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1 Introduction 

All over the world, the assessment of bridge structures is 
becoming increasingly important due to aging infrastruc-
ture and increasing traffic loads. To ensure the longest 

possible service life of bridges with sufficient safety 
against fatigue failure of all components, it is necessary to 
measure strains under real operating conditions instead of 
relying on load models from a standard [1,2]. Since many 
points of interest are not at all or poorly accessible, meth-
ods are desirable to determine the structural responses or 

quantities of interest over the entire structure, based on a 
few discretely measured points. These methods are re-
ferred to as virtual sensing or response estimation/recon-
struction [1–7]. Virtual sensors generate signals by ana-
lysing the signals of physical sensors in combination with 

a process model [5, 11]. Virtual sensing techniques can be 
categorized as analytical/model-based or empirical/data-
driven [6]. .Model-based methods use a structural dynam-
ics model of the structure, usually a finite element (FE) 
model, to determine the quantities of interest from the 
signals of the physical sensors, while data-driven methods 

require at least a short-term measurement at the location 

of the virtual sensor [3,7] 

To the best of our knowledge, there are only two studies 
for the validation of virtual sensing on railway bridges 

[7,12]. In the first study, the railway bridge KW51 with a 

ballast superstructure and a length of 115 m was investi-
gated, and virtual sensing was implemented by using a 
method to determine the train loads. In the second inves-
tigation, a multi-span railway bridge with open deck and 
continuous girders was considered. The instrumented span 
had a length of 22 m. The modal expansion of FE-modes 

and the data-driven approach of Proper Orthogonal De-
composition (POD) mode expansion were validated. Both 
publications do not include long-term investigations. 
Therefore, we aim to contribute to filling two gaps: first, 
the investigation of short span bridges with ballasted su-
perstructures, and second, the implementation of long-

term investigations using virtual sensing. The first point is 
particularly important for Germany, as about 95% of rail-

way bridges are shorter than 30 m [9]. 

2 Methods 

2.1 Virtual sensing via mode expansion 

It is well-established that degrees of freedom in FE models 

can be reduced through modal decorrelation, which ena-

bles a relationship to be established between retained and 

omitted degrees of freedom [10]. This relationship can be 

useful for virtual sensing, but it only applies to linear and 

time-invariant systems. Structural Modification Theory, 
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however, proves that the system responses of a perturbed 

system with a modified mass, stiffness, or damping matrix 

still lie in the space spanned by the eigenmodes of the 

unperturbed system [11]. 

In a laboratory experiment presented in [5], Tarpø et al. 

demonstrated that virtual sensing can be achieved 

through the eigenmodes of a linear FE model, at least for 

subsystems of a mechanically nonlinear system. As strains 

and displacements in bridge structures during operation 

are typically small, the structural response can be approx-

imated based on the eigenmodes of the linear bridge 

model, even though the overall system behaviour (includ-

ing the bridge, superstructure, and vehicle-structure inter-

action effects) is mechanically nonlinear. 

POD offers the possibility to extract modes from the dis-

crete measurements, also called snapshots of the system, 

without the need to know the underlying dynamics of the 

system. These modes can also be used to approximate 

measurements in a low-rank subspace to enable virtual 

sensing. A detailed description of POD and the model re-

duction based on it can be found in [12]. 

The calculation of the quantities of interest at the points of 

the virtual sensors can be summarised as follows: 

𝒀 = {
𝒚m

𝒚u
} ≈ 𝜽𝒒 = [

𝜽m

𝜽u
] 𝒒 (1) 

𝒀̂ = {
𝒚̂m

𝒚̂u
} ≈ 𝜽𝒒̂ = 𝜽𝜽m

+ 𝒚m (2) 

𝒀 ∈ ℝ𝑁×𝑡 is the response matrix containing the quantity of 

interest for all 𝑁 degrees of freedom of the FE model or at 

all 𝑁 points of the POD-modes gathered from a short-time 

measurement, where 𝑡 is the number of samples (time 

steps). The response matrix 𝒀 is divided into the measured 

degrees of freedom 𝒚m ∈ ℝ𝑎×𝑡 and the unmeasured degrees 

of freedom 𝒚u ∈ ℝ(𝑁−𝑎)×𝑡, where 𝑎 is the number of meas-

urements (sensor channels). 𝜽 ∈ ℝ𝑁×𝑀 is the mode matrix 

where 𝑀 is the number of modes considered. The mode 

matrix is also divided into the measured and unmeasured 

degrees of freedom 𝜽m ∈ ℝ𝑎×𝑀 and 𝜽u ∈ ℝ(𝑁−𝑎)×𝑀, respec-

tively. 𝒒 ∈ ℝ𝑀×𝑡 contains the weights of the modes used to 

approximate the structural response. 𝒀̂ is the approxima-

tion based on the least squares estimation of the weights 

𝒒̂. 𝜽m
+  is the Moore-Penrose pseudoinverse of 𝜽m. To obtain 

meaningful results and to avoid overfitting, an overdeter-

mined system of equations should be constructed, i.e., the 

number of physical sensors should be greater than the 

number of modes considered. 

2.2 Data acquisition 

We collected data from a single-span steel trough bridge 

(Figure 1) located on a frequently used long-distance route 

in Germany. The bridge has a free span of 16.4 m and a 

total length of 18.4 m. During the recording phase, we in-

stalled 9 uniaxial accelerometers, 8 uniaxial strain gauges, 

and 4 type K thermocouples along the two main girders of 

the bridge. Additionally, two pairs of rosette strain gauges 

were installed on the tracks at a distance of 14.40 m to 

record the axles of trains (Figure 2).  

For this contribution, we analysed 19,075 passages of the 

bridge from three different time intervals: 28 October 

2021 to 17 January 2022, 9 February to 28 March 2022, 

and 26 July to 7 September 2022. In addition to the data 

recorded at the bridge, data from a weather station 

located 1.3 kilometers away was also utilized (Figure 3). 

 

Figure 1 Examined single-span steel trough bridge. 

 

Figure 2 Sensor setup with labels and x-coordinate of the sensors: a) side view b) top view c) cross-section
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Figure 3 Comparison of temperature measurements between the bridge and the weather station located 1.3 kilometres away during the three 
investigated time intervals. 

2.3 Considered modes  

We created an FE model of the bridge using the commer-

cial software SOFiSTiK with 585,084 degrees of freedom. 

The main load-bearing structure was modelled with sur-

face elements, while the attached walkway and handrail 

were modelled with beam elements. The ballast was 

treated as an additional mass, and its stiffness contribu-

tion was neglected. However, we approximated the partial 

clamping effects from the ballast superstructure using 

springs at the ends of the top flanges of the main girders. 

For this article, we only considered the first two bending 

and torsional eigenmodes, as shown in Figure 4. 

 

Figure 4 Considered modes of the FE model (view from the opposite 
side compared to the Fig. 1). 

In contrast to the eigenmodes of the FE model, the POD-

modes are dependent on the excitation. For this investiga-

tion, we randomly selected one passage and determined 

the POD-modes for the strain and acceleration signals. 

These modes were then used to evaluate all other pas-

sages in this study. A more reasonable selection of the 

POD-modes should be made in future studies. 

2.4 Scoring of the estimates  

To compare the numerous passages, an error metric is re-

quired to evaluate the results of virtual sensing. We chose 

the coefficient of determination as the error metric be-

cause it depends on amplitude differences unlike the 

widely used Time Response Assurance Criterion (TRAC) 

[4]. The coefficient of determination 𝑅2, as given in Equa-

tion (3), compares the physical sensor measurement with 

the result of the virtual sensor. It quantifies the difference 

between the two measurements and determines the accu-

racy and reliability of the virtual sensor in predicting the 

response of the structure.  

𝑅2 = 1 −
E[(𝑦𝑖−𝑦̂𝑖)2]

Var(𝑦𝑖)
  (3) 

Where 𝑦𝑖 ∈ ℝ𝑡 is the signal of the 𝑖-th sensor and 𝑦̂𝑖 is the 

estimation.  

To give an impression of the relationship between the co-

efficient of determination and the goodness of the 

estimate, the signals and their estimates and the associ-

ated residual (𝑦𝑖-𝑦̂𝑖) are given below for 4 different coeffi-

cients of determination. 

 

Figure 5 Examples to illustrate the goodness of the virtual sensors 
quantified using the coefficient of determination. Note the different 
scaling of the y-axes. 

3 Results and discussion 

This section presents evaluations of the measurements 

described in Section 2.  

3.1 Amplitude dependent frequencies 

The behaviour of railway ballast is highly non-linear and is 

dependent on both the load and environmental conditions 

such as temperature and humidity [13]. In a previous 

study by Reiterer and Firus [14], the shift of the resonance 

frequency of a steel bridge with ballast superstructure was 

determined. Another study by  Lorenzen et al. [15] ana-

lysed free decay phases of the same bridge and plotted 

the frequency of the first bending mode against the meas-

ured maximum displacements during the free decay. This 

analysis showed a clear functional relationship between 

the maximum amplitude of the free decay and the fre-

quency of the first bending mode [15]. Since displacement 

measurements were not available for the investigations in 

this paper, we used the maximum strain in the centre of 

the span, which is strongly correlated with the displace-

ment for the free vibration. The decay phase signals were 

used to perform the Stochastic Subspace Identification 

(SSI) automatically using the code from [16]. The time 

points when the trains left the bridge were determined by 

analysing the signals from the rosette strain gauges on the 

tracks. The analysis results show that the amplitude-de-

pendent frequency shift is affine to the frequency shift of 
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the bridge observed in [15] (Figure 6). 

 

Figure 6 First bending frequency determined by SSI from the decay 
phases as a function of the maximum absolute values of the strain in 
the centre of the bridge span.  

3.2 Virtual acceleration sensing 

For the virtual sensing methods described in Section 2.1, 

it is possible to vary the number of physical sensors 𝑘 and 

the number of considered modes 𝑀. For 𝑘 physical sen-

sors, there are (
𝑎
𝑘

) combinations. All sensors not used as 

physical sensors are defined as virtual sensors. For each 

of the 19,075 passages, the coefficient of determination 

for all (
𝑎
𝑘

) combinations were calculated. For each combi-

nation, the mean value of the coefficient of determination 

was determined over all passages.  

Figure 7 and Figure 8 show the mean values of the coeffi-

cients of determination for the best and worst of the (
𝑎
𝑘

) 

combinations, considering the FE-modes and the POD-

modes, respectively. Since the values of the coefficient of 

determination for bad combinations can approach infinity, 

mean values smaller than 0 were not shown for good vis-

ualization purposes. Mean values below 0 are indicated in 

white with a grey edge. For the case that 𝑘 = 𝑎 − 1 there is  

 

only one combination so that the minimum value is equal 

to the maximum value. 

The analysis of acceleration signals indicates that the use 

of FE modes and POD-modes yields similar results. Even 

with a few physical sensors and modes, good results can 

be achieved. However, the choice of combination has a 

significant impact on the outcome, as demonstrated by the 

large differences between the minimum and maximum 

values. Increasing the number of physical sensors reduces 

the dependence on the chosen combination. 

To analyse the effects of environmental factors, the data 

from the weather station were compared to the coeffi-

cients of determination of virtual sensors obtained by us-

ing 𝑘 =  𝑎 − 1 physical sensors and considering 𝑀 =  4 

modes. Outliers were identified for each sensor individu-

ally by removing coefficients of determination that were 

more than 1.5 interquartile ranges above the upper quar-

tile or below the lower quartile. The Pearson correlation 

coefficient was then calculated with a significance level of 

α =  0.001 for the remaining dataset. Table 1 summarises 

the results, which indicate a weak or no correlation be-

tween environmental factors and the coefficient of deter-

mination for all sensors. The signs of the correlation are 

the same for one environmental variable for all sensors. 

The use of POD-modes results in a slightly higher correla-

tion compared to the use of FE-modes. 

Table 1 Pearson correlation coefficients between the environmental 
variables and the coefficient of determination using 𝑘 = 𝑎 − 1 physical 

sensors and 𝑀 = 4 considered modes and a significance level of 

𝛼 =  0.001. n.s.: not significant 

 

 

 
Figure 7 Summary of the minimum and maximum values of the coefficients of determination of the acceleration sensors A1 to A9 as a 
function of the FE-modes used and the number of physical sensors (p.s.). 
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To investigate the influence of changes in operation due to 

different trains and train speeds, the trains were classified 

using measurements from the rosette strain gauges on the 

rails and the average speed per passage was determined. 

The coefficient of determination for 𝑘 = 𝑎 − 1 physical sen-

sors and 𝑀 = 4 was then plotted against the speed for each 

sensor, in the scope of this paper they are only presented 

for one train type (Figure 9). There is a clear functional 

relationship between the coefficient of determination and 

the speed. This is because in the resonance case the struc-

tural response is dominated by one degree of freedom. In 

this case it is the first bending mode (Figure 4, mode 1). 

 

3.3 Virtual strain sensing 

This subsection applies the same analyses as the previous 

section to the strain measurements. However, unlike the 

accelerations, the choice of FE-modes or POD-modes has 

an impact (Figure 10-12). The use of POD-modes leads to 

better results than the use of FE-modes. However, with 

the notable exception of the S7 sensor, which cannot be 

reconstructed at all with the POD-modes used. 

 

Figure 8 Summary of the minimum and maximum values of the coefficients of determination of the acceleration sensors A1 to A9 as a 

function of the POD-modes used and the number of physical sensors (p.s.). 

 

Figure 9 Interquartile range of the coefficients of determination against speed of the train for each acceleration sensor for one train type, 

separated into FE-modes and POD-modes. Note the different scaling of the y-axes. 
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The investigation of the environmental influences shows 
a moderate to strong correlation to temperature and a 
small to moderate correlation to humidity for the strains 

for both POD-modes and FE-modes. There is little or no 
correlation with the other variables. Table 2 summarises 
the results. To get an impression of the changes as a 
function of temperature, Figure 13 shows the coefficient 
of determination for the individual sensor as a function of 

temperature separately for FE-modes and POD-modes. 
For the investigated temperature range, the estimates of 
the virtual sensors remain of similar quality. 

The investigation of the influence of train type and speed 

is interesting. Here, the FE-modes show an analogous be-

haviour to the accelerations. With the POD-modes, how-

ever, the coefficient of determination decreases in the res-

onance range (approximately between 40 m/s and 

Figure 10 Summary of the minimum and maximum values of the coefficients of determination of the strain sensors S1 to S8 as a function of 

the FE-modes used and the number of physical sensors (p.s.). 

 

Figure 11 Summary of the minimum and maximum values of the coefficients of determination of the strain sensors S1 to S8 as a function of 

the POD-modes used and the number of physical sensors (p.s.). 
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45 m/s), which is exactly the opposite of the FE-modes 

(Figure 12). 

Table 2 Pearson correlation coefficients between the environmental 
variables and the coefficient of determination using 𝑘 = 𝑎 − 1 physical 

sensors and 𝑀 = 4 considered modes and a significance level of 

𝛼 =  0.001. n.s.: not significant 

 

4 Conclusion 

In the field of virtual sensing on railway bridges, no studies 

have been published on short span bridges with ballast 

superstructure, nor have any long-term studies been con-

ducted. To address this gap, we analysed over 19,000 pas-

sages on a steel trough bridge with a span of 16.4 m. In 

addition to measurements on the bridge, we used data 

from a weather station located 1.3 kilometres away to as-

sess the influence of environmental conditions. Specifi-

cally, we investigated acceleration and strain measure-

ments. Overall, our analysis provided valuable insights 

into the behaviour of virtual sensors under varying envi-

ronmental and operating conditions. The following key 

findings can be highlighted:          

Accelerations: 

1. Both FE-modes and POD-modes yield similar re-

sults, but the choice of sensor combination has a 

significant impact on the result. 

2. Increasing the number of physical sensors 

reduces the dependence on the chosen sensor 

combination. 

3. There is a clear functional relationship between 

the coefficient of determination and the train 

speed. The maximum of the coefficient of deter-

mination is reached at the resonance speed. 

4. Environmental factors show weak or no correla-

tion to the coefficient of determination for all sen-

sors. The use of POD-modes results in a slightly 

higher correlation compared to FE-modes. 

Strains: 

1. The use of POD-modes leads to better results than 

FE-modes, except for sensor S7, which cannot be 

reconstructed with the used POD-modes. 

2. Environmental influences show moderate to 

strong correlation to temperature and small to 

moderate correlation to humidity, but little to no 

correlation with other weather variables. 

3. The estimates of virtual sensors remain of similar 

quality for the investigated temperature range. 

4. The behaviour of virtual sensors with respect to 

train type and speed differs between FE-modes 

and POD-modes, with the former showing analo-

gous behaviour to accelerations, while the latter 

showing a decrease of the coefficient of determi-

nation around the resonance speed. 

Overall, the study showed that the greatest influence 

on the coefficient of determination is given by the train 

type and the speed, the effect is much greater than 

that of the environmental influences. These findings 

provide important insights into the performance of vir-

tual sensors in railway systems and can inform the 

development of more robust and accurate virtual sen-

sor systems in the future. 

Figure 12 Interquartile range of the coefficients of determination against speed of the train for each strain sensor for one train type, separated 

into FE-modes and POD-modes. Note the different scaling of the y-axes. 
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