

Energy Systems and Technology Prof. Dr.-Ing. B. Epple Otto-Berndt-Str. 2 64287 Darmstadt / Germany Phone: +49 6151 16 23002 www.est.tu-darmstadt.de

TECHNISCHE UNIVERSITÄT DARMSTADT

Chemical Looping Gasification – A Novel Process for the Sustainable Production of Biofuels

6. Central European Biomass Conference Graz, 22.1 - 24.01.2020

Outline

1

Motivation & Concept (I)

- 25 % of European GHGE stem from the transport sector¹
- Profound changes required to reach climate targets
- Novel biomass-to-biofuel process chain for the production of 2nd generation biofuels

Innovative biomass pre-treatment, gasification and syngas treatment concepts

¹Transport emissions - A European Strategy for low-emission mobility, https://ec.europa.eu/clima/policies/transport_en.

Motivation & Concept (I)

Cost competitive and environmentally compatible fuels for road transport

- Feedstock gasification with H₂O/CO₂ assisted by solid phase oxygen
- Circulation of Me_xO_y for oxygen & heat transport between reactors
 - No air separation required → cost-efficient
 - CO_2 concentrated in syngas \rightarrow facilitation of net negative CO_2 emissions
 - Tar cracking on Me_xO_y surface
- Oxygen carriers: Fe₂O₃/Fe₃O₄, Fe₂TiO₅/FeTiO₃
- Low λ (~0.3 0.5) to achieve partial fuel oxidation \rightarrow formation of synthesis gas

4

Chemical Looping Gasification (CLG) -Reactions

- **AR** (T~ 1050 °C)
 - re-oxidation of oxygen carrier $Me_xO_{y-1} + 0.5 O_2 \rightarrow Me_xO_y$
 - Combustion of unconverted char $C+O_2 \rightarrow CO_2$

- FR (T~ 950 °C)
 - Gasification of biomass $C + CO_2 \rightarrow 2 CO$ $C + H_2O \rightarrow CO + H_2$

• Heterogeneous $Me_xO_y - gas reactions$ $4 Me_xO_y + CH_4 \rightarrow 4 Me_xO_{y-1} + 2 H_2O + CO_2$ $Me_xO_y + CH_4 \rightarrow Me_xO_{y-1} + 2 H_2 + CO$ $Me_xO_y + CO \rightarrow Me_xO_{y-1} + CO_2$ $Me_xO_y + H_2 \rightarrow Me_xO_{y-1} + H_2O$

• Tar cracking e.g. $C_8H_{18} \rightarrow C_3H_6 + C_5H_{12}$

• Water gas shift reaction $CO + H_2O \leftrightarrow H_2 + CO_2$

Continuous conversion of feedstock to syngas without N₂-dilution

Chemical Looping Gasification (CLG) – Mode of Operation (I)

(Lara

Control of heat & oxygen transport through circulation rate of Me_xO_y

> Challenge: achieving adequate λ and sufficient heat transport

Chemical Looping Gasification (CLG) – Mode of Operation (II)

- Challenge: achieving adequate λ , while guaranteeing sufficient heat transport
- a. Adjustment of reactor temperature gradient
 - Decrease T_{FR} to increase specific sensible heat transport

- b. Selection of alternative oxygen carrier materials
 - Me_xO_y exhibiting low O-transport capacity & high c_p
 FR:
- c. Decoupling of heat and oxygen transfer
 - I: Dilution of Me_xO_y with inert solid (e.g. Olivine)

II: Operation of AR in O₂ deficient atmosphere

FR: AR:

Different approaches are currently being investigated

Full Process Chain

8

Summary & Outlook

- Novel biomass-to-biofuel process chain for second generation biofuels
- Innovative pre-treatment, gasification and syngas treatment concepts
- Investigation of full process in 1 MW_{th} pilot scale

This project has received funding from the European Union's Horizon 2020 research and innovation programme

under grant agreement No 817841: Chemical Looping gAsification foR sustainAble production of biofuels (CLARA).

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT

