
Secure Infrastructures in the

Realm of Decentralization

at the Faculty of Computer Science
of the Technische Universität Darmstadt

Submitted in fulfilment of the requirements for the

Degree of Doctor rerum naturalium

(Dr. rer. nat.)

Doctoral Thesis

by Poulami Das, M.Sc.

born in Kolkata, India

First Assessor: Prof. Sebastian Faust, PhD.

Second Assessor: Prof. Aggelos Kiayias, PhD.

Darmstadt 2022

Author: Poulami Das

Title: Secure Infrastructures in the Realm of Decentralization

Thesis written in: Darmstadt, Technische Universität Darmstadt

Year thesis published in TUprints 2023

Day of the viva voice: 24.10.2022

This document is provided by tuprints,

E-Publishing Service of the TU Darmstadt

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Please cite this document as:

URN: urn:nbn:de:tuda-tuprints-244228

URI: http://tuprints.ulb.tu-darmstadt.de/id/eprint/24422

The publication is subject to the following Creative Commons license:

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-244228
http://tuprints.ulb.tu-darmstadt.de/id/eprint/24422
https://creativecommons.org/licenses/by-sa/4.0/

Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den

angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus

Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat

in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

(P. Das)

Curriculum Vitae

June 2008 till June 2012: Bachelor of Computer Science and Engineering at

Jadavpur University, India

February 2014 till January 2017: Master of Science in Computer Science and

Engineering at Indian Institute of Kharagpur, India

March 2018 till September 2022: Doctoral studies at Technical University of

Darmstadt, Germany at the Chair of Applied Cryptography under Prof.

Sebastian Faust, PhD.

iii

Acknowledgments

My PhD years at TU Darmstadt will always remain specially etched in my mem-

ories – not only because it has been one of my best learning experiences, but also

because it helped me to grow as a person. To start with a personal anecdote,

I came from a hardware security background and stumbled upon cryptography

research papers during an internship at MPI-SWS, Saarbruecken. Although my

internship project was distantly related to cryptography, I got instantly intrigued

by the magic of public key cryptography.

Thank you to my PhD supervisor Sebastian Faust, I could consequently pursue

my interest in cryptography through my PhD research. I am immensely thankful

to Sebastian for guiding me through the process of finding interesting research

problems to work on; for being a constant source of encouragement and positivity.

I would like to sincerely thank Aggelos Kiayias for agreeing to be my external

examiner; Carsten Binnig for chairing my PhD defense; Jan Gugenheimer and

Matthias Hollick for being in my PhD committee.

I want to express my sincere gratitude towards Julian, who co-mentored me

in my first project, explaining many foundational concepts and having countless

discussions that helped me to make progress. I am thankful to Julia who always

made me remember, how important it is to strengthen the overall background

knowledge, besides working on own projects; Designing exercises for the Introduc-

tion to Cryptography course had been an enjoyable as well as an amazing learning

experience with Max; I was fortunate to work with Andreas in follow-up projects;

a regular exchange of ideas and discussions kept me motivated to continue.

I want to express my heartfelt thank you towards: Clara, Kristina and Lisa,

for always offering help and creating a lively environment in the office; Max and

Andreas for making the coffee breaks worth looking forward to; Elena for being a

sister and the best office-mate.

I would like to thank Dorothee and Jacqueline for always supporting me with the

official procedures; Heike Schmitt-Spall for patiently answering all my questions

regarding the formal process of thesis submission. This thesis is incomplete without

my sincere gratitude towards the collaborative research center of CROSSING for

funding my research work, for providing educational workshops and a platform to

collaborate and connect with other researchers.

iv

I would like to thank my Darmstadt flatmates (Can, Natalie, Olha) for the nice

times spent together that helped me to cope with the stressful times; friends from

outside academia, especially Ankita, Neha, Kamelia, Sohini for always being there;

And final gratitude towards my family for being my core strength and encouraging

me to follow my passion, always.

Poulami Das

Saarbrücken, 24.08.2023

v

List of Own Publications

Part of this Thesis

[6] N. A. Alkadri, P. Das, A. Erwig, S. Faust, J. Krämer, S. Riahi, and P. Struck.

“Deterministic Wallets in a Quantum World”. In: CCS ’20: 2020 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event, USA,

November 9-13, 2020. 2020, pp. 1017–1031. doi: 10.1145/3372297.3423361.

url: https://doi.org/10.1145/3372297.3423361.

[41] P. Das, L. Eckey, S. Faust, J. Loss, and M. Maitra. Round Efficient Byzantine

Agreement from VDFs. Cryptology ePrint Archive, Paper 2022/823. https://

eprint.iacr.org/2022/823. 2022.

[43] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. “The Exact Security of BIP32

Wallets”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Com-

munication Security, Virtual Event, Republic of Korea, November 15 - 19, 2021.

2021, pp. 1020–1042. doi: 10.1145/3460120.3484807. url: https://doi.org/

10.1145/3460120.3484807.

[45] P. Das, S. Faust, and J. Loss. “A Formal Treatment of Deterministic Wallets”. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS 2019, London, UK, November 11-15, 2019. 2019, pp. 651–

668. doi: 10.1145/3319535.3354236. url: https://doi.org/10.1145/

3319535.3354236.

[48] P. Das, J. Hesse, and A. Lehmann. “DPaSE: Distributed Password-Authenticated

Symmetric-Key Encryption, or How to Get Many Keys from One Password”.

In: ASIA CCS ’22: ACM Asia Conference on Computer and Communications

Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022. 2022, pp. 682–696. doi:

10.1145/3488932.3517389. url: https://doi.org/10.1145/3488932.

3517389.

Other Publications

[42] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust,

and A. Sadeghi. “FastKitten: Practical Smart Contracts on Bitcoin”. In: 28th

USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,

August 14-16, 2019. 2019, pp. 801–818.

vi

https://doi.org/10.1145/3372297.3423361
https://doi.org/10.1145/3372297.3423361
https://eprint.iacr.org/2022/823
https://eprint.iacr.org/2022/823
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389

[49] P. Das, D. B. Roy, and D. Mukhopadhyay. “Automatic Generation of HCCA Re-

sistant Scalar Multiplication Algorithm by Proper Sequencing of Field Multiplier

Operands”. In: PROOFS 2017, 6th International Workshop on Security Proofs

for Embedded Systems, Taipei, Taiwan, September 29th, 2017. 2017, pp. 33–49.

[50] P. Das, D. B. Roy, and D. Mukhopadhyay. “Automatic generation of HCCA-

resistant scalar multiplication algorithm by proper sequencing of field multiplier

operands”. In: J. Cryptogr. Eng. 3 (2019), pp. 263–275.

[51] P. Das, D. B. Roy, and D. Mukhopadhyay. “Improved Atomicity to Prevent

HCCA on NIST Curves”. In: Proceedings of the 3rd ACM International Workshop

on ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May 30

- June 03, 2016. 2016, pp. 21–30.

[130] D. B. Roy, P. Das, and D. Mukhopadhyay. “ECC on Your Fingertips: A Single

Instruction Approach for Lightweight ECC Design in GF(p)”. In: Selected Areas

in Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB,

Canada, August 12-14, 2015, Revised Selected Papers. 2015, pp. 161–177.

vii

My Contribution

All projects included in this thesis are results of fruitful collaboration between my

supervisor Sebastian Faust and my co-authors. The following text is an attempt

to highlight my individual contributions in each of the projects, included as a part

of this thesis.

Chapter 2 is based on joint works with Nabil Alkeilani Alkadri, Andreas Erwig,

Sebastian Faust, Juliane Krämer, Julian Loss, Siavash Riahi and Patrick Struck.

Together with Julian and Sebastian we put forth the first formal treatment of

deterministic wallets in [45]. Through several iteration of discussions, we formal-

ized the security model of deterministic wallets, which serves as a foundational

ingredient to analyze the security of a wide class of wallet schemes. I worked with

Julian in writing down the security definitions of wallet security properties and

building our generic wallet construction. Besides, I was solely responsible for writ-

ing down the security proofs of wallet security properties and unforgeability of a

multiplicatively rerandomized variant of an ECDSA scheme – which was the main

technical contribution of this work. This being my first PhD project, several feed-

back rounds from Julian and Sebastian immensely helped to get the formalization

into a good shape. Our follow-up work [43] was a natural extension of [45], where

we considered the hierarchical feature of BIP32 wallets along with additive key

derivation based ECDSA. This was a joint work with Andreas, Julian, Sebastian

and Siavash. The security model for the hierarchical setting came into shape after

several intense discussions between me, Andreas and Siavash. Andreas, Siavash

and I worked together on writing down the security model. As for the security

analysis, I mainly focused on proving the additively rerandomized ECDSA and the

salt-free multiplicatively rerandomized ECDSA schemes. While Andreas mostly

worked on the unforgeability proof of the hierarchical wallet construction as well

as the impossibility proof of a tighter bound for wallet unforgeability. Siavash

helped both Andreas and me in writing down the security proofs. I also worked

on putting together the concrete security parameters of BIP32, based on mul-

tiplicatively as well as additively rerandomized ECDSA. Our third work [6] on

deterministic wallets was another natural extension to [45]. This was a CROSS-

ING collaboration between me, Andreas, Siavash, Sebastian with Juliane, Nabil

and Patrick on post-quantum security. The main idea behind this work was to

viii

achieve post-quantum security of deterministic wallets. Andreas, Siavash and I

had several detailed discussions with Nabil and Patrick on figuring out the main

adaptations of our security model to accomodate a quantum adversary, with ac-

cess to the quantum random oracle. Andreas and me worked on laying down

our post-quantum variant of formal definitions, generic construction and security

model. Patrick focused on proving the security properties of the generic wallet

construction, while Nabil’s main focus was to construct a rerandomizable signa-

ture scheme from Lattice-based Fiat-Shamir signatures. Both Andreas and I were

involved in writing down the security proofs with Patrick and Nabil, to get the

formalization into a good shape. While, Siavash and Andreas worked together on

the practical evaluation section. In Chapter 2, I summarize the main results from

the above three works, primarily in my own words. Some of the background and

formal definitions have been taken verbatim from the first work [45].

Chapter 3 is based on joint work [41] with Lisa Eckey, Julian Loss, Monosij

Maitra and Sebastian Faust. Originally, this project was initiated between Julian,

Lisa and Sebastian to design round efficient byzantine agreement in the resource-

constrained model. I joined this project at a later point and took over as the

lead author. Through many earlier discussions between Julian, Lisa and me, we

started to lay down the main ideas of our protocols. Later, it took many months

of discussions and iterations between Julian, Sebastian and me to finalize our

computational model based on verifiable delay functions. Julian focused on the

formalization of our model, while I focused on designing all necessary protocols

and their associated security analysis. Monosij joined our project towards the end

and helped us in proving the sequentiality property of VDF construction from

Wesolowski and Pietrzak. Chapter 4 is based on a joint work [48] with Julia Hesse

and Anja Lehmann on a distributed password-based cloud storage solution for

end-users. The main idea of this project was put forth by Anja. Anja, Julia and

I had several rounds of back and forth discussions to construct efficient protocols

for our use-case. I focused on the protocol design and description with help from

Julia and Anja. Besides, I was also responsible for the practical implementation

of our protocols. While, Julia took care of the security analysis. Chapter 3 and 4

contains text, taken verbatim from the articles [41, 48] of the above two projects,

where I was involved as one of the main authors.

ix

Abstract

Most of today’s online services such as e-commerce and online banking are based

on centralized service providers, hence easily prone to single points of failure,

cyber-attacks and censorship. An alternative approach to mitigate this issue, is

to design decentralized systems, where the control is distributed among several

entities, instead of a single centralized authority. A decentralized system often

consists of a complex distribution of trust among different parties, or even orga-

nizations. Henceforth, it is often challenging to build a decentralized system. It

is not surprising that security guarantees of such complex decentralized systems

depend on several factors: not only conventional properties of data integrity, con-

fidentiality and authentication, but also other relevant factors such as availability,

accountability and authorization. In this thesis, we aim to build provably secure

infrastructures that serves a decentralized system in one way or another. Our

contribution is in three different settings of blockchain, byzantine agreement and

cloud.

Firstly, we consider the decentralized payment platform offered by blockchains.

Although the core blockchain protocol has been thoroughly analyzed, the under-

ling infrastructure of blockchain wallets is rather ad-hoc. Cryptocurrency wallets

constitute an indispensable key management mechanism for every user that wants

to send or receive blockchain payments. However, it lacks formal security analysis.

We close this gap by designing provably secure wallets in presence of a classical as

well as a quantum adversary [6, 43, 45]. Through our security analysis, we provide

concrete bit security achieved by BIP32 wallets, which is a wallet standardization

deployed in many practical wallets. Interestingly, we observe that slightly modified

yet equally efficient version of BIP32 achieves higher level of bit security than the

original version.

Secondly, we consider the problem of byzantine agreement (BA) – a fundamen-

tal problem in distributed computing as well as an important building block in the

design of decentralized systems. Classically, byzantine agreement is known to be

impossible without a public key infrastructure (PKI), in presence of a corruption

threshold of < n
2
parties. Interestingly, a class of BA protocols has emerged that

overcomes this well-known impossibility by taking inspiration from the decentral-

ized model of blockchains. This setting allows a group of pseudonymous parties

x

to achieve consensus, via some proof of computation, for instance, proof of work

(PoW). Taking inspiration from the above mentioned computational model, prior

works were able to achieve BA protocols with time complexity of O(nκ2), O(κ) or

O(n). We show for the first time [41], a BA protocol, in the computational model

of verifiable delay function (VDF) that runs in expected constant time. On the

negative side, we are able to show a lower bound on the communication complexity

of such protocols. Precisely, we prove that no protocol can achieve BA in the VDF

model without any PKI assumption, in less than O(
√
n) send-to-all steps.

Thirdly, we consider the setting of cloud storage for end-users, where we aim

to design an usable yet secure encryption service that overcomes the dependence

on centralized service providers. To this end, we build our primitive: Distributed

Password-authenticated Symmetric-key Encryption [48] (DPaSE) that enables users

to generate strong encryption keys from a single password with the assistance of a

set of n servers. We use a new variant of an oblivious PRF (OPRF) as the main

building block to build DPaSE.

xi

Contents

1. Introduction 1
1.1. Blockchain Infrastructure . 3

1.2. Byzantine Agreement . 5

1.3. Cloud Infrastructure . 6

1.4. Thesis Outline and Summary of Contributions 7

2. Deterministic Wallets from Rerandomizable Signatures 12
2.1. Preliminaries . 15

2.2. Our Contributions on BIP32 Wallets 17

2.2.1. Security Model for Deterministic Wallets 19

2.2.2. Rerandomizable Signature Schemes 23

2.2.3. Security Model of Hierarchical Wallets 27

2.2.4. Concrete Security Parameters 29

2.3. Our Contributions on Post-Quantum Deterministic Wallets 29

2.3.1. Security Model of Post-Quantum Wallets 30

2.3.2. Post-Quantum Secure Rerandomizable Signature Schemes . 31

2.4. Related Work . 32

2.5. Discussion and Future Work . 35

3. Round Efficient Byzantine Agreement from VDFs 38
3.1. Our Contributions . 39

3.1.1. The VDF Model . 39

3.1.2. Byzantine Agreement in the VDF Model 42

3.1.3. A Lower Bound on Communication Complexity for BA . . . 44

3.2. Implications of Our Results and Related Work 45

3.3. Discussion and Future Work . 46

4. Distributed Password-Authenticated Symmetric-key Encryption 48
4.1. Our Contributions . 49

4.1.1. Our Primitive DPaSE and its Properties 50

4.1.2. Our DPASE Protocol . 52

4.1.3. Evaluation and Comparison 55

xii

Contents

4.2. Related Work . 57

4.3. Discussion and Future Work . 59

5. Conclusion 60

6. Bibliography 63

Appendix A. A Formal Treatment of Deterministic Wallets 79

Appendix B. Exact Security of BIP32 Wallets 115

Appendix C. Deterministic Wallets in a Quantum World 154

Appendix D. Round Efficient Byzantine Agreement from VDFs 188

Appendix E. Distributed Password-Authenticated Symmetric-key En-
cryption 222

xiii

1. Introduction

Since the upsurge of the Internet, there has been a tremendous shift in digitization

through a steady growth in e-commerce, online banking, cloud services, and the list

goes on. Each of these services demands a secure digital infrastructure comprising

of small to large scale devices, exchanging information over insecure channels.

Through the key principles of confidentiality, integrity and authenticity of data,

cryptography serves as an essential tool to make such infrastructure secure against

cyberattacks. To take a concrete example, let us consider a user Alice, who wants

to store her files with a cloud storage provider such as Dropbox. First, Alice must

provide her credentials (usually a username and password) in a login portal. Only

if the credentials are correct then she is allowed to access her Dropbox account,

containing her confidential data. The above two actions are securely attained

through the authenticity and confidentiality properties, respectively. Authenticity

can be achieved from cryptographic primitives such as digital signatures while,

encryptions guarantee confidentiality. Without authenticity, an attacker can try

to impersonate Alice and get access to her account. Alice’s data will be furthermore

stored in encrypted form in Dropbox, since an attacker could try to break in the

storage server, bypassing the login portal. Even then, due to the confidentiality of

the encrypted data, it will not be able to access Alice’s files in plain text.

The above example of Dropbox is however a centralized service provider, where

all operations are solely controlled by Dropbox. If Dropbox somehow turns mali-

cious, then it can simply access Alice’s files in plaintext, thus violating the confi-

dentiality guarantees. While this is just a mere example, most of today’s widely

used online services such as online banking and e-commerce rely on a centralized

service provider and consequently they are prone to single points of failure [13],

cyber-attacks and censorship. The above problem can be mitigated through decen-

tralization, where the control is shared among several independent entities instead

of a centralized authority. Similar to a distributed system, a decentralized sys-

tem requires numerous parties to jointly solve a common task through continuous

exchange of messages. A distributed system, however, can still be controlled by

a single authority. Current tech-giants of Google, Facebook, Microsoft are all in-

stances of distributed yet centralized systems. A decentralized system [137], on

the other hand, is built from a complex distribution of trust among several parties

1

1. Introduction

or even organizations, managing different aspects of the system. Few examples of

currently deployed decentralized systems are mixnets [34], Tor [52], BitTorrent [20]

and blockchains [29, 120]. Achieving security in a decentralized system depends

on several factors; not only conventional security guarantees of confidentiality,

integrity and authentication, but also other relevant factors such as availability,

accountability, authorization and non-repudiation. Henceforth, ensuring security

of a decentralized system often involves numerous cryptographic tools, such as ad-

vanced signature schemes [91], threshold cryptography [77, 101], zero-knowledge

proofs [27]; as well as techniques from distributed computing such as consensus

protocols.

A fundamental tool in modern cryptography to formally analyze the security

of the underyling cryptographic protocols and schemes is provable security [94].

In this technique, first, a scheme is identified with a set of well-defined security

properties (examples from above: data confidentiality, authentication) that it must

satisfy. Next task is to define a security model, capturing adversarial capabilities.

Finally, the scheme is shown to satisfy the security properties, in presence of an

attacker, in the specified model. Such a proof is usually conducted via a reduction,

where, (on a high level) it is shown that, if it is hard to break a hardness assumption

A, then it is also hard to break the scheme. In fact, tools from provable security

lets us improve the security analysis of a scheme, in several ways; considering an

alternative security model that captures a more realistic attacker or substituting

with a better hardness assumption, and so on.

Our goal in this thesis is to build provably secure infrastructures that serve the

purpose of decentralization in one way or another. Our contribution is in three

different settings of blockchain, byzantine agreement and cloud computing as listed

below:

• Firstly, we consider the setting of a decentralized payment system provided

by blockchains. An important blockchain infrastructure is the cryptocur-

rency wallets. Currently, such wallets are built in a rather ad-hoc fashion,

lacking any formal security analysis. We fill this gap by providing a compre-

hensive security analysis of blockchain wallets [6, 43, 45].

• Secondly, we consider the problem of Byzantine agreement, also referred to

as consensus: a crucial component in the design of decentralized systems.

Inspired by the setting of blockchains, we design a round-efficient byzantine

agreement protocol from Verifiable Delay Functions (VDF), without requir-

ing a Public Key Infrastructure (PKI) as a setup assumption, tolerating the

optimal threshold of n
2
corruptions [41]. As an immediate application, our

2

1. Introduction

byzantine agreement provides a decentralized solution to the generation of an

unpredictable beacon – inherently required during setup of most blockchains.

• Finally, we provide a cloud storage solution, as an alternative to centralized

providers (for example, Google Drive, OneDrive, Dropbox). To this end, we

build a distributed password-authenticated encryption scheme, that enables

secure cloud storage for end-users [48].

Before summarizing the contribution of this thesis, we first discuss each of the

settings in the following Sections 1.1 to 1.3.

1.1. Blockchain Infrastructure

Cryptocurrencies and its underlying blockchain technology offer a solution to over-

come the centralization of traditional banking systems. It provides a decentralized

platform without the requirement of a trusted third party, that thwarts single

points of failures, thus resisting cyberattacks and censorship. Although more than

a decade has passed since the first cryptocurrency Bitcoin was proposed [120],

until today, the cryptocurrency ecosystem suffer from numerous issues, in terms

of security. In fact, the infrastructure surrounding blockchain is designed in a

rather ad-hoc way. In particular, each cryptocurrency user needs to maintain a

digital wallet to store its coins (keys) and interact with the blockchain for making

payments. Such wallets are often mishandled, and hence suffer from countless at-

tacks, resulting in users losing their money [38]. Below, we give a brief overview

of the key blockchain principles followed by highlighting the major challenges in

designing secure blockchain infrastructure.

Blockchain Principles. At the core of blockchain is a peer-to-peer network of

anonymous parties, often referred to as miners, that jointly run a consensus pro-

tocol to agree on a globally consistent append-only record of financial data. This

record is nothing but a set of transactions that are collected into consecutive blocks

to form a blockchain. Each transaction corresponds to a monetary transfer between

two users. Miners are responsible for collecting sets of incoming transactions, check

their validity according to a well-specified set of rules before including them into a

block. Next, to propose this newly formed block, they must solve a puzzle (com-

putational puzzle in case of Proof of Work (PoW)). Once a solution is obtained,

the block is send around to other miners. If only other miners are convinced, then

this block is accepted as the next block. This process is iterated to form a chain

of blocks. Here, proof of work acts as a voting mechanism, representing one vote

3

1. Introduction

per computation. This prevents an adversary from flooding the network with fake

votes, hence obtaining a dishonest majority of votes. Such an attack is known as

the Sybil attack [56]. The security guarantees [70, 96] underlying a blockchain con-

sensus relies on an honest majority assumption, which means that the majority of

the resources in the system (computational power in case of PoW) belongs to hon-

est parties. Additionally, it requires to assume the existence of an unpredictable

beacon during setup of the protocol, typically referred to as the genesis block.

Indeed, Bitcoin’s genesis block, contains text from The Times 03/Jan/2009 issue

[144], which is not truly unpredictable but at most a heuristic. While the above

mechanism of genesis block creation is sometimes problematic, there exist a more

decentralized solution to genesis block creation as we will discuss in Section 1.2.

Cryptocurrency users are able to send or receive payments by interacting with

the blockchain. In particular, they need a device to store the relevant information

for sending/receiving coins. This device is usually referred to as a blockchain

wallet. Below we discuss the core payment mechanisms in a blockchain through

the use of wallets.

Blockchain Wallets. Let us consider a user Alice who wants to make a payment

to Bob over the blockchain. In order to proceed with this payment, Alice first

needs to know Bob’s address which is represented by Bob’s public key pkB. Next,

Alice prepares a transaction txAB that roughly says: “Alice pays v coins to Bob”.

txAB must be authenticated by Alice, so that it is accepted as a valid transaction.

For authentication, Alice digitally signs the transaction with her secret key skA,

via a digital signature scheme. As is evident from this example, both Alice and

Bob requires a device to store a pair of keys for spending (secret key) and receiving

(public key) coins. The first choice is to store the key pair in an online wallet app,

running on a smartphone. Since such a device is always connected to the internet,

an attacker could get hold of her keys and steal all the money attached to Alice’s

secret key. Henceforth, a wallet containing secret key is an attractive target for

hackers [38]. For safe-guarding the secret key, it is usually recommended to follow

a hot wallet/cold wallet approach. Here, a hot wallet is a device, connected to the

Internet; for instance, it can be the software application mentioned above, storing

the public key. On the other hand, the cold wallet is mostly an offline device,

such as a USB stick or even a piece of paper that stores the secret key. Keeping

the secret key in an offline storage while coming online only during a payment

largely reduces the risks of attacks. However, since the receiver’s addresses are

public on the blockchain, it is easily traceable for an attacker how much money

is sent to a particular address. This makes the wallets with larger amounts of

money an attractive target for hackers, who can attempt to steal the money during

4

1. Introduction

the online period of the cold wallet. This problem is addressed by using freshly

generated keys for every payment, via the process of deterministic key derivation

as proposed in the Bitcoin Improvement Proposal 32 (BIP32) [116]. Although this

standard is currently deployed in many wallets such Trezor and Ledger [106, 136],

surprisingly there has been no formal security analysis that specifies the security

guarantees that such a standard comes with. In this thesis, we make progress in

filling this gap. Our contribution is summarized in Section 1.4 and discussed in

details in Chapter 2.

1.2. Byzantine Agreement

Byzantine Agreement (BA) is a fundamental problem in distributed computing,

where a set of n parties run a distributed protocol to agree on a value. Tradition-

ally, most existing protocols for BA assume a setting in which the parties’ identities

are fixed and known at the beginning of the protocol. In the fixed identity setting,

two types of protocols are studied: the first type requires setup, e.g., a Public

Key Infrastructure (PKI) or some form of correlated randomness. These protocols

typically tolerate the (optimal) corruption threshold of t < n
2
. The second type

does not require such assumptions but can tolerate only t < n
3
corruptions.

More recently, a third type of BA protocol has emerged that takes inspiration

from the decentralized setting of blockchain consensus [10, 95]. Precisely, it does

not require parties’ identities to be known at the beginning of the protocol but still

achieves the optimal corruption threshold of n
2
. Moreover, these protocols do not

assume the conventional setup assumption of a PKI. As a first hurdle, if identities

are not fixed then without further measures, every party could pose as many

parties and easily obtain a dishonest majority; this is commonly referred to as a

sybil attack [56]. To avoid such attacks, parties must instead invest some expensive

resources, such as computation or money, to participate in this type of protocol.

A prominent example is the Proof-of-Work model (PoW) initially introduced by

Bitcoin, where parties have limited access to a computational resource which they

are forced to continuously expend in order to participate in the protocol. In the

PoW model, it is possible to build a weaker variant of a PKI, namely a Graded

PKI, by assigning ‘ranks’ to keys, such that honest parties do not disagree by

much. Such a graded PKI establishes a pseudonymous identity infrastructure

and has several applications such as multi-party computation in [10], byzantine

agreement in [10, 72], leader election and genesis block creation in [72]. The round

complexity of existing graded PKI is however O(nκ2) or O(κ) (respectively in [10,

72]) leading to the same complexity for BA. In this thesis, we fill the gap of round-

5

1. Introduction

efficient BA by achieving (expected) constant round complexity. As an immediate

application, setup-free BA enables a decentralized solution to create the genesis

block of a blockchain [144]. Our contribution on round-efficient BA is summarized

in Section 1.4 and detailed in Chapter 3.

1.3. Cloud Infrastructure

Cloud data storage for end-users is as crucial as for enterprises. Today, users can

upload their data with centralized Cloud storage providers such as Google Drive,

Dropbox, OneDrive etc. However, data privacy can be guaranteed only if the

service provider is not compromised. In the following, we discuss the possibilities

for the users’ cloud data storage without entrusting a centralized provider. As

a first attempt, users could encrypt their data on their own and then store the

encrypted data with a service provider. The challenge here is to find a usable

solution such that users are able to generate strong keys without much trouble.

One of the most well-explored solution is to derive strong keys on the fly from

a human-memorizable password. We look into password-based solutions in a bit

more details below.

Password-based Approach. Let us first present a naive solution, such that a

key is derived from a small password and thereafter used to encrypt files. An

attacker could access the encrypted files at the cloud storage and simultaneously

attempt to guess the password. Since the password is usually a short string with

low entropy, the attacker could mount an attack offline, referred to as an offline

dictionary attack. With the correct password guess, the attacker can decrypt

all of the files, rendering the scheme insecure. As can be observed, storing the

ciphertexts in a single location enables an attacker to successfully mount an at-

tack. There has been a long line of work in the client-server setting, that ad-

dresses this problem by distributing the server storage/computation among a set

of servers. This helps in mitigating single points of failures at the server end. One

of the worth-noting schemes is Password-protected Secret Sharing, also termed as

Password-Authenticated Secret Sharing (PASS) [14, 86, 87, 88].

On a high level, PASS is a protocol run between a client and n servers. In

PASS, a password from the client triggers generation of a secret key, secret shared

among the n servers. The password, on the other hand, is only known to the client

and kept secret from the servers. Such a PASS scheme can then be augmented

with a protocol for encrypting files via threshold encryption. As a result client’s

encrypted files will be stored in a distributed manner among the servers, such that

6

1. Introduction

t+1 servers are required to recover the decrypted files. At this point, the previous

offline attack would not work since the adversary needs to corrupt t + 1 out of n

servers to recover the data, after a successful dictionary attack. However, PASS

schemes suffer from several drawbacks when used for data encryption. Firstly, a

PASS scheme does not provide password authentication. Precisely, a client can

mistype a password and encrypt her file with password pw∗. Later, she tries to

decrypt the same file with password pw, because she is not aware of her mistake

in typing from the previous time. This leads to file locking that the client can not

recover anymore. Secondly, if the same PASS key is used to encrypt all files, then

a compromise of the encryption key leads to decryption of all files. Generating

different PASS keys based on different passwords is a cumbersome solution, since

now the user needs to remember many passwords. As a result, we clearly need a

usable but secure solution for user data storage. Our contribution is summarized

in Section 1.4 and detailed in Chapter 4.

1.4. Thesis Outline and Summary of Contributions

Below, we summarize the overall contribution of this thesis. Chapter 2 covers

the security analysis on the infrastructure surrounding blockchains aka blockchain

wallets. In Chapter 3, we discuss our design of round-efficient Byzantine agreement

in the resource-contrained model. In Chapter 4, we present a distributed cloud

storage service for end-users, as an alternative to centralized providers. Finally,

we conclude in Chapter 5.

Chapter 2. In this chapter, we summarize our contributions towards provably

secure blockchain infrastructure. As a first contribution, we analyze the BIP32

standardization [143] of hierarchical deterministic wallets as used in practice and

ask the following question:

What security guarantees are obtained from BIP32 wallets as is?

To this end, we formally define the security model for deterministic wallets in

the hot wallet/cold wallet setting. Typically, a deterministic wallet has a pair of

master keys – a master public key stored in the hot wallet, while the master secret

key is kept in the cold wallet. Both wallets share a common state, referred to as

the chaincode. The key idea is to derive session keys deterministically from the

respective master keys without any interaction between the two wallets. Our model

captures adversarial capabilities through the security games of wallet unlinkability

7

1. Introduction

and wallet unforgeability. In short, a deterministic wallet is unlinkable, if a session

public key generated from the hot wallet is indistinguishable from a random public

key, given that the hot/cold wallets are secure. Recall that, in a standard game of

Existential Unforgeability Under Chosen Message Attack (UFCMA), an adversary

sees a challenge public key and can ask signatures signed under the corresponding

secret key. On the other hand, in the wallet unforgeability game, an adversary is

given access to a master public key, and any (polynomial) number of signatures

signed under session keys. Although the unforgeability game looks similar to

the standard game of UFCMA, proving unforgeability in this setting is far from

straightforward. This is because here the game needs to simulate signatures under

any (polynomial) number of related session secret key, without knowing any of

these secret keys.

We provide two provably secure variants of deterministic wallets in our model.

To this end, we follow a modular approach and provide a generic construction of

deterministic wallets from signature scheme with rerandomizable keys. Through

our modular analysis, we are able to show that wallet unforgeability holds as long

as the underlying rerandomizable signature scheme is unforgeable. To instanti-

ate our wallet, we consider the signature schemes of Schnorr [131], BLS [23] and

ECDSA [91]. It was already known that Schnorr satisfies the rerandomizability

property of signature schemes [68]. We show it for the first time for ECDSA and

BLS. Particularly, the security proof for ECDSA tackles many subtle challenges

in the security analysis. We consider both additive and multiplicative rerandom-

ization of keys for ECDSA and observe that ECDSA with multiplicative reran-

domization achieves higher level of security than the additive variant. To capture

the formalization of BIP32 as is, we extend our model of deterministic wallets to

the hierarchical setting of key derivation, where we are able to support secret key

leakage of hardened wallets. We show that unforgeability of the hierarchical de-

terministic wallet incurs security loss in terms of the number of secret key leaked

and such loss is inherent. Since BIP32 is built from ECDSA [143], our results

on additive vs multiplicatively rerandomized ECDSA also have direct implications

for BIP32. Concretely, we show that BIP32 with multiplicatively rerandomized

ECDSA achieves higher level of security than the additive variant, considering

128 bit security for ECDSA. The detailed summary of our results can be found

in Section 2.2.

As a second contribution, we explore post-quantum security of deterministic

wallets and ask the following question:

Can we build post-quantum secure deterministic wallets?

8

1. Introduction

On a high level, in the post-quantum setting, an adversary has access to a quantum

computer while the wallet scheme is implemented in a classical machine. Due to

the results of Shor [132], it is well-known that the wallet schemes discussed above

are rendered insecure in the post-quantum world. In particular, for a classical

signature scheme like ECDSA, a quantum attacker could extract the master secret

key from the master public key, derive any session secret keys and forge signa-

tures. This motivates us to design deterministic wallets that are post-quantum

secure. To this end, we extend our model to the post-quantum setting, where the

adversary has access to a quantum random oracle. We follow our modular ap-

proach for the generic wallet construction from (post-quantum) signature schemes

with rerandomizable public keys. We instantiate the later with lattice-based Fiat-

Shamir Signatures [97]. In particular, we show the exact bit security of our wallet

once instantiated with qTESLA, which is one of the NIST second round finalists.

Our contribution is detailed in Section 2.3.

Chapter 3. Motivated by the decentralized setting of blockchain consensus, we

consider the problem of byzantine agreement without a PKI, with the optimal

corruption tolerance of n
2
parties. We ask the following question in the above

setting:

Can we a build a round-efficient BA from scratch?

We answer the above question affirmatively by designing an (expected) constant

round BA protocol. To this end, we refine the Proof of Work (PoW) model and

consider sequential computational power of parties via evaluation of a Verifiable

Delay Function (VDF). In other words, to evaluate a VDF proof, certain number

of sequential steps must be computed. The adversarial capabilities in the VDF

model subtly differ from the PoW model. In PoW, it is possible to speedup

computation of a single proof through increased parallelization. While in the

VDF model, a single proof cannot be sped up, no matter how much parallelizable

computational power an adversary may possess. Parallelization, however, allows to

compute multiple proofs parallely. Additionally, the adversary might have faster

computational speed than an honest party, such that it computes each sequential

step faster. Although note that, increased speed does not affect the number of

sequential steps to be computed to finish a proof. In our model, we abstract one

VDF evaluation as one call to a VDF oracle. The capabilities of an adversary

in the VDF model, are captured through the sequentiality property of the VDF

oracle. In short, the sequentiality property ensures that the adversary, controlling

q parties should not be able to produce more than a fixed number of VDF outputs

9

1. Introduction

within a time duration of δ. Such oracle abstraction of the VDF model allows

us to modularly build and analyse our protocols. We explain our VDF oracle in

details in Section 3.1.1.

We follow the approach from [10] and build a constant round Graded PKI

(GPKI). To achieve constant round, we firstly replace a PoW with a VDF com-

putation. Secondly, we replace n-graded ranking in [10] with simply 2 grades.

Once the GPKI is setup, we design a graded consensus protocol and a VDF-based

leader election protocol following approaches from [119] and [1, 2] respectively. Fi-

nally, we adapt the (expected) constant round BA protocol from [93] to run with

a GPKI, instead of a full PKI. We use our graded consensus and leader election

protocols as building blocks in the BA protocol.

Additionally, we show a lower bound on the communication complexity of BA

without a PKI, in the same setting, where parties have access to a VDF oracle. For

our analysis, we consider the multicast model of communication, where parties send

the same message to everyone in the network. Precisely, a multicast complexity of

θ corresponds to a classical communication (with bilateral channels) complexity

of nθ. We show that a minimum of O(
√
n) multicast complexity is required to

achieve BA.

Chapter 4. This chapter focuses on the design of a secure cloud infrastructure

for end-users. Currently, users trust centralized service providers such as Google

Drive, OneDrive, Dropbox with the privacy of their confidential documents. If a

service provider turns malicious, then the user’s data privacy is violated. In this

regard, we ask the following question:

Can we design a usable but secure cloud storage service

for end-users without entrusting centralized providers?

To this end, we introduce our primitive Distributed Password-authenticated

Symmetric-key Encryption (DPaSE). DPaSE is a key management system that

enables creation of strong encryption keys from a single password as well as serves

as an encryption service. As a result, DPaSE comes with a set of security prop-

erties relating to both passwords and encryption: namely, protection against of-

fline/online attacks on passwords, partial obliviousness, no reuse of (encryption)

keys and finally correct and authenticated encryption.

Our DPaSE construction is run as a protocol between a client and a set of

servers. The high level idea of our DPaSE protocol follows the usual paradigm of

password-based protocols [16, 90], where a strong cryptographic key material is

generated from a password from a special PRF evaluation, namely an Oblivious

10

1. Introduction

PRF (OPRF). An OPRF allows to hide some of the inputs (in our case, the

password), from the parties evaluating the PRF. First, to create an account, a

user provides a username uid and a password pw . A pair of keys is generated

as (upk , usk)← OPRF(uid , pw , K), where the OPRF key K is split into n shares

among the set of n servers. The key pair is sent to the client as output, whereas the

public key is sent back to the servers and is recorded as (uid , upk). The password

remains hidden from the servers during the OPRF evaluation. To encrypt or

decrypt a file, the user first provides her combination of username and password

(uid , pw ′). The previous OPRF is re-evaluated exactly as before (upk ′, usk ′) ←
OPRF(uid , pw ′) and password correctness is verified against upk == upk ′ at the

server end. With a successful password authentication, the client can proceed with

an encryption or decryption of her files with a follow-up OPRF evaluation. The

second OPRF thereby “reuses” the previously entered uid , pw ′ to ensure that the

actual encryption keys are also bound to the user’ identity and correct password.

This prevents users from accidentally encrypting data under a wrong password.

To ensure obliviousness, the object for which the key is derived is hidden in the

evaluation.

As mentioned above, we require a OPRF for our DPaSE construction. Our

OPRF must satisfy the properties of partial obliviousness, distribution and extend-

ability to enable DPaSE security. To this end, we introduce a new oblivious PRF

variant, namely Extendable Distributed Partially-Oblivious PRF (edpOPRF), which

is of independent interest. Protection against offline/online attacks in DPaSE are

achieved due to the properties of distribution and partially obliviousness in epdO-

PRF. Lastly, the extendability property allows to run two consecutive edpOPRF

evaluations on correlated oblivious inputs. More concretely, when the user pro-

vides the correct password, then correct encryption is guaranteed by running the

two consecutive edpOPRF evaluations with the same correct password as input.

We use the universal composability framework to prove security of edpOPRF

and in turn DPaSE. To this end, we provide UC functionalities for both of these

primitives. Finally, we provide a proof-of-concept implementation of our DPaSE

construction.

11

2. Deterministic Wallets from
Rerandomizable Signatures

Money mechanics in a Blockchain are typically carried out via transactions. Let us

recall the same through a concrete example. Say Alice wants to pay Bob v coins;

this is usually done by transferring v coins from Alice’s address, represented by her

public key pkA to Bob’s address pkB. To this end, Alice creates a transaction txAB
that roughly says “Transfer v coins from pkA to pkB”. To ensure the authenticity of

such a transfer, txAB is accompanied by a valid signature of H (txAB). Since only the

owner of the corresponding skA – here Alice – can produce a valid signature, control

over skA implies full control over the funds assigned to pkA. This makes secret

keys a highly attractive target for attackers. Unsurprisingly, there are countless

examples of spectacular hacks where the attacker was able to steal millions of

dollars by breaking into a system and extracting the secret key [133]. According

to the research firm Comparitech [38], the amount of cryptocurrencies stolen till

date is more than 33 Billions worth of Dollars.

Hot/Cold setting. One reason for many of these attacks is that the secret key,

controlling large amount of funds is often stored in an online wallet, referred to as

the hot wallet. A hot wallet can be thought of as a software application, running

on the user’s smart phone or computer. On the positive side, the hot wallet

makes it very convenient for the user to send or receive coins. However, due to

the constant connection to the Internet, it is prone to attackers, that can exploit

software vulnerabilities via malware or phishing. It is thus recommended to only

keep a small amount of fund in the hot wallet, while, large amount of funds must

be moved to an offline storage, referred to as the cold wallet. A straight-forward

solution to construct a hot/cold wallet is to generate a key pair – a secret key and

a public key; store the public key in the hot wallet, and the secret key in the cold

wallet. Such a cold wallet may be realized in practice, via an USB device or even

a paper wallet. With this storage separation, when Alice wants to receive coins

from another user, Alice simply needs to publish her address, represented by her

public key. Hence, only the hot wallet of Alice is involved during this process.

Only when Alice wants to pay someone or wants to transfer coins to a different

12

2. Deterministic Wallets from Rerandomizable Signatures

address, the cold wallet needs to come online, for a short period of time to sign

the transaction.

Offline storage of the secret key in a cold wallet, majorly reduces the risks of

online attacks. However, this solution suffers from an immediate drawback. Since

transactions are published on the blockchain as public information, an attacker

could easily trace how much coins in total, were sent to a specific address. Thus,

addresses holding large amount of funds can be an attractive target for attackers.

To mitigate this problem, it is usually recommended to use each secret key only

once for signing a new transaction. This could be addressed by maintaining a set

of l randomly selected key pairs {(pk1, sk1), (pk2, sk2), . . . , (pkl, skl)} in respective

wallets, i.e., store the set of public keys in the hot wallet, the set of secret keys in

the cold wallet and use each secret key only once for signing a new transaction.

Although this solution circumvents the linkability problem of public keys, it sig-

nificantly blows up the key storage in each wallet, which grows linearly in terms

of the number of keys. Looking at this problem a bit more closely, we notice that,

we do not need truly random key pairs. It is sufficient to generate key pairs in

such a way, that they look random on the blockchain. This is possible through a

deterministic key derivation procedure which we explain next.

Deterministic Wallets. The solution to the key storage problem as mentioned

above is so-called Deterministic Wallets. Here, the idea is to derive many de-

terministic (one-time) session keys from a single pair of master keys, so that the

respective wallets need to store only the master keys. More precisely, such a wallet

consists of a master secret key msk together with a matching master public key

mpk and a deterministic key derivation procedure. At setup, the master public key

is given to the hot wallet, whereas the master secret key is kept on the cold wallet.

After setup, the hot and cold wallet can independently generate matching session

keys using their respective key derivation procedures and master keys. In more

details, the hot wallet runs the public key derivation procedure on an identifier ID

and master public key mpk as inputs to produce session public key pkID . While,

the cold wallet correspondingly runs the secret key derivation algorithm on master

secret key msk and ID as inputs to output the corresponding session secret key

skID .

Informally, a deterministic wallet should offer two main security guarantees.

First, an unforgeability property, which ensures that as long as the cold wallet is

not compromised, signatures to authenticate new transactions can not be forged,

and thus funds are safe. Second, an unlinkability property, which guarantees that

public keys generated from the same master public key mpk are computationally

indistinguishable from freshly generated public keys. Despite the widespread use

13

2. Deterministic Wallets from Rerandomizable Signatures

of deterministic wallets (e.g., they are used in most hardware wallets such as ledger

or TREZOR, and by common software wallets such as Jaxx), only limited formal

security analysis of these schemes has been provided. In this thesis, we make

progress to close this gap.

Standardized Wallets in Practice: BIP32. The BIP32 specification [143] stan-

dardizes the construction of a hierarchical deterministic wallet, as used by several

cryptocurrencies deployed in the market. Let us look into a simpler variant of

BIP32 (without the hierarchical component) to understand its core features. Since

BIP32 is originally built on ECDSA, we take an ECDSA-based construction of de-

terministic wallets. Let G denote the base point of an ECDSA elliptic curve. The

deterministic ECDSA wallet uses an ECDSA key tuple as its master secret/public

key pair, denoted by (msk = x,mpk = x · G). The master secret key msk is

stored on the cold wallet, while the corresponding master public key mpk is kept

on the hot wallet. In addition, the hot wallet and the cold wallet both keep a

common secret string ch which is called the “chaincode”. To derive a new ses-

sion public key with identifier ID , the hot wallet runs the deterministic public key

derivation algorithm on inputs mpk , ID and chaincode ch. Precisely, it computes

w ← H (ch, ID) , pkID ← mpk+w ·G. While, the cold wallet runs the deterministic

secret key derivation algorithm on inputs msk , ID and ch, computing the corre-

sponding session secret key as w ← H (ch, ID) , skID ← msk + w. As argued, e.g.,

in [115], this construction satisfies both unlinkability and unforgeability as long as

the chaincode and all derived secret keys remain hidden from the adversary.

Unfortunately, hot wallet breaches happen frequently, and hence the assumption

that the chaincode stays secret is rather unrealistic. When ch is revealed, however,

the unlinkability property is trivially broken since the adversary can derive from

mpk and ch the corresponding session public key pkID for any ID of its choice. Even

worse, a hot wallet security breach may in certain cases break the unforgeability

property of the wallet scheme, through session secret key leakage [115] or a related

key attack. As we will discuss in Section 2.2.1, our model formally captures the

above-mentioned scenarios of an attacker in the hot/cold wallet setting.

The simpler construction of deterministic wallet as described above is extended

to the hierarchical variant to capture the exact BIP32 specification. A hierarchical

deterministic wallet can be thought of as a tree, where every node has a pair

of public/secret keys. The key pair of each node has two roles: firstly they can

sign/verify messages; secondly, they can derive key pairs for child nodes. In such

a hierarchical setting, hot wallet breach of one or more of the wallets may break

the unlinkability property of some wallets but must not break unforgeabilty of

any of the wallets. It is also possible to consider secret key leakage of a wallet

14

2. Deterministic Wallets from Rerandomizable Signatures

in this model through a slightly different key derivation termed as hardened key

derivation in [143]. We summarize our formal security analysis of BIP32 as is in

the hot/cold wallet setting in Section 2.2.

Turning to Post-Quantum Security. Although deterministic wallets such as

BIP32 offer an elegant solution to increase the security of users’ funds, they are

particularly susceptible to attacks by quantum adversaries. More concretely, in a

deterministic wallet, all session keys are related, and in particular efficiently com-

putable from (msk ,mpk). Hence, if the adversary manages to learn mpk then he

can recover the corresponding master secret keymsk and thereby recover all session

secret keys. Hence, all the money that was ever transferred to the cold wallet is at

stake. This motivates us to make deterministic wallets post-quantum secure. Pre-

cisely, we design post-quantum secure deterministic wallets from (post-quantum

secure) signature schemes with rerandomizable public keys. For the former, we

need to carefully modify our model in the hot/cold setting to consider quantum

attackers. While for the later we need to slightly modify the original definition of

rerandomizable schemes and consequently show constructions from lattice-based

signature schemes. We summarize our results on post-quantum secure wallets

in section 2.3.

2.1. Preliminaries

Notation. We denote as s
$← H the uniform sampling of the variable s from the

setH. If ℓ is an integer, then [ℓ] is the set {1, . . . , ℓ}. We use uppercase letters A,B
to denote algorithms. Unless otherwise stated, all our algorithms are probabilistic

and we write y
$← A (x) to denote that A returns output y when run on input x.

We write y ← A (x, ρ) to denote that A returns output y when run on input x and

randomness ρ. Note that in this way, A becomes a deterministic algorithm. We

use the notation A (x) to denote the set of all possible outputs of (probabilistic)

algorithm A on input x.

We write AB to denote that A has oracle access to B during its execution. For

ease of notation, we generally assume that boolean variables are initialized to false,

integers are set initially to 0, lists are initialized to ∅, and undefined entries of lists

are initialized to ⊥. To further simplify our definitions and notation, we assume

that public parameters par have been securely generated and define the scheme

or algebraic structure in context. We denote κ as the security parameter. For bit

strings a, b ∈ {0, 1}∗ if we write “a = (b, ·)” we check if the prefix of a is equal to

b; likewise with “a ̸= (b, ·)” we check if the prefix of a is different from b.

15

2. Deterministic Wallets from Rerandomizable Signatures

Background on Signature schemes. A signature scheme Sig is given by a triple

of algorithms Sig = (Sig.Gen, Sig.Sign, Sig.Verify). Sig.Gen is a randomized key

generation algorithm that takes security parameter par as input and outputs a

pair of keys - a secret key sk and a public key pk. Sig.Sign is a randomized

signing algorithm that takes the secret key sk, a message m as inputs and outputs

a signature σ. Finally, the deterministic verification algorithm Sig.Verify takes

message m, signature σ and public key pk as inputs and outputs 1 for a valid

signature, and 0 otherwise.

We require correctness : For all (sk, pk) ∈ Sig.Gen (par), and all m ∈ {0, 1}∗, we
have that

Pr
σ

$←Sig.Sign(sk,m)

[Sig.Verify (pk, σ,m) = 1] = 1.

For our security analysis, we adopt the notion of signature schemes with reran-

domizable keys from Fleischhacker et al. [68]. A signature scheme with reran-

domizable keys RSig extends a normal signature scheme with two additional algo-

rithms of key derivation. Precisely, it contains the following algorithms (RSig.Gen,

RSig.RandSK,RSig.RandPK,RSig.Sign,RSig.Verify), where (RSig.Gen,RSig.Sign,

RSig.Verify) works similar to the standard algorithms of (Sig.Gen,

Sig.Sign, Sig.Verify) in a signature scheme. Moreover, we assume that the pub-

lic parameters par define a randomness space χ := χ(par). The randomized secret

key derivation algorithm RandSK takes a secret key sk and a randomness ρ ∈ χ

as inputs and outputs a secret key sk′. The randomized public key derivation

algorithm takes a public key pk and ρ as inputs and outputs a corresponding pub-

lic key pk′. We make the convention that for the empty string ϵ, we have that

RSig.RandPK(pk, ϵ) = pk and RSig.RandSK(sk, ϵ) = sk. We further require:

1. (Perfect) rerandomizability of keys: For all (sk, pk) ∈ RSig.Gen (par) and

ρ
$← χ, the distributions of (sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RSig.RandPK(pk, ρ),RSig.RandSK(sk, ρ)) ,

(sk′′, pk′′) $← RSig.Gen (par) .

2. Correctness under rerandomized keys: For all (sk, pk) ∈ RSig.Gen (par), for

all ρ ∈ χ, and for allm ∈ {0, 1}∗, the rerandomized keys sk′ ← RSig.RandSK(sk,

ρ) and pk′ ← RSig.RandSK(pk, ρ) satisfy:

Pr
σ

$←RSig.Sign(sk′,m)

[RSig.Verify (pk′, σ,m) = 1] = 1.

16

2. Deterministic Wallets from Rerandomizable Signatures

main uf -cmaSig

00 (sk, pk)
$← Sig.Gen (par)

01 (m∗, σ∗) $← ASign (pk)
02 If m∗ ∈ Sigs : bad← true
03 b′ ← Sig.Verify (m∗, pk∗, σ∗)
04 Return b′ ∧ ¬bad

Oracle Sign (m)

05 σ
$← Sig.Sign (sk,m)

06 Sigs ← Sigs ∪ {m}
07 Return σ

Figure 2.1.: Security game uf -cmaSig with adversary A.

Security of Signature Schemes. We will use the standard security notion of

UFCMA. We formalize this notion for a signature scheme Sig via the game

uf -cmaSig (cf. Figure 2.1). In this game, the challenger begins by sampling

(sk, pk) as (sk, pk)
$← Gen(par). The adversary is then given the public key pk and

can adaptively sign messages of its choice under the corresponding secret key via

an oracle Sign. Its goal is to forge a signature on a fresh message m∗, i.e., one that
was not previously queried to the oracle Sign.

For a signature scheme with rerandomizable keys RSig, we also introduce a

new security notion called Unforgeability under Honestly Rerandomizable Keys

(UFCMA-HRK) that is formalized via game uf -cma-hrkRSig (cf. Figure 2.2). This

notion constitutes a weaker form of the notion of Unforgeability Under Rerandom-

izable Keys (UFCMA-RK) proposed in [68]. In the latter notion of UFCMA-RK,

the adversary is able to query the signing oracle not only for signatures corre-

sponding to the public key pk that it obtains in the unforgeability experiment, but

also for signatures that correspond to arbitrary rerandomizations of pk. Similarly,

the winning condition is also relaxed in this notion by allowing the adversary to

return a forgery under an (arbitrarily) rerandomized key (but still on a fresh mes-

sage m∗). The main difference between the security notion of UFCMA-RK [68]

and our new notion of UFCMA-HRK is that the adversary is restricted to honest

rerandomizations of pk, i.e., randomizations where the randomness is chosen by

the challenger uniformly at random from χ. We model this via an additional oracle

Rand in the security game.

2.2. Our Contributions on BIP32 Wallets

Our first contribution is to formally analyze the security of hierarchical determin-

istic wallets. We took a two-step modular approach that helped us to keep the

model clean and to capture every details of the BIP32 standard. To this end, we

17

2. Deterministic Wallets from Rerandomizable Signatures

main uf -cma-hrkRSig

00 RList← {ϵ}
01 (sk, pk)

$← RSig.Gen (par)

02 (m∗, σ∗, ρ∗) $← ARand,RSign (pk)
03 If m∗ ∈ Sigs : bad← true
04 If ρ∗ ̸∈ RList : bad← true
05 pk∗ ← RSig.RandPK(pk, ρ∗)
06 b← RSig.Verify (pk∗, σ∗,m∗)
07 Return b ∧ ¬bad

Oracle RSign (m, ρ)
08 If ρ /∈ RList : Return ⊥
09 sk′ ← RSig.RandSK(sk, ρ)

10 σ
$← RSig.Sign (m, sk′)

11 Sigs ← Sigs ∪ {m}
12 Return σ

Oracle Rand
13 ρ

$← χ
14 RList← RList ∪ {ρ}
15 Return ρ

Figure 2.2.: Security game uf -cma-hrkRSig with adversary A.

first focused on the simpler notion of deterministic wallets, without the hierarchi-

cal key derivation. Once we determined the core model and security properties,

we extended our analysis to accommodate the hierarchical setting. Our compre-

hensive analysis lets us present concrete bit security of the BIP32 construction

as used in practice. Although the BIP32 standard uses additive key derivation,

we have considered both multiplicative and additive key derivation in our security

analysis. Surprisingly, we found out that BIP32 with multiplicative key derivation

has higher level of security than the one with additive key derivation. The results

of our security analysis has been disseminated in the following two publications:

[45] P. Das, S. Faust, and J. Loss. “A Formal Treatment of Deterministic Wallets”. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS 2019, London, UK, November 11-15, 2019. 2019, pp. 651–

668. doi: 10.1145/3319535.3354236. url: https://doi.org/10.1145/

3319535.3354236.

[43] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. “The Exact Security of BIP32

Wallets”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Com-

munication Security, Virtual Event, Republic of Korea, November 15 - 19, 2021.

2021, pp. 1020–1042. doi: 10.1145/3460120.3484807. url: https://doi.org/

10.1145/3460120.3484807.

In the following Sections 2.2.1 to 2.2.4, we outline our main contributions. Sec-

tion 2.2.1 summarizes the security model of deterministic wallets in the hot/cold

wallet setting, outlining the security properties of wallet unlinkability and wallet

18

https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807

2. Deterministic Wallets from Rerandomizable Signatures

unforgeability. The main results of our security analysis on ECDSA-based reran-

domizable signatures – main building block of our wallet construction, is captured

in Section 2.2.2. Next, we discuss how our model is extended to accommodate the

hierarchical feature of deterministic wallets in Section 2.2.3. Finally, we provide

concrete level of bit security achieved by the BIP32 wallet construction for additive

as well as multiplicative key derivation in Section 2.2.4.

Hot Wallet

Cold Wallet

User Side

User Side

PKDer Verify

SKDer Sign

pkID

(mpk, ID, St)

(σ,m)

(0/1)

(msk, ID, St)

skID

m

(pkID, σ,m)

St

Figure 2.3.: (1) The cold wallet signs a message m with its session secret key skID
as σ ← SWal.Sign(skID ,m). (2) Anyone can later verify the validity
of a signature σ on message m as (0/1)← SWal.Verify(pkID , σ,m).

2.2.1. Security Model for Deterministic Wallets

Our security model for deterministic wallets, captures the security properties that

a hot/cold wallet must satisfy. In particular, we incorporate into our model: hot

wallet security breaches, access to derived public keys and corresponding signatures

that may appear on the blockchain. Let us first define a wallet scheme SWal as the

following tuple of algorithms: (SWal.MGen, SWal.SKDer, SWal.PKDer, SWal.Sign,

SWal.Verify), where SWal.MGen denotes the master key generation algorithm.

Next, the pair of algorithms (SWal.SKDer, SWal.PKDer) are used for deriving ses-

sion secret/public keys respectively. Lastly, (SWal.Sign, SWal.Verify) represent the

19

2. Deterministic Wallets from Rerandomizable Signatures

signing and verification algorithms of the underlying signature scheme. As already

discussed previously, the master key generation algorithm SWal.MGen is run dur-

ing setup, resulting in a pair of master keys and an initial state, referred to as

the chaincode ch. The master secret key msk is given to the cold wallet, the mas-

ter public key mpk to the hot wallet, while the chaincode ch is shared between

both wallets. The hot wallet can now run the public key derivation algorithm

SWal.PKDer on inputs mpk , ch and identifier ID to generate session public key

pkID . While the cold wallet can generate the corresponding session secret key skID
by running the secret key derivation algorithm SWal.SKDer on inputs mpk , ch and

ID . When the user wants to sign a message m, the cold wallet runs the signing

algorithm SWal.Sign on input m and session secret key skID to generate a signa-

ture σ. Later, σ can be verified w.r.t pkID once both are publicly available on the

blockchain.

The security of SWal is defined via two game-based security notions that we

call wallet unlinkability and wallet unforgeability. Our notion of unlinkability can

informally be described as a form of forward security – similar in spirit to key

exchange models for analyzing TLS. It guarantees that all money that was sent

to session public keys pkID ← SWal.PKDer (mpk , ch, ID) derived prior to the hot

wallet breach, can not be linked to mpk . Notably, our unlinkability property

even holds against an adversary that sees a polynomial number of session public

keys generated from mpk and corresponding signatures for adversarially chosen

messages. On the other hand, our unforgeability notion considers a natural threat

model where funds on the cold wallet remain secure, even if the hot wallet is fully

compromised. While at first sight it may seem that achieving unforgeability in

such a setting is straightforward, it turns out that in particular for ECDSA-based

wallets, we have to deal with several technical challenges. The main reason for

this is that once the hot wallet is breached, the session public keys are not fresh

anymore (i.e., all session public keys are now related to the master public keympk).

This hinders a straightforward reduction to the security of the underlying signature

scheme used by the cryptocurrency. Even worse, we argue that for certain naive

instantiations of wallet schemes, wallet unforgeability can be broken without ever

breaking into the cold wallet. This is possible through a so-called Related Key

Attack (RKA). In an RKA, after observing some signature σ under public key pk,

the adversary can create a forgery σ′ under a public key pk′, where pk and pk′ are
related via some randomness ρ. However, this RKA can be quite easily prevented

within the construction of the signature scheme, by using public key prefixing, i.e.

always signing a public key prefixed message (pk,m). Although, such an RKA can

be mitigated without extra cost and does not pose a practical threat, as we will

see in later sections, it turns out to be immensely useful in our reductions, while

20

2. Deterministic Wallets from Rerandomizable Signatures

proving the unforgeability property.

Forward Wallet Unlinkability and Stateful Deterministic Wallets. In order to

achieve our security definition of forward unlinkability, we consider the natural

notion of stateful deterministic wallets. In contrast to the fixed chaincode as men-

tioned above, in a stateful wallet, the hot and cold wallet share a common secret

state St that is (deterministically) updated for every new session key pair. More

concretely, the master key generation algorithm SWal.MGen outputs (together with

the master key pair (mpk ,msk)) an initial state St0 that will be stored on both

the hot and the cold wallet. Then, to derive new session keys, the secret/public

key derivation algorithms SWal.SKDer and SWal.PKDer take as input additionally

the current state St i−1 and output the new state St i, while the old state St i−1 is

erased from the hot/cold wallet. The update mechanism for deriving the new state

has to guarantee that St i looks random even if future states St j (for j > i) are re-

vealed. Together with a mechanism for deriving new session key pairs, our scheme

achieves the strong aforementioned notion of forward unlinkability. We note that

while state updates (together with secure erasures) are needed to achieve our new

notion of forward unlinkability, our notion of unforgeability can also be achievable

by some of the currently used (stateless) wallet schemes.

Next, we present a generic wallet construction from signature schemes with

rerandomizable keys. As we will show afterwards, such a modular treatment helps

us in proving both of the security properties of (forward) wallet unlinkability and

wallet unforgeability in a clean manner.

Generic Wallet Construction and proving Wallet Security. Here we show how

to generically instantiate our wallet scheme from a signature scheme with reran-

domizable keys RSig := (RSig.Gen,RSig.SKDer,RSig.PKDer,RSig.Sign,RSig.Verify)

as follows (cf. Figure 2.4). Let St be the current state of the hot/cold wal-

let. The public key derivation algorithm SWal.PKDer (mpk , St , ID) first computes

(ωID , St
′) = H (St , ID). Then, it derives the new session public key pkID by running

the public key derivation algorithm RSig.RandPK via pkID ← RandPK(mpk , ωID),

and erases the old state St . Analogously, the cold wallet can compute skID by

computing ωID as above and calling skID ← RSig.RandSK(msk , ωID). For signing

a message, the cold wallet runs the RSig.Sign algorithm on input secret key skID
and public key prefixed message (pkID ,m) to obtain a signature σ. Verification of

σ can be carried out by running the respective verification algorithm RSig.Verify

on input public key pkID and message (pkID ,m).

Let us now briefly summarize our results on the security properties of (forward)

21

2. Deterministic Wallets from Rerandomizable Signatures

wallet unlinkability and wallet unforgeability for a generic wallet construction as

defined above. We define wallet unlinkability as a game between an adversary

and a challenger, where the adversary gets access to a session public key oracle, a

signing oracle and a state oracle. The adversary is allowed to query the public key

oracle on any ID to retrieve a session public key pkID . Additionally, it can query

the signing oracle on the retrieved session public key to receive a corresponding

signature. Finally, the state oracle fetches the current wallet state Sti. The adver-

sary wins the unlinkability game, if it is able to distinguish a randomly generated

public key from a session public key (not seen by the adversary from a previous

query), before calling the state oracle. We formally show that, if H is modeled as

a random oracle that maps to the randomness space for rerandomizable keys, then

the forward unlinkability property of the wallet construction is achieved from the

property of rerandomizability of keys of the underlying rerandomizable signature

scheme. In other words, the adversary is able to win the wallet unlinkability game

only with a negligible probability, if the underlying signature scheme satisfies the

rerandomizability property of keys. We formally define wallet unlinkability game

in Section 3.1, Appendix A and prove the same in Theorem 4.2, Appendix A.

In the wallet unforgeability game, on the other hand, the adversary has cor-

rupted the hot wallet. Hence, it gets access to the master public key mpk and

the current wallet state Sti. Additionally, it gets access to the session public key

oracle and signing oracle as before. To win the unforgeability game, the adversary

has to come up with a forgery on a fresh message, signed under any session key

pkID . We formally show that, if the underlying rerandomizable signature scheme

satisfies the notion of UFCMA-HRK, then we achieve wallet unforgeability. We

prove the same, by designing a reduction that tries to win the UFCMA-HRK

game, by simulating the wallet unforgeability game to an adversary. In particular,

the signing oracle can be simulated by querying the underlying RSign oracle in

the UFCMA-HRK game (cf. Figure 2.2). While simulating the public key oracle,

the randomness ω ← H(mpk , St, ID) is derived by programming the hash func-

tion H as a random oracle. H internally calls the underlying Rand oracle in the

UFCMA-HRK game, so that the public keys are always obtained from honestly

derived randomness, as per UFCMA-HRK. Finally, when the adversary returns a

valid forgery in the wallet unforgeability game, the same forgery can be forwarded

to the UFCMA-HRK game. We formally define wallet unforgeability game and

prove the same respectively in Section 3.2 and Theroem 4.2, Appendix A.

22

2. Deterministic Wallets from Rerandomizable Signatures

Algorithm SWal.MGen(par)

00 St
$← {0, 1}κ

01 (mpk ,msk)
$← RSig.Gen(par)

02 Return (St ,msk ,mpk)

Algorithm SWal.Sign(m, sk, pk)
03 m̂← (pk,m)

04 σ
$← RSig.Sign(sk, m̂)

05 Return σ

Algorithm SWal.Verify(pk, σ,m)
06 m̂← (pk,m)
07 Return RSig.Verify(pk, σ, m̂)

Algorithm SWal.SKDer(msk , ID , St)
00 (ωID , St)← H(St , ID)

01 skID
$← RSig.RandSK(msk , ωID)

02 Return (skID , St)

Algorithm SWal.PKDer(mpk , ID , St)
03 (ωID , St)← H(St , ID)
04 pkID ← RSig.RandPK(mpk , ωID)
05 Return (pkID , St)

Figure 2.4.: Construction of generic wallet scheme SWal from a signature scheme
with rerandomizable keys RSig and a hash function H.

2.2.2. Rerandomizable Signature Schemes

Next, to instantiate our generic wallet scheme, we are left with the task of building

signatures with rerandomizable keys from standard (practical) signature schemes

ideally used by cryptocurrencies. As shown in [68] the Schnorr signature scheme [131]

satisfies these properties. In addition, we show that ECDSA (cf. Figure 2.5) as

well as BLS signatures [23] can be used to construct signatures with rerandomiz-

able keys. Thus, these schemes are natural candidates for our wallet construction.

Moreover, our main technical results are on the ECDSA-based scheme which we

will describe next.

Rerandomizable Signature Schemes from ECDSA. While many cryptocurren-

cies (Algorand, Internet Computer [5, 84]) are currently considering BLS signa-

tures, till date, legacy cryptocurrencies such as Bitcoin and Ethereum [29, 120]

still rely on the ECDSA signature scheme [91].1 Consequently, it is important to

have a provably secure wallet construction from ECDSA. To this end, we need to

build a rerandomizable signature scheme from ECDSA and plug it into our generic

wallet construction. Surprisingly, due to the rather contrived nature of ECDSA,

proving unforgeability for rerandomizable ECDSA is much more involved than

1Recently Bitcoin rolled an update [125, 126] to support the Schnorr signature scheme as well,
but users can still use ECDSA signatures as before.

23

2. Deterministic Wallets from Rerandomizable Signatures

Algorithm
EC.Gen (par)

00 x
$← Zp

01 X ← x ·G
02 sk ← x
03 pk ← X
04 Return (pk, sk)

Algorithm
EC.Sign (sk = x,m)
05 z ← H (m)

06 t
$← Zp

07 (ex, ey)← t ·G
08 r ← ex mod p
09 If r = 0 mod p
10 Goto Step 2
11 s← t−1 (z + rx) mod p
12 If s = 0 mod p
13 Goto Step 2
14 Return σ := (r, s)

Algorithm
EC.Verify (pk = X, σ,m)
15 Parse (r, s)← σ
16 If (r, s) ̸∈ Zp

17 Return 0
18 w ← s−1 mod p
19 z ← H (m)
20 u1 ← zw mod p
21 u2 ← rw mod p
22 (ex, ey)← u1 ·G+ u2 ·X
23 If (ex, ey) = (0, 0)
24 Return 0
25 Return r = ex mod p

Figure 2.5.: EC = (EC.Gen,EC.Sign,EC.Verify): ECDSA Signature scheme relative to
elliptic curve E and hash function H : {0, 1}∗ → Zp.

that of Schnorr or BLS. Besides, both Schnorr and BLS satisfies the notion of

UFCMA-RK security of rerandomizable signature schemes. While for ECDSA, we

are only able to achieve the weaker notion of UFCMA-HRK security.

In a rerandomizable ECDSA scheme, keys can be rerandomized either additively

as sk′ ← sk + ρ; pk′ ← pk + ρ · G or multiplicatively as sk′ ← sk · ρ; pk′ ← pk · ρ.
We analyze both cases and detail our key findings below.

ECDSA with Multiplicative Rerandomization. Let us first consider the multi-

plicatively rerandomized ECDSA scheme REC = (REC.Gen,REC.SKDer,

REC.PKDer,REC.Sign,REC.Verify), where REC.Gen generates an ECDSA key pair

(sk = x, pk = x ·G). REC.SKDer generates a rerandomized secret key as sk′ = sk ·ρ,
while REC.PKDer outputs a rerandomized public key as pk′ = pk ·ρ. REC.Sign and

REC.Verify works similar to the standard signing and verification algorithms of

ECDSA (cf. Figure 2.5) with the following difference. In case of the REC scheme,

messages are always public key prefixed before sign/verify. We now turn to the

unforgeability proof of REC, highlighting, how we overcome the main hurdles in

formulating our security proof. To prove unforgeability of REC, we want to show

that UFCMA-HRK security of REC reduces to the standard notion of UFCMA

security of the underlying ECDSA scheme EC. The proof consists of a reduction

that tries to come up with a valid forgery in the UFCMA game (corresponding to

EC), by simulating the UFCMA-HRK game (corresponding to REC) to an adver-

24

2. Deterministic Wallets from Rerandomizable Signatures

Trf[H,G]EC(m0,m1, σ1, ω,X0, X1)
00 z0 ← H (m0)
01 z1 ← G(m1)

02 If (EC.Verify(σ1,m1, X1) = 0) ∨
(
ω ̸= z1

z0
∨X1 ̸= X0 · ω

)
:

03 Return ⊥
04 (r, s1)← σ1
05 s0 ← s1

ω
mod p

06 σ0 ← (r, s0)
07 Return σ0

Figure 2.6.: Figure shows the TrfECDSA algorithm for hash functions
H,G : {0, 1}∗ → Zp. It takes a signature σ1 under public key
X1 on message m1 and outputs a signature σ0 under public key X0

on message m0, where ω = G(m1)
H(m0)

and X1 = X0 · ω.

sary A. The main difficulty in this reduction is that A can query for signatures

under related (i.e., rerandomized) keys, where the relation between the keys may

be known to A. The signing oracle from the UFCMA game does not help in simu-

lating signatures in a straight-forward manner. This is because, the signing oracle

returns signatures under a particular challenge public key, while the reduction

needs to answer signature queries under many related keys. We solve this problem

by applying technique from an existing related key attack (RKA), present in the

multiplicatively rerandomized ECDSA. Such an RKA lets us construct an efficient

transfer algorithm (cf. Figure 2.6) that transforms a signature σ′ = (r, s) on mes-

sage m′ relative to a key pk′ into a signature σ = (r, s
ρ
) on message m that is valid

under the related key pk, such that pk′ = pk·ρ, where ρ satisfies ρ = G(m′)
H(m)

(H and G

are the respective hash functions in EC and REC). Given such an efficient transfor-

mation, we proceed with the reduction as follows. First of all, the challenge public

key from the UFCMA game is embedded as the challenge key in the UFCMA-HRK

game. Now, signature queries on related key pk′ from A can be answered, by first

querying the underlying sign oracle from UFCMA to retrieve a signature under pk.

Then, we run the transform algorithm to derive a valid signature under pk′. Note
here that, for ρ to satisfy the condition ρ = G(m)

H(m′) , we need to program the random

oracle H in the UFCMA-HRK game as H(m′) = ρ · G(m), where G(m) is obtained

by querying the random oracle in the UFCMA game. Finally, when adversary

returns a forgery in the UFCMA-HRK game, we need to derive a signature under

the challenge key pk by running the transformation algorithm.

25

2. Deterministic Wallets from Rerandomizable Signatures

We formally prove UFCMA-HRK security of two variants of multiplicatively

rerandomized ECDSA. The first one is a salted and public key prefixed construc-

tion (cf. Figure 10, App. A), where messages are always prepended with the public

key and a salt. It is proven in Appendix A, Section 5. The second one is simi-

lar to the REC construction we explained above, basically a salt-free construction

with only public key prefixing. The advantage of the salt-free variant is that it is

directly compatible with Bitcoin, without any modification in the signature verifi-

cation procedure. The proof of the later variant can be found in full version [44],

Appendix C.

ECDSA with Additive Rerandomization. The additively rerandomized ECDSA

scheme, denoted as REC′ = (REC′.Gen,REC′.SKDer,REC′.PKDer,REC′.Sign,
REC′.Verify) differs from the multiplicative variant in the key derivation algorithms.

Precisely, in REC′ REC′.PKDer derives a rerandomized public key as pk′ ← pk+ρ·G,
while REC′.SKDer derives the corresponding secret key as sk′ ← sk + ρ. In con-

trast to the multiplicative variant, for additively rerandomized ECDSA, we are

able to show UFCMA-HRK security, as long as each message is signed only once

per key. For our unforgeability proof, we use a technique similar in spirit to the

multiplicative case. However, note that the previous RKA is tailored to the mul-

tiplicative analysis and hence does not help us directly. To solve this issue, we

design an RKA, specific for the additive case that works as follows: given a signa-

ture (r, s) on m relative to pk, (r, s) is also a valid signature relative to the public

key pk′ = pk + ρ · G on message m′, given that ρ = (G(m)−H(m′))
r

(H and G are

the respective hash functions in EC and REC′). To the best of our knowledge, we

are the first to observe this RKA technique present in additive ECDSA. Having a

closer look at the structure of ρ = (G(m)−H(m′))
r

, notice that, it is dependent on r,

which is part of the signature (r, s). This is in contrast to the multiplicative case

and poses additional problems in our reduction. First of all, the random oracle in

the UFCMA-HRK game now needs to be programmed as H(m′) = G(m) − ρ · r.
This in turn, fixes the signature (r, s) for a message m′ and key pk′. As a result,

every message can be signed only once per key. This allows us to reduce to the

notion of One-Per Message Existential Unforgeability Under Chosen Message At-

tack (UFCMA1). Secondly, since the signature under the related keys pk and pk′

are surprisingly the same, when we already called the sign oracle from UFCMA

game to fetch a signature σ to simulate signatures in our reduction, the reduction

cannot return the same signature to the UFCMA game. To solve this, we guess

the position of adversary’s forgery in the UFCMA-HRK game, among all queried

public keys and embed the challenge key from UFCMA game at this position. To

win the UFCMA-HRK game, adversary will return a valid forgery at this posi-

26

2. Deterministic Wallets from Rerandomizable Signatures

tion. Hence, it must not have queried the sign oracle at this position. This in

turn means that the reduction never needs to call the UFCMA sign oracle for this

position. Hence, the forgery from UFCMA-HRK can also be returned as a valid

forgery in the UFCMA game. On the downside, the reduction incurs a tightness

loss in terms of total number of public keys due to the guess of the forgery’s po-

sition. To conclude, the additive variant achieves only UFCMA1 with a tightness

loss of total number of public keys, in contrast to the multiplicative variant which

achieves standard UFCMA without any tightness loss. The security proof for the

additively rerandomized ECDSA can be found in Appendix A, Section 3.

2.2.3. Security Model of Hierarchical Wallets

To complete the analysis of BIP32, we extend our flat model of deterministic

wallets to accommodate the hierarchical key derivation feature. A hierarchical

deterministic wallet can be thought of as a tree, where each node can act simul-

taneously as signing keys as well as master keys to derive new child keys. Such a

hierarchical feature can be useful in a company setting, for instance, where higher

officials would like to delegate signing keys to their subordinate employees. Unfor-

tunately, it cannot be guaranteed that all official entities in a company have secure

key storage. As we have seen before, if the secret key is not securely stored in a

cold wallet, it can get leaked to an adversary. It is important to ensure in the hier-

archical setting that, when a secret key of one of the wallet gets leaked then it must

not reveal any secret information from other wallets. However, as observed in [80],

the current key derivation mechanism does not guarantee this property. If the ad-

versary learns secret key of a wallet as skID = msk + ρ, where ρ = H(mpk , ch, ID).

Since adversary knows mpk and ch, it can derive msk = skID − ρ which is the

secret key of the parent wallet. This process can be repeated, revealing secret

keys of all nodes along the derivation path from the target node till the root

node. To mitigate this issue, BIP32 considers a second type of key derivation

mechanism, termed as hardened key derivation. In a hardened key derivation, ρ is

derived as ρ = H(msk , ch, ID). Then public/secret keys respectively are derived as:

pkID = mpk + ρ ·G, skID = msk + ρ. Let us now consider a wallet with hardened

keys. If an adversary corrupts such a wallet, getting hold of skID , it still can-

not derive msk from skID , since ρ is dependent on msk itself. It is clearly evident

from the above example that, hardened key derivation offers stronger security than

the usual non-hardened key derivation we saw before. However, it comes with a

cost. Since now msk is involved in the derivation of both secret/public child keys,

hardened key derivation cannot be achieved in the hot/cold wallet setting without

interaction. As the main goal of storing keys in the hot/cold wallet is to derive

27

2. Deterministic Wallets from Rerandomizable Signatures

child keys without any interaction between the two wallets, hardened key deriva-

tion is not suitable in this setting. However, both hardened and non-hardened key

derivations can be meaningfully used in the hierarchical setting, based on the trust

level of a node. Let us explain this in a bit more details. For nodes in the hierarchy

which belongs to higher level employees of a company, can be trusted with secure

key storage. So we assume that their key pair is derived via non-hardened key

derivation and they store their keys in hot/cold wallet fashion. Note that, as long

as a (non-hardened) secret key of a node is securely stored in a cold wallet, the

above secret key leakage attack is prevented. Nodes that are related to lower level

employees of a company, hence less trusted, shall be implemented in a hardened

fashion. We further make no assumption on how a hardened key pair is stored. As

a result, we consider in our model that secret key leakage from hardened wallets

is possible.

Similar to the flat setting of deterministic wallets, we are concerned with the

security properties of wallet unlinkability and wallet unforgeability in the hierar-

chical setting. Let us briefly summarize these properties here. The unlinkability

property guarantees that a public key of any uncorrupted node in the hierarchy is

indistinguishable from a randomly generated public key. When a hot wallet of a

non-hardened node is corrupted, the adversary gets hold of the public key of the

corrupted wallet. This further leads to revealing public keys of all non-hardened

nodes within the sub-tree. Unlinkability for the rest of the tree will still hold, since

the public key of any of its node was not derived from the corrupted node. On

the other hand, the wallet unforgeability property gurantees the following. Even

when the hot wallets of all nodes are corrupted as well as secret keys of some of the

hardened nodes are leaked, the adversary should not be able to forge signatures

for any of the uncorrupted nodes (all non-hardened nodes and honest hardened

nodes) in the tree.

In our security proof for wallet unforgeability, we incur a multiplicative tightness

loss in terms of total number of secret keys leaked. The security proof of our

generic hierarchical wallet construction can be found in Appendix A, Section 5.

Interestingly, we are also able to show that when we reduce wallet unforgeability

to UFCMA-RK for the generic construction of hierarchical wallet, then it must

lose this factor. To prove this lower bound, we adapt the reduction/metareduction

techniques introduced by Coron in his seminal work [39]. [39] considered tightness

of unique signatures (which is very different from our setting), this requires to

adapt his technique to our model. Our impossibility proof of a tighter bound is

presented in the full version [44], Appendix B.

28

2. Deterministic Wallets from Rerandomizable Signatures

2.2.4. Concrete Security Parameters

Finally, we compare the bit security level of BIP32 with additively rerandomized

ECDSA (as in the specification [143]) versus BIP32 with multiplicatively reran-

domized ECDSA. We find that original BIP32 gives roughly 94 bits of security

according to our theorems and conservative choices of parameters. While, the

multiplicative variant gives 114 bits of security with a similarly efficient scheme.

Given these insights, we strongly recommend that the Bitcoin community switches

rerandomizations in BIP32 from additive to multiplicative, in particular since these

changes essentially come for free.

2.3. Our Contributions on Post-Quantum

Deterministic Wallets

Our second contribution is to design deterministic wallets that are secure in the

post-quantum setting. In the post-quantum security model, the adversary is con-

sidered to have quantum computational power, whereas the wallet is implemented

in a classical computer. We show how to build post-quantum secure wallets from a

certain class of post-quantum secure signature schemes. We relax the notion of sig-

nature schemes with rerandomizable keys to rerandomizable public keys, and show

that the latter is sufficient to design post-quantum secure wallets. Next, we show

generic instantiations of such signature scheme from Lattice-based Fiat-Shamir sig-

natures. For a concrete instantiation, we consider the NIST second round finalist

qTESLA, and use its rerandomizable variant to instantiate our wallet. Finally, we

show transaction throughput of a blockchain, once integrated with rerandomizable

qTESLA signatures. Our work has resulted in the following publication.

[6] N. A. Alkadri, P. Das, A. Erwig, S. Faust, J. Krämer, S. Riahi, and P. Struck.

“Deterministic Wallets in a Quantum World”. In: CCS ’20: 2020 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event, USA,

November 9-13, 2020. 2020, pp. 1017–1031. doi: 10.1145/3372297.3423361.

url: https://doi.org/10.1145/3372297.3423361.

Below we present our main findings of our work on post-quantum wallets. In

Section 2.3.1, we present the security model for deterministic wallets needs in the

post-quantum setting, followed by our analysis of wallet unlinkability and unforge-

ability properties. In Section 2.3.2, we summarize our construction of signature

schemes with rerandomzable public keys, which is the main ingrediant of our wallet

construction.

29

https://doi.org/10.1145/3372297.3423361
https://doi.org/10.1145/3372297.3423361

2. Deterministic Wallets from Rerandomizable Signatures

2.3.1. Security Model of Post-Quantum Wallets

For our post-quantum security analysis, we adapt the security model of determin-

istic wallets in the classical setting and carefully adjust it to the post-quantum

setting. We use similar modularization for our generic wallet construction from

signature schemes with rerandomizable public keys. We consider the same setting

of hot/cold wallet separation of key storage, where master public key resides in

the hot wallet, while the cold wallet contains the corresponding master secret key.

Together with the master public key and a deterministic public key derivation al-

gorithm, the hot wallet can derive session public key pkID for a specific identifier

ID , independent from the cold wallet. The cold wallet can derive a corresponding

session secret key, ideally without any interaction with the hot wallet, by running

the deterministic secret key derivation algorithm with master secret key as input.

Similar as before, we want to guarantee the properties of wallet unlinkability and

wallet unforgeability. Our security proofs for both of these security properties now

needs to consider a quantum adversary, with an access to a quantum random ora-

cle. We briefly detail below the main hurdles in proving the security properties in

the post-quantum setting.

We want to achieve wallet unlinkability, which roughly states the following. A

session public key, derived from the master public key looks indistinguishable from

a randomly generated public key to an adversary, who has observed a polynomial

number of session public keys and signatures, generated from the wallet, as long

as the hot wallet is uncorrupted. Let us first recall our security proof in the

classical setting. There we proceed as follows. First, the adversary tries to guess

any of the previous states of the wallet. A correct guess leads to breaking the

unlinkability property. Next, we show that the this event is possible with negligible

probability. The classical reduction keeps a list of all previous states to check

whether adversary’s guess hits one of the states in the list. In the post-quantum

setting, we cannot maintain a list, since the adversary can query the random

oracle on several inputs in superposition. To solve this issue, we use an additional

game hop, where the quantum adversary has to distinguish between two random

oracles. We bound the advantage of the adversary in distinguishing two such

random oracles, and this further can be bound by the One-way to Hiding (O2H)

Lemma [9].

In case of wallet unforgeability, we want to ensure that, even when the hot wallet

is corrupted, after observing polynomial number of signatures on related session

public keys, the adversary should not be able to produce a valid forgery on a fresh

message. Here we highlight the main difference from the classical scenario. As

before, our aim is to reduce wallet unforgeability to UFCMA-HRK security of the

30

2. Deterministic Wallets from Rerandomizable Signatures

underlying rerandomizabe signature scheme. The reduction needs to program the

random oracle to obtain the randomness to derive session keys. For the reduction to

go through, the random oracle internally calls the Rand oracle from the underlying

UFCMA-HRK game. In the post-quantum setting, the adversary however has

access to a quantum random oracle. In particular, the adversary can query the

quantum random oracle on equal superposition of all (exponentially many) inputs

which would require exponential many queries to Rand, since Rand is run by the

classical challenger. This naive approach renders the reduction inefficient. As

an alternative, we replace the random oracle with an oracle from small range

distribution [146]. As a result, now the reduction would work with only polynomial

number of queries to the Rand oracle.

2.3.2. Post-Quantum Secure Rerandomizable Signature

Schemes

Next, we need to design post-quantum signature schemes to instantiate our wallet

construction. Taking inspiration from the Schnorr-based rerandomizable signa-

tures in the classical random oracle model, we consider lattice-based Schnorr like

signature schemes as a natural candidate for designing our post-quantum variant

of rerandomizable signatures in the quantum random oracle model (QROM). The

key pair (sk, pk) of such Schnorr-based lattice schemes consists of an instance of a

hard lattice problem, where the secret key sk typically follows either the discrete

Gaussian distribution or the uniform distribution over a small set. Our straight

forward technique of constructing a rerandomizable signature scheme however does

not work here. In more details, recall that in classical signature schemes such as

Schnorr, BLS, ECDSA, given (sk, pk) and randomness ρ, sk is rerandomized addi-

tively by computing sk′ = sk + ρ. In the lattice setting however, we must ensure

that the output sk′ follows the correct distribution, e.g., the Gaussian or uniform

distribution. If this is not the case, then the randomness ρ needs to be re-sampled

until sk′ follows the correct distribution. Although, this technique renders sig-

nature schemes with rerandomizable keys, it becomes unsuitable in the hot/cold

wallet setting of wallets, since it requires to syncronize the correctly chosen ρ

between both wallets. To mitigate this issue, we follow a different approach for

designing rerandomizable signatures.

The main observation that we exploit is that the sum of two Gaussians is also

Gaussian distributed (cf. Lemma 3, Appendix C). Based on this observation, our

approach works as follows. Let sk be Gaussian distributed. Given randomness

ρ, sk is rerandomized additively by adding to sk a freshly Gaussian distributed

secret key sk∗. The key sk∗ is deterministically sampled using the randomness ρ,

31

2. Deterministic Wallets from Rerandomizable Signatures

i.e., we use ρ as the randomness required in the Gaussian sampler algorithm. We

obtain a rerandomized secret key that is Gaussian distributed, but with a slightly

larger standard deviation than the one of the original secret key. Consequently,

we can construct a signature scheme with rerandomizable keys, in which the dis-

tribution of rerandomized public keys is computationally indistinguishable from

the distribution of the original public key. However, rerandomized secret keys fol-

low a different distribution than a freshly sampled secret key. We formally define

such relaxed notion (cf. Section 2, App C) and call it a signature scheme with

rerandomizable public keys. We then show in Section 3, App C that this notion

is sufficient for post-quantum secure wallets. This is true because as long as the

cold wallet remains secure, the secret key is never revealed to the adversary. We

present a lattice-based construction of such a scheme in Section 4, App C with a

security proof in the QROM. Finally, we show in Section 5, App C that our con-

struction can be instantiated with state-of-the-art lattice-based signature schemes

such as qTESLA [8]. Hence, it can use their proposed parameters and enjoy their

performance and efficiency.

2.4. Related Work

Signature schemes. One of the techniques that we use in our works is that

certain signature schemes support the following efficient transformation: given a

signature under some public key pk, one can produce a signature with respect to

a related key pk′. While for certain signature schemes such as Schnorr [131] this

is a well-known trick that has been used in various works [67, 98, 147], we are not

aware of any prior use of such an algorithm for the ECDSA signature scheme. In

addition, as discussed above we make use of the abstraction of signature schemes

with rerandomizable keys that was originally introduced by Fleischhacker et al. [68]

in the context of sanitizable signatures. As for ECDSA, Fersch et. al. [66] proved

for the first time, UFCMA security of ECDSA in an idealized model. While, [65]

showed in the random oracle model that ECDSA satisfies the notion of one-per-

message unforgeability. In our BIP32 analysis, we use additively rerandomized

ECDSA as one of the core building block which we also show to be one-per-

message unforgeable in the random oracle model. In a recent work by Groth et

al. [79] additively rerandomized ECDSA is shown to satisfy standard UFCMA,

however the proof is in the Generic Group Model.

There is a large body of work on threshold signature schemes: [32, 33, 53, 75,

76, 109, 110] on threshold ECDSA, [74, 101] on threshold Schnorr that can be

applied to strengthen the security of wallets. In a threshold signature scheme,

32

2. Deterministic Wallets from Rerandomizable Signatures

(t+1) out of n parties jointly sign a signature. Even when the adversary corrupts

at most t parties and learn their secret key material, it will not be able to forge a

signature. The secret key stored in a cold wallet can be split into multiple devices,

followed by signing through a threshold signature scheme. This allows to satisfy

unforgeability in presence of a stronger adversary, that can corrupt upto t devices.

A simpler notion is that of multisignatures [22, 121], where a group of n parties

jointly sign a signature.

Research on Wallet Systems. Hot/cold wallets are widely used in cryptocurren-

cies and various implementations on standard computing and dedicated hardware

devices are available. Most related to our work is the result of Gutoski and Ste-

bila [81] who discuss a flaw in BIP32 and propose a (provably secure) countermea-

sure against it. Concretely, they study the well known attack against deterministic

wallets [28] that allows to recover the master secret key once a single session key

has leaked from the cold wallet. They then propose a fix for this flaw which al-

lows up to d session keys to leak, and show by a counting argument that under a

one-more discrete-log assumption the master secret key can not be recovered. We

emphasize that their model is rather restricted and does not consider an adver-

sary learning public keys or signatures for keys which have not been compromised.

More importantly, [81] prove only a very weak security guarantee. Namely, instead

of aiming at the standard security notion of unforgeability where the adversary’s

goal is to forge a signature (as considered in our work), [81] consider the much

weaker guarantee where the adversary’s goal is to extract the entire master secret

key. Hence, the security analysis in [81] does not consider adversaries that forge

a signature with respect to some session public key, while in practice this clearly

violates security. Besides [81], various other works explore the security of hot/cold

wallets. Similar to [81], Fan et al. [62] study the security against secret session key

leakage (they call it “privilege escalation attacks”). Unfortunately, their proposed

countermeasure is ad-hoc and no formal model nor security proof is provided. A

work by Luzio et al. [112] designs a novel hierarchical wallet scheme from (deter-

ministic) hierarchical key assignment schemes [12]. In fact, they prove that their

hierarchical wallet construction is resistant against the above-mentioned “privi-

lage escalation attacks”, where secret key leakage from colluding child nodes do

not propagate to the parent node. However, their solution is not compatible with

cryptocurrencies such as Bitcoin since it requires a more sophisticated (signature)

verification algorithm, where a certificate associated with the user needs to be

verified along with the signature.

Another direction is taken by Turuani et al. [138] who provide an automated

verification of the Bitcoin Electrum wallet in the Dolev Yao model. Since the

33

2. Deterministic Wallets from Rerandomizable Signatures

Dolev-Yao model assumes that ciphertexts, signatures etc. are all perfect, their

analysis exclude potential vulnerabilities such as related key attacks, which turn

out to be very relevant in the hot/cold wallet setting. Another line of recent work

focuses on the security analysis of hardware wallets [11, 114]. Both works target

different goals. The work of Marcedone et al. [114] aims at integrating two-factor

authentication into wallet schemes, while Arapinis et al. [11] consider hardware

attacks against hardware wallets and provide a formal modeling of such attacks

in the UC framework. Similar to the latter, Curtoius et al. [40] investigate how

implementation flaws such as bad and correlated randomness may affect security.

Other works that study the implications of weak randomness in wallets are [24,

25]. Chaum et al. [35] proposes a solution to secret key leakage through the use of

a back-up key. When a secret key is leaked, then the back-up key can be utilized

to produce a proof of ownership of the leaked key. This in turn, can benefit in

recovery of lost funds. They show constructions compatible with ECDSA, adding

a W-OTS+ [83] signing key as a back-up key.

Karakostas et al. [92] for the first time provide formal definitions of a proof of

stake wallet, built from the modelling of [11]. They focus on security properties

such as “address malleability”, relevant in the proof of stake setting.

Kondi et al. [102] designs a threshold wallet scheme in an advanced security

model of proactive security. In the proactive setting, originally by [82], time is

divided into epochs. An adversary is able to corrupt more than t devices across

several epochs, rendering a threshold scheme insecure. It is thus recommended to

refresh the secret key shares at the start of every epoch, such that a combination

of t+ 1 corruptions across several epochs, does not lead to secret key recovery. In

the wallet setting, [102] formalizes the notion of refreshing of offline devices, such

that any t+1 out of n parties run a refresh protocol, while other n− t− 1 parties

can update their shares once they come online. They show how to upgrade a 2

out of n threshold signature scheme to proactive security with offline refresh for

ECDSA, EdDSA and Schnorr. However, they also provide an impossibility result

for the t > 2 out of n threshold case, with a dishonest majority of online parties.

Post-quantum Security. Many prior works have investigated lattice-based Fiat-

Shamir signatures, e.g., [8, 15, 58, 59, 113], and in particular, their security was

analyzed in the QROM, e.g., by [55, 97, 111, 139]. Various works build blockchains

with security features against quantum adversaries. Most recently, Esgin et al. [60]

have proposed a new ring signature scheme based on lattice assumptions for the

blochchain setting which focus on similar anonymity guarantees to Monero [122].

Blockchain initiatives such as the “Bitcoin Post-Quantum” [19] and QRL [128] re-

place ECDSA with hash-based signature schemes which are post-quantum secure.

34

2. Deterministic Wallets from Rerandomizable Signatures

Despite the hash-based schemes being quite efficient, the underlying hash function

does not permit to construct a signature scheme with rerandomizable keys which

plays a key role in our wallet scheme.

2.5. Discussion and Future Work

In this chapter, we focused on the formal treatment of deterministic wallets, which

serves as a core infrastructure in the decentralized setting of blockchains. In this

regard, our contribution is two-fold. As our first contribution, we fill the gap of a

comprehensive security analysis for the BIP32 standard of hierarchical determinis-

tic wallets [143]. To this end, we take a modular approach and build wallets from

signature schemes with rerandomizable keys. Our model captures the security

properties of wallet unlinkability and wallet unforgeability in the setting of hot

wallet/cold wallet. Our provable secure wallet constructions are built from the

rerandomizable schemes of ECDSA, Schnorr and BLS. In particular, we provide

the first provable secure construction of wallets from rerandomizable ECDSA. One

of the key observations of our security analysis is the following: multiplicatively

rerandomized ECDSA achieves higher level of bit security than the additive vari-

ant, considering the underlying ECDSA achieves 128 bit security level for standard

unforgeability. Our results have direct implications for BIP32 security. Precisely,

the original BIP32 specification considers additively rerandomized ECDSA; hence

achieves lower level of security than the multiplicative variant. As per our observa-

tion, a slight modification to the BIP32 specification (i.e., considering multiplica-

tively rerandomized ECDSA) will render better security, but achieving the sa,e

efficiency. Our security analysis left several interesting open questions: Firstly, we

were only able to prove (in the random oracle model) one-per-message unforgeabil-

ity for the additively rerandomized ECDSA, where every message can be signed at

most once. Such notion is sufficient in the blockchain setting where, every transac-

tion (message) is signed only once. However theoretically, it would be nice to lift

the one-per-message restriction and achieve standard UFCMA security. Groth et

al. [79] made progress in this direction, showing standard UFCMA security of addi-

tively rerandomized ECDSA, however the analysis is in the Generic Group model.

Secondly, the one-per-message unforgeability of ECDSA was proven by [65] in the

random oracle model, with a large security loss (in terms of the number of signing

oracle queries). Naturally, there is scope to get a tighter security proof.

As a second contribution, we extend our security analysis of deterministic wallets

in the post-quantum setting. In this setting, the adversary has quantum computa-

tional power, while the scheme is implemented in a classical computer. A quantum

35

2. Deterministic Wallets from Rerandomizable Signatures

attacker can render a deterministic wallet scheme built from classical signatures in-

secure, by simply extracting the master secret key from the master public key [132].

As a result, we need to fill the gap of post-quantum secure deterministic wallets.

To this end, we extend our security model to the post-quantum setting. Next, we

built deterministic wallets from (post-quantum secure) lattice-based Fiat-Shamir

signature schemes with rerandomizable public keys. In particular, we show instan-

tiation of such a rerandomizable signature scheme from qTESLA [8], one of the

second round NIST finalists. Finally, we evaluate blockchain transaction through-

put, considering rerandomizable qTESLA signatures.

We have several immediate open questions that we discuss below. First, our

instantiation from qTESLA is an example of rerandomizable lattice-based scheme

based on Guassian distribution. When we tried to instantiate it with a rerandomiz-

able scheme based on uniform distribution (eg. NIST PQ standard Dilithium [59]),

the key size blows up, rendering the scheme impractical. Naturally, we need an

efficient scheme based on uniform distribution. Next, we note that the blockchain

transaction throughput based on qTESLA is roughly 72 times lower than that

based on a classical signature scheme (ECDSA). Hence, there is a lot of room to

improve the efficiency of signature/key size in rerandomizable post-quantum sig-

nature schemes. Lastly, we have only considered post-quantum wallets in the flat

setting with one level of key derivation. The next step would be to analyze the full

hierarchical deterministic wallet in the post-quantum setting. In particular, it is

interesting to see what challenges are posed in the simulation of the (hierarchical)

wallet unforgeability game, in the presence of a quantum random oracle.

In our security model of hierarchical deterministic wallets, we support secret

key leakage of only hardened nodes. Our model considers non-hardened nodes to

be implemented in a hot wallet/cold wallet fashion, where the secret key is stored

offline in the cold storage. Henceforth, we assume in our model that the secret keys

from a cold wallet are not leaked to the adversary. Since the cold wallet comes

online time to time for signing payments, an attacker could still target a cold

wallet during the online phase. If a secret key is leaked from the cold wallet of a

non-hardened node, it can have devastating effects. Precisely, secret key leakage of

a child node leads to revealing secret keys of the parent nodes, in the hierarchical

derivation path, all the way up to the root secret key. One way to strengthen

security of wallets in presence of secret key leakage of non-hardened nodes is to

thresholdize the cold wallet, where the secret key is split among several devices.

In the threshold t + 1 out of n setting, adversary can corrupt upto t devices,

still not being able to forge signatures. We have already mentioned threshold

signature schemes [32, 33, 53, 74, 75, 76, 101, 109, 110] in Section 2.4 that can

be applied here to thresholdize cold wallets. However, none of the above schemes

36

2. Deterministic Wallets from Rerandomizable Signatures

consider deterministic key derivation that is crucial in deterministic wallets. In

other words, there is a need of a threshold rerandomizable signature scheme to

build threshold wallets. Recently Groth et al. [78] presents a thershold ECDSA

scheme with (non-hardened) key derivation of BIP32. However, they restrict to n
3

corruptions, specific to serve the setting of Internet computer [84]. They also do

not consider the hardened key derivation of BIP32.

Another interesting direction is to consider password-based wallets. The sim-

plest solution, close to that of [11] is to have a password authenticated wallet

scheme in the client-server setting. Such a scheme combines ideas from password-

based two-factor authentication and a threshold signature scheme. On a high level,

password-based authentication ensures that, only when the client has provided the

correct password, the protocol proceeds with the signature generation. Addition-

aly, the signature itself is generated via a 2-out-of-2 threshold signature scheme run

between a client and the server. The problem with the scheme presented in [11]

is the following: Firstly, whenever the server is corrupted, it can mount a offline

dictionary attack on the client’s password, get hold of secret key share of the client

and thereby forge signatures. One solution to this issue is to distribute or thresh-

oldize the server instead of a single server. This would require a n-out-of-n or a

t-out-of-n access structure for the signature scheme. Secondly, such a scheme still

do not consider deterministic key derivation feature of wallets. In other words, the

password-based wallet must be able to derive fresh session keys for signing every

new message. It would be interesting to design password-based wallets that solve

either or both of the above issues, simultaneously not compromising on efficiency

of the scheme.

37

3. Round Efficient Byzantine
Agreement from VDFs

In the Byzantine agreement (BA) problem, a set of n parties jointly run a dis-

tributed protocol to agree on a common output in the presence of some minority of

t malicious parties. BA is a well-studied and fundamental problem in distributed

computing and has been used as a main ingredient in designing decentralized

blockchain infrastructure [18, 29, 37, 96]. Traditionally, most existing protocols

for BA assume a setting in which the parties’ identities are fixed and known at

the beginning of the protocol. In the fixed identity setting, two types of protocols

are studied: the first type requires setup, e.g., a public key infrastructure (PKI)

or some form of correlated randomness. These protocols typically tolerate the

(optimal) corruption threshold of t < n/2. The second type does not require such

assumptions but can tolerate only t < n/3 corruptions.

More recently, a third type of protocol has emerged [10, 95] that gives up on

the fundamental assumption that parties know each other’s identities at the begin-

ning of the protocol. Moreover, these protocols do not require setup in the classical

sense, yet still achieve the optimal corruption tolerance of t < n/2. Note that if

identities are not fixed then without further measures, every party could pose as

many parties and easily obtain a dishonest majority; this is commonly referred

to as a sybil attack [56]. To avoid such attacks, parties must instead invest some

expensive resources, such as computation or money, to participate in this type of

protocol. A prominent example is the Proof-of-Work model (PoW) initially intro-

duced by Bitcoin, where parties have limited access to a computational resource

which they are forced to continuously expend in order to participate in the pro-

tocol. Known results [10, 72, 95] achieve byzantine agreement in the PoW model

in O(nκ2), O(κ) and O(n) rounds. Our goal is to improve the round-efficiency of

BA in this resource-constrained model.

38

3. Round Efficient Byzantine Agreement from VDFs

3.1. Our Contributions

To achieve our goal of round efficiency, we refine the PoW model by considering

the effort it takes to evaluate verifiable delay functions (VDFs) [21, 37] as the

main computational resource. VDFs can be seen as a special type of proof-of-

work whose computation cannot be sped up by much. This is in stark contrast to

the typical lottery-type proofs-of-work, whose computation can be sped up almost

arbitrarily, given sufficient parallel computation resources. We explore, for the

first time, the implications of bounding the number of VDF evaluations that an

(adaptive) adversary can compute in parallel: 1) We show an expected constant-

round BA protocol that tolerates t < n/2 corrupted parties and does not rely on

a PKI or known identities; 2) we give the first non-trivial communication lower

bound by showing that any BA protocol in this setting requires at least O(
√
n)

send-to-all steps.

In contrast to the work of Wan et. al [140], which allows the adversary to

compute any (polynomial) number of puzzles in parallel, we aim at quantifying the

number of VDFs computed by the adversary in parallel within a certain period of

time. The above assumption is essential for us to obtain our results in the PKI-less

setting as opposed to [140] which relies on a PKI. Our work has been disseminated

in the following article.

[41] P. Das, L. Eckey, S. Faust, J. Loss, and M. Maitra. Round Efficient Byzantine

Agreement from VDFs. Cryptology ePrint Archive, Paper 2022/823. https://

eprint.iacr.org/2022/823. 2022.

Below we discuss our key results in more details1.

3.1.1. The VDF Model

Our work introduces the VDF model as a refinement of the common PoW model

to replace trusted setups and protect against Sybil attacks in permissionless con-

sensus. Similar to the PoW model, we assume that the adversary only controls

less than 1/2 of a computational resource to invest in producing proofs of compu-

tation. In contrast to the PoW model, however, we require a lower bound on the

time it takes to create such proofs. This differs from the PoW model, where proofs

can be computed almost arbitrarily fast, given sufficient parallel resources. We

believe that the VDF model is a realistic alternative for the PoW model. Indeed,

there exists various different constructions of VDFs [64, 127, 142] that leverage

1Major parts of this chapter have been taken verbatim from Section 1, Appendix D.

39

https://eprint.iacr.org/2022/823
https://eprint.iacr.org/2022/823

3. Round Efficient Byzantine Agreement from VDFs

inherently sequential computation, and are used (or envisioned to be used) by

blockchain projects for their consensus protocol (albeit not as an anti Sybil coun-

termeasure as in our work). Examples include Chia, which relies on VDFs for

leader election [37], and ETH 2.0, which plans to leverage VDFs for constructing a

random beacon [29]. To make our model more realistic, we follow Wan et al. [140],

and allow the adversary a small speedup in evaluating the VDF compared to the

honest parties.

Let us describe our model with a concrete example. Suppose that the total

amount computational power (over all protocol participants) over a fixed time

period of length t is 1000 VDF evaluations. Then, we demand that the total

number of proofs produced by the adversary be at most 500 in the same time

span. This is similar to the case of PoW model, where it is assumed that the

majority of computational power belongs to honest parties. As mentioned above,

we additionally give the adversary a small speedup, meaning that it can compute

proofs a little bit faster than the honest parties.

The VDFδ Oracle. We now explain our formalization of the VDF model in some

more detail. At the center of our model, we introduce the oracle VDFδ, which

parties can query on an input s to obtain one evaluation ϕ of the VDF after δ time.

Thus, δ denotes the difficulty parameter, specifying the number of sequential steps

to be computed for one VDF evaluation. To make the model more realistic, we

allow corrupted parties a κ-speedup (where κ ≥ 1), meaning that they can obtain

an output from VDFδ after δ/κ time. An adversary A in our model controls some

q number of parties, where each party has κ-speed-up. For some i > 1, let us

discuss how many proofs an adversary is able to compute within time t, where

(i − 1) · δ < t < i · δ. We can express t more concretely as t = (i − 1) · δ + r · δ,
where r ∈ (0, 1). With a corruption budget of q parties, A can invoke the VDFδ

oracle q times concurrently (once per party). Since each proof is obtained after

time δ
κ , at time (i− 1) · δ, each party computes (i− 1) ·κ proofs. In the remaining

r · δ time, each party can compute (at most) ⌊ r.δ
δ/κ⌋ = ⌊r ·κ⌋ proofs. Thus, in total

A obtains at most ((i− 1) · κ + ⌊r · κ⌋) · q proofs at time t. Figure 3.1 illustrates

our model with a small example. We refer to this property of the VDFδ oracle as

its sequentiality and give a formal definition in Appendix D, Section 2.

Such oracle abstraction of the VDF computation allows us to give a cleaner

and more modular analysis of our main protocols. In support of our modelling

approach, we conjecture that the VDFδ oracle can be instantiated in the standard

model (full version [41], Appendix A, Lemma 20) and we prove that it can be in-

stantiated in the strong algebraic group model for constructions of Wesolowski [142]

and Pietrzak [127] (full version [41], Appendix A, Lemma 23).

40

3. Round Efficient Byzantine Agreement from VDFs

Figure 3.1.: Consider i = 3, δ = 5. We have i · δ = 15, (i − 1) · δ = 10. Say
an adversary A controls q parties {P1}i∈[q] with a speed-up κ = 3
compared to an honest party with κ = 1. Consider two time steps:
t = 11 and t = 14. In both cases, each Pi can compute (i − 1)κ = 6
proofs in time 10 < i · δ. For the remaining time r · δ = 1 (for t = 11)
and r · δ = 4 (for t = 14), no extra proofs can be computed in the first
case, whereas ⌊ 4

5/3
⌋ = 2 extra proofs can be computed in the second

case. Thus, A can compute in total 6q and 8q proofs for t = 11 and
t = 14 respectively.

Adversary Model. The adversary in our protocol is modelled as a (q, tp,κ)-
algorithm A as defined above. A can control at most q parties each with a max-

imum speedup of κ, such that q < n
⌊κ⌋+1

holds. In particular, the number of

adversarial parties can be at most < n
2
(this is the case for κ = 1). We consider

an adaptive adversary which can corrupt a party at any point during the proto-

col execution. Once a party has been corrupted, it can arbitrarily deviate from

the protocol execution. Furthermore, it can deliver a message over the multicast

channel only to a subset of honest parties. In this way, it can send different mes-

sages to different subsets of honest parties over the multicast channel. However,

the adversary can not drop the messages of honest parties from the channel or

delay them for longer than ∆. Our adversary is rushing, which means it can ob-

serve all the messages that the honest parties send in any round of the protocol,

and then choose its own messages for that round adaptively. We notice that we

consider the standard notion of an adaptive, rushing adversary, as opposed to

41

3. Round Efficient Byzantine Agreement from VDFs

the stronger notion of a strongly rushing (or strongly adaptive) adversary (see for

e.g., [cryptoeprint:2021:775, 1, 2]) who can adaptively corrupt parties and then

delete messages that they sent in the same round (prior to corruption).

3.1.2. Byzantine Agreement in the VDF Model

As our main technical contribution, we show how to obtain an expected constant-

round Byzantine agreement protocol without any additional trusted setup in the

VDF+random oracle model. This is of particular significance, given that we can

also instantiate the VDF model without any trusted setup, using Wesolowski’s

construction. Given an upper bound n on the number of parties, our protocol

tolerates q adaptively corrupted parties with κ-speed-up, where q(⌊κ⌋ + 1) < n.

In particular, our protocols tolerate up to n
2
corruptions when κ = 1. In our

protocols, we consider the multicast model of communication, where each party

sends a message to all other parties via a multicast channel. Below, we present

our necessary sub-protocols which finally leads us to achieve constant round BA.

• Step 1: Establishing a Graded Public key Infratsructure (GPKI). We adopt the

idea of Andrychowicz and Dziembowski [10] and start by setting up a precursor

to a full PKI called graded PKI (GPKI) among the parties. Roughly speaking,

a GPKI differs from a full PKI in that the keys of the parties are additionally

associated with grades. These grades can differ between parties, but not by too

much. As a first step, to reduce the round complexity of their protocol to O(1)

from O(nκ2) (where κ is a security parameter), we make two modifications: 1)

We set up a much weaker GPKI with only two possible grades, whereas [10] sets

up n possible grades. 2) We borrow a technique from Katz et al. [95]2 and rely

on VDFs to make the round complexity of our protocol independent of κ. As a

second step, the difficulty parameter δ of the VDFδ must be adjusted to tolerate

adversarial speedup in the VDFδ model.

Here we give a short overview of our graded PKI protocol ΠKeyGrade from Section

3, Appendix D. Protocol ΠKeyGrade consists of three phases: challenge phase, proof

of computation phase and a key ranking phase. The challenge phase consists of

two rounds, where each party P chooses a fresh challenge value as c
$← {0, 1}len

(where, len is some well-defined bit length) and multicasts it to other parties.

In the second round of challenge phase, P gathers all first round challenges,

including its own, into a set c = (c1, c2, . . .); hashes this set to form a second

round challenge d = H(c) and then multicasts d to all other parties. After

2The construction in [95] uses only a proof of sequential as opposed to a VDF.

42

3. Round Efficient Byzantine Agreement from VDFs

above two rounds of challenge phase, begins the proof of computation phase

that works as follows. First, P collects all second round challenges, into a set

d = (d1, d2, . . .), and hashes it into a final challenge value χ = H(d). Here,

χ serves as a membership proof of each second round challenge di received by

P : first by checking if di ∈ d, then whether H(d) = χ. Each of the second

round challenges, in turn serves as a membership proof of first round challenges,

received from first round multicasts. Next, P samples a key pair (sk, pk) and

computes a (sequential) proof of computation ϕ, by querying the VDFδ oracle

on input χ as ϕ = VDFδ(χ). Lastly, the key ranking phase starts with every P ’s

multicast of pk, the evaluated proof of computation ϕ, along with two additional

values required for membership proof: the input χ on which the proof ϕ is

computed and its preimage d. If another party Pj is convinced that ϕ is a valid

proof on χ and the set d includes Pj’s second round challenge dj, then Pj ranks

pk with the highest grade 2. Pj further multicasts the tuple received from P ,

containing ϕ, χ, d and Pj’s first round challenge set cj to all other parties – let

us call such a party Pk. If Pk did not grade pk before, then it assigns grade 1

to pk, after verifying the information received from Pj, i.e. whether ϕ is a valid

proof on χ and whether her own first round challenge ck is included in cj, where

dj = H(cj) was included in d.

We show that our protocol ΠKeyGrade satisfies the underlying properties of a

graded PKI. One of the properties is bounded number of identities, which states

that the number of adversarial identities in a GPKI protocol must be at most half

of the total number of identities. In our analysis, we needed to be very careful

such that this property is satisfied. This is because, our adversary, controlling q

parties and having a computational speedup factor of κ, can compute multiple

proofs in parallel, faster than honest parties. However, we were able to show

that, this property is satisfied, even when we set the duration of the proof of

computation phase to a constant time (independent of the security parameter

or the number of parties). In particular, the time complexity of the proof of

computation phase is dependent on the duration of the rest of the protocol,

which is in turn, a constant number of rounds. As a result, we obtain a constant

round GPKI protocol for the first time. We present our formal protocol and its

security in Section 3, Appendix D.

• Step 2: Graded Consenus from GPKI. One of the ingredients needed in our

BA protocol is a graded consensus protocol. Graded consensus is similar to a

BA, with the difference that at the end of the protocol, every party outputs a

value with some grade, where the grades of different parties must satisfy some

consistency properties. We build upon the graded consensus protocol of Micali

43

3. Round Efficient Byzantine Agreement from VDFs

and Vaikuntanathan [119] where we modify their protocol such that it requires

only a GPKI instead of a full PKI.

• Step 3: Leader election protocol from VDFs. It is well known that expected

constant round protocols are inherently randomized, e.g., by electing a random

leader in every protocol iteration. However, electing a random leader efficiently

is challenging without prior setup. We overcome this issue by presenting a

novel leader election protocol that leverages the oracle VDFδ to efficiently elect

a random leader that all honest parties agree on with high probability. Our

protocol is inspired by leader elections based on verifiable random functions [1,

2] and implements a leader election lottery with unique tickets. This makes the

tickets hard to bias from the perspective of the adversary.

• Step 4: BA protocol. Finally, we combine all of the above components to adopt

the expected constant round protocol of Katz and Koo [93] to our setting.

We informally state our overall result in the following theorem.

Theorem 1 (Informal). Let n denote an upper bound on the number of parties.

Then, there exists an expected-constant round BA protocol in the VDF model

that is secure against any adversary A that controls at most q parties with κ-
speed-up, where q · (⌊κ⌋+ 1) < n.

We present formal descriptions of our graded consensus, leader election and BA

protocols and their security analysis in Sections 4 and 5, Appendix D.

3.1.3. A Lower Bound on Communication Complexity for BA

As a third contribution, we give the first lower bound for communication complex-

ity of BA, assuming parties have bounded computational resources. Concretely,

we show that in the VDF model without additional trusted setup, no protocol

can realize BA with overwhelming probability by multicasting fewer than O(
√
n)

messages in the presence of adaptive corruptions. In the multicast model of com-

munication, honest parties are restricted to sending messages to all parties at

once, whereas the adversary can send to only a subset of the parties. This models

a setting in which parties communicate via a gossip network [10, 69]. The cost

of running the same protocol from the multicast model in the bilateral channel

model [54] would be O(n3/2). We remark, however, that the multicast restriction

is crucially used in the lower bound, and thus, a better communication complexity

might be possible in the bilateral channels model. Our lower bound builds on ideas

44

3. Round Efficient Byzantine Agreement from VDFs

of Abraham et al. [1] who show a bound for Byzantine broadcast in the multicast

model without setup.

Our bound has to overcome several technical challenges that arise when parties

have limited computational resources. The adversary in our attack has to carry

out a simulation of the protocol in its head (this is a standard technique used in

lower bounds), which may require to query the VDF oracle. At the same time,

the adversary must also participate in an actual execution of the protocol it is

attacking, which, of course, also results in queries to the oracle. Thus, the key

difficulty in our lower bound is to carefully balance the adversary’s limited budget

of queries to VDF over the two executions of the protocol (real and simulated).

Although our lower bound is relatively weak compared to most existing lower

bounds in this area (which are quadratic, or of the form O(n) in the multicast

model, respectively), we argue that it is still meaningful. Namely, protocols that

require significantly above O(κ) multicasts are deemed impractical for large-scale

settings with millions or even billions of users. This means that our bound essen-

tially rules out efficient solutions in the VDF model unless further setup is assumed

among the parties. Second, we point out that our lower bound actually holds in

the relatively weak VDF-model and can likely be carried over to a less restrictive

model (e.g., to the PoW model used by Bitcoin). It also leaves room for a tighter

bound in such more general models. Details on our results can be found in Section

6, Appendix D.

3.2. Implications of Our Results and Related Work

Our model can be instantiated using Wesolowski’s VDF, which does not require

trusted setup. Thus, our results show, for the first time, how to perform expected-

constant round BA in a permissionless model with a simple honest majority and no

trusted setup (beyond a random oracle). This has many important implications.

For example, one could use our protocol to efficiently agree on a random string

in a permissionless setting. This string could be used as a genesis block or as

a uniform common reference string to perform an MPC protocol. Our results

also significantly improves over the result of Andrychowicz and Dziembowski, who

presented a protocol that achieves essentially the same, but requires O(nκ2) rounds

to do so [10]. We also improve over a similar (slightly more efficient) version

of this idea shown by Katz et al. [95]. Another closely related work is that of

Garay et al. [72] who show how to bootstrap the classical Nakamoto consensus

protocol [71, 120, 124] in the PoW model without trusted setup. However, it

requires O(κ) rounds, and therefore also does not constitute an expected constant

45

3. Round Efficient Byzantine Agreement from VDFs

round protocol.

Further Related Work. There is a large body of research on BA and related

problems (sometimes colloquially referred to as “consensus”), and we focus here

on the most closely related works. We have already mentioned the works of [10,

72, 95] who achieve BA in the PoW model without setup and run in O(nκ2),

O(κ), and O(n) rounds, respectively. It should also be noted that we require

stronger assumptions (namely a VDF and the random oracle model (ROM)) than

the protocols in [10, 72, 73], who require only the ROM that can be queried at

a bounded rate by any party, but (possibly) weaker assumptions than required

in the work of Katz et al. [95], who also require some form of an unpredictable

beacon in their protocol. The more recent work of Aggarwal et al. [3] presents a

setup-free solution in the PoW model that also runs in expected O(1) rounds, but

assumes a static adversary (while we consider the much stronger adversarial model

of adaptive corruptions). Another related work that focuses on the PoW model

is by Garay et al. [73]. They show how to achieve UC-secure BA and multi-party

computation (MPC) protocols in the PoW model. Similar to [10], their BA takes

O(nκ2) rounds.

Although the above-mentioned prior works achieve BA without a PKI [10, 72,

95], their techniques are not what we need to achieve O(1)-round BA. In fact, we

notice that achieving O(1)-round BA protocols requires very particular techniques

that have been studied [1, 2, 63, 93, 118, 119, 129] in the classical setting for many

years and this round reduction is very challenging to achieve.

3.3. Discussion and Future Work

In this work, we are able to achieve (expected) constant round byzantine agree-

ment in the resource-constrained VDF model of computation, without any PKI

assumption. We consider an adaptive adversary, controlling q parties, with a com-

putational speedup of κ, such that q · (⌊κ⌋ + 1) < n holds. One of the crucial

assumptions of our VDF model is to bound the number of VDF evaluations an ad-

versary is able to compute in parallel, as opposed to the model of Wan et. al [140],

where the adversary can make any polynomial number of parallel evaluations. Such

a restriction models an adversary, whose total adversarial computational power is

less than half of the total computational power – this is same as honest majority

assumption in the PoW model. One of the crucial steps for achieving (expected)

constant round BA is to setup a graded PKI in constant number of rounds. To

achieve the property of bounded number of identities of our graded PKI, we need

46

3. Round Efficient Byzantine Agreement from VDFs

to rely on the honest majority assumption of computational power. Wan et al.

however assumes a PKI to obtain their results, hence they do not come across a

similar problem. Naturally, an open question would be to achieve our results in

presence of a stronger adversary, that can compute arbitrary (polynomial) number

of VDF evaluations in parallel. Our results are in the synchronous communication

model, where parties are assumed to have synchronized clocks. It would be inter-

esting to lift our results to a more realistic setting of partial synchrony or even

asynchronous mode of communication. Finally, we have only considered sequential

runs of all our protocols. It will also be interesting to investigate concurrent run

of our protocols, for instance in the universal composabality framework.

In this work, we also provide the first lower bound for communication complexity

of BA, in the resource-constrained model of computation. In more details, we show

that in the VDF model, without any trusted setup assumptions, no protocol can

achieve BA with less than O(
√
n) multicast communication complexity, in presence

of an adaptive adversary. An immediate open question would be to extend our

bound to the more generic PoW model. It also leaves room for a tighter bound in

such more generic models.

47

4. Distributed
Password-Authenticated
Symmetric-key Encryption

Outsourcing storage to cloud providers is not only a common approach in enter-

prise settings, but is also widely appreciated by end users relying on services such

as Dropbox, Google Drive, iCloud or Microsoft OneDrive to manage their personal

data. With data breaches happening on a daily basis, it is essential that personal

data kept in such cloud storage must be protected accordingly. The prevalent ap-

proach is to trust the cloud with properly encrypting the data, where the service

provider controls access to the respective encryption keys via standard user au-

thentication, mostly relying on username-password authentication. Clearly, such

a solution crucially relies on the honesty of the service provider who can otherwise

gain plaintext access to the users’ data.

A different approach is to let the user already encrypt the data before storing

it in the cloud, which is offered e.g., by Tresorit [135] or Mega [117]. Therein a

user client is locally encrypting the data and only uploads ciphertexts to the cloud.

The cryptographic keys are either generated and stored directly by the user client,

or (re)-derived from a human-memorizable password that the user enters into the

local client. The former provides strong security guarantees, but is cumbersome to

use as it relies on users’ being able to manage and securely store cryptographic keys.

The latter provides (roughly) the same convenience and usability as standard cloud

provides as it does not require secure storage on the user side, but is inherently

vulnerable to so-called offline attacks: Since encryption keys are derived from a

low-entropy password, a corrupt service provider or an attacker gaining access to

the ciphertexts, can attempt to decrypt the files by guessing the user’s password.

While recently some service providers have moved away from password and de-

ploy solutions where users are required to store key material (e.g., [84]), password-

based systems remain the only truly device-independent solution at our disposal.

In this work, we investigate how users can password-encrypt their cloud data with-

out storing any key material, and without making their encrypted data prone to

offline password-guessing attacks.

48

4. Distributed Password-Authenticated Symmetric-key Encryption

Known approaches to password-based encryption. One way to avoid the two

aforementioned issues is to use a distributed password-based key management sys-

tem: a user retrieves her encryption key from a set of servers, using only a pass-

word as input. This does not require the user to store any cryptograhpic material,

since the servers take over this role, and the distribution of keys among servers

thwarts of offline attacks on the password. There exist various cryptographic

primitives suitable to implement such password-protected key retrieval, for exam-

ple Password-Authenticated Secret Sharing (PASS/PPSS) [14] and Oblivious Key

Management [89] (discussed in details in Section 4.2).

All aforementioned schemes allow users to turn a password into an encryption

key. In practice, this means that users either encrypt all their data with the same

key, or they must memorize as many passwords as keys that they want to use.

For optimal usability and security, in a password-based key management scheme,

we want to ask the user to remember only few but strong passwords, and “behind

the scenes” still use different encryption keys for every piece of data she wants

to encrypt. Varying encryption keys is desirable to mitigate the effect of security

breaches of the user’s device, or of irresponsible handling of secret keys on the user

side. We note that there exist other ways to mitigate the effect of such attacks,

for example allowing for efficient updates of the encryption key, which however

provide no protection in case the attacker is already in posession of ciphertexts.

In this work, we prefer one-time usage of encryption keys over updatability, since

then revelance of one key upon compromise does not impact the confidentiality of

more than one encrypted piece of data.

4.1. Our Contributions

From the discussion above, the requirement for a usable yet strongly secure password-

based encryption scheme is clearly evident. To close this gap, we build our

primitive DPaSE : Distributed Password-Authenticated Symmetric-key Encryp-

tion scheme. DPaSE allows users to securely and conveniently encrypt and decrypt

their data with different encryption keys while relying only on a single password

and the assistance of n servers. We provide an efficient realization based on a

new type of Oblivious Pseudorandom Function (OPRF) that supports correlated

evaluations of blind inputs, which we believe to be of independent interest. Our

results have been disseminated in the following publication, which can be found

in Appendix E.

[48] P. Das, J. Hesse, and A. Lehmann. “DPaSE: Distributed Password-Authenticated

Symmetric-Key Encryption, or How to Get Many Keys from One Password”.

49

4. Distributed Password-Authenticated Symmetric-key Encryption

Figure 4.1.: Classical password-based server-assisted KMS yields one key per pass-
word to encrypt all the different user data. Our solution DPaSE is a
server-assisted encryption scheme that allows to derive different en-
cryption keys from only one password.

In: ASIA CCS ’22: ACM Asia Conference on Computer and Communications

Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022. 2022, pp. 682–696. doi:

10.1145/3488932.3517389. url: https://doi.org/10.1145/3488932.

3517389.

We summarize our main ideas from [48] below1.

4.1.1. Our Primitive DPaSE and its Properties

DPaSE is not a mere key management system, but has built-in encryption of data

with the retrieved keys already. Encryption and decryption is carried out locally

by the user using the retrieved key. This integrated modeling allows us to demand

the following strong security and functionality from a DPaSE system, covering

guarantees with respect to both passwords and encryption of data.

• Correct Encryption. If a user types an incorrect password upon encryption,

her data is not encrypted and the user instead obtains an error message.

This property is important to avoid that a user accidentally encrypts her

data with unrecoverable secret keys.

1Major parts of this chapter has been taken verbatim from Section 1, Appendix E.

50

https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389

4. Distributed Password-Authenticated Symmetric-key Encryption

• No Reuse of Keys. Every ciphertext is created with an individual key. Hence,

in case a user loses one of her encryption keys, all but one of her encrypted

files remain confidential.

• Security against Offline Attacks. As long as at least one server is honest,

the encrypted data (or rather the underlying password) cannot be offline

attacked. And even if eventually all servers are corrupted, they cannot

decrypt the data immediately but must still perform an offline attack on

the password – thus when users have chosen strong passwords, their data

remains secure.

• Security against Online Attacks. To detect and prevent online guessing at-

tacks, the servers learn which user is trying to encrypt or decrypt, and

whether her entered password was correct. In particular, we require that

every file access/decryption requires explicit approval of all servers. When

an honest server has recognized suspicious behaviour or was alerted by the

user herself, it can enforce user-specific rate limiting or even fully block a

certain account.

• Obliviousness. Servers do not learn anything about the files (plain- or ci-

phertext) the user wants to access2. It was demonstrated [85, 103] that such

leakage would have devastating effects on the user’s privacy.

• Authenticated Encryption. An adversary cannot plant wrong information

into the outsourced storage. Thus, unless the adversary knows the user’s

password (and is assisted by all servers) it must be infeasible to create valid

ciphertexts.

Security Model in the UC Framework. We formally define these properties

by means of an ideal functionality FDPaSE using the Universal Composability

(Universally Composable (UC)) framework [31], which is known to allow for the

most realistic modeling for how users (mis)handle passwords. In game-based secu-

rity models, users choose their passwords at random from known distributions and

are assumed to behave perfectly, i.e., never make a typo when using a password.

This clearly does not reflect reality, where users share or re-use passwords, and

make mistakes when typing them. The UC framework models that much more

naturally as therein the environment provides the passwords. Thus, a UC security

notion guarantees the desired security properties without making any assumptions

2We do not want to go further and hide the identity of the user in his requests, since otherwise
we would not be able to protect against online guessing attacks.

51

4. Distributed Password-Authenticated Symmetric-key Encryption

regarding the passwords’ distributions or usages. Our modeling also ensures that

any DPaSE protocol is secure when executed concurrently with other systems,

thanks to the strong composability guarantees of the UC framework.

However, these desirable features come at a cost. In order to end up with a

manageable and understandable security definition (i.e., UC functionality), we

need to make compromises and protect against some attacks that might not be of

high relevance to DPaSE in practise3. For example, we need to prevent servers from

intentionally deriving encryption keys from wrong passwords, which makes our

protocol a bit more costly and restricted to security against semi-honest servers.

There exist many ways of protecting against such attacks, each with different

trade-offs. For example, we could use client-side caching of password-dependent

inputs, leaving it up to the client to use the correct password. Such a solution would

however not suffice for our purpose of achieving a concise UC definition (a malicious

client could simply mess up the caching then, introducing valid encryptions under

wrong passwords to the system). Hence, in this paper, we opt for a stronger

and cleaner definition, at the cost of slightly worse efficiency and slightly weaker

corruption model.

4.1.2. Our DPASE Protocol

We present an efficient protocol that provably realizes our functionality FDPaSE.

The high-level idea of the protocol is very simple and follows the known paradigm

of password-based protocols to turn the password into cryptographic key material

using an OPRF [16, 90]. More detailed, to create an account, the user derives

a signing key (upk , usk) ← OPRF(K, uid , pw) from her username and password,

where the OPRF key K is split among the n servers and the evaluation reveals the

username to the servers to later allow for user-specific rate limiting. The servers

store (uid , upk) upon registration.

To encrypt a file, the user again enters uid , pw ′ and starts by re-running the steps

from account creation to recover her signing key pair (upk , usk). She then signs a

fresh nonce with usk and sends it to the servers who verify it against the stored upk ,

thereby verifying that pw = pw ′. If the password is correct, the user and server

engage in a follow-up OPRF evaluation where an object-specific encryption key is

3A UC functionality needs to “list” all potential attacks that can be mounted against a protocol.
While some attacks might be benign in practise and we might be okay with the threat they
are imposing on us, every such attack still shows in the functionality. It is one of the main
challenges in using the UC framework to find a mid-way between a not overly strong notion
that still allows for efficient instantiations, and one that is not overly cluttered with such
benign attacks.

52

4. Distributed Password-Authenticated Symmetric-key Encryption

derived. The OPRF evaluation thereby “reuses” the previously entered uid , pw ′

to ensure that the actual encryption keys are also bound to the user’ identity and

correct password. This prevents users from accidentally encrypting data under a

wrong password. To ensure obliviousness, the object for which the key is derived

is hidden in the evaluation.

Decryption works almost analogously to encryption, verifying the password and

– if correct – recovering the object-specific encryption key via the distributed

OPRF. The generated ciphertexts and decryption procedure also include checks

to guarantee the desired ciphertext integrity.

Extendable Distributed Partially-Oblivious PRF. The core of our DPaSE pro-

tocol is a new type of OPRF that we believe to be of independent interest for

many password-based applications. So far, OPRFs have been designed as single-

evaluation primitives4 that can either be fully or partially-blind. Thus, the user

sends a (partially) blind query, and receives a single output related to that in-

put. What we need for DPaSE though is an OPRF that “remembers” the blindly

provided password from a previous query and re-uses it in a follow-up evaluation:

we need to perform a dedicated password check and also want to ensure that en-

cryption is done with the same password that was verified. We model that as an

extension query, where a second OPRF query re-uses the blinded input from a

previous request. This extension feature is required on top of partial -blindness (as

the uid ’s must be a known input to all parties) and the distributed setting. We

formalize the desired properties of such an extendable OPRF in the UC framework

and propose a secure instantiation. We believe that this is a contribution of inde-

pendent interest. Namely, using an OPRF with th extendability property could

generally add secure password verification to protocols that deploy an OPRF to

bootstrap cryptographic material from passwords.

Our OPRF construction is based on the classical double-hash DH scheme, basi-

cally combining all tricks that have been used in this context into a single scheme.

The challenge thereby is that our second OPRF call which blindly carries over the

input from the first call now has three inputs: the non-blind part (xpub = uid), and

two blinded values, namely the blinded (xpriv1 = pw) from the previous evaluation

and the new input (xpriv2 = oid). Previous partially-blind OPRFs deal with two

inputs only xpub and xpriv which are mostly combined through a pairing [16, 61],

with the final PRF being of the form HT (e(H1(xpriv), xpub)
K , xpriv). In our construc-

tion, we will already need both “slots” of the pairing to combine the two blinded

4With the exception of OPRF with batch evaluations under several keys [100, 107]. This is
orthogonal to our problem since we have a single OPRF key.

53

4. Distributed Password-Authenticated Symmetric-key Encryption

inputs, and therefore must find a different place to include the public input. We

take inspiration from [89] and replace the direct use of the server’s secret key K by

K ′ ← F(K, uid) where F is a standard PRF. Thus, overall our new OPRF computes

the output for an extended query as HT (e(H1(xpriv1),H2(xpriv2))
F(K,xpub), xpriv1, xpriv2).

The first (non-extended) query, just consisting of xpub and xpriv1 has the same form

and simply sets xpriv2 = 1.

This construction allows us to combine three values into a single evaluation,

but this extendability feature comes for a price. First, relying on exponents that

are derived from a standard PRF K ′ ← F(K, uid) only allows for a distributed,

but not threshold protocol. The distributed version simply considers the additive

combination of all K ′ as the implicit overall secret key (per xpub). Second, there are

currently no efficient proofs that allow to check whether the servers have computed

the second evaluation correctly – which again stems from the use of the standard

PRF to derive the OPRF secret key share. As we will require correct computation

of OPRF outputs in our DPaSE protocol, we must assume that the servers in

the OPRF are at most honest-but-curious. We stress that considering honest-

but-curious servers already captures the main threat to passwords: an adversary

stealing the password database (or other offline-attackable information). To our

knowledge, DPaSE is currently the only protocol being secure in the presence of

such attacks.

Lastly, we note that extendability is a property that could as well be ensured on

the application level by, e.g., caching the user’s password on the client machine.

While this would enable using DPaSE with a standard, i.e., single-evaluation OPRF

and make our protocol simpler and more efficient, it allows for a
”
benign“ attack

which prevents a security proof. Namely, an adversary knowing the password of an

honest user could produce encryption keys under bogus passwords. If the honest

user later tries to decrypt such a maliciously crafted ciphertext, decryption would

fail – yet the adversary can decrypt using the bogus password again. While this

attack is rather harmless in practice, to prove the password-caching version secure

one would have to include this imperfection into the security definition, with a

different set of “shadow passwords” for each (!) ciphertext that the adversary

could use (even for honest accounts). With the extendability property, we enforce

password consistency on the protocol level and hence avoid cluttering the security

definition of DPaSE with attacks resulting from inconsistent usage of passwords.

Formalization of our OPRF primitive, instantiation of our OPRF protocol and

its security analysis can be found in Section 3, Appendix E, while DPaSE func-

tionality, protocol instantiation and corresponding security analysis is provided in

Section 4, Appendix E.

54

4. Distributed Password-Authenticated Symmetric-key Encryption

4.1.3. Evaluation and Comparison

Scheme
#(Exponentiations + Pairings) per Encryption

client/rate limiter server
PHE [104] 7 exps (in G) 10 exps (in G)

ΠDPaSE (Our Work) 10 exps (= 2G1 + 2G2 +
4GT + 2Gp-256)

4 exps (= 2GT+2Gp-256) +2
pairings

Table 4.1.: Comparison of our DPaSE protocol with closest password-based encryp-
tion scheme PHE, where the exponentiations are counted per group G,
G1, G2, GT , the pairing is mapped as G1 × G2 : → GT and Gp-256

represents the prime group in the ECDSA signature scheme secp256r1.

In this section, we consider an instantiation of our DPaSE protocol, where the

OPRF functionality is instantiated with our OPRF protocol, and the signature

scheme SIG is instantiated with ECDSA. We report on the efficiency of our scheme,

by counting the number of exponentiations per group and pairings, being the most

expensive operations of such protocols. We compare our DPaSE protocol with what

we believe to be the closest related password-based encryption scheme, namely

Password Hardened Encryption (PHE) [104] (see also Table 4.3 for the overlap of

properties of both schemes). Considering each exchange of messages between the

client and servers as one round of communication, our DPaSE protocol requires

2 rounds for Account Creation and 3 rounds for Authentication followed by a

Encryption (Decryption) request.

Protocol
No. of Execution Requests
Servers Time (in ms) per server

user server (per second)

Account Creation

2 18 13 76
6 19 13 76
8 19 13 76
10 19 13 76

Authenticate + Encrypt

2 32 27 37
6 37 27 37
8 40 27 37
10 43 27 37

Table 4.2.: Timing measurements of our DPaSE protocol run between one user and
k = {2, 6, 8, 10} number of servers.

55

4. Distributed Password-Authenticated Symmetric-key Encryption

We carried out a proof-of-concept implementation [57] of our DPaSE protocol

and report preliminary benchmarks on the same. We implement in Java, and use

the MIRACL - AMCL library for the pairing computation and exponentiation

operations. We use the Boneh-Lynn-Shacham pairing with 461 bit curves for the

pairing G1×G2 → GT in our OPRF protocol, ECDSA with sec256r1, SHA-512 as

the underlying hash function H, AES-256 to construct the standard PRF function

F and H-PRG and the Java’s inbuilt KeyPairGenerator class for user key pair

generation SIG.KGen. The elements in groups G1, G2 and GT are implemented

using single exponentiation operations with the respective group generators. The

underlying hash functions are implemented by first applying SHA-512 followed by

an exponentiation in the groups G1, G2 and GT respectively.

We measured our implementation on a machine running a Intel Core i7-7500U

series CPU with 4 virtual CPUs, 16 GiB of RAM. We focused on measuring the lo-

cal computation times both on the client and the server sides, and did not consider

delays due to network latency. The details of our timing measurements correspond-

ing to our DPaSE protocol run between one user and a number of servers can be

found in the Table 4.2. The time taken by each server for processing an account

creation is 13 milliseconds, while that required for processing a user authentication

followed by an encryption request is 27 milliseconds. Consequently, each server is

able to process 76 account creation requests and 37 encryption requests per sec-

ond. Since the computation underlying an encryption or a decryption is almost

the same, we have only detailed the encryption timings. We stress here that the

timing benchmarks can be further improved by exploiting the parallelizability of

the underlying algorithms as well as utilizing the capabilities of multiple cores of

a computer. Since this enhancement was not the focus of our work, in our imple-

mentation, we have relied on standard cryptographic libraries as mentioned above,

which create the bottleneck in our timing measures. Close to our work, Pythia

achieves a throughput of 130 requests ps [ECS+15] (also pointed in [LER+18]). In

theory, efficiency of our DPaSE protocol is lower-bounded by half the throughput

of Pythia, which is 65 enc/dec requests ps. This is because each enc/dec request

in our DPaSE protocol requires 2 OPRF evaluations, and each has the same com-

putational cost as one Pythia evaluation. We note that password verification and

encryption both add only little overhead.

56

4. Distributed Password-Authenticated Symmetric-key Encryption

Properties\Schemes
Key Management Schemes (KMS) Encryption Schemes
PASS scheme PASS scheme OKMS DiSE (Threshold) PHE DPaSE

[88] Memento [30] [89] [4] [104], [26] this work
Password correctness ensured - - ✓ ✓

Can derive multiple keys per password - - - ✓

Security against online attacks - ✓ ✓ ✓

Security against offline attacks ✓ ✓ ✓ ✓

Password remains private ✓ ✓ - ✓

Access pattern remains private - - ✓ ✓

Authenticated encryption ✓ ✓ ✓ ✓

Who encrypts? (U=User, S=Server) U S S U
Mitigation of compromised encryption keys no reuse & key rotation - key rotation no reuse

Secure in concurrent settings ✓ ✓ - - - ✓

Table 4.3.: Properties of server-assisted encryption and encryption key retrieval
(KMS) schemes. Gray cells are not applicable. More precisely, pass-
word properties do not apply to OKMS and DiSE schemes, as they
rely on strong user authentication. Likewise, encryption properties do
not apply to the KMS schemes, since their purpose is to recover an
encryption key from a password.

4.2. Related Work

Password-authenticated secret sharing (PASS/PPSS) allows a user to recover a

strong secret that is shared among n servers when she can enter the correct pass-

word [14, 86, 87, 88]. In contrast to end users, servers can easily maintain strong

cryptographic keys which is leveraged by PASS to thwart offline attacks against

the password (and consequently on the shared secret key) if at least one, or a

certain threshold, of the servers is not compromised. While this concept is shared

between PASS and DPaSE, PASS can only be used to derive one encryption key

per password, while DPaSE is required to encrypt each piece of data under different

keys, yet enabling the user to encrypt all her data under the same password.

Password-hardened encryption (PHE) [104] targets a related setting, where a

user outsources key management, encryption and decryption to a so-called rate

limiter. The user can send encryption/decryption requests through a server, but

needs to provide a correct password. The rate limiter can be implemented in

a threshold version [26] to further enhance PHE’s security. The scheme allows

a mechanism of key rotation, to mitigate against compromises or simply as a

routine process. Key rotation involves the server and the rate limiter updating

their respective keys as well as the ciphertexts accordingly. In PHE the frontend

server is fully trusted, as it learns the user’s password and keys. PHE schemes

are very efficient (no OPRF is required!) and a good option in settings where the

client fully trusts the server, since both password and access pattern on user’s data

are shared with the server. In our work, we do not want to assume such trust and

hence opt for client-side encryption of data to hide access patterns.

Updatable Oblivious Key Management [89] also relies on a OPRF to derive file-

57

4. Distributed Password-Authenticated Symmetric-key Encryption

specific encryption keys with the help of a (single) external server for increased

security. Their work focuses on an enterprise setting for storage systems though,

i.e., it relies on strong authentication between the client (that wants to encrypt

or decrypt) and the server that holds the OPRF key. This is a first difference

to DPaSE: our scheme achieves oblivious key management without strong client-

authentication. Second, their system uses key rotation – similar to PHE and the

general concept of updatable encryption with post-compromise security [99, 108]

– to update encryption keys and the corresponding ciphertexts as a measure to

mitigate the effect of security breaches. The approach of our DPaSE protocol is

orthogonal: we mitigate the risk of data breaches by using a distributed setting

instead of key rotation: the information to recover the encryption keys is split

across n servers, and the file-specific encryption keys are secure as long as one

server remains uncompromised.

The DiSE protocol [4] and its improvements [36, 141] for distributed symmetric

encryption consider strong authentication only. In these protocols, a group of n

parties jointly controls encryption keys under which ciphertexts for the group get

encrypted. The secret key material is split among the group and any member of

the group can request decryption of ciphertexts which is again done jointly by all

member. DiSE implicitly – yet crucially – relies on strong authentication to ensure

that only valid members of the group can make such requests, whereas we want

only a single user to encrypt or decrypt her files from a password. Nevertheless,

the authenticity checks in the encryption/decryption process of our protocol are

build upon the ideas of the DiSE protocol.

Finally, the PESTO protocol [16] for distributed single sign-on (SSO) relies on a

similar idea of first deriving a strong key pair from a distributed OPRF in order to

let a user authenticate to a number of servers. The overall application is different

though, SSO vs. encryption, and consequently also the desired functionality and

security are different. PESTO is in one aspect stronger than DPaSE since it features

proactive security, meaning that a once corrupted server can be sanitized to be

honest again. This strong aspect comes at a cost that is much more critical for

the targeted encryption use case than in SSO: PESTO guarantees no security

whatsoever when all servers are corrupt. In DPaSE, even in case of a full corruption

of all servers, the user’s data still remains confidential unless all servers jointly

mount a successful offline attack on her password. Thus, a dedicated offline attack

for each user (on top of corrupting all servers) would be required, and the encrypted

files of users with reasonably strong passwords can remain secure.

We give a detailed comparison of properties of the schemes that are closely

related to DPaSE in Table 4.3.

58

4. Distributed Password-Authenticated Symmetric-key Encryption

4.3. Discussion and Future Work

In this work, we formalize our interpretation of strong security and privacy by

introducing the notion of Distributed Password-Authenticated Symmetric Encryp-

tion (DPaSE). DPaSE uses ciphertext-specific encryption keys, prevents encryption

under mistyped passwords, hides users’ access pattern, protects against on- and

offline attacks on the user password, and maintains all these guarantees even in a

concurrent setting with arbitrary other protocols.

We answer the question above in the affirmative, by providing a DPaSE protocol

based on a new type of oblivious pseudo-random functions (OPRF). The OPRF

is evaluated twice: first, to let the user turn her password into high-entropy au-

thentication data, and second, to let the user compute a password- and ciphertext-

dependent symmetric key. We give a construction for such an OPRF, which we

believe is of independent interest as a new building block for password-based cryp-

tographic protocols. We provide proof-of-concept implementations for our DPaSE

construction (including our OPRF construction) and compare efficiency to related

protocols in the literature. Our protocol provides only little overhead over existing

solutions for password-based key retrieval/encryption, scales well in the number of

users and servers, and features provable security under standard bilinear discrete-

log based assumptions in the random oracle model.

An interesting future direction is the construction of a threshold version of

DPaSE, where only an arbitrary subset of all servers is required to participate

in each user request. This would improve usability of the protocol, since users

would not have to wait for answers of busy servers. Our user-specific OPRF

keys (oski = F(k, uid)) hinders us to choose oski as shares of standard thresh-

old scheme. However constructing F as threshold PRF might give an interesting

solution towards thresholdization. Finally, security in the presence of malicious

servers would be enabled by constructing a maliciously secure extendable dis-

tributed partially-oblivious PRF. Alternatively, for ensuring correct encryption it

seems to be sufficient to have servers use the same keys in both OPRF evaluations.

This flavor of verifiability in our OPRF seems to be achievable with standard tech-

niques. Although key switching between different requests of a specific user would

not significantly weaken but clutter the description of our DPaSE functionality, we

decide to present the more secure and cleaner version here, and leave the slightly

weaker but maliciously secure version as future work.

59

5. Conclusion

In this thesis, we considered decentralized systems in three different settings of

blockchain, byzantine agreement and cloud storage. As our contribution, we

put forth provable secure infrastructures in each of the above-mentioned set-

tings. In Chapter 2, we investigated blockchain wallets that constitutes a core

infrastructural element in blockchains. Although wallets are an indispensable key

management scheme for every cryptocurrency user to send/receive payments via

blockchain, there has been a significant lack of formal security analysis of wallets.

In this thesis, we made progress to close this gap, by designing provably secure wal-

lets from rerandomizable signature schemes. Our contribution is two-fold. First,

we analyzed the BIP32 standardization [143] of hierarchical deterministic wallets

and were able to provide concrete level of bit security for such wallets. To this

end, we put forth the first formalization of deterministic wallets in the hot/cold

wallet setting and were able to analyze the exact specification of BIP32 in our se-

curity model. In particular, our analysis revealed interesting implications for the

BIP32 standard as follows. The original BIP32 construction built from additively

rerandomized ECDSA achieves lower bit security than a (slightly) modified ver-

sion, obtained from multiplicatively rerandomized ECDSA. Second, we extended

our security analysis to the post-quantum setting and were able to provide first

constructions of post-quantum secure deterministic wallets from a post-quantum

variant of rerandomizable signatures.

Our work on deterministic wallets left several interesting open questions. Let us

go through some of the most important ones here. In our security analysis of hier-

archical deterministic wallets, we considered protection of secret keys through cold

wallet storage. However, as was observed for (non-hardened) derivation of keys,

secret key leakage from a wallet leads to secret key leakage of all parent wallets.

Thus, it is rather important to consider a stronger security model that tolerates

secret key leakage from (non-hardened) wallets. Threshold signature schemes [32,

33, 53, 74, 75, 76, 101, 109, 110] provides a solution to achieve such a stronger

model of security. Through a threshold signature scheme, it is possible to split

the secret key among several (cold wallet) devices and then subsequently use a

threshold t of these devices for signing/verifying signatures. For designing deter-

ministic wallets, however we require rerandomizable variant of threshold signature

60

5. Conclusion

schemes. It is not clear whether existing schemes are immediately rerandomizable.

It will be even more interesting to explore, whether it is possible to obtain a generic

transformation of threshold signature schemes to its rerandomizable variant.

Our analysis on BIP32 wallets mainly covers legacy cryptocurrencies such as Bit-

coin and Ethereum. However, wallets are equally relevant in other important cryp-

tocurrency settings such as proof of stake blockchains [5, 96] or privacy-preserving

currencies [17, 123]. There has been some prior work that addresses provably secure

design of proof of stake wallets [92]. However, their analysis considers signature

schemes as idealized cryptographic objects, hence lacks any concrete security pa-

rameters for practical wallets. Worth-mentioning is the works on Ring-Confidential

Transactions (Ring-CT) [105, 134, 145] that enables privacy-preserving payment

mechanism in Monero. However, there still remains a gap in the formalization of

wallets in such settings.

Through our analysis of post-quantum secure wallets, we were able to provide

concrete transaction throughput based on rerandomizable qTESLA signatures.

Our throughput is significantly (≈ 70 times) lower than classical ECDSA-based

transactsions. Hence there is a lot of room to improve efficiency of signature/key

size in case of rerandomizable post-quantum signatures.

In Chapter 3, we considered the problem of byzantine agreement (BA), which is

a fundamental problem in distributed computing as well one of the key elements in

the design of decentralized systems. Inspired by the setting of blockchains, we ex-

plore the question of achieving BA in a resource-constrained model of computation

without any PKI assumption. The core idea in this class of BA protocols is to use

a computational resource such as proof of work (PoW) to protect against Sybil at-

tacks. Prior works [10, 72, 95] were able to achieve BA in the resource-constrained

model of PoW, without setup and run in O(nκ2), O(κ), and O(n) rounds, respec-

tively. The natural question was whether it is possible to achieve BA in constant

rounds. We answered this question affirmatively, by designing for the first time, an

(expected) constant round BA protocol in this setting. At the core of our results,

we replace the PoW model with the sequential computational power of a verifiable

delay function (VDF) or the VDF model. We considered an adaptive adversary

that controls q number of parties and that can compute VDF outputs at a slightly

faster speed than honest parties. Similar to the honest majority assumption in

case of PoW, we bound the number of VDF evaluations an adversary can compute

in parallel, such that over a fixed interval of time t, the total number of adversarial

evaluations is less than half of the total VDF evaluations. A natural open ques-

tion would be: whether it is possible to obtain our results of constant round BA in

presence of an adversary, that can compute any (polynomial) number of VDFs in

parallel. Secondly, all of our results are in the synchronous communication model.

61

5. Conclusion

It would be interesting to extend our results to the more realistic model of partial

synchrony or asynchronous mode of communication. We were also able to show

a lower bound on the communication complexity of our BA protocol. Concretely,

we showed that no protocol can obtain BA without a PKI assumption in the VDF

model of computation, in less than O(
√
n) number of multicasts. An interesting

open question is to investigate whether our results can be extended to the more

generic PoW model of computation. However, we can not immediately see the so-

lution, since we would need a different simulation strategy in case of PoW. There

is also a lot of room to tighten our existing bound, which is comparitively weaker

than bounds in this area (which are quadratic, or of the form O(n) in the multicast

model, respectively).

In Chapter 3, we consider the problem of secure cloud storage for end-users.

Current solutions are provided by centralized service providers such as OneDrive,

Google Drive, Dropbox and so on. To overcome the dependence on centralized

services, we aimed to design a usable yet secure encryption mechanism suitable

for end-users. To this end, we build our new primitive: Distributed Password-

authenticated Symmetric-key Encryption or DPaSE. DPaSE serves as a key man-

agement scheme as well as an encryption service, that guarantees the follow-

ing: ciphertext-specific encryption keys, prevents encryption under mistyped pass-

words, hides users’ access pattern, protects against on- and offline attacks on the

user password, and maintains all these guarantees even in a concurrent setting

with arbitrary other protocols. As most password-based protocols, DPaSE also

relies on an oblivious PRF (OPRF) as the main building block. To instantiate our

DPaSE protocol, we need two consecutive OPRF evaluations on correlated blind

inputs. To this end, we built a new variant of OPRF, that can be of independent

interest. An interesting open question, is to get a threshold variant of DPaSE,

where only a threshold number of servers need to be available. Because of the

inherent structure of our OPRF keys as F(K, uid), we could not directly use them

as standard shares of a threshold scheme. An alternative approach would be to

replace F(·, ·) with a threshold PRF variant, without compromising too much on

efficiency.

62

6. Bibliography

[1] I. Abraham, T.-H. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren, and E.

Shi. “Communication Complexity of Byzantine Agreement, Revisited”. In: 2019,

pp. 317–326. doi: 10.1145/3293611.3331629.

[2] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren. “Synchronous Byzan-

tine Agreement with Expected O(1) Rounds, Expected O(n2) Communication,

and Optimal Resilience”. In: 2019, pp. 320–334. doi: 10.1007/978- 3- 030-

32101-7_20.

[3] A. Aggarwal, M. Movahedi, J. Saia, and M. Zamani. “Bootstrapping Public

Blockchains Without a Trusted Setup”. In: 2019, pp. 366–368. doi: 10.1145/

3293611.3331570.

[4] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal. “DiSE:

Distributed Symmetric-key Encryption”. In: 2018, pp. 1993–2010. doi:

10.1145/3243734.3243774.

[5] Algorand. https://www.algorand.com/. 2019.

[6] N. A. Alkadri, P. Das, A. Erwig, S. Faust, J. Krämer, S. Riahi, and P. Struck.

“Deterministic Wallets in a Quantum World”. In: CCS ’20: 2020 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event, USA,

November 9-13, 2020. 2020, pp. 1017–1031. doi: 10.1145/3372297.3423361.

url: https://doi.org/10.1145/3372297.3423361.

[7] N. A. Alkadri, P. Das, A. Erwig, S. Faust, J. Krämer, S. Riahi, and P. Struck.

Deterministic Wallets in a Quantum World. Cryptology ePrint Archive, Paper

2020/1149. https://eprint.iacr.org/2020/1149. 2020. url: https://

eprint.iacr.org/2020/1149.

[8] E. Alkim, P. S. L. M. Barreto, N. Bindel, J. Krämer, P. Longa, and J. E. Ricardini.

“The Lattice-Based Digital Signature Scheme qTESLA”. In: Applied Cryptogra-

phy and Network Security - 18th International Conference, ACNS 2020. 2020.

[9] A. Ambainis, M. Hamburg, and D. Unruh. “Quantum Security Proofs Using Semi-

classical Oracles”. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual

International Cryptology Conference, 2019. 2019, pp. 269–295.

63

https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1145/3293611.3331570
https://doi.org/10.1145/3293611.3331570
https://doi.org/10.1145/3243734.3243774
https://www.algorand.com/
https://doi.org/10.1145/3372297.3423361
https://doi.org/10.1145/3372297.3423361
https://eprint.iacr.org/2020/1149
https://eprint.iacr.org/2020/1149
https://eprint.iacr.org/2020/1149

6. Bibliography

[10] M. Andrychowicz and S. Dziembowski. “PoW-Based Distributed Cryptography

with No Trusted Setup”. In: 2015, pp. 379–399. doi: 10.1007/978- 3- 662-

48000-7_19.

[11] M. Arapinis, A. Gkaniatsou, D. Karakostas, and A. Kiayias. A Formal Treatment

of Hardware Wallets. Cryptology ePrint Archive, Report 2019/034. https://

eprint.iacr.org/2019/034. 2019.

[12] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken. “Dynamic and Efficient

Key Management for Access Hierarchies”. In: ACM Trans. Inf. Syst. Secur. 3

(2009). doi: 10.1145/1455526.1455531. url: https://doi.org/10.1145/

1455526.1455531.

[13] AWS Outage that Broke the Internet Caused by Mistyped Command. https:

//www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-

broke-the-internet-caused-by-mistyped-command. 2017.

[14] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. “Password-protected secret

sharing”. In: 2011, pp. 433–444. doi: 10.1145/2046707.2046758.

[15] S. Bai and S. Galbraith. “An improved compression technique for signatures

based on learning with errors”. In: Cryptographers’ Track at the RSA Conference.

Springer. 2014, pp. 28–47.

[16] C. Baum, T. K. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai. PESTO:

Proactively Secure Distributed Single Sign-On, or How to Trust a Hacked Server.

IEEE European Symposium on Security and Privacy. 2020.

[17] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M.

Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In: 2014

IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May

18-21, 2014. 2014, pp. 459–474.

[18] “Bitcoin: A peer-to-peer electronic cash system”. In: (2008). url: http : / /

bitcoin.org/bitcoin.pdf.

[19] Bitcoin Post-Quantum. https://bitcoinpq.org/.

[20] BitTorrent. http://www.bittorrent.org/. 2015.

[21] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. “Verifiable Delay Functions”. In:

2018, pp. 757–788. doi: 10.1007/978-3-319-96884-1_25.

[22] D. Boneh, M. Drijvers, and G. Neven. Compact Multi-Signatures for Smaller

Blockchains. Cryptology ePrint Archive, Report 2018/483. https://eprint.

iacr.org/2018/483. 2018.

[23] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures from the Weil Pairing”.

In: J. Cryptology 4 (2004), pp. 297–319. doi: 10.1007/s00145-004-0314-9.

url: https://doi.org/10.1007/s00145-004-0314-9.

64

https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19
https://eprint.iacr.org/2019/034
https://eprint.iacr.org/2019/034
https://doi.org/10.1145/1455526.1455531
https://doi.org/10.1145/1455526.1455531
https://doi.org/10.1145/1455526.1455531
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
https://doi.org/10.1145/2046707.2046758
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://bitcoinpq.org/
http://www.bittorrent.org/
https://doi.org/10.1007/978-3-319-96884-1_25
https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/483
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9

6. Bibliography

[24] J. Breitner and N. Heninger. “Biased Nonce Sense: Lattice Attacks against Weak

ECDSA Signatures in Cryptocurrencies”. In: IACR Cryptology ePrint Archive

(2019), p. 23. url: https://eprint.iacr.org/2019/023.

[25] M. Brengel and C. Rossow. “Identifying Key Leakage of Bitcoin Users”. In:

Research in Attacks, Intrusions, and Defenses - 21st International Symposium,

RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018, Proceedings. 2018,

pp. 623–643.

[26] J. Brost, C. Egger, R. W. F. Lai, F. Schmid, D. Schröder, and M. Zoppelt.

“Threshold Password-Hardened Encryption Services”. In: CCS ’20: 2020 ACM

SIGSAC Conference on Computer and Communications Security. 2020. url:

https://doi.org/10.1145/3372297.3417266.

[27] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bul-

letproofs: Short Proofs for Confidential Transactions and More”. In: 2018 IEEE

Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San

Francisco, California, USA. 2018, pp. 315–334.

[28] V. Buterin. Deterministic Wallets, Their Advantages and their Understated

Flaws. https://bitcoinmagazine.com/articles/deterministic-wallets-

advantages-flaw-1385450276/. 2013.

[29] V. Buterin. “Ethereum white paper”. In: (2013). url: https://ethereum.org/

en/whitepaper/.

[30] J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. “Memento: How to

Reconstruct Your Secrets from a Single Password in a Hostile Environment”. In:

2014, pp. 256–275. doi: 10.1007/978-3-662-44381-1_15.

[31] R. Canetti. “Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols”. In: 2001, pp. 136–145. doi: 10.1109/SFCS.2001.959888.

[32] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. “UC Non-

Interactive, Proactive, Threshold ECDSA with Identifiable Aborts”. In: CCS ’20:

2020 ACM SIGSAC Conference on Computer and Communications Security,

Virtual Event, USA, November 9-13, 2020. 2020, pp. 1769–1787.

[33] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. “Two-

Party ECDSA from Hash Proof Systems and Efficient Instantiations”. In: Ad-

vances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part

III. 2019, pp. 191–221.

[34] D. Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms”. In: Commun. ACM 2 (1981), pp. 84–88.

65

https://eprint.iacr.org/2019/023
https://doi.org/10.1145/3372297.3417266
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276/
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276/
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/978-3-662-44381-1_15
https://doi.org/10.1109/SFCS.2001.959888

6. Bibliography

[35] D. Chaum, M. Larangeira, M. Yaksetig, andW. Carter. “W-OTS+ UpMy Sleeve!

A Hidden Secure Fallback for Cryptocurrency Wallets”. In: Applied Cryptography

and Network Security - 19th International Conference, ACNS 2021, Kamakura,

Japan, June 21-24, 2021, Proceedings, Part I. 2021, pp. 195–219.

[36] M. Christodorescu, S. Gaddam, P. Mukherjee, and R. Sinha. “Amortized Thresh-

old Symmetric-key Encryption”. In: CCS ’21: 2021 ACM SIGSAC Conference

on Computer and Communications Security. 2021. url: https://doi.org/10.

1145/3460120.3485256.

[37] B. Cohen and K. Pietrzak. The Chia Network Blockchain. Tech. rep. Chia Net-

work, 2019.

[38] Comparitech. Worldwide cryptocurrency heists tracker (updated daily). https://

www.comparitech.com/crypto/biggest-cryptocurrency-heists/. Updated

daily.

[39] J.-S. Coron. “Optimal Security Proofs for PSS and Other Signature Schemes”.

In: 2002, pp. 272–287. doi: 10.1007/3-540-46035-7_18.

[40] N. T. Courtois, P. Emirdag, and F. Valsorda. “Private Key Recovery Combination

Attacks: On Extreme Fragility of Popular Bitcoin Key Management, Wallet and

Cold Storage Solutions in Presence of Poor RNG Events”. In: IACR Cryptology

ePrint Archive (2014), p. 848.

[41] P. Das, L. Eckey, S. Faust, J. Loss, and M. Maitra. Round Efficient Byzantine

Agreement from VDFs. Cryptology ePrint Archive, Paper 2022/823. https://

eprint.iacr.org/2022/823. 2022.

[42] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust,

and A. Sadeghi. “FastKitten: Practical Smart Contracts on Bitcoin”. In: 28th

USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,

August 14-16, 2019. 2019, pp. 801–818.

[43] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. “The Exact Security of BIP32

Wallets”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Com-

munication Security, Virtual Event, Republic of Korea, November 15 - 19, 2021.

2021, pp. 1020–1042. doi: 10.1145/3460120.3484807. url: https://doi.org/

10.1145/3460120.3484807.

[44] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. The Exact Security of BIP32

Wallets. Cryptology ePrint Archive, Paper 2021/1287. https://eprint.iacr.

org/2021/1287. 2021. url: https://eprint.iacr.org/2021/1287.

66

https://doi.org/10.1145/3460120.3485256
https://doi.org/10.1145/3460120.3485256
https://www.comparitech.com/crypto/biggest-cryptocurrency-heists/
https://www.comparitech.com/crypto/biggest-cryptocurrency-heists/
https://doi.org/10.1007/3-540-46035-7_18
https://eprint.iacr.org/2022/823
https://eprint.iacr.org/2022/823
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807
https://eprint.iacr.org/2021/1287
https://eprint.iacr.org/2021/1287
https://eprint.iacr.org/2021/1287

6. Bibliography

[45] P. Das, S. Faust, and J. Loss. “A Formal Treatment of Deterministic Wallets”. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS 2019, London, UK, November 11-15, 2019. 2019, pp. 651–

668. doi: 10.1145/3319535.3354236. url: https://doi.org/10.1145/

3319535.3354236.

[46] P. Das, S. Faust, and J. Loss. A Formal Treatment of Deterministic Wallets.

Cryptology ePrint Archive, Paper 2019/698. https://eprint.iacr.org/2019/

698. 2019. url: https://eprint.iacr.org/2019/698.

[47] P. Das, J. Hesse, and A. Lehmann. DPaSE: Distributed Password-Authenticated

Symmetric Encryption. Cryptology ePrint Archive, Paper 2020/1443. https:

//eprint.iacr.org/2020/1443. 2020. url: https://eprint.iacr.org/2020/

1443.

[48] P. Das, J. Hesse, and A. Lehmann. “DPaSE: Distributed Password-Authenticated

Symmetric-Key Encryption, or How to Get Many Keys from One Password”.

In: ASIA CCS ’22: ACM Asia Conference on Computer and Communications

Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022. 2022, pp. 682–696. doi:

10.1145/3488932.3517389. url: https://doi.org/10.1145/3488932.

3517389.

[49] P. Das, D. B. Roy, and D. Mukhopadhyay. “Automatic Generation of HCCA Re-

sistant Scalar Multiplication Algorithm by Proper Sequencing of Field Multiplier

Operands”. In: PROOFS 2017, 6th International Workshop on Security Proofs

for Embedded Systems, Taipei, Taiwan, September 29th, 2017. 2017, pp. 33–49.

[50] P. Das, D. B. Roy, and D. Mukhopadhyay. “Automatic generation of HCCA-

resistant scalar multiplication algorithm by proper sequencing of field multiplier

operands”. In: J. Cryptogr. Eng. 3 (2019), pp. 263–275.

[51] P. Das, D. B. Roy, and D. Mukhopadhyay. “Improved Atomicity to Prevent

HCCA on NIST Curves”. In: Proceedings of the 3rd ACM International Workshop

on ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May 30

- June 03, 2016. 2016, pp. 21–30.

[52] R. Dingledine, N. Mathewson, and P. Syverson. “Tor: The Second-Generation

Onion Router”. In: 13th USENIX Security Symposium (USENIX Security 04).

San Diego, CA, 2004. url: https://www.usenix.org/conference/13th-

usenix-security-symposium/tor-second-generation-onion-router.

[53] J. Doerner, Y. Kondi, E. Lee, and A. Shelat. “Secure Two-party Threshold

ECDSA from ECDSA Assumptions”. In: 2018 IEEE Symposium on Security and

Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA.

2018, pp. 980–997.

[54] D. Dolev and H. R. Strong. “Authenticated Algorithms for Byzantine Agree-

ment”. In: SIAM Journal on Computing 4 (1983), pp. 656–666.

67

https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://eprint.iacr.org/2019/698
https://eprint.iacr.org/2019/698
https://eprint.iacr.org/2019/698
https://eprint.iacr.org/2020/1443
https://eprint.iacr.org/2020/1443
https://eprint.iacr.org/2020/1443
https://eprint.iacr.org/2020/1443
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router

6. Bibliography

[55] J. Don, S. Fehr, C. Majenz, and C. Schaffner. “Security of the Fiat-Shamir Trans-

formation in the Quantum Random-Oracle Model”. In: 2019, pp. 356–383. doi:

10.1007/978-3-030-26951-7_13.

[56] J. R. Douceur. “The sybil attack”. In: International Workshop on Peer-to-Peer

Systems. Springer. 2002, pp. 251–260.

[57] DPaSE PoC Implementation. https : / / gitlab . com / DPaSEcode / dpase -

submission-code.

[58] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. “Lattice signatures and

bimodal Gaussians”. In: Advances in Cryptology–CRYPTO 2013. 2013, pp. 40–

56.

[59] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D.

Stehlé. “CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme”. In:

Transactions on Cryptographic Hardware and Embedded Systems - TCHES 2018

1 (2018), pp. 238–268.

[60] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. “MatRiCT: Efficient,

Scalable and Post-Quantum Blockchain Confidential Transactions Protocol”. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-

cations Security. 2019, pp. 567–584.

[61] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart. “The Pythia

PRF Service”. In: 2015, pp. 547–562.

[62] C. Fan, Y. Tseng, H. Su, R. Hsu, and H. Kikuchi. “Secure Hierarchical Bitcoin

Wallet Scheme Against Privilege Escalation Attacks”. In: IEEE Conference on

Dependable and Secure Computing, DSC 2018. 2018, pp. 1–8.

[63] P. Feldman and S. Micali. “Optimal Algorithms for Byzantine Agreement”. In:

1988, pp. 148–161. doi: 10.1145/62212.62225.

[64] L. D. Feo, S. Masson, C. Petit, and A. Sanso. “Verifiable Delay Functions from

Supersingular Isogenies and Pairings”. In: Advances in Cryptology - ASIACRYPT

2019 - 25th International Conference on the Theory and Application of Cryptology

and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part

I. 2019, pp. 248–277.

[65] M. Fersch, E. Kiltz, and B. Poettering. “On the One-Per-Message Unforgeability

of (EC)DSA and Its Variants”. In: Theory of Cryptography. Cham, 2017, pp. 519–

534.

[66] M. Fersch, E. Kiltz, and B. Poettering. “On the Provable Security of (EC)DSA

Signatures”. In: 2016, pp. 1651–1662. doi: 10.1145/2976749.2978413.

[67] M. Fischlin and N. Fleischhacker. “Limitations of the Meta-reduction Technique:

The Case of Schnorr Signatures”. In: Advances in Cryptology - EUROCRYPT

2013. 2013, pp. 444–460.

68

https://doi.org/10.1007/978-3-030-26951-7_13
https://gitlab.com/DPaSEcode/dpase-submission-code
https://gitlab.com/DPaSEcode/dpase-submission-code
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/2976749.2978413

6. Bibliography

[68] N. Fleischhacker, J. Krupp, G. Malavolta, J. Schneider, D. Schröder, and M.

Simkin. “Efficient Unlinkable Sanitizable Signatures from Signatures with Re-

randomizable Keys”. In: 2016, pp. 301–330. doi: 10.1007/978-3-662-49384-

7_12.

[69] C. Ganesh, Y. Kondi, A. Patra, and P. Sarkar. “Efficient Adaptively Secure Zero-

Knowledge from Garbled Circuits”. In: 2018, pp. 499–529. doi: 10.1007/978-

3-319-76581-5_17.

[70] J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol: Analysis

and Applications. Cryptology ePrint Archive, Paper 2014/765. https://eprint.

iacr.org/2014/765. 2014. url: https://eprint.iacr.org/2014/765.

[71] J. A. Garay, A. Kiayias, and N. Leonardos. “The Bitcoin Backbone Protocol:

Analysis and Applications”. In: 2015, pp. 281–310. doi: 10.1007/978-3-662-

46803-6_10.

[72] J. A. Garay, A. Kiayias, N. Leonardos, and G. Panagiotakos. “Bootstrapping

the Blockchain, with Applications to Consensus and Fast PKI Setup”. In: 2018,

pp. 465–495. doi: 10.1007/978-3-319-76581-5_16.

[73] J. A. Garay, A. Kiayias, R. M. Ostrovsky, G. Panagiotakos, and V. Zikas.

“Resource-Restricted Cryptography: Revisiting MPC Bounds in the

Proof-of-Work Era”. In: Advances in Cryptology - EUROCRYPT 2020, Zagreb,

Croatia, May 10-14, 2020, Proceedings, Part II. 2020, pp. 129–158.

[74] F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko. “Threshold Schnorr with

Stateless Deterministic Signing from Standard Assumptions”. In: Advances in

Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,

CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I. 2021,

pp. 127–156.

[75] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast

Trustless Setup”. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS 2018, Toronto, ON, Canada, October

15-19, 2018. 2018, pp. 1179–1194.

[76] R. Gennaro, S. Goldfeder, and A. Narayanan. “Threshold-Optimal DSA/ECDSA

Signatures and an Application to Bitcoin Wallet Security”. In: Applied Cryptog-

raphy and Network Security - ACNS 2016. 2016, pp. 156–174.

[77] J. Groth. “Non-interactive distributed key generation and key resharing”. In:

IACR Cryptol. ePrint Arch. (2021), p. 339. url: https://eprint.iacr.org/

2021/339.

[78] J. Groth and V. Shoup. Design and analysis of a distributed ECDSA signing

service. Cryptology ePrint Archive, Paper 2022/506. https://eprint.iacr.

org/2022/506. 2022. url: https://eprint.iacr.org/2022/506.

69

https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-319-76581-5_17
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2022/506

6. Bibliography

[79] J. Groth and V. Shoup. “On the Security of ECDSA with Additive Key Derivation

and Presignatures”. In: Advances in Cryptology - EUROCRYPT 2022 - 41st An-

nual International Conference on the Theory and Applications of Cryptographic

Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I.

2022, pp. 365–396.

[80] G. Gutoski and D. Stebila. “Hierarchical Deterministic Bitcoin Wallets that Tol-

erate Key Leakage”. In: 2015, pp. 497–504. doi: 10.1007/978-3-662-47854-

7_31.

[81] G. Gutoski and D. Stebila. “Hierarchical Deterministic Bitcoin Wallets that Tol-

erate Key Leakage”. In: Financial Cryptography and Data Security - 19th Inter-

national Conference, FC 2015. 2015, pp. 497–504.

[82] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. “Proactive Secret Shar-

ing Or: How to Cope With Perpetual Leakage”. In: Advances in Cryptology -

CRYPTO ’95, 15th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 27-31, 1995, Proceedings. 1995, pp. 339–352.

[83] A. Hülsing. “WOTS+ - Shorter Signatures for Hash-Based Signature Schemes”.

In: IACR Cryptol. ePrint Arch. (2017), p. 965.

[84] Internet Identity: The End of Usernames and Passwords. https://tinyurl.

com/6rrhvzr2.

[85] M. S. Islam, M. Kuzu, and M. Kantarcioglu. “Access Pattern disclosure on Search-

able Encryption: Ramification, Attack and Mitigation”. In: 2012.

[86] S. Jarecki, A. Kiayias, and H. Krawczyk. “Round-Optimal Password-Protected

Secret Sharing and T-PAKE in the Password-Only Model”. In: 2014, pp. 233–

253. doi: 10.1007/978-3-662-45608-8_13.

[87] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. “Highly-Efficient and Composable

Password-Protected Secret Sharing (Or: How to Protect Your Bitcoin Wallet

Online)”. In: IEEE European Symposium on Security and Privacy, EuroS&P.

2016.

[88] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. “TOPPSS: Cost-Minimal

Password-Protected Secret Sharing Based on Threshold OPRF”. In: 2017,

pp. 39–58. doi: 10.1007/978-3-319-61204-1_3.

[89] S. Jarecki, H. Krawczyk, and J. K. Resch. “Updatable Oblivious Key Management

for Storage Systems”. In: 2019, pp. 379–393. doi: 10.1145/3319535.3363196.

[90] S. Jarecki, H. Krawczyk, and J. Xu. “OPAQUE: An Asymmetric PAKE Protocol

Secure Against Pre-computation Attacks”. In: 2018, pp. 456–486. doi: 10.1007/

978-3-319-78372-7_15.

[91] D. Johnson and A. Menezes. The Elliptic Curve Digital Signature Algorithm

(ECDSA). Tech. rep. 1999.

70

https://doi.org/10.1007/978-3-662-47854-7_31
https://doi.org/10.1007/978-3-662-47854-7_31
https://tinyurl.com/6rrhvzr2
https://tinyurl.com/6rrhvzr2
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1145/3319535.3363196
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15

6. Bibliography

[92] D. Karakostas, A. Kiayias, and M. Larangeira. “Account Management in Proof of

Stake Ledgers”. In: Security and Cryptography for Networks - 12th International

Conference, SCN 2020, Amalfi, Italy, September 14-16, 2020, Proceedings. 2020,

pp. 3–23.

[93] J. Katz and C.-Y. Koo. “On Expected Constant-Round Protocols for Byzantine

Agreement”. In: 2006, pp. 445–462. doi: 10.1007/11818175_27.

[94] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.

2014. url: https : / / www . crcpress . com / Introduction - to - Modern -

Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269.

[95] J. Katz, A. Miller, and E. Shi. Pseudonymous Broadcast and Secure Computation

from Cryptographic Puzzles. Cryptology ePrint Archive, Report 2014/857. https:

//eprint.iacr.org/2014/857. 2014.

[96] T. Kerber, A. Kiayias, M. Kohlweiss, and V. Zikas. “Ouroboros Crypsinous:

Privacy-Preserving Proof-of-Stake”. In: 2019 IEEE Symposium on Security and

Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. 2019, pp. 157–174.

[97] E. Kiltz, V. Lyubashevsky, and C. Schaffner. “A Concrete Treatment of Fiat-

Shamir Signatures in the Quantum Random-Oracle Model”. In: Advances in

Cryptology–EUROCRYPT 2018. 2018, pp. 552–586.

[98] E. Kiltz, D. Masny, and J. Pan. “Optimal Security Proofs for Signatures from

Identification Schemes”. In: Advances in Cryptology - CRYPTO 2016, Part II.

2016, pp. 33–61.

[99] M. Klooß, A. Lehmann, and A. Rupp. “(R)CCA Secure Updatable Encryption

with Integrity Protection”. In: 2019, pp. 68–99. doi: 10.1007/978- 3- 030-

17653-2_3.

[100] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. “Efficient Batched

Oblivious PRF with Applications to Private Set Intersection”. In: 2016, pp. 818–

829. doi: 10.1145/2976749.2978381.

[101] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Thresh-

old Signatures”. In: Selected Areas in Cryptography - SAC 2020 - 27th Interna-

tional Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020,

Revised Selected Papers. 2020, pp. 34–65.

[102] Y. Kondi, B. Magri, C. Orlandi, and O. Shlomovits. “Refresh When You Wake

Up: Proactive Threshold Wallets with Offline Devices”. In: 42nd IEEE Sympo-

sium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May

2021. 2021, pp. 608–625.

[103] M.-S. Lacharité, B. Minaud, and K. G. Paterson. “Improved Reconstruction At-

tacks on Encrypted Data Using Range Query Leakage”. In: 2018, pp. 297–314.

doi: 10.1109/SP.2018.00002.

71

https://doi.org/10.1007/11818175_27
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://eprint.iacr.org/2014/857
https://eprint.iacr.org/2014/857
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1109/SP.2018.00002

6. Bibliography

[104] R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Maffei, and

D. Schröder. “Simple Password-Hardened Encryption Services”. In: 27th

USENIX Security Symposium, USENIX Security. 2018. url: https :

//www.usenix.org/conference/usenixsecurity18/presentation/lai.

[105] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and J.

Wang. “Omniring: Scaling Private Payments Without Trusted Setup”. In: Pro-

ceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS 2019, London, UK, November 11-15, 2019. 2019, pp. 31–

48.

[106] Ledger Support,Ledger Nano OS. https://support.ledger.com/hc/en-us/

articles/115005297709-Export-your-accounts. 2014.

[107] A. Lehmann. “ScrambleDB: Oblivious (Chameleon) Pseudonymization-

as-a-Service”. In: Proc. Priv. Enhancing Technol. (2019). url:

https://doi.org/10.2478/popets-2019-0048.

[108] A. Lehmann and B. Tackmann. “Updatable Encryption with Post-Compromise

Security”. In: 2018, pp. 685–716. doi: 10.1007/978-3-319-78372-7_22.

[109] Y. Lindell. “Fast Secure Two-Party ECDSA Signing”. In: 2017, pp. 613–644. doi:

10.1007/978-3-319-63715-0_21.

[110] Y. Lindell and A. Nof. “Fast Secure Multiparty ECDSA with Practical Dis-

tributed Key Generation and Applications to Cryptocurrency Custody”. In: Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. 2018,

pp. 1837–1854.

[111] Q. Liu and M. Zhandry. “Revisiting Post-quantum Fiat-Shamir”. In: 2019,

pp. 326–355. doi: 10.1007/978-3-030-26951-7_12.

[112] A. D. Luzio, D. Francati, and G. Ateniese. “Arcula: A Secure Hierarchical De-

terministic Wallet for Multi-asset Blockchains”. In: 2020, pp. 323–343. doi: 10.

1007/978-3-030-65411-5_16.

[113] V. Lyubashevsky. “Fiat-Shamir with Aborts: Applications to Lattice and

Factoring-Based Signatures”. In: Advances in Cryptology–ASIACRYPT 2009.

2009, pp. 598–616.

[114] A. Marcedone, R. Pass, and abhi shelat. Minimizing Trust in Hardware Wal-

lets with Two Factor Signatures. Cryptology ePrint Archive, Report 2019/006.

https://eprint.iacr.org/2019/006. 2019.

[115] G. Maxwell and I. Bentov. Deterministic Wallets. https://www.cs.cornell.

edu/~iddo/detwal.pdf. 2018.

[116] Mediawiki. BIP32 Specification. https://github.com/bitcoin/bips/blob/

master/bip-0032.mediawiki. 2018.

72

https://www.usenix.org/conference/usenixsecurity18/presentation/lai
https://www.usenix.org/conference/usenixsecurity18/presentation/lai
https://support.ledger.com/hc/en-us/articles/115005297709-Export-your-accounts
https://support.ledger.com/hc/en-us/articles/115005297709-Export-your-accounts
https://doi.org/10.2478/popets-2019-0048
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-65411-5_16
https://doi.org/10.1007/978-3-030-65411-5_16
https://eprint.iacr.org/2019/006
https://www.cs.cornell.edu/~iddo/detwal.pdf
https://www.cs.cornell.edu/~iddo/detwal.pdf
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

6. Bibliography

[117] MEGA: Secure Cloud Storage and Communication Privacy by Design. https:

//mega.nz/.

[118] S. Micali. “Very Simple and Efficient Byzantine Agreement”. In: 2017, 6:1–6:1.

doi: 10.4230/LIPIcs.ITCS.2017.6.

[119] S. Micali and V. Vaikuntanathan. “Optimal and player-replaceable consensus

with an honest majority”. In: (2017).

[120] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

https://bitcoin.org/bitcoin.pdf. 2008.

[121] J. Nick, T. Ruffing, and Y. Seurin. “MuSig2: Simple Two-Round Schnorr Multi-

signatures”. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual Inter-

national Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,

2021, Proceedings, Part I. 2021, pp. 189–221.

[122] S. Noether. Ring Signature Confidential Transactions for Monero. Cryptology

ePrint Archive, Report 2015/1098. https://eprint.iacr.org/2015/1098.

2015.

[123] S. Noether and A. Mackenzie. “Ring Confidential Transactions”. In: Ledger

(2016), pp. 1–18.

[124] R. Pass, L. Seeman, and a. shelat. “Analysis of the Blockchain Protocol in Asyn-

chronous Networks”. In: 2017, pp. 643–673. doi: 10.1007/978-3-319-56614-

6_22.

[125] J. N. Pieter Wuille and T. Ruffings. Schnorr Signatures for secp256k1. https:

//github.com/bitcoin/bips/blob/master/bip-0340.mediawiki. 2020-01-19.

[126] J. N. Pieter Wuille and A. Towns. Taproot: SegWit version 1 spending rules.

https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki.

2020-01-19.

[127] K. Pietrzak. “Proofs of Catalytic Space”. In: 2019, 59:1–59:25. doi: 10.4230/

LIPIcs.ITCS.2019.59.

[128] Quantum Resistant Ledger (QRL). https://github.com/theQRL/Whitepaper/

blob/master/QRL_whitepaper.pdf.

[129] M. O. Rabin. “Randomized Byzantine Generals”. In: 1983, pp. 403–409. doi:

10.1109/SFCS.1983.48.

[130] D. B. Roy, P. Das, and D. Mukhopadhyay. “ECC on Your Fingertips: A Single

Instruction Approach for Lightweight ECC Design in GF(p)”. In: Selected Areas

in Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB,

Canada, August 12-14, 2015, Revised Selected Papers. 2015, pp. 161–177.

73

https://mega.nz/
https://mega.nz/
https://doi.org/10.4230/LIPIcs.ITCS.2017.6
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://doi.org/10.4230/LIPIcs.ITCS.2019.59
https://doi.org/10.4230/LIPIcs.ITCS.2019.59
https://github.com/theQRL/Whitepaper/blob/master/QRL_whitepaper.pdf
https://github.com/theQRL/Whitepaper/blob/master/QRL_whitepaper.pdf
https://doi.org/10.1109/SFCS.1983.48

6. Bibliography

[131] C. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: Ad-

vances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Con-

ference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings. 1989,

pp. 239–252.

[132] P. W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and

Factoring”. In: 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[133] R. Skellern. Cryptocurrency Hacks: More Than $2b USD lost between 2011-2018.

https://medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-

lost-between-2011-2018_-67054b342219. 2018.

[134] S. Sun, M. H. Au, J. K. Liu, and T. H. Yuen. “RingCT 2.0: A Compact

Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain

Cryptocurrency Monero”. In: Computer Security - ESORICS 2017 - 22nd

European Symposium on Research in Computer Security, Oslo, Norway,

September 11-15, 2017, Proceedings, Part II. 2017, pp. 456–474.

[135] Tresorit: Cloud Storage + End-to-end Encryption. https://tresorit.com/

security/encryption.

[136] Trezor Wiki,Cryptocurrency standards,Hierachical deterministic wallets. https:

//wiki.trezor.io/Cryptocurrency_standards. 2014.

[137] C. Troncoso, G. Danezis, M. Isaakidis, and H. Halpin. “Systematizing Decen-

tralization and Privacy: Lessons from 15 years of research and deployments”. In:

CoRR (2017). url: http://arxiv.org/abs/1704.08065.

[138] M. Turuani, T. Voegtlin, and M. Rusinowitch. “Automated Verification of Elec-

trum Wallet”. In: Financial Cryptography and Data Security - FC 2016 Interna-

tional Workshops, BITCOIN, VOTING, and WAHC. 2016, pp. 27–42.

[139] D. Unruh. “Post-quantum Security of Fiat-Shamir”. In: 2017, pp. 65–95. doi:

10.1007/978-3-319-70694-8_3.

[140] J. Wan, H. Xiao, S. Devadas, and E. Shi. “Round-Efficient Byzantine Broadcast

Under Strongly Adaptive and Majority Corruptions”. In: Theory of Cryptography

- 18th International Conference, TCC 2020, Durham, NC, USA, November 16-

19, 2020, Proceedings, Part I. 2020, pp. 412–456.

[141] X. Wang and B. Huson. “Robust distributed symmetric-key encryption”. In:

IACR ePrint (2020).

[142] B. Wesolowski. “Efficient Verifiable Delay Functions”. In: 2019, pp. 379–407. doi:

10.1007/978-3-030-17659-4_13.

[143] B. Wiki. BIP32 proposal. https://en.bitcoin.it/wiki/BIP_0032. 2018.

[144] B. Wiki. Genesis Block. https://en.bitcoin.it/wiki/Genesis_block.

74

https://doi.org/10.1109/SFCS.1994.365700
https://medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219
https://medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219
https://tresorit.com/security/encryption
https://tresorit.com/security/encryption
https://wiki.trezor.io/Cryptocurrency_standards
https://wiki.trezor.io/Cryptocurrency_standards
http://arxiv.org/abs/1704.08065
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-030-17659-4_13
https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/Genesis_block

6. Bibliography

[145] T. H. Yuen, S. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and D. Gu.

“RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger

Security”. In: Financial Cryptography and Data Security - 24th International

Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020 Revised

Selected Papers. 2020, pp. 464–483.

[146] M. Zhandry. “How to Construct Quantum Random Functions”. In: 2012, pp. 679–

687. doi: 10.1109/FOCS.2012.37.

[147] Z. Zhang, Y. Chen, S. S. M. Chow, G. Hanaoka, Z. Cao, and Y. Zhao. “Black-

Box Separations of Hash-and-Sign Signatures in the Non-Programmable Random

Oracle Model”. In: Provable Security - 9th International Conference, ProvSec

2015. 2015, pp. 435–454.

75

https://doi.org/10.1109/FOCS.2012.37

List of Figures

2.1. Security game uf -cmaSig with adversary A. 17

2.2. Security game uf -cma-hrkRSig with adversary A. 18

2.3. (1) The cold wallet signs a messagem with its session secret key skID
as σ ← SWal.Sign(skID ,m). (2) Anyone can later verify the validity

of a signature σ on message m as (0/1)← SWal.Verify(pkID , σ,m). . 19

2.4. Construction of generic wallet scheme SWal from a signature scheme

with rerandomizable keys RSig and a hash function H. 23

2.5. EC = (EC.Gen,EC.Sign,EC.Verify): ECDSA Signature scheme relative

to elliptic curve E and hash function H : {0, 1}∗ → Zp. 24

2.6. Figure shows the TrfECDSA algorithm for hash functions

H,G : {0, 1}∗ → Zp. It takes a signature σ1 under public key X1 on

message m1 and outputs a signature σ0 under public key X0 on

message m0, where ω = G(m1)
H(m0)

and X1 = X0 · ω. 25

3.1. Consider i = 3, δ = 5. We have i · δ = 15, (i − 1) · δ = 10. Say

an adversary A controls q parties {P1}i∈[q] with a speed-up κ = 3

compared to an honest party with κ = 1. Consider two time steps:

t = 11 and t = 14. In both cases, each Pi can compute (i− 1)κ = 6

proofs in time 10 < i · δ. For the remaining time r · δ = 1 (for

t = 11) and r · δ = 4 (for t = 14), no extra proofs can be computed

in the first case, whereas ⌊ 4
5/3
⌋ = 2 extra proofs can be computed

in the second case. Thus, A can compute in total 6q and 8q proofs

for t = 11 and t = 14 respectively. 41

4.1. Classical password-based server-assisted KMS yields one key per

password to encrypt all the different user data. Our solution DPaSE

is a server-assisted encryption scheme that allows to derive different

encryption keys from only one password. 50

76

List of Tables

4.1. Comparison of our DPaSE protocol with closest password-based en-

cryption scheme PHE, where the exponentiations are counted per

group G, G1, G2, GT , the pairing is mapped as G1×G2 : → GT and

Gp-256 represents the prime group in the ECDSA signature scheme

secp256r1. 55

4.2. Timing measurements of our DPaSE protocol run between one user

and k = {2, 6, 8, 10} number of servers. 55

4.3. Properties of server-assisted encryption and encryption key retrieval

(KMS) schemes. Gray cells are not applicable. More precisely,

password properties do not apply to OKMS and DiSE schemes,

as they rely on strong user authentication. Likewise, encryption

properties do not apply to the KMS schemes, since their purpose is

to recover an encryption key from a password. 57

77

List of Abbreviations

RKA Related Key Attack

BIP32 Bitcoin Improvement Proposal 32

UFCMA Existential Unforgeability Under Chosen Message Attack

UFCMA1 One-Per Message Existential Unforgeability Under Chosen Message

Attack

UFCMA-RK Unforgeability Under Rerandomizable Keys

UFCMA-HRK Unforgeability under Honestly Rerandomizable Keys

RKA Related Key Attack

PKI Public Key Infrastructure

VDF Verifiable Delay Function

BA Byzantine Agreement

GPKI Graded PKI

UC Universally Composable

DPaSE Distributed Password-authenticated Symmetric-key Encryption

OPRF Oblivious PRF

edpOPRF Extendable Distributed Partially-Oblivious PRF

78

A. A Formal Treatment of
Deterministic Wallets

This chapter corresponds to our published article in CCS 2019 [45], with minor
edits. Our full version can be found in [46].

[45] P. Das, S. Faust, and J. Loss. “A Formal Treatment of Deterministic Wallets”. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS 2019, London, UK, November 11-15, 2019. 2019, pp. 651–

668. doi: 10.1145/3319535.3354236. url: https://doi.org/10.1145/

3319535.3354236.

79

https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236

A Formal Treatment of Deterministic
Wallets

Poulami Das∗1 Sebastian Faust†1 Julian Loss‡ 2

1 TU Darmstadt, Germany

2 University of Maryland, USA

Abstract
In cryptocurrencies such as Bitcoin or Ethereum, users control funds via secret

keys. To transfer funds from one user to another, the owner of the money signs a
new transaction that transfers the funds to the new recipient. This makes secret keys
a highly attractive target for attacks, and has lead to prominent examples where
millions of dollars worth in cryptocurrency have been stolen. To protect against
these attacks, a widely used approach are so-called hot/cold wallets. In a hot/cold
wallet system, the hot wallet is permanently connected to the network, while the cold
wallet stores the secret key and is kept without network connection. In this work,
we propose the first comprehensive security model for hot/cold wallets and develop
wallet schemes that are provable secure within these models. At the technical level
our main contribution is to provide a new provably secure ECDSA-based hot/cold
wallet scheme that can be integrated into legacy cryptocurrencies such as Bitcoin.
Our construction and security analysis uses a modular approach, where we show
how to generically build secure hot/cold wallets from signature schemes that exhibit
a rerandomizing property of the keys.

Keywords: Wallets; cryptocurrencies; foundations

1 Introduction
In decentralized cryptocurrencies such as Bitcoin or Ethereum, the money mechanics (e.g.,
who owns what and how money is transferred) are controlled by a network of miners.
To this end, the miners agree via a consensus protocol about the current balance that
each party has in the system. Changes to these balances are validated by the miners
according to well-specified rules. In most cryptocurrencies, balance updates are executed

∗Email: poulami.das@crisp-da.de
†Email: sebastian.faust@cs.tu-darmstadt.de
‡Email: julian.loss@ruhr-uni-bochum.de. Work done while author was at Ruhr-University Bochum,

Germany.

via transactions. A transaction transfers money between addresses, which is the digital
identity of a party and technically is represented by a public key of a digital signature
scheme.1 For better illustration, consider the example where Alice wants to send some
of her coins – say 1 BTC – from her address pkA to Bob’s address pkB. To this end, she
creates a transaction txAB that informally says: “Transfer 1 BTC from pkA to pkB”. To
ensure that only Alice can send her coins to Bob, we require that txAB is accompanied by
a valid signature of H (txAB). Since only the owner of the corresponding skA – here Alice –
can produce a valid signature, control over skA implies full control over the funds assigned
to pkA. This makes secret keys a highly attractive target for attacks. Unsurprisingly, there
are countless examples of spectacular hacks where the attacker was able to steal millions of
dollars by breaking into a system and extracting the secret key [Ske18, Blo18]. According
to the cryptocurrency research firm CipherTrace, in 2018 alone, attackers managed to
steal more than USD 1 billion worth in cryptocurrency [Bit18].

One reason for many of these attacks is that large amounts of funds are often controlled
by so-called hot wallets. A hot wallet is a piece of software that runs on a computer or
a smart phone and has a direct connection to the Internet. This make hot wallets very
convenient to use since they can move funds around easily. On the downside, however,
their permanent Internet connection often makes them an easy target for attackers, e.g.,
by exploiting software vulnerabilities via malware or phishing. Thus, it is generally
recommended to store only a small amount of cryptocurrency on a hot wallet, while larger
amounts of money should be transferred to a cold wallet. A cold wallet stays disconnected
from the network most of the time and may in practice be realized by a dedicated hardware
device [Wik18b], or by a paper wallet where the secret key is printed on paper and stored
in a secure place.

A simple way to construct a hot/cold wallet is to generate a key pair (pkcold, skcold) and
store the secret key skcold on the cold wallet, while the corresponding public key pkcold is
kept on the hot wallet (or published over the Internet). A user can then directly transfer
money to the cold wallet by publishing a transaction on the blockchain that sends money
to pkcold. As long as the owner of the cold wallet does not want to spend its funds, the
cold wallet never needs to come online. This naive approach has one important drawback.
Since all transactions targeting the cold wallet send money to the same public key pkcold,
the cold wallet may accumulate, over time, a large amount of money. Moreover, all
transactions are publicly recorded on the blockchain, and thus pkcold becomes an attractive
target for an attack the next time the wallet goes online (which will happen at the latest
when the owner of the wallet wants to spend its coins).

To mitigate this attack, it is common practice in the cryptocurrency community to use
each key pair only for a single transaction. Hence, we may generate a “large number” of
fresh key pairs (sk1, pk1), . . . , (skℓ, pkℓ). Then, the ℓ public keys are sent to the hot wallet,
while the corresponding ℓ secret keys ski are kept on the cold wallet. While this approach
keeps individual transactions unlinkable, it only works for an a-priori fixed number of
transactions, and requires storage on the hot/cold wallet that grows linearly with ℓ.

Fortunately, in popular cryptocurrencies such as Bitcoin, these two shortcomings can
be solved by exploiting the algebraic structure of the underlying signature scheme (e.g.,
the ECDSA signature scheme in Bitcoin). In the cryptocurrency literature, this approach

1To be more precise, in Bitcoin funds are assigned to the hash of a public key, and not to the public
key itself.

is often called deterministic wallets [But13] and is standardized in the BIP32 improvement
proposal [Wik18a].2 At a high level, a deterministic wallet consists of a master secret key
msk together with a matching master public key mpk and a deterministic key derivation
procedure. At setup, the master public key is given to the hot wallet, whereas the master
secret key is kept on the cold wallet. After setup, the hot and cold wallet can independently
generate matching session keys using the key derivation procedure and their respective
master keys. Using this approach, we only need to store a single (master) key on the
hot/cold wallet in order to generate an arbitrary number of (one-time) session keys.

Informally, a deterministic wallet should offer two main security guarantees. First, an
unforgeability property, which ensures that as long as the cold wallet is not compromised,
signatures to authenticate new transactions can not be forged, and thus funds are safe.
Second, an unlinkability property, which guarantees that public keys generated from the
same master public key mpk are computationally indistinguishable from freshly generated
public keys. Despite the widespread use of deterministic wallets (e.g., they are used in
most hardware wallets such as ledger or TREZOR, and by common software wallets such
as Jaxx), only limited formal security analysis of these schemes has been provided (we
will discuss the related work in Section 1.3). The main contribution of our work is to close
this gap.

1.1 Deterministic hot/cold wallets
Before we outline our contribution, we recall (a slightly simplified version of) the BIP32
wallet construction as used by popular cryptocurrencies. We emphasize that for ease
of presentation, we abstract from some of the technical details of the BIP32 scheme.
In particular, we focus in this work on the (conceptually cleaner) deterministic wallets
ignoring the “hierarchical” component of BIP32 (see [Med18] for a full specification). We
leave it as an important open problem to also develop a formal model for hierarchical
wallets (see Section 7 for a more detailed discussion). In the following description we
focus on ECDSA-based wallets as ECDSA is the underlying signature scheme used by
most popular cryptocurrencies.

Let G denote the base point of an ECDSA elliptic curve. The deterministic ECDSA
wallet uses an ECDSA key tuple as its master secret/public key pair, denoted by (msk =
x,mpk = x · G). The master secret key msk is stored on the cold wallet, while the
corresponding master public key mpk is kept on the corresponding hot wallet. In addition,
the hot wallet and the cold wallet both keep a common secret string ch which is called the
“chaincode”. To derive a new session public key with identifier ID, the hot wallet computes
w ← H (ch, ID) , pkID ← mpk + w · G and the cold wallet computes the corresponding
session secret key as w ← H (ch, ID) , skID ← msk + w. As argued, e.g., in [MB18], this
construction satisfies both unlinkability and unforgeability as long as the chaincode and
all derived secret keys remain hidden from the adversary.

Unfortunately, hot wallet breaches happen frequently, and hence the assumption
that the chaincode stays secret is rather unrealistic. When ch is revealed, however, the
unlinkability property is trivially broken since the adversary can derive from mpk and
ch the corresponding session public key pkID for any ID of its choice. Even worse, as we

2BIP32 stands for Bitcoin improvement proposal. The same approach is also used for other cryptocur-
rencies such as Ethereum or Dash.

discuss in Section 4.1.2 (and as already suggested in [MB18]), a hot wallet security breach
may in certain cases even break the unforgeability property of the wallet scheme.

1.2 Our contributions
At the conceptual level, our main contribution is to introduce a formal comprehensive
security model to analyze hot/cold wallets. On the other hand, at the technical level,
we design a new ECDSA-based wallet scheme and prove its security within our model.
The latter is achieved using a modular approach, which shows that signature schemes
exhibiting certain rerandomizability properties for the key suffice to securely instantiate
wallets in our model. Further details are provided below.
Security model for wallets. As our first contribution we provide a formal security
model that precisely captures the security properties that a hot/cold wallet should satisfy.
In particular, we incorporate into our model hot wallet security breaches, access to derived
public keys and corresponding signatures that may appear on the blockchain. More con-
cretely, let SWal = (SWal.MGen, SWal.SKDer, SWal.PKDer, SWal.Sign, SWal.Verify) be a
wallet scheme, where SWal.MGen denotes the master key generation algorithm, (SWal.SKDer,
SWal.PKDer) are used for deriving session keys and (SWal.Sign, SWal.Verify) represent the
signing and verification algorithms of the underlying signature scheme. The security of
SWal is defined via two game-based security notions that we call wallet unlinkability and
wallet unforgeability.

Our notion of unlinkability can informally be described as a form of forward security –
similar in spirit to key exchange models for analyzing TLS. It guarantees that all money
that was sent to session public keys pkID ← SWal.PKDer (mpk, ch, ID) derived prior to
the hot wallet breach, can not be linked to mpk. Notably, our unlinkability property
even holds against an adversary that sees a polynomial number of session public keys
generated from mpk and signatures for adversarially chosen messages. On the other hand,
our unforgeability notion considers a natural threat model where funds on the cold wallet
remain secure even if the hot wallet is fully compromised. While at first sight it may
seem that achieving unforgeability in such a setting is straightforward, it turns out that
in particular for ECDSA-based wallets, we have to deal with several technical challenges.
The main reason for this is that once the hot wallet is breached, the session public keys
are not fresh anymore (i.e., all session public keys are now related to the master public
key mpk). This hinders a straightforward reduction to the security of the underlying
signature scheme used by the cryptocurrency. Even worse, we argue that for certain naive
instantiations of wallet schemes, wallet unforgeability can be broken and an adversary
may steal money from the cold wallet without ever breaking into it.
Stateful deterministic wallets. In order to achieve our security definition of forward
unlinkability, we consider the natural notion of stateful deterministic wallets. In a stateful
wallet, the hot and cold wallet share a common secret state St that is (deterministically)
updated for every new session key pair. More concretely, the master key generation
algorithm SWal.MGen outputs (together with the master key pair (mpk,msk)) an initial
state St0 that will be stored on both the hot and the cold wallet. Then, to derive new
session keys, the secret/public key derivation algorithms SWal.SKDer and SWal.PKDer
take as input additionally the current state Sti−1 and output the new state Sti, while the

old state Sti−1 is erased from the hot/cold wallet. The update mechanism for deriving
the new state has to guarantee that Sti looks random even if future states Stj (for j > i)
are revealed. Together with a mechanism for deriving new session key pairs, our scheme
achieves the strong aforementioned notion of forward unlinkability. We note that while
state updates (together with secure erasures) are needed to achieve our new notion of
forward unlinkability, our notion of unforgeability might also be achievable by some of
the currently used (stateless) wallet schemes.
Modular approach for provably secure wallets. To securely instantiate our
stateful deterministic wallets, we provide a modular approach that uses digital signature
schemes with rerandomizable keys. This notion – originally due to Fleischhacker et
al. [FKM+16] – extends standard digital signature schemes with two additional algorithms:
RandSK and RandPK. These algorithms take as input a secret key sk , respectively public
key pk , and some randomness ρ and output fresh keys sk ′, respectively pk ′. Besides the
standard unforgeability property, signatures with rerandomizable keys guarantee that the
key pair (sk ′, pk ′) is fresh and independent of the original keys (sk , pk) from which they
were generated.

Given a secure signature scheme with rerandomizable keys, we show how to generically
instantiate our wallet scheme as follows. Let St be the current state of the hot/cold
wallet. The public key derivation algorithm SWal.PKDer (mpk, St, ID) first computes
(ωID, St ′) = H (St, ID). Then, it derives the new session public key pkID by running the
public key rerandomizing algorithm RandPK via pkID ← RandPK(mpk, ωID), and erases
the old state St. Analogously, the cold wallet can compute skID by computing ωID as
above and calling skID ← RandSK(msk, ωID). If H is modeled as a random oracle that
maps to the randomness space for rerandomizing keys, then the rerandomizability property
mentioned above satisfies that our wallet construction achieves forward unlinkability. On
the other hand, wallet unforgeability follows from the unforgeability of the underlying
signature scheme. For the latter to go through, we rely on the special RSign oracle
that is provided in the unforgebaility game of signatures with rerandomizable keys (see
below). Besides its strong security guarantees, our generic wallet construction preserves
the storage efficiency of the BIP32 standard and only requires one hash computation more
per hot/cold wallet for every derived session key pair.

Of course, before we can use our wallet scheme in practice, we need to build signatures
with rerandomizable keys from standard (practical) signature schemes ideally used by
cryptocurrencies. As shown in [FKM+16] the Schnorr signature scheme [Sch89] satisfies
these properties. In addition, we show that also BLS signatures [BLS04] can be used to
construct signatures with rerandomizable keys. Thus, these schemes are natural candidates
for our wallet construction.
Provably secure ECDSA-based wallets. While many cryptocurrencies plan to
use Schnorr and BLS signatures in the future, to date almost all legacy cryptocurrencies
(e.g., Bitcoin or Ethereum) rely on the ECDSA signature scheme. The main technical
contribution of our work is thus to propose the first provably secure construction of stateful
deterministic wallets that work together with ECDSA-based cryptocurrencies such as
Bitcoin. To achieve this, we make several subtle changes to the current way hot/cold
wallets are built in BIP32 for Bitcoin. An important goal of our construction is that all
these changes come with minimal overheads to guarantee efficiency and are compatible

with Bitcoin and other state-of-the-art cryptocurrencies. The latter ensures that our
wallet scheme can be readily deployed as a more secure alternative for existing hot/cold
wallet systems. At the technical level, the main challenge of our work lies in proving that
the ECDSA signatures can be used to construct a signature scheme with rerandomizable
keys. Due to the rather “contrived” nature of ECDSA signatures our analysis is, however,
more involved than for Schnorr and BLS signatures, and also requires us to slightly
weaken the original notion of unforgeability under rerandomized keys due Fleischhacker
et al. [FKM+16]. We call this notion unforgeability under honestly rerandomized keys
(uf -cma-hrk).

Formally, we prove uf -cma-hrk of a “salted version” of the ECDSA signature scheme
assuming that the standard ECDSA signature scheme is existentially unforgeable under
chosen message attacks (uf -cma). The main challenge for this reduction is that in the
uf -cma-hrk game, the adversary may see signatures under related (i.e., rerandomized)
keys, where the relation between these keys may be known to the adversary. This
significantly complicates the reduction. More precisely, in the reduction we need to embed
the target public key pk∗ of the uf -cma game for the ECDSA signature scheme into the
simulation of the adversary in the uf -cma-hrk game. Once pk∗ has been embedded, the
reduction may have to answer signing queries for any of the rerandomized keys that the
adversary can ask via the oracle RSign. Unfortunately, for this simulation we neither
know the corresponding secret keys nor can the reduction answer these queries by using
the underlying ECDSA signing oracle from the uf -cma game.

To overcome this challenge, we develop an efficient method that transfers ECDSA
signatures wrt. pk∗ to signatures wrt. a related public key, and show how to apply it for
proving the uf -cma-hrk security. The later is the main technical contribution of our
work.
Practical considerations. As a final contribution, we explore the practical implica-
tions of our work. First, we argue that a careless implementation of hot/cold wallets using
as underlying signature scheme, e.g., Schnorr or BLS, may result into a severe security
vulnerability if the hot wallet is compromised. This may seem a bit surprising as the hot
wallet does not contain any secret key material. At a high level, the vulnerability exploits
a “related key attack” in these signature schemes, where an adversary that knows the
“relation” between two related public keys pkID and pkID′ can transform a signature σID
scheme under pkID to a signature σID′ under pkID′ . This may have severe consequences
because once an adversary sees a signature σID that transfers funds assigned to pkID, it
can also transfer the funds held by pkID′ .

As a second practical contribution, we describe how our ECDSA-based wallet scheme
can be integrated into Bitcoin. One difficulty is that for the proof to go through, we need
that signatures produced by the cold wallet are salted with fresh randomness and prefixed
by the pulic key (or the hash of it). Fortunately, Bitcoin supports a simple scripting
language such that these changes can be integrated at very low additional costs.

1.3 Related work

Research on wallet systems. Hot/cold wallets are widely used in cryptocurrencies
and various implementations on standard computing and dedicated hardware devices are

available. Most related to our work is the result of Gutoski and Stebila [GS15] who discuss
a flaw in BIP32 and propose a (provably secure) countermeasure against it. Concretely,
they study the well known attack against deterministic wallets [But13] that allows to
recover the master secret key once a single session key has leaked from the cold wallet.
They then propose a fix for this flaw which allows up to d session keys to leak, and show
by a counting argument that under a one-more discrete-log assumption the master secret
key can not be recovered. We emphasize that their model is rather restricted and does
not consider an adversary learning public keys or signatures for keys which have not
been compromised. More importantly, [GS15] prove only a very weak security guarantee.
Namely, instead of aiming at the standard security notion of unforgeability where the
adversary’s goal is to forge a signature (as considered in our work), [GS15] consider the
much weaker guarantee where the adversary’s goal is to extract the entire master secret
key. Hence, the security analysis in [GS15] does not consider adversaries that forge a
signature with respect to some session public key, while in practice this clearly violates
security.

Besides [GS15], various other works explore the security of hot/cold wallets. Similar
to [GS15], Fan et al. [FTS+18] study the security against secret session key leakage (they
call it “privilege escalation attacks”). Unfortunately, their proposed countermeasure is
ad-hoc and no formal model nor security proof is provided. Another direction is taken by
Turuani et al. [TVR16] who provide an automated verification of the Bitcoin Electrum
wallet in the Dolev Yao model. Since the Dolev-Yao model assumes that ciphertexts,
signatures etc. are all perfect, their analysis exclude potential vulnerabilities such as
related key attacks, which turn out to be very relevant in the hot/cold wallet setting.

Another line of recent work focuses on the security analysis of hardware wallets [MPas19,
AGKK19]. Both works target different goals. The work of Marcedone et al. [MPas19]
aims at integrating two-factor authentication into wallet schemes, while Arapinis et
al. [AGKK19] consider hardware attacks against hardware wallets and provide a formal
modeling of such attacks in the UC framework. Similar to the latter, Curtoius et
al. [CEV14] investigate how implementation flaws such as bad and correlated randomness
may affect security. Other works that study the implications of weak randomness in
wallets are [BR18, BH19].

Orthogonal to our work is a large body of work on threshold ECDSA [GGN16, LN18,
DKLS18] and multisignatures [BDN18] to construct more secure wallets. Both approaches
aim at distributing trust by requiring that multiple key holders authenticate transactions.
These techniques can be combined with our hot/cold wallet to mitigate attacks against
the cold wallet.
Other related work. One of the techniques that we use in this work is that certain
signature schemes support the following efficient transformation: given a signature under
some public key pk , one can produce a signature with respect to a related key pk ′. While
for certain signature schemes such as Schnorr [Sch89] this is a well-known trick that
has been used in various works [FF13, KMP16, ZCC+15], we are not aware of any prior
use of such an algorithm for the ECDSA signature scheme. In addition, as discussed
above we make use of the abstraction of signature schemes with rerandomizable keys that
was originally introduced by Fleischhacker et al. [FKM+16] in the context of sanitizable
signatures.

2 Preliminaries

Notation. We denote as s $← H the uniform sampling of the variable s from the set H.
If ℓ is an integer, then [ℓ] is the set {1, . . . , ℓ}. We use uppercase letters A,B to denote
algorithms. Unless otherwise stated, all our algorithms are probabilistic and we write
y $← A (x) to denote that A returns output y when run on input x. We write y ← A (x, ρ)
to denote that A returns output y when run on input x and randomness ρ. Note that in
this way, A becomes a deterministic algorithm. We use the notation A (x) to denote the
set of all possible outputs of (probabilistic) algorithm A on input x.

We write AB to denote that A has oracle access to B during its execution. For ease of
notation, we generally assume that boolean variables are initialized to false, integers are
set initially to 0, lists are initialized to ∅, and undefined entries of lists are initialized to ⊥.
To further simplify our definitions and notation, we assume that public parameters par
have been securely generated and define the scheme or algebraic structure in context. We
denote throughout the paper κ as the security parameter. For bit strings a, b ∈ {0, 1}∗ if
we write “a = (b, ·)” we check if the prefix of a is equal to b; likewise with “a ̸= (b, ·)” we
check if the prefix of a is different from b.
Security Games. We use standard code-based security games [BR04]. A game G is an
interactive probability experiment between an adversary A and an (implicit) challenger
which provides answers to oracle queries posed by A. G has one main procedure and
can have any number of additional oracle procedures that describe how oracle queries
are answered. We distinguish such oracle procedures from algorithmic ones by using a
distinct font Oracle. The output of G when interacting with adversary A is denoted as
GA. Finally, the randomness in any probability term of the form Pr[GA = 1] is assumed
to be over all the random coins in game G.
Random Oracle Model. We model hash functions as random oracles [BR93]. The
code of hash function H is defined as follows. On input x from the domain of the hash
function, H checks whether H (x) has been previously defined. If so, it returns H (x). Else,
it sets H (x) to a uniformly random element from the range of H and then returns H (x).
Elliptic Curve Cryptography. We denote an elliptic curve group as E = E (par)
with order p. The base point of the group E is denoted as G := (xb, yb). Any point
S := (xs, ys) in the group E can be written as S = aG, where aZp and we use additive
notation.

2.1 Signature Schemes
In this section, we introduce the syntax and relevant security notions for signature schemes.

Definition 2.1 (Signature Scheme). A signature scheme Sig is a triple of algorithms Sig =
(Sig.Gen, Sig.Sign, Sig.Verify). The randomized key generation algorithm Sig.Gen takes as
input public parameters par and returns a pair (sk, pk), of secret and public keys. The
randomized signing algorithm Sig.Sign takes as input a secret key sk and a message m
and returns a signature σ. The deterministic verification algorithm Sig.Verify takes as
input a public key pk, a signature σ, and a message m. It returns 1 (accept) or 0 (reject).

We require correctness: For all (sk, pk) ∈ Sig.Gen (par), and all m ∈ {0, 1}∗, we have that

Pr
σ

$←Sig.Sign(sk ,m)
[Sig.Verify (pk, σ,m) = 1] = 1.

We also adopt the notion of signature schemes with rerandomizable keys from Fleis-
chhacker et al. [FKM+16].

Definition 2.2 (Signature Scheme with Perfectly Rerandomizable Keys). A signature
scheme with perfectly rerandomizable keys is a tuple of algorithms RSig = (RSig.Gen,RSig.Sign,
RSig.Verify,RSig.RandSK,RSig.RandPK) where (RSig.Gen,RSig.Sign,RSig.Verify) are the
standard algorithms of a signature scheme as defined above. Moreover, we assume that
the public parameters par define a randomness space χ := χ(par). The probabilistic
secret key rerandomization algorithm RSig.RandSK takes as input a secret key sk and
randomness ρ ∈ χ and outputs a rerandomized secret key sk′. The probabilistic public key
rerandomization algorithm RSig.RandPK takes as input a public key pk and randomness
ρ ∈ χ and outputs a rerandomized public key pk′. We make the convention that for the
empty string ϵ, we have that RSig.RandPK(pk, ϵ) = pk and RSig.RandSK(sk, ϵ) = sk. We
further require:

1. (Perfect) rerandomizability of keys: For all (sk, pk) ∈ RSig.Gen (par) and ρ $← χ,
the distributions of (sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RSig.RandPK(pk, ρ),RSig.RandSK(sk, ρ)) ,
(sk′′, pk′′) $← RSig.Gen (par) .

2. Correctness under rerandomized keys: For all (sk, pk) ∈ RSig.Gen (par), for all
ρ ∈ χ, and for all m ∈ {0, 1}∗, the rerandomized keys sk′ ← RSig.RandSK(sk, ρ)
and pk′ ← RSig.RandSK(pk, ρ) satisfy:

Pr
σ

$←RSig.Sign(sk′,m)
[RSig.Verify (pk′, σ,m) = 1] = 1.

Security of Signature Schemes. In this work we will use the standard security
notion of existential unfogeability under chosen message attacks (UFCMA). We formalize
this notion for a signature scheme Sig via the game uf -cmaSig (Figure 1). In this game,
the challenger begins by sampling (sk, pk) as (sk, pk) $← Gen (par). The adversary is
then given the public key pk and can adaptively sign messages of its choice under the
corresponding secret key via an oracle SignO. Its goal is to forge a signature on a fresh
message m∗, i.e., one that was not previously queried to SignO. For an algorithm C, we
define C’s advantage in game uf -cmaSig as AdvC

uf -cma,Sig = Pr
[
uf -cmaC

Sig = 1
]
.

For a signature scheme with rerandomizable keys RSig, we also introduce a new
security notion called unforgeability under honestly rerandomized keys that is formalized
via game uf -cma-hrkRSig (Figure 2). This notion constitutes a weaker form of the notion
of existential unforgeability under rerandomized keys proposed in [FKM+16]. In the
latter notion, the adversary is able to query the signing oracle not only for signatures
corresponding to the public key pk that it obtains in the unforgeability experiment, but
also for signatures that correspond to arbitrary rerandomizations of pk. Similarly, the

main uf -cmaSig
00 (sk, pk) $← Sig.Gen (par)
01 (m∗, σ∗) $← CSignO (pk)
02 If m∗ ∈ Sigs : bad← true
03 b′ ← Sig.Verify (m∗, pk∗, σ∗)
04 Return b′ ∧ ¬bad

Oracle SignO (m)
05 σ $← Sig.Sign (sk,m)
06 Sigs ← Sigs ∪ {m}
07 Return σ

Figure 1: Security game uf -cmaSig with adversary C.

main uf -cma-hrkRSig
00 RList← {ϵ}
01 (sk, pk) $← RSig.Gen (par)
02 (m∗, σ∗, ρ∗) $← CRand,RSign (pk)
03 If m∗ ∈ Sigs : bad← true
04 If ρ∗ ̸∈ RList : bad← true
05 pk∗ ← RSig.RandPK(pk, ρ∗)
06 b← RSig.Verify (pk∗, σ∗,m∗)
07 Return b ∧ ¬bad

Oracle RSign (m, ρ)
08 If ρ /∈ RList : Return ⊥
09 sk′ ← RSig.RandSK(sk, ρ)
10 σ $← RSig.Sign (m, sk′)
11 Sigs ← Sigs ∪ {m}
12 Return σ

Oracle Rand
13 ρ $← χ
14 RList← RList ∪ {ρ}
15 Return ρ

Figure 2: Security game uf -cma-hrkRSig with adversary C.

winning condition is also relaxed in this notion by allowing the adversary to return a
forgery under an (arbitrarily) rerandomized key (but still on a fresh message m∗). The
main difference between the security notion from [FKM+16] and our new one is that the
adversary is restricted to honest rerandomizations of pk, i.e., randomizations where the
randomness is chosen by the challenger uniformly at random from χ. We model this via
an additional oracle in the security game. For an algorithm C, we define C’s advantage in
game uf -cma-hrkRSig as AdvC

uf -cma-hrk,RSig = Pr
[
uf -cma-hrkC

RSig = 1
]
.

3 The Stateful Model for Wallets
In this section, we introduce our formal security model for stateful deterministic wallets.
At a high level, a stateful deterministic wallet scheme allows two parties A (the cold wallet)
and B (the hot wallet) to derive matching session key pairs (for signing/verification) from
a pair of master keys. As presented in Figure 3, A keeps her master secret key msk and
gives the master public key mpk to B. A and B can now use the key derivation procedures
SKDer and PKDer, respectively, to derive an arbitrary number of session key pairs, locally,
i.e., without further interaction. Intuitively, this is possible since every part of the key
derivation procedure is deterministic and therefore, both A and B “automatically” carry
out the same sequence of derivations.

In contrast to standard hot/cold wallets, we will make one conceptual change and add

MGen

PKDer

SKDer

mpk

msk

pkID

skID

St ID

B: Hot Wallet

A: Cold Wallet

Session public key derivation in Hot Wallet

Session secret key derivation in Cold Wallet

Figure 3: Both Hot/ Cold wallet internally stores the common state St. The master keys are
stored in the respective wallets. When a session secret key is generated within the cold wal-
let as (skID, St)← SWal.SKDer(msk, ID, St), the state St gets refreshed. The session public
key pkID is generated within the hot wallet as (pkID, St) ← SWal.PKDer(mpk, ID, St),
and the corresponding state St is refreshed in the same manner.

to our schemes a state, denoted St below. The state St is updated (deterministically)
during each call to one of the key derivation procedures. As we will explain shortly, this
allows to obtain a strong form of forward privacy, which we will refer to as unlinkability.
For A to easily identify keys on the blockchain for which she can derive a corresponding
secret key and to keep track of the order they where derived in by B, session keys also have
an identifier ID ∈ {0, 1}∗ which is used as an argument for the key derivation procedures.
We now proceed to give the syntax of a stateful wallet scheme.

Definition 3.1 (Stateful Wallet). A stateful wallet is a tuple of algorithms

SWal = (SWal.MGen, SWal.SKDer, SWal.PKDer, SWal.Sign, SWal.Verify),

which are defined as follows. The randomized master key generation algorithm SWal.MGen(par)
takes public parameters par as input and outputs a tuple (St0, mpk, msk) consisting of an
initial state St0, a master secret key msk and a master public key mpk. The deterministic
secret key derivation algorithm SWal.SKDer takes as input a master secret key msk, an
identity ID, and a state St. It outputs a session secret key skID and an updated state St ′.
The deterministic public key derivation algorithm SWal.PKDer takes as input a master
public key mpk, an identity ID, and a state St. It outputs a session public key pkID
and an updated state St ′. The randomized signing algorithm SWal.Sign takes as input
a (session) secret key sk and a message m and returns a signature σ. The deterministic
verification algorithm SWal.Verify takes as input a (session) public key pk , a signature σ,
and a message m. It returns 1 (accept) or 0 (reject).

Let SWal = (SWal.MGen, SWal.SKDer, SWal.PKDer, SWal.Sign, SWal.Verify) denote a
stateful wallet according to Definition 3.1, for the remainder of this section. We now define

correctness of stateful deterministic wallets. Roughly speaking, correctness should ensure
that if the cold wallet A and the hot wallet B derive session key pairs on the same set
of identities ID0, ..., IDn−1 ∈ {0, 1}∗ and in the same order, any signature created under
one of the resulting signing keys of A should correctly verify under the corresponding
verification key of B. In other words, all the derived session keys should “match”.

Definition 3.2 (Correctness of Stateful Wallets). For all (St0,msk,mpk) ∈ SWal.MGen(par),
all n ∈ N, all I⃗D := (ID0, ..., IDn−1) ∈ {0, 1}∗, we set St0[I⃗D, St0,msk] = St0[I⃗D, St0,mpk] :=
St0 and define the sequence

{(
ski[I⃗D, St0,msk], Sti[I⃗D, St0,msk]

)}
1≤i≤n

recursively as
(
ski[I⃗D, St0,msk], Sti[I⃗D, St0,msk]

)
:= SWal.SKDer(msk, IDi−1, Sti−1[I⃗D, St0,msk]).

Analogously, we define
{(

pki[I⃗D, St0,mpk], Sti[I⃗D, St0,mpk]
)}

1≤i≤n
recursively as

(
pki[I⃗D, St0,mpk], Sti[I⃗D, St0,mpk]

)
:= SWal.PKDer(mpk, IDi−1, Sti−1[I⃗D, St0,mpk]).

We say that SWal is correct if for all n ∈ N, all (ID0, ..., IDn−1) ∈ {0, 1}∗, all (St0,

msk,mpk) ∈ SWal.MGen(par), and all m ∈ {0, 1}∗, we have for pk := pkn[I⃗D, St0,mpk]
and sk := skn[I⃗D, St0,msk]:

Pr
σ

$←SWal.Sign(sk ,m)
[SWal.Verify(pk , σ,m) = 1] = 1.

In the next subsection, we introduce the two basic security notions for stateful wal-
lets, namely a) unlinkability of generated public session keys, and b) unforgeability of
corresponding signatures.

3.1 Wallet Unlinkability
We begin by introducing the notion of wallet unlinkability. Intuitively, unlinkabililty
guarantees that transactions sending money to different public session keys that were
derived from the same master key should be unlinkable. Formally, we require that, given
the master public key, the distribution of session public keys is computationally indistin-
guishable from session public keys that are generated from a fresh (i.e., independently
and randomly chosen) master public key and state. Unfortunately, there is little hope to
achieve this guarantee for keys to which the adversary knows the state St used to derive
them. Therefore, our notion of unlinkability satisfies a weaker form of privacy called
forward unlinkability. This means that keys generated prior to a hot wallet breach (i.e.,
when the adversary learns the state) cannot be linked to mpk.

The wallet unlinkability game unlSWal is presented in Figure 5. Initially, A receives as
input a master public key mpk generated via MGen (par) and subsequently interacts with
oracles PK, WalSign and Chall that reflect A’s capabilities. The game internally maintains
a state St, which is updated when A calls the oracle PK to derive new keys. In addition,
at any point in time A can read out the current state St by calling the oracle getSt. This
models A’s capability to break into the hot wallet on which the state is stored. Finally,
the oracle Chall allows A to obtain a challenge public key pkID for a user identity ID of
its choice. This challenge public key is either “real” or “random”, i.e., it depends on mpk

Hot Wallet

Cold Wallet

User Side

User Side

PKDer Verify

SKDer Sign

pkID

(mpk, ID, St)

(σ,m)

(0/1)

(msk, ID, St)

skID

m

(pkID, σ,m)

St

Figure 4: (1) The cold wallet signs a message m with its session secret key skID as
σ ← SWal.Sign(skID,m). (2) Anyone can later verify the validity of a signature σ on
message m as (0/1)← SWal.Verify(pkID, σ,m).

or was sampled freshly and independently of mpk (see below for details). A’s goal is to
distinguish these two scenarios. However, A is only considered successful if it obtains St
(via oracle getSt) after being given the challenge public key pkID.3 We now proceed in
explaining the oracles to which A has access in more detail.

PK (ID): The oracle PK takes as input an ID and returns a corresponding session
public key pkID. It models A’s capability to observe transactions stored on the blockchain
that transfer money to pkID. A typical setting where this may occur is when funds are
sent via the blockchain to the cold wallet. For simplicity of bookkeeping, we make the
convention that identifiers are unique and thus A can call PK only once per ID.

WalSign(m, ID): The oracle WalSign takes as input an identity ID and a message m
and returns the corresponding signature if pkID has been previously returned as a result
to a PK (ID) query. As such, it allows A to sign, in an adaptive fashion, messages of its
choice under public keys that it previously obtained via the oracle PK. WalSign models
that an adversary A may obtain signatures that are produced by the cold wallet with
skID, when funds are spent from the cold wallet (e.g., when the owner of the cold wallet
buys something with the collected coins).

3Recall that otherwise the adversary can trivially distinguish between “real” or “random”.

main unlSWal
00 (St,msk,mpk) $← SWal.MGen(par)
01 b $← {0, 1}
02 Orc← {PK, WalSign,Chall, getSt}
03 b′ $← AOrc(mpk)
04 Return b′ = b

Oracle WalSign(m, ID)
05 If SSNKeys[ID] = ⊥ : Return ⊥
06 (pkID, skID)← SSNKeys[ID]
07 σ $← SWal.Sign(skID,m)
08 Return σ

Oracle PK (ID) // Once per ID
09 tmp1 ← (msk, ID, St)
10 tmp2 ← (mpk, ID, St)
11 (skID, St)← SWal.SKDer(tmp1)
12 (pkID, St)← SWal.PKDer(tmp2)
13 SSNKeys[ID]← (pkID, skID)
14 Return pkID

Oracle getSt
15 StateQuery ← true
16 Return St

Oracle Chall (ID) //One time
17 If StateQuery : Return ⊥
18 If SSNKeys[ID] ̸= ⊥ : Return ⊥
// Generate real key
19 tmp1 ← (msk, ID, St)
20 tmp2 ← (mpk, ID, St)
21 (sk0

ID, St)← SWal.SKDer(tmp1)
22 (pk0

ID, St)← SWal.PKDer(tmp2)
// Generate random key
23 (Ŝt, m̂sk, m̂pk) $← SWal.MGen(par)
24 tmp1 ← (m̂sk, ID, Ŝt)
25 tmp2 ← (m̂pk, ID, Ŝt)
26 (sk1

ID, ·)← SWal.SKDer(tmp1)
27 (pk1

ID, ·)← SWal.PKDer(tmp2)
28 SSNKeys[ID]← (pkb

ID, skb
ID)

29 Return pkb
ID

Figure 5: Adversary A playing in Game unlSWal.

getSt: The oracle getSt returns the current state St and records this event by setting
StateQuery to true. As mentioned above, this models hot wallet corruption.

Chall (ID): The oracle Chall takes as input an ID and returns a public key pkb
ID that

depends on the uniformly random bit b sampled internally by the game unlSWal. Chall can
be called only a single time. If b = 0, pk0

ID is derived from the current state St and mpk as(
pk0

ID, ·
)
← SWal.PKDer(mpk, ID, St). If b = 1, pk1

ID is derived from a freshly generated
master public key and state for the same identity ID, i.e., via the sequence of steps:

• (Ŝt, ·, m̂pk) $← SWal.MGen(par)

•
(
pk1

ID, ·
)
← SWal.PKDer(m̂pk, ID, Ŝt)

If A sets StateQuery prior to calling Chall, or queries Chall on an identity ID that it
previously queried PK on, Chall always returns ⊥ in order to prevent a trivial attack on
unlinkability. We define A’s advantage in unlSWal as

AdvA
unl,SWal =

∣∣∣∣Pr
[
unlA

SWal = 1
]
− 1

2

∣∣∣∣ . (1)

main wunf SWal
00 (St,msk,mpk) $← SWal.MGen(par)
01 (m∗, σ∗, ID∗) $← APK,WalSign(mpk, St)
02 If SSNKeys[ID∗] = ⊥
03 Return 0
04 (pkID∗ , skID∗)← SSNKeys[ID∗]
05 If m∗ ∈ Sigs[ID∗]
06 Return 0
07 If SWal.Verify(pkID∗ , σ∗,m∗) = 0
08 Return 0
09 Return 1

Oracle WalSign(m, ID)
10 If SSNKeys[ID] = ⊥ : Return ⊥
11 (pkID, skID)← SSNKeys[ID]
12 σ $← SWal.Sign(skID,m)
13 Sigs[ID]← Sigs[ID] ∪ {m}
14 Return σ

Oracle PK (ID) // Once per ID
15 tmp1 ← (msk, ID, St)
16 tmp2 ← (mpk, ID, St)
17 (skID, St)← SWal.SKDer(tmp1)
18 (pkID, St)← SWal.PKDer(tmp2)
19 SSNKeys[ID]← (pkID, skID)
20 Sigs[ID]← ∅
21 Return pkID

Figure 6: Adversary A playing in Game wunf .

3.2 Wallet Unforgeability
In this subsection we describe the wallet unforgeability notion. In Game wunf A

SWal
(depicted in Figure 6) we consider again an adversary A that receives as input a master
public key mpk and has subsequently access to oracles PK and WalSign, which work as
their corresponding oracles in the unlinkability game. In addition, A gets as input the
initial state St. A wins if it can produce a triple (m∗, σ∗, ID∗) such that σ∗ is a valid
forgery on message m∗ under a public key pkID∗ previously obtained from a call to PK.
Here, valid means that no signature on message m∗ under pkID∗ was previously obtained
from a call to WalSign. We denote A’s advantage in wunfSWal as

AdvA
wunf,SWal = Pr

[
wunf A

SWal = 1
]
. (2)

Unforgeability for Keys with Compromised State. At a high-level, the wunf SWal
game models that once funds are transferred to the cold wallet they remain secure even if
(a) the hot wallet is compromised, and (b) the adversary can see transfers of coins sent
from the cold wallet. We now explain the game in more detail. In contrast to the unlSWal
game from the previous section, in the wunf SWal game the adversary is given the state St
as part of its initial input. This models the “worst-case” adversary that breaks into the
hot wallet right after the hot/cold wallet has been initialized. In addition, to giving A
the initial state St and the master public key mpk, we also give it access to the PK and
WalSign oracle. The first can be queried by the adversary on identity ID to derive a new
key pair (pkID, skID) from the master keys and the current state, and is used mainly for
bookkeeping purposes.4 The second oracle WalSign is as in the unlSWal game except that
we also keep track of the messages that were already signed via the map Sigs[ID].

4Notice that in wunf SWal the adversary obtains mpk and the initial state, and hence can compute the
output pk of PK himself.

As already mentioned above, since the adversary receives mpk and the initial state St
in the wunf SWal game, it can derive all possible pkID (even without calling PK (ID)). This
subtle difference significantly complicates the security proof in the subsequent sections
and is a crucial aspect of our unforgeability notion. More concretely, since A knows the
state throughout the entire game wunf SWal, it may be able to mount a related key attack
(RKA) against the underlying signature scheme used in our wallet construction. At a
high-level the RKA allows the adversary to “transfer” a signature σID with respect to
pkID to a valid signature σID∗ for pkID∗ . Signature schemes that are susceptible to such
an RKA are for instance the Schnorr or BLS signature scheme, and the discussion on the
attack of a hot/cold wallet instantiated in a naive way with these schemes can be found
in Appendix, full version. Let us briefly explain how an adversary in the wunf SWal game
can exploit such an RKA to break the underlying wallet scheme.

To this end, consider an adversary A that breaks into the hot wallet and obtains mpk
and St. This break-in is modeled in wunf SWal by giving the adversary mpk, St at the
beginning of the game. Next, the adversary waits until some funds are transferred to the
cold wallet, which we model by calls to the PK oracle. Finally, A queries the WalSign
oracle to transfer some fraction of funds – say the funds stored under pkID – from the cold
wallet to some new address. In practice, this may happen for example when some of the
funds kept on the cold wallet are spent for a purchase. Once the adversary has received a
single signature σID produced by the cold wallet, it can apply the RKA to steal all funds
that have ever been transferred to the cold wallet. More precisely, given the signature
σID, the master public key mpk, and the state St it can produce valid signatures σID∗ for
pkID∗ where pkID∗ resulted from a previous call to PK on input ID∗.

This attack results into a severe security breach as the owner of the cold wallet can
loose its entire funds stored on the cold wallet. Since the attack does not require to
break into the cold wallet, it strongly violates the original purpose of the hot/cold wallet
concept in cryptocurrencies. Indeed, a user that transfers its funds to the cold wallet
would assume that once the funds are transferred to the cold wallet, they are safe except
for a break-in to the cold wallet.

As demonstrated in the subsequent section, an easy way to thwart this attack is to use
public key prefixing, i.e., to compute a signature on m as Sign (sk ,(pk ,m)). Interestingly,
this technique was also used in [MSM+15], with the purpose of preventing an RKA. This
further highlights the close relation between resistance to RKAs and unforgeability in our
model.

Of course, exploiting an RKA is only one possibility of stealing funds from the cold
wallet, and there may be other types of attacks allowing the adversary to forge signatures
with respect to keys stored on the cold wallet, given that it knows the state. Nevertheless,
it also clearly underlines the importance of a formal security analysis of hot/cold wallet
schemes within a strong security model. In the next section, we show how to reduce
the security of a wallet scheme in the above unforgeability game to the security of the
signature scheme that underlies the wallet construction.

Algorithm SWal[H].MGen(par)
00 St $← {0, 1}κ

01 (mpk,msk) $← RSig.Gen(par)
02 Return (St,msk,mpk)

Algorithm
SWal[H].Sign(m, sk , pk)
03 m̂← (pk ,m)
04 σ $← RSig.Sign(sk , m̂)
05 Return σ

Algorithm
SWal[H].Verify(pk , σ,m)
06 m̂← (pk ,m)
07 Return RSig.Verify(pk , σ, m̂)

Algorithm SWal[H].SKDer(msk, ID, St)
00 (ωID, St)← H(St, ID)
01 skID

$← RSig.RandSK(msk, ωID)
02 Return (skID, St)

Algorithm SWal[H].PKDer(mpk, ID, St)
03 (ωID, St)← H(St, ID)
04 pkID ← RSig.RandPK(mpk, ωID)
05 Return (pkID, St)

Figure 7: Construction of swal[H] from RSig and H.

4 Generic Constructions
In this section, we show how to realize a stateful wallet from any signature scheme with
uniquely rerandomizable keys. Such a signature scheme is defined as follows.

Definition 4.1 (Signature scheme with uniquely rerandomizable keys). A rerandomizable
signature scheme RSig, is said to have uniquely rerandomizable public keys if for all
(ρ, ρ′) ∈ χ, we have that RandPK(pk , ρ) = RandPK(pk , ρ′) implies ρ = ρ′.

We begin by explaining our generic construction. We then prove its security with
respect to the security notions introduced in Section 3. We assume in the following a
signature scheme with uniquely rerandomizable keys

RSig = (RSig.Gen,RSig.Sign,RSig.Verify,RSig.RandSK,RSig.RandPK)

. Our construction swal[H] of a stateful wallet which internally uses the hash function
H : {0, 1}∗ → Zp × {0, 1}κ (for state updates) is depicted in Figure 7.

4.1 Security Analysis
We proceed to analyze the properties of unlinkability and unforgeability of our stateful
wallet construction (c.f. Figure 7) below.

4.1.1 Unlinkability

We begin by proving unlinkability of our generic construction. The proof is rather simple
and follows from collision resistance of H and that H is modeled as a random oracle. It
also relies on the rerandomizability property of the underlying signature scheme.

Theorem 4.2 Let swal[H] be the construction defined in Figure 7. Then for any adversary
A playing in game unlswal[H], we have

AdvA
unl,swal[H] ≤

qH(qP + 2)
2κ

,

where qH and qP are the number of random oracle queries and queries to oracle PK,
respectively, that A makes.

Proof. Consider an adversary A playing in game unlswal[H]. A interacts with oracles
PK, WalSign, getSt,Chall, and the random oracle H. We can assume without loss of
generality that A always calls Chall (ID) before calling getSt and exclusively on an identity
ID that was never previously queried to PK; otherwise, AdvA

unl,swal[H] = 0 and the theorem
holds trivially. In the following, let S denote the set of values taken by the variables
St, Ŝt before A calls Chall (ID). Furthermore, let pk0

ID, pk1
ID denote the keys internally

sampled in unlswal[H] upon A’s call Chall (ID). Note that by definition of swal[H].PKDer,
unless A manages to make a query of the form H

(
St ′, ID

)
where St ′ ∈ S, pk0

ID and pk1
ID

are identically distributed from its point of view. The reason is that as long as such a
query hasn’t been made, the values of St, Ŝt used to derive pk0

ID and pk1
ID, respectively,

are uniformly distributed from A’s point of view. Now, the rerandomizability property of
RSig ensures that both pk0

ID and pk1
ID are identically distributed to a freshly generated

public key pk $← RSig(par) (and therefore identically distributed to each other). In this
case we again have that AdvA

unl,swal[H] = 0. It therefore remains to argue that A makes
such a call to H with probability at most (qH(qP + 2)) /2κ. This can be seen as follows.
Since A makes at most qP queries to PK throughout unlswal[H], in particular |S| ≤ qP + 2.
Since we have assumed that A always calls getSt after calling Chall (which internally
updates St), all values in S are uniformly distributed from A’s point of view, until it
learns any particular value St ′ ∈ S (note that after such St ′ becomes known to A, it is
able to infer all values that were added to S after St ′). Therefore, the probability that
for any particular query of the form H

(
St ′, ID

)
, St ′ ∈ S, is at most (qP + 2)/2κ. Since

A makes at most qH such queries of the form H
(
St ′, ID

)
, the probability that for any of

them, St ′ ∈ S, is at most (qH(qP + 2)) /2κ, which proves the lemma.

4.1.2 Unforgeability

We now turn towards the unforgeability of our construction. Before giving the proof,
we provide some intuition about our proof technique. At a high level, the idea is to
reduce the security of the stateful wallet scheme swal[H] (relative to wunf swal[H]) to the
security of RSig (relative to uf -cma-hrkRSig). As such, the proof consists mainly of the
description of a reduction C trying to come up with a valid forgery in order to win the
game uf -cma-hrkRSig by simulating wunf swal[H] to an adversary A. Recall that C obtains
a public key pkC from its challenger in uf -cma-hrkRSig and has access to oracles Rand,
RSign. It can call the oracle Rand to obtain a random value ρ. Later, C can use the
signing oracle RSign on input (m, ρ), which provides signatures on a message m of C’s
choice under the rerandomized key pk′ := swal[H].RandPK(pkC, ρ). Note that C can query
RSign also to get signatures under pkC by setting ρ = ϵ. C’s goal is to simulate the
oracles in the wunf swal[H] experiment and to suitably embed pkC into the key pkID∗ under

which A eventually returns a forgery (σ∗,m∗). The hope is that it can use (σ∗,m∗) to win
uf -cma-hrkRSig.

A promising approach is therefore to embed pkC into the master public key mpk within
the simulation. This way, every answer to a query PK(ID) can easily be computed as
(ωID, ·)← H (St, ID), pkID ← swal[H].RandPK(mpk, ωID). To simulate any signature under
pkID to A, C can make a query of the form RSign(m̂, ωID), where m̂ = (pkID,m). When
A returns the forgery (m∗, σ∗, ID∗), it is valid under the following conditions: (i) pkID∗ is
a valid session public key that was returned to A as the answer to a query PK(ID∗), (ii) A
has not yet queried WalSign for a signature on m∗ under pkID∗ , (iii) the signature σ∗ is
valid, i.e., swal[H].Verify(pkID∗ , σ∗,m∗) = 1. As part of the proof, we show that C can win
uf -cma-hrkRSig by returning the forgery (m∗, σ∗, ρ∗), where ρ∗ = ω∗ID.

Theorem 4.3 Let A be an algorithm that plays in the unforgeability game wunf swal[H],
where swal[H] denotes the construction defined in Figure 7. Then if RSig is a signature
scheme with uniquely rerandomizable keys, then there exists an algorithm C running in
roughly the same time as A, such that

AdvA
wunf ,swal[H] ≤ AdvC

uf -cma-hrk,RSig + q2

p

where q is the number of random oracle queries that A makes.

Proof. Consider an adversary A playing wunf swal[H]. As such, A is given the initial master
public key mpk and the initial state St, and is granted access to the oracles PK, WalSign
and the random oracle H. We prove the Theorem via a sequence of games.
Game G0: This game behaves exactly as wunf swal[H], i.e., G0 := wunf swal[H]. Internally
however, G0 additionally sets flag← true, whenever there is a call of the form PK(ID),
such that the tuple (skID, pkID) of session keys corresponding to this query, collides with
a pair of session keys that was previously derived for another identity ID′ ̸= ID, i.e.,
(pkID, skID) = (pkID′ , skID′) = SSNKeys[ID′].
Game G1: G1 behaves as G0, but aborts whenever flag is set to true. We let E0,1
denote the event that flag = true during the execution of G1.

Claim 4.4 Pr[E0,1] ≤ q2

p
.

Proof. A collision of the form (pkID, skID) = (pkID′ , skID′), where ID ̸= ID′ implies that

RSig.RandPK(mpk, ωID) = RSig.RandPK(mpk, ωID′).

From the property of signature scheme with uniquely rerandomizable keys of RSig, this
would mean ωID = ωID′ , where (ωID, ·) = H(·, ID), (ωID′ , ·) = H(·, ID′). Since there are q
queries to H the probability of event E0,1 is bounded by q2

p
.

Thus, AdvA
wunf ,swal[H] ≤ AdvA

G1
+ q2

p
.

Next, we show how winning game uf -cma-hrkRSig reduces to winning game G1. To
this end, we describe an algorithm CRand,RSign (depicted in Figure 8) that plays in game
uf -cma-hrkRSig. C obtains as input a public key pkC and is given access to the oracles
Rand and RSign. C simulates G1 to A as described in the following.

Algorithm CRSign,Rand(pkC)
00 St $← {0, 1}κ

01 (m∗, σ∗, ID∗) $← APK,WSign,H(mpk, St)
02 If SSNKeys[ID∗] = ⊥ : Abort
03 If m∗ ∈ Sigs[ID∗] : Abort
04 (pkID∗ , ωID∗)← SSNKeys[ID∗]
05 If SWal[H].Verify(pkID∗ , σ∗,m∗) = 0 :
06 Abort
07 m̂∗ ← (pkID∗ ,m∗)
08 Return (m̂∗, σ∗, ωID∗)

Procedure PK (ID) //Once per ID
09 (ωID, St)← H(St, ID)
10 pkID ← SWal[H].RandPK(mpk, ωID)
11 If (pkID, ωID) ∈ SSNKeys : Abort
12 SSNKeys[ID]← (pkID, ωID)
13 Return pkID

Procedure WalSign(m, ID)
14 If SSNKeys[ID] = ⊥ : Return ⊥
15 (pkID, ωID)← SSNKeys[ID]
16 m̂← (pkID,m)
17 σ ← RSign(m̂, ωID)
18 Sigs[ID]← Sigs[ID] ∪ {m̂}
19 Return σ

Procedure H (s)
20 If H[s] ̸= ⊥
21 Return H[s]
22 ρ $← Rand
23 φ $← {0, 1}κ

24 H[s]← (ρ, φ)
25 Return H[s]

Figure 8: C’s simulation of wunf swal[H] to A.

Setup. C first samples an initial state St $← {0, 1}κ and uses the public key pkC from the
uf -cma-hrkRSig game as the master public key mpk in its simulation of wunf swal[H], i.e.,
it runs A on input mpk = pkC, St in wunf swal[H]. Throughout the game, C keeps updating
St each time it answers a query to PK from A, as we describe below.
Simulation of Random Oracle Queries. C has to answer queries of the form H (s):
Queries of this type are simulated in the programmable random oracle model as follows.
When A makes a query of the form H(s), C returns H[s] if it was already set. Otherwise,
it proceeds as follows. Firstly, C fetches ρ $← Rand by querying the oracle Rand. Let
us note that Rand internally updates RList ← RList ∪ {ρ}. Secondly, C freshly samples
φ $← {0, 1}κ. Finally, C returns H[s] = (ρ, φ).
Simulation of Public Key Queries. C answers a call of A to PK (ID) by computing
pkID as pkID ← RSig.RandPK(pkC, ωID) where (ωID, St) ← H (St, ID). If C detects a
collision among (pkID, ωID) and a value previously stored in SSNKeys, C aborts the
simulation. Otherwise, it sets SSNKeys[ID]← (pkID, ωID) and returns pkID.

Simulation of Signing Queries. When A queries WalSign on input (m, ID), C first
recovers the pair (pkID, ωID)← SSNKeys[ID] (it returns ⊥ if SSNKeys[ID] = ⊥). Next,
C sets m̂ = (pkID,m) and obtains σ $← RSign(m̂, ωID) by querying its own challenge
signing oracle. Since H (·, ·) is programmed as explained above by making a call to
Rand, we know that ωID ∈ RList. Hence, the query RSign(m̂, ωID) is indeed valid, i.e,
does not return ⊥. From the definition of signature schemes with rerandomizable keys,
SWal[H].Verify(pkID, σ,m) = RSig.Verify(RSig.RandPK(pkC, ωID), σ, m̂)) = 1, and so the
simulated signatures are also correctly distributed.
Extracting the forgery. When A returns the tuple (m∗, σ∗, ID∗), C aborts if it

encounters any of the cases in which G1 would return 0 at this point (c.f. Figure 8).
Otherwise it proceeds as follows. It first recovers the pair (pkID∗ , ωID∗)← SSNKeys[ID∗],
and then returns (m̂∗, σ∗, ωID∗) = ((pkID∗ ,m∗), σ∗, ωID∗). (m̂∗, σ∗, ωID∗) is a valid forgery
in uf -cma-hrk game since:

1. From the simulation, we have that pkID∗ = pkC · ωID∗ and ωID∗ ∈ RList.

2. Since swal[H].Verify(pkID∗ , σ∗,m∗) = 1, it follows from the previous point that
RSig.Verify(pkID∗ ,
σ∗, m̂∗) = 1.

3. m∗ /∈ Sigs[ID∗] implies that C never simulated a signature on message m∗ under
public key pkID∗ to A before. Since every identifier has a unique key in G1, it follows
that C never made a query of the form RSign(m̂∗, ·) throughout its simulation.
Consequently, m̂∗ /∈ Sigs.

It is clear that C provides a perfect simulation of G1 to A. Therefore, we obtain

AdvA
wunf ,swal[H] ≤ AdvA

G1,swal[H] + q2

p
= AdvC

uf -cma-hrk,RSig + q2

p
,

which implies the theorem.

5 A Construction from ECDSA
In this section, we prove security of a construction based on the EC [H] scheme (cf.
Figure 11). For the following discussion, let E (par) denote an elliptic curve with base
point G and prime order p. Furthermore, assume hash functions G : {0, 1}∗ → Zp,
H0 : {0, 1}∗ → Zp(modeled as random oracles). We prove that a salted variant of the
standard EC [H] scheme, denoted as REC[H] and depicted in Figure 10, satisfies the notion
of unforgeability under honestly rerandomized keys.

5.1 Security Analysis of Our Construction
We now proceed to the main technical contribution of this paper, where we analyze the
notion of unforgeability under honestly rerandomized keys of the construction REC[H0]
presented in Figure 10. We prove the following theorem.

Theorem 5.1 Let G,H0 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Let
A be an algorithm that plays in game uf -cma-hrkREC[H0]. Then there exists an algorithm
C running in roughly the same time as A, such that

AdvA
uf -cma-hrk,REC[H0] ≤ AdvC

uf -cma,EC[G] + 5q2

p
,

where q is the number of random oracle queries that A makes.

Algorithm
EC[H].Gen (par)
00 x $← Zp

01 X ← x ·G
02 sk ← x
03 pk ← X
04 Return (pk, sk)

Algorithm
EC[H].Sign (sk = x,m)
05 z ← H (m)
06 t $← Zp

07 (ex, ey)← t ·G
08 r ← ex mod p
09 If r = 0 mod p
10 Goto Step 2
11 s← t−1 (z + rx) mod p
12 If s = 0 mod p
13 Goto Step 2
14 Return σ := (r, s)

Algorithm
EC[H].Verify (pk = X, σ,m)
15 Parse (r, s)← σ
16 If (r, s) ̸∈ Zp

17 Return 0
18 w ← s−1 mod p
19 z ← H (m)
20 u1 ← zw mod p
21 u2 ← rw mod p
22 (ex, ey)← u1 ·G+ u2 ·X
23 If (ex, ey) = (0, 0)
24 Return 0
25 Return r = ex mod p

Figure 9: EC [H] = (EC[H].Gen, EC[H].Sign, EC[H].Verify): ECDSA Signature scheme relative to elliptic
curve E and hash function H : {0, 1}∗ → Zp.

Algorithm Trf[H,G]EC The algorithm Trf[H,G]EC which serves as an essential tool in our
proof of Theorem 5.1 is presented in Figure 11. It takes as input two distinct messages
m0,m1, two ECDSA public keys X0, X1 related via the offset ω and a signature σ1 of
m1 wrt. public key X1. The algorithm then carries out several consistency checks and
if they pass outputs a valid signature σ0 of m0 under the related public key X0. Notice
that the two signatures σ0 and σ1 are valid with respect to different hash function, i.e.,
σ1 is a signature with respect to G, while σ0 is a signature with respect to H. This in
particular implies that the transformation in Trf[H,G]EC does not result into a practical
related key attack as both signatures σ0 and σ1 are valid with respect to different hash
functions and the consistency checks in Trf[H,G]EC strongly restrict on what messages the
related signature can be computed.5 The following lemma formalizes the properties of
Trf[H,G]EC.

Lemma 5.2 Consider the algorithm Trf[H,G]EC in Figure 11. Suppose that:

• ω = G (m1) /H (m0) ∈ Zp,

• X0, X1 ∈ E s.t. X0 = x0 ·G and X1 = ω ·X0,

• EC[G].Verify(X1, σ1,m1) = 1,

• σ0 ← Trf[H,G]EC(m0,m1, σ1, ω,X0, X1).

Then EC[H].Verify(X0, σ0,m0) = 1.

Proof. Let σ1 = (r, s1) be a valid signature on m1 relative to G and public key X1, i.e.,
EC[G].Verify(X1, σ1,m1) = 1. We have to show that σ0 = (r, s1

ω
) = Trf[H,G]EC(m0,m1, σ1, ω,X0, X1)

5The RKA against ECDSA can also be deployed when setting H = G. However, this attack is
not particularly useful for our simulation argument. For the simulation argument we require to move
signatures between different hash functions.

Algorithm REC[H0].Sign (sk ,m)
00 ψ $← {0, 1}κ

01 m̂← (pk , ψ,m)
02 σ′ ← EC[H0].Sign (sk , m̂)
03 Return σ = (ψ, σ′)

Algorithm
REC[H0].Verify (pk , σ,m)
04 (ψ, σ′)← σ
05 m̂← (pk , ψ,m)
06 Return
EC[H0].Verify (pk , σ′, m̂)

Algorithm
REC[H0].RandSK (sk , ρ)
00 sk ′ ← sk · ρ mod p
01 Return sk ′

Algorithm
REC[H0].RandPK (pk , ρ)
02 pk ′ ← pk · ρ
03 Return pk ′

Figure 10: Salted and key-prefixed version of the ECDSA signature scheme with
perfectly rerandomizable keys REC[H0] := (REC[H0].Gen = EC[H0].Gen, REC[H0].Sign,
REC[H0].Verify, REC[H0].RandSK, REC[H0].RandPK) from the ECDSA signature scheme
EC[H0]. H0 : {0, 1}∗ → Zp denotes a hash function.

Trf[H,G]EC(m0,m1, σ1, ω,X0, X1)
00 z0 ← H (m0)
01 z1 ← G (m1)
02 If

(
VerifyG(σ1,m1, X1) = 0

)
∨

(
ω ̸= z1

z0
∨X1 ̸= X0 · ω

)
:

03 Return ⊥
04 (r, s1)← σ1
05 s0 ← s1

ω
mod p

06 σ0 ← (r, s0)
07 Return σ0

Figure 11: Figure shows the TrfECDSA algorithm for hash functions H,G : {0, 1}∗ → Zp.

is a valid signature on m0 relative to H and public key X0, i.e., EC[H].Verify(X0, σ0,m0) = 1.
To this end, let z1 = G (m1) and suppose that s1 was computed as s1 = z1+rωx

t
for some

t ∈ Zp. We show that EC[H].Verify(X0, σ0,m0) = 1. The algorithm EC[H].Verify on input
(X0, σ0,m0) first computes w0 = (s0)−1 = ω

s1
= ωt

z1+rωx
= ωt

ωz0+rωx
= t

z0+rx
= t

H(m0)+rx
,

where the last equation follows, because Trf[H,G]EC(m0,m1, σ1, ω,X0, X1) did not return
⊥ (by the prerequisites of the lemma). Therefore, since z0 = z1/ω = G (m1) /ω, it must
hold that z0 = H (m0).

EC[H].Verify next computes u1,0 ≡p z0w0 ≡p H (m0)w0, u2,0 ≡p rw0 and

u1,0 ·G+ u2,0 ·X0 =H (m0)w0 ·G+ rw0 · x ·G
=H (m0)w0 ·G+ xrw0 ·G
= (w0 (H (m0) + xr)) ·G (3)
=t ·G =: (ex, ey)

To ensure that EC[H].Verify(X0, σ0,m0) = 1, it remains to show that r ≡p ex, where r
is the first component of the signature. To this end, consider the computation performed
via EC[G].Verify(X1, σ1,m1). First, the algorithm computes

w1 = (s1)−1 = t

z1 + rωx
= t

G (m1) + ωrx
.

Next it computes u1,1 ≡p z1w1 ≡p G (m1)w1, u2,1 ≡p rw1,

u1,1 ·G+ u2,1 ·X1 =G (m1)w1 ·G+ rw1 · xω ·G
=G (m1)w1 ·G+ xωrw1 ·G
= (w1(G (m1) + xωr)) ·G (4)
=t ·G = (ex, ey),

Therefore, since EC[G].Verify(X1, σ1,m1) = 1, we have that r ≡p ex. It follows now
that also EC[H].Verify(X0, σ0,m0) = 1.

Before giving the formal proof of Theorem 5.1, we give some intuition about the main
difficulties that we need to overcome. At a high level, the idea is to reduce the security of
the salted ECDSA construction REC[H0](relative to uf -cma-hrkREC[H0]) to the security of
EC[G] (relative to uf -cmaEC[G]). As such, the proof consists mainly of the description of a
reduction C trying to come up with a valid forgery in order to win the game uf -cmaEC[G]
by simulating uf -cma-hrkREC[H0] to the adversary A. C obtains a public key pkC from its
challenger and can query a signing oracle SignO(·) which provides signatures on messages
of C’s choice under pkC. It also can query the random oracle G. C’s goal is to simulate
the oracles in the uf -cma-hrkREC[H0] experiment and to suitably embed pkC into the key
pk∗ under which A eventually returns a forgery (σ∗,m∗, ρ∗). The hope is that it can use
(σ∗,m∗, ρ∗) to win uf -cmaEC[G].

C embeds pkC as A’s input public key pk . This allows C to rerandomize pk into pk ′
which is a crucial requirement for answering oracle queries posed by A. However, there
are several issues with this approach. Firstly, C is not aware of any of the secret keys for
the public keys generated as pk ′ ← pk · ρ = pkC · ρ. Secondly, the signatures obtained
by making a query SignO(·) to C’s challenger are only valid under pkC, so cannot be
directly used to simulate signing queries of the form RSign(m, ρ) to A. To solve the latter
problem, C can convert a signature of the form σ ← SignO(m′) under pkC into a signature
σ̂ under pk ′, and on message m̂ using algorithm Trf[H0,G]EC. Here, pkC and pk ′ are related
as pkC = pk ′ · ρ−1, and ρ−1 = G(m′)

H0(m̂) . Similarly, it can convert a forgery (σ∗,m∗) under
an arbitrary related key pk∗ into a forgery that is valid under pkC, using Trf[G,H0]EC in
the “reverse” direction (note the inverted order of H0 and G). To satisfy the relationship

between the (hash of) messages involved in the signatures, C needs to carefully program
the random oracle H0 to make everything consistent with what A expects to see. This
gets even more complicated because A can make direct queries to the programmed oracle
H0(·) where each of the queries should look random from A’s point of view.

We now turn to the formal proof of Theorem 5.1.

Proof. Consider an adversary A playing in Game uf -cma-hrkREC[H0]. As such A is
granted access to the oracles Rand, RSign, and the random oracle H0 : {0, 1}∗ → Zp. In
the following, we use that 2κ ≤ p. We prove the statement via a sequence of games.
Each game Gi(i>0) is presented in Figure 13 via the description of the oracles that are
modified with respect to the previous game Gi−1. The exact differences of game Gi to
game Gi−1 are highlighted in the form of boxed pseudocode. Moreover, we denote by
Ei−1,i a difference event, where the indices of the event correspond to games Gi−1,Gi that
are affected by the event.
Game G0: The initial game G0 (Figure 12) corresponds to uf -cma-hrkREC[H0], i.e.,
G0 := uf -cma-hrkREC[H0]. Since we are in the random oracle model, we explicitly list the
random oracle H0 in G0.
Game G1: In G1, the way that random oracle queries to H0 from A are answered, is
internally modified as follows. To answer queries to H0, G1 internally keeps two lists H0
and H ′0 which it programs throughout its interaction with A. Depending on whether a
queried message m contains as part of its prefix a public key pk ′, it programs H0 [m] and
H ′0 [m] in two different possible ways. Note that pk ′ is the result of rerandomizing pk as
pk ′ = pk · ρ, where ρ← Rand(ρ ∈ RList) is a previous answer to a oracle query Rand. We
now analyze the three types of queries to H0 that can occur.

• H0 [m] ̸= ⊥: In this case, G1 returns H0 [m].

• H0 [m] = ⊥ and m is of the form m = (·, pk ′, ·), s.t. pk ′ = pk · ρ for some ρ ∈ RList:
In this case, G1 computes h← G (ctr), where ctr $← {0, 1}κ. Consequently, G1 sets
H0 [m]← ρ · h mod p and H ′0 [m]← ctr. It returns H0 [m].

• Otherwise, G1 samples h $← Zp and sets H0 [m]← h, H ′0 [m]← ϵ. It then returns
H0 [m].

It is easy to see that all answers for queries to H0 that G1 returns are uniformly
distributed from A’s perspective. This follows from the uniformity of output h computed
via random oracle G. Therefore, G1 behaves exactly as G0.
Game G2: In G2, the way in which queries to Rand are answered, is internally modified
as follows. When A asks a query of the form Rand, the game aborts if there exists a
message of the form m =

(
·, pk ′, ·

)
for which H ′0 [m] evaluates to ϵ and where pk ′ is the

(rerandomized) key that corresponds to the return value ρ of Rand, i.e., pk ′ = pk · ρ. The
following claim bounds the probability of such an abort scenario.

Claim 5.3 Let E1,2 denote the event that G2 aborts during a Rand query, for which
H ′0 [m] evaluates to ϵ, where m =

(
·, pk ′, ·

)
. Then Pr [E1,2] ≤ q2

p
.

Game G0
00 RList← {ϵ}
01 bad← false
02 (sk , pk) $← REC[H0].Gen (par)
03 (m∗, σ∗, ρ∗) $← CH0,Rand,RSign (pk)
04 pk∗ ← pk · ρ∗
05 If m∗ ∈ Sigs : bad← true
06 If ρ∗ ̸∈ RList : bad← true
07 b ← REC[H0].Verify (pk∗, σ∗,m∗)
08 Return b ∧ ¬bad

Oracle Rand
09 ρ $← χ
10 RList← RList ∪ {ρ}
11 Return ρ

Oracle RSign (m, ρ)
12 If ρ /∈ RList : Return ⊥
13 ψ $← {0, 1}κ

14 pk ′ ← pk · ρ mod p
15 sk ′ ← sk · ρ mod p
16 m̂← (ψ, pk ′,m)
17 σ ← REC[H0].Sign

(
m̂, sk ′

)

18 Sigs ← Sigs ∪ {m}
19 Return (ψ, σ)

Oracle H0 (m)
20 If H0 [m] ̸= ⊥
21 Return H0 [m]
22 H0 [m] $← Zp

23 Return H0 [m]

Figure 12: Game G0 = uf -cma-hrkREC[H0] with adversary C.

Oracle H0 (m) in G1
00 If H0 [m] ̸= ⊥
01 Return H0 [m]
02 Parse m as

(
·, pk ′, ·

)

03 If ∃ρ ∈ RList : pk ′ = pk ·ρ
04 ctr ← {0, 1}κ

05 h← G (ctr)
06 H0 [m]← ρ · h mod p
07 H ′0 [m]← ctr
08 Else
09 h $← Zp

10 H0 [m]← h
11 H ′0 [m]← ϵ
12 Return H0 [m]

Oracle Rand in G2
13 ρ $← χ

14 pk ′ ← pk · ρ
15 ∀m =

(
·, pk ′, ·

)
:

16 If H ′0 [m] = ϵ : Abort
17 RList← RList ∪ {ρ}
18 Return ρ

Oracle RSign (m, ρ) in G3
19 If ρ ̸∈ RList : Return ⊥
20 ψ $← {0, 1}κ

21 pk ′ ← pk · ρ mod p
22 sk ′ ← sk · ρ mod p
23 m̂← (ψ, pk ′,m)
24 If H ′0[m̂] ̸= ⊥ : Abort
25 σ̂ ← EC[H0].Sign(sk ′, m̂)
26 Sigs ← Sigs ∪ {m}
27 Return (ψ, σ̂)

Oracle RSign (m, ρ) in G4
28 If ρ ̸∈ RList : Return ⊥
29 ψ $← {0, 1}κ

30 pk ′ ← pk · ρ
31 m̂← (ψ, pk ′,m)
32 If H ′0[m̂] ̸= ⊥ : Abort
33 Query H0(m̂)
34 m′ ← H ′0[m̂]
35 σ′ ← EC[G].Sign(sk ,m′)
36 σ̂ ← Trf[H0,G]EC(m̂,m′, σ′, ρ−1, pk ′, pk)
37 Sigs ← Sigs ∪ {m}
38 Return (ψ, σ̂)

main in G5
39 (pk , sk)← EC.Gen(par)
40 (m∗, σ∗, ρ∗) $← AH0,Rand,RSign(pk)
41 pk∗ ← pk · ρ∗
42 m̂∗ ← (ψ, pk∗,m∗)
43 If H ′0[m̂∗] = ϵ : Abort
44 If m∗ ∈ Sigs : bad← true
45 If ρ∗ ̸∈ RList : bad← true
46 b← REC[H0].Verify (pk∗, σ∗,m∗)
47 Return b ∧ ¬bad

Figure 13: Games G1-G5

Proof. During any particular call to the oracle Rand, this event can only occur if A has
already made a query of the form H0(m), where m = (·, pk ′, ·) (prior to the oracle Rand
returning the value ρ for this query). Since RList contains at most q values at any point
during the game, any of them coincide with the (uniformly chosen) value ρ with probability
at most q

p
. Since keys are uniquely rerandomizable, a query of the form H0(m) thus also

has probability at most q
p

of having been made prior to this particular call to Rand. Since
there at most q queries to Rand, it follows that Pr [E1,2] ≤ q2

p
.

Since the games G1, G2 are equivalent unless the event Pr[E1,2] occurs, AdvA
G2,REC[H0] ≤

AdvA
G1,REC[H0] + Pr [E1,2] ≤ AdvA

G1,REC[H0] + q2

p
.

Game G3: In G3, the way in which signing queries from A are answered, is internally
modified as follows. When A makes a query of the form RSign (m, ρ), G3 first checks
whether ρ ∈ RList and if not, returns ⊥. Otherwise, it samples ψ $← {0, 1}κ, computes
pk ′ ← pk ·ρ, sk ′ := sk ·ρ mod p, and sets m̂←

(
ψ, pk ′,m

)
. If the list H ′0 already contains

an element for H ′0 [m̂], i.e. H ′0 [m̂] ̸= ⊥, then the game aborts at this point. Otherwise,
a signature σ̂ is computed as σ̂ $← EC[H0].Sign

(
sk ′, m̂

)
. G3 subsequently returns (ψ, σ̂).

The only difference of game G3 to G2, is that game G3 potentially aborts at line 24 if
H ′0 [m̂] ̸= ⊥. Hence, we obtain the following claim.

Claim 5.4 Let E2,3 denote the event that G3 aborts during a signing query, when
H0[m̂] ̸= ⊥, where m̂ = (ψ, pk ′,m). Then Pr[E2,3] ≤ q2

p
.

Proof. This event can only happen when A makes a correct guess of the message m̂ and
makes a query of the form H0(m̂) prior to a RSign(m, ρ) query. m̂ is constructed as
m̂ = (ψ, pk ′,m) where ψ is uniformly sampled as ψ $← {0, 1}κ. Since A makes atmost q
queries to H0(·), A can correctly guess a particular m̂ = (ψ, pk ′,m) for a fixed m, with
probability q

p
. Since A makes at most q signing queries to RSign (m, ρ), A can correctly

guess any m̂ with a probability bounded by ∑q
i=1

q
p
≤ q2

p
.

Since the games G2, G3 are equivalent unless the event Pr[E2,3] occurs, AdvA
G2,REC[H0] ≤

AdvA
G3,REC[H0] + Pr [E2,3] ≤ AdvA

G3,REC[H0] + q2

p
.

Game G4: In G4, the way that signing queries from A are answered, is again internally
modified as follows. When A makes a query of the form RSign(m, ρ), G4 first checks
whether ρ ∈ RList and if not, returns ⊥. Otherwise, it samples ψ $← {0, 1}κ computes
pk ′ ← pk · ρ, and sets m̂←

(
ψ, pk ′,m

)
. The game aborts at this point if H0[m̂] ̸= ⊥. If

it does not abort, it internally queries H0 on input message m̂. This means it queries
h ← G (ctr), where ctr $← {0, 1}κ. G4 internally sets H0[m̂] ← ρ · h mod p and stores
H ′0[m̂] ← ctr. After making the query to H0, G4 fetches m′ ← H ′0[m̂], where m′ was
set to ctr during H0 query. Since sk is known to the game, it can now compute the
signature σ′ as σ′ $← EC[G].Sign(sk ,m′). Finally, it computes and returns the signature σ̂
as σ̂ ← Trf[H0,G]EC(m̂,m′, σ′, ρ−1, pk ′, pk), where pk = pk ′ · ρ−1.

Claim 5.5 AdvA
G3,REC[H0] = AdvA

G4,REC[H0]

Proof. We argue that in both games, the answers to signing queries are identically
distributed. To this end, we analyze how G4 replies to a query of the form RSign (m, ρ).

First note that the explicit query to H0 at line 33 is implicitly also made in G3 at line
25 and therefore does not change the behaviour of G4 (compared to G3). Next, G4
derives signature (ψ, σ̂) on input (m, ρ) as σ̂ ← Trf[H0,G]EC(m̂,m′, σ′, ρ−1, pk ′, pk), where
m′ = H ′0[m̂], pk = pk ′ · ρ−1,EC[G].Verify(pk , σ′,m′) = 1, and G(m′)

H0[m̂] = h′
H0[m̂] = h′

ρ·h′ = ρ−1

mod p. It follows from Lemma 5.2 that σ̂ constitutes a correct signature on message
m̂ and under public key pk ′ relative to EC[H0].Verify. It follows immediately that the
signature (ψ, σ̂) constitutes a valid signature relative to REC[H0].Verify. Moreover, the
value of ψ is identically distributed in games G3,G4, which concludes the proof.

Game G5: G5 behaves identically to G4 except for the following modification in the
main procedure: Upon receiving a forgery of the form (m∗, σ∗ = (ψ, σ̂), ρ∗) from A, it sets
m̂∗ ← (ψ, pk∗,m∗) and aborts if H ′0[m̂∗] = ϵ.

Claim 5.6 Let E4,5 be the event that G5 aborts if H ′0[m̂∗] = ϵ, where m̂∗ = (ψ, pk∗,m∗).
Then Pr[E4,5] ≤ q2

p
.

Proof. The only way this event can happen, is if A manages to make a query of the form
H0(m̂∗) before querying Rand to obtain the corresponding value of ρ∗. The proof of this
claim follows in a similar way as the corresponding proof in claim 5.3.

Since the games G4, G5 are equivalent unless event E4,5 occurs, AdvA
G4,REC[H0] ≤

AdvA
G5,REC[H0] + q2

p
.

Reduction to UF-CMA security. We describe an algorithm CSignO,G (depicted in
Figure 14) that plays in the uf -cmaEC[G] game. C obtains as input a public key pkC and
is given access to the signing oracle SignO to obtain signatures under pkC under messages
of its choice. Furthermore, C has access to the random oracle G. C runs A on input pkC
and simulates G5 to A as described in Figure 14.
Simulation of Randomness Queries. Queries to Rand from A do not require
knowledge of the secret key corresponding to pkC and hence are straight forward to
simulate.
Simulation of Random Oracle Queries. C’s simulation of random oracle queries
coincides with the above programming strategy that is already internally present in G5.
Simulation of Signing Queries. Recall that in G5, queries of the form RSign (m, ρ)
internally prompt the computation of signature σ′ = EC[G].Sign(skC,m

′), where m′ ← ctr.
Since C does not know skC, it needs to compute σ′ via a call to its signing oracle, i.e., as
σ′ ← SignO(m′). Other than that C simulates such a query exactly as internally done for
G5.
Extracting the forgery. When the tuple (m∗, σ∗, ρ∗) is returned as an answer from
A, C first parses it as (m∗, σ∗, ρ∗) = (m∗, (ψ∗, σ̂∗), ρ∗), checks whether it constitutes a valid
forgery, and aborts otherwise (note that in this case, G5 would return 0, so C can safely
abort). In case C does not abort, it computes pk∗ = pkC · ρ∗, where pk∗ is the public key
under which A’s forgery is valid. C computes m̂∗ ← (ψ∗, pk∗,m∗) and if H ′0 [m̂∗] = ϵ, it
aborts. Otherwise, C fetches m′ ← H ′0 [m̂∗] and computes

σ′ ← Trf[G,H0]ECDSA (m′, m̂∗, σ̂∗, ρ∗, pkC, pk∗) .

main CSignO,G(pkC)
00 (m∗, σ∗, ρ∗) $← AH0,Rand,RSign(pkC)
01 (ψ, σ̂)← σ∗

02 pk∗ ← pk · ρ∗
03 m̂∗ ← (ψ, pk∗,m∗)
04 If H ′0[m̂∗] = ϵ : Abort
05 If m∗ ∈ Sigs : bad← true
06 If ρ∗ ̸∈ RList :
07 bad← true
08 b← REC[H0].Verify (pk∗, σ∗,m∗)
09 If ¬b ∨ bad : Abort
10 m′ ← H ′0[m̂∗]
11 tmp← (m′, m̂∗, σ̂∗, ρ∗, pkC, pk∗)
12 σ′ ← Trf[G,H0]EC(tmp)
13 Return (m′, σ′)

Procedure Rand
14 ρ $← χ
15 pk ′ ← pk · ρ
16 ∀m =

(
·, pk ′, ·

)
:

17 If H ′0 [m] = ϵ : Abort
18 RList← RList ∪ {ρ}
19 Return ρ

Procedure RSign (m, ρ)
20 If ρ ̸∈ RList : Return ⊥
21 ψ $← {0, 1}κ

22 pk ′ ← pk · ρ
23 m̂← (ψ, pk ′,m)
24 If H ′0[m̂] ̸= ⊥ : Abort
25 Query H0(m̂)
26 m′ ← H ′0[m̂]
27 σ′ ← SignO(m′)
28 tmp← (m̂,m′, σ′, ρ−1, pk ′, pkC)
29 σ̂ ← Trf[H0,G]EC(tmp)
30 Sigs ← Sigs ∪ {m}
31 Return (ψ, σ̂)

Procedure H0 (m)
32 If H0 [m] ̸= ⊥
33 Return H0 [m]
34 Parse m as

(
·, pk ′, ·

)

35 If ∃ρ ∈ RList : pk ′ = pk · ρ
36 ctr ← {0, 1}κ

37 h← G (ctr)
38 H0 [m]← ρ · h mod p
39 H ′0 [m]← ctr
40 Else
41 h $← Zp

42 H0 [m]← h
43 H ′0 [m]← ϵ
44 Return H0 [m]

Figure 14: Reduction to UF-CMA game.

Since H0 [m̂∗] = G (H ′0 [m̂∗])·ρ∗ = G (m′)·ρ∗, we have that H0[m̃∗]
G(m′) = G(m′)·ρ∗

G(m′) = ρ∗. Together
with pk∗ = pkC · ρ∗ and EC[H0].Verify(pk∗, σ̂∗, m̂∗) = 1, Lemma 5.2 implies that

EC[G].Verify (pkC, σ
′,m′) = 1.

Claim 5.7 (m′, σ′) constitutes a valid forgery in uf -cmaEC[G] with probability 1− q2/p.

Proof. We have to show that the query SignO(m′) was not made by C during its simulation
and hence (m′, σ′) is a valid forgery in uf -cmaEC[G]. Note that A has not made a query of
the form RSign (m∗, ρ∗) throughout the simulation. Namely, if it had, (m∗, σ∗, ρ∗) would
not constitute a valid forgery in G5 and the simulation would have aborted at this point.
This implies that C never had to simulate a query RSign(m∗, ρ∗) to A which entailed a
H0 query on message m̂∗ ← (ψ∗, pk∗,m∗). Hence, m′ associated with query H0(m̂∗) was
not queried by C to the oracle SignO in any query of the form RSign (m, ρ) with m ̸= m∗

unless there exist (any) two values m1,m2 s.t. H ′0[m1] = H ′0[m2] ̸= ⊥. It is easy to see
that this happens with probability at most q2/p during C’s simulation, since all values
that C queries to the oracle SignO are sampled independently and uniformly at random
from {0, 1}κ.

From claims 5.3-5.6, we have AdvA
G0,REC[H0] ≤ AdvA

G5,REC[H0] + 4q2

p
. Since C provides a

perfect simulation of G5 to A up to an error of q2/p, as shown in the previous claim, we
obtain

AdvA
uf -cma-hrk,REC[H0] ≤ AdvA

G5
+ 4q2

p
≤ AdvC

uf -cma,EC[G] + 4q2

p
,

which implies the theorem.

6 Practical Considerations

Synchronizing hot/cold wallet. To achieve correctness according to Definition 3.2,
the cold wallet and hot wallet (party A and party B in Fig. 3) respectively, need to derive
their keys in the same (ordered) sequence. Fortunately, this can be realized easily in
practice. A simple solution is to use an increasing counter for every freshly derived pair
of session keys in place of the ID argument. In this case, no additional synchronization
between the hot and cold wallet is necessary. However, it is also possible to include a
more complicated ID structure, where the ID is provided by the wallet user as an input
parameter. Consider a scenario, where a wallet user Bob wants to receive some payment
for some ID. To this end, the hot wallet generates a fresh session public key pkID for
ID via SWal.PKDer. Then, ID is added to the transaction tx that is published on the
blockchain. Later, when Bob wants to spend the transaction via the cold wallet, he can
extract the ID from tx to generate the corresponding secret key skID on the cold wallet.
Notice, of course, that the values for ID have to be chosen “somewhat randomly” as
otherwise the unlinkability property of the wallet scheme is broken. One simple way
to achieve this is to let the hot wallet encrypt the ID and add the ciphertext to the
transaction that sends money to the address pkID.

Statefulness of our scheme. We point out that the state in our stateful wallet
scheme SWal may make our scheme more complex to use in practice (as evidented from
the previous discuss on synchronization). However, the state is only needed in order
to achieve forward unlinkability after compromise of the hot wallet. The unforgeability
property proven in our work also works for the simpler stateless wallets. Hence, if forward
unlinkability is not needed, one can use a stateless version of our constructions and benefit
from our security analysis (i.e., unlinkability without state compromise and unforgeability).
The winning condition of wallet unforgeability. In Figure 6 the adver-
sary wins the game if she manages to output a valid forgery (pkID∗ , σ∗,m∗) such that
SWal.Verify(pkID∗ , σ∗,m∗) = 1. We emphasize that in practice for breaking a wallet in,
e.g., Bitcoin, it suffices that the adversary creates a transaction spending money from
address pkID∗ and is accepted by the miners. The latter is quite important because
there is no reason why in legacy cryptocurrencies, miners should execute the SWal.Verify
algorithm of our SWal construction. Fortunately, however, in Bitcoin miners implicitly
execute REC[H].Verify when verifying transactions, and hence our scheme and its security
analysis is compatible with Bitcoin.6

Transaction Cost Analysis. To integrate our scheme into Bitcoin, we have to make
sure that (a) transactions are salted, (b) they are pre-fixed7 by the public key pk from
which the money is sent, and (c) such transactions are accepted by the miners. Fortunately,
in Bitcoin this can be achieved using the simple scripting language, and we explain it
in detail in App. B, full version. While the pre-fixing of the public key (b) is naturally
happening in Bitcoin, the random salting (a) is non-standard and results into additional
costs. We discuss them briefly below and compare them with the standard costs of
creating transactions in Bitcoin (i.e., without salting). Consider a transaction tx0 that
transfers money from the cold wallet to a new address, and hence in our scheme has to be
randomized. Due to the mechanics of Bitcoin also the transaction tx1 that spends tx0
will include this random salt. Thus, our cost analysis includes these two transactions. We
summarize the costs in Satoshi and USD, depending on whether the transaction gets
included in the next block, or within the next 6 subsequent blocks. Note that confirmation
of a transaction in an earlier block results into higher costs8

6At a more technical level, in Bitcoin if we want to spend money from an address pkID, then the
spending transaction (that is signed with skID) contains pkID. Hence, it has a form that is compatible
with the verification done by REC[H].Verify. In fact, our security proof can also be adjusted to match
exactly with the verification that is carried out by the miners.

7Notice that in our generic wallet construction (c.f. Figure 7), messages are key pre-fixed to prevent
from the related key attack. For the salted ECDSA construction to satisfy the property of signatures
with uniquely rerandomizable keys (c.f. Figure 10), messages are again key-prefixed. The key prefixing in
the latter case is necessary as an essential technique for the proof of Th 5.1. Although theoretically our
ECDSA based wallet construction is key pre-fixed twice, in practice key pre-fixing the message once will
be enough.

8We have used the currency value from [Cur19] timestamped on 14th May, 2019. Notice that the
increase in costs are around 3% compared to standard Bitcoin transactions. However the cost increase
also depends on the application, and we leave it as an interesting question for future work to provide an
application-dependent optimization of costs.

Table 1: Standard vs Randomized Transactions Costs
Transaction Type Confirmation in next block Confirmation in next 6

blocks
Fees (Satoshi/ USD) Fees (Satoshi/ USD)

tx0 (Standard) 7665/0.54 2190/0.17
tx1 (Standard) 8505/0.60 2430/0.19
tx0 (Randomized) 7875/0.56 2250/0.18
tx1 (Randomized) 8610/0.61 2460/0.19

7 Conclusion
In this work, we focused on analyzing the security of deterministic wallets. We developed
two new security guarantees that we call wallet unlinkability and wallet unforgeability,
and showed a modular approach for constructing such wallets from certain signature
schemes. At the technical level, we proved that a simple extension of the ECDSA-based
hot/cold wallet as used in Bitcoin can be proven secure in our model. A natural extension
of our work will be to consider the case of hierarchical wallets. However, the hierarchical
setting will require a significantly more complex model (additional oracles, more complex
bookkeeping). The security analysis in this setting is also believed to be more involved.
Hence, it is certainly an excellent direction for future research to extend our model to the
hierarchical case.

References
[AGKK19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos

Kiayias. A formal treatment of hardware wallets. Cryptology ePrint Archive,
Report 2019/034, 2019. https://eprint.iacr.org/2019/034. (Cited on
page 7.)

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. Cryptology ePrint Archive, Report 2018/483, 2018.
https://eprint.iacr.org/2018/483. (Cited on page 7.)

[BH19] Joachim Breitner and Nadia Heninger. Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies. IACR Cryptology ePrint
Archive, 2019:23, 2019. (Cited on page 7.)

[Bit18] BitcoinExchangeGuide. CipherTrace Releases Report Ex-
posing Close to $1 Billion Stolen in Crypto Hacks
During 2018. https://bitcoinexchangeguide.com/
ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_
-crypto-hacks-during-2018/, 2018. (Cited on page 2.)

[Blo18] Bloomberg. How to Steal $500 Million in Cryptocurrency. http://fortune.
com/2018/01/31/coincheck-hack-how/, 2018. (Cited on page 2.)

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. J. Cryptology, 17(4):297–319, 2004. (Cited on page 5.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages
62–73. ACM Press, November 1993. (Cited on page 8.)

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the
security of triple encryption. Cryptology ePrint Archive, Report 2004/331,
2004. http://eprint.iacr.org/2004/331. (Cited on page 8.)

[BR18] Michael Brengel and Christian Rossow. Identifying key leakage of bitcoin
users. In Research in Attacks, Intrusions, and Defenses - 21st International
Symposium, RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018,
Proceedings, pages 623–643, 2018. (Cited on page 7.)

[But13] Vitalik Buterin. Deterministic Wallets, Their Advantages and
their Understated Flaws. https://bitcoinmagazine.com/articles/
deterministic-wallets-advantages-flaw-1385450276/, 2013. (Cited on
page 3, 7.)

[CEV14] Nicolas T. Courtois, Pinar Emirdag, and Filippo Valsorda. Private key recovery
combination attacks: On extreme fragility of popular bitcoin key management,
wallet and cold storage solutions in presence of poor RNG events. IACR
Cryptology ePrint Archive, 2014:848, 2014. (Cited on page 7.)

[Cur19] Bitcoin Fees for Transactions. https://bitcoinfees.earn.com/, 2019.
(Cited on page 31.)

[DFL19] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of
deterministic wallets. Cryptology ePrint Archive, Paper 2019/698, 2019.
https://eprint.iacr.org/2019/698. (Cited on page .)

[DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party
threshold ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 980–997, 2018. (Cited on page 7.)

[FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction
technique: The case of schnorr signatures. In Advances in Cryptology -
EUROCRYPT 2013, pages 444–460, 2013. (Cited on page 7.)

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Do-
minique Schröder, and Mark Simkin. Efficient unlinkable sanitizable signatures
from signatures with re-randomizable keys. In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, vol-
ume 9614 of LNCS, pages 301–330. Springer, Heidelberg, March 2016. (Cited
on page 5, 6, 7, 9, 10.)

[FTS+18] Chun-I Fan, Yi-Fan Tseng, Hui-Po Su, Ruei-Hau Hsu, and Hiroaki Kikuchi.
Secure hierarchical bitcoin wallet scheme against privilege escalation attacks.
In IEEE Conference on Dependable and Secure Computing, DSC 2018, pages
1–8, 2018. (Cited on page 7.)

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In
Applied Cryptography and Network Security - ACNS 2016, pages 156–174,
2016. (Cited on page 7.)

[GS15] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets
that tolerate key leakage. In Financial Cryptography and Data Security - 19th
International Conference, FC 2015, pages 497–504, 2015. (Cited on page 7.)

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for sig-
natures from identification schemes. In Advances in Cryptology - CRYPTO
2016, Part II, pages 33–61, 2016. (Cited on page 7.)

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 1837–1854, 2018. (Cited on page 7.)

[MB18] Gregory Maxwell and Iddo Bentov. Deterministic Wallets. https://www.cs.
cornell.edu/~iddo/detwal.pdf, 2018. (Cited on page 3, 4.)

[Med18] Mediawiki. BIP32 Specification. https://github.com/bitcoin/bips/blob/
master/bip-0032.mediawiki, 2018. (Cited on page 3.)

[MPas19] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing trust in hardware
wallets with two factor signatures. Cryptology ePrint Archive, Report 2019/006,
2019. https://eprint.iacr.org/2019/006. (Cited on page 7.)

[MSM+15] Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka,
and Tetsu Iwata. On the security of the schnorr signature scheme and DSA
against related-key attacks. In ICISC 2015 - 18th International Conference,
Seoul, South Korea, November 25-27, 2015, Revised Selected Papers, pages
20–35, 2015. (Cited on page 16.)

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pages 239–252, 1989. (Cited on page 5, 7.)

[Ske18] Rhys Skellern. Cryptocurrency Hacks: More Than $2b
USD lost between 2011-2018. https://medium.com/ecomi/
cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_
-67054b342219, 2018. (Cited on page 2.)

[TVR16] Mathieu Turuani, Thomas Voegtlin, and Michael Rusinowitch. Automated
verification of electrum wallet. In Financial Cryptography and Data Security -
FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, pages
27–42, 2016. (Cited on page 7.)

[Wik18a] Bitcoin Wiki. BIP32 proposal. https://en.bitcoin.it/wiki/BIP_0032,
2018. (Cited on page 3.)

[Wik18b] Wikipedia. Hardware Wallet. https://en.bitcoin.it/wiki/Hardware_
wallet, 2018. (Cited on page 2.)

[ZCC+15] Zongyang Zhang, Yu Chen, Sherman S. M. Chow, Goichiro Hanaoka, Zhenfu
Cao, and Yunlei Zhao. Black-box separations of hash-and-sign signatures
in the non-programmable random oracle model. In Provable Security - 9th
International Conference, ProvSec 2015, pages 435–454, 2015. (Cited on
page 7.)

B. Exact Security of BIP32 Wallets

This chapter corresponds to our published article in CCS 2021 [43], with minor
edits. Our full version can be found in [44].

[43] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. “The Exact Security of BIP32

Wallets”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Com-

munication Security, Virtual Event, Republic of Korea, November 15 - 19, 2021.

2021, pp. 1020–1042. doi: 10.1145/3460120.3484807. url: https://doi.org/

10.1145/3460120.3484807.

115

https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807

The Exact Security of BIP32 Wallets
Poulami Das 1 Andreas Erwig 1 Sebastian Faust 1

Julian Loss 2 Siavash Riahi 1

1 TU Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

2 University of Maryland, USA
lossjulian@gmail.com

Abstract

In many cryptocurrencies, the problem of key management has become one of
the most fundamental security challenges. Typically, keys are kept in designated
schemes called wallets, whose main purpose is to store these keys securely. One
such system is the BIP32 wallet (Bitcoin Improvement Proposal 32), which since
its introduction in 2012 has been adopted by countless Bitcoin users and is one of
the most frequently used wallet system today. Surprisingly, very little is known
about the concrete security properties offered by this system. In this work, we
propose the first formal analysis of the BIP32 system in its entirety and without any
modification. Building on the recent work of Das et al. (CCS ‘19), we put forth a
formal model for hierarchical deterministic wallet systems (such as BIP32) and give
a security reduction in this model from the existential unforgeability of the ECDSA
signature algorithm that is used in BIP32. We conclude by giving concrete security
parameter estimates achieved by the BIP32 standard, and show that by moving to
an alternative key derivation method we can achieve a tighter reduction offering an
additional 20 bits of security (111 vs. 91 bits of security) at no additional costs.

Keywords:Wallets, cryptocurrencies, foundations, BIP32

1 Introduction
Decentralized cryptocurrencies such as Bitcoin or Ethereum have introduced a new digital
payment paradigm which does not rely on a central authority such as a bank or a credit
card company. The main building block used in many popular cryptocurrencies to facilitate
secure transfer and holding of assets are digital signatures. Loosely speaking, a user
Alice in the system is identified by her public key pkA which she uses as her address for
receiving and sending payments. If Alice wants to send c coins of the underlying currency
to another user Bob with address pkB, she creates a transaction tx saying “Send c coins
from pkA to pkB” and signs tx using her secret key skA. She then uploads the transaction
tx together with the signature σ to the public ledger (often also called blockchain) of
the cryptocurrency. Once the tuple (tx, σ) is visible on the public ledger, the payment is

completed meaning that now Bob owns an additional c coins of the underlying currency.
Clearly, Alice’s funds remain secure only as long as no one can forge a signature σ on
her behalf that verifies under pkA. On top of this, it is generally recommended to use
a fresh signing key for every new transaction stored on the public ledger to avoid that
all transactions are linkable to the same user Alice. In the cryptocurrency space, the
management and storage of secret keys is typically carried out by so-called wallets – which
are pivotal for the security of cryptocurrency funds. Indeed, cryptocurrency wallets are a
highly attractive target for hackers as illustrated by spectacular attacks against common
cryptocurrency projects. For example, in 2018 alone, hackers managed to steal more than
one billion USD worth of cryptocurrency from wallets [Ske18, Blo18, Bit18].

While several recent works study the formal security properties of cryptocurrency
wallets (see related work for a detailed discussion), one of the most widely used schemes
– the BIP32 wallet [Wik18] – has not been formally analyzed so far. This is somewhat
surprising as BIP32 became a standard for deterministic Bitcoin wallets in 2012, and has
been widely adopted since then (e.g., it is used in the deployment of popular wallets [Ele13,
Tre14, Led14]). In this work, we address this gap and provide the first comprehensive
study of the security properties achieved by the BIP32 wallet standard.

1.1 Deterministic Wallets
As we have already pointed out, to improve privacy it is important to not re-use the same
signing key for too many public transactions. To explain why privacy is also beneficial for
security, let us consider a user Alice who holds a single secret/public key pair (skA, pkA),
and that she receives multiple payments to her address pkA. As we have explained, such
transactions contain her public key pkA and are posted to the public ledger. Hence,
an attacker can easily extract Alice’s balance via the public transaction ledger. Over
time, pkA’s balance might grow, and at some point, the attacker may identify pkA as a
high-priority target. The obvious approach to thwart an attacker’s attempts of linking
Alice’s transactions would be for Alice to keep a set of l one-time random key pairs
{(sk1, pk1), . . . , (skl, pkl)} within her wallet, where each key pair is used for a single trans-
action on the public ledger. However, this approach has the obvious downside of Alice
having to store all of her keys on disk (as long as they still retain some amount of currency).
This requires a lot of storage space and bears the risk of losing one of her keys, at which
point the associated funds of that key are irrevocably lost. A simple approach to overcome
these issues are deterministic wallets, proposed by Buterin [But13]. A deterministic wallet
usually contains a pair of master keys (msk,mpk) and a seed ch, which is also referred to
as the chaincode. For every new transaction, the wallet deterministically derives a fresh
session key pair (sk, pk) from the master keys with the help of deterministic key derivation
algorithms. More precisely, the public key derivation algorithm takes as input the master
public key mpk, the chaincode ch and an identifier ID and deterministically computes a
one-time public key pkID. An analogous secret key derivation algorithm takes in msk, ch,
and ID and deterministically computes a one-time secret key skID that matches pkID (given
that the arguments ch and ID in both derivations are identical). Going back to the example
of BIP32, (msk,mpk) are generated as ECDSA keys and public key derivation is done by
computing the offset ω := H(mpk, ch, ID), where ID ∈ [232] and then rerandomizing mpk to
pkID by computing pkID := mpk +G ·ω. Here, G denotes the base point of an elliptic curve

group of prime order p. A matching secret key can be derived via skID := msk+ω (mod p).

Hot/Cold Wallets. A typical way of using deterministic wallets in practice is via the
hot/cold wallet paradigm. With this approach, Alice maintains two wallets. The first
wallet is referred to as the cold wallet. It keeps the master secret key msk as well as
the chaincode. The cold wallet is usually implemented via some simple storage device
that should be almost permanently disconnected from the internet, so as to minimize the
risk of attack. The second wallet is the so-called hot wallet, which is permanently online
and keeps the master public key as well as the chaincode. Using the deterministic key
derivation procedures, the two wallets can independently derive matching keys to use for
one-time transaction on the public ledger. In a bit more detail, Alice uses her hot wallet
as a low-security spending wallet which, at any point in time, keeps only a small amount
of currency. Whenever the funds stored on the hot wallet exceed a certain amount, Alice
can use the public key derivation algorithm to derive a new public key pkID on her hot
wallet and transfer the excess funds to pkID. Note that this requires no interaction with
the cold wallet. At a later point in time, the cold wallet can come online for a brief
moment and spend the funds from pkID, using a matching secret key skID derived via
the secret key derivation algorithm. As far as security goes, we would like to ensure two
properties. First, unlinkability ensures that keys derived from the same master key pair
are indistinguishable from random keys, given that the hot wallet has not leaked the
chaincode to the attacker. Second, unforgeability ensures that even if the hot wallet leaks
the chaincode (e.g., because it has been corrupted), signatures from derived keys should
still remain unforgeable. While unlinkability is easy to achieve, unforgeability is a much
more subtle issue in this setting, as the derived keys are all correlated once the chaincode
has been revealed to the attacker. Hence, the standard unforgeability property of the
underlying signature scheme is no longer sufficient to ensure unforgeability of signatures
under these derived keys.

1.2 Limitations of Existing Works
The work of Das et al. [DFL19] was the first to provide a formal model to reason about
the aforementioned security properties. It also showed how to achieve secure constructions
in their proposed model from various different signature schemes used in practice, e.g.,
Schnorr, BLS, and ECDSA. Notably, the latter construction is very practical and can be
integrated directly with the (unmodified) Bitcoin system. In spite of these achievements,
their work makes no progress towards formally proving security properties for the BIP32
wallet standard that is widely used in many real-world systems. Let us discuss the reasons
for this in a little more detail.

First, the construction of Das et al. uses a multiplicative rerandomization to derive keys,
in which keys for identity ID are computed from ω = H(mpk, ch, ID) as pkID := mpk · ω,
and skID := msk · ω (mod p). By comparison, as we saw above, BIP32 uses an additive
rerandomization. Although this might look like a minor difference, we will see later
that the proof technique and security guarantees achieved by the additive version differ
significantly from the multiplicative one. Second, the work of Das et al. does not consider
the hierarchical key derivation mechanism provided by BIP32. Hierarchical deterministic
wallets allow for keys in the wallet to act simultaneously as signing keys and as parent

(master) keys to derive new child keys in their own right. As a useful example, consider
a company that wishes to delegate new signing key pairs to different entities within the
company. Unfortunately, it cannot be guaranteed that all entities in the company store
their keys securely and some of them might be leaked to the adversary over time. Such a
strong adversary cannot be captured by the model and constructions of Das et. al. Since
many wallets that are used in practice follow the BIP32 standard, it is crucial to provide
a formal analysis of the scheme as is, meaning without any modifications to it.

1.3 Our Contributions
In this work we address the above shortcomings and provide, for the first time, a formal
analysis of the full BIP32 specification in the hot/cold wallet setting. An important
implication of our work is that we can establish the exact security that is achieved by the
current standard, which also leads us to propose a minor modification that can significantly
improve security without any additional costs.

Rerandomizing ECDSA. We begin by recalling the notion of unforgeability under hon-
estly rerandomized keys (UFCMA-HRK) introduced by Das et al. [DFL19]. As this notion
will serve as the basis of our wallet constructions, we review it in detail below. Compared
to the standard notion of unforgeability under chosen message attacks (UFCMA), the
adversary in the UFCMA-HRK game initially obtains a challenge public key pk and gets
to query for rerandomizations of pk. The game returns the rerandomized public key p̃k
together with the (uniformly chosen) randomness ρ that was used in the rerandomization
process. The exact way that the rerandomization is actually done depends on the scheme;
we are mostly interested in the case where ECDSA keys are additively rerandomized as
pk +G · ρ. The game then allows the adversary to query for signatures relative to any
of the rerandomized public keys that it has previously obtained from the game. It is
considered successful if it can return a forgery relative to any of the requested keys p̃k on
a message for which it has not previously asked for a signature under p̃k. As observed by
Das et al., this security notion is a weakened version of unforgeability under rerandomized
keys [FKM+16] in which the adversary can choose the random coins ρ itself and provide
them to the game. In Section 3, we prove that ECDSA with additive rerandomization
satisfies UFCMA-HRK as long as each message is signed only once per key. A first attempt
is to naively follow the approach of Das et al. who showed that ECDSA with multiplica-
tive rerandomization satisfies UFCMA-HRK (without any restrictions on the number of
signatures per message). The main idea of Das et al.’s reduction from UFCMA-HRK to
UFCMA (both with respect to the ECDSA scheme) is to rely on a related key attack
(RKA) that is present in the multiplicatively rerandomized version of the ECDSA scheme.
Concretely, the RKA allows to transform a signature (r, s) on message m0 relative to
a key pk0 into a signature (r, s/ρ) on message m1 that is valid under the related key
pk1 = pk0 ·ρ, where ρ satisfies ρ = H(m0)

H(m1) . This attack can be leveraged by the reduction to
answer all signing queries in the UFCMA-HRK game. More precisely, using the RKA, it
is possible to transform signatures obtained from the signing oracle in the UFCMA game
into signatures relative to any of the rerandomized keys in the UFCMA-HRK game (via
programming of the random oracle). Hence, we are immediately faced with the following
obstacle: this RKA does not work if keys are additively rerandomized.

Extending to Additive Rerandomization. To overcome this issue with the existing
reduction, we present a new RKA which works for additively rerandomized ECDSA. The
attack works as follows: given a signature (r, s) on m0 relative to pk0, (r, s) is also a
valid signature relative to the public key pk1 = pk0 + ρ · G on message m1, given that
ρ = (H(m0)− H(m1))/r. Rather surprisingly, considering ECDSA’s huge popularity, we
are not aware of this attack having been noticed previously. Using our new RKA, we
are now able to (almost) make the simulation of signatures in Das et al.’s approach work.
However, there is a further issue that comes from the structure of the additive RKA.
Suppose that the reduction is directed to program the random oracle H on a message
m so as to provide the attacker with a signature relative to a (rerandomized) public key
p̃k in the UFCMA-HRK game. The above RKA forces the reduction to program H on
a value that depends on a particular signature (r, s) on m, which it obtains from the
signing oracle in the underlying UFCMA game. Now, the only signature on m that the
reduction can hand to the adversary under p̃k is (r, s). If the adversary requests another
signature on the same message m, we are not able to reply with a fresh signature, as we
can program H on m only a single time. For this reason, we have to restrict ourselves to
one-per-message unforgeability. We emphasize, however, that this notion of security (one
signature per-message) is sufficient in our setting, as transactions are identified by unique
nonces in most cryptocurrencies (including Bitcoin) and hence never signed twice. An
additional benefit of our new reduction (compared to [DFL19]) is that it only requires
the weaker assumption that the underlying ECDSA scheme is one signature per-message
unforgeable in its own right. This is worth noting, as the work of Fersch et al. shows
that ECDSA achieves this property in the random oracle model [FKP17] (albeit with
a very large security loss). By comparison, the unrestricted security (i.e., UFCMA) of
ECDSA remains only a conjecture in the plain random oracle model. Our reduction also
removes the need for the random salt present in Das et al.’s construction. This is an
important improvement, as it allows using BIP32 without Bitcoin’s scripting language,
which was required by the construction of Das et al. due to their use of the salt. Finally,
we remark that our reduction (by comparison to Das et al.) is non-tight and loses a factor
proportional to the total number of keys derived in the UFCMA-HRK game. We provide
further discussion on this issue in the next section and in Section 3.

Hierarchical Wallets. To complete the analysis of BIP32, the second part of our work
focuses on formal security properties when supporting hierarchies in deterministic wallet
constructions (as is the case for BIP32). As already hinted, the core difficulty in this
setting is that some of the wallet’s keys may be given to untrustworthy users who may
leak their cold wallet keys to the adversary. If this happens, it is important to ensure that
the adversary does not gain information about secret keys further up in the hierarchy. It
is easy to see that this property is not achieved if all keys are derived using the derivation
algorithms described so far: if the adversary learns skID = msk + ρ (mod p), where ρ is
computed as ρ = H(mpk, ch, ID), then it can recover msk as msk = skID − ρ (mod p) and
learn all cold wallet keys that were ever derived using msk. Because of this, BIP32 offers
a second mode of deriving keys called hardened key derivation. Hardened keys are derived
by changing the computation of the offset ρ above to ρ = H(msk, ch, ID). Now, even when
learning skID, it is not possible for the adversary to recover msk. The downside of hardened

key derivation is that the hot and cold wallet can no longer independently derive keys
(as the hot wallet does not know msk). Thus, this mode of derivation is not intended for
use in the hot/cold wallet paradigm, but simply to create keys with a higher degree of
security. These keys can either be stored (efficiently) as part of the main wallet or handed
to users in the system without any concern for other cold wallet keys. In Section 4, we
state the syntactical definition and correctness properties of a hierarchical deterministic
wallet. We then introduce a security model that supports both types of key derivations
(hardened and non-hardened), as well as secret key leakage of hardened keys. We refer
to this notion of security as WUFCMA. In Section 5, we provide a generic construction
HDWal that transforms a signature scheme satisfying UFCMA-HRK into a hierarchi-
cal deterministic wallet with WUFCMA security.1 In this way, we are able to complete
the analysis of BIP32 by instantiating HDWal with ECDSA using additive rerandomization.

On the Tightness of Our Construction. A particular focus of our work is to analyze
the tightness and concrete security achieved by our constructions, most notably BIP32.
We have already mentioned that our reduction from UFCMA-HRK to UFCMA of the
ECDSA scheme with additive rerandomization is non-tight. More precisely, it loses a
factor proportional to the number of keys derived by the adversary in the UFCMA-HRK
game. Thus, our goal is to at least achieve the best possible tightness of our generic
transform HDWal. To this end, let us first consider the possible options for potential
security losses. From worst to best (excluding a tight reduction), the options are:

• Loss in the number of random oracle queries.

• Loss in the number of keys derived in the wallet (hardened or non-hardened).

• Loss in the number of signing oracle queries (assuming keys are used only once).

• Loss in the number of hardened keys leaked to the adversary.

The first three possibilities are quite catastrophic as the number of random oracle queries,
signing oracle queries, or keys derived in practice could be quite high. On the other
hand, we expect the number of leaked keys to be only a small portion of all the keys in a
given wallet (we use 1% as an estimate in our calculations). We are able to prove that
HDWal indeed achieves a multiplicative security loss proportional to only the hardened
keys leaked to the adversary over the course of the lifetime of the wallet. Furthermore, we
show that any generic transform from UFCMA-RK (a stronger notion than what is used
in our construction) to WUFCMA must lose at least this factor. Hence, our construction
HDWal achieves the best possible parameters. To prove our results, we adapt the reduc-
tion/metareduction techniques introduced by Coron in his seminal work [Cor02]. Given
that his results deal with the tightness of unique signatures (which is very different from
our setting), this requires careful insight into his technique in order to adapt it to our model.

Concrete Security Parameters. We conclude by giving a discussion of the concrete
security levels achieved by BIP32 and the multiplicative ECDSA scheme of Das et al.,

1In case the underlying signature scheme has the one signature per message restriction, then the
resulting wallet scheme also does.

when plugged into HDWal. We find that BIP32 gives roughly 94 bits of security according
to our theorems and conservative choices of parameters. We find that by comparison,
the multiplicative version of Das et al. gives 114 bits of security with a similarly efficient
scheme. (We remark that using the techniques introduced in our paper, we can also remove
the salt in the multiplicatively rerandomizable ECDSA version of Das et al.). Given these
insights, we strongly recommend that the Bitcoin community switch rerandomizations in
BIP32 from additive to multiplicative, in particular since these changes essentially come
for free.

1.4 Related Work
The most relevant previous work for us is by Das et al. [DFL19] as mentioned previously.
However, there have been other works which try to formalize cryptographic wallets. The
work of Gutoski and Stebila [GS15] proposes an alternative construction for hierarchical
wallets where up to d session keys can leak without the master secret key being compromised
under the one-more discrete-log assumption. However, their security model is weaker
than our model (or the security model of Das et al. on which we base our work). More
precisely, in their model, the adversary cannot query the game for signatures under
uncompromised wallet keys. Furthermore, instead of the traditional security model where
the adversary wins if she can forge a signature, the adversary’s goal in their security
definition is to extract the master secret/public key pair. Another more recent work is
by Luzio et al. [LFA20] where the authors design a new hierarchical wallet scheme by
using (deterministic) hierarchical key assignment schemes [ABFF09]. Unfortunately, their
solution is not compatible with cryptocurrencies such as Bitcoin since their solution requires
a more sophisticated (signature) verification algorithm, where a certificate associated with
the user needs to be verified along with the signature.

Turuani et al. [TVR16] analyzed the Bitcoin Electrum wallet using automated verifica-
tion in the Dolev-Yao model. However, many automated verification models only consider
“idealized” building blocks, i.e., cryptographic building blocks that are perfectly secure.
Consequently, this type of analysis excludes weaknesses such as related key attacks, which
are of fundamental relevance in the setting of deterministic wallets.

Another line of work has considered the security of hardware wallets [MPs19, AGKK19]
and implementation bugs in wallets (such as weak randomness) [CEV14, BR18, BH19].
Additionally, there have been several works with focus on the use of threshold ECDSA
signatures [KMOS19, GGN16, LN18, DKLs18] and multi-signatures [BDN18] in (and
outside of) wallet systems.

In a recent work, Alkadri et al. [ADE+20] have shown how to realize deterministic
wallets that are post-quantum secure. To this end, they suitably adapt the model and
techniques of Das et al. by considering an adversary with quantum computing power.

The concept of rerandomizable signature schemes was first introduced by Fleischhacker
et al. [FKM+16] and later used by [DFL19, ADE+20] for their wallet schemes. In addition,
related key attacks have been studied for signature schemes such as Schnorr [Sch90] in
many previous works [FF13, KMP16, ZCC+15]. For ECDSA, Das et al. leveraged related
key attacks to achieve a multiplicatively rerandomizable ECDSA scheme which they prove
secure w.r.t. the security notion of unforgeability under honestly rerandomizable keys.
Finally, Fersch et. al. [FKP16] provided the first security analysis of ECDSA in an

idealized model.

2 Preliminaries
Notation. We use the notation s $← H to denote the uniform sampling of a variable s
from the set H. For an integer l, [l] denotes the set of integers {1, · · · , l}. We use upper
case letters to denote algorithms. For an algorithm A, we write y $← A(x) to denote the
execution of a randomized algorithm A on input x that outputs y. We write y ← B(x; ρ)
to denote the execution of an algorithm B that, on input x and randomness ρ, outputs y.
Note that in this notation, B is deterministic. We use the notation y ∈ A(x) to denote
that y is in the set of possible outputs of A on input x.

In order to simplify our notation and definitions, we assume that public parameters par
have been securely generated and can be used throughout the paper as input to algorithms.
We generally assume that, initially, boolean variables are set to false, integers are set to 0,
lists are set to ∅, and undefined entries of lists are set to ⊥. For strings a, b ∈ {0, 1}∗, we
write a = (b, ·) if b is a prefix of a and likewise, we write a ̸= (b, ·) if a is not prefixed by b.
We denote by κ the security parameter throughout the paper.

We use standard code-based security games [Sho04]. A game G is an interactive
probability experiment between an adversary A and an (implicit) challenger which
provides answers to oracle queries posed by A. The output of G when interacting with
adversary A is denoted as GA. Finally, the randomness in any probability term of the
form Pr[GA = 1] is assumed to be over all the random coins in game G.

2.1 Signature Schemes
We now recall the definition of signature schemes and that of signature schemes with
perfectly rerandomizable keys from [DFL19].

Definition 2.1 (Signature Scheme). A signature scheme is a tuple of algorithms Sig =
(Sig.Gen, Sig.Sign, Sig.Verify) which are defined as follows:

• Sig.Gen(par) : The randomized key generation algorithm Sig.Gen takes as input public
parameters par and outputs a public/secret key pair (pk, sk).

• Sig.Sign(sk,m) : The (possibly) randomized signing algorithm Sig.Sign takes as input
a secret key sk and a message m and outputs a signature σ.

• Sig.Verify(m, pk, σ) : The deterministic verification algorithm Sig.Verify takes as input
a public key pk, a signature σ, and a message m. It outputs either 1 (accept) or 0
(reject).

A signature scheme Sig is correct if the following holds: For all (pk, sk) ∈ Sig.Gen(par) and
all m ∈ {0, 1}∗ we have that

σ $← Sig.Sign(sk,m)Pr[Sig.Verify(pk, σ,m) = 1] = 1.

Definition 2.2 (Signature Scheme with Perfectly Rerandomizable Keys). A signature
scheme with perfectly rerandomizable keys is a tuple of algorithms RSig = (RSig.Gen,
RSig.Sign, RSig.Verify,RSig.RandSK, RSig.RandPK) where (RSig.Gen,RSig.Sign,RSig.Verify)
are the standard algorithms of a signature scheme. Moreover, we assume that the public
parameters par define a randomness space R := R(par). Then the algorithms RSig.RandSK
and RSig.RandPK are defined as follows:

• RSig.RandSK(sk; ρ): The deterministic secret key rerandomization algorithm RSig.RandSK
takes as input a secret key sk and randomness ρ ∈ R and outputs a rerandomized
secret key sk′.

• RSig.RandPK(pk; ρ): The deterministic public key rerandomization algorithm RSig.RandPK
takes as input a public key pk and randomness ρ ∈ R and outputs a rerandomized
public key pk′.

We make the convention that for the empty string ϵ, we have that RSig.RandPK(pk; ϵ) =
pk and RSig.RandSK(sk; ϵ) = sk.

We further require:

1. (Perfect) rerandomizability of keys: For all (sk, pk) ∈ RSig.Gen (par) and ρ $← R, the
distributions of (sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RSig.RandSK(sk; ρ),RSig.RandPK(pk; ρ)) ,
(sk′′, pk′′) $← RSig.Gen (par) .

2. Correctness under rerandomized keys: For all (sk, pk) ∈ RSig.Gen (par), for all ρ ∈ R,
and for all m ∈ {0, 1}∗, the rerandomized keys sk′ ← RSig.RandSK(sk; ρ) and pk′ ←
RSig.RandPK(pk; ρ) satisfy:

Pr
σ

$←RSig.Sign(sk′,m)
[RSig.Verify (pk′, σ,m) = 1] = 1.

Security notion uf -cma1. In this work, we use the security notion of one-per message
existential unforgeability under chosen message attacks (uf -cma1) [FKP17] which is a
slightly weaker variant of the standard notion of existential unforgeability under chosen
message attacks (uf -cma) security. In contrast to standard uf -cma, in uf -cma1, the
adversary is restricted to querying the signing oracle at most once for each message. We
formalize the uf -cma1 notion for a signature scheme Sig in the form of a game uf -cma1Sig
as follows.

Game uf -cma1Sig:

• Setup Phase: The challenger initiates a list as SigList ← {ϵ} for storing messages
and samples a pair of keys (pk, sk) $← Sig.Gen(par). Then, A is run on input pk.

• Online Phase: A is given access to a signing oracle Sign which works as follows. On
input a message m, if m was queried in a previous Sign query, i.e., if m ∈ SigList, then ⊥
is returned. Otherwise, Sign computes a signature on messagem as σ $← Sig.Sign(sk,m).
The message m is stored in the SigList and the signature σ is returned as the answer.

• Output Phase: Finally, A wins the game if it can provide a forgery σ∗ on a mes-
sage m∗, where (1) m∗ is fresh, i.e., m∗ /∈ SigList and (2) σ∗ is a valid forgery, i.e.,
Sig.Verify(pk, σ∗,m∗) = 1.

For an algorithm A we define A’s advantage in the game uf -cma1Sig as AdvAuf -cma1Sig =
Pr[uf -cma1ASig = 1].
Security notion uf -cma-hrk1. For signature schemes with perfectly rerandomizable
keys, we introduce the notion of one-per message existential unforgeability under honestly
rerandomizable keys (uf -cma-hrk1), which restricts the security notion of existential
unforgeability under honestly rerandomizable keys (uf -cma-hrk) as introduced by Das
et al. [DFL19]. In this security notion, the signing oracle cannot only return signatures
under sk, but it can also return signatures that were produced with keys that represent
honest rerandomizations of sk. The term honest indicates that the randomness for the
rerandomization is chosen uniformly at random from R (by the game itself). Our security
notion of uf -cma-hrk1 restricts the notion of uf -cma-hrk in the sense that the signing
oracle returns at most one signature for each randomness/message pair (ρ,m). We formally
model the notion of uf -cma-hrk1 for a rerandomizable signature scheme RSig in the
form of a game uf -cma-hrk1RSig as follows.

Game uf -cma-hrk1RSig:

• Setup Phase: The challenger initializes two lists as SigList← {ϵ} and RList← {ϵ}
and samples a pair of keys (pk, sk) $← RSig.Gen(par). Then A is run on input pk.

• Online Phase:

– A is given access to an oracle Rand, which, upon a query, samples a fresh random
value from R as ρ $← R, stores ρ in the list RList, and returns ρ.

– A is given access to a signing oracle RSign which works as follows. On input a
message m and a randomness ρ, if ρ was not obtained via a prior Rand query (i.e.,
ρ /∈ RList), then return ⊥. Otherwise, derive a pair of keys rerandomized with
the randomness ρ, as sk′ ← RSig.SKDer(sk; ρ) and pk′ ← RSig.PKDer(pk; ρ). If
(pk′,m) ∈ SigList then return ⊥. Otherwise, a signature is derived on message m
under the secret key sk′ as σ ← RSig.Sign(sk′,m). The tuple (pk′,m) is stored in the
SigList and the signature σ is returned as the answer.

• Output Phase: A wins if it returns a forgery σ∗ together with a message m∗ and
a public key pk∗ ← RSig.PKDer(pk; ρ∗),2 s.t. following holds: (1) the randomness
ρ∗ has been derived via a Rand query, i.e., ρ∗ ∈ RList, (2) (m∗, ρ∗) is fresh, i.e.,
(pk∗,m∗) /∈ SigList, and (3) σ∗ is a valid forgery, i.e., RSig.Verify(pk∗, σ∗,m∗) = 1.

For an algorithmA we defineA’s advantage in game uf -cma-hrk1RSig as AdvAuf -cma-hrk1RSig =
Pr[uf -cma-hrk1ARSig = 1].

Other than only allowing the adversary to ask for at most one signature per message,
our definition deviates from the one presented in [DFL19] by storing the tuples (pk′,m)

2For simplicity, we tacitly assume that pk∗ identifies ρ∗. This can easily be achieved using appropriate
bookkeeping.

in the list SigList instead of just storing m. This change allows an adversary in the
uf -cma-hrk1 game to query a signature for the same message but under different public
keys.

3 Security Analysis of Additively Rerandomizable
ECDSA

In the following discussion, let E(par) denote an elliptic curve with base point G and prime
order p. Furthermore, assume hash functions H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp (modeled
as random oracles). In this section, we present a signature scheme with rerandomizable
keys REC[H1] based on the standard ECDSA scheme which we denote by EC[H0] (cf.
Figure 1). REC[H1], as illustrated in Figure 2, works in a similar way as EC[H0] with two
main differences. (1) It is extended by two algorithms RandSK and RandPK for the key
rerandomization and (2) it is designed for key-prefixed messages. First, the two algorithms
RandSK and RandPK randomize a key pair by adding a random value to each key. This
is in contrast to the signature scheme with multiplicatively rerandomizable keys based
on ECDSA as presented by Das et al. [DFL19], where the rerandomization algorithms
multiply a random value to each key. Second, REC[H1] is designed for key-prefixed
messages, i.e., upon executing REC[H1].Sign(sk,m) for a secret key sk and a message m,
the message is first extended to a key-prefixed message pm← (pk,m) where pk represents
the public key corresponding to sk. Then the prefixed message pm is signed under sk.

We prove that REC[H1] satisfies uf -cma-hrk1 security by providing a reduction from
the uf -cma1 security of the standard ECDSA scheme EC[H0]. An integral part of the
reduction is the observation that there exists a so-called “related key attack” (RKA) in
the scheme EC[H0]. An RKA allows to transform a signature that is valid under a public
key pk0 into a signature that is valid under another public key pk1 given there exists a
specific relation between pk1 and pk0. The RKA in EC[H0] allows to use a signature σ
that is valid under a public key pk0 as a valid signature under a public key pk1 in case
pk1 and pk0 are related as pk1 = pk0 + ρ ·G, where ρ must satisfy ρ = H0(m0)−H1(m1)

r
. We

formally describe this related key attack in the following Lemma.

Lemma 3.1 Let H0, H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles).
Suppose that σ = (r, s) is a valid signature on message m0 ∈ {0, 1}∗ w.r.t. EC[H0] and
public key pk0, i.e., EC[H0].Verify(pk0, σ,m0) = 1. Furthermore, let ρ = H0(m0)−H1(m1)

r

(mod p). Then σ is also a valid signature on message m1 ∈ {0, 1}∗ w.r.t. EC[H1] and
public key pk1 = pk0 + ρ ·G, i.e., EC[H1].Verify(pk1, σ,m1) = 1.

Proof of Lemma 3.1. We have to show that EC[H1].Verify(pk1, σ,m1) = 1 for pk1 = pk0 +
ρ ·G and ρ = H0(m0)−H1(m1)

r
(mod p). Note that σ = (r, s), where s = t−1(H0(m0) + rsk0)

(mod p) and r represents the x-coordinate of the elliptic curve point t ·G for t $← Zp. As
shown in Figure 1, EC[H1].Verify(pk1, σ,m1) computes the following:

Algorithm EC[H0].Gen (par)
00 x $← Zp

01 X ← x ·G
02 sk← x
03 pk← X
04 Return (pk, sk)

Algorithm EC[H0].Sign (sk = x,m)
05 z ← H0(m)
06 t $← Zp

07 (ex, ey)← t ·G
08 r ← ex mod p
09 If r = 0 mod p
10 Goto Step 06
11 s← t−1 (z + rx) mod p
12 If s = 0 mod p
13 Goto Step 06
14 Return σ := (r, s)

Algorithm EC[H0].Verify (pk = X, σ,m)
15 Parse (r, s)← σ
16 If (r, s) ̸∈ Zp

17 Return 0
18 w ← s−1 mod p
19 z ← H0(m)
20 u1 ← zw mod p
21 u2 ← rw mod p
22 (ex, ey)← u1 ·G+ u2 ·X
23 If (ex, ey) = (0, 0)
24 Return 0
25 Return r = ex mod p

Figure 1: EC [H0] = (EC[H0].Gen, EC[H0].Sign, EC[H0].Verify): ECDSA signature scheme over to elliptic
curve E using hash function H0 : {0, 1}∗ → Zp.

u1 ·G+ u2 · pk1

=H1(m1) · s−1 ·G+ r · s−1 ·
(

pk0 + H0(m0)− H1(m1)
r

·G
)

=s−1 ·G (H1(m1) + r · sk0 + H0(m0)− H1(m1))
=s−1 ·G (r · sk0 + H0(m0))
=t · (H0(m0) + rsk0)−1 · (H0(m0) + rsk0) ·G = t ·G

Since the x-coordinate of t ·G equals r (mod p), it holds that EC[H1].Verify(pk1, σ,m1) = 1.

The RKA from Lemma 3.1 can be extended to an RKA between the schemes EC[H0]
and REC[H1] such that a valid signature under pk0 for a prefixed message pm← (pk1,m)
in EC[H0] is also valid in REC[H1] under pk1 for message m. This RKA allows to transfer a
valid signature from EC[H0] to a valid signature in REC[H1] and vice versa in case pk0 and
pk1 satisfy the relation from Lemma 3.1. We formally present this RKA in the following
Lemma.

Lemma 3.2 Let H0, H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles).
Let m ∈ {0, 1}∗ and suppose that σ = (r, s) is a valid signature on message pm← (pk1,m)
w.r.t. EC[H0] and public key pk0, i.e., EC[H0].Verify(pk0, σ, pm) = 1. Furthermore, suppose
that pk1 = pk0 + ρ ·G where ρ = H0(pm)−H1(pm)

r
(mod p). Then σ is also a valid signature

on message m w.r.t. REC[H1] and public key pk1, i.e., REC[H1].Verify(pk1, σ,m) = 1.

Algorithm REC[H1].Sign (sk,m)
00 pm← (pk,m)
01 σ ← EC[H1].Sign (sk, pm)
02 Return σ

Algorithm REC[H1].Verify (pk, σ,m)
03 pm← (pk,m)
04 Return EC[H1].Verify (pk, σ, pm)

Algorithm REC[H1].RandSK (sk; ρ)
00 sk′ ← (sk + ρ) mod p
01 Return sk′

Algorithm REC[H1].RandPK (pk; ρ)
02 pk′ ← (pk + ρ ·G)
03 Return pk′

Figure 2: Key-prefixed version of the ECDSA signature scheme with perfectly reran-
domizable keys REC[H1] := (REC[H1].Gen = EC[H1].Gen, REC[H1].Sign, REC[H1].Verify,
REC[H1].RandSK, REC[H1].RandPK) based on the ECDSA signature scheme EC[H1]. Above
H1 : {0, 1}∗ → Zp denotes a hash function.

Proof of Lemma 3.2. We have to show that REC[H1].Verify(pk1, σ,m) = 1 for pk1 =
pk0 + ρ · G and ρ = H0(pm)−H1(pm)

r
(mod p), where pm ← (pk1,m). Note that σ = (r, s),

where s = t−1(H0(pm) + rsk0) (mod p) and r represents the x-coordinate of the elliptic
curve point t ·G for t $← Zp. As shown in figure 2, REC[H1].Verify(pk1, σ,m) first computes
the prefixed message pm ← (pk1,m) and then runs EC[H1].Verify(pk1, σ, pm). The rest
follows from the proof of Lemma 3.1 with m0 = m1 = pm.

3.1 Security analysis of REC
In this section, we analyze the one-per message unforgeability of the honestly rerandomiz-
able signature scheme, or in short the uf -cma-hrk1 security of the scheme REC[H1]. We
prove the following theorem.

Theorem 3.3 Let H0,H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles).
Let A be an algorithm that plays in the game uf -cma-hrk1REC[H1]. Then there exists an
algorithm C running in roughly the same time as A, such that

AdvCuf -cma1EC[H0] ≥
(

AdvAuf -cma-hrk1REC[H1]
− q2

H1

p

)
· 1
q

where qH1 and q are the number of random oracle queries and Rand queries, respectively,
that A makes.

Before providing the full formal proof of Theorem 3.3, we give some intuition on
how we overcome the main difficulties in our simulation. At a high level, the idea is to
reduce the uf -cma-hrk1 security of the additively rerandomizable ECDSA construction
REC[H1] from the uf -cma1 security of ECDSA construction EC[H0]. Therefore, the proof
essentially consists of building a reduction C trying to come up with a valid forgery to
win the uf -cma1EC[H0] game, by simulating the uf -cma-hrk1REC[H1] game to adversary A
using the RKA from Lemma 3.2. In the uf -cma1EC[H0] game, C obtains a public key pkC
from its challenger. It can query an oracle Sign to get signatures w.r.t. pkC. C also has
access to a random oracle H0. C’s goal is to somehow embed its public key pkC in one of

the rerandomized public keys pk∗ under which A eventually returns a forgery (pk∗, σ∗,m∗).
The hope is that C can use (pk∗, σ∗,m∗) to win its own game uf -cma1EC[H0].

In more detail, C’s strategy works as follows. Instead of directly using pkC, C generates
the challenge public key for A by additively shifting pkC with a freshly sampled ρ̃ $← R,
i.e., pk ← pkC − ρ̃ · G. When A asks for a signature under a key pk′ = pk + ρ · G, C
can simulate such signatures by querying its Sign oracle and employing the RKA from
Lemma 3.2. This is because, to the adversary A, pk′ looks like a rerandomization of pk,
while in fact, it is derived from pkC as pk′ = pk + ρ ·G = (pkC − ρ̃ ·G) + ρ ·G. To make
this simulation work, the random oracle H1 must be carefully programmed by C such that
the relation between ρ, H0 and H1 satisfies H1(m) = H0(m)− r · ρ (mod p) (according to
Lemma 3.2), where (r, s) := σ is the signature3.Note that, due to the programming of the
random oracle, the first simulated signature for every message and randomness pair (m, ρ)
fully determines H1(m). Hence, the simulated signing oracle in uf -cma-hrk1REC[H1] can
be queried at most once on every input pair (m, ρ). C’s strategy to win uf -cma1EC[H0] is
to embed ρ̃ at random as an answer to one of the Rand queries in uf -cma-hrk1REC[H1].
For signing queries w.r.t. p̃k, C does not reprogram H1; instead, it uses H0 and signatures
obtained from the signing oracle in uf -cma1EC[H0] directly. If A returns a valid forgery σ∗
w.r.t. to pk∗ = p̃k = pk+ ρ̃ ·G, then C can simply use this forgery to win the uf -cma1EC[H0]
game. This is because pk∗ = pk + ρ̃ ·G = pkC − ρ̃ ·G+ ρ̃ ·G = pkC. Note that pk∗ is the
only key for which the forgery σ∗ is valid in game uf -cma1EC[H0]. For any other key pk′,
the simulation of the signing oracle in uf -cma-hrk1REC[H1] requires to reprogram H1 on
any message that is prefixed with pk′. Since this involves a signing query on that very
message to the signing oracle in uf -cma1EC[H0], the forgery would no longer be fresh in
the latter game. This guessing on C’s part is also the reason that our reduction is not
tight.

We now provide the full formal proof.

Proof. For this proof, we consider an adversary A playing in the uf -cma-hrk1REC[H1]
game relative to a random oracle H1. Below, we present a series of games GGG0 to GGG6 where
the following holds.

AdvAuf -cma-hrk1REC[H1]
= Pr[GGGA0 = 1] ≤ Pr[G6G6G6

A = 1] + qH1
2

p

Game G0G0G0: This game is equivalent to the original game, namely uf -cma-hrk1AREC[H1]. In
particular, a key pair (sk, pk) is sampled as (sk, pk) $← REC[H1].Gen(par). The adversary
A is given pk as the challenge public key and oracle access to Rand, RSign and random
oracle H1. A can query Rand to receive a randomness ρ and make a follow-up query
to RSign to receive a signature on message m with respect to the rerandomized key
pk′ ← pk + ρ ·G. In particular, A is allowed to query RSign on every input pair (m, ρ) at
most once. Additionally, A can make direct queries to the random oracle H1. Eventually,
in order to win the game, A has to come up with a valid forgery σ∗ on a new message
m∗ with respect to a randomness ρ∗. Since G0G0G0 proceeds as uf -cma-hrk1 we have that
Pr[G0G0G0

A = 1] = Pr[uf -cma-hrk1AREC[H1] = 1] = AdvAuf -cma-hrk1REC[H1]
.

3An important aspect of this simulation is that C can program H1 whenever it observes a query m to
H1 that is prefixed with a previously rerandomized key. In particular, this can be done before m is ever
queried to the signing oracle in uf -cma-hrk1REC[H1].

Game G1G1G1: This game is similar to game G0G0G0 with the following modification. A is now
given a public key p̃k instead of pk (which served as the challenge public key in GGG0) as the
challenge public key. p̃k is derived as p̃k← pk − ρ̃ ·G with a freshly sampled randomness
ρ̃ $← R. The corresponding secret key is obtained as s̃k = sk− ρ̃.

Due to the perfect rerandomizablity of keys of the rerandomizable signature scheme
REC, pk is indistinguishable from p̃k. Hence, we have Pr[G0G0G0

A = 1] = Pr[G1G1G1
A = 1].

Game G2G2G2: This game is similar to game G1G1G1 with the following modification in the Rand
oracle. An index j is sampled uniformly at random from the set {1, . . . , q}, where q is an
upper bound on the number of queries to the oracle Rand. The game returns ρ̃ at the jth

Rand query. For all other queries, ρ is sampled randomly as ρ $← R.
Since both ρ̃ and ρ are sampled randomly from R, the output distribution of the Rand

oracle is the same in games G1G1G1 and G2G2G2. Hence, we have Pr[G2G2G2
A = 1] = Pr[G1G1G1

A = 1].
Game G3G3G3: This game behaves exactly like the game G2G2G2 with the following modifications:
First, the game internally maintains a random oracle H0 (in addition to H1) in a straight-
forward manner, by storing a list H0 of query/response pairs. Second, the game programs
the oracle H1 by maintaining three lists H1, H ′1 and Γ, where the first two will be used as
possible replies to queries to H1, and Γ stores pre-computed signatures. In the beginning
of the game, H1, H ′1 and Γ are initially set to ⊥ in each entry. Whenever A queries a
message m to H1, the values H1[m], H ′1[m] and Γ[m] are set in one of two ways depending
on whether m is prefixed with a public key pk′ or not. Here, pk′ is a rerandomized form
of the public key p̃k (i.e., pk′ ← p̃k + ρ ·G where ρ← Rand is a previous answer to any
Rand oracle query), where p̃k = pk− ρ̃ ·G (see Game GGG1). Concretely, on query m to H1,
the lists H1, H ′1 and Γ are maintained in the following way:

• If H1 has already been programmed in a previous query, i.e., H1[m] ̸= ⊥, return H1[m].

• Else H1[m] = ⊥, then sample uniformly at random h $← Zp, set H1[m] = h, and
proceed as follows:

– Case 1: m is of the form (pk′,m′), where pk′ = p̃k+ρ·G = pk+(ρ−ρ̃)·G, for ρ ∈ RList.
Derive a signature σ as σ ← REC[H1].Sign(sk′,m′) for sk′ = s̃k + ρ = sk + (ρ − ρ̃)
(mod p) and parse σ := (r, s). Then set H ′1[m] = H0[m]− r · (ρ− ρ̃) (mod p) and
Γ[m] = σ. Finally return H1[m].

– Case 2: m is not of the form (pk′,m′). Set Γ[m] = ϵ and return H1[m].

In both the cases, the output of H1 is uniformly distributed from A’s point of view. It
follows that Pr[G2G2G2

A = 1] = Pr[G3G3G3
A = 1].

GameG4G4G4: This game proceeds as the previous game with a modification in the Rand oracle.
Upon A querying the Rand oracle, sample ρ as before, then compute the rerandomized
public key pk′ ← p̃k + ρ · G and check if there exists a message m with prefix pk′ such
that Γ[m] = ϵ. In that case, the game aborts.

Claim 3.4 Let E1 be the event that the game G4G4G4 aborts during a Rand query. Then, we
have that Pr[E1] ≤ qH1

2

p
.

Proof. Event E1 can only occur if A has queried H1 on input m with prefix pk′ ← p̃k+ρ ·G
prior to making a query to Rand that returns ρ. Since A makes at most qH1 queries to H1,
for each query to Rand that the adversary A makes, we have that with probability qH1

p
we

receive a value ρ such that pk′ ← p̃k + ρ ·G is a prefix of input m that was earlier made
to H1. Since there are at most q such queries to Rand by taking the union bound over qH1

we obtain Pr[E1] = ∑qH1
i=1

qH1
p

= qH1
2

p
.

From the above, we have that Pr[G3G3G3
A = 1] ≤ Pr[G4G4G4

A = 1] + qH1
2

p
.

Game G5G5G5: This game is similar to the game G4G4G4 except for a modification in the RSign
oracle. Upon A′s query on input (m, ρ), the game simulates the RSign oracle in the
following manner. It computes the rerandomized public key pk′ ← p̃k + ρ ·G and creates
the public key prefixed message pm← (pk′,m). The signature is implicitly derived via
querying the simulated random oracle H1 (see Game G3G3G3 above) on input the prefixed
message pm. This results into Γ[pm] = σ = REC[H1].Sign(sk′,m), which is returned as the
response to the signature query.

Observe that all queries to RSign on input the tuple (m, ρ) output the same signature.
However, since ECDSA signatures are randomized, the output of RSign should be different
with overwhelming probability for each query on the same input tuples. Here, we exploit
that A is allowed to query RSign at most once for the same input pair (m, ρ). Hence, the
output distribution of RSign is identical to the distribution of the RSign oracle in the
previous game and it holds that Pr[G4G4G4

A = 1] = Pr[G5G5G5
A = 1].

Game G6G6G6: This game is similar to game G5G5G5 except for the following changes: In the
oracles RSign and H1 the game uses EC[H0].Sign instead of REC[H1].Sign to compute the
signatures stored in Γ (and in case of RSign this implicitly happens via H1). More precisely,
when H1 is queried on pm = (pk′,m′), where pk′ = p̃k+ρ ·G = pk+(ρ− ρ̃) ·G for ρ ∈ RList,
we derive σ ← EC[H0].Sign(sk, pm), for sk′ = sk + (ρ− ρ̃) (mod p). Furthermore, upon H1
being queried on m, H1 returns H ′1[m] instead of H1[m] whenever Γ[m] ̸= ⊥ and Γ[m] ̸= ϵ.
Claim 3.5 It holds that Pr[G5G5G5

A = 1] = Pr[G6G6G6
A = 1].

Proof. First, note that in this game, H1 returns H0[m]−r ·(ρ−ρ̃) on a message m for which
a signature is stored in Γ. We have to show now that when H1 is queried on pm = (pk′,m′),
where pk′ = pk + (ρ − ρ̃) · G and sk′ = sk + (ρ − ρ̃) (mod p) for ρ ∈ RList, we derive
σ ← EC[H0].Sign(sk, pm) (Game G6G6G6) instead of computing σ ← REC[H1].Sign(sk′,m′)
(Game G5G5G5).

To this end, we recall Lemma 3.2, which states that if σ = (r, s) is a valid signature
for pm ← (pk′,m′) under pk w.r.t. EC[H0], it is also a valid signature for m′ under
pk′ ← pk + (ρ − ρ̃) · G w.r.t. REC[H1], if it holds that H1(pm) = H0(pm) − r · (ρ − ρ̃)
(mod p). Note that we replaced the REC[H1].Sign procedure call on a message m′ inG5G5G5 by a
EC[H0].Sign procedure call on a prefixed message pm← (pk′,m′), where pk′ = pk+(ρ−ρ̃)·G.
It remains to show that the condition H1(pm) = H0(pm)− r · (ρ− ρ̃) (mod p) holds. But
since H ′1[pm] = H0[pm] − r · (ρ − ρ̃) (mod p) is programmed accordingly (latest when
RSign is queried), this follows directly.

Combining results from GGG0 to GGG6, we have that

Pr[GGGA0 = 1] ≤ Pr[GGGA6 = 1] + qH1
2

p
. (1)

Reduction to uf -cma1 security. Having shown that the original uf -cma-hrk1AREC[H1]
game is indistinguishable from game G6G6G6, it remains to show that an adversary A winning
in game GGG6 can be turned into an adversary C that wins uf -cma1CEC[H0] game with related
success probability. To this end, we construct C that runs in the game uf -cma1CEC[H0] and
simulates to A game GGG6. Thus, C proceeds as game GGG6 and leverages oracle access to its
own signing oracle (with respect to its challenge public key) in the following way:

1. On input the challenge public key pkC from uf -cma1EC[H0], the adversary C sets pk to
pkC. Note that this implicitly sets the challenge public key in C’s simulation of GGG6 to
p̃k = pkC − ρ̃ ·G. Hence, C runs A on input p̃k.

2. In case A returns a forgery (m∗, σ∗, ρ∗) with ρ∗ ̸= ρ̃, C aborts.

C perfectly simulates GGG6 for A except in case where it aborts. Moreover, note that in case
there is no abort, we have that

pk∗ = p̃k + ρ∗ ·G = pkC − ρ̃ ·G+ ρ̃ ·G = pkC.

From the above programming strategy, we conclude that for A’s queries to H1 that are
prefixed with pk∗, the oracles H0 and H1 are identical. It remains to calculate the success
probability of C in winnning the uf -cma1EC[H0] game in case A returns a valid forgery.

Claim 3.6 Let E2 be the event that A outputs (m∗, σ∗, ρ∗) s.t. (pm∗, σ∗) constitutes a
valid forgery in game uf -cma1CEC[H0]. Then, we have that Pr[E2|G6G6G6

A = 1] ≥ 1
q
, where q is

the number of queries to the Rand oracle.

Proof. In order to prove this claim, we need to show that with probability 1
q

it must hold
that (1) (pm∗, σ∗) is a valid forgery in game uf -cma1CEC[H0] under public key pkC and (2)
the Sign oracle of the uf -cma1CEC[H0] game has not been queried on input pm∗.
First, note that if σ∗ is a valid signature for message (pk∗,m∗) under the public key pk∗
relative to REC[H1], then σ∗ is also a valid signature on pm∗ under public key pkC = pk∗
relative to EC[H0], as H0 and H1 are identical for messages prefixed with pk∗. Since there
are at most q possible values of ρ∗ and C chooses one of them uniformly at random,
the probability that C’s guess is correct is at least 1

q
. Note that from the adversary’s

perspective, the public key generated at index j is no different than other public keys.
Second, since (m∗, σ∗, ρ∗) is a valid forgery in uf -cma-hrk1AREC[H1], A has not previously
queried the RSign oracle on input (m∗, ρ∗). Correspondingly, the Sign oracle of the
uf -cma1EC[H0] game has also not been queried on message pm∗ and hence, (pm∗, σ∗) is a
valid forgery in uf -cma1EC[H0].

From Eq. 1 we get the following.

AdvAuf -cma-hrk1REC[H1]
= Pr[GGGA0 = 1] ≤ Pr[GGGA6 = 1] +

q2
H1

p

or, Pr[GGGA6 = 1] ≥ AdvAuf -cma-hrk1REC[H1]
− q2

H1

p

Since C can use a valid forgery by A in its own game whenever E2 occurs,

AdvCuf -cmaEC[H0] ≥ Pr[GGGA6 = 1] · Pr[E2 | GGGA6 = 1] = Pr[GGGA6 = 1] · 1
q

≥
(

AdvAuf -cma-hrk1REC[H1]
− q2

H1

p

)
· 1
q

4 A Model for Hierarchical Deterministic Wallets
In this section, we introduce a formal model for hierarchical deterministic wallets. This
model closely reflects the BIP32 specification [Wik18] with only minor differences which
we list in Section 6. At a high level, a hierarchical deterministic wallet scheme can be
visualized as a tree, where every node in the tree corresponds to a wallet. As is usual in a
tree structure, the scheme originates from a root node, which contains a pair of master
keys - a master public key mpk and a master secret key msk as well as a seed ch0,0 which
we will refer to as chaincode from now on. We say that the root node is located at level
0 of the tree. The root can create a child node at level 1 and position t by deriving a
new key pair (pk1,t, sk1,t) and a chaincode ch1,t from its master keys and chaincode ch0,0.
This child node represents a new wallet that is initiated with the key pair (pk1,t, sk1,t) and
chaincode ch1,t and using these values it can in turn create a child node for level 2. This
child creation process can continue recursively. Note, however, that a node at level i can
only create children for the immediate lower level, i.e., for level i+ 1.

In our model, we distinguish between two different kinds of nodes, namely non-hardened
and hardened nodes. Non-hardened nodes are, in essence, the nodes as discussed above,
i.e., nodes that can be used for child creation at the next lower level. We assume that the
public key and the chaincode of a non-hardened node can be corrupted by an adversary,
whereas the secret key remains protected. One might think of non-hardened nodes as
wallets in the hot/cold wallet setting, where the hot wallet stores the public key, the cold
wallet stores the secret key and the chaincode is provided to both wallets. While the
hot wallet is permanently online and thereby vulnerable to attacks, the cold wallet stays
offline for the majority of the time and is therefore protected against attacks. To create a
non-hardened child node at level i and at position t, its parent must generate the child
node’s key pair (pki,t, ski,t) and chaincode chi,t. We model the derivation of these values
in such a way that the derivation process of ski,t involves the parent’s secret key, while
the derivation of pki,t and chi,t requires only the parent’s public key and chaincode (i.e.,
it is independent of the parent’s secret key).

Hardened nodes, on the other hand, represent the leaves of the tree, i.e., we do not
consider any child derivation from hardened nodes4. However, in comparison to non-
hardened nodes we allow secret key leakage, along with public key and chaincode leakage
for hardened nodes. That is, we consider full corruption of hardened nodes. Our security
goal is that the secret key leakage of a hardened node does not affect the security of
any other node in the tree. As opposed to non-hardened nodes, the creation process

4We show in Appendix A, full version that child derivation of hardened nodes is possible under certain
conditions.

of a hardened child node requires the secret key of the parent node, i.e., even for the
derivation of the child’s public key and chaincode . The tree structure of a hierarchical
deterministic wallet scheme, containing hardened as well as non-hardened nodes can be
found in Figure 3.

While hardened nodes clearly exhibit stronger security guarantees than non-hardened
nodes, the advantage of non-hardened nodes lies in the child creation process. We will
illustrate this advantage in the following example. In a company there might be trusted
and untrusted employees. Trusted employees operate a non-hardened node, as they are
trusted to properly protect their secret key, e.g., by storing it in a cold wallet. On the
other hand, untrusted employees have to operate a hardened node as they might leak
their secret key or simply get compromised. Assume a trusted employee maintains a
non-hardened node with key pair (pki,t, ski,t) and chaincode chi,t. Further assume that
the node is operated in a hot/cold wallet setting, i.e., the tuple (ski,t, chi,t) is stored in
a cold wallet and the tuple (pki,t, chi,t) is stored in a hot wallet. If the employee wishes
to receive payments to different public addresses, it can simply generate these addresses
by deriving non-hardened child public keys using only the information stored in its hot
wallet. In particular, the cold wallet can remain offline during this process. Only when
the employee wants to spend the coins it received, it has to use ski,t from the cold wallet
to generate the secret keys corresponding to the public addresses it generated earlier.

Another example for the usefulness of non-hardened nodes is the following. Consider a
company A that operates a non-hardened node with key pair (pki,t, ski,t) and chaincode chi,t

only to receive payments from a company B. In this case, company A can simply share
pki,t and chi,t with company B, which can then by itself generate non-hardened child
public keys and make the payments to those addresses. Note that in this case, company
A does not have to be involved in the payment process at all.

Root

NH

NH

H H

NH

H H

NH

H H

NH

NH

H H

NH

H

level 0

level 1

level 2

Figure 3: Tree structure of a hierarchical deterministic wallet scheme. Hardened nodes
are denoted by H while non-hardened nodes are denoted by NH.

Flat Vs Hierarchical Deterministic Wallets. Let us now briefly discuss the main
difference between the model for hierarchical deterministic wallets and the setting originally
analyzed by Das et. al [DFL19] which we denote as the flat model. The key derivation
process in the flat model works in the same way as the non-hardened key derivation
in the hierarchical model with the difference that the flat model allows to derive keys
only directly from the master key pair. Hardened nodes are not considered in the flat
model. Therefore, the flat model basically represents a hierarchical wallet structure with

non-hardened leaf nodes at level 1 (see Figure 4). Since the flat model allows only for
non-hardened key derivation, the essential difference to the hierarchical model is that the
flat model cannot allow for any secret key leakage as this would render the entire scheme
insecure. Hierarchical wallets, on the other hand, introduce hardened nodes whose secret
keys can be leaked without affecting the security of any other node in the tree.

Root

NH NH NH · · ·

level 0

level 1

Figure 4: Tree structure of a deterministic wallet scheme in the flat setting.

In the following, we refer to a tree as a tuple (h, n0,0,N , E) if (N , E) defines a tree
of height h with node set N and edge set E , and a root node n0,0 ∈ N . We denote a
directed path pt

i of length i from the root to a node ni,t ∈ N at level i and position t in
the tree as the corresponding ordered sequence of edges pt

i = (e1, · · · , ei) ∈ E i. A path of
length 1 from a node ni−1,s ∈ N to a node ni,t ∈ N consists of only one edge which we
denote as es,t

i ∈ E .

Definition 4.1 (Address Structure). Let T = (h, n0,0,N , E) be a tree. Define a labeling
of the nodes in N as follows.

• The root node n0,0 is labeled by an address addr0,0.

• For 1 ≤ t < |N | and 0 ≤ i ≤ h, a node ni,t ∈ N is labeled by an address addri,t :=
(addr0,0, p

t
i).

A tuple (T ,Addr) is said to be an address structure (with respect to T) if Addr consists
of a set of labels for the nodes in N that meets the above requirements. A prefix address
addrj

i,t for a node ni,t ∈ N with 0 ≤ j < i ≤ h and t < |N | is a vector of length j + 1
consisting of the first j + 1 components of addri,t ∈ Addr.

We are now ready to define hierarchical deterministic wallets. In short, these schemes
consist of a Setup algorithm, which initializes the root node, hardened and non-hardened
secret and public key derivation algorithms SKDerH,PKDerH and SKDerNH,PKDerNH and
finally signing and signature verification algorithms Sign and and Verify. We assume that
public parameters par are known to all parties and we define appropriate secret and public
key sets SK and PK respectively. We assume there exists a function ToPubKey : SK →
PK that on input a secret key from SK outputs the corresponding public key in PK.
Formally we have:

Definition 4.2 (Hierarchical Deterministic Wallets). Let T = (h, n0,0,N , E) be a tree. A
hierarchical deterministic wallet scheme is defined w.r.t. an address structure (T ,Addr)
and consists of seven algorithms HDWal = (Setup, SKDerH, SKDerNH,PKDerH,PKDerNH, Sign,
Verify) which are defined as follows:

• Setup(1κ): The probabilistic setup algorithm takes as input a security parameter
1κ and outputs a non-hardened master key pair (msk0,0,mpk0,0) with msk0,0 ∈ SK,
mpk0,0 ∈ PK and a chaincode ch0,0.

• SKDerH(ski,s, chi,s, addri,s, es,t
i+1): The deterministic hardened secret key derivation

algorithm takes as input a secret key ski,s ∈ SK, a chaincode chi,s, an address
addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs a
secret key ski+1,t ∈ SK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for level
i+ 1 and position t.

• SKDerNH(ski,s, pki,s, chi,s, addri,s, es,t
i+1): The deterministic non-hardened secret key deriva-

tion algorithm takes as input a secret key ski,s ∈ SK, a public key pki,s ∈ PK, a
chaincode chi,s, an address addri,s ∈ Addr for level i < h, positions s, t, as well as an
edge es,t

i+1 ∈ E . It outputs a secret key ski+1,t ∈ SK, a chaincode chi+1,t and an address
addri+1,t ∈ Addr for level i+ 1 and position t.

• PKDerH(ski,s, pki,s, chi,s, addri,s, es,t
i+1): The deterministic hardened public key deriva-

tion algorithm takes as input a secret key ski,s ∈ SK, a public key pki,s ∈ PK, a
chaincode chi,s, an address addri,s ∈ Addr for level i < h, positions s, t, as well as an
edge es,t

i+1 ∈ E . It outputs a public key pki+1,t ∈ PK, a chaincode chi+1,t and an address
addri+1,t ∈ Addr for level i+ 1 and position t.

• PKDerNH(pki,s, chi,s, addri,s, es,t
i+1): The deterministic non-hardened public key deriva-

tion algorithm takes as input a public key pki,s ∈ PK, a chaincode chi,s, an address
addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs
a public key pki+1,t ∈ PK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for
level i+ 1 and position t.

• Sign(ski,s,m): The probabilistic signing algorithm takes as input a secret key ski,s and
a message m. It outputs a signature σ.

• Verify(pki,s,m, σ): The probabilistic verification algorithm takes as input a public key
pki,s, a message m and a signature σ. It outputs 0 or 1.
A hierarchical deterministic wallet is correct, if a secret and public key pair is derived

correctly using the algorithms SKDerH,PKDerH or SKDerNH,PKDerNH, the keys represent
a valid signing key pair.

We denote keys with subscript nh (e.g., sknh,·,· or pknh,·,·) as non-hardened keys and
keys with subscript h (e.g., skh,·,· or pkh,·,·) as hardened keys. A key without the subscript
nh or h indicates that it can be both a non-hardened or hardened key.
Definition 4.3 (Correctness of Hierarchical Deterministic Wallets). Let HDWal be a hierar-
chical deterministic wallet scheme with respect to an address structure (T ,Addr). For any
e0,s

1 ∈ E and any (ch0,0,msknh,0,0,mpknh,0,0) ∈ Setup(1κ), we define tuples (skh,1,s, ch1,s, addr1,s)
and (pkh,1,s, ch1,s, addr1,s) as

(skh,1,s, ch1,s, addr1,s) := SKDerH(msknh,0,0, ch0,0, addr0,0, e0,s
1)

(pkh,1,s, ch1,s, addr1,s) := PKDerH(msknh,0,0, ch0,0, addr0,0, e0,s
1)

and tuples (sknh,1,s, ch1,s, addr1,s) and (pknh1,s, ch1,s, addr1,s) as

(sknh,1,s, ch1,s, addr1,s) := SKDerNH(msknh,0,0, ch0,0, addr0,0, e0,s
1)

(pknh,1,s, ch1,s, addr1,s) := PKDerNH(mpknh,0,0, ch0,0, addr0,0, e0,s
1).

Further, for any addri−1,s ∈ Addr, and any edge es,t
i ∈ E we define the tuples

(skh,i,t, chi,t, addri,t) and
(
pkh,i,t, chi,t, addri,t

)
recursively as

(skh,i,t, chi,t, addri,t) := SKDerH(sknh,i−1,s, chi−1,s, addri−1,s, es,t
i)

(
pkh,i,t, chi,t, addri,t

)
:= PKDerH(sknh,i−1,s, chi−1,s, addri−1,t, es,t

i)

and tuples (sknh,i,t, chi,t, addri,t) and
(
pknh,i,t, chi,t, addri,t

)
as

(sknh,i,t, chi,t, addri,t) := SKDerNH(sknh,i−1,s, chi−1,s, addri−1,s, es,t
i)

(
pknh,i,t, chi,t, addri,t

)
:= PKDerNH(pknh,i−1,s, chi−1,s, addri−1,s, es,t

i)

HDWal is correct if for all m ∈ {0, 1}∗, all 1 ≤ i ≤ h, all 1 ≤ t ≤ (1− dh+1)/(1− d), and
all (ch0,0,msknh,0,0,mpknh,0,0) ∈ Setup(1κ) it holds that

Pr
σ←Sign(skh,i,t,m)

[Verify(pkh,i,t, σ,m) = 1] = 1

∧ Pr
σ←Sign(sknh,i,t,m)

[Verify(pknh,i,t, σ,m) = 1] = 1.

4.1 Oracles
Let us now describe the general capability and influence that the adversary has over
the hierarchical wallet schemes. An adversary is allowed to create new hardened and
non-hardened nodes in the tree. Furthermore, the adversary can corrupt the hot wallet of
all non-hardened nodes, thereby learning the public key and the chaincode of these nodes,
as well as learning the secret key and chaincode of the hardened nodes. As we mentioned
earlier, since hardened keys are given to untrustworthy nodes, the adversary is able to
corrupt both their hot and cold wallets and as such, we do not consider the hardened
nodes to derive new children. One way to look at hardened nodes, is that such nodes
are the root of a new tree. We will later show in App. A, full version, that an adversary
cannot distinguish hardened key pairs from freshly generated keys except with negligible
probability. Therefore, our model can be recursively extended to consider settings where
the hardened nodes can also derive new keys. Finally, the adversary can query any node
on a freely chosen message m and receive a signature for this message. To model the
above mentioned capabilities, we describe the oracles which the adversary gets access to
in the unlinkability game unlHDWal and the unforgeability game wufcma1HDWal.

Initially, two lists SK = ∅ and CH = ∅ are initialized. These are used throughout the
oracles to bookkeep which secret keys and chaincodes have been leaked to the adversary.
In the following, we consider a fixed address structure (T ,Addr).

• Hardened Child Creation HChildO: On inputs an address addri,s and an edge es,t
i+1

from A, return ⊥ if the address addri,s belongs to a hardened node or the address
addri,s is not valid (i.e., addri,s /∈ Addr). Further, return ⊥, if the address addri+1,t

exists already. Otherwise, compute the keys and chaincode (skh,i,s, pkh,i,s) and chi,s for
the node addri,s by recursively deriving keys along the path in the tree, starting from
the first node in the path that has already been assigned a key. Create a hardened child
with address addri+1,t as follows. Generate keypair (skh,i+1,t, pkh,i+1,t) by executing
both secret and public key derivation algorithms.

(skh,i+1,t, chi+1,t, addri+1,t)← SKDerH(sknh,i,s, chi,s, addri,s, es,t
i+1)

(pkh,i+1,t, chi+1,t, addri+1,t)← PKDerH(sknh,i,s, chi,s, addri,s, es,t
i+1).

Return pkh,i+1,t.

• Non-Hardened Child Creation NHChildO: On inputs an address addri,s and an
edge es,t

i+1 from A, return ⊥ if the address addri,s belongs to a hardened node or the
address addri,s is not valid (i.e., addri,s /∈ Addr). Further, return ⊥, if the address
addri+1,t exists already. Otherwise, compute the keys and chaincode (skh,i,s, pkh,i,s) and
chi,s for the node addri,s by recursively deriving keys along the path in the tree, starting
from the first node in the path that has already been assigned a key. Create a non-
hardened child with address addri+1,t as follows. Generate keypair (sknh,i+1,t, pknh,i+1,t)
by executing both key derivation algorithms

(sknh,i+1,t, chi+1,t, addri+1,t)← SKDerNH(sknh,i,s, chi,s, addri,s, es,t
i+1)

(pknh,i+1,t, chi+1,t, addri+1,t)← PKDerNH(pknh,i,s, chi,s, addri,s, es,t
i+1).

Return pknh,i+1,t.

• Signing HDSignO: On input message m and an address addri,s from A, proceed as
follows. Return ⊥ if the address addri,s is not valid (i.e., addri,s /∈ Addr). Further,
check if addri,s has already been queried to either NHChildO or HChildO and return
⊥ if this is not the case. Let ski,s be the secret key for the node with address addri,s.
Then compute a signature σ ← Sign(ski,s,m), add m to the message list SigList[addri,s]
and return σ.5

• Chaincode Leakage CHLeakO: On input an address addri,s from A, check if addri,s

has already been queried to either NHChildO or HChildO and return ⊥ if this is not
the case. Set CH[addri,s] = 1 to denote that the chaincode chi,s of address addri,s has
been leaked and return (pki,s, chi,s).

• Secret Key Leakage (for hardened node) SKLeakO: On input an address addri,s

from A, check if the address is that of the root, i.e., addri,s = addr0,0 or if the address
belongs to a non-hardened node; in this case, return ⊥. Further, check if addri,s has
already been queried to either NHChildO or HChildO and return ⊥ if this is not the
5In case of one-per message unforgeability, the oracle aborts if it has been queried previously on input

(m, addri,s).

case. Else, set SK[addri,s] = 1 and CH[addri,s] = 1 to denote that the secret key skh,i,s

and the chaincode chi,s of address addri,s have been leaked and return (skh,i,s, chi,s).

4.2 Unlinkability
Intuitively, the notion of unlinkability for hierarchical deterministic wallets guarantees that
public keys in the tree, i.e., public keys that have been derived directly or indirectly from
the master key of the tree root, cannot be distinguished from from a freshly generated
public key. More concretely, the distribution of public keys from the tree should be
computationally indistinguishable from a distribution of public keys that have been
derived from an independently chosen master key. While this is a valuable privacy notion,
it does not quite model practical scenarios in the hot/cold wallet setting. Recall that
this setting assumes public keys and chaincodes to be stored in hot wallets, which are
prone to corruptions. Therefore, we extend the unlinkability notion as described above
in the following way. We consider hot wallet corruption upon which the public key and
chaincode of the corrupted wallet are leaked. This extended notion gives more power
to the adversary and is more close to the capabilities that an adversary has in real life
scenarios. Naturally, the adversary can distinguish the distribution of keys derived from
public keys of corrupted hot wallets from a distribution of public keys that have been
derived from an independently chosen master key. Therefore, in our new unlinkability
notion the adversary should not be able to distinguish the distribution of keys derived
from non-compromised hot wallets and keys derived from independently chosen master
keys.

In the following we describe the unlinkability game unlHDWal with respect to a challenger
C and an adversary A. In the first step of the game, the challenger generates a fresh
master key pair and a chaincode via the execution of Setup(1κ). The adversary receives
the master public key as input and obtains access to all oracles as described in subsection
4.1. At some point, the adversary outputs an address addri,s and an edge es,t

i+1 and
receives a public key from the challenger. This public key is either the correct key for the
node at address addri,s or a public key derived for a random address from a fresh master
public key. A wins the game if it can successfully distinguish these two scenarios. In the
following we give a detailed description of the game unlHDWal:

Game unlHDWal:

• Setup Phase: The challenger computes (ch0,0,msk0,0,mpk0,0)← Setup(1κ) and sends
mpk0,0 to A.

• Online Phase: On input the security parameter and the master public key mpk0,0, the
adversary A is allowed to make queries to the oracles as explained in subsection 4.1.

• Output Phase: Eventually, A chooses an address addri,s, an edge es,t
i+1 and a value

c ∈ {h, nh} and sends them to the challenger. Let (ski,s, pki,s) be the key pair and
chi,s the chaincode of the node at address addri,s. If the address addri,s belongs to a
hardened node, C returns ⊥. Otherwise, the challenger chooses a bit b $← {0, 1} and
generates a public key pki+1,t as follows:

– If b = 0:

∗ If c = h: C computes (pkh,i+1,t, ·, ·)← PKDerH(sknh,i,s, chi,s, addri,s, es,t
i+1).

∗ If c = nh: If the chaincode for addri,s or any of its prefix addresses has been
leaked, i.e., CH[addrj

i,s] = 1, for any j < i, then C returns ⊥. Else, C computes
(pknh,i+1,t, ·, ·)← PKDerNH(pknh,i,s, chi,s, addri,s, es,t

i+1).
– If b = 1: The challenger computes (ch′0,0,msk′0,0,mpk′0,0)← Setup(1κ).

∗ If c = h: C derives a public key pk′h,1,t ← PKDerH(msk′0,0, ch′0,0, addr0,0, e0,t
1).

∗ If c = nh: If the chaincode for addri,s or any of its prefix addresses has been
leaked, i.e., CH[addrj

i,s] = 1, for any j < i, then C returns ⊥. Else C derives a
public key pk′nh,1,t ← PKDerNH(mpk′0,0, ch′0,0, addr0,0, e0,t

1).
– Based on the value of b and c, the challenger sends to the adversary either pkh,i+1,t

or pknh,i+1,t or pk′h,1,t or pk′nh,1,t.

• The adversary can continue to make oracle queries under the restrictions as mentioned
above.

• Eventually, A outputs a bit b′ and wins the game if b = b′.

We define the advantage of an adversary A in unlHDWal as

AdvAunlHDWal
:=
∣∣∣∣Pr[unlAHDWal = 1]− 1

2

∣∣∣∣ .

On Forward Unlinkability. The model of hierarchical wallets as defined in Defini-
tion 4.2 in Section 4 is stateless. In other words, each node in the tree maintains a fixed
chaincode chi,s which is used as an input parameter for the child key derivation algorithms.
If the (non-hardened) public key pki,s as well as the chaincode chi,s of a node are leaked
(e.g., due to a hot wallet corruption of the node in the hot/cold wallet setting), then the
adversary can as well compute the non-hardened keys in the entire sub-tree under pki,s.
Consequently, unlinkability of the sub-tree is lost. To enhance the unlinkability property,
we can extend our model to a stateful variant where, each node maintains a state Stt

i,s.
On every child key derivation, the state of the node is refreshed to a new state Stt+1

i,s . As a
result of this modification, we can guarantee forward unlinkability for hierarchical wallets,
which is similar to the standard notion of forward security. Precisely, on a hot wallet
corruption, the adversary learns the current state Stt

i,s and the public key pki,s of a node.
However, the existing children of this node were derived from earlier states Stt′

i,s, for t′ < t
- which are not known to the adversary. Thus it can no longer break the unlinkability of
the existing child keys in the sub-tree under pki,s. However, it would be able to link any
future child keys derived from pki,s.

4.3 Unforgeability
The notion of unforgeability for hierarchical deterministic wallets in the hot/cold wallet
setting guarantees that an adversary cannot forge a signature of any uncorrupted node
in the tree. In our model, non-hardened keys are always stored in hot/cold wallets, i.e.,
the secret keys are secured in the cold wallet storage, which cannot be corrupted by an
adversary. Hardened keys, on the other hand, can be stored on any device and are thereby

prone to corruption. Therefore, we allow an adversary to corrupt hardened secret keys,
while non-hardened secret keys must remain uncorrupted.

In more detail, the unforgeability game proceeds as follows. The challenger generates
a master key pair and a chaincode via the execution of Setup(1κ). The adversary receives
the master public key and obtains access to the oracles as described in subsection 4.1.
Eventually, the adversary outputs a forgery, i.e., a message and a signature for a specific
node in the tree. The adversary wins the game, if the signature is valid, the message has
not been queried to the signing oracle HDSignO for this specific node before and the cold
wallet of the node is uncorrupted. We note that a slightly weaker variant of unforgeability
for hierarchical deterministic wallets is the notion of one-per message unforgeability, where
the security game proceeds exactly as the game of the unforgeability notion with the
difference that the adversary is allowed to query the HDSignO oracle only once for each
message/address pair. We now give a detailed description of the unforgeability game
wufcma1HDWal.

Game wufcma1HDWal:

• Setup Phase: The challenger computes (ch0,0,msk0,0,mpk0,0)← Setup(1n) and sends
ch0,0 and mpk0,0 to A.

• Online Phase: On input the security parameter, the adversary A is allowed to make
queries to the oracles as explained in subsection 4.1.

• Output Phase: Eventually, A outputs a public key pki∗,s∗ , a message m∗, an address
addri∗,s∗ and a signature σ∗. A wins if all of the following conditions hold,

– Verify(pki∗,s∗ , σ∗,m∗) = 1
– m∗ /∈ SigList[addri∗,s∗]
– Either addri∗,s∗ belongs to a non-hardened node or addri∗,s∗ belongs to a hardened

node and its secret key has not been corrupted, i.e., SK[addri∗,s∗] = 0.
We define the advantage of an adversary A in wufcma1HDWal as

AdvAunlHDWal
:= Pr[wufcma1AHDWal = 1].

5 Generic Construction
In this section, we first show how to generically construct a hierarchical determinis-
tic wallet scheme HDWal from a signature scheme with perfectly rerandomizable keys
RSig = (RSig.Gen,RSig.RandSK,RSig.RandPK,RSig.Sign,RSig.Verify). We denote the con-
struction of HDWal with respect to a signature scheme with rerandomizable keys RSig
by HDWal[RSig]. Our generic construction HDWal[RSig] uses internally a hash function
H : {0, 1}∗ → R × {0, 1}κ. We detail our construction in Figure 5. Subsequently, we
analyze the security of our generic construction by proving the unlinkability and the
unforgeability properties of HDWal[RSig]. We defer the full proof for unlinkability of
HDWal[RSig] to Appendix A, full version. In the following subsection, we present the
theorem that states that HDWal[RSig] satisfies wufcma1HDWal security with a loss in the
security reduction. We then show that this loss is indeed unavoidable which means that
our security reduction is optimal.

Algorithm HDWal[RSig].Setup(par)
00 ch0,0

$← {0, 1}κ

01 (msk0,0,mpk0,0) $← RSig.Gen(par)
02 Return (msk0,0,mpk0,0, ch0,0)

Algorithm HDWal[RSig].Sign(ski,s,m)
00 σ ← RSig.Sign(ski,s,m)
01 Return σ

Algorithm
HDWal[RSig].Verify(pki,s, σ,m)
00 0/1← RSig.Verify(pki,s, σ,m)
01 Return 0/1

Algorithm HDWal[RSig].SKDerH(ski,s, chi,s, addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(ski,s, chi,s, es,t
i+1)

01 ski+1,t ← RSig.RandSK(ski,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (ski+1,t, chi+1,t, addri+1,t)

Algorithm HDWal[RSig].SKDerNH(ski,s, pki,s, chi,s, addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(pki,s, chi,s, es,t
i+1)

01 ski+1,t ← RSig.RandSK(ski,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (ski+1,t, chi+1,t, addri+1,t)

Algorithm HDWal[RSig].PKDerH(ski,s, pki,s, chi,s, addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(ski,s, chi,s, es,t
i+1)

01 pki+1,t ← RSig.RandPK(pki,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (pki+1,t, chi+1,t, addri+1,t)

Algorithm HDWal[RSig].PKDerNH(pki,s, chi,s, addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(pki,s, chi,s, es,t
i+1)

01 pki+1,t ← RSig.RandPK(pki,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (pki+1,t, chi+1,t, addri+1,t)

Figure 5: Generic construction of a hierarchical deterministic wallet scheme HDWal[RSig]
from a signature with perfectly rerandomizable keys RSig. HDWal[RSig] is defined w.r.t.
an address structure (T ,Addr), where T = (h, n0,0,N , E), such that addri,s ∈ Addr
and es,t

i ∈ E for 0 ≤ i ≤ h and 1 ≤ s, t ≤ |N |. We denote by (pki,s, ski,s) and chi,s the
public/secret key pair and chaincode of the node with address addri,s. We denote by H a
hash function H : {0, 1}∗ → R× {0, 1}κ.

5.1 Unforgeability of Generic Construction
We now analyze the unforgeability property of our generic construction HDWal[RSig] of
a hierarchical wallet. We require the following properties from the underlying signature
scheme RSig. RSig must satisfy (1) the definition of a signature scheme with rerandomizable
keys as well as (2) a transitive property of the keys. We formally define the latter below.

Definition 5.1 (Transitive Rerandomization). Let RSig = (RSig.Gen, RSig.Sign, RSig.Verify,
RSig.RandSK, RSig.RandPK) be a signature scheme with perfectly rerandomizable keys.
We say that RSig transitively rerandomizes if there exists an operation ⊙ : R×R → R s.t.
for all (sk, pk) ∈ RSig.Gen(par) and all (ρ, ρ′) ∈ R ×R, the values (sk′, pk′), (sk′′, pk′′), ρ̃
which are defined as

(sk′, pk′)← (RSig.RandSK(sk; ρ),RSig.RandPK(pk; ρ))
(sk′′, pk′′)← (RSig.RandSK(sk′; ρ′),RSig.RandPK(pk′; ρ′)),
ρ̃ = ρ⊙ ρ′ satisfy
(sk′′, pk′′) = (RSig.RandSK(sk; ρ̃),RSig.RandPK(pk; ρ̃)).

Definition 5.2 (Invertible Rerandomization). Let RSig = (RSig.Gen, RSig.Sign, RSig.Verify,
RSig.RandSK, RSig.RandPK) be a signature scheme with perfectly rerandomizable keys.
We say that RSig has invertible rerandomization if there exist (efficient) algorithms
RandSK−1 and RandPK−1 s.t. for all (sk, pk) ∈ RSig.Gen(par) and all ρ ∈ R it holds

sk = RandSK−1(RSig.RandSK(sk; ρ); ρ)
pk = RandPK−1(RSig.RandPK(pk; ρ); ρ)

We note that the signature schemes with rerandomizable keys based on Schnorr
[FKM+16], BLS [DFL19] and ECDSA (additive variant presented in Section 3 of this work
and multiplicative variant presented in [DFL19]) all satisfy the properties of transitive
rerandomization and invertible rerandmization as defined in Definitions 5.1, 5.2. For the
Schnorr, BLS and additive ECDSA based schemes, the ⊙ operation is a simple addition,
while for the multiplicative ECDSA scheme it is a multiplication (modulo the group
order p). Below we state our theorem for the one-per message unforgeability property of
HDWal[RSig].

Theorem 5.3 Let HDWal[RSig] be the construction defined in Figure 5, let H : {0, 1}∗ →
R× {0, 1}κ be a hash function modeled as a random oracle and let RSig be a signature
scheme with rerandomizable keys that satisfies the property of transitive rerandomization
and invertible rerandomization as in Definitions 5.1, 5.2. Let A be an adversary playing
in the game wufcma1AHDWal[RSig], then there exists an algorithm C running in roughly the
same time as A, and that makes as many queries to the oracle Rand in uf -cma-hrk1 as
A makes queries to NHChildO/HChildO such that

AdvCuf -cma-hrk1RSig ≥
1

4e(qsk + 1) · AdvAwufcma1HDWal[RSig]
.

where qsk is the number of SKLeakO oracle queries from A.

We stated Theorem 5.3 w.r.t. the one-per message unforgeability notions of hierarchical
deterministic wallet schemes and signature schemes with reradomizable keys, because
these notions are sufficient in the setting of deterministic wallets. This is because wallets
sign each unique transaction at most once. However, we note that we can likewise state
and prove the above theorem with respect to the standard unforgeability notions, i.e., the
notions that do not restrict the adversary to obtain at most one signature on a specific
message.

In the following, we provide the full formal proof of Theorem 5.3.

Proof. The proof of Theorem 5.3 exhibits an adversary C who uses the adversary A who
plays in game wufcma1AHDWal[RSig] to win its own game uf -cma-hrk1CRSig. The main idea
of our proof is that C guesses in advance which hardened nodes A might corrupt (i.e., calls
the SKLeakO oracle on). In case the guess of C is wrong, C cannot answer all SKLeakO
oracle queries from A and therefore has to abort. This leads to a polynomial loss in the
number of SKLeakO oracle queries (i.e., qsk) in C’s advantage in its uf -cma-hrk1CRSig game.
We use Coron’s technique as presented in [Cor02] to bound this loss.

We now provide the formal proof via a series of games GGG0 to GGG6.

Game GGG0: This is the regular wufcma1HDWal[RSig] game at the beginning of which a
key pair (pk, sk) is generated and the adversary A is given as input pk and oracle access
to the following oracles: HChildO, NHChildO, HDSignO, CHLeakO and SKLeakO oracles and
a random oracle H. The random oracle H is internally programmed in a straight forward
manner, by maintaining a list H. In particular, on input s, if H[s] ̸= ⊥, then return H[s].
Otherwise, sample a fresh randomness ρ $← R and a fresh value as ψ $← {0, 1}κ and set
(ρ, ψ) =: H[s] and return H[s]. In addition, the game keeps a list R in which it stores
the randomness used to derive the keys at position s and level i at entry R[i, s]. We have
that AdvAwufcma1HDWal[RSig]

= Pr[wufcma1AHDWal[RSig] = 1] = Pr[GGGA0 = 1].

Game GGG1: Upon generating the key pair (pk, sk), the game chooses a fresh chaincode
ch0,0

$← {0, 1}κ and fresh randomness ρ $← R. Then it derives the root public key for the
wufcma1HDWal[RSig] game as mpk0,0

$← RSig.RandPK(pk; ρ), stores ρ in a list as R[0, 0] = ρ.
The game sends ch0,0 and mpk0,0 to A.

Since the randomness ρ is chosen uniformly at random from R, the rerandomizability
of keys property of the signature scheme RSig holds. This implies that the distribu-
tions of (·,mpk0,0) and (·,mpk′0,0) $← RSig.Gen(par) are identical. Therefore, it holds that
Pr[GGGA1 = 1] = Pr[GGGA0 = 1].

GameGGG2: This game behaves likeGGG1 with a modification in the NHChildO oracle. Upon an
oracle query on input (addri,s, es,t

i+1) the NHChildO oracle executes PKDerNH(pki,s, chi,s, addri,s,

es,t
i+1) and creates the public key pknh,i+1,t at level i + 1 and position t as pknh,i+1,t ←

RandPK(pk;ω ⊙ R[i, s]), i.e., the public key pknh,i+1,t is derived directly from pk with
randomness ω ⊙ R[i, s], where (ω, ·) ← H(pki,s, chi,s, es,t

i+1). The game then sets the list
R[i + 1, t] = ω ⊙ R[i, s]. If any of the values (pki,s, chi,s, addri,s, R[i, s]) is not defined
yet, the game recursively derives the path from the root node up to (pki,s, addri,s) and
updates the list up to R[i, s].

Note that RandPK(pk;ω⊙R[i, s]) and RandPK(pknh,i,s;ω) derive the same key pknh,i+1,t,
due to the transitive property of rerandomizable keys. Since ω and R[i, s] are uniformly
at random from R, we have that Pr[GGGA2 = 1] = Pr[GGGA1 = 1].

Game GGG3 : This game proceeds similarly to the previous game with a modification in
the random oracle. The game aborts upon the adversary querying the random oracle on
input (sknh,i,s, ·, ·) where sknh,i,s is either a non-hardened secret key that corresponds to a
public key pknh,i,s previously output by the NHChildO oracle or sknh,i,s is the master secret
key msk0,0 corresponding to mpk0,0.

Claim 5.4 Let ϵ be the probability that game GGG3 aborts during a random oracle
query. Then there exists an algorithm C1 playing in game uf -cma-hrk1RSig such that
AdvC1

uf -cma-hrk1RSig
≥ ϵ.

Proof. We prove this claim by providing a reduction to the uf -cma-hrk1 security of RSig.
More concretely, we show that there exists an algorithm C1 with AdvC1

uf -cma-hrk1RSig
≥ ϵ

assuming C1 has access to an adversary A that causes GGG3 to abort with probability ϵ.
Initially, C1 receives as input a public key pk from the uf -cma-hrk1RSig game and chooses
at random a chaincode ch $← {0, 1}κ. From pk and ch, C1 can honestly simulate the
NHChildO and CHLeakO oracles to A. The simulation of the random oracle H works as

described in GGG3 with the exception that instead of sampling the randomness ρ $← R
uniformly at random from R, C1 calls the Rand oracle in game uf -cma-hrk1RSig to
obtain the randomness ρ. A query from A to the HDSignO oracle on input (m, addr·,·) is
forwarded to the RSign oracle on input m and the randomness corresponding to addr·,·
of the uf -cma-hrk1C1

RSig game. For a HChildO oracle query on input (addri,s, es,t
i+1),

C1 chooses a fresh key pair (independently of pk) (sk′, pk′) $← RSig.Gen(par), assigns
(skh,i+1,t, pkh,i+1,t) :− (sk′, pk′) and returns pkh,i+1,t. The SKLeakO oracle is then simulated
by returning skh,i+1,t on input addri+1,t. The simulation of the HChildO and HDSignO
oracles cannot be distinguished by A from the oracles in GGG3 due to the rerandomizability
of keys property of RSig. The only way in which A could detect the difference between
GGG3 and the reduction provided by C1 would be if the following event occurs. A makes a
random oracle query of the form (sknh,i,s, ·, ·) where sknh,i,s is either a non-hardened secret
key that corresponds to a public key pknh,i,s previously output by the NHChildO oracle
or sknh,i,s is the secret key corresponding to pk (if sknh,i,s belongs to a public key pknh,i,s

can be efficiently checked via the function ToPubKey(sknh,i,s)). By Claim 5.4, this event
happens with probability ϵ. However, when this event occurs, C1 learns the secret key
sknh,i,s which it can use to compute the secret key sk of the uf -cma-hrk1RSig game. This
is due to the transitivity and invertible rerandomization property of RSig. C1 can then
use sk to create a valid forgery in the uf -cma-hrk1C1

RSig game. Therefore, we have that
AdvC1

uf -cma-hrk1RSig
≥ ϵ.

It follows that Pr[GGGA2] ≤ Pr[GGGA3] + ϵ.

Game GGG4 : This game works like the previous game with a modification to the HChildO
oracle which works as follows. Let qsk be the number of hardened nodes that A corrupts
via the SKLeakO oracle. Upon A querying the HChildO oracle, with probability 1

qsk+1 ,
the address of this node is added to a list L. Let Bad define the event that a node
corresponding to an address in L is corrupted.

Since the change in this game is only syntactical, A’s winning probability is not affected
by whether Bad occurs. It follows that Pr[GGGA3] = Pr[GGGA4].

Game GGG5 : This game works like the previous game with the only difference that GGG5
aborts in case event Bad occurs.

Lemma 5.5 Pr[GGGA4 = 1] ≤ Pr[GGGA5 = 1] · e.
Proof. A can distinguish GGG5 from the previous game if the game aborts i.e., when the
event Bad happens. This event happens for each SKLeakO query, independently, with
probability 1

qsk+1 . With probability (1− 1
qsk+1), a SKLeakO oracle query does not lead to

an abort. Hence, the overall probability with which the game does not abort on any
SKLeakO oracle query can be lower bounded by (1− 1

qsk+1)qsk ≥ e−1, i.e., Bad occurs with
probability at most 1− e−1. As we have argued that Bad occurs in GGG4 independently of
the event GGG4 = 1, we have that Pr[GGGA4 = 1] = Pr[GGGA5 = 1] · 1/Pr[¬Bad] ≤ Pr[GGGA5 = 1] · e.

Game GGG6 : This game works like the previous game with a modification to the HChildO
oracle which works as follows. For the nodes that are chosen to be added to the list L,

the game derives the public key of that node as a public key of a non-hardened node.
The rest of the hardened nodes are generated as (sk, pk) $← RSig.Gen(par) and assigned
(skh,i+1,t, pkh,i+1,t) := (sk, pk).

Lemma 5.6 Pr[GGGA5 = 1] = Pr[GGGA6 = 1].

Proof. A can distinguish GGG6 from the previous game if it corrupts a hardened node which
is simulated as a non-hardened node i.e., one of the nodes in the list L. The only other
way for A to distinguish these two games would be if A was able to query the random
oracle on input the secret key of a non-hardened node as this would allow to recursively
compute the secret key of the corresponding child hardened node. This case is, however,
has already been excluded in G3G3G3. As explained in game GGG5, upon A making a corruption
query for a node in list L, the game aborts. Therefore, the adversary cannot distinguish
this game from the previous game.

By the transition from game GGG0 to game GGG6, we get that

AdvAwufcma1HDWal[RSig]
= Pr[GGGA0 = 1] ≤

(
Pr[GGGA6 = 1] · e

)
+ ϵ

or, Pr[GGGA6 = 1] ≥ 1
e
· AdvAwufcma1HDWal[RSig]

− 1
e
· ϵ

Reduction to uf -cma-hrk security. Having shown that the transition from game
wufcma1AHDWal[RSig] to the game GGG6 is indistinguishable, it remains to show that there
exists a challenger C2 that simulates GGG5 and uses A to win its own game uf -cma-hrk1RSig.
The challenger code is same as GGG6 with the following changes: (1) The sampling of ρ $← R
within the programming of H is replaced by a call to the oracle Rand (2) pk is replaced
by the challenge public key pkC2 from the underlying game uf -cma-hrk1C2

RSig. Since the
above changes are trivially indistinguishable to A, we move on to analyze C2’s probability
to win the uf -cma-hrkC2

RSig game using the forgery of A. There are two possibilities for A;
either to output a forgery for a non-hardened node or for a hardened node. We analyze
each case separately and show that for both cases our simulator can win its game with
non-negligible probability.

• Adversary outputs a forgery for a non-hardened node: If the adversary provides a
forgery for a non-hardened node, C2 can always use this forgery to win the uf -cma-hrkC2

RSig
game. Therefore, the overall probability of C2 winning the game in case of A generating
a forgery for a non-hardened node is:

AdvC2
uf -cma-hrk1RSig

≥ Pr[GGGA6 = 1] ≥ 1
e
· AdvAwufcma1HDWal[RSig]

− ϵ

e

• Adversary outputs a forgery for a hardened node: We now compute the probability
that the game aborts in case the adversary generates a forgery for a hardened node.

Let i∗ be the index of the hardened node for which the adversary outputs a forgery. In
this case C2 needs to abort if i∗ was sampled randomly. Recall, the probability that
i∗ has been sampled at random is 1− 1

qsk+1 . Therefore, the overall probability of the
simulator winning the game in case of A generating a forgery for a hardened node is:

AdvC2
uf -cma-hrk1RSig

≥ Pr[GGGA6 = 1] · 1
qsk + 1 ≥

(1
e
· AdvAwufcma1HDWal[RSig]

− ϵ

e

)
· 1
qsk + 1

We can now compose a challenger C from the challengers C1 of Claim 5.4 and C2, such
that C uses adversary A to win in its game uf -cma-hrk1CRSig. C executes either of C1 and
C2 with probability 1

2 . In order to compute C’s advantage AdvCuf -cma-hrk1RSig , we distinguish
the following two cases:

• Case ϵ ≥ 1
2AdvAwufcma1HDWal : In this case, we have by claim 5.4 that

AdvC1
uf -cma-hrk1RSig

≥ ϵ ≥ 1
2AdvAwufcma1HDWal .

Therefore we can lower bound C’s advantage by

AdvCuf -cma-hrk1RSig ≥
1
2AdvC1

uf -cma-hrk1RSig
≥ AdvAwufcma1HDWal

4 .

• Case ϵ < 1
2AdvAwufcma1HDWal : In this case, we can lower bound C2’s advantage by

AdvC2
uf -cma-hrk1RSig

≥
(

AdvAwufcma1HDWal[RSig]
· 1
e
− ϵ

e

)
· 1
qsk + 1

≥
(

AdvAwufcma1HDWal[RSig]
· 1
e
− 1

2e · AdvAwufcma1HDWal[RSig]

)
· 1
qsk + 1

= 1
2e(qsk + 1) · AdvAwufcma1HDWal[RSig]

Hence, C’s overall advantage can be lower bounded by

AdvCuf -cma-hrk1RSig ≥ min
(1

2AdvC1
uf -cma-hrk1RSig

,
1
2AdvC2

uf -cma-hrk1RSig

)

≥ 1
4e(qsk + 1) · AdvAwufcma1HDWal[RSig]

.

The proof of Theorem 5.3 incurs a polynomial loss in the number of SKLeakO oracle
queries (i.e., qsk) in C’s advantage in its uf -cma-hrk1CRSig game. Interestingly, the fol-
lowing theorem states that this loss is inherent and that, in fact, there does not exist
a tighter security reduction. In Appendix B, full version, we recall the security notion
of unforgeability under rerandomized keys uf -cma-rkRSig for a signature scheme with
rerandomizable keys RSig as introduced in [FKM+16] and prove Theorem 5.7. Below, we
denote as AA2

1 that A1 has black-box access to A2. In particular, it does not rewind A2.

Theorem 5.7 Let HDWal be an algorithm such that for any signature scheme with reran-
domizable keys RSig, HDWalRSig is a hierarchical deterministic wallet scheme. Moreover,
suppose that there is a reduction R such that for every signature scheme with rerandomiz-
able keys RSig and every adversary A running in time tA with ϵA = AdvAwufcma1HDWalRSig , it
holds that AdvRA

uf -cma-rkRSig ≥ ϵR and RA runs in time tR. Then there exists an algorithm
M running in time tM ≤ 2 · tR s.t. AdvMuf -cma-rkRSig ≥ ϵR − ϵA · 2 exp(−1)

qsk
.

Theorem 5.7 implies that if there exists a reduction from uf -cma-rkRSig to wufcma1HDWalRSig

for a signature scheme with rerandomizable keys RSig s.t. the reduction loses less than
a factor proportional to qsk, then there exists an efficient algorithm M that can break
the uf -cma-rkRSig security. We formulate and prove this result w.r.t. a reduction from
the strongest possible security notion of signature schemes with rerandomizable keys
(i.e., uf -cma-rk) to the restricted notion of one-per message wallet unforgeability (i.e.,
wufcma1HDWal). Clearly, this implies that the result from Theorem 5.7 also holds for the
weaker notion of uf -cma-hrk1 for signature schemes with rerandomizable keys which we
use in Theorem 5.3. We note that Theorem 5.7 can likewise be stated and proved with
respect to the standard unforgeability notion of hierarchical deterministic wallet schemes,
i.e., the notion that does not restrict the adversary to obtain at most one signature on a
specific message.

6 Discussion
On Security Parameters. We instantiate our generic hierarchical deterministic wallet
construction HDWal[RSig] with two schemes, namely REC[H1] (Figure 7, full version) and
REC′[H1] (Figure 6, full version). Note that HDWal[REC[H1]] corresponds to the BIP32
wallet, while HDWal[REC′[H1]] is instantiated from the multiplicatively rerandomized
construction REC′[H1] from [DFL19], we will refer to it as BIP32-m.

First, let us recall, how to compute the bit security level of a scheme. A hierarchical
wallet scheme HDWal is said to have a bit security level of κ bits, if any algorithm A with
running time t and advantage ϵ in wufcma1HDWal takes expected running time t

ϵ
≥ 2κ to

break the scheme for the first time. (The security level for a conventional signature scheme
is defined analogously). From our Theorems C.1, C.2 (full version), we compute the bit
security level of our schemes, considering an algorithm A with parameters t′, ϵ′ (in game
wufcma1HDWal), where t′ ≈ t and ϵ′ = ϵ · Q for some Q ≥ 1 and where t, ϵ denote the
runtime and advantage of the related forger C in game uf -cma1EC. By assumption, EC
satisfies κ = 128 bits of security, hence t

ϵ
≥ 2128. Thus, we obtain t′

ϵ′ = t
ϵ·Q ≥ 2128

Q
= 2κ−log Q.

Our results are reported in Table 1, where we took an estimate of the practical parameters
as follows: the total number of keys is q = 220, the number of qsk of secret keys leaked is
roughly 1% of the total number of keys q, i.e., qsk ≈ 214.

Scheme Theorem Ref. Bit Security with κ = 128
BIP32 Thm C.1, full version log(Q) = log(q · 4e · qsk) ≈ 37, κ− log(Q) = 91

BIP32-m Thm C.2, full version log(Q) = log(4e · qsk) ≈ 17, κ− log(Q) = 111

Table 1: Bit Security Level of BIP32 and BIP32-m, relying on uf -cma1 of EC[H0]

On BIP32 Parameters. Our construction of HDWal[REC[H1]] gives us the BIP32
construction as specified in [Wik18]. Here we list the exact parameters used in BIP32 and
minor differences of BIP32 with our construction HDWal[REC[H1]].

• Each node can derive at most 232 children nodes.

• e·,·· is chosen from {0, 1}32, which allows each non-hardened node to generate 231

non-hardened and 231 hardened child keys.

• A child key is derived as a hardened or a non-hardened node based on whether e·,·· ≥ 231

or ≤ 231 respectively. However, this is syntactical, and does not affect our security
analysis.

• Although at each level, the total number of derived keys can be at most (232) · p, where
p is the number of parent nodes in the immediate upper level, we do not imagine that
all of these keys are derived at every level. As can be seen, this would already exceed
our parameter q = 220, as selected above.

• The chaincode ch·,· is chosen from {0, 1}256.

• The input parameter addr·,· to the key derivation algorithms is set to an empty string.
We use this parameter to indicate the position in the tree, at which the child key is
derived and to ensure that the actual BIP32 derivation algorithms are called on the
proper inputs for this position.

• The input parameter addr·,· to the key derivation algorithms is set to an empty string
λ. Let us briefly explain this syntactical difference. In our Definition 4.2, addr·,· ̸= λ
is provided as input. This makes the user aware of the position in the tree, at which
the child key is derived and makes sure that the actual BIP32 derivation algorithms
are called on the proper inputs for this position in the tree.

Open Questions. Finally, let us mention some interesting open questions that can be
answered in future works:

• Is it possible to remove the one per-message restriction and prove the security of the
additively rerandomizable ECDSA scheme in the uf -cma-hrk notion? Additionally, is
there a tight reduction to uf -cma-hrk?

• Can we improve the tightness of uf -cma1 security [FKP17] of ECDSA from the
semi-logarithm problem?

References
[ABFF09] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dy-

namic and efficient key management for access hierarchies. ACM Trans. Inf.
Syst. Secur., 12(3), January 2009. (Cited on page 7.)

[ADE+20] Nabil Alkeilani Alkadri, Poulami Das, Andreas Erwig, Sebastian Faust, Juliane
Krämer, Siavash Riahi, and Patrick Struck. Deterministic wallets in a quantum
world. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 20: 27th Conference on Computer and Communications
Security, pages 1017–1031, Virtual Event, USA, November 9–13, 2020. ACM
Press. (Cited on page 7.)

[AGKK19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos
Kiayias. A formal treatment of hardware wallets. In Ian Goldberg and
Tyler Moore, editors, FC 2019: 23rd International Conference on Financial
Cryptography and Data Security, volume 11598 of Lecture Notes in Computer
Science, pages 426–445, Frigate Bay, St. Kitts and Nevis, February 18–22,
2019. Springer, Heidelberg, Germany. (Cited on page 7.)

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In Thomas Peyrin and Steven Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, Part II, volume 11273 of Lecture
Notes in Computer Science, pages 435–464, Brisbane, Queensland, Australia,
December 2–6, 2018. Springer, Heidelberg, Germany. (Cited on page 7.)

[BH19] Joachim Breitner and Nadia Heninger. Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies. In Ian Goldberg and
Tyler Moore, editors, FC 2019: 23rd International Conference on Financial
Cryptography and Data Security, volume 11598 of Lecture Notes in Computer
Science, pages 3–20, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019.
Springer, Heidelberg, Germany. (Cited on page 7.)

[Bit18] BitcoinExchangeGuide. CipherTrace Releases Report Exposing Close to $1 Bil-
lion Stolen in Crypto Hacks During 2018. https://coinexchangeguide.com/
ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_
-crypto-hacks-during-2018/, 2018. (Cited on page 2.)

[Blo18] Bloomberg. How to Steal $500 Million in Cryptocurrency. http://fortune.
com/2018/01/31/coincheck-hack-how/, 2018. (Cited on page 2.)

[BR18] Michael Brengel and Christian Rossow. Identifying key leakage of bitcoin
users. In Michael Bailey, Thorsten Holz, Manolis Stamatogiannakis, and
Sotiris Ioannidis, editors, Research in Attacks, Intrusions, and Defenses, pages
623–643, Cham, 2018. Springer International Publishing. (Cited on page 7.)

[But13] Vitalik Buterin. Deterministic Wallets, Their Advantages and
their Understated Flaws. https://bitcoinmagazine.com/articles/
deterministic-wallets-advantages-flaw-1385450276/, 2013. (Cited on
page 2.)

[CEV14] Nicolas T. Courtois, Pinar Emirdag, and Filippo Valsorda. Private key recovery
combination attacks: On extreme fragility of popular bitcoin key management,
wallet and cold storage solutions in presence of poor RNG events. Cryptology

ePrint Archive, Report 2014/848, 2014. https://eprint.iacr.org/2014/
848. (Cited on page 7.)

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature
schemes. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
272–287, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer,
Heidelberg, Germany. (Cited on page 6, 28.)

[DFL19] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of
deterministic wallets. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer
and Communications Security, pages 651–668. ACM Press, November 11–15,
2019. (Cited on page 3, 4, 5, 7, 8, 10, 11, 19, 28, 33.)

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party
threshold ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on
Security and Privacy, pages 980–997, San Francisco, CA, USA, May 21–23,
2018. IEEE Computer Society Press. (Cited on page 7.)

[Ele13] Version bytes for BIP32 extended public and private keys. https://electrum.
readthedocs.io/en/latest/xpub_version_bytes.html, 2013. (Cited on
page 2.)

[FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction
technique: The case of Schnorr signatures. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 444–460, Athens, Greece, May 26–30,
2013. Springer, Heidelberg, Germany. (Cited on page 7.)

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Do-
minique Schröder, and Mark Simkin. Efficient unlinkable sanitizable signatures
from signatures with re-randomizable keys. In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016: 19th In-
ternational Conference on Theory and Practice of Public Key Cryptography,
Part I, volume 9614 of Lecture Notes in Computer Science, pages 301–330,
Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany. (Cited on
page 4, 7, 28, 32.)

[FKP16] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security
of (EC)DSA signatures. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd
Conference on Computer and Communications Security, pages 1651–1662,
Vienna, Austria, October 24–28, 2016. ACM Press. (Cited on page 7.)

[FKP17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the one-per-message
unforgeability of (ec)dsa and its variants. In Yael Kalai and Leonid Reyzin,
editors, Theory of Cryptography, pages 519–534, Cham, 2017. Springer Inter-
national Publishing. (Cited on page 5, 9, 34.)

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In
Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16:
14th International Conference on Applied Cryptography and Network Security,
volume 9696 of Lecture Notes in Computer Science, pages 156–174, Guildford,
UK, June 19–22, 2016. Springer, Heidelberg, Germany. (Cited on page 7.)

[GS15] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets
that tolerate key leakage. In Rainer Böhme and Tatsuaki Okamoto, editors,
FC 2015: 19th International Conference on Financial Cryptography and Data
Security, volume 8975 of Lecture Notes in Computer Science, pages 497–504,
San Juan, Puerto Rico, January 26–30, 2015. Springer, Heidelberg, Germany.
(Cited on page 7.)

[KK18] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash,
revisited. Journal of Cryptology, 31(1):276–306, January 2018. (Cited on
page .)

[KMOS19] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits.
Refresh when you wake up: Proactive threshold wallets with offline devices.
Cryptology ePrint Archive, Report 2019/1328, 2019. https://eprint.iacr.
org/2019/1328. (Cited on page 7.)

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signa-
tures from identification schemes. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 33–61, Santa Barbara, CA, USA,
August 14–18, 2016. Springer, Heidelberg, Germany. (Cited on page 7.)

[Led14] Ledger Support,Ledger Nano OS. https://support.ledger.com/hc/en-us/
articles/115005297709-Export-your-accounts, 2014. (Cited on page 2.)

[LFA20] Adriano Di Luzio, Danilo Francati, and Giuseppe Ateniese. Arcula: A secure
hierarchical deterministic wallet for multi-asset blockchains. In Stephan Krenn,
Haya Shulman, and Serge Vaudenay, editors, CANS 20: 19th International
Conference on Cryptology and Network Security, volume 12579 of Lecture
Notes in Computer Science, pages 323–343, Vienna, Austria, December 14–16,
2020. Springer, Heidelberg, Germany. (Cited on page 7.)

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018: 25th Conference on Computer and Communications Security,
pages 1837–1854, Toronto, ON, Canada, October 15–19, 2018. ACM Press.
(Cited on page 7.)

[MPs19] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing trust in hardware
wallets with two factor signatures. In Ian Goldberg and Tyler Moore, editors,
FC 2019: 23rd International Conference on Financial Cryptography and Data

Security, volume 11598 of Lecture Notes in Computer Science, pages 407–425,
Frigate Bay, St. Kitts and Nevis, February 18–22, 2019. Springer, Heidelberg,
Germany. (Cited on page 7.)

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252, Santa Barbara, CA, USA,
August 20–24, 1990. Springer, Heidelberg, Germany. (Cited on page 7.)

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004. https://ia.cr/
2004/332. (Cited on page 8.)

[Ske18] Rhys Skellern. Cryptocurrency Hacks: More Than $2b
USD lost between 2011-2018. https://medium.com/ecomi/
cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_
-67054b342219, 2018. (Cited on page 2.)

[Tre14] Trezor Wiki,Cryptocurrency standards,Hierachical deterministic wallets.
https://wiki.trezor.io/Cryptocurrency_standards, 2014. (Cited on
page 2.)

[TVR16] Mathieu Turuani, Thomas Voegtlin, and Michaël Rusinowitch. Automated
verification of electrum wallet. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A.
Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, FC 2016
Workshops, volume 9604 of Lecture Notes in Computer Science, pages 27–42,
Christ Church, Barbados, February 26, 2016. Springer, Heidelberg, Germany.
(Cited on page 7.)

[Wik18] Bitcoin Wiki. BIP32 proposal. https://en.bitcoin.it/wiki/BIP_0032,
2018. (Cited on page 2, 18, 34.)

[ZCC+15] Zongyang Zhang, Yu Chen, Sherman S. M. Chow, Goichiro Hanaoka, Zhenfu
Cao, and Yunlei Zhao. Black-box separations of hash-and-sign signatures in the
non-programmable random oracle model. In Man Ho Au and Atsuko Miyaji,
editors, ProvSec 2015: 9th International Conference on Provable Security,
volume 9451 of Lecture Notes in Computer Science, pages 435–454, Kanazawa,
Japan, November 24–26, 2015. Springer, Heidelberg, Germany. (Cited on
page 7.)

C. Deterministic Wallets in a
Quantum World

This chapter corresponds to our published article in CCS 2020 [6], with minor
edits. Our full version can be found in [7].

[6] N. A. Alkadri, P. Das, A. Erwig, S. Faust, J. Krämer, S. Riahi, and P. Struck.

“Deterministic Wallets in a Quantum World”. In: CCS ’20: 2020 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event, USA,

November 9-13, 2020. 2020, pp. 1017–1031. doi: 10.1145/3372297.3423361.

url: https://doi.org/10.1145/3372297.3423361.

154

https://doi.org/10.1145/3372297.3423361
https://doi.org/10.1145/3372297.3423361

Deterministic Wallets in a Quantum World

Nabil Alkeilani Alkadri1, Poulami Das2, Andreas Erwig2, Sebastian Faust2, Juliane
Krämer3,

Siavash Riahi2, and Patrick Struck3

1 CDC, Technische Universität Darmstadt, Germany
nabil.alkadri@tu-darmstadt.de

2 CAC, Technische Universität Darmstadt, Germany
{poulami.das,andreas.erwig,sebastian.faust,siavash.riahi}@tu-darmstadt.de

3 QPC, Technische Universität Darmstadt, Germany
{juliane,patrick}@qpc.tu-darmstadt.de

Abstract. Most blockchain solutions are susceptible to quantum attackers as they rely on
cryptography that is known to be insecure in the presence of quantum adversaries. In this
work we advance the study of quantum-resistant blockchain solutions by giving a quantum-
resistant construction of a deterministic wallet scheme. Deterministic wallets are frequently
used in practice in order to secure funds by storing the sensitive secret key on a so-called cold
wallet that is not connected to the Internet. Recently, Das et al. (CCS’19) developed a formal
model for the security analysis of deterministic wallets and proposed a generic construction
from certain types of signature schemes that exhibit key rerandomization properties. We re-
visit the proposed classical construction in the presence of quantum adversaries and obtain
the following results.

First, we give a generic wallet construction with security in the quantum random oracle
model (QROM) if the underlying signature scheme is secure in the QROM. We next design
the first post-quantum secure signature scheme with rerandomizable public keys by giving
a construction from generic lattice-based Fiat-Shamir signature schemes. Finally, we show
and evaluate the practicality by analyzing an instantiation of the wallet scheme based on
the signature scheme qTESLA (ACNS’20).

1 Introduction

In the past decade cryptocurrencies such as Ethereum [eth15] and Bitcoin [Nak09]
have gained huge popularity introducing a revolutionary payment paradigm. Cryp-
tocurrencies do not rely on any central authority (i.e., banks) for the validation
of transactions but instead use a consensus protocol to reach agreement on the
validity of transactions in a decentralized network. As the name suggests the se-
curity of cryptocurrencies heavily relies on cryptographic building blocks – most
importantly, on digital signature schemes. Digital signatures are used to authen-
ticate money transfers between parties, where each party is identified by a pub-
lic key with respect to the signature scheme. In a nutshell, a transfer of v coins
from sender pkS to receiver pkR is represented by a transaction tx := (pkS, pkR, v).
The transaction tx is then sent together with a signature of tx with respect to
the sender’s public key pkS to the network of miners who validate the transaction.
Besides digital signatures many other (partially advanced) cryptographic building
blocks are used by cryptocurrencies to achieve a variety of goals. This includes, for
instance, non-interactive zero-knowledge proofs and ring signatures for privacy pre-
serving transactions [Noe15,EZS+19], threshold signatures and deterministic wallets

for securing funds [DFL19], aggregate signatures for scalability [HMW18], and many
more [GS15,FTS+19,TVR16].

Unfortunately, most cryptographic primitives used by cryptocurrencies today can be
broken by quantum adversaries. Most notably, the ECDSA signature scheme that is
implemented by nearly all popular cryptocurrencies relies on the hardness of comput-
ing discrete logarithms, and hence can be broken by Shor’s algorithm [Sho94]. Since
quantum computers can have devastating consequences for the security of cryptocur-
rencies [ABL+18], several recent works design cryptocurrencies with post-quantum
security features, i.e., they resist both classical and quantum attacks, but run on
classical machines. Cryptocurrency projects such as “Bitcoin Post Quantum” [Bit]
or QRL [QRL] replace ECDSA with hash-based post-quantum signatures. Other
examples include a Monero-based cryptocurrency with privacy guarantees that hold
against quantum adversaries [EZS+19], or a security analysis of the proof of work
consensus protocol in the quantum random oracle model [CGK+19]. In this work, we
follow this line of work and investigate the post-quantum security of deterministic
wallet schemes, and propose the first construction that provably resists quantum
adversaries.

Deterministic wallets. In cryptocurrencies, secret keys are a particular attractive
target for attackers. Indeed, the most devastating attacks in the cryptocurrency
space have typically targeted secret keys of users resulting in billions of dollars
worth of cryptocurrency being stolen [Ske18, Blo18, Bit18]. To protect keys against
theft, one of the most prominent solutions is the concept of a deterministic wallet. A
deterministic wallet scheme consists of two components: a hot wallet that is perma-
nently connected to the Internet, and a cold wallet, which comes online only rarely
(e.g., when a large amount of money has to be transferred). Das et al. [DFL19] for-
malized the concept of deterministic wallets and defined its security goals. The first
security goal is wallet unforgeability which states that funds sent to the cold wallet
must remain secure even if the hot wallet is corrupted. Second, wallet unlinkability,
which guarantees that individual transactions that sent money to the same wallet
are unlinkable despite being publicly available on the blockchain.

At a high-level a hot/cold wallet scheme works as follows. In an initialization phase,
it generates a master key pair (msk, mpk), where the master secret key msk is stored
on the cold wallet, while the hot wallet keeps the corresponding master public key
mpk. The main ingredient of a deterministic wallet scheme is a deterministic key
derivation procedure, which allows both, cold and hot wallet, to derive matching
secret and public session keys without interacting with each other. To this end, in
addition to the master secret/public key, the hot and cold wallet share a state St.
From this state each wallet can derive the corresponding session key by combining
the master key with a deterministically derived value H(St, ID), where ID is an
arbitrary key identifier and H is a cryptographic hash function. More concretely,
consider a simplified version of the BIP32 deterministic wallet scheme [BIP17] used
for Bitcoin. The master secret/public key pair consists of a valid ECDSA key pair
(msk, mpk) := (x, x · G), where G is a generator of the ECDSA elliptic curve. The

session key pair for identity ID is computed as pkID := mpk+w ·G and sk := msk+w
with w := H(St, ID).

Post-quantum security of deterministic wallets. While deterministic wallet schemes
offer an elegant solution to increase the security of users’ funds, they are particularly
susceptible to attacks by quantum adversaries. To illustrate this, let us first consider
how quantum attacks against the underlying signature scheme of a cryptocurrency
such as Bitcoin work. Recall that in Bitcoin (as in most other cryptocurrencies) an
address for transferring funds to is not represented by the public key itself but by its
hash value. More concretely, when a party transfers v coins to some receiver R with
public key pkR, then the transaction will store h = H(pkR). Only when R wants to
spend these coins he reveals pkR together with a signature with respect to pkR. This
leaves a quantum adversary that wants to steal v coins from R, with two options:
either he tries to find pk ′ such that H(pk ′) = h, or he waits until pkR is revealed by R
and computes the corresponding secret key skR. The first type of attack is believed
to be hard because common cryptographic hash functions such as SHA3-512 are
known to be preimage resistant even under quantum attacks when appropriately
choosing their parameters. While in the second case a quantum adversary can indeed
efficiently attack the signature scheme, he has only a very small window of time to
carry out this attack4. In particular, he has to frontrun the transaction published by
R, which is unlikely, assuming that the majority of miners is following the protocol.

A quantum attacker can have more devastating consequences against a deterministic
wallet scheme. More concretely, unlike for normal addresses (hashes of public keys),
in a deterministic wallet all session keys are related, and in particular efficiently
computable from (msk, mpk). Hence, if the adversary manages to learn mpk then
he can recover the corresponding master secret key msk and from that recover all
session secret keys. Hence, all the money that was ever transferred to the cold wallet
is at stake.

1.1 Our Contributions

Our main contribution in this work is to give the first construction of a post-quantum
secure deterministic wallet. Our scheme is intended to be used on classical computers,
and to remain secure even in the presence of quantum adversaries. To achieve our
goal we extend the security model of Das et al. [DFL19] to the quantum setting and
prove that certain standard post-quantum secure signature schemes can be used to
construct post-quantum secure wallets. Concretely, our contributions are as follows:

– We extend the security model for deterministic wallets introduced by Das et
al. [DFL19] to the quantum world. In particular, we show that if the underlying
signature scheme satisfying the property of honestly rerandomizable keys is post-
quantum secure, then it can be used to build post-quantum secure deterministic
wallets. We relax the notion of rerandomizable keys as given by [DFL19] to

4 In Bitcoin in most cases transactions are considered to be final after 60 minutes.

consider only rerandomization of public keys. Subsequently, we show that this
relaxed notion is sufficient for the security of wallets, and hence we are able to
prove post-quantum security based on this relaxed notion.

– We design the first post-quantum secure signature scheme with rerandomizable
public keys. This is achieved by giving a generic construction from a Fiat-Shamir
signature scheme based on lattice assumptions.

– We discuss optimizations of our post-quantum secure signature scheme with
rerandomizable public keys and evaluate its feasibility for blockchains.

1.2 Our Techniques

Signature schemes with rerandomizable keys [FKM+16] are the main building block
of the wallet scheme presented in [DFL19]. At a high-level besides the standard
algorithms of a digital signature scheme for key generation, signing, and verification,
a signature scheme with rerandomizable keys has two additional algorithms, namely
RSig.RandSK and RSig.RandPK. These algorithms take as input the secret key sk,
respectively public key pk and randomness ρ, and output fresh keys sk ′, respectively
pk ′. Moreover, the unforgeability property of the signature scheme must hold even
if the adversary sees signatures that are generated using rerandomized secret keys.

We show that certain post-quantum secure signature schemes support rerandomiza-
tion of keys and satisfy the security notion of unforgeability under honestly reran-
domized keys in the quantum world. In [FKM+16] it was shown that Schnorr’s sig-
nature scheme [Sch91] has rerandomizable keys with unforgeability in the random
oracle model (ROM). This motivates to study post-quantum secure Schnorr-like
signature schemes. More concretely, we investigate if lattice-based, Schnorr-like sig-
nature schemes can have rerandomizable keys with unforgeability in the quantum
random oracle model (QROM). Lattice-based schemes are particularly suitable for
constructing post-quantum secure rerandomizable signature schemes because (a)
lattice-based assumptions are conjectured to be secure under quantum computer
attacks; and (b) unlike hash-based signature schemes, lattice-based schemes exhibit
an algebraic structure, which enables rerandomization of keys.

The key pair (pk, sk) of such Schnorr-based lattice schemes consists of an instance of
a hard lattice problem, where the secret key sk typically follows either the discrete
Gaussian distribution or the uniform distribution over a small set. The first idea
that comes to mind when rerandomizing keys in the lattice setting is the following:
Given (pk, sk) and randomness ρ, sk is rerandomized additively by computing sk ′ =
sk + ρ (as carried out in [FKM+16] for Schnorr’s scheme). In the lattice setting
however, we must ensure that the sum sk ′ follows the correct distribution, e.g., the
Gaussian or uniform distribution. If this is not the case, one can sample a new
randomness from ρ in a deterministic way until a valid sk ′ is generated. Naturally,
the same (correct) ρ must be used when rerandomizing pk. This approach satisfies
(under a specified distribution of sk) the original definition of signature schemes
with rerandomizable keys (see Definition 3), as the initially generated key pair and
any rerandomization of it are identically distributed. However, this approach cannot
be used for building hot/cold wallets, because the hot and cold wallet must agree on

the correct ρ for each session key generation. This contradicts the main goal of using
hot/cold wallets, which requires that the cold wallet stays off-line, and hence cannot
frequently communicate with the hot wallet to synchronize on ρ. In Section 4.3 we
give more details on this approach as well as others, and argue why they are not
suitable in the wallet setting.

In this work we show that the key pair (pk, sk) can still be rerandomized addi-
tively in a way that fits to the setting of hot/cold wallets. The main observation
that we exploit is that the sum of two Gaussians is also Gaussian distributed (see
Lemma 3). Based on this observation, our approach works as follows. Let sk be
Gaussian distributed. Given randomness ρ, sk is rerandomized additively by adding
to sk a freshly Gaussian distributed secret key sk∗. The key sk∗ is deterministically
sampled using the randomness ρ, i.e., we use ρ as the randomness required in the
Gaussian sampler algorithm. We obtain a rerandomized secret key that is Gaussian
distributed, but with a slightly larger standard deviation than the one of the original
secret key (cf. Lemma 3). Consequently, we can construct a signature scheme with
rerandomizable keys, in which the distribution of rerandomized public keys is iden-
tical to the distribution of the original public key, while rerandomized secret keys
follow a different distribution than a freshly sampled secret key. We formally define
such relaxed notion in Section 2 and call it a signature scheme with rerandomizable
public keys. We then show in Section 3 that this notion is sufficient for post-quantum
secure wallets and present a lattice-based construction of such a scheme in Section 4
with a security proof in the QROM. Finally, we show in Section 5 that our construc-
tion can be instantiated with state-of-the-art lattice-based signature schemes such
as qTESLA [ABB+20]. Hence, it can use their proposed parameters and enjoy their
performance and efficiency.

We emphasize that the post-quantum security model considers the adversary to be
quantum while the challenger - representing the honest user in a real-world applica-
tion - remains classical. As a result, every oracle that is provided by the challenger
can be accessed only classically, while oracles that can be accessed by the adversary
directly can be accessed using quantum computing power, i.e., in superposition. This
describes a threat model where an adversary can use its quantum power to locally
access the random oracle, while he observes signatures created by a user on a clas-
sical machine. In our work, we consider this standard post-quantum security model
since it entails that the cryptographic scheme is still used on classical computers.
This is, in contrast to the (fully-) quantum setting, where the scheme itself is imple-
mented on quantum computers as well. While this is a stronger security model, it is
more of theoretical interest as it requires users to have access to quantum computers
as well.

1.3 Related Work

The concept of hot/cold wallets is used in many cryptocurrencies in order to provide
stronger security guarantees to its users. Various works have proposed formal secu-
rity models for analyzing the security of wallet schemes. Gutoski and Stebila [GS15]
have discussed flaws in the BIP32 construction [BIP17] and possible countermea-

sures. However, they do not consider the standard notion of unforgeability but rather
a restricted model where the adversary can corrupt the cold wallet and recover se-
cret keys. Other works worth mentioning are “privilege escalation attacks” by Fan et
al. [FTS+19] which unfortunately lacks any formal security analysis, and the analysis
of the Bitcoin Electrum wallet in the Dolev-Yao model by Turuani et al. [TVR16].
The latter considers cryptographic primitives (e.g., signature schemes and encryp-
tion schemes) as idealized objects, hence fails to capture potential vulnerabilities
such as related key attacks which are relevant in case of hot/cold wallets.

As mentioned earlier, we closely follow the model introduced by Das et al. [DFL19],
where the notion of a stateful deterministic wallet is introduced and two desirable
security properties called wallet unlinkability and wallet unforgeability are consid-
ered. The first property ensures that the session public keys generated by SW.RandPK
are unlinkable to the master public key. This property is guaranteed as long as the
hot wallet has not been corrupted. The second property ensures unforgeability of
signatures signed by the secret keys of the cold wallet even when the hot wallet is
corrupted.

According to [DFL19] a stateful deterministic wallet SW consists of two components
– a hot wallet and a cold wallet which share a common state St. SW is given by a
tuple of algorithms (SW.KGen, SW.RandSK, SW.RandPK, SW.Sign, SW.Verify), where the
session public key and secret key derivation algorithms SW.RandPK and SW.RandSK are
run respectively within the hot and cold wallet to deterministically derive matching
session (public/secret) keys from the (public/secret) master keys. Unlike determin-
istic wallets in use (e.g., the BIP32 construction), the state St of the wallet scheme
of [DFL19] is refreshed within the (hot/cold) wallets with each key derivation. This
approach allows to show forward unlinkability, which intuitively means that even
upon leakage of the state, all session keys derived before the state leakage remain
unlinkable. The second security property – wallet unforgeability – is achieved by a
reduction to standard EUF-CMA security of a concrete signature scheme (such as
ECDSA and Schnorr) in a modularized fashion. As the intermediary step the au-
thors show that these signature schemes satisfy the properties of signature schemes
with rerandomizable keys.

We note that the model by Das et al. [DFL19] only considers adversaries in the
classical setting and does not protect against quantum adversaries. Our work fills
this gap by designing the first post-quantum secure deterministic wallet.

Many prior works have investigated lattice-based Fiat-Shamir signatures, e.g., [Lyu09,
DDLL13,BG14,DKL+18,ABB+20], and in particular, their security was analyzed in
the QROM, e.g., by [KLS18, Unr17, LZ19, DFMS19]. To the best of our knowledge
we propose the first work on lattice-based signature schemes with honestly reran-
domizable keys and prove its security in the QROM. Inspired by Das et al. [DFL19]
and Fleischhacker et al. [FKM+16], we use the abstraction of signature schemes with
rerandomizable keys but transfer this concept to the post-quantum setting.

As mentioned in the introduction, various works build blockchains with security fea-
tures against quantum adversaries. Most recently, Esgin et al. [EZS+19] have pro-

posed a new ring signature scheme based on lattice assumptions for the blochchain
setting which focus on similar anonymity guarantees to Monero [Noe15]. In Monero-
like cryptocurrencies the sender of a transaction can hide her identity in a set
of transactions using ring signatures. In particular, the public key related to the
sender’s signature is never revealed explicitly in the blockchain network, hence re-
mains unlinkable to the sender. We note that this notion of unlinkability is different
from our notion of session key unlinkability.

Blockchain initiatives such as the "Bitcoin Post-Quantum" [Bit] and QRL [QRL]
replace ECDSA with hash-based signature schemes which are post-quantum secure.
Despite the hash-based schemes being quite efficient, the underlying hash function
does not permit to construct a signature scheme with rerandomizable keys which
plays a key role in our wallet scheme.

2 Preliminaries

2.1 Basic Notations

We let N,Z,R denote the set of natural numbers, integers, and real numbers, respec-
tively. For any positive integer k we write [k] to denote the set of integers {1, . . . , k}.
For a positive integer q we let Zq denote the set of integers in the range [− q

2 , q
2)∩Z.

We define the ring R = Z[x]/⟨xn + 1⟩ and its quotient Rq = R/qR, where n is
a power of 2. Elements in R and Rq (including Z and Zq) are denoted by regular
font letters. Column vectors and matrices with entries from R or Rq are denoted
by bold lower-case letters and bold upper-case letters, respectively. We define the ℓ2
and ℓ∞ norms of v = ∑n−1

i=0 vix
i ∈ R by ∥v∥ = (∑n−1

i=0 |vi|2)1/2 and ∥v∥∞ = maxi |vi|,
respectively. For w = (w1, . . . , wk) ∈ Rk we define ∥w∥ = (∑k

i=1 ∥wi∥2)1/2 and
∥w∥∞ = maxi ∥wi∥∞. We let Tn

κ denote the set of all (n − 1)-degree polynomials
with coefficients from {−1, 0, 1} and Hamming weight κ. We always denote the se-
curity parameter by λ ∈ N, and o(λ) denotes a linear function in λ. A function
f : N −→ R is called negligible if there exists an n0 ∈ N such that for all n > n0, it
holds f(n) < 1

p(n) for any polynomial p. With negl(λ) we denote a negligible function
in λ. A probability is called overwhelming if it is at least 1− negl(λ). The statistical
distance between two distributions X, Y over a countable domain D is defined by
1
2
∑

n∈D |X(n) − Y (n)|. We write x ← D to denote that x is sampled according to
a distribution D. We let x←$ S denote choosing x uniformly random from a finite
set S. Unless specified otherwise, every adversary is considered to be an efficient
quantum polynomial time algorithm.

2.2 Quantum Random Oracle Model

In this section, we recall the quantum random oracle model and existing results
that we will use. Since quantum computation is only necessary in the proofs of these
results, we do not provide information on quantum computation here, but refer
to [NC11] for a detailed discussion on the topic.

In [BR93], Bellare and Rogaway introduced the random oracle model (ROM). In
this model every party has access to an oracle implementing a random function.
Upon being queried on some input x, the oracle answers with a random output
y. Every further invocation on input x, even by other parties, results in the same
y. In security proofs, one often models a hash function as a random oracle. Since
hash functions are public, Boneh et al. [BDF+11] observed that the ROM is not
appropriate in the post-quantum setting. In the real world an adversary equipped
with a quantum computer is able to implement the hash function and evaluate it
in superposition. Thus, Boneh et al. introduced the quantum random oracle model
(QROM). In this model, parties with quantum computing power get access to the
oracle |H⟩, where |H⟩ : |x, y⟩ 7→ |x, y ⊕ H(x)⟩. In our proofs we will also consider
reprogrammed random oracles. For a random oracle H we write Hx→y for the random
oracle that is reprogrammed on input x to y. Further on, we denote the classical
random oracle by the symbol H and the quantum random oracle by the notation
|H⟩.
Nowadays, the QROM is considered the de facto standard for post-quantum security
proofs of cryptographic primitives which rely on random oracles. Below we describe
some results for quantum random oracles that are required for our proofs.

The one-way to hiding (O2H) lemma [Unr15] is an important tool for security proofs
in the quantum random oracle model. It gives bounds on the advantage of an ad-
versary in distinguishing between different random oracles when the adversary is
allowed to query them in superposition. Below we state the lemma using the refor-
mulation by Ambainis et al. [AHU19].

Lemma 1 (One-way to hiding (O2H) [AHU19]). Let G, H : X → Y be ran-
dom functions, let z be a random value, and let S ⊂ X be a random set such
that ∀x /∈ S, G(x) = H(x). (G, H,S, z) may have arbitrary joint distribution. Fur-
thermore, let A|H⟩ be a quantum oracle algorithm which queries |H⟩ at most q times.
Let Ev be an arbitrary classical event. Define an oracle algorithm B|H⟩ as follows:
Pick i←$ [q]. Run A|H⟩(z) until just before its i-th round of queries to |H⟩. Measure
the query in the computational basis, and output the measurement outcome. It holds
that ∣∣∣Pr[Ev : A|H⟩(z)]− Pr[Ev : A|G⟩(z)]

∣∣∣ ≤ 2q
√

Pr[x ∈ S : B|H⟩(z)⇒ x] .

Another tool that we will use are Zhandry’s small range distributions, defined below.
These are distributions where the set of possible outputs is limited.

Definition 1 (Small-range distributions [Zha12a]). Let X , Y be sets, r be
an integer, D be a distribution on Y, P be a random function from X to [r], and
y⃗ = (y1, . . . , yr) be r samples of D. Define a function H : X → Y by H(x) 7→ yP (x).
The distribution of H, induced by P and y⃗, is called a small-range distribution with
r samples of D.

The following lemma provides a bound on the distinguishing advantage between a
random oracle and an oracle drawn from a small-range distribution when superpo-
sition access is granted.

Lemma 2 ([Zha12a]). There is a universal constant C such that, for any set X
and Y, distribution D on Y, integer l, and any quantum algorithm A making q
queries to an oracle H : X → Y, the following two cases are indistinguishable, except
with probability less than Cq3

l
:

– H(x) = yx where y⃗ is a list of samples of D of size |X |.
– H is drawn from the small-range distribution with l samples of D.

2.3 Cryptographic Primitives

Definition 2 (Signature Scheme). Let λ be a security parameter. A signature
scheme Sig with key space K, message space M, and signature space S is a tuple of
polynomial-time algorithms (KGen, Sign, Verify) such that

KGen(1λ) is the key generation algorithm that outputs a key pair (pk, sk) ∈ K, where
pk is a public key and sk is a secret key.

Sign(sk, m) is the signing algorithm that takes as input a secret key sk and a mes-
sage m ∈M. It outputs a signature σ ∈ S.

Verify(pk, m, σ) is the verification algorithm that takes as input a public key pk, a
message m with a signature σ. It outputs 1 if σ is valid and 0 otherwise.

Correctness: A signature scheme is correct if for all λ ∈ N, m ∈ M, (pk, sk) ←
KGen(1λ), and all σ ← Sign(sk, m), it holds that Pr[Verify(pk, m, Sign(sk, m)) =
1] ≥ 1− negl(λ).

We will use the notion of signature schemes with rerandomizable keys [FKM+16].
In the following we recall its definition.

Definition 3 (Signature Scheme with Rerandomizable Keys). A signature
scheme with perfectly rerandomizable keys RSig is given by a tuple of algorithms:

(RSig.KGen, RSig.RandSK, RSig.RandPK, RSig.Sign, RSig.Verify),

where RSig.KGen, RSig.Sign, and RSig.Verify satisfy the definition of a stan-
dard signature scheme (cf. Definition 2). For randomness space R, (RSig.RandSK,
RSig.RandPK) are two polynomial-time algorithms such that

RSig.RandSK(sk, ρ) is a secret key rerandomization algorithm that takes as input the
secret key sk and a randomness ρ ∈ R and outputs a randomized secret key sk ′.

RSig.RandPK(pk, ρ) is a public key rerandomization algorithm that takes as input
the public key pk and a randomness ρ ∈ R and outputs a randomized public key
pk ′.

RSig satisfies the following properties:

Rerandomizability of keys: For all (sk, pk) ∈ RSig.KGen(1λ) and all ρ ∈ R,
the distributions of (sk ′, pk ′) and (sk ′′, pk ′′) are identical, where (sk ′′, pk ′′) ←
RSig.KGen(1λ) and
sk ′ ← RSig.RandSK(sk, ρ), pk ′ ← RSig.RandPK(pk, ρ).

Correctness under rerandomizable keys:
1. For all λ ∈ N, (pk, sk)← RSig.KGen(1λ), m ∈M, and all σ ← RSig.Sign(sk, m),

it holds that

Pr[RSig.Verify(pk, m, RSig.Sign(sk, m)) = 1] ≥ 1− negl(λ) .

2. For all (pk, sk) ← RSig.KGen(1λ), all ρ ∈ R, m ∈ M, and for a pair of
rerandomized keys sk′ ← RSig.RandSK(sk, ρ) and pk′ ← RSig.RandPK(pk, ρ),
it holds

Pr[RSig.Verify(pk ′, m, RSig.Sign(sk ′, m)) = 1] ≥ 1− negl(λ) .

We also consider a relaxed version of Definition 3. In the following definition we
introduce the notion of signature schemes under rerandomizable public keys, where
the property of rerandomizability of keys holds only for the generated public keys,
but not in case of secret keys. We present a concrete instantiation of such a scheme
in Section 4.

Definition 4 (Signature Scheme with Rerandomizable Public Keys). A sig-
nature scheme with perfectly rerandomizable public keys RSig′ is given by a tuple of
algorithms (RSig′.KGen, RSig′.RandSK, RSig′.RandPK, RSig′.Sign, RSig′.Verify), which
are defined as in Definition 3. RSig′ satisfies the following properties:

Rerandomizability of public keys: For all public keys (·, pk)← RSig′.KGen(1λ)
and ρ ∈ R, the distributions of pk ′ and pk ′′ are computationally indistinguishable,
where pk ′ ← RSig′.RandPK(pk, ρ), and pk ′′ ← RSig′.KGen(1λ).

Correctness under rerandomizable keys: This property is defined as the prop-
erty of correctness for signature schemes under rerandomizable keys in Defini-
tion 3.

In our work, we require a signature scheme with rerandomizable public keys RSig′
to additionally satisfy the following property:

Simulatibility: For all λ ∈ N, all (sk, pk) ← RSig′.KGen(1λ), and all m ∈ M,
there exists a polynomial time algorithm T which on input pk and m outputs a
signature σ ∈ S. It must hold for κ ∈ poly(λ) the distributions {σ1, . . . , σκ} and
{σ′1, . . . , σ′κ} are computationally indistinguishable where σi ← T (pk, m) and σ′i ←
RSig′.Sign(sk, m) for i ∈ [κ].

2.4 Security Notions

Security of signature schemes is captured by the standard security notion of exis-
tential unforgeability under adaptive chosen-message attacks (EUF-CMA), presented
below.

Game EUF-CMAA
Σ

1: Q := ∅
2: H := ∅
3: (pk, sk)← KGen(1λ)
4: (m∗, σ∗)← AH,O(pk)
5: if (m∗ ∈ Q) then
6: return 0
7: return Verify(pk, m∗, σ∗)

H(m′)
1: if (m′ ∈ H) then
2: return H(m′) ∈ H

3: H(m′)←$ {0, 1}o(λ)

4: H := H ∪ {(m′, H(m′))}
5: return H(m′)

O(m)
1: Q := Q∪ {m}
2: σ ← Sign(sk, m)
3: return σ

Fig. 1. The security game EUF-CMA of signature schemes.

Definition 5 (EUF-CMA Security). Let H : {0, 1}∗ → {0, 1}o(λ) be a hash func-
tion modeled as (quantum) random oracle. A signature scheme Σ is called (t, qSign, qH,
ε)-EUF-CMA in the (quantum) random oracle model if for any adversary A running
in time at most t and making at most qSign signature queries and at most qH (su-
perposition) queries to H, the game EUF-CMAAΣ depicted in Figure 1 outputs 1 with
probability at most ε, i.e., Pr[EUF-CMAAΣ = 1] ≤ ε.

In the following we present the notion of EUF-CMA-HRK security under honestly
rerandomizable keys due to [DFL19]. This notion is similar to EUF-CMA-RK security
under rerandomizable keys due to [FKM+16], however with certain differences which
makes it a weaker notion. In the EUF-CMA-RK game, an adversary A gets access to
a signing oracle. The signing oracle takes a message and a randomness as input and
provides a signature on this message under the rerandomized key as an answer. Note
that the rerandomized key was derived from the randomness input by A. This means
that A can obtain signatures under keys with randomness of A’s choice. A can win
the EUF-CMA-RK game if it can produce a valid forgery under a rerandomized key
of its choice (note that the randomness can also be null).

In the EUF-CMA-HRK game, we restrict A’s capabilities in the following way. In ad-
dition to the signing oracle, in the EUF-CMA-HRK game A is given access to a Rand
oracle to derive a fresh randomness. This randomness can be later used to get a sig-
nature under the rerandomized key by querying the signing oracle. Here, A can only
win the EUF-CMA-HRK game if it produces a valid forgery under a rerandomized
key, where the underlying randomness was obtained honestly by querying the Rand
oracle. We formally present EUF-CMA-HRK security under honestly rerandomizable
(public) keys below.

Definition 6 (EUF-CMA-HRK Security under Honestly Rerandomized (Pub-
lic) Keys). Let H : {0, 1}∗ → {0, 1}o(λ) be a hash function modeled as (quan-
tum) random oracle. A signature scheme with honestly rerandomizable (public) keys
RSig is called (t, qSign, qH, ε)-EUF-CMA-HRK in the (quantum) random oracle model
if for any adversary A running in time at most t and making at most qSign sig-
nature queries and at most qH (quantum) random oracle queries to H, the game
EUF-CMA-HRKARSig depicted in Figure 2 outputs 1 with probability at most ε, i.e.,
Pr[EUF-CMA-HRKARSig = 1] ≤ ε.

Game EUF-CMA-HRKA
RSig

1: RList := ∅
2: Q := ∅
3: H := ∅
4: (pk, sk)← RSig.KGen(1λ)
5: (m∗, σ∗, ρ∗)← AH,Rand,OHR(pk)
6: if (m∗ ∈ Q) then
7: return 0
8: if (ρ∗ ̸= NULL) then
9: if (ρ∗ /∈ RList) then

10: return 0
11: pk ← RSig.RandPK(pk, ρ∗)
12: return RSig.Verify(pk, m∗, σ∗)

H(m′) (see Figure 1)
Rand
1: ρ←$ R
2: RList← RList ∪ {ρ}
3: return ρ

OHR(m, ρ)
1: Q := Q∪ {m}
2: if (ρ ̸= NULL) then
3: if (ρ /∈ RList) then
4: return ⊥
5: sk ← RSig.RandSK(sk, ρ)
6: σ ← RSig.Sign(sk, m)
7: return σ

Fig. 2. The security game EUF-CMA-HRK of signature schemes with rerandomizable (public) keys.

2.5 Lattice-Based Fiat-Shamir Signatures

In this section we review a generic construction of lattice-based Fiat-Shamir signa-
tures. We first define the discrete Gaussian distribution and recall a lemma, which
shows that the sum of Gaussian distributed random variables is also Gaussian dis-
tributed. This property is crucial for our analysis.

Definition 7 (Discrete Gaussian Distribution). The discrete Gaussian distri-
bution DZn,σ,c over Zn with standard deviation σ > 0 and center c ∈ Rn is de-
fined as follows: For every x ∈ Zn the probability of x is given by DZn,σ,c(x) =
ρσ,c(x)/ρσ,c(Zn), where ρσ,c(x) = exp(−∥x−c∥2

2σ2) and ρσ,c(Zn) = ∑
x∈Zn ρσ,c(x). The

subscript c is taken to be 0 when omitted.

Lemma 3 ([BF11, Theorem 9]). Let L ⊆ Zm be a lattice and σ ∈ R. For i =
1, . . . , n let ti ∈ Zm and let Xi be mutually independent random variables sampled
from DL+ti,σ. Let c = (c1, . . . , cn) ∈ Zn and define d = gcd(c1, . . . , cn), t = ∑n

1 citi.
Suppose that σ > ∥c∥ · ηε(L), where ηε(L) is the smoothing parameter [MR04] for
some negligible ε. Then Z = ∑n

1 ciXi is statistically close to DdL+t,∥c∥σ.

Next, we describe two functions used in the signature scheme:

– E : {0, 1}∗ −→ {0, 1}∗ is a function that expands given strings to any desired
length. It is used to extract the randomness used for signing.

– H : {0, 1}∗ −→ Tn
κ is a hash function modeled as a (quantum) random oracle and

used for signing and verification.

The signature scheme is formally described in Figure 3. It makes use of a uniformly
random matrix A ∈ Rk1×k2

q , which is publicly known and shared among all users
in a multi-user setting. We assume that A is an implicit input to all algorithms of
the scheme in addition to all algorithms in Section 4. In order to save bandwidth it
can also be generated by expanding a uniformly random seed using the function E,

and including the seed in the secret and public key rather than storing the whole
matrix A. In this case, E is modelled as a random oracle. We note that this setting
makes sense in the context of blockchains, since the randomly chosen seed can be
included in the first block known as the genesis block, which is assumed to be
honestly generated. Furthermore, since A is computed as the output of the random
oracle on input the seed, A is truly random and cannot have a trapdoor embedded
as shown in [MP12].

Basically, the key generation algorithm generates an instance of a computationally
hard lattice problem called Module Learning with Errors (MLWE) [LS15] (or a special
variant of it such as Ring Learning with Errors (RLWE) [LPR10]). The secret of this
instance is chosen from some distribution χ. In the state-of-the-art lattice-based
signature schemes, e.g., Dilithium [DKL+18] and qTESLA [ABB+20], the distribution
of the secrets is either the discrete Gaussian distribution DZn,σ or the distribution
Rd that outputs uniformly random polynomials from R whose ℓ∞ norm is bounded
by some integer d ≥ 1.

A signature consists of a tuple (z1, z2, c), where the pair (z1, z2) is uniformly random
over a subset of Rk2 × Rk1 and c ∈ Tn

κ is output from the random oracle H. The
vectors z1, z2 are each generated by adding a masking term to a term related to the
secret key and c. More precisely, we have z1 = y1 + sc and z2 = y2 + ec, where
the secret masking pair (y1, y2) is uniformly random over Rk2

Y × Rk1
Y and RY ⊂ R

for some predefined positive integer Y . The signature is only output after verifying
that the pair (z1, z2) lies in Rk2

B1 × Rk1
B2 , i.e., ∥z1∥∞ ≤ B1 and ∥z2∥∞ ≤ B2, where

the bounds B1, B2 are defined depending on the distribution of the secret key. This
ensures that signatures are uniformly distributed over Rk2

B1 × Rk1
B2 × Tn

κ and do not
leak information about the secret key. If this is not the case, the algorithm restarts
with a fresh masking pair (y1, y2). The average number of repetitions is denoted by
M = O(1). Valid signatures are generated with probability

(
2B1+1
2Y +1

)k2n ·
(

2B2+1
2Y +1

)k1n
,

which is usually chosen such that it is at least 1/M . We note that this generic
construction can be optimized by either following the technique due to Bai and
Galbraith [BG14] (adopted in qTESLA) or the approach used in Dilithium. The first
one optimizes the signature size, while the second one optimizes the total size of
public key and signature.

Finally, the EUF-CMA security of lattice-based Fiat-Shamir signatures in the quan-
tum random oracle model was analyzed in several works, e.g., in [KLS18,DKL+18,
ABB+20,Unr17,LZ19,DFMS19].

3 The Stateful Model for Wallets

Our formal security model for post-quantum secure stateful deterministic wallets is
based on the model of [DFL19]. In this section, we recall the formal definition of
a stateful wallet and the security properties that we want to guarantee for such a
wallet. A stateful deterministic wallet scheme consists of two entities, a cold wallet
and a hot wallet, that can respectively derive a valid pair of secret and public

LB.KGen(1λ)

1: s← χk2 , e← χk1

2: b← As + e (mod q)
3: sk := (s, e), pk := b
4: return (sk, pk)
LB.Verify(pk, m, (z1, z2, c))
1: w← Az1 + z2 − bc (mod q)
2: if

(
(z1, z2) ∈ Rk2

B1
×Rk1

B2
∧

H(w, m) = c
)

then
3: return 1
4: return 0

LB.Sign(sk, m)

1: r←$ {0, 1}o(λ)

2: ctr← 1
3: (y1, y2) ∈ Rk2

Y ×Rk1
Y ← E(r, ctr)

4: v← Ay1 + y2 (mod q)
5: c← H(v, m)
6: z1 ← y1 + sc
7: z2 ← y2 + ec
8: if

(
(z1, z2) ̸∈ Rk2

B1
×Rk1

B2

)
then

9: ctr← ctr + 1
10: goto 3
11: return (z1, z2, c)

Fig. 3. A formal description of a generic (non-optimized) Fiat-Shamir signature scheme from lattice as-
sumptions.

keys without the need for any interaction among each other. In more detail, upon
initialization of the scheme, the cold wallet generates a master key pair (msk, mpk)
and some initial state information St0 and forwards (mpk, St0) to the hot wallet.
After this initial setup, the idea is that an arbitrary number of valid session key
pairs can be generated by using the session secret/public key derivation algorithms
within the respective wallets without further interaction. More precisely the public
key derivation algorithm takes as input the current state and the master public key
to generate a session public key. While the secret key derivation takes as inputs the
current state and the master secret key and generates a session secret key. Since
both public key and secret key derivation algorithms are deterministic, and the two
wallets share the same current state, the key derivation algorithms output a valid
session key pair. In order to keep track of which key has been derived with which
state, each session key is indexed by a parameter ID, which is given as input into the
key derivation procedures. In the following we recall the definition of a deterministic
stateful wallet scheme and its correctness.

Definition 8 (Stateful Wallet). A stateful wallet scheme is a tuple of algorithms
SW := (SW.KGen, SW.RandSK, SW.RandPK, SW.Sign, SW.Verify), which are defined as fol-
lows:

SW.KGen: The master key generation algorithm takes as input public parameters
param and outputs a master key pair (msk, mpk) as well as an initial state
St0.

SW.RandSK: The secret key derivation algorithm takes as input a master secret key
msk, a state St and an identity ID and outputs a session secret key skID and the
state St.

SW.RandPK: The public key derivation algorithm takes as input a master public key
mpk, a state St and an identity ID and outputs a session secret key pkID and the
state St.

SW.Sign: The probabilistic signing algorithm takes as input a session secret key skID
for some ID and a message m and outputs a signature σ.

SW.KGen(1λ)

1: St ←$ {0, 1}λ

2: (mpk, msk)← RSig.KGen(1λ)
3: return (St, mpk, msk)
SW.Sign(sk, pk, m)
1: m′ ← (m, pk)
2: σ ← RSig.Sign(sk, m′)
3: return σ

SW.Verify(pk, m, σ)
1: m′ ← (m, pk)
2: return RSig.Verify(pk, m′, σ)

SW.RandSK(msk, ID, St)
1: (ρ, St)← H(St, ID)
2: skID ← RSig.RandSK(msk, ρ)
3: return (skID, St)
SW.RandPK(mpk, ID, St)
1: (ρ, St)← H(St, ID)
2: pkID ← RSig.RandPK(mpk, ρ)
3: return (pkID, St)

Fig. 4. Generic Construction of a stateful deterministic wallet SW from a signature scheme with honestly
rerandomizable keys RSig and a random oracle H.

SW.Verify: The verification algorithm takes as input a session public key pkID for
some ID, a message m, and a signature σ and outputs 1 if σ is a valid signature
for m under public key pkID. It outputs 0 otherwise.

Definition 9 (Correctness of Stateful Wallets). For n ∈ N, any (St0, msk, mpk) ∈
SW.KGen(param), and any I⃗D := (ID1, ..., IDn) ∈ {0, 1}∗, we define the sequence
(ski, Sti) and (pki, Sti) for 1 ≤ i ≤ n recursively as

(ski, Sti) := SW.RandSK(msk, IDi, Sti−1),
(pki, Sti) := SW.RandPK(mpk, IDi, Sti−1).

SW is correct if for all m ∈ {0, 1}∗ and i with 1 ≤ i ≤ n it holds that

Pr
σ←$ SW.Sign(ski,m)

[SW.Verify(pki, σ, m) = 1] ≥ 1− negl(λ) .

A generic construction of a stateful deterministic wallet scheme SW := (SW.KGen,
SW.RandSK, SW.RandPK, SW.Sign, SW.Verify) from a signature scheme with honestly
rerandomizable keys RSig following Definition 8 is presented in Figure 4. Such a
scheme should satisfy the following two security properties - wallet unlinkability and
wallet unforgeability - which are described below.

3.1 Wallet Unlinkability

Intuitively, the unlinkability property guarantees that session public keys that have
been derived from the same master public key are computationally indistinguish-
able from the distribution of session public keys that have been derived from a
different, independently chosen master public key. However, considering that hot
wallet corruptions reveal the state and hence trivially break the unlinkability prop-
erty, [DFL19] introduces the notion of forward unlinkability. This notion guarantees
unlinkability prior to any hot wallet corruption.

Game WUNL
1: (mpk, msk, St)← SW.KGen()
2: b←$ {0, 1}
3: ID∗ ← AWalSign,PK

1 (mpk)
4: if (Keys[ID∗] ̸= ⊥) then
5: return 0
6: (pk0

ID∗ , St∗)← SW.RandPK(mpk, ID∗, St)
7: (sk0

ID∗ , St∗)← SW.RandSK(msk, ID∗, St)
8: St ← St∗

9: (mpk, msk, St)← SW.KGen()
10: (pk1

ID∗ , St∗)← SW.RandPK(mpk, ID∗, St)
11: (sk1

ID∗ , St∗)← SW.RandSK(msk, ID∗, St)
12: Keys[ID∗]← (pkb

ID∗ , skb
ID∗)

13: b′ ← AWalSign,PK,getState
2 (mpk, pkb

ID∗)
14: return b′ = b

Oracle PK(ID)
1: (pkID, St∗)← SW.RandPK(mpk, ID, St)
2: (skID, St∗)← SW.RandSK(msk, ID, St)
3: Keys[ID]← (pkID, skID)
4: St ← St∗

5: return pkID

Oracle getState()
1: return St
Oracle WalSign(m, ID)
1: if (Keys[ID] = ⊥) then
2: return ⊥
3: (pkID, skID)← Keys[ID]
4: σ ← SW.Sign(skID, m)
5: return σ

Fig. 5. Unlinkability game WUNL for stateful wallets.

The formal security game for unlinkability is defined in Figure 5 and proceeds as
follows: Upon the initialization of the wallet scheme by executing (mpk, msk, St)←
$ SW.KGen(), the adversary A = (A1,A2) obtains mpk and runs its subprocedure
A1 on input mpk, where A1 has access to oracles WalSign and PK. These oracles
represent the adversary’s capability to observe signatures with corresponding session
public keys of the wallet on the ledger. More concretely, A1 can call WalSign on an
arbitrary message m and any ID and receives a valid signature for m under public
key pkID. Further, A1 can query the PK oracle on any ID and receives the session
public key pkID.

Finally, A1 outputs an ID∗. If neither WalSign nor PK has been queried on ID∗
before, the game proceeds to the challenge phase, in which two session key pairs
(pk0

ID∗ , sk0
ID∗) and (pk1

ID∗ , sk1
ID∗) are generated, where (pk0

ID∗ , sk0
ID∗) are derived from

mpk and msk respectively, while (pk1
ID∗ , sk1

ID∗) are derived from a freshly generated
master key pair. After a uniformly random bit b is chosen, the subprocedure A2 is
executed on input mpk and pkb

ID∗ .A2 gets access to oracles WalSign, PK and getState,
where getState returns the current state of the wallet scheme. A wins the game, if
its subprocedure A2 returns a bit b′, such that b′ = b. We define the advantage of
an adversary A as its winning probability in game WUNL over random guessing.

Definition 10 (Unlinkability). Let SW be a stateful wallet scheme (cf. Defini-
tion 8). We say that SW is pq-unlinkable if for any quantum adversary A, the advan-
tage in game WUNL (cf. Figure 5) is negligible.

3.2 Wallet Unforgeability

At a high level, unforgeability for stateful wallets ensures that funds held by the
cold wallet remain secure even in case an adversary corrupts the hot wallet and/or
observes transactions on the ledger signed by the cold wallet. In order to model
this property, we define the game WUF, in which the adversary A obtains a master

Game WUF
1: (mpk, msk, St)← SW.KGen()
2: b←$ {0, 1}
3: (m∗, σ∗, ID∗)← AWalSign,PK(mpk, St)
4: if (Keys[ID∗] ̸= ⊥) then
5: return 0
6: (pkID∗ , skID∗)← Keys[ID∗]
7: if (m∗ ∈ M [ID∗]) then
8: return 0
9: if (SW.Verify(pkID∗ , m∗, σ∗) = 0) then

10: return 0
11: return 1

Oracle PK(ID)
1: (pkID, St∗)← SW.RandPK(mpk, ID, St)
2: (skID, St∗)← SW.RandSK(msk, ID, St)
3: Keys[ID]← (pkID, skID)
4: St ← St∗

5: return pkID

Oracle WalSign(m, ID)
1: if (Keys[ID] = ⊥) then
2: return ⊥
3: (pkID, skID)← Keys[ID]
4: σ ← SW.Sign(skID, m)
5: M ←∪ {m}
6: return σ

Fig. 6. Unforgeability game WUF for stateful wallets.

public key mpk and the initial state St0 as input. This models the situation in which
an adversary corrupts the hot wallet right after initialization of the wallet scheme.
Further, A gets access to the oracles PK and WalSign, which are defined in the
same way as in the game WUL, with the difference that WalSign now additionally
keeps track of all queried messages. Eventually, A outputs a forgery consisting of a
message m∗, a signature σ∗ and an ID∗. A wins the game if (1) m∗ has not been
queried to WalSign before, (2) PK has been previously queried on ID∗ and (3) σ∗ is
a valid signature for m∗ under public key pkID∗ .

Note that the adversary knows mpk and St0 and hence can generate any session
public key for any ID itself, which seems to make the PK oracle redundant. However,
PK is still needed for bookkeeping purposes, i.e., to ensure that the session key
pair for A’s forgery has been created before A outputs its forgery. We define the
advantage of an adversary A as its probability of winning the game WUF.

As mentioned in [DFL19], the fact that the adversary can derive arbitrary session
public keys makes the wallet scheme vulnerable to related key attacks, in case the
underlying signature scheme is prone to such attack. Intuitively, upon an adversary
learning a signature σID and a corresponding session public key pkID, a related
key attack allows the adversary to transform σID into a valid signature σID∗ under
public key pkID∗ . This attack may have a severe impact on the security guarantees
of our wallet scheme, since it may allow an adversary to steal all funds of a cold
wallet. One common counter measure against related key attack used in [DFL19,
MSM+15] is called public key prefixing, i.e., a signature on a message µ is computed
as Sign(sk, (pk, µ)). In many signature schemes the signature is computed on the
hash of the message and not the message itself. Therefore by prefixing the public
key an adversary not only has to transform σID into a valid signature σID∗ under
public key pkID∗ but also find a collision for the hash function in order to mount a
related key attack.

Definition 11 (Unforgeability). Let SW be a stateful wallet scheme (cf. Defini-
tion 8). We say that SW is pq-unforgeable if for any quantum adversary A, the ad-
vantage in game WUF (cf. Figure 6) is negligible.

3.3 Relevance of Our Relaxed Notions

In Section 2 we defined the notions of signature schemes with rerandomizable public
keys (cf. Definition 4) and EUF-CMA-HRK (cf. Definition 6). While these notions
deviate from the ones used in previous works [FKM+16, DFL19], it turns out that
our relaxed notions are sufficient for building deterministic wallets as we discuss
below.
Rerandomizable public keys. One of the benefits of using deterministic wallets
is that individual payments to the wallet are unlinkable (cf. Figure 5). To satisfy
the unlinkability definition, Das et al. [DFL19] require that the underlying signa-
ture scheme must have rerandomizable secret and public keys. However, as it can be
observed in the unlinkability game, the adversary gets access only to the public key,
while the secret key is never revealed to the adversary (as revealing it would trivially
break the security of the scheme). Hence, it is sufficient to use our relaxed notion
of rerandomizable public keys in order to achieve the unlinkability property. While
the post-quantum secure signature scheme that we consider in this work does not
offer rerandomizable public and secret keys as required by [DFL19], it fortunately
achieves our relaxed notion of rerandomizable public keys. Thus, it is sufficient to
instantiate a wallet scheme that achieves the unlinkability property.
EUF-CMA-HRK. As in [DFL19], we use the notion of EUF-CMA under honestly
rerandomizable keys, where unforgeability holds if the randomness used to derive
the keys is honestly generated. This is in contrast to the stronger notion of EUF-
CMA-RK as defined in [FKM+16], where unforgeability must hold for adversarial
chosen randomness. Stateful deterministic wallet schemes, however, derive the ran-
domness deterministically from the state (see Figure 4), which is generated initially
during a trusted setup when the master keys are created. Hence, the adversary has
no influence on the randomness used during the rerandomization procedures. To
conclude, the notion of EUF-CMA-HRK is not only suitable but also sufficient in the
wallet setting.

3.4 Post-Quantum Security of Wallets

In this section we show that the generic construction achieves both unlinkability
and unforgeability against quantum adversaries. Recall that since we are in the
post-quantum setting, the oracles provided by the challenger in the unlinkability
game (PK, getState, WalSign) and in the unforgeability game (PK, WalSign) are run
on a classical computer. Hence, also the (quantum) adversary gets only classical
access to these oracles. However, the adversary can use its quantum computing
power to access the quantum random oracle |H⟩, i.e., querying the random oracle in
superposition.

The following theorem shows the unlinkability.

Theorem 1. Let RSig be a signature scheme with rerandomizable public keys (cf.
Definition 4) and H a random oracle. Then the stateful wallet scheme SW built from
RSig and H (cf. Figure 4) is pq-unlinkable according to Definition 10, i.e., against
quantum adversaries which have access to |H⟩.

First, we provide a proof intuition of Theorem 1. Let us first recall how the unlink-
ability property is proven in the classical ROM setting (cf. [DFL19]). Note that the
wallet public keys are derived from the wallet state, which is stored within the wal-
let, hidden from the adversary. The classical adversary can then try to guess one of
the states of the wallet and make a “problematic query” to the random oracle H on
such a state, in order to derive one of the session public keys generated by the wallet.
If the adversary guesses the wallet’s state correctly, it can distinguish a public key
generated by the wallet from a randomly generated one, and hence the adversary
will be able to win the unlinkability game. The classical proof consists of two steps:
(1) showing the probability that the adversary makes the above mentioned problem-
atic query to the random oracle is negligible, and (2) showing that the adversary
has no advantage in winning the unlinkability game conditioned on the event that
it does not make any problematic query. Finally, note that while this proof uses the
stronger notion of rerandomizable public and secret keys (cf. Definition 3), it is easy
to see that it also works with our relaxed definition of rerandomizable public keys
(cf. Definition 4). This is because the unlinkability game requires the adversary to
distinguish a public key generated by the wallet from a randomly generated public
key.

Our proof in the QROM follows the same approach, however, the first step requires
a different technique. Recall that the wallet state gets refreshed with every public
key query. In [DFL19], the challenger keeps a list of the states of the wallet scheme
– starting from the initial state till the one obtained during last public key query.
In the analysis a simple comparison allows to check whether a query by the classical
adversary is problematic, i.e., whether it coincides with one of the states of the
wallet. Since the adversary can access the random oracle H only classically (it can
query on exactly one input at a time), hence the challenger can store all these queries
in a list. In the QROM, however, we can not keep such a list as the adversary now
has quantum computation power, hence can query the random oracle on several,
and even all, inputs in superposition.5 Instead, we consider a game hop which we
can bound by the advantage of the adversary in distinguishing two random oracles,
which in turn can be bound using the O2H lemma. For the resulting game, we
can show via a reduction to the rerandomizability property of public keys of the
RSig scheme, using the simulatability property of RSig, that the adversary has only
negligible advantage in winning the game.

5 We note that, to some extent, the compressed oracle technique by Zhandry [Zha19] allows the recording
of superposition queries.

Proof (of Theorem 1). Throughout, let A = (A1,A2) be an adversary which makes
q and qPK queries to its oracles |H⟩ and PK, respectively. To prove the theorem we
use the following two games.

Game G0: This game is the game WUNL instantiated with SW (cf. Figure 4).

Game G1: This game is the same as G0, except that the randomness ρ and the new
state St∗, prior to running A2 (i.e., Line 13 in Figure 5), are sampled at random,
independent of the random oracle. In both games, the randomness and new state are
distributed identical. The only difference lies in the random oracle. From the point
of view of A = (A1,A2), the random oracle in game G1 is |HS→$⟩, i.e., the random
oracle that is reprogrammed to random values for every x ∈ S, where S contains all
pairs of states and IDs prior to running A2. Hence, we can bound the advantage in
distinguishing G0 and G1 by the advantage in distinguishing the random oracles |H⟩
and |HS→$⟩. Applying the O2H Lemma (cf. Lemma 1) yields

∣∣∣Pr
[
A|H⟩ ⇒ 1

]
− Pr

[
A|HS→$⟩ ⇒ 1

]∣∣∣ ≤ 2q
√

Pr[x ∈ S : B|H⟩ ⇒ x] .

where B is the adversary specified in Lemma 1. Note that A has no information
about the states in the set S until it queries getState to which only A2 has access.
Furthermore, we have |S| ≤ qPK + 2 at any point in time, qPK from A1’s queries and
2 from the challenge phase. This yields

Pr
[
x ∈ S : B|H⟩ ⇒ x

]
≤ |S|2λ

≤ qPK + 2
2λ

.

Combining the above equations yields that the advantage in distinguishing G0 and
G1 is negligible in the security parameter λ.

It remains to bound the advantage of A in game G1, where the same argument
from the classical proof applies. In G1, the challenge public key pkb

ID∗ given to A2 is
independent of the random oracle (as the random oracle is not used in G1 anymore
for deriving keys). Hence, it is irrelevant whether the adversary makes any query
(classical or quantum) to the random oracle. We can show via a reduction to the
rerandomizability of public keys property of RSig that the challenge public keys
pk0

ID∗ and pk1
ID∗ are computationally indistinguishable, due to the simulatibility

property of RSig. This yields that the adversarial advantage is negligible. Combining
the above proves the theorem. ⊓⊔

The following theorem shows that the generic construction is unforgeable in the
presence of quantum attackers.

Theorem 2. Let RSig be a signature scheme with rerandomizable public keys (cf.
Definition 4) and H a random oracle. Then the stateful wallet scheme SW built from
RSig and H (cf. Figure 4) is pq-unforgeable according to Definition 11, i.e., against
quantum adversaries which have access to |H⟩.

We briefly recap the classical proof in the ROM (cf. [DFL19]), thereby highlighting
the challenge when switching to a quantum adversary. Note again, that the classical
proof uses the stronger notion of rerandomizable keys (cf. Definition 3) but also holds
for the weaker notion of rerandomizable public keys (cf. Definition 4). The proof
consists of a game hop in which the adversary loses the game if there is a collision
of session keys for different identities. Due to the construction, this occurs if the
random oracle outputs a collision which is bound by a simple counting argument.
The advantage of an adversary in the resulting game is bound by the security of the
underlying signature scheme using a reduction. The crucial part is that the reduction
simulates the random oracle H for the adversary using its oracle Rand from the EUF-
CMA-HRK game. More precisely, for each query to H by the adversary, the reduction
makes a query to Rand.

Our proof in the QROM follows the same idea, however additionally needs to take
care of the use of the quantum random oracle |H⟩ by the adversary. The first part
works exactly as in [DFL19], since the access to the oracle PK remains classical even
for a quantum adversary. The second part, however, does not work as in [DFL19].
While the adversary can query the quantum random oracle |H⟩ in superposition, the
reduction can query its oracle Rand only classical as it is provided by its (classical)
challenger. By querying |H⟩ on an equal superposition of all (i.e., exponentially
many) inputs, the reduction would need exponentially many queries to Rand in
order to simulate |H⟩ for the adversary. Clearly, this would render the reduction
useless as it would not be efficient. To tackle this issue, we do an additional game
hop in which we switch from a random oracle to an oracle drawn from a small-range
distribution. While this affects the advantage of the adversary only negligibly, it
allows us to construct a reduction which can simulate the quantum random oracle
for the adversary by making a polynomial number of (classical) queries to its oracle
Rand.

Proof (of Theorem 2.). Let A be an adversary which makes qH queries to |H⟩. The
proof consists of the following three games.

Game G0: This game is the game WUF instantiated with SW (cf. Figure 4). Assume
that A has non-negligible advantage ϵ = ϵ(λ) in winning G0. This means that there
exists a polynomial p = p(λ) such that p(λ) > 1

ϵ(λ) .

Game G1: This game is the same as G0, except the adversary loses when there is a
collision of keys for different identities. To detect the change, the adversary has to
make queries to PK which result in colliding keys. Note that the adversary only has
classical access to PK as it is provided by the classical challenger. Hence the bound
from [DFL19] is applicable, which is a simple counting argument over the number
of queries to PK. This yields that the advantage of A in G1 is ϵ− negl(λ), i.e., it is
negligibly close to its advantage ϵ in G0.

Game G2: In this game the adversaries queries to |H⟩ is simulated using Definition 1
and the Lemma 2. Let l = 2Cq3

Hp with C being the constant from Lemma 2 and
p being the polynomial described above. At the start of the game, the challenger
will generate l random values and draw the first output (the randomness ρ) of the

quantum random oracle |H⟩ from a small-range distribution using these l samples.
The second output (the new state St) is generated just as in G1. According to
Lemma 2, A can only distinguish this game from the previous one with probability
less than 1

2p
. Therefore, Lemma 2 yields that the advantage of A in this game is at

least ϵ− negl(λ)− 1
2p

.

Bounding the advantage of A in Game G2: We now show how to transform
an adversary A playing G2 into an adversary B playing EUF-CMA-HRK (where, the
underlying signature scheme is RSig). W.l.o.g., we assume that A never makes a
query which results in ⊥ and that there are no collisions. At the start, B receives
a public key pk. It performs l = 2Cq3

Hp queries to its oracle Rand and samples an
initial state St0. It invokes A on input (mpk = pk, St0).

Simulation of Quantum Random Oracle |H⟩. B simulates the first output (the ran-
domness ρ), by using the l samples from Rand drawn from a small-range distribution.
Note that Rand internally stores the output ρ in its list RList. For the second output
(the new state St), B simulates it using a 2qH-wise independent function which is
indistinguishable for an adversary making qH queries [Zha12b].

Simulation of PK oracle. When A queries its oracle PK on ID, B computes pkID ←
RSig.RandPK(pk; ωID), where (ωID, St∗) ← H(St, ID), sets Keys[ID] ← (pkID, ωID),
and sends pkID to A.

Simulation of WalSign oracle. When A makes a query (m, ID) to its oracle WalSign,
B obtains the (pkID, ωID) = Keys[ID], sets m′ ← (m, pkID), queries its own oracle
OHR on (m′, ωID), and forwards the response to A. When A outputs a forgery
(m∗, σ∗, ID∗), B obtains (pkID∗ , ωID∗) = Keys[ID∗], sets m̂∗ ← (m∗, pkID∗), and
outputs (m̂∗, σ∗, ωID∗).

If A’s forgery (m∗, σ∗, ID∗) is valid in Game G2, then B’s forgery (m̂∗, σ∗, ωID∗) is
also valid in EUF-CMA-HRK. We now show that the output of B is a valid forgery
whenever the output of A is. First, since (m∗, σ∗, ID∗) is a valid forgery by A, we
know that A never queried (m∗, ID∗) to WalSign. Recall that, for every WalSign
query by A on any message (m), B made a OHR query on public key prefixed
message (m′ ← {m, pk}). Since A never queried WalSign on input (m∗, ID∗), B
never queried (m̂∗, ωID∗) to its oracle OHR, where m̂∗ ← {m∗, pk}. Second, it holds
that ωID∗ ∈ RList. This follows from the simulation of the quantum random oracle
where, for every possible output (ρ, St), ρ is in RList. Third, validity of the forgery
by A yields validity of the forgery by B.

Recall that l = 2Cq3
Hp and as discussed at the beginning of this game, according to

Lemma 2, the advantage of the adversary in this game is equal to ϵ− negl(λ)− 1
2p

.
Assuming the security of the underlying signature scheme RSig, we have that this
advantage must be negligible. Combined with ϵ > 1

p
(see description of G0), this

yields that 1
2p

is negligible, resulting in a contradiction. Hence, we conclude that ϵ,
the advantage of A, is negligible. ⊓⊔

4 PQ Signatures with Honestly Rerandomizable Public
Keys

In this section we propose a lattice-based construction of a signature scheme with
honestly rerandomizable public keys (cf. Definition 4). In such a signature scheme,
the distribution of honestly rerandomized public keys is identical to the distribution
of original public key, while honestly rerandomized secret keys are allowed to be
distributed differently from the original secret key. The scheme extends the generic
construction of lattice-based signatures from Section 2.5. We analyze the security
of our scheme in Section 4.2. In Section 4.3 we discuss alternative ways of key
rerandomization in a lattice-based signature scheme and argue why they fall short
in building practical hot/cold wallets.

4.1 Description of the Scheme

Let LB.Σ = (LB.KGen, LB.Sign, LB.Verify) be the lattice-based signature scheme
given in Section 2.5, Figure 3, and let A ∈ Rk1×k2

q be a uniformly random matrix
as defined in Section 2.5, i.e., A is publicly known and an implicit input to all
algorithms. Furthermore, we define the following functions and algorithms:

– Maxj is a function that on input a ∈ R, it outputs the jth largest absolute coeffi-
cient of a. This function is used for bounding the secret-related terms, and hence
the signatures generated by the algorithm LB.Sign (cf. line 6–7 in Figure 3).

– GenG is an algorithm that on input (dim, σ, bnd, rnd), it outputs a vector x =
(x1, . . . , xdim), where xi ∈ R are sampled from DZn,σ such that ∑κ

j=1 Maxj(xi) ≤
bnd by using a randomness rndi that is extracted from rnd, e.g., via the function
E.

– F : {0, 1}∗ −→ {0, 1}o(λ) is a collision resistant hash function. It is used to hash
the public key in order to prevent related key attacks [MSM+15].

In this section we set the distribution used in the algorithm LB.KGen for the secret
key to χ = DZn,σ. More precisely, we assume that sk = (s, e) ∈ Dk2

Zn,σ × Dk1
Zn,σ,

where s← GenG(k2, σ, S/2, rnds) and e← GenG(k1, σ, E/2, rnde) for two predefined
positive numbers S, E and randomnesses rnds, rnde. Setting χ = DZn,σ is essential for
rerandomizing the secret key in the construction introduced in this section because
the sum of Gaussian distributed elements with standard deviation σ is also Gaussian
distributed with standard deviation

√
2σ (cf. Lemma 3).

In the following we describe our signature scheme with honestly rerandomizable pub-
lic keys. The respective algorithms are formalized in Figure 7. In order to simplify the
construction, we first define the algorithm RandG (see Figure 7 for a formal descrip-
tion). This algorithm takes as input a randomness ρ = (ρs, ρe) ∈ {0, 1}o(λ)×{0, 1}o(λ),
and outputs two vectors r, u, which are generated by running the algorithm GenG
on input (k2, σ, S/2, ρs), (k1, σ, E/2, ρe), respectively.

RandG(ρ)

1: ρ := (ρs, ρe) ∈ {0, 1}2o(λ)

2: r← GenG(k2, σ, S/2, ρs)
3: u← GenG(k1, σ, E/2, ρe)
4: return (r, u)

RSig.KGen(1λ)

1: (sk, pk)← LB.KGen(1λ)
2: hpk← F(pk)
3: sk ← (hpk, sk)
4: return (sk, pk)
RSig.RandPK(pk, ρ)
1: (r, u)← RandG(ρ)
2: b′ ← b + Ar + u (mod q)
3: pk′ := b′

4: return pk′

RSig.RandSK(sk, ρ)

1: (r, u) ∈ Dk2
Zn,σ ×Dk1

Zn,σ ← RandG(ρ)
2: s′ ∈ Dk2

Zn,
√

2σ
← s + r

3: e′ ∈ Dk1
Zn,

√
2σ
← e + u

4: b′ ← As′ + e′ (mod q)
5: hpk′ ← F(b′)
6: sk′ := (hpk′, s′, e′)
7: return sk′

RSig.Sign(sk, m)
1: µ← (m, hpk)
2: (z1, z2, c)← LB.Sign(sk, µ)
3: return (z1, z2, c)
RSig.Verify(pk, m, (z1, z2, c))
1: µ← (m, F(pk))
2: return LB.Verify(pk, µ, (z1, z2, c))

Fig. 7. Construction of lattice-based signature scheme with honestly rerandomizable public keys.

RSig.KGen: The key generation algorithm runs the algorithm LB.KGen to obtain a
key pair (sk, pk), where sk = (s, e) ∈ Dk2

Zn,σ ×Dk1
Zn,σ and pk = b ∈ Rk1

q . Then, it
computes hpk = F(pk), prepends hpk to sk, and returns the updated (sk, pk).

RSig.RandPK: Given a public key pk = b and an honestly generated randomness
ρ, the algorithm RSig.RandPK runs RandG(ρ) to generate a pair of Gaussian
distributed vectors (r, u). Then, it computes b′ = b + Ar + u (mod q) and
outputs the honestly rerandomized public key pk ′ = b′.

RSig.RandSK: Given a secret key sk = (hpk, s, e) and an honestly generated random-
ness ρ ∈ {0, 1}2o(λ), the algorithm RSig.RandSK runs RandG to obtain (r, u) ∈
Dk2

Zn,σ × Dk1
Zn,σ. Then, it computes s′ = s + r and e′ = e + u. Note that by

Lemma 3, the pair (s′, e′) is distributed as Dk2
Zn,
√

2σ
×Dk1

Zn,
√

2σ
. Finally, the algo-

rithm computes hpk′ = F(b′) and outputs the honestly rerandomized secret key
sk ′ = (hpk′, s′, e′).

RSig.Sign: The algorithm RSig.Sign returns the signature obtained by calling the
algorithm LB.Sign on message µ = (m, hpk). Signing messages together with the
hash value of (honestly rerandomized) public keys ensures security under related
key attacks [MSM+15].

RSig.Verify: The algorithm RSig.Verify returns the bit obtained by running
LB.Verify(pk, µ), where µ = (m, F(pk)).

We note that rerandomizing sk must be carried out only with the original secret
key, i.e., a rerandomized secret key cannot be used to generate a new rerandomized
one. This ensures that all honestly rerandomized secret keys have identical distri-
bution, i.e., Dk2

Zn,
√

2σ
× Dk1

Zn,
√

2σ
. Furthermore, signatures generated using honestly

rerandomized keys have different distribution from signatures generated using the
original key pair. More precisely, the pair (z1, z2) is distributed uniformly at random

Reduction D(pk)
1: RList := ∅
2: Q := ∅
3: (m, ((z1, z2, c), ρ))← AH′,Rand,OHR(pk)
4: if (ρ = NULL) then
5: hpk← F(pk)
6: µ← (m, hpk)
7: return (µ, (z1, z2, c))
8: if (ρ ̸= NULL) then
9: pk′ ← RSig.RandPK(pk, ρ)

10: hpk′ ← F(pk′)
11: µ′ ← (m, hpk′)
12: (r, u) ∈ Dk2

Zn,σ ×Dk1
Zn,σ ← RandG(ρ)

13: z′
1 ← z1 − rc

14: z′
2 ← z1 − uc

15: return (µ′, (z′
1, z′

2, c))

Fig. 8. Reduction from the EUF-CMA security of LB.Σ (Figure 3) to EUF-CMA-HRK security of signature
scheme with honestly rerandomizable public keys (Figure 7). Queries to OHR, H′, and Rand are answered
as shown in Figure 9.

over Rk2
B1 ×Rk1

B2 , where

B1 =

Y − S/2 if sk ← LB.KGen
Y − S if sk ← RSig.RandSK

B2 =

Y − E/2 if sk ← LB.KGen
Y − E if sk ← RSig.RandSK

The bound Y of the masking pair (y1, y2) is chosen such that the probability of
generating valid signatures (cf. Section 2.5) is at least 1/M , i.e.,

(2B1 + 1
2Y + 1

)k2n

·
(2B2 + 1

2Y + 1

)k1n

≥ 1/M,

where M = O(1) is the repetition rate of the signing algorithm.

4.2 Security Analysis

In this section we analyze the EUF-CMA-HRK security of the scheme introduced
in Section 4.1 in the QROM. More precisely, we reduce its EUF-CMA-HRK se-
curity to the EUF-CMA security of the lattice-based signature scheme LB.Σ =
(LB.KGen, LB.Sign, LB.Verify) described in Section 2.5. The correctness of the scheme
directly follows from the correctness of LB.Σ. Note that rerandomizability of public
keys (see Definition 4) follows from the MLWE assumption [LS15]. That is, for any
public key b and any honestly rerandomized public key b′ both pairs (A, b), (A, b′)
are indistinguishable from the uniform distribution over Rk1×k2

q ×Rk1
q . Therefore, b

and b′ are identically distributed.

Theorem 3 (EUF-CMA-HRK Security). The signature scheme with honestly
rerandomizable public keys depicted in Figure 7 is EUF-CMA-HRK secure in the
QROM if scheme LB.Σ = (LB.KGen, LB.Sign, LB.Verify) described in Figure 3 is
EUF-CMA secure in the QROM.

Proof. Let A be an adversary that is able to generate valid forgeries under the
signature scheme with honestly rerandomizable public keys, i.e., A is able to win
the game EUF-CMA-HRKARSig (cf. Definition 6). We construct an algorithm D that
runs A as subroutine in order to win the game EUF-CMADLB.Σ (see Definition 5)
against the scheme LB.Σ. According to the security model, A has quantum access
to a random oracle H′ and classical access to a random oracle Rand in addition to
classical access to the signing oracle OHR. The reduction D has quantum access
to the random oracle H and classical access to the signing oracle O, which returns
to D signatures generated by LB.Σ. The algorithm D is described in Figure 8. D
initializes two empty lists RList,Q. These are used by D to store queries to Rand
and OHR, respectively. Simulation of OHR, H′, and Rand is given in Figure 9.

Analysis. Let (m, ((z1, z2, c), ρ)) be a valid forgery output by the adversary A. This
means that m ̸∈ Q and RSig.Verify(pk, m, (z1, z2, c)) = 1. Moreover, ρ ∈ RList in
case randomness ρ ̸= NULL.

We first analyze the case that ρ = NULL. The signature satisfies (z1, z2) ∈ Rk2
Y−S

2
×

Rk1
Y−E

2
and c = H′(w, m, hpk) = H(w, m, hpk), where w = Az1 + z2 − bc (mod q).

Hence, this forgery constitutes a valid signature under LB.Σ on message µ = (m, hpk).
Note that if c was not queried by some input, then A produces such c only with
negligible probability, i.e., 1/|Tn

κ|. Thus, with probability of 1− 1/|Tn
κ|, the value c

must be a random oracle answer to a query made by A, where |Tn
κ| = 2κ

(
n
κ

)
and

κ is chosen such that |Tn
κ| ≥ 22λ. This ensures that the probability of mapping two

different values to the same output of H is at most 2−2λ.

Next, we assume that A outputs a valid forgery (m, (z1, z2, c), ρ) under honestly
rerandomized public key b′ and ρ ̸= NULL. This means that (z1, z2) ∈ Rk2

Y−S×Rk1
Y−E.

In this case D transforms this signature into a forgery under the original public
key b as follows: D runs RandG(ρ) to obtain (r, u). Then, it computes the vectors
z′1 = z1 − rc and z′2 = z2 − uc. Note that

∥z′1∥∞ ≤ ∥z1∥∞ + ∥rc∥∞ ≤ Y − S + S/2 = Y − S/2,

∥z′2∥∞ ≤ ∥z2∥∞ + ∥uc∥∞ ≤ Y − E + E/2 = Y − E/2 .

Hence, (z′1, z′2) ∈ Rk2
Y−S

2
×Rk1

Y−E
2
. Furthermore, we have

w = Az′1 + z′2 − bc = A(z1 − rc) + z2 − uc− bc = Az1 + z2 − b′c (mod q) .

Therefore, it holds that c = H′(w, m, hpk′) = H(w, m, hpk′). Hence, the forgery
output by A can be turned into a valid forgery under the original public key b for
message µ′ = F(m, hpk′), i.e., it is a forgery under LB.Σ.

Sim(pk, m, ρ)
1: if (ρ = NULL) then
2: Q := Q∪ {m}
3: return SimNoR(pk, m)
4: if (ρ ̸= NULL) then
5: if (ρ /∈ RList) then
6: return ⊥
7: Q := Q∪ {m}
8: return SimR(pk, m, ρ)
SimNoR(pk, m)
1: hpk← F(b)
2: µ← (m, hpk)
3: (z1, z2, c)← O(µ)
4: return (z1, z2, c)
H′(·)
1: return H(·)

SimR(pk, m, ρ)
1: (r, u)← RandG(ρ)
2: pk′ := b′ ← RSig.RandPK(pk, ρ)
3: hpk′ ← F(b′)
4: µ′ ← (m, hpk′)
5: (z′

1, z′
2, c)← O(µ′)

6: z1 ← z′
1 + rc

7: z2 ← z′
2 + uc

8: if
(
(z1, z2) ̸∈ Rk2

Y −S ×Rk1
Y −E

)
then

9: goto 5
10: return (z1, z2, c)
Rand()

1: ρ←$ {0, 1}2o(λ)

2: RList← RList ∪ {ρ}
3: return ρ

Fig. 9. Description of algorithm Sim, which simulates signing queries to OHR. The algorithms SimNoR,
SimR are subroutines used by Sim. The first one is called when signing query does not include randomness
ρ, while the latter one is called when signing query includes honestly generated randomness ρ ̸= NULL.
Queries to H′ made by adversary A are redirected to the random oracle H, to which reduction D has access.
Queries to Rand are answered locally by D.

Finally, we note that the environment of A is perfectly simulated, and whenever A
wins the game EUF-CMA-HRKARSig, D wins the game EUF-CMADLB.Σ. The number of
signing queries made by D is at most M ·Q, where M = O(1) is the repetition rate6

of LB.Σ and Q is the number of signing queries made by A. ⊓⊔

4.3 Alternative Methods for Rerandomization

In this section we describe alternative approaches for rerandomizing keys in the
lattice setting and show why our scheme introduced in Section 4.1 is the most suit-
able option in the context of hot/cold wallets. First, we recall that our construction
from the previous section assumes that the distribution of the secrets used in the
key generation algorithm are from the Gaussian distribution, i.e., χ = DZn,σ. This
allows us to use Lemma 3 in order to obtain rerandomized secret keys that are also
Gaussian distributed but with a slightly different standard deviation, i.e., DZn,

√
2σ.

The key generation of our scheme cannot use uniformly distributed secrets over a
small subset Rd from R, where Rd is the set of all polynomials from R with ℓ∞ norm
bounded by some integer d ≥ 1. This is because the sum of two uniformly random
polynomials over Rd does not yield a polynomial that follows the uniform distribu-
tion over a subset S ⊆ Rd. Using a uniformly random sk for rerandomization would
yield rerandomized secret keys with unknown distribution, and hence the hardness
of the computational assumption underlying the rerandomized key pairs would be
unclear. Let us now discuss the alternative approaches.

6 In practice, the repetition rate of the signing algorithm of standard lattice-based signature schemes is
strictly smaller than 4 (e.g., see [DKL+18,ABB+20]).

Rerandomizability of Gaussian distributed secret keys. It is (theoretically)
possible to rerandomize key pairs such that the rerandomized secret keys have the
same distribution as the original secret key. More precisely, assume that sk is Gaus-
sian distributed with standard deviation σ. Given a randomness ρ, a rerandomized
secret key is computed as sk ′ = sk + ρ. Due to [GKPV10, Lemma 3], sk ′ is Gaussian
distributed with the same σ when σ is of a super-polynomial size in the security
parameter λ. In other words, we must select σ large enough in order to make the
statistical distance between the distribution of sk and sk ′ negligible in λ. This value
of σ gives secret keys of very large size, and requires to increase the size of the
masking vectors used in the signing algorithm. Hence, we obtain signatures of very
large size, which rules out using the resulting scheme in practice.
Rerandomizability of uniform distributed secret keys. In theory, it is pos-
sible to use uniformly distributed rather than Gaussian distributed secret keys as
follows. Assume that χ = Rd and ρ ∈ R1. The rerandomized secret key sk ′ = sk + ρ

is uniformly distributed over Rd−1 with probability
(

2d−1
2d+1

)(k1+k2)n
, where (k1 + k2)n

is the dimension of sk ′. Therefore, for a very large d this probability would be over-
whelming in λ.

Example 1. By considering the parameters of Dilithium [DKL+18] proposed for λ =
128, we have k1 = 5, k2 = 4, and n = 256. Hence, we have to set d ≈ 2139 in order
to make the previously stated probability at least 1− 2−128. This value of d yields a
secret key of size ≈ 2147 Bytes.

The above given example shows that this approach is merely of theoretical interest
only and is not suitable for practical applications as it requires huge sizes of keys,
and hence signatures.
Allowing rerandomization algorithms to communicate. Consider an applica-
tion, in which the rerandomization algorithms (i.e., RSig.RandSK and RSig.RandPK)
synchronize after each invocation of RSig.RandSK. Given sk and ρ, the algorithm
RSig.RandSK uses ρ together with a counter ctr in order to deterministically gener-
ate a randomness ρ′, e.g., by using the function E on input (ρ, ctr). Then, it computes
sk ′ = sk + ρ′ and outputs the rerandomized secret key sk ′ only after verifying that
it has the correct distribution. If this is not the case, it increases ctr by 1 and re-
peats this process. The algorithm RSig.RandPK needs to receive the corresponding
ctr from RSig.RandPK in order to generate the rerandomized public key related to
sk ′. Note that if sk is Gaussian distributed, then we even obtain a scheme with
rerandomizable public and secret keys as defined in [FKM+16]. While this method
is practical and may be applicable in the construction of sanitizable signatures pro-
posed in [FKM+16], it cannot be used in the setting of hot/cold wallets due to the
fact that in each signing process RSig.RandPK must obtain the correct ctr that were
used to generate sk ′. This synchronization requirement undermines the main concept
of hot/cold wallets, namely the fact that hot and cold wallets do not communicate
with each other (except when they are being initialized).

5 Practical Instantiation

In this section we present an efficiency analysis of the wallet scheme introduced in
Section 3. To this end, we instantiate the signature scheme presented in Section 4
with a concrete lattice-based signature scheme. The most recent Fiat-Shamir con-
structions of lattice-based signatures are Dilithium [DKL+18] and qTESLA [ABB+20].
We consider the latter scheme, since the hard lattice problem underlying its key gen-
eration algorithm uses Gaussian distributed secrets. This is essential for rerandomiz-
ing the secret key in our setting, and hence is sufficient for our scheme with honestly
rerandomizable public keys described in Figure 7. On the other hand, Dilithium’s key
generation uses uniformly distributed secrets for the underlying lattice problem, in-
stead of Gaussian distributed secrets, which is not suitable in our wallet setting (see
Section 4.3). Employing the Gaussian distribution in the key generation algorithm of
Dilithium instead, requires to adjust the security analysis of Dilithium and to choose
new parameters. The resulting scheme would be similar to qTESLA, with slight
differences in how signatures are compressed. We choose not to modify Dilithium’s
original design but stick to qTESLA, which does not need any modification for our
setting and is well-studied in comparison to a modified version of Dilithium.

5.1 An Instantiation with qTESLA

In this section we show how the signature scheme with honestly rerandomizable
public keys introduced in Section 4 can be instantiated with qTESLA. We note that
the parameters of qTESLA were selected according to the security reduction from
the RLWE problem. This approach has two different aspects: On the one hand, it
guarantees that qTESLA has the security level as long as the underlying RLWE in-
stance is hard enough. On the other hand, this approach affects the performance and
sizes of keys and signatures, because larger parameters are required to achieve the
desired security level. The main goal of our choice is to demonstrate that our wal-
let scheme can be instantiated with state-of-the-art lattice-based signature schemes
without taking into account any of the two different aspects mentioned above.

The design of our scheme is based on lattices over modules. In order to employ
qTESLA in our construction we set k2 = 1 to obtain a variant based on lattices over
ideals, and security based on the hardness of RLWE. The (master) secret key includes
polynomials s, e1, . . . , ek1 sampled from DZn,σ. The polynomial s is bounded by S/2
using the function Maxj defined in Section 2.5, while e1, . . . , ek1 are each bounded
by E/2 using Maxj. In qTESLA the bounds are S and E, respectively. However, our
wallet scheme uses the master key pair only for rerandomization, and signatures are
generated using honestly rerandomized key pairs, which already satisfy the bounds
S and E. Therefore, we can use exactly the same parameters proposed for qTESLA
in [ABB+20, Table 4]).

Note that in comparison to the generic signature scheme shown in Figure 3, Sec-
tion 2.5, the signature scheme qTESLA [ABB+20] compresses signatures by employ-
ing the technique of [BG14]. In this technique the signer proves knowledge of only

the secret polynomial s rather than s and e1, . . . , ek1 . Therefore, signatures are of
the form (z1, c) ∈ RY × Tn

κ rather than (z1, z2, c) ∈ RY × Rk1
Y × Tn

κ. This approach
does not affect the EUF-CMA-HRK security of the signature scheme with honestly
rerandomizable public keys. That is, the reduction given in Figure 8 remains the
same. Only simulating the signing oracle (cf. Figure 9) requires to include an ad-
ditional check to ensure the correctness of simulated signatures. More concretely,
after step 9 of algorithm SimR (see Figure 9) we add the last for loop of qTESLA’s
signature generation algorithm [ABB+20, Algorithm 4]. However, we have in our
setting

wi = aiz1 − b′ic− ric (mod±q) for all i = 1, . . . , k1,

where ai, b′i, and ri are the entries of the public vector a (replaced by the matrix A,
since k2 = 1), rerandomized public key b′, and the vector r, respectively.

5.2 Deploying PQ Wallets over Blockchains

In this section we give an overview of the transaction throughput that can be
achieved in a cryptocurrency system using our signature scheme instantiated with
qTESLA.

A simple transaction in most cryptocurrency networks transfers coins from one party
to another. Such transactions must usually include the public key pk and the sig-
nature σ of the sender such that the validity of the transaction can be verified. In
order to give an estimated transaction throughput, we use the raw transaction size
of a regular Bitcoin transaction (i.e., without the size of pk and σ) and then add
the size of pk and σ of our scheme to it. The raw transaction size of a Bitcoin is
roughly 100 Bytes (B) [Bit19]. Hence, when instantiating our wallet scheme with
qTESLA, we can take the corresponding signature size (2,592 B) and public key size
(14,880 B) [ABB+20, Table 4] for a post-quantum security level of 95 bits7 and add
those to the rough raw transaction size of 100 B. The size of a transaction would
then result in 100 B + 14, 880 B + 2, 592 B ≈ 17.5 KB. We note that it is possible
for a party to send coins to multiple receivers in a single transaction which would
essentially allow for transactions to be aggregated and increase efficiency.

Many cryptocurrencies (including Bitcoin and Ethereum) currently use the classical
signature scheme ECDSA. For the sake of drawing a comparison, note that the
size of the ECDSA public key and signature in Bitcoin is approximately 65 B and
73 B [ECD19], respectively, which results in more compact transactions (minimum
size of a transaction being 100B+65B+73B ≈ 240B), and hence higher transaction
throughput.

Naturally, there are various ways to improve the transaction throughput such as
increasing block size and the rate at which blocks are produced. For example, in
a Bitcoin-like currency new blocks are created roughly every 10 minutes, which
tremendously limits the throughput and scalability of the network. In contrast, one

7 Note that qTESLA proposes only two parameter sets, chosen with respect to a conservative cost model:
qTESLA-p-I with 95 bits of post-quantum security and qTESLA-p-III with 160 bits of post-quantum
security [ABB+20, Section 4.3].

can consider a system with a block rate of a few seconds, say 15-20 seconds (e.g.,
this is the case for the Ethereum blockchain). This significantly increases transaction
throughput, and hence compensates for larger sizes of pk and σ. Yet these solutions
are ad-hoc, while a more interesting direction for future work is to design further
efficient post-quantum secure signature schemes with rerandomizable keys.

References
ABB+20. Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Krämer, Patrick Longa, and Jeffer-

son E. Ricardini. The lattice-based digital signature scheme qTESLA. In Applied Cryptography
and Network Security - 18th International Conference, ACNS 2020, Lecture Notes in Computer
Science, 2020. 5, 6, 13, 27, 29, 30

ABL+18. Divesh Aggarwal, Gavin Brennen, Troy Lee, Miklos Santha, and Marco Tomamichel. Quantum
attacks on bitcoin, and how to protect against them. Ledger, 3, 2018. 2

AHU19. Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-
classical oracles. In Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, 2019, volume 11693 of Lecture Notes in Computer Science, pages 269–
295. Springer, 2019. 8

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Advances in Cryptology - ASIACRYPT 2011
- 17th International Conference on the Theory and Application of Cryptology and Information
Security, volume 7073, pages 41–69. Springer, 2011. 8

BF11. Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In Public Key Cryptography - PKC 2011, pages 1–16.
Springer, 2011. 12

BG14. Shi Bai and Steven D Galbraith. An improved compression technique for signatures based on
learning with errors. In Cryptographers’ Track at the RSA Conference, pages 28–47. Springer,
2014. 6, 13, 29

BIP17. Bitcoin bip32 specification. https://github.com/bitcoin/bips/blob/master/bip-0032.
mediawiki, Feb. 24 2017. Accessed: 2020-09-15. 2, 5

Bit. Bitcoin post-quantum. https://bitcoinpq.org/. 2, 7
Bit18. BitcoinExchangeGuide. CipherTrace Releases Report Exposing Close to $1 Bil-

lion Stolen in Crypto Hacks During 2018. https://bitcoinexchangeguide.
com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_
-crypto-hacks-during-2018/, 2018. 2

Bit19. Bitcoin wiki transaction format. https://en.bitcoin.it/wiki/Transaction, Dec. 2019. Ac-
cessed: 2020-05-04. 30

Blo18. Bloomberg. How to Steal $500 Million in Cryptocurrency. http://fortune.com/2018/01/31/
coincheck-hack-how/, 2018. 2

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, 1993, pages 62–73. ACM, 1993. 8

CGK+19. Alexandru Cojocaru, Juan A. Garay, Aggelos Kiayias, Fang Song, and Petros Wallden. The
bitcoin backbone protocol against quantum adversaries. Cryptology ePrint Archive, Report
2019/1150, 2019. https://eprint.iacr.org/2019/1150. 2

DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and
bimodal Gaussians. In Advances in Cryptology–CRYPTO 2013, pages 40–56. Springer, 2013. 6

DFL19. Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deterministic wallets.
In ACM SIGSAC Conference on Computer and Communications Security - CCS 2019, pages
651–668. ACM, 2019. 2, 3, 4, 6, 11, 13, 15, 17, 18, 19, 21

DFMS19. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-
Shamir transformation in the quantum random-oracle model. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, volume 11693, pages 356–
383. Springer, 2019. 6, 13

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. Transac-
tions on Cryptographic Hardware and Embedded Systems - TCHES 2018, (1):238–268, 2018. 6,
13, 27, 28, 29

ECD19. Bitcoin wiki: Elliptic curve digital signature algorithm, Nov. 2019. https://en.bitcoin.it/
wiki/Elliptic_Curve_Digital_Signature_Algorithm. 30

eth15. ethereum.org. Ethereum. https://ethereum.org/, 2015. 1
EZS+19. Muhammed F Esgin, Raymond K Zhao, Ron Steinfeld, Joseph K Liu, and Dongxi Liu. Matrict:

Efficient, scalable and post-quantum blockchain confidential transactions protocol. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages
567–584, 2019. 1, 2, 6

FKM+16. Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder,
and Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In Public Key Cryptography - PKC 2016, pages 301–330. Springer, 2016. 4,
6, 9, 11, 18, 28

FTS+19. Chun-I Fan, Yi-Fan Tseng, Hui-Po Su, Ruei-Hau Hsu, and Hiroaki Kikuchi. Secure hierarchical
bitcoin wallet scheme against privilege escalation attacks. International Journal of Information
Security, pages 1–11, 2019. 2, 6

GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness
of the learning with errors assumption. In Innovations in Computer Science - ICS 2010, pages
230–240. Tsinghua University Press, 2010. 28

GS15. Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets that tolerate key
leakage. In Financial Cryptography and Data Security - 19th International Conference, FC
2015, volume 8975, pages 497–504. Springer, 2015. 2, 5

HMW18. Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series,
consensus system. CoRR, abs/1805.04548, 2018. 2

KLS18. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model. In Advances in Cryptology–EUROCRYPT
2018, pages 552–586. Springer, 2018. 6, 13

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Advances in Cryptology–EUROCRYPT 2010, pages 1–23. Springer, 2010. 13

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography, 75(3):565–599, 2015. 13, 25

Lyu09. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based
signatures. In Advances in Cryptology–ASIACRYPT 2009, pages 598–616. Springer, 2009. 6

LZ19. Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Advances in Cryp-
tology - CRYPTO 2019 - 39th Annual International Cryptology Conference, volume 11693 of
Lecture Notes in Computer Science, pages 326–355. Springer, 2019. 6, 13

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In Advances in Cryptology - EUROCRYPT 2012, pages 700–718. Springer, 2012. 13

MR04. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In Symposium on Foundations of Computer Science (FOCS 2004), pages 372–381.
IEEE Computer Society, 2004. 12

MSM+15. Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka, and Tetsu Iwata.
On the security of the schnorr signature scheme and DSA against related-key attacks. In
Information Security and Cryptology - ICISC 2015, volume 9558, pages 20–35. Springer, 2015.
17, 23, 24

Nak09. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http://bitcoin.
org/bitcoin.pdf. 1

NC11. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition,
2011. 7

Noe15. Shen Noether. Ring signature confidential transactions for monero. Cryptology ePrint Archive,
Report 2015/1098, 2015. http://eprint.iacr.org/2015/1098. 1, 7

QRL. Quantum resistant ledger (qrl). https://github.com/theQRL/Whitepaper/blob/master/QRL_
whitepaper.pdf. 2, 7

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991. 4

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
35th Annual Symposium on Foundations of Computer Science, pages 124–134. IEEE Computer
Society, 1994. 2

Ske18. Rhys Skellern. Cryptocurrency Hacks: More Than $2b USD lost between 2011-2018. https://
medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_
-67054b342219, 2018. 2

TVR16. Mathieu Turuani, Thomas Voegtlin, and Michael Rusinowitch. Automated verification of elec-
trum wallet. In International Conference on Financial Cryptography and Data Security, pages
27–42. Springer, 2016. 2, 6

Unr15. Dominique Unruh. Revocable quantum timed-release encryption. J. ACM, 62(6):49:1–49:76,
2015. 8

Unr17. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, volume 10624, pages
65–95. Springer, 2017. 6, 13

Zha12a. Mark Zhandry. How to construct quantum random functions. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, pages 679–687. IEEE Computer Society,
2012. 8, 9

Zha12b. Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, volume 7417,
pages 758–775. Springer, 2012. 22

Zha19. Mark Zhandry. How to record quantum queries, and applications to quantum indifferentia-
bility. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, volume 11693, pages 239–
268. Springer, 2019. 19

D. Round Efficient Byzantine
Agreement from VDFs

This chapter corresponds to our work on Graded PKI and Byzantine Agreement.
Full version of this work can be found here: [41].

[41] P. Das, L. Eckey, S. Faust, J. Loss, and M. Maitra. Round Efficient Byzantine

Agreement from VDFs. Cryptology ePrint Archive, Paper 2022/823. https://

eprint.iacr.org/2022/823. 2022.

188

https://eprint.iacr.org/2022/823
https://eprint.iacr.org/2022/823

Round Efficient Byzantine Agreement from VDFs

Poulami Das1, Lisa Eckey1, Sebastian Faust1, Julian Loss2, and Monosij Maitra1

1 Technical University of Darmstadt, Germany
{firstname.lastname}@tu-darmstadt.de

2 CISPA Helmoltz Center for Information Security, Germany
loss@cispa.de

Abstract. Byzantine agreement (BA) is a fundamental primitive in distributed systems
and has received huge interest as an important building block for blockchain systems. Clas-
sical byzantine agreement considers a setting where n parties with fixed, known identities
want to agree on an output in the presence of an adversary. Motivated by blockchain sys-
tems, the assumption of fixed identities is weakened by using a resource-based model. In such
models, parties do not have fixed known identities but instead have to invest some expensive
resources to participate in the protocol. Prominent examples for such resources are compu-
tation (measured by, e.g., proofs-of-work) or money (measured by proofs-of-stake). Unlike
in the classical setting where BA without trusted setup (e.g., a PKI or an unpredictable
beacon) is impossible for t ≥ n/3 corruptions, in such resource-based models, BA can be
constructed for the optimal threshold of t < n/2. In this work, we investigate BA without
a PKI in the model where parties have restricted computational resources. Concretely, we
consider sequential computation modeled via computing a verifiable delay function (VDF)
and establish the following results:
1. Positive result: We present the first protocol for BA with expected constant round

complexity and termination under adaptive corruption, honest majority and without a
PKI. Earlier work achieved round complexity O(nκ2) (CRYPTO’15) or O(κ) (PKC’18),
where κ is the security parameter.

2. Negative result: We give the first lower bound on the communication complexity of BA
in a model where parties have restricted computational resources. Concretely, we show
that a multicast complexity of O(

√
n) is necessary even if the parties have access to a

VDF-oracle.

Keywords: Byzantine Agreement, Proof of Work, Verifiable Delay Functions, Im-
possibility

1 Introduction

In the Byzantine agreement (BA) problem, a set of n parties jointly run a dis-
tributed protocol to agree on a common output in the presence of some minority
of t malicious parties. BA is a well-studied and fundamental problem in distributed
computing and has recently garnered renewed interest in the context of blockchain
protocols [Nak08,CP19,KKKZ19,But13]. Traditionally, most existing protocols for
BA assume a setting in which the parties’ identities are fixed and known at the
beginning of the protocol. In the fixed identity setting, two types of protocols are
studied: the first type requires setup, e.g., a public key infrastructure (PKI) or some
form of correlated randomness. These protocols typically tolerate the (optimal) cor-
ruption threshold of t < n/2. The second type does not require such assumptions
but can tolerate only t < n/3 corruptions.

More recently, a third type of protocol has emerged [AD15,KMS14] that gives
up on the fundamental assumption that parties know each other’s identities at the
beginning of the protocol. Moreover, these protocols do not require setup in the
classical sense, yet still achieve the optimal corruption tolerance of t < n/2. Note
that if identities are not fixed then without further measures, every party could pose
as many parties and easily obtain a dishonest majority; this is commonly referred
to as a sybil attack [Dou02]. To avoid such attacks, parties must instead invest
some expensive resources, such as computation or money, to participate in this
type of protocol. A prominent example is the Proof-of-Work model (PoW) initially
introduced by Bitcoin, where parties have limited access to a computational resource
which they are forced to continuously expend in order to participate in the protocol.

In this work, we refine the PoW model by considering the effort it takes to eval-
uate verifiable delay functions (VDFs) [BBBF18,CP19] as the main computational
resource. VDFs can be seen as a special type of proof-of-work whose computation
cannot be sped up by much. This is in stark contrast to the typical lottery-type
proofs-of-work, whose computation can be sped up almost arbitrarily, given suffi-
cient parallel computation resources. We explore, for the first time, the implications
of bounding the number of VDF evaluations that an (adaptive) adversary can com-
pute in parallel: 1) We show an expected constant-round BA protocol that tolerates
t < n/2 corrupted parties and does not rely on a PKI or known identities; 2) we give
the first non-trivial communication lower bound by showing that any BA protocol
in this setting requires at least O(

√
n) send-to-all steps.

1.1 The VDF Model

Our work introduces the VDF model as a refinement of the common PoW model to
replace trusted setups and protect against Sybil attacks in permissionless consensus.
Similar to the PoW model, we assume that the adversary only controls less than 1/2
of a computational resource to invest in producing proofs of computation. In contrast
to the PoW model, however, we require a lower bound on the time it takes to create
such proofs. This differs from the PoW model, where proofs can be computed almost
arbitrarily fast, given sufficient parallel resources. We believe that the VDF model
is a realistic alternative for the PoW model. Indeed, there exists various different
constructions of VDFs [Wes19,Pie19,FMPS19] that leverage inherently sequential
computation, and are used (or envisioned to be used) by blockchain projects for
their consensus protocol (albeit not as an anti Sybil countermeasure as in our work).
Examples include Chia, which relies on VDFs for leader election [CP19], and ETH
2.0, which plans to leverage VDFs for constructing a random beacon [But13]. To
make our model more realistic, we follow Wan et al. [WXDS20], and allow the
adversary a small speedup in evaluating the VDF compared to the honest parties.

Let us describe our model with a concrete example. Suppose that the total
amount computational power (over all protocol participants) over a fixed time pe-
riod of length t is 1000 VDF evaluations. Then, we demand that the total number
of proofs produced by the adversary be at most 500 in the same time span. This is
similar to the case of PoW model, where it is assumed that the majority of compu-

tational power belongs to honest parties. As mentioned above, we additionally give
the adversary a small speedup, meaning that it can compute proofs a little bit faster
than the honest parties.

The VDFδ Oracle. We now explain our formalization of the VDF model in some
more detail. At the center of our model, we introduce the oracle VDFδ, which parties
can query on an input s to obtain one evaluation ϕ of the VDF after δ time. Thus,
δ denotes the difficulty parameter, specifying the number of sequential steps to be
computed for one VDF evaluation. To make the model more realistic, we allow
corrupted parties a κ-speedup (where κ ≥ 1), meaning that they can obtain an
output from VDFδ after δ/κ time. An adversary A in our model controls some
q number of parties, where each party has κ-speed-up. For some i > 1, let us
discuss how many proofs an adversary is able to compute within time t, where
(i− 1) · δ < t < i · δ. We can express t more concretely as t = (i− 1) · δ+ r · δ, where
r ∈ (0, 1). With a corruption budget of q parties, A can invoke the VDFδ oracle q
times concurrently (once per party). Since each proof is obtained after time δ

κ , at
time (i− 1) · δ, each party computes (i− 1) · κ proofs. In the remaining r · δ time,
each party can compute (at most) ⌊ r.δ

δ/κ⌋ = ⌊r ·κ⌋ proofs. Thus, in total A obtains at
most ((i− 1) · κ + ⌊r · κ⌋) · q proofs at time t. Figure 1 illustrates our model with
a small example. We refer to this property of the VDFδ oracle as its sequentiality

Fig. 1. Consider i = 3, δ = 5. We have i · δ = 15, (i − 1) · δ = 10. Say an adversary A controls q parties
{P1}i∈[q] with a speed-up κ = 3 compared to an honest party with κ = 1. Consider two time steps: t = 11
and t = 14. In both cases, each Pi can compute (i − 1)κ = 6 proofs in time 10 < i · δ. For the remaining
time r · δ = 1 (for t = 11) and r · δ = 4 (for t = 14), no extra proofs can be computed in the first case,
whereas ⌊ 4

5/3
⌋ = 2 extra proofs can be computed in the second case. Thus, A can compute in total 6q and

8q proofs for t = 11 and t = 14 respectively.

and give a formal definition in Section 2.

Such oracle abstraction of the VDF computation allows us to give a cleaner
and more modular analysis of our main protocols. In support of our modelling ap-
proach, we conjecture that the VDFδ oracle can be instantiated in the standard
model (full version, Appendix A, Lemma 20) and we prove that it can be instan-
tiated in the strong algebraic group model for constructions of Wesolowski [Wes19]
and Pietrzak [Pie19] (full version, Appendix A, Lemma 23).

1.2 Byzantine Agreement in the VDF Model.

As our main technical contribution, we show how to obtain an expected constant-
round Byzantine agreement protocol without any additional trusted setup in the
VDF+random oracle model. This is of particular significance, given that we can
also instantiate the VDF model without any trusted setup, using Wesolowski’s con-
struction. Given an upper bound n on the number of parties, our protocol tolerates
q adaptively corrupted parties with κ-speed-up, where q(⌊κ⌋ + 1) < n. In particu-
lar, our protocols tolerate up to n

2
corruptions when κ = 1. Our protocol combines

several ideas from previous works in a novel way, as we now describe.

– Step 1: Establishing a Graded Public key Infratsructure (GPKI). We adopt the
idea of Andrychowicz and Dziembowski [AD15] and start by setting up a precursor
to a full PKI called graded PKI (GPKI) among the parties. Roughly speaking,
a GPKI differs from a full PKI in that the keys of the parties are additionally
associated with grades. These grades can differ between parties, but not by too
much. As a first step, to reduce the round complexity of their protocol to O(1)
from O(nκ2) (where κ is a security parameter), we make two modifications: 1)
We set up a much weaker GPKI with only two possible grades, whereas [AD15]
sets up n possible grades. 2) We borrow a technique from Katz et al. [KMS14]3
and rely on VDFs to make the round complexity of our protocol independent of
κ. As a second step, the difficulty parameter δ of the VDFδ must be adjusted to
tolerate adversarial speedup in the VDFδ model.

– Step 2: Graded Consenus from GPKI. One of the ingredients needed in our BA
protocol is a graded consensus protocol. Graded consensus is similar to a BA,
with the difference that at the end of the protocol, every party outputs a value
with some grade, where the grades of different parties must satisfy some con-
sistency properties. We build upon the graded consensus protocol of Micali and
Vaikuntanathan [MV17] where we modify their protocol such that it requires only
a GPKI instead of a full PKI.

– Step 3: Leader election protocol from VDFs. It is well known that expected con-
stant round protocols are inherently randomized, e.g., by electing a random leader
in every protocol iteration. However, electing a random leader efficiently is chal-
lenging without prior setup. We overcome this issue by presenting a novel leader
election protocol that leverages the oracle VDFδ to efficiently elect a random leader
that all honest parties agree on with high probability. Our protocol is inspired by

3 The construction in [KMS14] uses only a proof of sequential as opposed to a VDF.

leader elections based on verifiable random functions [ACD+19,ADD+19] and im-
plements a leader election lottery with unique tickets. This makes the tickets hard
to bias from the perspective of the adversary.

– Step 4: BA protocol. Finally, we combine all of the above components to adopt
the expected constant round protocol of Katz and Koo [KK06a] to our setting.
We informally state our overall result in the following theorem.

Theorem 1 (Informal). Let n denote an upper bound on the number of parties.
Then, there exists an expected-constant round BA protocol in the VDF model that
is secure against any adversary A that controls at most q parties with κ-speed-up,
where q · (⌊κ⌋+ 1) < n.

1.3 A Lower Bound on Communication Complexity for BA

As a third contribution, we give the first lower bound for communication complexity
of BA, assuming parties have bounded computational resources. Concretely, we show
that in the VDF model without additional trusted setup, no protocol can realize
BA with overwhelming probability by multicasting fewer than O(

√
n) messages in

the presence of adaptive corruptions. In the multicast model of communication,
honest parties are restricted to sending messages to all parties at once, whereas the
adversary can send to only a subset of the parties. This models a setting in which
parties communicate via a gossip network [GKPS18,AD15]. The cost of running the
same protocol from the multicast model in the bilateral channel model [DS83] would
be O(n3/2). We remark, however, that the multicast restriction is crucially used in
the lower bound, and thus, a better communication complexity might be possible
in the bilateral channels model. Our lower bound builds on ideas of Abraham et
al. [ACD+19] who show a bound for Byzantine broadcast in the multicast model
without setup.

Our bound has to overcome several technical challenges that arise when parties
have limited computational resources. The adversary in our attack has to carry
out a simulation of the protocol in its head (this is a standard technique used in
lower bounds), which may require to query the VDF oracle. At the same time, the
adversary must also participate in an actual execution of the protocol it is attacking,
which, of course, also results in queries to the oracle. Thus, the key difficulty in our
lower bound is to carefully balance the adversary’s limited budget of queries to VDF
over the two executions of the protocol (real and simulated).

Although our lower bound is relatively weak compared to most existing lower
bounds in this area (which are quadratic, or of the form O(n) in the multicast model,
respectively), we argue that it is still meaningful. Namely, protocols that require
significantly above O(κ) multicasts are deemed impractical for large-scale settings
with millions or even billions of users. This means that our bound essentially rules
out efficient solutions in the VDF model unless further setup is assumed among the
parties. Second, we point out that our lower bound actually holds in the relatively
weak VDF-model and can likely be carried over to a less restrictive model (e.g., to

the PoW model used by Bitcoin). It also leaves room for a tighter bound in such
more general models.

1.4 Implications of Our Results and Related Work

Our model can be instantiated using Wesolowski’s VDF, which does not require
trusted setup. Thus, our results show, for the first time, how to perform expected-
constant round BA in a permissionless model with a simple honest majority and
no trusted setup (beyond a random oracle). This has many important implications.
For example, one could use our protocol to efficiently agree on a random string
in a permissionless setting. This string could be used as a genesis block or as a
uniform common reference string to perform an MPC protocol. Our results also
significantly improves over the result of Andrychowicz and Dziembowski, who pre-
sented a protocol that achieves essentially the same, but requires O(n ·κ2) rounds to
do so [AD15] . We also improve over a similar (slightly more efficient) version of this
idea shown by Katz et al. [KMS14]. Another closely related work is that of Garay
et al. [GKLP18] who show how to bootstrap the classical Nakamoto consensus pro-
tocol [Nak08,GKL15,PSs17] in the PoW model without trusted setup. However, it
requires O(κ) rounds, and therefore also does not constitute an expected constant
round protocol.

Further Related Work. There is a large body of research on BA and related prob-
lems (sometimes colloquially referred to as “consensus”), and we focus here on the
most closely related works. We have already mentioned the works of [AD15,KMS14]
and [GKLP18] who achieve BA in the PoW model without setup and run in O(nκ2),
O(n), and O(κ) rounds, respectively. It should also be noted that we require stronger
assumptions (namely a VDF and the random oracle model (ROM)) than the proto-
cols in [AD15,GKLP18,GKO+20], who require only the ROM that can be queried
at a bounded rate by any party, but (possibly) weaker assumptions than required
in the work of Katz et al. [KMS14], who also require some form of an unpredictable
beacon in their protocol. The more recent work of Aggarwal et al. [AMSZ19] presents
a setup-free solution in the PoW model that also runs in expected O(1) rounds, but
assumes a static adversary (while we consider the much stronger adversarial model
of adaptive corruptions). Another related work that focuses on the PoW model is by
Garay et al. [GKO+20]. They show how to achieve UC-secure BA and multi-party
computation (MPC) protocols in the PoW model. Similar to [AD15], their BA takes
O(nκ2) rounds.

Although the above-mentioned prior works [AD15,KMS14,GKLP18] achieve BA
without a PKI, their techniques are not what we need to achieve O(1)-round BA. In
fact, we notice that achieving O(1)-round BA protocols requires very particular tech-
niques that have been studied [Rab83,FM88,KK06a,MV17,Mic17,ADD+19,ACD+19]
in the classical setting for many years and this round reduction is very challenging
to achieve.

2 Definitions and Model

Notation. We write for the set of positive real numbers greater than some number
n ∈ R as R>n, the set of natural numbers as N. Throughout this paper, κ will denote
the security parameter. We write x ← S to denote that x is sampled uniformly at
random from set S. Similarly, we write y ← A(x) to denote that the output of a
probabilistic algorithm A on input x is y.

2.1 Model

We consider a setting in which n parties P1, . . . , Pn engage in a distributed protocol
Π. We assume that the exact number of parties is unknown but that there is some
known upper bound n. Additionally, we assume that the majority of the parties
follow the protocol honestly, and the remainder of the parties can be corrupted by the
adversary (whose capabilities we will describe in the following). We emphasize that
no public key infrastructure (PKI) needs to be shared among the parties, i.e., the
parties do not initially know each other’s public keys. Moreover, the parties are
assumed to have synchronized clocks.

Communication Model. Inspired by [ACD+19], we consider a communication
setting where parties multicast messages to other parties. In other words, a party
may send the same message to everyone in the network (as opposed to possibly
sending n messages separately to n parties). We say that a protocol has multicast
complexity θ, if the total number of multicasts (i.e., by all honest parties) in the
protocol is at most θ. This implies that in the classical communication model with
bilateral channels, the (same) protocol requires sending nθ messages. We consider the
synchronous model, where any message sent by an honest party over the multicast
channel is received by all honest parties after at most time ∆. As is usual in this
model, any of our protocols proceeds in rounds of duration ∆, where round r of the
protocol starts at time (r − 1) ·∆ (assuming parties run the protocol at time 0).

Random Oracle Model (ROM). We model hash functions as random ora-
cles [BR93]. The code of a hash function H is defined as follows. On input x from the
domain of the hash function, H checks whether H(x) has been previously defined. If
so, it returns H(x). Else, it sets H(x) to a uniformly random element from the range
of H and then returns H(x).

Model of Computation. We consider the running time of parties in some fixed
but unspecified model of computation, e.g., the Turing machine model or the arith-
metic circuit model. This allows us to both simplify and generalize our results, as
we discuss below. In addition to H, parties in our model have access to oracle VDFδ,
which is used to restrict parties to performing certain computations sequentially.
VDFδ has the following properties.

– Evaluation: On input (Eval, S,κ),κ ≥ 1 from party P at time t, VDFδ generates
a proof of computation ϕ according to some (fixed) output distribution D and
returns ϕ at time t+ δ

κ . It ignores any further inputs of the form (Eval, S,κ) from

P before time t + δ
κ . We call the maximum value of κ over all queries of P to

VDFδ the speedup of P .
– Verification: On input (Verify, ϕ, S), VDFδ (immediately) returns 1, if ϕ is a

valid proof with respect to input S and 0 otherwise.

Intuitively, VDFδ corresponds to a verifiable delay function (VDF) that takes
δ time to evaluate. Here, δ can be set conservatively s.t. any honest party is able
to compute an evaluation of the VDF within this timeframe. However, since not all
parties run at the same speed, we allow for some speedup when evaluating the VDF.
In our protocols, honest parties will always call VDF with κ = 1. The adversary,
on the other hand, may set κ to some value above 1. We summarize this in the
following definition.

Definition 1 ((q, tp,κ)-Algorithm). A is a (q, tp,κ)-adversary if it has full con-
trol over q parties with speedup at most κ and runs for at most tp steps.

Sequentiality of VDFδ. For a (q, tp,κ)-adversary A, we now define a natural notion
of sequentiality. Intuitively, it should be impossible for A to compute more evalua-
tions of the VDF than its allotted budget of computation over a certain period of
time. Here, A’s budget spans over all q parties it controls and includes speedups
quantified by κ. Therefore, we expect A to be unable to compute much more that
(i− 1) · κ · q proofs in less than i · δ time.

In a bit more detail, for any i ≥ 1, when A has less than i · δ time, with an
κ-speedup it can compute exactly ⌊(i − 1) · κ⌋ · q proofs at time (i − 1) · δ. The
remaining time left is less than δ (i · δ− (i− 1) · δ). A can compute only a few more
proofs in this time. In particular, denoting this remaining fractional time as r · δ,
where r ∈ (0, 1), A can only compute at most ⌊r · κ⌋ · q proofs. Thus A computes
in total ⌊(i− 1 + r) · κ⌋ · q proofs at time (i− 1 + r) · δ.

Of course, such a notion only makes sense if A can not start computing before
a certain time T . Hence, we begin by defining what it means for a random variable
to be unpredictable in A’s view. For convenience, we will say that S is determined
at time T if its value is fixed in the view of at least one honest party at time T .

Definition 2 ((k, T, ϵ)-Unpredictable). Let S = (S1, . . . , Sk) be a vector of k
random variables whose outcome is determined at time T . We say that S is (k, T, ϵ)-
unpredictable, if for all (q, tp,κ)-adversaries A, Pr

Ŝ1,...,Ŝk←A
H,VDFδ
T

[∃j ∈ [k] : Sj =

Ŝj] ≤ ϵ, where the probability is over the random coins of A, H, VDFδ and the
random choice of S.

We say, that S ′ depends on S if S ′ = H(·||S||·), or if S ′ = H(·||S ′′||·) with
S ′′ = H(·||S||·). We now define the sequentiality property of VDFδ oracle relative
to a sequence of inputs {S ′1, . . . , S ′τ}, where each S ′j depends on some (k, T, ϵ)-
unpredictable vector S.

Definition 3 ((i, r, β)-Sequentiality). Let A be a (q, tp,κ)-adversary and fix T >
0. Let S be (k, T, ϵ)-unpredictable for some ϵ > 0. For any i ∈ N, r ∈ (0, 1), let
Ti,r := T + (i − 1 + r) · δ and τi,r := ⌊(i − 1 + r) · κ⌋ · q. Let {S ′1, ..., S ′τi,r+1} be a

sequence of length τi,r + 1, where each S ′j depends on at least one component of S.
We say that VDFδ is (i, r, β)-sequential, if for all i ∈ N, r ∈ (0, 1) s.t. A outputs
ϕ̂1, ..., ϕ̂τi,r+1 before or at time Ti,r, we have

Pr
ϕ̂1,...,ϕ̂τi,r+1←AH,VDFδ

Ti,r

[∀j ∈ [τi,r + 1] : VDFδ(Eval, S
′
j,κ) = ϕ̂j] ≤ ϵ+ β.

The above probability holds over the random coins of A, H, VDFδ and the random
choice of S.

Relevance of our VDFδ oracle. As mentioned earlier, we consider the VDF con-
struction due to Wesolowski [Wes19], which is based on solving the classical RSW
time-lock puzzle over class groups of an imaginary quadratic field. It uses a hash
function HG : {0, 1}∗ → G, where G is a class group of an imaginary quadratic field.
On input s ∈ {0, 1}∗, the construction computes h := HG(s) and outputs the value
h2

δ . Verification can be done using δ
log(δ)

group elements and using a storage of
√
δ

group elements. This concrete instantiation would translate to our model by setting
the output distribution D to the distribution that first draws s ← S, computes
h = HG(s), and then evaluates the repeated squaring as described above. Note that
the adversary A may guess the outcome of the random variable D before time T +δ,
and we compensate for this in the definition via the factor β. Moreover, the adver-
sary may guess correctly the outcome s of S and try to compute VDFδ before time
T + δ. However, this is only possible with probability ϵ due to the unpredictability
of S.

We remark that for concrete constructions of VDFs such as Pietrzak’s or
Wesolowski’s VDF [Pie19,Wes19], a simpler (and less idealized) way of modeling
might be to consider adversaries A in the sequentiality definition from the class of
arithmetic circuits of depth at most δ. Indeed, this would not require to model the
VDF as an oracle, as one could simply bound the adversary’s probability of comput-
ing the VDF on unpredictable inputs according to the computational model. Since
the focus of this work is on constructions and lower bounds of BA, we choose to
model VDFs more abstractly to give a cleaner and more modular analysis of our
main protocols. Moreover, as we use the VDF as a anti-Sybil protection, we need
some way of quantifying the adversary’s resource budget, which is most commonly
done via bounding oracle access. To support our modeling approach, we prove in
full version, Appendix A, the sequentiality of our VDFδ oracle in the strong alge-
braic group model [vBS21,KLX20]. Although our proof holds for both constructions
from [Pie19,Wes19], we choose to analyze Wesolowski’s VDF to obtain our results
without additional trusted setup assumptions.

Protection against Homomorphic Computation of a VDFδ. Some concrete
constructions of VDFs (or of the related primitive time-lock encryption) may have an
homomorpism, where for any two inputs s1, s2, VDF(s1)·VDF(s2) = VDF(s1·s2). This
may enable an adversary to speed-up multiple evaluations of VDFδ on related inputs.
In case of Wesolowski’s VDF [Wes19], it already prevents such an homomorphism

due to the use of the hash function HG : {0, 1}∗ → G. Recall that here, first, a
group element h1 = HG(s1) is computed, then output ϕ1 is computed as ϕ1 =

h1
2δ in δ steps. Interestingly, this issue is also inherently prevented in our VDF

model due to the following reason. Recall that in our definition of sequentiality, we
require that inputs to the oracle go via a hash function H(·). Even if the VDF itself
exhibits a homomorphism, this effectively prevents any homomorphic evaluation for
our concrete application.

Adversary Model. The adversary in our protocol is modelled as a (q, tp,κ)-
algorithm A as defined above. A can control at most q parties each with a maximum
speedup of κ, such that q < n

⌊κ⌋+1
holds. In particular, the number of adversarial

parties can be at most < n
2

(this is the case for κ = 1). We consider an adaptive
adversary which can corrupt a party at any point during the protocol execution.
Once a party has been corrupted, it can arbitrarily deviate from the protocol ex-
ecution. Furthermore, it can deliver a message over the multicast channel only to
a subset of honest parties. In this way, it can send different messages to different
subsets of honest parties over the multicast channel. However, the adversary can not
drop the messages of honest parties from the channel or delay them for longer than
∆. Our adversary is rushing, which means it can observe all the messages that the
honest parties send in any round of the protocol, and then choose its own messages
for that round adaptively. We notice that we consider the standard notion of an
adaptive, rushing adversary, as opposed to the stronger notion of a strongly rush-
ing (or strongly adaptive) adversary (see for e.g., [ADD+19,ACD+19,CGZ21]) who
can adaptively corrupt parties and then delete messages that they sent in the same
round (prior to corruption).

Lifting the Assumption on Clock Synchronization. Here, we discuss how to
overcome the assumption that parties have synchronized clocks. Since we focus on
a setting, where parties do not share any PKI, it is crucial to relax this assumption,
so that parties can work with their respective local clocks. Lets say, local clocks of
individual parties can differ by at most time interval α. When parties are instructed
to send some messages in any round, they can always send messages at one particular
time of the day, say 10:00 AM, local time. The duration of each round ∆ can be
set as ∆ := 2α, to make sure that every party received messages sent back from all
other parties before the current round ends and the next round begins.

2.2 Definitions

In this work, we focus on n-party protocols that reach consensus a.k.a. Byzantine
agreement when up to q out of n parties are corrupted. All the following definitions
consider a synchronous setting of communication.

Definition 4 (Byzantine Agreement). A protocol executed among n parties
where each party Pi holds initial input xi and parties output upon terminating yi
achieves Byzantine Agreement if the following properties hold whenever at most q
parties are corrupted:

– Consistency: If two honest parties Pi, Pj output values yi, yj respectively, then
yi = yj.

– Validity: If all honest parties Pi have the same input xi = x, then all honest
parties output yi = x.

– Termination: All honest parties terminate.

We also study the sender-centric version of Byzantine Agreement, which is called
Byzantine Broadcast.

Definition 5 (Byzantine Broadcast). A protocol executed among n parties,
where a designated sender S holds an input x at the beginning of the protocol and
parties output yi upon terminating, achieves Byzantine Broadcast if the following
holds whenever at most q parties are corrupted:

– Consistency: If two honest parties Pi, Pj output values yi, yj respectively, then
yi = yj.

– Validity: If the sender S is honest, then all honest parties output yi = x.
– Termination: All honest parties terminate.

Graded byzantine agreement (also known as graded consensus) is a weaker vari-
ant of byzantine agreement, while graded broadcast (or gradecast, for short) is a
weaker variant of byzantine broadcast. They have been used in various previous
works (cf. graded byzantine agreement in [FM00] and [FLL21], gradecast in [MV17]
and [KK06b]). Both of them are very useful building blocks for byzantine agreement
and byzantine broadcast protocols.

Definition 6 (Graded Byzantine Agreement). A protocol Π executed among n
parties, where each party holds initial input xi and parties output upon terminating
a value yi and a grade ζi, achieves Graded Byzantine Agreement if the following
holds whenever at most q parties are corrupted:

– Consistency: If there is an honest party that outputs yi with grade ζi = 2, then
every other honest party outputs yj = yi with grade ζj ≥ 1.

– Validity: If all honest parties input xi = x, then every honest party outputs
yi = x with grade ζi = 2.

– Termination: All honest parties terminate.

Definition 7 (Graded Broadcast). A protocol Π among n parties, where a des-
ignated sender S holds an input x at the beginning of the protocol and parties output
a value yi and a grade ζi upon terminating, achieves Graded Broadcast if the fol-
lowing holds whenever at most q parties are corrupted.

– Consistency: If there is an honest party that outputs yi with grade ζi = 2, then
every other honest party outputs yj = yi with grade ζj ≥ 1.

– Validity: If S is honest, then every honest party Pi outputs yi = x with grade
ζi = 2.

– Termination: All honest parties terminate.

For the following definition, let KeySet be the local key set of a party P , which keeps
tuples of the form (pkj, ζj). pkj is the public key of some party Pj and ζj ∈ {1, 2} is
the grade assigned to this key.

Definition 8 (Graded Public Key Infrastructure). A protocol Π among n
parties, where parties output a set KeySet upon terminating achieves Graded PKI
(tolerating q corrupted parties) if the following holds for any two honest parties
Pi, Pj.

– Graded Validity: Pi’s public key pk is assigned grade 2 by Pj (i.e., (pki, 2) ∈
KeySetj).

– Graded Consistency: If Pi assigns grade 2 to a public key pk, i.e., (pk, 2) ∈
KeySeti), then Pj assigns at least grade 1 to the same key, i.e., (pk, ζ) ∈ KeySetj,
where ζ ≥ 1.

– Bounded Number of Identities: Let N := |⋃i∈[n]Pi∈H
KeySeti| be the total

number of keys in the combined key sets of all honest parties H, then the total
number of keys that belong to corrupted parties is < 1

2
N.

– Termintaion: All honest parties terminate.

We remark that we require the properties in the above definitions to hold with
probability 1−2−κ (where κ is the security parameter), but we omit this detail from
the definition for ease of presentation.

Signature Schemes. We use the following standard definition of digital signature
schemes.

Definition 9 (Signature Schemes). A digital signature scheme is a triple of al-
gorithms (KeyGen, Sign,VrfySig) with the following properties. On input the security
parameter κ, the randomized key generation algorithm KeyGen outputs a key pair
(sk, pk). On input a message m ∈ {0, 1}∗ and a secret key sk, the randomized sign-
ing algorithm Sign outputs a signature σ. On input a public key pk, a message
m ∈ {0, 1}∗, and a signature σ, the deterministic verification algorithm VrfySig
outputs 1 if the signature is correct or 0 otherwise.

Assume for convenience of notation that to each signed message implicitly has the
public key of the signer and a fresh nonce appended. We require that the scheme
satisfies (perfect) correctness, i.e., for all m ∈ {0, 1}∗ and (sk, pk) output by KeyGen
it holds that: VrfySig(pk, Sign(sk,m),m) = 1. In line with most works in this area,
we treat signature schemes as idealized objects satisfying perfect unforgeability.
This means that it is information-theoretically impossible to forge a signature under
some public key pk without knowing the corresponding secret key sk. It is easy
to instantiate our schemes with a concrete scheme satisfying unforgeability under
chosen message attack [GMR84].

3 Graded Public Key Infrastructure (GPKI)

In a public key infrastructure (PKI) setting, parties have a globally consistent view
of a keyset, containing n public keys, where n is the total number of parties. As

a starting point, we present a construction which is similar to such a PKI. The
challenge that we face without an a-priori setup is that we can not easily achieve a
globally consistent view on the protocol participants. As discussed in the last Sec-
tion 2.1, we do not know the exact number of parties, but a known upper bound n.
We address this problem by building a so-called graded PKI. A graded PKI differs
from a “real” PKI since the local views of parties Pi, Pj on their respective key sets
KeySeti,KeySetj can differ. Here we present ΠKeyGrade (c.f. Figure 2), which achieves
a graded PKI in the VDF + random oracle model. Our protocol builds on earlier
works [KMS14,AD15] which achieve a stronger notion of GPKI with n grades but
require O(nκ2) rounds to do so. In contrast, we run a 2-graded protocol requiring
only a constant number of rounds. We begin by giving some intuition about our
protocol and identifying the main challenges that it has to overcome. We describe
the protocol from the view of a (honest) party P with κ = 1.

Challenge Phase. The protocol begins with a two-round challenge phase. For
i ∈ {1, 2}, we denote i-th challenge message as (chal||i, ·).

– First round: P samples a uniform challenge c ← {0, 1}κ+log(tp)+2 log(κ)+1. P then
multicasts the message (chal||1, c). Let c := (c1, . . . , cθ), where θ ≤ n, denote the
vector of challenges that P receives from parties (including its own) by the end
of the first round.

– Second round: P computes its second round challenge d as d := H(c) and mul-
ticasts the message (chal||2, d). Denote d := (d1, . . . , dθ′), where θ′ ≤ n, as the
challenges that P receives over the course of the second round (including its own)
and denote χ := H(d) as their hash.

Proof of Computation Phase. The challenge phase is immediately followed by a
proof of computation phase. At the beginning of this round, P generates a fresh pair
of keys as (sk, pk)← KeyGen(1λ). P then calls VDFδ on input (Eval, s := {χ, pk}, 1)
to compute the proof ϕ.

Key Grading Phase. After computing ϕ in the proof of computation phase, a
party P runs a phase of key grading, during which the public key of each other
party will be assigned a grade in {1, 2}. This phase consists of three rounds, where
parties send around messages of the form (rank||i, ·), i ∈ {1, 2}, for assignment of
the i-th grade.

– First round: P multicasts the message (rank||2, pk, χ, ϕ,d).
– Second round: For each such message (rank||2, pkj, χj, ϕj,dj) that was re-

ceived by time 3∆ + δ from some party Pj, P checks whether it was correctly
formed. More precisely, P first checks that ϕj is a proof that passes verifica-
tion for the input {χj, pkj}, i.e., VDFδ(Verify, ϕj, {χj, pkj}) = 1. Next, it checks
that χj is consistent with dj, i.e., χj = H(dj). Lastly, P checks if its second
round challenge d ∈ dj. If all these checks verify, P is convinced that Pj could
not have started computing ϕj earlier than at round 2∆, as ϕj depends on a

value that P chose uniformly at random at this time. Hence, it assigns the
highest grade 2 to pkj, i.e., it adds (pkj, 2) to KeySet. To make sure that ev-
ery other honest party assigns pkj at least grade 1, P multicasts the message
(rank||1, pkj, χj, ϕj,dj, c). Note that, party Pj also follows the same steps as above
for each received message (rank||2, pkl, χl, ϕl,dl) from Pl and accordingly sends
around (rank||1, pkl, χl, ϕl,dl, cj), if it has assigned grade 2 to Pl.

– Third round: Let (rank||1, pkl, χl, ϕl,dl, cj) (for l ̸= j), be the message received
by the end of the previous round from Pj, where Pj’s key pkj was already assigned
grade 2 by P in the first grading step. It assigns grade 1 to pkl (i.e., it adds
(pkl, 1) to KeySet), if it has not assigned grade 2 to pkl in the previous round but
is convinced from Pj’s perspective (i.e., from the messages received from Pj) that
pkl should have been marked with grade 2. In addition, P needs to be convinced
that the proof ϕl depended on some unpredictable value and could not have been
computed earlier than at time 2∆. To make sure of this, P does the following.
It first checks that the proof ϕl passes verification for the input {χl, pkl}, i.e.,
VDFδ(Verify, ϕl, {χl, pkl}) = 1. Note, however, that since Pl is a dishonest party
(otherwise, P would have already graded pkl in the first grading step), it may
have computed χl = H(dl) independently of P ’s second round challenge d. In this
case, it verifies instead that χl depends on c, by checking that both H(cj) ∈ dl

and c ∈ cj. If all these checks pass, P adds (pkl, 1) to KeySet. Once all messages
of this form have been processed, P outputs KeySet.

It is easy to verify that each honest party’s key is assigned grade 2 by every honest
party, thus proving graded validity. Additionally, the second step of the key grading
ensures any key that an honest party has assigned grade 2 is assigned a grade of
at least 1 by all honest parties – this implies graded consistency. Finally, an honest
party only accepts keys if it is convinced that its corresponding proof could not
have been precomputed prior to the beginning of the proof of computation phase.
The duration of the proof of computation phase is set to δ according to the VDFδ

oracle. While an honest party (with no speed-up) computes one proof within δ time,
an adversarial party with κ-speed-up of computational power computes ⌊κ⌋ proofs
within the same time δ. Below, we will set the parameter δ such that no adversarial
party can make more than ⌊κ⌋ calls to VDFδ for the entire duration of the protocol,
given that it calls VDFδ earliest at the beginning of the Challenge phase. Taken
together, the total number of adversarial keys accepted by honest parties can not
exceed half of the total number of keys. This implies bounded number of identities.

The following sequence of lemmas prove the security of ΠKeyGrade. Lemmas 1 to 3,
respectively, show that ΠKeyGrade satisfies the properties of graded validity, graded
consistency and bounded number of identities as per Definition 8.

Lemma 1. Protocol ΠKeyGrade achieves graded validity.

Proof. It is easy to verify that all honest parties’ keys are assigned the highest grade
2 by all other honest parties from the protocol description. Hence, the protocol
satisfies graded validity (for any number of corrupted parties). ⊓⊔

Protocol ΠKeyGrade

We describe the protocol from the view of an honest party P with no speed-up of computational
power, where P has access to a random oracle H : {0, 1}∗ → {0, 1}κ+log(tp)+2 log(κ)+1 and an
oracle VDFδ. P executes the following phases.

Challenge Phase.

– At time 0: Sample c $← {0, 1}κ+log(tp)+2 log(κ)+1 and multicast the message (chal||1, c).
– At time ∆: Add all θ(≤ n) challenges received by time ∆ to the set ci = (c1, . . . , cθ).

Compute d = H(c) and multicast the message (chal||2, d).

Proof of Computation Phase.

– At time 2∆: Add all θ′(≤ n) challenges received in round 2 to the set d = (d1, . . . , dθ′) and
compute its hash χ = H(d). Then, sample key pair (sk, pk) ← KeyGen(1λ) and compute
ϕ = VDFδ(Eval, s := {χ, pk}, 1).

Key Ranking Phase. Define the following Boolean conditions:

– C2(j): VDFδ(Verify, ϕj , {χj , pkj}) = 1, χj = H(dj), and d ∈ dj .
– C1(j, l): (pkj , 2) ∈ KeySet, (pkl, ·) /∈ KeySet, VDFδ(Verify, ϕl, {χl, pkl}) = 1, χl = H(dl),

H(cj) ∈ dl, and c ∈ cj .

Do:

– At time 2∆+ δ: Multicast (rank||2, pk, χ, ϕ,d).
– At time 3∆+δ: For each received message (rank||2, pkj , χj , ϕj ,dj) from Pj , such that C2(j),

add (pkj , 2) to KeySet and multicast the message (rank||1, pkj , χj , ϕj ,dj , c).
– At time 4∆ + δ: For each received message (rank||1, pkl, χl, ϕl,dl, cj) from Pj such that
C1(j, l), add (pkl, 1) to KeySet. After processing each message, output KeySet.

Fig. 2. A protocol for establishing a GPKI with 2 grades run between n parties, where parties have access
to a random oracle H and an oracle VDFδ. Duration of the ΠKeyGrade protocol is (5∆+δ). For the subsequent
Sections we set δ := 11∆, which sets the duration of the protocol to 16∆.

Lemma 2. Protocol ΠKeyGrade achieves graded consistency.

Proof. Let Pi and Pj be honest parties. We show that if Pj assigns grade 2 to some
party Pl’s public key pkl, then Pi assigns pkl at least grade 1. Since (pkl, 2) ∈ KeySetj,
in the second round of the Key Grading Phase, Pj must have received a correctly
formed message (rank||2, pkl, χl, ϕl,dl) from Pl, i.e., such that VDFδ(Verify, ϕl, {χl, pkl})
= 1, and that χl depends on Pj’s first round challenge dj, i.e., χl = H(dl) and dj ∈ dl.
Thus, Pj multicasts the message (rank||1, pkl, χl, ϕl,dl, cj) to all parties at the be-
ginning of the third round of the Key Grading Phase. Pi receives this message by
the end of the third round of the Key Grading Phase and has, at that point, already
assigned pkj grade 2. It is then able to verify that Pj’s message is correctly formed
and depends on ci (by performing Pj’s checks and the additional checks ci ∈ cj and
dj = H(cj)). Hence, it assigns pkl the grade 1 at this point, unless it has previously
assigned it the grade 2. ⊓⊔
Lemma 3. Suppose that A is a (q, tp,κ)-algorithm where q < n

⌊κ⌋+1
, For k ∈ N, let

δ = k∆. If k > 5κ, and VDFδ is (2, 5
k
, β)-sequential, then ΠKeyGrade achieves bounded

number of identities with probability at least 1 − (2−κ−2 log(κ)−1 + β). In particular,
if N := |⋃i∈[n]Pi∈H

KeySeti| be the total number of keys in the combined key sets of

all honest parties H, then the total number of keys that belong to corrupted parties
is < 1

2
N.

Proof. Suppose that parties run ΠKeyGrade at time T . Let E be the event that A
predicts the first round challenge value ci of at least one honest party Pi at time
T ′ < T . Since A runs for at most tp steps and each honest party Pi samples ci
uniformly from the space {0, 1}κ+log(tp)+2 log(κ)+1, E occurs with probability at most
2−κ−2 log(κ)−1. By Definition 2, this means that the sequence of honest challenges
{c}i,Pi∈H is ((n − q), T, 2−κ−2 log(κ)−1)-unpredictable. Since the duration of ΠKeyGrade

is δ + 5∆, the protocol terminates at T + δ + 5∆. From (2, 5
k
, β)-sequentiality of

VDFδ, we have

T2, 5
k
= T + (δ + 5∆) = T + (1 +

5∆

δ
) · δ = T + (1 +

5

k
) · δ

τ2, 5
k
= τ = ⌊(1 + 5

k
) · κ⌋ · q = ⌊κ +

5κ
k
⌋ · q = ⌊κ⌋ · q (Since, k > 5κ)

Let χ1, . . . , χτ+1 depend on {c}i,Pi∈H and let pk1, ..., pkτ+1 be pairwise distinct.
A is able to compute at most q · ⌊κ⌋ VDFs within time (T + δ + 5∆) via honest
invocations of the VDFδ oracle. It follows from (2, 5

k
, β)-sequentiality of VDFδ that

A can output {ϕi}i∈[τ+1] before or at time (T + δ+5∆) such that for all j ∈ [τ +1],
VDFδ(Verify, ϕj, {χj, pkj}) = 1 with probability at most 2−κ−2 log(κ)−1 + β. (Note
that if χj does not depend on {c}i,Pi∈H, no honest party accepts pkj). As a result,
the number of identities produced by A is bounded by τ with probability at least
1− (2−κ−2 log(κ)−1 + β). The total number of keys from honest and corrupted parties
can be given by N = (n − q) + τ = (n − q) + q · ⌊κ⌋, and the total number keys
belonging to corrupted parties is τ = q · ⌊κ⌋ < (n − q) (given that q < n

⌊κ⌋+1
) or,

q⌊κ⌋ < 1
2
N. ⊓⊔

Corollary 1. Since δ > 5κ · ∆ ≥ (5κ + 1) · ∆, the duration of ΠKeyGrade is set as
δ + 5∆ := (5κ + 6) ·∆.

Corollary 2. If n be the number of parties in the ΠKeyGrade protocol, q be the number
of adversarial parties, each with speedup at most κ, then the total number of keys
in the combined keysets of all honest parties is given as

N := |
⋃

i∈[n]Pi∈H

KeySeti| = (n− q) + q · ⌊κ⌋ = n+ q · (⌊κ⌋ − 1).

Parameter Selection. For the remaining sections of the paper we set κ = 2,
which gives us: δ > 10 ·∆ ≥ 11∆. We assign δ := 11∆, and accordingly duration of
ΠKeyGrade := 16∆. To tolerate a higher speed-up of adversarial parties the parameters
need to be adjusted accordingly.

4 Construction of Graded Broadcast (GBC) from GPKI

As a next step, we construct a graded broadcast protocol that is an adaptation of the
protocol in [MV17]. The resulting protocol ΠGBC only requires a graded PKI whereas
the original required a full PKI. In the GPKI setting, parties neither have a global
consistent view of all parties’ keys, nor do they know the exact number of parties
(only an upper bound n). Henceforth, parties rely on their local KeySet obtained as
an output of the ΠKeyGrade protocol. The total number of keys obtained after running
the ΠKeyGrade protocol is set to N = n+q · (⌊κ⌋−1). Before describing protocol ΠGBC

in Figure 3, we introduce some nomenclatures that will help to present our protocol
succinctly. In the following, we assume a fixed sender S.

– A signature ⟨x⟩i is valid in the view of party P , if (i) P has assigned grade 2 for
pki, i.e., (pki, 2) ∈ KeySetP and (ii) VrfySig(⟨x⟩i , pki) = 1.

– A signature ⟨x⟩i is weakly valid in the view of party P , if (i) (pki, gi) ∈ KeySetP ,
where gi ≥ 1 and (ii) VrfySig(⟨x⟩i , pki) = 1.

– We refer to an iterated signature of the form ⟨⟨x⟩S⟩j (i.e., by S and some party
Pj) as a countersignature and say that Pj is the outer signer.

– A countersignature ⟨⟨x⟩S⟩j is said to be valid in the view of party P if the
following holds. (i) (pkS, 2) ∈ KeySetP , (ii) VrfySig(⟨x⟩S , pkS) = 1, (iii) (pkj, 2) ∈
KeySetP , and (iv) VrfySig(⟨⟨x⟩S⟩j , pkj) = 1.

– A countersignature ⟨⟨x⟩S⟩j is said to be weakly valid in the view of party P if
the following holds. (i) (pkS, gS) ∈ KeySetP , gS ≥ 1 (ii) VrfySig(⟨x⟩S , pkS) = 1,
(iii) (pkj, gj) ∈ KeySetP , gj ≥ 1, and (iv) VrfySig(⟨⟨x⟩S⟩j , pkj) = 1.

– A set of signatures ψ(x) is said to be consistent for x in the view of party P , if
it contains valid countersignatures on x from at least N

2
distinct outer signers.

– A set of signatures ψ(x) is said to be weakly consistent for x in the view of party
P , if it contains weakly valid countersignatures on x from at least N

2
distinct

outer signers.

The following sequence of lemmas proves security of ΠGBC.

Lemma 4. If the sender S is honest and inputs x, then every honest party P mul-
ticasts a set of signatures ψP (x) at time 2∆ which is consistent for x in the view of
every honest party.

Proof. If the sender S is honest, then it multicasts x with a valid signature ⟨x⟩S
at time 0. Let P be an honest party. From the protocol description, P generates
a valid countersignature as ⟨⟨x⟩S⟩P and multicasts it at time ∆. At time 2∆, P
collects valid countersignatures of the form ⟨⟨x⟩S⟩k from all parties Pk with gk = 2
into its set of signatures ψP (x). Note that due to the graded validity property of
the underlying graded PKI, if Pk is honest, then Pk’s public key has grade 2 for P ,
i.e., ((pkk, 2) ∈ KeySetP). As there are at least N

2
honest parties, this implies that

P ’s signature set ψP (x) contains at least N
2

countersignatures from honest parties.
Moreover, since honestly generated countersignatures are valid in the view of each

Protocol ΠGBC

We describe the protocol from the view of party P with a sender S. P executes the following
three phases.

– At time 0: If P is the sender S, it computes signature on message x as ⟨x⟩S and multicasts
(x, ⟨x⟩S) to all parties.

– At time ∆: If P sees (x, ⟨x⟩S), where ⟨x⟩S is a valid signature on message x, then P
multicasts (x,

〈
⟨x⟩S

〉
P
) to all parties.

– At time 2∆: Party P collects all valid countersignatures of the form (x′,
〈
⟨x′⟩S

〉
k
) from

parties Pk with same input x′. P constructs the signature set ψ(x′) with message x′ as
(
ψ(x′) :=

{〈〈
x′
〉
S

〉
k

}
k

)
.

If ψ(x′) is a consistent signature set from P ’s view and it has not received a countersignature
of the form

〈
⟨x′′⟩S

〉
k
, where x′′ ̸= x′ then P multicasts ψ(x′). (Otherwise, P multicasts

nothing).
– At time 3∆: Let ψk(x

′) be a weakly consistent signature set received from party Pk (note
that this includes consistent sets).To determine its output, P does as follows:
• If P sees at least N

2
consistent signature sets of the form ψk(x

′) (for distinct k) on x′,
then P outputs (x′, 2).

• If P sees at least one weakly consistent signature set ψk(x
′) for some x′, and no weakly

consistent signature set for a different value x′′ ̸= x′, then it outputs (x′, 1).
• Else, P outputs (⊥, 0).

Fig. 3. Gradecast protocol ΠGBC, where each party has a local KeySet from ΠKeyGrade protocol. Duration
of ΠGBC is 4∆. N = n+ q · (⌊κ⌋ − 1) (c.f Corollary 2).

honest party, this implies that ψP (x) is a consistent signature set in the view of every
honest party. Due to the unforgeability of underlying digital signature scheme, there
is no valid countersignature of the form ⟨⟨x′⟩S⟩k, where gk = 2 and x′ ̸= x. Hence,
P multicasts a set ψP (x) at time 2∆ which consistent in the view of every honest
party. ⊓⊔

Lemma 5. If, at time 3∆, an honest party receives at least N
2

sets of signatures
which are all consistent with (the same) x, no honest party receives a set of signatures
that is weakly consistent with x′ ̸= x.

Proof. Let us assume that at time 3∆, honest party Pi receives at least N
2

signature
sets which are all consistent with some value x. This implies that among them,
there is at least one set ψP (x) which was sent by an honest party P at time 2∆.
Now, towards contradiction, suppose honest party Pj receives the set ψP ′(x′) of
countersignatures from party P ′ such that ψP ′(x′) is weakly consistent with x′ ̸= x.
By definition, ψP ′(x′) contains at least N

2
weakly valid countersignatures on x′ from

distinct outer signers. Among these N
2

outer signers, there is at least one honest
party P ∗. Since P ∗ would have sent the countersignature ⟨⟨x′⟩S⟩P ∗ at time ∆, all
honest parties would have received it by time 2∆. Hence, no honest party would
have sent a consistent set of signatures for x at time 2∆. This contradicts that P
sends such a set at time 2∆. ⊓⊔

Lemma 6. Protocol ΠGBC achieves graded validity.

Proof. If S is honest, then by Lemma 4 every honest party P multicasts a signature
set ψP (x) at time 2∆ which is consistent with x. At time 3∆, every honest party
hence receives at least N

2
such signature sets. Moreover, by Lemma 5, no honest

party receives a set of signatures that is weakly consistent with some x′ ̸= x. This
implies that all honest parties output (x, 2). ⊓⊔
Lemma 7. Protocol ΠGBC achieves graded consistency.

Proof. Let P be a honest party that outputs (x, 2). We want to show that every
honest party P ′ outputs (x, g′ ≥ 1). Since P outputs grade 2 for value x, it receives
at least N

2
signature sets from distinct parties which are all consistent with x. One

of these sets must have been sent by an honest party P ∗ and received by time 3∆.
Therefore, P ′ must have also received this set ψP ∗(x) from P ∗ by time 3∆. From the
graded consistency property of the underlying graded PKI, each countersignature
that is valid in P ∗’s view, is weakly valid in each honest parties view. This implies
that ψP ∗(x) is a weakly consistent signature set in the view of party P ′. By Lemma 5,
P ′ receives no signature set that is weakly consistent with x′ ̸= x. Hence, P ′ outputs
(x, 2) or (x, 1). ⊓⊔

4.1 Construction of a Graded Byzantine Agreement from GBC

We define a simple graded byzantine agreement protocol ΠGBA in fig. 4 from ΠGBC.
As a first step, each party runs ΠGBC as the sender with their input. In the following
step, a value is output with grade 2 or 1 depending on the message/grade outputs of
the ΠGBC initiated by other parties. The security of ΠGBA follows from the following
sequence of lemmas.

Protocol ΠGBA

We describe the protocol from the view of party P , where P executes the following two steps.

– At time 0: Initiate ΠGBC as the sender with input x.
– At time 4∆: Let (xj , gj) be the message/grade that P outputs in the gradecast initiated

by Pj . For all v that were received in at least one invocation of ΠGBC, P sets Sv :=
{j : xj = v ∧ gj = 2} and S̃v := {j : xj = v ∧ gj ≥ 1} .
• If there exists v s.t. |S̃v| ≥ N

2
, then prepare a tuple t of value, grade pair s.t. t := (v, 1),

otherwise t := (⊥, 0).
• If |Sv| ≥ N

2
, then t := (v, 2).

• output t.

Fig. 4. Graded Byzantine Agreement protocol ΠGBA, where each party has a local KeySet from ΠKeyGrade

protocol. Duration of ΠGBA is 4∆. N = n+ q · (⌊κ⌋ − 1) (c.f Corollary 2).

Lemma 8. Protocol ΠGBA achieves graded validity.

Proof. If Pi output vi with grade 2, this means Pi must have set |Svi | ≥ N
2
. Due to

the graded consistency property of ΠGBC, Pj must have |Svj | ⊇ |Svi | ≥ N
2
, such that

vj = vi. This implies Pj outputs value vj = vi with grade at least 1. ⊓⊔

Lemma 9. Protocol ΠGBA achieves graded consistency.

Proof. Due to the graded validity property of ΠGBC, the result follows immediately.
⊓⊔

5 Achieving Byzantine Agreement

As the final step, we build our Byzantine agreement protocol ΠBA (c.f. Figure 5).
Though our protocol is an adaptation of the same from [KK06a], it uses as main
ingredients the graded PKI protocol ΠKeyGrade (Figure 2) and the graded byzantine
agreement protocol ΠGBA (Figure 4) from Sections 3 and 4.1 respectively. One subtle
difference because of the use of a graded PKI is that each party P relies on their
local KeySetP . To make the BA protocol work, we need one more ingredient – a
leader election protocol. More precisely, as one of the steps of the ΠBA protocol, it
is necessary to elect one of the parties as a leader in an unpredictable manner such
that an honest party will be elected with constant probability. For the description
of ΠBA, we assume a protocol ΠLeader that is run as a subroutine to ΠBA, in parallel
with protocol ΠKeyGrade. As we will explain later, the subprotocols ΠKeyGrade and
ΠLeader share a common state. For our purposes, we will require that the subprotocol
ΠLeader has the following properties for all k ∈ N and all pairs of honest parties P, P ′,
assuming that parties initiate ΠBA at time 0:

– ΠLeader outputs a value ℓP to P at time (12 · k + 27) ·∆.
– With probability at least n−q

N
≥ 1

2
, ℓP = ℓP ′ = ℓ and Pℓ is an honest party at

round (12 · k + 24) ·∆.

We present an instantiation ΠLeader based on VDF in Section 5.1. The following
theorem summarizes the properties of our ΠBA protocol.

Theorem 2. Suppose that ΠKeyGrade be a graded public key infrastructure protocol,
ΠGBA be a graded byzantine agreement protocol and ΠLeader be a leader election pro-
tocol run between n parties. Then ΠBA is a Byzantine agreement protocol tolerating
q corrupted parties with at most 2-speedup of computational power, where q < n

3
.

Moreover, it terminates within O(1) rounds in expectation for all honest parties,
and with probability 1− 2−κ within 16 + 12 · (κ+ 1) rounds.

Our proof for Theorem 2 is almost identical to [KK06a, Theorem 13] which is
why we defer it to full version, Appendix E. After an initial setup phase in which
parties agree on a graded PKI via ΠKeyGrade and run the setup steps for ΠLeader, the
ΠBA protocol proceeds in iterations. In every such iteration, we invoke two graded
byzantine agreement subroutines and one multicast subroutine, and update the val-
ues lock and m until they converge on a common value for m. Here, the variable
lock indicates the number of iterations after which the protocol may terminate. In
particular, lock =∞ means that the protocol could keep running for an unbounded
number of iterations, lock = 1 means that termination will be reached after one
more iteration and lock = 0 means that the protocol terminates in the next itera-
tion. Overall, each iteration requires 12∆ time.

To enter termination mode, i.e., to set lock = 1, parties rely on a randomly
elected leader who is chosen in the last round of an iteration via ΠLeader. In our
construction of ΠLeader, honest parties learn the identity of the leader for the k-th
iteration at time (12 · k + 27) ·∆. On the other hand, dishonest parties learn it at
round (12 · k + 25) · ∆ – this is because dishonest parties, controlled by a rushing
adversary can start the proof of computation phase of the ΠKeyGrade at time 0 instead
of at time 2∆. Hence, the idea is to have all parties perform a multicast instruction
in the protocol at round (12·k+24)·∆, i.e., one round prior to the adversary learning
about the identity of the the leader. If the elected leader executed this instruction
honestly (which happens with probability at least 1

2
), the protocol enters termina-

tion mode, meaning that all honest parties set lock = 1. Overall, the protocol enters
the termination routine after at most κ many iterations with probability all but 2−κ.

Generalization of Theorem 2. Our Theorem 2 can be expressed more generically
in the following Theorem 3, for any speedup parameter κ ∈ R>0, where the number
of rounds of ΠKeyGrade is (5κ + 6) ·∆ (c.f Corollary 1). In particular, for the lowest
value of κ = 1, our ΠBA protocol tolerates at most < n

2
corrupted parties.

Theorem 3. Suppose that ΠKeyGrade be a graded public key infrastructure protocol,
ΠGBA be a graded byzantine agreement protocol and ΠLeader be a leader election pro-
tocol run between n parties. Then ΠBA is a Byzantine agreement protocol tolerating q
corrupted parties with at most κ-speedup of computational power, where q < n

(⌊κ⌋+1)
.

Moreover, it terminates within O(1) rounds in expectation for all honest parties, and
with probability 1− 2−κ within (5κ + 6) + 12 · (κ+ 1) rounds.

Proof of Theorem 3 follows similar to that of Theorem 2.

5.1 The Protocol ΠLeader

In this section, we present our construction of the leader election protocol ΠLeader

(cf. Figure 6) that relies on a VDF accessed as an oracle. The idea of our protocol is
for each party to compute a proof of (sequential) computation on some value that
could not have been predicted before commencing the current run of ΠLeader. More
concretely, parties are asked to present an evaluation of VDF at periodic steps in
ΠLeader and spend the time interval between these steps in computing of the next
evaluation. Such a chain of sequential evaluations of VDF is only accepted in round r
if it accounts for r sequential steps of computation. In addition, it must be possible
to ensure that the computation could not have started before the onset of the first
round.

The key observation is that per party, there can be at most one such sequence of
evaluations that accounts for the entire duration of ΠLeader up to that round (since
evaluations of a VDF can not be parallelized). Moreover, the adversary can not pre-
dict the sequences produced by honest parties due to its limited budget of compu-
tation. Hence, parties can use (hashes of) these sequences as unique (per party) and
unpredictable sources of randomness, which can be verified by everyone efficiently.
In each election, the party who produces the smallest hash, computed according to

Protocol ΠBA

We describe the following protocol from the view of party P with input mP .

Setup Phase.

– At time 0: Participate in a run of ΠKeyGrade. In parallel, participate in a run of ΠLeader.
– At time 16∆: Denote KeySetP the set of keys output in ΠKeyGrade. (Hereafter, it is assumed

that parties share a graded PKI.)

Agreement Phase. Initialize lock := ∞, m := mP and k := 0. Repeat the following loop
forever:

– At time (12k + 16) ·∆: Initiate ΠGBA on input m.
– At time (12k + 20) ·∆:
• Let (v, g) be the output of P . If lock =∞ then:

∗ If g = 2, set lock := 1.
∗ If g = 1, then set m := v.
∗ If g = 0, then set m = ⊥.

• Initiate ΠGBA on input m.
– At time (12k + 24) ·∆:
• Let (v, g) be the output of P . If lock =∞ then:

∗ If g = 1, then set m := v.
∗ If g = 0, then set m = ⊥.

• Multicast m.
– At time (12k + 27) ·∆:
• Set k := k + 1 and denote mj the message received from Pj . Let ℓ denote the output

obtained from ΠLeader.
• If lock =∞ and m = ⊥, then P sets m := mℓ.
• If lock = 0, P outputs m and terminates.
• If lock = 1, then P sets lock := 0.

Fig. 5. A Byzantine agreement protocol ΠBA, where parties share a graded PKI by running the ΠKeyGrade

protocol. ΠBA internally invokes two other subprotocols: graded byzantine agreement protocol ΠGBA and a
leader election protocol ΠLeader. N = n + q · (⌊κ⌋ − 1) (c.f Corollary 2). We set N = n + q (for adversarial
speedup κ = 2). All parties have access to random oracles H : {0, 1}∗ → {0, 1}κ+log(tp)+2 log(κ)+1, HN :
{0, 1}∗ → N and an oracle VDFδ.

hash function HN : {0, 1}∗ → N, will be elected as the leader in ΠLeader. Since an
honest party sends its hash to everyone and each party produces the smallest hash
with the same (uniform) probability, parties agree on the hash of an honest leader
as the minimal hash with probability at least 1

2
in every election We note that this

idea closely mimics the standard approach of electing leaders in Byzantine agree-
ment protocols using verifiable random functions (VRFs). However, to use VRFs, it
is required that a trusted dealer generates and distributes the keys or some unpre-
dictable random string at the beginning of the protocol. Since we can not rely on
either of these setup assumptions, we choose to instead rely on the above approach
that uses VDFs.

Our ΠLeader protocol is formally described in Figure 6. Below, we elaborate on
the two phases of the protocol from the view of (an honest) party P in a bit more
detail and give some intuition about them.

Setup Phase. The protocol begins at time 0 with a one-time setup phase which is
executed in parallel with a run of ΠKeyGrade. Recall that ΠKeyGrade begins with two

Protocol ΠLeader

We describe the protocol from the view of an honest party P with κ = 1. Initialize a set
L := {}. P participates (in parallel) in a run of ΠKeyGrade. (We make this explicit below).

Setup Phase.

– At time 0: In parallel, participate in a run of ΠKeyGrade.
– At time 13∆: Denote ϕ0 = VDF11∆(Eval, χ, 1) the proof computed during the proof of

computation phase of ΠKeyGrade. Call VDF13∆(Eval,HN(ϕ
0), 1) to compute ϕ1.

– At time 16∆: Denote KeySet the set of keys output in ΠKeyGrade.

Leader Election Phase. Initialize k := 1 and badj := false, for all j ∈ [n] s.t. there exists
(pkj , gj) ∈ KeySet. (We refer to the owner of pkj as Pj below). Denote ϕ0

j the proof of computa-
tion received together with pkj during ΠKeyGrade. Repeat the following sequence of steps forever:

– At time (26 + 12(k − 1)) · ∆: Upon completing computation of ϕk, call
VDF12∆(Eval,HN(ϕ

k), 1) to compute ϕk+1. Multicast ϕk.
– At time (27 + 12(k − 1)) · ∆: For all j ∈ [n], denote ϕk

j the proof received from party Pj

and do:
• Set badj := true if nothing was received from Pj in this iteration.
• If k = 1 and VDF13∆(Verify, ϕk

j ,HN(ϕ
0
j)) = 0, set badj := true.

• If k = 1 and VDF13∆(Verify, ϕk
j ,HN(ϕ

0
j)) = 1, and ¬badj then L := L ∪ {HN(ϕ

0
j)}.

• If k > 1 and VDF12∆(Verify, ϕk
j ,HN(ϕ

k−1
j)) = 0, set badj := true.

• If k > 1 and VDF12∆(Verify, ϕk
j ,HN(ϕ

k−1
j)) = 1 and ¬badj then L := L ∪ {HN(ϕ

k
j)}.

– If k = 1: Output ℓ, s.t. HN(ϕ
0
ℓ) = minL. Set k := 2.

– If k > 1: Output ℓ, s.t. HN(ϕ
k
ℓ) = minL. Set k := k + 1.

Fig. 6. Leader election protocol ΠLeader, where all parties have access to random oracles H : {0, 1}∗ →
{0, 1}κ+log(tp)+2 log(κ)+1, HN : {0, 1}∗ −→ N and an oracle VDFδ. ΠLeader is run for k ≥ 1 iterations
when the byzantine agreement protocol ΠBA, that invokes ΠLeader internally terminates after k iterations.
N = n+ q · (⌊κ⌋ − 1) (c.f Corollary 2). We set N = n+ q (for adversarial speedup κ = 2).

rounds of exchanging (unpredictable) challenges among parties. At the end of the
second round of exchanges, P creates a hash χ from these values. During the subse-
quent proof of computation phase, it then computes ϕ0 = VDF11∆(Eval, {χ||pk}, 1).
When ϕ0 becomes available at time 13∆, P immediately starts computing ϕ1 as
VDF13∆(Eval,HN(ϕ

0), 1). At time 16∆, P outputs KeySet in ΠKeyGrade.

Leader Election Phase. The setup phase is followed by a leader election phase,
which begins at time 26∆ and is repeated until P terminates ΠLeader from within the
invocation of ΠBA. (The time interval between these two phases is spent computing
VDF13∆(Eval,HN(ϕ

0)),1). P keeps a flag badj (initialized to false) for each key pkj
that it has previously accepted during ΠKeyGrade. The purpose of badj is to indicate
whether Pj (the owner of pkj) has ever stopped investing computational effort during
this run of ΠLeader. Note that since P has accepted pkj in ΠKeyGrade, it has already
received a proof ϕ0

j associated with pkj. This ensures that computational effort was
invested with respect to pkj up to time 13∆. Below, k denotes the current iteration
of the protocol ΠBA and is initialized as k := 1. The leader election phase now
proceeds in following two rounds:

– During the first round, P completes the computation of ϕk and immediately
commences computation of ϕk+1 by calling VDF12∆(Eval,HN(ϕ

k), 1). It multicasts
ϕk.

– In the second round, upon receiving ϕk
j from party Pj, P verifies that Pj has

continuously been investing computational effort in ΠLeader. To do so, it checks
that ¬badj holds and that VDF12∆(Verify, ϕ

k
j ,HN(ϕ

k−1
j)) = 1. If either of these

conditions is violated (or nothing was received from Pj), P sets ¬badj to indicate
that Pj has broken the chain of continuous computation from the beginning of
ΠLeader and can never again be trusted as an honest leader.

– P completes the iteration by computing the hash of every proof ϕk
j that it has

received for which ¬badj still holds. It elects the party Pℓ to be the leader if
HN(ϕ

k
ℓ) was the minimal value among all hashes. (Ties can be resolved by fixing

some arbitrary rule in the protocol description).

We say that a party, upon receiving a proof ϕk
j from another party Pj, accepts

it, provided it does not set badj = true. With this, we proceed to state Lemmas 10
to 12 below formally. To prove our results, we consider (2, 5

11
, β), (2, 1

6
, β), (2, 2

13
, β)

sequentiality of VDF11∆, VDF12∆ and VDF13∆ respectively in presence of a (q, tp, 2)
adversary.

Lemma 10. Let A be a (q, tp, 2)-algorithm, where q < n
3

and suppose that VDF11∆,
VDF12∆ and VDF13∆ are respectively (2, 5

11
, β), (2, 1

6
, β) and (2, 2

13
, β) sequential. If

ΠLeader is run at time 0, then with probability at least 1 − (2−κ−2 log(κ)−1

+ β), for all k ≥ 1, A outputs at most τ = 2q proofs ϕk
1, ..., ϕ

k
τ within time (12 ·

(k− 1)+ 26) ·∆, such that for all i ∈ [τ], ϕk
i is accepted by at least one honest party

in ΠLeader.

Proof. From the arguments of Lemma 3 and due to (2, 5
11
, β) sequentiality of VDF11∆,

A computes at most ⌊(2 + 5·2
11
)⌋q = 2q proofs of the form ϕ0

i = VDF11∆(Eval, χi,κ),
(κ ≤ 2), earliest at time 11∆. Next, A can make at most 2q different calls of the form
VDF13∆(Eval,HN(ϕ

0
i),κ) at 11∆, which returns 2q proofs of the form ϕ1

i at 24∆. An
honest party computes its ϕ0 and ϕ1 at time 13∆ and 26∆ respectively. Due to the
(2, 2

13
, β) sequentiality of VDF13∆, A cannot complete any additional proof ϕ1

i within
the remaining time (26− 24)∆ = 2∆. Applying the same argument inductively for
k ≥ 2 and VDF12∆(Eval,H(ϕ

k−1
i),κ) completes the proof. ⊓⊔

Using the above lemma, we can now view the entire set of proofs that are accepted
by at least one honest party in any iteration k of ΠLeader as a vector of random
variables hk = (ϕk

1, ..., ϕ
k
p), where p ≤ n. We now prove that hk is unpredictable

from the view of A before time (25 + 12 · (k − 1)) ·∆, for all k ≥ 1.

Lemma 11. Suppose that VDF11∆,VDF12∆, and VDF13∆ are (2, 5
11
, β), (2, 1

6
, β),

(2, 2
13
, β) sequential respectively. Then for all k ≥ 1, the vector hk is (n − q, (25 +

12(k − 1)) ·∆, 2−κ−2 log(κ)−1 + (k + 1) · β)-unpredictable.

Proof. We prove this statement by induction on k. From the arguments of Lemma 3,
we know that the probability of a (q, tp, 2)-algorithm guessing any element of h0 is at

most 2−κ−2 log(κ)−1+β before (earliest) time 11∆. Thus, h0 is (n−q, 11∆, 2−κ−2 log(κ)−1+
β)-unpredictable and the base case k = 1 follows directly from combining (2, 2

13
, β)-

sequentiality of VDF13∆ with (n−q, 11∆, 2−κ−2 log(κ)−1+β)-unpredictability of h0. For
the step case, assume that hk is (n−q, (25+12(k−1)) ·∆, 2−κ−2 log(κ)−1+(k+1) ·β)-
unpredictable. Combining this with (2, 1

6
, β)-sequentiality of VDF12∆ immediately

yields that hk+1 is (n−q, (25+12(k−1))·∆, 2−κ−2 log(κ)−1+(k+2) ·β)-unpredictable.
⊓⊔

Lemma 12. Assume that the conditions of Lemma 11 hold. Set β = 2−2 log κ−κ−2.
Then with probability at least 1

2
and for all 1 ≤ k ≤ κ, all honest parties output ℓ in

ΠLeader such that Pℓ is honest at time (12(k − 1) + 24) ·∆.

Proof. For k ≥ 1 denote Ek the event that A queries H on an element of hk be-
fore time (12(k − 1) + 25) · ∆. By Lemma 11, Ek occurs with probability at most
2−κ−2 log(κ)−1+(k+1) ·β. By a union bound, E :=

⋃
1≤k≤κEk occurs with probability

at most 2κ2 · β + κ · 2−κ−2 log(κ)−1 ≤ 2 · 2−κ−1 ≤ 2−κ. Unless E occurs, the values
HN(hk,i) are uniformly random values in the range [N] from the view of A for all
1 ≤ i ≤ N at time (12(k − 1) + 25) · ∆. Hence, conditioned on ¬E, the compo-
nent ℓ which minimizes HN(hk,ℓ) corresponds to an honest party with probability
at least n−q

N
, where N = n + q. Overall, ℓ corresponds to an honest party at time

(12(k − 1) + 24) ·∆ with probability at least n−q
N

= n−q
n+q
≥ 1

2
(since q < n

3
). ⊓⊔

6 Communication Complexity in the VDF Model

In this section, we provide the first lower bound for the communication complexity
of Byzantine broadcast in the multicast model (c.f. Definition 10) in presence of a
VDF oracle. More concretely, inspired by [ACD+19, Section 7], we consider a setting
without a PKI where parties are connected via multicast channels. In addition –
and in contrast to previous work [ACD+19] – we assume that parties have access to
a VDF oracle. This adds additional technical challenges to the analysis. To state our
theorem, we refine our definition of Byzantine broadcast to make failure probabilities
and communication complexity of the protocol explicit.

Definition 10 (Byzantine Broadcast in the Multicast Model). Consider
a protocol that is executed between n parties, where a designated sender S holds an
input xS at the beginning of the protocol and all parties output upon terminating. We
call this a (q, p)-secure protocol for Byzantine broadcast with multicast complexity
Θ, if the following properties hold (simultaneously) with probability at least p when
at most q parties are adaptively corrupted:

– Consistency: Every honest party Pi outputs the same value xi = x.
– Validity: If the sender S is honest, then all honest parties output xi = xS.
– Termination: All parties terminate.
– Multicast Complexity: The multicast complexity of the protocol is at most Θ.

Theorem 4. Let c = O(1) and n ≥ (64c2 + 2c). Then there is no (q, p)-secure
protocol for Byzantine broadcast (among n parties) with

⌊√
2q
8

⌋
multicast complexity

(relative to a VDF oracle VDF), when p > 19
20

and q = n
2
− c.

Our proof is inspired by the lower bound of [ACD+19] (Section 7) for Byzantine
broadcast without a PKI in the multicast model. (Note that our lower bound for
Byzantine broadcast implies a lower bound for Byzantine agreement.) The goal of
our proof is to show that the view of a special (honest) party P that is not the
sender S can be made identical in a protocol execution where the input bit of S
is either 0 or 1. This leads to a violation of the consistency property of Byzantine
agreement. For the formal proof, we define four worlds: Worldc,b, Worldc,1−b, Worldh,b
and Worldh,1−b. In Worldc,∗, we consider a protocol execution where the special party
P is statically corrupted, whereas in Worldh,∗ this party remains honest throughout
the protocol. Moreover, in World∗,b, the sender has input bit b.

To show the violation of the consistency property, we then proceed as follows. In
both worlds, Worldc,b and Worldh,b, we show that honest parties have the same view.
Moreover, the special party P acts in both worlds as if it receives messages according
to world World∗,b and World∗,1−b. Notice that in world Worldc,b, this can be done since
P is statically corrupted, and hence it can be instructed by the adversary to behave
accordingly. In world Worldh,b, this is done by adaptively corrupting parties that
multicast messages in a certain round, and instructing the freshly corrupted party to
also multicast messages according to the (honest) party P ’s view of world Worldh,1−b.
(This is also the reason for restricting the number of multicasts in the theorem, since
each multicast requires to corrupt the party that multicast). This confuses P as to
which world it is actually being run in, and hence the honest P in worlds Worldh,1−b
and Worldh,b behaves as the malicious party in worlds Worldc,1−b,Worldc,b. It is now
possible to show that with high probability, P ’s confusion leads to it outputting an
inconsistent bit in one of these worlds.

A crucial difference between our setting and the setting of [ACD+19] is the way
in which the adversary collapses the views of worlds Worldh,1−b and Worldh,b from
that of P . In a nutshell, this requires the adversary to simulate the execution of the
protocol in one of these worlds. Unfortunately, when parties have access to a VDF
oracle, a simple simulation strategy ceases to work. At a high level, in VDF-based
protocols, the simulation depends on oracle queries to the VDF oracle, and hence
can only be completed if the adversary has sufficient query budget for the VDF. In
our simulation, we achieve this by letting the adversary statically corrupt some set
of parties which do not participate in the protocol (the adversary crashes them in
every one of the worlds). We can then use their VDF oracle budget to complete the
simulation for those parties who do participate.

Proof (Of Theorem 4). Suppose for the sake of contradiction, there exists a (q, p)-
secure protocol Π for Byzantine broadcast with

√
2q
8

multicast complexity such that
p > 19

20
, q = n

2
− c, and n ≥ (64c2 +2c). We proceed by presenting the strategy of an

adversary A that violates consistency of Π with probability at least 1
20

. Throughout

the rest of the description, we denote ϱ =
⌊√

2q
8

⌋
.

We explain A’s strategy separately for each of the worlds Worldc,b,Worldh,b as in-
troduced above. In each of the worlds, the adversary statically corrupts an arbitrary
set of (q− ϱ) parties R that does not include P or the sender S at the beginning of
the execution of Π in that world. These parties behave as if they are crashed (i.e.,
they never send any messages). We remark that R is fixed through all worlds. Fur-
thermore, let us denote C as the event that two distinct (but possibly dependent)
executions of Π satisfy validity and consistency and have multicast complexity at
most ϱ. The following lemma lower bounds the probability of the event C.

Lemma 13. Let the event C be defined as above. Then Pr[C] ≥ 2p− 1.

Proof. Let A1 and A2 denote the events that two (possibly dependent) execu-
tions (labeled one and two for the purpose of this lemma) of protocol Π (in any
of the worlds) achieve Byzantine Broadcast and have ϱ multicast complexity. By
assumption, Pr[A1] ≥ p and Pr[A2] ≥ p, and hence Pr[C] = Pr[A1 ∩ A2] ≥
Pr[A1] + Pr[A2]− 1 = 2p− 1. ⊓⊔

Behavior in Worldc,b: A statically corrupts the parties in R and uses their compu-
tational resources in the simulation of Worldc,1−b. It corrupts one additional special
party P (which is not the sender S) and directs P to behave honestly in Worldc,b and
the simulation as if it were receiving messages from two executions of the protocol
in which the sender holds either 0 or 1. P ’s precise strategy is described below. The
remaining (n + ϱ− q)− 1 parties remain honest throughout the execution Worldc,b
(including the sender S). Denote this set of parties as L.

In more detail, A’s strategy is as follows.
– A chooses random coins for all parties in L and simulates an execution of Π

where the sender holds input 1− b, the parties in R are crashed throughout the
execution of Π, and the only other corrupted party is P . (In other words, A
simulates Worldc,1−b).

– It selects (q − ϱ) parties in the set L uniformly at random.
– If the simulation directs a party Q ∈ L to query VDF, A instructs a party Q′ ∈ R

to make the same query (unless that party is already waiting VDF to reply to
a prior query). When VDF returns ϕ to Q′, the adversary returns ϕ to Q in the
simulation.

– The party P behaves as if it receives messages from both Worldc,b and the sim-
ulation that it is running in its head. It reacts to these messages as an honest
party P would do in an execution of Π where everybody holds input b.

– If P sends a message in Worldc,b or in the simulation, A delivers this message to
all honest parties in Worldc,b and in the simulation.

Observe that for a small set of (n− 2q + 2ϱ) parties in L, A is not able to simulate
the VDF calls in the simulation (it can only simulate such calls for |R| many parties
in L). Denote this set of parties by U . Clearly, the simulation of the adversary
fails if any party from U attempts to multicast a message in Π within the first ϱ
multicasts. Let F1 denote the event that simulation of the adversary fails in Worldc,b,
(conditioned on the event C). Lemma 14 below bounds the probability Pr[F1|C].

Lemma 14. Let F1 denote the event that A’s simulation fails in Worldc,b. Then
Pr[F1|C] < 1

6
.

Proof. To bound the probability of event F1 (conditioned on C), we first define the
following events. Let S denote the event that a uniformly chosen party Pi ∈ L ever
multicasts in the simulation. Conditioned on C, the simulation directs parties to
multicast at most ϱ many times. Since party Pi is chosen uniformly from the set
L, Pr[S|C] = ϱ

|L| . Now, observe that the set U is a uniformly created subset of set
L chosen by the adversary according to its simulation strategy. By the previous
calculation, the probability that any particular party in set U ever multicasts in the
simulation coincides with the probability of event S. Now, let T1 denote the event
that at least party uniformly chosen from set U ever multicasts in the protocol. By
a union bound, we see that

Pr[T1|C] ≤
|U|∑

i=1

Pr[S|C].

Hence, with multicast complexity up to ϱ, Pr[T1|C] ≤
|U|∑
i=1

Pr[S|C]. Since F1 can only

occur as a result of an unsimulated party attempting to multicast when we have
conditioned on C, we can infer that Pr[F1|C] = Pr[T1|C].

Now,

Pr[F1|C] ≤
|U|∑

i=1

(Pr[S|C]) = ϱ · |U|
n− q + ϱ

= (n− 2q +

√
2q

4
) · ⌊

√
2q
8
⌋

(n− q +
√
2q
8
)
)

≤
√
2q
8
(n− 2t+

√
2q
4
)

(n− q +
√
2q
8
)

.

By setting t = n
2
− c, for c = O(1), we bound (n−2t+

√
2t
4

)

(n−t+
√

2t
8

)
as

(2c+
√
n−2c
4

)
n
2
+ c+

√
n−2c
8

=
(2c+

√
n−2c
4

)
n
2
− c+

√
n−2c
8

+ 2c
=

√
n−2c
4

(8c√
n−2c + 1)

n−2c
2

+
√
n−2c
8

+ 2c

=

√
n−2c
4

(8c√
n−2c + 1)

√
n−2c
8

(4
√
n− 2c+ 1 + 16c√

n−2c)
=

2(8c√
n−2c + 1)

(4
√
n− 2c+ 1 + 16c√

n−2c)
<

2 · 2
3
√
n
=

4

3
√
n
,

where the last inequality holds for n ≥ (64c2 + 2c). By substituting q = (n
2
− c) in√

2q
8

, we finally obtain Pr[F1|C] ≤
√
n−2c
8
· 4
3
√
n
=
√
n−2c
6
√
n
< 1

6
. ⊓⊔

Note that since the number of corrupted parties is strictly less than n
2
, by the validity

property of Byzantine broadcast, all the honest parties in Worldc,b output bit b with
probability greater than p in case the failure event F1 does not occur.

Behaviour in Worldh,b: Initially, A statically corrupts the parties in R which will
be used as the resource to simulate Worldh,1−b. The remaining (n + ϱ − q) parties
(excluding crashed parties in R) is denoted by set L′. Note that the special party
P (which is not the sender S) is not among the aforementioned statically corrupted
parties and remains honest throughout the protocol, i.e., P ∈ L′. Note that the
sender S ∈ L′ \ P .
A now simulates the world Worldh,1−b for all parties in set L′ \ {P} as follows.

– A chooses random coins for all parties in L′ \ {P} and simulates Worldh,1−b.
More precisely, it simulates an execution of Π where the sender holds input 1− b
and the parties in R are crashed throughout the execution of Π (the remaining
parties act honestly).

– It selects (q − ϱ) parties in set L′ uniformly at random.
– When the simulation directs a party Q ∈ L′ \ {P} to multicast in some round r,
A adaptively corrupts Q in round r of the real execution of Π (i.e., in Worldh,b),
unless Q is already corrupted. Note that the designated sender S might get
corrupted in this step.

– A corrupted party Q continues to send honest messages in Worldh,b to all re-
maining parties in L′ but it forwards to P all messages from both Worldh,b and
Worldh,1−b.

– To produce the simulated messages of Worldh,1−b, when the simulation directs a
party Q ∈ L′ \P to query VDF, A acts as follows: it instructs a party Q′ ∈ R to
make the same query (unless that party is already waiting for the VDF to reply
to a prior query). When the VDF returns ϕ to Q′, the adversary returns ϕ to Q
in the simulation.

– When P multicasts a message in Worldh,b, that message is also multicast in the
simulation.

Observe that there is a gap of (n− 2q + 2ϱ)− 1 parties for which the adversary
could not simulate, but it might be the case that one of these parties want to speak
in the protocol. Denote the set of these parties as U ′. Let F2 denote the event that
the simulation of the adversary fails. For q = (n

2
− c), Lemma 15 below proves that

Pr[F2|C] < 1
6
.

Lemma 15. Let F2 denote the event that A’s simulation fails in Worldh,b. Then
Pr[F2|C] < 1

6
.

The proof of Lemma 15 is similar to that of 14.
We now state two technical lemmas below. We first give an indistinguishability

lemma about the worlds Worldc,b and Worldh,b for forever honest parties.

Lemma 16. Conditioned on the events C and ¬F1, Worldc,b is indistinguishable
from Worldh,b for parties that are forever honest in both Worldc,b and Worldh,b.

Proof. The statement holds due to the following reasons. 1) In Worldc,b, the for-
ever honest parties always receive honest messages. 2) In Worldc,b, parties that are

adaptively corrupted by A send correct messages to the honest parties except for
party P . 3) The behavior of the corrupted party P in Worldc,b is exactly like that
of honest party P in Worldh,b. 4) The multicast complexity in both worlds Worldc,b
and Worldh,b is at most ϱ, according to the definition of the event C. Therefore,
conditioned on events C and ¬F1, the views of the parties that are forever-honest
in Worldc,b and Worldh,b are identically distributed. ⊓⊔

Next, we give an indistinguishability lemma about the worlds Worldh,b and Worldh,1−b
for party P .

Lemma 17. Conditioned on C and ¬F2, Worldh,b is indistinguishable from Worldh,1−b
for party P .

Proof. The statement of the lemma holds due to the following reasons. 1) In Worldh,b,
P always receives messages of both worlds (Worldh,0 and Worldh,1) from adaptively
corrupted parties. 2) Both the worlds Worldh,0 and Worldh,1 have multicast complex-
ity at most ϱ according to the definition of the event C. Therefore, conditioned on
events C and ¬F2, the views of the party P in the worlds Worldh,0 and Worldh,1 are
identically distributed. ⊓⊔

In Worldc,b, since the sender S is honest, the validity property of Byzantine
broadcast implies that all honest parties output b. Using the indistinguishability
between Worldc,b and Worldh,b guaranteed by Lemma 16, we can use consistency to
ensure that party P which is honest in Worldh,b, outputs b in world Worldh,b. We
formalize this intuition in the following Lemma.

Lemma 18. Let Y denote the event that the forever honest parties in Worldh,b out-
put b. Then Pr[Y |C ∩ ¬F1] = p.

Proof. Since the sender S is honest in Worldc,b, by the validity property of the
Byzantine Broadcast, all the forever honest parties output b with at least probability
p in Worldc,b. From Lemma 16, Worldc,b is indistinguishable from Worldh,b for forever
honest parties. We infer that Pr[Y |C ∩ ¬F1] ≥ p. ⊓⊔

Similarly, using indistinguishability between Worldh,b and Worldh,1−b guaranteed by
Lemma 17, we obtain:

Lemma 19. Let X denote the event that P does not output 1 in Worldh,1. Then
Pr[X|C ∩ ¬F2] =

1
2
.

Proof. By Lemma 17, conditioned on events C and ¬F2, the views of the party P in
the worlds Worldh,0 and Worldh,1 are identically distributed. Therefore, conditioned
on the events C and ¬F2, the probability of P not outputting 1 in Worldh,1 is given
as Pr[X|C ∩ ¬F2] ≥ 1

2
. ⊓⊔

Thus, the probability that consistency of the Byzantine broadcast is violated in
Worldh,1 is at least Pr[X ∩ Y] which we bound from below as follows:

Pr[X ∩ Y] = Pr[X] + Pr[Y]− 1

≥ Pr[X ∩ C ∩ ¬F2] + Pr[Y ∩ C ∩ ¬F1]− 1

= Pr[X|C ∩ ¬F2] · Pr[C ∩ ¬F2] + Pr[Y |C ∩ ¬F1] · Pr[C ∩ ¬F1]− 1

= Pr[X|C ∩ ¬F2] · Pr[¬F2|C] · Pr[C] + Pr[Y |C ∩ ¬F1] · Pr[¬F1|C] · Pr[C]− 1

=
1

2
· 5
6
· (2p− 1) + p · 5

6
· (2p− 1)− 1 =

20p2 − 17

12

=
7

80
>

1

20
= 1− p.

This contradicts the supposition that Π achieves consistency with probability more
than 19

20
and within complexity ϱ. ⊓⊔

References
ACD+19. Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication complexity of byzantine agreement, revisited. In Peter Robinson
and Faith Ellen, editors, 38th ACM PODC, pages 317–326. ACM, July / August 2019.

AD15. Marcin Andrychowicz and Stefan Dziembowski. PoW-based distributed cryptography with
no trusted setup. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 379–399. Springer, Heidelberg, August 2015.

ADD+19. Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with expected O(1) rounds, expected O(n2) communication, and optimal
resilience. In Ian Goldberg and Tyler Moore, editors, FC 2019, volume 11598 of LNCS, pages
320–334. Springer, Heidelberg, February 2019.

AMSZ19. Abhinav Aggarwal, Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Bootstrapping public
blockchains without a trusted setup. In Peter Robinson and Faith Ellen, editors, 38th ACM
PODC, pages 366–368. ACM, July / August 2019.

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, August 2018.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

But13. Vitalik Buterin. Ethereum white paper. 2013.
CGZ21. Ran Cohen, Juan Garay, and Vassilis Zikas. Adaptively secure broadcast in resource-restricted

cryptography. Cryptology ePrint Archive, Report 2021/775, 2021. https://eprint.iacr.org/
2021/775.

CP19. Bram Cohen and Krzysztof Pietrzak. The chia network blockchain. Technical report, Chia
Network, 2019.

Dou02. John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems, pages
251–260. Springer, 2002.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

FLL21. Matthias Fitzi, Chen-Da Liu-Zhang, and Julian Loss. A new way to achieve round-efficient
byzantine agreement. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors,
PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July
26-30, 2021, pages 355–362. ACM, 2021.

FM88. Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In 20th ACM
STOC, pages 148–161. ACM Press, May 1988.

FM00. Matthias Fitzi and Ueli M. Maurer. From partial consistency to global broadcast. In 32nd
ACM STOC, pages 494–503. ACM Press, May 2000.

FMPS19. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Pro-
ceedings, Part I, volume 11921 of Lecture Notes in Computer Science, pages 248–277. Springer,
2019.

GKL15. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

GKLP18. Juan A. Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping
the blockchain, with applications to consensus and fast PKI setup. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 465–495. Springer,
Heidelberg, March 2018.

GKO+20. Juan A. Garay, Aggelos Kiayias, Rafail M. Ostrovsky, Giorgos Panagiotakos, and Vassilis Zikas.
Resource-restricted cryptography: Revisiting MPC bounds in the proof-of-work era. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020, Zagreb, Croa-
tia, May 10-14, 2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer Science,
pages 129–158. Springer, 2020.

GKPS18. Chaya Ganesh, Yashvanth Kondi, Arpita Patra, and Pratik Sarkar. Efficient adaptively secure
zero-knowledge from garbled circuits. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part II, volume 10770 of LNCS, pages 499–529. Springer, Heidelberg, March 2018.

GMR84. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical” solution to the signature
problem (extended abstract). In 25th FOCS, pages 441–448. IEEE Computer Society Press,
October 1984.

KK06a. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462.
Springer, Heidelberg, August 2006.

KK06b. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agree-
ment. Cryptology ePrint Archive, Report 2006/065, 2006. https://eprint.iacr.org/2006/
065.

KKKZ19. Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros crypsinous:
Privacy-preserving proof-of-stake. In 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019, pages 157–174. IEEE, 2019.

KLX20. Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and timed
commitments. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume
12552 of LNCS, pages 390–413. Springer, Heidelberg, November 2020.

KMS14. Jonathan Katz, Andrew Miller, and Elaine Shi. Pseudonymous broadcast and secure com-
putation from cryptographic puzzles. Cryptology ePrint Archive, Report 2014/857, 2014.
https://eprint.iacr.org/2014/857.

Mic17. Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadimitriou,
editor, ITCS 2017, volume 4266, pages 6:1–6:1, 67, January 2017. LIPIcs.

MV17. Silvio Micali and Vinod Vaikuntanathan. Optimal and player-replaceable consensus with an
honest majority. 2017.

Nak08. Bitcoin: A peer-to-peer electronic cash system. 2008.
Pie19. Krzysztof Pietrzak. Proofs of catalytic space. In Avrim Blum, editor, ITCS 2019, volume 124,

pages 59:1–59:25. LIPIcs, January 2019.
PSs17. Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous

networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, April / May 2017.

Rab83. Michael O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409. IEEE
Computer Society Press, November 1983.

vBS21. Aron van Baarsen and Marc Stevens. On time-lock cryptographic assumptions in abelian
hidden-order groups. IACR Cryptol. ePrint Arch., page 1184, 2021.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rij-
men, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer,
Heidelberg, May 2019.

WXDS20. Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi. Round-efficient byzantine broadcast
under strongly adaptive and majority corruptions. In Rafael Pass and Krzysztof Pietrzak,
editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,

USA, November 16-19, 2020, Proceedings, Part I, volume 12550 of Lecture Notes in Computer
Science, pages 412–456. Springer, 2020.

E. Distributed
Password-Authenticated
Symmetric-key Encryption

This chapter corresponds to our published article in AsiaCCS 2022 [48], with minor
edits. Our full version can be found in [47].

[48] P. Das, J. Hesse, and A. Lehmann. “DPaSE: Distributed Password-Authenticated

Symmetric-Key Encryption, or How to Get Many Keys from One Password”.

In: ASIA CCS ’22: ACM Asia Conference on Computer and Communications

Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022. 2022, pp. 682–696. doi:

10.1145/3488932.3517389. url: https://doi.org/10.1145/3488932.

3517389.

222

https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389

DPaSE: Distributed Password-Authenticated

Symmetric-Key Encryption, or How to Get Many Keys

from One Password

Poulami Das1, Julia Hesse2, and Anja Lehmann3

1 TU Darmstadt, Germany
2 IBM Research Zurich, Switzerland

3 Hasso-Plattner-Institute, University of Potsdam, Germany

Abstract. Cloud storage is becoming increasingly popular among end users that outsource their
personal data to services such as Dropbox or Google Drive. For security, uploaded data should
ideally be encrypted under a key that is controlled and only known by the user. Current solutions
that support user-centric encryption either require the user to manage strong cryptographic keys,
or derive keys from weak passwords. While the former has massive usability issues and requires
secure storage by the user, the latter approach is more convenient but o�ers only little security
since encrypted data is susceptible to o�ine attacks. The recent concept of password-authenticated
secret-sharing (PASS) enables users to securely derive strong keys from weak passwords by lever-
aging a distributed server setup, and has been considered a promising step towards secure and
usable encryption. However, using PASS for encryption is not as suitable as originally thought:
it only considers the (re)construction of a single, static key � whereas practical encryption will
require the management of many, object-speci�c keys. Using a dedicated PASS instance for every
key makes the solution vulnerable against online attacks, inherently leaks access patterns to the
servers and poses the risk of permanent data loss when an incorrect password is used at encryption.
We therefore propose a new protocol that directly targets the problem of boostrapping encryption
from a single password: distributed password-authenticated symmetric encryption (DPaSE).
DPaSE o�ers strong security and usability, such as protecting the user's password against online and
o�ine attacks, and ensuring message privacy and ciphertext integrity as long as at least one server
is honest. We formally de�ne the desired security properties in the UC framework and propose a
provably secure instantiation. The core of our protocol is a new type of Oblivious Pseudorandom
Function (OPRF) that allows to extend a previous partially-blind query with a follow-up request
and will be used to blindly carry over passwords across evaluations and avoid online attacks. Our
(proof-of-concept) implementation of DPaSE uses 10 exponentiations at the user, 4 exponentiations
and 2 pairings at each server, and has a server throughput of 76 account creations and 37 (user
authentication followed by) encryptions per second, when run between a user and 2-10 servers.

1 Introduction

Outsourcing storage to cloud providers is not only a common approach in enterprise
settings, but is also widely appreciated by end users relying on services such as Dropbox,
Google Drive, iCloud or Microsoft OneDrive to manage their personal data. With data
breaches happening on a daily basis, it is essential that personal data kept in such cloud
storage must be protected accordingly. The prevalent approach is to trust the cloud with
properly encrypting the data, where the service provider controls access to the respective
encryption keys via standard user authentication, mostly relying on username-password
authentication. Clearly, such a solution crucially relies on the honesty of the service
provider who can otherwise gain plaintext access to the users' data.

A di�erent approach is let the user already encrypt the data before storing it in the
cloud, which is o�ered e.g., by Tresorit [4] or Mega [3]. Therein a user client is locally
encrypting the data and only uploads ciphertexts to the cloud. The cryptographic keys

are either generated and stored directly by the user client, or (re)-derived from a human-
memorizable password that the user enters into the local client. The former provides
strong security guarantees, but is cumbersome to use as it relies on users' being able to
manage and securely store cryptographic keys. The latter provides (roughly) the same
convenience and usability as standard cloud provides as it does not require secure storage
on the user side, but is inherently vulnerable to so-called o�ine attacks: Since encryption
keys are derived from a low-entropy password, a corrupt service provider or an attacker
gaining access to the ciphertexts, can attempt to decrypt the �les by guessing the user's
password.

While recently some service providers have moved away from password and deploy
solutions where users are required to store key material (e.g., [2]), password-based sys-
tems remain the only truly device-independent solution at our disposal. In this paper,
we investigate how users can password-encrypt their cloud data without storing any key
material, and without making their encrypted data prone to o�ine password-guessing
attacks.

Known approaches to password-based encryption. One way to avoid the two afore-
mentioned issues is to use a distributed password-based key management system: a user
retrieves her encryption key from a set of servers, using only a password as input. This
does not require the user to store any cryptograhpic material, since the servers take
over this role, and the distribution of keys among servers thwarts of o�ine attacks on
the password. There exist various cryptographic primitives suitable to implement such
password-protected key retrieval, for example Password-Authenticated Secret Sharing
(PASS/PPSS) [6] and Oblivious Key Management [19], which we discuss more in related
work below.

All aforementioned schemes allow users to turn a password into an encryption key. In
practice, this means that users either encrypt all their data with the same key, or they
must memorize as many passwords as keys that they want to use. For optimal usability
and security, in a password-based key management scheme, we want to ask the user
to remember only few but strong passwords, and �behind the scenes� still use di�erent
encryption keys for every piece of data she wants to encrypt. Varying encryption keys is
desirable to mitigate the e�ect of security breaches of the user's device, or of irresponsible
handling of secret keys on the user side. We note that there exist other ways to mitigate
the e�ect of such attacks, for example allowing for e�cient updates of the encryption
key, which however provide no protection in case the attacker is already in posession of
ciphertexts. In this work, we prefer one-time usage of encryption keys over updatability,
since then revelance of one key upon compromise does not impact the con�dentiality of
more than one encrypted piece of data.

1.1 Our Contributions

In this work we develop usable yet strongly secure distributed password-based symmetric
encryption (DPaSE). DPaSE allows users to securely and conveniently encrypt and de-
crypt their data with di�erent encryption keys while relying only on a single password
and the assistance of n servers. We provide an e�cient realization based on a new type
of Oblivious Pseudorandom Function (OPRF) that supports correlated evaluations of
blind inputs, which we believe to be of independent interest. DPaSE is not a mere key

Fig. 1. Classical password-based server-assisted KMS yields one key per password to encrypt all the di�erent
user data. In this work we develop a server-assisted encryption scheme that allows to derive di�erent encryption
keys from only one password.

management system, but has built-in encryption of data with the retrieved keys already.
Encryption and decryption is carried out locally by the user using the retrieved key. This
integrated modeling allows us to demand the following strong security and functionality
from a DPaSE system, covering guarantees with respect to both passwords and encryp-
tion of data.

Correct Encryption: If a user types an incorrect password upon encryption, her data is
not encrypted and the user instead obtains an error message. This property is important
to avoid that a user accidentally encrypts her data with unrecoverable secret keys.

No Reuse of Keys: Every ciphertext is created with an individual key. Hence, in case a
user loses one of her encryption keys, all but one of her encrypted �les remain con�dential.

Security against O�ine Attacks: As long as at least one server is honest, the en-
crypted data (or rather the underlying password) cannot be o�ine attacked. And even if
eventually all servers are corrupted, they cannot decrypt the data immediately but must
still perform an o�ine attack on the password � thus when users have chosen strong
passwords, their data remains secure.

Security against Online Attacks: To detect and prevent online guessing attacks, the
servers learn which user is trying to encrypt or decrypt, and whether her entered password
was correct. In particular, we require that every �le access/decryption requires explicit
approval of all servers. When an honest server has recognized suspicious behaviour or was
alerted by the user herself, it can enforce user-speci�c rate limiting or even fully block a
certain account.

Obliviousness: Servers do not learn anything about the �les (plain- or ciphertext) the
user wants to access4. It was demonstrated [15, 24] that such leakage would have devas-
tating e�ects on the user's privacy.

Authenticated Encryption: An adversary cannot plant wrong information into the
outsourced storage. Thus, unless the adversary knows the user's password (and is as-
sisted by all servers) it must be infeasible to create valid ciphertexts.

Security Model in the UC Framework.We formally de�ne these properties by means
of an ideal functionality FDPaSE using the Universal Composability (UC) framework [12],
which is known to allow for the most realistic modeling for how users (mis)handle pass-
words. In game-based security models, users choose their passwords at random from
known distributions and are assumed to behave perfectly, i.e., never make a typo when
using a password. This clearly does not re�ect reality, where users share or re-use pass-
words, and make mistakes when typing them. The UC framework models that much more
naturally as therein the environment provides the passwords. Thus, a UC security notion
guarantees the desired security properties without making any assumptions regarding the
passwords' distributions or usages. Our modeling also ensures that any DPaSE protocol
is secure when executed concurrently with other systems, thanks to the strong compos-
ability guarantees of the UC framework.

However, these desirable features come at a cost. In order to end up with a manageable
and understandable security de�nition (i.e., UC functionality), we need to make compro-
mises and protect against some attacks that might not be of high relevance to DPaSE in
practise5. For example, we need to prevent servers from intentionally deriving encryption
keys from wrong passwords, which makes our protocol a bit more costly and restricted
to security against semi-honest servers. There exist many ways of protecting against such
attacks, each with di�erent trade-o�s. For example, we could use client-side caching of
password-dependent inputs, leaving it up to the client to use the correct password. Such
a solution would however not su�ce for our purpose of achieving a concise UC de�nition
(a malicious client could simply mess up the caching then, introducing valid encryptions
under wrong passwords to the system). Hence, in this paper, we opt for a stronger and
cleaner de�nition, at the cost of slightly worse e�ciency and slightly weaker corruption
model.

E�cient DPaSE Protocol. We present an e�cient protocol that provably realizes our
functionality FDPaSE. The high-level idea of the protocol is very simple and follows the
known paradigm of password-based protocols to turn the password into cryptographic
key material using an OPRF [20, 7]. More detailed, to create an account, the user derives
a signing key (upk , usk) ← OPRF(K, uid , pw) from her username and password, where
the OPRF key K is split among the n servers and the evaluation reveals the username to

4 We do not want to go further and hide the identity of the user in his requests, since otherwise we would not
be able to protect against online guessing attacks.

5 A UC functionality needs to �list� all potential attacks that can be mounted against a protocol. While some
attacks might be benign in practise and we might be okay with the threat they are imposing on us, every such
attack still shows in the functionality. It is one of the main challenges in using the UC framework to �nd a
mid-way between a not overly strong notion that still allows for e�cient instantiations, and one that is not
overly cluttered with such benign attacks.

the servers to later allow for user-speci�c rate limiting. The servers store (uid , upk) upon
registration.

To encrypt a �le, the user again enters uid , pw ′ and starts by re-running the steps
from account creation to recover her signing key pair (upk , usk). She then signs a fresh
nonce with usk and sends it to the servers who verify it against the stored upk , thereby
verifying that pw = pw ′. If the password is correct, the user and server engage in a
follow-up OPRF evaluation where an object-speci�c encryption key is derived. The OPRF
evaluation thereby �reuses� the previously entered uid , pw ′ to ensure that the actual
encryption keys are also bound to the user' identity and correct password. This prevents
users from accidentally encrypting data under a wrong password. To ensure obliviousness,
the object for which the key is derived is hidden in the evaluation.

Decryption works almost analogously to encryption, verifying the password and � if
correct � recovering the object-speci�c encryption key via the distributed OPRF. The
generated ciphertexts and decryption proceeds also include checks to guarantee the de-
sired ciphertext integrity.

Extendable Distributed Partially-Oblivious PRF. The core of our DPaSE protocol
is a new type of OPRF that we believe to be of independent interest for many password-
based applications. So far, OPRFs have been designed as single-evaluation primitives6

that can either be fully or partially-blind. Thus, the user sends a (partially) blind query,
and receives a single output related to that input. What we need for DPaSE though is
an OPRF that �remembers� the blindly provided password from a previous query and
re-uses it in a follow-up evaluation: we need to perform a dedicated password check and
also want to ensure that encryption is done with the same password that was veri�ed. We
model that as an extension query, where a second OPRF query re-uses the blinded input
from a previous request. This extension feature is required on top of partial -blindness
(as the uid 's must be a known input to all parties) and the distributed setting. We
formalize the desired properties of such an extendable OPRF in the UC framework and
propose a secure instantiation. We believe that this is a contribution of independent
interest. Namely, using an extendable OPRF instead of a single-evaluation OPRF could
generally add secure password veri�cation to protocols that deploy an OPRF to bootstrap
cryptographic material from passwords.

Our OPRF construction is based on the classical double-hash DH scheme, basically
combining all tricks that have been used in this context into a single scheme. The chal-
lenge thereby is that our second OPRF call which blindly carries over the input from
the �rst call now has three inputs: the non-blind part (xpub = uid), and two blinded
values, namely the blinded (xpriv1 = pw) from the previous evaluation and the new
input (xpriv2 = oid). Previous partially-blind OPRFs deal with two inputs only xpub
and xpriv which are mostly combined through a pairing [14, 7], with the �nal PRF be-
ing of the form HT (e(H1(xpriv), xpub)

K , xpriv). In our construction, we will already need
both �slots� of the pairing to combine the two blinded inputs, and therefore must �nd
a di�erent place to include the public input. We take inspiration from [19] and replace
the direct use of the server's secret key K by K ′ ← F(K, uid) where F is a standard
PRF. Thus, overall our new OPRF computes the output for an extended query as

6 With the exception of OPRF with batch evaluations under several keys [23, 26]. This is orthogonal to our
problem since we have a single OPRF key.

HT (e(H1(xpriv1),H2(xpriv2))
F(K,xpub), xpriv1, xpriv2). The �rst (non-extended) query, just con-

sisting of xpub and xpriv1 has the same form and simply sets xpriv2 = 1.

This construction allows us to combine three values into a single evaluation, but
this extendability feature comes for a price. First, relying on exponents that are derived
from a standard PRF K ′ ← F(K, uid) only allows for a distributed, but not threshold
protocol. The distributed version simply considers the additive combination of all K ′ as
the implicit overall secret key (per xpub). Second, there are currently no e�cient proofs
that allow to check whether the servers have computed the second evaluation correctly
� which again stems from the use of the standard PRF to derive the OPRF secret key
share. As we will require correct computation of OPRF outputs in our DPaSE protocol, we
must assume that the servers in the OPRF are at most honest-but-curious. We stress that
considering honest-but-curious servers already captures the main threat to passwords: an
adversary stealing the password database (or other o�ine-attackable information). To
our knowledge, DPaSE is currently the only protocol being secure in the presence of such
attacks.

Lastly, we note that extendability is a property that could as well be ensured on the
application level by, e.g., caching the user's password on the client machine. While this
would enable using DPaSE with a standard, i.e., single-evaluation OPRF and make our
protocol simpler and more e�cient, it allows for a �benign� attack which prevents a secu-
rity proof. Namely, an adversary knowing the password of an honest user could produce
encryption keys under bogus passwords. If the honest user later tries to decrypt such
a maliciously crafted ciphertext, decryption would fail � yet the adversary can decrypt
using the bogus password again. While this attack is rather harmless in practice, to prove
the password-caching version secure one would have to include this imperfection into the
security de�nition, with a di�erent set of �shadow passwords� for each (!) ciphertext that
the adversary could use (even for honest accounts). With the extendability property, we
enforce password consistency on the protocol level and hence avoid cluttering the security
de�nition of DPaSE with attacks resulting from inconsistent usage of passwords.

Implementation and Evaluation. Instantiating DPaSE with our OPRF yields an ef-
�cient scheme that requires 10 exponentiations at the user, 4 exponentiations and 2
pairings at each server. We further provide a proof-of-concept implementation of ΠDPaSE

which respectively takes 13 ms for an account creation and 27 ms for each encryption
and decryption on the server side, when run between an user and any number of servers;
currently the implementation has a server throughput of 76 account creation and 37 (user
authentication followed by) encryption or decryption requests per second.

1.2 Related Work

Password-authenticated secret sharing (PASS/PPSS) allows a user to recover a strong
secret that is shared among n servers when she can enter the correct password [6, 16�18].
In contrast to end users, servers can easily maintain strong cryptographic keys which
is leveraged by PASS to thwart o�ine attacks against the password (and consequently
on the shared secret key) if at least one, or a certain threshold, of the servers is not
compromised. While this concept is shared between PASS and DPaSE, PASS can only be
used to derive one encryption key per password, while DPaSE is required to encrypt each

Properties\Schemes
Key Management Schemes (KMS) Encryption Schemes
PASS scheme PASS scheme OKMS DiSE (Threshold) PHE DPaSE

[18] Memento [10] [19] [5] [25], [8] this work

Password correctness ensured - - ✓ ✓

Can derive multiple keys per password - - - ✓

Security against online attacks - ✓ ✓ ✓

Security against o�ine attacks ✓ ✓ ✓ ✓

Password remains private ✓ ✓ - ✓

Access pattern remains private - - ✓ ✓

Authenticated encryption ✓ ✓ ✓ ✓

Who encrypts? (U=User, S=Server) U S S U
Mitigation of compromised encryption keys no reuse & key rotation - key rotation no reuse

Secure in concurrent settings ✓ ✓ - - - ✓

Table 1. Properties of server-assisted encryption and encryption key retrieval (KMS) schemes. Gray cells are not
applicable. More precisely, password properties do not apply to OKMS and DiSE schemes, as they rely on strong
user authentication. Likewise, encryption properties do not apply to the KMS schemes, since their purpose is to
recover an encryption key from a password.

piece of data under di�erent keys, yet enabling the user to encrypt all her data under the
same password.

Password-hardened encryption (PHE) [25] targets a related setting, where a user
outsources key management, encryption and decryption to a so-called rate limiter. The
user can send encryption/decryption requests through a server, but needs to provide a
correct password. The rate limiter can be implemented in a threshold version [8] to further
enhance PHE's security. The scheme allows a mechanism of key rotation, to mitigate
against compromises or simply as a routine process. Key rotation involves the server and
the rate limiter updating their respective keys as well as the ciphertexts accordingly. In
PHE the frontend server is fully trusted, as it learns the user's password and keys. PHE
schemes are very e�cient (no OPRF is required!) and a good option in settings where
the client fully trusts the server, since both password and access pattern on user's data
are shared with the server. In our work, we do not want to assume such trust and hence
opt for client-side encryption of data to hide access patterns.

Updatable Oblivious Key Management [19] also relies on a OPRF to derive �le-speci�c
encryption keys with the help of a (single) external server for increased security. Their
work focuses on an enterprise setting for storage systems though, i.e., it relies on strong
authentication between the client (that wants to encrypt or decrypt) and the server that
holds the OPRF key. This is a �rst di�erence to DPaSE: our scheme achieves oblivious key
management without strong client-authentication. Second, their system uses key rotation
� similar to PHE and the general concept of updatable encryption with post-compromise
security [27, 22] � to update encryption keys and the corresponding ciphertexts as a
measure to mitigate the e�ect of security breaches. The approach of our DPaSE protocol
is orthogonal: we mitigate the risk of data breaches by using a distributed setting instead
of key rotation: the information to recover the encryption keys is split across n servers, and
the �le-speci�c encryption keys are secure as long as one server remains uncompromised.

The DiSE protocol [5] and its improvements [28, 13] for distributed symmetric encryp-
tion consider strong authentication only. In these protocols, a group of n parties jointly
controls encryption keys under which ciphertexts for the group get encrypted. The secret
key material is split among the group and any member of the group can request de-
cryption of ciphertexts which is again done jointly by all member. DiSE implicitly � yet
crucially � relies on strong authentication to ensure that only valid members of the group
can make such requests, whereas we want only a single user to encrypt or decrypt her

�les from a password. Nevertheless, the authenticity checks in the encryption/decryption
process of our protocol are build upon the ideas of the DiSE protocol.

Finally, the PESTO protocol [7] for distributed single sign-on (SSO) relies on a similar
idea of �rst deriving a strong key pair from a distributed OPRF in order to let a user
authenticate to a number of servers. The overall application is di�erent though, SSO
vs. encryption, and consequently also the desired functionality and security are di�erent.
PESTO is in one aspect stronger than DPaSE since it features proactive security, meaning
that a once corrupted server can be sanitized to be honest again. This strong aspect comes
at a cost that is much more critical for the targeted encryption use case than in SSO:
PESTO guarantees no security whatsoever when all servers are corrupt. In DPaSE, even
in case of a full corruption of all servers, the user's data still remains con�dential unless
all servers jointly mount a successful o�ine attack on her password. Thus, a dedicated
o�ine attack for each user (on top of corrupting all servers) would be required, and the
encrypted �les of users with reasonably strong passwords can remain secure.

We give a detailed comparison of properties of the schemes that are closely related to
DPaSE in Table 1.

2 Preliminaries

De�nition 1 (Signature Schemes). A signature scheme SIG is a triple of algorithms
(Gen, Sign,Verify) with the following properties. On input the security parameter λ, the
randomized key generation algorithm Gen outputs a key pair (pk, sk). On a message m ∈
{0, 1}∗ and a secret key sk, the randomized signing algorithm Sign outputs a signature
σ. On input a public key pk, a message m ∈ {0, 1}∗, and a signature σ, the deterministic
veri�cation algorithm Verify outputs 1 if the signature is correct or 0 otherwise.

We require that the scheme satis�es correctness, i.e., for all m ∈ {0, 1}∗ and (pk, sk)
output by Gen it holds that: Verify(pk,m, Sign(sk,m)) = 1. Additionally, the scheme
needs to satisfy unforgeability under chosen message attacks (UF-CMA-security), i.e.,
after learning signatures for q number of adaptively chosen messages {m1, ...,mq} ∈ M,
it should be impossible to �nd a signature/message pair (σ,m) s.t. Verify(pk ,m, σ) = 1
and m ̸∈ {m1, ...,mq}.

2.1 Bilinear Groups

De�nition 2 (Asymmetric Pairing). Let G1,G2,GT be cyclic groups of order p with
generators g1, g2, gT , respectively. Let e : G1×G2 → GT be an e�ciently computable non-
degenerate function such that ∀a, b ∈ Zp : e(g

a
1 , g

b
2) = gabT . Then e is called an asymmetric

pairing. G = (p, g1, g2, gT ,G1,G2,GT , e) is called an asymmetric bilinear group setting,
or bilinear group for short.

De�nition 3 (Gap One-More BDH Assumption). Let λ ∈ N be a security param-
eter and G = (p, g1, g2, gT ,G1,G2,GT , e) be a bilinear group with log(p) = poly(λ), then
we then say that the Gap One-More Bilinear Di�e-Hellman (Gapom-BDH) assumption
holds for G if for all PPT adversaries A there is a negligible function negl· such that
Pr[ExpGA,Gapom-BDH(λ) = 1] ≤ neglλ.

The underlying experiment is de�ned as follows.

Experiment ExpGA,Gapom-BDH(λ):

k
$← Zp, qC ← 0, X1 ← ∅, X2 ← ∅.

{(xi, yi, zi)}i∈[ℓ] ← AOG-1,OG-2,OD-help,OC-help(G, gk2)
return 0 if
0 ≤ ℓ− 1 < qC or
∃i ∈ [ℓ] : (xi ̸∈ X1 ∨ yi ̸∈ X2) or
∃i, j ∈ [ℓ], i < j : (xi = xj ∧ yi = yj)

return 1 if ∀i ∈ [ℓ] : e(xi, yi)
k = zi and 0 otherwise.

where the experiment uses the following oracles
OG-r()

return ⊥ if r ̸∈ {1, 2}
x

$← Gr

Xr ← Xr ∪ {x}
return x

OC-help(m)

return ⊥ if m ̸∈ GT .
qC ← qC + 1
return mk

OD-help(m,w,m
′, w′)

return ⊥ if either m,w,m′, w′ not in GT

return 1 if logm(w) = logm′(w′) and else 0

To win, A needs to �nd pairs (x, y, e(x, y)k) without querying e(x, y) to OC-help and
where A could not rerandomize previous such pairs as it does not know the discrete
logarithm of any x, y (enforced by sampling them at random using OG-r). A is equipped
with a DDH oracle OD-help in the group GT . The game Gapom-BDH follows the de�nition
in [14].

3 Extendable Distributed Partially-Oblivious PRF

Our DPaSE construction relies on a new type of oblivious PRF (OPRF) that allows for
extension queries and which we believe to be of interest for password-based protocols in
general. In this section, we de�ne this new type of OPRF and present a provably secure
construction.

An OPRF is an interactive protocol between at least one user and one server. The
server holds the key K of a pseudorandom function PRF, the user contributes the input x
to the function. After the protocol runs, the user holds the PRF evaluation at x, PRFK(x).
The obliviousness property demands that, while the server actively participated in the
protocol, he did not learn anything about the value x he helped in evaluating the function
for. On the other side, the user requires participation of the server to evaluate PRFK() at
any input. In a distributed OPRF, the key K is split among n servers.

Recently, there has been a �urry of OPRF constructions in the literature all featuring
di�erent (combinations of) properties on top of the above mentioned [21, 16, 17, 14, 18, 9,
20, 7]. For constructing DPaSE, we require a new combination of properties that we detail
now. Our OPRF is called a extendable distributed partially-oblivious PRF (edpOPRF).

The functionality is parametrized by a security parameter λ. It interacts with servers S := {S1, ..., Sn} (speci�ed
in the sid), arbitrary other parties and an adversary A. FedpOPRF maintains a table T (xpub, xpriv1, xpriv2) initially
unde�ned everywhere, counters ctr[xpub] initially set to 0. FedpOPRF sends all inputs to A except for xpriv1, xpriv2.

Key Generation

On input (KeyGen, sid) from Si, ignore this query if the sid is marked ready. Otherwise, if (KeyGen, sid) was
received from all Si, mark sid as ready, and output (KeyConf, sid) to all Si.

Evaluation

On input (EvalInit, sid , qid , xpub, xpriv1) from any party U (including A: record (eval, sid , qid , U, xpub, xpriv1,⊥),
and output (EvalInit, sid , qid , xpub) to all Si.

On input (EvalProceed, R, sid , qid) from Si where R ∈ {1, 2}:
� Retrieve record (eval, sid , qid , U, xpub, xpriv1, xpriv2), where xpriv2 = ⊥ if R = 1, and xpriv2 ̸= ⊥ if R = 2.
� If (EvalProceed, R, sid , qid) has been received from all Si, set ctr[xpub]← ctr[xpub] + 1.

On input (EvalFollow, sid , qid , xpriv2) from any party U (including A):
� Retrieve record (eval, sid , qid , U, xpub, xpriv1,⊥) for (sid , qid , U).
� Update record to (eval, sid , qid , U, xpub, xpriv1, xpriv2), and send output (EvalFollow, sid , qid) to every Si.

On input (EvalComplete, sid , qid) from A:
� Retrieve record (eval, sid , qid , U, xpub, xpriv1, xpriv2), only proceed if ctr[xpub] > 0, set ctr[xpub]← ctr[xpub]− 1.

� If T (xpub, xpriv1, xpriv2) is unde�ned, then pick ρ
$← {0, 1}λ and set T (xpub, xpriv1, xpriv2)← ρ.

� Output (EvalComplete, sid , qid , xpriv2, T (xpub, xpriv1, xpriv2)) to U .

Fig. 2. Ideal functionality FedpOPRF

Partial Obliviousness: The obliviousness property guarantees that the servers do not
learn on which input (xpriv1 and xpriv2) the user wants to evaluate the function. Partial
obliviousness allows for an additional public part (xpub) of the input.

Distribution: Obtaining a PRF value requires the active participation of all n servers.
No subset of n− 1 servers can evaluate the function themselves.

Extendability: After the user has provided an input (xpub, xpriv1) and learned the cor-
responding output PRFK(xpub, xpriv1), he can extend the query with a second blind input
xpriv2 upon which he receives PRFK(xpub, xpriv1, xpriv2) (in both cases the output is condi-
tioned on the participation of all servers of course).

While the �rst two properties exist (individually) already (partial obliviousness [14],
and distribution [18], the concept of extendability of an OPRF is new. What is so special
about this property that could not be achieved by simply evaluating the OPRF twice?
The crucial di�erence is that an extendable OPRF guarantees that certain blinded inputs
are reused in the second evaluation. With separate evaluation requests this cannot be
guaranteed since blindings information-theoretically hide inputs and thus users can easily
cheat. For DPaSE, we require such an OPRF to allow for dedicated password veri�cation
and ensuring that actual encryption/decryption happens with the same password. We
envision extendable OPRFs to be generally useful in protocols requiring more than one
OPRF evaluation and where secret inputs of these single evaluations need to be correlated.

3.1 Ideal functionality for edpOPRF

We de�ne a extendable distributed partially-oblivious PRF in the Universal Composabil-
ity framework [12] in terms of an ideal functionality FedpOPRF in Figure 2. For brevity, we
assume the following writing conventions.

� The functionality considers a speci�c session sid = (S1, . . . , Sn, sid
′) and only accepts

inputs from servers Si that are contained in the sid .
� When the functionality is supposed to retrieve an internal record, but no such record
can be found, then the query is ignored.

� We assume private delayed outputs, meaning that the adversary can schedule their
delivery but not read their contents beyond session and sub-session identi�ers.

The functionality FedpOPRF is inspired by functionalities from the literature [16�18,
20, 7, 9] and introduces extendability as a new OPRF feature. FedpOPRF talks to arbitrary
users and a �xed set of servers S1, . . . , Sn. Initially, all servers are required to call the
KeyGen interface, to activate the functionality. Modeling an ideal PRF, FedpOPRF chooses
outputs at random, maintaining a function table T () to ensure consistency. Implementing
a partially-oblivious function, FedpOPRF tells the servers public input xpub before they have
to decide about their participation in the request. Participation is signaled by calling (or
not calling) EvalProceed. The adversary may also evaluate the function, but crucially
requires participation of all servers as well. If all servers are corrupted, the adversary
can freely evaluate the function by sending EvalProceed on behalf of all the corrupted
servers. To allow for e�cient protocols, we employ an �evaluation ticket� counter ctr[]
allowing mixing-and-matching evaluations w.r.t the public input, as common for OPRF
notions (see, e.g., [7]).

Our FedpOPRF provides a new feature: it can be extended to output a second PRF value
which is related to the �rst evaluation. This works as follows. A user obtains an evaluation
on xpub, xpriv1 by calling EvalInit with session identi�er qid . (The output is only generated
if all servers participate and the adversary allows the output by calling EvalComplete,
which is standard procedure for distributed OPRFs and we thus not elaborate here.)
Afterwards, the user can provide a third input xpriv2 via interface EvalFollow, using the
still active session qid . FedpOPRF outputs the function value at xpub, xpriv1, xpriv2, ensuring
that inputs xpub, xpriv1 from the �rst evaluation are reused by looking them up using qid .

3.2 Our edpOPRF Construction

We now present our construction of a extendable distributed partially-oblivious PRF.
ΠedpOPRF computes the function

PRF(K(xpub), xpriv1, 1) = HT (xpriv1, e(H1(xpriv1),H2(1))
K(xpub))

PRF(K(xpub), xpriv1, xpriv2) = HT (xpriv1, xpriv2, e(H1(xpriv1),H2(xpriv2))
K(xpub))

with K(xpub) ←
∑n

i=1 F(ki, xpub) for (standard) PRF F : {0, 1}∗ → Zq, and ki from F's
key space is held by server Si. xpub denotes the public input and xpriv1, xpriv2 the private
inputs. The function e() denotes a pairing, and Hi denote hash functions.

Setup and Key Generation:We require an asymmetric bilinear group (g1, g2, gT ,G1,G2,
GT , e) and hash functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G2, HT : {0, 1}∗ → GT . We
assume servers to choose keys ki ← Zq, i ∈ [n] at the beginning of the protocol.

Evaluation:Our PRF is essentially the �2Hash Di�e-Hellman� function [16, 17] PRF(k , xpriv1) =
H(xpriv1,H

′(xpriv1)k). Let us brie�y explain how evaluating this function would work. A user

blinds his input xpriv1 with randomness r as H′(xpriv1)r and sends this value to the server.
The server sends back H′(xpriv1)rk , from which the user can compute H′(xpriv1)k by expo-
nentiation with 1/r. This is enough for the user to compute H(xpriv1,H

′(xpriv1)k).
Partial obliviousness is now achieved as in Everspaugh et al. [14] by combining blinded

private inputs as e(H1(xpriv1)
r,H2(xpriv2)

k) using the pairing e(). Due to the bilinear prop-
erty of e() this is equal to e(H1(xpriv1),H2(xpriv2))

rk , which again allows the user to remove
the blinding factor r. One can additively share k among all servers and let the client
combine evaluation shares using the group operation in GT . The function is computed as
PRF(k , xpriv1, xpriv2) = HT (xpriv1, xpriv2, e(H1(xpriv1),H2(xpriv2))

k).
For our new extendability property we require a PRF evaluated on three inputs. For-

tunately, we can e�ciently and securely augment the function given above with another
input by �squeezing� it into the function's key. This technique is inspired by the work
of Jarecki et al. [19]. We set K(xpub) := k ← ∑

i∈[n] F(ki, xpub) for a (standard) PRF F
and ki being the servers' secret keys. One subtlety here occurs in the �rst evaluation
on xpub and xpriv1 only. We cannot save the pairing evaluation and simply use H1(xpriv1)

k

as k -dependent value instead: with this value, a user could compute arbitrary function
evaluations on input xpriv1 by himself by applying the pairing. We therefore let servers use
a �dummy� value H2(1) and pair it with the user's blinded input xpriv1.

A full formal description of our OPRF construction ΠedpOPRF can be found in Figure
3. Its security is stated in the following theorem, for which a proof sketch can be found
in full version, Appendix B.

User U Server Si, holding ki

On input (EvalInit, xpub, xpriv1)

r1
$← Zp, x1 ← H1(xpriv1)

r1 -xpub, x1
Output (EvalInit, xpub)

On input (EvalProceed, 1)
osk i ← F(ki, xpub)

If all Sj ∈ S sent yj : � yi
yi ← e(x1, H2(1))

oski

y ←∏
j∈[n] yj

r−1
1 , Y1 ← HT (xpriv1, y)

Output (EvalComplete,⊥, Y1)

On input (EvalFollow, xpriv2)

r2
$← Zp, x2 ← H2(xpriv2)

r2 -x2 Output (EvalFollow)

On input (EvalProceed, 2)

If all Sj ∈ S sent yj : � y′i y′i ← e(x1, x2)
oski

y′ ←∏
j∈[n] y

′
j
r−1
1 r−1

2 ,

Y2 ← HT (xpriv1, xpriv2, y
′)

Output (EvalComplete, xpriv2, Y2)

Fig. 3. Protocol ΠedpOPRF. We assume all messages, inputs and outputs to include sid , qid .

Theorem 1. Let G = (p, g1, g2, gT ,G1,G2,GT , e) be a bilinear group. If the Gap One-
More BDH (Gapom-BDH) assumption (c.f. De�nition 3) holds for G then the protocol
ΠedpOPRF given in Figure 3, with H1,H2 and HT modeled as random oracles and F being a
(standard) PRF, UC-emulates FedpOPRF in the random oracle model assuming secure and
server-side authenticated channels, static honest-but-curious corruption of servers and
static malicious corruption of clients.

On malicious security. As detailed above, our FedpOPRF ensures that the PRF is always
evaluated w.r.t the same key. This rules out protocols where servers can freely decide
what key material to use in an evaluation. Let us note that it is quite common in the
literature [18, 20, 7] to relax this property by letting the OPRF functionality maintain
di�erent lists representing di�erent PRF keys. The adversary can then determine which
list is going to be used (in case of server corruption). And indeed, it turns out that our
FedpOPRF enforcing such consistency in keys is challenging to realize in the presence of
malicious servers. The reason is that we cannot use standard techniques such as NIZK
proofs of honest behavior with respect to some public server key (e.g., [14]), since our
server keys are user-speci�c. Reliable distribution of such keys would involve frequent
interaction with a trusted authority. Another ine�cient way to obtain malicious security
is to use a 3-linear map instead of a 2-linear map (pairing), together with a NIZK. The
map would allow us to have (NIZK-compatible) uid -independent key shares simply by
putting uid as third input parameter to the map. We choose not to give a maliciously
secure protocol with such ine�cient techniques, and leave the construction of an e�cient
maliciously secure (i.e., veri�able) extendable distributed partially-oblivious PRF as an
open problem.

4 DPaSE

In this section we introduce distributed password-authenticated symmetric encryption
(DPaSE). DPaSE is an interactive protocol between many users and a �xed set of n servers,
where the servers assist users in conveniently and securely encrypting their data under
a single password. DPaSE operates account-based: First, users register with a username
and a single password at all servers. After account creation, the servers (blindly) assist
users in encryption and decryption provided that they are using the correct password.

We recall the key security properties of DPaSE as already explained in more detail
in Section 1: correct and authenticated encryption, no reuse of encryption keys, security
against o�ine and online attacks, and con�dentiality of password and access patterns.
We will detail in the upcoming subsection how our de�nition ensures these properties.

Our concrete scheme will leverage the servers mainly to (re)construct object-speci�c
encryption keys, whereas encryption and decryption happens locally at the user side.
This might pose the question why we are modelling DPaSE as an encryption and not key
management protocol. Capturing the full encryption/decryption process is necessary to
avoid similar misconceptions as with PASS, which was believed to be a suitable out-of-
the-box tool for password-based encryption. Only with modelling and considering the full
encryption process this can be ensured.

4.1 An ideal functionality for DPaSE

We de�ne DPaSE in terms of an ideal functionality FDPaSE, which takes inputs of parties
and hands them their securely computed outputs. FDPaSE abstracts away any protocol
details and states only the required functionality and leakage and in�uence (i.e., attacks)
allowed by an adversary.

We assume the same writing conventions as for FedpOPRF. In addition, we assume the
adversary gets to acknowledge all inputs, but not learn their private content. For example,
if the functionality receives input �(Encrypt, sid , qid , x) from a party P � and �keeps x

private�, we assume that the functionality sends (Encrypt, sid , qid , P) to the adversary
and only processes the original input after input an acknowledgement from the adversary.

Our ideal functionality FDPaSE is depicted in Figure 4, with labeled instructions to
enable easy matching to the explanations in this section. On a high level, FDPaSE is
a password-protected lookup table for (username,message,ciphertext) tuples. Users can
create new such tupes by �rst logging in to their account stored by FDPaSE with a username
and password, and then encrypt a message of their choice, obtaining back the ciphertext.
Decryption works in a similar fashion. FDPaSE stores a password for every registered user,
and refuses service if a user does not remember his password correctly when he wants
to encrypt or decrypt. In order to perform registration, encryption or decryption, FDPaSE

requires participation of n distributed servers.

Let us �rst give some intuition on how FDPaSE ensures the required security and privacy
properties of DPaSE. FDPaSE associates a password with each username uid and creates
an �encryption� entry (uid ,m, c) upon request of user uid if and only if the user provided
the password that is associated with uid . This ensures correct and authenticated en-
cryption. By verifying password matches internally and not revealing passwords nor
message/ciphertext from encryption/decryption requests to the servers, FDPaSE ensures
obliviousness. By requiring all servers to assist in proceeding any request (register, en-
cryption, or decryption), FDPaSE ensures security against o�ine attacks. FDPaSE however
leaks the username uid to the servers, which allows servers to refuse participation if they
are suspicious of an online password guessing attack against user uid .

We now describe the interfaces of FDPaSE in more detail. The functionality talks to
arbitrary users and a �xed set of servers S1, . . . , Sn.

Account Creation: Any user can register with FDPaSE by calling its Register interface
with a username uid and a password pw . If no account uid exists yet (R.3), FDPaSE

informs all servers about the new registration request and the uid , but keeps the pass-
word private (R.4). Servers can now decide to participate in the registration by sending
ProceedRegister to FDPaSE. Only if all servers do so (PR.2), FDPaSE stores the account
(uid , pw) and con�rms the registration to the user. ProceedRegister inputs of servers
are matched with their corresponding registration requests via subsession identi�ers qid .
Since those identi�ers are unique, collecting servers' participation among di�erent re-
quests is prevented by FDPaSE.

Encryption: A message encryption is initiated by a user sending an Encrypt request
to FDPaSE which includes uid , pw and a message m. If account (uid , pw ′) exists (E.3),
FDPaSE �rst informs all servers about an incoming request for uid , keeping the password
as well as the message private (E.4). Only if all server agree to participate in this request
for uid by using the Proceed interface for the corresponding subsession (P.2), FDPaSE

continues the encryption request. By not giving away any information before, FDPaSE

prevents o�ine attacks. FDPaSE now veri�es that the provided password pw is equal to
pw ′ stored with uid (P.2.3). All servers and the user are informed about the outcome of
password veri�cation by input either PwdOK or PwdFail (P.2.5). Being informed about
failed password attempts and requests of uid in general allows servers to protect accounts
against online guessing attacks: based on this information, they can decide to throttle
requests by refusing to send Proceed, e.g., after 5 failed attempts within 1 minute. Such
throttling is however decided by the application using FDPaSE.

Finally, if veri�cation was successful, the user obtains a ciphertext c from FDPaSE.
While c is adversarially chosen, we stress that, in an honest encryption procedure, the
adversary only learns the length of the message from FDPaSE (P.2.2). Thus, FDPaSE en-
sures that the ciphertext does not contain any information about m beyond its length.
Further, FDPaSE ensures that no two encryption requests yield the same ciphertext by re-
jecting repeated ciphertexts sent by the adversary (P.2.2). FDPaSE stores the pair (m, c)
together with uid , and sends the ciphertext to the user (P.2.7). Handing out the (fresh)
ciphertext only if the correct password was provided ensures correct encryption. For this,
note that for honestly registered accounts (which would not have pw = ⊥) FDPaSE pre-
vents the adversary from in�uencing the �veri�cation bit� b in encryption procedures in
any way.

Decryption: A user initiates a decryption procedure by calling the Decryptinterface of
FDPaSE with uid , pw and a ciphertext c. It is instructive to note that FDPaSE does not give
out any information about ciphertexts it is not explicitly queried for, and thus cannot be
used as a storage for ciphertexts. FDPaSE informs servers about a request for uid , keeping
password and ciphertext private (D.2). Similar to an encryption procedure, all servers are
required to call Proceed in order for FDPaSE to continue with password veri�cation (P.2).
However, FDPaSE does not inform servers about which ciphertext should be decrypted, in
order to hide access patterns on user data. We choose to not even inform servers about
the type of request - encrypt or decrypt - in order to allow also for protocols where pass-
word veri�cation requests do not yet reveal what a user wants to do. Coming back to
the decryption procedure, FDPaSE now veri�es the password (P.2.3). In case of success
and if FDPaSE �nds a record (uid ,m, c), the message m is given to the requesting user
(P.2.7). By storing uid along with message-ciphertext pairs and revealing m only if uid 's
password was provided in the decryption query, FDPaSE enforces authenticated encryption.

Adversarial Interfaces: As explained before, we letA determine ciphertexts as common
for functionalities modeling symmetric encryption. However, ciphertexts cannot depend
on the message beyond its length, since FDPaSE ensures that the adversary is oblivious
of messages to be encrypted (E.2 and P.2.2). A may also in�uence password veri�ca-
tion in the following ways. First, modeling DoS attacks, we allow A to make individual
servers believe that password veri�cation failed even though the password might have
been correct. This attack is carried out by setting bSi

← 0 for the corresponding server
Si (P.2.2 and P.2.4 , �otherwise� case). Second, A may make servers believe that pass-
word veri�cation suceeded even when a wrong password was used, but only for accounts
belonging to the adversary. FDPaSE marks a uid corrupted if this is the case, i.e., if a
corrupted user performed a successful password veri�cation with respect to username
uid (P.2.1). The adversary then can fake successful password veri�cation towards Si

by setting bSi
← 1 (P.2.4 , �Else, if� case). The motivation is that for such corrupted

accounts we have to assume that the adversary knows all secrets. It is then plausible that
he can compute whatever proof a protocol requires to convince servers of knowledge of
the correct password.

We further weaken FDPaSE by allowing the adversary to start, e.g., an encryption
request without yet knowing what message to decrypt, and under which password. Tech-
nically, this is enabled by FDPaSE accepting overwrite requests in adversarial records (R.1 ,
E.1 and D.1). While this does not constitute a meaningful attack for real-world applica-

tions (we stress that the adversary is only allowed to change inputs for his own requests,
not for the ones of honest users), it allows for e�cient realizations of FDPaSE such as ours
based on oblivious pseudo-random functions and random oracles.

A special case - all servers corrupted:We want to highlight which guarantees FDPaSE

gives in this worst case scenario. In any DPaSE protocol with n servers storing a somehow
shared information about the user's password, these servers can always throw their data
together, guess a password and run the password veri�cation procedure of the DPaSE
protocol to learn whether the guess was correct. This is unavoidable unless we involve
more parties (such as an external password hardening service), which is not the scope of
this work. However, we require that this is the best possible attack on the user's password
when all servers are corrupted: they have to invest some computation to test each of their
password guesses. This way, users with strong passwords will remain safe even in this worst
case scenario. Since FDPaSE enforces authenticated encryption by revealing messages only
if the correct password was supplied (P.2.3 and P.2.7) - regardless of how many servers
are corrupted - not only passwords but also encrypted data of users with strong passwords
remain secure.

4.2 A DPaSE protocol ΠDPaSE

We now present our DPaSE protocol ΠDPaSE. The detailed formal description can be found
in Figure 5. ΠDPaSE uses hash functions H : {0, 1}∗ → {0, 1}λ and H-PRG : {0, 1}λ →
{0, 1}∗, a signature scheme SIG and FedpOPRF as ideal building block. The main principle
of ΠDPaSE is that the servers assist the user in turning his (low-entropy, but unique) au-
thentication data, i.e., username and password, into various (high-entropy) cryptographic
keys. Those keys are subsequently used for proving knowledge of the password to servers,
and to encrypt or decrypt the data. We describe the three phases of ΠDPaSE, account
creation, encryption and decryption, in more detail in the below.

Account Creation: To create an account, a user derives a signing key pair (usk , upk)
from its username uid and password pw . For this, FedpOPRF is queried with inputs uid , pw
by the user, yielding Y ← PRF(k, (pw , 1, uid)) if all servers participate in the evaluation.
Partial blindness ensures that servers learn uid but not pw . The user then computes
(usk , upk)← SIG.Gen(Y), sends upk to all servers and can afterwards delete the key pair.
Servers are required to store (uid , upk).

Encryption: Users are required to provide their correct password whenever they want
to encrypt (or decrypt) any data. This is now straightforward: as in account creation,
the user calls FedpOPRF with inputs (uid , pw ′), receiving PRF value Y1 if again all servers
participate in the PRF evaluation. The user now computes a signing key pair from Y1,
signs part of the transcript (we mention that the identi�er of this encryption session,
qid ′, is globally unique) and sends the resulting signature σU to each server. Servers will
accept (i.e., output PwdOK) only if σU is a verifying signature under upk stored with uid ,
which happens if and only if pw = pw ′. Of course, this veri�cation technique only works
if servers reliably learn uid used in the PRF compuation, which is ensured by the partial
obliviousness of FedpOPRF.

Symmetric encryption in ΠDPaSE is simply a one-time pad, with an object-speci�c
encryption key which is computed again from a PRF value and with the help of all servers.

The functionality is parametrized by a security parameter λ. It interacts with servers S := {S1, ..., Sn}
(speci�ed in the sid), as well as arbitrary users and an adversary A.

Account Creation
On input (Register, qid , uid , pw) from U or A:
R.1 If ∃ record (register, qid , U, uid , pw ′), if U = A then overwrite pw ′ with pw and if U ̸= A then

ignore the query.
R.2 Keep pw private

R.3 If ∄ record (account, uid , ∗): create record (register, qid , U, uid , pw) and R.4 send delayed output
(Register, qid , uid) to all Si ∈ S.

On input (ProceedRegister, qid , uid) from server Si:

PR.1 Retrieve record (register, qid , U, uid , pw).

PR.2 If (ProceedRegister, qid , uid) has been received from all Si:
• Record (account, uid , pw); if U is corrupted mark uid corrupted. Send delayed output

(Registered, qid , uid) to U .

Encryption and Decryption
On input (Encrypt, qid ′, uid ,m, pw ′) from party U or A:
E.1 If ∃ record (∗, qid ′, U, uid ,m′, pw), if U = A then overwrite it with (enc, qid ′, U, uid ,m, pw ′) and if

U ̸= A then ignore the query.
// A can change mode, password and message in his own requests

E.2 Keep Encrypt, m and pw ′ private, leak Request tag and ℓ(m) to A
E.3 If ∃ record (account, uid , pw): create record (enc, qid ′, U, uid ,m, pw ′) and E.4 send delayed output

(Request, qid ′, uid) to all Si ∈ S.

On input (Decrypt, qid ′, uid , c, pw ′) from party U or A:
D.1 If ∃ record (∗, qid ′, U, uid , pw), if U = A then overwrite it with (dec, qid ′, U, uid , c, pw ′) and if U ̸= A

then ignore the query.
D.2 Keep Decrypt, c and pw ′ private, leak Request tag and ℓ(c) to A
D.3 If ∃ (account, uid , pw): record (dec, qid ′, U, uid , c, pw ′) and

D.4 send a delayed output (Request, qid ′, uid) to all Si ∈ S .

On input (Proceed, qid ′) from server Si:

P.1 Retrieve records (mode, qid ′, U, uid , obj, pw ′) and (account, uid , pw) with mode ∈ {enc, dec}.
P.2 If (Proceed, qid ′) has been received from all Si:

P.2.1 If U corrupted and pw == pw ′ then mark uid corrupted.
// DoS attacks: A can prevent or sometimes even fake password con�rmation (send bSi = 0 or
bSi = 1)

P.2.2 Send (Complete, qid ′, pw == pw ′) to A and receive back (Complete, qid ′, bS1 , . . . , bSn , c). Abort
if mode = enc and c has been sent before.

P.2.3 If pw = ⊥ then set b← ⊥; otherwise set b← (pw = pw ′).

P.2.4 For i ∈ [n], if pw = ⊥ set b′i ← 0. Else, if U and uid corrupted then set b′i ← bSi , otherwise set
b′i ← b ∧ bSi .

P.2.5 For i ∈ [n], if b′i = 0 output (PwdFail, qid ′) and otherwise output (PwdOK, qid ′) to all Si.

P.2.6 If b = 0 output (PwdFail, qid ′) to U .

P.2.7 If b = 1 then
* If mode = dec and ∃ record (uid ,m, obj), output (Plaintext, qid ′,m) to U .
* If mode = enc: store (uid , obj, c), output (Ciphertext, qid ′, c) to U .

Fig. 4. Ideal functionality FDPaSE for distributed password-authenticated symmetric encryption. For easy access
to explanations we use highlighted numbering in both �gure and text.

User U Server Si

Upon input (Register, qid , uid , pw) -Register, qid , uid

-(EvalInit, uid , pw) -(EvalInit, uid)

FedpOPRF

If EvalProceed was Abort if a record for uid already exist.
received from all Si,

compute
Else output (Register, qid , uid).

Y ← PRF(k, (pw , 1, uid)) Upon input (ProceedRegister, qid , uid) :

� (EvalComplete,⊥, Y) � (EvalProceed, 1)

(upk , usk)← SIG.Gen(Y) -upk
store (uid , upk)

upon receiving ok from all Si ∈ S, output
(Registered, qid , uid)

� ok

Upon input (Encrypt, qid ′, uid ,m, pw ′) (Decrypt, sid , qid ′, uid , c, pw ′)

ρ
$← {0, 1}λ, com ← H(m, ρ) parse c := (e, com)

-(Request, qid ′, uid)

-(EvalInit, uid , pw ′) -(EvalInit, uid)

FedpOPRF

If EvalProceed was
received from all Si,

compute
Abort if no record (uid , upk) exist, else
output (Request, qid ′, uid).

Y1 ← PRF(k, (pw ′, 1, uid)) Upon input (Proceed, qid ′):

� (EvalComplete,⊥, Y1) � (EvalProceed, 1)

(upk ′, usk ′)← SIG.Gen(Y1) � upk

if upk ̸= upk ′ then output (PwdFail, qid ′)
σU ← SIG.Sign(usk ′, (uid , qid ′)) -σU if SIG.Verify(upk , (uid , qid ′), σU) = 0

then end with output (PwdFail, qid ′)
else output (PwdOK, qid ′)

-(EvalFollow, com) -(EvalFollow)

FedpOPRF

compute
Y2 ← PRF(k, (pw ′, com, uid)) � (EvalProceed, 2)�(EvalComplete, com, Y2)

e← H-PRG(Y2, |m|+ λ)⊕ (m, ρ), c← (e, com)

output (Ciphertext, qid ′, c)

(m′, ρ′)← H-PRG(Y2, |m|+ λ)⊕ e, abort if com ̸= H(m, ρ)

output (Plaintext, qid ′,m′)

Fig. 5. Our protocol ΠDPaSE using a signature scheme SIG, ΠedpOPRF protocol and hash functions H,H-PRG. Top

box shows registration, bottom box shows encryption and decryption. Gray instructions are only executed in

encryption, framed ones only in decryption. Each encryption and decryption query has to use a fresh subsession
identi�er qid ′.

But now, ΠDPaSE crucially relies on the extendability of the PRF to ensure correct and
authenticated encryption of message m under encryption randomness ρ. Namely, the key
is computed from H(m, ρ) and uid , pw that successfully veri�ed before. Note that this
requires to evaluate the PRF on three inputs, while the two latter are reused from the
password veri�cation procedure detailed above. The extendability property of FedpOPRF

allows this by calling EvalFollow with input H(m, ρ), still using the identi�er qid ′ of
the ongoing encryption session. The user obtains Y2 ← PRF(k, (pw ,H(m, ρ), uid)) from
FedpOPRF.

To encrypt, Y2 is XORed with (m, ρ) (applying H-PRG �rst to account for di�erences
in lengths). The resulting ciphertext is augmented with H(m, ρ). The reason for appending
this auxiliary information will become apparent below.

Decryption: In order to compute a decryption key, a user �rst has to successfully pass
password veri�cation. This is done in the exact same way as for an encryption request (in
fact, in our protocol, servers cannot distinguish an encryption request from a decryption
request). Computation of the decryption key is also done the exact same way as in
encryption � now it becomes apparent why com ← H(m, ρ) is required to be part of the
ciphertext. The user decryptsm, ρ by XORing the decryption key with the �rst part of the
ciphertext. Finally, the user veri�es correct decryption by recomputing com from m, ρ.
While FedpOPRF already provides correct results, the latter check is still required since
otherwise faulty ciphertexts (where the com contains another message) would decrypt
faithfully and users would recover data that they never encrypted.

4.3 Security of ΠDPaSE

For analyzing the security of ΠDPaSE we assume that honest users delete all protocol val-
ues such as Y1, Y2, usk after performing an encryption or decryption, i.e., upon closing
a subsession. Further, we assume that within ongoing subsessions (the identi�er qid in-
dicates one such session) an honest user does not get corrupted. This seems reasonable
given the fact that, in reality, the time between password veri�cation and encryption (or
decryption) will be only very few seconds.

Theorem 2. The protocol ΠDPaSE given in Figure 5 with H,H-PRG modeled as random
oracles and SIG = (Gen, Sign,Verify) an EUF-CMA-secure signature scheme UC-emulates
FDPaSE in the FedpOPRF-hybrid random oracle model w.r.t static malicious user corrup-
tions, semi-honest server corruptions, and assuming server-side authenticated and secure
channels.

Proof (Proof Sketch.). A detailed description of simulated cases can be found in Table 5
in the Appendix, full version.

Simulation of honest servers. Since servers do not obtain any secret input that is
kept from the adversary, simulating honest servers is quite trivial: the simulator S just
follows the server's protocol.

Simulate honest user without password. First note that the password in�uences
the outputs of the (deterministic) PRF. To know whether former PRF values have to be
reused as output (i.e., in case of a correct password), it is enough for the simulator to learn

whether password veri�cation was successful. Fortunately, S learns this information from
FDPaSE on time (via (Complete, . . .) message) before having to commit to any FedpOPRF

output.

Extraction of corrupted user's secrets. Since any user, even a corrupted one, needs
to use FedpOPRF in order to obtain a key, S can extract a corrupted user's password and
message or ciphertext from his inputs to FedpOPRF. Another way to see this is that, while
usage of FedpOPRF simpli�es our DPaSE simulator's life in this case, the burden is on the
protocol realizing FedpOPRF. This protocol has to ensure that secrets can be extracted
from adversarial messages.

Three di�erent ways to encrypt or decrypt. The simulation is complicated by the
fact that Z can initiate, e.g., an encryption procedure either via an honest user and then
recompute the symmetric decryption key via either a corrupted user or via Z's adversarial
interface at FedpOPRF. Knowing only the ciphertext so far, S now needs to produce the
symmetric key without knowing the plaintext it should decrypt to. However, all honest
servers need to agree to help Z in computation of the symmetric key. S can use the
server's agreement to obtain the plaintext message from FDPaSE, compute the key linking
this message with the ciphertext and send it to Z (for this, S has to program the random
oracle H-PRG to point to the key).

We obtain the following by combining Theorems 2 and 1.

Corollary 1. Let G = (p, g1, g2, gT ,G1,G2,GT , e) be a bilinear group and H1,H2,HT ,H,
H-PRG hash functions as described in ΠedpOPRF and ΠDPaSE, modeled as random oracles.
If the Gapom-BDH assumption holds for G, SIG = (Gen, Sign,Verify) is an EUF-CMA-
secure signature scheme and F a (standard) PRF, then ΠDPaSE with FedpOPRF instantiated
by ΠedpOPRF UC-emulates FDPaSE in the random oracle model w.r.t static honest-but-
curious server corruption and assuming server-side authenticated and secure channels.

Towards security against malicious servers. In Theorem 2 we restrict to static
server corruptions, which is a limitation inherited from building block ΠedpOPRF, which
only features semi-honest security. Our proof however directly carries over to the malicious
setting: any maliciously secure realization of FedpOPRF plugged into ΠDPaSE would yield
a maliciously secure FDPaSE realization. This is witnessed by our simulation (cf. Table
5 in the Appendix, full version), which considers malicious server behavior except for
instructions handled by FedpOPRF. We mention again that considering honest-but-curious
servers already captures the main threat to passwords: an adversary stealing the password
database (or other o�ine-attackable information).

5 Evaluation & Comparison

In this section, we consider an instantiation of the ΠDPaSE protocol (from Section 4.2),
where the functionality FedpOPRF is instantiated with ΠedpOPRF (from Section 3.2), and
the signature scheme SIG with ECDSA. We report on the e�ciency of our scheme, by
counting the number of exponentiations per group and pairings, being the most expen-
sive operations of such protocols. We compare our ΠDPaSE protocol with what we believe

Scheme
#(Exponentiations + Pairings) per Encryption
client/rate limiter server

PHE [25] 7 exps (in G) 10 exps (in G)
ΠDPaSE (Our Work) 10 exps (= 2G1 +

2G2 +4GT +2Gp-256)
4 exps (= 2GT +
2Gp-256) +2 pairings

Table 2. Comparison of ΠDPaSE with closest password-based encryption scheme PHE, where the exponentiations
are counted per group G, G1, G2, GT , the pairing is mapped as G1×G2 : → GT and Gp-256 represents the prime
group in the ECDSA signature scheme secp256r1.

to be the closest related password-based encryption scheme, namely Password Hardened
Encryption (PHE) [25] (see also Table 1 for the overlap of properties of both schemes).
Considering each exchange of messages between the client and servers as one round of
communication, ΠDPaSE requires 2 rounds for Account Creation and 3 rounds for Authen-
tication followed by a Encryption (Decryption) request.

Protocol
No. of Execution Requests
Servers Time (in ms) per server

user server (per second)

Account Creation

2 18 13 76
6 19 13 76
8 19 13 76
10 19 13 76

Authenticate + Encrypt

2 32 27 37
6 37 27 37
8 40 27 37
10 43 27 37

Table 3. Timing measurements of the protocol ΠDPaSE run between one user and k = {2, 6, 8, 10} number of
servers.

Benchmarks.We carried out a proof-of-concept implementation [1] of our ΠDPaSE proto-
col and report preliminary benchmarks on the same. We implement in Java, and use the
MIRACL - AMCL library for the pairing computation and exponentiation operations. We
use the Boneh-Lynn-Shacham pairing with 461 bit curves for the pairing G1 ×G2 → GT

in ΠedpOPRF, ECDSA with sec256r1, SHA-512 as the underlying hash function H, AES-256
to construct the standard PRF function F and H-PRG and the Java's inbuilt KeyPairGen-
erator class for user key pair generation SIG.Gen. The elements in groups G1, G2 and GT

are implemented using single exponentiation operations with the respective group gen-
erators. The hash functions H1, H2 and HT are implemented by �rst applying SHA-512
followed by an exponentiation in the groups G1, G2 and GT respectively.

We measured our implementation on a machine running a Intel Core i7-7500U series
CPU with 4 virtual CPUs, 16 GiB of RAM. We focused on measuring the local com-
putation times both on the client and the server sides, and did not consider delays due
to network latency. The details of our timing measurements corresponding to a ΠDPaSE

protocol run between one user and a number of servers can be found in the Table 3. The
time taken by each server for processing an account creation is 13 milliseconds, while
that required for processing an user authentication followed by an encryption request is
27 milliseconds. Consequently, each server is able to process 76 account creation requests
and 37 encryption requests per second. Since the computation underlying an encryption

or a decryption is almost the same, we have only detailed the encryption timings. We
stress here that the timing benchmarks can be further improved by exploiting the par-
allelizability of the underlying algorithms as well as utilizing the capabilities of multiple
cores of a computer. Since this enhancement was not the focus of our work, in our im-
plementation, we have relied on standard cryptographic libraries as mentioned above,
which create the bottleneck in our timing measures. Close to our work, Pythia achieves a
throughput of 130 requests ps [ECS+15] (also pointed in [LER+18]). In theory, e�ciency
of our ΠDPaSE protocol is lower-bounded by half the throughput of Pythia, which is 65
enc/dec requests ps. This is because each enc/dec request in ΠDPaSE requires 2 OPRF
evaluations, and each has the same computational cost as one Pythia evaluation. We note
that password veri�cation and encryption both add only little overhead.

On Scalability. Our ΠDPaSE protocol is highly scalable as can be observed from the
benchmarks in Table 3. The time required by an individual server to process an account
creation request or an encryption (decryption) request is independent of the number of
servers used. While on the other hand, the time taken by the client only slightly increases
with increased number of servers.

Deployment Considerations. Let us now address some of the key points to be con-
sidered when deploying the ΠDPaSE protocol in a real-world environment. Availability is
an inherent challenge in any distributed protocol, naturally also in ΠDPaSE. If one of the
servers goes o�ine due to a Denial-of-Service attack or simply because of a network con-
nection problem, then this would lead to an abort in ΠDPaSE. This issue can be addressed
by using multiple machines for each server and load balancing between them.

In a real-world deployment, servers would ideally be run by di�erent organisations on
di�erent physical machines/locations. But ΠDPaSE could also be used by a single organi-
zation providing all servers, which uses the protocol to "internally" distribute the secret
key and thereby minimize the risk of a detrimental server breach.

From the usability perspective, if end-users wish to change their passwords at a later
point of time, that is possible and will require decrypting the �les under the old password
�rst, and re-encrypt them under the new password. This seems (somewhat) inherent in
any scheme where ciphertexts truly depend on passwords, which is needed to protect
against a full set of corrupt servers.

6 Conclusion and Open Questions

In this paper, we attempted to answer the following question: Can we design a device-
independent cryptographic protocol for password-based encryption with very strong secu-
rity and privacy? We formalize our interpretation of strong security and privacy by intro-
ducing the notion of Distributed Password-Authenticated Symmetric Encryption (DPaSE).
DPaSE uses ciphertext-speci�c encryption keys, prevents encryption under mistyped pass-
words, hides users' access pattern, protects against on- and o�ine attacks on the user
password, and maintains all these guarantees even in a concurrent setting with arbitrary
other protocols.

We answer the question above in the a�rmative, by providing a DPaSE protocol based
on a new type of oblivious pseudo-random functions (OPRF). The OPRF is evaluated

twice: �rst, to let the user turn her password into high-entropy authentication data, and
second, to let the user compute a password- and ciphertext-dependent symmetric key.
We give a construction for such an OPRF, which we believe is of independent interest as
a new building block for password-based cryptographic protocols. We provide proof-of-
concept implementations for our DPaSE construction (including our OPRF construction)
and compare e�ciency to related protocols in the literature. Our protocol provides only
little overhead over existing solutions for password-based key retrieval/encryption, scales
well in the number of users and servers, and features provable security under standard
bilinear discrete-log based assumptions in the random oracle model.

An interesting future direction is the construction of a threshold version of DPaSE,
where only an arbitrary subset of all servers is required to participate in each user request.
This would improve usability of the protocol, since users would not have to wait for
answers of busy servers. Our user-speci�c OPRF keys (oski = F(k, uid)) hinders us to
choose oski as shares of standard threshold scheme. However constructing F as threshold
PRF might give an interesting solution towards thresholdization.

Finally, security in the presence of malicious servers would be enabled by constructing
a maliciously secure extendable distributed partially-oblivious PRF. Alternatively, for
ensuring correct encryption it seems to be su�cient to have servers use the same keys in
both OPRF evaluations. This �avor of veri�ability in our OPRF seems to be achievable
with standard techniques. Although key switching between di�erent requests of a speci�c
user would not signi�cantly weaken but clutter the description of FDPaSE, we decide
to present the more secure and cleaner version here, and leave the slightly weaker but
maliciously secure version as future work.

References

1. Dpase poc implementation. https://gitlab.com/DPaSEcode/dpase-submission-code.
2. Internet identity: The end of usernames and passwords. https://tinyurl.com/6rrhvzr2.
3. Mega: Secure cloud storage and communication privacy by design. https://mega.nz/.
4. Tresorit: Cloud storage + end-to-end encryption. https://tresorit.com/security/encryption.
5. S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal. DiSE: Distributed symmetric-key encryption. pages

1993�2010, 2018.
6. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret sharing. pages 433�444, 2011.
7. C. Baum, T. K. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai. Pesto: Proactively secure distributed

single sign-on, or how to trust a hacked server. IEEE European Symposium on Security and Privacy, 2020.
8. J. Brost, C. Egger, R. W. F. Lai, F. Schmid, D. Schröder, and M. Zoppelt. Threshold password-hardened

encryption services. In CCS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
2020.

9. J. Camenisch and A. Lehmann. Privacy-preserving user-auditable pseudonym systems. In 2017 IEEE

European Symposium on Security and Privacy, EuroS&P. IEEE, 2017.
10. J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How to reconstruct your secrets from

a single password in a hostile environment. pages 256�275, 2014.
11. J. Camenisch, A. Lehmann, and G. Neven. Optimal distributed password veri�cation. pages 182�194, 2015.
12. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. pages 136�145,

2001.
13. M. Christodorescu, S. Gaddam, P. Mukherjee, and R. Sinha. Amortized threshold symmetric-key encryption.

In Y. Kim, J. Kim, G. Vigna, and E. Shi, editors, CCS '21: 2021 ACM SIGSAC Conference on Computer

and Communications Security, 2021.
14. A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia PRF service. pages 547�562,

2015.
15. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable encryption: Rami�cation,

attack and mitigation. 2012.

16. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret sharing and T-PAKE in
the password-only model. pages 233�253, 2014.

17. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-e�cient and composable password-protected secret
sharing (or: How to protect your bitcoin wallet online). In IEEE European Symposium on Security and

Privacy, EuroS&P, 2016.
18. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-protected secret sharing

based on threshold OPRF. pages 39�58, 2017.
19. S. Jarecki, H. Krawczyk, and J. K. Resch. Updatable oblivious key management for storage systems. pages

379�393, 2019.
20. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol secure against pre-

computation attacks. pages 456�486, 2018.
21. S. Jarecki and X. Liu. E�cient oblivious pseudorandom function with applications to adaptive OT and

secure computation of set intersection. pages 577�594, 2009.
22. M. Klooÿ, A. Lehmann, and A. Rupp. (R)CCA secure updatable encryption with integrity protection. pages

68�99, 2019.
23. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. E�cient batched oblivious PRF with applications

to private set intersection. pages 818�829, 2016.
24. M.-S. Lacharité, B. Minaud, and K. G. Paterson. Improved reconstruction attacks on encrypted data using

range query leakage. pages 297�314, 2018.
25. R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Ma�ei, and D. Schröder. Simple password-hardened

encryption services. In 27th USENIX Security Symposium, USENIX Security, 2018.
26. A. Lehmann. Scrambledb: Oblivious (chameleon) pseudonymization-as-a-service. Proc. Priv. Enhancing

Technol., 2019.
27. A. Lehmann and B. Tackmann. Updatable encryption with post-compromise security. pages 685�716, 2018.
28. X. Wang and B. Huson. Robust distributed symmetric-key encryption. IACR ePrint, 2020.

	Introduction
	Blockchain Infrastructure
	Byzantine Agreement
	Cloud Infrastructure
	Thesis Outline and Summary of Contributions

	Deterministic Wallets from Rerandomizable Signatures
	Preliminaries
	Our Contributions on BIP32 Wallets
	Security Model for Deterministic Wallets
	Rerandomizable Signature Schemes
	Security Model of Hierarchical Wallets
	Concrete Security Parameters

	Our Contributions on Post-Quantum Deterministic Wallets
	Security Model of Post-Quantum Wallets
	Post-Quantum Secure Rerandomizable Signature Schemes

	Related Work
	Discussion and Future Work

	Round Efficient Byzantine Agreement from VDFs
	Our Contributions
	The VDF Model
	Byzantine Agreement in the VDF Model
	A Lower Bound on Communication Complexity for BA

	Implications of Our Results and Related Work
	Discussion and Future Work

	Distributed Password-Authenticated Symmetric-key Encryption
	Our Contributions
	Our Primitive DPaSE and its Properties
	Our DPASE Protocol
	Evaluation and Comparison

	Related Work
	Discussion and Future Work

	Conclusion
	Bibliography
	Appendix A Formal Treatment of Deterministic Wallets
	Appendix Exact Security of BIP32 Wallets
	Appendix Deterministic Wallets in a Quantum World
	Appendix Round Efficient Byzantine Agreement from VDFs
	Appendix Distributed Password-Authenticated Symmetric-key Encryption

