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Abstract

Extended research, aimed at improving the properties of dielectric capacitors for

energy storage applications, has fostered the interest in antiferroelectric (AFE)

materials. In this class of materials, sodium niobate (NaNbO
3
, NN) and silver

niobate (AgNbO
3
, AN) are amongst the most promising alternatives to the toxic

lead-containing compounds, such as PbZrO3-based ceramics, due to the possi-

bility to obtain double P-E loops at room temperature. Chemical modi�cation

has been extensively used in order to improve their antiferroelectric properties

and energy e�ciency. However, the defect chemistry and its connection with the

AFE properties are still unknown, and a systematic approach for doping these

systems is still missing. Moreover, while processing conditions and kinetics are

known to play a role in the �nal properties of the material, their impact has not

yet been systematically studied. Lastly, when impurities are introduced into a

system, they will interact with the already present intrinsic defects and can lead

to formation of defect dipoles, which will a�ect the switching behaviour of the

electric dipoles and therefore the P-E loops. Nonetheless, their presence induced

by doping has not yet been investigated.

The scope of this doctoral thesis is therefore to study with �rst-principles cal-

culations the thermodynamics of point defects in NN and AN. We investigate

with density functional theory (DFT) how doping and synthesis conditions mod-

ify the electronic properties of NN and AN, with focus on the Fermi level. In

particular, we determine the thermodynamic defect equilibrium by solving the

charge neutrality condition, accounting for the impact of extrisic defects on the

compensation mechanisms. Moreover, we develop a novel scheme to account for

quenching of defects within the established point defect thermodynamics.

In pure NN, the acceptor Na vacancies and donor O vacancies are present in large

concentrations, thus dictating the position of the Fermi level. When doped with

Sr and Sn, at high temperature and low oxygen partial pressure (pO2) NN is an

n-type semiconductor, while for high pO2 the system becomes p-type. At room

temperature the material is p-type. Quenching from high temperature all defects,

or just O vacancies, shifts the Fermi level towards the conduction band minimum

(CBM), while quenching Na and Nb vacancies produces a less pronounced shift

towards the valence band maximum (VBM). Four defect complexes are found to

be stable and present in high concentrations. This suggests they play an important

role in the �eld switching mechanism, ultimately in�uencing the AFE P-E loops.
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In AN, the formation energies of the acceptor Ag vacancies are so low that the

semiconductor is always p-type. For extremely low pO2 , the material is found to

be unstable due to the unphysically high concentration of Ag vacancies, which

matches the experimental results reported in the literature. Doping with Mn

and/or quenching does not produce a signi�cant shift of the Fermi level, and the

system remains p-type in all conditions.

In summary, our approach allows to systematically study defect thermodynamics

and electronic properties in semiconductors, accounting for multiple compensa-

tion mechanisms as well as quenched defects that are motivated by the synthesis

conditions.



Zusammenfassung

Antiferroelektrische (AFE) Materialien �nden Einsatz in dielektrischen Konden-

satoren mit hohen Energiedichten und -e�zienzen, da sie doppelte P-E-Schleifen

bei Raumtemperatur aufweisen. In dieser Materialklasse stellen Natriumniobat

(NaNbO
3
, NN) und Silberniobat (AgNbO

3
, AN) die vielversprechendsten Alterna-

tiven zu toxischen bleihaltigen Verbindungen, wie zum Beispiel PbZrO3-basierten

Keramiken, dar. Chemische Modi�kationen wurden umfangreich genutzt, um die

antiferroelektrischen Eigenschaften und Energiee�zienz dieser Materialien zu

verbessern. Die Defektchemie und ihre Verbindung zu den AFE-Eigenschaften

sind jedoch weitestgehend unbekannt und ein systematischer Ansatz zur Do-

tierung in diesen Systemen fehlt bisher. Ebenso wurden die Auswirkungen von

Prozessbedingungen und kinetischen Aspekten auf die endgültigen Eigenschaften

des Materials noch nicht systematisch erfasst. Außerdem können die in das Sys-

tem eingeführten Verunreinigungen mit den bereits vorhandenen intrinsischen

Defekten interagieren und zur Bildung von Defektdipolen führen, welche das

Schaltverhalten der elektrischen Dipole und damit die P-E-Schleifen beein�ussen.

Trotzdem wurden Defektdipole in bleifreien Antiferroelektrika noch nicht unter-

sucht.

Das Ziel dieser Doktorarbeit ist es, die Thermodynamik von Punktdefekten in

NN und AN mithilfe von �rst-principles Methoden zu untersuchen. Dazu wer-

den Berechnungen basierend auf der Dichtefunktionaltheorie angewandt, um

die Auswirkungen von Dotierung und Synthesebedingungen auf die elektroni-

schen Eigenschaften von NN und AN zu analysieren, insbesondere mit Fokus auf

das Fermi-Niveau. Dabei bestimmen wir das thermodynamische Defektgleichge-

wicht durch Lösung der Ladungsneutralitätsbedingung und berücksichtigen die

Auswirkungen von extrinsischen Defekten auf die Kompensationsmechanismen.

Darüber hinaus entwickeln wir ein neuartiges Verfahren innerhalb der etablierten

Punktdefekt-Thermodynamik, das das Einfrieren von Defekten berücksichtigt.

Mit diesem Ansatz zeigen wir, dass in reinem NN Na-Vakanzen (Akzeptoren)

und O-Vakanzen (Donatoren) in hohen Konzentrationen vorhanden sind und

die Position des Fermi-Niveaus bestimmen. Bei Dotierung mit Sr und Sn ist

NN bei hohen Temperaturen und niedrigem Sauersto�partialdruck n-leitend,

während das System bei hohem Sauersto�partialdruck p-leitend wird. Bei Raum-

temperatur ist das Material p-leitend. Das Einfrieren aller Defekte oder nur der

O-Vakanzen bei hoher Temperatur verschiebt das Fermi-Niveau in Richtung des

III
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Leitungsbandmaximums (engl. conduction band minimum, CBM), während das

Einfrieren der Na- und Nb-Vakanzen eine weniger ausgeprägte Verschiebung

in Richtung des Valenzbandmaximums (engl. valence band maximum, VBM)

bewirkt. Vier Defektkomplexe stellen sich als stabil heraus und sind demnach in

hohen Konzentrationen vorhanden. Dies legt nahe, dass sie eine wichtige Rolle im

Schaltverhalten der Polarisation spielen und letztendlich die AFE P-E-Schleifen

beein�ussen.

In AN sind die Bildungsenergien der Ag-Vakanzen (Akzeptoren) so niedrig, dass

das Halbleitermaterial immer p-leitend ist. Bei extrem niedrigem Sauersto�par-

tialdruck ist das Material aufgrund der unrealistisch hohen Konzentration an

Ag-Vakanzen instabil, was mit den in der Literatur beschriebenen experimentel-

len Ergebnissen übereinstimmt. Die Dotierung mit Mn und/oder das Einfrieren

führen nicht zu einer signi�kanten Verschiebung des Fermi-Niveaus, und das

System bleibt unter allen Bedingungen p-leitend.

Zusammengefasst ermöglicht unser Ansatz die systematische Untersuchung der

Defektthermodynamik sowie der elektronischen Eigenschaften von Halbleitern,

unter der Berücksichtigung einer Vielzahl von Kompensationsmechanismen und

des Einfrierens von Defekten, welches durch die Synthesebedingungen motiviert

wird.
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1 Introduction to
Antiferroelectricity

The aim of this chapter is to provide the scienti�c background and motivation

of this doctoral thesis. Firstly, since this research is focused on antiferroelectric

materials for applications in the �eld of energy storage, we present their de�nition

and properties, with particular focus on the features which make them suitable

and promising candidates for energy storage applications. Secondly, we review

the current state-of-the-art approaches for doping antiferroelectric materials,

with an emphasis on their successes in improving energy storage properties, as

well as their shortcomings. Lastly, we summarize the open scienti�c questions,

a hope to provide a transparent view of the scienti�c problems that are still

unsolved, and a clear motivation behind this doctoral thesis.

1.1 Dielectric Capacitors for Energy Storage
In the modern world, storing energy is just as important as producing it. Because

of the ever-increasing demand for smaller and lighter electronic devices, the

development of advanced energy storage materials and associated technologies

have long been areas of intense research interest for both the academic and

industry communities. Fuel cells, Li-ion batteries, electrochemical capacitors, and

dielectric capacitors have been regarded as the most promising four devices.
1

The relationship between energy storage density (ESD) and power density (PD)

for the four devices is illustrated in Figure 1.1. Batteries are capable of converting

electrical energy into chemical energy and typically possess the higher energy

density (≈ 100 Wh/Kg).
2

At the same time, however, they typically display

limited electrical power output, due to the much slower movement of the charge

carriers involved. Capacitors, on the other hand, can release stored charge within

an extremely short time duration (<100 ns), thus creating very large currents

1
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Figure 1.1: Ragone plot of di�erent energy storage devices. The straight dash lines and

the associated times correspond to the characteristic times. Adapted from Reference 1.

and power densities. Nevertheless, their total energy storage density is typically

relatively lower than that achieved in batteries. For many practical applications,

for example hybrid electrical vehicles, microwave communications, renewable

energy storage, distributed power systems, high-power applications, etc. (Figure

1.2), not only relatively high energy storage densities but also high electrical

power output is essential. The overall energy storage capabilities and electrical

power output properties of special types of dielectric capacitors make them

unique and potentially promising for use in the above-mentioned and other

industrial areas. Currently, commercially available solid-state capacitors for high-

power applications are dominated by polymer and dielectric ceramics, but they

usually possess limited energy density of less than 2 J/cm
3
. The challenge is

therefore to design capacitors being able to reach higher energy densities. In fact,

high energy density dielectrics would signi�cantly reduce the device volume

(increase the volumetric e�ciency), thus bene�ting many applications where

miniaturization, light weight, low cost, and easy integration are desirable, e.g.
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Figure 1.2: Application �eld of capacitors. Reprinted from Reference 1.

consumer electronics, pulsed power applications, and commercial de�brillators,

to name a few.
3

1.2 Recoverable Energy in Di�erent Types of
Dielectrics

In order to de�ne quantities like the energy density and energy e�ciency, we

need to look at how a material responds to an external electric �eld. When

an external electric �eld is applied, a polarization (P ) can be induced. Among

the several mechanisms that can cause polarization are the displacement of
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the electron cloud with respect to the nucleus, the displacement of ions in the

lattice, the displacement of electrons along chemical bonds, the reorientation

of molecules, and the transport of mobile charges.
4

In linear dielectrics, the

relationship between polarization P and applied �eld E is linear:

P = χeε0E, (1.1)

where χe and ε0 are the (dimensionless) electric susceptibility of the material and

the dielectric permittivity of vacuum, respectively. The electric susceptibility and

the relative permittivity,

εr = 1 + χe, (1.2)

are measures for both the level of polarization that the material experiences and

the amount of energy it can store when used as a capacitor. There are also cases

where the behavior di�ers from that of a linear dielectric, for example when the

material already possesses permanent electric dipoles before it is subjected to

an electric �eld. This is the case of Ferroelectric (FE) and Antiferroelectric (AFE)

materials. Figure 1.3 shows the polarization-electric �eld (P-E) curves for linear

dielectric, ferroelectrics and antiferroelectrics. The stored energy density and

recoverable energy density can be calculated by the integration of electric �eld

by polarization as follows,
2

Wst =

∫ Pmax

0

EdP, (1.3)

Wrec = −
∫ Pr

Pmax

EdP, (1.4)

where,E is the external applied electric �eld, Pr and Pmax represent the remanent

polarization and maximum polarization, respectively. The ratio of the recoverable

energy density to the stored energy density is de�ned as the energy e�ciency (η)

η =
Wrec

Wst

, (1.5)

while the energy loss is

Wlost = Wst −Wrec. (1.6)

Since linear dielectrics show no hysteresis (Figure 1.3a), they are able to recover

practically all the stored energy (η ' 1). Because of their relatively low dielectric

constant and low polarization, however, the energy density of linear dielectrics



1.2. Recoverable Energy in Di�erent Types of Dielectrics 5

E

P

Wrec

(a)

E

P
Wrec

Wlost

(b)

E

P

Wrec
Wlost

(c)

Figure 1.3: Characteristic P-E behaviour of linear dielectrics (a), ferroelectrics (b) and

antiferroelectrics (c). The gray and green areas represent the energy loss (Wlost) and

recoverable energy (Wrec), respectively.

is usually lower than 1 J/cm
3
.
2

Ferroelectrics (Figure 1.3b), on the other hand,

exhibit spontaneous electric polarization, whose direction can be switched by

applying an external electric �eld. Therefore, they usually possess high dielectric

constants, which means they are able to reach higher values of stored energy

density (Wst). Nevertheless, they show high values of remanent polarization,

which heavily limits the amount of energy that can be recovered (green area

in Figure 1.3b) and causes high energy loss (Wlost, gray area in Figure 1.3b),

due to the additional energy required to orient the spontaneous polarization in

the direction of the �eld. The P-E behaviour of antiferroelectrics (Figure 1.3c)

lies somewhere in between. In fact, they display the so-called double P-E loops,

where two distinguished hysterisis are present at higher �elds, with a region of

linear behaviour in between. These features yield much higher stored energy

densities than linear dielectrics, and at the same time limit the energy loss, due to

the smaller hysterisis. For these reasons, AFEs display much higher e�ciencies

(η) than FE materials, which makes them perfect candidates for applications in

energy storage. From this point on, we will refer to loops which have the same

shape as Figure 1.3c as AFE loops.

So far, we have been treating only the behaviour on a macroscopic scale. In the fol-

lowing section, we present the origin of these particular hysteresis loops, focusing

on models which have been developed to de�ne and describe antiferroelectricity

on an atomistic level.
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E

P

EA-FEF-A

Figure 1.4: Origin of the double P-E loops in antiferroelectric (AFE) materials. For low

�elds the AFE is stable and P (E) is linear. When the �eld increases up to the critical

�eld EA−F , a phase transition to the ferroelectric (FE) phase occurs, yielding a sudden

increase in polarization. When the �eld is lowered, the reverse phase transition occurs at

EF−A, receding to the linear regime and leading to a double hysterisis loop.

1.3 Concept of Antiferroelectricity

The de�nition of antiferroelectricity has been a subject of some ambiguity, par-

ticularly with regards to the distinction between macroscopic and atomistic

perspectives. From a macroscopic perspective, antiferroelectricity is de�ned as

the behaviour of the electric polarization which produces double P-E loops, as

described in the previous section.
2

This de�nition is based on the observed be-

havior of the material at the macroscopic scale, and is typically used to describe

the electrical properties of materials. From an atomistic perspective, however,

the de�nition of antiferroelectricity is somewhat di�erent.

Before we present the theory of antiferroelectricity, we will introduce brie�y

the related concept of ferroelectricity. FE materials display parallelly oriented
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adjacent electric dipoles within the crystal structure. The dipoles can interact

with an external �eld and can be arranged according to the direction of the �eld.
5,6

When the �eld is removed, the minimum energy con�guration is still with par-

allel dipoles, thus resulting in non-zero remnant polarization (Pr). When the

direction of the �eld changes, additional energy is required to �ip the orientation

of the dipoles to follow the new electric �eld. These are the reasons behind the

shape of the P-E loops in FE materials sketched in Figure 1.3b. The situation is

di�erent for AFE materials. This type of phenomenon was �rst predicted in 1951,

by C. Kittel.
7

In his de�nition, the structure of an AFE material can be described

by two sublattices. While the arrangement of permanent dipoles generates a

net polarization in each sublattice, the polarization directions of the sublattices

are antiparallel to each other. If the magnitude of both contributions is equal,

they fully compensate each other. Therefore, the net macroscopic spontaneous

polarization in the ground state is zero. A schematic representation of the origin

of their P-E loops is shown in Figure 1.4. For low electric �elds, the AFE ground

state is stable, and the response is linear. When the �eld strength reaches a critical

value (EA−F ), a structural phase transition from an antiferroelectric to a ferro-

electric state occurs. The �eld-induced phase transition between the AFE and the

FE state is typically characterized by ionic displacements, a change of the crystal

symmetry, and an increase in the lattice volume.
8

After the phase transition, the

FE state leads to a sudden increase in polarization. When the �eld is removed,

the reverse transition from the unstable FE phase to the stable AFE phase can

occur at �eld EF−A (with EF−A < EA−F ). These reversible phase transitions are

responsible for the double P-E loops in Figure 1.4.

While the model proposed by Kittel provides a relatively simple qualitative ex-

planation of the double P-E loops, it failes to describe the structure-property

relations of most materials. In fact, no AFE structure is known that can actually

be described as consisting of two sublattices of equal, but antiparallel polariza-

tion.
9

The �rst expansion to the Kittel model was made by G. Shirane when he

introduced an energy criterion.
9,10

In his de�nition, the free energy di�erence

between the AFE phase and the �eld-induced FE phase must be small. At room

temperature, the AFE phase should therefore only be slightly more stable than

the related FE phase, allowing the latter to be induced by an electric �eld. A

more complete de�nition of AFE materials also takes symmetry arguments into

account. The AFE and FE phases must be symmetry-related in order to allow for

a rearrangement of the local dipoles when the electric �eld is applied. K. Rabe

proposed the following de�nition:
9
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• The ground state of the material is a non-polar phase

• A close-in-energy polar phase exists

• The same high-symmetry structure is a parent of both phases

• A transition from the non-polar phase to the polar phase can be induced

by the application of an electric �eld, which leads to the observation of

double P-E loops

It should be noted that the presence of double P-E loops is not a su�cient condition

for antiferroelectricity. For example, double P-E loops can be observed as a result

of defects.
11,12

Coincidentally, the absence of double P-E loops does not always

exclude antiferroelectricity. In fact, some materials can experience dielectric

breakdown before the forward switching �eld is reached, making it impossible to

measure double P-E loops, even if a related polar structure exists.
2

In other cases,

the FE state is metastable, resulting in an irreversible phase transition. Once the

electric �eld is applied and the transition has taken place, these materials will

then exhibit FE-typical single P-E loops.
13

Therefore, the relative stabilities of

the AFE and related FE phases determine whether a reversible phase transition

can be induced by application of an electric �eld, and thus whether the favorable

energy-storage properties of antiferroelectrics can be exploited.

In the next section, we will discuss which antiferroelectric materials are the most

promising candidates in the context of energy storage properties, with particular

focus on the two objects of this work: NaNbO
3

and AgNbO
3
.

1.4 Lead-free Antiferroelectrics
Many materials which display antiferroelectric properties are based on the per-

ovskite structure. The ABO
3

perovskite structure has a B-cation site that is oc-

tahedrally coordinated and an A-site cation site that is 12-fold coordinated. An

example of the prototype cubic perovskite structure is shown in Figure 1.5a. Vari-

ous cooperative displacements of cations and tilting of the O-octahedra develop

through the phase transitions and can lead to lower symmetry phases: polar

or non-polar. Ever since the 1960s, the main focus for devices based on antifer-

roelectric material has been on lead-based compounds. More speci�cally, the

most performant devices are based on the solid solution PbZrO
3

- PbTiO
3

(lead

zirconate titanate, or PZT). The capabilities can be further improved by doping

with La on the A-site (PLZT) and/or Sn on the B-site (PLZST).
2

TDK Corporation
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(a) PE cubic phase

(b) AFE orthorhombic phase

(P phase)

(c) FE orthorhombic phase (Q

phase)

Figure 1.5: Structures of the high temperature cubic phase and room temperature or-

thorhombic polymorphs of NaNbO
3
.

has introduced a high-performance multi-layer ceramic capacitor made of AFE

PLZT with copper electrodes called Ceralink™ that operates between -55
◦
C and

150
◦
C, at high voltages ~500 to 1000 volts, and ~10 µF, with high reliability.

14

The use of lead-containing compounds in various products has come under

scrutiny in recent years due to concerns about lead poisoning and environmental

pollution. According to the World Health Organization (WHO),
15

lead is a toxic

substance that can cause serious health problems, especially in children, and it can

persist in the environment for a long time. As a result, there has been a growing

e�ort to �nd alternatives to lead-containing compounds and to phase out their

use where possible. Lead-free systems have become increasingly necessary for

environmental and health reasons. Lead-free solders, for example, are now widely

used in electronics manufacturing to avoid the risk of lead contamination. In

the plumbing industry, lead-free pipes and �ttings have replaced traditional lead

pipes to reduce the risk of lead contamination in drinking water. Lead-free paint

and gasoline have also been introduced to reduce lead emissions into the environ-

ment. The transition to lead-free systems can be challenging, as lead-containing
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compounds have been widely used for many years and have well-established

applications. However, with continued research and development, alternatives to

lead-containing compounds are becoming increasingly available, and their use is

necessary to protect human health and the environment.

Two of the most promising lead-free AFE materials for energy storage applications

are NaNbO
3

and AgNbO
3
. Both are pervoskites with a cubic high temperature

phase and an orthorhombic room temperature (RT) phase. In the following, we

provide an overview of the structure and properties of these two materials.

NaNbO3

Due to the volatilization of sodium oxide at high temperatures, synthesizing

high-quality single-phase NaNbO
3

ceramics has been a long-standing problem.
16

Sodium niobate experiences a complex sequence of phase transitions as a function

of temperature. The list of phase transitions with respective nomenclature is

reported in Table 1.1.
16–20

The room-temperature orthorhombic P phase, with

eight formula units per unit cell, features antiparallel displacements of both

the sodium and niobium cations and is additionally characterized by octahedral

tilting.
19,21

In both cases, the antiparallel cation displacements give rise to an

antiparallel ordering of permanent dipoles that e�ectively compensate each other

on a unit cell basis. At room temperature, the AFE P phase might coexist with

a FE polymorph named Q phase (space group Pmc21). These two polymorphs

are relatively close in energy and the phase transition from the P to the Q phase

occurs by applying a su�ciently strong external �eld. Figure 1.5 shows the cubic

parent structure, the AFE P phase, and the FE Q phase.

In NaNbO
3
, the double P-E hysteresis loops are rarely observed, since the �eld-

induced FE Q phase remains in a metastable state after the �eld is removed. As a

consequence, the system preserves a spontaneous polarization even without ap-

plied �eld.
22

However, as mentioned in the previous section, materials displaying

a narrow double P-E loop are of interest for energy storage applications. In order

to reach this condition, the AFE phase needs to be stabilized over the FE phase,

so that the AFE−FE phase transition is reversible, and the system does not show

spontaneous polarization.
23

One way to achieve this, like for lead-bases systems,

is chemical modi�cation, which will be treated in Section 1.5.

In this work, the phases of interest are the trigonal N phase, the orthorhombic P

phase, and the cubic C phase. Because the nomenclature used for sodium niobate

can be confusing and is not always consistently used in literature, in this work we

refer to the three phases by relying on their crystal system, naming therefore the



This work Lit. Crystal system Space group Temperature (K) Behaviour

R N Trigonal R3c up to 173 FE

O P Orthorhombic Pbcm 173 - 633 AFE

R Orthorhombic Pmnm 633 - 753 AFE

S Orthorhombic Pnmm 753 - 793 PE

T1 Orthorhombic Cmcm 793 - 848 PE

T2 Tetragonal P4/mbm 848 - 913 PE

C C Cubic Pm3m from 913 PE

Table 1.1: List of phase transitions and respective nomenclature in this work and in

the literature for NaNbO
3
. The last column on the right indicates if the phase exhibits

Ferroelectric (FE), Antiferroelectric (AFE) or Paraelectric (PE) behaviour.

This work Lit. Crystal system Space group Temperature (K) Behaviour

O M1 Orthorhombic Pbcm up to 340 AFE

M2 Orthorhombic Pbcm 340 - 540 AFE

M3 Orthorhombic Cmcm 540 - 626 AFE

O1 Orthorhombic Pmnm 626 - 634 PE

O2 Orthorhombic Cmcm 634 - 660 PE

T Tetragonal P4/mbm 660 - 852 PE

C C Cubic Pm3m from 852 PE

Table 1.2: List of phase transitions and respective nomenclature in this work and in the

literature for AgNbO
3
. The last column indicates if the phase exhibits Ferroelectric (FE),

Antiferroelectric (AFE) or Paraelectric (PE) behaviour.
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low temperature trigonal phase as R phase, the room temperature orthorhombic

as O phase, and the high temperature cubic as C phase.

AgNbO3

The precursors for the synthesis of AN are Ag
2
O and Nb

2
O

5
.
24

However, in the

later stages of the reaction, the actual precursors are metallic Ag and Nb
2
O

5
. In fact,

Ag
2
O decomposes into metallic Ag (at circa 200

◦
C), but the kinetics of the reaction

is accelerated by using Ag
2
O in the initial stage. Most commonly, the synthesis

has been carried out in oxygen atmosphere. In recent years, however, it has been

shown that it is possible to synthesize AN in air atmosphere, while the reaction

does not occur in O-poor atmosphere.
25

In general, it has been reported that

kinetics plays a central role in this reaction, which increases the complexity of the

studies on AgNbO
3
, due to the di�culty in obtaining samples of consistent quality.

Moreover, it intensi�es the challenge also from a computational perspective, as

we will address in Section 4.1. Last but not least, it has been discovered that,

after the synthesis process, the resulting material has a propensity to exhibit

non-stoichiometric behavior, which can be attributed to Ag de�ciency.
26

In spite of the numerous e�orts dedicated to the structural investigation of

AgNbO
3
, there is still an ongoing debate on the structural details of AN. Sciau et

al
27

have concluded that the average structure of the room temperature phase

can be described by the Pbcm space group, attributing the origin of the weak

antiferroelectric behaviour of room temperature phase to local structural changes.

Based on the dielectric measurements and structural characterization, Kania et al

summarized the phase transition sequence of AgNbO
3

as a function of increasing

temperature, which is reported in Table 1.2. Also, Levin et al
28

have proposed

the Pmc21 space group for the ferroelectric phase of AN, suggesting that weak

ferroelectricity is due to local cation displacement disordering. The parent cubic,

AFE and FE structures are therefore identical to the ones shown in Figure 1.5.

Investigations by Niranjan and Asthana
29

using density functional theory have

reported that the Pbcm and Pmc21 phases are very close in energy (di�erence

of only 0.1 meV/f.u.), suggesting that the coexistence of the two phases would

explain the experimental P-E loop, which exhibits antiferroelectric-like behavior

with a small remnant polarization at zero �eld. Contrary to the case of NaNbO
3
,

the phase transition is reversible. Similarly to NaNbO
3
, narrower P-E loops can

be achived through chemical modi�cation. The most common doping strategies

and their role in the AFE properties are discussed in the next section.
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1.5 Defects and Doping Strategies in Lead-free
Antiferroelectrics

In order to expand the use of antiferroelectric (AFE) materials for energy storage,

certain issues must be resolved. High energy density and e�ciency are both

necessary for practical applications. AFE materials with a high energy density

require a large AFE-FE phase transition electric �eld and a substantial di�erence

between remnant polarization and maximum polarization, as shown in Figure

1.4. To ensure high energy e�ciency, these materials must also have a narrow

hysteresis loop. Although AFE materials have signi�cantly improved in energy

density in recent years, their energy e�ciency, typically less than 85 %, is still

inferior to that of linear dielectric materials.
2

This not only results in energy loss,

but may also generate heat during discharge and degrade the properties of the

ceramics. The behavior of AFE materials during phase transition, including the

critical electric transition �eld from AFE to FE, its reversibility and polarization

values, depends heavily on the material’s composition. Therefore, modifying the

composition and doping the material have been identi�ed as the most e�ective

ways to tailor AFE materials and improve their energy storage properties. These

techniques have been widely reported in the literature.
2

One critical aspect of chemical modi�cation that is too often overlooked is the

conceptual di�erence between doping and substitution. Doping and substitution

are two distinct processes in materials science that involve introducing impurities

or foreign atoms into a host material. Doping is a process where, after introducing

a substitutional defect, the charge state of the system is modi�ed. In other words,

the valences of the substituted and substituting atoms are di�erent. Because this

process introduces a charge that needs to be compensated, the Fermi level of the

system is modi�ed (more detailed thermodynamics will be discussed in Section

2.4). These defects can a�ect the material’s electrical and optical properties, such

as its conductivity and luminescence. On the other hand, substitution is a process

where the introduction of the substitutional defect does not introduce any addi-

tional charge, thus not a�ecting the Fermi level of the material. In this situation,

the valences of the substituted and substituting atoms are identical.
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Figure 1.6: Tolerance factor versus averaged electronegativity di�erence for various

perovskites, reproduced from Reference 30.

1.6 Tolerance Factor
A common guideline that is typically followed to adjust the composition and

modify the energy storage properties of AFE materialsis is based on the Gold-

schmidt tolerance factor, t. The tolerance factor allows for a surprisingly accurate

prediction about the preference for ideal cubic arrangements in perovskites and

is given by
2,31

t =
rA + rO√
2(rB + rO)

, (1.7)

where, rA, rB , and rO represent the radius of A-site, B-site, and oxygen ions. If

the tolerance factor is approximately one, the ideal perovskite structure is often

favored. This is reached for large A-site cations and B-O π bonding, stabilizing

the cubic symmetry.
32

On the other hand, if t is not one, either the B (t > 1) or the

A (t < 1) cation is too small.
33

Therefore, these cations will displace from their

regular position to optimize their local bonding environment (increased overlap

with the surrounding oxygen 2p orbitals). As a result, when the tolerance factor

is greater than 1 (t > 1), the ferroelectric (FE) phase will be more stable, whereas
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when the tolerance factor is less than 1 (t < 1), the antiferroelectric (AFE) phase

will be more stable. As a consequence, the antiferroelectricity can be improved by

substituting smaller ions in the A-site or larger ions in the B-site of the perovskite

materials.

Moreover, Halliyal and Shrout
34

found that plotting the tolerance factor t versus

the average electronegativity provides information on the stability of the per-

ovskite family of compounds across di�erent substitutions and solid solutions.

The average electronegativity is expressed by

X =
XAO +XBO

2
, (1.8)

where XBO is the electronegativity di�erence between the B cation and the

oxygen anion, whileXAO is the electronegativity di�erence between the A cation

and the oxygen anion. Both these quantities give an indication of the ionicity of

the A−O and B −O bonds. Figure 1.6 shows the relationship between t and X
for various perovskite compounds, including a wide range of both simple and

complex perovskites. Lead perovskite compounds that are characterized by low

values of both t and X are known to have a tendency to form pyrochlore phases.

However, the perovskite phase can be stabilized by creating solid solutions where

either t or X is increased.

1.7 Fermi Level Engineering
While these two criteria can be surprisingly succesfull in predicting the behaviour

of perovskite structures, they can be classi�ed as a "rule of thumb", since they

neglect many aspects of the physics involved. In fact, by considering only the

radius of the ions, the e�ects of the chemical modi�cation on the Fermi level

are completely neglected. Moreover, while the electronegativy di�erence can be

a good initial descriptor for the nature of the chemical bonding, it both fails to

describe what is the connection between the band structure and the structural

distortions, and to provide information on the oxidation states of the substituting

elements.

In order to bridge this gap, much more in-depth studies need to be conducted.

Firstly, the nature of the defects and the relative oxidation states of the elements

need to be clari�ed (doping vs substitution) by evaluating the stability of all the

possible defect charge states. Secondly, the equilibrium between all the charges

(ionic and electronic) needs to be studied, in order to evaluate the impact of doping
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(a)
(b)

Figure 1.7: a) P-E loops of the KNN and KNN-Cu ceramics measured at di�erent frequen-

cies. b) P-E loops for the KNN-Cu ceramic measured at 100 Hz and di�erent temperatures.

Reprinted from Reference 36.

on the Fermi level. Understanding the Fermi level in these materials is crucial to

understand the role of chemical modi�cation in the AFE properties. Changes in

the Fermi level a�ect other formation mechanisms and concentrations of defects.

Depending on the compensation mechanisms, di�erent defect species are involved

in the reaction of the material on the insertion of a charged defect. The concept of

Fermi level engineering utilizes the relation between defect concentrations and

the Fermi level to select the desired compensation mechanism and to eventually

control material properties. For example, controlled doping of semiconductors,

which is the basis of semiconductor technology, can be considered as Fermi

level engineering in order to realize a wide range of applications such as (light

emitting) diodes, transistors, solar cells, sensors, varactors, microwave generators,

and more.
35

In Chapter 2 we will show how to understand and predict, with

computational methods, the e�ect of defects and synthesis conditions on the

Fermi level.

1.7.1 Defect Dipoles

In addition to modifying the Fermi level and defect concentrations, doping can

also impact other observables in the system, like the interacion with an external

electric �eld. So far we have only been treating the impact of single defects on
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3
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the material properties. When defects are charged, however, they can associate

and form a defect complex, if the new con�guration is energetically favorable.
37

Since we have an association of charged defects, an electric dipole is formed.

Defect dipoles can have a signi�cant impact on the properties of ferroelectric

and antiferroelectric materials. In ferroelectrics, defect dipoles can a�ect the ori-

entation and stability of ferroelectric domains, as well as the overall ferroelectric

polarization. For example, it has been shown that defect dipoles can a�ect the P-E

hysterisis in BaTiO
3

38
and BiFeO

3
.
12

Moreover, it has been reported that defect

dipoles in�uence the switching mechanisms in (K0.5Na0.5)NbO3 − Cu ceramics.

Hysterisis loops of undoped and Cu-doped KNN, measured by Lin et al,
36

are re-

ported in Figure 1.7. Because of the symmetry-conforming property, the acceptor

dopant ions Cu
2+

and O
2-

vacancies form defect dipoles along the polarization

direction, after the tetragonal-orthorhombic phase transition of the ceramic. As a

result of the low defect migration rates, the defect dipoles remain in the original

orientation and provide restoring forces to reverse the switched polarization,

which results in the double P-E loop observed in the KNN-Cu ceramic. The same

restoring force introduced by defect dipoles has been proposed by Hao et al
11

in

aged KNN-Cu samples.

In light of these observations, it is clear that not only single defects but also

defect dipoles need to be investigated, in order to have a complete picture of the

connection between defects and antiferroelectric properties.

1.8 Chemical Modi�cation in NaNbO3 and
AgNbO3

In recent years, chemical modi�cation has been heavily employed to modify

the AFE properties of both NaNbO
3

(NN) and AgNbO
3

(AN). For NN, di�erent

approaches have been investigated.
40

Gao et al reported double P-E loops in the

(BiScO3)x − (NaNbO3)1−x solid solutions.
41

More speci�cally, they showed that

doping NaNbO
3

with Bi and Sc stabilizes the antiferroelectric (AFE) phase without

changing the crystal symmetry of NaNbO
3
. Other works proposed various co-

doping approaches, such as (Sr, Zr),
42

(Ca, Hf),
43

(Sr, Hf),
30

and (Ca, Sr).
44

The

work which has inspired our studies has been conducted by Zhang et al,
23

who

have found that the energy e�ciency of NaNbO
3

can be signi�cantly improved

upon the addition of SrSnO
3
. Figure 1.8a shows the P-E loops with di�erent

SrSnO
3

compositions. The optimal composition is found to be 5 wt%, as for

larger concentrations phase segragation occurs. The plot reveals that the remnant
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(a)
(b)

Figure 1.8: Improved P-E loops upon chemical modi�cation of NaNbO
3

(a) with SrSnO
3

(from Reference 23) and AgNbO
3

(b) with MnO
2

(from Reference 39).

polarization (Pr) is consistently lowered with increasing dopand concentration.

The value of Pr is, however, still larger than zero, deviating from the ideal double

P-E loop, like the one shown in Figure 1.4. This might indicate that, while chemical

modi�cation augments the reversibility of the AFE-FE phase transition, the

complete reversibility in NaNbO
3

is not yet achieved.

The same approach has been employed for AgNbO
3
. For example, it has been

reported that doping with Bi (A-site) and W (B-site) has shown an improvement

on the AFE properties.
45,46

The starting point of our work, however, is the research

conducted by Zhao et al,
39

who have obtained considerably improved P-E loops

by adding Mn into the system, as shown in Figure 1.8b. They have found the

optimal concentration of Mn to be 0.3 wt%.

While these prove to be important achievements in the �eld of AFE materials,

which have lead to a considerable improvement of the AFE properties of NN and

AN, the physics behind these results is still unclear. Because these works have

been guided by empirical guidelines, like the tolerance factor described in Section

1.6, the role that chemical modi�cation has on the properties of NN and AN is

still unraveled. In this context, the �rst problem to tackle is the impact of defects

both from a thermodynamical and kinetical point of view. These observations

raise a number of scienti�c questions, reported in the next section, which have

motivated the work in this thesis.
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1.9 Research Questions
In this section, we will summarize the questions that were raised in this chapter.

The goal is to provide an outline of the open scienti�c problems, and to highlight

the objectives of this doctoral thesis.

Which defects are forming in these materials?

If dopands are introduced into a system, they will interact with the present intrisic

defects. Therefore, the �rst step of our study is to identify which intrinsic defects

are forming in the material and in which concentrations. Additionally, since the

behaviour of the extrinsic defects is unknown, it cannot be modelled a priori,

rather it needs to be studied with the same approach as the intrinsic defects. In

fact, the stable charge states of these defects needs to be determined, in an e�ort

to understand their in�uence on defect equilibrium. In order to achieve this, the

formation energies in all possible charge states need to be computed, which will

give information on the defect concentrations and their charge transition levels.

Where is the Fermi level and what is the in�uence of doping
conditions?

The determination of the Fermi level is the key step to know the concentrations

of defects and charge carriers. In fact, the Fermi level controls the behaviour

of the semiconductor (n-type or p-type) and in�uences the dopability limits of

the system. Moreover, it is important to investigate the impact of doping on

the Fermi level, which reveals what charges are introduced in the system, and

how defects can modify the antiferroelectric properties. Another crucial problem

is the in�uence of the synthesis conditions on the Fermi level. In fact, when

di�usion of defects is particularly slow, it is possible that concentrations do

not reach thermodynamic equilibrium after synthesis. Therefore, our interest

is to understand how defect quenching a�ects the Fermi level, especially when

combined with doping.

What role do defect associates play in the AFE properties?

Not only single defects, but also defect complexes have an impact on the an-

tiferroelectric properties of the materials. When charged defects interact with

each other and form associates, they form defect dipoles. These dipoles inter-

act with the local spontaneous polarization and with an external electric �eld,
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thus in�uencing the AFE-FE phase transitions and the P-E loops. Therefore, it

is key to investigate whether doping introduces defect complexes, and in what

concentrations, in order to assess if they consitute a factor which modi�es the

antiferroelectric behaviour of the materials of interest.



2 Methodology

In the following chapter, we present a brief overwiew of the fundamental theory

and methodology which has been used in this work. In the �rst part, we review the

basics of density functional theory, including the most important concepts such as

exchange-correlation functionals, basis-sets and pseudo-potentials. In the second

part, we present the formalism, procedure and challenges of thermodynamic

calculations on point defects, highlighting how we have approached the currently

established theory to account for the presence of dopants and quenched defects

(Section 2.4.8). Finally, in the last part, we give a short overview of the work�ow

and tools we have developed to create and analyse the databases, with the aim to

provide a framework to speed up the analysis of defect calculations.

2.1 Born-Oppenheimer Approximation
A quantum mechanical description (also known as �rst-principles or ab initio)

of a system and of its properties requires the full account of the elementary

constituents of matter, atomic nuclei and electrons, and of all the electromag-

netic interactions they mutually exchange. According to the rules of quantum

mechanics, the state of a system is then described by a single wavefunction which

includes both the nuclear and electronic degrees of freedom. If we knew the

form of this wavefunction, we could in principle solve the associated Schrödinger

equation and calculate many equilibrium properties of materials. Unfortunately,

the solution is very challenging, and in most cases still practically impossible even

with the most powerful computers at hand. In the realm of solid state physics, an

approximation is generally introduced to tackle the coupled nuclear-electronic

problem, known as adiabatic Born-Oppenheimer (BO) approximation. The basic

idea is that, since electrons are much lighter than ions, the electronic con�g-

uration instantaneously relaxes to its ground state for each position the ions

assume during their motion. In this “decoupled” approach, the ground state en-

21



22 Chapter 2. Methodology

ergy of the electrons can then be calculated fully quantum mechanically, and the

dynamical evolution of the nuclei takes place on the energy landscape (the BO

potential energy surface, PES) that is determined by the electronic ground state

at each atomic con�guration. In mathematical language, the BO approximation

relies on the factorization of the global nuclear-electronic wavefunction into a

wavefunction for the nuclei only and a wavefunction for the electrons depending

parametrically upon the ionic positions as

Ψ(R, r) = Φ(R)ψR(r), (2.1)

where R = {RI} is the set of all nuclear coordinates of the system, and r =
{ri} is its electronic counterpart (the spin degrees of freedom are not explicitly

indicated). Assuming this factorization in the general Schrödinger equation of the

coupled system and neglecting the non-adiabatic terms coming from the kinetic

operator for the nuclei acting on the electronic wavefunction ψR(r) (which

depends parametrically on the nuclei coordinates), it is possible to split the initial

complicated problem into two subproblems for the two degrees of freedom. This

approach is usually a good approximation, since the mass of the nuclei is much

larger than the ones of the electrons, but is known to perform poorly in those

cases where non-adiabatic electron-vibron/phonon coupling becomes important.

The nuclear problem can thus be written as(
−
∑
I

~2

2MI

∂2

∂R2
I

+ E(R)

)
Φ(R) = εΦ(R), (2.2)

where MI is the mass of the I th nucleus and E(R) is the Born-Oppenheimer

potential energy surface corresponding to the energy of the electronic system

with the nuclei clamped at con�guration R, obtained by solving a Schrödinger

equation for the many-body electronic wavefunction ψR(r)

− ~2

2m

∑
i

∂2

∂r2
i

ψαR(r) +
e2

2

∑
i 6=j

1

|ri − rj|
ψαR(r)−

∑
iI

ZIe
2

|ri −RI |
ψαR(r)

+
e2

2

∑
I 6=J

ZIZJ
|RI −RJ |

ψαR(r) = Eα(R)ψαR(r),

(2.3)

where eZI is the charge of the I th nucleus, e and m are the electronic charge and

mass, and α is an index for the electronic state. Eq. 2.3 suggests that the BO PES is

not unique. In fact, there is a di�erent PES (and a di�erent nuclear wavefunction)
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for each electronic state. In general (and in this work we comply with this point

of view) the ground state PES is considered as the reference one. This separation

of the electronic and ionic degrees of freedom is also a very useful simpli�cation

that allows to perform (classical or quantum-mechanical) molecular dynamics

calculations once the reference PES is known. The calculation of the PES however

remains a formidably hard task. In fact, the wavefunction of a system of interacting

electrons cannot be factorized in single-electron terms and the direct solution of

the many-body Schrödinger equation becomes a prohibitive task for almost all

the systems. As result, in order to perform electronic structure calculations on

materials of realistic complexity, we need an alternative approach based on a more

tractable quantity than the many-body wavefunction. The density-functional

theory (DFT) proved to be the most successful of such methods.

2.2 Density Functional Theory

2.2.1 Kohn-Sham Equations
The idea behind density functional theory is to reformulate the interacting elec-

tronic many-body problem, shifting the attention from the many-body wave

function Ψ(r1, r2, ..., rn) (depending explicitly on 3N electronic Cartesian coor-

dinates for a system of N electrons) to the electron density n(r), which contains

only one set of coordinates. By solving the respective Schrödinger-like equations,

where Ĥ is replaced by a more simple mean �eld Hamiltonian, one obtains a

series of single particle eigenstates (φi) and their corresponding eigenenergies (εi).
The foundation for the theory is contained in the original papers of Hohenberg,

Kohn and Sham.
47,48

The two theorems state that:

• For any system of interacting electrons in an external potential Vext, the

potential is determined uniquely (up to a constant) by the ground-state

density.

• A universal functional for the energy in terms of the density can be de�ned

such that the exact ground-state energy is the global minimum of this

functional and that the density that minimizes the functional is the ground-

state density.

Since the external potential Vext(r) also determines the wave function, the wave

function itself is implicitly but uniquely de�ned by the ground state electron
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density. Therefore, a universal energy functional (F [n(r)]) exists which depends

on the electron density and which, together with the system dependent energy

contribution due to the external potential

∫
Vext(r)n(r)dr, minimizes the total

energy E[n(r)] when the ground state electron density n0(r) is given as the

argument,

E0 = 〈Ψ0|Ĥ|Ψ0〉 = F [n0(r)] +

∫
Vext(r)n0(r)dr. (2.4)

There is no unique prescription how the universal functional F [n(r)] is to be

constructed. The approach proposed by Kohn-Sham (KS) goes as follows. First,

the universal functional is divided into parts which, from a physical viewpoint,

are contributions to the total energy

F [n(r)] = TS[n(r)] +
e2

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′ + EXC [n(r)]. (2.5)

The �rst term represents the kinetic energy, whereas the second term, called

the Hartree term, describes the Coulomb potential energy of a classical charge

distribution n(r). All remaining many-body contributions to the energy are

grouped together in the last term, which is called the exchange correlation (XC)

energy functional. Only for the Hartree energy an explicit expression can be

given. In order to evaluate the kinetic energy functional in Eq. 2.5, the electron

density is expanded in some �ctional single particle orbitals φi,

n(r) =
∑
i

fi|φi(r)|2, (2.6)

with occupation numbers fi. In this way the kinetic energy can be expressed in

the usual way

TS[n(r)] =
∑
i

fi〈φi| −
~2

2me

∇2
r |φi〉. (2.7)

Minimizing the KS energy functional with respect to individual orbitals under the

constraint of mutual orthonormality of the orbitals results in the KS equations[
− ~2

2me

∇r2 + Veff (n(r))

]
φi(r) = εiφi(r), (2.8)

with

Veff (r, n(r)) = Vext(r) + e2

∫
n(r′)

|r− r′|
dr′ +

δEXC [n(r)]

δn(r)
. (2.9)
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Due to their non-linearity, these equations have to be solved self-consistently.

The external potential of the ion cores is constructed by the superposition of

either the Coulomb potentials or the so called pseudo-potentials (PP). An initial

charge density or set of KS orbitals is selected. This can either be a completely

homogeneous charge density or a di�erent guess based on earlier calculations.

For the representation of the orbitals and density, a suitable basis set is selected

(see Section 2.2.2). The Hartree and XC-potentials are calculated in order to set

up the initial Hamiltonian of the system. The Hamiltonian is applied to the trial

KS orbitals. Using an iterative matrix diagonalization procedure, the (at least)

N lowest eigenvalues and eigenvectors of the system are determined. The new

eigenvectors can be used to calculate a new electron density and construct a

new Hamiltonian. This self-consistent cycle is usually terminated when the total

energy di�erence compared to the previous cycle falls below a prede�ned limit.

In any new cycle, the new charge density can be used as input, but is usually

mixed with the old one to improve the convergence.

2.2.2 Basis Sets
In ab initio calculations the basis set is a choice of convenience, system type,

accuracy and speed. A very intuitive expansion for the wave function is given

by localized atomic orbitals. The wave functions can be represented by a linear

combination of Gaussians (GTO), Slater type (STO) or numerical radial atomic-

like orbitals.
49

A more systematic basis set is given either by the real-space basis

or the plane wave basis, because they are orthonormal and complete so that

any arbitrary function is representable without prior knowledge. Especially for

spatially extended wave functions, like in solid crystalline systems, plane waves

are a natural choice. Bloch’s theorem states that the wave function in a crystal is

the product of a periodic function un and a phase factor
50

ψn,k(r) = un,k(r)eik·r, (2.10)

where k is a wave vector within the �rst Brillouin-zone. We expand un as a plane

wave to obtain a sum over lattice vectors G for each single particle wave function

ψn,k(r) =
∑
G

cn,k+G ei(k+G)·r. (2.11)

The sum is truncated at a speci�c G and usually given in terms of a kinetic energy

cuto�

Ecut =
~2(k + G)2

2me

, (2.12)
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so that the space resolution of the basis-set is independent of system volume for a

given Ecut. The major strength of the plane wave basis is the e�cient evaluation

of the kinetic energy (Eq. 2.12) and the electrostatic energies in Fourier space.

The drawback is that the size of the basis increases rapidly with cell volume

(even for vacuum). Secondly, the rapidly oscillating wave functions in the core

region make a large number of plane waves necessary. In practice this problem is

circumvented by using e�ective core potentials, the so called pseudo-potentials

(PP). PPs combine the potential due to the core electrons and the nucleus in an

e�ective potential. This approach is justi�ed, because the localized core electrons

do not overlap with nearby atoms and have, therefore, no in�uence on bonding.

The norm-conserving ab initio PP, for example, is constructed in such a way that

a pseudo wave function has the same value as the true wave function outside a

cut-o� radius rc around the core. A list of additional requirements was given by

Hamann, Schlüter and Chiang.
51

The all-electron and pseudo valence eigenvalues

should agree for the chosen atomic reference con�guration, and the logarithmic

derivatives of the all-electron and pseudo-wave functions should match at rc.
In addition, the integrated charge inside rc for all-electron and pseudo wave

functions should be equal (norm-conservation). The goal is to obtain smooth

PPs in order to minimize the range of Fourier components needed to describe

the valence properties to a given accuracy. By increasing the cut-o� radius,

for example, a greater part of the strongly oscillating wave function within

the core region is avoided, and replaced by a smooth function. If the above

mentioned criteria are ful�lled one has some freedom to obtain the smoothest

function possible to represent the core region. Most recent approaches drop

the requirement for norm conservation in order to retain more smoothness.

These so called "ultra-soft” PPs proposed by Vanderbilt
52

keep the accuracy by

transforming the problem in terms of a smooth function and an auxiliary function

around each ion core that represents the rapidly varying part of the density. A

related, but more general method is the projector augmented wave (PAW) method

by Blöchl,
53

which also employs localized auxiliary functions. The di�erence

is that all information on the core wave function is retained similar to linear

augmented plane wave methods.
54

The PAW method strictly is an all electron

approach, where the core part of the wave function is frozen.
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2.2.3 Functionals for Exchange and Correlation
Local Approximations

In the local density approximation (LDA), the exchange correlation energy density

at each point can taken to be the same as in a homogeneous electron gas with

that density,

ELDA
XC [n] =

∫
n(r)εxchom[n(r)]dr. (2.13)

The correlation energy of the homogeneous electron gas can be obtained by

highly accurate Quantum Monte-Carlo simulations,
55

while the exchange energy

is known analytically. The LDA is su�ciently accurate for many problems in solid-

state physics, especially for describing electrons in simple metals, which behave

very much like free electrons. Because of its simplicity and limited computational

costs, the LDA is very useful for describing large systems as well as for obtaining

approximate energies and wave functions that can then be re�ned by more

sophisticated levels of theory. An improvement of the LDA has been achieved

by recognizing that the exchange-correlation energy can be described more

accurately by including gradients of the electron density,

EGGA
XC [n] =

∫
n(r)εxc(n,∇n)dr =

∫
n(r)εhomx (n)Fxc(n,∇n)dr. (2.14)

The most widely applied functionals were proposed by Perdew, Wang and Ernz-

erhof
56

(PBE-GGA). Although improving on many calculated material properties

in comparison with the local approximation, the GGA still has de�ciencies in

various aspects. Most importantly, both the LDA and the GGA fail to reasonably

describe the fundamental band gap, which is generally underestimated (some-

times by more than 50%) in both approximations. This issue is known as the

band-gap problem in DFT. Approaches to improve the exchange-correlation en-

ergy by including higher derivatives of the electron density have failed, and it

is now generally accepted that improvements require to properly account for

non-locality.

Hybrid Functionals

The LDA and the GGA functional underestimate the exchange energy, but prop-

erly account for the correlation energy. The Hartree-Fock method by de�nition

properly accounts for the exchange interaction, but in turn can not access the

correlation energy. The issue can be reformulated in terms of variation of the
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Figure 2.1: Energy vs occupation number for di�erent density functional theory (DFT)

functionals. In HF theory (blue) the energy is a concave function of the continuous

occupation number ni but a convex one in LDA or GGA (red). The exact functional

should be linear with a discontinuous derivative at integer occupations

total energy with respect to fractional changes in the electronic occupations. An

exact functional should lead to piecewise linear behavior with discontinuous

derivatives at integer occupations.
57,58

DFT calculations based on semilocal XC

functionals deviate from this requirement and overbind (concave dependence),

whereas HF calculations tend to underbind (convex dependence), as shown in

Figure 2.1. These opposite behaviors can be exploited in parametrizations of

hybrid functionals that minimize the deviation from piecewise linearity.
59

The

idea of hybrid functionals is therefore to mix the exchange-correlation energy of

the traditional LDA or GGA functionals with a fraction of exact or Hartree-Fock

exchange. In recent years, hybrid functionals have shown a better performance

in terms of the description of the exchange and the correlation energy than tra-

ditional functionals. Moreover, the band gaps are signi�cantly improved. These

functionals, however, are computationally at least two orders of magnitude more

expensive than their local or semi-local counterparts. Typical examples of hybrid

functionals that have been engineered in such a way are B3LYP,
60

PBE0
61

and

HSE06.
62,63

Hybrid functionals can further be distinguished by whether they use a global ap-

proach to mix the exchange correlation energy Exc from a non-local Hartree-fock

type exact exchange EHF

x
and a semi-local PBE-GGA contribution EGGA

x
, such as

Ehybrid

xc = EGGA

xc
+ xHF(E

HF

x
− EGGA

x
), (2.15)
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or whether a range-separated screened hybrid functional such as HSE06 is used.
64

This functional splits the electron-electron interaction into a short-range and a

long-range part. For the short range part, 25 % short-range (SR) exact exchange

is mixed with 75 % short-range GGA exchange, while the long-range part (LR) is

treated purely on the basis of GGA

EHSE

xc =
1

4
EHF,SR

x
(ω) +

3

4
EGGA,SR

x
(ω) + EGGA,LR

x (ω) + EGGA,LR+SR

c
. (2.16)

The range separaration can be tuned using the exchange screening parameter ω.

HSE06 can be considered as a generalized functional in the sense that for ω = 0
we obtain the PBE0 functional, and when ω approaches in�nity the short-range

non-local exact exchange vanishes and it reduces to standard PBE-GGA. The

most notable success of HSE06 is the fact that it is able to give much better

band gaps for solids compared to local and semi-local as well as to global hybrid

functionals.
65

2.3 The Nudged Elastic Band Method
In order to obtain the energy barriers for the di�usion of vacancies, the nudged

elastic band (NEB) method was employed.
66

The NEB method is a way to obtain

the minimum energy path (MEP) between two structures (initial and �nal struc-

ture) that correspond to local minima on the potential energy landscape of the

system which are separated by an energy barrier, as shown in Figure 2.2. The en-

ergy barrier a�ects the probability that the system changes from one state to the

other. In the NEB method the initial and �nal structure are interpolated to create

a set of intermediate structures, called images. The energy of the images is then

minimized, with the constraint that the images may not fall back in the direction

of the initial or �nal structure. This constraint is implemented by subtracting

from the forces that act on the particles the force component along the NEB path.

In order to keep the images in approximately equal distances from each other,

the images are connected by an arti�cial spring force. At the end of the NEB

calculation the images lie along the MEP, and the energy barrier is the energy

maximum along the MEP. Within this approach the images close to the saddle

point tend to slide to lower energies. This is prevented in the climbing-image

nudged elastic band method (CI-NEB).
67

This method converges the highest en-

ergy image exactly to the saddle point by zeroing the spring force on this image

and including only the inverted parallel component of the true force.
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Figure 2.2: In the nudged elastic band (NEB) method, the intermediate con�gurations

in the energy landscape are bonded together with springs, so that they are always

constrained to remain between the con�gurations that precedes and follow them. Of the

true force that applies to atoms, only the component normal to the reaction path is used

(F r⊥). Along the reaction path it is the force due to the springs that applies to atoms (F k‖ ).

The NEB calculation stops when the forces are smaller than the convergence criterion.

Reprinted from Reference 68.

2.4 Thermodynamics and Kinetics
In the following section we review the current state-of-the-art to characterize

defects in the framework of periodic boundary ab-initio calculations. In particular,

we focus on the thermodynamics of point defects formation and thermodynamic

defect equilibrium, with an overview on how to connect it to DFT. A summary

of the most important relationships we will discuss in this section is shown in

Table 2.1. Moreover, we show how we have extended this methodology to obtain

defect concentrations outside thermodynamic equilibrium, e.g. when the defects

do not thermalize, which requires to include on the role of kinetics in defect

computations.

2.4.1 Defect Concentrations and Formation Energy
In order to understand and predict the properties of point defects, it is necessary

to relate their concentrations to thermodynamic quantities that can be calculated

or measured. Let us consider one defect species. We can write the Gibbs free

energy associated with the formation of n defects as
69,70

G = Gbulk + n(∆Hf − T∆Sfvib)− TS
f
conf , (2.17)
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Defect formation energy ∆Gf
q,D(P, T, {µs}, µe)

Defect concentration [Dq] = gNsites exp
(
−β∆Gf

q,D

)
Electron/hole concentrations n =

∫
D(ε)f(ε)dε

Charge neutrality

∑
q,D q · [Dq]− ne + nh = 0

Self-consistent solution {∆Gf
q,D(µe)} −→ [Dq] −→ µe

Oxygen partial pressure µO(T, pO2) = µO(T, p0) + 1
2
kBT ln

(
pO2

p0

)
Table 2.1: Overview of the important relationships in point defect thermodynamics

discussed in this section. The quantities which depend on the electron chemical potential

(µe) are shown in red.

whereGbulk is the free energy of the system with no defects, ∆Hf
is the formation

enthalpy of the isolated defect, Sfconf the con�gurational entropy and ∆Sfvib the

entropy change associated with the lattice vibrations. At a given temperature

the free energy is at a minimum, which means that the variation of free energy

associated with the defect is zero,

∂G

∂n
= ∆Gf − T

∂Sfconf
∂n

= 0, (2.18)

where (∆Hf − T∆Sfvib) has been rewritten as the formation energy ∆Gf
. The

con�gurational entropy is given by,
71

Sconf = kB lnW, (2.19)

where W is the number of distinct ways (microstates) to arrange the defects, and

for ideal solutions is

W =
(gN)!

n!(gN − n)!
. (2.20)

Where N is the number of lattice sites and g is a degeneracy factor accounting for

the internal degrees of freedom of the point defect. Using Stirling’s approximation
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(logx! ' xlogx− x), and assuming that we are in the low concentrations regime

(n << N ), we get

∂Sfconf
∂n

' kB ln

(
n

gN

)
, (2.21)

and

n = gN exp

(
−∆Gf

kBT

)
. (2.22)

If we express N in terms of concentrations of lattice sites Nsites, we can rewrite

n and obtain an expression for the concentration at thermodynamic equilibrium,

ceq(T ) = gNsites exp

(
−∆Gf

kBT

)
. (2.23)

It is clear from Eq. 2.23 that the key quantity to determine the concentration is

the formation energy ∆Gf
. Since the Gibbs free energy G can be expressed in

terms of chemical potentials µ and number of particles N ,
72

G =
∑
i

µiNi, (2.24)

∆Gf
can be written as

70

∆Gf
q,D(P, T ) = Fq,D(VD(P ), T )−Fbulk(V0(P ), T )+P∆V f (P )−

∑
s

∆nsµs+qµe,

(2.25)

where Fq,D is the Helmholtz free energy of defect type D in charge state q, Fbulk
is the reference energy of the bulk, ∆ns is the di�erence between the number of

atoms of chemical species s in the defective system and in the bulk, and µe is the

electron chemical potential. Moreover, VD and V0 are the volumes of the defective

and the bulk cell, while ∆V f
denotes the defect formation volume (see Section

2.4.6). The free energies both include the contributions of vibrational, electronic,

and magnetic entropy. However, these contributions are small compared to the

con�gurational entropy and the computational cost to determine them is high.

Therefore, they are typically neglected. Moreover, in Eq. 2.25, the thermal entropy

contributions for the bulk and the defective system are assumed to be identi-

cal such that they completely cancel out, and the P∆V f
term is neglected for

solids.
73

In the following study, we will exclusively concentrate on the formation

energy (zero temperature), where quasi-harmonic and anharmonic excitations

are neglected. An accurate determination of these quantities not only requires



2.4. Thermodynamics and Kinetics 33

expensive calculations, but they are also assumed to be signi�cantly smaller than

the deviations introduced by the others approximations used to get to Eq. 2.25.

Furthermore, in these materials, the defect concentration is primarily in�uenced

by the con�gurational entropy.
74

In the following section we will address the

current methodology to obtain formation energies with DFT.

2.4.2 The Supercell Method
The �rst requirement for obtaining the defect formation energies from Eq. 2.25 is

to calculate the total energies of the defect and bulk con�gurations. In practice this

can be achieved through a total energy calculation with DFT. Unlike the bulk case,

the calculation of the defect provides several challenges. In fact, as we have seen

in Section 2.2, the basis for the calculation is a unit cell which repeats periodically.

Therefore, when we introduce a defect in the cell, we generate defect replicas as

well, which will interact with each other (the �nite-size e�ects will be discussed

in more detail in Section 2.4.4). To circumvent the problem, the common approach

is to perform the calculation in a supercell. A supercell describes a multiplication

of the unit cell along its crystallographic axes, with periodic boundaries applied

in all directions. In this way, the distance between the replicas is increased, thus

decreasing the magnitude of their mutual interaction. On the other hand, this

solution increases the computational cost, since calculations include a much

larger number of atoms.

Once the total energies of the defect and bulk supercells have been computed,

it is possible to obtain the formation energies. As we have addressed in Section

2.4.1, we can neglect the small contributions of electronic and vibrational entropy

and the P∆V f
term in Eq. 2.25, which allows to rewrite the formation energy in

terms of the total energies obtained with DFT (ED and Ebulk)

∆Ef
q,D({µs}, µe) = ED −Ebulk +Ecorr + q(EV BM + µe)−

∑
s

∆nsµs, (2.26)

where Ecorr is a correction term to account for the �nite-size e�ects, which will

be discussed in Section 2.4.4, and the µe has been referenced to the energy at

the valence band maximum (EV BM ), obtained from the DFT eigenvalue of the

highest occupied orbital.
75

So far, we have only been addressing individual point defects, but single defects

can also interact with each other and associate, thus forming a defect complex.

The same formulation of the formation energy (Eq. 2.26) can be extended for

defect complexes as well.
70

Another key quantity for complexes is their binding
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energy, i.e. the energy di�erence between formation energy of the complex (C)

and the sum of the formation energies of its isolated constituents (D),

Eb = ∆Ef
C −

∑
D

∆Ef
D. (2.27)

A negative binding energy implies that the energy to create isolated defects

is higher than that for forming a complex, which means that the interaction

between defects is attractive and complex formation becomes thermodynamically

advantageous. However, a negative binding energy indicates only that complexes

can in principle be formed, but not necessarily that they will occur in sizable

concentrations. The reason is the di�erent con�gurational entropy of a pair of

isolated defects versus that of a complex. For example, a complex consisting of

two constituents can be formed in ∝ Nsites · g con�gurations, where g is the

number of equivalent con�gurations in which the defect can be incorporated

(see Eq. 2.23), whereas if the two constituents are independently formed they

can be created in ∝ N2
sites con�gurations. It should also be noted that complex

formation does not change the number and nature of participating species. Thus,

the complex binding energy is independent of the chemical potential, which is

con�rmed by the formulation in Eq. 2.27.

2.4.3 Charge-Transition Levels
While formation energies are the essential quantity for the determination of

equilibrium defect concentrations, charge-transition levels (also called ionization

levels or thermodynamic transition levels) provide information about the charge

state stability of the defect level with respect to the electron chemical potential.

These quantities are useful to explain a temperature-dependent conductive be-

havior, including a change of the defect mobility with various charge states
76

or

the formation of defect associates, where binding energies sensitively depend on

the electrostatic and elastic interaction of the individual point defects.

The charge transition level refers to the electron chemical potential at which the

formation energy of a given defect becomes equal at charge states q1 and q2, and

is given by
70

ε(q1/q2) = −
∆Ef

q1,D
(0)−∆Ef

q2,D
(0)

q1 − q2

, (2.28)

where ∆Ef
q,D(0) is the formation energy of defect D in charge state q when the

electron chemical potential is at the valence band maximum (VBM), µe = 0. This
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Figure 2.3: Schematic illustration of a formation energy plot for a single defect species

in three di�erent charge states (q = +1, 0,−1). The formation energies are shown as a

function of the Fermi level. The thick blue line indicates the energetically most favorable

charge state for a given Fermi level. The stars represent the charge transition levels.

Conventionally, only the thick blue line is shown for a given defect specie.

value corresponds to the µe where the charge state stability of a defect species

changes.

In the community, the electron chemical potential µe is also very often called

"Fermi level" and the two names are absolutely equivalent. This, however, is

often confused with the term "Fermi energy", which is the value of µe at 0 K

(limT→0K µe = εF ).
50

Conventionally, formation energies (Eq. 2.26) and charge-

transition levels (Eq. 2.28) are plotted as a function of µe, as illustrated in Figure

2.3. In order to be consistent with the nomenclature used in other works regarding

defect computations,
70,77,78

we choose to refer to µe as "Fermi level" (EF ), which in

this context is a free parameter. We will refer to it as "electron chemical potential"

when we treat it not as a free parameter, but a �xed value which determines the

defect concentrations, derived self-consistently starting from the charge neutrality

condition (see Section 2.4.7). From the dependency in Eq. 2.26, we obtain a line

for every charge state, with slope equal to the charge q. For clarity, at each Fermi

level value, only the line of the most stable charge state is shown, with the charge

transition levels indicated by stars. If the charge transition level is located close

to the conduction or valence band edge, it is called shallow. Otherwise, if ε(q1/q2)
occurs at Fermi levels around the middle of the band gap, it is said to be a deep
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charge transition level. We also notice from Eq. 2.28 that charge transition states

do not depend on the chemical potentials {µs}.

2.4.4 Finite-Size E�ects
In the previous section, we have addressed the problems arising from the �nite

size of the supercell in defect calculations. In fact, the periodicity results in an

arti�cial sublattice of defects with a lattice constant equal to the supercell’s length.

This has several consequences. Firstly, the point charge lattice leads to unphysical

long-range Coulomb interactions between the images, imitating an exceedingly

high defect concentration.
70,79

Secondly, a dense defect grid leads to elastic in-

teractions and might allow for an arti�cial overlap (hybridization) between the

wavefunctions of the periodic defect images. Lastly, a compensating background

charge density has to be included such that a divergence of the energy is avoided.

Several methods were proposed in order to deal with the various �nite-size ef-

fects of point defects.
76,79–82

Most of the methods aim at obtaining the correct

energies with already small supercell sizes in order to reduce the computational

cost. Recently, two elegant methods have been proposed to calculate a correction

in an ab initio fashion, using output data from the DFT calculation. The approach

proposed by Freysoldt et al
83

expresses electrostatic interactions in terms of the

unscreened charge density and the electrostatic potential. The defect potential

is expressed as a sum of a long-range and a short-range part. The long-range

contribution is associated to macroscopic screening, which is set to decay as 1/εr.

The long-range electrostatic energy correction is thus determined by the summa-

tion of the Fourier transform of the long-range potential in real space over the

reciprocal lattice vectors. Quantum e�ects are accounted for in the short-range

part associated to microscopic screening. This is obtained by subtracting the

long-range part to the electrostatic potential di�erence between defect and pure

structures, obtained from the DFT calculations. The methodology is illustrated in

Figure 2.4. If the defect is well localized in the supercell and a bulk-like macro-

scopic screening is achieved, the short-range potential will reach a plateau in

between replicas of defects. The value of the potential in this plateu determines

the potential alignment correction. The total correction to the formation energy

is thus given by the sum of the alignment correction and the long-range electro-

static correction. This method has mainly two shortcomings. Firstly, aligning the

planar-averaged electrostatic potential to the defect-induced potential works well

when the atomic positions are �xed in unrelaxed crystalline positions. In fact, the

defect-induced potential strongly �uctuates when the atomic displacements are
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Figure 2.4: Example of the �nite-size correction method proposed by Freysoldt et al. The

x-axis is the distance between defect replicas, the defect is located at z = 0 bohr with

a periodic image at z = 31.38 bohr. The defect potential is expressed as a sum of short-

and long-range parts. The long-range screening is set to decay as ∝ 1/r, the short-range

quantum oscillations are obtained from DFT calculations. More details can be found in

the original work in Reference 83.

large even far from the defect in the supercell. Since defect calculations require

relaxation of atomic positions, the method needs to be applied using preliminary

calculations as input, where the atomic positions are not relaxed. Secondly, the

long-range Coulomb interaction is calculated with a macroscopic scalar dielectric

constant. This is acceptable when diagonal components of a dielectric tensor are

close to each other and o�-diagonal components are relatively small.

To overcome these shortcomings, Kumagai et al
84

have extended the Freysoldt

(FNV) approach. Their idea is to employ the atomic site potential for determining

the potential o�set between the defect-induced potential and point charge (PC)

potential, as opposed to the planar-averaged potential. The atomic site potential

is also a product of DFT. The potential is averaged at the atomic positions in the

region outside of the sphere that is in contact with the Wigner-Seiz cell with

radius RWS , as illustrated in Figure 2.5. This region is denominated "sampling

region". This approach also has the advantage that, if the Bravais lattice is un-

changed, the sampling region does not depend on the choice of the supercell.

Moreover, they describe a point charge model with a dielectric tensor for evalu-

ating long-range Coulomb interactions, which accounts for anisotropy, whereas

in the FNV scheme the long-range Coulomb interaction is screened by a scalar
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Figure 2.5: Example of the �nite-size correction method proposed by Kumagai et al. The

atomic site potential is used instead of the planar-averaged potential adopted by Freysoldt

et al.
83

The potential is averaged at the atomic positions in the region outside the sphere

that is in contact with the Wigner-Seiz cell with radius RWS . More details can be found

in the original work in Ref 84.

dielectric constant in an isotropic medium. In this work, we employed mainly

the Kumagai method, while the FNV scheme was used to determine corrections

for the cubic phase of NaNbO
3

(Section 3.1).

2.4.5 Chemical Reservoirs and Stability Diagram
The calculation of defect formation energies in Eq. 2.26 requires the de�nition

of the set of chemical potentials {µs}. The chemical potential of a species s is

de�ned as the variation of a thermodynamic potential of the system with respect

to a change in particle number of the given species
72

µs =

(
∂U

∂Ns

)
S,V,Ni 6=s

=

(
∂H

∂Ns

)
S,P,Ni 6=s

=

(
∂F

∂Ns

)
T,V,Ni6=s

=

(
∂G

∂Ns

)
T,P,Ni 6=s

,

(2.29)

where Ns is the total number of particles of species s. The chemical potential can

be rewritten as

µs = µrefs + ∆µs, (2.30)

where µrefs denotes the chemical potential of the constituent element in its stable

elemental phase, which can be calculated with DFT by dividing the total energy
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V

Reservoir A Reservoir B

System AB

Figure 2.6: Sketch of the particle exchange in the process of defect formation. The atom of

type A leaves a vacancy in the system AB and moves to reservoir A (∆nA = -1). Similarly,

an atom of type B leaves the reservoir B to create an interstitial in the system AB (∆nB
= +1). In both cases the chemical potential of the elements are de�ned by the reservoirs

the system is in contact with.

by the number of particles in the unit cell. The term ∆ns in Eq. 2.26 refers to

an exchange of particles between our system and the thermodynamic reservoirs

that it is in contact with, as sketched in Figure 2.6.

One possible way to de�ne the chemical reservoirs is to look at the limits of

stability of the phase of interest. In order to achieve this, we need to know

the phase stability as a function of the chemical potential of the constituents,

which means we need to calculate the phase diagram. The starting point is the

calculation of the formation energies of all possible competing phases, which is

the di�erence in total energy between the phase of interest and the elemental

phases

∆Ef = ε−
∑
s

csεs, (2.31)
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Figure 2.7: Example of a stability diagram for a generic ternary compound ABO
3
. The

two axis are the chemical potentials of A and B referenced to their elemental phases (Eq.

2.30), which by de�nition range from zero to negative values. The heatmap shows the

chemical potential of the element O, which for �xed µA and µB is determined by Eq.

2.32. The labelled regions indicate the regions of stability of each phase, while the lines

indicate the zone of coexistence of two or more phases. Fixing a value of one chemical

potential removes one degree of freedom, yielding a linear dependency between the

other chemical potentials, as shown by the dashed grey line.

where s indicates the elements in the target phase, cs represents the stoichiometric

coe�cients, and ε is the total energy per formula unit. The formation energy can

be written also in terms of the chemical potential of the constituents (Eq. 2.30)

∆Ef =
∑
s

cs∆µs, (2.32)

which introduces a condition in the range of the chemical potentials for the

stability of the target phase. Moreover, the stability range is further limited by
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the presence of competing phases. More speci�cally, the chemical potentials have

to satisfy the condition

∑
s

cs∆µs ≤ ∆Ef [c.p.] , ∀ c.p. , (2.33)

where c.p. indicates any competing phase. These relations allow to predict which

phase is stable for a given set of chemical potentials. Or, to put it di�erently, they

permit to determine the range of chemical potentials for which our target phase

is stable. We can visualize these stability regions by constructing the stability

diagram. An example for a generic ternary diagram with elements A, B and O is

shown in Figure 2.7. Because of the condition in Eq. 2.32, for our ternary system

we have only two degrees of freedom, i.e. once we choose ∆µA and ∆µB , ∆µO is

obtained from the value of ∆Ef
. Conventionally, if we are in presence of oxygen,

µO will be the chosen one to be excluded from the plot. Because of the way ∆µ
is de�ned (Eq. 2.30), the two axis can range from zero to negative values. If ∆µ is

zero, it means the reference elemental phase is stable. The labelled regions in the

plot indicate the range of chemical potentials in which each phase is stable. The

lines separating the regions give the chemical potential values in which two or

more phases can coexist. Moreover, if we choose to �x the value of one chemical

potential, ∆µO for example, we are left with only one degree of freedom, and Eq.

2.32 restricts the possible values to a line (as shown by the grey dashed line in

Figure 2.7). Lastly, for completeness, the heatmap indicates the values of ∆µO,

which for each point in the diagram are determined by the other two chemical

potentials.

As mentioned previously, a possible approach to de�ne the set of chemical poten-

tials for defect calculations is to choose the stability boundary in the target phase.

In our example, choosing ABO
3

as the target phase, this means four di�erent sets

of µ for every corner of the quadrilateral where ABO
3

is stable. The motivation is

to provide a complete picture of the edges of stabilty of the target phase, knowing

that the situation in the experiment will lie somewhere in between.

It is also of interest to evaluate the formation energies using a thermodynamic

reservoir that represents as much as possible the experimental conditions. The

methodology to achieve this is described in the next paragraph.
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Oxygen Chemical Potential

In the case of oxides, the parameters controlled experimentally are usually tem-

perature and oxygen partial pressure (pO2). For a reversibly compressed ideal gas,

we can express the chemical potential as
85

µ(T, p) = µ(T, p0) + kBT ln

(
p

p0

)
, (2.34)

where kB is the Boltzmann constant, T the temperature, p0
is a reference value

for the pressure and µ(T, p0) is the chemical potential value at pressure equal

to p0. This relation can be used to relate the oxygen chemical potential with

temperature and partial pressure, still keeping in mind that we are approximating

oxygen to an ideal gas. Therefore, Eq. 2.34 becomes
86,87

µO(T, pO2) = µO(T, p0) +
1

2
kBT ln

(
pO2

p0

)
, (2.35)

where pO2 is the oxygen partial pressure, and the factor 1/2 accounts for the fact

that oxygen is a biatomic molecule. Following Ref. 86, we write the temperature

dependence of the reference chemical potential µO(T, p0) as

µO(T, p0) = µO(0 K, p0) + ∆µO(T, p0), (2.36)

where µO(0K, p0) is half the computed energy of the isolated O
2

molecule at

0 K, and ∆µO(T, p0) is the variation in chemical potential with temperature at

standard pressure. The latter can be determined using thermochemical tables,
88

as shown by Reuter et al.
86

They have extracted the values of ∆µO(T, p0) at

di�erent temperatures, which we report here in Table 2.2 and show in Figure 2.8.

With a linear �tting we can then extrapolate the value for the desired temperature.

Therefore, with these tools it is possible to obtain the oxygen chemical potential

starting from its partial pressure in the experimental conditions, or alternatively

to evaluate the defect concentrations and the electron chemical potential as a

function of the oxygen partial pressure, which is useful to compare the results

with experimental data.

2.4.6 Relaxation Volume
Similarly to the formation energy, the formation volume is an important charac-

teristic, in�uencing the concentration, the di�usion, the segregation of a defect,



Temperature (K) ∆µO(T, p0) (eV)

100 -0.08

200 -0.17

300 -0.27

400 -0.38

500 -0.50

600 -0.61

700 -0.73

800 -0.85

900 -0.98

1000 -1.10

Table 2.2: Variation with temperature of the chemical potential at standard pressure, as

determined from thermochemical tables by Reuter et al from Reference 86. The value for

the desired temperature can be extrapolated with a linear �tting.
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Temperature (K)
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Figure 2.8: Variation with temperature of the oxygen chemical potential at standard

pressure, as determined from thermochemical tables by Reuter et al from Reference 86.
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or, more generally, the evolution of the microstructure.
89

Its general de�nition

can be derived from the formation energy (Eq. 2.25) as

∆V f =

(
∂∆Gf (P, T )

∂P

)
T

. (2.37)

The formation volume describes a �nite, macroscopic volume change after in-

troducing a defect D of charge state q into the system. It can also be de�ned

as

∆V f = V (Dq)− Vbulk ± V0, (2.38)

where Vbulk is the volume of the host, V (Dq) is the equilibrium volume of the

defective cell, and V0 is the volume of a single atom in the pristine supercell.

The plus sign applies in the case of a vacancy, while the negative sign refers to

interstitials. We can express Vf in terms of the relaxation volume ∆V r
,

∆V r = V (Dq)− Vbulk, (2.39)

∆V f = ∆V r ± V0. (2.40)

These two quantities relate to di�erent properties: the relaxation volume can

be related to the lattice parameter change induced by a point defect, whereas

the formation volume is related to the macroscopic volume change induced by

the defect. For non-elemental solids, formation volumes of composite intrinsic

defects such as Frenkel pairs, Schottky defects, etc., can be de�ned by relevant

combinations of relaxation volumes. Moreover, the relaxation volume gives an

estimate on the elastic interaction with other defects or external strain.
89

If we

limit the equation of state of the system to its bulk modulus (B) dependence,

and assuming that the e�ect of the defect on the bulk modulus is negligible, the

relaxation volume can be calculated as follows,
90

∆V r ≈ P Vbulk
B

, (2.41)

where P is the internal pressure calculated at the equilibrium volume of the host.

The pressure of a system with charge state q is de�ned as

P (q) = −∂E(q)

∂V
, (2.42)

where E(q) is the total energy of the system with charge q. Since q values are

relatively small, we can write the total energy as a Taylor expansion with respect

to the charge

P (q) = − ∂

∂V

(
E(0) + q

∂E

∂q

)
. (2.43)
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The term −∂E(0)/∂V is the pressure of the neutral cell P (0). We can rewrite

the second term using the relation q = Z−N , where Z is the number of positive

charges from the nuclei and N is the number of electrons

∂E

∂q
= −∂E

∂N
. (2.44)

The derivative of the energy with respect to N can be expressed using Janak’s

theorem
75

∂E

∂ni
= εi, (2.45)

where ni is the occupation of Kohn-Sham eigenstate i and εi its energy. We obtain

P = P (0) + q
∂εi
∂V

= P (0) +
q

V

∂εi
∂ lnV

. (2.46)

We call the last term deformation potential

ai =
∂εi
∂ lnV

, (2.47)

which gives

P (q) = P (0) +
q

V
ai. (2.48)

Because of the impossibility of uniquely de�ning the electrostatic potential within

periodic boundary condition, the origin of the energy scales for the eigenval-

ues is arbitrary. Its variation with respect to the volume is also arbitrary. As a

consequence, the deformation potentials in Eq. 2.47 are convention dependent,

which increases the complexity of the problem. One possible solution is the de�-

nition of an absolute deformation potentials (ADP) using the natural band o�set

approach.
91

More recently, Bruneval et al,
90

proposed an alternative procedure

to calculate defect relaxation volumes without prior knowledge of the absolute

deformation potential. Their approach relies on the formation of a charge-neutral

group by including charge compensating defects, for instance, free holes or elec-

trons, self-trapped holes, and charged vacancies.

So far, we have only presented an introduction to the complexity of the problem

of computing relaxation volumes for charged defects with DFT. In this thesis,

the e�ects of defects on strain and elastic properties is not the main focus. We

have therefore limited the analysis on the relaxation volumes for neutral defects,

where the calculation of ai is not needed. For a more comprehensive overview of
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the theory and methodology, we recommend looking into Ref. 89–93.

The pressure can be computed from the residual stress tensor, which is a by-

product of a standard DFT calculation. However, to ensure that the point defect

solely causes residual stress after atomic relaxation and largely exclude numerical

errors, the residual stress of the bulk cell should be subtracted from the tensor of

the defective cell. This quantity is further used to determine the elastic dipole

tensor
94

Pij = −V0〈σij〉, (2.49)

where 〈σij〉 is the residual stress tensor, and V0 is the supercell volume, which

can then be used to determine the relaxation volume in Eq. 2.41.

2.4.7 Charge Neutrality Condition
As previously discussed in Section 2.4.1, in spite of the methodology for plotting

the formation energies, µe is not a free parameter. The determination of this

quantity is a key aspect of a defect thermodynamics study. In fact, its value

determines the defect concentrations, the concentration of charge carriers, the

conductivity, the charge transition levels, etc. We can compute µe by solving the

charge neutrality condition
50

ne + nA = nh + nD, (2.50)

where ne and nh are respectively the electron and hole carrier concentrations,

and nD and nA are respectively the concentrations of donors and acceptors. This

equation essentially imposes that the system as a whole is not charged, and

positive and negative charges compensate themselves. The motivation is that a

charged system would be energetically unfavorable. Given di�erent defect species

(D) in di�erent charge states (q), Eq. 2.50 can be expressed as∑
q,D

q · [Dq]− ne + nh = 0, (2.51)

where [Dq] is the concentration of defect D in charge state q, de�ned in Eq. 2.23.

The concentrations of intrinsic carriers are derived by integrating the number of

unoccupied states up to the VBM (EVBM) for holes
50

nh =

∫ EV BM

−∞
D(ε)[1− f(ε)]dε, (2.52)
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and the number of occupied states from the conduction band minimum (CBM)

(ECBM) for electrons

ne =

∫ +∞

ECBM

D(ε)f(ε)dε, (2.53)

where f(ε) is the occupancy probability and D(ε) is the density of states. Since

electrons are fermions, the occupancy function is the Fermi-Dirac distribution,
50

f(ε, β, µe) =
1

eβ(ε−µe) + 1
, (2.54)

where β is 1/kBT . The density of states D(ε) is the number of states available

for occupation for each energy value per unit volume, and can be calculated

with DFT. Having linked the concentration of charge carriers to temperature and

electron chemical potential, we can rewrite Eq. 2.50 as a function of T and µe∑
q,D

q[Dq](T, µe)− ne(T, µe) + nh(T, µe) = 0, (2.55)

∑
q,D

qNDe
−β∆Ef

q,D(µe) −
∫ ∞
ECBM

D(ε)f(ε, β, µe)dε (2.56)

+

∫ EV BM

−∞
D(ε)[1− f(ε, β, µe)]dε = 0. (2.57)

Knowing the value of the temperature, we can solve this equation self-consistently,

which determines the value of µe for which the charges are balanced. More details

on how to do this in practice will be given in Section 2.5. Once we have solved

the equation and know µe, we can determine the equilibrium concentrations of

defects and charge carriers.

In order to better correlate with the experiments, this analysis is usually carried

out at di�erent oxygen partial pressures (pO2), using the correlation between

chemical potential and partial pressure described in Section 2.4.5. Therefore,

equilibrium concentrations of defects and charge carriers are usually visualized

as a function of pO2 . These graphs are called Brouwer diagrams (sometimes also

called Kröger and Vink diagrams).
95–98

A generic example is shown in Figure

2.9. This case involves a doubly negatively charged acceptor defect (A) and a

doubly positively charged oxygen vacancy (VO). In low pO2 regimes, the forma-

tion energy of VO is lower than for A. Thus, oxygen vacancies dominate and

the concentrations of electrons (ne) is bigger than the concentration of holes

(nh). The electron chemical potential will therefore be closer to the CBM than
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Figure 2.9: a) Example of a Brouwer diagram involving an acceptor A (q = −2) and

donor VO (q = +2) and b) electron chemical potential µe as a function of the oxygen

partial pressure. At low pO2 , the formation energies of VO are smaller than for A, which

means the concentrations of electrons exceeds the one of the holes (ne >> nh), and µe
is pushed close to the CBM. For high pO2 the situation is the opposite (nh >> ne), and

µe is pushed towards the VBM. In the middle region we have [A] = [VO], which means

the equilibrium µe is in the middle of the gap.

the VBM, meaning the semiconductor is n-type.
50

The exactly opposite situation

occurs in high pO2 regions. The concentration of acceptor dominates, nh >> ne,
and the semiconductor is p-type. In the middle region, A and VO can form with

equal probability, meaning that they are present in equal concentration, as for

the concentrations of electrons and holes. Consequently, in this region µe will be

close to the middle of the band gap.

It is worth noticing that, in our didactic example in Figure 2.9a, the linearly

dependent concentrations and the distinguished pO2 regions are a consequence

of approximations. In fact, in the method proposed by Brouwer and extended

by Kröger and Vink,
95

some approximations are made in order to facilitate the

solution of the charge neutrality equation. In particular, based on the pO2 region,

some concentrations are assumed to be large enough to make the others negligi-

ble. The validity of these approximations must be then veri�ed a posteriori. We
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have shown this version of the diagram to simplify the explanation of how defect

equilibrium changes with pO2 , keeping in mind that this is the example often

used in the literature.
95

In this work, however, we have no need to employ any

concentration approximation, as we can solve the charge neutrality equation in-

cluding all defects and all charge states simultaneously, and knowing the density

of states from DFT we can compute accurately the concentrations of electrons

and holes.

2.4.8 Defect Quenching
In the methodology we have described in the previous section, the defect con-

centrations in the charge neutrality equation (Eq. 2.50) depend exclusively on

temperature and electron chemical potential (Eq. 2.57). Therefore, the treatment of

defect populations that has been presented so far is based on the hypothesis that

the material and the reservoirs are in thermodynamic equilibrium. This means

that the mobility of defects is large enough to allow compositional variations to

be brought about by di�usive processes in the bulk.
95

It is generally accepted

that the respective time constants required to achieve equilibration of atomic and

electronic defects are comparatively long and short. Thus, in quenched systems,

materials may retain the atomic defect concentrations imposed at high tempera-

ture, while the electronic defects continue to equilibrate.
98

Experimentally, the

synthesis of materials often relies on quickly cooling down the sample, in order

to preserve its high temperature state down at room temperature. This requires

that quenching is accounted for in a theoretical and computational model which

studies defect thermodynamics. A �rst possible approach to tackle the problem

is to compute µe at high temperature, compute the defect charges in the high

temperature equilibrium and �x them at low temperature, as proposed by Canepa

et al.
99

The problem with this approach is that the charge states of the defects are

assumed to be constant. Since charge carriers have enough mobility to di�use

and equilibrate when temperature is decreased, shifting µe due to a temperature

change and/or a phase transformation can a�ect the charges the defects can

assume. Hence, even if their concentration is �xed, their contribution to the

charge neutrality can be completely di�erent from one condition to the other.

We encounter a similar problem when treating extrinsic defects. In the experimen-

tal world, when chemical doping/substitution is performed, the concentration

of extrinsic defects inside the sample is going to be �xed from the synthesis

stage. The common approach, in this context, is to guess the charge state of the
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Figure 2.10: Schematic representation of the di�erent conditions our quenching model

can explore. A defect distribution equilibrated in an initial phase β at temperature Tβ
can be quenched in a di�erent phase α at temperature Tα. Quenching can involve all

defect species or just a subset, letting the rest equilibrate in the target conditions. The

charge states of the quenched defects still depend on temperature and electron chemical

potential in the target phase. Defect complexes depend on the concentrations of single

defects but are still allowed to associate and dissociate, with probability depending on

their binding energy in the target phase. The concentrations of extrinsic defects are

�xed to the experimental values, but their charge states still depend on temperature and

electron chemical potential in the target phase as for intrinsic defects.
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doped system, by referring to chemical reactions derived from the most common

oxidation states of the substituting element. Subsequently, its contribution to

the charge neutrality condition is added as q · [Dfix], where q is the charge of

the extrinsic defect and [Dfix] is the �xed concentration.
87

Also in this case, the

charge state dependency on T and µe of the extrinsic defect has been completely

neglected. While generally the oxidation states can be a proper descriptor, we

might also encounter a situation where the dopant’s charge behaves in an un-

expected way, or simply the assumed charge is not the most stable one for all T

and µe values.

In this work, we have employed a novel scheme to solve both of these problems,

namely to allow to �x defect concentrations (both intrinsic and extrinsic) with-

out neglecting the dependency of the charge states on phase, temperature and

electron chemical potential. We start from the approach employed by Shousha et

al
100

and Lee et al,
101

and we show how this model can be extended to account

for extrinsic defects and defect complexes as well, without introducing additional

a priori assumptions.

As already introduced in Section 2.4.7, the total charge associated with a generic

defect species D is given by

QD =
∑
q

q · [Dq], (2.58)

where q is the charge state and [Dq] is the concentration of defect D in charge

state q. We introduce the quantity [s], which is the total concentration of element

s (or a vacancy of the element) across all defect species. Therefore, it is the sum

of the concentrations of defect species d which contain s, in all of their possible

charge states q

[s] =
∑
d,q

[dq] =
∑
d,q

Nde
−βEd,q , (2.59)

where β is equal to 1/kBT and Ed,q is the formation energy of defect d in charge

state q, as de�ned in Section 2.4.1, (the symbol "∆f
" has been removed to lighten

the notation). If we divide and multiply [Dq] by [s] we can explicate the term

wD,q(µe, T ) =
[Dq]

[s]
=

NDe
−βED,q∑

d,qNde−βEd,q
, (2.60)

which depends on temperature and µe and represents the weight of the concen-

tration of defect D in charge state q with respect to the total concentration of

the element. Having rewritten [Dq] as wD,q(µ, T ) [s], it is possible now to assume
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that, in "�xed" conditions, the total concentration of the element s is equal to the

target value of [sfix], which in practice might be a high-temperature concentra-

tion value arising from quenching, or the �xed concentration of a dopant. In this

way it is possible to compute the concentration of defect D in charge state q in

"�xed" conditions, without neglecting its temperature and µe dependence and/or

performing further assumptions,

[Dfix
q ] = wD,q(µ, T ) [sfix] = [Dq] ·

[sfix]

[s]
. (2.61)

By doing so we rely on the behaviour that the defect would show if it was allowed

to equilibrate with its reservoir, but we constrain its concentration to a target

value.

The same approach can be extended to describe defect complexes. The complex

is treated as an independent defect specie. Like in Eq. 2.58, the charge associated

to complex C in charge q is given by

QC =
∑
q

q · [Cq], (2.62)

and its concentration in equilibrium conditions, following Eq. 2.23, is given by

NCe
−βEC,q

, where EC,q is the formation energy and NC is the site multiplicity of

the complex. It is possible to write [Cq] in terms of the formation energy of the

single defects (ED) that constitute the complex and its binding energy (Eq. 2.27).

We add and subtract to EC,q the term

∑
D ED,q,

[Cq] = NC exp [−β(EC,q −
∑
D

ED,q +
∑
D

ED,q)]. (2.63)

We can thus substitute the expression of the binding energy:

Eb = EC,q −
∑
D

ED,q. (2.64)

We obtain

[Cq] = NC e
−βEb

∏
D

e−βED,q = NC e
−βEb

∏
D

[Dq]

ND

. (2.65)

It is worth noticing that the charge states of the single defects chosen for the

expression of the binding energies are equivalent, as long as they are consistent
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in the de�nition of the binding energies. Following the same approach used for

single defects in Eq. 2.60, we can rewrite [Cq] as

[Cq] = NC e
−βEb

∏
D

[s]
wD,q
ND

. (2.66)

Out of the species from which the complex is made, we de�ne the subset of defects

whose concentrations need to be �xed (named Df
). In this way, we can perform

the same assumption as in the case of single defects, namely we substitute [s]
with [sfix] for the species belonging to the subset Df

, while nothing changes

for the remaining subset of species which are allowed to equilibrate with the

reservoir (De
). We obtain

[Cfix
q ] = NCe

−βEb

∏
D∈De

[s]
wD,q
ND

∏
D∈Df

[sfix]
wD,q
ND

. (2.67)

Comparing Eq. 2.66 and Eq. 2.67, we can rewrite [Cfix
q ] as

[Cfix
q ] = [Cq] ·

∏
D∈Df

[sfix]

[s]
= NCe

−βEC,q ·
∏
D∈Df

[sfix]

[s]
. (2.68)

By expressing [Cfix
q ] as in Eq. 2.68, we leave the expression for the concentration

of the complex unchanged, still depending on its formation energy and without

relying explicitly on the binding energy. Simply, it is enough to correct the equi-

librium value with the factor [sfix] / [s] for the species with �xed concentration,

in a similar fashion to Eq. 2.61.

Figure 2.10 summarises all the di�erent conditions this model can explore. The

schematic lattice in the top �gure represents the starting conditions, which in

the case of quenching is usually a phase stable at high temperature (phase β at

temperature Tβ). Once the defect distribution in this system has been computed,

it can be used to evaluate how a di�erent phase (α) at a lower temperature (Tα)

reacts when all defects, or a subset of defects, are frozen in from the high tem-

perature phase. In fact, following Eq. 2.61 and Eq. 2.68, it is possible to quench

only a subset of defects, while letting the rest equilibrate. This can be particularly

useful in case some defects are particularly mobile, and therefore the original

defect distribution is not preserved during the cooling process. Moreover, even if

the concentrations of single defects are �xed, defect complexes can still form and

dissolve, and the association probability is dependent implicitly on the binding

energy, as computed in the target phase (phase α at temperature Tα). Lastly, the
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concentration of extrinsic defects is hold constant to the experimental value in

all conditions, but their charge state is allowed to equilibrate with temperature

and electron chemical potential.

2.5 Analysis Framework

In the following section we provide a brief overview of the work�ow to perform

ab initio defect calculations and analysis. In most cases, these computations are

systematic, i.e. the same procedures are used independently of the speci�c material

of interest. Therefore, during this doctoral work, we have developed a set of tools

to provide a systematic and rapid framework to study defect thermodynamics.

The code is based on the language python , and it can be found on GitHub and

the Python Package Index (PyPI). The library is largely based on the pymatgen

package.
102

The work�ow is shown in Figure 2.11. The physics involved in these methods is

summarised in Section 2.2 and 2.4. The starting point is the computation of the

bulk phase, in order to obtain the relaxed structure with DFT (atomic positions

and lattice parameter). Moreover, a static calculation with a more dense k-mesh is

required to get a more accurate band gap (Eg) and density of states (DOS). Lastly,

if �nite-size corrections are needed, the calculation of the dielectric constant

(FNV method) or the dielectric tensor (Kumagai method) is required (Section

2.4.4). Starting from the relaxed bulk structure, we create the supercell structures

for the defects of interest, setting up one separate calculation for every desired

charge state. We then perform total energy calculations, relaxing the atomic

positions while keeping the lattice parameter �xed. Additionally, since we need

the chemical potentials of the atomic species involved in the defects, we calculate

the stability diagram of the phase of interest. At this point, the remaining parts

of the work�ow are just to analyse the DFT data and do not involve other DFT

calculations. Once we possess both the relaxed bulk and defect structures, we

can compute the �nite-size corrections. In this work we have used the FNV and

Kumagai methods, but also other methods can be used (Section 2.4.4). Finally, we

can combine all of these results to compute our database of formation energies,

which is the building block for the subsequent analysis. In fact, by solving the

charge neutrality equation (Eq. 2.57), we calculate the electron chemical potential

and defect concentrations at thermodynamic equilibrium. Last but not least, we

can generate a new set of chemical potentials corresponding to a di�erent oxygen

https://github.com/lorenzo-villa-hub/pynter
https://pypi.org/project/pynter-defects/
https://pymatgen.org/
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partial pressure (pO2) and repeat the whole procedure. In this way, we obtain

the concentration and µe pro�les as a function of pO2 to generate the Brouwer

diagram.

It is also possible to go one step further, and compute the di�usion barriers of the

defects with the NEB method (Section 2.3), which can then be used to compute

the conductivity of the system. This, however, goes beyond the scope of this work

and will not be treated in this thesis.

In the following, we give a short introduction on how to handle the work�ow

with pynter . If the reader has no interest in understanding and/or using the

software, we recommend skipping the next section entirely and moving directly

to next section (Section 2.6).

DFT - Inputs and Outputs

In this work, all the calculations have been performed using the Vienna ab-

initio simulation package (VASP),
103–106

. The vasp module allows to handle

VASP calculations directly with python. The central module is vasp.jobs
which allows to set up, read and run VASP jobs with the VaspJob class and

the VaspJobNEB class for NEB calculations. Input �les can be prepared using

the vasp.default_inputs module. Moreover, if more complicated calculation

schemes are involved, a set of calculations can be set up automatically with the

vasp.schemes module. Useful schemes for defect calculations can be set with

the AdvancedSchemes class. Since almost all DFT calculations need to be run

on multiple cores, given the required computational power, we have developed

an ssh interface with a cluster which uses the slurm queuing system. Once

calculations are performed, the VaspJob objects can be extracted directly from

the calculations directories. When multiple calculations in subdirectories are

involved, they can be handled (both for inputs and outputs) simultaneously with

the Dataset class in the data.datasets module. Lastly, the vasp module in-

cludes tools for analysis and plotting, e.g. DOS, band structure, Birch-Murnaghan

�ts, k-points and energy cuto� convergence, et cetera. For convenience, the job

objects can be saved as json �les, which allows to quickly recall them without

needing to access the original data again.

Defects Database

The defects module collects the tools to organize and analyse defect calcu-

lations. Schematics of the most important classes and relative work�ow are
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shown in Figure 2.12. The �rst step is to create defect entries from the DFT

data, using the DefectEntry class. The class can either be initialized by in-

serting the data directly by hand, or automatically from VaspJob objects. Any

correction to the total energy needs to be included at this stage. The module

defects.corrections provides functions which allow to compute FNV or

Kumagai corrections using pymatgen,
102

which can also be run automatically

starting from the job objects of defects and the bulk phase.

Defect entries are then organized into a database with the DefectsAnalysis
class, which is the central class for the whole work�ow. This contains func-

tions to compute and plot quantities both dependent and independent of the

chemical potential (charge transition levels, defect complex binding energies,

electron chemical potential and formation energies). The electron chemical po-

tential can be computed both in equilibrated and quenched/doped conditions

(Section 2.4.8) with the solve_fermi_level function. Both DefectEntry and

DefectsAnalysis objects can be stored as json �les to be quickly recalled.

Reservoirs

The phase_diagram module provides the tools to analyse phase diagrams and

organize the chemical potential data. The PhaseDiagram class in pymatgen

plays a central role for the computation, the analysis and plotting of the PD

data. The PDHandler class in the phase_diagram.chempots module contains

functions which help to speed up the work�ow. Once the desired reservoirs, with

relative chemical potentials, are extracted, they can be organized and stored with

the Reservoirs class, which behaves like a python dictionary and provides

functions to quickly handle dictionaries of chemical potentials, and can be saved

as json �le. The link with oxygen partial pressure-dependent calculations is

provided by the phase_diagram.thermodynamics module, which provides

functions to create Reservoirs objects containing sets of chemical potentials

for each oxygen partial pressure, which can then be used to compute Brouwer

diagrams.

Defect Thermodynamics

The defects.thermodynamics module provides the tools to perform pO2-

dependent analysis. Starting from a DefectsAnalysis object, an object of

the PressureAnalysis class can be set up to solve the charge neutrality equa-

tion and extract electron chemical potential, conductivity and concentrations of

https://pymatgen.org/
https://pymatgen.org/
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defects, as well as electrons and holes, for each pO2 (get_concentrations func-

tion). The output data is organized through the ThermoData class, which can

be stored as json. The data can be generated both in equilibrated and quenched/-

doped conditions. The object can later be used as input for the PressurePlotter
class in the defects.plotter module, which provides functions to create

Brouwer diagrams and plot µe as a function of pO2 .
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Figure 2.11: Work�ow for basic ab initio defect thermodynamics calculations. In this

work, we have developed the pynter library to systematically handle every step of this

work�ow.

https://github.com/lorenzo-villa-hub/pynter
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Figure 2.12: Work�ow to analyse point defects with the pynter library. Defect en-

tries are created from each DFT calculation, and organized in a database with the

DefectsAnalysis class. Chemical potentials are stored with the Reservoirs class,

and used to plot formation energies. The charge neutrality equation (both for equilibrated

and quenched/doped conditions) is solved for di�erent oxygen partial pressures. The

output is stored with the ThermoData class and is used to generate Brouwer diagrams.

https://github.com/lorenzo-villa-hub/pynter
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2.6 Conclusion
In summary, density functional theory allows to solve the quantum mechanical

problem in a periodic crystal, by shifting the attention from the many-body wave

function to the electron density, which permits to reformulate the many-body

Schrödinger equation as a set of single-particle equations. With this approach,

it is possible to compute the formation energies of charged point defects, and

to solve the charge neutrality equation to calculate the position of the Fermi

level at thermodynamic equilibrium. Using the connection between the chemical

potential and the partial pressure of oxygen, it is possible to compute defect

concentrations as a function of the oxygen partial pressure (Brouwer diagrams),

which are useful to compare the computational results with the experiments.

This methodology constitutes a major step forward with respect to the traditional

approach to defect chemistry.
97

In fact, instead of relying on assumptions to solve

the equilibrium constant of arbitrary chemical reactions, all the defect species in

all charge states are considered simultaneously, including the dependency of their

formation energies on the Fermi level. This allows to have a complete picture

of the thermodynamics of defects, without the risk of neglecting important

contributions that are not straightforward to predict. In this work, we have

brought this approach one step further, by developing a novel scheme to account

for quenching of defects, within the established point defect thermodynamics.
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The results presented in Section 3.1 are published in:

[ 107 ] “L. Villa, E. Ghorbani, and K. Albe, Role of intrinsic defects in cubic

NaNbO3: A computational study based on hybrid density-functional theory,

Journal of Applied Physics 131, 124106 (2022).”

while the results in Section 3.2 are published in:

[ 108 ] “L. Villa and K. Albe, Role of doping and defect quenching in

antiferroelectric NaNbO3 from �rst principles, Physical Review B 106, 134101

(2022), Publisher: American Physical Society.”

NaNbO
3

is one of the best candidates for lead-free antiferroelectric materials for

applications in energy storage, due to the possibility of obtaining douple P-E loops

at room temperature (see Chapter 1). In order to understand the role of doping

on its antiferroelectric properties, we have studied the in�uence of intrinsic

and extrinsic defects. This will provide insight on which defect species most

likely form, the main compensation mechanisms, the in�uence of oxygen partial

pressure on defect concentrations and electron chemical potential. Since NaNbO
3

is sintered at high temperature, upon cooling it undergoes many phase transitions.

The equilibrium defect distribution at room temperature will be therefore a

combination of thermodynamic and kinetic e�ects, where the contribution of

kinetics gets particularly decisive if the mobility of the defects is low. We have

therefore chosen to study defects in three phases of interest: the high temperature

cubic phase (space group Pm3m), the low temperature trigonal phase (R3c) and

the room temperature orthorhombic phase (Pbcm), with additional focus on the

latter. The goal is therefore to compare the defect formation energies in the three

di�erent phases, to evaluate the in�uence of the crystal structure (the phase) on

the �nal defect distribution.

61

http://dx.doi.org/10.1063/5.0079881
http://dx.doi.org/10.1063/5.0079881
http://dx.doi.org/10.1103/PhysRevB.106.134101
http://dx.doi.org/10.1103/PhysRevB.106.134101
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3.1 Cubic Phase

3.1.1 Computational Details

All calculations were performed based on density functional theory (DFT) using

the Vienna ab-initio simulation package (VASP).
103–106

The electronic wave func-

tions were described using the projector augmented-wave method,
53,109

which

includes both valence and core states. To study pure NaNbO
3
, the exchange-

correlation e�ects were treated using the Perdew-Burke-Ernzerhof (PBE)
56

formal-

ism of the generalized-gradient approximation (GGA), the Dudarev version
110,111

of GGA+U with a Hubbard correction term of 6 eV on Nb d-states, and the HSE06

hybrid functional,
62,112

with standard mixing and screening parameters of 25% and

0.2 Å
−1

, respectively. All defect calculations were performed using a 3×3×3 super-

cell, containing 135 atoms. The plane wave basis set was expanded up to a 500 eV

cuto� energy. The Brillouin zone integration was performed using a Γ-centered

6×6×6 k-mesh for unit-cell calculations and a 2×2×2 k-mesh for supercell cal-

culations. The atomic positions were relaxed until the Hellmann-Feynman forces

on each atom were below 0.05 eV/Å. Without temperature contributions, the high

temperature phases will be unstable with respect to the structure stable at 0 K.

Therefore, in the absence of symmetry constraints, the high temperature phases

would relax to the 0 K structure. For these reasons, when we compute the high

temperature phases, we constrain the symmetry to that of the input structure

space group, as implemented by VASP. We expand on this topic in Section 3.5. The

lattice constant was determined by calculating the total energy at di�erent cell

volumes and �tting the data to the Birch-Murnaghan equation of state.
113,114

The

density of states (DOS) were calculated using a Γ-centered 16×16×16 k-mesh.

3.1.2 Lattice Constant and Electronic Structure

As previously outlined in Section 2.5, the �rst step is the study of bulk properties.

The �rst dilemma we must face is the choice of the exchange-correlation (XC)

functional, which we have seen plays a very important role in the determination

of many properties we are interested in (Section 2.2.3). One of the most common

choices is the PBE functional. This approach tends to yield slightly overestimated

lattice parameters, to over-delocalize the charge with respect to the real behavior,

and to severely underestimate the band gap (usually by almost a factor of 1/2).

One method to correct for the two latter shortcomings is called DFT+U,
110,115

which includes a correction term to account for the self-interaction error, and
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Figure 3.1: Density of states and band structure of cubic NN with di�erent XC-functionals.

is usually applied where the electrons are more strongly correlated, like d and

f orbitals. While this method improves the description of the band gap, many

properties depend on the magnitude of the correction (Hubbard parameter or U

parameter). This constitutes a problem, as a universal criterion for the choice of

the U parameter is to this day still missing. Hybrid functionals methods constitute

a great improvement with respect to the previously mentioned approaches. They

are, however, computationally at least two orders of magnitude more expensive

than PBE or PBE+U, which constitutes a problem in case of defect calculations,

where many calculations involving supercells are needed.
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a(Å) Eind
g (eV )

PBE 4.008 1.601

PBE+U 4.052 1.954

HSE06 3.967 2.927

Ref PBE
18

3.975 1.652

Ref PBE0
18

3.931 3.756

MP Database (PBE)
116,117

4.009 1.531

Exp
21

3.960
118

3.290

Table 3.1: Values of lattice constant a (Å) and energy gapEg (eV ) of cubic NN, calculated

with di�erent exchange-correlation functionals and confronted with computational data

by D.Fritsch,
18

the Materials Project database
116,117

and experimental data.

In order to assess the performance of the aforementioned functional, we have run

preliminary calculations for all of them. In particular, we have determined the

lattice constant by �tting the dependency of the total energy on the cell volume

to the Birch-Murnaghan equation of state.
113,114

Moreover, we have run density

of states (DOS) and band structure (BS) calculations to accurately determine

the electronic structure, with particular focus on the band gap. The results are

reported in Table 3.1, Figure 3.1, and compared with other values reported in the

literature. As expected, the computationally more expensive HSE06 functional

is the better performing. Moreover, PBE overestimates the lattice parameter,

while the band gap is severely underestimated. These results are not considerably

improved with the introduction of the Hubbard correction, even though the band

gap is closer to the experimental value. As it can be seen from Table 3.1, the

hybrid functional can reproduce much more accurately the experimental data.

The lattice parameter is almost exactly reproduced, and the indirect energy gap

is also much closer to the experiment. Excluding the energy gap, the DOS and

band structure are not heavily in�uenced by the choice of the functional. In the

case of the PBE functional, the states are more delocalized with respect to the

PBE+U and HSE06 functionals, as expected given its semi-local nature. The main

contribution to the top of the valence band (VB) is given by the oxygen p orbitals,

while the main contribution to the bottom of the conduction band (CB) is mainly

associated with the niobium d orbitals.

As �rst step in the analysis of defect equilibrium in NaNbO
3
, we will examine
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the formation energies of the vacancies, only. Consequently, we can a�ord to

employ hybrid functionals. In the next steps, when a much larger number of

defects (including extrinsic defects and complexes) is involved, given the high

number of calculations necessary, employing solely PBE will be necessary.

3.1.3 Chemical Potentials
The next step in the calculation of defect properties is to de�ne the thermody-

namic reservoirs. This requires the calculation of the semi–grandcanonical phase

diagram, which shows the stability areas as function of the chemical potentials

of the constituents (Section 2.4.5). We have computed the phase diagram starting

from the stable phases reported in the Materials Project database.
116,117

The list

of computed phases with relative formation energies is reported in Table 3.2. In

order to evaluate the range of stability of cubic NaNbO
3
, which is the phase of

interest for defect properties, we have replaced the trigonal low-temperature

phase with the high-temperature cubic phase. For the total energy calculations,

both the atomic positions and the cell volume were fully relaxed. All calculations

were performed with the HSE06 hybrid functional.

The defect formation energies were computed for di�erent thermodynamic reser-

voirs, represented in Figure 3.2 by the labels from A to E and X1, X2, X3. Regions

from A to E are generic limits of stability, which space from O-rich conditions

(point C) to Na-rich and Nb-rich conditions (point A). It is also of interest to

evaluate the formation energies using thermodynamic reservoirs that represent

the experimental conditions. In particular, we �x the oxygen chemical potential

(∆µO) to its value at the conditions of temperature and partial pressure that can

be found experimentally
17

(T = 950K, pO2 = 0.2 atm). To calculate it we refer to

Eq. 2.35, described in Section 2.4.5. With this procedure, we obtain ∆µO = -1.09

eV. The points X1, X2 and X3 in Figure 3.2 are the regions where the oxygen

chemical potential is constant and equal to -1.09 eV, in which the conditions

go from Na-poor and Nb-rich (X1) to Na-rich and Nb-poor (X3). The chemical

potential values associated to the labeled regions in the stability diagram are

reported in Table 3.3.

3.1.4 Relaxation Volumes
In order to compute the total energies of the defective systems, the atomic posi-

tions in all the supercell structures have been optimized (Section 3.1.1). Since the

cubic phase is stable at high temperature, its structure will be unstable at a DFT
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Phase Structure Formation energy (eV/atom)

NaNbO
3

Cubic (Pm3m) -2.73

NaO2 Orthorhombic (Pnnm) -0.98

Nb Cubic (Im3m) 0.0

NbO2 Tetragonal (I41) -2.83

Na Cubic (P4132) 0.0

Na2Nb3O6 Trigonal (P31c) -2.61

Na2O Cubic (Fm3m) -1.41

Na8NbO6 Triclinic (P1) -1.80

Na7NbO6 Triclinic (P1) -1.95

Nb2O5 Monoclinic (C2/m) -2.92

Na2O2 Hexagonal (P62m) -1.35

O2 Monoclinic (C2/m) 0.0

Na8Nb5O14 Triclinic (P1) -2.45

NaNb10O18 Monoclinic (P21/c) -2.71

Table 3.2: Formation energy per atom for all the compounds used to compute the stability

diagram.

Reservoir ∆µNa (eV) ∆µNb (eV) ∆µO (eV)

A -0.5 -2.52 -3.54

B -1.69 -1.56 -3.47

C -3.43 -10.22 0

D -1.85 -9.25 -0.85

E -1.8 -6 -1.95

X1 -2.89 -7.55 -1.09

X2 -2.32 -8.13 -1.09

X3 -1.74 -8.7 -1.09

Table 3.3: Values of the chemical potentials of Na, Nb and O for each of the labelled

regions in the stability diagram (Figure 3.2).

level (0 K), and only symmetry constraints within the calculations prevent it from

relaxing to the low temperature phase. It is therefore interesting to investigate

the relaxation mechanisms once we introduce a big perturbation to the lattice,

such as point defects and even a complex of defects. The local environment of

neutral single vacancies in the relaxed structures is shown in Figure 3.3a, as

represented by the software OVITO.
119

By analysing the bond lengths and the
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Figure 3.2: Stability diagram of the ternary Na-Nb-O system, as derived from the data in

Table 3.2. The defect formation energies are discussed in terms of the chemical potentials

at the points from A to E and from X1 to X3, reported in Table 3.3.

atomic displacements (with respect to the bulk structure), it can be concluded that

the three defect species have di�erent e�ects on the local environment. In fact,

in the presence of the oxygen vacancy, the structure is stabilized via tilting of the

oxygen octahedra in the vicinity of the defect, shown by the large displacements

of the neighbouring oxygen atoms. As a matter of fact, all the lower temperature

phases of NaNbO
3

display O-octahedra tilting. Additionally, the O-octahedra

are distorted, which is highlighted by both the atomic displacements and the

deformation of the Nb-O bond lengths. The sodium vacancy does not induce

any signi�cant rearrangement of the lattice. The neighbouring oxygen atoms

deviate towards the other Na atoms, but the Nb-O bond length deviates only

slightly from the bulk value. The e�ect on the local structure is certainly di�erent

in the case of niobium vacancies, where the Na atoms rearrange by shrinking

towards the Nb vacancy. The neighbouring Na-O bonds decrease signi�cantly
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P11 (eV) P22 (eV) P33 (eV) P12 (eV) P13 (eV) P23 (eV) ∆V (Å
3
)

VNa 2.37 2.37 2.37 -0.00 -0.00 0.00 1.9

VNb -21.11 -21.11 -21.11 -0.00 0.00 -0.00 -16.7

VO 12.80 12.80 -8.90 -0.49 -1.75 -1.75 4.4

2VNa - VO (np) 0.25 0.25 17.27 -0.85 -0.00 -0.00 4.7

2VNa - VO (p) -31.69 28.04 15.29 -0.00 -0.00 -0.00 3.1

Table 3.4: Elastic dipole tensor and relaxation volumes in the neutral case of single

vacancies and the defect complex formed by two sodium vacancies and one oxygen

vacancy in the non-polar (np) and polar (p) con�gurations.

(up to -17%), as highlighted by the additional bonds in the �gure.

In addition to single vacancies, we have studied the defect complex formed by

two Na vacancies and one O vacancy in two di�erent con�gurations (named polar

and non-polar), whose schematic representations are shown in Figure 3.3b. In the

polar con�guration the two Na vacancies are non-centrosymmetric with respect

to the O vacancy, while the alternative centrosymmetric case gives the non-polar

con�guration. Figure 3.3c shows the local structure around the complex after

relaxation. In both cases, the presence of the defect complex introduces tilting

of the oxygen octahedra, like in the case of O vacancy. In the polar case, the

O-octahedra undergo greater distortions than the non-polar case, which can be

seen by the greater displacements of the adjacent O-atoms and large changes in

the Nb-O bond lengths.

In order to extend this analysis to quantitative data, we have evaluated the e�ects

of the computed vacancies in the neutral case on the elastic dipole tensor and

on the cell volume, as outlined in Section 2.4.6. To perform this analysis, the

atomic positions were further relaxed until the Hellmann-Feynman forces on

each atom were below 0.001 eV/Å in the cases of single vacancies and 0.005 eV/Å

for the defect complexes. A bulk modulus of 202.5GPa has been obtained by

calculating the total energy at di�erent cell volumes and �tting the data to the

Birch-Murnaghan equation of state (Section 3.1.1). The computed components of

the symmetric elastic dipole tensor and relaxation volumes (∆V ) for the di�erent

defect species are reported in Table 3.4.

The value of ∆V is positive for all defect species except for Nb vacancies, which

shows that the defects are overall a positive dilatation center. This might seem

counter-intuitive for vacancies (where one would expect a shrinking of the lat-

tice) but in this case it is to be attributed to the local structural rearrangement

(especially in the case of O-octahedra tilting). It is also important to remember



(a)

(b)

(c)

Figure 3.3: a) Local structures after relaxation around single vacancies. b) Vacancy sites

chosen for the defect complex were formed by two Na vacancies and one O vacancy.

The non-polar con�guration is given when the two Na sites are centrosymmetric with

respect to the O site. In the polar con�guration, however, the two Na vacancies are

non-centrosymmetric with respect to the O site. c) Local structure around the vacancy

complex in the two con�gurations after relaxation.
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that the cubic phase of NaNbO
3

is not the stable phase at 0 K, which means that

O-octahedra tilting reduces the total energy of the structure. The only situation

where we �nd negative values of ∆V is for Nb vacancies. This is easily explained

by looking at Figure 3.3a. In fact, it can be seen that the missing Nb atom produces

a shrinkage of Na atoms towards the empty atomic site, which results in a tensile

stress on the supercell, hence a negative value of the relaxation volume.

3.1.5 Defect Formation Energies
As mentioned previously in Section 3.1.2, we have studied Na, Nb and O vacancies.

In addition to the formation energies of single vacancies, we have also computed

the formation energy of the defect complex formed by one oxygen vacancy and

two neighboring sodium vacancies, in three di�erent charge states (-1, 0, +1) and

two possible con�gurations, as displayed in Figure 3.3b.

The calculated formation energies of the intrinsic point defects in the di�erent

thermodynamic conditions from A to E (reported in Table 3.3) are plotted as a

function of the Fermi level in Figure 3.6, as we have described in Section 2.4.3. As

most commonly adopted in the literature, we have chosen to plot the formation

energies treating the Fermi level as a free parameter. We have chosen to name

it as "Fermi level" instead of "µe" in the plots in order to distinguish it from

the self-consistently calculated electron chemical potential, which is not a free

parameter, but is determined by the charge neutrality condition (Eq. 2.50). This

quantity is displayed in the plots by the black vertical dashed line. The charge

transition level (CTL)s for all defects are displayed in Figure 3.4. The formation

energy of Nb vacancy is found to be the largest amongst all defect types in all

�ve thermodynamic reservoirs, even in the Nb-poor ones (C and D). The CTLs

associated with Nb vacancy are spread across the whole band gap. As expected,

the Nb vacancy is an acceptor-type defect. Oxygen vacancies have much lower

formation energies. In O-poor conditions (A and B), they are the most stable defect

across all the band gap. The most stable charge state is +2 across most part of the

band gap, resulting in a donor-type defect, which con�rmed expectations. There

are two close charge transitions, (+2/+1) and (+1/0), which are placed at 0.85 eV

and 0.25 eV below the conduction band minimum (CBM), respectively. The (0/-1)

CTL is located within the CB states. In their study of photocatalytic activity of

bulk and reduced NaNbO
3
, Yang et al

120
reported that the oxygen CTL is at circa 1

eV below the CBM, which is in reasonable agreement with our �ndings. It should

be noted that, although in their work NaNbO
3

is in its room-temperature phase,

the distance between the O CTL and the CBM is comparable to the cubic phase
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Figure 3.4: Charge transition levels for single vacancies and the vacancy complex 2VNa−
VO in its two con�gurations. The energy levels in the VB and the CB are indicated by

the gray shaded areas.
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Figure 3.5: Binding energy for the two con�gurations of the 2VNa−VO vacancy complex

as a function of the Fermi level. The kinks correspond to charge transition points of the

isolated defects.
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Figure 3.6: Defect formation energies in cubic NN as a function of the Fermi level position

for representative thermodynamic conditions A, B, C, D, E (shown in Figure 3.2). The stars

on the formation energy curves represent charge transitions. The calculated position of

the electron chemical potential µe at 950 K is displayed by the dashed vertical line.
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studied in current work. In fact, in both cases (room-temperature orthorhombic

phase and high-temperature cubic phase) the top of the VB is mainly constituted

of O 2p states, while the bottom of the CB contains mainly Nb 4d states. Hence,

the character of the band structure is preserved, and the relative distance of the

O CTL with respect to the bottom of the CB can be safely compared in di�erent

phases. The formation energies of Na vacancies are much closer to the ones of

oxygen than to that of Nb. In Na-poor conditions (C), Na vacancies are more

stable than O vacancies across most part of the band gap. The CTL are close to

the valence band maximum (VBM), with the -1 charge state being stable starting

from 0.6 eV above the VBM, making Na vacancies an acceptor-type defect. The

last computed defect is the defect complex formed by one O vacancy and two

Na vacancies. The binding energy of a complex of vacancies is de�ned by the

di�erence between its formation energy and the formation energies of the isolated

vacancies. It is therefore independent of the chemical potentials. In this speci�c

case, the binding energy is given by:

Eb = ∆Ef
2VNa−VO − (2∆Ef

VNa
+ ∆Ef

VO
), (3.1)

where ∆Ef
2VNa−VO is the formation energy of the complex, ∆Ef

VNa
and ∆Ef

VO
are

the formation energies of isolated Na and O vacancies, respectively. Figure 3.5

shows the binding energy Eb of the defect complex, in the two con�gurations (as

previously described) as a function of the Fermi level position. It is clear from

the plot that the binding energy of the polar con�guration is more negative than

the non-polar one. In particular, there is an energy gain of 0.75 eV when the

system goes from non-polar to polar con�guration. The values of Eb are negative

throughout the most part of the band gap, which means that the formation of

the vacancy complexes are more probable with respect to isolated vacancies. The

position of the Fermi level at which the binding energies are most negative is at

approximately the middle of the gap. The associated charges of single Na and

O vacancies in this region are -1 and +2, respectively. This means that in the

presence of the defect complex, there will be a strong interaction between the

charges of the vacancies, which reduces the overall energy of the system with

respect to the isolated vacancies.

Additionally, we have computed the formation energies �xing the chemical

potential of oxygen according to the experimental conditions during the synthesis.

As described in Section 3.1.3, we have calculated ∆µO at T = 950 K and pO2 = 0.2
atm, which allowed us to de�ne the thermodynamic reservoirs X1, X2, X3 in

Table 3.3. The formation energies in these conditions are reported in Figure 3.7.
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Figure 3.7: Defect formation energies in cubic NN as a function of the Fermi level position

in the thermodynamic reservoirs with ∆µO �xed to -1.09 eV (shown in Figure 3.2). The

stars on the formation energy curves represent charge transitions. The calculated position

of the electron chemical potential µe at 950 K is displayed by the dashed vertical line.

Niobium vacancies have the higher formation energies between all defect types as

in the previous case. In all three reservoirs Na and O vacancies are the most stable

defects throughout the band gap. The complexes of vacancies have comparable

formation energies and have the smallest formation energy values in Na-poor

conditions (X1).
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Reservoir µe (eV)

A 2.84

B 2.81

C 1.01

D 1.72

E 2.09

X1 1.55

X2 1.74

X3 1.79

Table 3.5: Position of the electron chemical potential dictated by the charge neutral-

ity conditions in cubic NN, in all the thermodynamic reservoirs shown in Figure 3.2,

computed with the method described in Section 2.4.5.

Electron Chemical Potential

We have determined the position of the electron chemical potential (µe), dictated

by the charge neutrality condition, for all thermodynamic reservoirs listed in

Table 3.3, with the method described in Section 2.4.5. We have chosen to compute

µe at a temperature of 950 K, in order to evaluate the system’s behaviour when it

is close to the synthesis temperature. As already mentioned, this is most likely

the condition where the most part of intrinsic defects are installed. The results

are reported in Table 3.5 and displayed in Figure 3.7. For all reservoirs apart from

C, the position of µe closer to the CBM suggests that the material is an n-type

semiconductor. In reservoir C (Na-poor), we register an opposite behaviour with

µe being closer to the VBM and the semiconductor being more p-type. This is

due to the lower formation energies of Na vacancies in Na-poor conditions. In

the case of the other three reservoirs with �xed ∆µO, the position of µe is closer

to the middle of the gap. Going from Na-poor (X1) to Na-rich (X3) conditions,

the electron chemical potential shifts in the direction of the CBM, indicating that

the system behaves more as a donor.

Dependency on Oxygen Partial Pressure

As already mentioned in Section 2.4.5, experimentally the oxygen chemical po-

tential can be controlled by varying the oxygen partial pressure. Therefore it is

useful to calculate the defect concentrations and the electron chemical potential

as a function of the partial pressure, in order to be able to relate computational
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Figure 3.8: Concentrations of Na and O vacancies and vacancy complexes in cubic NN as

a function of oxygen partial pressure at T = 950 K.

and experimental data. To this day, there is still not reported experimental data

of defect concentrations in pure NaNbO
3
.

We have converted the values of ∆µO in oxygen partial pressures using Eq. 2.35,

keeping the constraints of the stability over competing phases, which restricts the

range of ∆µO. We have reported the values of the mostly relevant concentrations

of Na and O vacancies as a function of partial pressure in Figure 3.8. For low

values of oxygen partial pressure (pO2), the dominant defect is the O vacancy,

mostly in the +2 charge state. As pO2 increases, we move into more oxygen-rich

conditions, where ∆µO increases. This leads to a decrease in the concentration

of VO, while the concentrations of Na vacancies grows considerably to reach

a condition where the concentrations of VNa and VO have the same order of

magnitude. For high values of pO2 , the behaviour of O vacancies changes, starting

to increase again in concentration as partial pressure increases. This is due to the

fact that, as the conditions get more oxygen-rich, the electron chemical potential



3.2. Orthorhombic Phase 77

10 20 10 16 10 12 10 8 10 4 100 104

Oxygen partial pressure (atm)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

El
ec

tro
n 

ch
em

ica
l p

ot
en

tia
l (

eV
)

VB

CB

Figure 3.9: Electron chemical potential determined self-consistently as a function of the

oxygen partial pressure at T = 950 K.

shifts in the direction of the VBM, in which the formation energies of VO decrease.

This behaviour of µe is shown in Figure 3.9. For low pO2 values the system is an

n-type semiconductor, with a value of µe less than 0.5 eV close to the CBM. As

pO2 increases, the electron chemical potential shifts to lower values, to reach the

high pO2 condition where it is approximately in the middle of the gap.

3.2 Orthorhombic Phase

The orthorhombic phase (space group Pbcm) is the main focus of our research on

NaNbO
3
, since it is stable at room temperature (from 173 K to 633 K). Therefore,

in addition to vacancies, we studied the e�ect of extrinsic defects on the material.

In particular, starting from the results reviewed in Section 1.5, we focused on the

presence of Ca, Sr and Sn dopants, including the investigation on the presence of

defect complexes.
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3.2.1 Computational Details

The main details regarding the software used to carry out DFT calculations are

consistent with the ones reported in Section 3.1.1. Since the crystal structure has

changed, some parameters need to be adjusted. In particular, all defect calculations

were performed using a 2×2×1 supercell, containing 160 atoms. The plane wave

basis set was expanded up to a 550 eV cuto� energy. The Brillouin zone integration

was performed using a Γ-centered 4×4×2 k-mesh for unit-cell calculations and a

2×2×2 k-mesh for supercell calculations. The atomic positions were relaxed until

the Hellmann-Feynman forces on each atom were below 0.05 eV/Å. The density

of states (DOS) were calculated using a Γ-centered 12×12×6 k-mesh. As far as

the exchange-correlation functional is concerned, in light of the high number of

calculations required to study the intrinsic and extrinsic defects, including defect

complexes, to employ hybrid functionals would be too computationally expensive.

Therefore, for these calculations, we employed the PBE-GGA
56

approach.

3.2.2 Electronic Structure

As we have already seen for the cubic phase (Section 3.1.2), the relaxed bulk

structure and the electronic structure need to be determined. In fact, the total

energy of the bulk supercell and the VBM are required for the evaluation of

defect formation energies (Eq. 2.26), while the DOS is used in the computation of

electrons and holes concentrations (Eq. 2.52 and Eq. 2.53). The computed values

of lattice parameters and energy gap are reported and compared with literature

in Table 3.6.

The edge of the valence band is mainly given by O p states, while the edge of

the conduction band is mainly composed of Nb d states. The VBM is in the S

point, with the Γ-point being very close in energy, and the CBM is in the Γ-point,

yielding an indirect gap of 2.48 eV. It is well known that the semi-local nature of

the PBE functional tends to underestimate the band gap. However, it does not

constitute a big problem for defect equilibrium calculations, because the biggest

contributions in the defect equilibrium are given by the curvature of the bands

near the band edges, and by the relative distance of the thermodynamic charge

transition levels to the band edges.
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Figure 3.10: Band structure and density of states of orthorhombic NaNbO
3

(space group

Pbcm).

a(Å) b(Å) c(Å) Eg(eV )
PBE 5.569 5.677 15.571 2.48

Ref PBE
121

5.560 5.629 15.552 2.34

MP Database (PBE)
116,117

5.598 5.687 15.681 2.36

Exp 5.532
17

5.563
17

15.645
17

3.42
118

Table 3.6: Values of lattice constants a, b, c (Å) and energy gap Eg (eV ) of orthorhombic

NaNbO
3

(space group Pbcm, No. 57), computed with the PBE
56

exchange-correlation

functional and confronted with computational data by Shigemi and Wada
121

, the Materials

Project database
116,117

and experimental data.
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Composition Structure Formation energy (eV/atom)

Nb12O29 Orthorhombic (Cmcm) -3.05

NaO2 Orthorhombic (Pnnm) -0.91

Nb2O5 Monoclinic (P2) -3.05

Na2O2 Hexagonal (P62m) -1.31

NaNb10O18 Monoclinic (P21/c) -2.79

Na2O Cubic (Fm3m) -1.45

Nb Cubic (Im3m) 0

NbO2 Tetragonal (I41/a) -2.91

NaNb13O33 Triclinic (P1) -3.03

NaNb3O8 Orthorhombic (Pmmn) -2.97

Na Hexagonal (P63/mmc) 0

Na2Nb3O6 Trigonal (P31c) -2.67

O2 Monoclinic (C2/m) 0

NaNbO2 Hexagonal (P63/mmc) -2.54

Na5NbO5 Monoclinic (C2/c) -2.25

NbO Cubic (Pm3m) -2.29

NaNbO3 Orthorhombic (Pbcm) -2.83

Na3NbO4 Monoclinic (C2/m) -2.52

Table 3.7: Formation energy per atom for all the compounds used to compute the stability

diagram.

3.2.3 Chemical Potentials

The chemical potentials were calculated from the data reported in the Materials

Project database,
116,117

whose set of parameters is consistent with the ones we

have used in this work. The phase stability diagram was constructed for the

orthorhombic phase of NaNbO
3
, using the python materials genomics (Pymatgen)

library.
102,122

The stability diagram is reported in Figure 3.11, and the stable

phases in Table 3.7. The defect formation energies were computed for di�erent

thermodynamic reservoirs, represented in the �gure by the labels from A to D

and X. Regions from A to D are generic limits of stability, which space from

O-rich conditions (point C) to Na-rich and Nb-rich conditions (point B). It is also

of interest to evaluate the formation energies using a thermodynamic reservoir

that represents the experimental conditions. In particular, we �x the oxygen

chemical potential (∆µO) to its value at the conditions of temperature and partial

pressure of the sintering process, according to the work of Zhang et al
23

(T =
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Figure 3.11: Stability diagram of the ternary Na-Nb-O system, as derived from the data in

Table 3.7. The defect formation energies are discussed in terms of the chemical potentials

at the points from A to D and point X, as reported in Table 3.8.

1633 K, pO2 = 0.2 atm). For details on the calculation of this quantity we refer

to Eq. 2.35, described in Section 2.4.5. With this procedure we obtain ∆µO =

-1.92 eV, which is indicated by the point X in Figure 3.11. In order to obtain the

chemical potential of the extrinsic elements (Ca, Sr and Sn), we have generated

the stability diagrams for CaSnO
3

and SrSnO
3

in the same fashion as for NaNbO
3
.

The reference elemental phases of Sr, Ca and Sn are trigonal (R3m), hexagonal

(P63/mmc) and cubic (Fd3m), respectively. Since the range of stability varies for

every compound, we have evaluated the chemical potential of the elements in

O-poor and O-rich regions, assigning the former to reservoirs A and B and the

latter to reservoirs C and D.

In region X, the values are taken from the center of the stability region, having

�xed ∆µO to -1.92 eV. This procedure is carried out mainly to be able to compare

the formation energies of the extrinsic defects with the intrinsic ones. However,

when we solve the charge neutrality, extrinsic defects in NaNbO
3

are not free

to exchange particles with a reservoir, as their concentrations are �xed to the
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Reservoir ∆µO ∆µNb ∆µNa ∆µSr ∆µCa ∆µSn

A -3.94 -0.90 -1.49 -3.50 -4 0

B -4.06 -1.08 -0.96 -3.50 -4 0

C 0 -10.72 -3.49 -6.50 -7 -6

D 0 -11.22 -2.99 -6.50 -7 -6

X -1.92 -6.15 -2.26 -5.79 -5.92 -4.19

Table 3.8: Values in eV of the chemical potentials of the individual elements for each of

the labelled regions in the stability diagram (Figure 3.11).

experimental values. The chemical potential values associated to the labeled

regions in the stability diagram are reported in Table 3.8.

3.2.4 Relaxation Volumes
Just as we have already seen for the cubic phase in Section 3.1.4, it is interesting

to evaluate how the lattice reacts to the formation of a defect. We have applied

the methodology described in Section 2.4.6 and Section 3.1.4 for neutral defects.

The relaxation volumes and elastic dipole tensor for both single defects and

defect complexes are reported in Table 3.9. As opposed to the cubic case, all

relaxation volumes are negative, meaning that all defects are overall negative

dilatation centers. The relaxation volume is particularly negative for the case of

Nb vacancies, where the missing atom at the center of the octahedron produces

a shrinkage of the atoms on the vertices, just like in the cubic phase (Figure 3.3c).

For the other defects, however, the relaxation mechanism of octahedra tilting is

no longer available, since the RT stable orthorhombic phase already displays tilted

octahedra. This means that the structural relaxation present in the cubic phase

is no longer happening, where in this case the defect is a negative relaxation

center. It is also interesting to notice that the relaxation volume is negative also

in case of substitutional defects, also in the cases where the substituting atom

has a greater radius.

3.2.5 Defect Formation Energies
In this study, we have computed defect formation energies according to Eq. 2.26,

in the di�erent regions of the stability diagram reported in Figure 3.11 and Table

3.8. Because of the �nite size of the supercell, we have corrected the unphysical
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P11(eV ) P22(eV ) P33(eV ) P12(eV ) P13(eV ) P23(eV ) ∆V (Å
3
)

CaNa 0.30 3.43 -9.91 -0.00 -0.00 0.54 -2.01

VNa -0.31 0.01 -4.98 -0.00 -0.00 0.35 -1.72

VNb -9.01 -8.54 -19.52 -0.52 -0.69 -0.06 -12.06

VO -0.59 4.62 -11.24 3.62 0.33 -0.16 -2.34

SnNb -1.54 0.17 -9.45 0.03 0.05 0.02 -3.52

SrNa -3.85 -0.18 -14.32 -0.00 -0.00 0.97 -5.97

CaNa − VNa -0.60 -0.40 -4.11 0.59 -0.00 -0.00 -1.66

SrNa − VNa -5.19 -3.41 -9.81 -0.00 -0.00 -0.00 -5.99

SnNb − VO -1.88 -0.99 -6.77 -2.17 -0.68 -0.17 -3.13

VNa − VO -2.23 1.90 -7.63 2.91 0.35 -0.07 -2.59

Table 3.9: Relaxation volumes and elastic dipole tensor of neutral defects in orthorhombic

NN.

electrostatic interactions between charged defect replicas, using the method

proposed by Kumagai et al.
84

For each defect, we have computed all possible

charge states, in order to obtain the charge transition levels (Eq. 2.28), and to

properly describe the contribution of each defect species to the charge neutrality

condition. As far as intrinsic defects are concerned, we have studied the formation

energies of Na, Nb and O vacancies and the complex formed by a sodium and

an oxygen vacancy (VNa-VO). Regarding extrinsic defects, we have evaluated

the substitution on the Na-site with Sr and Ca (SrNa, CaNa) and on the Nb-site

with Sn (SnNb). Additionally, we have computed the formation energies of defect

complexes. In particular, the complexes formed by the substitution on the Na-

site with a neighbouring Na vacancy (SrNa-VNa and CaNa-VNa) and by Sn on the

Nb-site with a neighbouring O-vacancy (SnNb-VO). In order to limit the number

of possible combinations, and therefore the number of required DFT calculations,

we have restricted out study to complexes formed by a maximum of two point

defects. However, we do not exclude the possibility of complexes formed by three

point defects, as we have found previously
107

that the complex VNa-VO-VNa is

likely present in cubic NaNbO
3

(Section 3.1).

The formation energies computed in the boundary regions of the stability diagram

are plotted as a function of the Fermi level in Figure 3.16. The stars in the plot

represent the charge transition levels, which are plotted separately in Figure 3.12.

As far as intrinsic defects are concerned, Na vacancies are acceptors as expected,

being stable in charge state of -1 across almost all the band gap. O vacancies are

mostly donors in charge state +2, however they display a deep transition level from
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Figure 3.14: Con�gurations of the defect dipoles in the pseudo-cubic unit cell of NaNbO
3
.

The directions are compared with the ionic displacement in the center of the oxygen

octahedron in the orthorhombic phase ([110]PC).
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Figure 3.15: Binding energy of the defect complexes as a function of the Fermi level. The

kinks correspond to charge transition points of the isolated defects.
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Figure 3.16: Defect formation energies in orthorhombic NN as a function of the Fermi

level position for representative thermodynamic conditions A, B, C and D (shown in

Figure 3.11). The stars on the formation energy curves represent charge transitions.
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+2 to +1 at 0.5 eV below the CBM, with a shallower transition from +1 to 0 (0.1 eV

below the CBM). Nb vacancies presents more scattered transitions across the gap,

with -5 being the most stable from approximately mid-gap to the CBM. The stable

charges of extrinsic defects also follow the behaviour of their common oxidation

states. In fact both SrNa and CaNa are both donors with +1 charge state. They both

present a +1/0 transition at 0.2 eV below CBM. SnNb is an acceptor, with a 0/-1

transition at 0.2 eV above the VBM. Regarding the defect complexes, SrNa-VNa and

CaNa-VNa are neutral, while SnNb-VO and VNa-VO are both donors in +1 charge

state. In all reservoirs, we notice that defects involving Sr have lower formation

energies than Ca, both for single substitutions and complexes. In oxygen-poor

conditions (A and B) intrinsic defects are dominated by oxygen vacancies. The

formation energy is low also for the VNa-VO complex, indicating its presence in

large concentrations. Nb vacancies show considerably high formation energies,

which implies a negligible contribution in these conditions. The substitution

involving the Na-site presents low formation energies, especially SrNa. Oxygen-

rich conditions present a di�erent situation, with Na vacancies dominating the

intrinsic defects, and Nb vacancies which show considerably lower formation

energies with respect to O-poor conditions. This is due to the large range of ∆µNb

between the extrema of the stability diagram (more than 10 eV). The balance

shifts also for extrinsic defects, with SnNb having mostly the lowest formation

energies. In these points of the phase diagram, some of the defects can display

formation energies which are particularly small (SrNa in point A) or even negative

(SrNa-VNa and CaNa-VNa in point C). This is due to the fact that the reservoirs used

for the calculations are at the boundary of stability of NaNbO
3
. Computing the

formation energies in these regions is useful to present a complete picture at the

edges of stability of NaNbO
3
. However, they are only hypothetical conditions and

do not represent the experimental conditions during the synthesis of the material.

To bridge this gap, we have computed the formation energies for temperature

and pressure conditions that are present during sintering of NaNbO
3

(X point in

Table 3.8). Figure 3.13 shows the result. We notice that none of the defects present

extremely low formation energies, which is in line with our expectation, since we

are mimicking the real conditions. However, it is interesting how the formation

energies of VNa, VO and VNa-VO are still relatively low, which con�rms their

stability and that they will have an important contribution on charge neutrality.

Moreover, extrinsic defects display energies within the same range, indicating

their stability during the synthesis process. This explains how it is possible to

push the doping with SrSnO
3

to large concentration values (up to 5% wt).
23
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3.2.6 Binding Energies
As already mentioned in Section 2.4.1, we have studied di�erent defect com-

plexes. Because the defects are charged, when they associate defect dipoles are

formed. For simplicity, we show the con�gurations in the pseudo-cubic struc-

ture of NaNbO
3

in Figure 3.14. The arrows represent the directions of the defect

dipoles, as well as the ionic displacement of the B-site (Nb and SnNb) along the

[110] pseudo-cubic direction.
2,123

The key quantity to understand the stability of defect complexes is the binding

energy (Eb), as in Eq. 2.27. It is therefore independent of the chemical potentials.

It indicates the energy cost or gain that is correlated to the defects association. We

show the binding energy as a function of the Fermi level for the four computed

defect complexes in Figure 3.15. The change in slope are associated with the

charge transitions of the di�erent defect species. In particular, it can be seen that

the donor complexes (SnNb-VO and VNa-VO) become less stable when approaching

the CBM. It is interesting to notice that all complexes display a negative bind-

ing energy, indicating that single defects gain energy when they associate. This

stability indicates that defect dipoles might be present in large concentration.

Moreover, introducing a dopant, like SrSnO
3
, introduces new types of complexes

with respect to the bulk phase.

3.2.7 Dependency on Oxygen Partial Pressure
Bulk Case

As already shown for the cubic phase (Section 3.2.7), we can solve the charge

neutrality condition for di�erent oxygen partial pressure, to compute the Brouwer

diagrams. At �rst, we have looked at the case of undoped NaNbO
3
, in order to

understand how the intrinsic defects behave, and to shed some light onto the

defect equilibrium at the synthesis stage. We have limited the analysis only to

single vacancies, thus excluding the charged VNa-VO complex, with the aim of

comparing the intrinsic defect chemistry between orthorhombic and cubic phase

(Section 3.1.5). We have reported the values of the concentrations of holes (nh),

electrons (ne), and defect concentrations a function of oxygen partial pressure at

sintering temperature (1633 K), as well as the self-consistently determined values

of the electron chemical potential as a function of the oxygen partial pressure in

Figure 3.17. The defect equilibrium in the orthorhombic phase follows the same

trend as in the cubic phase. In fact, at low pO2 O vacancies dominate, pushing
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Figure 3.17: a) Concentrations of defects, electrons (ne) and holes (nh) in pure orthorhom-

bic NN, as a function of the oxygen partial pressure at T = 1633 K. b) Electron chemical

potential determined self-consistently as a function of the oxygen partial pressure.
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µe close to the CBM. With increasing pO2 , the balance shifts in favour of Na

vacancies, thus shifting µe down towards mid-gap. Even though the energy gaps

of the two phases are di�erent (because of the di�erent phases and the di�erent

xc-functionals), the relative positions of µe with respect to the band edges are

following the same tendency. We show in Figure 3.18 the Brouwer diagram rela-

tive to the individual charged defects, rather than the total concentrations. It is

interesting to observe that, for low pO2 , O vacancies are mostly +1 charge. In the

middle region, the more common situation with VNa
′
and V ••O dominates. In the

high pO2 region, VNa is still mostly in -1 charge state, but its neutral defect (V x

Na)

appears in increasingly large concentrations.

In order to study the electron chemical potential in the situation where defects

are quenched (the concentrations at high temperature are preserved at low tem-

perature), we have applied the method we have described in Section 2.4.8. In

this method, even though the total concentrations of the defect spieces are �xed,

their charge state can still change. This means that the relative concentrations

of di�erent charge states for every defect are not constant and can change with

µe. We have shown in Figure 3.19 the Brouwer diagram relative to the quenched

vacancies, and the values of electron chemical potential at high temperature (1633

K), room temperature (300 K) and in quenched conditions. We notice immediately

that the quenched case is more intricate than the two equilibrated ones (Figure

3.19b). In fact, with increasing pO2 , µe starts very close to the CBM, shows two

"jumps", and ends very close to the VBM. The origin of these jumps can be found

in the concentrations in Figure 3.19a. With low pO2 , the concentration of VO
imposed by the high temperature is so high that, to compensate for it at low

temperature, the electron chemical potential is pushed very close to the CBM.

This has the e�ect of introducing many electrons into the system, and at the same

time of stabilizing V X
O . When pO2 is increased, at 10−10

atm circa, the decrease in

[VO] from the high temperature regime causes the �rst µe drop, making the neu-

tral O vacancies change their charge state to +2. When pO2 is further increased,

[VNa] gets progressively larger in the high temperature, up to the point (10−3

atm circa) where the whole system changes from n-type to p-type (µe is below

mid-gap). This dominance of VNa causes the second and biggest jump in µe in the

quenched system. In fact, at lower temperature, the number of charge carriers to

compensate for the abundance of VNa is much smaller than at high temperature.

The equilibrium is thus reached when µe is much closer to the valence band and

a number of Na vacancies are in neutral charge state, as we can see from the big

increase in the concentration of V X
Na in Figure 3.19a. At the same time, the shift

in µe means that V •O becomes unstable in favour of V ••O , as shown by the fast
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Figure 3.18: Concentrations Na and O vacancies at T = 1633 K in their di�erent charge

states, electrons (ne) and holes (nh) in pure orthorhombic NN, as a function of the oxygen

partial pressure.

drop of V •O concentrations.

This analysis with vacancies in NN showcases the importance of including charge

state dependencies when �xing concentrations, under the assumption that elec-

tronic defects can reach equilibrium even in quenched conditions. In fact, it shows

that defect species altering their charge state is a decisive factor in the charge

compensation mechanisms, ultimately determining the position of the electron

chemical potential and the concentration of charge carriers.

Doped Case

The next step of this study is of course to include extrinsic defects and defect com-

plexes into the charge neutrality condition. Moreover, we have studied di�erent

quenched situations, in order to obtain a picture of the possible limit conditions.

More speci�cally, we have considered the equilibrium cases at high and low

temperature, the case where all oxygen vacancies are free to equilibrate and Na

and Nb vacancies are completely quenched from high to low T, the one where

all O vacancies are quenched but the rest are allowed to equilibrate, and �nally

the one where all intrinsic defects are quenched. As we have already described

in Section 2.4.8, all extrinsic defects are �xed to the experimental concentration
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Figure 3.19: a) Concentrations of electrons (ne), holes (nh) and defects (quenched from

1633 K to room temperature) in their di�erent charge states, in pure orthorhombic NN,

as a function of the oxygen partial pressure. b) Electron chemical potential determined

self-consistently as a function of the oxygen partial pressure in high temperature (1633

K), room temperature (300 K) and quenched conditions.
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Figure 3.20: Concentrations of defects, electrons (ne) and holes (nh) as a function of the

oxygen partial pressure, in doped orthorhombic NN, at high temperature (a) and room

temperature (b) conditions.

of SrSnO
3

in sodium niobate. It is important to point out that all of these cases

represent extreme situations, almost surely none of those would properly describe

reality. However, they are useful because the experimental conditions lie within

these limits, which provide a full picture on how quenching of di�erent species

in�uences the defect equilibrium. The results are shown in Figure 3.21.

At high temperature and low pO2 (Figure 3.20a), oxygen vacancies (VO) and the

SnNb-VO complex show the highest concentrations. Both species are donors, re-
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Figure 3.21: Electron chemical potential determined self-consistently in doped orthorhom-

bic NN as a function of the oxygen partial pressure.

sulting in high free electrons concentrations. With increasing pO2 , [VNa] increases

while the donors concentrations decrease, which results in greater free holes

concentrations. The behaviour switches from n-type to p-type at pO2 close to 1

atm. At lower temperature (Figure 3.20b), the dependence of the concentrations

on pO2 is less prominent, with [VNa] being the dominant among the charged

defects. This results in p-type behaviour for all pO2 conditions. For both high and

low temperatures the charges of the donor SrNa and the acceptor SnNb compensate

each other, having �xed the concentrations of the dopants. The concentrations

of defect complexes are large, especially at high temperatures, con�rming the

expectations given by the negative binding energies (Section 3.2.6). The computed

electron chemical potentials, at which the concentrations in Figure 3.20a and

Figure 3.20b have been determined, are shown in Figure 3.21 by the blue and

orange line, respectively. It is interesting to evaluate how the situation changes

when we introduce quenching conditions. When we quench Na and Nb vacancies,

µe follows the same trend of the high temperature equilibrium, with a slight shift

towards the VBM, as a result of the higher concentration of the acceptor VNa

in the low temperature conditions. The equilibrium is modi�ed dramatically if

we quench O vacancies. In fact, as it can be seen from Figure 3.21, µe is shifted

upwards towards the CBM, even above CBM for low pO2 . This is a result of
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combined donor contributions which are present in high concentrations in the

quenched system, namely VO, SnNb-VO and VNa-VO. The donors dominate even

when we quench all defect species, as shown by the green line in Figure 3.21. In

this case µe still follows the same trend, but it is slightly shifted upwards by the

greater acceptor contribution of VNa.

3.3 Trigonal Phase
In order to provide a complete picture for all temperature regimes, it is useful

to compute the vacancies formation energies for the low temperature phase

as well. However, this condition will not be explored in reality, where instead

both the cubic and orthorhombic phases play a role. As outlined in Section 1.4,

experimentally the low temperature phase of NaNbO
3

is trigonal. Both space

groups R3c and R3 have been reported.
124,125

At a DFT-level, the most stable phase

at 0 K is the R3,
116

with a small energy di�erence of 0.011 eV/atom. Since the

two structures are very close to each other, we have chosen to investigate the R3

phase, in order to avoid e�ects due to the slight lattice instability of the phase at

0 K. We will go deeper into this topic in Section 3.5. This decision, however, will

not impact on the defect formation energies, since the di�erence between the

two structures is practically negligible.

3.3.1 Computational Details

The details regarding the software used to carry out DFT calculations are con-

sistent with Section 3.2.1. The chosen exchange-correlation functional is PBE-

GGA.
56

All defect calculations were performed using a 2×2×2 supercell, con-

taining 80 atoms. The plane wave basis set was expanded up to a 550 eV cuto�

energy. The Brillouin zone integration was performed using a Γ-centered 3×3×2

k-mesh for unit-cell calculations and a 2×2×2 k-mesh for supercell calculations.

The atomic positions were relaxed until the Hellmann-Feynman forces on each

atom were below 0.05 eV/Å. The density of states (DOS) were calculated using a

Γ-centered 9×9×6 k-mesh.

3.3.2 Electronic Structure

The band structure is shown in Figure 3.22. The character of the orbitals and the

dispersion of the bad structure is similar to the case of the orthorhombic phase
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Figure 3.22: Band structure and density of states of trigonal NaNbO
3

(space group R3).

∆µNa ∆µNb ∆µO

A -1.53 -0.76 -4.00

B -0.89 -1.00 -4.13

C -3.60 -10.69 0.00

D -2.95 -11.33 0.00

X -3.20 -10.64 -0.15

Table 3.10: Values in eV of the chemical potentials of the individual elements for each of

the labelled regions in the stability diagram (Figure 3.11).
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Figure 3.23: Defect formation energies in the trigonal phase of NaNbO
3
, as a function

of the Fermi level position for representative thermodynamic conditions A, B, C and

D (shown in Figure 3.11). The stars on the formation energy curves represent charge

transitions.
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(Figure 3.10). In fact, the oxygen p orbitals constitute mainly the valence band,

while the conduction band is made for the most part by niobium d orbitals. The

main di�erence is in the energy gap, which for the trigonal phase is 3.85 eV, as

opposed to the 2.48 eV of the orthorhombic phase.

3.3.3 Chemical Potentials

The thermodynamic reservoir used to compute the formation energies follow the

same labelling systems as for the orthorhombic phase (Figure 3.11). Because at

zero Kelvin the trigonal phase is more stable than the orthorhombic phase, the

stability region of NaNbO
3

is slightly larger for the trigonal phase. The values

are shown in Table 3.10. As for the two previous cases, we have computed the

formation energies at the experimental conditions of T = 173 K and pO2 = 0.2
atm, which are shown with the label X in Table 3.10.

3.3.4 Formation Energies

The formation energies computed in the boundary regions of the stability diagram

are plotted as a function of the Fermi level in Figure 3.23. The formation energies

in the experimental conditions are shown in Figure 3.25. The stars in the plot

represent the charge transition levels, which are plotted separately in Figure 3.24.

Just like for the other two phases, Na vacancies are acceptors as expected, being

stable in charge state of -1 across almost all the band gap. O vacancies are mostly

donors in charge state +2, and they display a considerably deep transition level

from +2 to +1 at 1.1 eV below the CBM. The case of Nb vacancies deviates from the

cubic and orthorhombic cases, with the formation energies being much smaller

and in the same range of the other two defects, also for reservoir X. Moreover, it

shows only two charge transition levels: from 0 to -1 and from -1 to -5, as opposed

to the case of the other phases where we had many CTLs scattered across the

energy gap.

3.4 Migration Barriers
As discussed in the previous sections, the assumption that the system is always

able to reach thermodynamic equilibrium is not always appropriate. In fact,

this would mean that the mobility of defects is large enough to allow di�usive

processes in the bulk to bring compositional variations. While this is the case for
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electronic defects (holes and electrons), it might not hold true for atomic defects.

The di�usity of defects depends on the migration enthalpy ∆Hm:

D = D0e
−∆Sm

kB e−β∆Hm
(3.2)

where D0 is the di�usion coe�cient, ∆Sm is the migration entropy and β is

1/kBT . Therefore, the determination of the migration barrier will help us under-

stand which defect species are more mobile, and therefore more likely to reach

equilibrium, and which species are more likely to be quenched from the synthesis

stage due to their low mobility. Therefore, we have studied the migration ener-

gies of the relevant Na and O vacancies in their most stable charges (-1 and +2,

respectively) in the cubic, orthorhombic and trigonal phases, with the method

described in Section 2.3. The results are shown in Table 3.11. In the cubic and

orthorhombic phases O vacancies are more mobile than Na vacancies, which

follows the expectations, given that O atoms have much smaller radius than Na

atoms. The barrier for VO is particularly small (0.4 and 0.3 eV, respectively), which

indicates that it will be considerably mobile and it is unlikely to be completely

quenched. Na vacancies, on the other hand, display a higher barrier (1.4 eV in

both cases), which means a lower mobility and a higher probability to be frozen at

(a) (b)

Figure 3.26: Environment of Na in the trigonal phase of NaNbO
3
. The O atoms with

shorter Na-O bond leng are shown in red, the more distant O atoms from Na are shown

in orange. (a) Projection down the triad axis of the distorted trigonal prism. (b) Three

dimensional view of the trigonal prism.
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∆Em
VO

(eV) ∆Em
VNa

(eV)

trigonal 0.7 0.5

orthorhombic 0.3 1.4

cubic 0.4 1.4

Table 3.11: Computed vacancy migration energies of O and Na vacancies in di�erent

phases of NaNbO
3

in units of eV.

room temperature. Therefore, for the cubic and orthorhombic phases, we expect

that the real case would be closer to the situation where VNa is quenched (shown

by the red line in Figure 3.21), where quenching leads to the increase in acceptors

concentrations and consequently to a shift of the electron chemical potential

towards the VBM.

The result is more surprising in the case of the trigonal phase, where the migra-

tion barrier of the Na vacancy drops to 0.5 eV, and the barrier of the O vacancy

increases to 0.7 eV. The low barrier of the Na vacancy is particularly interesting.

Given the size of Na, we expect the di�usion energy barrier to be higher, as

moving around a larger atom in the lattice is energetically expensive. A possible

explanation for this phenomenon can be found in the local environment of the

Na ions. In fact, the environment of Na atoms in the trigonal phase is irregular

and unusual.
124

Their coordination number is 6, instead of 12-fold coordination

of the typical perovskite structure. Moreover, the polygon that Na forms with

the coordinated O atoms is not an octahedron, but it can be best described as a

distorted trigonal prism. A recreation with the software OVITO
119

of the �gures

found in Ref. 124 are shown in Figure 3.26. As shown by the di�erent colors in the

�gure, in this atomic arrangement the Na-O distances are uneven, with three O

atoms being closer (shown in red) and the remaining three further apart (orange).

This unstable structure is imposed by the displacements of the Nb atoms, which

for this lattice symmetry are along the same direction. This unbalanced relaxed

position of the Na ion can be a factor contributing to its low barrier. If the start-

and end-points of the migration path are higher in energy, the distance to the top

of the energy barrier is smaller. Additionally, the volume of the orthorhombic

phase is smaller than that of the trigonal phase, because of the smaller volume

associated with Na.
124

Therefore, a migrating atom in the trigonal phase will have

more space to di�use, leading to a smaller barrier. In any case, in order to shed

more light onto this topic and con�rm these reasons, more calculations should

be conducted. In particular, given the uneven distances between the atoms in
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this structure, di�erent NEB calculations for di�erent atoms of the same species

should be performed, as the vacancy barrier may depend on which atom is chosen

for the computation. Such a detailed dive into vacancy migration in NaNbO
3
,

however, goes behond the scope of this work. Lastly, even though the low temper-

ature phase is an interesting case study, it will not have an in�uence in our studies

of the impact of defects on AFE properties, as the two phases of interest are the

ones stable at high temperature (at the synthesis stage) and room temperature.

3.5 In�uence of Phase Stability on Defect
Properties

In the earlier sections, we have presented our defect thermodynamics studies

for three di�erent phases of NaNbO
3
, namely the trigonal (space group R3), or-

thorhombic (s.g. Pbcm) and cubic (s.g. Pm3m) phases, stable in low temperature,

room temperature and high temperature conditions, respectively. In Section 3.3

we have introduced the importance of lattice instability for the high temperature

phases with DFT. In fact, in our calculations we rely on static lattice relaxation (0

K), which looks for a minimum in the energy landscape determined by solving

the Kohn-Sham equations (Section 2.2). Without temperature contributions, the

high temperature phases will be unstable with respect to the structure stable at

0 K. Therefore, in the absence of symmetry constraints, the high temperature

phases would relax to the 0 K structure. For these reasons, when we compute

the high temperature phases, we constrain the symmetry to that of the input

structure space group, as implemented by the software VASP
103

(Section 3.1.1).

However, when we introduce defects, the relaxation of the local environment

around the defect might result in additional energy gain, which is dictated by

the instability of the structure with respect to the phase stable at 0 K. To put it

simpler, introducing a defect is less expensive because the initial phase is only a

local minimum in the energy landscape.

As an example, let us consider the case of perovskites with pseudo-cubic struc-

tures, like NaNbO
3
. The stable phase at high temperature has a cubic perovskite

structure, with perfectly aligned Nb-O octahedra, as visualized in Figure 3.27.

As we decrease temperature, the Nb atoms will displace from the center of the

octahedron, and the O-octahedra will tilt with respect to each other, as we observe

in the orthorhombic and trigonal phase.
19

When we introduce an oxygen vacancy,

in the vicinity of the defect the structure relaxes by introducing O-octahedra

tilting, which is the signature of the lower temperature phases (Figure 3.27).
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Figure 3.27: Structures stable at high temperatures will show lattice instabilities with

static (0 K) DFT. When introducing an O vacancy in the high temperature phase (cubic),

the local environment relaxes by tilting the O-octahedra, which are a prerogative of the

low temperature phases (e.g. orthorhombic). This relaxation process yields a total energy

gain which translates in lower defect formation energies.

The energy gained by this relaxation process makes the defect energetically less

expensive, which translates in lower defect formation energies. To our knowl-

edge, this problem has not yet been systematically addressed in the ab initio

defects thermodynamics community. In our case, the main focus of this study

is the RT orthorhombic phase, which is already very close in energy with the

trigonal phase stable at 0 K (the energy di�erence is 15 meV). Nonetheless, it

is interesting to compare the formation energies (∆Ef
) and charge transition

levels (CTL) of vacancies in the three phases we have presented in the previous
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Figure 3.28: Di�erence in formation energies of vacancies between the cubic (C), or-

thorhombic (O) and trigonal (R) phases in NaNbO
3
. The orthorhombic phase is used as

reference.

sections. For consistency of the xc-functional, we have repeated the calculations

of the C phase with the PBE functional. We show in Figure 3.28 comparison of the

formation energies. We have taken the RT orthorhombic (O) phase as a reference

and computed the ∆Ef di�erence with the cubic (C) and trigonal (R) phases. It is

worth noting that, in this calculation, the only terms in Eq. 2.26 which do not

cancel out are the total energies and the image-charge corrections. In the �rst

place, we can observe that for Na and O in their more relevant charge states

(-1 and +2, respectively) the ∆Ef
is relatively small (< 1 eV). The situation is

di�erent for Nb vacancies, where, given the large scattering of CTLs across the

gap (Figure 3.4 and 3.12), is also impossible to de�ne which of the charge states

is more relevant. Secondly, we notice that, excluding three cases, the formation

energies of the R phase are the largest. Additionally, we see that there is a trend

where the formation energy of the O phase lies in the middle between ∆Ef
R

and ∆Ef
C ,with the exception of VNb in charge states -5,-1 and 0. Lastly, we can

observe that, for VNb and VO, ∆Ef
R increases with increasing negative charge,

while for ∆Ef
C the situation is the opposite. As a �rst quantitative approach to
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Figure 3.29: Di�erence in the sum of all atomic displacements (per atom) in the �nal

relaxed structure relative to the initial unrelaxed one, between the cubic (C), orthorhombic

(O) and trigonal (R) phases in NaNbO
3
. The orthorhombic phase is used as reference.

the previous discussion regarding lattice relaxation, we have computed the sum

of all atomic displacements (per atom) in the �nal relaxed structure relative to the

initial unrelaxed one, in order to provide a measure of how much the lattice has

relaxed to adapt for the presence of the defect. The results are shown in Figure

3.29. Unfortunately, this approach is inconclusive, as a clear trend of comparinson

with the di�erence in formation energies is not visible. The behaviour across the

defect species is very diverse, and it is heavily dependent of the charge states of

the defects. This is not surprising, as the deciding factor is not the magnitude

of the displacement itself, rather the quality of it, this meaning the path in the

energy landscape. Therefore, a deeper look into the displacive mechanisms is

required. Moreover, more factors should be taken into consideration for a more

detailed analysis, such as the relaxation volumes of charged defects, localiza-

tion/delocalization of the defect charge, et cetera. This analysis, however, would

require extensive calculations which are outside of the scope of this work. In con-

clusion, with the exception of V 0
Nb, V

−1
Nb and V +2

O2
, we can generally conclude that

formation energies get progressively higher when going from high temperature
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Figure 3.30: Distance from the band edges of the most relevant charge transition levels

(CTL) for oxygen (a) and Na (b) vacancies for the cubic (C), orthorhombic (O) and trigonal

(R) phases in NaNbO
3
.



(a) Multiscale representation of defect dipoles, ionic displacements and lattice polarization. The

�rst picture on the left shows the pseudo cubic cell. The image in the center shows a 2x2x1

supercell of the orthorhombic cell (space group Pbcm) with the antiparallel displacements of Nb

atoms and defect dipoles. The picture on the right represents schematically the antiferroelectric

phase with defect dipoles in di�erent domains.

(b) Field switching mechanisms in bulk and doped NaNbO
3
. In the bulk material, once the electric

�eld is applied, the system undergoes the AFE-FE phase transition (point b). When the �eld

is removed, since the FE phase is metastable, not all dipoles can be switched back to an AFE

con�guration, which results in remanent polirization (point c). In the doped case, when the �eld is

removed, the defect dipoles provide an additional restoring force which increases the reversibility

of the FE-AFE phase transition (point f) and decreases the remanent polarization.

Figure 3.31: Schematic representation of the in�uence of defect dipoles on the P-E loops,

arising from their interaction with lattice polarization and external �eld, with consequent

contribution in the switching mechanisms.
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to low temperature phases. However, the exceptions and the dependencies on

the charge states still need to be understood, calling for a deeper investigation

on this topic.

Charge transition levels (CTL) are another important quantity which is inter-

esting to compare. The energy gaps are di�erent among the three phases. What

is most interesting, however, are the distances between the CTLs and the band

edges. The main CTLs for Na and O vacancies are shown in Figure 3.30. The

�rst observation is that for O vacancies (Figure 3.30a) the trigonal phase (R) does

not display a window of stability for the +1 charge states, where both the cubic

(C) and orthorhombic phase also show a +2/+1 transition level. The +2/0 CTL is

shown also for these phases for comparison. Moreover, in the R phase the +2/0

is much deeper (further from the CBM), by almost 1 eV, while for the C and O

phase is shallower (closer to the CBM). The +2/+1 level is deep in both the C and

O phases, and in the C phase is circa 0.4 eV deeper. In the case of Na vacancies

(Figure 3.30b), the 0/-1 CTL is much closer for all three phases. Moreover, they

are relatively shallow and get progressively shallower from the C to the R phase

(from 0.3 to 0.15 eV distance from the VBM).

3.6 Defect Dipoles

In Section 3.2.6 we have seen how single point defects in NaNbO
3

can associate,

thus forming a defect complex. In particular, by analysing the binding energy

(Eq. 2.27, Figure 3.15), we have discovered that the defects shown in Figure

3.14 gain energy by associating, which means that the complexes are stable

and present in large concentrations (Figure 3.20). When charged defects form

associates, they introduce electric dipoles. Defect dipoles interact with the lattice

polarization in the AFE and FE structures of NaNbO
3
, as well as with an external

electric �eld. Hence, the presence of defect dipoles is a factor that in�uences

the �eld switching mechanisms, which ultimately can alter the P-E loops, as it

has been already suggested both for ferroelectrics and antiferroelectrics
11,21,126

(Section 1.7.1). Figure 3.31 shows a schematic representation of these concepts.

In the bulk material, once the electric �eld is applied, the system undergoes the

AFE-FE phase transition (point b in Figure 3.31b). When the �eld is removed,

since the FE phase (Q) is metastable, not all dipoles can be switched back to

an AFE con�guration,
22,127

which results in remanent polarization (point c) and

a ferroelectric-like P-E loop. Now we look at the doped material. Because in

the AFE phase the internal electric �eld is absent, a distribution of randomly
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oriented defect dipoles is installed. Moreover, we assume that the kinetics of

dipole switching is too slow to be able to follow the electric �eld, since all the

dipoles require multiple di�usion steps to switch direction. In this situation,

when the �eld is removed, the defect dipoles provide an additional restoring

force, which increases the reversibility of the FE-AFE phase transition (point f).

Therefore the remanent polarization is decreased, which consequently increases

the recoverable energy.

3.7 Conclusion

In sodium niobate, the intrinsic defects equilibrium is dominated by Na vacan-

cies (singly charged acceptor) and O vacancies (doubly charged donor), which

are present in high concentrations. The position of the Fermi level at sintering

temperature depends on the oxygen partial pressure (pO2). The character of the

semiconductor shifts from n- to p-type with increasing pO2 . When doped with Sr

and Sn, at high temperature and low pO2 NN is an n-type semiconductor, while

for high pO2 the system becomes p-type. At room temperature the material is p-

type. When all defects (or just O vacancies) are quenched from high temperature,

the Fermi level shifts towards the CBM, while quenching Na and Nb vacancies

produces a less pronounced shift towards the VBM.

While these results represent a solid foundation in the understanding of defect

thermodynamics in NaNbO
3
, it is nonetheless important to stress some impor-

tant limitations of the computational methods we have employed. In order to

analyse the orthorhombic and cubic phase of NaNbO
3
, we performed total energy

defect calculations on structures that are stable at �nite temperatures, but only

metastable at 0 K. Structural instability at 0 K with might introduce additional

relaxation mechanisms, leading to energy contributions which would not be

present at �nite-temperature. In Section 3.5, we presented only a preliminary

analysis on the connection between phase hierarchy and formation energies. In

order to �nd a descriptor for this phenomenon, and possibly introduce correc-

tions, a more systematical and detailed analysis is necessary. Another important

aspect to keep in mind is that the formalism of point defects thermodynamics
69–71

is physically meaningful only when the number of point defects is much smaller

than the number of available sites, so that defects do not interact with each other

(also for the case of defect complexes, which are treated as an individual species).

In other words, is valid only for ideal solutions. This assumption is unfortunately

not always true. In fact, in the �eld of ferroelectric/antiferroelectrics, more of-
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ten than not, chemical modi�cation is much closer to creating solid solutions

rather than doping, meaning the concentration of extrinsic defects are much

closer to parts per hundred rather than parts per milion. In such a context, if the

interaction between defects is not negligible, the current point defect formalism

might fail. On the other hand, approaching the problem from the perspective

of solid solutions, rather than that of a doped system with an ideal solution of

point defects, would increase the complexity and the computational cost, with the

limitation of of not being able to capture properly the physics and compensation

mechanisms of charged defects. A possible approach to tackle these limitations

is discussed in Section 5.1.

We encounter additional challenges when comparing these results to the ex-

periment, since NaNbO
3

is a very complex ceramic. In fact, its properties are

extremely sensitive to the sample’s history. Due to the high synthesis tempera-

ture, the volatilization of Na produces a deviation of the composition from the

originally designed stoichiometry and causes the dielectric properties of the

sintered samples to deteriorate.
16

Furthermore, we know from our experimen-

tal colleagues that the particle density and grain size of NN depend on which

polymorph of Nb
2
O

5
is used at the synthesis stage, which is unfortunately (to

our knowledge) not discussed in publications. Moreover, measurements of defect

concentrations in NN are not reported in the literature, most likely due to the

aforementioned complications in this system, which makes a direct comparison

between experimental and computational data impossible. Bein et al
128

have

measured the Fermi level with x-ray photoelectron spectroscopy (XPS) and the

conductivity in bulk, Sr- and Ca-doped NN. However, since experimentally the

system is in contact with a substrate, they can only measure a range in which

the Fermi level lies, depending on the nature of the substrate. Additionally, since

the defect concentrations are unknown, we do not know the in�uence of the

processing history of the sample on its defect distribution and Fermi level. The

same considerations apply also for the conductivity measurements. In this case,

we have the additional complication that the conductivity is a result of the com-

bination of a multitude of conduction mechanisms, which can be hard or even

impossible to decouple. On top of that, calculating the conductivity computation-

ally requires several additional calculations, e.g. di�usion barriers of all defects

species and phonon frequencies, which go outside the scope of this work. Last but

not least, the P-E loops measured experimentally are the result of an even more

complicated combination of e�ects, concerning di�erent length scales. In particu-

lar, it is possible that point defects, line defects, domain size, grain size, particle

density, etc., all have an impact on the antiferroelectric properties, thus making
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extremely challenging to directly correlate the defect chemistry to the measured

P-E loops. Studying the impact of defect dipoles on the AFE loops might be a

step in this direction, since there is a direct correlation between defect dipoles,

displacive dipoles and the applied external �eld. Of course, this would require a

model which describes length scales that DFT cannot capture. A possible solution

would be to start from the computed concentrations and integrate the defect

dipoles in a phase-�eld approach which can model the switching mechanisms, as

the one presented by Liu and Xu.
129





4 Silver Niobate

Just like sodium niobate (NN), silver niobate (AN) is a candidate as a lead-free

antiferroelectric (AFE) material for energy storage (Chapter 1). We have chosen

to study defects in two phases of interest: the high temperature cubic phase

(space group Pm3m) and the room temperature orthorhombic phase (Pbcm), with

additional focus on the latter. As opposed to NN, no low temperature phase of

AN has yet been observed experimentally.
16

4.1 Chemical Potentials
As we have seen in the previous sections, we need to de�ne the thermodynamic

conditions which enter the calculation of the defect formation energies. Ob-

taining the ranges for the chemical potentials for AN, however, presents some

complications. Table 4.1 reports the stable phases in the ternary Ag-Nb-O phase

diagram reported by the Materials Project Database,
116,117

with the addition of

AgNbO
3
. The value of the energy above the convex hull shows that, according

to DFT, AgNbO
3

(AN) is not stable with respect to the competing phases, in

particular to the decomposition in Ag
2
O and Nb

2
O

5
. Experimentally, however,

AN can be synthesized. The reasons behind this discrepancy are to be found in

the nature of DFT, which cannot take into account the e�ects of temperature

and kinetics. This is important especially in the case of AN, where it is known

that kinetics plays a very important role in the synthesis process (Section 1.4).
24

Moreover, the value of the energy above the convex hull for AN is small (0.038 eV),

which further con�rms that phase stability can be altered with the contribution

of kinetics and temperature. This phase instability means that AN will not be

present in the Ag-Nb-O ternary diagram, meaning that the approach to compute

chemical potentials used in the previous chapter (described in Section 2.4.5) is not

accessible. On the other hand, we know that the precursors for the synthesis of

AgNbO
3

are Ag and Nb
2
O

5
.
25

Therefore, since AgNbO
3

is in contact with these

113
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two compounds at the synthesis stage, we can use them to obtain the values of

the chemical potentials:

{
∆Ef [Ag] = ∆µAg = 0

∆Ef [Nb
2
O

5
] = 2∆µNb + 5∆µO

(4.1)

The methodology used to obtain the dependency on the oxygen partial pressure

remains identical to the one described in Section 2.4.5. The computed chemical

potentials are reported in Table 4.2

Phase Space Group Formation energy (eV/atom) E above CH (eV)

Nb12O29 Cmcm, 63 -3.05 0

NbO2 I41/a, 88 -2.91 0

Nb Im3m, 2 0 0

Ag2O Pn3m, 224 -0.33 0

AgO Cccm, 66 -0.45 0

Ag R3m, 166 0 0

Nb2O5 P2, 3 -3.05 0

O2 C2/m, 12 0 0

Ag3O4 P21/c, 14 -0.41 0

NbO Pm3m, 221 -2.29 0

AgNbO3 Pbcm, 57 -2.19 0.038

Table 4.1: Stable phases in the ternary Ag-Nb-O phase diagram reported by the Materials

Project Database (PBE).
116,117

The shaded row gives the comparison with AgNbO3, which

is unstable with respect to the decomposition in Ag2O and Nb2O5 by 38 meV.

Reservoir ∆µAg ∆µMn ∆µNb ∆µO

AgNbO
3
-Ag-Nb

2
O

5
0.0 -2.86 -7.4 -1.3

Table 4.2: Values in eV of the chemical potentials of the individual elements for AgNbO
3

in contact with Ag and Nb
2
O

5
.
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4.2 Cubic Phase

4.2.1 Computational Details

The methodology used to carry out the density functional theory (DFT) calcu-

lations is consistent with the one used for NaNbO
3

(Section 3.2.1). The chosen

exchange-correlation functional is PBE-GGA.
56

All defect calculations were per-

formed using a 3×3×3 supercell, containing 135 atoms. The plane wave basis

set was expanded up to a 500 eV cuto� energy. The Brillouin zone integration

was performed using a Γ-centered 6×6×6 k-mesh for unit-cell calculations and

a 2×2×2 k-mesh for supercell calculations. The atomic positions were relaxed

until the Hellmann-Feynman forces on each atom were below 0.05 eV/Å. Like

for NN (Section 3.1.1, Section 3.5), the symmetry was constrained to that of the

input space group, as implemented by VASP. The density of states (DOS) were

calculated using a Γ-centered 16×16×16 k-mesh.

4.2.2 Electronic Structure

As for sodium niobate (NN), the �rst step in our methodology is the determination

of the relaxed bulk structure and the electronic structure. The computed values

of lattice parameters and energy gap are reported and compared with literature

in Table 4.3. The band structure and the density of states (DOS) are shown in

Figure 4.1.

Contrary to the situation in NN, not only the O p states but also the A-site atom

(Ag d) states contribute to the edge of the valence band. As in the NN case, the

edge of the conduction band is mainly composed of Nb d states. The valence

band maximum (VBM) is in the M point, and the conduction band minimum

(CBM) is in the X point, yielding an indirect gap of 1.4 eV. To our knowledge, no

experiments have been reported in the literature where the optical band gap as

been measured. It is well known that the semi-local nature of the PBE functional

tends to underestimate the band gap. However, as discussed in Section 3.2.2, it

is not a decisive problem for defect equilibrium calculations, since mostly the

curvature of the bands near the band edges, and the relative distance of the

thermodynamic charge transition levels to the band edges are decisive for the

determination of the defect equilibrium.
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Figure 4.1: Band structure and density of states (DOS) of cubic AgNbO
3
.

a(Å) Eind
g (eV )

PBE 4.02 1.40

Ref PBE
130

3.98 1.51

MP Database (PBE)
116,117

4.02 1.33

Exp
27

3.960

Table 4.3: Values of lattice constant a (Å) and energy gap Eg (eV ), calculated with

di�erent exchange-correlation functionals and confronted with computational data by

Shigemi and Wada,
130

the Materials Project database
116,117

and experimental data.
27
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Figure 4.2: Defect formation energies of cubic AgNbO
3

as a function of the Fermi level

position for thermodynamic conditions representative of the experimental conditions

(reported in Table 3.10). The stars on the formation energy curves represent charge

transitions.

4.2.3 Formation Energies

The calculated formation energies of Ag, Nb and O vacancies in the thermody-

namic conditions reported in Table 4.2, are shown in Figure 4.2. The formation

energies, with applied Kumagai charge corrections (Section 2.4.4), have been

computed for multiple charge states for Ag vacancies (charge states from -2 to

0), Nb vacancies (from -5 to +1) and O vacancies (from -2 to +2). The charge

transition levels are shown in Figure 4.3. The stable charge state of Ag vacancies is

-1, as expected from the +1 oxidation state of silver. Nb vacancies present several

charge transitions, ranging from +1 to -3. Hence, both defects are acceptor-type.

In the case of O vacancies, the most stable charge state across most of the band

gap is +2, but with the presence of the deep +2/+1 transition and the shallower

+1/0. The sign of the charge indicates that the O vacancies are donor-type defects

across most of the gap, as expected. The formation energies of Nb vacancies are
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Figure 4.3: Charge transition levels of cubic AgNbO
3
. The energy levels in the valence

band (VB) and the conduction band (CB) are indicated by the grey shaded areas.

larger than the ones of VAg and VO. However, the di�erence in energy is not as

prominent as for cubic and orthorhombic NaNbO
3
, meaning that VNb could play

a role in the compensation mechanisms. This situation is di�erent from what

proposed for cubic AN by Moriwake et al.
131

4.3 Orthorhombic Phase

4.3.1 Computational details
Again the methodology for DFT calculations is consistent with the one used

for NaNbO
3

(Section 3.2.1). The chosen exchange-correlation functional is PBE-

GGA.
56

All defect calculations were performed using a 2×2×1 supercell, con-

taining 160 atoms. The plane wave basis set was expanded up to a 550 eV cuto�

energy. The Brillouin zone integration was performed using a Γ-centered 4×4×2
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k-mesh for unit-cell calculations and a 2×2×2 k-mesh for supercell calculations.

The atomic positions were relaxed until the Hellmann-Feynman forces on each

atom were below 0.05 eV/Å. The density of states (DOS) were calculated using a

Γ-centered 12×12×6 k-mesh.

4.3.2 Electronic Structure

The computed values of lattice parameters and energy gap are reported and

compared with literature in Table 4.4. The band structure and the density of

states (DOS) are shown in Figure 4.4. While the curvature of the bands is di�erent

from the cubic phase (Figure 4.1), the characters of the top of the valence band

and the bottom of the conduction band are the same. In fact, the valence band is

mainly composed of O p states and Ag d states, while Nb d state constitute the

conduction band. The band gap is larger than the one of the cubic phase (Table

4.3). The discussion relative to the band gap and the functional performance is

identical as for cubic AN (Section 4.2.2).

a(Å) b(Å) c(Å) Eg(eV )
PBE 5.65 5.75 15.75 1.69

Ref PBE
130

5.60 5.69 15.60 1.95

MP Database (PBE)
116,117

5.67 5.75 15.76 1.79

Exp
27

5.54 5.60 15.56

Table 4.4: Values of lattice constants a, b, c (Å) and energy gap Eg (eV ) of orthorhombic

AgNbO
3

(space group Pbcm, No. 57), computed with the PBE
56

exchange-correlation

functional and confronted with computational data by Shigemi and Wada,
121

the Materials

Project database
116,117

and experimental data.
27

4.3.3 Formation Energies

As discussed in Section 1.4, AN shows double P-E loops in its natural composition.

However, it has been shown that a chemical modi�cation of AgNbO
3

with Mn can

further reduce the remnant polarization and increase the recoverable energy
39

(Section 1.5). Therefore, in addition to vacancies, we have studied also the case

of Mn substitution on both the Ag-site and Nb-site. The calculated formation
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Figure 4.4: Band structure and density of states (DOS) of orthorhombic AgNbO
3
.

energies of the intrinsic point defects and the Mn-substitutional defect, in the ther-

modynamic conditions reported in Table 4.2, are shown in Figure 4.5. The charge

transition levels are shown in Figure 4.6. The formation energies, with applied

Kumagai charge corrections (Section 2.4.4), have been computed for multiple

charge states for Ag vacancies (charge states from -2 to 0), Nb vacancies (from -5

to 0) and O vacancies (from -2 to +2). In the case Ag and Nb vacancies, the stable

charge states across the band gap are -1 and from -1 to -3, respectively. Hence,

both defects are acceptor-type. In the case of O vacancies the most stable charge

state across most of the band gap is +2. However, the transition between +2 to 0

state is present at circa 0.5 eV below the conduction band minimum, contrary to

the cubic case where the deep transition +2/+1 is followed by a shallow +1/0. The

sign of the charge indicates that the O vacancies are donor-type defects across

most of the gap, as expected. The formation energies of Nb vacancies are larger

than the ones of VAg and VO. On the other hand, also for the orthorhombic phase
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Figure 4.5: Defect formation energies of orthorhombic AgNbO
3

as a function of the

Fermi level position for thermodynamic conditions representative of the experimental

conditions (reported in Table 3.10). The stars on the formation energy curves represent

charge transitions.

the di�erence in energy is not as large as for orthorhombic NaNbO
3
.

In order to understand how the chemical modi�cation with Mn a�ects the de-

fect properties of AgNbO3, we have computed the formation energy of the Mn-

substitutional defects with the same method applied for the vacancies. In the

aforementioned study by Zhao et al,
39

it is proposed that the substitution be-

haviour of Mn into AN is complex. In fact, it is suggested that the Mn-ions can

exist in multiple valence states (Mn
2+

, Mn
3+

, Mn
4+

) and that the substitution could

be for both Ag
+

on the A-site and Nb
5+

on the B-site. In order to investigate this

complex behaviour of Mn-substitution, we have computed the formation energies

of Mn-substitutional defects on both the A-site (MnAg) and the B-site (MnNb),

considering many possible oxidation states of Mn (from +2 to +7). The results

are shown in Figure 4.5. The chemical potential for Mn has been calculated by
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Figure 4.6: Charge transition levels of orthorhombic AgNbO
3
. The energy levels in the

VB and the CB are indicated by the grey shaded areas.

considering the system in contact with MnO
2
, to reproduce experimental con-

ditions.
39

Nonetheless it is important to remember that the total concentration

of Mn is independent of µMn, as it is imposed �xed to the experimental value.

The relative concentrations of Mn on the A and B-sites, however, depend on the

chemical potentials of Mn, Ag and Nb.

A �rst observation is that, excluding the region close to the VBM, the formation

energies of MnAg are larger than for MnNb across most of the band gap. A possible

explanation for this can be found by looking at the Mn, Ag and Nb ionic radii.

The dimensions of Mn
2+

(0.83 Å), Mn
3+

(0.65 Å) and Mn
4+

(0.53 Å) ions are more

compatible with Nb
5+

(0.64 Å), then Ag
+

(1.28 Å).
39

This is clearly a reasonable but

only preliminary explanation, which calls for further investigation on this matter.
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Figure 4.7: Electron chemical potential determined self-consistently in orthorhombic

AgNbO
3
, as a function of the oxygen partial pressure in high temperature (1353 K), room

temperature (300 K) and in quenched conditions.

In the case of MnNb, the stable charge states are -2,-1,0 and +1, corresponding to

the Mn oxidation states of +3,+4,+5 and +6, respectively. This reveals interesting

and not yet predicted features of the Mn-substitution in AN, which are to be

traced to the multitude of oxidation states which can be attributed to manganese.

As shown by the charge transition levels in Figure 4.6, the acceptor behaviour

of the Mn
3+

is in competition with the donor behaviour of Mn
6+

. Therefore, the

position of the electron chemical potential dictates if MnNb is a donor or an ac-

ceptor. On the other hand, the case of MnAg is much simpler, where the charge

state +1 is stable across all the band gap. This charge state corresponds to the Mn

oxidation state of +2.

4.3.4 Dependency on Oxygen Partial Pressure

The next step in our analysis is the solution of the charge neutrality condition

for di�erent oxygen partial pressure, in order to compute the Brouwer diagrams
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(Section 2.4.7). We have computed defect concentrations at the sintering tem-

perature (1353 K)
25

and room temperature. The results are shown in Figure 4.8.

As for NaNbO
3
, we have evaluated the electron chemical potential (µe) for both

equilibrated and quenched conditions, and the results are shown in Figure 4.7.

The �rst observation is that, at sintering temperature, the material is unstable for

oxygen partial pressure (pO2) lower than 0.5 · 10−6
atm, as highlighted by the red

region in Figure 4.8a. In fact, the concentration of Ag vacancies is greater than

the concentration of available sites, which is clearly unphysical and indicates the

instability of the material in this pO2 region. This �nding is compatible with the

experimental observations. In recent years, several works have reported that the

reaction to form AN is not possible in low pO2 conditions.
25,26,132

Moreover, it has

been revealed that, after synthesis, the material tends to be non-stochiometric

due to Ag de�ciency,
26

which was con�rmed by our experimental colleagues (the

manuscript is currently still in preparation), and validates the low VAg formation

energy in our data (Figure 4.5). With increasing pO2 we get in the stable region,

where the concentration of VAg and VO decreases.

The second consideration is that the preferred lattice site for Mn substitution is

pO2- dependent at high temperatures. In fact, while for low pO2 Mn sits mostly

on the Ag site, the balance changes for increasing pO2 , until Mn is found mostly

on the Nb site for high pO2 . The crossover point where [MnNb] exceeds [MnAg] is

located at 10 atm circa. It is useful to remember that the total concentration of Mn

atoms has been �xed to the experimental value of 0.3% wt, but its distribution on

the di�erent lattice sites still depends on T and µe (Section 2.4.8). Because of the

dominance of Ag vacancies, the resulting behaviour is p-type, as shown in Figure

4.7. At low temperature (Figure 4.8b) the situation does not show an important

dependency on pO2 , with VAg and MnNb dominating over the entire range, which

gives a constant µe close to the VBM. The balance can be shifted when defects

are quenched from the high temperature phase into the low temperature one.

When all defects are quenched, the dominating Ag vacancies push µe very close

to the VBM (green line in Figure 4.7). When only VAg and VNb are quenched (red

line), with VO free to equilibrate, the behaviour at high pO2 is equivalent to the

quenched case, but the free O vacancies yield a similar µe-dependency to the high

temperature case. On the other hand, when only VO are quenched (violet line),

µe at ambient pressure moves further away from the VBM, following a slope

similar to the quenched case, while at high pO2 the electron chemical potential is

equivalent to the equilibrated one at high and low temperatures.

The last, and arguably most important, observation is that, in the case of AgNbO
3
,

the quenching conditions have smaller impact on the �nal position of the elec-
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Figure 4.8: Concentrations of defects, electrons (ne) and holes (nh) in orthorhombic

AgNbO
3
, as a function of the oxygen partial pressure in high temperature (a) and room

temperature (b) conditions.
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tron chemical potential than for NN. In fact, while for NaNbO
3

the quenching

conditions could determine whether the material was n-type or p-type, in the

case of silver niobate, µe is always closer to the VBM. The semiconductor is

thus p-type for all quenching conditions, which in�uence only the distance from

µe to the VBM. The motivation behind this di�erence is to be attributed to the

aforementioned low formation energies of Ag vacancies, which are acceptors

and yield a p-type behaviour.

4.4 Conclusion
In pure silver niobate, Ag vacancies and O vacancies regulate the defect equilib-

rium. VAg are acceptors with charge state -1 and neutral if the Fermi level is near

the VBM. VO are donors in charge state +2 with a deep transition level to the

neutral state. Like for NaNbO
3
, VNb shows charge states from -5 to neutral with

scattered transition levels. The formation energies of VAg are particularly low.

As a consequence, VAg is the dominating defect over the whole oxygen partial

pressure (pO2) range. Moreover, at low oxygen partial pressure (pO2 < 10
-6

atm)

and high temperature, the material is unstable due to the unphysically large VAg

concentrations, which is in line with the experimental observations that AN

tends to be Ag de�cient and cannot be synthesized in low pO2 .
25,26,132

When Mn

is introduced into the system, it can occupy both the Ag- and Nb-site. MnAg is a

single-charged donor, while MnNb can be a donor or an acceptor based on the

Fermi level position. It is a single-charged donor only when the Fermi level is

close to the VBM, otherwise is either neutral or an acceptor. At high temperature

and low pO2 , Mn is found on the Ag-site, while, for pO2 larger than 10 atm, Mn is

stable on the Nb-site. At room temperature, Mn is found only on the Nb-site.

The considerations, regarding the limitations of the computational model and the

problems in the comparison with the experiment, we have expressed for NaNbO
3

are true also for AgNbO
3
, and can be found in Section 3.7. In the case of AN,

the A-site de�ciency and instability of the material are even more concerning

problems than for NN, and agree with our computational �ndings that AN is

metastable and only stabilzed kinetically, and that the material is unstable at

sintering temperature and low pO2 pressure due to Ag-de�ciency (negative VAg

formation energies).
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5.1 Summary
Antiferroelectric materials provide a solution to increase the energy density in

capacitors, while preserving a high e�ciency. NaNbO
3

(NN) and AgNbO
3

(AN)

are two of the most promising lead-free candidates to replace toxic lead-based

compunds already on the market.
2,14

Chemical modi�cation has been used ex-

tensively to improve their antiferroelectric properties, speci�cally to lower their

remnant polarization.
23,39

In this work, we have therefore investigated, with

density functional theory, how doping and synthesis conditions modify the elec-

tronic properties of NN and AN, with focus on the Fermi level. In particular, we

have determined the thermodynamic defect equilibrium by solving the charge

neutrality condition, accounting for the impact of extrisic defects on the com-

pensation mechanisms. Moreover, we have developed a novel scheme to account

for quenching of defects within the established point defect thermodynamics.

Additionally, we have determined with the nudged elastic band (NEB) method

the di�usion barriers of vacancies in NN. Through this e�ort, we have addressed

the questions reported in Section 1.9:

• Which defects are forming in these materials?

– NaNbO3: Na and O vacancies show low formation energies in all

phases and all thermodynamic conditions. Nb vacancies display much

higher formation energies. This translates in high VNa and VO concen-

trations. VNa are mostly acceptors with charge state -1, and neutral if

the Fermi level is near the valence band maximum (VBM), while VO

are donors in charge state +2 and +1, and neutral near the conduction

band minimum (CBM). VNb display a wider variaty of charge states,

ranging from -5 to neutral. Therefore, the dominating compensation

mechanism involves VNa and VO, and which species is dominating

127
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depends on the oxygen partial pressure (pO2). Moreover, defect as-

sociates formed by Na and O vacancies in their charged states are

found to be stable, both as a triple neutral complex (VNa-VO-VNa) and

donor (charge +1) double complex (VNa-VO). The dopants Sr and Sn

are introduced on the Na- and Nb-site, respectively. SrNa is mostly

a single-charged donor, and neutral near the CBM. SnNb is a single-

charged acceptor, while neutral near the VBM. When in contact with

a reservoir of SrSnO
3
, extrinsic defects show low formation energies,

in the same range of VNa and VO, which justi�es how it is experimen-

tally possible to incorporate SrSnO
3

in NN up to 5 %wt, before phase

segregation occurs. Extrinsic defects introduce new stable defect com-

plexes. In fact, the neutral complex SrNa-VNa and the single-charged

donor complex SrNb-VO show negative binding energies.

– AgNbO3: Ag vacancies show extremely low formation energies. VAg

are acceptors with charge state -1 and neutral if the Fermi level is

near the VBM. VO are donors in charge state +2 with a deep transition

level to the neutral state. Like for NaNbO
3
, VNb shows charge states

from -5 to neutral with scattered transition levels. The main compen-

sation mechanism concerns VAg and VO, with VAg dominating over

the whole pO2 range. Moreover, at high temperature and low oxygen

partial pressure (pO2 < 10
-6

atm), the material is unstable due to the

unphysically large VAg concentrations, which is in line with the ex-

perimental observations that AN tends to be Ag de�cient and cannot

be synthesized in low pO2 .
25,26,132

Doping with Mn was studied on the

Ag-site and Nb-site. Manganese can be found in both sites. MnAg is

a single-charged donor, while MnNb can be a donor or an acceptor

based on the Fermi level position. It is a single-charged donor only

when the Fermi level is close to the VBM, otherwise is either neutral

or an acceptor. At high temperature and low pO2 , Mn is found on the

Ag-site, while, for pO2 > 10 atm, Mn is stable on the Nb-site. At room

temperature, Mn is found only on the Nb-site.

• Where is the Fermi level?What is the influence of doping conditions?

– NaNbO3: At high temperature and low pO2 , the doped material is a n-

type semiconductor, while for high pO2 the system becomes p-type. In

fact, the Fermi level decreases almost linearly with pO2 , from the edge

of the CBM to a distance of approximately 1 eV to the VBM. At room
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temperature, the material is p-type over the whole pO2 range, with the

Fermi level ranging approximately from 1 eV to 0.5 eV above the VBM.

When all defects are quenched, the frozen donor species dominate, and

the Fermi level shifts towards the CBM. The same situation happens

when only O vacancies are quenched. Quenching only Na and Nb

vacancies produces a less pronounced shift towards the VBM. Since

VO shows a di�usion barrier of only 0.3 eV, while the barrier of VNa

is much larger (1.4 eV), it is more likely that experimentally VNa

are frozen from the high temperature regime, while VO can reach

thermodynamic equilibrium.

– AgNbO3: The Fermi level in Mn-doped AN is always close to the VBM,

both at high and room temperature and for all quenching conditions,

meaning the material is always a p-type semiconductor. This is due to

the dominating Ag vacancies, which are single-charged acceptors. At

high temperature, VAg are partially compensated by O vacancies, while

at room temperature the compensation mechanism involves MnNb,

which acts as donor. In contrast to NN, di�erent quenching conditions

modify only slightly the slope of the Fermi level dependency on pO2 ,

without having a signi�cant impact on the overall behaviour of the

semiconductor.

• What role do defects associates play in the AFE properties?

– We have investigated the presence of defect complexes in NaNbO
3
.

We have found that several associates between defects on the Na-,

Nb- and O-sites show negative binding energies, and are present in

large concentrations. Because they are formed by charged defects,

they introduce dipoles into the system, which can interact with the

spontaneous FE/AFE displacements and with an external �eld. Since

the zero-�eld RT-stable phase of NN is antiferroelectric, there is no

preferencial orientation for the dipoles, hence they assume a random

distribution of orientations. Therefore, like already proposed for FE

materials,
11,36

we posit that defect dipoles introduce a restoring force

which enhances the reversibility of the FE-AFE phase transition, thus

reducing the remnant polarization in AFE materials, which improves

the quality of double P-E loops.
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5.2 Outlook

Despite the achievements of this doctoral work, there still remain unresolved

scienti�c problems, theories to be further investigated, and methods to be ex-

tended and improved. We sort our thoughts into three di�erent groups. Firstly, we

address the impact of lattice instability on the defect formation energies within

density functional theory (DFT). Secondly, we explore the shortcomings of the

thermodynamics of point defects employed in this work. Lastly, we discuss the

possible future research, to better understand the correlation between doping

and antiferroelectric properties.

Lattice instability and formation energies

In this work, we have only scratched the surface on the fact that, when performing

total energy defect calculations, structural instability at 0 K with might introduce

additional relaxation mechanisms, leading to an energy gain which would not be

present at �nite-temperature. To our knowledge, this topic has not been addressed

yet in the literature. In this thesis, we presented only a preliminary analysis on

the connection between phase hierarchy and formation energies. In order to

�nd a descriptor for this phenomenon, and possibly introduce corrections, a

more systematical and detailed analysis is necessary. Particularly, it would be

interesting to study the in�uence of the phase on the relaxation volumes and

atomic displacements of charged defects. Moreover, the impact of the exchange-

correlation functional and charge localization on the relaxation is another aspect

that should be considered. Lastly, it should be explored whether the defect charge

transition levels are modi�ed and, if the answer is yes, whether it is possible to

�nd a descriptor.

Point defects: from the dilute limit to phase formation

The established point defects thermodynamics
69–71

used in this work is valid only

for ideal solutions. In other words, it relies on the fundamental assumption that

the number of point defects is much smaller than the number of available sites, so

that defects do not interact with each other. This assumption is unfortunately not

always true. In fact, in the �eld of ferroelectric/antiferroelectrics, more often than

not, chemical modi�cation is much closer to creating solid solutions rather than

doping, meaning the concentration of extrinsic defects are much closer to parts

per hundred rather than parts per milion. In such a context, if the interaction
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between defects is not negligible, the current point defect formalism might fail.

Therefore, future work could be invested in developing a formalism to describe

the crossover from the dilute limit to hyperdoping and phase formation. In

particular, such an approach would combine DFT supercell calculations with

cluster expansion methods, which would allow to treat e�ectively solid solutions

of defects. Moreover, the formalism needs to include the dependency of the cluster

expansion on the Fermi level, such that the thermodynamics of defect equilirbium

is properly captured.

Tayloring antiferroelectric properties via doping

During this doctoral thesis we have made signi�cant progress in understanding

the connection between doping (and its impact on the Fermi level) and the prop-

erties of antiferroelectric materials. However, the story is far from being complete.

In fact, a method to determine a priori if a material will display antiferroelectric

distortions is still missing. One way to achieve this is to look at the phonon

spectra of the cubic perovskite parent phase, checking if the unstable modes cor-

rispond to antiferroelectric distortions. This method is not only computationally

expensive, but also fails to provide a theory on the origin of antiferroelectricity.

As a matter of fact, if we approach the proplem with �rst-order perturbation

theory, the answer on the nature of the distortions hides in the band structure of

the parent phase. Unfortunately, such a clear, universal descriptor is still missing.

Its discovery would allow to systematically search with cheap computational

methods for new compositions of promosing antiferroelectric materials, like

NaNbO
3

and AgNbO
3
. Once the compositions are identi�ed, the same approach

used in this doctoral thesis can be used to identify which doping and synthesis

conditions might be used to further improve the antiferroelectric properties, with

the ultimate goal to create usable materials in commercially available devices.
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