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[77] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi. “Two-Party Adaptor

Signatures from Identification Schemes”. In: Public-Key Cryptography - PKC

2021 - 24th IACR International Conference on Practice and Theory of Public

Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I. 2021,

pp. 451–480. Part of this thesis.

[79] A. Erwig, S. Faust, S. Riahi, and T. Stöckert. “CommiTEE: An Efficient and
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Zurich), Juliane Krämer (University Regensburg), Julian Loss (CISPA Helmholtz

Center for Information Security), Monosij Maitra (Ruhr-University Bochum), Siavash

Riahi (TU Darmstadt), and Patrick Struck (University Regensburg). I am grate-

ful to all my co-authors for the collaboration. In the following, I will provide an

overview over my own contributions in each of the five works.

Chapter 3 is based on two joint works with Poulami Das, Sebastian Faust, Julian

Loss, and Siavash Riahi [66, 67]. In [67], Poulami, Siavash and I jointly provided

a formal model of hierarchical deterministic wallets. I then mainly worked on the

unforgeability proof of our generic hierarchical wallet construction as well as on the

impossibility result which shows that our wallet unforgeability proof is optimal.

Together with Siavash, I additionally worked on the wallet unlinkability proof.

In [66], Poulami and I formally modeled the notion of threshold signatures with

rerandomizable keys, and I additionally developed a threshold ECDSA construc-

tion with rerandomizable keys. I also came up with the final scheme that re-uses

the key pair of our rerandomizable threshold ECDSA construction for a threshold

verifiable random function, after initial discussions with Siavash, Poulami, and

Sebastian. After discussing the security proof of this scheme with Siavash, I pro-

vided the full formal proof. Section 3.1.2 in Chapter 3 was largely taken verbatim

from [66] with some adjustments and Section 3.2 in Chapter 3 contains parts that

are taken verbatim from [66].

Chapter 4 is based on publication [5] which is a joint work with Nabil Alkeilani

Alkadri, Poulami Das, Sebastian Faust, Juliane Krämer, Siavash Riahi, and Patrick
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Abstract

The introduction of Bitcoin in 2008 has sparked wide attention as the concept

of a decentralized cryptographic currency seemingly promised to revolutionize the

financial sector. Indeed, 15 years after Bitcoin has been introduced, there exist a

myriad of decentralized cryptocurrencies with millions of users around the world.

Virtually all cryptocurrencies rely on digital signatures as an authentication mech-

anism for payments, i.e., whenever a user issues a payment, it must attach a digital

signature under its signing key so as to authorize the transaction. That is, the

funds of a user in a cryptocurrency network are directly tied to the user’s signing

key which conversely means that the loss of the signing key directly translates to

the loss of the user’s funds. Cryptographic wallets have become an essential tool

in the cryptocurrency space to allow users to securely store and maintain their

signing keys. However, despite significant efforts to develop secure cryptographic

wallets, various attacks in the past have proven that this is a tedious task, and

that an insecure wallet scheme can lead to the theft of millions of USD from users.

In this thesis, we significantly contribute to the development and analysis of

provably secure cryptographic wallets. As a first step, we provide a rigorous secu-

rity analysis of the Bitcoin Improvement Proposal 32 (BIP32), the current state

of the art standard for cryptographic wallets that is widely used in practice today.

We find that a simple change to the standard can significantly increase its concrete

security. As a second step, we develop novel wallet schemes that improve upon

the state of the art by either providing better security or functionality. More con-

cretely, we present a threshold version of BIP32 where the signing secret key of a

wallet is split among several devices. This notably increases the standard’s security

as it prevents a single point of failure. We then present the first ever deterministic

wallet scheme that remains secure even against a quantum adversary. Finally, we

present the first deterministic wallet that supports so-called adaptor signatures,

an advanced signature primitive with various applications in the cryptocurrency

space. We additionally extend the adaptor signature primitive to a two-party

scheme, and we discuss applications of such a scheme in cryptocurrency networks.

Importantly, we provide formal models as well as rigorous security proofs for all

of our constructions according to the paradigm of modern cryptography, and we

generally advocate for the use of provably secure cryptographic wallets in practice.
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Zusammenfassung

Die Einführung von Bitcoin im Jahr 2008 erregte große Aufmerksamkeit, da das

Konzept einer dezentralen Kryptowährung eine Revolution des Finanzsektors zu

versprechen schien. In der Tat gibt es 15 Jahre nach der Einführung von Bitcoin

eine Vielzahl dezentraler Kryptowährungen mit Millionen von Nutzern weltweit.

Nahezu alle Kryptowährungen beruhen auf digitalen Signaturen, die als Authen-

tifizierungsmechanismus für Zahlungen verwendet werden, d. h., wenn ein Nutzer

eine Zahlung leistet, muss er eine digitale Signatur unter seinem Signaturschlüssel

erstellen, um die Transaktion zu autorisieren. Dies bedeutet, dass die Münzen

eines Benutzers in einem Kryptowährungsnetzwerk direkt an den Signaturschlüssel

dieses Benutzers gebunden sind, was im Umkehrschluss bedeutet, dass der Verlust

des Signaturschlüssels mit dem Verlust der Münzen des Benutzers gleichzusetzen

ist. Kryptographische Wallets sind im Bereich der Kryptowährungen zu einem

unverzichtbaren Instrument geworden, das es den Nutzern ermöglicht, ihre Sig-

naturschlüssel sicher zu speichern und zu verwalten. Trotz erheblicher Bemühun-

gen, sichere kryptographische Wallets zu entwickeln, haben allerdings verschiedene

Angriffe in der Vergangenheit bewiesen, dass dies eine schwierige Aufgabe ist und

dass ein unsicheres Wallet-System dazu führen kann, dass Benutzern Millionen von

US-Dollar gestohlen werden.

In dieser Dissertation leisten wir einen wesentlichen Beitrag zu der Entwicklung

und Analyse von beweisbar sicheren kryptographischen Wallets. In einem ersten

Schritt analysieren wir ausführlich die Sicherheit des Bitcoin Improvement Pro-

posal 32 (BIP32), dem aktuellen Stand der Technik für kryptographische Wallets,

der heutzutage in der Praxis weit verbreitet ist. Wir stellen fest, dass eine einfache

Änderung des Standards dessen konkrete Sicherheit signifikant erhöhen kann. In

einem zweiten Schritt entwickeln wir neue Wallet Schemata, die den Stand der

Technik verbessern, indem sie entweder mehr Sicherheit oder mehr Funktionalität

bieten. Konkret zeigen wir zunächst eine threshold Version von BIP32, bei der der

geheime Signaturschlüssel eines Wallets auf mehrere Geräte verteilt wird. Dies

erhöht die Sicherheit des Standards erheblich, da es einen Single Point of Fail-

ure vermeidet. Anschließend stellen wir das erste deterministische Wallet Schema

vor, das auch gegen einen Angreifer mit Zugriff auf einen Quantencomputer sicher

bleibt. Abschließend entwickeln wir das erste deterministische Wallet Schema, das

xi



die Ausführung sogenannter Adaptor-Signaturen unterstützt, ein komplexes Sig-

naturverfahren mit verschiedenen Anwendungen im Bereich der Kryptowährungen.

Darüber hinaus erweitern wir Adaptor-Signaturen zu einem Zweiparteiensystem

und diskutieren Anwendungen eines solchen Systems in Kryptowährungsnetzw-

erken. Wir betonen, dass wir formale Modelle und Sicherheitsbeweise für alle

unsere Konstruktionen nach den Richtlinien der modernen Kryptographie entwick-

eln und wir generell die Verwendung von beweisbar sicheren kryptographischen

Wallets in der Praxis unterstützen wollen.
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1. Introduction

In 2008, Satoshi Nakamoto introduced Bitcoin [146], the first ever decentralized

cryptocurrency, and with it a new digital payment paradigm. A decentralized

cryptocurrency differs crucially from centralized digital cash systems (e.g., [40, 51,

52, 54]) or traditional payment solutions offered by banks and other financial in-

stitutions in the sense that it does not rely on a trusted authority. A fundamental

issue of digital currencies and of decentralized currencies in particular, is the prob-

lem of double spending, where users spend the same digital coin more than once,

effectively copying their money. Intuitively, this issue seems difficult to overcome:

since coins of digital currencies are merely data stored on an electronic device, a

user can always copy the data thereby “multiplying” its money arbitrarily. In order

to prevent this issue in Bitcoin, Nakamoto introduced the concept of a blockchain,

a public ledger which keeps track of every single transaction that is processed in

the system. Every user in the cryptocurrency network has access to the blockchain

and can therefore verify if a coin has been spent previously. At a more technical

level, a blockchain is a data structure consisting of “blocks” of transactions where

each block is connected to the previous block via means of a cryptographic hash

function. The cryptographic connection between blocks ensures the integrity of the

data stored on the blockchain. Finally, in order to maintain such a data structure

in a decentralized network with mutually distrusting users, Nakamoto proposes to

use the so-called proof-of-work (PoW) mechanism [74]. Essentially, PoW serves as

a countermeasure against Sybil attacks [72] and therefore allows all users to reach

consensus on the state of the blockchain as long as the majority of the network’s

computing power is used honestly.

Following the introduction of Bitcoin, the concept of cryptocurrencies and the

blockchain technology in general has gained wide popularity with promises to rev-

olutionize the financial sector, as it allows users to be in control of their own money

without having to adhere to restrictions and regulations of traditional banks. In-

deed, 15 years after the introduction of Bitcoin, there exist a myriad of different

cryptocurrencies with a combined market capitalization of more than one tril-

lion USD1 at the time of writing. Unfortunately, despite their wide adoption in

1https://coinmarketcap.com/charts/

1

https://coinmarketcap.com/charts/


1. Introduction

practice, the technology behind cryptocurrencies is still in its infancy and has

not been properly analyzed in many cases. Deploying technology that lacks a

sound and extensive security analysis is dangerous, especially in the financial sec-

tor where people’s livelihood may depend on the well-functioning and security

of the technology. Indeed, over the years various security vulnerabilities in cryp-

tocurrency networks have been discovered (e.g., [13, 157]) and often exploited. The

most fundamental technological building block of virtually all cryptocurrency and

blockchain networks is a digital signature scheme, which allows users to authenti-

cate their transactions. Essentially, in a cryptocurrency network each user holds

a signing public/secret key pair which is used to issue and receive transactions.

For instance, consider a cryptocurrency user Alice holding a public/secret key pair

(pkA, skA). Alice uses her public key pkA as an address to receive coins from other

users, and she can send a payment of c coins to another user Bob, who holds public

key pkB, by (1) assembling a transaction of the form “Transfer c coins from pkA
to pkB”, and (2) generating a digital signature on the transaction using skA. The

signature serves as an authentication mechanism that allows the cryptocurrency

network to verify that it was indeed Alice who issued the transaction. The secu-

rity of Alice’s funds crucially relies on this authentication mechanism: assume an

adversary Charlie with key pair (pkC , skC) is able to forge a valid signature under

Alice’s public key pkA for the transaction “Transfer c coins from pkA to pkC”.

Then Charlie can essentially spend Alice’s funds without her consent. Therefore,

the digital signature scheme must guarantee the security property of unforgeabil-

ity, which intuitively says that no adversary can generate a valid signature under

a public key, for which it does not know the corresponding secret key. Given this

property, the only way for an attacker to steal Alice’s cryptocurrency funds is to

obtain her signing secret key, meaning conversely that Alice’s funds stay secure, as

long as her secret key is protected from attackers. Unfortunately, in practice it is

a challenging task to protect against hackers at all time, and indeed, in the year of

2022 alone, hackers managed to steal almost four billion USD [71] from cryptocur-

rency users of which a significant amount resulted from private key compromise

and wallet vulnerabilities [50].

1.1. Cryptographic Wallets

In the blockchain and cryptocurrency setting, the storage and maintenance of

users’ signing keys is handled by so-called cryptographic wallets. Over the years,

many cryptographic wallet schemes with different characteristics and designs have

been introduced (e.g., [11, 68, 111, 123, 139]). Two particularly distinguishing

2



1. Introduction

design choices for cryptographic wallets are (1) their implementation type, and

(2) their custody type. The former distinguishes whether a wallet is implemented

in software (so-called software wallet) or in hardware (so-called hardware wallet).

The difference between these two is essentially a trade-off between usability and

security: a software wallet (e.g., Electrum [75]) might for instance run on a user’s

smartphone and is therefore convenient to use, but at the same time it is exposed

to a high risk of corruption. A hardware wallet (e.g., Ledger [127] or Trezor [175]),

on the other hand, is a special purpose hardware device, which is specifically made

for the purpose of protecting the keys of a user and is therefore more resistant to

attackers. On the downside, however, a user of a hardware wallet must always use

a separate device and activate it in order to issue a transaction.

The second design choice is the custody type, which determines who is in control

of the wallet. Broadly there are three custody types for cryptographic wallets,

namely non-custodial, custodial, and shared-custodial. While it seems most natural

that the user is in control of its own wallet, this so-called non-custodial approach

has significant downsides. First, the user might lose its wallet and consequently

lose all of its money. Second, the user might not have the technical expertise or

infrastructure to effectively protect its wallet from attackers. Finally, users of non-

custodial wallets typically rely on software or hardware developed by a third party

and must therefore often trust that the respective wallet does not contain any

vulnerabilities. Indeed, several attacks on different non-custodial wallets (e.g., [59,

172]) show that this is a serious risk in practice. A popular alternative to non-

custodial wallets are custodial wallets, where a service provider such as Coinbase2,

Binance3, or Fireblocks4 operates the wallet on behalf of the user. While this is

a convenient solution for the user, it requires the user to fully trust the service

provider to store the keys securely and to prevent any misuse of the user’s funds.

Finally, shared-custodial wallets represent a middle ground between non-custodial

and custodial wallets, where the user and a service provider jointly maintain the

wallet such that none can use the user’s secret key without the consent of the

other.

Deterministic Wallets. Regardless of its implementation and custody type, it is

generally recommended that a wallet scheme follows the concept of deterministic

wallets [140, 179]. Indeed, most wallets that are widely used in practice today

(e.g., Electrum [75], Ledger [127], Trezor [175]) follow this concept. At a high

level, a deterministic wallet is initialized with a so-called master key pair (pk, sk)

2https://www.coinbase.com/
3https://www.binance.com/
4https://www.fireblocks.com/
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1. Introduction

as well as a state St, and it defines two deterministic key derivation algorithms,

namely one public key and one secret key derivation algorithm. These algorithms

respectively allow to deterministically derive so-called session keys from the mas-

ter key pair and the state. In more detail, the public key derivation algorithm

takes as input the master public key pk, the state St, and an identifier ID and

it outputs a session public key pkID. The secret key derivation algorithm works

analogously for secret keys. If both algorithms are executed on the same identifier

ID, then the resulting session key pair (pkID, skID) constitutes a valid signing key

pair. This concept of deterministic wallets has first been formalized in a work

by Das et al. [68], which defines two security properties for such a wallet scheme,

namely wallet unforgeability and wallet unlinkability. The former guarantees that

an adversary, which knows only the master public key and the state, cannot forge

a valid signature under the master public key or any valid session public key. The

latter guarantees that an adversary cannot distinguish session public keys from

independently generated public keys without knowledge of the state St.

The wallet unlinkability property is the main reason for the popularity of de-

terministic wallets, as it provides privacy to users in the cryptocurrency network.

Recall that a transaction in a cryptocurrency specifies the sender and recipient of a

payment by their respective public keys. Therefore, if a user uses the same public

key for all transactions, it is easy to track and link all of this user’s transactions.

A trivial remedy to this problem would be to generate a fresh key pair each time

the user receives a payment, which requires however to store and maintain many

key pairs at the same time. Deterministic wallets offer a more elegant solution to

this problem, as they must only store the master key pair and the state, and can

derive session key pairs “on the fly”.

The Hot/Cold Setting. Das et al. [68] formalize deterministic wallets in the

so-called hot/cold setting, where the wallet scheme consists of two devices, a hot

and a cold wallet device. The hot wallet device stores only the master public key

pk and the state St and is permanently connected to the Internet, whereas the

cold wallet stores the master secret key sk and the state St and remains offline

for the majority of the time unless it must generate a signature to authenticate a

transaction. The reasoning is then that it is difficult for an adversary to corrupt

the cold wallet (and consequently the master secret key), as it remains offline most

of the time.

Deterministic wallets are well suited to be implemented in the hot/cold setting

due to their deterministic key derivation algorithms, which allow the hot and cold

wallet to independently derive session public and secret keys. To illustrate this, let

us assume a user Alice, who operates a deterministic wallet in the hot/cold setting:
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in order to receive a payment, Alice instructs the hot wallet to derive a fresh session

public key, say pkID, from the master public key pk and the state St. Note that

this derivation does not require any interaction with the cold wallet, i.e., the cold

wallet can remain offline. Only when Alice wishes to spend the coins that she

received for pkID, she instructs the cold wallet to derive the corresponding secret

key skID from sk and St and to generate a signature on the spending transaction.

1.2. Goal of this Thesis

The goal of this thesis is to advance the field of secure cryptographic wallets by

(1) providing a formal security analysis of the current state of the art standard for

cryptographic wallets, namely the BIP32 standard that specifies so-called hierar-

chical deterministic wallets [179], and (2) introducing novel wallet constructions

that improve upon the state of the art by either providing better security guaran-

tees or enhanced functionalities. In order to establish confidence in the security

of our constructions, we provide rigorous security analyses of our schemes using

techniques from the field of modern cryptography. That is, in order to prove the

security of a scheme, we first formally define reasonable security properties that

the scheme must satisfy as well as an adversary model that describes the influence

an attacker might have on the scheme in practice. For instance, a semi-honest ad-

versary can corrupt honest parties but not control them, i.e., it can merely observe

the communication and computation that happens on the corrupted device. On

the other hand, a significantly stronger adversary model considers a so-called fully

malicious adversary that cannot only corrupt honest parties but also fully con-

trol them and deviate arbitrarily from the prescribed protocol instructions. Once

the security model of a scheme is established, we formally prove that the scheme

satisfies the defined security properties w.r.t. the adversary model. In modern

cryptography, such proofs typically rely on the assumption that a certain mathe-

matical problem is computationally hard to solve (e.g., the factorization of large

numbers) or that the security of a certain cryptographic scheme is computationally

hard to break. Computational hardness means that the respective assumption can

theoretically be broken, but it is practically infeasible to do so. In this thesis, we

generally provide security proofs by reduction, a well established proof technique,

where we show that if there exists an adversary within our adversary model that

can break the security of our scheme, then we can solve an underlying mathemati-

cal problem or break the security of a cryptographic scheme, which contradicts our

assumptions. We can therefore conclude that our scheme must be secure w.r.t. our

security and adversary model. It is important to emphasize that security is only

5
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guaranteed within our security and adversary model. Any attack or adversarial

capability that might occur in practice but that is not covered by our model may

render the respective scheme insecure. It is therefore crucial to define a model that

closely reflects the real world.

In summary, with this thesis we aim to advance the field of provably secure

cryptographic wallet schemes. A formal security proof carried out in an accurate

security and adversary model significantly increases the confidence in the actual

security of the respective scheme and can help to prevent attacks with disastrous

consequences. We would therefore like to advocate for the use of provably secure

cryptographic wallet schemes in practice.

1.3. Thesis Outline

In Chapter 2, we provide necessary notation that we use throughout this thesis.

We additionally recall the cryptographic primitives of digital signature schemes

and signature schemes with rerandomizable keys as well as the ECDSA signature

scheme, since the contribution of several works included in this thesis relies on

these primitives.

In Chapter 3, we detail the contribution of our two works [66, 67] on the BIP32

standard for hierarchical deterministic wallets [179]. More concretely, we first de-

scribe our contribution contained within publication [67], where we formally model

hierarchical deterministic wallets according to the BIP32 standard and analyze

its concrete bit-security level. We then describe the contribution of our second

work [66] on the BIP32 standard, where we show how to translate the standard to

the threshold setting.

Chapter 4 is based on publication [5], where we initiate the study on deter-

ministic wallets which are secure against adversaries with access to a quantum

computer. In more detail, in publication [5] we describe the model of determinis-

tic wallets in the post-quantum setting, where we assume that the adversary has

access to a quantum computer, while honest parties run on classical computers.

We then show a generic construction of such a deterministic wallet and prove that

the construction is secure in our model.

Chapter 5 describes our contribution contained within the two publications [77,

83]. That is, we first describe our contribution from publication [83], where we

introduce the notion of adaptor wallets which are essentially deterministic wallets

in the hot/cold setting that support not only standard digital signature schemes

but even the more advanced notion of adaptor signatures [15, 96, 152]. We then

describe our contribution from publication [77], where we first show how to gener-
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ically construct adaptor signatures, and then introduce the notion of two-party

adaptor signatures with aggregatable public keys, for which we also provide a

generic construction.

Finally, in Chapter 6, we conclude this thesis by providing a discussion on in-

teresting future research directions.
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2. Preliminaries

In this section, we describe the notation that we use throughout the thesis, and

we recall necessary cryptographic building blocks.

2.1. Notation

We denote the set of all natural numbers by N, the set of all real numbers by R,
the set of all integers by Z, and the set of integers {1, · · · , q} by [q]. We write

a ←$ H to denote the uniform random sampling of an element a from set H. We

denote the execution of a probabilistic algorithm A that outputs y on input x by

y ←$ A(x). Similarly, for a deterministic algorithm B, we write y ← B(x) to

denote that B outputs y on input x. We use the notation y ∈ B(x) to denote

that the value y lies in the set of possible outputs of algorithm B on input x. For

our definitions, we implicitly assume that all algorithms receive required public

parameters par as input, and we generally denote the security parameter by κ.

We say that a function negl : N→ R is negligible, if for all polynomials p(·) there
exists an integer N > 0 such that for all κ > N it holds that negl(κ) < 1

p(κ)
.

Throughout this thesis, we abbreviate the term probabilistic polynomial-time by

PPT. Finally, in order to define a security property of a cryptographic scheme,

we use standard code-based security games [165], which are interactive probability

experiments between a challenger and an adversary.

2.2. Digital Signatures

Virtually all cryptographic wallets rely on digital signature schemes, a fundamental

cryptographic building block which we recall in the following.

2.2.1. Definition of Digital Signatures

Definition 2.2.1 (Signature scheme). A signature scheme Sig is defined w.r.t. a

message space M and consists of a triple of algorithms Sig = (Gen, Sign,Verify)

which are defined as follows:

8



2. Preliminaries

• Gen(1κ): The probabilistic key generation algorithm Gen takes as input a security

parameter κ and outputs a key pair (pk, sk).

• Sign(sk,m): The probabilistic signing algorithm Sign takes as input a secret key

sk and message m ∈M and outputs a signature σ.

• Verify(pk,m, σ): The deterministic verification algorithm Verify takes as input a

public key pk, a message m ∈M, and a signature σ and outputs a bit b ∈ {0, 1}.
If the output is 1, σ is called a valid signature.

A signature scheme Sig is correct if for all κ ∈ N, all (pk, sk)←$ Gen(1
κ), and all

m ∈M it holds that:

Pr [Verify(pk,m, Sign(sk,m)) = 1] = 1.

A signature scheme must satisfy the security notion of unforgeability under cho-

sen message attacks, which essentially guarantees that an adversary, which receives

signatures for messages of its choice, cannot forge a valid signature for a new mes-

sage without knowledge of the scheme’s secret key.

Definition 2.2.2 (Unforgeability under chosen message attacks of signature schemes).

A signature scheme Sig = (Gen, Sign,Verify) is uf−cma-secure if for any PPT ad-

versary A the following holds:

Pr[uf−cmaA
Sig(1

κ) = 1] ≤ negl(κ),

where negl is a negligible function in the security parameter κ and the game

uf−cmaSig is defined in Figure 2.1.

Game uf−cmaSig(1
κ)

00 SigList := ∅
01 (pk, sk)←$ Sig.Gen(1

κ)
02 (σ∗,m∗)←$ ASign(pk)
03 b1 ← Sig.Verify(pk,m∗, σ∗) = 1
04 b2 ← m∗ /∈ SigList
05 Return b1 ∧ b2

Oracle Sign(m)
06 σ ←$ Sig.Sign(sk,m)
07 SigList← SigList ∪ {m}
08 Return σ

Figure 2.1.: Unforgeability game uf−cmaSig for a signature scheme Sig =
(Gen, Sign,Verify).
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In this thesis, we also consider the slightly weaker security notion of one-per

message unforgeability under chosen message attacks [23, 92, 103, 153], which

essentially restricts the adversary to obtain at most one signature per message

before it has to output its forgery for a new message.

Definition 2.2.3 (One-per message unforgeability under chosen message attacks

of signature schemes). A signature scheme Sig = (Gen, Sign,Verify) is uf−cma1-

secure if for any PPT adversary A the following holds:

Pr[uf−cma1A
Sig(1

κ) = 1] ≤ negl(κ),

where negl is a negligible function in the security parameter κ and the game

uf−cma1Sig is defined in Figure 2.2.

Game uf−cma1Sig(1
κ)

00 SigList := ∅
01 (pk, sk)←$ Sig.Gen(1

κ)
02 (σ∗,m∗)←$ ASign(pk)
03 b1 ← Sig.Verify(pk,m∗, σ∗) = 1
04 b2 ← m∗ /∈ SigList
05 Return b1 ∧ b2

Oracle Sign(m)
06 If m ∈ SigList: Return ⊥
07 σ ←$ Sig.Sign(sk,m)
08 SigList← SigList ∪ {m}
09 Return σ

Figure 2.2.: One-per message unforgeability game uf−cma1Sig for a signature
scheme Sig = (Gen, Sign,Verify).

2.2.2. The ECDSA Signature Scheme

As several works in this thesis rely on the elliptic curve digital signature algorithm

(ECDSA) [116], we briefly recall the scheme here. The ECDSA signature scheme

is the elliptic curve variant of the digital signature algorithm [124] which was first

proposed by Kravitz in 1991 and later standardized by the NIST. The ECDSA

signature scheme is defined w.r.t. a cyclic group G = ⟨G⟩ of prime order q and

with base point G, where G is defined as the group of points on an elliptic curve.

It must hold that the discrete logarithm problem is hard in G. We additionally

denote the group G that does not include the point at infinity O by G∗ := G\{O}.
In this thesis, we use additive notation for the group operation, and we note that

any point P ∈ G can be expressed as P = x · G for x ∈ Zq. The ECDSA scheme

internally uses a cryptographic hash function H0 : {0, 1}∗ → Zq and a function

10
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f : G∗ → Zq which is the projection of a group element to its x-coordinate. We

denote the ECDSA scheme by EC[H0] and recall the full scheme in Figure 2.3.

Gen(1κ)
00 x←$ Zq

01 X ← x ·G
02 (sk, pk) := (x,X)
03 Return (sk, pk)

Sign(sk,m)
00 k ←$ Zq, R← k ·G
01 r ← f(R)
02 h← H0(m)
03 s = k−1(h+ r · x)
04 σ := (r, s)
05 Return σ

Verify(pk,m, σ)
00 Parse pk := X
01 Parse σ := (r, s)
02 If s = 0∨ t = 0: Return ⊥
03 h← H0(m)
04 u1 ← h · s−1

05 u2 ← r · s−1

06 R← u1 ·G+ u2 ·X
07 If f(R) = r: Return 1
08 Return 0

Figure 2.3.: ECDSA signature scheme EC[H0] instantiated with a hash function
H0 : {0, 1}∗ → Zq. The function f : G∗ → Zq is the projection of a
group element to its x-coordinate.

2.3. Signature Schemes with Rerandomizable Keys

We briefly recall the notion of signature schemes with rerandomizable keys. This

notion has first been introduced by Fleischhacker et al. [94] and has been shown to

be a useful primitive for the construction of cryptographic wallet schemes (e.g., [66,

67, 68]). At a high level, a signature scheme with rerandomizable keys extends

the notion of standard signature schemes by two deterministic key derivation al-

gorithms, which respectively allow to rerandomize the scheme’s secret and public

key.

Definition 2.3.1 (Signature scheme with rerandomizable keys). A signature scheme

with rerandomizable keys RSig consists of a tuple of algorithms RSig = (Gen, Sign,

Verify, RandSK, RandPK) where (Gen, Sign,Verify) are the standard algorithms of

a signature scheme (cf. Definition 2.2.1). Moreover, let the public parameters

par define a randomness space R := R(par). Then the algorithms RandSK and

RandPK are defined as follows:

• RandSK(sk, ρ): The deterministic secret key rerandomization algorithm RandSK

takes as input a secret key sk and randomness ρ ∈ R and outputs a rerandomized

secret key sk′.

11
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• RandPK(pk, ρ): The deterministic public key rerandomization algorithm RandPK

takes as input a public key pk and randomness ρ ∈ R and outputs a rerandomized

public key pk′.

We make the convention that for the empty string ϵ it holds RandPK(pk, ϵ) =

pk and RandSK(sk, ϵ) = sk. We further require that a signature scheme with

rerandomizable keys satisfies (perfect) rerandomizability of keys and correctness

under rerandomized keys :

1. (Perfect) rerandomizability of keys: For all κ ∈ N, all (pk, sk) ∈ Gen (1κ) and

ρ←$ R, the distributions of (pk′, sk′) and (pk′′, sk′′) are identical, where:

(pk′, sk′)← (RandPK(pk, ρ),RandSK(sk, ρ)) and (pk′′, sk′′)←$ Gen (1
κ) .

2. Correctness under rerandomized keys: For all κ ∈ N, all (pk, sk) ∈ Gen (1κ), all

ρ ∈ R, and all m ∈ {0, 1}∗, the rerandomized keys sk′ ← RandSK(sk, ρ) and

pk′ ← RandPK(pk, ρ) satisfy:

Pr[Verify (pk′, σ,m) = 1 | σ ←$ Sign(sk
′,m)] = 1.

A signature scheme with rerandomizable keys must satisfy the security notion of

unforgeability under honestly rerandomizable keys. This notion differs from the

unforgeability notion of standard signature schemes in the following ways: First,

the adversary can receive signatures for messages of its choice under honestly

rerandomized keys, i.e., under keys that have been rerandomized with an honestly

sampled randomness. Second, the adversary can output a valid forgery for a new

message under any honestly rerandomized key.

Definition 2.3.2 (Unforgeability under honestly rerandomizable keys). A signa-

ture scheme with rerandomizable keys RSig = (Gen, Sign, Verify, RandSK, RandPK)

is uf−cma−hrk-secure if for any PPT adversary A the following holds:

Pr[uf−cma−hrkA
RSig = 1] ≤ negl(κ),

where negl is a negligible function in the security parameter κ and the game

uf−cma−hrkRSig is defined in Figure 2.4.

Similarly to standard signature schemes, we also consider the slightly weaker

notion of one-per message unforgeability under honestly rerandomizable keys for

signature schemes with rerandomizable keys.

12



2. Preliminaries

Game uf−cma−hrkRSig(1
κ)

00 SigList := ∅, RList← {ϵ}
01 (pk, sk)←$ RSig.Gen(1

κ)
02 (σ∗,m∗, ρ∗)←$ ARand,RSign(pk)
03 b1 ← ρ∗ ∈ RList
04 pk∗ ← RSig.RandPK(pk, ρ∗)
05 b2 ← RSig.Verify(pk∗,m∗, σ∗) = 1
06 b3 ← m∗ /∈ SigList
07 Return b1 ∧ b2 ∧ b3

Oracle Rand(m)
08 ρ←$ R
09 RList← RList ∪ {ρ}
10 Return ρ

Oracle RSign(m, ρ)
11 If ρ /∈ RList: Return ⊥
12 sk′ ← RSig.RandSK(sk, ρ)
13 σ ←$ RSig.Sign(sk

′,m)
14 SigList← SigList ∪ {m}
15 Return σ

Figure 2.4.: Unforgeability under honestly rerandomizable keys game
uf−cma−hrkRSig for a signature scheme with rerandomizable
keys RSig = (Gen, Sign,Verify,RandSK,RandPK).

Game uf−cma−hrk1RSig(1
κ)

00 SigList := ∅, RList← {ϵ}
01 (pk, sk)←$ RSig.Gen(1

κ)
02 (σ∗,m∗, ρ∗)←$ ARand,RSign(pk)
03 b1 ← ρ∗ ∈ RList
04 pk∗ ← RSig.RandPK(pk, ρ∗)
05 b2 ← RSig.Verify(pk∗,m∗, σ∗) = 1
06 b3 ← (ρ∗,m∗) /∈ SigList
07 Return b1 ∧ b2 ∧ b3

Oracle Rand(m)
08 ρ←$ R
09 RList← RList ∪ {ρ}
10 Return ρ

Oracle RSign(m, ρ)
11 If ρ /∈ RList: Return ⊥
12 If (ρ∗,m∗) ∈ SigList Return ⊥
13 sk′ ← RSig.RandSK(sk, ρ)
14 σ ←$ RSig.Sign(sk

′,m)
15 SigList← SigList ∪ {(ρ,m)}
16 Return σ

Figure 2.5.: One-per message unforgeability under honestly rerandomizable keys
game uf−cma−hrk1RSig for a signature scheme with rerandomizable
keys RSig = (Gen, Sign,Verify,RandSK,RandPK).
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Definition 2.3.3 (One-per message unforgeability under honestly rerandomizable

keys). A signature scheme with rerandomizable keys RSig = (Gen, Sign, Verify,

RandSK, RandPK) is uf−cma−hrk1-secure if for any PPT adversary A the fol-

lowing holds:

Pr[uf−cma−hrk1A
RSig = 1] ≤ negl(κ),

where negl is a negligible function in the security parameter κ and the game

uf−cma−hrk1RSig is defined in Figure 2.5.
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3. The BIP32 Standard for
Hierarchical Deterministic
Wallets

The Bitcoin Improvement Proposal 32 (BIP32) [179] is a specification for so-called

hierarchical deterministic wallets, which has first been introduced in 2012. Since

then, the BIP32 standard has gained increasing popularity and is now widely

followed by several popular wallets such as Electrum [75], Ledger [127], or Tre-

zor [175]. In a nutshell, hierarchical deterministic wallets as proposed by the

BIP32 standard extend the notion of deterministic wallets by allowing to estab-

lish a hierarchy among session keys. More concretely, a hierarchical deterministic

wallet is organized in a tree structure, where each node in the tree represents a

wallet instance which stores a session signing key and which is uniquely identified

by an identifier ID. In hierarchical deterministic wallets, the identifier specifies the

position of the particular wallet instance in the tree. Similarly to deterministic

wallets, the root node is initialized with a master key pair (pk, sk) and a state St,

and it can use these values to deterministically derive session signing keys for child

nodes. However, in contrast to deterministic wallets, a hierarchical wallet allows

child wallets to derive further children themselves, thereby creating a hierarchy of

wallet instances.

BIP32 specifies the signature scheme to be used as ECDSA (cf. Section 2.2.2)

since Bitcoin and many other blockchain and cryptocurrency networks support

this signature scheme. Recall that the ECDSA signature scheme is defined w.r.t.

an elliptic curve group G of prime order q and with base point G. An ECDSA

public/secret key pair (pk, sk) is then simply a discrete logarithm (dlog) instance,

i.e., sk ←$ Zq and pk ← sk · G. In order to derive child wallets, BIP32 specifies

a so-called non-hardened child derivation mechanism which proceeds as follows:

Assume a parent wallet with identifier ID, key pair (pkID, skID), and state StID
wishes to derive a child with identifier ID′. Then the parent wallet first com-

putes (ρID′ , StID′) ← H(pkID, StID, ID
′) and then derives the child keys as pkID′ ←

pkID + ρID′ · G and skID′ ← skID + ρID′ mod q, where H is a cryptographic hash

function. Note that this derivation mechanism allows to derive the child public key
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pkID′ using only the parent public key pkID and state StID, i.e., it does not require

the parent secret key skID. This makes the mechanism especially useful for use

in combination with the hot/cold setting where the cold wallet stores (skID, StID)

and the hot wallet stores (pkID, StID), since the parent cold wallet does not need to

come online in order to derive a child public key. Unfortunately, the non-hardened

child derivation suffers from a significant security issue: assume an adversary cor-

rupts the child secret key skID′ and additionally knows the parent public key pkID
and state StID. Then the adversary can simply compute the parent secret key

skID ← skID′ − H(pkID, StID, ID
′) mod q. The adversary can recursively repeat this

attack until it is eventually able to compute the master secret key sk and thereby

corrupt the entire wallet tree. Due to this issue, BIP32 specifies an additional child

derivation mechanism, the so-called hardened derivation, which works exactly as

the non-hardened derivation with the only difference that the value ρID′ is com-

puted as ρID′ ← H(skID, StID, ID
′). That is, instead of using pkID as input to H, the

hardened derivation uses the parent secret key skID. This simple change prevents

the above attack as the adversary now cannot compute ρID′ anymore as it does

not know the parent secret key skID. The drawback of the hardened derivation,

however, is that the derivation of a hardened public key always requires the parent

secret key, i.e., the parent cold wallet must come online just for the derivation of

the child public key.

Despite its popularity, the BIP32 standard has never been formally analyzed

for the exact security guarantees that it provides prior to this thesis. A previous

work by Das et al. [68] formally analyzed the notion of deterministic wallets in

the hot/cold setting, and showed a generic construction from signature schemes

with rerandomizable keys (cf. Definition 2.3.1). However, the work of Das et

al. has three important limitations: (1) it instantiates their generic construction

with a multiplicatively rerandomizable ECDSA signature scheme, i.e., instead of

deriving a child key pair by adding the value ρ to the parent secret key (and ρ ·G
to the parent public key), the work of Das et al. randomizes the parent keys by

mutliplying ρ to the keys; (2) Das et al. do not consider the hierarchical setting,

i.e, child nodes cannot derive further children; and (3) Das et al. consider only

non-hardened derivation of keys.

3.1. Our Contribution

In this thesis, we significantly contribute towards a better understanding of the
BIP32 standard and the concrete security it provides. As a first contribution, we
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provide a formal model and security analysis of the BIP32 standard as is within
the following publication that can be found in Appendix A:

[67] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. “The Exact Security of BIP32

Wallets”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Com-

munications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021.

2021, pp. 1020–1042. Part of this thesis.

Concretely, in the above publication we address the shortcomings of the work of

Das et al. [68] by (1) proving an additively rerandomizable variant of the ECDSA

signature scheme one-per message unforgeable under honestly rerandomizable keys

(cf. Definition 2.3.3); (2) formally modeling the BIP32 standard as is; and (3) an-

alyzing the standard’s concrete security, and showing that our security analysis is

optimal. We will discuss our contribution in more detail in Section 3.1.1.

As a second contribution, we extend the BIP32 standard to the threshold setting
within the following work that can be found in Appendix B:

[66] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. “BIP32-Compatible Threshold

Wallets”. In: IACR Cryptol. ePrint Arch. (2023), p. 312. Part of this thesis.

In more detail, we investigate the possibility of securing non-hardened secret keys

from corruption by “thresholdizing” non-hardened nodes. That is, we assume the

threshold setting where each non-hardened node consists of several devices and

each device holds only a share of the node’s secret key. In this setting, the secret

key of a non-hardened node remains secure, as long as at most a subset of its

devices is corrupted, i.e., each non-hardened node can tolerate corruption up to a

certain threshold. In order to construct such BIP32-compatible threshold wallets,

we first introduce the notion of threshold signature schemes with rerandomizable

keys, and we instantiate it with an additively rerandomizable threshold ECDSA

scheme. We then present non-hardened and hardened derivation mechanisms for

the threshold setting. We detail our contribution of this work in Section 3.1.2.

3.1.1. The Exact Security of BIP32 Wallets

In this section, we describe the contribution of our publication [67] (cf. Ap-

pendix A) in more detail. As mentioned above, our contribution in this publication

is threefold, namely we (1) analyze the security of an additively rerandomizable

ECDSA scheme, (2) formally model BIP32 wallets, and (3) analyze the exact se-

curity that BIP32 wallets instantiated with our additively rerandomizable ECDSA

scheme achieve.
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Additively Rerandomizable ECDSA

Das et al. [68] showed that a multiplicatively rerandomizable variant of ECDSA

satisfies the notion of unforgeability under honestly rerandomizable keys (namely

uf−cma−hrk security, cf. Definition 2.3.2). Recall that ECDSA is defined w.r.t.

to an elliptic curve group G of prime order q and base point G. Then the multi-

plicatively rerandomizable ECDSA scheme of Das et al. allows to rerandomize the

initial key pair (pk, sk) ∈ G×Zq with a randomness ρ ∈ Zq by multiplying ρ to pk

and sk respectively, i.e., it computes a rerandomized public/secret key pair (pk′, sk′)

as pk′ ← ρ · pk and sk′ ← ρ · sk mod q. We denote the multiplicatively rerandom-

izable ECDSA scheme of Das et al. by MREC[H0], and we denote the standard

ECDSA scheme by EC[H1], where H0 and H1 denote the hash functions used in the

respective scheme. Das et al. prove the MREC[H0] scheme uf−cma−hrk secure

via reduction to the unforgeability property (namely uf−cma security, cf. Def-

inition 2.2.2) of the EC[H1] scheme. The reduction crucially relies on a so-called

related key attack (RKA) that allows to transform a valid signature σ under pub-

lic key pk and message m to a signature σ′ which is valid under a related public

key pk′ ← ρ · pk and a message m′, where ρ = H1(m′)
H0(m)

. Intuitively, this RKA is

required in the reduction to simulate the signing oracle of game uf−cma−hrk by

transforming signatures obtained from the signing oracle of the uf−cma game to

be valid under the respective rerandomized public key.

In our work, we aim to analyze the BIP32 standard as is, i.e., we must first prove

the security of an additvely rerandomizable ECDSA scheme, where the initial key

pair is rerandomized by adding randomness ρ to sk and ρ · G to pk. We denote

this additive rerandomizable ECDSA scheme by REC[H2], where H2 denotes the

cryptographic hash function used by the scheme. Naturally, in order to prove

the security of REC[H2], we must find a novel RKA that our reduction can use

to transform signatures in the additive setting. Indeed, we show that a valid

ECDSA signature σ := (r, s) under public key pk and on message m, is also valid

under the rerandomized public key pk′ ← ρ ·G+pk on message m′ if ρ satisfies ρ =
H1(m)−H2(m′)

r
. While this RKA works, it has an important drawback as compared to

the RKA of Das et al.: The randomness ρ depends on the value r (which is part of

signature σ) and on message m′. As a consequence, we can transform at most one

signature per randomness/message pair (ρ,m′), and this is why we can prove the

scheme REC[H2] only one-per message unforgeable under honestly rerandomizable

keys (namely uf−cma−hrk1 secure, cf. Definition 2.3.3). While uf−cma−hrk1
security is a weaker notion than uf−cma−hrk security, it is sufficient for the

setting of cryptographic wallets, since transactions in cryptocurrency networks

have a unique identifier, i.e., a wallet never signs the same transaction twice.
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With the RKA in place, we then show a reduction of the uf−cma−hrk1 security

of scheme REC[H2] to the uf−cma1 security (cf. Definition 2.2.3) of scheme

EC[H1]. However, our reduction incurs a loss in the number of queries to the Rand

oracle and therefore is non-tight.

Formal Model of BIP32 Wallets

As a second step, we formally model hierarchical deterministic wallets according

to the BIP32 standard. In our work, we define a hierarchical deterministic wallet

scheme HDWAL as a tuple of seven algorithms HDWAL = (Setup, SKDerH, SKDerNH,

PKDerH,PKDerNH, Sign,Verify), which at a high level provide the following func-

tionality: The Setup algorithm initializes the scheme by generating a master key

pair (pk, sk) and a state St for the master wallet. The algorithms (SKDerH, SKDerNH,

PKDerH,PKDerNH) are the respective algorithms for the derivation of hardened/non-

hardened child nodes. More concretely, assume a wallet with identifier ID, key pair

(pkID, skID), and state StID wishes to derive a hardened child node with identifier

ID′. Then, it can execute the algorithm SKDerH on input (skID, StID, ID
′), which

outputs the hardened secret key skID′ as well as a state StID′ . In order to de-

rive the corresponding child public key, the parent wallet can execute algorithm

PKDerH on input (pkID, StID, ID
′). The algorithms SKDerNH and PKDerNH are de-

fined analogously for the derivation of a non-hardened child node. Finally, the

algorithms Sign and Verify are the standard signing and verification algorithms of

a digital signature scheme. We then say that a hierarchical deterministic wallet

scheme is correct, if a hardened (non-hardened respectively) key pair derived by

algorithms SKDerH and PKDerH (SKDerNH and PKDerNH respectively) w.r.t. the

same identifier constitutes a valid signing key pair.

As mentioned in the introduction of this thesis, a (hierarchical) deterministic

wallet scheme must satisfy two security properties, namely wallet unlinkability and

wallet unforgeability. Before we describe these two properties for BIP32 wallets,

we describe our adversary model and the general capabilities that the adversary

has over a hierarchical deterministic wallet scheme in our model. Generally, we

assume in our work that non-hardened wallet instances are implemented in the

hot/cold setting and that cold wallets are incorruptible by the adversary. There-

fore, we assume that the hot wallet of a non-hardened node stores the wallet’s

public key and state, whereas the cold wallet stores the corresponding secret key

and state. Hardened wallet instances, on the other hand, are not implemented

in the hot/cold setting, since the corruption of a hardened secret key has no im-

pact on the security of the remaining wallet instances in the tree. We generally

assume in our model that hardened wallets represent leafs in the wallet tree, i.e.,
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we assume that hardened wallets cannot derive further child nodes.

Adversary Model. In our model, we consider a PPT adversary that can corrupt

devices and, upon corruption, has full control over the device. With respect to

a hierarchical deterministic wallet scheme, we assume that the adversary can de-

cide the structure of the wallet tree, i.e., after initialization of the master wallet,

the adversary can arbitrarily create non-hardened and hardened child wallets for

adaptively chosen identifiers. The adversary can additionally request signatures

for adaptively chosen messages from any wallet instance in the tree. We assume

that the adversary can corrupt the hot wallet of non-hardened nodes which stores

the wallet’s public key and state, but not the corresponding cold wallet. Finally,

the adversary can fully corrupt hardened nodes, i.e., it can even learn the hardened

node’s secret key. We note that we allow the adversary to adaptively decide which

nodes to corrupt.

Wallet Unlinkability. Intuitively, the notion of wallet unlinkability guarantees

that (hardened or non-hardened) child public keys derived from a master public

key pk are computationally indistinguishable from (hardened or non-hardened)

child public keys derived from an independently generated master public key pk′.

In order to formalize this notion, we describe a security game between a chal-

lenger C and an adversary A where the challenger initially executes the Setup

algorithm to generate the key pair (pk, sk) and state St of the master wallet. The

adversary receives pk as input, and has all the capabilities as described above

in the adversary model. Eventually, the adversary outputs an identity ID∗ upon

which the challenger responds with a public key which is either (1) the public

key pkID∗ derived from pk, St and ID∗, or (2) a public key derived from a freshly

generated master public key and state as well as a random identity. The adver-

sary wins the game if it can distinguish these two cases with more than negligible

probability. Note however that, according to our adversary model, A is allowed

to corrupt the hot wallets of non-hardened nodes and thereby to learn their pub-

lic keys and states. Naturally, knowing these values, the adversary can trivially

compute any non-hardened child public key that is derived from the corrupted

hot wallet. Therefore, to prevent the adversary from trivially winning in case

ID∗ identifies a non-hardened wallet instance, the game requires that there exists

no corrupted parent hot wallet in the tree hierarchy for the wallet instance with

identity ID∗.
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Wallet Unforgeability. The notion of wallet unforgeability guarantees that an

adversary cannot forge a valid signature for (1) any uncorrupted hardened wallet

instance in the tree, and (2) any non-hardened wallet instance, even if its hot

wallet is corrupted.

We again formalize this notion via a security game between a challenger C and

an adversary A, which proceeds as follows: In the beginning of the game, the

challenger executes the Setup algorithm to generate the master key pair (pk, sk)

and state St. The adversary receives pk and St as input, and has all the capa-

bilities as described above in the adversary model, in particular it can request

signatures for arbitrary messages from any wallet instance in the tree. The adver-

sary wins the game if (1) it can output a valid signature for a message m∗ for an

uncorrupted hardened wallet, or any non-hardened wallet, and (2) the adversary

has not previously requested a signature for message m∗ from this specific wallet

instance.

In this thesis, we consider a slightly weaker notion of wallet unforgeability for

BIP32 wallets, namely one-per message wallet unforgeability, where the game is

defined exactly as described above, with the only difference that the adversary may

at most request one signature per wallet instance for each message. We emphasize

again that this security notion is sufficient in the cryptocurrency setting, since

transactions are unique and therefore never signed twice by a wallet. We denote

the one-per message wallet unforgeability game by wufcma1.

The Concrete Security of BIP32 Wallets

As a final contribution, we show how to generically construct hierarchical deter-

ministic wallets according to the BIP32 standard from any signature scheme with

rerandomizable keys, and formally analyze the security of our construction. To

this end, we provide formal proofs that our generic construction satisfies wallet un-

linkability and one-per message wallet unforgeability. Here, we focus on the proof

of one-per message wallet unforgeability, and we refer to Appendix A for the wal-

let unlinkability proof. As we will explain below, our wallet unforgeability proof

incurs a polynomial loss in the number of corrupted hardened wallet instances.

However, we show that this loss is optimal. Finally, we compute the concrete

security level our construction achieves when instantiated with our additively and

Das et al.’s [68] multiplicatively rerandomizable ECDSA scheme respectively.

One-Per Message Wallet Unforgeability. We show that our generic hierarchi-

cal deterministic wallet construction is one-per message wallet unforgeable if the

underlying signature scheme with rerandomizable keys is one-per message unforge-
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able as per Definition 2.3.3. To do so, we show that if there exists an adversary

A that wins game wufcma1 with more than negligible probability, then we can

construct an adversary C which uses A to win game uf−cma−hrk1 with more

than negligible probability. At a high level, our proof proceeds as follows: In the

beginning, the adversary C receives a public key pkC from game uf−cma−hrk1,
which it uses as master public key in game wufcma11. C must then simulate

game wufcma1 to A w.r.t. pkC. The main difficulty here is to simulate the cor-

ruption of a hardened wallet instance, since it requires C to output the hardened

wallet’s secret key that was correctly derived from the master secret key. How-

ever, since C does not know the master secret key, it cannot provide the correct

hardened wallet’s secret key. Therefore, we handle hardened wallet corruptions

as follows: C guesses in advance which of the hardened nodes in the tree will get

corrupted by A throughout the game. For these nodes, C generates a fresh key

pair independently of pkC, such that it can answer corruption queries. We show

that A does not realize that the keys of the corrupted hardened nodes have been

generated independently of pkC by providing a reduction to the one-per message

unforgeability of the underlying signature scheme with rerandomizable keys.

While this guessing introduces a polynomial loss in the number of corrupted

hardened nodes, it suffices to show that C can use A to win game uf−cma−hrk1
with non-negligible probability.

On the Optimality of our Wallet Unforgeability Proof. As mentioned above,

our wallet unforgeability proof incurs a polynomial loss in the number of corrupted

hardened wallet instances. We show, however, that this loss is indeed inherent,

i.e., we show that there exists no reduction from the uf−cma−hrk security of a

signature scheme with rerandomizable keys RSig to the wufcma1 security of our

generic hierarchical deterministic wallet construction instantiated with RSig.2 We

do so, by using the meta-reduction technique as first introduced by Coron [61].

That is, we show that if there exists a reduction R that reduces the uf−cma−hrk
security of RSig to the wufcma1 security of our generic hierarchical deterministic

wallet construction instantiated with RSig while incurring less than a polynomial

loss in the number of corrupted hardened wallet instances, then we can show a

meta-reduction that uses R to successfully break the uf−cma−hrk security of

RSig. Our proof closely follows the proofs from Coron [61, Theorem 4] and Kakvi

1To be exact, C uses a derivation of pkC as master public key. We refer to Appendix A for
more details.

2To be exact, we show that this result even holds for signature schemes with rerandomizable
keys that satisfy the stronger uf−cma−rk security. For simplicity, we describe our result here
w.r.t. uf−cma−hrk security. We refer to Appendix A for more details.
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et al. [117, Theorem 2], with adaptions to our hierarchical deterministic wallet

model.

Concrete Security of BIP32. Finally, we instantiate our generic hierarchical de-

terministic wallet construction with our additively rerandomizable ECDSA scheme

and compute the exact bit security level that this instantiation provides. In order

to do so, we make the following assumptions: We assume a security parameter

under which the standard ECDSA scheme has a bit security of 128 bits, and we

estimate the total number of keys derived in the tree hierarchy to be 220 and that

roughly 1% of these keys are corrupted hardened keys, i.e., we assume that 214

hardened wallets get corrupted. Under these assumptions, we show that the BIP32

standard as is provides a bit security level of 91 bits, i.e., it loses 37 bits of security

compared to the standard ECDSA signature scheme. This loss comes from (1) the

loss in our security proof of the additively rerandomizable ECDSA scheme, and

(2) the loss in the security proof of our generic hierarchical deterministic wallet

construction. Note that, while we proved that the latter is unavoidable, we can

get a better bit security level, if we instantiate our generic construction with the

multiplicatively rerandomizable ECDSA scheme from Das et al. [68], since this

scheme can be proven unforgeable without polynomial loss. Indeed, when instan-

tiating our generic construction with the multiplicatively rerandomizable ECDSA

scheme, our construction achieves a bit security level of 111 bits, i.e., 20 bits more

than the instantiation from our additively rerandomizable ECDSA. We therefore

advocate for changing the BIP32 standard to use multiplicatively rerandomizable

ECDSA, as it offers significantly stronger security at virtually no efficiency loss.

3.1.2. BIP32-Compatible Threshold Wallets3

As explained in the introduction of this chapter, it is crucial to protect non-

hardened secret keys from corruption, since the leakage of a single non-hardened

secret key breaks the security of the entire BIP32 wallet scheme. In our formal

analysis of BIP32 wallets above, we assume that non-hardened wallets are imple-

mented in the hot/cold setting and that cold wallets are incorruptible. However,

this assumption might not hold when considering, e.g., an adversary that obtains

physical access to the cold wallet or when the cold wallet is not maintained cor-

rectly which is difficult to assure in practice.

In this thesis, we show how to guarantee the security of a BIP32 wallet scheme

without relying on the assumption of incorruptible cold wallets. To this end,

3This section was largely taken verbatim from [66] with slight adjustments and extensions.
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we consider thresholdizing non-hardened nodes, s.t. each node consists of several

devices where each of them stores a share of the signing secret key. This design

choice allows to guarantee security even if a subset of the devices is corrupted. At

a high level, our idea is to instantiate non-hardened wallets with a (t, n)-threshold

signature scheme such that each non-hardened wallet is “split” into n different

devices, each of which stores only a share of the signing secret key. At least t+ 1

devices are then required to sign a message. Simultaneously, the secret key of the

non-hardened wallet remains secure as long as at most t devices are corrupted.

All n devices store the public key and state, s.t. a single device can derive a non-

hardened child public key without having to interact with the remaining n − 1

devices. The main technical difficulties of such a thresholdized variant of the

BIP32 standard are that (1) the design of threshold cryptosystems is typically

rather complex and requires a careful security analysis, and (2) it is not clear how

the (non-)hardened key derivation functions according to BIP32 can be translated

to the threshold setting.

Threshold Signature Schemes with Rerandomizable Keys

As explained in Section 3.1.1, we showed in our formal security analysis of the

BIP32 standard [67] that one can generically construct hierarchical deterministic

wallets from signature schemes with rerandomizable keys. In the threshold setting

that we consider in this section, we therefore require a threshold signature scheme

with rerandomizable keys. To this end, we first provide a game-based definition of

such a primitive, and then show an instantiation based on the threshold ECDSA

scheme of Gennaro and Goldfeder [100]. We intentionally choose this scheme for

the following two reasons: (1) it is a relatively simple scheme, i.e., it does not

include advanced features such as offline signing or proactive/adaptive security

which significantly increase the complexity of other threshold ECDSA schemes;

(2) several threshold ECDSA schemes directly build upon the protocol of Gennaro

and Goldfeder [47],[69],[48],[49], improving either its efficiency, functionality, or

security. Since the general idea of these schemes is similar to the original scheme

of Gennaro and Goldfeder, we believe that our results can be extended to these

schemes as well.

Model of Interactive Threshold Signature Schemes with Rerandomizable
Keys. An interactive (t, n)-threshold signature scheme TSig is executed among n

parties {P1, · · · , Pn} and consists of procedures TSig = (Gen,TSign,Verify), where

the key generation algorithm Gen generates a public key pk and n secret key shares

{sk1, · · · , skn} such that each party Pi learns ski for i ∈ [n]. The interactive signing
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procedure TSign is executed by all n parties, where each party takes as input its

secret key share and a message, and the procedure outputs a signature for the

message if at least t + 1 parties execute the procedure honestly. The resulting

signature can then be verified via the Verify algorithm. Such a signature scheme

must satisfy a notion of unforgeability, which at a high level guarantees that even

if an adversary corrupts up to t parties, it cannot forge a signature.

An interactive (t, n)-threshold signature scheme with rerandomizable keys RTSig

extends the above notion by two algorithms RandSK and RandPK which allow to

deterministically derive rerandomized secret key shares and a rerandomized public

key respectively. In more detail, the RandSK algorithm allows to rerandomize

individual secret key shares, i.e., it takes as input a secret key share ski and a

randomness ρ and outputs a rerandomized secret key share sk′i. Similarly, the

algorithm RandPK takes as input a public key pk and a randomness ρ and outputs

a rerandomized public key pk′. We say that such a scheme is correct if for a set of

keys (pk, {sk1, · · · , skn}) as generated by the Gen algorithm the following holds: the

set of rerandomized secret key shares {sk′1, · · · , sk′n} and the rerandomized public

key pk′ form a valid signing key set, where each sk′i is derived via the RandSK

algorithm on input ski and randomness ρ, and pk′ is derived via the RandPK

algorithm on input pk and ρ.

We require an RTSig scheme to satisfy the property of rerandomizability of pub-

lic keys, which guarantees that a rerandomized public key is computationally indis-

tinguishable from a freshly generated public key. This is a slightly weaker notion

than the perfect rerandomizability of keys of rerandomizable signature schemes

(cf. Definition 2.3.1) which requires rerandomized public and secret keys to be

identically distributed to a freshly generated key pair. We note, however, that

this weaker rerandomizability property is sufficient for the wallet setting, where

only public keys must be unlinkable, i.e., computationally indistinguishable from

freshly generated public keys.

Finally, we require an RTSig scheme to satisfy the security notion of one-per

message unforgeability of interactive threshold signature schemes with honestly

rerandomizable keys which we formally define via a security game denoted by

th−ufcma−hrk1. This notion essentially combines the two notions of one-per

message unforgeability of signature schemes with honestly rerandomizable keys

(cf. Definition 2.3.3) and unforgeability of interactive threshold signature schemes.

That is, at the beginning of game th−ufcma−hrk1 the adversary corrupts up to t

parties and consequently obtains those parties’ secret key shares and the scheme’s

public key. The adversary and the challenger, playing the role of the honest par-

ties, then jointly execute signing procedures for messages chosen by the adversary

and for honestly rerandomized keys with the restriction that a message can only
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be signed once for one honestly rerandomized key set. Finally, the adversary wins

the game if it outputs a valid forgery under an honestly rerandomized public key

and for a message that was never signed previously under this rerandomized public

key.

Interactive Threshold ECDSA with Rerandomizable Keys. We show how to

extend the interactive threshold ECDSA scheme as proposed by Gennaro and

Goldfeder [100] (with slight adjustments) to an interactive threshold ECDSA

scheme with rerandomizable keys (which we denote by rGG) by providing RandSK

and RandPK algorithms for the rerandomization of secret key shares and the pub-

lic key respectively. Recall that the ECDSA signature scheme is defined w.r.t. a

cyclic group G = ⟨G⟩ of prime order q and that an ECDSA key pair (pk, sk) is

simply computed as sk ←$ Zq and pk ← sk · G. In the scheme of Gennaro and

Goldfeder, each party Pi receives a secret key share ski of the full secret key sk such

that all sk1, · · · , skn lie on a degree-t polynomial with free term sk. Each party

additionally holds a public key share ski · G. The main technical challenge when

extending the scheme of Gennaro and Goldfeder to a key rerandomizable scheme

is that we must find a non-interactive algorithm RandSK, which rerandomizes a

secret key share with a randomness ρ such that the following properties hold: (1)

all secret key shares rerandomized with ρ form a valid sharing of the rerandomized

secret key sk+ ρ mod q, and (2) RandSK must be deterministic. At a high level,

our RandSK algorithm, on input a secret key share ski and a randomness ρ, de-

terministically generates a degree-t polynomial F , which shares ρ, and computes

the rerandomized secret key share as sk′i ← ski + F (i) mod q. More concretely,

RandSK generates the polynomial F (x) := atx
t + · · · + a1x + ρ where the coeffi-

cients are derived as ak ← H(ρ, k) for k ∈ [t] and where H denotes a cryptographic

hash function. The algorithm then evaluates F (i), which essentially yields a share

ρi of randomness ρ. This randomness share is then added to ski to compute the

rerandomized secret key share sk′i ← ski + ρi mod q. That is, sk′i is essentially a

share of the secret key sk + ρ mod q. The RandPK algorithm works correspond-

ingly for the public key and public key shares. Note that it is crucial that F (x)

is computed deterministically to ensure that all parties individually compute the

same polynomial for the same randomness ρ.

We provide a proof sketch that shows that our construction rGG satisfies the

property of rerandomizability of public keys. Essentially, we show that when H

is modeled as a random oracle [24], we can make a reduction to the discrete

logarithm problem to show that rGG satisfies the property of rerandomizability of

public keys. We additionally show a proof sketch that our rGG scheme satisfies

one-more unforgeability under honestly rerandomizable keys. Essentially, we can
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show a reduction to the one-per message unforgeability of the ECDSA scheme

with additively rerandomizable keys that we presented in Section 3.1.1 and in the

publication [67] to prove the one-per message unforgeability of our rGG scheme.

BIP32-Compatible Threshold Wallets

With our additively rerandomizable threshold ECDSA scheme rGG in place, we will

discuss in the following how the respective wallet derivations of a BIP32 wallet can

be implemented in the threshold setting. In particular, we consider the following

setting for our threshold BIP32 wallet: All non-hardened wallets are thresholdized,

i.e., each non-hardened wallet consists of n devices which execute a (t, n)-threshold

signature scheme with rerandomizable keys. Hardened wallets, on the other hand,

are single devices (i.e. not thresholdized), since the corruption of a hardened wallet

does not affect the security of the remaining wallets in the tree. We do not allow

hardened wallets to derive child wallets, i.e., hardened wallets always represent

leafs in the wallet tree. Therefore, we assume that in both cases, i.e., the non-

hardened and hardened wallet derivation, the parent wallet is non-hardened and

thresholdized. In the following, we explain how the (non-)hardened derivation

mechanisms can be translated to the threshold setting w.r.t. to our additively

rerandomizable threshold ECDSA scheme.

Non-Hardened Derivation The derivation of non-hardened nodes in the thresh-

old setting is fairly straightforward and follows the ideas of the BIP32 standard.

Essentially, a non-hardened parent node identified by ID and consisting of n de-

vices s.t. each device stores a secret key share ski,ID and the state StID can

derive a thresholdized non-hardened child wallet as follows: First, each device

of the parent node computes locally (ρ, StID′) ← H(pkID, StID, ID
′) and ski,ID′ ←

rGG[H0].RandSK(i, ski,ID, ρ). Then the devices of the parent node must forward the

rerandomized secret key shares ski,ID′ and the state StID′ to the n devices of the

child node. The forwarding of the state StID′ is straightforward, since we assume an

honest majority among the parent devices and since each parent device knows StID′ .

That is, all parent devices can simply send StID′ to all child devices. Each child

device then receives at least t+ 1 times the value StID′ which it uses as the node’s

state. The forwarding of the secret key shares ski,ID′ is more involved and requires

a protocol involving 2n devices (n child and n parent wallet devices) of which a

total of 2t devices can be corrupted. Note that a simple forwarding of secret key

share ski,ID′ to the i-th device of the child wallet is insecure as it allows an adver-

sary to learn a total of 2t secret key shares. Instead, the 2n devices must engage

in the execution of a dynamic proactive secret sharing (DPSS) scheme (e.g., [20,
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138, 161]), which allows to securely handover the rerandomized key shares to the

devices of the child node even in the presence of 2t corrupted devices. Note that

DPSS schemes typically incur a significant communication overhead since all 2n

parties must interact with each other.

Hardened Derivation The main challenge when considering BIP32 wallets in

the threshold setting is the hardened node derivation mechanism. Recall that the

derivation of a hardened node according to BIP32 requires the computation of

(ρ, StID′) ← H(skID, StID, ID
′), i.e., the evaluation of a hash function where one of

the inputs is the parent secret key. In the threshold setting, however, the secret

key skID is shared among n devices such that no single device knows the full key.

It is therefore not at all clear how H(skID, StID, ID
′) can be computed efficiently

without naively reconstructing skID (which would trivially break the security of

the wallet). Furthermore, in the hardened derivation, each parent device can only

learn a randomness share ρi instead of the entire randomness ρ. To see why that

is the case, consider the setting where an adversary corrupts the hardened node,

thereby learning its secret key skID + ρ, as well as a parent node device, thereby

learning ρ. The adversary could then trivially learn the parent node’s secret key.

One obvious (and to the best of our knowledge only) way to resolve the above

issues is using generic multi-party computation (MPC) techniques [53, 105, 106],

which allow to securely compute any function in a distributed setting without

revealing the function inputs. However, generic MPC is inherently inefficient, in

particular since the BIP32 standard uses the well-known hash function SHA-512,

which is known to be only inefficiently computable via MPC [38].

Due to this limitation, we consider a more efficient hardened node derivation

mechanism, which achieves the same properties as the one originally specified in

BIP32. At a high level, instead of having the parent wallet devices rerandom-

ize their secret key shares and forward them to the hardened wallet, we simply

let the parent devices generate a random value from which the hardened node

can deterministically derive its own keys. For the computation of the random

seed, we employ the threshold verifiable random function (TVRF) from Galindo

et al. [97]. A (t, n)-TVRF is a cryptographic primitive that consists of four al-

gorithms, namely (Gen,PEval,Combine,Verify), and is executed by n parties. The

Gen algorithm outputs a secret key share ski to each party Pi as well as a public

key pk, and each party can use their secret key share to deterministically compute

an evaluation share ϕi and proof πi on a message m using algorithm PEval. Given

at least t + 1 valid evaluation shares for m, any party can deterministically com-

pute a pseudorandom value ϕ and a proof π using the Combine algorithm. Finally,

given the public key pk, the value ϕ and the proof π, any party can verify that ϕ
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was computed correctly. A TVRF satisfies three security properties, namely pseu-

dorandomness, uniqueness, and robustness : pseudorandomness guarantees that ϕ

is a pseudorandom value, uniqueness guarantees that for a unique message m the

TVRF outputs a unique ϕ, and robustness guarantees that if the proof π verifies

w.r.t. pk and ϕ, then the value for ϕ was computed correctly.

We use the TVRF for the hardened wallet derivation in the following way: Each

device of the non-hardened parent node maintains a secret key share for the TVRF

and, upon the derivation of a hardened node with identifier ID, uses this secret

key share to compute an evaluation share ϕi and the corresponding proof πi on

ID. It then sends (ϕi, πi) to the hardened node, which combines t + 1 shares to a

pseudorandom seed ϕ and verifies the correctness of ϕ using the proof π and the

public key of the TVRF. Note that any set of t + 1 correct evaluation shares will

yield the same seed ϕ, but only including a single invalid evaluation share will lead

to a different seed. Therefore, the verifiability of the final seed is crucial to our

solution. We use the TVRF from [97], which we denote by TVRF and which is not

only deterministic and one-way but also non-interactively computable, therefore

exhibiting the same properties as the original BIP32 derivation mechanism. We

present our improved hardened node derivation mechanism w.r.t. TVRF pictorially

in Figure 3.1.

While the above solution is compatible with BIP32 (since it achieves the same

properties), it has the significant drawback that each non-hardened device must

maintain two secret key shares, one for the signature scheme rGG and one for the

TVRF scheme. As a consequence, each device requires double the storage space

which is an issue for space restricted devices. Another even more severe issue,

however, is that similar to the signing keys the TVRF keys must be deterministi-

cally derived throughout the wallet tree via executions of a communication heavy

DPSS scheme. This incurs a significant communication overhead, especially since

all non-hardened nodes must derive TVRF keys irrespectively of whether they

want to derive a hardened node or not.

To this end, we make the following observation: the DDH-based TVRF scheme

of [97] and the ECDSA signature scheme both operate over a cyclic group G = ⟨G⟩
of prime order q and use secret/public key pairs sk←$ Zq and pk← sk ·G. The se-

curity of TVRF relies on the assumption that DDH is hard in G. Bitcoin, Ethereum

and several other cryptocurrencies use the group G identified by the elliptic curve

secp256k1, for which dlog and DDH are assumed to be hard. Therefore, our idea

to mitigate the above issues is to use only a single key pair for both schemes. This

allows non-hardened wallets to re-use their signing secret key shares from scheme

rGG for the TVRF scheme during the hardened node derivation, thereby avoiding

the overhead of maintaining a second key pair per wallet instance.
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(ϕ1, π1)← TVRF.PEval(ID, sk1, pk)

NH1(sk1, pk)

(ϕ2, π2)← TVRF.PEval(ID, sk2, pk)

NH2(sk2, pk)

(ϕ3, π3)← TVRF.PEval(ID, sk3, pk)

NH3(sk3, pk)

(ϕ, π)← TVRF.Combine(pk, ID,S, {ϕi, πi}i∈S)
If TVRF.Verify(pk, ID, ϕ, π) = 1

Then compute (pkID, skID)←$ ECDSA.Gen(1
κ;ϕ)

HN ID(pk)

(ϕ1, π1) (ϕ2, π2) (ϕ3, π3)

Figure 3.1.: Pictorial representation of our improved hardened node derivation
mechanism in the threshold setting. Each of the three devices NH1,
NH2,NH3 of the non-hardened parent node stores a TVRF public key
pk and secret key share ski for i ∈ [3]. In order to derive a hardened
node HN with identity ID, each non-hardened device locally evalu-
ates the TVRF on input ID and sends the resulting evaluation share
to HN. The hardened node can then choose a subset S of the set [3],
combine the corresponding evaluation shares to a full random value
ϕ, verify that the non-hardened devices in S behaved honestly, and
then use ϕ as input to the key generation algorithm of the ECDSA
signature scheme. Note that this key generation is deterministic, since
we explicitly give the randomness ϕ as input. Figure taken from [66].

While it is typically not recommended to re-use a cryptographic key pair for

several primitives, we show that it is indeed secure to use the same key pair for

the rGG and the TVRF scheme. In order to do so, we first define a joint scheme

which essentially consists of the combined procedures of rGG and TVRF except

that it only uses one of the respective key generation algorithms. We then formally

define the security properties pseudorandomness, uniqueness, and robustness for

the joint scheme. These security notions essentially combine the respective security

properties of the TVRF scheme with the one-more unforgeability notion of our rGG

scheme. That is, for each of the above security notions, we define a game, where

an adversary (1) can corrupt t parties, (2) receives oracle access to all oracles of

the one-more unforgeability game (i.e., th−ufcma−hrk1), and all oracles of the

respective TVRF property (e.g., pseudorandomness), and (3) can win the game

by either breaking the one-more unforgeability of rGG or the TVRF property.

We finally show that the joint scheme indeed satisfies our security properties.

For instance, in order to show that the joint scheme satisfies our pseudorandom-

ness property, we provide a reduction from the uf−cma−hrk1-security of the rGG

scheme and from the pseudorandomness of the TVRF scheme. That is, we essen-
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tially show that if there exists an adversary that can break the pseudorandomness

property of our joint scheme, then we can construct an adversary that can either

break the uf−cma−hrk1-security of rGG or the pseudorandomness of TVRF. The

difficulty in this reduction is that the reduction does not know in advance how the

adversary against our joint scheme is going to break the pseudorandomness prop-

erty. That is, the reduction has to guess in advance whether to reduce to the

uf−cma−hrk1-security of rGG or to the pseudorandomness of TVRF. However,

in case of a reduction to the pseudorandomness of TVRF the adversary against the

joint scheme is allowed to receive signatures under the scheme’s secret key, while

the reduction does not obtain access to a signing oracle. The reduction therefore

must simulate the signing protocol to the adversary in the joint scheme without

having access to a signing oracle itself. Since our reduction guesses in advance how

the adversary against our joint scheme is going to break the pseudorandomness

property, the reduction incurs a loss of 1
2
.

3.2. Related Work

In this section, we review related works on the topics of cryptographic wallets and

threshold ECDSA schemes.

3.2.1. Cryptographic Wallets

(Hierarchical) Deterministic Wallets.4 Cryptographic wallets have been exten-

sively studied in the past. In particular the introduction of the BIP32 standard

in 2012 [179] and its wide use in practice has sparked many academic works ana-

lyzing the notion of hierarchical deterministic wallets. Gutoski and Stebila [111]

presented a hierarchical deterministic wallet scheme that deviates from the BIP32

standard. Their scheme remains secure if at most m child keys are leaked, where

m is a parameter that is fixed upon setup of the wallet. The authors prove their

scheme secure under the one-more discrete log assumption [21], however in a weak

security model. Later, Das et al. [68] gave the first formal analysis of deterministic

wallets in the hot/cold setting, and provided a construction based on multiplica-

tively rerandomizable ECDSA. However, in contrast to our publication [67], Das et

al. did not consider the hierarchical setting, where child nodes can derive further

children. Alkadri et al. [5] translated the model of deterministic wallets in the

hot/cold setting by Das et al. [68] to the post-quantum setting (cf. Chapter 4).

4Parts of this paragraph were taken verbatim from [66] with some adjustments.
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Essentially, Alkadri et al. introduced the notion of a post-quantum secure deter-

ministic wallet in the hot/cold setting, provided a generic construction of such

a wallet scheme from any post-quantum secure signature scheme with rerandom-

izable keys, and showed a concrete instantiation. Hu [114] later followed-up on

the work of Alkadri et al. by providing an instantiation of a post-quantum se-

cure signature scheme with rerandomizable keys that allows for smaller public key

and signature sizes than the rerandomizable signature scheme proposed by Alka-

dri et al. Fan et al. [89] introduced a hierarchical deterministic wallet scheme for

Schnorr signatures [160] that is based on trapdoor hash functions. However, their

work lacks a formal security model and analysis. Luzio et al. [132] presented a hi-

erarchical deterministic wallet scheme, which relies on hierarchical key assignment

schemes [12] and allows to leak child secret keys without compromising the secu-

rity of the entire wallet hierarchy. However, their scheme is not compatible with

Bitcoin as it requires a more complex signature verification algorithm. Similarly,

Yin et al. [181] recently proposed a model for hierarchical deterministic wallets

supporting stealth addresses, however, they provide a construction that is incom-

patible with Bitcoin as it relies on bilinear maps. Erwig and Riahi [83] recently

proposed deterministic wallets with support for adaptor signatures (cf. Chapter 5).

In a recent white paper [180], Lindell described the design of a shared-custodial

wallet that is being developed and used by the cryptocurrency exchange company

Coinbase5. At a high level, the shared-custodial wallet shares the signing secret

key between a user and a service provider (namely Coinbase), and it supports hier-

archical deterministic key derivation mechanisms corresponding to BIP32. That is,

the setting considered in the white paper [180] is similar to the setting of our work

on BIP32-compatible threshold wallets [66]. Indeed, similar to our work, Lindell

described that the hardened key derivation as specified by BIP32 is not suitable

for a setting where the signing key is shared among several parties. Instead, Lin-

dell devised an alternative hardened key derivation that deviates from the original

BIP32 specification and that makes use of a threshold verifiable random function.

While this is similar to our work [66], the white paper crucially differs from our

work as follows: (1) the white paper lacks a formal description and security anal-

ysis of the proposed solution, and (2) the white paper does not include the key

re-use mechanism which is one main contribution of our work. Finally, Chuang et

al. [58] recently studied BIP32 as is in the two-party setting. In particular, the

authors considered the exact hardened key derivation mechanism as specified by

BIP32 translated to the two-party setting where the signing secret key is shared

between two parties. The authors provided an implementation and evaluated the

5https://www.coinbase.com/
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efficiency of the hardened derivation in the two-party setting.

Hardware Wallets. Another line of research focused on hardware wallets. Ara-

pinis et al. [11] provided a formal security model of hardware wallets in the UC

framework [46]. Marcedone et al. [139] considered the scenario of a user who

knows a low-entropy password and uses a hardware wallet, which stores a high-

entropy secret, to generate signatures. To this end, they essentially provided a

generic construction of a two-party signature scheme which is executed between

the user and the hardware wallet. The construction can be instantiated with either

Schnorr or ECDSA. However, their scheme is prone to offline password-guessing

attacks, i.e., a corrupted hardware wallet can brute-force the user’s password and

thereby forge signatures. Gentilal et al. [102] implemented a cryptographic wallet

in the hot/cold setting where the cold wallet is executed in a trusted execution

environment to further prevent it from corruption. Bamert et al. [18] proposed

BlueWallet, a hardware wallet that stores the user’s secret key and connects via

Bluetooth to an untrusted user device to generate signatures on behalf of the user.

Other Related Works. Several works [41, 42, 62, 148] investigated the con-

sequences that implementation errors or the sampling of weak randomness can

have on the security of wallets. Makriyannis and Peled [149] and Makriyannis

and Yomtov [148] respectively found attacks on two popular threshold ECDSA

schemes [100, 101], which are widely used in practice. However, all of the de-

scribed attacks can be mitigated by appropriately adjusting the affected schemes.

Turuani et al. [177] analyzed the Electrum wallet using automatic analysis, and

showed that it is secure in the Dolev-Yao model.

Kondi et al. [123] proposed a threshold wallet solution that allows to proactively

refresh the scheme’s secret key even while a subset of the protocol participants

are offline. The offline parties can then non-interactively update their respective

secret key share once they come back online. The authors show constructions for

threshold ECDSA and Schnorr in the (2, n)-setting, where two parties are required

to compute a signature. Additionally, the authors show that such a proactive

refresh with offline parties is impossible in the (t, n)-setting in case the number of

online parties is below a certain threshold.

Zindros [184] introduced a keyless wallet based on witness encryption [99] and

smart contracts, where a user can spend its funds using only a password. Chaum et

al. [55, 56] introduced a backup mechanism that allows a wallet user to prove that it

is the owner of the wallet’s secret key, even when the secret key is leaked. Eyal [88]

analyzed the general design of secure wallets. That is, the author analyzed whether
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and how much the security of a wallet is dependent on various factors such as the

number of keys it maintains, the combination of keys required for the generation

of a valid signature, or the implementation type (hardware and/or software) of

a wallet. Finally, Mangipudi et al. [137] provided a user study on the topic of

multi-device wallets and very recently Zyskind et al. [185] proposed the notion of

unstoppable wallets, which execute a threshold ECDSA signature scheme between

a set of parties and a smart contract that runs on the blockchain.

3.2.2. Rerandomizable Signatures and Threshold ECDSA

Rerandomizable Signatures. The notion of signature schemes with rerandomiz-

able keys has first been introduced by Fleischhacker et al. [94], who also showed an

instantiation from the Schnorr signature scheme [160]. Since then this notion has

been shown to be a useful building block for deterministic wallet schemes (e.g., [5,

67, 68]). In particular, Das et al. [68] proved the security of a multiplicatively reran-

domizable ECDSA scheme, while we presented and proved secure an additively

rerandomizable ECDSA scheme in this chapter of the thesis (cf. Section 3.1.1).

In a follow-up work, Groth and Shoup [109] presented a formal security analysis

of an additively rerandomizable ECDSA scheme that supports the computation

of pre-signatures, i.e., it allows to pre-process a part of the signature even before

the message, that is to be signed, is known. While their scheme achieves a slightly

stronger security than the one we analyzed in this chapter (their security model

does not restrict the adversary to obtain at most one signature per message and

derived public key), their analysis relies on the idealized generic group model [147,

164]. Our analysis, however, is only based on the random oracle model [24].

Our additively rerandomizable ECDSA scheme uses public key prefixing which

means that in order to generate a signature for a messagem under key pair (pk, sk),

the message must be prefixed with pk. That is, the message that is being signed is

the concatenation of pk and m. This public key prefixing is crucial for our security

proof. A recent work by Hanzlik et al. [113] shows how to avoid such public key

prefixing by instead prefixing signed messages with an index.

Finally, the concept of related key attacks has previously been shown to be a

useful proof technique for signature schemes with rerandomizable keys [68, 94].

Threshold ECDSA.6 In recent years, there has been a huge interest in threshold

ECDSA schemes (e.g., [3, 30, 47, 48, 49, 64, 69, 129, 130]) motivated by their use

in distributed cryptographic wallets. For a more in-depth comparison of different

6This paragraph was largely taken verbatim from [66] with some adjustments.

34



3. The BIP32 Standard for Hierarchical Deterministic Wallets

threshold ECDSA schemes, we refer to the survey of Aumasson et al. [14]. In

this chapter, we base our solution for BIP32-compatible threshold wallets [66] on

the threshold ECDSA scheme of Gennaro and Goldfeder [100]. Similarly to our

work in this chapter, a recent work by Groth and Shoup [108] introduced a thresh-

old ECDSA scheme with additive key rerandomization according to the BIP32

specification. However, the authors did not consider the derivation of hardened

nodes in the threshold setting, which is the main focus of our work [66]. Groth

and Shoup analyzed their scheme in the ideal/real world setting w.r.t. an ECDSA-

specifc functionality, whereas we give a general game-based definition for threshold

signature schemes with rerandomizable keys, and show that the construction of

Gennaro and Goldfeder [100] can be extended to satisfy our definition. Finally, the

scheme of Groth and Shoup is rather complex, whereas we were aiming for a sim-

ple threshold ECDSA scheme with rerandomizable keys for our BIP32-compatible

threshold wallet construction.
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Most major cryptocurrencies nowadays, including Bitcoin [146] and Ethereum,

use digital signature schemes that are not secure against quantum adversaries,

i.e., adversaries with access to quantum computing power. More concretely, the

security of the two most widely used signature schemes in the cryptocurrency space,

namely ECDSA and Schnorr, is based on the hardness assumption of computing

discrete logarithms. However, in 1994 Shor introduced an algorithm [163] which

can efficiently compute discrete logarithms on a quantum computer and thereby

break many schemes that are presumed to be secure in the classical (non-quantum)

setting. Recall that a public/secret key pair of the ECDSA signature scheme (and

likewise of the Schnorr signature scheme) has the form (pk, sk) := (x · G, x) for

a uniform random x ←$ Zq and for a cyclic group G = ⟨G⟩ of prime order q.

Then it is easy to see that if a quantum adversary, which knows pk and which

can efficiently compute discrete logarithms in group G using Shor’s algorithm, can

compute sk and thereby trivially forge signatures. Naturally, this would render a

cryptocurrency network that is based on the ECDSA or Schnorr signature scheme

insecure as no user would be able to securely store and spend its funds.

The field of post-quantum cryptography investigates cryptographic primitives

that are secure against both, classical and quantum adversaries, but that can be

executed by classical devices. This is a particularly interesting approach as it offers

protection against quantum adversaries already in today’s world, where quantum

computers are not yet sufficiently developed for mass adaption. A compelling idea

to protect cryptocurrency networks from quantum adversaries might therefore be

to use only post-quantum secure cryptographic building blocks in the network.

Indeed, several works (e.g., [4, 28, 60, 86, 87, 155]) have explored the direction of

post-quantum secure cryptocurrencies in the past years. For instance, the “Bitcoin

Post-Quantum” [28] and the “Quantum Resistant Ledger” [155] projects use post-

quantum secure hash-based signature schemes, whereas Esgin et al. [86, 87] explore

privacy-preserving cryptocurrency networks that use only post-quantum secure

cryptographic building blocks.
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4.1. Our Contribution

In this thesis, we advance the studies on post-quantum secure cryptocurrency

networks by providing the first deterministic wallet construction that is resistant

to quantum adversaries. This chapter is based on the following publication which

can be found (with some adjustments1) in Appendix C:

[5] N. A. Alkadri, P. Das, A. Erwig, S. Faust, J. Krämer, S. Riahi, and P. Struck.

“Deterministic Wallets in a Quantum World”. In: CCS ’20: 2020 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event, USA,

November 9-13, 2020. 2020, pp. 1017–1031. Part of this thesis.

More concretely, in the above publication, we (1) consider the model of deter-

ministic wallets in the hot/cold setting as introduced by Das et al. [68] in the

post-quantum setting; (2) give a generic construction of post-quantum secure sig-

nature schemes with rerandomizable public keys from lattice-based Fiat-Shamir

signature schemes; (3) give a generic construction of post-quantum secure deter-

ministic wallets from signature schemes with rerandomizable public keys; and (4)

provide an evaluation of our results by assessing the potential transaction through-

put that a cryptocurrency network could achieve if it uses our signature scheme

with rerandomizable public keys. In the following we describe our contribution in

more detail.

4.1.1. Post-Quantum Secure Deterministic Wallets

In this subsection, we first recall the post-quantum security model, and subse-

quently we describe our generic post-quantum secure deterministic wallet scheme.

The Post-Quantum Security Model The post-quantum security model assumes

that an adversary that has access to a quantum computer, whereas honest parties

run on classical machines only. Defining a security game in this setting requires

some additional care as compared to the classical setting: While the adversary in

the classical setting can query oracles only classically, this is not necessarily the case

in the post-quantum setting. Here, we must distinguish whether the adversary can

query an oracle classically or whether it can access it using its quantum computing

power and thereby query it in superposition. Essentially, oracles that model some

form of computation by honest parties, which run on classical machines, can only

1We consider a slightly adjusted version of publication [5] in this chapter, which fixes a small
mistake contained in the original publication. We provide the adjusted version and further details
in Appendix C.
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be queried classically by a quantum adversary. However, other oracles, such as a

random oracle, model public functions that in practice can be implemented and

evaluated by the adversary on its quantum computer. Therefore, the security

model must allow the adversary to query such oracles in superposition. Indeed,

for this reason Boneh et al. [34] introduced the quantum random oracle model

(QROM), where the adversary receives access to a random oracle that it can

query in superposition.

We note that this post-quantum model best reflects the real world as it assumes

that the cryptographic scheme can be run on classical machines while it offers

security against quantum adversaries. A stronger but less relevant security model

is the so-called fully-quantum model, where even honest parties are assumed to

run on quantum computers. In this thesis, we consider only the post-quantum

model.

Post-Quantum Secure Signature Schemes with Rerandomizable Keys. As a

first step towards our post-quantum secure deterministic wallets, we present for

the first time a construction of a signature scheme with rerandomizable keys in the

post-quantum setting. While there are several promising approaches to construct

post-quantum secure cryptographic schemes, we base our construction on the com-

putationally hard lattice problem known as module learning with errors [39, 125]

(MLWE). This problem has the advantages that (1) the MLWE assumption is

well studied, which increases the confidence in its conjectured security, and (2) its

linear structure allows for a simple key rerandomization mechanism. We give a

construction of a signature scheme with rerandomizable keys based on a generic

MLWE-based Fiat-Shamir signature scheme. Our scheme resembles the one of clas-

sical Schnorr signatures but in the lattice setting. In particular, the public/secret

key pair (pk, sk) is an instance of the MLWE problem, where sk is distributed

according to a Gaussian distribution over some set. We rerandomize sk with a

randomness ρ by first deterministically sampling a Gaussian distributed secret key

sk′ from ρ and then adding sk′ to sk. The resulting rerandomized secret key is

again Gaussian distributed but with a different standard deviation than sk. That

is, in our construction rerandomized secret keys are distinguishable from freshly

generated secret keys. Due to this, we formalize the notion of signature schemes

with rerandomizable public keys, which requires rerandomized public keys to be

computationally indistinguishable from freshly generated public keys, but which

does not guarantee the same for secret keys. This is similar to our notion of inter-

active threshold signature schemes with rerandomizable keys (cf. Chapter 3) and

we again argue that for the wallet setting this notion of public key rerandomizabil-

ity suffices. We additionally require that signature schemes with rerandomizable
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public keys satisfy a simulatability property, which at a high level guarantees the

following: there must exist an efficient algorithm which on input a public key pk

and a message m outputs a signature which is computationally indistinguishable

from a correctly generated signature for pk and m (i.e., using secret key sk corre-

sponding to pk). Intuitively, we require this simulatability notion for the security

proof of our generic wallet construction, where we have to simulate signing oracle

queries to the adversary without knowing the scheme’s secret key.

Post-Quantum Secure Deterministic Wallets. As a next step, we describe a

model for post-quantum secure deterministic wallets, and we show a generic con-

struction from any post-quantum secure signature scheme with rerandomizable

public keys. The model is essentially a post-quantum variant of the model of Das

et al. [68] for deterministic wallets in the hot/cold setting. That is, as compared

to the full hierarchical deterministic wallet model as presented in Chapter 3, our

model allows only the master wallet to derive children, and all wallet instances

are assumed to be implemented in the hot/cold setting. The security properties

of wallet unlinkability and wallet unforgeability are defined in the same way as in

the model of Das et al. [68] with the difference that our model considers a quan-

tum adversary that can access the random oracle in superposition, i.e., it receives

access to a quantum random oracle.

With the model in place, we then show that we can generically construct post-

quantum secure deterministic wallets in the hot/cold setting from any post-quantum

secure signature scheme with rerandomizable public keys, and we prove that our

construction satisfies the notions of wallet unlinkability and wallet unforgeabil-

ity in the post-quantum setting. The main difficulty in these proofs is that the

quantum adversary can query the random oracle in superposition, whereas the

challenger is only classical. It is therefore not immediately clear how the chal-

lenger can simulate the quantum random oracle to the adversary. At a high level,

we deal with this issue by using two established techniques, namely the one-way

to hiding lemma [10, 178] and Zhandry’s small-range distributions [182].

4.1.2. Evaluation of our Results

Finally, we discuss how to instantiate our signature scheme with rerandomizable

keys with the lattice-based signature scheme qTesla [6] and, given this concrete in-

stantiation, we provide an overview of the transaction throughput that a blockchain

network could achieve with our scheme. In order to do so, we estimate the size

of a typical Bitcoin transaction where the ECDSA signature scheme is replaced

by qTesla. Recall that a simple Bitcoin transaction, i.e., a transaction with only
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a single sender input and receiver output, contains the public key and a signature

of the sender. The transaction contains additionally the hash of the public key

of the receiver, which has the same size for the ECDSA and qTesla scheme. In

our work, we estimate the size of a raw Bitcoin transaction, i.e., a transaction

without sender public key and signature, to be around 100 bytes. The size of a

qTesla public key and signature is 14, 880 bytes and 2, 592 bytes respectively [6].

Consequently, a Bitcoin transaction where ECDSA is replaced by qTesla has the

size: 100 bytes +14, 880 bytes +2, 592 bytes = 17, 572 bytes. As a comparison,

we estimate the size of the same transaction using ECDSA instead of qTesla to be

roughly 240 bytes2. Unsurprisingly, the size of a Bitcoin transaction using qTesla

is significantly bigger than when the same transaction uses the classically secure

ECDSA signature scheme. This directly impacts the transaction throughput, i.e.,

less transactions can be processed per second in the post-quantum setting com-

pared to the classical setting. While there exist general techniques to increase the

transaction throughput of a cryptocurrency such as increasing the block size or

decreasing the time required until a block of transactions is considered final, these

solutions do not fundamentally address the transaction throughput issue and come

with various disadvantages. A more promising approach to increase the transaction

throughput in the post-quantum setting is to find a post-quantum secure signature

scheme with smaller public key and signature sizes. We regard our work as a first

step towards post-quantum secure deterministic wallets, which can be improved

upon in future works. Indeed, Hu [114] recently presented a post-quantum secure

signature scheme with rerandomizable keys with reduced public key and signature

sizes compared to our post-quantum secure rerandomizable signature scheme. The

scheme by Hu is based on Falcon [95], a lattice-based signature scheme that follows

the hash-then-sign paradigm [103].

4.2. Related Work

We refer to Section 3.2.1 for a comprehensive overview over related works on the

topic of cryptographic wallets. Here, we focus on related works w.r.t. (post-) quan-

tum secure blockchain networks as well as lattice-based Fiat-Shamir signatures.

Many works have proposed cryptographic primitives with security against quan-

tum adversaries that can be used in blockchain networks (e.g. [8, 9, 85, 183]). In

particular, the concept of a so-called ring confidential transaction (RingCT) with

2In this estimate, we consider uncompressed ECDSA public keys [29] which have a size of
65 bytes. Compressed public keys, instead, have a size of 33 bytes, which would then lead to a
total transaction size of roughly 208 bytes.
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post-quantum security has been extensively studied (e.g., [86, 87, 98, 173, 174]).

A RingCT protocol essentially consists of several cryptographic primitives such as

a linkable ring signature scheme [131, 156], a zero-knowledge proof system [32],

and a commitment scheme [31], and allows to guarantee strong privacy guarantees

for users in a blockchain network. More concretely, when a transaction is sent to

the blockchain via a RingCT protocol, the transaction hides the sender’s identity

as well as the amount of coins spent. The popular privacy-preserving cryptocur-

rency network Monero [150] uses such a RingCT scheme, albeit one that is only

classically secure.

A related line of work has focused on the construction of post-quantum secure

adaptor signatures [84, 104, 122, 168] which is a cryptographic primitive that

has wide applications in blockchain networks. For a comprehensive overview over

(post-quantum secure) adaptor signatures, we refer to Section 5.3 of this thesis.

A comprehensive survey on various post-quantum secure signature schemes with

advanced features that have proven to be useful in the blockchain setting was

provided by Buser et al. [43].

Several works explored the (post-) quantum security of Bitcoin (e.g., [4, 60,

128, 159]) and various industry projects such as the “Bitcoin Post-Quantum” [28],

the “Quantum Resistant Ledger” [155], or the “Abelian” [2] projects build post-

quantum secure blockchain networks.

Finally, lattice-based Fiat-Shamir signatures have been widely studied in the

past (e.g. [6, 73, 120, 134, 144]), however, no prior work considered lattice-based

signature schemes with rerandomizable keys.
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Most blockchain and cryptocurrency networks, including Bitcoin, only support the

execution of simple applications while others, such as Monero or Zcash, are even

more restrictive in their functionality and only support simple payments [26, 158].

While the functionality of blockchains can be extended by appropriately adjusting

their mining algorithms, this requires a hard fork of the blockchain code which

can take several years to complete in practice. In order to improve the restricted

functionality of many blockchains without having to change the blockchain im-

plementation and to allow for the execution of a larger class of applications, a

new type of signature scheme called adaptor signatures was introduced by the

cryptocurrency community [152] and first formally defined by Aumayr et al. [15].2

At a high level, adaptor signatures allow two parties, a signer and a publisher,

to exchange a signature for a secret value. More concretely, adaptor signatures

consider the scenario where the publisher knows an instance of a hard relation,

i.e., a statement and witness pair and the signer holds a signing secret key. The

publisher can then send the statement to the signer who, using its secret key and

the statement, generates an incomplete signature called pre-signature which can

be adapted by the publisher to a full valid signature using the witness. Once the

adapted full signature is published on the blockchain, the signer can extract the

witness given the pre- and full signature.

Adaptor signatures have proven to be extremely versatile for blockchain appli-

cations. They allow for efficient constructions of two important categories of ap-

plications, namely payment channels (e.g., [15, 167]) and atomic swaps (e.g., [70,

171]), while requiring only a minimal functionality from the underlying blockchain.

Payment channels are a so-called off-chain solution, which allows two parties to

issue many micropayments to each other without incurring fees for each transac-

1The introduction of this Chapter as well as Section 5.2.1 were largely taken verbatim
from [83] with some adjustments.

2Fournier [96] concurrently provided a weaker model for adaptor signatures by extending
the definition of verifiably encrypted signatures [36] to so-called one-time verifiable encrypted
signatures. We refer to Section 5.3 for further details.

42



5. Deterministic Wallets for Adaptor Signatures

tion. Atomic swaps, on the other hand, allow two (or more) parties to atomically

exchange tokens, i.e., either the exchange terminates and both parties obtain the

other party’s token or none does. Both of these applications rely on a technique

that allows exchanging a secret value for a signature, which is exactly the func-

tionality that adaptor signatures provide.

Unfortunately, despite the increasing popularity of adaptor signatures, no prior

work analyzed how this primitive can be securely used in practice inside a crypto-

graphic wallet. This is, however, of particular importance for adaptor signatures,

as their security does not only rely on the secure storage of a signing secret key

but also on secret witnesses.

5.1. Background on Adaptor Signatures

Before we detail our contribution of this chapter, we first recall the notion of a

hard relation [65] and adaptor signatures as defined by Aumayr et al. [15]. At a

high level, a relation R is said to be hard if given a statement Y it is infeasible to

find a witness y such that (Y, y) ∈ R. An adaptor signature scheme ASig, is defined

w.r.t. a hard relation R and a signature scheme Sig = (Gen, Sign,Verify) (cf. Def-

inition 2.2.1) and consists four algorithms ASig = (pSign, pVerify,Adapt,Extract).

At a high level, for a signing public/secret key pair (pk, sk) the algorithms pSign

allows to generate an incomplete signature σ̃, a so-called pre-signature, w.r.t. a

message m, a statement Y , and the secret key sk, while pVerify allows to verify

that the pre-signature σ̃ was generated correctly for m, Y , and pk. The Adapt

algorithm then allows to complete σ̃ into a full valid signature σ using a witness y

where (Y, y) ∈ R. Finally, the Extract algorithm allows to extract a witness ỹ such

that (Y, ỹ) ∈ R given the full and the pre-signature, namely σ and σ̃. An adap-

tor signature scheme must satisfy three security properties, namely unforgeability,

witness extractability, and pre-signature adaptability.

At a high level, the notion of unforgeability guarantees that an adversary cannot

forge a valid signature for a message m even after receiving a pre-signature for

m. More concretely, unforgeability of an adaptor signature scheme is defined via a

security game between a challenger and an adversary, where the adversary receives

access to a signing and a pre-signing oracle which respectively return signatures

and pre-signatures for messages (and statements in case of the pre-signing oracle)

chosen by the adversary. Eventually, the adversary outputs a message m∗ to the

challenger, which in turn samples a fresh statement/witness pair (Y ∗, y∗) and sends

a pre-signature on m∗ w.r.t. Y ∗ to the adversary. The adversary wins the game if

(1) it outputs a valid forgery for message m∗, and if (2) the message m∗ was never
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queried to any oracle.

Witness extractability, on the other hand, guarantees that given a pre-signature

σ̃ for a message m and w.r.t. a statement Y , as well as the corresponding adapted

full signature σ, the algorithm Extract outputs a witness ỹ such that (Y, ỹ) ∈ R.

The corresponding security game proceeds as follows: similarly to the unforge-

ability game, the adversary receives access to a signing and pre-signing oracle and

eventually outputs a message m∗. However, in contrast to the unforgeability game,

the adversary outputs a statement Y ∗ along with m∗. The challenger then sends

a pre-signature σ̃ for m∗ and Y ∗ to the adversary, which wins the game if it can

output a valid forgery σ for message m∗ such that (1) the Extract algorithm on

input σ̃ and σ outputs a witness ỹ∗ such that (Y ∗, ỹ∗) /∈ R, and (2) no oracle was

previously queried on m∗.

Finally, pre-signature adaptability guarantees that a pre-signature σ̃ that is valid

w.r.t. a message m and statement Y (i.e., the pVerify algorithm on input σ̃, m,

and Y outputs 1), can be adapted to a valid full signature σ for message m by

executing algorithm Adapt on input σ̃ and a witness ỹ if (Y, ỹ) ∈ R.

5.2. Our Contribution

In this thesis, we initiate the study of deterministic wallets in the hot/cold setting
with support for adaptor signatures. This contribution is contained in the following
publication that can be found in Appendix D:

[83] A. Erwig and S. Riahi. “Deterministic Wallets for Adaptor Signatures”. In: Com-

puter Security - ESORICS 2022 - 27th European Symposium on Research in

Computer Security, Copenhagen, Denmark, September 26-30, 2022, Proceedings,

Part II. 2022, pp. 487–506. Part of this thesis.

In this publication, we first introduce the notion of adaptor signatures with

rerandomizable keys, and we show an instantiation from the ECDSA signature

scheme. We then discuss the design of deterministic wallets in the hot/cold setting

with adaptor signature support, which we call adaptor wallets, and we show how to

generically construct such adaptor wallets from any adaptor signature scheme with

rerandomizable keys and from a witness rerandomizable hard relation The latter

is a novel notion that we introduce in the above publication. Finally, we argue

that it is impossible to construct an adaptor wallet from a hard relation where (1)

statements and witnesses can be rerandomized independently of each other, and

(2) the witness rerandomization algorithm is invertible. In the full version of the

above publication [82], we additionally formalize our model for adaptor wallets,

provide security arguments for our generic adaptor wallet construction, and we
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formalize our impossibility result. In this thesis, however, we focus only on the

contribution contained in the proceedings version of our publication [83], which

we detail in Section 5.2.1.
As a second contribution, we investigate how to generically construct adaptor

signatures, and we extend the notion of adaptor signatures to the two-party setting
within the following publication that can be found (with some adjustments3) in
Appendix E:

[77] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi. “Two-Party Adaptor

Signatures from Identification Schemes”. In: Public-Key Cryptography - PKC

2021 - 24th IACR International Conference on Practice and Theory of Public

Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I. 2021,

pp. 451–480. Part of this thesis.

In more detail, our contribution of the above publication is as follows: as a first

step, we show that we can generically construct adaptor signatures from certain

signature schemes built from identification schemes via the Fiat-Shamir trans-

formation [1, 93, 121], and we show a concrete instantiation from the Schnorr

signature scheme [160]. We additionally show that adaptor signatures cannot be

constructed from unique signature schemes [107, 133, 162]. As a second step, we

show that we can generically construct two-party signature schemes with aggregat-

able public keys from certain signature schemes built from identification schemes

via Fiat-Shamir. Finally, we introduce the notion of two-party adaptor signatures

with aggregatable public keys, and we show a generic construction, essentially com-

bining the two previous generic constructions. In the full version of the above pub-

lication [76], we show concrete instantiations for both of our generic constructions

from the Schnorr [160], Katz-Wang [118], and Guillou-Quisquater [110] signature

schemes. In this thesis, we focus on the contribution contained in the proceedings

version [77], which we detail in Section 5.2.2.

5.2.1. Deterministic Wallets with Adaptor Signature Support4

In this section, we detail our contribution w.r.t. deterministic wallets with adaptor

signature support contained in [83] (cf. Appendix D).

3The publication in Appendix E differs slightly from publication [77]. We refer to Appendix E
for details.

4This subsection was largely taken verbatim from [83] with some adjustments.
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Adaptor Signatures with Rerandomizable Keys

As a first contribution, we introduce the notion of adaptor signatures with reran-

domizable keys, show an instantiation from ECDSA, and discuss the security of

our instantiation.

Model for Adaptor Signatures with Rerandomizable Keys. Similarly to stan-

dard digital signature schemes with rerandomizable keys, we define adaptor signa-

tures with rerandomizable keys by extending regular adaptor signatures by two key

rerandomization algorithms RandPK and RandSK. That is, given an adaptor signa-

ture key pair (pk, sk) and some randomness ρ, the algorithms RandPK and RandSK

respectively allow to deterministically rerandomize pk and sk using ρ to obtain a

new key pair (pk′, sk′) such that (1) (pk′, sk′) constitutes a valid adaptor signature

key pair, and (2) (pk′, sk′) is identically distributed to a freshly generated key pair.

Naturally, we must translate the security notions of regular adaptor signatures to

the rerandomizable key setting. That is, we define security notions unforgeability

under honestly rerandomizable keys, witness extractability under honestly reran-

domizable keys, and pre-signature adaptability. The first two notions extend the

respective security notions of adaptor signatures by allowing the adversary to not

only obtain (pre-)signatures under the secret key sk but also under secret keys

that constitute honest rerandomizations of sk. Further, in our security notions the

adversary can win the game by providing a forgery either under sk or under any

honestly rerandomized key. We define the notion of pre-signature adaptability for

adaptor signatures with rerandomizable keys identically to the corresponding no-

tion for standard adaptor signatures, i.e., we require that if a pre-signature is valid

w.r.t. to a message m, a statement Y , and a public key pk, then the pre-signature

can be adapted to a full signature using a witness ỹ where (Y, ỹ) ∈ R.

ECDSA-based Adaptor Signature with Rerandomizable Keys. As a next step,

we show an instantiation of an adaptor signature scheme with rerandomizable keys

by transforming the existing ECDSA-based adaptor signature scheme [15, 145]

(which we denote here by AEC) into an adaptor signature with rerandomizable

keys (which we denote here by RAEC). To do so, we essentially extend the AEC

scheme by algorithms RandPK and RandSK which multiplicatively rerandomize the

scheme’s key pair. More concretely, the algorithms RandPK and RandSK rerandom-

ize a public/secret key pair (pk, sk) with a randomness ρ by multiplying ρ to the

key pair, i.e., pk′ ← pk · ρ and sk′ ← sk · ρ. We use multiplicative rerandomization

rather than an additive one for the following reason: As we discussed in Chapter 3,

the standard ECDSA signature scheme with additive key rerandomization incurs
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a security loss in the number of rerandomized keys, whereas the ECDSA signature

scheme with multiplicative rerandomization of Das et al. [68] does not incur such a

loss. This security loss stems from the related key attack that is required to prove

the security of the additively rerandomizable scheme. Since the security proof

for the ECDSA-based adaptor signature with rerandomizable keys would rely on

the same related key attack, a similar security loss can be expected. Worse yet,

the related key attack for additively rerandomizable ECDSA allows to prove only

one-per-message unforgeability (cf. Chapter 3). Therefore, we use multiplicative

rerandomization in our instantiation.

Security Analysis of Our Construction. To analyze the security of our RAEC

scheme, we follow the approach of Das et al. [68], who presented a security proof

of the plain ECDSA signature scheme with multiplicatively rerandomizable keys

via a reduction to the (non-rerandomizable) ECDSA signature scheme. The main

ingredient in their security proof is an RKA which allows to transform a signature

on message m under a public key pk to a signature for a message m′ under the

related public key pk′ ← ρ · pk if the randomness ρ has a certain structure (cf.

Chapter 3). This RKA allows their reduction to answer signing queries under

rerandomized keys and to transform a forgery under a rerandomized public key

pk′ to a forgery under the original public key pk.

In our case, we provide proof sketches for a reduction from the unforgeability of

our RAEC scheme to the unforgeability of the AEC scheme and a reduction from

the witness extractability of our RAEC scheme to the witness extractability of the

AEC scheme. However, these reductions do not only require an RKA to transfrom

full ECDSA signatures (as was done by Das et al. [68]), but also an RKA to

transform pre-signatures. We therefore show that the RKA of Das et al. can also

be applied to our RAEC scheme to transform pre-signatures. With this RKA for

full- and pre-signatures in place, we show proof sketches for the two reductions.

The property of pre-signature adaptability of our RAEC scheme follows directly

from the corresponding property of the AEC scheme.

Adaptor Wallets

We next introduce the idea of adaptor wallets, which are essentially deterministic

wallets in the hot/cold setting with adaptor signature support. For our notion of

adaptor wallets we broadly follow the BIP32 standard of hierarchical determinis-

tic wallets (cf. Chapter 3) in the sense that we consider a master wallet which

can deterministically derive either hardened or non-hardened child wallets, and

we assume that non-hardened wallets are implemented in the hot/cold setting.
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However, our adaptor wallet model crucially differs from the notion of hierarchical

deterministic wallets according to BIP32 in the following three points: (1) since

adaptor wallets must be able to support adaptor signature functionality, they must

not only store signing key pairs, but also statement/witness pairs; (2) similarly to

the signing key pairs, the statement/witness pairs must be deterministically de-

rived from the parent to the child wallet, i.e., we require a deterministic derivation

mechanism for statement/witness pairs; (3) for simplicity, we do not allow child

wallets to initialize further child wallets as is done in the fully hierarchical setting.

For non-hardened wallets that we assume to be implemented in the hot/cold set-

ting, we assume that the cold wallet stores the node’s witness and the hot wallet

stores the corresponding statement.

In more detail, the design of our adaptor wallets is as follows: the master wallet

initially generates and stores a master key pair (pk, sk) of an adaptor signature

scheme with rerandomizable keys, a state St, and a master statement/witness

pair (Ym, ym) of a hard relation. It can then deterministically initialize a child

wallet with identifier ID by deriving a new key pair (pkID, skID) from (pk, sk) and

St, as well as a new statement/witness pair (Y ID, yID) from (Ym, ym). The child

wallet can then initialize a counter ctr and use it together with the pair (Y ID, yID) to

deterministically derive further statement/witness pairs (Y ID
ctr , y

ID
ctr). The derivation

of these pairs is necessary since adaptor signature applications (such as payment

channels or atomic swaps) typically require the use of several statement/witness

pairs, i.e., the pair (Y ID, yID) might not be sufficient for the execution of all adaptor

signature applications. We illustrate our adaptor wallet design in Figure 5.1.

Derivation of Statement/Witness Pairs. Clearly, for an adaptor wallet scheme

as described above we require a mechanism which allows to deterministically de-

rive statement/witness pairs. Ideally, this mechanism would allow to derive child

statements and witnesses independently, such that a child statement, say Y ID
ctr ,

could be derived only from the parent statement Y ID, the counter ctr and some

state. Analogously a child witness, say yIDctr, could be derived only from the parent

witness yID, ctr, and the same state. Such a mechanism would integrate perfectly

into the hot/cold setting, where the cold wallet stores only the witness and the hot

wallet stores only the statement and both wallets can independently derive further

child witnesses or statements without having to interact with each other. Surpris-

ingly, we show that for the discrete logarithm hard relation5, such an independent

5In our work, we are mostly interested in the discrete logarithm hard relation Rdlog :=
{(Y, y) | Y = gy} because the adaptor signature variants of the two signature schemes that are
most widely used in cryptocurrency networks, namely ECDSA and Schnorr, rely on this (or a
similar) relation.

48



5. Deterministic Wallets for Adaptor Signatures

sk, ym, St

cw

pk, Ym, St

hw

Root

skID, yID
cw

pkID, Y ID

hw

NH

skID
′
, pkID

′
, yID

′
, Y ID′

H

skID
′′
, pkID

′′
, yID

′′
, Y ID′′

H

Y ID
ctr , y

ID
ctr

Y ID′
ctr , y

ID′
ctr Y ID′′

ctr , yID
′′

ctr

...
... ...

Figure 5.1.: Design of our adaptor wallet scheme with three child wallets. H and
NH denote hardened and non-hardened nodes respectively, cw and
hw denote cold and hot wallets respectively and the values below the
child wallets (e.g. yIDctr, Y

ID
ctr ) illustrate the statement/witness pairs that

are being derived within each child wallet using an internal counter
ctr. Figure taken from [83].

derivation is impossible if statements/witnesses are derived multiplicatively or ad-

ditively. At a high level, that is because adaptor signature applications typically

require child witnesses to be leaked at some point during the execution of the

application. Therefore, if the derivation mechanism is invertible (as is the case for

additive and multiplicative derivation), an adversary could compute the parent

witness from the child witness. As an example, consider a simple multiplicative

derivation mechanism, where the child witness yIDctr is computed from the parent

witness yID as yIDctr ← yID · ρ. Then an adversary knowing yIDctr and ρ could trivially

compute yID and thereby break the security of the adaptor wallet.

In our model and construction, we therefore resort to a derivation mechanism,

where the parent witness yID is required even for the derivation of a child state-

ment Y ID
ctr . To this end, we define the notion of a witness rerandomizable hard

relation which allows to deterministically derive a child statement/witness pair

(Y ′, y′) from a parent witness y and some randomness ρ. More concretely, a

witness rerandomizable hard relation extends the notion of a hard relation by a

deterministic algorithm RandWit that on input a witness y and some randomness

ρ outputs a new witness y′, from which the corresponding statement Y ′ can be

computed. A witness rerandomizable hard relation must satisfy perfect reran-

domizability, which guarantees that if ρ was chosen uniformly at random from an

appropriate randomness space, then the derived statement/witness pair (Y ′, y′) is
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identically distributed to a freshly generated statement/witness pair.

The consequence of using such a witness rerandomizabe hard relation is that in

our adaptor wallet model, the cold wallet of a non-hardened node, which stores

the node’s witness, is required to come online even for the derivation of a child

statement. While this is an important limitation, we argue that our scheme is

still sufficient to execute the two main applications of adaptor signatures, namely

atomic swaps and payment channels. For instance, the application of atomic swaps

typically requires the involved parties to generate only few signatures and/or state-

ment/witness pairs. Therefore, a cold wallet that is used for the execution of an

atomic swap does not need to be activated frequently. Further, in practice one

can minimize the number of times a cold wallet must be activated by batching the

generation of statement/witness pairs, i.e., the cold wallet can generate multiple

pairs and send all statements at once to the hot wallet. For other applications

with frequent transactions, such as payment channels, an adaptor wallet user can

simply use a hardened node.

5.2.2. Two-Party Adaptor Signatures

In this section, we detail the contribution of our publication [77] (cf. Appendix E).

The core contribution of this publication is the formulation of two-party adaptor

signatures which extend standard adaptor signatures to the setting, where two

parties can jointly generate (pre-)signatures. In more detail, we introduce the

notion of two-party adaptor signatures with aggregatable public keys which allows

two parties, say Alice (holding a key pair (pkA, skA)) and Bob (holding a key pair

(pkB, skB)), to jointly generate (pre-)signatures under an aggregated public key

pkAB that can be computed from pkA and pkB.

A motivating example for such a primitive are payment channels. At a high

level, a payment channel allows two parties to send many payments to each other

without having to involve the blockchain and therefore without incurring fees or

confirmation delays. In a bit more detail, Alice and Bob can open a payment

channel by locking some c = cA + cB coins on the blockchain where Alice initially

owns cA coins and Bob owns cB coins. That is, the initial state of the channel

is (cA, cB). Once the channel is open, Alice and Bob can issue payments to each

other without having to involve the blockchain by essentially updating the state of

the channel. More concretely, if Alice sends t ≤ cA coins to Bob, then both parties

update the state of the channel to (cA − t, cB + t) by exchanging signatures on

this new coin distribution. In order to close the channel, one of the parties sends

the latest state to the blockchain which unlocks the c coins and distributes them

accordingly. Importantly, each channel state must always be signed by each party,
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i.e., when the channel is closed two signatures must be sent to the blockchain

which increases the transaction size and consequently the fees both parties have

to pay during channel closure. The two signatures are required to prove that both

parties agreed to the channel state. However, Alice and Bob could use a two-party

signature scheme instead to jointly generate a single signature for each state, which

then decreases the amount of fees during channel closure. Recently, some works

have considered to use adaptor signatures instead of standard signature schemes

for the construction of channels (e.g., [15, 167]). To achieve the same fee benefits

as described above for these channels, we require a two-party adaptor signature

scheme. We now provide an overview of our contribution in more detail.

Generic Construction of Adaptor Signatures

As a first contribution, we explore the possibility of generically constructing adap-

tor signatures. To this end, we show that signature schemes that are constructed

from identification (ID) schemes via the Fiat-Shamir transformation can be used

to construct adaptor signatures if the signature schemes satisfy certain conditions.

An identification scheme is a well-known primitive in cryptography which allows

a party to prove knowledge of a secret key to a verifier in an interactive protocol.

In our work, we focus on so-called canonical identification schemes [1, 121] which

are three-move protocols: First, the prover sends a commitment R to the verifier,

which in turn replies with a challenge h. In the last move, the prover sends a

response s. Using the transcript (R, h, s) and the prover’s public key, the verifier

can finally check whether the prover indeed knows the correct secret key. Such

canonical ID schemes can be transformed into standard digital signature schemes

via the Fiat-Shamir transformation [1, 93, 121]. In our work, we show that we can

further transform such signature schemes (which we denote here by IDSig) into

adaptor signature schemes if the IDSig schemes satisfy certain conditions. More

concretely, we require an IDSig scheme to satisfy the following three conditions:

1. There must exist a deterministic function fshift, which takes as input a com-

mitment R and a statement Y of a hard relation R, and outputs a new

commitment R′.

2. There must exist a deterministic function fadapt, which takes as input a re-

sponse s for a commitment/challenge pair (R, h) and a witness y of a hard

relation R. It outputs a new response s′ for a commitment/challenge pair

(R′, h) where R′ ← fshift(R, Y ) and (Y, y) ∈ R.

3. There must exist a deterministic function fext, which takes as input a response

s for a commitment/challenge pair (R, h) and a response s′ for a commit-
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ment/challenge pair (R′, h) where R′ ← fshift(R, Y ). The function outputs a

witness y′ such that (Y, y′) ∈ R.

At a high level, the above conditions are necessary to ensure that the IDSig

scheme can be extended to support the additional adaptor signature functionality.

We then show a generic construction of adaptor signature schemes from any IDSig

scheme that satisfies the above conditions, and we prove our generic construction

secure in the random oracle model. That is, we prove that our generic construc-

tion satisfies unforgeability, witness extractability, and pre-signature adaptability.

Finally, we show that our generic construction can be instantiated from Schnorr

signatures [160]. As an additional result, we show that it is impossible to construct

an adaptor signature scheme from unique signatures [107, 133, 162].

Generic Construction of Two-Party Signatures from ID Schemes

As a second contribution, we show that we can generically transform an IDSig

scheme to a two-party signature scheme with aggregatable public keys (which we

denote here by SigTwo) if the IDSig scheme satisfies certain conditions. At a

high level, a two-party signatue scheme with aggregatable public keys allows two

parties P0 and P1, which each hold a public/secret key pair (pk0, sk0) and (pk1, sk1)

respectively, to jointly compute a signature for some message m via an interactive

signing protocol, such that the resulting signature is valid w.r.t. a combined public

key pk that can be computed from pk0 and pk1. In a bit more detail, a two-party

signature scheme with aggregatable public keys consists of (1) a setup algorithm,

which sets up the initial public parameters, (2) a key generation algorithm, (3)

an interactive signing procedure, (4) a public key aggregation algorithm, which

allows to aggregate two public keys into one aggregated public key, and (5) a

verification algorithm. For our definition of SigTwo schemes, we closely follow the

definition of multi-signatures with aggregatable public keys which have previously

been introduced and used in several works (e.g., [35, 126, 141]). A SigTwo scheme

must satisfy two properties, namely completeness and unforgeability. The first

property is a correctness property, which says that if parties P0 and P1 honestly

execute the signing procedure for a message m and w.r.t. their respective key pair,

then the resulting signature verifies w.r.t. m and the combined public key as output

by the key aggregation algorithm on input pk0 and pk1. The second property

guarantees that even if one of P0 or P1 is malicious and can execute the interactive

signing procedure jointly with the respective other party on adaptively chosen

messages, the malicious party cannot forge a valid signature under the combined

public key for a fresh message. We define the corresponding unforgeability game in

the so-called knowledge of secret key model (KOSK) [33] where the adversary may
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sample its own key pair at the beginning of the game, but must send its public

and secret key to the challenger. We use this model in order to avoid the use of

rewinding in our security proofs.

We show how to generically construct a SigTwo scheme from any IDSig scheme

that satisfies certain conditions. We denote our generic construction of a SigTwo

scheme in the following by IDSigTwo. At a high level, the joint signing procedure

of IDSigTwo proceeds as follows: Recall that the signing procedure is executed be-

tween two parties P0 and P1, which each obtain as input a public/secret key pair

(pk0, sk0) and (pk1, sk1) respectively. During the signing procedure, each party

initially computes a commitment value R0 and R1 respectively, which they ex-

change and combine into a single commitment R. Using R, each party computes

the corresponding challenge h, and finally each party computes a signature share

s0 or s1 respectively. Ultimately, the two parties exchange their signature shares

and combine them into one full signature s, which constitutes a valid response

for the combined public key as output by the public key aggregation algorithm

on input pk0 and pk1. With this high level overview in mind, we now explain the

three conditions that an IDSig scheme must satisfy for our generic construction of

IDSigTwo:

1. There must exist a deterministic function fcomb−rand, which takes as input two

commitments R0 and R1, and outputs a combined commitment R.

2. There must exist a deterministic function fcomb−sig, which takes as input

two responses s0 and s1 for commitment/challenge pairs (R0, h) and (R1, h)

respectively. The function outputs a combined response s for the commit-

ment/challenge pair (R, h) where R← fcomb−rand(R0, R1).

3. There must exist a deterministic function fcomb−pk, which takes as input

two public keys pk0 and pk1, and outputs a combined public key pk. It

must hold that for two commitment/challenge/response tuples (R0, h, s0)

and (R1, h, s1) which are respectively valid under pk0 and pk1, the tuple

(R, h, s) where s← fcomb−sig(s0, s1) and R← fcomb−rand(R0, R1) is valid under

pk← fcomb−pk(pk0, pk1).

4. There exists a deterministic function fdecomb−sig, which takes as input a chal-

lenge/response pair (h, s) and a secret key sk, and outputs a challenge/response

pair (h, s′). It must hold that if (R, h, s) is valid under pk← fcomb−pk(pk0, pk1),

then (R, h, sb)← fdecomb−sig((h, s), sk1−b) is valid under pkb for b ∈ {0, 1}.

Finally, we prove in the random oracle model that our generic IDSigTwo con-

struction satisfies unforgeability via reduction from the unforgeability property of
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the underlying IDSig scheme. We essentially show that if an efficient adversary

can come up with a valid forgery in IDSigTwo, then we can construct an efficient

adversary that can use this forgery and the function fdecomb−sig to produce a valid

forgery for the IDSig scheme. In our reduction, we simulate the signing procedure

of the IDSigTwo scheme by appropriately programming the random oracle.

Two-Party Adaptor Signatures with Aggregatable Public Keys

As a final contribution, we introduce the primitive of two-party adaptor signatures

with aggregatable public keys, which essentially combines the definitions of adaptor

signatures and two-party signatures with aggregatable public keys. That is, we

define a two-party adaptor signature scheme with aggregatable public keys (which

we denote here by ASigTwo) with respect to a SigTwo scheme and a hard relation

R. An ASigTwo scheme then additionally defines (1) an interactive pre-signing

protocol, which can be jointly executed by parties P0 and P1 to generate a pre-

signature for a message m and a statement Y , and (2) algorithms pVerify, Adapt,

and Extract which are defined in the same way as for standard adaptor signature

schemes (cf. Section 5.1).

We define the properties of two-party pre-signature correctness, unforgeability,

two-party witness extractability, and two-party pre-signature adaptability for an

ASigTwo scheme. At a high level, these properties guarantee the following:

• Two-Party Pre-Signature Correctness: If parties P0 and P1 honestly execute

the pre-signing protocol on input their respective key pairs (pk0, sk0) and

(pk1, sk1), a message m, and a statement Y , then the resulting pre-signature

σ̃ can be adapted to a valid full signature σ under the combined public key

using witness y with (Y, y) ∈ R. In addition, the pre-signature σ̃ must pre-

verify (i.e., the pVerify algorithm must output 1), and executing the Extract

algorithm on input σ, σ̃, and Y must output a witness y′ such that (Y, y′) ∈ R.

• Unforgeability and Two-Party Witness Extractability: The unforgeability

and two-party witness extractability notions are defined identically to the

respective notions of regular adaptor signatures with the following differ-

ences: At the beginning of the respective security games, the adversary is

allowed to corrupt either P0 or P1 and to control that party throughout the

entire game. In addition, the (pre-)signing oracles are now interactive, i.e.,

the respective oracles execute the (pre-)signing protocols jointly with the

adversary, where the oracles execute the role of the honest party.

• Two-Party Pre-Signature Adaptability: The two-party pre-signature adapt-

ability property guarantees that a pre-signature σ̃ that is valid for a message
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m, a statement Y , and under a combined public key pk, can be adapted to

a full signature σ for message m and under pk by executing the algorithm

Adapt on input σ̃ and a witness y′ where (Y, y′) ∈ R.

We then show how to generically construct an ASigTwo scheme from our generic

IDSigTwo construction as presented above. The security of our construction can

be shown by combining our security proofs for our generic adaptor signature con-

struction and for our generic two-party signature with aggregatable public keys

construction.

5.3. Related Work

We now provide an overview over relevant related works for the topics of adaptor

signatures as well as multi-signatures and identification schemes. For a comprehen-

sive overview over related works for cryptographic wallets, we refer to Section 3.2.1.

5.3.1. Adaptor Signatures

Poelstra [152] first introduced the primitive of adaptor signatures in 2017, which

has found wide applications in blockchain networks since then, in particular for

payment channel (hubs) (e.g., [15, 154, 167]) and for atomic swaps (e.g., [70, 112,

171]). Aumayr et al. [15] and Fournier [96] concurrently provided a formal model

for adaptor signatures for the first time and proved the security of a Schnorr-

based [152] instantiation in their respective models. Aumayr et al. additionally

proved the security of an ECDSA-based [145] instantiation. We note that the

security model of Fournier is weaker than the one of Aumayr et al. since its

unforgeability notion does not allow the adversary to learn a pre-signature on the

forgery message. Indeed, due to this reason, the model of Fournier is not suitable

for certain blockchain applications.

Dai et al. [63] revised the formal definition of adaptor signatures as provided

by Aumayr et al. [15]. Concretely, Dai et al. introduced the security notion

of (strong) full extractability, and showed that this notion strictly implies the

security notions of unforgeability and witness extractability (cf. Section 5.1) for

adaptor signatures. In addition, Dai et al. introduced the notion of unlinkability,

which guarantees at a high level that an adapted pre-signature for a message m is

indistinguishable from a signature computed via the signing algorithm for the same

message m. The authors also showed a generic construction of adaptor signatures

from any signature scheme and any hard relation, however, with the drawback

that the resulting adaptor signature scheme produces signatures with a different
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structure than those of the underlying signature scheme. This is a significant

caveat, since it essentially renders the resulting adaptor signatures incompatible

with any major blockchain network. Recently, Tu et al. [176] presented two slightly

modified variants of the previous ECDSA-based adaptor signature scheme [15, 145]

and argued that these variants can be used for efficient atomic swaps in certain

scenarios.

Another line of work focused on adaptor signature schemes with post-quantum

security [84, 104, 122, 168]. More concretely, Esgin et al. [84] introduced an

adaptor signature scheme based on lattice assumptions, namely Module-SIS and

Module-LWE [39, 125], whereas Tairi et al. [168] introduced an adaptor signature

scheme based on an isogeny assumption, namely the MT-GAIP assumption [90].

Similarly, within a Master’s thesis, Gilchrist [104] constructed an adaptor signature

scheme from the SQISign signature scheme [91] whose security is based on isogeny

assumptions. Finally, Klamti and Hasan [122] proposed an adaptor signature

scheme based on assumptions from coding theory.

Several works considered schemes with a similar functionality as adaptor sig-

natures (e.g., [7, 19, 57, 170]). In particular, Thyagarajan and Malavolta [170]

introduced the notion of lockable signatures, which allows to generate a lock from

two signatures σ and σ̃ such that (1) the lock hides σ, and (2) signature σ can be

recovered from the lock knowing σ̃. While conceptually similar, lockable signatures

are a weaker primitive than adaptor signatures as the generation of a lock requires

knowledge of the unlocking secret, namely signature σ̃. For adaptor signatures,

however, the generation of a pre-signature (which is the equivalent of a lock) re-

quires only knowledge of a publicly known statement, but not of a corresponding

secret witness. Chen et al. [57] introduced the notion of concurrent signatures,

which allows two parties to exchange incomplete signatures that require an addi-

tional value to be completed to full signatures. However, concurrent signatures

only support the exchange of two signatures, whereas adaptor signatures allow

to exchange a signature for an arbitrary witness of the respective hard relation.

Furthermore, concurrent signatures require a change in the signature verification

algorithm of the underlying signature scheme which makes the primitive unsuitable

for the blockchain setting.

Finally, various works (e.g., [154, 166]) extended the notion of adaptor signatures

to more complex primitives which were then used for the construction of blockchain

applications.
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5.3.2. Multi-Signatures and ID Schemes

In the past, there has been extensive work on the topic of multi-signatures (e.g., [22,

115, 142, 151]), which allow a set of signers, who each hold a signing public/secret

key pair, to collaboratively generate a signature on some message m such that

the resulting signature verifies w.r.t. m and the public keys of all signers. Sev-

eral works also considered the extension of multi-signatures with aggregatable

public keys (e.g. [35, 126, 141]), where the public keys of the signers can be aggre-

gated into a single joint public key. The latter is particularly interesting for the

blockchain setting since (1) the aggregated public key is short and hence can be

easily stored on the blockchain, and (2) the resulting signature can be verified via

the verification algorithm of the underlying (single party) signature scheme that

the multi-signature scheme builds upon.

There exists a large body of works on canonical identification schemes (ID

schemes) such as [27, 93, 110, 143], and several works studied the security of signa-

ture schemes built from ID schemes via the Fiat-Shamir transform [93] (e.g., [1, 23,

119, 121]). Our results on generic constructions of adaptor signatures, two-party

signatures with aggregatable public keys, and two-party adaptor signatures with

aggregatable public keys from ID schemes as contained in our publication [77]

partly build upon the work of Kiltz et al. [121], which gave a concrete security

analysis of such signature schemes obtained from ID schemes.
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Cryptographic wallets are an essential tool for cryptocurrency users to securely

store and maintain their secret signing keys and thereby to protect their funds from

attackers. This thesis contributes generally to the advancement of provably secure

cryptographic wallets and their use in cryptocurrency and blockchain networks. In

particular, in this thesis we analyzed and improved upon the BIP32 standard [179],

the current state of the art standard for hierarchical deterministic wallets. We

will conclude this thesis by providing a discussion on interesting open research

questions in the context of cryptographic wallets.

Custodial-Specific Wallets. The custody type of a cryptographic wallet deter-

mines who is in control of the wallet and thereby of the funds that the wallet

stores. All wallet schemes that we presented in this thesis are agnostic of whether

they are being used as custodial or non-custodial wallet, i.e., the wallets can either

be maintained by a service provider on behalf of a user or by the user itself. While

this custody-agnostic approach allows to use our wallet schemes in any of the two

aforementioned custody settings, it might be interesting to develop wallets for a

specific custody type. The advantage of this custody-specific approach is that it

allows to better address the specific requirements for each setting separately. For

instance, in addition to the properties of wallet unforgeability and wallet unlink-

ability, it might be desirable that a custodial wallet satisfies a message-privacy

property. This property should roughly guarantee that the service provider, which

maintains the wallet on behalf of a user, does not learn any information about the

transactions that the user instructs the service provider to sign. This would be an

essential property for custodial wallets to prevent censorship attacks, where the

service provider refuses to sign certain transactions based on their contents (e.g.,

transactions to a specific address). Such a message-privacy property, however, is

not required in the non-custodial setting, where the user signs all transactions

itself. On the other hand, in the non-custodial setting a key backup mechanism

is crucial, which allows the user to restore its signing secret key in case it loses

its wallet. Hence, constructing wallet schemes for specific custodial types allows

to define required security properties in a more fine-grained way and therefore to

achieve more secure and potentially more efficient solutions.
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As mentioned in the introduction of this thesis, a compelling middle ground

between custodial and non-custodial wallets are so-called shared-custodial wallets,

where a user and a service provider jointly maintain a wallet such that none can

generate signatures without the help of the other. Such wallets have significant

advantages over (non-)custodial wallets in the sense that (1) the user does not

have to trust the service provider, and (2) the user does not lose all of its coins

if its device gets corrupted. Indeed, due to these advantages, several companies

such as Sepior1 and ZenGo2 already develop and offer a shared-custodial wallet

service. We regard it as an interesting future work to provide a formal model for

such wallets and to show constructions that can be proven secure in the respective

model.

Deterministic Wallets for Advanced Signature Schemes. Most existing works

on cryptographic wallets have focused on either standard signature schemes such

as ECDSA [116], Schnorr [160], or BLS [37] (e.g., [67, 68, 111]), on their threshold

variants (e.g. [30, 66, 123]), or on signature schemes that are incompatible with

many blockchain networks (e.g., [114, 132, 181]). However, there exist various more

advanced notions of signature schemes which extend the functionality of standard

digital signature schemes and which are often found to be useful in the context

of blockchain networks. One example for such an advanced signature scheme are

adaptor signatures [15, 96, 152] for which we introduced a deterministic wallet in

this thesis. Unfortunately, several other advanced signature schemes have not yet

been analyzed in the context of cryptographic wallets. For instance, in our publi-

cation [77], we introduced the notion of two-party adaptor signatures with aggre-

gatable public keys which allow for the construction of more cost-efficient channels.

Similarly, Qin et al. [154] introduced the notion of blind adaptor signatures and

show that this primitive can be used to construct Bitcoin-compatible anonymous

payment channel hubs. Verifiable timed signatures [169] are a recently proposed

primitive that find applications in blockchain networks for privacy-preserving pay-

ment channel networks (e.g., [135, 136]), multi-signature transactions, and fair

multiparty computation with financial compensation. Unfortunately, for none of

the above primitives it has been analyzed how they can be securely executed within

a cryptographic wallet. We regard this as an interesting future work, since these

schemes will ultimately only be useful in practice, if they can be executed in a

secure environment and if users can securely store the involved secret values.

1https://sepior.com/
2https://zengo.com/
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6. Conclusion

Two-Factor Authenticated Password Wallets. Two-factor authentication is a

widely used mechanism to significantly increase the security of a system in prac-

tice. The idea behind this mechanism is that, in order to break the security of

a system, an adversary must compromise two different parts of the system. As

an example, consider a traditional banking system: in order to obtain access to

a user’s funds, an adversary must (1) compromise the banking device of the user

(e.g., its smartphone or banking card), and (2) know the user’s password or PIN.

Only one of these two factors is not sufficient to compromise the user’s banking

account.

A similar mechanism would be useful to strengthen the security of cryptographic

wallets. In some sense, existing threshold wallets such as [66, 123] inherently

offer a multi-factor authentication mechanism, since a certain threshold of wallet

devices is necessary to generate a valid signature and therefore to spend funds.

However, securely maintaining several devices and activating a subset of them

each time a user wants to send a payment is a cumbersome task in practice. A

more common way to implement a two-factor authentication mechanism (which is

indeed also used by traditional banks as described above) is to combine the access

to a device with the knowledge of a password. Indeed, already in 2012, the Bitcoin

community acknowledged the need for password-protected secret keys within the

BIP38 standard [44]. However, even though various password-based cryptographic

primitives have been thoroughly studied in the past (e.g., [17, 25, 45]), there exist

only few works in the context of wallets. To the best of our knowledge, the only

works that propose the use of a password or passphrase for wallets consider only

the very specific case of hardware wallets [11, 139].

We believe that it is an interesting research question to develop an authentication

mechanism based on passwords that can be generically combined with existing

wallet schemes. Essentially, such a generic construction would yield a framework

that allows to readily strengthen the security of a cryptographic wallet scheme

by adding a two-factor authentication mechanism. Such a mechanism would be

particularly useful for our deterministic wallet constructions that we presented in

this thesis: recall that in our constructions we often assumed cold wallets to be

incorruptible since the leakage of a secret key can trivially break the security of

the entire wallet scheme. Now assume we have a mechanism that allows to store

the secret key in the cold wallet encrypted under a password. Then, to break the

security of the wallet scheme, an adversary must not only corrupt the cold wallet,

but also know the correct password under which the secret key is encrypted. That

is, using such a password-based authentication mechanism, we might be able to

prove our wallet constructions secure in a stronger model, where we allow an

adversary to even corrupt cold wallets.
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[34] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.

“Random Oracles in a Quantum World”. In: Advances in Cryptology - ASI-

ACRYPT 2011 - 17th International Conference on the Theory and Application of

Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011.

Proceedings. 2011, pp. 41–69.

[35] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures for Smaller

Blockchains”. In: Advances in Cryptology - ASIACRYPT 2018 - 24th Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II.

2018, pp. 435–464.

[36] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and Verifiably

Encrypted Signatures from Bilinear Maps”. In: Advances in Cryptology - EU-

ROCRYPT 2003, International Conference on the Theory and Applications of

Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings. 2003,

pp. 416–432.

[37] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures from the Weil Pairing”.

In: J. Cryptol. 4 (2004), pp. 297–319.

[38] C. Bonte, N. P. Smart, and T. Tanguy. “Thresholdizing HashEdDSA: MPC to

the Rescue”. In: Int. J. Inf. Sec. 6 (2021), pp. 879–894.

[39] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) Fully Homomorphic

Encryption without Bootstrapping”. In: ACM Trans. Comput. Theory 3 (2014),

13:1–13:36.

64

https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm


7. Bibliography

[40] S. Brands. “Untraceable Off-line Cash in Wallets with Observers (Extended Ab-

stract)”. In: Advances in Cryptology - CRYPTO ’93, 13th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993,

Proceedings. 1993, pp. 302–318.

[41] J. Breitner and N. Heninger. “Biased Nonce Sense: Lattice Attacks Against Weak

ECDSA Signatures in Cryptocurrencies”. In: Financial Cryptography and Data

Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and

Nevis, February 18-22, 2019, Revised Selected Papers. 2019, pp. 3–20.

[42] M. Brengel and C. Rossow. “Identifying Key Leakage of Bitcoin Users”. In:

Research in Attacks, Intrusions, and Defenses - 21st International Symposium,

RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018, Proceedings. 2018,

pp. 623–643.

[43] M. Buser et al. “A Survey on Exotic Signatures for Post-Quantum Blockchain:

Challenges and Research Directions”. In: ACM Comput. Surv. 12 (2023).

[44] M. Caldwell and A. Voisine. BIP38 Proposal. https://en.bitcoin.it/wiki/

BIP_0038. 2012.

[45] J. Camenisch, A. Lehmann, G. Neven, and K. Samelin. “Virtual Smart Cards:

How to Sign with a Password and a Server”. In: Security and Cryptography for

Networks - 10th International Conference, SCN 2016, Amalfi, Italy, August 31 -

September 2, 2016, Proceedings. 2016, pp. 353–371.

[46] R. Canetti. “Universally Composable Security: A New Paradigm for

Cryptographic Protocols”. In: 42nd Annual Symposium on Foundations of

Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA.

2001, pp. 136–145.

[47] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. “UC Non-

Interactive, Proactive, Threshold ECDSA with Identifiable Aborts”. In: CCS ’20:

2020 ACM SIGSAC Conference on Computer and Communications Security,

Virtual Event, USA, November 9-13, 2020. 2020, pp. 1769–1787.

[48] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.

“Bandwidth-Efficient Threshold EC-DSA”. In: Public-Key Cryptography -

PKC 2020 - 23rd IACR International Conference on Practice and Theory of

Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II.

2020, pp. 266–296.

[49] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.

“Bandwidth-efficient threshold EC-DSA revisited: Online/Offline Extensions,

Identifiable Aborts, Proactivity and Adaptive Security”. In: IACR Cryptol.

ePrint Arch. (2021), p. 291.

65

https://en.bitcoin.it/wiki/BIP_0038
https://en.bitcoin.it/wiki/BIP_0038


7. Bibliography

[50] Certik. 2022 Year in Review - Crypto Wallet Security Incidents. https://www.

certik.com/resources/blog/01iz10lvnaAIcuNZ2zNJqA- 2022- year- in-

review-crypto-wallet-security-incidents. 2023.

[51] D. Chaum. “Blind Signatures for Untraceable Payments”. In: Advances in Cryp-

tology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August

23-25, 1982. 1982, pp. 199–203.

[52] D. Chaum. “Security Without Identification: Transaction Systems to Make Big

Brother Obsolete”. In: Commun. ACM 10 (1985), pp. 1030–1044.
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Abstract
In many cryptocurrencies, the problem of key management has become one of the most fundamental

security challenges. Typically, keys are kept in designated schemes called wallets, whose main purpose
is to store these keys securely. One such system is the BIP32 wallet (Bitcoin Improvement Proposal
32), which since its introduction in 2012 has been adopted by countless Bitcoin users and is one of
the most frequently used wallet system today. Surprisingly, very little is known about the concrete
security properties offered by this system. In this work, we propose the first formal analysis of the
BIP32 system in its entirety and without any modification. Building on the recent work of Das
et al. (CCS ‘19), we put forth a formal model for hierarchical deterministic wallet systems (such
as BIP32) and give a security reduction in this model from the existential unforgeability of the
ECDSA signature algorithm that is used in BIP32. We conclude by giving concrete security parameter
estimates achieved by the BIP32 standard, and show that by moving to an alternative key derivation
method we can achieve a tighter reduction offering an additional 20 bits of security (111 vs. 91 bits
of security) at no additional costs.

Keywords:Wallets, cryptocurrencies, foundations, BIP32

1 Introduction
Decentralized cryptocurrencies such as Bitcoin or Ethereum have introduced a new digital payment
paradigm which does not rely on a central authority such as a bank or a credit card company. The main
building block used in many popular cryptocurrencies to facilitate secure transfer and holding of assets are
digital signatures. Loosely speaking, a user Alice in the system is identified by her public key pkA which
she uses as her address for receiving and sending payments. If Alice wants to send c coins of the underlying
currency to another user Bob with address pkB , she creates a transaction tx saying “Send c coins from
pkA to pkB” and signs tx using her secret key skA. She then uploads the transaction tx together with
the signature σ to the public ledger (often also called blockchain) of the cryptocurrency. Once the tuple
(tx, σ) is visible on the public ledger, the payment is completed meaning that now Bob owns an additional
c coins of the underlying currency. Clearly, Alice’s funds remain secure only as long as no one can forge a
signature σ on her behalf that verifies under pkA. On top of this, it is generally recommended to use a
fresh signing key for every new transaction stored on the public ledger to avoid that all transactions are
linkable to the same user Alice. In the cryptocurrency space, the management and storage of secret keys
is typically carried out by so-called wallets – which are pivotal for the security of cryptocurrency funds.
Indeed, cryptocurrency wallets are a highly attractive target for hackers as illustrated by spectacular
attacks against common cryptocurrency projects. For example, in 2018 alone, hackers managed to steal
more than one billion USD worth of cryptocurrency from wallets [Ske18, Blo18, Bit18].

While several recent works study the formal security properties of cryptocurrency wallets (see related
work for a detailed discussion), one of the most widely used schemes – the BIP32 wallet [Wik18] –
has not been formally analyzed so far. This is somewhat surprising as BIP32 became a standard for
deterministic Bitcoin wallets in 2012, and has been widely adopted since then (e.g., it is used in the
deployment of popular wallets [Ele13, Tre14, Led14]). In this work, we address this gap and provide the
first comprehensive study of the security properties achieved by the BIP32 wallet standard.



1.1 Deterministic Wallets
As we have already pointed out, to improve privacy it is important to not re-use the same signing key for
too many public transactions. To explain why privacy is also beneficial for security, let us consider a user
Alice who holds a single secret/public key pair (skA, pkA), and that she receives multiple payments to her
address pkA. As we have explained, such transactions contain her public key pkA and are posted to the
public ledger. Hence, an attacker can easily extract Alice’s balance via the public transaction ledger. Over
time, pkA’s balance might grow, and at some point, the attacker may identify pkA as a high-priority target.
The obvious approach to thwart an attacker’s attempts of linking Alice’s transactions would be for Alice
to keep a set of l one-time random key pairs {(sk1, pk1), . . . , (skl, pkl)} within her wallet, where each key
pair is used for a single transaction on the public ledger. However, this approach has the obvious downside
of Alice having to store all of her keys on disk (as long as they still retain some amount of currency). This
requires a lot of storage space and bears the risk of losing one of her keys, at which point the associated
funds of that key are irrevocably lost. A simple approach to overcome these issues are deterministic
wallets, proposed by Buterin [But13]. A deterministic wallet usually contains a pair of master keys
(msk,mpk) and a seed ch, which is also referred to as the chaincode. For every new transaction, the
wallet deterministically derives a fresh session key pair (sk, pk) from the master keys with the help of
deterministic key derivation algorithms. More precisely, the public key derivation algorithm takes as
input the master public key mpk, the chaincode ch and an identifier ID and deterministically computes
a one-time public key pkID. An analogous secret key derivation algorithm takes in msk, ch, and ID and
deterministically computes a one-time secret key skID that matches pkID (given that the arguments ch
and ID in both derivations are identical). Going back to the example of BIP32, (msk,mpk) are generated
as ECDSA keys and public key derivation is done by computing the offset ω := H(mpk, ch, ID), where
ID ∈ [232] and then rerandomizing mpk to pkID by computing pkID := mpk + G · ω. Here, G denotes
the base point of an elliptic curve group of prime order p. A matching secret key can be derived via
skID := msk + ω (mod p).
Hot/Cold Wallets. A typical way of using deterministic wallets in practice is via the hot/cold wallet
paradigm. With this approach, Alice maintains two wallets. The first wallet is referred to as the cold
wallet. It keeps the master secret key msk as well as the chaincode. The cold wallet is usually implemented
via some simple storage device that should be almost permanently disconnected from the internet, so
as to minimize the risk of attack. The second wallet is the so-called hot wallet, which is permanently
online and keeps the master public key as well as the chaincode. Using the deterministic key derivation
procedures, the two wallets can independently derive matching keys to use for one-time transaction on
the public ledger. In a bit more detail, Alice uses her hot wallet as a low-security spending wallet which,
at any point in time, keeps only a small amount of currency. Whenever the funds stored on the hot wallet
exceed a certain amount, Alice can use the public key derivation algorithm to derive a new public key
pkID on her hot wallet and transfer the excess funds to pkID. Note that this requires no interaction with
the cold wallet. At a later point in time, the cold wallet can come online for a brief moment and spend
the funds from pkID, using a matching secret key skID derived via the secret key derivation algorithm.
As far as security goes, we would like to ensure two properties. First, unlinkability ensures that keys
derived from the same master key pair are indistinguishable from random keys, given that the hot wallet
has not leaked the chaincode to the attacker. Second, unforgeability ensures that even if the hot wallet
leaks the chaincode (e.g., because it has been corrupted), signatures from derived keys should still remain
unforgeable. While unlinkability is easy to achieve, unforgeability is a much more subtle issue in this
setting, as the derived keys are all correlated once the chaincode has been revealed to the attacker. Hence,
the standard unforgeability property of the underlying signature scheme is no longer sufficient to ensure
unforgeability of signatures under these derived keys.

1.2 Limitations of Existing Works
The work of Das et al. [DFL19] was the first to provide a formal model to reason about the aforementioned
security properties. It also showed how to achieve secure constructions in their proposed model from
various different signature schemes used in practice, e.g., Schnorr, BLS, and ECDSA. Notably, the latter
construction is very practical and can be integrated directly with the (unmodified) Bitcoin system. In
spite of these achievements, their work makes no progress towards formally proving security properties
for the BIP32 wallet standard that is widely used in many real-world systems. Let us discuss the reasons
for this in a little more detail.
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First, the construction of Das et al. uses a multiplicative rerandomization to derive keys, in which keys
for identity ID are computed from ω = H(mpk, ch, ID) as pkID := mpk · ω, and skID := msk · ω (mod p).
By comparison, as we saw above, BIP32 uses an additive rerandomization. Although this might look like
a minor difference, we will see later that the proof technique and security guarantees achieved by the
additive version differ significantly from the multiplicative one. Second, the work of Das et al. does not
consider the hierarchical key derivation mechanism provided by BIP32. Hierarchical deterministic wallets
allow for keys in the wallet to act simultaneously as signing keys and as parent (master) keys to derive
new child keys in their own right. As a useful example, consider a company that wishes to delegate new
signing key pairs to different entities within the company. Unfortunately, it cannot be guaranteed that
all entities in the company store their keys securely and some of them might be leaked to the adversary
over time. Such a strong adversary cannot be captured by the model and constructions of Das et. al.
Since many wallets that are used in practice follow the BIP32 standard, it is crucial to provide a formal
analysis of the scheme as is, meaning without any modifications to it.

1.3 Our Contributions
In this work we address the above shortcomings and provide, for the first time, a formal analysis of the
full BIP32 specification in the hot/cold wallet setting. An important implication of our work is that we
can establish the exact security that is achieved by the current standard, which also leads us to propose a
minor modification that can significantly improve security without any additional costs.
Rerandomizing ECDSA. We begin by recalling the notion of unforgeability under honestly rerandomized
keys (UFCMA-HRK) introduced by Das et al. [DFL19]. As this notion will serve as the basis of our
wallet constructions, we review it in detail below. Compared to the standard notion of unforgeability
under chosen message attacks (UFCMA), the adversary in the UFCMA-HRK game initially obtains a
challenge public key pk and gets to query for rerandomizations of pk. The game returns the rerandomized
public key p̃k together with the (uniformly chosen) randomness ρ that was used in the rerandomization
process. The exact way that the rerandomization is actually done depends on the scheme; we are mostly
interested in the case where ECDSA keys are additively rerandomized as pk + G · ρ. The game then
allows the adversary to query for signatures relative to any of the rerandomized public keys that it has
previously obtained from the game. It is considered successful if it can return a forgery relative to any of
the requested keys p̃k on a message for which it has not previously asked for a signature under p̃k. As
observed by Das et al., this security notion is a weakened version of unforgeability under rerandomized
keys [FKM+16] in which the adversary can choose the random coins ρ itself and provide them to the
game. In Section 3, we prove that ECDSA with additive rerandomization satisfies UFCMA-HRK as long
as each message is signed only once per key. A first attempt is to naively follow the approach of Das
et al. who showed that ECDSA with multiplicative rerandomization satisfies UFCMA-HRK (without
any restrictions on the number of signatures per message). The main idea of Das et al.’s reduction from
UFCMA-HRK to UFCMA (both with respect to the ECDSA scheme) is to rely on a related key attack
(RKA) that is present in the multiplicatively rerandomized version of the ECDSA scheme. Concretely,
the RKA allows to transform a signature (r, s) on message m0 relative to a key pk0 into a signature
(r, s/ρ) on message m1 that is valid under the related key pk1 = pk0 · ρ, where ρ satisfies ρ = H(m0)

H(m1) . This
attack can be leveraged by the reduction to answer all signing queries in the UFCMA-HRK game. More
precisely, using the RKA, it is possible to transform signatures obtained from the signing oracle in the
UFCMA game into signatures relative to any of the rerandomized keys in the UFCMA-HRK game (via
programming of the random oracle). Hence, we are immediately faced with the following obstacle: this
RKA does not work if keys are additively rerandomized.
Extending to Additive Rerandomization. To overcome this issue with the existing reduction, we
present a new RKA which works for additively rerandomized ECDSA. The attack works as follows:
given a signature (r, s) on m0 relative to pk0, (r, s) is also a valid signature relative to the public key
pk1 = pk0 + ρ ·G on message m1, given that ρ = (H(m0)− H(m1))/r. Rather surprisingly, considering
ECDSA’s huge popularity, we are not aware of this attack having been noticed previously. Using our
new RKA, we are now able to (almost) make the simulation of signatures in Das et al.’s approach work.
However, there is a further issue that comes from the structure of the additive RKA. Suppose that the
reduction is directed to program the random oracle H on a message m so as to provide the attacker with
a signature relative to a (rerandomized) public key p̃k in the UFCMA-HRK game. The above RKA
forces the reduction to program H on a value that depends on a particular signature (r, s) on m, which it
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obtains from the signing oracle in the underlying UFCMA game. Now, the only signature on m that
the reduction can hand to the adversary under p̃k is (r, s). If the adversary requests another signature
on the same message m, we are not able to reply with a fresh signature, as we can program H on m
only a single time. For this reason, we have to restrict ourselves to one-per-message unforgeability. We
emphasize, however, that this notion of security (one signature per-message) is sufficient in our setting, as
transactions are identified by unique nonces in most cryptocurrencies (including Bitcoin) and hence never
signed twice. An additional benefit of our new reduction (compared to [DFL19]) is that it only requires
the weaker assumption that the underlying ECDSA scheme is one signature per-message unforgeable
in its own right. This is worth noting, as the work of Fersch et al. shows that ECDSA achieves this
property in the random oracle model [FKP17] (albeit with a very large security loss). By comparison,
the unrestricted security (i.e., UFCMA) of ECDSA remains only a conjecture in the plain random oracle
model. Our reduction also removes the need for the random salt present in Das et al.’s construction.
This is an important improvement, as it allows using BIP32 without Bitcoin’s scripting language, which
was required by the construction of Das et al. due to their use of the salt. Finally, we remark that our
reduction (by comparison to Das et al.) is non-tight and loses a factor proportional to the total number of
keys derived in the UFCMA-HRK game. We provide further discussion on this issue in the next section
and in Section 3.
Hierarchical Wallets. To complete the analysis of BIP32, the second part of our work focuses on formal
security properties when supporting hierarchies in deterministic wallet constructions (as is the case for
BIP32). As already hinted, the core difficulty in this setting is that some of the wallet’s keys may be
given to untrustworthy users who may leak their cold wallet keys to the adversary. If this happens, it is
important to ensure that the adversary does not gain information about secret keys further up in the
hierarchy. It is easy to see that this property is not achieved if all keys are derived using the derivation
algorithms described so far: if the adversary learns skID = msk + ρ (mod p), where ρ is computed as
ρ = H(mpk, ch, ID), then it can recover msk as msk = skID − ρ (mod p) and learn all cold wallet keys
that were ever derived using msk. Because of this, BIP32 offers a second mode of deriving keys called
hardened key derivation. Hardened keys are derived by changing the computation of the offset ρ above
to ρ = H(msk, ch, ID). Now, even when learning skID, it is not possible for the adversary to recover msk.
The downside of hardened key derivation is that the hot and cold wallet can no longer independently
derive keys (as the hot wallet does not know msk). Thus, this mode of derivation is not intended for use
in the hot/cold wallet paradigm, but simply to create keys with a higher degree of security. These keys
can either be stored (efficiently) as part of the main wallet or handed to users in the system without
any concern for other cold wallet keys. In Section 4, we state the syntactical definition and correctness
properties of a hierarchical deterministic wallet. We then introduce a security model that supports both
types of key derivations (hardened and non-hardened), as well as secret key leakage of hardened keys.
We refer to this notion of security as WUFCMA. In Section 5, we provide a generic construction HDWal
that transforms a signature scheme satisfying UFCMA-HRK into a hierarchical deterministic wallet with
WUFCMA security.1 In this way, we are able to complete the analysis of BIP32 by instantiating HDWal
with ECDSA using additive rerandomization.
On the Tightness of Our Construction. A particular focus of our work is to analyze the tightness
and concrete security achieved by our constructions, most notably BIP32. We have already mentioned
that our reduction from UFCMA-HRK to UFCMA of the ECDSA scheme with additive rerandomization
is non-tight. More precisely, it loses a factor proportional to the number of keys derived by the adversary
in the UFCMA-HRK game. Thus, our goal is to at least achieve the best possible tightness of our generic
transform HDWal. To this end, let us first consider the possible options for potential security losses. From
worst to best (excluding a tight reduction), the options are:

• Loss in the number of random oracle queries.

• Loss in the number of keys derived in the wallet (hardened or non-hardened).

• Loss in the number of signing oracle queries (assuming keys are used only once).

• Loss in the number of hardened keys leaked to the adversary.
1In case the underlying signature scheme has the one signature per message restriction, then the resulting wallet scheme

also does.
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The first three possibilities are quite catastrophic as the number of random oracle queries, signing oracle
queries, or keys derived in practice could be quite high. On the other hand, we expect the number
of leaked keys to be only a small portion of all the keys in a given wallet (we use 1% as an estimate
in our calculations). We are able to prove that HDWal indeed achieves a multiplicative security loss
proportional to only the hardened keys leaked to the adversary over the course of the lifetime of the wallet.
Furthermore, we show that any generic transform from UFCMA-RK (a stronger notion than what is used
in our construction) to WUFCMA must lose at least this factor. Hence, our construction HDWal achieves
the best possible parameters. To prove our results, we adapt the reduction/metareduction techniques
introduced by Coron in his seminal work [Cor02]. Given that his results deal with the tightness of unique
signatures (which is very different from our setting), this requires careful insight into his technique in
order to adapt it to our model.
Concrete Security Parameters. We conclude by giving a discussion of the concrete security levels
achieved by BIP32 and the multiplicative ECDSA scheme of Das et al., when plugged into HDWal. We
find that BIP32 gives roughly 94 bits of security according to our theorems and conservative choices of
parameters. We find that by comparison, the multiplicative version of Das et al. gives 114 bits of security
with a similarly efficient scheme. (We remark that using the techniques introduced in our paper, we can
also remove the salt in the multiplicatively rerandomizable ECDSA version of Das et al.). Given these
insights, we strongly recommend that the Bitcoin community switch rerandomizations in BIP32 from
additive to multiplicative, in particular since these changes essentially come for free.

1.4 Related Work
The most relevant previous work for us is by Das et al. [DFL19] as mentioned previously. However,
there have been other works which try to formalize cryptographic wallets. The work of Gutoski and
Stebila [GS15] proposes an alternative construction for hierarchical wallets where up to d session keys
can leak without the master secret key being compromised under the one-more discrete-log assumption.
However, their security model is weaker than our model (or the security model of Das et al. on which we
base our work). More precisely, in their model, the adversary cannot query the game for signatures under
uncompromised wallet keys. Furthermore, instead of the traditional security model where the adversary
wins if she can forge a signature, the adversary’s goal in their security definition is to extract the master
secret/public key pair. Another more recent work is by Luzio et al. [LFA20] where the authors design a
new hierarchical wallet scheme by using (deterministic) hierarchical key assignment schemes [ABFF09].
Unfortunately, their solution is not compatible with cryptocurrencies such as Bitcoin since their solution
requires a more sophisticated (signature) verification algorithm, where a certificate associated with the
user needs to be verified along with the signature.

Turuani et al. [TVR16] analyzed the Bitcoin Electrum wallet using automated verification in the
Dolev-Yao model. However, many automated verification models only consider “idealized” building blocks,
i.e., cryptographic building blocks that are perfectly secure. Consequently, this type of analysis excludes
weaknesses such as related key attacks, which are of fundamental relevance in the setting of deterministic
wallets.

Another line of work has considered the security of hardware wallets [MPs19, AGKK19] and implemen-
tation bugs in wallets (such as weak randomness) [CEV14, BR18, BH19]. Additionally, there have been
several works with focus on the use of threshold ECDSA signatures [KMOS19, GGN16, LN18, DKLs18]
and multi-signatures [BDN18] in (and outside of) wallet systems.

In a recent work, Alkadri et al. [ADE+20] have shown how to realize deterministic wallets that
are post-quantum secure. To this end, they suitably adapt the model and techniques of Das et al. by
considering an adversary with quantum computing power.

The concept of rerandomizable signature schemes was first introduced by Fleischhacker et al. [FKM+16]
and later used by [DFL19, ADE+20] for their wallet schemes. In addition, related key attacks have been
studied for signature schemes such as Schnorr [Sch90] in many previous works [FF13, KMP16, ZCC+15].
For ECDSA, Das et al. leveraged related key attacks to achieve a multiplicatively rerandomizable ECDSA
scheme which they prove secure w.r.t. the security notion of unforgeability under honestly rerandomizable
keys. Finally, Fersch et. al. [FKP16] provided the first security analysis of ECDSA in an idealized model.
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2 Preliminaries
Notation. We use the notation s $← H to denote the uniform sampling of a variable s from the set H.
For an integer l, [l] denotes the set of integers {1, · · · , l}. We use upper case letters to denote algorithms.
For an algorithm A, we write y $← A(x) to denote the execution of a randomized algorithm A on input x
that outputs y. We write y ← B(x; ρ) to denote the execution of an algorithm B that, on input x and
randomness ρ, outputs y. Note that in this notation, B is deterministic. We use the notation y ∈ A(x)
to denote that y is in the set of possible outputs of A on input x.

In order to simplify our notation and definitions, we assume that public parameters par have been
securely generated and can be used throughout the paper as input to algorithms. We generally assume
that, initially, boolean variables are set to false, integers are set to 0, lists are set to ∅, and undefined
entries of lists are set to ⊥. For strings a, b ∈ {0, 1}∗, we write a = (b, ·) if b is a prefix of a and likewise,
we write a ≠ (b, ·) if a is not prefixed by b. We denote by κ the security parameter throughout the paper.

We use standard code-based security games [Sho04]. A game G is an interactive probability experiment
between an adversary A and an (implicit) challenger which provides answers to oracle queries posed by
A. The output of G when interacting with adversary A is denoted as GA. Finally, the randomness in
any probability term of the form Pr[GA = 1] is assumed to be over all the random coins in game G.

2.1 Signature Schemes
We now recall the definition of signature schemes and that of signature schemes with perfectly rerandom-
izable keys from [DFL19].

Definition 2.1 (Signature Scheme). A signature scheme is a tuple of algorithms Sig = (Sig.Gen,Sig.Sign,Sig.Verify)
which are defined as follows:

• Sig.Gen(par) : The randomized key generation algorithm Sig.Gen takes as input public parameters par
and outputs a public/secret key pair (pk, sk).

• Sig.Sign(sk,m) : The (possibly) randomized signing algorithm Sig.Sign takes as input a secret key sk
and a message m and outputs a signature σ.

• Sig.Verify(m, pk, σ) : The deterministic verification algorithm Sig.Verify takes as input a public key pk,
a signature σ, and a message m. It outputs either 1 (accept) or 0 (reject).

A signature scheme Sig is correct if the following holds: For all (pk, sk) ∈ Sig.Gen(par) and all m ∈ {0, 1}∗
we have that

Pr
σ

$←Sig.Sign(sk,m)
[Sig.Verify(pk, σ,m) = 1] = 1.

Definition 2.2 (Signature Scheme with Perfectly Rerandomizable Keys). A signature scheme with per-
fectly rerandomizable keys is a tuple of algorithms RSig = (RSig.Gen, RSig.Sign, RSig.Verify,
RSig.RandSK, RSig.RandPK) where (RSig.Gen,RSig.Sign,
RSig.Verify) are the standard algorithms of a signature scheme. Moreover, we assume that the pub-
lic parameters par define a randomness space R := R(par). Then the algorithms RSig.RandSK and
RSig.RandPK are defined as follows:

• RSig.RandSK(sk; ρ): The deterministic secret key rerandomization algorithm RSig.RandSK takes as
input a secret key sk and randomness ρ ∈ R and outputs a rerandomized secret key sk′.

• RSig.RandPK(pk; ρ): The deterministic public key rerandomization algorithm RSig.RandPK takes as
input a public key pk and randomness ρ ∈ R and outputs a rerandomized public key pk′.

We make the convention that for the empty string ϵ, we have that RSig.RandPK(pk; ϵ) = pk and
RSig.RandSK(sk; ϵ) = sk.

We further require:
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1. (Perfect) rerandomizability of keys: For all (sk, pk) ∈ RSig.Gen (par) and ρ $← R, the distributions of
(sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RSig.RandSK(sk; ρ),RSig.RandPK(pk; ρ)) ,
(sk′′, pk′′) $← RSig.Gen (par) .

2. Correctness under rerandomized keys: For all (sk, pk) ∈ RSig.Gen (par), for all ρ ∈ R, and for all
m ∈ {0, 1}∗, the rerandomized keys sk′ ← RSig.RandSK(sk; ρ) and pk′ ← RSig.RandPK(pk; ρ) satisfy:

Pr
σ

$←RSig.Sign(sk′,m)
[RSig.Verify

(
pk′, σ,m

)
= 1] = 1.

Security notion uf -cma1. In this work, we use the security notion of one-per message existential
unforgeability under chosen message attacks (uf -cma1) [FKP17] which is a slightly weaker variant of
the standard notion of existential unforgeability under chosen message attacks (uf -cma) security. In
contrast to standard uf -cma, in uf -cma1, the adversary is restricted to querying the signing oracle at
most once for each message. We formalize the uf -cma1 notion for a signature scheme Sig in the form of
a game uf -cma1Sig as follows.

Game uf -cma1Sig:

• Setup Phase: The challenger initiates a list as SigList← {ϵ} for storing messages and samples a pair
of keys (pk, sk) $← Sig.Gen(par). Then, A is run on input pk.

• Online Phase: A is given access to a signing oracle Sign which works as follows. On input a message
m, if m was queried in a previous Sign query, i.e., if m ∈ SigList, then ⊥ is returned. Otherwise, Sign
computes a signature on message m as σ $← Sig.Sign(sk,m). The message m is stored in the SigList
and the signature σ is returned as the answer.

• Output Phase: Finally, A wins the game if it can provide a forgery σ∗ on a message m∗, where (1)
m∗ is fresh, i.e., m∗ /∈ SigList and (2) σ∗ is a valid forgery, i.e., Sig.Verify(pk, σ∗,m∗) = 1.

For an algorithm A we define A’s advantage in the game uf -cma1Sig as AdvAuf -cma1Sig = Pr[uf -cma1ASig =
1].
Security notion uf -cma-hrk1. For signature schemes with perfectly rerandomizable keys, we in-
troduce the notion of one-per message existential unforgeability under honestly rerandomizable keys
(uf -cma-hrk1), which restricts the security notion of existential unforgeability under honestly rerandom-
izable keys (uf -cma-hrk) as introduced by Das et al. [DFL19]. In this security notion, the signing oracle
cannot only return signatures under sk, but it can also return signatures that were produced with keys
that represent honest rerandomizations of sk. The term honest indicates that the randomness for the
rerandomization is chosen uniformly at random from R (by the game itself). Our security notion of
uf -cma-hrk1 restricts the notion of uf -cma-hrk in the sense that the signing oracle returns at most
one signature for each randomness/message pair (ρ,m). We formally model the notion of uf -cma-hrk1
for a rerandomizable signature scheme RSig in the form of a game uf -cma-hrk1RSig as follows.

Game uf -cma-hrk1RSig:

• Setup Phase: The challenger initializes two lists as SigList ← {ϵ} and RList ← {ϵ} and samples a
pair of keys (pk, sk) $← RSig.Gen(par). Then A is run on input pk.

• Online Phase:

– A is given access to an oracle Rand, which, upon a query, samples a fresh random value from R as
ρ $← R, stores ρ in the list RList, and returns ρ.

– A is given access to a signing oracle RSign which works as follows. On input a message m and
a randomness ρ, if ρ was not obtained via a prior Rand query (i.e., ρ /∈ RList), then return ⊥.
Otherwise, derive a pair of keys rerandomized with the randomness ρ, as sk′ ← RSig.SKDer(sk; ρ)
and pk′ ← RSig.PKDer(pk; ρ). If (pk′,m) ∈ SigList then return ⊥. Otherwise, a signature is derived
on message m under the secret key sk′ as σ ← RSig.Sign(sk′,m). The tuple (pk′,m) is stored in the
SigList and the signature σ is returned as the answer.
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• Output Phase: A wins if it returns a forgery σ∗ together with a message m∗ and a public key
pk∗ ← RSig.PKDer(pk; ρ∗),2 s.t. following holds: (1) the randomness ρ∗ has been derived via a Rand
query, i.e., ρ∗ ∈ RList, (2) (m∗, ρ∗) is fresh, i.e., (pk∗,m∗) /∈ SigList, and (3) σ∗ is a valid forgery, i.e.,
RSig.Verify(pk∗, σ∗,m∗) = 1.
For an algorithm A we define A’s advantage in game

uf -cma-hrk1RSig as AdvAuf -cma-hrk1RSig = Pr[uf -cma-hrk1ARSig = 1].
Other than only allowing the adversary to ask for at most one signature per message, our definition

deviates from the one presented in [DFL19] by storing the tuples (pk′,m) in the list SigList instead of
just storing m. This change allows an adversary in the uf -cma-hrk1 game to query a signature for the
same message but under different public keys.

3 Security Analysis of Additively Rerandomizable ECDSA
In the following discussion, let E(par) denote an elliptic curve with base point G and prime order p.
Furthermore, assume hash functions H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp (modeled as random oracles).
In this section, we present a signature scheme with rerandomizable keys REC[H1] based on the standard
ECDSA scheme which we denote by EC[H0] (cf. Figure 1). REC[H1], as illustrated in Figure 7, works
in a similar way as EC[H0] with two main differences. (1) It is extended by two algorithms RandSK
and RandPK for the key rerandomization and (2) it is designed for key-prefixed messages. First, the
two algorithms RandSK and RandPK randomize a key pair by adding a random value to each key. This
is in contrast to the signature scheme with multiplicatively rerandomizable keys based on ECDSA as
presented by Das et al. [DFL19], where the rerandomization algorithms multiply a random value to each
key. Second, REC[H1] is designed for key-prefixed messages, i.e., upon executing REC[H1].Sign(sk,m) for
a secret key sk and a message m, the message is first extended to a key-prefixed message pm← (pk,m)
where pk represents the public key corresponding to sk. Then the prefixed message pm is signed under sk.

We prove that REC[H1] satisfies uf -cma-hrk1 security by providing a reduction from the uf -cma1
security of the standard ECDSA scheme EC[H0]. An integral part of the reduction is the observation that
there exists a so-called “related key attack” (RKA) in the scheme EC[H0]. An RKA allows to transform a
signature that is valid under a public key pk0 into a signature that is valid under another public key pk1
given there exists a specific relation between pk1 and pk0. The RKA in EC[H0] allows to use a signature
σ that is valid under a public key pk0 as a valid signature under a public key pk1 in case pk1 and pk0 are
related as pk1 = pk0 + ρ ·G, where ρ must satisfy ρ = H0(m0)−H1(m1)

r . We formally describe this related
key attack in the following Lemma.
Lemma 3.1 Let H0, H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Suppose
that σ = (r, s) is a valid signature on message m0 ∈ {0, 1}∗ w.r.t. EC[H0] and public key pk0, i.e.,
EC[H0].Verify(pk0, σ,m0) = 1. Furthermore, let ρ = H0(m0)−H1(m1)

r (mod p). Then σ is also a valid
signature on message m1 ∈ {0, 1}∗ w.r.t. EC[H1] and public key pk1 = pk0 + ρ ·G, i.e., EC[H1].Verify(pk1,
σ,m1) = 1.
Proof of Lemma 3.1. We have to show that EC[H1].Verify(pk1, σ,m1) = 1 for pk1 = pk0 + ρ · G and
ρ = H0(m0)−H1(m1)

r (mod p). Note that σ = (r, s), where s = t−1(H0(m0)+rsk0) (mod p) and r represents
the x-coordinate of the elliptic curve point t ·G for t $← Zp. As shown in Figure 1, EC[H1].Verify(pk1, σ,m1)
computes the following:

u1 ·G+ u2 · pk1

=H1(m1) · s−1 ·G+ r · s−1 ·
(

pk0 + H0(m0)− H1(m1)
r

·G
)

=s−1 ·G (H1(m1) + r · sk0 + H0(m0)− H1(m1))
=s−1 ·G (r · sk0 + H0(m0))
=t · (H0(m0) + rsk0)−1 · (H0(m0) + rsk0) ·G = t ·G

Since the x-coordinate of t ·G equals r (mod p), it holds that EC[H1].Verify(pk1, σ,m1) = 1.
2For simplicity, we tacitly assume that pk∗ identifies ρ∗. This can easily be achieved using appropriate bookkeeping.
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Algorithm EC[H0].Gen (par)
00 x $← Zp

01 X ← x ·G
02 sk← x
03 pk← X
04 Return (pk, sk)

Algorithm
EC[H0].Sign (sk = x,m)
05 z ← H0(m)
06 t $← Zp

07 (ex, ey)← t ·G
08 r ← ex mod p
09 If r = 0 mod p
10 Goto Step 06
11 s← t−1 (z + rx) mod p
12 If s = 0 mod p
13 Goto Step 06
14 Return σ := (r, s)

Algorithm
EC[H0].Verify (pk = X,σ,m)
15 Parse (r, s)← σ
16 If (r, s) ̸∈ Zp

17 Return 0
18 w ← s−1 mod p
19 z ← H0(m)
20 u1 ← zw mod p
21 u2 ← rw mod p
22 (ex, ey)← u1 ·G+ u2 ·X
23 If (ex, ey) = (0, 0)
24 Return 0
25 Return r = ex mod p

Figure 1: EC [H0] = (EC[H0].Gen, EC[H0].Sign, EC[H0].Verify): ECDSA signature scheme over to elliptic curve E using
hash function H0 : {0, 1}∗ → Zp.

The RKA from Lemma 3.1 can be extended to an RKA between the schemes EC[H0] and REC[H1]
such that a valid signature under pk0 for a prefixed message pm ← (pk1,m) in EC[H0] is also valid in
REC[H1] under pk1 for message m. This RKA allows to transfer a valid signature from EC[H0] to a valid
signature in REC[H1] and vice versa in case pk0 and pk1 satisfy the relation from Lemma 3.1. We formally
present this RKA in the following Lemma.

Lemma 3.2 Let H0, H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Let m ∈ {0, 1}∗
and suppose that σ = (r, s) is a valid signature on message pm← (pk1,m) w.r.t. EC[H0] and public key pk0,
i.e., EC[H0].Verify(pk0, σ, pm) = 1. Furthermore, suppose that pk1 = pk0 + ρ ·G where ρ = H0(pm)−H1(pm)

r
(mod p). Then σ is also a valid signature on message m w.r.t. REC[H1] and public key pk1, i.e.,
REC[H1].Verify(pk1, σ,m) = 1.

Proof of Lemma 3.2. We have to show that REC[H1].Verify(pk1, σ,m) = 1 for pk1 = pk0 + ρ · G and
ρ = H0(pm)−H1(pm)

r (mod p), where pm← (pk1,m). Note that σ = (r, s), where s = t−1(H0(pm) + rsk0)
(mod p) and r represents the x-coordinate of the elliptic curve point t · G for t $← Zp. As shown in
figure 7, REC[H1].Verify(pk1, σ,m) first computes the prefixed message pm ← (pk1,m) and then runs
EC[H1].Verify(pk1, σ, pm). The rest follows from the proof of Lemma 3.1 with m0 = m1 = pm.

3.1 Security analysis of REC
In this section, we analyze the one-per message unforgeability of the honestly rerandomizable signature
scheme, or in short the uf -cma-hrk1 security of the scheme REC[H1]. We prove the following theorem.

Theorem 3.3 Let H0,H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Let A be an
algorithm that plays in the game uf -cma-hrk1REC[H1]. Then there exists an algorithm C running in
roughly the same time as A, such that

AdvCuf -cma1EC[H0] ≥
(

AdvAuf -cma-hrk1REC[H1]
− q2

H1

p

)
· 1
q

where qH1 and q are the number of random oracle queries and Rand queries, respectively, that A makes.
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Algorithm REC[H1].Sign (sk,m)
00 pm← (pk,m)
01 σ ← EC[H1].Sign (sk, pm)
02 Return σ

Algorithm
REC[H1].Verify (pk, σ,m)
03 pm← (pk,m)
04 Return
EC[H1].Verify (pk, σ, pm)

Algorithm
REC[H1].RandSK (sk; ρ)
00 sk′ ← (sk + ρ) mod p
01 Return sk′

Algorithm
REC[H1].RandPK (pk; ρ)
02 pk′ ← (pk + ρ ·G)
03 Return pk′

Figure 2: Key-prefixed version of the ECDSA signature scheme with perfectly rerandomizable keys REC[H1]
:= (REC[H1].Gen = EC[H1].Gen, REC[H1].Sign, REC[H1].Verify, REC[H1].RandSK, REC[H1].RandPK) based
on the ECDSA signature scheme EC[H1]. Above H1 : {0, 1}∗ → Zp denotes a hash function.

Due to space limitations, we present the full proof of Theorem 3.3 in Appendix A. We now give some
intuition on how we overcome the main difficulties in our simulation. At a high level, the idea is to
reduce the uf -cma-hrk1 security of the additively rerandomizable ECDSA construction REC[H1] from
the uf -cma1 security of ECDSA construction EC[H0]. Therefore, the proof essentially consists of building
a reduction C trying to come up with a valid forgery to win the uf -cma1EC[H0] game, by simulating the
uf -cma-hrk1REC[H1] game to adversary A using the RKA from Lemma 3.2. In the uf -cma1EC[H0] game,
C obtains a public key pkC from its challenger. It can query an oracle Sign to get signatures w.r.t. pkC .
C also has access to a random oracle H0. C’s goal is to somehow embed its public key pkC in one of the
rerandomized public keys pk∗ under which A eventually returns a forgery (pk∗, σ∗,m∗). The hope is that
C can use (pk∗, σ∗,m∗) to win its own game uf -cma1EC[H0].

In more detail, C’s strategy works as follows. Instead of directly using pkC , C generates the challenge
public key for A by additively shifting pkC with a freshly sampled ρ̃ $← R, i.e., pk← pkC − ρ̃ ·G. When
A asks for a signature under a key pk′ = pk + ρ ·G, C can simulate such signatures by querying its Sign
oracle and employing the RKA from Lemma 3.2. This is because, to the adversary A, pk′ looks like a
rerandomization of pk, while in fact, it is derived from pkC as pk′ = pk + ρ ·G = (pkC − ρ̃ ·G) + ρ ·G.
To make this simulation work, the random oracle H1 must be carefully programmed by C such that
the relation between ρ, H0 and H1 satisfies H1(m) = H0(m)− r · ρ (mod p) (according to Lemma 3.2),
where (r, s) := σ is the signature3.Note that, due to the programming of the random oracle, the first
simulated signature for every message and randomness pair (m, ρ) fully determines H1(m). Hence, the
simulated signing oracle in uf -cma-hrk1REC[H1] can be queried at most once on every input pair (m, ρ).
C’s strategy to win uf -cma1EC[H0] is to embed ρ̃ at random as an answer to one of the Rand queries in
uf -cma-hrk1REC[H1]. For signing queries w.r.t. p̃k, C does not reprogram H1; instead, it uses H0 and
signatures obtained from the signing oracle in uf -cma1EC[H0] directly. If A returns a valid forgery σ∗

w.r.t. to pk∗ = p̃k = pk + ρ̃ ·G, then C can simply use this forgery to win the uf -cma1EC[H0] game. This
is because pk∗ = pk + ρ̃ · G = pkC − ρ̃ · G + ρ̃ · G = pkC. Note that pk∗ is the only key for which the
forgery σ∗ is valid in game uf -cma1EC[H0]. For any other key pk′, the simulation of the signing oracle
in uf -cma-hrk1REC[H1] requires to reprogram H1 on any message that is prefixed with pk′. Since this
involves a signing query on that very message to the signing oracle in uf -cma1EC[H0], the forgery would
no longer be fresh in the latter game. This guessing on C’s part is also the reason that our reduction is
not tight.

4 A Model for Hierarchical Deterministic Wallets
In this section, we introduce a formal model for hierarchical deterministic wallets. This model closely
reflects the BIP32 specification [Wik18] with only minor differences which we list in Section 6. At a high

3An important aspect of this simulation is that C can program H1 whenever it observes a query m to H1 that is prefixed
with a previously rerandomized key. In particular, this can be done before m is ever queried to the signing oracle in
uf -cma-hrk1REC[H1].
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level, a hierarchical deterministic wallet scheme can be visualized as a tree, where every node in the tree
corresponds to a wallet. As is usual in a tree structure, the scheme originates from a root node, which
contains a pair of master keys - a master public key mpk and a master secret key msk as well as a seed
ch0,0 which we will refer to as chaincode from now on. We say that the root node is located at level 0 of
the tree. The root can create a child node at level 1 and position t by deriving a new key pair (pk1,t, sk1,t)
and a chaincode ch1,t from its master keys and chaincode ch0,0. This child node represents a new wallet
that is initiated with the key pair (pk1,t, sk1,t) and chaincode ch1,t and using these values it can in turn
create a child node for level 2. This child creation process can continue recursively. Note, however, that a
node at level i can only create children for the immediate lower level, i.e., for level i+ 1.

In our model, we distinguish between two different kinds of nodes, namely non-hardened and hardened
nodes. Non-hardened nodes are, in essence, the nodes as discussed above, i.e., nodes that can be used for
child creation at the next lower level. We assume that the public key and the chaincode of a non-hardened
node can be corrupted by an adversary, whereas the secret key remains protected. One might think of
non-hardened nodes as wallets in the hot/cold wallet setting, where the hot wallet stores the public key,
the cold wallet stores the secret key and the chaincode is provided to both wallets. While the hot wallet
is permanently online and thereby vulnerable to attacks, the cold wallet stays offline for the majority of
the time and is therefore protected against attacks. To create a non-hardened child node at level i and at
position t, its parent must generate the child node’s key pair (pki,t, ski,t) and chaincode chi,t. We model
the derivation of these values in such a way that the derivation process of ski,t involves the parent’s secret
key, while the derivation of pki,t and chi,t requires only the parent’s public key and chaincode (i.e., it is
independent of the parent’s secret key).

Hardened nodes, on the other hand, represent the leaves of the tree, i.e., we do not consider any
child derivation from hardened nodes4. However, in comparison to non-hardened nodes we allow secret
key leakage, along with public key and chaincode leakage for hardened nodes. That is, we consider full
corruption of hardened nodes. Our security goal is that the secret key leakage of a hardened node does
not affect the security of any other node in the tree. As opposed to non-hardened nodes, the creation
process of a hardened child node requires the secret key of the parent node, i.e., even for the derivation of
the child’s public key and chaincode . The tree structure of a hierarchical deterministic wallet scheme,
containing hardened as well as non-hardened nodes can be found in Figure 4.

While hardened nodes clearly exhibit stronger security guarantees than non-hardened nodes, the
advantage of non-hardened nodes lies in the child creation process. We will illustrate this advantage in
the following example. In a company there might be trusted and untrusted employees. Trusted employees
operate a non-hardened node, as they are trusted to properly protect their secret key, e.g., by storing it in
a cold wallet. On the other hand, untrusted employees have to operate a hardened node as they might leak
their secret key or simply get compromised. Assume a trusted employee maintains a non-hardened node
with key pair (pki,t, ski,t) and chaincode chi,t. Further assume that the node is operated in a hot/cold
wallet setting, i.e., the tuple (ski,t, chi,t) is stored in a cold wallet and the tuple (pki,t, chi,t) is stored
in a hot wallet. If the employee wishes to receive payments to different public addresses, it can simply
generate these addresses by deriving non-hardened child public keys using only the information stored
in its hot wallet. In particular, the cold wallet can remain offline during this process. Only when the
employee wants to spend the coins it received, it has to use ski,t from the cold wallet to generate the
secret keys corresponding to the public addresses it generated earlier.

Another example for the usefulness of non-hardened nodes is the following. Consider a company A
that operates a non-hardened node with key pair (pki,t, ski,t) and chaincode chi,t only to receive payments
from a company B. In this case, company A can simply share pki,t and chi,t with company B, which can
then by itself generate non-hardened child public keys and make the payments to those addresses. Note
that in this case, company A does not have to be involved in the payment process at all.
Flat Vs Hierarchical Deterministic Wallets. Let us now briefly discuss the main difference between
the model for hierarchical deterministic wallets and the setting originally analyzed by Das et. al [DFL19]
which we denote as the flat model. The key derivation process in the flat model works in the same way as
the non-hardened key derivation in the hierarchical model with the difference that the flat model allows to
derive keys only directly from the master key pair. Hardened nodes are not considered in the flat model.
Therefore, the flat model basically represents a hierarchical wallet structure with non-hardened leaf nodes
at level 1 (see Figure 4). Since the flat model allows only for non-hardened key derivation, the essential

4We show in Appendix B that child derivation of hardened nodes is possible under certain conditions.
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Figure 3: Tree structure of a hierarchical deterministic wallet scheme. Hardened nodes are denoted by H
while non-hardened nodes are denoted by NH.

difference to the hierarchical model is that the flat model cannot allow for any secret key leakage as this
would render the entire scheme insecure. Hierarchical wallets, on the other hand, introduce hardened
nodes whose secret keys can be leaked without affecting the security of any other node in the tree.

Root

NH NH NH · · ·

level 0

level 1

Figure 4: Tree structure of a deterministic wallet scheme in the flat setting.

In the following, we refer to a tree as a tuple (h, n0,0,N , E) if (N , E) defines a tree of height h with
node set N and edge set E , and a root node n0,0 ∈ N . We denote a directed path pt

i of length i from the
root to a node ni,t ∈ N at level i and position t in the tree as the corresponding ordered sequence of
edges pt

i = (e1, · · · , ei) ∈ E i. A path of length 1 from a node ni−1,s ∈ N to a node ni,t ∈ N consists of
only one edge which we denote as es,t

i ∈ E .

Definition 4.1 (Address Structure). Let T = (h, n0,0,N , E) be a tree. Define a labeling of the nodes in
N as follows.

• The root node n0,0 is labeled by an address addr0,0.

• For 1 ≤ t < |N | and 0 ≤ i ≤ h, a node ni,t ∈ N is labeled by an address addri,t := (addr0,0, p
t
i).

A tuple (T ,Addr) is said to be an address structure (with respect to T ) if Addr consists of a set of labels
for the nodes in N that meets the above requirements. A prefix address addrj

i,t for a node ni,t ∈ N
with 0 ≤ j < i ≤ h and t < |N | is a vector of length j + 1 consisting of the first j + 1 components of
addri,t ∈ Addr.

We are now ready to define hierarchical deterministic wallets. In short, these schemes consist
of a Setup algorithm, which initializes the root node, hardened and non-hardened secret and public
key derivation algorithms SKDerH,PKDerH and SKDerNH,PKDerNH and finally signing and signature
verification algorithms Sign and and Verify. We assume that public parameters par are known to all
parties and we define appropriate secret and public key sets SK and PK respectively. We assume there
exists a function ToPubKey : SK → PK that on input a secret key from SK outputs the corresponding
public key in PK. Formally we have:

Definition 4.2 (Hierarchical Deterministic Wallets). Let T = (h,
n0,0,N , E) be a tree. A hierarchical deterministic wallet scheme is defined w.r.t. an address struc-
ture (T ,Addr) and consists of seven algorithms HDWal = (Setup,SKDerH,SKDerNH,PKDerH,PKDerNH,
Sign,Verify) which are defined as follows:
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• Setup(1κ): The probabilistic setup algorithm takes as input a security parameter 1κ and outputs a
non-hardened master key pair (msk0,0,mpk0,0) with msk0,0 ∈ SK, mpk0,0 ∈ PK and a chaincode ch0,0.

• SKDerH(ski,s, chi,s,addri,s, es,t
i+1): The deterministic hardened secret key derivation algorithm takes as

input a secret key ski,s ∈ SK, a chaincode chi,s, an address addri,s ∈ Addr for level i < h, positions
s, t, as well as an edge es,t

i+1 ∈ E . It outputs a secret key ski+1,t ∈ SK, a chaincode chi+1,t and an
address addri+1,t ∈ Addr for level i+ 1 and position t.

• SKDerNH(ski,s, pki,s, chi,s,addri,s, es,t
i+1): The deterministic non-hardened secret key derivation algo-

rithm takes as input a secret key ski,s ∈ SK, a public key pki,s ∈ PK, a chaincode chi,s, an address
addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs a secret key
ski+1,t ∈ SK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for level i+ 1 and position t.

• PKDerH(ski,s, pki,s, chi,s,addri,s, es,t
i+1): The deterministic hardened public key derivation algorithm

takes as input a secret key ski,s ∈ SK, a public key pki,s ∈ PK, a chaincode chi,s, an address
addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs a public key
pki+1,t ∈ PK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for level i+ 1 and position t.

• PKDerNH(pki,s, chi,s,addri,s, es,t
i+1): The deterministic non-

hardened public key derivation algorithm takes as input a public key pki,s ∈ PK, a chaincode chi,s, an
address addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs a public
key pki+1,t ∈ PK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for level i+ 1 and position t.

• Sign(ski,s,m): The probabilistic signing algorithm takes as input a secret key ski,s and a message m.
It outputs a signature σ.

• Verify(pki,s,m, σ): The probabilistic verification algorithm takes as input a public key pki,s, a message
m and a signature σ. It outputs 0 or 1.

A hierarchical deterministic wallet is correct, if a secret and public key pair is derived correctly using
the algorithms SKDerH,PKDerH or SKDerNH,PKDerNH, the keys represent a valid signing key pair.

We denote keys with subscript nh (e.g., sknh,·,· or pknh,·,·) as non-hardened keys and keys with subscript
h (e.g., skh,·,· or pkh,·,·) as hardened keys. A key without the subscript nh or h indicates that it can be
both a non-hardened or hardened key.

Definition 4.3 (Correctness of Hierarchical Deterministic Wallets). Let HDWal be a hierarchical de-
terministic wallet scheme with respect to an address structure (T ,Addr). For any e0,s

1 ∈ E and any
(ch0,0,msknh,0,0,mpknh,0,0) ∈ Setup(1κ), we define tuples (skh,1,s, ch1,s,addr1,s) and (pkh,1,s, ch1,s,addr1,s)
as

(skh,1,s, ch1,s,addr1,s) := SKDerH(msknh,0,0, ch0,0,addr0,0, e0,s
1 )

(pkh,1,s, ch1,s,addr1,s) := PKDerH(msknh,0,0, ch0,0,addr0,0, e0,s
1 )

and tuples (sknh,1,s, ch1,s,addr1,s) and (pknh1,s, ch1,s,addr1,s) as

(sknh,1,s, ch1,s,addr1,s) := SKDerNH(msknh,0,0, ch0,0,addr0,0, e0,s
1 )

(pknh,1,s, ch1,s,addr1,s) := PKDerNH(mpknh,0,0, ch0,0,addr0,0, e0,s
1 ).

Further, for any addri−1,s ∈ Addr, and any edge es,t
i ∈ E we define the tuples (skh,i,t, chi,t,addri,t)

and
(
pkh,i,t, chi,t,addri,t

)
recursively as

(skh,i,t, chi,t,addri,t) := SKDerH(sknh,i−1,s, chi−1,s,addri−1,s, es,t
i )

(
pkh,i,t, chi,t,addri,t

)
:= PKDerH(sknh,i−1,s, chi−1,s,addri−1,t, es,t

i )

and tuples (sknh,i,t, chi,t,addri,t) and
(
pknh,i,t, chi,t,addri,t

)
as
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(sknh,i,t, chi,t,addri,t) := SKDerNH(sknh,i−1,s, chi−1,s,addri−1,s, es,t
i )

(
pknh,i,t, chi,t,addri,t

)
:= PKDerNH(pknh,i−1,s, chi−1,s,addri−1,s, es,t

i )

HDWal is correct if for all m ∈ {0, 1}∗, all 1 ≤ i ≤ h, all 1 ≤ t ≤ (1 − dh+1)/(1 − d), and all
(ch0,0,msknh,0,0,mpknh,0,0) ∈ Setup(1κ) it holds that

Pr
σ←Sign(skh,i,t,m)

[Verify(pkh,i,t, σ,m) = 1] = 1

∧ Pr
σ←Sign(sknh,i,t,m)

[Verify(pknh,i,t, σ,m) = 1] = 1.

4.1 Oracles
Let us now describe the general capability and influence that the adversary has over the hierarchical
wallet schemes. An adversary is allowed to create new hardened and non-hardened nodes in the tree.
Furthermore, the adversary can corrupt the hot wallet of all non-hardened nodes, thereby learning the
public key and the chaincode of these nodes, as well as learning the secret key and chaincode of the
hardened nodes. As we mentioned earlier, since hardened keys are given to untrustworthy nodes, the
adversary is able to corrupt both their hot and cold wallets and as such, we do not consider the hardened
nodes to derive new children. One way to look at hardened nodes, is that such nodes are the root of a new
tree. We will later show in App. B that an adversary cannot distinguish hardened key pairs from freshly
generated keys except with negligible probability. Therefore, our model can be recursively extended to
consider settings where the hardened nodes can also derive new keys. Finally, the adversary can query
any node on a freely chosen message m and receive a signature for this message. To model the above
mentioned capabilities, we describe the oracles which the adversary gets access to in the unlinkability
game unlHDWal and the unforgeability game wufcma1HDWal.

Initially, two lists SK = ∅ and CH = ∅ are initialized. These are used throughout the oracles to
bookkeep which secret keys and chaincodes have been leaked to the adversary. In the following, we
consider a fixed address structure (T ,Addr).

• Hardened Child Creation HChildO: On inputs an address addri,s and an edge es,t
i+1 from A,

return ⊥ if the address addri,s belongs to a hardened node or the address addri,s is not valid (i.e.,
addri,s /∈ Addr). Further, return ⊥, if the address addri+1,t exists already. Otherwise, compute the
keys and chaincode (skh,i,s, pkh,i,s) and chi,s for the node addri,s by recursively deriving keys along
the path in the tree, starting from the first node in the path that has already been assigned a key.
Create a hardened child with address addri+1,t as follows. Generate keypair (skh,i+1,t, pkh,i+1,t) by
executing both secret and public key derivation algorithms.

(skh,i+1,t, chi+1,t,addri+1,t)← SKDerH(sknh,i,s, chi,s,addri,s, es,t
i+1)

(pkh,i+1,t, chi+1,t,addri+1,t)← PKDerH(sknh,i,s, chi,s,addri,s, es,t
i+1).

Return pkh,i+1,t.

• Non-Hardened Child Creation NHChildO: On inputs an address addri,s and an edge es,t
i+1 from

A, return ⊥ if the address addri,s belongs to a hardened node or the address addri,s is not valid (i.e.,
addri,s /∈ Addr). Further, return ⊥, if the address addri+1,t exists already. Otherwise, compute the
keys and chaincode (skh,i,s, pkh,i,s) and chi,s for the node addri,s by recursively deriving keys along
the path in the tree, starting from the first node in the path that has already been assigned a key.
Create a non-hardened child with address addri+1,t as follows. Generate keypair (sknh,i+1,t, pknh,i+1,t)
by executing both key derivation algorithms

(sknh,i+1,t, chi+1,t,addri+1,t)← SKDerNH(sknh,i,s, chi,s,addri,s, es,t
i+1)

(pknh,i+1,t, chi+1,t,addri+1,t)← PKDerNH(pknh,i,s, chi,s,addri,s, es,t
i+1).

Return pknh,i+1,t.
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• Signing HDSignO: On input message m and an address addri,s from A, proceed as follows. Return ⊥
if the address addri,s is not valid (i.e., addri,s /∈ Addr). Further, check if addri,s has already been
queried to either NHChildO or HChildO and return ⊥ if this is not the case. Let ski,s be the secret
key for the node with address addri,s. Then compute a signature σ ← Sign(ski,s,m), add m to the
message list SigList[addri,s] and return σ.5

• Chaincode Leakage CHLeakO: On input an address addri,s from A, check if addri,s has already
been queried to either NHChildO or HChildO and return ⊥ if this is not the case. Set CH[addri,s] = 1
to denote that the chaincode chi,s of address addri,s has been leaked and return (pki,s, chi,s).

• Secret Key Leakage (for hardened node) SKLeakO: On input an address addri,s from A, check
if the address is that of the root, i.e., addri,s = addr0,0 or if the address belongs to a non-hardened
node; in this case, return ⊥. Further, check if addri,s has already been queried to either NHChildO
or HChildO and return ⊥ if this is not the case. Else, set SK[addri,s] = 1 and CH[addri,s] = 1 to
denote that the secret key skh,i,s and the chaincode chi,s of address addri,s have been leaked and
return (skh,i,s, chi,s).

4.2 Unlinkability
Intuitively, the notion of unlinkability for hierarchical deterministic wallets guarantees that public keys in
the tree, i.e., public keys that have been derived directly or indirectly from the master key of the tree
root, cannot be distinguished from from a freshly generated public key. More concretely, the distribution
of public keys from the tree should be computationally indistinguishable from a distribution of public
keys that have been derived from an independently chosen master key. While this is a valuable privacy
notion, it does not quite model practical scenarios in the hot/cold wallet setting. Recall that this setting
assumes public keys and chaincodes to be stored in hot wallets, which are prone to corruptions. Therefore,
we extend the unlinkability notion as described above in the following way. We consider hot wallet
corruption upon which the public key and chaincode of the corrupted wallet are leaked. This extended
notion gives more power to the adversary and is more close to the capabilities that an adversary has
in real life scenarios. Naturally, the adversary can distinguish the distribution of keys derived from
public keys of corrupted hot wallets from a distribution of public keys that have been derived from an
independently chosen master key. Therefore, in our new unlinkability notion the adversary should not be
able to distinguish the distribution of keys derived from non-compromised hot wallets and keys derived
from independently chosen master keys.

In the following we describe the unlinkability game unlHDWal with respect to a challenger C and
an adversary A. In the first step of the game, the challenger generates a fresh master key pair and a
chaincode via the execution of Setup(1κ). The adversary receives the master public key as input and
obtains access to all oracles as described in subsection 4.1. At some point, the adversary outputs an
address addri,s and an edge es,t

i+1 and receives a public key from the challenger. This public key is either
the correct key for the node at address addri,s or a public key derived for a random address from a fresh
master public key. A wins the game if it can successfully distinguish these two scenarios. In the following
we give a detailed description of the game unlHDWal:

Game unlHDWal:

• Setup Phase: The challenger computes (ch0,0,msk0,0,mpk0,0)← Setup(1κ) and sends mpk0,0 to A.

• Online Phase: On input the security parameter and the master public key mpk0,0, the adversary A
is allowed to make queries to the oracles as explained in subsection 4.1.

• Output Phase: Eventually, A chooses an address addri,s, an edge es,t
i+1 and a value c ∈ {h, nh} and

sends them to the challenger. Let (ski,s, pki,s) be the key pair and chi,s the chaincode of the node
at address addri,s. If the address addri,s belongs to a hardened node, C returns ⊥. Otherwise, the
challenger chooses a bit b $← {0, 1} and generates a public key pki+1,t as follows:

– If b = 0:
∗ If c = h: C computes (pkh,i+1,t, ·, ·)← PKDerH(sknh,i,s, chi,s,addri,s, es,t

i+1).
5In case of one-per message unforgeability, the oracle aborts if it has been queried previously on input (m, addri,s).
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∗ If c = nh: If the chaincode for addri,s or any of its prefix addresses has been leaked, i.e.,
CH[addrj

i,s] = 1, for any j < i, then C returns ⊥. Else, C computes (pknh,i+1,t, ·, ·) ←
PKDerNH(pknh,i,s, chi,s,addri,s, es,t

i+1).
– If b = 1: The challenger computes (ch′0,0,msk′0,0,mpk′0,0)← Setup(1κ).

∗ If c = h: C derives a public key pk′h,1,t ← PKDerH(msk′0,0, ch′0,0,addr0,0, e0,t
1 ).

∗ If c = nh: If the chaincode for addri,s or any of its prefix addresses has been leaked, i.e.,
CH[addrj

i,s] = 1, for any j < i, then C returns ⊥. Else C derives a public key pk′nh,1,t ←
PKDerNH(mpk′0,0, ch′0,0,addr0,0, e0,t

1 ).
– Based on the value of b and c, the challenger sends to the adversary either pkh,i+1,t or pknh,i+1,t or

pk′h,1,t or pk′nh,1,t.

• The adversary can continue to make oracle queries under the restrictions as mentioned above.

• Eventually, A outputs a bit b′ and wins the game if b = b′.

We define the advantage of an adversary A in unlHDWal as

AdvAunlHDWal
:=
∣∣∣∣Pr[unlAHDWal = 1]− 1

2

∣∣∣∣ .

On Forward Unlinkability The model of hierarchical wallets as defined in Definition 4.2 in Section 4
is stateless. In other words, each node in the tree maintains a fixed chaincode chi,s which is used as an
input parameter for the child key derivation algorithms. If the (non-hardened) public key pki,s as well as
the chaincode chi,s of a node are leaked (e.g., due to a hot wallet corruption of the node in the hot/cold
wallet setting), then the adversary can as well compute the non-hardened keys in the entire sub-tree
under pki,s. Consequently, unlinkability of the sub-tree is lost. To enhance the unlinkability property, we
can extend our model to a stateful variant where, each node maintains a state Stt

i,s. On every child key
derivation, the state of the node is refreshed to a new state Stt+1

i,s . As a result of this modification, we
can guarantee forward unlinkability for hierarchical wallets, which is similar to the standard notion of
forward security. Precisely, on a hot wallet corruption, the adversary learns the current state Stt

i,s and
the public key pki,s of a node. However, the existing children of this node were derived from earlier states
Stt′

i,s, for t′ < t - which are not known to the adversary. Thus it can no longer break the unlinkability of
the existing child keys in the sub-tree under pki,s. However, it would be able to link any future child keys
derived from pki,s.

4.3 Unforgeability
The notion of unforgeability for hierarchical deterministic wallets in the hot/cold wallet setting guarantees
that an adversary cannot forge a signature of any uncorrupted node in the tree. In our model, non-
hardened keys are always stored in hot/cold wallets, i.e., the secret keys are secured in the cold wallet
storage, which cannot be corrupted by an adversary. Hardened keys, on the other hand, can be stored on
any device and are thereby prone to corruption. Therefore, we allow an adversary to corrupt hardened
secret keys, while non-hardened secret keys must remain uncorrupted.

In more detail, the unforgeability game proceeds as follows. The challenger generates a master key pair
and a chaincode via the execution of Setup(1κ). The adversary receives the master public key and obtains
access to the oracles as described in subsection 4.1. Eventually, the adversary outputs a forgery, i.e., a
message and a signature for a specific node in the tree. The adversary wins the game, if the signature is
valid, the message has not been queried to the signing oracle HDSignO for this specific node before and
the cold wallet of the node is uncorrupted. We note that a slightly weaker variant of unforgeability for
hierarchical deterministic wallets is the notion of one-per message unforgeability, where the security game
proceeds exactly as the game of the unforgeability notion with the difference that the adversary is allowed
to query the HDSignO oracle only once for each message/address pair. We now give a detailed description
of the unforgeability game wufcma1HDWal.

Game wufcma1HDWal:
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• Setup Phase: The challenger computes (ch0,0,msk0,0,mpk0,0) ← Setup(1n) and sends ch0,0 and
mpk0,0 to A.

• Online Phase: On input the security parameter, the adversary A is allowed to make queries to the
oracles as explained in subsection 4.1.

• Output Phase: Eventually, A outputs a public key pki∗,s∗ , a message m∗, an address addri∗,s∗ and
a signature σ∗. A wins if all of the following conditions hold,

– Verify(pki∗,s∗ , σ∗,m∗) = 1
– m∗ /∈ SigList[addri∗,s∗ ]
– Either addri∗,s∗ belongs to a non-hardened node or addri∗,s∗ belongs to a hardened node and

its secret key has not been corrupted, i.e., SK[addri∗,s∗ ] = 0.

We define the advantage of an adversary A in wufcma1HDWal as

AdvAunlHDWal
:= Pr[wufcma1AHDWal = 1].

5 Generic Construction
In this section, we first show how to generically construct a hierarchical deterministic wallet scheme
HDWal from a signature scheme with perfectly rerandomizable keys RSig = (RSig.Gen,RSig.RandSK,
RSig.RandPK,RSig.Sign,RSig.Verify). We denote the construction of HDWal with respect to a signature
scheme with rerandomizable keys RSig by HDWal[RSig]. Our generic construction HDWal[RSig] uses
internally a hash function H : {0, 1}∗ → R×{0, 1}κ. We detail our construction in Figure 5. Subsequently,
we analyze the security of our generic construction by proving the unlinkability and the unforgeability
properties of HDWal[RSig]. Due to space limitations, we present the full proofs for unlinkability and
unforgeability of HDWal[RSig] in Appendices B and C. In the following subsection, we present the theorem
that states that HDWal[RSig] satisfies wufcma1HDWal security with a loss in the security reduction. We
then show that this loss is indeed unavoidable which means that our security reduction is optimal.

5.1 Unforgeability of Generic Construction
We now analyze the unforgeability property of our generic construction HDWal[RSig] of a hierarchical
wallet. We require the following properties from the underlying signature scheme RSig. RSig must satisfy
(1) the definition of a signature scheme with rerandomizable keys as well as (2) a transitive property of
the keys. We formally define the latter below.

Definition 5.1 (Transitive Rerandomization). Let RSig = (RSig.Gen, RSig.Sign, RSig.Verify,RSig.RandSK,
RSig.RandPK) be a signature scheme with perfectly rerandomizable keys. We say that RSig transitively
rerandomizes if there exists an operation ⊙ : R × R → R s.t. for all (sk, pk) ∈ RSig.Gen(par) and all
(ρ, ρ′) ∈ R×R, the values (sk′, pk′), (sk′′, pk′′), ρ̃ which are defined as

(sk′, pk′)← (RSig.RandSK(sk; ρ),RSig.RandPK(pk; ρ))
(sk′′, pk′′)← (RSig.RandSK(sk′; ρ′),RSig.RandPK(pk′; ρ′)),
ρ̃ = ρ⊙ ρ′ satisfy
(sk′′, pk′′) = (RSig.RandSK(sk; ρ̃),RSig.RandPK(pk; ρ̃)).

Definition 5.2 (Invertible Rerandomization). Let RSig = (RSig.Gen, RSig.Sign, RSig.Verify,RSig.RandSK,
RSig.RandPK) be a signature scheme with perfectly rerandomizable keys. We say that RSig has invertible
rerandomization if there exist (efficient) algorithms RandSK−1 and RandPK−1 s.t. for all (sk, pk) ∈
RSig.Gen(par) and all ρ ∈ R it holds

sk = RandSK−1(RSig.RandSK(sk; ρ); ρ)
pk = RandPK−1(RSig.RandPK(pk; ρ); ρ)
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We note that the signature schemes with rerandomizable keys based on Schnorr [FKM+16], BLS
[DFL19] and ECDSA (additive variant presented in Section 3 of this work and multiplicative variant
presented in [DFL19]) all satisfy the properties of transitive rerandomization and invertible rerandmization
as defined in Definitions 5.1, 5.2. For the Schnorr, BLS and additive ECDSA based schemes, the ⊙
operation is a simple addition, while for the multiplicative ECDSA scheme it is a multiplication (modulo
the group order p). Below we state our theorem for the one-per message unforgeability property of
HDWal[RSig].

Theorem 5.3 Let HDWal[RSig] be the construction defined in Figure 5, let H : {0, 1}∗ → R×{0, 1}κ be a
hash function modeled as a random oracle and let RSig be a signature scheme with rerandomizable keys that
satisfies the property of transitive rerandomization and invertible rerandomization as in Definitions 5.1, 5.2.
Let A be an adversary playing in the game wufcma1AHDWal[RSig], then there exists an algorithm C running
in roughly the same time as A, and that makes as many queries to the oracle Rand in uf -cma-hrk1 as
A makes queries to NHChildO/HChildO such that

AdvCuf -cma-hrk1RSig ≥
1

4e(qsk + 1) · AdvAwufcma1HDWal[RSig]
.

where qsk is the number of SKLeakO oracle queries from A.

We stated Theorem 5.3 w.r.t. the one-per message unforgeability notions of hierarchical deterministic
wallet schemes and signature schemes with reradomizable keys, because these notions are sufficient in
the setting of deterministic wallets. This is because wallets sign each unique transaction at most once.
However, we note that we can likewise state and prove the above theorem with respect to the standard
unforgeability notions, i.e., the notions that do not restrict the adversary to obtain at most one signature
on a specific message.

We provide the full proof of Theorem 5.3 in Appendix C. Essentially, the proof exhibits an adversary C
who uses the adversary A who plays in game wufcma1AHDWal[RSig] to win its own game uf -cma-hrk1CRSig.
The main idea of our proof is that C guesses in advance which hardened nodes A might corrupt (i.e.,
calls the SKLeakO oracle on). In case the guess of C is wrong, C cannot answer all SKLeakO oracle queries
from A and therefore has to abort. This leads to a polynomial loss in the number of SKLeakO oracle
queries (i.e., qsk) in C’s advantage in its uf -cma-hrk1CRSig game. We use Coron’s technique as presented
in [Cor02] to bound this loss.

Interestingly, the following theorem states that this loss in the advantage of C is inherent and that,
in fact, there does not exist a tighter security reduction. In Appendix D, we recall the security notion
of unforgeability under rerandomized keys uf -cma-rkRSig for a signature scheme with rerandomizable
keys RSig as introduced in [FKM+16] and prove Theorem 5.4. Below, we denote as AA2

1 that A1 has
black-box access to A2. In particular, it does not rewind A2.

Theorem 5.4 Let HDWal be an algorithm such that for any signature scheme with rerandomizable keys
RSig, HDWalRSig is a hierarchical deterministic wallet scheme. Moreover, suppose that there is a reduction
R such that for every signature scheme with rerandomizable keys RSig and every adversary A running in
time tA with ϵA = AdvAwufcma1HDWalRSig , it holds that AdvR

A

uf -cma-rkRSig ≥ ϵR and RA runs in time tR. Then
there exists an algorithm M running in time tM ≤ 2 · tR s.t. AdvMuf -cma-rkRSig ≥ ϵR − ϵA ·

2 exp(−1)
qsk

.

Theorem 5.4 implies that if there exists a reduction from
uf -cma-rkRSig to wufcma1HDWalRSig for a signature scheme with rerandomizable keys RSig s.t. the
reduction loses less than a factor proportional to qsk, then there exists an efficient algorithm M that
can break the uf -cma-rkRSig security. We formulate and prove this result w.r.t. a reduction from the
strongest possible security notion of signature schemes with rerandomizable keys (i.e., uf -cma-rk) to the
restricted notion of one-per message wallet unforgeability (i.e., wufcma1HDWal). Clearly, this implies that
the result from Theorem 5.4 also holds for the weaker notion of uf -cma-hrk1 for signature schemes with
rerandomizable keys which we use in Theorem 5.3. We note that Theorem 5.4 can likewise be stated and
proved with respect to the standard unforgeability notion of hierarchical deterministic wallet schemes,
i.e., the notion that does not restrict the adversary to obtain at most one signature on a specific message.
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6 Discussion
On Security Parameters We instantiate our generic hierarchical deterministic wallet construction
HDWal[RSig] with two schemes, namely REC[H1] (Figure 7) and REC′[H1] (Figure 6). Note that
HDWal[REC[H1]] corresponds to the BIP32 wallet, while
HDWal[REC′[H1]] is instantiated from the multiplicatively rerandomized construction REC′[H1] from [DFL19],
we will refer to it as BIP32-m.

First, let us recall, how to compute the bit security level of a scheme. A hierarchical wallet scheme
HDWal is said to have a bit security level of κ bits, if any algorithm A with running time t and advantage
ϵ in wufcma1HDWal takes expected running time t

ϵ ≥ 2κ to break the scheme for the first time. (The
security level for a conventional signature scheme is defined analogously). From our Theorems E.1, E.2,
we compute the bit security level of our schemes, considering an algorithm A with parameters t′, ϵ′ (in
game wufcma1HDWal), where t′ ≈ t and ϵ′ = ϵ · Q for some Q ≥ 1 and where t, ϵ denote the runtime
and advantage of the related forger C in game uf -cma1EC. By assumption, EC satisfies κ = 128 bits of
security, hence t

ϵ ≥ 2128. Thus, we obtain t′

ϵ′ = t
ϵ·Q ≥ 2128

Q = 2κ−log Q. Our results are reported in Table 1,
where we took an estimate of the practical parameters as follows: the total number of keys is q = 220, the
number of qsk of secret keys leaked is roughly 1% of the total number of keys q, i.e., qsk ≈ 214.

Scheme Theorem Ref. Bit Security with κ = 128
BIP32 Thm E.1 log(Q) = log(q · 4e · qsk) ≈ 37, κ− log(Q) = 91

BIP32-m Thm E.2 log(Q) = log(4e · qsk) ≈ 17, κ− log(Q) = 111

Table 1: Bit Security Level of BIP32 and BIP32-m, relying on uf -cma1 of EC[H0]

On BIP32 Parameters. Our construction of HDWal[REC[H1]] gives us the BIP32 construction as
specified in [Wik18]. Here we list the exact parameters used in BIP32 and minor differences of BIP32
with our construction HDWal[REC[H1]].

• Each node can derive at most 232 children nodes.

• e·,·· is chosen from {0, 1}32, which allows each non-hardened node to generate 231 non-hardened and
231 hardened child keys.

• A child key is derived as a hardened or a non-hardened node based on whether e·,·· ≥ 231 or ≤ 231

respectively. However, this is syntactical, and does not affect our security analysis.

• Although at each level, the total number of derived keys can be at most (232) ·p, where p is the number
of parent nodes in the immediate upper level, we do not imagine that all of these keys are derived at
every level. As can be seen, this would already exceed our parameter q = 220, as selected above.

• The chaincode ch·,· is chosen from {0, 1}256.

• The input parameter addr·,· to the key derivation algorithms is set to an empty string. We use this
parameter to indicate the position in the tree, at which the child key is derived and to ensure that the
actual BIP32 derivation algorithms are called on the proper inputs for this position.

• The input parameter addr·,· to the key derivation algorithms is set to an empty string λ. Let us
briefly explain this syntactical difference. In our Definition 4.2, addr·,· ≠ λ is provided as input. This
makes the user aware of the position in the tree, at which the child key is derived and makes sure that
the actual BIP32 derivation algorithms are called on the proper inputs for this position in the tree.

Open Questions Finally, let us mention some interesting open questions that can be answered in future
works:

• Is it possible to remove the one per-message restriction and prove the security of the additively
rerandomizable ECDSA scheme in the uf -cma-hrk notion? Additionally, is there a tight reduction to
uf -cma-hrk?

• Can we improve the tightness of uf -cma1 security [FKP17] of ECDSA from the semi-logarithm
problem?
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A Proof of Theorem 3.3
Proof. For this proof, we consider an adversary A playing in the uf -cma-hrk1REC[H1] game relative to a
random oracle H1. Below, we present a series of games GGG0 to GGG6 where the following holds.

AdvAuf -cma-hrk1REC[H1]
= Pr[GGGA0 = 1] ≤ Pr[G6G6G6

A = 1] + qH1
2

p

Game G0G0G0: This game is equivalent to the original game, namely uf -cma-hrk1AREC[H1]. In particular,
a key pair (sk, pk) is sampled as (sk, pk) $← REC[H1].Gen(par). The adversary A is given pk as the
challenge public key and oracle access to Rand, RSign and random oracle H1. A can query Rand to
receive a randomness ρ and make a follow-up query to RSign to receive a signature on message m
with respect to the rerandomized key pk′ ← pk + ρ · G. In particular, A is allowed to query RSign
on every input pair (m, ρ) at most once. Additionally, A can make direct queries to the random
oracle H1. Eventually, in order to win the game, A has to come up with a valid forgery σ∗ on a
new message m∗ with respect to a randomness ρ∗. Since G0G0G0 proceeds as uf -cma-hrk1 we have that
Pr[G0G0G0

A = 1] = Pr[uf -cma-hrk1AREC[H1] = 1] = AdvAuf -cma-hrk1REC[H1]
.

Game G1G1G1: This game is similar to game G0G0G0 with the following modification. A is now given a public
key p̃k instead of pk (which served as the challenge public key in GGG0) as the challenge public key. p̃k is
derived as p̃k← pk− ρ̃ ·G with a freshly sampled randomness ρ̃ $← R. The corresponding secret key is
obtained as s̃k = sk− ρ̃.

Due to the perfect rerandomizablity of keys of the rerandomizable signature scheme REC, pk is
indistinguishable from p̃k. Hence, we have Pr[G0G0G0

A = 1] = Pr[G1G1G1
A = 1].

Game G2G2G2: This game is similar to game G1G1G1 with the following modification in the Rand oracle. An index
j is sampled uniformly at random from the set {1, . . . , q}, where q is an upper bound on the number of
queries to the oracle Rand. The game returns ρ̃ at the jth Rand query. For all other queries, ρ is sampled
randomly as ρ $← R.

Since both ρ̃ and ρ are sampled randomly from R, the output distribution of the Rand oracle is the
same in games G1G1G1 and G2G2G2. Hence, we have Pr[G2G2G2

A = 1] = Pr[G1G1G1
A = 1].

Game G3G3G3: This game behaves exactly like the game G2G2G2 with the following modifications: First, the game
internally maintains a random oracle H0 (in addition to H1) in a straightforward manner, by storing a list
H0 of query/response pairs. Second, the game programs the oracle H1 by maintaining three lists H1, H ′1
and Γ, where the first two will be used as possible replies to queries to H1, and Γ stores pre-computed
signatures. In the beginning of the game, H1, H ′1 and Γ are initially set to ⊥ in each entry. Whenever
A queries a message m to H1, the values H1[m], H ′1[m] and Γ[m] are set in one of two ways depending
on whether m is prefixed with a public key pk′ or not. Here, pk′ is a rerandomized form of the public
key p̃k (i.e., pk′ ← p̃k + ρ · G where ρ ← Rand is a previous answer to any Rand oracle query), where
p̃k = pk− ρ̃ ·G (see Game GGG1). Concretely, on query m to H1, the lists H1, H ′1 and Γ are maintained in
the following way:

• If H1 has already been programmed in a previous query, i.e., H1[m] ̸= ⊥, return H1[m].

• Else H1[m] = ⊥, then sample uniformly at random h $← Zp, set H1[m] = h, and proceed as follows:

– Case 1: m is of the form (pk′,m′), where pk′ = p̃k + ρ ·G = pk + (ρ− ρ̃) ·G, for ρ ∈ RList. Derive
a signature σ as σ ← REC[H1].Sign(sk′,m′) for sk′ = s̃k + ρ = sk + (ρ − ρ̃) (mod p) and parse
σ := (r, s). Then set H ′1[m] = H0[m]− r · (ρ− ρ̃) (mod p) and Γ[m] = σ. Finally return H1[m].

– Case 2: m is not of the form (pk′,m′). Set Γ[m] = ϵ and return H1[m].

In both the cases, the output of H1 is uniformly distributed from A’s point of view. It follows that
Pr[G2G2G2

A = 1] = Pr[G3G3G3
A = 1].
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Game G4G4G4: This game proceeds as the previous game with a modification in the Rand oracle. Upon A
querying the Rand oracle, sample ρ as before, then compute the rerandomized public key pk′ ← p̃k + ρ ·G
and check if there exists a message m with prefix pk′ such that Γ[m] = ϵ. In that case, the game aborts.

Claim A.1 Let E1 be the event that the game G4G4G4 aborts during a Rand query. Then, we have that
Pr[E1] ≤ qH1

2

p .

Proof. Event E1 can only occur if A has queried H1 on input m with prefix pk′ ← p̃k + ρ · G prior to
making a query to Rand that returns ρ. Since A makes at most qH1 queries to H1, for each query to
Rand that the adversary A makes, we have that with probability qH1

p we receive a value ρ such that
pk′ ← p̃k + ρ ·G is a prefix of input m that was earlier made to H1. Since there are at most q such queries
to Rand by taking the union bound over qH1 we obtain Pr[E1] =

∑qH1
i=1

qH1
p = qH1

2

p .

From the above, we have that Pr[G3G3G3
A = 1] ≤ Pr[G4G4G4

A = 1] + qH1
2

p .
Game G5G5G5: This game is similar to the game G4G4G4 except for a modification in the RSign oracle. Upon A′s
query on input (m, ρ), the game simulates the RSign oracle in the following manner. It computes the
rerandomized public key pk′ ← p̃k + ρ · G and creates the public key prefixed message pm ← (pk′,m).
The signature is implicitly derived via querying the simulated random oracle H1 (see Game G3G3G3 above) on
input the prefixed message pm. This results into Γ[pm] = σ = REC[H1].Sign(sk′,m), which is returned as
the response to the signature query.

Observe that all queries to RSign on input the tuple (m, ρ) output the same signature. However,
since ECDSA signatures are randomized, the output of RSign should be different with overwhelming
probability for each query on the same input tuples. Here, we exploit that A is allowed to query RSign
at most once for the same input pair (m, ρ). Hence, the output distribution of RSign is identical to the
distribution of the RSign oracle in the previous game and it holds that Pr[G4G4G4

A = 1] = Pr[G5G5G5
A = 1].

Game G6G6G6: This game is similar to game G5G5G5 except for the following changes: In the oracles RSign and
H1 the game uses EC[H0].Sign instead of REC[H1].Sign to compute the signatures stored in Γ (and in case
of RSign this implicitly happens via H1). More precisely, when H1 is queried on pm = (pk′,m′), where
pk′ = p̃k + ρ ·G = pk + (ρ− ρ̃) ·G for ρ ∈ RList, we derive σ ← EC[H0].Sign(sk, pm), for sk′ = sk + (ρ− ρ̃)
(mod p). Furthermore, upon H1 being queried on m, H1 returns H ′1[m] instead of H1[m] whenever
Γ[m] ̸= ⊥ and Γ[m] ̸= ϵ.

Claim A.2 It holds that Pr[G5G5G5
A = 1] = Pr[G6G6G6

A = 1].

Proof. First, note that in this game, H1 returns H0[m]−r · (ρ− ρ̃) on a message m for which a signature is
stored in Γ. We have to show now that when H1 is queried on pm = (pk′,m′), where pk′ = pk + (ρ− ρ̃) ·G
and sk′ = sk + (ρ− ρ̃) (mod p) for ρ ∈ RList, we derive σ ← EC[H0].Sign(sk, pm) (Game G6G6G6) instead of
computing σ ← REC[H1].Sign(sk′,m′) (Game G5G5G5).

To this end, we recall Lemma 3.2, which states that if σ = (r, s) is a valid signature for pm← (pk′,m′)
under pk w.r.t. EC[H0], it is also a valid signature for m′ under pk′ ← pk + (ρ− ρ̃) ·G w.r.t. REC[H1], if
it holds that H1(pm) = H0(pm)− r · (ρ− ρ̃) (mod p). Note that we replaced the REC[H1].Sign procedure
call on a message m′ in G5G5G5 by a EC[H0].Sign procedure call on a prefixed message pm← (pk′,m′), where
pk′ = pk + (ρ − ρ̃) · G. It remains to show that the condition H1(pm) = H0(pm) − r · (ρ − ρ̃) (mod p)
holds. But since H ′1[pm] = H0[pm]− r · (ρ− ρ̃) (mod p) is programmed accordingly (latest when RSign
is queried), this follows directly.

Combining results from GGG0 to GGG6, we have that

Pr[GGGA0 = 1] ≤ Pr[GGGA6 = 1] + qH1
2

p
. (1)

Reduction to uf -cma1 security. Having shown that the original uf -cma-hrk1AREC[H1] game is indistin-
guishable from game G6G6G6, it remains to show that an adversary A winning in game GGG6 can be turned into
an adversary C that wins uf -cma1CEC[H0] game with related success probability. To this end, we construct
C that runs in the game uf -cma1CEC[H0] and simulates to A game GGG6. Thus, C proceeds as game GGG6 and
leverages oracle access to its own signing oracle (with respect to its challenge public key) in the following
way:
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1. On input the challenge public key pkC from uf -cma1EC[H0], the adversary C sets pk to pkC . Note that
this implicitly sets the challenge public key in C’s simulation of GGG6 to p̃k = pkC − ρ̃ ·G. Hence, C runs
A on input p̃k.

2. In case A returns a forgery (m∗, σ∗, ρ∗) with ρ∗ ̸= ρ̃, C aborts.

C perfectly simulates GGG6 for A except in case where it aborts. Moreover, note that in case there is no
abort, we have that

pk∗ = p̃k + ρ∗ ·G = pkC − ρ̃ ·G+ ρ̃ ·G = pkC .
From the above programming strategy, we conclude that for A’s queries to H1 that are prefixed with pk∗,
the oracles H0 and H1 are identical. It remains to calculate the success probability of C in winnning the
uf -cma1EC[H0] game in case A returns a valid forgery.

Claim A.3 Let E2 be the event that A outputs (m∗, σ∗, ρ∗) s.t. (pm∗, σ∗) constitutes a valid forgery in
game uf -cma1CEC[H0]. Then, we have that Pr[E2|G6G6G6

A = 1] ≥ 1
q , where q is the number of queries to the

Rand oracle.

Proof. In order to prove this claim, we need to show that with probability 1
q it must hold that (1)

(pm∗, σ∗) is a valid forgery in game uf -cma1CEC[H0] under public key pkC and (2) the Sign oracle of the
uf -cma1CEC[H0] game has not been queried on input pm∗.
First, note that if σ∗ is a valid signature for message (pk∗,m∗) under the public key pk∗ relative to
REC[H1], then σ∗ is also a valid signature on pm∗ under public key pkC = pk∗ relative to EC[H0], as H0
and H1 are identical for messages prefixed with pk∗. Since there are at most q possible values of ρ∗ and C
chooses one of them uniformly at random, the probability that C’s guess is correct is at least 1

q . Note that
from the adversary’s perspective, the public key generated at index j is no different than other public
keys.
Second, since (m∗, σ∗, ρ∗) is a valid forgery in uf -cma-hrk1AREC[H1], A has not previously queried the
RSign oracle on input (m∗, ρ∗). Correspondingly, the Sign oracle of the uf -cma1EC[H0] game has also
not been queried on message pm∗ and hence, (pm∗, σ∗) is a valid forgery in uf -cma1EC[H0].

From Eq. 1 we get the following.

AdvAuf -cma-hrk1REC[H1]
= Pr[GGGA0 = 1] ≤ Pr[GGGA6 = 1] +

q2
H1

p

or, Pr[GGGA6 = 1] ≥ AdvAuf -cma-hrk1REC[H1]
− q2

H1

p

Since C can use a valid forgery by A in its own game whenever E2 occurs,

AdvCuf -cmaEC[H0] ≥ Pr[GGGA6 = 1] · Pr[E2 |GGGA6 = 1] = Pr[GGGA6 = 1] · 1
q

≥
(

AdvAuf -cma-hrk1REC[H1]
− q2

H1

p

)
· 1
q

B Unlinkability Proof of Generic Construction
Theorem B.1 Let HDWal[RSig] be the construction defined in Figure 5. Then for any adversary A
playing in game unlAHDWal[RSig] there exists an adversary A1 that plays in the game uf -cma-hrk1RSig such
that

AdvAunlHDWal[RSig]
≤ qH(qC + 1)

2κ
+ AdvA1

uf -cma-hrk1RSig

where qH and qC are the number of random oracle and child creation queries from A, respectively.
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Proof. Consider the unlAHDWal[RSig] game for an adversary A. In the beginning, the challenger generates a
fresh master key pair and chaincode

(msknh,0,0,mpknh,0,0, ch0,0)← HDWal[RSig].Setup(par)

and runs A on inputs the security parameter and the master public key mpknh,0,0. During the output phase
of the unlAHDWal[RSig] game, A outputs a tuple (addri,s, es,t

i+1, c), where es,t
i+1 is the edge from the node with

address addri,s to the challenge node with address addri+1,t and c indicates if addri+1,t is a hardened or
non-hardened node. In case addri,s is a hardened node, the game aborts and hence we have that the adver-
sary’s advantage is 0, i.e.,
AdvAunlHDWal[RSig]

= 0. Likewise, if A has previously queried the CHLeakO oracle on address addri,s or
any of its prefix addresses, i.e., CH[addrj

i,s] = 1 for any j < i, and if the challenge node is non-hardened
(i.e., c = nh) then the game aborts and we have that AdvAunlHDWal[RSig]

= 0.
Let pknh,i+1,t and pknh,1,t denote the challenge public keys in case A challenges a non-hardened node

(i.e., c = nh) with address addri+1,t. Further, let (pkj,·, chj,·) for 1 ≤ j ≤ i denote the public key and
chaincode pair of all nodes in the prefix address of addri+1,t. Recall that the non-hardened public keys
are computed as follows:

(ω, chj+1,t)←H(pkj,s, chj,s, es,t
j+1),

pkj+1,t ←RSig.RandPK(pkj,s;ω)

According to the (perfect) rerandomizability of keys property (cf. Def 2.2) the public keys derived
via the RSig.RandPK algorithm are identically distributed to freshly generated keys from A’s view as
long as ω is uniformly random. Therefore, the challenge public keys pknh,i+1,t and pknh,1,t are identically
distributed from A’s point of view as long as A has not previously queried the random oracle H on input
(pkj,·, chj,·, e·,·j+1). If A makes one of the aforementioned queries, it can recursively compute the public
key of the challenge node, thereby trivially winning the unlAHDWal[RSig] game. By assumption, A makes at
most qC queries to the child creation oracles. Therefore, there are at most qC + 1 potential chaincodes
that A can guess correctly and query the random oracle on. For each of these, the probability of correctly
guessing it is 1

2κ and thereby the probability of correctly guessing any of the chaincodes is at most qC +1
2κ

during any particular random oracle query. Since A makes at most qH calls to H, the overall probability
of querying the random oracle on an input as above is qH(qC+1)

2κ .
It remains to show A’s probability of winning the unlAHDWal[RSig] game in case the adversary challenges

a hardened node with address addri+1,t. In this case, let pkh,i+1,t and pkh,1,t denote the challenge public
keys and let (pkj,·, chj,·) for 1 ≤ j ≤ i denote the public key and chaincode pair of all nodes in the prefix
address of addri+1,t.
A is allowed to query the CHLeakO oracle for parent nodes, thereby eliminating the need to correctly

guess a relevant chaincode. Recall that hardened public keys are derived as follows:

(ω, chj+1,t)←H(skj,s, chj,s, es,t
j+1)

pkj+1,t ←RSig.RandPK(pkj,s;ω)

Hence, having access to the CHLeakO oracle does not reveal all required inputs to the random oracle,
i.e., the secret key of the parent node is still unknown to the adversary. As such, according to the (perfect)
rerandomizability of keys property (cf. Def 2.2), A can distinguish pkh,i+1,t from pkh,1,t only if it is able
to compute the secret key of one of the challenge nodes’ parents. Let E be the event that A can compute
a secret key skj,· that corresponds to any of the public keys pkj,· and calls the random oracle on input
(skj,·, ·, ·). Then we can upper bound the probability that event E occurs as follows:

Claim B.2 There exists an algorithm A1 such that

AdvA1
uf -cma-hrk1RSig

≥ Pr[E].

Proof. The proof of this claim corresponds to the proof of claim C.1 in Appendix C.
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Therefore, the adversary’s advantage in case of a hardened challenge node can be upper bounded by
AdvA1

uf -cma-hrk1RSig
andA’s overall advantage in game unlAHDWal[RSig] can be upper bounded by AdvAunlHDWal[RSig]

≤
qH(qC+1)

2κ + AdvA1
uf -cma-hrk1RSig

.

Indistinguishability of Hardened nodes Recall that in our construction HDWal[RSig], a hardened
key pair (skh,(i+1),t, pkh,(i+1),t) is derived via SKDerH and PKDerH as follows:

(ω, ch(i+1),t)←H(sknh,i,s, chi,s, es,t
i+1)

skh,(i+1),t ←RSig.RandSK(sknh,i,s;ω)
pkh,(i+1),t ←RSig.RandPK(pknh,i,s;ω)

Due to the key rerandomizability property of the underlying signature scheme RSig, A can only
distinguish (skh,(i+1),t, pkh,(i+1),t) from a fresh key pair if it can distinguish ω from random. Since we
model H as a random oracle, this happens only if A has previously queried H on the same input, i.e.,
(sknh,i,s,Sti,s, ei+1,t). Since our model excludes secret key leakage of non-hardened nodes, the adversary
cannot distinguish the output of H from a random value except if it correctly guesses sknh,i,s or any parent
secret key that sknh,i,s has been (directly or indirectly) derived from.

C Proof of Theorem 5.3
Proof. Before we give the full formal proof of Theorem 5.3, we first provide a high level overview of
the proof. We show that the generic construction HDWal[RSig] is one-per message unforgeable w.r.t.
game wufcma1HDWal[RSig], if the signature scheme with rerandomizable keys RSig is one-per message
unforgeable w.r.t. the game uf -cma-hrk1RSig. The main idea behind the proof is as follows. First, the
adversary C in game uf -cma-hrk1RSig receives a public key pkC . It chooses a random chaincode and uses
it to derive a key mpk, which it embeds mpk as the master public key for A in game wufcma1HDWal[RSig].
Note that these changes cannot be detected by A due to the rerandomizability of keys and the transitivity
property of the RSig scheme (see Definitions 2.2 and 5.1). Second, C attempts to predict, for each
hardened node in the tree, with a certain probability if this node will get corrupted by A throughout the
game. For these nodes, C generates a fresh key pair independently of pkC . For the other hardened nodes,
C derives non-hardened public keys (instead of hardened public keys) from pkC . It is crucial here that the
non-hardened public keys are derived from pkC instead of from the parent public key, since pkC is not
known to the adversary and therefore A is not able to distinguish the non-hardened public key from a
hardened public key. We show that this guessing introduces a polynomial loss in the number of corrupted
hardened nodes for C’s advantage to win game uf -cma-hrkRSig game but that C still wins the game with
non-negligible probability.

We now provide the formal proof via a series of games GGG0 to GGG6.
Game GGG0: This is the regular wufcma1HDWal[RSig] game at the beginning of which a key pair (pk, sk)

is generated and the adversary A is given as input pk and oracle access to the following oracles: HChildO,
NHChildO, HDSignO, CHLeakO and SKLeakO oracles and a random oracle H. The random oracle H is
internally programmed in a straight forward manner, by maintaining a list H. In particular, on input
s, if H[s] ̸= ⊥, then return H[s]. Otherwise, sample a fresh randomness ρ $← R and a fresh value as
ψ $← {0, 1}κ and set (ρ, ψ) =: H[s] and return H[s]. In addition, the game keeps a list R in which it
stores the randomness used to derive the keys at position s and level i at entry R[i, s]. We have that
AdvAwufcma1HDWal[RSig]

= Pr[wufcma1AHDWal[RSig] = 1] = Pr[GGGA0 = 1].

Game GGG1: Upon generating the key pair (pk, sk), the game chooses a fresh chaincode ch0,0
$← {0, 1}κ

and fresh randomness ρ $← R. Then it derives the root public key for the wufcma1HDWal[RSig] game as
mpk0,0

$← RSig.RandPK(pk; ρ), stores ρ in a list as R[0, 0] = ρ. The game sends ch0,0 and mpk0,0 to A.
Since the randomness ρ is chosen uniformly at random from R, the rerandomizability of keys

property of the signature scheme RSig holds. This implies that the distributions of (·,mpk0,0) and
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(·,mpk′0,0) $← RSig.Gen(par) are identical. Therefore, it holds that Pr[GGGA1 = 1] = Pr[GGGA0 = 1].

Game GGG2: This game behaves like GGG1 with a modification in the NHChildO oracle. Upon an oracle query
on input (addri,s, es,t

i+1) the NHChildO oracle executes PKDerNH(pki,s, chi,s,addri,s, es,t
i+1) and creates the

public key pknh,i+1,t at level i+ 1 and position t as pknh,i+1,t ← RandPK(pk;ω ⊙R[i, s]), i.e., the public
key pknh,i+1,t is derived directly from pk with randomness ω ⊙R[i, s], where (ω, ·)← H(pki,s, chi,s, es,t

i+1).
The game then sets the list R[i+ 1, t] = ω⊙R[i, s]. If any of the values (pki,s, chi,s,addri,s, R[i, s]) is not
defined yet, the game recursively derives the path from the root node up to (pki,s,addri,s) and updates
the list up to R[i, s].

Note that RandPK(pk;ω ⊙R[i, s]) and RandPK(pknh,i,s;ω) derive the same key pknh,i+1,t, due to the
transitive property of rerandomizable keys. Since ω and R[i, s] are uniformly at random from R, we have
that Pr[GGGA2 = 1] = Pr[GGGA1 = 1].

Game GGG3 : This game proceeds similarly to the previous game with a modification in the random oracle.
The game aborts upon the adversary querying the random oracle on input (sknh,i,s, ·, ·) where sknh,i,s

is either a non-hardened secret key that corresponds to a public key pknh,i,s previously output by the
NHChildO oracle or sknh,i,s is the master secret key msk0,0 corresponding to mpk0,0.

Claim C.1 Let ϵ be the probability that game GGG3 aborts during a random oracle query. Then there
exists an algorithm C1 playing in game uf -cma-hrk1RSig such that AdvC1

uf -cma-hrk1RSig
≥ ϵ.

Proof. We prove this claim by providing a reduction to the uf -cma-hrk1 security of RSig. More concretely,
we show that there exists an algorithm C1 with AdvC1

uf -cma-hrk1RSig
≥ ϵ assuming C1 has access to an

adversary A that causes GGG3 to abort with probability ϵ. Initially, C1 receives as input a public key pk
from the uf -cma-hrk1RSig game and chooses at random a chaincode ch $← {0, 1}κ. From pk and ch, C1
can honestly simulate the NHChildO and CHLeakO oracles to A. The simulation of the random oracle H
works as described in GGG3 with the exception that instead of sampling the randomness ρ $← R uniformly
at random from R, C1 calls the Rand oracle in game uf -cma-hrk1RSig to obtain the randomness ρ. A
query from A to the HDSignO oracle on input (m,addr·,·) is forwarded to the RSign oracle on input m
and the randomness corresponding to addr·,· of the uf -cma-hrk1C1

RSig game. For a HChildO oracle query
on input (addri,s, es,t

i+1), C1 chooses a fresh key pair (independently of pk) (sk′, pk′) $← RSig.Gen(par),
assigns (skh,i+1,t, pkh,i+1,t) :− (sk′, pk′) and returns pkh,i+1,t. The SKLeakO oracle is then simulated by
returning skh,i+1,t on input addri+1,t. The simulation of the HChildO and HDSignO oracles cannot be
distinguished by A from the oracles in GGG3 due to the rerandomizability of keys property of RSig. The
only way in which A could detect the difference between GGG3 and the reduction provided by C1 would
be if the following event occurs. A makes a random oracle query of the form (sknh,i,s, ·, ·) where sknh,i,s

is either a non-hardened secret key that corresponds to a public key pknh,i,s previously output by the
NHChildO oracle or sknh,i,s is the secret key corresponding to pk (if sknh,i,s belongs to a public key pknh,i,s

can be efficiently checked via the function ToPubKey(sknh,i,s)). By Claim C.1, this event happens with
probability ϵ. However, when this event occurs, C1 learns the secret key sknh,i,s which it can use to
compute the secret key sk of the uf -cma-hrk1RSig game. This is due to the transitivity and invertible
rerandomization property of RSig. C1 can then use sk to create a valid forgery in the uf -cma-hrk1C1

RSig
game. Therefore, we have that AdvC1

uf -cma-hrk1RSig
≥ ϵ.

It follows that Pr[GGGA2 ] ≤ Pr[GGGA3 ] + ϵ.

Game GGG4 : This game works like the previous game with a modification to the HChildO oracle which
works as follows. Let qsk be the number of hardened nodes that A corrupts via the SKLeakO oracle. Upon
A querying the HChildO oracle, with probability 1

qsk+1 , the address of this node is added to a list L. Let
Bad define the event that a node corresponding to an address in L is corrupted.

Since the change in this game is only syntactical, A’s winning probability is not affected by whether
Bad occurs. It follows that Pr[GGGA3 ] = Pr[GGGA4 ].

Game GGG5 : This game works like the previous game with the only difference that GGG5 aborts in case event
Bad occurs.
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Lemma C.2 Pr[GGGA4 = 1] ≤ Pr[GGGA5 = 1] · e.

Proof. A can distinguish GGG5 from the previous game if the game aborts i.e., when the event Bad happens.
This event happens for each SKLeakO query, independently, with probability 1

qsk+1 . With probability
(1− 1

qsk+1 ), a SKLeakO oracle query does not lead to an abort. Hence, the overall probability with which
the game does not abort on any SKLeakO oracle query can be lower bounded by (1− 1

qsk+1 )qsk ≥ e−1, i.e.,
Bad occurs with probability at most 1− e−1. As we have argued that Bad occurs in GGG4 independently of
the event GGG4 = 1, we have that Pr[GGGA4 = 1] = Pr[GGGA5 = 1] · 1/Pr[¬Bad] ≤ Pr[GGGA5 = 1] · e.

Game GGG6 : This game works like the previous game with a modification to the HChildO oracle which
works as follows. For the nodes that are chosen to be added to the list L, the game derives the public key
of that node as a public key of a non-hardened node. The rest of the hardened nodes are generated as
(sk, pk) $← RSig.Gen(par) and assigned (skh,i+1,t, pkh,i+1,t) := (sk, pk).

Lemma C.3 Pr[GGGA5 = 1] = Pr[GGGA6 = 1].

Proof. A can distinguish GGG6 from the previous game if it corrupts a hardened node which is simulated as
a non-hardened node i.e., one of the nodes in the list L. The only other way for A to distinguish these
two games would be if A was able to query the random oracle on input the secret key of a non-hardened
node as this would allow to recursively compute the secret key of the corresponding child hardened node.
This case is, however, has already been excluded in G3G3G3. As explained in game GGG5, upon A making a
corruption query for a node in list L, the game aborts. Therefore, the adversary cannot distinguish this
game from the previous game.

By the transition from game GGG0 to game GGG6, we get that

AdvAwufcma1HDWal[RSig]
= Pr[GGGA0 = 1]

≤
(
Pr[GGGA6 = 1] · e

)
+ ϵ

or, Pr[GGGA6 = 1] ≥ 1
e
· AdvAwufcma1HDWal[RSig]

− 1
e
· ϵ

Reduction to uf -cma-hrk security. Having shown that the transition from game wufcma1AHDWal[RSig]
to the game GGG6 is indistinguishable, it remains to show that there exists a challenger C2 that simulates GGG5
and uses A to win its own game uf -cma-hrk1RSig. The challenger code is same as GGG6 with the following
changes: (1) The sampling of ρ $← R within the programming of H is replaced by a call to the oracle Rand
(2) pk is replaced by the challenge public key pkC2 from the underlying game uf -cma-hrk1C2

RSig. Since
the above changes are trivially indistinguishable to A, we move on to analyze C2’s probability to win
the uf -cma-hrkC2

RSig game using the forgery of A. There are two possibilities for A; either to output a
forgery for a non-hardened node or for a hardened node. We analyze each case separately and show that
for both cases our simulator can win its game with non-negligible probability.

• Adversary outputs a forgery for a non-hardened node: If the adversary provides a forgery for a non-
hardened node, C2 can always use this forgery to win the uf -cma-hrkC2

RSig game. Therefore, the overall
probability of C2 winning the game in case of A generating a forgery for a non-hardened node is:

AdvC2
uf -cma-hrk1RSig

≥ Pr[GGGA6 = 1]

≥ 1
e
· AdvAwufcma1HDWal[RSig]

− ϵ

e

• Adversary outputs a forgery for a hardened node: We now compute the probability that the game
aborts in case the adversary generates a forgery for a hardened node.
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Let i∗ be the index of the hardened node for which the adversary outputs a forgery. In this case
C2 needs to abort if i∗ was sampled randomly. Recall, the probability that i∗ has been sampled at
random is 1− 1

qsk+1 . Therefore, the overall probability of the simulator winning the game in case of A
generating a forgery for a hardened node is:

AdvC2
uf -cma-hrk1RSig

≥ Pr[GGGA6 = 1] · 1
qsk + 1

≥
(

1
e
· AdvAwufcma1HDWal[RSig]

− ϵ

e

)
· 1
qsk + 1

We can now compose a challenger C from the challengers C1 of Claim C.1 and C2, such that C uses
adversary A to win in its game uf -cma-hrk1CRSig. C executes either of C1 and C2 with probability 1

2 . In
order to compute C’s advantage AdvCuf -cma-hrk1RSig , we distinguish the following two cases:

• Case ϵ ≥ 1
2 AdvAwufcma1HDWal : In this case, we have by claim C.1 that

AdvC1
uf -cma-hrk1RSig

≥ ϵ ≥ 1
2AdvAwufcma1HDWal .

Therefore we can lower bound C’s advantage by

AdvCuf -cma-hrk1RSig ≥
1
2AdvC1

uf -cma-hrk1RSig
≥ AdvAwufcma1HDWal

4 .

• Case ϵ < 1
2 AdvAwufcma1HDWal : In this case, we can lower bound C2’s advantage by

AdvC2
uf -cma-hrk1RSig

≥
(

AdvAwufcma1HDWal[RSig]
· 1
e
− ϵ

e

)
· 1
qsk + 1

≥
(

AdvAwufcma1HDWal[RSig]
· 1
e
− 1

2e · AdvAwufcma1HDWal[RSig]

)
· 1
qsk + 1

= 1
2e(qsk + 1) · AdvAwufcma1HDWal[RSig]

Hence, C’s overall advantage can be lower bounded by

AdvCuf -cma-hrk1RSig ≥ min
(

1
2AdvC1

uf -cma-hrk1RSig
,

1
2AdvC2

uf -cma-hrk1RSig

)

≥ 1
4e(qsk + 1) · AdvAwufcma1HDWal[RSig]

.

D Impossibility of a tighter bound
In this section, we first recall the security notion of unforgeability under rerandomized keys for signature
schemes with rerandomizable keys as introduced in [FKM+16]. This notion is stronger than the notion
of unforgeability under honestly rerandomized keys in the sense that an adversary is not restricted to
randomness chosen uniformly at random from the randomness space R for the key rerandomization. We
recall the following security game:

Game uf -cma-rkRSig:
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• Setup Phase: The challenger initializes the list SigList← {ϵ} and samples a pair of keys (pk, sk)←
RSig.Gen(par). Then the public key pk is sent to the adversary A.

• Online Phase: A is given access to a signing oracle RSign which works as follows. On input
a message m and a randomness ρ, derive a pair of keys rerandomized with the randomness ρ, as
sk′ ← RSig.SKDer(sk, ρ) and pk′ ← RSig.PKDer(pk, ρ). A signature is then derived on message m under
the secret key sk′ as σ ← RSig.Sign(sk′,m). The message m is stored in the SigList and eventually the
signature σ is returned as the answer.

• Output Phase: Finally, the adversary A wins the game if it can provide a signature σ∗ for a
message m∗ relative to randomness ρ∗, where the following holds: (1) the message m∗ has not been
queried before, i.e., m∗ /∈ SigList, and (2) σ∗ is a valid forgery, i.e., RSig.Verify(pk∗, σ∗,m∗) = 1, where
pk∗ ← RSig.PKDer(pk, ρ∗).
For an algorithm A we define A’s advantage in game

uf -cma-rkRSig as AdvAuf -cma-rkRSig = Pr[uf -cma-rkARSig = 1].
We now show the proof of Theorem 5.4 as presented in Section 5. Concretely, we show that for any

signature scheme with rerandomizable keys RSig that satisfies uf -cma-rk security and for any generic
transformation from RSig to a hierarchical deterministic wallet scheme HDWalRSig there exists no reduction
from uf -cma-rkRSig to wufcma1HDWalRSig that does not incur a loss polynomial in the number of SKLeakO
oracle queries qsk. In particular, this shows that the reduction in our proof of Theorem 5.3 is optimal
and cannot be improved even assuming a generic transformation HDWalRSig from a uf -cma-rk secure
signature scheme with rerandomizable keys. We show this result by assuming a reduction R that reduces
uf -cma-rkRSig to wufcma1HDWalRSig and by providing a metareduction M that uses R to win its own
uf -cma-rkRSig game. We show that the advantage of M in game uf -cma-rkRSig has a polynomial loss
in the number of SKLeakO oracle queries qsk. Our proof proceeds in a similar fashion as the proofs in
[KK18, Theorem 2] and [Cor02, Theorem 4].

We now provide the full formal proof of Theorem 5.4.

Proof. We describe a metareduction M that plays in the game uf -cma-rkMRSig and simulates the game
uf -cma-rkRRSig to R. Additionally, M simulates an adversary in game wufcma1HDWalRSig to R. M
receives a public key pkM from its challenger, and access to a signing oracle RSign. The goal of M is to
come up with a valid forgery in the uf -cma-rkMRSig game. The metareduction proceeds as follows:

1. M runs the reduction R with public key pkM as input and simulates game uf -cma-rkRRSig to R by
simply forwarding R’s queries to its own challenger. R sends a public key pk to M in the game
wufcma1HDWalRSig .

2. Assume thatM in game wufcma1HDWalRSig has made q queries to the HChildO oracle on input pairs
(addr·,·, e·,·· ) and let X be a set consisting of the q addresses thatM has queried the HChildO oracle
on (for simplicity we write X = {addr1, · · · ,addrq}). Let qsk ≤ ⌊q/2⌋ be the number of addresses,
for whichM invokes the Secret Key Leakage oracle. M picks i $← {1, . . . , qsk}, chooses addr∗ $← X
and (addr1, · · · ,addrqsk) $← (X \ {addr∗})qsk . This defines the following two sequences:

Xs := (addr1, . . . ,addri−1,addr∗)
X ′s := (addr1, · · · ,addrqsk)

3. M queries the SKLeakO oracle on addresses in the set Xs and receives the corresponding secret keys
as answers from R. In particular, since addr∗ ∈ Xs, M knows the secret key sk∗.

4. R is then rewound to the initial state. Then M, in game wufcma1HDWalRSig , queries the SKLeakO
oracle on addresses from the set X ′s. Since addr∗ /∈ X ′s, M has not corrupted the node with addr∗.

5. M now tosses a biased coin τ with probability ϵA of outputting 1. If τ = 0, M sends ⊥ to R in
the wufcma1HDWalRSig game. If τ = 1, M samples a random message m, creates a signature σ on
m with secret key sk∗ and returns (σ,m) as a valid forgery. This execution is done in time tA such
that M correctly simulates an adversary in game wufcma1HDWalRSig .

6. Since R was rewound, sk∗ was not revealed and (σ,m) constitutes a valid forgery. R derives a
signature (σ′,m′) corresponding to challenge key pkM and returns it to M. M can return (σ′,m′)
to the uf -cma-rkMRSig game.
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Success probability of M We now analyze the probability with whichM can win the uf -cma-rkMRSig
game. Let Q be a set of sequences of addresses such that for any sequence (addr1, · · · ,addrj) ∈ Q,
the corresponding SKLeakO oracle queries are answered correctly by R. Additionally, it holds that
if (addr1, · · · ,addrj) ∈ Q, then also (addr1, · · · ,addrj−1) ∈ Q. Let us now consider a (possibly
unbounded) real adversary A (i.e., A is not simulated by M), who issues queries to the SKLeakO oracle
on inputs addrj ∈ X ′s and eventually outputs a valid forgery (σ,m) with success probability ϵA. The
view of R is exactly the same when interacting with the real adversary A or with the adversary who is
simulated by M (which we denote by AM) except if the following bad event occurs: Xs ̸∈ Q but X ′s ∈ Q.
In this case, the reduction R did not answer all SKLeakO oracle queries correctly in the interaction with
AM before the rewind but did so after the rewind. If this event occurs, the real adversary A would
output a valid forgery, while the simulated adversary AM would not. Hence, the reduction R would be
able to distinguish the real from the simulated execution.

Let RA and RAM denote the execution of the reduction w.r.t. the real and simulated adversary,
respectively. The executions RA and RAM are identical, except if the following bad events occur in RAM :
X ′s ∈ Q and Xs ̸∈ Q and τ = 1. Therefore, we get:

|Pr[(σ′,m′)← RAM(pkM) ∧ (σ′ is valid on m′)]
− Pr[(σ′,m′)← RA(pkM) ∧ (σ′ is valid on m′)]|
≤ ϵA · Pr[X ′s ∈ Q ∧ Xs ̸∈ Q].

We recall the following lemma due to Coron [Cor02].

Lemma D.1 Let Q be a set of sequences of at most qsk integers in X , such that for any sequence
(addr1, · · · ,addrj) ∈ Q, we have (addr1, · · · ,addrj−1) ∈ Q. Then:

Pr
i

$←{1,··· ,qsk}
(addr1,··· ,addrqsk ,addr∗)

$←X qsk+1

[
(addr1, · · · ,addrqsk) ∈ Q
∧ (addr1, · · · ,addri−1,addr∗) ̸∈ Q

]

≤ exp(−1)
qsk

.

From lemma D.1, representing addresses as integers, we get that

Pr[X ′s ∈ Q ∧ Xs ̸∈ Q] ≤ exp(−1)
qsk

(
1− qsk

q

)−1
.

Note that the additional term
(

1− qsk
q

)−1
comes from the fact that we chose all addri from the set

X \ {addr∗} instead of X . Hence, we need to consider the probability that for all addri it holds that
addri ̸= addr∗.

From this, we obtain the success probability AdvMuf -cma-rkRSig for M as follows:

AdvMuf -cma-rkRSig = Pr[(σ′,m′)← RAM(pkM) ∧ (σ′ is valid on m′)]

≥Pr[(σ′,m′)← RA(pkM) ∧ (σ′ is valid on m′)]− ϵA ·
exp(−1)
qsk

(
1− qsk

q

)−1

≥Pr[(σ′,m′)← RA(pkM) ∧ (σ′ is valid on m′)]− ϵA ·
2 exp(−1)

qsk

≥ϵR(ϵA)− ϵA ·
2 exp(−1)

qsk

Note that, since M rewinds the reduction R once, the running time of M can be upper bounded by
tM ≤ 2 · tR(tA).
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E Discussion (contd.)
The following Theorem follows from Theorems 3.3 and 5.3.

Theorem E.1 Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be a hash function modeled as a random
oracle. Let REC[H1] be the scheme as defined in Figure 7. Let HDWal[RSig] be the construction as
defined in Figure 5. We define HDWal[REC[H1]] as the construction of HDWal[RSig], instantiated with
RSig = REC[H1]. Let A be an algorithm that plays in the game wufcma1HDWal[REC[H1]], then there exists
an algorithm C running in roughly the same time as A such that

AdvCuf -cma1EC[H0] ≥
(

1
4e(qsk + 1) · AdvAwufcma1HDWal[RSig]

− q2
H1

p

)
· 1
q
,

where qH1 is the number of random oracle queries, q is the total number of HChildO and NHChildO oracle
queries and qsk is the number of queries to the SKLeakO oracle.

The following Theorem follows from Theorem 5.3 and Theorem 5.1 from [DFL19].

Theorem E.2 Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be hash functions modeled as a random oracles.
Let REC′[H1] be the scheme as defined in Figure 6. Let HDWal[RSig] be the construction as defined in
Figure 5. We define HDWal[REC′[H1]] as the construction of HDWal[RSig], instantiated with RSig =
REC′[H1]. Let A be an algorithm that plays in the game wufcma1HDWal[REC′[H1]], then there exists an
algorithm C running in roughly the same time as A such that

AdvCuf -cma1EC[H0] ≥
1

4e(qsk + 1) · AdvAwufcma1HDWal[RSig]
− 3qH1

2

p
,

where qH1 is the number of random oracle queries and qsk is the number of queries to the SKLeakO oracle.

Lemma E.3 Consider the algorithm Trf[H0,H1]EC in Figure 8. Suppose that:

• ω = H1(m1)
H0(m0) ∈ Zp,

• X0, X1 ∈ E s.t. X0 = x0 ·G and X1 = ω ·X0,

• EC[H1].Verify(X1, σ1,m1) = 1,

• σ0 ← Trf[H0,H1]EC(m0,m1, σ1, ω,X0, X1).

Then EC[H0].Verify(X0, σ0,m0) = 1.

Theorem E.4 Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be a hash function modeled as a random oracle.
Let A be an algorithm that plays in the game uf -cma-hrkMREC[H1], then there exists an algorithm C
running in roughly the same time as A such that

AdvCuf -cmaEC[H0] ≥ AdvAuf -cma-hrkMREC[H1]
− 3q2

p

Proof. Consider an adversary A playing in Game
uf -cma-hrkMREC[H1]. As such A is granted access to the oracles Rand, RSign, and the random ora-
cle H1 : {0, 1}∗ → Zp. In the following, we use that 2κ ≤ p. We prove the statement via a sequence of
games. Each game GGGi(i>0) is presented in Figure 10 via the description of the oracles that are modified
with respect to the previous game GGGi−1. The exact differences of game GGGi to game GGGi−1 are highlighted
in the form of boxed pseudocode. Moreover, we denote by Ei−1,i a difference event, where the indices of
the event correspond to games GGGi−1,GGGi that are affected by the event.
Game GGG0: This game is equivalent to the original uf -cma-hrkMREC[H1] game. In particular, a key
pair (sk, pk) is sampled as (sk, pk) $← MREC[H1].Gen(par). The adversary A is given pk as the challenge
public key and oracle access to Rand, RSign and random oracle H1. A can query Rand to receive a
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randomness ρ and make a follow-up query to RSign to receive a signature on message m with respect to
the rerandomized key pk′ ← pk · ρ. In particular, A is allowed to query RSign on every input pair (m, ρ)
at most once. Additionally, A can make direct queries to the random oracle H1. The game internally
maintains a random oracle H0 in a straightforward manner, by storing a list H0 of query/response
pairs. Eventually, in order to win the game, A has to come up with a valid forgery σ∗ on a new
message m∗ with respect to a randomness ρ∗. Since G0G0G0 proceeds as uf -cma-hrkMREC[H1] we have that
Pr[G0G0G0 = 1] = Pr[uf -cma-hrkMREC[H1] = 1] = AdvAuf -cma-hrkMREC[H1]

.
Game GGG1: In GGG1, the way that random oracle queries to H1 from A are answered, is internally modified as
follows. To answer queries to H1, GGG1 internally keeps two lists H1 and H ′1 which it programs throughout
its interaction with A. Depending on whether a queried message m contains as part of its prefix a public
key pk′, it programs H1[m] and H ′1[m] in two different possible ways. Note that pk′ is the result of
rerandomizing pk as pk′ = pk · ρ, where ρ← Rand(ρ ∈ RList) is a previous answer to an oracle query Rand.
We now analyze the three types of queries to H1 that can occur.

• H1[m] ̸= ⊥: In this case, GGG1 returns H1[m].

• H1[m] = ⊥ and m is of the form m = (pk′, ·), s.t. pk′ = pk · ρ for some ρ ∈ RList: In this case,
GGG1 computes h← H0(ctr), where ctr $← {0, 1}κ. Consequently, GGG1 sets H1[m]← ρ · h mod p and
H ′1[m]← ctr. It returns H1[m].

• Otherwise, GGG1 samples h $← Zp and sets the values H1[m]← h, H ′1 [m]← ϵ. It then returns H1[m].

It is easy to see that all answers for queries to H1 that GGG1 returns are uniformly distributed from A’s
perspective. This follows from the uniformity of output h computed via random oracle H0. Therefore, GGG1
behaves exactly as GGG0.
Game GGG2: In GGG2, the way in which queries to Rand are answered, is internally modified as follows. When
A asks a query of the form Rand, the game aborts if there exists a message of the form m = (pk′, ·) for
which H ′1 [m] evaluates to ϵ and where pk′ is the (rerandomized) key that corresponds to the return value
ρ of Rand, i.e., pk′ = pk · ρ. The following claim bounds the probability of such an abort scenario.
Claim E.5 Let E1,2 denote the event that GGG2 aborts during a Rand query, for which H ′1 [m] evaluates to
ϵ, where m = (pk′, ·). Then Pr [E1,2] ≤ q2

p .

Proof. During any particular call to the oracle Rand, this event can only occur if A has already made
a query of the form H1(m), where m = (pk′, ·) (prior to the oracle Rand returning the value ρ for this
query). Since RList contains at most q values at any point during the game, any of them coincide with
the (uniformly chosen) value ρ with probability at most q

p . Since keys are uniquely rerandomizable, a
query of the form H1(m) thus also has probability at most q

p of having been made prior to this particular
call to Rand. Since there at most q queries to Rand, it follows that Pr [E1,2] ≤ q2

p .

Since the games GGG1, GGG2 are equivalent unless the event Pr[E1,2] occurs, Pr[GGG0 = 1] ≤ Pr[GGG1] + q2

p

Game GGG3: In GGG3, the way that signing queries from A are answered, is again internally modified
as follows. When A makes a query of the form RSign(m, ρ), GGG3 first checks whether ρ ∈ RList and
if not, returns ⊥. Otherwise, it computes pk′ ← pk · ρ, and sets pm ← (pk′,m). If H1[m̂] = ⊥, it
internally queries H1 on input message pm. This means it queries h← H(ctr), where ctr $← {0, 1}κ. GGG3
internally sets H1[pm]← ρ · h mod p and stores H ′1[pm]← ctr. After making the query to H1, GGG3 fetches
m′ ← H ′1[pm], where m′ was set to ctr during H1 query. Since sk is known to the game, it can now
compute the signature σ′ as σ′ $← EC[H0].Sign(sk,m′). Finally, it computes and returns the signature σ
as σ ← Trf[H0,H1]EC(pm,m′, σ′, ρ−1, pk′, pk), where pk = pk′ · ρ−1.

Claim E.6 Pr[GGG2 = 1] = Pr[GGG3 = 1]

Proof. We argue that in both games, the answers to signing queries are identically distributed. To this end,
we analyze how GGG3 replies to a query of the form RSign (m, ρ). GGG3 derives signature σ on input (m, ρ) as
σ ← Trf[H0,H1]EC(pm,m′, σ′, ρ−1, pk′, pk), where m′ = H ′1[pm], pk = pk′ ·ρ−1,EC[H0].Verify(pk, σ′,m′) =
1, and H0[m′]

H1[pm] = h′

H1[pm] = h′

ρ·h′ = ρ−1 mod p. It follows from Lemma E.3 that σ constitutes a correct
signature on message pm and under public key pk′ relative to EC[H0].Verify. It follows immediately that
the signature σ constitutes a valid signature relative to MREC[H1].Verify. This concludes the proof.
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Game GGG4: GGG4 behaves identically toGGG3 except for the following modification in the main procedure: Upon
receiving a forgery of the form (m∗, σ∗, ρ∗) from A, it sets pm∗ ← (pk∗,m∗) and aborts if H ′1[pm∗] = ϵ.

Claim E.7 Let E3,4 be the event that GGG4 aborts if H ′1[pm∗] = ϵ, where pm∗ = (pk∗,m∗). Then
Pr[E3,4] ≤ q2

p .

Proof. The only way this event can happen, is if A manages to make a query of the form H1(pm∗) before
querying Rand to obtain the corresponding value of ρ∗. The proof of this claim follows in a similar way as
the corresponding proof in claim E.5.

Since the games GGG3, GGG4 are equivalent unless event E3,4 occurs, Pr[GGG3 = 1] ≤ Pr[GGG4 = 1] + q2

p
Reduction to UF-CMA security. We describe an algorithm C that plays in the uf -cmaEC[H0] game
and simulates game GGG4 to A. Instead of sampling its own key pair as is done in GGG4, C obtains as input
a public key pkC from the uf -cmaEC[H0] game and is given access to the signing oracle Sign to obtain
signatures under pkC under messages of its choice. Furthermore, C has access to the random oracle H0 by
which it replaces the list H0. C runs A on input pkC .
Simulation of Randomness Queries. Queries to Rand from A do not require knowledge of the secret
key corresponding to pkC and hence are straight forward to simulate.
Simulation of Random Oracle Queries. C’s simulation of random oracle queries coincides with the
above programming strategy that is already internally present in GGG4.
Simulation of Signing Queries. Recall that in GGG4, queries of the form RSign (m, ρ) internally prompt
the computation of signature σ′ = EC[H0].Sign(skC ,m′), where m′ ← ctr. Since C does not know skC , it
needs to compute σ′ via a call to its signing oracle, i.e., as σ′ ← Sign(m′). Other than that C simulates
such a query exactly as internally done for GGG4.
Extracting the forgery. When the tuple (m∗, σ∗, ρ∗) is returned as an answer from A, C checks
whether it constitutes a valid forgery, and aborts otherwise (note that in this case, GGG4 would return 0, so
C can safely abort). In case C does not abort, it computes pk∗ = pkC · ρ∗, where pk∗ is the public key
under which A’s forgery is valid. C computes pm∗ ← (pk∗,m∗) and if H ′1 [pm∗] = ϵ, it aborts. Otherwise,
C fetches m′ ← H ′1 [pm∗] and computes

σ′ ← Trf[H1,H0]ECDSA (m′, pm∗, σ∗, ρ∗, pkC , pk∗) .

Since H1 [pm∗] = H0(H ′1 [pm∗]) · ρ∗ = H(m′) · ρ∗, we have that H1[pm∗]
H0(m′) = H0(m′)·ρ∗

H0(m′) = ρ∗. Together with
pk∗ = pkC · ρ∗ and MREC[H1].Verify(pk∗, σ∗, pm∗) = 1, Lemma E.3 implies that

EC[H0].Verify (pkC , σ′,m′) = 1.

Claim E.8 (m′, σ′) constitutes a valid forgery in uf -cmaEC[H0] with probability 1− q2/p.
Proof. We have to show that the query Sign(m′) was not made by C during its simulation and hence
(m′, σ′) is a valid forgery in uf -cmaEC[H0]. Note that A has not made a query of the form RSign (m∗, ρ∗)
throughout the simulation. If it had, (m∗, σ∗, ρ∗) would not constitute a valid forgery in GGG4 and
the simulation would have aborted at this point. This implies that C never had to simulate a query
RSign(m∗, ρ∗) to A which entailed a H1 query on message pm∗ ← (pk∗,m∗). Hence, m′ associated with
query H1(pm∗) was not queried by C to the oracle Sign in any query of the form RSign (m, ρ) with
m ̸= m∗ unless there exist (any) two values m1,m2 s.t. H ′1[m1] = H ′1[m2] ̸= ⊥. It is easy to see that this
happens with probability at most q2/p during C’s simulation, since all values that C queries to the oracle
Sign are sampled independently and uniformly at random from {0, 1}κ.

From claims E.5-E.7, we have Pr[GGG0 = 1] ≤ Pr[GGG4] + 3q2

p Since C provides a perfect simulation of GGG4
to A up to an error of q2/p, as shown in the previous claim, we obtain

AdvAuf -cma-hrkuf -cma-hrkuf -cma-hrk,MREC[H1] ≤ AdvAGGG4
+ 3q2

p
≤ AdvCuf -cma,EC[H0] + 3q2

p
,

which implies the theorem.

Theorem 5.3 can be combined with Theorem E.4 in a similar manner as Theorem E.2.
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Algorithm HDWal[RSig].Setup(par)
00 ch0,0

$← {0, 1}κ

01 (msk0,0,mpk0,0) $← RSig.Gen(par)
02 Return (msk0,0,mpk0,0, ch0,0)

Algorithm HDWal[RSig].Sign(ski,s,m)
00 σ ← RSig.Sign(ski,s,m)
01 Return σ

Algorithm HDWal[RSig].Verify(pki,s, σ,m)
00 0/1← RSig.Verify(pki,s, σ,m)
01 Return 0/1

Algorithm HDWal[RSig].SKDerH(ski,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(ski,s, chi,s, es,t
i+1)

01 ski+1,t ← RSig.RandSK(ski,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (ski+1,t, chi+1,t,addri+1,t)

Algorithm HDWal[RSig].SKDerNH(ski,s, pki,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(pki,s, chi,s, es,t
i+1)

01 ski+1,t ← RSig.RandSK(ski,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (ski+1,t, chi+1,t,addri+1,t)

Algorithm HDWal[RSig].PKDerH(ski,s, pki,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(ski,s, chi,s, es,t
i+1)

01 pki+1,t ← RSig.RandPK(pki,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (pki+1,t, chi+1,t,addri+1,t)

Algorithm HDWal[RSig].PKDerNH(pki,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(pki,s, chi,s, es,t
i+1)

01 pki+1,t ← RSig.RandPK(pki,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (pki+1,t, chi+1,t,addri+1,t)

Figure 5: Generic construction of a hierarchical deterministic wallet scheme HDWal[RSig] from a signature
with perfectly rerandomizable keys RSig. HDWal[RSig] is defined w.r.t. an address structure (T ,Addr),
where T = (h, n0,0,N , E), such that addri,s ∈ Addr and es,t

i ∈ E for 0 ≤ i ≤ h and 1 ≤ s, t ≤ |N |.
We denote by (pki,s, ski,s) and chi,s the public/secret key pair and chaincode of the node with address
addri,s. We denote by H a hash function H : {0, 1}∗ → R× {0, 1}κ.
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Algorithm REC′[H1].Sign(sk,m)
00 ψ $← {0, 1}κ

01 m̂← (pk, ψ,m)
02 σ′ ← EC[H1].Sign(sk, m̂)
03 Return σ = (ψ, σ′)

Algorithm
REC′[H1].Verify(pk, σ,m)
04 (ψ, σ′)← σ
05 m̂← (pk, ψ,m)
06 Return EC[H1].(pk, σ′, m̂)

Algorithm
REC′[H1].RandSK (sk; ρ)
00 sk′ ← sk · ρ mod p
01 Return sk′

Algorithm
REC′[H1].RandPK (pk; ρ)
02 pk′ ← pk · ρ
03 Return pk′

Figure 6: Salted and key-prefixed version of the ECDSA signature scheme with perfectly rerandomiz-
able keys REC′[H1] := (REC′[H1].Gen = EC[H1].Gen, REC′[H1].Sign, REC′[H1].Verify, REC′[H1].RandSK,
REC′[H1].RandPK) from the ECDSA signature scheme EC[H1]. H1 : {0, 1}∗ → Zp denotes a hash function.

Algorithm
MREC[H1].Sign (sk,m)
00 pm← (pk,m)
01 σ ← EC[H1].Sign (sk, pm)
02 Return σ

Algorithm
MREC[H1].Verify (pk, σ,m)
03 pm← (pk,m)
04 Return
EC[H1].Verify (pk, σ′, pm)

Algorithm
MREC[H1].RandSK (sk; ρ)
00 sk′ ← sk · ρ mod p
01 Return sk′

Algorithm
MREC[H1].RandPK (pk; ρ)
02 pk′ ← pk · ρ
03 Return pk′

Figure 7: Salt-free and key-prefixed version of the ECDSA signature scheme with perfectly rerandomizable
keys MREC[H1] := (MREC[H1].Gen = EC[H1].Gen, MREC[H1].Sign, MREC[H1].Verify, MREC[H1].RandSK,
MREC[H1].RandPK) from the ECDSA signature scheme EC[H1]. H1 : {0, 1}∗ → Zp denotes a hash function.

Trf[H0,H1]EC(m0,m1, σ1, ω,X0, X1)
00 z0 ← H0(m0)
01 z1 ← H1(m1)
02 If (EC[H1].Verify(σ1,m1, X1) = 0) ∨

(
ω ̸= z1

z0
∨X1 ̸= X0 · ω

)
:

03 Return ⊥
04 (r, s1)← σ1
05 s0 ← s1

ω mod p
06 σ0 ← (r, s0)
07 Return σ0

Figure 8: Figure shows the TrfECDSA algorithm for hash functions H0,H1 : {0, 1}∗ → Zp.

37



Game GGG0
00 RList← {ϵ}
01 bad← false
02 (sk, pk) $← MREC[H1].Gen (par)
03 (m∗, σ∗, ρ∗) $← AH1,Rand,RSign (pk)
04 pk∗ ← pk · ρ∗
05 If pm∗ ∈ SigList : bad← true
06 If ρ∗ ̸∈ RList : bad← true
07 b ← MREC[H1].Verify (pk∗, σ∗,m∗)
08 Return b ∧ ¬bad

Oracle Rand
09 ρ $← R
10 RList← RList ∪ {ρ}
11 Return ρ

Oracle RSign (m, ρ)
12 If ρ /∈ RList : Return ⊥
13 pk′ ← pk · ρ mod p
14 sk′ ← sk · ρ mod p
15 pm← (pk′,m)
16 σ ← MREC[H1].Sign (pm, sk′)
17 SigList← SigList ∪ {pm}
18 Return σ

Oracle H1 (m)
19 If H1 [m] ̸= ⊥
20 Return H1 [m]
21 H1 [m] $← Zp

22 Return H1 [m]

H0 [m]
23 If H0 [m] ̸= ⊥
24 Return H0 [m]
25 H0 [m] $← Zp

26 Return H0 [m]

Figure 9: Game GGG0 = uf -cma-hrkMREC[H0] with adversary C.

Oracle H1 (m) in GGG1
00 If H1 [m] ̸= ⊥
01 Return H1 [m]
02 Parse m as (pk′, ·)
03 If ∃ρ ∈ RList : pk′ =
pk · ρ
04 ctr ← {0, 1}κ

05 h← H0[ctr]
06 H1 [m] ← ρ · h
mod p
07 H ′1 [m]← ctr
08 Else
09 h $← Zp

10 H1 [m]← h
11 H ′1 [m]← ϵ
12 Return H1 [m]

Oracle Rand in GGG2
13 ρ $← R
14 pk′ ← pk · ρ
15 ∀m = (pk′, ·) :
16
If H ′1 [m] = ϵ : Abort

17 RList← RList ∪ {ρ}
18 Return ρ

Oracle RSign (m, ρ) in GGG3
19 If ρ ̸∈ RList : Return ⊥
20 pk′ ← pk · ρ
21 pm← (pk′,m)
22 If H ′1[pm] = ⊥
23 Query H1(pm)

24 m′ ← H ′1[pm]

25 σ′ ← EC[H0].Sign(sk,m′)

26 σ ← Trf[H0,H1]EC(pm,m′, σ′, ρ−1, pk′, pk)
27 SigList← SigList ∪ {pm}
28 Return σ

main in GGG4
29 RList← {ϵ}
30 bad← false
31 (sk, pk) $← MREC[H1].Gen (par)
32 (m∗, σ∗, ρ∗) $← AH1,Rand,RSign(pk)
33 pk∗ ← pk · ρ∗
34 pm∗ ← (pk∗,m∗)

35 If H ′1[pm∗] = ϵ : Abort
36 If pm∗ ∈ SigList : bad← true
37 If ρ∗ ̸∈ RList : bad← true
38 b← MREC[H1].Verify (pk∗, σ∗,m∗)
39 Return b ∧ ¬bad

Figure 10: Games GGG1-GGG4
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B. BIP32-Compatible Threshold
Wallets

In this chapter, we present the following work with minor changes:

[66] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. “BIP32-Compatible Threshold

Wallets”. In: IACR Cryptol. ePrint Arch. (2023), p. 312. Part of this thesis.
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Abstract
Cryptographic wallets have become an essential tool to secure users’ secret keys and consequently

their funds in Blockchain networks. The most prominent wallet standard that is widely adopted
in practice is the BIP32 specification. This standard specifies so-called hierarchical deterministic
wallets, which are organized in a tree-like structure such that each node in the tree represents a
wallet instance and such that a parent node can derive a new child node in a deterministic fashion.
BIP32 considers two types of child nodes, namely non-hardened and hardened nodes, which differ in
the security guarantees they provide. While the corruption of a hardened wallet does not affect the
security of any other wallet instance in the tree, the corruption of a non-hardened node leads to a
breach of the entire scheme.

In this work, we address this significant drawback of non-hardened nodes by laying out the design
for the first hierarchical deterministic wallet scheme with thresholdized non-hardened nodes. We
first provide a game-based notion of threshold signatures with rerandomizable keys and show an
instantiation via the Gennaro and Goldfeder threshold ECDSA scheme (CCS’18). We further observe
that the derivation of hardened child wallets according to the BIP32 specification does not translate
easily to the threshold setting. Therefore, we devise a new and efficient derivation mechanism for
hardened wallets in the threshold setting that satisfies the same properties as the original BIP32
derivation mechanism and therefore allows for efficient constructions of BIP32-compatible threshold
wallets.

1 Introduction
Blockchain technologies gained huge popularity in the past few years as they provide a new decentralized
mechanism to process payments without relying on a centralized authority. The main cryptographic
building block in virtually all Blockchains is a digital signature scheme, which allows parties in Blockchain
networks to authenticate transactions. As an example, if Alice wishes to make a payment to Bob via the
Blockchain, she can sign a transaction specifying her address which is derived from her signing public key
pkA, Bob’s address which is derived from his public key pkB and the amount being spent. Alice can then
sign the transaction using her secret key skA, so that the final transaction has the form “(pkA pays c
coins to pkB), σ” where σ is Alice’s signature on the transaction under her secret key skA. Essentially,
Alice’s secret key allows to spend all of her funds, which makes it crucial for users in a Blockchain network
to protect their secret keys from attackers. In order to do so, a cryptocurrency wallet guarantees the
secure storage and maintenance of a user’s signing keys. While there were several different proposals
for such wallet schemes [MPs19, AGKK19, KMOS21], the most widely used in practice is the BIP32
specification [Wik18], which outlines the design of hierarchical deterministic wallets.

Hierarchical Deterministic Wallets A hierarchical deterministic wallet scheme is organized in a tree-
like structure, where one root wallet deterministically derives child wallets which in turn deterministically
derive further child wallets. Each wallet in the tree is identified by an ID and consists of a signing secret
and public key pair (skID, pkID) as well as a so-called chaincode chID. BIP32 considers two types of child



wallets, non-hardened and hardened child wallets, which differ only in how they are derived from the
parent. More concretely, a parent wallet identified by ID derives a non-hardened wallet with identifier ID′
by first computing (ρ, chID′)← H(pkID, chID, ID′) and then skID′ ← skID + ρ and pkID′ ← pkID · gρ where H
is a cryptographic hash function. The values (skID′ , pkID′) and chID′ then form the key pair and chaincode
of the non-hardened child wallet. In contrast, the derivation of a hardened wallet differs from the above in
the sense that the computation of ρ and chID′ is carried out as (ρ, chID′)← H(skID, chID, ID′), i.e., it uses
the parent’s secret key skID as input to the hash function evaluation instead of its public key pkID. BIP32
considers these two different types of child wallets as a trade-off between usability and security. On the
one hand, the derivation of a hardened wallet’s public key requires knowledge of the parent secret key
skID, but provides strong security guarantees since its corruption does not affect the security of the parent
node and the remaining wallets in the tree. On the other hand, the derivation of a non-hardened wallet’s
public key can be done by any party knowing pkID and chID, i.e., without knowledge of the parent secret
key. This is particularly useful in the hot/cold setting (see below), where the secret key is stored in an
offline device and therefore not accessible at any time. However, the corruption of a single non-hardened
wallet breaks the security of the entire wallet scheme, which poses a significant security risk and severely
restricts the usage of non-hardened wallets in practice.

Hot/Cold Setting Hierarchical deterministic wallets were first formally modeled and analyzed by Das
et al. [DEF+21]. In their work, the authors propose to implement non-hardened wallets in the hot/cold
wallet setting in order to mitigate the risk of non-hardened wallets being corrupted. In this setting, a
non-hardened wallet consists of two devices, a hot wallet and a cold wallet. The hot wallet is permanently
connected to the Internet and stores the public key and the chaincode whereas the cold wallet stores
the secret key and the chaincode and remains offline most of the time. The assumption is then that an
adversary cannot corrupt the cold wallet (and therefore does not learn the secret key) since it is mostly
offline. However, this assumption might not hold where, e.g., an adversary obtains physical access to the
cold wallet. Therefore, the following natural question arises:

Can we construct a secure BIP32 wallet scheme that does not rely on the idealized assumption of
incorruptible cold wallets?

1.1 Our Contribution
In this work, we answer the above question affirmatively. To this end, we consider thresholdizing non-
hardened nodes, s.t. each node consists of several devices where each of them stores a share of the signing
secret key. This design choice allows to guarantee security even if a subset of the devices are corrupted.
Our idea is to instantiate non-hardened wallets with a (t, n)-threshold signature scheme such that each
non-hardened wallet is “split” into n different devices, each of which stores only a share of the signing
secret key. As we are using a (t, n)-threshold signature scheme, at least t + 1 devices are required to sign
a message. Simultaneously, the secret key of the non-hardened wallet remains secure as long as at most t
devices are corrupted. All n devices store the public key and chaincode, s.t. only a single device can
derive a non-hardened child public key without having to interact with the remaining n− 1 devices.

From an application perspective such a thresholdized wallet scheme can be used as a core building
block for strengthening the security of so-called custodial (e.g., Coinbase 1 or BitGo 2), self-custodial (e.g.,
Electrum or Trezor [Ele13, Tre14]), or shared-custodial wallets (e.g., ZenGo 3 or Sepior 4). Custodial
wallets are maintained solely by a service provider on behalf of a user, while a self-custodial wallet is
maintained completely by the user itself. Naturally, while the former requires the user to trust the service
provider completely, the latter is cumbersome to use as the user must possess the technical expertise to
securely store its signing keys. As a trade-off between custodial and self-custodial wallets, the concept
of shared-custodial wallets offers a solution where the secret key is shared among both the user and a
service provider such that none can generate a valid signature without the other. For instance, a simple
shared-custodial wallet can be instantiated from a (2, 2)-threshold wallet scheme. Of course, this can
be extended to higher threshold parameters with our (t, n) construction. Due to these various useful

1https://custody.coinbase.com/
2https://www.bitgo.com/
3https://zengo.com/
4https://sepior.com/
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applications, there is an increasing interest in BIP32-compatible threshold wallets [Yeh23, CHL23]. Let
us now summarize our contributions in more details.

Threshold Signature Schemes with Rerandomizable Keys Das et al. [DEF+21] showed that one
can generically construct hierarchical deterministic wallets from signature schemes with rerandomizable
keys. Such signature schemes allow to deterministically rerandomize the secret/public key pair of a
signature scheme such that the rerandomized key pair constitutes again a valid signing key pair. In our
threshold setting, we therefore require a threshold signature scheme with rerandomizable keys. To this
end, we first provide a game-based definition of such a primitive and then show an instantiation based
on the threshold ECDSA scheme of Gennaro and Goldfeder [GG18]. Importantly, for our instantiation
we devise public and secret key rerandomization algorithms which allow to rerandomize the respective
keys non-interactively, i.e., parties do not have to communicate in order to rerandomize the scheme’s
public key and their respective secret key shares. This is an important property for wallet schemes
as we generally aim to minimize communication between wallet devices. We intentionally choose the
threshold ECDSA scheme of Gennaro and Goldfeder for our instantiation for the following two reasons:
(1) it is a relatively simple scheme, i.e., it does not include advanced features such as offline signing
or proactive/adaptive security which significantly increase the complexity of other threshold ECDSA
schemes; (2) several threshold ECDSA schemes directly build upon the protocol of Gennaro and Goldfeder
[CGG+20a],[DMZ+21],[CCL+20],[CCL+21], improving either its efficiency, functionality, or security.
Since the general idea of these schemes is similar to the original scheme of Gennaro and Goldfeder, we
believe that our results can be extended to these schemes as well. We leave exploring such extensions as
an interesting direction for future work.

(Non-)Hardened Node Derivation As a second step, we translate the (non-)hardened derivation
mechanisms as specified by BIP32 to the threshold setting. To this end, we first observe that using the
public and secret key rerandomization algorithms of our rerandomizable threshold ECDSA scheme we
can derive non-hardened nodes according to BIP32. However, in order to securely send the rerandomized
secret key shares from the parent to the child node devices, we inherently require a communication heavy
protocol that re-shares the key shares from the parent to the child. We then show that the hardened node
derivation cannot easily be translated to the threshold setting due to the following issue: As mentioned
above, the hardened node derivation in BIP32 requires to compute a hash function evaluation on input
the secret key of the parent node (and some additional inputs). In the threshold setting, however, the
secret key is shared among n devices and hence, adhering to the hardened node derivation of BIP32
would require all n devices to run an interactive multi-party computation (MPC) protocol which securely
computes this hash function evaluation. This is however highly inefficient and hence not a practical
solution. Our main technical contribution is to provide an alternative and highly efficient hardened node
derivation mechanism that still satisfies all properties of the hardened node derivation as specified by
BIP32.

Our mechanism uses a (non-interactive) threshold verifiable random function (TVRF) [Dod03], which
allows the n non-hardened node devices to deterministically and efficiently compute a pseudorandom value.
This value can be used by the hardened node as input to the key generation algorithm of a (non-threshold)
signature scheme to deterministically generate its keys. However, for this approach each non-hardened
wallet instance in the tree must maintain two secret/public key pairs: one for the threshold signing scheme
and one for the TVRF scheme. Similarly to the signing key pair, the TVRF keys must be deterministically
derived throughout the entire tree. That is, during the derivation of a non-hardened node, the parent
must re-share its signing and its TVRF keys, which introduces a significant communication overhead,
considering that we essentially double the amount of required communication for each non-hardened
node derivation. We would like to emphasize that the TVRF keys are only required for the derivation
of hardened nodes. Yet, in practice most non-hardened wallets never derive a hardened child node and
therefore would never make use of the TVRF keys, essentially wasting the communication required to
derive the keys.

Due to this reason, our idea to overcome the drawback of maintaining and deriving a second key pair is
to re-use the signing key pair of non-hardened nodes for the TVRF. While it is usually not recommended
to re-use the same secret key over multiple cryptographic primitives, we prove that in our concrete
case re-using the same secret key does not compromise security. This constitutes the main technical
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contribution of our work. To this end, we first formally define security properties for the joint threshold
signature/TVRF scheme, and we then prove that the combined scheme satisfies our properties. The
main challenge in our proof is that we must reduce the security of the joint scheme to the security of the
underlying TVRF scheme. The difficulty here is that an adversary against the joint scheme is allowed
to receive signatures under the schemes’ secret key, while the reduction to the TVRF security does not
obtain access to a signing oracle. The reduction therefore must simulate the signing protocol to the
adversary in the joint scheme without having access to a signing oracle itself.

1.2 Related Work
Cryptographic Wallets There has been a plethora of works on cryptographic wallets such as [MPs19,
AGKK19, CEV14, KMOS21]. We focus on hierarchical deterministic wallets, which have been extensively
researched in the past. Gutoski and Stebila [GS15] introduced a hierarchical deterministic wallet scheme
that, however, deviates from the BIP32 standard. Later, Das et al. [DFL19] gave the first formal analysis
of deterministic wallets in the hot/cold setting and provided a construction based on multiplicatively
rerandomizable ECDSA. The model of deterministic wallets by Das et al. [DFL19] has been extended
to the post-quantum setting by Alkadri et al. [ADE+20]. Luzio et al. [LFA20] presented a hierarchical
deterministic wallet scheme, which is however not compatible with Bitcoin. The most relevant work for our
results is the paper by Das et al. [DEF+21] which analyzes the security of hierarchical deterministic wallets
that comply with the BIP32 standard. As mentioned previously, Das et al. show that such wallets can be
constructed generically from signature schemes with rerandomizable keys. Recently, Yin et al. [YLY+22]
proposed a model for hierarchical deterministic wallets supporting stealth addresses. However, their
construction is incompatible with Bitcoin as it relies on bilinear maps. Erwig and Riahi [ER22] recently
proposed deterministic wallets with support for adaptor signatures and finally, in a very recent work,
Chuang et al. [CHL23] investigated how the BIP32 specification can be translated to the two-party setting.
That is, Chuang et al. presented two-party protocols for the key generation and hardened key derivation
as specified by BIP32, and subsequently implemented these protocols and evaluated their efficiency.
However, the work of Chuang et al. is restricted to the two-party setting, whereas we investigate the
more general (t, n) setting.

Threshold ECDSA In recent years, there has been huge interest on threshold ECDSA (e.g., [Lin17,
LN18, CGG+20a, DMZ+21, CCL+20, CCL+21, BMP22]). For a more in-depth comparison of different
threshold ECDSA schemes, we refer to the survey of Aumasson et al. [AHS20]. As mentioned above, our
work is based on the threshold ECDSA scheme of Gennaro and Goldfeder [GG18]. A recent work by Groth
and Shoup [GS22] introduced a threshold ECDSA scheme with additive key rerandomization according
to the BIP32 specification. However, the authors do not consider the derivation of hardened nodes in the
threshold setting, which is the main focus of our paper. Groth and Shoup analyze their scheme in the
ideal/real world setting w.r.t. an ECDSA-specifc functionality, whereas we give a general game-based
definition for threshold signature schemes with rerandomizable keys and show that the construction of
Gennaro and Goldfeder [GG18] can be extended to satisfy our definition. Finally, their scheme is rather
complex, whereas we are aiming for a simple threshold ECDSA scheme.

2 Preliminaries
Notation. We use s $← H to denote the uniform random sampling of a value s from a set H. By [l] for
an integer l, we denote the set of integers {1, · · · , l} and for an algorithm A, we denote by y ← A(x) the
execution of A on input x that outputs y. We use the notation y ∈ A(x) to denote that y is an element
in the set of possible outputs of an execution of A on input x. Throughout our paper, we often avoid
explicitly specifying public parameters par. Given two strings a and b, we write a = (b, ·) if b is a prefix of
a. For a set of n parties {P1, · · · , Pn} and an interactive algorithm Π, we denote by ⟨Π(x1), · · · , Π(xn)⟩
the joint execution of Π by all parties Pi for i ∈ [n] with respective inputs xi.

2.1 Interactive Threshold Signature Scheme
In the following, we recall the definition of interactive threshold signature schemes.
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Definition 2.1 (Interactive Threshold Signature Scheme). An interactive (t, n)-threshold signature
scheme TSig is executed among a set of n parties {P1, · · · , Pn} and consists of a tuple of procedures
TSig = (Gen, TSign, Verify) which are defined as follows:

• Gen(1κ, t, n): The probabilistic key generation algorithm takes as input a security parameter κ and two
integers t, n ∈ N such that t < n. It outputs a public key pk and a set of secret key shares {sk1, · · · skn}
such that each party Pi obtains pk and ski.

• TSign(ski, m): The probabilistic signing procedure takes as input a secret key share ski for i ∈ [n] and
a message m. It outputs either a signature σ or ⊥.

• Verify(pk, m, σ): The deterministic verification algorithm takes as input a public key pk, a message m
and a signature σ and outputs a bit 0/1.

Correctness. An interactive (t, n)-threshold signature scheme TSig is correct if for all κ ∈ N, all t, n ∈ N
with t < n, all ({sk1, · · · , skn}, pk)← Gen(1κ, t, n), and all m ∈ {0, 1}∗, it holds that Pr[Verify(pk, m, σ) =
1], where σ ← ⟨TSign(sk1, m), · · · , TSign(skn, m)⟩ = 1.

Definition 2.2 (Unforgeability of interactive threshold signature schemes). An interactive (t, n)-threshold
signature scheme TSig is unforgeable if no PPT adversary A wins game th-ufcma as described below with
more than negligible advantage. We define A’s advantage in game th-ufcmaTSig as AdvAth-ufcmaTSig

:=
Pr[th-ufcmaATSig = 1].

Game th-ufcmaTSig:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes a list SigList← {ϵ} and executes ({sk1, · · · , skn}, pk)← TSig.Gen(1κ, t, n). Then
A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following Sign oracle: On input message m, the oracle and the
adversary jointly execute the procedure TSig.TSign, where the oracle runs all honest parties Pi on
input (ski, m). The message m is then stored in SigList.

• Eventually, the adversary outputs a forgery σ∗ and a message m∗. The adversary wins the game, if the
following conditions hold: (1) TSig.Verify(pk∗, m∗, σ∗) = 1 and (2) m∗ /∈ SigList.

2.2 Signature Scheme with Honestly Rerandomizable Keys
The notion of signature schemes with rerandomizable keys has first been introduced by Fleischhacker et
al. [FKM+16].

Definition 2.3 (Signature Scheme with Perfectly Rerandomizable Keys). Let the public parameters
par define a randomness space R := R(par). A signature scheme with perfectly rerandomizable keys is
then a tuple of algorithms RSig = (Gen, Sign, Verify, RandSK, RandPK) where (Gen, Sign, Verify) are the
standard algorithms of a signature scheme. The algorithms RandSK and RandPK are defined as follows:

• RandSK(sk, ρ): The deterministic secret key rerandomization algorithm RandSK takes as input a secret
key sk and randomness ρ ∈ R and outputs a rerandomized secret key sk′.

• RandPK(pk, ρ): The deterministic public key rerandomization algorithm RandPK takes as input a
public key pk and randomness ρ ∈ R and outputs a rerandomized public key pk′.

We recall the correctness definition and the security notion of one-per message existential unforge-
ability under honestly rerandomizable keys (uf -cma-hrk1) for signature schemes with rerandomizable
keys [DEF+21] in Appendix A.1. Further, we recall the construction of an additively rerandomizable and
uf -cma-hrk1-secure ECDSA signature scheme as presented by Das et al. [DEF+21] in Appendix A.3.
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2.3 Non-Interactive Threshold Verifiable Random Function
We recall the definition of a non-interactive threshold verifiable random function from Galindo et
al. [GLOW21].5

Definition 2.4 A non-interactive (t, n)-threshold verifiable random function (TVRF) is defined w.r.t.
to a randomness space Rand and is executed among n parties {P1, · · · , Pn}. It consists of a tuple of
algorithms TVRF = (Gen, PEval, Combine, Verify) which are defined as follows:

• Gen(1κ, t, n): The probabilistic key generation algorithm Gen takes as input a security parameter κ
and two integers t, n ∈ N such that t < n. It outputs a public key pk and a set of secret key shares
{sk1, · · · skn} such that each party Pi obtains pk and ski.

• PEval(m, ski, pk): The partial evaluation algorithm PEval takes as input a message m, a secret key
share ski, and a public key pk, and it outputs an evaluation share ϕi and a proof πi.

• Combine(pk, m,S, {ϕi, πi}i∈S): The combination algorithm Combine takes as input a public key pk, a
message m, a set of indices S with |S| > t, and a set of partial evaluation shares {ϕi, πi}i∈S . It outputs
either a function evaluation ϕ ∈ Rand and a proof π, or ⊥.

• Verify(pk, m, ϕ, π): The verification algorithm Verify takes as input a public key pk, a message m, a
function evaluation ϕ ∈ Rand, and a proof π, and outputs either 0 or 1.

A TVRF must satisfy the properties uniqueness, pseudorandomness, and robustness.

Definition 2.5 (Uniqueness of TVRF). A non-interactive (t, n)-threshold verifiable random function
scheme TVRF is th-unique-secure if no PPT adversary A wins game th-unique as described below with
more than negligible advantage. We define A’s advantage in game th-uniqueTVRF as AdvAth-uniqueTVRF

:=
Pr[th-uniqueATVRF = 1].

Game th-uniqueTVRF:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game executes (pk, {sk1, · · · , skn})← TVRF.Gen(1κ, t, n). A receives as input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Eval: On input message m and index i ∈ [n]\C, the oracle executes (ϕi, πi)← TVRF.PEval(m, ski, pk)
and returns (ϕi, πi).

– KeyLeak: On input an index i ∈ [n], the oracle outputs ski.

• Eventually, the adversary outputs a message m∗ and two function evaluations {(ϕi∗
, πi∗)}i∈{0,1}. The

game outputs 1 if ϕ0∗ ̸= ϕ1∗ and TVRF.Verify(pk, m∗, ϕ0∗
, π0∗) = TVRF.Verify(pk, m∗, ϕ1∗

, π1∗) = 1.
Otherwise it outputs 0.

Definition 2.6 (Pseudorandomness of TVRF). A non-interactive (t, n)-threshold verifiable random
function scheme TVRF is th-prand-secure if no PPT adversary A wins game th-prand as described
below with more than negligible advantage. We define A’s advantage in game th-prandTVRF as
AdvAth-prandTVRF

:= Pr[th-prandATVRF = 1]− 1
2 .

Game th-prandTVRF:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].
5We note that Galindo et al. refer to the primitive in their work as non-interactive fully distributed verifiable random

function.
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• The game initializes EvalList← {ϵ} and executes (pk, {sk1, · · · , skn})← TVRF.Gen(1κ, t, n). A receives
as input pk and {ski}i∈C.

• The adversary obtains access to the following oracle:

– Eval: On input message m and an index i ∈ [n]\C, the oracle executes (ϕi, πi)← TVRF.PEval(m, ski, pk)
and if (i, m) /∈ EvalList, stores the tuple (i, m) in EvalList. The oracle returns (ϕi, πi).

• Eventually, the adversary outputs a message m∗, a set of indices S with S > t, evaluation shares
{ϕi, πi}i∈S∩C. The game checks if there are less than t − |S ∩ C| tuples of the form (·, m∗) in
EvalList and if so, the game computes for j ∈ S \ C the tuple (ϕj , πj) ← TVRF.PEval(m∗, skj , pk)
and (ϕ, π)← TVRF.Combine(pk,S, {(ϕi, πi)}i∈S). If ϕ = ⊥, the game returns ϕ. Otherwise the game
chooses a bit b $← {0, 1} and does the following:

– If b = 0: Return ϕ.
– If b = 1: Sample ϕ′ $← Rand and output ϕ′.

The adversary then outputs a bit b′ and wins if b = b′.

Definition 2.7 (Robustness of TVRF). A non-interactive (t, n)-threshold verifiable random function
scheme TVRF is th-robust-secure if no PPT adversary A wins game th-robust as described below with
more than negligible advantage. We define A’s advantage in game th-robustTVRF as AdvAth-robustTVRF

:=
Pr[th-robustATVRF = 1].

Game th-robustTVRF:

• The game differs from game th-prandTVRF only by the winning condition, which we will describe
below.

• The adversary outputs a message m∗, a set S with |S| > t and a set of evaluation shares {ϕi, πi}i∈S∩C.
The game computes (ϕi, πi) ← TVRF.PEval(m∗, ski, pk) for all i ∈ S \ C. The game finally sets
(ϕ∗, π∗) ← TVRF.Combine(pk,S, {ϕi, πi}i∈S). If ϕ∗ ̸= ⊥ and TVRF.Verify(pk, m∗, ϕ∗, π∗) = 0, the
game outputs 1 and 0 otherwise.

3 Rerandomizable Interactive Threshold Signing
3.1 Model
In the following, we introduce the notion of interactive threshold signature schemes with rerandomizable
keys. More concretely, we extend the standard notion of a threshold signature scheme by two algorithms
RandSK and RandPK, which allow to individually derive rerandomized secret key shares and a rerandomized
public key respectively, such that the derived secret key shares form a valid (t, n)-sharing of the secret
key that corresponds to the derived public key.

Definition 3.1 (Interactive Threshold Signature Scheme With Rerandomizable Keys). An interac-
tive (t, n)-threshold signature scheme with rerandomizable keys is a tuple of procedures RTSig =
(Gen, RandSK, RandPK, TSign, Verify) where (Gen, TSign, Verify) are defined as for interactive (t, n)-threshold
signatures. We assume that the public parameters par define a randomness space R := R(par). The
algorithms RandSK and RandPK are defined as:

• RandSK(i, ski, ρ): The deterministic secret key share rerandomization algorithm takes as input an index
i ∈ [n], a secret key share ski and a randomness ρ ∈ R and it outputs a rerandomized secret key share
sk′i.

• RandPK(pk, ρ): The deterministic public key rerandomization algorithm takes as input a public key pk
and a randomness ρ ∈ R and it outputs a rerandomized public key pk′.

We require the following properties of a threshold signature scheme with rerandomizable keys:
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• Rerandomizability of public keys: For all κ ∈ N, all t, n ∈ N with t < n, all (·, pk) ← Gen(1κ, t, n)
and all ρ $← R, the distributions of pk′ and pk′′ are computationally indistinguishable, where pk′ ←
RandPK(pk, ρ) and (·, pk′′)← Gen(1κ, t, n).

• Correctness under rerandomized keys: For all κ ∈ N, all t, n ∈ N with t < n, all ({sk1, · · · , skn}, pk)←
Gen(1κ, t, n), all ρ $← R and all m ∈ {0, 1}∗, the rerandomized keys {sk′i}i∈[n] ← {RandSK(i, ski, ρ)}i∈[n]
and pk′ ← RandPK(pk, ρ) satisfy:

Pr[Verify(pk′, m, σ)|σ ←
〈
TSign(sk′1, m), · · · , TSign(sk′n, m)

〉
] = 1

We note that the property of rerandomizability of public keys is a slightly weaker notion than the
perfect rerandomizability of keys of rerandomizable signature schemes (cf. Appendix A) which requires
rerandomized public and secret keys to be identically distributed to a freshly generated key pair. However,
as previously pointed out by Alkadri et al. [ADE+20], this weaker rerandomizability property is sufficient
for the wallet setting. At a high level, that is because this notion is required to ensure the wallet
unlinkability property, which guarantees unlinkability of wallet public keys, i.e., it guarantees that a
derived public key is computationally indistinguishable from freshly generated public keys.

We define the security notion of one-per message existential unforgeability under honestly rerandom-
izable keys for interactive threshold signature schemes with rerandomizable keys. That is, we define
a security game th-ufcma-hrk1 which differs from the unforgeability game th-ufcma (cf. Def. 2.2)
of interactive threshold signatures in the following ways: (1) the adversary receives access to a Rand
oracle, which outputs uniformly random elements from R; (2) the signing oracle RSign cannot only
generate signatures under the initial set of keys ({sk1, · · · , skn}, pk), but also under key sets that have
been rerandomized with an element output by the Rand oracle; (3) the signing oracle returns at most one
signature for each key set/message pair; and (4) the adversary can win the game with a valid forgery under
any key set rerandomized with an output of the Rand oracle. We note that the notion of one-per message
unforgeability is weaker than standard unforgeability, however, as remarked by Das et al. [DEF+21] this
weaker notion is sufficient for the wallet setting.

Definition 3.2 (One-per message unforgeability of interactive threshold signature schemes with hon-
estly rerandomizable keys). An interactive (t, n)-threshold signature scheme with rerandomizable keys
RTSig = (Gen, RandSK, RandPK, TSign, Verify) is th-ufcma-hrk1-secure if no PPT adversary A wins
game th-ufcma-hrk1 as described below with more than negligible probability in the security parameter
κ.

Game th-ufcma-hrk1RTSig:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes two lists RList ← {ϵ} and SigList ← {ϵ} and executes ({sk1, · · · , skn}, pk) ←
RTSig.Gen(1κ, t, n). Then, A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following two oracles:

– Rand: This oracle, upon a query, samples ρ $← R, stores ρ in RList and outputs ρ to A.
– RSign: On input message m and a randomness ρ, the oracle checks whether ρ /∈ RList and if so

outputs ⊥. Otherwise, it derives a public key and secret key shares for honest parties with the
randomness ρ, i.e., it computes pk′ ← RTSig.RandPK(pk, ρ) and sk′i ← RTSig.RandSK(i, ski, ρ) for
all i ∈ {1, · · · , n} \ C. If (pk′, m) ∈ SigList then the oracle returns ⊥. Otherwise, the oracle and the
adversary jointly execute the procedure RTSig.TSign, where the oracle runs all honest parties Pi on
input (sk′i, m). The oracle then stores the tuple (pk′, m) in SigList.

• Eventually, the adversary outputs a forgery σ∗, a message m∗ and a public key pk∗ ← RTSig.RandPK(pk, ρ∗).
The adversary wins the game, if the following conditions hold: (1) ρ∗ ∈ RList, (2) (pk∗, m∗) /∈ SigList,
and (3) RTSig.Verify(pk∗, m∗, σ∗) = 1.
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3.2 Construction
We show how to extend the interactive threshold ECDSA scheme as proposed by Gennaro and Goldfeder [GG18]
(which we denote by GG[H0]) to an interactive threshold ECDSA scheme with rerandomizable keys (which
we denote by rGG[H0]). We recall the scheme of Gennaro and Goldfeder (with a slight adjustment) in
detail in Appendix B. In Figure 1, we describe our rGG[H0] scheme w.r.t. the GG[H0] scheme. Recall
that the ECDSA signature scheme is defined w.r.t. a cyclic group G = ⟨g⟩ of prime order q and that
an ECDSA key pair (pk, sk) is simply computed as sk $← Zq and pk ← gsk. In the GG[H0] scheme, the
secret key is shared such that each party Pi holds a secret key share ski and a public key share gski . In
our rGG[H0] scheme, we extend the GG[H0] scheme by providing algorithms RandSK and RandPK which
deterministically rerandomize the secret key shares and the public key respectively w.r.t. a randomness
ρ. At a high level, in order to rerandomize the secret key share ski of party Pi with randomness ρ,
the RandSK algorithm deterministically generates a degree-t polynomial F with coefficients in Zq and
evaluates the polynomial at point i. This essentially yields a randomness share ρi, which is then added to
the existing secret key share to compute the rerandomized secret key share sk′i ← ski + ρi mod q. That
is, sk′i is essentially a share of the secret key sk + ρ mod q. The RandPK algorithm works correspondingly
for the public key and public key shares.

The security of our rGG[H0] scheme can be proven via a reduction to the (one-per message) unforge-
ability of the ECDSA scheme with rerandomizable keys by Das et al. [DEF+21], which we recall in
Appendix A.3. Note that the scheme of Das et al. is public key prefixed, i.e., whenever a message m is
signed using secret key sk, the message is first prefixed with the corresponding public key pk, s.t. the
signature is generated for (pk, m). Since we reduce the security of our rGG[H0] scheme to the (one-per
message) unforgeability of the scheme of Das et al., we require public key prefixing in our scheme as well.

Algorithm Gen(1κ, t, n)
00 Return GG.Gen(1κ, t, n)
Algorithm RandSK(i, ski, ρ)
00 For k ∈ [t] : ak ← H0(ρ, k)
01 Let F (x) := atx

t + · · ·+ a1x + ρ
02 ρi ← F (i) mod q
03 sk′i ← ski + ρi mod q
04 Return sk′i
Protocol TSign(ski, m)
00 m′ ← (pk, m)
01 Return GG.TSign(ski, m′)

Algorithm RandPK(pk, ρ)
00 Parse pk := (X, (X1, · · · , Xn))
01 For k ∈ [t] : ak ← H0(ρ, k)
02 Let F (x) := atx

t + · · ·+ a1x + ρ
03 ρi ← F (i) mod q
04 For i ∈ [n] : X ′i ← Xi · gρi

05 Return pk′ := (X · gρ, (X ′1, · · · , X ′n))

Algorithm Verify(pk, m, σ)
00 m′ ← (pk, m)
01 Return GG.Verify(pk, m′, σ)

Figure 1: Public key prefixed interactive threshold ECDSA scheme rGG[H0] with honestly rerandomizable
keys based on the GG[H0] scheme for a hash function H0 : {0, 1}∗ → Zq. For brevity, we denote scheme
GG[H0] by GG.

It is easy to see that the rGG[H0] scheme satisfies the correctness under rerandomized keys property.

Lemma 3.3 Let H0 : {0, 1}∗ → Zq be a hash function modeled as a random oracle and let the discrete
logarithm problem be hard in G. Then the interactive (t, n)-threshold ECDSA scheme with rerandomizable
keys rGG[H0] satisfies the rerandomizability of public keys property.

proof sketch. We can prove the above lemma via reduction to the discrete logarithm problem. At a high
level, assume there exists a PPT adversary A that can distinguish the distributions

{pk, pk′ | (·, pk)← Gen(1κ, t, n), ρ $← R, pk′ ← RandPK(pk, ρ)}
and

{pk, pk′′ | (·, pk)← Gen(1κ, t, n), (·, pk′′)← Gen(1κ, t, n)}

with more than negligible probability, then we can construct a PPT adversary B that breaks the discrete
logarithm problem with a related probability. In the following, we sketch how this reduction proceeds:

9



adversary B receives a discrete logarithm challenge gρ as input. B then samples (·, pk)← Gen(1κ, t, n)
and computes pk′ by executing algorithm RandPK(pk, ρ), however with the following differences: (1) it
samples the coefficients ak for k ∈ [t] of polynomial F uniformly at random from Zq instead of computing
them as H0(ρ, k); and (2) it evaluates polynomial F only in the exponent, i.e., it computes gρi ← gF (i)

for i ∈ [n].6 Note that A can only detect these changes if it queries the random oracle H0 on input (ρ, k).
However, if A makes a query of this form, adversary B learns ρ, which is the discrete logarithm of its
discrete logarithm challenge gρ. Otherwise, public key pk′ is identically distributed to a freshly generated
public key pk′′.

Theorem 3.4 Let PKE be a semantically secure linearly homomorphic encryption scheme, ZK be a
non-interactive zero-knowledge proof system and CT a non-malleable and equivocable commitment scheme.
Further, let the DDH assumption hold in G and let rECDSA[H0] be the uf -cma-hrk1-secure ECDSA
scheme with rerandomizable keys as described in Appendix A.3. Then the interactive (t, n)-threshold
ECDSA scheme with rerandomizable keys rGG[H0] as described above is th-ufcma-hrk1-secure.

Sketch. Gennaro and Goldfeder prove the GG[H0] scheme unforgeable via reduction to the unforge-
ability of the single party ECDSA signature scheme. That is, they provide a reduction that simulates
game th-ufcmaGG[H0] (cf. Definition 2.2) while having access to a signing oracle that outputs ECDSA
signatures for adaptively chosen messages. Gennaro and Goldfeder prove that this simulation is com-
putationally indistinguishable from the real game to a PPT adversary. We recall the simulation in
Appendix B7. We can prove the above theorem in the same way, with the difference that we reduce
the th-ufcma-hrk1rGG[H0] security to the uf -cma-hrk1rECDSA[H0] security. That is, we have to provide
a reduction that simulates game th-ufcma-hrk1rGG[H0] to a PPT adversary while having access to the
RSign and Rand oracles of game uf -cma-hrk1rECDSA[H0]. In fact, we can use the same simulation as the
one from Gennaro and Goldfeder with the following differences: (1) Upon the adversary querying the
Rand oracle in game th-ufcma-hrk1rGG[H0], the reduction relays the query to its own Rand oracle in game
uf -cma-hrk1rECDSA[H0]; (2) Upon the adversary querying oracle RSign in game th-ufcma-hrk1rGG[H0]
on input a message m and randomness ρ, the reduction first rerandomizes the secret key shares ski of cor-
rupted parties Pi ∈ C by computing sk′i ← RandSK(i, ski, ρ) as well as the public key pk′ ← RandPK(pk, ρ).
The reduction then queries its own signing oracle on input m and ρ and uses the resulting signature
and the rerandomized keys for the simulation of the RSign oracle of game th-ufcma-hrk1rGG[H0]. These
changes do not have any impact on the indistinguishability arguments and reduction from Gennaro and
Goldfeder. Note that, since we essentially repeat the proof of Gennaro and Goldfeder, we must also
repeat the assumptions their proof relies on in our theorem statement.

4 BIP32-Compatible Threshold Wallets
In order to construct threshold BIP32 wallets, we require two ingredients, namely (1) a threshold signature
scheme with rerandomizable keys, and (2) mechanisms for the derivation of non-hardened and hardened
wallets in the threshold setting. With requirement (1) in place, we will discuss in this section how
the respective wallet derivations of a BIP32 wallet can be implemented in the threshold setting. In
particular, we consider the following setting for our threshold BIP32 wallet: All non-hardened wallets
are thresholdized, i.e., each non-hardened wallet consists of n devices which execute a (t, n)-threshold
signature scheme with rerandomizable keys. We assume throughout the paper that t ≤ n−1

2 for all
non-hardened nodes. Hardened wallets, on the other hand, are single devices (i.e. not thresholdized),
since the corruption of a hardened wallet does not affect the security of the remaining wallets in the
tree. Similar to the modeling of BIP32 wallets by Das et al. [DEF+21], we do not allow hardened wallets
to derive child wallets, i.e., hardened wallets always represent leaves in the wallet tree. Therefore, we
assume that in both cases, i.e., the non-hardened and hardened wallet derivation, the parent wallet is
non-hardened and thresholdized. Recall that BIP32 specifies the (non-threshold) derivation mechanisms
as follows: A non-hardened node with identifier ID′ is derived from a parent node with identifier ID, key
pair (skID, pkID) and chaincode chID by computing (ρ, chID′) ← H(pkID, chID, ID′), skID′ ← skID + ρ and
pkID′ ← pkID · gρ. The derivation of a hardened node works in the same way only that the tuple (ρ, chID′)

6This step is necessary because B only knows gρ but not ρ. Therefore, B can only compute F in the exponent.
7To be exact, since our GG[H0] scheme differs slightly from the original scheme of Gennaro and Goldfeder, we recall a

slightly adjusted simulation. See Appendix B for details.
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is computed as H(skID, chID, ID′). We now analyze these derivation mechanisms for the threshold setting
w.r.t. to our threshold signature scheme with rerandomizable keys rGG[H0] in more detail.

4.1 Non-Hardened Node Derivation
The derivation of non-hardened nodes in the threshold setting is fairly straightforward and follows the
ideas of the BIP32 standard. Essentially, a non-hardened parent node identified by ID and consisting
of n devices s.t. each device stores a secret key share ski,ID and the chaincode chID can derive a
thresholdized non-hardened child wallet as follows: First, each device of the parent node computes
locally (ρ, chID′)← H(pkID, chID, ID′) and ski,ID′ ← rGG[H0].RandSK(i, ski,ID, ρ). Then the devices of the
parent node must forward the rerandomized secret key shares ski,ID′ and the chaincode chID′ to the n
devices of the child node. The forwarding of the chaincode chID′ is straightforward, since we assume an
honest majority among the parent devices and since each parent device knows chID′ . That is, all parent
devices can simply send chID′ to all child devices. Each child device then receives at least t + 1 times
the value chID′ which it uses as the node’s chaincode. The forwarding of the secret key shares ski,ID′

is more involved and requires a protocol involving 2n devices (n child and n parent wallet devices) of
which a total of 2t devices can be corrupted. Note that a simple forwarding of secret key share ski,ID′

to the i-th device of the child wallet is insecure as it allows an adversary to learn a total of 2t secret
key shares. Instead, the 2n devices must engage in the execution of a dynamic proactive secret sharing
(DPSS) scheme (e.g., [BDLO15, MZW+19, SLL10]), which allows to securely handover the rerandomized
key shares to the devices of the child node even in the presence of 2t corrupted devices. Note that DPSS
schemes typically incur a significant communication overhead since all 2n parties must interact with each
other.

4.2 Hardened Node Derivation
The main challenge when considering BIP32 wallets in the threshold setting is designing a derivation
mechanism for hardened nodes. Recall that the derivation of a hardened node according to BIP32 requires
the computation of (ρ, chID′) ← H(skID, chID, ID′), i.e., the evaluation of a hash function on input the
parent secret key. In the threshold setting, however, the secret key skID is shared among n devices such
that no single device knows the full key. It is therefore not at all clear how H(skID, chID, ID′) can be
computed efficiently without naively reconstructing skID (which would trivially break the security of
the wallet). Furthermore, in the hardened derivation, each parent device can only learn a randomness
share ρi instead of the entire randomness ρ. To see why that is, consider the setting where an adversary
corrupts the hardened node, thereby learning its secret key skID + ρ, as well as a parent node device,
thereby learning ρ. The adversary could then trivially learn the parent node’s secret key.

One obvious (and to the best of our knowledge the only) way to resolve the above issues is using
generic multi-party computation (MPC) techniques [GMW87, Gol04, CCD88], which allow to securely
compute any function in a distributed setting without revealing the function inputs. However, generic
MPC is inherently inefficient, in particular since the BIP32 standard uses the well-known hash function
SHA-512, which is known to be only inefficiently computable via MPC [BST21].

An Improved Derivation Mechanism Due to the above limitation, we consider a more efficient
hardened node derivation mechanism, which achieves the same properties as the one originally specified
in BIP32. We circumvent the inefficient distributed SHA-512 execution by letting the devices of the
non-hardened parent wallet jointly and deterministically generate a random seed in such a way that
only the hardened node but no parent device learns the seed. The hardened node can then use this seed
as input to the key generation algorithm of a (non-threshold) signature scheme (ECDSA in our case)
to deterministically generate its key pair. Said differently, instead of having the parent wallet devices
rerandomize their secret key shares and forward them to the hardened wallet, we simply let the parent
devices generate a random value from which the hardened node can deterministically derive its own keys.
For the computation of the random seed, we employ the threshold verifiable random function (TVRF)
from [GLOW21]. A (t, n)-TVRF is a cryptographic primitive that is executed by n parties, where each
party Pi knows a secret key share ski, which it can use to deterministically compute an evaluation share ϕi

and proof πi on a message m. Given at least t + 1 evaluation shares for m, any party can deterministically
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compute a pseudorandom value ϕ and a proof π and given the public key pk, ϕ and π, any party can
verify that ϕ was computed correctly. We recall the formal definition of a TVRF in Section 2.3.

We use the TVRF for the hardened wallet derivation in the following way: Each device of the non-
hardened parent node maintains a secret key share for the TVRF and, upon the derivation of a hardened
node with identifier ID, it uses this share to compute an evaluation share ϕi and the corresponding proof
πi on ID. It then sends (ϕi, πi) to the hardened node, which combines t + 1 shares to a pseudorandom
seed ϕ. The hardened node then verifies the correctness of ϕ using the public key of the TVRF. Note
that any set of t + 1 correct evaluation shares will yield the same seed, but including only a single invalid
evaluation share will lead to a different (incorrect) seed. Therefore, the verifiability of the seed is crucial
to our solution. We use the TVRF from [GLOW21] which is not only deterministic and one-way but also
non-interactively computable, therefore exhibiting the same properties as the original BIP32 derivation
mechanism. We present our improved hardened node derivation mechanism pictorially in Figure 2.

(ϕ1, π1)← TVRF.PEval(ID, sk1, pk)
NH1(sk1, pk)

(ϕ2, π2)← TVRF.PEval(ID, sk2, pk)
NH2(sk2, pk)

(ϕ3, π3)← TVRF.PEval(ID, sk3, pk)
NH3(sk3, pk)

(ϕ, π)← TVRF.Combine(pk, ID,S, {ϕi, πi}i∈S)
If TVRF.Verify(pk, ID, ϕ, π) = 1

Then compute (pkID, skID)← ECDSA.Gen(1κ; ϕ)

HN ID(pk)

(ϕ1, π1) (ϕ2, π2) (ϕ3, π3)

Figure 2: Pictorial representation of our improved hardened node derivation mechanism in the threshold
setting. Each of the three devices NH1, NH2, NH3 of the non-hardened parent node stores a TVRF
public key pk and secret key share ski for i ∈ [3]. In order to derive a hardened node HN with identity
ID, each non-hardened device locally evaluates the TVRF on input ID and sends the resulting evaluation
share to HN. The hardened node can then choose a subset S of [3], combine the corresponding evaluation
shares to a full random value ϕ, verify that the non-hardened devices in S behaved honestly, and then
use ϕ as input to the key generation algorithm of the ECDSA signature scheme. Note that this key
generation is deterministic, since we explicitly give the randomness ϕ as input.

The Final Derivation Mechanism While the above solution is compatible with BIP32, it has the
significant drawback that each non-hardened device must maintain two secret key shares, one for the
signature scheme and one for the TVRF. As a consequence, each device requires double the storage
space which is an issue for space restricted devices. There is however another, more severe issue with
the above solution. Similar to the signing keys, the TVRF keys must be deterministically derived
throughout the wallet tree via executions of a communication heavy DPSS scheme. This incurs a
significant communication overhead, especially since all non-hardened nodes must derive TVRF keys
irrespectively of whether they want to derive a hardened node or not.

We observe that both, the DDH-based TVRF scheme of [GLOW21] (which we denote by TVRF and
recall in Appendix A.2) and the ECDSA signature scheme, operate over a cyclic group G = ⟨g⟩ of prime
order q and use secret/public key pairs sk $← Zq and pk ← gsk. The security of TVRF relies on the
assumption that DDH is hard in G. Bitcoin, Ethereum and several other cryptocurrencies use the group
G identified by the elliptic curve secp256k1, for which dlog and DDH are assumed to be hard. Therefore,
our idea to mitigate the above issues is to use only a single key pair for both schemes. This allows
non-hardened wallets to re-use their signing secret key shares for the TVRF during the hardened node
derivation, thereby avoiding the overhead of maintaining a second key pair per wallet.

In the remainder of this section, we define a cryptographic scheme that consists of the joint procedures
of the rGG scheme from Section 3 and of the DDH-based TVRF scheme, but that uses the same key pair
for all procedures. We then define security properties and prove the scheme secure w.r.t. these properties.
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4.3 Joint Threshold Signature/TVRF Scheme
We define a scheme (t, n)-TVRF-rGG[H0, H1], which consists of all procedures of the interactive (t, n)-
threshold ECDSA scheme with rerandomizable keys rGG[H0] and the non-interactive (t, n)-threshold veri-
fiable random function scheme TVRF[H1], except that it uses only one of rGG[H0].Gen and TVRF[H1].Gen.
Concretely, TVRF-rGG[H0, H1] consists of the procedures

TVRF-rGG[H0, H1] =(rGG[H0].Gen, rGG[H0].RandSK, rGG[H0].RandPK, rGG[H0].TSign,

rGG[H0].Verify, TVRF[H1].PEval, TVRF[H1].Combine, TVRF[H1].Verify).

For simplicity, we sometimes abbreviate the schemes TVRF-rGG[H0, H1], rGG[H0] and TVRF[H1] by
TVRF-rGG, rGG and TVRF respectively. The TVRF-rGG scheme must satisfy the security properties
pseudorandomness, uniqueness, and robustness. These security notions essentially combine the respective
security properties of the TVRF scheme with the one-more unforgeability notion of our rGG scheme. That
is, for each of the above security notions, we define a game, where an adversary (1) can corrupt t parties,
(2) receives oracle access to all oracles of the one-more unforgeability game (i.e., th-ufcma-hrk1) and all
oracles of the respective TVRF property (e.g., pseudorandomness), and (3) can win the game by either
breaking the one-more unforgeability of rGG (Case 1) or the TVRF property (Case 2).

4.3.1 Pseudorandomness of TVRF-rGG

In the following we define the pseudorandomness property of TVRF-rGG via a game unf -prand and prove
that TVRF-rGG satisfies this property. Later in Section 4.3.2, we provide the uniqueness and robustness
definitions and argue that the TVRF-rGG scheme satisfies them.

Definition 4.1 (Pseudorandomness of TVRF-rGG). The (t, n)-TVRF-rGG scheme is unf -prand-secure
if no PPT adversary A wins game unf -prand as described below with more than negligible advantage.
We define A’s advantage in game unf -prand as

AdvA := Pr[unf -prandATVRF-rGG = 1|Case 1] · Pr[Case 1]

+
(

Pr[unf -prandATVRF-rGG = 1|Case 2]− 1
2

)
· Pr[Case 2],

where Pr[Case 1] and Pr[Case 2] denote the probabilities that A tries to win game unf -prand via
Case 1 or Case 2 respectively.

Game unf -prandTVRF-rGG:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes SigList← {ϵ}, RList← {ϵ} and EvalList← {ϵ} and executes (pk, {sk1, · · · , skn})←
TVRF-rGG.Gen(1κ, t, n). A receives as input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Rand: Same as in game th-ufcma-hrk1rGG.
– RSign: Same as in game th-ufcma-hrk1rGG.
– REval: On input message m, index i ∈ [n] \ C and randomness ρ, check if ρ ∈ RList and abort

otherwise. The oracle executes

(pk′, sk′i)←(TVRF-rGG.RandPK(pk, ρ), TVRF-rGG.RandSK(i, ski, ρ)),
(ϕi, πi)←TVRF-rGG.PEval(m, sk′i, pk′)

and if (i, m, ρ) /∈ EvalList, stores the tuple (i, m, ρ) in EvalList. The oracle returns (ϕi, πi).

• The adversary wins the game if it wins either of the following cases:
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– Case 1: Same as in game th-ufcma-hrk1rGG.
– Case 2: The adversary outputs a message m∗, a randomness ρ∗, a set of indices S with |S| > t and

evaluation shares {ϕk, πk}k∈S∩C. The game checks if there are less than t − |S ∩ C| tuples of the
form (·, m∗, ρ∗) in EvalList and if ρ∗ ∈ RList. If so, for i ∈ S \ C the game computes

(pk′, sk′i)←(TVRF-rGG.RandPK(pk, ρ∗), TVRF-rGG.RandSK(i, ski, ρ∗)),
(ϕi, πi)←TVRF-rGG.PEval(m∗, sk′i, pk′)

(ϕ, π)←TVRF-rGG.Combine(pk′,S, {(ϕj , πj)}j∈S).

If ϕ = ⊥, the game returns ϕ. Otherwise the game chooses a bit b $← {0, 1} and does the following:
∗ If b = 0: Return ϕ.
∗ If b = 1: Sample ϕ′ $← G and output ϕ′.
The adversary then outputs a bit b′ and wins if b = b′.

Theorem 4.2 Let H0 : {0, 1}∗ → Zq, H1 : {0, 1}∗ → G be hash functions modeled as a random oracle.
Let rGG[H0] be the th-ufcma-hrk1-secure interactive (t, n)-threshold ECDSA scheme with rerandomizable
keys from Section 3.2 and let TVRF[H1] be the th-prand-secure (t, n)-threshold verifiable random function
as described in Appendix A.2. Further, let PKE be a semantically secure linearly homomorphic encryption
scheme, ZK and DLEq as described in Appendix A.2 be non-interactive zero-knowledge proof systems,
CT a non-malleable and equivocable commitment scheme and the DDH assumption hold in G. Then the
(t, n)-TVRF-rGG[H0, H1] scheme as described above is unf -prand-secure.

Proof. In order to prove this theorem we provide a reduction either to the one-more unforgeability of
the rGG scheme, i.e., to the th-ufcma-hrk1 security of rGG or to the pseudorandomness property of the
TVRF scheme, i.e., to the th-prand security of TVRF. In other words, we show that if a PPT adversary
A is able to win the unf -prandTVRF-rGG game with more than negligible advantage, then we can construct
a PPT adversary B which can either win the th-ufcma-hrk1rGG or the th-prandTVRF game with more
than negligible advantage. To this end, B first guesses if A is going to win game unf -prandTVRF-rGG
through Case 1 or Case 2. Depending on the guess, B decides to either play in game th-ufcma-hrk1rGG
or th-prandTVRF, while simulating A’s oracle queries. Note that B receives only access to the oracles of
either game th-ufcma-hrk1rGG or th-prandTVRF which significantly complicates the simulation of A’s
oracle queries. In particular, when playing in game th-prandTVRF, B does not get access to a signing
oracle, yet has to simulate oracle RSign of game unf -prandTVRF-rGG to A.

Let B := (B0,B1) be composed of two subprocedures. At the beginning of game unf -prandTVRF-rGG, B
chooses a bit b $← {0, 1}. If b = 0, B executes subprocedure B0 that plays in game th-ufcma-hrk1rGG and
otherwise B executes B1 that plays in game th-prandTVRF. In the following, we show for both cases (i.e.,
b = 0 and b = 1) that the respective subprocedure Bb can simulate game unf -prandTVRF-rGG to A and
use A’s output to win their respective security games (i.e., either th-ufcma-hrk1rGG or th-prandTVRF).
Finally, after analyzing both cases separately, we determine the advantage of B := (B0,B1) to win either
game th-ufcma-hrk1rGG or game th-prandTVRF. We additionally provide an intuitive proof sketch for
both cases in Appendix B.3.

Case b = 0 In this case we show via a series of computationally indistinguishable games that there
exists an adversary B0 which can use adversary A in Case 1 to win its own game th-ufcma-hrk1B0

rGG.
Game GGG0: This game is the original unf -prandTVRF-rGG game, in which adversary A can corrupt t
parties and receives access to oracles H0, H1, RSign, Rand and REval. We have Pr[unf -prandATVRF-rGG =
1|Case 1] = Pr[GGGA0 = 1].

Game GGG1: This game is similar to the previous game with two differences. First, in the beginning
the game initializes a set HList := ϵ. Second, upon A sending a query to H1 on input m, if H1(m) = ⊥
the game samples uniformly at random r $← Zq, sets HList[m] := r and H1(m) := gr. The game outputs
H1(m).

It is easy to see that the random oracle H1 returns uniformly random group elements since r is chosen
uniformly at random from Zq. Therefore, we have that Pr[GGGA1 = 1] = Pr[GGGA0 = 1].
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Game GGG2: This game is similar to the previous game with a difference in the REval oracle. On input
a message m, an index i and a randomness ρ, the game executes

pk′ ← TVRF-rGG.RandPK(pk, ρ),
sk′i ← TVRF-rGG.RandSK(i, ski, ρ),

(ϕi, πi)← TVRF-rGG.PEval(m, sk′i, pk′).

However, instead of outputting (ϕi, πi), the game simulates a zero-knowledge proof π′i that proves
correctness of ϕi and outputs (ϕi, π′i).

Due to the zero-knowledge property of the proof system DLEq (cf. Appendix A.2), this game
is indistinguishable from the previous one except with negligible probability. That is, we have that
Pr[GGGA1 = 1] ≤ Pr[GGGA2 = 1] + negl(κ) where negl is a negligible function in the security parameter κ.

Game GGG3: This game is similar to the previous game with a difference in the REval oracle. On
input a message m, an index i, and a randomness ρ, the game checks if HList[m] = ⊥. If so, it queries
H1(m). It then executes pk′ ← TVRF-rGG.RandPK(pk, ρ), parses pk′ := (X ′, {X ′1, · · · , X ′n}) and computes
ϕi ← (X ′i)

r for r ← HList[m].
This game is equivalent to the previous game since (X ′i)

r = gsk′
i·r = H1(m)sk′

i . Therefore, we have
that Pr[GGGA2 = 1] = Pr[GGGA3 = 1].

Reduction to th-ufcma-hrk1rGG: Having shown that the transition from game GGG0 to game GGG3 is
indistinguishable, it remains to show that an adversary A winning in game GGG3 can be used to construct
an adversary B0 that wins game th-ufcma-hrk1rGG. To do so, we must show that B0 playing in
th-ufcma-hrk1rGG can simulate game GGG3 to A. The simulation differs from game GGG3 in the following
ways:

1. B0 does not generate the secret key shares and public key, but instead corrupts the same set of
parties C in th-ufcma-hrk1rGG as A does in GGG3. B0 then forwards the public key pk and the secret
key shares {ski}i∈C from game th-ufcma-hrk1rGG to A.

2. Upon A querying oracle RSign on input a message m and a randomness ρ, B0 queries its own
oracle RSign on input m and ρ and relays the messages between A and the RSign oracle in game
th-ufcma-hrk1rGG.

3. Upon A querying oracle H0 on input a message m, B0 forwards the query to its own random oracle
and relays the output.

It is easy to see that B0’s simulation is indistinguishable from game GGG3 to A. It remains to show
that B0 can use A’s forgery in game unf -prandTVRF-rGG to win its own game th-ufcma-hrk1rGG. Since
B0 forwards all queries to RSign in game unf -prandTVRF-rGG to the corresponding oracle in game
th-ufcma-hrk1rGG, B0 and A query their respective oracles on the same messages. Therefore, if A
outputs a valid forgery in unf -prandTVRF-rGG, then the forgery is also valid in th-ufcma-hrk1rGG. We
finally have

Pr[unf -prandATVRF-rGG = 1|Case 1] = Pr[GGGA0 = 1] ≤ Pr[GGGA3 = 1] + negl(κ)
= Pr[th-ufcma-hrk1B0

rGG[H0] = 1] + negl(κ)

= AdvB0
th-ufcma-hrk1rGG[H0]

+ negl(κ).

Case b = 1 We now show via a series of computationally indistinguishable games that there exists an
adversary B1 which can use adversary A in Case 2 to win its own game th-prandB1

TVRF.
Game GGG0: This game is the original unf -prandTVRF-rGG game, in which adversary A can corrupt t

parties and receives access to oracles H0, H1, RSign, Rand and REval. We have Pr[unf -prandATVRF-rGG =
1|Case 2] = Pr[GGGA0 = 1].

Game GGG1: This game is similar to the previous game with two differences. First, in the beginning the
game initializes a set HSigs := ϵ. Second, upon a query to H0 on input a public key prefixed message
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m := (pk′, m′), i.e., where (pk′, ·) ∈ TVRF-rGG.Gen(1κ, t, n), the game checks if H0(m) = ⊥. If so, it
executes SECDSA as described in Figure 3 on input (X ′, m) where pk′ := (X ′, {X ′1, · · · , X ′n}). Finally, the
game sets HSigs[m] := (r, s).

SECDSA(X, m) :
a, b $← Zq, R = Xa · gb, r = f(R), s = r

a , H0(m) := r·b
a

Figure 3: Simulation of ECDSA signatures via programming of the random oracle H0 as first presented
by Fersch et al. [FKP17]. The function f : G→ Zq is defined as the projection of a group element to its
x-coordinate.

It is easy to see that SECDSA programs the random oracle H0 in such a way that H0 returns uniformly
random values. Therefore, this game is equivalent to the previous game, i.e., Pr[GGGA0 = 1] = Pr[GGGA1 = 1].

Game GGG2: This game is similar to the previous game with a difference in the RSign oracle. On input
a message m and a randomness ρ, the game first computes the rerandomized (full) secret key sk′ and
then generates a full ECDSA signature σ′ under sk′ for message m. The game then executes the signing
procedure in the same way as presented in the proof sketch of Theorem 3.4 using signature σ′.

The indistinguishability of this game to the previous one follows in the same way as in Theorem 3.4.
Note that the simulation of the signing procedure as described in the proof sketch of Theorem 3.4
does not program H0 and therefore does not conflict with the execution of SECDSA. We have that
Pr[GGGA1 = 1] ≤ Pr[GGGA2 = 1] + negl1(κ) where negl1 is a negligible function in the security parameter κ.

Game GGG3: This game is similar to the previous game again with a modification in the RSign oracle.
On input a message m and a randomness ρ, the game does not generate a full ECDSA signature using sk′,
but it fetches (r, s) ← HSigs[m′] for m′ ← (pk′, m) where pk′ ← TVRF-rGG.RandPK(pk, ρ).8 The game
then uses the tuple (r, s) as the full ECDSA signature under sk′.

As shown in [FKP17], the tuple (r, s) as generated by the SECDSA algorithm (see Figure 3) is computa-
tionally indistinguishable from an honestly generated ECDSA signature for message m′ under public key
X ′ (where pk′ := (X ′, {X ′1, · · · , X ′n})) to a PPT adversary A with access to random oracle H0. Since the
simulation of the signing procedure as described in the proof sketch of Theorem 3.4 forces the execution
of the RSign oracle to output (r, s), adversary A can distinguish this game from the previous one only
with negligible probability. Therefore, we have that Pr[GGGA2 = 1] ≤ Pr[GGGA3 = 1] + negl2(κ) where negl2 is a
negligible function in the security parameter κ.

Game GGG4: This game is similar to the previous game with a modification in the REval oracle. On
input a message m, an index i and a randomness ρ, the game computes sk′i ← TVRF-rGG.RandSK(i, ski, ρ)
and pk′ ← TVRF-rGG.RandPK(pk, ρ) and executes (ϕi, πi) ← TVRF-rGG.PEval(m, sk′i, pk′). Instead of
outputting (ϕi, πi), however, the game simulates a zero-knowledge proof π′i that proves correctness of ϕi.
The game then outputs (ϕi, π′i).

Due to the zero-knowledge property of the proof system DLEq (cf. Appendix A.2), this game is
indistinguishable from the previous one except with negligible probability. Therefore, we have that
Pr[GGGA3 = 1] ≤ Pr[GGGA4 = 1] + negl3(κ) where negl3 is a negligible function in the security parameter κ.

Game GGG5: This game is similar to the previous game with a modification in the REval oracle. On
input a message m, an index i, and a randomness ρ, instead of rerandomizing the secret key share ski to
sk′i and executing TVRF-rGG.PEval(m, sk′i, pk′), the game computes

TVRF-rGG.PEval(m, ski, pk) · H1(m)ρi ,

where ρi denotes the randomness share of ρ for party Pi according to the TVRF-rGG.RandSK (cf. Figure 1)
algorithm.

This game is equivalent to the previous game since for sk′i ← TVRF-rGG.RandSK(i, ski, ρ) and pk′ ←
TVRF-rGG.RandPK(pk, ρ) it holds that:

TVRF-rGG.PEval(m, sk′i, pk′) = TVRF-rGG.PEval(m, ski, pk) · H1(m)ρi = H1(m)ski+ρi .

8We assume that H0 has been queried on m′ before the signing query.
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Therefore, we have that Pr[GGGA4 = 1] = Pr[GGGA5 = 1].

Game GGG6: This game is similar to the previous game with a modification in the challenge phase. Upon
A outputting a message m∗, randomness ρ∗, a set of indices S, and evaluation shares {(ϕ∗k, π∗k)}k∈S∩C,
the game verifies the proofs π∗k and returns ⊥ if any proof does not verify. Otherwise the game checks if
ϕ∗k = H1(m∗)skk+ρ∗

k and aborts if any of these checks does not hold.
Note that the only way that the game aborts is if the adversary manages to submit a verifying

zero-knowledge proof π∗k for a false statement. Due to the soundness property of the DLEq proof system,
this event happens only with negligible probability. Therefore, we have that Pr[GGGA5 = 1] ≤ Pr[GGGA6 =
1] + negl4(κ) where negl4 is a negligible function in the security parameter κ.

Game GGG7: This game is similar to the previous game with a modification in the challenge phase.
Namely, upon A outputting a message m∗, randomness ρ∗, a set of indices S, and evaluation shares
{(ϕ∗k, π∗k)}k∈S∩C the game computes ϕk = ϕ∗k ·H1(m∗)−ρ∗

k = H1(m∗)skk and generates a new zero-knowledge
proof πk using skk and ϕk. The game then computes (ϕi, πi)← TVRF-rGG.PEval(m∗, ski, pk) for i ∈ S \C
and (ϕ, π)← TVRF-rGG.Combine(pk,S, {(ϕj , πj)}j∈S). The game chooses uniformly at random b $← {0, 1}
and if b = 0 sets ϕ′ := ϕ and otherwise sets ϕ′ $← G. Finally, the game computes ϕ∗ = ϕ′ · H1(m∗)ρ∗ and
returns it to A.

Note that if ϕ′ was chosen randomly from G by the game then ϕ∗ is also a uniformly random ele-
ment, and if ϕ′ is a valid TVRF output, then so is ϕ∗ under the key randomized with ρ∗. This is since
ϕ∗ = ϕ′ · H1(m∗)ρ∗ = H1(m∗)sk · H1(m∗)ρ∗ = H1(m∗)sk+ρ∗ . We have that Pr[GGGA6 = 1] = Pr[GGGA7 = 1].

Reduction to th-prandTVRF: Having shown that the transition from game GGG0 to game GGG7 is indis-
tinguishable, it remains to show that an adversary A winning in game GGG7 can be used to construct an
adversary B1 that wins game th-prandTVRF. To do so, we must show that B1 playing in th-prandTVRF
can simulate game GGG7 to A. The simulation differs from game GGG7 in the following points:

1. B1 does not generate the secret key shares and public key, but instead corrupts the same set of
parties C in th-prandTVRF as A does in GGG7. B1 then forwards the public key pk and the secret key
shares {ski}i∈C from game th-prandTVRF to A.

2. Upon A querying oracle REval on input a message m, an index i and a randomness ρ, B1 queries
its own oracle Eval on input m and i and uses the oracle output to compute the output of REval
as in GGG7.

3. Upon A querying oracle H1 on input a message m, B1 forwards the query to its own random oracle
and relays the output.

4. During the challenge phase, B1 sends the shares ϕk = ϕ∗k · H1(m∗)−ρ∗
k together with the zero-

knowledge proofs πk to its own game and receives an element ϕ∗. B1 forwards to A the element
ϕ∗ · H1(m∗)ρ∗ .

It is easy to see that B1’s simulation is indistinguishable from game GGG7 to A and that if A wins game
GGG7 with more than negligible probability, then B1 wins game th-prandTVRF with the same probability.
The latter is because B1 makes the same queries to oracle Eval as A does to oracle REval. We finally
have that

Pr[unf -prandATVRF-rGG = 1|Case 2] = Pr[GGGA0 = 1] ≤ Pr[GGGA7 = 1] + negl′(κ)
= Pr[th-prandB1

TVRF[H1] = 1] + negl′(κ),

where negl′(κ) :=
∑4

i=1 negli(κ).

Finally, we determine the advantage of adversary B := (B0,B1) to win either in game th-ufcma-hrk1rGG
or th-prandTVRF. Note that B’s advantage is:

AdvB := 1
2AdvB0

uf -cma-hrk1rECDSA[H0]
· Pr[Case 1] + 1

2AdvB1
th-prandTVRF[H1]

· Pr[Case 2].
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Therefore we can conclude that:

AdvA := Pr[unf -prandATVRF-rGG = 1|Case 1] · Pr[Case 1]

+ (Pr[unf -prandATVRF-rGG = 1|Case 2]− 1
2) · Pr[Case 2]

≤ (Pr[th-ufcma-hrk1B0
rGG[H0] = 1] + negl(κ)) · Pr[Case 1]

+ (Pr[th-prandB1
TVRF[H1] = 1] + negl′(κ)− 1

2) · Pr[Case 2]

≤ (AdvB0
uf -cma-hrk1rECDSA[H0]

+ negl(κ)) · Pr[Case 1]

+ (AdvB1
th-prandTVRF[H1]

+ negl′(κ)) · Pr[Case 2]

= 2 · AdvB + negl′′(κ)

where negl′′(κ) := negl(κ) · Pr[Case 1] + negl′(κ) · Pr[Case 2] is a negligible function in κ.

4.3.2 Uniqueness and Robustness of TVRF-rGG

Besides pseudorandomness, the TVRF-rGG scheme must additionally satisfy the properties of uniqueness
and robustness, which are defined in a similar manner as the pseudorandomness property in the sense
that they combine the respective property of the TVRF scheme with the one-more unforgeability of our
rGG scheme. In the following we provide the formal definitions of these two properties.

Definition 4.3 (Uniqueness of TVRF-rGG). The (t, n)-TVRF-rGG scheme is unique if no PPT adversary
A wins game unf -unique as described below with more than negligible advantage. We define A’s
advantage in game unf -uniqueTVRF-rGG as AdvAunf -unique := Pr[unf -uniqueATVRF-rGG = 1].

Game unf -uniqueTVRF-rGG:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes SigList← {ϵ} and RList← {ϵ} and executes (pk, {sk1, · · · , skn})← TVRF-rGG.Gen(1κ, t, n).
Then A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Rand: Same as in game unf -prandTVRF-rGG.
– RSign: Same as in game unf -prandTVRF-rGG.
– REval: Same as in game unf -prandTVRF-rGG.
– KeyLeak: On input i ∈ [n], the oracle outputs ski.

• The adversary wins the game if it wins either of the following cases:

– Case 1: Output 0 if there has been any query to oracle KeyLeak. Otherwise this case is the same as
Case 1 in game unf -prandTVRF-rGG.

– Case 2: The adversary outputs a message m∗, a randomness ρ∗ and evaluations {(ϕi∗
, πi∗)}i∈{0,1}.

If ρ∗ ∈ RList, the game computes pk′ ← TVRF-rGG.RandPK(pk, ρ∗). The game outputs 1 if ϕ0∗ ̸= ϕ1∗

and

TVRF-rGG.Verify(pk′, m∗, ϕ0∗
, π0∗

) = TVRF-rGG.Verify(pk′, m∗, ϕ1∗
, π1∗

) = 1.

Otherwise it outputs 0.

Definition 4.4 (Robustness of TVRF-rGG). The (t, n)-TVRF-rGG scheme is robust if no PPT adversary A
wins game unf -robust as described below with more than negligible advantage. We define A’s advantage
in game unf -robustTVRF-rGG as AdvAunf -robust := Pr[unf -robustATVRF-rGG = 1].
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Game unf -robustTVRF-rGG:

• The game is exactly the same as game unf -prandTVRF-rGG, except for the winning conditions, which
we will describe below.

• The adversary wins the game if it wins either of the following cases:

– Case 1: Same as Case 1 in game unf -prandTVRF-rGG.
– Case 2: The adversary outputs a message m∗, a set S with |S| > t, a list of evaluation shares
{ϕi, πi}i∈S∩C and a randomness ρ∗. The game checks if ρ∗ ∈ RList and if so computes for all i ∈ S \C:

(pk′, sk′i)←(TVRF-rGG.RandPK(pk, ρ∗), TVRF-rGG.RandSK(i, ski, ρ∗)),
(ϕi, πi)←TVRF-rGG.PEval(m∗, sk′i, pk′)

The game finally sets

(ϕ∗, π∗)← TVRF-rGG.Combine(pk′,S, {ϕi, πi}i∈S).

If ϕ∗ ̸= ⊥ and TVRF-rGG.Verify(pk′, m∗, ϕ∗, π∗) = 0, the game outputs 1 and 0 otherwise.

The proof of the uniqueness and robustness property of the TVRF-rGG scheme is similar to the proof
of the pseudorandomness property in the sense that the reduction guesses whether the adversary is going
to win in Case 1 or Case 2. In Case 1, we reduce to the one-more unforgeability of rGG. The simulation
of the respective security game works in the same way as in the proof of Theorem 4.2. In Case 2, we can
show a contradiction to the soundness property of the NIZK proof system DLEq (cf. Appendix A.2) in
the same way as was previously shown by Galindo et al. [GLOW21]). The simulation of the RSign oracle
is then straightforward since the reduction can choose the initial key set itself.
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A Additional Preliminaries
A.1 Correctness and one-per message unforgeability under honestly reran-

domizable keys of signature schemes with rerandomizable keys
For the empty string ϵ, we have RandPK(pk, ϵ) = pk and RandSK(sk, ϵ) = sk.

We further require:

1. (Perfect) rerandomizability of keys: For all κ ∈ N , all (sk, pk) ∈ Gen (1κ) and ρ $← R, the distributions
of (sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RandSK(sk, ρ), RandPK(pk, ρ))
and

(sk′′, pk′′) $← Gen (1κ) .

2. Correctness under rerandomized keys: For all κ ∈ N, all (sk, pk) ∈ Gen (1κ), all ρ ∈ R, and all
m ∈ {0, 1}∗, the rerandomized keys sk′ ← RandSK(sk, ρ) and pk′ ← RandPK(pk, ρ) satisfy:

Pr[Verify
(
pk′, σ, m

)
= 1 | σ ← Sign(sk′, m)] = 1.

The security notion of one-per message existential unforgeability under honestly rerandomizable keys
(uf -cma-hrk1) differs from the unforgeability notion of standard signature scheme in the following
ways: (1) the signing oracle cannot only return signatures under sk, but it can also return signatures
that were produced with keys that represent honest rerandomizations of sk; (2) the randomness for the
rerandomization is chosen uniformly at random from R by the game; (3) the signing oracle returns at most
one signature for each randomness/message pair (ρ, m). The notion of uf -cma-hrk1 for a rerandomizable
signature scheme RSig is formally modeled in the form of a game uf -cma-hrk1RSig which we recall in
the following definition.

Definition A.1 (One-per message unforgeability under honestly rerandomizable keys of signature schemes
with rerandomizable keys). A signature scheme with honestly rerandomizable keys RSig is uf -cma-hrk1-
secure if no PPT adversary A wins game uf -cma-hrk1 as described below with more than advantage.
We define A’s advantage in game uf -cma-hrk1RSig as AdvAuf -cma-hrk1RSig

:= Pr[uf -cma-hrk1ARSig = 1].

Game uf -cma-hrk1RSig:

• The challenger initializes two lists as SigList ← {ϵ} and RList ← {ϵ} and samples a pair of keys
(pk, sk) $← RSig.Gen(1κ). Then A is run on input pk.

• A is given access to the following oracles:

– Rand: Upon a query, this oracle samples a fresh random value from R as ρ $← R, stores ρ in RList,
and returns ρ.
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– RSign: On input a message m and a randomness ρ, if ρ was not obtained via a prior Rand query
(i.e., ρ /∈ RList), then this oracle returns ⊥. Otherwise, it derives a pair of keys rerandomized with
the randomness ρ, as sk′ ← RSig.RandSK(sk, ρ) and pk′ ← RSig.RandPK(pk, ρ). If (pk′, m) ∈ SigList
then the oracle returns ⊥. Otherwise, it derives a signature on message m under the secret key sk′
as σ ← RSig.Sign(sk′, m). The oracle stores the tuple (pk′, m) in SigList and returns σ.

• A wins if it returns a forgery σ∗ together with a message m∗ and a public key pk∗ ← RSig.RandPK(pk, ρ∗),
s.t. the following holds: (1) the randomness ρ∗ has been derived via a Rand query, i.e., ρ∗ ∈ RList, (2)
(pk∗, m∗) /∈ SigList, and (3) σ∗ is a valid forgery, i.e., RSig.Verify(pk∗, σ∗, m∗) = 1.

A.2 TVRF Construction from Galindo et al. [GLOW21]
We briefly recall the TVRF construction from Galindo et al. that is based on the DDH assumption.
The construction relies on a non-interactive zero-knowledge proof system (NIZK) for the relation R :=
{(g, h, X, Y ), x | X = gx, Y = hx} where g and h are two generators of a cyclic group G of prime order
q and x ∈ Zq. At a high level, the NIZK proves that two group elements X and Y have the same
discrete logarithm w.r.t. generators g and h. This proof system was first introduced by Chaum and
Pedersen [CP93] and we denote it by DLEq. We recall the proof system in Figure 4 and the TVRF
construction, which we denote by TVRF, in Figure 5. The corruption threshold for the (t, n)-TVRF
scheme is set to t ≤ n−1

2 .

DLEq.Prove(gx, hx, x)
00 Sample r $← Zq.
01 Compute c← H(gx, hx, gr, hr)
02 Compute s = r + c · x.
03 Return π := (c, s).

DLEq.Verify(gx, hx, π)
00 Parse π := (c, s).
01 R← gs/(gx)c.
02 R′ ← hs/(hx)c.
03 If c ̸= H1(gx, hx, R, R′): Return 0.
04 Return 1

Figure 4: NIZK proof of equality of discrete logarithms with H : {0, 1}∗ → Zq.

TVRF.Gen(1κ, t, n)
00 Sample ai

$← Zq for i ∈ [t] ∪ {0}
01 Let F (x) := atx

t + · · ·+ a1x + a0
02 sk := x← a0 mod q, X ← gx

03 ski := xi ← F (i) mod q, Xi ← gxi

04 pk := (X, {X1, · · · , Xn})
05 Return (pk, {sk1, · · · , skn})

TVRF.Combine(pk,S, {(ϕi, πi)}i∈S)
00 If |S| ≤ t: Return ⊥.
01 Let S ′ := ∅.
02 Parse pk := (X, {X1, · · · , Xn}).
03 For i ∈ S, if DLEq.Verify(ϕi, Xi, πi) = 1:
04 Then S ′ ← S ′ ∪ i.
05 If |S ′| ≤ t: Return ⊥.
06 ϕ←∏

i∈S′ ϕλi
i and π := {ϕi, (πi}i∈S′ .

07 Return (ϕ, π).

TVRF.PEval(m, ski, pk)
00 Parse pk := (X, {X1, · · · , Xn})
01 ϕi ← H1(m)ski .
02 πi ← DLEq.Prove(ϕi, Xi, ski).
03 Return (ϕi, πi).

TVRF.Verify(pk, m, ϕ, π)
00 Parse pk := (X, {X1, · · · , Xn}).
01 Parse π := {ϕi, (πi}i∈S′ .
02 Let S ′ := ∅.
03 For i ∈ S ′:
04 if DLEq.Verify(ϕi, Xi, πi) ̸= 1
05 return ⊥.
06 If ϕ =

∏
i∈S′ ϕλi

i : Return 1.
07 Else return 0.

Figure 5: Threshold verifiable random function from [GLOW21] for a cyclic group G = ⟨g⟩ of prime order
q and for a cryptographic hash function H1 : {0, 1}∗ → G.
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A.3 ECDSA with Rerandomizable Keys
We briefly recall the standard ECDSA signature scheme in Figure 6 and then describe how it can be
extended to achieve the ECDSA-based signature scheme with additively rerandomizable keys as shown
in [DEF+21].

The ECDSA signature scheme is defined for a cyclic group G = ⟨g⟩ of prime order q where the discrete
logarithm problem in G is hard. We briefly recall the scheme here, which we denote by ECDSA[H], where
H : {0, 1}∗ → Zq is a cryptographic hash function.

Gen(1κ)
00 x $← Zq

01 X ← gx

02 (sk, pk) := (x, X)
03 Return (sk, pk)

Sign(sk, m)
00 Parse sk := x
01 k $← Zq, R← gk

02 If R = 1: Return ⊥
03 r ← f(R)
04 If r = 0: Return ⊥
05 h← H(m)
06 s = k−1(h + r · x)
07 If s = 0: Return ⊥
08 Return σ := (r, s)

Verify(pk, m, σ)
00 Parse pk := X and σ :=
(r, s)
01 If s = 0 ∨ t = 0: Return ⊥
02 h← H0(m)
03 u1 ← h · s−1

04 u2 ← r · s−1

05 R← gu1 + Xu2

06 If f(R) = r: Return 1
07 Return 0

Figure 6: ECDSA signature scheme ECDSA[H] instantiated with a cryptographic hash function H :
{0, 1}∗ → Zq.

In Figure 7, we recall the ECDSA-based signature scheme with rerandomizable keys rECDSA[H] as
introduced in [DEF+21].

B The GG scheme by Gennaro and Goldfeder [GG18]
B.1 Underlying Assumptions and Building Blocks
Decisional Diffie-Hellman Problem (DDH) Let G be a cyclic group of prime order q and let g be
a generator of G. Let a, b, c be elements chosen uniformly at random from Zq. Then the distributions
(g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguishable.

Non-interactive zero knowledge proof (NIZK) A NIZK proof of knowledge with respect to a
polynomial-time recognizable binary relation R is given by the following tuple of PPT algorithms ZK :=
(Setup, Prove, Verify), where (i) Setup(1κ) outputs a common reference string crs; (ii) Prove(crs, (Y, y))
outputs a proof π for (Y, y) ∈ R; (iii) Verify(crs, Y, π) outputs a bit b ∈ {0, 1}. Further, the NIZK proof of
knowledge w.r.t. R should satisfy the following properties:

1. Completeness: For all (Y, y) ∈ R, all κ ∈ N and crs← Setup(1κ), it holds that Verify(crs, Y, Prove(crs, (Y, y))) =
1 except with negligible probability;

2. Soundness: For any (Y, y) ̸∈ R, all κ ∈ N and crs← Setup(1κ), it holds that Verify(crs, Y, Prove(crs, (Y, y))) =
0 except with negligible probability;

3. Zero knowledge: For any PPT adversary A, there exist a PPT algorithm πS ← S(crs, Y ) such that
for all κ ∈ N, all crs← Setup(1κ) and all (Y, y) ∈ R, the distributions {(π, Y ) : π ← Prove(crs, Y, y)}
and {(πS , Y ) : πS ← S(crs, Y )} are indistinguishable to A except with negligible probability.

Non-Malleable and Equivocable Commitments A non-malleable and equivocable commitment
scheme with message space {0, 1}∗, commitment space C and opening space O consists of a tuple of three
PPT algorithms CT := (Gen, Com, Open, Equivocate) where Gen gets as input the security parameter
κ ∈ N and outputs public parameters par and a trapdoor τ ; Com takes as input par and a message
m ∈ {0, 1}∗ and outputs a tuple (c, d); Open takes as input par and a tuple (c, d) ∈ (C × O) and either
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Sign (sk, m)
00 m′ ← (pk, m)
01 σ ← ECDSA[H].Sign (sk, m′)
02 Return σ

Verify (pk, σ, m)
03 m′ ← (pk, m)
04 Return
ECDSA[H].Verify (pk, m′, σ)

RandSK (sk, ρ)
00 sk′ ← (sk + ρ) mod q
01 Return sk′

RandPK (pk, ρ)
02 pk′ ← (pk + gρ)
03 Return pk′

Figure 7: Public key prefixed version of the ECDSA signature scheme with perfectly rerandomizable
keys rECDSA[H] based on the ECDSA signature scheme ECDSA[H]. Above H : {0, 1}∗ → Zq denotes a
cryptographic hash function.

outputs a message m or ⊥; Equivocate takes as input a trapdoor τ , a commitment c ∈ C and a message
m ∈ {0, 1}∗ and outputs an opening d. A non-malleable and equivocable commitment scheme must satisfy
the following properties:

1. Computationally Hiding: For all κ ∈ N, all (par, τ)← Gen(1κ), any two messages m, m′ ∈ {0, 1}∗
and (c, d)← Com(par, m) and (c′, d′)← Com(par, m′), there exists no PPT adversary A which can
distinguish the tuples (m, m′, c) and (m, m′, c′) except with negligible probability.

2. Computationally Binding: For all κ ∈ N and all (par, τ)← Gen(1κ), there exists no PPT adversary
A which can output (c, d, d′) such that Open(par, c, d) ̸= Open(par, c, d′) and Open(par, c, d) ̸= ⊥
and Open(par, c, d′) ̸= ⊥ except with negligible probability.

3. Equivocable: For all κ ∈ N, all (par, τ)← Gen(1κ) and any message m ∈ {0, 1}∗ the distributions
{(c, d) : (c, d)← Com(par, m)} and {(c′, d′) : c′ $← C, d′ ← Equivocate(τ, c′, m)} are computationally
indistinguishable.

Finally, a commitment scheme is non-malleable if for all κ ∈ N, all (par, τ) ← Gen(1κ), any message
m ∈ {0, 1}∗ and (c, d)← Com(par, m), there exists no PPT adversary A which on input c can output a
commitment c′ such that after receiving the opening d the adversary A can output an opening d′ such
that for m′ ← Open(par, c′, d′) the messages m and m′ are related.

Public Key Encryption A public key encryption scheme consists of three algorithms PKE :=
(Gen, Enc, Dec), where (i) Gen(1κ) outputs a public key pk and a secret key sk; (ii) Enc(pk, m) outputs a
ciphertext ct; and (iii) Dec(sk, ct) outputs either ⊥ or a message m.

A public key encryption scheme pk := (Gen, Enc, Dec) is linearly homomorphic if (1) there exists an
efficiently computable operation ⊕ s.t. for two ciphertexts ct1 ← Enc(pk, m1) and ct2 ← Enc(pk, m2) it
holds that ct1 ⊕ ct2 = Enc(pk, m1 + m2); and (2) there exists an efficiently computable operation ⊙ s.t.
for a ciphertext ct1 ← Enc(pk, m1) and a constant k it holds that ct1 ⊕ k = Enc(pk, m1 · k).

A public key encryption scheme is semantically secure if for every PPT adversaries A := (A1,A2)
there exists a negligible function ν in the security parameter κ ∈ N s.t.:

Pr


 b′ = b

∣∣∣∣∣∣∣∣

(pk, sk)← Gen(1κ),
(m1, m2, s)← A1(pk),
b $← {0, 1}, ct← Enc(pk, mb),
b′ ← A2(s, ct)


 ≤1/2 + ν(κ).

B.2 Construction
The GG[H0] scheme relies on a multiplicative to additive share conversion protocol, which allows two
parties Pi and Pj with shares ai ∈ Zq and bj ∈ Zq respectively s.t. x = ai · bj mod q to transform ai and
bj into additive shares of x, i.e., into shares αi and βj s.t. x = αi + βj . We briefly recall this protocol here.
We denote by PKE a linearly homomorphic encryption scheme (with operations ⊙ for multiplication with
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a constant and ⊕ for homomorphic addition) over an integer N and we denote by (pki,PKE, ski,PKE) the
public/secret key pair of scheme PKE of Pi.

Pi(pkj,PKE, ski,PKE, ai) Pj(pki,PKE, bj)

ci ← PKE.Enc(pki,PKE, ai)
ci,πi−−−−→

Compute a ZK proof πi that a < q3

If πi is not valid, abort.
y $← Zq5 , cj ← (ci ⊙ bj)⊕ PKE.Enc(pki,PKE, y)
Compute a ZK proof πj that Pj knows
bj < q3, y < q7 s.t. cj ← (ci ⊙ bi)⊕ PKE.Enc(pki,PKE, y)

cj ,πj←−−−−
If πj is not valid, abort.
α← PKE.Dec(ski,PKE, cj) mod q β ← −y mod q

Figure 8: Multiplicative to additive share conversion protocol MtA.

Gennaro and Goldfeder also consider a slight adjustment of the above protocol which they call MtAwc,
which differs only from the above protocol in the following way: If Bj = gbj is a public value (where g is
the generator of a cyclic group of prime order q), then party Pj additionally proves in zero-knowledge
that bj is the discrete log of Bj . We now recall the key generation and signing procedures of the GG[H0]
scheme. For simplicity, we slightly deviate from the original GG[H0] scheme in two ways. We emphasize
that these two changes have no impact on the scheme’s security: Gennaro and Goldfeder consider a
distributed key generation, whereas we assume that the key generation is initially executed by a trusted
party. In addition, we do not generate the keys for the linearly homomorphic encryption scheme during
the initial key generation but we let parties generate fresh keys in the beginning of an execution of the
signing procedure.

Algorithm Gen(1κ, t, n)
00 For k ∈ [t] ∪ {0}, sample ak

$← Zq.
01 Let F (x) := atx

t + · · ·+ a1x + a0.
02 sk := x← a0 mod q.
03 Set X ← gx and ski := xi ← F (i) mod q.
04 Set Xi ← gxi .
05 Set pk := (X, {Xi}i∈[n]).
06 Return (pk, {ski}i∈[n]).

Figure 9: Key generation algorithm. Note that Gennaro and Goldfeder consider a distributed key
generation, whereas we assume that the key generation is initially executed by a trusted party.

In Figure 10 we recall the signing procedure of the GG[H0] scheme. The procedure makes use of
a non-malleable and equivocable commitment scheme CT := (Com, Open) as well as a hash function
H0 : {0, 1}∗ → Zq, a linearly homomorphic encryption scheme PKE := (Gen, Enc, Dec) and a non-
interactive zero-knowledge proof system ZK. We slightly adjust the signing procedure as follows: Instead
of letting parties generate their key pair for PKE during the initial key generation, we let parties generate
a fresh key pair (pki,PKE, ski,PKE) for the PKE scheme before Phase 1 of the signing procedure. Each party
then broadcasts pki,PKE together with a zero-knowledge proof that the key was generated honestly.9 The
parties then engage in the signing procedure as specified in Figure 10.

9We note that if PKE is instantiated with the Paillier encryption scheme [Pai99], then this zero-knowledge proof can be
instantiated with the Paillier-Blum Modulus zero-knowledge proof system [CGG+20b].
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Pi(wi, m) Phase 1 Pj(wj , m){j ̸= i}

ki
$←− Zq , γi

$←− Zq

(Ci, Di)← CT.Com(gγi )
Ci−−−−−−−−−→

Define the following:
k =

∑
i∈S

ki, γ =
∑

i∈S
γi

kγ =
∑

i,j∈S
kiγj mod q

kx =
∑

i,j∈S
kiwj mod q

Phase 2

ki−−→
MtA

γj←−−
αi,j←−−−

βi,j−−−→
ki−−→

MtAwc
wj←−−

µi,j←−−−
νi,j−−−→

(s.t. ki · γj = αi,j + βj,i)
(s.t. ki · wj = µi,j + νj,i)

δi = kiγi +
∑

j ̸=i
(αi,j + βj,i)

σi = kiwi +
∑

j ̸=i
(µi,j + νj,i)

Phase 3

δi−−−−−−−−−→ δ =
∑

i∈S
δi = kγ

Phase 4

πγi
= ZKΓi

{(γi) : Γi = gγi}
Di,πγi−−−−−−−−−−−−→ Γi = CT.Open(Ci, Di)

Abort if πγi
does not verify

R =
(∏

i∈S
Γi

)δ−1
= gk−1

,

where R = (rx, ry).
Set r = rx mod q

Phase 5
m′ = H0(m), si = m′ki + rσi

li
$← Zq , ρi

$← Zq

Vi = Rsi · gli , Ai = gρi

(Ĉi, D̂i) = CT.Com(Vi, Ai)
Ĉi−−−−−−−−−→

π̂i = ZK(Vi,Ai){(si, li, ρi) :
D̂i,π̂i−−−−−−−−−−−→

(Vi = Rsi · gli ) ∧ (Ai = gρi )} Abort if a proof fails
V = g−m′ ·Q−r ·

∏
i∈S

Vi = gl

A =
∏

i∈S
Ai

Ui = V ρi , Ti = Ali

(C̃i, D̃i) = CT.Com(Ui, Ti)
C̃i−−−−−−−−−→
D̃i−−−−−−−−−→ Abort if

∑
i∈S

Ti ̸=
∑

i∈S
Ui

si−−−−−−−−−→ s =
∑

i∈S
si

Figure 10: Interactive (t, n)-threshold ECDSA scheme by Gennaro and Goldfeder [GG18], where |S| ⊆
[n], |S| = t + 1. For all parties {Pi}{i∈[n]}, xi denotes secret share of the secret x. For all parties Pi{i∈S},
wi represents the secret share of x due to (t, t + 1)-secret sharing of x, such that x =

∑
i∈S wi.
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Finally, in Figure 11 we recall the simulation of the signing procedure as provided in [GG18] (with some
minor modifications). The forger F provides a computationally indistinguishable view of the signing
procedure of the GG scheme to a PPT adversary on input the secret key shares of corrupted parties and
with access to a signing oracle.

Simulation of the Signing Procedure: Before Phase 1 of the signing procedure, F samples uniformly
at random a public key pk1,PKE s.t. (pk1,PKE, ·) ∈ PKE.Gen(1κ) and simulates the zero-knowledge proof
π1,PKE.

Phase 1: F executes Phase 1 honestly for party P1, i.e., it samples k1, γ1
$←− Zq and commits to gγ1 .

It then broadcasts the commitment C1.

Phase 2: F executes the first MtA protocol correctly for P1 using the values k1 and γ1 and extracts
the following values from the zero-knowledge proofs that are exchanged during the MtA protocol:
ki, γi, y1 for i > 1. It then computes α1,j = k1γi + y1 mod q and k̃ =

∑
i∈S ki mod q.

For the execution of the MtAwc protocol, F does not know w1 when P1 is the reacting party.
Therefore, it simply chooses a random γj,1 and simulates the corresponding zero-knowledge proofs.
When P1 is the initiating party, F can execute the protocol honestly with input k1 and extract the
share ν1,j from the zero-knowledge proofs.

Phase 3: F executes this phase correctly for P1.

Phase 4: All players decommit to Γi. F extracts γj for all j1 from the zero-knowledge proofs πγj

and computes k = δ ·
(∑

i>0 γi

)−1 mod q.

If k̃ = k, then F proceeds as follows:

(a) F queries its own signing oracle on message m to receive a signature (r, s) and computes
R = gH(m)s−1 ·Xrs−1 .

(b) F rewinds the adversary to the beginning of Phase 4 and equivocates the decommitment of P1
to Γ̂1 = Rδ

∏
i>1 Γ−1

i .
(c) F computes s1 = s−∑

i>1 si.

Phase 5: F executes this phase correctly for P1 using s1.

Else if k̃ ̸= k, then F proceeds as follows:

Phase 4: F runs this phase correctly for P1.

Phase 5: F chooses s̃1
$← Zq and runs this phase using this value.

Figure 11: Simulation of the signing procedure of the GG scheme. The forger F receives as input the
secret key shares of all corrupted parties and obtains access to a signing oracle.

B.3 Proof Sketch of Theorem 4.2
B.3.1 Case b = 0

In this case, B executes B0 which plays in game th-ufcma-hrk1rGG. That is, upon A sending the list C
of parties to corrupt in game unf -prandTVRF-rGG, B0 corrupts the same parties in th-ufcma-hrk1rGG
and forwards the resulting secret key shares and the public key to A.

The simulation of the oracles Rand, RSign and the random oracle H0 happens in a straightforward
way, i.e., B0 simply forwards queries from A in game unf -prandTVRF-rGG to the corresponding oracle in
game th-ufcma-hrk1rGG.
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The simulation of the random oracle H1 and the REval oracle is a bit more challenging as B0
does not have access to any such oracle in game th-ufcma-hrk1rGG. Upon a query from A to the
random oracle H1 on input a message m, B0 first checks if H1(m) has been set already. If so, it simply
returns H1(m). Otherwise it samples a uniformly random value r $← Zq and sets H1(m) := gr and
returns gr. The simulation of the REval oracle then works as follows: On input a message m, an
index i ∈ [n] and a randomness ρ ∈ RList, B0 first executes pk′ ← TVRF-rGG.RandPK(pk, ρ) and parses
pk′ := (X ′, {X ′1, · · · , X ′n}). B0 then retrieves r ← H1(m), sets ϕi := (X ′i)r = H1(m)sk′

i , simulates the
corresponding zero-knowledge proof πi and returns (ϕi, πi).

Eventually, the adversary outputs a forgery which B0 also forwards to the th-ufcma-hrk1rGG game.
It is easy to see that B0 wins the th-ufcma-hrk1rGG game if A is able to win the unf -prandTVRF-rGG
game by satisfying the winning condition in Case 1.

B.3.2 Case b = 1

In this case, B executes B1 which plays in game th-prandTVRF. That is, upon A sending the list C
of parties to corrupt in game unf -prandTVRF-rGG, B1 corrupts the same parties in th-prandTVRF and
forwards the resulting secret key shares and the public key to A. The simulation of oracles Rand, RSign,
H0, H1 and REval then works as follows:
• Oracle Rand: On a query to Rand from A, B1 samples uniformly at random ρ $← Zq, stores ρ in RList

and returns ρ.

• Oracle H0: Upon A querying H0 on input a message m, B1 first checks whether m is public key
prefixed, i.e., whether m can be parsed as m := (pk′, m′) where (pk′, ·) ∈ TVRF-rGG.Gen(1κ, t, n). If so,
B1 executes SECDSA as described in Figure 3 on input (X ′, m) with pk′ := (X ′, {X ′1, · · · , X ′n}).
If m is not public key prefixed, B1 simply samples a uniformly random value r $← Zq, sets H0(m) := r
and returns H0(m). Note that in order for B1 to abort in this simulation, A would have to guess a
randomness ρ ∈ Zq before it has been output by the Rand oracle. This happens only with negligible
probability. Further, note that SECDSA programs the random oracle H0 in such a way that (1) H0(m) is
set to uniform random value in Zq, and (2) the values (r, s) look like a valid ECDSA signature for m
and X ′ to A except with negligible probability (this has been shown in [FKP17]).

• Oracle RSign: Upon A querying this oracle on input a message m and randomness ρ ∈ RList, B1
simulates the signing procedure in the same way as described in Theorem 3.4. Note that this simulation
relies on the availability of a signing oracle, which returns full valid ECDSA signatures on arbitrary
messages and rerandomized public keys. Since B1 does not have access to such an oracle, it uses the
simulated signatures (r, s) that are generated during the programming of H0. Note that the simulator
code from Theorem 3.4 does not program H0 such that there is no conflict between the execution of
the simulator code from Theorem 3.4 and SECDSA.

• Oracle H1: Upon A querying H1 on some message m, B1 simply queries its own random oracle on m
and relays the output.

• Oracle REval: Upon a query from A on input (m, i, ρ), B1 queries its own oracle on input m and receives
an evaluation share (ϕi, πi) where ϕi = H1(m)ski . B1 then computes ϕ′i = ϕi ·H1(m)ρi = H1(m)ski+ρi

(where ρi is the randomness share of ρ for party Pi according to the TVRF-rGG.RandSK algorithm),
simulates a NIZK proof π′i of the DLEq proof system (cf. Appendix A.2) and sends (ϕ′i, π′i) to A.
Reduction to th-prandTVRF: During the challenge phase of th-prandTVRF-rGG (in Case 2), A outputs

a message m∗, randomness ρ∗, a set of indices S and evaluation shares {(ϕ∗i , π∗i )}i∈S∩C. Upon receiving
these values, the adversary B1 computes ϕi = ϕ∗i · H1(m∗)−ρ∗

i = H1(m∗)ski and generates a new zero-
knowledge proof πi using ski and ϕi. B1 then returns the set of indices S, the message m∗ and evaluation
shares {(ϕi, πi}i∈S∩C to game th-prandTVRF. Upon receiving the challenge value ϕ from the underlying
game, B1 computes ϕ∗ = ϕ · H1(m∗)ρ∗ and returns it to A. Note that if ϕ was chosen randomly by the
th-prandTVRF game then ϕ∗ is also random, and if ϕ is a valid TVRF output, then so is ϕ∗ under the
key randomized with ρ∗. B1 then simply relays the output of A to its own game.

It is easy to see that if A can distinguish between a random value and the output of the rerandomized
TVRF, B1 can distinguish between a random value and the output of the TVRF.
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C. Deterministic Wallets in a
Quantum World

In this chapter, we present an adjusted version of the following publication:

[5] N. A. Alkadri, P. Das, A. Erwig, S. Faust, J. Krämer, S. Riahi, and P. Struck.

“Deterministic Wallets in a Quantum World”. In: CCS ’20: 2020 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event, USA,

November 9-13, 2020. 2020, pp. 1017–1031. Part of this thesis.

Concretely, the work included in this chapter corrects the following mistake

that is contained in the above publication [5]: In [5] the rerandomizability of pub-

lic keys property of a signature scheme with rerandomizable public keys required a

rerandomized public key to be identically distributed to a freshly generated pub-

lic key. However, in our construction, the distribution of a rerandomized public

key is only computationally indistinguishable from a freshly generated public key.

The work included in this chapter fixes this mistake by adjusting the definition

accordingly and by making all subsequently required changes throughout the pa-

per. In particular, this includes the definition of the simulatability property of a

signature scheme with rerandomizable public keys, which is required for the wallet

unlinkability proof of our generic wallet construction.
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Abstract. Most blockchain solutions are susceptible to quantum attackers as they rely on cryp-
tography that is known to be insecure in the presence of quantum adversaries. In this work we
advance the study of quantum-resistant blockchain solutions by giving a quantum-resistant con-
struction of a deterministic wallet scheme. Deterministic wallets are frequently used in practice
in order to secure funds by storing the sensitive secret key on a so-called cold wallet that is not
connected to the Internet. Recently, Das et al. (CCS’19) developed a formal model for the secu-
rity analysis of deterministic wallets and proposed a generic construction from certain types of
signature schemes that exhibit key rerandomization properties. We revisit the proposed classical
construction in the presence of quantum adversaries and obtain the following results.

First, we give a generic wallet construction with security in the quantum random oracle model
(QROM) if the underlying signature scheme is secure in the QROM. We next design the first
post-quantum secure signature scheme with rerandomizable public keys by giving a construction
from generic lattice-based Fiat-Shamir signature schemes. Finally, we show and evaluate the
practicality by analyzing an instantiation of the wallet scheme based on the signature scheme
qTESLA (ACNS’20).

Keywords: blockchain protocols · deterministic wallets · post-quantum · rerandomizable sig-
natures · provable security · lattice-based cryptography

1 Introduction

In the past decade cryptocurrencies such as Ethereum [21] and Bitcoin [36] have gained huge pop-
ularity introducing a revolutionary payment paradigm. Cryptocurrencies do not rely on any central
authority (i.e., banks) for the validation of transactions but instead use a consensus protocol to reach
agreement on the validity of transactions in a decentralized network. As the name suggests the secu-
rity of cryptocurrencies heavily relies on cryptographic building blocks – most importantly, on digital
signature schemes. Digital signatures are used to authenticate money transfers between parties, where
each party is identified by a public key with respect to the signature scheme. In a nutshell, a transfer
of v coins from sender pkS to receiver pkR is represented by a transaction tx := (pkS, pkR, v). The
transaction tx is then sent together with a signature of tx with respect to the sender’s public key pkS
to the network of miners who validate the transaction. Besides digital signatures many other (partially
advanced) cryptographic building blocks are used by cryptocurrencies to achieve a variety of goals. This
includes, for instance, non-interactive zero-knowledge proofs and ring signatures for privacy preserving
transactions [20, 38], threshold signatures and deterministic wallets for securing funds [16], aggregate
signatures for scalability [26], and many more [22,25,42].



Unfortunately, most cryptographic primitives used by cryptocurrencies today can be broken by quan-
tum adversaries. Most notably, the ECDSA signature scheme that is implemented by nearly all popular
cryptocurrencies relies on the hardness of computing discrete logarithms, and hence can be broken
by Shor’s algorithm [40]. Since quantum computers can have devastating consequences for the secu-
rity of cryptocurrencies [6], several recent works design cryptocurrencies with post-quantum security
features, i.e., they resist both classical and quantum attacks, but run on classical machines. Cryp-
tocurrency projects such as “Bitcoin Post Quantum” [1] or QRL [2] replace ECDSA with hash-based
post-quantum signatures. Other examples include a Monero-based cryptocurrency with privacy guar-
antees that hold against quantum adversaries [20], or a security analysis of the proof of work consensus
protocol in the quantum random oracle model [15]. In this work, we follow this line of work and inves-
tigate the post-quantum security of deterministic wallet schemes, and propose the first construction
that provably resists quantum adversaries.

Deterministic wallets. In cryptocurrencies, secret keys are a particular attractive target for attackers.
Indeed, the most devastating attacks in the cryptocurrency space have typically targeted secret keys
of users resulting in billions of dollars worth of cryptocurrency being stolen [11, 12, 41]. To protect
keys against theft, one of the most prominent solutions is the concept of a deterministic wallet. A
deterministic wallet scheme consists of two components: a hot wallet that is permanently connected to
the Internet, and a cold wallet, which comes online only rarely (e.g., when a large amount of money has
to be transferred). Das et al. [16] formalized the concept of deterministic wallets and defined its security
goals. The first security goal is wallet unforgeability which states that funds sent to the cold wallet
must remain secure even if the hot wallet is corrupted. Second, wallet unlinkability, which guarantees
that individual transactions that sent money to the same wallet are unlinkable despite being publicly
available on the blockchain.

At a high-level a hot/cold wallet scheme works as follows. In an initialization phase, it generates a
master key pair (msk, mpk), where the master secret key msk is stored on the cold wallet, while the hot
wallet keeps the corresponding master public key mpk. The main ingredient of a deterministic wallet
scheme is a deterministic key derivation procedure, which allows both, cold and hot wallet, to derive
matching secret and public session keys without interacting with each other. To this end, in addition
to the master secret/public key, the hot and cold wallet share a state St. From this state each wallet
can derive the corresponding session key by combining the master key with a deterministically derived
value H(St, ID), where ID is an arbitrary key identifier and H is a cryptographic hash function. More
concretely, consider a simplified version of the BIP32 deterministic wallet scheme [3] used for Bitcoin.
The master secret/public key pair consists of a valid ECDSA key pair (msk, mpk) := (x, x ·G), where
G is a generator of the ECDSA elliptic curve. The session key pair for identity ID is computed as
pkID := mpk + w ·G and sk := msk + w with w := H(St, ID).

Post-quantum security of deterministic wallets. While deterministic wallet schemes offer an elegant
solution to increase the security of users’ funds, they are particularly susceptible to attacks by quan-
tum adversaries. To illustrate this, let us first consider how quantum attacks against the underlying
signature scheme of a cryptocurrency such as Bitcoin work. Recall that in Bitcoin (as in most other
cryptocurrencies) an address for transferring funds to is not represented by the public key itself but
by its hash value. More concretely, when a party transfers v coins to some receiver R with public key
pkR, then the transaction will store h = H(pkR). Only when R wants to spend these coins he reveals
pkR together with a signature with respect to pkR. This leaves a quantum adversary that wants to
steal v coins from R, with two options: either he tries to find pk ′ such that H(pk ′) = h, or he waits
until pkR is revealed by R and computes the corresponding secret key skR. The first type of attack is
believed to be hard because common cryptographic hash functions such as SHA3-512 are known to be
preimage resistant even under quantum attacks when appropriately choosing their parameters. While
in the second case a quantum adversary can indeed efficiently attack the signature scheme, he has only
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a very small window of time to carry out this attack4. In particular, he has to frontrun the transaction
published by R, which is unlikely, assuming that the majority of miners is following the protocol.

A quantum attacker can have more devastating consequences against a deterministic wallet scheme.
More concretely, unlike for normal addresses (hashes of public keys), in a deterministic wallet all session
keys are related, and in particular efficiently computable from (msk, mpk). Hence, if the adversary
manages to learn mpk then he can recover the corresponding master secret key msk and from that
recover all session secret keys. Hence, all the money that was ever transferred to the cold wallet is at
stake.

1.1 Our Contributions

Our main contribution in this work is to give the first construction of a post-quantum secure determin-
istic wallet. Our scheme is intended to be used on classical computers, and to remain secure even in the
presence of quantum adversaries. To achieve our goal we extend the security model of Das et al. [16]
to the quantum setting and prove that certain standard post-quantum secure signature schemes can
be used to construct post-quantum secure wallets. Concretely, our contributions are as follows:

– We extend the security model for deterministic wallets introduced by Das et al. [16] to the quantum
world. In particular, we show that if the underlying signature scheme satisfying the property of
honestly rerandomizable keys is post-quantum secure, then it can be used to build post-quantum
secure deterministic wallets. We relax the notion of rerandomizable keys as given by [16] to consider
only rerandomization of public keys. Subsequently, we show that this relaxed notion is sufficient
for the security of wallets, and hence we are able to prove post-quantum security based on this
relaxed notion.

– We design the first post-quantum secure signature scheme with rerandomizable public keys. This
is achieved by giving a generic construction from a Fiat-Shamir signature scheme based on lattice
assumptions.

– We discuss optimizations of our post-quantum secure signature scheme with rerandomizable public
keys and evaluate its feasibility for blockchains.

1.2 Our Techniques

Signature schemes with rerandomizable keys [23] are the main building block of the wallet scheme
presented in [16]. At a high-level besides the standard algorithms of a digital signature scheme for key
generation, signing, and verification, a signature scheme with rerandomizable keys has two additional
algorithms, namely RSig.RandSK and RSig.RandPK. These algorithms take as input the secret key sk,
respectively public key pk and randomness ρ, and output fresh keys sk ′, respectively pk ′. Moreover,
the unforgeability property of the signature scheme must hold even if the adversary sees signatures
that are generated using rerandomized secret keys.

We show that certain post-quantum secure signature schemes support rerandomization of keys and
satisfy the security notion of unforgeability under honestly rerandomized keys in the quantum world.
In [23] it was shown that Schnorr’s signature scheme [39] has rerandomizable keys with unforgeability
in the random oracle model (ROM). This motivates to study post-quantum secure Schnorr-like sig-
nature schemes. More concretely, we investigate if lattice-based, Schnorr-like signature schemes can
have rerandomizable keys with unforgeability in the quantum random oracle model (QROM). Lattice-
based schemes are particularly suitable for constructing post-quantum secure rerandomizable signature
4 In Bitcoin in most cases transactions are considered to be final after 60 minutes.

3



schemes because (a) lattice-based assumptions are conjectured to be secure under quantum computer
attacks; and (b) unlike hash-based signature schemes, lattice-based schemes exhibit an algebraic struc-
ture, which enables rerandomization of keys.

The key pair (pk, sk) of such Schnorr-based lattice schemes consists of an instance of a hard lattice
problem, where the secret key sk typically follows either the discrete Gaussian distribution or the
uniform distribution over a small set. The first idea that comes to mind when rerandomizing keys in
the lattice setting is the following: Given (pk, sk) and randomness ρ, sk is rerandomized additively by
computing sk ′ = sk + ρ (as carried out in [23] for Schnorr’s scheme). In the lattice setting however, we
must ensure that the sum sk ′ follows the correct distribution, e.g., the Gaussian or uniform distribution.
If this is not the case, one can sample a new randomness from ρ in a deterministic way until a valid sk ′ is
generated. Naturally, the same (correct) ρ must be used when rerandomizing pk. This approach satisfies
(under a specified distribution of sk) the original definition of signature schemes with rerandomizable
keys (see Definition 3), as the initially generated key pair and any rerandomization of it are identically
distributed. However, this approach cannot be used for building hot/cold wallets, because the hot and
cold wallet must agree on the correct ρ for each session key generation. This contradicts the main goal
of using hot/cold wallets, which requires that the cold wallet stays off-line, and hence cannot frequently
communicate with the hot wallet to synchronize on ρ. In Appendix D we give more details on this
approach as well as others, and argue why they are not suitable in the wallet setting.

In this work we show that the key pair (pk, sk) can still be rerandomized additively in a way that
fits to the setting of hot/cold wallets. The main observation that we exploit is that the sum of two
Gaussians is also Gaussian distributed (see Lemma 3). Based on this observation, our approach works
as follows. Let sk be Gaussian distributed. Given randomness ρ, sk is rerandomized additively by
adding to sk a freshly Gaussian distributed secret key sk∗. The key sk∗ is deterministically sampled
using the randomness ρ, i.e., we use ρ as the randomness required in the Gaussian sampler algorithm.
We obtain a rerandomized secret key that is Gaussian distributed, but with a slightly larger standard
deviation than the one of the original secret key (cf. Lemma 3). Consequently, we can construct a
signature scheme with rerandomizable keys, in which the distribution of rerandomized public keys is
computationally indistinguishable to the distribution of the original public key, while rerandomized
secret keys follow a different distribution than a freshly sampled secret key. We formally define such
relaxed notion in Section 2 and call it a signature scheme with rerandomizable public keys. We then
show in Section 3 that this notion is sufficient for post-quantum secure wallets and present a lattice-
based construction of such a scheme in Section 4 with a security proof in the QROM. Finally, we show
in Section 5 that our construction can be instantiated with state-of-the-art lattice-based signature
schemes such as qTESLA [7]. Hence, it can use their proposed parameters and enjoy their performance
and efficiency.

We emphasize that the post-quantum security model considers the adversary to be quantum while the
challenger - representing the honest user in a real-world application - remains classical. As a result,
every oracle that is provided by the challenger can be accessed only classically, while oracles that
can be accessed by the adversary directly can be accessed using quantum computing power, i.e., in
superposition. This describes a threat model where an adversary can use its quantum power to locally
access the random oracle, while he observes signatures created by a user on a classical machine. In our
work, we consider this standard post-quantum security model since it entails that the cryptographic
scheme is still used on classical computers. This is, in contrast to the (fully-) quantum setting, where
the scheme itself is implemented on quantum computers as well. While this is a stronger security
model, it is more of theoretical interest as it requires users to have access to quantum computers as
well.
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1.3 Related Work

The concept of hot/cold wallets is used in many cryptocurrencies in order to provide stronger security
guarantees to its users. Various works have proposed formal security models for analyzing the security
of wallet schemes. Gutoski and Stebila [25] have discussed flaws in the BIP32 construction [3] and
possible countermeasures. However, they do not consider the standard notion of unforgeability but
rather a restricted model where the adversary can corrupt the cold wallet and recover secret keys.
Other works worth mentioning are “privilege escalation attacks” by Fan et al. [22] which unfortunately
lacks any formal security analysis, and the analysis of the Bitcoin Electrum wallet in the Dolev-Yao
model by Turuani et al. [42]. The latter considers cryptographic primitives (e.g., signature schemes
and encryption schemes) as idealized objects, hence fails to capture potential vulnerabilities such as
related key attacks which are relevant in case of hot/cold wallets.

As mentioned earlier, we closely follow the model introduced by Das et al. [16], where the notion
of a stateful deterministic wallet is introduced and two desirable security properties called wallet
unlinkability and wallet unforgeability are considered. The first property ensures that the session public
keys generated by SW.RandPK are unlinkable to the master public key. This property is guaranteed as
long as the hot wallet has not been corrupted. The second property ensures unforgeability of signatures
signed by the secret keys of the cold wallet even when the hot wallet is corrupted.

According to [16] a stateful deterministic wallet SW consists of two components – a hot wallet and a
cold wallet which share a common state St. SW is given by a tuple of algorithms (SW.KGen, SW.RandSK,
SW.RandPK, SW.Sign, SW.Verify), where the session public key and secret key derivation algorithms
SW.RandPK and SW.RandSK are run respectively within the hot and cold wallet to deterministically derive
matching session (public/secret) keys from the (public/secret) master keys. Unlike deterministic wallets
in use (e.g., the BIP32 construction), the state St of the wallet scheme of [16] is refreshed within the
(hot/cold) wallets with each key derivation. This approach allows to show forward unlinkability, which
intuitively means that even upon leakage of the state, all session keys derived before the state leakage
remain unlinkable. The second security property – wallet unforgeability – is achieved by a reduction
to standard EUF-CMA security of a concrete signature scheme (such as ECDSA and Schnorr) in a
modularized fashion. As the intermediary step the authors show that these signature schemes satisfy
the properties of signature schemes with rerandomizable keys.

We note that the model by Das et al. [16] only considers adversaries in the classical setting and does
not protect against quantum adversaries. Our work fills this gap by designing the first post-quantum
secure deterministic wallet.

Many prior works have investigated lattice-based Fiat-Shamir signatures, e.g., [7, 9, 18, 19, 30], and
in particular, their security was analyzed in the QROM, e.g., by [17, 27, 29, 44]. To the best of our
knowledge we propose the first work on lattice-based signature schemes with honestly rerandomizable
keys and prove its security in the QROM. Inspired by Das et al. [16] and Fleischhacker et al. [23], we
use the abstraction of signature schemes with rerandomizable keys but transfer this concept to the
post-quantum setting. We include further related work in Appendix A.

2 Preliminaries

We let N,Z,R denote the set of natural numbers, integers, and real numbers, respectively. For any
positive integer k we write [k] to denote the set of integers {1, . . . , k}. For a positive integer q we let Zq

denote the set of integers in the range [− q
2 , q

2 )∩Z. We define the ring R = Z[x]/⟨xn+1⟩ and its quotient
Rq = R/qR, where n is a power of 2. Elements in R and Rq (including Z and Zq) are denoted by regular
font letters. Column vectors and matrices with entries from R or Rq are denoted by bold lower-case
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letters and bold upper-case letters, respectively. We define the ℓ2 and ℓ∞ norms of v =
∑n−1

i=0 vix
i ∈ R

by ∥v∥ = (
∑n−1

i=0 |vi|2)1/2 and ∥v∥∞ = maxi |vi|, respectively. For w = (w1, . . . , wk) ∈ Rk we define
∥w∥ = (

∑k
i=1 ∥wi∥2)1/2 and ∥w∥∞ = maxi ∥wi∥∞. We let Tn

κ denote the set of all (n − 1)-degree
polynomials with coefficients from {−1, 0, 1} and Hamming weight κ. We always denote the security
parameter by λ ∈ N, and o(λ) denotes a linear function in λ. A function f : N −→ R is called
negligible if there exists an n0 ∈ N such that for all n > n0, it holds f(n) < 1

p(n) for any polynomial
p. With negl(λ) we denote a negligible function in λ. A probability is called overwhelming if it is at
least 1− negl(λ). The statistical distance between two distributions X, Y over a countable domain D
is defined by 1

2
∑

n∈D |X(n) − Y (n)|. We write x ← D to denote that x is sampled according to a
distribution D. We let x←$ S denote choosing x uniformly random from a finite set S. Unless specified
otherwise, every adversary is considered to be an efficient quantum polynomial time algorithm.

2.1 Quantum Random Oracle Model

In this section, we recall the quantum random oracle model and existing results that we will use. Since
quantum computation is only necessary in the proofs of these results, we do not provide information
on quantum computation here, but refer to [37] for a detailed discussion on the topic.

In [10], Bellare and Rogaway introduced the random oracle model (ROM). In this model every party has
access to an oracle implementing a random function. Upon being queried on some input x, the oracle
answers with a random output y. Every further invocation on input x, even by other parties, results
in the same y. In security proofs, one often models a hash function as a random oracle. Since hash
functions are public, Boneh et al. [13] observed that the ROM is not appropriate in the post-quantum
setting. In the real world an adversary equipped with a quantum computer is able to implement the
hash function and evaluate it in superposition. Thus, Boneh et al. introduced the quantum random
oracle model (QROM). In this model, parties with quantum computing power get access to the oracle
|H⟩, where |H⟩ : |x, y⟩ 7→ |x, y ⊕ H(x)⟩. In our proofs we will also consider reprogrammed random
oracles. For a random oracle H we write Hx→y for the random oracle that is reprogrammed on input
x to y. Further on, we denote the classical random oracle by the symbol H and the quantum random
oracle by the notation |H⟩.

Nowadays, the QROM is considered the de facto standard for post-quantum security proofs of crypto-
graphic primitives which rely on random oracles. Below we describe some results for quantum random
oracles that are required for our proofs.

The one-way to hiding (O2H) lemma [43] is an important tool for security proofs in the quantum
random oracle model. It gives bounds on the advantage of an adversary in distinguishing between
different random oracles when the adversary is allowed to query them in superposition. Below we state
the lemma using the reformulation by Ambainis et al. [8].

Lemma 1 (One-way to hiding (O2H) [8]). Let G, H : X → Y be random functions, let z be a
random value, and let S ⊂ X be a random set such that ∀x /∈ S, G(x) = H(x). (G, H,S, z) may have
arbitrary joint distribution. Furthermore, let A|H⟩ be a quantum oracle algorithm which queries |H⟩
at most q times. Let Ev be an arbitrary classical event. Define an oracle algorithm B|H⟩ as follows:
Pick i ←$ [q]. Run A|H⟩(z) until just before its i-th round of queries to |H⟩. Measure the query in the
computational basis, and output the measurement outcome. It holds that

∣∣Pr[Ev : A|H⟩(z)]− Pr[Ev : A|G⟩(z)]
∣∣ ≤ 2q

√
Pr[x ∈ S : B|H⟩(z)⇒ x] .

Another tool that we will use are Zhandry’s small range distributions, defined below. These are distri-
butions where the set of possible outputs is limited.
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Definition 1 (Small-range distributions [45]). Let X , Y be sets, r be an integer, D be a distri-
bution on Y, P be a random function from X to [r], and y⃗ = (y1, . . . , yr) be r samples of D. Define a
function H : X → Y by H(x) 7→ yP (x). The distribution of H, induced by P and y⃗, is called a small-range
distribution with r samples of D.

The following lemma provides a bound on the distinguishing advantage between a random oracle and
an oracle drawn from a small-range distribution when superposition access is granted.

Lemma 2 ([45]). There is a universal constant C such that, for any set X and Y, distribution D on
Y, integer l, and any quantum algorithm A making q queries to an oracle H : X → Y, the following
two cases are indistinguishable, except with probability less than Cq3

l :

– H(x) = yx where y⃗ is a list of samples of D of size |X |.
– H is drawn from the small-range distribution with l samples of D.

2.2 Cryptographic Primitives

Definition 2 (Signature Scheme). Let λ be a security parameter. A signature scheme Sig with
key space K, message space M, and signature space S is a tuple of polynomial-time algorithms
(KGen, Sign, Verify) such that

KGen(1λ) is the key generation algorithm that outputs a key pair (pk, sk) ∈ K, where pk is a public key
and sk is a secret key.

Sign(sk, m) is the signing algorithm that takes as input a secret key sk and a message m ∈ M. It
outputs a signature σ ∈ S.

Verify(pk, m, σ) is the verification algorithm that takes as input a public key pk, a message m with a
signature σ. It outputs 1 if σ is valid and 0 otherwise.

Correctness: A signature scheme is correct if for all λ ∈ N, m ∈ M, (pk, sk) ← KGen(1λ), and all
σ ← Sign(sk, m), it holds that Pr[Verify(pk, m, Sign(sk, m)) = 1] ≥ 1− negl(λ).

We will use the notion of signature schemes with rerandomizable keys [23]. In the following we recall
its definition.

Definition 3 (Signature Scheme with Rerandomizable Keys). A signature scheme with per-
fectly rerandomizable keys RSig is given by a tuple of algorithms:

(RSig.KGen, RSig.RandSK, RSig.RandPK, RSig.Sign, RSig.Verify),

where RSig.KGen, RSig.Sign, RSig.Verify satisfy the definition of a standard signature scheme (cf.
Definition 2). For randomness space R, (RSig.RandSK, RSig.RandPK) are two polynomial-time algo-
rithms such that

RSig.RandSK(sk, ρ) is a secret key rerandomization algorithm that takes as input the secret key sk and
a randomness ρ ∈ R and outputs a randomized secret key sk ′.

RSig.RandPK(pk, ρ) is a public key rerandomization algorithm that takes as input the public key pk and
a randomness ρ ∈ R and outputs a randomized public key pk ′.

RSig satisfies the following properties:
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Game EUF-CMAA
Σ

1: Q := ∅
2: H := ∅
3: (pk, sk)← KGen(1λ)
4: (m∗, σ∗)← AH,O(pk)
5: if (m∗ ∈ Q) then
6: return 0
7: return Verify(pk, m∗, σ∗)

H(m′)
1: if (m′ ∈ H) then
2: return H(m′) ∈ H

3: H(m′)←$ {0, 1}o(λ)

4: H := H ∪ {(m′, H(m′))}
5: return H(m′)

O(m)
1: Q := Q∪ {m}
2: σ ← Sign(sk, m)
3: return σ

Fig. 1. The security game EUF-CMA of signature schemes.

Rerandomizability of keys: For all λ ∈ N, all (sk, pk) ∈ RSig.KGen(1λ), and all ρ ∈ R, the distri-
butions of (sk ′, pk ′) and (sk ′′, pk ′′) are identical, where (sk ′′, pk ′′)← RSig.KGen(1λ) and
sk ′ ← RSig.RandSK(sk, ρ), pk ′ ← RSig.RandPK(pk, ρ).

Correctness under rerandomizable keys:
1. For all λ ∈ N, (pk, sk)← RSig.KGen(1λ), m ∈M, and all σ ← RSig.Sign(sk, m), it holds that

Pr[RSig.Verify(pk, m, RSig.Sign(sk, m)) = 1] ≥ 1− negl(λ) .

2. For all (pk, sk) ← RSig.KGen(1λ), all ρ ∈ R, m ∈ M, and for a pair of rerandomized keys
sk′ ← RSig.RandSK(sk, ρ) and pk′ ← RSig.RandPK(pk, ρ), it holds

Pr[RSig.Verify(pk ′, m, RSig.Sign(sk ′, m)) = 1] ≥ 1− negl(λ) .

We also consider a relaxed version of Definition 3. In the following definition we introduce the notion
of signature schemes under rerandomizable public keys, where the distribution of rerandomized public
keys is computationally indistinguishable from the distribution of the original public key, but where the
same does not hold for secret keys. We present a concrete instantiation of such a scheme in Section 4.

Definition 4 (Signature Scheme with Rerandomizable Public Keys). A signature scheme with
perfectly rerandomizable public keys RSig′ is given by a tuple of algorithms (RSig′.KGen, RSig′.RandSK,
RSig′.RandPK, RSig′.Sign, RSig′.Verify), which are defined as in Definition 3. RSig′ satisfies the fol-
lowing properties:

Rerandomizability of public keys: For all λ ∈ N, all public keys (·, pk) ← RSig′.KGen(1λ) and
ρ ∈ R, the distributions of pk ′ and pk ′′ are computationally indistinguishable, where pk ′ ←
RSig′.RandPK(pk, ρ), and pk ′′ ← RSig′.KGen(1λ).

Correctness under rerandomizable keys: This property is defined as the property of correctness
for signature schemes under rerandomizable keys in Definition 3.

Simulatability: For all λ ∈ N, all (sk, pk) ← RSig′.KGen(1λ), and all m ∈ M, there exists a
polynomial-time algorithm T which on input pk and m outputs a signature σ ∈ S. It must hold
that for κ ∈ poly(λ) the distributions {σ1, · · · , σκ} and {σ′1, · · · , σ′κ} are computationally indistin-
guishable where σi ← T (pk, m) and σ′i ← RSig′.Sign(sk, m) for i ∈ [κ].

2.3 Security Notions

Security of signature schemes is captured by the standard security notion of existential unforgeability
under adaptive chosen-message attacks (EUF-CMA), presented below.
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Game EUF-CMA-HRKA
RSig

1: RList := ∅
2: Q := ∅
3: H := ∅
4: (pk, sk)← RSig.KGen(1λ)
5: (m∗, σ∗, ρ∗)← AH,Rand,OHR(pk)
6: if (m∗ ∈ Q) then
7: return 0
8: if (ρ∗ ̸= NULL) then
9: if (ρ∗ /∈ RList) then

10: return 0
11: pk ← RSig.RandPK(pk, ρ∗)
12: return RSig.Verify(pk, m∗, σ∗)

H(m′) (see Figure 1)
Rand
1: ρ←$ R
2: RList← RList ∪ {ρ}
3: return ρ

OHR(m, ρ)
1: Q := Q∪ {m}
2: if (ρ ̸= NULL) then
3: if (ρ /∈ RList) then
4: return ⊥
5: sk ← RSig.RandSK(sk, ρ)
6: σ ← RSig.Sign(sk, m)
7: return σ

Fig. 2. The security game EUF-CMA-HRK of signature schemes with rerandomizable (public) keys.

Definition 5 (EUF-CMA Security). Let H : {0, 1}∗ → {0, 1}o(λ) be a hash function modeled as
(quantum) random oracle. A signature scheme Σ is called (t, qSign, qH, ε)-EUF-CMA in the (quantum)
random oracle model if for any adversary A running in time at most t and making at most qSign

signature queries and at most qH (superposition) queries to H, the game EUF-CMAAΣ depicted in Figure 1
outputs 1 with probability at most ε, i.e., Pr[EUF-CMAAΣ = 1] ≤ ε.

In the following we present the notion of EUF-CMA-HRK security under honestly rerandomizable keys
due to [16]. This notion is similar to EUF-CMA-RK security under rerandomizable keys due to [23],
however with certain differences which makes it a weaker notion. In the EUF-CMA-RK game, an ad-
versary A gets access to a signing oracle. The signing oracle takes a message and a randomness as
input and provides a signature on this message under the rerandomized key as an answer. Note that
the rerandomized key was derived from the randomness input by A. This means that A can obtain
signatures under keys with randomness of A’s choice. A can win the EUF-CMA-RK game if it can
produce a valid forgery under a rerandomized key of its choice (note that the randomness can also be
null).

In the EUF-CMA-HRK game, we restrict A’s capabilities in the following way. In addition to the signing
oracle, in the EUF-CMA-HRK game A is given access to a Rand oracle to derive a fresh randomness.
This randomness can be later used to get a signature under the rerandomized key by querying the
signing oracle. Here, A can only win the EUF-CMA-HRK game if it produces a valid forgery under
a rerandomized key, where the underlying randomness was obtained honestly by querying the Rand
oracle. We formally present EUF-CMA-HRK security under honestly rerandomizable (public) keys below.

Definition 6 (EUF-CMA-HRK Security under Honestly Rerandomized (Public) Keys). Let
H : {0, 1}∗ → {0, 1}o(λ) be a hash function modeled as (quantum) random oracle. A signature scheme
with honestly rerandomizable (public) keys RSig is called (t, qSign, qH, ε)-EUF-CMA-HRK in the (quan-
tum) random oracle model if for any adversary A running in time at most t and making at most qSign

signature queries and at most qH (quantum) random oracle queries to H, the game EUF-CMA-HRKARSig

depicted in Figure 2 outputs 1 with probability at most ε, i.e., Pr[EUF-CMA-HRKARSig = 1] ≤ ε.
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LB.KGen(1λ)

1: s← χk2 , e← χk1

2: b← As + e (mod q)
3: sk := (s, e), pk := b
4: return (sk, pk)
LB.Verify(pk, m, (z1, z2, c))
1: w← Az1 + z2 − bc (mod q)
2: if

(
(z1, z2) ∈ Rk2

B1
×Rk1

B2
∧

H(w, m) = c
)

then
3: return 1
4: return 0

LB.Sign(sk, m)

1: r←$ {0, 1}o(λ)

2: ctr← 1
3: (y1, y2) ∈ Rk2

Y ×Rk1
Y ← E(r, ctr)

4: v← Ay1 + y2 (mod q)
5: c← H(v, m)
6: z1 ← y1 + sc
7: z2 ← y2 + ec
8: if

(
(z1, z2) ̸∈ Rk2

B1
×Rk1

B2

)
then

9: ctr← ctr + 1
10: goto 3
11: return (z1, z2, c)

Fig. 3. A formal description of a generic (non-optimized) Fiat-Shamir signature scheme from lattice assump-
tions.

2.4 Lattice-Based Fiat-Shamir Signatures

In this section we review a generic construction of lattice-based Fiat-Shamir signatures. We first de-
fine the discrete Gaussian distribution and recall a lemma, which shows that the sum of Gaussian
distributed random variables is also Gaussian distributed. This property is crucial for our analysis.

Definition 7 (Discrete Gaussian Distribution). The discrete Gaussian distribution DZn,σ,c over
Zn with standard deviation σ > 0 and center c ∈ Rn is defined as follows: For every x ∈ Zn

the probability of x is given by DZn,σ,c(x) = ρσ,c(x)/ρσ,c(Zn), where ρσ,c(x) = exp(−∥x−c∥2

2σ2 ) and
ρσ,c(Zn) =

∑
x∈Zn ρσ,c(x). The subscript c is taken to be 0 when omitted.

Lemma 3 ([14, Theorem 9]). Let L ⊆ Z⇕ be a lattice and σ ∈ R. For i = 1, . . . , n let ti ∈ Zm and
let Xi be mutually independent random variables sampled from DL+t⟩,σ. Let c = (c1, . . . , cn) ∈ Zn and
define d = gcd(c1, . . . , cn), t =

∑n
1 citi. Suppose that σ > ∥c∥ · ηε(L), where ηε(L) is the smoothing

parameter [33] for some negligible ε. Then Z =
∑n

1 ciXi is statistically close to DdL+t,∥c∥σ.

Next, we describe two functions used in the signature scheme:
(1) E : {0, 1}∗ −→ {0, 1}∗ is a function that expands given strings to any desired length. It is used to
extract the randomness used for signing, and (2) H : {0, 1}∗ −→ Tn

κ is a hash function modeled as a
(quantum) random oracle and used for signing and verification.

The signature scheme is formally described in Figure 3. It makes use of a uniformly random matrix
A ∈ Rk1×k2

q , which is publicly known and shared among all users in a multi-user setting. We assume
that A is an implicit input to all algorithms of the scheme in addition to all algorithms in Section 4.
In order to save bandwidth it can also be generated by expanding a uniformly random seed using the
function E, and including the seed in the secret and public key rather than storing the whole matrix
A. In this case, E is modelled as a random oracle. We note that this setting makes sense in the context
of blockchains, since the randomly chosen seed can be included in the first block known as the genesis
block, which is assumed to be honestly generated. Furthermore, since A is computed as the output
of the random oracle on input the seed, A is truly random and cannot have a trapdoor embedded as
shown in [32].

Basically, the key generation algorithm generates an instance of a computationally hard lattice problem
called Module Learning with Errors (MLWE) [28] (or a special variant of it such as Ring Learning with
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Errors (RLWE) [31]). The secret of this instance is chosen from some distribution χ. In the state-of-the-
art lattice-based signature schemes, e.g., Dilithium [19] and qTESLA [7], the distribution of the secrets is
either the discrete Gaussian distribution DZn,σ or the distribution Rd that outputs uniformly random
polynomials from R whose ℓ∞ norm is bounded by some integer d ≥ 1.

A signature consists of a tuple (z1, z2, c), where the pair (z1, z2) is uniformly random over a subset of
Rk2 × Rk1 and c ∈ Tn

κ is output from the random oracle H. The vectors z1, z2 are each generated by
adding a masking term to a term related to the secret key and c. More precisely, we have z1 = y1 + sc
and z2 = y2 + ec, where the secret masking pair (y1, y2) is uniformly random over Rk2

Y × Rk1
Y and

RY ⊂ R for some predefined positive integer Y . The signature is only output after verifying that the
pair (z1, z2) lies in Rk2

B1
×Rk1

B2
, i.e., ∥z1∥∞ ≤ B1 and ∥z2∥∞ ≤ B2, where the bounds B1, B2 are defined

depending on the distribution of the secret key. This ensures that signatures are uniformly distributed
over Rk2

B1
× Rk1

B2
× Tn

κ and do not leak information about the secret key. If this is not the case, the
algorithm restarts with a fresh masking pair (y1, y2). The average number of repetitions is denoted by
M = O(1). Valid signatures are generated with probability

(
2B1+1
2Y +1

)k2n

·
(

2B2+1
2Y +1

)k1n

, which is usually
chosen such that it is at least 1/M . We note that this generic construction can be optimized by either
following the technique due to Bai and Galbraith [9] (adopted in qTESLA) or the approach used in
Dilithium. The first one optimizes the signature size, while the second one optimizes the total size of
public key and signature.

Finally, the EUF-CMA security of lattice-based Fiat-Shamir signatures in the quantum random oracle
model was analyzed in several works, e.g., in [7, 17,19,27,29,44].

3 The Stateful Model for Wallets

Our formal security model for post-quantum secure stateful deterministic wallets is based on the model
of [16]. In this section, we recall the formal definition of a stateful wallet and the security properties
that we want to guarantee for such a wallet. A stateful deterministic wallet scheme consists of two
entities, a cold wallet and a hot wallet, that can respectively derive a valid pair of secret and public
keys without the need for any interaction among each other. In more detail, upon initialization of the
scheme, the cold wallet generates a master key pair (msk, mpk) and some initial state information
St0 and forwards (mpk, St0) to the hot wallet. After this initial setup, the idea is that an arbitrary
number of valid session key pairs can be generated by using the session secret/public key derivation
algorithms within the respective wallets without further interaction. More precisely the public key
derivation algorithm takes as input the current state and the master public key to generate a session
public key. While the secret key derivation takes as inputs the current state and the master secret
key and generates a session secret key. Since both public key and secret key derivation algorithms are
deterministic, and the two wallets share the same current state, the key derivation algorithms output
a valid session key pair. In order to keep track of which key has been derived with which state, each
session key is indexed by a parameter ID, which is given as input into the key derivation procedures.
In the following we recall the definition of a deterministic stateful wallet scheme and its correctness.

Definition 8 (Stateful Wallet). A stateful wallet scheme is a tuple of algorithms SW := (SW.KGen
, SW.RandSK, SW.RandPK, SW.Sign, SW.Verify), which are defined as follows:

SW.KGen: The master key generation algorithm takes as input public parameters param and outputs a
master key pair (msk, mpk) as well as an initial state St0.

SW.RandSK: The secret key derivation algorithm takes as input a master secret key msk, a state St and
an identity ID and outputs a session secret key skID and the state St.
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SW.KGen(1λ)

1: St ←$ {0, 1}λ

2: (mpk, msk)← RSig.KGen(1λ)
3: return (St, mpk, msk)
SW.Sign(sk, pk, m)
1: m′ ← (m, pk)
2: σ ← RSig.Sign(sk, m′)
3: return σ

SW.Verify(pk, m, σ)
1: m′ ← (m, pk)
2: return RSig.Verify(pk, m′, σ)

SW.RandSK(msk, ID, St)
1: (ρ, St)← H(St, ID)
2: skID ← RSig.RandSK(msk, ρ)
3: return (skID, St)
SW.RandPK(mpk, ID, St)
1: (ρ, St)← H(St, ID)
2: pkID ← RSig.RandPK(mpk, ρ)
3: return (pkID, St)

Fig. 4. Generic Construction of a stateful deterministic wallet SW from a signature scheme with honestly
rerandomizable keys RSig and a random oracle H.

SW.RandPK: The public key derivation algorithm takes as input a master public key mpk, a state St and
an identity ID and outputs a session secret key pkID and the state St.

SW.Sign: The probabilistic signing algorithm takes as input a session secret key skID for some ID and
a message m and outputs a signature σ.

SW.Verify: The verification algorithm takes as input a session public key pkID for some ID, a message
m, and a signature σ and outputs 1 if σ is a valid signature for m under public key pkID. It outputs
0 otherwise.

Definition 9 (Correctness of Stateful Wallets). For n ∈ N, any (St0, msk, mpk) ∈ SW.KGen(param),
and any I⃗D := (ID1, ..., IDn) ∈ {0, 1}∗, we define the sequence (ski, Sti) and (pki, Sti) for 1 ≤ i ≤ n
recursively as

(ski, Sti) := SW.RandSK(msk, IDi, Sti−1),
(pki, Sti) := SW.RandPK(mpk, IDi, Sti−1).

SW is correct if for all m ∈ {0, 1}∗ and i with 1 ≤ i ≤ n it holds that

Pr
σ←$ SW.Sign(ski,m)

[SW.Verify(pki, σ, m) = 1] ≥ 1− negl(λ) .

A generic construction of a stateful deterministic wallet scheme SW := (SW.KGen, SW.RandSK, SW.RandPK, SW.Sign, SW.Verify)
from a signature scheme with honestly rerandomizable keys RSig following Definition 8 is presented in
Figure 4. Such a scheme should satisfy the following two security properties - wallet unlinkability and
wallet unforgeability - which are described below.

3.1 Wallet Unlinkability

Intuitively, the unlinkability property guarantees that session public keys that have been derived from
the same master public key are computationally indistinguishable from the distribution of session
public keys that have been derived from a different, independently chosen master public key. However,
considering that hot wallet corruptions reveal the state and hence trivially break the unlinkability
property, [16] introduces the notion of forward unlinkability. This notion guarantees unlinkability
prior to any hot wallet corruption.
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Game WUNL
1: (mpk, msk, St)← SW.KGen()
2: b←$ {0, 1}
3: ID∗ ← AWalSign,PK

1 (mpk)
4: if (Keys[ID∗] ̸= ⊥) then
5: return 0
6: (pk0

ID∗ , St∗)← SW.RandPK(mpk, ID∗, St)
7: (sk0

ID∗ , St∗)← SW.RandSK(msk, ID∗, St)
8: St ← St∗

9: (mpk, msk, St)← SW.KGen()
10: (pk1

ID∗ , St∗)← SW.RandPK(mpk, ID∗, St)
11: (sk1

ID∗ , St∗)← SW.RandSK(msk, ID∗, St)
12: Keys[ID∗]← (pkb

ID∗ , skb
ID∗ )

13: b′ ← AWalSign,PK,getState
2 (mpk, pkb

ID∗ )
14: return b′ = b

Oracle PK(ID)

1: (pkID, St∗)← SW.RandPK(mpk, ID, St)
2: (skID, St∗)← SW.RandSK(msk, ID, St)
3: Keys[ID]← (pkID, skID)
4: St ← St∗

5: return pkID

Oracle getState()

1: return St
Oracle WalSign(m, ID)

1: if (Keys[ID] = ⊥) then
2: return ⊥
3: (pkID, skID)← Keys[ID]
4: σ ← SW.Sign(skID, m)
5: return σ

Fig. 5. Unlinkability game WUNL for stateful wallets.

The formal security game for unlinkability is defined in Figure 5 and proceeds as follows: Upon the ini-
tialization of the wallet scheme by executing (mpk, msk, St)←$ SW.KGen(), the adversary A = (A1,A2)
obtains mpk and runs its subprocedure A1 on input mpk, where A1 has access to oracles WalSign and
PK. These oracles represent the adversary’s capability to observe signatures with corresponding session
public keys of the wallet on the ledger. More concretely, A1 can call WalSign on an arbitrary message
m and any ID and receives a valid signature for m under public key pkID. Further, A1 can query the
PK oracle on any ID and receives the session public key pkID.

Finally, A1 outputs an ID∗. If neither WalSign nor PK has been queried on ID∗ before, the game
proceeds to the challenge phase, in which two session key pairs (pk0

ID∗ , sk0
ID∗) and (pk1

ID∗ , sk1
ID∗)

are generated, where (pk0
ID∗ , sk0

ID∗) are derived from mpk and msk respectively, while (pk1
ID∗ , sk1

ID∗)
are derived from a freshly generated master key pair. After a uniformly random bit b is chosen,
the subprocedure A2 is executed on input mpk and pkb

ID∗ . A2 gets access to oracles WalSign, PK
and getState, where getState returns the current state of the wallet scheme. A wins the game, if its
subprocedure A2 returns a bit b′, such that b′ = b. We define the advantage of an adversary A as its
winning probability in game WUNL over random guessing.

Definition 10 (Unlinkability). Let SW be a stateful wallet scheme (cf. Definition 8). We say that
SW is pq-unlinkable if for any quantum adversary A, the advantage in game WUNL (cf. Figure 5) is
negligible.

3.2 Wallet Unforgeability

At a high level, unforgeability for stateful wallets ensures that funds held by the cold wallet remain
secure even in case an adversary corrupts the hot wallet and/or observes transactions on the ledger
signed by the cold wallet. In order to model this property, we define the game WUF, in which the
adversary A obtains a master public key mpk and the initial state St0 as input. This models the
situation in which an adversary corrupts the hot wallet right after initialization of the wallet scheme.
Further, A gets access to the oracles PK and WalSign, which are defined in the same way as in the
game WUL, with the difference that WalSign now additionally keeps track of all queried messages.
Eventually, A outputs a forgery consisting of a message m∗, a signature σ∗ and an ID∗. A wins the
game if (1) m∗ has not been queried to WalSign before, (2) PK has been previously queried on ID∗
and (3) σ∗ is a valid signature for m∗ under public key pkID∗ .
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Game WUF
1: (mpk, msk, St)← SW.KGen()
2: b←$ {0, 1}
3: (m∗, σ∗, ID∗)← AWalSign,PK(mpk, St)
4: if (Keys[ID∗] ̸= ⊥) then
5: return 0
6: (pkID∗ , skID∗ )← Keys[ID∗]
7: if (m∗ ∈ M [ID∗]) then
8: return 0
9: if (SW.Verify(pkID∗ , m∗, σ∗) = 0) then
10: return 0
11: return 1

Oracle PK(ID)

1: (pkID, St∗)← SW.RandPK(mpk, ID, St)
2: (skID, St∗)← SW.RandSK(msk, ID, St)
3: Keys[ID]← (pkID, skID)
4: St ← St∗

5: return pkID

Oracle WalSign(m, ID)

1: if (Keys[ID] = ⊥) then
2: return ⊥
3: (pkID, skID)← Keys[ID]
4: σ ← SW.Sign(skID, m)
5: M ←∪ {m}
6: return σ

Fig. 6. Unforgeability game WUF for stateful wallets.

Note that the adversary knows mpk and St0 and hence can generate any session public key for any
ID itself, which seems to make the PK oracle redundant. However, PK is still needed for bookkeeping
purposes, i.e., to ensure that the session key pair for A’s forgery has been created before A outputs
its forgery. We define the advantage of an adversary A as its probability of winning the game WUF.

As mentioned in [16], the fact that the adversary can derive arbitrary session public keys makes the
wallet scheme vulnerable to related key attacks, in case the underlying signature scheme is prone to
such attack. Intuitively, upon an adversary learning a signature σID and a corresponding session public
key pkID, a related key attack allows the adversary to transform σID into a valid signature σID∗ under
public key pkID∗ . This attack may have a severe impact on the security guarantees of our wallet
scheme, since it may allow an adversary to steal all funds of a cold wallet. One common counter
measure against related key attack used in [16, 35] is called public key prefixing, i.e., a signature on a
message µ is computed as Sign(sk, (pk, µ)). In many signature schemes the signature is computed on
the hash of the message and not the message itself. Therefore by prefixing the public key an adversary
not only has to transform σID into a valid signature σID∗ under public key pkID∗ but also find a
collision for the hash function in order to mount a related key attack.

Definition 11 (Unforgeability). Let SW be a stateful wallet scheme (cf. Definition 8). We say that
SW is pq-unforgeable if for any quantum adversary A, the advantage in game WUF (cf. Figure 6) is
negligible.

In Appendix C we show why our relaxed notions of signature schemes with rerandomizable public keys
(Definition 4) and EUF-CMA-HRK (Definition 6) are sufficient in the wallet setting.

3.3 Post-Quantum Security of Wallets

In this section we show that the generic construction achieves both unlinkability and unforgeability
against quantum adversaries. Recall that since we are in the post-quantum setting, the oracles provided
by the challenger in the unlinkability game (PK, getState, WalSign) and in the unforgeability game
(PK, WalSign) are run on a classical computer. Hence, also the (quantum) adversary gets only classical
access to these oracles. However, the adversary can use its quantum computing power to access the
quantum random oracle |H⟩, i.e., querying the random oracle in superposition.

The following theorem shows the unlinkability.
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Theorem 1. Let RSig be a signature scheme with rerandomizable public keys (cf. Definition 4) and
H a random oracle. Then the stateful wallet scheme SW built from RSig and H (cf. Figure 4) is pq-
unlinkable according to Definition 10, i.e., against quantum adversaries which have access to |H⟩.

Proof Sketch. Here, we provide a proof intuition of Theorem 1. For the full proof we refer to Appendix B.
Let us first recall how the unlinkability property is proven in the classical ROM setting (cf. [16]). Note
that the wallet public keys are derived from the wallet state, which is stored within the wallet, hidden
from the adversary. The classical adversary can then try to guess one of the states of the wallet and make
a “problematic query” to the random oracle H on such a state, in order to derive one of the session public
keys generated by the wallet. If the adversary guesses the wallet’s state correctly, it can distinguish a
public key generated by the wallet from a randomly generated one, and hence the adversary will be
able to win the unlinkability game. The classical proof consists of two steps: (1) showing the probability
that the adversary makes the above mentioned problematic query to the random oracle is negligible,
and (2) showing that the adversary has no advantage in winning the unlinkability game conditioned
on the event that it does not make any problematic query. Finally, note that while this proof uses the
stronger notion of rerandomizable public and secret keys (cf. Definition 3), it is easy to see that it also
works with our relaxed definition of rerandomizable public keys (cf. Definition 4). This is because the
unlinkability game requires the adversary to distinguish a public key generated by the wallet from a
randomly generated public key.

Our proof in the QROM follows the same approach, however, the first step requires a different tech-
nique. Recall that the wallet state gets refreshed with every public key query. In [16], the challenger
keeps a list of the states of the wallet scheme – starting from the initial state till the one obtained
during last public key query. In the analysis a simple comparison allows to check whether a query by
the classical adversary is problematic, i.e., whether it coincides with one of the states of the wallet.
Since the adversary can access the random oracle H only classically (it can query on exactly one input
at a time), hence the challenger can store all these queries in a list. In the QROM, however, we cannot
keep such a list as the adversary now has quantum computation power, hence can query the random
oracle on several, and even all, inputs in superposition.5 Instead, we consider a game hop which we
can bound by the advantage of the adversary in distinguishing two random oracles, which in turn can
be bound using the O2H lemma. For the resulting game, we can show via a reduction to the reran-
domizability property of public keys of the RSig scheme using the simulatability property of RSig that
the adversary has only negligible advantage in winning the game.

The following theorem shows that the generic construction is unforgeable in the presence of quantum
attackers.

Theorem 2. Let RSig be a signature scheme with rerandomizable public keys (cf. Definition 4) and
H a random oracle. Then the stateful wallet scheme SW built from RSig and H (cf. Figure 4) is pq-
unforgeable according to Definition 11, i.e., against quantum adversaries which have access to |H⟩.

We briefly recap the classical proof in the ROM (cf. [16]), thereby highlighting the challenge when
switching to a quantum adversary. Note again, that the classical proof uses the stronger notion of
rerandomizable keys (cf. Definition 3) but also holds for the weaker notion of rerandomizable public
keys (cf. Definition 4). The proof consists of a game hop in which the adversary loses the game if
there is a collision of session keys for different identities. Due to the construction, this occurs if the
random oracle outputs a collision which is bound by a simple counting argument. The advantage of an
adversary in the resulting game is bound by the security of the underlying signature scheme using a
reduction. The crucial part is that the reduction simulates the random oracle H for the adversary using

5 We note that, to some extent, the compressed oracle technique by Zhandry [47] allows the recording of
superposition queries.
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its oracle Rand from the EUF-CMA-HRK game. More precisely, for each query to H by the adversary,
the reduction makes a query to Rand.

Our proof in the QROM follows the same idea, however additionally needs to take care of the use of
the quantum random oracle |H⟩ by the adversary. The first part works exactly as in [16], since the
access to the oracle PK remains classical even for a quantum adversary. The second part, however, does
not work as in [16]. While the adversary can query the quantum random oracle |H⟩ in superposition,
the reduction can query its oracle Rand only classical as it is provided by its (classical) challenger. By
querying |H⟩ on an equal superposition of all (i.e., exponentially many) inputs, the reduction would
need exponentially many queries to Rand in order to simulate |H⟩ for the adversary. Clearly, this would
render the reduction useless as it would not be efficient. To tackle this issue, we do an additional game
hop in which we switch from a random oracle to an oracle drawn from a small-range distribution.
While this affects the advantage of the adversary only negligibly, it allows us to construct a reduction
which can simulate the quantum random oracle for the adversary by making a polynomial number of
(classical) queries to its oracle Rand.

Proof (Proof of Theorem 2.). Let A be an adversary which makes qH queries to |H⟩. The proof consists
of the following three games.

Game G0: This game is the game WUF instantiated with SW (cf. Figure 4). Assume that A has non-
negligible advantage ϵ = ϵ(λ) in winning G0. This means that there exists a polynomial p = p(λ) such
that p(λ) > 1

ϵ(λ) .

Game G1: This game is the same as G0, except the adversary loses when there is a collision of keys
for different identities. To detect the change, the adversary has to make queries to PK which result in
colliding keys. Note that the adversary only has classical access to PK as it is provided by the classical
challenger. Hence the bound from [16] is applicable, which is a simple counting argument over the
number of queries to PK. This yields that the advantage of A in G1 is ϵ− negl(λ), i.e., it is negligibly
close to its advantage ϵ in G0.

Game G2: In this game the adversaries queries to |H⟩ is simulated using Definition 1 and the Lemma 2.
Let l = 2Cq3

Hp with C being the constant from Lemma 2 and p being the polynomial described above.
At the start of the game, the challenger will generate l random values and draw the first output (the
randomness ρ) of the quantum random oracle |H⟩ from a small-range distribution using these l samples.
The second output (the new state St) is generated just as in G1. According to Lemma 2, A can only
distinguish this game from the previous one with probability less than 1

2p . Therefore, Lemma 2 yields
that the advantage of A in this game is at least ϵ− negl(λ)− 1

2p .

Bounding the advantage of A in Game G2: We now show how to transform an adversary A
playing G2 into an adversary B playing EUF-CMA-HRK (where, the underlying signature scheme is
RSig). W.l.o.g., we assume that A never makes a query which results in ⊥ and that there are no
collisions. At the start, B receives a public key pk. It performs l = 2Cq3

Hp queries to its oracle Rand
and samples an initial state St0. It invokes A on input (mpk = pk, St0).

Simulation of Quantum Random Oracle |H⟩. B simulates the first output (the randomness ρ), by using
the l samples from Rand drawn from a small-range distribution. Note that Rand internally stores the
output ρ in its list RList. For the second output (the new state St), B simulates it using a 2qH-wise
independent function which is indistinguishable for an adversary making qH queries [46].

Simulation of PK oracle. WhenA queries its oracle PK on ID, B computes pkID ← RSig.RandPK(pk; ωID),
where (ωID, St∗)← H(St, ID), sets Keys[ID]← (pkID, ωID), and sends pkID to A.

Simulation of WalSign oracle. When A makes a query (m, ID) to its oracle WalSign, B obtains the
(pkID, ωID) = Keys[ID], sets m′ ← (m, pkID), queries its own oracle OHR on (m′, ωID), and forwards
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the response to A. When A outputs a forgery (m∗, σ∗, ID∗), B obtains (pkID∗ , ωID∗) = Keys[ID∗], sets
m̂∗ ← (m∗, pkID∗), and outputs (m̂∗, σ∗, ωID∗).

If A’s forgery (m∗, σ∗, ID∗) is valid in Game G2, then B’s forgery (m̂∗, σ∗, ωID∗) is also valid in EUF-
CMA-HRK. We now show that the output of B is a valid forgery whenever the output of A is. First,
since (m∗, σ∗, ID∗) is a valid forgery by A, we know that A never queried (m∗, ID∗) to WalSign.
Recall that, for every WalSign query by A on any message (m), B made a OHR query on public key
prefixed message (m′ ← {m, pk}). Since A never queried WalSign on input (m∗, ID∗), B never queried
(m̂∗, ωID∗) to its oracle OHR, where m̂∗ ← {m∗, pk}. Second, it holds that ωID∗ ∈ RList. This follows
from the simulation of the quantum random oracle where, for every possible output (ρ, St), ρ is in
RList. Third, validity of the forgery by A yields validity of the forgery by B.

Recall that l = 2Cq3
Hp and as discussed at the beginning of this game, according to Lemma 2, the

advantage of the adversary in this game is equal to ϵ − negl(λ) − 1
2p . Assuming the security of the

underlying signature scheme RSig, we have that this advantage must be negligible. Combined with
ϵ > 1

p (see description of G0), this yields that 1
2p is negligible, resulting in a contradiction. Hence, we

conclude that ϵ, the advantage of A, is negligible.

4 PQ Signatures with Honestly Rerandomizable Public Keys

In this section we propose a lattice-based construction of a signature scheme with honestly rerandomiz-
able public keys (cf. Definition 4). In such a signature scheme, the distribution of honestly rerandomized
public keys is computationally indistinguishable to the distribution of original public key, while hon-
estly rerandomized secret keys are allowed to be distributed differently from the original secret key.
The scheme extends the generic construction of lattice-based signatures from Section 2.4. We analyze
the security of our scheme in Section 4.2. In Appendix D we discuss alternative ways of key rerandom-
ization in a lattice-based signature scheme and argue why they fall short in building practical hot/cold
wallets.

4.1 Description of the Scheme

Let LB.Σ = (LB.KGen, LB.Sign, LB.Verify) be the lattice-based signature scheme given in Section 2.4,
Figure 3, and let A ∈ Rk1×k2

q be a uniformly random matrix as defined in Section 2.4, i.e., A is
publicly known and an implicit input to all algorithms. Furthermore, we define the following functions
and algorithms:

– Maxj is a function that on input a ∈ R, it outputs the jth largest absolute coefficient of a. This
function is used for bounding the secret-related terms, and hence the signatures generated by the
algorithm LB.Sign (cf. line 6–7 in Figure 3).

– GenG is an algorithm that on input (dim, σ, bnd, rnd), it outputs a vector x = (x1, . . . , xdim), where
xi ∈ R are sampled from DZn,σ such that

∑κ
j=1 Maxj(xi) ≤ bnd by using a randomness rndi that

is extracted from rnd, e.g., via the function E.
– F : {0, 1}∗ −→ {0, 1}o(λ) is a collision resistant hash function. It is used to hash the public key in

order to prevent related key attacks [34].

In this section we set the distribution used in LB.KGen for the secret key to χ = DZn,σ. More pre-
cisely, we assume that sk = (s, e) ∈ Dk2

Zn,σ × Dk1
Zn,σ, where s ← GenG(k2, σ, S/2, rnds) and e ←

GenG(k1, σ, E/2, rnde) for two predefined positive numbers S, E and randomnesses rnds, rnde. Setting
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RandG(ρ)

1: ρ := (ρs, ρe) ∈ {0, 1}2o(λ)

2: r← GenG(k2, σ, S/2, ρs)
3: u← GenG(k1, σ, E/2, ρe)
4: return (r, u)

RSig.KGen(1λ)

1: (sk, pk)← LB.KGen(1λ)
2: hpk← F(pk)
3: sk ← (hpk, sk)
4: return (sk, pk)
RSig.RandPK(pk, ρ)
1: (r, u)← RandG(ρ)
2: b′ ← b + Ar + u (mod q)
3: pk′ := b′

4: return pk′

RSig.RandSK(sk, ρ)

1: (r, u) ∈ Dk2
Zn,σ ×Dk1

Zn,σ ← RandG(ρ)
2: s′ ∈ Dk2

Zn,
√

2σ
← s + r

3: e′ ∈ Dk1
Zn,

√
2σ
← e + u

4: b′ ← As′ + e′ (mod q)
5: hpk′ ← F(b′)
6: sk′ := (hpk′, s′, e′)
7: return sk′

RSig.Sign(sk, m)
1: µ← (m, hpk)
2: (z1, z2, c)← LB.Sign(sk, µ)
3: return (z1, z2, c)
RSig.Verify(pk, m, (z1, z2, c))
1: µ← (m, F(pk))
2: return LB.Verify(pk, µ, (z1, z2, c))

Fig. 7. Construction of lattice-based signature scheme with honestly rerandomizable public keys.

χ = DZn,σ is essential for rerandomizing the secret key in the construction introduced in this sec-
tion because the sum of Gaussian distributed elements with standard deviation σ is also Gaussian
distributed with standard deviation

√
2σ (cf. Lemma 3).

In the following we describe our signature scheme with honestly rerandomizable public keys. The
respective algorithms are formalized in Figure 7. In order to simplify the construction, we first define
the algorithm RandG (see Figure 7 for a formal description). It takes as input a randomness ρ =
(ρs, ρe) ∈ {0, 1}o(λ) × {0, 1}o(λ), and outputs two vectors r, u, which are generated by running the
algorithm GenG on input (k2, σ, S/2, ρs), (k1, σ, E/2, ρe), respectively.

RSig.KGen: The key generation algorithm runs LB.KGen to obtain key pair (sk, pk), where sk = (s, e) ∈
Dk2

Zn,σ×Dk1
Zn,σ and pk = b ∈ Rk1

q . Then, it computes hpk = F(pk), prepends hpk to sk, and returns
the updated (sk, pk).

RSig.RandPK: Given public key pk = b and honestly generated randomness ρ, algorithm RSig.RandPK
runs RandG(ρ) to generate a pair of Gaussian vectors (r, u). Then, it computes b′ = b + Ar + u
(mod q) and outputs the honestly rerandomized public key pk ′ = b′.

RSig.RandSK: Given sk = (hpk, s, e) and honestly generated randomness ρ ∈ {0, 1}2o(λ), the algorithm
RSig.RandSK runs RandG to obtain (r, u) ∈ Dk2

Zn,σ × Dk1
Zn,σ. Then, it computes s′ = s + r and

e′ = e + u. Note that by Lemma 3, the pair (s′, e′) is distributed as Dk2
Zn,
√

2σ
×Dk1

Zn,
√

2σ
. Finally,

the algorithm computes hpk′ = F(b′) and outputs the honestly rerandomized secret key sk ′ =
(hpk′, s′, e′).

RSig.Sign: Algorithm RSig.Sign returns the signature obtained by calling LB.Sign on message µ =
(m, hpk). Signing messages together with the hash value of (honestly rerandomized) public keys
ensures security under related key attacks [34].

RSig.Verify: Algorithm RSig.Verify returns the bit obtained by running LB.Verify(pk, µ), where
µ = (m, F(pk)).

We note that rerandomizing sk must be carried out only with the original secret key, i.e., a rerandom-
ized secret key cannot be used to generate a new rerandomized one. This ensures that all honestly
rerandomized secret keys have identical distribution, i.e., Dk2

Zn,
√

2σ
×Dk1

Zn,
√

2σ
. Furthermore, signatures
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Reduction D(pk)
1: RList := ∅
2: Q := ∅
3: (m, ((z1, z2, c), ρ))← AH′,Rand,OHR(pk)
4: if (ρ = NULL) then
5: hpk← F(pk)
6: µ← (m, hpk)
7: return (µ, (z1, z2, c))
8: if (ρ ̸= NULL) then
9: pk′ ← RSig.RandPK(pk, ρ)

10: hpk′ ← F(pk′)
11: µ′ ← (m, hpk′)
12: (r, u) ∈ Dk2

Zn,σ ×Dk1
Zn,σ ← RandG(ρ)

13: z′
1 ← z1 − rc

14: z′
2 ← z1 − uc

15: return (µ′, (z′
1, z′

2, c))

Fig. 8. Reduction from the EUF-CMA security of LB.Σ (Figure 3) to EUF-CMA-HRK security of signature
scheme with honestly rerandomizable public keys (Figure 7). Queries to OHR, H′, and Rand are answered as
shown in Figure 9.

generated using honestly rerandomized keys have different distribution from signatures generated us-
ing the original key pair. More precisely, the pair (z1, z2) is distributed uniformly at random over
Rk2

B1
×Rk1

B2
, where

B1 =
{

Y − S/2 if sk ← LB.KGen
Y − S if sk ← RSig.RandSK

B2 =
{

Y − E/2 if sk ← LB.KGen
Y − E if sk ← RSig.RandSK

The bound Y of the masking pair (y1, y2) is chosen such that the probability of generating valid
signatures (cf. Section 2.4) is at least 1/M , i.e.,

(
2B1+1
2Y +1

)k2n

·
(

2B2+1
2Y +1

)k1n

≥ 1/M , where M = O(1) is
the repetition rate of the signing algorithm.

4.2 Security Analysis

In this section we analyze the EUF-CMA-HRK security of the scheme introduced in Section 4.1 in
the QROM. More precisely, we reduce its EUF-CMA-HRK security to the EUF-CMA security of the
lattice-based signature scheme LB.Σ = (LB.KGen, LB.Sign, LB.Verify) described in Section 2.4. The
correctness of the scheme directly follows from the correctness of LB.Σ. Note that rerandomizability
of public keys (see Definition 4) follows from the MLWE assumption [28]. That is, for any public
key b and any honestly rerandomized public key b′ both pairs (A, b), (A, b′) are computationally
indistinguishable from the uniform distribution over Rk1×k2

q ×Rk1
q .6 In addition, it is easy to show that

the simulatability property (see Definition 4) is satisfied in the quantum random oracle model.

6 We note that our scheme could even be instantiated such that it achieves statistical indistinguishability
of public keys by sampling the secret key from a Gaussian distribution with somewhat larger standard
deviation. However, in this work we focus on computational indistinguishability as it suffices in the wallet
setting.
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Theorem 3 (EUF-CMA-HRK Security). The signature scheme with honestly rerandomizable public
keys depicted in Figure 7 is EUF-CMA-HRK secure in the QROM if scheme LB.Σ = (LB.KGen, LB.Sign,
LB.Verify) described in Figure 3 is EUF-CMA secure in the QROM.

Proof. Let A be an adversary that is able to generate valid forgeries under the signature scheme
with honestly rerandomizable public keys, i.e., A is able to win the game EUF-CMA-HRKARSig (cf.
Definition 6). We construct an algorithm D that runs A as subroutine in order to win the game
EUF-CMADLB.Σ (see Definition 5) against the scheme LB.Σ. According to the security model, A has
quantum access to a random oracle H′ and classical access to a random oracle Rand in addition to
classical access to the signing oracle OHR. The reduction D has quantum access to the random oracle
H and classical access to the signing oracle O, which returns to D signatures generated by LB.Σ. The
algorithm D is described in Figure 8. D initializes two empty lists RList,Q. These are used by D to
store queries to Rand and OHR, respectively. Simulation of OHR, H′, and Rand is given in Figure 9.

Analysis. Let (m, ((z1, z2, c), ρ)) be a valid forgery output byA. This means that m ̸∈ Q and RSig.Verify(pk,
m, (z1, z2, c)) = 1. Moreover, ρ ∈ RList in case randomness ρ ̸= NULL.

We first analyze the case that ρ = NULL. The signature satisfies (z1, z2) ∈ Rk2
Y−S

2
× Rk1

Y−E
2

and
c = H′(w, m, hpk) = H(w, m, hpk), where w = Az1 + z2 − bc (mod q). Hence, this forgery constitutes
a valid signature under LB.Σ on message µ = (m, hpk). Note that if c was not queried by some
input, then A produces such c only with negligible probability, i.e., 1/|Tn

κ|. Thus, with probability of

1− 1/|Tn
κ|, the value c must be a random oracle answer to a query made by A, where |Tn

κ| = 2κ

(
n
κ

)

and κ is chosen such that |Tn
κ| ≥ 22λ. This ensures that the probability of mapping two different values

to the same output of H is at most 2−2λ.

Next, we assume that A outputs a valid forgery (m, (z1, z2, c), ρ) under honestly rerandomized public
key b′ and ρ ̸= NULL. This means that (z1, z2) ∈ Rk2

Y−S × Rk1
Y−E . In this case D transforms this

signature into a forgery under the original public key b as follows: D runs RandG(ρ) to obtain (r, u).
Then, it computes the vectors z′1 = z1 − rc and z′2 = z2 − uc. Note that

∥z′1∥∞ ≤ ∥z1∥∞ + ∥rc∥∞ ≤ Y − S + S/2 = Y − S/2,

∥z′2∥∞ ≤ ∥z2∥∞ + ∥uc∥∞ ≤ Y − E + E/2 = Y − E/2 .

Hence, (z′1, z′2) ∈ Rk2
Y−S

2
×Rk1

Y−E
2

. Furthermore, we have

w = Az′1 + z′2 − bc = A(z1 − rc) + z2 − uc− bc = Az1 + z2 − b′c (mod q) .

Therefore, it holds that c = H′(w, m, hpk′) = H(w, m, hpk′). Hence, the forgery output by A can be
turned into a valid forgery under the original public key b for message µ′ = F(m, hpk′), i.e., it is a
forgery under LB.Σ.

Finally, we note that the environment of A is perfectly simulated, and whenever A wins the game
EUF-CMA-HRKARSig, D wins the game EUF-CMADLB.Σ . The number of signing queries made by D is at
most M ·Q, where M = O(1) is the repetition rate7 of LB.Σ and Q is the number of signing queries
made by A.

7 In practice, the repetition rate of the signing algorithm of standard lattice-based signature schemes is strictly
smaller than 4 (e.g., see [7, 19]).
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Sim(pk, m, ρ)
1: if (ρ = NULL) then
2: Q := Q∪ {m}
3: return SimNoR(pk, m)
4: if (ρ ̸= NULL) then
5: if (ρ /∈ RList) then
6: return ⊥
7: Q := Q∪ {m}
8: return SimR(pk, m, ρ)
SimNoR(pk, m)
1: hpk← F(b)
2: µ← (m, hpk)
3: (z1, z2, c)← O(µ)
4: return (z1, z2, c)
H′(·)
1: return H(·)

SimR(pk, m, ρ)
1: (r, u)← RandG(ρ)
2: pk′ := b′ ← RSig.RandPK(pk, ρ)
3: hpk′ ← F(b′)
4: µ′ ← (m, hpk′)
5: (z′

1, z′
2, c)← O(µ′)

6: z1 ← z′
1 + rc

7: z2 ← z′
2 + uc

8: if
(
(z1, z2) ̸∈ Rk2

Y −S ×Rk1
Y −E

)
then

9: goto 5
10: return (z1, z2, c)
Rand()

1: ρ←$ {0, 1}2o(λ)

2: RList← RList ∪ {ρ}
3: return ρ

Fig. 9. Description of algorithm Sim, which simulates signing queries to OHR. The algorithms SimNoR, SimR
are subroutines used by Sim. The first one is called when signing query does not include randomness ρ, while
the latter one is called when signing query includes honestly generated randomness ρ ̸= NULL. Queries to H′

made by adversary A are redirected to the random oracle H, to which reduction D has access. Queries to Rand
are answered locally by D.

5 Practical Instantiation

In this section we present an efficiency analysis of the wallet scheme introduced in Section 3. To this
end, we instantiate the signature scheme presented in Section 4 with a concrete lattice-based signature
scheme. The most recent Fiat-Shamir constructions of lattice-based signatures are Dilithium [19] and
qTESLA [7]. We consider the latter scheme, since the hard lattice problem underlying its key genera-
tion algorithm uses Gaussian distributed secrets. This is essential for rerandomizing the secret key in
our setting, and hence is sufficient for our scheme with honestly rerandomizable public keys described
in Figure 7. On the other hand, Dilithium’s key generation uses uniformly distributed secrets for the
underlying lattice problem, instead of Gaussian distributed secrets, which is not suitable in our wallet
setting (see Appendix D). Employing the Gaussian distribution in the key generation algorithm of
Dilithium instead, requires to adjust the security analysis of Dilithium and to choose new parameters.
The resulting scheme would be similar to qTESLA, with slight differences in how signatures are com-
pressed. We choose not to modify Dilithium’s original design but stick to qTESLA, which does not need
any modification for our setting and is well-studied in comparison to a modified version of Dilithium.

In Appendix E we describe the technical details of instantiating our signature scheme with honestly
rerandomizable public keys with qTESLA and show how its EUF-CMA-HRK security holds.

5.1 Deploying PQ Wallets over Blockchains

In this section we give an overview of the transaction throughput that can be achieved in a cryptocur-
rency system using our signature scheme instantiated with qTESLA.

A simple transaction in most cryptocurrency networks transfers coins from one party to another. Such
transactions must usually include the public key pk and the signature σ of the sender such that the
validity of the transaction can be verified. In order to give an estimated transaction throughput, we use
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the raw transaction size of a regular Bitcoin transaction (i.e., without the size of pk and σ) and then
add the size of pk and σ of our scheme to it. The raw transaction size of a Bitcoin is roughly 100 Bytes
(B) [5]. Hence, when instantiating our wallet scheme with qTESLA, we can take the corresponding
signature size (2,592 B) and public key size (14,880 B) [7, Table 4] for a post-quantum security level
of 95 bits8 and add those to the rough raw transaction size of 100 B. The size of a transaction would
then result in 100 B + 14, 880 B + 2, 592 B ≈ 17.5 KB. We note that it is possible for a party to send
coins to multiple receivers in a single transaction which would essentially allow for transactions to be
aggregated and increase efficiency.

Many cryptocurrencies (including Bitcoin and Ethereum) currently use the classical signature scheme
ECDSA. For the sake of drawing a comparison, note that the size of the ECDSA public key and
signature in Bitcoin is approximately 65 B and 73 B [4], respectively, which results in more compact
transactions (minimum size of a transaction being 100B + 65B + 73B ≈ 240B), and hence higher
transaction throughput.

Naturally, there are various ways to improve the transaction throughput such as increasing block
size and the rate at which blocks are produced. For example, in a Bitcoin-like currency new blocks
are created roughly every 10 minutes, which tremendously limits the throughput and scalability of
the network. In contrast, one can consider a system with a block rate of a few seconds, say 15-20
seconds (e.g., this is the case for the Ethereum blockchain). This significantly increases transaction
throughput, and hence compensates for larger sizes of pk and σ. Yet these solutions are ad-hoc, while a
more interesting direction for future work is to design further efficient post-quantum secure signature
schemes with rerandomizable keys.
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A Other Related Work

As mentioned in the introduction, various works build blockchains with security features against quan-
tum adversaries. Most recently, Esgin et al. [20] have proposed a new ring signature scheme based on
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lattice assumptions for the blochchain setting which focus on similar anonymity guarantees to Mon-
ero [38]. In Monero-like cryptocurrencies the sender of a transaction can hide her identity in a set of
transactions using ring signatures. In particular, the public key related to the sender’s signature is
never revealed explicitly in the blockchain network, hence remains unlinkable to the sender. We note
that this notion of unlinkability is different from our notion of session key unlinkability.

Blockchain initiatives such as the "Bitcoin Post-Quantum" [1] and QRL [2] replace ECDSA with
hash-based signature schemes which are post-quantum secure. Despite the hash-based schemes being
quite efficient, the underlying hash function does not permit to construct a signature scheme with
rerandomizable keys which plays a key role in our wallet scheme.

B Proof of Theorem 1

Proof. Throughout, let A = (A1,A2) be an adversary which makes q and qPK queries to its oracles
|H⟩ and PK, respectively. To prove the theorem we use the following two games.

Game G0: This game is the game WUNL instantiated with SW (cf. Figure 4).

Game G1: This game is the same as G0, except that the randomness ρ and the new state St∗, prior
to running A2 (i.e., Line 13 in Figure 5), are sampled at random, independent of the random oracle.
In both games, the randomness and new state are distributed identical. The only difference lies in the
random oracle. From the point of view of A = (A1,A2), the random oracle in game G1 is |HS→$⟩, i.e.,
the random oracle that is reprogrammed to random values for every x ∈ S, where S contains all pairs
of states and IDs prior to running A2. Hence, we can bound the advantage in distinguishing G0 and
G1 by the advantage in distinguishing the random oracles |H⟩ and |HS→$⟩. Applying the O2H Lemma
(cf. Lemma 1) yields

∣∣Pr
[
A|H⟩ ⇒ 1

]
− Pr

[
A|HS→$⟩ ⇒ 1

]∣∣ ≤ 2q
√

Pr[x ∈ S : B|H⟩ ⇒ x] .

where B is the adversary specified in Lemma 1. Note that A has no information about the states in
the set S until it queries getState to which only A2 has access. Furthermore, we have |S| ≤ qPK + 2 at
any point in time, qPK from A1’s queries and 2 from the challenge phase. This yields

Pr
[
x ∈ S : B|H⟩ ⇒ x

]
≤ |S|2λ

≤ qPK + 2
2λ

.

Combining the above equations, yields that the advantage in distinguishing G0 and G1 is negligible in
λ.

It remains to bound the advantage of A in game G1, where the same argument from the classical proof
applies. In G1, the challenge public key pkb

ID∗ given to A2 is independent of the random oracle (as
the random oracle is not used in G1 anymore for deriving keys). Hence, it is irrelevant whether the
adversary makes any query (classical or quantum) to the random oracle. We can show via reduction to
the rerandomizability of public keys property of the RSig signature scheme that the challenge public
keys pk0

ID∗ and pk1
ID∗ are computationally indistinguishable using the simulatability property of RSig.

This yields that the adversarial advantage is negligible. Combining the above proves the theorem.

C Relevance of Our Relaxed Notions

In Section 2 we defined the notions of signature schemes with rerandomizable public keys (cf. Defi-
nition 4) and EUF-CMA-HRK (cf. Definition 6). While these notions deviate from the ones used in
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previous works [16, 23], it turns out that our relaxed notions are sufficient for building deterministic
wallets as we discuss below.
Rerandomizable public keys. One of the benefits of using deterministic wallets is that individual
payments to the wallet are unlinkable (cf. Figure 5). To satisfy the unlinkability definition, Das et
al. [16] require that the underlying signature scheme must have rerandomizable secret and public keys.
However, as it can be observed in the unlinkability game, the adversary gets access only to the public
key, while the secret key is never revealed to the adversary (as revealing it would trivially break the
security of the scheme). Hence, it is sufficient to use our relaxed notion of rerandomizable public keys
in order to achieve the unlinkability property. While the post-quantum secure signature scheme that
we consider in this work does not offer rerandomizable public and secret keys as required by [16], it
fortunately achieves our relaxed notion of rerandomizable public keys. Thus, it is sufficient to instan-
tiate a wallet scheme that achieves the unlinkability property.
EUF-CMA-HRK. As in [16], we use the notion of EUF-CMA under honestly rerandomizable keys, where
unforgeability holds if the randomness used to derive the keys is honestly generated. This is in con-
trast to the stronger notion of EUF-CMA-RK as defined in [23], where unforgeability must hold for
adversarial chosen randomness. Stateful deterministic wallet schemes, however, derive the randomness
deterministically from the state (see Figure 4), which is generated initially during a trusted setup when
the master keys are created. Hence, the adversary has no influence on the randomness used during the
rerandomization procedures. To conclude, the notion of EUF-CMA-HRK is not only suitable but also
sufficient in the wallet setting.

D Alternative Methods for Rerandomization

In this section we describe alternative approaches for rerandomizing keys in the lattice setting and
show why our scheme introduced in Section 4.1 is the most suitable option in the context of hot/cold
wallets. First, we recall that our construction from the previous section assumes that the distribution
of the secrets used in the key generation algorithm are from the Gaussian distribution, i.e., χ = DZn,σ.
This allows us to use Lemma 3 in order to obtain rerandomized secret keys that are also Gaussian
distributed but with a slightly different standard deviation, i.e., DZn,

√
2σ. The key generation of our

scheme cannot use uniformly distributed secrets over a small subset Rd from R, where Rd is the set
of all polynomials from R with ℓ∞ norm bounded by some integer d ≥ 1. This is because the sum
of two uniformly random polynomials over Rd does not yield a polynomial that follows the uniform
distribution over a subset S ⊆ Rd. Using a uniformly random sk for rerandomization would yield
rerandomized secret keys with unknown distribution, and hence the hardness of the computational as-
sumption underlying the rerandomized key pairs would be unclear. Let us now discuss the alternative
approaches.
Rerandomizability of Gaussian distributed secret keys. It is (theoretically) possible to reran-
domize key pairs such that the rerandomized secret keys have the same distribution as the original
secret key. More precisely, assume that sk is Gaussian distributed with standard deviation σ. Given a
randomness ρ, a rerandomized secret key is computed as sk ′ = sk + ρ. Due to [24, Lemma 3], sk ′ is
Gaussian distributed with the same σ when σ is of a super-polynomial size in the security parameter
λ. In other words, we must select σ large enough in order to make the statistical distance between
the distribution of sk and sk ′ negligible in λ. This value of σ gives secret keys of very large size, and
requires to increase the size of the masking vectors used in the signing algorithm. Hence, we obtain
signatures of very large size, which rules out using the resulting scheme in practice.
Rerandomizability of uniform distributed secret keys. In theory, it is possible to use uni-
formly distributed rather than Gaussian distributed secret keys as follows. Assume that χ = Rd and
ρ ∈ R1. The rerandomized secret key sk ′ = sk + ρ is uniformly distributed over Rd−1 with probability
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(
2d−1
2d+1

)(k1+k2)n

, where (k1 + k2)n is the dimension of sk ′. Therefore, for a very large d this probability
would be overwhelming in λ.

Example 1. By considering the parameters of Dilithium [19] proposed for λ = 128, we have k1 = 5,
k2 = 4, and n = 256. Hence, we have to set d ≈ 2139 in order to make the previously stated probability
at least 1− 2−128. This value of d yields a secret key of size ≈ 2147 Bytes.

The above given example shows that this approach is merely of theoretical interest only and is not
suitable for practical applications as it requires huge sizes of keys, and hence signatures.
Allowing rerandomization algorithms to communicate. Consider an application, in which the
rerandomization algorithms (i.e., RSig.RandSK and RSig.RandPK) synchronize after each invocation of
RSig.RandSK. Given sk and ρ, the algorithm RSig.RandSK uses ρ together with a counter ctr in order
to deterministically generate a randomness ρ′, e.g., by using the function E on input (ρ, ctr). Then,
it computes sk ′ = sk + ρ′ and outputs the rerandomized secret key sk ′ only after verifying that it
has the correct distribution. If this is not the case, it increases ctr by 1 and repeats this process. The
algorithm RSig.RandPK needs to receive the corresponding ctr from RSig.RandPK in order to generate
the rerandomized public key related to sk ′. Note that if sk is Gaussian distributed, then we even obtain
a scheme with rerandomizable public and secret keys as defined in [23]. While this method is practical
and may be applicable in the construction of sanitizable signatures proposed in [23], it cannot be used
in the setting of hot/cold wallets due to the fact that in each signing process RSig.RandPK must obtain
the correct ctr that were used to generate sk ′. This synchronization requirement undermines the main
concept of hot/cold wallets, namely the fact that hot and cold wallets do not communicate with each
other (except when they are being initialized).

E An Instantiation with qTESLA

In this section we show how the signature scheme with honestly rerandomizable public keys introduced
in Section 4 can be instantiated with qTESLA. We note that the parameters of qTESLA were selected
according to the security reduction from the RLWE problem. This approach has two different aspects:
On the one hand, it guarantees that qTESLA has the security level as long as the underlying RLWE
instance is hard enough. On the other hand, this approach affects the performance and sizes of keys
and signatures, because larger parameters are required to achieve the desired security level. The main
goal of our choice is to demonstrate that our wallet scheme can be instantiated with state-of-the-art
lattice-based signature schemes without taking into account any of the two different aspects mentioned
above.

The design of our scheme is based on lattices over modules. In order to employ qTESLA in our con-
struction we set k2 = 1 to obtain a variant based on lattices over ideals, and security based on the
hardness of RLWE. The (master) secret key includes polynomials s, e1, . . . , ek1 sampled from DZn,σ.
The polynomial s is bounded by S/2 using the function Maxj defined in Section 2.4, while e1, . . . , ek1

are each bounded by E/2 using Maxj . In qTESLA the bounds are S and E, respectively. However, our
wallet scheme uses the master key pair only for rerandomization, and signatures are generated using
honestly rerandomized key pairs, which already satisfy the bounds S and E. Therefore, we can use
exactly the same parameters proposed for qTESLA in [7, Table 4]).

Note that in comparison to the generic signature scheme shown in Figure 3, Section 2.4, the signature
scheme qTESLA [7] compresses signatures by employing the technique of [9]. In this technique the signer
proves knowledge of only the secret polynomial s rather than s and e1, . . . , ek1 . Therefore, signatures
are of the form (z1, c) ∈ RY × Tn

κ rather than (z1, z2, c) ∈ RY × Rk1
Y × Tn

κ. This approach does not
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affect the EUF-CMA-HRK security of the signature scheme with honestly rerandomizable public keys.
That is, the reduction given in Figure 8 remains the same. Only simulating the signing oracle (cf.
Figure 9) requires to include an additional check to ensure the correctness of simulated signatures.
More concretely, after step 9 of algorithm SimR (see Figure 9) we add the last for loop of qTESLA’s
signature generation algorithm [7, Algorithm 4]. However, we have in our setting

wi = aiz1 − b′ic− ric (mod±q) for all i = 1, . . . , k1,

where ai, b′i, and ri are the entries of the public vector a (replaced by the matrix A, since k2 = 1),
rerandomized public key b′, and the vector r, respectively.
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D. Deterministic Wallets for
Adaptor Signatures

In this chapter, we present the following publication with minor changes:

[83] A. Erwig and S. Riahi. “Deterministic Wallets for Adaptor Signatures”. In: Com-

puter Security - ESORICS 2022 - 27th European Symposium on Research in

Computer Security, Copenhagen, Denmark, September 26-30, 2022, Proceedings,

Part II. 2022, pp. 487–506. Part of this thesis.
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Deterministic Wallets for Adaptor Signatures

Andreas Erwig(�) and Siavash Riahi

Technische Universität Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

Abstract. Adaptor signatures are a new cryptographic primitive that binds the authentication of a
message to the revelation of a secret value. In recent years, this primitive has gained increasing popular-
ity both in academia and practice due to its versatile use-cases in different Blockchain applications such
as atomic swaps and payment channels. The security of these applications, however, crucially relies on
users storing and maintaining the secret values used by adaptor signatures in a secure way. For stan-
dard digital signature schemes, cryptographic wallets have been introduced to guarantee secure storage
of keys and execution of the signing procedure. However, no prior work has considered cryptographic
wallets for adaptor signatures.

In this work, we introduce the notion of adaptor wallets. Adaptor wallets allow parties to securely use
and maintain adaptor signatures in the Blockchain setting. Our adaptor wallets are both deterministic
and operate in the hot/cold paradigm, which was first formalized by Das et al. (CCS 2019) for standard
signature schemes. We introduce a new cryptographic primitive called adaptor signatures with reran-
domizable keys, and use it to generically construct adaptor wallets. We further show how to instantiate
adaptor signatures with rerandomizable keys from the ECDSA signature scheme and discuss that they
can likely be built for Schnorr and Katz-Wang schemes as well. Finally, we discuss the limitations of
the existing ECDSA- and Schnorr-based adaptor signatures w.r.t. deterministic wallets in the hot/cold
setting and prove that it is impossible to overcome these drawbacks given the current state-of-the-art
design of adaptor signatures.

1 Introduction

Blockchains have gained huge popularity in the past decade as they provide a decentralized infrastructure
that allows not only to make simple payments but also to execute applications in a secure way. However,
most Blockchains, including Bitcoin, only support the execution of simple applications while others, such
as Monero or Zcash, are even more restrictive in their functionality and only support simple payments [20,
25]. Nevertheless, virtually all Blockchains rely on digital signatures in order to authenticate the origin of a
transaction. While the functionality of Blockchains can be extended by appropriately adjusting the mining
algorithms, this requires a hard fork of the Blockchain code which can take several years to complete in
practice. In order to improve the restricted functionality of many Blockchains without having to change the
Blockchain implementation and to allow for the execution of a larger class of applications, a new type of
signature scheme called adaptor signatures was introduced by the cryptocurrency community [19] and first
formally analyzed by Aumayr et al. [3]. At a high level, adaptor signatures allow two parties, say a signer and
a publisher to trade a signature in exchange for a secret, i.e., if the publisher publishes a signature under the
signer’s secret key on the Blockchain, a secret value is leaked to the signer. More concretely, the publisher
first generates an instance of a hard relation, i.e., a statement and witness pair and sends the statement
to the signer. Using its secret key and the statement, the signer generates an incomplete signature called
pre-signature which can be adapted by the publisher to a full valid signature using the witness. Once the
adapted full signature is published, the signer can extract the witness given the pre- and full signature.

Adaptor signatures have proven to be extremely versatile for Blockchain applications. They allow for
efficient constructions of two important categories of applications, namely payment channels (e.g., [3, 22])
and atomic swaps (e.g., [7, 24]), while requiring only a minimal functionality from the underlying Blockchain.
Payment channels are a so-called off-chain solution, which allows two parties to issue many micropayments
to each other without incurring fees for each transaction. Atomic swaps, on the other hand, allow two (or



more) parties to atomically exchange tokens, i.e., either the exchange terminates and both parties obtain
the other party’s token or none does. Both of these applications rely on a technique that allows exchanging
a secret value for a signature, which is exactly the functionality that adaptor signatures provide.

As the security of a user’s funds in a Blockchain network depends solely on the secure storage of this
user’s signing secret key (and witnesses of adaptor signatures), it is of utmost importance how users store
these secret values. Unfortunately, despite the increasing popularity of adaptor signatures, no prior work
tried to address this issue. In other words we would like to answer the following question:

How can parties in practice employ adaptor signatures securely?

A concept known as cryptographic wallets has been introduced to use standard signature schemes securely
in Blockchain networks. However, it has never been investigated if this concept can be extended to adaptor
signatures.

Deterministic Wallets. One of the most promising proposals for cryptographic wallets are so-called
deterministic wallets, which at a high level store a master signing key pair from which session key pairs
are deterministically derived. Das et al. [6] gave the first formalization of such deterministic wallets in the
hot/cold setting and later extended their model [5] to incorporate hierarchical wallets. In a bit more detail,
a wallet scheme in the hot/cold setting consists of two separate devices, a hot and a cold wallet, that store
the public and secret key respectively. The cold wallet is kept mostly offline and is only used to generate a
new signature, whereas the hot wallet is constantly online to receive new transactions. This wallet structure
ensures that it is inherently difficult for an attacker to steal the wallet’s secret key, as it is stored in the
offline cold wallet. Besides a standard unforgeability notion, wallet schemes should typically also satisfy an
unlinkability property, which ensures that a third party cannot link two transactions issued to the same
wallet. A näıve approach to achieve unlinkability is to let the wallet generate a fresh key pair for each
transaction. This, however, requires the wallet to store all key pairs, which is not efficient, especially since
cold wallets sometimes require special hardware (with limited storage) to securely store the secret keys. As
such, deterministic wallets were introduced where the unlinkable keys are deterministically derived from a
master key pair. This allows the wallet to derive new keys on the fly when they are needed instead of storing
them indefinitely.

To date deterministic wallets have only been analyzed for digital signature schemes (e.g., [6]). Considering
that the security of adaptor signatures does not only depend on the secure storage of the secret key but also
on the secure handling of witnesses, designing a secure wallet scheme for adaptor signatures becomes even
more pressing.

1.1 Our Contribution

In this work, we initiate the study of deterministic wallets in the hot/cold setting for adaptor signatures fol-
lowing the approach of Das et al. [6]. To this end, we first introduce a new notion of adaptor signatures, which
we call adaptor signature with rerandomizable keys. This primitive extends regular adaptor signatures by key
rerandomization algorithms. That is, given an adaptor signature key pair (sk , pk) and some randomness ρ,
an adaptor signature with rerandomizable keys allows to deterministically and independently rerandomize sk
and pk using ρ to obtain a new key pair (sk ′, pk ′) such that (1) (sk ′, pk ′) constitutes a valid signing key pair,
and (2) (sk ′, pk ′) is indistinguishable from a freshly generated key pair. We formally define this primitive
and show how to instantiate it by transforming the existing ECDSA-adaptor signature scheme [3, 18] into
an adaptor signature with rerandomizable keys.

We provide a formal model for adaptor wallets (in the full version of this paper1). Our adaptor wallets are
the first cryptographic wallets that are deterministic, in the hot/cold setting and support the use of adaptor
signatures. While the hot/cold wallet setting allows to provide strong security guarantees, it is not suitable
for all applications in practice. Payment channels, for instance, have a short life span but require a frequent
exchange of signatures. As such, storing the secret key in an offline cold wallet seems counterintuitive. Instead,
for such applications our model allows to store secret values on one online device while guaranteeing that

1 The full version will be published on the IACR Cryptology ePrint Archive.
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even if this device gets corrupted, the master key pair and other keys derived from the master key pair
remain secure. To achieve this feature, we use the idea of hardened/non-hardened wallets as defined in [5]
and adjust it for adaptor wallets (see Section 4.1 for more details).

We then show how to generically construct adaptor wallets from any adaptor signature scheme with
rerandomizable keys where the hard relation is witness rerandomizable and further show how to initiate such
a relation for ECDSA-adaptor signatures. Witness rerandomizability of a hard relation R essentially means
that for any statement/witness pair (Y, y) ∈ R the witness y can be rerandomized deterministically using
some randomness ρ to a witness y′ with corresponding statement Y ′ such that (Y ′, y′) ∈ R. We require this
property to alleviate the storage constraints on the cold wallet, i.e., as explained above, the cold wallet is
often a storage restricted device and hence deterministic rerandomization can be useful to generate required
values on the fly instead of storing them long-term. Although we do not formally show how adaptor wallets
can be instantiated from Schnorr and Katz-Wang signature schemes [21, 13], it seems that our approach can
be used in order to transform these schemes to adaptor signatures with rerandomizable keys and use them
to instantiate adaptor wallets.

Our final contribution is closely related to witness rerandomizable hard relations. Surprisingly, we show
that it is impossible to construct an adaptor wallet from fully rerandomizable hard relations, i.e., hard
relations where the statement and witness can be rerandomized independently using the same randomness.
This is in stark contrast to the secret and public keys which can be rerandomized independently. We believe
that our work paves the way for mainstreaming the usage of adaptor signatures by providing a secure and
efficient deterministic wallet framework in the hot/cold setting.

1.2 Related Work

We divide the related work into adaptor signatures and deterministic wallets.

Adaptor Signatures. After being first introduced by Poelstra [19], adaptor signatures have been used in
many Blockchain related applications, such as atomic swaps [7], payment channel networks [17] and payment
channel hubs [22]. Aumayr et al. [3] later provided a standalone formalization of this primitive. Shortly after,
Esgin et al. and Tairi et al. [9, 23] provided instantiations of adaptor signatures in the post-quantum setting
where the adversary has access to a quantum computer while the end users do not. Finally, Erwig et al. [8]
showed how to generically transform signature schemes built from identification schemes which satisfy certain
properties, into single party and two party adaptor signatures. There have been several other recent works on
adaptor signatures (e.g., [16, 24]) which used or extended this primitive to build more complex applications.

Deterministic Wallets. There have been many recent works formalizing and analyzing cryptographic
wallets, such as [12, 15, 2, 14]. The concept of deterministic wallets in the hot/cold setting was first formalized
and instantiated by Das et al. [6]. Alkadri et al. [1] later showed how to realize such wallets with security
in the post-quantum setting. In a follow-up work, Das et al. [5] extended the original model by allowing
hierarchical derivation of new wallets. In order to guarantee security even in case one of such wallets is
corrupted, e.g., when a wallet is not implemented in the hot/cold setting, the authors introduced two different
key derivation mechanisms, namely hardened key derivation for keys that might be leaked to the adversary
and non-hardened key derivation for keys that are stored securely via the hot/cold wallet paradigm. Later,
Yin et al. [26] introduced hierarchical deterministic wallets that support stealth addresses. However, none of
these works have considered adaptor signature support for deterministic wallets.

2 Preliminaries

Notation. We denote by s ←$ H the uniform random sampling of a value s from the set H. For an
integer l, the notation [l] denotes the set of integers {1, · · · , l} and for a randomized algorithm A, we denote
by y ←$ A(x) the execution of A on input x that outputs y. For a deterministic algorithm B, we write
y ← B(x, ρ) to denote the execution of B on input x and ρ that outputs y. By y ∈ A(x) we denote that
y is an element in the set of possible outputs of an execution of A on input x. Throughout our paper, we
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assume that public parameters par can be used as input to all algorithms. For two strings a and b, we write
a = (b, ·) if b is a prefix of a. We abbreviate the expressions deterministic polynomial time and probabilistic
polynomial time by DPT and PPT respectively.

2.1 Non-interactive zero-knowledge proofs

A non-interactive zero knowledge proof (NIZK) [4] with respect to a polynomial-time recognizable binary
relation R is given by the following tuple of algorithms NIZK := (SetupR,P,V), where (i) SetupR(1

n) outputs
a common reference string crs; (ii) P(crs, (Y, y)) outputs a proof π for (Y, y) ∈ R; (iii) V(crs, Y, π) outputs
a bit b ∈ {0, 1}. Further, the NIZK proof of knowledge w.r.t. R should satisfy the properties completeness,
soundness, and zero knowledge. We do not go into the details of these properties here.

2.2 (Witness rerandomizable) Hard relation.

Definition 1 (Hard Relation). Let R ⊆ DY×Dw be a relation with statement/witness pairs (Y, y) ∈ DY×
Dw and let the language LR ⊆ DY associated to R be defined as LR := {Y ∈ DY | ∃y ∈ Dw s.t. (Y, y) ∈ R}.
We say that R is a hard relation if: (i) There exists a PPT sampling algorithm GenR(1n) that on input the
security parameter outputs a pair (Y, y) ∈ R; (ii) There exists a PPT algorithm WitToSt(y) that on input
a witness y outputs a statement Y , s.t. (Y, y) ∈ R; (iii) The relation R is poly-time decidable; (iv) For all
PPT adversaries A, the probability that A outputs a valid witness y ∈ Dw for Y ∈ LR is negligible.

In this work we require a stronger notion of hard relation namely hard relations that are witness reran-
domizable.

Definition 2 (Witness Rerandomizable Hard Relation). Let R ⊆ DY × Dw be a hard relation with
statement/witness pairs (Y, y) ∈ DY × Dw and let the public parameters par define a randomness space
X := X(par). Further, let RandWit be a DPT algorithm which is defined as follows:
RandWit(y, ρ): The deterministic witness randomization algorithm takes as input a witness y ∈ Dw, a ran-
domness ρ ∈ X and outputs a rerandomized witness y′.

We say that R is perfectly witness rerandomizable if for all (·, y) ∈ GenR(1n) and all ρ ←$ X the
distributions of (Y ′, y′) and (Y ′′, y′′) are identical, where:

(Y ′, y′)← (WitToSt(RandWit(y, ρ)),RandWit(y, ρ))

(Y ′′, y′′)← GenR(1n)

2.3 Adaptor Signatures

We recall the definition of an adaptor signature scheme by Aumayr et al. [3].

Definition 3 (Adaptor signature scheme). An adaptor signature scheme w.r.t. a hard relation R and a
signature scheme Σ = (Gen,Sign,Verify) consists of four algorithms ASigR,Σ = (pSign,Adapt, pVrfy,Ext) with
the following syntax: pSign(sk ,m, Y ) is a PPT algorithm that on input a secret key sk, message m ∈ {0, 1}∗
and statement Y ∈ LR, outputs a pre-signature σ̃; pVrfy(pk ,m, Y, σ̃) is a DPT algorithm that on input a
public key pk, message m ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̃, outputs a bit b; Adapt(σ̃, y) is
a DPT algorithm that on input a pre-signature σ̃ and witness y, outputs a signature σ; and Ext(σ, σ̃, Y ) is
a DPT algorithm that on input a signature σ, pre-signature σ̃ and statement Y ∈ LR, outputs a witness y
such that (Y, y) ∈ R, or ⊥.

An adaptor signature scheme ASigR,Σ must satisfy pre-signature correctness stating that for every m ∈
{0, 1}∗ and every (Y, y) ∈ R, the following holds:

Pr

[
pVrfy(pk ,m, Y, σ̃) = 1,
Verify(pk ,m, σ) = 1, (Y, y′) ∈ R

∣∣∣∣
(sk , pk)← Gen(1n),
σ := Adaptpk (σ̃, y),

σ̃ ← pSign(sk ,m, Y )
y′ := Ext(pk , σ, σ̃, Y )

]
=1.

An adaptor signature scheme has to satisfy the following properties.
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aWitExt(n)
00 Q := ∅, (sk , pk)← Gen(1n)

01 (m∗, Y ∗, st)← ASignO(·),PreSignO(·,·)
1 (pk)

02 σ̃∗ ← pSign(sk ,m∗, Y ∗)
03 σ∗ ← ASignO,PreSignO

2 (σ̃∗, st)
04 b1 ← (Y ∗,Ext(σ∗, σ̃∗, Y ∗)) ̸∈ R
05 b2 ← m∗ ̸∈ Q
06 b3 ← Verify(pk ,m∗, σ∗)
07 b4 ← Y ∗ ∈ LR

08 Return (b1 ∧ b2 ∧ b3 ∧ b4)

Oracle PreSignO(m,Y )
09 σ̃ ← pSign(sk ,m, Y )
10 Q := Q∪ {m}
11 Return σ̃

aSigForge(n)
12 Q := ∅, (sk , pk)← Gen(1n)
13 (Y, y)← GenR(1n)
14 (m∗, st)← ASignO,PreSignO

1 (pk , Y )
15 σ̃∗ ← pSign(sk ,m∗, Y )
16 σ∗ ← ASignO,PreSignO

2 (σ̃∗, st)
17 Return
(m∗ ̸∈ Q ∧ Verify(pk ,m∗, σ∗))

Oracle SignO(m)
18 σ ← Sign(sk ,m)
19 Q := Q∪ {m}
20 Return σ

Fig. 1. aSigForge and aWitExt games for an adaptor signature scheme ASig.

Definition 4 (Existential unforgeability). An adaptor signature scheme ASigR,Σ is unforgeable if for
every PPT adversary A = (A1,A2) there exists a negligible function ν such that: Pr[aSigForgeA,ASigR,Σ

(n) =

1] ≤ ν(n), where the experiment aSigForgeA,ASigR,Σ
is defined as in Fig. 1.

Definition 5 (Pre-signature adaptability). An adaptor signature scheme ASigR,Σ satisfies pre-signature
adaptability if for any message m ∈ {0, 1}∗, any statement/witness pair (Y, y) ∈ R, any public key pk and
any pre-signature σ̃ ∈ {0, 1}∗ with pVrfy(pk ,m, Y, σ̃) = 1, we have Verify(pk ,m,Adapt(σ̃, y)) = 1.

Definition 6 (Witness extractability). An adaptor signature scheme ASigR,Σ is witness extractable if
for every PPT adversary A = (A1,A2), there exists a negligible function ν such that the following holds:
Pr[aWitExtA,ASigR,Σ

(n) = 1] ≤ ν(n), where the experiment aWitExtA,ASigR,Σ
is defined as in Fig. 1.

Definition 7. An adaptor signature scheme ASigR,Σ is secure, if it is unforgeable, pre-signature adaptable
and witness extractable.

2.4 ECDSA-based Adaptor Signature

We briefly recall the ECDSA-based adaptor signature scheme ECRg,PEC[H] = (pSign,Adapt, pVrfy,Ext) as
presented by Aumayr et al. [3], which is defined w.r.t. the positive ECDSA signature scheme PEC =
(Gen,Sign,Verify) and a hard relation Rg. Recall that the positive ECDSA scheme operates over a cyclic
group G = ⟨g⟩ of prime order p and that the key generation outputs a key pair (sk , pk) with sk ←$ Zp

and pk ← gsk . A message m ∈ {0, 1}∗ is then signed by first sampling k ←$ Zp, setting r ← f(gk) and
computing s := k−1(H(m) + r · sk), where H : {0, 1} → Zp is a hash function and f : G → Zp. The

signature is then σ := (r, s), which can be verified by checking if f(gs
−1H(m)pks−1r) = r. The hard re-

lation Rg is defined as Rg := {((Y, π), y)|Y = gy ∧ V(Y, π) = 1}, i.e., it is the standard dlog relation
with an additional non-interactive zero knowledge (NIZK) proof, which proves knowledge of the witness.
The additional NIZK proof is required for technical reasons which we do not discuss here. Apart from the
NIZK proof for relation Rg, the ECRg,PEC[H] construction also includes a NIZK proof for another relation

RY := {((K̃,K), k)|K̃ = gk ∧K = Y k}. For further details we refer to [3]. The construction of ECRg,PEC[H]
is depicted in Fig. 2.

3 Adaptor Signatures with Rerandomizable Keys

In this section we define the notion of adaptor signatures with rerandomizable keys and show how to instan-
tiate it. Later in Sec. 4.1 we will use this primitive to generically construct adaptor wallets.
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pSign(sk ,m, IY )

x := sk , (Y, πY ) := IY

k ←$ Zq, K̃ := gk

K := Y k, r := f(K)

s̃ := k−1(H(m) + rx)

π ← PY ((K̃,K), k)

return (r, s̃,K, π)

pVrfy(pk ,m, IY , σ̃)

X := pk , (Y, πY ) := IY

(r, s̃,K, π) := σ̃

u := H(m) · s̃−1

v := r · s̃−1,K′ := guXv

return (IY ∈ LR

∧ (r = f(K)) ∧ VY ((K′,K), π))

Adapt(σ̃, y)

(r, s̃,K, π) := σ̃

s := s̃ · y−1

return (r, s)

Ext(σ, σ̃, IY )

(r, s) := σ

(r̃, s̃, K, π) := σ̃

y′ := s−1 · s̃
if (IY , y′) ∈ Rg

then return y′

else return ⊥

Fig. 2. ECDSA-based adaptor signature scheme ECRg,PEC[H] instantiated with a hash function H : {0, 1}∗ → Zp.

3.1 Definition

The notion of signature schemes with rerandomizable keys has first been introduced by Fleischhacker et
al. [11] and has since been proven to be useful for the construction of deterministic wallet schemes (e.g., [6,
5]). Essentially, a signature scheme with rerandomizable keys extends regular signature schemes by two de-
terministic algorithms, a public key and a secret key rerandomization algorithm, which on input a public key
or a secret key respectively and a randomness, output rerandomized keys. Such keys, if rerandomized with
the same randomness, constitute a new signing key pair, which is distributed identically to a freshly and
independently generated signing key pair. These properties and the deterministic nature of the rerandom-
ization make such signature schemes good candidates for the construction of deterministic wallets. In our
work, we are concerned with adaptor signatures. Therefore, we define in the following the notion of adaptor
signatures with rerandomizable keys.

Definition 8 (Adaptor signature scheme with rerandomizable keys). An adaptor signature scheme
with rerandomizable keys w.r.t. a hard relation R and a signature scheme Σ = (Gen,Sign,Verify) consists
of six algorithms RASigR,Σ = (RandSK,RandPK, pSign,Adapt, pVrfy,Ext) where (pSign,Adapt, pVrfy,Ext) are
the same algorithms as defined for adaptor signatures (cf. Def. 3). Assuming that the public parameters par
define a randomness space X := X(par), the remaining algorithms are defined as follows:

RandSK(sk , ρ): The deterministic secret key rerandomization algorithm takes as input a secret key sk and
a randomness ρ ∈ X and outputs a rerandomized secret key sk ′.

RandPK(pk , ρ): The deterministic public key rerandomization algorithm takes as input a public key pk and
a randomness ρ ∈ X and outputs a rerandomized public key pk ′.

An adaptor signature scheme with rerandomizable keys RASigR,Σ must satisfy the following two correct-
ness properties:

1. Pre-signature correctness stating that for all (sk , pk) ← Gen(1n), all m ∈ {0, 1}∗, all ρ ∈ X and all
(Y, y) ∈ R, the rerandomized keys sk ′ ← RandSK(sk , ρ) and pk ′ ← RandPK(pk , ρ) satisfy:

Pr

[
pVrfy(pk ′,m, Y, σ̃) = 1,
Verify(pk ′,m, σ) = 1, (Y, y′) ∈ R

∣∣∣∣
σ̃ ← pSign(sk ′,m, Y ),
σ := Adapt(σ̃, y),

y′ := Ext(σ, σ̃, Y )

]
=1.

2. (Perfect) rerandomizability of keys: For all (sk , pk) ∈ Gen (1n) and ρ←$ X, the distributions of (sk ′, pk ′)
and (sk ′′, pk ′′) are identical, where:

(sk ′, pk ′)← (RandSK(sk , ρ),RandPK(pk , ρ)) ,

(sk ′′, pk ′′)←$ Gen (1n) .

Like adaptor signatures, an RASigR,Σ scheme must satisfy pre-signature adaptability.
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Definition 9 (Pre-signature adaptability). An adaptor signature scheme with perfectly rerandomizable
keys RASigR,Σ satisfies pre-signature adaptability if for any message m ∈ {0, 1}∗, any statement/witness
pair (Y, y) ∈ R, any public key pk and any pre-signature σ̃ ∈ {0, 1}∗ with pVrfy(pk ,m, Y, σ̃) = 1, we have
Verify(pk ,m,Adapt(σ̃, y)) = 1.

For adaptor signatures with rerandomizable keys, we introduce the notions of existential unforgeability
under honestly rerandomizable keys and witness extractability under honestly rerandomizable keys. These
notions extend the respective security notions of adaptor signatures by allowing the adversary to not only
obtain (pre-)signatures under sk but also under secret keys that constitute honest rerandomizations of sk .
An honest rerandomization is one where the randomness has been chosen uniformly at random from the
randomness space X. Further, in our security notions the adversary can win the game by providing a forgery
either under sk or under any honestly rerandomized key. We formally describe these security notions in Fig. 3.

Definition 10 (Existential unforgeability under honestly rerandomizable keys). An adaptor sig-
nature scheme with rerandomizable keys RASigR,Σ is unforgeable if for every PPT adversary A = (A1,A2)
there exists a negligible function ν such that: Pr[aSigForge−hrkA,RASigR,Σ

(n) = 1] ≤ ν(n), where the experi-

ment aSigForge−hrkA,RASigR,Σ
is defined as in Fig. 3.

Definition 11 (Witness extractability under honestly rerandomizable keys). An adaptor signature
scheme with rerandomizable keys RASigR,Σ is witness extractable if for every PPT adversary A = (A1,A2),
there exists a negligible function ν such that the following holds: Pr[aWitExt−hrkA,RASigR,Σ

(n) = 1] ≤ ν(n),
where the experiment aWitExt−hrkA,RASigR,Σ

is defined as in Fig. 3.

aSigForge−hrkA,RASigR,Σ
(n)

00 Q := ∅,R := ∅
01 (sk , pk)← Gen(1n)
02 (Y, y)← GenR(1n)
03 (m∗, ρ∗, st)← AO

1 (pk , Y )
04 sk∗ ← RandSK(sk , ρ∗)
05 pk∗ ← RandPK(pk , ρ∗)
06 σ̃∗ ← pSign(sk∗,m∗, Y )
07 σ∗ ← AO

2 (σ̃∗, st)
08 b1 ← m∗ ̸∈ Q
09 b2 ← Verify(pk∗,m∗, σ)
10 b3 ← ρ∗ ∈ R
11 Return (b1 ∧ b2 ∧ b3)

aWitExt−hrkA,RASigR,Σ
(n)

00 Q := ∅,R := ∅
01 (sk , pk)← Gen(1n)
02 (m∗, ρ∗, Y ∗, st)← AO

1 (pk)
03 sk∗ ← RandSK(sk , ρ∗)
04 pk∗ ← RandPK(pk , ρ∗)
05 σ̃∗ ← pSign(sk∗,m∗, Y ∗)
06 σ∗ ← AO

2 (σ̃∗, st)
07 b1 ← (Y ∗,Ext(σ∗, σ̃∗, Y ∗)) ̸∈ R
08 b2 ← m∗ ̸∈ Q
09 b3 ← Verify(pk∗,m∗, σ∗)
10 b4 ← ρ∗ ∈ R
11 b5 ← Y ∗ ∈ LR

12 Return (b1 ∧ b2 ∧ b3 ∧ b4 ∧ b5)

Oracle RSignO(m, ρ)
00 If ρ /∈ R : return 0
01 sk ′ ← RandSK(sk , ρ)
02 σ ← Sign(sk ′,m)
03 Q := Q∪ {m}
04 Return σ

Oracle PreSignO(m,Y, ρ)
05 If ρ /∈ R : return 0
06 sk ′ ← RandSK(sk , ρ)
07 σ̃ ← pSign(sk ′,m, Y )
08 Q := Q∪ {m}
09 Return σ̃

Oracle RandO

10 ρ←$ X
11 R := R∪ {ρ}
12 Return ρ

Fig. 3. aSigForge−hrk and aWitExt−hrk games for an adaptor signature scheme with rerandomizable keys RASigR,Σ .
In the above games we have O := {RSignO, PreSignO, RandO}.

3.2 Construction

In Fig. 4, we present an adaptor signature with rerandomizable keys RECR,PEC[H] from the ECDSA-based
adaptor signature ECRg,PEC[H] from Fig. 2. Similar to the rerandomizable ECDSA construction of Das et
al. [6], we use public key-prefixed messages in our construction which is required to ensure security (see the
proof sketch of Thm. 1) and we use a hash function H : {0, 1}∗ → Zp.

To prove the security of our construction, we follow the approach of Das et al. [6], who presented a
security proof of the plain ECDSA signature scheme with rerandomizable keys via a reduction to the (non-
rerandomizable) ECDSA signature scheme. The main ingredient in their security proof is a related key attack
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Algorithm RECR,PEC[H].pSign (sk ,m, Y )
00 pm← (pk ,m)
01 σ̃ ← ECRg,PEC[H].pSign (sk , pm, Y )
02 Return σ̃

Algorithm RECR,PEC[H].pVrfy (pk ,m, Y, σ̃)
03 pm← (pk ,m)
04 Return ECRg,PEC[H].pVrfy (pk , pm, Y, σ̃)

Algorithm RECR,PEC[H].Adapt (σ̃, y)
05 Return ECRg,PEC[H].Adapt (σ̃, y)

Algorithm RECR,PEC[H].RandSK (sk , ρ)
06 sk ′ ← sk · ρ mod p
07 Return sk ′

Algorithm RECR,PEC[H].Sign (sk ,m)
08 pm← (pk ,m)
09 σ ← ECRg,PEC[H].Sign (sk , pm)
10 Return σ

Algorithm RECR,PEC[H].Verify (pk , σ,m)
11 pm← (pk ,m)
12 Return ECRg,PEC[H].Verify (pk , σ

′, pm)

Algorithm RECR,PEC[H].Ext (σ, σ̃, Y )
13 Return ECRg,PEC[H].Ext (σ, σ̃, Y )

Algorithm RECR,PEC[H].RandPK (pk , ρ)
14 pk ′ ← pkρ

15 Return pk ′

Fig. 4. Construction of a key-prefixed ECDSA-based adaptor signature scheme with perfectly rerandomizable keys
RECR,PEC[H] from the ECDSA-based adaptor signature scheme ECRg,PEC[H] as described in Fig. 2. Both schemes are
instantiated with a hash function H : {0, 1}∗ → Zp.

which allows to transform a signature on message m1 under public key pk1 to a signature for message m0

under a related public key pk0. We recall their transformation in the following (and formally in Lemma 1
and Fig. 5).

Let PEC[H0] and PEC[H1] denote two (positive) ECDSA signature schemes instantiated with hash func-

tions H0 and H1 respectively. Then the authors show that if pk1 = (pk0)
ρ where ρ = H1(m1)

H0(m0)
∈ Zp and given

a valid signature σ1 (i.e., PEC[H1].Verify(pk1,m1, σ1) = 1), the algorithm Trf[H0,H1](m0,m1, σ1, ρ, pk0, pk1)
returns a valid signature σ0 under pk0 and m0, i.e., PEC[H0].Verify(pk0,m0, σ0) = 1. For this transformation,
Das et al. state and prove the following lemma.

Lemma 1. Consider the algorithm Trf[H0,H1] in Figure 5. Suppose that:

– ρ = H1(m1)
H0(m0)

∈ Zp, pk0, pk1 ∈ G s.t. pk0 = gx0 and pk1 = pkρ
0,

– PEC[H1].Verify(pk1,m1, σ1) = 1, σ0 ← Trf[H0,H1](m0,m1, σ1, ρ, pk0, pk1).

Then PEC[H0].Verify(pk0,m0, σ0) = 1.

Trf[H0,H1](m0,m1, σ1, ρ, pk0, pk1)
00 z0 ← H0(m0)
01 z1 ← H1(m1)
02 If

(
PECRg,PEC[H1].Verify(pk1, σ1,m1) = 0

)

∨
(
ρ ̸= z1

z0
∨ pk1 ̸= pkρ

0

)
:

03 Return ⊥
04 (r, s1)← σ1

05 s0 ← s1
ρ

mod p
06 σ0 ← (r, s0)
07 Return σ0

ATrf[H0,H1](m0,m1, σ̃1, ρ, pk0, pk1, IY )
00 z0 ← H0(m0)
01 z1 ← H1(m1)
02 If

(
ECRg,PEC[H1].pVrfy(pk1,m1, IY , σ̃1

)
∨(

ρ ̸= z1
z0
∨ pk1 ̸= pkρ

0 ∨ IY /∈ LR

)
:

03 Return ⊥
04 (r, s̃1,K, π)← σ̃1

05 s̃0 ← s̃1
ρ

mod p
06 σ̃0 ← (r, s̃0,K, π)
07 Return σ̃0

Fig. 5. Figure shows the Trf[H0,H1] and ATrf[H0,H1] algorithms for hash functions H0,H1 : {0, 1}∗ → Zp.

We show that a similar transformation can be applied to the ECDSA-based adaptor signature scheme
ECRg,PEC[H] to transform pre-signatures. Since pre-signatures in this scheme include a zero-knowledge proof,
it is not immediately clear that such a transformation goes through. We next give the lemma for the pre-
signature transformation as well as the proof for the lemma.
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Lemma 2. Let ECRg,PEC[H0] and ECRg,PEC[H1] denote two ECDSA-based adaptor signature schemes accord-
ing to Fig. 2 instantiated with hash functions H0 and H1. Consider the algorithm ATrf[H0,H1] in Figure 5.
Suppose that:

– IY ∈ LRY
, ρ = H1(m1)

H0(m0)
∈ Zp,

– pk0, pk1 ∈ G s.t. pk0 = gx0 and pk1 = pkρ
0,

– ECRg,PEC[H1].pVrfy(pk1,m1, IY , σ̃1) = 1,
– σ̃0 ← ATrf[H0,H1](m0,m1, σ̃1, ρ, pk0, pk1, IY ).

Then ECRg,PEC[H0].pVrfy(pk0,m0, IY , σ̃0) = 1.

We would like to point out that Lemma 2 requires that after the transformation, the new pre-signature
σ̃0 is indeed valid with respect to the same statement IY . In other words, given the witness y, both σ̃0 and
σ̃1 can be adapted into full signatures under pk0 and pk1 respectively.

Proof. The proof of this lemma is similar to the proof of Lemma 1 from [6]. To prove the lemma, we have

to show that given a statement IY := (Y, πY ) ∈ LR, a public key pk1 = pkρ
0 where ρ = H1(m1)

H0(m0)
and a pre-

signature σ̃1 such that ECRg,PEC[H1].pVrfy(pk1,m1, IY , σ̃1) = 1, ATrf[H0,H1] outputs a pre-signature σ̃0 such
that ECRg,PEC[H0].pVrfy(pk0,m0, IY , σ̃0) = 1. Recall that for the pre-signature σ̃1 := (r, s̃1,K, π) it holds

that s̃1 = k−1(H1(m) + r · sk1), r := f(K), K := Y k and π is a valid proof that (K̃,K) is a valid statement
in RY . Then ECRg,PEC[H0].pVrfy(pk0,m0, Y, σ̃0) computes the following:

K ′ =gu · pkv
0 = g(H0(m0)·s̃−1

0 ) · pkr·s̃−1
0

0 = gs̃
−1
0 ·(H0(m0)+x0·r)

=g
ρ
s̃1
·(H1(m1)·ρ−1+x1·ρ−1·r) = g

ρ

k−1(H1(m1)+x1·r) ·(H1(m1)+x1·r)·ρ−1

= g
ρ·ρ−1

k−1 = gk

Therefore, the zero-knowledge proof π is valid w.r.t. the statement (K ′,K) where K ′ = gk and K = Y k.
We can conclude that the pre-signature σ̃0 ← ATrf[H0,H1](m0,m1, σ̃1, ρ, pk0, pk1, IY ) with σ̃0 := (r, s̃1

ρ ,K, π)
constitutes a valid pre-signature w.r.t. public key pk0, message m0 and statement IY .

Theorem 1. Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be hash functions modeled as random oracle and let
ECRg,PEC[H0] be the secure ECDSA-based adaptor signature as per Fig. 2. Then the construction RECRg,PEC[H1]
as described in Fig. 4 is existentially unforgeable under honestly rerandomizable keys as per Def. 10.

Proof (Sketch). The proof of this theorem is similar to the proof of the multiplicatively rerandomizable
ECDSA signature scheme as provided by Das et al. [6]. In their proof, the authors show unforgeability of
an ECDSA scheme with rerandomizable keys by exhibiting a reduction to the unforgeability of the regular
ECDSA signature scheme. The proof of Das et al. relies crucially on the related key attack as depicted by the
algorithm Trf[H0,H1] in Fig. 5, which allows to transform a signature under a public key pk to a valid signature

under a related public key pk ′ ← pkρ′
, if ρ′ has a certain structure. In more details, Das et al. instantiate

the ECDSA scheme with a hash function H0 and the ECDSA scheme with rerandomizable keys with a hash
function H1 (both hash functions are modeled as random oracles). They then program the random oracle H1

in such a way that on input m′ = (pk ′,m), where pk ′ is a public key rerandomized with randomness ρ′ (i.e.,

pk ′ = pkρ′
), it holds H1(m

′) = H0(m) ·ρ′. This allows the reduction to transform signatures for rerandomized
public keys to signatures for the original public key and vice versa using algorithm Trf[H0,H1].

In our proof, we can show unforgeability of the RECRg,PEC[H1] scheme via a reduction to the unforgeability
of the ECDSA-based adaptor signature scheme ECRg,PEC[H0]. The main difference in our proof as compared
to the proof of Das et al. arises from the fact that we need to apply the related key attack on pre-signatures
as well. This transformation requires us to use the algorithm ATrf[H0,H1] as described in Fig. 5. To apply
this transformation, we program the random oracle H1 in exactly the same way as is done in the proof of
Das et al. and hence, the programming of H1 is consistent for signatures and pre-signatures.

Theorem 2. Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be hash functions modeled as random oracle and let
ECRg,PEC[H0] be the secure ECDSA-based adaptor signature as per Fig. 2. Then the construction RECRg,PEC[H1]
as described in Fig. 4 is witness extractable under honestly rerandomizable keys as per Def. 11.
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Proof (Sketch). The proof of this theorem is similar to the proof of Thm. 1. Here we must provide a reduction
to the witness extractability property aWitExt of the ECDSA-based adaptor signature scheme ECRg,PEC[H0].
However, here we have to show that a valid forgery in game aWitExt−hrk for scheme RECRg,PEC[H1] can be
transformed into a valid forgery in game aWitExt for scheme ECRg,PEC[H0]. Recall that for a valid forgery σ∗ in
game aWitExt−hrk and given the corresponding pre-signature σ̃∗, it must hold that (I∗Y ,RECRg,PEC[H1].Ext(σ

∗,
σ̃∗, I∗Y )) ̸∈ Rg. Therefore, we must show that applying the transformations Trf[H0,H1] and ATrf[H0,H1]
from Fig. 5 on σ∗ and σ̃∗ respectively preserves the above condition w.r.t. scheme RECRg,PEC[H0]. We show

this via the following claim, for which we assume that m0,m1 ∈ {0, 1}∗ are two messages, ρ∗ = H1(m1)
H0(m0)

∈ Zp

and pk∗ = pkρ∗

aWitExt, where pk aWitExt is the public key in game aWitExt.

Claim 1 If it holds that (I∗Y ,RECRg,PEC[H1].Ext(σ
∗, σ̃∗, I∗Y )) ̸∈ Rg then we have (I∗Y ,ECRg,PEC[H0].Ext(σ

′, σ̃′, I∗Y )) ̸∈
Rg, where

σ′ ← Trf[H0,H1](m0,m1, σ
∗, ρ∗, pk aWitExt, pk

∗)

σ̃′ ← ATrf[H0,H1](m0,m1, σ̃
∗, ρ∗, pk aWitExt, pk

∗, I∗Y ).

Let σ∗ = (r, s) and σ̃∗ = (r, s̃,K, π), then we have: σ′ := (r, s
ρ∗ ), σ̃

′ := (r, s̃
ρ∗ ,K, π). Therefore, we can

conclude that:

RECRg,PEC[H1].Ext(σ
∗, σ̃∗, I∗Y ) = s−1s̃ =

(
s

ρ∗

)−1
s̃

ρ∗
= ECRg,PEC[H0].Ext(σ

′, σ̃′, I∗Y )

Hence, we can conclude that if (I∗Y ,RECRg,PEC[H1].Ext(σ
∗, σ̃∗, I∗Y )) ̸∈ Rg then (I∗Y ,ECRg,PEC[H0].Ext(σ

′, σ̃′, I∗Y )) ̸∈
Rg. And thus, a forgery in game aWitExt−hrk can be transformed into a valid forgery in game aWitExt.

We note that pre-signature adaptability (cf. Def. 9) of RECRg,PEC follows immediately from the pre-
signature adaptability property of ECRg,PEC.

3.3 Discussion

Note that our ECDSA-based instantiation of an adaptor signature with rerandomizable keys is compatible
with a plethora of cryptocurrencies, since many cryptocurrency networks, including Bitcoin and Ethereum,
rely on the ECDSA signature scheme. In our instantiation, we use a multiplicative key rerandomization
instead of an additive one. This seemingly insignificant difference has a crucial impact on the security of
the resulting scheme as shown by Das et al. [5]. More concretely, Das et al. presented an ECDSA scheme
with additive key rerandomization, which incurred a security loss in the number of rerandomized keys,
whereas the ECDSA scheme with multiplicative rerandomization from [6] does not incur such a loss.2.
In a nutshell, this security loss stems from the related key attack that is required to prove security of
the additively rerandomizable scheme. Since the security proof for ECDSA-based adaptor signatures with
rerandomizable keys would rely on the same related key attack, a similar security loss can be expected for the
additively rerandomizable ECDSA-based adaptor signature. Worse yet, the related key attack for additively
rerandomizable ECDSA allows to prove only one-per-message unforgeability [10], which is a weaker security
notion than standard unforgeability. Therefore, we used multiplicative rerandomization in our instantiation.

While we did not work out the details, it is likely that adaptor signatures with rerandomizable keys can
be constructed from Schnorr and Katz-Wang-based adaptor signatures [8] (due to the existing related key
attack for Schnorr signatures as presented in [11]). Finally, we believe that it would be an interesting future
work to extend the notion of two-party adaptor signatures as presented in [8] to two-party adaptor signatures
with rerandomizable keys.

2 Das et al. show that this loss results in 20 bits less security for certain parameters. We refer the reader to [5] for
details.
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4 Adaptor Wallets

In this section, we introduce the idea of adaptor wallets, which securely maintain and operate adaptor
signature schemes in a cryptocurrency network. We first provide a high level overview of our model and
then provide a generic wallet construction from any adaptor signature scheme with rerandomizable keys and
witness rerandomizable hard relation. Finally, we show that it is impossible to achieve deterministic and
independent statement/witness rerandomization in our model. Due to space limitations, we defer the full
formal model and the security arguments for our generic construction to the full version of this paper.

4.1 Model and Construction

We now describe a model for adaptor wallets and we discuss how adaptor signature schemes with reran-
domizable keys can be used to instantiate such a wallet. Our notion of adaptor wallets resembles the notion
of hierarchical deterministic wallets by Das et al. [5], however, extending their notion to support adaptor
signature operations such as pre-signing. We describe our model here informally and show a construction
from adaptor signatures with rerandomizable keys.

An adaptor wallet considers one master wallet, which is used to deterministically initialize new wallets, so-
called child wallets. Such child wallets are then used to generate (adaptor) signatures and are identified in our
model by an identifier ID. In more detail, the master wallet generates and stores a master key pair (msk,mpk),
a state St and a master statement/witness pair (Ym, ym) of a witness rerandomizable hard relation (cf. Def. 2).
However, the master wallet is not used to generate signatures, but only to deterministically initialize child
wallets, i.e., in order to initialize a child wallet with identifier ID, the master wallet deterministically derives
a new key pair (sk ID, pk ID) from (msk,mpk), and a new statement/witness pair (Y ID, yID) from (Ym, ym). The
child wallet can then use its key pair (sk ID, pk ID) to generate signatures and use its statement/witness pair
(Y ID, yID) and a counter ctr to deterministically derive further statement/witness pairs. To keep our model
simple, we do not allow child wallets to initialize further child wallets (as is done in the fully hierarchical
setting [5]). We note, however, that our model can be extended to the fully hierarchical setting.

Similarly to the model of hierarchical deterministic wallets [5], we consider two kinds of child wallets,
namely (1) non-hardened wallets, and (2) hardened wallets. Broadly speaking, the difference between these
two is that we allow full corruption of hardened wallets, i.e., in our security games we allow the adversary to
learn all secret values stored in a hardened wallet, including the session secret key sk ID. For non-hardened
wallets, on the other hand, we allow the adversary to only learn the session public key pk ID and statement
Y ID. As a motivation for these two kinds of child wallets, recall the main applications of adaptor signatures as
mentioned in the Introduction, namely payment channels and atomic swaps. A payment channel is typically
used for frequent micropayments, i.e., users deposit only small amounts of money in a channel and use it often
to sign transactions. In this case, it would be sensible to assume that the user operates the corresponding
wallet on a mobile device, as it has to sign many transactions (possibly at a remote locations) and the impact
of a wallet corruption is limited. Such a wallet would be represented by a hardened wallet in our model. On the
other hand, atomic swaps are used, e.g., to swap coins of one cryptocurrency with coins of another currency.
Such swaps are often one-time transactions of large amounts of funds or valuable tokens. In this example,
it seems reasonable to implement the corresponding wallet as a hot/cold wallet, as it is crucial to secure
such large amounts of funds or valuable tokens in the best possible way. The security goal for an adaptor
wallet scheme is that the full corruption of hardened wallets does not compromise the security of any other
(child or master) wallet. Additionally, we require that for all uncorrupted wallets, the derived public keys
and statement/witness pairs are indistinguishable from freshly generated public keys and statement/witness
pairs. Lastly, adaptor wallets must satisfy security notions similar to witness extractability under honestly
rerandomizable keys (cf. Def. 11) and pre-signature adaptability (cf. Def. 9) of adaptor signatures with
rerandomizable keys. Fig. 6 gives an illustration of our wallet model.

Statement/Witness rerandomization. According to the hot/cold wallet setting, it would be ideal if the
deterministic derivation of statements and witnesses can be done independently. That is, we would like to
store and derive statements exclusively on the hot wallet and witnesses only on the cold wallet. This would
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Fig. 6. Exemplatory design of our adaptor wallet scheme with three child wallets. H and NH denote hardened and
non-hardened nodes respectively, cw and hw denote cold and hot wallets respectively and the values below the child
wallets (e.g. yID

ctr, Y
ID
ctr ) illustrate the statement/witness pairs that are being derived within each child wallet.

allow the cold wallet to stay entirely inactive (and therefore secure) in applications where it suffices to derive
statements first and the corresponding witnesses only at a later time. Surprisingly, we show in Sec. 4.2 that
for any multiplicative or additive statement/witness derivation, such an independent derivation is impossible.
In our model and construction, we therefore resort to a joint statement/witness derivation.

An adaptor wallet scheme consists of a Setup algorithm, which initializes the master wallet, derivation
algorithms for hardened and non-hardened keys (SKDerH,PKDerH,SKDerNH,PKDerNH) as well as for state-
ment/witness pairs RDer, adaptor signature algorithms (pSign, pVrfy,Adapt,Ext) and signing and verification
algorithms (Sign,Verify).

We now provide our generic construction of adaptor wallets, from an adaptor signature scheme with
rerandomizable keys RASigR,Σ = (RandSK,RandPK, pSign,Adapt, pVrfy,Ext). This construction uses a hash
function H : {0, 1}∗ → X and we require that the hard relation R is witness rerandomizable as per Def. 2.
Our construction can be found in Figure 7.

4.2 Impossibility of Independent Statement/Witness Derivation

As mentioned above, one main question that arises when modeling derivation of statement/witness pairs in a
deterministic fashion is whether an independent derivation of statement/witness pairs in hot and cold wallets
respectively is possible. Surprisingly, unlike the secret and public key derivation mechanism, we show that
this is not necessarily the case. At a high level, this is because unlike session secret keys, derived witnesses
do not remain secret but are typically revealed in adaptor signature applications. More formally, we say that
a hard relation R ⊆ DY ×Dw has independently rerandomizable statement/witness pairs, if there exist two
functions fSTDer : DY × {0, 1}∗ → DY and fWitDer : Dw × {0, 1}∗ → Dw where for any ρ ∈ {0, 1}∗ and any
(Y, y) ∈ R we have: Y ′ ← fSTDer(Y, ρ), y

′ ← fWitDer(y, ρ), and (Y ′, y′) ∈ R.
Translating the above to the hot/cold wallet setting, means that the cold wallet executes function fWitDer

and the hot wallet function fSTDer. An adversary in this setting can corrupt the hot wallet but not the cold
wallet, and hence can learn the statements Y and Y ′ as well as the respective randomness ρ. In addition,
as required by certain adaptor signature applications, the adversary eventually learns a derived witness
y′ ← fWitDer(y, ρ). Therefore, if there exists a function f−1 : Dw × {0, 1}∗ → Dw which on input y′, ρ returns
y, i.e., y ← f−1(y′, ρ), then we cannot construct deterministic and independent statement/witness derivation
from fWitDer and fSTDer. This is, because an adversary could compute y and thereby break unforgeability of
the adaptor wallet scheme. In the full version of this paper, we formalize this claim and prove it.

Let us now see how this result affects existing adaptor signature constructions. For the ECDSA-based
adaptor signature construction ECRg,PEC[H] as described in Sec. 2.4 it is not possible to define fSTDer without
providing the witness as input. This is mainly because the hard relation Rg := {((Y, π), y) | Y = gy ∧
Vg(Y, π) = 1} requires a zero-knowledge proof alongside the statement Y , that proves knowledge of the
witness y. Naturally, generating this proof without the witness is not possible. Now consider the “pure”
dlog hard relation Rdlog := {(Y, y) | Y = gy}, which is required for adaptor signature schemes based
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Algorithm Setup(1n)
00 St←$ {0, 1}n
01 (Ym, ym)← R.GenR(1n)
02 (msk,mpk)← RASigR,Σ .Gen(1n)
03 Return (msk,mpk, St, Ym, ym)

Algorithm pSign(sk ID,m, Y )
04 σ̃ ← RASigR,Σ .pSign(sk ID,m, Y )
05 Return σ̃

Algorithm pVrfy(pk ID,m, Y, σ̃)
06 Return RASigR,Σ .pVrfy(pk ID,m, Y, σ̃)

Algorithm Adapt(σ̃, yID
ctr)

07 σ ← RASigR,Σ .Adapt(σ̃, yID
ctr)

08 Return σ

Algorithm Ext(σ, σ̃, Y ID
ctr )

09 Return RASigR,Σ .Ext(σ, σ̃, Y ID
ctr )

Algorithm Sign(sk ID,m)
10 σ ← RASigR,Σ .Sign(sk ID,m)
11 Return σ

Algorithm Verify(pk ID,m, σ)
12 Return RASigR,Σ .Verify(pk ID,m, σ)

Algorithm SKDerH(msk, St, ID)
13 ρ← H(msk, St, ID)
14 sk ID ← RASigR,Σ .RandSK(msk, ρ)

15 Return sk ID

Algorithm SKDerNH(msk,mpk, St, ID)
16 ρ← H(mpk, St, ID)
17 sk ID ← RASigR,Σ .RandSK(msk, ρ)

18 Return sk ID

Algorithm PKDerH(msk,mpk, St, ID)
19 ρ← H(msk, St, ID)
20 pk ID ← RASigR,Σ .RandPK(mpk, ρ)

21 Return pk ID

Algorithm PKDerNH(mpk, St, ID)
22 ρ← H(mpk, St, ID)
23 pk ID ← RASigR,Σ .RandPK(mpk, ρ)

24 Return pk ID

Algorithm RDer(Y, y, ctr, ID)
25 ρ← H(y, ctr, ID)
26 yID

ctr ← R.RandWit(y, ρ)
27 Y ID

ctr ← R.WitToSt(yID
ctr)

28 Return (Y ID
ctr , y

ID
ctr)

Fig. 7. Generic construction of adaptor wallets w.r.t. an adaptor signature scheme with rerandomizable keys
RASigR,Σ , where R is a witness rerandomizable hard relation as per Def. 2 and a hash function H : {0, 1}∗ → X.

on Schnorr and Katz-Wang [8]. The statement/witness pairs for this relation can be rerandomized either
multiplicatively or additively. Both of these operations, however, can easily be inverted. For instance, for a
statement/witness pair (gy, y) ∈ Rdlog, an additive rerandomization would instantiate the functions fSTDer

and fWitDer as fSTDer(g
y, ρ) := gy · gρ = Y ′ and fWitDer(y, ρ) := y + ρ = y′. Naturally, the function f−1 can

simply be instantiated as f−1(y′, ρ) := y′ − ρ = y.

Impact of the impossibility result. Due to the above impossibility result of independent statement/witness
derivation we cannot construct an adaptor wallet scheme with statement derivation in the hot wallet. How-
ever, for certain applications of adaptor signatures, this restriction is tolerable as the cold wallet does not
need to generate many signatures and/or statement/witness pairs and therefore does not need to be activated
frequently. Further, in practice one can minimize the number of times a cold wallet must be activated by
batching the generation of statement/witness pairs, i.e., the cold wallet can generate multiple pairs and send
all statements at once to the hot wallet. For other applications with frequent transactions, such as payment
channels, an adaptor wallet user can use a hardened wallet as explained in Sec. 4.1.
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E. Two-Party Adaptor Signatures
from Identification Schemes

In this chapter, we present an adjusted version of the following publication

[77] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi. “Two-Party Adaptor

Signatures from Identification Schemes”. In: Public-Key Cryptography - PKC

2021 - 24th IACR International Conference on Practice and Theory of Public

Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I. 2021,

pp. 451–480. Part of this thesis.

Concretely, the work included in this chapter differs from the above publica-

tion [77] in the following ways: (1) Theorems 3 and 4 have been adjusted such

that they explicitly state that NIZK is a non-interactive zero-knowledge proof sys-

tem and C is an extractable commitment scheme, and (2) some typos have been

fixed in the proof of Lemma 6 and the overall write-up of the proof has been

improved.
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Abstract. Adaptor signatures are a novel cryptographic primitive with important applications for
cryptocurrencies. They have been used to construct second layer solutions such as payment channels or
cross-currency swaps. The basic idea of an adaptor signature scheme is to tie the signing process to the
revelation of a secret value in the sense that, much like a regular signature scheme, an adaptor signa-
ture scheme can authenticate messages, but simultaneously leaks a secret to certain parties. Recently,
Aumayr et al. provide the first formalization of adaptor signature schemes, and present provably secure
constructions from ECDSA and Schnorr signatures. Unfortunately, the formalization and constructions
given in this work have two limitations: (1) current schemes are limited to ECDSA and Schnorr sig-
natures, and no generic transformation for constructing adaptor signatures is known; (2) they do not
offer support for aggregated two-party signing, which can significantly reduce the blockchain footprint
in applications of adaptor signatures.
In this work, we address these two shortcomings. First, we show that signature schemes that are con-
structed from identification (ID) schemes, which additionally satisfy certain homomorphic properties,
can generically be transformed into adaptor signature schemes. We further provide an impossibility re-
sult which proves that unique signature schemes (e.g., the BLS scheme) cannot be transformed into an
adaptor signature scheme. In addition, we define two-party adaptor signature schemes with aggregat-
able public keys and show how to instantiate them via a generic transformation from ID-based signature
schemes. Finally, we give instantiations of our generic transformations for the Schnorr, Katz-Wang and
Guillou-Quisquater signature schemes.

1 Introduction

Blockchain technologies, envisioned first in 2009 [33], have spurred enormous interest by academia and
industry. This technology puts forth a decentralized payment paradigm, where financial transactions are
stored in a decentralized data structure – often referred to as the blockchain. The main cryptographic
primitive used by blockchain systems is the one of digital signature schemes, which allow users to authenticate
payment transactions. Various different flavors of digital signature schemes are used by blockchain systems,
e.g., ring signatures [38] add privacy-preserving features to cryptocurrencies [39], while threshold signatures
and multi-signatures are used for multi-factor authorization of transactions [18].

Adaptor signatures (sometimes also referred to as scriptless scripts) are another important type of digital
signature scheme introduced by the cryptocurrency community [36] and recently formalized by Aumayr
et al. [2]. In a nutshell, adaptor signatures tie together authorization of a message and the leakage of a
secret value. Namely, they allow a signer to produce a pre-signature under her secret key such that this
pre-signature can be adapted into a valid signature by a publisher knowing a certain secret value. If the
completed signature gets published, the signer is able to extract the embedded secret used by the publisher.

To demonstrate the concept of adaptor signatures, let us discuss the simple example of a preimage sale
which serves as an important building block in many blockchain applications such as payment channels [6, 10,
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37, 2], payment routing in payment channel networks (PCNs) [29, 13, 32] or atomic swaps [11, 21]. Assume
that a seller offers to reveal a preimage of a hash value h in exchange for c coins from a concrete buyer. This
is a classical instance of a fair exchange problem, which can be solved using the blockchain as follows. The
buyer locks c coins in a transaction which can be spent by another transaction if it is authorized by the seller
and contains a preimage of the hash value h.

While this solution implements the preimage sale, it has various drawbacks: (i) The only hash functions
that can be used are the ones supported by the underlying blockchain. For example, the most popular
blockchain-based cryptocurrency, Bitcoin, supports only SHA-1, SHA-256 and RIPEMD-160 [5]. This makes
the above solution unsuitable for applications like privacy-preserving payment routing in PCNs [29, 13] that
crucially rely on the preimage sale instantiated with a homomorphic hash function. (ii) The hash value has
to be fixed at the beginning of the sale and cannot be changed later without a new transaction being posted
on the blockchain. This is problematic in, e.g., generalized payment channels [2], where users utilize the
ideas from the preimage sale to repeatedly update channel balances without any blockchain interaction. (iii)
Finally, the blockchain script is non-standard as, in addition to a signature verification, it contains a hash
preimage verification. This does not only make the transaction more expensive but also allows parties who
are maintaining the blockchain (also known as miners) to censor transactions belonging to a preimage sale.

The concept of adaptor signatures allows us to implement a preimage sale in a way that overcomes most
of the aforementioned drawbacks. The protocol works at a high level as follows. The buyer locks c coins in
a transaction which can be spent by a transaction authorized by both the seller and the buyer. Thereafter,
the buyer pre-signs a transaction spending the c coins with respect to the hash value h. If the seller knows a
preimage of h, she can adapt the pre-signature of the buyer, attach her own signature and claim the c coins.
The buyer can then extract a preimage from the adapted signature. Hence, parties are not restricted to the
hash functions supported by the blockchain, i.e., drawback (i) is addressed. Moreover, the buyer can pre-sign
the spending transaction with respect to multiple hash values which overcomes drawback (ii). However, the
third drawback remains. While the usage of adaptor signatures avoids the hash preimage verification in the
script, it adds a signature verification (i.e., there are now 2 signature verifications in total) which makes this
type of exchange easily distinguishable from a normal payment transaction. Hence, the sale remains rather
expensive and censorship is not prevented.

The idea of two-party adaptor signatures is to replace the two signature verifications by one. The trans-
action implementing a preimage sale then has exactly the same format as a transaction simply transferring
coins. As a result the price (in terms of fees paid to the miners) of the preimage sale transaction is the
same as the price for a normal payment. Moreover, censorship is prevented as miners cannot distinguish the
transactions belonging to the preimage sale from a standard payment transaction. Hence, point (iii) is fully
addressed.

The idea of replacing two signatures by one has already appeared in the literature in the context of pay-
ment channels. Namely, Malavolta et al. [29] presented protocols for two-party threshold adaptor signatures
based on Schnorr and ECDSA digital signatures. However, they did not present a standalone definition for
the threshold primitive and hence security for these schemes has not been analyzed. Furthermore, the key
generation of the existing threshold adaptor signature schemes is interactive which is undesirable. Last but
not least, their constructions are tailored to Schnorr and ECDSA signature schemes and hence is not generic.
From the above points, the following natural question arises:

Is it possible to define and instantiate two-party adaptor signature schemes with non-interactive key
generation in a generic way?

1.1 Our contribution

Our main goal is to define two-party adaptor signatures and explore from which digital signature we can
instantiate this new primitive. We proceed in three steps which we summarize below and depict in Fig. 1.

Step 1: From ID schemes to adaptor signatures. Our first goal is to determine if there exists a specific
class of signature schemes which can be generically transformed into adaptor signatures. Given the existing
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Schnorr-based construction [36, 2], a natural choice is to explore signature schemes constructed in a similar
fashion. To this end, we focus on signature schemes built from identification (ID) schemes using the Fiat-
Shamir transform [25]. We show that ID-based signature schemes satisfying certain additional properties can
be transformed to adaptor signature schemes generically. In addition to Schnorr signatures [40], this class
includes Katz-Wang and Guillou-Quisquater signatures [24, 22]. As an additional result, we show that adaptor
signatures cannot be built from unique signatures, ruling out constructions from, e.g., BLS signatures [9].

Our generic transformation of adaptor signatures from ID schemes has multiple benefits. Firstly, by
instantiating it with the Guillou-Quisquater siganture scheme, we obtain the first RSA-based adaptor signa-
ture scheme. Secondly, since Katz-Wang signatures offers tight security (under the decisional Diffie-Hellman
(DDH) assumption), and our generic transformation also achieves tight security, our result shows how to
construct adaptor signatures with a tight reduction to the underlying DDH assumption.

Step 2: From ID schemes to two-party signatures. Our second goal is to generically transform signature
schemes built from ID schemes into two-party signature schemes with aggregatable public keys. Unlike
threshold signatures, these signatures have non-interactive key generation. This means that parties can in-
dependently generate their key pairs and later collaboratively generate signatures that are valid under their
combined public key. For our transformation, we require the signature scheme to satisfy certain aggregation
properties which, as we show, are present in the three aforementioned signature schemes. While this trans-
formation serves as a middle step towards our main goal of constructing two-party adaptor signatures, we
believe it is of independent interest.

Step 3: From ID schemes to two-party adaptor signatures. Finally, we define two-party adaptor signature
schemes with aggregatable public keys. In order to instantiate this novel cryptographic primitive, we use
similar techniques as in step 1 where we “lifted” standard signature schemes to adaptor signature schemes.
More precisely, we present a transformation turning a two-party signature scheme based on an ID scheme
into a two-party adaptor signature scheme.

ID
Identification Scheme

SIGID

Signature Scheme

aSIGID,R

Adaptor Signature Scheme

SIGID
2

2-Party Signature Scheme

aSIGID,R
2

2-Party Adaptor Signature Scheme

[25] Sec. 3

Sec. 4

Sec. 5

Fig. 1: Overview of our results. Full arrow represents a generic transformation, dotted and dashed arrows
represent a generic transformation which requires additional homomorphic or aggregation properties respec-
tively.

Remark 1. Let us point out that Fig. 1 presents our transformation steps from signature schemes based on
ID schemes to two-party adaptor signatures. Despite the fact that we generically construct our two-party
adaptor signature scheme from two-party signature schemes based on ID schemes, we reduce its security
to the strong unforgeability of the underlying single party signature scheme. Therefore, we do not need the
two-party signature scheme from ID schemes to be strongly unforgeable. This gives us a more general result
than proving security based on strong unforgeability of the two-party signature scheme from ID schemes.
We note that any ID scheme can be transformed to a signature scheme with strong unforgeability by Bellare
and Shoup [4].

Let us further mention that our security proofs are in the random oracle model. Proving the security of
our constructions and the original constructions from [2] in the standard model remains an interesting open
problem.
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1.2 Related Work

Adaptor Signatures. The notion of adaptor signatures was first introduced by Poelstra [36] and has since
been used in many blockchain related applications, such as PCNs [29], payment channel hubs [42] or atomic
swaps [11]. However, the adaptor signatures as a standalone primitive were only formalized later by Aumayr
et al. [2], where they were used to generalize the concept of payment channels. Concurrently, Fournier [17]
attempted to formalize adaptor signatures, however, as pointed out in [2], his definition is weaker than the
one given in [2] and not sufficient for certain applications. All the previously mentioned works constructed
adaptor signatures only from Schnorr and ECDSA signatures, i.e., they did not show generic transformations
for building adaptor signature schemes. As previously mentioned, a two-party threshold variant of adaptor
signatures was presented by Malavolta et al. [29]. Their construction requires interactive key generation,
thereby differing from our two-party adaptor signature notion. Moreover, no standalone definition of the
threshold primitive was provided.

Two works [15, 43] have recently introduced post-quantum secure adaptor signature schemes, i.e., schemes
that remain secure even in presence of an adversary having access to a quantum computer. In order to
achieve post-quantum security, [15] based its scheme on standard and well-studied lattice assumptions,
namely Module-SIS and Module-LWE, while the scheme in [43] is based on lesser known assumptions for
isogenies. Both works additionally show how to construct post-quantum secure PCNs from their respective
adaptor signature schemes.

Multi-Signatures and ID Schemes. Multi-Signatures have been subject to extensive research in the past (e.g.,
[35, 34, 23]). In a nutshell, multi-signatures allow a set of signers to collaboratively generate a signature for
a common message such that the signature can be verified given the public key of each signer. More recently,
the notion of multi-signatures with aggregatable public keys has been introduced [30] and worked on [8, 26],
which allows to aggregate the public keys of all signers into one single public key. We use some results from
the work of Kiltz et al. [25], which provides a concrete and modular security analysis of signatures schemes
from ID schemes obtained via the Fiat-Shamir transformation. Our paper builds up on their work and uses
some of their notation.

2 Preliminaries

In this section, we introduce notation that we use throughout this work and preliminaries on adaptor signa-
tures and identification schemes. Due to space limitations, we provide formal definitions of digital signature
schemes, non-interactive zero-knowledge proofs and extractable commitments in the full version of this pa-
per [14].

Notation. We denote by x ←$ X the uniform sampling of x from the set X . Throughout this paper, n
denotes the security parameter. By x← A(y) we denote a probabilistic polynomial time (PPT) algorithm A
that on input y, outputs x. When A is a deterministic polynomial time (DPT) algorithm, we use the notation
x := A(y). A function ν : N→ R is negligible in n if for every k ∈ N, there exists n0 ∈ N s.t. for every n ≥ n0

it holds that |ν(n)| ≤ 1/nk.

Hard relation. Let R ⊆ DS × Dw be a relation with statement/witness pairs (Y, y) ∈ DS × Dw and let the
language LR ⊆ DS associated to R be defined as LR := {Y ∈ DS | ∃y ∈ Dw s.t. (Y, y) ∈ R}. We say that R is
a hard relation if: (i) There exists a PPT sampling algorithm GenR(1n) that on input the security parameter
outputs a pair (Y, y) ∈ R; (ii) The relation R is poly-time decidable; (iii) For all PPT adversaries A, the
probability that A outputs a valid witness y ∈ Dw for Y ∈ LR is negligible.

2.1 Adaptor Signatures

We now recall the definition of adaptor signatures, recently put forward in [2].
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Definition 1 (Adaptor signature). An adaptor signature scheme w.r.t. a hard relation R and a signature
scheme SIG = (Gen,Sign,Vrfy) consists of a tuple of four algorithms aSIGR,SIG = (pSign,Adapt, pVrfy,Ext)
defined as:

pSignsk (m,Y ): is a PPT algorithm that on input a secret key sk, message m ∈ {0, 1}∗ and statement Y ∈ LR,
outputs a pre-signature σ̃.

pVrfypk (m,Y ; σ̃): is a DPT algorithm that on input a public key pk, message m ∈ {0, 1}∗, statement Y ∈ LR

and pre-signature σ̃, outputs a bit b.
Adaptpk (σ̃, y): is a DPT algorithm that on input a pre-signature σ̃ and witness y, outputs a signature σ.
Extpk (σ, σ̃, Y ): is a DPT algorithm that on input a signature σ, pre-signature σ̃ and statement Y ∈ LR,

outputs a witness y such that (Y, y) ∈ R, or ⊥.

An adaptor signature scheme, besides satisfying plain digital signature correctness, should also satisfy
pre-signature correctness that we formalize next.

Definition 2 (Pre-signature correctness). An adaptor signature aSIGR,SIG satisfies pre-signature cor-
rectness, if for all n ∈N and m ∈ {0, 1}∗:

Pr



pVrfypk (m,Y ; σ̃) = 1 ∧
Vrfypk (m;σ) = 1 ∧

(Y, y′) ∈ R

∣∣∣∣∣∣

(sk , pk)← Gen(1n), (Y, y)← GenR(1n)
σ̃ ← pSignsk (m,Y ), σ := Adaptpk (σ̃, y)
y′ := Extpk (σ, σ̃, Y )


 = 1.

An adaptor signature scheme aSIGR,SIG is called secure if it satisfies three security properties: existential
unforgeablity under chosen message attack for adaptor signatures, pre-signature adaptability and witness
extractability. Let us recall the formal definition of these properties next.

The notion of unforgeability for adaptor signatures is similar to existential unforgeability under chosen
message attacks for standard digital signatures but additionally requires that producing a forgery σ for some
message m∗ is hard even given a pre-signature on m∗ w.r.t. a random statement Y ∈ LR.

Definition 3 (aEUF–CMA Security). An adaptor signature scheme aSIGR,SIG is unforgeable if for every
PPT adversary A there exists a negligible function ν such that: Pr[aSigForgeA,aSIGR,SIG

(n) = 1] ≤ ν(n), where
the definition of the experiment aSigForgeA,aSIGR,SIG

is as follows:

aSigForgeA,aSIGR,SIG
(n)

1 :Q := ∅, (sk , pk)← Gen(1n)

2 :m∗ ← AOS,OpS(pk)

3 : (Y, y)← GenR(1n), σ̃ ← pSignsk (m
∗, Y )

4 :σ∗ ← AOS,OpS(σ̃, Y )

5 :return
(
m∗ ̸∈ Q ∧ Vrfypk (m

∗;σ∗)
)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 :Q := Q∪ {m}
3 :return σ̃

A natural requirement for an adaptor signature scheme is that any valid pre-signature w.r.t. Y (possibly
produced by a malicious signer) can be completed into a valid signature using a witness y with (Y, y) ∈ R.

Definition 4 (Pre-signature adaptability). An adaptor signature scheme aSIGSIG,R satisfies pre-signature
adaptability, if for all n ∈ N, messages m ∈ {0, 1}∗, statement/witness pairs (Y, y) ∈ R, public keys pk and
pre-signatures σ̃ ← {0, 1}∗ we have pVrfypk (m,Y ; σ̃) = 1, then Vrfypk (m;Adaptpk (σ̃, y)) = 1.

The last property that we are interested in is witness extractability. Informally, it guarantees that a valid
signature/pre-signatue pair (σ, σ̃) for message/statement (m,Y ) can be used to extract a corresponding
witness y.
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Definition 5 (Witness extractability). An adaptor signature scheme aSIGR is witness extractable if for
every PPT adversary A, there exists a negligible function ν such that the following holds: Pr[aWitExtA,aSIGR,SIG

(n) =
1] ≤ ν(n), where the experiment aWitExtA,aSIGR,SIG

is defined as follows:

aWitExtA,aSIGR,SIG
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (m∗, Y ∗)← AOS,OpS(pk)

3 : σ̃ ← pSignsk (m
∗, Y ∗)

4 : σ∗ ← AOS,OpS(σ̃)

5 : y := Extpk (σ
∗, σ̃, Y ∗)

6 : return (m∗ ̸∈ Q ∧ (Y ∗, y) ̸∈ R ∧ Vrfypk (m
∗;σ∗))

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

Let us stress that while the witness extractability experiment aWitExt looks fairly similar to the ex-
periment aSigForge, there is one crucial difference; namely, the adversary is allowed to choose the forgery
statement Y ∗. Hence, we can assume that it knows a witness for Y ∗ and can thus generate a valid signature
on the forgery message m∗. However, this is not sufficient to win the experiment. The adversary wins only
if the valid signature does not reveal a witness for Y ∗.

2.2 Identification and Signature Schemes

In this section we recall the definition of identification schemes and how they are transformed to signature
schemes as described in [25].

Definition 6 (Canonical Identification Scheme [25]). A canonical identification scheme ID is defined
as a tuple of four algorithms ID := (IGen,P,ChSet,V).

– The key generation algorithm IGen takes the system parameters par as input and returns secret and public
key (sk , pk). We assume that pk defines the set of challenges, namely ChSet.

– The prover algorithm P consists of two algorithms namely P1 and P2:
• P1 takes as input the secret key sk and returns a commitment R ∈ Drand and a state St.
• P2 takes as input the secret key sk, a commitment R ∈ Drand, a challenge h ∈ ChSet, and a state St

and returns a response s ∈ Dresp.
– The verifier algorithm V is a deterministic algorithm that takes the public key pk and the conversation

transcript as input and outputs 1 (acceptance) or 0 (rejection).

We require that for all (sk , pk) ∈ IGen(par), all (R,St) ∈ P1(sk), all h ∈ ChSet and all s ∈ P2(sk , R, h, St),
we have V(pk , R, h, s) = 1.

We recall that an identification scheme ID is called commitment-recoverable, if V first internally calls a
function V0 which recomputes R0 = V0(pk, h, s) and then outputs 1, iff R0 = R. Using Fiat-Shamir heuristic
one can transform any identification scheme ID of the above form into a digital signature scheme SIGID. We
recall this transformation in Fig. 2 when ID is commitment-recoverable.

3 Adaptor Signatures from SIGID

Our first goal is to explore and find digital signature schemes which can generically be transformed to adaptor
signatures. Interestingly, we observe that both existing adaptor signature schemes, namely the Schnorr-
based and the ECDSA-based schemes, utilize the randomness used during signature generation to transform
digital signatures to adaptor signatures [2]. We first prove a negative result, namely that it is impossible to
construct an adaptor signature scheme from a unique signature scheme [41, 28, 19]. Thereafter, we focus
on signature schemes constructed from identification schemes (cf. Fig. 2) and show that if the underlying
ID-based signature scheme SIGID satisfies certain additional properties, then we can generically transform it
into an adaptor signature scheme. To demonstrate the applicability of our generic transformation, we show
in the full version of this paper [14] that many existing SIGID instantiations satisfy the required properties.
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Gen(1n)

1 : (sk , pk)← IGen(n)

2 : return (sk , pk)

Signsk (m)

1 : (R,St)← P1(sk)

2 : h := H(R,m)

3 : s← P2(sk , R, h, St)

4 : return (h, s)

Vrfypk (m; (h, s))

1 : R := V0(pk , h, s)

2 : return h = H(R,m)

Fig. 2: SIGID: Digital signature schemes from identification schemes [25].

3.1 Impossibility Result for Unique Signatures

An important class of digital signatures are those where the signing algorithm is deterministic and the
generated signatures are unique. Given the efficiency of deterministic signature schemes along with numerous
other advantages that come from signatures being unique [41, 28, 19], it would be tempting to design adaptor
signatures based on unique signatures. However, we show in Thm. 1 that if the signature scheme has unique
signatures, then it is impossible to construct a secure adaptor signature scheme from it.

Theorem 1. Let R be a hard relation and SIG = (Gen,Sign,Vrfy) be a signature scheme with unique signa-
tures. Then there does not exist an adaptor signature scheme aSIGR,SIG.

Proof. We prove this theorem by contradiction. Assume there exists an adaptor signature scheme where the
underlying signature scheme, SIG, has unique signatures. We construct a PPT algorithm A which internally
uses the adaptor signature and breaks the hardness of R. In other words, A receives (1n, Y ) as input and
outputs y, such that (Y, y) ∈ R. Below, we describe A formally.

On input (1n, Y ), A proceeds as follows:

1 : Sample a new key pair (sk , pk)← Gen(1n).

2 : Choose an arbitrary message m from the signing message space.

3 : Generate a pre-signature, σ̃ ← preSignsk (m,Y ).

4 : Generate a signature, σ := Signsk (m).

5 : Compute and output y := Extpk (σ, σ̃, Y ).

We now show that y returned by A is indeed a witness of Y , i.e., (Y, y) ∈ R. From the correctness of the
adaptor signature scheme, we know that for any y′ s.t. (Y, y′) ∈ R the signature σ′ := Adapt(σ̃, y′) is a valid
signature, i.e., Vrfypk(m,σ′) = 1. Moreover, we know that y′′ := Extpk (σ

′, σ̃, Y ) is such that (Y, y′′) ∈ R. As
SIG is a unique signature scheme, this implies that σ′ = σ which in turn implies that the witness y returned
by A is y′′. Hence, A breaks the hardness of R with probability 1.

Let us briefly discuss which signature schemes are affected by our impossibility result. Unique signature
schemes (also known as verifiable unpredictable functions (VUF)) have been first introduced in [19]. Fur-
thermore, many follow-up works such as [31, 28] and most recently [41], have shown how to instantiate this
primitive in the standard model. Another famous example of a unique signature scheme is BLS [9]. Naturally,
due to our impossibility result, an adaptor signature scheme cannot be instantiated from these signature
schemes.

3.2 Generic Transformation to Adaptor Signatures

We now describe how to generically transform a randomized digital signature scheme SIGID from Fig. 2 into
an adaptor signature scheme w.r.t. a hard relation R. For brevity, we denote the resulting adaptor signature
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scheme as aSIGID,R instead of aSIGR,SIGID . The main idea behind our transformation is to shift the public
randomness of the Sign procedure by a statement Y for the relation R in order to generate a modified
signature called a pre-signature. Using a corresponding witness y (i.e., (Y, y) ∈ R), the shift of the public
randomness in the pre-signature can be reversed (or adapted), in order to obtain a regular (or full) signature.
Moreover, it should be possible to extract a witness given both the pre-signature and the full-signature. To
this end, let us formalize three new deterministic functions which we will use later in our transformation.

1. For the randomness shift, we define a function fshift : Drand×LR → Drand that takes as input a commitment
value R ∈ Drand of the identification scheme and a statement Y ∈ LR of the hard relation, and outputs
a new commitment value R′ ∈ Drand.

2. For the adapt operation, we define fadapt : Dresp×Dw → Dresp that takes as input a response value s̃ ∈ Dresp

of the identification scheme and a witness y ∈ Dw of the hard relation, and outputs a new response value
s ∈ Dresp.

3. Finally, for witness extraction, we define fext : Dresp×Dresp → Dw that takes as input two response values
s̃, s ∈ Dresp and outputs a witness y ∈ Dw.

Our transformation from SIGID to aSIGID,R is shown in Fig. 3.

pSignsk (m,Y )

1 : (Rpre, St)← P1(sk)

2 : Rsign := fshift(Rpre, Y )

3 : h := H(Rsign,m)

4 : s̃← P2(sk , Rpre, h, St)

5 : return (h, s̃)

pVrfypk (m,Y ; (h, s̃))

1 : R̂pre := V0(pk , h, s̃)

2 : R̂sign := fshift(R̂pre, Y )

3 : b := (h = H(R̂sign,m))

4 : return b

Adaptpk ((h, s̃), y)

1 : s = fadapt(s̃, y)

2 : return (h, s)

Extpk ((h, s), (h, s̃), Y )

1 : return fext(s, s̃)

Fig. 3: Generic transformation from SIGID to a aSIGID,R scheme

In order for aSIGID,R to be an adaptor signature scheme, we need the functions fshift, fadapt and fext to
satisfy two properties. The first property is a homomorphic one and relates the functions fshift and fadapt to
the commitment-recoverable component V0 and the hard relation R. Informally, for all (Y, y) ∈ R, we need
the following to be equivalent: (i) Extract the public randomness from a response s̃ using V0 and then apply
fshift to shift the public randomness by Y , and (ii) apply fadapt to shift the secret randomness in s̃ by y and
then extract the public randomness using V0. Formally, for any public key pk , any challenge h ∈ ChSet, any
response value s̃ ∈ Dresp and any statement/witness pair (Y, y) ∈ R, it must hold that:

fshift(V0(pk , h, s̃), Y ) = V0(pk , h, fadapt(s̃, y)). (1)

The second property requires that the function fext(s̃, ·) is the inverse function of fadapt(s̃, ·) for any s̃ ∈ Dresp.
Formally, for any y ∈ Dw and s̃ ∈ Dresp, we have

y = fext(fadapt(s̃, y), s̃). (2)

To give an intuition about the functions fshift, fadapt and fext and their purpose, let us discuss their concrete
instantiations for Schnorr signatures and show that they satisfy Equations (1) and (2). The instantiations for
Katz-Wang signatures and Guillou-Quisquater signatures can be found in the full version of this paper [14].

Example 1 (Schnorr signatures). Let G = ⟨g⟩ be a cyclic group of prime order p where the discrete logarithm
problem in G is hard. The functions IGen, P1, P2 and V0 for Schnorr’s signature scheme are defined in Fig. 4.
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IGen(n)

1 : sk ←$ Zq, pk = gsk

2 : return (sk , pk)

P1(sk)

1 : r ←$ Zq, R = gr

2 : return (R, r)

P2(sk , R, h, r)

1 : s = r + h · sk
2 : return s

V0(pk , h, s)

1 : R = gs · pk−h

2 : return (R)

Fig. 4: Schnorr signature scheme

Let us consider the hard relation R = {(Y, y) | Y = gy}, i.e., group elements and their discrete logarithms,
and let us define the functions fshift, fadapt, fext as:

fshift(Y,R) := Y ·R, fadapt(s̃, y) := s̃+ y, fext(s, s̃) := s− s̃.

Intuitively, the function fshift is shifting randomness in the group while the function fadapt shifts randomness
in the exponent. To prove that Eq. (1) holds, let us fix an arbitrary public key pk ∈ G, a challenge h ∈ Zq,
a response value s ∈ Zq and a statement witness pair (Y, y) ∈ R, i.e, Y = gy. We have

fshift(V0(pk , h, s), Y ) = fshift(g
s · pk−h, Y ) = gs · pk−h · Y

= gs+y · pk−h = V0(pk , h, s+ y) = V0(pk , h, fadapt(s, y))

which is what we wanted to prove. In order to show that Eq. (2) holds, let us fix an arbitrary witness y ∈ Zq

and a response value s ∈ Zq. Then we have

fext(fadapt(s, y), s) = fext(s+ y, s) = s+ y − s = y

and hence Eq. (2) is satisfied as well.

We now show that the transformation from Fig. 3 is a secure adaptor signature scheme if functions
fshift, fadapt, fext satisfying Equations (1) and (2) exist.

Theorem 2. Assume that SIGID is a SUF–CMA-secure signature scheme transformed using Fig. 2, let
fshift, fadapt and fext be functions satisfying the relations from Equations (1) and (2), and R be a hard relation.

Then the resulting aSIGID,R scheme from the transformation in Fig. 3 is a secure adaptor signature scheme
in the random oracle model.

In order to prove Thm. 2, we must show that aSIGID,R satisfies pre-signature correctness, aEUF–CMA security,
pre-signature adaptability and witness extractability properties described in Defs. 2 to 5 respectively.

Lemma 1 (Pre-Signature Correctness). Under the assumptions of Thm. 2, aSIGID,R satisfies pre-
signature correctness as for Def. 2.

Proof. Let us fix an arbitrary message m and a statement witness pair (Y, y) ∈ R. Let (sk , pk) ← Gen(1n),
σ̃ ← pSignsk (m,Y ), σ := Adaptpk (σ̃, y) and y′ := Extpk (σ, σ̃, Y ). From Fig. 3 we know that σ̃ = (h, s̃), σ =
(h, s) and y′ = fext(s, s̃), where we have s := fadapt(s̃, y), s̃ ← P2(sk , Rpre, h, St), h := H(Rsign,m),
Rsign := fshift(Rpre, Y ) and (Rpre, St) ← P1(sk). We first show pVrfypk (m,Y ; σ̃) = 1. From completeness of
the ID scheme, we know that V0(pk , h, s̃) = Rpre. Hence:

H(fshift(V0(pk , h, s̃), Y ),m) = H(fshift(Rpre, Y ),m) = H(Rsign,m) = h (3)

which is what we needed to prove. We now show that Vrfypk (m;σ) = 1. By Fig. 2, we need to show that
h = H(V0(pk , h, s),m). This follows from the property of fshift, fadapt (cf. Eq. (1)) and Eq. (3) as follows:

H(V0(pk , h, s),m) =H(V0(pk , h, fadapt(s̃, y)),m)

(1)
=H(fshift(V0(pk , h, s̃), Y ),m)

(3)
= h.

Finally, we need to show that (Y, y′) ∈ R. This follows from Eq. (2) since:

y′ = fext(s, s̃) = fext(fadapt(s̃, y), s̃)
(2)
= y.
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Lemma 2 (aEUF–CMA-Security). Under the assumptions of Thm. 2, aSIGID,R satisfies the aEUF–CMA
security as for Def. 3.

Let us give first a high level overview of the proof. Our goal is to provide a reduction such that, given
an adversary A who can win the experiment aSigForgeA,aSIGID,R , we can build a simulator who can win the
strongSigForge experiment of the underlying signature or can break the hardness of the relation R. In the
first case, we check if A’s forgery σ∗ is equal to Adaptpk (σ̃, y). If so, we use A to break the hardness of
the relation R by extracting the witness y = Ext(σ∗, σ̃, Y ). Otherwise, A was able to forge a signature
“unrelated” to the pre-signature provided to it. In this case, it is used to win the strongSigForge experiment.
All that remains is to answer A’s signing and pre-signing queries using strongSigForge’s signing queries. This
is done by programming the random oracle such that the full-signatures generated by the challenger in the
strongSigForge game look like pre-signatures for A.

Proof. We prove the lemma by defining a series of game hops. The modifications for each game hop is
presented in code form in the full version of this paper [14].

Game G0G0G0: This game is the original aSigForge experiment, where the adversary A outputs a valid forgery σ∗

for a message m of its choice, while having access to pre-signing and signing oracles OpS and OS respectively.
Being in the random oracle model, all the algorithms of the scheme and the adversary have access to the
random oracle H. Since G0G0G0 corresponds to aSigForge, it follows that Pr[aSigForgeA,aSIGID,R(n) = 1] = Pr[G0G0G0 =
1].
Game G1G1G1: This game works as G0G0G0 except when the adversary outputs a forgery σ∗, the game checks if
adapting the pre-signature σ̃ using the secret witness y results in σ∗. If so, the game aborts.

Claim. Let Bad1 be the event where G1G1G1 aborts. Then Pr[Bad1] ≤ ν1(n), where ν1 is a negligible function in
n.

Proof: This claim is proven by a reduction to the relation R. We construct a simulator S which breaks the
hardness of R using A that causes G1G1G1 to abort with non-negligible probability. The simulator receives a
challenge Y ∗, and generates a key pair (sk , pk)← Gen(1n) in order to simulate A’s queries to the oracles H,
OpS and OS. This simulation of the oracles work as described in G1G1G1.

Upon receiving the challenge message m∗ from A, S computes a pre-signature σ̃ ← pSignsk (m
∗, Y ∗)

and returns the pair (σ̃, Y ) to the adversary. Upon A outputting a forgery σ∗ and assuming that Bad1
happened (i.e., Adapt(σ̃, y) = σ), pre-signature correctness (Def. 2) implies that the simulator can extract
y∗ by executing Ext(σ∗, σ̃, Y ∗) in order to obtain (Y ∗, y∗) ∈ R.

We note that the view of A in this simulation and in G1G1G1 are indistinguishable, since the challenge Y ∗ is
an instance of the hard relation R and has the same distribution to the public output of GenR. Therefore,
the probability that S breaks the hardness of R is equal to the probability that the event Bad1 happens.
Hence, we conclude that Bad1 only happens with negligible probability. ■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 =
1] + ν1(n).

Game G2G2G2: This game is similar to the previous game except for a modification in the OpS oracle. After
the execution of preSignsk , the oracle obtains a pre-signature σ̃ from which it extracts the randomness
Rpre ← V0(pk , σ̃). The oracle computes Rsign = fshift(Rpre, Y ) and checks if H was already queried on the
inputs Rpre∥m or Rsign∥m before the execution of pSignsk . In this case the game aborts.

Claim. Let Bad2 be the event thatG2G2G2 aborts in OpS. Then Pr[Bad2] ≤ ν2(n), where ν2 is a negligible function
in n.

Proof: We first recall that the output of P1 (i.e., Rpre) is uniformly random from a super-polynomial set
of size q in the security parameter. From this it follows that Rsign is distributed uniformly at random in
the same set. Furthermore, A being a PPT algorithm, it can only make polynomially many queries to H,
OS and OpS oracles. Denoting ℓ as the total number of queries to H, OS and OpS, we have: Pr[Bad2] =
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Pr[H ′[Rpre||m] ̸= ⊥∨H ′[Rsign||m] ̸= ⊥] ≤ 2 ℓ
q ≤ ν2(n). This follows from the fact that ℓ is polynomial in the

security parameter. ■
Since games G2G2G2 and G1G1G1 are identical except in the case where Bad2 occurs, it holds that Pr[G1G1G1 = 1] ≤

Pr[G2G2G2 = 1] + ν2(n).

Game G3G3G3: In this game, upon a query to the OpS, the game produces a full-signature instead of a pre-
signature by executing Signsk instead of preSignsk . Accordingly, it programs the random oracle H to make
the full-signature “look like” a pre-signature from the point of view of the adversary A. This is done by:

1. It sets H(Rpre∥m) to the value stored at position H(Rsign∥m).
2. It sets H(Rsign∥m) to a fresh value chosen uniformly at random.

The above programming makes sense as our definition of fshift requires it to be deterministic and to possess
the same domain and codomain with respect to the commitment set Drand. Note further that A can only
notice that H was programmed if it was previously queried on either Rpre∥m or Rsign∥m. But as described
in the previous game, we abort if such an event happens. Hence, we have that Pr[G2G2G2 = 1] = Pr[G3G3G3 = 1].

GameG4G4G4: In this game, we impose new checks during the challenge phase that are same as the ones imposed
in G2G2G2 during the execution of OpS.

Claim. Let Bad3 be the event that G4G4G4 aborts in the challenge phase. Then Pr[Bad3] ≤ ν3(n), where ν3 is a
negligible function in n.

Proof: The proof is identical to the proof in G2G2G2. ■
It follows that Pr[G4G4G4 = 1] ≤ Pr[G3G3G3 = 1] + ν3(n).

Game G5G5G5: Similar to game G3G3G3, we generate a signature instead of a pre-signature in the challenge phase
and program H such that the full-signature looks like a correct pre-signature from A’s point of view. We get
Pr[G5G5G5 = 1] = Pr[G4G4G4 = 1].

Now that the transition from the original aSigForge experiment (gameG0G0G0) to gameG5G5G5 is indistinguishable,
it only remains to show the existence of a simulator S that can perfectly simulate G5G5G5 and uses A to win the
strongSigForge game. The modifications from games G1G1G1 - G5G5G5 and the simulation in code form can be found
in the full version of this paper [14].

We emphasize that the main differences between the simulation and Game G5G5G5 are syntactical. Namely,
instead of generating the public and secret keys and computing the algorithm Signsk and the random oracle
H, S uses its oracles SIGID and HID. Therefore, S perfectly simulates G5G5G5. It remains to show that S can use
the forgery output by A to win the strongSigForge game.

Claim. (m∗, σ∗) constitutes a valid forgery in game strongSigForge.

Proof: To prove this claim, we show that the tuple (m∗, σ∗) has not been returned by the oracle SIGID before.
First note that A wins the experiment if it has not queried on the challenge message m∗ to OpS or OS.

Therefore, SIGID is queried on m∗ only during the challenge phase. If A outputs a forgery σ∗ that is equal
to the signature σ as output by SIGID, it would lose the game since this signature is not valid given the fact
that H is programmed.

Hence, SIGID has never output σ∗ when queried on m∗ before, thus making (m∗, σ∗) a valid forgery for
game strongSigForge. ■

From games G0G0G0−G5G5G5, we have that Pr[G0G0G0 = 1] ≤ Pr[G5G5G5 = 1]+ ν(n), where ν(n) = ν1(n) + ν2(n) + ν3(n)
is a negligible function in n. Since S simulates game G5G5G5 perfectly, we also have that Pr[G5G5G5 = 1] =
Pr[strongSigForgeSA,SIG(n) = 1]. Combining this with the probability statement in G0G0G0, we obtain the follow-
ing:

Pr[aSigForgeA,aSIGID,R(n) = 1] ≤ Pr[strongSigForgeSA,SIGID(n) = 1] + ν(n).
Recall that the negligible function ν1(n), contained in the sum ν(n) above, precisely quantifies the ad-

versary’s advantage in breaking the hard relation R. Thus, the probability of breaking the unforgeability of
the aSIGID,R is clearly bounded above by that of breaking either R or the strong unforgeability of SIGID.
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Lemma 3 (Pre-Signature Adaptability). Under the assumptions of Thm. 2, aSIGID,R satisfies the pre-
signature adaptability as for Def. 4.

Proof. Assume pVrfypk (m,Y ; σ̃) = 1, with the notations having their usual meanings from Fig. 3, which
means h = H(fshift(V0(pk , h, s̃), Y ),m). For any valid pair (Y, y) ∈ R, we can use the homomorphic property
from Eq. (1). Then, for such a pair (Y, y) ∈ R, plugging fshift(V0(pk , h, s̃), Y ) = V0(pk , h, fadapt(s̃, y)) in
the above equation implies h = H(V0(pk , h, fadapt(s̃, y)),m). This directly implies Vrfypk (m;σ) = 1, where
s = fadapt(s̃, y) and σ = (h, s). Therefore, adapting the valid pre-signature would also result in a valid
full-signature.

Lemma 4 (Witness Extractability). Under the assumptions of Thm. 2, aSIGID,R satisfies the witness
extractability as for Def. 5.

This proof is very similar to the proof of Lemma 2 with the mere difference that we only need to provide a
reduction to the strongSigForge experiment. This is because in the aWitExtA,aSIG

Rg,SIGID
experiment, A provides

the public value Y ∗ and must forge a valid full-signature σ∗ such that (Y ∗,Extpk (σ∗, σ̃, Y ∗)) ̸∈ R. The full
proof can be found in the full version of this paper [14].

Remark 2. We note that our proofs for the aEUF–CMA security and witness extractability are in its essence
reductions to the strong unforgeability of the underlying signature schemes. Yet the Fiat-Shamir transfor-
mation does not immediately guarantee the resulting signature scheme to be strongly unforgeable. However,
we first note that many such signature schemes are indeed strongly unforgeable, for instance Schnorr [25],
Katz-Wang (from Chaum-Pedersen identification scheme) [24] and Guillou-Quisquater [1] signature schemes
all satisfy strong unforgeability. Moreover, one can transform any Fiat-Shamir based existentially unforgeable
signature scheme into a strongly unforgeable one via the generic transformation using the results of Bellare
et.al. [4].

4 Two-party Signatures with Aggregatable Public Keys from Identification
Schemes

Before providing our definition and generic transformation for two-party adaptor signatures, we show how
to generically transform signature schemes based on identification schemes into two-party signature schemes
with aggregatable public keys denoted by SIG2. In Sec. 5, we then combine the techniques used in this section
with the ones from Sec. 3 in order to generically transform identification schemes into two-party adaptor
signature schemes.

Informally, a SIG2 scheme allows two parties to jointly generate a signature which can be verified under
their combined public keys. An application of such signature schemes can be found in cryptocurrencies where
two parties wish to only allow conditional payments such that both users have to sign a transaction in order
to spend some funds. Using SIG2, instead of submitting two separate signatures, the parties can submit a
single signature while enforcing the same condition (i.e., a transaction must have a valid signature under the
combined key) and hence reduce the communication necessary with the blockchain. Importantly and unlike
threshold signature schemes, the key generation here is non-interactive. In other words, parties generate their
public and secret keys independently and anyone who knows both public keys can compute the joint public
key of the two parties.

We use the notation ΠFunc⟨xi,x1−i⟩ to represent a two-party interactive protocol Func between Pi and P1−i
with respective secret inputs xi, x1−i for i ∈ {0, 1}. Furthermore, if there are common public inputs e.g.,
y1, · · · , yn we use the notation ΠFunc⟨xi,x1−i⟩(y1, · · · , yn). We note that the execution of a protocol might not
be symmetric, i.e., party Pi executes the procedures ΠFunc⟨xi,x1−i⟩ while party P1−i executes the procedures
ΠFunc⟨x1−i,xi⟩.
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4.1 Two-party Signatures with Aggregatable Public Keys

We start with defining a two-party signature scheme with aggregatable public keys. Our definition is inspired
by the definitions from prior works [8, 26, 7].

Definition 7 (Two-party Signature with Aggregatable Public Keys). A two-party signature scheme
with aggregatable public keys is a tuple of PPT protocols and algorithms SIG2 = (Setup,Gen, ΠSign,KAg,Vrfy),
formally defined as:

Setup(1n): is a PPT algorithm that on input a security parameter n, outputs public parameters pp.
Gen(pp): is a PPT algorithm that on input public parameter pp, outputs a key pair (sk , pk).
ΠSign⟨sk i,sk1−i⟩(pk0, pk1,m): is an interactive, PPT protocol that on input secret keys sk i from party Pi with

i ∈ {0, 1} and common values m ∈ {0, 1}∗ and pk0, pk1, outputs a signature σ.
KAg(pk0, pk1): is a DPT algorithm that on input two public keys pk0, pk1, outputs an aggregated public key

apk.
Vrfyapk (m;σ): is a DPT algorithm that on input public parameters pp, a public key apk, a message m ∈
{0, 1}∗ and a signature σ, outputs a bit b.

The completeness property of SIG2 guarantees that if the protocol ΠSign is executed correctly between
the two parties, the resulting signature is a valid signature under the aggregated public key.

Definition 8 (Completeness). A two-party signature with aggregatable public keys SIG2 satisfies complete-
ness, if for all key pairs (sk , pk)← Gen(1n) and messages m ∈ {0, 1}∗, the protocol ΠSign⟨sk i,sk1−i⟩(pk0, pk1,m)
outputs a signature σ to both parties P0,P1 such that Vrfyapk (m;σ) = 1 where apk := KAg(pk0, pk1).

A two-party signature scheme with aggregatable public keys should satisfy unforgeability. At a high level,
this property guarantees that if one of the two parties is malicious, this party is not able to produce a
valid signature under the aggregated public key without cooperation of the other party. We formalize the
property through an experiment SigForgebA,SIG2

, where b ∈ {0, 1} defines which of the two parties is corrupt.
This experiment is initialized by a security parameter n and run between a challenger C and an adversary
A, which proceeds as follows. The challenger first generates the public parameters pp by running the setup
procedure Setup(1n) as well as a signing key pair (sk1−b, pk1−b) by executing Gen(1n), thereby simulating
the honest party P1−b. Thereafter, C forwards ppC and pk1−b to the adversary A who generates its own
key pair (sk b, pk b), thereby emulating the malicious party Pb, and submits (sk b, pk b) to C. The adversary
A additionally obtains access to an interactive and stateful signing oracle Ob

ΠS
, which simulates the honest

party P1−b during the execution of ΠASign⟨sk1−b,·⟩. Furthermore, every queried message m is stored in a query

list Q.
Eventually, A outputs a forgery in form of a SIGID

2 signature σ∗ and a message m∗. A wins the experiment
if σ∗ is a valid signature for m∗ under the aggregated public key apk := KAg(pk0, pk1) and m∗ was never
queried before, i.e., m∗ ̸∈ Q. Below, we give a formal definition of the unforgeability game.

Definition 9 (2-EUF–CMA Security). A two-party, public key aggregatable signature scheme SIG2 is
unforgeable if for every PPT adversary A, there exists a negligible function ν such that: for b ∈ {0, 1},
Pr[SigForgebA,SIG2

(n) = 1] ≤ ν(n), where the experiment SigForgebA,SIG2
(n) is defined as follows:

SigForgebA,SIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : (σ∗,m∗)← AOb
ΠS

(·)
(pk1−b, skb, pkb)

5 : return
(
m∗ ̸∈ Q ∧ VrfyKAg(pk0,pk1)

(m∗;σ∗)
)

Ob
ΠS

(m)

1 : Q := Q∪ {m}
2 : σ ← ΠA

Sign⟨sk1−b,·⟩(pk0, pk1,m)
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Remark 3 (On security definition.). There are two different approaches for modeling signatures with aggre-
gatable public keys in the literature, namely the plain public-key model [3] (also known as key-verification
model [12]) and the knowledge-of-secret-key (KOSK) model [7]. In the plain public-key setting the adversary
chooses a key pair (sk b, pk b) and only declares the public key pk b to the challenger in the security game.
However, security proofs in this setting typically require rewinding techniques with the forking lemma. This
is undesirable for the purpose of this paper, as we aim to construct adaptor signatures and its two-party
variant generically as building blocks for further applications such as payment channels [2]. Payment chan-
nels are proven secure in the UC framework that does not allow the use of rewinding techniques in order to
ensure concurrency. Thus, the plain public-key model does not seem suitable for our purpose. In the KOSK
setting, however, the adversary outputs its (possibly maliciously chosen) key pair (sk b, pk b) to the challenger.
In practice this means that the parties need to exchange zero-knowledge proofs of knowledge of their secret
key3. Similar to previous works [7, 27], we do not require the forking lemma or rewinding in the KOSK
setting and hence follow this approach.

4.2 Generic Transformation from SIGID to SIGID
2

We now give a generic transformation from SIGID schemes to two-party signature schemes with aggregatable
public keys.

At a high level, our transformation turns the signing procedure into an interactive protocol which is
executed between the two parties P0,P1. The main idea is to let both parties engage in a randomness
exchange protocol in order to generate a joint public randomness which can then be used for the signing
procedure. In a bit more detail, to create a joint signature, each party Pi for i ∈ {0, 1} can individually
create a partial signature with respect to the joint randomness by using the secret key sk i and exchange her
partial signature with P1−i. The joint randomness ensures that both partial signatures can be combined to
one jointly computed signature.

In the following, we describe the randomness exchange protocol that is executed during the signing
procedure in more detail, as our transformation heavily relies on it. The protocol, denoted by ΠRand-Exc,
makes use of two cryptographic building blocks, namely an extractable commitment scheme C = (Gen,Com,
Dec,Extract) and a NIZK proof system NIZK = (SetupR,Prove,Verify). Consequently, the common input
to both parties P0 and P1 are the public parameters ppC of the commitment scheme, while each party Pi

takes as secret input her secret key sk i. In the following, we give description of the ΠRand-Exc⟨sk0,sk1⟩(ppC, crs)
protocol and present it in a concise way in Fig. 5.

P0(ppC, crs, sk0) P1(ppC, crs, sk1)

(R0, St0)← P1(sk0)
π0 ← NIZK.Prove(crs, R0, sk0)

(c, d)← C.Com(ppC, (R0, π0))
c−−−−−−−−→ (R1, St1)← P1(sk1)

R1,π1←−−−−−−−− π1 ← NIZK.Prove(crs, R1, sk1)
d−−−−−−−−→ R′

0 ← C.Dec(ppC, c, d)
If NIZK.Verify(crs, R1, π1) = 0, then abort If NIZK.Verify(crs, R′

0, π0) = 0, then abort

R0, St0, R1 R1, St1, R0

Fig. 5: ΠRand-Exc Protocol

1. Party P0 generates her public randomness R0 using algorithm P1 from the underlying ID scheme alongside
a NIZK proof π0 ← NIZK.Prove(crs, R0, sk0) that this computation was executed correctly with the
corresponding secret value sk0. P0 executes (c, d) ← C.Com(pp, (R0, π0)) to commit to R0 and π0 and
sends the commitment c to P1.

3 Using techniques from [20, 16] it is possible to obtain NIZKs which allow for witness extraction without rewinding.
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Setup(1n)

1 : ppC ← C.Gen(1n)

2 : crs← NIZK.SetupR(1
n)

3 : return pp := (1n, ppC, crs)

Gen(pp)

1 : Parse pp = (1n, ppC, crs)

2 : (sk , pk ′)← IGen(n)

3 : pk := (pp, pk ′)

4 : return (sk , pk)

KAg(pk0, pk1)

1 : apk := fcom-pk(pk0, pk1)

2 : return apk

ΠSign⟨sk i,sk1−i⟩(pk i, pk1−i,m)

1 : Parse pk i = ((1n, ppC, crs), pk
′
i)

2 : (Ri, Sti, R1−i)← ΠRand-Exc⟨ski,sk1−i⟩(ppC, crs)

3 : Rsign := fcom-rand(R0, R1)

4 : h := H(Rsign,m)

5 : si ← P2(sk i, Ri, h, Sti)

6 : s1−i ← ΠExchange ⟨si, s1−i⟩
7 : (h, s) := fcom-sig(h, (s0, s1))

8 : return (h, s)

Vrfyapk (m; (h, s))

1 : Rsign := V0(apk , h, s)

2 : return h := H(Rsign,m)

Fig. 6: SIGID
2 : SIG2 scheme from identification scheme.

2. Upon receiving the commitment c from P0, party P1 generates her public randomness R1 using algorithm
P1. She also computes a NIZK proof as π1 ← NIZK.Prove(crs, R1, sk1), which proves correct computation
of R1, and sends R1 and π1 to P0.

3. Upon receiving R1 and π1 from P1, P0 sends the opening d to her commitment c to P1.
4. P1 opens the commitment in this round. At this stage, both parties check that the received zero-knowledge

proofs are valid. If the proofs are valid, each party Pi for i ∈ {0, 1} outputs Ri, Sti, R1−i.

Our transformation can be found in Fig. 6. Note that we use a deterministic function fcom-rand(·, ·) in step
3 in the signing protocol which combines the two public random values R0 and R1. In step 6 of the same
protocol, we assume that the partial signatures are exchanged between the parties via the protocol ΠExchange

upon which the parties can combine them using a deterministic function fcom-sig(·, ·) in step 7. Further, a
combined signature can be verified under a combined public key of the two parties. In more detail, to verify
a combined signature (h, s) := fcom-sig(h, (s0, s1)), in step 7, there must exist an additional deterministic
function fcom-pk(·, ·) (in step 1 of the KAg algorithm) such that:

Pr


Vrfyapk (m; (h, s)) = 1

∣∣∣∣∣∣

(pk0, sk0)← IGen(n), (pk1, sk1)← IGen(n)
(h, s)← ΠSign⟨sk0,sk1⟩(pk0, pk1,m)
apk := fcom-pk(pk0, pk1)


 = 1. (4)

We also require that given a full signature and a secret key sk i with i ∈ {0, 1}, it is possible to extract a valid
partial signature under the the public key pk1−i of the other party. In particular, there exists a function
fdec-sig(·, ·, ·) such that:

Pr


Vrfypk1−i

(m; (h, s1−i)) = 1

∣∣∣∣∣∣

(pk0, sk0)← IGen(n), (pk1, sk1)← IGen(n)
(h, s)← ΠSign⟨sk0,sk1⟩(pk0, pk1,m)
(h, s1−i) := fdec-sig(sk i, pk i, (h, s))


=1. (5)

Note that equations 4 and 5 implicitly define fcom-sig through the execution of ΠSign in the conditional
probabilities.

The instantiations of these functions for Schnorr, Katz-Wang signatures and Guillou-Quisquater signa-
tures can be found in the full version of this paper [14].
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We note the similarity between this transformation with that in Fig. 3. In particular, both of them
compute the public randomness Rsign by shifting the original random values. Note also that running the
algorithm V0 on the inputs (pk i, h, si) would return Ri,∀i ∈ {0, 1}.

Below, we show that the transformation in Fig. 6 provides a secure two-party signature with aggregatable
public keys. To this end, we show that SIGID

2 satisfies SIG2 completeness and unforgeability from Def. 8 and
Def. 9, respectively.

Theorem 3. Assume that SIGID is an SUF–CMA-secure signature scheme transformed using Fig. 2. Further,
assume that the functions fcom-sig, fcom-pk and fdec-sig satisfy the relations, Equations (4) and (5) respectively.
Let NIZK be a non-interactive zero-knowledge proof system and let C be an extractable commitment scheme.
Then the resulting SIGID

2 scheme from the transformation in Fig. 6 is a secure two-party signature scheme
with aggregatable public keys in the random oracle model.

Lemma 5. Under the assumptions of Thm. 3, SIGID
2 satisfies Def. 8.

Proof. The proof follows directly from Eq. 4 and the construction of KAg algorithm in Fig. 6.

Lemma 6. Under the assumptions of Thm. 3, SIGID
2 satisfies Def. 9.

Proof. We prove this lemma via reduction to the unforgeability property of the SIGID scheme. That is, we
show that if there exists an adversary A that breaks the unforgeability property of the SIGID

2 scheme with
more than negligible probability, then we can construct an adversary S that breaks the unforgeability of the
SIGID scheme with more than negligible probability. We show a series of games, starting with SigForgebA,SIG2

,
such that each game is computationally indistinguishable from the previous one. The last game is modified
in such a way that S can use A’s forgery to create its own forgery for the unforgeability game against the
SIGID scheme. We prove Lemma 6 by separately considering the cases of the adversary corrupting party P0

or party P1, respectively.

Adversary corrupts P0. In the following we give the proof in case the adversary corrupts party P0.
Game G0G0G0: This is the regular SigForge0A,SIG2

(n) experiment, in which the adversary plays the role of party
P0. In the beginning, the challenger generates the public parameters as pp ← Setup(1n). Note that the Setup
procedure, apart from computing crs ← NIZK.SetupR(1

n), includes the execution of C.Gen through which
the challenger can learn the trapdoor tr for the commitment scheme C. Further, the challenger generates a
fresh signing key pair (sk1, pk1) ← Gen(1n), sends pp and pk1 to A and receives the adversary’s key pair
(pk0, sk0).

Game G1G1G1: This game proceeds exactly like the previous game, with a modification in the signing oracle.
Upon A querying the signing oracle on message m, it sends the commitment c to its public randomness R0.
The challenger, using the trapdoor tr , then extracts a randomness R′0 ← C.Extract(pp, tr , c) and computes
the joint randomness as Rsign ← fcom-rand(R

′
0, R1). Upon receiving the opening d to c from the adversary, the

challenger checks if R′0 = C.Dec(pp, c, d). If this does not hold, the challenger aborts.

Claim. Let Bad1 be the event that G1G1G1 aborts in the signing oracle. Then, we have Pr[Bad1] ≤ ν1(n), where
ν1 is a negligible function in n.

Proof: Note that the challenger in game G1G1G1 aborts only if the extracted value R′0 from commitment c is not
equal to the actual committed value R0 in c, i.e., if C.Extract(pp, tr , c) ̸= C.Dec(pp, c, d). By the extractability
property of C this happens only with negligible probability. In other words, it holds that Pr[Bad1] ≤ ν1(n),
where ν1 is a negligible function in n. ■
Game G2G2G2: This game proceeds as game G1G1G1, with a modification to the signing oracle. Upon A querying
the signing oracle on input message m, instead of generating its signature (h, s1) with respect to the joint
public randomness Rsign, the challenger generates it only with respect to its own randomness R1. That is,
the challenger computes h := H(R1,m) and executes the signing procedure w.r.t. this h. The challenger
then checks if the adversary has queried the random oracle on input (Rsign,m) or (R1,m) before the signing
query. If so, the challenger aborts. Otherwise, the challenger programs the random oracle such that on input
(Rsign,m) it returns h.
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Claim. Let Bad2 be the event that G2G2G2 aborts in the signing oracle. Then, we have Pr[Bad2] ≤ ν2(n), where
ν2 is a negligible function in n.

Proof: Note that R1 and Rsign are uniformly random elements from a set of size q. Furthermore, A being a
PPT algorithm, can only make polynomially many queries to H and OpS oracles. Denoting by ℓ the total
number of queries to H and OS, we have: Pr[Bad2] = Pr[H(Rsign,m) ̸= ⊥] ≤ ℓ

q ≤ ν2(n). ■
Game G3G3G3: In this game, the only modification as compared to the previous game is that during the Setup
procedure, the challenger executes the algorithm (c̃rs, τ) ← NIZK.Setup′R(1

n) instead of crs ← SetupR(1
n),

which allows the challenger to learn the trapdoor τ . Since the two distributions {crs : crs ← SetupR(1
n)}

and {c̃rs : (c̃rs, τ)← Setup′R(1
n)} are indistinguishable to A except with negligible probability, we have that

Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1] + ν3(n) where ν3 is a negligible function in n.

Game G4G4G4: This game proceeds exactly like the previous game with a modification in the signing oracle.
Instead of computing the NIZK proof π1, the challenger executes πS ← S(c̃rs, τ, R1). Due to the zero-
knowledge property of the NIZK proof system, we know that the distributions {π : π ← Prove(c̃rs, R1, r1)}
and {πS : πS ← S(c̃rs, τ, R1)} are indistinguishable to A except with negligible probability. Therefore, it holds
that Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + ν4(n) where ν4 is a negligible function in n.

Having shown that the transition from game GGG0 to game GGG4 is indistinguishable, it remains to show that
we can construct an adversary S playing in game strongSigForgeS,SIGID , which simulates game GGG4 to A and
which can use A’s forgery to win its own game. The simulation of S differs from game GGG4 as follows:

1. S does not choose its own key pair, but instead uses the public key that it receives from game strongSigForgeS,SIGID .
2. Upon a signing oracle query on message m, S does not compute its signature s1, but instead queries its

own signing oracle on message m.
3. Upon a random oracle query on message m, S forwards the query to its own random oracle

It is easy to see, that S perfectly simulates game GGG4. It remains to show that S can use a valid forgery
output by A to win the strongSigForgeS,SIGID game.

Claim. A valid forgery (m∗, (h∗, s∗)) output by A in game SigForge1A,SIGID
2

can be transformed into a valid

forgery (m∗, (h∗, s∗1)) in game strongSigForgeS,SIGID .

Proof: WhenA outputs (m∗, (h∗, s∗)), S extracts the partial signature (h∗, s∗1) by executing fdec-sig(sk0, pk0, (h
∗, s∗))

(from Eq. 5) and uses (h∗, s∗1) as its own forgery. Note that S knows the adversary’s key pair (sk0, pk0). By
definition, A wins this game if it has not queried a signature on m∗ before. Thus, S has also not queried
the its own signing oracle on m∗ before and S has not programmed the random oracle on any input (·,m∗).
Finally, Eq. (5) implies that (m∗, (h∗, s∗1)) is a valid forgery under the public key pk1. ■

From gamesG0G0G0−G4G4G4, we have that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1]+ν(n), where ν(n) = ν1(n)+ν2(n)+ν3(n)+
ν4(n) is a negligible function in n. Thus, we have Pr[SigForge1A,SIGID

2
(n) = 1] ≤ Pr[strongSigForgeS,SIGID(n) =

1] + ν(n).

Adversary corrupts P1. The proof for the case where the adversary corrupts P1, follows exactly the same
steps as above with only a change in gameG1G1G1. Instead of extracting the randomness R′0 from the commitment
c, we must show that the adversary does not learn any information (except with negligible probability) about
R0 from c. We can do so by exhibiting a reduction to the hiding property of the commitment scheme C.

5 Two-party Aggregatable Adaptor Signatures

We are now ready to formally introduce the notion of two-party adaptor signatures with aggregatable public
keys which we denote by aSIG2. Our definition can be seen as a combination of the definition of adaptor
signatures from Sec. 3 and the definition of two-party signatures with aggregatable public keys from Sec. 4.
Unlike the single party adaptor signatures, in aSIG2 both parties have the role of the signer and generate
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pre-signatures cooperatively. Furthermore, both parties can adapt the pre-signature given a witness value y.
We note that both the pre-signature and the full-signature are valid under the aggregated public keys of the
two parties. We formally define an aSIG2 scheme w.r.t. a SIG2 scheme (which is in turn defined w.r.t. a SIG
scheme) and a hard relation R.

Afterwards, we show how to instantiate our new definition. Concretely, we present a generic transforma-
tion that turns a SIGID

2 scheme with certain homomorphic properties into a two-party adaptor signatures
scheme. As a SIGID

2 scheme is constructed w.r.t. a SIGID scheme (cf. Sec. 4), the construction presented in
this section can implicitly transform digital signatures based on ID schemes to two-party adaptor signatures.

The definition of a two-party adaptor signature scheme aSIG2 is similar to the definition of a standard
adaptor signature scheme as for Def. 1. The main difference lies in the pre-signature generation. Namely, the
algorithm pSign is replaced by a protocol ΠpSign which is executed between two parties.

Definition 10 (Two-Party Adaptor Signature Scheme with Aggregatable Public Keys). A two-
party adaptor signature scheme with aggregatable public keys is defined w.r.t. a hard relation R and a two-party
signature scheme with aggregatable public keys SIG2 = (Setup,Gen, ΠSign,KAg,Vrfy). It is run between parties
P0,P1 and consists of a tuple aSIG2 = (ΠpSign,Adapt, pVrfy,Ext) of efficient protocols and algorithms which
are defined as follows:

ΠpSign⟨sk i,sk1−i⟩(pk0, pk1,m, Y ): is an interactive protocol that on input secret keys sk i from party Pi with
i ∈ {0, 1} and common values public keys pk i, message m ∈ {0, 1}∗ and statement Y ∈ LR, outputs a
pre-signature σ̃.

pVrfyapk (m,Y ; σ̃): is a DPT algorithm that on input an aggregated public key apk, a message m ∈ {0, 1}∗,
a statement Y ∈ LR and a pre-signature σ̃, outputs a bit b.

Adaptapk (σ̃, y): is a DPT algorithm that on input an aggregated public key apk, a pre-signature σ̃ and witness
y, outputs a signature σ.

Extapk (σ, σ̃, Y ): is a DPT algorithm that on input an aggregated public key apk, a signature σ, pre-signature
σ̃ and statement Y ∈ LR, outputs a witness y such that (Y, y) ∈ R, or ⊥.

We note that in aSIG2, the pVrfy algorithm enables public verifiability of the pre-signatures, e.g., aSIG2

can be used in a three-party protocol where the third party needs to verify the validity of the generated
pre-signatrue.

In the following, we formally define properties that a two-party adaptor signature scheme with aggre-
gatable public keys aSIG2 has to satisfy. These properties are similar to the ones for single party adaptor
signature schemes. We start by defining two-party pre-signature correctness which, similarly to Def. 2 states
that an honestly generated pre-signature and signature are valid, and it is possible to extract a valid witness
from them.

Definition 11 (Two-Party Pre-Signature Correctness). A two-party adaptor signature with aggre-
gatable public keys aSIG2 satisfies two-party pre-signature correctness, if for all n ∈ N, messages m ∈ {0, 1}∗,
it holds that:

Pr




pVrfyapk (m,Y ; σ̃) = 1
∧

Vrfyapk (m;σ) = 1
∧

(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣∣

pp ← Setup(1n), (sk0, pk0)← Gen(pp)
(sk1, pk1)← Gen(pp), (Y, y)← GenR(1n)
σ̃ ← ΠpSign⟨sk0,sk1⟩(pk0, pk1,m, Y )
apk := KAg(pk0, pk1)
σ := Adaptapk (σ̃, y), y

′ := Extapk (σ, σ̃, Y )



= 1.

The unforgeability security definition is similar to Def. 9, except the adversary interacts with two or-
acles Ob

ΠS
,Ob

ΠpS
in order to generate signatures and pre-signatures, as in Def. 3. More precisely, in the

aSigForgebA,aSIG2
(n) experiment defined below, A obtains access to interactive, stateful signing and pre-signing

oracles Ob
ΠS

and Ob
ΠpS

respectively. Oracles Ob
ΠS

and Ob
ΠpS

simulate the honest party P1−b during an ex-

ecution of the protocols ΠASign⟨sk1−b,·⟩ and ΠApSign⟨sk1−b,·⟩ respectively. Similar to Def. 9, both the protocols

ΠASign⟨sk1−b,·⟩, Π
A
pSign⟨sk1−b,·⟩ employed by the respective oracles Ob

ΠS
,Ob

ΠpS
gets an oracle access to A as well.
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Definition 12 (2-aEUF–CMA Security). A two-party adaptor signature with aggregatable public keys
aSIG2 is unforgeable if for every PPT adversary A there exists a negligible function ν such that: Pr[aSigForgeA,aSIG2

(n) =
1] ≤ ν(n), where the experiment aSigForgeA,aSIG2

(n) is defined as follows:

aSigForgebA,aSIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : m∗ ← AOb
ΠS

,Ob
ΠpS (pk1−b, skb, pkb)

5 : (Y, y)← GenR(1n)

6 : σ̃ ← ΠA
pSign⟨sk1−b,·⟩(m

∗, Y )

7 : σ∗ ← AOb
ΠS

,Ob
ΠpS (σ̃, Y )

8 : return
(
m∗ ̸∈ Q ∧ VrfyKAg(pk0,pk1)

(m∗;σ∗)
)

Ob
ΠS

(m)

1 : Q := Q∪ {m}
2 : σ ← ΠA

Sign⟨sk1−b,·⟩(pk0, pk1,m)

Ob
ΠpS

(m,Y )

1 : Q := Q∪ {m}
2 : σ̃ ← ΠA

pSign⟨sk1−b,·⟩(pk0, pk1,m, Y )

The definition of two-party pre-signature adaptability follows Def. 4 closely. The only difference is that
in this setting the pre-signature must be valid under the aggregated public keys.

Definition 13 (Two-Party Pre-Signature Adaptability). A two-party adaptor signature scheme with
aggregatable public keys aSIG2 satisfies two-party pre-signature adaptability, if for all n ∈ N, messages m ∈
{0, 1}∗, statement and witness pairs (Y, y) ∈ R, public keys pk0 and pk1, and pre-signatures σ̃ ∈ {0, 1}∗
satisfying pVrfyapk (m,Y ; σ̃) = 1 where apk := KAg(pk0, pk1), we have Pr[Vrfyapk (m;Adaptapk (σ̃, y)) = 1] =
1.

Finally, we define two-party witness extractability.

Definition 14 (Two-Party Witness Extractability). A two-party public key aggregatable adaptor sig-
nature scheme aSIG2 is witness extractable if for every PPT adversary A, there exists a negligible function
ν such that the following holds: Pr[aWitExtA,aSIG2(n) = 1] ≤ ν(n), where the experiment aWitExtA,aSIG2 is
defined as follows:

aWitExtbA,aSIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : (m∗, Y ∗)← AOb
ΠS

,Ob
ΠpS (pk1−b, skb, pkb)

5 : σ̃ ← ΠA
pSign⟨sk1−b,·⟩(m

∗, Y ∗)

6 : σ∗ ← AOb
ΠS

,Ob
ΠpS (σ̃)

7 : apk := KAg(pk0, pk1), y
′ := Extapk (σ

∗, σ̃, Y ∗)

8 : return (m∗ ̸∈ Q ∧ (Y ∗, y′) ̸∈ R ∧ Vrfyapk (m
∗;σ∗))

Ob
ΠS

(m)

1 : Q := Q∪ {m}
2 : σ ← ΠA

Sign⟨sk1−b,·⟩(pk0, pk1,m)

Ob
ΠpS

(m,Y )

1 : Q := Q∪ {m}
2 : σ̃ ← ΠA

pSign⟨sk1−b,·⟩(pk0, pk1,m, Y )
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Note that the only difference between this experiment and the aSigForgeA,aSIG2
experiment is that here

the adversary is allowed to choose the statement/witness pair (Y ∗, y∗) and that the winning condition
additionally requires that for the extracted witness y′ ← Extapk (σ

∗, σ̃, Y ∗) it holds that (Y ∗, y′) ̸∈ R.
A two-party adaptor signature scheme with aggregatable public keys aSIG2 is called secure if it satisfies the

properties 2-aEUF–CMA security, two-party pre-signature adaptability and two-party witness extractability.

5.1 Generic transformation from SIGID
2 to aSIGID,R

2

We now present our generic transformation to achieve two-party adaptor signature schemes with aggregatable
public keys from identification schemes. In its essence, this transformation is a combination of the trans-
formations presented in Figs. 3 and 6. More precisely, similar to the transformation from SIGID to aSIGID,R

presented in Fig. 3, we assume the existence of functions fshift, fadapt and fext with respect to the relation
R. We then make use of the ΠRand-Exc protocol from the transformation in Fig. 6 to let parties agree on the
randomness that is going to be used during the pre-signing process. However, unlike the transformation in
Fig. 6, the resulting randomness is shifted by a statement Y for relation R using the function fshift. The
transformation can be found in Fig. 7.

ΠpSign⟨sk0,sk1⟩(pk0, pk1,m, Y )

1 : Parse pk i = ((1n, ppC, crs), pk
′
i), i ∈ {0, 1}

2 : (Ri, Sti, R1−i)← ΠRand-Exc⟨ski,sk1−i⟩(ppC, crs)

3 :Rpre := fcom-rand(R0, R1)

4 :Rsign := fshift(Rpre, Y ), h := H(Rsign,m)

5 : s̃i ← P2(sk i, Ri, h, Sti)

6 : s̃1−i ← ΠExchange ⟨s̃i, s̃1−i⟩
7 : (h, s̃) := fcom-sig(h, (s̃i, s̃1−i))

8 : return (h, s̃)

pVrfyapk (m,Y ; (h, s̃))

1 : R̂pre := V0(apk , h, s̃)

2 : return h = H(fshift(R̂pre, Y ),m)

Adaptpk ((h, s̃), y)

1 : return (h, fadapt(s̃, y))

Extpk ((h, s), (h, s̃), Y )

1 : return fext(s, s̃)

Fig. 7: A two-party adaptor signature scheme with aggregatable public keys aSIGID,R
2 defined with respect to

a SIGID
2 scheme and a hard relation R.

Theorem 4. Assume that SIGID is an SUF–CMA-secure signature scheme transformed using Fig. 2. Further,
assume that fcom-sig, fcom-pk and fdec-sig satisfy the relation from Equations (4) and (5). Let fshift, fadapt and
fext be functions satisfying the relations from Equations (1) and (2), and R be a hard relation. Further,
let NIZK be a non-interactive zero-knowledge proof system and let C be an extractable commitment scheme.
Then the resulting aSIGID,R

2 scheme from the transformation in Fig. 7 is a secure two-party adaptor signature
scheme with aggregatable public keys in the random oracle model.

In order to prove Thm. 4, we must show that aSIGID,R
2 satisfies the pre-signature correctness, 2-aEUF–CMA

security, pre-signature adaptability and witness extractability properties as described in Defs. 11 to 14 re-
spectively. We provide the full proofs of the following lemmas in the full version of this paper [14] and only
mention the intuition behind the proofs here. As mentioned in the introduction of this work, despite the
fact that aSIGID,R

2 is constructed from SIGID
2 , we require only SIGID to be SUF–CMA-secure in order to prove

2-aEUF–CMA security for aSIGID,R
2 .

Lemma 7 (Two-Party Pre-Signature Correctness). Under the assumptions of Thm. 4, aSIGID,R
2 sat-

isfies Def. 11.
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The proof of Lemma 7 follows directly from Equations (1) to (3) and the correctness of SIG2 from
Lemma 5.

Lemma 8 (2-aEUF–CMA-Security). Under the assumptions of Thm. 4, aSIGID,R
2 satisfies Def. 12.

Proof Sketch: In a nutshell the proof of this lemma is a combination of the proofs of Lemmas 2 and 6,
i.e., the proof is done by a reduction to the hardness of the relation R and the SUF–CMA of the underlying
signature scheme. During the signing process, the challenger queries its SUF–CMA signing oracle and receives
a signature σ. As in the proof of Lemma 6, the challenger programs the random oracle such that σ appears
like a signature generated with the combined randomness of the challenger and the adversary. Simulating the
pre-signing process is similar with the exception that before programming the random oracle, the randomness
must be shifted using the function fshift. Finally, the challenger and the adversary generate a pre-signature
σ̃∗ = (h, s̃) on the challenge message m∗ and the adversary outputs the forgery σ∗ = (h, s). If fext(s, s̃)
returns the y generated by the challenger, as in the proof of Lemma 2, the hardness of the relation R can
be broken. Otherwise, using fdec-sig, it is possible to use the forgery provided by the adversary to extract a
forgery for the SUF–CMA game.

Lemma 9 (Two-Party Pre-Signature Adaptability). Under the assumptions of Thm. 4, aSIGID,R
2

satisfies Def. 13.

Proof Sketch: The proof of Lemma 9 is analogous to the proof of Lemma 3.

Lemma 10 (Two-party Witness Extractability). Under the assumptions of Thm. 4, aSIGID,R
2 satisfies

Def. 14.

Proof Sketch: The proof of Lemma 10 is very similar to the proof of Lemma 8 except that the adversary
chooses Y now and thus, no reduction to the hardness of the relation R is needed.
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