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Abstract

In today’s world, the protection of privacy is increasingly gaining attention, not only
among the general public, but also within the fields of machine learning and natural
language processing (NLP). An established gold standard for providing a guarantee
of privacy protection to all individuals in a dataset is the framework of differential
privacy (DP). Intuitively, differential privacy provides a formal theoretical guarantee
that the contribution of any individual to some analysis on a dataset is bounded. In
other words, no single individual can influence this analysis ‘too much’.

While the application of differential privacy to the fields of statistics and machine
learning is becoming more widespread, it is still at a relatively early stage in NLP,
with many important issues currently unresolved. This includes finding the most
favorable methodologies for privatizing textual data that is used to train an NLP
system, as well as dealing with the question of privatizing textual data independent
of an NLP system, releasing it for general analysis, such as for use in a variety of
downstream tasks. In this thesis, we address these and other fundamental questions
relevant to applying privacy-preserving methods to the field of NLP.

We first present a detailed theoretical background on differential privacy and
NLP. We discuss the problem of defining privacy from a philosophical perspecti-
ve, fundamental concepts in the framework of differential privacy (e.g. the privacy
guarantees it provides and how to achieve them), as well as the application of dif-
ferential privacy to the fields of machine learning and NLP. This is followed by a
description of important concepts in the field of NLP, including the structure of a
modern NLP system, common tasks of text classification and generation, as well as
relevant neural architectures.

We then delve into the primary investigations of this thesis, starting from the
privatization of text classification systems. First, we tackle the problem of applying
differential privacy to the data structure of graphs used in NLP datasets. Specifical-
ly, we demonstrate how to successfully apply the algorithm of differentially private
stochastic gradient descent (DP-SGD) to graph convolutional networks, which pose
theoretical and practical challenges due to their training characteristics. Next, we
move into the territory of more ‘standard’ NLP models and textual datasets, answe-
ring the question of whether a common strategy exists for incorporating DP-SGD
in these various settings.

In the second principal set of investigations of this thesis, we focus on the priva-
tization of textual data that is independent of a specific NLP system. In particular,
we address this problem from the perspective of privatized text rewriting in the
setting of local differential privacy (LDP), in which an entire document is rewrit-
ten with differentially private guarantees. We first present our modular framework
DP-Rewrite, meant to lay down a foundation for the NLP community to solving
this task in a transparent and reproducible manner. We then tackle the privatized
text rewriting problem itself, proposing the DP-BART model that introduces se-
veral techniques which can be applied to a pre-trained BART model, including a
novel clipping method, iterative pruning of the model, and further training of inter-
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nal representations. Using these techniques, we can drastically reduce the amount
of perturbation required to achieve a DP guarantee. We thoroughly examine the
feasibility of this approach as a whole, with a focus on the problem of the strict ad-
jacency constraint that is inherent in the LDP setting, which leads to a high amount
of perturbation of the original text.

Throughout this thesis, we additionally address several crucial points that are
important to keep in mind when applying differential privacy to textual data. First is
the question of interpretability, such as what exactly is being privatized in a textual
dataset when DP is applied to some analysis on it, as well as the exact details of a
proposed DP algorithm and the strength of the privacy guarantee that it provides.
Furthermore, it is crucial to be aware of the limitations of proposed methodologies
that incorporate DP. This includes computational and memory limitations, as well
as the trade-off between the level of privacy that can be provided and the utility of
an algorithm, with stronger privacy guarantees expected to more negatively impact
utility.
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Zusammenfassung

In der heutigen Welt gewinnt der Schutz der Privatsphäre zunehmend an Bedeu-
tung, nicht nur in der Öffentlichkeit, sondern auch in den Bereichen maschinelles
Lernen und Natürliche Sprachverarbeitung (Natural Language Processing, NLP).
Ein etablierter Goldstandard für die Gewährleistung des Schutzes der Privatsphä-
re aller Individuen in einem Datensatz ist das Framework von Differential Privacy
(DP). Intuitiv bietet Differential Privacy eine formale theoretische Garantie dafür,
dass der Beitrag eines jeden Individuums zu einer bestimmten Analyse eines Daten-
satzes begrenzt ist. Mit anderen Worten, kann keine einzelne Person diese Analyse
“zu viel” beeinflussen.

Während die Anwendung von Differential Privacy in den Bereichen Statistik
und maschinelles Lernen immer mehr Verbreitung findet, befindet sie sich im NLP-
Bereich noch in einer relativ frühen Phase, in der viele wichtige Fragen noch ungelöst
sind. Dazu gehört die Suche nach den günstigsten Methoden für die Privatisierung
von Textdaten, die zum Trainieren eines NLP-Systems verwendet werden, sowie die
Frage der Privatisierung von Textdaten unabhängig von einem NLP-System, um sie
für allgemeine Analysen freizugeben, z. B. für die Verwendung in einer Vielzahl von
nachgelagerten Aufgaben. In dieser Arbeit befassen wir uns mit diesen und anderen
grundlegenden Fragen, die für die Anwendung datenschutzfreundlicher Methoden
im Bereich von NLP relevant sind.

Zunächst wird ein detaillierter theoretischer Hintergrund zu Differential Priva-
cy und NLP vorgestellt. Wir erörtern das Problem der Definition von Privatsphä-
re aus einer philosophischen Perspektive, grundlegende Konzepte im Rahmen von
Differential Privacy (z. B. die Garantien für die Privatsphäre und wie sie erreicht
werden können) sowie die Anwendung von Differential Privacy auf die Bereiche des
maschinellen Lernens und NLP. Es folgt eine Beschreibung wichtiger Konzepte im
Bereich von NLP, einschließlich der Struktur eines modernen NLP-Systems, allge-
meiner Aufgaben der Textklassifikation und -generierung sowie relevanter neuronaler
Architekturen.

Anschließend gehen wir auf den ersten Hauptteil dieser Arbeit ein, beginnend
mit der Privatisierung von Textklassifikationssystemen. Zunächst befassen wir uns
mit dem Problem der Anwendung von Differential Privacy auf die Datenstruktur
von Graphen, die in NLP-Datensätzen verwendet werden. Insbesondere zeigen wir,
wie man den Algorithmus von Differentially Private Stochastic Gradient Descent
(DP-SGD) erfolgreich auf Graphfaltungsnetzwerke anwenden kann, die aufgrund ih-
rer Trainingseigenschaften theoretische und praktische Herausforderungen darstel-
len. Als Nächstes befassen wir uns mit ‘standardisierten’ NLP-Modellen und Text-
datensätzen und beantworten die Frage, ob es eine gemeinsame Strategie für die
Integration von DP-SGD in diesen verschiedenen Konfigurationen gibt.

Im zweiten Hauptteil dieser Arbeit konzentrieren wir uns auf die Privatisierung
von Textdaten, die unabhängig von einem bestimmten NLP-System sind. Insbeson-
dere behandeln wir dieses Problem aus der Perspektive des privatisierten Umschrei-
bens von Text im Rahmen von Local Differential Privacy (LDP), bei der ein ganzes
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Dokument mit Differential Privacy Garantien umgeschrieben wird. Wir stellen zu-
nächst unser modulares Framework DP-Rewrite vor, das der NLP-Gemeinschaft eine
Grundlage bieten soll, um diese Aufgabe auf transparente und reproduzierbare Weise
zu lösen. Anschließend gehen wir das Problem der privatisierten Textumschreibung
selbst an, indem wir das DP-BART-Modell vorstellen, das mehrere Techniken ein-
führt, die auf ein vortrainiertes BART-Modell angewendet werden können, darunter
eine neuartige Clipping-Methode, iteratives Pruning des Modells und weiteres Trai-
ning interner Repräsentationen. Mit diesen Techniken können wir den Umfang der
Störungen, die zur Erreichung einer DP-Garantie erforderlich sind, drastisch reduzie-
ren. Wir untersuchen gründlich die Machbarkeit dieses Ansatzes als Ganzes, wobei
wir uns auf das Problem der strengen Adjazenzbeschränkung konzentrieren, die der
LDP-Umgebung innewohnt und zu einem hohen Störungsgrad des ursprünglichen
Textes führt.

In dieser Arbeit gehen wir zusätzlich auf mehrere entscheidende Punkte ein, die
bei der Anwendung von Differential Privacy auf Textdaten beachtet werden müs-
sen. Erstens geht es um die Frage der Interpretierbarkeit, z. B. was genau in einem
Textdatensatz privatisiert wird, wenn DP auf eine Analyse darauf angewendet wird,
sowie um die genauen Details eines vorgeschlagenen DP-Algorithmus und die Stär-
ke der Datenschutzgarantie, die er bietet. Darüber hinaus ist es von entscheidender
Bedeutung, dass man sich der Grenzen der vorgeschlagenen Methoden, die DP ein-
beziehen, bewusst ist. Dazu gehören Beschränkungen in Bezug auf Rechenleistung
und Speicherplatz sowie die Abwägung zwischen dem Grad der Privatsphäre, der
gewährleistet werden kann, und dem Nutzen eines Algorithmus, wobei sich stärkere
Datenschutzgarantien voraussichtlich negativ auf den Nutzen auswirken.
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Chapter 1

Introduction

“Privacy is something you can sell, but you can’t buy
it back.”

— Bob Dylan

1.1 Motivations for Privacy
The notion of privacy is increasingly gaining attention in today’s world, both among
the general public and within the scientific community. We can consider this from
two separate angles: The societal perspective and the research perspective.

We live in a world in which ‘data is the new oil’,1 where the value of data for
competing businesses and organizations has made it a core asset. It is indispens-
able for effectively training modern artificial intelligence (AI) systems and provides
insights for marketers on targeting their advertisements.

This has subsequently led to extensive data collection and analytics. Every time
we enter a search query, access a website, or listen to an audio track on a streaming
platform, we are contributing a new data point to some existing dataset. While
this may be good for training statistical and machine learning models, it leads to a
significant vulnerability of the general public with respect to people’s personal data
and how it is used.

Apart from the ethical considerations of this problem, there are multiple other
concerns for data contributors, depending on the nature of the personal data. For in-
stance, if somebody is contributing online reviews on a business reviewing platform,
an individual’s negative reviews could lead to business owners taking retaliatory
actions, such as lawsuits against them. Another example is the interaction of a
user with a dialogue system, in which the individual may reveal information about
themselves that would be considered sensitive throughout the interaction.

Arguably just as important for privacy is the research perspective. At the mo-
1 Phrase widely believed to be coined by UK mathematician Clive Humby in 2006.

1



Chapter 1. Introduction

ment, it is very difficult to convince data holders to provide certain data. A good
example of this are hospital medical records. Institutions such as hospitals are
legally required to protect patients’ data. For example, in Germany there are strict
statutory regulations on medical data, which can be found in the European Gen-
eral Data Protection Regulation (GDPR), the German Federal Data Protection Act
(Bundesdatenschutzgesetz),2 as well as data protection laws for each German state.
At the same time, general access to such data would allow for new progress in many
fascinating research areas, such as medicine and AI.

As a research community, we are currently able to download a dataset of hand-
written digits such as the MNIST database (Bottou et al., 1994), or a dataset of
movie reviews (e.g. Maas et al. (2011)) and train a high-performing classifier on
handwritten digit recognition or movie review sentiment analysis, respectively; how-
ever, we cannot easily access something like a cancer dataset (e.g. medical images,
medical notes) and try to more successfully detect whether an individual has can-
cer or other diseases. In this way, developing privacy-preserving technologies would
open up a wide new world of research possibilities that could potentially have great
benefits for humanity. We can therefore see that privacy leads to open science.

So given these benefits and urgent need for privacy-preserving methodologies,
what can we do as a research community? One naive option that immediately may
come to mind is that of anonymization, where we basically remove any identifying
information from a given data point. For instance, given a doctor’s medical note, we
could remove any mention of the patient, any background information about them
such as age or gender, and so forth. As has been extensively demonstrated, however,
this approach has fundamental flaws (Sweeney, 1997; Narayanan and Shmatikov,
2008; Homer et al., 2008). One major reason for this is that of linkage attacks, in
which information about anonymized individuals is re-identified by means of linking
the anonymized data with background information. This was notably demonstrated
by Narayanan and Shmatikov (2008) on an anonymized dataset released by the
streaming service Netflix, linking movie ratings and dates with similar public data
available on the Internet Movie Database (IMDb).

It is therefore evident that anonymization methods are unsatisfactory for pro-
viding privacy for individuals. While there have been some more formal techniques
proposed with the goal of providing stricter privacy guarantees, such as k-anonymity,
(Samarati and Sweeney, 1998; Sweeney, 2002), these are still vulnerable to privacy
violations, including through linkage with background information. It was not until
the emergence of differential privacy (DP) (Dwork et al., 2006b; Dwork and Roth,
2013) that we obtained a method with rigorous, quantifiable privacy guarantees,
neutralizing privacy violations such as the above linkage attacks and providing a
strict measure of the degree of an algorithm’s privacy protections. On a very in-
tuitive level, differential privacy is a property of an algorithm, in which the output
of the algorithm cannot change by more than a very specific amount when one data
point is added, removed, or altered from a dataset. In other words, no single individ-

2 https://www.gesetze-im-internet.de/bdsg_2018/BJNR209710017.html#
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ual can contribute to the analysis of a dataset ‘too much’, thus not standing out from
the other contributors to the dataset. This is achieved through the incorporation of
randomness into the analysis, perturbing either its output, or the input data itself.
The exact degree of an individual’s contribution is determined by the parameter ε,
or the privacy budget, which dictates how much perturbation is introduced to the
algorithm. The lower this ε value, the stronger the privacy guarantee.

Since its inception, differential privacy has sparked an entire field of research,
being considered the ‘gold standard’ in privacy-preservation. In 2016 it has won
the Test of Time award and is currently used by many large companies, such as
Microsoft, Apple, and Google, as well as by the U.S. Census Bureau since 2020.
Although it is becoming more widespread within the field of machine learning as
well (e.g. Abadi et al. (2016b); Papernot et al. (2017)), it is still at a relatively
early stage in Natural Language Processing (NLP), with some important issues
that are currently unresolved. Among these, two considerable types of challenges
stand out. The first is finding the most favorable methodology to privatizing the
process of text classification in NLP systems, including how to deal with various
‘non-standard’ data types in NLP (e.g. graphs), as well as strategies to employ
for different NLP tasks (e.g. sentiment analysis, named-entity recognition (NER),
question answering, and so forth). Furthermore, and perhaps far more difficult, is
the question of privatizing textual data itself (as opposed to NLP systems above),
including what it even means to guarantee privacy for language data. An essential
component of finding a solution to these questions is dealing with the privacy/utility
trade-off, since incorporating differential privacy into an algorithm inevitably results
in a utility loss for the algorithm due to the introduced perturbation. The more
privacy is introduced, the more perturbation, and therefore the greater the expected
loss in performance. It is the goal of this thesis to address and move closer to
resolving these open research questions, outlined in more detail below.

1.2 Research Questions

1.2.1 Primary research questions

The current thesis investigates the following research questions in detail. These
can be broadly divided into two main categories: (a) The privatization of text
classification models (RQ1 and RQ2), as well as (b) the privatization of textual
data itself (RQ3).

RQ1 How can we privatize text classification models that operate on
graph datasets? This relates to the more general question of how to privatize
models for ‘non-standard’ data in NLP, such as those that utilize graph structures
as opposed to linear sequences of text tokens. In dealing with graphs, a variety
of new problems emerge, since not only do individual node or edge features of
graphs need to be protected, but also the graph structure itself, which can reveal
sensitive information about the relationships of graph entities. We demonstrate that
applying the most common machine learning model privatization method, the DP-
SGD algorithm (Abadi et al., 2016b), cannot be straightforwardly applied to graph
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convolutional networks (GCNs) due to the requirements of DP-SGD to split up data
into i.i.d. sub-samples called lots. We therefore adapt DP-SGD to the graph setting
by preparing a graph partitioning algorithm, recovering a lot of dropped performance
in the DP setting, in comparison to not splitting the graph. This research question
is investigated in Chapter 3.

RQ2 Is there a systematic strategy that can be applied to NLP text
classification tasks in the differentially private setting? Moving into the
domain of more ‘standard’ NLP models and tasks, we investigate the application of
differential privacy as a paradigm across a variety of common NLP tasks and models.
While DP-SGD has been used in language modeling (McMahan et al., 2018; Hoory
et al., 2021), the NLP community lacks a thorough understanding of its usability
in the NLP domain in general, with existing research on the suitability of DP-SGD
for various NLP tasks remaining largely inconclusive. We are interested first in
which models and training strategies provide the best trade-off between privacy
and performance across tasks. Second, we investigate exactly how increasing the
privacy requirements can hurt the performance for a given model and task. As in
the case of our GCN investigation for RQ1, we employ the DP-SGD algorithm for
privatizing our NLP models. We thus address the various challenges of each NLP
task in privacy-preserving learning and explore whether there is a ‘one size fits all’
privatization strategy in the field of NLP. This problem is tackled in Chapter 4.

RQ3 How can we successfully privatize textual data, independent from
a specific NLP system? More concretely for our investigations, this research
question can also be reworded as: To what extent is local differential privacy (LDP)
possible for textual data? Local differential privacy, outlined in more detail in Sec-
tion 2.2.1 of Chapter 2, is a specific form of differential privacy, in which the data
itself is perturbed, as opposed to the machine learning algorithm acting upon the
data, as in RQ1 and RQ2. One particular setup of achieving this is through differen-
tially private text rewriting, in which a given piece of text (e.g. an entire document)
is rewritten with differentially private guarantees, removing personal information
associated with the individual contributing this text. For instance, given a docu-
ment “I would like to fly from Denver to Los Angeles this Thursday”, the system
may rewrite it as “Show me flights to cities in California this week”. If one is training
a model on intent classification for airline travel inquiry systems, either document
would be a useful data point. In this way, we avoid using the original text that has
uniquely identifiable qualities of a specific author, and instead create a privatized
‘synthetic’ example.

Overall, this research question can largely be split up into two related prob-
lems. The first is an issue currently present in the field of text privatization, where
the community lacks reproducibility and transparency in the task. Only a few re-
cent works have touched upon this challenging topic; however, these studies either
have been found to have formal flaws (Habernal, 2021), or have not published their
source codes, with the community having no means of performing empirical checks
to validate their privacy-preserving claims. This lack of transparency and repro-
ducibility is therefore the main obstacle to the accountability of DP text rewriting
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systems. We address this issue by developing DP-Rewrite, an open, modular, and
highly customizable framework for differentially private text rewriting, in order for
the community to gain further insight into the utility and potential pitfalls of such
systems. Our hypothesis is that by integrating various downstream datasets, mod-
els, pre-training procedures, and evaluation metrics into one software package, we
improve the transparency, accountability, and reproducibility of research in differ-
entially private text rewriting. We investigate this first part of RQ3 in Chapter 5.

The second part of this research question is one of designing an effective LDP
text rewriting model that improves the privacy/utility trade-off in comparison to
previous methods. This is in fact a very challenging task, since a lot of perturbation
of the original text is required to achieve any reasonable privacy guarantees, which
leads to poor downstream utility. We therefore address these issues by proposing
DP-BART, which is an LDP text rewriting system that improves upon existing
baselines and consists of several techniques that can be directly applied to a pre-
trained BART model (Lewis et al., 2020a). One major issue that we discuss is the
strict text adjacency constraint of applying LDP to textual data, in which any two
texts need to have a degree of indistinguishability for a useful privacy guarantee
in the LDP setting, leading to the large amount of perturbation that needs to be
applied to the text. This second part of RQ3 is presented in Chapter 6.

1.2.2 Additional research points addressed

Apart from the above three research questions, there are several additional important
points that are addressed throughout the various chapters of this thesis and are very
relevant to all the investigations presented. These can be divided into two primary
categories.

The first category comprises questions of interpretability. When we apply
differential privacy to a given textual data point, what exactly are we privatizing?
What does it even mean to ‘privatize’ text? Additionally, what exactly does an ε
privacy budget mean, given an NLP model or a textual document? With regards to
this, we note several pitfalls that can occur in a research investigation utilizing the
framework of differential privacy that need to be prevented, including (1) the privacy
guarantees of a proposed DP algorithm do not hold up, (2) the interpretation of ε is
not clearly defined, and (3) the ‘unit of privatization’, i.e. what is being privatized, is
not clearly defined. We discuss this throughout the thesis, especially in Chapters 2
and 6.

In addition, it is very important to address the limitations of our methodologies,
including the application of DP to NLP systems in general. Apart from issues of
performance loss that we tackle in Chapters 3-6, this also includes computational and
memory hindrances that are introduced when using an algorithm such as DP-SGD,
or preparing an LDP text rewriting system. For example, the DP-BART model that
we present in Chapter 6 is designed to avoid pre-training a large-scale Transformer
(Vaswani et al., 2017) model from scratch, which would otherwise require a very
large amount of computational resources.
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1.3 Contributions

We summarize the most important contributions of this thesis with respect to the
above research questions as follows:

RQ1 How can we privatize text classification models that operate on
graph datasets?

• We propose a methodology for applying differentially private stochastic gradi-
ent descent and its variants to graph convolutional network models, allowing
to maintain strict privacy guarantees and performance. Our approach con-
sists of applying an easy-to-implement graph splitting algorithm to GCNs in
the DP setting, partitioning a graph into subgraphs while avoiding additional
queries on the original data. We adapt DP-SGD and the differentially private
version of the Adam optimizer (Kingma and Ba, 2014) DP-Adam to GCNs.

• We conduct experiments on five datasets in two languages (English and Slo-
vak), covering a variety of NLP tasks, including research article classification
in citation networks, Reddit post classification, and user interest classifica-
tion in social networks, where the latter two tasks deal with data that carries
inherently sensitive information, reaffirming the need for privacy-preserving
models.

• We show that DP training can be applied to the case of GCNs, with graph
splitting and proper optimization recovering a lot of the dropped performance
that stems from the addition of DP noise.

• We also show that more sophisticated text representations further mitigate
this performance drop, resulting in a relative performance of 90% of the non-
private models, while keeping strict privacy (ε = 1.0 when incorporating graph
splitting).

• To the best of our knowledge, this was the first study that brought differentially
private gradient-based training to graph neural networks.

RQ2 Is there a systematic strategy that can be applied to NLP text
classification tasks in the differentially private setting?

• We provide an extensive analysis of different privacy-preserving strategies on
seven downstream datasets in five common NLP tasks with varying complexity,
using varying privacy regimes. We use modern neural models based on BERT
(Devlin et al., 2019) and XtremeDistilTransformers (Mukherjee et al., 2021)
architectures.

• We show that, unlike standard non-private approaches to solving NLP tasks,
where bigger is usually better, privacy-preserving strategies do not exhibit a
winning pattern, and each task and privacy regime requires a special treatment
to achieve adequate performance. Our main contribution is thus to help the
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NLP community better understand the various challenges that each task poses
to privacy-preserving learning.

RQ3 How can we successfully privatize textual data, independent from a
specific NLP system?

• With respect to the first part of RQ3, dealing with the problems of repro-
ducibility and transparency, our contributions are twofold. First, we present
DP-Rewrite, an open-source framework for differentially private text rewrit-
ing experiments. It includes a correct reimplementation of the ADePT text
rewriting system (Krishna et al., 2021) as a baseline, integrates pre-training
on several datasets, and allows us to easily perform downstream experiments
with varying privacy guarantees by adjusting the privacy budget ε. Second,
DP-Rewrite allows us to easily detect another privacy leak in the approach
proposed in ADePT, namely in the pre-training strategy of the autoencoder,
with the system memorizing the input data. We demonstrate this in detail as
a use-case of DP-Rewrite.

• For the second part of RQ3, designing an effective LDP text rewriting model,
we can divide our contributions into three main points. First, we present
our DP-BART system and its related methodologies, aimed at reducing DP
noise and reaching a better privacy/utility trade-off. For comparison, we use
a reimplementation of the ADePT model mentioned above, which is the cur-
rent primary baseline for this task. Second, we run experiments to investigate
the privacy/utility trade-off of these models, using five unique datasets that
gradually increase in size, evaluating rewritten texts on downstream text clas-
sification tasks. Finally, we thoroughly examine the feasibility of the LDP text
rewriting setting, investigating issues of the high noise requirement due to the
strict text adjacency constraint, trade-offs between privacy and dataset size,
what exactly is the object of privatization, required computational resources,
as well as limitations of the approach as a whole and possible alternatives.

1.4 Publication Record
The various sections of this thesis have been published at international peer-reviewed
conferences, as well as on the arXiv pre-print server. These publications are partly
reused and quoted verbatim throughout the various sections of this thesis. We
present these publications in the following list, with the corresponding dissertation
chapter from which verbatim quotes from this publication are included. In addition
to the below list, some parts of the introduction from each corresponding publica-
tion are used in the current chapter’s list of research questions (Section 1.2.1) and
contributions (Section 1.3).

• Privacy-Preserving Graph Convolutional Networks for Text Classification (Igam-
berdiev and Habernal, 2022). In this publication, we demonstrate a method-
ology to adapt the DP-SGD algorithm to the case of graph convolutional
networks, demonstrating how we can achieve a better privacy/utility trade-off
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when incorporating a graph splitting algorithm. This work forms the basis of
Chapter 3, in which parts of it are quoted verbatim.

• One size does not fit all: Investigating strategies for differentially-private learn-
ing across NLP tasks (Senge et al., 2022). This is a joint first-author publi-
cation in which we investigate strategies for applying differential privacy on
seven downstream NLP datasets and five different NLP tasks, using a variety
of privacy budgets. We show that there is no winning pattern with respect to
applying privacy preservation in the NLP setting, with each specific task and
dataset requiring special treatment to obtain a good performance. This study
contributes to the core of Chapter 4, in which it is paraphrased.

• DP-Rewrite: Towards Reproducibility and Transparency in Differentially Pri-
vate Text Rewriting (Igamberdiev et al., 2022). In this work, we present our
DP-Rewrite software, an open, modular and easily extensible framework which
is meant to address the transparency and reproducibility problem of differen-
tially private text rewriting systems. Furthermore, we provide a case study on
the ADePT DP text rewriting system and demonstrate a privacy leak in its
pre-training strategy. This publication forms the core of Chapter 5, in which
it is quoted verbatim.

• DP-BART for Privatized Text Rewriting under Local Differential Privacy (Igam-
berdiev and Habernal, 2023). The final publication presents a novel LDP text
rewriting system, DP-BART, in which we improve upon previous systems with
respect to the privacy/utility trade-off, while retaining the low-resource set-
ting. We run experiments on five unique datasets of gradually increasing size
and evaluate rewritten texts on various downstream text classification tasks.
Importantly, we also discuss the feasibility of the LDP text rewriting setting,
in addition to addressing several other relevant problems, such as the inter-
pretability of this type of private text rewriting method. This publication
contributes significantly to Chapter 6, as well as to a few parts of Section 2.2
in Chapter 2, which quote it verbatim.

1.5 Overview of Thesis
The current thesis can be divided into three main parts and largely follows the order
of publications that is presented in Section 1.4, as well as the contributions described
in Section 1.3.

Part 1: Chapters 1 and 2 form a general background to the thesis. In Chapter 2,
we provide a discussion on what is privacy from a general perspective, followed by
a comprehensive introduction to differential privacy. This includes explanations of
pure and approximate differential privacy, with a description of relevant concepts
such as the privacy budget, query, and sensitivity. Additional concepts that are
addressed in this section include common DP mechanisms such as the Laplace and
Gaussian mechanisms, the distinction between global vs. local DP, as well as impor-
tant algorithmic properties of differential privacy. We then provide a pedagogical
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example of a differentially private mechanism in the global DP setting, as well as
a description of the randomized response technique (Warner, 1965), which forms a
pedagogical basis of a locally differentially private mechanism. After this, we de-
scribe differential privacy in the machine learning setting, going over in detail the
most common DP algorithm for training neural network models, DP-SGD (Abadi
et al., 2016b), as well as the Moments Accountant that is useful for the efficient
composition of multiple DP mechanisms. This is then followed up with a discussion
of differential privacy in the NLP setting. Finally, we end this section with an ex-
planation of relevant NLP concepts, including the standard structure of a modern
NLP system, common NLP tasks of text classification and text generation, as well
as relevant neural architectures, such as Transformer models (Vaswani et al., 2017).

Part 2: Chapters 3 and 4 tackle the first problem of privatizing the process
of text classification. In Chapter 3, we present our approach for applying differ-
ential privacy to the ‘non-standard’ NLP data structure of graphs. We specifically
demonstrate how to apply the DP-SGD algorithm to graph convolutional networks.
Having investigated the scenario of NLP in the graph setting, we then move back to
the ‘standard’ models and textual datasets that are commonly found in NLP. We
present our study on privatizing these models and datasets in Chapter 4, answer-
ing the question of whether a common strategy exists for incorporating DP-SGD to
these various settings.

Part 3: Chapters 5 and 6 address the second problem of privatizing textual
data, independent of a specific NLP system. Chapter 5 presents our
DP-Rewrite framework and its accompanying case-study. This is meant to lay down
a foundation for the community to work on solving this problem in a transparent
and reproducible manner. Chapter 6 then tackles the text privatization problem
itself, describing the proposed DP-BART text rewriting model, as well as address-
ing limitations of the approach as a whole and other relevant questions, such as the
impact of the domain of public training texts on the model, and interpretability of
the approach.

Finally, Chapter 7 summarizes this thesis and provides suggestions for future
directions and concluding remarks.
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Chapter 2

Theoretical background

2.1 What is Privacy?

There are a variety of ways to define what privacy actually is, with no clear consensus
on a single definition. For the purposes of this thesis, we use the formal privacy model
outlined in the framework of Differential Privacy (DP), described in Section 2.2. This
model provides a guarantee that, if an individual contributes their data to a private
database, they will not be negatively impacted by the results of some analysis on
that database, any more than if they had not contributed their data in the first
place (Dwork and Roth, 2013). Thus, the degree of harm that may come to any
individual is not affected by whether they gave up their data or not, regardless of
other studies or information from additional sources. As an example from Dwork
(2011), an individual who is a smoker provides their data to a database that is used
to analyze the connections between smoking and cancer. It turns out that a key
finding of this analysis is that smoking does indeed cause cancer. As a result of this,
the insurance premiums of the individual that participated end up rising. While
this negatively impacts the individual, it was not due to their participation in the
original dataset, but rather by the findings of the analysis on the dataset itself. The
guarantee of differential privacy is that any harm that the individual may face can
only be as a result of this analysis, and not due to user participation in it.

A particularly appealing aspect of working in the framework of differential pri-
vacy is that we can provide formal and quantifiable privacy guarantees. We can
show a direct comparison among a variety of techniques and concretely measure for
each of them the maximum privacy loss that any individual may incur. In this way,
we can investigate the trade-off between privacy and utility of algorithms, trying
to reach as strong of a privacy guarantee as possible, with the smallest drops in
utility of the algorithm. Notably, the guarantee provided by differential privacy
is an information-theoretic guarantee, contrasting with guarantees provided in the
field of security that are based on computational complexity, where an adversary
is unable to solve a given problem in a computationally-efficient manner. In our
case, no matter the adversary’s computational capabilities, it is impossible to break
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the provided guarantee, even with unlimited computational resources and time. Be-
fore delving into the specifics of this framework in more detail, we first present an
overview of ways in which privacy has been defined throughout the literature, in
order to provide a multifaceted perspective on the concept and link it to our own
approaches to privacy.

2.1.1 Theories of Privacy

There are different ways of categorizing definitions and theories of privacy. One such
organization is by Tavani (2007), dividing theories of privacy into four categories:
Non-intrusion, seclusion, control and limitation. The first of these, non-intrusion,
can be traced to a fundamental publication on privacy by Brandeis and Warren
(1890). In it, privacy is seen as the “right to be left alone”, where the individual is free
from intrusion. Privacy is connected with the fundamental rights of an individual
with respect to their person and property.

Next is the seclusion theory of privacy, in which privacy is likened to the state of
being alone. As described by Gavison (1980), privacy is related to “our accessibility
to others”, in terms of us being known to others, the degree to which others direct
their attention towards us, as well as whether others have physical access to us. This
can in turn help us identify exactly where we have incurred a privacy loss, if the
satisfaction of conditions such as the above is compromised.

In contrast, the information control theory of privacy treats the concept from
the perspective of having control over information relating to oneself (e.g. Westin
(1968); Rachels (1975); Fried (1990)). Here, an individual that enjoys privacy is one
who is in control over granting or denying information to others about themselves.
One can therefore choose the manner and extent to which others know about them.
This contrasts with the above two theories of non-intrusion and seclusion, both of
which do not include the active role of an individual with respect to their personal
information.

Finally, the limitation theory of privacy defines the notion as the limitation
or restriction of access to information about oneself. For instance, Parent (1983)
describes privacy as a condition in which others do not have “undocumented personal
knowledge” about oneself. Under such a theory, privacy can be defined as a specific
sphere associated with an individual, to which others have limited access.

We can see quite a bit of overlap among these different theories. This is especially
notable among the first two theories, as well as the last two. Both the non-intrusion
and seclusion views of privacy treat the concept as one of others having access to
an individual. The former approaches the concept more from the perspective of
an individual’s fundamental rights, while the latter from a descriptive perspective,
outlining privacy as a state. The information control and limitation theories both
deal with limiting information to others, with the former highlighting the individual’s
control over this process, while the latter again describing the state of this limitation.

Despite such a classification as the one above, individual viewpoints in the lit-
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erature do not necessarily fall into one specific category, with for instance Gavison
(1980) clearly having consistent views with both the seclusion and the limitation
theories. Additionally, all of the above theories have their own shortcomings, as
pointed out by Tavani (2007). For instance, the non-intrusion theory of privacy
seems to have confusions with the notion of liberty, in which the individual loses
the ability to freely act as they desire when intruded upon. An example of where
the two concepts differ is when one’s privacy is intruded upon without one’s knowl-
edge. If somebody’s private conversations are read without their knowledge, this is
a clear privacy violation, but there are no restrictions with respect to liberty such
as freedom of expression and thought.

For the seclusion theory, there may be confusions with the idea of solitude.
Tavani (2007) points out the example that if someone is stranded on an uninhabited
island, then under this definition they enjoy “perfect privacy”. Similarly, the limita-
tion theory may be confused with secrecy, which certainly overlaps with privacy,
but is not equivalent. This point is discussed in detail in Thompson (2001), who
notes that there are clear instances in which private matters can be general knowl-
edge, but not necessarily secret. He draws the example of an individual’s religious
practices, which are a private matter to them, but nevertheless may be generally
known. In such a case, that individual’s privacy may be violated by using this in-
formation in an inappropriate way, for instance in discriminating against them. In
contrast, secret information simply refers to information that is not known by at
least one person.

Finally, it seems that the information control theory of privacy is one of the
most popular today (e.g. strongly advocated by Moore (2008), Tavani (2007) opting
for a unified privacy theory of control and limitation, and so forth). Moore (2008)
relates the control over one’s privacy to that of intellectual property, in contrast to
that of physical property, such as physical goods or objects. Nevertheless, Tavani
(2007) points out a limitation of control-based theories, noting some overlap with
the concept of autonomy. Suppose that an individual reveals all of their personal
information to others, being fully in control of this process and doing so willingly.
Under the control theory, this individual would still be enjoying privacy, while our
intuition clearly would say otherwise.

In addition to the above categorization of privacy theories, we can draw further
distinctions. One clear distinction is between normative and non-normative (i.e.
descriptive) views of privacy (Moore, 2008). In the normative case, one is refer-
ring to certain moral obligations and ethical concerns. For example, the limitation
perspective can be seen as non-normative, since it describes privacy as a condition
(e.g. (Parent, 1983)) in which others have limited access to a sphere of information
about the individual. In contrast, the non-intrusion view of privacy treats it more
from the normative account, with privacy seen as a fundamental right that must
not be intruded upon.

Another type of categorization is between reductionist and non-reductionist
views of privacy. In the former account, privacy is considered to be derived from
other concepts, such as the right to life or property. In this case, there is therefore
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no single concept of ‘privacy’, but rather a combination of fundamental ideas that
are brought together. Thus, if the privacy of an individual is intruded upon, this is
really a collection of more underlying violations. In contrast, the non-reductionist
view considers privacy as a distinct, fundamental concept, alongside other essential
rights.

We can therefore see that, in the legal and philosophical literature, there is no
clear consensus of what privacy is, with strong overlaps between the notions of
privacy and other related concepts, such as autonomy and secrecy. For this reason,
it is crucial to have a formal and rigorous definition of privacy that we can apply in
the fields of natural language processing, machine learning, and statistics in general.
In this way, we would be able to clearly compare the privacy claims of different
algorithms and how they relate to their performance.

There are significant risks of the misuse of people’s personal data. At the same
time, there are immense research benefits from being able to make sensitive data
available for the scientific community, as outlined in Section 1.1. The framework
of differential privacy satisfies these desired properties, providing us with the tools
that we need for quantifiably privatizing our statistical models.

2.2 Differential Privacy

2.2.1 General Concepts

Differential privacy (DP) was originally proposed by Dwork et al. (2006b) and out-
lined in more detail in Dwork and Roth (2013). It is a formal, mathematical guar-
antee that the output of some analysis on a given dataset is nearly indistinguishable
when any one data point is modified. In other words, no individual can stand out
as a result of this analysis, preserving their privacy.

Neighboring datasets

To define this more formally, we first outline the notion of neighboring datasets. We
start with a dataset D, which consists of n individuals, x1, . . . , xn. We can then
define what it means for two datasets to be neighboring as follows.

Definition 2.2.1. Two datasets D and D′ are considered neighboring if they differ
in at most one record, i.e., one individual’s data point. This means that either
D′ = D ± 1, or D′ = D with the i-th data point replaced.

When considering a dataset as a database of individuals, with rows corresponding
to particular individuals and columns corresponding to features of data associated
with those individuals, we can see that two datasets, D and D′ are neighboring if
they differ in one row, i.e. ||D −D′||1 ≤ 1.

Query and randomized mechanism

Next, in DP we typically refer to a query on a dataset, as defined below.
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Definition 2.2.2. A query is a function f : D → Rk that we evaluate on a dataset
D.

This can range from very simple queries, such as taking the average length of a
document, to more complex queries, e.g. a deep learning model predicting the sen-
timent of a document. In simple terms, the query is the ‘question’ that the analyst
is asking about the data.

In order to provide a formal privacy guarantee, we add randomness to this query
by perturbing f(D). We refer to this randomized function as a randomized mecha-
nism M(D; f).

Formal definition of DP

The formal definition of differential privacy can now be described as follows.

Definition 2.2.3. For ε ≥ 0, a mechanism M is ε-differentially private if, for all
S ⊆ Range(M), and for any two neighboring datasets D and D′, the following holds
true:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] (2.1)

To describe the above guarantee more informally: For all subsets in the range of
a mechanism, i.e. for all events that could possibly happen, the probability that the
event happens with dataset D is going to be ‘close’ to the probability of that event
when dataset D′ is fed into the mechanism. This closeness is formally treated as a
multiplicative guarantee, hence the probability of every event in S is preserved up
to this eε.

Privacy budget (ε)

Importantly, ε is the privacy budget. The lower it is, the more private the mechanism
is, since the two output distributions of M(D) and M(D′) are constrained to be
more similar. ε is thus the bound on the amount of privacy leakage that is allowed
to occur. We approach a scenario of ideal privacy, but impaired utility, when ε→ 0.
In the extreme case when ε = 0, the output of M is not dependent on D at all
(e.g. being fully random), and therefore useless for extracting any information from
the dataset. Conversely, in the case of ε → ∞, we approach the original non-DP
setting. In this case, there is no bound on the output distribution ofM, which offers
no formal privacy guarantees, but may be good for utility. It is important to note
that ε is an exponent in Definition 2.1. This means that, as we linearly increase it,
the privacy guarantee deteriorates exponentially.

An important and recurring problem in DP is the question of how to find the
best trade-off between privacy and utility. The goal is to reach the best possible
privacy guarantee, while at the same time not giving up too much utility. This leads
to the question of what is a good ε value to aim for in a DP mechanism. While
the ‘right’ value of ε may be dependent on the specific query that is computed and
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nature of the data (Lee and Clifton, 2011), as we outline throughout this thesis,
a good rule of thumb for an ε value that provides a strong privacy guarantee is
the randomized response technique with fair coin flips, with ε ≈ 1.1. We describe
randomized response in detail in Section 2.2.3 and provide a further discussion on
selecting a suitable ε value in Section 6.7 of Chapter 6.

Privacy loss random variable

Another way of looking at the above guarantee in Definition 2.2.3 is to define the
privacy loss random variable. For a given output y ∼M(D):

L(y)
M(D)||M(D′) = ln

(
Pr[M(D) = y]

Pr[M(D′) = y]

)
(2.2)

Eqn. 2.2 can be obtained by rearranging Eqn. 2.1 and focusing on a particular
observation ofM. It defines the privacy loss that is incurred through the observation
of y, which may be more or less likely to be output when using database D, than
when using D′. In other words, the probability mass of y ∼M(D) may be larger or
smaller, respectively, than the mass of y ∼M(D′). It is this loss that is bounded in
the DP setting, for all neighboring datasets D and D′, and all possible outputs y:

max
∀y

∣∣∣L(y)
M(D)||M(D′)

∣∣∣ ≤ ε (2.3)

ℓ1-sensitivity

The question then arises: How do we actually achieve a particular ε-DP guarantee
for our desired query f? For this, we first define the notion of sensitivity.

Definition 2.2.4. Given a function f : Dn → Rk that takes in a dataset D and
outputs a vector of dimension k, the ℓ1-sensitivity of the function is as follows:

∆
(f)
1 = max

D,D′
||f(D)− f(D′)||1, (2.4)

for all neighboring datasets D,D′.

In other words, the sensitivity is the maximum amount by which the output of
algorithm f can change, when we alter one data point. The larger this sensitivity
is, the more perturbation we would need to introduce into f in order to obscure
the presence of a given individual. In the differentially private setting, we thus add
random noise to f based on this sensitivity.

Laplace mechanism

The specific type of random noise varies depending on the particular DP mechanism
that is used. One very standard mechanism in DP is the Laplace Mechanism. The
Laplace Distribution is a continuous probability distribution with location parameter
µ and scale parameter b, as shown in Figure 2.1. It can be seen as a two-sided
exponential distribution and is defined as follows:

f(x|µ, b) = 1

2b
exp

(
−|x− µ|

b

)
(2.5)
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Figure 2.1: Three instantiations of the Laplace distribution, all centered at 0 (µ = 0),
with varying scale parameters b. As b is decreased, we can see more of the probability
mass around µ (e.g. blue curve at b = 1). As the b parameter is increased, the
probability mass becomes more spread out, with a far lower peak (e.g. red curve
at b = 5). The Laplace distribution is symmetrical around its mean and unimodal,
meaning that there is only a single peak, at µ.

For our purposes, we will always center the distribution at µ = 0.

To achieve a particular ε-DP guarantee, we will add noise from the Laplace
distribution, Lap(b), to each coordinate of our query f , proportional to the ℓ1-
sensitivity of f . We outline this more formally in Definition 2.2.5.

Definition 2.2.5. The Laplace mechanism is defined for a given function f : Dn →
Rk as follows:

ML(D, f(·), ε) = f(D) + (Y1, . . . , Yk), (2.6)

where each random variable Yi is drawn i.i.d. from Lap(∆(f)
1 /ε).

As a result of this process, we can thus achieve a desired ε-DP guarantee for our
original query f .

Theorem 2.2.1. The Laplace mechanism preserves ε-differential privacy.

Proof. We refer to the proof of Theorem 3.6 in Dwork and Roth (2013).
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Properties of DP

Differential privacy has several very useful properties that make it suitable for sta-
tistical data analysis in the private setting. The first of these is that it is closed
under post-processing. Once we have obtained an output from a differentially pri-
vate algorithm, we can never recover the original data, more than the ε guarantee
allows us, without actually having access to the private data. We therefore cannot
make the output of a private algorithm less differentially private. More formally, if
a randomized mechanismM : Dn → Y is ε-differentially private, and F : Y → Z is
another randomized mapping, then F ◦M is also ε-differentially private. We refer
to Dwork and Roth (2013), proposition 2.1 for the proof.

Next, differential privacy allows for the composition of private mechanisms. This
answers the question of what happens when we want to ask multiple queries on a
given dataset. Particularly, this will be important in the case of applying differential
privacy to machine learning, outlined in more detail in Section 2.2.4. A straight-
forward way of achieving this is through basic composition, in which the sequential
application of two differentially private mechanisms results in using up a total pri-
vacy budget of the sum of the ε values for each individual mechanism. If we have k
ε-DP mechanisms that we run sequentially through our dataset, then the full pro-
cess will be kε-differentially private. More generally, for k DP mechanisms that each
have potentially different ε values, the total process will be

∑
i εi-DP, for 1 ≤ i ≤ k.

There are actually multiple different composition theorems which can improve upon
basic composition when using approximate differential privacy (e.g. Advanced Com-
position of Dwork et al. (2010), also see Section 2.2.4 on the Moments Accountant).

Finally, a third useful property of differential privacy is group privacy. This is
the scenario in which the neighboring datasets D and D′ differ, not in one entry, but
in several. In this case, the privacy guarantee shows a linear drop in the number of
entry differences. More formally, if a DP mechanism M : Dn → Y is kε-DP, and
D,D′ differ in k positions, then for all S ⊆ Range(M):

Pr[M(D) ∈ S] ≤ ekε Pr[M(D′) ∈ S] (2.7)

This can be useful if, for instance, a dataset contains multiple records that belong
to a single individual.

Approximate differential privacy

So far, we have described what is known as pure differential privacy with Defini-
tion 2.1 and Equations 2.1 and 2.3. It turns out we can actually ‘loosen’ our privacy
guarantees provided by pure differential privacy without really giving up privacy,
but at the same time improving utility in our algorithms. This is especially the
case for running many algorithms sequentially, as in the case of training a machine
learning model for multiple epochs. For this approximate differential privacy, we
take our original ε-DP guarantee and we add a ‘cryptographically small’ probability
that it will not work. It turns out that this is enough to often significantly improve
the utility for our DP mechanism.

18
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To define approximate DP more formally, we take the original Definition 2.2.3
and slightly modify it with the extra term δ, originally introduced in Dwork et al.
(2006a).

Definition 2.2.6. For ε ≥ 0 and δ ∈ [0, 1], a mechanism M is (ε, δ)-differentially
private if, for all S ⊆ Range(M), and for any two neighboring datasets D and D′,
the following holds true:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (2.8)

In the case of δ = 0, we go back to our original pure differential privacy definition.

To link this definition with the privacy loss random variable from Eqn. 2.2 and
2.3, we again keep the definition exactly the same, except that the random variable
is bounded by ε with probability 1− δ, as opposed to probability 1:

max
∀y

∣∣∣L(y)
M(D)||M(D′)

∣∣∣ ≤ ε, w.p. 1− δ (2.9)

Choosing δ

As with ε, the question arises of which value to actually set δ to. By definition, δ is
a bad scenario, in which potentially anything could be released about the dataset.
As discussed within the DP literature (e.g. Mironov (2017)), a good rule of thumb is
to set δ ≪ 1

n
, with n being the number of individuals in the dataset D. To motivate

this point, we can look at a hypothetical example of a mechanism that provides a
guarantee of (0, δ)-DP. In other words, this mechanism is perfectly private, except
with a small probability δ.

Definition 2.2.7. LetM be a randomized mechanism and D be a dataset consisting
of n individuals. For each element in the dataset xi ∈ D, output xi with probability
δ and do nothing with probability 1− δ.

For any particular individual in the dataset, with this mechanism M we are
risking releasing their data point with probability δ. Since we run this n times,
over every single individual in D, the total probability that we do not release any
individual’s data point is (1 − δ)n. Conversely, the probability that we do release
somebody’s data point is 1− (1− δ)n. Under this hypothetical mechanism, we can
see that if we set δ to be around 1

n
, then this probability is approximately 0.63.

As we increase δ, this probability approaches 1; however, if we set δ to be ‘much
less than n’ (e.g. δ = 1

n2 ), then this probability of releasing someone’s data point
is nearly 0. While this hypothetical mechanism shows a worst-case scenario of the
consequences of using a high δ, it can guide the data analyst in selecting a safe δ
value.

ℓ2-sensitivity

The question again arises of how to achieve a particular (ε, δ)-DP guarantee for a
given query f . In contrast to the case of pure differential privacy, here we use a
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slightly different definition for sensitivity, being the ℓ2-sensitivity as opposed to the
ℓ1-sensitivity above.

Definition 2.2.8. Given a function f : Dn → Rk that takes in a dataset D and
outputs a vector of dimension k, the ℓ2-sensitivity of the function is as follows:

∆
(f)
2 = max

D,D′
||f(D)− f(D′)||2, (2.10)

for all neighboring datasets D,D′.

We are again looking at the maximum amount by which an algorithm f can
change, when one data point is altered. In this case, however, we measure this
distance between neighboring datasets with the ℓ2 norm. In comparison with using
the ℓ1 norm, we can obtain a lower sensitivity in this case, which will in turn allow
us to add less random noise to our query. For a given output of f , y ∈ Rk, we have
the following inequality: ||y||2 ≤ ||y||1 ≤

√
k||y||2. This means that, in addition to

the ℓ2 norm being smaller than the ℓ1 norm, the two are at most a factor of
√
k

apart.

Gaussian mechanism

The standard mechanism for achieving approximate differential privacy is the Gaus-
sian Mechanism. The Gaussian Distribution is another continuous probability dis-
tribution with mean parameter µ and variance parameter σ2, as shown in Figure 2.2.
It is defined as follows:

f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(2.11)

We again center the distribution at µ = 0.

In order to achieve a particular (ε, δ)-DP guarantee, we add noise from the
Gaussian distribution N (µ, σ2) to each coordinate of our query f , calculated based
on the ℓ2-sensitivity of f . More formally, this can be seen in Definition 2.2.9.

Definition 2.2.9. The Gaussian mechanism is defined for a given function f :
Dn → Rk, ε ∈ (0, 1) and δ ∈ (0, 1) as follows:

ML(D, f(·), ε) = f(D) + (Y1, . . . , Yk), (2.12)

where each random variable Yi is drawn i.i.d. from N (0, 2 ln(1.25
δ
)
∆2

2

ε2
).

With this mechanism, we can achieve a desired (ε, δ)-DP guarantee for our query f .

Theorem 2.2.2. The Gaussian mechanism preserves (ε, δ)-differential privacy.

Proof. We refer to the proof of Theorem A.1 in Dwork and Roth (2013).
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Figure 2.2: Three instantiations of the Gaussian distribution, all centered at 0 (µ =
0), with varying standard deviation parameters σ. As we decrease σ, there is more
probability mass around µ (e.g. blue curve at σ = 0.2). As σ is increased, the
probability mass becomes more spread out, with lower peaks (e.g. red curve at
σ = 1.0). In comparison to the Laplace distribution, the peak of the Gaussian
distribution is far less sharp, meaning that the probability mass is more spread out
away from the mean. The tails of the Gaussian are also lighter compared to Laplace,
with more extreme values expected to appear for the latter. As with the Laplace
distribution, the Gaussian is also symmetrical around its mean and unimodal.

Exponential mechanism

While not utilized for the investigations in this thesis, an additional popular mech-
anism in differential privacy is the exponential mechanism (McSherry and Talwar,
2007), used for selecting the “best” element from a given set R in a differentially
private manner. This is achieved by defining a score function q, which assigns a
score to a dataset D and each element r ∈ R: q(D, r). In order to provide a DP
guarantee, the set element r that is returned by the mechanism is not always the
one with the highest score, but rather with probability proportional to exp( εq(D,r)

2∆(q) ).
In other words, higher scoring outputs are exponentially more likely, depending on
the privacy budget ε and the sensitivity ∆(q) of q.

The exponential mechanism is in fact a fundamental mechanism in differential
privacy, with which all other mechanisms can be defined, including the Laplace and
Gaussian mechanisms above. For example, in the case of the Laplace mechanism
applied to a query that has a single output value, the set R is simply the set of real
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Figure 2.3: Local DP (left) vs. global DP (right). In the local framework, the
aggregator does not have access to the original data, with each individual applying
DP to their own private data point. In the global framework, the aggregator adds
DP noise to the original data, given a specific query from an analyst.

numbers R.

Global DP vs. Local DP

One final important point to address with respect to differential privacy is the dif-
ference between global, also known as centralized differential privacy, and local
differential privacy. The distinction between the two is depicted in Figure 2.3. To
explain this distinction, we first define the notion of a trusted aggregator, also known
as a trusted curator.

Definition 2.2.10. A trusted aggregator is a trusted party that aggregates the
data from the data generators (i.e. the individuals providing the data) in a dataset
D. They can answer any given query about the dataset, providing the differentially
private answer to it.

In the case of global differential privacy, the query f(D) is first evaluated, and
then perturbed by the trusted data aggregator. This means that the trusted aggre-
gator is able to observe the private information of all individuals, and is trusted to
correctly apply the DP mechanism to the query on the dataset. There are many sce-
narios in which such a party would indeed be considered trustworthy. For instance,
if a hospital is providing medical data about its patients for statistical analysis, it
has legal requirements to protect the privacy of those patients, as described in Sec-
tion 1.1. The hospital thus acts as the trusted curator and it is in its best interests
not to have any privacy breaches of the provided data.

In contrast, in local differential privacy (LDP) each individual data holder
perturbs their own data point, prior to data collection and without relying on a
third party. In this case, the aggregator of the data receives already noisified data
points from individual data holders and can then pass them on for further statistical
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analysis. A classic example of local differential privacy is the randomized response
mechanism, outlined below in Section 2.2.3. Importantly, as noted by Wang et al.
(2020a), in LDP any two data points are considered neighboring, in contrast to the
global DP definition of two datasets differing in one record, as in Definition 2.2.1.

Since each individual is fully in control of the privatization process, this makes
LDP a particularly attractive setting for providing a privacy guarantee. The diffi-
culty, however, is that we typically require orders of magnitude more perturbation
for our query f than we otherwise would need in the global DP setting, since the
notion of adjacency between two data points is far stricter in LDP. We refer to this
as the strict adjacency problem and discuss this in detail in Chapter 6.

With regards to the structure of this thesis, Chapters 3 and 4 address NLP
from the perspective of global DP, while Chapters 5 and 6 investigate local DP.
More specifically, RQ1 and RQ2, dealing with the privatization of NLP models, fit
into the global DP scenario, utilizing the global DP algorithm differentially private
stochastic gradient descent (DP-SGD), described in Section 2.2.4. The individual
data holder provides their original data in the form of a textual document to the
machine learning model, with DP perturbation occurring during the model training
process. In contrast, RQ3 deals with the privatization of the text itself. In this case,
a given text is rewritten locally by a data holder using a text rewriting model, with
a certain (ε, δ)-differentially private guarantee. After the data point has been priva-
tized, it can then be used for any downstream analysis, due to the post-processing
property of DP, outlined above.

2.2.2 Example application of DP in the global setting

To motivate the above concepts of differential privacy in a more concrete manner,
we provide a specific pedagogical example of a simple DP mechanism applied to
a hypothetical dataset. While this example is simpler than the machine learning
and NLP setting described in Sections 2.2.4 and 2.2.5, it illustrates the fundamental
building blocks of DP that will be applied to NLP models and textual datasets
throughout this thesis.

Let us define an example dataset X as follows, shown in Table 2.1. Each row

Name Trait A . . . Trait K
Alice 0 . . . 1
Bob 0 . . . 1

Claire 1 . . . 0
...

... . . . ...
Zane 1 . . . 0

Table 2.1: Sample dataset X, consisting of n individuals, each having k sensitive
attributes that we want to protect. Each attribute is a binary value of either 0 or
1, representing the presence or absence of that attribute for a given individual.

of this dataset is associated with a specific individual, with n individuals and k
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attributes in total. The first column shows the name of a particular individual, with
subsequent columns consisting of binary values Xi,j ∈ Z2, representing the presence
or absence of a particular sensitive trait j associated with individual i. For instance,
the first attribute ‘Trait A’ could represent whether the individual has a certain
medical condition or not.

The first query we may want to answer on this dataset is: How many people in
our dataset possess trait A? This is a simple sum query, in which we add up all of
the binary values of the Trait A column. More formally, let g(X) =

∑k
i=1Xi be a

function that sums up a set of bits Xi, for each individual i.

First, we ask what is the ℓ1-sensitivity of this query. In other words, if one
individual is removed from this dataset, what is the maximum value by which the
sum query can change? Intuitively, we can see that this is simply 1. Either we have
removed an individual with a value of 1 for the Trait A column, in which case the
output from our neighboring dataset will be different by 1, or we have removed an
individual with a value of 0, resulting in the same output for g. Hence, we can see
that ∆

(g)
1 = 1.

Next, we can use the Laplace mechanism from Eqn. 2.6 to calculate the amount
of noise we need to add to the true answer of our sum query g. We thus must add
noise drawn from Lap(1

ε
) to our true answer g(X). Our randomized mechanismM

is therefore: M(X) = g(X) + Lap(1
ε
).

Let us assume that we have a fairly large dataset of 5000 individuals. If the true
answer to this query for our dataset is 1217, then the differentially private answer at
ε = 1 could be, for instance, something around 1219. This provided DP guarantee
can be seen more concretely in Figure 2.4.

With our DP mechanism, the possible outputs for the original dataset, and those for
a neighboring dataset, are shown as the blue and green probability density function,
respectively. We can see that the ratio of these two, at any point M(D), is always
bounded by eε. If we increase ε, then this ratio also increases, with sharper peaks
around the true values. Similarly, decreasing ε results in the two distributions being
more similar, with the probability density functions being more stretched out.

We can look at this from the perspective of an adversary that is trying to figure
out which of the two databases is the real one, X or X ′, given an output. When
the blue curve is higher than the green curve (e.g. atM(D) = 1218), the adversary
may suspect that the true dataset is X, since it has a higher probability that the
observed output came from it. Specifically, the adversary is at most eε times
more certain that the output came from the true database, as opposed
to from the neighboring one.

Conversely, when the green curve is higher than the blue curve, i.e. whenM(X ′) >
M(X), then the adversary is actually deceived that the true dataset is X ′! In this
case, the probability of an output coming from the neighboring dataset X ′ is
at most eε times more likely than from the dataset X.
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Figure 2.4: The possible outputs of our DP mechanism M for our target dataset
X (blue curve) and a neighboring dataset X ′ (green curve). The x axis shows the
possible output values of the mechanism, given an arbitrary dataset D, while the y
axis shows the associated probability density for a given output value x. The ratio
of the blue curve to the green curve at any given point never exceeds eε, and never
goes below e−ε. Since ε = 1.0 in this case, this ratio is always bounded by e (or 1

e

whenM(X ′) >M(X)).

We can additionally view this from the perspective of the privacy loss random
variable from Eqn. 2.2 in Figure 2.5, shown as the cumulative distribution function
of LM(X)||M(X′). We can obtain this plot from Figure 2.4 above by taking the ratio
of probabilities for the blue and green curves, M(X) and M(X ′), at all possible
points, and ordering them. Here we can very concretely see the privacy guarantee
that DP provides, where the privacy loss is clearly bounded between −ε and ε for
our mechanism, in this case setting ε = 1. The corresponding probability density
function of LM(X)||M(X′) would similarly show these bounds of −ε and ε, with two
peaks at each of these two values.

Going back to our sample dataset from Table 2.1, let us expand our original
sum query g to include more attributes. Concretely, we want to ask the question:
“How many people in our dataset possess each trait?”. In this case, we are asking
for the sum of each column, hence our output will be a vector of dimension k,
with each element representing the sum of binary values for a particular column.
Let h(X) = (g(X1,∗), g(X2,∗), . . . , g(Xk,∗)), where Xj,∗ represents the values of all
individuals for trait j.
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Figure 2.5: The cumulative distribution function F (L) of the privacy loss random
variable LM(X)||M(X′) at ε = 1.0. We can see that there is a lot of probability mass
at the points −ε and ε, with some transition in between. This clearly demonstrates
that LM(X)||M(X′) never goes outside of these bounds, meaning that the contribution
of any single individual to the analysis, in this case our original sum query g(X)
with added random noise drawn from Lap(1

ε
), is strictly bounded.

Here the ℓ1-sensitivity of h depends on the binary values of multiple columns.
Intuitively, in the worst-case scenario we can think of having removed an indi-
vidual with values of 1 for all columns and replaced them with another individ-
ual with values of 0 for all columns. More formally, recall from Eqn. 2.4 that
∆

(h)
1 = max

X,X′
||h(X)− h(X ′)||1, for two neighboring datasets, X and X ′. Then:

∆
(h)
1 = max

X,X′
||h(X)− h(X ′)||1

= |g(X1,∗)− g(X ′
1,∗)|+ · · ·+ |g(Xk,∗)− g(X ′

k,∗)|
≤ ||1||1
= 1 + · · ·+ 1︸ ︷︷ ︸

k times

= k

(2.13)

The ℓ1-sensitivity is thus simply the number of output dimensions of our query, in
this case the number of traits.

We can again use the Laplace mechanism to calculate the amount of noise
we need to add to the true answer of our query h. This time, however, we will
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need to add multiple Laplace random variables to our output, since the output of
h is a multi-dimensional vector of size k. Our privatized answer would then be
h(X) + (Y1, . . . , Yk), with each Yi drawn i.i.d. from Lap(k

ε
), based on our obtained

ℓ1-sensitivity in Eqn. 2.13 above.

For comparison, we can try using the Gaussian mechanism for privatizing h
instead. Recall that the Gaussian mechanism calculates the scale of the noise to be
added to the true answer of a query based on the ℓ2-sensitivity (Def. 2.2.9). The
ℓ2-sensitivity of h is calculated as follows:

∆
(h)
2 = max

X,X′
||h(X)− h(X ′)||2

=
√
(g(X1,∗)− g(X ′

1,∗))
2 + · · ·+ (g(Xk,∗)− g(X ′

k,∗))
2

≤ ||1||2
=
√
1 + · · ·+ 1︸ ︷︷ ︸

k times

=
√
k

(2.14)

It turns out here that, with the Gaussian mechanism, we can add a lot less noise
to our query h than with the Laplace mechanism, depending on the exact size of
k. In fact, as we increase the number of output dimensions k, we can expect a
better utility improvement when using the Gaussian mechanism due to the greater
difference in the added noise scale. More concretely:

Laplace: ỹ = h(X) + Lap(k
ε
)

Gaussian ỹ ≈ h(X) +N (0, (
√
k
ε
)2)

Of course, we are sacrificing some privacy guarantees by including the extra δ prob-
ability. The exact choice of which of these mechanisms to use can be task-specific,
and either could be a better option depending on the exact scenario.

Our privatized answer to our multi-dimensional sum query h is thus h(X) +

(Y1, . . . , Yk), with each Yi drawn i.i.d. from N (0, 2 ln(1.25
δ
)(

√
k
ε
)2). Recall from Sec-

tion 2.2.1 that it is best to set δ ≪ 1
n
, where n is the number of individuals in

the dataset. Again, assuming our dataset from Table 2.1 has 5000 individuals, we
can thus set δ to be far less than 1

5000
, e.g. δ = 10−5. Setting ε = 0.999 and with

k = 200, the noise for each Yi would be drawn from approximately N (0, (166.0)2).
In contrast, our Laplace scale would be b = k

ε
≈ 200.

We can additionally see that, if we increase the size of our dataset, the added
noise to the true answer of our query will have less impact on our final output. If our
dataset contains 50000 individuals, then since we still add the same amount of noise
to the output of our query as with a smaller dataset, we will have a more accurate
final answer. Conversely, with a smaller dataset of 500 individuals, our final noisy
answer will be heavily skewed from the true answer.
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We have thus shown an example application of differential privacy to a simple
dataset, both in the pure and approximate DP settings. We saw how our pri-
vacy guarantee can be interpreted from the perspective of the privacy loss random
variable, and discussed some comparisons between the Laplace and Gaussian mech-
anisms for achieving our differential privacy guarantee. The application above has
been an example of global DP, in which we add noise to the output of our query. As
randomized response is another good pedagogical example of DP, this time for the
local DP setting, and comes up frequently in discussions on differential privacy, we
present it in the section below.

2.2.3 Randomized Response

The randomized response technique can be seen as the oldest differentially private
algorithm, having been proposed by Warner (1965), with further modifications by
Greenberg et al. (1969). While there are different variations on the exact formulation
of the method, we will follow a generalized form as presented in Dwork and Roth
(2013).

We can imagine a setting as follows. A professor in charge of a large class
has administered an exam. He suspects that a certain number of students in the
class have cheated on the exam. He would like to make an estimate of the number
of students that cheated; however, he cannot ask the students directly, since an
affirmative answer would potentially carry negative consequences in this setting. In
the non-private scenario, such a survey would therefore be expected to collect mostly
negative answers. What can be done to obtain an accurate estimate to the desired
query, without individuals giving up their sensitive information?

We can formulate this problem more formally as follows. There are n students,
each student i with a sensitive ‘bit’ of information Xi ∈ {0, 1} that represents
whether or not they cheated on the exam. If the students provide their bit Xi

directly, this would be a privacy violation. Therefore, each student generates a value
Yi, which depends on the true value Xi, but with some randomness incorporated
into it. This Yi is then the answer that is sent off to the data analyst, in this case the
professor in charge of the class. The goal of the analyst is to calculate the percentage
of students that cheated, formally:

f =
1

n

n∑
i=1

Xi (2.15)

The way to incorporate randomness into Xi, in order to obtain Yi, is as follows.
Each student in the class gets a coin. They flip this coin in secret, so that only they
know the result of the flip. If it lands heads, then they provide the true answer,
setting Yi = Xi. If it lands tails, then they flip the coin again in secret. Based on
the outcome of this second coin flip, they then will say ‘yes’ or ‘no’ to the question
of whether they cheated or not, for the flip outcome of heads or tails, respectively.
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More formally, we define a parameter p ∈ (0, 1
2
). We determine Yi as follows:

Yi =

{
Xi, w.p. 1

2
+ p

1−Xi, w.p. 1
2
− p

(2.16)

We can see that, as we approach p = 1
2
, then we go back to the original non-private

scenario, where each individual simply gives up their private bit Xi to the analyst,
setting Yi = Xi. This fully accurate answer would provide the data analyst with the
best utility for the original query, but at the cost of privacy for the data providers.
In contrast, we can see that if we approach p = 0, then we move towards perfect
privacy, but no utility, since the bit Yi is fully random, independent of Xi. Both
outcomes of Yi = 0 and Yi = 1 can thus occur with uniform probability.

To find a middle-ground, we can set p = 1
4
. We would therefore expect a truthful

answer Yi = Xi with probability 3
4
. While this is certainly not as private as setting

p = 0, we are able to retain utility of the query to the data analyst. This again
reflects the typical problem within differential privacy research of finding a good
balance between the privacy and utility of an algorithm. As we set p closer to
0, we approach maximum privacy and minimum utility. In contrast, as p → 1

2
,

we approach maximum utility and minimum privacy. We then calculate the noisy
answer to our query, f̃ , as follows: f̃ = 1

n

∑n
i=1 Yi.

We can calculate the estimate that the analyst will obtain of the true proportion
of individuals that cheated f , from the aggregated Yi values as follows. Since we are
obtaining a biased estimate of the true answer to the query f by incorporating the
above noise mechanism from Eqn. 2.16, we need to adjust this in the final answer.
We want the calibrated correct proportion of students that cheated, defined as f ′,
where E[f ′] = f . This means that we want an expression for f ′ in which we get an
unbiased estimate for f . First, note that the expected value of our noisy bits Yi can
be calculated as follows.

E[Yi] = Xi

(
1

2
+ p

)
+ (1−Xi)

(
1

2
− p

)
= 2pXi +

1

2
− p

(2.17)

We can rearrange this expression to calculate a given Xi, due to linearity of expec-
tations:

Xi = E
[
1

2p

(
Yi −

1

2
+ p

)]
(2.18)

Plugging this into the original formula for f in Eqn. 2.15, we obtain an unbiased
estimator as follows:

f ′ =
1

n

n∑
i=1

[
1

2p

(
Yi −

1

2
+ p

)]
(2.19)

This will give us the estimate of the correct proportion of students that cheated,
E[f ′] = f , since taking the expectation of f ′ in Eqn. 2.19 leads to each individual
summand equivalent to Xi, as in Eqn. 2.18, due to linearity of expectations.
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Importantly, randomized response provides each individual with plausible de-
niability. This means that the individual is able to credibly claim that they did
not make a certain statement. In the above scenario, if a student answered ‘yes’ to
the question of whether they cheated or not on the exam, they can respond that
their answer is simply due to the outcome of the second coin flip. As we decrease
the p parameter, individuals approach maximum deniability, and vice versa. This
setting can in fact be translated to finding out any sensitive information about a
group of people (e.g. taboo behavior that people would not want to disclose), while
maintaining each individual’s confidentiality.

For each entry in the
dataset

Heads?

Flip a coin

Flip a coin Return "No"

Return "Yes"

Return the truth

Tails?

Heads?

Tails?

Figure 2.6: The randomized response procedure. Each individual in the dataset flips
a coin. If it lands heads, then they tell the truth. If it lands tails, then they flip
another coin. They then reply “Yes” or “No” to the analyst’s question, based on the
outcome of this second coin.1

The overall randomized response procedure is outlined in Figure 2.6. We can
in fact translate this to the language of differential privacy to get a concrete ε-DP
guarantee, for a given value of p. Following the notation from Eqn. 2.1, we define
our dataset of individuals D ∈ {0, 1}n as the string of bits X1, . . . , Xn, with each
Xi ∈ {0, 1}. We then define our mechanism M as randomized response, according
to Eqn. 2.16. Let y ∈ {0, 1}n be the resulting string of bits Y1, . . . , Yn. Then for two
neighboring datasets D and D′, i.e. where both differ in a single coordinate j, the
privacy loss random variable (Eqn. 2.2) will be as follows:

L(y)
M(D)||M(D′) = ln

(
Pr[M(D) = y]

Pr[M(D′) = y]

)
= ln

(∏n
i=1 Pr[Yi = yi]∏n
i=1 Pr[Y

′
i = yi]

)
= ln

(
Pr[Yj = yj]

Pr[Y ′
j = yj]

) (2.20)

We obtain the last equality due to the fact that only one coordinate is different in
the products of the numerator and denominator, with all other terms being common
1 Figure based on https://towardsdatascience.com/understanding-differential-
privacy-85ce191e198a.
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and thus cancelling out. Finally, from Eqn. 2.16, we can see that for any possible
outcomes of Yj, the final ratio is bounded as follows:

L(y)
M(D)||M(D′) = ln

(
Pr[Yj = yj]

Pr[Y ′
j = yj]

)
≤

1
2
+ p

1
2
− p

(2.21)

From the definition of ε with regards to the privacy loss random variable in Eqn. 2.3,
we can therefore see that the above bound in Eqn. 2.21 is equivalent to the privacy
budget, ε =

1
2
+p

1
2
−p

. As a concrete example, if we set p = 1
4
, thus using fair coin flips,

our randomized response mechanism is (ε = ln 3)-differentially private.

We have thus demonstrated a concrete example of a differentially private mech-
anism in the local setting. In contrast to the global setting, here we do not need
to rely on a trusted aggregator to apply the differentially private mechanism, with
each individual (e.g. student in the above exam setting) introducing randomness
into their own data point. We will see this same setting of LDP, specifically applied
to textual data used for NLP models in Chapters 5 and 6. While the data is more
complex, the underlying principle remains the same: Any individual can take their
own data point and perturb it to achieve a given ε-DP guarantee. This data point
can then be used in any downstream analysis without violating that individual’s
privacy beyond the provided DP guarantee due to the property of DP being closed
under post-processing.

2.2.4 DP and Machine Learning

Having gone over differential privacy in the general statistics setting, we now turn
to machine learning. There have been various applications of DP in the machine
learning and deep learning settings (Chaudhuri et al., 2011; Rubinstein et al., 2012;
Shokri and Shmatikov, 2015; Papernot et al., 2017; McMahan et al., 2018; Wang
et al., 2021), but the most relevant for our purposes is the algorithm differentially
private stochastic gradient descent (DP-SGD) by Abadi et al. (2016b), discussed in
detail below. First, however, we present a general discussion of how one may go
about applying differential privacy to a neural model.

As outlined in Figure 2.7, we have multiple options available. First, we may
consider privatizing the data itself, also known as input perturbation. This would be
an instance of local differential privacy, in which we remove identifiable information
from an input document before it is even sent off to the network. For example,
this could be an input textual document which we rewrite with differential privacy
guarantees. This methodology will in fact make up the core of Chapters 5 and 6,
where another neural model with noise added to its hidden representations is used
to rewrite a given document.

Next, we may consider adding noise to the model parameters, or some hidden
layer of the model. As mentioned above, we will utilize the latter approach in order
to obtain privatized data for our text rewriting methods.

In addition, it is also possible to privatize the output of a model, known as
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Dataset

Noise NoiseNoise Noise

Figure 2.7: Different options for applying differential privacy to the machine learning
process. Random noise can be added directly to the dataset itself (far left), to model
parameters or a hidden layer of the model (second from the left), the output of the
model (second from the right), or the optimization process when training the model
(far right).2

output perturbation (Chaudhuri et al., 2011; Rubinstein et al., 2012). In this case,
it is important to be careful about the exact setting in which such a model is
deployed, as it cannot be released in a white-box manner. One reason for this is
that the parameters of the model are vulnerable to recovery of the input data that
was originally used to train it, for instance using membership inference, or model
inversion-type attacks (Fredrikson et al., 2014, 2015; Hitaj et al., 2017; Shokri et al.,
2017).

Finally, we may consider adding noise to the optimization process. This includes
objective perturbation, in which we add noise to the loss function that is being
optimized (Chaudhuri et al., 2011; Kifer et al., 2012), as well as gradient perturbation,
in which we add noise to the gradient of the loss function. This latter method is
in fact the approach of DP-SGD, and comprises the main methodology used in
Chapters 3 and 4. As we are training a model, instead of taking a step down the
true gradient of the loss function, we take a noisy step that obscures the contribution
of the original training data.

DP-SGD

The notion of adding noise to the gradient of a loss function in order to achieve a
differentially private guarantee was originally proposed by Williams and McSherry
(2010) for logistic regression, with further developments by Jain et al. (2012); Song
et al. (2013). It was then developed in detail in terms of its theoretical properties by
Bassily et al. (2014) and then extended to the deep learning setting in Abadi et al.
(2016b) as differentially private stochastic gradient descent (DP-SGD).

When using DP-SGD, two additional steps are introduced to the standard stochas-

2 Figure based on https://medium.com/bluecore-engineering/differential-privacy-in-
the-real-world-f31a5df1398f.
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tic gradient descent algorithm (Robbins and Monro, 1951). For a given input xi from
the dataset, we obtain the gradient of the loss function L(θ) at training time step t,
gt(xi) = ∇θtL(θt, xi). We then clip this gradient by ℓ2 norm with clipping threshold
C in order to constrain its range (i.e. ℓ2-sensitivity, Eqn. 2.10), limiting the amount
of noise required for providing a differential privacy guarantee.

ḡt(xi) =
gt(xi)

max
(
1, ||gt(xi)||2

C

) (2.22)

Subsequently, we utilize the Gaussian mechanism (Eqn. 2.12), adding Gaussian noise
to the gradient to make the algorithm differentially private. This DP calculation is
grouped into ‘lots’ of size L.

g̃t =
1

L
(
∑
i∈L

ḡt(xi) +N (0, σ2C2I)) (2.23)

The descent step is then performed using this noisy gradient, updating the network’s
parameters θ, with learning rate γ.

θt+1 = θt − γg̃t (2.24)

While originally defined for the SGD optimizer, this application of DP to the op-
timization process can be extended to other optimizers, such as Adam (Kingma and
Ba, 2014). As Adam shares the core principle of gradient computing within SGD, to
make it differentially private we can add noise to the gradient following Eqn. 2.23,
prior to Adam’s moment estimates and parameter update. Despite the conceptual
simplicity of DP-SGD and extensions such as DP-Adam, the utilized privacy bud-
get can quickly become very large under techniques such as basic composition, when
training a neural model over many epochs. To address this, Abadi et al. (2016b)
proposed the moments accountant as an advanced DP composition technique, which
we present in detail below. Due to properties of the Gaussian mechanism allowing
for advanced composition, it is thus possible to significantly reduce the expended
privacy budget, without requiring to add considerably more noise to the gradient.

Moments Accountant

DP-SGD introduced two features, namely (1) a reverse computation of the privacy
budget, and (2) tighter bounds on the composition of multiple queries. First, a com-
mon DP methodology is to pre-determine the privacy budget (ε, δ) and add random
noise according to these parameters. In contrast, DP-SGD does the opposite: Given
a pre-defined amount of noise (hyperparameter of the algorithm), the privacy budget
(ε, δ) is computed retrospectively. Second, generally in DP, with multiple executions
of a ‘query’ (i.e. a single gradient computation in SGD), we can simply sum up the
ε, δ values associated with each query, such that for k queries with privacy budget
(ε, δ), the overall algorithm is (kε, kδ)-DP. However, this naive composition leads to
a very large privacy budget as it assumes that each query used up the maximum
given privacy budget.
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The simplest bound on a continuous random variable Z, the Markov inequality,
takes into account the expectation E[Z], such that for ε ∈ R+:

Pr[Z ≥ ε] ≤ E[Z]
ε

(2.25)

To simplify notation, we set the privacy loss from Eqn. 2.9, Z = L(y)
M(D)||M(D′).

Using the Chernoff bound, a variant of the Markov inequality, on the privacy loss
Z, we obtain the following formulation by multiplying Eqn. 2.25 by λ ∈ R and
exponentiating:

Pr[exp(λZ) ≥ exp(λε)] ≤ E[exp(λZ)]
exp(λε)

(2.26)

where E[exp(λZ)] is also known as the moment generating function.

The overall privacy loss Z is composed of a sequence of consecutive randomized
algorithms X1, . . . , Xk. Since all Xi are independent, the numerator in Eqn. 2.26 be-
comes a product of all E[exp(λXi)]. Converting to logarithmic form and simplifying,
we obtain:

Pr[Z ≥ ε] ≤ exp

(∑
i

lnE[exp(λXi)]− λε

)
(2.27)

Note the moment generating function inside the logarithmic expression. Since
the above bound is valid for any moment of the privacy loss random variable, we
can go through several moments and find the one that gives us the lowest bound.

Since the left-hand side of Eqn. 2.27 is by definition the δ value, the overall
mechanism is (ε, δ)-DP for δ = exp(

∑
i lnE[exp(λXi)] − λε). The corresponding ε

value can be found by modifying Eqn. 2.27:

ε =

∑
i lnE[exp(λXi)]− ln δ

λ
(2.28)

The overall DP-SGD algorithm, given the right noise scale σ and a clipping
threshold C, is thus shown to be (O(qε

√
T ), δ)-differentially private using this ac-

counting method, with q representing the ratio L
n

between the lot size L and dataset
size n, and T being the total number of training steps. We refer to Abadi et al.
(2016b) for further details.

Overall, the moments accountant is closely related to Rényi Differential Privacy
(RDP) (Mironov, 2017), which combines the notions of ε-DP, (ε, δ)-DP and con-
centrated differential privacy (Dwork and Rothblum, 2016; Bun and Steinke, 2016).
The last is a relaxation of DP that allows for a tighter analysis of the Gaussian
mechanism.

2.2.5 Differential Privacy and NLP

To conclude this section on differential privacy, we discuss the general methods that
have so far been used in applying differential privacy to the domain of NLP. We
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discuss relevant work for each part of the thesis in more detail in Chapters 3-6. For
more background on general methodologies in NLP, we refer to Section 2.3.

The study of differential privacy in NLP is part of the more general study of
privacy-preserving methods for textual data. These include methods of anonymiza-
tion through adversarial learning (Li et al., 2018; Elazar and Goldberg, 2018; Coavoux
et al., 2018; Friedrich et al., 2019), as well as other privacy frameworks such as feder-
ated learning (McMahan et al., 2017) (e.g. Ge et al. (2020); Sui et al. (2020); Zhang
et al. (2022)), homomorphic encryption (Gentry, 2009) (e.g. Kim et al. (2022); Chen
et al. (2022); Mihara et al. (2020); Podschwadt and Takabi (2020)), and secure mul-
tiparty computation (Cramer et al., 2015) (e.g. Reich et al. (2019); Resende et al.
(2021); Adams et al. (2021)).

With regards to differentially private NLP, the primary research directions can
be split up in various ways. This includes local DP vs. global DP methods, gradient-
based privacy with algorithms such as DP-SGD vs. privacy of internal model repre-
sentations (e.g. hidden layers, word vectors), and so forth. These various categories
of research directions are not mutually exclusive and can be combined to form a
given methodology (e.g. various studies looking into local DP with privacy of inter-
nal model representations, such as Weggenmann and Kerschbaum (2018)).

Here we will categorize work into four primary research trends:

1. Differentially private language models

2. Differentially private model representations

3. Synthetic data generation with differential privacy

4. General discussion and analysis

We will go through each of these in turn.

First, there has been an extensive amount of work on differentially private
language models. This can further be subdivided into two primary groups: (a)
pre-training of language models with DP and (b) fine-tuning of language models
with DP. The former category has seen an increasing amount of research appear
(Anil et al., 2022; Yin and Habernal, 2022; Hoory et al., 2021; Ponomareva et al.,
2022; Wu et al., 2022; Shi et al., 2022a). Apart from drops in utility in the DP
setting, one large challenge lies in the added computational burden of training a
model with differential privacy. We discuss this in more detail in Section 4.5.6
of Chapter 4. In addition to studies looking into pre-training transformers with
DP (Anil et al., 2022; Yin and Habernal, 2022; Hoory et al., 2021; Ponomareva
et al., 2022; Wu et al., 2022), some works investigate other model types, such as
RNN-based language models (Shi et al., 2022a). To improve utility, some studies
investigate methods to relax the stricter requirements of the DP setting, including
adjusting the amount of noise added to the gradient, depending on what tokens are
present in an input sequence (Wu et al., 2022), as well as applying DP-SGD only to
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certain selected tokens that are considered sensitive (Shi et al., 2022a).

The subcategory of fine-tuning language models with DP has seen even more
research in the past few years (Mattern et al., 2022a; Shi et al., 2022b; Xu et al.,
2021a; Basu et al., 2021; Petren Bach Hansen et al., 2022; Mireshghallah et al.,
2021; Jana and Biemann, 2021; Vu et al., 2020; Qu et al., 2021; Bommasani et al.,
2019; Li et al., 2022; Yu et al., 2022). The primary idea here is to take a pre-
trained checkpoint of a model that was prepared using a public corpus of data (e.g.
English Wikipedia and the BookCorpus (Zhu et al., 2015), as for the BERT model),
and then fine-tune it on a sensitive dataset with guarantees of differential privacy.
The fine-tuned DP model is then used for a given downstream task, such as text
classification in the financial setting (Basu et al., 2021), sequence tagging (Jana and
Biemann, 2021), synthetic text generation (Vu et al., 2020; Mattern et al., 2022a),
and general NLP benchmarks such as datasets from GLUE (Wang et al., 2019) (Qu
et al., 2021; Shi et al., 2022b; Yu et al., 2022).

The next large trend of differentially private NLP is that of differentially pri-
vate model representations. In contrast to pre-training and fine-tuning language
models with differential privacy, here the investigation is focused on the privatization
of a particular latent representation of text, either at the document- or word-level
(e.g. privatized word embeddings). These privatized representations can then be
utilized by other models, such as privatized word embeddings used as input to a
downstream model, or by further layers in the same model, due to the closed under
post-processing property that DP provides, as described in Section 2.2.1.

One of the earlier studies to work in this setting is SynTF (Weggenmann and Ker-
schbaum, 2018), which is a system of creating synthetic term frequency (tf) (Luhn,
1957) and term frequency - inverse document frequency (tf-idf) (Sparck Jones, 1972)
vectors by incorporating the exponential mechanism for an ε-DP guarantee, with the
goal of preventing authorship attribution. Following this were a variety of different
private text representation methods, including different types of private word em-
beddings (Xu et al., 2021b; Feyisetan and Kasiviswanathan, 2021; Xu et al., 2020b;
Feyisetan et al., 2020, 2019; Carvalho et al., 2023; Plant et al., 2021; Xie and Hong,
2022; Carvalho et al., 2021), document-level representations (Meehan et al., 2022;
Beigi et al., 2019; Lyu et al., 2020a) including privatized model encoders (e.g. Ma-
heshwari et al. (2022)), as well as other types of representations, such as Latent
Dirichlet Allocation (LDA) models (Blei et al., 2003) (Huang and Chen, 2021).

There is one important point that must be stressed for the word-level privatiza-
tion techniques above. While the individual word embeddings are privatized with
a certain DP guarantee, this does not translate to a full document-level privatiza-
tion, in which an entire document is protected with that same DP guarantee. If
we perturb every word of a given document with some noise addition mechanism
to the original word vector, the order of words is not taken into account, meaning
that syntactic information can theoretically still be revealed about the original text.
This may be concerning for protection against attacks such as authorship attribu-
tion, in which the specific choice of word combinations may play a significant role
in determining the author of a text. We discuss these points further in Section 5.2
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of Chapter 5, as well as Section 6.2 of Chapter 6. See also Mattern et al. (2022a)
for further discussion.

Another important aspect of some of the above studies (e.g. Feyisetan et al.
(2019); Xu et al. (2021c)) is that the exact form of differential privacy in which they
work is not the same as the classic form of DP outlined in Section 2.2.1. Specifically,
Chatzikokolakis et al. (2013) proposed a generalization of DP for metric spaces,
which is Metric DP, also known as dX -privacy. This is a form of DP that makes
a modification to the guarantee outlined in Eqn. 2.1, multiplying the ε value by a
distance metric d(x, x′), with d being the distnace function d : X × X → R+ and
w,w′ ∈ X being a pair of inputs from the discrete domain X . This is illustrated in
Def. 2.2.11.

Definition 2.2.11. For ε ≥ 0 and a distance metric d : X ×X → R+, a mechanism
M is εd-differentially private if, for all S ⊆ Range(M), and for any x, x′ ∈ X , the
following holds true:

Pr[M(x) ∈ S] ≤ eεd(x,x
′) Pr[M(x′) ∈ S] (2.29)

It is clear that, given various metrics d on X , the strength of the privacy guaran-
tee will vary. Note that we achieve the classic local DP setting if, for all x ̸= x′, we
set d(x, x′) = 1. Importantly, the final reported ε value in a study utilizing metric
DP is not comparable to the standard local DP setting. Since these distance metrics
can vary from study to study, it is crucial to be clear on exactly how a given metric
DP guarantee can convert to a local DP guarantee, i.e. what is the scaling factor
that any ε in the local DP setting is being multiplied by in the metric DP setting.
Since ε is defined as an exponent, given that d(x, x′) > 1, the resulting local DP
guarantee will be exponentially weaker, recalling Eqn. 2.3. In contrast, d(x, x′) < 1
would provide a stronger guarantee than in the local DP setting.

The third research trend in differentially private NLP is that of synthetic data
generation with differential privacy. This is a smaller but emerging subfield in
which the primary goal is to output a privatized text representation in the form of
discrete tokens, as opposed to latent representations. This is often performed in the
setting of local differential privacy (e.g. Bo et al. (2021)), although in some cases
also in the global DP setting (e.g. Mattern et al. (2022a)).

For instance, Bo et al. (2021) present a variant of the exponential mechanism,
which they term the two-set exponential mechanism, using a seq2seq autoencoder.
In their system, a bidirectional GRU (Cho et al., 2014a), acting as the encoder,
is used to obtain a latent vector representation of an input text, with a generator
GRU calculating logit weights for each token at a given time step. The two-set
exponential mechanism is then used with the logits from this trained generator to
privately sample individual tokens, in order to rewrite a given input sequence.

Another study, proposing the ADePT model (Krishna et al., 2021), also looked
into rewriting an input text sequence using an RNN-based autoencoder. In contrast
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to Bo et al. (2021), they utilized a Laplace and Gaussian mechanism over a latent
representation of the full input document, decoding from this perturbed represen-
tation. We discuss this model in more detail in Chapters 5 and 6. Other work
that has tackled synthetic data generation, either from the perspective of rewriting
input texts, or for settings such as synthetic dataset creation, include (Yue et al.,
2021; Wang et al., 2021; Xu et al., 2021c; Qu et al., 2021; Feyisetan et al., 2021;
Bommasani et al., 2019).

As with the case of several of the above studies relating to differentially private
text representations, here the same two points regarding word-level DP and metric
DP are also valid. So far, the majority of the above studies (Yue et al., 2021; Bo
et al., 2021; Wang et al., 2021; Xu et al., 2021c; Qu et al., 2021; Feyisetan et al.,
2021) investigate private text generation at the granularity of words, as opposed
to larger units, such as documents. Among these, metric DP has also been used
(Yue et al., 2021; Xu et al., 2021a; Qu et al., 2021), in contrast to the classic DP
framework, outlined in Section 2.2.1.

Apart from the final category of DP research in NLP, outlined below, there are
a few additional studies that do not quite fit into the above three categories. These
include combined methods of differential privacy and federated learning (McMahan
et al., 2017), such as (Qi et al., 2020, 2021; Thakkar et al., 2021), as well as stud-
ies that use another framework as their primary subject of study, with differential
privacy only as a comparison method or baseline (Lee et al., 2022; Mireshghallah
et al., 2021).

The final research trend consists of general discussion and analysis studies.
These are studies that analyze research directions for one of the other categories
above, discuss general trends and potential shortcomings of existing methods, and
suggest future directions to follow. One such study is Feyisetan et al. (2021), looking
into challenges of DP text generation mechanisms and how to deal with improving
the privacy/utility trade-off, reducing the high amount of noise that needs to be
added to text representations in the DP setting. They propose some frameworks as
possible solutions, such as deferring noise to a privacy amplification step. Similarly,
Bommasani et al. (2019) examine strategies for synthetic text generation with DP.

Another set of studies is Habernal (2021) and Habernal (2022), investigating
recent methods that have been proposed in the differentially private NLP literature
(Krishna et al., 2021; Beigi et al., 2019), demonstrating some confusion of these
methods with regards to their claimed DP guarantees. Habernal (2022) additionally
proposes an algorithm to use as an empirical sanity check, in order to demonstrate
whether a given DP mechanism actually violates its DP claims.

Overall, this is related to the wider problem that is present in some DP research
investigations, in which crucial aspects of the differentially private mechanism are
not made clear. This includes the exact epsilon values that are used, the unit of
privatization (e.g. document-level DP, user-level DP, and so forth), as well as various
details on the exact operations of the proposed DP mechanism. We discuss this in
more detail in Chapter 5.
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Finally, Mattern et al. (2022a) point out the flaws in DP mechanisms that op-
erate at the word level, as discussed above, while Klymenko et al. (2022) discuss
the current trends in differentially private NLP, possible vulnerabilities of existing
methods, as well as important unsolved problems (e.g. explainability of DP methods,
dealing with the unstructured nature of language) and future directions.

With regards to the current thesis, we provide contributions into several of the
above categories. First, in Chapters 3 and 4, we work largely in the first line of
research, investigating strategies for differentially private training of models used
in NLP, including extensive study of some common language models in the DP-
SGD setting (BERT (Devlin et al., 2019) and XtremeDistilTransformer (Mukherjee
et al., 2021)). For Chapters 5 and 6, we move our focus to the third line of research,
dealing with the problem of differentially private text generation. This is also related
to the second line of research, in which we investigate effective internal textual
representations of transformer models. Finally, throughout this thesis, we address
questions related to the last line of research, including how to deal with strict noise
requirements in the DP setting for textual data, as well as what exactly is the object
of privatization for DP applications in the NLP domain.

2.3 Relevant NLP Concepts
Before moving on to tackling the main research questions of this thesis with respect
to privacy and Natural Language Processing (NLP), we first present some essential
concepts that are fundamental in the field of NLP. This includes the current standard
procedures used in NLP, the primary tasks that are carried out as the goal of an
NLP system, as well as common architectures that are used for this process.

2.3.1 Background

We describe below the standard structure of a contemporary NLP system, largely
based off of methodologies common in modern-day machine learning. The overall
idea is that we develop a model that produces a probability distribution, given
some input data (e.g. raw text), in order to make predictions on the data, such as
classifying it into a specific category (e.g. positive or negative sentiment of a text).
In the current machine learning and NLP sphere, this model in practice is a deep
neural network (DNN) architecture, discussed in Section 2.3.3. To prepare such a
model, we first need to train it on the given task, such as text classification. This
is typically performed by minimizing a loss function, given the model’s predictions
and some gold labels that represent the correct answer for a set of data points to the
prediction problem. We therefore need a training dataset Dtrain for the model to
learn from, containing these pairs of input data points and their corresponding labels,
(x1, y1), . . . , (xn, yn), for a dataset of size n. Typically, xi ∈ Rd is a feature vector
of dimension d, such as a vectorized representation of a textual token or document,
discussed in more detail in Section 2.3.3. To actually learn from this training set,
we need a way to estimate how well the model carried out its prediction. Let
us represent the model as a function fθ(x) that takes in input data points x and is
parameterized by a set of parameters θ. Using a loss function l, for a given prediction
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and ground-truth label pair (fθ(xi), yi), where fθ(xi) is the model’s prediction on a
data point xi, we can calculate how well our model performs on the full training set
as follows:

L(θ,D) =
1

n

n∑
i=1

l(fθ(xi), yi) (2.30)

To train our model, the goal is thus to minimize this loss, finding the optimal
parameters θ̂ that result in the lowest L(θ,D). By far the most common method to
achieve this in machine learning is through the gradient descent algorithm (Cauchy
et al., 1847). The gradient of the loss function ∇θL(θ,D) is the vector of partial
derivatives that represents how a change in each individual model parameter θj
affects the loss function output. The general procedure of the algorithm is then as
follows. At a given time step t, we pass our input data through the model, obtain
predictions, and calculate the resulting loss. We then calculate the gradient of this
loss and use it to update our parameters θ by taking a step in the opposite direction
of it, controlling the step size with a learning rate γ ∈ R+. This is represented in
Eqn. 2.31.

gD = ∇θtL(θt, D)

θt+1 = θt − γgD
(2.31)

We then iteratively repeat this procedure until we have reached a local minimum
for L(θ,D).

In practice, in models such as deep neural networks, at each time step we form
a mini-batch of examples B taken from the training set, minimizing the loss using
mini-batch stochastic gradient descent (SGD) (which can be traced back to Robbins
and Monro (1951)), as in Eqn. 2.32.

gB =
1

|B|

|B|∑
i=1

∇θL(θ, B) (2.32)

The specific type of loss function used can vary depending on the problem, but
a common choice in machine learning is the cross-entropy loss, as in Eqn. 2.33.

H(p, q) = −Ep[log q]

= −
∑
x∈X

p(x) log(q(x)), (2.33)

for probability distributions p and q, with the same support X . Relating to the
notion of entropy from information theory, this loss function calculates the average
number of nats (or bits, if working with base 2 logarithms) that are required to
encode some data that is generated from a distribution p, when using a model q. In
our case, p(x) is the probability of the true class label that appears in the dataset,
being 1 for the target label’s class and 0 for all other classes. q(x) then defines the
probability that our model assigns to each label. The more similar the predicted
probability distribution from model q to the true distribution p, the lower the cross
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entropy loss. To obtain the cross entropy loss for the entire training set or given
mini-batch, we typically calculate the average cross entropy over all data points in
the set.

After having trained our model through the above optimization procedure, the
result is a parameter vector θ̂ which allows the model to correctly perform on the
given task, such as text classification. As discussed in Section 2.2.4, this parameter
vector is obtained by learning information from the training set Dtrain, meaning that
it can theoretically be exploited to reconstruct the original data points (Fredrikson
et al., 2014, 2015; Hitaj et al., 2017; Shokri et al., 2017). In order to protect this
information, we therefore need to privatize our model if it is to be released, using
techniques presented above such as DP-SGD.

Finally, in order to properly evaluate performance, we use a separate test dataset
Dtest that contains another set of data points with their gold labels, not present in
the training dataset. This is then used to evaluate how well our model has learned
the prediction task, and whether it is able to generalize to examples unseen from
the training set. For proper optimization of hyperparameters, we also require a
validation dataset partition Dvalidation, separate from both the training and test
sets.

2.3.2 Tasks

We briefly list some common NLP tasks that will be relevant for this thesis.

Text Classification

The task of text classification forms a major branch of NLP, which deals with the
procedure of categorizing text into precise groups. The primary goal is to design a
model that can learn to predict a label, given a sequence of textual tokens. There are
a large number of specific tasks that fall under the blanket term of text classification.
One of the most popular is sentiment analysis, in which the associated label with
a given text represents the emotional tone of the author. This is commonly the
polarity of the text, such as whether it is positive or negative. A very common
dataset for this task is from Maas et al. (2011), with approximately 50,000 movie
reviews from the Internet Movie Database (IMDb), each associated with a positive
or negative label. Overall, the main idea of text classification is that we can take
raw, unstructured text, and classify it into pre-determined categories, in order to be
able to make a clearer sense of it.

Natural Language Inference (NLI)

This is another classification task, this time on pairs of text sequences. The first text
sequence is referred to as a premise, while the second is a hypothesis. We proceed
to classify the relationship between these two, which is generally divided into three
classes. The first is entailment, in which it is possible to infer the hypothesis from
the premise. A contradiction is when it is possible to infer the negation of the
hypothesis from the premise. For any other case, we classify the relationship as
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neutral. Common datasets for NLI include the Stanford Natural Language Inference
(SNLI) Corpus (Bowman et al., 2015), as well as the Multi-Genre NLI (MultiNLI)
Corpus (Williams et al., 2018). The former contains 570k sentence pairs, which
are annotated with information about textual entailment, while the latter contains
433k such sentence pairs, but from ten different genres (e.g. Fiction, Letters, and
so forth).

Named-Entity Recognition (NER)

In contrast to the above two tasks, NER is a sequence labeling task. This is also a
type of classification task, but instead of classifying entire sequences, here individual
elements of the sequence are classified. For NER, the goal of a model is to predict
the named entity category of elements in a sequence. This includes tags such as
place, organization, time, and location.

A common labeling scheme for NER datasets is the IOB tagging format (Ramshaw
and Marcus, 1995), with a slight variation being the IOB2 format (Ratnaparkhi,
1998). In IOB2, a ‘B-’ prefix before the specific NER tag indicates that the tag is
for a token at the beginning of a phrase. An ‘I-’ prefix represents the inside of a
phrase, while an ‘O’ tag is for a token that is not part of any phrase. For example,
the sentence “Fred went to San Marino” would be tagged as follows:

Fred B-PER
went O
to O
San B-LOC
Marino I-LOC

Here, ‘PER’ refers to a person tag, while ‘LOC’ is a location tag.

The most common dataset in the NLP community for NER is the CoNLL-2003
shared task dataset (Tjong Kim Sang and De Meulder, 2003). It contains approxi-
mately 14,000 sentences in its training set, with around 300,000 tokens in total.

Part-of-Speech (POS) Tagging

As with NER, POS tagging is also a sequence labeling task. It is the process of
assigning a grammatical tag to each token in a given sequence. In addition to
common parts of speech such as nouns, verbs, and adjectives, many other categories
are included, depending on the specific tagging system used. The two datasets
investigated in Chapter 4, the Georgetown University Multilayer (GUM) Corpus
(Zeldes, 2017) and the Universal Dependencies English Web Treebank (UD EWT)
corpus (Silveira et al., 2014), utilize the Universal Dependencies set of POS tags
(Petrov et al., 2012; Nivre et al., 2020). This system includes a total of 17 tags, such
as ‘DET’ for a determiner, ‘PRON’ for a pronoun, ‘ADP’ for an adposition, and so
forth.
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Question Answering

For the task of question answering, the goal of the model is to provide an answer in
the form of natural language, given a posed question. There are different variations
for specifically carrying out this task. One of the most common is extractive question
answering, in which a context is provided for the model. The model then needs to
select an answer span from this context.

Another variation of this task is generative question answering (e.g. Yin et al.
(2016); Lewis and Fan (2019)), in which the model directly generates the answer (see
Text Generation below). For this latter type of QA, the generated answer can
either be based on a provided context (open-book generative QA, e.g. Lewis et al.
(2020b)), or without any context being explicitly provided (closed-book generative
QA (e.g. Roberts et al. (2020)).

One of the most common datasets for this task is the Stanford Question Answer-
ing (SQuAD) dataset, which has seen multiple versions (SQuAD 1.1 (Rajpurkar
et al., 2016) and SQuAD 2.0 (Rajpurkar et al., 2018)). The latter version of this
dataset expands the original 100,000 answerable questions with an additional 50,000
unanswerable questions.

Text Generation

Another large branch of NLP is text generation, or natural language generation
(NLG). In NLG, the main goal is for the NLP system to produce coherent and
fluent natural language output, given some forms of textual input or meaningful
representations (e.g. images, database of information, and so forth). There are many
different tasks within NLG, including machine translation (MT) (e.g. Bahdanau
et al. (2014); Vaswani et al. (2017)), image captioning (e.g. Xu et al. (2015)), as well
as dialogue systems (Li et al., 2016; Zhang et al., 2020).

We tackle text generation in Chapters 5 and 6, specifically with the task of text
rewriting using an autoencoder model, in which the goal of a model is to generate an
output as close as possible to the input, reconstructing the original text sequence.
By introducing a differentially private mechanism into such a model, we aim to
rewrite an original text as closely as possible, but with provided privacy guarantees
in the setting of local differential privacy.

Further Tasks

There are many tasks apart from the above that appear throughout the field and may
be more problem-specific. This includes some of the tasks presented in Chapter 3
for graph datasets, such as predicting the category of a particular research paper,
given a network of research citations.

NLP Tasks and the Importance of Privacy

It is important to note that, for all of the above tasks, there may be sensitive private
information in the input texts. For example, users of online platforms providing
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anonymous reviews for a product or service can be de-anonymized by means of
various methods (e.g. Fabien et al. (2020)). This poses potential risks for the users
such as retaliatory actions from the businesses that are being reviewed. In the case
of question answering systems, a user may ask a sensitive question that reveals
information about themselves, such as a medical condition or financial status. With
more such sensitive information within a textual dataset, the need for obscuring this
information with respect to each individual data provider becomes more pressing.
It is therefore crucial to be able to design a privacy protection mechanism, either to
be applied on the models that learn from such data, to restrict them from learning
individual data points, or to be applied on the data itself, as in the case of privatized
text rewriting.

2.3.3 Architectures

To conclude our discussion on the general non-private NLP setting, we present an
outline of the common deep neural models that are utilized in NLP, that will be
relevant for the rest of this thesis.

Artificial Neural Networks (ANNs)

In modern-day machine learning, by far the most common type of computational
system is that of the artificial neural network (ANN), which can be traced back to
work by Rosenblatt (1958), inspired by even earlier work of McCulloch and Pitts
(1943). This type of model is a collection of units, also known as artificial neu-
rons, which process numerical input information by multiplying each dimension of
the input signal by a learned weight parameter, taking the sum over these input-
weight products, adding a learned bias parameter, and passing the result through
a non-linear activation function, such as a sigmoid function, σ(x) = 1

1+e−x , or rec-
tified linear unit (ReLU) function, ReLU(x) = max(0, x). These weights can be
interpreted as a representation of the importance of information from a given input
signal’s dimension. This procedure produces an output neuron, and repeating this
process over the input data multiple times creates a full layer of such neurons. In
order to create more abstract representations of the original input data, multiple
such neuron layers can be stacked in order to create a feedforward neural network,
with a final output layer that is used for the model’s prediction. All layers apart
from the output and input are referred to as hidden layers. When a network has
many such hidden layers, it is referred to as a deep neural network (DNN). Formally,
a simple one-layer feedforward neural network can be represented as in Eqn 2.34,
with the first layer using a ReLU activation function, while the second using the
sigmoid function.

f(x;W1,W2,b1,b2) = σ(W2
⊺(ReLU(W1

⊺x+ b1)) + b2), (2.34)

where x ∈ Rd, W1 ∈ Rd×h, W2 ∈ Rh×k, b1 ∈ Rh, and b2 ∈ Rk, with d, h, and k
being the input, hidden, and output dimensions, respectively.

As with all other models described below, the general training procedure is the
same as outlined in Section 2.3.1. In the case of ANNs, in order to actually calculate
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the gradient of the loss function with respect to the model’s parameters, we use the
backpropagation algorithm (Rumelhart et al., 1986), which can be seen as a way to
efficiently apply the chain rule for each layer of the network, starting from the last
layer.

The incorporation of ANNs into the field of NLP has led to rapid improvements
in performance compared to previous statistical NLP systems, with a widespread
adoption of such models throughout the different branches of the field (e.g. various
text classification tasks, natural language generation, and so forth). We are thus
currently in an era of neural NLP, with the majority of new methodologies proposed
deeply rooted in ANNs.

Word Embeddings

The field of distributional semantics interprets language meaning based on the dis-
tributional hypothesis, popularized by Firth (1957) with the idea that the meaning
of a word is represented by “the company it keeps”, i.e. its distributional properties.
This has become the most popular way to model word meaning within NLP, using
word embeddings. These are representations of individual words as real-valued
vectors, which encode their distributional information such that words with similar
meanings, i.e. words that appear in similar contexts, will have corresponding vectors
that are near one another in the vector space. Some very popular methodologies
for preparing such vectors are the skip-gram and continuous bag-of-words (CBOW)
models (Mikolov et al., 2013), collectively known as word2vec, the related fastText
model (Joulin et al., 2017), as well as the GloVe (“Global Vectors”) model (Penning-
ton et al., 2014). In the case of word2vec, a two-layer feedforward neural network is
used to either predict context words, given a target word as input (skip-gram), or
predict a target word, given context words as input (CBOW), over a sliding window
that is iterated over a textual corpus. Since the input and output words of this net-
work are represented as one-hot vectors, the resulting dimension of the first weight
matrix associated with each word becomes that word’s embedding. The fastText
model is an extension to word2vec, which operates at the character level, being able
to construct vector representations for out-of-vocabulary (OOV) words. In the case
of GloVe, a co-occurrence matrix X ∈ RV×V is created from a textual corpus of vo-
cabulary V , with each Xij representing how often word i co-occurred with word j. A
log-bilinear model is then trained with a weighted least-squares objective, predicting
the log ratio of co-occurrence probabilities from X, with the intuition that this ratio
can represent word meaning in some form. All three types of word embeddings are
examples of dense vector representations, which are relatively information-rich and
mostly contain non-zero values, in contrast to sparse vectors, which tend to have far
more dimensions, many of which are zeroes.

An important note on the above models is that they create static word embed-
dings, in which a single embedding is used to represent a word, regardless of polysemy
or homonymy. To overcome this limitation, contextual word embeddings have been
developed based on the notion of pre-trained language models (discussed under
Pre-trained Language Models (PLMs) below), such as the ELMo (“Embed-
dings from Language Model”) and BERT (“Bidirectional Encoder Representations
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from Transformers”) models. From these models, the resulting word embeddings are
different for every occurrence of a word in a given sequence.

Recurrent Neural Networks (RNNs)

This is a family of neural networks that are designed to process sequential data,
such as sequences of tokens in a textual dataset. The primary idea of RNNs is that
the input is a sequence x(1), . . . ,x(T ), composed of T time steps. For each time
step, a value in the sequence is input to the model, which then produces an output
at that time step. Importantly, an additional weight matrix is introduced into the
model that produces recurrent connections between hidden units, i.e. loops in the
network which allow the output of units to affect the input to those same units.
More formally, a given time step of an RNN can be represented as in Eqn. 2.35, for
a simple one-layer RNN (Rumelhart et al., 1985).

f(x(t);W1,W2,UR,b1,b2) = σ(W2
⊺(tanh(W1

⊺x(t) +UR
⊺z(t−1) + b1)) + b2),

(2.35)
where x ∈ Rd, U ∈ Rh×h is the weight providing the recurrent connection, W1 ∈
Rd×h, W2 ∈ Rh×k, b1 ∈ Rh and b2 ∈ Rk are weight matrices and bias vectors,
respectively, and z(t−1) ∈ (−1, 1)h is the hidden representation for the previous
time step, i.e. z(t−1) = tanh(W1

⊺x(t−1) + UR
⊺z(t−2) + b1). Note that the tanh

activation function is often used for RNNs, where tanh(x) = ex−e−x

ex+e−x . In contrast to
feedforward neural networks, a modified version of the backpropagation algorithm,
namely Backpropagation Through Time (BPTT) (Werbos, 1988; Mozer, 1995) is
used to obtain the gradient of an RNN model. Essentially, the RNN is treated as
an unrolled, multi-layer DNN, to which backpropagation is applied.

Two notable issues with training simpler RNN architectures (e.g. Elman (1990))
are the vanishing and exploding gradient problems (Bengio et al., 1994; Pascanu
et al., 2013). In the former case, the norm of the gradient rapidly decreases to
0 during the training process, resulting in difficulties for the model to learn con-
nections between distant time steps. Similarly, in the latter case, the norm of the
gradient rapidly increases exponentially. Repeated applications of the chain rule
during backpropagation can result in very small values being multiplied iteratively
to cause the vanishing gradients problem, effectively blocking weights from being
changed in value. Alternatively, large values multiplied iteratively cause the explod-
ing gradients problem. These two problems in fact also affect feedforward neural
networks with many layers. Various techniques have been suggested to mitigate
these issues, such as gradient clipping (Pascanu et al., 2013) and batch normaliza-
tion (Ioffe and Szegedy, 2015). Interestingly, the gradient clipping strategy is also
one of the core components of the DP-SGD algorithm, restricting the range of values
that the gradient can take on, in order to bound the amount of required added noise
to the gradient in the differentially private setting.

Special RNN architectures have also been designed to be less susceptible to
the above two problems, and allow for modeling dependencies across more distant
time steps. One such common architecture is the long short-term memory (LSTM)
network (Hochreiter and Schmidhuber, 1997). The primary idea is to expand on
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the structure of the simpler RNN models to include an LSTM unit, which contains
a series of gates that control information flow. These are the input gate, regulating
information flow into the LSTM unit at each time step, the output gate, regulating
the information that is output from the unit, the forget gate, determining which
information to not pass on to the next time step, as well as the cell, which acts as a
‘conveyor belt’ for information to flow across time steps. More formally, an LSTM
unit can be defined as the following set of equations:

i(t) = σ(Wi
⊺x(t) +Ui

⊺z(t−1) + bi)

o(t) = σ(Wo
⊺x(t) +Uo

⊺z(t−1) + bo)

f (t) = σ(Wf
⊺x(t) +Uf

⊺z(t−1) + bf )

c̃(t) = tanh(Wg
⊺x(t) +Ug

⊺z(t−1) + bc)

c(t) = f (t) ⊙ ct−1 + i(t) ⊙ c̃(t)

z(t) = tanh(c(t))⊙ o(t),

(2.36)

where x ∈ Rd, W ∈ Rd×h and b ∈ Rh are the input weight matrices and bias
connections for the different gates, respectively, U ∈ Rh×h are the recurrent weight
matrices, i(t),o(t), f (t) ∈ (0, 1)h are the input, output and forget gates at time step
t, respectively, c̃(t) ∈ (−1, 1)h is the new cell input at time step t, c(t) ∈ Rh is the
cell state, and z(t) ∈ (−1, 1)h is the hidden state and output of the LSTM unit.

By regulating the flow of information in and out of the LSTM unit using these
gates, it is possible to preserve useful information across further time steps and
thereby achieve superior performance on tasks associated with sequential data, in
comparison to the simpler RNN architectures. One further common extension to
recurrent networks is the bidirectional RNN (Schuster and Paliwal, 1997), in which
two recurrent hidden layers are combined, with sequential information being input
to each layer in opposite directions. This type of RNN thus learns both past and
future information from the sequence simultaneously, which may help when the
model benefits from more contextual information from the full sequence.

With regards to training RNN-type models, an additional methodology may be
employed known as teacher forcing. During the training process, at each time step
t, the model receives the true label y(t−1), as opposed to the model’s own hidden
state output z(t−1). This may be useful in training the model by forcing it to more
closely replicate the input sequence. However, this could also cause problems for the
model at test time, since such ground-truth labels would not be available. Therefore,
it is possible to find a balance between the two training regimes, only using teacher
forcing with a certain probability p at each iteration.

Within the field of NLP, RNN-based models have been very popular (e.g. Sutskever
et al. (2014); Cho et al. (2014b); Bahdanau et al. (2014); Peters et al. (2018)), in
part due to their sequential nature being an inherent good fit for textual data. At
each time step, an RNN model outputs a hidden vector z(t), with a final hidden
vector output z(T ), at the end of a sequence of T time steps. Since this final vector
contains a summary of the full input sequence, it can naively be used for a sequence
classification task, for example adding a final feedforward layer that transforms this
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hidden vector into a probability distribution over k possible classes. Similarly, it
can also be used for a sequence tagging task (e.g. named-entity recognition) by uti-
lizing the hidden vector z(t) at every time step, input to a feedforward layer for
classification of individual tokens in the sequence.

Despite the successes of RNNs, long-term dependencies still remain a problem
for this family of models. While enhancements such as LSTM units are able to
mitigate the issue to some extent, the recurrent nature of the model still leads to a
limitation on the long-range information that can be captured. Additionally, there
is also the issue of parallelization, where RNN-based models require information to
be processed token-by-token, which means that they cannot be trained in paral-
lel. Among the various solutions to these issues (e.g. Bai et al. (2018)), by far the
most significant has been the proposed Transformer model, that has become over-
whelmingly dominant in the NLP community, discussed in more detail below under
Transformers.

Sequence to Sequence Models

In the case of text generation tasks, the size of the output sequence may be different
from that of the input sequence. For example, if we wish to translate from a source
language to a target language (e.g. English to French), the two sequences would not
be expected to be of the same size. The family of models known as sequence to
sequence, or seq2seq models deals exactly with such tasks. The most common type
of architecture for these models is the encoder-decoder architecture, which uses
two separate models, one for encoding the source sequence, the other for decoding
from the outputs of the encoder into the target sequence.

Given a sequence of inputs (x1, . . . , xT ), we wish to compute a sequence of out-
puts (y1, . . . , yT ′), where T and T ′ are not necessarily the same. A simple way to
achieve this is to utilize one LSTM model as an encoder, operating on the input
sequence, while another LSTM is used as a decoder, taking the final hidden state of
the first LSTM, z(T ), and setting it as its initial hidden state, as in Sutskever et al.
(2014) and Cho et al. (2014b).

One significant issue in this setup, is that the final hidden state of the first
LSTM, z(T ), has the burden of capturing information from the entire input sequence
(x1, . . . , xT ). This is especially prominent with longer input sequences, where per-
formance would be expected to significantly deteriorate. In order to overcome this
issue, Bahdanau et al. (2014) proposed an enhancement to the encoder-decoder
architecture, introducing an attention mechanism. In essence, this allows the de-
coder to selectively look through the encoder outputs for each token of the input
sequence, as opposed to relying on only one fixed vector. We can term this context
vector used by the decoder as c(t′), for time step t′ of the output sequence, replacing
the previous z(T ). As the decoding process continues at each time step of the output
sequence, this vector is updated, based on the encoder hidden states z(1), . . . , z(T )

and the decoded sequence up to time step t′− 1 (s(1), . . . , s(t′−1)). More specifically,
an alignment model is prepared, as in Eqn. 2.37, which predicts a score between a
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hidden vector of the input sequence and the previous time step of the decoder.

et′t = a(s(t
′−1), z(t)), (2.37)

representing the score between time step t′− 1 of the decoder and time step t of the
encoder. This function a is simply another feedforward neural network, trained as
part of the rest of the full encoder-decoder model. Obtaining each et′t, we can then
compute a weight for this alignment using the softmax function, as in Eqn. 2.38.

αt′t =
exp(et′t)∑T
k=1 exp(et′k)

(2.38)

The final context vector c(t
′) at time step t′ of the decoder is then computed as a

weighted sum of the encoder output hidden states, as in Eqn. 2.39.

c(t
′) =

T∑
t=1

αt′tz
(t) (2.39)

With the performance improvements of the above attention mechanism (termed
Additive Attention), other forms of attention were explored in subsequent work.
Notably, Luong et al. (2015) proposed alternatives to calculating the alignment
scores, as well as distinguishing between global and local attention, which operate
on the full source sequence and a smaller subset of it, respectively. Importantly, the
Transformer model, itself a type of encoder-decoder network, was developed based
on the related notion of self-attention, outlined below.

Transformers

The Transformer model (Vaswani et al., 2017) is a sequence to sequence encoder-
decoder model that was originally proposed for the task of machine translation. In
contrast to the RNN-based models above, the Transformer does not use recurrent
connections, instead primarily relying on attention. By avoiding recurrence, it is able
to achieve far more parallelization. Since its appearance, it has become arguably the
most prominent architecture in the NLP community, with many prevalent models
that subsequently appeared being derived from it (e.g. see Pre-trained Language
Models (PLMs)).

The Transformer consists of multiple stacked encoder and decoder ‘blocks’ within
its encoding and decoding components, respectively, with six each in the original
version of the model. It takes a sequence of inputs x = (x1, . . . , xT ) and outputs
a sequence y = (y1, . . . , yT ′). The encoder blocks contain two subcomponents, self-
attention and a feedforward neural network. The primary goal of this self-attention
layer is to allow the model to look at representations of all tokens in the input
sequence, as it is processing every individual token. It is therefore one of the mech-
anisms that allows to bypass the necessity of the recurrent connections in RNNs,
which provide the network with information on previous tokens that the model
has seen, apart from the target token. Interestingly, the majority of the Trans-
former’s weights are present in the subsequent feedforward neural network layer.
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Hence, although there is less discussion about it in the literature, it contains a lot
of the Transformer’s representational power. The decoder blocks then contain three
subcomponents, being self-attention, the feedforward neural network, as well as a
cross-attention layer in-between them, which allows the decoder block to attend over
parts of the outputs of the encoder.

The self-attention mechanism itself works as follows. The overall process is
similar to other types of attention, outlined in Section 2.3.3, with (1) an alignment
model, (2) softmax step, as well as (3) a weighted summation step. In encoder-
decoder attention (e.g. Bahdanau et al. (2014)), each decoder element is put through
the alignment model to obtain an alignment score with all encoder elements. In
contrast, in encoder self-attention, each element of the encoder is scored with each
other element of the encoder. Analogously, in decoder self-attention, each element
of the decoder is scored with each other element of the decoder.

The alignment model is labeled scaled dot-product attention by Vaswani et al.
(2017) and is computed as in Eqn. 2.40.

eij =
(W⊺

qzi)
⊺(W⊺

kzj)√
dk

, (2.40)

where Wq ∈ Rdz×dq and Wk ∈ Rdz×dk are weight matrices used to transform the
output of the previous encoder or decoder block, zi ∈ Rdz , for a given token position
i, where dz is the dimension of the previous layer output. Each input token zi to
this alignment model will have a resulting query representation of dimension dq and
an output key representation of dimension dk, after multiplication by the Wq and
Wk weight matrices, respectively, where dq = dk = dz. The scaling factor of 1√

dk
is

introduced to deal with gradient stability when using larger values of dk.

The softmax step is performed similar to Eqn. 2.38, shown in Eqn. 2.41.

αij =
exp(eij)∑T
k=1 exp(eik)

, (2.41)

where T is the length of the input sequence to the self-attention layer.

Finally, the weighted sum step is performed similar to Eqn. 2.39. We take the
same input vector to the self-attention mechanism for a given token position i,
zi, this time multiplying it with a weight matrix Wv ∈ Rdz×dv to create a value
representation of dimension dv = dz. A weighted sum of these value representations
are then computed by multiplying them with the resulting self-attention scores from
Eqn. 2.41, as in Eqn. 2.42.

z
′

i =
T∑

j=1

αijWvzj (2.42)

We subsequently have the output of the self-attention mechanism z
′
i, for each token

position i. We define the above three steps of self-attention in a more compact
manner in Eqn. 2.43.

Attention(Z;Wq,Wk,Wv) = softmax
(
(ZWq)(ZWk)

⊺

√
dk

)
(ZWv), (2.43)
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where Z ∈ RT×dz is the output of the previous encoder or decoder block.

An additional component added to this self-attention mechanism in the Trans-
former is multi-headed attention. In this case, the above attention computations are
performed multiple times, with h different matrices for the query, key, and value
weight matrices. Each of these computations is termed a head, with each head Z

′
i

computed as in Eqn. 2.44.

Z
′

i = Attention(Z;Wqi,Wki,Wvi), (2.44)

where Z
′
i ∈ RT×dv . In order to maintain dimensionality of representations Z into,

and out of, this multi-head self-attention module, the final outputs of all attention
heads are concatenated and multiplied by another weight matrix, Wo ∈ Rhdv×dz ,
which projects them back into RT×dz , as in Eqn. 2.45.

MultiHead(Z
′

1, . . . ,Z
′

h;Wo) = Ẑ = [Z
′

1, . . . ,Z
′

h]Wo, (2.45)

where Ẑ ∈ RT×dz is the final output of the multi-head attention module. The
intuition behind using multi-head attention is that each individual attention head
is able to attend to different patterns of information from the input sequence to the
layer, overall reaching a richer interpretation of the sequence for the model.

Before passing on this Ẑ to the subsequent feedforward layer, a residual con-
nection is introduced (He et al., 2016), followed by a layer normalization step (Ba
et al., 2016). For the residual connection, the input to the layer is directly added to
the output, i.e. Ẑ+ Z. An intuition behind this, is that the residual connection al-
lows gradients to flow through the network directly, avoiding issues such as gradient
vanishing, leading to more robust training of the network.

In the case of layer normalization, let ẑi represent token position i of Ẑ. Each ẑi
is rescaled and recentered across dimension dz, as in Eqn. 2.46.

µi =
1

dz

dz∑
j=1

ẑij

σ2
i =

1

dz

dz∑
j=1

(ẑij − µij)
2

ẑinorm =
ẑi − µi√
σ2

i + ϵ

LayerNorm(ẑi;γ,β) = z̃i = γ · ẑinorm + β,

(2.46)

where ϵ is a small constant introduced for numerical stability, while γ ∈ Rdz and
β ∈ Rdz are learnable parameters during training, allowing the model to determine
the mean and variance of the output distribution of values of the layer normalization
step.

Following the self-attention layer, the feedforward neural network layer, here
termed FFNN, is similar to the basic ANN described in Eqn. 2.34, with two linear
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transformations and a ReLU non-linear activation function in-between. The overall
procedure for each output token of the multi-headed self-attention mechanism in a
transformer encoder block is thus as in Eqn. 2.47.

z̃i = LayerNorm(ẑi + zi)

yi = LayerNorm(FFNN(z̃i) + z̃i),
(2.47)

with another residual connection and layer normalization step following the feedfor-
ward neural network.

In a decoder block of the Transformer, an additional component is introduced be-
tween the multi-headed self-attention and feedforward neural networks, being cross-
attention. The procedure is exactly the same as in self-attention, only here instead
of operating on a single sequence, there is a comparison of the encoder outputs and
the decoder’s input sequence. This means that we can modify Eqn. 2.43, where
the Z matrices associated with Wk and Wv are obtained from the output of the
Transformer’s final encoder block, while the Z matrix associated with Wq is from
the decoder’s own input sequence. In addition, the self-attention mechanism in a
decoder block ensures that, during the decoding process at token position i, only
positions less than i can be attended to by masking subsequent values. As with
the self-attention and feedforward neural network sub-layers, the cross-attention
sub-layer is also followed by a residual connection and a layer normalization step.

An additional point worth mentioning is the input to the very first encoder or
decoder block. Each token is first put through a learned input embedding layer,
which is basically just a feedforward linear layer that maps input tokens to a trained
representation of hidden dimension dz. Since the Transformer model described so
far, unlike RNN-based models, does not have an inherent way to represent order
within a sequence of tokens, an additional vector is added to each token’s input
embedding, described as the positional encoding. This provides the model with
information on the relative or absolute position of each token in the input sequence,
described in more detail in Vaswani et al. (2017).

Finally, the output of the final decoder block of the Transformer is followed
by another feedforward linear layer, which projects the decoder block’s final repre-
sentation into a logits vector. This is then followed by a softmax layer to obtain
the model’s final probabilities over the vocabulary of the target sequence. During
training, the Transformer is not autoregressive, predicting all outputs in parallel
by using the true gold tokens of the output sequence, hence using teacher forcing.
This parallelization is possible since all time steps are computed simultaneously, as
opposed to the sequential computations of RNN-based models. At test time, we use
autoregressive decoding, with the last predicted token of the decoder appended to
the decoder inputs at each next decoding step, if using the greedy search algorithm.
The overall architecture of the Transformer can be seen in Figure 2.8.

Pre-trained Language Models (PLMs)

A very prominent type of model within modern-day NLP is the pre-trained lan-
guage model (PLM). The vast majority of today’s PLMs are based on the above
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Figure 2.8: Transformer model architecture, diagram taken from Vaswani et al.
(2017). Nx represents N such encoder-decoder blocks.

Transformer architecture. These models can either take only the encoder portion
of the original Transformer model (Devlin et al., 2019; Liu et al., 2019; Sanh et al.,
2019), only the decoder portion (Radford et al., 2019; Yang et al., 2019), or the full
encoder-decoder structure (Lewis et al., 2020a; Raffel et al., 2020). There are a few
PLMs also based on other neural architectures, such as LSTMs (e.g. ELMo of Peters
et al. (2018)).

The primary goal is to learn useful language representations from a large unla-
beled corpus of text, generally in a self-supervised manner. The typical tasks for
pre-training a language model include next token prediction in a text sequence (e.g.
Radford et al. (2019)), masked language modeling (e.g. Devlin et al. (2019); Liu
et al. (2019)), as well as next sentence prediction (e.g. Devlin et al. (2019)).

The overall idea of PLMs is very closely related to that of transfer learning. After
pre-training the language model on the self-supervised task, the learned language
representations can then be transferred to a variety of downstream tasks, which
would typically have a smaller amount of available data in the supervised setting.
The pre-trained model representations can be fully frozen, i.e. with model param-
eters not updated for the downstream task, apart from an extra task-specific final
classification layer added to the end of the model, replacing the final layer used for
the self-supervised task during pre-training. Alternatively, the pre-trained model
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representations may be fully fine-tuned, with all parameters being updated to learn
the downstream task, as well as partially fine-tuned, in which only a specific subset
of the model parameters are further optimized, such as the last few layers.

Overall, these models typically contain a large number of parameters, with the
popular BERT model (Devlin et al., 2019) containing 110 million parameters in its
bert-base-cased version,3 which we use for our investigations in Chapter 4. More
recently, large language models (LLMs) with parameters in the billions and higher
(e.g. Brown et al. (2020)) have received a large amount of attention, both within the
NLP community, as well as the general public, due to their considerable performance
and capabilities, with continuous improvements in a variety of tasks, as the scale of
the model is further increased (Wei et al., 2022).

Apart from the above set of architectures, there are many other types of neural
networks that are used throughout machine learning and natural language process-
ing. One such important network is the Graph Neural Network (GNN) and its most
common variant, the Graph Convolutional Network (GCN). These networks allow
to extend the notion of ANNs to graph-based datasets and are presented in further
detail in Chapter 3.

2.4 Chapter Summary
In this chapter, we have discussed the relevant background for the various research
directions that are explored throughout this thesis. We started with the concept
of privacy from a philosophical perspective, noting various theories that have been
proposed over the last century and a half about how privacy can be defined. These
include the control and limitation theories of privacy, as well as other types of distinc-
tions on its categorization, such as normative vs. non-normative, and reductionist
vs. non-reductionist views.

Next, we discussed differential privacy (DP), the main framework that we are
working in for the privatization of NLP systems. We motivated DP both from an
informal, intuitive perspective, as well as the more rigorous mathematical definition,
discussing the formal guarantees that it provides, as well as the various flavors of
DP that exist. This includes pure (ε, 0)-DP vs. approximate (ε, δ)-DP and how to
achieve them through the Laplace and Gaussian mechanisms, respectively, as well
as global DP vs. local DP. We demonstrated the global DP setting by means of an
example application of different DP mechanisms on a dataset of individuals with
various attributes. We then discussed the randomized response technique, being
the oldest DP algorithm and one of the most well-known examples of the local DP
setting.

To proceed with our discussion of DP, we outlined how to apply the frame-
work to machine learning, including a description of the DP-SGD algorithm and the
Moments Accountant. We then concluded this section by presenting four primary
research directions of applying DP to the NLP setting, including (1) pre-training
3 Available at https://huggingface.co/bert-base-cased.
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private language models, (2) privatizing internal model representations, (3) syn-
thetic data generation with differential privacy, as well as (4) general discussion and
analysis of the application of DP to the NLP domain.

Finally, we finish this chapter by presenting essential concepts from the field of
NLP that will be relevant for the rest of this thesis. We discuss the standard struc-
ture of a modern NLP system and various common NLP tasks that are prominent
throughout the NLP literature. We then conclude by describing in detail the pri-
mary deep neural models used in the field, starting from artificial neural networks,
and finishing with transformers and pre-trained language models. We now move into
the primary part of this thesis, starting with investigations into the privatization of
text classification models with graph datasets in Chapter 3.
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Chapter 3

Privatization of Graph Convolutional
Networks for Text Classification

We now turn to tackling the first major set of questions in this thesis, namely the
privatization of NLP models. We begin in this chapter with RQ1, originally defined
in Chapter 1:

RQ1 How can we privatize text classification models that operate on
graph datasets?

As we will see, this is far from a straightforward process, with difficulties of
operating on graph datasets present even in the non-private scenario. The core of
the problem lies in the fact that large graph datasets do not have a straightforward
method to be divided into smaller subgraphs. This leads to significant memory
overhead when training a model on a graph dataset without privacy, as well as a
large amount of required added noise in the private setting, when using an algorithm
such as DP-SGD. While DP-SGD can work mostly out of the box for more standard
neural network models such as feedforward neural networks, and even Transformer
models, applying it to the case of graph neural networks (GNNs) poses significant
challenges. We show how to solve this problem using a graph splitting technique,
attaining a good privacy/utility trade-off.

3.1 Graphs in Discrete Mathematics
A graph G = (V , E) is a fundamental structure within the field of graph theory
in mathematics. It consists of two primary sets of objects, known as vertices or
nodes, V , and edges, E . A vertex is the basic unit of a graph, with two vertices
that are related in some way sharing an edge.

There are different types of graphs. One is the directed graph, in which there are
orientations associated with the edges of the graph. This means that, for a given
pair of nodes x and y, there may be an edge connecting them, such that the head
of the edge is only on x, while the tail is only on y. We can thus represent this
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Figure 3.1: Diagram of a simple undirected graph with 5 vertices and 6 edges.

connection as an ordered pair, (x, y). Similarly, a graph may be undirected, lacking
any orientations on its edges. In some cases, a graph can contain a loop, in which
a given vertex has an edge that connects back to itself. The degree of a vertex is
defined as the number of edges that are connected to it, with the degree matrix
D ∈ Nn×n being a diagonal matrix that indicates the degree of each node, where
n = |V| is the number of nodes in the graph. The adjacency matrix A ∈ {0, 1}n×n

of a graph represents all edge connections between nodes, with Aij representing the
presence or absence of a connection from node i to node j. In multigraphs, two
nodes may have more than one edge connecting them, with the adjacency matrix
containing positive integers (A ∈ Nn×n), as opposed to binary values. Figure 3.1
shows an example of a simple, undirected graph.

Graphs can be very powerful in formalizing and modeling real-world concepts.
A relevant example for this chapter is that of a social network, where vertices are
individuals and edges represent whether they are friends. There are a myriad of
use-cases apart from this, in many different fields of study. This includes molecu-
lar graphs in chemistry to model molecules, connectomics in biology to model the
nervous system, as well as various uses in computer science, such as network commu-
nication, computation flow, and a variety of discrete structures such as finite state
automata.

In the field of machine learning, graph datasets are commonly used with special
neural network architectures, graph neural networks, designed to take this data
type as input for training and inference on a given task. Importantly, we can model
our graph in a more elaborate manner by associating a feature vector with each
individual node, or even edge. Going back to the social network example, the feature
vectors associated with each node, i.e. individual in the social network, may consist
of some information that describes that individual in more detail (e.g. age, gender,
hobbies, and so forth). Depending on the task, a graph can have an associated
label with each of its individual nodes, with the corresponding task referred to as
node-level classification, or it can have a single label for the entire graph, for a
graph-level classification task. In the latter case, information is aggregated over the
network’s final node representations for the final classification step. We describe one
of the most well-known graph neural network architectures, the graph convolutional
network (GCN) (Kipf and Welling, 2017), in more detail in Section 3.4.1.
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3.2 Motivation and Contributions

Many text classification tasks naturally occur in the form of graphs where nodes rep-
resent text documents and edges are task specific, such as articles citing each other
or health records belonging to the same patient. When learning node representa-
tions and predicting their categories, models benefit from exploiting information
from the neighborhood of each node, as shown in graph neural networks, and graph
convolutional networks in particular, making them superior to other models (Xu
et al., 2019; De Cao et al., 2019).

While GCNs are powerful for a variety of NLP problems, like other neural models
they are prone to privacy attacks. Adversaries with extensive background knowledge
and computational power might reveal sensitive information about the training data
from the model, such as reconstructing information about the original classes of a
model (Hitaj et al., 2017) or even auditing membership of an individual’s data in a
model (Song and Shmatikov, 2019).

In order to preserve privacy for graph NLP data, models have to protect both the
textual nodes and the graph structure, as both sources carry potentially sensitive
information. As discussed in Chapter 2, privacy-preserving techniques, such as
differential privacy, prevent information leaks by adding ‘just enough’ noise during
model training while attaining acceptable performance, with the DP-SGD algorithm
being the most prominent example in the application of machine learning. However,
by design, DP-SGD expects independent and identically distributed (i.i.d.) data
examples to form batches and ‘lots’, therefore its suitability for the case of graph
neural networks remains an open question.

Within this chapter, we aim to tackle this exact problem, proposing a method-
ology for the application of DP-SGD to graph convolutional networks. Our goals
are in line with the primary objectives of differential privacy to find a good priva-
cy/utility trade-off for the resulting models, but importantly we take into account
the privacy protection of the entire graph, as opposed to only node- or edge-related
features. The main idea behind our method is to split the main graph from a par-
ticular dataset into subgraphs, while avoiding any additional queries on the data,
i.e. the graph structure and its associated node or edge features.

Our contributions can be listed as follows:

1. We carry out experiments on several NLP text classification tasks, such as
research article classification in citation networks, Reddit post classification, as
well as user interest classification in social networks. We employ five different
datasets in two languages, English and Slovak.

2. We demonstrate that it is possible to apply training with differential privacy
to GCN models by using our graph splitting method, as well as proper opti-
mization, which help the models to recover from performance drops due to the
noisy setting of DP-SGD.
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3. We further demonstrate that this performance drop can further be relieved by
incorporating more sophisticated text representations. More specifically, with
private training we are able to obtain a relative performance of 90% of the
non-private setting, reaching a good privacy/utility trade-off at ε = 1.0.

4. To the best of our knowledge, the current study presented in this chapter is
the first to bring differentially private gradient-based training to graph neural
network models.

3.3 Related Work and Background

A wide range of NLP tasks have been utilizing graph neural networks (GNNs),
specifically graph convolutional networks (GCNs), including text summarization (Xu
et al., 2020a), machine translation (Marcheggiani et al., 2018), and semantic role
labeling (Zheng and Kordjamshidi, 2020). Recent end-to-end approaches combine
pre-trained transformer models with GNNs to learn graph representations for syn-
tactic trees (Sachan et al., 2020). Rahimi et al. (2018) demonstrated the strength
of GCNs on predicting geo-location of Twitter users where nodes are represented by
users’ tweets and edges by social connections, i.e. mentions of other Twitter users.
However, for protecting user-level privacy, the overall social graph has to be taken
into account.

As discussed in Chapter 2, gradient-based approaches to differential privacy
(Williams and McSherry, 2010; Jain et al., 2012; Song et al., 2013; Bassily et al.,
2014; Abadi et al., 2016b) pioneered the connection of DP and deep learning, with
methods such as DP-SGD bounding the query sensitivity using gradient clipping
and allowing for a lower total ε-DP guarantee over several epochs of training with
the moments accountant. While originally tested on image recognition, they in-
spired subsequent work in language modeling using LSTMs (McMahan et al., 2018),
as well as several other approaches (e.g. Hoory et al. (2021); Anil et al. (2022),
see Section 2.2.5 of Chapter 2 for more discussion). However, to the best of our
knowledge, training graph-based architectures with DP-SGD has not yet been ex-
plored, at the time the current chapter’s investigation was carried out. Two recent
approaches utilize local differential privacy, adding noise to each node before pass-
ing it to graph model training (Sajadmanesh and Gatica-Perez, 2020; Lyu et al.,
2020b), yet it is unclear whether it prevents leaking knowledge about edges. Our
setup is different as we have access to the full dataset and preserve privacy of the
entire graph, including the adjacency matrix, representing information on all edge
connections between nodes, as well as the node features themselves.

As GCNs typically treat the entire graph as a single training example, Chiang
et al. (2019) proposed a more efficient training using mini-batching methods. De-
spite the NP-hardness of the general graph splitting problem (Bui and Jones, 1992),
they experimented with random partitioning and other clustering methods that take
advantage of the graph structure (Karypis and Kumar, 1998). It remains an open
question whether splitting the graph into disjoint i.i.d. examples would positively
affect our DP approach, where mini-batches/lots parameterize the required amount
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of noise.

3.4 Methodology

3.4.1 GCN as the underlying architecture

We employ the GCN architecture (Kipf and Welling, 2017) for enabling DP in
the domain of graph-based NLP. The GCN is a common and simpler variant to
more complex types of GNNs, which allows us to focus our attention primarily
on the application of DP to the domain of graph-based machine learning, without
the potential interference of other additions to the base GCN architecture (e.g.
use of edge features, inclusion of weight matrices for edges, other elements such as
attention), providing a clear comparison of the DP and non-DP implementations of
our model.

Let G = (V , E) model our graph data where each node vi ∈ V contains a fea-
ture vector of dimensionality c. The GCN aims to learn a node representation
by integrating information from each node’s neighborhood. The features of each
neighboring node of vi pass through a ‘message passing function’ (usually a trans-
formation by a weight matrix Φ) and are then aggregated and combined with the
current state of the node hl

i to form the next state hl+1
i . Edges are represented using

an adjacency matrix A ∈ Rn×n, where n is the number of nodes in the graph. A
is then multiplied by the matrix H ∈ Rn×f , f being the hidden dimension, as well
as the weight matrix Φ responsible for message passing, learned during training.
Additional tweaks by Kipf and Welling (2017) include adding the identity matrix to
A to include self-loops in the computation Â = A+I, as well as normalizing matrix
A by the degree matrix D, specifically using a symmetric normalization D− 1

2AD− 1
2 .

This results in the following equation for calculating the next state of the GCN for
a given layer l, passing through a non-linearity function σ:

Hl+1 = σ(D̂− 1
2 ÂD̂− 1

2H(l)Φ(l)) (3.1)

The final layer states for each node are then used for node-level classification, given
output labels. Figure 3.2 shows the general structure of a graph convolutional
network.

3.4.2 Our approach: Graph cuts for improved DP perfor-
mance

We propose a simple yet effective treatment of the discrepancy between GCN train-
ing (that is, taking the entire graph as a single example to maximally utilize the
contextual information of each node) and the DP versions of SGD and Adam (DP-
SGD and DP-Adam, respectively), which require a set of i.i.d. examples to form
batches and lots in order to distribute DP noise effectively.

The unit for which our method provides a DP guarantee is a full graph, including
all of its nodes and edges, which contrasts with other notions of DP for graphs such

61



Chapter 3. Privatization of Graph Convolutional Networks for Text
Classification

Figure 3.2: Diagram of a graph convolutional network. C represents the dimension
of each input node, while F the dimension of each output node. Each node Xi goes
through a series of hidden layers to obtain representations Zi. Yi represent labels
for each node. Figure taken from Kipf and Welling (2017).

as Edge DP and Node DP (Kasiviswanathan et al., 2013), which only protect edges,
or nodes with all of their adjacent edges, respectively. As DP operates with the
notion of neighboring datasets (Desfontaines and Pejó, 2020, Sec. 4), training a
GCN privately on the full graph means that any other graph is neighboring. It also
implies that each individual’s privacy in that graph is protected, which is the goal
of differential privacy. The other extreme would be to completely ignore the graph
structure and train the GCN on individual nodes; using DP, it would again protect
each individual’s privacy, but any advantage of graph structure would be ignored.

We thus propose a sweet-spot approach, that is splitting the graph into discon-
nected subgraphs. We experiment with different numbers of subgraphs to find the
best trade-off. In order to avoid any further dataset queries that might require a
larger privacy budget, we utilize random masking of the adjacency matrix so no
additional DP mechanism is required. Our algorithm creates a random index tensor
for all nodes in the training set, which is then split into s groups, corresponding
to the number of desired subgraphs. If the number of nodes n is divisible by s,
then all subgraphs have equal sizes of nodes (n

s
). If n is not divisible by s, then

n mod s subgraphs have ⌊ n
s+1
⌋ nodes, while the rest have ⌊n

s
⌋ These indexes are

then used to mask the original graph during training. This step is performed once
during data preprocessing and requires very little additional computational time or
memory requirements.

Privacy guarantee of graph cuts We start by summarizing the main DP argu-
ment of DP-SGD (Abadi et al., 2016b). In particular, any two gradient vectors are
made ‘indistinguishable’ from each other up to factor exp(ε) and summand δ. Gradi-
ents are computed over mini-batches. This means that the presence or absence of an
individual in the mini-batch is protected by DP-SGD. Furthermore, mini-batches are
disjoint, such that each individual is associated with a unique mini-batch only. The
disjoint requirement stems from DP being defined through the notion of neighbor-
ing datasets, where a given individual’s record in the dataset cannot appear in any
of its neighboring datasets (see Section 2.2). DP-SGD with lots and mini-batches
is (ε, δ)-DP (Abadi et al., 2016b). In our graph scenario, we cut the graph into
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several disconnected subgraphs that are equivalent to ‘mini-batches’. When trained
by DP-SGD, the gradients are again computed over each ‘mini-batch’ (subgraph)
and privatized. Now having each individual (a single node and all its edges) in one
‘mini-batch’, the presence or absence of that individual is again protected by DP as
desired. Therefore DP-SGD on GNNs with disjoint subgraphs is (ε, δ)-DP.

Finally, our graph splitting algorithm is completely random. It does not query
(in the DP sense) any information about the graph and its output is independent
of the presence or absence of any individual. As such, the random graph splitting
algorithm does not consume any privacy budget. Overall, this makes our approach
(ε, δ)-DP.

Our method is thus easy to implement, does not require much computational
overhead and fits very well into the DP scenario. We extensively compare our results
using different subgraph sizes in the non-private and private settings in Section 3.6.

3.5 Experiments

3.5.1 Datasets

We are interested in a text classification use-case where documents are connected
via undirected edges, forming a graph. While structurally limiting, this definition
covers a whole range of applications. We perform experiments on five single-label
multi-class classification tasks. The Cora, Citeseer, and PubMed datasets (Yang
et al., 2016; Sen et al., 2008; McCallum et al., 2000; Giles et al., 1998) are widely
used citation networks of research papers, where citing a paper i from paper j creates
an edge i− j. The task is to predict the category of the particular paper.

The Reddit dataset (Hamilton et al., 2017) treats an original post, i.e. content
shared in a given Reddit community known as a subreddit, as a graph node and
connects two posts by an edge if any user commented on both posts. Given the
large size of this dataset (230k nodes; all posts from Sept. 2014) causing severe
computational challenges, we sub-sampled 10% of posts (only a few days of Sept.
2014). The gold label corresponds to one of the top Reddit communities to which
the post belongs.

Unlike the above English datasets, the Pokec dataset (Takac and Zabovsky,
2012; Leskovec and Krevl, 2014) contains an anonymized social network in Slovak.
Nodes represent users and edges their friendship relations. User-level information
contains many attributes in natural language (e.g. ‘music’, ‘perfect evening’). We set
up the following binary task: Given the textual attributes, predict whether a user
prefers dogs or cats. We decided against user profiling, namely age prediction for ad
targeting (Perozzi and Skiena, 2015), for ethical reasons. Our task still serves well
the demonstration purposes of text classification of social network data. Overall,
Pokec’s personal information including friendship connections shows the importance
of privacy-preserving methods to protect this potentially sensitive information. We
discuss further preparation details below in Section 3.5.2.
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The four English datasets adapted from previous work are only available in their
encoded form. For the citation networks, each document is represented by a Bag of
Words (BoWs) encoding.

The Reddit dataset combines GloVe vectors (Pennington et al., 2014) averaged
over the post and its comments. Only the Pokec dataset is available as raw texts,
so we opted for multilingual BERT (mBERT) (Devlin et al., 2019), and averaged all
contextualized word embeddings over each user’s textual attributes. We addition-
ally tried Sentence-BERT (Reimers and Gurevych, 2019), which resulted in lower
performance. We hypothesize this is due to the fact that users fill in each of the at-
tributes in such a way that the text tends to resemble a list of keywords, rather than
actual discourse. Overall, the variety of languages, sizes, and different input encod-
ing allows us to compare non-private and private GCNs under different conditions.
Table 3.1 summarizes the data sizes and number of classes.

Dataset Classes Test size Training size

CiteSeer 6 1,000 1,827
Cora 7 1,000 1,208
PubMed 3 1,000 18,217
Pokec 2 2,000 16,000
Reddit 41 5,643 15,252

Table 3.1: Dataset statistics; size is number of nodes.

3.5.2 Further details on Pokec dataset pre-processing

In order to prepare the binary classification task for the Pokec dataset, the original
graph consisting of 1, 632, 803 nodes and 30, 622, 564 edges is sub-sampled to only
include users that filled out the ‘pets’ column and had either cats or dogs as their
preference, discarding entries with multiple preferences. For each pet type, users
were reordered based on percent completion of their profiles, such that users with
most of their profile information present were retained.

For each of the two classes, the top 10, 000 users are taken, with the final graph
consisting of 20, 000 nodes and 32, 782 edges. The data was split into 80% training,
10% validation and 10% test partitions.

The textual representations were prepared with bert-base-multilingual-cased
from Huggingface transformers,1 converting each attribute of user input in Slovak to
mBERT embeddings with the provided tokenizer for the same model. Embeddings
are taken from the last hidden layer of the model, with dimension size 768. The
average over all tokens is taken for a given column of user information, with 49 out
of the 59 original columns retained. The remaining 10 are left out due to containing
less relevant information for textual analysis, such as a user’s last login time. To
further simplify input representations for the model, the average is taken over all

1 Available from https://huggingface.co/bert-base-multilingual-cased.
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columns for a user, resulting in a final vector representation of dimension 768 for
each node in the graph.

3.5.3 Experiment Setup

We operate with three benchmarking scenarios. Experiment A is the vanilla GCN
without DP: The aim is to train the GCN without any privacy mechanism, evalu-
ating also the influence on performance with less training data. Experiment B is
the GCN with DP: We evaluate performance varying the amount of privacy budget
as well as data size. We randomly sub-sample a certain percentage of nodes that
then form a single training graph, as in the standard GCN. The latter allows us
to see the effects on performance of both adding noise and reducing training data.
Experiment C is the GCN with graph splits: Evaluating performance varying the
number of graph splits in the non-DP and DP settings.

Implementation details. As the δ privacy parameter is typically kept ‘cryp-
tographically small’ (Dwork and Roth, 2013) and, unlike the main privacy budget
ε, has a limited impact on accuracy (Abadi et al., 2016b, Fig. 4), we fixed its value
to 10−5 for all experiments. The clipping threshold C is set at 1.0. We validated
our PyTorch (Paszke et al., 2019) implementation by fully reproducing the MNIST
results from (Abadi et al., 2016b), described in Section 3.6.6. We perform all ex-
periments five times with different random seeds and report the mean and standard
deviation. Early stopping is determined using the validation set. We discuss further
details regarding hyperparameters below.

3.5.4 Hyperparameter Configuration

Our GCN model consists of 2 layers, with a ReLU non-linearity, a hidden size of
32 and dropout of 50%, trained with a learning rate of 0.01 (apart from DP-Adam,
which required far higher learning rates, as mentioned below). We found that early
stopping the model works better for the non-DP implementations, where we used
a patience of 20 epochs. We did not use early stopping for the DP configuration,
which shows better results without it. For all SGD runs we used a maximum of
2000 epochs, while for Adam we used 500.

Importantly, for DP-Adam we noticed that more moderate learning rate values
such as 0.01 were insufficient and led to far lower performance. We therefore opti-
mized this at several values in the interval from 0.1 to 100, with some datasets and
graph split values requiring learning rates as low as 0.1 (e.g. most datasets with 100
graph splits), while in other cases requiring 50 or 100 (e.g. Reddit for most graph
split values).

Due to the smaller amount of epochs for Adam, it is possible to add less noise to
achieve a lower ε value. Table 3.2 shows the mapping from noise values used for each
optimizer to the corresponding ε in the full graph setting. We implement the DP-
SGD and the corresponding DP-Adam algorithms from scratch using the PyTorch
library (Paszke et al., 2019), with the exception of the accounting procedure, for
which we use the provided command-line tool from the TensorFlow Privacy library
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(Abadi et al., 2016a).2 The runtimes for our experiments reach up to 1 hour for the
larger configurations on an NVIDIA A100 Tensor Core GPU.

ε Noise-SGD Noise-Adam

136.51 4 2
9.75 26 13
4.91 48 24
2.00 112 56

Table 3.2: ε values from Experiment B, with the corresponding noise values added
to the gradient for each optimizer.

Finally, regarding hyperparameter optimization on the validation set in the DP
setting, Abadi et al. (2016b) mention that, when optimizing on a very high number
of parameter settings (e.g. in the thousands), this would additionally take up a
moderate privacy budget (e.g. ε = 4 if they had used 6, 700 hyperparameters). For
our experiments, this number of hyperparameters is comparatively minimal and
would be well within our privacy bounds.

3.6 Results and Analysis

Non-DP DP DP split
Maj. SGD Adam ε SGD Adam SGD Adam

CiteSeer 1 - - 0.35 0.36
0.18 0.77 0.79 2 0.36 0.36 0.35 0.36
Cora 1 - - 0.55 0.56
0.32 0.77 0.88 2 0.39 0.52 0.55 0.57
PubMed 1 - - 0.54 0.52
0.40 0.49 0.79 2 0.38 0.54 0.54 0.51
Pokec 1 - - 0.62 0.72
0.50 0.83 0.83 2 0.75 0.66 0.64 0.73
Reddit 1 - - 0.65 0.79
0.15 0.68 0.88 2 0.46 0.72 0.67 0.82

Table 3.3: F1 results for Experiments A, B and C: Full dataset without DP (first
three columns, including a majority baseline), with DP and varying ε (middle two
columns), with DP using graph splits (right-most two columns). Best DP results
are bold. Lower ε corresponds to better privacy.

3.6.1 Experiment A: Non-private GCN

Table 3.3 shows the results on the left-hand side under ‘Non-DP’. When trained
with SGD, all datasets achieve fairly good results with the exception of PubMed,
2 Available at https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/
privacy/analysis/compute_dp_sgd_privacy.py.
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Figure 3.3: Experiment A: F1 wrt. training data size (in %), without DP.

possibly due to PubMed having a much larger graph. The best of these is for Pokec,
which could be due to its more expressive representations (BERT) and a simpler
task (binary classification). In comparison, in line with previous research (Ruder,
2016), Adam outperforms SGD in all cases, with Pokec showing the smallest gap
(0.826 and 0.832 for SGD and Adam, respectively).

Figure 3.3 shows the non-DP results with increasing training data. We observe
two contrasting patterns. First, there is a clear improvement as training data in-
creases (e.g. CiteSeer, with 0.70 F1 score at 10% vs. 0.77 at 100%). Second, we
observe the exact opposite pattern, with PubMed dropping from 0.57 at 10% to
0.49 at 100%, with a similar pattern for Pokec, or an early saturation effect for
Reddit and Cora, where results do not increase beyond a certain point (at 20-30%
for Reddit with approximately 0.69 F1 score, 50% for Cora at a score of 0.77). We
speculate that, with a larger training size, a vanilla GCN has a harder time to learn
the more complex input representations. In particular, for PubMed and Pokec, the
increasing number of training nodes only partially increases the graph degree, shown
in the solid and dotted grey lines of Figure 3.3, respectively. The model thus fails
to learn expressive node representations when limited information from the node’s
neighborhood is available. In contrast, the graph degree of Reddit grows much
faster, thus advantaging GCNs.

3.6.2 Experiment B: GCN with DP

The middle columns of Table 3.3 show results for a privacy budget of ε = 2.0. As
discussed further below, without splitting the graph into subgraphs, it is impossible
to reach the lower ε value of 1.0, since computations become very unstable due to
the very large amount of noise. We do not report values larger than ε = 2.0 as
their privacy protection diminishes exponentially. We note four main patterns in
this experiment.

First, DP-SGD results stay the same, regardless of the noise value
added. This is quite unexpected, since higher added noise values would be antici-
pated to lead to lower results. One explanation for this pattern is that the gradients
in vanilla SGD are already quite noisy, which may even help in generalization for the
model, so the additional DP noise does not pose much difficulty beyond the initial
drop in performance.
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Figure 3.4: Experiment B: F1 with varying training data size (in %) wrt. privacy
budget ε, with DP.

Second, DP-Adam results outperform DP-SGD and can reach results
close to the non-DP settings. It is worth noting that, when using default hyper-
parameters with a moderate learning rate of 0.01, DP-Adam results are very low,
usually worse than DP-SGD. It is only when optimizing this learning rate that we
see substantial improvements, with the best-performing learning rates being very
large, in the case of Reddit as high as 100. In contrast, DP-SGD does not see much
benefit from additional hyperparameter optimization.

Third, we see bigger drops in performance in the DP setting for datasets
with simpler input representations. Datasets of simpler input features can
have results drop by more than half in comparison to the non-DP implementation.
In comparison to DP-SGD, DP-Adam is able to retain better performance even
with the simpler input features for Cora and PubMed (e.g. drop 0.79 → 0.54 for
PubMed). Reddit and Pokec show the smallest drops from the non-DP to DP
setting (0.88 → 0.72 and 0.83 → 0.66 with Adam, for each dataset, respectively).
In fact, even for DP-SGD, Pokec results are very close to the non-DP counterpart
(0.83 → 0.75 F1 score). Hence, Citeseer, Cora and PubMed, all using one-hot
textual representations, show far greater drops in performance for the DP setting.
The datasets utilizing GloVe (Reddit) and BERT (Pokec) representations perform
far better. Since this effect of feature complexity on DP performance is shown
only through different datasets, we perform additional experiments on Pokec using
BoWs, fastText (Grave et al., 2018) and BERT features for a proper ‘apples-to-
apples’ comparison described in Section 3.6.4.

Learning Curves with DP Figure 3.4 shows the DP results for both varying ε
and with different training sub-samples (25%, 50%, 75% and the full 100%). First,
generally observed patterns are not the same for the learning curves in the non-
DP setup (Experiment A). For instance, Adam exhibits the opposite pattern, e.g.
Citeseer and Cora increase with more data for Adam without DP, but decrease for
DP-Adam.

Second, we can see that increasing the amount of data does not necessarily
help in the DP setting. For instance, while there is an improvement for DP-SGD
with the Citeseer, Cora and Reddit datasets, results mostly get worse for DP-Adam,
with the exception of PubMed. Hence, increasing training data generally does not
act as a solution to the general drop in performance introduced by DP.
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Figure 3.6: Experiment C, with DP: F1 with varying number of subgraphs wrt.
privacy budget ε.

3.6.3 Experiment C: Graph splitting approach

First we highlight the main results for the non-DP graph splitting approach.
For all datasets, increasing the number of subgraph divisions yields better results
in the SGD setting. This is especially notable in a case such as for PubMed, where
there is an increase from 0.47 with no splits to 0.79 with a split size of 100. Overall,
splitting the graph is shown to be quite effective in a setting where the model may
struggle more in the learning process, such as with SGD. Furthermore, at the higher
subgraph split sizes, there is a slight drop-off for Adam but not for SGD, where
increasing subgraph split size never improves performance beyond vanilla Adam, as
shown in Figure 3.5.

Figure 3.6 shows the results for the graph splitting setting with DP, varying
the privacy budget. First, increasing the number of subgraph splits generally
improves results for DP-SGD (e.g. 0.36 → 0.55 for Cora at ε = 2.0, with 10
subgraphs vs. the full graph, respectively). We see a difference across datasets,
where for instance Reddit shows the best results at 10 splits for all three ε values,
while Citeseer or Pokec do not particularly benefit beyond four splits.

Second, this pattern of improvement is also noticeable in the case of DP-Adam,
in contrast to the non-private vanilla Adam results. This is clearly seen in the
Reddit results, where the very best result is with 10 splits with ε = 1.0 at an F-
score of 0.79 with DP-Adam, being just 0.09 points lower than the non-DP version.
As in Experiment B, it is notable that DP-Adam does not perform particularly well
without using very high learning rates, with less graph splits requiring larger learning
rate values. Overall, the best-performing number of subgraphs seems to be specific
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to the particular dataset used and can thus be treated as another hyperparameter
to optimize on.

Third, with more subgraphs allowing for less noise to be added to obtain a lower
ε value, it is possible to reach the strong privacy guarantee of ε = 1.0. For
comparison, the randomized response technique described in Section 2.2.3 (Warner,
1965), using fair coin flips with uniform outcome probabilities, has ε ≈ 1.1. Thus
our graph splitting approach not only helps mitigate the difficulties of training with
added DP noise, but also allows us to reach stronger privacy guarantees with about
the same performance. Without the mini-batching that becomes possible by splitting
the graph, it is impossible to carry out a stable computation during the moment
accounting process to achieve ε = 1.0. A comparison of the DP setting with graph
splitting (using our initial setup of 10 graph splits) and the regular DP setting is
summarized in Table 3.3.

Summary and take-aways We summarize the key observations as follows:

1. DP-SGD is fairly robust to noise for these datasets and settings, even at ε =
1.0.

2. DP-Adam works even better than DP-SGD, however it needs to be tuned very
carefully, using very high learning rates.

3. More complex representations are better for the DP setting, showing a smaller
performance drop from the non-DP results.

4. Increasing training data does not necessarily mitigate negative performance
effects of DP.

5. Graph splitting improves both performance and allows for a stronger privacy
guarantee of ε = 1.0, resolving the mini-batching problem of GCNs in the DP
setting.

In addition to the above set of main experiments, we perform additional experi-
ments to elaborate on some of our findings above. First, we investigate observation
(3) on representation complexity in Section 3.6.4, to have an ‘apples-to-apples’ com-
parison of different textual representations on a single dataset (Pokec). Next, we
perform an error analysis on ‘hard cases’ in the non-DP and DP settings in Sec-
tion 3.6.5, to look into whether the most difficult data points for the model are
common between the various settings of experiments A and B, i.e. low-data and
high DP noise. Finally, we reproduce the results of Abadi et al. (2016b) on the
MNIST dataset in Section 3.6.6.

3.6.4 Feature Comparison for Pokec Dataset

As mentioned in Sections 3.6.2 and 3.6.3, we perform additional experiments on
the Pokec dataset in order to further investigate the hypothesis that input feature
complexity has an effect on the degree of performance drop in the DP setting. We
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originally noticed this across separate datasets, with Cora, Citeseer and PubMed,
using one-hot input features, having a greater performance drop than Reddit and
Pokec, which use GloVe and BERT, respectively. In order to more properly evaluate
this under the same conditions, we prepare two additional types of input features for
the Pokec dataset, namely Bag of Words (BoWs) and fastText (Joulin et al., 2017),
altogether having three levels of word representations, ranging from the simpler
(BoWs) to more complex (BERT).

The BoWs embeddings were prepared by taking the same 20,000 user profiles
as in the BERT preprocessing methodology described above. Tokens were split on
whitespace, with additional steps such as punctuation removal and lowercasing. In
order to reduce the embedding dimensionality, we filtered tokens by frequency in the
interval [15, 15000]. Each user profile was thus represented with a 9447-dimensional
vector of binary values.

For the fastText embeddings, we use a pre-trained model for Slovak from Grave
et al. (2018). Using the same set of user profiles, we preprocess the data in the same
manner as described by the authors. In order to have one vector per user profile, we
average all fastText embeddings for a given user to have a final embedding dimension
of 300.

The results of this experiment can be seen in Table 3.4. We notice that, in line
with our hypothesis, the most effective input features in the DP setting are the
BERT embeddings, with the smallest performance drop from the non-DP setting
(e.g. 0.84 > 0.70 for DP-SGD at ε = 2.0). Interestingly, the best method overall
without DP is with the BoWs representation. One explanation for this is that a lot
of slang vocabulary and unusual tokens are used in the social network data, which
a fastText or BERT model may struggle with more, while BoWs would simply treat
them equally as any other token in the vocabulary. As expected, the BoWs embed-
dings have a larger drop when trained with DP (0.88 > 0.62 for SGD and DP-SGD
with ε = 2.0, respectively). The fastText results show the lowest performance both
in the non-DP and DP settings, possibly due to the model struggling to maintain
useful representations after averaging many token vectors for a user, which a more
powerful model such as mBERT has an easier time with. Our original hypothesis
is thus verified that more sophisticated input features such as BERT would show a
smaller performance drop in the DP setting, compared to simpler representations
such as BoWs, with this effect shown in an ‘apples-to-apples’ setting on the same
dataset.

3.6.5 Are ‘hard’ examples consistent between private and
non-private models?

To look further into the nature of errors for experiments A and B, we evaluate the
‘hard’ cases. These are cases that the model has an incorrect prediction for with the
maximum data size and non-private implementation, i.e. the first set of results from
experiment A. For the experiment A learning curves, we take the errors for every
setting of the experiment (10% training data, 20%, and so forth) and calculate the
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Non-DP F1 scores DP F1 scores
SGD Adam ε SGD Adam

BoWs 2 0.62 0.63
0.88 0.87 5 0.62 0.61

10 0.62 0.61
137 0.63 0.63

fastText 2 0.59 0.63
0.71 0.73 5 0.59 0.57

10 0.59 0.57
137 0.61 0.60

BERT 2 0.70 0.66
0.84 0.84 5 0.70 0.75

10 0.70 0.75
137 0.74 0.75

Table 3.4: F1 scores for the Pokec dataset, comparing different input feature repre-
sentations and privacy budgets.

intersection of those errors with that of the ‘hard cases’ from the baseline implemen-
tation. This intersection is then normalized by the original number of hard cases to
obtain a percentage value. The results for the hard cases of experiment A can be
seen in Figure 3.7. We perform the same procedure for the hard cases of experiment
B with different noise values for the DP-SGD setting, as seen in Figure 3.8. This
provides a look into how the nature of errors differs among these different settings,
whether they stay constant or become more random as we decrease the training size
or increase DP noise.

Regarding the errors for experiment B, we can see a strong contrast between
datasets such as Reddit and PubMed. For the latter, the more noise we add as
ε decreases, the more random the errors become. In the case of Reddit, however,
we see that even if we add more noise, it still fails on the same hard cases. This
means that there are hard aspects of the data that remain constant throughout. For
instance, out of all the different classes to predict, some may be particularly difficult
for the model.

Although the raw data for Reddit does not have references to the original class
names and input texts, we can still take a look into these classes numerically and
see which ones are the most difficult in the confusion matrix. In the baseline non-
DP model, we notice that many classes are consistently predicted incorrectly. For
example, class 10 is predicted 93% of the time to be class 39. Class 18 is never
predicted to be correct, but 95% of the time predicted to be class 9. Class 21 is
predicted as class 16 83% of the time, and so forth. This model therefore mixes up
many of these classes with considerable confidence.

Comparing this with the confusion matrix for the differentially private imple-
mentation at an ε value of 2, we can see that the results incorrectly predict these
same classes as well, but the predictions are more spread out. Whereas the non-
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Figure 3.7: Hard cases in the non-DP setting.

private model seems to be very certain in its incorrect prediction, mistaking one
class for another, the private model is less certain and predicts a variety of incorrect
classes for the target class.

For the analysis of the hard cases of experiment A in Figure 3.7, we can see some
of the same patterns as above, for instance between PubMed and Reddit. Even
if the training size is decreased, the model trained on Reddit still makes the same
types of errors throughout. In contrast, as training size is decreased for PubMed,
the model makes more and more random errors. The main difference between the
hard cases of the two experiments is that, apart from Reddit, here we can see that
for all other datasets the errors become more random as we decrease training size.
For example, Cora goes down from 85% of hard cases at 90% training data to 74%
at 10% training data. In the case of experiment B, they stay about the same. For
instance, Cora retains just over 70% of the hard cases for all noise values.

Overall, while we see some parallels between the hard cases for experiments A
and B, with respect to patterns of individual datasets such as Reddit and PubMed,
the general trend of more and more distinct errors that is seen for the majority of
datasets with less training size in experiment A is not the same in experiment B,
staying mostly constant across different noise values for the latter. The idea that the
nature of errors due to DP noise and the nature of errors due to having less training
data are the same can thus not be confirmed. This means that simply increasing
training size may not necessarily mitigate the negative performance effects of DP
noise.

3.6.6 MNIST Baselines

Table 3.5 shows results on the MNIST dataset (LeCun et al., 1998) with different lot
sizes and noise values. We use a simple feedforward neural network with a hidden
size of 512, dropout of 50%, SGD optimizer, and a maximum of 2000 epochs with
an early stopping patience of 20. Other hyperparameters such as learning rate are
the same as described above. We note that the configuration in the first row with
lot size of 600 and noise 4 is the same as described by Abadi et al. (2016b) in their
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Figure 3.8: Hard cases analysis in the DP setting.

Lot Size Noise ε F1 Std.

600 4 1.26 0.90 0.02
6,000 4 4.24 0.84 0.01
60,000 4 15.13 0.45 0.04
60,000 50 0.98 0.39 0.15
60,000 100 0.50 0.10 0.01

Table 3.5: Results on the MNIST dataset with varying lot sizes and noise values.

application of the moments accountant, reaching the same ε value of 1.2586.

We can see some important patterns in these results that relate to our main
results from the GCN experiments. Maintaining a constant noise scale of 4, as we
increase the lot size, not only does the ε value increase, but we see a dramatic drop
in F1 score, especially for a lot size of 60, 000, being the full training set. If we try to
increase the noise and maintain that 60, 000 lot size, while we are able to lower the
ε value below 1, the F1 score continues to drop dramatically, going down to 0.1010
with a noise value of 100.

Hence, the current MNIST results further show the benefits of applying the graph
splitting methodology on large one-graph datasets. By splitting the graph, we are
able to utilize batches and lots of smaller sizes, with smaller amounts of the input
data processed per iteration, as opposed to running the entire dataset through the
model each time.

3.7 Chapter Summary
We have investigated privatization strategies for neural models operating on graph
datasets, i.e. graph neural networks. While there is an expected drop in results
for the differentially private models, we can mitigate this drop by: (1) using graph
partitioning methods, such as our random graph splitting methodology, (2) utiliz-
ing the DP-Adam optimizer, which interestingly requires very high learning rates
that are unusual in standard hyperparameter optimization of neural models, and
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(3) having more complexity in the input representations of the dataset (e.g. node
features as mBERT embeddings v.s. BoWs). Our final privacy/utility trade-off is
quite effective, reaching the strong privacy guarantee of ε = 1.0, with up to 87%
and 90% of non-private F1 scores for the Pokec and Reddit datasets, respectively.

With regards to further options in this direction of gradient-based GNN pri-
vatization, an interesting line of work to explore is graph splitting that may take
advantage of the graph structure, instead of using uniform random splitting. The
main issue is that any additional queries on the dataset require the incorporation
of more noise, in order to maintain the (ε, δ)-DP guarantee. This is what made the
random graph splitting approach appealing, avoiding these additional queries, and
therefore additional perturbation on the graph dataset. Perhaps a good trade-off
can be found, with a graph splitting approach that shows significant performance
improvements, requiring only a small amount of perturbation to be privatized.

Having investigated strategies for privatizing graph neural network architectures
in NLP, we next ask the question: How does this methodology of DP-SGD perform
within the field of NLP in general, for ‘standard’ NLP datasets, tasks, and model
types? Without the added difficulties that are present for graph neural networks
and graph datasets, can we simply apply DP-SGD to models such as LSTMs and
Transformers, and expect to reach a good privacy/utility trade-off? We thoroughly
investigate this question in the following chapter.
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Chapter 4

Investigating Strategies for
Differentially-Private Learning across
NLP Tasks

We continue our investigation of privatizing NLP models in the framework of differ-
ential privacy. In this chapter, we address RQ2 from Chapter 1:

RQ2 Is there a systematic strategy that can be applied to NLP text
classification tasks in the differentially private setting?

Unlike in the previous chapter, here we investigate more ‘standard’ NLP ar-
chitectures such as LSTM models (Hochreiter and Schmidhuber, 1997) and several
transformer-based configurations (Vaswani et al., 2017), across a variety of NLP
tasks. While differential privacy has been used in some NLP studies, the commu-
nity overall does not have a full understanding of how well DP can be utilized across
different NLP models and tasks.

4.1 Introduction

As we have previously discussed, one of the most standard ways of applying differ-
ential privacy to the field of machine learning is by using the DP-SGD algorithm.
While this is becoming more widely adopted for private machine learning in general
(Papernot et al., 2021; Ziller et al., 2021; De et al., 2022), within the NLP com-
munity we do not yet have a thorough understanding of how effective DP-SGD is
in various NLP tasks. Going through the past literature on private NLP, DP-SGD
has been used in some cases, such as for the task of language modeling (McMahan
et al., 2018; Hoory et al., 2021), as well as named entity recognition (NER) (Jana
and Biemann, 2021), as we describe in Section 2.2.5 of Chapter 2. In the latter case,
some of the findings seem to be counter-intuitive, for instance a lack of decrease in
performance when using very strict privacy guarantees. Overall, the current land-
scape of applying gradient-based differential privacy to the field of NLP lacks some
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concrete answers on the effectiveness of the methodology, as well as what strategies
may be employed in order to obtain both good performance and a stricter privacy
guarantee. For instance, do certain model configurations tend to have a ‘winning’
combination with respect to the architecture that is used with DP-SGD? Are cer-
tain NLP tasks more suited for this methodology, with the possibility of achieving
a better privacy/utility trade-off?

In this chapter we answer the following research questions. (1) We want to know
which NLP models and strategies for training these models can provide the best
trade-off with respect to privacy and performance across different text classification
tasks. (2) If we increase the strictness of our privacy guarantees, to what extent
does this hurt the final performance? (3) Is there a systematic strategy that can
be employed with respect to (1) in order to obtain the best results, achieving the
strictest possible degree of privacy and highest performance? We investigate these
main points by running experiments over seven different NLP datasets and five NLP
tasks. We compare different models that are commonly used in the current sphere
of NLP research. The primary contribution of this chapter is to provide the NLP
community with a more solid grasp of how privacy-preserving learning relates to
each task and its associated challenges.

4.2 Related Work and Background

In the field of NLP, the primary application of DP-SGD has been for training lan-
guage models. For instance, Kerrigan et al. (2020) look into the application of
DP-SGD on a GPT-2 model (Radford et al., 2019) and two simple feedforward neu-
ral networks. They pre-train on a large public dataset and perform fine-tuning with
differential privacy, reporting model perplexities on these pre-trained models. They
do not perform further experiments on downstream tasks.

In McMahan et al. (2018), the authors prepare an LSTM language model trained
with differential privacy. They are able to achieve results that are close to the non-
private model counterparts. Next, Hoory et al. (2021) prepare a BERT model with
differential privacy. They run experiments on a medical entity extraction task and
using a privacy budget of ε = 1.1, they reach performance that is comparable
between the DP and non-DP models.

With regards to downstream tasks in NLP, there are only a few works that
utilize DP-SGD. Jana and Biemann (2021) investigate the CoNLL-2003 English
NER dataset (Tjong Kim Sang and De Meulder, 2003) with differentially private
training. Using DP-SGD with values of ε that go as low as 1, and even 0.022, they
report no significant drop in performance, using a bidirectional LSTM. We evaluate
this highly unusual result in more detail in Section 4.5.3 below.

In addition, Bagdasaryan et al. (2019) look into the NLP task of sentiment
analysis for Tweets with DP-SGD. They utilize ε values of 8.99 and 3.87, achieving
only small drops in accuracy.
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The current state of the art is therefore limited to only a few tasks and datasets,
with distinct privacy budgets that do not match up across these different investi-
gations. As a community, we therefore need a more general investigation of the
application of DP-SGD to the domain of NLP, exploring whether a common strat-
egy can be found for this application across different tasks and models. We refer
to Section 2.2.5 of Chapter 2 for a broader background into differentially private
research in NLP.

Finally, in a concurrent work to the investigation presented in this chapter, Yu
et al. (2022) examined pre-training and fine-tuning of transformer-based language
models on a variety of tasks and using several parameter-efficient fine-tuning meth-
ods. They report higher results using larger models, with the parameter-efficient
techniques helping to reduce added computation and memory costs.

4.2.1 What is being privatized

As is standard for the DP-SGD algorithm, the unit of privacy for our DP guaran-
tee is that of individual data points in a dataset. In other words, the notion of a
neighboring dataset for our experiments is based on adding or removing one data
point (i.e. document) in each of the corresponding datasets that we utilize. This
means that the contribution of every single document to the resulting model pa-
rameter update at each training iteration is made indistinguishable, up to a factor
of ε and summand δ. Unlike in a database of individuals and corresponding traits,
as described in Section 2.2.2 of Chapter 2, the contribution of each individual in
a natural language dataset is not always straightforward to determine and requires
further investigation. While we are working with DP at the stricter document level,
obscuring the contribution of all tokens in the sequence, it may be possible to relax
this requirement by operating at a more fine-grained level, depending on whether
some tokens are considered more sensitive than others in a document, with respect
to identifying the individual contributing the document (e.g. Shi et al. (2022a); Wu
et al. (2022)). For related discussion, see Section 6.6.4 of Chapter 6.

4.3 Knowledge Distillation
Before delving into the exact models and tasks that are investigated throughout
this chapter, we briefly discuss knowledge distillation, relevant to one class of
models that will be used in our experiments, namely the XtremeDistilTransformer
(XDT) model (Mukherjee et al., 2021). Knowledge distillation can be defined as
the process of taking a larger model and transferring its knowledge to a smaller
one (Ba and Caruana, 2014; Hinton et al., 2015). Typically, this larger model
can be computationally expensive to deploy, with significant memory requirements,
while the smaller model is much more feasible in practical, real-world settings. The
procedure is common on large neural network architectures, especially the modern
transformer-based models, consisting of a large number of model parameters and
layers. Figure 4.1 shows the typical knowledge distillation pipeline.

The core elements of knowledge distillation include: (a) the knowledge itself, (b)
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Figure 4.1: General pipeline for knowledge distillation, with a larger teacher model
(left) transferring its learned representations to a smaller and more compact student
model (right). Figure taken from Gou et al. (2021).

the method, or type of distillation, (c) the teacher-student architecture, as well as (d)
the exact algorithm used for distillation (Gou et al., 2021). Each of these is outlined
in more detail below.

Knowledge Knowledge can be grouped into several categories, primarily relating
to the various learned elements of the larger model. These include response-based
knowledge (Ba and Caruana, 2014; Hinton et al., 2015), i.e. information from the
last output layer in the form of the teacher model’s logits, feature-based knowledge
(Romero et al., 2015), in which the student model learns from the intermediate
layers of the teacher model (e.g. learning the same feature activations), as well as
relation-based knowledge (Yim et al., 2017), in which the relationship between the
various feature maps (e.g. two layers) of the teacher model are used to train the
student model.

Method of Distillation There are three main ways of preparing a distilled stu-
dent model: offline distillation, online distillation, and self distillation. The first
of these, offline distillation (Hinton et al., 2015), takes a pre-trained model as the
teacher, and transfers its knowledge to a student model (e.g. in the form of log-
its, intermediate knowledge, or pairs of feature maps, as above). This is the most
common methodology out of the three methods of distillation. Online distillation
(Zhang et al., 2018) has both the teacher and student models trained simultaneously.
Thus, instead of the above two-step approach of offline distillation, here the whole
procedure works end-to-end. Finally, in self distillation (Zhang et al., 2019a), the
same model acts as both the teacher and student. For instance, one part of the
model (e.g. later layers) is used to distill knowledge to another part (e.g. earlier lay-
ers). This ‘teacher’ part of the model may be deeper, containing more parameters,
in comparison to the more shallow ‘student’ part of the model.
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Architecture There are a variety of teacher-student architectures used for knowl-
edge distillation. Most commonly, the teacher model will be larger and more complex
in comparison to the student model. While the exact model types may vary for the
two, generally the student model will have: fewer layers or fewer neurons (Wang
et al., 2018a), more basic operations (Howard et al., 2017), a quantized version of
the larger model (Polino et al., 2018), and so forth.

Algorithm The most basic method for transferring knowledge from the teacher to
the student is to try to match the learned representations between the two models.
Additional methods that move into more complex techniques, as outlined by Gou
et al. (2021), include adversarial distillation (Wang et al., 2018b), incorporating
adversarial learning inspired by generative adversarial networks (GANs) (Goodfellow
et al., 2014), multi-teacher distillation (Hinton et al., 2015), using multiple teacher
models, cross-modal distillation (Gupta et al., 2016), where the modality of the
training data used for the teacher model is different from that of the student model
(e.g. RGB images vs. depth images), as well as several other methods, such as graph-
based distillation and attention-based distillation.

Developing Efficient Models Overall, knowledge distillation is one of the sev-
eral techniques that are used for developing efficient models. Some of these other
techniques include (1) parameter pruning, as well as parameter sharing, and (2) low-
rank factorization. In the case of (1), certain parameters are removed from a large
neural network, with the goal of retaining most of the original model’s performance.
This includes techniques such as quantization (Wu et al., 2016), binarization (Cour-
bariaux et al., 2015), and parameter sharing (Han et al., 2015). For (2), matrix
decomposition is used to remove less crucial parameters with respect to a model’s
performance (Denton et al., 2014).

4.4 Experimental Setup

4.4.1 Tasks and Datasets

We run experiments on five standard NLP tasks in English, with seven common
datasets in total. More details regarding tasks that are considered standard within
the field of NLP are in Section 2.3.2. Our first task is sentiment analysis (SA). As
the dataset for this task, we use movie reviews from the Internet Movie Database
(IMDb) (Maas et al., 2011), in which each review is associated with a positive or
negative label.

The next task is natural language inference (NLI), using the Stanford Natural
Language Inference (SNLI) dataset (Bowman et al., 2015). The dataset consists of
sentence pairs, labeled as one of three possible classes: entailment, contradiction,
and neutral.

We then explore two separate tasks for the problem of sequence tagging. The
first of these is named entity recognition (NER), in which the primary goal of a
model is to identify named entities in a given document, i.e. phrases which consist
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of the names of people, locations, as well as organizations. We use two datasets for
NER, the first being the very common CoNLL-2003 dataset (Tjong Kim Sang and
De Meulder, 2003), consisting of data from the CoNLL-2003 shared task. Next, we
use the WikiANN dataset (Pan et al., 2017), which is an NER dataset originally
consisting of annotated Wikipedia articles from 282 languages, of which we use the
English subset.

The second sequence tagging task is part-of-speech (POS) tagging. Here we again
use two different datasets, both of which are dependency treebanks, i.e. corpora
that are syntactically annotated based on the formalisms of Dependency Grammar
(Tesnière, 1959). The first of these is the Georgetown University Multilayer (GUM)
Corpus (Zeldes, 2017). This is a dataset which consists of a variety of English texts,
including news, fiction, interviews, and so forth. The texts in this dataset contain
several annotation categories that are standard for a dependency treebank, including
part of speech for each individual token. The second POS tagging dataset is the
Universal Dependencies English Web Treebank (UD EWT) corpus (Silveira et al.,
2014), consisting of texts from five various web media genres, including weblogs,
emails, and reviews. Both datasets utilize the Universal Dependencies set of POS
tags (Petrov et al., 2012; Nivre et al., 2020), as we describe in Section 2.3.2 of
Chapter 2. By including these two sequence tagging tasks, with two datasets each,
we hope to examine and understand in more detail the surprisingly good results on
CoNLL-2003 in Jana and Biemann (2021).

Finally, our last task is question answering (QA), more specifically extractive
question answering, in which the model is tasked with finding an answer span to a
given question, from a context document. For this task we use the Stanford Question
Answering (SQuAD) 2.0 dataset (Rajpurkar et al., 2018), which is a combination
of the earlier SQuAD 1.1 dataset (Rajpurkar et al., 2016) and an additional set
of unanswerable questions.1 These additional unanswerable questions are in part
motivated by the previous success on SQuAD 1.1, which the authors state does not
represent true language understanding, since a model can simply select a span from
the context document that appears to be the most similar to the question.

We present a summary of the statistics of each dataset in Table 4.1. In addition,
we show more detailed statistics on the distribution of all POS tags for the GUM
and EWT datasets in Table 4.2, as well as the distribution of all named entities for
the CoNLL-2003 and WikiANN datasets in Table 4.3. These will be relevant for our
provided error analysis to the results in Section 4.5.3.

4.4.2 Models and Training Strategies

We utilize two primary base models, with five different training and fine-tuning
strategies. For our simple baseline and comparability with previous work (Jana
and Biemann, 2021), we use (1) the bidirectional LSTM (BiLSTM) architecture.

1 We use the official evaluation script, described in https://worksheets.codalab.org/
worksheets/0x8212d84ca41c4150b555a075b19ccc05/
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Task Dataset Size Classes
SA IMDb 50k documents 2
NLI SNLI 570k pairs 3
NER CoNLL-2003 ∼300k tokens 9
NER WikiANN ∼320k tokens 7
POS GUM ∼150k tokens 17
POS EWT ∼254k tokens 17
QA SQuAD 2.0 150k questions ⋆

Table 4.1: Statistics for each dataset. ⋆ SQuAD contains 100k answerable and 50k
unanswerable questions, with answers for the former category being a span from a
corresponding text passage.

GUM EWT
Train Test Train Test

noun 17,873 2,942 34,781 4,132
punct 13,650 1,985 23,679 3,106
verb 10,957 1,647 23,081 2,655
pron 7,597 1,128 18,577 2,158
adp 10,237 1,698 17,638 2,018
det 8,334 1,347 16,285 1,896
propn 7,066 1,230 12,946 2,076
adj 6,974 1,116 12,477 1,693
aux 4,791 719 12,343 1,495
adv 4,180 602 10,548 1,225
cconj 3,247 587 6,707 739
part 2,369 335 5,567 630
num 2,096 333 3,999 536
sconj 2,095 251 3,843 387
x 244 24 847 139
intj 392 87 688 120
sym 156 35 599 92

Table 4.2: The frequency of each tag for the GUM and EWT POS tagging datasets,
shown for their respective training and test splits.

We then use a pre-trained bert-base2 for our remaining models, with a variety of
fine-tuning methods: (2) LSTM on top of our frozen BERT encoder (Tr/No/LSTM),
(3) softmax layer on top of the frozen BERT model (Tr/No), (4) last two layers
of BERT fine-tuned, with the remaining parameters frozen (Tr/Last2), as well as
(5) full BERT model fine-tuned, with the exception of the input embedding layer
(Tr/All).

In addition to the above set of transformer configurations, we also explore these

2 Available from https://huggingface.co/bert-base-cased.
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CoNLL-2003 WikiANN
Train Test Train Test

o 170,524 38,554 85,665 42,879
b-per 6,600 0 9,345 4,649
i-per 4,528 2,773 15,085 7,721
b-org 6,321 5 9,910 4,974
i-org 3,704 2,491 23,668 11,825
b-loc 7,140 6 10,081 5,023
i-loc 1,157 1,919 13,664 6,661
b-misc 3,438 9 – –
i-misc 1,155 909 – –

Table 4.3: The frequency of each named entity for the CoNLL-2003 and WikiANN
NER datasets, shown for their respective training and test splits.

same configurations (2-5) with the XtremeDistilTransformer (XDT)3 model (Mukher-
jee et al., 2021), outlined in more detail below. This model contains far fewer pa-
rameters than the larger BERT model, with 22 million for XDT vs. 110 million for
bert-base. In the private setting, this lower number of parameters is expected to
be more favorable with respect to performance, since the ℓ2-norm of the calculated
noise for DP-SGD grows in proportion to the gradient size. This has also been noted
in Abadi et al. (2016b, Sec 5.2), and various research has investigated this point in
more detail (Yu et al., 2021; Tramer and Boneh, 2021; De et al., 2022), with some
interestingly reporting no notable decrease in performance as the model size is scaled
up (e.g. Abadi et al. (2016b); De et al. (2022)), despite the greater noise intensity.
By comparing the performance of BERT and XDT, we can examine this in more
detail within the NLP domain.

Additionally, the XDT model is beneficial to use for reasons of computational
efficiency, with significant overhead in the private setting compared to non-private,
for instance as outlined in Subramani et al. (2021). This can especially be useful
when training a model on an academic budget. We provide further discussion on
the efficiency of DP models in Section 4.5.6, as well as strategies for incorporating
differential privacy in the academic setting in Chapter 6. We outline the XDT model
in more detail below, followed by a description of our model evaluation, hyperpa-
rameter tuning and privacy settings in Sections 4.4.3, 4.4.4 and 4.4.5, respectively.

XtremeDistilTransformer (XDT) model

Knowledge distillation for the BERT model (Devlin et al., 2019) was initially pro-
posed with the DistilBERT model (Sanh et al., 2019). Taking a bert-base model
as the teacher model in the distillation process, it reduced the number of parameters
from 110 million, down to 66 million, with authors reporting about 95% performance
retention from the original BERT on the GLUE benchmark (Wang et al., 2019).
Other distilled versions of BERT subsequently appeared, including TinyBERT (Jiao

3 Available from https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased.
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et al., 2020) and MiniLM (Wang et al., 2020b), both also with 66 million parame-
ters, as well as the XtremeDistilTransformer (XDT) model (Mukherjee et al., 2021),
with only 22 million parameters. With the smaller set of parameters, reported high
performance and computation speedup (5.3 times faster than bert-base), we opt
for this last model to use in our experiments.

The overall procedure of XDT combines several knowledge distillation strategies
from a larger BERT, or Electra (Clark et al., 2020) teacher model, to a more shallow
student model. These include transferring knowledge from hidden representations
and attention states from multiple layers, Singular Value Decomposition (SVD) for
dimensionality reduction of teacher word embeddings to project them into a lower
dimensional space for the student model, as well as progressive knowledge transfer
(Sun et al., 2020; Mukherjee and Hassan Awadallah, 2020). The last is a technique
of training different sets of parameters of the student model in stages by means of
progressive freezing and unfreezing, as opposed to transferring knowledge from the
entire teacher model at once.

4.4.3 Evaluation

We evaluate the performance of each model, on each task and dataset, using the
macro-averaged F1 score. With this method, results are averaged over independent
F1 calculations for each class, treating the contributions of each class equally. This
is in contrast to the micro-averaged F1 score, which first aggregates the number of
true positives, false positives, and false negatives, for all classes, computing the final
F1 score from these combined values. As we discuss in Section 4.5.3, the choice of
the macro-average F1 score is very important with the presence of class imbalances
in the data, reporting any negative impacts of this imbalance in the final calculated
value.

4.4.4 Hyperparameter Tuning

For our hyperparameters, we primarily tune the learning rate, based on the val-
idation set results of each dataset. We optimize for learning rates in the range
[10−5, 0.1]. For our differentially private models, we find the best learning rate at
ε = 1.0, which we then use for other privacy budgets (e.g. ε = 2.0 and ε = 5.0).
Next, we set the batch size to 32, but reduce it by a power of 2 if we encounter
out of memory issues in the differentially private setting. Finally, for the BiLSTM
models we use 2 layers with hidden units in the range [128, 384] and an embedding
dimensionality in the range [100, 300], as well as a dropout of 25%.

4.4.5 Privacy Settings

As we describe in earlier chapters (e.g. Section 3.6.3 of Chapter 3), the randomized
response mechanism of Warner (1965) can be analyzed as satisfying (ε ≈ 1.1)-
differential privacy when using fair coin flips, which can be considered as a strong
privacy guarantee. We therefore carry out our experiments with the lowest privacy
budget at ε = 1.0. In addition, to investigate the privacy/utility trade-off in more

85



Chapter 4. Investigating Strategies for Differentially-Private Learning across
NLP Tasks

Figure 4.2: Macro-averaged F1 scores for the BERT model in the non-private ε =∞
and two of the private configurations (ε ∈ {5, 1}), grouped by a particular fine-tuning
regime (x-axis). Each column represents the score for a specific task performed by
the corresponding model. When analyzing one task (i.e. one column) in the non-
private ε = ∞ setting for different models, the macro-averaged F1 increases when
adding fine-tuning. For the models with DP-SGD, no clear pattern can be observed,
with the best model being task specific. We additionally present a complimentary
diagram in Figure 4.3, depicting task-specific performance drops, discussed in Sec-
tion 4.5.5.

detail for the various models and NLP tasks, we also run experiments at ε = 2.0
and ε = 5.0. We set δ to 10−5 and the clipping constant C to 1.0 throughout our
experiments.

We implement our experiments using the PyTorch library (Paszke et al., 2019)
for general-purpose deep learning, as well as the Opacus library (Yousefpour et al.,
2021) for the privacy-specific parts of the implementation. As for the accounting
procedure, we again employ the provided command-line tool from the TensorFlow
Privacy library (Abadi et al., 2016a; Google, 2018), as described in Section 3.5.4 of
Chapter 3.

4.5 Results and Analysis (BERT)

We first present our analysis for the BERT models below, with results shown in
Figure 4.2. As we will see, one of the main differences between BERT and XDT is
that the latter does not show a significant drop for the various private configurations,
as opposed to BERT. The baseline LSTM model showed the worst performance
in all setups, so we focus our analysis on the transformer-based models. For our
privacy budgets, we investigate in detail three ε values of 1.0, 5.0, and ∞. The last
represents the non-private setup, while the other two values show strong and weaker
privacy guarantees, respectively. We report all results as macro-averaged F1 scores,
as we describe above. Additionally, we discuss points of efficiency and scalability in
Section 4.5.6.
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4.5.1 Sentiment Analysis

For the first task of sentiment analysis, we can see on the left of Figure 4.2 that
all non-private model results show good performance. In addition, apart from the
Tr/All setting of fully fine-tuning BERT with privacy, we see only a small perfor-
mance drop for each of our model configurations.

Why does fully fine-tuning BERT fail with DP-SGD? For the non-private
setting, we can see that the fully fine-tuned model, Tr/All, performs the best overall
(e.g. 0.92 F1 score, vs. 0.63 for Tr/Last2, 0.73 for Tr/No, and 0.91 for Tr/No/LSTM).
In the private setting, however, there is a significant drop in F1 score, both for
ε = 1.0 and ε = 5.0. Despite the fact that the training data of the IMDb dataset
is well-balanced for the positive and negative classes, the model with DP predicts
everything as the negative class. With noise added to the model, one would rather
expect more random predictions for each of the two balanced classes, which is not
the case here. The final F1 scores for Tr/All with ε = 1.0 and ε = 5.0 are 0.46
and 0.48, respectively. We can see this pattern in the confusion matrix, shown in
Table 4.4, in which the vast majority of the positive class predictions are incorrect,
with a lot of resulting false negatives. We can also see how well-balanced the two
classes are in the dataset, with 12499 and 12500 documents for the positive and
negative classes, respectively.

↓ True → Pred Positive Negative

Positive 2 12497
Negative 3 12497

Table 4.4: Confusion matrix for the Tr/All BERT configuration at ε = 1.0 on the
task of sentiment analysis.

↓ True → Pred Positive Negative

Positive 21838 3162
Negative 3863 21137

Table 4.5: Confusion matrix for the Tr/No/LSTM BERT configuration at ε = 1.0 on
the task of sentiment analysis.

In contrast to these results, the other fine-tuning settings (Tr/Last2, Tr/No, and
Tr/No/LSTM) perform far better. For example, in the Tr/Last2 configuration, fine-
tuning just the last two layers of the BERT model results in an F1 score of 0.74 for
ε = 1.0 and 0.84 for ε = 5.0. We can clearly see this behavior for the best-performing
private model Tr/No/LSTM at ε = 1.0, in the confusion matrix of Table 4.5. In
contrast to Table 4.4, here the model shows far more correct predictions, with the
majority of values on the diagonal of the table, representing the ‘true positive’ and
‘true negative’ results.

Overall, these results are consistent with previous observations (e.g. Rogers et al.
(2020, Sec. 4.3) that semantic information is spread out across the full BERT model,
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with the upper layers being more task-specific. By fine-tuning the full model, we
are modifying the earlier more ‘local’ syntactic and semantic features which may be
necessary for a proper prediction in sentiment analysis (Madasu and Anvesh Rao,
2019), adding a significant amount of noise to those representations.

4.5.2 Natural Language Inference

Unlike for sentiment analysis, the results for NLI show quite a different pattern. For
the setting without privacy, the best models are Tr/Last2 and Tr/All, both being
the BERT model configurations with fine-tuning. For the setting with privacy, the
Tr/Last2 model is the worst overall, for both privacy budgets ε = 1.0 and ε = 5.0.
To understand this in more detail, we need to investigate the confusion matrix
for this model configuration. We present this in Table 4.6. We can see that the
Tr/Last2 model mixes up the three NLI classes of entailment, contradiction and
neutral. It especially misses the correct predictions for the neutral entailment class,
mostly predicting one of the other two.

One explanation for this is that the added noise in the DP setting has a negative
impact on the upper, more task-specific layers of the BERT model. This then causes
the model to underperform in the more complex task of NLI, not properly dealing
with cross-sentence linguistic and common-sense reasoning. In addition, as described
by Gururangan et al. (2018), the model may be picking up on certain artifacts in
the dataset which act as linguistic cues that are far easier to recognize, instead of
the task itself.

For example, the authors noticed that in the SNLI and MultiNLI datasets
(Williams et al., 2018), hypotheses associated with the entailment class tend to
have generic words in them, such as ‘animal’ vs. ‘dog’, or ‘instrument’ vs. ‘guitar’.
Similarly, hypotheses associated with the contradiction class tend to have negation
words in them, including ‘no’, ‘nothing’, or ‘never’. The model may thus have picked
up on some of these easier patterns, such as the above for the entailment and con-
tradiction classes, predicting those classes based on the artifacts, even in the case of
a different true class label.

In contrast to the Tr/Last2 model in the private setting, the Tr/All model
shows the best performance with DP-SGD. This may indicate that training with
the noisy gradient for the full BERT model’s parameters increases robustness for
this downstream task. Unlike in the case of sentiment analysis, here the model
would not depend as much on the more local features, such as word n-grams.

4.5.3 NER and POS Tagging

The distribution of classes for the tasks of sentiment analysis and NLI is well bal-
anced. In contrast, the distribution of classes for all four datasets of the sequence
tagging tasks of NER and POS tagging is heavily imbalanced, as depicted in Ta-
bles 4.2 and 4.3, respectively (e.g. with the o tag significantly dominating the NER
datasets). The impact of this imbalance can be seen in the results of all private
models, as we describe below.
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↓ True → Pred Entailment Contradiction Neutral

Tr
/L

as
t2 Entailment 1356 1699 313

Contradiction 1122 1780 335
Neutral 1217 1677 325

Tr
/A

ll Entailment 2832 129 407
Contradiction 272 2530 435

Neutral 375 604 2240

Table 4.6: Confusion matrices for the Tr/Last2 (top half) and Tr/All (bottom
half) BERT models at ε = 1.0 on the task of NLI.

Overall, this effect, in which a smaller class suffers in performance, is docu-
mented within the DP community. For example, Farrand et al. (2020) look into
various degrees of class imbalance and how this affects results for models trained
with DP-SGD, at different privacy budgets. They find that, even with looser privacy
guarantees and only slight degrees of imbalance, the impact on performance for the
less represented class can be very significant, increasing with more private training
steps. They hypothesize that this may be related to the gradient clipping operation
within the DP-SGD algorithm, in which data points associated with smaller classes
will have fewer examples in a given mini-batch, with resulting higher gradients that
are more likely to be clipped. With further training, this may result in a snowball
effect, in which the model improves in performance for data points associated with
larger classes, with an increasing number of data points for the smaller classes be-
coming outliers. Similarly, Bagdasaryan et al. (2019) investigated class imbalance
with DP-SGD and showed that, if there is a degree of unfairness exhibited in a model
with respect to less represented classes, this is amplified in the private setting.

We see this behavior in our models trained with DP for both the tasks of NER
and POS tagging. Only the most common tags are predicted with a decent level
of performance, while the other tags suffer misclassifications. We can see this more
clearly in Tables 4.7 and 4.8, for NER and POS tagging, respectively, showing F1

scores for each class using the BERT Tr/All model at ε = 1.0. For example, the
o tag for NER achieves 0.98 and 0.86 F1 scores for the CoNLL-2003 and WikiANN
datasets, respectively. In contrast, nearly all other NER tags have around 0.00 F1

score for CoNLL-2003, apart from the i-per class. Similarly, the tags for nouns,
punctuation, verbs, pronouns, adpositions, and determiners in POS tagging show
far better performance than all the rest. For both the GUM and EWT datasets,
these tags are above F1 scores of 0.60, for instance 0.66 for the noun tag of the
GUM dataset, or 0.87 for the punct tag of the EWT dataset. Apart from the aux
tag, all of the other tags not highlighted in Table 4.8 have F1 scores below 0.20, with
six of them being at an F1 score of 0.00 for both datasets.

Drawing conclusions using unsuitable metrics?

The average over F1 scores for all classes, i.e. the macro-averaged F1, suffers due to
the incorrect predictions for the imbalanced classes. Despite this, micro-averaged
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CoNLL-2003 WikiANN

o 0.98 0.86
b-per 0.00 0.69
i-per 0.67 0.57
b-org 0.00 0.14
i-org 0.01 0.54
i-loc 0.00 0.46
b-loc 0.00 0.44
b-misc 0.00 –
i-misc 0.00 –

Table 4.7: F1 scores for each individual class on the NER task for the CoNLL-2003
and WikiANN datasets, using the BERT Tr/All model at ε = 1.0. All classes are
predicted with very poor performance, with the exception of the o tag for both
datasets (highlighted).

GUM EWT

noun 0.66 0.62
punct 0.85 0.87
verb 0.64 0.72
pron 0.65 0.72
adp 0.73 0.80
det 0.81 0.83
propn 0.17 0.16
adj 0.13 0.03
aux 0.41 0.69
adv 0.00 0.10
cconj 0.06 0.02
part 0.00 0.00
num 0.00 0.00
sconj 0.00 0.00
x 0.00 0.00
intj 0.00 0.00
sym 0.00 0.00

Table 4.8: F1 scores for each individual class on the POS tagging task for the
GUM and EWT datasets, using the BERT Tr/All model at ε = 1.0. Acceptable
performance only appears for the more common tags, in the highlighted rows.

F1 scores are not negatively impacted. For example, while the macro-F1 score in
the above example for CoNLL-2003 is only 0.18 for the BERT Tr/All model at
ε = 1.0, the micro-F1 score is 0.85! This is due to the fact that the macro-averaged
F1 score treats all classes as being equally important in the final score calculation,
while micro-averaged F1 is biased with regards to the frequency of classes. We
therefore suggest using the macro-averaged F1 score to evaluate models trained
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with differential privacy, especially when dealing with imbalanced datasets. The
significant difference in the macro- and micro-F1 scores explains the unintuitive
invariance of NER to the DP setting in Jana and Biemann (2021).

Non-private NER models misclassify the tag prefix, but NER models
with DP fail on the tag type itself

When we look into the NER results in more detail, we notice an interesting pattern
with respect to the tags that the model misclassifies. In the non-DP setting, the
model generally classifies the type of tag correctly (e.g. loc, per, org, misc), but
occasionally misclassifies the position itself, i.e. the i and b prefixes. We can see this
in the confusion matrix of Table 4.9, in which tokens associated with the i-loc tag
are very often misclassified as the b-loc tag, with 1558 such misclassifications vs.
only 232 true positives for i-loc. The situation is very similar for i-per vs. b-per,
i-org vs. b-org, as well as i-misc vs. b-misc, all highlighted in the table.

In the setting with differential privacy, we can see that the misclassifications
of the model are further impacted. In addition to the position of a tag, the type
of tag itself is also misclassified. This can be seen in more detail in Table 4.10.
For example, i-misc is incorrectly predicted as b-loc 502 times, while i-org is
incorrectly predicted as b-loc 763 times.

↓ True → Pred o b-per i-per b-org i-org b-loc i-loc b-misc i-misc

o 38207 26 3 47 41 19 9 66 80
b-per 0 0 0 0 0 0 0 0 0
i-per 17 1556 1150 23 10 15 1 1 0
b-org 0 0 0 0 5 0 0 0 0
i-org 42 27 3 1514 767 53 29 42 14
b-loc 0 0 1 0 2 0 1 0 2
i-loc 22 7 3 49 12 1558 232 30 5
b-misc 0 0 0 0 0 0 0 4 5
i-misc 51 9 3 32 9 23 4 594 183

Table 4.9: Confusion matrix for the Tr/All BERT model without DP on the CoNLL-
2003 dataset. We can see that sometimes the model misclassifies the position of a
tag (e.g. B or I prefix) (highlighted), but the tag itself (e.g. PER, ORG, etc.) is
correctly classified most of the time.

NER models are majority-voting with meaningful ε values already, and
become random only at very low ε values

As we described in Section 4.2, Jana and Biemann (2021) reported that a bidirec-
tional LSTM trained with differential privacy on NER has almost no difference in
accuracy, in comparison to the non-private model. Our experiments, however, re-
veal that even with ε = 1.0, the models trained with DP predict the outside o tag
nearly every time, shown in the confusion matrix of Table 4.11 for the bidirectional
LSTM model. As we mention above, the micro-F1 score does not actually change
between the DP and non-DP settings, due to the imbalanced nature of the dataset,
in which the o tag is the majority label. However, the macro-F1 score shows a more
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↓ True → Pred o b-per i-per b-org i-org b-loc i-loc b-misc i-misc

o 37540 61 38 149 0 304 0 0 0
b-per 0 0 0 0 0 0 0 0 0
i-per 33 1057 1521 77 0 48 0 0 0
b-org 0 0 0 4 0 1 0 0 0
i-org 192 90 142 1157 9 763 0 0 0
b-loc 0 1 2 2 0 1 0 0 0
i-loc 58 14 38 169 0 1577 0 0 0
b-misc 1 2 0 1 0 5 0 0 0
i-misc 178 21 14 110 0 502 0 0 0

Table 4.10: Confusion matrix for the Tr/All BERT model at ε = 1.0 on the CoNLL-
2003 dataset. Here we can see that the model incorrectly predicts both the tag
position and the type of tag itself (examples highlighted).

accurate evaluation of these models, revealing the actual misclassifications, as seen
in the case described for the BERT Tr/All model, in Table 4.7 above.

While such a discrepancy between the two scores exists for models in the non-
private setting, it is evident that, with more model complexity (e.g. BERT), the
problem is less severe. As we tried smaller and smaller values of ε, we noticed that
this behavior continues to stay the same, up until we reach extremely low privacy
budgets. We only obtain a different model behavior at a value of ε = 0.00837. In
this case, the model ends up seemingly predicting everything randomly, as seen in
Table 4.12, with model predictions for each target label very spread out.

↓ True → Pred o b-per i-per b-org i-org b-loc i-loc b-misc i-misc

o 41021 9 6 5 9 4 52 4 32
b-per 0 0 0 0 0 0 0 0 0
i-per 2821 1 0 0 0 0 2 0 3
b-org 5 0 0 0 0 0 0 0 0
i-org 2524 1 1 0 0 0 3 1 2
b-loc 6 0 0 0 0 0 0 0 0
i-loc 1935 1 0 1 0 0 0 0 1
b-misc 9 0 0 0 0 0 0 0 0
i-misc 1013 0 0 0 0 0 1 0 1

Table 4.11: Confusion matrix for the bidirectional LSTM model at ε = 1.0 on
the CoNLL-2003 dataset. The model overwhelmingly predicts the outside o tag
(highlighted).

4.5.4 Question Answering

Our last task is possibly one of the most challenging for the models trained with DP-
SGD. In the non-private setting, models with an increasing number of fine-tuned
layers show improvements in results (e.g. F1 score of 0.50 for Tr/No vs. 0.64 for
Tr/Last2 vs. 0.73 for Tr/All). With differential privacy, however, performance for
all models is reduced to an F1 score of 0.5, disregarding the strictness of the privacy
guarantee (ε = 1.0, 2.0, 5.0). Nearly all questions in the SQuAD 2.0 dataset were
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↓ True → Pred o b-per i-per b-org i-org b-loc i-loc b-misc i-misc

o 3464 4161 21208 144 170 1993 3190 722 6035
b-per 0 0 0 0 0 0 0 0 0
i-per 234 348 1440 3 20 140 226 34 377
b-org 2 0 2 0 0 1 0 0 0
i-org 271 310 1161 8 9 115 184 39 430
b-loc 0 1 4 0 0 0 1 0 0
i-loc 130 252 1032 2 11 84 153 29 243
b-misc 1 1 4 0 0 3 0 0 0
i-misc 76 100 561 3 4 49 73 17 132

Table 4.12: Confusion matrix for the bidirectional LSTM model at ε = 0.00837 on
the CoNLL-2003 dataset. The model predicts tags seemingly at random at this level
of privacy (highlighted).

predicted as unanswerable for every model with DP-SGD. Due to the fact that 50%
of the test set has this unanswerable label, the model is able to achieve this 0.5 F1

score by always predicting it.

Overall, we can see similar behavior for question answering, as for the NER
and POS tagging tasks. Question answering has many possible output classes in
the span prediction process, being a relatively challenging task. We suggest to run
experiments on the SQuAD 1.0/1.1 versions of the dataset, in order to look into
this further in future analyses of the impacts of model training with DP-SGD on
NLP tasks. Without this category of unanswerable questions, we would be able
to investigate more closely how the DP models behave on the span prediction task
itself.

4.5.5 Performance drop with stricter privacy

When utilizing the DP-SGD algorithm, we expect an increase in performance drop
as we decrease the privacy budget ε. While this is also what we observe throughout
our experiments, there is no single consistent pattern among the various tasks and
models. We can see this in more detail in Figure 4.3, which shows the impact of
reducing ε on F1 scores, complimentary to Figure 4.2, with the inclusion of results
for ε = 2.0. As an example, the BERT Tr/All model shows a very large drop for
sentiment analysis when moving from the non-private to the private setting for any
ε value. While the F1 score is 0.92 at ε = ∞, this drops down to 0.48 at ε = 5.0
and 0.46 at ε = 1.0. In contrast, the drop for NLI with this model is far smaller,
with an F1 score of 0.90 at ε =∞, 0.80 at ε = 5.0, and 0.77 at ε = 1.0.

Similar discrepancies can be seen for other models and tasks. For example, in
contrast to the above NLI results performing best with BERT Tr/All, for sequence
tagging on the WikiANN dataset, the best model is Tr/No, with an F1 score of 0.75
at ε = 1.0, remaining relatively constant with the non-private result of 0.81.

Overall, we can see that a specific model and training regime needs to be carefully
selected for an intended specific privacy requirement of the training data. There is
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Figure 4.3: Results for all datasets and BERT configurations, with y-axis repre-
senting the macro-averaged F1 score and x-axis representing the privacy budget
ε ∈ {1, 2, 5,∞} (log scale).

no single winning strategy with regards to model selection and training regime that
stands out to be used in the private setting for the various NLP tasks and datasets.

4.5.6 Efficiency and scalability of differentially private mod-
els

In addition to performance, questions of computational efficiency, such as training
times, are a significant concern, especially in the current sphere of large transformer
models. While the clipping and noise operations at first glance may seem relatively
harmless with respect to computational efficiency, DP-SGD has been noted to sig-
nificantly increase training times (e.g. Carlini et al. (2019); Thomas et al. (2020)),
compared to the non-private setting. This can be explained by the fact that modern
deep learning frameworks such as TensorFlow (Abadi et al., 2016a) and PyTorch
(Paszke et al., 2019) do not allow for access to per-example gradients of individual
data points, instead only providing the gradient averaged over a given minibatch.
In order to then access a per-example gradient for the clipping step of DP-SGD, we
need to process each one of them individually, without the benefits of parallel pro-
cessing that these frameworks provide. This subsequently results in the significant
increase of computation time for the DP-SGD setting. We refer to Subramani et al.
(2021) for further discussion on this point.

To investigate these issues of computational efficiency for our experiments, we
report the average time it takes for our models to complete an epoch in Table 4.13.
For all experiments, we can see that the number of parameters for fine-tuning the
model plays a crucial role in the degree of increase for the average epoch time, when
moving from the non-DP to the DP setting. With more fine-tuned parameters,
this relative increase is more significant. This pattern can be seen for all tasks,
with a larger relative increase in epoch times for the Tr/All setting, compared to
the Tr/Last2 setting. For example, the SNLI dataset shows a relative increase of
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16.40x for Tr/Last2 and 26.54x for Tr/All. Perhaps most severe is the case of
POS tagging with the EWT dataset, with a relative 7.02x increase for Tr/Last2
and 41.18x increase fo Tr/All. In the case of a limited computational budget, the
model setting with less fine-tuned parameters would be far more feasible for running
differentially private model training. In addition, frameworks such as JAX (Frostig
et al., 2018; Bradbury et al., 2018) may offer some solutions to these issues of longer
computation times for the DP-SGD setting, as demonstrated in Subramani et al.
(2021); Yin and Habernal (2022), with various features such as Just-In-Time (JIT)
compilation of the Accelerated Linear Algebra (XLA) compiler (Google) leading to
lower runtimes.

Task Config Epoch time (no DP) Epoch time (DP) Increase with DP

SA Tr/Last2 4 m 22 s 0 h 10 m 32 s 2.41x
SA Tr/All 9 m 07 s 0 h 47 m 08 s 5.17x

NER (CoNLL-2003) Tr/Last2 0 m 26 s 0 h 02 m 24 s 5.54x
NER (CoNLL-2003) Tr/All 0 m 57 s 0 h 27 m 55 s 29.39x

NLI Tr/Last2 13 m 15 s 3 h 37 m 15 s 16.40x
NLI Tr/All 22 m 32 s 9 h 57 m 57 s 26.54x

POS Tagging (EWT) Tr/Last2 0 m 53 s 0 h 06 m 12 s 7.02x
POS Tagging (EWT) Tr/All 1 m 12 s 0 h 49 m 25 s 41.18x

QA Tr/Last2 12 m 21 s 1 h 57 m 43 s 9.53x
QA Tr/All 44 m 07 s 11 h 05 m 15 s 15.08x

Table 4.13: Average epoch time of training a model for each NLP task, using the
BERT Tr/Last2 and Tr/All configurations for the partially fine-tuned and fully
fine-tuned BERT models, respectively. Rightmost column shows the degree of in-
crease from the non-private to the private setting.

4.6 XtremeDistilTransformer Model

In addition to our experiments using the bert-base model above, we run the same
configurations (i.e. fine-tuning regimes) for all of our datasets using the XtremeDis-
tilTransformer model, outlined in Section 4.4.2. We present our analysis of these
results below, shown in Figures 4.4 and 4.5.4

4.6.1 Comparing non-private XDT and BERT

In the non-differentially private setting, both the XDT and BERT models be-
have in a similar manner. For example, results for the Tr/All configuration are
mostly the same for both models, for the majority of datasets, with the exception
of the two NER datasets. The task of sentiment analysis with Tr/All shows results
of 0.92 F1 score for both BERT and XDT. For NLI, we see 0.90 F1 with BERT
and 0.89 F1 with XDT. In POS tagging, both BERT and XDT reach an F1 score of

4 Due to some limitations in further GPU computation capacities at the time of running experi-
ments, we did not complete the QA task for this model, which we omit in the below results.
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Figure 4.4: Macro-averaged F1 scores for the XDT model in the non-private ε =∞
and two of the private configurations (ε ∈ {5, 1}), grouped by a particular fine-tuning
regime (x-axis). Each column represents the score for a specific task performed by
the corresponding model. When analyzing one task (i.e. one column) in the non-
private ε =∞ setting for different models, the macro-averaged F1 tends to increase
when adding fine-tuning. For the models with DP-SGD, generally there is either
no notable drop in performance (e.g. SA and NLI), or a clear drop (e.g. GUM). We
additionally present a complimentary diagram in Figure 4.5, depicting task-specific
performance drops.
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Figure 4.5: Results for all datasets and XDT configurations, with y-axis repre-
senting the macro-averaged F1 score and x-axis representing the privacy budget
ε ∈ {1, 2, 5,∞} (log scale).
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0.95 on the GUM dataset, as well as 0.96 for BERT and 0.95 for XDT on the EWT
dataset.

There are some differences, however, in certain settings. For sentiment analy-
sis with the Tr/Last2 configuration, the XDT model is much better (0.84 F1 for
XDT vs. 0.63 for BERT). For NLI with the Tr/No configuration, we see an improve-
ment for XDT over BERT (0.83 vs. 0.61 F1 score, respectively). Results for the
CoNLL-2003 dataset are significantly lower for XDT than BERT. For example, the
Tr/Last2 configuration with XDT reaches 0.18 F1 score, in comparison to 0.35 for
the corresponding BERT configuration.

For the POS tagging datasets with XDT, while the Tr/No/LSTM and Tr/All
configurations perform well in the non-private setting, the Tr/No and Tr/Last2
configurations perform far worse. For example, XDT with the Tr/No/LSTM con-
figuration reaches 0.83 F1 score on the GUM dataset, while XDT with Tr/No and
Tr/Last2 both reach an F1 score of 0.69. This is in contrast to the BERT model
results, where all four configurations show more similar performance to one another
(e.g. 0.89 F1 for Tr/No/LSTM vs. 0.83 F1 for Tr/No and 0.93 for Tr/Last2, for the
GUM dataset). Hence, while the two non-private models are generally compara-
ble in behavior with respect to performance, they diverge in some specific cases,
primarily for the sequence tagging datasets.

4.6.2 Differentially private XDT

Looking at the XDT model in isolation, we can see two main patterns that emerge
in the DP setting. For sentiment analysis and NLI, there is almost no drop
in F1 score, across different privacy budgets. For example, sentiment analysis with
the Tr/All configuration only drops from 0.92 F1 at ε =∞ to 0.87 at ε = 5.0, and
0.85 at ε = 1.0. On the task of NLI, the Tr/All configuration only drops from 0.89
F1 score at ε = ∞ to 0.85 at all other ε values. Similarly, NLI with the Tr/Last2
configuration stays at 0.83 for all privacy budgets.

In contrast, for the various sequence tagging tasks, there is a larger drop
from the non-private setting. This can be seen in the two POS tagging datasets, with
the GUM dataset, for instance, resulting in the Tr/All model dropping from 0.95
F1 with ε = ∞ to 0.76 F1 with ε = 5.0, and further down to 0.51 F1 with ε = 1.0.
In addition, if results were already quite low in the non-private setting, then they
expectedly remain low in the private setting (e.g. CoNLL-2003 with Tr/All dropping
from 0.18 F1 at ε =∞ to 0.13 F1 at both ε = 5.0 and ε = 1.0).

4.6.3 Differentially private XDT vs. BERT

Finally, we compare both the XDT and BERT models in the private setting. Here we
notice one primary difference. While the BERT model shows a general decline
when fine-tuning all layers (Tr/All), XDT does not have a significant drop
for all fine-tuning configurations, for most datasets (e.g. staying nearly the
same for sentiment analysis and NLI in the private setting, as mentioned above).
In fact, in some cases, such as for NLI, XDT shows a better performance than
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BERT. For instance, it achieves an F1 score of 0.85 with Tr/All at ε = 1.0, vs. the
BERT results of 0.77 with Tr/All. One explanation for this could be that, since the
XDT model has fewer parameters, it therefore would have a smaller ℓ2-sensitivity
of the gradient of the loss function, as the gradient has fewer dimensions, with a
corresponding lower ℓ2-norm of the added Gaussian noise. This then leads to less
noise added at each training iteration, as we discuss in more detail in Section 4.4.2.
Since XDT is trained to mimic the behavior of BERT with minimal performance loss,
the result is a model that shows similar performance to BERT in the non-private
setting, but is less impacted by noise in the private setting.

This does not mean, however, that XDT is always the better choice. As we
describe above, the sequence tagging tasks are far worse in performance for XDT.
For example, the CoNLL-2003 dataset is at an F1 score of 0.13 or 0.14 for all con-
figurations at ε = 1.0 with XDT, while the BERT results mostly hover around an
F1 score of 0.30. In the case of POS tagging, BERT also often outperforms XDT.
For instance, when running on the GUM dataset for the Tr/No configuration, XDT
achieves an F1 score of 0.49 at ε = 1.0, while BERT reaches 0.62. Nevertheless, with
the large drop for the BERT model in the Tr/All configuration, XDT performs
better here at ε = 1.0, with 0.35 F1 vs. 0.51 F1, respectively.

4.6.4 Summary and conclusions on XDT

Our overall conclusions on the performance of XDT are as follows. In some cases,
such as for the sentiment analysis or NLI tasks, a model with a fewer set of pa-
rameters such as XDT can be beneficial over the larger BERT model in the private
setting. In other cases, such as for sequence tagging tasks, however, it may be better
to use the BERT model, especially for tasks such as NER.

Finally, an additional point in favor of using XDT over BERT is for running the
model at faster epoch times. We present this in Tables 4.14 and 4.15 for a direct com-
parison between the two models in the non-DP and DP settings, respectively. The
improvements in runtimes for the XDT model are notable for all fine-tuning configu-
rations and datasets. These improvements are especially notable for the DP setting,
with training times for XDT being only a small percentage of the BERT counter-
parts (e.g. XDT takes only 2% of the runtime that BERT takes for the Tr/Last2
configuration on NLI). This decrease in epoch times is additionally achievable due
to larger possible batch sizes with XDT, since the model requires less memory than
BERT.

4.7 Chapter Summary

We have investigated the application of the DP-SGD methodology to a variety of
NLP text classification tasks and models. With relation to our original research
question on whether there is a systematic strategy that can be applied in the DP
setting, we can clearly see that this is not the case. The best performance in the DP
setting for each NLP task and dataset varies across different model configurations.
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Task Config Epoch time (BERT) Epoch time (XDT) XDT vs. BERT

SA Tr/Last2 4 m 22 s 0 m 21 s 0.08x
SA Tr/All 9 m 07 s 0 m 52 s 0.10x

NER (CoNLL-2003) Tr/Last2 0 m 26 s 0 m 16 s 0.62x
NER (CoNLL-2003) Tr/All 0 m 57 s 0 m 25 s 0.44x

NLI Tr/Last2 13 m 15 s 2 m 34 s 0.19x
NLI Tr/All 22 m 32 s 18 m 32 s 0.82x

POS Tagging (EWT) Tr/Last2 0 m 53 s 0 m 16 s 0.30x
POS Tagging (EWT) Tr/All 1 m 12 s 0 m 19 s 0.26x

QA Tr/Last2 12 m 21 s 6 m 45 s 0.55x
QA Tr/All 44 m 07 s 7 m 24 s 0.17x

Table 4.14: Average epoch time of training a model for each NLP task without
DP-SGD, using the BERT and XDT models with the Tr/Last2 and Tr/All config-
urations, for the partially fine-tuned and fully fine-tuned BERT/XDT models, re-
spectively. Rightmost column shows the relative speed of XDT compared to BERT.
Between the two models, we can see that XDT takes far less time to train.

Task Config Epoch time (BERT) Epoch time (XDT) XDT vs. BERT

SA Tr/Last2 0 h 10 m 32 s 0 m 21 s 0.03x
SA Tr/All 0 h 47 m 08 s 14 m 29 s 0.31x

NER (CoNLL-2003) Tr/Last2 0 h 02 m 24 s 0 m 17 s 0.12x
NER (CoNLL-2003) Tr/All 0 h 27 m 55 s 1 m 34 s 0.06x

NLI Tr/Last2 3 h 37 m 15 s 3 m 36 s 0.02x
NLI Tr/All 9 h 57 m 57 s 62 m 32 s 0.10x

POS Tagging (EWT) Tr/Last2 0 h 06 m 12 s 0 m 15 s 0.04x
POS Tagging (EWT) Tr/All 0 h 49 m 25 s 1 m 32 s 0.03x

QA Tr/Last2 1 h 57 m 43 s 6 m 32 s 0.06x
QA Tr/All 11 h 05 m 15 s 53 m 35 s 0.08x

Table 4.15: Average epoch time of training a model for each NLP task with DP-SGD,
using the BERT and XDT models with the Tr/Last2 and Tr/All configurations,
for the partially fine-tuned and fully fine-tuned BERT/XDT models, respectively.
Rightmost column shows the relative speed of XDT compared to BERT. The differ-
ence in runtimes for the two models is especially noticeable here in the DP setting
(e.g. EWT dataset).

Our experiments overall show four primary research conclusions. First, the per-
formance of DP-SGD is negatively impacted with skewed class distribu-
tions that are present in many NLP tasks, with models trained using DP-SGD
heavily reliant on majority classes in the dataset. Second, different fine-tuning
regimes of transformer-based models, which in turn translates to adding noisy up-
dates to the parameters of different layers of a transformer model, behave differ-
ently depending on the specific task. Among these regimes, a single approach
does not generalize for best performance across various NLP tasks and datasets.
There is therefore no single method that can be consistently applied with respect to
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fine-tuning a model in the DP-SGD setting. The best private fine-tuning setting has
to be investigated in a task-specific manner. This is in contrast to the non-private
setting, in which ‘bigger is generally better’. Third, private NER has been mis-
interpreted in previous work due to unsuitable evaluation metrics that do
not take dataset class imbalance into account.

Finally, the fourth conclusion is that the distilled variants of larger language
models, such as XDT vs. BERT, can be beneficial to use for some NLP tasks
in terms of performance, although this is again task-specific and not a general
rule that can be applied for all tasks and training configurations. With respect to
computational efficiency, however, these distilled models are incredibly beneficial for
the DP setting, with far smaller runtimes.
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Chapter 5

Building a Framework for
Reproducible and Transparent
Differentially Private Text Rewriting

We now turn to the last part of this thesis. Having investigated the privatization of
NLP models, specifically in the graph setting (Chapter 3) and more generally across
a variety of models and tasks (Chapter 4), we now shift our focus to the textual
data itself. In the previous two chapters we dealt with privatizing textual data with
respect to a given NLP model and task, i.e. the setting of global differential privacy,
as outlined in Section 2.2.1 of Chapter 2. In the current and following chapter, we
now address RQ3 from Chapter 1:

RQ3 How can we successfully privatize textual data, independent from a
specific NLP system?

This is the setting in which the data itself is perturbed, in order to obtain a given
differential privacy guarantee, i.e. local differential privacy (LDP). This means that
the privatized data can then be used for a variety of downstream tasks, using any
corresponding downstream model architecture. As we discuss in Chapter 1, we can
reword our research question as: To what extent is local differential privacy (LDP)
possible for textual data? A setup that has been recently explored for achieving this
is differentially private text rewriting, in which a document is rewritten with LDP
guarantees. We will see that there are significant difficulties in reaching a decent
privacy/utility trade-off due to the strict adjacency constraint, in which any two
given documents are considered neighboring and must therefore be indistinguishable
from one another, up to a selected ε privacy budget.

Before designing a model to carry out this task and pushing the boundaries for
the privacy/utility trade-off that can be reached, we first address an issue that is
currently present in the field of text privatization, namely the matter of transparency
and reproducibility for this private text rewriting task. We tackle this problem in the
current chapter, developing the DP-Rewrite framework, a platform for differentially
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private text rewriting that is open, modular, and transparent.

5.1 Introduction

The task of text rewriting with differential privacy provides theoretical guarantees
for protecting the privacy of individuals in textual documents. This setup takes a
given document as input and uses a text generation model to produce an output
document. The goal of this model is to output a document as close as possible to
the original input. By incorporating a differential privacy component in this model,
the output has probabilistic guarantees on the degree to which the author of the
original input document can be de-identified, if that privatized output document
is published. The strength of this guarantee is dictated by the privacy budget ε.
For example, given a text “I want to fly from Newark to Cleveland on Friday”, the
text rewriting system may output “Flights from Los Angeles to Houston this week”.
In the case of training an intent classification model, such as a system for airline
travel inquiries, either of these two documents would provide a useful contribution
to improving the learned representations of the model.

In practice, existing text rewriting systems may lack the means to validate their
privacy-preserving claims, leading to problems of transparency and reproducibility.
For example, Krishna et al. (2021) proposed the ADePT text rewriting system,
based on the Laplace and Gaussian mechanisms (see Section 2.2.1 of Chapter 2).
However, as discussed in Habernal (2021), it turned out that their DP method was
formally flawed. We also see another recent approach, DP-VAE (Weggenmann et al.,
2022), which shows results that look surprisingly good for the level of guaranteed
privacy. However, neither ADePT nor DP-VAE published their source codes, so the
community has no means to perform any empirical checks to validate their privacy-
preserving claims. Therefore, the primary obstacles to the accountability of DP text
rewriting systems are the issues of transparency and reproducibility.

We thus introduce DP-Rewrite, an open-source framework for differentially pri-
vate text rewriting which aims to solve these problems by being modular, extensible,
and highly customizable. We hypothesize that by integrating different models, down-
stream datasets, pre-training procedures, and evaluation metrics into one software
package, we can improve these issues of transparency, accountability, and repro-
ducibility of research in differentially private text rewriting, allowing the community
to obtain further insight into the utility and potential pitfalls of such systems.

Our contributions in this chapter are as follows. First, we present DP-Rewrite
for differentially private text rewriting, outlined above. As part of the framework, we
include a corrected reimplementation of the ADePT system of Krishna et al. (2021)
as a baseline. We integrate pre-training on several datasets, as well as the ability
to smoothly carry out downstream experiments using different privacy guarantees,
adjusting the privacy budget ε. We describe this framework in detail in Section 5.3.

Second, we present a case study on the ADePT system, in which we are able to
easily detect another privacy leak in its proposed methodology. Specifically, this has
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to do with the pre-training strategy for the autoencoder model, in which the system
memorizes the input data. This is presented in detail in Section 5.4.

5.2 Related Work and Background

Although the problem of simple data redaction is a widely researched field with sev-
eral promising approaches (Hill et al., 2016; Lison et al., 2021), the related problem
of private text transformation is still largely unexplored. We are working in the
framework of local differential privacy (LDP), in which an input document is put
through a randomized mechanism (e.g. neural network model with an incorporated
DP mechanism) that perturbs it using carefully calculated DP noise, providing a
privatized output document. Since we are working in the LDP setting, this results
in very strict requirements of document adjacency, in which any two documents are
considered neighboring in the DP sense, resulting in a large amount of noise that
needs to be added to the input document, in order to achieve a given DP guarantee.
We refer to Sections 2.2.1 and 2.2.3 for a more detailed background on the differ-
ences between global and local differential privacy, as well as a simple example of
one of the most famous local differential privacy mechanisms, namely randomized
response, respectively.

The following is a description of previous work on DP text rewriting. For further
details on related work in differential privacy and NLP, we refer to Section 2.2.5 of
Chapter 2. As we mention above, Krishna et al. (2021) proposed ADePT for this
task. The system consists of an autoencoder that learns a compressed latent repre-
sentation of text, and a DP rewriting component that uses the trained autoencoder,
adds Laplace or Gaussian noise to the latent representation vector, and generates
the privatized text. Due to a formal error in the scale of the Laplace noise, ADePT
violated differential privacy (Habernal, 2021). We outline the model architecture
and differential privacy module of ADePT in Section 5.4.1, and additionally discuss
the system in more detail in the next chapter, Section 6.3.1.

A more recent text rewriting system is DP-VAE (Weggenmann et al., 2022),
which added constraints to the vanilla VAE model latent space (Kingma and Welling,
2014) to obtain a bounded sensitivity on its mean and variance parameters. Despite
the high difficulties of the task, the paper reports surprisingly high performance for
high privacy standards. Since their experimental description lacks some key details
and the code base is not public, we cannot reproduce their approach.

Mattern et al. (2022a) explored text rewriting with global differential privacy,
sampling from a generative language model trained with DP. In addition, there
are a number of word-level DP systems (Feyisetan et al., 2019; Xu et al., 2020b;
Bo et al., 2021), where individual word embeddings are perturbed with DP, with
new words then sampled close to these privatized vectors in the latent space. As
Mattern et al. (2022b) point out, there are several shortcomings of such approaches,
including a lack of obfuscating syntactic information and the inability to provide
proper anonymization. In essence, these methods do not privatize a full utterance,
but only single words.

103



Chapter 5. Building a Framework for Reproducible and Transparent
Differentially Private Text Rewriting

5.3 Description of Software
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Figure 5.1: Overall structure of DP-Rewrite. Colors represent groupings of similar
components. Blue: Experiment mode. Grey: Dataset preparation. Green: Datasets
(original/rewritten). Orange: Model-related components. Red: Main experiment
loop. Yellow: Additional experiment outputs.

The goal of our system is to provide a seamless way to perform differentially
private text rewriting, both on existing and custom datasets. A user can either load
a dataset that we provide out-of-the-box, or use a custom one. In addition, we want
to make it fast and convenient to run experiments for existing methodologies in DP
text rewriting (e.g. ADePT), as well as the ability to integrate novel approaches.
For this, we have a general autoencoder class, based on which out-of-the-box and
custom models are built. In this sense, our software is designed to be open and
modular, where the researcher can swap out existing components to run a variety
of experiments, as well as use the software for one’s own privatized text rewriting
needs.

The core architecture of our system can be seen in Figure 5.1. We divide the
experiments into three distinct modes: pre-training, rewriting, and downstream.
For all three, the pipeline begins with a dataloader which can either be a dataset
provided in the framework, or a custom dataset specified by the user. Additionally,
a rewritten dataset can be loaded for downstream experiments. The loaded dataset
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is then preprocessed according to user-specified parameters and the user’s selected
model, split into different procedures depending on the model type (e.g. RNN-based,
transformer-based). The model is then initialized, optionally from an existing check-
point. At this point, the main experiment is run based on the specified mode, either
(1) pre-training the autoencoder, (2) using an existing checkpoint to rewrite the
dataset, or (3) running a downstream model on an original or rewritten dataset.
For each mode, a variety of evaluations are available, such as BLEU (Papineni
et al., 2002) and BERTScore (Zhang et al., 2019b) for pre-training and rewriting,
and various classification metrics (e.g. F1 score) for downstream experiments. The
differential privacy component is incorporated during the rewriting phase for sys-
tems such as ADePT, although our framework also allows to incorporate it during
the pre-training stage.

5.4 Case Study
We present here a case study that demonstrates the process of using our framework
and provides insights into the ADePT system, for which we provide an implementa-
tion in the software. Our goal is to investigate the difference in rewritten texts and
downstream evaluations when we pre-train an autoencoder on one dataset and use
this to rewrite another dataset. If we notice a lot of tokens from the dataset used for
pre-training in the rewritten dataset, as well as comparatively higher downstream
scores when pre-training and rewriting on the same dataset, then we can be certain
of another form of privacy leakage in ADePT. We first describe the ADePT model,
including its model architecture and differential privacy module.

5.4.1 ADePT

ADePT starts out with a standard autoencoder architecture. Given an input docu-
ment x, an encoder function Enc calculates a latent vector representation z. This
representation is then sent to a decoder function Dec, which reconstructs the orig-
inal text ŷ. ADePT uses a single-layer, unidirectional LSTM for both the encoder
and decoder.

z = Enc(x) and ŷ = Dec(z) (5.1)

To incorporate differential privacy into this model, the unbounded latent vector
z ∈ Rn (where n is the size of the autoencoder’s hidden dimension) is bounded by its
norm and the clipping constant C ∈ R. Laplace or Gaussian noise (η) is then added
to the resulting vector, from which the decoder reconstructs the original sequence,
ŷ. This is shown in Eqn 5.2.

z′ = z ·min

(
1,

C

||z||2

)
+ η (5.2)

For the experiments below, we make an adjustment to this system, fixing a
theoretical issue in the sensitivity calculation of Eqn. 5.2, outlined in Habernal
(2021). While in Krishna et al. (2021) the ℓ1-sensitivity for the Laplace mechanism
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is calculated as ∆1 = 2C, this is only the case if Eqn. 5.2 is modified to clip using
the ℓ1 norm instead, as in Eqn. 5.3.

z′ = z ·min

(
1,

C

||z||1

)
+ η (5.3)

Alternatively, it is possible to retain the ℓ2 norm clipping procedure, in which case
the ℓ1 sensitivity has to be modified to 2C

√
n, instead of 2C. Here we opt for the

former option, clipping using the ℓ1 norm.

5.4.2 Datasets

As in Krishna et al. (2021), we use the ATIS (Dahl et al., 1994) and Snips (Coucke
et al., 2018) datasets to conduct experiments on an intent classification task in
English. For both datasets, we use the same train/validation/test split provided
by Goo et al. (2018), with 4, 478 training, 500 validation and 893 test examples for
ATIS, and 13, 084 training, 700 validation and 700 test examples for Snips. There
are a total of 26 intent labels in ATIS and 7 in Snips.

5.4.3 Implementation

We start our experimental pipeline by pre-training two autoencoder models, one on
ATIS (1) and the other on Snips (2), in both cases using the training split. For pre-
training, we set the vocabulary to the maximum number of words in the training set.
As in ADePT, we do not incorporate a differential privacy component during pre-
training, although we clip encoder hidden representations with a clipping constant
value of 5. We limit sequence lengths to a maximum of 20 tokens, pre-training for
200 epochs with a learning rate of 0.003.

We then use these two models for rewriting, applying both pre-trained models
for rewriting the training and validation partitions of ATIS and Snips, resulting in
four rewriting settings in total. For each setting, we rewrite using five ε values: ∞,
1000, 100, 10, and 1. We use the same clipping constant value of 5 as in pre-training.

Downstream experiment setup

For downstream experiments, we use a pre-trained bert-base model (Devlin et al.,
2019),1 with an additional feedforward layer that takes the mean of the last hidden
states as input and predicts the output label. We use the rewritten training and
validation sets for each configuration, and the original test sets for final evaluation.
We run each configuration with five different random seeds and report the mean and
standard deviation.

5.4.4 Results and Analysis

Our results can be seen in Figure 5.2, and in the complimentary Table 5.1. We
observe the main patterns as follows. First and most importantly, datasets rewrit-
ten using a model that was pre-trained on the same dataset generally show better
1 Available from https://huggingface.co/bert-base-uncased.
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downstream results than datasets rewritten using a model pre-trained on a differ-
ent dataset. For instance, at ε = 1000, rewritten Snips from a model pre-trained
on Snips has an F1 score of 0.94, while rewritten Snips from a model pre-trained
on ATIS has only 0.20. In fact, this is true even at ε = ∞ (non-private setting),
without any added noise (e.g. 0.94 F1 pre-trained Snips, rewritten Snips vs. 0.18
F1 pre-trained ATIS, rewritten Snips), since for the latter case the model ends up
rewriting the dataset that it was pre-trained on, having memorized many of its ex-
amples. This can be seen in Figure 5.3, where the rewritten sentences appear to
have no resemblance to the original dataset used for rewriting, but are very similar
to the data used for pre-training.

Next, as expected, the results decrease for all configurations as the privacy bud-
get ε decreases, except for rewritten ATIS from a model pre-trained on Snips, where
results are low for all ε values, probably due to the same reasons as shown in Fig-
ure 5.3. At the lower ε values of 10 and 1, performance is very low for all configu-
rations. Since there is so much noise added to the encoder hidden representations
z, the utility of ADePT’s rewriting is severely diminished, for any data inputs.

Finally, compared to running downstream experiments on the original dataset,
Snips rewritten with a model pre-trained on Snips shows about the same results at
high ε values (e.g. 0.94 F1 pre-trained Snips, rewritten Snips vs. 0.95 F1 original Snips
for ε =∞). ATIS rewritten with a model pre-trained on ATIS shows lower results in
this case (e.g. 0.73 F1 pre-trained ATIS, rewritten ATIS vs. 0.87 F1 original ATIS for
ε =∞). We speculate that since ATIS is a smaller dataset, there are less data points
to effectively pre-train ADePT for the autoencoding task. We additionally report
random and majority baselines in Table 5.1 on the original datasets for comparison,
which are both very low, likely due to the large number of classes in both datasets,
especially ATIS.

We have thus shown that, despite fixing the theoretical privacy guarantees of
ADePT outlined in Section 5.4.1, the pre-training procedure still results in privacy
leakage, with rewritten datasets exposing a lot of information from the dataset used
for pre-training. As a result, downstream performance is inflated if the datasets for
pre-training and rewriting are the same.

5.5 Chapter Summary

In this chapter, we have begun our investigation into the privatization of textual
data in the setting of local differential privacy. Before moving on to designing
a differentially private text rewriting system that pushes the boundaries on the
privacy/utility trade-off and improves upon previous systems, we have addressed a
major concern that has been present in the field, namely the problem of transparency
and reproducibility in current research on differentially private text rewriting.

We introduced our open-source LDP text rewriting framework, DP-Rewrite. We
have demonstrated a sample use-case for our framework, which allows us to detect
privacy leakage in the pre-training procedure of the ADePT system, an example of
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Figure 5.2: Downstream macro-averaged F1 results for case study experiments with
pre-trained and rewritten Snips/ATIS datasets, as well as comparisons with results
on the original datasets (“Original Snips” and “Original ATIS”). Lower ε corresponds
to better privacy.

Snips rewritten from ATIS

Original Snips doc. listen to westbam alumb allergic on google music

Rewritten Snips doc. how many people fly on after a turboprop airport

ATIS doc. similar how many people fly on a turboprop airport

ATIS rewritten from Snips

Original ATIS doc. what flights leave from phoenix

Rewritten ATIS doc. start playing my disney spring

Snips doc. similar start playing my disney playlist

Figure 5.3: Sample rewritten texts showing memorization by the ADePT model
when pre-training and rewriting on different datasets. For a given document in the
original dataset (“Original Snips/ATIS doc.”), its rewritten version by the model
(“Rewritten Snips/ATIS doc.”) has no resemblance to it, but is very similar to
another document from the pre-trained dataset (“ATIS/Snips doc. similar”).

how the modular and customizable nature of the software allows for transparency
and reproducibility in DP text rewriting research. DP-Rewrite is continuing to
be under active development, and we are incorporating new datasets and private
text rewriting methodologies as they are released. We welcome feedback from the
community.

108



5.5. Chapter Summary

Pretr. Dat. Rewr. Dat. ε Test F1

Snips Snips ∞ 0.94 (0.02)
Snips Snips 1,000 0.94 (0.02)
Snips Snips 100 0.91 (0.02)
Snips Snips 10 0.07 (0.01)
Snips Snips 1 0.06 (0.00)
ATIS Snips ∞ 0.18 (0.07)
ATIS Snips 1,000 0.20 (0.02)
ATIS Snips 100 0.19 (0.01)
ATIS Snips 10 0.06 (0.01)
ATIS Snips 1 0.06 (0.01)
Snips ATIS ∞ 0.51 (0.01)
Snips ATIS 1,000 0.52 (0.03)
Snips ATIS 100 0.52 (0.03)
Snips ATIS 10 0.50 (0.01)
Snips ATIS 1 0.50 (0.01)
ATIS ATIS ∞ 0.73 (0.06)
ATIS ATIS 1,000 0.68 (0.09)
ATIS ATIS 100 0.62 (0.03)
ATIS ATIS 10 0.50 (0.01)
ATIS ATIS 1 0.50 (0.01)

Snips Orig. 0.95 (0.01)
ATIS Orig. 0.87 (0.03)
Snips Rand. 0.14
ATIS Rand. 0.01
Snips Maj. 0.03
ATIS Maj. 0.13

Table 5.1: Downstream macro-averaged F1 results for case study experiments with
pre-trained and rewritten Snips/ATIS datasets. We additionally show results on
the original datasets, as well as random and majority baselines. Test F1 shown as
“mean (standard deviation)” over five runs with different random seeds. Lower ε
corresponds to better privacy.
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Chapter 6

DP-BART for Privatized Text
Rewriting under Local Differential
Privacy

In this final chapter, we continue to tackle the third and last research question,
RQ3, on the privatization of the textual data itself. As in the previous chapter, we
are working in the local DP setting on the task of privatized text rewriting. Having
addressed the issues of transparency and reproducibility in this topic in the previous
chapter, we now move on to the second part of our research question, in which our
goal is to design an effective model for LDP text rewriting, improving the priva-
cy/utility trade-off over previous methods. As we discuss in Chapter 5, one major
issue in achieving this is the strict adjacency constraint, requiring any two rewritten
documents to be indistinguishable from one another, given an ε privacy budget. The
main consequence of this issue is that a significant amount of perturbation needs
to be introduced to the input text, in order to achieve this ε-DP privacy guarantee
for any target document. We design an LDP text rewriting system, DP-BART,
in order to tackle these problems and discuss in detail the limitations of the task of
private text rewriting with LDP.

6.1 Introduction

In the original randomized response technique of Warner (1965), individual bits
of personal information are privatized in the LDP setting, with respect to a given
individual. The core idea in privatized text rewriting is the same, in which we take
a data point associated with an individual, and perturb it with LDP guarantees.
However, the nature of the input information that is to be privatized is significantly
more complicated than that of individual bits, with an entire textual document
treated as the ‘object of privatization’, i.e. a single private data point. We provide
an example of a rewritten text in Chapter 5 for intent classification, which we repeat
here for clarity. If the input document is “I would like to fly from Denver to Los
Angeles this Thursday”, the corresponding output document, rewritten with LDP
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guarantees, could then be “Show me flights to cities in California this week”. In this
example, we have obscured various types of information in the original document,
including the origin and destination of the flight, the weekday of the flight, the fact
that the author of the document is intending to fly, as well as the general writing
style of the text that is unique to that author. In other words, all tokens and their
combinations are concealed with respect to the individual, providing that individual
plausible deniability that the document in question is associated with them, as
opposed to any other document. This is analogous to flipping a coin in randomized
response, with the owner of the private bit having plausible deniability that the bit
they are providing is in fact the one associated with their true private data point.
Again, this is a consequence of working in the LDP setting, in which any two data
points are considered neighboring, as opposed to the global DP setting, where any
two datasets are neighboring. In this latter case, the contribution of any document
within a particular dataset would then be obscured in relation to some analysis, but
the DP guarantee does not extend outside of that scope. LDP is thus a stronger
form of differential privacy with respect to the provided privacy guarantees.

Overall, the benefits of an LDP text rewriting system are immense, where the
output privatized dataset can be used for any downstream analysis, in addition
to not requiring a trusted data aggregator to add random noise. As in the above
flight example, we also avoid the problem of having to manually determine what
specific tokens in a document are private, applying LDP to the entire document.
Nevertheless, there is a significant difficulty in creating such a system, with a lot of
perturbation required to achieve any reasonable privacy guarantees, leading to poor
downstream utility, as we outline above. This is in addition to the issues we outlined
in Chapter 5, in which exisitng DP text rewriting systems may suffer from formal
flaws in their methodology (Habernal, 2021), use older types of models (e.g. the
single-layer LSTM of the ADePT system (Krishna et al., 2021)), as well as utilize
high privacy budgets.

In order to address these issues, we propose a new private text rewriting system,
DP-BART, that outperforms existing LDP methodologies. Our approach consists
of several techniques that can be directly applied to a pre-trained BART model
(Lewis et al., 2020a), outlined in more detail in Section 6.2, without having to design
and train such a model from scratch. Despite being a large transformer architecture,
it can easily be used for data privatization, not requiring many resources. Our
methodology consists of a novel clipping method for the BART model’s internal
encoder representations, as well as a pruning mechanism and additional training
approach that reduces the amount of DP noise that needs to be added to the data
during the privatization process.

The contributions for this chapter can thus be defined as follows. First, we
present the DP-BART model and its related methodologies. The goal is to obtain
a better privacy/utility trade-off by reducing the required amount of DP noise that
is introduced during the rewriting process. Our primary baseline for this task is the
ADePT model, which we discussed in detail in the previous chapter.

Next, in order to investigate the privacy/utility trade-off of our proposed method-
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ologies in detail, we run experiments on five unique datasets and evaluate the rewrit-
ten texts for each dataset on their associated downstream text classification tasks.
These datasets all have varying sizes, ranging from small (between ∼5, 000 and
15, 000 data points), to medium (∼25, 000 data points), large (over 100, 000 data
points), and very large (around 2M data points). This variation in size allows us
to additionally investigate to what extent more data is beneficial in the LDP set-
ting. The intuition here is that, despite a more noisy training setting, a downstream
model may be able to determine the important patterns in the input data that are
necessary to correctly solve the downstream task.

Finally, we thoroughly examine the feasibility of the LDP text rewriting setting in
Section 6.7. This is primarily related to the high noise requirement described above
due to the strict adjacency constraints. We investigate the trade-offs between the
possible privacy guarantees that can realistically be achieved and the downstream
performance of a rewritten dataset. We then further discuss what exactly is the
object of privatization, the required computational resources for our methodology
in comparison to other alternatives, as well as limitations of the approach as a whole
and what can be done to mitigate them.

6.2 Related Work and Background

Overview of LDP text rewriting Applying differential privacy to neural net-
work training and model publishing has converged to using a mainstream method,
namely DP-SGD (Abadi et al., 2016a). However, the task of text privatization is
still broadly unexplored, with many unanswered questions remaining, such as deal-
ing with the unstructured nature of text and explainability of the privacy guarantees
provided to textual data (Klymenko et al., 2022). There are only a few approaches
that directly tackle this problem of LDP text rewriting, with the ADePT system
of Krishna et al. (2021) being the primary baseline method. For further informa-
tion on previous methods in the literature on privatized text rewriting, we refer to
Section 5.2 of Chapter 5.

Overview of the BART model Here we outline the core elements of the BART
model and its relation to the LDP text rewriting task. BART is a sequence-to-
sequence Transformer architecture (Vaswani et al., 2017), acting as a denoising au-
toencoder. It combines the BERT-like bidirectional encoder (Devlin et al., 2019)
with the GPT-like left-to-right autoregressive decoder (Radford et al., 2018). The
base model contains 6 layers for the encoder and decoder, with cross-attention per-
formed over the final encoder layer. BART is pre-trained through a number of
noise transformations of the input document, including token masking, token dele-
tion, and sentence permutation, optimizing a cross-entropy reconstruction loss. One
strong benefit of BART for differentially private text rewriting is that, by design, it
is well-equipped for the autoencoding task of reconstructing corrupted documents.

Overview of pruning for neural networks There have been a variety of prun-
ing methods derived for neural networks since the 1990s. The more popular tech-
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nique is weight pruning (e.g. LeCun et al. (1989), Hassibi et al. (1993), Frankle and
Carbin (2018)), reducing the size of a model and its computation time, but mini-
mizing any negative impact to its performance. More distinct is structured pruning,
such as neuron pruning (e.g. Kruschke and Movellan (1991), where the architecture
of a network is reduced by eliminating full structures of the network, which is more
in line with our approach. Regardless of the specific method used, a very common
pipeline is to iteratively prune and further train a model, to help it recover from
potentially lost performance (Han et al., 2015). Overall, pruning tends to be highly
effective, with substantial compression possible for models (Blalock et al., 2020).

In contrast to the above goals of size and computational efficiency, we use pruning
with the primary objective of dimensionality reduction on a specific hidden layer.
This dimensionality is directly related to privacy concerns, with a lower dimension
resulting in less added noise to the model, which allows us to use lower privacy
budgets while maintaining better performance. Our neuron-based pruning approach
is outlined in Section 6.3.4.

6.3 Methods

We outline this section as follows. First, we briefly recapitulate the main aspects
of our modified version of the ADePT system, which we use as a baseline. Next,
we investigate two main issues with applying a local DP system such as ADePT
to a transformer model, namely extreme sensitivity and computational infeasibility,
described in Section 6.3.2.

We then demonstrate several novel mechanisms which tackle these issues and
provide numerous benefits in the privacy/utility trade-off for the local DP setting.
Section 6.3.3 describes the clipping by value module, with an additional analysis
at the end of the section on determining optimal settings for it. Sections 6.3.4
and 6.3.5 then describe the neuron-based pruning methods which significantly reduce
the amount of noise that needs to be added to the model for a given privacy budget
and increase model robustness to noise through further noisy training. Low-level
specifics on the pruning methods are further provided at the end of Section 6.3.4.

6.3.1 Baseline (ADePT with adjustments)

Recall that ADePT is an LSTM-based autoencoder model, with encoder and decoder
functions Enc and Dec, respectively, that take an input text document x and
reconstruct it as ŷ, shown in Eqn. 5.1. The original ADePT model takes the latent
encoder output z ∈ Rn representation and clips it by its ℓ2 norm, with the clipping
constant C ∈ R, adding Laplace or Gaussian noise to the output based on the ℓ2
sensitivity, as in Eqn. 5.2. For comparison with our primary methodologies below,
we refer to this as the clipping by norm module.

In our experiments for the current chapter, we make three modifications to the
original ADePT model. First, we again fix the theoretical issue in the sensitivity
calculation of Eqn. 5.2. Instead of using the sensitivity of 2C for the Laplace noise
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scale, outlined in Theorem 1 of Krishna et al. (2021), we instead use the corrected
sensitivity of 2C

√
n from Theorem 5.1 of Habernal (2021). Second, the classical

Gaussian mechanism guarantees privacy only for ε < 1 (Dwork and Roth, 2013,
p. 262). We therefore utilize the Analytic Gaussian mechanism (Balle and Wang,
2018) instead, which allows us to use ε ≥ 1.

Finally, we fix the issue with the pre-training procedure of the model. As we
describe in Chapter 5, the original ADePT was pre-trained on the downstream
datasets with clipping, but without the added DP noise from Eqn. 5.2. We saw
that this results in significant memorization by the model of the input documents,
even after adding DP noise during the rewriting process. In order to remedy this,
we therefore pre-train the autoencoder model on a public corpus, unrelated to the
downstream datasets.

6.3.2 Applying LDP to Transformers

There are two main issues in applying a transformer model to a local DP setting
similar to ADePT, outlined below.

Using LDP in pre-trained transformers suffers from extreme sensitivity

First, we need a significantly larger amount of noise to be added to the model,
due to the increased size of the encoder output vector. Due to the cross-attention
mechanism typical of transformer models, the full output vector for the BART
encoder is of size dtok × l, where dtok is the hidden size for a particular token, while
l is the sequence length. For the smaller bart-base model, using a short sequence
length of 20, this results in a dimensionality of 768 × 20 = 15360. In comparison,
ADePT’s encoder output vector dimensionality is only 1024 in our configuration.

High requirement of computational resources for pre-training

We experimented with clipping by norm for BART, similarly to ADePT, but found
that it destroys any useful representations of the model (even prior to adding the
DP noise). Additional pre-training of BART that would incorporate clipping by
norm turned out to be ineffective.

The remaining option to learn a model with clipping by norm would be to pre-
train the model from scratch. Unlike the small ADePT model, which is a uni-
directional, single-layer LSTM, pre-training a BART transformer from scratch is
computationally infeasible on an academic budget. While the details of BART’s
computational requirements are not described in Lewis et al. (2020a), we can esti-
mate this for the relatively small bart-base model of 139M parameters that was
released by the original authors,1 by comparison with other similar-sized models.
For instance, the BERT model (Devlin et al., 2019), with less parameters (110M
for bert-base), was pre-trained for 4 days on up to 16 TPUs, as described on the
authors’ Github repository.2

1 https://github.com/facebookresearch/fairseq/tree/main/examples/bart
2 https://github.com/google-research/bert
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6.3.3 DP-BART-CLV (Clipping by Value)

Encoder Outputs

Private Encoder
Outputs

Input Doc.

Output Doc.

Encoder Decoder

Private

Public

Runs locally for each
individual

Figure 6.1: DP-BART-CLV model.

To address the issues with clipping by norm, we developed the DP-BART-
CLV model, shown in Figure 6.1. We analyzed the internal representations of a
pre-trained BART model’s encoder output vector values, using a public dataset.
We found that these are mostly bounded within a couple of standard deviations
from their mean. We present this analysis in detail at the end of this section.

To avoid significantly altering these representations, we can therefore use clipping
by value (CLV), as in Eqn. 6.1.

z̄i = min(max(zi, Cmin), Cmax) (6.1)

for any dimension i in the encoder output vector z, a set minimum threshold Cmin

and maximum threshold Cmax. The bulk of values centered around the mean of z
are thus left the same, without being rescaled as in Eqn. 5.2. Since these values were
also found to be symmetrically distributed, we modify Eqn. 6.1 to set C = Cmax =
−Cmin, as in Eqn. 6.2.

z̄i = min(max(zi,−C), C) (6.2)

The pipeline for DP-BART-CLV is as follows. We first initialize a BART
model using a pre-trained checkpoint, where pre-training was again done on a public
dataset, separate from the downstream datasets that are to be privatized.

For a given document, we put it through the encoder of the model at inference
time, obtaining the encoder output vector z, as in Eqn. 6.3.

z = Enc(x) (6.3)
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where x is the input sequence and Enc is the encoder of the BART model. While
the BART model outputs the encoder’s last hidden state as z ∈ Rl×dtok for each
mini-batch, we flatten this vector to be z ∈ Rn, where n = l · dtok. Clipping is then
performed as in Eqn. 6.4,

z̄ = clip(z) (6.4)

where clip is carried out for every dimension of the vector, according to Eqn. 6.2.

With this clipping mechanism in place, we can now calculate its sensitivity, in
order to determine the scale of noise to add in the DP setting. This is outlined in
Theorems 6.3.1 and 6.3.2 below.

Theorem 6.3.1. Let f : Rn → Rn be a function as in Eqn. 6.4. The ℓ1 sensitivity
∆1f of this function is calculated as in Eqn. 6.5, where C ∈ R : C > 0 is the clipping
constant and n ∈ N is the dimensionality of the vector.

∆1f = 2Cn (6.5)

Proof. The ℓ1 sensitivity of a function f : Rn → Rn is defined as: ∆1f = max
x,y
||f(x)−

f(y)||1, where ||x− y||1 = 1. Since in our case f clips every value to be in the range
[−C,C], the following inequality must be true.

||f(x)− f(y)||1 = |f(x1)− f(y1)|+ . . .

+ |f(xn)− f(yn)|
≤ |C − (−C)|+ . . .

+ |C − (−C)|
= |2C|+ · · ·+ |2C|
= 2Cn (6.6)

This inequality also holds true when the C values are reversed for any summand,
due to the absolute value: |C − (−C)| = | − C − C|.

Theorem 6.3.2. Let f : Rn → Rn be a function as in Eqn. 6.4. The ℓ2 sensitivity
∆2f of this function is calculated as in Eqn. 6.7, where C ∈ R : C > 0 is the clipping
constant and n ∈ N is the dimensionality of the vector.

∆2f = 2C
√
n (6.7)

Proof. The ℓ2 sensitivity of a function f : Rn → Rn is defined as: ∆2f = max
x,y
||f(x)−

f(y)||2, where ||x − y||1 = 1. As for the ℓ1 sensitivity above, f clips every value to
be in the range [−C,C], so the following inequality must be true.
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||f(x)− f(y)||2 =
√
(f(x1)− f(y1))

2 + . . .

+ (f(xn)− f(yn))
2

≤
√

(C − (−C))2 + . . .

+ (C − (−C))2

=
√
(2C)2 + · · ·+ (2C)2

= 2C
√
n (6.8)

This inequality also holds true when we reverse the position of the C values for any
summand, (C − (−C))2 = (−C − C)2.

We then add noise to this clipped vector, as in Eqn. 6.9.

ż = z̄ + (Y1, . . . , Yn) (6.9)

where each Yi is drawn i.i.d. from Lap(∆1

ε
) for the Laplace mechanism (Dwork and

Roth, 2013) or N (0, (α∆2√
2ε
)2) for the Analytic Gaussian mechanism, where α is cal-

culated according to Algorithm 1 of Balle and Wang (2018).

Decoding is then performed auto-regressively (e.g. using beam search) as usual,
using this perturbed ż encoder output vector, instead of the original z vector, as in
Eqn. 6.10.

ŷ = Dec(ż) (6.10)

where ŷ is the model’s output prediction of the reconstructed input sequence x.
By standard arguments, the DP-BART-CLV model satisfies (ε, 0)-DP for the
Laplace mechanism and (ε, δ)-DP for the Analytic Gaussian mechanism, as out-
lined in Eqn. 6.9 (Dwork and Roth, 2013; Balle and Wang, 2018).

Selecting Clipping Value for DP-BART

When clipping encoder outputs by value for the DP-BART model, we want to choose
left and right values Cmin and Cmax that capture the most information from the orig-
inal vector. One way to go about this is to estimate the distribution of the encoder
output vectors z ∈ Rn (see Eqn. 6.3) of a pre-trained BART model checkpoint, given
several documents from an external public dataset, and then clip a certain number
of standard deviations from the estimated mean. Performing an exploratory data
analysis on these encoder output vectors, we noticed that they fairly closely match
a Gaussian distribution, although with far more outliers.

In order to look into this more closely, we can perform Maximum Likelihood
Estimation (MLE) to estimate the µ and σ2 parameters, assuming the data follows
a Gaussian distribution. For Gaussians, the MLE of these two parameters is simply
the mean and variance of the existing data, respectively, in our case of the values of
z, given an input document x. Based on multiple sample documents, we find that
µ ≈ 0.00 and σ ≈ 0.2. Hence, using the 66-95-99.7 rule for normal distributions, we
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can clip two standard deviations to the left and right, retaining 95% of the original
values.

We therefore initially set C = Cmax = −Cmin, where C = µ+σ ·2 = 0+0.2 ·2 =
0.4. Since µ is found to be 0, we are able to simplify the calculation to only have
the C and σ parameters. In practice, we found that clipping only half of one
standard deviation was enough to retain good performance, despite clipping away
more information than what we estimate above. Hence, we set C = σ/2 = 0.1.

6.3.4 DP-BART-PR

We develop the DP-BART-PR model in order to address the remaining issue of
dimensionality, outlined in Section 6.3.2. The DP-BART-CLV model, while being
resource-efficient, still has the issue of a large dimensionality for the encoder output
vectors, since in Eqns. 6.5 and 6.7, the sensitivity is multiplied by a factor of n and√
n, respectively, which in turn results in a larger noise scale.

DP-BART-PR, addressing both the resource and dimensionality issues, is an
extension to the above DP-BART-CLV, with an additional iterative pruning/-
training mechanism applied to it. The procedure is outlined in Figure 6.2 and
Algorithm 1.

As for DP-BART-CLV, we first load a pre-trained BART model checkpoint.
Each input token will have an encoder output representation of dimensionality dtok.
For every token in the sequence, we prune a certain percentage of these neurons by
setting them to 0. Importantly, these pruned neurons are the same for every single
input document. The criteria for selecting these pruned neurons is discussed in more
detail at the end of this section.

Following this pruning step, we train the model for k iterations to compensate
for possible lost performance from pruning. This step is performed on an external
public dataset, unrelated to any downstream texts that are to be privatized. During
this process, we also clip each dimension of the BART encoder output vector zi
according to Eqn. 6.2, to encourage representations to be constrained within the
ranges −C and C to reduce potential negative performance impacts of clipping
during the rewriting phase.

We note that only a few data points are necessary for this additional training
step, maintaining the low-resource setting, outlined in Section 6.4.3. We then con-
tinue this two-step process iteratively, until a desired dimensionality reduction of
the encoder output veector is reached. At the end of this process, the resulting
model weights are frozen and the final pruned indices of the encoder output vector
z are saved. The model is then used for text rewriting at inference time, just like in
DP-BART-CLV, but with the additional pruning step, using the saved indices.

As a result of this process, we can significantly reduce n in Eqns. 6.5 and 6.7,
which in turn reduces the resulting noise scale used in Eqn. 6.9. With less noise
added to the encoder output vectors for any given ε value, we can thus expect a
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Prune and train further

Prune and train further

Figure 6.2: Pruning and re-training procedure for the DP-BART-PR model, illus-
trated for one document. Each ith neuron from a set of indices is set to 0 for all
tokens of the encoder output vectors z ∈ Rl×dtok . These neuron indices are the same
for any document. This process is repeated iteratively until performance starts to
degrade.

better privacy/utility trade-off.

This pruning procedure can be seen as a privacy/utility tuning knob. With more
pruning, we reduce the size of n, therefore requiring less added noise for a given
ε value in the DP setting. At the same time, more pruning reduces the model’s
expressivity with less dimensions, which will result in an inevitable performance
drop after reaching a certain pruning threshold. We noticed that pruning a few
dimensions (e.g. 25% of neurons) can recover basically all of the performance of the
model with some additional training steps, but after a certain point this starts to
degrade. The ‘sweet spot’ we found is at approximately 75% of neurons. Additional
discussion on these points can be found below in Section 6.3.4. We would like to
stress again that these pruning adjustments are made just once and using public
data only, after which the final model can be used locally by any individual for their
own data privatization.
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Algorithm 1 DP-BART Pruning
Input: Encoder: Encθ0 , Decoder: Decθ0 , Public dataset: D, Encoder output di-

mension per token: dtok, Number of epochs to additionally train: E
Output: Pruned model: EncθE , DecθE ; Array of neuron indices to prune P of size

dtok
1: function prune(z, P )
2: ▷ z ∈ Rl×dtok , where l is the seq. length
3: for j in 1 to dtok do
4: if j in P then
5: ▷ Set that neuron to 0 for all tokens
6: z[:, j]← 0

7: return z
8: function iter_pr(D, Encθ, Decθ, P )
9: ▷ Iterate with pruning

10: for each document x in D do
11: Compute encoder outputs, z ← Encθ(x)
12: Prune, zpr ← prune(z, P )
13: Decode, ŷ ← Decθ(zpr)
14: Compute loss on ŷ and optimize
15: function add_p_idxs(P )
16: new_idxs← select k values in [1, dtok)
17: Append new_idxs to P
18: return P
19:
20: P ← new Array
21: for epoch e in 1 to E do
22: P ← add_p_idxs(P )
23: iter_pr(D, Encθe , Decθe , P )
24: return EncθE , DecθE , P

Selecting Neurons for Pruning

At each pruning/training iteration for preparing the DP-BART-PR model, we
need some criteria for selecting the next set of neuron indices that will be set to 0.
Our method for selecting these is generally in line with previous work on pruning
(Blalock et al., 2020), using weight magnitudes to determine relative importance of
those weights.

As we discuss in Section 2.3.3 of Chapter 2, in the cross-attention module of the
decoder of a transformer model such as BART, there are three initial projections
of the input or target representations: Key (K), Query (Q), and Value (V). The K
and V projections come directly from the encoder output vectors multiplied by a
weight matrix for each, while the Q projection comes from the decoder’s intermediate
representations multiplied by a weight matrix. We can therefore choose the weight
matrix of either the K or V projection from the cross-attention module of one of
the decoder’s layers. For this weight matrix, we take the sum of absolute values
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of all weights associated with a particular neuron, to give a general indication of
its importance. Given the distribution of these values associated with each neuron,
we take the 25% quantile as the threshold. Any neuron with a value below this
threshold is selected for pruning and set to 0.

At the next pruning iteration, after further training, we repeat the above process,
this time only taking into account neurons that have not already been set to 0. We
again calculate each neuron’s relative importance value, taking the 25% quantile of
these new values as the next threshold, and selecting any neurons with an associated
importance value below it for pruning.

We found that taking the weight matrix of the K projection from the initial
decoder layer outperformed all other configurations, such as using subsequent lay-
ers, or the V projection. Additionally, we found the above method to outperform
randomly pruning neurons.

We perform two additional tweaks to this process to improve results further.
First, we include the clipping by value procedure, with C = 0.2, when further
training the model at each pruning iteration. We found that, without this step,
the encoder output representations tend to shift to a distribution of values with a
greater standard deviation. This then requires a larger C value when determining
the mechanism’s sensitivity in Eqns. 6.5 and 6.7, which in turn requires a greater
noise scale in Eqn. 6.9. By including this clipping, we encourage encoder output
representations to continue to primarily stay within the range (−C,C).

The other tweak that we found to further improve results is to prune and further
train the BART model for k iterations, but then use the neuron indices for pruning
from the k − 1 iteration. Performing this full pruning pipeline on a public dataset,
we found that the best BLEU scores for rewriting at various ε values are after
pruning/training the model for 6 iterations, then using the pruning indices from the
5th iteration for actual rewriting of downstream datasets. This amounts to a total
of 586 out of 768 (76.30%) neurons pruned for each token.

In theory, this pruning procedure could be replaced with another dimensionality
reduction technique for the last hidden state of the encoder outputs (e.g. a bottleneck
layer and its inverse). In our experiments, however, the above pruning procedure
produced suprior results when trying various options for such a bottleneck layer.
This includes architectures such as a feedforward neural network and CNN (LeCun
et al., 1998), as well as various training methods (e.g. training these layers separately
and reinserting them into the final full model, or training the full model together
with these layers).

Proof that DP-BART-PR is differentially private

Theorem 6.3.3. The DP-BART-PR model, combining Algorithm 1 and the above
DP-BART-CLV procedure, summarized in Eqn. 6.9, satisfies (ε, 0)-DP when using
the Laplace mechanism and (ε, δ)-DP when using the Analytic Gaussian mechanism.
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Proof. The procedure outlined in Algorithm 1 is performed on a public dataset,
unrelated to the downstream data that is considered sensitive, hence no privacy
budget is used up.

The remaining rewriting procedure with the pruned indices is exactly the same
as for DP-BART-CLV, just at a lower dimension. The neuron indices that are set
to 0 are the same for any input document. This means that no information from the
input is encoded in these neuron indices. From the DP point of view, these zeroed
neurons are the same for any two neighboring data points. Therefore, these neurons
have no contribution to the DP sensitivity and do not require any privatization. The
same proofs are therefore valid as for Theorems 6.3.1 and 6.3.2 for the Laplace and
Analytic Gaussian mechanisms, respectively.

6.3.5 DP-BART-PR+

We further augment the above DP-BART-PR model by incorporating additional
training steps with added DP noise. This model follows the same procedure for
iterative pruning and additional training, as outlined in Algorithm 1, but we add
further training iterations on the pruned model with added DP noise to the clipped
encoder output representations, as in Eqn. 6.9. For example, using the Analytic
Gaussian mechanism at ε = 500, at each iteration we clip the encoder output vectors
z from Eqn. 6.3 and add the appropriate amount of Gaussian noise based on the
sensitivity from Eqn. 6.7.

The idea behind this additional training is to help the model to better decode
from the noisified encoder representations. As with DP-BART-PR, for DP-
BART-PR+ we perform these additional training iterations on a public dataset,
unrelated to the downstream datasets for privatized text rewriting. A separate
model is prepared for each individual privacy budget ε.

6.4 Experiments

6.4.1 Datasets

We perform experiments on five English-language textual datasets, each gradually
increasing in size (Table 6.1). For comparison with Krishna et al. (2021), we use
ATIS (Dahl et al., 1994) and Snips (Coucke et al., 2018) as our small datasets, with
the task of multi-class intent classification. We use the same train/validation/test
split as in Goo et al. (2018), as in Chapter 5. For our medium-sized dataset, we use
the popular IMDb dataset (Maas et al., 2011), on the binary classification task of
movie review sentiment analysis. For this, as well as the following two datasets, we
use a validation partition by randomly selecting 20% of the training set.

For a large dataset, we use the dataset from Gräßer et al. (2018), which is a
collection of drug reviews from the website Drugs.com, also with the task of bi-
nary sentiment analysis, as in Shiju and He (2022). This dataset, although publicly
available, closely simulates a sensitive dataset in need of privacy protection, with de-
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tailed descriptions by users of their medical conditions and experiences with different
treatments.

Our final dataset is the much larger Amazon Customer Reviews dataset (He and
McAuley, 2016), of which we take a 2M subset of reviews from various categories
(e.g. electronics, office products), from the full 144M. As with Drugs.com, we modify
the original five-star sentiment score to a binary classification task, with four or more
stars being the positive class, while the rest are negative.

We outline the last two datasets, Drugs.com and Amazon reviews, in more detail
below.

Dataset Classes # Trn.+Vld. # Test
ATIS 26 4,978 893
Snips 7 13,774 700
IMDb 2 25,000 25,000
Drugs.com 2 161,297 53,766
Amazon 2 1,904,197 211,605

Table 6.1: Dataset statistics. Trn.: Train, Vld.: Validation. Size represents number
of documents.

Drugs.com reviews dataset

We present additional statistics on the Drugs.com dataset in Table 6.2. We note
the class imbalance of the original dataset, where the majority class was the highest
rating 9, from a score of 0 to 9, which accounted for approximately 17% of the total
training set. This contributes to the relative imbalance of the positive and negative
classes in our binary class version of the dataset.

# Train # Test
# Positive 97,410 32,349
# Negative 63,887 21,417
# Total 161,297 53,766

Table 6.2: Class distributions and total documents for the Drugs.com reviews
dataset. Original classes 8 and 9 converted to the positive class, while the rest
to the negative class for our experiments.

Amazon reviews dataset

For the Amazon dataset, since using the full 144M reviews is too computationally
expensive, we reduce this to a more practical size, while still being comparatively
larger than the other downstream datasets. To prepare a subset of the full Amazon
dataset, we first select several product categories based on four criteria. (1) The
category is large enough (e.g. > 2M reviews). (2) Label 5 for the star rating is not
too dominant (e.g. < 60%), see general imbalance outlined in Table 6.3. (3) Label
4 for the star rating is also not too dominant (e.g. < 60%), since we are merging
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labels 5 and 4 into the positive class. (4) Label 1 for the star rating has enough
representation (e.g. > 10%).

We selected a total of 7 product categories, which matched at least three out
of four of these criteria. From these reviews, we then filtered to include only those
with 20 tokens or less, to fit our experimental scenario of shorter documents (out-
lined in more detail in Section 6.4.3). We then reduced this further by balancing
positive and negative classes, with uniform probability selecting only Nneg positive
label reviews, where Nneg is the number of negative labels in our current subset.
Finally, we uniformly selected two-thirds of the resulting balanced dataset to reach
the final size of approximately 2M reviews. We present each product category and
its corresponding size in Table 6.3.

Importantly, we have a well-defined train-test split, taking 10% of the processed
dataset and setting it aside for final downstream test evaluations. We release the
specific document indices of our subset from the original large Amazon reviews
dataset.3 We present the final dataset statistics in Table 6.4.

Product Cat. # Docs. (original) # Docs. (subset)
Digital_Video_Games_v1_00 145,341 11,375
Electronics_v1_00 3,093,869 201,708
Lawn_and_Garden_v1_00 2,557,288 202,226
Major_Appliances_v1_00 96,901 4,940
Mobile_Apps_v1_00 5,033,376 536,550
Office_Products_v1_00 2,642,434 182,202
Wireless_v1_00 9,002,021 976,801
Total 22,571,320 2,115,802

Table 6.3: Product categories and corresponding number of documents from the full
Amazon reviews dataset (mid), as well as from our prepared subset (right).

# Train # Test
# Positive 952,153 105,797
# Negative 952,044 105,808
# Total 1,904,197 211,605

Table 6.4: Final class distributions and total reviews for our Amazon reviews subset.

6.4.2 Experimental Setup

We have three main experimental configurations. The first is the original setting,
where we run experiments on our downstream datasets without any rewriting or DP.
The second configuration is rewrite-no-dp, where we utilize each of the four models
outlined in Section 6.3 at ε = ∞ (ADePT, DP-BART-CLV, DP-BART-PR,
and DP-BART-PR+). Finally, the third and main configuration is rewrite-dp,
3 Original full dataset available on Huggingface at https://huggingface.co/datasets/amazon_
us_reviews, our subset available at https://github.com/trusthlt/dp-bart-private-
rewriting.
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where we compare the above four models, this time at various privacy settings
(ε ∈ [10, 2500], Laplace and Analytic Gaussian mechanisms).

For rewrite-no-dp and rewrite-dp, our experimental pipeline consists of the
following four steps, depending on the specific model used:

Pre-training: The model is pre-trained on a large public corpus. For ADePT, we
use 50% of the Openwebtext corpus (Gokaslan and Cohen, 2019). For all our
BART experiments, we load a pre-trained facebook/bart-base model.4

Further training: Only for DP-BART-PR and DP-BART-PR+, again per-
formed using the Openwebtext corpus. It helps the model adjust to pruning and
DP noise, respectively (as outlined in Sections 6.3.4 and 6.3.5). More details on
the amount of further training are presented in Section 6.4.3.

Rewriting: We take a pre-trained model and rewrite one of the downstream
datasets.

Downstream: We take the rewritten dataset (training and validation partitions)
and run downstream experiments on it using a pre-trained BERT model with a
classification head on top. We use the rewritten validation set for hyperparame-
ter optimization (see Section 6.4.3) and the original test set for final evaluations.
We present further details on the downstream model in Section 6.4.2.

In the original setting, we use the same downstream model as above, using the
original datasets instead of the rewritten ones.

Evaluation We perform two types of evaluations for the above experimental set-
tings: intrinsic and extrinsic. For our extrinsic evaluation we measure the test F1

scores on the downstream task performance. This is the primary utility metric of
the rewritten texts, with privacy correspondingly quantified with the ε value. We
expect that even if a text may be rewritten to look very different from the original
input, it could still have enough downstream task-specific information remaining to
properly train a model on this task (e.g. the sentiment of a document in the case
of sentiment analysis). This is in fact the ‘sweet spot’ we are looking for, removing
identifying elements of the author, but still retaining some key features from the
input for good downstream performance. We also measure BLEU scores (Papineni
et al., 2002) for our intrinsic evaluation, discussed in more detail in Section 6.5.2.

Downstream Experimental Setup

As in our experiments for Chapter 5 (see Section 5.4.3), we use a pre-trained BERT
model (Devlin et al., 2019) for running downstream experiments on the rewritten
texts. We add a feedforward layer on top of the BERT model, taking as input
the mean of its last hidden states. The model predicts the output label for text
classification. For training the model and running validation, we use the rewritten
training and validation partitions for each downstream dataset, at a given privacy
4 Available from https://huggingface.co/facebook/bart-base.
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configuration. For final evaluation, we run the model on the original test set of each
dataset.

6.4.3 Hyperparameter configuration

For all our model configurations, we use a sequence length of 20 tokens. This limits
the sensitivity in Eqns. 6.5 and 6.7 for our three BART models. For the ADePT
model, we found that it is generally ineffective at the autoencoding task when using
larger sequence lengths, presumably due to the problem of vanishing gradients for
RNN-based models (Pascanu et al., 2013), as discussed in Section 2.3.3 of Chapter 2.
Our search space for learning rates is in the range [10−6, 0.01]. We use batch sizes
of either 32 or 64.

When pre-training ADePT, we include the clipping procedure from Eqn. 5.2,
otherwise the model is unable to properly rewrite a given input document, since the
clipping significantly alters the encoder output representations. Additional hyper-
parameters for ADePT include an embedding size of 300 with pre-trained GloVe
embeddings5 (Pennington et al., 2014) and a hidden size of 512. Combining the
LSTM cell and hidden state sizes, the ADePT encoder output vectors have a di-
mensionality of 512 · 2 = 1024.

For rewriting using the Analytic Gaussian mechanism, we always keep the δ value
below 1/N , where N is the total number of documents for a given dataset. As we
discuss in Section 2.2.1 of Chapter 2, this is based on the idea that using a δ value
that is overly large in relation to the dataset size can lead to potential privacy leaks,
hence maintaining δ ≪ 1/N is a good guideline to follow (Abadi et al., 2016b). We
therefore use a δ value of 10−5 for the ATIS, Snips, and IMDb datasets, 10−6 for
the Drugs.com dataset, and 10−7 for Amazon reviews. We perform rewriting with
beam search, using a beam size of 10.

When performing additional training for the DP-BART-PR model, we again
use the Openwebtext corpus. At each stage of pruning, we train the model for
500 iterations at a batch size of 32. In the case of further training for the DP-
BART-PR+ model, we again use the Openwebtext corpus, with the same number
of iterations and batch size, but performed over multiple epochs. The number of
epochs ranges from 100 to 500, for the different ε values from 2500 down to 10,
based on the prediction loss and intermediate model outputs. We applied these
further training steps to the DP-BART-CLV model as well to account for the
potential effects of this training alone, but we did not find any improvements. This
is in line with the high dimensionality issue of DP-BART-CLV destroying input
representations in the private setting, which this additional training does not resolve
without the pruning adjustments of the DP-BART-PR(+) models.

Regarding downstream text classification experiments, we run each configuration
for a maximum of 50 epochs with three random seeds and report the mean. We use
an early stopping patience of 5 epochs. We also report the standard deviation

5 Downloaded from https://nlp.stanford.edu/data/glove.6B.zip.

127

https://nlp.stanford.edu/data/glove.6B.zip


Chapter 6. DP-BART for Privatized Text Rewriting under Local Differential
Privacy

in Section 6.5.2. We outline our choice of the clipping by value constant C in
Section 6.3.3 and amount of pruning in Section 6.3.4.

Finally, our computational runtimes are under 1 hour for each configuration
that does not use the Amazon dataset. The only exception to this is the Drugs.com
reviews dataset, which reaches up to 2 hours 10 minutes for rewriting with the DP-
BART models. The Amazon dataset takes significantly longer, with approximately
24 hours for rewriting with ADePT, 47 hours rewriting with DP-BART models, as
well as up to 18 hours for downstream experiments, depending on when the early
stopping condition is reached. We run experiments on a 32GB NVIDIA V100 Tensor
Core GPU.

6.5 Results

6.5.1 Extrinsic evaluations
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Figure 6.3: Downstream test F1 results (macro-averaged) for each dataset, using
the four model types. Lower ε corresponds to better privacy. Both original and
rewrite-no-dp results can be seen on the right of each graph at ε = ∞. The rest
of the results represent the rewrite-dp setting at different ε values.

Figure 6.3 shows our downstream test F1 results for all datasets, at varying values
of ε. We report results for the Analytic Gaussian mechanism, which nearly always
outperformed those of the Laplace mechanism. We present results in tabular form
with mean and standard deviations below in Section 6.5.2. Additionally, we present
sample rewritten texts in Section 6.5.3. We outline the main patterns as follows.

DP-BART-PR+ performs best DP-BART-PR+ reaches the best privacy/u-
tility trade-off for the majority of datasets, having the highest scores at the lower
ε values. DP-BART-PR results are second-best for most datasets, performing
better than DP-BART-CLV and ADePT, which are low for the majority of con-
figurations. The overall results hierarchy can be clearly seen in the Snips dataset,
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where at ε = 500, DP-BART-PR+ reaches F1 0.65, DP-BART-PR at 0.39,
while both DP-BART-CLV and ADePT are below F1 0.15.

Original vs. rewritten Results for the original setting are generally on-par
with those of the rewrite-no-dp setting. For instance, Snips original F1 is 0.98,
and ε = ∞ with rewriting is also at F1 of 0.98 for DP-BART-PR, being very
similar for the other three models. One exception to this is IMDb, which has a drop
from original F1 0.86 to 0.72 for all models. This can be explained by the fact that
the original settings use longer sequence lengths, while both rewrite-no-dp and
rewrite-dp settings are limited to a sequence length of 20. This is not a problem
for datasets such as ATIS and Snips, since their documents are generally very short,
mostly limited to brief user inquiries. For a dataset such as IMDb, however, which
consists of detailed reviews by individuals, limiting the sequence length results in a
loss of valuable information.

Epsilon vs. dataset size Regardless of dataset size, we can see a drop in results
for all models as ε is decreased. With the models incorporating pruning, this drop
appears at later ε values, such as DP-BART-PR+ on the Amazon dataset moving
down from F1 0.82 at ε = 250 to F1 0.33 at ε = 100, and DP-BART-PR from
F1 0.79 at ε = 500 to F1 0.33 at ε = 250. A similar pattern can be seen for the
Snips dataset, despite being far smaller than Amazon, while the Drugs.com dataset
shows low results throughout, for all model types. The smallest dataset, ATIS, also
performs poorly, which can be explained by the large number of classes and few data
points for learning the task in the noisy setting. We can generally see that a larger
dataset size does not necessarily mean better results at lower ε values, although the
significantly larger Amazon dataset does show the best results.

6.5.2 Intrinsic evaluations

For intrinsic evaluations, we use BLEU scores to measure how close the input and
rewritten output texts are to one another. Despite some criticisms of BLEU as
a general-purpose evaluation metric for text generation (e.g. Callison-Burch et al.
(2006)), it perfectly fits our scenario. Being a metric of n-gram overlap, it allows us
to compare how similar the inputs and outputs are. In a way, a very high BLEU
score points to privacy leakage, since it is showing how much of the original text
remains in the output. We would therefore expect well privatized texts to have a
relatively low BLEU score.

Our results can be seen in Table 6.5 for rewriting the training partition of each
dataset with the Analytic Gaussian mechanism, together with the detailed down-
stream test F1 results.

We can see that the BLEU scores for the training partition of each dataset show
a largely positive correlation with the test F1 downstream results, where a decrease
in the former also indicates a decrease in the latter. For instance, the Snips dataset
shows a BLEU score of 0.31 at ε = 2500 for DP-BART-PR+, with a test F1 score
of 85%. At ε = 750, this drops down to 0.23 BLEU score and 73% test F1. By
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ε = 250, the BLEU score is at 0.07, with the test F1 score at 60%. Interestingly,
despite lower BLEU scores, the downstream model is still able to sometimes learn
the task successfully, obtaining a good F1 score on the original test set.

Another example of this can be seen for the DP-BART-PR model on the
Amazon dataset at ε = 1000, with a BLEU score of 0.17, reaching a test F1 of 82%.
A similar instance is DP-BART-PR+ rewriting Amazon at ε = 250, with a BLEU
score of 0.15 and a test F1 of 82%, compared to the non-private F1 of 91%. This is
in line with the goals of text privatization, where original identifying elements of the
text are removed, but key features from the input are retained for good downstream
performance.
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Dataset ε Original ADePT DP-BART-CLV DP-BART-PR DP-BART-PR+
Test F1 BLEU Test F1 BLEU Test F1 BLEU Test F1 BLEU Test F1

Snips ∞ 0.98 (0.00) 6.34 0.92 (0.00) 98.41 0.98 (0.00) 54.39 0.98 (0.00) N/A N/A
2, 500 0.16 0.24 (0.13) 0.02 0.22 (0.14) 2.19 0.88 (0.03) 0.31 0.85 (0.02)
1, 000 0.03 0.13 (0.09) 0.00 0.12 (0.10) 0.07 0.50 (0.07) 0.30 0.80 (0.02)
750 0.02 0.16 (0.08) 0.00 0.11 (0.07) 0.02 0.44 (0.11) 0.23 0.73 (0.04)
500 0.01 0.14 (0.08) 0.00 0.11 (0.06) 0.01 0.39 (0.10) 0.22 0.65 (0.01)
250 0.01 0.10 (0.09) 0.00 0.11 (0.07) 0.00 0.08 (0.02) 0.07 0.60 (0.03)
100 0.01 0.08 (0.02) 0.00 0.08 (0.02) 0.00 0.08 (0.02) 0.00 0.05 (0.02)
50 0.01 0.09 (0.05) 0.00 0.13 (0.06) 0.00 0.08 (0.03) 0.00 0.05 (0.02)
10 0.01 0.05 (0.01) 0.00 0.10 (0.04) 0.00 0.08 (0.03) 0.00 0.05 (0.01)

ATIS ∞ 0.89 (0.01) 16.04 0.32 (0.01) 97.45 0.80 (0.03) 69.26 0.85 (0.01) N/A N/A
2, 500 0.45 0.09 (0.00) 0.02 0.09 (0.00) 2.13 0.14 (0.07) 0.24 0.13 (0.07)
1, 000 0.06 0.09 (0.00) 0.01 0.09 (0.00) 0.06 0.08 (0.00) 0.25 0.13 (0.03)
750 0.05 0.08 (0.00) 0.00 0.08 (0.00) 0.03 0.08 (0.00) 0.24 0.11 (0.05)
500 0.03 0.09 (0.00) 0.00 0.08 (0.00) 0.01 0.08 (0.00) 0.11 0.08 (0.00)
250 0.01 0.08 (0.00) 0.00 0.09 (0.00) 0.01 0.08 (0.00) 0.08 0.08 (0.00)
100 0.01 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.06 (0.04)
50 0.01 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.06 (0.04)
10 0.01 0.09 (0.00) 0.00 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.07 (0.02)

IMDb ∞ 0.86 (0.00) 95.00 0.72 (0.00) 93.49 0.72 (0.00) 89.05 0.72 (0.00) N/A N/A
2, 500 1.74 0.49 (0.04) 0.22 0.42 (0.04) 7.08 0.64 (0.02) 1.69 0.63 (0.01)
1, 000 0.18 0.49 (0.06) 0.16 0.40 (0.05) 0.25 0.47 (0.04) 1.04 0.60 (0.02)
750 0.07 0.43 (0.08) 0.15 0.47 (0.03) 0.15 0.47 (0.05) 0.76 0.58 (0.02)
500 0.04 0.44 (0.02) 0.12 0.43 (0.03) 0.05 0.45 (0.05) 0.52 0.53 (0.04)
250 0.03 0.46 (0.02) 0.11 0.43 (0.02) 0.09 0.46 (0.02) 0.32 0.55 (0.03)
100 0.02 0.46 (0.03) 0.08 0.45 (0.03) 0.06 0.43 (0.06) 0.00 0.38 (0.03)
50 0.01 0.43 (0.01) 0.08 0.46 (0.08) 0.04 0.45 (0.05) 0.00 0.40 (0.06)
10 0.01 0.44 (0.07) 0.05 0.46 (0.04) 0.03 0.45 (0.07) 0.00 0.41 (0.06)

Drugs.com ∞ 0.78 (0.02) 92.41 0.74 (0.01) 93.46 0.77 (0.01) 88.47 0.76 (0.01) N/A N/A
2, 500 1.62 0.37 (0.00) 0.15 0.37 (0.00) 5.59 0.62 (0.02) 0.99 0.38 (0.00)
1, 000 0.12 0.37 (0.00) 0.08 0.37 (0.00) 0.15 0.37 (0.00) 0.46 0.39 (0.02)
750 0.05 0.37 (0.00) 0.07 0.37 (0.00) 0.08 0.37 (0.00) 0.38 0.37 (0.00)
500 0.03 0.37 (0.00) 0.06 0.37 (0.00) 0.05 0.37 (0.00) 0.28 0.37 (0.00)
250 0.02 0.37 (0.00) 0.06 0.37 (0.00) 0.05 0.37 (0.00) 0.20 0.37 (0.00)
100 0.01 0.37 (0.00) 0.05 0.37 (0.00) 0.04 0.37 (0.00) 0.00 0.37 (0.00)
50 0.01 0.37 (0.00) 0.04 0.37 (0.00) 0.03 0.37 (0.00) 0.00 0.37 (0.00)
10 0.01 0.37 (0.00) 0.04 0.37 (0.00) 0.03 0.37 (0.00) 0.00 0.37 (0.00)

Amazon ∞ 0.91 (0.00) 26.96 0.90 (0.00) 96.52 0.90 (0.00) 57.16 0.91 (0.00) N/A N/A
2, 500 0.57 0.70 (0.01) 0.24 0.81 (0.04) 3.44 0.87 (0.01) 0.87 0.87 (0.00)
1, 000 0.09 0.51 (0.01) 0.22 0.40 (0.12) 0.17 0.82 (0.01) 0.66 0.85 (0.00)
750 0.06 0.46 (0.15) 0.20 0.38 (0.09) 0.13 0.83 (0.01) 0.46 0.84 (0.01)
500 0.05 0.27 (0.05) 0.17 0.33 (0.00) 0.12 0.79 (0.04) 0.33 0.83 (0.00)
250 0.04 0.32 (0.02) 0.13 0.33 (0.00) 0.14 0.33 (0.00) 0.15 0.82 (0.01)
100 0.04 0.37 (0.08) 0.11 0.33 (0.00) 0.12 0.33 (0.01) 0.00 0.33 (0.00)
50 0.04 0.32 (0.02) 0.10 0.33 (0.00) 0.10 0.33 (0.00) 0.00 0.33 (0.00)
10 0.04 0.43 (0.16) 0.09 0.38 (0.09) 0.09 0.33 (0.00) 0.00 0.33 (0.00)

Table 6.5: BLEU scores for the training partition of each dataset and downstream
macro-averaged test F1 performance, with each of the four models using the Analytic
Gaussian mechanism and the original test F1 results provided for comparison. Test
F1 scores shown as “mean (standard deviation)”, averaging over results using three
random seeds. ‘N/A’ refers to configurations that we did not run for DP-BART-
PR+, since there are no additional noisy training steps at ε = ∞. Higher BLEU
corresponds to better performance of the rewriting model for intrinsic evaluation,
higher test F1 corresponds to better downstream performance using the rewritten
dataset for training. Lower ε corresponds to better privacy.
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6.5.3 Sample rewritten texts

Comparing rewritten texts across privacy budgets

Original It slows the game performance a bit, but it’s totally worth it!
ε = 2500 The performance of the game is a bit sluggish, but it’s worth it
ε = 1000 It’s that time of year again. But if you slow down your
ε = 750 It’s that time of year again when we talk about kitty racing
ε = 500 We’ve all been talking about the game, but this is a bit of
ε = 250 12 years ago today morning morning morning, a 12-

Sample rewritten texts for varying privacy budgets, using DP-BART-PR+ for the
Amazon dataset.

Original i want to hear something eclectic
ε = 2500 The following is a list of interesting things to hear from the eclectic,

eclectic, and
ε = 1000 i want to hear something different from what everyone else has been

hearing about this week.
ε = 750 i want to hear something different about this mod. It’s simple, but
ε = 500 i want to hear something like this. If you want to listen to music
ε = 250 In the last three year in the last time it seems to have an area of the

Sample rewritten texts for varying privacy budgets, using DP-BART-PR+ for the
Snips dataset.

We provide sample rewritten texts from the DP-BART-PR+ model, compar-
ing the difference in output across ε values on the Snips and Amazon datasets. We
can see that, for different values of ε, parts of the original input sequence reappear
in the rewritten output to varying degrees. For example, the first five tokens of the
original Snips sample reappear in the rewritten texts at ε = 500, 750, 1000. At the
lower ε value of 250, while the output is still in part coherent, it is no longer recog-
nizable from the original. At the lowest ε values, there is so much noise added to the
model that the output primarily consists of ‘start of sequence’ and ‘end of sequence’
tokens, resulting in an overall empty output. For the Amazon example, most rewrit-
ten tokens are different from the input, with some resemblance at ε = 500, but a
more coherent and related output primarily at the larger ε = 2500.

Interestingly for these examples, while the rewritten documents are very altered
from the original documents throughout, it is enough in the case of DP-BART-
PR+ to achieve a relatively good downstream performance, such as an F1 score of
0.65 for Snips at ε = 500 and 0.82 for Amazon at ε = 250. This is more of what
we would expect from a text rewriting system, since if the original text is clearly
noticeable in the rewritten output, we would strongly suspect a privacy leak.
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Comparing rewritten texts across models

Original The product doesn’t work at all.
ADePT has ! low phone unauthorised and 1 awesome 5th

whatsoever pickle my canna kindle just flowed phones signup
DP-BART-CLV """. @...???)!).. W @. W???)
DP-BART-PR Technical precisely anticipate work-touch to enhance

Resources Resources ARE/and and Science Matters/
DP-BART-PR+ "The product doesn’t work at all." That is the sentiment of

Sample rewritten texts for each model type, at ε = 750 for the Amazon dataset.

We additionally provide sample rewritten texts from each model, at the same
ε value and on the same dataset (Amazon at ε = 750). Here we can see that
the DP-BART-PR+ model output is the most similar to the original document,
being rewritten verbatim, followed by some additional output. The output sequence
for DP-BART-PR is less coherent, but still with recognizable sequences for some
token pairs, while DP-BART-CLV and ADePT have output that is seemingly
random.

6.6 Discussion

6.6.1 Reducing noise for text rewriting with LDP

We have shown that it is possible to reduce the amount of noise in the LDP setting of
privatized rewriting, in order to obtain more useful rewritten texts for downstream
tasks. To compare DP-BART-CLV vs. DP-BART-PR, we can examine the
resulting ℓ2 sensitivity from Eqn. 6.7 (∆2f = 2C

√
n). Setting sequence length l = 20

and C = 0.1, as in our experiments, without pruning we have a dimensionality of
n = 768 · 20 = 15360, hence ∆2f = 2 · 0.1 ·

√
15360 ≈ 24.79. With pruning we are

able to remove 76.30% of those n neurons, with only n = 182 · 20 = 3640 remaining.
The ℓ2 sensitivity thus becomes ∆2f = 2 · 0.1 ·

√
3640 ≈ 12.07.

Plugging this into the Analytic Gaussian mechanism’s noise scale calculation
from Balle and Wang (2018), with δ = 10−5 and ε = 500, we have σ2 = 0.8958
without pruning and σ2 = 0.4362. We can therefore see that, with DP-BART-
PR, we are able to reduce the noise scale by more than half.

6.6.2 Pre-training and computational resources

Ultimately, a very effective way to prepare a model for privatized text rewriting
would be to pre-train it from scratch, being fully in control of hyperparameters such
as the dimensionality n of the encoder output vectors z, which determines the ℓ1 and
ℓ2 sensitivities from Eqns. 6.5 and 6.7, respectively. In addition, the whole model
could be pre-trained with added noise and clipping mechanisms, potentially being
even more robust than our approach in DP-BART-PR+, where we incorporate
further noisy training. We noticed for DP-BART-PR+ that the lower the ε value
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we use, the more additional training iterations the model needs to properly reduce
the validation loss.

This demonstrates that, also in the setting of pre-training from scratch, we would
need to train for more iterations in order to reach lower ε values. This can pose
serious challenges, however, for reasons of computational demand discussed in Sec-
tion 6.3.2. DP-BART-PR+ can therefore be seen as a sweet spot approach, where
we only need a few additional training iterations and can still achieve a significant
dimensionality reduction through pruning, as well as additional robustness to noise.

6.6.3 Domain of public training texts

In preparing the DP-BART models, it is important to take into account the domain
of the public data that is used to (1) pre-train the original BART model, and (2)
perform additional training iterations (DP-BART-PR and DP-BART-PR+).
This will ultimately have an impact on the model’s effectiveness for text privatiza-
tion, depending on the nature of the downstream texts. For example, if this training
data is restricted to news articles, then there may be limited performance for rewrit-
ing texts that are further from this domain, such as internet comments. Another
obvious limitation is the language of the public data. If the model is trained on a
monolingual English corpus, then it would not be possible to use it for rewriting
texts from other languages.

The public data used for our experiments consists of news, web text, stories and
books (Lewis et al., 2020a; Gokaslan and Cohen, 2019). We expect that expanding
this to include more data and more varied domains will lead to better performance
in a greater diversity of texts and downstream tasks.

6.6.4 What is being privatized

As we discuss throughout this thesis (e.g. Section 1.2.2 of Chapter 1, Section 4.2.1 of
Chapter 4, Section 7.2 of Chapter 7), it is very important to be clear on exactly what
information is being privatized when performing text rewriting with LDP. Since we
are working with DP at the document level, the entire document is a ‘data point’,
hence any choice and combination of words for a given sequence would be a unique
identifier. We thus avoid the problem of having to choose what specific tokens are
‘private’ within the document. This is crucial, since stylistic aspects of an author
can be very abstract, with subtle syntactic and vocabulary choices.

Another significant benefit of such an approach, is that we are not limiting our-
selves to any specific downstream analysis (e.g. sentiment of a document), being task
agnostic. However, this also means that, for any given document, any other docu-
ment is neighboring, since we are in the LDP setting, as mentioned in Section 6.1.
This leads us to a serious discussion on the limitations of such an approach below
in Section 6.7.

An additional question arises of whether one dataset may have multiple docu-
ments associated with one individual. There are several ways to go about dealing
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with this. One standard approach in differential privacy is to linearly scale the ε
parameter. Thus, if there are k documents associated with a given individual, then
a privacy budget of kε is accounted in total (Dwork and Roth, 2013). Another op-
tion would be to simply append all texts associated with one individual into a single
‘document’, rewriting this using just a single ε privacy budget.

6.7 Limitations of LDP for text rewriting

For every output document, any two inputs, no matter how similar or distinct, are
considered neighboring. If we have a small sequence length of 20 tokens, with a
relatively small vocabulary of 1000 words, then the total number of possible combi-
nations if 100020, which is 1060! While we compress these documents into a latent
vector with a limited range and dimensionality, the strict adjacency constraints are
still present. We can therefore expect an inevitable utility drop when using more
reasonable ε values (e.g. ε = 1).

With more sophisticated architectures, we have shown that it is possible to push
this ε value down to some extent. However, our lowest ε is still too high to carry
over into real-world applications of privacy preservation. As outlined by Hsu et al.
(2014), values of ε for different applications in the DP literature can range from 0.01
to 10. Choosing the right ε value depends on the specific queries that are computed
and the nature of the data (Lee and Clifton, 2011).

For our case, the value of ε can be interpreted in the following manner. The
ε-LDP mechanism that we are applying to our data makes any two input texts
rewritten to be indistinguishable up to a factor of eε. More formally, for any two
input texts x and y to our LDP modelM:

Pr[M(x) = z]

Pr[M(y) = z]
≤ eε, (6.11)

where z is a given output text rewritten by the model (see also Eqns. 2.2 and 2.3,
as well as the overall discussion on the privacy loss random variable in Section 2.2.1
of Chapter 2).

This means that, when we set ε = 250, then any two texts will remain indis-
tinguishable up to a factor of e250. This is a very weak bound and, while it could
provide some empirical privacy guarantees, on a theoretical level the privacy pro-
tection is not very strong. We can also see how this bound becomes exponentially
stronger, as we decrease ε.

It may therefore make sense to take a slightly less strict approach to text adja-
cency, for instance moving into domain specific text rewriting. For example, text
rewriting could be carried out for a specific dataset, with the notion of adjacency
restricted to any two individuals within that dataset, hence requiring much less per-
turbation. The strength of the privacy guarantee, in this case, would then be very
dependent on the size of the dataset (Mehner et al., 2021).
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6.8 Chapter Summary
We have thus concluded our investigation into privatizing textual data in the LDP
setting. We have proposed DP-BART, a set of methodologies consisting of applying
various mechanisms to a pre-trained BART model, with an added differential privacy
component at the end of its final encoder. The resulting system rewrites textual
data, such that the rewritten output satisfies a specified LDP guarantee. The goal
of these methods is to reduce the added noise to the pre-trained model in the DP
setting by lowering the sensitivity of its DP module, i.e. the final encoder function,
as well as being computationally feasible to implement.

We have demonstrated our method’s privacy/utility trade-off, the relations be-
tween the privacy budget and dataset size, and discussed limitations of the privatized
text rewriting approach as a whole, largely stemming from the strict adjacency con-
straint, in which any two possible documents are neighboring and must therefore
be indistinguishable, up to a given ε privacy budget. Future research directions
in this topic include utilizing large-scale pre-training to potentially reach a better
privacy/utility trade-off, as well as investigating domain specific text rewriting for
relaxing these strict requirements of the LDP approach.
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Conclusion

We have investigated a relatively new subfield of natural language processing, namely
privacy-preserving NLP. Specifically, we have worked in the framework of differential
privacy, a very promising direction that has recently been taking off in NLP and the
broader field of machine learning in general.

7.1 Summary

In our investigation of differentially private NLP, we have looked into three main
research questions, dividing into two primary subtopics. The first of these is the pri-
vatization of NLP models, protecting the information of individuals in the datasets
used to train them. For this subtopic, we first investigate the privatization of text
classification models, with our initial research question (RQ1) addressing how to
privatize text classification models that operate on graph datasets. Using the stan-
dard method of applying DP to machine learning models, DP-SGD, we saw that
new challenges emerge in the graph setting, notably the issues of dealing with large
graphs that in turn lead to a large amount of added DP noise. We demonstrate our
solution to this problem by means of our random graph splitting technique, avoiding
queries on the graph, with which we achieve a good privacy/utility trade-off.

Second, we move back into the ‘standard’ NLP setting, looking into privatization
strategies for a variety of common NLP models and tasks. Despite the ubiquity of the
DP-SGD methodology, the NLP community does not have a thorough understanding
of how it fares in these various settings. In performing this investigation, we find
that there is no clear strategy that can be used for applying differential privacy
for different models and tasks, with each configuration requiring its own specific
strategies for achieving the best privacy/utility trade-off. However, we do note
certain patterns that are important to keep in mind, including the negative impacts
of skewed class distributions on model performance with DP-SGD, as well as the
benefits of distilled variants of larger language models in the DP setting with regards
to performance and computational efficiency.
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The second subtopic that we delve into is differentially private text rewriting. In
contrast to the above research topics that work in the global DP setting, here we are
in the local DP setting, which is a stronger form of DP that does not require a trusted
aggregator, but instead allows each individual to apply the DP mechanism to their
own data point. Here we first tackle the problem of reproducibility and transparency
that is present in this subfield. We develop the DP-Rewrite framework, which is an
open-source, modular, and customizable framework for DP text rewriting. Our goal
is to provide the community with a platform to carry out research in a transparent
and reproducible manner that is in line with tackling the points we stress below on
various pitfalls that can be encountered when performing DP research.

Finally, we design the DP-BART series of models, which improve on previous
baselines in terms of the privacy/utility trade-off, aiming to reduce the large amount
of perturbation that is required in the LDP setting, especially for transformer-based
models. In this investigation, we discuss in detail the major problems and limita-
tions of the LDP framework for textual data, largely stemming from the strict text
adjacency constraint, and considering possible remedies for this.

7.2 Pitfalls to avoid when applying DP to the NLP
domain

Despite the increased adoption of differential privacy, there are several notable pit-
falls that can occur which the NLP community needs to be aware of:

1. DP guarantees may not be satisfied by a proposed mechanism.

2. Interpretation of ε is not always clear.

3. Unit of privatization is not always clear.

Regarding (1), due to the formal nature of DP as providing a formal, information-
theoretic privacy guarantee on some data, it is certainly possible for a well-designed
DP mechanism to have an unexpected miscalculation in its theoretical properties
that breaks this intended privacy guarantee. While empirical verifications such as
various attacks on the DP model may shed light on whether a given DP mechanism
violates its claimed DP guarantees, they cannot prove whether it satisfies those
guarantees. This makes it a difficult problem to verify the correctness of a proposed
mechanism, demonstrating the vital importance of transparency and reproducibility,
in order for the wider community to test and verify the privatized model.

For (2), as a community it is very important to be clear on what ε means, both in
the intuitive and mathematical sense. Although it roughly translates to the “level of
privacy guarantee”, there are several important properties that are crucial to keep in
mind: (a) A linear increase in ε is an exponential decrease in the privacy guarantee,
(b) high ε values do not provide a strong privacy guarantee on a theoretical level,
even if they may seem to do so on an empirical level, (c) all low values of ε are
roughly the same (e.g. ε < 0.5), and (d) a ‘good’ value of ε is very difficult to
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determine, with only a few studies investigating this point. For point (d), we can
say that a fairly strong privacy guarantee can be achieved at ε = ln 3, based on the
randomized response technique using fair coin flips.

It is additionally important to note for (2) that sometimes the proposed DP
mechanism of a given study does not always provide clear ε values in its priva-
cy/utility trade-off demonstration when reporting results of the study. Other times,
even though ε values are clearly stated, they differ from their original definition in
standard differential privacy (e.g. metric DP), such that it is not always clear how
a given ε value can be interpreted in the original DP sense. It is therefore crucial
for investigations on NLP tasks in the DP setting to be clear on the exact ε values
that are used, and how they may be different from the classic DP guarantee.

Finally, for (3), as a community we need to be very clear on what exactly we
are privatizing. This is strongly related to the previous point, since an ε bound
will be with respect to some unit of privatization. In contrast to the simpler case
of a database of individuals, with one row corresponding to one person, in the
case of natural language this problem is far from simple. We therefore need further
theoretical investigations into what it means for a given piece of text to be privatized.
If we apply DP at the document level, as in most of this thesis, then we are treating
each document as corresponding to one given individual. While this may work for
developing DP mechanisms for NLP tasks, when deploying these methods, it is very
important to take into account additional complications, such as multiple people
associated with one document, multiple documents associated with one person, and
so forth. In the former case, the guarantees of differential privacy would need to
be applied at a more fine-grained level, such as for individual tokens (e.g. specific
named entities, depending on the nature of the data). The latter case can utilize
additional techniques from differential privacy, such as group privacy. Overall, we
need to be aware of the goals of our privacy guarantee on the text, including what
constitutes a single individual in our data.

As we stress throughout this thesis, one of the main remedies to avoiding the
above pitfalls and making sure that we are carrying out DP research correctly is to
have transparency and reproducibility in our proposed methodologies, as discussed
in Chapter 5. This means having source code available, clearly stating the ε values
used, the unit of privatization, as well as all details on the proposed algorithm.

7.3 Future work

We conclude by discussing possible research directions that may be worthwhile to
pursue for private NLP. First, regarding model-level privacy, while DP-SGD has
become one of the most common ways to apply DP to machine learning, it is certainly
not the only available option for developing a differentially private system. There
may be various alternatives apart from gradient-based privatization methods which
may help to improve the current state of the art with respect to the privacy/utility
trade-off, such as privatizing model-internal representations in the global DP setting,
as well as investigating in more detail other common proposed frameworks for private
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machine learning, such as PATE (Papernot et al., 2017). It would especially be
interesting to look for more NLP-specific solutions to applying differential privacy
for the NLP pipeline.

For text-level differential privacy, there are also several interesting directions
that may further improve on the current best methodologies. This primarily re-
lates to further reducing the sensitivity of pure LDP text rewriting. In addition
to looking into more sophisticated neuron pruning methods for achieving a lower
sensitivity of the DP mechanism on a model’s internal representations, other noisy
training methods can also be tested, such as different schedules for gradually in-
creasing the amount of noise during model training, as a potential enhancement to
the DP-BART-PR+ configuration of Chapter 6. Another possibility is to pre-train
a transformer model from scratch with both clipping and noise, which despite signif-
icantly reducing the computational efficiency of the method, could potentially result
in a better privacy/utility trade-off. As mentioned in Chapter 6, task- or dataset-
specific text rewriting may also reduce the sensitivity of the model, relaxing the
strict adjacency constraint that is present in the LDP setting. Another option for
reducing DP noise due to this constraint is to apply DP at a more fine-grained level
with respect to what is considered private in a document, as opposed to treating
the entire document as a single private data point.

As mentioned above, for any future work on this topic, we stress the importance
of being clear on what exactly is being privatized, as well as always reporting the
exact ε values for which a private configuration is being reported. In addition to
document-level DP guarantees, it would be immensely beneficial to find a rigor-
ous way to perform more fine-grained privatization of textual representations (e.g.
document-level, token-level, token-level with the same sensitive token appearing in
multiple documents, and so forth). This would help to resolve the question of what
is private information in text, as well as reduce the amount of noise that needs to
be added in the DP setting due to lower sensitivity, in turn improving utility of
these DP mechanisms. One significant issue to overcome for this last point is that
the exact definition of what is private information may be different for each person,
making fine-grained privacy analysis very difficult over a dataset of many individu-
als. A possible remedy for this would then be to find a formal, legal standard that
can be set, which would then need to be followed when designing a DP mechanism
for textual data and tasks in the NLP domain.

140



Appendix A

Data Handling

According to the DFG’s “Principles for the Handling of Research Data”,1 we en-
sured that the research data and experimental software related to this dissertation
is publicly available when possible and archived for long-term preservation. The
following is a list of software that has been made available for the scientific commu-
nity. Each repository contains details on the datasets utilized for the corresponding
investigation, as well as licensing information.

• Chapter 3: https://github.com/trusthlt/privacy-preserving-gcn

• Chapter 4: https://github.com/trusthlt/dp-across-nlp-tasks

• Chapter 5: https://github.com/trusthlt/dp-rewrite

• Chapter 6: https://github.com/trusthlt/dp-bart-private-rewriting

All publications related to this dissertation are publicly available in the ACL
Anthology:

• Chapter 3: https://aclanthology.org/2022.lrec-1.36/

• Chapter 4: https://aclanthology.org/2022.emnlp-main.496/

• Chapter 5: https://aclanthology.org/2022.coling-1.258/

• Chapter 6: https://aclanthology.org/2023.findings-acl.874/

Finally, all research results of the above publications are documented in the present
dissertation, which is archived by the Universitäts- und Landesbibliothek Darm-
stadt.

1 https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/
forschungsdaten/leitlinien_forschungsdaten.pdf
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