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Abstract—Driver intention detection is helpful to 

parameterize advanced driver assistance systems to reduce the 

warning dilemma and so to raise the driver’s acceptance to such 

systems. An algorithm to predict driver’s intention with Fuzzy 

Logic and Edit Distance is presented. The main features and the 

functionality is explained. The necessary steps for training the 

algorithm and the validation are presented. The performance of 

the first configuration is discussed and the future steps for 

improving the performance are shown. 
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I. INTRODUCTION & MOTIVATION

Driven by the vision zero, the vision for a reduction of 
serious injuries and casualties in road traffic [1] there is much 
work done on active safety systems. Advanced driver 
assistance systems (ADAS) played a main part in the last years 
to reduce the number of seriously wounded and killed people 
in road traffic [2]. These ADAS raise comfort and warn if 
critical situations occur and make it possible to intervene at a 
situation where the driver is not able to avoid a collision by 
himself [3]. The potential to avoid such collisions gets bigger if 
you provide a warning to the driver as early as possible so that 
he gets the chance to react to critical situations before an 
automatic collision avoidance system needs to be activated. 
But in that case the possibility of an unnecessary warning 
raises, e.g. the situation clears itself or the driver was fully 
aware of the situation and is able to clear that situation by 
himself. The driver may recognize these warnings as false 
alarms, which leads to the so called warning dilemma [4]. With 
a rising number of those subjective false warnings the system 
is recognized as annoying, which leads to a reduced warning 
character of the system [5]. So the aim would be to support the 
driver as good and as early as possible with a minimal number 
of unnecessary and false warnings [6]. 

Driver intention detection with a prediction of future 
human behavior may be one possible solution to reduce the 
number of false warnings and so conducting to solve the 
warning dilemma, if information about the driver’s intention 
could be provided to the ADAS [5]. Driver intention detection 
focuses on the driver and measures features (early indicators) 
about performing a driving action e.g. a driving maneuver to 

predict a future behavior of the driver. A driving maneuver is 
an enclosed operation concerning the guidance of a vehicle [7]. 
A maneuver consists of a number of different actions a driver 
performs to conduct such maneuver. The driver intention 
belongs to the group of short term changing driver states which 
changes regularly within a few minutes or seconds [8]. It is not 
possible to detect the driver intention directly, but the actions a 
driver is performing in traffic situations can be set in 
relationship to performed driving maneuvers and inferred with 
observations to deduce the future behavior of the driver. 

There are many motivators which influence the driver by 
forming his intention. Motivators may be the desire to drive 
safe and comfortable to his chosen destination [9]. There are 
also inhibitors which restrict the driver in his behavior, like the 
characteristic of the road, the weather or other road users. To 
infer the driver’s intention these motivators and inhibitors have 
to be measured and have to be put in reference to each other. 
This combination can be interpreted as a mental representation 
or a mental model of the driving behavior. With such mental 
model it is possible to infer the driver’s intention. 

The driver’s intention influences the behavior of the driver 
on the three levels of vehicle guidance [10]. On the strategic 
level e.g. the driver determines the route to go to his preferred 
destination. On the tactical level he performs actions like 
conducting driving maneuvers to reach his strategic goals. On 
the operational level he stabilizes the vehicle to perform the 
tactical maneuvers. We want to concentrate in our work on the 
tactical guidance level with a time horizon of few seconds.  

If the driver’s intention is known with the time horizon of 
few seconds to the future, it is possible to improve the 
performance of an ADAS [8] to support the driver on the 
tactical guidance level, because unnecessary warnings can be 
suppressed and more user suitable warnings can be generated. 
It is possible to infer the driver’s intention by using in-car 
Controller Area Network (CAN-bus) data [11] and decide if an 
early warning in a certain situation is necessary. If so a 
necessary warning could be intensified or else an unnecessary 
warning regarding the detected driver intention can be 
suppressed. 
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In addition to the driver’s intention there are some other 
driver conditions which influence the driving behavior like 
drowsiness or distraction. If a driver is drowsy or distracted the 
behavior and the execution of the driving maneuvers will be 
different [8]. As this work is meant to concentrate on detecting 
the driver’s intention, the drowsiness and distraction need to be 
kept at a constant level to detect behavioral patterns, which can 
be assigned directly to the driver’s intention instead of 
drowsiness or distraction. To address all driver conditions 
including the cross-connections between them, they have to be 
studied while varying them in a controlled way. 

II. ALGORITHM FOR DRIVER INTENTION DETECTION

There is a history of research to predict the driver’s 
intention with real-time algorithms. A summary of some work 
can be found in [9]. They divided the analyzed algorithms into 
discriminative (e.g. Support Vector Machine) and generative 
(e.g. Hidden Markov Models) methods, which are trained 
using examples and generating their knowledge inductively 
from experimental data collections, because a generating a full 
mental model deductively is not feasible, because of the high 
complexity. There is no known technology today to measure 
the driver’s intention directly and predict the driver’s intention 
exactly in every situation. So far only predictions with 
incorporated uncertainty are possible. The inference of the 
driver’s intention can be done by measuring his behavior, 
building up a mental model of the driver and then predict the 
driver’s future actions. Mentioning this, it is clear, that talking 
about the driver’s intention this information is considered as 
probabilistic. 

The goal was to build up a white box algorithm. A white 
box algorithm is a system, which can be observed at every time 
in contrast to a black box model, like an artificial neural 
network. Additionally the knowledge collected in a white box 
model can be extracted and interpreted for further research. 
With that requirement it is feasible to detect the driver’s 
intention and to extract and interpret the learned model 
parameters for future research. Additionally the effort 
concerning the computation time and the detection accuracy 
should be in a good proportion to each other. 

Concerning the design of an algorithm the input variables 
have to be selected, necessary transformations and calculations 
on the input variables and the desired output the algorithm 
have to be defined. 

A. Select input variables

Concerning the motivators and inhibitors for driver action
as mentioned before, data containing these factors had to be 
collected to infer the intentions by making observations of 
human behavior. It seems logical at first, that you can predict a 
driver’s intention the best if you use all data you can gather. 
But regarding to Occam’s razor [13] it is best to choose only 
the best input variables as features for an algorithm. So 
concentrating on fewer and stronger input variables leads to the 
best compromise between prediction quality and computational 
effort analog to [14]. 

Concerning the clustering of measurable features into 
driver, car and environment [10], this work focuses on the 
behavior of the driver. But all three clusters of features have to 
be considered, because they all influence the driver and his 
behavior. In this work the focus lies on in-build vehicle sensors 
and driver monitoring. The data was collected through the 
vehicle CAN-bus and an optical driver monitoring system with 
the ability to detect the driver’s gaze behavior. There are more 
solutions on gathering data concerning the driver and his 
behavior, but because the reduction of driving comfort, which 
comes in hand with intrusive methods, only non-intrusive 
methods are used to collect the data necessary for this research.  

If you want to infer the driver’s intention you should focus 
on the directly measurable data from the driver himself. It is 
done in this work via driver monitoring. With the use of a non-
intrusive eye-tracking system you can estimate the attention 
focus of the driver and estimate the main information he is 
collecting, because around 90 percent of the information a 
driver is gathering is done with his eyes [15]. Then there are 
signals which can be measured from the interaction between 
the driver and his car, e.g. the steering actions (steering angle, 
steering angle velocity) and the accelerator and brake pedal 
operations. With these actions the driver is guiding his vehicle 
on the operational level to perform the desired maneuvers on 
the tactical level. Looking at the car itself, there are signals 
which can be measured concerning the actual state of the 
vehicle, like the velocity, the lateral and longitudinal 
acceleration or the yaw rate. These are measurable reactions of 
the vehicle to the driver’s inputs and were used by the driver as 
feedback to stabilize the vehicle. Outside of the vehicle the 
interaction between the ego vehicle and the environment can be 
detected. There are some features which can be measured with 
the equipped sensors of the vehicle like the time-to-collision 
(TTC) [16] to other road objects, a time-to-line-crossing (TLC) 
concerning the lane markings [17]. Furthermore the 
surrounding environment includes information about the layout 
of the road, the number and geometry of lanes on the road and 
traffic limits to give only a few examples. 

B. Fuzzyfication of input variables

Regarding the requirements to design a white box model a
feasible method is to use Fuzzy Logic. The theory of Fuzzy 
Logic was first described by [18]. The main theory will not be 
explained in the paper, but can be found in [18]. With Fuzzy 
Logic it is possible to design a control system by using expert 
knowledge [19]. Fuzzy Membership Functions (MF) are 
designed to reduce the range of the input variables to a defined 
number of sets, similar to the comprehension of a human 
expert about a technical system. Fuzzy logic itself is not able to 
deal with time series data without any adaptions, because in the 
classical design it calculates the output data from the actual 
input data without considering past results. With that in mind 
[12] proposed an alternative to be able to handle data with time
series characteristics with Fuzzy Logic. The Fuzzy rules of this
system are interpreted as states. Each state incorporates a
Fuzzy rule. These states are connected together accordingly to
their appearance in time creating a sequence of fuzzy rules
through time.



The number of fuzzy MFs per input variable in this work 
were chosen with expert’s knowledge and the boarders of the 
MFs are adapted with the use of data, collected in an 
experiment. This is similar to the work of [20] for building up 
maneuver specific Fuzzy MFs. All input variables were then 
analyzed for the regions with the most and less change 
concerning the derivation as seen in Fig. 1. The top graph 
shows the course of the steering angle during a lane change 
maneuver over time. At t=0s the vehicle crosses the lane 
marking with the front left wheel. The middle graph shows the 
steering angle gradient plotted over the steering angle for the 
identical maneuver. With this information it is possible to 
identify the regions of the input variable where the highest and 
lowest gradient is present. With that precondition more Fuzzy 
MFs could be generated, where the signal is changing fast, to 
raise the sensitivity of the algorithm and fewer Fuzzy MFs, 
where the signal is changing slowly, to reduce the number of 
Fuzzy MFs, leading to a reduction of the computational effort. 
This is done by splitting the course of the graph into equal 
sized integrals concerning their plain. With this transformation 
it is possible to learn the boarders of the Fuzzy MFs from data 
which can be seen in the bottom plot of Fig. 1. The number of 
the Fuzzy MFs is an open design parameter to optimize the 
performance of the algorithm concerning detection quality and 
computational effort.  

 

Fig. 1. Generating Fuzzy MFs from data 

With the previous steps the boarders between the MFs were 
defined. To determine the exact course of all Fuzzy MFs the 
passages between the boarders have to be defined. A parameter 
was defined with a range of [0..1]. This parameter is the 
representation of fuzziness in the Fuzzy MFs. With a higher 
fuzziness you get smoother transitions between the Fuzzy MFs, 
but your system incorporates more fuzziness. This is an 
additional design parameter to be optimized afterwards.  

C. Modelling the maneuvers with Fuzzy rules 

The maneuvers to detect are located on the tactical 
guidance level. These maneuvers consist of different actions 
steps a driver is performing sequentially to conduct the 

guidance of the vehicle. So a maneuver can be interpreted as a 
sequence of actions over time. Each action can be expressed as 
a Fuzzy rule. The different Fuzzy rules, which are active 
during the maneuver steps are equivalent to states of a system 
which is a model of such maneuver.  

To generate the sequences of states, which are 
characteristic for a certain driving maneuver, data from an 
experiment was used as training data. Every sequence is 
generated by automatically analyzing one maneuver from one 
participant at a time and consists of a various number of states. 
Every state inherits the active rule, the duration this rule is 
active and the mean Fuzzy aggregation value for that duration. 
This information can be expressed as a directed graph for 
extracting knowledge afterwards for further research. All 
sequences concerning similar maneuvers were stored into a 
maneuver specific database consisting of all sequences the 
drivers showed in the data. Rare behavioral patterns which may 
seem to be outlier to the usual behavior of the participants were 
considered and not rejected to get a greater span of data and so 
to get the chance to detect a greater variety of performing 
maneuvers. 

D. Edit Distance 

To infer the driver’s intention, the actual behavior of the 
driver has to be measured and compared in real time with the 
sequence database. Because of inter- and intraindividual 
differences in performing driving maneuvers, no identical 
sequences were generated, because no participant showed the 
identical behavior in different repetitions of the maneuvers 
during the training process. So it is necessary to calculate a 
similarity between the real time behavior patterns and the 
learned sequences, because showing an identical behavior 
concerning our metrics is nearly impossible. Regarding the 
stated problem the Edit Distance is a feasible solution. The Edit 
Distance can be used for general feature detection concerning 
[21] and is used for word processing in [22]. In this domain it 
is used to calculate the minimal effort for transforming one 
word into another to determine the similarity of two words. 
This similarity measurement can also be used for maneuver 
prediction, because after the input variables were fuzzified and 
transformed into states, the methods from the word processing 
application can be used analogical. The transformation with 
Edit Distance is done by performing several operations, which 
have to be defined according to the special applications needs. 
For this application following operations seem to be feasible: 
the insertion of a new state, the replacement of a state with 
another and the removal of a state. To consider the temporal 
information incorporated in the sequences an appropriate 
operation was additionally defined similar to [23]. 

Every transformation step has some certain costs to be 
executed. The cost parameters are also design parameters to 
adjust the performance of the algorithm, concerning the desired 
performance criteria. E.g. the insertion of a state, which 
happens to exist more frequently in the database, is much 
cheaper than inserting a state which is represented very 
seldom. Non-existing states in the database get the maximal 
costs, according to that definition. The switching of two 
adjacent states is cheaper for states which are often next to 



each other than switching states which are seldom or never 
next to each other.  

Another challenge is the comparison of sequences with 
different starting points. Because the exact starting point of a 
driving maneuver is unknown a continuous distance has to be 
calculated. The previously mentioned algorithms are not able 
to perform such a comparison, but with the adjustment [24] 
proposed it is possible to perform such transformation. Unlike 
a turning maneuver at an intersection, the driver can conduct a 
lane change maneuver at any time of his drive and any point on 
the road, unless the environmental conditions doesn’t inhibit 
his intention.  

E. State machine 

To reduce the computational effort we interpret the 
databases as state machines. An example for a state machine 
can be seen in Fig. 2. There is one state machine for every 
maneuver, which is going to be detected. The state machine 
consists of the same states which are inherited in the sequence 
database, in this example 8 different states. The transitions 
between these states were extracted from the database. The 
Edit Distance for a certain maneuver is only calculated if the 
associated state machine is active. The state machine is marked 
active, when the predefined starting states were reached. In Fig. 
2 the starting states are filled with grey color. The state-
machine is deactivated when a maximum number of invalid 
transition is performed or the end state is reached (state no. 8 in 
Fig.2).  

 

Fig. 2. Graphical representation of an example state machine 

So at any time only the relevant similarities between the 
actual sequence and the sequences in the corresponding 
databases have to be calculated reducing the computational 
effort significantly. 

F. Output of algorithm 

The output of the algorithm provides the distance of the 
actual sequence the driver is performing in comparison to the 
stored sequences in the database. So it is possible to estimate 
quantitatively how similar an actual performed maneuver is 
compared with the maneuvers trained before. A geometric 
series is used to calculate the mean distance of the output 
vector with the distances to the sequences in the databases. So 
not only the smallest distance value to one sequence is 
considered for the maneuver prediction, but all of them with a 
certain weighting factor. This is considered to have the chance 
to detect a greater variety concerning inter- and intraindividual 
variations of maneuver executions. With the geometric series 
the greater the distance value the less it is considered in the 
calculations to balance the effect on the mean distance value. 
The distance measure correlates with the statistical probability, 
in this case the frequency of occurrence the maneuver is going 
to be performed by the driver. The correlation was extracted 
from the training data and stored into a look-up table. The 

transformation between these two values is calculated in real 
time by the pre-calculated look-up table. With using a look-up 
table in contrast to calculation the correlation in every 
calculation step we furthermore save some computational 
effort reducing the accuracy only by a small factor. In the same 
way the estimated probability is calculated, the estimated time 
horizon until the maneuver will take place can be extracted. 
The time horizon depends on the maneuver definition and a 
certain event which happens during this maneuver, e.g. the 
crossing of the lane marking during a lane change maneuver. 
The time horizon is as similar important as the estimated 
probability, because if you want to trigger an ADAS not only 
the maneuver which will be performed by the driver is 
important, but also the time when the maneuver will be 
conducted should be considered.  

G. Design parameters of the algorithm 

We got some design parameters to directly affect the 
performance of the algorithm as mentioned before. By defining 
the input variables you can change the earliness by using 
earlier input variables. Unfortunately earlier features often are 
less reliable for the detection. The turn switch activation is 
such an early feature. It is mostly activated before drivers are 
performing any steering action in a lane change maneuver, but 
sometimes drivers don’t activate the turn switch at all. On the 
other hand the steering wheel angle is a robust predictor for 
detecting a lane change maneuver, but the time horizon to 
detect a lane change before it is going to be performed is much 
smaller compared to the information of the turn switch signal. 
So a combination of early and robust input variables are 
preferred to get a robust and early detection of the desired 
maneuvers. 

With the number of fuzzy MFs per input variable you can 
affect the complexity of the system directly by enlarging the 
sequences of the learned maneuvers. If the number of input 
variables is raised more rules and states are generated. The 
length of all sequences will rise with the result of more 
computational effort for comparing the sequences. But on the 
other hand a finer resolution of the estimated probability and 
time horizon can be achieved. 

By changing the fuzziness you can change the behavior of 
the system at the points in between the learned boarders of the 
Fuzzy MFs. A greater fuzziness leads to a greater diversity and 
gets the calculations more fuzzy so the outputs will be 
smoother, leading to a more continuously value of estimated 
probability and time horizon. 

By changing the maximum time horizon you can change 
the overall length of the sequences in the database, leading to a 
greater possible prediction horizon of the state machines, if the 
signals provide such information. This comes in hand with a 
greater computational effort. 

You can affect the output of the algorithm and the 
calculated distance by changing the costs of the transformation 
steps in the Edit Distance. The parameters should be changed 
with regard to each other, so that their relation will be 
consistent with the meaning of the transformation. The 
insertion of a previously unknown state should always be 
higher than switching two often appearing states. The variation 



of the costs will not influence the computational effort but the 
output of the algorithm and can be used to raise the detection 
accuracy without raising the computational effort. 

III. EXPERIMENTAL VALIDATION 

To gather data to build our algorithm the Adam Opel AG in 
cooperation with the Institute of Ergonomics and Human 
Factors from the Technische Universität Darmstadt conducted 
a controlled field study on a closed airfield in the UR:BAN 
research project [25]. 44 participants were instructed to drive 
10 laps through a predefined and setup round course. The 
participants had to perform several normal maneuvers (e.g. 
lane change) as well as critical maneuvers (emergency 
braking). Some detail can be found in [26] and [27]. A 
controlled field study gives you the ability to study human 
behavior repeatedly under similar conditions. So the behavior 
could be studied without getting too much cross influences 
from other aspects, e.g. different other traffic participants 
during the test, except these which are performed controlled by 
the study design. Additionally the distraction of the drivers was 
reduced to a minimum and the drowsiness was kept constant 
over the experiment to reduce the influence of these driver 
states to the intention. 

A. Validation of the algorithm 

The algorithm was trained and tested with data from the 
controlled field study. For the first validation it was trained 
with data of 7 randomly selected participants and tested with 
data of 3 other randomly selected participants, consistent with 
the recommendation for machine learning in [28]. The design 
parameters were then systematically varied to find the optimal 
parameter set for the algorithm. At this stage the algorithm was 
trained to detect lane change maneuvers to the left and right, 
stopping maneuvers at intersections and emergency braking 
and evading maneuvers in urban traffic situations. 

B. Performance measures 

As performance measures the specificity and sensitivity 
were used [29]. For calculating those numbers the true and 
false positive and the true and false negative ratings of the 
algorithm have to be gathered. It was not feasible to calculate 
the true negative count, because of the non-uniform 
distribution of events in the different classes [30]. So the 
number of maneuvers the participants have performed through 
a whole lap in the experiment were estimated and multiplied by 
the numbers of laps and all participants to make an integer 
estimation on how often the prediction scores a true negative 
hit. With these numbers we are able to create a Receiver 
Operating Characteristic (ROC) [31], concerning the 
performance of the algorithm for a binary classifier with a 
varied activation threshold. In Fig. 3 you can see the ROC-
curve for the prediction of a lane change maneuver to the left. 
The algorithm was trained using the steering wheel angle, the 
steering angle gradient and the TLC as input variables. With 
this information it is possible to decide at which estimated 
probability a binary classifier should decide to toggle an ADAS 
regarding the optimal tradeoff between specificity and 
sensitivity. In this case the value for the estimated probability 
is p = 78,4%. If you want to provide an digital information to 
an ADAS a value below 78,4% should be marked as no 
intention to perform a lane change maneuver and as soon as the 

value raises over 78,4% the information, that the driver is 
going to perform a lane-change maneuver should be provided. 

 

Fig. 3. ROC-curve for prediction probability of lane change maneuver 

The accuracy of the predicted time horizon was calculated 
with the data by using the mean quadratic error between the 
estimated and the measured value. The earliness of the 
prediction was another validation point, because the earlier a 
maneuver can be predicted the earlier a warning or an 
intervention of an ADAS can be triggered giving the driver 
more time to react to critical situations. 

 

IV. CONCLUSION  

We presented our algorithm for inferring the driver’s 
intention concerning the planned tactical driving maneuvers in 
urban traffic situations. With a prediction time horizon of some 
seconds it is possible to parameterize warning and intervening 
ADAS to perform a driver suitable action. It would be feasible 
to present a warning at an earlier time to the driver or to 
suppress unnecessary warnings and actions from an ADAS 
regarding the traffic situations. There is a potential to reduce 
the warning dilemma with this algorithm so the effectiveness 
of modern active ADAS could be raised. 

The next steps include identifying the best set of input 
variables for the algorithm regarding the desired maneuvers 
and situations. The training for additional maneuvers to detect 
e.g. turning maneuvers at intersections is possible, because the 
algorithm is able to detect those maneuvers it is trained for, 
with the corresponding data. Also the optimization of the 
design parameters is not yet completed to its full capacity, 
giving the chance to the raise the performance of the detection 
furthermore. After finding the best combination of input 
variables and algorithm parameters the training of the 
algorithm will be extended to all 44 participants of the 
experiment.  



Also by addressing a defined ADAS the prediction of the 
detection can be optimized to a certain probability value or to a 
needed time horizon. E.g. for an ADAS with automatic 
collision avoidance with braking and evasive maneuvers the 
information about the driver’s intention is needed before the 
last decision point in time where the system intervenes, to 
avoid a collision, where braking and an evasive maneuver are 
still physically possible. Further research should also include 
the influence of drowsiness and distraction to driver’s intention 
with the aim to infer the intention for drowsy or distracted 
drivers, leading to a more general algorithm to detect driver’s 
intention. 
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