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Abstract
In earlier work of the author, rigid irregular connections
with differential Galois group 𝐺2 and whose slopes have
numerator 1 were classified and new rigid connections
were constructed. The same construction can be carried
out for 𝓁-adic local systems in the setting of positive
characteristic. In this article, we provide the results that
are needed to obtain the classification of wildly ramified
rigid 𝐺2-local systems whose slopes have numerator 1.
The overall strategy of the classification is very similar
but themethods needed to obtain some invariants differ.
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1 INTRODUCTION

Rigid local systems are local systems which are globally determined by their local monodromy.
They have been studied in detail by Katz in [12] who proved that any such local system arises
from a system of rank 1 by iterating tensor products with rank one local systems and middle con-
volution. To include equations or connections with irregular singularity, Arinkin has extended
the result of Katz by additionally involving Fourier–Laplace transform of 𝐷-modules in [1]. This
builds on work of Bloch and Esnault who prove in [2] that Fourier–Laplace transform preserves
rigidity. The statement is that any rigid irreducible connection (with possibly irregular singular-
ities) can be obtained from a connection of rank one by iterating Fourier–Laplace transforms.
In the article [9], this method of construction was used to give a classification of rigid irregular
irreducible connections with differential Galois group 𝐺2 and whose slopes have numerator 1.
When working with 𝓁-adic sheaves on some open subset 𝑈 ⊂ ℙ1

𝑘
over the algebraic closure 𝑘

of a finite field 𝔽𝑞 of characteristic 𝑝, one can prove similar results. There are a lot of similarities
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and analogies in both settings, but unfortunately not everything translates directly from one to
the other. The goal of this article is to introduce the necessary tools and methods to transfer the
classification of [9] to the arithmetic setting.
Let us explain the strategy of the classification. Rigid local systems can be identified through

a cohomological invariant. An irreducible 𝓁-adic local system ℒ on 𝑈 ⊂ ℙ1 is rigid if and
only if

𝜒(ℙ1, 𝑗∗ℰ𝑛𝑑(ℒ)) = 2,

where 𝑗∗ denotes the non-derived direct image along the open embedding 𝑗 ∶ 𝑈 ↪ ℙ1. For this
reason, we will call

rig (ℒ) ∶= 𝜒(ℙ1, 𝑗∗ℰ𝑛𝑑(ℒ)

the index of rigidity. The fact that rig (ℒ) = 2 implies that rigidity of ℒ is essentially a con-
sequence of Poincaré duality for 𝓁-adic sheaves. The other direction is more complicated and
was recently proven by Fu in [7] using rigid analytic geometry. Let 𝑆 = ℙ1 − 𝑈. Using the
Euler–Poincaré formula, one can compute the index of rigidity through local invariants as
follows:

rig (ℒ) = (2 − |𝑆|)rk(ℒ)2 +
∑
𝑠∈𝑆

Sw𝑠(ℒ) + dim(ℒ)𝐼𝑠 .

One of the main ingredients of the classification in [9] is a classic result of Levelt–Turrittin for
formal connections which allows to decompose any such connection into a direct sum of objects
of the form

[𝑟]∗(ℰ
𝜑 ⊗ 𝑅),

where [𝑟] denotes an 𝑟-fold covering of the formal punctured disc, ℰ𝜑 = (ℂ((𝑡)), 𝑑 + 𝑑𝜑) is a
formal connection with an exponential solution and 𝑅 is some regular singular formal connec-
tion. For objects of this form, one knows how to compute the invariants needed to compute
the index of rigidity. We will see that the same is true for representations of the inertia group
𝐼 = Gal(𝑘((𝑡))𝑠𝑒𝑝|𝑘((𝑡))) corresponding to sheaves of the form

[𝑟]∗(ℒ𝜓(𝜑) ⊗𝒦),

whereℒ𝜓 is the restriction of an Artin–Schreier sheaf (for some fixed non-trivial additive char-
acter 𝜓 ∶ 𝔽𝑝 → ℚ𝓁

∗
),ℒ𝜓(𝜑) denotes pull-back ofℒ𝜓 by the morphism given by the polynomial

𝜑 ∈ 𝑡−1𝑘[𝑡−1] and 𝒦 some tamely ramified sheaf on the punctured formal disc. In general, an
irreducible representation of 𝐼 might not be of the above form, that is, an analogue of the Levelt–
Turrittin decomposition does not exist in positive characteristic. There is, however, a weaker form
proven by Fu in [5]. In the same article, he raised the following question. Given an irreducible
continuous ℚ𝓁-representation 𝑉 of 𝐼, does there exist a tame character 𝜒 ∶ 𝐼 → ℚ𝓁

∗
such that

𝜒 ⊗ 𝑉 has finite image?
We answer this question positively, strengthening his result [5, Proposition 0.5] to the following

statement.
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Proposition 1.1. Let 𝜌 ∶ 𝐼 → GL(𝑉) be an indecomposable continuous ℚ𝓁-representation and
denote by𝑃 thewild ramification subgroup of 𝐼. Suppose that𝜌(𝑃𝑝[𝑃, 𝑃]) = 1and that the Swan con-
ductor Sw(𝑉) < 𝑝. In this case,𝑉 is isomorphic to the representation corresponding to [𝑟]∗(ℒ𝜓(𝜑) ⊗

𝒦) for an integer 𝑟 prime to 𝑝, 𝜑 ∈ 𝑡−1𝑘[𝑡−1] and𝒦 some tamely ramified sheaf.

In our setting, this result suffices to conclude that the local monodromy of the rigid local sys-
tems we will consider decomposes into these simpler objects. We will compute tensor products
and determinants of such representations and attach to them invariants which are similar to for-
mal monodromy and exponential torus of a formal connection (these are invariants coming from
differential Galois theory). This will, in turn, allow us to conclude the following classification the-
orem which is a generalisation of the classification of tame rigid 𝐺2-local systems by Dettweiler
and Reiter in [4].

Theorem 1.2. Let 𝑘 be the algebraic closure of a finite field of characteristic 𝑝 > 7. Let 𝜆1, 𝜆2 ∈ 𝑘

such that 𝜆1 ≠ ±𝜆2 and let

𝜒, 𝑥, 𝑦, 𝑧, 𝜀, 𝜄 ∶ lim
←44

(𝑁,𝑝)=1

𝜇𝑁(𝑘) → ℚ𝓁

be non-trivial characters such that𝜒 is not quadratic, 𝑧4 is non-trivial, 𝑥, 𝑦, 𝑥𝑦 and their inverses are
pairwise different and such that 𝜀 is of order 3 and 𝜄 is of order 4. Denote by 𝜒 the inverse of 𝜒, by 1
the trivial representation of rank one and by −1 the unique character of order 2. Every pair of local
monodromies in the following list is exhibited by some irreducible rigid 𝓁-adic local system of rank 7
on 𝔾𝑚 with monodromy group 𝐺2(ℚ𝓁).

0 ∞

𝐔(3) ⊕ 𝐔(3) ⊕ 1 [2]∗(ℒ𝜓(𝜆1𝑢
−1) ⊗ (𝜒 ⊕ 𝜒))

⊕ [2]∗(ℒ𝜓(2𝜆1𝑢
−1)) ⊕ (−1)

−𝐔(2) ⊕ −𝐔(2) ⊕ 13 [2]∗(ℒ𝜓(𝜆1𝑢
−1) ⊗ (𝜒 ⊕ 𝜒))

⊕ [2]∗(ℒ𝜓(2𝜆1𝑢
−1)) ⊕ (−1)

−𝐔(2) ⊕ −𝐔(2) ⊕ 13 [2]∗(ℒ𝜓(𝜆1𝑢
−1) ⊗ (−𝐔(2)))

⊕ [2]∗(ℒ𝜓(2𝜆1𝑢
−1)) ⊕ (−1)

𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 13 [2]∗(ℒ𝜓(𝜆1𝑢
−1) ⊗ (𝜒 ⊕ 𝜒))

⊕ [2]∗(ℒ𝜓(2𝜆1𝑢
−1)) ⊕ (−1)

𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 13 [2]∗(ℒ𝜓(𝜆1𝑢
−1) ⊗ (−𝐔(2)))

⊕ [2]∗(ℒ𝜓(2𝜆1𝑢
−1)) ⊕ (−1)

𝐔(3) ⊕ 𝐔(2) ⊕ 𝐔(2) [2]∗(ℒ𝜓(𝜆1𝑢
−1)) ⊕ [2]∗(ℒ𝜓(𝜆2𝑢

−1))

⊕ [2]∗(ℒ𝜓((𝜆1 + 𝜆2)𝑢
−1) ⊕ (−1)

𝜄 ⊕ 𝜄 ⊕ −𝜄 ⊕ −𝜄 ⊕ −12 ⊕ 1 [3]∗(ℒ𝜓(𝜆1𝑢
−1))

⊕ [3]∗(ℒ𝜓(−𝜆1𝑢
−1)) ⊕ 1

𝐔(7) [6]∗(ℒ𝜓(𝜆1𝑢
−1)) ⊕ −1

𝜀𝐔(3) ⊕ 𝜀−1𝐔(3) ⊕ 1 [6]∗(ℒ𝜓(𝜆1𝑢
−1)) ⊕ −1

𝑧𝐔(2) ⊕ 𝑧−1𝐔(2) ⊕ 𝑧2 ⊕ 𝑧−2 ⊕ 1 [6]∗(ℒ𝜓(𝜆1𝑢
−1)) ⊕ −1

𝑥𝐔(2) ⊕ 𝑥−1𝐔(2) ⊕ 𝐔(3) [6]∗(ℒ𝜓(𝜆1𝑢
−1)) ⊕ −1

𝑥 ⊕ 𝑦 ⊕ 𝑥𝑦 ⊕ (𝑥𝑦)−1 ⊕ 𝑦−1 ⊕ 𝑥−1 ⊕ 1 [6]∗(ℒ𝜓(𝜆1𝑢
−1)) ⊕ −1
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Conversely, the above list exhausts all possible local monodromies of wildly ramified irre-
ducible rigid 𝓁-adic local systems on open subsets of ℙ1 with monodromy group 𝐺2 of slopes with
numerator 1.

2 RIGID LOCAL SYSTEMS AND THEKATZ–ARINKIN ALGORITHM

For the rest of this article, let 𝑘 be the algebraic closure of a finite field of characteristic 𝑝 and fix
a prime 𝓁 ≠ 𝑝. Let 𝑗 ∶ 𝑈 ↪ ℙ1

𝑘
be a non-empty open subset with complement 𝑆. An 𝓁-adic local

systemℒ can be given as a continuous representation

𝜌 ∶ 𝜋ét1 (𝑈, 𝑢) → GL𝑛(ℚ𝓁)

of the étale fundamental group with ℚ𝓁-coefficients. For any 𝑥 ∈ 𝑆, we denote by 𝐼𝑥 the inertia
group at 𝑥 and we say that 𝜌 is rigid if and only if the collection {[𝜌|𝐼𝑥 ]}𝑥∈𝑆 of isomorphism classes
of continuous 𝐼𝑥-representations determines 𝜌 up to isomorphism.
Recall that the index of rigidity of an 𝓁-adic local system is given by

rig (ℒ) = 𝜒(ℙ1, 𝑗∗ℰ𝑛𝑑(ℒ)).

We call the local systemℒ cohomologically rigid if rig (ℒ) = 2.

Proposition 2.1 ([7], Thm 0.9 & [12], Thm 5.0.2). An irreducible local systemℒ on 𝑗 ∶ 𝑈 ↪ ℙ1 is
rigid if and only if it is cohomologically rigid.

We would like to link the index of rigidity to invariants of the local monodromy in order to be
able to compute it from knowledge of local information only. In order to do that, we recall the
local setting. Let 𝐾 = 𝑘((𝑡)) and 𝐼 its absolute Galois group, called the inertia group. We denote by
𝐾tame the maximal tamely ramified extension of 𝐾 and by 𝑃 its absolute Galois group, which we
will call the wild ramification subgroup. We have an exact sequence

1 → 𝑃 → 𝐼 → 𝐼tame → 1,

where the tame inertia 𝐼tame ≅ lim
←44(𝑁,𝑝)=1

𝜇𝑁(𝑘) is an inverse limit over𝑁th roots of unity in 𝑘 for
𝑁 prime to 𝑝.

Lemma 2.2. The sequence

1 → 𝑃 → 𝐼 → 𝐼tame → 1

splits. In particular, there is a subgroup𝐻 ⊂ 𝐼 isomorphic to 𝐼tame.

Proof. The group 𝐼tame is the maximal pro-𝑝′ quotient of 𝐼 and 𝑃 is the pro-𝑝-Sylow subgroup of 𝐼.
Therefore, the assertion follows from the profinite version of the Schur–Zassenhaus theorem [16,
Prop. 2.3.3]. □
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Thewildness of the ramification can bemeasured by twokinds of invariants. They are the slopes
(also called breaks) and the Swan conductor. Recall that 𝐼 has an upper numbering filtration,
a decreasing filtration by closed subgroups 𝐼(𝑟) indexed by real numbers 𝑟 ⩾ 0. For its defining
properties, we refer to [10, 1.0].

Theorem 2.3 (Slope Decomposition [10], 1.1). Let 𝜌 ∶ 𝐼 → GL(𝑉) be a continuous representation
of 𝐼 with coefficients in ℚ𝓁 . Then there is a unique decomposition

𝑉 =
⨁
𝑦∈ℚ⩾0

𝑉(𝑦)

such that each 𝑉(𝑦) is 𝑃-stable, 𝑉(0) = 𝑉𝑃, (𝑉(𝑥))𝐼(𝑥) = 0 for 𝑥 > 0 and (𝑉(𝑥))𝐼(𝑦) = 𝑉(𝑥) for all
𝑦 > 𝑥. Note that only finitely many 𝑉(𝑦) do not vanish. The corresponding 𝑦 are called the 𝑠𝑙𝑜𝑝𝑒𝑠 of
𝑉. The number Sw(𝑉) =

∑
𝑦∈ℚ⩾0

𝑦 dim𝑉(𝑦) is called the Swan conductor of𝑉 and is a non-negative
integer. The representation𝑉 is tame if and only if all of its slopes vanish or equivalently if Sw(𝑉) = 0.

We can now compute the Euler characteristic of an 𝓁-adic local system by means of local
information using the Euler–Poincaré formula.

Proposition 2.4 ([6], Corollary 10.2.7). Letℒ be an 𝓁-adic local system on an open subset 𝑗 ∶ 𝑈 ↪

ℙ1
𝑘
corresponding to the representation 𝜌 of 𝜋ét

1
(𝑈, 𝑢), let 𝑆 = ℙ1

𝑘
− 𝑈 and 𝑠 = #𝑆. We have

𝜒(ℙ1, 𝑗∗ℒ) = (2 − 𝑠)rk(ℒ) −
∑
𝑥∈𝑆

(
Sw(𝜌𝑥) − dim(𝜌𝑥)

𝐼𝑥
)
.

For the rest of the article, we fix a non-trivial additive character 𝜓 ∶ 𝔽𝑝 → ℚ𝓁
∗
and denote by

ℒ𝜓 the Artin–Schreier sheaf on 𝔸1 associated to the character 𝜓.
Let us briefly recall the definition of middle convolution with Kummer sheaves, cf. [12, Chap-

ter 2]. Denote by Perv(𝔸1) the category of 𝓁-adic perverse sheaves on the affine line and let 𝐾
be a perverse sheaf on 𝔸1. Denote by ℒ𝜒 the Kummer sheaf on 𝑗 ∶ 𝔾𝑚 ↪ 𝔸1 corresponding to
the character 𝜒 ∶ lim

←44(𝑁,𝑝)=1
𝜇𝑁(𝑘) → ℚ𝓁

∗
and by 𝑚 the addition map of 𝔸1. We have the two

convolutions

𝐾 ∗! 𝑗∗ℒ𝜒[1] = 𝑚!(𝐾 ⊠ 𝑗∗ℒ𝜒[1])

and

𝐾 ∗∗ 𝑗∗ℒ𝜒[1] = 𝑚∗(𝐾 ⊠ 𝑗∗ℒ𝜒[1])

in the derived category 𝐷𝑏
𝑐 (𝔸

1, ℚ𝓁). There is a natural morphism

𝐾 ∗! 𝑗∗ℒ𝜒[1] → 𝐾 ∗∗ 𝑗∗ℒ𝜒[1],

and we denote its image by 𝐾 ∗mid 𝑗∗ℒ𝜒[1]. We obtain the middle convolution functor

𝑀𝐶𝜒 ∶ Perv(𝔸1) → Perv(𝔸1)

𝐾 ↦ 𝐾 ∗mid 𝑗∗ℒ𝜒[1].
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If 𝒢 is an 𝓁-adic local system on 𝑗 ∶ 𝑈 ↪ 𝔸1 and 𝐾 = 𝑗∗𝒢[1], the convolution 𝐾 ∗mid 𝑗∗ℒ𝜒[1]

will again be of the form 𝑗∗𝒢
′[1] for some 𝓁-adic local system 𝒢′ on 𝑈. For ease of notation,

we will sometimes write MC𝜒(𝒢) = 𝒢′ in this situation. As mentioned before, the main theorem
about the structure of tamely ramified local systems is the following.

Theorem2.5 ([12], Thm 5.2.1). Let𝒢 be a tamely ramified cohomologically rigid𝓁-adic local system
on some non-empty proper open subset of 𝔸1 of rank at least 2. Then there exists a tame 𝓁-adic local
systemℒ of rank one and a character 𝜒 as above such that

rk(ℋ−1(MC𝜒(𝑗∗(𝑗∗𝒢 ⊗ 𝑗∗ℒ)[1]))) < rk(𝒢),

where 𝑗 ∶ 𝑈 ↪ 𝔸1 is the embedding of an open subset of 𝔸1 where both 𝒢 andℒ are lisse andℋ𝑖

denotes the cohomology in degree 𝑖.

We wish to extend this theorem to include 𝓁-adic local systems which are wildly ramified. To
that end, we recall the definition of the Fourier transform for 𝓁-adic sheaves. Let 𝐴 = 𝔸1𝑡 be the
affine line with coordinate 𝑡 and dual 𝐴′ = 𝔸1

𝑡′
and denote by

𝑚 ∶ 𝐴 ×𝑘 𝐴
′ → 𝔾𝑎

the canonical pairing. Let pr ∶ 𝐴 ×𝑘 𝐴
′ → 𝐴 and pr′ ∶ 𝐴 ×𝑘 𝐴

′ → 𝐴′ be the projections. The
Fourier transform with respect to the non-trivial character 𝜓 ∶ 𝑘 → ℚ𝓁 is the functor

ℱ𝜓 ∶ Perv(𝐴,ℚ𝓁) → Perv(𝐴′, ℚ𝓁)

given by

ℱ𝜓(𝐾) = 𝐑pr′! (pr
∗𝐾 ⊗ℒ𝜓(𝑚))[1]

for𝐾 an object in Perv(𝐴). One of the most important features of the Fourier transform in dimen-
sion 1 is the principle of stationary phase. It will allow us to control the behaviour of local
monodromy after Fourier transform. To state it, we introduce the following notation. Let 𝜂𝑠 be
the formal punctured disc around 𝑠 and 𝜂∞′ be the formal punctured disc around∞′ (i.e. in the
coordinate after Fourier transform). We denote by ℱ(0,∞′)

𝜓
Laumon’s local Fourier transform as

defined in [13, Def 2.4.2.3].

Proposition 2.6 ([11], Corollary 7.4.2). Let 𝑘 be the algebraic closure of a finite field, 𝑗 ∶ 𝑈 ↪ 𝔸1

be an open subset, 𝑆 its complement, ℒ a lisse irreducible sheaf on 𝑈 and 𝐾 = 𝑗∗ℒ[1] its middle
extension. Furthermore, let𝐾′ = ℱ(𝐾) andℒ′ =ℋ−1(𝐾′|𝑈′)where𝑈′ is the maximal open subset
of 𝔸1 where 𝐾′ has lisse cohomology sheaves. We then have

ℒ′|𝜂∞′
=
⨁
𝑠∈𝑆

(
ℱ(0,∞′)
𝜓

(ℒ|𝜂𝑠∕ℒ|𝐼𝑠𝜂𝑠 ) ⊗ℒ𝜓(𝑠𝑥
′)
)
⊕ℱ(∞,∞′)

𝜓
(ℒ𝜂∞

).

The stationary phase formula also allows for the computation of the generic rank of the Fourier
transform.
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Corollary 2.7. Suppose that 𝑘 is algebraically closed. Let 𝑗 ∶ 𝑈 ↪ 𝔸1 be an open subset,ℒ a lisse
irreducible sheaf on 𝑈 and 𝐾 = 𝑗∗ℒ[1] its middle extension. With notations as before the rank of
ℒ′ is

rk(ℒ′) =
∑
𝑠∈𝑆

(
Sw(ℒ|𝜂𝑠 ) + rk(ℒ) − rk(ℒ|𝐼𝑠

𝜂𝑠
)
)
+ Sw(ℒ|>1𝜂∞) − rk(ℒ|>1

𝜂𝑠
).

Ananalogue of Theorem2.5 holds under somehypotheses for local systemswith not necessarily
tame ramification, if we make use of the Fourier transform. The following theorem is analogous
to [1, Thm A], and its proof is essentially the same.

Theorem 2.8. Letℒ be an irreducible rigid 𝓁-adic local system on 𝑗 ∶ 𝑈 ↪ ℙ1 of rk(ℒ) > 1, ram-
ified at 𝑆 = ℙ1 ⧵ 𝑈. We denote by 𝑘1

𝑑1
, … ,

𝑘𝑟
𝑑𝑟
the collection of all rational numbers occurring as a

slope ofℒ at some point 𝑠 ∈ 𝑆, ordered arbitrarily. Assume that we have rk(ℒ) < char(𝑘) = 𝑝 and
max{𝑘1, … , 𝑘𝑟} < 𝑝. Then one of the following holds.

(i) There exists a tame character 𝜆 ∶ 𝜋ét
1
(𝔾𝑚, 1) → ℚ𝓁

∗
and an 𝓁-adic local system 𝜒 of rank one

on 𝑈 − {∞} such that if we let 𝐾 = MC𝜆((𝑗∗ℋ𝑜𝑚(𝜒,ℒ)[1]), 𝑉 the open subset of ℙ1 where
ℋ−1(𝐾) is lisse and MC𝜆(ℋ𝑜𝑚(𝜒,ℒ)) ∶=ℋ−1(𝐾)|𝑉 , we have

rk(MC𝜆(ℋ𝑜𝑚(𝜒,ℒ))) < rk(ℒ).

(ii) There is 𝜙 ∈ Aut(ℙ1) and an 𝓁-adic local system 𝜒 of rank one on 𝑈 such that if we let 𝑘 ∶
𝜙−1(𝑈) ↪ ℙ1 the embedding,𝐾 = ℱ(𝑘∗𝜙

∗(ℋ𝑜𝑚(𝜒,ℒ)[1])),𝑉 the open subset of ℙ1 on which
ℋ−1(𝐾) is lisse and let

ℱ(𝜙∗ℋ𝑜𝑚(𝜒,ℒ)) ∶=ℋ−1(𝐾)|𝑉,
we have

rk(ℱ(𝜙∗ℋ𝑜𝑚(𝜒,ℒ))) < rk(ℒ).

The additional input that one needs to prove Theorem 2.8 in this setting is the following lemma,
which is stated in [1], Lemma 6.1, without proof and without the additional assumption 𝑛 < 𝑝.

Lemma 2.9. Let 𝑉 and𝑊 be ℚ𝓁-representations of 𝐼. Let 𝑥 =
𝑛

𝑑
∈ ℚ⩾0 with (𝑝, 𝑑) = 1 and 𝑛 < 𝑝.

We have

dim((𝑉 ⊗𝑊)(𝑥)) ⩾ dim𝑉(𝑥) dim𝑊(𝑥)(1 − 1∕𝑑).

Proof. First note that in any case,

dim((𝑉 ⊗𝑊)(𝑥)) ⩾ dim((𝑉(𝑥) ⊗𝑊(𝑥)))(𝑥)).

Hence, we can assume that 𝑉 = 𝑉(𝑥) and𝑊 = 𝑊(𝑥) and we can furthermore assume that they
are irreducible. Write 𝑥 = 𝑛∕𝑑 with (𝑛, 𝑑) = 1. Since 𝑝 does not divide 𝑑, 𝑉 and𝑊 are induced
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from the unique open normal subgroup 𝐼(𝑑) of index 𝑑 from characters 𝜒 and 𝜌 of slope 𝑛, see
[10, 1.14.]. Let us write

𝑉 = Ind𝐼
𝐼(𝑑)

𝜒,𝑊 = Ind𝐼
𝐼(𝑑)

𝜌.

By [3, Thm. 10.18], we have

𝑉 ⊗𝑊 =
⨁

g∈𝐼∕𝐼(𝑑)

Ind𝐼
𝐼(𝑑)

g𝜒 ⊗ 𝜌,

where g𝜒 denotes the conjugate representation of 𝜒 and by abuse of notation by g , we mean a lift
in 𝐼. Because 𝑝 < 𝑛 by [10, 8.5.7.1], we have

𝜒 ≅ℒ𝜓(𝑎𝑛𝑡
𝑛 +⋯ + 𝑎1𝑡) ⊗𝒦1

and similarly,

𝜌 ≅ℒ𝜓(𝑏𝑛𝑡
𝑛 +⋯ + 𝑏1𝑡) ⊗𝒦2,

where for 𝜑(𝑢) ∈ 𝑘((𝑢)) by ℒ𝜓(𝜑(𝑢)), we denote the pull-back corresponding to the covering of
formal discs given by 𝜑 and where𝒦1 and𝒦2 are tamely ramified representations. In this setting,
if we identify 𝐼∕𝐼(𝑑) ≅ 𝜇𝑑(𝑘), then

g (ℒ𝜓(𝜑(𝑢))) ≅ℒ𝜓(𝜑(g𝑢)).

An explicit computation shows that the slope of g𝜒 ⊗ 𝜌 can only be less than 𝑛 if 𝑎𝑛g𝑛 + 𝑏𝑛 = 0

and this can happen at most for one g . From this, it follows that

dim((𝑉 ⊗𝑊)(𝑥)) =
∑

g∈𝐼∕𝐼(𝑑)

dim
(
Ind𝐼

𝐼(𝑑)
g𝜒 ⊗ 𝜌

)
(𝑥) ⩾ 𝑑(𝑑 − 1)

because at most one summand can vanish. Finally, we have

𝑑(𝑑 − 1) = dim𝑉(𝑥) dim𝑊(𝑥)
(
1 −

1

𝑑

)
,

proving the claim. □

Using this lemma, one can check that the results of Section 4.3. of [1] hold in the arithmetic
setting. The rest of the proof of Theorem 2.8 works completely analogous.
Most importantly, as a corollary, we have the following version of the Katz–Arinkin algorithm

for rigid irreducible local systems having slopes with numerator 1.

Corollary 2.10. Let ℒ be a rigid irreducible 𝓁-adic local system on 𝑗 ∶ 𝑈 → ℙ1 such that
rk(ℒ) < 𝑝 and all of its slopes have numerator 1. After a finite sequence of Fourier transforms, coor-
dinate changes by automorphisms ofℙ1 and twistswith rank one local systems, the sheafℒ is reduced
to a tamely ramified ℚ𝓁-sheaf of rank one.
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Using the principle of stationary phase from Proposition 2.6, to understand the behaviour of
local monodromy under Fourier transform, it is therefore enough to understand the local Fourier
transform of representations of the inertia group 𝐼. For a certain type of representations, we can
explicitly compute these transforms. These are analogues of the formal connections which are
called elementary in [15] and correspond to sheaves of the form

[𝑟]∗(ℒ𝜓 ⊗𝒦)

for some integer 𝑟 prime to 𝑝, 𝜑 ∈ 𝑡−1𝑘[𝑡−1] and𝒦 some tamely ramified sheaf.

Proposition 2.11 ([5], Thm 0.1). Let 𝐴1 = Spec𝑘[𝑡] with 𝑘 algebraically closed,𝒦 an indecompos-
able tamely ramified 𝓁-adic local system on 𝐺𝑚 and denote by 𝑡′ the Fourier transform variable. Let
𝜌(𝑡) = 𝑡𝑟 and

𝜑(𝑡) =
𝑎−𝑠
𝑡𝑠

+⋯ +
𝑎−1
𝑡

∈ 𝑡−1𝑘[𝑡−1]

and let

𝜌(𝑡) = −

𝑑

𝑑𝑡
𝜑(𝑡)

𝑑

𝑑𝑡
𝜌(𝑡)

, 𝜑(𝑡) = 𝜑(𝑡) + 𝜌(𝑡)𝜌(𝑡).

Suppose that 2, 𝑟, 𝑠 and 𝑟 + 𝑠 are all prime to𝑝 and denote by𝜒2 ∶ 𝜇2(𝑘) → ℚ
∗

𝓁 the unique quadratic
character. We then have

ℱ(0,∞′)((𝜌∗(ℒ𝜓(𝜑(𝑡)) ⊗𝒦)|𝜂0) ≅ 𝜌∗(ℒ𝜓(𝜑(𝑡)) ⊗𝒦 ⊗ [𝑠]∗𝒦𝜒2
)|𝜂∞′

.

Even though an analogue of the Levelt–Turrittin theorem does not hold in full generality,
we will see in the next section that in our setting, it still suffices to understand representa-
tions of the above form. The construction of rigid local systems is then carried out exactly
as in [9].

3 LOCAL STRUCTURE

A powerful tool for the classification in the complex setting is the Levelt–Turrittin theorem. It
describes the structure of ℂ((𝑡))-connections in a very detailed way which allows us to explicitly
compute the formal types of Fourier transforms.Under the right conditions, we have the following
weaker version of an analogue of the Levelt–Turrittin theorem.

Theorem 3.1 ([5] Prop. 0.5). Let 𝜌 ∶ 𝐼 → GL(𝑉) be an irreducible ℚ𝓁-representation satisfying the
following conditions.

(i) Let 𝑃 be the wild inertia subgroup of 𝐼. Denote by 𝑃𝑝 the 𝑝th powers in 𝑃. Then 𝜌(𝑃𝑝[𝑃, 𝑃]) = 1.
(ii) The image 𝜌(𝐼) is finite.
(iii) We have 𝑠 ∶= Sw(𝜌) < 𝑝 where Sw(𝜌) is the Swan conductor of 𝜌.
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Then there is an integer 𝑟 not divisible by 𝑝, a tame character 𝜆 of 𝐼 and a polynomial 𝜑 ∈ 𝑢−1𝑘[𝑢−1]

of degree 𝑠 such that

𝑉 ≅ Ind𝐼
𝐼(𝑟)

(
ℒ𝜓(𝜑) ⊗ 𝜆

)
.

Note that

Res𝐼𝑃Ind
𝐼
𝐼(𝑟)

(
ℒ𝜓(𝜑(𝑡)) ⊗ 𝜆

)
≅

⨁
𝜁∈𝜇𝑟(𝑘)

ℒ𝜓(𝜑(𝜁𝑡)),

and this is a direct sum of characters factoring through 𝜇𝑝(ℚ𝓁). Hence, it is trivial on
𝑃𝑝[𝑃, 𝑃]. Therefore, the first condition is a necessary condition for a representation to be of the
desired shape.
Let 𝜁 be a topological generator of 𝐼𝑡𝑎𝑚𝑒 and denote by 𝐽 the pre-image of 𝜁ℤ in 𝐼 under the

canonical map 𝐼 → 𝐼𝑡𝑎𝑚𝑒. Then 𝐽 is a dense subgroup of 𝐼 and we have 𝐽∕𝑃 ≅ 𝜁ℤ whose generator
we also denote by 𝜁.

Lemma 3.2 ([5], Lemma 2.2). Let 𝜌 ∶ 𝐽 → GL(𝑉) be an irreducible representation over ℚ𝓁 . Then
there is a character 𝜒 ∶ 𝐽 → ℚ

∗

𝓁 trivial on 𝑃 such that 𝜌 ⊗ 𝜒 has finite image.

Regarding the second condition in Theorem 3.1, the following stronger statement holds.

Corollary 3.3. Let 𝜌 ∶ 𝐼 → GL(𝑉) be an irreducible ℚ𝓁-representation of dimension 𝑛. Then there
is a character 𝜒 ∶ 𝐼 → ℚ

∗

𝓁 trivial on 𝑃 such that 𝜌 ⊗ 𝜒 has finite image.

Proof. Let �̃� = 𝜌|𝐽 be the restriction of 𝜌 to 𝐽. This is again irreducible which can be seen as
follows. Suppose that it is not, then �̃�(𝐽) stabilises a subspace 𝑊 ⊂ 𝑉 hence is contained in a
proper parabolic subgroup 𝑃 of 𝐺𝐿(𝑉). Since 𝜌 is continuous and 𝑃 is closed, we have

𝜌(𝐼) = 𝜌(𝐽) ⊂ �̃�(𝐽) ⊂ 𝑃 = 𝑃.

Therefore, 𝜌 could not have been irreducible.We conclude that �̃�must be irreducible. By the above
lemma, there exists a character �̃� ∶ 𝐽 → ℚ

∗

𝓁 such that �̃� ⊗ �̃� has finite image in GL(𝑉). Let g ∈ 𝐽

be an inverse image of 𝜁 ∈ 𝐽∕𝑃 and let 𝑥 = �̃� ⊗ �̃�(g). The cyclic group generated by 𝑥 inside the
image of �̃� ⊗ �̃� must be finite, so there is a positive integer 𝑟 such that g𝑟 lies in the kernel of
�̃� ⊗ �̃�. We find that

1 = det(�̃� ⊗ �̃�(g𝑟)) = �̃�(g)𝑟𝑛 det(�̃�(g𝑟)).

Since𝜌(𝐼) is compact,we can assume that it is a subgroup ofGL𝑛(𝐸) for a finite extension𝐸 ofℚ𝓁 .
Now �̃�(g𝑟) = 𝜌(g𝑟) ∈ GL𝑛(𝐸) and �̃�(g)𝑟𝑛 ∈ ∗

𝐸
. After a further finite extension 𝐸 ⊂ 𝐸′, we get

that �̃� factors through∗
𝐸′
. The latter is compact, hence complete and we can extend �̃� ∶ 𝐽 → ∗

𝐸′

by [8, Page 96] to a character

𝜒 ∶ 𝐼 → ∗
𝐸′
↪ ℚ𝓁 .
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Finally, we have

𝜌 ⊗ 𝜒(𝐼) = 𝜌 ⊗ 𝜒(𝐽) ⊂ �̃� ⊗ �̃�(𝐽) = �̃� ⊗ �̃�(𝐽),

proving the claim. □

This means that the following stronger version of Theorem 3.1 is true.

Corollary 3.4. Let𝜌 ∶ 𝐼 → GL(𝑉) be an indecomposableℚ𝓁-representation. Suppose𝜌(𝑃𝑝[𝑃, 𝑃]) =
1 and Sw(𝜌) < 𝑝. Then the lisse ℚ𝓁-sheaf on 𝜂 = Spec 𝑘((𝑡)) corresponding to 𝜌 is isomorphic to

[𝑟]∗(ℒ𝜓(𝜑) ⊗𝒦)

where 𝑟 is an integer prime to 𝑝, [𝑟](𝑢) = 𝑢𝑟,𝒦 is a tamely ramifiedℚ𝓁-sheaf on 𝜂,ℒ𝜓 is the Artin–
Schreier sheaf and 𝜑 is a polynomial in 𝑢−1 where 𝑢𝑟 = 𝑡.

Corollary 3.5. Let𝜌 ∶ 𝐼 → GL(𝑉) be an indecomposableℚ𝓁-representation. Suppose𝜌(𝑃𝑝[𝑃, 𝑃]) =
1 and Sw(𝜌) < 𝑝. Then the same is true forℱ(0,∞′)(𝑉).

Proof. By the corollary, 𝑉 ≅ [𝑟]∗(ℒ𝜓(𝜑) ⊗𝒦) with deg(𝜑) = Sw(𝜌). Now by Theorem 2.11, the
local Fourier transformℱ(0,∞′)(𝑉) is of a similar shape with the same Swan conductor and hence
satisfies the desired conditions. □

In particular, we obtain a Levelt–Turrittin-type decomposition for the local monodromy of rigid
local systems with slopes having numerator 1. Note that the tame sheaf𝒦 can be given in terms
of a Jordan form. Denote by 𝐔(𝑛) the representation of 𝐼tame given by mapping the topological
generator to a Jordan block of length 𝑛. Then any indecomposable representation of 𝐼tame of rank
𝑛 can be written as 𝜒 ⊗𝐔(𝑛) for 𝜒 some character.

4 CLASSIFICATION

To carry out the same classification as in [9], we need the following tools:

(1) a way to compute the determinant of representations of the form

[𝑟]∗(ℒ𝜓(𝜑) ⊗𝒦)

(2) tensor products of such objects,
(3) an analogue of formal monodromy (see [14, Section 1]), giving us constraints on the tame

sheaves𝒦 and
(4) an analogue of the exponential torus, providing constraints on the 𝜑.

We will discuss these in the given order.

Proposition 4.1. The determinant of the representation 𝜌 associated to

[𝑟]∗(ℒ𝜓(𝜑(𝑢)) ⊗𝒦)
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with (𝑟, 𝑝) = 1 is given by

det(𝜌) = (𝜒2)
(𝑟−1)𝑛 ⋅ 𝜒𝑛Tr𝜑(𝑡) ⊗ det(𝒦)

where 𝑛 is the rank of𝒦,𝜒𝑛Tr𝜑(𝑡) is the character associated toℒ𝜓(𝑛Tr𝜑(𝑡)) and Tr𝜑(𝑡) is the trace
of 𝜑(𝑢) with respect to the Galois extension 𝑘((𝑡)) ⊂ 𝑘((𝑢)).

Proof. The representation 𝜌 is induced from the unique normal subgroup 𝐼(𝑟) of 𝐼. Using the
projection formula, we reduce to the case [𝑟]∗ℒ𝜓(𝜑(𝑢)). Denote by 𝜒 the character corresponding
toℒ𝜓(𝜑(𝑢)). By [3, Prop. 13.15.], we have

det Ind𝐼
𝐼(𝑟)
(𝜒) = 𝜀𝐼→𝐼(𝑟) ⋅ (𝜒◦𝑉

𝐼
𝐼(𝑟)
),

where 𝜀𝐼→𝐼(𝑟)(𝜎) is the sign of the permutation induced by 𝜎 on 𝐼∕𝐼(𝑟) and 𝑉𝐼
𝐼(𝑟)

is the transfer
map. We refer to [3, 13.10] for the definition of the transfer map. To compute the character

𝜀𝐼→𝐼(𝑟) ∶ 𝐼 → ℚ𝓁
∗
,

first note that since 𝐼(𝑟) is normal, the permutation representation 𝜋 ∶ 𝐼 → 𝑆𝑟, 𝜎 ↦ 𝜋𝜎 on 𝐼∕𝐼(𝑟)
factors through 𝐼∕𝐼(𝑟) ≅ 𝜇𝑟(𝑘).
We therefore have the following commutative diagram:

and we denote the map 𝜇𝑟(𝑘) → ℚ𝓁
∗
also by 𝜀𝐼→𝐼(𝑟). Choose representatives g𝑖 of 𝐼∕𝐼(𝑟) for

𝑖 = 0, … , 𝑟 − 1 in such a way that the image of g𝑖 in 𝜇𝑟(𝑘) is 𝜁𝑖𝑟 where 𝜁𝑟 is a primitve 𝑟th root
of unity. In this case, the permutation associated to g𝑖 is 𝜋𝑖(𝑗) = 𝑗 + 𝑖 mod 𝑟. Now 𝜀𝐼→𝐼(𝑟)(g1) =

sgn(𝜋1) = (−1)𝑟−1. We can view 𝜀𝐼→𝐼(𝑟) as amap 𝐼tame → ℚ𝓁
∗
andwe see that 𝜀𝐼→𝐼(𝑟)(𝜁) = (−1)𝑟−1

where 𝜁 denotes the topological generator of 𝐼tame. Hence, 𝜀𝐼→𝐼(𝑟) = 𝜒𝑟−1
2

where 𝜒2 is the unique
quadratic character. It remains to compute 𝜙 ∶= 𝜒◦𝑉𝐼

𝐼(𝑟)
∶ 𝐼 → ℚ𝓁

∗
. Note that for 𝜎 ∈ 𝐼(𝑟), we

have 𝜒𝜑(𝑢)(g−1𝑖 𝜎g𝑖) = 𝜒𝜑(𝜁𝑖𝑟𝑢)
(𝜎). By the definition of transfer

𝑉𝐼
𝐼(𝑟)
(𝜎) =

𝑟−1∏
𝑖=0

g−1
𝜋𝜎(𝑖)

𝜎g𝑖 .

Recall that the sequence

1 → 𝑃 → 𝐼 → 𝐼tame → 1

splits by the profinite Schur–Zassenhaus theorem and that we have a subgroup 𝐻 ⊂ 𝐼 which is
isomorphic to 𝐼tame such that 𝐼 = 𝑃𝐻 and 𝐻 ∩ 𝑃 = 1. Let 𝜎 ∈ 𝐻. We have 𝜎 = 𝜏𝑝 for some 𝜏 as
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every element in𝐻 is a 𝑝th power. Therefore, we find

𝜙(𝜎) = 𝜒(𝑉𝐼
𝐼(𝑟)
(𝜎)) = 𝜒((𝑉𝐼

𝐼(𝑟)
(𝜏))𝑝) = 1.

For a general element 𝜎 ∈ 𝐼, we have 𝜎 = 𝜎𝑃𝜎𝐻 with 𝜎𝑃 ∈ 𝑃 and 𝜎𝐻 ∈ 𝐻. Since we have 𝑃 ⊂ 𝐼(𝑟)

and the Artin–Schreier characterℒ𝜓(Tr𝜑(𝑢)) is also trivial on𝐻, we compute

𝜙(𝜎) = 𝜙(𝜎𝑃)𝜙(𝜎𝐻) = 𝜒

(
𝑟−1∏
𝑖=0

g−1𝑖 𝜎𝑃g𝑖

)
=ℒ𝜓(Tr𝜑(𝑢))(𝜎𝑃) =ℒ𝜓(Tr𝜑(𝑢))(𝜎).

Here, we used the additivity

𝑟−1⨂
𝑖=0

ℒ𝜓(𝜑(𝜁
𝑖
𝑟𝑢)) ≅ℒ𝜓(Tr𝜑(𝑢))

of the Artin–Schreier sheaf. We have therefore computed both factors of the determinant, proving
the claim. □

Corollary 4.2. Suppose that in the situation of the above proposition 𝑠 < 𝑟. The sheaf

det([𝑟]∗(ℒ𝜓(𝜑(𝑢)) ⊗𝒦))

is tamely ramified.

Proof. It is enough to prove the claim for 𝜑(𝑢) = 𝑎−𝑠∕𝑢
𝑠. We have

Tr(𝜑(𝑢)) = 𝑎−𝑠
∑

𝜁∈𝜇𝑟(𝑘)

(𝜁𝑠)−1
1

𝑢𝑠
.

The map

𝜇𝑟(𝑘) → 𝜇𝑟(𝑘), 𝜁 ↦ 𝜁𝑠

defines a non-trivial character of 𝜇𝑟(𝑘), hence
∑
𝜁∈𝜇𝑟(𝑘)

(𝜁𝑠)−1 = 0. Therefore, Tr(𝜑(𝑢)) = 0 and
the sheaf is tamely ramified. □

Proposition [15, Prop. 3.8.] provides a detailed formula to compute tensor products of
elementary connections [𝑟]∗(ℰ𝜑 ⊗ 𝑅). A similar formula is true in our setting.

Proposition 4.3. Let 𝜌𝑖(𝑢) = 𝑢𝑟𝑖 , 𝑑 = gcd(𝑟1, 𝑟2), 𝑟′𝑖 = 𝑟𝑖∕𝑑, 𝜌′𝑖 (𝑢) = 𝑢𝑟
′
𝑖 and 𝜌(𝑢) = 𝑢

𝑟1𝑟2
𝑑 . Suppose

that 𝑝 does not divide either 𝑟1 or 𝑟2. For two polynomials 𝜑1, 𝜑2 ∈
1

𝑡
𝑘[ 1

𝑡
], we set 𝜑(𝑘)(𝑢) = 𝜑1(𝑢

𝑟′
2 ) +

𝜑2((𝜁
𝑘
𝑟1𝑟2∕𝑑

𝑢)𝑟
′
1 )where 𝜁𝑟1𝑟2∕𝑑 is a primitive

𝑟1𝑟2
𝑑
th root of unity. In addition, let𝒦1 and𝒦2 be tamely

ramified 𝓁-adic local systems on 𝜂 and let𝒦 = (𝜌′
2
)∗𝒦1 ⊗ (𝜌′

1
)∗𝒦2. We then have

𝜌1,∗(ℒ𝜓(𝜑1(𝑢)) ⊗𝒦1) ⊗ 𝜌2,∗(ℒ𝜓(𝜑2(𝑢)) ⊗𝒦2) ≅

𝑑−1⨁
𝑘=0

𝜌∗(ℒ𝜓(𝜑
(𝑘)(𝑢)) ⊗𝒦).
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Proof. The proof is an application of Mackey theory. Firstly notice that because of the projection
formula, we can reduce to the case of𝒦1 =𝒦2 = ℚ𝓁 . We regard all the sheaves as representations
of respective Galois groups

In this language, we have to compute the tensor product of induced representations

𝑉 ∶= Ind𝐼
𝐼(𝑟1)

ℒ𝜓(𝜑1) ⊗ Ind𝐼
𝐼(𝑟2)

ℒ𝜓(𝜑2).

We have 𝐼(𝑟1) ⋅ 𝐼(𝑟2) = 𝐼(𝑑) and 𝐼(𝑟1) ∩ 𝐼(𝑟2) = 𝐼(
𝑟1𝑟2
𝑑
). In addition, all these subgroups are

normal, hence stable under conjugation, and furthermore, we have

𝐼(𝑟1)∖𝐼∕𝐼(𝑟2) ≅ 𝐼(𝑟1)𝐼(𝑟2)∖𝐼 ≅ 𝜇𝑑(𝑘).

We apply [3, Thm. 10.18] for to obtain

𝑉 ≅

𝑑−1⨁
𝑖=0

Ind𝐼
𝐼
(
𝑟1𝑟2
𝑑

)
(
Res𝐼(𝑟1)

𝐼
(
𝑟1𝑟2
𝑑

)ℒ𝜓(𝜑1) ⊗ Res𝐼(𝑟2)
𝐼
(
𝑟1𝑟2
𝑑

)ℒ𝜓(𝜑2◦𝑚𝜁𝑘)

)
,

where𝑚𝜁(𝑢) = 𝜁𝑢 for a primitive 𝑟1𝑟2
𝑑
th root of unity 𝜁. The representation

Res𝐼(𝑟1)
𝐼
(
𝑟1𝑟2
𝑑

)ℒ𝜓(𝜑1) ⊗ Res𝐼(𝑟2)
𝐼
(
𝑟1𝑟2
𝑑

)ℒ𝜓

(
𝜑2◦𝑚𝜁𝑘

)
is isomorphic to

ℒ𝜓(𝜑1◦𝜌
′
2) ⊗ℒ𝜓(𝜑2◦𝜇𝜁𝑘◦𝜌

′
1) ≅ℒ𝜓(𝜑

(𝑘)),

hence translating back to sheaves yields the claim. □

Consider the sheaf [𝑟]∗(ℒ𝜓(𝜑(𝑡)) ⊗𝒦) where 𝑟 is a positive integer prime to 𝑝,𝒦 is an inde-
composable tamely ramified sheaf and denote by 𝜌 its associated representation. Recall that by
Lemma 2.2 for the wild inertia group 𝑃 of 𝐼, we have the exact sequence

1 → 𝑃 → 𝐼 → 𝐼tame → 1,
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where 𝑃 is the pro-𝑝-Sylow subgroup and 𝐼tame is the maximal prime-to-𝑝-quotient of 𝐼. In par-
ticular, there is a subgroup𝐻 ⊂ 𝐼 such that𝐻 ≅ 𝐼tame and 𝐼 ≅ 𝑃 ⋊ 𝐼tame. Recall that after a choice
𝒦1∕𝑟 of an 𝑟th root of𝒦, we have

[𝑟]∗(ℒ𝜓(𝜑(𝑡)) ⊗𝒦) ≅ [𝑟]∗(ℒ𝜓(𝜑(𝑡))) ⊗𝒦1∕𝑟.

We want to compute

Res𝐼𝐻Ind
𝐼
𝐼(𝑟)

ℒ𝜓(𝜑(𝑡))

to obtain the tame monodromy of the induced Artin–Schreier sheaf. By the Mackey Subgroup
Theorem [3, Thm. 10.13], we have

Res𝐼𝐻Ind
𝐼
𝐼(𝑟)

ℒ𝜓(𝜑(𝑡)) ≅
⨁

𝑥∈𝐼∕𝐼(𝑟)𝐻

Ind𝐻
𝐼(𝑟)∩𝐻

Res𝐼(𝑟)
𝐼(𝑟)∩𝐻

𝑥ℒ𝜓(𝜑(𝑡)).

One can check that 𝐼(𝑟) ∩ 𝐻 = 𝐻(𝑟) where 𝐻(𝑟) is the corresponding subgroup obtained
through the Schur–Zassenhaus theorem for 𝐼(𝑟).
Sinceℒ𝜓(𝜑(𝑡)) is trivial on 𝑝th powers in 𝐼(𝑟) and every element of𝐻(𝑟) is a 𝑝th power,

Res𝐼(𝑟)
𝐻(𝑟)

𝑥ℒ𝜓(𝜑(𝑡)) = 1

is the trivial representation. Therefore,

Res𝐼𝐻Ind
𝐼
𝐼(𝑟)

ℒ𝜓(𝜑(𝑡)) = Res𝐼𝐻Ind
𝐼
𝐼(𝑟)
1.

As a representation of𝐻 ≅ 𝐼tame the representation Ind𝐼
𝐼(𝑟)
1maps the topological generator to the

cyclic permutation matrix 𝑃𝑟 of dimension 𝑟. Restricting the representation 𝜌 corresponding to

[𝑟]∗(ℒ𝜓(𝜑(𝑡))) ⊗𝒦1∕𝑟

to 𝐻 therefore yields the tame sheaf 𝒦1∕𝑟 ⊗ 𝑃𝑟. This is the analogue of formal monodromy in
differential Galois theory.
The exponential torus is a diagonal subgroup of the differential Galois group coming from the

relations satisfied by the exponential factors of formal solutions to a ℂ((𝑡))-connection, see [17,
Section 11.22.].
Denote by 𝜌 the representation Ind𝐼

𝐼(𝑟)
(ℒ𝜓(𝜑(𝑢)) ⊗ 𝜆) where 𝜆 is a tamely ramified character

of 𝐼. By the projection formula, we have

Ind𝐼
𝐼(𝑟)
(ℒ𝜓(𝜑(𝑢)) ⊗ 𝜆) ≅ Ind𝐼

𝐼(𝑟)
(ℒ𝜓(𝜑(𝑢))) ⊗ 𝜆1∕𝑟

for any choice of 𝑟th root of 𝜆. Restricting the representation 𝜌 to the wild ramification subgroup
𝑃 ⊂ 𝐼(𝑟) yields the diagonal shape

𝜌|𝑃 ≅ ⨁
𝜁∈𝜇𝑟(𝑘)

ℒ𝜓(𝜑(𝜁𝑡)).
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In particular, the image 𝑇 ∶= 𝜌(𝑃) is a diagonal subgroup of the monodromy group. Noting that

ℒ𝜓(𝜑(𝑡)) ⊗ℒ𝜓(𝛽(𝑡)) =ℒ𝜓(𝜑(𝑡) + 𝛽(𝑡)),

we obtain the same relations for the 𝜑(𝜁𝑡) as in the differential setting.
The exponential torus provided amethod to analyse of what form the exponential factors in the

differential setting could be. This will almost carry over to this setting. The only instance where it
does not is [9, Lemma 5.3.] whose proof we have to modify.

Lemma 4.4. Letℒ be an irreducible rigid 𝓁-adic local system with monodromy group 𝐺2 on some
open subset of𝑃1 with all slopes having numerator 1 and let𝑉𝑥 be its localmonodromy at some singu-
larity𝑥 ofℒ. The pole order of any𝜑 appearing in the analogue of the Levelt–Turrittin decomposition
of 𝑉𝑥 can only be 1 or 2.

Proof. We have the following table of possible cases for the ramification order 𝑟 and for the pole
order 𝑠.

𝒔 𝒓

2 2,4,6
3 3,6
4 4
6 6

All cases apart from 𝑠 = 3 and 𝑟 = 6 or 𝑟 = 3 are excluded in the same way as in the proof of
[9, Lemma 5.3.]. We will deal with these two remaining cases separately. Let us consider the case
𝑠 = 3 and 𝑟 = 3. The local monodromy of 𝑉𝑥 then contains a module of the form

Ind𝐼
𝐼(3)

(ℒ𝜓(𝜑(𝑢)) ⊗ 𝜆),

where 𝜆 is a tame character and

𝜑(𝑢) = 𝑎3𝑢
−3 + 𝑎2𝑢

−2 + 𝑎1𝑢
−1

with 𝑎3 ≠ 0. This representation is not self-dual, and therefore, its dual also has to appear. This
means that

𝑉𝑥 ≅ Ind𝐼
𝐼(3)

(ℒ𝜓(𝜑(𝑢)) ⊗ 𝜆) ⊕ Ind𝐼
𝐼(3)

(ℒ𝜓(−𝜑(𝑢)) ⊗ 𝜆∨) ⊕ 𝜆′

for some tame character 𝜆′. Denote by 𝜌𝑥 the homomorphism corresponding to 𝑉𝑥. A general
element in 𝜌𝑥(𝑃𝑥(3)) is of the form

(𝑥, 𝑦, 𝑧, 𝑥−1, 𝑦−1, 𝑧−1, 1).

To prove that there are elements not contained in𝐺2(ℚ𝓁), it is therefore enough to show that there
is no relation 𝑥𝑦 = 𝑧, 𝑥𝑧 = 𝑦 or 𝑦𝑧 = 𝑥. This can be reformulated as follows. Let 𝜁3 be a primitive
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third root of unity. We have to show that there is no relation

𝜑(𝑢) + 𝜑(𝜁3𝑢) = 𝜑(𝜁23𝑢)

and the other combinations, respectively. Note that the coefficient of 𝑢−3 in 𝜑(𝜁𝑖
3
𝑢) is the same

for all 𝑖. Therefore, any of these relations translates into 𝑎3 + 𝑎3 = 𝑎3. Since 𝑠 = 3, we have 𝑎3 ≠ 0

and hence there cannot be a relation of the above form.
The case 𝑠 = 3 and 𝑟 = 6 is similar. We consider a representation of the form

Ind𝐼
𝐼(6)

ℒ𝜓(𝜑(𝑢)) ⊗ 𝜆

with 𝜑(𝑢) = 𝑎3𝑢
−3 + 𝑎2𝑢

−2 + 𝑎1𝑢
−1. This representation has to be self-dual which, in turn, forces

𝑎2 = 0. In this case,

𝑉𝑥 ≅ Ind𝐼
𝐼(6)

(ℒ𝜓(𝜑(𝑢)) ⊗ 𝜆) ⊕ 𝜆′

for a tame character 𝜆′. Let 𝜁6 be a primitive sixth root of unity. We have the following relations:

𝜑(𝑢) + 𝜑(𝜁36𝑢) = 0,

𝜑(𝜁6𝑢) + 𝜑(𝜁46𝑢) = 0,

𝜑(𝜁26𝑢) + 𝜑(𝜁56𝑢) = 0.

Therefore, elements in 𝜌𝑥(𝑃𝑥(6)) are of the form

(𝑥, 𝑦, 𝑧, 𝑥−1, 𝑦−1, 𝑧−1, 1).

As before, we have to show that there are no relations 𝑥𝑦 = 𝑧, 𝑥𝑧 = 𝑦 or 𝑦𝑧 = 𝑥. In terms of the
leading coefficient of 𝜑(𝜁𝑖

6
𝑢) for 𝑖 = 1, 2, 3, this translates into 𝑎3 − 𝑎3 = 𝑎3, 𝑎3 + 𝑎3 = −𝑎3 and

−𝑎3 + 𝑎3 = 𝑎3, respectively. Because the characteristic 𝑝 > 7 in all cases from these relations, it
would follow that 𝑎3 = 0. But we have 𝑎3 ≠ 0 because 𝑠 = 3. Therefore, none of these relations
are satisfied and we find elements in 𝜌𝑥(𝑃𝑥) which do not lie in 𝐺2(ℚ𝓁). □

Theorem 1.2 is now obtained by the following methods. The index of rigidity yields constraints
on Swan conductors and dimensions of invariants of the local monodromy by using the results
on tensor products and determinants. We obtain further constraints on the shape of the local
monodromy by means of the analogues of exponential torus and formal monodromy. A case-by-
case check of the remaining possibilities of the Levelt–Turrittin-type decomposition of the local
monodromy yields the classification theorem in the arithmetic setting. For a detailed proof, we
refer to [9, Section 6]. The arguments are completely analogous after replacing all objects by their
respective counterparts.
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