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Abstract
Modern trends like digitization and data ecosystems, accelerated by recent events such as
COVID-19, necessitate a shift from isolated data management in silos to more open models
in which organizations process and share data across organizational boundaries. This
transition, however, spawns interdependencies among organizations and generates unique
challenges for data management, including data integrity, auditability, and regulatory
compliance.

Addressing these novel requirements presents significant challenges for traditional data
systems such as database management systems. These systems were designed under
the assumptions of a single organization owning and managing data, not considering
shared data access by multiple parties. Hence, this dissertation explores the concept and
development of trustworthy data systems designed to address the unique demands of
managing data across multiple organizations. Nevertheless, creating efficient, trustworthy
data systems poses several challenges, which are examined through the lens of three main
dimensions: data storage, processing, and benchmarking. In this thesis, we provide an
overarching analysis of the requirements of data systems in these areas and dive deep
into fundamental building blocks from a performance-centric perspective.

The concept of trustworthy data storage is investigated within our novel system,
BlockchainDB. It addresses the requirements of data integrity and auditability by
leveraging blockchains as a storage backend. However, to mitigate the performance
limitations of blockchains and facilitate a user-friendly data interaction, we introduce an
additional database layer that utilizes techniques like sharding. To advance the efficiency
of trustworthy data storage, we also inspect the performance limitations of Merkle Trees,
a key data structure for integrity in many systems such as blockchains. We find that
Merkle Trees suffer from significant performance limitations when data is frequently
updated and propose techniques to improve both throughput and scalability.

Addressing the novel requirements of trustworthy data processing, this work presents
the system TrustDBle. By integrating blockchains and secure hardware such as Intel’s
Software Guard Extensions (SGX), this system efficiently ensures policy adherence and
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computational integrity. Recognizing the constraints SGX faces with large data volumes,
we propose incorporating only critical components within an enclave, thereby balancing
efficiency and integrity. Additionally, the dissertation explores the capabilities and
limitations of Intel’s second-generation SGX technology (SGXv2) in supporting data-
intensive applications. By doing so, we find that SGXv2 improves upon its predecessor
and can handle larger data volumes more efficiently, but new issues like remote NUMA
access need attention. This research also extends beyond traditional database workloads
and explores trustworthy data processing within a federated learning context, proposing
a decentralized parameter server architecture that provides robust privacy protection.

In the context of benchmarking trustworthy data systems, this dissertation provides a
two-fold contribution. In analogy to the ACID properties, particularly isolation levels, it
advocates for declarative expressions of system properties like verifiability, enhancing
user understanding and implementation flexibility. Secondly, it introduces a holistic
benchmark design for these systems, incorporating traditional performance metrics and
novel elements like verifiability and auditability.

The research encapsulated in this dissertation paves the way for efficient, trustworthy
data management across organizations. The presented insights and techniques create
promising opportunities for adoption by the broader data management community and
other systems for cross-organizational collaboration.
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Zusammenfassung
Moderne Trends wie Digitalisierung und Datenökosysteme, beschleunigt durch jüngste
Ereignisse wie COVID-19, erfordern eine Abkehr von isolierter Datenverwaltung in Silos
hin zu offeneren Modellen, in denen Organisationen Daten über Organisationsgrenzen
hinweg verarbeiten und teilen. Dieser Ansatz erzeugt jedoch Abhängigkeiten zwischen den
Organisationen und führt zu besonderen Herausforderungen für das Datenmanagement,
einschließlich Datenintegrität, Prüfbarkeit und regulatorischer Konformität.

Die Bewältigung dieser neuen Anforderungen stellt herkömmliche Datensysteme wie
zum Beispiel Datenbankmanagementsysteme vor erhebliche Herausforderungen. Diese
Systeme wurden unter der Annahme entwickelt, dass eine einzige Organisation Daten
besitzt und verwaltet, ohne die gemeinsame Datennutzung durch mehrere Parteien zu
berücksichtigen. In dieser Dissertation wird daher das Konzept und die Entwicklung
vertrauenswürdiger Datensysteme untersucht, die auf die besonderen Anforderungen der
Datenverwaltung in mehreren Organisationen zugeschnitten sind. Die Entwicklung effizien-
ter, vertrauenswürdiger Datensysteme birgt jedoch einige Herausforderungen, die anhand
von drei Hauptdimensionen untersucht werden: Datenspeicherung, Datenverarbeitung
und Benchmarking. In dieser Arbeit wird eine übergreifende Analyse der Anforderungen
an Datensysteme in diesen Bereichen vorgenommen und die grundlegenden Bausteine
aus einer leistungsorientierten Perspektive beleuchtet.

Das Konzept der vertrauenswürdigen Datenspeicherung wird in unserem neuartigen
System, BlockchainDB, untersucht. Es erfüllt die Anforderungen an Datenintegrität
und Nachvollziehbarkeit, indem es Blockchains als Speicher-Backend nutzt. Um jedoch
die Leistungseinschränkungen von Blockchains zu mildern und eine benutzerfreundliche
Dateninteraktion zu ermöglichen, führen wir eine zusätzliche Datenbankschicht ein, die
Datenbank-Techniken wie Sharding nutzt. Um die Effizienz der vertrauenswürdigen
Datenspeicherung zu verbessern, untersuchen wir auch die Leistungseinschränkungen von
Merkle-Bäumen, einer Schlüssel-Datenstruktur für Datenintegrität in vielen Systemen
wie Blockchains. Wir stellen fest, dass Merkle-Bäume erhebliche Leistungseinschrän-
kungen aufweisen, wenn Daten häufig aktualisiert werden und schlagen Techniken zur
Verbesserung von Durchsatz und Skalierbarkeit vor.

Um die neuen Anforderungen an vertrauenswürdige Datenverarbeitung zu adressieren,
stellt diese Arbeit das System TrustDBle vor. Durch die Integration von Blockchains
und sicherer Hardware wie den Software Guard Extensions (SGX) von Intel gewährleistet
dieses System effizient die Einhaltung von Richtlinien und die Integrität von Berechnungen.
Aufgrund der Kapazitätseinschränkungen von SGX integrieren wir in unserem Ansatz nur
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kritische Komponenten in einer Enklave, um so Effizienz und Integrität auszubalancieren.
Zusätzlich untersucht die Dissertation die Fähigkeiten und Grenzen der SGX-Technologie
der zweiten Generation (SGXv2) von Intel bei der Unterstützung datenintensiver An-
wendungen. Dabei stellen wir fest, dass SGXv2 wesentliche Verbesserungen einführt
und größere Datenmengen effizienter verarbeiten kann, aber neue Herausforderungen
wie der remote NUMA-Zugriff Aufmerksamkeit erfordern. Diese Forschung geht auch
über traditionelle Datenbank-Workloads hinaus und erforscht die vertrauenswürdige
Datenverarbeitung im Kontext des föderierten maschinellen Lernens. Hierbei erarbeiten
wir eine dezentralisierte Parameterserver-Architektur, die einen robusten Schutz der
Privatsphäre bietet.

Im Zusammenhang mit dem Benchmarking vertrauenswürdiger Datensysteme leistet
diese Dissertation zwei Beiträge. In Analogie zu den ACID-Eigenschaften, insbesondere
den Isolationsstufen, schlagen wir ein deklarative Angabe von Systemeigenschaften wie
Nachprüfbarkeit vor, um das Benutzerverständnis und die Implementierungsflexibilität zu
verbessern. Zweitens führen wir ein ganzheitliches Benchmark-Design für diese Systeme
ein, das traditionelle Leistungsmetriken und neuartige Elemente wie Nachprüfbarkeit
und Prüfbarkeit einbezieht.

Die in dieser Dissertation vorgestellten Forschungsergebnisse ebnen den Weg für effizien-
tes, vertrauenswürdiges Datenmanagement über Organisationen hinweg. Die vorgestellten
Erkenntnisse und Techniken bieten vielversprechende Möglichkeiten für deren Anwendung
in der breiteren Datenverwaltungslandschaft und andere Systeme für die organisations-
übergreifende Zusammenarbeit.
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1 Introduction

1.1 Context & Motivation
Cross-organizational data management. Recent events, such as the COVID-19
pandemic, have catalyzed a rapid digital transformation across various sectors, including
public and private organizations [7, 150]. This trend has been a major driving force for
organizations to process and share data across organizational boundaries and can be
observed in two major developments.

First, there has been a shift in how we operate and use data management systems,
specifically database management systems (DBMSs). In the past, organizations deployed
these systems within their own local data centers. Now, there is a growing demand1 for
cloud-based DBMSs, managed by third-party providers in offsite data centers [41].

Second, there is a move away from data silos, which kept data locked within one
organization. Instead, initiatives like the European Data Strategy [61] advocate for sharing
data across organizations to form integrated data ecosystems. This cross-organizational
data integration, evident in industries like manufacturing, allows organizations to directly
access and utilize data from other entities, optimizing business processes [133, Chapter 1,
p. 3]. While manufacturing is a prominent example, the benefits of inter-organizational
data management extend to sectors like supply chain [32, 83, 138, 142], healthcare [78] or
finance [37, 62]. This represents a significant shift towards a new era in data management,
characterized by integrated data storage and processing to enhance existing services or
develop novel ones [70].
The need for trustworthy data management. However, when data is processed and
shared across boundaries, concerns over the influence of external parties handling the
shared data arise. This interdependency among organizations creates new requirements
for regulating and governing the data management process. A prominent example is the
General Data Protection Regulation (GDPR) of the European Union [60] that regulates

1
https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/
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1 Introduction

how the data of European citizens have to be processed. These regulations impose strict
transparency and accountability requirements, ensuring that policy violations or data
corruption can be identified, and the party responsible can be held accountable. Especially
when multiple parties are involved in data processing, ensuring the accountability and
liability of all involved parties is a vital concern [64].

Upholding these regulations and ensuring the required transparency present significant
challenges for traditional DBMSs. These systems were designed with the assumption
that data is owned and managed by a single organization, not considering shared data
access by multiple parties. In fact, many DBMSs tend to “lock in” the data, making it
complicated to extract and share2.

This sets the context for this work, which introduces the concept of trustworthy data
management systems. In contrast to traditional DBMSs, these novel systems are designed
to process and share data across the boundaries of different organizations in a trustworthy
manner. They establish trust by confirming compliance with agreed-upon policies and
offering transparency into all data interactions, enabling detection of policy breaches or
data corruption. As mentioned earlier, incorporating these new requirements in DBMSs
is not a straightforward task and introduces several issues, which will be discussed in the
subsequent section.

1.2 Problem Statement & Challenges
In the past, the focus in industry and academia has been on storing and processing
large amounts of data efficiently. However, with the rise of cross-organizational data
management, new requirements for the trustworthy management of data have emerged.
Consequently, this thesis re-evaluates several aspects of traditional data systems in the
pursuit of developing trustworthy data management practices. Thereby, several challenges
that center around the trustworthy storage and processing of data arise:

• Ensuring trustworthiness of data storage: A main issue of trustworthy data
management is to protect the integrity of the data itself. This guarantee implies
safeguarding data from any unlawful modification. For example, even privileged
administrators should be unable to modify data directly, even if they have physical
access to the underlying storage device.

2
https://bryteflow.com/sap-s-4-hana-overview-and-5-ways-to-extract-s-4-erp-data/
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1.2 Problem Statement & Challenges

Additionally, trustworthy data storage plays a major role in addressing the au-
ditability and transparency requirements of trustworthy data management. These
two properties are important in settings where multiple organizations process data
collaborative since they ensure the required accountability and liability. For exam-
ple, whenever data is updated it is important to track by whom this change was
performed. A major challenge in this context is storing all relevant information
(metadata) so that all accesses or changes of the data can be audited and any
misbehavior can be traced to the responsible party.

• Ensuring trustworthiness of data processing: When data management spans
organizational boundaries, it is important for organizations to stay in control over
the access, manipulation, and use of their data. This control is in some cases even
mandated by legal regulations, such as for the processing of health data, where many
legal regulations exist concerning who is allowed to access which data. To ensure
compliance with such regulations or company internal standards, organizations
need to be able to define policies which ensure that data can only be processed
according to a pre-defined logic that even system administrators cannot alter.

Facilitating this policy based processing in data systems not only demands research
on how the policies are expressed and processed. It further requires to ensure the
integrity of computation, i.e., confirming that the agreed-upon logic is correctly
executed, preventing breaches that might involve deviation or manipulation of
the processing logic. As we will discuss in more detail in Chapter 2, such strong
guarantees were not applicable in classical data systems, since data was only
processed within a single organization.

Addressing these challenges efficiently is a challenging task, especially when attempting
to maintain high performance and minimize any degradation in system speed or respon-
siveness. For example, ensuring the integrity of data involves using cryptographic data
structures such as Merkle Trees [121] that introduce new performance limitations. Hence,
it is a goal of this thesis is to identify such bottlenecks and devise efficient paradigms
and techniques for trustworthy data management across multiple organizations. In the
following, we briefly summarize the contributions made by this work and defer a more
detailed discussion of the challenges to the subsequent chapters.
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1.3 Contributions
This thesis aims to contribute towards building novel data systems for efficient and
trustworthy data management. To achieve this objective, several contributions have been
made that revolve around high-performance trustworthy data storage and processing.
Additionally, since trustworthy data systems come with unprecedented requirements in
addition to performance, we propose concepts for benchmarking these systems more holis-
tically. This initiative facilitates the evaluation and comparison of different trustworthy
data processing systems.

1.3.1 Trustworthy Data Storage

As we will discuss further in Chapter 4, the core requisites for trustworthy data storage are
data integrity protection and auditability. The former ensures that data modifications are
only permissible through direct interactions with the data processing system, effectively
safeguarding against any unauthorized alterations. Auditability, on the other hand,
enables a system to render a transparent account of all data interactions such that any
data change can be traced to the responsible party.
Using blockchains as trustworthy storage. Our first contribution explores the
potential of blockchain technology to fulfill the prerequisites of trustworthy data storage.
Although blockchain technology inherently offers robust data integrity protection and
auditability, its usage is limited due to significant performance and scalability constraints.

To bridge this performance gap, we propose an enhancement to the conventional
blockchain architecture by incorporating an additional database layer. This layer lever-
ages traditional database technologies, such as sharding3, to enhance the transaction
processing capability of blockchains. Sharding distributes the storage load across multi-
ple subdivisions or "shards", each representing an independent blockchain, to improve
overall system performance while retaining the data integrity protection characteristics
of traditional blockchains. Since our sharding approach circumvents the full replication
of data common to blockchains, it requires additional verification mechanisms that we
introduce in our work to achieve the same level of trustworthiness.
High-performance Merkle Trees for trustworthy storage. Diving deeper into the
performance bottleneck of blockchains, we identify that Merkle Trees, a fundamental data
structure used in blockchains, face considerable performance limitations on modern multi-
core machines. In our second contribution, we tackle these performance limitations and

3In this thesis we use sharding and partitioning as synonyms.
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enhance the performance of Merkle Trees. We introduce novel techniques to construct high-
performance Merkle Trees, including a new latching scheme that improves concurrency
for update workloads.

1.3.2 Trustworthy Data Processing

Trustworthy data processing brings to light two major issues: policy based processing and
ensuring computational integrity. In Chapter 5, we introduce three main contributions
addressing these issues in the context of both database and Machine Learning (ML)
workloads.
Hybrid architecture for trustworthy processing. Building on our contributions
towards trustworthy data storage, we introduce TrustDBle, a novel system for trust-
worthy data processing. This system amalgamates the strengths of secure hardware and
blockchain technology. Secure hardware, like Intel Software Guard Extensions (SGX),
provides isolated execution environments, or enclaves, to perform sensitive computations.
Our system uses this technology to ensure computational integrity and enforce data
access policies, while blockchain technology provides a trustworthy storage environment.
However, as Intel SGX faces capacity limitations for processing large volumes of data,
we propose to only place the most critical components for ensuring the transactional
guarantees inside the Trusted Execution Environment (TEE).
Secure hardware for trustworthy processing. Secure hardware and enclaves play an
instrumental role in trustworthy processing as they protect data and code from external
interference. However, the first version of Intel SGX has known performance issues
with real-world workloads, such as database transactions. Recognizing this, we conduct
an in-depth performance evaluation of the most recent Intel SGX version (SGXv2),
particularly in the context of database workloads.
Trustworthy processing of ML workloads. Beyond the classical scope of database
workloads, we extend our exploration of trustworthy data processing to non-database
workloads, such as machine learning tasks. We demonstrate how sharding can be utilized
to implement trustworthy data processing techniques, mitigating potential threats from
a curious parameter server in federated machine learning settings.

1.3.3 Benchmarking Trustworthy Data Systems

The growing emphasis on trustworthy data management has given rise to numerous
innovative systems designed to address this concern, as we will discuss in Chapter 6.
However, these emerging systems vary significantly in their implementation of the novel
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requirements and the provided guarantees. For example, we observe differences across
systems in how clients can verify that essential guarantees, such as data integrity, are
being upheld.
Incorporating verification to ACID. Recognizing this variability, we propose ACID-
V, a new transactional model designed to embed verification into the traditional ACID
(Atomicity, Consistency, Isolation, Durability) transaction model of DBMSs. The ACID
model ensures consistent processing of database transactions, and the added Verification
component in ACID-V allows users to verify whether a transaction was executed in
accordance with the ACID properties and any defined policies. By establishing this
model, we offer a generic framework that can be utilized to compare the verifiability
levels offered by different systems.
Benchmarking trustworthy DBMSs. Further enhancing the comparison of trustwor-
thy data management systems, we introduce a unique benchmark design that encompasses
the distinct attributes of these systems. Classic benchmarks often prioritize the per-
formance of data systems, and hence fall short when evaluating novel aspects such as
verifying data integrity. Motivated by this observation, our benchmark design introduces
new metrics and workloads as an extension to existing performance-oriented benchmarks.
These metrics and workloads evaluate both the performance and trustworthiness of data
systems, providing a more comprehensive evaluation of these systems. Therefore, our
proposed benchmark design sets the foundation for a more holistic appraisal of systems
built for trustworthy data management.

1.4 Outline
The upcoming chapters delve more deeply into the contributions in each of the above
areas. Before diving into these detailed examinations, we first provide a brief review of
the related work in Chapter 2. This discussion highlights the previous landscape of data
systems and the pressing need for trustworthy data management solutions.

In Chapter 3, we detail the research methodology that guided this dissertation’s
inquiries, thereby establishing a clear path for the ensuing discussions.

We start by discussing trustworthy data storage in Chapter 4, followed by trustworthy
data processing in Chapter 5 and benchmarking trustworthy data systems in Chapter 6.
The synopsis concludes with a summary of the results and an outlook of future research
directions in Chapter 7.
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2 Related Work
The protection of data and its governance – particularly in terms of storage and processing
– has remained an integral aspect of data systems since their very beginnings. Yet, in
recent decades, the landscape has significantly evolved, presenting shifts in the underlying
security and trust assumptions that distinguish the unique research featured in this
dissertation. In this chapter, we categorize relevant work broadly based on the underlying
trust assumptions and briefly sketch the techniques used to protect and govern data
in these systems. A more in-depth discussion of these works will be conducted in the
individual contributions of Part II of this dissertation.

2.1 Trust Assumptions in Data Systems
As illustrated in Figure 2.1, databases (DBs) were initially designed for use by a single,
trusted organization (left). However, the shift toward outsourced DB settings (middle)
moved the database outside off an organization’s controlled environment and introduced
the database provider as an external entity responsible for database system administration.
This trend of introducing more external entities that interact with a data system, continues
with trustworthy data systems (right) which now confront trust issues among multiple
data owners.

DB

Client/ 
Organization 1

DB

Client/ 
Organization 1

Client/ 
Organization 2

Outsourced DBs Shared DBs

exclusive 
access

shared 
access

shared 
access

DB

Client/ 
Organization 1

Classical DBs

exclusive 
access

Figure 2.1: The evolution of trust assumptions leads to a spectrum along which related
work can be positioned.
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The evolving landscape of data systems forms a spectrum for classifying a diverse
range of related works, techniques, and systems.

Classical data management systems. As mentioned earlier, classical data man-
agement systems assumed that they are run and operated in a controlled and secure
environment. By simply running them within an organization’s secure perimeter, it
was possible to isolate these systems from most external threads (e.g., access from
unauthorized external parties).

The main concern in these system was thus to control how users of a single organization
can access and interact with the data and the database system. For that purpose, concepts
like role-based access control (RBAC) [21, 147] emerged to manage trust issues within
an organization. RBAC assigns access rights to specific roles, and users are assigned to
these roles. This approach confines trust within organizational boundaries, controlling
data access based on roles. Nevertheless, it does not inherently address the complex
issues associated with cross-organizational data sharing and processing as discussed in
the previous chapter.

Federated data management systems. The concept of sharing data across multiple
DBMSs was introduced in the mid-1980s with federated database systems[153]. These
systems logically integrate multiple autonomous databases into a single virtual system.

Nonetheless, like classical data management systems, federated databases operate
under the assumption that all connected systems are trusted entities. A prime example
for their use case are different business units that store data in different relational and
non-relational data platforms, but need to maintain a global view over the data of
the organization. In other words, they aim to create an abstraction for managing and
processing data of heterogeneous systems in a globally consistent manner rather than
directly addressing cross-organizational trust issues.

Outsourced databases and data management. The advent of cloud computing led to
a surge in outsourcing database management to third-party organizations, responsible for
managing the necessary infrastructure and software components [2]. This shift potentially
exposed data to unauthorized access by rogue administrators without the data owner’s
consent. Despite this, administrators were still entrusted to operate databases and process
transactions correctly.

This setup led to the development of encrypted outsourced databases [141]. These
systems aim to protect the privacy of client data, especially from untrusted database
operators. This is accomplished by encrypting data at rest, in transit, and during pro-
cessing [12]. While these systems primarily focus on data protection from administrators,
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they continue to operate under the assumption that a single organization exclusively uses
the hosted database.
Blockchain systems. The rise of blockchain technology and distributed ledger systems
brought about a radical shift in trust assumptions. Systems like Bitcoin [126] or Ethere-
um [29] propose a decentralized setup in which multiple entities cooperate, each with
potentially varying interests. Blockchain systems, unlike outsourced DBMSs, eliminate
the need for a single entity to host and manage data centrally.

Moreover, the decentralized setup of these systems enables entities with potentially
conflicting interests to collaborate under challenging failure models, including malicious
behavior. As such, they have been instrumental in the evolution of trustworthy data
management systems, particularly regarding security and potential threats.

However, the primary focus of blockchain systems remains on purely decentralized
setups. In contrast, the scope of trustworthy data systems extends to include centralized
systems such as the recently developed ledger databases [11, 184, 185] or verifiable
databases [68, 188]. Although these systems are hosted by a single provider on a
centralized platform, they still facilitate data access by multiple organizations and
implement several guarantees of trustworthy data systems such as data integrity and
auditability.

Additionally, the research on blockchain systems predominantly centers around sec-
urity-related aspects. Trustworthy data systems also prioritize maintaining trust and
security but explore additional efficiency aspects, such as performance, ease of use, and
integration with existing data management standards and interfaces, like SQL. Hence,
in Chapter 4 we investigate how to combine blockchain technology with common database
techniques to get the best of both words.

2.2 Security Techniques in Data Systems
As the previous discussion shows, the scope of enhancing data management systems
with additional data protection and governance guarantee has been evolving over the
past years. Similarly, the application of security techniques has been explored in various
settings.
Encryption. For instance, numerous strategies for ensuring data privacy have been
examined in the context of outsourced database systems. These range from methods that
merely encrypt data at rest [154] to those using homomorphic encryption [71] to maintain
encryption even during processing. Although these works lay a strong foundation for
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ensuring data privacy within trustworthy data systems, data privacy protection is not
the primary focus of this dissertation.
Differential privacy. The concept of differential privacy [46] is another significant
addition to privacy-preserving techniques in the database domain. It provides a statistical
approach to privacy, ensuring that the release of statistical information about a database
does not compromise the privacy of individual records within that database. This
technique is particularly useful in scenarios where aggregate data needs to be shared
without revealing sensitive details about individual records [86].
Cryptographic data structures. Cryptographic data structures such as Merkle
Trees [121] or cryptographic accumulators [134] have also found their use in data systems.
Rather than protecting data from unwanted manipulation, the early use of Merkle Trees
and similar structures focused on detecting divergence and consistency issues among
multiple nodes of a distributed system. However, with the advent of outsourced databases
several of these techniques were adopted in the data management context [174, 191].
Secure Processors. FPGA-based query coprocessor have also been explored in prior
work [15, 49], requiring a custom and complex design to achieve the expected guarantees.
The introduction of TEE and secure hardware such as Intel SGX is a recent development,
which we will discuss in our work on trustworthy data processing in Chapter 5.

While several security techniques exist, their usage in databases or data systems often
results in high performance overheads. Hence, researching techniques to overcome these
performance limitations in the data management context is a major concern in this thesis.

In summary, this chapter situates the research in this dissertation within the context
of related work, underscoring the unique settings and challenges that trustworthy data
systems, as introduced in this dissertation, entail. The following chapter will present the
methodology followed in this thesis and highlight the common research patterns.

12
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Managing data across organizational boundaries and adapting to the corresponding
trust assumptions, as discussed in the previous chapter, introduces novel requirements
for building data management systems. To address the complexity resulting from this
paradigm shift, we structure our work into several areas, adopting both a broad and
detailed research perspective for each.

3.1 Focus Areas
Trustworthy data management penetrates all layers of data systems, ranging from the
foundational aspects of data storage to the higher-level considerations of processing and
access. To capture the challenges associated with each layer of a data management
system, we dissect the data management stack into three core focus areas:

• Trustworthy Data Storage

• Trustworthy Data Processing

• Benchmarking Trustworthy Data Systems

These focus areas not only reflect the fundamental challenges in trustworthy data
management but also mirror the contribution areas of this dissertation. Figure 3.1
effectively illustrates this by mapping the dissertation’s contributions and publications to
each focus area.

For each focus area, our initial exploration is broad before we delve into a specific
fundamental building block with a performance-centric focus. We will elaborate on this
research pattern in the subsequent section.

13
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Trustworthy Data Systems

[52, 53]

[55, 77]

[56]

[57]

[51][54]

Eff.Req.

Data Processing
Chapter 5
Data Storage
Chapter 4

Benchmarking
Chapter 6

Figure 3.1: Mapping of contributions to focus areas (Storage, Processing, Benchmarking)
and research perspectives (Requirements & Efficiency).

3.2 Research Perspectives
This dissertation advances the exploration of trustworthy data systems for cross-orga-
nizational data management. Thus, it is crucial to define the unique requirements and
properties of this emerging class of systems, as well as ensure their efficient implementation.
To this end, we adopt two research perspectives in each area.
Requirements and properties of trustworthy data systems. Initially, we adopt
a high-level perspective in each focus area, proposing a system to meet the unique
requirements and properties. In the context of trustworthy data storage, we explore the
needs and requirements through our proposed system, BlockchainDB. This system
integrates blockchain and database technology to provide a trustworthy storage solution.
Efficient implementations and performance aspects. Next, we dive deeper into
the technical details of each focus area, emphasizing efficiency. For example, we recognize
the significant role of Merkle Trees in maintaining data integrity within trustworthy data
storage. We also identify their potential as performance bottlenecks for update-intensive
workloads. Hence, we conduct an in-depth analysis of these performance issues and
suggest solutions.
Example. In line with this, we observe that the performance of enclaves can be a
limiting factor when considering TrustDBle, our comprehensive system for trustworthy
data processing. This insight motivates us to conduct a detailed technical investigation
into the performance of Intel’s hardware enclave technology.
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4 Trustworthy Data Storage
This chapter summarizes the contributions of this dissertation towards realizing the
requirements for efficient trustworthy data storage. These contributions span over the
following peer-reviewed publications1:

• “BlockchainDB - A Shared Database on Blockchains”, published in Proc. VLDB
Endow. 12.11 (2019) [52], (cf. Chapter 8).

Contributions of the author: Muhammad El-Hindi is the leading author and was thus
responsible for the proposed design of BlockchainDB, implementation, evaluation, and
the manuscript. The co-authors Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy contributed invaluable feedback. All authors agree with the use of the
publication for this dissertation.

• “BlockchainDB - Towards a Shared Database on Blockchains”, published in
the Proceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019 [53], (cf. Chapter 9).

Contributions of the author: Muhammad El-Hindi is the leading author and was thus
responsible for the design of the BlockchainDB system and the proposed demonstration
as well as for the implementation of both. The co-author Martin Heyden contributed to
initial ideas for possible demonstration scenarios that were not included in the publication.
The remaining authors Carsten Binnig, Ravi Ramamurthy, Arvind Arasu, and Donald
Kossmann contributed invaluable feedback. All authors agree with the use of the publication
for this dissertation.

• “Towards Merkle Trees for High-Performance Data Systems”, published in the
Proceedings of the 1st Workshop on Verifiable Database Systems, VDBS ’23, Seattle, WA,
USA, June 23, 2023 [56], (cf. Chapter 10).

Contributions of the author: Muhammad El-Hindi is the leading author and was thus
responsible for the proposed design space analysis, evaluation and the manuscript. The
co-author Tobias Ziegler contributed to the initial implementation and evaluation design.
The co-author Carsten Binnig contributed invaluable feedback. All authors agree with the
use of the publication for this dissertation.

1Several passages in this chapter were transferred verbatim from these publications.
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4.1 Motivation & Requirements
As discussed in Chapter 1, trustworthy data management introduces several unprecedented
requirements for data storage. As an essential contribution of this dissertation, we
motivate and distill these requirements in the following. The subsequent section will
delve deeper into further contributions to achieve the properties of trustworthy data
storage efficiently.
Motivating example. To understand the unique properties of trustworthy data storage,
consider the data sharing scenario depicted in Figure 4.1. The example showcases a
typical supplier scenario with WholeFoods as the customer, Lindt as the supplier, and
FedEx as the shipping company.

In this scenario, WholeFoods first places a new order by inserting two new entries into
the shared database consisting of two tables 1⃝. After the order is placed, Lindt processes
the new order 2⃝. To keep track of the order, Lindt updates the status from new to ready
as shown in 3⃝. Then, FedEx begins its operation 4⃝ and updates the status to delivered
after shipping the order 5⃝.

A naïve way of implementing such a scenario would be that one of the parties is hosting
the shared database; e.g., say WholeFoods hosts the shared database as a service for all
their suppliers. However, this gives WholeFoods the potential to manipulate the shared
data and return false values about the order status without the other parties being able
to verify the actions. For example, WholeFoods could claim that the order was lost
during transit by returning a spurious (i.e., false) order status to Lindt as shown in 6⃝
to trigger that a replacement is sent (without paying for it). Even worse, WholeFoods
could actually delete the order or not store it in the database in the first place. In the
case of a lawsuit, no evidence could thus be found that WholeFoods (or any other party)
was actually acting maliciously.

This example highlights two fundamental requirements for trustworthy data storage:
Data integrity. In trustworthy data management, data systems should protect the
data from unintended or unauthorized modifications. This means even privileged users
with physical access to the storage device should not be able to manipulate data secretly.
In the above example, for instance, even WholeFoods as an operator of the database
with physical access, should not be able to manipulate the data without being detected.
Any change in data should only be made through interactions with the data processing
system, safeguarding against any hidden alterations. Besides, the system should allow
other participants to verify the integrity of retrieved data and ensure that it has not been
manipulated.
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→

→

Figure 4.1: A typical data sharing scenario motivating trustworthy data management.

Auditability & transparency. Ensuring auditability and transparency of data access
can further protect data. Auditability ensures that all accesses and modifications to the
data are recorded and traceable. Transparency, on the other hand, allows participants
to verify the current state of the data, assuring that it matches expectations. Both
properties play instrumental roles in establishing accountability and liability among
parties. In the example above, auditability and transparency would allow all parties
involved to verify the actual and expected state of an order. The challenge here is to store
all relevant information so that all data interactions can be audited and any misbehavior
traced back to the responsible entity.

4.2 Findings & Contributions
Addressing these challenges, this dissertation presents the following two key contributions
to advance the field of trustworthy data storage.

4.2.1 Blockchains as Trustworthy Storage

The first contribution is the development of BlockchainDB, a platform that combines
blockchain and database techniques to provide the guarantees of trustworthy data storage.
An in-depth discussion and a demonstration of BlockchainDB are provided in [52]
and [53] respectively (also refer to Chapter 8 and Chapter 9).

While blockchain technology has its origins in cryptocurrencies, its potential extends
far beyond this domain, finding applications across governmental, healthcare, and IoT
scenarios [16, 20, 169]. A common thread running through these diverse applications is
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the utilization of blockchains to facilitate shared data access among distrusting entities.
This is made possible due to two inherent properties of blockchain technology. First,
it retains a tamper-evident, append-only ledger, encapsulating a full history of data
modifications, thereby enabling auditability and traceability. Second, it obviates the need
for a central trust authority, functioning in a reliable, decentralized manner.

However, despite these merits, the practical adoption of blockchains is inhibited by
significant performance and scalability constraints. For instance, a typical blockchain
platform can only process several hundred to thousands of transactions per second, while
traditional databases can handle millions of transactions per second [44]. Additionally,
blockchains lack the convenience and ease-of-use offered by conventional data management
systems, including a straightforward query interface and well-defined consistency levels.

BlockchainDB addresses these limitations by leveraging blockchains as an underlying
tamper-proof storage layer and implementing a database layer on top to provide user-
friendly data access. The database layer of BlockchainDB imparts a set of functions:

• Partitioning and Partial Replication: A major performance bottleneck of block-
chains today is that all peers of a blockchain network hold a full copy of the
state and still only provide (limited) sharding capabilities. In the database layer
of BlockchainDB, we allow applications to define how data is replicated and
partitioned across all available peers. Thus, applications can trade performance
and security guarantees in a declarative manner.

• Query Interface and Consistency: In the DB layer, BlockchainDB additionally
provides shared tables as easy-to-use abstractions including different consistency
protocols (e.g., eventual and sequential consistency) as well as a simple key/value
interface to read/write data without knowing the internals of a blockchain system.

BlockchainDB also facilitates an off-chain verification procedure allowing peers to
verify the read- and write-set of their own clients. This is crucial as not all peers maintain
a full database copy, and a remote peer could potentially drop updates or return spurious
reads (i.e., values not previously persisted in the database).

By deploying a database layer on top of existing blockchains, BlockchainDB not
only simplifies the adoption process for organizations, but also enhances performance
and scalability. Among others, we illustrate this by evaluating the performance of
BlockchainDB against an increasing network size (i.e., as more peers join the network).
While traditional blockchains experience a degradation in performance due to increased
storage and consensus overhead [44], BlockchainDB mitigates this problem as shown
in Figure 4.2.
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Figure 4.2: Trust vs. performance trade-off in BlockchainDB. By choosing different
sharding and replication strategies BlockchainDB allows users to navigate
the configuration space.

In our experiment, we use a fixed number of peers as shown on the x-axis (i.e., a fixed
amount of compute and storage resources) and vary the used sharding configuration. For
instance, with a fixed number of 16 peers, we tested configurations ranging from 1 shard
with 16 replicas to 16 shards, each with 1 replica. This was repeated for different setups
with lower/higher numbers of peers (ranging from 1− 24 as indicated on the x-axis). We
use a dataset with 64, 000 tuples that are distributed across different shards and peers
as given by the configuration. On the y-axis, we report the throughput in ops/sec for a
YCSB-like write-only workload, as reported by the different marks in the figure.

Figure 4.2 shows how BlockchainDB enables applications to customize partitioning
and replication strategies, optimizing performance and trust characteristics based on
requirements. The two extremes high trust and high performance are highlighted by
the green and blue line, respectively. For the green line, BlockchainDB only uses
one shard to store the data and each newly added peer stores yet another replica of
this shard and participates in its corresponding blockchain. Hence, this configuration
represents a classical blockchain configuration and shows similarly worse scalability. In
the other extreme, high performance, every peer that is added also adds a new shard
to the network. This configuration is comparable to a classical distributed database, in
which the parallelism and throughput of the system is increased with every new node. Yet,
since only one replica exists per shard, the application does not get any trust guarantees.
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We mitigate this trust issue with the help of our additional verification protocols
that allow peers to verify the integrity of data stored in a replica. Using this approach,
BlockchainDB also offers a variety of configurations (light blue space) that strike a
balance between trust and performance, offering flexibility to applications. For instance,
a configuration with 4 shards and 4 replicas each for 16 peers provides a 7× speedup over
the full-replicated baseline while still ensuring trustworthiness through our additional
verification protocols. The feasibility of such configurations underscores the unique
advantages of BlockchainDB.

Clearly, the additional verification protocols also come with their own overheads. An
evaluation of the overheads and a more comprehensive discussion of BlockchainDB
can be found in Chapter 8 and Chapter 9.

4.2.2 High-Performance Merkle Trees for Trustworthy Storage

In our quest for efficient, trustworthy data storage, we examine the performance limitations
of Merkle Trees [121] more closely. This fundamental data structure ensures data integrity
in numerous systems, including blockchains and secure outsourced data systems, by
assembling a tree of cryptographic hashes derived from the stored data.

Compared to other approaches (such as cryptographic accumulators [167] or signature
aggregation [136]), Merkle Trees efficiently support all relevant operations including
updates and the verification thereof. This makes them the go-to choice for update-
intensive applications, such as secure outsourced key-value stores (e.g., [13, 14, 17, 156]).
Using a Merkle Tree as an authenticated data structure, these systems enable clients to
store and update data on an untrusted server while guaranteeing the authenticity and
integrity of the data. However, they suffer from significant performance limitations when
data is frequently updated.

Contrary to classical data structures like B-Trees, which facilitate millions of operations
per second, Merkle Trees typically yield only tens of thousands ops/sec [13]. The reasons
for this inferior performance are two-fold. First, data updates in Merkle Trees necessitate
CPU-intensive operations, such as cryptographic hash computations or digital signatures,
imposing a throughput constraint dictated by the CPU speed. Second, enhancing
performance through concurrent updates by multiple threads is challenging due to
potential conflicts at the root level requiring synchronization, resulting in high contention
and performance degradation for highly-parallel modern multi-core systems [13, 14, 17,
156]. Unfortunately, addressing these two issues is not trivial for Merkle Trees.
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At first glance, these performance limitations seem inherent to the data structure and
thus unavoidable. Hence, previous work mainly proposed alternative data structures [14]
or employed secure hardware [13] to circumvent the performance limitations of Merkle
Trees. Although their properties make performance optimizations hard, we observe
that Merkle Trees still provide unrealized performance potential. For example, while
synchronization for classical tree structures [100] is a known research area, efficient and
scalable synchronization for Merkle Trees is largely unexplored. Further, while it is not
yet possible to make cryptographic operations orders of magnitudes faster, we can exploit
workload characteristics to adapt the Merkle Tree to significantly reduce the overhead
and thus increase performance.

In this contribution we explore different techniques for building high-performance
Merkle Trees. As a first step, we focus on efficient synchronization schemes and propose
a new reverse latch-coupling scheme to improve concurrency in Merkle Trees. For brevity,
we will only summarize the studied synchronization techniques and defer their detailed
discussion to Chapter 10.

In addition to our novel reverse latch-coupling strategy, we study the following two
latching strategies:

• Global Latch: This is the most prevalent approach for synchronizing Merkle
Trees today. It is to use a global latch2 that is maintained for the entire leaf-to-
root traversal to prevent conflicts [14, 89]. As only one thread can acquire the
exclusive latch required for updating the node, this approach serializes all threads
and prevents concurrent operations.

• Level Latch: An alternative latching scheme can be derived by increasing the
granularity of latches to a latch per level in the Merkle Tree. By utilizing traditional
latching coupling [158], this latching scheme creates a chain of threads that traverse
the tree level-by-level and allows threads to run in parallel if they are in different
tree levels.

Our scheme increases the granularity of latches further and combines fine-grained node
latches with latch coupling (aka hand-over-hand latching) [27, 99, 100, 158] to avoid
deadlocks, as observed by previous work [89]. The twist of our latching scheme is that it
latches the node’s parent (exclusively) to update a node. This backward-directed latching
effect (hence the name reverse latching) effectively also latches the node’s sibling(s). The
underlying observation is that the inherent data dependency in a Merkle Tree enables

2The systems community usually uses the term lock to describe the same mechanism.
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Figure 4.3: Evaluation of synchronization schemes. Reverse latch coupling increases both
scalability and performance by around 2× compared to level latching.

us to simultaneously synchronize the (two) children of a node using their parent. I.e.,
instead of acquiring a latch for each child separately, we can protect the consistency of
both nodes by latching their common ancestor first.

We evaluate our novel latching scheme against the previously mentioned alternatives
on an update-only workload to demonstrate that an enhanced synchronization technique
can indeed improve the concurrency and performance of Merkle Trees. In our benchmark,
we execute updates for 8 byte records uniformly on a Merkle Tree with 224 records for
10 seconds and report the system throughput as an average over 5 repetitions of our
experiment.

The results, illustrated in Figure 4.3, show that reverse latch coupling improves
scalability and performance by an order of magnitude when compared to the global
latch strategy. In comparison to the level latch strategy, it increases both scalability and
performance by approximately 2×. However, performance degradation occurs after 32
worker threads due to remaining contention effects.

To further reduce the contention and the cryptographic overhead, we propose the
concept of splitting that enables a lightweight and dynamic sharding of Merkle Trees.
We will discuss this concept in more detail in Chapter 10.
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This chapter summarizes the contributions of this dissertation towards realizing the
requirements for efficient trustworthy data processing. These contributions span over the
following peer-reviewed publications1:

• “TrustDBle: Towards Trustable Shared Databases”, published in the 3rd Interna-
tional Symposium on Foundations and Applications of Blockchain [77], (cf. Chapter 11).

Contributions of the author: Muhammad El-Hindi is the leading author and was
thus responsible for the proposed architecture and concepts as well as the manuscript.
The co-author Simon Karrer contributed to the first implementations of the trusted Lock
Manager and provided initial experiments. The remaining authors Gloria Doci, and
Carsten Binnig contributed invaluable feedback. All authors agree with the use of the
publication for this dissertation.

• “Benchmarking the Second Generation of Intel SGX Hardware”, published in
the International Conference on Management of Data, DaMoN 2022, Philadelphia, PA,
USA, 13 June 2022 [57], (cf. Chapter 12).

Contributions of the author: Muhammad El-Hindi is the leading author and was thus
responsible for the benchmark design, evaluation of SGXv2, and the manuscript. The
co-author Tobias Ziegler contributed to the implementation of the B-Tree experiments and
provided invaluable feedback on the manuscript. The remaining authors Matthias Heinrich,
Adrian Lutsch, Zheguang Zhao, and Carsten Binnig contributed invaluable feedback. All
authors agree with the use of the publication for this dissertation.

• “Towards Decentralized Parameter Servers for Secure Federated Learning”,
published in the Proceedings of the 11th International Conference on Data Science ,
Technology and Applications, DATA 2022, Lisbon, Portugal, July 11-13, 2022 [55], (cf.
Chapter 13).

1Several passages in this chapter were transferred verbatim from these publications.
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Figure 5.1: Shared DB of two Telco providers motivating the need for trustworthy data
processing.

Contributions of the author: Muhammad El-Hindi is the leading author and was thus
responsible for the proposed design of the decentralized parameter server, the privacy-
preserving configurations, the corresponding implementation, evaluation, and manuscript.
The co-authors Zheguang Zhao, and Carsten Binnig contributed invaluable feedback. All
authors agree with the use of the publication for this dissertation.

5.1 Motivation & Requirements
Similar to the previous chapter, we first analyze the new prerequisites for trustworthy
data processing, followed by a detailed discussion of our contributions to efficiently
achieving these properties.
Motivating example. Let us consider a typical telecommunication scenario, where
mobile phone users frequently connect to networks outside their home provider’s range.
Even though users incur charges in these other networks, payments are made solely to
their home provider, who settles any outstanding amounts with the secondary provider.
An illustration of this scenario is presented in Figure 5.1, where Alice (a user) primarily
uses Bob’s (home provider) services but also connects to Charlie’s (secondary provider)
network. By using the abstraction of a shared database, Alice could not only settle
her charges with Bob but also Bob could clear the debts of Alice with Charlie using
transactions on the shared database.

In such a scenario, it is crucial for the used database management system (DBMS) to
ensure that data can only be accessed and modified based on terms agreed by all parties.
For instance, when Alice clears her charges with Bob, Bob must settle Alice’s debts with
Charlie according to the stipulated mobile contract terms.
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To provide such guarantees, a trustworthy data system must fulfill the following
properties:
Data policies & data sovereignty. As data traverses organizational boundaries, it is
crucial that the owning entity retains control over its access, modification, and use. In our
example, while multiple telecommunication providers may use the same shared database,
Alice should always control who can access her personal data. This sovereignty enables
organizations to manage interactions with their data, ensuring intellectual property
protection and compliance with legal requirements. For instance, only Alice’s home
provider should be able to read information such as her personal address.
Integrity of computation. Also referred to as computation integrity or verifiable
processing, this property necessitates that the execution of data management logic, as
agreed upon in the policies, is performed accurately, preventing potential breaches due
to manipulated transaction logic. This includes the guarantee that all parties correctly
execute transactions verifiably. For example, in the given scenario, computation integrity
implies that Alice’s settlement transaction is accurately executed on both Bob’s and
Charlie’s charge tables. Furthermore, correct and verifiable execution also means that a
DBMS can prove that all involved parties executed a transaction in an ACID-compliant
way. Clearly, these properties are specific to database transactions, but application-specific
requirements also exist in other settings.

5.2 Findings & Contributions
Following our common research pattern, we first adopt a high-level approach to designing
a system that implements the guarantees of trustworthy data processing. Then, we
proceed with a technical deep dive into a specific building block, in this case, Intel’s
SGX, to address efficiency and performance concerns. While our initial focus is database
workloads, we broaden our scope to include non-database workloads, particularly those
related to collaborative machine learning settings, e.g., federated learning.

5.2.1 Hybrid Architecture for Trustworthy Processing

In addressing the requirements for trustworthy data processing, this contribution in-
troduces a system called TrustDBle. TrustDBle aims to satisfy trustworthy data
processing by supporting data policies and guaranteeing computation integrity. It extends
our previous work on using blockchains as trustworthy data storage by supporting SQL
transactions and ACID properties.
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Figure 5.2 shows an overview of TrustDBle’s architecture. Similar to our previous
system, BlockchainDB, we build a database layer on top of blockchains as a storage
layer. Thereby, TrustDBle also uses sharding in the storage layer to enable scalability.
We also implement further optimization, such as caching in the storage layer to speed up
data access. In the following, we focus on extending the database layer with a secure
execution engine enabling data policies and ensuring the integrity of computation.

A traditional approach to guaranteeing the integrity of computation is to define
smart contracts for the transaction processing logic, e.g., as done in [44]. However,
this approach is hampered by the inherent scalability limitations of blockchains and
the added complexity of re-implementing new transaction logic as smart contracts. To
address this, we propose a secure transaction processing engine outside the blockchain,
leveraging a Trusted Execution Environment (TEE) provisioned with Intel Software
Guard Extensions (SGX).

Intel SGX establishes TEEs as so-called hardware enclaves protected by the CPU.
The CPU provides an enclave with a special address space that is only accessible by the
trusted code inside the enclave.

One major limitation of SGX, however, is that it only provides a small portion
of protected memory. To overcome this challenge, TrustDBle does not place all
transaction execution components in the trusted environment. Instead, we place only
those components inside the TEE, which are required to verify that the ACID properties
have been fulfilled. For example, to provide verifiable isolation, we only implement the
lock manager (LockMgr) of our database layer inside the trusted environment (green box
in Figure 5.2).

We use two key criteria to decide which component to implement inside the TEE. First,
the component should only maintain a small state inside the protected memory region.
In the case of the lock manager, we only need to maintain the lock table of the lock
manager in the TEE. Second, verifiable processing must depend on the correct behavior
of a node. For other components, such as the transaction coordinator (TxCo), we use
verification protocols as done in BlockchainDB to confirm their correct behavior (e.g.,
attain verifiable atomicity).

TrustDBle’s verifiable transaction processing engine currently offers verifiable iso-
lation and atomicity (i.e., A and I of ACID) based on a secure locking scheme and a
verifiable two-phase-commit (2PC) protocol for cross-shard transactions.

Our secure locking scheme operates via sharded lock managers in the TEE of a
TrustDBle node. Transactions can only access or modify data with a valid lock signed
by the LockMgr. Sharding the lock manager enables us to prevent the lock manager from
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Figure 5.2: TrustDBle Architecture. A hybrid architecture combining TEEs (green
box) for verifiable processing and blockchains as auditable storage allows to
overcome the capacity limitations of TEEs and the performance overheads of
blockchains.

becoming a bottleneck. Availability is achieved by persisting the state of lock managers
to auditable storage. This way, other nodes in TrustDBle can recover from a lock
manager fault. Moreover, our locking scheme supports the execution of transactions
under different isolation levels. To that end, the trusted lock managers enforce that locks
are acquired and released according to the specified isolation level.

Similarly, we utilize the auditable storage to log 2PC messages and detect or recover
from a faulty transaction coordinator. Thereby, local transaction managers apply a trust,
but verify strategy with respect to a transaction coordinator: While the transaction
coordinator is responsible for collecting and forwarding 2PC messages and decisions to
local TxMgrs, each local TxMgr also logs messages to a shared meta-blockchain which all
TxMgr can access. Messages in this meta-blockchain are used to verify the decisions of
the transaction coordinator. Similarly to our previous work in BlockchainDB, we use
deferred verification techniques to mask verification in the case of no failures.

Since TrustDBle combines database, blockchain (BC) technology, and TEEs to
overcome the limitations of blockchains and Intel SGX, we evaluate our system with
a focus on scalability. Our experiments using the Smallbank OLTP benchmark [30]
(see Chapter 11) show that our verifiable processing approach can execute cross-shard
transactions in a scalable manner.
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5.2.2 Secure Hardware for Trustworthy Processing

Until not too long ago, SGX was exclusively available for consumer-grade CPUs, which
are typically less powerful than server-grade CPUs. Coupled with the low core count
inherent in these CPUs, SGX enclaves also had other significant technical constraints,
such as a restricted memory capacity of up to 256 MB and substantial performance
overheads. These capacity restrictions especially limited the application of Intel SGX
for DBMSs. In consequence, researchers in the database community started to explore
different ways to overcome these limitations, e.g., by employing hybrid architectures as
done in TrustDBle or by only placing certain DBMS components inside an enclave
[173] or designing enclave-native engines [93, 159].

With the availability of the new server-grade Intel Ice Lake processors [79], Intel
promised to address several limitations of SGX enclaves. The latest implementation of
Intel SGX on these processors (in the following referred to as SGXv2), not only reduced
the overhead of memory protection but also increased the capacity of the protected
memory region. This region which is also referred to as Enclave Page Cache (EPC) can
be up to 512 GB per socket large, depending on the CPU model [87]. Furthermore, the
newly introduced scalability improvements now permit DBMSs using Intel SGXv2 to
scale across multiple sockets of high-end servers.

Following our research pattern of diving deeper into certain components to study
efficiency and performance issues, we ask whether the previous solutions to overcome
SGX limitations for DBMSs are still relevant and if the new generation of SGX processors
can deliver on their promise to secure data without compromising performance. To answer
this question, we systematically study the performance of Intel SGXv2 and compare
it to its predecessor (SGXv1). Specifically, we evaluate SGXv2’s performance with
typical database workloads while examining multi-core scalability and Non-Uniform
Memory Access (NUMA) effects as well as the performance with increasing data set
sizes. Furthermore, we present several findings concerning the use of multiple concurrent
enclaves in SGXv2 that may arise from running different DBMS instances on the same
hardware. As a further contribution, we discuss lessons learned for building the next
generation of high-performance enclave-based DBMSs on SGXv2. For brevity of this
synopsis, we focus on our findings regarding data scalability, referring to Chapter 12 for
more detailed information on other experiments and learned lessons.

In order to evaluate to which extent SGXv2 supports larger amounts of data, we
implement a B-Tree index structure as a trusted library inside SGX. We use it to run a
YCSB-like workload with 20% inserts and 80% reads to gradually increase the size of
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Figure 5.3: Throughput of a 80% read / 20% insert workload in a B-Tree. A significant
performance improvement is observable for larger database sizes in SGXv2.

the database. The results of this experiment are shown in Figure 5.3. As expected, the
performance of the B-Tree on SGXv1 (red line) drops very quickly (after 128 MB) and
only supports a total database size of up to 64 GB due to the corresponding limit on
enclave sizes in SGXv1. In contrast, the B-Tree in the SGXv2 enclave (blue line) shows
orders of magnitude better performance for much larger database sizes.

Moreover, with SGXv2, we observe two significant reductions in performance as the
data size increases: The first performance drop is at around 64 GB, when the data size
reaches the capacity limit of the EPC on our first NUMA node. The second performance
drop happens at around 128 GB where the capacity of the EPC on the second NUMA
node is reached. At this point, similar to SGXv1, we can observe a drastic performance
penalty due to paging.

As this and other results in Chapter 12 show, SGXv2 delivers on its promise to increase
enclave capacity. Depending on the chosen CPU, its enclave capacity is two to three
orders of magnitude larger than SGXv1. In our setup, for example, an in-memory B-Tree
can scale up to about 120 GB of data, providing high performance with only around 25%
overhead compared to a pure in-memory B-Tree. Conversely, this workload performs 25×
worse in SGXv1 due to its limited capacity and the involved paging. The server-grade
CPU support provided by SGXv2 also offers additional advantages, including larger cache
sizes, increased core counts, and improved scalability across NUMA regions.

However, despite its benefits, using Intel SGX technology still comes with several
potential challenges, as detailed in Chapter 12. For instance, memory management needs
careful design to accommodate the extra overhead for remote NUMA access. Secondly,
different trusted disk I/O implementations can lead to significant performance variations,
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requiring a careful choice of libraries and functions. Lastly, SGXv2 does not eliminate
certain fundamental performance penalties, like paging, but rather shifts them to larger
memory sizes.

5.2.3 Trustworthy Processing of Machine Learning Workloads

Thus far, our focus has primarily been on database workloads and access patterns.
Nonetheless, it is crucial to recognize that the principle of trustworthy data processing
extends to diverse workloads, such as those encountered in machine learning.

Federated learning (FL) [118] is one instance where this principle is relevant. It provides
a collaborative framework for organizations to learn predictive models. Often, individual
organizations lack the volume of training data required to train deep models, and FL
allows them to pool their resources without the data leaving organizational boundaries
[88, 103]. This is particularly useful when the data contains private information that
must be safeguarded, such as in the healthcare sector, where hospitals need to share data
while complying with stringent legal and privacy regulations [26].

The predominant architecture for federated learning today is to use a central parameter
server (PS) that collects the model updates from all participants and aggregates them.
In this setup, the data owners participate in the training process by sending their locally
computed model updates to the central server, which combines these updates into a
global model [118]. The original assumption was that such an approach is able to protect
the privacy of each participant’s training data, since only model updates and not the
training data itself is exchanged with the server. Yet, recent works [193, 196] have shown
that privacy attacks exist that allow an attacker to successfully extract information about
the training data by observing the model updates (i.e., exchanged gradients). More
surprisingly, these attacks showed that it is possible to successfully reconstruct individual
training examples with high accuracy (e.g., a full picture used for training) [193, 196].
Even worse, these attacks are also applicable for different model architectures [69, 177].
Therefore, trustworthy processing in this context should prevent such attacks and ensure
servers process updates following the agreed logic.

Existing approaches remain limited in preventing privacy attacks in federated learning
[1, 23, 69, 139, 196] and thus do not meet the requirements of trustworthy data processing.
Most strategies either significantly reduce the learning accuracy (e.g., using noisy gradients
can result in 30% less accuracy [196]) or have other limitations such as assuming a trusted
central PS, or being incompatible with widely used model architectures (e.g., secure
aggregation [23]). Additionally, generic cryptographic primitives, such as homomorphic
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Figure 5.4: Decentralized Parameter Server Architecture for an example with 3 shards
(W 1, W 2, W 3). The parameter space W is partitioned across several indepen-
dent PS instances managed by different participants. In the example, the PS
instances are co-located with each participant, but they can also be hosted
by independent physical servers.

encryption, increase training times significantly, often up to 100× [139], despite not
affecting accuracy.

In this contribution, we take a different, system-driven approach by modifying the
federated learning framework. We propose to architect the training system around
decentralized parameter servers that follows the concept of trustworthy data processing,
as shown in Figure 5.4.

Our approach replaces the centralized PS, a single point of security vulnerability, with
a decentralized one. Instead of pooling all model parameters on one PS, we distribute the
model – or a shard of it – among several independent parameter server instances. Our
P2Sharding framework thus reduces the potential for privacy invasions by preventing PS
instances from having a full view of the gradients or model parameters – both essential
for reconstruction attacks.

In our framework, we consider a set of K clients who participate in training a model
on their joint data (e.g., K = 3 in Figure 5.4). The model W is partitioned into M

shards W 1, · · · , W M using a configurable strategy, and each shard W m is hosted on a
separate parameter server instance. Each server instance W m receives the corresponding
gradients for its shard from each client k. Each client downloads the full model and
iterates W = (W 1, · · · , W M ) by sending requests (i.e., polling) to the M server instances.

The P2Sharding framework assumes all parties to be semi-honest, that is, each client
and server follow their prescribed protocol and only attempts to extract more information
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5 Trustworthy Data Processing

from the other client’s data2. Moreover, at least one client and one shard are assumed to
be non-colluding with the other parties (i.e., we have at least two non-colluding shards).
Otherwise, the security reduces to that of a centralized server.

We also anticipate scenarios involving collusion between a subset of PS instances or
between client and server instances. In these cases, the P2Sharding framework provides
configurations designed to mitigate the risk of both PS-side and client-side attacks. We
propose three privacy-preserving techniques to mitigate these attacks: model sharding,
asynchronous updates, and polling intervals on stale parameters.

Our model sharding technique distributes the model parameters across all PS instances
to minimize the possibility of server-side reconstruction attacks. Configuring the size
of shards allows for adjustments to the privacy level in the face of potential collusion
attacks. Our framework also includes a parameter for asynchronous updates designed to
reduce the risk of collusion between malicious clients and servers. Lastly, we use polling
intervals to introduce an element of uncertainty to model iterations for added privacy. A
more detailed explanation and discussion of these techniques is provided in Chapter 13.

The evaluation of our framework on the CIFAR10 and MNIST datasets (cf. Chapter 13)
demonstrates its effectiveness in thwarting gradient-based reconstruction attacks on deep
learning models. These configurations reduce the attack outcome to near-random noise,
illustrating the potential of our system-driven approach in ensuring trustworthy data
processing in machine learning workloads.

2Protocols that assume a semi-honest setup prevent inadvertent leakage of information between parties,
and are thus useful if this is the concern. In addition, protocols in the semi-honest model are quite
efficient and are often an important first step for achieving higher levels of security.
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Data Systems

This chapter summarizes the contributions of this dissertation for benchmarking trust-
worthy data systems more holistically. These contributions span over the following
peer-reviewed publications1:

• “ACID-V: Towards a New Class of DBMSs for Data Sharing”, published in Het-
erogeneous Data Management, Polystores, and Analytics for Healthcare - VLDB Workshops,
Poly 2021 and DMAH 2021, Virtual Event, August 20, 2021, Revised Selected Papers [54],
(cf. Chapter 14).
Contributions of the author: Muhammad El-Hindi is the leading author and was
thus responsible for developing the proposed transaction model, verification levels and the
manuscript. The co-authors Zheguang Zhao, and Carsten Binnig contributed invaluable
feedback. All authors agree with the use of the publication for this dissertation.

• “Towards a Benchmark for Shared Databases [Vision Paper]”, published in
Datenbank-Spektrum 22.3 (2022) [51], (cf. Chapter 15).
Contributions of the author: Muhammad El-Hindi is the leading author and was thus
responsible for the analysis of traditional database benchmarks and requirements of shared
databases as well as for the proposed benchmark design and manuscript. The co-author
Ashwin Arora provided invaluable feedback on the manuscript and contributed to an initial
of the benchmark that was not included in the publication. The remaining authors Simon
Karrer, and Carsten Binnig contributed invaluable feedback. All authors agree with the
use of the publication for this dissertation.

6.1 Motivation & Requirements
In recent years, shared and collaborative data management use cases have gained increas-
ing traction, leading to a new classification of systems to which our proposed systems,

1Several passages in this chapter were transferred verbatim from these publications.
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BlockchainDB and TrustDBle, belong. Other systems in this category include
Veritas [68], FalconDB [137], Fides [111], and Spitz [188]. These systems, distinct from
classical database management systems designed for single-party usage, empower mul-
tiple parties to manage a shared database. They, therefore, need to uphold additional
guarantees, such as data and computation integrity, as discussed in prior chapters.
Common abstractions. However, let us examine how these existing systems provide
novel guarantees of trustworthy data management. We can observe that these systems
typically take a very implementation-centric approach and often do not integrate well
with the ACID guarantees of properties DBMSs. Moreover, these systems’ concrete
guarantees are very different from system to system and often hard-baked into their
execution model. For instance, FalconDB is a blockchain-based system that incentivizes
nodes to verify the execution of queries asynchronously, mitigating the high verification
cost. As a result, potentially unverified queries from malicious servers stay undetected.
In contrast, transactions (updates) in FalconDB are always verified synchronously by an
entire network.
Benchmarking frameworks. Further, each new trustworthy data system introduces
its own architectural choices and custom guarantees, which make it hard for users to
navigate the plethora of shared database systems. While standard benchmarks like the
TPC-C database benchmark have been a well-established tool to compare and analyze
traditional database systems, they are unsuited to evaluate shared database systems.
This is because these benchmarks do not take the novel properties and assumptions
of trustworthy data systems into account. For instance, while classical databases were
built with an isolated single-owner setting in mind, shared databases assume a multi-
owner setting. This observation is also evidenced by the common practice in several of
the above-mentioned shared database systems, that all implement (additional) custom
benchmarks and evaluation frameworks.

6.2 Findings & Contributions
To improve the comparability and evaluation of future trustworthy data systems, this
thesis provides two key contributions, which we explore subsequently.

6.2.1 Abstraction for Verifiability

Recognizing the diversity in guarantees and their implementations across different trust-
worthy data systems, we propose a more principled and database-centric approach toward
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Com-
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Aborted
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Figure 6.1: Simplified state model for ACID-V. The classical transaction state model is
extended with a Verified state.

ensuring trustworthy guarantees such as transaction verifiability. Similar to the other
components in ACID, such as the well-known isolation property, we suggest specifying
the guarantees of verifiability in a declarative manner using different verification levels
(i.e., strict or looser).

For instance, in the context of isolation in ACID, users can specify the isolation level
(e.g., read committed, serializable) under which a transaction should operate. The
database system ensures this isolation level through its concurrency control scheme (e.g.,
optimistic vs. pessimistic). Similarly, we propose to add a new verifiability property
that the user can specify declaratively, and database systems can implement differently.
This abstract perspective on verifiability enables users to reason about the guarantees
provided by a system, independent of its implementation specifics.

To incorporate verifiability into ACID, we introduce a verified state into the classical
transaction state model of ACID-compliant DBMSs, as illustrated in Figure 6.1. The
simplified figure only considers scenarios where all nodes in a shared DBMS act honestly.
However, we also discuss some aspects of malicious behavior in Chapter 14. As we can
observe in the state model, a transaction can only attain the verified state after reaching
the committed state.

Modeling verified as a state that follows the committed state has several advantages.
First, since verification is typically an expensive step, the model leaves some freedom
when the transition from committed to verified happens (i.e., directly after the commit or
if it can be deferred). Moreover, it enables the user to declare which state is allowed to be
read by other transactions (e.g., if committed but unverified can be read, or if all states
must be verified before becoming visible). Second, as the verified state is optional, not
all committed transactions need to be verified, thereby reducing overhead and allowing
partial verification of transactions.

As elaborated in Chapter 14, using this model, we propose three distinct verification
levels (strict, unstrict-full, unstrict-partial) that describe how systems verify transactions.
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We also consider the potential effects of malicious behavior by individual peers (i.e., in
the event of incorrect transaction execution). Our detailed discussion in Chapter 14
reveals that such a standardized model, shared by all trustworthy data systems, can ease
the comparison of different systems and assist users in understanding the burgeoning
landscape of new systems for trustworthy data systems.

6.2.2 Data Sharing Benchmark

While traditional database benchmarks like TPC-C [168], Smallbank [5] or YCSB [38]
could serve as a starting point for evaluating trustworthy data systems, we argue that
these benchmarks do not cover all important dimensions for shared databases as discussed
above.

Recognizing this issue, we propose a standardized benchmark tailored to shared
database systems based on the following contributions:

1. Analysis of unique characteristics distinguishing shared databases

2. Evaluation of the limitations in traditional benchmarks for evaluating shared
database systems

3. Proposal for a novel benchmark design specifically for shared databases

We provide an overview of the proposed benchmark design (3.) here and refer to Chap-
ter 15 for a detailed requirement analysis and comparison with traditional database
benchmarks (1. and 2.).

Our benchmark design integrates three distinct workload categories — application,
verification, and auditing — to effectively capture the unique requirements and properties
of trustworthy data systems, as illustrated in Figure 6.2.

Shared DB Benchmark
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Figure 6.2: High-level benchmark design. Our benchmark defines three main workload
types (Application, Verification, Audit) with novel benchmark dimensions.

Application workloads usually model a real-world use case and corresponding database
queries that are executed by clients (also called terminals). We believe that a classical
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benchmark such as TPC-C and its workload patterns (i.e., the transaction mix and data
access patterns) is actually a good starting point. However, they can clearly not be
used out of the box without any modifications for data sharing since, e.g., the TPC-C
benchmark models the activities of one organization only — a wholesale supplier who
accepts product orders at and for different warehouses.

The verification workload aims to reveal the overhead of different verification schemes
implemented in data-sharing systems (e.g., online vs. offline verification). The auditing
workload models an auditor’s access patterns, which is read-heavy and scan-oriented
since it needs to review a long history of data updates to see where potential issues (e.g.,
illegal data modifications) occurred. Overall, we envision that a benchmark execution
has to include the application workload, while the other two categories, verification and
auditing, are optional. This (modular) approach of workload categories enables the usage
of the benchmark for systems that do not offer a certain capability (e.g., auditing).

Our benchmark reports classical performance metrics such as latency and throughput.
We deliberately omit the quantification of security or trust levels provided by a system,
acknowledging the inherent difficulty in measuring these concepts due to the potential for
unknown attacks [128]. However, security-relevant parameters like verification strategy
and data usage policies, which can impact overall performance, are included in the
benchmark report. Future work may leverage these parameters to enable a classification-
based evaluation of system security/trust as suggested in [128].

As illustrated in Figure 6.2, our proposal includes unique benchmark dimensions for
each workload category. In the ensuing discussion, we will briefly outline the application
workload dimensions, participant scalability, fraction of shared transactions, and read-
/write ratio. These dimensions are varied in our benchmark to better understand the
performance characteristics of a shared database system.

• Participant Scalability: Scaling the number of participants in a shared DB is
different from simply adding additional database clients (terminals). This stems
from the fact that scaling participants does not necessarily correlate with the
number of clients generating transactions. For instance, in TPC-C, each warehouse
could represent an independent organization, and adding more participants could
correspond to increasing the number of warehouses. Note that, although it is the
case for TPC-C, increasing the number of participants does not necessarily mean
that the amount of data needs to be scaled.

• Fraction of Shared Transactions: This dimension aims to understand the
impact on performance as the proportion of shared transactions increases. Note,
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however, that traditional application workloads must be modified to incorporate
shared data and transactions. For instance, in TPC-C, new-order transactions
involving remote order-lines could be modeled as shared transactions.

• Read/Write Ratio: This benchmark dimension aims to unveil differences in how
systems handle verification for read and write operations. By adjusting the workload
mix, we can vary the proportion of writes in the workload, thereby observing the
effect of verifying more writes in the system. For example, instead of the fixed
transaction mix with mostly write-heavy transactions in TPC-C, we propose varying
the transaction mix to gradually increase the proportion of write-heavy transactions.

For a more detailed discussion of these benchmark dimensions and a deeper exploration
of the verification and audit workload categories, refer to Chapter 15. In summary,
our novel benchmark design, integrating traditional performance metrics and emerging
aspects like verifiability and auditability, lays the groundwork for a holistic appraisal of
systems dedicated to trustworthy data management.
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7 Conclusion
Our work encompasses multiple contributions towards the development of efficient and
trustworthy data systems, providing valuable insights and a unique perspective to data
management across multiple organizations. The subsequent sections delve into a detailed
reflection on these contributions and outline potential directions for future research.

7.1 Summary
This thesis advocates for the development of trustworthy data systems as specialized
platforms to accommodate the unique demands of cross-organizational data management.
In line with the discussions laid out in Chapter 1 and Chapter 2, modern trends like
digitization and data ecosystems necessitate a shift from isolated, localized data systems
to more open models, thereby engendering new dependencies and challenges in data
protection and governance. As explained in Chapter 3, we address these new requirements
through two main strands of inquiry: trustworthy data storage and trustworthy data
processing, and suggest a holistic benchmarking framework for assessing these systems.

Chapter 4 delves into the development of efficient trustworthy data storage. Our
proposed system, BlockchainDB, combines blockchain and database technologies to
meet the novel requirements of data integrity and auditability. Although blockchains are
ideal for ensuring these properties, they are inherently limited in terms of performance
and usability. To address this issue, we introduce an additional database layer on top
of blockchains as a storage backend. This enhancement provides users with an easy to
use key value interface to interact with the data and leverages database techniques such
as partitioning to parallelize read/write operations across multiple blockchain networks.
However, since data is now only stored in a certain partition instead of being replicated on
all participants, BlockchainDB implements additional verification protocols to ensure
data integrity on all partitions. Our experiments show that BlockchainDB can provide
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up to two-orders of magnitude higher throughput than native blockchains and allows to
better scale-out with the number of participants.

In our quest for efficient trustworthy data storage, we also examine the performance
limitations of Merkle Trees more closely. Merkle Trees are a fundamental data structure
in systems like blockchains for guaranteeing data integrity. However, they suffer from
significant performance limitations when data is frequently updated. To improve the
update performance of Merkle Trees, we investigate various latching techniques and
introduce a novel method, Reverse Latch Coupling. Our innovative latching scheme
significantly increases concurrency in Merkle Trees, leading to an order of magnitude
increase in throughput and considerably improved scalability.

In Chapter 5, we explore achieving trustworthy data processing while maintaining
high performance. We discuss how the novel requirements of policy adherence and
computational integrity are implemented in our system, TrustDBle, by employing a
hybrid architecture, utilizing blockchains and Trusted Execution Environments. Our
architecture acknowledges that TEEs, like Intel SGX, are more efficient than blockchains
for executing policies, e.g., a pre-defined transaction logic, but face capacity limitations
for processing large volumes of data. To address this limitation, we propose placing only
the most critical components inside the TEE to process database transactions correctly.
For example, we suggest to implement a trusted lock manager inside the TEE that ensures
that the isolation property of transactions is ensured. Our results confirm that combining
TEEs, such as Intel SGX, with blockchains indeed enables a more efficient processing of
database transactions compared to a baseline solely based on blockchains.

Addressing the limitations of the first version of Intel’s SGX technology, we perform
a database centric evaluation of the newly released second version (SGXv2). We aim
to evaluate the efficiency of conventional techniques such as placing only a subset of
components in the TEE and determine if SGXv2 can better support data-intensive
applications. Our rigorous experiments using a variety of typical database workloads and
access patterns confirm that SGXv2 can handle larger data volumes more efficiently. For
instance, we find that with SGXv2 an in-memory B-Tree can scale up to about 120 GB
of data and still provide high performance compared to a pure in-memory B-Tree. In
contrast, this workload performs 25× worse in SGXv1 due to the limited capacity and
involved overheads such as paging. However, we also find that SGXv2 still comes with
several pitfalls, since capacity limitations remain and new challenges like remote NUMA
access need to be addressed.

As trustworthy data processing is not limited to database workloads, we also show how
it can be applied to machine learning workloads. In particular, we apply trustworthy data
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processing to the collaborative setting of federated machine learning, in which a central
parameter server is used to aggregate model updates computed by multiple organizations
locally. We show how trustworthy data processing can be applied to this setting to
prevent the PS from reconstructing private training data based on the received model
updates. Our approach proposes a decentralized parameter server architecture, that splits
the central parameter server into multiple, independent PS instances. This architecture
includes three privacy-preserving configurations on how to partition, serve and update
the model parameters for better privacy. Empirical evidence on commonly used ML
data sets show noticeably stronger resilience against gradient-based data reconstruction
attacks.

Finally, in Chapter 6, we make two significant contributions to enhance the comparabil-
ity and evaluation of future trustworthy data systems. First, we advocate for expressing
common properties of trustworthy data systems, such as verifiability, in a declarative
manner. This approach facilitates users’ understanding of the system’s guarantees while
allowing flexibility in implementation. For instance, in analogy to isolation levels, we
define a set of verification levels that users can employ to describe how strict trustworthy
processing properties must be checked. Second, we introduce a comprehensive bench-
mark for trustworthy data systems, introducing three workload categories: application,
verification, and audit. This holistic approach allows a more thorough evaluation of these
systems, capturing traditional performance metrics as well as new aspects like verifiability
and auditability.

In a nutshell, our work has covered various aspects of trustworthy data systems,
focusing on novel ways to manage data across organizational boundaries. We believe
that the developed techniques and concepts can find adoption in other domains paving
the way for several future research directions.

7.2 Future Research Directions
In today’s digital climate, data collaboration across organizations is not only increasing
in importance but also becoming more regulated. As such, DBMSs, which are the
focus of this dissertation, represent only one facet of the diverse platforms used to store
and process data. Consequently, the concepts and methodologies proposed within this
dissertation pave the way for a multitude of future explorations:
Embracing trustworthy techniques. Organizations rely on an array of platforms to
store and process data, ranging from basic file systems to more contemporary platforms
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such as lakehouses [186]. The level of support these systems provide for data protection
and governance varies considerably. While many platforms incorporate features like data
encryption at rest, comprehensive auditability guarantees for trustworthy data storage
are often lacking.

This dissertation has primarily focused on integrating trustworthy data management
requirements into DBMSs. However, we contend that many of the insights gleaned from
our work have applicability beyond databases. For instance, an optimized Merkle Tree
data structure as proposed by our work could bolster the efficient implementation of
data integrity guarantees in lakehouses. Similarly, our findings on high-performance,
trustworthy data processing using TEEs, like Intel SGX, could be beneficial in other
contexts, such as machine learning [180], ensuring data is processed following a predefined
logic. While not all of our approaches may be directly applicable, they provide a solid
foundation for investigating alternative strategies.
Commoditizing trustworthy data management. While this dissertation proposes
the concept of trustworthy data systems as a specialized platform for cross-organizational
data management, we foresee the wider adoption of trustworthy data management
properties in data systems. Just as data encryption at rest is now commonplace, our
work lays the groundwork for broader support of guarantees such as data integrity and
auditability in general-purpose DBMSs. The reason for this is that these properties not
only facilitate cross-organizational data management, but they also help organizations
comply with regulations such as GDPR, which demand auditability and transparency.

The process of integrating trustworthy data management techniques into existing
systems, as opposed to creating new systems from scratch, leverages many of the building
blocks used in our research. For example, while using a standard blockchain as a storage
backend (as in BlockchainDB) may not be practical for established systems, the
cryptographic principles and data structures like Merkle Trees that underlie blockchains
remain pertinent. While the idea of integrating cryptographic techniques and ideas
from blockchains in databases is already being explored in related work [191], these
approaches still constitute additional engines that are not tightly integrated into the
standard database stack. Instead we envision a shift towards replacing common index
structures like B-Trees with alternatives that support data integrity (e.g., MB-Trees [101])
without compromising performance.
Exploration of other technologies and approaches. As we anticipate the commodi-
tization of trustworthy data management, we recognize the need to research alternative
strategies to meet its requirements. We have only explored a subset of the security and
cryptographic techniques applicable in this context as a reference point.
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For instance, recently released alternative TEE technologies, such as Intel Trust
Domain Extensions (TDX) [82] or AWS Nitro [8], could potentially revolutionize the
implementation of trustworthy data management. Likewise, maturing cryptographic
primitives like cryptographic accumulators [134] present viable alternatives to Merkle
Trees for ensuring data integrity in data management systems. With the rapid evolution of
security and cryptographic practices, keeping pace with these developments and efficiently
integrating them into data systems is an ongoing challenge and necessity for enhancing
trustworthy data management in general.
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8 BlockchainDB - A Shared
Database on Blockchains

Abstract
In this chapter we present BlockchainDB, which leverages blockchains as a storage
layer and introduces a database layer on top that extends blockchains by classical data
management techniques (e.g., sharding) as well as a standardized query interface to
facilitate the adoption of blockchains for data sharing use cases. We show that by
introducing the additional database layer, we are able to improve the performance and
scalability when using blockchains for data sharing and also massively decrease the
complexity for organizations intending to use blockchains for data sharing.
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8.1 Introduction

8.1 Introduction

Motivation. Blockchain (BC) technology emerged as the basis for crypto-currencies, like
Bitcoin [126] or Ethereum [29], allowing parties that do not trust each other to exchange
funds and agree on a common view of their balances. With the advent of smart contracts,
blockchain platforms are being used for many other use cases beyond crypto-currencies
and include applications in domains such as governmental, healthcare and IoT scenarios
[16, 20, 169].

An important aspect that many scenarios have in common, is that blockchains are
being used to provide shared data access for parties that do not trust each other. For
example, one use case is that the blockchain is used for tracking goods in a supply chain
where independent parties log the location of individual goods. What makes blockchains
attractive in those scenarios are two main characteristics: First, blockchains store data
in an immutable append-only ledger that contains the history of all data modifications.
That way, blockchains enable auditability and traceability in order to detect potential
malicious operations on the shared data. Second, blockchains can be operated reliably
in a decentralized manner without the need to involve a central trusted instance which
often does not exist in data sharing. However, while there is a lot of excitement around
blockchains in industry, they are still not being used as a shared DB in many real-world
scenarios. This has different reasons: First and foremost, a major obstacle is their limited
scalability and performance. Recent benchmarks [44] have shown that state-of-the-art
blockchain systems such as Ethereum or Hyperledger, that can be used for building
general applications on top, can only achieve 10′s or maximally 100′s of transactions
per second, which is often way below the requirements of modern applications. Second,
blockchains lack easy-to-use abstractions known from data management systems such as
a simple query interface as well as other guarantees like well-defined consistency levels
that guarantee when/how updates become visible. Instead, blockchains often come with
proprietary programming interfaces and require applications to know about the internals
of a blockchain to decide on the visibility of updates.

Contribution. In this paper, we present BlockchainDB that tackles the before-
mentioned issues. The main idea is that BlockchainDB leverages blockchains as the
native storage layer and implements an additional database layer on top to enable access
to data stored in shared tables. That way, existing blockchain systems can be used
(without modification) as a tamper-proof and de-centralized storage. On top of the
storage layer, BlockchainDB implements a database layer with the following functions:
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• Partitioning and Partial Replication: A major performance bottleneck of block-
chains today is that all peers hold a full copy of the state and still only provide
(limited) sharding capabilities. In the database layer of BlockchainDB, we allow
applications to define how data is replicated and partitioned across all available
peers. Thus, applications can trade performance and security guarantees in a
declarative manner.

• Query Interface and Consistency: In the DB layer, BlockchainDB additionally
provides shared tables as easy-to-use abstractions including different consistency
protocols (e.g., eventual and sequential consistency) as well as a simple key/value
interface to read/write data without knowing the internals of a blockchain system.
In future, we want to extend the query interface to shared tables to support SQL
with full transactional semantics.

In addition to these functions, the database layer of BlockchainDB comes with an
off-chain verification procedure in which peers can easily verify the read- and write-set of
their own clients. The idea of the verification procedure is that peers can detect other
potentially misbehaving peers in the BlockchainDB network. This is needed since not
all BlockchainDB peers hold the full copy of the database and the storage layer of a
remote peer could potentially drop puts or return a spurious value for a read operation
(i.e., a value that was not persisted in the database).

By introducing a database layer on top of an existing blockchain, BlockchainDB
is not only able to provide higher performance, but also to decrease the complexity for
organizations intending to use blockchains for data sharing. While the concept of moving
certain functions out of the blockchain into additional application layers has been studied
previously (e.g., [34, 47, 48, 125]), to the best of our knowledge, BlockchainDB is the
first system to provide a fully functional DB layer on top of blockchains. Our experiments
show that BlockchainDB allows to increase the performance significantly to support
many real-world applications.
Outline. The remainder of this paper is organized as follows: First, in Section 8.2 we
give an overview of what functionality and security guarantees BlockchainDB provides
for data sharing. Afterwards, in Section 8.3 we present the BlockchainDB architecture
and discuss the trust assumptions as well as potential attacks. Then, in Section 8.4
and Section 8.5 we discuss the details of the database layer and how blockchains are
being used as the storage layer. Section 8.6 afterwards outlines our off-chain verification
protocol. The results of our evaluations with the YCSB benchmark are then presented
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in Section 8.7. Finally, we conclude with related work in Section 8.8 and a summary in
Section 8.9.

8.2 Overview & Guarantees
As explained already in the introduction, there are many different applications where
untrusted parties need to have shared access to the same database. To enable such a
shared access to data, BlockchainDB provides so-called shared tables. For accessing a
shared table, clients can use the put/get interface of BlockchainDB to access tuples in
the shared table based on their primary key. In order to understand the functionality and
guarantees that BlockchainDB provides for untrusted parties to access data via shared
tables, we will introduce a short motivating scenario and use this scenario also to outline
the guarantees that applications get when using BlockchainDB for data sharing.
Scenario. Figure 8.1 shows an example scenario for data sharing where three untrusted
parties (WholeFoods, FedEx, and Lindt) share access to the same database. The scenario
describes a typical supplier scenario where WholeFoods acts as customer, Lindt as
supplier, and FedEx as shipping company. In this scenario, WholeFoods first places a
new order by inserting two new entries into the shared database consisting of two shared
tables 1⃝. After the order is placed, Lindt processes the new order 2⃝. To keep track of
the order, Lindt updates the status from new to ready as shown in 3⃝. Once the order is
ready, FedEx starts its operation 4⃝. After the order has been shipped to the customer,
FedEx updates the status of the order to delivered as shown in 5⃝.

A naïve way of implementing such a scenario would be that one of the parties is hosting
the shared database; e.g., say WholeFoods hosts the shared database as a service for all
their suppliers. In this setup, however, WholeFoods could easily leverage the fact that
it can manipulate the shared data or return false values to the other parties about the
order status, without any chance for the parties to verify that WholeFoods was in fact
acting in a malicious manner. For example, WholeFoods could claim that the order was
lost during transit by returning a spurious (i.e., false) order status to Lindt as shown in
6⃝ to trigger that a replacement is sent (without paying for it). Even worse, WholeFoods
could actually delete the order or not store it in the database in the first place. In case
of a lawsuit, no evidence could thus be found that WholeFoods (or any other party) was
actually acting maliciously.
Guarantees. In order avoid these problems, a blockchain network such as Ethereum
or Hyperledger could be used to implement a shared database. The benefit of using
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→

→

Figure 8.1: A Data Sharing Scenario

a blockchain is that every party (WholeFoods, Lindt, and FedEx) keeps a full copy of
the database and the majority of parties needs to agree (based on the blockchain-based
consensus protocol) on every update before its effect becomes visible. As a consequence
of using blockchains, we get the following important guarantees for data sharing: First,
the data in each peer is stored in a tamper-proof log. That way, any data modification
of the log by any potentially malicious party could be detected since the cryptographic
hashes used in the blockchain would not be valid anymore. Second, all parties read only
state from their local copy of the database. That way, spurious reads (that are a problem
if data needs to be read form a remote party) can be avoided.

However, as discussed in the introduction, using blockchains directly for data sharing
comes with significant problems (e.g., w.r.t. performance) and complexities due to
missing abstractions. The idea of BlockchainDB is thus to provide the same security
guarantees as blockchains — (1) a tamper-proof (auditable) log as well as (2) verifiable
reads and writes. At the same time, BlockchainDB enables high performance and
provides an easy-to-use query interface.

8.3 System Architecture
8.3.1 Architecture Overview

The main idea of BlockchainDB is that it implements a database layer on top of an
existing blockchain. The database layer provides clients with a simple-to-use abstraction
(called a shared table) with a put/get interface and stores all data in its storage layer
that relies on blockchains as discussed before. Figure 8.2 shows a possible deployment of
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BlockchainDB across four different BlockchainDB peers (i.e., untrusted parties) to
enable access to shared tables as discussed in the scenario before.

The key idea of BlockchainDB is that data is not replicated to all peers to avoid
the high overhead of blockchain consensus. Instead, shared tables are partitioned (i.e.,
sharded), thereby each shard is implemented as a separate blockchain network. Moreover,
shards are only replicated to a limited number of peers instead of replicating the data to all
peers. For example, in the scenario explained in the previous section, both shared tables
(NewOrders and OrderDetails) can be partitioned using the OrderKey as partitioning
key and replicated only to a subset of the peers (WholeFoods, Lindt, and FedEx).

As a direct consequence of sharding to speed-up the performance not all peers store all
data locally. When accessing the shared table, the database layer thus needs to redirect
the request either to the local or a remote storage depending on the requested key. While
storing data in a blockchain still gives us a tamper-proof log, the remote peer can drop a
put or return a spurious value for a read. To verify all remote reads/writes an additional
verification procedure is thus provided by BlockchainDB.

In order to participate in a BlockchainDB network and allow clients of a party to
read/write data into a shared database, a peer in BlockchainDB can be either deployed
as a full peer which hosts a database and a replica of at least one shard or as a thin
peer which only connects to other remote peers to access data in a shard (i.e., the peer
does not store a copy of a shard). Having thin peers enables parties with only limited
resources to participate in a BlockchainDB network and access the shared tables (such
as a small supermarket, called SmallMarket in our example).

Finally, similar to permissioned blockchains, BlockchainDB assumes that the parties
who want to share data are previously authenticated and known to each other. However,
parties do not need to trust each other (since they might have contrary goals). More
details about our security assumptions will be provided in Section 8.3.3.

8.3.2 System Components

Next, we explain how clients interact with BlockchainDB as well as the functionality
of each component.
Clients. Clients interact with a shared table via their own BlockchainDB peer
(which they trust). Thus, instead of interacting with a blockchain network directly, in
BlockchainDB clients interact with their peer (i.e., the database layer) through a
simple put/get interface to read/write shared data. Furthermore, clients can use the
verify method of the database layer to trigger an off-chain verification procedure for the
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Figure 8.2: A typical BlockchainDB Network

online verification of the last read/write-operation of that client. This allows the client
to detect potential misbehaving peers in a BlockchainDB network (e.g., to detect if
another BlockchainDB peer — more precisely its storage layer — returned a spurious
value for a get) and is needed in BlockchainDB since not all peers keep a full copy of
the database state. So, all reads/writes that are being redirected to a remote storage
layer must be additionally verified to get the same guarantees as local reads/writes. We
additionally support (a deferred) offline verification procedure that is called from the
database layer for batches of reads/writes from all clients. The deferred verification
procedure provides a higher throughput than the online verification, since it performs
the verification while new reads/writes are being executed. However, clients might work
(for a limited amount of time) on an unverified database state. More details about the
verification procedure(s) are discussed in Section 8.6.

Database Layer. The database layer in BlockchainDB is mainly responsible to
execute the put/get calls from the clients. If a put/get call comes in, the database layer
uses the Shard Manager to decide to which shard of a table the operation should be
directed to. The shard can be either stored in its local storage or remotely in another
BlockchainDB peer depending on the partitioning scheme of the shared table. Currently,
BlockchainDB implements a hash-based sharding approach, in which the user defines
the number of shards and their allocation to BlockchainDB peers when creating
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a shared table. Another major difference of BlockchainDB and a pure blockchain
network is that the database layer of BlockchainDB implements a Transaction Manager
that provides well-known consistency levels (i.e., eventual consistency and sequential
consistency). That way, clients get a defined behavior for concurrent puts/gets without
the need to know the internals of blockchains. Additionally, the database layer can
re-order/batch puts/gets depending on the chosen consistency level to optimally leverage
the underlying blockchain and thus further improve the performance. Details about the
database layer are discussed in Section 8.4.
Storage Layer. The storage layer serves as a persistent, auditable storage backend of
BlockchainDB and is based on existing blockchain systems. As depicted in Figure 8.3,
the storage layer of BlockchainDB is able to parallelize data processing across different
shards whereas each shard is implemented as a separate blockchain network where the
data in a shard is replicated to multiple (but not necessarily all) peers using the internal
blockchain consensus protocols. For example, in Figure 8.2 the BlockchainDB network
uses in total three different blockchain networks (one for each shard) with a replication
factor of two. Details about the storage layer are discussed in Section 8.4.

8.3.3 Trust Assumptions & Threat Model

As mentioned previously, we assume a permissioned setting in which the set of participants
is known at the beginning. For simplicity, we assume the set of participants is fixed;
extending our techniques to a dynamic set and incorporating more complex consortium
rules is orthogonal to our work. Further, since we use an off-the-shelf blockchain such as
Ethereum for storing data, we inherit several security characteristics and guarantees of
the underlying blockchain system, e.g., w.r.t. peer authentication using public/private
keys, replay protection, number of tolerable malicious nodes.

Moreover, the need for an off-chain verification procedure stems from the fact that a
BlockchainDB peer might need to read/write data from/to a remote peer; i.e., the
local peer does not participate in the blockchain network for that shard. In particular,
Thin Peers need to run the verification procedure for all read/write operations. For our
threat model we thus make the following assumptions:

• Clients that connect to a BlockchainDB peer trust their local database and
storage layer.

• This allows a BlockchainDB peer (i.e., the database layer) to perform verification
on behalf of all locally connected clients.
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• Moreover, a BlockchainDB peer can trust the data that is written to or read
from a local shard. Those operations thus do not need to be verified.

• If the majority of the peers that keep a copy of a shard is not malicious, then a
client can trust all puts/gets once verified. Thereby, the number of peers that can
form a majority depends on the security assumptions of the used blockchain system.
For example, some blockchains might require 2

3 of the nodes to be trusted while
others have different properties.

In consequence, whenever a client accesses data that is stored on or written to a remote
shard on another peer, the local peer will run an additional verification protocol to verify
the operation and mitigate the following attacks:(1) The drop of a put operation that
needs to write data to a remote peer will be detected. (2) Spurious/fake data returned
for any get operation that needs to read data from a remote peer will also be detected.
Details about the off-chain verification procedure will be explained in Section 8.6.

8.4 Database Layer
In this section, we describe the put/get interface of BlockchainDB and how these
operations are being executed by the database layer to implement different consistency
levels on top of blockchains as a storage layer.

8.4.1 Query Interface

As mentioned before, BlockchainDB provides shared tables as main abstraction. Each
table has multiple columns (attributes), whereas one is the dedicated primary key that
can be used to access the table. More details about the data model and table creation
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is discussed in Section 8.5. The query interface of BlockchainDB enables clients to
execute the following three operations on shared tables:

• get(t, k) → v: This call returns all attributes of the row in table t that has the
key k.

• put(t, k, v) → void: This call inserts a new row in table t with key k. All
attribute values are encoded in v similar to what document stores do. In case a
row with key k is already in table t, the row is updated with the new values in v.
For simplicity, we assume that values for all attributes are given in v.

• verify() → bool: This call is for online verification; i.e., a client can call verify

immediately after any get/put call and gets back true or false to indicate whether
or not the verification was successful. For a put, it means whether or not the put

was actually committed in the storage layer and for a get it is checked whether or
not the returned value was correct or a spurious value.

Next, we explain how get/put methods are implemented. The verification (online/of-
fline) is explained in Section 8.6.

8.4.2 Query Execution

In the following we explain the execution process and discuss the involved components
as depicted in Figure 8.3.

For accessing the table, clients send put/get requests to their local BlockchainDB
peer using the query interface discussed before. Requests arriving from the client in the
database layer are first received by the off-chain verifier 1⃝ that records the unverified
reads/writes (i.e., all remote reads/writes) of a client. This information is used for
the online/offline verification. The verifier then forwards the request to an internal
RequestQueue 2⃝. Next, the TransactionManager (Tx.Mgr)1 polls the requests from the
queue and processes them according to a specified consistency level2 3⃝. Currently, we
support sequential and eventual consistency and a version of eventual consistency (called
bounded staleness) that guarantees a limited staleness of the accessed data as discussed
in the next section.

The different consistency levels differ in how quickly the database layer can process op-
erations. For example, for eventual consistency a get-operation is immediately processed;

1We call this component transaction manager since it translates every put/get of a client into a blockchain
transaction.

2The consistency level can be specified for each table individually.
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however, no guarantee is given that a potential outstanding put-operation has already
been committed to the blockchain. In sequential consistency, the database layer needs
to execute put/get-requests in a global order and thus, potentially blocks a get-request
until an outstanding put-request has been committed to the blockchain.

Once a put/get-request is ready to be sent to the storage layer, it is forwarded to
the ShardManager 4⃝. The ShardManager service has two main purposes: First, it
determines the correct shard for a given key, and second, it is responsible for sending
requests as read/write operations in parallel to the table shards. To access data in
blockchains, different BackendConnectors can be used 5⃝ that allow BlockchainDB
to read/write data from/into the underlying blockchain network. The details about the
BackendConnectors are discussed in Section 8.5.

8.4.3 Consistency Levels

As mentioned before, BlockchainDB provides well defined consistency levels on top of
blockchains. In order to understand how different consistency levels can be implemented
on top of blockchains, we first discuss how blockchains make updates visible to clients.
Afterwards, we explain how sequential consistency is implemented and how eventual
consistency is supported. Moreover, a version of eventual consistency that guarantees a
limited staleness is introduced.
Processing Model in Blockchains. In general, blockchain networks (i.e., in our case
all data that is stored in one shard) agree on a global order of writes (i.e., blockchain
transactions) in all replicas in which they are appended to their log. Thus, a naïve way
to implement sequential consistency in the database layer of BlockchainDB on top of
a blockchain network would be to wait after every write (i.e. put) until the blockchain
transaction is committed. However, as shown in [44] the latency until a blockchain
transaction is committed can take from seconds to minutes and would severely limit the
throughput of write-intensive workloads significantly. Another challenge of blockchains
is that some transactions might end up in a fork (e.g., if proof-of-work is used as in
Ethereum). These transactions must be re-executed which further increases latency under
the blocking execution model discussed before.
Sequential Consistency. In BlockchainDB, we thus follow a different approach.
Instead of waiting after each write (in an eager manner), we monitor all pending writes
in the database layer of BlockchainDB to enable lazy waiting. This means, only
in case a read operation comes in for a pending write (i.e., read and write share the
same key), we wait for that write, and all other pending writes that have been issued

58



8.5 Storage Layer

before, to be committed to the blockchain. Reads can only be executed once the write is
committed to the blockchain. This enables that clients not only read their own writes
but defines a global order of writes (for all clients) connected to the same database layer.
Moreover, since the blockchain network (which is used to implement a shard table in
BlockchainDB) orders all writes sequentially, we get a global order of all writes and
thus even clients connected to different peers in BlockchainDB see the same global
order of write operations.

Eventual Consistency and Bounded Staleness. Providing eventual consistency
on top of the sequential model of blockchains is simple. Instead of waiting for pending
writes, we execute each incoming read operation of a client (i.e., a get) immediately.
This, however, could lead to two issues: First, the pending-write queue might grow
quickly for write-intensive workloads. Second, for reads (i.e., get operations of clients),
BlockchainDB might return stale values (without any bound on the staleness) since the
time until a blockchain transaction is committed can take up to minutes (as mentioned
before). In order to mitigate these issues, a user can define a maximum staleness-factor
in BlockchainDB (which defines the maximum number of writes in the pending-write
queue). That way, applications can control staleness and latency; i.e., with a longer queue
the staleness will increase but the latency of reads decreases (as we will also show in our
experiments). We call this version of eventual consistency, bounded staleness which is
similar to the ideas discussed in [164].

8.5 Storage Layer

The storage layer of BlockchainDB is responsible for all interactions with the blockchain
networks that are used to store shared tables. In the following, we first explain the
creation of shared tables as well as their data model. Afterwards, we discuss the interface
that is exposed by the storage layer to the database layer for executing reads/writes on
shared tables. Finally, we exemplary discuss how the methods of the storage interface
are implemented in so called backend connectors that allow BlockchainDB to access
the data in a blockchain. Currently, we provide connectors for Ethereum, Hyperledger
Sawtooth and Hyperleder Fabric.
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8.5.1 Shared Tables

As a first step of a data sharing scenario, a new shared table has to be created in
BlockchainDB. A new table in BlockchainDB is defined by its schema and its
sharding configuration.

In BlockchainDB, the schema of a new table is defined using a key/value data
model where the key is the primary key and the value represents the payload of a tuple.
The sharding information of a new table contains values for the parameters such as the
number of shards or the replication factor and the allocation. These parameters not
only have an influence on the overall performance but more importantly on the trust
guarantees a new table provides. For example, the number of replicas directly dictates
how many malicious peers can be tolerated; e.g., most blockchain networks (such as
Ethereum) tolerate if less than half of the peers are malicious.

For creating a new shared table in BlockchainDB, one of the clients involved in the
data sharing application proposes a new table and submits the information about the
table name and its schema as well as the sharding information to its local peer. The
local peer then coordinates the table creation process with all other peers on behalf of
the initiating client. The main steps of the process are discussed below.

The first step of the table creation process is implemented as a smart contract which
takes the information about the new table including the sharding parameters as in-
put and updates the BlockchainDB catalog (i.e., its metadata). The metadata of
BlockchainDB is stored in a dedicated blockchain that is replicated to all peers. By
storing the metadata in a dedicated blockchain network that is fully replicated and
governed by a smart contract, we can not only guarantee that all peers have the same
view on the metadata but also that no peer can tamper with the metadata. Fully
replicating the metadata is not a performance problem since metadata is typically small
and updated less frequently.

As a second step of the table creation process, and once the metadata is updated
successfully by the smart contract, the peer which coordinates the table creation process
signals all other peers to deploy the shards for the new table. For each new shard that
should be stored on a peer, a new blockchain node is started by the peer and connected
to the other blockchain nodes, thus forming a new blockchain network for the shard. For
finding out which shards need to be deployed for a new table and to which other peers
the shard should be connected to, each peer uses its local trusted copy of the metadata.

One important question of the table creation process is, why clients of the other peers
should trust the new table. One could think that the table creation process opens up
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a possible attack since the client and the local peer who coordinates the table creation
could be already malicious at the time of table creation and thus could decide to create a
new shared table with low trust guarantees that in the extreme case has only one shard
consisting of one replica (that might even be assigned to the local peer). In this case,
the new table would not provide any trust guarantees to clients of other peers since the
peer which created the table stores the only copy and thus could drop puts and return
spurious values for get operations without the possibility for the other clients or thin
peers to verify their operations.

Thus as a last step of the table creation process, all BlockchainDB peers have to con-
firm that they agree with the table (i.e., in particular the sharding information) proposed
by the coordinating peer. The key for the confirmation step is that BlockchainDB
provides trusted and replicated metadata across peers. That way, all other peers can
check whether they agree in a trusted manner with the sharding information before using
that table for data sharing. Once the trust guarantees for the new table are confirmed
by all peers in BlockchainDB, they update the metadata (i.e., by incrementing a
confirmation counter). Only once all peers confirmed the new table, it can be used by
clients of any peer for actual data sharing by executing put/gets on it.

A last point we want to mention is that BlockchainDB assumes a permissioned
setup where only authenticated peers can participate in a network. The peers can work
together while they do not necessarily need to trust each other.

8.5.2 Storage Interface

As shown in Figure 8.3, the database layer uses so called backend connectors in the
storage layer to access data in a shared table (i.e., a blockchain network). The idea of
the backend connector is to provide a stable interface to the database layer to access the
data independent of which blockchain is being used as backend. The main methods of
the storage interface are:

• read(s, k) → v: This method allows the database layer to read a value v

(i.e., the tuple) for a given shard s (which is just a global unique identifier in
BlockchainDB) and a key k.

• write-async(s, k, v) → tx-id: This method allows the database layer to
write a value v (representing a tuple) with a key k into shard s. Important is that
the write is an asynchronous operation and just returns an identifier tx-id of the
blockchain transaction that was created for that write.
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• check-tx-status(s, tx-id)) → TX-STATUS:
In order to check if a write-async operation has been successfully committed, this
operation can be called. This method takes a shard identifier s and a transaction
identifier tx-id, and returns the status of the blockchain transaction in that shard.
The status can either be COMMITED if the write was successful, ABORTED if the write
failed (e.g., due to failed validation in the blockchain), or PENDING if the transaction
is submitted but not yet added to a valid block in the blockchain.

• get-writeset(s, e)) → ws: Returns all writes that were executed on shard s

in epoch e. This method is used for offline verification, which verifies the workload
of all clients connected to one BlockchainDB peer in epochs as discussed in
Section 8.6.

The first three methods of the storage interface are called by the database layer in order
to implement different consistency levels. For example, under sequential consistency, the
write-async method is called when a put(t, k, v) (for a table t, key k, and value v)
from a client is processed by the database layer. The returned transaction identifier tx-id

is put together with the table t and key k into a pending-write queue in the database
layer. If a get(t, k, v) operation for the same key is coming in from a client after
the put-call, the database layer has to check the pending-write queue, and if a pending
write is found, it needs to call check-tx-status(tx-id) to see whether the transaction
committed or not. If not, the database layer has to block until the transaction status
changes to COMMITED.

8.5.3 Backend Connector

The methods discussed before need to be implemented by each backend connector for
different blockchain systems. In the following, we discuss the implementation of those
methods for Ethereum as an example.

It is important to note that the backend connector stores the connection information
for each shard identifier and uses a native blockchain client (such as geth for Ethereum) to
access a blockchain network which stores the data of a shard. The connection information
contains the list of IP-addresses and ports of all BlockchainDB peers which host a
copy of the shard (i.e., the peers which participate in the blockchain network that store
the data of the shard). For executing operations, the local IP-address is used if it exists
in the connection information (which means that a shard copy is stored on the local
peer). Otherwise, one of the remote IP-addresses is selected in a random manner to load
balance the execution across different peers.
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For accessing shared data in a blockchain network, BlockchainDB needs to install a
minimal smart contract definition which provides a simple read/write interface for each
shard. These smart contracts are then called by the connector to implement the interface
methods presented before. In the following, we show an extract of the smart contract
code installed for an Ethereum network.

contract KVContract {
// state variables and constructor omitted

// read method in contract
function read-blockchain(bytes memory key)
public view returns(bytes memory value){

return data[key];
}

// write method in contract
function write-blockchain(bytes memory key, bytes memory val)
public returns(bool success){

data[key] = val; return true;
}

}

The first method of the backend connector is the write-async method. This method takes
the incoming tuple (i.e., a key/value pair) as well as the shard identifier s. Afterwards,
the connection information is looked up for this shard and the key as well as the value
is converted into a byte representation before sending it to the blockchain network for
processing (or more precisely to the smart contract of the blockchain as discussed above).
The byte-data is then sent to the write-blockchain method of the KVContract using
geth as client for Ethereum. We found that representing the data in a byte-format before
storing it in a blockchain network not only leads to decreased storage cost, but also
allows for more efficient processing of the transaction on the blockchain. The unique
transaction identifier tx-id returned by geth client is returned to the database layer as a
return value. This identifier can be used to check the status of the transaction from the
database layer.

The second method implemented in a backend connector is the read method. This
method takes a shard s and a key k as input. For the execution, the connection
information is looked up for this shard and the backend controller then converts the key
into a byte representation and sends the data to the read-blockchain method of the
KVContract. Different from the write-async method, the backend connector does not
use a blockchain transaction to execute the read-blockchain contract but it uses a call
(which is a read-only operation in Ethereum). The benefit of this method is that it does
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Figure 8.4: Online Verification

not require the heavy-weight processing of a blockchain transaction and usually only
needs a few milliseconds to be executed. The result of the call is the byte representation
of the value (i.e., tuple). Before sending the value back to the database layer, the byte
representation is converted into the original data type of the table.

Finally, the third method implemented in a backend connector is the check-tx-status

method. This method takes a shard s and a transaction identifier tx-id as input and
returns the transaction status to the database layer. To check the status of a transaction,
Ethereum provides different options: First, the storage layer can regularly poll the
blockchain for the latest status of the transaction using geth. Second, the storage layer
can subscribe to events and be notified when, e.g., a new block has been created. When
notified, the storage layer can query the blockchain for details of the new block and
determine the status of the transaction. However, in order to detect failed/rejected
transactions, the storage layer still has to poll the blockchain regularly for the transaction
status.

8.6 Off-Chain Verification
In this section we describe the details of our off-chain verification protocol. The main
goal of the verification procedures is to prevent (1) dropped puts and (2) spurious reads
if a peer needs to read/write data from/to a remote shard.
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8.6.1 Online Verification

Overview. In online verification every operation issued by a client is subsequently verified
if the client calls the verify operation as shown in Figure 8.4. While all blockchain
systems internally make use of Merkle-Trees and similar structures to store data in a
verifiable way, only few blockchain systems expose an interface to clients that allows
them to retrieve data along with a verifiable proof. Hence, in order to verify the result of
an operation, a BlockchainDB peer needs to contact the majority of the blockchain
network to verify that the retrieved result is valid. In the following, we explain how get-
and put-operations can be verified.
Verification Procedure. In order to verify the value v returned by a get-operation, we
extend the storage interface to return the block number from which the value was read
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for the given shard. Afterwards, we read that block from the majority of peers which
hold a copy of the shard and then verify if the value v for key k in those blocks matches
the returned value. If the returned value does not match with that of the majority, a
manipulated read was detected.

Put-Operations are verified differently, since they are executed as transactions on the
blockchain as discussed before. Consequently, they are mined as part of blocks. Similar to
get operations, put-operations can be verified by querying the majority of the blockchain
for the latest transaction status. If the transaction is not recorded as committed on the
majority of peers, a dropped write was detected. We do not need to check the validity of
the block content, since transactions are signed by clients. Thus, a manipulation of the
transaction content by a remote peer is not possible.

8.6.2 Offline Verification

Overview. While online verification guarantees the validity of an operation right away,
it has several inefficiencies and drawbacks. First, online verification is a blocking action
that prevents any other operation to be executed by a client. Second, since transactions
are grouped into blocks and thus mined in batches by blockchains, system throughput
can be improved by verifying transactions in batches.

The basic idea of offline verification is shown in Figure 8.5. Instead of calling the verify-
method after every put- or get-call, offline verification defers verification. Deferring
verification allows us to batch multiple put- and get-calls together and verify multiple
operations at once instead of separately. In the following, we describe the procedure for
offline verification and its main parameters.

Verification Procedure. The offline verification procedure is executed per shard in
batches (called epochs). An epoch of a shard in BlockchainDB is defined by a fixed
number of writes (called epoch-size |e|) that can be executed in one epoch in one shard.
Once the maximum number of writes is executed in one epoch, the epoch of the shard is
closed.

The main idea of offline verification is that all operations that are executed (by one
peer) in one epoch are verified together in a batch. To do so, we extend the smart
contracts shown in the previous section to keep a global counter for the epoch. Moreover,
all writes are added in a separate variable that keeps a separate list per epoch. The
epoch counter is increased automatically by the write-blockchain method in the smart
contract every |e|-th write call.
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One additional parameter of offline verification is that an epoch does not need to be
immediately verified by a peer once it is full (i.e., once it is closed). Instead, a peer can
have a maximal number of closed but not-yet verified epochs per shard (called number
of unverified epochs ∆e). In case that the number of unverified epochs for a peer is
growing larger than ∆e, it calls the halt(s) operation implemented as a method in the
smart contract on the storage layer which blocks all other peers from further writing
into the shard s (i.e., no more new epochs are created) until the peer caught up with
verifying the shard. Once the number of unverified epochs is smaller than ∆e, the peer
calls continue(s) implemented as a smart contract on shard s.

One could argue that the halt(s) method opens up a backdoor for malicious peers to
block other peers. However, since the blockchain will keep track of those calls other peers
can detect this behavior (as part of a potential audit). Further, both parameters (|e|
and ∆e) are important as they allow to optimally tune the verification to the workload
characteristics of a given application as discussed later.

In Figure 8.6, we show an example for offline verification. The example shows the write-
sets of all peers over different epochs of one shard (Shard 2), as well as the read/write-set
of peer C that should be verified. All epochs have an epoch size of |e| = 2 and we have
four epochs in total. The first epoch e = 0 has been already successfully verified, while
epoch e = 1 and e = 2 are closed but not yet verified (i.e., ∆e = 2). The current epoch
e = 3 is still open since only one write was executed so far.

For verifying the next epoch in a shard, the database layer of a peer runs a verifier
thread that runs in continuous intervals and keeps track of the last verified epoch for that
peer (e.g., e = 0 in the example). The verifier thread calls the get-writeset method for
a shard using the last unverified (and closed) epoch as a parameter. In our example, peer
C calls get-writeset(s=2, e=1) since e = 1 is the oldest not-yet verified epoch. The
call returns the write-set (write(y,1)→ tx-3, (write(x,3)→ tx-4). In order to make
sure we have the correct write-set, peer C needs to read it from the majority of peers
(not shown in the example), which store that shard. For verifying its own read-/write-set,
peer C compares its own read- and write-set of the same epoch ((read(x) → 2) against
the write-set of epoch e = 1 and all previous epochs; i.e., the write-set of epoch e = 0 in
our example ( (write(x,1)→ tx-1, (write(x,2)→ tx-2)).

The verifier thread then checks, if the read-calls in the read-set of peer C match
the value of the last committed write-operation in the global read-/write-set (to avoid
spurious reads) and if all write-calls are found in the global read-/write-set (to avoid
dropped writes). In order to enable an efficient offline verification, a system peer caches
(parts) of the write-sets that it reads for verification in the past. What exactly needs
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to be cached depends on the isolation level. Under sequential consistency, only the last
write to a key needs to be cached while under eventual consistency all pending writes
for a key plus the latest committed write to the same key are cached. Older committed
writes can be evicted from the cache.

Finally, if the checks fail, the database layer sets a flag for that shard to indicate that it
is in a corrupted state. The application on top then has to decide how to react. One idea
is that the client calls the operation halt(s) which means that all further operations
(from all peers) on the shard are blocked since the database is in a corrupted state and
the tamper-proof log of the shard must be audited to see what went wrong. A way to
restore the shard to a non-corrupted state is to reset the shard to the last verified epoch.
Restoring the database from a blockchain is possible since the blockchain keeps all writes.
Discussing possible consequences and other variants for reactions is beyond the scope of
this paper though.
Discussion. In the following we first discuss how to set the parameters |e| as well as
∆e for offline verification and then discuss what influence the parameters have on the
performance that BlockchainDB can provide.

For setting |e|, we found out that the epoch size should be set at least to the number
of transactions that fit into a block of the underlying blockchain (which allows to verify
all transaction of a block in one epoch). This information can be retrieved from many
blockchain systems and thus be used to configure |e|. Setting |e| to a smaller value
typically decreases the throughput since new generated blocks can not be completely
filled with transactions.

Setting the second parameter, ∆e, has a different effect. If ∆e = 0, a peer will not
accept any new write-operation once an epoch is closed (i.e., all peers must verify the last
epoch first before new writes are accepted). Hence, ∆e can be used to overlap the actual
writes and verification. Moreover, ∆e can be also used for mitigating issues resulting
from skew between different peers. For example, a straggling peer of one party could
block a faster peer of another party just because it needs more time for executing the
offline verification procedure. This is an issue in blockchains where multiple parties that
come with different hardware characteristics participate in the network. Thus setting ∆e

to higher values helps to mitigate the skeweness of different peers in the system.
For understanding the performance impacts of these two parameters, it is important to

note that only the verification procedure itself is batched while the actual operations (i.e.,
the puts/gets of clients) are executed without batching as described in Section 8.4. To
that end, offline verification does not increase the latency of individual put/get-operations
but it can have a negative impact on the overall throughput if |e| and ∆e are set to a
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too low value. However, when setting |e| and ∆e to a too high value clients will operate
for a longer period of time on an unverified state of a shared table and the time before
a problem (i.e., a dropped put-operation or a spurious get-operation) can be detected
increases. Thus, tuning those parameters is extremely important.

In Section 8.7.5, we show how to set these parameters in an optimal manner for a
given workload and setup of peers.

Table 8.1: Parameters of Evaluation
Parameter Description
shardCount Number of shards in a table.
repFactor Number of replicas that are stored for each shard, each replica is stored on a separate (full)

peer.
consistency Consistency level configured for a shared table.
numPeers Total number of (full) peers that participate in the BlockchainDB network.
numClients Total number of clients sending put/get operations.
workload The ratio and distribution of put/get operations.
opsCount Total number of operations issued in total.

8.7 Experimental Evaluation
In order to evaluate the different characteristics of BlockchainDB, we executed multiple
experiments with the YCSB Benchmark [38] that provides workloads with different
read/write characteristics. The main goal of the experiments is to study the effects of
the different techniques implemented in BlockchainDB on the performance, and also
to show that BlockchainDB allows applications with its configuration parameters to
trade performance over trust.

8.7.1 Setup & Workloads

For the evaluation, we implemented a BlockchainDB prototype in Java 8. All ex-
periments used an Ethereum backend (with Geth/v1.8.23-stable). Furthermore, we
ran all experiments in Azure on virtual machines with 16 vcpus and 32 GB memory,
running Ubuntu 16.04 LTS. To configure the blockchain network for a new shard in
BlockchainDB, we used similar genesis parameters as reported in [44].

In every experiment, we varied different system parameters, which are briefly described
in Table 8.1. We will explain the parameters values, we have used for each experiment
separately. Furthermore, in our experiments, we first concentrate on the performance
characteristics of BlockchainDB. To isolate the effect of verification, we turned verifi-
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Figure 8.7: Scalability of BlockchainDB

cation off in these experiments. In the second set of experiments, we then studied the
overhead of verification as well as the different verification strategies in detail.

8.7.2 Exp. 1: Scalability with Peers

In this experiment we evaluate the performance of BlockchainDB when the size of the
network is increased (i.e., more and more peers join a BlockchainDB network to share
data). In classical blockchains the performance of the system heavily degrades, since
more peers increase the storage and consensus overhead of the network as shown in[44].
We also made a similar observation in our experiments shown in Figure 8.7 as we discuss
below.

To make a fair comparison between different configurations of BlockchainDB, we
use a fixed number of n peers (i.e., a fixed amount compute and storage resources) and
vary the sharding configuration of one table. For example, for a setup with a fixed
number of 16 peers (shown as 16 on the x-axis of Figure 8.7), we evaluated the different
configurations shown as individual points above the x-tic 16. The configurations used for
16 peers are: (1 shard with 16 replicas), (2 shards, each 8 replicas), (4 shards, each 4
replicas), ..., (16 shards, each 1 replica). We repeated the experiment for other setups
with a lower/higher number of peers (ranging from 1 − 24). The setups (i.e., number
of peers used) are shown as different x-tics/x-labels in Figure 8.7 and all throughput
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resulting from using different sharding configurations for one setup are shown as points
on the vertical line above the corresponding x-tic.

For running the experiment, we created a shared table with the number of shards and
distributed them to the different peers as given in the configurations and inserted into
each shard initially 4, 000 tuples. This results in the fact that in total the same number
of tuples has to be stored in BlockchainDB for the different configurations used for
a given number of peers. For example, for a fixed number of 16 peers, 64, 000 tuples
are being stored in total in the table for any sharding configuration — when using 16
shards/1 replica on the one extreme but also when using 1 shard/16 replica the other
extreme.

In Figure 8.7, we show the resulting throughput of BlockchainDB for the different
setups each using a fixed number of peers (x-axis) and for each setup using different
configurations (as indicated by the different points along the y-axis) as discussed before.
The number of clients used in this experiment is equal to the number of peers (i.e. for
every new peer a new client is added; i.e., numPeers=numClients). Furthermore, we use
consistency= sequential and set opsCount=1000 · numClients using workload= 100%
write/ 0% read; i.e., every client sends a total of 1k put-operations to the database and
waits until these put operations have been committed (e.g. by sending one get at the
end to force that the writes are committed under sequential consistency). As explained
above, the replication factor was set to repFactor = numP eers

shardCount .
Figure 8.7 shows the results of the experiment. Since BlockchainDB allows appli-

cations to apply different partitioning and replication strategies for shared tables, we
can better trade performance and trust characteristics depending on the applications
requirements. The two extremes high trust and high performance are highlighted by

71



8 BlockchainDB - A Shared Database on Blockchains

the green and blue line, respectively. For the green line, BlockchainDB only uses
one shard to store the data and each newly added peer stores yet another replica of
this shard and participate in its corresponding blockchain. Hence, this configuration
represents a classical blockchain configuration and shows similarly worse scalability. In
the other extreme, high performance, every peer that is added also adds a new shard
to the network. This configuration is comparable to a classical distributed database, in
which the parallelism and throughput of the system is increased with every new node. Yet,
since only one replica exists per shard, the application does not get any trust guarantees.

An interesting aspect that is also shown in Figure 8.7 is that BlockchainDB can
provide other configurations “in the middle” that provide a trade-off between trust
and performance (shown as the area shaded in light-blue). For example, when using
a configuration with 4 shards and 4 replicas each for 16 peers (shown as one point in
the Figure 8.7) we can provide a 7× speedup over the full-replicated baseline and still
provide some trust guarantees.

8.7.3 Exp. 2: Effect of Sharding

In this experiment, we show the effects of sharding where we fixed the number of peers
in the network to 16 and varied the number of shards per table (with a fixed replication
factor of 4 per shard). Different from the experiment before, we want to show that
sharding provides a speed-up even for a setup with fixed trust guarantees.

For running the experiment, we created a shared table and increased the number of
shards from 1 to 16 where we filled each shard initially with 4, 000 tuples per shard (i.e.,
64, 000 tuples are in the table in total for 16 shards) to simulate a setup of BlockchainDB
with fixed trust-guarantees. Furthermore, we used a constant replication factor of 4 (as
mentioned before). The number of clients in this experiment is fixed to numClients=16.
We used the same workload as in the previous experiment (workload= 100% write/ 0%
read) but each client sends 2000 operations (i.e. opsCount=32,000 ) using consistency=se-
quential.

Figure 8.8 shows the result of this experiment. As we can see, the throughput of
BlockchainDB increases linearly with the number of shards. This is because the degree
of overall parallelism is increased.

8.7.4 Exp. 3: Effect of Consistency Levels

In this experiment, we show the effect of using different consistency levels for clients. For
this experiment, we used the parameters shown in Table 8.2.
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Furthermore, in this experiment we are using different workload mixes: workload G
(new mix/not in YCSB) - a write-intensive workload (95% write/ 5% read), workload
A (same as in YCSB) - a workload with same amount of reads and writes (50% write/
50% read), and workload B (same as in YCSB) - a read-intensive workload (5% write/
95% read). In order to show the effect of the two main consistency levels (eventual and
sequential), we measured the read-latency on a client for the different workloads.

Table 8.2: Parameters for Exp. 3
parameter value
shardCount 2
repFactor 2
numPeers 4
numClients 4
opsCount 8000

Exp 3a: Sequential vs. Eventual Consistency.
Figure 8.9 shows the resulting latencies for the different workloads. As we can see,

the read latency under eventual consistency is not affected by the change in workload
at all (which we also expected). For, sequential consistency, however, we can see that
the performance increases with a higher number of read-operations. This is a direct
consequence of the fact that with a lower number of writes we also have a lower frequency
of blocking read-operations. For a read intensive workload, we see a decrease in latency
for sequential consistency by two orders of magnitude compared to the write-intensive
workload since there are only a few write-operations that could potentially block the
execution of subsequent read-operations on the same key.
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Table 8.3: Parameters for Exp. 4
parameter value
shardCount 2
repFactor 2
numPeers 4
numClients 4
consistency sequential
opsCount 4000

Exp 3b: Bounded Staleness.
While sequential consistency guarantees a client to see fresh values, it has a much

higher latency than eventual consistency since it forces a client to wait until pending
writes for a key are committed. In contrast, eventual consistency has as significantly
lower latency, but does not provide any guarantee on the staleness of retrieved values.
As described in Section 8.4, eventual consistency with bounded staleness allows a client
to trade off staleness for improved read latency.

We therefore repeated the experiment above but used bounded staleness. In this
experiment, we set the size of the write-queue to different values ranging from 0 to
900. The resulting effects on latency are shown in Figure 8.10. We see that the average
read latency decreases as we increase the staleness. For example, while waiting until all
pending transactions have been committed (i.e., staleness is 0) causes a maximal delay of
about 35s, tolerating around 900 pending puts can improve the latency to around 20s.

In the extreme case, bounded staleness 0 gives us the same guarantees as sequential
consistency. However, we see that it results in a higher latency as for sequential consistency
as shown in Figure 8.9 since sequential consistency blocks lazily if a read for a pending
write arrives.

8.7.5 Exp. 4: Verification Overhead

To measure the overhead of verification, we performed two experiments. First, we
compared the overhead of online and offline verification. Second, we show the effects of
the different parameters for offline verification.
Exp. 4a: Online vs. Offline Verification.

In this experiment we evaluated the performance of the different verification strategies
supported by BlockchainDB. Table 8.3 indicates the parameters used in this experiment.
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For showing the overhead of verification, we report the throughput based on the time
it takes to commit and verify all 4, 000 operations. As a baseline, we show a configuration
without any verification (called no-verification).

As can be seen in Figure 8.11, online verification achieves the lowest throughput, since
it directly waits until a put-operation (i.e., a transaction executing a put) is committed
to verify the operation, which prevents other put requests from being executed. With
the help of offline verification the throughput can be increased as more transactions are
added into one block. As explained earlier the overall throughput depends on the two
parameters of the offline verification: epoch-size |e| and number of unverified epochs ∆e.

In this experiment we use an optimal configuration and set |e| = 100 and ∆e = 10
which results in a throughput of about approx. 40 put operations per second. As can
be seen this value is similar to the throughput of no-verification. This is because the
verification can be performed once a new block is mined for all operations in the block.
This is similar to the time it takes to commit a transaction to the DB plus a small
overhead for verifying the retrieved read/write-sets (which is negligible since reading the
read/write-sets is fast).
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Exp. 4b: Offline Verification Parameters.
In the second experiment we fixed the verification strategy to offline verification and

varied the two parameters |e| and ∆e.
In a first micro-benchmark, we evaluated how |e| effects the throughput for a client

and set ∆e = 0, i.e., only one epoch can be unverified at a time. For running the
micro-benchmark we use a table with a single shard to show the effects of setting |e| on
an isolated shard. Further, we varied the replication factor (i.e., number of peers a shard
is replicated to) to study its influence on the overall throughput.
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As we can see in Figure 8.12, when using a replication factor of one (1 Peer, green
line) the throughput increases significantly with increasing epoch size until |e| = 70 is
reached, which corresponds to the maximum number of transactions that fit into one
block (i.e., the block size) of the underlying blockchain. When increasing |e| further, the
throughput increases much slower (and almost stagnates). Furthermore, if multiple peers
participate in a shard the throughput is higher in total. We can see this effect in Figure
8.12 by the second line (2 Peers, blue line). The reason here is that the verification
overhead is distributed across two peers and thus each peer only needs to verify half of
the put-operations of an epoch on average. This leads to an overall higher throughput
since the total elapsed time for verification is shorter.

In a second micro-benchmark we wanted to show the effect of the ∆e parameter. As
explained previously, the ∆e parameter determines the number of unverified epochs a
peer tolerates. In this experiment, we thus execute the same benchmark as before with
two peers but this time one fast and one slow peer in order to analyze the effect of
potential resource skew (e.g., a slower network or less computational power for one). A
skew = x means that the slower peer is only able to verify transactions with a lag of x

blocks on average behind the faster peer. In order to show the sensitivity of the overall
throughput on ∆e, we set |e| = 70 (i.e., the optimal |e| of the previous experiment) and
vary the ∆e parameter from 1 to 20.

In Figure 8.13, we show the throughput (including its standard deviation for 10 runs)
for different skew factors where the slower peer has a lag of 4, 8, and 14 blocks on average.
As we can see, the throughput improves with increasing ∆e whereas for a higher skew a
higher ∆e is required. As our experiments show, ∆e should be set according to the lag
of the slower peer; e.g., the maximal throughput for a lag of 14 is achieved with ∆e = 14
whereas smaller lags (skew=4 and skew=8) can also tolerate a smaller ∆e. In general,
we see that if ∆e is set to a value smaller than the lag, then the faster peer is always
slowed down by the slower peer which decreases the overall throughput.

8.8 Related Work
Related work spans three major areas, namely, Verifiable Databases, Scalable Blockchains,
and Distributed Databases. For Distributed Databases, there is a long line of work that
covers relevant topics such as replication, sharding and peer-to-peer approaches. Due to
space constraints, we omit a detailed discussion and refer to [135] for an overview.
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Verifiable Databases. The closest work to BlockchainDB is work done by Allen et
al. in [68]. In [68], the authors propose the idea of “Databases and tables that can be
shared and verified”. While their work makes use of the same abstractions of shared tables
they differ in how they implement these abstractions. While [68] also uses blockchains to
implement a voting/consensus schema they store the actual data in a traditional database
on every peer and only a digest in the blockchain. In contrast, in BlockchainDB we
store all data in blockchains, such that BlockchainDB not only uses the consensus and
verification features provided by the blockchain but also the capability of having all data
in a tamper-proof ledger that allows us to audit all changes to the database. Another
major difference is that BlockchainDB allows applications to navigate the trade-off
between trust and scalability when using blockchains as a shared database.

BlockchainDB also relates to previous work done on verifiable databases in the
context of outsourcing [14, 18, 19, 84, 175, 190, 191]. This body of research addresses
the question of how to securely delegate the management of data to untrusted third
parties, such that the third party cannot manipulate the data or the result of queries on
that data. In BlockchainDB peers face the same challenges when accessing data on
shards stored at remote peers. However, in BlockchainDB we do not aim to modify
the underlying blockchain and thus build our verification protocol on top.

Scalable Blockchains. The second area of related work is in the context of blockchain
systems, where various proposals have been made to improve the scalability and per-
formance of a blockchain. A good overview of the bottlenecks and approaches to scale
blockchains are discussed in [40]. In the following, we discuss recent results not covered
in [40].
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For example, several new protocols have been developed to make use of sharding as part
of the blockchain consensus protocol [4, 94, 109, 145, 146, 187] to address the scalability
challenge. BlockchainDB differs from this line of work as it does not propose a new
consensus protocol, but implements sharding on top of existing blockchains. Hence, these
new blockchain systems could be also used by BlockchainDB as a backend and improve
the overall performance of the database. A further difference is that BlockchainDB
acts as an abstraction layer for clients, such that normal users do not need to deal with
new interfaces or programming models that might be introduced by a new blockchain
system.

Other proposals to overcome the scalability problem of blockchains discuss the usage
of off-chain computation [34, 47, 48, 125]. While BlockchainDB shares the concepts
of moving certain functions out of the blockchain, it does that on top of the blockchain
layer and not as part of it.

Another direction of work is that systems aim to add blockchain-like functions to
existing distributed and replicated databases. A prominent representative for this line of
work is BigChainDB [115] which builds on MongoDB. While BigChainDB shows that it
can provide a higher performance than native blockchain systems, it is being constantly
under critique to not provide the same trust guarantees and fault-tolerance model as
native blockchains. Some of the original shortcomings have been recently addressed in
a newer version by using Tendermint to achieve Byzantine fault tolerance. Different
from BigChainDB, BlockchainDB hence has chosen another route and instead builds
directly on top of blockchain systems and their trusted execution model.

Finally, recent papers [151] also looked into blockchains with a database angle and
add database techniques into the blockchain (e.g., re-ordering transactions for higher
throughput). Same as before, BlockchainDB does all its optimizations on top of the
blockchain layer and not as part of it.

8.9 Conclusion & Future Work
In this paper, we presented BlockchainDB, which introduces a database layer on
top of blockchains to participate in data sharing scenarios. Our experiments show that
BlockchainDB can provide up to two-orders of magnitude higher throughput than
native blockchains and allows to better scale-out with the number of peers. At the
moment, BlockchainDB only provides a key/value interface on top of shared tables.
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9 BlockchainDB - Towards a
Shared Database on
Blockchains

Abstract
In this demo we present BlockchainDB, which leverages blockchains as storage layer and
introduces a database layer on top that extends blockchains by classical data management
techniques (e.g., sharding). Further, BlockchainDB provides a standardized key/value-
based query interface to facilitate the adoption of blockchains for data sharing use cases.
With BlockchainDB we can thus not only improve the performance and scalability of
blockchains for data sharing but also decrease the complexity for organizations intending
to use blockchains for this use case.
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9.1 Introduction

Motivation. Blockchain (BC) technology emerged as the basis for crypto-currencies, like
Bitcoin [126] or Ethereum [29], allowing parties that do not trust each other to exchange
funds and agree on a common view of their balances. With the advent of smart contracts,
blockchain platforms are being used for many other use cases beyond crypto-currencies
and include applications in domains such as governmental, healthcare and IoT scenarios
[16, 20, 169].

An important aspect that many scenarios have in common is that blockchains are
being used to implement shared data access of parties that do not trust each other. For
example, one use case is that the blockchain is used for tracking of goods in a supply chain.
What makes blockchains attractive in those scenarios are two main characteristics: First,
blockchains store data in an immutable append-only ledger that contains the history
of all data modifications. That way, blockchains enable auditability and traceability in
order to detect potential malicious operations on the shared state. Second, blockchains
can be operated reliably (tolerating byzantine failures) in a completely decentralized
manner without the need to involve a central trusted instance which often does not exist
in the use cases mentioned before.

However, while there is a lot of excitement around blockchains in industry, they are
still not being used as a shared DB in many real-world scenarios. This has different
reasons: First and foremost, a major obstacle is their limited scalability and performance.
Recent benchmarks [44] have shown that state-of-the-art blockchain systems such as
Ethereum or Hyperledger that can be used for general applications can only achieve 10′s

or maximally 100′s of transactions per second which is often way below the requirements
of modern applications. Second, blockchains lack easy-to-use abstractions known from
data management systems such as a simple query interface as well as other guarantees
such as well-defined consistency levels that guarantee when/how updates become visible.
Instead, blockchains often come with proprietary programming interfaces and require
applications to know about the internals of the blockchain system to decide on the
visibility of updates. For example, when using Ethereum, clients have to manually check
if their updates have successfully been committed to the main branch by waiting a certain
number of blocks.

Contributions. In this demo, we present BlockchainDB to tackle the before-men-
tioned issues. The main idea is that BlockchainDB leverages blockchains as storage
layer. That way, existing blockchain systems can be used (without modification) as a
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temper-proof and de-centralized storage. On top of the storage layer, BlockchainDB
adds a database layer that implements the following functions:

• Partitioning and Replication: A major performance bottleneck of blockchains
today is that all peers hold a full copy of the state and still only provide (limited)
sharding capabilities. In BlockchainDB, we allow applications to define in the
database layer how data is replicated and partitioned across all available peers.
Thus, applications can trade performance and security guarantees in a declarative
manner.

• Query Interface and Consistency: In the database layer, BlockchainDB addi-
tionally provides easy-to-use abstractions including different consistency protocols
(e.g., eventual and sequential consistency) as well as a simple key/value interface to
read/write data without knowing the internals of a blockchain system.

In addition to these two functions, BlockchainDB comes with an off-chain ver-
ification procedure. The idea of the verification procedure is that clients can detect
potential misbehaving peers in the BlockchainDB network. This is needed since not
all BlockchainDB peers hold the full state and the storage layer of a remote peer could
potentially drop put-operations or return spurious values for get-operations.

By introducing a database layer on top of an existing blockchain as storage layer,
BlockchainDB is able to not only provide higher performance, but also to massively
decrease the complexity for organizations, that intend to use blockchains for data sharing.
While the concept of moving certain functions out of the blockchain into additional
application layers has been studied previously (e.g., [34, 47, 48, 125]), to the best of our
knowledge, BlockchainDB is the first system to provide a fully functional database
layer on top of blockchains.
Outline. The remainder of this paper is organized as follows: First, in Section 9.2 we
provide an overview of the BlockchainDB architecture as well as the provided trust
guarantees. Then, in Section 9.3 and 9.4 we discuss the details of BlockchainDB’s
database and storage layer. Finally, in Section 9.5 we conclude with a description of our
demo scenario that we intend to present to the audience.

9.2 Overview
In the following, we first give an overview of the architecture of BlockchainDB and
then discuss which attacks can be mitigated by our off-chain verification.
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Figure 9.1: A typical BlockchainDB Network

9.2.1 System Architecture

Figure 9.1 shows a typical deployment of BlockchainDB across a network of four
different BlockchainDB peers (i.e., untrusted parties) that access the same shared data.
Similar to permissioned blockchains, in BlockchainDB we assume that the parties who
want to share data are previously known to each other.

In order to participate in a BlockchainDB network and allow clients of a party to
read/write data into a shared database/table, a peer in BlockchainDB can be either
deployed as a full peer which hosts data and participates in a shard with its storage layer
or as a thin peer which only hosts a database layer (i.e., the peer’s storage layer does
not store data locally). Having thin peers enables parties with only limited resources
to participate in a BlockchainDB network and access the shared database or table.
In the following, we explain how clients interact with a BlockchainDB as well as the
functionality of each layer.
Clients. Instead of interacting with a blockchain peer directly, in BlockchainDB
clients interact with the database layer through a simple put/get interface to read from
or write to the shared state. Furthermore, clients can use the verify method of the
database layer to trigger an off-chain verification procedure for the read/write-set of
that client (since the last verification call) to detect potential misbehaving peers in
a BlockchainDB network (e.g., to detect if another BlockchainDB peer — more
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precisely its storage layer — returns a spurious read or drops a put). An example to
intuitively explain verification is discussed in the next section.
Database Layer. The database layer in BlockchainDB is mainly responsible to
execute the put/get calls from the clients. If a put/get call comes in, the database
layer uses the Shard Manager to decide to which (copy of a) shard the operation should
be directed to. The shard can be either stored in its local storage layer or remotely in
another BlockchainDB peer depending on a pre-defined distribution scheme. Currently,
BlockchainDB implements a hash-based sharding approach, in which the user defines
the number of shards and their allocation to BlockchainDB peers when creating a
new shared table. Another major difference of BlockchainDB and a pure blockchain
network is that the database layer of BlockchainDB implements a Transaction Manager
that implements well-known consistency levels (e.g., eventual consistency and sequential
consistency). That way, clients not only get a defined behavior for concurrent read/writes
without the need to know the internals of blockchains, but the database layer can
additionally re-order/batch reads/writes depending on the chosen consistency level to
optimally leverage the underlying blockchain-based storage layer and thus further improve
the performance.
Storage Layer. The storage layer serves as a persistent, auditable storage backend of
BlockchainDB using existing blockchain systems as temper-proof storage. As depicted,
the storage layer of BlockchainDB is able to parallelize data processing across different
shards whereas each shard is implemented using a separate blockchain network which
replicates its state to multiple (but not necessarily all) peers using the blockchain internal
consensus protocols. For example, in Figure 9.1 BlockchainDB uses in total three
different blockchain networks (one for each shard) while each shard is only replicated to
two peers.

9.2.2 Attacks & Trust Guarantees

In BlockchainDB, we aim to detect two categories of attacks.
First, a common problem in a shared data scenario is that one party might change

the shared state to its advantage. For example, in a supplier-scenario the party who
delivers the products might update the price of the products after an order has been
placed from the other party. In BlockchainDB such a modification-after-the-fact could
be detected since the storage layer uses blockchains to store the history of all updates in
a temper-proof ledger. In consequence, any later modification of data will be transparent
to all parties. Clearly, the logic to verify the validity of updates has to be implemented
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in the application layer on top of BlockchainDB, but the important fact is that the
database guarantees the audibility.

Second, individual BlockchainDB peers do not hold the full database state and
thus redirect a subset of reads/writes to the storage layer of other peers. However, these
peers might be potentially malicious and drop puts or return spurious values for get-
operations. To detect this type of attack, BlockchainDB tracks all issued operations in
the blockchain and provides clients with an off-chain verification procedure that checks
whether the read/write-set has been correct.

The off-chain verification procedure is implemented in the database layer of and comes
in two flavors: In online verification, a client can call a separate verify method after a
put/get-operation that checks the validity of the last operation. For example, to verify a
get-operation the value for a given key is retrieved from the majority of peers. However,
online verification comes with significant additional overhead. We therefore additionally
support (a deferred) offline verification procedure which verifies reads/writes in batches.
The deferred verification procedure provides less overhead than the online verification
procedure. However, clients might work (for a limited amount of time) on an unverified
database state.

9.3 Database Layer
In the following we explain the database layer and briefly discuss the involved components
as depicted in Figure 9.2.

As mentioned before, when a new shared table is created in BlockchainDB, the user
needs to specify the number of shards and their sizes (i.e., to define how many replicas of a
shard exist). The database layer of BlockchainDB can setup the required shards using
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a ShardController component (not shown in Figure 9.2) that automatically creates a
new blockchain network. As shown by Dinh et al. [44], a higher number of peers in a
blockchain network decreases the throughput, however, it offers higher security since the
data is protected by a larger network.

For accessing a shared table, clients send requests to their local BlockchainDB peer
using a simple key/value interface. Requests arriving from the client in the database
layer are first received by the off-chain verifier 1⃝ that records the unverified reads/writes
of a client for online/offline verification (as discussed before). The verifier then forwards
the request to an internal RequestQueue 2⃝. Next, the TransactionManager polls the
requests from the queue and processes them according to a specified consistency level1 3⃝.
Currently, we support sequential and eventual consistency. The different consistency levels
differ in how quickly the database layer can process operations. For example, for eventual
consistency a get-operation is immediately answered, however, no guarantee is given that
a potential outstanding put-operation has already been committed to the blockchain.
In sequential consistency, the database layer needs to execute put/get-operations in
order and thus, potentially blocks a get-operation until an outstanding put-operation has
been committed to the blockchain. Once a put/get-operation is ready to be sent to the
storage layer, it is forwarded to the ShardManager 4⃝. The ShardManager service has
two main purposes: First, it determines the correct shard for a given key and second, it is
responsible for sending the request in parallel to the storage shards. To do this multiple
BackendConnectors are being used 5⃝ that allow BlockchainDB to write data into
the underlying storage layer as discussed in the next section.

9.4 Storage Layer
A shared table in BlockchainDB has a key/value data model where key is the primary
key and value can represent the payload of the table. For keys and values, the database
layer provides different data types that an application can choose from when creating a
new table (such as INT, DECIMAL, STRING). For values, BlockchainDB also supports
complex JSON-based data types that are comprised of lists and nested structures.

For storing shards of a table in the storage layer, the database layer converts the
key/value payload into a byte representation. We found out that representing the data
in a byte-format before storing it in a blockchain backend not only leads to decreased
storage cost, but also allows for more efficient processing on the blockchain. In the future,

1The consistency level can be specified for each shared table.
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we plan to study the application of lightweight compression techniques in the database
layer to further optimize writing and retrieving data from the storage layer.

In order to support a new blockchain backend to store shards, BlockchainDB
requires a minimal smart contract definition which provides a simple put/get access to
the blockchain state via a so called BackendConnector. Different BackendConnectors
are currently available for Ethereum, Hyperledger Sawtooth as well as Hyperleder Fabric.
In the following, we show a simplified extract of the smart contract code that is used by
our Ethereum BackendConnector.

contract KVContract {
// state variables and constructor omitted
function get(bytes memory key)
public view returns(bytes memory value){

return data[key];}
function put(bytes memory key, bytes memory value)
public returns(bool success) {

data[key] = value; return true;}
}

9.5 Demonstration Scenario
In our demo we show-case how BlockchainDB can support data sharing in various
scenarios by optimizing the system for a given workload. To this end, our demo provides
two interfaces, an administration and a simulation interface.
Administration Interface. This interface (left side in Figure 9.3) shows the current
system status and performance (in terms of throughput/latency) for different workloads
(read-heavy vs. write-heavy). For the demo, we setup BlockchainDB networks with
up to 24 BlockchainDB peers. Each peer represents a participant in the network
that shares data with other peers. The administration interface enables the user to
change system parameters of BlockchainDB like the replication factor per shard
(1-24), number of shards per table (1-24) or the consistency-level (eventual or sequential
consistency) and see how the system performance is affected.
Simulation Interface. This interface allows the user to simulate attacks and verify that
they were successfully detected by BlockchainDB. While our simulation is generic, the
simulation components can be mapped to any use case that benefits from data sharing,
such as supply chain, health networks, etc. With the help of the simulation interface
(right in Figure 9.3), we present three scenarios in our demo application: (1) An attacker
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Figure 9.3: Admin (left) and Simulation Interface (right)

wrote manipulated data into the shared table, which was detected by a participant in
the network. An auditor wants to account which participant wrote the responsible value
into the shared table. One can think of BlockchainDB in this context, as a black
box that reliably records all writes and enables a later audition of all actions. (2) A
malicious peer tries to prevent other peers from writing to the shared table by dropping
their writes. Users can observe, that the attack has been detected and logged in the
simulation interface. (3) A malicious peer returns spurious values (not actually stored in
a shared table). As such attacks are detected, they will be also logged in the simulation
interface.
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10 Towards Merkle Trees for
High-Performance Data
Systems

Abstract
Merkle Trees (MTs) (and their variants) are widely used for building secure outsourced
data systems. The adoption of MTs for high-performance data systems, however, uncov-
ered major performance challenges. First and unlike classical data structures, Merkle
Trees involve expensive cryptographic operations and are thus CPU-bound. Second, they
are not well suited for modern multi-core CPUs because they introduce a single point of
contention making MTs hard to parallelize. While recent work aimed at replacing Merkle
Trees to circumvent their performance problem, we suggest new techniques to speed-up
this ubiquitous data structure and achieve high-performance. In this paper, we present
initial results showing that in contrast to common wisdom it is indeed possible to build
high-performance MTs with orders of magnitude performance improvements.
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10.1 Introduction

The Pervasiveness of Merkle Trees. Merkle Trees (MTs) [121] (and their variants) are
widely used for building secure outsourced data systems. Compared to other approaches
(such as cryptographic accumulators [167] or signature aggregation [136]), they efficiently
support all relevant operations including updates and the verification thereof. This
makes MTs the go-to choice for update-intensive applications, such as secure outsourced
key-value stores (e.g., [13, 14, 17, 156]). Using a Merkle Tree as an authenticated data
structure, these systems enable clients to store and update data on an untrusted server
while guaranteeing the authenticity and integrity of the data.

Data Authentication with Merkle Trees. Merkle Trees provide these guarantees by
constructing a tree of cryptographic hashes from the stored data, where parent nodes are
constructed by combining the hashes of their child nodes. In a binary tree, for example, a
parent node is constructed by concatenating the cryptographic hashes of its two children
and applying a cryptographic hash function to the result. This process is repeated until
a single root hash remains, which is signed by the owner of the data (e.g., the user of
an outsourced key-value store). Valid data updates result in a new root hash that is
similarly authenticated by the owner. Due to the recursive structure of Merkle Trees,
any unintended change or data corruption also leads to a changed root hash. As we
will detail later, this property allows the data owner to check the integrity of the entire
database or the validity of query results only by maintaining the authenticated root hash
(instead of the entire database).

Recognizing the Performance Constraints of Merkle Trees. The adoption of
Merkle Trees in high-performance database systems such as main memory key-value
stores running on modern hardware platforms, uncovered major performance challenges of
Merkle Trees. In contrast to classical data structures (e.g., B-Trees) that achieve millions
of operations per second, Merkle Trees only provide tens of thousands ops/sec [13]. The
reasons for this inferior performance are two-fold. First, unlike classical data structures,
updating data in Merkle Trees involve CPU-intensive operations, such as computing
cryptographic hash functions or digital signatures. This bounds the performance by the
speed of the CPU and limits the maximum achievable throughput. Second, improving
performance by utilizing multiple threads that concurrently update the data structure is
challenging. Since the root hash of a Merkle Tree is re-computed on every update, threads
will conflict at the root and must be synchronized. This synchronization causes high
contention and degrades the performance of a Merkle Tree for highly-parallel modern
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multi-core systems [13, 14, 17, 156]. Unfortunately, addressing these two issues is not
trivial for Merkle Trees.
Unrealized Performance Potential. At a first glance, these performance limitations
seem inherent to the data structure and thus unavoidable. Hence, previous work mainly
proposed alternative data structures [14] or employed secure hardware [13] to circumvent
the performance limitations of Merkle Trees. Although their properties make performance
optimizations hard, we observe that Merkle Trees still provide unrealized performance
potential. For example, while synchronization for classical tree structures [100] is a
known research area, efficient and scalable synchronization for Merkle Trees is largely
unexplored. Further, while it is not yet possible to make cryptographic operations orders
of magnitudes faster, we can exploit workload characteristics to adapt the Merke Tree to
significantly reduce the overhead and thus increase performance.
Contributions and Outline. In this work we present initial results to show that
building high-performance Merkle Trees is indeed possible. As a first contribution, we
focus on an efficient synchronization schemes for Merkle Trees and propose a new reverse
latch-coupling scheme to improve concurrency in Merkle Trees. Moreover, we suggest
the concept of splitting to further reduce the contention and the cryptographic overhead
at the same time. In the remainder of this paper, we first briefly review the basics of
Merkle Trees before introducing our approaches for increasing their performance.

10.2 Merkle Tree Basics & Challenges
Intuitively, Merkle Trees protect data authenticity by recursively computing a crypto-
graphic digest from the stored data. This section overviews how to construct, use and
update this digest.

10.2.1 Construction

Classical Merkle Trees are binary trees in which each parent node is the hash of the
concatenation of its two child nodes. To obtain a single root hash as a digest, we
repeatedly construct h = log2(N) upper levels, where N is the number of data records.
General Process. The construction starts on the leaf level with height 0. There, a
cryptographic one-way hash function HASH() is applied to compute the hash of each
data item. On the next level, two child nodes (leaf hashes on the lowest level) are
concatenated, and the resulting concatenation is hashed to retrieve a corresponding
parent node. We refer to this concatenate-and-hash operation simply as CONCAT , i.e.,
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Figure 10.1: Hierachical structure of the Merkle Tree (a) and how it is used to
construct an inclusion proof (b). The CONCAT operation refers
to hashing the concatenation of two child nodes, i.e., CONCAT :=
HASH(HASHleft||HASHright)

CONCAT := HASH(HASHleft||HASHright). This process is repeated until a single
root node at height h remains, as shown in Figure 10.1a. The figure shows that the leaf
with H4 is constructed by hashing the data record R1, i.e., H4 = HASH(R1). The
corresponding parent on the next level is created by concatenating both children hashes
(H4 and H5) and computing the hash of their concatenation (H2 = CONCAT (H4, H5)).
The final hash is then authenticated using a digital signature algorithm SIGN() or storing
the root hash in a trusted location.

10.2.2 Verification Procedure

Merkle Trees enable verifying the integrity of a data item without traversing the entire
tree. This verification is done using an inclusion proof, a minimal set of nodes proving
that the item is part of tree.
Proof Construction. To generate an inclusion proof, we start at the hash of the
data item we want to authenticate. We then traverse the tree from the leaf to the root,
collecting the sibling nodes along the way. Those sibling nodes are referred to as proof
nodes in Figure 10.1b (marked grey). This leaf-to-root path containing the sibling hashes
is called the co-path and serves as the proof of inclusion.
Proof Verification. To verify the inclusion of a data item, we start by computing the
hash of the data we retrieved from the server, e.g., H4 = HASH(R1). We then use the
proof nodes to recompute all parent hashes up to the root as depicted by the dotted
nodes in Figure 10.1b. For instance, we concatenate the previously recomputed hash
H4 with the proof node H5 and hash the result to determine H2. If the final root hash
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matches the authenticated root hash, we can confirm the presence of the data item in
the Merkle Tree.

While verification is an essential feature of Merkle Trees, it is often not critical for
the overall system performance since verification typically happens asynchronously on
client machines [85]. However, efficiently performing updates that are vital for modern
high-performance systems, represents a major source of overhead.

10.2.3 Update Procedure

One reason Merkle Trees are widely used in the context of outsourced data systems,
such as secure key-value stores, is that they can be efficiently updated in an incremental
fashion.

General Process. When a data item is updated, it is not required to re-compute
the entire tree. Instead, the inner nodes of the tree are stored on the server, and only
the direct parents along the root-to-leaf path need to be updated. For example, in
Figure 10.1a, if R1 is updated, resulting in H4∗ = HASH(R1∗), all corresponding parent
nodes must be updated since they are recursively computed. Updating a single data
record thus only requires computing h = log2(N) new hashes. Finally, the updated root
hash must be authenticated using a digital signature from the owner.

Performance Challenges. Merkle Tree updates are challenging in the context of
high throughput scenarios because of two reasons: (1) They involve compute-intensive
cryptographic operations such as hashing and signing. In contrast to simple memory
accesses or non-cryptographic hash functions used in classical data structures, these
operations cost thousands of CPU cycles. Consequently, any additional hash operation
(e.g., due to an increased tree height) directly translates to thousands of cycles of overhead.
(2) In order to leverage the parallelism of multi-core machines, multiple updates need to
be executed concurrently. However, Merkle Tree updates are hard to parallelize since
operations typically conflict for recomputing parent nodes and in particular the root node.
However, naive synchronization, e.g., using a global latch of the Merkle Tree, introduces
contention and limits concurrency since only one thread can modify the data structure at
a time. Moreover, more fine-granular latching schemes known from B-trees do not easily
translate to Merkle Trees as we discuss next. In the next sections, we thus discuss novel
ideas to tackle these performance challenges, starting with the concurrency limitations.
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10.3 Enhancing Concurrency
Efficient synchronization to improve the concurrency of classical tree-based index struc-
tures has been a prominent area of research in the database community [24, 74, 99,
100]. However, Merkle Trees possess several unique properties that justify a principled
discussion of synchronization techniques.
Unique Properties of Merkle Trees. In contrast to Merkle Trees, (pure) updates in
conventional tree structures (e.g., B+-Tree) typically do not propagate to the root node.
Hence, updates usually involve a (read-only) top-down traversal to locate the record,
followed by a local update on the leaf. This way, concurrently running threads (especially
for uniform workloads) are dispersed across different leaf nodes, allowing each thread to
apply its update directly. In contrast, Merkle Trees updates are propagated to the root
node bottom-up so that all operations eventually converge at the root node. Although
threads may update different leaves, collisions at inner levels (ultimately at the root)
necessitate waiting for other threads to perform parent node updates. This contention
not only limits concurrency but also degrades performance. Given that Merkle Trees
are CPU-bound, contention for updates wastes precious cycles that could be devoted
to actual work, such as hashing or signing. Hence, designing efficient synchronization
techniques for Merkle Trees is of paramount importance.

10.3.1 A Design Space for Concurrency

We identify two fundamental strategies for improving concurrency in Merkle Trees:
Pipelining (PI) and Parallelization (PA).

Pipelining overlaps the work of distinct threads by permitting updates to different
tree levels, while parallelization allows threads to work concurrently within separate tree
regions. Both approaches aim to minimize thread idle time by permitting updates to
tree regions no longer needed by a previous thread. Based on these strategies, we can
construct a two-dimensional design space, as shown in Figure 10.2a.

10.3.1.1 Four Concurrency Quadrants

The design space comprises four quadrants that characterize various synchronization
schemes. Examining the quadrants enables us to understand why previous approaches
fail to fully realize the performance potential of Merkle Trees. For evaluation purposes,
we also devise a corresponding latching strategy for each quadrant.
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Figure 10.2: Pipelining and Parallelization define a two-dimensional design space for
concurrency enhancements. Corresponding latching approaches (bold) and
related work can be placed in its different quadrants (a). Subfigure (b)
visualizes the corresponding latching approach of each quadrant.

No-Pipelining/No-Parallelization. The most prevalent approach for synchronizing
Merkle Trees today is situated in the bottom left quadrant. It uses a global latch1 that
is held for the entire leaf-to-root traversal to prevent conflicts [14, 89]. As illustrated in
the bottom left quadrant of Figure 10.2b, in this approach, multiple threads queue for a
central latch. As only one thread can acquire the exclusive latch required for updating
the node, this approach serializes all threads and prevents concurrent operations.
Pipelining/No-Parallelization. Only a few existing approaches, such as [66], can be
placed in the upper left quadrant (PI, No PA). For instance, [66] utilizes OpenMP2 to
implement a parallelized Merkle Tree that pipelines threads through all tree levels. This
is done by traversing the tree level-by-level using OpenMP’s for ordered construct.

An alternative latch-based scheme can be derived by increasing the granularity of
latches to a latch per level, as shown in the upper left quadrant of Figure 10.2b. By
utilizing traditional latching coupling [158] (see Section 10.3.2), this latching scheme
creates a chain of threads that traverse the tree level-by-level.
No-Pipelining/Parallelization. While the previous approaches limited parallelism,
approaches in the bottom right quadrant (No PI, PA) limit the pipelining effect. Several
existing approaches (e.g., [13, 156]) realize the approach of this quadrant by sharding
the data and building a dedicated Merkle Tree for each shard/partition3. Then, either a
single thread is assigned to each shard or a global latch per shard is used to synchronize
multiple threads (as depicted in the bottom right of Figure 10.2b). This scheme enables

1The systems community usually uses the term lock to describe the same mechanism.
2https://www.openmp.org/
3We use sharding/partitioning as synonyms
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threads on different shards to process updates in parallel, but it limits the concurrency
within a shard since threads contend for the shard latch (no pipelining).
Pipelining/Parallelization. Surprisingly, there is only one existing approach that
falls into the last quadrant (PI, PA). The work in [89] uses fine-grained node latches in
combination with a binary encoding scheme to detect the location of conflicts in a batch
of updates. For instance, in the example shown in the upper right of Figure 10.2b, we
can determine that conflicts will occur at h = 1 and h = 2. After determining the conflict
positions, we can execute non-conflicting updates in parallel (e.g., all updates on the leaf
level) and schedule conflicting updates for serial execution.

Unlike this work, we propose a general latching scheme based on fine-grained latches
that does not require any encoding and pre-computation of conflict locations. Nevertheless,
it still combines the benefits of pipelining and parallelization.

10.3.2 Reverse Latch Coupling

Naively applying node latches to synchronize updates in Merkle Trees can lead to
deadlocks, as observed by previous work [89].
Key Idea. Hence, our scheme combines fine-grained node latches with latch coupling
(aka hand-over-hand latching) [27, 99, 100, 158] to avoid deadlocks. The twist of our
latching scheme is that it latches the node’s parent (exclusively) to update a node (the
root node is a special case). This backward-directed latching effect (hence the name
reverse latching) effectively also latches the node’s sibling(s). The underlying observation
is that the inherent data dependency in a Merkle Tree enables us to simultaneously
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synchronize the (two) children of a node using their parent. I.e., instead of acquiring a
latch for each child separately, we can protect the consistency of both nodes by latching
their common ancestor first. We will discuss our latching in more detail in the following.
Latching Scheme. Figure 10.3a outlines our latching scheme and compares it to
traditional latch coupling as used in the level latch scheme. In the level latch scheme, we
latch the same level that includes the node subject to update. Afterward, we proceed
by first latching the next level before releasing the latch of the previous level (= latch
coupling). This traditional latching is possible since acquiring the latch of a level also
protects the node’s sibling(s). Consistently accessing the node’s sibling(s) is necessary to
compute the update of the next node correctly. However, since the level latch protects
all nodes of a level, i.e., even a node’s cousins, this scheme limits the parallelism within a
level, as discussed before.

We use a reversed latching scheme to update a node and access its sibling consistently
while avoiding deadlocks and enabling parallelism. As shown in Figure 10.3a, this means
that we latch a node’s parent exclusively to manipulate a given node. This scheme
avoids deadlocks with concurrent threads trying to update a sibling node since both
threads synchronize on a common latch instead of multiple latches, as in the naive
schemes discussed by Kalidhindi et al.. Propagating updates upwards proceeds similarly
by utilizing latch coupling. I.e., to update the parent, we first latch the next parent node
(= grandparent) before unlatching the previously acquired latch. Clearly, the root node
constitutes a special case since it does not possess a parent node. Hence, its latch is only
released after updating its hash (step 8− 9).
Concurrent Read Operations. Concurrent read operations must follow the same
reverse latching protocol to ensure consistency, albeit using shared latches. This is because
both updates and reads follow the same access pattern and are funneled bottom-up to
the root node. Nevertheless, an open question for future research is whether we can relax
the need for acquiring exclusive latches for parent nodes during updates. The idea of
this optimization is to allow for more concurrent readers, as done in previous research in
the context of B-Trees [27, 99, 100, 158].
Insert Operations. Inserts might involve more complex structural modifications in
a Merkle Tree. This is especially the case for balanced trees sorted on the key-order.
However, we observe that reverse latch coupling can be applied without modifications if
the Merkle Tree is only used for append-only purposes (i.e., sorted on insertion order) or
without any sorting or balancing requirements. In these cases, inserts follow the same
access pattern as updates, i.e., they are funneled to the root node. Hence, following the
same reverse latch coupling scheme preserves consistency for both operations.

100



10.3 Enhancing Concurrency

0

250K

500K

750K

0 50 100

worker threads

a
vg

 o
p
s
/s

e
c

Global Latch Level Latch

Rev.Latch Coupling

(a) Evaluation of Synchronization Schemes

0

1M

2M

3M

4M

0 50 100

worker threads

a
vg

 o
p
s
/s

e
c

1

4

16

64

1024

16384

262144

16777216

(b) Evaluation of Splitting (colors represent
number of sub-trees)

Figure 10.4: Initial evaluation results with a Merkle Tree containing 224 records of size
8 Byte. Reverse latch coupling scheme significantly improves performance
up to 32 threads (a). Leveraging the concept of splitting achieves better
scalability and another order of magnitude speed up (b).

10.3.3 Evaluation & Insights

We next evaluate our novel latching scheme on an update-only workload to demonstrate
that an enhanced synchronization technique can indeed improve the concurrency and
performance of Merkle Trees. More extensive experiments using other workloads are
planned for future work.
Experiment Setup. We implemented the different latching schemes mentioned above
in a custom Merkle Tree implementation in C++. Our implementation uses the BLAKE2b

hash algorithm and the Ed25519 signature algorithm from the libsodium library 4. The
code is compiled using g++ version 11.1.0 on Ubuntu 18.04.1 LTS with optimization
enabled (O3). We run our benchmark on a server with four Intel Xeon Platinum 8268
(2.90/3.90GHz, 35.75MB LLC) CPUs (192 threads in total) while setting the CPU
governor to performance and pinning our process threads using the taskset utility. We
execute updates for 8 byte records uniformly on a Merkle Tree with 224 records for
10 seconds and report the system throughput as an average over 5 repetitions of our
experiment.

The experiment results in Figure 10.4a illustrate that reverse level latching can scale to
an order of magnitude more cores and improve performance to several hundred thousand

4https://libsodium.org/, Version 1.0.18-stable
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operations per second. Nonetheless, performance degradation occurs after 32 worker
threads. This effect can be attributed to contention, an issue we address subsequently.

10.4 Splitting Merkle Trees
While improved latching schemes successfully increase concurrency and reduce wasted
cycles spent on contention, they cannot eliminate contention at the root node or decrease
the computational overhead of Merkle Trees. Thus, we started to explore the concept of
splitting. The intuition behind our approach is to enable a lightweight and more dynamic
way of sharding Merkle Trees. By doing so, we aim to leverage the benefits of sharding
while avoiding the downsides of the classical approach.
Benefits of Sharding. As discussed previously, classical Merkle Tree sharding partitions
the data to create multiple physical trees. The resulting trees (cf. Figure 10.2b bottom
right) are of lower height, reducing the number of required hash computations and
thus the computation overhead for updates. Moreover, introducing multiple root nodes
supports a higher degree of parallelism, as discussed earlier.
Downsides of Classical Sharding. Unfortunately, the classical sharding approach
is static and thus sensitive to changing workloads or skewed access patterns [14]. For
instance, while partitioning a Merkle Tree into two partitions might be sufficient for
one workload, creating four partitions might be more beneficial for another workload.
However, changing the sharding configuration to accommodate the changed workload
usually requires expensive re-partitioning as it is tight to the data partitioning.
How Splitting Works. To avoid the downsides of classical sharding, splitting modifies
the internal structure of a tree to create logical sub-trees instead of physical trees. As
shown in Figure 10.3b, we accomplish this by cutting the edge between a given node
and its parent (red line). This split promotes the detached node (green brackets) to
become a new root representing the newly created sub-tree. Consequently, instead of
representing the entire data set using a single root hash, we allow a tree to contain
multiple roots associated with the split sub-trees. Further, unlike classical approaches
that limit parallelism within a shard (cf. Section 10.3.1), we use our reverse latching
scheme to improve concurrency within a shard.
Symmetric Splitting & Initial Results. We can adopt a simple symmetric splitting
strategy to assess the impact of splitting on performance. This approach involves splitting
child nodes from the topmost parent node to create two new sub-trees with individual
root nodes. For instance, we can split the children of the initial Merkle root to create two
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new trees with a reduced height of h− 1, as depicted in Figure 10.3b. The symmetric
splits can be applied until we reach the leaf level of the tree. In this case, splitting
creates a sub-tree with one (root) node for each data item. This configuration resembles
the signature [127, 136] aggregation approach and suggests an interesting relationship
between Merkle Trees and signature aggregation.

In Figure 10.4b, we present the results of using the symmetric splitting strategy for
the same experiment as in Section 10.3.3. This experiment aims to assess the benefits of
splitting for improving concurrency and performance in Merkle Trees. To this end, we
study the update performance of different splitting configurations (i.e., the number of
sub-trees) when increasing the number of worker threads. As seen in Figure 10.4b, the
throughput increases with more sub-trees, and the scalability w.r.t the number of worker
threads improves.

The outcomes demonstrate that splitting can significantly enhance Merkle Trees’
performance in multi-core environments by an order of magnitude, resulting in over
4M operations per second in the optimal setup. We can attribute this improvement to
two factors: First, splitting shortens the root-to-leaf path, reducing the number of hash
computations and the CPU burden. Second, it eliminates the central contention point
of the global tree and enables multiple threads to work on different regions of the tree
concurrently.

Challenges & Open Questions. Our results suggest that splitting is a promising
technique for improving performance. Nevertheless, several challenges and open questions
remain that we plan to address in future work:

While radically splitting the tree to the leaf level offered the best performance in our
experiment, previous work on signature aggregation shows that this also comes with
clear downsides. For example, the verification overhead for range queries increases since
multiple digests (instead of one) are required to verify a query result. Further, especially
when many splits (e.g., 16M) are performed, the associated overhead for storing and
maintaining all authenticated root hashes might increase dramatically. This observation
raises the question of how many splits are beneficial and what trade-offs are involved.

Further, our symmetric scheme always splits the tree at the top. Although this is a
rational choice for a uniform workload, splitting at different locations in the tree might
be appealing for other workloads.

Finally, an essential benefit of splitting is its ability to adapt to changing workloads.
Addressing workload shifts, however, raises additional questions concerning when to
perform splits and how to control splitting decisions.
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10.5 Conclusion & Outlook
In this paper, we presented initial results for improving the performance of Merkle Trees
for high-performance data systems. To address the concurrency issues of Merkle Trees, we
presented a novel synchronization technique that exploits pipelining and parallelization
to increase the degree of concurrency. Further, we introduced splitting as a lightweight
technique to shard Merkle Trees. Splitting reduces the CPU-cost by lowering a tree’s
height and reducing the contention problem. While several open questions remain, e.g.,
w.r.t to the involved trade-offs, our initial results suggest that it is indeed possible to
improve the performance of Merkle Trees by orders of magnitude.

In future work, we want to analyze both approaches in more detail (e.g., w.r.t. skewed
workloads) and study their involved trade-offs and limitations.
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11 TrustDBle: Towards
Trustable Shared
Databases

Abstract
In this chapter, we present TrustDBle ["tr2st@b@l], a trustable DBMS which can be
used for shared access by multiple parties. TrustDBle is based on our previous work
on BlockchainDB which uses blockchains as an auditable storage to guarantee trans-
parency and auditability of any data change. TrustDBle extends this work with a
secure OLTP engine that implements verifiable ACID-compliant transaction execution
on shared data while preserving scalability. In this work we discuss the main design
choices and considerations for building trustable data management systems and show
first results from our work on TrustDBle.
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11.1 Introduction

11.1 Introduction
Motivation. Databases (DBs) and database management systems (DBMSs) are a
proven technology to efficiently store and query data. They scale very well to support a
large number of nodes and amounts of data. Further, they offer standardized interfaces,
such as SQL, and their use is well established among developers and operation teams.
However, DBMSs are centralized solutions that assume a single database owner who
solely can query and modify the data. Yet, in many use cases the data might belong to
several different entities. For example, in typical supply chain scenarios the information
about goods along the supply chain needs to be tracked by many different companies.

The traditional solution for shared data access is that each company keeps a local copy
of the database and uses custom-developed data integration solutions to synchronize
state between the different instances. However, this way of data sharing comes with many
different drawbacks. For example, once data leaves the database of the data producer
it is not transparent for this data producer to whom the data will be made available
or how the data might be altered. This opens up the door for data misuse in different
directions. For instance, in a food supply chain, the best-before date might be “faked” to
resell products even after they expired.

A solution to this problem can be achieved with BCs (or distributed ledgers in general)
that can be used as shared databases. First, BCs record all updates in an immutable
manner and thus provide an auditable storage that can be used to find out how data was
changed over time by whom. Second, BCs require consensus of the participants before
a data update can be committed. While BCs thus seem to address the aforementioned
issues, they lack the performance and scalability required for many use cases. For example,
BCs offer transaction rates of 100′s or 1000′s transactions per second, while databases
can achieve 100, 000′s transactions per second. Further, BCs introduce new interfaces
and programming models that many organizations are not familiar with. Due to the
lack of standards almost every blockchain platform even uses different interfaces, which
increases the complexity and risk for adopting this technology in enterprises.
Contribution. This paper presents TrustDBle ["tr2st@b@l], a trustable DBMS which
can be used for shared access by multiple parties. TrustDBle is based on our previous
work [52] that shows how a scalable storage manager can be built on top of blockchains to
provide high performance and audibility of all data changes at the same time. However,
the shared storage manager in [52] is limited to simple put/get-operations. TrustDBle
thus extends our previous work [52] with a secure execution engine that implements
verifiable transaction execution on shared databases while preserving the scalability of
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[52]. Verifiable transaction execution means that the DBMS engine itself guarantees a
correct (i.e., ACID-compliant) execution of transactions. For example, to achieve isolation
TrustDBle introduces a lock manager that resides in a trusted execution environment
and thus guarantees correct serializable execution of multi-statement transactions from
different parties. In this work, we discuss the main design choices of all involved
components when building a trustable DBMS and show first results from our work on
TrustDBle. This includes the aforementioned verifiable transaction execution engine,
but also other components needed to establish trust. For example, in many data sharing
scenarios it is important for a data owner/producer to track who accessed data during
which queries.
Outline. The remainder of this paper is organized as follows: The next section discusses
the guarantees and requirements that a trustable data management system should provide.
Then, we present our architecture of TrustDBle and the main design choices to establish
trust in DBMSs. Afterwards, initial results of running a OLTP benchmark (SmallBank)
simulating a typical data sharing scenario is shown in our evaluation of TrustDBle.
Finally, we conclude with the discussion of related work and a summary.

11.2 Properties of a Trustable DBMS
In telco scenarios, mobile phones of users are often being used outside the range of their
home networks and can also connect to an available cell network of another provider.
While this causes charges for users in different cell networks, a user still pays her charges
only to the telco provider of her home network, who clears the debts of the user with the
second provider. Figure 11.1 depicts such a scenario where Alice has a home provider
(Bob) but was also using the network of another provider (Charlie). Through the
abstraction of the shared database, Alice could not only settle her charges with Bob, but
also Bob could clear the debts of Alice with Charlie using transactions on the shared
database.

However, in a setup in which the involved parties do not trust each other, it is required
that the DBMS providing the shared database abstraction guarantees that data can only
be accessed and manipulated as agreed by all parties (e.g., if Alice clears her charges
with Bob, Bob has to clear the debts with Charlie based on the agreed terms of the
mobile contracts). Further, any data modification (this includes malicious modifications)
should be recorded in a tamper-proof manner. For example, if Charlie manipulates the
phone charges of Alice to his own favor (e.g., by increasing his charge state for Alice and
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Figure 11.1: Shared DB of Two Telco Providers

decreasing Bob’s) it should be possible for Alice to detect this malicious change using
the tamper-proof history of all changes in the DBMS.

To achieve such guarantees the following three criteria must be met by a trustable
DBMS:

Requirement 1 - Data Sovereignty. While multiple Telco providers could use the
same shared database, Alice should be able at any time to control who has access to her
(personal) data. For example, only the home provider can read information such as the
personal address.

Requirement 2 - Verifiable Processing. As shown in the example, transactions are
used to execute complex data manipulations that consist of multiple operations and access
multiple records. Especially, in a collaborative setting where multiple parties control
different parts of the data, it must be guaranteed that all parties execute transactions
in a correct and verifiable way. In this context, correct and verifiable execution means
that a DBMS is able to prove that a transaction was executed in an ACID-compliant
way by all involved parties. In the above scenario, for example, this means that Alice’s
settlement transaction is correctly executed on both Bob’s and Charlie’s charge tables.

Requirement 3 - Auditable Storage. The existence of verifiable processing as
described above, is often not sufficient if one could potentially tamper with or remove
data from the DBMS after processing. For example, as mentioned earlier, Charlie might
tamper with the data to manipulate the current state of charges to his advantage. Hence,
auditability requires that all information needed to validate how data was updated
over time must be tamper-proof. Further, data management systems must provide new
interfaces to make databases easily auditable. This could be done by users directly or by
additional applications or services.
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11.3 Architecture & Key Concepts
TrustDBle is a distributed database that is build around the key requirements of a
trustable DBMS as discusseed before. Similar to a traditional database, it offers users
a standard SQL-Interface and provides ACID properties. However, it also guarantees
sovereignty, verifiable processing and auditable storage.

Figure 11.2 shows an overview of TrustDBle’s architecture. Similar to our work
in [52], we build a database layer on top of blockchains as a storage layer. Thereby,
TrustDBle also makes use of sharding in the storage layer to enable scalability. In this
work, we extend the database layer with a secure execution engine that enables verifiable
processing and sovereignty.

In the following, we provide more details on TrustDBle’s different layers and explain
how the previously mentioned properties of a trustable DBMS are achieved.

11.3.1 Auditable Storage

TrustDBle’s storage layer utilizes blockchains as a persistent, auditable storage backend.
Blockchains enable us to store data in a tamper-proof way and record modifications
of the data on the blockchain. Thereby, as shown in [52], database techniques such as
sharding help TrustDBle to overcome the scalability limitations of blockchains.

Despite sharding, we also aim to implement further optimization such as caching in
the storage layer to speed up data access. Caching will enable TrustDBle to treat the
auditable storage as another layer in the memory hierarchy of the database. With the help
of verifiable processing it can be guaranteed that data is maintained in a tamper-proof
way in memory or on disk until it has been persisted to the auditable storage.

11.3.2 Verifiable Processing & Data Sovereignty

On top of the auditable storage, we offer components for verifiable transaction processing
and sovereignty. In the following, we mainly focus on verifiable transaction processing
and only briefly touch on sovereignty.
Verifiable Processing. With verifiable transaction processing we refer to two aspects.
First, all parties involved in a shared DBMS can only execute transactions which all
parties agreed on. Second, when transactions are executed, parties can make sure
that those transactions where executed correctly (i.e., following the ACID properties a
non-shared DBMS would give).
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One approach to achieve verifiable transaction processing is to use smart contracts to
implement the transaction processing logic, e.g., as done in [44]. However, we found that
this approach suffers from the same scalability limitations as blockchains themselves and
adds additional complexity since new transactions logic needs to be re-implemented as
smart contracts.

To overcome these issues, we implement a secure transaction processing engine outside
the blockchain (i.e., on top of the auditable storage) with the help of a TEE (green box
in Figure 11.2). In our current prototype we use Intel Software Guard Extensions (SGX)
to provision the TEE. Intel SGX establishes TEEs as so called hardware enclaves, that
are protected by the CPU. Thereby, the CPU provides the enclave with a special address
space that is only accessible by the trusted code inside the enclave.

One major limitation of SGX, however, is that it only provides a small portion
of protected memory. To overcome this challenge, TrustDBle does not place all
transaction execution components in the trusted environment. Instead, we place only
those components inside the TEE which are required to verify that the ACID properties
have been fulfilled. For example, to provide verifiable isolation, we only implement the
lock manager (LockMgr) of our database layer inside the trusted environment.

We use two key criteria to decide which component to implement inside the TEE.
First, the component should only maintain a small state inside the protected memory
region. In the case of the lock manager, for instance, we only need to maintain the lock
table of the lock manager in the TEE. Second, verifiable processing must depend on the
correct behaviour of a node. As an alternative approach, we employ verification protocols
similar to [52] to verify the correct behaviour of a component. This is for example used
to verify the correct behaviour of the transaction coordinator (TxCo) component and
achieve verifiable atomicity.

Data Sovereignty. Furthermore, we plan to use TEEs to guarantee sovereignty. The
key idea is that TrustDBle encrypts data inside the TEE and only provides authorized
parties access to the encryption key.

11.3.3 Scalability & Usability

Despite trust achievement being the core of TrustDBle, we do not want to scarify
scalability and usability. TrustDBle achieves this with the help of two main ideas:
DB optimizations & interfaces: Scalability is achieved by making use of classical database
techniques, such as sharding, distributed locking and caching. While these techniques
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Figure 11.2: TrustDBle Architecture

introduce new challenges such as cross-shard transactions and cache-coherence, we want
to address them without compromising trust.

Further, we want to provide users with familiar database interfaces and abstractions
(e.g., ACID transactions and isolation levels). This way, TrustDBle can be integrated
in existing enterprise architectures and serve as drop-in replacement for traditional
databases that do not provide trust guarantees.
Adaptivity & Flexibility: Also, we want to achieve usability through adaptivity. As men-
tioned previously, TrustDBle supports different auditable storage backends. Therefore,
TrustDBle can be used with any blockchain network that users might already be
familiar with. Moreover, we plan to support connecting to local databases via an ODBC
interface. This way, users can run queries that target local and TrustDBle’s data.

11.4 Current State of TrustDBle
In the following, we report on the current state of TrustDBle and show our initial
performance results of running a simple OLTP benchmark on TrustDBle.

11.4.1 Implementation Details

TrustDBle is still in its early stage and we mainly focused on verifiable transaction
processing and not on data sovereignty so far. Our verifiable transaction processing
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engine currently provides verifiable isolation and atomicity guarantees (i.e., the A and I
of ACID) which are based on a secure locking scheme and an auditable 2PC protocol for
cross-shard transactions.

The secure locking scheme is implemented via sharded lock managers that run inside
the TEE of a TrustDBle node. Only, transaction managers (TxMgrs) with a valid lock
(i.e., signed by the LockMgr) are allowed to modify or access data. Sharding the lock
manager enables us to prevent the lock manager from becoming a bottleneck. Availability,
is achieved by persisting the state of lock managers to auditable storage. This way, other
nodes in TrustDBle can recover from a lock manager fault. Moreover, our locking
scheme supports the execution of transactions under different isolation levels. To that
end, the trusted lock managers enforce that locks are acquired and released according to
the specified isolation level.

Similarly, we utilize the auditable storage to log 2PC messages and detect or recover
from a faulty transaction coordinator. Thereby, local transaction managers apply a trust,
but verify strategy with respect to a transaction coordinator: While the transaction
coordinator is responsible to collect and forward 2PC messages and decisions to local
TxMgrs, each local TxMgr also logs messages to a shared meta-blockchain which all
TxMgr can access. Messages in this meta-blockchain are used to verify decisions of the
transaction coordinator. Similarly to our previous work [52] we make use of deferred
verification techniques to mask verification in the case of no failures.

11.4.2 Initial Results

Since TrustDBle combines database, BC technology and TEEs to overcome the lim-
itations of blockchains, the focus of our evaluation is currently mainly on scalability.
In particular, we want to show that our approach to verifiable processing can execute
cross-shard transactions in a scalable way. To that end, we implement the Smallbank
OLTP benchmark [30] and measure the performance of TrustDBle in different settings.

Figure 11.3 shows an experiment in which we increased the number of participants
in a TrustDBle network. Thereby, the number of participants matches the number
of shards, since each node was responsible for a separate shard. We further scale the
number of clients from 16 to 256. Each client runs an update heavy workload of 1000s of
transactions per shard under a read committed isolation level. All nodes are running as
virtual machines in Microsoft Azure with 16 vcpus, 32 GB memory and Ubuntu 16.04
LTS as operating system. Hyperledger Sawtooth 1.04 is used as blockchain platform
in the storage layer. This experiment shows that TrustDBle can execute cross-shard
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Figure 11.3: Scalability with the number of shards

transactions in a scalable manner for a network with up to 16 nodes and multiple shards.
In future, we plan to perform a more detailed evaluation and, e.g., study TrustDBle’s
behaviour for larger network sizes. Moreover, we will analyze other scalability aspects
(such as scalability with data size) and evaluate TrustDBle’s behaviour under attacks.

11.5 Related Work
Several other work makes use of TEEs inside databases. EnclaveDB [143], for example,
implements an entire signlenode database with the help of a TEE. TrustDBle is a
distributed database, and extends the use of TEEs to a distributed setup. Further,
EnclaveDB focuses on privacy and integrity, but not on a collaborative setup in which
multiple parties share access to data. Further, all sensitive data is stored inside the TEE
and therefore EnclaveDB requires support for large TEEs with hundred gigabytes of
memory. In contrast, TrustDBle uses TEE only to secure few critical components of
the system like the LockMgr.

Another area of related work are hybrid approaches that combine TEEs with block-
chains to address the performance limitations of blockchains. Ekiden [35] uses a hybrid
approach to get confidentiality and use TEEs to improve smart contract computation
and scalability of the underlying blockchain. It provides privacy, but lacks usability,
since it implements a new blockchain platform with custom interfaces and programming
abstractions. TrustDBle is rather a database than a blockchain and provides standard
database interfaces (e.g., SQL) and abstractions (e.g., ACID transactions and isolation
levels). Another system using a hybrid approach is Hyperledger Avlon[165]. It com-
bines trusted execution environments, such as Intel SGX, and blockchains. Howerever,
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ACID guarantees are not provided and instead it uses trusted oracles to offload certain
computations from a blockchain.

Further, Blockchain databases like Veritas [68] as well as BigchainDB [115] aim to
provide a similar abstraction of a shared database as TrustDBle. However, they differ
in how they implement this abstractions. TrustDBle focuses on how the complexity of
existing blockchains can be overcome with the help of an additional database layer, while
relying on the auditability and tamper-proofness characteristics of blockchains.

11.6 Conclusion
We presented TrustDBle, which combines database, blockchain and secure hardware
technology to implement a trustable data management system. It extends our previous
work with a secure OLTP engine that implements verifiable ACID-compliant transaction
execution on shared data while preserving scalability. In this paper, we discussed the
properties that are required to build trustable DBMSs and explained how these guarantees
are implemented in TrustDBle. In contrast to native blockchains, TrustDBle is
able to fulfill these guarantees without scarifying scalability and usability. Our initial
experiments show that TrustDBle successfully supports cross-shard transactions and
allows us to scale the performance of the system by increasing the number of shards.
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Abstract
In recent years, Trusted Execution Environments (TEEs) such as Intel Software Guard
Extensions (SGX) have gained a lot of attention in the database community. This is
because TEEs provide an interesting platform for building trusted databases in the cloud.
However, until recently SGX was only available on low-end single socket servers built on
the Intel Xeon E3 processor generation and came with many restrictions for building
DBMSs. With the availability of the new Ice Lake processors, Intel provides a new
implementation of the SGX technology that supports high-end multi-socket servers. With
this new implementation, which we refer to as SGXv2 in this paper, Intel promises to
address several limitations of SGX enclaves. This raises the question whether previous
efforts to overcome the limitations of SGX for DBMSs are still applicable and if the new
generation of SGX can truly deliver on the promise to secure data without compromising
on performance. To answer this question, in this paper we conduct a first systematic
performance study of Intel SGXv2 and compare it to the previous generation of SGX.
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12.1 Introduction

12.1 Introduction
Trusted Execution Environments (TEEs). Trusted Execution Environments have
gained a lot of attention [10, 25, 59, 67, 73, 93, 129, 143, 159, 170, 195] in recent years
because they enable trusted processing of private data. As such, TEEs can be used to
build trusted databases [143, 149] that guarantee the confidentiality and integrity of
data even when hosted by a third party. This is particularly interesting when storing
company data in public cloud environments rather than on-site. As TEEs fully protect
data during processing, this secures data from manipulation by even privileged users
such as administrators.
Intel SGX as important TEE technology. Today, different implementations of TEEs
exist such as Intel SGX [117], ARM TrustZone [6] and several others [39, 91]. Among
those, Intel SGX has already seen wide adoption for many different use cases including
DBMSs. To enable secure execution, Intel SGX provides special CPU instructions for
defining private memory regions in which the security of data is guaranteed by the
hardware [75, 117, 171]. Even the operating system has no access to these so-called
enclaves.
SGX has many limitations for DBMSs. However, until recently SGX was only
available in consumer-grade CPUs based on the previous Intel Xeon E3 processor genera-
tion. In addition to the low core count of these CPUs, SGX enclaves came with drastic
technical limitations, such as a limited memory capacity of up to 256 MB and significant
performance overheads. The capacity restrictions especially limited the application of
Intel SGX for DBMSs. In consequence, researchers in the database community started to
explore different ways to overcome these limitations, e.g., by only placing certain DBMS
components inside an enclave [173] or designing enclave-native engines for this restricted
environment [93, 159].
SGXv2 lifts the major limitations. With the availability of the new Intel Ice Lake
processors [79], Intel promises to address several limitations of SGX enclaves. The latest
implementation of Intel SGX on these processors (in the following referred to as SGXv2),
not only reduced the overhead of memory protection, but also increased the capacity of
the protected memory region to up to 512 GB per socket (depending on the CPU model)
[87]. This allows DBMSs to hold even large data sets fully in the enclaves. In addition
to that, the new scalability enhancements now allow DBMSs that use Intel SGXv2 to
scale across multiple sockets of high-end servers.
The need to benchmark SGXv2 for DBMSs. This raises the question whether
previous efforts to overcome the limitations of SGX for DBMSs are still applicable and if
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the new generation of SGX processors can truly deliver on the promise to secure data
without compromising on performance. To answer this question, as a first contribution,
we perform a systematic performance study of Intel SGXv2 and compare it to the previous
generation of SGX (referred to as SGXv1 in this paper). In particular, we evaluate
the performance of Intel SGXv2 for typical data access patterns of OLTP and OLAP
workloads. Moreover, as a second contribution we discuss lessons learned for building
the next generation of high-performance enclave-based DBMSs on SGXv2. While the
new SGXv2 enhancements also cover several new security aspects, we will solely focus on
performance characteristics in this paper.

In the following, we first briefly review the basics of Intel’s SGX (SGXv1 and SGXv2).
Afterwards, we present the results of our evaluation study and the findings of our
performed benchmarks.

12.2 Background
In the following we discuss the most important building blocks of the Intel SGX technology
and the latest enhancements that were introduced by the second generation of Intel SGX.

12.2.1 Intel SGX Overview

Intel SGX is a hardware-based TEE technology. It introduces new platform extensions
such as a Memory Encryption Engine (MEE) and new CPU instructions (SGX1 and
SGX2 [116, 182]) to enable applications to create private memory regions protected from
privileged software. That means that even the operating system or hypervisor are not
allowed to access these regions. To create these so-called enclaves, SGX reserves a portion
of the memory called the Processor Reserved Memory (PRM), as depicted in Figure 12.1.
The size of the PRM is configured in the BIOS and will not be available to the operating
system. As shown in Figure 12.1, inside the PRM Intel SGX maintains the EPC that
stores code and data of enclaves in 4 KB memory pages. These pages are encrypted
and their data is only decrypted when it is loaded into the CPU cache for processing.
Furthermore, EPC pages are integrity protected to prevent unnoticed manipulation of
the data. [171]

Software (SW) (i.e., applications) that runs inside an enclave is referred to as trusted
SW or trusted code. Intel SGX guarantees that only code from within the same enclave
has access to the EPC pages of that enclave. Any code that is running outside the PRM,
i.e., in the untrusted memory region, is prevented from accessing pages in the PRM.
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Figure 12.1: Intel SGX multi-socket architecture

This is achieved with the help of hardware address translation by making sure that the
virtual-to-physical address mapping is only accessible to the owning enclave. Hardware
address translation also enables enclave developers to assign a heap size larger than
EPC to their application (by setting a HeapMaxSize config parameter) [81]. However,
exceeding EPC capacity does not come without cost as explained next.

Since enclave memory is a finite resource, Intel SGX comes with a mechanism to swap
the encrypted EPC pages out to unprotected memory (and vice versa). This mechanism
is also referred to as paging. In order to protect the integrity of pages and to ensure that
only the latest version of an evicted EPC page can be loaded back, SGX stores version
information in a version array that is stored in EPC pages. The additional integrity
protection as well as the required context switch and data transfer makes EPC paging
very expensive as already discussed by previous work on SGXv1 [131, 162].

The first step towards using and interacting with an enclave is enclave creation and
initialization. During enclave creation the initial code and data of the enclave is loaded
by untrusted system software. As part of this process, the system software copies data
from outside the PRM into the EPC and assigns the EPC pages to the created enclave.
Thereby, the entire content of the enclave plus some metadata is cryptographically hashed
by the CPU. This hash is called the measurement hash and can be used to attest that
the expected code is running inside the enclave [171].

Trusted and untrusted SW interact through so-called E- and OCALLs. In order to
transfer the control flow to code inside the EPC, untrusted software performs ECALLs
(enclave calls). Similarly, trusted software can transfer the control flow back to code
outside the enclave by means of OCALLs. These interactions not only represent a context
switch in the CPU, but they involve additional steps to preserve confidentiality of enclave
data, such as flushing CPU caches and the address translation cache (TLB) [131, 166,
179].
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In our evaluation, we do not focus on the overhead of the interaction between trusted
and untrusted parts of an application, but instead we concentrate on the overhead that
comes from using data within the EPC. The reason is that SGXv2, which we discuss
next, provides much higher EPC capacities which potentially allows a DBMS to hold all
data structures fully inside the enclave (i.e., much less interactions with untrusted code
are needed).

12.2.2 Second Generation Intel SGX

In this paper, we focus on SGXv2 that was introduced with the launch of the new Intel
Ice Lake processors. With SGXv2, Intel introduced several enhancements to the SGX
technology such as an increased EPC capacity (from previously 256 MB to up to 512 GB
per socket). Further, Intel SGX now also supports running enclaves on multi-socket server
systems. However, to the best of our knowledge, little is known about the implementation
details of these enhancements. Hence, in the following, we will only give a brief overview
of the new enhancements based on [87] and then focus on empirically evaluating these
enhancements in Section 12.3.

Increased EPC capacity. In order to increase the memory capacity available to
enclaves, Intel SGX reworked its encryption and integrity protection mechanism. Instead
of the MEE, SGX now uses Intel’s Total Memory Encryption (TME) technology to protect
the confidentiality of data. While Intel mentions that TME relies on AES-XTS [114] as a
block cipher mode, no detailed information about the integration of Intel SGX with TME
is available. Yet, Intel TME is undoubtedly one major building block for supporting
larger EPC sizes. At the same time, new ways are used to guarantee data integrity and
protect against replay attacks which might introduce additional overheads. For instance,
error correction codes are used to detect manipulations of data from outside the enclave.
Similarly, a trusted firewall has been introduced to prevent manipulations of data from a
malicious enclave inside the EPC.

Multi-socket support. Previously, Intel SGX was only available on single-socket servers.
With the introduction of SGXv2, however, Intel SGX is also available on multi-socket
systems that utilize a NUMA memory architecture. For this, two major challenges had
to be addressed: First, in SGXv1 encryption keys and certificates were derived from per
CPU socket secrets. However, in case of multiple CPUs it is required to share a common
key across sockets to allow CPUs to access EPC pages that were encrypted by a different
CPU [87]. Second, and more relevant in our context, protected memory that is allocated
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on one socket needs to be securely accessible to the remote CPU. In the following, we
elaborate on this challenge in more detail.

In a NUMA architecture, local memory is provided for each processor as depicted
in Figure 12.1. Each CPU resides on a separate NUMA node (i.e. socket) which are
connected via a fast interconnect (the Ultra Path Interconnect (UPI) on Intel platforms)
to support memory access from remote CPUs. To securely access data of EPC pages on
a remote NUMA node, SGXv2 introduces an additional UPI Crypto Engine (UCE) that
protects the confidentiality of data transferred over UPI.

To avoid overhead for untrusted Software, SGXv2 extends the memory coherence
architecture as follows: When a core on one socket (e.g., the left one) incurs a cache
miss, the referenced memory address is passed on to a local caching agent. The agent
knows which physical memory addresses are attached to which socket and is in charge
of forwarding the requests via UPI to the remote socket if necessary. When protected
memory is requested, the request is sent with a so-called secure attribute to the UCE
for encryption. In contrast, requests for unprotected memory are passed on in plain
text. The receiving side will forward the request to its local Caching Agent. If a request
references data in protected memory, the agent will check if the secure attribute has
been set and only then forward the request to its memory controller. Subsequently, the
retrieved cache line is forwarded to the UCE for protected transmission of the cache line
to the requesting socket.

The example indicates an additional overhead for enclaves when accessing memory
on remote NUMA nodes. That means, that despite the regular overhead of cross
NUMA communication, Intel SGX introduces even further overhead, e.g., because of
the additional encryption. Due to the recent availability of this hardware, however, no
empirical evaluation of this overhead has been performed yet. This motivated us to
include experiments for analyzing the NUMA effects on SGXv2 in our evaluation.

12.3 Experimental Evaluation
In the following, we perform several experiments to understand the characteristics and
pitfalls of the second generation of Intel SGX hardware. Where applicable, we also
compare and relate to known characteristics of the first generation of SGX.

In the first set of experiments we take a look at the performance for growing data
set sizes. Afterwards, we study the performance of SGXv2 for basic OLTP and OLAP
workload patterns. In the last group of experiments, we present several findings with
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Table 12.1: Properties of experiment hardware
SGXv1 SGXv2

Architecture Cascade Lake Ice Lake
#Sockets 1 2
CPU Xeon E-2288G Xeon Gold 6326
Core Count 8 16
CPU frequency (max) 5.0 GHz 3.5 GHz
L1 d/i cache 256/256 KiB 1.5/1.0 MiB
L2 cache 2 MiB 40 MiB
LLC cache 16 MiB 48 MiB
EPC (per socket) 128 MB 64 GB
DRAM (per socket) 128 GB 256 GB

regard to the usage of multiple concurrent enclaves in SGXv2 that can result from running
different DBMS instances on the same hardware.
Setup. For our study, we use one SGXv1 and one SGXv2 server. The hardware
characteristics of both systems are shown in Table 12.1. To make our experiments
reproducible over several runs, we configured both servers to always use their maximum
CPU frequency. Note that, while SGXv2 could in principle support 512 GB of EPC, our
CPU model only support a maximum EPC capacity of 64 GB per socket (i.e., 128 GB in
total).

The comparison of the plain hardware characteristics as shown in Table 12.1 indicates
a significant improvement for applications running on SGXv2. At the same time, the
hardware differences make it difficult to perform a direct comparison of SGXv1 and
SGXv2. Hence, in the following, we mainly study the characteristics of SGXv2 and only
include results for SGXv1 when appropriate.

12.3.1 Data Scalability

In the first set of experiments, we evaluate SGXv2 with regard to growing data set sizes
and compare it to SGXv1. Moreover, since SGXv2 supports multiple sockets, it allows
enclaves to grow across NUMA boundaries. Therefore, we also study typical NUMA
effects that play an important role in modern DBMSs [65, 92].
Performance for growing data sizes. In order to evaluate to which extent SGXv2
supports larger amounts of data, we implemented a B-Tree index structure as a trusted
library inside SGX. We use it to execute a YCSB-like workload with 20% inserts and
80% reads to gradually increase the size of the database. The results of this experiment
are shown in Figure 12.2. As expected, the performance of the B-Tree on SGXv1 (red
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Figure 12.2: Throughput of a 80% read / 20% insert workload in a B-Tree. A significant
performance improvement is observable for larger database sizes in SGXv2.

line) drops very quickly (after 128 MB) and only supports a total database size of up to
64 GB due to the corresponding limit on enclave sizes in SGXv1. In contrast to that, the
B-Tree in the SGXv2 enclave (blue line) shows orders of magnitude better performance
for much larger database sizes.

Moreover, in the case of SGXv2 we can observe two performance drops when scaling
the data size: The first performance drop is at around 64 GB, when the data size reaches
the capacity limit of the EPC on the first NUMA node. The second performance drop
happens at around 128 GB where the capacity of the EPC on the second NUMA node is
reached. At this point, similar to SGXv1, we can observe a drastic performance penalty
due to paging. In the following, we will have a closer look at these two effects.

Cost of crossing NUMA boundaries. In Figure 12.2, we can observe that the
performance of our B-Tree decreases for the first time when the data size exceeds the
EPC capacity of the NUMA node to which the process was pinned. In consequence, new
data must be stored in EPC pages that are allocated on the remote NUMA node. While
the importance of NUMA awareness to overall system performance is a known issue [65,
92], it is unclear what overhead is added by SGXv2 and its additional encryption of UPI
traffic.

Hence, in the next experiment, we measure the latencies for accessing memory on the
local and remote NUMA node in CPU cycles. For this, we pin the process to the first
NUMA node using numactl. Since the libnuma library is not available for use inside the
enclave, we apply the following approach for allocating memory on the remote NUMA
node: Since memory is first allocated on the NUMA node to which a process is pinned
to, we pre-allocate a large chunk of 70 GB inside the enclave to consume more than the
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Table 12.2: Local and cross NUMA access latencies [CPU cycles]
Untrusted Trusted

Latency Latency Overhead

Local NUMA 367.7646 486.1015 32.2%
Cross NUMA 568.6215 832.1615 46.3%

Rel. NUMA penalty 54.6% 71.1%

EPC capacity on the first NUMA node. This forces any subsequent memory allocation
to happen on the remote NUMA node.

To measure the memory access latencies that involve the remote NUMA node, we
allocate another 2 GB memory buffer (which is then allocated in the second NUMA node).
The data in this region is organized as a randomly linked list. This allows us to perform
a (random) scan over the data while avoiding that the out-of-order execution schedules
memory loads in parallel, which would distort the memory access latencies. For NUMA
local access measurements, we of course skip the previous pre-allocation step to make
sure that the buffer is fully located on the first NUMA node. For the untrusted baseline
we use the numactl tool to pin the process to the first NUMA node while binding the
memory allocation to the second node and thus enforcing cross NUMA accesses.

Table 12.2 shows the average latency for local NUMA and remote NUMA memory
accesses. We start discussing the table row-by-row. Comparing untrusted to trusted local
NUMA access, we can see that local memory access in the enclave has a clear latency
overhead of around 30 %. This overhead is most likely caused by the necessary decryption
of EPC pages when loading data into the CPU cache [75, 171]. When looking at cross
NUMA access latencies, we can observe that accessing remote memory in an enclave has
an even higher overhead compared to the untrusted baseline. To quantify the penalty of
accessing a remote NUMA compared to local NUMA, we now look at the last row of
Table 12.2. Thereby, we view the untrusted and trusted case in isolation. While it is
evident from Table 12.2 that cross NUMA accesses are expensive even for the untrusted
baseline, the penalty for trusted code is disproportionately high with around 71%. Based
on the few information provided by Intel in [87], we speculate that this overhead can be
attributed to the additional encryption of UPI traffic for trusted memory accesses.

Cost of Paging. In SGXv2, paging is similarly expensive as in SGXv1 as evidenced by
the second performance drop in Figure 12.2. However, it is unclear how the overhead
changes for growing data set sizes in SGXv2. To show the impact of paging on memory
access latencies in SGXv2, we varied the data set size. To enforce paging, we reduced
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Figure 12.3: Paging overhead in CPU cycles. To enforce paging, we use a data set size
that is a multiple of the EPC (e.g., 1:4 means 4× the EPC capacity of
8 GB(=32 GB)).

the PRM in the BIOS to 8 GB and use data set sizes that are multiples of the EPC,
i.e., 4× and 16× (shown as ratios 1:4 and 1:16 in the figure). As a baseline, we use a
configuration which uses data of the same size as the EPC, ie. 8 GB (shown as 1:1). As
before, we ensure that we can measure the latency of page faults by traversing a randomly
linked list of memory-aligned nodes of 4 KB. The results are shown in Figure 12.3.

We can observe that paging increases the latency by around two orders of magnitude
when comparing 1:1 and 1:4. Surprisingly, when increasing the ratio even further to 1:16,
the latencies seem to be affected only minimally. Yet, when looking at the tail latencies
(right side of Figure 12.3), the impact becomes more apparent. As shown in the table,
the tail latency doubles when comparing ratio 1:4 and 1:16. Obviously, these higher tail
latencies have a tremendous impact on the DBMS performance (in particular for OLTP).

Another interesting question is to which extent the paging overhead influences typical
OLAP-style workloads. To show this, we further evaluate the effect of paging on
sequentially scanning data. Figure 12.4a shows that SGXv2 can maintain a steady
performance for sequentially scanning data while the performance of SGXv1 quickly
drops after reaching the EPC limit due to paging.

In the previous experiments we allocated the data directly inside the enclave. In
the next experiment, we study the effect of paging on copying data that needs to be
transferred into the enclave. Intel SGX provides two mechanisms to give enclaves access
to data residing outside the enclave. In our experiment we use the in/out mode which
allocates EPC pages inside the enclave and copies the requested data from untrusted
memory. This is in contrast to the user_check mode which provides direct (i.e. without
copying), but unprotected access to untrusted memory. As can be seen in Figure 12.4b,
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Figure 12.4: Effect of paging on a sequential scan (a) and on copying data securely to an
enclave (b). In contrast to SGXv1, SGXv2 is not affected by paging due to
its larger EPC capacity.

for small amounts of data the performance pattern of SGXv1 and SGXv2 is comparable
since the context switch overhead dominates. Once this overhead has been amortized,
the variable cost of data copying becomes the dominant factor. Further, the bandwidth
of SGXv1 is severely reduced for small data sizes once paging kicks in. This is not the
case for SGXv2 due to the increased EPC capacity.

Summary. With regard to data scalability, we observed that the increased EPC of
SGXv2 enables database engines running inside enclaves to use orders of magnitude more
memory. This allows to store more data inside an enclave and to copy larger chunks
of data with one enclave call, which makes SGX more practical for building database
engines. While the new NUMA support allows enclaves to span multiple NUMA nodes,
developers should pay attention to the additional overhead of memory accesses across
NUMA regions and to the lack of a fine-grained control of NUMA allocation due to the
missing libnuma library inside SGX. Finally, although the amount of memory usable by
enclaves has been increased significantly, the cost of paging is still tremendous and must
be considered when data exceeds the total EPC capacity.

12.3.2 Trusted SGXv2 vs. Untrusted

In the previous experiment we identified two critical factors which impact performance,
i.e., remote NUMA access and paging. In this experiment we instead shed light on
the overhead of trusted SGXv2 vs. untrusted execution. To that end, we execute a
YCSB-like benchmark with varying read/write (update) ratios where all data fits into
the available EPC capacity. This avoids effects like paging which we analyzed before.
Moreover, we use the same B-Tree as in the first experiment, however, we populate it
with 10 M key-value pairs (using 8 B for keys and 128 B for values).
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Figure 12.5: Relative performance of various YCSB-like workloads in SGXv2 compared
to an untrusted baseline. SGXv2 has only a relatively small overhead across
all workloads.

Figure 12.5 shows the performance of SGXv2 relative to the untrusted baseline. We
can observe that the read-heavy workload appears to have a higher overhead than the
write-heavy workload. This effect can be explained by comparing both workloads in
depth. As discussed in Section 12.3.1, the main overhead of SGXv2 stems from higher
memory access latencies. The read-heavy workload is dominated by memory loads and
therefore highly impacted by these increased latencies. In contrast, the write-heavy
workload contains more CPU-intensive operations because it generates random 128 byte
values as updates. Since CPU-intensive operations have similar to identical performance
inside and outside enclaves, they mask the impact of memory access latencies overall.
Summary. Comparing the performance of our data-intensive workload between untrusted
and trusted execution, we saw a maximum performance reduction of approximately 25 %
when all the data fits into the EPC. We conclude that for many use cases requiring the
security of a TEE, this is probably a good trade off.

12.3.3 Overhead of Trusted I/O

In addition to accessing data in memory, DBMSs also need to access and store data on disk
for purposes like recovery. Therefore, in this experiment we look at two different flavors
of enabling trusted I/O in SGXv2: sgx_fwrite and sgx_seal_data. With sgx_fwrite

the Intel Protected File System Library [80] provides the trusted equivalent to fwrite

for writing binary streams. Using this function, data is encrypted and integrity protected
before being written to an untrusted disk. In contrast to sgx_fwrite, sgx_seal_data

does not perform file I/O, but only encrypts and integrity protects the data. Hence,
an additional interaction with untrusted code to perform file I/O is required (OCALL).
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Figure 12.6: Effect of I/O on CPU utilization in cycles/byte of the two trusted I/O
variants (sgx_fwrite and sgx_seal_data) vs. untrusted I/O (fwrite).

To ensure that data is written to disk, we use fflush and its trusted counterpart
sgx_fflush.

In Figure 12.6 we show the effect of various I/O sizes on the normalized CPU utilization
(cycles/byte). We compare the two secure I/O variants with untrusted file I/O (we use
fwrite because it resembles sgx_fwrite). All three variants have in common that larger
I/O sizes significantly reduce CPU utilization because most overhead is per function call,
not per byte. Surprisingly, sgx_fwrite is much more expensive than sgx_seal_data. In
fact, when writing only 2 bytes sgx_fwrite spends 20× more cycles than sgx_seal_data

(note the log-scale on the y-axis). This initial function call overhead of sgx_fwrite can
be partially amortized by writing larger I/O sizes at once. However, even with large
batch writes sgx_fwrite is at best 4× more expensive than sgx_seal_data. We regard
a more in-depth analysis of the differences between both protected file I/O strategies as
future work.
Summary. Our key insight is that the choice of the protected I/O library can impact
performance heavily. Moreover, regardless of the I/O strategy, we can see that larger
I/O sizes burn less cycles per byte. For DBMS designs based on SGXv2 this means that
optimizations such as group commit are important to collect enough log entries before
flushing.

12.3.4 Other Effects of Enclaves

The increased EPC capacity offered by SGXv2 not only suggests that more data can
be stored inside an enclave, but it also provides the possibility to run multiple (larger)
enclaves on a SGXv2 capable system at the same time. This is especially interesting for
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Figure 12.7: Duration of enclave creation for varying heap sizes. As soon as the heap size
exceeds the EPC (≈ 64 GB in SGXv2), a significant increase in creation
time can be observed.

cloud settings since not only larger data sizes can be kept in the enclave, but also several
DBMS instances could be run on the same SGXv2 server.

Creation Time of Enclaves. In this experiment, we investigate the trade-off between
the creation time and the size of the enclave (HeapMaxSize). Choosing an appropriate
HeapMaxSize for the application is important because when the HeapMaxSize is reached
the application crashes on the next memory allocation (as shown in Figure 12.2). There-
fore, we vary the HeapMaxSize and measure the time it takes to create the enclave in
SGXv2. We fixed the value for HeapMinSize to 65536 byte. Due to the support for
dynamic memory allocation in Intel SGXv2, one would expect that the duration of
enclave creation is stable regardless of the HeapMaxSize setting. However, as can be seen
in Figure 12.7, we observe that the enclave creation time increases significantly the more
heap size is configured via the HeapMaxSize setting. More importantly, as the configured
heap size exceeds the capacity of the local NUMA node, we can observe an even stronger
slowdown of enclave creation. This suggests that in cases where an on-the-fly creation of
enclaves is required for DBMSs, extra caution should be applied. Especially for larger
enclave sizes it seems undesirable to create short running on-the-fly enclaves.

Performance of Concurrent Enclaves. In this experiment, we show the effect of
running multiple DBMS instances in parallel on the same server. For this experiment we
create three enclaves with a HeapMaxSize setting of 64 GB, i.e., each enclave is guaranteed
to occupy the total EPC of a NUMA node. All enclaves are started concurrently and
run the same B-Tree insertion workload as introduced in Section 12.3.1. This means that
the enclaves initially utilize only a small fraction of their heap size, but their memory
consumption increases as time passes. All three enclaves are pinned to the first NUMA
node using the numactl tool. The results of this experiment are depicted in Figure 12.8.
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Figure 12.8: Performance of 3 concurrently running enclaves executing the same workload
as in Figure 12.2. When the aggregated size of the enclaves exceeds the
total EPC, the performance of all enclaves starts to become unpredictable.

For comparison, we additionally show the performance of only a single enclave running
the same workload in isolation (blue dashed line).

Based on Figure 12.8 we can make several interesting observations. First, although all
three enclaves are small in the beginning and fit into the EPC of the first NUMA node,
the performance of the enclaves is lower than the baseline; i.e., concurrently running
enclaves affect each others performance. Second, as long as all enclaves fit into the EPC
(regardless of the NUMA node), their performance behaves similarly. This indicates that
all three enclaves are treated equally in terms of scheduling and memory allocation (the
BIOS setting for SGX QoS is OFF). Third, due to the aggregated enclave sizes, the
performance drops caused by remote NUMA access or paging occur earlier. Fourth, once
paging sets in, the performance of the different enclaves becomes unpredictable. Only
after the first enclave finishes execution (depicted by an X in the figure), the performance
of the other enclaves recovers due to more memory being available. Moreover, once the
two enclaves e0 and e1 finish their execution, the performance of the last enclave e2
increases to the same level as the baseline.

Summary. Based on our experiments we observed that the creation time of an enclave
is not only affected by the size of the enclave, but is also influenced by NUMA and paging
effects. Further, we showed that concurrently running enclaves decreases the performance
of the enclaves and could even lead to unpredictable performance when EPC capacity is
exceeded. Both observations are important for scaling out databases (by spinning up
additional instances) or supporting concurrent customer workloads.
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12.4 Related Work
To the best of our knowledge, most related work revolves around SGXv1. These works
cover several different areas from within and outside of the database community. In
the following, we focus on work that addresses the limitations of SGXv1, builds secure
DBMSs for SGXv1 or studies the performance properties of SGXv1.
Overcoming SGX limitations. Several previous work from the system community
looked at how the overhead of context switches in SGXv1 (i.e., ECALL/OCALL) [131, 166,
179] or paging [107, 162] can be overcome. While these works present an in-depth view of
the corresponding limitation, our work followed a broader focus to identify new challenges
for SGXv2 such as NUMA effects.
Building enclave-enabled DBMSs. Studying Intel SGX from a data management
perspective is another area that has attracted several research efforts. Besides works that
discuss how Intel SGX and TEEs in general can be used for trusted data processing [9,
73], recent work looked at how DBMS can be engineered to make use of the capabilities
of SGXv1 [10, 59, 67, 93, 143, 159, 195]. Our work instead focused on SGXv2 and showed
that SGXv2 includes several improvements that open up new opportunities for database
design and necessitate a re-evaluation of previous assumptions.
Analyzing performance properties. To gain more detailed insights into the per-
formance of SGXv1 applications, several works propose tools [96, 110, 161, 178] that
can be used to measure different performance aspects such as page faults and enclave
transitions [96, 178]. Moreover, there has been work on studying the performance of
SGXv1 in different settings [3, 45, 194] such as virtualized environments [45] or comparing
Intel SGX to other TEE technologies [123]. Most related to our paper are the works by
Harnik et al. [76] and Maliszwski et al. [112]. While the former looks at the performance
of SGXv1 for different data encryption settings and related access patterns, the latter
studies the performance of SGXv1 for join algorithms.

12.5 Conclusions & Future Directions
In this paper, we benchmarked the second generation of Intel SGX (SGXv2) focusing on
the question how this new generation might change the design of future secure DBMSs.
Main Findings. As a first finding, we showed that SGXv2 delivers on its promise
to improve the capacity of enclaves. Compared to SGXv1 the capacity is two to three
orders of magnitude larger depending on the configuration. For example, in our setup
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we showed that an in-memory B-Tree can scale up to about 120 GB of data and still
provide high performance and that SGXv2 has only around 25 % overhead compared
to a pure in-memory B-Tree. In contrast, this workload performs 25× worse in SGXv1
due to the limited capacity and the involved paging. Moreover, the support of SGXv2 in
server-grade CPUs brings additional benefits like larger caches, higher core counts, and
scaling across NUMA regions. Therefore, we belief that SGXv2 is a huge step towards
building high performance in-memory databases completely inside an SGX enclave.

However, using the Intel SGX technology still comes with several pitfalls. First,
memory management needs to be designed carefully to take the additional overhead
for, e.g., remote NUMA access into account. Second, our experiments indicate that
different implementations of trusted disk I/O can have performance differences in orders
of magnitude, requiring a careful choice of libraries and functions. Finally, SGXv2 does
not eliminate the performance penalty of paging, but rather shifts it to larger memory
sizes.

Future Work. While this paper provides a first systematic study on the basic aspects
of SGXv2 as discussed before, it is only a first step in the direction of designing efficient,
reliable and secure database engines given the potentials of SGXv2. Prior work on secure
enclave databases mainly focused on the limitations of SGXv1 by, e.g., only placing
certain DBMS components inside the enclave. In contrast to that, we believe that the
whole DBMS and its data can be secured inside the enclave by using the advancements
of SGXv2. As such, the design of all DBMS core components needs to be revisited to
take the unique characteristics of SGXv2 into account, e.g., with regard to memory
management (NUMA effects) and disk I/O (logging).

Finally, we plan to refine the results of our study in several directions to provide a
more comprehensive view about designing DBMSs for SGXv2. For instance, studying the
effects of multi-threading, taking a closer look at the effect of cache misses and analyzing
the performance impact of enclave calls in more detail are important extensions of our
work. Further, not only looking at concurrently running enclaves, but also studying the
effect of untrusted code running in parallel to an enclave is another interesting direction
for future work.
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13 Towards Decentralized
Parameter Servers for
Secure Federated Learning

Abstract
Federated learning aims to protect the privacy of data owners in a collaborative machine
learning setup since training data does not need to be revealed to any other participant
involved in the training process. This is achieved by only requiring participants to share
locally computed model updates (i.e., gradients), instead of the training data, with a
centralized parameter server. However, recent papers have shown that privacy attacks
exist which allow this server to reconstruct the training data of individual data owners
only from the received gradients. To mitigate this attack, in this paper, we propose a
new federated learning framework that decentralizes the parameter server. As part of
this contribution, we investigate the configuration space of such a decentralized federated
learning framework. Moreover, we propose three promising privacy-preserving techniques,
namely model sharding, asynchronous updates and polling intervals for stale parameters.
In our evaluation, we observe on different data sets that these techniques can effectively
thwart the gradient-based reconstruction attacks on deep learning models, both from the
client side and the server side, by reducing the attack results close to random noise.
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13.1 Introduction

13.1 Introduction
Motivation. Federated learning (FL) [118] enables organizations to learn predictive
models in a collaborative way. There are several reasons for using federated learning.
One is that each individual organization has too little training data and thus data of
multiple organizations is needed to train a deep model. Moreover, FL is interesting since
the training data does not leave organizational boundaries [88, 103]. This is especially
helpful if the data contains private information that needs to be protected. A prime
example for FL is healthcare. There, multiple hospitals want to learn a model over their
joint data for the classification of a new disease, but need to keep patient data local due
to legal and privacy regulations [26].

The predominant architecture for federated learning today is to use a central PS that
collects the model updates from all participants and aggregates them. In this setup, the
data owners participate in the training process by sending their locally computed model
updates to the central server, which combines these updates into a global model [118].
The original assumption was that such an approach is able to protect the privacy of each
participant’s training data, since only model updates and not the training data itself is
exchanged with the server. Yet, recent works [193, 196] have shown that privacy attacks
exist that allow an attacker to successfully extract information about the training data
by observing the model updates (i.e., exchanged gradients). More surprisingly, these
attacks showed that it is possible to successfully reconstruct individual training examples
with high accuracy (e.g., a full picture used for training) [193, 196]. Even worse, these
attacks are also applicable for different model architectures [69, 177].

Meanwhile existing defense strategies remain limited in preventing privacy attacks in
federated learning [1, 23, 69, 139, 196]. Most strategies either significantly reduce the
learning accuracy (e.g., using noisy gradients can result in 30% less accuracy [196]) or
have other limitations such as assuming a trusted central PS, or being incompatible with
widely used model architectures (e.g., secure aggregation [23]). Generic cryptographic
primitives such as homomorphic encryption, although not affecting accuracy, typically
incur significant overhead resulting in longer training times (e.g., by 100x [139]).
Contributions. In this work we take a different, system-driven approach by modifying
the federated learning framework. We propose to architect the training system around
decentralize parameter servers. Further, we initiate the study of the configuration space of
such a decentralized FL framework, called P2Sharding, w.r.t. its security against client-
side and server-side attacks. We propose three promising privacy-preserving techniques,
namely model sharding, asynchronous updates and polling intervals on stale parameters.
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Our evaluation on the CIFAR10 and MNIST datasets shows that these configurations
can effectively thwart the gradient-based reconstruction attacks on deep learning models
by reducing the attack outcome close to random noise.
Outline. The remainder of this paper is organized as follows. Section 13.2 gives an
overview of federated learning and the common basis for existing privacy attacks. We
present our privacy-preserving sharding framework based on a decentralized parameter
server architecture in Section 13.3. We evaluate these configurations in Section 13.4 and
conclude with related work and a summary.

13.2 Background
In the following, we briefly discuss the basics of federated learning and the typical
structure of privacy attacks on federated learning. Finally, we review existing defense
strategies when using a central parameter server and their limitations.

13.2.1 Federated Learning

Federated learning is a collaborative learning setting in which multiple parties jointly
train a machine learning model. To coordinate the learning process, federated learning
typically uses a central parameter server to initialize a global model, and interacts with a
set of participants (clients) to collect updates to the model. One distinct aspect of this
setting is that participants never upload their data to the server, and the only information
the server collects is model updates computed on privately held data [22, 88, 118]. The
de facto class of training algorithms deployed in the federated setting for deep learning is
stochastic gradient descent (SGD). SGD updates are gradients of model weights towards
minimizing a loss function computed on batches of the training data [95]. Training data
is possibly iterated through multiple times locally before sending the final update to
be averaged to the server [118]. The parameter server aggregates updates from each
client, and applies changes to the model parameters either synchronously [33] (accepting
one update per client in a round) or asynchronously [42] (allowing clients to progress
independently).

Figure 13.1 illustrates the basic steps. Each client k downloads the parameters W ,
computes the gradient ∇W L(W ; xk, yk) for the loss function L on its local data (xk, yk)
(denoted as ∇W (xk, yk)) . The server collects each gradient and aggregates it into the
global model W ←W − η

∑︁K
k=1 βk∇W (xk, yk) with the weights βk and the learning rate

η. The interactive process iterates until convergence.
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Figure 13.1: Federated learning with a centralized parameter server using stochastic
gradient descent (SGD). Each participant 1⃝ downloads global model pa-
rameters W from the server; 2⃝ computes local model updates ∇W based
on privately held data; 3⃝ sends local updates to the server. The server
aggregates the local updates to global parameters.

13.2.2 Privacy Attacks

Since its inception, federated learning has emerged as a common paradigm to train
on real-world privacy sensitive data. It was commonly believed that the information
transmitted over the network in federated settings contains only minimal updates for
improving the model, and therefore reveals much less information about the private
training data [95, 118]. However, this conceived advantage has been cast into doubt by
recent work on privacy attacks that revealed that even the model updates contain enough
information to compromise the data privacy [69, 120, 196].

The authors [120] show that gradients carry valuable information that can be leveraged
by attackers to leak unintended knowledge about the private data. The authors of [196]
were the first to show that it is even possible to reconstruct full images and text data with
high precision from gradients sent by clients and thus breach the privacy of the learning
process. This class of reconstruction attacks only requires access to the exposed model
updates (i.e., the gradients ∇W ), plus the parameters W and is therefore applicable to
most federated settings.

The common basis for these attacks is the following optimization problem: Find some
estimated data x′ (e.g., an image) and its label y′ (e.g., the classification of the image)
such that its gradient ∇W L(x′, y′) is closest to the transmitted client gradient ∇W for
its private input x and label y. In other words, the distance of the two gradients with
regard to a distance function D() is minimized:

arg min
x′,y′

D
(︁
∇W,∇W L(W, x′, y′)

)︁
(13.1)
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The original attack [196] used an L-BFGS solver [106] with randomly initialized (x′, y′)
to optimize Eq. (13.1) based on the euclidean distance for a training batch size of 1.
The attack accuracy was improved by [193] in which the private labels y are recovered
analytically from the direction of the gradients. More recently, [69] used cosine similarity
in Eq. (13.1) to yield a stronger attack for larger batch sizes.

13.2.3 Existing Defense Strategies

The key ingredients for the reconstruction attacks in Eq. (13.1) are: (a) the access to
the entire model parameters W , and (b) the view of the entire gradient ∇W . Several
countermeasures based on differential privacy [196], gradient compression [105, 196] and
cryptography [23, 139] were proposed. Yet, they have several limitations:

Differential privacy approach. The differential privacy-based approach in [196] adds
Lapacian and Gaussian noise to the local model updates before transmission, but larger
noise is often necessary for enough privacy protection, which tends to degrade the training
accuracy significantly.

ML-based approach. Gradient compression [105] by dropping out small gradient
components has shown to be effective only when the sparsity of the gradient exceeds
20% [196]. Yet, this method does not prevent a corrupt server from inverting the gradients
from observed model iterates, a crucial step for reconstruction (cf. Sec. 13.3.2.2).

Cryptographic approach. Some cryptographic protocols are still ineffective against the
attack in [69], e.g., secure aggregation [23] or, in the case of Homomorphic encryption [139],
incur prohibitive overhead and are limited to integer fields. A multi-party computation-
based approach [72] also has large overhead when scaling to more than two servers or
clients or is not directly applicable to the federated setting as is the case for the approach
in [124].

13.3 Decentralized Secure FL
In the following, we present an alternative, system-driven approach for enhancing privacy
in federated learning without the drawbacks seen in the above mentioned approaches. We
first give an overview of our decentralized parameter server that partitions the model into
shards. We then discuss how these model shards are created and updated on different
server instances in order to enhance data privacy.
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13.3.1 Decentralized Parameter Server

Centralized parameter server presents a single point of security vulnerability because
a corrupt server can see all updates from all clients and launch the gradient-based
reconstruction attack as is. By contrast, we proposed to base our defense mechanism on
decentralizing the parameter server.

Instead of congregating the model parameters on a centralized PS, our framework, called
P2Sharding, distributes trust among several independent parameter server instances,
each hosting a fraction of the model, called a shard. No single server instance holds the
entire model W , nor receives the entire gradient ∇W . Thus just by design, sharding
enhances data privacy by preventing the adversary from having a consistent view of the
entire gradients and the model parameters, both the key elements in the reconstruction
attacks.
Federated Settings. We consider a set of K clients who participate to train a model
on their joint data. The model W is partitioned into M shards W 1, · · · , W M using
a configurable strategy, and each shard W m is hosted on a separate parameter server
instance. Each server instance W m receives the gradient shard ∇W m from each client k.
Each client downloads the full model iterates W = (W 1, · · · , W M ) by sending requests
(i.e., polling) to the M server instances.

Note that the amount of exchanged data between clients and the parameter server shards
is similar to the classical central parameter server setting. In both cases, clients need to
download the full model W or send all gradients ∇W to a remote location. The only
additional overhead introduced by our framework are additional messages/connections
since clients have to communicate with multiple remote endpoints.

The framework can adapt to several federated settings using different configurations.
For example, for enterprise clients where each has enough computation resource, each of
the M server instances can be co-located with a client. An example is shown in Figure 13.2.
In contrast, a server-aided model can be used to outsource the M server instances onto
M independent physical servers, which is more suitable for resource-constrained clients
running on edge devices such as mobile phones.
Security Model. The P2Sharding framework assumes all parties to be semi-honest,
that is each client and server follow their prescribed protocol and only attempts to extract
more information from the other client’s data1. Moreover, at least one client and one

1Protocols that assume a semi-honest setup prevent inadvertent leakage of information between parties,
and are thus useful if this is the concern. In addition, protocols in the semi-honest model are quite
efficient, and are often an important first step for achieving higher levels of security.
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Figure 13.2: Decentralized Parameter Server Architecture for an example with 3 shards
(W 1, W 2, W 3). The parameter space W is partitioned across several inde-
pendent PS instances managed by different participants. In the example, the
PS instances are co-located with each participant, but they can also be hosted
by independent physical servers.

shard are assumed to be non-colluding with the other parties (i.e., we have at least two
non-colluding shards). Otherwise, the security reduces to that of a centralized server.

We also consider cases where (1) a subset of PS instances or (2) client and server
instances collude (e.g., due to being co-located as shown in Figure 13.2). In the first case,
the goal of the colluding PSs is to extend their knowledge about exchanged gradients.
In the second case, the attacker only wants to get access to the full model iterates
W 1, · · · , W M since the client regularly receives the latest global model. This provides
crucial information for reconstruction because the attacker can estimate the full gradients
from the history of the received model iterates.

In P2Sharding, we provide several configurations to help reduce the risk of both
PS-side and client-side attacks as explained next.

13.3.2 Privacy-Preserving Configurations

We turn to investigate several configurations within the P2Sharding framework that can
enhance privacy. These configurations are rooted in system designs, and therefore present
a different tool for protecting private training data than differential privacy or end-to-end
cryptographic approaches.

13.3.2.1 Model Sharding

Since a shard contains only a partition of the model, the information leakage to a corrupt
server is limited to its hosted shard. Which data can be reconstructed from a shard
depends on how the model parameters are distributed. For example, if the penultimate

144



13.3 Decentralized Secure FL

l1 l2 l3
(a) Layers of model parame-

ters

l1 l2 l3

(b) Uniform

l1 l2 l3

(c) Slicing

l1 l2 l3

Shards

W
3

W
2

W
1

(d) Boundary-aware

Figure 13.3: Partitioning Strategies for a neural network (NN) model architecture with
four layers (a); i.e., three layers of parameters since the input layer has
no parameters. (b) The Uniform strategy creates equally sized partitions
that span across all layers. (c) The Slicing strategy divides the parameters
into equally sized consecutive slices (only some of which span layers). (d)
The Boundary-aware strategy guarantees that while a shard may posses
parameters from multiple layers, these layers are not adjacent. This strategy
might create shards of different sizes.

layer in a feed-forward, softmax-output neural network were allocated to the same shard,
its corrupt server may learn the training label [193]. In the following, we describe three
sharding strategies that provide strong privacy in our evaluation, and we show how to
vary the shard size to increase resilience against collusion of multiple shards.

Uniform Sharding. The idea of the Uniform-strategy is to create S similar-sized shards
that store the same fraction of parameters from each layer, as depicted in Figure 13.3b.
As shown in the figure, all three shards have the same size and equally span all layers.

In order to achieve this partitioning, the strategy uniformly assigns the parameters pi

to the shards W j . This can be expressed by selecting a shard for a parameter at index i

using a shared hash function P:

S (i) =
(︁
P(i) mod S

)︁
+ 1 (13.2)

Uniform sharding creates equally-sized partitions. However, it is completely oblivious of
the different layers and hence a participant might possess parameters from all layers.

Slicing Sharding. Another model-oblivious technique is the Slicing-strategy. In this
strategy, the parameter space is contiguously divided into S equally-sized partitions, as
depicted in Figure 13.3c. More formally, this strategy can be described by the following
function:

S (i) =
⌈︄

i
|W |
S

⌉︄
(13.3)
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Intuitively, we can linearly iterate over all parameters in W and assign the first 1
S

parameters to the first shard (blue) and the second 1
S to the second (green) shard and so

on.
In terms of shard size, this strategy creates equally sized shards as shown in Fig-

ure 13.3c.Moreover, shards span only a few layers of a NN as depicted in the example.
There, the blue and yellow shard span multiple layers but the green shard is limited to a
single parameter-layer. Hence, this strategy differs from the Uniform-strategy since it
reduces the number of layers from which a participant holds parameters.
Boundary-aware Sharding. In contrast to the previous strategies, this strategy
guarantees that a partition does not hold any parameters of adjacent parameter-layers,
e.g., the blue shard in Figure 13.3d does not hold any parameters from layer l2. Further,
this strategy might create partitions with a different number of parameters in order to
prevent a shard from storing parameters from adjacent layers. This situation can be seen
in Figure 13.3d since the blue shard is bigger than the remaining two shards.

Such a mapping can be expressed as follows:

S (i, l) =

⎧⎨⎩
(︁
P(i) mod ⌊S

2 ⌋
)︁

+ 1, l mod 2 = 1(︁
P(i) mod ⌈S

2 ⌉
)︁

+ ⌈S
2 ⌉, l mod 2 = 0

(13.4)

That is, we distinguish two sets of shards, one is responsible for odd layers (l mod 2 ==
1) while the other stores the parameters of the even layers (l mod 2 == 0). We create
these two sets by splitting the shards in two halves (⌊S

2 ⌋). For example, we can observe in
Figure 13.3d that shard W 1 is responsible for the odd layers, while shard W 2 and W 3 are
responsible for the even layer. Moreover, within every set of shards, the parameters are
uniformly distributed with the help of a uniform shared hash function P(i). Note that,
we have decided to assign more shards to the even layers (i.e., using ⌊⌋ as first bound),
since even layers tend to contain more parameters (cf. Figure 13.3d) than, e.g., the
odd in-/output layers. While the Boundary-aware-strategy does not create equally-sized
partitions, it takes the layer boundaries of the model architecture into account and avoids
that shards receive gradients of two adjacent layers.
Shard Sizes. The P2Sharding framework provides the shard size configuration param-
eter for adjusting the privacy of sharding in light of collusion attacks. The effect of a
collusion attack is the same as if several shards were combined to form a larger subset of
the model. Hence, the shard size is privacy-sensitive in that it can be used to control
for the expected number of collusions. Intuitively, if C server instances collude, their
knowledge is the union of their shards. If the number of colluding shards becomes large
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Figure 13.4: Attackers recovering full gradients from model iterates. The estimation takes
three steps: Downloading all parameters from all shards repeatedly ( 1⃝ and
2⃝) and assembling the global model at t and t + 1. Finally, both models

are used to recompute the gradients that were used to update Wt to Wt+1 3⃝.
For the Stochastic Gradient Descent (SGD) algorithm, the gradients can be
recomputed with the shown formula.

enough the reconstruction attack becomes easier. So by reducing the maximum shard
size S, P2Sharding can control the amount of leakage during C shard-collusion to be
≤ C · S gradient components.

13.3.2.2 Asynchronous Updates

This configuration aims to reduce the risk of malicious client and server collusion.
Leakage from Synchronous Updates. Under synchronous training, with the help of
a colluding server, a malicious client can retrieve model snapshots of different iterations
for a targeted victim, then uncover the full gradient to launch the gradient-based attack.
As depicted in Figure 13.4 an attacker could continuously retrieve (i.e., poll) the latest
model from all parameter servers to determine W (t) 1⃝ and W (t + 1) 2⃝ and re-compute
the gradients ∇W based on the retrieved models 3⃝. This observation especially holds
true for standard SGD which uses the update rule W (t + 1) = W (t) − η ∗ ∇W with
learning rate η (i.e. ∇W = W (t)−W (t+1)

η ) for computing the new model parameters. In
other SGD variants, gradients may only be estimated from the full history of model
iterates {W (t)}t.
Perturbation by Asynchronous Updates. Our approach to mitigate the afore-
mentioned gradient recovery is to use asynchronous federated updates. In this setting,
concurrent client updates to the same model shard are applied without a global order,
which may lead to the effect of different clients overwriting each other’s model updates, or
some clients update some shards more often than others. As a result, data reconstruction
becomes harder as shown in our evaluation.

Intuitively, if multiple updates to each shard are incorporated asynchronously in parallel,
then the full model iterates may contain out-of-sync values. This leads to non-uniform
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directional perturbation in the estimated full gradients. Following the model iterate
analysis for asynchronous SGD [113], such perturbation can be modeled as essentially
injecting random noises E(t) on the model iterates to the adversary’s view g:

∇ˆ︂W = g
(︁{︁

W (t) + E(t)
}︁

t

)︁
(13.5)

where E(t) is a vector that describes perturbation per shard j at time t. Thus the attacker
only sees a gradient with noisy rotation and stretch. Since it is the angle of the gradient
that contains most information about the data [69], our evaluation shows that perturbed
gradients indeed make data reconstruction harder while maintaining model accuracy
high.

13.3.2.3 Polling Intervals

Asynchronous updates can lead to degraded model quality for some models and datasets
[113]. For these cases where asynchronous updates are not applicable, we introduce
polling intervals as another means to perturb model iterates for privacy. The idea is to
create stale parameters, while still allowing for synchronous updates to the entire model
for more stable training.

More specifically, each server instance j can independently implement a manual random
delay τj , called the polling interval, for each connecting client. For each request, the
server instance checks the client’s identity, and answers with an outdated model shard
W j(t − τj). All such artificially out-of-sync model shards form a client’s view on the
entire model, which crucially still contains inconsistent values at all time. As such this
setting can also resist the reconstruction attack. Specifically, the difference between the
latest but hidden model shard W j(t) and the polled model shard W j(t − τj) can be
viewed as the source for the perturbation E(t) in Eq. (13.5) at a particular time t. As
such, polling intervals provide a deterministic way for inducing perturbation through
staleness.

An important point to note here is that each parameter server instance is assigned to
a separate trust domain with its internal states hidden from the environment, that is,
it only exposes its interface to the other parties. Hence, each PS instance can actually
implement different strategies of which data can be read from the local shard. That way,
each server instance in P2Sharding can control parameter staleness local to its shard by
keeping track of the updated model versions (i.e., one version per iteration) and return a
model with a definable staleness to the client.
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Finally, another interesting observation is that model iterates with the same increasing
polling interval actually also produce a similar effect of increasing the batch size, since
it results in accumulated updates across multiple training examples. As shown in [196]
and in [69] an increased batch size makes privacy attacks harder. We validated the
effectiveness of polling interval in Section 13.4 for both privacy and performance.

13.4 Experiments
Overall the goal of the evaluation is to analyze the effects of the different configurations of
P2Sharding on privacy protection. We first demonstrate that the privacy of the training
data can be significantly strengthened with the help of P2Sharding’s decentralized setting
when compared to a centralized parameter server. We then decompose P2Sharding into
each of its configurations. We show that for varying data and model complexities
P2Sharding is able to provide configurations under which the attack results remained
unrecognizable, i.e., close to random noise.

13.4.1 Setup & Metrics

In our evaluation we used a similar setup as the original reconstruction attack [69, 196],
because our goal is to show that the range of configurations in P2Sharding can mitigate
such attacks successfully. More details on the setup are provided below:
Dataset Complexities. We used the MNIST [98] and CIFAR10 [97] datasets as repre-
sentatives for less and more complex datasets. MNIST is considered less complex than
CIFAR10 for it contains only black-and-white images of handwritten digits, whereas
CIFAR10 contains colored images of more complex objects.
Model complexities. As models, we used LeNetZhu as in [196] and ConvNet as
in [69] to represent lower and higher model complexities. Both models are widely-used
convolutional neural networks. However, one noticeable difference is their depth, or
number of layers, since ConvNet is deeper than LeNetZhu. Another important difference
from a reconstruction attack perspective is the used activation function. LeNetZhu uses
a Sigmoid function which makes the network inherently twice-differentiable, resulting in
a smoother optimization problem in attack formulation (Eq. 13.1). ConvNet by contrast
uses ReLU which is non-smooth and non-differentiable at 0.
Attack Implementation. For the attacks, we used the code in [69] (cosine similarity
based reconstruction attack) and adapted their hyper-parameters for the actual learning
process (i.e., SGD with learning rate η = 0.1). We integrated our partitioning strategies
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by implementing a separate module that limits the gradients that are accessible to the
attacker (i.e., a PS instance).

In the following, we always execute 5 attacks on randomly selected training batches.
Thereby, we set the batch size to 1, as done in [196], since this represents the worst-case
that P2Sharding has to defend against — as mentioned in [196], a bigger batch size
makes the attack harder. Further, we executed each experiment three times.

Privacy Metrics. In order to evaluate the privacy against reconstruction attacks, we
measured the structural dissimilarity (DSSIM) of a reconstructed image from its targeted
private image. The DSSIM is derived from the structural similarity (SSIM) [176] as
DSSIM(x, y) = 1−SSIM(x,y)

2 . We used this measure instead of the mean squared error
(MSE) as in [196] or the MSE-based peak noise-to-signal ratio as in [69], because DSSIM not
only captures pixel-local deviation but more importantly the structural differences. Hence,
it has been shown to be a superior measure for signal fidelity such as perceptual distortion
or recognizability [28]. For example, a color-inverted MNIST image (a black-and-white
digit) will have extremely high MSE, but it does not correlate with the privacy of the
image as the structure of the digit remains obviously the same. In contrast, the DSSIM

value for the same image will be kept low to reflect the structural similarity. In general,
a higher DSSIM suggests the reconstructed image deviates more from the private image
and may even be unrecognizable. We show a sample of images from MNIST and CIFAR10

with varying DSSIM in Figure 13.5. Three reconstructed images were randomly selected
to represent different DSSIM intervals. It can be observed that when the DSSIM reaches a
value > 0.45 the reconstruction become unrecognizable, which coincides with the DSSIM

of random noise.

In our evaluation, we recorded the empirical distribution of DSSIM over MNIST and
CIFAR10 under repeated attacks, and reported the average and minimum DSSIM as average
and worst-case performance.

Baselines. In the following we compared P2Sharding to two baselines. As the first
baseline, we compared against a centralized parameter server with no sharding. This
setting represents an insecure setup and we show that P2Sharding configurations achieve
much stronger privacy. This baseline will be shown as red dashed line in the experiment
plots. On the other hand, the best privacy against reconstruction is to have attack results
close to random noise. Hence, we also compared against a randomly generated picture in
which each pixel is sampled i.i.d. from a uniform range (shown as a green dotted line in
the following figures).
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Figure 13.5: Visualization of different DSSIM ranges for attacks on the MNIST (left) and
CIFAR10 (right) dataset. A higher DSSIM value means that an attack was
unsuccessful and privacy is protected. For MNIST and CIFAR10 privacy is
protected beginning with a DSSIM > 0.45.

13.4.2 Decentralized vs. Centralized PS

In the first experiment we evaluate the privacy gain from sharding the model parameters
in the decentralized parameter server setting, as compared to the centralized parameter
server without sharding.

To that end, we used P2Sharding to partition the parameter space using the three
proposed sharding techniques. Additionally, we varied the number of shards used to
partition the model parameters in order to capture the effect of varying shard sizes
(size = 1

#shards). For instance, a shard size of 0.5 refers to the fact that the model was
split into 2 partitions. We then randomly selected a resulting partition and measured the
DSSIM when executing reconstruction attacks across all datasets and model architectures.

The results of this experiment can be seen in Figure 13.6. All sharding techniques
show a clear improvement over the centralized parameter server baseline (dashed red
line). In particular, the benefit of sharding is most visible when looking at the success
of the best attack (called worst-case scenario) in Figure 13.6b. Without sharding the
centralized setting is consistently able to recover some private image. However, with
P2Sharding we were able to find configurations (e.g., shard size = 0.12) that result in
DSSIM values close to random noise even in the worst-case.

While Figure 13.6 illustrates that all partitioning strategies improve privacy clearly
when compared to the baseline without sharding, it also reveals subtle differences among
the different strategies, i.e., not all strategies get close to the upper bound of a random
picture (green dotted line) for all settings. In the following, we analyze these difference
in more detail.
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Figure 13.6: Evaluation of the proposed sharding techniques in terms of (a) the average
success and (b) the success of the best attack (called worst-case scenario).
All sharding techniques show a clear improvement over the baseline (dashed
red line).

13.4.3 Effects of Model Sharding

P2Sharding provides configurations for different sharding strategies. Each sharding
strategy determines which parameters are stored in the same shard. Since an attacker
sees at least one shard of gradients, it is important to understand the privacy impact of
different ways of sharding. In the following, we shed more light on when to use which
sharding strategy.

In Figure 13.6, we compared the three proposed sharding strategies across data and
model characteristics. The first important observation is that the attack becomes consis-
tently harder on more complex datasets (i.e., CIFAR10 bottom row). This observation is
in line with what was reported in previous work [69, 193]. Therefore, we mainly used the
simpler MNIST dataset to differentiate the privacy impact of the sharding strategies.

In the case of the MNIST data (upper row) we make the following observations. For
the simple LeNetZhu model, both the uniform and the boundary-aware strategy result
in lower DSSIM values than the slicing sharding technique. This can be observed in
terms of both the average (Figure 13.6a) and the worst-case performance (Figure 13.6b).
With decreasing shard size (ie., higher number of shards) both strategies improve and
eventually achieve similar or slightly better (in terms of the worst-case) privacy protection
than the slicing strategy.

For the more complex ConvNet model, the opposite effect is noticeable: Initially
the uniform and the boundary-aware strategy show a better (worst-case) performance
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than the slicing strategy (see Figure 13.7b). Yet, with decreasing shard size again all
strategies provide comparable performance.

We found that this effect can be explained by the boundary-awareness of the different
strategies, as will be outlined next.

(a) Average Performance (b) Worst-case Performance

Figure 13.7: Relative Importance of Layers. An attack based on the later layers of a
model seem to have a higher chance for a successful attack (lower DSSIM
value). This effect is most noticeable for simple data as well as models and
when looking at the worst-case performance (Figure 13.7b).

Figure 13.7 reveals two key observations: First, limiting the gradients of a shard to
only one layer yields (as in the slicing strategy) a relatively consistent performance
across different shard sizes. Secondly, in the case of the MNIST dataset the last layer
(Layer-3) enables more successful attacks (lower DSSIM) even for smaller shard sizes
(e.g., 0.06). This is the case for both average as well as the worst-case performance shown
in Figure 13.7b. For the ConvNet model, however, this effect is not as significant and is
only partially observable in the worst-case performance.

This experiment highlights that different layers of a deep learning model can carry more
information than others. Further, and even more importantly, limiting the information of
a shard to one layer provides a more robust privacy protection compared to the uniform

and boundary-aware strategy (Figure 13.6).
Yet, as shown next, the ability of P2Sharding to control the shard size helps to improve

the privacy protection of sharding strategies.

13.4.3.1 Reducing Shard Sizes

The main idea of the P2Sharding framework is to partition the global model into several
shards hosted on independent parameter server instances. Intuitively, with smaller shard
sizes a corrupted parameter server learns less about the gradients of the model, which
increases the resistance to data reconstruction.
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To evaluate this concept, we used the uniform strategy to create shards of different
sizes and measure the success of reconstruction attacks for different model complexities
on the MNIST dataset. We used the uniform strategy, since out of the three proposed
strategies it had the most sensitivity to changing shard sizes. Hence, using this setup we
show that reducing the shard size is another effective measure to make the privacy for
sharding more robust.

Figure 13.8 shows the result of this experiment for various shard sizes on the x-axis. We
can see, that by reducing the shard size the privacy protection is improved significantly.
Starting from a shard size below 0.12, P2Sharding is able to achieve a privacy protection
that was otherwise only reached by boundary-aware sharding.
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Figure 13.8: Influence of the shard size on privacy attacks (zoom-in into Figure 13.6).
Decreasing the shard size is an effective measure to prevent attacks. This is
shown by the increasing DSSIM (less successful attack) for small shard sizes
(e.g., 0.12).

13.4.4 Effects of Asynchronous Updates

If P2Sharding is used for asynchronous updates the different parameter shards can be
updated at different points in time. In general, with more clients concurrently training
and updating the model shards, the more staleness on average one can observe, and the
larger such variance across shards becomes [113].

In the experiment shown in Figure 13.9, we simulated the effect of concurrent activities
and stale shards (i.e., delayed parameter updates) by randomly delaying the incorporation
of an update in a shard. We studied the effects of staleness with no additional polling
(i.e., polling interval = 1) and with a high polling interval.

In our setup, already with an average staleness per shard increased to 2, we observed
that all data and models started to have increased resistance to reconstruction. That is,
the average DSSIM (Figure 13.9a) increases. With more concurrency, such as when the
average staleness reached 8, the privacy becomes close to the ideal privacy of random
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noise, even for a simple model and dataset. This effect was even stronger when a
polling interval of 8 was used in addition, which suggests that polling intervals contribute
significantly towards an increased privacy protection. Hence, we will study the effect of
polling intervals in more detail in the next section.
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Figure 13.9: Influence of staleness on privacy attacks. Staleness makes the model iterates
inconsistent across all shards as in a typical asynchronous learning setup
since the shards incorporate client updates with a delay. An increased
staleness helps to improve the privacy protection, i.e., increase the DSSIM
(13.9a) while not affecting the resulting model accuracy (13.9b).

13.4.5 Effects of Polling Intervals

Similar to asynchronous updates, polling intervals aim at preventing client-side attacker
from uncovering the full gradient, a crucial step in reconstruction. However, polling
intervals rely on serving parameters with randomly varying staleness to perturbe the
attacker’s view on the entire model. The added benefit is that polling intervals can work
with synchronous updates to all the model shards such that the training becomes more
stable.

In the experiment of Figure 13.10, we observed that with increasing polling intervals,
the resistance to construction also became stronger. This effect was most obvious when
the staleness due to asynchronous updates was controlled for and set to 0 (i.e., no staleness
created by asynchronous updates, blue bar). We note that this setting is essentially
polling interval combined with synchronous updates. With the only effect left due to
polling intervals, we observed that a higher average interval at 8 consistently achieved
higher resistance to attacks than without the polling interval (i.e., 1) across all data and
model complexities (cf. Figure 13.10a).
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Figure 13.10: Influence of polling intervals on privacy attacks. Polling intervals enable
P2Sharding to introduce asynchronous effects even to synchronous training.
As for staleness, an increased polling interval improves the privacy pro-
tection, i.e., increases the DSSIM (13.10a) while not affecting the resulting
model accuracy (13.10b).

On a final note, in both experiments of the asynchronous training and polling intervals
we observed consistently high test accuracy as reported in Figure 13.9b and Figure 13.10b.
This finding is consistent with previous work on asynchronous learning that showed that
asynchronous updates achieve robust training quality [42, 113].

13.5 Related Work
Privacy Preserving Machine Learning. While Federated Machine Learning repre-
sents a recent technique to protect the privacy of training data, preserving the privacy
in machine learning is a much broader area of research [1, 23, 124, 139, 140, 155]. In
particular, [124] considers a non-federated setting where users upload secret shares of
their data on two non-colluding servers. [155] uses a central parameter server to host
the up-to-date model. It allows clients to train on the latest model while only sending
selective gradients. However, it cannot prevent gradient-based attacks from colluding
clients or a corrupt server.
Privacy in Federated ML. There have already been several existing approaches for
enhancing privacy in Federated ML. In fact, cryptographic techniques such as differential
privacy [119], homomorphic encryption [108] or secure multi-party computation [23]
have also been proposed to improve the privacy in the context of federated learning.
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However, as mentioned previously these techniques show several limitations such as limited
compatibility with different model architectures or an increased learning overhead.

Recently, papers also explored non-cryptographic techniques to protect privacy in
Federated ML, such as gradient compression [105, 196]. In this technique, gradients with
small values are pruned to zero such that the number of useful gradients that are sent
to the server are limited. While this technique also limits the amount of information
available to an attacker, it depends heavily on whether gradients can be pruned or not
and can influence the training process negatively.
Decentralized Architectures and Sharding. Moreover, there has been a lot of work
in the context of decentralized machine learning [104, 132]. This works mainly focus on
how to enable ML without using any central (parameter) server component. In contrast,
our approach does not eliminate the parameter server, but decentralizes this component
itself. The most similar approach with this regard is the work in [58]. However, compared
to their architecture, which assumes a full replication of parameters across all server
instances to make the overall training robust against potentially misbehaving parameter
servers and thus to tolerate Byzantine failures, our approach utilizes sharding to distribute
parameters across server instances to achieve privacy.

Lastly, sharding or partitioning in general has widely been used in both database
systems [43] and ML systems [36, 42, 102, 183] to improve scalability and performance
or reduce communication costs [192]. However, to the best of our knowledge, looking at
sharding from a privacy perspective is a new proposal.

13.6 Conclusion & Future Work
The security of federated learning was recently called into question by works on gradient-
based attacks to reconstruct private trainnig data. In this work, we initiated the study
of secure FL based on a different, decentralized parameter server architecture called
P2Sharding. We proposed three configurations on how to partition, serve and update
the model parameters for better privacy. Empirical evidence on CIFAR10 and MNIST
showed noticeably stronger resilience against gradient-based data reconstruction attacks
by limiting the attack outcome close to random noise. In future work, we aim to further
establish the formal security analysis of our FL framework.

Several areas for other future work exist. Our framework can be extended with
differential privacy or cryptographic tools to further strengthen the security such as
against malicious adversaries or support secure synchronous non-stochastic optimization.
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Another work is to develop an automatic mechanism to optimally configure our framework
given a wider range of models and datasets. Lastly our framework may also be extended
for other security concerns in federated learning such as data and model poisoning.
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14 ACID-V: Towards a New
Class of DBMSs for Data
Sharing

Abstract
Recently, a new class of systems for shared and collaborative data management has gained
more and more traction. Different from classical DBMSs, systems for shared data need to
provide additional guarantees to ensure the integrity of data and transaction execution.
In this paper, we propose to extend the ACID properties used by classical DBMSs
with a new Verifiability component to enable users to specify the required guarantees of
verifiability in a declarative manner.
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14.1 Introduction

14.1 Introduction
Motivation. Recently, a new class of systems for shared and collaborative data manage-
ment has gained more and more traction. Examples of such systems include Veritas [68],
BlockchainDB [52], FalconDB [137], Fides [111] and Spitz [188]. Compared to classical
DBMSs that are designed for being used by a single party, these systems enable multiple
parties to manage a shared database (DB) in a collaborative manner. For example, think
of a shared database for medical patient records. Here, hospitals and doctors would be
able to directly share and modify patient data to keep track of diagnoses and treatments
a patient received. Clearly, shared DBs provide many opportunities not only in the
medical domain such as for large-scale epidemic studies [157], but also for many other
fields where access to a shared DB enables more effective collaboration or new use cases
(e.g., financial domain [163] or supply chains [90]).

However, different from classical DBMSs, systems for shared data need to provide
additional guarantees to ensure the integrity of data and transaction execution (called
verifiability guarantees in the following). The main reason for this is that when manipu-
lating a shared database in a collaborative manner there is often some mutual distrust
between the different parties that jointly access the shared database since they often
have different interests (e.g., think of an insurance company and a hospital that use a
shared database for medical records). Hence, the goal of the verifiability guarantees is to
govern the shared database; i.e., to guarantee that the shared database is only modified
based on a predefined and agreed upon set of transactions that every party adheres to
and that none of the parties can tamper with the data in a different manner.

If we now look at how existing systems for shared data (such as those mentioned at
the beginning) provide verifiability, we can observe that these systems typically take a
very implementation-centric approach and often do not integrate well with the ACID
guarantees of classical DBMSs. Moreover, the concrete guarantees that such systems
provide are very different from system to system and often hard-baked into their execution
model. FalconDB, for instance, is based on blockchains to implement verifiability and
uses an incentive-based scheme where nodes are encouraged to verify the execution of
queries asynchronously to hide the high verification cost. As a result, however, potentially
unverified queries from malicious servers stay undetected. In contrast to that, updates
are always verified synchronously for the entire network.
Vision. In this paper, we propose to take a more principled and more database-centric
approach to provide verifiability for shared data systems. The main idea is to extend
the ACID properties used by classical DBMSs with a new Verifiability component which
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results in the ACID-V properties. To be more precise, similar to the other components in
ACID such as the well-known isolation property, we propose to specify the guarantees of
verifiability in a declarative manner using different verification levels (i.e., strict or more
loose). Moreover, we believe that the integration of verification with the ACID properties
not only is a natural fit and gives applications well-defined guarantees but it enables a
new class of shared DBMSs that decide based on the verification level what optimizations
and concrete execution strategies are best suited to meet the desired guarantees.

14.2 From ACID to ACID-V
14.2.1 Adding the V to ACID

In classical databases, transactions are governed by the ACID properties. As mentioned
before, the concrete properties that should be satisfied can be defined declaratively and
are implemented by databases in various ways. For example, for the I(solation) in ACID,
a user can declare the specific isolation level (e.g., read committed, serializable) that
a transaction should run under. This isolation level is then guaranteed by a database
through its concurrency control scheme (e.g., optimistic vs. pessimistic). Similarly, we
propose to add a new Verifiability property that user can specify declaratively and that
database systems can implement in different ways. Further, looking at Verifiability from
a conceptional perspective enables users to reason about the guarantees a system provides
independent from implementation details.

To add the V to ACID, we extend the classical transaction state model of ACID-
compliant DBMSs by a verified state. For simplicity, Figure 14.1 visualizes the extended
state model for ACID-V for the case in which all nodes in a shared DBMS act honestly.
We will briefly discuss some aspects of malicious behavior later in Section 14.2.3. As we
can see, in our state model a transaction can only reach the verified state after it reached
the committed state.

Modeling verified as a state that follows the committed state has several advantages.
First, since verification is typically an expensive step the model leaves some freedom
when the transition from committed to verified happens (i.e., directly after the commit
or if it can be deferred). Moreover, it enables the user to declare which state is allowed
to be read by other transactions (e.g., if committed but unverified can be read or if all
state must be verified before becoming visible). Second, the verified state is an optional
state as shown in Figure 14.1, i.e., not all committed transactions need to be verified,
which allows partial verification to reduce the overhead.
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Figure 14.1: Simplified state model for ACID-V. The classical transaction state model is
extended with a Verified state.

14.2.2 Verification Levels

While a formal definition of ACID-V and a more complete discussion of possible verification
levels are out of scope for this paper, in the following we show how a first set of different
verification levels can be defined based on the state model we introduced before. Based
on this we will discuss what implications different levels can have on the integrity of
data/execution and a system’s performance.

Strict Verification (SV) This verification level requires that all transactions need to
be verified. Moreover, all transactions are allowed to read only verified state. A similar
guarantee can be provided by the online verification schemes of existing systems such as
Veritas and BlockchainDB which guarantee that the result of a transaction (or database
operation) is verified before becoming visible to other transactions. For the actual
execution of transactions, this level implies that transactions should transition as fast as
possible from the committed state to verified since otherwise (i.e., if there are too many
committed but unverified transactions) this can lead to low performance or in worst case
starvation. However, clearly strict verification thus has a high overhead and might lead
to inferior performance when compared to more relaxed levels that we discuss below.

Unstrict Verification / full (UV-f) Compared to the previous level, this is a more
relaxed verification level since it allows transactions to read from committed but not
yet verified state. That is, even if the verification of a transaction is still pending, other
transactions can access its committed state. However, all transactions are still being
verified (hence it is called full) and unsuccessful verification in case of malicious behavior
needs to be handled as we discuss below in Section 14.2.3. In contrast to the SV level,
though, this makes room for different optimizations. Most importantly, transactions
are not blocked by potentially expensive verification protocols since verification can be
executed in batches and in a deferred manner. This is similar to deferred verification
schemes that are available in existing systems (e.g., [188] or [52]). But still, verification
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should not lag behind too much. This can be controlled by setting an additional parameter
that specifies how many committed but unverified transactions are allowed.

Unstrict Verification / partial (UV-p) This verification level relaxes the guarantees
of the previous level (UV-f) even further. In UV-f, transactions are allowed to access
committed, but unverified state. However, unlike UV-f in partial unstrict verification
(UV-p) we do not enforce that all transactions need to be verified. Consequently, this
verification level assumes that verified is an optional state of a transaction. In this level,
a user can thus explicitly request to verify only a subset of transactions. Hence, UV-p
could be used to limit the verification overhead to some (e.g., important) transactions or
to provide probabilistic guarantees by verifying only a sample of all transactions.

14.2.3 Handling Malicious Behavior

As mentioned before, in ACID-V it is important to take the effects of potentially malicious
behavior of individual peers into account (i.e., in case they do not execute transactions in
a correct manner). That is, if the verification fails for a particular transaction (e.g., due
to incorrect execution by a malicious peer) all dependent subsequent transactions need to
be rolled back in order to guarantee a correctly verified state of the database as specified
in the verification level. For strict verification levels, this is less of a problem since
no other transaction can read committed but unverified state from other transactions
and hence only the effects of the transactions where the verification failed need to be
reverted. However, for unstrict verification handling malicious behavior is more difficult
since transactions can read from committed and not yet verified transactions and thus
erroneous state can propagate across multiple dependent transactions.

14.3 Future Directions
In this paper we presented our vision for ACID-V compliant DBMSs to enable data
sharing. As a core contribution, with ACID-V we propose to specify the guarantees of
verifiability in a declarative manner and let the DBMS decide on what optimizations
and concrete execution strategies are best suited to meet the guarantees of a particular
verification level. In the future, we think that this model of ACID-V compliant DBMSs
can trigger many follow-up work. First, the verification levels proposed in this paper are
just an initial direction and we think that this requires a more profound discussion of
what levels data sharing applications actually require. Second, similar to isolation levels
that have triggered different implementation strategies (optimistic vs. pessimistic), we
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15 Towards a Benchmark for
Shared Databases

Abstract
Traditionally, data has been held in silos and was rarely shared with other organizations.
However, recently data sharing across organizations is becoming more and more important
as evidenced by governmental and industrial initiatives such as the EU data strategy.
As a result, both academia and industry have been proposing new systems for shared
databases, that allow multiple organizations to collaboratively insert and manage data
in a common database. Yet, each new system seems to come with its own architectural
choices and custom guarantees that make it hard for users to navigate the plethora
of shared database systems. While standard benchmarks like the TPC-C database
benchmark have been a well-established tool to compare and analyze traditional database
systems, they seem to be unsuited to evaluate shared database systems. This is because
these systems are built with fundamentally different assumptions in mind, such as a
different threat/trust model since multiple (untrusted) parties access and modify the
same data. In this chapter, we present a vision and initial ideas for a new benchmark to
evaluate shared databases and capture their unique characteristics.
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15.1 Introduction

15.1 Introduction
Traditionally, data has been held in silos and was rarely shared with other organizations.
However recently, data sharing across organizations is becoming more and more important.
Industry and governments alike are launching various initiatives to support and encourage
data sharing [63, 122, 144] in different areas such as supply chain [32, 83, 138, 142],
healthcare [78] or finance [37, 62]. At the same time, dealing with data is becoming more
and more regulated by legislations such as the European Union (EU)’s GDPR or the
California Consumer Privacy Act (CCPA) and Consumer Data Protection Act (CDPA)
in the United States. Such regulations are even more important when data is shared and
additional complexity is introduced in terms of governance and compliance [50].

While data sharing is seeing more and more adoption for different use cases and settings,
the focus of this paper is on the setting of shared databases where the same DB is accessed
by different parties (i.e., owners and consumers). In this paper, we differentiate between
OLTP-style (collaborative) and OLAP-style shared databases. Figure 15.1 shows the
setup for an OLTP-style (collaborative) shared database which is also in the focus of
this paper. In this setting, two main characteristics are important: First, it involves
that two or more organizations share ownership of the same database (i.e., multi-owner).
Second, both organizations execute read and write operations on the shared database,
i.e., the workload can rather be classified as an Online Transaction Processing (OLTP)
workload. Such multi-owner scenarios have recently become more and more relevant
since they enable a broad set of different use cases. For instance, medical data sharing
where doctors and hospitals collaboratively work on the patients’ data but also other
use cases such as tracking information along a supply chain can be mapped to such a
collaborative setting where multiple parties read/write to the same DB.

In contrast to the multi-owner (collaborate) setting, other data sharing scenarios with
shared databases exist that target more Online Analytical Processing (OLAP) style
sharing. In such scenarios, an owner provides DB-access to a consumer for read-only
queries. In this setting, only the owning organization is allowed to update the data,
while the other organization is limited to read workloads. This read-only data sharing
mechanism was recently introduced, e.g., in Snowflake with its Secure Data Sharing
feature. Common to both settings (i.e., OLTP- and OLAP-style data sharing), however,
is the assumption that the partnering organizations do not fully trust each other, e.g.,
due to conflicts of interests or malicious behavior of potential inside attackers. Hence,
additional technical measures must be provided to prevent or detect incorrect behavior
of any sharing partner.

169



15 Towards a Benchmark for Shared Databases
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Figure 15.1: Shared database concept. Shared DBs enable multiple database owners to
collaboratively write and read data to a common database — this workload
can be classified as an OLTP workload.

With the advent of new technologies such as TEEs and distributed ledger technology
(DLT) various systems using different architectures and approaches have been proposed to
implement OLTP-style shared databases (e.g., [52, 68, 77, 137, 148]). However, different
from established non-shared databases that provide well-known interfaces and guarantees,
each new shared databases system seems to come with its own architectural choices and
custom guarantees that make it hard for users to navigate the plethora of shared database
systems. In this paper, we argue that traditional database benchmarks (like the TPC
benchmarks) are not sufficient for analyzing the shared databases. Moreover, we present
initial ideas for a new benchmark that helps us to better understand this wide space of
different shared database systems and the impact of their architectural and technical
choices on the system performance. While we think that traditional database benchmarks
like TPC-C [168], Smallbank [5] or YCSB [38] are still a good starting point, we argue
that these benchmarks do not cover all important dimensions for shared databases. For
instance, while classical databases were built with an isolated single-owner setting in
mind, shared databases assume a multi-owner setting. This observation is also evidenced
by the common practice in several of the above-mentioned systems, that all implement
(additional) custom benchmarks and evaluation frameworks. Naturally, this makes it
hard to compare those systems with each other.

To address this issue we thus propose that a new standardized benchmark for evaluating
shared database systems is needed. As a main contribution, we discuss an initial design
for such a benchmark where we consider the unique characteristics of shared databases
and address the challenges of designing systems for shared databases. To achieve this
goal we provide the following contributions in this paper:
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• We first analyze the unique characteristics of shared databases in contrast to
traditional (non-shared) databases (Section 15.2).

• Based on that, we then discuss in detail the shortcomings of traditional benchmarks
(Section 15.3).

• Finally, we propose our vision and initial ideas for such a new benchmark design
for shared databases (Section 15.4). In this vision paper, we set the main focus on
a benchmark design for shared OLTP databases while an extension towards shared
OLAP databases is an interesting future avenue.

15.2 Shared Databases
In this section, we first analyze the unique characteristics and capabilities of shared
database systems. Afterwards, in Section 15.3, we present why existing benchmarks are
insufficient for evaluating shared databases.

15.2.1 Fundamental Paradigm Shifts

Shared databases for data sharing across organizations are based on fundamentally
different assumptions than traditional data management solutions: First, obviously, the
very traditional assumption that data is managed and accessed by a single organization
is not true anymore. Instead, data sharing and shared databases involve multiple
organizations in different roles. For instance, data owners write to and update data in
a database, while data consumers only require read access. Further, external entities
such as regulators or government institutions are often involved as auditors or overseeing
participants that need access to meta-data and histories of the database. As such, in
contrast to the traditional setup of classical data management, shared databases require
that a different number of participants (e.g., multiple data owners) that do not necessarily
trust each other have access to the same data. It is important to note that this should not
be confused with multi-tenancy in traditional DBMSs which is about handling multiple
isolated databases (i.e., access is restricted to a single organization).

Second, shared databases and cross-organizational sharing come with a new threat/trust
model. This is necessary since DBMSs now not only need to manage the access of multiple
users with potentially different roles, but they also need to manage the access of different
legal entities (i.e., organizations). As shown in Figure 15.2, classical databases were built
for use by or within a single trusted organization (left). Even with the introduction of
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cloud computing and outsourced databases (middle), this fundamental assumption did
not change. While organizations started to be concerned about the trustworthiness of the
service provider (i.e., the organization operating the DB) and the correct operation of the
database, they still assumed that their database is isolated from other organizations and
will only be accessed by their own organization. In the context of shared databases, this
assumption changed. Now, multiple organizations with potentially conflicting interests
can access or even update the same database (cf. Figure 15.2 right). As a consequence,
additional security and compliance guarantees became first-class citizens in shared DBs
to make sure or at least be able to monitor that none of the involved organizations
manipulate the shared database.

DB

Client/ 
Organization 1

DB

Client/ 
Organization 1

Client/ 
Organization 2

Outsourced DBs Shared DBs

exclusive 
access

shared 
access

shared 
access

DB

Client/ 
Organization 1

Classical DBs

exclusive 
access

Figure 15.2: Shift in trust assumptions in data sharing. In the past, DBs were designed
for use by a single, trusted organization (left). While the database or the
database operator might still be untrusted as in the outsourced DB setting
(middle), the additional concern of data sharing is to address trust issues
among database owners (right).

These fundamental paradigm shifts motivated the development of new capabilities and
abstractions that are essential in DBMSs for shared databases. Despite their importance,
however, current benchmarks do not evaluate how well new systems cover these capabilities
or what influence these capabilities have on a system’s performance. In the following,
we will first discuss the new capabilities of shared DBs in more detail and outline the
shortcomings of existing benchmarks in the next section.

15.2.2 New Capabilities

In summary, shared databases come with four new abstractions and capabilities that are
essential to allow multiple organizations to collaborate on data: shared tables, verifiability,
data usage & compliance as well as auditability.

Thereby, shared tables provide a new abstraction for organizations to access shared data
in a relational DBMS. Verifiability and data usage & compliance allow monitoring and
controlling of how other organizations interact with the shared data. Lastly, auditability
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enables an external organization to check if all involved parties have been behaving
correctly. We will describe each new capability in the following.

Shared Tables. In the context of relational databases, shared tables are a common
abstraction to allow the user to access both private and shared data transparently, while
still taking the special characteristic of shared data into account. Different from private
data, shared data can be maintained (i.e., added and updated) by multiple organizations.
For instance, organization A can write orders for a product to a shared orders table that
is also accessible to organization B, which will fulfill the order. Thereby, organization A

accesses the shared orders table in the same way it would access any other private table.
At the same time, the same instance of this table is also accessible to organization B,
which can also add and update records to the shared orders table.

Shared tables as such are only an abstraction and do not demand a specific implemen-
tation. For example, one DBMS might choose to implement the shared table abstraction
in a centralized manner, while another system might actually maintain two copies of
the table at different locations and keep the copies consistent. Yet, these different
implementation strategies might come with various performance implications that are
necessary to account for when evaluating a database system. Further, to make sure
that no participant manipulates or processes the data incorrectly, shared tables are also
backed by additional data structures and algorithms that are used to implement the
other capabilities of shared DBs (i.e., variability, compliance, auditability). However,
these additional security measures come with additional overheads that current database
benchmarks do not cover sufficiently.

Verifiability. Shared tables are only meaningful for organizations if they truly provide
a trustworthy and consistent view of the data across all organizations. In a setting with
highly fluctuating prices, for instance, it is critical for an organization A to prove that it
placed an order before B changed the price for the ordered product. Similarly, it should
not be possible for an organization to tamper with the data without being noticed by
the other parties.

To achieve this trustworthy and consistent view, Allen et. al. introduce the abstraction
of shared verifiable tables [68]. Verifiability refers to the ability of the system to provide
proofs to any of the involved organizations about the state and the behavior of the
database. In the above examples, for instance, a shared verifiable table would enable
organization A to prove that it placed the order with the latest price. At the same time,
organization B will not be able to prove that its claimed price existed at any point in
time in the shared table.
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These examples show the need for shared verifiable tables to enable organizations
to check the integrity of the data (i.e., that no organization can tamper with the data
without the other noticing it). However, the concept of verifiability is not limited to
data integrity. Rather, verifiability is also critical for computation or query/transaction
execution (integrity of execution). For example, while organization B might execute a
transaction (TX) to increase the price of a product by 10%, organization A might change
the logic of the transaction to decrease the price instead. Similar manipulations are
also possible in the case of read-only queries that could, e.g., be manipulated to only
return incomplete or false results and thus lead an organization that consumes data
from another one to wrong decisions. To address these situations, verifiability provides a
mechanism to prove that a transaction or query was executed correctly and resulted in
the expected outcome.

Last but not least, there are also non-functional execution aspects that can be subject
to verification. For instance, in [181] the authors show how the adherence of a system
to isolation levels, in particular serializable, can be verified. Another important non-
functional aspect is if a system conforms with policies and regulations for data sharing.
For example, when the deletion of a record is requested, e.g., in the context of regulations
such as GDPR, a shared database needs to prove that all instances of a record have been
deleted. This is especially challenging in a shared database setting since the database is
controlled by multiple organizations.

To support verifiability, shared database systems implement several new routines (e.g.,
proof generation) and provide new interfaces (e.g., a new verify() interface) that allow
participants to make use of the verifiability capability. Further, as we will discuss later,
shared DB systems might use different verification strategies with different performance
characteristics. We believe that a new benchmark for shared DBs is required to take the
new interface(s) into account and be able to assess the different verification strategies
properly.

Data Usage & Compliance. In traditional databases RBAC is used to control access
to data. Data sharing systems and shared DBs, however, are not only concerned about
access, but also about usage. This means it is not only sufficient to limit who can access
which data. In addition, we need to control how the entities accessing the data are
allowed to use the data. For instance, in RBAC we can only specify that a certain
user has read-access to a single column age, but we cannot control which queries the
user executes on the data, e.g., only allowing aggregates queries that include a certain
minimum population.
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Furthermore, there are also other factors that are important for organizations that are
related to data usage control A major dimension is the ability of systems to enable users
to specify data usage requirements regarding compliance. For example, certain use cases
might require that data is not allowed to leave the premises of an organization, which is
a common requirement in the financial industry. In this case, the DBMS must store data
locally and is not allowed to, e.g., replicate the data to another organization or location.

Supporting such more fine-grained usage controls clearly comes with an additional cost
that needs to be evaluated when benchmarking shared databases.
Auditability. As mentioned earlier, besides data owners that collaborate on a shared
database, sometimes additional external organizations, e.g. auditors, require occasional
or recurring access to the meta-data and the history of the database. However, since
such external entities are not regular users of the system, they do not have access to the
shared state or the transaction history for example. Hence, different from verifiability,
auditability describes the capability of the system to allow external organizations to
efficiently check the correct state and behavior of the system. Further, while verifiability
focuses on the timely validation of interactions and queries, auditability has a more
retrospective view. Hence, for auditability, it is required to keep the previous state around
to enable external parties to audit actions that happen in the past. Moreover, in contrast
to verification which needs to be fast and efficient, auditing can be a resource-intensive
task that is executed out-of-band from normal database operations.

Similar to verifiability, auditability comes with additional overheads and interfaces
that were not required in traditional database systems. Hence, as will discuss in the next
section, current benchmarks do not sufficiently evaluate the effects of these aspects on
the system performance.

15.3 Shortcomings of Existing Benchmarks
Traditional benchmarks for data management systems test a DBMS end-to-end from
the perspective of an actual end-user. However, these benchmarks are designed with
the classical assumptions in mind that there is only one organization accessing the data.
Therefore, traditional benchmarks are unsuitable for evaluating shared database systems.

Moreover, also more recent benchmark proposals like LEDGERBENCH [189] that
target data sharing systems, do not consider all data sharing requirements. For example,
while aspects to cover verification and auditing are included, these benchmarks lack
important benchmark dimensions, such as the number of participants, that are required
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to evaluate systems holistically. Moreover, the workloads are often rather simplistic and
do not really reflect the complexity we see in many real-world scenarios. In the following,
we will discuss these limitations of existing benchmarks with regard to shared databases
in more detail. As mentioned before, in this vision paper we set the main focus on a
benchmark design for shared OLTP databases while an extension towards shared OLAP
databases is an interesting future avenue.

15.3.1 New Workload Requirements

Classical benchmarks were built with the premise of a single database user and a single
workload in mind. As such, they only define a main application workload from the
perspective of a single organization that users execute, e.g., either an OLAP or OTLP
workload. In contrast to that, data sharing involves multiple different organizations and
roles that require a system to handle different types of workloads. As such, there is a
need to adapt the benchmark workloads accordingly. First, in contrast to traditional
benchmarks, the application workload of the benchmark needs to include shared tables as
well as transactions accessing these shared tables. Moreover, workloads of data sharing
systems should test other aspects than traditional workloads. For example, since the
overhead of data sharing typically increases if more organizations are involved in data
sharing, testing the scalability with the number of participants is an important aspect in
addition to testing the scalability with the size of data which traditional benchmarks
typically focus on as we discuss next. Finally, in addition to the application workload,
other aspects such as verifiability and auditability must be considered with new dedicated
workloads. For example, external auditors must also be considered as a special form of
clients that can request more intensive proof generation and checking.

15.3.2 Other Forms of Scalability

Data and workload scalability characterize the behavior of a system when the amount
of data or the number of requests are increased. All of the major database benchmarks
consider these aspects. However, data sharing additionally introduces participant scala-
bility that describes the behavior of a system under test (SUT) when the number of data
sharing participants varies. Due to the dynamic nature of data sharing, some tables might
be shared with only a few partners while other tables might have many participating
organizations. Depending on the use case, the fluctuation of partners can be high or
rather low, leading to shorter or longer-lasting relationships.
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An interesting observation in this context is that due to different possible architectures
of shared DB systems, adding a new data sharing partner might involve different aspects
depending on the system. For instance, in a centralized shared database adding a new
organization might simply involve granting access to a new account of the platform.
However, for some systems (e.g., decentralized systems) adding a participant might
require spinning up a new node and replicating the entire data to that node. To the
best of our knowledge, none of the existing data management benchmarks (including
LEDGERBENCH) takes this aspect of data sharing into account.

15.3.3 Private & Shared Data

As discussed before, a new benchmark for shared databases needs to include shared tables
as well as transactions accessing these shared tables. This means that when defining the
data model, we must distinguish between data that is shared with other organizations
and private data that will not be exposed to others. Such a distinction is important since
a system usually needs to build additional data structures for the shared tables, e.g., to
be able to guarantee data integrity. Similarly, querying or executing transactions on this
data might involve more computational overhead to prove the validity of a transaction or
check data usage controls, for instance. We refer to such transactions touching shared
data as shared transactions. Due to the additional overhead that is involved in the
execution of shared TXs compared to private transactions, we believe that the amount
of executed shared transactions is another important dimension that is currently not
considered in existing benchmarks.

15.3.4 New Transaction Model

As mentioned previously, shared transactions incur more overhead during transaction
processing. Among other reasons, this is mainly because of the additional verifiability
requirement (cf. Section 15.2.2) that allows data sharing participants to check whether a
system executed a given transaction correctly. As discussed in previous work [54], several
data sharing systems incorporate such verification checks in their transaction model and
require that all or a majority of participants (i.e., data owners) agree on the outcome of
a shared transaction before a transaction is committed to the shared DB.

This is achieved using some form of conensus protocol such as Raft[130] or PBFT[31].
In the Veritas system, for example, a transaction is only committed once all nodes
approve it. This is done by shipping transaction log records periodically to all other
Veritas nodes. The other nodes then apply the log and verify the to-be-committed
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transactions. Afterward, they broadcast their votes to all other nodes and commit or
abort the transaction based on the outcome of a Cesar consensus [68].

Important to note is that existing shared DB systems differ in how they incorporate
verifiability in their transaction model. In general, we can distinguish two approaches:
Online verification follows a synchronous approach, in which a shared transaction can
only be committed to the shared database if the verification of the transaction succeeds
(e.g., the majority of participants vote to commit). Offline verification (or deferred
verification) is an asynchronous approach in which a transaction can be committed
similar to the traditional execution model without verification. Yet, the systems allow
participants to trigger the verification process after some delay to verify multiple TXs at
once and amortize the verification overhead. Moreover, some system like FalconDB [137]
even implement different models for write and read transactions. That is, while write
transactions that update the state of the shared DB are verified synchronously, FalconDB
employs offline verification for read-only queries.

While verification thus plays a crucial role in shared databases, existing benchmarks
are not able to determine the overhead involved in verification. This is because traditional
benchmarks only measure the time it takes to commit a transaction and are not aware
of additional verification steps that potentially need to be triggered asynchronously. To
address this issue and be able to compare the performance and cost of verification in
detail we propose to include an additional workload category (i.e., a verification workload)
in our benchmark. This workload category analyses the overhead of verification under
different setups (i.e., online vs. offline), as will be explained in the next section.

15.4 A New Benchmark Design
To address the unique characteristics and capabilities of shared databases discussed before,
we envision a new standardized benchmark that evaluates shared database systems end-
to-end. In the following, we will first give an overview of our proposed benchmark design
before we present initial concrete ideas on how to realize such a benchmark.

15.4.1 Overview

As we discussed previously, shared databases come with new capabilities (cf. Sec-
tion 15.2.2) that are essential to support the different participants (i.e., data owner,
auditor) of the system. In order to include these aspects in our benchmark design, we
suggest introducing three different workload categories (application, verification, and
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auditing) as shown in Figure 15.3. While the application workload models the core
(OLTP-)workload of organizations involved in data sharing, the verification and auditing
workload focus on more specific aspects: The verification workload aims to reveal the
overhead of different verification schemes implemented in data sharing systems (e.g.,
online vs. offline verification). The auditing workload models the access patterns of an
auditor which is much more read-heavy and scan oriented since it needs to go over a long
history of data updates to see where potential issues (e.g., illegal data modifications)
occurred. Overall, we envision that a benchmark execution has to include the application
workload, while the other two categories are optional. This (modular) approach of
workload categories enables the usage of the benchmark for systems that do not offer a
certain capability (e.g., auditing).
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Figure 15.3: High-level benchmark design. Our benchmark defines three main workload
types (Application, Verification, Audit) with novel benchmark dimensions.

15.4.2 Systems Under Test

Besides studying the effects of the paradigm shifts, our new benchmark allows us to
analyze different existing architectures for shared databases that come with very different
overheads. To reveal these overheads, our benchmark defines three important dimensions
(i.e., the number of participants, the fraction of shared transactions, as well as the
read/write ratio) that we evaluate for each workload category as shown in Figure 15.3.
As we discuss later, these dimensions have a significant impact on the performance
of a data sharing system. For example, the number of participants can have a severe
impact on the overall system performance in terms of throughput and latency). To make
the importance of our dimensions more clear, in the following sections we consider two
architecture stereotypes for the systems under test (i.e., the shared database systems)
depicted in Figure 15.4 as examples1:

1This is not meant to be an exhaustive list. In fact, the principled analysis of possible architectures for
shared databases is an interesting area for future work.
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Centralized Architecture Decentralized Architecture

DB

Figure 15.4: Architecture stereotypes used as examples. In the centralized architecture
(left) all participants access the same shared DB platform. The decentralized
approach (right) removes the need for a central platform. Instead, every
organization operates its own DBMS node and additional protocol are in
place to keep all nodes in sync. Depending on the chosen architecture we
expect systems to exhibit different behaviors in the benchmark.

Centralized Architecture. In this architecture, multiple organizations access the same
shared database platform. The central DBMS usually provides additional verifiability
and auditability guarantees to establish trust in the platform and among the partici-
pants. Examples for such an architecture are Microsoft’s SQL Ledger [11] or Alibaba’s
LedgerDB [184].

Decentralized Architecture. This architecture eliminates the requirement for a central
entity that provides the shared database platform. Instead, every participating organiza-
tion is in charge of operating its own DBMS node that stores a copy of the shared data as
is the case in many of the proposed hybrid-blockchain-database systems. Verifiability and
auditability guarantees are provided via additional protocols, such as consensus protocols.
Recent examples for this architecture are systems like Veritas [68] or FalconDB [137].

Both of these architectures might show differences and commonalities when evaluated
with a specialized benchmark for shared DBs. Lastly, note that due to the fundamental
shift in the trust model, shared databases come with new security and compliance
challenges (e.g., in the context of data usage). However, “benchmarking” security is
known to be hard or even impossible [128]. Hence, in the following, we will focus on
evaluating the performance characteristic and regard defining suitable security evaluation
frameworks for shared DBs as an important area of future work.
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15.4.3 Workload & Data Definition

As mentioned before, our benchmark design proposes three workload categories to evaluate
the performance of a shared database; i.e., the system under test. The categories address
the different capabilities of shared database systems and include application, verification
and audit workloads. In the following, we will first discuss the application workload —
the mandatory part of our benchmark. For the application workload, we will also discuss
how the novel benchmark dimensions (e.g., participant scalability) can help to analyze
shared DB systems. After that, we will focus on the main characteristics of the remaining
two workload categories. However, for these workloads, we will provide fewer details.

15.4.3.1 Application Workloads
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Figure 15.5: Application workload to measure the end-to-end system performance. We
propose to use the TPC-C benchmark as starting point and re-use its per-
formance metrics (e.g., throughput). However, we introduce new benchmark
dimensions (Participant Scalability, Shared Transactions, Write Ratio) to
help uncover differences in the performance of different shared DB systems.

Application workloads usually model a real-world use case and corresponding database
queries that are executed by clients (also called terminals). Since we focus on OLTP-style
workloads for shared databases, we believe that a classical benchmark such as TPC-C
and its workload patterns (i.e., the transaction mix and data access patterns) is actually
a good starting point2. However, it can clearly not be used out of the box without any
modifications for data sharing since the TPC-C benchmark models the activities of one
organization only — a wholesale supplier, who accepts product orders at and for different
warehouses. In the following, we thus explain how the application workload of TPC-C can
be adapted to model multiple organizations as well as which metrics we aim to report.

2We use TPC-C as a concrete example in this paper, but we envision that other benchmarks can and
will be used similarly.
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Figure 15.6: Adapted TPC-C data model. In our data model, it is assumed that every
warehouse belongs to a different organization. Therefore, we modify the
TPC-C data model to distinguish between private data (green) and shared
data (red). To support private-only transactions, i.e. orders that do not
include remote order-lines, every organization has a private partition of the
initially shared tables (green/red).

Data Model and Workload Mix. In order to model an OLTP-workload for shared
databases, we need to define multiple data owners in the TPC-C workload. We think that
this comes naturally for TPC-C since the data model is already partitioned by warehouse.
As such, to model different owners and be able to scale participants at the same time,
we assign each warehouse to a different data owner (i.e., each warehouse belongs to a
different organization). To reflect this change in the data model, we suggest extending
the TPC-C data model to use private and shared tables as shown in Figure 15.6.

The figure illustrates that we adopt the classical TPC-C data model and additionally
partition the data into shared and private tables (i.e., data). For example, the four
green relations in Organization A’s database (warehouse, district, customer, item)
are only written to by Organization A — they represent private data. To support
certain transaction types (e.g., new-order that queries a price of an item) read-access
on specific columns and rows can be allowed for other organizations. However, the five
red relations (stock, order-line, new-order, order and history) are written to
by multiple owners to support the concept of remote order-lines in TPC-C. A remote
order-line is an item that is supplied by a different warehouse, resulting in, e.g., a
corresponding stock update for that other warehouse. To support this stock update
in a remote warehouse (of another organization), we define a shared stock table that
contains the stock information of any shared item. This corresponds to a partitioning of
the stock table to private stock-information for items that are never ordered by other
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warehouses (represented by the green/red stock table in organization A’s DB) and shared
stock-information for items that can be part of a remote-order line (represented by the
red stock table in the shared DB).

To fully support, e.g., the new-order transaction profile, we similarly partition the
other involved tables (order-line, new-order, order) into a private and shared table.
Transactions that do not include any remote order-lines can be simply executed using
only private tables. Any new-order transaction, however, that contains at least one
remote order-line will be executed as a shared transaction. This involves writing to the
shared new-order, order and order-line tables. Note that slight modifications to
the transaction profiles are required for certain TXs (e.g., the payment TX) to avoid
access to private information in the warehouse table for example. However, a detailed
discussion of necessary changes to the transaction profiles is out of scope for this paper.

In addition to the data model, we need to specify a workload mix to include such shared
transactions. Here, we again propose to rely on the TPC-C transaction mix with its five
transaction types and the ratio of remote order-lines that is defined in the benchmark.
However, as discussed later, the main difference is that we propose to change the ratio
deliberately to vary the fraction of shared TXs in a workload mix as one important
dimension of our benchmark.

Performance Metrics. We suggest reporting the classical performance metrics like
latency and throughput as benchmark metrics. As mentioned earlier, we decided not to
attempt to include the level of security or trust that a system provides as a measurable
metric. The reason for this is that it is inherently hard to measure “security” or trust
as discussed in previous work [128] since these concepts require measuring the effect of
potentially unknown attacks. However, security-relevant system parameters like the used
verification strategy or certain data usage policies can impact the end-to-end performance.
Hence, we suggest reporting such security- and trust-related properties as part of the
benchmark report. In the future, this might also enable a classification-based evaluation
of a system’s security/trust as suggested in [128].

In the following, we now discuss in more depth the new benchmark dimensions
(participant scalability, fraction of shared transactions, and read/write ratio). We
propose that these dimensions are varied in our benchmark to reveal the performance
characteristics of a shared database. In the following, we discuss the dimensions for the
application workload but the same dimensions can also be varied for the verification and
auditing workload.
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Participant Scalability. Scaling the number of participants in a shared DB (Figure 15.5
left) is different from simply adding additional database clients (terminals). This is
because the number of participants can be scaled independently from the number of
clients that generate the transactions. As described earlier, in TPC-C we can model
each warehouse as an independent organization. Adding more participants would then
mean increasing the number of warehouses. Note that, although it is the case for TPC-C,
increasing the number of participants does not necessarily mean that the amount of data
needs to be scaled.

Moreover, in contrast to scaling the number of clients, increasing the number of
participants (i.e., data owners) can actually have a negative performance effect on some
systems as shown in Figure 15.5 (left). The figure shows that in the case of a centralized
architecture (green line) the system might first benefit from adding participants since
they, e.g., might first improve the utilization of the platform. In contrast to this, joining a
new organization in a decentralized system like Veritas [68], for instance, requires adding
a new node to the network which has been shown to reduce the throughput of the system
significantly [68] (yellow line).

Fraction of Shared Transactions. As discussed previously, we can adapt the data
model of the TPC-C workload to easily incorporate shared data and transactions in
the workload. More precisely, we can model, e.g., new-order transactions that involve
remote order-lines as shared transactions since they access the shared tables new-order,

order, order-line and stock.

The goal of the new shared transactions dimension is to investigate the performance
overhead that a system incurs when more and more shared transactions are executed.
In our TPC-C based benchmark, we can control this by gradually increasing the ratio
of remote order-lines in a new-order transaction. As shown in Figure 15.5 (middle),
when we do not include any shared transactions (i.e., 0% shared TXs), a shared database
system should reach the performance of a traditional database, in the best case. Yet,
with an increasing amount of shared TXs, the performance might vary depending on
the design choices of a system. For example, in a system with an online verification
scheme, a performance drop will be observable as soon as shared transactions dominate
transaction execution (due to high verification costs). This is represented by the gray
line in Figure 15.5 (middle). In contrast to that, a system using an offline verification
scheme (red line), will first show a performance drop but later stabilize. This is because
the costly verification runs asynchronously after transaction commit and hence does not
affect the commit throughput which is measured by application workloads.
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Read/Write Ratio. With the last benchmark dimension, we plan to uncover differences
in how systems handle verification for reads and writes. To do that, in the case of
TPC-C, for example, we propose to change the workload mix to vary the ratio of writes
in the workload. That is, the classical TPC-C benchmark defines a fixed transaction mix
with mostly write-heavy transactions (44.5% new-order and 43.1% payment). For the
write-ratio benchmark dimension, we modify the transaction mix to gradually increase
the ratio of write-heavy transactions.

As shown in Figure 15.5 (right), in a system that uses online verification for both read
and write-heavy transactions, we expect to see a verification overhead even with a low
write-ratio. With an increasing write-ratio, however, the performance might be further
reduced due to a potentially more costly verification of writes. In a system that uses a
mixed verification scheme (e.g. online verification for writes, offline verification for reads),
we can expect that the system performance is initially high because of the low write-ratio.
However, as soon as the write-ratio increases performance will drop significantly due to
the high verification cost of writes.

15.4.3.2 Verification Workloads

As mentioned earlier, traditional database benchmarks only measure the throughput of
a system until the commit/abort of a transaction and ignore any further verification
steps that can run asynchronously. As a consequence, when we look at the performance
of systems with an offline/deferred verification scheme in the application workloads
category, we will see that those systems usually provide noticeably better performance
than online verification systems. The reason for this is that online verification schemes
verify transactions before the commit of a transaction, while offline verification schemes
can commit without waiting for the outcome of the asynchronously triggered verification.

To address this issue and shed light on the verification performance of such systems, we
propose including additional verification workloads when benchmarking shared databases.
Verification workloads take the new transaction model of shared databases into account
and use the verification interfaces of these systems to measure both the TX-execution
and TX-verification performance for a given transaction (type). Thereby, the same
transaction types of the application workloads can be used.

For instance, for TPC-C, we envision that the same workload mix as in the application
workload category is executed. However, to measure the verification performance, we
assume that the benchmark client is extended to use the additional verify() interfaces
that shared database systems provide. That is, the benchmark runner not only sends the
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Figure 15.7: Verification workloads measure verification effects that are not visible in
application workloads. For example, they help to detect differences in the
used verification strategies. While the workloads in this category re-use
traditional performance metrics (throughput/latency), we make use of our
previously described benchmark dimensions (e.g., participant scalability)
to uncover performance differences of different systems and verification
strategies.

transaction to the database but additionally calls the verify() interface to retrieve the
verification result from the system. As shown by the multiple yellow lines in Figure 15.7,
the benchmark includes repeating this measurement for multiple verification settings
or strategies depending on the SUT (e.g., different batching/delay settings). To reveal
this overhead, we propose to also measure the performance without calling the verify()

interface (blue line in Figure 15.7).

Depending on the given system, the performance of TX-execution might be significantly
affected by TX-verification (e.g., if both processes contend on the same data structures)
and other factors (e.g., the number of participants). Therefore, we suggest using the
previous benchmark dimensions in this workload category, as exemplified by the participant
scalability dimension in Figure 15.7.

Note that analyzing the throughput and latency of verification is important since many
offline verification schemes employ batching to amortize the verification overhead. While
this can improve the throughput, it can also deteriorate the latency. In fact, in some
shared database systems, the transaction latency increases significantly from milliseconds
to seconds when verification is involved. Because of such effects, we thus propose to
explicitly consider the latency (in addition to throughput) as a metric. This additional
metric can help to reveal the difference between verification and the commit latency
(called latency delta). This metric can be easily computed from the measured latencies
and is a practical way to visualize whether verification or commit latency is affected more
severely by, e.g., an increasing number of data owners.
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15.4.3.3 Audit Workloads

Audit workloads are designed to assess the auditability capability of a shared database.
Recap that auditability allows an external auditor to check the correct behavior of
the shared DB system. Compared to verification, auditing can be resource-intensive
and require checking long histories or more complicated proofs. Hence, some systems
assume a dedicated auditor component exists to perform this task. This component is
usually not involved in regular TX-processing and hence does not have any previous state
information. Therefore, the auditing process involves retrieving previous TX log entries
from the system and applying them to verify the data integrity and correct execution of
transactions.

To implement this procedure, we again envision extending the benchmark runner to
encompass or mimic the role of the audit component. Systmes for shared DBs, e.g.,
[184] or [188], ususally do not offer dedicated audit() interfaces. Instead, they provide
interfaces to retrieve a verifiable part of the system’s transaction log that an auditor can
replay to compare it with the claimed state of the database. Some systems, e.g., [11] also
allow the use of the verify() interface for auditing purposes, i.e., verifying historical
state and data.

Traditional auditing-related benchmarks or workloads focus on the performance of the
auditing process itself, e.g., the auditing latency on the auditor component. While this is
an important aspect, we propose to focus on how auditing affects the performance of the
shared DB system.

To this end, we envision the following benchmarks in the audit workload category (cf.
Figure 15.8).
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Figure 15.8: Instead of measuring the audit performance of the auditor, we propose to
analyze the effect of auditing on the system performance. Audit workloads
consider different metrics from the perspective of the shared DB, e.g., how
transaction throughput is affected by an increasing audit frequency (left) or
how proof generation latency (middle) or log-size (right) are influenced.
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Audit Frequency. As shown in the first plot of Figure 15.8, we suggest measuring the
system throughput (e.g., using an application workload from before) while changing the
frequency of audit requests. In the case of TPC-C, for example, we propose running the
standard workload mix and initiating additional audit operations in parallel. However,
we do not necessarily focus on the audit performance as suggested by other benchmarks.
Instead, this benchmark aims to investigate how auditing operations affect system
performance. We expect an influence on most systems’ performance because auditing
involves requesting proofs from the DBMS, which has to generate proofs while serving
regular database transactions. These proofs can have different forms ranging from
historical transaction logs to more concise cryptographic proofs. Depending on the proof
generation overhead, we expect some systems to show a more significant throughput
degradation than others, as exemplified by System B (yellow line).

We believe this dimension also has practical implications for determining when and how
often to schedule audits. For example, in a system with a high impact on performance,
the benchmark helps to determine that it is best to schedule audits less frequently, e.g.,
only during the night, to avoid performance degradation.

Proof Generation. The aforementioned proof generation overhead is analyzed in more
detail by a dedicated experiment. We suggest measuring the proof generation latency, i.e.,
the time an auditor waits to get the requested proof back, for a varying time duration. A
longer time duration corresponds to a longer history which has to be audited. However,
often longer histories involve longer proofs, which cause an increase in proof generation
latency of the systems (cf. middle plot in Figure 15.8). For example, compared to classical
verification operations, proof generation can take up to several hours [137]. We believe
that discovering and understanding these overheads can help engineers to determine
bottlenecks and optimize the proof generation in a system.

Log Size. While it is possible to investigate the influence of all previously suggested
benchmark dimensions, we believe that the most relevant dimension for the audit work-
loads is the write ratio. As previously, the reason is that the write ratio has a direct
impact on the number of log entries that are written. However, some systems also log
read operations to, e.g., be able to audit data usage controls. To be able to capture such
differences, we propose the experiment that is sketched in the left plot of Figure 15.8.

The plot measures the log size after running a workload for a fixed duration while
varying the percentage of executed write transactions. As before, in the case of TPC-C,
this can be achieved by varying the workload mix to include more or less write-heavy
transactions. Figure 15.8 (right) visualizes that System C logs both read and write
operations and, hence, has a constant log size. In contrast to that the other systems
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only log write operations in the audit log. This leads to an increasing log size the
more write transactions are executed. That log size can be a critical factor for shared
databases is indicated by the recent discussion about blockchain-based systems. There,
high storage requirements hinder the addition of new nodes (i.e., participants) that are
resource-restricted to the network. Hence, investigating the log-size and similar space
amplifications are important to support participant scalability.

15.4.3.4 End-to-end Comparison

For a better end-to-end comparison of various systems, we additionally envision an exten-
sion of the application workloads to include specific verification and audit requirements.
This extension is different from the previous verification and audit workload categories
that allow an assessment of varying verification/audit schemes within one system.

Similar to the rationale behind TPC-C, we believe real-world usage scenarios should
ideally drive this extension. The specific verification and audit requirements could, for
example, be derived from particular industry practices or legislations that mandate, e.g.,
the frequency of audits or the timeliness of verification (which controls the applicability
of offline verification). We believe such requirements might already exist in regulated
industries, such as healthcare or finance. However, in-depth industry know-how is required
to formulate realistic verification and audit requirements for an end-to-end scenario. We
believe our current verification and audit workload categories can aid future discussions
with industry experts to define these requirements.

15.5 Related Work
Custom Benchmarks. As mentioned in the introduction, so far most academic works
introduced custom benchmarks to evaluate and compare their proposed shared DB
system. Both Blockchain Relational Database and LedgerDB use handcrafted benchmarks
with custom workloads due to their specific interfaces. Spitz [188], BlockchainDB [52],
Veritas [68] use a custom YCSB-like key-value benchmark to evaluate their system end-
to-end without considering verification and audit workloads in particular. FalconDB [137]
uses the YCSB while ChainfyDB [148] and Basil [160] use the Smallbank benchmark to
investigate the end-to-end performance of the system. These systems additionally include
custom benchmarks to assess verification effects. The most extensive evaluation so far
has been done in GlassDB [185] which defines the new YCSB workloads workload-X

and workload-Y to test verifiability interfaces. Further, they extend the five types
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of transactions in TPC-C to verified versions and add a new transaction type called
VerifiedWarehouseBalance which determines the last 10 versions of the year-to-date
balance of a warehouse. Their work also includes additional microbenchmarks to evaluate
verification or storage overheads. Our work differentiates from the above-mentioned
efforts by proposing a standard approach to benchmarking shared DB systems.

Specialized Benchmarks. More similar to our work in this regard are recent papers
that introduce new specialized benchmarks. LEDGERBENCH [189], for instance, is
a specialized benchmark for Ledger Databases. It uses Smallbank [5] and a custom
range-experiment as macro benchmarks. Further, they define a set of micro benchmarks
to evaluate the verification, audit, and storage overhead of ledger databases. In contrast
to them, we follow a more modular benchmark design which allows us to incorporate
other application workloads. Moreover, we introduce novel benchmark dimensions, e.g.,
participant scalability, that are critical for evaluating systems in a shared database setting.
Further, we propose to perform audit-related benchmarks with a stronger focus on the
system instead of an auditor perspective. BLOCKBENCH [44] is a specialized benchmark
that targets private blockchains. While private blockchains can be used as a shared
database system, they only represent a single possible architecture. Further, they do
not distinguish between local and shared transactions since all data and workloads on a
blockchain are shared. Another specialized benchmark is GDPRBench [152] which defines
workloads that correspond to the core entities of GDPR: controller, customer, processor,
and regulator. This is similar to our approach of defining workload categories that
evaluate the system based on different capabilities. However, a fundamental difference is
that GDPRBench focuses on assessing GDPR-related features of database management
systems, while our focus is on the performance of shared DBs.

15.6 Conclusions & Future Work
In this paper, we presented our vision and ideas for a novel benchmark design to evaluate
shared database systems. Our benchmark design takes the new paradigm shifts introduced
by shared DBs into account and also considers the unique capabilities of those systems.

This is done by defining three categories of workloads, namely application, verification,
and audit workloads. Application workloads represent existing database benchmarks
like TPC-C or YCSB and are used to evaluate the overall performance of a system.
Verification and audit workloads zoom in to the two new characteristics of shared
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databases, verifiability and auditability. They are designed to evaluate the overhead of
verification and auditing on the overall system to enable a holistic evaluation.

Further, we introduce new benchmark dimensions that are used in our workload
categories to assess the effects of typical shared database overheads. These dimensions
include participant scalability, shared transactions, write ratio, and audit frequency
among others.

For the future, we envision two main areas that are worth exploring in more detail.
First, we plan to realize a reference implementation for our proposed benchmark that
enables the evaluation of different shared DB systems. Second, as mentioned earlier, we
did not focus on data usage and compliance capabilities of shared DB systems, since it is
hard to benchmark security in the classical sense. However, we believe that developing
frameworks for classifying and assessing the security properties (similar to the approach
followed in [172]) is one important area of future work.
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