The Role of Cerium Valence on the Conversion Temperature of H₂Ti₃O₇ Nanoribbons to TiO₂-B and Anatase Nanoribbons, and Further to Rutile

Polona Umek ^{1,*}, Michael Dürrschnabel ², Leopoldo Molina-Luna ³, Srečo Škapin ¹, Romana Cerc ¹, and Carla Bittencourt ^{5,*}

¹ Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; <u>polona.umek@ijs.si</u>, <u>sreco.skapin@ijs.si</u>

2 Karlsruhe Institute of Technology, P.O. Box 6980, 706049 Karlsruhe, Germany; michael.duerrschnabel@kit.edu

³Technische Universität Darmstadt, Peter-Grünberg-Strasse 2, 64287 Darmstadt, Germany; <u>molina@aem.tu-darmstadt.de</u>

⁴ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; <u>romana.cerc-korosec@fkkt.uni-lj.si</u>

⁵Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium; <u>carla.bittencourt@umons.ac.be</u>

Figure S1. SEM image of H₂Ti₃O₇ nanoribbons (HTiNRs) used as a precursor for wet impregnation/intercalation with Ce⁴⁺ and Ce³⁺. The width of the nanoribbons (NRs) ranges from 20 to 350 nm, the majority of the NRs have lengths between 1 and 2 μ m, although separate NRs in length can reach up to 6 μ m.

Figure S2. XRD of pristine HTiNRs and products calcined at 620, 750, 860, and 960 °C in air.

Figure S3. XRD patterns of HTiNRs (top), Ce^{4+} -HTiNRs (middle), and Ce^{3+} -HTiNRs (bottom) between 7 and 15°. Vertical lines guide the eye to easily observe the (100) peak shift to higher angles for Ce^{3+} -HTiNRs.

Figure S4. SEM image of HTiNRs impregnated with Ce⁴⁺ (Ce⁴⁺-HTiNRs).

Figure S5. TGA curves for HTiNRs impregnated with Ce⁴⁺ (Ce⁴⁺-HTiNRs) and Ce³⁺ (Ce³⁺-HTiNRs) measured in air.

Figure S6. TGA curve of Ce(SO₄)² 4H₂O measured in air and MS of H₂O, SO, and SO₂. Dehydration of crystalline bonded water takes place in one step and is finished at 200 °C. The decomposition of the sulfate group takes place in two steps. The first step starts at about 430 °C, on further heating the second step starts at about 600 °C. Decomposition of the sulfate group is completed above 800 °C, the final product formed is CeO₂ and represents 43.6 wt. % of the starting mass. The theoretical mass loss for Ce(SO₄)₂ 2H₂O is 57.6 wt. % and agrees well with the observed one [65].

Figure S7. TGA and DSC curves of Ce(NO₃)₃ 6H₂O measured in air. Complete dehydration of crystalline water in Ce₂(NO₃)₃ 6H₂O is finished up to 210 °C, on further heating in the range 230 to 310 °C, decomposition of Ce₂(NO₃)₃ takes place accompanied by oxidation of Ce³⁺ to Ce⁴⁺ resulting in the formation of CeO₂ (39,6 wt. % of the starting mass). Theoretical mass loss for Ce₂(NO₃)₃ 6H₂O is 60.4 wt. % and agrees well with the observed one [66]

Figure S8. Breakdown of the nanoribbon morphology with increasing calcination temperature for Ce⁴⁺-HTiNRs calcined at **a** 620 °C, **b** 750 °C, **c** 860 °C and **d** 960 °C. TEM images were taken at the same magnification.

Temperature

Figure S9. Collapse of the nanoribbon morphology with increasing calcination temperature for HTiNRs calcined at 620 °C, 750 °C, 860 °C, and 960 °C. SEM images were taken at the same magnification with a secondary electron detector.

Figure S11. STEM-EDX elemental mapping of Ce⁴⁺-620 °C.