝑗=1
(
𝜐R
𝑗

𝜐RS
− 1)𝑥𝑗

1 +
∑𝑁−1

𝑗=1 (
𝑀𝑗

𝑀S
− 1)𝑥𝑗

𝑁−1∑
𝑗=1

(
𝑀𝑗

𝑀S
− 1)�̇�𝑗 −

𝑁−1∑
𝑗=1

(
𝜐R
𝑗

𝜐RS
− 1)�̇�𝑗

⎞⎟⎟⎟⎟⎠
. (54)

Discussion of the incompressible limit equations
We start the discussion with inequality (50). For a single-component fluid we have

𝛽20 <
𝑐𝑝 𝑇

R𝑀S

𝑝R𝜐RS
𝛼0
𝑇R

𝑇
, implying for water at atmospheric pressure 37.0 < 5618.0

𝑇R

𝑇
. (55)

We conclude that in the highest order the inequality (50) is satisfied even for large deviation of the temperature from the
reference temperature.
Here a short remark on the role of the inequality (36)1 is in order. In the context of thermodynamically consistent

constitutive equations, the inequality (36)1 restricts the class of admissible constitutive functions. In the current study
we proposed by (48) an explicit constitutive function for the molar volume. Thus, in this case, the inequality restricts the
temperature domain where the constitutive function (48) is thermodynamically consistent.
For a multicomponent fluid we obtain from (50) the inequality

37.0 < 5618.0
𝑇R

𝑇

1 +
∑𝑁−1

𝑖=1
(
𝑀𝑖

𝑀S
− 1)𝑥𝑖

1 +
∑𝑁−1

𝑖=1
(
𝜐R
𝑖

𝜐RS
− 1)𝑥𝑖

. (56)

We conclude that the highest order of the inequality (36)1 is satisfied even for large deviation of the temperature from the
reference temperature and additionally for large deviation of the composition from the pure solvent.
Thus the limit 𝜀 → 0 allows thermal expansion. Merely at first glance, I. Müllers proposition, incompressibility forbids

thermal expansion, is well founded [14]. The inequality (56) yields the domain for 𝑇 and 𝑥, where the Müller Paradox
is removed.
Next, we study the incompressible limit of the PDE-system (52). Particularly we ask whether the condition div 𝒗 = 0 is

compatible with thermal expansion and/or with variations of the composition. At first we exploit the total mass balance
(52)2 in the highest order. Inserting here the molar volume function (49) and the expansions (53), we obtain

−div 𝒗0 =

∑𝑁−1

𝑗=1
(
𝑀𝑗

𝑀S
− 1)�̇�0,𝑗

1 +
∑𝑁−1

𝑗=1
(
𝑀j

𝑀S
− 1)𝑥0,𝑗

−

∑𝑁−1

𝑗=1
(
𝜐R
𝑗

𝜐RS
− 1)�̇�0,𝑗

1 +
∑𝑁−1

𝑗=1 (
𝜐R
𝑗

𝜐RS
− 1)𝑥0,𝑗

. (57)

Thus in the incompressible limit for mixtures of fluids we can have div 𝒗 = 0 exclusively for dilute mixtures, where the
mole fractions of the solute are small, that is, for (𝑥𝑖)𝑖=1,…,𝑁−1 = (𝑥1,𝑖)𝑖=1,…,𝑁−1

√
𝜀. Note that thermal expansion is allowed

in any case. Note also that even for dilute solutions, the velocity field may display a nontrivial divergence due to transient
processes.
Finally, we represent the momentum and the internal energy equations for dilute mixtures in the incompressible limit,

�̇�0 + ∇𝑝2 −
1

Re div 𝑺0 = −𝛽0 (𝑇0 − 1),
𝑀

𝜐
𝑐𝑝�̇�0 + Fo div 𝒒0 = 0. (58)

Observe that the higher–order pressure 𝑝2 becomes the Lagrange multiplier that guarantees the constraint div 𝒗 = 0 for
dilute mixtures and (57) for concentrated mixtures, respectively. The PDE-system (58) together with div 𝒗 = 0 constitute
the Boussinesq-Approximation.
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Thus we have established a thermodynamically consistent limit describing incompressible behavior of a dilute mixture
with diffusion and thermal expansion.
The technique of series expansion used in the preceding lines is sometimes called formal asymptotics. Another method

of asymptotic analysis relies on the well-posedness results available for the partial differential equations (46), and it inves-
tigates the convergence behavior of the solutions as 𝜖 → 0. For the single-component Navier–Stokes equations, a low
Mach–number convergence result for weak solutions was first established in [20]. For themulticomponent case, the weak
solution theory for the compressible fluid equations (46) ismuchmore involved.We refer to [21], or [22] for recent advances
on this topic. A promising approach, that we want to investigate in further publications, is a partial low Mach–number
convergence result using the technique of the relative energy associated with the representation (30) of the Helmholtz
free energy, and the Gamma-convergence result established in Section 10. For single-component fluids, this technique
was applied in [23, 24].

5 NON-LINEAR VOLUME CHANGES DURINGMIXING OFWATER AND ETHANOL

It was already noted that themixing of 1 Lwater and 1 L ethanol under normal conditions, that is, 𝑇R = 298K, 𝑝R = 105Pa,
leads to a fluid mixture whose volume is significantly smaller than 2 L. In the experiment the mole fractions of the two
fluids are controlled. The measured data show a strong non-linear dependence of the molar excess volume with respect
to the ethanol mole fraction (see the graphics [25]). In this section we show that our linear constitutive law (48) is capable
to explain the non-linear phenomenon. To this end we study equilibria in a homogeneous mixture.

A simple mixing model
According with experimental observations (cf. [26]) we assume that the dissolved ethanolmolecules form ethanol clusters
consisting of 𝜅E ethanol units via O-H bonding. Moreover, a cluster is hydrated by 𝜅S water molecules. Thus the chemical
reaction reads 𝜅S𝑊 + 𝜅E 𝐸 ⇌ C. However, even the simplest choice of 𝜅E = 𝜅S = 1 already embodies the principle phe-
nomenon. The three constituents W, E, C are characterized by the mole numbers 𝑁W, 𝑁E, 𝑁C, and 𝑁 = 𝑁W +𝑁E + 𝑁C

is the total mole number.𝑁W, 𝑁E, 𝑁C are the variables. Initially𝑁0
W = (1 − 𝑥)𝑁0,𝑁0

E = 𝑥 𝑁0 and𝑁0
C = 0 are given. The

quantity 𝑥 ∈ [0, 1] denotes the initial mole fraction of ethanol.
We assume an incompressible simple mixture and use the linear constitutive law (48) at fixed temperature. Then the

total volume may be written according to (48) as

𝑉 = 𝜐W 𝑁W + 𝜐E 𝑁E + 𝜐C 𝑁C with constants 𝜐W, 𝜐E, 𝜐C > 0 . (59)

In order to have in the end a negative excess volume, we must have

Δ𝜐 ∶= 𝜐W + 𝜐E − 𝜐C > 0 . (60)

Mass balance for a homogeneous mixture and mass action law
The three variables are determined by the homogeneous mass balances and by the mass action law, which is for a single
reaction the limiting case 𝑅 → ∞ of (14),

𝑁W +𝑁C = 𝑁0
W , 𝑁E + 𝑁C = 𝑁0

E , 𝜇W + 𝜇E = 𝜇C . (61)

The solution of the mass balances (61)1,2 can be represented by

𝑁W = (1 − 𝑥 − 𝛾)𝑁0, 𝑁E = (𝑥 − 𝛾)𝑁0 . (62)

The newly introduced variable 𝛾 ≡ 𝑁C∕𝑁
0 will be determined by the mass action law (61)3 for an incompressible simple

mixture, where the (mole-based) chemical potentials are given by

𝜇𝑖 = 𝑔R
𝑖
+ 𝜐𝑖(𝑝 − 𝑝R) + 𝑅𝑇 ln

(
𝑁𝑖

𝑁

)
with constants 𝑔R

𝑖
. (63)
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Then 𝛾 follows from the algebraic equation (𝑥 − 𝛾) (1 − 𝑥 − 𝛾) = 𝐾 𝛾 (1 − 𝛾) where 𝐾 is defined as

𝐾(𝑝) ∶= exp

(
−
Δ𝑔R + Δ𝜐 (𝑝 − 𝑝R)

𝑅𝑇

)
, Δ𝑔R ∶= 𝑔RW + 𝑔RE − 𝑔RC . (64)

Since 𝑁C ≤ min{𝑁0
W, 𝑁

0
E} implies 𝛾 ≤ min{𝑥, 1 − 𝑥} ≤ 1∕2, we can solve this equation to the result

𝛾 = 𝛾(𝑥, 𝑝) =
1

2

⎛⎜⎜⎝1 −
√
1 − 4

𝑥 (1 − 𝑥)

1 + 𝐾(𝑝)

⎞⎟⎟⎠ . (65)

Computing 𝜕𝑝𝛾 we easily show that 𝑝 ↦ 𝛾 is increasing in 𝑝 because Δ𝜐 > 0. Moreover, 𝑥 ↦ 𝛾 has a single maximum in
[0,1].

The molar excess volume
We define the molar excess volume as

𝜐𝑒 ∶= 𝑉𝑒∕𝑁0 ∶= 𝑉∕𝑁0 −

2∑
𝑖=1

𝜐𝑖𝑁
0
𝑖
∕𝑁0 implying 𝜐𝑒(𝑥, 𝑝) = −Δ𝜐 𝛾(𝑥, 𝑝) . (66)

The example allows four important conclusions: (i) as a consequence of the linear constitutive law (48) we would have
𝜐𝑒 = 0 if the mixing were not accompanied by a chemical reaction. (ii) If there is a chemical reaction according to our
simple model from above, the molar excess volume shows qualitatively already the experimental observations. (iii) More-
over, the absolute value of the molar excess volume increases with 𝑝 which is expected. (iv) An incompressible mixture
of fluids may exhibit changes of its volume.

6 FREE ENERGY AND CHEMICAL POTENTIALS FOR AN INCOMPRESSIBLE FLUID

The chemical potentials defined in (16) are the quantities directly driving diffusion and reactionmechanisms. At this level
too, the incompressible limit has a heavy impact on the limit PDEmodels. Indeed, the form of the chemical potentials for
an incompressible system are significantly affected by the two consequences 𝜕𝑇�̂� = 0 and 𝐷2

𝑥,𝑥�̂� = 0 exhibited previously
(see (44)).

Properties of the free energy density in the incompressible case
Due to the definition (35), recall that we have �̂�(𝑇, 𝑝, 𝑥) = �̂�(𝑇, 𝑝0, 𝑥). Considering the main variables, we have

𝜌𝑖 = �̂�𝑖(𝑇, 𝑝, 𝑥) =
𝑀𝑖 𝑥𝑖

�̂�(𝑇, 𝑝, 𝑥)
=

𝑀𝑖 𝑥𝑖
�̂�(𝑇, 𝑝0, 𝑥)

. (67)

Thus, we see that the state (𝑇, 𝜌) in an incompressible system is subject to the constraint

𝑛(𝜌) �̂�(𝑇, 𝑝0, 𝑥(𝜌)) = 1 . (68)

A fundamental question is next: In which subset of the state space 𝒟𝑇,𝜌 can we reasonably assume the pressure–
invariance of the volume? In general this will be the case only for a certain neighborhood ℬ(𝑇0, 𝜌0) of the reference
state – the one occurring in the formulae (30), (32).
In this paper, we will moreover postulate that incompressibility occurs only inside of regions of stability of the free energy.

Hence, 𝜕𝑝�̂� → 0 in a certain region for (𝑇, 𝑝, 𝑥) presupposes that

𝐷2
𝜌,𝜌𝑓 ≥ 0, 𝜕2𝑇,𝑇𝑓 ≤ 0 (69)
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in the corresponding region for (𝑇, 𝜌). In other words, whereever the convexity/concavity conditions on the free energy
are violated, it is not meaningful to perform the limit 𝜕𝑝�̂� → 0.
Due to this assumption, either the data in the material laws are so particular as to guarantee global stability, or the

range of temperatures, pressures and compositions for which we can perform the incompressible limit must be subject to
restrictions. We will discuss both cases in our analysis.

Globally stable incompressible phase
The first case is assuming that, inside of a certain range of temperatures ]𝑇0 − 𝛿, 𝑇0 + 𝛿[, incompressibility is valid for
arbitrary compositions and pressures. As discussed in Section 3, this type of limit can occur only if the constitutive function
�̂� describing the molar volume is linear in 𝑥 (see (44)).
Since the inequality (36) requires that the volume of an incompressible system is independent on temperature, the

asymptotic volume �̂� depends only on composition, and this linearly. Hence, this type of incompressible system is
restricted by the constraint (cp. (45))

𝑁∑
𝑖=1

𝜐00
𝑖

𝑀𝑖
𝜌𝑖 = 1 with 𝜐001 , … , 𝜐00𝑁 (positive) constants. (70)

Let us first describe in more details the mathematical procedure. We consider a sequence of free energies {𝑓𝑚} obey-
ing the representation (30) with data �̂�𝑚, 𝑐𝑚𝑝 (𝑝0, ⋅), 𝑠𝑚(𝑇0, 𝑝0, ⋅), ℎ̂𝑚(𝑇0, 𝑝0, ⋅) indexed by the large parameter. We
assume that these data converge –say uniformly on compact subsets– while the isothermal compressibility 𝛽𝑚𝑇 (𝑇, 𝑝, 𝑥) =
−𝜕𝑝�̂�𝑚(𝑇, 𝑝, 𝑥)∕�̂�𝑚(𝑇, 𝑝, 𝑥) tends to zero for all (𝑇, 𝑝, 𝑥). Hence, the asymptotic volume �̂�∞ is independent on 𝑝.
Suppose now that 𝜌 ↦ 𝑓𝑚(𝑇, 𝜌) is convex, and 𝑇 ↦ 𝑓𝑚(𝑇, 𝜌) is concave. We show below that the limit of 𝑓𝑚 in the

sense of epi-convergence and the representation of the free energy in the main variables is given by the singular convex
function

𝜚𝜓 = 𝑓∞(𝑇, 𝜌1, … , 𝜌𝑁) ∶=

⎧⎪⎨⎪⎩
𝜚𝜓∞(𝑇, 𝜌1, … , 𝜌𝑁) for

∑𝑁

𝑖=1

𝜐00
𝑖

𝑀𝑖
𝜌𝑖 = 1 ,

+∞ otherwise.
(71)

Here 𝜓∞(𝑇, 𝜌) = lim𝑚→∞ �̂�𝑚(𝑇, 𝑝0, 𝜌) is the limit of reference free energies corresponding to the isobaric system at 𝑝0.
Hence, if the data 𝑐𝑚𝑝 (𝑝0, ⋅), 𝑠𝑚(𝑇0, 𝑝0, ⋅), ℎ̂𝑚(𝑇0, 𝑝0, ⋅) at reference pressure/temperature are available, and they all con-
verge in the classical sense to corresponding limits, we will have

𝜓∞(𝑇, 𝜌) ∶= −
𝑝0

𝑀(𝑥(𝜌))
�̂�∞(𝑇0, 𝑝0, 𝑥(𝜌)) (72)

−

(
∫

𝑇

𝑇0
∫

𝜃

𝑇0

𝑐𝑝(𝜃
′, 𝑝0, 𝑥(𝜌))

𝜃′
𝑑𝜃′𝑑𝜃 + 𝑇 𝑠(𝑇0, 𝑝0, 𝑥(𝜌)) − ℎ̂(𝑇0, 𝑝0, 𝑥(𝜌))

)
.

For an incompressible system, the relations (16), (17)1 find natural generalizations in

𝜇 ∈ 𝜕𝜌𝑓
∞(𝑇, 𝜌) , (73)

with the subdifferential operator 𝜕 of convex analysis or, equivalently5,

𝜇𝑖 = 𝑝
𝜐00
𝑖

𝑀𝑖
+ 𝜕𝜌𝑖 (𝜚𝜓

∞)(𝑇, 𝜌) . (74)

5 The function 𝜓∞ of (72) is defined for all 𝜌1, … , 𝜌𝑁 > 0 and differentiable in 𝜌.
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As shown in (42), if the pressure is allowed to exhibit large deviations above and below the reference value𝑝0, theHessians
𝐷2
𝜌,𝜌𝑓

𝑚 cannot remain positive semi–definite on all states unless𝐷2
𝑥,𝑥�̂�

∞ = 0. Hence, the linearity of �̂�∞ in the composition
follows, in the last instance, from the assumption that the incompressible phase remains globally stable.
This problem can only be avoided by a treatment of the incompressible limit restricted to local stable subregions of the

state space. For instance, it is sensible that a nontrivial matrix

{𝐷2
𝑥,𝑥�̂�

∞[𝑒𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥]} (75)

in (42)withmoderate eigenvalues is compatiblewithmoderate oscillations of𝑝 around the reference value𝑝0 andwith the
requirement of convexity of 𝜌 ↦ 𝑓𝑚(𝑇, 𝜌) for the free energy. For this reason, it is desirable to also investigate, as a more
realistic concept, the case of incompressibility being assumed only locally in the state space, for a certain neighborhood
of the reference state.

Locally stable incompressible phase
Wemay not assume that the incompressible phase is global, but it is located around a reference state (𝑇0, 𝜌0). The smooth-
ness and the convexity/concavity assumptions on the free energy are valid beyond this neighborhood.
Let us explain what this means. With 𝐷2

𝜌,𝜌𝑓(𝑇, 𝑝, 𝑥) denoting the representation in the variables (𝑇, 𝑝, 𝑥) for the Hes-
sian of 𝜌 ↦ 𝑓(𝑇, 𝜌), stability means that

𝐷2
𝜌,𝜌𝑓(𝑇, 𝑝, 𝑥) positive definite, 𝜕2𝑇,𝑇𝑓(𝑇, 𝑝, 𝑥) < 0 . (76)

We assume that there is a fixed region ℬ̂ of the reference state (𝑇0, 𝑝0, 𝑥0) such that the two conditions (76) are valid and
that there are two thresholds 𝜋inf < 𝑝0 < 𝜋sup such that

ℬ̂ ⊃ {(𝑇, 𝑝, 𝑥) ∶ 𝑇 ∈]𝑇0 − 𝛿, 𝑇0 + 𝛿[, 𝑝 ∈]𝜋inf (𝑇, 𝑥), 𝜋sup(𝑇, 𝑥)[} . (77)

Consider a sequence of free energies {𝑓𝑚} obeying the representation (30). We now study the asymptotic limit
𝜕𝑝�̂�

𝑚(⋅, 𝑝, ⋅) → 0 only for 𝑝 ∈]𝜋inf , 𝜋sup[, while assuming that 𝜕𝑝�̂�∞ < 0 for 𝑝 < 𝜋inf and 𝑝 > 𝜋sup.
As noted before, wemust also have 𝜕𝑇�̂�𝑚 → 0 for all𝑝 ∈]𝜋inf , 𝜋sup[ and𝑇 ∈]𝑇0 − 𝛿, 𝑇0 + 𝛿[. Hence the incompressible

phase is characterized by the constraint

𝑛(𝜌) �̂�∞(𝑇0, 𝑝0, 𝑥(𝜌)) = 1 . (78)

For states not satisfying this constraint, the free energy will depend on pressure again. Consider 𝜌 such that
𝑛(𝜌) �̂�∞(𝑇0, 𝑝0, 𝑥(𝜌)) > 1. For all 𝑇 ∈]𝑇0 − 𝛿, 𝑇0 + 𝛿[, we must have

𝑛(𝜌) �̂�∞(𝑇, 𝑝0, 𝑥(𝜌)) = 𝑛(𝜌) �̂�∞(𝑇0, 𝑝0, 𝑥(𝜌)) > 1 . (79)

Since for 𝑝 > 𝜋sup the volume is decreasing, we might find a solution 𝜋 = 𝑝(𝑇, 𝜌) > 𝜋sup to

𝑛(𝜌) �̂�∞(𝑇, 𝜋, 𝑥(𝜌)) = 1 . (80)

A similar consideration applies to states such that 𝑛(𝜌) �̂�∞(𝑇0, 𝑝0, 𝑥(𝜌)) < 1. For this type of system, the limit free energy
in the sense of epi–convergence (and even of uniform convergence) can thus be identified as

𝑓∞(𝑇, 𝜌) =

⎧⎪⎪⎨⎪⎪⎩
𝑛(𝜌) ∫ 𝑝(𝑇, 𝜌)

𝑝0
�̂�(𝑇, 𝑝′, 𝑥(𝜌)) 𝑑𝑝′ − 𝑝(𝑇, 𝜌) + 𝜚𝜓∞(𝑇, 𝜌) for 𝑛(𝜌) �̂�(𝑇0, 𝑝0, 𝑥(𝜌)) > 1

𝜚𝜓∞(𝑇, 𝜌) for 𝑛(𝜌) �̂�(𝑇0, 𝑝0, 𝑥(𝜌)) = 1

𝑛(𝜌) ∫ 𝑝(𝑇, 𝜌)

𝑝0
�̂�(𝑇, 𝑝′, 𝑥(𝜌)) 𝑑𝑝′ − 𝑝(𝑇, 𝜌) + 𝜚𝜓∞(𝑇, 𝜌) for 𝑛(𝜌) �̂�(𝑇0, 𝑝0, 𝑥(𝜌)) < 1

(81)
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As we already stressed, this description is valid in some neighborhood of a stable incompressible phase characterized by
(78), but not globally in the state space. It is to note that 𝑓∞ is continuous, and even continuously differentiable except in
points 𝜌 subject to (78). There, it is still sub–differentiable, and 𝜇 ∈ 𝜕𝜌𝑓

∞(𝑇, 𝜌) if and only if there exists 𝑝 ∈ [𝜋inf , 𝜋sup]

such that, for 𝑖 = 1, … ,𝑁,

𝜇𝑖 = 𝑝
1

𝑀𝑖

(
�̂�∞(𝑇0, 𝑝0, 𝑥(𝜌)) + 𝐷𝑥�̂�

∞(𝑇0, 𝑝0, 𝑥(𝜌)) ⋅ [𝑒𝑖 − 𝑥(𝜌)]
)
+ 𝜕𝜌𝑖 (𝜚𝜓

∞)(𝑇, 𝜌) . (82)

Comparing (82) with (74), the question whether 𝐷2
𝑥,𝑥�̂�

∞ = 0 is satisfied or not has an essential impact on the structure of
diffusion and chemical reactions in the limit PDEs describing an incompressible fluid.

Main findings and structure of the paper
Our analysis yields several important conclusions:

∙ Incompressiblemixtures defined by 𝜕𝑝�̂� = 0 allow for non–solenoidal effects and thermal expansion in certain regimes;
∙ Performing the low Mach–number limit while assuming globally the convexity of the free energy leads, for multicom-
ponent systems, to the conclusion that incompressibility implies 𝐷2

𝑥,𝑥�̂� = 0. In this case, the asymptotic free energy is a
singular function of the main variables, and approaching free energy functions epi– or Gamma–converge;

∙ A more careful treatment is based on the assumption that the incompressible phase is (strictly) included in a region
of stability of the phase diagram, characterized by finite pressure thresholds. The thermal equation of state is singular
only inside of these thresholds. Then the asymptotic free energy is a continuous function, and approaching free energy
functions converge uniformly.

The remainder of the present paper is devoted to rigorously proving the validity of these limits.
We shall, however, start with some illustrating examples in the next section.
In the Section 8 we then introduce somewhat more convenient notations for the proofs, the latter occupying Sec-

tions 9–12.

7 TWO EXAMPLES

7.1 The volume additive case

The thermal equation of state proposed in the papers [5, 6, 27] is

𝑝 = 𝑝0 + 𝐾

(
𝑁∑
𝑖=1

𝜐00
𝑖
𝑛𝑖 − 1

)
, (83)

describing ideal electrolyte mixtures with finite volume effects of the ions. Here 𝐾 is a positive constant (the compression
module), 𝑝0 ∈ ℝ is the reference pressure, and 𝜐00 ∈ ℝ𝑁 is a fixed vector. Since the model was used in an isothermal
context, the temperature–dependence of the data is not precised further.
This model, which is slightly different from (48), is equivalently rephrased as (25) with

�̂�(𝑇, 𝑝, 𝑥) =
𝐾

𝑝 − 𝑝0 + 𝐾

𝑁∑
𝑖=1

𝜐00
𝑖
𝑥𝑖 . (84)

The constitutive function �̂� is defined for all 𝑇 > 0, 𝑝 > 𝑝inf ∶= 𝑝0 − 𝐾 and 𝑥1, … , 𝑥𝑁 > 0. Moreover, it is linear in the
composition variable.
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Note that for 𝐾 → +∞ (incompressible limit), we have the properties

𝑝inf (𝐾) → −∞ ,

�̂�(𝑇, 𝑝, 𝑥) →

𝑁∑
𝑖=1

𝜐00
𝑖
𝑥𝑖 , 𝜕𝑝�̂�(𝑇, 𝑝, 𝑥) → 0 pointwise.

(85)

We can put this example into the framework of ideal mixtures. If we propose the globally convex free energy

𝑓(𝑇, 𝜌) = 𝐾

𝑁∑
𝑖=1

𝜐00
𝑖

𝑀𝑖
𝜌𝑖 ln

(
𝑁∑
𝑖=1

𝜐00
𝑖

𝑀𝑖
𝜌𝑖

)
+ (𝑝0 − 𝐾)

(
𝑁∑
𝑖=1

𝜐00
𝑖

𝑀𝑖
𝜌𝑖 − 1

)
+ 𝑅 𝑇 𝑛(𝜌) 𝑥(𝜌) ⋅ ln 𝑥(𝜌) , (86)

we reach (19) with the choice of 𝑔𝑖(𝑇, 𝑝) ∶=
𝜐00
𝑖

𝑀𝑖
(𝑝0 − 𝑝inf ) ln(𝑝 − 𝑝inf ).

In the limit of 𝐾 → ∞, the functions 𝜌 ↦ 𝑓𝐾(𝑇, 𝜌) epi–converge at fixed 𝑇 to the limit

𝑓∞(𝑇, 𝜌) =

⎧⎪⎨⎪⎩
𝑅 𝑇 𝑛(𝜌) 𝑥(𝜌) ⋅ ln 𝑥(𝜌) if

∑𝑁

𝑖=1

𝜐00
𝑖

𝑀𝑖
𝜌𝑖 = 1 ,

+∞ otherwise.
(87)

7.2 The non–ideal case

We revisit the example proposed in [4], Section 16. In this case, the thermal equation of state is

𝑝 = 𝑝0 + 𝐾
( 𝑛
𝑛0

− 𝑎(𝑇, 𝑥)
)
, (88)

in which 𝑎 is a given function, 𝐾 the constant compression module and 𝑝0, 𝑛0 reference values. This is equivalent with
choosing �̂� nonlinear in 𝑥 via

�̂�(𝑇, 𝑝, 𝑥) =
1

𝑛0 (𝑎(𝑇, 𝑥) +
𝑝−𝑝0

𝐾
)
. (89)

The representation formula (30) yields the free energy 𝑓(𝑇, 𝜌) = 𝑓mech(𝑇, 𝜌) + 𝑓therm(𝑇, 𝜌), in which

𝑓mech(𝑇, 𝜌) ∶= 𝑛 ∫
𝑝

𝑝0
�̂�(𝑇, 𝑝′, 𝑥) 𝑑𝑝′ − 𝑝

=𝐾
𝑛

𝑛0
ln

𝑛

𝑛0
− 𝐾

𝑛

𝑛0
(1 + ln 𝑎(𝑇, 𝑥)) − 𝑝0 + 𝐾 𝑎(𝑇, 𝑥)

(90)

with 𝑛 = 𝑛(𝜌), 𝑝 = 𝑝(𝑇, 𝜌) and 𝑥 = 𝑥(𝜌). The terms in 𝑓therm are given as

𝑓therm(𝑇, 𝜌) = −𝜚

(
∫

𝑇

𝑇0
∫

𝜃

𝑇0

𝑐0𝑝(𝜃
′, 𝑥)

𝜃′
𝑑𝜃′𝑑𝜃 + 𝑇 𝑠00(𝑥) − ℎ̂00(𝑥)

)
(91)

with data 𝑐0𝑝 = 𝑐𝑝(𝑝
0, ⋅), 𝑠00 = 𝑠(𝑇0, 𝑝0, ⋅) and ℎ̂00 = ℎ̂(𝑇0, 𝑝0, ⋅) that we do not specify further.

By elementary means we compute the Hessian {𝐷2
𝜌𝑖,𝜌𝑗

𝑓mech} (see (37)). We next want to discuss the convexity/concavity
of this free energy. For 𝜂 ∈ ℝ𝑛 arbitrary, we define

𝜉𝑖 = 𝜂𝑖 −
𝑥𝑖
�̂�
𝜂 ⋅ {1𝑁 (�̂� − 𝐷𝑥�̂� ⋅ 𝑥) + 𝐷𝑥�̂�} for 𝑖 = 1, … ,𝑁 . (92)
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One can verify that

∑
𝑖,𝑗

𝑀𝑖 𝑀𝑗 𝜉𝑖 𝜉𝑗
𝜕2𝑓

𝜕𝜌𝑖𝜕𝜌𝑗
= �̂�
∑
𝑖,𝑗

𝜂𝑖 𝜂𝑗 ∫
𝑝

𝑝0
(𝐷2

𝑥,𝑥�̂�[𝑒
𝑖 − 𝑥] ⋅ [𝑒𝑗 − 𝑥]) 𝑑𝑝′ +

∑
𝑖,𝑗

𝑀𝑖 𝑀𝑗 𝜂𝑖 𝜂𝑗
𝜕2𝑓therm
𝜕𝜌𝑖 𝜕𝜌𝑗

. (93)

Assume that 𝑓 is convex in 𝜌, which is necessary for a stable phase. For 𝐾 → +∞, the latter implies that

0 ≤∑
𝑖,𝑗

𝑀𝑖 𝑀𝑗 𝜂𝑖 𝜂𝑗
𝜕2𝑓therm
𝜕𝜌𝑖 𝜕𝜌𝑗

+
𝑝 − 𝑝0

𝑎3(𝑇, 𝑥) (𝑛0)2

×
∑
𝑖,𝑗

𝜂𝑖 𝜂𝑗

[
2

𝑎
𝑎𝑥(𝑇, 𝑥)[𝑒

𝑖 − 𝑥] 𝑎𝑥(𝑇, 𝑥)[𝑒
𝑗 − 𝑥] − 𝑎𝑥,𝑥(𝑇, 𝑥)[𝑒

𝑖 − 𝑥][𝑒𝑗 − 𝑥]

]
.

(94)

Since 𝜂 ∈ ℝ𝑁 was arbitrary, we obtain from the requirement of stability that the matrix

𝑀𝑖 𝑀𝑗
𝜕2𝑓therm
𝜕𝜌𝑖 𝜕𝜌𝑗

+
𝑝 − 𝑝0

𝑎3(𝑇, 𝑥) (𝑛0)2

[
2

𝑎
𝑎𝑥(𝑇, 𝑥)[𝑒

𝑖 − 𝑥] 𝑎𝑥(𝑇, 𝑥)[𝑒
𝑗 − 𝑥] − 𝑎𝑥,𝑥(𝑇, 𝑥)[𝑒

𝑖 − 𝑥][𝑒𝑗 − 𝑥]

]
(95)

must be positive definite. Clearly, if 𝑎 is an arbitrary function, this condition cannot be valid for all temperatures, compo-
sitions and pressures.
For the stability of the incompressible phase, it must further hold that

0 ≥ 𝜕2𝑇,𝑇𝑓 = 𝑛(𝜌) ∫
𝑝(𝑇, 𝜌)

𝑝0
𝜕2𝑇,𝑇�̂�(𝑇, 𝑝

′, 𝑥(𝜌)) 𝑑𝑝′ − 𝑛(𝜌)
(𝜕𝑇�̂�)

2

𝜕𝑝�̂�
−

𝜚

𝑇
𝑐0𝑝(𝑇, 𝑥(𝜌)) , (96)

which is equivalent to

𝑛

𝑛0
(𝜕𝑇𝑎(𝑇, 𝑥))

2 ≤ 𝑎2(𝑇, 𝑥)

(
𝜚 𝑐0𝑝(𝑇, 𝑥)

𝑇𝐾
− 𝜕2𝑇,𝑇𝑎(𝑇, 𝑥) (1 −

𝑛

𝑛0 𝑎
)

)

=
𝑎2(𝑇, 𝑥)

𝐾

(
𝜚

𝑇
𝑐0𝑝(𝑇, 𝑥) +

𝜕2𝑇,𝑇𝑎(𝑇, 𝑥)

𝑎(𝑇, 𝑥)
(𝑝 − 𝑝0)

)
.

(97)

Hence, letting 𝐾 → +∞ at fixed (𝑇, 𝑝, 𝑥), we see that 𝜕𝑇𝑎 = 0 is a necessary requirement.
Overall, for a neighborhood of stability around the reference point (𝑇0, 𝑝0, 𝑥0) we get the conditions

𝑎(𝑇, 𝑥) = 𝑎(𝑇0, 𝑥) =∶ 𝑎0(𝑥) ,

𝑀𝑖 𝑀𝑗

ˆ𝜕2𝑓therm
𝜕𝜌𝑖 𝜕𝜌𝑗

(𝑇, 𝑝0, 𝑥) +
𝑝 − 𝑝0

𝑎0(𝑥)3 (𝑛0)2

×

[
2

𝑎0(𝑥)
𝑎0𝑥(𝑥)[𝑒

𝑖 − 𝑥] 𝑎0𝑥(𝑥)[𝑒
𝑗 − 𝑥] − 𝑎0𝑥,𝑥(𝑥)[𝑒

𝑖 − 𝑥][𝑒𝑗 − 𝑥]

]
− positive definite.

(98)

We now assume that the Hessians of the thermal part are positive semi–definite at (𝑇0, 𝑝0, 𝑥0).
Then there is a neighborhood 𝐵𝑇0, 𝑥0 of (𝑇0, 𝑥0), such that for every (𝑇, 𝑥) ∈ 𝐵𝑇0, 𝑥0 , we can find thresholds 𝜋inf (𝑇, 𝑥)

and 𝜋sup(𝑇, 𝑥) for which all states (𝑇, 𝑝, 𝑥) subject to

(𝑇, 𝑥) ∈ 𝐵𝑇0, 𝑥0 and 𝜋inf (𝑇, 𝑥) ≤ 𝑝 ≤ 𝜋sup(𝑇, 𝑥) (99)
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belong to a stable incompressible phase. Inside of this domain, the limit free energy is of the form

𝑓∞(𝑇, 𝜌) = 𝑓therm(𝑇, 𝜌) − 𝑝0 . (100)

In order to obtain a convergence result for this case, we would have to start from a slight modification of the constitutive
equation (89). Instead of a constant 𝐾, we choose 1∕𝐾 = 𝛽𝑚(𝑇, 𝑝, 𝑥) such

lim
𝑚→∞

𝛽𝑚(𝑇, 𝑝, 𝑥) =

{
0 if 𝜋inf (𝑇, 𝑥) ≤ 𝑝 ≤ 𝜋sup(𝑇, 𝑥) ,

𝛽∞(𝑇, 𝑝, 𝑥) > 0 otherwise.
(101)

Assuming that the free energies 𝑓𝑚 can be constructed globally convex, we find a non-singular epi–limit 𝑓∞ matching
the desired function (100) in the stable incompressible region.

8 ADDITIVE DECOMPOSITION OF THE FREE ENERGY

In order to study the incompressible limit and the convexity properties, we introduce a decomposition of the solution
formula (30) in order to extract the contributions that are essentially affected by the mechanical properties of the system.

The volume and the Gibbs potential
Making use of the identities 𝑛𝑖 = 𝜌𝑖∕𝑀𝑖 and 𝑥𝑖(𝜌) = 𝜌𝑖∕(𝑀𝑖

∑𝑁

𝑗=1
(𝜌𝑗∕𝑀𝑗)), 𝑛(𝜌) =

∑𝑁

𝑗=1
𝑛𝑗 , we define a further function

𝑉(𝑇, 𝜋, 𝜌) ∶= 𝑛(𝜌) �̂�(𝑇, 𝜋, 𝑥(𝜌)), (102)

where 𝜋 is a free variable. The function𝑉 is dimensionless. It is readily checked that the map 𝜌 ↦ 𝑉(𝑇, 𝜋, 𝜌) is positively
homogeneous for all (𝑇, 𝜋). Moreover, the definition (25) is simply equivalent to

𝑉(𝑇, 𝑝, 𝜌) = 1 . (103)

We may compute that

𝜕𝜌𝑖𝑉(𝑇, 𝜋, 𝜌) =
1

𝑀𝑖
�̂�(𝑇, 𝜋, 𝑥(𝜌)) + 𝑛(𝜌)

𝑁∑
𝑘=1

𝜕𝜌𝑖𝑥𝑘(𝜌) 𝜕𝑥𝑘 �̂�(𝑇, 𝜋, 𝑥(𝜌)) . (104)

Recall that the composition vector 𝑥 is subject to the constraint
∑𝑁

𝑖=1
𝑥𝑖 = 1 and that the function �̂� is measured only for

such physical states. Hence, the functions �̂� possess only tangential derivatives in 𝑥. For a function 𝜙 depending on 𝑥,
natural tangential derivatives are given by

𝜕𝜏𝑥𝑖𝜙(𝑥) ∶= 𝜙𝑥𝑖 (𝑥) −

𝑁∑
𝑗=1

𝑥𝑗 𝜙𝑥𝑗 (𝑥) = 𝐷𝑥𝜙(𝑥) ⋅ [𝑒
𝑖 − 𝑥] . (105)

This makes sense with arbitrarily chosen differentiable extension outside of the surface
∑𝑁

𝑖=1
𝑥𝑖 = 1, and is independent

of the extension. Then

𝜕𝜌𝑖𝑉(𝑇, 𝜋, 𝜌) =
1

𝑀𝑖
(�̂�(𝑇, 𝜋, 𝑥(𝜌)) + 𝜕𝜏𝑥𝑖 �̂�(𝑇, 𝜋, 𝑥(𝜌)) . (106)

As an illustration, for an ideal mixture characterized by the potentials 𝜇𝑖 = 𝑔𝑖(𝑇, 𝑝) + 𝑅 𝑇∕𝑀𝑖 ln 𝑥𝑖 (cf. (19)), we have

𝑉(𝑇, 𝜋, 𝜌) ∶=

𝑁∑
𝑖=1

𝜕𝜋𝑔𝑖(𝑇, 𝜋) 𝜌𝑖, 𝜕𝜌𝑖𝑉(𝑇, 𝜋, 𝜌) = 𝜕𝜋𝑔𝑖(𝑇, 𝜋) . (107)
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Interpretation of the function 𝑉

With 𝜓 being the specific free energy and �̂� its representation in the variables (𝑇, 𝑝, 𝑥), the Gibbs density 𝑔(𝑇, 𝑝, 𝑥) is
introduced via (32). The connection with the free energy is directly given as

𝑓(𝑇, 𝜌1, … , 𝜌𝑁) = 𝜚𝜓(𝑇, 𝜌1, … , 𝜌𝑁) = 𝜚 𝑔(𝑇, 𝑝(𝑇, 𝜌), 𝑥(𝜌)) − 𝑝(𝑇, 𝜌) . (108)

Together with (17)1, this also shows that

𝑔(𝑇, 𝑝(𝑇, 𝜌), 𝑥(𝜌)) =
1

𝜚

𝑁∑
𝑖=1

𝜌𝑖 𝜇𝑖 , (109)

or equivalently, with �̂�𝑖(𝑇, 𝑝, 𝑥) = 𝜕𝜌𝑖𝑓(𝑇, �̂�(𝑇, 𝑝, 𝑥)),

𝑔(𝑇, 𝑝, 𝑥) =
1

𝑀(𝑥)

𝑁∑
𝑖=1

𝑥𝑖 𝑀𝑖 �̂�𝑖(𝑇, 𝑝, 𝑥) . (110)

We introduce𝑀𝑖 �̂�𝑖 =∶ �̂�
mol
𝑖

, the molar–based chemical potential. With the help of (32), we find that

𝜕𝑝(𝑀 𝑔) = �̂�, 𝜕𝜏𝑥𝑖 (𝑀 𝑔) = �̂�mol
𝑖

− 𝑥 ⋅ �̂�mol . (111)

Using (109), we see that 𝑥 ⋅ �̂�mol = 𝑀 𝑔 and might also rephrase (111)2 as

𝜕𝜏𝑥𝑖 (𝑀 𝑔) +𝑀 𝑔 = �̂�mol
𝑖

. (112)

Hence, building the 𝑝-derivative yields 𝜕𝑝�̂�mol𝑖
= 𝜕𝜏𝑥𝑖 �̂� + �̂�. We thus see with the help of (106) that

𝜕𝜌𝑖𝑉(𝑇, 𝜋, 𝜌) =
1

𝑀𝑖
𝜕𝑝�̂�

mol
𝑖

(𝑇, 𝜋, 𝑥(𝜌)) = 𝜕𝑝�̂�𝑖(𝑇, 𝜋, 𝑥(𝜌)) . (113)

We might call 𝑉 the volume potential, because for 𝜋 = 𝑝, (113) shows that the derivatives 𝜕𝜌𝑖𝑉(𝑇, 𝑝, 𝜌) are the partial
volumes per unit mass of the species A𝑖 .
In all subsequent considerations, the primitive of 𝑉 in the pressure variable, denoted by �̄�, plays an important role.

Normalized at the reference pressure 𝑝0, this function has the expression

�̄�(𝑇, 𝑝, 𝜌) ∶= ∫
𝑝

𝑝0
𝑉(𝑇, 𝑝′, 𝜌) 𝑑𝑝′ . (114)

Clearly, (111)1 implies that

𝑔(𝑇, 𝑝, 𝑥) =
1

𝑀(𝑥) ∫
𝑝

𝑝0
�̂�(𝑇, 𝑝′, 𝑥) 𝑑𝑝′ + 𝑔(𝑇, 𝑝0, 𝑥) . (115)

Now, (115) shows that �̄�(𝑇, 𝑝, 𝜌) = 𝜚 (𝑔(𝑇, 𝑝, 𝑥(𝜌)) − 𝑔(𝑇, 𝑝0, 𝑥(𝜌))). Invoking (113), we in particular have

𝜕𝑝�̄�(𝑇, 𝑝, 𝜌) = 𝑉(𝑇, 𝑝, 𝜌), 𝜕𝜌𝑖 �̄�(𝑇, 𝑝, 𝜌) = �̂�𝑖(𝑇, 𝑝, 𝑥(𝜌)) − �̂�𝑖(𝑇, 𝑝
0, 𝑥(𝜌)) . (116)

The mechanically neutral part of the free energy
Using the function 𝑔, we introduce

𝑘(𝑇, 𝜌) ∶= 𝜚 �̂�(𝑇, 𝑝0, 𝑥(𝜌)) = 𝜚 𝑔(𝑇, 𝑝0, 𝑥(𝜌)) − 𝑝0 𝑛(𝜌) �̂�(𝑇, 𝑝0, 𝑥(𝜌)) . (117)
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If all data needed in the formula (30) are directly available, then

𝑘(𝑇, 𝜌) = −𝜚

(
∫

𝑇

𝑇0
∫

𝜃

𝑇0

𝑐𝑝(𝜃
′, 𝑝0, 𝑥(𝜌))

𝜃′
𝑑𝜃′𝑑𝜃 + 𝑇 𝑠(𝑇0, 𝑝0, 𝑥(𝜌)) − ℎ̂(𝑇0, 𝑝0, 𝑥(𝜌))

)
− 𝑝0 𝑛(𝜌) �̂�(𝑇, 𝑝0, 𝑥(𝜌)) . (118)

The function 𝜌 ↦ 𝑘(𝑇, 𝜌) is positively homogeneous,which implies that−𝑘 + 𝜌 ⋅ ∇𝜌𝑘 = 0. Hence 𝑘 contributes to the free
energy without contributing to the pressure (see (17)1). For this reason we might call this function mechanically neutral.
As an illustration, in the typical example of an ideal mixture, we obtain the expression

𝑘(𝑇, 𝜌) =

𝑁∑
𝑖=1

𝜇0
𝑖
(𝑇) 𝜌𝑖 + 𝑅 𝑇 𝑛(𝜌)

𝑁∑
𝑖=1

𝑥𝑖(𝜌) ln 𝑥𝑖(𝜌), 𝜇0
𝑖
(𝑇) ∶= −𝑝0 𝜕𝑝𝑔𝑖(𝑇, 𝑝

0) . (119)

In the case that all data needed in the formula (30) are available, the function 𝑘 is just an abbreviation for (118). It is
however possible that the free energy is constructed from other data. In this case it might be useful not to further specify
𝑘.

The additive splitting
We can now rewrite (30) as

𝑓(𝑇, 𝜌) = 𝑘(𝑇, 𝜌) + 𝑝0 𝑉(𝑇, 𝑝0, 𝜌) + �̄�(𝑇, 𝑝(𝑇, 𝜌), 𝜌) − 𝑝(𝑇, 𝜌)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

=∶𝑓mech

. (120)

We note that 𝑓 is the sum of 𝑘(𝑇, 𝜌) + 𝑝0 𝑉(𝑇, 𝑝0, 𝜌) –which is positively homogeneous in 𝜌– and of the mechanical part
𝑓mech involving the pressure.
In the introduction of the present paper, the free energy was constructed bymeans of the integrationmethod of classical

thermodynamics to obtain the formula (30). From now on, we shall adopt a slightly different viewpoint in order to study
asymptotic limits: We assume that the function 𝑉 of (102) and the function 𝑘 of (117) are the relevant objects. Recall that,
in fact, these new ”data” are constructed from the thermodynamic functions �̂�, 𝑐𝑝(𝑝0), ℎ̂(𝑇0, 𝑝0) and 𝑠(𝑇0, 𝑝0).

9 THE FREE ENERGY FUNCTION AS AMATHEMATICAL OBJECT

9.1 Some preliminary remarks

So far we mainly addressed the meaning of the free energy function within classical thermodynamics. From this view-
point, the formula (30) and its reformulation (120) are meaningful for all temperatures and densities around the reference
state (𝑇0, 𝜌0) of a certain physical system. The original data, or the inferred ”data” 𝑉 and 𝑘 in (120), can be evaluated at
(𝑇, 𝑝(𝑇, 𝜌), 𝑥(𝜌)) for all (𝑇, 𝜌) in this neighborhood. If this region is moreover stable in the phase–diagram, the function
𝑓 in (120) has to be postulated convex in 𝜌 and concave in 𝑇, for otherwise the data must be rejected as incompatible with
the second law of thermodynamics.
Considering now the PDEs (9)1 of mass transport in multicomponent systems, a description of the free energy which is

only local leads to state–constraints. These PDEs would loose the parabolic structure if the convexity/concavity behavior
of the free energy is violated in a neighborhood of the solution. A local description of the free energy generates rather
severe obstacles to solution, approximation or convergence analysis with available methods.
From this viewpoint, the best case is a description of the free energy for the entire state space (𝑇 > 0 and 𝜌1, … , 𝜌𝑁 > 0

arbitrary)! Moreover, as long as we do not expect phase–transitions of the material, this description would be a stable one
— by which we mean that 𝑓 is convex in 𝜌 and concave in 𝑇 for all states.
Such global free energy models can be constructed. The simplest procedure is to assume that the data in the formula

(120) are extrapolated in such a way that they can be evaluated at arbitrary (𝑇, 𝜌).
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We shall next implement this idea into some mathematical formalism. Let us at first introduce the notations

ℝ
𝑁

+ ∶={𝜌 ∈ ℝ𝑁 ∶ 𝜌𝑖 ≥ 0 for 𝑖 = 1, … ,𝑁} ,

𝑆1+ ∶={𝑦 ∈ ℝ𝑁
+ ∶ |𝑦|1 = 1} ,

𝑆2+ ∶={𝜈 ∈ ℝ𝑁
+ ∶ |𝜈|2 = 1} ,

(121)

where |𝑥|𝑟 ∶= (
∑𝑁

𝑖=1
|𝑥𝑖|𝑟)1∕𝑟 is the 𝑟−norm (here 𝑟 = 1, 2).

The function �̂� occurring in (25) is a positive function of the variables 𝑇, 𝑝, 𝑥 defined in a set

�̂� ⊆ ℝ+ × ℝ × 𝑆1+ . (122)

The proper range of pressures and compositions for which the volume of a mixture exhibits a smooth dependence –
or can be measured at all– is obviously a delicate topic: We think of limited possibility of the measurement apparatus,
of phenomena like phase transitions, or of complex mixtures, for instance electrolytes, where the charged constituents
cannot vanish independently of each other. For the reasons mentioned just before, we go across these difficulties, and we
now assume that the volume function �̂� possesses a domain of the form

�̂� ∶=]𝑇inf , 𝑇sup[×]𝑝inf , 𝑝sup[×𝑆
1
+ . (123)

The latter means that �̂� is well-defined for all possible compositions vectors 𝑥 ∈ 𝑆1+ inside of some thresholds 𝑝inf < 𝑝sup ∈

ℝ ∪ {+∞} of pressure, and 0 < 𝑇inf ≤ 𝑇sup ≤ +∞ of temperature which will be assumed independent of each other.
Minimal regularity assumptions are that the function (𝑇, 𝑝) ↦ �̂�(𝑇, 𝑝, 𝑥) is continuous for all 𝑥 ∈ 𝑆1+ fixed, and that

the map 𝑥 ↦ �̂�(𝑇, 𝑝, 𝑥) possesses continuous extensions up to the boundary of 𝑆+1 (class 𝐶(𝑆
1

+)) for all 𝑝 ∈]𝑝inf , 𝑝sup[.
For short, we write

�̂� ∈ 𝐶(]𝑇inf , 𝑇sup[×]𝑝inf , 𝑝sup[×𝑆
1

+) . (124)

The positively homogeneous volume-potential 𝑉 introduced in (102) is then defined in

𝑉 ∶=]𝑇inf , 𝑇sup[×]𝑝inf , 𝑝sup[×ℝ
𝑁
+ . (125)

Under the assumption (124), we have 𝑉 ∈ 𝐶(]𝑇inf , 𝑇sup[×]𝑝inf , 𝑝sup[×ℝ
𝑁

+).
If �̂� is strictly positive, which is an obvious physical requirement, then

𝑉(𝑇, 𝑝, 𝜌) > 0 for all 𝜌 ∈ ℝ
𝑁

+, 𝜌 ≠ 0 and all (𝑇, 𝑝) ∈]𝑇inf , 𝑇sup[×]𝑝inf , 𝑝sup[ . (126)

Next we want to evaluate the free energy formula for all states. This implies that we must find solutions to the equation
(103) for states 𝜌 with arbitrary small or large norm. Hence it is necessary that the asymptotic values of 𝑉 obey

lim
𝑝→𝑝inf

𝑉(𝑇, 𝑝, 𝜌) = +∞, lim
𝑝→𝑝sup

𝑉(𝑇, 𝑝, 𝜌) = 0 for all 𝜌 ∈ ℝ𝑁
+ . (127)

Since we consider the system in the range where it is stable, then surely

�̂�(𝑇, 𝑝2, 𝑥) < �̂�(𝑇, 𝑝1, 𝑥) and 𝑉(𝑇, 𝑝2, 𝜌) < 𝑉(𝑇, 𝑝1, 𝜌)

for all 𝑥 ∈ 𝑆1+, 𝜌 ∈ ℝ𝑁
+ and 𝑝inf < 𝑝1 < 𝑝2 < 𝑝sup . (128)

To see that this condition is necessary in a smooth setting, we recall that the mass densities as functions of the vari-
ables (𝑇, 𝑝, 𝑥) are defined via (26). We rephrase (17)1 as 𝑝 = −𝑓(𝑇, �̂�) +

∑𝑁

𝑖=1
�̂�𝑖 �̂�𝑖 , with 𝑓 = 𝜚𝜓, �̂� defined via (26), and
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�̂� ∶= ∇𝜌𝑓(𝑇, �̂�) depending on 𝑇, 𝑝 and 𝑥. Differentiation with respect to 𝑝 yields

1 = �̂� ⋅ 𝐷2
𝜌,𝜌𝑓(𝑇, �̂�) 𝜕𝑝�̂� = −

�̂�𝑝

�̂�
�̂� ⋅ 𝐷2

𝜌,𝜌𝑓(𝑇, �̂�) �̂� , (129)

proving that �̂� must be strictly decreasing in 𝑝 for convex 𝑓.
For a strictly decreasing volume function, we can define the concept of a thermal equation of state.

Definition 1 (Thermal equation of state for the pressure). Assume (124), and that the function 𝜋 ↦ 𝑉(𝑇, 𝜋, 𝜌) satisfies
the conditions (127) and (128). Then there exists 𝑝 ∈ 𝐶(]𝑇inf , 𝑇sup[×ℝ

𝑁

+) such that (103) is valid if and only if 𝑝 = 𝑝(𝑇, 𝜌).
Note that 𝑝inf < 𝑝(𝑇, 𝜌) < 𝑝sup by definition.

Remark 1. Threshold of pressure. In consequence of (124), (126) , and (127), we note that for a finite upper pressure threshold
𝑝sup < +∞, the molar volume satisfies �̂�(𝑇, 𝑝sup, 𝑥) = 0. Of course, it is perfectly meaningful to formulate a free energy
model under the restriction that its validity does not apply to pressures exceeding some number 𝑝sup. This is in the present
context the source of conceptional difficulties though, because it seems to imply that we can have volume zero at finite
pressures. Mathematically, we will see that it is not possible to construct a free energy function of Legendre–type on ℝ𝑁

+

for models having a finite pressure threshold from above. Thus, it is certainly reasonable to from now assume that

𝑝sup = +∞ . (130)

9.2 A PDE for the free energy

For 𝑇 fixed, the reference isobar 𝑆0 = 𝑆0(𝑇) at given 𝑝0 is defined as

𝑆0 = {𝜌 ∈ ℝ𝑁
+ ∶ 𝑉(𝑇, 𝑝0, 𝜌) = 1} . (131)

This is a well–defined hyper–surface in ℝ𝑁
+ : For 𝑥 ∈ 𝑆1+ fixed, the line {𝑡 𝑥 ∶ 𝑡 > 0} intersects 𝑆0(𝑇) in exactly one point

𝜌 = �̂�(𝑇, 𝑝0, 𝑥) with �̂� defined in (26).
We can then directly verify that 𝑓 defined by (120) solves the following first order linear PDE boundary-value-problem

(bvp), in which the temperature is only a parameter:

−𝑓(𝑇, 𝜌) + 𝜌 ⋅ ∇𝜌𝑓(𝑇, 𝜌) = 𝑝(𝑇, 𝜌) for 𝜌 ∈ ℝ𝑁
+ , (132)

𝑓(𝑇, 𝜌) = 𝑘(𝑇, 𝜌) for 𝜌 ∈ 𝑆0(𝑇) . (133)

If the ”data”𝑉 and 𝑘 are not smooth – for instance merely continuous – the formula (120) does not provide a continuously
differentiable solution to the equation (132) anymore. Still, in the case that 𝑓 is convex in the variables 𝜌1, … , 𝜌𝑁 , we can
prove (see the Appendix C) that it is sub–differentiable and satisfies

−𝑓(𝑇, 𝜌) + 𝜌 ⋅ 𝜇 = 𝑝(𝑇, 𝜌) for all 𝜌 ∈ ℝ𝑁
+ such that 𝜕𝜌𝑓(𝑇, 𝜌) ≠ ∅, 𝜇 ∈ 𝜕𝜌𝑓(𝑇, 𝜌) , (134)

where 𝜕𝜌𝑓 is the subdifferential of 𝜌 ↦ 𝑓(𝑇, 𝜌).
The free energy of an incompressible system cannot, however, be interpreted as solution to (132) or even (134). The

reason is simple: the incompressibility is defined as 𝜕𝑝𝑉(𝑇, 𝑝, 𝜌) = 0, so that the definition of a function𝑝(𝑇, 𝜌) as implicit
solution to 𝑉(𝑇, 𝜋, 𝜌) = 1 is ill posed.
In order to study singular limits, we shall therefore rely on an equivalent formulation of (132), (133) which avoids intro-

ducing the function 𝑝(𝑇, 𝜌) explicitly. Due to (103) and the definition (117), the function 𝑓 also solves the first order
nonlinear bvp

𝑉
(
𝑇, −𝑓(𝑇, 𝜌) + 𝜌 ⋅ ∇𝜌𝑓(𝑇, 𝜌), 𝜌

)
= 1 for 𝜌 ∈ ℝ𝑁

+ , (135)
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𝑓(𝑇, 𝜌) = 𝑘(𝑇, 𝜌) for 𝜌 ∈ 𝑆0(𝑇) . (136)

The concept of solution for the problem (135), (136) can as well be generalized in the framework of convex analysis as
follows: Find a free energy function 𝑓 ∶ ]0, +∞[×ℝ𝑁

+ → ℝ ∪ {+∞} such that

𝑉(𝑇, −𝑓(𝑇, 𝜌) + 𝜌 ⋅ 𝜇, 𝜌) = 1 for all 𝜌 ∈ ℝ𝑁
+ s. t. 𝜕𝜌𝑓(𝑇, 𝜌) ≠ ∅, 𝜇 ∈ 𝜕𝜌𝑓(𝑇, 𝜌) , (137)

𝑓(𝑇, 𝜌) = 𝑘(𝑇, 𝜌) if 𝜌 ∈ 𝑆0(𝑇) . (138)

Such weaker solutions to the problem (132) are precisely the relevant class to study mathematically the incompressible
limit. We next define the concept of a solution to the Gibbs-Duhem/Euler equation6.

Definition 2. Assume that𝑉 ∈ 𝐶({𝑇}×]𝑝inf , 𝑝sup[×ℝ
𝑁

+) is given, and that 𝑝 ∈ 𝐶({𝑇} × ℝ
𝑁

+) is the corresponding thermal
equation of state for the pressure.

(1) We call 𝑓 = 𝑓(𝑇, ⋅) ∈ 𝐶1(ℝ𝑁
+) a classical solution to the Gibbs-Duhem equation if the identity −𝑓 + 𝜌 ⋅ ∇𝜌𝑓 = 𝑝 is

valid in ℝ𝑁
+ (cf. (132)). We call 𝑓(𝑇, ⋅) a classical solution of Legendre–type if the two following additional conditions

are satisfied:
∙ 𝑓(𝑇, ⋅) is strictly convex;
∙ 𝑓(𝑇, ⋅) is essentially smooth (see [2], page 251): lim𝑚→∞ |∇𝜌𝑓(𝑇, 𝜌

𝑚)| = +∞ for all {𝜌𝑚}𝑚∈ℕ ⊂ ℝ𝑁
+ approaching a

boundary point of ℝ𝑁
+ .7

The solution is moreover called co-finite if ∇𝜌𝑓(𝑇)(ℝ
𝑁
+) = ℝ𝑁 (∇𝜌𝑓(𝑇, ⋅) is surjective from ℝ𝑁

+ onto ℝ𝑁).
(2) A (strictly) convex function𝑓 = 𝑓(𝑇, ⋅) ∶ ℝ𝑁

+ →] −∞, +∞] is calledweak solution to theGibbs-Duhem equation if𝑓
is not identically+∞, and for every 𝜌 ∈ ℝ𝑁

+ and 𝜇 ∈ 𝜕𝜌𝑓(𝑇, 𝜌), the identity𝑉(𝑇, −𝑓 + 𝜇 ⋅ 𝜌, 𝜌) = 1 is valid (cf. (137)).
If 𝜕𝜌𝑓(𝑇, 𝜌) = ∅, the condition is assumed to hold vacuously. We call 𝑓(𝑇, ⋅) co-finite if the subdifferential 𝜕𝜌𝑓(𝑇, ⋅)
maps ℝ𝑁

+ onto ℝ𝑁 .

Remark 2. For a co-finite, strictly convex function 𝑓 with domain inℝ𝑁
+ , the convex conjugate 𝑓∗(𝑥) ∶= sup𝜌∈ℝ𝑁

+
(𝑥 ⋅ 𝜌 −

𝑓(𝜌)) is continuously differentiable in the whole of ℝ𝑁 . From the point of view of mathematical analysis of models for
multicomponent mass transport in fluids, this property is very important, as shown in [1, 3, 11, 21].

9.3 Mathematical properties of the solution formula

The equations (132), (133), in which 𝑇 is only a parameter, determine the free energy function uniquely. A-posteriori it will
of course be necessary to verify the concavity in the variable 𝑇, which imposes compatibility restrictions on the data𝑉 and
𝑘. As far as only the integration of the PDE is concerned we shall, for the sake of simplicity, not include the temperature
in the notation.

Proposition 1. Suppose that 𝑉 = 𝑉(𝑇) ∈ 𝐶1,2(]𝑝inf , 𝑝sup[×ℝ
𝑁
+) ∩ 𝐶(]𝑝inf , 𝑝sup[×ℝ

𝑁

+) satisfies 𝑉 > 0, 𝜕𝑝𝑉 < 0 at all
(𝑝, 𝜌) ∈ 𝑉 ∶=]𝑝inf , 𝑝sup[×ℝ

𝑁
+ . Suppose that 𝑝0 ∈]𝑝inf , 𝑝sup[ is a fixed reference value. For (𝑝, 𝜌) ∈ 𝑉 we introduce the

primitive

�̄�(𝑝, 𝜌) = ∫
𝑝

𝑝0
𝑉(𝑝′, 𝜌) 𝑑𝑝′ , (139)

and we denote by 𝑝 ∈ 𝐶1(ℝ𝑁
+) ∩ 𝐶(ℝ

𝑁

+) the associated equation of state according to Def. 1. Assume that 𝑘 ∈ 𝐶2(ℝ𝑁
+) is a

positively homogeneous function. Then the formula

𝑓(𝜌) ∶= 𝑘(𝜌) + 𝑝0 𝑉(𝑝0, 𝜌) + �̄�(𝑝(𝜌), 𝜌) − 𝑝(𝜌) (140)

6 Note that for the integration of (132), the temperature can be treated as a parameter.
7 Essential smoothness for a strictly convex function implies that the classical Legendre transformand the operation of convex conjugation are equivalent.
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provides the unique classical solution of class 𝐶2(ℝ𝑁
+) to the bvp −𝑓 + 𝜌 ⋅ ∇𝜌𝑓 = 𝑝 in ℝ𝑁 with 𝑓(𝜌) = 𝑘(𝜌) if 𝑝(𝜌) = 𝑝0 (cf.

(132), (133) or, equivalently, (135), (136)). The derivatives of the solution satisfy

𝜕𝜌𝑖𝑓(𝜌) =𝑝
0 𝑉𝜌𝑖 (𝑝

0, 𝜌) + 𝑘𝜌𝑖 (𝜌) + �̄�𝜌𝑖 (𝑝(𝜌), 𝜌) , (141)

𝜕2𝜌𝑖,𝜌𝑗𝑓(𝜌) = 𝑝0 𝑉𝜌𝑖,𝜌𝑗 (𝑝
0, 𝜌) + 𝑘𝜌𝑖,𝜌𝑗 (𝜌) + �̄�𝜌𝑖,𝜌𝑗 (𝑝(𝜌), 𝜌) −

1

𝑉𝑝(𝑝(𝜌), 𝜌)
𝑉𝜌𝑖 (𝑝(𝜌), 𝜌) 𝑉𝜌𝑗 (𝑝(𝜌), 𝜌) . (142)

The solution is (strictly) convex whenever the function 𝜌 ↦ 𝑝0 𝑉(𝑝0, 𝜌) + 𝑘(𝜌) + �̄�(𝑝, 𝜌) is (strictly) convex for all 𝑝 ∈

]𝑝inf , 𝑝sup[ or, equivalently, if it is (strictly) sub-additive.

We next study additional properties of the solution.

Proposition 2. We adopt the assumptions of Prop. 1 and assume that

(a) 𝑝sup = +∞;
(b) lim𝑝→+∞ 𝑉(𝑝, 𝜌) = 0, lim𝑝→𝑝inf 𝑉(𝑝, 𝜌) = +∞ for all 𝜌 ∈ ℝ𝑁

+ ;
(c) lim𝑝→+∞ �̄�(𝑝, 𝜌) = +∞ and lim𝑝→𝑝inf �̄�(𝑝, 𝜌) = −∞ for all 𝜌 ∈ ℝ𝑁

+ ;
Assume further that 𝑘 ∈ 𝐶2(ℝ𝑁

+) is a given positively homogeneous convex function and there exist 𝑝0 ∈]𝑝inf , +∞[ such
that:

(d) The positively homogeneous function �̄�(𝜌) ∶= 𝑘(𝜌) + 𝑝0 𝑉(𝑝0, 𝜌) is convex and its restriction to 𝑆1+ is strictly convex and
essentially smooth;

(e) For all 𝑝inf < 𝑝1 < 𝑝2 < +∞ the quantity inf𝑝∈]𝑝1, 𝑝2[ |�̄�𝜌(𝑦) + �̄�𝜌(𝑝, 𝑦)| tends to +∞ for 𝑦 ∈ 𝑆+1 , 𝑦 → 𝜕𝑆1+;
(f) sup𝑦∈𝑆1+

{𝑝0 𝑉(𝑝0, 𝑦) + 𝑘(𝑦) + �̄�(𝑝𝑚, 𝑦)} → −∞ for 𝑝𝑚 → 𝑝inf ;
(g) inf 𝑦∈𝑆1+

{𝑝0 𝑉(𝑝0, 𝑦) + 𝑘(𝑦) + �̄�(𝑝𝑚, 𝑦)} → +∞ for 𝑝𝑚 → +∞;
(h) For all 𝑦 ∈ 𝑆1+ and 𝑝 > 𝑝inf , the matrix 𝐷2

𝜌,𝜌�̄�(𝑦) + 𝐷2
𝜌,𝜌�̄�(𝑝, 𝑦) possesses𝑁 − 1 positive eigenvalues.

Then 𝑓 defined by (140) is the unique co-finite, classical solution of Legendre–type to −𝑓 + 𝜌 ⋅ ∇𝜌𝑓 = 𝑝 such that 𝑓 = 𝑘 on
the surface {𝜌 ∈ ℝ𝑁

+ ∶ 𝑉(𝑝0, 𝜌) = 1}. Moreover, 𝑓 belongs to 𝐶2(ℝ𝑁
+) and 𝐷2𝑓(𝜌) is positive definite for all 𝜌 ∈ ℝ𝑁

+ .

A proof for the two Propositions 1 and 2 can be found in Appendix C.
Thus, due to the Gibbs-Duhem equation, the free energy obeys the representation (120). Now, the data in this formula

are also restricted by the requirement of concavity in temperature. In order to verify the validity of this condition, we
compute

𝜕2𝑇,𝑇𝑓(𝑇, 𝜌) = 𝜕2𝑇,𝑇𝑘(𝑇, 𝜌) + 𝑝0 𝜕2𝑇,𝑇𝑉(𝑇, 𝑝
0, 𝜌) + ∫

𝑝(𝑇,𝜌)

𝑝0
𝜕2𝑇,𝑇𝑉(𝑇, 𝑝

′, 𝜌) 𝑑𝑝′ −
𝜕𝑇𝑉(𝑇, 𝑝(𝑇, 𝜌), 𝜌)

𝜕𝑝𝑉(𝑇, 𝑝(𝑇, 𝜌), 𝜌)
. (143)

Hence, in addition to the restrictions formulated in the Propositions 1 and 2, the functions 𝑉 and 𝑘 are restricted by the
condition that the right-hand side in (143) is negative.
To be even more specific, employing the full formula (30) and using this time the representation in the variables

(𝑇, 𝑝, 𝑥), we obtain

𝜕2𝑇,𝑇𝑓(𝑇, 𝑝, 𝑥) = −
1

�̂�(𝑇, 𝑝, 𝑥)

(𝜕𝑇�̂�(𝑇, 𝑝, 𝑥))
2

𝜕𝑝�̂�(𝑇, 𝑝, 𝑥)
+

1

�̂�(𝑇, 𝑝, 𝑥) ∫
𝑝

𝑝0
𝜕2𝑇,𝑇�̂�(𝑇, 𝑝

′, 𝑥) 𝑑𝑝′ −
𝑀(𝑥)

�̂�(𝑇, 𝑝, 𝑥)

𝑐𝑝(𝑇, 𝑝
0, 𝑥)

𝑇
, (144)

and the data in (30) are restricted, for all relevant (𝑇, 𝑝, 𝑥), by the inequality

∫
𝑝

𝑝0
𝜕2𝑇,𝑇�̂�(𝑝

′, ⋅) 𝑑𝑝′ −
𝑀(𝑥)

𝑇
𝑐𝑝(𝑝

0, ⋅) <
(𝜕𝑇�̂�)

2

𝜕𝑝�̂�
. (145)
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10 THE CONVERGENCE RESULT

The main result in the mathematical part of the paper concerns deriving the volume constraint which defines the incom-
pressible limit and the structure of the free energy. Let 𝑇 ∈]𝑇inf , 𝑇sup[ be fixed. We consider a sequence of volume func-
tions

{𝑉𝑚(𝑇)}𝑚∈ℕ ⊂ 𝐶1,2(]𝑝𝑚
inf
, +∞[×ℝ𝑁

+) ∩ 𝐶(]𝑝𝑚
inf
, +∞[×ℝ

𝑁

+) . (146)

The reference value 𝑝0 belongs to ]𝑝𝑚
inf
, +∞[ for all𝑚. We define

𝑝inf ∶= lim sup
𝑚→∞

𝑝𝑚
inf

, (147)

and we assume that 𝑝inf is any real value or {−∞}.
As to the general procedure, we assume that for all values of the parameter𝑚, a free energy function 𝑓𝑚(𝑇, ⋅) is globally

available on ℝ𝑁
+ and 𝜌 ↦ 𝑓𝑚(𝑇, 𝜌) satisfies all conditions for a smooth co-finite function of Legendre–type.

To construct this function, we consider sequences {𝑉𝑚(𝑇)} with the regularity (146) and, for all𝑚,

{𝑘𝑚(𝑇)} ⊂ 𝐶2(ℝ𝑁
+), subject to 𝜌 ↦ 𝑘𝑚(𝑇, 𝜌) pos. homog. and convex on ℝ𝑁

+ . (148)

For each𝑚, we assume that the pair of𝑉𝑚(𝑇) and 𝑘𝑚(𝑇) satisfies the assumptions of Prop. 1 and 2. Then, there is a unique
classical co-finite solution of Legendre–type 𝑓𝑚(𝑇) ∈ 𝐶2(ℝ𝑁

+) to the problem (132), (133) (equivalently (135), (136)) with
data 𝑉𝑚(𝑇), 𝑘𝑚(𝑇).
We further assume some natural convergence properties for the data 𝑉𝑚 and 𝑘𝑚. These are:

(i) 𝑉𝑚(𝑇) converges uniformly on compact subsets of ]𝑝inf , +∞[×ℝ
𝑁

+ , and 𝐷2
𝜌,𝜌𝑉

𝑚(𝑇) converges uniformly on compact
subsets of ]𝑝inf , +∞[×ℝ𝑁

+ .

(j) There exists a function 𝑘(𝑇) such that 𝑘𝑚(𝑇, ⋅) → 𝑘(𝑇, ⋅) uniformly on compact subsets of ℝ
𝑁

+ and 𝐷2
𝜌,𝜌𝑘

𝑚(𝑇, ⋅) con-
verges uniformly to 𝐷2

𝜌,𝜌𝑘(𝑇, ⋅) on compact subsets of ℝ𝑁
+ . Moreover, the limit 𝑘(𝑇) is essentially smooth on 𝑆

1
+ and

𝐷2
𝜌,𝜌𝑘(𝑇, 𝑦) possesses 𝑁 − 1 strictly positive eigenvalues for all 𝑦 ∈ 𝑆1+.

Thenweprove that also𝑓𝑚(𝑇, ⋅) converges, andwederive necessary structural consequences for the limit. Asmentioned
in the introduction, the structure of the limit depends on the range of pressures for which we have pressure-independence
of the volume, andwe consider two cases: Incompressibility in the entire state space or incompressibility in a bounded sub-
region.
In the first scenario, we let the isothermal compressibility tend to zero in the entire domain of definition. This case

exhibits two striking features: First, the incompressiblity constraint is necessarily linear; second the free energies epi–
converge ([28], Def. 7.1), or Gamma- or Mosco-converge8 to the limit free energy.

Proposition 3. In addition to the assumptions (146), (148), (i) and (j) for𝑉𝑚 and 𝑘𝑚, we assume that 𝑝inf = −∞, and that

(k) 𝜕𝑝𝑉
𝑚 → 0 pointwise in ] −∞, +∞[×ℝ𝑁

+ .

Let 𝑉∞(𝜌) ∶= lim𝑚→∞ 𝑉𝑚(𝑝0, 𝜌) and assume that 𝑉∞ is strictly positive onℝ
𝑁

+ ⧵ {0}.
Then there is a fixed vector �̄� ∈ ℝ𝑁

+ such that 𝑉∞(𝜌) =
∑𝑁

𝑖=1
�̄�𝑖 𝜌𝑖 . The convex function

𝑓∞(𝜌) ∶=

{
𝑘(𝜌) if 𝑉∞(𝜌) = 1 ,

+∞ otherwise,
(149)

8 Since we are in a finite-dimensional convex setting, these concepts are all equivalent.
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is the limit of {𝑓𝑚}𝑚∈ℕ in the sense of epi-convergence, and 𝑓∞ is a strictly convex weak solution to (135), (136). Moreover, for
all (𝜇, 𝜌) ∈ ℝ𝑁 × ℝ𝑁

+ the following statements are equivalent:

(1) 𝜇 ∈ 𝜕𝑓∞(𝜌);
(2) 𝜇 = 𝑝 �̄� + ∇𝜌𝑘(𝜌) with 𝑝 = (𝑓∞)∗(𝜇), (𝑓∞)∗ being the convex conjugate of 𝑓∞.

The pressures 𝑝𝑚(𝜌) = −𝑓𝑚(𝜌) + 𝜌 ⋅ ∇𝜌𝑓
𝑚(𝜌) satisfy the set convergence

Graph(𝑝𝑚) = {(𝜌, 𝑝𝑚(𝜌)) ∶ 𝜌 ∈ ℝ𝑁
+}⟶{(𝜌, −𝑓∞(𝜌) + 𝜇 ⋅ 𝜌) ∶ �̄� ⋅ 𝜌 = 1, 𝜇 ∈ 𝜕𝑓(𝜌)}

= {(𝜌, 𝑝) ∶ 𝜌 > 0, �̄� ⋅ 𝜌 = 1, 𝑝 ∈ ℝ} ,
(150)

where⟶ denotes the set convergence of Painlevé–Kuratowski inℝ𝑁+1 (see [28], Ch. 4).

This type of limit describes the free energy of an incompressible phase assumed globally stable. The linearity of 𝑉∞

is a major drawback with respect to description of real incompressible mixtures. In the next situation, we can avoid this
conclusion by suitably restricting the incompressible phase.

Proposition 4. Assume (146) and (148), (i) and (j) for 𝑉𝑚 and 𝑘𝑚. Suppose that 𝑝inf ∈ ℝ and, instead of (k), that

(k’) For 𝑥 ∈ 𝑆+1 , there are real numbers 𝑎(𝑇, 𝑥) < 𝑝0 < 𝑏(𝑇, 𝑥) such that 𝜕𝑝𝑉𝑚(𝑇, 𝜋, 𝑥) → 0 for all 𝜋 ∈]𝑎(𝑇, 𝑥), 𝑏(𝑇, 𝑥)[.

For the limit function 𝑉∞ we moreover assume that:

(l) 𝜕𝑝𝑉
∞(𝑇, 𝑝, 𝜌) < 0 for all 𝑝 < 𝑎(𝑇, 𝑥(𝜌)) and all 𝑝 > 𝑏(𝑇, 𝑥(𝜌)). Moreover, for all 𝑥 ∈ 𝑆1+,

lim
𝑝→+∞

𝑉∞(𝑇, 𝑝, 𝑥) = 0 ,

lim
𝑝→𝑝inf ∫

𝑎(𝑇, 𝑥)

𝑝

𝑉∞(𝑇, 𝑝′, 𝑥) 𝑑𝑝′ = +∞, lim
𝑝→+∞∫

𝑝

𝑏(𝑇, 𝑥)

𝑉∞(𝑇, 𝑝′, 𝑥) 𝑑𝑝′ = +∞ ;

(m) |∇𝜌𝑉
∞| ≤ 𝐶 in ]𝑝inf , +∞[×ℝ𝑁

+ for some constant 𝐶 > 0.

Then the threshold functions 𝑎, 𝑏 are subject to the necessary condition

inf
𝜋∈[𝑎(𝑇, 𝑥), 𝑏(𝑇, 𝑥)], 𝜂∈ℝ𝑁

(
𝐷2
𝜌,𝜌𝑉

∞(𝑇, 𝑝0, 𝑥) + 𝜋𝐷2
𝜌,𝜌𝑘(𝑇, 𝑥)

)
𝜂 ⋅ 𝜂 ≥ 0 for all 𝑥 ∈ 𝑆1+ . (151)

Moreover, for all 𝜌 ∈ ℝ𝑁
+ subject to 𝑉∞(𝑇, 𝑝0, 𝜌) ≠ 1, the equation 𝑉∞(𝑇, 𝜋, 𝜌) = 1 possesses a unique solution 𝜋 = 𝑝(𝑇, 𝜌)

and {
𝑝(𝑇, 𝜌) > 𝑏(𝑇, 𝑥(𝜌)) if 𝑉∞(𝑇, 𝑝0, 𝜌) > 1 ,

𝑝(𝑇, 𝜌) < 𝑎(𝑇, 𝑥(𝜌)) if 𝑉∞(𝑇, 𝑝0, 𝜌) < 1 .
(152)

At fixed 𝑇, the functions {𝑓𝑚(𝑇)}𝑚∈ℕ converge uniformly on compact subsets ofℝ𝑁
+ to the continuous convex function

𝑓∞(𝑇, 𝜌) ∶=

{
𝑘(𝑇, 𝜌) + 𝑝0 𝑉∞(𝑇, 𝑝0, 𝜌) + �̄�(𝑇, 𝑝(𝑇, 𝜌), 𝜌) − 𝑝(𝑇, 𝜌) for 𝜌 s. t. 𝑉∞(𝑇, 𝑝0, 𝜌) ≠ 1 ,

𝑘(𝑇, 𝜌) for 𝜌 s. t. 𝑉∞(𝑇, 𝑝0, 𝜌) = 1
(153)

and 𝑓∞(𝑇) is a strictly convex weak solution to (135), (136) for 𝑉 = 𝑉∞. A point 𝜇 ∈ ℝ𝑁 belongs to 𝜕𝜌𝑓∞(𝑇, 𝜌) if and only if
one of the two following conditions is valid:
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Either 𝑉∞(𝑇, 𝑝0, 𝜌) ≠ 1 and 𝜇 = 𝑝0 𝑉∞
𝜌 (𝑇, 𝑝

0, 𝜌) + ∇𝜌𝑘(𝑇, 𝜌) + �̄�𝜌(𝑇, 𝑝(𝑇, 𝜌), 𝜌)

or 𝑉∞(𝑇, 𝑝0, 𝜌) = 1 and 𝜇 = 𝑝𝑉∞
𝜌 (𝑇, 𝑝

0, 𝜌) + ∇𝜌𝑘(𝑇, 𝜌) with a number 𝑝 subject to 𝑎(𝑇, 𝑥(𝜌)) ≤ 𝑝 ≤ 𝑏(𝑇, 𝑥(𝜌)).

For all 𝜌 subject to 𝑉∞(𝑇, 𝑝0, 𝜌) ≠ 1, the pressures converge as functions of (𝑇, 𝜌) and we have in fact 𝑝𝑚(𝑇, 𝜌) → 𝑝(𝑇, 𝜌).

The condition (l) corresponds to requiring that we have a meaningful compressible model below and beyond the pres-
sure thresholds 𝑎, 𝑏, while (m) is a simplifying assumption. Note also that, if we assume 𝑏 = +∞ (only a lower pressure
threshold), then we obtain a mixed version of the limit. We will however not sketch this interesting case here.
In both cases we also recover, for variable temperature, the Müller–”paradox” under the following general assump-

tions:

(o) The function 𝑇 ↦ 𝑘𝑚(𝑇, 𝜌) is twice continuously differentiable on ]𝑇inf , 𝑇sup[ for all 𝜌, and the convergence
𝜕2𝑇,𝑇𝑘

𝑚 → 𝜕2𝑇,𝑇𝑘 holds pointwise in ]𝑇inf , 𝑇sup[×ℝ
𝑁
+ ;

(p) The function 𝑇 ↦ 𝑉𝑚(𝑇, 𝑝, 𝜌) is twice continuously differentiable on ]𝑇inf , 𝑇sup[ for all (𝑝, 𝜌), and 𝜕2𝑇,𝑇𝑉
𝑚 →

𝜕2𝑇,𝑇𝑉
∞ pointwise in ]𝑇inf , 𝑇sup[×]𝑝inf , +∞[×ℝ𝑁

+ ;
(q) For all 𝑚 the condition 𝜕2𝑇,𝑇𝑓

𝑚 < 0 is valid on ]𝑇inf , 𝑇sup[×ℝ
𝑁
+ . (In other words, the pair of (𝑉𝑚, 𝑘𝑚) satisfies the

compatibility conditions necessary for 𝜕2𝑇,𝑇𝑓
𝑚 < 0 being true [cp. (143)]).

Lemma 1. If we adopt all assumptions of Proposition 3 and moreover (o), (p) and (q), then 𝜕𝑇𝑉∞ = 0.
If we adopt the assumptions of Proposition 4, and (o), (p) and (q), then 𝜕𝑇𝑉

∞(𝑇, 𝜋, 𝜌) = 0 for all (𝑇, 𝜋, 𝜌) subject to
𝜋 ∈ [𝑎(𝑇, 𝑥(𝜌)), 𝑏(𝑇, 𝑥(𝜌))].

The next sections are devoted to the proof of these statements.

11 PASSAGE TO DUAL VARIABLES

In this section we set up the main technical tool for performing asymptotic limits in the main variables. In the incom-
pressible limit, the function 𝑉 is independent of pressure on parts of the interval ]𝑝inf , +∞[. We claim that it is useful
to look at the Equation (132) from the more abstract viewpoint of (135), that is, we rephrase the Gibbs–Duhem equation
as 𝑉(−𝑓 + 𝜌 ⋅ ∇𝜌𝑓, 𝜌) = 1 on ℝ𝑁

+ . This formulation possesses another interpretation in terms of dual variables. Indeed,
assuming that a co-finite solution 𝑓 of Legendre–type on ℝ𝑁

+ to the equation

𝑝(𝜌) = −𝑓(𝜌) +

𝑁∑
𝑖=1

𝜌𝑖 𝜕𝜌𝑖𝑓(𝜌) in ℝ
𝑁
+ (154)

is at hand, then we are allowed to introduce on ℝ𝑁 the Legendre transform 𝑔 of 𝑓 via 𝑔(∇𝜌𝑓(𝜌)) ∶= −𝑓(𝜌) + 𝜌 ⋅ ∇𝜌𝑓(𝜌).
Since 𝑓 is convex, we may also introduce on ℝ𝑁 the conjugated convex function 𝑓∗ via

𝑓∗(𝑥) ∶= sup
𝜌∈ℝ𝑁

+

{𝑥 ⋅ 𝜌 − 𝑓(𝜌)} for 𝑥 ∈ ℝ𝑁 . (155)

Essentially smooth, strictly convex functions satisfy 𝑔 = 𝑓∗ and ∇𝑥𝑓
∗ = (∇𝜌𝑓)

−1 ∶ ℝ𝑁 → ℝ𝑁
+ , which induces a helpful

reformulation of the Equation (135).

Lemma 2. Assume that 𝑓 is a function of Legendre–type on ℝ𝑁
+ solving (132) or, equivalently, (154). Then, the function

𝑔 = 𝑓∗ ∈ 𝐶1(ℝ𝑁) is strictly convex onℝ𝑁 , and it solves the first order non-linear PDE

𝑉(𝑔, ∇𝑥𝑔) = 1 inℝ𝑁 . (156)

Suppose, conversely, that 𝑔 ∈ 𝐶1(ℝ𝑁) is a strictly convex solution to (156) in ℝ𝑁 such that the image of ∇𝑥𝑔 is ℝ𝑁
+ . Then

𝑓 ∶= 𝑔∗ is of Legendre–type onℝ𝑁
+ . Moreover, the identity 𝑔(∇𝜌𝑓) = ∇𝜌𝑓 ⋅ 𝜌 − 𝑓 is valid onℝ𝑁

+ .
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Proof. Under the assumptions of the Lemma, the relation (154) means nothing else but 𝑝(𝜌) = 𝑔(∇𝜌𝑓(𝜌)). For 𝑥 ∶=

∇𝜌𝑓(𝜌), that is, 𝜌 = (∇𝜌𝑓)
−1(𝑥), we have 𝑉(𝑝(𝜌), 𝜌) = 1 if and only if 𝑉(𝑔(𝑥), ∇𝑥𝑔(𝑥)) = 1. The additional properties

follow from the main theorem on the Legendre transformation ([2], Theorem 26.5). □

In the next statement, we shall treat asymptotic limits in general, considering the limitmodel of converging sequences of
volume functions {𝑉𝑚}𝑚∈ℕ and {𝑘𝑚}𝑚∈ℕ. Afterwards, in the next section, we will consider specifically the incompressible
limit.

Lemma 3. Consider sequences

∙ {𝑝𝑚
inf
}𝑚∈ℕ of real numbers;

∙ {𝑉𝑚}𝑚∈ℕ ⊂ 𝐶1,2(]𝑝𝑚
inf
, +∞[×ℝ𝑁

+) ∩ 𝐶(]𝑝𝑚
inf
, +∞[×ℝ

𝑁

+) of positive, in the first variable strictly decreasing functions;
∙ {𝑘𝑚}𝑚∈ℕ ⊂ 𝐶2(ℝ𝑁

+) of positively homogeneous functions.

We define �̄�𝑚(𝜌) ∶= 𝑘𝑚(𝜌) + 𝑝0 𝑉𝑚(𝑝0, 𝜌), and we denote by𝐻𝑚(𝑝, 𝑦) the matrix

�̄�𝑚𝜌,𝜌(
𝑦

𝑉𝑚(𝑝, 𝑦)
) + �̄�𝑚

𝜌,𝜌(𝑝,
𝑦

𝑉𝑚(𝑝, 𝑦)
) −

𝑉𝑚(𝑝, 𝑦)

𝑉𝑚
𝑝 (𝑝, 𝑦)

(𝑉𝑚
𝜌 (𝑝, 𝑦) ⊗ 𝑉𝑚

𝜌 (𝑝, 𝑦)) . (157)

We assume that

(1) 𝑝inf ∶= lim sup𝑚→∞ 𝑝𝑚
inf

belongs to [−∞, +∞[;
(2) There exists the pointwise limit 𝑉(𝑝, 𝜌) ∶= lim𝑚→∞ 𝑉𝑚(𝑝, 𝜌) for all (𝑝, 𝜌) ∈]𝑝inf , +∞[×ℝ𝑁

+ ;
(3) There exists the pointwise limit 𝑘(𝜌) ∶= lim𝑚→∞ 𝑘𝑚(𝜌) for all 𝜌 ∈ ℝ𝑁

+ ;
(4) lim inf𝑚→∞ inf𝑦∈𝑆1+

|�̄�𝑚(𝑦) + �̄�𝑚(𝑝, 𝑦)|→ +∞ for 𝑝 → 𝑝inf and 𝑝 → +∞.

Moreover, for all 𝑝inf < 𝑝1 < 𝑝2 < +∞ and 𝑦0 > 0, we assume that

(5) lim inf𝑚→∞ inf𝑝∈]𝑝1, 𝑝2[ |�̄�𝑚𝜌 (𝑦) + �̄�𝑚
𝜌 (𝑝, 𝑦)|→ +∞ for 𝑦 → 𝜕𝑆1+;

(6) lim inf𝑚→∞ inf𝑝∈]𝑝1, 𝑝2[, 𝑦∈𝑆1+ ∶ inf 𝑖=1,…,𝑁 𝑦𝑖≥𝑦0 𝜆min(𝐻
𝑚(𝑝, 𝑦)) > 0.

If there is a unique classical co-finite solution 𝑓𝑚 of Legendre–type to (135), (136), then

(i) For each 𝑚 ∈ ℕ, there is a unique strictly convex function 𝑔𝑚 ∈ 𝐶2(ℝ𝑁) solution to (156) for 𝑉 = 𝑉𝑚, with boundary
condition 𝑔𝑚 = 𝑝0 on

𝑆𝑚0 ∶=∇𝜌(𝑝
0 𝑉𝑚(𝑝0, ⋅) + 𝑘𝑚(⋅))(ℝ𝑁

+)

={𝑥 ∈ ℝ𝑁 ∶ 𝑥 = 𝑝0 𝑉𝑚
𝜌 (𝑝

0, 𝑟) + 𝑘𝑚𝜌 (𝑟) for a 𝑟 ∈ ℝ𝑁
+} ;

(158)

(ii) There is a convex function 𝑔 ∈ 𝐶2(ℝ𝑁) such that 𝑔𝑚 → 𝑔 in 𝐶1(𝐾) for all compact 𝐾 ⊂ ℝ𝑁 , and 𝑔 is a solution to
𝑉(𝑔, ∇𝑔) = 1 in ℝ𝑁 , with 𝑔(𝑥) = 𝑝0 if and only if 𝑥 ∈ 𝑆0. Here 𝑆0 is the set of accumulation points of the family of
manifolds {𝑆𝑚0 }𝑚∈ℕ;

(iii) The image of ∇𝑔 satisfies

∇𝑔(ℝ𝑁) =
⋃

𝑝∈]𝑝inf , +∞[

{𝜌 ∈ ℝ𝑁
+ ∶ 𝑉(𝑝, 𝜌) = 1} ; (159)

(iv) The convex conjugated function 𝑓 ∶= 𝑔∗ is a strictly convex function, which is finite and subdifferentiable in the set
∇𝑔(ℝ𝑁) and otherwise infinite. It is a weak solution to (135), (136);
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(v) 𝑓 is the limit of 𝑓𝑚 in the sense of epi-convergence, meaning that

𝑓(𝜌) = inf {lim inf
𝑚→∞

𝑓𝑚(𝜌𝑚) ∶ 𝜌𝑚 → 𝜌} . (160)

Proof.

(i) By assumption, there is for every 𝑚 ∈ ℕ a Legendre solution 𝑓𝑚 to the problem 𝑉𝑚(−𝑓𝑚 + 𝜌 ⋅ ∇𝑓𝑚, 𝜌) = 1 on ℝ𝑁
+

with 𝑓𝑚 = 𝑘𝑚 if 𝑉𝑚(𝑝0, 𝜌) = 1. The convex conjugated functions 𝑔𝑚 are global solutions to 𝑉𝑚(𝑔𝑚, ∇𝑔𝑚) = 1 (cf.
Lemma 2). Since 𝑓𝑚 = 𝑘𝑚 for 𝜌 ∈ Γ0 ∶= {𝜌 ∶ 𝑉𝑚(𝑝0, 𝜌) = 1}, there must exist 𝜆 = 𝜆(𝜌) such that

∇𝜌𝑓
𝑚(𝜌) = ∇𝜌𝑘

𝑚(𝜌) + 𝜆(𝜌)𝑉𝑚
𝜌 (𝑝

0, 𝜌) for all 𝜌 ∈ Γ0 . (161)

We multiply with 𝜌, use the positive homogeneity of 𝑘𝑚 and 𝑉𝑚(𝑝0, ⋅), and for all 𝜌 ∈ Γ0 it follows that

𝑝0 + 𝑓𝑚(𝜌) = 𝜌 ⋅ ∇𝜌𝑓
𝑚(𝜌) = 𝑘𝑚(𝜌) + 𝜆(𝜌)𝑉𝑚(𝑝0, 𝜌)

= 𝑘𝑚(𝜌) + 𝜆(𝜌) = 𝑓𝑚(𝜌) + 𝜆(𝜌) .
(162)

Hence 𝜆(𝜌) = 𝑝0 and ∇𝜌𝑓
𝑚(𝜌) = ∇𝜌𝑘

𝑚(𝜌) + 𝑝0 𝑉𝑚
𝜌 (𝑝

0, 𝜌) = ∇𝜌�̄�
𝑚(𝜌) for all 𝜌 ∈ Γ0. Since for 𝜌 ∈ Γ0, it holds that

𝑔𝑚(∇𝜌𝑓
𝑚(𝜌)) = 𝑝0, we have shown that 𝑔𝑚 = 𝑝0 on 𝑆𝑚0 = ∇𝜌(𝑘

𝑚(⋅) + 𝑝0 𝑉𝑚(𝑝0, ⋅))(ℝ𝑁
+).

(ii) To prove the existence of a limit, we next show that for𝐾 ⊂ ℝ𝑁 compact, there is𝐾′ ⊂ ℝ𝑁
+ compact and independent

on𝑚 such that∇𝑔𝑚(𝐾) ⊆ 𝐾′. Consider 𝑥 ∈ 𝐾 arbitrary and𝑚 fixed. Due to the representation (141), there are unique
𝑦 = ∇𝑔𝑚(𝑥)∕|∇𝑔𝑚(𝑥)|1 ∈ 𝑆1+ and 𝑠 = 𝑝𝑚(∇𝑔𝑚(𝑥)) such that 𝑥 = ∇𝜌�̄�

𝑚(𝑦) + �̄�𝑚
𝜌 (𝑠, 𝑦). Multiplying with 𝑦 we see

that 𝑥 ⋅ 𝑦 = �̄�𝑚(𝑦) + �̄�𝑚(𝑠, 𝑦), and this yields

inf
𝑗≥𝑚, 𝑦∈𝑆1+

|�̄�𝑗(𝑦) + �̄�𝑗(𝑠, 𝑦)| ≤ |𝑥|∞ ≤ sup
𝑥∈𝐾
|𝑥|∞ . (163)

We infer that lim inf𝑚→∞ inf𝑦∈𝑆1+
|�̄�𝑚(𝑦) + �̄�𝑚(𝑠, 𝑦)| ≤ sup𝑥∈𝐾 |𝑥|∞. Thus, owing to assumption (4), theremust exist

certain constants 𝑝1, 𝑝2, depending only on 𝐾, such that 𝑝inf < 𝑝1 < 𝑠 < 𝑝2 < +∞. Since 𝑥 = ∇𝜌�̄�
𝑚(𝑦) + �̄�𝑚

𝜌 (𝑠, 𝑦),
we next infer that, for these numbers,

sup
𝑥∈𝐾
|𝑥| ≥ inf

𝑗≥𝑚,𝑝∈]𝑝1, 𝑝2[
|∇𝜌�̄�

𝑗(𝑦) + �̄�
𝑗
𝜌(𝑝, 𝑦)| , (164)

hence lim inf𝑚→∞ inf𝑝∈]𝑝1, 𝑝2[ |�̄�𝑚𝜌 (𝑦) + �̄�𝑚
𝜌 (𝑝, 𝑦)| ≤ sup𝑥∈𝐾 |𝑥|. This time invoking (5), we see that 𝑦 remains in a

compact subset of 𝑆1+ being independent on𝑚. We conclude for 𝑥 ∈ 𝐾 that the point (𝑦, 𝑠) such that 𝑥 = ∇𝜌�̄�
𝑚(𝑦) +

�̄�𝑚
𝜌 (𝑠, 𝑦) is in some fixed compact subset of 𝑆1+×]𝑝inf , +∞[, independently on𝑚.
Consider now a point 𝜌 in the image ∇𝑔𝑚(𝐾) ⊂ ℝ𝑁

+ . Then 𝜌 = |𝜌|1 𝑦 where, as just shown, 𝑦 belongs to some
compact subset of 𝑆1+ independently of𝑚. Since 𝑉𝑚(𝑠, 𝜌) = 1, it follows that |𝜌|1 = 1∕𝑉𝑚(𝑠, 𝑦). Hence

1

𝑉𝑚(𝑝1, 𝑦)
≤ |𝜌|1 ≤ 1

𝑉𝑚(𝑝2, 𝑦)
(165)

where 𝑝1, 𝑝2 depend only on 𝐾. This shows that ∇𝑔𝑚(𝐾) ⊂ 𝐾′ for all𝑚, where 𝐾′ is a compact subset of ℝ𝑁
+ .

Now, we invoke the assumption (6). Note that for 𝜌 ∈ ℝ𝑁
+ , the formula (142) yields 𝐷2𝑓𝑚(𝜌) = 𝐻𝑚(𝑠, 𝑦) where

𝑦 = 𝜌∕|𝜌|1 and 𝑠 = 𝑝𝑚(𝜌). Assumption (6) implies that there is𝑚0 = 𝑚0(𝐾) such that, for all𝑚 ≥ 𝑚0,

inf
𝜌∈𝐾′

𝜆min(𝐷
2𝑓𝑚(𝜌)) ≥ inf

𝑗≥𝑚,𝑝1≤𝑠≤𝑝2, 𝜌∈𝐾′
𝜆inf (𝐻

𝑗(𝑠,
𝜌|𝜌|1 )) > 0 . (166)

For 𝜌 ∈ 𝐾′ and 𝑥 ∈ 𝐾 connected via 𝜌 = ∇𝑔𝑚(𝑥), the Hessian of 𝑓𝑚 and 𝑔𝑚 are inverse to each other: 𝐷2𝑔𝑚(𝑥) =

[𝐷2𝑓𝑚(𝜌)]−1. Hence (166) yields sup𝑥∈𝐾, 𝑗≥𝑚 𝜆max(𝐷
2𝑔𝑗(𝑥)) < +∞ for all𝑚 ≥ 𝑚0(𝐾).
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We thus have shown that lim sup𝑚→∞ ‖𝑔𝑚‖𝐶2(𝐾) < +∞ for any compact subset of ℝ𝑁 . This implies the existence
of a convex limit function 𝑔 ∈ 𝐶2(ℝ𝑁) such that (passing to a subsequence if necessary) 𝑔𝑚 → 𝑔 and ∇𝑔𝑚 → ∇𝑔

uniformly on compact subsets ofℝ𝑁 . As a corollary, the limit satisfies 𝑉(𝑔, ∇𝑔) = 1 inℝ𝑁 , where 𝑉 is the pointwise
limit volume function.
To finish the proof of (ii), it remains to discuss the boundary conditions. We consider the accumulation set 𝑆0 =

{𝑥 ∈ ℝ𝑁 ∶ ∃𝑚𝑘 → ∞, 𝑥𝑘 ∈ 𝑆
𝑚𝑘

0 , 𝑥𝑘 → 𝑥}. If𝑥 ∈ 𝑆0, then 𝑔𝑚𝑘(𝑥𝑘) = 𝑝0 obviously implies that 𝑔(𝑥) = 𝑝0 by the uni-
form convergence. If now 𝑥 ∈ ℝ𝑁 is fixed and such that 𝑔(𝑥) = 𝑝0, we can find for all𝑚 ∈ ℕ a number 𝜆𝑚 such that
𝑔𝑚(𝑥 + 𝜆𝑚 1𝑁) = 𝑝0. To show this, we remark that 𝑔𝑚(𝑥 + 𝜆 1𝑁) − 𝑔𝑚(𝑥) ≥ 𝜆∇𝑥𝑔

𝑚(𝑥) ⋅ 1𝑁 = 𝜆 |∇𝑥𝑔
𝑚(𝑥)|1 by the

convexity of 𝑔𝑚. Thus 𝑔𝑚(𝑥 + 𝜆 1𝑁) → +∞ for 𝜆 → +∞. Moreover, 𝑔𝑚(𝑥 + 𝜆 1𝑁) ≤ 𝑔𝑚(𝑥) + 𝜆 |∇𝑥𝑔
𝑚(𝑥 + 𝜆 1𝑁)|1.

Hence |∇𝑥𝑔
𝑚(𝑥 + 𝜆 1𝑁)|1 → 0 for 𝜆 → −∞, since otherwise 𝑝𝑚

inf
= inf 𝑔𝑚 = −∞, a contradiction to the choice of

finite 𝑝𝑚
inf
. Now we use the identity 𝑉𝑚(𝑔𝑚(𝑥 + 𝜆 1𝑁), ∇𝑥𝑔

𝑚(𝑥 + 𝜆 1𝑁)) = 1, which implies that

𝑉𝑚(𝑔𝑚(𝑥 + 𝜆 1𝑁), 𝑦𝑚
𝜆
) =

1|∇𝑥𝑔𝑚(𝑥 + 𝜆 1𝑁)|1 , 𝑦𝑚
𝜆
∶=

∇𝑥𝑔
𝑚(𝑥 + 𝜆 1𝑁)|∇𝑥𝑔𝑚(𝑥 + 𝜆 1𝑁)|1 . (167)

Passing to the limit 𝜆 → −∞, it follows that lim𝜆→−∞ 𝑉𝑚(𝑔𝑚(𝑥 + 𝜆 1𝑁), 𝑦𝑚
𝜆
) = +∞, which is impossible if 𝑔𝑚(𝑥 +

𝜆 1𝑁) does not tend to 𝑝𝑚
inf
. Thus, 𝜆 ↦ 𝑔𝑚(𝑥 + 𝜆 1𝑁) attains every value in ]𝑝𝑚

inf
, +∞[ and wemust have 𝑝0 = 𝑔𝑚(𝑥 +

𝜆𝑚 1𝑁) for some 𝜆𝑚. Since

|𝑝0 − 𝑔𝑚(𝑥)| = |𝜆𝑚| ∫ 1

0

∇𝑥𝑔
𝑚(𝑥 + 𝜃 𝜆𝑚 1𝑁) ⋅ 1𝑁 𝑑𝜃 ≥ |𝜆𝑚|

sup𝑝=𝜃 𝑔𝑚(𝑥)+(1−𝜃) 𝑝0, 𝑦∈𝑆1+
𝑉𝑚(𝑝, 𝑦)

, (168)

we see that 𝜆𝑚 → 0. Thus 𝑥 + 𝜆𝑚 1𝑁 ∈ 𝑆𝑚0 converges to 𝑥, which was chosen an arbitrary point of the level-set 𝑔(𝑥) =
𝑝0. It follows that 𝑆0 = {𝑥 ∶ 𝑔(𝑥) = 𝑝0}.

(iii) Next we characterize the image of∇𝑔. If 𝜌 ∈ ∇𝑔(ℝ𝑁), then 𝜌 = ∇𝑔(𝑥) for some 𝑥. Since {𝑥} is trivially a compact set,
we prove as above that 𝜌 ∈ ℝ𝑁

+ , and for𝑝 = 𝑔(𝑥)wehave𝑉(𝑝, 𝜌) = 1. Thus∇𝑔(ℝ𝑁) ⊆
⋃

𝑝>𝑝inf
{𝜌 ∈ ℝ𝑁

+ ∶ 𝑉(𝑝, 𝜌) =

1}.
We show the reverse inclusion. Since ∇𝑔𝑚(ℝ𝑁) = ℝ𝑁

+ , the image of ∇𝑔𝑚 contains all vectors of the form
𝑦∕𝑉𝑚(𝑝, 𝑦) where 𝑦 ∈ 𝑆1+ and 𝑝 ∈]𝑝inf , +∞[ are arbitrary. In fact one can show as above that

𝑦

𝑉𝑚(𝑝, 𝑦)
= ∇𝑔𝑚(𝑥𝑚) for 𝑥𝑚 = ∇𝜌�̄�

𝑚(𝑦) + �̄�𝑚
𝜌 (𝑝, 𝑦) = ∇𝜌𝑓

𝑚(𝑦∕𝑉𝑚(𝑝, 𝑦)) . (169)

For 𝑖 = 1, … ,𝑁, the convexity of �̄�𝑚 yields 𝑡 �̄�𝑚𝜌𝑖 (𝑦) ≤ �̄�𝑚(𝑦 + 𝑡 𝑒𝑖) − �̄�𝑚(𝑦) for all |𝑡| smaller than half of the distance
of 𝑦 to 𝜕ℝ𝑁

+ . Since �̄�𝑚 converges pointwise, we see that {|∇𝜌�̄�
𝑚(𝑦)|}must be bounded. Due to the assumption (6), the

Hessian of 𝜌 ↦ �̄�𝑚(𝜌) + �̄�𝑚(𝑝, 𝜌) is positive semi-definite. Thus, this function is convex, and the same argument
as just seen for bounding |∇𝜌�̄�

𝑚(𝑦)| implies that |∇𝜌�̄�
𝑚(𝑦) + �̄�𝑚

𝜌 (𝑝, 𝑦)| is also bounded. By this argument, also the
sequence {𝑥𝑚} in (169) is bounded, hence there is some accumulation point 𝑥 = lim𝑥𝑚. Passing in (169) to the limit,
we find that 𝑦

𝑉(𝑝, 𝑦)
= ∇𝑔(𝑥). Since 𝑦 ∈ 𝑆1+ and 𝑝 ∈]𝑝inf , ∞[were arbitrary,∇𝑔(ℝ𝑁) contains all vectors 𝜌 ∈ ℝ𝑁

+ such
that 𝑉(𝑝, 𝜌) = 1. This proves that

∇𝑔(ℝ𝑁) =
⋃

𝑝>𝑝inf

{𝜌 ∈ ℝ𝑁
+ ∶ 𝑉(𝑝, 𝜌) = 1} . (170)

(iv) We define 𝑓 = 𝑔∗. Since 𝑔 is smooth, 𝑓 is essentially strictly convex (cf. [2], Th. 26.3). Moreover, 𝑓 is finite and subd-
ifferentiable at every 𝜌 ∈ ∇𝑔(ℝ𝑁). A point 𝑥 belongs to 𝜕𝑓(𝜌) if and only if 𝜌 = ∇𝑔(𝑥) and 𝑔(𝑥) = −𝑓(𝜌) + 𝑥 ⋅ 𝜌 ([2],
Th. 23.5). By these means, we show that

𝑉(−𝑓(𝜌) + 𝜌 ⋅ 𝑥, 𝜌) = 1 for all 𝜌 ∈ ℝ𝑁
+, 𝑥 ∈ 𝜕𝑓(𝜌) . (171)

Note that in a point 𝜌 ∈ ℝ𝑁
+ such that 𝜌 ∉ ∇𝑔(ℝ𝑁), we have 𝜕𝑓(𝜌) = ∅ and the latter condition holds vacu-

ously. If −𝑓(𝜌) + 𝜌 ⋅ 𝑥 = 𝑝0 for some 𝜌 ∈ ℝ𝑁
+, 𝑥 ∈ 𝜕𝑓(𝜌), then 𝜌 = ∇𝑔(𝑥) and 𝑔(𝑥) = 𝑝0. which means that nec-
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essarily 𝑥 ∈ 𝑆0. Thus, we can approximate 𝑥 with points 𝑥𝑚 ∈ 𝑆𝑚0 . For 𝜌
𝑚 ∶= ∇𝑔𝑚(𝑥𝑚), we have by construc-

tion 𝑘𝑚(𝜌𝑚) = 𝑓𝑚(𝜌𝑚) = 𝜌𝑚 ⋅ 𝑥𝑚 − 𝑝0. Thus, as 𝑚 → ∞ we find that 𝑘(∇𝑔(𝑥)) = lim𝑚→∞ 𝜌𝑚 ⋅ 𝑥𝑚 − 𝑝0 = ∇𝑔(𝑥) ⋅

𝑥 − 𝑝0 = 𝑓(∇𝑔(𝑥)), where 𝑘 is the pointwise and uniform limit of the convex functions 𝑘𝑚. This achieves to
prove that 𝑓 is a weak solution to the bvp (135), (136). In order to prove (v), let us show that the function
𝑓(𝜌) ∶= inf {lim inf𝑚→∞ 𝑓𝑚(𝜌𝑚) ∶ 𝜌𝑚 → 𝜌} is nothing else but 𝑓. At first, the definition of convex conjugates yields
𝑓𝑚(𝜌𝑚) ≥ 𝜌𝑚 ⋅ 𝑥 − 𝑔𝑚(𝑥) for all 𝑥 ∈ ℝ𝑁 , and therefore lim inf𝑚→∞ 𝑓𝑚(𝜌𝑚) ≥ 𝑔∗(𝜌) = 𝑓(𝜌) for arbitrary sequences
𝜌𝑚 → 𝜌. This shows that 𝑓 ≥ 𝑓. On the other hand, for every fixed 𝑥 ∈ ℝ𝑁 and 𝜌𝑚 = ∇𝑔𝑚(𝑥), the definition of the
subdifferential of 𝑔𝑚 yields𝑓𝑚(𝜌𝑚) = 𝑥 ⋅ ∇𝑔𝑚(𝑥) − 𝑔𝑚(𝑥) → 𝑥 ⋅ ∇𝑔(𝑥) − 𝑔(𝑥) = 𝑓(∇𝑔(𝑥)). Thus for all 𝜌 ∈ ∇𝑔(ℝ𝑁),
we obtain that inf {lim inf𝑚→∞ 𝑓𝑚(𝜌𝑚) ∶ 𝜌𝑚 → 𝜌} ≤ 𝑓(𝜌). For 𝜌 ∉ ∇𝑔(ℝ𝑁), we have 𝑓(𝜌) = +∞ and 𝑓 ≤ 𝑓 is obvi-
ously true. Thus 𝑓 = 𝑓. □

12 INCOMPRESSIBLE LIMITS

Wenow consider the case of a small isothermal compressibility, which wemathematically express by choosing a sequence
of functions {𝑉𝑚}∈ℕ such that 𝜕𝑝𝑉𝑚 → 0 as 𝑚 → ∞. In which precise meaning we assume this convergence is stated
immediately below.
For a given positively homogeneous convex function 𝑘𝑚, we solve the problem

𝑉𝑚(−𝑓𝑚 + 𝜌 ⋅ ∇𝑓𝑚, 𝜌) =1 in ℝ𝑁
+ , 𝑓𝑚 = 𝑘𝑚 for 𝑉𝑚(𝑝0, 𝜌) = 1 , (172)

and shall exhibit the mathematical consequences of the assumptions that 1) the problems (172) possesses a classical solu-
tion 𝑓𝑚 of Legendre–type in the sense of Definition 2 and 2) 𝜕𝑝𝑉𝑚 → 0.

12.1 Proof of Proposition 3

Under the assumption (k), we can readily verify that the limit function 𝑉∞ is globally independent of 𝑝 and belongs to
𝐶∞,2(ℝ × ℝ𝑁

+) ∩ 𝐶∞,0(ℝ × ℝ
𝑁

+).
Adopting the assumptions of Proposition 3, we find unique classical co-finite solutions of Legendre–type to (172). We

go for applying Lemma 3 and want to check the assumptions (4), (5) , and (6).
In order to first verify (4), we recall the definition of �̄�𝑚(⋅) = 𝑘𝑚(⋅) + 𝑝0 𝑉𝑚(𝑝0, ⋅) in order to bound

|�̄�𝑚(𝑦) + �̄�𝑚(𝑝, 𝑦)| ≥ |�̄�𝑚(𝑝, 𝑦)| − |𝑘𝑚(𝑦)| − |𝑝0| |𝑉𝑚(𝑝0, 𝑦)| (173)

≥ ∫
𝑝

𝑝0
𝑉𝑚(𝑡, 𝑦) 𝑑𝑡 − |𝑘𝑚(𝑦)| − |𝑝0| |𝑉𝑚(𝑝0, 𝑦)| .

Therefore, exploiting the uniform convergence (i) and (j),

lim inf
𝑚→∞

inf
𝑦∈𝑆1+

|�̄�𝑚(𝑦) + �̄�𝑚(𝑝, 𝑦)|
≥ lim inf

𝑚→∞

|||||∫
𝑝

𝑝0
inf
𝑦∈𝑆1+

𝑉𝑚(𝑡, 𝑦) 𝑑𝑡
||||| − lim sup

𝑚→∞
sup
𝑦∈𝑆1+

(|𝑘𝑚(𝑦)| + |𝑝0|𝑉𝑚(𝑝0, 𝑦))

= |𝑝 − 𝑝0| inf
𝑦∈𝑆1+

𝑉∞(𝑦) − sup
𝑦∈𝑆1+

(|𝑘(𝑦)| + |𝑝0|𝑉∞(𝑝0, 𝑦)) . (174)

Since we assume (i), we obtain inf 𝑦∈𝑆1+ 𝑉
∞(𝑦) = min

𝑦∈𝑆
1

+

𝑉∞(𝑦) > 0 because𝑉∞ is assumed strictly positive. This verifies
the assumption (4) of Lemma 3.
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We next check Lemma 3, (6), by proving a bound from below for lim inf𝑚→∞ 𝜆min(𝐻
𝑚(𝑝, 𝑦)) on compact subsets of

] −∞, +∞[×𝑆1+ with 𝑝 ∈ [𝑝1, 𝑝2] and inf 𝑖=1,…,𝑁 𝑦𝑖 ≥ 𝑦0 > 0. Recall that

𝐻𝑚(𝑝, 𝑦) = 𝐷2�̄�𝑚
(

𝑦

𝑉𝑚(𝑝, 𝑦)

)
+ �̄�𝑚

𝜌,𝜌

(
𝑝,

𝑦

𝑉𝑚(𝑝, 𝑦)

)
−
𝑉𝑚(𝑝, 𝑦)

𝑉𝑚
𝑝 (𝑝, 𝑦)

𝑉𝑚
𝜌 (𝑝, 𝑦) ⊗ 𝑉𝑚

𝜌 (𝑝, 𝑦) . (175)

Using the positive homogeneity of �̄�𝑚 in the second argument and the convergence (i), (j), it is readily verified for (𝑝, 𝑦) ∈
ℝ × 𝑆1+ that

�̄�𝑚
𝜌,𝜌

(
𝑝,

𝑦

𝑉𝑚(𝑝, 𝑦)

)
= 𝑉𝑚(𝑝, 𝑦) �̄�𝑚

𝜌,𝜌(𝑝, 𝑦) → (𝑝 − 𝑝0)𝑉∞(𝑦)𝐷2𝑉∞(𝑦) . (176)

Moreover, using that 𝑘𝑚 and 𝑉𝑚(𝑝0, ⋅) are positively homogeneous, the convergence (j) yields

𝐷2�̄�𝑚
(

𝑦

𝑉𝑚(𝑝, 𝑦)

)
= 𝐷2𝑘𝑚

(
𝑦

𝑉𝑚(𝑝, 𝑦)

)
+ 𝑝0 𝑉𝑚

𝜌,𝜌

(
𝑝0,

𝑦

𝑉𝑚(𝑝, 𝑦)

)
(177)

=𝑉𝑚(𝑝, 𝑦) (𝐷2𝑘𝑚(𝑦) + 𝑝0 𝑉𝑚
𝜌,𝜌(𝑝

0, 𝑦)) → 𝑉∞(𝑦) (𝐷2𝑘(𝑦) + 𝑝0 𝐷2𝑉∞(𝑦)) .

Consider for 𝜂 ∈ ℝ𝑁 arbitrary the vectors 𝜉𝑚 ∶= 𝜂 − (𝑉𝑚
𝜌 (𝑝, 𝑦) ⋅ 𝜂∕𝑉

𝑚(𝑝, 𝑦)) 𝑦. Since 𝑉𝑚
𝜌 → 𝑉∞

𝜌 uniformly of compact
sets of ℝ × 𝑆1+ (this follows easily from (i), (j)), we see that

𝜉𝑚 → 𝜉 ∶= 𝜂 −
𝑉∞
𝜌 (𝑦) ⋅ 𝜂

𝑉∞(𝑦)
𝑦 . (178)

Using that 𝑉𝑚
𝜌 (𝑝, 𝑦) ⋅ 𝜉

𝑚 = 0, we check by means of (176) and (177) that

𝐻𝑚(𝑝, 𝑦)𝜉𝑚 ⋅ 𝜉𝑚 =

(
𝐷2�̄�𝑚(

𝑦

𝑉𝑚(𝑝, 𝑦)

)
+ �̄�𝑚

𝜌,𝜌

(
𝑝,

𝑦

𝑉𝑚(𝑝, 𝑦)
)

)
𝜉𝑚 ⋅ 𝜉𝑚

→ 𝑉∞(𝑦)𝐷2(𝑘 + 𝑝𝑉∞)(𝑦)𝜉 ⋅ 𝜉 = 𝑉∞(𝑦)𝐷2(𝑘 + 𝑝𝑉∞)(𝑦)𝜂 ⋅ 𝜂 . (179)

If now 𝐷2𝑉∞(𝑦) would possess a negative eigenvalue, then we would find some 𝑝 ∈]0, +∞[ such that, in view of (179),
the matrix 𝐻𝑚(𝑝, 𝑦) already possesses a strictly negative eigenvalue for 𝑚 sufficiently large. But recall that 𝐻𝑚(𝑝, 𝑦) =

𝐷2𝑓𝑚(𝑦∕𝑉𝑚(𝑝, 𝑦)), with𝐷2𝑓𝑚 strictly positive definite onℝ𝑁
+ by assumption. Hence, avoiding a contradiction is possible

only if all eigenvalues of 𝐷2𝑉∞(𝑦) are nonnegative.
Next, for every positive eigenvalue 𝓁 of 𝐷2𝑉∞(𝑦), we can choose some eigenvector 𝜂 such that 𝐷2𝑉∞(𝑦)𝜂 ⋅ 𝜂 = 𝓁. With

the help of (179) again, it follows that𝐻𝑚(𝑝, 𝑦)𝜉𝑚 ⋅ 𝜉𝑚 < 0 if 𝑝 is sufficiently small, namely if 𝓁𝑝 < −𝜆max(𝐷
2𝑘𝑚(𝑦)) and

𝑚 is sufficiently large. Since 𝑓𝑚 is a 𝐶2 strictly convex function for all 𝑚, all eigenvalues of 𝐷2𝑉∞(𝑦) can only be trivial,
meaning that the limit function 𝑉∞ must be linear in 𝜌.
In other words, we have shown that there exists a vector �̄� ∈ ℝ𝑁 such that 𝑉∞(𝜌) = �̄� ⋅ 𝜌 on ℝ𝑁

+ . In order to conclude

that �̄� ∈ ℝ𝑁
+ , it is sufficient to recall that, by assumption, 𝑉∞(𝑦) > 0 for all 𝑦 ∈ 𝑆

1

+.
We now come to the direct verification of the assumption (6) of Lemma 3. For 𝜂 ∈ 𝑆2+ arbitrary,

𝐻𝑚(𝑝, 𝑦)𝜂 ⋅ 𝜂 = 𝑉𝑚(𝑝, 𝑦) (𝐷2�̄�𝑚(𝑦) + �̄�𝑚
𝜌,𝜌(𝑝, 𝑦))𝜂 ⋅ 𝜂 −

𝑉𝑚(𝑝, 𝑦)

𝑉𝑚
𝑝 (𝑝, 𝑦)

|𝑉𝑚
𝜌 (𝑝, 𝑦) ⋅ 𝜂|2 . (180)

Consider arbitrary 𝑝inf < 𝑝1 < 𝑝2 < +∞ and 𝑦0 > 0. Since 𝑉∞ is linear, 𝐷2�̄�∞(𝑦) = 0. For𝑚 → +∞, the assumption (j)
implies that

sup
𝑝∈[𝑝1,𝑝2], inf 𝑦≥𝑦0

𝜆max(�̄�
𝑚
𝜌,𝜌(𝑝, 𝑦)) ≤ sup

𝑝∈[𝑝1, 𝑝2], inf 𝑦≥𝑦0
|�̄�𝑚

𝜌,𝜌(𝑝, 𝑦) − 𝐷2�̄�∞(𝑦)|→ 0 . (181)
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Similarly, sup𝑝∈[𝑝1,𝑝2], inf 𝑦≥𝑦0 𝜆max(𝐷
2𝑉𝑚(𝑝0, 𝑦)) → 0. Using (j) again, we then verify that the matrix 𝐷2�̄�𝑚(𝑦) +

�̄�𝑚
𝜌,𝜌(𝑝, 𝑦) possesses 𝑁 − 1 strictly positive eigenvalues for large 𝑚. In particular, this matrix is strictly positive definite

on {𝑦}⟂. For fixed 𝑦, we now choose some orthonormal basis {𝜉1, … , 𝜉𝑁−1, 𝑦∕|𝑦|} of ℝ𝑁 . For arbitrary 𝜂 ∈ ℝ𝑁 , it is then
possible to find coefficients 𝑎1, … , 𝑎𝑁−1 and 𝑏 to represent

𝜂 =

𝑁−1∑
𝑖=1

𝑎𝑖

(
𝜉𝑖 −

𝑉𝑚
𝜌 (𝑝, 𝑦) ⋅ 𝜉

𝑖

𝑉𝑚(𝑝, 𝑦)
𝑦

)
+ 𝑏 𝑦 . (182)

Due to (i), (j),𝑉𝑚
𝜌 → �̄� and𝑉𝑚 → 𝑉∞ > 0 uniformly on compact subsets ofℝ × 𝑆1+. Hence, for all 𝑦 ∈ 𝑆1+ such that inf 𝑦 ≥

𝑦0 > 0 and all 𝑝 ∈ [𝑝1, 𝑝2], there is a constant independent on𝑚 such that |𝜂| ≤ 𝑐 (|𝑎| + |𝑏|). Using (180) it is readily seen
with Π = [𝜉1, … , 𝜉𝑁−1] that

𝐻𝑚(𝑝, 𝑦)𝜂 ⋅ 𝜂 = 𝑉𝑚(𝑝, 𝑦)Π𝖳(𝐷2�̄�𝑚(𝑦) + �̄�𝑚
𝜌,𝜌(𝑝, 𝑦))Π𝑎 ⋅ 𝑎 −

(𝑉𝑚(𝑝, 𝑦))3

𝑉𝑚
𝑝 (𝑝, 𝑦)

|𝑏|2
≥ 𝑉𝑚(𝑝, 𝑦) [𝜆+

min
(𝐷2�̄�𝑚(𝑦)) − 𝜆max(�̄�

𝑚
𝜌,𝜌(𝑝, 𝑦))] |𝑎|2 − (𝑉𝑚(𝑝, 𝑦))3

𝑉𝑚
𝑝 (𝑝, 𝑦)

|𝑏|2
≥ 1

𝑐
𝑉𝑚(𝑝, 𝑦) min{[𝜆+

min
(𝐷2�̄�𝑚(𝑦)) − 𝜆max(�̄�

𝑚
𝜌,𝜌(𝑝, 𝑦)), −

(𝑉𝑚(𝑝, 𝑦))2

𝑉𝑚
𝑝 (𝑝, 𝑦)

} |𝜂|2 .
(183)

Here 𝜆+
min

denotes the smallest strictly positive eigenvalue of a symmetric, positive semi–definite matrix. Since for some
𝑐0 > 0 independent on𝑚, we have inf𝑝∈[𝑝1,𝑝2], inf 𝑦≥𝑦0 𝑉𝑚(𝑝, 𝑦) ≥ 𝑐0, we deduce that

inf
𝑝∈[𝑝1,𝑝2], inf 𝑦≥𝑦0 𝜆min(𝐻

𝑚(𝑝, 𝑦))

≥ 𝑐 min
𝑝∈[𝑝1,𝑝2], inf 𝑦≥𝑦0

{
𝜆+
min

(𝐷2�̄�𝑚(𝑦)) − 𝜆max(�̄�
𝑚
𝜌,𝜌(𝑝, 𝑦)),

(𝑉𝑚(𝑝, 𝑦))2

𝑉𝑚
𝑝 (𝑝, 𝑦)

}
.

(184)

Making use of the fact that 𝐷2�̄�𝑚(𝑦) is strictly positive on {𝑦}⟂ (cf. (j)) and of (181), we infer that𝐻𝑚 satisfies the require-
ment (6) of Lemma 3.
We also notice that the assumptions (i) and (j) imply that 𝑉𝑚

𝜌 → 𝑉∞
𝜌 = �̄� uniformly on compact subsets of ℝ × ℝ𝑁

+ .
Thus, for all −∞ < 𝑝1 ≤ 𝑝 ≤ 𝑝2 < +∞ and 𝑦 ∈ 𝑆1+, we see that

lim sup
𝑚→∞

|�̄�𝑚
𝜌 (𝑝, 𝑦)| ≤ (|𝑝1| + |𝑝2|) |𝑉∞

𝜌 (𝑦)| = (|𝑝1| + |𝑝2|) |�̄�| . (185)

It therefore also follows that

lim inf
𝑚→∞

inf
𝑝∈]𝑝1, 𝑝2[

|∇𝜌�̄�
𝑚(𝑦) + �̄�𝑚

𝜌 (𝑝, 𝑦)| ≥ |∇𝜌𝑘(𝑦)| − |𝑝0| |�̄�| − (|𝑝1| + |𝑝2|) |�̄�| , (186)

and 3, (5) follows because we assume in (j) that the limit 𝑘 is essentially smooth on 𝑆1+.

Proof of Proposition 3, main argument. Since the assumptions of Lemma 3 are verified, we find a strictly convex co-finite
weak solution 𝑓 to the problem (135), (136) for 𝑉 = 𝑉∞(𝜌). The convex conjugate 𝑔 ∶= 𝑓∗ belongs to 𝐶2(ℝ𝑁) and is a
convex solution to �̄� ⋅ ∇𝑔 = 1 in ℝ𝑁 . Moreover, due to 3, (iii), the image ∇𝑔(ℝ𝑁) is nothing else than 𝑆 = {𝜌 ∶ �̄� ⋅ 𝜌 = 1}.
Thus 𝑓 is finite only on states satisfying �̄� ⋅ 𝜌 = 1. Due to (136), 𝑓 = 𝑘 in this set.
In order that 𝜇 ∈ 𝜕𝑓∞(𝜌), we must have ∇𝑔(𝜇) = 𝜌. This means that 𝜌 ∈ ∇𝑔(ℝ𝑁), hence �̄� ⋅ 𝜌 = 1 is necessary. Under

this condition, the set 𝜕𝑓∞(𝜌) is not empty, and it consists of all𝜇 ∈ ℝ𝑁 such that𝑓∞(𝑟) ≥ 𝑘(𝜌) + 𝜇 ⋅ (𝑟 − 𝜌) for all 𝑟 ∈ ℝ𝑁
+ .

Thus, restricting to 𝑟 ∈ 𝑆, we see that 𝜇 ∈ 𝜕𝑓∞(𝜌) implies that 𝑘(𝑟) ≥ 𝑘(𝜌) + 𝜇 ⋅ (𝑟 − 𝜌) for all 𝑟 ∈ 𝑆. Since 𝑆 is planar, the
tangential part of 𝜇 can only be the tangential gradient of 𝑘 at 𝜌, and there must exist a 𝑝 ∈ ℝ such that 𝜇 = ∇𝜌𝑘(𝜌) + 𝑝 �̄�.
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Conversely, if there is some 𝜇0 in 𝜕𝑓∞(𝜌), then clearly 𝜇0 + 𝑝 �̄� ∈ 𝜕𝑓∞(𝜌) for all 𝑝 ∈ ℝ. This is due to the fact that the
𝑔 is affine with slope one in the direction of the vector �̄�, which belongs to the kernel of the Hessian 𝐷2𝑔. This achieves to
show the characterization of 𝜕𝑓∞, hence the claim. □

Proof of Lemma 1. The condition 𝜕2𝑇,𝑇𝑓
𝑚 < 0means that

0 > 𝜕2𝑇,𝑇𝑘
𝑚(𝑇, 𝜌) + 𝑝0 𝜕2𝑇,𝑇𝑉

𝑚(𝑇, 𝑝0, 𝜌) + ∫
𝑝𝑚(𝑇,𝜌)

𝑝0
𝜕2𝑇,𝑇𝑉

𝑚(𝑇, 𝑝′, 𝜌) 𝑑𝑝′ −
(𝜕𝑇𝑉

𝑚(𝑇, 𝑝(𝑇, 𝜌), 𝜌))2

𝜕𝑝𝑉𝑚(𝑇, 𝑝𝑚(𝑇, 𝜌), 𝜌)
. (187)

Now we fix (𝑇, 𝑝, 𝑥) and choose 𝜌𝑚
𝑖
= �̂�𝑚

𝑖
(𝑇, 𝑝, 𝑥) which converges to 𝑀𝑖 𝑥𝑖∕�̂�

∞(𝑇, 𝑝0, 𝑥) = �̄�𝑖 . Owing to the conver-
gence assumed in the statement of Lemma 1, it follows that

0 ≥ 𝜕2𝑇,𝑇𝑘(𝑇, �̄�) + 𝑝0 𝜕2𝑇,𝑇𝑉
∞(𝑇, 𝑝0, �̄�) + ∫

𝑝

𝑝0
𝜕2𝑇,𝑇𝑉

∞(𝑇, 𝑝′, �̄�) 𝑑𝑝′ + lim inf
𝑚→∞

(𝜕𝑇𝑉
𝑚(𝑇, 𝑝, 𝜌𝑚))2|𝜕𝑝𝑉𝑚(𝑇, 𝑝, 𝜌𝑚)| .

Using the definition of 𝑉𝑚, we then see that

lim inf
𝑚→∞

(𝜕𝑇𝑉
𝑚(𝑇, 𝑝, 𝜌𝑚))2|𝜕𝑝𝑉𝑚(𝑇, 𝑝, 𝜌𝑚)| = lim inf

𝑚→∞

1

�̂�𝑚(𝑇, 𝑝, 𝑥)

(𝜕𝑇�̂�
𝑚(𝑇, 𝑝, 𝑥))2|�̂�𝑚𝑝 (𝑇, 𝑝, 𝑥)| , (188)

and the latter quantity is positive infinite unless 𝜕𝑇�̂�𝑚(𝑇, 𝑝, 𝑥) → 0. This completes the proof of Lemma 1. □

12.2 Proof of Proposition 4

In view of the assumption (k’), the limit function 𝑉∞(𝑇) = 𝑉∞(𝑇, 𝑝, 𝜌) is independent of 𝑝 in the set of all

(𝑇, 𝑝, 𝜌) s. t. 𝑇 ∈]𝑇inf , 𝑇sup[, 𝜌 ∈ ℝ𝑁
+, 𝑝 ∈]𝑎(𝑇, 𝑥(𝜌)), 𝑏(𝑇, 𝑥(𝜌)[ , (189)

but it continues to depend on 𝑝 elsewhere.
Next we proceed to checking the assumptions of Lemma 3 for this new case. In checking the assumption (4), we argue

like in (173), (174) and we now find that

lim inf
𝑚→∞

inf
𝑦∈𝑆1+

|�̄�𝑚(𝑦) + �̄�𝑚(𝑝, 𝑦)|
≥ lim inf

𝑚→∞
inf
𝑦∈𝑆1+

|||||∫
𝑝

𝑝0
𝑉𝑚(𝑡, 𝑦) 𝑑𝑡

||||| − lim sup
𝑚→∞

sup
𝑦∈𝑆1+

(|𝑘𝑚(𝑦)| + 𝑝0 |𝑉𝑚(𝑝0, 𝑦)|)
= inf

𝑦∈𝑆1+

|||||∫
𝑝

𝑝0
𝑉∞(𝑡, 𝑦) 𝑑𝑡

||||| − sup
𝑦∈𝑆1+

(|𝑘(𝑦)| + 𝑝0 |𝑉∞(𝑝0, 𝑦)|) .
Next we observe that

∫
𝑝

𝑝0
𝑉∞(𝑡, 𝑦) 𝑑𝑡 =

⎧⎪⎨⎪⎩
− ∫ 𝑎

𝑝
𝑉∞(𝑡, 𝑦) 𝑑𝑡 − (𝑝0 − 𝑎)𝑉∞(𝑝0, 𝑦) for 𝑝 < 𝑎 ,

(𝑝 − 𝑝0)𝑉∞(𝑝0, 𝑦) for 𝑎 ≤ 𝑝 ≤ 𝑏 ,

∫ 𝑝

𝑏
𝑉∞(𝑡, 𝑦) 𝑑𝑡 + (𝑏 − 𝑝0)𝑉∞(𝑝0, 𝑦) for 𝑏 < 𝑝 .

(190)

Making use of (l), property (4) of Lemma 3 is obvious.
We can check the requirement of Lemma 3, (6) with the same arguments as in the preceding section. The only differ-

ence is that we must not require that the limit function 𝑉∞ is necessarily linear. Recall that for all 𝑎 ≤ 𝑝 ≤ 𝑏, the matrix
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𝐷2𝑉∞(𝑝, 𝑦) = 𝐷2𝑉∞(𝑝0, 𝑦) is independent on 𝑝. The argument following (179) implies that, for 𝑝 ∈ [𝑎, 𝑏],

𝑉∞(𝑦)𝐷2(𝑘 + 𝑝𝑉∞)(𝑦)𝜂 ⋅ 𝜂 ≥ 0 for all 𝜂 ∈ ℝ𝑛, 𝑦 ∈ 𝑆1+ . (191)

Hence, in the local case, the requirement of convexity implies that the thresholds 𝑎, 𝑏 are restricted by the condition

𝐷2(𝑘 + 𝑝𝑉∞)(𝑦) positive definite for all 𝑦 ∈ 𝑆1+ and all 𝑝 ∈ [𝑎(𝑇, 𝑦), 𝑏(𝑇, 𝑦)] . (192)

Finally, we use (m) and we find that

lim inf
𝑚→∞

inf
𝑝∈]𝑝1, 𝑝2[

|∇𝜌�̄�
𝑚(𝑦) + �̄�𝑚

𝜌 (𝑝, 𝑦)| ≥ |∇𝜌𝑘(𝑦)| − 𝐶 (|𝑝0| + |𝑝1| + |𝑝2|) , (193)

and the condition (5) of Lemma 3 is valid whenever 𝑘 is essentially smooth on 𝑆1+. Thus, by means of the Lemma 3, we
can establish the following claims.

Lemma 4. Under the assumptions of Proposition 4, the function 𝜌 ↦ 𝑉∞(𝑝0, 𝜌) is convex on ℝ𝑁
+ . For all 𝜌 ∈ ℝ𝑁

+

such that 𝑉∞(𝑝0, 𝜌) < 1, there is a unique 𝑝(𝜌) ∈]𝑝inf , 𝑎[ such that 𝑉∞(𝑝(𝜌), 𝜌) = 1 and the map 𝜌 ↦ 𝑝(𝜌) belongs to
𝐶1({𝜌 ∶ 𝑉∞(𝑝0, 𝜌) < 1}). Similarly for all 𝜌 ∈ ℝ𝑁

+ such that 𝑉∞(𝑝0, 𝜌) > 1, there is a unique 𝑝(𝜌) ∈]𝑏, +∞[ such that
𝑉∞(𝑝(𝜌), 𝜌) = 1 and the map 𝜌 ↦ 𝑝(𝜌) belongs to 𝐶1({𝜌 ∶ 𝑉∞(𝑝0, 𝜌) > 1}). The function

𝑓∞(𝑇, 𝜌) ∶=

{
𝑘(𝑇, 𝜌) + 𝑝0 𝑉∞(𝑇, 𝑝0, 𝜌) + �̄�(𝑇, 𝑝(𝑇, 𝜌), 𝜌) − 𝑝(𝑇, 𝜌) for 𝜌 s. t. 𝑉∞(𝑇, 𝑝0, 𝜌) ≠ 1 ,

𝑘(𝑇, 𝜌) for 𝜌 s. t. 𝑉∞(𝑇, 𝑝0, 𝜌) = 1 ,
(194)

is a co-finite strictly convex weak solution to the problem (135), (136) for 𝑉 = 𝑉∞. We have 𝑓𝑚 → 𝑓∞ (epi-convergence). A
point 𝜇 ∈ ℝ𝑁 belongs to 𝜕𝑓∞(𝜌) if and only if one of the two following conditions is valid

Either 𝑉∞(𝑝0, 𝜌) ≠ 1 and 𝜇 = 𝑝0 𝑉∞
𝜌 (𝑝

0, 𝜌) + ∇𝜌𝑘(𝜌) + �̄�𝜌(𝑝(𝜌), 𝜌);
Or 𝑉∞(𝑝0, 𝜌) = 1 and 𝜇 = 𝑝𝑉∞

𝜌 (𝑝
0, 𝜌) + ∇𝜌𝑘(𝜌) for a 𝑎 ≤ 𝑝 ≤ 𝑏.

Note that, since the threshold functions 𝑎 and 𝑏 are finite, the convergence of Lemma 3 can be improved to uniform
convergence. We start from the representation

𝑓𝑚(𝜌) ∶= 𝑘𝑚(𝜌) + 𝑝0 𝑉𝑚(𝑝0, 𝜌) + �̄�𝑚(𝑝𝑚(𝜌), 𝜌) − 𝑝𝑚(𝜌) for 𝜌 ∈ ℝ𝑁
+ . (195)

We show that for all 𝜌 such that 𝑉∞(𝑝0, 𝜌) < 1 the pressures converge, that is, 𝑝𝑚(𝜌) → 𝑝(𝜌), where 𝑝(𝜌) < 𝑎. Indeed, if
𝑉∞(𝑝0, 𝜌) < 1, then 𝑉𝑚(𝑝0, 𝜌) < 1 for 𝑚 large. Thus the number 𝑝𝑚(𝜌) belongs to the interval ]𝑝𝑚

inf
, 𝑝0[, implying that

the sequence𝑝𝑚(𝜌) is bounded. Let𝜋 be any accumulation point. As𝑉𝑚 converges uniformly, we get 1 = 𝑉∞(𝜋, 𝜌). If𝜋 ≥
𝑎(𝑇, 𝑥(𝜌)), then 𝑉∞(𝜋, 𝜌) ≤ 𝑉∞(𝑝0, 𝜌) < 1. Thus 𝜋 < 𝑎(𝑇, 𝑥(𝜌)). But in the interval ]𝑝inf , 𝑎[, 𝑉∞ is strictly decreasing
in the first variable. Hence 𝜋 = 𝑝(𝜌) is the unique solution in ]𝑝inf , 𝑎[ to 𝑉∞(𝜋, 𝜌) = 1.
Similarly, for all 𝜌 subject to 𝑉∞(𝑝0, 𝜌) > 1, we show that 𝑝𝑚(𝜌) → 𝑝(𝜌) with 𝑝(𝜌) > 𝑏 being the unique solu-

tion to 𝑉∞(𝜋, 𝜌) = 1. To show that the sequence 𝑝𝑚(𝜌) is bounded, we employ the following argument: suppose that
lim sup𝑝𝑚(𝜌) = +∞. Then for 𝐾 sufficiently large, we find 𝑚0 appropriate such that 𝑉𝑚(𝐾, 𝜌) ≥ 1 for 𝑚 ≥ 𝑚0. Passing
to the limit, 𝑉∞(𝐾, 𝜌) ≥ 1, and for 𝐾 → ∞ we must violate the assumptions (l).
Hence the sequence {𝑓𝑚(𝜌)} defined in (195) is bounded for every 𝜌 ∈ ℝ𝑁

+ . A classical result of convex analysis [2] shows
that 𝑓𝑚 converges uniformly on compact subsets of its domain to its pointwise limit. This pointwise limit being finite, it
must be identical with the epi–limit 𝑓∞ of Lemma 4.

ACKNOWLEDGMENTS
Dieter Bothe gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), Project-ID 265191195, SFB 1194.
Pierre-Étienne Druet thankfully acknowledges the grant D1117/1-1, Project ID 388362093, of the DFG.
Open access funding enabled and organized by Projekt DEAL.



39 of 48 BOTHE et al.

CONFL ICT OF INTEREST
The authors declare no potential conflict of interests.

REFERENCES
[1] Bothe, D., Druet, P.-E.: Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solu-

tions for general class-one models. Nonlinear analysis 210, 112389 (2021)
[2] Rockafellar, R.T.: Convex Analysis, Princeton University Press, Princeton, NJ (1970)
[3] Bothe, D., Druet, P.-E.: Well-posedness analysis of multicomponent incompressible flow models. J. Evol. Equ. 21, 4039–4093 (2021)
[4] Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805 (2015)
[5] Dreyer, W., Guhlke, C., Müller, R.: Overcoming the shortcomings of the Nernst-Planck model. Phys. Chem. Chem. Phys. 15, 7075–7086

(2013)
[6] Dreyer, W., Guhlke, C., Landstorfer, M.: A mixture theory of electrolytes containing solvation effects. Electrochem. Commun. 43, 75–78

(2014)
[7] Mills, N.: Incompressible mixtures of newtonian fluids. Int. J. Eng Sci. 4, 97–112 (1966)
[8] Joseph, D.D., Huang, A., Hu, H.: Non-solenoidal velocity effects and Korteweg stresses in simple mixtures of incompressible liquids.

Physica D 97, 104–125 (1996)
[9] Donev, A., Nonaka, A., Bhattacharjee, A.K., Garcia, A.L., Bell, J.B.: Low Mach number fluctuating hydrodynamics of multispecies liquid

mixtures. Phys Fluids 27, 97–112 (2015). https://doi.org/10.1063/1.4913571
[10] Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math.

Phys. Eng. Sci. 454, 2617–2654 (1998)
[11] Druet, P.-E.: Global–in–time existence for liquid mixtures subject to a generalised incompressibility constraint. J. Math. Anal Appl. 499,

(2021). https://doi.org/10.1016/j.jmaa.2021.125059
[12] Meixner, J., Reik, H.G.: Thermodynamik der irreversiblen Prozesse, Vol. 3, Springer, Berlin, German, pp. 413–523 (1959)
[13] de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics, Dover Publications, New York, NY (1984)
[14] Müller, I.: Thermodynamics, Pitman, London (1985)
[15] Bothe, D., Druet, P.-E.: On the structure of continuum thermodynamical diffusion fluxes: a novel closure scheme and its relation to the

Maxwell-Stefan and the Fick-Onsager approach, Preprint, 2020, Available at: http://www.wias-berlin.de/preprint/2749/wias_preprints_
2749.pdf and at arXiv:2008.05327 [math-ph].

[16] Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase-Equilibria, Prentice Hall International
Series, NJ (1999)

[17] Bechtel, S.E., Forest, M.G., Rooney, F.J., Wang, Q.: Thermal expansionmodels of viscous fluids based on limits of free energy. Phys. Fluids
15, 2681–2693 (2003)

[18] Bechtel, S.E., Cai, M., Rooney, F.J., Wang, Q.: Investigation of simplified thermal expansion models for compressible Newtonian fluids
applied to nonisothermal plane Couette and Poiseuille flows. Phys. Fluids 16, 3955–3974 (2004)

[19] Gouin, H., Muracchini, A., Ruggeri, T.: On the Müller paradox for thermal-incompressible media. Contin Mech. Thermodyn. 24, 505–513
(2012)

[20] Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–828 (1998)
[21] Dreyer,W., Druet, P.-E., Gajewski, P., Guhlke, C.: Existence of weak solutions for improvedNernst-Planck-Poissonmodels of compressible

reacting electrolytes. Z. Angew. Math. Phys. 71(119), (2020). Open access. https://doi.org/10.1007/s00033-020-01341-5
[22] Druet, P.-E.: A theory of generalised solutions for ideal gas mixtures with Maxwell–Stefan diffusion. Discrete. Contin. Dyn. Syst. S 14,

4035–4067 (2021). https://doi.org/10.3934/dcdss.2020458
[23] Feireisl, E., Novotný, A., Petzeltová, H.: Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows. Math.

Ann. 356, 683–702 (2013)
[24] Fischer, J.: A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier–Stokes equation. SIAM J.

Numer. Anal. 53, 2178–2205 (2015)
[25] DBB (Dortmunder Datenbank): https://de.wikipedia.org/wiki/Volumenkontraktion.
[26] Franks, F., Ives, D.J.G.: The structural properties of alcohol-water mixtures. Q. Rev. Chem. Soc. 20, 1–44 (1966). https://doi.org/10.1039/

QR9662000001
[27] Dreyer, W., Guhlke, C., Müller, R.: Bulk-surface electro-thermodynamics and applications to electrochemistry. Entropy 20, 939/1–939/44

(2018)
[28] Rockafellar, R.T., Wets, R.: Variational Analysis, Vol. 317, Springer Science and Business Media, (2009)

How to cite this article: Bothe, D., Dreyer, W., Druet, P.-E. Multicomponent incompressible fluids—An
asymptotic study. Z. Angew. Math. Mech. 2023;103:e202100174. https://doi.org/10.1002/zamm.202100174

https://doi.org/10.1063/1.4913571
https://doi.org/10.1016/j.jmaa.2021.125059
http://www.wias-berlin.de/preprint/2749/wias_preprints_2749.pdf
http://www.wias-berlin.de/preprint/2749/wias_preprints_2749.pdf
https://doi.org/10.1007/s00033-020-01341-5
https://doi.org/10.3934/dcdss.2020458
https://de.wikipedia.org/wiki/Volumenkontraktion
https://doi.org/10.1039/QR9662000001
https://doi.org/10.1039/QR9662000001
https://doi.org/10.1002/zamm.202100174


BOTHE et al. 40 of 48

APPENDIX A: PIECES OF THERMODYNAMICS
Variables
We consider a fluid mixture consisting of 𝑁 chemical species A1,… ,A𝑁 . Locally it is characterized by the quantities

𝑇 - (absolute) temperature and (𝑛𝑖)𝑖=1,2,…,𝑁 - mole densities . (A1)

These𝑁 + 1 quantities constitute the set of basic variables.9 In the context of experimental data andmicroscopicmodeling
other but equivalent sets of variables will occur.
Total mass density, total mole density and the molar volume of the mixture are defined as in (6).
We recall that the mole/number fraction of constituent A𝑖 is given by 𝑥𝑖 ∶= 𝑛𝑖∕𝑛 = 𝜐𝑛𝑖 (cf. [21]). The (Helmholtz) free

energy density has the form

𝜚𝜓 = 𝜚𝜓(𝑇, 𝑛1, 𝑛2, … , 𝑛𝑁) . (A2)

Comparing with (15), some small readjustments are necessary. We now introduce the (molar–based) chemical potentials
via

𝜇𝑖 = 𝜇mol
𝑖

∶=
𝜕𝜚𝜓

𝜕𝑛𝑖
for 𝑖 = 1, 2… ,𝑁. (A3)

While the definitions (17)2 and (17)3 of internal energy and entropy are unaffected, the Gibbs–Duhem Equation (17)1
assumes the form

𝑝 = −𝜚𝜓 +

𝑁∑
𝑖=1

𝑛𝑖 𝜇𝑖 , (A4)

and the positivity requirement of (18)1 is equivalent with{
𝜕𝜇𝑖
𝜕𝑛𝑗

}
𝑖,𝑗=1,…,𝑁

is symmetric, positive definite . (A5)

Objectives and motivations
The knowledge on the constitutive functions results either from experiments or from atomistic models. The exploitation
of atomistic models relies on the laws of statistical mechanics. If statistical mechanics is fully exploited, it directly yields
the free energy density as a function of the basic variables in (A1).
Then the other constitutive functions are calculated by means of the thermodynamic relations (16) (resp. (A4)) and

(17). However, frequently one meets the situation that atomistic models are not fully exploited. Rather, they solely provide
relations between some of the derivatives of the free energy function. Usually this restricted knowledge is supplemented
by experimental data on other derivatives to achieve the full picture. For example, pressure, specific volume, specific heats
and chemical potentials may be constructed from experimental data essentially resulting from different sources. In this
case we are confronted with the problem of consistency of all these data.
The main problem we want to solve next answers the question: Which derivatives of the free energy function can

be given consistently and which properties must they have in order to construct the free energy function in terms of
these derivatives?

9 Following the viewpoint adopted so far, the main variables are 𝑇 and the partial mass densities 𝜌1, 𝜌2, … , 𝜌𝑁 .With the simple connection 𝑛𝑖 = 𝜌𝑖∕𝑀𝑖

where𝑀𝑖 > 0 is the constant molecular mass, we can associate with every thermodynamic function of the main variables 𝑓(𝑇, 𝜌1, … , 𝜌𝑁) a transformed
function of the variables in (A1) via𝑓(𝑇, 𝑛1, … , 𝑛𝑁) ∶= 𝑓(𝑇,𝑀1 𝑛1, … ,𝑀𝑁 𝑛𝑁) .Working directly with the transformed function𝑓 significantly simplifies
the calculations resulting from the change of variables. From now and for the remainder of the appendix, we use 𝑇 and 𝑛1, … , 𝑛𝑁 as main variables and
we skip the ̃ or mol superscripts.
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Different representation theorems are possible, depending on the provided data. An important aspect concerns the
employed variables since, in experiments, the basic variables are not under control.

Change of variables
Most thermodynamic experiments control at least temperature and pressure or, alternatively, temperature and the specific
volume. Particularly in chemical experiments the pressure is controlled and should be included in the list of variables. In
the following we treat both cases and to this end we change the variables according to (cf. (23))

(𝑇, 𝑛1, … , 𝑛𝑁) ↔ (𝑇, 𝜐, 𝑥1, … , 𝑥𝑁−1) ↔ (𝑇, 𝑝, 𝑥1, … , 𝑥𝑁−1) . (A6)

The variable transformation (A6)1 is simple. It uses 𝑛𝑖 = 𝜐−1𝑥𝑖 for 𝑖 = 1, … ,𝑁 and 𝑥𝑁 = 1 −
∑𝑁−1

𝑗=1
𝑥𝑗 . The change of

variables (A6)2 needs the thermal equation of state (see (24))

𝑝 = �̄�(𝑇, 𝜐, 𝑥) ↔ 𝜐 = �̂�(𝑇, 𝑝, 𝑥) .

Next we use a generic function 𝑓(𝑇, 𝑛1, … , 𝑛𝑁) to define two new functions,

𝑓(𝑇, 𝜐, 𝑥) ∶= 𝑓

(
𝑇,

1

𝜐
𝑥

)
and 𝑓(𝑇, 𝑝, 𝑥) ∶= 𝑓(𝑇, 𝜐, 𝑥)|𝜐=�̂�(𝑇,𝑝,𝑥) . (A7)

The derivatives of the new functions 𝑓 and 𝑓 can easily be calculated. We have for (A7)1

𝜕𝑇𝑓 = 𝜕𝑇𝑓, 𝜕𝜐𝑓 = −
1

𝜐2

𝑁∑
𝑗=1

𝜕𝑛𝑗𝑓 𝑥𝑗 , 𝜕𝑥𝑖𝑓 =
1

𝜐

(
𝜕𝑛𝑖𝑓 − 𝜕𝑛𝑁𝑓

)
, (A8)

and for (A7)2 we obtain

𝜕𝑇𝑓 = 𝜕𝑇𝑓 + 𝜕𝜐𝑓 𝜕𝑇�̂� , 𝜕𝑝𝑓 = 𝜕𝜐𝑓 𝜕𝑝�̂� , 𝜕𝑥𝑖𝑓 = 𝜕𝑥𝑖𝑓 + 𝜕𝜐𝑓 𝜕𝑥𝑖 �̂� . (A9)

Consequences for the variables (𝑇, 𝜐, 𝑥)
We apply the transformation identities (A8) to the thermodynamic equations (A2)–(A4) (see also (15)–(17)). The simple
proofs of the following results are left to the reader.
In the new variables, the mass density obeys �̄�(𝜐, 𝑥) ∶= 𝜐−1𝑀(𝑥). For the specific free energy function we now have

�̄�(𝑇, 𝜐, 𝑥) ∶= 𝜓(𝑇, 𝜐−1𝑥). Then, we obtain

𝜕𝑇�̄� = −𝑠(𝑇, 𝜐, 𝑥), 𝜕𝜐�̄� = −
1

𝑀(𝑥)
�̄�(𝑇, 𝜐, 𝑥), 𝜕𝑥𝑖 (�̄��̄�) =

1

𝜐
(�̄�𝑖(𝑇, 𝜐, 𝑥) − �̄�𝑁(𝑇, 𝜐, 𝑥)) . (A10)

The specific internal energy transforms as �̄�(𝑇, 𝜐, 𝑥) ∶= 𝑢(𝑇, 𝜐−1𝑥). This representation of the specific internal energy
with respect to the variables (𝑇, 𝜐, 𝑥) is known as the caloric equation of state. Its derivative

𝑐𝜐 ∶= 𝜕𝑇�̄�(𝑇, 𝜐, 𝑥) (A11)

defines the specific heat (at constant volume). Two further derivatives of the caloric equation of state read

𝜕𝜐�̄� = 𝑇 𝜕𝑇�̄�(𝑇, 𝜐, 𝑥) − �̄�(𝑇, 𝜐, 𝑥) implying 𝜕𝜐𝑐𝜐 = 𝑇 𝜕2𝑇,𝑇�̄�(𝑇, 𝜐, 𝑥) . (A12)

We conclude that the volume dependence of both the specific internal energy and the specific heat is already given by the
thermal equation of state. Thus their measuring is not needed!
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The specific entropy transforms as 𝑠(𝑇, 𝜐, 𝑥) ∶= 𝑠(𝑇, 𝜐−1𝑥) and satisfies

𝜕𝑇𝑠 =
𝑐𝜐
𝑇
, 𝜕𝜐𝑠 =

1

𝑀(𝑥)
𝜕𝑇�̄� , 𝑠 = −

𝜐

𝑀(𝑥)
𝜕𝑇�̄� +

1

𝑀(𝑥)

𝑁∑
𝑗=1

𝜕𝑇�̄�𝑗 𝑥𝑗 . (A13)

In analogy to the caloric equation of state we find that the volume dependence of the specific entropy is likewise given by
the thermal equation of state.
In the new variables, the chemical potentials are given by �̄�𝑖(𝑇, 𝜐, 𝑥) ∶= 𝜇𝑖(𝑇, 𝜐

−1𝑥). Their derivatives with respect to
𝑇 and 𝜐 read

𝜕𝑇(�̄�𝑖 − �̄�𝑁) = −𝜐 𝜕𝑥𝑖 (�̄�𝑠)(𝑇, 𝜐, 𝑥), 𝜕𝜐(�̄�𝑖 − �̄�𝑁) = −𝜕𝑥𝑖 �̄�(𝑇, 𝜐, 𝑥) . (A14)

Once again the important role of the thermal equation of state shows up. It determines the volume dependence of the
chemical potentials as well.
The equations of this paragraph constitute the basis to derive representation theorems for the Helmholtz free energy as

a function of the variables 𝑇, 𝜐, 𝑥. These representation theorems must be consulted to answer the question which data
can be used to construct a free energy function consistently.

Consequences for the variables (𝑇, 𝑝, 𝑥)
Next we apply the transformation identities (A9) to the thermodynamic Equations (A10)-(A14). However, with respect to
the variables (𝑇, 𝑝, 𝑥) the most suited potential is not the Helmholtz free energy density but the specific Gibbs free energy
𝑔 ∶= 𝜓 + 𝑝 𝜚−1. The following results are represented in an analogous manner as before.
Consider the Gibbs free energy function𝑀𝑔 = 𝑀(𝑥)�̂�(𝑇, 𝑝, 𝑥) ∶= 𝑀(𝑥)�̂�(𝑇, 𝑝, 𝑥) + 𝑝 �̂�(𝑇, 𝑝, 𝑥) and obtain from (A2)

to (A4)

𝜕𝑇(𝑀�̂�) = −𝑀(𝑥)𝑠(𝑇, 𝑝, 𝑥), 𝜕𝑝(𝑀�̂�) = �̂�(𝑇, 𝑝, 𝑥) ,

𝜕𝑥𝑖 (𝑀�̂�) = �̂�𝑖(𝑇, 𝑝, 𝑥) − �̂�𝑁(𝑇, 𝑝, 𝑥) .
(A15)

Note that here the potential property of the free energy function concerns 𝑀𝑔 rather than 𝜚𝑔 as one would expect at
first glance.
In the (𝑇, 𝑝, 𝑥) setting, the heat density, which is also called enthalpy density, 𝜚ℎ ∶= 𝜚𝑢 + 𝑝 is more important than

the internal energy density 𝜚𝑢. We calculate the enthalpy according to𝑀ℎ = 𝑀(𝑥)ℎ̂(𝑇, 𝑝, 𝑥) ∶= 𝑀(𝑥)𝑢(𝑇, �̂�(𝑇, 𝑝, 𝑥), 𝑥) +

𝑝 �̂�(𝑇, 𝑝, 𝑥). The derivative of the specific enthalpy with respect to 𝑇,

𝑐𝑝 ∶= 𝜕𝑇ℎ̂(𝑇, 𝑝, 𝑥) (A16)

defines the specific heat (at constant pressure). Its difference to the specific heat at constant volume, (A11), is easily cal-
culated by means of (A9)1, to the result

𝑐𝑝 − 𝑐𝜐 = −
𝑇

𝑀(𝑥)
(𝜕𝑇�̄�)

2 𝜕𝑝�̂� . (A17)

Corresponding to the Equation (A12), we now have

𝜕𝑝(𝑀 ℎ̂) = �̂�(𝑇, 𝑝, 𝑥) − 𝑇 𝜕𝑇�̂�(𝑇, 𝑝, 𝑥) implying 𝑀 𝜕𝑝𝑐𝑝 = −𝑇 𝜕2𝑇,𝑇�̂�(𝑇, 𝑝, 𝑥) . (A18)

In the (𝑇, 𝑝, 𝑥) variables, we observe a corresponding behavior to the (𝑇, 𝜐, 𝑥) setting: The pressure dependence of the
enthalpy function and the specific heat as well is already given by the thermal equation of state, now represented by
�̂�(𝑇, 𝑝, 𝑥).
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This is also true for the specific entropy, which is given by 𝑠 = 𝑠(𝑇, 𝑝, 𝑥) ∶= 𝑠(𝑇, �̂�(𝑇, 𝑝, 𝑥), 𝑥). It satisfies

𝜕𝑇𝑠 =
𝑐𝑝(𝑇, 𝑝, 𝑥)

𝑇
, 𝜕𝑝𝑠 = −

1

𝑀(𝑥)
𝜕𝑇�̂�(𝑇, 𝑝, 𝑥), 𝑠 = −

1

𝑀(𝑥)

𝑁∑
𝑗=1

𝜕𝑇�̂�𝑗 𝑥𝑗 . (A19)

Finally, we define the (𝑇, 𝑝, 𝑥)-representation of the chemical potentials, viz.

𝜇𝑖 = �̂�𝑖(𝑇, 𝑝, 𝑥) ∶= �̄�𝑖(𝑇, �̂�(𝑇, 𝑝, 𝑥), 𝑥) . (A20)

The functions �̂�𝑖(𝑇, 𝑝, 𝑥) satisfy

𝜕𝑇(�̂�𝑖 − �̂�𝑁) = −𝜕𝑥𝑖 (𝑀(𝑥)𝑠)(𝑇, 𝑝, 𝑥), 𝜕𝑝(�̂�𝑖 − �̂�𝑁) = 𝜕𝑥𝑖 �̂�(𝑇, 𝑝, 𝑥) . (A21)

The equations of this paragraph constitute the basis to derive representation theorems for theGibbs free energy function.

Inequalities
It is useful to list and prove the relevant inequalities between some of the introduced quantities. From the inequalities (18)
(cf. (A5)), we may derive further inequalities, viz.

𝜕𝜐�̄� < 0 , 𝑐𝑝 > 𝑐𝜐 > 0 , and (𝜕𝑇�̂�)
2 ≤ −

𝑐𝑝 𝑀

𝑇
𝜕𝑝�̂� . (A22)

The proof of (A22)1 starts from the Gibbs-Duhem Equation (A4)1 for 𝑝 = �̄�. Differentiation with respect to 𝜐 yields, after
some simple rearrangements,

𝜕𝜐�̄� = −
1

𝜐3

𝑁∑
𝑖,𝑗=1

𝑥𝑖
𝜕𝜇𝑗

𝜕𝑛𝑖
𝑥𝑗 < 0 , (A23)

where the inequality in (A23) is due to (A5)1.
The proof of 𝑐𝜐 > 0 relies on the inequality (18)2 and chooses 𝑓 = 𝑢 and 𝑓 = �̄� in the identity (A8)1. Then, together with

(A23), the inequality 𝑐𝑝 > 𝑐𝜐 is a direct consequence of (A17).

Free energy representations in general
Two crucial facts can be read off from the experimental literature:

(i) Exclusively the functions

𝜐 = �̂�(𝑇, 𝑝, 𝑥), 𝑐𝑝 = 𝑐𝑝(𝑇, 𝑝, 𝑥), 𝜇𝑖 = �̂�𝑖(𝑇, 𝑝, 𝑥) . (A24)

are directly accessible in experiments.
(ii) The most simple task is the measurement of the thermal equation of state (A24)1. Calorimetric experiments to deter-

mine the specific heats (A24)1,2 are much more involved than pressure-volume-mole fraction measurements. The
most complex procedure is needed for the experimental determination of the chemical potentials (A24)3.

Based on these facts we assume that the thermal equation of state, that is, (A24)1, is completely given. In other words, we
know the function (A24)1 with respect to all variables (𝑇, 𝑝, 𝑥).
Then from (A18)2 we conclude that the specific heat (A24)2 must be measured with respect to the variables (𝑇, 𝑥) for

only one pressure value 𝑝 = 𝑝0. Below we see that the chemical potentials must solely be measured with respect to the
mole fractions 𝑥 for a single pair (𝑇 = 𝑇0, 𝑝 = 𝑝0).
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Representation theorem for the specific entropies 𝑠 = 𝑠(𝑇, 𝜐, 𝑥) and 𝑠 = 𝑠(𝑇, 𝑝, 𝑥)

The representations of the free energy functions need in advance a corresponding representation of the specific entropies.
It reads

𝑠(𝑇, 𝜐, 𝑥) =
1

𝑀(𝑥) ∫
𝜐

𝜐0
𝜕𝑇�̄�(𝑇, 𝑉, 𝑥) 𝑑𝑉 + ∫

𝑇

𝑇0

𝑐𝜐(𝜗, 𝜐
0, 𝑥)

𝜗
𝑑𝜗 + 𝑠(𝑇0, 𝜐0, 𝑥) . (A25)

We conclude that 𝑠(𝑇, 𝜐, 𝑥) can be calculated via the complete thermal equation of state �̄�(𝑇, 𝜐, 𝑥) and the specific heat
𝑐𝜐(𝑇, 𝜐

0, 𝑥) for one value of the specific volume. There remains to determine the composition dependence of the specific
entropy at a single pair (𝑇0, 𝜐0).
For 𝑠 = 𝑠(𝑇, 𝑝, 𝑥) we obtain

𝑠(𝑇, 𝑝, 𝑥) = −
1

𝑀(𝑥) ∫
𝑝

𝑝0
𝜕𝑇�̂�(𝑇, 𝑝

′, 𝑥) 𝑑𝑝′ + ∫
𝑇

𝑇0

𝑐𝑝(𝜗, 𝑝
0, 𝑥)

𝜗
𝑑𝜗 + 𝑠(𝑇0, 𝑝0, 𝑥) . (A26)

The proof of (A26) starts with (A19)2, yielding

𝑠(𝑇, 𝑝, 𝑥) = −
1

𝑀(𝑥) ∫
𝑝

𝑝0
𝜕𝑇�̂�(𝑇, 𝑝

′, 𝑥) 𝑑𝑝′ + 𝑠(𝑇, 𝑝0, 𝑥) . (A27)

Next we calculate 𝑠(𝑇, 𝑝0, 𝑥) by means of (A19)1, resulting in

𝑠(𝑇, 𝑝0, 𝑥) = ∫
𝑇

𝑇0

1

𝜃
𝑐𝑝(𝜗, 𝑝

0, 𝑥) 𝑑𝜗 + 𝑠(𝑇0, 𝑝0, 𝑥) , (A28)

which is inserted into (A26). In an analogous manner we may prove (A25).
These representations for the specific entropies are among the building blocks for the construction of the free

energy functions.

Representation theorems for the free energy functions 𝜚𝜓 = �̄�(𝜐, 𝑥)�̄�(𝑇, 𝜐, 𝑥) and𝑀𝑔 = 𝑀(𝑥)�̂�(𝑇, 𝑝, 𝑥).
We show that the free energy functions can be constructed from the functions

�̄�(𝑇, 𝜐, 𝑥), 𝑐𝜐(𝑇, 𝜐
0, 𝑥), �̄�𝑖(𝑇

0, 𝜐0, 𝑥)

or (A29)

�̂�(𝑇, 𝑝, 𝑥), 𝑐𝑝(𝑇, 𝑝
0, 𝑥), �̂�𝑖(𝑇

0, 𝑝0, 𝑥), respectively.

The representation for the free energy function 𝜚�̄�(𝑇, 𝜐, 𝑥) reads

𝜚�̄�(𝑇, 𝜐, 𝑥) = −
1

𝜐 ∫
𝜐

𝜐0
�̄�(𝑇, 𝑉, 𝑥)𝑑𝑉 −

𝑀(𝑥)

𝜐 ∫
𝑇

𝑇0
𝑑𝜗 ∫

𝜗

𝑇0
𝑑𝜗′

𝑐𝜐(𝜗
′, 𝜐0, 𝑥)

𝜗′

+
𝑀(𝑥)

𝜐

(
�̄�(𝑇0, 𝜐0, 𝑥) − (𝑇 − 𝑇0)𝑠(𝑇0, 𝜐0, 𝑥)

)
. (A30)

This representation of the free energy functionmakes essential use of the assumption that the constitutive functions (A29)
are known, either by experiments or from microscopic modeling.
To prove (A30), we start with (A10)2. Integration with respect to 𝜐 yields

�̄�(𝑇, 𝜐, 𝑥) = �̄�(𝑇, 𝜐0, 𝑥) −
1

𝑀(𝑥) ∫
𝜐

𝜐0
�̄�(𝑇, 𝑉, 𝑥)𝑑𝑉 . (A31)



45 of 48 BOTHE et al.

Then we use (A10)1 to analogously determine �̄�(𝑇, 𝜐0, 𝑥). The result is

�̄�(𝑇, 𝜐0, 𝑥) = �̄�(𝑇0, 𝜐0, 𝑥) − ∫
𝑇

𝑇0
𝑠(𝜗, 𝜐0, 𝑥)𝑑𝜗 . (A32)

The term �̄�(𝑇0, 𝜐0, 𝑥) is calculated from (A4)1, and reads

�̄�(𝑇0, 𝜐0, 𝑥) = −
𝜐0

𝑀(𝑥)
�̄�(𝑇0, 𝜐0, 𝑥) +

1

𝑀(𝑥)

𝑁∑
𝑗=1

�̄�𝑗(𝑇
0, 𝜐0, 𝑥)𝑥𝑗 . (A33)

These three intermediate results are inserted into each other. The resulting equation is finally multiplied by 𝜚, which
completes the proof of the construction of the free energy function (A30).
The representation for the free energy function𝑀(𝑥)�̂�(𝑇, 𝑝, 𝑥) reads

𝑀�̂�(𝑇, 𝑝, 𝑥) = ∫
𝑝

𝑝0
�̂�(𝑇, 𝑝′, 𝑥)𝑑𝑝′ − 𝑀(𝑥)∫

𝑇

𝑇0
𝑑𝜗′ ∫

𝜗′

𝑇0
𝑑𝜗

𝑐𝑝(𝜗, 𝑝
0, 𝑥)

𝜗

− (𝑇 − 𝑇0)𝑀(𝑥)𝑠(𝑇0, 𝑝0, 𝑥) + 𝑀(𝑥)�̂�(𝑇0, 𝑝0, 𝑥). (A34)

There are two options to express the second line. We may assume that the specific entropy 𝑠(𝑇0, 𝑝0, 𝑥) and the specific
enthalpy ℎ(𝑇0, 𝑝0, 𝑥) are given. Then we have

−(𝑇 − 𝑇0)𝑀(𝑥)𝑠(𝑇0, 𝑝0, 𝑥) + 𝑀(𝑥)�̂�(𝑇0, 𝑝0, 𝑥) = −𝑇𝑀(𝑥)𝑠(𝑇0, 𝑝0, 𝑥) + 𝑀(𝑥)ℎ̂(𝑇0, 𝑝0, 𝑥) . (A35)

Secondly, if we know the chemical potentials 𝜇𝑖(𝑇0, 𝑝0, 𝑥) and their derivatives 𝜕𝑇𝜇𝑖(𝑇0, 𝑝0, 𝑥), the functions 𝑠(𝑇0, 𝑝0, 𝑥)
and 𝑔(𝑇0, 𝑝0, 𝑥)may be substituted by

𝑠(𝑇0, 𝑝0, 𝑥) = −

𝑁∑
𝑖=1

𝜕𝑇𝜇𝑖(𝑇
0, 𝑝0, 𝑥) 𝑥𝑖 and �̂�(𝑇0, 𝑝0, 𝑥) =

𝑁∑
𝑖=1

𝜇𝑖(𝑇
0, 𝑝0, 𝑥) 𝑥𝑖 . (A36)

To prove the representation (A34), at first we integrate (A15)2 with respect to the pressure. Then (A15)1 at (𝑝0, 𝑥) is inte-
grated with respect to temperature. This leads to (A34). The first option (A35) simply follows from the decomposition
of the Gibbs free energy (A34) into entropy and enthalpy. The second option relies on the Gibbs-Duhem Equation (A4)
specialized to the Gibbs free energy and (A19)3.

APPENDIX B: IDEALMIXTURE
Assume that the chemical potentials obey the additive ansatz

�̂�𝑖(𝑇, 𝑝, 𝑥) = 𝑔𝑖(𝑇, 𝑝) + 𝑎𝑖(𝑇, 𝑥𝑖) for 𝑖 = 1, … ,𝑁 . (B1)

Here we consider given regular functions 𝑔𝑖(𝑇, ⋅) ∶ ]𝑝inf , +∞[→ ℝ and 𝑎𝑖(𝑇, ⋅) ∶ ]0, +∞[→ ℝ.
First using that 𝜇𝑖 = 𝜕𝑛𝑖 𝜚𝜓, we obtain via differentiation of (B1) that

𝜕2𝑛𝑖,𝑛𝑗 𝜚𝜓 = 𝜕𝑝𝑔𝑖(𝑇, 𝑝) 𝜕𝑛𝑗𝑝 + 𝑎′
𝑖
(𝑇, 𝑥𝑖) 𝜕𝑛𝑗𝑥𝑖 . (B2)

Wemultiplywith 𝑛𝑗 𝑛𝑖 and sumover 𝑖, 𝑗 = 1, … ,𝑁.We have
∑

𝑗
𝑛𝑗 𝜕𝑛𝑗𝑥𝑖 = 0 and, exploiting,

∑
𝑗
𝑛𝑗 𝜕𝑛𝑗𝑝 = 𝐷2

𝑛,𝑛(𝜚𝜓)𝑛 ⋅ 𝑛 >

0, we obtain that

𝐷2
𝑛,𝑛(𝜚𝜓)𝑛 ⋅ 𝑛 (1 −

𝑁∑
𝑖=1

𝜕𝑝𝑔𝑖(𝑇, 𝑝) 𝑛𝑖) = 0⟺

𝑁∑
𝑖=1

𝜕𝑝𝑔𝑖(𝑇, 𝑝) 𝑛𝑖 = 1 . (B3)
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Now, we multiply (B2) with 𝑛𝑖 and sum over 𝑖 = 1, … ,𝑁. Since 𝜕𝑛𝑗𝑝 =
∑

𝑖
𝑛𝑖 𝜕

2
𝑛𝑖 ,𝑛𝑗

𝜚𝜓, it follows that

𝑁∑
𝑖=1

𝑛𝑖 𝑎
′
𝑖
(𝑇, 𝑥𝑖) 𝜕𝑛𝑗𝑥𝑖 = 0 for all 𝑗 = 1,… ,𝑁 , (B4)

which we can rephrase as

𝑥𝑗 𝑎
′
𝑗
(𝑇, 𝑥𝑗) =

𝑁∑
𝑖=1

𝑥2
𝑖
𝑎′
𝑖
(𝑇, 𝑥𝑖) for all 𝑗 = 1,… ,𝑁 . (B5)

From the latter relation we readily see that, necessarily,

𝑎′
𝑗
(𝑇, 𝑥𝑗) =

𝑐(𝑇)

𝑥𝑗
for 𝑗 = 1,… ,𝑁

implying that 𝑎𝑗(𝑇, 𝑥𝑗) = 𝑐(𝑇) ln 𝑥𝑗 + 𝐶𝑗(𝑇) .

(B6)

With the molar based chemical potentials, we have the general relationship
∑

𝑖
�̂�𝑖 𝑥𝑖 = 𝑀(𝑥) �̂� + 𝑝 �̂�, which implies that

�̂� =
∑

𝑖
𝑥𝑖 𝜕𝑝�̂�𝑖 . For an ideal mixture, it thus follows that

𝑁∑
𝑖=1

𝜕𝑝𝑔𝑖(𝑇, 𝑝) 𝑥𝑖 = �̂�(𝑇, 𝑝, 𝑥) . (B7)

Hence we must require that

𝑁∑
𝑖=1

𝜕2𝑝,𝑝𝑔𝑖(𝑇, 𝑝) 𝑥𝑖 < 0 for all 𝑥 , (B8)

which is possible only if 𝑝 ↦ 𝑔𝑖(𝑇, 𝑝) is strictly concave for all 𝑖.
If
∑𝑁

𝑖=1
𝑥𝑖 𝜕

2
𝑝,𝑝𝑔𝑖(𝑇, 𝑝) < 0 for all 𝑥, we introduce 𝑝(𝑇, 𝑛1, … , 𝑛𝑁) as the root of the equation

∑𝑁

𝑖=1
𝑛𝑖 𝜕𝑝𝑔𝑖(𝑇, 𝑝(𝑇, 𝑛)) =

1, and 𝜚𝜓 is, up to a function solely of temperature, defined via the formula

𝜚𝜓 = 𝑛

(
𝑁∑
𝑖=1

𝑥𝑖 𝑔𝑖(𝑇, 𝑝(𝑇, 𝑛1, … , 𝑛𝑁)) + 𝑐(𝑇) 𝑥 ⋅ ln 𝑥 + 𝐶(𝑇) ⋅ 𝑥

)
− 𝑝(𝑇, 𝑛1, … , 𝑛𝑁) , (B9)

in which 𝑥𝑖 = 𝑥𝑖(𝑛1, … , 𝑛𝑁) = 𝑛𝑖∕𝑛.
To verify that 𝜚𝜓 is concave in 𝑇, we compute the second derivatives, given as

𝜕2𝑇,𝑇𝜚𝜓 =

𝑁∑
𝑖=1

𝑛𝑖 (𝑐
′′(𝑇) ln 𝑥𝑖 + 𝐶′′

𝑖
(𝑇)) +

𝑁∑
𝑖=1

𝑛𝑖 𝜕
2
𝑇,𝑇𝑔𝑖(𝑇, 𝑝(𝑇, 𝑛)) −

(
∑𝑁

𝑖=1
𝑛𝑖 𝜕

2
𝑇,𝑝𝑔𝑖(𝑇, 𝑝(𝑇, 𝑛)))

2∑𝑁

𝑖=1
𝑛𝑖 𝜕

2
𝑝,𝑝𝑔𝑖(𝑇, 𝑝(𝑇, 𝑛))

. (B10)

Sufficient conditions for 𝜕2𝑇,𝑇𝜚𝜓 < 0 are, therefore, 𝑐′′(𝑇) ≥ 0 and

𝑇 ↦ 𝐶𝑖(𝑇), (𝑇, 𝑝) ↦ 𝑔𝑖(𝑇, 𝑝) concave for all 𝑖 = 1, … ,𝑁 . (B11)

Up to the functions 𝑐 and 𝐶 of temperature, the free energy is completely determined from the assumption (B1).
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APPENDIX C: PROOF OF TWO PROPOSITIONS
In this section we provide short proofs for the two Propositions 1 and 2.
Defining 𝑓 as in the statement of Prop. 1, the assumptions yield directly 𝑓 ∈ 𝐶1(ℝ𝑁

+). By direct computation, use of
𝜕𝑝�̄�(𝑝(𝜌), 𝜌) = 𝑉(𝑝(𝜌), 𝜌) = 1 implies that

𝜕𝜌𝑖𝑓(𝜌) =𝑝0 𝑉𝜌𝑖 (𝑝
0, 𝜌) + 𝑘𝜌𝑖 (𝜌) + �̄�𝜌𝑖 (𝑝(𝜌), 𝜌) + (�̄�𝑝(𝑝(𝜌), 𝜌) − 1) 𝑝𝜌𝑖 (𝜌)

=𝑝0 𝑉𝜌𝑖 (𝑝
0, 𝜌) + 𝑘𝜌𝑖 (𝜌) + �̄�𝜌𝑖 (𝑝(𝜌), 𝜌) . (C1)

Hence, both 𝑘 and �̄� being positively homogeneous in 𝜌, we see that

𝜌 ⋅ ∇𝜌𝑓(𝜌) = 𝜌 ⋅
(
𝑝0 𝑉𝜌(𝑝

0, 𝜌) + 𝑘𝜌(𝜌) + �̄�𝜌(𝑝(𝜌), 𝜌
)
= 𝑝0 𝑉(𝑝0, 𝜌) + 𝑘(𝜌) + �̄�(𝑝(𝜌), 𝜌) . (C2)

Thus, 𝜌 ⋅ ∇𝜌𝑓 − 𝑓 = 𝑝, which is (132). For 𝜌 satisfying 𝑝(𝜌) = 𝑝0, the definition of the pressure implies that 𝑉(𝑝0, 𝜌) = 1.
Since �̄�(𝑝0, 𝜌) = 0 by definition, it holds that 𝑓(𝜌) = 𝑝0 𝑉(𝑝0, 𝜌) + 𝑘(𝜌) − 𝑝0 = 𝑘(𝜌). This verifies (133). In order to show
that the solution is unique, assume that 𝑓1, 𝑓2 both solve (132), (133).We see that 𝑓1 − 𝑓2 =∶ 𝑑 is positively homogeneous,
and we must have 𝑑(𝜌) = 0 whenever 𝑝(𝜌) = 𝑝0. For each fixed 𝜌, we have 𝑉(𝑝0, 𝜆 𝜌) = 1 for 𝜆 = 1∕𝑉(𝑝0, 𝜌). Thus,
𝑝0 = 𝑝(𝜆 𝜌), and 𝜆 𝑑(𝜌) = 𝑑(𝜆 𝜌) = 0 implies that 𝑑 ≡ 0. This shows that 𝑓1 = 𝑓2.
Next we prove the additional properties of the solution 𝑓.
Since 𝑉 and 𝑘 are both of class 𝐶2(ℝ𝑁

+), the formula (C1) shows that ∇𝜌𝑓 is differentiable, and that

𝜕2𝜌𝑗,𝜌𝑖𝑓 =𝑝0 𝑉𝜌𝑗,𝜌𝑖 (𝑝
0, 𝜌) + 𝑘𝜌𝑗,𝜌𝑖 (𝜌) + �̄�𝜌𝑗,𝜌𝑖 (𝑝(𝜌), 𝜌) + 𝑉𝜌𝑖 (𝑝(𝜌), 𝜌) 𝑝𝜌𝑗 (𝜌) (C3)

=𝑝0 𝑉𝜌𝑗,𝜌𝑖 (𝑝
0, 𝜌) + 𝑘𝜌𝑗,𝜌𝑖 (𝜌) + �̄�𝜌𝑗,𝜌𝑖 (𝑝(𝜌), 𝜌) −

1

𝑉𝑝(𝑝(𝜌), 𝜌)
𝑉𝜌𝑖 (𝑝(𝜌), 𝜌) 𝑉𝜌𝑗 (𝑝(𝜌), 𝜌) .

Here, we also used the equation 𝑉(𝑝(𝜌), 𝜌) = 1 to compute 𝜕𝜌𝑝 = −𝑉𝜌∕𝑉𝑝. Thus, if the Hessians 𝐷2
𝜌,𝜌(𝑝

0 𝑉(𝑝0) + 𝑘 +

�̄�(𝑝))(𝜌) are positive semi-definite for all 𝑝 ∈]𝑝inf , 𝑝sup[, it follows that 𝐷2𝑓 is positive semi-definite.
Since 𝜌 ↦ 𝑝0 𝑉(𝑝0, 𝜌) + 𝑘(𝜌) + �̄�(𝑝, 𝜌) is positively homogeneous, these Hessians possess necessarily a kernel con-

taining {𝜌}. We can verify for arbitrary 𝜂 ∈ 𝑆2+ and 𝑝 = 𝑝(𝜌) that

𝐷2
𝜌,𝜌𝑓(𝜌)𝜂 ⋅ 𝜂 = (𝑝0 𝑉𝜌,𝜌(𝑝

0, 𝜌) + 𝑘𝜌,𝜌(𝜌) + �̄�𝜌,𝜌(𝑝, 𝜌))𝜂 ⋅ 𝜂 −
1

𝑉𝑝(𝑝, 𝜌)
|𝑉𝜌(𝑝, 𝜌) ⋅ 𝜂|2 . (C4)

Choose now an orthonormal basis {𝜉1, … , 𝜉𝑁−1, 𝜌∕|𝜌|}. For 𝜌 ∈ ℝ𝑁
+ and 𝑝 > 𝑝inf , we can verify that the𝑁 − 1 vectors 𝜉𝑖 −

(𝑉𝜌(𝑝, 𝜌) ⋅ 𝜉
𝑖∕𝑉(𝑝, 𝜌)) 𝜌 again form, together with 𝜌, a basis ofℝ𝑁 . For any 𝜂 ∈ ℝ𝑁 , we thus find coefficients 𝑎1, … , 𝑎𝑁−1

and 𝑏 to represent

𝜂 =

𝑁−1∑
𝑖=1

𝑎𝑖 (𝜉
𝑖 −

𝑉𝜌(𝑝, 𝜌) ⋅ 𝜉
𝑖

𝑉(𝑝, 𝜌)
𝜌) + 𝑏 𝜌 . (C5)

Hence, we find a number 𝑐 = 𝑐(𝜌, 𝑝) such that |𝜂| ≤ 𝑐 (|𝑎| + |𝑏|). Define the matrix Π ∈ ℝ𝑁×(𝑁−1) with columns given
by the vectors 𝜉1, … , 𝜉𝑁−1. Using (C4), it is readily seen that

𝐷2
𝜌,𝜌𝑓(𝜌)𝜂 ⋅ 𝜂 = Π𝖳(𝑝0 𝑉𝜌,𝜌(𝑝

0, 𝜌) + 𝑘𝜌,𝜌(𝜌) + �̄�𝜌,𝜌(𝑝, 𝜌))Π𝑎 ⋅ 𝑎 −
(𝑉(𝑝, 𝜌))2

𝑉𝑝(𝑝, 𝜌)
|𝑏|2

≥ 𝜆min(Π
𝖳(𝑝0 𝑉𝜌,𝜌(𝑝

0, 𝜌) + 𝑘𝜌,𝜌(𝜌) + �̄�𝜌,𝜌(𝑝, 𝜌))Π) |𝑎|2 − (𝑉(𝑝, 𝜌))2

𝑉𝑝(𝑝, 𝜌)
|𝑏|2 . (C6)

If 𝑝0 𝑉𝜌,𝜌(𝑝
0, 𝜌) + 𝑘𝜌,𝜌(𝜌) + �̄�𝜌,𝜌(𝑝, 𝜌) possesses𝑁 − 1 strictly positive eigenvalues, it is positive definite on {𝜌}⟂. Hence,

the choice of the 𝜉𝑖 implies that 𝜆min(Π
𝖳𝐷2(𝑝0 𝑉(𝑝0, 𝜌) + 𝑘(𝜌) + �̄�(𝑝, 𝜌))Π) > 0. It follows from (C6) that 𝐷2𝑓(𝜌)𝜂 ⋅ 𝜂 ≥

𝑐 |𝜂|2, showing that 𝐷2𝑓 is strictly positive definite a every point of ℝ𝑁
+ .
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In particular, 𝑓 is strictly convex. To show that 𝑓 is of Legendre–type, it remains to prove that 𝑓 is essentially
smooth. Consider an arbitrary sequence {𝜌𝑚} ⊂ ℝ𝑁

+ such that 𝜌𝑚 → 𝜌 ∈ 𝜕ℝ𝑁
+ . The first case is 𝜌 = 0. In this case

the equations 𝑉(𝑝(𝜌𝑚), 𝜌𝑚) = 1 imply for the fractions 𝑦𝑚 ∶= 𝜌𝑚∕|𝜌𝑚|1 that 𝑉(𝑝(𝜌𝑚), 𝑦𝑚) = 1∕|𝜌𝑚|1. In turn, this
yields lim sup𝑚→∞ 𝑝(𝜌𝑚) = 𝑝inf . Otherwise, we would find a subsequence, a number 𝑝1 > 𝑝inf , and 𝑦 ∈ 𝑆

1

+, such that

𝑉(𝑝1, 𝑦) = lim𝑘→∞ 𝑉(𝑝(𝜌𝑚𝑘), 𝑦𝑚𝑘 ) = +∞ in contradiction to the fact that𝑉 ∈ 𝐶(]𝑝inf , 𝑝sup[×𝑆
1

+). Next, using the homo-
geneity of degree zero of 𝑉𝜌 and 𝑘𝜌, we compute

𝑦𝑚 ⋅ ∇𝜌𝑓(𝜌
𝑚) =𝑦𝑚 ⋅ (𝑝0 𝑉𝜌(𝑝

0, 𝜌𝑚) + 𝑘𝜌(𝜌
𝑚) + �̄�𝜌(𝑝(𝜌

𝑚), 𝜌𝑚))

=𝑝0 𝑉(𝑝0, 𝑦𝑚) + 𝑘(𝑦𝑚) + �̄�(𝑝(𝜌𝑚), 𝑦𝑚)

≤ sup
𝑦∈𝑆1+

(𝑝0 𝑉(𝑝0, 𝑦) + 𝑘(𝑦) + �̄�(𝑝(𝜌𝑚), 𝑦)) .

(C7)

The assumption (f) now implies that lim sup𝑚→∞ 𝑦𝑚 ⋅ ∇𝜌𝑓(𝜌
𝑚) = −∞. Clearly, it follows that |∇𝜌𝑓(𝜌

𝑚)|→ +∞. The
second case is 𝜌 ≠ 0, so that the sequence {𝜌𝑚} is uniformly bounded and bounded away from zero. The equations
𝑉(𝑝(𝜌𝑚), 𝜌𝑚) = 1 imply that 𝑝(𝜌𝑚) remains in a compact set [𝑝1, 𝑝2] ⊂]𝑝inf , 𝑝sup[. Moreover, since |𝜌𝑚|1 ≥ 𝑐0 > 0, we
see that the fractions 𝑦𝑚 = 𝜌𝑚∕|𝜌𝑚|1 must tend to a boundary point of 𝑆1+. Hence

|∇𝜌𝑓(𝜌
𝑚)| ≥ inf

𝑝∈]𝑝1, 𝑝2[
|𝑝0 𝑉𝜌(𝑝

0, 𝑦𝑚) + 𝑘𝜌(𝑦
𝑚) + �̄�𝜌(𝑝, 𝑦

𝑚)| , (C8)

and in view of the assumption (e), it follows that lim inf𝑚→∞ |∇𝜌𝑓(𝜌
𝑚)| = +∞. This concludes the proof that 𝑓 is essen-

tially smooth.
We now discuss the conditions in order that 𝑓 is co-finite. Recall that 𝑝sup = +∞ in the statement of Prop. 2. First

we show that |∇𝜌𝑓(𝜌
𝑚)|→ +∞ for |𝜌𝑚|→ +∞. Since 𝑉(𝑝(𝜌𝑚), 𝑦𝑚) = 1∕|𝜌𝑚|1, we find that lim inf𝑚→∞ 𝑝(𝜌𝑚) = +∞.

Otherwise 𝑉(𝑝1, 𝑦) = lim𝑘→∞ 𝑉(𝑝(𝜌𝑚𝑘), 𝑦𝑚𝑘 ) = 0 for some subsequence, finite 𝑝1 and 𝑦 ∈ 𝑆
1

+. Thus

𝑦𝑚 ⋅ ∇𝜌𝑓(𝜌
𝑚) =𝑝0 𝑉(𝑝0, 𝑦𝑚) + 𝑘(𝑦𝑚) + �̄�(𝑝(𝜌𝑚), 𝑦𝑚)

≥ inf
𝑦∈𝑆1+

(𝑝0 𝑉(𝑝0, 𝑦) + 𝑘(𝑦) + �̄�(𝑝(𝜌𝑚), 𝑦)) .
(C9)

In view of the assumption (g), we infer lim inf𝑚→∞ |∇𝜌𝑓(𝜌
𝑚)| = +∞.

Consider the set ∇𝜌𝑓(ℝ
𝑁
+) ∶= {𝜇 ∈ ℝ𝑁 ∶ 𝜇 = ∇𝜌𝑓(𝜌) for some 𝜌 ∈ ℝ𝑁

+}. This set is closed. Indeed, if {𝜇𝑚} ⊂ ∇𝑓(ℝ𝑁
+)

converges to some 𝜇 ∈ ℝ𝑁 , then any sequence {𝜌𝑚} ⊂ ℝ𝑁
+ such that 𝜇𝑚 = ∇𝜌𝑓(𝜌

𝑚) must remain in a compact of ℝ𝑁
+ .

Otherwise, we can find a subsequence such that either {𝜌𝑚𝑘 } tends to a boundary point ofℝ𝑁
+ or to+∞. Then the previous

arguments show that |𝜇𝑚𝑘 | = |∇𝜌𝑓(𝜌
𝑚𝑘)| tends to infinity, in contradiction to the fact 𝜇𝑚𝑘 → 𝜇. Thus∇𝜌𝑓(ℝ

𝑁
+) is closed.

Hence we infer that ∇𝜌𝑓(ℝ
𝑁
+) does not possess any boundary points. For if 𝜇 would be such a boundary point, then

𝜇 ∈ ∇𝜌𝑓(𝜌) for some 𝜌 ∈ ℝ𝑁
+ , and the inverse mapping theorem implies that there are neighborhoods of 𝜌 in ℝ𝑁

+ and of
𝜇 ∈ ℝ𝑁 such that ∇𝜌𝑓 is a bijection therein.
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