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Abstract

This cumulative dissertation developed a novel upscaling methodology for prospective life

cycle assessment (LCA) to project environmental performances of emerging technologies

from a current to future development stage using perovskite solar cells (PSC) as a case

study for an emerging functional material (FunMat)-based energy technology. Beyond

the case study, upscaling in LCA is essential to assist research groups, technology developers,

planners, and policymakers prioritize responsible research activities proactively and prevent un-

intended consequences early in innovations.

This methodology development was carried out in three publications and consisted of four

steps: First, a meta-analysis was conducted to understand and define the upscaling challenges

in LCAs of PSC and further emerging photovoltaic technologies (PVs) (Publication 1). Second,

an upscaling scheme called UpFunMatLCA was developed for generating upscaling scenarios

in prospective LCA. The upscaling scenarios were modeled qualitatively and quantitatively us-

ing upscaling mechanisms and modules as predefined development pathways (Publication 2).

Third, a PSC-LCI-database evolved from applying and validating UpFunMatLCA in the case

study of evaluating the environmental sustainability of PSCs upscaled from lab samples to com-

mercial deployment as PV modules. Last, the environmental break-even time (e-BET) was

introduced as a novel indicator for interpreting when the upscaled PSC’s environmental perfor-

mance achieves benefits over current commercial benchmarks (Publication 3).

The results highlight that the PSC’s environmental performance cannot be adequately demon-

strated from previous LCA studies compared to other emerging PVs and commercial bench-

marks. The PSC’s high environmental impacts were attributed to high processing energies of

inefficient laboratory (lab) equipment resulting from a low technology maturity. Upscaling

scenarios provide a method to integrate technology development into prospective LCA by pro-

jecting potential development pathways. PSC’s development pathways include combinations of

the three technological mechanisms during upscaling: A) process learning, B) material learning,

and C) external developments. Process learning is the key mechanism for upscaling processing

energies from lab to fabrication in industrial manufacturing factories (fab) as the main contrib-

utor to energy-related impacts like global warming. Material-related impacts like resource use

require including additional material learning in the assessment.

Upscaling in prospective LCA does not provide definitive environmental impacts but strives

to generate realistic scenarios based on current knowledge to drive the future environmen-

tal sustainability of emerging technologies. The developed methodology pioneers upscaling

in prospective LCA by combining a specific technology group’s theoretical and practical

methods. It represents, thus, an essential template for other technology groups to transfer sim-

ilar upscaling methods for increasing and supporting the comprehensiveness of the LCA results

on emerging technologies compared to commercial benchmarks.

II



Kurzfassung

In dieser kumulativen Dissertation wurde eine neuartige Methodik für das Upscaling in

der prospektiven Ökobilanzierung (LCA) anhand eines Fallbeispiels entwickelt, um die

Umweltverträglichkeit innovativer Technologien vom aktuellen auf ein zukünftiges Entwick-

lungsstadium abzuschätzen. Als Fallbeispiel wurden Perowskit-Solarzellen (PSC) als innovative

Energietechnologie auf der Basis von Funktionsmaterialien (FunMat) untersucht. Das Upscal-

ing in der Ökobilanz soll Forschungsgruppen, Technologieentwicklern, Planern und politischen

Entscheidungsträgern dabei unterstützen, verantwortungsvolle Forschungsaktivitäten zu prior-

isieren und proaktiv voranzutreiben, um unbeabsichtigte Folgen bei Innovationen frühzeitig zu

erkennen und zu vermeiden.

Die Methodenentwicklung erfolgte in drei Publikationen und anhand der vier folgenden

Schritte: Erstens wurde eine Meta-Analyse durchgeführt, um die Herausforderungen des

Upscalings von Ökobilanzen für PSC und weiterer innovativer Photovoltaik-Technologien zu

verstehen und zu definieren (Publikation 1). Zweitens wurde ein Upscaling-Schema namens

UpFunMatLCA entwickelt, um Upscaling-Szenarien für prospektive Ökobilanzen zu erstellen.

Die Upscaling-Szenarien wurden qualitativ und quantitativ mittels sogenannter Upscaling-

Mechanismen und -Module modelliert (Publikation 2). Drittens wurde für das Fallbeispiel

eine Sachbilanz-Datenbank (PSC-LCI-Datenbank) entwickelt. Diese ermöglicht die Anwendung

und Validierung von UpFunMatLCA zur Hochskalierung der Umweltverträglichkeit von PSCs

von Laborsamples zum kommerziellen Einsatz als PV-Module. Zuletzt wurde die ökologische

Break-Even-Zeit (e-BET) als neuer Indikator zur Interpretation von Ökobilanzergebnissen

eingeführt. E-BET legt einen Schwellenwert fest, ab wann die Umweltleistung der innovativen

Technologie, hier der PSCs, Vorteile gegenüber den derzeitigen kommerziellen Benchmarks

erzielt (Publikation 3).

Die Ergebnisse zeigen, dass die Umweltleistung von PSC im Vergleich zu anderen innovativen

PVs und kommerziellen Benchmarks nicht ausreichend durch bisherige LCA-Studien untersucht

wurde. Die hohen Umweltauswirkungen der PSC wurden auf die hohe Verarbeitungsenergie

ineffizienter Laborgeräte zurückgeführt, die aus einem geringen Technologiereifegrad der PSC

resultiert. Upscaling-Szenarien bieten eine Methode zur Integration der Technologieentwick-

lung in prospektive LCA durch Projektion möglicher Entwicklungspfade. Die Entwicklungspfade

von PSC umfassen Kombinationen der drei technologischen Mechanismen während des Up-

scalings: A) Prozesslernen, B) Materiallernen und C) externe Entwicklungen. Prozesslernen

ist der Schlüsselmechanismus für die Hochskalierung von Verarbeitungsenergien vom Labor

bis zur Fertigung in industriellen Produktionsfabriken (from lab to fab), die am meisten zu

energiebezogenen Umweltauswirkungen wie der globalen Erwärmung beitragen. Material-

bezogene Umweltauswirkungen wie die Ressourcennutzung erfordern die Einbeziehung von

zusätzlichem Materiallernen in die Bewertung.
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Das Upscaling in der prospektiven Ökobilanz liefert keine endgültigen Ergebnisse, sondern zielt

darauf ab, realistische Szenarien auf der Grundlage des aktuellen Wissensstandes zu erstellen,

um die künftige Umweltverträglichkeit innovativer Technologien zu fördern. Die entwickelte

Methodik leistet Pionierarbeit beim Upscaling in der prospektiven Ökobilanzierung, indem sie

die theoretischen und praktischen Methoden einer bestimmten Technologiegruppe kombiniert.

Sie stellt somit eine wesentliche Vorlage für andere Technologiegruppen dar, um ähnliche

Methoden zur Verbesserung und Unterstützung der Ökobilanzergebnisse neuer Technologien

im Vergleich zu kommerziellen Benchmarks abzuleiten.
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1 Introduction

Access to energy is an essential driver for sustainable development. It promotes economic

growth and social progress. Ensuring access to a sustainable - affordable, reliable, and envi-

ronmentally friendly - energy supply for the world population and future generations is one

of the 17 United Nations’ Sustainable Development Goals (SDG) (United Nations 2015). To-

day, the energy sector still requires large amounts of fossil raw materials and is responsible for

around 70-75% of global and European greenhouse gas (GHG) emissions (Gütschow & Pflüger

2022). Renewable energy technologies like wind and solar are a cornerstone of transitioning to

a climate-neutral circular economy (European Commission 2019). Their performance depends

highly on functional materials (FunMat) (Kuznetsov & Edwards 2010, Schebek et al. 2019).

FunMats often are based on specific elements, notably metals, such as rare earths, in wind tur-

bine permanent magnets or semiconductors in photovoltaic technologies (Kuznetsov & Edwards

2010, Schebek et al. 2019). They possess a distinct electronic structure and physical-chemical

properties responding to electrical, magnetic, optical, or chemical influences (Chung 2021).

However, while FunMats enable a climate-neutral energy conversion in the use phase, their

manufacturing requires a high amount of energy. Above this, many of the specific elements

yielding the desired material properties are so-called critical elements, for which supply risks

are feared for economic and geopolitical reasons. Therefore, research continuously targets the

development of even more energy- and material-efficient FunMat-based energy technologies

built on abundant and non-critical raw materials.

For the earliest orientation on energy and material efficiency and mitigation of environmental

impacts, sustainability assessment is more and more integrated into technology development.

Specifically, the life cycle assessment (LCA), standardized in the ISO 14040/14044 (ISO 14040

2006, ISO 14044 2006), is a supportive methodology that introduces a system-wide understand-

ing of supply chains, life cycles, and resulting impacts, such as global warming and resource use,

into developing emerging technologies (Villares et al. 2017). LCA enables the evaluation of a

full range of environmental impacts to identify opportunities for improving environmental per-

formance. However, LCA was initially developed for commercial products and technologies.

For commercial energy technologies, the life cycle stages in terms of the product system and

benefits per functional unit are already known and necessary primary data for the life cycle

inventory (LCI) is available. Furthermore, many studies reported the environmental impacts

and discussed implications (Dolan & Heath 2012, Hsu et al. 2012, Kim et al. 2012). However,

this knowledge is missing for emerging technologies, currently developed as ideas or concepts,

manufactured in laboratories (lab) or pilot plants (Cucurachi et al. 2018). Therefore, perform-

ing LCA is challenging for emerging technologies to evaluate environmental impacts, leading to

contentious findings due to different methodological procedures and factual assumptions.

This challenge is not new and known as the Collingridge Dilemma in literature. As illustrated
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in Figure 1.1, the problem is “when the change is easy” due to high design freedom, “the need

for it cannot be foreseen” as the knowledge is too low; when the technology is matured and

“the need for change is apparent, change has become [. . . ] difficult” due to low design freedom

(Collingridge 1980). However, this challenge is topical and acknowledged in the LCA commu-

nity under the terms ex ante and prospective LCA. This terminology distinguishes traditional

ex-post or conventional LCAs, which assess mature commercial technologies at a current devel-

opment stage (status quo) with real-world data, and prospective or ex-ante LCAs. However, the

terms ex-ante and prospective are used inconsistently in the literature.

First, ex-ante and prospective LCA was used in a similar way, modeling and assessing an

Figure 1.1: Illustration of the knowledge level versus design freedom during technology devel-
opment from emerging to commercial technology. In addition, the progress of the
environmental impacts is illustrated for two cases. Case 1: Status quo impacts (light
green): The range of potential environmental impacts narrows as knowledge in-
creases and uncertainty decreases. Case 2: Ex-ante or prospective impacts (ligtht
+dark green): The range remains broad and uncertain at the commercial develop-
ment stage when considering data from an emerging development stage (composed
diagram derived from Arvidsson et al. (2017), Hübschmann et al. (2009), Villares et al.
(2017)

emerging technology at a higher development stage aiming to guide technology development

sustainably (Arvidsson et al. 2017, Cucurachi et al. 2018). The difference was that ex-ante

LCAs focus on the assessment before market introduction (van der Giesen et al. 2020), whereas

“an LCA is prospective when the (emerging) technology studied is in an early phase of devel-

opment (. . . ), but (. . . ) is modeled at a future, more-developed phase” using the definition of

Arvidsson et al. (2017). Consequently, prospective LCA is not limited to the pre-market phase

(van der Giesen et al. 2020). Then, Arvidsson (2023) updated the definition recently to “an

LCA is prospective when the technology is modeled at a future” and generalized it to such an

extent that it is no longer exclusively related to emerging technologies. Nonetheless, this thesis

uses the term prospective LCA as a synonym for LCA of emerging technologies instead of ex-

2



ante LCA, as prospective LCA also covers trends after a market introduction, including future

developments of commercial technologies, and it is still commonly used in the LCA community.

1.1 Problem definition

Returning to the Collingridge dilemma, early awareness of environmental impacts is essen-

tial in addressing and avoiding them in technology development before commercialization. As

shown in Figure 1.1, the range of potential environmental impacts of the status quo narrows

as knowledge increases and uncertainty decreases (light green). However, rectifying environ-

mental impacts becomes difficult once the technology is on the market. In addition, the range

of prospective environmental impacts remains broad and uncertain at the commercial devel-

opment stage when using data from an emerging development stage in LCAs (dark green).

Therefore, improving the ability to anticipate, detect recurring trends, and take proactive mea-

sures, even when knowledge is scarce, is crucial.

The ability to anticipate from current emerging to prospective commercial development stages

is described as upscaling. However, there is no clear definition of upscaling in the literature on

prospective LCA (Bergerson et al. 2020). The terms “upscaling” or “scale-up” originally came

from another discipline. In chemical engineering, the terms meant a size scaling, an increase of

physical dimensions of process from the laboratory (lab) to the fabrication in industrial manu-

facturing factories (fab) at a commercial scale, using scaling relationships (Sotudeh-Gharebagh

& Chaouki 2022). In the first LCA context, upscaling was used similarly, focusing solely on

the size scaling of the physical dimensions of facilities or equipment (Schebek L. et al. 2012,

Viebahn et al. 2008) and was implemented using scaling factors (Caduff et al. 2011, Kawajiri

et al. 2020).

Nowadays, a recent review defined upscaling for prospective LCA “as a transforming function

applied to a studied system or a study boundary, and taking it from one state to another” and

subsumed size scaling, industrialization, massification, technology diffusion, up- and down-

zooming and down-limiting under upscaling (Riondet et al. 2022). Another review only defines

the term upscaling methods as the “procedure that projects how (. . . ) [an emerging] tech-

nology currently available (. . . ) may look and function at a higher [technology scale]” (Tsoy

et al. 2020). In addition, it presents a three-step upscaling framework as a recommendation for

estimating prospective data. Other frameworks recommend how to model technology develop-

ment in prospective LCAs but don’t use the term upscaling (Thonemann & Schulte 2019, van der

Hulst et al. 2020). These reviews and frameworks help structure prospective LCAs regarding

upscaling. However, they have conflicting definitions and are too general for providing guid-

ance on concrete case studies, e.g., for the particular application for FunMats. Consequently,

there is still a gap regarding a clear upscaling definition and practicable upscaling methodology

in prospective LCA case studies.
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1.2 Overall research goal

This thesis aims to develop a structured methodology to clearly, transparently, and com-

prehensively implement a case study‘s upscaling into prospective LCA. The novel methods

strive to evaluate and harmonize the environmental performance from an emerging to a

projected commercial technology scale for comparison with commercial benchmarks. The

methodology is developed with a specific focus on FunMat-based energy technologies, using a

concrete case study of FunMat development.

In this context, the prospective LCA attempts to shed light on emerging technologies before

market introduction to guide environmental-friendly technology development benefitting from

high design freedoms and early signaling of unintended consequences.

As aforementioned, there is no clear definition of the term upscaling. Therefore, upscaling is

defined in this thesis as transferring the functionality and characterization of an emerging

technology to a possible target stage, considering development pathways from a current

stage within the course of research and development to this future stage. The upscaling

focuses on the manufacturing phase as this is where the specific processes of technology

development take place. The use- and end-of-life-phase are also essential but out of the scope

of this thesis. However, methods used there, like user behavior (Glogic et al. 2019) or scenario

techniques (Saavedra del Oso et al. 2023), can be combined with the intended methodology

development of this thesis.

The environmental performance contains a set of various environmental impacts based on

attributional modeling, meaning that the environmental impacts of the upscaled technology are

attributed to the prospective function or functional unit when the technology enters the market.

Consequently, the commercial benchmark is the technology delivering the same function as

the upscaled technology. In contrast, consequential modeling would evaluate the potential

implications of the decision to release the technology to the market and the substituted

technology as commercial benchmark. However, the intended upscaling methodology will

be compatible with the methods developed there (Glogic et al. 2019, Maes et al. 2023) as

described in the discussion.

1.3 Case selection and description: Perovskite solar cells

For developing a novel upscaling methodology, a specific case of emerging FunMat-based energy

technology is selected to deduce upscaling requirements and prove the novel methods. Three

prerequisites are defined for selection: 1) The technology is still at an early stage of technology

development. 2) The technology must show promise for future commercialization. 3) Direct

cooperation with technology developers is desirable.

Perovskite solar cells (PSC) applied as photovoltaic (PV) modules are selected as they fulfill

all three defined prerequisites. PSCs are currently the most promising emerging PV materi-
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als. This is notably evidenced by their outstanding evolution in power conversion efficiency

(PCE) achieved in the lab from 3.8 % in 2009 (Kojima et al. 2009) to 25.8 % in 2023 (NREL

2023) and their possibility to form high-efficient (29.8 %) and low-cost PSC-silicon or PSC-PSC

tandems (Li & Zhang 2020, Werner et al. 2018) but so far only on small-scale lab samples.

Additionally, their novel thin-film material structure with simple bulk chemicals is expected to

considerably reduce upstream environmental impacts and make the PSC a more climate-friendly

and resource-efficient PV technology. Research on the PSC is being carried out at the Technical

University of Darmstadt to make direct cooperation with technology developers feasible.

1.4 Structure of the thesis

This thesis is a cumulative dissertation based on three publications. It is divided into six

chapters.

Chapter 1 so far has introduced the motivation and problem definition, presented the overall

research goal of this thesis, and selected PSC as a case study for an emerging FunMat-based

energy technology.

In Chapter 2, the meta-analysis of LCAs of emerging PVs compared with commercial bench-

marks provides the state of the art for assessing PSC as an emerging FunMat-based energy

technology in Publication 1, Weyand et al. (2019), first published 6 November 2019: Weyand

S, Wittich C, Schebek L.: Environmental Performance of Emerging Photovoltaic Technolo-

gies: Assessment of the Status Quo and Future Prospects Based on a Meta-Analysis of

Life-Cycle Assessment Studies. Energies; 12(22): 4228, DOI: 10.3390/en12224228.

Chapter 3 contains the newly developed methodology as the core of this thesis in Publication

2, Weyand et al. (2023a), first published 24 April 2023: Weyand S, Kawajiri, K., Mortan, C.,

Schebek L.: Scheme for Generating Upscaling Scenarios of Emerging Functional Materials

Based Energy Technologies in Prospective LCA (UpFunMatLCA). Journal of Industrial

Ecology, DOI: 10.1111/jiec.13394.

Chapter 4 presents the case study application of the developed methodology in Publication 3,

Weyand et al. (2023b), first published 11 September 2023: Weyand S, Kawajiri, K., Mortan,
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Abstract: Emerging photovoltaic technologies are expected to have lower environmental impacts
during their life cycle due to their extremely thin-film technology and resulting material savings. The
environmental impacts of four emerging photovoltaics were investigated based on a meta-analysis of
life-cycle assessment (LCA) studies, comprising a systematic review and harmonization approach
of five key indicators to describe the environmental status quo and future prospects. The status
quo was analyzed based on a material-related functional unit of 1 watt-peak of the photovoltaic
cell. For future prospects, the functional unit of 1 kWh of generated electricity was used, including
assumptions on the use phase, notably on the lifetime. The results of the status quo show that organic
photovoltaic technology is the most mature emerging photovoltaic technology with a competitive
environmental performance, while perovskites have a low performance, attributed to the early stage
of development and inefficient manufacturing on the laboratory scale. The results of future prospects
identified improvements of efficiency, lifetime, and manufacturing with regard to environmental
performance based on sensitivity and scenario analyses. The developed harmonization approach
supports the use of LCA in the early stages of technology development in a structured way to reduce
uncertainty and extract significant information during development.

Keywords: Meta-analysis; harmonization; life-cycle assessment; perovskite solar cell; organic
photovoltaic; emerging technology

1. Introduction

Renewable electricity generation technologies—wind, solar, and water—induce very low
greenhouse gas (GHG) emissions in their use phase. However, it is well known that upstream
processes—extraction of raw materials, production of materials and components, transportation, and
manufacturing—consume significant amounts of energy and contribute to GHG emissions and other
environmental impacts. For a comprehensive assessment of environmental performance, the full
life cycle of production, use, and end-of-life has to be taken into account. The method of life-cycle
assessment (LCA) [1,2] is widely used for investigation of the life-cycle impacts of conventional and
renewable electricity generation technologies.

Energies 2019, 12, 4228; doi:10.3390/en12224228 www.mdpi.com/journal/energies
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Today, a great amount of interest exists in the so-called emerging or third-generation photovoltaic
technologies (PV). These comprise dye-sensitized solar cells (DSSC), organic photovoltaics (OPV),
perovskite solar cells (PSC), quantum-dot photovoltaics (QDPV), and inorganic cells such as the
copper–zinc–tin–sulfur–selenide solar cells (CZTSSe) [3]. Their common unique feature is the extremely
thin-film technology which enables easy and fast manufacturing, for example, in the form of printing
methods [4–7]. From the environmental point of view, emerging PVs are of interest since their thin-film
technology is associated with savings of weight and materials. Therefore, the life-cycle impacts of
emerging PVs are expected to be lower than those of commercial PVs of the first and second generations.

PVs were investigated in a multitude of LCA studies which led to general insight into their
life-cycle impacts [8–15], i.e., about 80% of total life-cycle GHG emissions can be attributed to the
production stage [15]. However, different LCA studies on PV revealed large differences in results [11,12],
an observation that was also made for LCAs of other electricity generation technologies. This finding
obviously compromises the use of LCA for decision support in technology development, as well as in
the field of energy policy, since the results are associated with high uncertainty. The reasons for these
differences were shown to be legitimate, due to the deviating methodologies, as well as differences
and inconsistencies in the technological parameters and assumptions of the respective studies [16]. To
tackle this problem, meta-analyses are a suitable means to derive more substantiated results from LCA
studies through the combination of a systematic review and the development of technology-specific
harmonization approaches. In the field of electricity generation technologies, meta-analyses were
conducted and harmonization approaches were developed for first- and second-generation PVs [11,12],
concentrating solar power [17], wind power [18], nuclear power [19], and coal-fired power plants [20].

In the case of PV, notably, the two meta-analyses of [11,12] provided a systematic review and
harmonization approach, shedding light on the contribution of specific parameters to deviations of studies
and reducing deviations of life-cycle impacts [11,12]. However, both meta-analyses exclusively comprised
crystalline silicon PVs of the first generation and thin-film technologies of the second generation. In
addition, these studies were restricted to GHG emissions in terms of environmental impacts. Consequently,
the influences of materials on further impact categories, such as resource depletion and toxicity indicators,
were not considered. In view of the fact that material systems for various types of current PVs, notably
emerging PVs, largely differ, the identification of possible tradeoffs between impacts is important
information from LCA, which requires the inclusion of further impact categories.

With respect to emerging PVs, several LCA studies were conducted [21–43]; however, until
now, no comprehensive meta-analysis was performed. Given the high expectations of emerging PVs,
thorough and reliable LCA results are crucial. In this study, a meta-analysis of LCAs on emerging PVs
is presented, aiming at both the assessment of the current stage of development and possible future
prospects. The meta-analysis comprises a systematic review and harmonization of LCA studies and
datasets on emerging PVs. The results of this meta-analysis are used to characterize the status quo of
environmental performance of emerging PVs with respect to GHG emissions and possible tradeoffs,
and to investigate the influencing factors of possible future performance in comparison with first- and
second-generation PVs.

2. Methodology

2.1. Overview

As a first step, based on the general methodology of LCA, the technological life cycle of PV is
described. From this description, the relevant parameters and characteristics of PV can be derived,
which are then evaluated by means of this meta-analysis. Secondly, a systematic review of the
literature is performed, from which, according to defined criteria, studies and datasets are selected for
inclusion. Finally, the harmonization approach is presented, covering a consistent reference unit for
the comparison of LCA results, key indicators, and key modeling assumptions.
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2.2. Conceptual Life Cycle of Emerging PVs

2.2.1. Description of the Technological Life Cycle of Emerging PVs

The life cycle of emerging PVs can be divided into upstream, operation, and downstream stages,
as shown in Figure 1. The upstream stage refers to the raw material acquisition, consisting of the
extraction and processing of raw materials. The raw materials are processed to layer materials. The
conceptual solar cell configuration of emerging PVs is composed of five layers: the substrate with
front electrode, electron blocking layer, active layer, hole transport material, and back electrode. The
layer materials and deposition methods differ considerably; an overview of the most frequently
applied materials is given in Table 1. After the PV cell production, the PV cells are interconnected and
encapsulated to form a PV module. The PV system of emerging PVs, consisting of the PV module
and the balance-of-system (BOS), covers a wider product variety than the first- and second-generation
PVs, ranging from a typical rooftop module to building-integrated products or personal gadgets such
as mobile chargers or OPV lamps. Consequently, the BOS components vary as well, and they may
comprise not only wires and inverters but also Universal Serial Bus (USB) ports or plastic cases.
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Figure 1. Conceptual life cycle of emerging photovoltaic technologies (PVs) with the technological
components and methodological elements such as life-cycle stages, processes, functional units, and
input/output flows.

After the installation or distribution of the PV system, its operation or use stage starts. In this stage,
impacts only occur during the maintenance, repair, and replacement of PV modules or components.
For first- and second-generation PVs, these impacts are very low and negligible [15]. For emerging
PVs, there are no data on these impacts, which are expected to be higher due to the shorter lifetime at
present. The maximum measured lifetime of emerging PVs ranges from less than one year for QDPV
and PSC [44,45] to around seven years for OPV [46]. For DSSC, no data were found. In contrast, first-
and second-gen PVs show a lifetime of up to 30 yrs. However, the lifetime of emerging PVs was
obtained from laboratory or pilot applications, and it is expected to increase in future.

The downstream stage refers to the end-of-life treatment. For emerging PVs, the end-of-life
treatment is not known yet, since there are hardly any PV products available which incorporated
emerging PV materials. According to the Waste of Electrical and Electronic Equipment Directive
specifying the general requirements for electronic waste in the European Union (EU) [47], end-of-life
treatments should comprise recovering or recycling. However, at present, large amounts of electronic
products and waste are still landfilled globally; thus, disposal in a landfill has to be considered as well.
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2.2.2. Methodological Elements of LCA of Emerging PVs

The assessment of life-cycle impacts follows the LCA method of the ISO standards 14040/14044 [1,2].
According to these standards, the life-cycle impacts are assessed based on the modeled life cycle, the
so-called product system, and they are quantified per impact category indicator in relation to the
so-called functional unit of the product system. Whereas the functional unit is the quantifier of the
function of the product system, used as a reference unit in LCA, the impact category indicator is the
quantifier of the impact category. The considered impact categories are selected depending on the
potential environmental impacts and the goal of the LCA study. In this meta-analysis, the life-cycle
impacts are used to describe the environmental performance of emerging PVs.

In LCAs of PVs in general, the product system is the modeled PV system, encompassing the
components of PV cells, PV modules, and BOS, as well as the considered life-cycle stages in terms of
the defined system boundaries (upstream, operation, and downstream stage) and the corresponding
processes (Figure 1). In contrast to first- and second-generation PVs, the LCAs of emerging PVs do
not always assess the full life cycle, but only part of it. Depending on the product system, three
functional units are possible for emerging PVs and for PVs in general [48]. Firstly, the functional
unit of area, usually 1 m2, can be used for the comparison of PV cells or PV modules with the same
efficiency. Secondly, in the case of emerging PVs with various efficiencies, the functional unit of 1
watt-peak (Wp) should be used for meaningful results. This functional unit is known as the nominal
power and takes into account the maximum efficiency of the PV cell or PV module under standard
test conditions, which are a light intensity of 1000 W/m2, cell temperature of 25 ◦C, and air mass of
1.5, according to the standard IEC 61215 of the International Electrochemical Commission [49]. Third,
the functional unit of 1 kWh of electricity fed into the grid is typically used for a mature electricity
generation technology installed on an industrial scale. The latter is the only functional unit that enables
the inclusion of the operation stage (Figure 1). During the life cycle of emerging PVs, on one hand, the
potential environmental impact results from the upstream energy inputs of the layer deposition and
the production of the PV cell, PV module, and PV system in relation to the energy output during the
use phase, and the inputs or outputs during the end-of-life treatment. This results in the use of energy
and corresponding GHG emissions. On the other hand, there are impacts resulting from the layer
materials, occurring mostly in the upstream and downstream stages due to the material acquisition or
end-of-life treatment. During the use stage, these materials are connected and encapsulated to form
the final products and, thus, do not come into direct contact with the environment in LCA studies.
In LCA studies, the impacts of these materials may contribute to tradeoffs with respect to resource
depletion or toxicity impacts.

2.3. Systematic Review Approach of LCA Literature and Datasets

2.3.1. Literature and Dataset Search

The systematic review covered literature references, i.e., publications and datasets of LCAs on
emerging PVs, from literature databases and the openLCA Nexus repository. The literature search
was carried out using four literature databases: Web of Science, Wiley online library, ScienceDirect,
and SciFinder. Here, combinations of the following keywords were used: life-cycle assessment,
dye-sensitized solar cell, organic photovoltaic, perovskite solar cell, quantum-dot photovoltaic, and
copper–zinc–tin–sulfur–selenide solar cell. Further considered synonyms are listed in Table S1
(Supplementary Materials). The search strategy focused exclusively on full journal articles. The
identified literature references were published between 2001 and 2018.

The openLCA Nexus repository provides more than 130,000 LCA datasets of 20 LCA databases,
including well-known LCA databases such as ecoinvent, GaBi LCA Database, and European reference
Life Cycle Database (ELCD; last access: 29 January 2019). However, this repository did not include any
LCA dataset for the previously used keywords.
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2.3.2. Literature and Dataset Selection

The identified literature references were primarily screened, and suitable LCA studies and datasets
were selected for inclusion in this meta-analysis. The following inclusion criteria were applied:

• Relevance of the technologies: Only emerging PVs from the fields of DSSC, OPV, PSC, QDPV, and
CTZSSe were considered in this meta-analysis.

• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had
to be in compliance with the ISO 14040/14044 standards [1,2].

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum
requirement, the product system needed to consider at least the upstream impacts of PV cells
(Figure 1). Transparency had to be ensured with respect to basic LCA elements, such as the defined
goal with the corresponding information on the functional unit and assessed impact categories.

The primary screening resulted in 28 LCA studies (three DSSC, 16 OPV, eight PSC, one QDPV,
and zero CTZSSe) on the considered emerging PVs. In most LCA studies, different layer materials,
deposition methods, and end-of-life-treatments were analyzed, resulting in more than one LCA dataset
per LCA study. Therefore, the 28 LCA studies were further subdivided into 134 LCA datasets. The
following secondary inclusion criteria were applied to select suitable LCA datasets:

(1) The LCA dataset was not published previously in another LCA study.
(2) The LCA dataset included, as a minimum life cycle, impacts of the energy demand or the

contributed GHG emissions of the production of PV cells.
(3) The LCA dataset included information necessary for the conversion of the functional unit to m2,

Wp, or kWh.

Finally, a total number of 22 LCA studies (three DSSC, 67 OPV, 23 PSC, and one QDPV) and 94
LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this
emerging PV was excluded from this meta-analysis.

2.4. Harmonization Approach for LCA Datasets

2.4.1. General Framework

The methodology for harmonization was based on the approach of [11,12], which was conceptually
designed for first- and second-generation PVs. Their general framework for harmonizing LCA results
for PV is described by Equation (1).

GHG = W/(I ·

Energies 2019, 12, x FOR PEER REVIEW 6 of 26 

 

The identified literature references were primarily screened, and suitable LCA studies and 
datasets were selected for inclusion in this meta-analysis. The following inclusion criteria were 
applied: 

• Relevance of the technologies: Only emerging PVs from the fields of DSSC, OPV, PSC, QDPV, 
and CTZSSe were considered in this meta-analysis.  

• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had 
to be in compliance with the ISO 14040/14044 standards [1,2].  

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum 
requirement, the product system needed to consider at least the upstream impacts of PV cells 
(Figure 1). Transparency had to be ensured with respect to basic LCA elements, such as the 
defined goal with the corresponding information on the functional unit and assessed impact 
categories. 

The primary screening resulted in 28 LCA studies (three DSSC, 16 OPV, eight PSC, one QDPV, 
and zero CTZSSe) on the considered emerging PVs. In most LCA studies, different layer materials, 
deposition methods, and end-of-life-treatments were analyzed, resulting in more than one LCA 
dataset per LCA study. Therefore, the 28 LCA studies were further subdivided into 134 LCA datasets. 
The following secondary inclusion criteria were applied to select suitable LCA datasets: 

(1) The LCA dataset was not published previously in another LCA study. 
(2) The LCA dataset included, as a minimum life cycle, impacts of the energy demand or the 

contributed GHG emissions of the production of PV cells. 
(3) The LCA dataset included information necessary for the conversion of the functional unit to m², 

Wp, or kWh.  

Finally, a total number of 22 LCA studies (three DSSC, 67 OPV, 23 PSC, and one QDPV) and 94 
LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in 
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
emerging PV was excluded from this meta-analysis. 

2.4. Harmonization Approach for LCA Datasets  

2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

· PR · τ ·A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m2

·year),

Energies 2019, 12, x FOR PEER REVIEW 6 of 26 

 

The identified literature references were primarily screened, and suitable LCA studies and 
datasets were selected for inclusion in this meta-analysis. The following inclusion criteria were 
applied: 

• Relevance of the technologies: Only emerging PVs from the fields of DSSC, OPV, PSC, QDPV, 
and CTZSSe were considered in this meta-analysis.  

• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had 
to be in compliance with the ISO 14040/14044 standards [1,2].  

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum 
requirement, the product system needed to consider at least the upstream impacts of PV cells 
(Figure 1). Transparency had to be ensured with respect to basic LCA elements, such as the 
defined goal with the corresponding information on the functional unit and assessed impact 
categories. 

The primary screening resulted in 28 LCA studies (three DSSC, 16 OPV, eight PSC, one QDPV, 
and zero CTZSSe) on the considered emerging PVs. In most LCA studies, different layer materials, 
deposition methods, and end-of-life-treatments were analyzed, resulting in more than one LCA 
dataset per LCA study. Therefore, the 28 LCA studies were further subdivided into 134 LCA datasets. 
The following secondary inclusion criteria were applied to select suitable LCA datasets: 

(1) The LCA dataset was not published previously in another LCA study. 
(2) The LCA dataset included, as a minimum life cycle, impacts of the energy demand or the 

contributed GHG emissions of the production of PV cells. 
(3) The LCA dataset included information necessary for the conversion of the functional unit to m², 

Wp, or kWh.  

Finally, a total number of 22 LCA studies (three DSSC, 67 OPV, 23 PSC, and one QDPV) and 94 
LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in 
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
emerging PV was excluded from this meta-analysis. 

2.4. Harmonization Approach for LCA Datasets  

2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the
lifetime in years, and A is the total module area in m2.

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle
stages in or from the numerator W. The second level is less resource-intensive and includes only the
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in [12],
the harmonization approach of [11] was exclusively restricted to the second level, i.e., no alignment of
W, whereby standard values of I,

Energies 2019, 12, x FOR PEER REVIEW 6 of 26 

 

The identified literature references were primarily screened, and suitable LCA studies and 
datasets were selected for inclusion in this meta-analysis. The following inclusion criteria were 
applied: 

• Relevance of the technologies: Only emerging PVs from the fields of DSSC, OPV, PSC, QDPV, 
and CTZSSe were considered in this meta-analysis.  

• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had 
to be in compliance with the ISO 14040/14044 standards [1,2].  

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum 
requirement, the product system needed to consider at least the upstream impacts of PV cells 
(Figure 1). Transparency had to be ensured with respect to basic LCA elements, such as the 
defined goal with the corresponding information on the functional unit and assessed impact 
categories. 

The primary screening resulted in 28 LCA studies (three DSSC, 16 OPV, eight PSC, one QDPV, 
and zero CTZSSe) on the considered emerging PVs. In most LCA studies, different layer materials, 
deposition methods, and end-of-life-treatments were analyzed, resulting in more than one LCA 
dataset per LCA study. Therefore, the 28 LCA studies were further subdivided into 134 LCA datasets. 
The following secondary inclusion criteria were applied to select suitable LCA datasets: 

(1) The LCA dataset was not published previously in another LCA study. 
(2) The LCA dataset included, as a minimum life cycle, impacts of the energy demand or the 

contributed GHG emissions of the production of PV cells. 
(3) The LCA dataset included information necessary for the conversion of the functional unit to m², 

Wp, or kWh.  

Finally, a total number of 22 LCA studies (three DSSC, 67 OPV, 23 PSC, and one QDPV) and 94 
LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in 
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
emerging PV was excluded from this meta-analysis. 

2.4. Harmonization Approach for LCA Datasets  

2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

, PR, and τ were defined and the GHG impacts were harmonized to
these standard values using a developed spreadsheet-based meta-model.

In this meta-analysis, the harmonization approach encompassed the second level of the definition
of the standard values of PR, I,

Energies 2019, 12, x FOR PEER REVIEW 6 of 26 

 

The identified literature references were primarily screened, and suitable LCA studies and 
datasets were selected for inclusion in this meta-analysis. The following inclusion criteria were 
applied: 

• Relevance of the technologies: Only emerging PVs from the fields of DSSC, OPV, PSC, QDPV, 
and CTZSSe were considered in this meta-analysis.  

• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had 
to be in compliance with the ISO 14040/14044 standards [1,2].  

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum 
requirement, the product system needed to consider at least the upstream impacts of PV cells 
(Figure 1). Transparency had to be ensured with respect to basic LCA elements, such as the 
defined goal with the corresponding information on the functional unit and assessed impact 
categories. 

The primary screening resulted in 28 LCA studies (three DSSC, 16 OPV, eight PSC, one QDPV, 
and zero CTZSSe) on the considered emerging PVs. In most LCA studies, different layer materials, 
deposition methods, and end-of-life-treatments were analyzed, resulting in more than one LCA 
dataset per LCA study. Therefore, the 28 LCA studies were further subdivided into 134 LCA datasets. 
The following secondary inclusion criteria were applied to select suitable LCA datasets: 

(1) The LCA dataset was not published previously in another LCA study. 
(2) The LCA dataset included, as a minimum life cycle, impacts of the energy demand or the 

contributed GHG emissions of the production of PV cells. 
(3) The LCA dataset included information necessary for the conversion of the functional unit to m², 

Wp, or kWh.  

Finally, a total number of 22 LCA studies (three DSSC, 67 OPV, 23 PSC, and one QDPV) and 94 
LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in 
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
emerging PV was excluded from this meta-analysis. 

2.4. Harmonization Approach for LCA Datasets  

2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

, and τ as a consistent set, which is generally necessary for the
12



Energies 2019, 12, 4228 7 of 25

characterization of any PV technology. However, from the systematic review, three requirements were
identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional units
were found in the LCA datasets on emerging PVs, resulting in additional harmonization to a consistent
functional unit. Secondly, the scope of the environmental impacts was widened to include further key
indicators in order to account for impacts related to the specific layer materials. Thirdly, to substantiate
the comparison of results from the LCA datasets, the consideration of additional methodological
specifications was necessary, such as the diverging state of technology development and life-cycle
information related to the first level of the harmonization [12]. This information was analyzed in terms
of qualitative factors. These requirements resulted in the framework conditions described below for
harmonizing LCA results on emerging PVs.

2.4.2. Harmonization to Consistent Functional Units

The LCA datasets on emerging PVs were related to the three definitions of the functional unit:
energy, rated power, and area. The rationale behind these definitions of the functional unit was
as follows: The comparison of first- and second-generation PVs with each other or with further
energy technologies was based on the typical functional unit of 1 kWh of electricity fed into the grid.
Accordingly, the functional unit reported for LCA of first- and second-generation PVs in [11,12] was
exclusively defined as 1 kWh of electricity fed into the grid. For the comparison of emerging PVs
with first- and second-generation PVs, this functional unit was used as well. However, the choice of
the functional unit of energy necessarily requires data on module efficiencies, transmission losses in
terms of the performance ratio, location-specific irradiation, and lifetime of the PV systems [48]. As a
result, notable assumptions on prospective applications and expected lifetime of emerging PVs are
mandatory for the calculation. However, at this development stage, there is hardly any knowledge
about these applications and the expected lifetime. Therefore, many LCA studies on emerging PVs did
not include such highly speculative assumptions and restricted their research question to investigation
of the current production of PV cells or PV modules in laboratories or in pilot plants, as well as using
the functional units of area or rated power (Figure 1). Accordingly, the definition of the functional unit
depends on the research question or goal of the LCA study.

In this meta-analysis, two research questions (hereafter termed as cases) were investigated and
resulted in different functional units per case, which were investigated by means of the harmonized
results. Firstly, for the case “characterizing the status quo of environmental performance of emerging
PVs”, the functional unit of 1 Wp provided PV cell, module or system was used. Secondly, for the case of
a substantiated discussion on the “possible future environmental performance” in view of a comparison
with first- and second-generation PVs, the functional unit was 1 kWh of generated electricity.

2.4.3. Key Indicators (KEYIs)

The key indicators, hereinafter referred to as KEYIs, are the impact category indicators that were
selected for a comprehensive description of the potential environmental impacts of the considered
emerging PVs and in general for the comparison of PVs. Considering the aforementioned potential
environmental impacts, the following five KEYIs were selected for the assessment of the life-cycle
impacts, divided into energy-related and material-related KEYIs for the tradeoff consideration:

1. Energy-related KEYIs:

• Cumulative energy demand (CED): The CED in MJ PE quantifies the primary energy (PE)
inputs of the included life cycle stages.

• Global warming potential (GWP): GWP quantifies the GHG emissions in g of carbon dioxide
equivalents (g CO2-eq) resulting mostly from the energy demand.

2. Material-related KEYIs:

13



Energies 2019, 12, 4228 8 of 25

• Resource depletion, mineral, fossil, and renewable resources (RDPf): The RDPf in
g of antimony equivalents (g Sb-eq) considers the resource use and impacts on the
resource availability.

• Toxicity indicators: These indicators are relevant in assessing the toxicity potential of the
included layer materials to the ecosystem and human health, assessed by the following two
indicators in this meta-analysis:

• Ecotoxicity potential for freshwater (ETPf) in comparative toxic units for ecosystems
(CTUe);

• Human toxicity, cancer effects (HTPc) in comparative toxic units for human health
impact equivalent to the incidence of cancer (CTUh).

In [50], the consideration of more tradeoffs was highlighted, such as land use or eutrophication.
However, for the comparison of emerging PVs, the data coverage is not sufficient (see File S1,
Supplementary Materials). Furthermore, the five KEYIs cover the most important tradeoffs for the
comparison of PV technologies. Further tradeoff considerations may be important in the case of a
comparison with further energy generation technologies. For this case, the harmonization approach is
extendable to further impact indicators beyond these five introduced KEYIs.

2.4.4. Key Modeling Assumptions (KEYAs)

The key modeling assumptions, hereinafter referred to as KEYAs, summarize methodological
specifications that may influence the total life-cycle impacts of emerging PVs:

1. LCA type, temporal coverage, and technology scale: These KEYAs were interrelated in LCA
studies on emerging PVs. The term LCA type stands here for the modeling approach of the LCA
study. It was differentiated into the following:

• Conventional LCA, representing the common approach of LCA studies, particularly
commercial technologies which are established on the market and show sufficient primary
data quantities for the assessment of the status quo;

• Prospective LCA/ex ante LCA, representing an approach particularly for the assessment
of emerging technologies to assess their prospective developments in comparison with
commercial technologies [51,52].

Accordingly, the temporal coverage of a conventional LCA is based on present conditions
of technologies, whereas prospective LCAs consider future scenarios and developments of
technologies. Moreover, the technology scale of the assessed technology depends on the LCA type
as well. The technology scale characterizes here the stage of development of the assessed emerging
PV, and it is an important specification for the characterization and differentiation of emerging PVs
in LCA studies. In conventional LCAs, technologies are assessed based on the current technology
scale and stage of development. On the contrary, in prospective LCAs, the technology scale is
upscaled by the consideration of likely future scenarios and, consequently, emerging technologies
are assessed based on higher technology scales. In particular, for a fair comparison between
emerging PVs and commercial technologies or technologies at higher or lower development stage,
the technology scale of the assessed technology needs to be indicated. A common method for
characterizing the technology scale is the concept of technology readiness levels (TRLs), consisting
of nine TRLs established by National Aeronautics and Space Administration (NASA) [53].
However, none of the included LCA studies reported TRLs. Therefore, the following classification
scheme based on the TRL concept was introduced and applied for the characterization of the
technology scale of the LCA datasets on emerging PVs:
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• TRL 1 (“basic principles observed and reported”) was omitted since it may be relevant for
LCA studies of new technology concepts but not for the included emerging PVs [53];

• Laboratory scale, referring to TRLs 2–4 (“research to prove feasibility”);
• Pilot scale, referring to TRLs 5–7 (“technology demonstration”);
• Industrial scale, referring to TRLs 8–9 (“system test, launch, and operations”).

2. Product system: The considered product system of emerging PVs can be distinguished into the
three options: (1) PV cell, (2) PV module, and (3) PV system. As shown in Figure 1, the PV
system includes more components than the PV cell. Each component has its own impact and,
consequently, the consideration of its contributions and tradeoffs is necessary.

3. Layer components: The different layer options as components of the PV cell are relevant to the
life-cycle impacts resulting from the energy requirements of the deposition and from possible
hazardous elements or materials. Therefore, the further subdivision of the PV cell into the layer
components is necessary to track and compare the life-cycle impacts and the contribution of the
layer materials and deposition methods.

4. System boundary: As mentioned above, the minimum requirement for the selection of a dataset
was the inclusion of the upstream stage, i.e., the production of the PV cell. In addition, studies
could also include also the operation stage or cover the full life cycle, including the downstream
stage. While the inclusion of the operation stage yields electricity generation and, thus, is covered
by the respective functional units of energy, the inclusion of the downstream stage is often
omitted and hinders the comparison of results. However, since the LCA studies gave very
limited information on end-of-life treatment, the contribution of the downstream stage could not
be added to the overall result; thus, an important source of tradeoff was not fully considered.
Therefore, the influence of the system boundary was taken into account as KEYAs.

2.4.5. Key Performance Parameters (KEYPs)

The key performance parameters, hereinafter referred to as KEYPs, characterize the performance
of the PV system, and they were significant for the determination of the maximum electricity yield
during the operation stage. The KEYPs were as follows:

1. Efficiency of the PV cell or PV module (
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);
2. Performance ratio of the PV system (PR);
3. Irradiation on the installed PV system (I);
4. Lifetime of the PV system (τ) and its components.

3. Results

3.1. Systematic Review of LCA Datasets on Emerging PVs

The 22 reviewed LCA studies with the number of respective LCA datasets are given in Table 2,
along with information on the functional units, KEYIs, KEYAs, and KEYPs. For each LCA dataset, the
considered KEYIs were specified; CED was the most commonly considered KEYI, with 67 of the 94
LCA datasets considered; GWP was the second most widely considered KEYI, with 59 LCA datasets
considered. RDPf and the two toxicity indicators were assessed for almost all LCA datasets on PSC.
However, for the other emerging PVs, these KEYIs were only considered in three LCA studies, with
8–11 LCA datasets on OPV and none on DSSC and QDPV considered. For OPV, 67 LCA datasets from
14 LCA studies could be selected and, for PSC, 23 LCA datasets from six LCA studies could be selected.
However, for DSSC and QDPV, only one LCA study with three and one LCA datasets, respectively,
could be found.
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The systematic review of the KEYAs was conducted according to the four qualitative factors.
None of the reviewed LCA studies reported the TRLs nor distinguished between conventional and
prospective LCAs, since the latter distinction emerged recently in [51,52]. Therefore, the classification of
LCA type and the technology scale was conducted based on keywords and data sources of the reviewed
LCA datasets (see File S1, Supplementary Materials, for more information on this classification). In
particular, for the LCA studies on PSC, based on primary data sources, specified keywords such as
“laboratory production” [30], “laboratory-scale experiments” [39], and “pilot line facility” [27] allowed
a clear classification of the technology scale and LCA type. In contrast, there were LCA studies based
on secondary data sources and prospective assumptions on future development for which a clear
classification of the technology scale was difficult, since the prospective assumptions were not specified
in a transparent manner. Therefore, the classification of the upscaled technology scale was not clear.
For these prospective LCA studies, the technology scale was not differentiated between pilot and
industrial scale (PI/IN). The systematic review showed that OPV was mostly assessed by prospective
LCAs (16 of 67 LCA datasets) or based on pilot- or industrial-scale manufacturing routes (35 of 67 LCA
datasets). For PSC, only two LCA studies considered prospective assumptions, but most LCA datasets
(18 of 23) were assessed based on the current laboratory scale, with the number of TRLs lower than
four. The DSSC and QDPV datasets both came from prospective LCAs. Consequently, the assessed
OPV was more mature than the other three emerging PVs considering the reviewed LCA datasets in
this meta-analysis.

Regarding the considered product system, most LCA datasets on OPV considered PV modules
and those on PSC considered PV systems. The latter is surprising since the PV system includes the
BOS components that are highly dependent on the unknown future application of PSC. Consequently,
this is a highly speculative assumption at this stage of development. The layer components of the
reviewed LCA datasets are summarized in Table 1 (more detailed layer information per LCA dataset
can be found in File S1, Supplementary Materials). Considering the system boundaries, the full life
cycle was only assessed in two LCA studies. The downstream stage was only included in 27 of the 94
LCA datasets. In most LCA data sets, the focus lay in the upstream stage (47 of the 94 LCA datasets).

The systematic review on the KEYPs showed high variations, varying from too pessimistic to too
optimistic, influenced by the KEYAs. The assumed efficiency of the reviewed LCA datasets ranged from
0.7% to 7.7% for OPV and from 4.88% to 20.0% for PSC. In spite of these high variations, it was observed
that the efficiency of PSC was generally higher than OPV as confirmed in the literature [3]. However, the
efficiency of OPV was assumed pessimistically considering the current maximum reported efficiency of
15.6%, trackable by the best research cell efficiency chart of the National Renewable Energy Laboratory
(NREL) [3] or by the solar cell efficiency tables by [55]. The single values for DSSC and QDPV rather fell
into the range of PSC efficiency, even though their current maximum reported efficiencies were in the
range of the OPV maximum. Taking into account the KEYAs, the influence of the technology scale was
low. Despite the low TRLs of PSC, they showed efficiencies in the range of first- and second-generation
PVs. In contrast, the considered product system and the layer components had high influences on the
reviewed efficiencies. Due to the larger active area of PV cells, they showed higher efficiencies than
PV modules or PV systems. In contrast to the best reported ones, the efficiency of the PV cells was
influenced strongly by the layer components and the included materials, e.g., the PSC with lead in the
active layer showed generally higher efficiency than the one with tin. The system boundaries had no
influence at all. The reviewed lifetimes varied for all four emerging PVs between one and 25 years.
These figures should generally be rated as highly speculative assumptions due to the three reasons.
Firstly, they cannot be proven by the maximum reported lifetimes. Secondly, low lifetime assumptions
(1–2 years) result from the current state of research and are currently more realistic. Thirdly, the lifetime
assumptions are not influenced by the choice of product systems, layer components, and system
boundaries. The other two KEYPs, I and PR, were assumed as 1700 kWh/(m2

·year) and 80% in almost
all reviewed LCA datasets. The irradiation represents the average yearly solar energy achievable per
m2 and depends on the location of the operation stage of the PVs. The value of 1700 kWh/(m2

·year)
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was the typical value of southern Europe; however, in central Europe, lower values were obtainable,
while higher values were obtainable in the southwestern part of the United States. The product of
irradiation and efficiency specifies the direct current generated by the PV cell, module, or system. In
contrast, the performance ratio indicates the share of the direct current that is finally fed into the grid
as alternating current after deduction of the system-related losses. Eighty percent is the typically used
value for ground-mounted systems [48]. Currently, even higher values of 90% are possible due to
improvements in inverter efficiencies, as well as the design and maintenance of PV systems in recent
years [48,56]. Both KEYPs were only relevant for the operation stage.

3.2. Harmonization of LCA Datasets on Emerging PVs

3.2.1. Mathematical Procedure of the Harmonization

The progressive alignment of the KEYIs of each reviewed LCA dataset to the harmonized KEYIs
was performed according to Equations (2)–(7), as given in Table 3. Due to the fact that different
functional units were encountered in LCA studies, the calculation encompassed two steps. In the first
step, the values of the KEYIs were converted to the functional unit of 1 m2 according to Equation
(2), which was independent of the dataset-specific KEYPs (
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, PR, I, τ). For this conversion, three
conversion factors depending on the functional unit of the reviewed LCA datasets were necessary
(Equations (3)–(5)). As described before, the unit of areas was independent of the dataset-specific
KEYPs; thus, the conversion factor was 1 (Equation (3)). In contrast to this, the units of power and
energy were influenced by these KEYPs and, consequently, the conversion aimed for the mitigation of
their influences by removing the dataset-specific information (Equations (4) and (5). In the second step,
the values per 1 m2 were converted to the case-specific functional unit of 1 Wp or 1 kWh by the use of
standard values of
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, PR, I, and τ (see next section), as shown in Equations (6) and (7), respectively.

Table 3. Mathematical procedure of the extended harmonization approach of Equation (1) and the
used standard values of the four KEYPs.

Harmonization Equations Parameter/Units Abbreviations Standard Values

Conversion of the reviewed KEYIs to W
W = KEYIR · CF (2) Total life-cycle impacts of the

LCA dataset in LCIA/m2
W -

Reviewed key indicator in
LCIA/FU

KEYIR -

Conversion factor CF see Equations (3)–(5)

Conversion factors depending on the reviewed functional unit (FU)
CF = 1 (FU = 1 m2) (3)
CF = E ·
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R (FU = 1 Wp) (4) Light intensity in W/m2

according to IEC 61215 [49]
E 1000

CF =
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stages in or from the numerator W. The second level is less resource-intensive and includes only the 
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R· PRR · IR· τR
(FU = 1 kWh)

(5) Reviewed KEYPs
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R, PRR, IR, τR -

Harmonization of the case "characterizing the status quo"

KEYIH = W
E·ηH

(6) Harmonized key indicator in
Case “status quo“: LCIA/Wp
Case “prospects”: LCIA/kWh

KEYIH -

Standard values of the KEYPs:
• efficiency in %
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H DSSC: 6
OPV/QDPV: 8
PSC: 12

Harmonization of the case "possible future performance"

KEYIH = W
ηH ·PRH ·IH ·τH

(7)
• performance ratio in % PRH 80
• irradiation in kWh/(m2

·year) IH 1700
• lifetime in years τH -

18
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3.2.2. Standardization of the KEYPs

For the alignment of the harmonized KEYIs, the standard values of the four KEYPs were needed,
i.e.,
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H as the percentage per module area A in m2, PRH as a percentage, IH in kWh/(m2
·year), and τH

in years. The values were identified as described below.
In the case of efficiency

Energies 2019, 12, x FOR PEER REVIEW 6 of 26 

 

The identified literature references were primarily screened, and suitable LCA studies and 
datasets were selected for inclusion in this meta-analysis. The following inclusion criteria were 
applied: 

• Relevance of the technologies: Only emerging PVs from the fields of DSSC, OPV, PSC, QDPV, 
and CTZSSe were considered in this meta-analysis.  

• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had 
to be in compliance with the ISO 14040/14044 standards [1,2].  

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum 
requirement, the product system needed to consider at least the upstream impacts of PV cells 
(Figure 1). Transparency had to be ensured with respect to basic LCA elements, such as the 
defined goal with the corresponding information on the functional unit and assessed impact 
categories. 

The primary screening resulted in 28 LCA studies (three DSSC, 16 OPV, eight PSC, one QDPV, 
and zero CTZSSe) on the considered emerging PVs. In most LCA studies, different layer materials, 
deposition methods, and end-of-life-treatments were analyzed, resulting in more than one LCA 
dataset per LCA study. Therefore, the 28 LCA studies were further subdivided into 134 LCA datasets. 
The following secondary inclusion criteria were applied to select suitable LCA datasets: 

(1) The LCA dataset was not published previously in another LCA study. 
(2) The LCA dataset included, as a minimum life cycle, impacts of the energy demand or the 

contributed GHG emissions of the production of PV cells. 
(3) The LCA dataset included information necessary for the conversion of the functional unit to m², 

Wp, or kWh.  

Finally, a total number of 22 LCA studies (three DSSC, 67 OPV, 23 PSC, and one QDPV) and 94 
LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in 
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
emerging PV was excluded from this meta-analysis. 

2.4. Harmonization Approach for LCA Datasets  

2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  
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H, the standardization was drawn on the reporting of progress and
achievement of efficiency increase for the best PV research cells provided by [3] and [55]. Here, the
emerging PVs were ranked from the highest to the lowest measured best cell efficiencies as follows:
PSC (23.7%), QDPV (16.6%), OPV (15.6%), and DSSC (11.9%) [3]. To define a standard value of each
emerging PV, the ratio of the best cell efficiencies to the harmonized module efficiencies of the first- and
second-generation PVs in [11,12] was considered, which resulted in a ratio of 50% for all technologies
(see Table S3, Supplementary Materials, for more information). The final standard values used for the
harmonization of the four emerging PVs are given in Table 3. The values assume uniform efficiencies
per emerging PV even though the emerging PVs might be further subdivided per morphology. To
obtain the most promising morphology, i.e., most efficient and stable cells, using the bulk heterojunction
approach was one of the biggest challenges of the current research [57–60]. To account for the variations
in the efficiency assumptions depending on the morphology, a sensitivity analysis on the efficiency
from 1% to 20% was conducted.

The irradiation IH in kWh/(m2
·year), performance ratio PRH as a percentage of the PV system,

and operating lifetime τH in years were only needed for the case of a functional unit of 1 kWh of
generated electricity. While IH and PRH are set to 1700 kWh/(m2yr) and 80%, respectively, according
to [11,12], where no standard value of τH was defined. Due to the high uncertainty, the influence of the
lifetime was assessed by means of sensitivity analysis. The sensitivity analysis covered the range of
lifetimes from one year, which was the lowest estimate of studies and, thus, the worst-case assumption,
to 30 years, which was the typical lifetime of first- and second-generation PV applications. It should
be noted that the latter value is purely hypothetical at this stage of development and is only used for
comparability reasons.

The two spreadsheet-based meta-models for the harmonization of the KEYIs using these standard
values of the KEYPs can be found in File S1 (Supplementary Materials).

3.3. Status Quo of the Environmental Performance of Emerging PVs

The environmental status quo was evaluated based on the median and the interquartile range
(IQR) (75th minus 25th). For OPV and PSC, as a result of harmonization, the IQR distributions
decreased for all KEYIs. For the medians and the other two emerging PVs, there was no clear finding.
Here, the medians decreased for all KEYIs in the case of OPV and only for CED and GWP in the case
of PSC, since the standardized
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Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

H values were higher than the assumptions of the reviewed LCA
datasets. In contrast, the medians of the other KEYIs increased due to higher efficiency assumptions.
For DSSC and QDPV, the single values for the two KEYIs, CED and GWP, increased as well due to the
high speculative assumed efficiencies of their reviewed LCA datasets. Overall, there was a correlation
between CED and GWP; both medians decreased by about 60% for OPV and by about 10% for PSC, as
well as increased by about 30% for DSSC and by 75% for QDPV. The rationale behind the correlation
was that the energy demand was still covered to a large extent by fossil fuels, responsible for large
extents of GHG emissions and, consequently, for high GWP impacts. For the other three KEYIs, no
quantifiable correlation was identified at this point (see Table S4, Supplementary Materials).

In Figure 2, the results of the environmental status quo are presented as boxplots of the five
harmonized KEYIs, indicating the median, IQR, and the minimum and maximum values. In order to
depict the influence of the standardized efficiencies
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H, the results of the sensitivity analysis of the
median are included in Figure 2. For the discussion of the results, three premises were used. Firstly,
as the median of each KEYI decreased, so did the life-cycle impacts that occurred, together with an
improvement in the environmental performance. Secondly, as the IQR decreased, the harmonized
KEYIs became more robust; however, here, the number of studies was taken into account since a small
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IQR resulting from a small number of datasets, possibly from one study with common assumptions,
may have been subject to uncertainties. Thirdly, a sharper decrease in the median for the sensitivity
analysis resulted in a stronger influence of the efficiency on the result.
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Figure 2. Current environmental status quo. Boxplots of the five key indicators (KEYIs) harmonized to
the consistent functional unit of 1 Wp and standard values of the efficiencies (Table 3) (left), as well as
influence of the efficiency range (1–20%) on the medians (right).

For CED and GWP, the best environmental performance in terms of the lowest and most robust
results was found for OPV: 2 MJ PE/Wp and 228 g CO2-eq/Wp, respectively. The highest and least
robust results were indicated for PSC, with the lowest results in the range of the OPV median and
the highest results over 100-fold higher. Both findings were based on a substantial number of LCA
studies (between five and 13 studies, providing between 18 and 59 datasets). For DSSC and QDPV,

20



Energies 2019, 12, 4228 15 of 25

only CED and GWP were assessed. Both KEYIs were higher than OPV but lower than PSC. However,
the findings on DSSC and QDPV were limited to a single LCA study, including three or fewer LCA
datasets. In contrast to OPV, the medians of both KEYIs decreased sharply with increasing efficiency
for PSC, DSSC, and QDPV. However, DSSC and QDPV came close to the OPV values in the case of an
efficiency of 20%, but there was still a wide gap with PSC. Accordingly, the results of PSC, DSSC, and
QDPV were highly influenced by efficiency increase.

For the other three KEYIs, RDPf, ETPf, and HTPc, results were only available for OPV and PSC.
Here, OPV again performed better than PSC for the two toxicity indicators, although it should be
noted that this finding resulted from only one LCA study providing eight LCA datasets with similar
assumptions; thus, little to no deviations existed. The boxplots and sensitivity analyses showed similar
curves for the toxicity indicators compared with CED and GWP. Even though there was no quantifiable
correlation between the CED and the two toxicity indicators, there was an apparent dependency.
Contrary to this, the results indicated that there was no correlation at all between the CED and the
related high fossil fuel share and RDPf. The medians of RDPf, resulting from three and four LCA
studies with 11 and 18 LCA datasets, were similar to OPV and PSC, with a slightly higher value for OPV.
Although fossil fuels and mineral resources were included in RDPf, this KEYI was more influenced
by the mineral resources due to their higher characterization factors. However, the characterization
factors of silver and gold as the most used materials of the back electrode of OPV and PSC were over 8
kg Sb-eq/kg; for fossil fuels, they were less than 1.0 × 10−7 kg Sb-eq/kg. The sensitivity analysis also
showed that both emerging PVs had similar curves. However, considering, in general, the higher
efficiency of PSC, PSC performed better than OPV for RDPf. Accordingly, there was no shift in negative
environmental impacts from the energy-related and material-related KEYIs and, consequently, no
tradeoffs were expected.

For an in-depth interpretation of the results, the influences of the KEYAs on the KEYIs and the
tradeoffs occurring during the life cycle of PVs were evaluated. The evaluation was based on the single
included LCA datasets and the single options of the KEYAs, which were laboratory vs. pilot/industrial
for the technology scale, PV cell vs. PV module/system for the considered product system, and
upstream vs. downstream impacts for the system boundary.

Regarding technology scale, the pilot or industrial scale was obviously predominated by the
OPV dataset results, while, in the case of PSC, the majority of LCA datasets were distributed to the
laboratory scale. For PSC, this difference in the technology scale resulted in both higher values and
a larger distribution of PSC results compared with OPV, in particular for the three following KEYIs:
CED, GWP, and HTPc (Figure 3). The reasons for this might have been the influence of the technology
scale and tradeoffs resulting from the layer materials and deposition methods used in laboratories
and might not have resulted from tradeoffs during the life cycle, indicated by the considered product
system or system boundaries. In order to verify this finding, disaggregated information on each layer
of the PSC cells was evaluated. The evaluation indicated three kinds of tradeoffs originating from the
layer materials and deposition methods, as discussed below.

Firstly, the selection of layer materials influences the environmental performance of each layer
and is expected to be different for industrial and laboratory productions. For example, for PVs,
gold, as the typically used material for the back electrode on the laboratory scale, has a much higher
impact than silver and aluminum used on the pilot or industrial scale [35–37,40]. Secondly, in the
laboratory, the thickness of a layer is not of great relevance and often not measured, so more material
than necessary for the optimal performance is used. Thirdly, energy-inefficient deposition methods
are applied on the laboratory scale compared with the pilot or industrial scale. Several publications
support this finding, e.g., the CED of the back electrode was reduced by six-fold from the laboratory
deposition of gold by thermal evaporation (36 MJ PE/Wp) [40] to the industrial scale in which gold was
substituted by C-paste and deposited by spray coating (4 MJ PE/Wp) [35]. For the active layer, even
higher reductions of up to 15-fold were reported. Similar results were observed for OPV development.
Starting with a CED of 47 MJ PE/Wp for manufacturing an OPV cell on the laboratory scale, including
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typical laboratory manufacturing surroundings such as a nitrogen atmosphere and deposition methods
such as spin-coating and annealing for depositing the active layer and thermal evaporation for the
electrodes [33], the CED was reduced significantly to 6.3 MJ PE/Wp [23] and 0.7 MJ PE/Wp [32] by
enhancing the PV cell manufacturing to roll-to-roll production with the deposition method of slot die
coating and screen printing without nitrogen atmosphere.

Energies 2019, 12, x FOR PEER REVIEW 16 of 26 

 

scale and tradeoffs resulting from the layer materials and deposition methods used in laboratories 

and might not have resulted from tradeoffs during the life cycle, indicated by the considered product 

system or system boundaries. In order to verify this finding, disaggregated information on each layer 

of the PSC cells was evaluated. The evaluation indicated three kinds of tradeoffs originating from the 

layer materials and deposition methods, as discussed below. 

Firstly, the selection of layer materials influences the environmental performance of each layer 

and is expected to be different for industrial and laboratory productions. For example, for PVs, gold, 

as the typically used material for the back electrode on the laboratory scale, has a much higher impact 

than silver and aluminum used on the pilot or industrial scale [35–37,40]. Secondly, in the laboratory, 

the thickness of a layer is not of great relevance and often not measured, so more material than 

necessary for the optimal performance is used. Thirdly, energy-inefficient deposition methods are 

applied on the laboratory scale compared with the pilot or industrial scale. Several publications 

support this finding, e.g., the CED of the back electrode was reduced by six-fold from the laboratory 

deposition of gold by thermal evaporation (36 MJ PE/Wp) [40] to the industrial scale in which gold 

was substituted by C-paste and deposited by spray coating (4 MJ PE/Wp) [35]. For the active layer, 

even higher reductions of up to 15-fold were reported. Similar results were observed for OPV 

development. Starting with a CED of 47 MJ PE/Wp for manufacturing an OPV cell on the laboratory 

scale, including typical laboratory manufacturing surroundings such as a nitrogen atmosphere and 

deposition methods such as spin-coating and annealing for depositing the active layer and thermal 

evaporation for the electrodes [33], the CED was reduced significantly to 6.3 MJ PE/Wp [23] and 0.7 

MJ PE/Wp [32] by enhancing the PV cell manufacturing to roll-to-roll production with the deposition 

method of slot die coating and screen printing without nitrogen atmosphere. 

 

Figure 3. Influence of the technology scale and their single values, laboratory (L) vs. pilot/industrial 

(PI/IN) scale, on the single harmonized life-cycle assessment (LCA) dataset points of the five KEYIs. 

For the considered product system, no influence could be determined due to the limited number 

of LCA datasets reporting the contributions of the additional components of the PV modules, the 

encapsulation, and the PV system (the BOS). Nonetheless, for PSC only, three LCA studies enabled 

the consideration of the additional components. However, in contrast to the literature [50], no 

tradeoffs of the additional components could be determined since their contributions were less than 

5% [37,39,40]. This might be explained by the high impacts resulting from the production of the PSC 

cells compared with the small contributions of the additional components. For the other three 

emerging PVs with lower impacts, the additional components, especially the BOS, showed high 

contributions to all five KEYIs, ranging from 11% to 48% [50]. 

Regarding system boundaries, in the case of the status quo analysis, the operation phase was 

excluded by definition, and the only two possible options were the upstream stage and the 

combination of up- and downstream stage. The inclusion of the downstream stage led to a rather 

minor increase in results for CED. However, the influence of the downstream stage on CED was 

Figure 3. Influence of the technology scale and their single values, laboratory (L) vs. pilot/industrial
(PI/IN) scale, on the single harmonized life-cycle assessment (LCA) dataset points of the five KEYIs.

For the considered product system, no influence could be determined due to the limited number
of LCA datasets reporting the contributions of the additional components of the PV modules, the
encapsulation, and the PV system (the BOS). Nonetheless, for PSC only, three LCA studies enabled the
consideration of the additional components. However, in contrast to the literature [50], no tradeoffs of
the additional components could be determined since their contributions were less than 5% [37,39,40].
This might be explained by the high impacts resulting from the production of the PSC cells compared
with the small contributions of the additional components. For the other three emerging PVs with
lower impacts, the additional components, especially the BOS, showed high contributions to all five
KEYIs, ranging from 11% to 48% [50].

Regarding system boundaries, in the case of the status quo analysis, the operation phase was
excluded by definition, and the only two possible options were the upstream stage and the combination
of up- and downstream stage. The inclusion of the downstream stage led to a rather minor increase in
results for CED. However, the influence of the downstream stage on CED was negligible compared
with the upstream impacts, since the impacts were less than 5% in the case of landfill as end-of-life
treatment and even lower in the case of incineration [37,40]; this mattered for the other four KEYIs. In
particular, for ETPf, there were two outliers (2000 CTUe/Wp and 4200 CTUe/Wp). Looking only at the
downstream stage, the different choices of end-of-life treatment led to higher differences in the KEYIs.
Landfill and incineration without lead recycling, had higher impacts with respect to HTPc and ETPf.
Particularly, for ETPf, landfill as end-of-life treatment significantly increased the toxicity potential due
to the released lead to the environment [38]. Incineration with lead recycling showed less impacts
compared with landfill for ETPf and even negative impacts for HTPc and RDPf [38]. Except for ETPf,
the influence and tradeoffs of the end-of-life treatment were minor compared with the high upstream
impacts of the manufacturing in laboratories.

3.4. Future Prospects of Emerging PVs

For the assessment of future prospects of environmental performance, in the first step, the status
quo of emerging PVs was contrasted with commercial first- and second-generation PVs, thus providing
a benchmark for the technological development of emerging PVs. In the second step, the possible
contribution of environmental performance resulting from changes in the most influencing factors,
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including efficiency, lifetime, and upscaling of production, by means of sensitivity and scenario
analyses, was assessed.

The conversion of the KEYIs to the functional unit of 1 kWh was based on the consistent KEYPs
(
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H, PRH, IH), given in Table 3. To depict the current state of development as the basis of the sensitivity
analysis, the maximum reported lifetimes of seven years for OPV [46] and one year for PSC and
QDPV were used [44,61]. For DSSC, no lifetime assumptions were found; thus, one year was used
as well. As benchmarks representing the two first-generation PVs, monocrystalline silicon (Mono-Si)
and multicrystalline silicon (Multi-Si), the harmonized results of Hsu et al. [11] were applied; also,
for the three second-generation PVs, amorphous silicon (a-Si), cadmium–telluride solar cells (CdTe),
and copper–indium–gallium–diselenide solar cells (CIGS), the results of Kim et al. [12] were applied.
As both studies reported only results for GWP, the comparison with commercial PVs was limited to
this KEYI. In Figure 4, the results of this comparison are presented as boxplots of each PV technology;
insights into the other KEYIs can be drawn from the results of the status quo. OPV is the only emerging
PV that presently meets the benchmark of the commercial technologies, although OPV has only a
seven-year lifetime compared with the 30 years of commercial PVs. The median of OPV was in a
similar range to CdTe, the commercial PV with the lowest GWP impacts. The other PVs were 5–70-fold
higher than the commercial benchmarks.
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Figure 4. Global warming potential (GWP) status quo of current development of emerging PVs as
presented in the LCA datasets and harmonized to the key performance parameters (KEYPs) in Table 3
and current maximum reported lifetimes of one and seven years. The comparison was based on
benchmarks of the first- and second-generation PVs based on the standard values of the KEYPs (IH =

1700 kWh/(m2
·year); PRH = 80%; τH = 30 years; Mono-Si:
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• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had 
to be in compliance with the ISO 14040/14044 standards [1,2].  

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum 
requirement, the product system needed to consider at least the upstream impacts of PV cells 
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(1) The LCA dataset was not published previously in another LCA study. 
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contributed GHG emissions of the production of PV cells. 
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LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in 
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
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The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

H = 13%; Multi-Si:
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GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 
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Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
emerging PV was excluded from this meta-analysis. 

2.4. Harmonization Approach for LCA Datasets  

2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 
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2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 
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were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

H = 11.5%) taken from References [11,12].

To analyze the influence of development on the efficiency, lifetime, and upscaling, the following
assumptions for the sensitivity analyses were made:

1. Efficiency increase from 1% to 25% (the latter value was set as the most optimistic assumption
based on the maximum reported efficiency [3]);

2. Lifetime increase from the minimum reported lifetime of one year to the most optimistic
assumption of 30 years as the typical lifetime of first- and second-generation PVs;

3. Upscaling of production from the laboratory to industrial scale was depicted as changes in
the energy demand from −90% to 90% (as a proxy of the environmental impact in general)
and, consequently, of the GWP impacts in the same range as a consequence of this technology
scale leap.
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The results of the three sensitivity analyses are presented in Figure 5. The efficiency increase
had the lowest influence. An efficiency increase would achieve lower results for OPV than for CdTe,
but for PSC, an increase to 25% would result in 40-fold higher GWP than Multi-Si, the most common
commercial PV with the highest GWP impact of 47 g CO2-eq/kWh. DSSC and QDPV showed values
that were many times more than the commercial PVs as well. The lifetime increase to 30 years showed
the highest contributions to GWP reduction. For OPV, the GWP could be decreased to 29% of CdTe and
even 12% of Multi-Si; for PSC, the GWP was still higher but could be decreased to twice the Multi-Si
impact. DSSC and QDPV were in the range of the benchmarks after lifetime increases to 20 and five
years, respectively. The change in technology scale with stagnation of lifetime would result only in
competitive GWPs for OPV, by an increase of 90% of the GWP impacts, and for QDPV, by reductions
of 90%. Considering that GWP correlated directly to the energy demand, a reduction by 90% of the
energy demand resulted in a reduction of 90% of the GWP impact.
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Figure 5. Sensitivity analyses of the prospective development of (a) efficiency, (b) lifetime, and (c)
upscaling of the four emerging PVs compared with the range of the benchmarks.

In particular, for PSC and DSSC, combinations of improvement of the influencing factors in order
to reach the benchmarks were needed. In Figure 6, the most promising combinations are presented
as scenario analyses of lifetime increase combined with efficiency increase and upscaling reduction.
Based on this, PSC would need a 90% reduction and a five-year lifetime, only a 50% reduction but a
lifetime of 30 years, or a lifetime of 15 years and an efficiency of 20%. The scenario analyses of the
other combinations were not as promising; they can be found in Figure S1 (Supplementary Materials).
Although the reduction of 90% is on one hand, arbitrary and not substantiated by a specific study, the
review of the literature indicated that this is an optimistic but realistic assumption due to the expected
improvements from laboratory to industrial scale regarding the material selection, material quantities,
and efficiency of deposition methods.

Based on the insights from the status quo analysis, the behavior of the material-related KEYIs
was quantitatively envisaged. They are expected to behave similarly to CED and GWP regarding
lifetime and efficiency changes, since this behavior is described based on Equation (7). Accordingly, no
tradeoffs were expected from these factors. In contrast to this, the KEYIs would behave differently
regarding upscaling and change in energy demands. In particular, for RDPf, no significant changes
would be expected from a decrease in energy demand during production due to the low contribution
of the energy-related fossil fuel resources to this KEYI. For the other two KEYIs (HTPc and ETPf), lower
energy demands would be expected to result in reductions, even if not to the same extent as for GWP.
Here, tradeoffs between life cycle stages might be expected. The reduction of the upstream impact
might result in increasing contributions of the downstream impact.
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Figure 6. Summary of the scenario analyses of the three influencing factors, efficiency, lifetime, and
upscaling, for perovskite solar cells (PSC) and dye-sensitized solar cells (DSSC); the single-scenario
analyses of each combination of the influencing factors are given in Figure S2 (Supplementary Materials).

4. Discussion

The environmental performance of emerging PVs was investigated based on a meta-analysis,
including a systematic review and harmonization approach of 94 LCA datasets on DSSC, OPV, PSC, and
QDPV. The systematic review showed that the definitions of the KEYPs, as well as the KEYAs, especially
the technology scale, were not reported and explained sufficiently. For transparency reasons, the report
of these values and the classification of the technology scale are highly recommended. The benefits
of the harmonization approach are twofold. Firstly, it reduces the deviations of LCA results through
the use of standard values of the KEYPs. Secondly, the alignment of LCA results to two alternative
functional units enables a substantiated discussion of the environmental performance of emerging
PVs for the two cases of status quo and future prospects. The status quo encompasses technology
scales from the early laboratory state; here, the functional unit of 1 Wp restricted the comparison of the
material-related property related information of PV only to the industrial manufacturing scale. Here, in
contrast, the functional unit of 1 kWh included additional information on the application by integrating
the lifetime into the comparison. Thus, a comparison of emerging to commercial technologies was
feasible in view of identifying benchmarks of environmental performance; based on these benchmarks,
the high uncertainty as to a future use phase was tackled by means of sensitivity analysis, leading to a
scenario approach for different strategies of further technology development.

The analysis of the status quo based on the harmonized KEYIs showed the differences between
the four assessed emerging PVs in terms of the median and IQR. In general, it should be noted that,
for DSSC and QDPV, only a very limited number of LCA datasets were available, which generally
restricted the validity of conclusions for these two technologies. For OPV, which was based on 67 LCA
datasets, by far the lowest values for the median, i.e., best environmental performance, were found for
all KEYIs except for resource depletion, RDPf, where the difference to PSC was low. Also, IQR was
by far the lowest for OPV. The analysis of the KEYAs confirmed that these findings stood for a rather
mature technology from the environmental perspective that is ready to enter the market; the good
environmental performance could be mostly attributed to the low impact from production and less
to the efficiency. On the contrary, for PSC, a far higher median was found; also, after harmonization,
high deviations of results depicted a large IQR. As the functional unit of 1 Wp represented the
material-related properties of the PV only, the reasons for these results may have come from two
contributions: the kind of layer material and the energy demand of the layer deposition, i.e., the stage
of technology development. The KEYAs and an in-depth analysis of the underlying LCA studies
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confirmed the high share of LCA datasets that were based on the early stage of development, associated
with inefficient manufacturing methods of laboratory components and, thus, high energy demand.
RDPf was the only KEYI not influenced by high energy demand and, for which, PSC could keep up at
the current stage of development with OPV due to its higher efficiency. Based only on the material,
the downstream phase could also be investigated as part of the status quo analysis. Based on the
assumption of an advanced waste management, the influence of end-of-life treatment in general was
low compared with the upstream impact.

For the analysis of future prospects, the use phase was included as additional information, notably
the lifetime of the respective emerging PV. Based on the results of the current stage of development
and assumptions on lifetime from the literature, the comparison with commercial PVs of the first-
and second-generation PVs showed that, currently, OPV is the only emerging PV that can compete
with commercial PVs, which was in line with the earlier finding that, out of the four investigated
technologies, OPV is the only mature one. The future prospects of the other three technologies could
be explored by sensitivity analysis of the three influencing factors of efficiency, lifetime, and upscaling;
for the latter, the energy demand was used as a proxy for environmental impact in general. The results
of the sensitivity analysis showed that efficiency increase had the lowest influence. Consequently,
enhancement of efficiency alone could not make any of the three emerging technologies competitive
with respect to the environmental performance of commercial PVs. Lifetime and energy efficiency
had a greater influence and might be important, notably for DSSC, QDPV, and PSC. In general, a
combination of improvements in each of the three influencing factors would be the most promising way
to competitiveness. For this, the sensitivity analysis could be widened to a scenario analysis in order to
identify successful combinations of improvements, where each contribution could be substantiated
by the current state of evidence from the laboratory. This was explored in detail for PSC and DSSC.
Current LCA results confirmed that considerable potential for improvement lies in the combination of
a lifetime increase from five to 30 years and upscaling to the industrial scale, with expected reductions
of more than 90%.

5. Conclusions

The application of LCA for emerging technologies has contradictory requirements. On one hand,
the room for maneuvering in terms of freedom of design is largest in the early stages of technology
development, which calls for a very early application in support of the development process. On the
other hand, uncertainty of data for the technology alternatives for the future use phase compromises
the usefulness of results from LCA for decision support. The developed harmonization approach for
emerging PV presents a structured way not only to reduce uncertainty but also to extract significant
information from the point of view of different stages of technology development. For the status
quo analysis, information was reduced to the material-related properties, thus removing the high
uncertainties resulting from assumptions of the future use phase. For the analysis of future prospects,
the uncertainty of the use phase was handled by means of sensitivity and scenario analyses, where
comparison with commercial PVs had the function of a benchmark that could be used for analysis of
the current stage and strategies of technology development.

The important findings for the status quo concerned the characterization of the differences
between PV technologies related to their selected materials and their current stage of development.
The harmonized KEYIs showed important differences between technologies, and also within the
technology of PSC, which could be attributed to the underlying material systems. Conclusions from
the analysis of these differences were twofold. Firstly, possible tradeoffs between impact categories,
notably those related to energy and those related to toxicity, were not as relevant as might have been
expected. An important caveat is that this conclusion was based on a future end-of-life phase that met
the requirement of a state-of-the art waste management system, ensuring sound management of toxic
compounds of PV materials. Interestingly, a positive contribution from the end-of-life phase to the
environmental performance of emerging PVs could possibly be envisaged from advanced recycling
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technologies for materials that are currently not well developed and, thus, not reflected by LCA
studies. Secondly, a significant influence of different material systems can be seen for the energy-related
KEYIs, which resulted from the interdependence of selected material system and layer manufacturing
techniques. The latter indicated the high contribution of inefficient laboratory manufacturing to
the status quo performance of emerging PV. Future LCAs could be supported by a more in-depth
investigation of upscaling, yielding information on methods, materials, and cell configurations of
industrial manufacturing.

The investigation of future performance of emerging PVs showed that, to meet today’s technology
benchmarks, a combination of improvements in the factors of lifetime and upscaling would be most
promising for PSC. OPV already meets the performance level with respect to KEYIs per kWh of today’s
best technologies. However, the low efficiency and the related high demand of area in combination
with the still low lifetime of far below 20 years hinders its application as a surrogate of today’s roof
application. In the case of PSC, energy savings from upscaling, as well as the possible lifetime, are
crucial factors for application. Current studies gave evidence that, for PSC, an increased environmental
performance from upscaling can be expected with a high probability. Regarding possible lifetimes of
PSC in real world conditions, until now, no reliable statement can be made. However, if the challenge
of a high lifetime can be managed successfully by technology improvement, in view of the already high
efficiency, this technology might be a future substitute or supplement for roof application, competing
with or even exceeding the performance of today’s PVs. Here, one development went for tandem
application with enhanced efficiencies [3,62,63]. With respect to the other two emerging PVs, DSSC
and QDPV, as of now, the available literature is too small to draw conclusions for future prospects.

As a general conclusion regarding LCA studies on emerging technologies, these insights point
to the importance of the intended application of a technology that received little attention in LCA
studies for PVs until now. Most current studies implicitly assumed that emerging PVs will substitute
existing ones or other electricity generation technologies feeding the grid. However, due to their
novel properties, emerging PVs might have many other applications even at shorter lifetimes than
today’s PVs, such as small devices, e.g., mobile chargers, lamps, clothes, and other gadgets. Due to the
change in intended application, other benchmarks for technology development and comparisons of the
environmental performance need to be considered for these devices. As a first example, in [64] an LCA
of a mobile charger with an integrated OPV cell was performed and the environmental performance in
comparison with substituted electricity from the grid as a benchmark was analyzed. Obviously, for
such novel applications, behavioral aspects in the use phase, as well as different requirements for the
end-of-life management, might substantially influence environmental performance in the life cycle [64].
Thus, for a comprehensive picture of future environmental performance of emerging technologies,
not only the technology itself but also emerging applications of technologies should be considered in
LCA studies.
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Nomenclature

PVs Photovoltaic technologies
Mono-Si Monocrystalline silicon
Multi-Si Multicrystalline silicon
a-Si Amorphous silicon
CdTe Cadmium–telluride solar cells
CIGS Copper–indium–gallium–diselenide solar cells
CZTSSe Copper–zinc–tin–sulfur–selenide solar cell
DSSC Dye-sensitized solar cell
OPV Organic photovoltaic
PSC Perovskite solar cell
QDPV Quantum-dot photovoltaic
KEYIs Key indicators
CED Cumulative energy demand in MJ PE (primary energy)
ETPf Ecotoxicity potential for freshwater in CTUe (comparative toxic units for ecosystems)
GHG/GWP Greenhouse gas/global warming potential in g CO2-eq (carbon dioxide equivalents)
HTPc Human toxicity, cancer effects in CTUh (comparative toxic units for human health impacts

equivalent to incidence of cancer)
RDPf Resource depletion, mineral, fossil, and renewable resources in g Sb-eq (antimony

equivalents)
KEYAs Key modeling assumptions
C Conventional
P Prospective
TS/TRL Technology scale/technology readiness level
L Laboratory scale
PI/IN Pilot/industrial scale
KEYPs Key performance parameters
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The identified literature references were primarily screened, and suitable LCA studies and 
datasets were selected for inclusion in this meta-analysis. The following inclusion criteria were 
applied: 

• Relevance of the technologies: Only emerging PVs from the fields of DSSC, OPV, PSC, QDPV, 
and CTZSSe were considered in this meta-analysis.  

• Quality and relevance of the LCA study: The underlying LCA study of a literature reference had 
to be in compliance with the ISO 14040/14044 standards [1,2].  

• Completeness and transparency of the LCA study: In this meta-analysis, as a minimum 
requirement, the product system needed to consider at least the upstream impacts of PV cells 
(Figure 1). Transparency had to be ensured with respect to basic LCA elements, such as the 
defined goal with the corresponding information on the functional unit and assessed impact 
categories. 

The primary screening resulted in 28 LCA studies (three DSSC, 16 OPV, eight PSC, one QDPV, 
and zero CTZSSe) on the considered emerging PVs. In most LCA studies, different layer materials, 
deposition methods, and end-of-life-treatments were analyzed, resulting in more than one LCA 
dataset per LCA study. Therefore, the 28 LCA studies were further subdivided into 134 LCA datasets. 
The following secondary inclusion criteria were applied to select suitable LCA datasets: 

(1) The LCA dataset was not published previously in another LCA study. 
(2) The LCA dataset included, as a minimum life cycle, impacts of the energy demand or the 

contributed GHG emissions of the production of PV cells. 
(3) The LCA dataset included information necessary for the conversion of the functional unit to m², 

Wp, or kWh.  

Finally, a total number of 22 LCA studies (three DSSC, 67 OPV, 23 PSC, and one QDPV) and 94 
LCA datasets were included in this meta-analysis. The excluded LCA datasets are summarized in 
Table S2 (Supplementary Materials). For CTZSSe, no relevant LCA dataset was found. Therefore, this 
emerging PV was excluded from this meta-analysis. 

2.4. Harmonization Approach for LCA Datasets  

2.4.1. General Framework  

The methodology for harmonization was based on the approach of [11,12], which was 
conceptually designed for first- and second-generation PVs. Their general framework for 
harmonizing LCA results for PV is described by Equation (1). 

GHG = W/(I ∙ ɳ ∙ PR ∙ τ ∙A), (1)

where GHG stands for the GHG emissions in g CO2-equivalent (eq) per functional unit of 1 kWh, W 
refers to the total GHG emitted over the life cycle in g CO2-eq, I is the irradiation in kWh/(m²∙year), ɳ 
is the efficiency as a percentage, PR is the performance ratio of PV systems as a percentage, τ is the 
lifetime in years, and A is the total module area in m². 

Based on this equation, two levels of harmonization were discerned in [11,12]. The first level 
involves an in-depth investigation of the underlying LCA studies in terms of the alignment of the 
total GHG impacts with a consistent life cycle, i.e., including or excluding components and life-cycle 
stages in or from the numerator W. The second level is less resource-intensive and includes only the 
harmonization of the GHG impacts according to Equation (1). Whereas both levels were applied in 
[12], the harmonization approach of [11] was exclusively restricted to the second level, i.e., no 
alignment of W, whereby standard values of I, ɳ, PR, and τ were defined and the GHG impacts were 
harmonized to these standard values using a developed spreadsheet-based meta-model.  

In this meta-analysis, the harmonization approach encompassed the second level of the 
definition of the standard values of PR, I, ɳ, and τ as a consistent set, which is generally necessary for 
the characterization of any PV technology. However, from the systematic review, three requirements 
were identified to widen the approach of [11] regarding emerging PVs. Firstly, different functional 

Efficiency
τ Lifetime
I Irradiation
PR Performance ratio
Further
BOS Balance-of-system
LCA Life-cycle assessment
Wp Watt-peak
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Abstract

Upscaling scenarios are indispensable elements of prospective life cycle assessment

(LCA). However, current studies reveal confusing terminology and a wide range of

approaches in this area. Therefore, we first defined the term upscaling scenario as

the description of a possible future target stage of emerging technology, including

the development pathway from a current stage within the course of research and

development to this future stage. Second, we developed the novel systematic scheme

UpFunMatLCA for generating explorative scenarios based on possible development

pathways of the specific group of emerging functionalmaterial (FunMat)-based energy

technologies, including status quo developments. UpFunMatLCA represents a three-

step extension of conventional LCAs to upscale the life cycle inventory of emerging

FunMats. UpFunMatLCA is based on a clear definition of a current status quo (con-

ceptual, lab, or pilot stage) and a target matured (fab) development stage. A core part

of UpFunMatLCA is the so-called upscaling module, providing specific modeling meth-

ods and data for the upscaling of FunMats. Using perovskite solar cells, photovoltaic

devices based on several FunMats and attached with great expectations regarding the

future efficient provision of solar energy, we demonstrate the application of UpFun-

MatLCA, focusing on the upstreamgreenhouse gas (GHG) emissions of the prospective

manufacturing. In the discussion, we point out the application area of UpFunMatLCA

and the possible extension to depict further environmental impacts beyond GHG

to contribute to the sustainability assessment of emerging technologies in the early

stages of development.
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2 WEYAND ET AL.

1 INTRODUCTION

The energy transition to sustainable, renewable, and low-carbon technologies is also a material transition. Energy technologies such as photo-

voltaics (PV), batteries, or fuel cells are highly dependent on the development and advancement of the so-called functional materials (FunMat)

(Kuznetsov & Edwards, 2010; Schebek et al., 2019). In contrast to structural materials characterized mainly by their mechanical, load-bearing

capacity, FunMats are featured by their physical–chemical properties responding to electrical, magnetic, optical, or chemical influences and cover

glass, metals, polymers, carbons, ceramics, composites, and semiconductors, which form the basis of sustainable energy technologies (Chung, 2021;

Kuznetsov & Edwards, 2010). Furthermore, fostering sustainable development of energy technologies research initiatives such as Horizon 2020

demand the inclusion of environmental assessment methods such as the life cycle assessment (LCA). Accordingly, LCA integrated into fundamental

research projects enables sustainable guidance of the research and development of emerging FunMats at the point with the highest design free-

doms. However, this stage is also the stage with the highest uncertainties about the future performance of mature technology. Therefore, LCA, as

designed for matured technologies, requires a thorough interpretation for application to emerging technologies.

The comparability of LCA on emerging and mature technologies is highly dependent on the technology maturity and stage of development.

Gavankar et al. (2015) found a dependence of the technology maturity on environmental performance and recommended the interpretation of

LCA results exclusively under the specification of the technology maturity using known classification schemes such as the technology readiness

level (TRL) (National Aeronautics & Space Administration (NASA), 2007) and manufacturing readiness level (MRL) (US DoD, 2015). Both concepts

describe the technologyormanufacturing development from the lowest, the conceptual fundamentals (TRL/MRL1) to thehighest levels, the proven

applicable technology (TRL 9) or the full ratemanufacturing (MRL 10). For example, looking at perovskite solar cells (PSC), one promising emerging

PV technology with an outstanding record power conversion efficiency of 25.7% (UNIST Korea) in the laboratory (lab) (TRL < 4) in 2022 (National

Renewable Energy Laboratory (NREL), 2022), a review on the environmental performance of emerging PVs showed two things (Weyand et al.,

2019). First, LCAs on PSC mainly focus on upstream emissions of lab manufacturing and are based on lab data. Second, these LCAs indicate much

higher cumulative energy demands, greenhouse gas (GHG) emissions, and other environmental impacts than mature technologies of the first and

second PV generation and other emerging PVs, although PSCmanufacturing is expected to show lower upstream impacts. As themain contributor,

the inefficient manufacturing with energy-intensive equipment in lab compared with mature technologies fabricated commercially (fab) was iden-

tified (Weyand et al., 2019). Therefore, a final statement as to whether PSCs could become more environmental friendly than their competitors is

challenging based on these LCAs.

In the LCA community, this challenge of LCA on emerging technologies has been recently acknowledged under the term prospective or ex ante

LCA (Arvidsson et al., 2017; Cucurachi et al., 2018). This term distinguishes traditional so-called conventional or ex post LCAs, which assess mature

technologies at a current development stage (status quo)with real-world data, and prospective or ex ante LCAs. Both terms encompass the environ-

mental assessment of emerging technologies as guidance of technology development. The difference is that ex ante LCAs focus on the assessment

before market introduction (van der Giesen et al., 2020), whereas “an LCA is prospective when the (emerging) technology studied is in an early

phase of development (. . . ), but (. . . ) is modeled at a future, more-developed phase” using the definition of Arvidsson et al. (2017). Consequently,

prospective LCA also allows assessing future developments of established technologies integrating forecasting methods, as van der Giesen et al.

(2020) stated. In our study, we use the broader term, prospective LCA. The model or “procedure that projects how (. . . ) [an emerging] technology

currently available at a lower TRLmay look and function at a higher TRL” is defined as upscaling method using the definition of Tsoy et al. (2020) in

the following.

Current literature identifies confusing terminology regarding the term upscaling and awide range of upscalingmethods (Bergerson et al., 2020).

Systematic reviewson the challenges of prospective LCAsonly touchupon the topic of upscalingmethods regarding theprojectionof future process

performances and the modeling of life cycle inventory data subdivided into the foreground and background systems and the prediction of future

performances due to an increase of the physical process size (Hetherington et al., 2014; Moni et al., 2020; Thonemann et al., 2020; van der Giesen

et al., 2020). In some studies, the development of scenarios is recommended to upscale technology maturity and inventory data using data sources

such as “scientific articles, patents, expert interviews, [or] unpublished experimental data” (Arvidsson et al., 2017) or estimation methods such as

process simulation, manual calculations, molecular structure models, or proxy (Tsoy et al., 2020). Even though Thonemann and Schulte (2019) do

not directly use the term scenario, their presented four-step approach includes the assessment of the status quo and two prospective upscaled

processes, the “best-case” and “scaled process,” which are similar to a baseline, best-case, and realistic scenario. Generally, scenarios in prospective

LCAs often focusmerely on a hypothetical future technologymaturity but not on the development pathways to this technologymaturity. However,

the term scenario, as initially intended in future research, encompasses both the “conceptual future” and the “paths of development (. . . ) fromwhich

a specific conceptual future results” (Kosow & Gassner, 2008). Therefore, we introduce the term upscaling scenario and define it as the descrip-

tion of a possible future stage of emerging technology, including the development pathway from a current stage within the course of research and

development to this future stage.

The upscaling framework of van der Hulst et al. (2020) introduces experience mechanisms taking into account the size and learning effects as

main drivers of technology development from TRL 1 to TRL 9 and above using MRL and market penetration levels (MPL), as another classification
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WEYAND ET AL. 3

F IGURE 1 Workflow of the UpFunMatLCAwith the three upscaling Steps I–III (markedwith orange circles) as extensions to the four life cycle
assessment (LCA) phases in prospective LCAs and the division of the three user groups—LCA practitioner, cooperation with technology developer,
and user of prospective LCA study (symbols are used according to ISO 5807 (ISO 5807 1985)).

scheme.Whereas the size effect stems from themere increase of the physical dimensions, such as the manufacturing size of products, the learning

effect covers all changes resulting from experience gain of daily routines at production sites. Other authors provide a comprehensive summary of

available upscaling methods with linkage to TRL developments (Buyle et al., 2019) or focus on single experience mechanisms based on size effects

(Caduff et al., 2011; Kawajiri et al., 2020) or learning effects (Bergesen & Suh, 2016; Thomassen et al., 2020). Accordingly, previous studies and

frameworks support structuring a prospective LCA case study and developing upscaling scenarios in terms of identifying key drivers or descriptors.

However, the term scenario is not used in these studies.

Considering the gap between the theoretical and practical implementation of upscaling scenarios in prospective LCA case studies on emerging

FunMats, we present a scheme for generating upscaling scenarios of emerging FunMat-based energy technology called UpFunMatLCA. UpFun-

MatLCA aims to generate fast and easily qualitative and quantitative scenarios for the transfer into the life cycle inventory (LCI) of prospective LCA.

It enables the selection of suitable upscaling methods based on selected upscaling leaps to generate one or more scenarios from predefined devel-

opment pathways in a consistent, transparent, and comparable manner for modeling foreground and background systems and upscaling LCI data.

The selection of these predefined development pathways does not aim to generate best- or worse-case scenarios but somewhat realistic scenarios

that intend to represent possible development pathways of FunMats based on current technology developers’ knowledge or specific decisions dur-

ing technology development. Therefore, the generated scenarios are explorative in the sense that they assess possible technology developments

focusing on salient characteristics and interactions of main contributors or key drivers. The predefined development pathways are not complete

for all available and forthcoming FunMats but can be extended analogously by further expert knowledge or new research insights. Using the case

of GHG emissions of PSC from lab to fab, we illustrate the application of UpFunMatLCA and provide all vital information and data for generating

upscaling scenarios.

2 METHODOLOGY OF UPFUNMATLCA—SCHEME FOR GENERATING UPSCALING SCENARIOS OF
EMERGING FUNMAT-BASED ENERGY TECHNOLOGIES IN PROSPECTIVE LCA

UpFunMatLCA, shown in Figure 1, stands for the systematic arrangement of three developed upscaling steps as an extension of conventional

LCAs for attaining and integrating upscaling scenarios into the first two LCA phases, goal and scope definition and LCI, according to the ISO
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4 WEYAND ET AL.

standards 14040 (2006) and ISO 14044 (2006). The other two LCA phases, encompassing life cycle impact assessment (LCIA) and interpreta-

tion, are out of the scope of UpFunMatLCA and are conducted as in conventional LCAs. The upscaling scenarios, as defined in the introduction,

are applied for an emerging FunMat “for which there is just an experimental proof of concept, a validation in the lab, or pilot plant” (Cucurachi

et al., 2018) and which shows the possible application in future energy technology. The three upscaling steps of UpFunMatLCA were devel-

oped from the five phases of the scenario technique of Kosow and Gassner (2008), combined with a systematic review of upscaling in LCA and

the involvement of technology expertise. More information on the development of UpFunMatLCA is explained in Table S1 of the Supporting

Information S1.

Following the scheme, the technology developer and LCA practitioner are jointly guided through the selection of predefined development path-

ways representing possible future design choices and their evaluation supporting the process of data acquisition and specification of assumptions

that forms the basis of the upscaling scenarios. Thus, amutual understanding is fosteredwithin theworking process,whichwill serve as the common

ground for understanding and interpreting LCA results and support sound decisionmaking.

The three steps of UpFunMatLCA are specified as follows:

Step I. Upscaling Definition:

For a stringent definition of the term upscaling in terms of the technology maturity, the starting point or baseline scenario, referred to as the

current stage of the technology development, and the forecasted endpoint after upscalingmust be defined, referred to as the target stage.

Step II. Upscaling Leap:

The upscaling leap representing the technology maturity of emerging FunMat from the current to the target stage is defined by the so-called

upscaling mechanisms. According to van der Hulst et al.’s (2020) experience mechanisms, the upscaling mechanisms describe the changes or

innovations expected during technology development.

Step III. UpscalingModel andData:

The implementation of a specific upscaling leap andmodeling of upscalingmechanisms takes place in Step III. To this end, the so-called upscaling

modules are introduced. These modules reflect independent units that include upscaling methods and data specified for the upscaling of FunMats

and are ready for the implementation in LCI of prospective LCAs.

Documenting each upscaling step is essential for two reasons: First, the readers of prospective LCAs are a broad audience consisting of LCA

practitioners in general but mainly of non-LCA experts, such as technology developers, who are interested in the environmental performance of

their technology or forced to conduct similar LCAs themselves, or policymakers, who are interested in incorporating LCA results into decisionmak-

ing. Second, in contrast to conventional LCAs, the scenario assumptions in terms of the high design freedoms result in a high dependency on the

decisions made on future conditions, materials, andmanufacturing processes and the results in terms of the environmental performance of emerg-

ing technologies. To this end, we introduce a documentation template that gives an overview and summary of the salient characteristics of each

upscaling scenario (Table S2 of the Supporting Information S1 or applied in Table 1).

In the following, each step of UpFunMatLCA is explained inmore detail.

2.1 Step I—Upscaling Definition: Definition of the technology maturity

Theoretically, the definition of the technologymaturity at the current and target stage can be done by the selection of each level using the standard

classification schemes of TRL (NASA, 2007) and MRL (US DoD, 2015). However, even though the detailed assignment of TRLs/MRLs is desir-

able in technology development (NASA, 2007), the interest of LCA on emerging FunMats is not in upscaling between closely spaced or adjacent

TRL/MRL levels but between general stages of development—such as “from lab to fab.” Additionally, in practice, this level of detail is not feasible

since changes in technologies with TRLs lower than 7 (MRLs lower than 8) occur iteratively, and available LCI data often cannot be attributed to a

detailed TRL/MRL or stem from different levels in LCA. Therefore, we combine both classification schemes into one generic technology scale with

five generic development stages to define the current and target stages. Furthermore, this technology scale incorporates theMPL similar to van der

Hulst et al. (2020) to classify the dissemination of the technology aftermarket launch. Using the characteristics summarized in Figure 2, the current

stage, which represents an emerging material or technology at the status quo, is defined as either the conceptual, lab, or pilot stage; whereas the

target stage, which represents the projected matured technology, is defined as either the fab-early or fab-mature stage. In addition, the definition

of technology maturity encompasses the definition of the temporal coverage in terms of the base year and the target year of modeling and the

definition of themanufacturing dimensions or product sizes of the current and target stages.
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WEYAND ET AL. 5

F IGURE 2 Generic technology scale for the definition of themodeled development stages illustrating the schematic dependency of the
intensity of technologymaturity, knowledge, and uncertainty on the five generic development stages (as summary and extension of Arvidsson
et al., 2017; Bergerson et al., 2020; Grübler, Nakićenović, and Victor 1999; van der Hulst et al., 2020; National Aeronautics & Space Administration
(NASA), 2007; USDoD, 2015), more details are available in Table S3 of the Supporting Information S1).

2.2 Step II—Upscaling Leap: Selection of upscaling mechanisms for describing the leap from current to
target stage

Upscaling mechanisms are the key drivers of the scenarios or the descriptors of the upscaling leap from the current to the target stage.

These mechanisms are specified for FunMats based on thorough literature research and exchange with technology developers, aiming to select

predefined development pathways consistently, transparently, and without additional extensive research. Therefore, we focus on the following

upscalingmechanisms.

2.2.1 Generic upscaling mechanisms for FunMat

Focusing on the upstream life cycle processes, including rawmaterial processing andmanufacturing of emerging FunMats, we discern three general

upscaling mechanisms: changes in the (A) manufacturing processes, (B) materials, and (C) external developments. Whereas (A) and (B) belong to

changes in the foreground system, (C) depends on background system’s changes. The characteristics of each upscaling mechanism are summarized

in Figure 3 and as follows:

A. Process learning subsumes innovations regarding themanufacturing processes.

A-1 Technological learning reflects changes in the type of manufacturing processes from the current to the target stage. Accordingly, the

manufacturing equipment changes in the type and requires mapping from current to target stage equipment. Furthermore, the change in

manufacturing processes can occur between any development stage, from lab to fab-early (Figure 3).
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6 WEYAND ET AL.

F IGURE 3 Schematic illustration of the scope of the upscalingmechanisms concerning a specific “leap” from one to another generic
development stage for the upscaling of emerging FunMat-based technologies. Legend: orange arrows, possible leap of the process learning
modules; blue arrows, possible leap of thematerial learningmodules; purple arrows, possible leap of the external developments module; red star,
change of material system is always related to a conceptual change, resulting in a new life cycle assessment.

A-2 Size scalingdisplays the size effect resulting fromthe improvementsdue to the increaseof themanufacturing size fromcurrent lab samples

in square centimeters to target mass-produced modules in the square meter range. This mechanism can be applied at each development

stage for upscaling from general conceptual to fab-mature or in between (Figure 3) if the respective manufacturing equipment changes

only in size but not type.

A-3 Industrial learning incorporates efficiency increase due to the experience gained fromdaily routines at production sites of industrial man-

ufacturing, the so-called experience effect (Abell & Hammond, 1979). Accordingly, industrial learning occurs only between fab-early and

fab-mature (Figure 3).

B. Material learning subsumes innovations regarding the material system, including the related raw materials, and is intimately linked to the

natural science-based development process of novel materials.

B-1 Change of material system results in a conceptual change of the entire considered product system independently of the current stage.

One example would be the change from a dye sensitized to a PSC, which corresponds to a new technology system and thus requires an

entirely new LCA.

B-2 Choice of input materials encompasses the optimization of material systems in terms of change of single input materials (e.g., the

substitution of lead by tin in PSC or the change of substrate material from glass to plastic).
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WEYAND ET AL. 7

B-3 Optimization of input materials involves minimizing material inputs by either directly reducing production losses or recycling production

waste.

C. External developments subsume innovations resulting from the external progress of the background system over time.

C-1 Incremental learning of the background system includes, for example, efficiency gains during the extraction of rawmaterials or transition

of the energy system to renewable technologies.

2.2.2 Selection of the upscaling mechanisms

At the start of the upscaling, the upscaling leap from the current to the target stage preselects the relevant upscaling mechanisms using Figure 3.

Then, the final upscaling mechanisms are selected considering the following three options: (1) all preselected upscaling mechanisms, (2) focus on a

single upscaling mechanism, for example, the main contributor at the current stage, (3) interactions between the upscaling mechanisms, for exam-

ple, the manufacturing process depends on the choice of materials, and, thus, a combination of the process and material learning mechanisms is

necessary.

2.3 Step III—Upscaling Model and Data: Implementation of upscaling—modeling of upscaling modules for
process learning

In Step III—Upscaling Model and Data (Figure 1), the implementation of upscaling takes place. To this end, we focus on the three upscaling mod-

ules (AM-1–3) of the process learning mechanism, introduce their general upscaling methods and explain the associated additional data collection

processes compared to conventional LCI.

2.3.1 AM-1 Technological learning module “mapping of technologies”

According to van der Hulst et al. (2020), the modeling method of this module includes learning “from existing industrial processes through an anal-

ysis of functions, dimensions, and similarities.” Therefore, a qualitative mapping from the current manufacturing process to the target counterpart

is recommended for implementing technological learning based on comprehensive research of technical literature and patents. Furthermore, the

quantitative implementation of this module can be done according to the size scalingmodule (see below).

2.3.2 AM-2 Size scaling module “equipment scaling”

For the mathematical implementation of the size effect, we translate the two published models of Kawajiri et al. (2020) into the assumption that

the energy demand of a manufacturing process and the power demand of the respective equipment will decrease per manufactured square meter

by increasing manufacturing size of the FunMat from current to target stage. Accordingly, for implementing the size effect, the empirical data sets

of the two technical parameters, nominal power and maximum manufacturing area of respective equipment, need to be collected from technical

data sheets and product specifications of respectivemanufacturing equipment. Themodeling is based on the two scaling parameters, scaling factor

b and scaling coefficient c. Both scaling parameters are derived from the log-form relationship between the two technical parameters using the

ordinary least square regressionmethod. For FunMat, we adjust the twomodels as follows and use Equations (1)–(3) to project the energy demand

permanufactured area at the target stage.

Model 1 is referred to as empirical scaling since only empirical data of the manufacturing processes and respective equipment is used. Here, the

power demand Pit per manufacturing process i at the target stage t is calculated based on Equation (1), where bj, cj stand for the scaling factor and

coefficient of the respective equipment j and Sit for the equipment capacity of themanufacturing process i in terms of themanufacturing area at the

target stage t:

Model 1: Empirical scaling:

Pit = cj ⋅ Sit
bj (1)

In contrast, Model 2 is referred to as individual scaling since individual data measured at the current stage is integrated into the calculation of P

according to Equation (2). Here, Pit, Sit, bj, and cj are used as in Equation (1), and Pi0 stands for the measured power demand of each manufacturing

process i and Si0 for themanufacturing area at current stage 0:

 15309290, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jiec.13394 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [21/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

39



8 WEYAND ET AL.

Model 2: Individual scaling:

Pit = Pi0 ⋅
(
Sit
Si0

)bj

(2)

Finally, the power demands Pi at the target stage t are used to calculate the resulting energy demand using Equation (3):

Et_total =
n∑
i=1

Pit ⋅ tpit (3)

where Et_total is the total upscaled energy demand at target stage t, Pit the power demand and tpit the processing time at target stage t per

manufacturing process i.

This upscaling module uses empirical data based on historical findings. In many cases, this data is helpful since similar equipment is provided in

most labs. However, historical findingsmight bemissing in the case of newmanufacturing processes; thus, this upscalingmodule cannot be applied.

2.3.3 AM-3 Industrial learning module “experience in industrial manufacturing”

Based on production-site-specific data, the standard methods of the experience concept can be applied, as shown in Bergesen and Suh (2016) and

Louwen et al. (2016). For emerging technologies, there is usually no data from mass production. For the sake of completeness, this module is vital

to mention here. The implementation of this module can be done qualitatively, or the effect of industrial learning can be studied based on general

information on industrial learning of related technologies and applied to emerging technologies.

3 CASE STUDY: UPSTREAM GHG EMISSIONS OF PSC FROM LAB TO FAB

The goal of the case study is to present the application of UpFunMatLCA by upscaling the GHG emissions of PSC samples manufactured at the

lab (current stage) but projected and evaluated as fab PV material (target stage). In particular, the extra data collection processes to fill the three

upscalingmodules AM-1–3with data are demonstrated.

3.1 Case study description

The PSC samples selected were manufactured as part of the material development of the Surface Science Group of the Technical University

of Darmstadt, aiming for the optimization of PSC’s performances to the physical optimum (Dachauer et al., 2019; Mortan et al., 2019, 2020;

Wittich et al., 2018). They represent a typical PSC device, including several FunMats and manufacturing processes (Figure 4) commonly used in

many research labs (Chen et al., 2017). The modeled life cycle of PSC samples as the product system, divided into upstream, operation, and down-

streamprocesses, is illustrated in Figure 4. As the systemboundary, we focus on upstreamprocesses. Therefore, key performance parameters, such

as the efficiency necessary to model the use phase, are not considered. Accordingly, as recommended byWeyand et al. (2019), the functional unit

is defined as “1m2 manufactured PSC area.” The inventory data of the foreground system is generated from primary data collection for the current

stage. For the target stage, the inventory is modeled based on the developed upscaling modules (see later). Data from literature and GaBi Profes-

sional (version: SP36, 2018) substitutes missing foreground data. The LCA database ecoinvent (version 3.7.1 cut-off) is used as background data.

The GHG emissions are reported in kg CO2-eq using the characterization model and factors of the Global Warming Potential for 100 year time

horizon (GWP100) from the Intergovernmental Panel on Climate Change (IPCC) (2013).

Furthermore, we distinguish the resulting GHG emissions into the material-embedded and processing energies related emissions to investigate

the hypothesis that the processing energy is themain contributor to the GHG emissions of lab-scaled PSC samples.

3.2 Developed upscaling scenarios

Using UpFunMatLCA, three upscaling scenarios are generated, including the current and two target stages. Each step of the scenario generation

(Steps I–III) is summarized in Table 1 using the documentation template of UpFunMatLCA. The extra data collection processes of the three applied

upscalingmodules (AM-1, AM-2, and AM-3) to the conventional LCI are explained in the following.
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WEYAND ET AL. 9

F IGURE 4 Product system of the selected perovskite solar cell samples at the status quo (extended fromWeyand et al., 2019), differentiated
into (1) foreground (white filled boxes) and background processes (grey filled boxes), (2) considered (black border) and unconsidered (grey dashed
border) upstream, operation and downstream processes. The colored arrowsmark the involvement of the upscalingmechanisms. Elementary
flows aremarked by italic font.

3.2.1 AM-1 Mapping of technologies

For this upscaling module, we conducted patent and literature research. However, only the literature review provided relevant data for the tech-

nological mapping. In addition, the patent review included only scattered data on futuremanufacturing processes. Table 2 summarizes themapping

results from the current to target stage manufacturing processes. There are several target manufacturing processes with related equipment from

which onemust be selected. The patent and literature review are available in Supporting Information S2, Tabs “AM1[. . . ].”

3.2.2 AM-2 Equipment scaling—empirical and individual

For developing this upscalingmodule, two types of data were used:
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10 WEYAND ET AL.

TABLE 1 Key characteristics of the three generated upscaling scenarios using UpFunMatLCA.

Current stage Target stages

Step I—Upscaling Definition

Name GLab (baseline) GFabE GFabM

General description Status quo: PSC samples

manufacturedwith a size of

20× 20mm2 in lab surroundings;

primary data was collected during

labmanufacturing of 20 PSC

samples in total over the period

from 2016 to 2020.

The cell architecture with

corresponding layer FunMats and

manufacturing processes is

illustrated in Figure 4.

Prospective 1: Aims for the

demonstration of the size scaling

module, thus, increasing

manufacturing size from

20× 20mm2 to 5m2; same layer

FunMats, samemanufacturing

processes used as at status quo.

2030 is assumed asmarket

introduction year of PSCmaterials

with lowMPL (<50%).

Prospective 2: Aims for the

demonstration of all three process

learning upscalingmodules, thus,

increase of manufacturing size

from 20× 20mm2 to 5m2; same

layer FunMats, new prospective

manufacturing processes, mass

production.

2050 is assumed as the year with

MPL> 50%.

Generic development stage Lab Fab (early) Fab (mature)

Temporal coverage 2020 2030 2050

Manufacturing dimensions 20× 20mm2 5m2 5m2

Step II—Upscaling Leap

Selected upscaling

mechanisms (details to

preselection are shown in

Figure S4, Supporting

Information S1)

None A-1 Technological learning

A-2 Size scaling

A-1 Technological learning

A-2 Size scaling

A-3 Industrial learning

Step III—Upscaling Data andModel

Modeledmodules (description

see below)

None AM-1Mapping of technologies

(Figure 4, Table 2)

AM-2 Equipment scaling—individual

(Supporting Information S2, Tabs

“AM2[. . . ]”)

AM-1Mapping of technologies

(Figure 4, Table 2)

AM-2 Equipment scaling—empirical

(Figure 5)

AM-3 Experience inmanufacturing

I. Over 250 empirical data sets to derive regressionmodels of the six manufacturing processes (Table 1) for applying both the empirical (Model 1,

Equation 1) and individual scaling (Model 2, Equation 2);

II. LCI data of the status quo for the individual scaling (Model 2, Equation 2).

Figure 5 provides the upscaling module, “AM-2 Equipment scaling—empirical,” including the regression models (Figure 5a) and corresponding

data with model accuracy evaluation of the six manufacturing processes (Figure 5b). For five manufacturing processes, the model accuracy results

in a good tomoderate application of this upscalingmodule. Only themodel of spray coating is not in compliancewith the set data quality. Here, R2 is

below0.3, whichmeans that themanufacturing area does not describe the course of the power demand from lab to fab and, thus, that no statement

can be made about the development of the power demand via the manufacturing area (see Supporting Information S2, Tabs “AM2[. . . ]” for more

details on the data quality and model accuracy evaluation). There are three possibilities for modeling the spray coating process in GFabE: (1) using

the upscaling model despite the low accuracy of the upscaling data, (2) linearly scaling using the collected lab data, or (3) excluding this process

due to a lack of representative data. All three cases increase the uncertainty. In (1), the consistency and scenario uncertainty is reduced due to the

modeled fab scale, but the parameter uncertainty increases due to the non-representative upscaling data. In (2) and (3), the scenario and parameter

uncertainty increase due to the linear scaling of the lab data and the lack of representative upscaling data, respectively. Therefore, the impacts of

the spray coating on the results should be investigated. In our case, we assessed the impacts using a sensitivity analysis and found that the effects

of the spray coating are negligible for the three modeling ways, with less than 1%. The detailed results of the sensitivity analysis are summarized in

Table S5 of the Supporting Information S1.

The upscaling module “AM-2 Equipment scaling—individual” is provided in the Supporting Information S2. In addition, all empirical data sets,

derived regression models, scaling parameters, model accuracy evaluation, and collected individualized data are available in the Supporting

Information S2.
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12 WEYAND ET AL.

F IGURE 5 Upscalingmodule “AM-2 Equipment scaling—empirical”: (a) Regressionmodels divided into deposition andmaterial conversion
property processes; (b) upscaling data including scaling parameters and accuracy evaluation permanufacturing process/equipment. The detailed
regressionmodels and their model accuracy evaluation are available in the Supporting Information S2, Tab AM2-Upscalingmodule.

3.2.3 AM-3 Experience in manufacturing

For PSC, no mass production data is available. Therefore, we use experience rates from commercial PVs (Louwen et al., 2016). Here, for matured

first-generation PV , mono- and multicrystalline silicon solar cells, experience rates of the manufacturing demands derived from over 40 years of

development indicate reductions of the GWP by 17%−24% (Louwen et al., 2016). This data can be assumed to be a gross estimate for the mass

production of emerging PVs in 2050. To this end, the averaged experience rates of GWP of 20% are implemented into this upscalingmodule.

3.3 Prospective upstream GHG emissions from lab to fab

The prospective upstreamGHGemissions using UpFunMatLCA are shown in Figure 6. Figure 6a shows the results of the three upscaling scenarios,

GLab, GFabE, andGFabM, and compares themwith literature data as validation. GLabwith 490 kg CO2-eq/m
2 is in themiddle of other LCA results,

which assessed PSC at the lab scale. GFabEwith only applied size scalingmodule results in a reduction of 59% for the increasedmanufacturing area

of 5m2 and lies between the pilot and fab scale LCA results. GFabM, including all three process learning modules, lies in the range of the three LCA

studieswith projected fab scale PSCs. In contrast to our case study, these three studies allowonly the evaluation of a single fixed target stage, which

(1) partly included prospectivematerials and processes for commercial fabrication, but was then filled with data from the lab (Celik et al., 2016), (2)

dismissed and reduced materials to “those strictly necessary to assemble the module” (Alberola-Borràs et al., 2018), or (3) used lab materials and

manufacturing processes taken from PSC literature but calculated the energy demand of manufacturing processes “with (. . . ) typical commercially
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WEYAND ET AL. 13

F IGURE 6 Projection of the upstream greenhouse gas emissions of the selected perovskite solar cell samples from lab to fab (a) course of the
greenhouse gas (GHG) emissions permanufacturedm2 of the status quo and the two upscaled scenarios, comparedwith harmonized literature
results averaged per study and classified technology scale, (b) resulting GHG emissions of GLab, GFabE, and GFabM andmain contributions of the
layer FunMats andmanufacturing processes. Underlying data for Figure 6 are available in the Supporting Information S3.

available equipment” (Gong et al., 2015). Even though these studies include upscaling methods similar to UpFunMatLCA, they do not allow the

evaluation of the way from a current to a target stage and the flexible integration of possible junctions during technology development.

In contrast to the literature results, the application of UpFunMatLCA enables the evaluation of the various development pathways and the flexi-

ble and transparent inclusion of possible junctions, such as the change of manufacturing processes. Figure 6a also illustrates the course of the GHG

emissions representing the development pathway from lab (S< 0.1m2) to fab (S> 1m2) and the single effects of the three applied process learning

modules. Applying the size scaling and industrial learning modules result in continuous reductions. For size scaling, the reduction increases with

increasingmanufacturing area. Comparing the current and target stages shows reductions permanufacturedm2 of 18% for a targetmanufacturing

area of 0.1 m2, 52% for 1m2, and even 59% for the definedmanufacturing area of 5m2. Technological learning results in a discontinuous reduction

as soon as amanufacturing process change occurs. In our case, GFabM includes the change to slot die coating as a depositionmethod, which occurs

at the transition to commercial fabrication and results in a reduction of GHG emissions by 85% compared to GLab and 63% compared to GFabE.

Figure 6b confirms the hypothesis that the processing energy with 87% is the main contributor to GHG emissions at the current stage and

shows the correlation between the processing energy and theGHGemissions. TheGHGemission reductions result exclusively from the reductions

of the processing energies due to the application of the process learning modules. The high share of fossil fuels in the energy supply of the back-

ground systemcanexplain this correlationbetweenprocessing energy andGHGemission. This correlation is expected to change in futuredue to the

decarbonization of the energy system.However, this change is out of the scope of our case study andmight bemodeledwith the inclusion of upscal-

ing mechanism (C) as discussed below. The material-embedded GHG emissions play a minor role at the current scale. However, these emissions

become more relevant with a more realistic estimation of the processing energy, as shown for GFabE and GFabM. Here, the share of the material-
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14 WEYAND ET AL.

embedded impacts increases to 30% and 85%, respectively. Accordingly, the impacts of the materials become pivotal, and the extension of the

material learning upscalingmodule is necessary. Similar correlations are expected for other impact categories such as International Life Cycle Data

System (ILCD) midpoint 2011, human toxicity or freshwater ecotoxicity (European Commission, Joint Research Centre, Institute for Environment

& Sustainability, 2012), as discussed inWeyand et al. (2019).

In contrast, tradeoff categories, such as ILCD midpoint 2011, resource depletion—mineral and fossil (European Commission, Joint Research

Centre, Institute for Environment & Sustainability, 2012), might be unaffected by high processing energies. Here, characterization factors of the

mineral resources such as silver or gold aremuch higher than those of fossil resources. However, the tradeoff evaluation is part of furtherwork and,

thus, out of the scope of our case study.

4 DISCUSSION

The benefit of UpFunMatLCA is threefold. First, it is clearly focused on evaluating the technology maturity of a specific group of emerging tech-

nology, the FunMat-based energy technologies. Thus, UpFunMatLCA contributes to precise terminology in LCA of emerging technologies and the

guidance of technology development using upscaling scenarios. Moreover, it can be combinedwith other effects that require other methodological

approaches in prospective LCA, notably withmarketmaturity (Bergerson et al., 2020). Second, UpFunMatLCA is comprehensive in the sense that it

predefines development pathways in terms of upscaling mechanisms relevant to the specific technology group of emerging FunMat-based energy

technologies. It offers a structured and transparent way to develop upscaling scenarios for prospective LCA and get first insights of the projected

technology, specifically of emerging FunMats, even for LCA practitioners without precise knowledge of the FunMat to be modeled or technology

developerswith basic LCA knowledge. Despite this, we always recommend the cooperation of both experts to conduct LCAs on emerging technolo-

gies. Third, the transparent allocation of upscaling modules to upscaling mechanisms enables transparency and flexible use and advancement of

UpFunMatLCA during technology development. For example, for emerging FunMat, we showed the key mechanism of process learning and intro-

duced upscaling modules to evaluate the GHG emissions more representatively. In addition, the upscaling mechanisms can be extended by other

life cycle phases, such as the use and end-of-life phase.

4.1 Generalization and limitations of UpFunMatLCA

UpFunMatLCA is generally applicable for LCAs on FunMats, not only on PSC, but also on other emerging technologies since these LCAs face the

four similar challenges as those presented for PSC: (1) lab-stage processes representing fab-stage, (2) testing of various materials to find physical

optimum, (3) missing data as shown for FunMats in Smith et al. (2019), and (4) processing energies or manufacturing processes representing the

main contributor to environmental impacts as shown for the case studies on piezoelectric ceramics (Ibn-Mohammed et al., 2016), capacitors (Smith

et al., 2018), or fuel cells (Kawajiri & Inoue, 2016) as examples. These challenges are also present for other emerging materials such as nanomate-

rials (Hetherington et al., 2014) or biochemicals (Ögmundarson et al., 2020a), or emerging technologies in general (Thonemann et al., 2020; Tsoy

et al., 2020). Even though nanomaterials come from a novel scientific field with emerging manufacturing processes, completely novel materials,

and unknown environmental implications (Simon et al., 2016), parts of UpFunMatLCA are still generally applicable to generate upscaling scenarios

considering the following limitations.

The upscaling definition (Step I, Figure 1) and upscaling leap (Step II, Figure 1) could generally be used to define the current and target devel-

opment stage and to identify the key factors in terms of upscaling mechanisms. However, some materials or technologies require extensions of

Figure 3 in terms of additional upscaling mechanisms or modules. The same applies to the implementation of the upscaling model and data (Step

III, Figure 1). For example, the equipment scaling might be replaced by another module for upscaling the manufacturing of emerging biochemicals

(Ögmundarson et al., 2020b), for which quantitative process simulations using software, such as ASPENPLUS®, are commonly used for size scaling

of bioreactors rather than empirical data of manufacturing equipment. Another example relates to the abovementioned embeddedmanufacturing

processes of our upscaling modules. Standard processes such as annealing or sintering can be easily upscaled using our data, regardless of the Fun-

Mat or emerging technology. However, some FunMats, such as piezoelectric ceramics or capacitors, require additional manufacturing processes,

such as ball milling (Ibn-Mohammed et al., 2016) or calcining (Smith et al., 2018), which are not included in our upscaling modules. Accordingly,

these processes must be supplemented in the same way as presented above for the two upscaling modules, technological learning and size scaling.

After that, bothmodules can be easily applied to further FunMats or emerging technologies.

Besides the modeled process learning modules, the material learning and impacts resulting from the materials are relevant to prevent uninten-

tional tradeoffs to other impact categories such as toxicity or resource depletion. For this purpose, future research should include the upscaling

modules of material learning as proposed in our study.

In addition, the upscaling module of the external development of the background system should be included. This module is not exclusively

related to FunMats; thus, existing models and data can be used. For example, the PREMISE approach of Sacchi et al. (2022) enables the modeling
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WEYAND ET AL. 15

of prospective background databases by combining integrated assessment models, including the shared socioeconomic pathway scenarios, with

common LCA background databases.

4.2 Position relative to previous literature

UpFunMatLCA can be classified into the context of the technology maturity in contrast to the market maturity and represents an important con-

tribution to the development of structured guidelines for the cooperation of LCA practitioners and technology developers, particularly formaterial

scientists, as called for in Bergerson et al. (2020). Above this, UpFunMatLCA contributes to the specifications of general frameworks on LCA of

emerging technologies such as van derHulst et al. (2020), Thonemann et al. (2020) and Tsoy et al. (2020) and represents amerge and harmonization

of several upscalingmethods, particularly of Kawajiri et al. (2020) and Piccinno et al. (2016).

The general framework of van der Hulst et al. (2020) is specified regarding selecting upscaling mechanisms and modeling these mechanisms

using the introduced upscalingmodules, particularly for emerging FunMats. In this context, we decided to distinguish betweenmaterial and process

learning mechanisms instead of using a chronological distinction of technology maturity from low to high. This distinction enables the focus on key

mechanisms suchasprocess learning,which focuseson themain environmental impacts resulting fromtheprocessing energies of lab-manufactured

FunMats.We also concretized the suggestedmodelingmethods permechanisms bymodeling the introduced upscalingmodules, which are applica-

ble directly in the LCI of prospective LCAs. Similar to van derHulst et al. (2020), wemerged differentmethods fromprevious literature formodeling

the upscaling modules; worth mentioning here are size scaling, as shown in Kawajiri et al. (2020) and Caduff et al. (2014); technological learning as

shown for chemical processes in Piccinno et al. (2016) and industrial learning as shown in Louwen et al. (2016) and Arvesen et al. (2018).

Like Tsoy et al. (2020), we discern three upscaling steps in UpFunMatLCA. Tsoy et al. (2020) derived these steps from the review of ex ante

case studies and focused on the target or referred to there as the “projected” stage. Their upscaling steps give a good overview of available and

applicable data estimation methods. A decision tree guides the LCA practitioner to the most suitable method depending on the research question

of the emerging technology to be assessed. In contrast, our three steps were derived from and specified for the case of emerging FunMats aiming

to model both the current and target stage and the direct implementation into standard LCA practice. To this end, we predefine the modeler’s

decision regarding the data estimation method and provide finalized upscaling modules filled with data directly applicable in LCAs on FunMats but

also on other emerging technologies, as discussed above. Furthermore, these upscalingmodules represent a specification of the four-step approach

of Thonemann et al. (2020) regarding the definition of the assumptions made for upscaling from the current stage (" lab-scale") to the two target

stages proposed there, " best-case" and " scaled" for PVs based on PSC.

4.3 Implication of UpFunMatLCA and future studies

The integration of UpFunMatLCA into themethodology of LCAs is a vital way to assess the future chances and risks of an explicit group of emerging

technology, that is, emerging FunMat-based energy technologies from an early development stage on, despite contradictory requirements of high

uncertainties and room for maneuvering in terms of freedom of design. The UpFunMatLCA presents a structured way to integrate likely future

development pathways into prospective LCA and gain meaningful information on these developments’ environmental impacts. These potential

impacts provide essential insights for future research by indicating possible levers of environmentally friendly technology progress. Therefore,

the comparison with benchmarks is not seen as a final exclusion criterion for emerging technology but rather as an indicator that if the emerging

technology develops in this way, it is highly likely to present the following chances or risks compared to a mature counterpart. The development

of similar uniform schemes is also essential for other technology groups to increase comparability and support the comprehensiveness of the LCA

results on emerging technologies compared tomature technologies. UpFunMatLCA provides an important example to concretize the development

of upscaling scenarios for other technology groups.
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4 Are perovskite solar cells an environmentally sustainable emerging energy

technology? Upscaling from lab to fab in life cycle assessment,

This chapter contains Publication 3, Weyand et al. (2023b):

Weyand S, Kawajiri, K., Mortan, C., Zeller, V., Schebek L. Are perovskite solar cells an

environmentally sustainable emerging energy technology? Upscaling from lab to fab

in life cycle assessment. ACS Sustainable Chemistry & Engineering, DOI: 10.1021/ac-

ssuschemeng.3c03019.

The full article is available at: 10.1021/acssuschemeng.3c03019 or use QR code.
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5 Discussion

This chapter synthesizes the three publications regarding key findings, contributions and rec-

ommendations of the novel upscaling methodology for future research. Figure 5.1 illustrates

the application area of the developed methodology and frames it relative to recent research

trends. Finally, implications for decision-makers and limitations are discussed.

Figure 5.1: Upscaling levels for framing the novel methodology of this thesis relative to recent
research trends (Level 3): Level 1: Illustration of the UpFunMatLCA application area
(Publication 2, Weyand et al. (2023a)) with summary and temporal coverage of
the collected LCI and upscaling data (Publication 2 and 3, Weyand et al. (2023a),
Weyand et al. (2023b)), Level 2: Upscaling scenarios of the PSC case study assessed
in (Publication 2 and 3, Weyand et al. (2023a), Weyand et al. (2023b)), Level 3: LCA
terminology according to Arvidsson (2023) (*Ref),

5.1 Summary of the key findings

In this thesis, a novel structured methodology for a clear, transparent, and comprehen-

sive integration of upscaling into prospective LCA was developed. First, it focuses clearly

on evaluating the environmental performance of a specific group of emerging technology, the
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FunMat-based energy technologies considering the status quo and future prospects. Further-

more, the term upscaling is clearly defined, and key parameters (KEYPs), key indicators

(KEYIs), and generic technology scales are introduced to foster transparent cooperation with

technology developers. Second, the novel methodology is comprehensive in the sense that

it predefines development pathways in terms of upscaling mechanisms relevant to the specific

technology group of emerging FunMat-based energy technologies. Third, it provides a struc-

tured and transparent allocation of upscaling modules to upscaling mechanisms to apply and

adapt upscaling in a flexible way as technology development progresses.

The following novel methods are part of the novel upscaling methodology and evolved

from the three publications (sorted in chronological order):

1) Meta-analysis approach for the systematic review and harmonization of the envi-

ronmental performance of emerging FunMat-based energy technologies (Chapter 2,

Publication 1, Weyand et al. 2019): A clear set of KEYIs, KEYPs, and key modeling as-

sumptions (KEYAs) was introduced for the systematic review and the harmonization of

the LCA results in terms of the KEYIs. Two key methodological findings were drawn from

this publication: First, the functional unit is a KEYA that can be harmonized to evalu-

ate the environmental performance of emerging PVs and compare them with commercial

benchmarks. For this comparison, we recommended using the functional unit of an av-

erage 1 kWh generated electricity during the lifetime of PV technologies and introduced

a mathematical procedure for harmonizing the environmental performance accordingly

(Chapter 2, Table 3). Second, the technology scale is a KEYA that cannot be harmonized

retrospectively in meta-analysis but prospectively in LCA studies by integrating upscaling

steps into the modeling, as shown in Chapter 3.

2) UpFunMatLCA for harmonizing the technology scale and upscaling the environmen-

tal performance of emerging FunMat-based energy technologies (Chapter 3, Pub-

lication 2, Weyand et al. (2023a)): UpFunMatLCA is a novel systematic scheme for

generating explorative upscaling scenarios based on predefined development pathways,

including status quo developments. It follows a three-step approach to upscale emerging

FunMat-based energy technologies in prospective LCA (Figure 5.1). A core part of UpFun-

MatLCA is the so-called upscaling module, providing specific modeling methods and data

for the upscaling of FunMats.

3) PSC-LCI-Database for evaluating the environmental performance of emerging

and upscaled FunMat-based energy technologies (Chapter 4, Publication 3,

Weyand et al. (2023b)): The PSC-LCI-Database provides a comparable foundation of

the predefined development pathways for generating upscaling scenarios. It includes

over 200 data sets, primary data of the PSC’s manufacturing processes, layer materi-

als, and deposition methods measured during lab manufacturing and based on leaching

experiments, secondary data for modeling the technological learning and the size scal-
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ing depending on the manufacturing area, and secondary data of PSC literature with

harmonized background data.

4) Environmental break-even time (e-BET) for interpreting the environmental perfor-

mance of possible future FunMat-based energy technologies (Chapter 4, Publication

3, Weyand et al. (2023b)): e-BET was introduced to indicate how likely the environ-

mental sustainable PSC’s deployment will be in future as an example of an emerging

FunMat-based energy technology. Remarkably, this indicator is practical for PSC, as life-

time is currently the most significant uncertainty in its assessment. Using e-BET, it was

possible to calculate what lifetime PSCs would have to achieve to keep up with commercial

benchmarks.

5.2 Contributions

This thesis provides the following two significant contributions:

• UpFunMatLCA is a pioneer for upscaling a specific technology group

• Transparency of the technology maturity and upscaling for proper interpretation of

prospective LCAs

5.2.1 UpFunMatLCA is a pioneer for upscaling a specific technology group

So far, implementing upscaling in prospective LCAs has been done case-specific (Celik et al.

2016, Kawajiri & Inoue 2016, Piccinno et al. 2016) or at a general level (Tsoy et al. 2020, van

der Hulst et al. 2020). One has led to using single upscaling methods, which makes upscaling

challenging to follow, and the comparability of results is not given, as shown in Publication 1,

Weyand et al. (2019). The general approaches to modeling technology development are ben-

eficial for structuring prospective LCAs, but the results are not comparable because each study

uses its own data, methods, etc. This is where UpFunMatLCA comes in, as it breaks down gen-

eral techniques for a specific technology group, the FunMats, and stores them with data so that

upscaling is structured and based on a comparable data basis and methods. Therefore, UpFun-

MatLCA represents a pioneer for upscaling a specific technology group in prospective LCA. The

adaptation of UpFunMatLCA to other technology groups is essential to increase comparability

and support the comprehensiveness of the LCA results on emerging technologies compared to

benchmarks. UpFunMatLCA is structured so that it can be easily transferred to other technology

groups. To this end, the upscaling mechanisms and upscaling modules need to be adjusted to the

requirements of different technologies. UpFunMatLCA provides a vital example to concretize

the development of upscaling scenarios for other technology groups.
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5.2.2 Transparency of the technology maturity and upscaling for proper interpretation

of prospective LCAs

This thesis contributes significantly to the transparency of 1) previous LCA studies of emerging

PVs regarding the assessed technology scale, 2) the interpretation of future LCAs applying Up-

FunMatLCA.

In Publication 1, Weyand et al. (2019), the meta-analysis attributed the significant discrepancy

between the LCA results of different emerging PVs and within one PV technology, particularly

PSC, to the technology maturity underlying the assessment. However, most case studies were

not transparent regarding the assessed technology‘s maturity. Therefore, each case study was re-

viewed, and the classification of the technology maturity was implemented based on the study’s

content in Publication 1, Weyand et al. (2019). This classification of the technology maturity

or reporting of the development stage is reasonable since the technology maturity impacts the

results, as shown in Gavankar et al. (2015).

In Publication 2, Weyand et al. (2023a), UpFunMatLCA was developed that allows the specifica-

tion of the development stage and the harmonization of the technology maturity transparently

using upscaling scenarios. Three essential elements of UpFunMatLCA contribute to the trans-

parent modeling in future studies:

1) Definition of the status quo and upscaled development stage, referred to as current and tar-

get stage.

2) Selection of relevant upscaling mechanisms for FunMats that summarizes the key drivers of

the technology development of FunMats.

3) Modelled upscaling modules, including the upscaling methods and data for use in LCI. This

transparent modeling, combined with the developed documentation template (6), allows the

reader to understand and comprehend the upscaling assumptions quickly. In addition, this

transparency on the upscaling assumptions enhances the understanding of the LCA results for

various audiences by combining the language of LCA practitioners and material scientists.

5.3 Position relative to recent research trends

The recently published typology of Arvidsson (2023) is beneficial for framing the developed

upscaling methodology of this thesis relative to the recent research trends (Figure 5.1).

This typology of Arvidsson (2023) includes the three dimensions: Positionality, maturity, and

causality. In particular, the first two are similarly used in Publication 2, Weyand et al. (2023a),

Figure 2. Instead of positionality, we referred to “development/ time” to differentiate between

the emerging technology’s current status quo and the target stage as the future, more-developed

phase. Arvidsson (2023) supplements this with the time perspective past. The retrospective is

useful for illustrating the temporal coverage of the upscaling data in this thesis, partly based on

historical for industrial learning or empirical data for size scaling (Figure 5.1).
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As maturity from TRL low to high, we use “technology maturity”, meaning the same but classify

it differently. As shown in Figure 5.1 and Publication 2, Weyand et al. (2023a), Figure 2, the

technology maturity was aggregated into five development stages. The three stages – concep-

tual, lab, pilot – describe the emerging technology’s status quo, and the two stages – fab-early

and fab-mature - refer to the point around the market breakthrough and dissemination. To this

end, to classify the dissemination phase, the TRLs had to be combined with the two classifica-

tion schemes: manufacturing readiness (MRL) and market penetration levels (MPL).

The last dimension, causality, considers the LCA mode or LCA modeling way between attribu-

tional and consequential LCA modeling (Arvidsson 2023). Besides the different modeling ways,

this dimension differentiates between time-integrated, all data and environmental impacts have

the same time stamp, and time-resolved, different time stamps are included in the assessment.

As described in the introduction, both modeling ways can be combined with the developed up-

scaling methodology (see 5.1). The distinction between time-integrated and time-resolved data

is further discussed in the limitation of this thesis.

Furthermore, with the updated prospective LCA definition (Arvidsson 2023), “ex-ante” and

“prospective” can be more clearly distinguished. Ex-ante assesses a current emerging technol-

ogy at a future point when it is mature (van der Giesen et al. 2020), and thus, is part of a

prospective LCA. Broadening the prospective LCA term is also beneficial for framing the devel-

oped UpFunMatLCA-scheme (Figure 5.1) as its scope is not limited to ex-ante, but generally

covers future developments. Therefore, the broad definition of prospective is still more appro-

priate than ex-ante for applying UpFunMatLCA. Even though ex-ante now seems more suited to

characterize the assessment of emerging technologies at a higher maturity.

In distinctions to these terms, we also generated and assessed the three upscaling scenarios –

GFabE, GFabM, and GFabM+ML (Figure 5.1) - focussing solely on changing technology maturity

based on contemporary data thus, did not consider prospective or ex-ante in the classical sense.

Arvidsson’s typology helps illustrate the different dimensions of assessing emerging technolo-

gies and transferring them for upscaling. However, the question remains about how to describe

the upscaling of technological maturity, as ex-post is not the correct term. As suggested Figure

5.1, extending ex-ante would be a way of not throwing more terms into the “LCA soup”, follow-

ing Guinée et al. (2018). Ex-ante would stand here to describe a future situation based on data

from the present.

5.4 Recommendations for future research

Table 5.1 summarizes the findings from this work as recommendations for future LCA studies

of FunMats. Both status quo and future assessments are included there. Based on the research

question, there are different requirements for the goal and scope definition. Table 5.1 also

provides recommendations on when and what upscaling mechanisms and data are required.
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Table 5.1: Recommendations on the goal and scope definition of future LCA studies of FunMats
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Table 5.2: Recommendations on the goal and scope definition of future LCA studies of FunMats
(continued)
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5.5 Importance for decision-making

The developed upscaling methodology aims to accompany and advance emerging FunMat-

based energy technologies from an environmental perspective and supports the following

decisions during technology development:

1) The main target group is the material scientists, scientists researching PSCs or FunMats,

or technology developers in general. The newly developed upscaling methods enable the

assessment of the current and target prospective environmental performance of emerging

FunMat-based energy technologies with integrated realistic scenarios generated from potential

development pathways. Thus, it incorporates a system-wide understanding of potential

environmental impacts into the technology development and supports the identification of

environmental hotspots, risks, or unintended consequences. The earlier these are known, the

earlier actions can be taken. Therefore, decisions of this target group are supported regarding

how to design environmentally-friendly future technologies starting from the conceptual stage.

Accordingly, this thesis endorses the integration of prospective LCA into basic research and the

understanding of the resulting environmental impacts. The performance of LCA by technology

developers is simplified by generating upscaling scenarios using UpFunMatLCA. Furthermore,

this thesis disseminates the LCA methodology among non-LCA experts.

2) The second target group is the LCA practitioners supported in systematically modeling and

upscaling emerging technologies. Notably, for PSC or other FunMats, UpFunMatLCA might

be applied by LCA practitioners without direct cooperation with technology developers since

the knowledge of several development pathways is included in UpFunMatLCA. For assessing

different development pathways or advanced technology development, collaboration is useful

to update the formed development pathways, for example.

3) Policymakers in funding agencies or policymakers, in general, are supported in understand-

ing the challenges of prospective LCAs and LCAs based on different development stages. They

are kept in prioritizing research activities and decisions concerning the directions of new fund-

ing programs and research initiatives regarding the design of sustainable products and tech-

nologies. At this point, it should be stressed that evaluating emerging technologies is associated

with high uncertainties. Decisions based on these studies should be made with deliberation and

considerable care, especially regarding findings during fundamental research. However, coming

back to Collingridge, he said: ”Decision-making under ignorance [is] a more extreme condition

than uncertainty” (Collingridge 1980). In this respect, the newly developed upscaling meth-

ods significantly contribute to making decisions not out of ignorance but based on sufficient

reflection.
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5.6 Limitations

In this thesis, over 200 LCI data sets were provided for emerging PVs, particularly for PSC, over

150 references and over 350 patents were found for the AM1 Mapping of technologies upscal-

ing module, and over 250 empirical data sets were collected for the AM2 Equipment Scaling

upscaling module. Nevertheless, the data basis is limited to the following parts:

The LCI data sets cover only one single lab-manufacturing option, the wet chemical deposi-

tion with spin coating, spray coating, and dip coating. There are also vapor-based deposition

techniques, including co-evaporation. Transferring the modeled upscaling modules to these

techniques could be part of further research and cooperation.

The patent analysis was not practical for mapping technologies since it included only scattered

data on future manufacturing processes. However, so far, only PSC patents have been reviewed.

Expanding the search to the considered manufacturing processes might result in more relevant

data sets from patent analyses.

This thesis uses no prospective background database like PREMISE (Sacchi et al. 2022). These

databases discern external temporal changes, which are recommended in the UpFunMatLCA.

However, including external developments increase uncertainty. Therefore, the question of the

case study was what environmental impacts of future PSC modules could be expected under

current conditions. Considering this, the used ecoinvent 3.7.1 database (Wernet et al. 2016),

representing today’s data, was sufficient in this thesis.

Another limitation is the validation of the KEYPs, KEYIs, and e-BET for other FunMat-based

energy technologies. So far, they were only validated for emerging PVs in Weyand et al. (2019)

and PSC in Weyand et al. (2023b) . For extending the KEYIs, the material learning upscaling

modules and their effects on the KEYIs might be interesting for further assessment, similar to

the comparison of climate-friendliness and material efficiency in Weyand et al. (2023b). The

extension of the considered life cycle stages is relevant to assess the toxicity KEYIs of PSCs, as

discussed in Weyand et al. (2023b) . Considering this, future studies should extend the data

basis recycling technologies and end-of-life-treatment. The methodology developed can be used

for this purpose. Furthermore, the combination with risk assessment should be assessed to iden-

tify risks from substances or materials currently not covered in the LCIA, like nanomaterials, as

recommended by Guinée et al. (2017), Tsang et al. (2017).
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6 Conclusion

This thesis presents a novel structured upscaling methodology consisting of four newly devel-

oped methods for evaluating and harmonizing the environmental performance of emerging

FunMat-based energy technologies compared to commercial benchmarks. The methodology’s

core is the UpFunMatLCA, a scheme for generating upscaling scenarios of emerging FunMat-

based energy technology to harmonize the technology scale in prospective LCA.

The newly developed scheme UpFunMatLCA was used for the first time to integrate system-

atically structured upscaling into the technology development of an emerging FunMat-based

energy technology and to support the decision on whether PSC is a promising future energy

technology considering only lab knowledge. Integrating UpFunMatLCA into the technology

development indicates for the case study of PSCs that they are promising regarding climate-

friendliness and resource efficiency compared to current country-specific electricity mixes.

The integration of UpFunMatLCA into the methodology of LCAs is a vital way to assess the fu-

ture chances and risks of an explicit group of emerging technology, i.e., emerging FunMat-based

energy technologies from an early development stage on, despite contradictory requirements of

high uncertainties and room for manoeuvering in terms of design freedom.

Accordingly, this thesis supports several decisions during technology development: First, for

LCA practitioners, UpFunMatLCA presents a structured way to integrate likely future develop-

ment pathways into prospective LCA and gain meaningful information on these developments’

environmental impacts. Second, for the technology developer or material scientist, these poten-

tial environmental impacts provide essential insights for future research by indicating possible

levers of environmentally-friendly technology progress. Last, for policymakers, the comparison

with commercial benchmarks is not seen as a final exclusion criterion for emerging technology

but rather as an indicator that if the emerging technology develops in this way, it is highly likely

to keep up with commercial counterparts.

All in all, this thesis provides significant improvements concerning the following:

• integrating prospective LCA into basic research,

• understanding LCA results for technology developers,

• disseminating LCA methodology also among non-LCA experts,

• performing LCA of PSC without technology developers,

• performing LCA by technology developers.

UpFunMatLCA is a pioneer in combining theoretical and practical methods for upscaling a

specific technology group in prospective LCA. It represents, thus, an important template for

other technology groups to develop similar uniform schemes for increasing and supporting
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the comprehensiveness of the LCA results on emerging technologies compared to commercial

benchmarks. The transferability to other technologies would result in the modeling of further

upscaling modules and the expansion of the database of UpFunMatLCA to include additional

manufacturing processes. Furthermore, including the material learning modules would enable

a combination or extension with risk assessment. For example, indicating risks from substances

or materials at an early stagewhich are currently not covered in LCIA, like nanomaterials.
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Glossary

Key indicators (KEYIs): The KEYIs are the impact category indicators that were selected for a

comprehensive description of the potential environmental impacts of the assessed technology

(Weyand et al. 2019).

Key modeling assumptions (KEYAs): The KEYAs, summarize methodological specifications

that influence the total life-cycle impacts of the assessed technology Weyand et al. (2019).

Key performance parameters (KEYPs): The KEYPs characterize the performance of the PV sys-

tem, and they were significant for the determination of the maximum electricity yield during

the operation stage. Weyand et al. (2019).

Environmental break-even time (e-BET): The e-BET is defined as the period or point when the

upscaled PSC’s environmental impacts offset a commercial benchmark. It examines whether

and when introducing new technology brings environmental benefits over the current technol-

ogy landscape (Weyand et al. (2023b)).

Upscaling: The term upscaling is defined in this thesis as transferring the functionality and

characterization of an emerging technology to a possible target stage, considering develop-

ment pathways from a current stage within the course of research and development to this

future stage. The upscaling focuses on the manufacturing phase as the main contributor to the

environmental performance of FunMat-based energy technologies in this thesis.

Upscaling method: The model or “procedure that projects how (. . . ) [an emerging] technology

currently available at a lower TRL may look and function at a higher TRL” is defined as upscaling

method using the definition of Tsoy et al. 2020 (Weyand et al. (2023a)).

Upscaling scenario: Upscaling scenario is defined as the description of a possible future stage

of emerging technology, including the development pathway from a current stage within the

course of research and development to this future stage (Weyand et al. (2023a)).

UpFunMatLCA: UpFunMatLCA represents a three-step extension of conventional LCAs to up-

scale the life cycle inventory of emerging FunMats. UpFunMatLCA is based on a clear definition

of a current status quo (conceptual, lab, or pilot stage) and a target matured (fab) develop-

ment stage. A core part of UpFunMatLCA is the so-called upscaling module, providing specific

modeling methods and data for the upscaling of FunMats (Weyand et al. (2023a)).

emerging technology: Emerging technologies are "‘technologies for which there is just an ex-

perimental proof of concept, a validation in the lab, or pilot plant"’ (Cucurachi et al. 2018) and

show a TRL lower than 8 (Weyand et al. (2023a)).

Functional material: The performance of renewable energy technologies depends highly on

functional materials (FunMat) (Kuznetsov & Edwards 2010, Schebek et al. 2019). FunMats are

used as metals, such as rare earths, in wind turbine permanent magnets or as semiconductors

in photovoltaic technologies (Kuznetsov & Edwards 2010, Schebek et al. 2019) and possess a
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distinct electronic structure and physical-chemical properties responding to electrical, magnetic,

optical, or chemical influences (Chung 2021).

Attributional LCA: System modelling approach in which inputs and outputs are attributed to

the functional unit of a product system by linking and/or partitioning the unit processes of the

system according to a normative rule Sonnemann & Vigon (2011).

Consequential LCA: System modelling approach in which activities in a product system are

linked so that activities are included in the product system to the extent that they are expected

to change as a consequence of a change in demand for the functional unit Sonnemann & Vigon

(2011).
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Table S1. Keywords and synonyms of the database search. 
LCA CZTSSe DSSC PSC OPV QDPV 

Life cycle 
assessment CZTSSe 

Dye-sensitized 
solar cell, 

Dye-sensitized 
cell, 

Graetzel cell 

Perovskite 
solar cell, 

Perovskite 
photovoltaic 

Organic photovoltaic, 
Organic solar cell, 

Polymer photovoltaic, 
Polymer solar cell 

Plastic photovoltaic, 
plastic solar cell 

Quantum dot 
solar cell 

Quantum dot 
photovoltaic 

Table S2. Overview of the excluded LCA data sets per collected LCA study after the secondary screening. 

Author (Year) ND Included Why excluded?  
Not compliant with 

DSSC   (1)  (2) (3) 
Greijer et al. (2001) [1] 2     
Kato et al. (2007) [2] 1     

OPV      
Chatzideris et al. (2017) [3] x     

Serrano-Luján et al. (2017) [4] 2*     
PSC      

Itten and Stucki (2017) [5] 1     
Alberola-Borràs et al. (2018) [6] 3     

*More country-specific datasets included 

Table S3. Ratio between best research cell efficiencies and standard values of first- and second-generation PVs. 

PVs 

Best 
Research 

Cell 
Efficiency 

Best Research 
Module 

Efficiency 

Commercial 
Module 

Efficiency 

Standard 
Values of the 
Efficiency in 

[6,7] 

Ratio between Best 
Research Cell and 

Standardised 

Mono-Si 26.7 24.4 17 13 0.49 
Multi-Si 22.3 19.9 17 12.3 0.55 

CdTe 21 18.6 16 10.9 0.52 
a-Si 14 11 - 6.3 0.45 

CIGS 21.7 19.2 - 11.5 0.53 

XXI



Energies 2019, 12, x FOR PEER REVIEW 2 of 5 

Energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

Table S4. Comparison of the descriptive statistics of the five KEYIs harmonized to the consistent functional unit 
of 1 Wp and after full harmonization (including the standard values of the efficiency). 

 DSSC OPV PSC QDPV 

 
Harmoni

zed to 
FU of 1 

Wp 

Harmonized 
(All Steps) 

Harmonized 
to FU of 1 

Wp 

Harmonized 
(All Steps) 

Harmonized 
to FU of 1 

Wp 

Harmonized 
(All Steps) 

Harmonized 
to FU of 1 

Wp 

Harmonized 
(All Steps) 

CED in MJ PE/ Wp 
Min 13 17 1 0.5 4 3   

25th 14 19 3 1 35 38   

Median 16 21 5 2 113 108 7 13 
75th 25 33 7 4 146 126   

Max 34 45 56 35 262 168   

IQR 11 14 4 3 111 88   

Change in Median 33%  −64%  −5%  75% 

Change in IQR  33%  −26%  −21%  75% 
GWP100 in g CO2-eq/Wp 

Min 714 952 35 22 174 159   

25th 880 1173 167 50 3358 2121   

Median 1046 1394 608 228 4400 4083 179 313 
75th 1441 1921 1321 305 8514 5596   

Max 1836 2448 2241 1400 32640 25024   

IQR 561 748 1154 254 5157 3475   

Change in Median 33%  −62%  −7%  75% 

Change in IQR  33%  −78%  −33%  75% 
HTPc in CTUh/Wp 

Min   2.8 x 10-8 2.4 x 10-9 -4.5 x 10-6 -3.5 x 10-6   

25th   3.8 x 10-7 4.8 x 10-8 1.2 x 10-7 8.0 x 10-8   

Median   5.2 x 10-7 6.5 x 10-8 5.0 x 10-7 7.5 x 10-7   

75th   6.3 x 10-7 7.9 x 10-8 9.2 x 10-7 7.8 x 10-7   

Max   6.7 x 10-7 8.4 x 10-8 1.9 x 10-6 8.3 x 10-7   

IQR   2.5 x 10-7 3.1 x 10-8 8.0 x 10-7 7.0 x 10-7   

Change in Median   −88%  51%   

Change in IQR    −87%  −12%   

ETPf in CTUe/Wp 
Min   11 1 2 1   

25th   242 30 11 14   

Median   332 41 306 390   

75th   395 49 815 402   

Max   424 53 5468 4192   

IQR   153 19 804 388   

Change in Median   −88%  27%   

Change in IQR    −87%  −52%   

RDPf in kg Sb-eq/Wp 
Min   1.0 x 10-6 2.5 x 10-7 -9.1 x 10-4 -7.0 x 10-4   

25th   5.0 x 10-4 3.1 x 10-4 1.3 x 10-4 9.5 x 10-5   

Median   8.3 x 10-3 1.0 x 10-3 4.8 x 10-4 6.3 x 10-4   

75th   9.7 x 10-3 1.3 x 10-3 1.4 x 10-3 9.2 x 10-4   

Max   1.1 x 10-2 4.1 x 10-3 2.3 x 10-3 1.1 x 10-3   

IQR   9.2 x 10-3 1.0 x 10-3 1.3 x 10-3 8.2 x 10-4   

Change in Median   −88%  33%   

Change in IQR    −89%  −35%   
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(a) Technology scale 

 

(b) Product system 

 

(c) System boundary. 

Figure S1. Influence of the KEYAs on the single harmonized LCA data set points of the five KEYIs. (a) technology 
scale (laboratory (L) vs pilot/industrial (PI/IN)); (b) product system (cell (C) vs module/system (M/S)); (c) system 
boundaries (cradle-to-gate (Gate) vs cradle-to-grave (Grave). 
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Figure S2. Detailed scenario analyses of the three influencing factors, efficiency, lifetime and upscaling, for PSC 
and DSSC. 
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Appendix II

Appendix II contains the essential parts of the supplementary materials of Publication 2,

Weyand et al. (2023a):

Weyand S, Kawajiri, K., Mortan, C., Schebek L. (2023): Scheme for Generating Upscaling

Scenarios of Emerging Functional Materials Based Energy Technologies in Prospective LCA

(UpFunMatLCA). Journal of Industrial Ecology, DOI: 10.1111/jiec.13394

Supporting information S1: This supporting information provides more details on the devel-

opment of the scheme and the data used for the practical implementation of the case study.

Supporting information S2: This supporting information includes modelled upscaling mod-

ules and data sets of the UpFunMatLCA scheme. In particular, this includes all collected data

sets of the two modelled process learning modules, AM-1 Mapping of technologies and AM-2

Equipment scaling, and is also available at https://doi.org/10.48328/tudatalib-1063.4.

Supporting information S3: This supporting information provides the underlying data for Fig-

ure 6.

The full supporting information is available at:

https://onlinelibrary.wiley.com/doi/full/10.1111/jiec.13394. The QR codes lead to the

single supporting information.
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           SUPPORTING INFORMATION FOR: 

 
Weyand, S., Kawajiri, K., Mortan, C. & Schebek, L. (2023.) Scheme for 
Generating Upscaling Scenarios of Emerging Functional Material Based 
Energy Technologies in Prospective LCA (UpFunMatLCA): General 
Methodology and Practical Implementation for the Case of Perovskite 
Solar Cells. Journal of Industrial Ecology. 
 

This supporting information S1 provides more details on the development of the scheme and 

the data used for the practical implementation of the case study.  

 

1 Introduction – Background on LCA and technology development 

1.1 LCA description for technology developer only 

LCA is a method standardized in the ISO 14040/14044 (ISO 14040 2006; ISO 14044 2006) 

for the evaluation of a full range of environmental impacts throughout the life cycle of 

products and services: It is also applied widely to technologies based on FunMat (Smith et al. 

2019). The integration of LCA in the early stages of the maturation process has several 

advantages: LCA integrates environmental and sustainability indicators into technology 

development, enables the identification of unintended consequences, and gives 

environmental-friendly guidance before costly investments and resources are made. 

Technology developers can thus take actions to eliminate these consequences while 

supporting the prioritization of research activities (Smith et al. 2019). To this end, the 

following four LCA phases are applied according to the standards (ISO 14040 2006; ISO 

14044 2006):  

1) The goal and scope definition (G&S) encompasses the framework conditions such as 

the G&S of the LCA, the so-called functional unit as a reference unit, system boundaries, and 

the so-called product system. The product system represents the modeled life cycle. It is 

differentiated into upstream, encompassing processes from the raw material extraction to the 

manufacturing stage, operation, corresponding to the use phase, and downstream 

processes, referring to the recycling and end-of-life treatment of materials at the end of the 

product life cycle.  

2) Life cycle inventory (LCI): In this phase, extensive data collection occurs. To this end, 

the product system is divided into a foreground and background system. Generic or 

secondary data from LCA databases such as ecoinvent (ecoinvent 2020), IDEA (National 

Institute of Advanced Industrial Science and Technology 2018), or GaBi Databases (Sphera 

Solutions Inc. 2020) is usually used for the background system; the foreground system 
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corresponds to case study-specific data preferably from primary sources. For example, for 

emerging FunMat, the primary data on material inventories and processing energies are 

collected either from or together with technology developers during their investigations. 

3) In life cycle impact assessment (LCIA), the environmental impacts are quantified per 

impact category indicator. The considered indicators are selected depending on the G&S of 

the LCA study and the potential environmental impacts resulting from the assessed 

technology. For example, regarding climate-friendliness, LCIA focuses on energy-related 

impacts or other impacts involving GHG emissions rather than on impacts corresponding to 

materials like resource depletion or release of toxic substances during the extraction of raw 

materials. 

4) In the interpretation phase as the last phase, the LCA results are processed as a basis 

for recommendations and decision-making, addressing uncertainty issues. 

1.2 Systematic review on upscaling in prospective LCA 

A systematic review was conducted to identify the relevant scientific works published on 

technology development and upscaling emerging technologies in prospective LCA. The 

review covered the two literature databases Web of Science and ScienceDirect using the 

keywords “life cycle assessment”, “LCA” combined with “upscaling”, “up-scaling”, “scale-up”, 

“learning” and “emerging technology” (with different spelling). As a result, we came up with 

36 publications. In a first evaluation round, we checked the abstracts for the scope of the 

publications and excluded four publications. A second evaluation excluded publications with 

limited focus on a case study. Here, 19 publications were excluded. Finally, one publication 

was extended and in total 13 publications were assessed focusing on the topics: 

 Classification schemes of technology maturation considered 

 Inclusiong of technology maturation 

 Upscaling data, techniques and models 

Author Database Excluded, 
missing scope 

Excluded, only 
case study 

Bergerson et al. (2020) WoS or Science direct no no 

Buyle et al. (2019) WoS or Science direct no no 

Cucurachi, van der Giesen, and Guinée (2018) WoS or Science direct no no 

Gavankar, Suh, and Keller (2015) WoS or Science direct no no 

Hetherington et al. (2014) WoS or Science direct no no 

Kawajiri et al. (2020) WoS or Science direct no no 

Moni et al. (2020) WoS or Science direct no no 

Thonemann and Schulte (2019) WoS or Science direct no no 

Thonemann, Schulte, and Maga (2020) WoS or Science direct no no 

Tsoy et al. (2020) WoS or Science direct no no 

van der Giesen et al. (2020) WoS or Science direct no no 

van der Hulst et al. (2020) WoS or Science direct no no 

Arvidsson et al. (2017) Additional no no 
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1.2.1 Upscaling effects: Size, learning and experience effect 

The concept of economy of scale, originating from economic analysis, is the empirical finding 

that manufacturing at a bigger size with a higher TRL or MRL decreases costs. In 1936, 

Theodore Wright described this concept mathematically by the so-called size effect as a 

function of the initial cost C0 of the first production capacity X0 to the future cost at any time 

Ct of the future production capacity Xt and the scaling factor b (Eq. 1) (Wright 1936). Eq. 1 is 

also known as Wright’s law.  

C� = C� �X�
X�

�
�

 (Eq. 1) 

The size effect in a narrower sense means the reduction of unit costs simultaneously by 

increasing physical dimensions such as the manufacturing size. Consequently, this effect 

displays any economic, technical, or other effect related merely to the size, volume, or 

throughput of a process or technology. Thus, factor b is derived from empirical technology 

data at different dimensions by using regression analysis. The rationales behind this are 

decreasing marginal costs by dividing overhead costs by a larger number of products and 

better equipment utilization. 

Beyond that, Wright discovered a cost reduction due to gained experience of the employees 

and an associated productivity increase, the so-called learning effect. Later the Boston 

Consulting Group (BCG) also established the term experience effect as a collection of 

various learning effects (Boston Consulting Group 1968). Learning and experience effects 

cannot be dedicated to single changes and are usually not considered separately. Therefore, 

we use the term learning effect synonymously for both effects in the following. The learning 

effect means that technologies can be manufactured more efficiently with each increase of 

their cumulative production rate due to increased experience of the daily routines at the 

production site of mass production. This effect is modeled using the so-called experience 

curve concept, based on data from real manufacturing sites or market data.  

2 Methodology of UpFunMatLCA - Scheme for Generating Upscaling Scenarios of 

Emerging Functional Material Based Energy Technologies in Prospective LCA  

In the following, the development of the three-step scheme UpFunMatLCA are explained in 

more detail. The general scheme is developed using the five phases of the scenario 

technique of Kosow and Gassner (2008) (Table S1). 
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Table S1 The connection of the generated upscaling scenarios using the three steps of 
UpFunMatLCA and the five phases of scenario technique of Kosow and Gassner (2008) 

Three steps of 

UpFunMatLCA  

Five phases of Kosow and 

Gassner (2008) 

Explanation 

Aim of UpFunMatLCA Phase 1: Scenario field 

identification 

The scenarios' purpose is to upscale an emerging FunMat from 

the current to a target development stage in prospective LCA. 

The problem of upscaling is the projection of the future process 

performances of emerging FunMats and modeling of life cycle 

inventory data based on the current stage of development. 

Therefore, the aim is to generate realistic scenarios that intend 

to represent possible development pathways of FunMats 

based on current technology developers’ knowledge or specific 

decisions during technology development. These scenarios are 

used to model the foreground and background system and 

upscale the life cycle inventory data. The focus of the 

foreground system is not the full life cycle of FunMats but the 

limitation to the upstream processes, including processes from 

raw material extraction to manufactured FunMat.  

Step I: Upscaling 

Definition and Step II: 

Upscaling Leap 

Phase 2: Identification of 

key factors 

The key factors or descriptors of the upscaling scenarios are 

the upscaling mechanisms. These are already explained in 

more detail in our study. To identify the key factors, we 

developed Step I and Step II of UpFunMatLCA. Here, first, the 

current and target stage is defined and results second, in a 

clear delimitiation of the development path and upscaling leap. 

Based on the upscaling leap, the relevant upscaling 

mechanisms are selected.  

Step III: Upscaling Model 

and Data 

Phase 3: Analysis of the 

key factors 

The analysis of the key factors and the data collection process 

of the scenarios is implemented as upscaling modules in Step 

III. The upscaling module includes the upscaling method 

depending on the selected upscaling mechanism. 

Upscaling scenarios Phase 4: Scenario 

generation 

Following the three steps of UpFunMatLCA, upscaling 

scenarios are generated. 

LCIA + interpretation of 

the upscaling scenarios 

Phase 5: Scenario transfer The upscaling scenarios are used to model the foreground and 

background system and upscale LCI to assess the future 

possible environmental impacts of emerging FunMats in 

prospective LCA. Accordingly, the upscaling scenarios are 

transferred to the LCIA and interpretation. 

 

In Table S2, the template for documenting the salient characteristics of each upscaling 

scenario is presented. 

Table S2 Template for documenting upscaling in a prospective LCA 

  Current stage Target stage 

Step I - Upscaling Definition     

Name   

General description   

Generic development stage   

Temporal coverage   

Manufacturing dimensions   

Step II - Upscaling Leap   

Selected upscaling mechanisms    

Step III - Upscaling Data and Model   

Modeled modules   
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2.1 Step I – Upscaling Definition: Definition of the technology maturity 

The investigation of upscaling in terms of projection of future technology developments has 

since long been the interest of economics to assess impacts on production costs, unit costs 

of technical equipment, products, and entire businesses in the future. For this purpose, 

general classification schemes to describe the maturation process and the status quo of the 

technology development and concepts for upscaling in economics have been introduced and 

applied in the LCA of technology development. 

In the following, we explain the development of the generic technology scale from common 

classification schemes of technology development and description of technology maturity.  

Table S3 Delimitation of the developed generic technology scale from common classification 
schemes and literature 

Our technology scale TRL (NASA, 2007) MRL (US 

DoD 2015) 

EARTO (2014) Hulst et al. 

(2020) 

Emerging  Generic 

conceptual 

1-2 Basic principles 

and technology 

concept  

1-2 Invention (TRL 

1-2) 

 

Generic lab 3-4 Proof-of-

concept, 

validation in lab 

3-4 Concept 

validation (TRL 

3-4) 

 

Generic pilot 5-7  Technology 

demonstration 

5-8 Prototyping and 

incubation (TRL 

5) 

Pilot production 

and 

demonstration 

(TRL 6-7) 

 

Mature Generic fab-

early 

8-9 System test, 

launch and 

operations 

9 Initial market 

introduction 

(TRL 8) 

Industrial early 

production 

(MPL 0-5% + 

5-50%) 

Generic fab-

mature 

n.c.  10 Market 

expansion (TRL 

9) 

Industrial 

mature 

production 

(MPL 50-

100%) 
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2.2 Step II – Upscaling Leap: Selection of upscaling mechanisms for describing the 

leap from current to target stage 

2.2.1 Generic upscaling mechanism for FunMat 

A) Process learning 

This mechanism subsumes innovations regarding the manufacturing processes. For a 

systematic distinction, we restrict process learning to the case of a given, i.e., non-changing 

material system, where only its specific manufacturing processes will change, i.e., the direct 

processing and manufacturing of FunMat. Similar to the innovative character of FunMat, 

these manufacturing processes may also be novel or are often only recently introduced for 

the respective emerging FunMat. In the terminology of LCA, these processes are attributed 

to the foreground system. In contrast, the background system comprehends the mining and 

processing processes of raw materials, the manufacturing of bulk intermediate products, and 

all infrastructure processes, e.g., power generation. These processes are usually long known 

technologies, which can generally be expected to undergo mainly incremental efficiency 

gains. If significant technology changes occur, they are not specific to the manufacturing of 

FunMat but have broader impacts on the general economy. Thus, the background system is 

incorporated in the upscaling mechanism C) external developments.   

In LCA, the impacts of changing foreground manufacturing processes can be principally 

assessed via sensitivity analysis, assuming percent improvement of the processes (Glogic et 

al. 2019). On the one hand, the realistic setting of parameter variation requires in-depth 

knowledge of the specific processes for the respective FunMat and respective data, which 

often are not readily available. On the other hand, process changes are the most crucial 

aspect with impacts notably on the energy demand of emerging technologies. To account for 

this most crucial step, we discern three sub mechanisms:  

A-1 Size scaling: For the mathematical implementation of this size effect into the upscaling 

module, we use two recently published models for size scaling (Kawajiri et al. 2020) and 

implement them into the size scaling module according to Eq. 2 and Eq. 3: notably for layer-

based FunMat. For these types of technologies, we formulate the assumption specifically in 

the way that the energy demand of a process will decrease per manufactured square meter 

by increasing the manufacturing size from the current stage (e.g., lab samples in square 

centimeter range) to mass-produced goods (in m² range). 

A-2 Technological learning: This sub mechanism reflects changes in the type of 

manufacturing processes from the current to target stage. These processes can, in many 

cases, be applied in the lab as well as large-scale manufacturing, e.g., the sputtering process 

(Madou 2012). However, in other cases, due to the changing requirements of mass 

production or automatic production lines, other manufacturing processes have to be 

anticipated for fab scale.  

XXXII



 

S-1 

A-3 Industrial learning: This sub mechanism incorporates experience from daily routines at 

production sites of industrial manufacturing, displayed in Wright’s law as well but based on 

production-site-specific data. If data from the industrial production site is available, the 

standard methods of the experience concept can be applied as shown in (Louwen et al. 

2016; Bergesen and Suh 2016). However, in case of no data, the effect of industrial learning 

can be studied based on assumptions from general information on industrial learning of 

related technologies. In particular, for emerging FunMat, there is hardly any data from mass 

production.  

B) Material learning 

This mechanism subsumes innovations regarding the material system, including the related 

raw materials, and is intimately linked to the natural science-based development process of 

novel materials.  

B-1 Change of material system: This sub mechanism results in a conceptual change of the 

entirely considered product system independently of the current stage. In LCA, for this case, 

no general upscaling approach can be conceived; instead, this type of change has to be 

mirrored by a complete change of the product system, i.e., a newly modeled LCA inventory.  

B-2 Choice of input materials: Above the complete change of the material system, material 

learning may also encompass the optimization of material systems in changing single input 

materials. One example can be the substitution of lead by tin in PSC or the change of 

substrate material from glass to PET. In these cases, the original product system is kept, but 

respective upstream processes are substituted in LCA. However, these changes may directly 

influence the manufacturing processes since glass withstands higher temperatures than 

PET. In total, due to the wide variety of possible material changes, material learning can be 

characterized as a disruptive change for which the implications to another upscaling 

mechanism also need to be considered. 

B-3 Optimization of input materials: Given that information on losses is available, material 

learning can be mirrored by sensitivity analysis. For example, findings from a study on life 

cycle losses of commercial PVs showed the material losses during the raw material 

extraction and manufacturing of two PV technologies (CdTe and CIGS) have been estimated 

to be between 15-37 % related to the used materials 38. Consequently, similar projections 

need to be derived for FunMats used in PSC devices. 

C) External developments 

C-1 Incremental learning of the background system: This mechanism subsumes 

innovations resulting from the external progress of the background system over time. Here, 

integrated LCA models are developed in the literature, notably to integrate energy scenarios 

in LCA (Arvesen et al. 2018; Hertwich et al. 2015). By using these models, studies showed 

that considering the life cycle impacts of the energy transition could result in 60 % reductions 
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of the GHG emissions of the electricity mix from 2010 to 2050 (Hertwich et al. 2015). 

Furthermore, for PV, temporal reductions of the primary energy consumption per energy 

output of even 70 % are expected from 2010 to 2050 when considering the infrastructural 

change of the energy system and efficiency gains of various industry sectors over time 

(Arvesen et al. 2018). 

2.3 Step III - Upscaling Model and Data: Implementation of upscaling – modeling of 

upscaling modules for process learning  

AM-1 Technological learning module “mapping of technologies” 

No further details are necessary. 

AM-2 Size scaling module “equipment scaling” 

The empirical scaling is used when no data on the energy or power demands of the current 

stage is available, but only the kind of manufacturing process (e.g., sintering) and the 

suitable equipment (e.g., hot plate) is known. Therefore, the empirical scaling can already be 

applied at the conceptual scale. The empirical data usually includes the nominal power, i.e., 

the maximum power demand of the equipment is applied in the calculation. Therefore, the 

empirical scaling represents the worst-case estimation of the target power demand. In 

contrast, for the individual scaling, individualized consumptions from at least the lab stage 

are necessary to apply this model. This model is beneficial in case the actual measured 

power demand is far from the trend of the empirical data.  

As a reference model, we define a “linear scaling” to refer to the typical way of scaling in 

conventional LCAs from “lab to fab” stage without considering size effects – i.e., the “non-

scaling”. This linear scaling is used to compare the effect of both models on the LCA results. 

The graphical illustration of the two scaling models (Eq. 2-3) compared to the linear scaling is 

presented in Figure S1. 

 

 

Linear “non-scaling”: 

Pt=P0(St/S0)
1 

 

Empirical scaling (Eq. 2): 

Pt=c St
b 

 

Individual scaling (Eq. 3): 

Pt=P0(St/S0)
b 

 

Figure S1 Graphical illustration of the model behind the size scaling module according to 
(Kawajiri et al. 2020) 
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AM-3 Industrial learning module “experience of industrial manufacturing” 

No further details are necessary. 
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3 Case study: Upstream GHG Emissions of PSC from Lab to Fab 

3.1 Case study description 

3.1.1 Selected PSC samples 

The PSC samples selected and assessed in this study were manufactured in lab as part of 

the material development of the Surface Science Group of the Technical University of 

Darmstadt. The interest of this material development lies in the fundamental understanding 

of the interplay of each layer or semiconductor band alignment (Hellmann et al. 2019; 

Wussler et al. 2020) to achieve high efficiencies and to find optimal layer combinations and 

manufacturing processes (Mortan et al. 2020; Mortan et al. 2019; Wittich et al. 2018; 

Dachauer et al. 2019). The selected samples are intended to represent a typical PSC 

material with layer materials and manufacturing methods commonly used in many research 

laboratories (Chen et al. 2017).  

One selected sample have solar cell dimension of 32,5 mm2 and a mini-module substrate 

dimension of 4 cm2 shown in Figure S2. In addition, the detailed layer materials, thicknesses 

and manufacturing processes are shown in Figure S2. The detailed experimental procedure 

and flow chart of the manufacturing of the selected PSCs are explained in the following 

subsections.  

 

 

Figure S2 Picture of one selected PSC sample and specifications on the cell architecture and 
manufacturing of the status quo 

The selected samples characterized electrically at the solar simulator setup, respectively 

through UV/Vis absorption spectroscopy, photoluminescence (PL), scanning electron 

microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) 

show a maximum power conversion efficiency of 15.6 %. 
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3.1.2 Experimental procedure 

Front electrode with substrate (S) and front electrode (FE) (Glass coated with fluorine 

doped tin oxide (FTO): Pilkington NSG TEC15 FTO glass substrates have been used, cut 

as 2 cm x 2 cm squares, with a sheet resistance of 12-14 Ω/sq. and a glass thickness of 2.2 

mm. The substrates are cleaned with isopropanol, soap, tap water, distilled water and blown 

dry with a nitrogen gun. 

Electron transport layer (ETL) (compact and mesoporous titanium dioxide (c- and m-

TiO2): The c-TiO2 layer is produced by spray pyrolysis on the glass/FTO substrates. 500 µL 

of titanium diisopropoxide bis(acetylacetonate), 75 wt. % in isopropanol (TIAA) from Merck is 

mixed with 18 mL reaction grade Ethanol. This solution is sprayed using oxygen carrier gas 

onto the glass/FTO substrates, that have been treated for 5 min. in an oxygen plasma oven 

and heated to 450°C for 25 min. prior to deposition.  After the spraying process, the  

glass/FTO/c-TiO2 substrates are annealed for 30 min. at 450°C in atmospheric conditions. 

The m-TiO2 layer is deposited by spin coating 100 µL of a 1:7 weight ratio solution of 18NR-T 

Titania (TiO2) paste from Greatcell Solar and reaction grade ethanol onto each glass/FTO/c-

TiO2 substrates in atmospheric conditions. The solution is dropped on a substrate, before 

spinning at 83 rps (revolutions per second) for 45 s. After drying for 10 min. at 70°C, an 

additional sintering step takes place for 45 min. at 450°C on a hot plate, in atmospheric 

conditions. 

Absorber layer (ABL) (PbI2- and CH3NH3I-precursor): Prior to the deposition of the 

lead(II)iodide layer, the glass/FTO/c-TiO2/m-TiO2 substrates are treated in a UV/ozone oven 

for 15 min. The deposition takes place in a nitrogen (N2) filled glovebox. After each substrate 

has been heated for 2 min. at 80°C on a hotplate, 100 µL of a 555 mg PbI2 (Alfa Aesar 

99.9985%, metal base) in 1 mL DMF (N,N-Dimethylformamide, Merck, 99.8%, anhydrous) 

solution, that has been stirred for at least half an hour at 80°C is dropped onto the hot 

substrates, then spun at 108 rps for 90 s. Each substrate is subsequently dried for 10 min. at 

80°C. 

In a nitrogen glovebox, a solution of 400 mg methylammonium iodide (MAI, Greatcell Solar) 

and 40 mL anhydrous 2-propanol (99.5%, Merck) is stirred at 70°C until dissolved. After 

reaching room temperature, the solution is added to a Petri dish containing the glass/FTO/c-

TiO2/m-TiO2/PbI2 substrates. After 2 min., each substrate is rinsed in a clean 2-propanol bath 

of excess MAI and immediately blown dry with a pen blower. After additional drying on a hot 

plate for 15 min. at 50°C in the glovebox, the substrates are annealed in a tube furnace, in 

atmospheric air for 20 min. at 120°C. 

Hole transport layer (HTL) (Spiro-MeOTAD): The deposition of the spiro-MeOTAD layer 

takes place on the glass/FTO/c-TiO2/m-TiO2/MAPI substrates, in a nitrogen glovebox. 80 mg 

spiro-MeOTAD (Borun New Material, 99.9%) is mixed in 1 mL chlorobenzene (Merck, 
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anhydrous, 99.8%) with 28.5 µL 4-tert-butylpyridine (Merck, 98%) and with 17.5 µL of a 

solution made from 260 mg Li-TFSI (bis(trifluoromethane)sulfonimide lithium salt, Merck, 

>99%) and 0.5 mL acetonitrile (Merck, anhydrous 99.8%). 100 µL of the resulted spiro-

MeOTAD solution is dropped on a glass/FTO/c-TiO2/m-TiO2/MAPI substrate. After a pause of 

20 s, it is spun at 23 rps for 30 s and left to dry at room temperature in the glovebox. 

Back contact with back electrode (BE) (Gold layer): The gold (Au) layer is deposited by 

argon sputtering on top to the spiro-MeOTAD layer, in a Quorum Technologies Q300TD 

machine with 30 mA current for 120 s, using a steel mask for defining the contacts. 

3.1.3 Detailed flow chart of the status quo 

The detailed manufacturing flow chart collected during lab visits between 2016-2018 are 

shown in Figure S3 
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Figure S3 Detailed process flow chart of the foreground system of the manufacturing stage 
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3.2 Developed upscaling scenarios  

3.2.1 Step 1: Definition of the modelled current and target stages 

Table S4 Generic technology scale extended by the standard cell, module, and manufacturing 
sizes for the definition of the technology maturity of PV case studies (adjusted and combined 
from (Baliozian et al. 2016; Gavankar, Suh, and Keller 2015; Fischer et al. 2020)) 

This study  Generic 
conceptual 

Generic lab Generic pilot Generic fab 

    (early) (mature) 

Cell size - Not classified Not classified 166x166 mm²  

Module size - >0.01 m² 0.01-1.65 m² 60 cells  1.65 m²  
72 cells 1.98 m²  

Manufactured 
size 

- >0.01 m² 0.01-1.65 m² 1-6  modules  1.65 – 10 m² 

Comparison to other literature 

TRL 
according to  
(Baliozian et 
al. 2016) 

0 1-4 5-7 8 9 

Cell size 
according to 
(Baliozian et 
al. 2016) and 
updated 
(Fischer et al. 
2020) 

- Not classified Not classified 125x125 or 156x156 mm²  
166x166 or 182x182 or 210x210 
mm² (2020) 

Module size 
(Fischer et al. 
2020) 

 Not classified Not classified 60 or 72 cells until 2030 

3.2.2 Step 2: Selection of upscaling elements 

Upscaling from generic lab to generic fab-early or generic fab-mature results in the 

preselection of six mechanisms (Figure S4). The change of material system  is excluded 

since the PSC material does not fundamentally change. We focus only on the main 

contributor, thus only the process learning modules are finally selected. 
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Figure S4 Selection of upscaling elements 

3.2.3 Step 3: Extension of the LCI - Data collections of the modeled process learning 

upscaling modules 

AM-1 Mapping of technologies 

The detailed description of this upscaling module AM-1 is available in the Supporting 

Information S2, Tabs “AM1[…]”. 

AM-2 Equipment scaling – empirical and individual 

Here, only the results of the sensitivity analysis are shown in Table S5. The detailed 

upscaling data of this upscaling module is provided in in the Supporting Information S2, Tabs 

“AM2[…]”..  
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Table S5 Results of the sensitivity analysis of GFabE in purple (underlying data from Table S5 
are available in the Supporting Information S3, purple Tabs “Sensitivity analysis”). 

 

 

AM-3-PSC Learning rate of PSC 

No detailed upscaling data was collected. 

3.3 Prospective upstream GHG emissions from lab to fab 

The underlying data for Figure 6 are available in the Supporting Information S3. 
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Appendix III contains the supplementary materials of Publication 3, Weyand et al. (2023b).

Weyand S, Kawajiri, K., Mortan, C., Zeller, V., Schebek L. (2023): Are perovskite solar

cells an environmentally sustainable emerging energy technology? Upscaling from lab to

fab in life cycle assessment. ACS Sustainable Chemistry & Engineering, DOI: 10.1021/ac-

ssuschemeng.3c03019.

Supporting information provides more details on the practical implementation of the

case study and is available below.
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Introduction 

Environmental sustainable energy technologies are those that are climate-friendly and, at the 

same time, show a low potential of trade-offs to other environmental impacts in terms of 

resource use or effects on human health or ecosystem quality. The key indicators, referred to 

as KEYIs, are the impact category indicators selected for a comprehensive description of the 

potential environmental impacts of the assessed PSC case study according to Weyand et al. 

(2019).1 The selected KEYIs to assess environmental sustainability are explained below. 

LCA description for technology developer only 

LCA is a method standardized in the ISO 14040/140442,3 for the evaluation of a full range of 

environmental impacts throughout the life cycle of products and services: It is also applied 

widely to technologies based on FunMat.4 The integration of LCA in the early stages of the 

maturation process has several advantages: LCA integrates environmental and sustainability 

indicators into technology development, enables the identification of unintended 

consequences, and gives environmental-friendly guidance before costly investments and 

resources are made. Technology developers can thus take actions to eliminate these 

consequences while supporting the prioritization of research activities.4 To this end, the 

following four LCA phases are applied according to the standards (ISO 14040 2006; ISO 

14044 2006):  

1) The goal and scope definition (G&S) encompasses the framework conditions such as 

the G&S of the LCA, the so-called functional unit as a reference unit, system boundaries, and 

the so-called product system. The product system represents the modeled life cycle. It is 

differentiated into upstream, encompassing processes from the raw material extraction to the 

manufacturing stage, operation, corresponding to the use phase, and downstream 

processes, referring to the recycling and end-of-life treatment of materials at the end of the 

product life cycle.  

2) Life cycle inventory (LCI): In this phase, extensive data collection occurs. To this end, 

the product system is divided into a foreground and background system. Generic or 

secondary data from LCA databases such as ecoinvent (ecoinvent 2020), IDEA (National 

Institute of Advanced Industrial Science and Technology 2018), or GaBi Databases (Sphera 

Solutions Inc. 2020) is usually used for the background system; the foreground system 

corresponds to case study-specific data preferably from primary sources. For example, for 

emerging FunMat, the primary data on material inventories and processing energies are 

collected either from or together with technology developers during their investigations. 

3) In life cycle impact assessment (LCIA), the environmental impacts are quantified per 

impact category indicator. The considered indicators are selected depending on the G&S of 

the LCA study and the potential environmental impacts resulting from the assessed 

technology. For example, regarding climate-friendliness, LCIA focuses on energy-related 
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impacts or other impacts involving GHG emissions rather than on impacts corresponding to 

materials like resource depletion or release of toxic substances during the extraction of raw 

materials. 

4) In the interpretation phase as the last phase, the LCA results are processed as a basis 

for recommendations and decision-making, addressing uncertainty issues. 

Material and methods 

Case study description 

The PSC samples selected and assessed in this study were manufactured in lab as part of 

the material development of the Surface Science Group of the Technical University of 

Darmstadt. The interest of this material development lies in the fundamental understanding 

of the interplay of each layer or semiconductor band alignment5,6 to achieve high efficiencies 

and to find optimal layer combinations and manufacturing processes7–10. The selected 

samples are intended to represent a typical PSC material with layer materials and 

manufacturing methods commonly used in many research laboratories.11,12 

One selected sample have solar cell dimension of 32,5 mm2 and a mini-module substrate 

dimension of 4 cm2. The detailed experimental procedure is explained in the following 

subsection. 

1.1.1 Experimental procedure (taken from Weyand et al., 2023 13) 

Front electrode with substrate (S) and front electrode (FE) (Glass coated with fluorine 

doped tin oxide (FTO): Pilkington NSG TEC15 FTO glass substrates have been used, cut 

as 2 cm x 2 cm squares, with a sheet resistance of 12-14 Ω/sq. and a glass thickness of 2.2 

mm. The substrates are cleaned with isopropanol, soap, tap water, distilled water and blown 

dry with a nitrogen gun. 

Electron transport layer (ETL) (compact and mesoporous titanium dioxide (c- and m-

TiO2): The c-TiO2 layer is produced by spray pyrolysis on the glass/FTO substrates. 500 µL 

of titanium diisopropoxide bis(acetylacetonate), 75 wt. % in isopropanol (TIAA) from Merck is 

mixed with 18 mL reaction grade Ethanol. This solution is sprayed using oxygen carrier gas 

onto the glass/FTO substrates, that have been treated for 5 min. in an oxygen plasma oven 

and heated to 450°C for 25 min. prior to deposition. After the spraying process, the  

glass/FTO/c-TiO2 substrates are annealed for 30 min. at 450°C in atmospheric conditions. 

The m-TiO2 layer is deposited by spin coating 100 µL of a 1:7 weight ratio solution of 18NR-T 

Titania (TiO2) paste from Greatcell Solar and reaction grade ethanol onto each glass/FTO/c-

TiO2 substrates in atmospheric conditions. The solution is dropped on a substrate, before 

spinning at 83 rps (revolutions per second) for 45 s. After drying for 10 min. at 70°C, an 

additional sintering step takes place for 45 min. at 450°C on a hot plate, in atmospheric 

conditions. 
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Absorber layer (ABL) (PbI2- and CH3NH3I-precursor): Prior to the deposition of the 

lead(II)iodide layer, the glass/FTO/c-TiO2/m-TiO2 substrates are treated in a UV/ozone oven 

for 15 min. The deposition takes place in a nitrogen (N2) filled glovebox. After each substrate 

has been heated for 2 min. at 80°C on a hotplate, 100 µL of a 555 mg PbI2 (Alfa Aesar 

99.9985%, metal base) in 1 mL DMF (N,N-Dimethylformamide, Merck, 99.8%, anhydrous) 

solution, that has been stirred for at least half an hour at 80°C is dropped onto the hot 

substrates, then spun at 108 rps for 90 s. Each substrate is subsequently dried for 10 min. at 

80°C. 

In a nitrogen glovebox, a solution of 400 mg methylammonium iodide (MAI, Greatcell Solar) 

and 40 mL anhydrous 2-propanol (99.5%, Merck) is stirred at 70°C until dissolved. After 

reaching room temperature, the solution is added to a Petri dish containing the glass/FTO/c-

TiO2/m-TiO2/PbI2 substrates. After 2 min., each substrate is rinsed in a clean 2-propanol bath 

of excess MAI and immediately blown dry with a pen blower. After additional drying on a hot 

plate for 15 min. at 50°C in the glovebox, the substrates are annealed in a tube furnace, in 

atmospheric air for 20 min. at 120°C. 

Hole transport layer (HTL) (Spiro-MeOTAD): The deposition of the spiro-MeOTAD layer 

takes place on the glass/FTO/c-TiO2/m-TiO2/MAPI substrates, in a nitrogen glovebox. 80 mg 

spiro-MeOTAD (Borun New Material, 99.9%) is mixed in 1 mL chlorobenzene (Merck, 

anhydrous, 99.8%) with 28.5 µL 4-tert-butylpyridine (Merck, 98%) and with 17.5 µL of a 

solution made from 260 mg Li-TFSI (bis(trifluoromethane)sulfonimide lithium salt, Merck, 

>99%) and 0.5 mL acetonitrile (Merck, anhydrous 99.8%). 100 µL of the resulted spiro-

MeOTAD solution is dropped on a glass/FTO/c-TiO2/m-TiO2/MAPI substrate. After a pause of 

20 s, it is spun at 23 rps for 30 s and left to dry at room temperature in the glovebox. 

Back contact with back electrode (BE) (Gold layer): The gold (Au) layer is deposited by 

argon sputtering on top to the spiro-MeOTAD layer, in a Quorum Technologies Q300TD 

machine with 30 mA current for 120 s, using a steel mask for defining the contacts. 

Estimation of the worldwide PV potential 

Kawajiri et al. (2011) estimate a worldwide PV potential of ground-mounted PV systems 

consisting of multi- and monocrystalline silicon PV modules according to Eq. S1. The 

estimation includes the effects of country-specific irradiation and temperature effect on the 

PV performance. 

 ��� =  
���

��	
= 
�

�	
∑ �� + ����� (��� +  ∆� − ��)���

��� ���   

 

Eq. S1 

 

With: 

Ypy: Annual PV potential in kWh/kW 

Epy: Annual energy generation in kWh 

LII



 

S5 
 

PAS: Nominal power of the PV module at standard test conditions in kW 

K’:  Design factor  

Gs: Solar irradiance at STC = 1 kW/m² (IEC 61724 14) 

HAm:  Monthly total solar irradiation [kWh/m²]  

αPmax: Maximum power temperature coefficient of PV modules 

TAm: Ambient temperature profile averaged over a month 

∆T: Weighted average of module temperature annual increase for PV systems mounted 

on platforms = 18.4°C 15 

Prospective LCA 

Goal and scope definition – upscaling definition and leap 

The general product system of PSC modules with the defined system boundaries, 

foreground, and background system, and the considered processes is summarized in the 

Figure S1. Figure S1 illustrates the three upscaling mechanisms recommended for PSC 

upscaling using UpFunMatLCA.13 The detailed documentation of the generated upscaling 

scenarios are summarized in Table S1. 
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Figure S1 Illustrating the life cycle as product system of the assessed PSC samples applied as 
PV modules (adjusted from Weyand et al. (2023)

13
, with system boundaries, including the 

considered (black border) and unconsidered (grey dashed border) upstream, operation, and 
downstream processes, with foreground (white filled boxes) and background processes (grey 
filled boxes), and with involved upscaling mechanisms (colored arrows). Elementary flows and 
functional units are marked by italic font. 
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Life cycle inventory (LCI) – upscaling model and data 

 

Current stage 

The material inventory and its data source are summarized in Table S2. The process-specific 

energy inputs of each manufacturing step were measured with the Gossen Metrawatt test 

instrument SECUTEST 0701/0702S and outlined in Table S3. 

Table S2 Status quo inventory of the material inputs collected during manufacturing of 0.0004 
m² sized PSC (GLab) 

La
yer 

Material 
Amo
unt 

U
ni
t 

Comment 

BE Gold 
1.31
E-07 

kg 
Mass of gold in kg (average of leaching tests) (only embedded material on sample included, 
no loss considered) 

HT
L 

SpiroMeOTAD 
1.00
E-07 

m
³ 

Volume of spiroMeOTAD mixture per spin-coated substrate of  4 cm² (embedded material 
and material loss included) 

AC
T 

MAI mixture 
4.00
E-05 

m
³ 

Volume methylammonium mixture useable for chemical bath coating of a maximum number 
of 50 substrates (embedded material and material loss included) 

 
PbI2 mixture 

1.00
E-07 

m
³ 

Volume of lead (ii) iodide mixture per spin-coated substrate of  4cm² (embedded material 
and material loss included) 

EB
L 

TiO2 
mesoporous 
mixture 

1.00
E-07 

m
³ 

Volume of TiO2 mesoporous mixture per spin-coated substrate of  4cm² (embedded material 
and material loss included) 

 
TiO2 compact 
mixture 

1.85
E-05 

m
³ 

Volume of TiO2 compact mixture in filled in the spray coater head (embedded material and 
material loss included) 

FE Fluorine 
1.28
E-11 

kg Mass of fluorine according to 
4
 

Tin 
4.16
E-10 

kg Mass of tin according to 
4
 

S Glass 
0.00
1428 

kg Mass of the lab substrate 

 

Table S3 Status quo inventory of the processing energy collected during manufacturing of 
0.0004 m² sized PSC (GLab); Data is either measured (m), calculated (c) or taken as rated power 
(r). 

Layer 
Manufacturing 
processes 

Manufacturing steps 
Manufacturing 
equipment 

Power input 
Processing 
time t0 [h] 

Energy input 

P0 [kW] 
E0 
[kWh/4 cm²] 

BE 

Sputtering Sputter coater operation Sputter coater 1.40E+00 r 3.30E-02 7.78E-03 c 

 
Vacuum pump 
operation 

Vacuum pump 3.70E-01 r 1.10E-01 6.68E-03 c 

HTL Spin coating Spin coater operation Spin coater 2.50E-03 m 8.30E-03 2.08E-05 c 

ACT 

Annealing Hot oven operation Hot oven 8.40E-02 c 2.50E-01 3.50E-03 m 

Dip coating Hot plate operation Hot plate 4.00E-03 c 2.50E-01 1.67E-04 m 

Spin coating Spin coater operation Spin coater 2.50E-03 m 2.50E-02 6.25E-05 c 

 
Hot plate operation Hot plate 4.90E-02 c 4.20E-01 3.00E-03 m 

EBL 

Sintering Hot plate operation Hot plate 6.70E-01 c 7.50E-01 8.33E-02 m 

Spin coating Spin coater operation Spin coater 2.50E-03 m 1.30E-02 3.13E-05 c 

 
Hot plate operation Hot plate 1.20E-02 c 1.70E-01 3.33E-04 m 

Sintering Hot plate operation Hot plate 1.40E+00 c 5.00E-01 1.15E-01 m 
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Spray coating Spray coater operation Spray coater 2.20E+00 c 2.80E-03 1.00E-03 m 

 
Hot plate operation Hot plate 1.40E+00 c 4.20E-01 9.58E-02 m 

FE Unknown coating N/A N/A N/A 
 

N/A N/A 
 

S 
Market for solar glass, 
low iron (ecoinvent) 

N/A N/A N/A 
 

N/A N/A 
 

Total 
      

3.17E-01 c 

 

Target stage 

No upscaling modules from current to the target stage were considered for the material 

inputs. Consequently, the material inputs were linearly upscaled. The above-mentioned 

upscaling modules modeled the process-specific energy inputs at the target stage. In 

addition, we differentiate between the original measured energy inputs per total 

manufacturing size and the optimized energy inputs. For the optimized energy inputs, we 

consider the full utilization per equipment, i.e., the maximum number of samples per hot plate 

is determined, and the measured energy inputs of six manufactured samples are allocated to 

this maximum number. The processing energy of the target stage is derived from the 

implementation of the following upscaling modules into the inventory of the current stage. 

The inventory of the processing energy per manufacturing process and applied upscaling 

module are summarized in Table S4. Upscaled inventory of the processing energy inputs per 

manufacturing process in kWh/m² (GFabM, GFabM+ML); for a maximum manufactured 

substrate area of 10 m². 

Table S4 Upscaled inventory of the processing energy inputs per manufacturing process in 
kWh/m² (GFabM, GFabM+ML); for a maximum manufactured substrate area of 10 m² 

Manufacturing process Target stage 

 
linear empirical individual 

Sputtering (Sputter coater: 
Quorum)  

19.4 0.8 0.2 

Sputtering (Vacuum pump) 16.7 0.0 0.0 

Annealing (Hot oven) 8.8 12.7 2.4 

Spin coating (Spin coater) 0.1 0.1 0.01 

Spray coating (Spray coater) 2.5 0.002 0.0003 

Sintering (Hot plate) 245.1 8.5 7.1 

Heating (Hot plate) 2.9 4.2 0.1 

Slot die coating (Slot die 
coater) 

N/A 
0.001  

N/A 

 

Life cycle impact assessment – explanation of the selected KEYIs 

Climate-friendliness can be assessed by a high net energy gain, indicated by a high energy 

potential to be harvested, low cumulative energy demand as expended energy, and low GHG 

emissions. Besides these energy-related key indicators (KEYIs), trade-offs to other potential 

environmental impacts are described by the so-called material-related KEYIs. According to 

Weyand et al. (2019), three material-related KEYIs were recommended for a comprehensive 
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description of the potential environmental impacts of photovoltaic technologies and their 

trade-offs1:  

- ILCD midpoints 2011, resource depletion – mineral and fossil, 

- ILCD midpoints 2011, human toxicity, 

- ILCD midpoints 2011, freshwater ecotoxicity.16,17 

The ILCD midpoints 2011 were updated to the Environmental Footprint Methods in 2021.18 

Therefore, three become the following four categories: 

- EF method 2021, Resource use, mineral and metals, 

- EF method 2021, Resource use, energy carriers, 

- EF method 2021, Cancer human health effects, 

- EF method 2021, Ecotoxicity freshwater. 

We assess the climate-friendliness and resource-efficiency, and we leave the toxicity 

assessment for future research for the following reasons: 

- Our upscaling focuses on the manufacturing stage. The main toxicity impacts are 

expected in the end-of-life phase. 

- Toxicity indicators require regionlized assessment19 and detailed knowledge of direct 

and indirect heavy metal emissions during the life cycle as shown in Fthenakis et al. 

(2008)20. 

- Other possible risky materials such as nanomaterials can not adequately assessed 

with LCA and a combination with risk assessment is recommended. 21,22  

Interpretation - Break-even comparisons for the assessment of the environmental-

friendliness 

The framework of Glogic et al. (2019) includes a break-even comparison to find the point 

when an OPV charger's environmental impact equals the impact of charging a phone with 

the country-specific electricity mix using Eq. S2 23. These calculated break-even charges 

enable a more realistic interpretation of how environmentally friendly an OPV charger is or 

how often an OPV charger has to be used to be more environmentally friendly than the 

existing country-specific electricity mix. Together with the irradiation model developed there, 

a more realistic statement on the environmental-friendly use of OPV chargers can be made 

for respective countries. The environmental impacts are taken from an LCA study. 

 

 � !�" − !#!$ %�& '(� )!*

=  
!$#. ,���'- ./ � .01'-,.$ �$0 0,*�.*�2 ./ %�& '(� )! 

!$#. ,���'- ./ *,$)2! ) ,0 '(� )! ∙ 2,/!-,�! ./ %�& '(� )! 
 

Eq. S2 
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Appendix IV

Appendix IV contains the PSC LCI Database (openLCA model, openLCA results and monte carlo

simulations).

Supporting information S1: S1 includes the openLCA results (XLSX) and monte carlo simula-

tions (XLSX) and is available at: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3924

or use QR code.

Supporting information S2: S2 contains the PSC LCI Database (ZOLCA) and is limited acces-

sible at: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3925 or use QR code.
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