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Abstract

This thesis focuses on the development of a data processing pipeline for inferring neural
activity observed in cat’s primary visual cortex. These activity patterns were measured in
a grating stimulation paradigm using optical imaging based on fluorescent dyes, more
specifically voltage-sensitive dye imaging. While offering a good compromise between
spatial and temporal resolution, a low signal-to-noise ratio and dominant technical and
biological noise components are inherent properties of the chosen data acquisition method.
A high trial-to-trial variability of neural response activity poses additional challenges for
data analysis. Further constraints on the chosen processing approach are presented in
terms of computational efficiency as well as statistical robustness, which both are require-
ments for future closed-loop experimental designs. To tackle these aspects, the benefits of
deep learning and probabilistic inference are taken advantage of by the utilization of a
deep generative model framework, namely a variational autoencoder model architecture.
Benchmarking and evaluating deep neural networks commonly requires training data
with known ground truth information, which is not available for respective real data. For
that purpose, an additional routine for generating synthetic image sequences resembling
voltage-sensitive dye imaging recordings was developed. It incorporates knowledge about
the data-generating process, including pre-defined spatio-temporal dynamics and typical
signal- and artifact-related components. In six parameter studies on basis of both real and
synthetic datasets, a wide range of model configurations was tested while considering
different pre-processing steps. The thesis concludes with the implication that many of
the tested model parametrizations offer a feasible trade-off between image reconstruction
quality and model regularization, and can be adequatly used for tracking signal- and
noise-related features.
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Kurzfassung

In der vorliegenden Arbeit wird eine Datenverarbeitungs-Pipeline zur geeigneten Inferenz
neuronaler Aktivitätsmuster vorgeschlagen. Diese Aktivität wurde über ein Stimulations-
Paradigma mittels bewegter Balken-Muster im primären visuellen Kortex der Katze
evoziert und unter Verwendung eines optischen Bildgebungsverfahrens auf Basis von
Fluoreszenzfarbstoffen, dem Voltage-Sensitive Dye Imaging, aufgezeichnet. Zwar bietet
diese Erhebungsmethode einen guten Kompromiss zwischen räumlicher und zeitlicher
Auflösung, jedoch gehen damit auch ein niedriges Signal-Rausch-Verhältnis sowie dom-
inante technische und biologische Störkomponenten einher. Eine hohe Trial-to-Trial-
Variabilität der neuronalen Antwortaktivität stellt eine zusätzliche Herausforderung für
anschließende Datenanalyse-Schritte dar. Weitere Einschränkungen für den gewählten
Verarbeitungsansatz ergeben sich in Bezug auf Recheneffizienz und statistische Robustheit,
welche wichtige Anforderungen für künftige Closed-Loop-Experimentaldesigns darstellen.
Um mit diesen Aspekten umzugehen, werden die Vorteile des Deep Learnings sowie
probabilistischer Inferenz durch Verwendung eines tiefen generativen Modells basierend
auf der Modellarchitektur eines Variational Autoencoders genutzt. Für entsprechendes
Benchmarking und Evaluation von Deep-Learning-Modellen sind üblicherweise Train-
ingsdaten mit bekannter Ground Truth erforderlich, welche für die gewählten Realdaten
nicht verfügbar sind. Zu diesem Zweck wurde eine zusätzliche Routine zur Generierung
synthetischer Bildsequenzen entwickelt, die Aufnahmen des Voltage-Sensitive Dye Imag-
ing ähneln und Vorwissen über den Datengenerierungs-Prozess beinhalten. Dabei wurde
die Zusammensetzung über vordefinierte Dynamiken und typische signal- und artefak-
tbezogene Komponenten auf raum-zeitlicher Ebene vorgenommen. In sechs Parame-
terstudien auf Basis realer und synthetischer Datensätze wurde unter Berücksichtigung
verschiedener Vorprozessierungsschritte ein breites Spektrum an Modellkonfigurationen
getestet. Die Arbeit schließt mit der Schlussfolgerung, dass viele der getesteten Modell-
parametrisierungen einen sinnvollen Kompromiss zwischen Bildrekonstruktions-Qualität
und Modell-Regularisierung erzielen können und sich für das Tracking von signal- und
rauschbezogenen Merkmalen eignen.
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1 Introduction

Over the course of evolution, the visual system has developed to meet the ecological
needs of mammals. Here, learning rules about structures of our environment have been
established. From these rules, some have shaped neural circuitries directly, and others in
turn are guiding the brain to interprete the current visual scenery from past experience.
In these scenes, visual images offer a rich source of information about our environment,
from which the brain is able to rapidly infer distinct object features (e.g. identity, size,
shape, distance, velocity), while not being dependent on light conditions or occlusion.
Segmenting a scene into foreground and background elements is part of this object recog-
nition and is based on both geometric as well as cognitive principles. Latter comprise
states of attention and expectation, which in turn can facilitate perceptual tasks in form
of additional information like priming stimulations or internal representations. Besides
mere object recognition, the brain also guides body movement such as hand movement
on basis of visual information (Kandel, Koester, Mack and Siegelbaum, 2021).

The following introduction covers principles of information processing in mammalian
visual system, starting from phototransduction of light as physical signal into a neural
signal (Sect. 1.1.1), latter being converted and pre-processed by different retinal cell types
(Sect. 1.1.2). Through receptive fields (Sect. 1.1.3), informations are further distributed
along parallel but interacting pathways (Sect. 1.1.4) formed by reciprocal connections
between several brain areas. Here, the primary visual cortex (V1) (Sect. 1.1.5) processes
low-level features such as object orientation and direction, which are vital information for
survival. All visual processing is conditioned by advanced concepts of cortical information
processing, such as brain states (Sect. 1.2.1) as well as spontaneous (or ongoing) activity
(Sect. 1.2.2). From these general information, the motivation and research goals of this
thesis are derived (Sect. 1.3).
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1.1 Visual Processing

1.1.1 Phototransduction

Fundamentally, light is electromagnetic radiation with a defined bandwidth of wave
lengths; here, visible light comes in a narrow value range of 400− 700 nm. The energy
of a light photon can be calculated via the Planck relation (or Planck-Einstein relation)
E = h ∗ c/λ, where h is Planck’s constant of 6, 626 ∗ 10−34 Js, c is the speed of light
with c = 3 ∗ 108 ms and λ denotes the wavelength of light in nm. This has the following
important implication for the relation between wave length and energy of light: the higher
the wave length, the lower the energy of light will become (Einstein, 1905; Planck, 1901).
Light makes a peculiar physical signal, as its intensity as well as its corresponding wave
length is highly variable for a) different media (e.g. air or water) and b) the time of
day, which is both influencing the spectral composition of light. Shorter wave lengths are
more reflectable from objects in directional manner. Thus, given that the right detectors
are accordingly available in the subject, it is possible to instantaneously depict an object
with high spatial resolution. Therewith, mammals can visualize their environment by
properties of light (Warrant and Johnsen, 2013).

The necessary detectors for decoding reflected light photons are photoreceptors. Those
translate the light signal into an electrical signal (phototransduction), which in turn can be
further processed on neural basis (Sect. 1.1.2). Photoreceptors exist in different resolving
systems such as the lenticular eye (as in vertebrates and evertebrates) and the compound
eye (as in insects). Depend on species, there exist diffuse light sensing organs, which in
turn can lead to behavioural adaptions like phototaxis and photophobia (Jékely, 2009).
Light activation in the retina’s photoreceptors results in a graded change in membrane
potential and respective alterations in the rate of transmitter release onto postsynaptic
neurons. Graded potentials play a significant role in the retina’s processing, mostly because
action potentials are not necessary at the relatively small distances at issue. This contrasts
with the majority of other sensory systems, where the activation of receptors leads to a
depolarization of the cell membrane, which in turn stimulates an action potential and
leads to the release of transmitters onto connected neurons (Purves et al., 2001).

The balance of membrane conductances to Na+ and K+ ions controls the membrane
potential of a photoreceptor. In darkness, the receptor is in a depolarized state which is
accompanied by a membrane potential of approx. −40 mV. This comes from levels of the
cyclic guanosine 3′˘5′ monophosphate (cGMP) which control the influx of Na+ into the
photoreceptor by opening nonselective cation channels. From guanosine triphosphate
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(GTP), a guanylate cyclase (GC)s is generating cGMP, latter being hydrolyzed by a phos-
phodiesterase (PDE). In the absence of light, the activity of PDE is low, cGMP levels are
high and cGMP-gated ion channels are open. Rhodopsin constitutes the light-sensitive
visual pigment in rod photoreceptor cells and consists of two coupled portions: (i) the
protein component opsin, and (ii) the light-absorbing chromophore retinal. As each
cone photoreceptor type in human retina produces a variant of the opsin protein, three
different cone pigments can be differentiated by their absorption spectrum, which denotes
wavelength of the efficiency of light absorption. The comparison of signals from these
cone types enables the brain for color vision (Alberts, Wilson and Hunt, 2008; Kandel
et al., 2021; O’Brien, 1982).

When a photon is absorbed by rhodopsin molecules in the outer-segment discs, a biochem-
ical cascade is initiated with the isomerization of the 11-cis chromophore attached to the
rhodopsin molecule to all-trans retinal. This switch leads to a conformational change in
the protein (opsin) to an activated state called metarhodopsin II, which in turn causes
the activation of an intracellular messenger transducin. This G protein is then activating
a PDE that hydrolyzes cGMP at the disk membrane. This lowers the concentration of
cGMP bound to the plasma membrane cation channels, thus closing these cGMP-gated
channels and bringing the cell towards the K+ equilibrium potential. Due to the closure
of ion channels, the membrane is hyperpolarized up to a level of −65 mV. Also, the
rate of neurotransmitter release (glutamate) at the synapse is reduced as it depends on
voltage-sensitive Ca2+ channels. Thereby, a neural signal is initiated (Alberts et al., 2008;
Kandel et al., 2021; O’Brien, 1982; Purves et al., 2001).
To become responsive for another photon again, the photoreceptor has to return to its dark
state. Therefore, the duration of the amplifying G protein cascade has to be limited. In
rods, this is accomplished via independent mechanisms which shut off single elements of
the cascade. For example, metarhodopsin II is rendered inactive through phosphorylation
by a particular rhodopsin kinase and binding of the soluble protein arrestin, which in turn
prevents the interaction with transducin. By negative feedback mechanisms which are me-
diated by concentration changes of Ca2+ in the cell, large responses are terminated more
quickly. As the cell is responding to light, the cGMP-gated channels close and the Ca2+
level quickly decreases. The lower level of Ca2+ is influencing at least three components
of the cascade, namely rhodopsin, GC and cGMP-gated channels. Therefore, a decrease in
Ca2+ antagonizes the excitation caused by light (Alberts et al., 2008; Kandel et al., 2021).

The biochemical cascade has two important implications. On the one hand, G protein-
coupled receptors activate a variety of intracellular pathways that rely on relay chains
of intracellular proteins and mediators, which are amplifying the response signal to ex-

3



tracellular signals. On the other hand, the signal amplification depends on the level of
illumination, which is referred to as light adaption. Photoreceptors are most sensitive at
low levels of illumination, though sensitivity diminishes as illumination increases. This
prevents saturation of receptors and therefore broadening the range of light intensities on
which they operate. In this regard, Ca2+ appears to be important in the outer segment for
light-induced regulation of photoreceptor sensitivity due to its regulatory effects (Alberts
et al., 2008; Kandel et al., 2021; Purves et al., 2001).

1.1.2 The Retina

Due to the inside-out design of the mammalian retina, light has to pass its first couple of
neuron layers until it reaches the photoreceptors. Latter are converting light into a neural
signal, as previously described in Sect. 1.1.1. In humans, two types of photoreceptor cells
are differentiated: rods and cones. Due to comparably longer outer segments holding
the light-absorbing photopigment rhodopsin, rods are more sensitive to light intensity.
They are capable to detect the absorption of a single photon, therefore enabling vision
under weaker light conditions. While there exist only one type of rods in humans, three
classes of cones can be differentiated due to their respective type of photopigment, each
having specific absorption maxima. Therefore, each cone type is selectively responding
for certain wavelengths of light. As the brain is comparing signals between these three
cone types, this in turn leads to selectivity for color informations. Furthermore, cones
respond faster than rods (Kandel et al., 2021).
The distribution of rods and cones across the retina is varying considerably. On the one
hand, the number of rods increase towards the peripheral retina, enabling scotopic vision
as visual acuity decreases but higher light sensitivity under low-light levels. On the other
hand, the amount of cones increases towards the retina’s center, enabling photopic vision
with higher visual acuity in case of higher levels of light, e.g. during daylight conditions.
The overall density of photoreceptors decreases towards the peripheral retina (Steinberg,
Reid and Lacy, 1973).

Informations of photoreceptors are subsequently collected and integrated by retinal
circuits illustrated in Fig. 1 which are established from different cell types:

• vertical connections via bipolar cells up to magno-, parvo-, and koniocellular retinal
ganglion cells;

• lateral connections by horizontal and amacrine cells, which allow for converging or
diverging signal transmission through inhibitory or excitatory connections.
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Figure 1: Structure of mammalian retina. Light has to pass several cellular layers and
their respective processes before reaching the photoreceptors (rods and cones).
Informations are then passed (i) vertically from photoreceptors to bipolar cells
to retinal ganglion cells, and (ii) horizontally through horizontal and amacrine
cells. Fibers of retinal ganglion cells form the optical nerves, the output of the
retina. Modified from W. A. Müller, Frings and Möhrlen (2019).

Photoreceptors connect to bipolar and horizontal cells via ribbon synapses and are using
glutamate as neurotransmitter. Latter is released in dependence on illumination. Under
low light conditions, glutamate is released continuously, while illumination hyperpolarizes
the receptor. In turn, less calcium enters the synaptic terminal and less glutamate is
released (Kandel et al., 2021).

Horizontal cells connect laterally to several photoreceptors and modulate the synap-
tic gain between photoreceptors and bipolar cells. While photoreceptors are sending
glutamatergic output to horizontal cells, rods and cones are receiving inhibitory feedback
(Mangel, 1991; Thoreson, Babai and Bartoletti, 2008; Werblin, 1974). These feedback
signals are spreading to presynaptic terminals of adjacent photoreceptors. This effect, also
known as lateral inhibition, enhances differences between stimulated photoreceptors and
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their unstimulated neighbourhood. Along with direct feedforward input from horizontal
to bipolar cells, lateral inhibition leads to the receptive field organization of bipolar cells
in terms of a center-surround antagonism in response to light stimulation, as well as
color-opponent interactions (Baylor, Fuortes and O’Bryan, 1971; Burkhardt, 1993).

Bipolar cells are responding to glutamate with graded postsynaptic potentials. Depending
on corresponding glutamate receptors, this response comes in two different ways: on
the one hand, OFF bipolar cells are characterized by excitatory ionotropic glutamate
receptors and depolarize by glutamate released in the dark. On the other hand, inhibitory
metabotropic glutamate receptors of ON bipolar cells lead to hyperpolarization of the
cell when activated by glutamate in darkness. Both bipolar cell types can be further
differentiated by their shape, axon terminations and morphology of dendrites. Also, their
post-synaptic targets vary, as they connect with specific amacrine and retinal ganglion
cells (Kandel et al., 2021).

Aside of horizontal cells, amacrine cells form another class of interneurons in the retina.
As they vary in size, numbers and stratification, around 30 types of amacrine cells are dis-
tinguished. This diversity also reflects their diverse functions (Masland, 2012). Amacrine
cells interconnect between bipolar cells and retinal ganglion cells. While some subtypes
sending direct feedback to bipolar cells, other types form an inhibitory feedback net-
work via electical coupling. Through this network, a bipolar cell can be inhibited by a
distant bipolar cell in similar fashion as discussed for horizontal cells (Kandel et al., 2021).

Retinal ganglion cells are differentiated physiologically and morphologically. In ver-
tebrates, M-cells (lat. magnus: large) and P-cells (lat. parvus: small) are building the two
major classes of cells. On the one hand, M-cells have larger cell bodies and receptive fields,
also they respond quicker to a given stimulus. P-cells on the other hand have smaller bodies
and receptive fields, and are responding slowly to stimulation. Another differentation can
be made in terms of color sensitivity, which comes from their respective way of integrating
information of different cone types: M-cells sum up the inputs of different cone type,
therefore effectively being color-blind. P-cells are sensitive for wavelengths due to the
subtractive integration of different cone inputs (Livingstone and Hubel, 1988).
Specifically for cat’s retina, a differentation into three types of retinal ganglion cells is
made in terms of morphology as well as response behaviour. Type Y ganglion cells feature
phasic responses, broad receptive fields, and hence low spatial resolution. While not being
selective for color information, they are sensitively responding to movement. X-type gan-
glion cells on the other hand exhibit exceptional spatial resolution due to small receptive
fields. They respond tonically to slow or static stimuli, therefore assessing colors, patterns,
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and finer details. The third category consists of W-type cells, which respond to bright and
dark light spots both phasically and tonically. Their conduction velocity is substantially
lower compared to other ganglion cell types (Boycott and Wässle, 1974; Cleland, Levick
and Wässle, 1975).

Retinal ganglion cells form the output of the retina. Their axons converge at the op-
tical disk and continue through the retina to exit at the rear of the eye. From there, they
are building the optical nerves of both eyes, which are merging and crossing in the optic
chiasm. Ganglion cell axons corresponding to (i) the temporal half of the ipsilateral retina,
as well as (ii) the nasal half of the contralateral retina form the optic tract for each eye.
Therefore, the right hemisphere receives input from the left visual hemifield, and vice
versa. The optic tract then terminates in four nuclei, each covering different functions:
• the lateral geniculate nucleus (LGN) of the thalamus (visual perception);
• the pretectum of the midbrain (pupillary light reflex);
• the superior colliculus of the midbrain (eye movement);
• the suprachiasmatic nucleus of the hypothalamus (circadian rhythm)

(Kandel et al., 2021).

1.1.3 Receptive Fields

Receptive fields exist on successive relays along the visual hierarchy, at which their size
and complexity increases due to the considerable convergence and divergence of synaptic
connections along the visual pathways. The size of a receptive field on the retina depends
on the field’s eccentricity - its relative position to the fovea. Receptive fields towards
the fovea indicating smaller sizes due to inputs from only a few photoreceptors, and
larger receptive fields are recognized towards the periphery as input from many receptors
are received (Cleland, Harding and Tulunay-Keesey, 1979; Goodchild, Ghosh and Mar-
tin, 1996). At successive relay stations, their optimal stimulus is getting more complex
as well. This underlines the integrative function of receptive fields: to form a unified
percept frommultiple components from large areas of the visual field (Kandel et al., 2021).

A bipolar cell’s receptive field is characterized physically by the position and distribution
of receptor cells with which it establishes synaptic contact. It is antagonistically structured
due to opposing influences of (i) hyperpolarized photoreceptor cells in case of illumination,
and (ii) depolarized photoreceptor cells in case of illumination of its surroundings due to
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synaptical contacts of horizontal cells (Kandel et al., 2021).

Lateral inhibition in the inner retina, which is mediated by sustained activity of GABAergic
amacrine cells, is substantially contributing to a concentric center-surround property of
retinal ganglion cells’ receptive field (Cook and McReynolds, 1998). This means that one
portion of the receptive field is excitatory and the other inhibitory. This leads to the cate-
gorization of ON-center and OFF-center receptive fields, having distinct discharge patterns
depending on the configuration of illumination. For example, when light is stimulating
the central region of the ON-center type, this will lead to an increase in the cell’s firing
rate. This type also has an inhibitory surrounding area, decreasing the frequency of action
potentials when stimulated. When light falls on both center and surrounding portions, this
will lead to little to no response. Another discharge pattern concerns light-dark boundaries
across the receptive field, in turn leading to brisk responses (Kuffler, 1953). This indicates
the preference of retinal ganglion cells for borders, leading to enhancements of spatial
contrast information such as an edge between two areas with inhomogeneous illumination
(Enroth-Cugell and Robson, 1966). Also, they selectively process temporal changes in light
intensities while rejecting features which are constant in space or time. Retinal ganglion
cells therefore serve for deducing shapes and identities as well as sudden movements
or changes of objects (Kandel et al., 2021). Similar receptive field properties in retinal
ganglion cells such as the aforementioned center-surround antagonism were also found for
LGN neurons, which in turn are topologically mapping to locations on the retina (Hubel
and Wiesel, 1961).

Along the visual pathways, properties of the receptive fields are changing between corre-
sponding brain areas. While receptive fields in the cortex are sensitive for contrast such as
retinal ganglion cells and LGN neurons, they furthermore are analyzing contours. This
was first observed in 1958 by Hubel & Wiesel in V1 of anesthetized cats. Here, a cell
discharged in response to a moving line shadow formed by the edge of a slide when placed
into a ophthalmoscope. The cell would only fire when the line was angled within a specific
range. Additional measurements indicated that many more cells were likewise sensitive
to boundary orientation. Thus, this concluded into the finding of orientation tuning in the
early visual pathway (Hubel and Wiesel, 1998).
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1.1.4 Organizational Principles of Visual Pathways

Within the cerebral cortex, several visual areas are differentiated on basis of multiple
criteria. From traditional anatomical perspective, the cell size, shape and packing in
the cortical layers as well as myelin thickness and density were used in classification of
Brodmann areas (Brodmann, 1903, 1909).
Aside from the neuron’s anatomical properties, their function is also used for area de-
marcation. At early levels of visual pathways, corresponding receptive fields are still
small which allows the derivation of precise visuotopic maps. These maps in turn can
offer insights about the functional distinction of areas. As the size of receptive fields
increases along the hierarchy of visual areas, the precision of visuotopic maps decreases,
therefore they become a more unreliable indicator of area boundaries (Kandel et al., 2021).

The brain forms a unified percept by an important organizational principles of vision:
distributed and parallel processing. Multiple brain areas are part of parallel but inter-
acting neural pathways, which selectively analyze features of a visual scene on different
hierarchical levels:

• lower level: orientation, contrast, disparity, color, movement direction;

• intermediate level: contour integration, surface properties, shape discrimination,
surface depth & segmentation, distinction between foreground and background,
object motion;

• higher level: object identification.

The visual system is extensively using parallel processing, which is already established
in the retina. Low-level attributes are extracted by distinct retinal circuits from photore-
ceptors, latter covering small sections of the visual field. This is also accompanied by
adaptions of the retina’s sensitivity to continuing changes in illumination (Kandel et al.,
2021).

The anatomical segregation by eye and object feature continues along the geniculos-
triate pathway shown in Fig. 2, which spans from retinal channels past the LGN along the
optic radiation up to V1. The LGN poses a thalamic relay station. It is primarily structured
in six layers, which receive input from different ganglion cell types:

• midget ganglion cells (red-green information) connect with four parvocellular layers;
these make up about 80 % of all retinal ganglion cell projections to LGN;
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• parasol ganglion cells (achromatic contrast) project to two magnocellular layers;
they comprise approx. 10 % of all retinal ganglion cell projections to LGN;

• bistratified ganglion cells (blue-yellow information) connect to konicocellular layers,
latter pairing each magno- and parvocellular layer (Callaway, 2005; Leventhal,
Rodieck and Dreher, 1981; Rodieck and Watanabe, 1993).

V1 represents the first cortical area of visual processing. It is divided into six different
layers, which receive input from the different retinal channels, mainly entering layers IV
and VI. Here, a recombination of visual input into new feature sets takes place, such as
tuning for orientation and motion, as well as object depth. As V1 in each hemisphere is
covering more than half of the visual field, an overlap of their representations is formed at
the vertical meridian and unified by the corpus callosum connecting both hemispheres
(Kandel et al., 2021).

From V1, parallel processing of visual information continues on two distinct pathways,
which are illustrated in Fig. 2:
• the ventral pathway into the temporal cortex, which is selective for form and objects;
• the dorsal pathway through parietal cortex, which is selective for motion tracking,
attention as well as visuomotor integration.

Though running in parallel, both pathways are interconnected and can share information.
Object recognition in the ventral pathway can be facilitated by kinematic cues which stem
from areas of the dorsal pathway. After an object has been identified, it is further linked
with already formed memories of shapes and associations of their meaning (Kandel et al.,
2021).

All connections between visual areas are reciprocal, which means that information is
shared not only via feedforward connections from lower to higher (bottom-up), but also
from higher to lower (tow-down) areas through feedback connections (Felleman and
Van Essen, 1991; Rockland and Pandya, 1979). This is additionally complicating the
aforementioned functional distinction of areas. Feedback connections exist either directly
between areas or indirectly via the thalamus, in particular the pulvinar. In context of
the visual system, an important aspect of the LGN is concering its modulatory effects on
retinal information. These modulations are caused by mechanisms related to attention,
expectation and the perceptual task, which are expressed in the form of inhibition of the
LGN as well as feedback connections from visual cortex (Gilbert and Li, 2013). Feedback
connections are critical for distinguishing a figure from the background. Deactivation
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Figure 2: Distributed and parallel processing in the visual system. Depending on the
type of retinal ganglion cells, three parallel pathways are projecting into parvo-,
magno- and konicocellular layers of LGN. From there, these pathways terminate
in different layers of V1: parvocellular fibers in layer IVCβ and magnocellular
fibers in layer ICVα. From V1, a separation of functions is carried out by the
dorsal and ventral pathways. Information about form and color are further
processed on the ventral pathway through V2 and V4, while the dorsal pathway
passing V2 and MT is specialized for movement directions. Note that pathways
are running in parallel while allowing for interconnections in several areas.
Modified from Kandel, Koester, Mack and Siegelbaum (2021).
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experiments by cooling middle temporal area (MT/V5) in primates showed that neurons in
area V3 exhibited decreased center response and center-surround interactions, especially
when dealing with low intensity stimuli. Here, feedback signal amplification for stimuli
with low visibility can be expressed in terms of gain enhancements (Hupé et al., 1998).

In cat’s visual cortex, the posteromedial lateral suprasylvian sulcus (PMLS) represents
an area of higher order within the dorsal pathway. It corresponds to primates’ MT/V5
and holds direction-selective neurons for processing movements within the extrastriate
cortex (Dreher, Wang and Burke, 1996; Lomber, Payne, Cornwell and Long, 1996). By
extensive feedback connections from visuoparietal cortex back to V1, it modulates activity
in V1, more specifically in area 18 (Payne and Lomber, 2003; Symonds and Rosenquist,
1984). Experiments using reversible cooling revealed that deactivating PMLS leads to
disruptions in direction selectivity of neurons in cat’s area 18 while leaving orientation
selectivity largely intact (Galuske, Schmidt, Goebel, Lomber and Payne, 2002).

1.1.5 Primary Visual Cortex

In the case of cat’s visual system, V1 is defined by two adjacent visual areas 17 (striate
cortex) and 18 (parastriate cortex), as they are reciprocally connected through equally im-
portant association systems (Tretter, Cynader and Singer, 1975). Fibers of motion-sensitive
retinal ganglion cells (Y type) are mainly projecting via parvocellular layers of LGN into
area 18, further connecting to PMLS as gateway for the dorsal visual pathway. Retinal
ganglion cells selectively encoding color and shape (X type) are innervating magnocellular
layers of LGN and continuing via area 17 to area 21a, latter representing as entrance
for the form-processing ventral pathway (Burke, Dreher and Wang, 1998; Dreher, Wang,
Turlejski, Djavadian and Burke, 1996; Hickey and Gullery, 1974). As the topography
of neighboring regions in the visual field is preserved by corresponding adjacent field
representations along visual pathways from the retina to the visual cortex, the visual field
is mapped retinotopically on the surface of area 17 (Tusa, Palmer and Rosenquist, 1978)
and area 18 (Tusa, Rosenquist and Palmer, 1979).

Aside of this visuotopic organization, neural processing in V1 is underlined by its functional
organization illustrated in Fig. 3. Neurons that share similar fundamental properties,
namely orientation and color preference as well as ocular-dominance, are located close
together. They form columnary units which stretch vertically from the pia to the white
matter and whose patterns form locally smooth maps over the cortical surface (Hubel and
Wiesel, 1962, 1968; Mountcastle, 1957). The functional organization of V1 is offering
advantages through its efficient connectivity, as it minimizes (i) the distance between
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Figure 3: Functional organization of a hypercolumn in primary visual cortex (V1). It is
formed from a complete set of orientations, as well as pairs of ocular-dominance
columns corresponding to both eyes. Interspersed are cytochrome oxidase blobs
and interblobs selectively responding for color information. Modified from
Kandel, Koester, Mack and Siegelbaum (2021).

neurons with similar preferences, and (ii) the number of neurons required to analyze
different properties of a stimulus. Both aspects lead to economic usage of brain volume
and high-speed information processing (Kandel et al., 2021).

Some of these columns are consisting of neurons with similar selectivity for the orienta-
tion of a visual stimulus. When viewed from the cortex’ surface, this leads to repeating
clockwise and anti-clockwise cyclings of orientation preferences across the cortex. The
cycles in turn can form pinwheel-shaped patterns with sudden changes of orientations at
their center (Blasdel and Salama, 1986; Bonhoeffer and Grinvald, 1991). The preference
for a certain orientation originates from the shape of receptive fields: whereas the shape
of retinal and LGN receptive fields is circular, multiple LGN cells are projecting to one
simple cell in the primary visual cortex, which in turn leads to combined receptive fields
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with elongated shape (Hubel and Wiesel, 1962).
Ocular-dominance concerns the integration of information from both eyes. As previously
indicated in Sect. 1.1.4, retinal ganglion cells of either the ipsilateral or contralateral eye
form segregated connections to the LGN. This segregation is also maintained in thalam-
ocortical projections from separate layers of LGN to V1. This produces striped patterns
(from surface view of the cortex) of ocular-dominance corresponding to inputs from the
left or right eye (Hubel and Wiesel, 1972; Wiesel, Hubel and Lam, 1974).
Within the structure of orientation preference and ocular-dominance columns, popula-
tions of color-sensitive neurons with weak orientation selectivity are forming cytochrome
oxidase blobs and inter-blobs. Due to their selectivity profile, they respond preferrably to
surfaces rather than edges (Murphy, Jones and Van Sluyters, 1995; Shoham, Hübener,
Schulze, Grinvald and Bonhoeffer, 1997).
A cortical patch which contains a full cycle of orientation preferences, or alternatively
a left-plus-right ocular-dominance set, is commonly referred to as hypercolumn. This
computational module is covering about 1 mm2 of cortical surface and is repeated several
hundred times, each representing a small subset from the visual field (Hubel and Wiesel,
1974).

To integrate information from different parts of the visual field, long-range horizon-
tal connections are established within each layer of V1. These horizontal connections link
columns having similar response characteristics, such as preferred orientation. This is
achieved via axon collaterals of pyramidal cells, which connect to other pyramidal cells
and inhibitory interneurons (Bosking, Zhang, Schofield and Fitzpatrick, 1997; Gilbert,
Das, Ito, Kapadia and Westheimer, 1996; Gilbert and Wiesel, 1989).
Along the ventral and dorsal visual pathways, higher visual areas receive input from V1.
Corresponding areas are not only receiving feedforward, but also passing informations via
feedback connections to lower areas, latter also including the LGN. Due to the convergence
and divergence at synaptic relays of the afferent visual pathway, receptive field size as
well as complexity is increasing. This leads to the implication that feedback connections
are holding an integrative function (Hupé et al., 1998). Still, interactions between feed-
forward an feedback visual processing are largely unknown and therefore the subject of
ongoing research (Kandel et al., 2021).
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1.2 Advanced Concepts of Cortical Information Processing

1.2.1 Brain States

Brain states have been traditionally linked with either behavioral states or a prevalent
type of cortical states defined by correlated activity of neural populations, whereby both
descriptions of brain states frequently overlap (Pace-Schott and Hobson, 2002; Sabri and
Arabzadeh, 2018).

Functional brain states influence how sensory inputs are processed and control neu-
ronal excitability at different spatial scales. On a whole-brain level, there is the classical
view of two cortical states related to the sleep cycle: a sleep-like state characterized by syn-
chrony and low-frequency fluctuations with high amplitude, and an awake-like persistent
state operating more desynchronized and characterized by low-amplitude high-frequency
fluctuations (Sanchez-Vives and McCormick, 2000; Steriade, Timofeev and Grenier, 2001;
Stroh et al., 2013). Both synchronized and desynchronized state are likely two poles of a
continuous spectrum of states. Furthermore, stages of arousal and anesthesia can shape
these global network states as well (Harris and Thiele, 2011). Global network states
can substantially influence cortical information processing by impacting synchrony of
membrane potential dynamics (Poulet and Petersen, 2008) as well as interactions between
sensory evoked responses and ongoing activity (Castro-Alamancos, 2004; Curto, Sakata,
Marguet, Itskov and Harris, 2009).
On a more local level, states can be defined based on circuit excitability which could
correspond to the alertness to certain sensory inputs (Galuske, Munk and Singer, 2019;
Galuske et al., 2002; K. E. Schmidt, Lomber, Payne and Galuske, 2011).
On the level of a neuronal assembly, states are shaped by spontaneous and sensory-evoked
activity and could reflect low-dimensional representations of specific sensory inputs and
their functional processing. Especially in cortical areas such as the visual cortex, states
may change on rapid timescales, directly impacting the processing of sensory input (Fries,
Neuenschwander, Engel, Goebel and Singer, 2001; Waschke, Tune and Obleser, 2019).
On the level of single cells, the membrane potential is oscillating slowly between de-
polarization and hyperpolarization, which are associated with alternating periods of
asynchronous irregular firing (Up state) and silence (Down state) (Steriade, Nunez and
Amzica, 1993).

Despite their significance, relatively little is known about the underlying neural pro-
cesses that generate brain states, as well as their exact influence on neuronal processing
and behavior. It remains to be established to which extent such states emerge from
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cellular activity across spatial scales, spanning from ensemble activity in a given cortical
microcircuit to cortex-wide activity measures. Also, it has to be examined, how differ-
ent brain states are related to each other and how they form internal low-dimensional
representations of sensory information.

1.2.2 Spontaneous / Ongoing Activity

Even in the absence of any external sensory input or motor activity, the brain is constantly
active. This spontaneous (also known as ongoing) activity was initially reported by Caton
(1875) in rabbits’ and monkeys’ brain and later by Berger (1929) in humans using elec-
troencephalography (EEG) recordings. While no external stimulus is presented, single
neurons as well as neuron populations exhibit activity patterns with high similarity to
those of evoked responses (Arieli, Sterkin, Grinvald and Aertsen, 1996; Grinvald et al.,
1999; Kenet, Bibitchkov, Tsodyks, Grinvald and Arieli, 2003). In this context, the structure
of the underlying brain circuitry is reflected in the spontaneous activity, e.g. in terms of
orientation columns (Tsodyks, Kenet, Grinvald and Arieli, 1999).

Experimental techniques to determine functional characteristics of various stimuli or
tasks typically rely on averaging many trials to suppress background activity as well as
noise components, while aiming solely at repeatable activity across trials. In the visual
cortex of mammals, it has been shown that even under identical repetitive stimulation
conditions, columnar activity shows variability in structural response. A growing body
of research therefore emphasizes that dynamics of spontaneous, system-level activity
modulates response activity while being also accountable for large parts of the observed
trial-to-trial variability (Arieli et al., 1996; Kenet et al., 2003; Luczak, Barthó and Harris,
2009).
Through top-down effects that represent expectations, predictions, as well as attentional
processes, spontaneous activity might contribute to internal processing of visual inputs
(Galuske et al., 2002; Gilbert and Sigman, 2007; K. E. Schmidt et al., 2011) and may serve
as an internal model for response activity patterns to sensory stimuli (Ringach, 2009).
Thereby spontaneous activity manifests itself in modulations of the network’s functional
connectivity (Nauhaus, Busse, Carandini and Ringach, 2009).

When interpreted in a probabilistic framework, spontaneous activity acts as Bayesian prior
for stimulus-evoked activity by expressing expecations about the sensory environment
(Fiser, Berkes, Orbán and Lengyel, 2010; Luczak et al., 2009), which in turn offers shorter
reaction times (Neal, 2001) and therefore poses an alternative explanation of the human
visual system solving image classification tasks in such a time-efficient manner (Thorpe,

16



Fize and Marlot, 1996).

Further important findings regarding spontaneous activity in cortical populations con-
cern the dimensionality of correlated neural activity, which spans large distances over
millimeters of cortical surface (Arieli, Shoham, Hildesheim and Grinvald, 1995; Ts’o,
Gilbert and Wiesel, 1986) and on different time scales (Kohn and Smith, 2005; Smith and
Kohn, 2008). Ongoing activity patterns in the neighborhood of an individual neuron can
impact its firing (Nauhaus et al., 2009; Tsodyks et al., 1999). Moreover, the amplitude of
oscillations observed in spontaneous population activity is comparable to that of the mean
reaction to a high-contrast stimulus (Arieli et al., 1995; Y. Chen, Geisler and Seidemann,
2006).

Consequently, the consensus has grown that spontaneous activity may have a functional
role in perceptual processes which is connected to internal states of cell assemblies. This
suggests the rejection of the hypothesis that spontaneous activity is merely representing
stochastic noise, particularly as it is entailed with high energy costs (Attwell and Laughlin,
2001).

1.3 Motivation & Research Goals

Functional brain states are possibly confined to local circuits or established as distributed
patterns, and may crucially shape neural processes from perception to action (Bathellier,
Ushakova and Rumpel, 2012; Pascual-Leone and Walsh, 2001). To better understand the
interaction of brain states on different levels, it is neccessary to analyze the relationship of
activities in interconnected cortical areas. Particularly the variability of cortical responses
to visual stimuli results from the interplay between global brain state, local states, sponta-
neous activity and sensory inputs (W. Chen, Park, Pan, Koretsky and Du, 2020).

To disentangle this complex interplay, one requires high-resolution data acquisition tech-
niques together with causal manipulations of neural circuits during recording, and clas-
sifying the respective macro- and microstates instantaneously. In this context, rapid
advances in experimental techniques can be witnessed in systems neuroscience. While
the number of neurons that can simultaneously be recorded is doubling every seven
years on average (Stevenson and Kording, 2011), new techniques allowing for controlled
interventions on the single-cell level are quickly emerging (Fenno, Yizhar and Deisseroth,
2011). Integrating both advances together with data analysis opens up the opportunity
for closed-loop experimental paradigms (as exemplified in Fig. 4). Here, data-driven inter-
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Figure 4: Exemplary illustration of a hypothetical closed loop experimental paradigm.
Starting from arbitrary stimulation or intervention (e.g., a grating pattern as
visual orientation stimulus), the corresponding response activity is recorded via
optical imaging. After pre-processing and denoising the raw image sequences,
relevant features related to neural signal sources have to be extracted. Those
features are then further used to classify different brain states and to estimate
their respective state-switching sequence. Subsequently, these state sequences
can then be employed for network reconstructions. Depending on the individual
research focus, these networks can comprise different spatial scales such as
intra- or inter-area domains. Eventually, the emitted activity patterns can be
used to determine an optimal response configuration of the network, suggesting
variations of the stimulus or intervention configuration in an iterative fashion.
In case of the orientation stimulus, this would result in an orientation tuning
curve.
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rogations of neural assemblies are performed through direction intervention or external
simulations in real-time or within small delays. Hypothesis-driven and model-driven ma-
nipulations are key to move from plain covariation to true causality relations (Pearl, 2009).

However, processing and analysis of high-dimensional neural datasets on its own is a
challenging task. Closing the real-time loop makes this challenge even more pronounced,
as these data analysis methods are constrained to be both

• computationally efficient to enable the fast application of subsequent stimulus or
intervention adaptations with time delays that are sufficiently small relative to the
time-scale of the investigated neural process;

• robustwith respect to measurement artifacts and model mismatch to avoid erroneous
interpretations and to prevent error accumulation through the closed-loop system.

Both aspects raise a trade-off between computational complexity and robustness, leading
to difficult algorithmic challenges.

This thesis is therefore dedicated to the development of tailored computational methods
for contributing to the understanding of functional brain states and functional connectiv-
ity on multiple scales. Using optical imaging of voltage-sensitive dyes (Grinvald, Lieke,
Frostig and Hildesheim, 1994), it is possible to record activity dynamics of large neural
populations with high spatio-temporal resolution. Resulting image sequences exhibit high
dimensionality, complex neural activity patterns as well as highly variable confounding
artifacts. For the goal of fast and robust extraction of relevant features, dimensionality
reduction techniques can proof useful. By choosing a deep generative model architecture,
particularly the framework of a variational autoencoder (Kingma and Ba, 2014), advan-
tages from both deep learning and probabilistic modeling are combined for constructing
latent representations (Kingma and Welling, 2019).

Deep learning usually requires large amounts of annotated data for adequate model
training. Through annotations, explicit knowledge about the relationship between a data-
point and corresponding ground truth information is reflected. On pixel-level, this would
express e.g. the membership of a pixel to an object within an image. However, for real
datasets such as optical imaging data, ground truth information is not available. Also, as
the data collection process is expensive and time-consuming, the number of recordings is
substantially limited. The use of synthetic data can alleviate both problems, as an infinite
amount of datasets can be artificially generated with pixel-perfect labeling due to a fully
known data-generating process. This enables benchmarking and accuracy improvement of
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the implemented deep learning model (Nikolenko, 2021). For these purposes, a pipeline
for generating synthetic image sequences corresponding to voltage-sensitive dye imaging
(VSDI) is implemented based on previous insights about fundamental spatial and temporal
signal components (Chemla et al., 2017; Reynaud, Takerkart, Masson and Chavane, 2011).
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2 Materials & Methods

2.1 Data Acquisition

2.1.1 Voltage-Sensitive Dye Imaging

Neural response activity related to visual processing arises from complex, dynamic inter-
actions in vast cortical networks. For understanding the function of an involved cortical
region, it is necessary to track these dynamics of neural populations with high spatial
and temporal resolution. Despite the fact that this trade-off between both domains has
long been recognized, the sole focus on either the spatial or temporal elements of cortical
functions has been predominant due to limitations in conventional recording techniques
(Shoham et al., 1999). Metabolic changes generated by neural activity are often evaluated
with high spatial resolution but are time-limited, as it is the case for e.g. 2-deoxyglucose
mapping (2-DG), positron emission tomography (PET), optical imaging of intrinsic signals
(OIIS), near infrared spectroscopy (NIRS), and functional magnetic resonance imaging
(fMRI). Corresponding metabolic indicators - whose relationship to neural processes is not
always straightforward - are much slower when compared to neural dynamics, therefore
leading to imaging approaches with a temporal resolution of a few hundred milliseconds.
In contrast, electrophysiological recordings are often well resolved in time but spatially
limited, leading to mere point measurements in terms of intracellular, extracellular single
or multiunit recordings, or local field potentials (Shoham et al., 1999). Determining
the signal sources becomes especially intricate for electroencephalography (EEG) and
magnetoencephalography (MEG), as inference of the position of the current sources from
electrode potentials is not uniquely identified. Latter aspect is also known as the inverse
problem (Grech et al., 2008).

Optical imaging has been proposed as one potential alternative, as this recording tech-
nique is easily expandable in terms of finding a compromise between temporal and spatial
resolution. The term optical imaging refers to imaging methods initially used for observing
intrinsic signals in terms of the light-dependent absorption or emission effects on active
neurons (Hill and Keynes, 1949). Since then, intrinsic signals such as haemodynamic or
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light-scattering (Grinvald, Lieke, Frostig, Gilbert and Wiesel, 1986) were recorded, provid-
ing high-resolution mapping of functional cortical organization, such as the architecture
of the visual cortex in macaques (Blasdel and Salama, 1986) and cats (Frostig, Lieke,
Ts’o and Grinvald, 1990). On the other hand, intrinsic signals are unrelated to electrical
activity and therefore are limited in terms of their temporal resolution on the order of
seconds (Grinvald and Hildesheim, 2004).

An important extension of optical imaging is the usage of specially adapted and syn-
thesized voltage-sensitive fluorescent dyes, leading to the methodology of VSDI. First
reports on squid giant axons by Tasaki, Watanabe, Sandlin and Carnay (1968) and Cohen
et al. (1974) certified that these dyes are sensitive to changes in membrane potentials
and can therefore be used to indirectly monitor neural activity. When exposed cortical
tissue is stained with an appropriate dye, its molecules adhere to the cell membrane’s
surface. The chemical properties of the dye enable molecular transduction, converting
changes in membrane voltage into an optical signal which occures due to changes in
absorption or emitted fluorescence. When illuminated with light-imaging devices at the
dye’s peak excitation spectra, a fluorescent light is emmited and image sequences of the
fluorescing cortex can be recorded with high-speed cameras. This allows for measurements
on mesoscopic scale, i.e., a network of neurons from a cortical column to a whole area with
high resolution in both temporal (1-10 ms) and spatial (< 50 µm) dimensions (Grinvald
and Hildesheim, 2004; Grinvald et al., 1999; Shoham et al., 1999). In this context, the
spatial resolution is mainly limited by light scattering of the emitted fluorescent signal
(Orbach and Cohen, 1983).

However, resolving the contribution of different neural units to the VSDI signal remains
difficult. For in vivo measurements, it was shown that the voltage-sensitive dye signal
accurately conveys membrane voltage changes. This was verified by pairing direct intra-
cellular recordings with VSDI, first measured in anaesthetized cat (Grinvald et al., 1999;
Sterkin, Lampl, Ferster, Grinvald and Arieli, 1998) and later for rat barrel cortex (Petersen,
Grinvald and Sakmann, 2003; Petersen, Hahn, Mehta, Grinvald and Sakmann, 2003). Pre-
vious limitations due to pharmacological side effects and phototoxicity have been resolved
by the development of newer dyes (Shoham et al., 1999). The fluorescent VSDI signal is
linearly related to the membrane area stained with the dye. Here, the recorded dynamics
of each measuring pixel is reflecting multiple neural compartments, such as dendrites,
axons and somata of cell populations. As dendrites and non-myelinated axons take up
an area which is orders of magnitude larger than for somata, the in vivo VSDI signal
mostly reflects dendritic activity (Grinvald and Hildesheim, 2004). Also, different cell
types (both excitatory and inhibitory), are affected equally by the dye staining procedure.
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For glial cells, it was shown in frog optical nerve that dye molecules can bind to those
cells which are in turn weakly contributing to the transmitted light intensity with slow
depolarizing afterpotentials (Konnerth and Orkand, 1986). This leads to the conclusion
that the dye signal in a cortical region does not inevitably indicate for action potentials of
cortical neurons at that location (Grinvald and Hildesheim, 2004).

The overall VSDI signal strength is impacted by the staining quality of cortical tissue,
which is especially the case for in vivo experimental procedures (Takagaki, Lippert, Dann,
Wanger and Ohl, 2008). Therefore, the dye concentration has to be chosen carefully to be
both hydrophilic enough to pass through the outer layer of neural tissue, yet hydrophobic
enough to stick to the cell membrane (Grinvald, Anglister, Freeman, Hildesheim and
Manker, 1984).
As commonly seen for other fluorescence-based recording techniques, dye photobleach-
ing is also affecting VSDI. In combination with the baseline fluorescence level, which
can highly vary between recordings, this makes the strongest artifact of this recording
technique. After excitation through illumination, the dye fluorophores are degrading or
reacting with other molecules, and hence are stopped from releasing light. This leads to
degradation of the overall fluorescent signal over time (Grinvald and Hildesheim, 2004;
Grinvald, Hildesheim, Farber and Anglister, 1982). It is typically observed in functional
form of a slowly decaying single-exponential (Bathellier, Van De Ville, Blu, Unser and
Carleton, 2007) or double-exponential (Gavrilyuk et al., 2007).
For in vivo experiments, signal components related to the physiology of the experimental
animal are dominant sources of noise commonly observed as periodic signals. These arti-
facts are related on the one hand to the animals’ heartbeat resulting from blood pumping,
on the other hand from respiration (Inagaki, 2003; Shoham et al., 1999). As the cortical
surface will consequently pulsate, this can lead to changes in the focal plane of the camera
and therefore affect the global light conditions. Furthermore, the VSDI signal can still be
overlaid by spectral components related to the excitation of oxgenated and deoxygenated
blood flow phases in the peripheral cortical blood vessels (Hofmann, 2020), although this
effect should be reduced due to the RH-1691 dye’s emitting range between 645 nm to 665
nm and therefore being slightly higher compared to hemoglobin (Ratzlaff and Grinvald,
1991).
Camera-related technical noise, especially in form of shot noise, is a limiting factor of
VSDI. In case of exposure, light photons do not run vertically, but are deflected through
their natural scattering property. This causes them to hit neighboring camera pixels,
contaminating the recorded image in a stochastic manner. To further reduce illuminatory
artefacts, the light source should be incoherent and filtered to the desired excitation
spectrum, e.g. a filtered filament halogen bulb light. This removes speckle noise known
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from coherent light sources (e.g. lasers) reflected by uneven surfaces, which introduces un-
desired structural spatial fluctuations through coherent interference patterns (Kompanets
and Zalyapin, 2020). The shot noise is proportional to the square root of the used light
intensity, therefore this source of interference can be reduced by increasing illumination
(Grinvald et al., 1999). However, when using high intensities of light, the high number of
photons accumulates into electrons. If the amount of light exceeds the possible number of
electrons per pixel (well depth), over-saturation will occur in respective pixel. This can be
solved either by cameras with larger sensor arrays or by applying pixel binning. Latter
is indicating the spatial combination of several neighboring pixels into one macropixel
(Grinvald et al., 1999).

2.1.2 Experimental Setup

The following informations concern the data acquisition and stimulation methodology of
optical imaging recordings which were analyzed in this thesis. All real datasets assessed
for the present study were recorded in area 18 (area occipitalis), which together with
area 17 has been defined as cat’s primary visual cortex (Payne and Peters, 2002). For the
present study, pre-recorded datasets from an adult cat (23 months old) were analyzed.
This experimental animal came from the breeding of the Max Planck Institute for Brain
Research (Frankfurt a. M.). Investigations and required surgical procedures were carried
out in 2013 within the framework of an approved animal experimentation procedure and
in accordance with the German Animal Welfare Act.

It should be noted that the author did not perform optical imaging experiments but
was provided with corresponding raw datasets. Experiments were carried out by Dr.
Daniel Hofmann, Fabian Hoffmann, Dr. Mathias Peter, Dr. William Barnes and Prof. Dr.
Ralf Galuske. The same datasets have been analyzed by Peter (2019) and Hofmann (2020)
with distinct research foci. These publications contain in-depth information, particularly
about medical and surgical procedures, histological analysis as well as the camera setup.
Therfore, only a broad outline will be given here.

Anesthesia

Initial anesthesia was provided by intramuscular administration of ketamine hydrochloride
(ketamine 10%, 10 mg per kg body weight; Bela-Pharm GmbH & Co. KG, Vechta) and
xylazine hydrochloride (1 mg per kg body weight; Rompun 2, BayerVital, Leverkusen).
Atropine sulfate (50% atropine sulfat in NaCl, 0.2 ml per kg body weight; Fresenius Kabi,
Bad Homburg) was intramuscularly injected for stabilizing circulation. Animals were
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artificially ventilated with a mixture of N2O (70%), O2 (29%), and halothane (1%) to
maintain inhalation anesthesia via an vaporizer (Halothan Vapor 19.3, Drägerwerk AG,
Lübeck). Throughout the experiment, concentrations of O2, CO2 and halothane were
strictly monitored in inhalation and exhalation (Peter, 2019).

Camera Setup

A high-speed CMOS-camera (Photonfocus, MV1 D1312-160-CL-12) was used as optical
sensor system, offering a maximal resolution of 1312 x 1082 pixels. Each pixel captures an
area of 8 x 8 µm of the cortex. Because signals from higher neocortical layers are of major
relevance, the focus was fixed 600 µm below the cortical surface to compensate for blood
vessel-related image artifacts. Illumination was conducted with an excitation wavelength
of 630 nm using a halogen cold light source (150W Phillips, Type 6550, Al/234, 15V,
G6.35) and subsequent infrared filter and bandpass filter of 630 ± 10 nm (Schott Glas,
Mainz, Germany). The light was directed through a macroscope perpendicularly onto
the cortical surface using a dichroic mirror. Subsequently, a high-pass filter (Schott Glas,
Mainz, Germany) ensured that only photons of wavelengths ≥ 665 nm reaching the
camera chip’s pixels and transmitted energy to the semiconductor electrons, which were
then released (Hofmann, 2020; Peter, 2019). As the camera’s readout rate is depending
on spatial resolution and exposure time, an optimization of both parameters is required
to minimize technical noise components typically observed for CMOS systems (e.g. read
noise, dark noise). Therefore, the setup was configured to a frequency of 150 Hz and
1024 x 990 pixels with an exposure time of 0.01 ms, which leads to a temporal resolution
of 6.7 ms per image (Hofmann, 2020).
Area 18 of cat’s V1 was defined as the target of the optical imaging procedure. To determine
the ideal position of the imaging chamber, the center of the interaural line was established
as the zero point of a three-dimensional coordinate system. From this point, the location of
the chamber can be exactly aligned to the position of area 18, which is illustrated in Fig. 5.
This method is based on a combination of Horsley-Clarke stereotactic coordinates (Horsley
and Clarke, 1908) and the topographic atlas of the cat brain according to Reinoso-Suárez
(1961). The chamber was centered in the midline +2 mm on the anterior-posterior axis
(Peter, 2019).

Voltage-Sensitive Dye

The voltage-sensitive dye RH-1691 (Optical Imaging Ltd., Israel), was utilized as reporter
in the conducted optical imaging experiments (Hofmann, 2020). It is a “water-soluble
aromatic anionic oxonol compound based on a vinylogous carboxylate conjugate system”
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Figure 5: Schematic overview of the applied optical imaging area. The dorsal view of
cat’s right hemisphere is illustrated via the coordinate system from the Reinoso-
Suárez (1961) brain atlas, also showing the numeration and boundaries of
cortical areas (dotted lines). Axes show dimensions in mm with a zero point
on the anterior-posterior axis. The implanted imaging chamber (blue circle)
positioned over area 18 and the craniotomy area (red circle) are overlayed. For
stabilizing the chamber construction, a ring of dental cement (grey ring) was
used. The image area (black rectangle) is containing the region of interest (ROI,
yellow rectangle). Modified from Reinoso-Suárez (1961).
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(Lippert, Takagaki, Xu, Huang and Wu, 2007). These properties enable its external
integration mostly into the lipid bilayer of plasma membranes. Through conformation
changes it responds to brief changes in membrane voltage in terms of fluorescence, which
is linearly related to the membrane voltage. The fluorescence signal is mainly originating
from cortical dendrites and non-myelinated axons, as respective membrane areas are
orders of magntiudes larger in comparison to cell somata (Grinvald and Hildesheim, 2004;
Lippert et al., 2007; Shoham et al., 1999). The dye absorbs light with an excitation
wavelength of 630 nm and in turn emits the fluorescent signal with wavelengths of > 650
nm. Excitation wavelengths of the dye RH-1691 have little overlap with the absorption
spectrum of hemoglobin. Furthermore, this distance between the spectra of blue dyes and
hemoglobin is reportedly minimizing movement artifacts due to the pulsation of blood
vessels and brain tissue. These movements are caused by a pulse wave which can be
attributed to the contraction of the heart’s left ventricle during systole (Grandy, Greenfield
and Devonshire, 2012; Lippert et al., 2007; Shoham et al., 1999).

2.2 Data Pre-Processing

2.2.1 Hardware-Based Approaches

For enabling analyses of optical imaging sequences on basis of single trials, ensuring high
data quality is of utter importance. Already at the level of the data acquisition process,
several biological and technical phenomena can be accounted for via hardware-related
approaches. Artifacts due to cardiovascular and respiratory activity of the experimental
animal can be significantly reduced by synchronization of the optical imaging recording
setup. Latter consisted of the following hardware components:
• optical imaging system Imager3001 (Optical Imaging Inc., Rehovot, Israel);
• data acquisition computer with imaging software VDAQ2.5 (Optical Imaging Inc.,
Rehovot, Israel);

• high-speed CMOS camera (MV1 D1312-160-CL-12; Photonfocus, Lachen, Switzer-
land)

• stimulation unit containing software StimulPL (Prof. Dr. Rainer Goebel, Maastricht
University, Netherlands) connected to a 21-inch CRT monitor (Accuvue, HM4921D);

• electrophysiological recording system;
• respiratory pump (Ugo Basile 6025, Gemonio, Italy)
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(Hofmann, 2020; Peter, 2019).

All components of the setup were synchronized via the Imager3001 as central interface
by using transistor-transistor logic (TTL). The Imager3001 first primes the stimulation
unit, which enters a waiting state, for the upcoming stimulation condition and sends
a stop signal to the respiratory pump, latter stopping after the next cycle for 1.7 − 3 s
and sending a signals back to the Imager3001. The interface waits for the next imidiate
QRS peak of the heartbeat and instantly transmits a simultaneous TTL start trigger to the
electrophysiological system, the camera/shutter and stimulation unit. Consequently, each
recording started at the same phase of the animal’s heartbeat (Hofmann, 2020; Peter,
2019).
Aside of synchronizing the optical imaging hardware components, motion artifacts can be
further mitigated by physically stabilizing the anesthetized experimental animal. This
was achieved by fixation of the animal’s body within a stereotaxic frame. By using a head
holder attached with dental cement and bone screws to the skull, head movements were
consequently minimized. Furthermore, by filling the imaging chamber with incompress-
ible silicone oil (DS Fluid, Boss Products, Elizabethtown, Kentucky, USA) and sealing it
with a silicone ring and a glass plate, movement artifacts due to heartbeat and respiration
as well as swelling of the brain tissue were further decreased (Peter, 2019).

2.2.2 Software-Based Approaches

Even after incorporating hardware-based approaches to increase the SNR, the overall VSDI
signal is confounded by several noise components. Their respective impact on the signal
is depending on multiple factors related to data acquisition indicated in the following
(non-exhaustive) list:
• hardware-related aspects: camera, dye composition
• recording-related aspects: recording duration
• organism-related aspects: animal species, awakeness vs. anesthesia
• activity-related aspects: evoked vs. ongoing activity

(Raguet et al., 2016).

It is therefore necessary to separate neural activity dynamics from the confounded VSDI
signal. This makes software-based pre-processing a crucial step for adequate data analysis.
In the following section, a set of methods commonly used for VSDI data are further
described.
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Blank Subtraction

For data pre-processing, blank subtraction (Blasdel, 1992; Shoham et al., 1999) poses
a traditional approach for establishing a reference signal level and for removing sources
of noise such as uneven illumination (Grinvald et al., 1999). Its initial step consists of
dividing all frames of a recording by its respective baseline level, latter being calculated
as the average of multiple frames prior to stimulus onset (commonly known as zero-frame
or z-frame). Subsequently, the blank signal is computed as the average over all available
blank recordings within an imaging session, for which no stimulation was carried out.
This average is then subtracted from all stimulus-evoked sequences in pixel-wise manner
(Arieli et al., 1995; Grinvald et al., 1994; Shoham et al., 1999). However, this method
is substantially noise-sensitive as pixel variability of the evoked and blank recordings is
summed up (Bathellier et al., 2007). Also, the initial frame division usually poses an
inaccurate normalization procedure which was reported to lead to dynamical biases in
amplitude quantification of neural activity (Takagaki et al., 2008). By applying baseline
subtraction, several problematic assumptions are implicitely made: artifacts are additive
noise components, which all are proportional to the baseline fluorescence level and whose
dynamics are identical for stimulus-evoked and blank regimes (Raguet et al., 2016).
A common variation of blank subtraction is the usage of a cocktail blank. Instead of
generating an image of the unstimulated cortex, the goal is to obtain an image of the
uniformly activated cortex as reference. Latter is estimated as the sum of response
activities to a set of all available stimulus configurations (e.g. different orientations of a
visual stimulus), which is then used to normalize activity maps (Grinvald et al., 1999). By
this approach, non-stimulus related responses can be eliminated, yet it is accompanied by
an information loss regarding the overall neural dynamics (Raguet et al., 2016). As both
blank approaches require multiple trials for computing averages, they are unsuitable for
single trial analysis (Reynaud et al., 2011).

Principal Component Analysis & Independent Component Analysis

Principal component analysis (PCA) (Hotelling, 1933; Pearson, 1901) is a widely known
approach for dimensionality reduction, data compression and feature extraction (Jolliffe,
2002). It decomposes the input signal into additive, uncorrelated components. The
input data is projected orthogonally on a reduced linear subspace via eigenvectors of the
covariance matrix, the principal components. The optimization criterion can be defined
by minimizing the mean squared distance between data points and projections (Pearson,
1901) or by maximizing the variance of projected data (Hotelling, 1933). Principal
components are derived by solving eigenvalue decomposition of the covariance matrix,
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or alternatively from singular value decomposition of the centered data matrix. As those
principal components are defined just from the respective input data, components do not
have to be specified a priori. Thus, this technique is very adaptable to many different data
types in various disciplines (Jolliffe and Cadima, 2016).
Another blind source separation technique known as independent component analysis
(ICA) (Hyvärinen and Oja, 2000) targets for separating latent sources from an observed
mixture signal by linear representations. This is based on the assumptions of statistical
independence and non-Gaussianity of components, as well as an unknown linear mixing
system (Hyvärinen and Oja, 2000). For pursuing its corresponding goals of i) maximization
of non-Gaussianity, ii) minimization of mutual information and iii) maximum likelihood
estimation, several algorithms like FastICA (Hyvärinen, 1999), projection pursuit and
Infomax (Hyvärinen and Oja, 2000) have been developed. Regarding VSDI, application of
ICA has been focused either on the temporal data domain by treating individual pixels
as observations, e.g. for the task of extracting neural dynamics from heartbeat- and
respiration-contaminated trials recorded in primary auditory cortex of guinea pig (Inagaki,
2003; Maeda, Inagaki, Kawaguchi and Song, 2001), or on the spatial domain by specifying
each frame as observation, e.g. for extracting functional cortical maps in olfactory bulb
and the somatosensory cortex of mice as well as the visual cortex of monkeys (Reidl,
Starke, Omer, Grinvald and Spors, 2007). For taking into account both temporal and
spatial dimensions, ICA has been combined with complementary approaches. For instance,
combinations of temporal ICA with local similarity minimization on the spatial domain
have been applied to remove spatial biological artefacts from trials recorded in primary
cortices of awake monkeys and anesthetized cats (Fekete, Omer, Naaman and Grinvald,
2009).
PCA and ICA are offering convenience due to their possibility to separate sources directly
from data acquisition. Nevertheless, components can only be classified a posteriori.
Therefore, an identified component can comprise both signal- and noise-related features
(Chemla et al., 2017).

Linear Modeling

An alternative approach for denoising and feature extraction of neural activity is multiple
linear regression, which was initially applied to fMRI data (Friston et al., 1994). With
respect to VSDI recordings acquired in awake monkey, Reynaud et al. (2011) use a General
Linear Model (GLM). It is specified as finite weighted-sum of pre-defined regressors X to
approximate the measured signal y for each trial, so that

y = Xβ + r (1)
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, with 2-D matrix X (containing all regressors on separate columns), vector of weights β
and vector of residuals r (Reynaud et al., 2011).

The best linear unbiased estimator β̂ of weights is obtained via the Moore-Penrose pseudo
inverse X+ of X, assuming that the residuals r are following statistical white noise. The
estimator is constructed as

β̂ = (X ′
+X+)

−1X ′
+y (2)

(Reynaud et al., 2011).

The main assumptions of this model comprise linear independence of all regressors
as well as their linear additive contribution to the signal. In this context, Reynaud et al.
(2011) were building matrix X from the following regressors illustrated in Fig. 6:
• the baseline fluorescence level X0, considered as constant value
• technical and physiological artifacts X1, such as fundamental heartbeat frequency
or respiration, which are interpreted as periodic oscillations and, therefore, modeled
as Fourier series allowing for phase change

• the dye bleaching X2 modeled as decaying exponential function
(Reynaud et al., 2011).

When subtracting the weighted linear combination of regressors from the measured
signal, the residuals contain neural response activity as well as statistical white noise, but
also non-deterministic spontaneous neural activity. In case that spontaneous activity is
central to the research question, it would be necessary to explicitly account for evoked
neural activity. For this purpose, template shapes for the expected response X3 can be in-
cluded additionally in the linear model. This approach was initially developed for fMRI by
Hossein-Zadeh, Ardekani and Soltanian-Zadeh (2003) and Woolrich, Behrens and Smith
(2004) as fMRI’s linear optimal bias sets (FLOBS). For VSDI, this was adapted by including
a set of temporal regressors, which are reflecting the first eigenvectors obtained from
singular value decomposition of a large number of artificial response changes (Chemla
et al., 2017). This dimensionality reduction of neural responses marks a critical step of the
GLM framework, as it depends on the complexity of stimuli which is affecting pixel-wise
response dynamics, for example in terms of delays as well as rising and decreasing times.
Because regressors have to be specified a priori, this method allows for single-trial analysis.
However, as recorded time-series are processed independently for each pixel, spatial
dependencies between pixels within the observed images are ignored (Chemla et al.,
2017; Raguet et al., 2016).
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Figure 6: Linear model decomposition of the VSDI signal by Reynaud, Takerkart, Mas-
son and Chavane, 2011. The raw pixel dynamics (F) is modeled via multiple
regressors related to neural response dynamics as well as noise signal sources.
Latter comprise the baseline fluorescence level (X0), oscillatory signals such as
heartbeat or respiration (X1) and bleaching behavior of the dye (X2). Different
response templates are represented by X3. The weighted sum of all regressors is
normalized together with the residuals using the baseline activity (X0). Modified
from Chemla et al., 2017.

2.3 Data Modeling

2.3.1 Bayesian Inference

To illustrate concepts like generative or latent variable modeling, the following basic terms
of Bayesian statistics will be used:

• the observed data vector x

• the unobserved latent variables z

• the prior distribution p(z)

• the likelihood p(x|z)

• the joint distribution p(x, z) = p(x|z)p(z)

• the posterior distribution p(z|x).
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To infer the unknown but observable x in latent variable modeling, the marginal or prior
predictive distribution is defined as

p(x) =

∫︂
p(x, z)dz =

∫︂
p(x|z)p(z)dz (3)

, which can be used for predicting an unknown observable, or – as it will be relevant from
the perspective of generative modeling – is providing the information of the probability of
generating a data point (Gelman, Carlin, Stern and Rubin, 2003).

2.3.2 Generative Modeling

Pattern recognition tasks such as image segmentation can be broadly categorised in super-
vised, and unsupervised learning problems. Supervised learning is possible if the training
data comprises both an input data vector x and a corresponding target vector y, latter
being usually denoted as data labels. Here, a function is learned to map x → y. Typical
applications are classification and regression tasks such as assigning images of handwritten
digits to their corresponding digit label, commonly demonstrated via the Modified National
Institute of Standards and Technology (MNIST) database. In unsupervised learning, such
data labels y are not available, therefore the goal is to learn some hidden structure only
from the data x. This includes tasks like clustering, density estimation or visualization
(Bishop, 2006).

Another categorization of machine learning models can be done by differentiating between
discriminative and generative models. Discriminative models are set out to model the
posterior conditional probability p(y|x) directly, or model a function f(x) for learning a
direct mapping of x → y. On the other hand, generative models represent a branch of
unsupervised learning and are learning a model of the joint distribution p(x, y), which
makes it possible to predict p(y|x) via Bayes rule (Ng and Jordan, 2001).
Let x again represent the data having the probability distribution p(x). From the perspec-
tive of generative modeling, the joint distribution pθ(x, z) describes the generative process
for observing the data x given the unobserved latent variable z:

pθ(x, z) = p(x|z)p(z) (4)
z ∼ p(z) (5)
x ∼ p(x|z) (6)
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By knowing the data distribution p(x), several goals can be pursued:

• generating a new data point x(i) by first sampling z(i) ∼ pθ(z) from the prior
distribution pθ(z) and subsequently sampling x(i) ∼ pθ(x|z(i)) from the conditional
distribution pθ(x|z(i)), latter known as the likelihood

• evaluating p(x) for a test data point

• extracting the latent representation z from the data x.

However, depending on the complexity of the underlying model class, these goals are
either impossible or only achievable via approximations (Fraccaro, 2018).

Generative models can then be further classified into implicit and explicit density models,
as illustrated in Fig. 7. On the one hand, models defining an explicit density function
p(x; θ) can be used for estimating the likelihood for a single data point x. More formally
stated by Goodfellow (2016), these models maximize the likelihood by “simply [plug]
the model’s definition of the density function into the expression for the likelihood, and
follow the gradient uphill” (Goodfellow, 2016). As illustrated in Sect. 2.3.4, these explicit
densities may be computationally tractable or intractable, latter requiring approximation
techniques such as variational or Monte Carlo approximations. Examples for tractable
explicit density models are fully visible belief networks (Frey, 1998; Frey, Hinton and
Dayan, 1995) and nonlinear ICA (Burel, 1992; Deco and Brauer, 1995), while variational
autoencoders (VAE) (Kingma and Welling, 2013) can be classified as intractable explicit
density models. On the other hand, implicit density models do not represent a probability
distribution p(x) over the data space. Instead, they are based on sampling from the
underlying distribution after model training. This is done either by defining a Markov
chain transition operator and running it several times to get a sample, as it is the case
for generative stochastic networks (Bengio, Laufer, Alain and Yosinski, 2014); or these
samples can be drawn directly in a single step, as in generative adversarial networks
(Goodfellow et al., 2014).
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Figure 7: Taxonomy of generative models based on maximum likelihood principle. These
models can be broadly classified depending on their method of representing or
approximating the maximum likelihood. Adapted from Goodfellow (2016).

2.3.3 Latent Variable Modeling

Latent low-dimensional representations are based on the assumption that high-dimensional
observations x are generated by a (usually substantially) smaller number of latent vari-
ables z that are not directly observable. Traditionally, the observations are assumed to be
related to the latent variables through an unknown linear or nonlinear transformation
(Bengio, Courville and Vincent, 2013; Calabrese, Schumacher, Schneider, Paninski and
Woolley, 2011; Parsons, Haque and Liu, 2004). The objective of dimensionality reduction
techniques is to identify the lower-dimensional subspace in which the latent variables
reside. In this context, the goal is to find compact descriptions of the high-dimensional data
for the purpose of increased interpretability and reduction of computational complexity in
subsequent signal processing steps (Cunningham and Yu, 2014; Nonnenmacher, Turaga
and Macke, 2017).

35



To give a more formal definition, let the complicated data distribution p(x) be the modeling
target. Here, each observation x is depending on the unobserved latent variables z. Their
joint distribution can be stated as p(x, z) = p(x|z)p(z), where p(x|z) is the likelihood of
the observations x given the latent variables z, and p(z) is the prior distribution of the
latent variables z. Both p(x|z) and p(z) are much simpler to define than p(x). It can easily
be shown that by marginalizing over the latent variables z, the data distribution p(x) can
be obtained again:

p(x) =

∫︂
p(x, z)dz =

∫︂
p(x|z)p(z)d(z). (7)

To infer the unobserved latent variables z given the observed data x, the posterior distri-
bution p(z|x) can be computed as

p(z|x) = p(x, z)

p(x)
=

p(x|z)p(z)
p(x)

. (8)

which results from the application of Bayes’ theorem. The posterior distribution p(z|x)
reflects the prior belief about the latent variables z, which is confronted by the observed
data x and updated accordingly.

Much can be gained from capturing the low-dimensional structure of neural activity
and neural representations. Extracting important dimensions or meaningful latent vari-
ables can elucidate important structural and dynamical properties of the brain. This
includes the manifold in activity space covered by multiple activity patterns and the
mapping of the stimulus space onto a given neural activity pattern from whole brain to
local circuitry. Computational methods and insights gained in this part are also useful for
detecting transitions between functional brain states in an online manner, for designing
optimal model-based interventions and for statistically reconstructing functional archi-
tecture. In the past, latent variable models were successfully applied in neuroscientific
data analysis tasks, namely dimensionality reduction and visualization (Cunningham and
Yu, 2014), signal deconvolution (Vogelstein et al., 2010), denoising (Wu, Nagarajan and
Chen, 2016) and decoding (Z. Chen, Gomperts, Yamamoto and Wilson, 2014), explorative
data analysis (Latimer, Yates, Meister, Huk and Pillow, 2015), as well as the assessment of
variability (Whiteway and Butts, 2017).
Recently, nonlinear and sparsity-based dimensionality reduction techniques such as dic-
tionary learning and sparse low-rank matrix factorization approaches as well as their
robust Bayesian versions and probabilistic extensions gained increasing popularity due to
their flexibility in modelling the data and by incorporating additional problem-specific
features, e.g., non-negativity or group sparsity (Cunningham and Yu, 2014; Ganguli and
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Sompolinsky, 2012; Vogelstein et al., 2010).

Exemplary challenges in this domain along with computational speed and robustness
constraints are:

(i) Recovered latent state representations are unstable with respect to model mismatch,
in particular to assumptions on the observation noise; this is especially pronounced
for large noise amplitudes, e.g. in neurophysiological recordings.

(ii) The dimension and structure of the recovered latent representation is sensitive to
the presence of unobserved confounders that often lead to more latent dimensions
caused by the introduced correlation from the confounders.

(iii) New computationally efficient and convergent optimization algorithms for nonlinear
low-rank matrix and tensor approximations for fast online implementations are yet
in their infancies (Yang, Pesavento, Chatzinotas and Ottersten, 2018).

2.3.4 Approximation of Intractable Distributions

Because the integral of the marginal likelihood in Eq. 7 is intractable for higher dimensions,
it is impossible to evaluate or differentiate the marginal likelihood (Kingma and Welling,
2013); instead, the posterior distribution p(z|x) can be approximated, either by

(a) sampling-based approaches, or

(b) variational inference.

In the past decades, the Markov Chain Monte Carlo (MCMC) paradigm became the corner-
stone for sampling-based approaches. Here, an ergodic Markov chain on z is constructed,
whose stationary distribution is p(z|x). To collect samples of the stationary distribution,
samples are instead taken from the chain. Subsequently, an empirical estimate either
about the distribution itself or its punctual statistics is made from all or only subsets of
the samples. This estimate is then taken as an approximation of the posterior (Hastings,
1970). Given infinite computational resources, this approach guarantees to generate
exact samples for the target density, which makes this technique very appealing. How-
ever, MCMC algorithms tend to be computationally costly and particularly slow for large
datasets or very complex models (Robert and Casella, 2004).

As an alternative to sampling-based approaches, variational inference rather relies on
optimization. First, a family of approximate densities D over the latent variables is posited.
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It is then tried to find a member q∗ of that family which minimizes the distance between
the variational distribution q(z) and the exact posterior distribution p(z|x), here measured
via Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951), so that

q∗(z) = argmin
q(z)∈D

KL(q(z)||p(z|x)). (9)

The closer q(z) is to p(z|x), the smaller the KL divergence will be. Hence, the choice of
distribution family for D plays an important role, as it is required to be flexible enough for
close approximation of p(z|x), while at the same time being simple enough for efficient
optimization (Blei, Kucukelbir and McAuliffe, 2017).

The KL divergence term in Eq. 9 is defined as

KL(q(z)||p(z|x)) = E [log q(z)]− E [log p(z|x)] (10)
= E [log q(z)]− E [log p(z, x)] + log p(x) (11)

, and is having several important properties, such as

• Non-negativity, as KL(q(z)||p(z|x)) ≥ 0 for all q, p

• Asymmetry, as KL(q(z)||p(z|x) ̸= KL(p(z|x)||q(z))

(Blei et al., 2017).

From the expanded conditional in Eq. 10, the dependency on log p(x) becomes obvi-
ous. This makes a direct computation impossible, because the marginal likelihood is
intractable, as previously stated. Alternatively, the KL can be re-written to obtain a lower
bound which can then be optimized instead. This is called the evidence lower bound (ELBO)
F(q), also known as variational lower bound (Jordan, Ghahramani, Jaakkola and Saul,
1999).
The ELBO can be derived either (i) by using Jensen’s inequality , or (ii) directly from
the KL definition. For (i), a lower bound of the marginal log pθ(x) following a family of
distributions with unknown parameter θ can be derived from the log-likelihood Li(θ) with
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datapoints i = 1, ..., N as

Li(θ) = log

∫︂
pθ(x, z)dz (12)

= log

∫︂
pθ(x, z)

q(z)
q(z)dz (13)

= logEq(z)

[︃
pθ(x, z)

q(z)

]︃
(14)

≥ Eq(z)

[︃
log

pθ(x, z)

q(z)

]︃
= F(q) (15)

where Jensen’s inequality can be applied in Eq. 14 due to concavity of the logarithm
(Fraccaro, 2018).

For (ii), the ELBO F(q) can also be formulated as negative KL divergence plus an additional
constant log p(x) by using Bayes’ rule in Eq. 10, so that

KL(q(z)||p(z|x)) = −E
[︃
log

p(x, z)

q(z)
− log p(x)

]︃
(16)

= −E
[︃
log

p(x, z)

q(z)

]︃
⏞ ⏟⏟ ⏞

F(q)

+ log p(x) (17)

(18)

(Blei et al., 2017).

Note that the log-evidence log p(x) can be re-formulated as combination of the ELBO and
KL, so that

log p(x) = F(q) + KL(q(z)||p(z|x)) (19)

It follows from the non-negativity property of the KL divergence, that minimizing the KL
divergence is equivalent to maximizing the ELBO. Therefore it is possible to circumvent the
intractable KL computation between the approximate and exact posteriors by maximizing
the ELBO instead, which in turn is computationally tractable, e.g. by using gradient-based
methods (Bishop, 2006).
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2.3.5 Variational Autoencoder

Basic Model Framework

The variational autoencoder (VAE) (Kingma and Welling, 2013) is a deep latent variable
model for unsupervised and semi-supervised learning of meaningful latent representations
z from a dataset x. Instead of learning a deterministic mapping as pursued in traditional
autoencoders, the VAE instead models distributions of the latent variables. To give a more
formal model description of the VAE, it is necessary to describe i) its inference network as
variational approximation, ii) its generative network as latent variable model, and iii) how
parameters are learned.

The posterior inference problem previously described in Sect. 2.3.4 can be approached by
introducing a parametric inference model qϕ(z|x), also known as the encoder or recognition
model. The model parameters ϕ are optimized, so that the true posterior pθ(z|x) with
corresponding parameters θ is approximated by

qϕ(z|x) ≈ pθ(z|x). (20)

Using a deep neural network NN, qϕ(z|x) can be parametrized as ϕ will include the
network’s weights and biases. By constructing this encoder model as neural network
architecture as illustrated in Fig. 8 (left), it is possible to compute the parameters of the
posterior approximation qϕ(z|x) given the data point x, therefore learning a mapping
from x to z. For example, in terms of a Gaussian this would result in

(µ, logσ2) = NNϕ(x) (21)
qϕ(z|x) = N (z;µ,diag(σ2)) (22)

(Kingma and Welling, 2013, 2019).

Instead of having different sets of parameters ϕi to learn for each data point xi, an
alternative approach is known as amortized variational inference, where the variational
parameters are shared across all observations (Gershman and Goodman, 2014). The term
“amortized” indicates that the cost of learning ϕ amortizes across all data points, which
makes computations substantially efficient, as per-datapoint optimization loops can be
circumvent. Also, when observing a new data point, it is possible to immediately compute
its corresponding variational approximation without re-running an optimization step of
the ELBO (Kingma and Welling, 2019). However, because the parameters of the inference
network are shared across all data points, the posterior approximation produced with
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Figure 8: General model architecture of the VAE. For given model input x, the inference
network (or encoder) produces a mapping to the latent posterior approximation
qϕ(z|x). The latent probability distribution is following a multivariate Normal
distribution. For illustration purpose, latter is parametrized by a vector of two
means [µ1, µ2] and covariancematrix

(︁
σ1 0
0 σ2

)︁. These parameters are the output of
the encoder after updating the weights and biases of the network. After drawing
samples z from the latent distributions, the generative network (or decoder)
pθ(x|z) projects those latent representations back to the data distribution.

amortized inference will always be poorer than the one determined with conventional tech-
niques. As discussed by Cremer, Li and Duvenaud (2018), the approximations introduced
by amortized inference are the main cause of inference sub-optimality in VAEs, rather
than the impact of restricting the distribution families of the variational approximation.

Aside of the inference network, the second important compartment of the VAE is the
generative network specified by the joint distribution pθ(x, z) = pθ(x|z)pθ(z). Its purpose
is to learn a mapping from the latent space representation z back to the observations
x, so that newly generated data conditioned on z is closely resembling the input data.
This is achieved by the likelihood term pθ(x|z), also known as decoder. Typically, in the
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continuous case this has the form of a centered isotropic multivariate Gaussian, so that
pθ(x|z) = N (x;µ, σ2). Corresponding parameters of the Gaussian are again parametrized
by two deep neural networks NN1 and NN2 as indicated in Fig. 8 (right), so that

µ = NN1(z) (23)
logσ2 = NN2(z) (24)

(Kingma and Welling, 2013, 2019).

In case of the VAE, the objective is to maximize the log-likelihood logpθ(x). As previously
shown, the log-likelihood is lower-bounded by the ELBO term Fθ,ϕ with

Fθ,ϕ = Eqϕ(z|x)

[︃
logpθ(x, z)

qϕ(z|x)

]︃
(25)

= Eqϕ(z|x) [logpθ(x|z)]⏞ ⏟⏟ ⏞
Reconstruction term

−KL [qϕ(z|x)||logpθ(z)]⏞ ⏟⏟ ⏞
Regularization term

(26)

The ELBO combines two terms with different purpose:
• a reconstruction term, minimizing the reconstruction error and in turn maximizing
the marginal log likelihood logpθ(x) for improving the generative model

• a regularization term, minimizing KL(qϕ(z|x)||pθ(z|x)) for encouraging the learned
distribution qϕ(z|x) to be similar to the true posterior distribution.

It is possible to differentiate the ELBO and jointly optimize it for both parameters θ and
ϕ, e.g. via stochastic gradient descent. However, to compute the gradients it would be
necessary to backpropagate from x and ϕ through z. This becomes impossible, as z is a
random variable and therefore a stochastic node in the graph. Here, a change of variables
can be applied, commonly known as reparametrization trick (Kingma and Welling, 2013;
Rezende, Mohamed and Wierstra, 2014). This step includes a differentiable and invertible
transformation function g of z ∼ qϕ(z|x) with another random variable ϵ, given z and ϕ,
so that

z = g(ϵ, ϕ, x) (27)
where ϵ is following a simple distribution p(ϵ) and is independent of x and ϕ. To illustrate
this step, consider z ∼ qµ,σ = N(µ, σ). Instead of sampling from q, the reparametriza-
tion trick is applied by introducing ϵ ∼ N(0, 1), into which all the randomness in z is
externalized, as

z = gµ,σ(ϵ) = µ+ σ ⊙ ϵ (28)
with ⊙ denoting the Hadamard (or element-wise) product (Kingma and Welling, 2013;
Rezende et al., 2014).
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Model Extensions

As described in Sect. 2.3.5, a trade-off between the two compartments of the VAE objective
becomes evident: on the one hand, the reconstruction term Eqϕ(z|x)[logpθ(x|z)] is promot-
ing the latent code in z to provide essential information for reconstructing the observations
in x; on the other hand, the regularization term KL[qϕ(z|x)||logpθ(z)] penalizes the pos-
terior approximation qϕ(z|x) for straying too far from the prior pθ(z). In practice, both
compartments of the ELBO can raise difficulties in terms of an undesired local optimum.
θ, ϕ are randomly initialized at the start of VAE training, leading to poor latent codes in
z. The posterior approximation is then substantially pushed by the regularization term
towards the prior, so that qϕ(z|x) ≈ pθ(z) for all x. Consequently, z remains uninformative
over the training. This phenomenon is denoted as posterior (or KL) collapse (Bowman
et al., 2016; Fu et al., 2019; Long, Cao and Cheung, 2019; Lucas, Tucker, Grosse and
Norouzi, 2019). Simultaneously, to ensure interpretability of latent representations, it
has to be aimed for disentanglement of inferred latent variables qϕ(z|x). When a single
latent variable is sensitive to changes in a single generative factor of variation in the data
but generally invariant to changes in other variables, this representation is said to be
disentangled (Bengio et al., 2013).

Balancing the ELBO’s reconstruction and regularization terms has been shown to be
beneficial for the disentanglement of latent representations (Bowman et al., 2016; Fu
et al., 2019; Higgins et al., 2016; Higgins et al., 2017). For this purpose, Higgins et al.
(2017) proposed β-VAE by augmenting the original VAE objective. Here, the ELBO is
extended by β as rescaling weight of the regularization term, so that

Fθ,ϕ = Eqϕ(z|x)[logpθ(x|z)]− β KL[qϕ(z|x)||logpθ(z)]. (29)

As learning constraints applied to the model are modulated by this weight, the capacity
of the latent information channel is limited and statistically independent latent factors
are emphasized by encouraging their factorization (Higgins et al., 2017). In context of
β-VAE, the standard VAE formulation by Kingma and Ba (2014) is corresponding to β = 1.
Choosing β < 1 results in more accurate reconstructions but with the downside of a less
regularized and more entangled latent space. Values of β > 1 in turn can result in the
aforementioned posterior collapse, in which all reconstructions are reduced to the average
input and KL[qϕ(z|x)||logpθ(z)] → 0 (Rydhmer and Selvan, 2021).

To alleviate the problem of posterior collapse, Bowman et al. (2016) suggested a simple
annealing schedule for the regularization weight β to monotonically increase over the VAE
training (usually from β = 0 to β = 1). Despite being widely adapted, especially in the
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field of natural language processing, monotonical annealing comes with the tendency to
under-weight the prior regularization. In this case, the VAE substantially degrades into
a standard autoencoder with point estimates of the learned qϕ(z|x) and poor decoder
learning (Fu et al., 2019).
An alternative approach proposed by Fu et al. (2019) concerns a cyclical annealing sched-
ule, starting with β = 0, quickly increasing and keeping it at certain level (originally at
β = 1) for several training iterations. This process is subsequently repeated for several
cycles, so that

βt =

{︄
f(τ), τ ≤ R

1, τ > R
with (30)

τ =
mod(t− 1, [T/M ])

T/M
(31)

with t = 1, ..., T training iterations, a monotonically increasing function f (e.g. linear,
sigmoid, or cosine), the number of cyclesM , and R denoting the increase proportion of β
within a cycle. Within the first cycle, the model is supported to converge to the ELBO and
infer its first raw full latent distribution. When restarting the annealing procedure in the
consecutive cycle, the ELBO is perturbed and pushed away from previous convergence.
Training is continued on basis of the full distribution z ∼ qϕ(z|x) learned in the previous
cycle as a warm restart. The annealing process is then repeated multiple times to achieve
better convergence. For more disentangled representations, the authors advise to set the
upper limit of the regularization weight to β > 1 for putting stronger capacity constraints
on z as in the standard VAE (Fu et al., 2019).

2.4 Synthetic Data Generation

2.4.1 Motivation

For evaluating the implemented deep latent variable model (Sect. 2.3.5) in terms of its
ability to extract response- and/or noise-related features from VSDI sequences in a fast and
robust way, it is necessary to provide a suitable data basis. However, ground truth about the
contribution of signal components as well as their composition is unknown for real datasets.

In order to circumvent this issue, artificial image sequences are generated using methods
from geostatistics and signal processing, which are described in the following sections. The
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goal is set to create spatio-temporal dynamics with similar complexity and dimensionality
as in VSDI data obtained from grating experiments, while having complete knowledge
about the signal composition and data-generating process.

First, an artificial orientation preference map is created (Sect. 2.4.2). From corresponding
activated regions, spatial locations of hypothetical orientation columns are extracted.
These locations are then employed in the generation of conditioned random fields (CRF)
(Sect.2.4.3 & 2.4.4) in terms of spatial conditioning sites. Additionally, temporal dynam-
ics at these locations are conditioned on regime-switching timings of a typical grating
stimulation paradigm, here defined by a switch between baseline and stimulation phase
within a single record. Both the spatial and temporal dynamics of generated CRF can be
precisely controlled, as calculations are built on the idea of kriging (also known as Gaussian
process regression), which is a spatial interpolation method originally developed in geo-
statistics (Krige, 1951). By this, random fluctuations in proximity of the specified spatial
and temporal conditioning points can be accounted for by the choice of an appropriate
covariance model, e.g. Matérn. This allows for approximating spatiotemporal phenomena
commonly observed in cat’s primary visual cortex such as trial-to-trial variability of evoked
response patterns (Carandini, 2004; Heggelund and Albus, 1978) as well as spontaneous
(or ongoing) activity (Arieli et al., 1995; Kenet et al., 2003).

To further incorporate knowledge about the composition of the VSDI signal, temporal
noise components (Sect. 2.4.5) related to technical and physiological sources are modeled
stochastically by following routines of Reynaud et al. (2011). Additionally, the generated
sequences are convolved with artificial spatial image artifacts (Sect. 2.4.6) related to
illumination and blood vessel structures. Ultimately, all synthetical signal components are
included in a weighted linear model of the overall signal (Sect. 2.4.8).

2.4.2 Synthetic Orientation Preference Maps

Functional orientation preference maps represent a traditional visualization technique of
the location and extent of neural populations responding to certain properties of orienta-
tion stimuli, e.g. a certain orientation degree. These maps are usually built by temporally
vector-averaging several trials of optical imaging (Grinvald, Frostig, Siegel and Bartfeld,
1991; Hubel and Wiesel, 1968).

To simulate optical imaging data based on a hypothetical orientation stimulus paradigm,
the procedure of generating orientation preference maps is basically reversed. First, an
artificial orientation preference map is built, storing the pixel-wise preference to a certain
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orientation. This map then shows pixel patches and clusters, indicating neural popula-
tions with this certain response preference. Informations about placement and extent of
these patches can then be used as prior spatial information for subsequently generating
spatio-temporal neural response dynamics. This procedure offers a theoretically plausible
approximation of the number and spatial positioning of orientation columns within the
2-D imaging area.

To generate synthetic orientation preference maps, an approach by Macke, Gerwinn,
White, Kaschube and Bethge (2009, 2011) is followed. Two instances of white noise
are convolved with Mexican hat filters, which in turn are generated using Difference-of-
Gaussians. The resulting matrices are then used as real and imaginary image parts of a
synthetic orientation preference map (Fig. 9a). Hereby, common properties of smoothness
and semi-periodic structure of real orientation preference maps are taken into account. For
every specified orientation, an activation map (Fig. 9b) can then be returned via functions
of the corresponding gp-maps-python repository in Python. Each activation map stores
information about each contour in the image domain, in turn representing hypothetical
orientation columns (Macke et al., 2011).

Building upon this approach, the centerpoint of each contour (Fig. 9c) is estimated
by caculating its center of mass in the following steps:
1. Convert the current activation map to a grayscale image.
2. Binarize the image.
3. Calculate the image moments via Green’s theorem (Cauchy, 1846).
4. Find the center of mass Cx, Cy by using first-moment ratios.

To further elaborate on this, image moments are holding information about basic statistical
properties of each contour, e.g. its area, centroid and orientation. More precise, image
moments are the weighted average of pixel intensities I(x, y) of a contour within its
boundary i = 1, ..., n. For that purpose, functions of the computer vision toolbox OpenCV
(Bradski and Kaehler, 2008) in Python are used to calculate the spatial momentsMp,q:

Mp,q =
n∑︂
i

(I(x, y)xpyq). (32)

with p representing the x-order and q the y-order. The term “order” is here defined as the
power to which the corresponding component is taken (Bradski and Kaehler, 2008).
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Figure 9: (a) Synthetic orientation preference map. Here, the hypothetical orientation
responses to four different orientations (in rad) are color-coded. (b) Activation
map for a single orientation, for which selective pixels in (a) were color-coded
in blue. Values are normalized to range [0, 1]. (c) Binarized contours of corre-
sponding activation map. Respective contour centroids (indicated as red dots)
are taken as prior information for the location of orientation colums. These
locations can then be used as conditional positions in the subsequent generation
of random fields (see 2.4.4).

As the centroid C of a contour containing a set of k contour points in Rk is minimiz-
ing the sum of squared Euclidean distances between itself and each point in the set, the
x-y-coordinates of the contour’s center of mass Cx, Cy can be calculated as:

Cx =
M10

M00
(33)

Cy =
M01

M00
. (34)

For detailed proofs and derivations of image moments and how to find the centroid of a
continuous distribution of mass, please see Swokowski (1979) and Simmons (1996).

The extracted centerpoints are used as prior information for the subsequent genera-
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tion of conditioned random fields described in Sect. 2.4.4 in terms of restricting the 3-D
kriging operation through the centerpoint positions.

2.4.3 Spatial Random Fields

For generating artificial image sequence with complex spatio-temporal fluctuations, spatial
random fields (SRF) were generated using the randomization method described by Heße,
Prykhodko, Schlüter and Attinger (2014) and was implemented in Python via functions
of the GeoStatTools package (S. Müller and Schüler, 2020). The SRF is represented by a
stochastic Fourier integral and its discretized modes are evaluated at random frequencies.
For this application, a 3-D field was generated with a Matérn covariance model given by
the correlation function

ρ(r) =
21−ν

Γ (ν)
·
(︂√

ν · r
ℓ

)︂ν
·Kν

(︂√
ν · r

ℓ

)︂
(35)

(Rasmussen andWilliams, 2006), where Γ is the Gamma function,Kν denotes the modified
Bessel function of the second kind, and ℓ represents the length scale. ν is a shape parameter
and should be chosen so that ν ≥ 0.2. In case that ν > 20, a Gaussian model is used, since
it is the limit case:

ρ(r) = exp

(︃
−1

4
·
(︂r
ℓ

)︂2
)︃

(36)

To emulate spatial patterns with size proportions close to columnar response signals from
V1, the centroids of spatial activity have to reach diameters within a plausible range for a
cortical column of approx. 300−600 µm (Mountcastle, 1997). In terms of the VSDI camera
setup, this corresponds to around 19− 38 pixel while considering a single pixel covering
eight µm2 of recorded cortical surface area with a pixel binning factor of two. Similar
size proportions of the spatial activity patterns were achieved by feasible parametrization
of the Matérn correlation function, namely the shape parameter ν = 2 and length scale
ℓ = 20. A realization of an equally specified SRF is illustrated in Fig. 10.

Each generated 3-D SRF is then traversed through its z-axis – which is here determined
for representing the temporal dimension – in a given step size. By this approach, spatio-
temporal activity patterns following temporal dependency structures similar to an autore-
gressive process of order p are emulated, where p can be interpreted as the step size of
the traversal. In this case, p was defined as p = 1 to match a frame-wise succession.
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Figure 10: Realization of a 3-D spatial random field following a Matérn covariance model.
This field of shape (x = 128, y = 64, z = 255)was generated by specifying shape
parameter ν = 2 and length scale ℓ = 20. Exclusively for this illustration, values
were thresholded to range [−0.3, 4.0] for highlighting structural dependencies
within the field.

2.4.4 Conditioned Random Fields

When considering cortical activity induced by a similar stimulation paradigm used for
recording optical imaging (Sect. 2.1.2), synthetically generated image sequences have to
incorporate several assumptions of the spatio-temporal response dynamics of orientation
columns. First, the center of an activated region representing an orientation column has to
be spatially fixed at a certain location. Here, centroid coordinates which were previously
extracted from synthetic orientation preference maps (Sect. 2.4.2) are used to ensure a
plausible distributions of artificial columns across the image area. Secondly, corresponding
dynamics have to reflect the response behaviour of cortical response to a drifting grating
stimulus over time, which is assumed to be expressed by regime switching between base-
line and stimulation phases. For this kind of paradigm using a single stimulation phase,
response shapes recorded with VSDI are typically characterized by rising, plateau and
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decaying phases (Reynaud et al., 2011).

The aforementioned SRFs (Sect. 2.4.3) are characterized by complex dependency struc-
tures in 3-D with plausible spatial size ratios. To generate random fields which are
bounded at pre-defined spatial and temporal points, but still contain random variability
according to a specified covariance model, a conditioned random field (CRF) can be
used alternatively. Here, field realizations are achieved by combining the random field
generation with kriging. Respective CRF generation routines are also available in the
GSTools package in Python. The following descriptions are accordingly taken from the
corresponding documentation provided by S. Müller and Schüler (2020).

A CRF is generated in the following steps:

1. a field is generated by a specified kriging approach

2. a random field with mean of 0 and variance of 1 is generated

3. the random field is multiplied with the kriging standard deviation.

Based on a given covariance model, a value on a field z at some point x0 can be derived
by fixed conditioning values z(x1), ..., z(xn) at target location points xi. The value z0 is
calculated as the weighted mean

z0 =

n∑︂
i=1

wi · zi (37)

where the weights wi are depending on the pre-defined covariance model as well as the
target location. The covariance model is used to characterize the following semi-variogram
γ of the random field:

γ(r) = σ2 · (1− ρ(r)) + n (38)
with the lag distance r, main correlation length ℓ, variance σ2 and nugget (or subscale
variance) n. The correlation function ρ(r) is given by

ρ(r) = cor(s · r
ℓ
) (39)

with re-scaling factor s. This is resulting in the covariance function

C(r) = σ2 · ρ(r) (40)
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(S. Müller and Schüler, 2020).

In some cases, the mean of the random field is known or can be assumed, which can
improve the estimates by “simple kriging” (Webster and Oliver, 2007). In terms of the
corresponding functions of the GSTools package, the mean is assumed to be zero for
simplicity. The resulting equation system for weight matrixW = (w1, ..., wn) then becomes

W =

⎛⎜⎝c(x1, x1) . . . c(x1, xn)
... . . . ...

c(xn, x1) . . . c(xn, x0)

⎞⎟⎠
−1⎛⎜⎝c(x1, x0)

...
c(nn, x0)

⎞⎟⎠ (41)

(S. Müller and Schüler, 2020).

Accordingly, field dynamics are restricted via phase-specific key values at given key posi-
tions (Fig. 11) on the field’s axes. The fields xy-plane is interpreted as spatial dimension
representing the 2-D image domain, and the z-axis as temporal dimension separating
frames of the 3-D image sequence. A key value of zero is set for all corresponding baseline
frames, which is incorporating the assumption of more unstructured spatio-temporal
fluctuations during the absence of a stimulus. Starting with the frame index of the hy-
pothetical stimulus onset, an increase in key values is introduced up until reaching a
maximum value. By this, a reaction phase of columnary response to the stimulation onset
is emulated. The maximum key value is held for several frames, reflecting the assumption
of a relatively stable plateau phase of response. Finally, an adaptation phase to the stimulus
is considered by decreasing the key values in several steps. As CRFs will pose the data
basis for the subsequent model training and evaluation, corresponding field realizations
will be illustrated in greater detail in Sect. 3.2.1.
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Figure 11: CRF key locations. Several centroids are defined for the kriging operation in
CRF generation. Each conditioned field is then interpreted as spatio-temporal
columnary response in V1 to a hypothetical orientation stimulus.

2.4.5 Temporal Noise Components

Dye Bleaching

A photo-dynamic bleaching phenomenon as previously described in Sect. 2.1.1 is com-
monly reported as prominent component of VSDI as well as Ca2+ imaging (Bathellier
et al., 2007; Chemla et al., 2017; Grinvald et al., 1982; Reynaud et al., 2011; Stetter,
Greve, Galizia and Obermayer, 2001).
Accordingly, a synthetic dye bleaching artefact is incorporated in the generation of artificial
VSDI sequences in terms of a global spatial signal component, which means that this
component is affecting the time course of every available pixel identically. By this, a
simplified assumption of an even dye staining procedure of cortical surface is resembled.

For generating a synthetic bleaching curve b in the domain of a single pixel at coordinate
(x,y), a combination of a double negative exponential and a linear term parameterized by
τi is used, so that

b(t, x, y) = τ0 + τ1(e
−t
τ2 − 1) + τ3(e

−t
τ4 − 1) + τ5t (42)

where the decay spans over a single sequence with T = 255 frames indexed by t = 1, ..., T .
This approach is in accordance with Hofmann (2020) and accounts for variability in
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Figure 12: (a) Realization of artificial dye bleaching dynamics on pixel domain. Generated
by combining a double negative exponential and a linear term. (b) Realization of
artificial heartbeat dynamics. For both components, the simplified assumption
was made that every pixel is identically impacted. Curve specifications are
made in accordance with Hofmann (2020).

bleaching behavior through different acceleration stages, especially from early light expo-
sure, depending on the quality of the staining procedure as concentration of actual bound
dye molecules in the lipid layer, which cannot be directly controlled.

As reported by Chemla et al. (2017), a substantial trial-to-trial variability of bleach-
ing dynamics is recognizable. To take this variability into account, τi is re-drawn per
generated sequence from τi ∼ N(µτi , στi). Here, µτi was set to the median and στi to the
half interquartile range of parameter distributions estimated for 240 real VSDI recordings
(ID of experimental subject: 092413) to prevent strong outlier parameter settings. An
exemplary realization for artificial bleaching pixel dynamics is illustrated in Fig. 12a.

Heartbeat

When inspecting pixel-wise dynamics of VSDI data, slow-wave oscillations can be recog-
nized which are related to the experimental subject’s heartbeat (Inagaki, 2003; Shoham
et al., 1999). Due to periodically changes in blood volume within the cortex (Fukuda
et al., 2005), the camera’s focus level is changed and therefore the total signal intensity
varies (Hofmann, 2020).
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In accordance with other works by Reynaud et al. (2011) and Chemla et al. (2017),
the heartbeat dynamics of a single pixel at coordinate (x,y) is modeled as combined
sine-cosine function h which is phase-shifted by ϕ1 and ϕ2:

h(t, x, y) = cos(2π · f · t+ ϕ1) + sin(2π · f · t+ ϕ2) (43)
To estimate the heartbeat frequency (in Hz) f within a single recording, an approach
by Hofmann (2020) was followed. As for the dye bleaching component, it is assumed
that the heartbeat is having an uniform impact on every pixel of the recorded image
area. Accordingly, along the baseline duration of every sequence, the spatial average of
pixel time courses is computed and its power spectral density is measured via fast Fourier
transform (FFT). Subsequently, the respective frequency with the highest amplitude in the
power spectrum is selected within a physiologically plausible interval around the mean
electrocardiogram frequency. This frequency is taken as estimate of the real heartbeat
frequency for the current recording (Hofmann, 2020).

This approach was repeated over 240 recordings of a real VSDI experiment (ID of experi-
mental subject: 092413), resulting in a distribution of 240 estimated heartbeat frequencies.
Again, to ensure a sufficient level of trial-to-trial variability while ommitting strong outlier
parameter settings for the generation of synthetical heartbeat dynamics, a random draw
from f ∼ N(µf , σf ) is taken for every new generated sequence. The median value of the
distribution of 240 frequencies is plugged in for µf and respective half interquartile range
is used as σf .

To illustrate an exemplary realization for the synthetic heartbeat generation process,
please see Fig. 12b.

2.4.6 Spatial Noise Components

Illumination

When inspecting real VSDI imaging data, a spatial decrease of signal amplitude towards
the image’s borders is clearly recognizable in every recorded frame. This is due to the
illumination of the convex cortical surface through the recording chamber. To incorporate
a comparable spatial surface structure in the synthetic data generation process, a 2-D
Gaussian kernel g is first generated as

g(x, y) = A · e(a(x−x0)2+2b(x−x0)2(y−y0)2+c(y−y0)2 (44)
with amplitude A, weighting parameters a,b,c, and the x-y-coordinates of the kernel’s
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Figure 13: (a) 2-D Gaussian kernel. A rectangular ROI (red) is set according to the target
image dimensions (here: x = 128, y = 64). (b) Surface plot of the 2-D Gaussian
kernel cropped to corresponding rectangular ROI.

center point (x0, y0).

The 2-D kernel (Fig. 13a) is then cropped to a rectangular ROI (Fig. 13b) of an equal
shape as the target image dimensions. The location of the ROI was kept fixed across every
frame and sequence, expressing the simplified assumption of stable and reliable camera
positioning over time.

Blood Vessel Networks

When investigating real sequences of VSDI, branching structures quickly become apparent
as image features, which are corresponding to networks of cortical blood vessels. To
emulate comparable branching patterns synthetically, the space-colonization algorithm de-
veloped by Runions et al. (2005) and further extended by Runions, Lane and Prusinkiewicz
(2007) was used.

First, a 2-D envelope has to be defined, which will be colonized by the branching network.
In this application for simulating blood vessel structures observed in VSDI data, the 2-D
image space marks out this envelope. The image is then seeded by a set of attractor
points signaling available empty space. The attractor points are randomly sampled from
a discrete 2-D uniform distribution to ensure an even distribution across the full image
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Figure 14: Intuition of the space-colonization algorithm. Modified from Runions, Lane
and Prusinkiewicz (2007).

space (Fig. 14a). The skeleton of the branching network is grown iteratively, starting at
the tree base (Fig. 14b). Nodes are extending their branch segment towards the average
direction of all remaining attractors (Fig. 14c). The position of a new node is calculated
by normalizing this average direction to a unit vector, then scaling it by a pre-defined
segment length (Fig. 14d & 14e). Attractors get pruned when branches are getting too
close (Fig. 14f & 14g). The growing process is terminated either when all attractor points
were met, no nodes are within the radius of remaining attractor points, or an upper limit
of iterations is reached (Fig. 14h). Key parameters to control the branching network
generation are the attractor distance, the radius for attractor removal around nodes, and
the distance between nodes (Runions et al., 2007).

For the generation of artificial VSDI sequences, an identical blood vessel mask (illus-
trated in Fig. 15) is shared between all sequences and frames, expressing the simplified
assumption of a stable cortex positioning over time.

56



0 20 40 60

0

20

40

60

80

100

120
0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Synthetic blood vessel component. Generated via applications of the space-
colonization algorithm by Runions, Lane and Prusinkiewicz (2007). Here, two
networks were grown towards the images’ center, starting from diagonally
opposite tree base points located on the rectangular envelope.

2.4.7 Random Noise

During data acquisition, optical imaging exhibits stochastic signal components due to a
plethora of different technical reasons, e.g. camera noise or fluctuations in illumination
(Grinvald et al., 1999). To incorporate such randomness in the synthetic image sequences, a
residual component is generated under the simplifying assumption of being independently
and uniformly distributed Gaussian noise along both spatial and temporal dimensions.
Accordingly, within frame t = 1, ..., T , each pixel value with coordinates (x, y) is drawn
from a standard Gaussian distribution, so that

E(t, x, y)
iid∼ N(0, 1). (45)

2.4.8 Composition of Artificial VSDI Sequences

To generate a single artificial VSDI greyscale image sequence Ŝ of target shape (T = 255
frames, image height X = 128 pixel, image width Y = 64 pixel), a modification of the
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Figure 16: Composition of of artifical VSDI greyscale image sequences. A 3-D raw signal
S specified as CRF simulates a single spatio-temporal response pattern from
orientation columns in V1 to a grating stimulus. Technical and biological noise
components typically observed for VSDI are synthetically generated and applied
to S in terms of a weighted linear combination.

VSDI signal composition model (Sect. 2.2.2) formulated by Reynaud et al. (2011) is used.
Here, a weighted linear combination of all synthetic VSDI components is specified. The
major difference concerns the inclusion of (artificial) neural response dynamics into the
model. Cortical response profiles, which were included solely on temporal dimension
in the original model formulation, are now replaced by a fundamental spatio-temporal
signal S, which is a 3-D CRF containing one of the pre-defined artificial response patterns.
Latter simulates ground truth information about orientation columns in V1 responding to
a grating stimulus. All VSDI-typical noise components are further applied on this signal.
As the original model formulation by Reynaud et al. (2011) was layed out for signal
decomposition on single-pixel domain, only temporal dynamics covering evoked response
profiles as well as technical and biological noise such as dye bleaching B and oscillatory
components like heartbeat H were considered. By explicitly accounting for confounding
spatial structures in the image domain, namely artificial blood vessel networks V and
illumination L, the model is further extended to

Ŝ = S ⊙ V + β1B + β2H + β3E + β4L. (46)

As temporal noise components are assumed to have constant spatial dynamics along the
image dimensions, they are repeated for every pixel at coordinate (x,y). Likewise, spatial
structures generated as 2-D arrays are repeated for every available frame t = 1, ..., T and
are also shared between sequences, as these components are assumed to remain constant
over time. Accordingly, every model regressor forms a 3-D matrix which is weighted by
its corresponding β. As stated by Reynaud et al. (2011), the usage of a linear model
expresses the assumption that all model terms add up linearly. In this context, the only
exception is made for the blood vessel component V which is introduced as multiplicative
term as it essentially constitutes a binary image mask. The overall linear composition for
generating artificial VSDI sequences is illustrated in Fig. 16.
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3 Results

3.1 Approaches for Model Evaluation

After the VAE model training has been completed, the performance of the encoder and
decoder compartments of the VAE model are assessed by carrying out several evaluation
approaches. For that purpose, an arbitrary grayscale image sequence of shape [T,M,N ]
with t = 1, ..., T frames as well as image heightM and width N (both in pixel) is chosen
as evaluation sequence from the respective validation data partition.

Encoder Evaluation

The variational approximate posterior is defined as multivariate Gaussian with diagonal
covariance structure, so that

logqϕ(z|x(i)) = logN (z;µ(i), σ2(i)I). (47)

with identity matrix I. Here, sets of mean and standard deviation parameters µ(i), logσ2(i)

represent the output of the encoding neural network for datapoint x(i) (Kingma and
Welling, 2013).
The encoder draws a sample z(i,ℓ) ∼ qϕ(z|x(i)) following the approximate posterior
qϕ(z|x(i)) for datapoint x(i) and latent variable ℓ = 1, ..., L by applying the reparametriza-
tion trick previously described in Sect. 2.3.5, so that

z(i,ℓ) = gϕ(x
(i), e(ℓ)) = µ(i) + σ(i) ⊙ ϵ(ℓ). (48)

with ϵ(ℓ) ∼ N (0, I) and both the prior pθ(z) as well as approximate posterior qϕ(z|x) being
Gaussian (Kingma and Welling, 2013).

The chosen evaluation image sequence is passed frame-wise to the encoder compart-
ment of the VAE. After all frames have been processed, the latent encodings of shape
[T, L] are comprising a sample for each of the L latent variables over T input frames. Each
latent dimension can then be inspected separately on two different levels:
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(a) on sequence-level via kernel density estimation (KDE) of each latent variable’s samples
distribution over all T frames of the input image sequence, visualizing deviations
from the prior distribution specified as pθ(z) ∼ N (0, 1), in turn indicating the
regularization capability of the KL term in the VAE objective;

(b) on frame-level by plotting z(i,ℓ) against frame index t = 1, ..., T , deviations from the
prior mean of zero are visualized, by which frames containing relevant features or
anomalies can be discovered, e.g. regime-switching behaviour of cortical response
dynamics between baseline patterns and stimulus-related patterns.

Please note that no temporal structure can be assumed for z(i,ℓ) ∼ qϕ(z|x(i)). As the VAE
model specification at hand does not take temporal dependencies between observations
into account, samples are drawn independently for every frame t = 1, ..., T . Thus, plots
obtained from (b) should only be interpreted as pseudo time series.

Decoder Evaluation

For examining the capabilities of the VAE model to reconstruct input images from the
evaluation sequence, samples in z are subsequently plugged into the decoder network
constituting the generative distribution logpθ(x(i)|z(i,ℓ)). Latter enables the decoder to
reconstruct the current image by relying entirely on z(i,ℓ).
The general image reconstruction quality on single-frame level is operationalized via mean
squared error (MSE) between the VAE input and output image. The MSE constitutes a
common measure in image processing for assessing the similarity of two images (Wang,
Bovik, Sheikh and Simoncelli, 2004). Formally, it is defined as the average squared
differences in pixel intensities J1 and J2 of two images, so that

MSE =
∑︁

M,N [J1(m,n)− J2(m,n)]2

M ∗N
(49)

with row index m = 1, ...,M and column index n = 1, ..., N .

Furthermore, the impact of each latent dimension on the image reconstructions is assessed
in terms of a latent space walking procedure modified from Schau et al. (2019). Here, all
but a single latent variable are kept constant while the variable of interest is swept through
values drawn from the inverse cumulative distribution (CDF) of the standard Normal
distribution, as latter also represents the prior distribution pθ(z) ∼ N(0, 1). Drawn values
from the inverse CDF are then plugged in for the variable of interest. By this approach,
a synthetic latent space is generated for every draw. When passing these manipulated
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encodings into the decoder network, a manifold of images can be generated by which the
impact of the target latent dimension on the image reconstruction can be inspected (Schau
et al., 2019). In this context, Schau et al. (2019) are keeping all remaining variables fixed
at their expected mean value of zero, as pθ(z) ∼ N(0, 1). However, this approach does not
allow for feasible interpretations when distributions of latent encodings show substantial
deviations from their standard Normal prior. This problem can be alleviated when using a
more robust point measure instead of the arithmetic mean. As the median is more robust
against outliers and skewed distributions, it offers better interpretability of changes in
reconstructions and will therefore be used in the following evaluations of latent space
walks.

3.2 Parameter Studies

3.2.1 Overview

When specifying the model architecture of the VAE, its capability to extract features of the
underlying activity patterns is essentially determined by two parameters in particular:
1. the model capacity, here defined as the number of latent variables ℓ in the bottleneck

z-layer of the VAE,
2. the level of model regularization, which in context of the β-VAE approach is specified
as the KL weight β within the loss function.

To assess the impact of both parameters on the VAE modeling results, a 2-D grid is
defined by the cartesian product of two vectors L = [1, 2, 3, 4, 5, 10, 25, 50, 75, 100] and
B = [1, 2, 3, 4, 5, 10, 25, 50, 75, 100], resulting in a total of 100 unique configurations of
both ℓ and β. A separate VAE model is trained for each configuration while holding all
remaining model parameters constant.

Parameter studies on ℓ and β are carried out on six data settings summarized in Tab. 1,
which differ in their respective selection of data basis and applied pre-processing steps.
Latter is impacting the total number of available frames. The first three settings are solely
artificial image sequences generated via the aforementioned approach (Sect. 2.4), and are
based on pre-defined CRF patterns (Sect. 2.4.4) simulating columnar responses to four
different orientations (0◦/180◦, 45◦/225◦, 90◦/270◦, 135◦/315◦). Key frames of exemplary
CRF realisations are shown in Fig. 17. After 150 baseline frames of unconditioned fluctua-
tions, a regime switch to one of the four pre-defined response patterns slowly emerges. It
is accompanied by an amplitude increase of the centroids and spatial inhibition of activity
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Table 1: Overview of parameter study settings. Considerable differences in available frame
sizes and numbers are resulting from the selection of data type and pre-processing
steps.

A B.1 B.2 C.1 C.2 C.3
Data Type

CRF Synthetic VSDI Synthetic VSDI Real VSDI Real VSDI Real VSDI
Pre-Processing Steps
- Normalization [0,1] ✓ ✓ ✓ ✓ ✓ ✓
- Spatial Bandpass Filtering - - ✓ - ✓ ✓
- Baseline Subtraction - - ✓ - ✓ -
- GLM [Reynaud et al. 2011] - - - - - ✓
Frame Selection
- Initial ROI Size 128 x 64 128 x 64 128 x 64 320 x 160 320 x 160 320 x 160
- Cropped Image Size - - - 128 x 64 128 x 64 128 x 64
Data Availability
- Sequences per Recording Block 80 80 80 80 80 80
- Frames per Sequence 255 255 105 255 105 255
- Frame Total 20.400 20.400 8.400 20.400 8.400 20.400

in the surrounding, both peaking around frame 180 and stabilizing until frame 200. The
remaining frames of each sequence exhibit the return to the baseline regime.

Across all settings, data from a single recording block comprising 80 image sequences
were selected and partitioned into sets for model training (80% ˆ︁= 64 sequences) and
testing (20% ˆ︁= 16 sequences). As it is a common requirement for training deep neural
networks, the input values are normalized beforehand (Bishop, 2006). Each image se-
quence was normalized by its according sequence-specific minimum and maximum value.
Due to the sigmoid activation function in the last deconvolution layer of the implemented
VAE network (Fig. 32), a target value range of [0, 1] was chosen.
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3.2.2 Setting A: CRF

Data Basis

In this setting, only raw CRFs resembling the ground truth spatio-temporal signal are
used for model training and evaluation. Accordingly, no synthetic VSDI noise components
are applied yet. This setting therefore resembles a scenario of perfect data quality, or
alternatively, having an optimal data pre-processing approach at hand. While in practice
this should never be the case, this simulation can nevertheless serve for checking proper
functioning of the β-VAE implementation as well as benchmark for all further parameter
study settings. An exemplary image sequence for this data basis is shown in Fig. 18, which
is holding a single CRF pattern for 135◦/315◦ orientation.

Model Fit

For each parameter configuration, the fit of the corresponding β-VAE is assessed by
comparing its loss and validation loss curves after model training has been completed
(Tab. 2). For the majority of configurations, both curves are decreasing along respective
training epochs. As the loss remains below the validation loss throughout all epochs and
only a small gap between both curves exists, these findings indicate a good fit of respective
model specifications. This especially applies to configurations with lower numbers of latent
variables (ℓ ≤ 5) as well as higher model capacities (ℓ > 50). Interestingly, for medium
capacities of 10 ≤ ℓ ≤ 50 latent dimensions, symptoms of model overfitting are noticeable,
as validation loss curves are increasing towards the end of model training whereas the loss
keeps decreasing. This implies that these model specifications do not seem to generalize
well on unseen data although performing well on training data. Putting stronger weights
on the KL term seems to mitigate this effect, as signs for good model fit can be observed
again for higher values of β. For cases with very low numbers of latent dimensions (ℓ ≤ 2)
and strong regularization (β ≥ 75), model underfitting is indicated by the loss reaching
larger values than validation loss, as well as more pronounced gaps between both curves.

Reconstruction Quality

The impact of model capacity as well as the KL weight on the reconstruction quality is
assessed in terms of MSE between model inputs and outputs. Here, image sequences
held back as validation partition comprising 4.080 frames are fed into the VAE model.
Subsequently, the MSE is computed between each input frame and its corresponding
reconstruction. The distributions of MSE values are illustrated per parameter configuration
via boxplots in Fig. 19. A substantial impact of the model capacity becomes evident within
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Figure 18: Parameter study, settings A, B.1, B.2: Data basis. Comparison of pre-processing
approaches for a single CRF pattern (135◦/315◦) A: raw; B.1: CRF & artificial
VSDI components; B.2: CRF & artificial VSDI components, denoising via base-
line subtraction (hampering interpretability of baseline frames, thus omitted)
and 2-D bandpass filtering. Key frames were selected from the artificial image
sequence comprising T = 255 frames with image size 128× 64.
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Table 2: Parameter study, setting A: Assessment of model fit. ✓: good fit, /: ambiguous,
O: model overfitting, U: model underfitting.

Latent DimensionsKL Weight 1 2 3 4 5 10 25 50 75 100
1 ✓ ✓ ✓ ✓ / O O / ✓ ✓
2 ✓ ✓ ✓ / / O O / ✓ ✓
3 ✓ ✓ ✓ ✓ / O O / ✓ ✓
4 ✓ ✓ ✓ ✓ / O O / ✓ ✓
5 ✓ / ✓ ✓ / O O ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓ O O / ✓ ✓
25 ✓ ✓ ✓ ✓ ✓ / O / / /
50 / ✓ ✓ ✓ ✓ ✓ ✓ / / ✓
75 U / ✓ ✓ ✓ ✓ ✓ / / /
100 U U / ✓ ✓ ✓ ✓ ✓ ✓ ✓

each parametrization of the KL weight β. For increases in the dimensionality of latent
space, descriptive statistics summarizing the central tendency (quartiles and median) of
the MSE distributions decrease. This becomes especially apparent for larger step sizes
in latent dimensionality (e.g. from ℓ = 10 to ℓ = 25). As the KL weight increases, the
reconstruction quality seems to get slightly worse between different specifications of β.
In this regard, larger step sizes for β lead to more pronounced increases in MSE. Yet,
when comparing boxplots for different β with identical ℓ, this effect does not seem to be
significant, as most of respective boxplot pairs show considerable overlap. The variability
of MSE values increases with higher KL weights, as the distribution of MSE values are
getting more dispersed and spreaded, which is indicated by greater interquartile ranges
and distances between whiskers.

The influence of model capacity on reconstruction quality is also evident when models
with different numbers of latent variables are compared (Fig. 20). Here, a single CRF
containing the spatio-temporal pattern for 135◦ / 315◦ orientation is defined as model
input. While all model specifications (with the exception of ℓ = 1) are able to closely
reconstruct the pre-defined pattern, significant differences become apparent for baseline
frames before and after the response phase. Increasing the number of latent variables
(ℓ >= 10) seem to enable the model to cover these spatio-temporal fluctuations unrelated
to the response pattern with higher level of detail.
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Figure 20: Parameter study, settings A, B.1, B.2: Input reconstructions. Different synthetic
VSDI components and denoising steps are applied on a single CRF pattern
(here: 135◦/315◦ orientation). A: CRF; B.1: CRF & artificial VSDI components;
B.2: CRF & artificial VSDI components, denoising via baseline subtraction
(hampering interpretability of baseline frames, thus omitted) and 2-D bandpass
filtering. Reconstructed key frames (x-axis) from β-VAE specified with varying
numbers of latent dimensions in z (y-axis) and KL weight β = 1.
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Feature Extraction

When inspecting latent space walks, it becomes obvious that features of all four pre-defined
CRF patterns are extracted by the VAE. Especially for low latent dimensionalities ℓ and
small KL weight β, whole patterns are encoded by the tails of a single latent variable’s
encodings distribution. To exemplify these results, a latent space walk for a single model
with parameter configuration β = 4, ℓ = 3 is illustrated in Fig. 21. Here, negative values
for the first latent variable are encoding all activation centroids related to the patterns
for orientation 90◦ / 270◦, whereas positive values seem to cover random fluctuations as
global spatial component. By the second latent dimension, two patterns with mutually
exlusive actvation centers are extracted: on negative value range, centroids corresponding
to orientation 135◦ / 315◦ are found, while positive values are assigned to the pattern for
45◦ / 225◦. Encodings close to zero are resulting in more global spatial activations, appear-
ing as hypothetical transition between both orientation patterns. Finally, the remaining
pattern for orientation 0◦ / 180◦ is covered by the negative value range of the third latent
dimension. Positive encoding values of the first and second latent variable cover activation
across the whole image domain, seemingly unrelated to the pre-defined CRF patterns.

When instead only a single validation sequence is used as model input (here: CRF with
pattern for 135◦/315◦ orientation), corresponding encodings can be used to track devia-
tions from the prior for each latent dimension on individual frame basis. As exemplified
in Fig. 22 for a β-VAE model specification with β = 4, ℓ = 3, shifts from the prior mean of
zero are observable in the second latent variable. Here, the most pronounced deviations
can be observed for encodings of the second latent variable around frame index 200,
falling into negative value range. Interestingly, respective encodings closely follow the
temporal dynamics of the CRF pattern, as the simulated response amplitude is raised from
frame 180 to 200, stabilizes until frame 220 and returns to baseline towards the end of
the sequence. This further underlines that the second latent dimension seems to encode
pre-defined CRF pattern in the given input sequence.
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Figure 21: Parameter study, settings A, B.1, B.2: Latent space walk. Samples from the
inverse CDF of p(z) ∼ N(0, 1) (y-axis) are plugged in for a single latent variable
(x-axis) while keeping all remaining variables at their median encoding value.
Decodings of latent space walks are resulting from β-VAE model specified with
KL weight β = 4 and latent dimensionality of ℓ = 3.
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3.2.3 Setting B.1: Synthetic VSDI, raw

Data Basis

To assess which features the β-VAE is capable to extract from datasets with low SNR
and noise components typical for VSDI, synthetic datasets are used as model inputs.
These sequences follow the fully known data-generating process described in Sect. 2.4.8.
For this setting, raw sequences are passed as model input without applying any pre-
processing steps. Key frames of a selected image sequence comprising the CRF pattern for
135/315 orientation are shown in Fig. 18 for exemplifying this data basis. While the pre-
defined response pattern cannot be easily recognized anymore in corresponding frames,
spatial confounders related to illumination and blood vessel networks become apparent
as dominant signal components. Furthermore, a global decrease in signal amplitude along
corresponding frames is simulating the temporal effect of dye bleaching.

Model Fit

In Tab. 3, a clear distinction between models with good fit and underfitting can be
observed. Interestingly, these problematic fits occur when using medium to high numbers
of latent dimensions (ℓ >= 25) and low values for the KL weight (β < 10). Configurations
with stronger KL weighting and lower model capacity in turn seem to result in appropriate
model fits.

Table 3: Parameter study, setting B.1: Assessment of model fit. ✓: good fit, /: ambiguous,
O: model overfitting, U: model underfitting.

Latent DimensionsKL Weight 1 2 3 4 5 10 25 50 75 100
1 / U U U U U U U U U
2 / ✓ / U U U U U U U
3 ✓ ✓ ✓ / / U U U U U
4 ✓ ✓ ✓ ✓ ✓ U U U U U
5 ✓ ✓ ✓ ✓ ✓ / U U U U
10 ✓ ✓ ✓ ✓ ✓ / U U U U
25 ✓ ✓ ✓ ✓ ✓ ✓ / / U U
50 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ / /
75 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
100 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Reconstruction Quality

Only the parametrization of regularization weight β = 1 leads to a decrease in median
MSE as well as dispersion and spread of respective MSE distributions while increasing
model capacities. When setting the KL weight to values between 2 ≤ β ≤ 10, differences
between boxplots (Fig. 23) for lower model capacities (ℓ ≤ 10) appear to become less
significant, as considerable overlaps between interquartile ranges become apparent. Also,
median MSE values seem to vary unsystematically with an increase in ℓ. When instead
using stronger regularization weights, the interaction effect between model capacity and
regularization seems to reverse: interquartile ranges and distance between whiskers are
now increasing for configurations with high values for β and ℓ. For configurations with
high model regularization (β ≥ 50), the smallest dispersions and spreads of boxplots can
now be observed for low latent dimensionality (ℓ ≤ 4).

For all configurations of latent dimensionality, dominant spatial components (illumination,
blood vessels) contained in the model inputs also appear in corresponding reconstructions,
latter being illustrated in Fig. 20. Aside of these spatial noise components, a decrease in
signal amplitude due to dye bleaching can also be seen along each reconstructed sequence.

Feature Extraction

The latent space walks illustrated in Fig. 21 reveal that the elliptical-shaped illumination is
appearing over all latent dimensions, while the branching blood vessel structures seem to
be encoded solely by the third variable. In this setting, response-related activity following
the pre-defined CRF patterns cannot be clearly identified from visual inspection of the
latent space.
When inspecting the frame-wise encodings (Fig. 22) for a single validation sequence
comprising the CRF for 135◦/315◦ orientation, samples for the first and second latent
variable seem to scatter randomly around the prior mean of zero without showing any
systematic deviations related to the response pattern. In contrast, the third variable shows
encodings which rise rapidly out of the negative value range from the beginning of the
sequence and then settle to a value of zero. As samples are following the dynamics of
the artificial dye bleaching very closely, this suggests that this variable is indeed able to
cover the amplitude decay across the sequence. This presumption is further underlined
when inspecting the latent space walk for corresponding variable (Fig. 21). It appears
that the illumination is encoded by negative values while blood vessel structures appear
for samples close to zero.
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3.2.4 Setting B.2: Synthetic VSDI incl. Pre-Processing (Blank Subtraction)

Data Basis

As in the previous setting, artificial VSDI confounders are applied on corresponding
datasets. However, data pre-processing steps are subsequently taken on each image,
including baseline subtraction and 2-D spatial bandpass filtering. For the baseline subtrac-
tion, the last 30 frames of every sequence’s baseline are averaged to a zero-frame which
in turn is substracted from each individual frame from the same sequence. The spatial
bandpass filter is implemented as Difference-of-Gaussians via two low-pass 2-D Gaussian
filters. Latter are specified with different radii (here: 160 µm, 960 µm) for expressing
plausible lower and upper limits of column sizes to be emphasized in the input images.
Key frames of an exemplary sequence with a CRF pattern for 135/315 orientation is shown
in Fig. 18. Due to the choice of baseline subtraction as pre-processing technique, frames
of the corresponding baseline become essentially uninformative and hence are omitted for
further data analysis. This in turn greatly reduces the total number of available images to
8.400 images per recording block.

Model Fit

Comparisons between loss and validation loss curves for this setting (Tab. 4) reveal
appropriate model fitting for configurations with low to medium KL weighting (β ≤ 25)
and either small (ℓ < 4) or large (ℓ ≥ 50) dimensionality of latent space. By contrast,
models with medium number of latent variables tend to be more problematic, which
becomes especially apparent for specifications with ℓ = 10 exhibiting signs of overfitting
the training data. For all configurations with high KL weighting (β ≥ 50), corresponding
loss and validation loss curves only show ambiguous tendencies.

Reconstruction Quality

For the pre-processed data basis, similar trends as for raw CRF data (setting A) are
apparent with respect to the MSE distributions (Fig. 24). A predominant tendency of the
median MSE decreasing for higher dimensionalities of the latent space ℓ can be observed,
which applies for all configurations of KL weight β. In most cases, the strongest decrease
in MSE distributions is seen between ℓ = 10 and ℓ = 25. As previously stated for setting A,
the variability of MSE distributions increases with higher regularization weights, which is
derived from larger dispersion and spread of respective boxplots.
Similar results to the previous setting A are also evident in the input reconstructions
(Fig. 20). The given CRF (135◦/315◦ orientation) around frame 200 is accurately mapped
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Table 4: Parameter study, setting B.2: Assessment of model fit. ✓: good fit, /: ambiguous,
O: model overfitting, U: model underfitting.

Latent DimensionsKL Weight 1 2 3 4 5 10 25 50 75 100
1 U ✓ / O O O / ✓ ✓ ✓
2 U ✓ ✓ / / O / ✓ ✓ ✓
3 ✓ ✓ / / O O / ✓ ✓ ✓
4 ✓ ✓ ✓ / / O / ✓ ✓ ✓
5 ✓ ✓ ✓ / / O / ✓ ✓ ✓
10 / ✓ ✓ / O O / ✓ ✓ ✓
25 O ✓ / / / O / ✓ ✓ ✓
50 / / / / / / / / / /
75 / / / / / / / / / /
100 / / / / / / / / / /

across all configurations for ℓ. With larger latent dimensions, random fluctuations before
and after pattern onset can be covered more accurately.

Feature Extraction

The latent space walks illustrated in Fig. 21 reveal that after data pre-processing, features
of the pre-defined CRF patterns are getting extracted again. Nevertheless, reconstructions
show considerably more background noise as well as more blurried activation centers
when compared to its counterparts in setting A. The pattern for 90◦ / 270◦ orientation
is now encoded via positive value range of encodings in the first latent dimension. The
second latent variable in turn is covering two orthogonal patterns related to orientations
with 45◦ / 225◦ (negative values) as well as 135◦/315◦ (positive values). The third latent
variable is substantially more difficult to interprete. It appears that this dimension seems
to encode a local singular activation shared by multiple patterns by its positive value
range, while mapping residual features on global image domain through negative values.
Activation centers related to 0◦/180◦ orientation can not be readily detected from the
latent space walks of any dimension.

When passing a single validation sequence comprising a CRF pattern for 135◦/315◦ orien-
tation into the encoder, encodings of corresponding latent dimension (second variable)
strongly shift towards positive value range during stimulation phase and returns towards
the prior mean of zero towards the end of the sequence. Interestingly, while the unrelated
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first dimension keeps fluctuating around the prior mean of zero, the third latent variable
exhibits considerable deviations into negative value range for these stimulated key frames.

3.2.5 Setting C.1: VSDI, raw

Data Basis

Starting with setting C.1, the data basis is now changed from artificial to real experimental
data. For this purpose, data from a single VSDI experiment (subject ID: 092413) are
processed, which is following the stimulation paradigm described in Sect. 2.1.2 using
gratings with different directions. The first recording block immediately after initial dye
staining was selected which contains eight trials, each comprising recordings for eight
directions (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦) and two additional blank recordings.
In total, 80 sequences corresponding to 20.400 images are used. For setting C.1, no
denoising method is applied yet. The only pre-processing steps include image cropping
to target dimensionality of 128x64 pixels as well as sequence-wise value normalization
to range [0, 1]. Selected frames of an exemplary single recording for 0◦ are shown in Fig.
25. Due to low SNR and dominant noise components especially in terms of illumination,
frames appear nearly identical along the sequence duration.

Model Fit

Regarding the fit of β-VAE, a sharp drop in loss curves within the first couple of training
epochs can be observed for any configuration of model capacity and regularization.
This indicates that the model is learning the most about the input data very early in the
beginning of the training process and is gaining comparatively little additional information
after this initial phase. When restricting the curves to all but the first epoch, signs of
adequate model fit can be detected throughout all parameter choices for β and ℓ, i.e.
continuous decrease, loss remains below validation loss and small gaps between both
curves.

Reconstruction Quality

The boxplots for MSE values between model inputs and corresponding reconstructions
show no clear trend for this setting with variations in model capacity or regularization.
As shown in Fig. 26, nearly all distributions seem to be largely overlapping, indicating no
significant difference after re-parametrization of ℓ or β.
Reconstructions of the input sequence show hardly any variations when compared for
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Figure 25: Parameter study, settings C.1, C.2, C.3: Data basis. Different denoising steps
are applied on a single VSDI recording (here: 0◦ direction). C.1: raw; C.2:
denoising via baseline subtraction (hampering interpretability of baseline
frames, thus omitted) and 2-D bandpass filtering; C.3: VSDI, denoising via
GLM and 2-D bandpass filtering. Key frames selected from real VSDI image
sequence comprising T = 255 frames cropped to target image size 128× 64.
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different specifications regarding model capacity and regularization. As illustrated in Fig.
27, each prediction shows the same predominant spatial features of the input sequence,
especially illumination and blood vessel structures.

Feature Extraction

The latent space walks in Fig. 28 allow only vague interpretations regarding encoded
features of the input sequence. Here, the second latent variable shows indistinct acti-
vations spreading diagonally from upper left to lower right image borders. In contrast,
no clear tendencies can be recognized for the first and third variables, which represent
global activations on whole image domain. Remarkably, blood vessel networks do not
appear to be encoded by any latent dimension despite being clearly present in the input
reconstructions.
Sampled encodings of all three variables (Fig. 29) tend to closely follow the prior distribu-
tion, as values fluctuate around the prior mean of zero. Furthermore, no fundamental
differences between baseline and stimulation regimes can be recognized for any latent
dimension, neither in terms of varying mean or variance over frame indices.
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Figure 27: Parameter study, settings C.1, C.2, C.3: Input reconstructions. Different signal
components and denoising steps are applied on a single VSDI sequence. C.1:
raw VSDI, no denoising; C.2: VSDI, denoising via baseline subtraction (hamper-
ing interpretability of baseline frames, thus omitted) and 2-D bandpass filtering;
C.3: VSDI, denoising via GLM and spatial bandpass filtering. Reconstructions
of selected key frames (x-axis) from β-VAE specified with varying numbers of
latent dimensions in z (y-axis) and KL weight β = 1.
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Figure 28: Parameter study, settings C.1, C.2, C.3: Latent space walk. Samples from the
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3.2.6 Setting C.2: VSDI incl. Pre-Processing (Blank Subtraction)

Data Basis

In this setting, sequences from a real VSDI grating experiment (Subject ID: 092413) were
pre-processed by the same pipeline as in setting B.2. This includes steps for baseline
subtraction and 2-D spatial bandpass filtering. Key frames of an exemplary sequence for
0◦ grating direction are shown in Fig. 25, starting with the onset of stimulation at frame
150. Towards the end of the sequence, activations of a local region seem to stabilize in
the image center which approximates the spatial extents of a cortical column.

Model Fit

Appropriate model fit is assessed for configurations with increasing latent dimensionality
as well as KL weighting when comparing corresponding loss and validation loss curves
(Tab. 5). Model configurations with high regularization (β ≥ 25) and low number of latent
variables (ℓ ≤ 3) show tendencies for model underfitting, while choices for medium latent
dimensionality (10 ≤ ℓ ≤ 25) and small KL weights (β ≤ 4) indicate signs of overfitting
the training data.

Table 5: Parameter study, Setting C.2: Assessment of model fit. ✓: good fit, /: ambiguous,
O: model overfitting, U: model underfitting.

Latent DimensionsKL Weight 1 2 3 4 5 10 25 50 75 100
1 / ✓ / / / O O / ✓ ✓
2 / O O / / O O / ✓ ✓
3 / ✓ ✓ ✓ / O O ✓ ✓ ✓
4 / ✓ ✓ ✓ ✓ ✓ O / / /
5 / / ✓ ✓ ✓ / / ✓ ✓ ✓
10 / / / ✓ ✓ ✓ O ✓ ✓ ✓
25 U / / / ✓ ✓ ✓ ✓ ✓ ✓
50 U U U / ✓ ✓ ✓ ✓ ✓ ✓
75 U U / / / ✓ ✓ ✓ ✓ ✓
100 U U U / / ✓ ✓ ✓ ✓ ✓
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Reconstruction Quality

Comparing the MSE boxplots for different model configurations (Fig. 30) reveals that the
median MSE is decreasing for higher dimensionalities in ℓ. This observation applies for
all choices of KL weight β. For this setting, the strongest decrease in MSE distributions is
recognized between ℓ = 25 and ℓ = 50. With higher regularization weights, the variability
of MSE distributions increases in terms of dispersion and spread of corresponding boxes.
The first frames of each reconstructed image sequences shown in Fig. 27 are introduced
with spatial activations forming an elongated branching structure which overlays the blood
vessel network. Towards the end of the sequence, the activated region in the image center
are getting reconstructed for model configurations with ℓ >= 3. Larger dimensionalities
of latent space enable the model to reconstruct random fluctuations in the surrounding
image areas more accurately.

Feature Extraction

The latent space walk (Fig. 28) for the first variable shows two local activation centers
at the upper left and lower right image for negative encoded values. Samples towards
zero value exhibit global spatial activations with the exception of the image center, while
positive values show a single activation region in the central image region. For the second
latent dimension, negative values encode horizontal activations in the upper image area
formed by two local components, which seem to merge when sampled values approximate
zero. Positive values encode vertical activations formed by two centers in the upper right
and lower right of the image region. The third variable covers a elongated branching
pattern by negative encoding values, which is stretching diagonally from upper left to
lower right and is overlaying the blood vessel network. Samples towards zero encode
more a locally confined activation in the right image half, while positive values lead to
reconstructions showing a single activation center at the top right image border.
When passing a single validation sequence under 0◦ orientation stimulation as model input,
corresponding encodings (Fig. 29) in the first latent dimension considerably diverge from
prior mean of zero, as samples are constantly shifted towards a value of one. By contrast,
samples for the second variable starting with values around one for the first couple of
frames, while quickly returning and remaining close to zero. The third latent variable
varies around its prior mean of zero, yet with its variance considerably decreasing for the
last 20-30 frames.
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3.2.7 Setting C.3: VSDI incl. Pre-Processing (GLM)

Data Basis

The last data setting, pre-processing is applied in form of the GLM model described in
Sect. 2.2.2 on domain of pixel time series followed by 2-D spatial bandpass filtering on
frame-basis. The bandpass filter is again implemented via Difference-of-Gaussians of two
low-pass 2-D Gaussian filters with respective radii of 160 µm and 960 µm. In contrast to
baseline subtraction, the usage of GLM allows for preserving frames from the baseline.
This ensures an identical frame count of 20.400 frames per recording block as in the raw
data setting (C.1). Key frames of a sequence under 0◦ grating orientation is shown in Fig.
25.

Model Fit

Comparing loss and validation loss (Tab. 6) indicates similar results as for setting C.2.
While choosing a specific latent dimensionality of ℓ = 25 with low KL weighting of β ≤ 5
can lead to overfitting of the training data, models with low number of latent variables
(ℓ ≤ 4) and high KL weighting (β ≥ 50) show signs of underfitting. All other specifications,
which make up the majority of selected models, show signs of appropriate model fit.

Table 6: Parameter study, setting C.3: Assessment of model fit. ✓: good fit, /: ambiguous,
O: model overfitting, U: model underfitting.

Latent DimensionsKL Weight 1 2 3 4 5 10 25 50 75 100
1 / / ✓ ✓ ✓ / O / ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ / ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓ O ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓ ✓ / ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓ ✓ / ✓ ✓ ✓
10 / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
25 U / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
50 U U U / / ✓ ✓ ✓ ✓ ✓
75 U U U / / ✓ ✓ ✓ ✓ ✓
100 U U U U / / ✓ ✓ ✓ ✓
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Reconstruction Quality

The MSE distributions for different configurations between model capacity and regulariza-
tion (Fig. 31) show a decrease in median MSE as well variability in terms of box spread and
dispersion with increasing latent dimensionality. While this holds true for specifications
with low to medium regularization (β ≤ 25), it seems that this effect is mitigated when
choosing higher values for the KL weight. For these models with β ≥ 50, a decrease in
MSE values is only seen when choosing a sufficiently high number of latent variables with
ℓ ≥ 25. If this is not the case, no fundamental difference in MSE distributions can be
found between specifications with low to medium number of variables (ℓ ≤ 10).

Reconstructions of a single image sequence under stimulation with a 0◦ grating orientation
show substantial differences between models with varying latent dimensionality while
keeping the KL weight fixed at β = 1. Increasing ℓ allows for more accurate predictions
of non-stationary fluctuations. In turn, models with low to medium number of latent
variables (ℓ ≤ 25) show reconstructions of a branching spatial pattern diagonally spreading
from the top left to bottom right of the image domain, overlaying a prominent blood
vessel, which is also recognizable in the corresponding latent space walks (Fig. 28).

Feature Extraction

By inspecting the latent space walks shown in Fig. 28, it becomes apparent that the first
two dimensions encode similar activation regions, which are more locally confined in
the image domain. Negative values of the first latent dimension cover a single activation
center on top right image border, while positive values encode an activation center on
the upper left border connected with an enlongated structure overlaying the blood vessel.
For these variables, both extracted activation patterns seem to switch rather abruptly
in the latent space walk without an obvious transition, rather leaving the impression of
bipolarity. Negative values for the third latent dimension result in local activations on the
left border, as well as partially displayed at the bottom and top right of the image. Values
around zero encode more global and spread activity on the upper image half. Positive
values again cover the branching structure overlaying the blood vessel in connection with
a local activation center in the central image region.

In contrast to setting C.1, encodings for baseline and stimulation frames seem to ex-
hibit distinct properties when using a single sequence from current data basis with 0◦

grating stimulation as input for a β-VAE, latter being specified by β = 5 and ℓ = 3.
While baseline encodings in the first dimension fluctuate around the prior mean of zero,
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the central tendency for frames during stimulus presentation seems to be shifted more
towards values around −1 while showing considerably higher variance. In the second
latent variable, after the stimulation onset starting at frame 150, there are signs of a high
short-term increase followed by an decaying phase towards values undershooting the
baseline level. Towards the end of the input sequence, encodings are returning to values
close to prior mean. For the third latent variable, a sharp increase in encoding values is
seen which persists from the beginning of the stimulation until the end of the sequence.

3.3 Computational Performance

Hardware & Software Specifications

For this thesis, all custom code for data handling, processing and visualization as well as
model building, training and evaluations was written and executed in Python 3.8 (Van
Rossum and Drake, 2009). Here, multiple custom code repositories were generated and
maintained by the author of this thesis. Their respective purpose, version and dependen-
cies are listed in Tab. A.1 in Appendix A.

All code was executed on a conventional PC system having the following specifications:
Microsoft Windows 10 Professional, 64-bit, Intel® Core™ i7-3820 Quad-Core CPU @
3.60GHz, 49152MHz DDR-3 RAM, 12 GB NVIDIA® GeForce® RTX 3060 GPU @ 1320MHz
/ Boost: 1777MHz.

Synthetic Data Generation

The generation of a single CRF of dimensionality [T,M,N ] with T = 255 frames, image
heightM = 128 and width N = 64 in pixel is relying on functions of the GSTools library
(S. Müller, Schüler, Zech and Heße, 2021). Because associated kriging operations are
computationally demanding, the Python module Joblib is used for creating several CRFs
in parallel by distributing subtasks on multiple threads. This substantially decreases the
overall duration for data generation, limiting the required computation time for a single
image sequence to 31 s and for building the full dataset comprising 240 sequences in total
to ca. 124 min.
In context of generating artificial VSDI components, spatial confounders related to artificial
blood vessel networks and illumination are created only once as these are shared between
all sequences, taking ca. 33.8 s of computation time. Sequence-specific components
comprising temporal VSDI components (such as artificial dye bleaching and heartbeat)
as well as random noise were generated nearly instantaneously in < 0.01 s. Subsequent
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application of the linear composition model described in Sect. 2.4.8 for combining all
VSDI-related components with a single CRF resembling the ground truth signal accordingly
takes ca. 0.18 s per sequence.

VAE Implementation

The β-VAE model described in Section 2.3.5 is implemented via the Python deep learning
API Keras (Chollet, 2015). Its corresponding layer architecture is illustrated in Fig. 32.
The encoder network compartment is built by stacking multiple 2-D convolutional neural
network (CNN) layers, each coupled with a leaky rectified linear unit (LeakyReLU) acti-
vation layer. By this approach, the encoder is able to first capture local features within
the input images before learning global correlations of the data when passed through
hierarchically higher layers. The network depth is limited by two essential aspects: on
the one hand by the dimensionality of input data, in this case an image size of 128× 64
pixel, which only allows for a maximum layer depth of seven layers to still be capable to
capture the rectangularity of the input image (2× 1 in the last layer); on the other hand,
the rapid growth in trained parameter numbers which is accompanying an increase in
network depth.

The specification of CNN kernel sizes has potential impact on both model accuracy and
efficiency, as large kernels are suited to capture high-resolution patterns and small kernel
sizes for capturing low-resolution patterns (Tan and Le, 2019). While popular deep con-
volutional network architectures like Xception (Chollet, 2016) and MobileNetV2 (Sandler,
Howard, Zhu, Zhmoginov and Chen, 2018) tend to use sequential stacks of smaller kernels
(1 × 1, 3 × 3), larger sizes such as 5 × 5 and 7 × 7 as well as combinations of different
kernel sizes are reported to benefit in terms of model accuracy and efficiency (Tan and
Le, 2019). For this purpose, a mix of different sizes ([7× 7, 7× 7, 5× 5, 3× 3, 3× 3]) is
used accordingly for the sequence of encoder CNN layers, and in reverse order for the
decoder network. This approach is combined with the usage of small strides by two units
of the convolution along spatial image dimensions. The number of output filters in the
convolution is rather small, starting from 16 in the first layer and is then increasing by a
factor of two at each convolutional layer in the encoding network. Vice versa, this holds
for the deconvolution layers in the decoder network. Zero-padding is further used at every
(de-)convolutional layer for controlling dimension shrinkage after applying kernels larger
than 1× 1 and for avoiding information loss at the image borders.

For defining initial values for the parameters in the network prior to model training,
a weight initialization method by He, Zhang, Ren and Sun (2015) is used, which is
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Figure 32: Implemented VAE layer architecture. The layer terminology is following con-
ventions of deep learning API Keras. For illustration purpose, the size of both
input and output layers corresponds to an image size of 128 x 64 pixel. Multi-
ple 2-D convolutional layers (Conv2D) with LeakyReLU activation are stacked
together in the encoder network, latter specifying the inference model qϕ(z|x).
It is followed by a separate fully-connected (commonly denoted as Dense)
layer, taking the convolved feature maps as input. Two fully-connected layers
provide the parameter vectors of the latent distribution p(z) ∼ N(µ, σ2): the
first accounting for the set of means µ, the second parametrizing the set of
standard deviations σ of the Gaussian latent distributions. From each of those
distributions, a point is randomly drawn in the Lambda layer via reparametriza-
tion trick z = µ+ σ ⊙ ϵ with ϵ ∼ N(0, 1). The vector of latent representations
z is then fed into the subsequent decoding network specifying the generative
model pθ(x|z). The decoder is mirroring the encoder architecture by a stack
of 2-D deconvolutional layers (Conv2DTranspose), finally reconstructing the
input data x solely on basis of the given latent representations z.
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specifically designed for rectified activation units and calculated for the current weight w
as random draw w ∼ N(0,

√︁
2/n), with n denoting the number of input connections to

the node.
Adaptive moment estimation, commonly known as Adam (Kingma and Ba, 2014), is used
as gradient-based stochastic optimization method during model training. Here, individual
adaptive learning rates for different parameters from estimates of the first and second
moments of the gradients are computed. This method is computationally efficient with
low memory requirements, is mostly invariant to rescaling of gradients, and scales well
to large-scale high-dimensional data problems (Kingma and Ba, 2014). As suggested by
Kingma and Ba (2014), the exponential decay rate for the first- and second-moment esti-
mates are kept at their respective default values of 0.9 and 0.999. As higher learning rates
lead to numerical issues during model training and subsequent NaN loss values (probably
occuring due to half precision data format of FLOAT-16 to circumvent out-of-memory
errors), the learning rate was kept at 1e-4.

Model Training

All image sequences were split into a training and testing partition with a fixed test
proportion set to 20% of available data. When choosing a batch size of 255 frames (the
equivalent of a full image sequence), a training epoch requires ca. 24 s to complete.
The overall duration of VAE training on synthetic datasets over the course of 100 epochs is
ca. 40 min. By contrast, the original resolution of real VSDI images comprises a larger
image dimensionality of 320×160 pixels. As compability with all (de-)convolutional layers
of the VAE has to be ensured in terms of recovering the correct rectangular image size of
the encoder input in the decoder output, dimensions have to follow power-of-two numbers.
Accordingly, images were cropped to the nearest compatible resolution of 256× 128 pixels.
However, this still lead to crashes during neural network training due to memory leakage.
To circumvent this problem, respective training data was passed sequence-wise from
corresponding files into RAM by using a custom Keras DataGenerator class. While this
approach fixed the memory leakage problem, this lead to heavier reliance on SSD read
speed, in turn increasing computation time for neural network training by several orders
of magnitude. A single training epoch of identical batch size of 255 frames now took ca.
180 s fo finish. Eventually, a smaller ROI of 128× 64 pixels indicated in Fig. 33 was chosen
to limit computation times for all parameter studies to reasonable durations, improving
comparability between the results for the different data types by ensuring identical data
dimensionalities, as well as decreasing the impact of the illumination artefact on model
learning. For a single grayscale image with heightM = 128 and width N = 64 as input
of the implemented VAE model, the encoder part takes ca. 14.19 ms for sampling the
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Figure 33: Parameter study, settings C.1, C.2, C.3: ROI. From the VSDI sequences of a real
experiment (subject: 092413) with image dimensions of 320× 160 pixel (left),
a ROI of 128× 64 pixel was defined around the original image center.

latent encodings, while the decoder part is predicting the image reconstructions in ca.
13.09 ms. When instead using a full image sequence of dimensionality [T,M,N ] with
T = 255 frames as input, the additional computational costs are drastically limited due to
the amortized variational inference approach described in Sect. 2.3.5. Consequently, the
encoder only requires ca. 87.87 ms and the decoder takes ca. 127.58 ms for processing all
frames of the input sequence.
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4 Discussion

4.1 Implications of Parameter Studies

The results of the parameter studies presented above (Sect. 3.2) substantially vary de-
pending on the respective data basis and pre-processing approaches, as well as parameter
choices for model capacity and regularization weight.

Benchmarking with known ground truth (setting A) shows promising results of the β-VAE
for a broad variety of parameterizations, for which spatial features related to the pre-
defined CRFs are found in the latent space walks and are also trackable on single-frame
basis in the sampled encodings for respective variables. Furthermore, the reconstructions
of input frames exhibit the intended regime-switching behaviour between baseline and
activation phases. When increasing the model capacity in terms of dimensionality of the
latent space, this improves the reconstruction quality with regard to a decrease in MSE val-
ues. This is mainly attributable to more precise reconstructions of random spatio-temporal
fluctuations. Aside of the benchmark setting A, these results can also be recognized in
settings incorporating any form of data pre-processing pipeline for improving the SNR
(B.2, C.2, C.3).

Signs of model underfitting can be observed for comparatively few configurations, mainly
when using very low numbers of latent variables in combination with strong model
regularization. The model then seems to have too little capacity for capturing the high-
dimensional image sequences, which is accompanied by inflexibilities of latent encodings
to deviate from the prior p(z). This is expressed by reconstructions only switching between
a discrete number of archetypical spatial patterns, which are mostly unrelated to the
actual input images.
Interestingly, signs of model overfitting are less observed for higher dimensionalities of the
bottleneck z-layer. Instead, this behaviour is seen for more specific parameterizations of
intermediate model capacity (ℓ = [10, 25]). This behaviour still occurs when incorporating
any form of data pre-processing for both artificial as well as real image sequences with
low SNR and prevalent artifacts (settings B.2, C.2, C.3). One possible explanation for this
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observation is that with a high-dimensional latent space, the VAE architecture has the
ability to sufficiently capture the underlying signal structure as well as noise components
or other artifacts that might be present. This means that the model should be complex
enough to generalize well to unseen data. However, while with an intermediate number of
latent variables there might be enough capacity to capture the most dominant structures
in the training data, at the same time it is not generalizing well because it is unable to
additionally cover all sources of noise and artifacts. This in turn can lead to overfitting.
Further information about the impact of model capacity on model fit specifically for VAE
architectures is given by Dai and Wipf (2019), as well as for other deep generative models
by Loaiza-Ganem, Ross, Cresswell and Caterini (2022).
Another possible explanation is that the model may only use a subset of latent dimen-
sions to represent the data. By effectively discarding irrelevant dimensions during model
training, this would pose an information bottleneck (Tishby, Pereira and Bialek, 2000;
Tishby and Zaslavsky, 2015), which later would leave room for covering new features from
unseen data. When instead having a latent space with too low dimensionality, the network
might be forced to fully utilize all available dimensions, possibly leading to overfitting as
well.
Following from these previous points, the optimization of the VAE’s objective function
might be relatively simple for low and high dimensionality of latent space, because both
reconstruction and KL divergence term are more balanced for these parameter choices.
However, for intermediate model capacities, the optimization could become harder, as the
VAE’s objective function might become more sensitive to the parameterization, leading
to imbalances between reconstruction and KL term in the ELBO and in turn is impeding
the optimization to find good minima of the objective function. As observed for datasets
with sufficiently high SNR (settings A, B.2., C.2, C.3), an adequate model fit can often
be achieved again by increasing the weight on the KL term. Specifically for setting B.2,
too strict model regularizations by high choices of β is resulting in more ambiguous fit
behaviour, which might benefit from a longer model training procedure by increasing the
number of epochs.

In the context of model fit, setting B.1 using synthetic VSDI sequences without application
of pre-processing techniques is an exceptional case. Here, a peculiar relationship between
model capacity and regularization weight becomes apparent: with increasing number
of latent variables and simultaneously lower weight of the KL term, signs of model un-
derfitting can be recognized more frequently. This poses a counter-intuitive finding at
first glance, since usually with higher model capacity the risk of model overfitting tends
to increase (Goodfellow, Bengio and Courville, 2016). One possible explanation would
be the lack of diversity of data. In case of low variability, the model may not be able to
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learn different features or variation in the data, leading to underfitting. In the particular
setting B.1, over-dominant artifacts, especially the illumination component, are masking
the underlying ground-truth signal related to the CRF patterns, ultimately depressing
inter-frame variability.

Overall, further inspections of the learned features and representations of the model might
be necessary for fully understanding the reasons for model under-/overfitting specifically
in terms of the data settings at hand. This could lead to more informed hyperparameter
tuning such as the dimensionality of the VAE bottleneck layer and regularization weights.
In this regard, well-known optimization techniques such as cross-validation (Hastie, Tib-
shirani and Friedman, 2009) or Bayesian optimization (Snoek, Larochelle and Adams,
2012) might also improve model complexity parameter ℓ and β in future applications.

4.2 Limitations & Extensibility

4.2.1 Stimulation Paradigm

For this thesis, only sequences under stimulation via drifting full-field gratings were an-
alyzed. It is therefore important to consider possible biases of neural activation with a
specific response behaviour for selected properties of this particular visual pattern, which
may substantially differ from natural scenes. In this context, Akasaki, Sato, Yoshimura,
Ozeki and Shimegi (2002) investigated the impact of the receptive field surrounding on
neural activity in V1 of anaesthetized cats. The study used extracellular recordings to
measure the activity of V1 neurons in response to sinusoidal grating stimuli presented in
the center and surrounding of the receptive field. The results showed that the activity of
V1 neurons was suppressed when stimuli were presented in the surrounding of the recep-
tive field. The study also found that this suppressive effect was strongest when stimulus
properties such as orientation-, direction-contrast or relative spatial phase difference were
similar in the center and surrounding. Vice versa, this modulatory effect was weaker for
stimuli that were dissimilar. The authors concluded that the surround plays a critical role
in shaping the activity of V1 neurons, and that this role is determined by the similarity
between the center and surround stimuli (Akasaki et al., 2002).
Random dot patterns such as velocity- or direction-change-dots pose an common alter-
native for visual stimulation. By the usage of moving point clouds, activity is primarily
evoked from neuron populations that are specifically selective for velocity and direction
of motion, as a point has no orientation information. Yet, response amplitudes for dot
patterns may be substantially smaller when compared with stimulation through gratings
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(Hofmann, 2020; Peter, 2019).

Another problematic aspect of the chosen stimulation paradigm is caused by an over-
representation of baseline frames. As each recorded VSDI sequence is introduced by a
substantially longer baseline phase of 1000 ms than the following 700 ms of stimulus
presentation, any subsequent data analysis or modeling approach is possibly skewed by
this imbalanced frame selection from both regimes. Resampling techniques like random
undersampling (Liu, Wu and Zhou, 2009; Mishra, 2017) can be an effective method for
addressing this issue, as this would equalize the number of frames from both unstimulated
and stimulated recording phases. This allows for reducing the risk for a skewed training
of deep learning models towards the majority of data, in this case the baseline activity.
It is also accompanied by computational benefits in terms of less memory and storage
requirements due to the reduced number of datapoints, and consequently faster model
training. It is yet important to underline that a considerable amount of information may
be lost in the undersampling approach. Latter aspect could hinder research projects specif-
ically addressing dynamics in this particular recording phase, such as ongoing activity in
absence of any stimulation.

4.2.2 Data Acquisition

Despite aforementioned benefits of using voltage-sensitive dyes for optical imaging (Sect.
2.1.1), several problems complicate a reliable extraction of response-related features from
recorded image sequences.

On the one hand, the fluorescence signal represents activity composed as an aggregate of
different signal sources. In this context, other biological structures (e.g. occular-dominance
columns, cytochrome oxidase blobs) may be involved in or even superimpose the evoked
response (Bartfeld and Grinvald, 1992). In case of real VSDI experimental data, this
is still evident after application of pre-processing steps (settings C.2, C.3), as the shifts
in amplitude during the stimulus regime can overlap with blood vessels on local spatial
domain. In theory, no interference between the neural response and the hemodynamic
signal should exist, as the excitation wavelength of the used dye RH-1691 overlaps only
marginally with that of hemoglobin, as previously stated in Sec. 2.1.1. This observation is
not clearly attributable, and this may be related either to neurovascular coupling, as the
local blood flow is directly correlated with local energy consumption in the brain matter
(Klein, Kuschinsky, Schrock and Vetterlein, 1986; Liao et al., 2013), or changes of the
camera focal plane in relation to the heartbeat (Hofmann, 2020).
On the other hand, cortical response dynamics are highly variable (for a review, see Singer,
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2013). This is expressed by increased trial-to-trial variability of cortical response, which
to this day is still poorly understood. Possible explanations account this inter alia to either
pre-stimulus oscillations (Fries, 2005) or ongoing spontaneous hemodynamic fluctuations
(Saka, Berwick and Jones, 2012).

To ensure that the VSDI setup in use is indeed feasible of recording neural activity,
cortical maps in V1 are compared between the used VSDI setup with those resulting
from another measurement technique for the identical experimental subject (ID: 092413).
In this case, intrinsic signal imaging (ISI) is chosen, as it rather relies on changes in
hemoglobin concentration and oxygenation as reporter for neuronal activity instead of
changes in membrane potential indicated by fluorescent dyes in VSDI (Grinvald et al.,
1986). This validation approach is, therefore, similar to that of Shoham et al. (1999).
When assessing orientation preference maps for both VSDI and ISI, as illustrated in Fig.
34, two aspects become particularly apparent: on the one hand, similar spatial structures
can be seen when comparing maps of both acquisition methods. Here, patches indicating
certain orientation preferences as well as pinwheels share similar locations to a high
extent, thus indicating validity of VSDI measurements. On the other hand, a substantial
level of variability is recognizable for both recording techniques, as spatial shape and
connectedness of individual patches can slightly differ between recording blocks. Aside
of neural variability of the response signal, another more technical explanation would
consider the (re-)staining of the fluorescent dye applied prior to each recording block.
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Figure 34: Orientation preference maps obtained from VSDI & ISI. For both data acquisi-
tion methods, recordings of the identical experimental subject (ID: 092413) are
used. Response maps are calculated for contralateral moving grating patterns in
each of the four main orientations (0◦, 45◦, 90◦, 135◦). Subsequently, response
maps are averaged and spatially bandpass-filtered. For each major orientation,
response amplitudes are vector-summed per pixel and their corresponding
angles (in degrees) are color-coded.
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4.2.3 Data Simulation

In this thesis, an approach for generating synthetic VSDI data on basis of single-trial
recordings is presented. Several assumptions were made regarding the included noise
components and their composition, which will be explained in more detail below.

So far, every synthetic image sequence comprises individual dye bleaching dynamics,
as parameters of the related double exponential model are re-drawn per sequence. This
implicitly assumes independency of the bleaching component across sequences. Yet for real
VSDI recordings, bleaching kinetics endure over the course of light exposure in the range
of minutes (Takagaki et al., 2008) and therefore comprise multiple consecutive sequences,
which rather implies a shared temporal dependency structure. Therefore, alternative
model specifications would either consider a global parameterization of the double expo-
nential for multiple sequences, or introduce a dedicated model for the temporal parameter
variations over consecutive sequences. The latter requires a deeper understanding of
dye-related chemical properties, which is not within the scope of this thesis.

Heartbeat-related dynamics are modeled entirely in the temporal domain as originally
introduced by Reynaud et al. (2011), while structures related to blood vessel networks
are specified only in spatial domain. This ignores possible confounding signals related
to heartbeat and/or cerebral blood flow. While related shifts in the absorption spectrum
of hemoglobin is reportedly less problematic for the used “blue” dye RH-1691 (Lippert
et al., 2007), artifacts due to physical pulsatory movements of blood vessels may still be
contained in the recordings (Ferezou, Mátyás and Petersen, 2009). Also, interaction ef-
fects due to neural-hemodynamic or neurovascular coupling (Liao et al., 2013; Martindale
et al., 2005) may be convolved in the fluorescent signal and are not yet accounted for in
the current approach.

The generation of synthetic single-trial data is based on 3-D CRFs, which are interpreted
as the fundamental spatio-temporal signal. These fields are generated by constraining
the respective kriging approach via user-defined key locations and values, allowing for
the precise control of extent and timing of corresponding response patterns. As artificial
orientation maps (Macke et al., 2009, 2011) are introduced as prior information, pre-
knowledge about spatial properties of columnar responses in V1 to oriented stimuli is
already accounted for in the present approach.
The associated kriging approach is executed solely on whole-pattern domain, as it is
assumed that there exists strong response synchrony of cells with similar feature selec-
tivity (Brosch, Bauer and Eckhorn, 1995; Eckhorn et al., 1988; Ts’o et al., 1986) due to
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horizontal connections between cortical domains with similar tuning properties (Gilbert
and Wiesel, 1989; Malach, Amir, Harel and Grinvald, 1993). This in turn ignores tem-
poral phase shifts and latencies between individual activity centers, which per se might
represent a neural encoding mechanism (Fries et al., 2001).
Interactions between visual areas are still subject of current research, which the data
synthesis approach is not yet accounting for. On the one hand, these can be expressed
through synchronized activity (Engel, Kreiter, König and Singer, 1991; Ghisovan, Nemri,
Shumikhina and Molotchnikoff, 2008), which might be modulated by attention-selective
mechanisms associated with synchronization of oscillatory responses specifically within
Gamma frequency band (Fries, 2005). On the other hand, interactions can exhibit struc-
tures of travelling waves (Cowey, 1964; Ermentrout and Kleinfeld, 2001), whose substrate
may lie in long-range horizontal connections (Sato, Nauhaus and Carandini, 2012). When
presenting full-field contrast reversal gratings, waves are propagating from area 18 to 17
in cat’s visual cortex with systematic phase shifts, while being independent of stimulus
orientation. However, in absence of stimulation they can travel in both directions between
both areas (Zheng and Yao, 2012). These findings suggest that global waves have a more
general function of integrating information over large regions of space instead of encoding
for specific visual features (Sato et al., 2012).
Therefore, future insights about cortical interactions should be incorporated in the syn-
thetic data-generating model for VSDI data. For example, different shapes of spatio-
temporal wave patterns observed in mesoscale optical imaging, such as simple planar
waves to more complex source-sink, spiral-in or saddle patterns (Afrashteh, Inayat, Mohsen-
vand and Mohajerani, 2017; Townsend and Gong, 2018; Townsend et al., 2015), can be
introduced in terms of velocity vector fields as additional spatio-temporal components
interacting with the already established response-related model components.

The parametrization of each model term introduced in the linear signal composition
(Sect. 2.4.8) is based on averaged parameter estimations from sequences of a single VSDI
experiment. While this provides an approximation of realistic weightings between individ-
ual signal- and noise-related components, taking into account parameter information from
further experimental subjects should improve the generalizability of the data-generating
model. However, due to the invasiveness of the measurement procedure, data availability
is severely limited for VSDI. Even in the hypothetical case of additional data acquisition,
rather strict requirements have to be considered to ensure comparability. Latter aspect
is referring, among others, to the usage of an identical camera setup, dye structure and
stimulation paradigm, as well as comparable dye staining quality.
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4.2.4 Data Pre-Processing

When comparing both applied data pre-processing approaches, namely baseline subtrac-
tion (setting C.2) and GLM (setting C.3), similar spatial locations of response activity are
emphasized for real VSDI sequences. As verified for the synthetic data basis in setting B.2,
subtracting the baseline can substantially improve the SNR and alleviate the identification
of pre-defined CRF patterns from noise-contaminated image sequences.

Nevertheless, it is important to note that both approaches come with specific assumptions
and drawbacks, which make them more or less suitable for different research questions
and applications. Baseline subtraction draws its main advantages from removing constant
background fluorescence from the image without posing strong statistical assumptions
on signal- or noise-related dynamics. Additionally, it can correct for inhomogeneities in
the image, such as uneven illumination or dye bleaching behaviour. As it does not pose
strong statistical assumptions about neither the data-generating process nor individual
components related to VSDI signal or noise components, it is readily available for ad-hoc
data pre-processing, which predestines it especially for the use of online closed-loop
experiments. However, this method implicitly assumes that baseline fluorescence of both
the blank and stimulus phases are identical (Raguet et al., 2016). If the baseline is not
chosen carefully, the application of baseline subtraction (or division) can reduce or even
obscure the amplitude of the neural response. This results from the low amplitude of
neuronal activity, which is only in the order of a thousandth compared to the baseline
fluorescence level (Grinvald et al., 1999). Furthermore, as it is applied on global image
domain by default, it cannot take into account for different baseline fluorescence levels in
distinct image regions, potentially introducing additional errors and biases.

When instead using the GLM, ideally only random white noise should be left in case
that all deterministic elements from the recorded VSDI signal are considered in the spec-
ification of the denoising model. In this case, the residuals can be attributed to both,
spontaneous neural activity and other non-physiological sources of randomness (Reynaud
et al., 2011). Yet, when the requirement of a priori knowledge of all relevant components
of the VSDI signal is not met, the GLM will suffer from biased parameter estimates due
to ommitted variable bias, which in turn leads to false conclusions about stable neural
response dynamics (Stevenson, 2018). Since the shape of each regressor has to be defined
a priori (Chemla et al., 2017), this opens up dangers of misspecification which, especially
in the case of dominant noise components, may ultimately lead to false interpretation
of the neural signal. General model misspecification has also to be considered, as in the
original GLM formulation neither spatial components nor spatio-temporal patterns (such
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as cortical oscillations) are introduced as regressors yet. Furthermore, the application of
the GLM is based on typical assumptions for linear modeling, concerning linear indepen-
dence and additivity of regressors as well as homoscedasticity and Gaussianity of residuals
(Greene, 2008), which may not hold for real-world scenarios.

A more recent approach for denoising VSDI sequences is described by Carmi et al. (2021).
Here, extracting and locating responses from VSDI recordings in rat’s primary visual
cortex is achieved by a combination of the GLM model by Reynaud et al. (2011) with
Temporally Structured Component Analysis (TSCA), latter initially proposed by Blumen-
feld (2010). Evaluations and comparisons were carried out for seven different methods:
frame averaging, multi-parametric thresholding system (Gross, Ivzan, Farah and Mandel,
2019), maximal cross-correlation delay (Polack and Contreras, 2012), correlation to
delayed theoretical response, TSCA, GLM, as well as the combination of GLM and TSCA.
Performance was assessed via cluster separation metrics, namely Silhouette Index and
Davies-Bouldin Index, and further validations were done through simulated data. In
terms of both metrics, the combination of GLM with subsequent TSCA outperformed the
other compared approaches in terms of locating cortical responses and the generation of
retinotopic maps (Carmi et al., 2021).

4.2.5 Data Analysis / Modeling

With respect to the performed parameter studies, the choice for a VAE model architecture
(Sect. 2.3.5) turned out to be advantageous in several aspects.
Across all data settings, a high quality of input reconstructions can be observed in terms
of MSE. This is already achievable while using low numbers of training epochs (≤ 100
epochs) and low amount of training data (in this case 20.400 images ˆ︁= 80 sequences per
recording block), which in the majority of model configurations seem to be sufficient
for good model fitting properties. Also, the commonly known problem of VAE models
concerning blurry output images cannot be observed for the reconstructions in any data
setting.
From the parameter studies, it can also be deduced that the VAE is agnostic to the input
data, as no strong statistical assumptions need to be made towards the data-generating
process, which implies that it can be trained on different datasets without any adaptation
of the model architecture.
Further positive aspects of the VAE cover not only its robustness against spatial non-
linearities or non-stationarities, but also its ability to express variabilities of image features
within the latent encodings. The latter aspect in particular poses a fundamental prerequi-
site when processing image data acquired through VSDI.
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Lastly, the VAE offers computational efficiency when using pre-trained models for latent
feature extraction and input reconstructions, which poses a strict requirement of future
closed-loop experiments.

Despite aforementioned arguments in favor of the VAE, several limitations and draw-
backs have to be noted, which require further extensions of the model architecture.
The clearest disadvantage of the current VAE implementation is the neglect of temporal
dependencies in the image sequences. Each model input (in this case 2-D frames) is
processed independently, as each dynamic sequence is treated as static, and the VAE is
applied under the assumption of pθ(x1:T ) =

∏︁T
t=1 p(xt). This indeed can lead to adequate

model fitting for single observations, which is also seen in the aforementioned parameter
studies in terms of individual frame reconstructions quality. However, this also implies
that the model is not capable of accounting for temporal structures within the input
sequences yet, as it is implicitly assumed that pθ(z1:T ) =

∏︁T
t=1 p(zt). To achieve this, it

would be necessary to introduce temporal dependencies in the latent states zi1:T with
i = 1, ..., N sequences and t = 1, ..., T frames by defining the prior for the latent variables
of a sequence as pθ(z1:T ) (Fraccaro, 2018).
In this regard, sequential extensions of the VAE with either dynamic Bayesian networks
such as state-space models for stochastic dynamics (R. Krishnan, Shalit and Sontag, 2017),
or recurrent neural networks for deterministic dynamics (Bayer and Osendorfer, 2014)
are subject of current research (for a review, see Girin et al., 2021). This includes network
architectures such as variational recurrent neural networks (Chung et al., 2015), deep
Kalman filters (R. G. Krishnan, Shalit and Sontag, 2015), stochastic recurrent neural
networks (Goyal, Sordoni, Côté, Ke and Bengio, 2017), Kalman variational autoencoders
(Fraccaro, Kamronn, Paquet and Winther, 2017), recurrent variational autoencoders
(Leglaive, Alameda-Pineda, Girin and Horaud, 2020) and dynamical variational autoen-
coders (Girin et al., 2021).

As previously stated, all image data was collected only from a single experimental subject
(ID: 092413). The inclusion of data from additional subjects would require changes to
the training regime in terms of the composition of training and testing data partitions,
resulting in either (i) joint training on all available image datasets across subjects, or (ii)
separate model trainings per individual subject. In case of (i), the VAE will most likely
focus on image components explaining the most data variance between subjects, more
specifically artifact-related characteristics such as individual blood vessel patterns. These
features are mostly undesired for the present research question at hand, and necessitates a
substantial increase in latent variables to furher cover features related to neural dynamics,
in turn leading to aggravated interpretability of latent space. By contrast, (ii) will require
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a unification of subject-specific latent spaces to corresponding image components observed
across all subjects, which per se poses a complex assignment problem.

Alternative deep learning frameworks for the purpose of generative modeling have recently
emerged, each holding its respective advantages and drawbacks when compared to VAE.
This includes among others:

• generative adversarial networks (GAN) (Goodfellow et al., 2014),

• flow-based models like normalizing flows (Dinh, Krueger and Bengio, 2014; Rezende
and Mohamed, 2015),

• diffusionmodels (Ho, Jain and Abbeel, 2020; Sohl-Dickstein, Weiss, Maheswaranathan
and Ganguli, 2015; Song and Ermon, 2019).

GANs can offer improved image quality compared to VAE, but suffer from the lack of an
explicit representation of the generative data distribution, as well as difficult model training
due to possible mode collapse (also known as Helvetica scenario), non-convergence to
a Nash equilibrium and instability leading to the problem of vanishing gradients, and
overfitting caused by imbalances between generator and discriminator (Kossale, Airaj and
Darouichi, 2022).
Normalizing flows are able to optimize the exact data log-likelihood logp(x) and infer exact
values for each latent variable z by transforming distributions through a series of invertible
parameterized functions; this comes while offering constant gradient computations scaling
respective to depth, and only requires an encoder to be learned (Kingma and Dhariwal,
2018). Yet, it requires the invertibility and efficiency of computing the determinant of the
Jacobian, and usually provides lower quality of generative results when compared to VAE
and GAN (Bond-Taylor, Leach, Long and Willcocks, 2021).
Diffusion models rely on two stages comprising (i) a forward diffusion stage gradually
introducing Gaussian noise to the input data in multiple steps, as well as (ii) a parametrized
reverse (or backward) process stage utilizing a generative model to reconstruct the original
input data from the diffused (noisy) data by training the generative model to gradually
reverse the diffusion process. While these models produce state-of-the-art image quality
and offer advantages such as tractability and a stationary training objective, generating
samples can still be computationally expensive due to the reliance on a long Markov chain
of diffusion steps, although recent methods have been proposed to improve this process
(Croitoru, Hondru, Ionescu and Shah, 2022).
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4.2.6 Model Evaluation

The current approach for evaluating the VAE model results so far comprises the assessment
of the following aspects:

• model fit in terms of comparisons between loss and validation loss, as well as the KL
loss function;

• image reconstruction quality in terms of the distance between model input and
ouput images measured via MSE, which acts as reconstruction term in the VAE
objective function;

• latent feature extraction in terms of (i) frame-specific sampled encoding values
for assessing possible regime-switching behaviour within the input data and (ii)
variable-specific latent space walks for visualizing the individual contribution of each
latent dimension on ; both are inspected while considering the dependence on the
size of latent space as well as the balance between reconstruction quality and model
regularization.

Regarding the image quality of model reconstructions, the MSE has beneficial properties,
such as simplicity and computational inexpensiveness. It further satisfies common require-
ments of optimization, such as non-negativity, convexity, symmetry and differentiability.
Yet, it implicitly assumes independence from temporal and spatial relationships and equal
importance of of samples, which can be problematic in certain fields of applications (Wang
and Bovik, 2009). Aside from the MSE, a plethora of alternative statistical measures
for image comparison exist, such as peak-SNR, contrast-to-noise ratio, mean structure
similarity index, correlation coefficient as well as correlation parameter (Salinas and
Fernandez, 2007; Wang et al., 2004), which were already compared on the basis of VSDI
data (Carmi et al., 2021).

So far, inspections of the extracted features are carried out only on the basis of encodings
for single latent variables, which in turn ignores the inter-relationship between dimen-
sions. A simple extension could be made by applying t-distributed stochastic neighbor
embedding(t-SNE) (van der Maaten and Hinton, 2008) for mapping the encodings of all
latent variables into a low-dimensional target space, latter usually comprising two or three
dimensionss. The t-SNE approach is well-known as visualization tool for high-dimensional
data by using a variation of stochastic neighbor embedding (Hinton and Roweis, 2002).
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4.3 Related Work

The first essential aspect of this work lies in the generation of synthetical VSDI image
sequences on single-trial basis. Alternative simulation approaches with scope of VSDI are
either focused exclusively on the spatial domain in terms of generating artificial orienta-
tion maps (Macke et al., 2009, 2011), or solely on the temporal domain in terms of the
composition of signal dynamics on individual pixel level (Chemla et al., 2017; Reynaud
et al., 2011).
To date, however, there is no methodology explicitly targeting data simulations of single-
trial image sequences of spatio-temporal VSDI dynamics on mesoscopic level. Flotho
et al. (2019) describe a broadly related approach to the present data simulation model.
In the aforementioned publication, a semi-synthetic multispectral VSDI recording from
somatosensory cortex of adult Sprague-Dawley rats was developed. Here, the focus lies
on benchmarking several compensation strategies of motion artefacts, the latter being
related to adsorption and reflection pulsation, as well as various physiological and ambient
movements. A dummy VSDI response was introduced as checkerboard pattern, which was
temporally varied by weighting it by a multiplicative and spatially constant function. As
background texture, a notch-filtered image of the cortical surface illuminated under red
light was used, which comprised surface texture details as well as blurred vessel structures.
Additional terms for the pulsation as well as white noise related to the sensor and imaging
system were further considered in respective model (Flotho et al., 2019).

The second substantial aspect of this thesis deals with unsupervised feature extraction
from VSDI recordings, which is achieved by application of the VAE as a deep generative
model. Deep learning techniques in general have been used extensively in a wide range
of related fields such as medical image analysis, for instance for image classification
and segmentation tasks for cancer diagnostics (as reviewed by Tandel et al. (2019)) or
delineating pathological brain regions in MRI studies for diagnostics of Alzheimer’s dis-
ease (Yamanakkanavar, Choi and Lee, 2020). Furthermore, they have also been used in
recognition tasks for predicting diverse cell and tissue structures in fluorescence images
(D. Schmidt, Rausch and Schanze, 2020), as well as for the segmentation of neurons
from two-photon calcium imaging recordings (Soltanian-Zadeh, Sahingur, Blau, Gong
and Farsiu, 2019).
The use of deep learning models has increased exponentially particularly in the case of
medical imaging. Extensive developments were also made in brain image analysis for
the purpose of diagnostic and classification of strokes, psychiatric disorders, epilepsy,
neurodegenerative disorders, and demyelinating diseases (Ravi et al., 2017; Zhu et al.,
2019). In this regard, generative modeling via VAE were carried out, inter alia, for brain
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lesion detection (Akrami, Joshi, Li, Aydore and Leahy, 2020) and anomaly detection
(Chatterjee et al., 2022) on basis of MRI data. However, the general lack of deep learning
applications specifically targeting VSDI recordings is still apparent to this day.

Alternative approaches for source separation of in vivo VSDI recordings often extend
the GLM model by Reynaud et al. (2011). In this regard, Yavuz (2012) first separates
temporal components using the GLM into two different groups of components, where the
first groups holds all artefacts except bleaching, while the second includes neural response
and residuals. Spatial PCA is then performed for both groups, as well as on artefacts
found during blank recordings. The extracted components are then compared to the blank
components by assessing correlation between their respective (temporal) coefficients.
When showing low correlations with the blank, artifact components are re-classified as
neural activity components, and vice versa.
Raguet et al. (2016) on the other hand use a set of convex non-smooth regularization
priors adapted to the morphology of the sources and artifacts to extend the GLM for VSDI
recordings from somatosensory cortex in mice under a whisker stimulation paradigm.
Lastly, Afrashteh et al. (2017) use optical-flow analyses for the quantification of spatiotem-
poral dynamics of mesoscale brain activity from VSDI recordings in mice under sensory
forelimb and auditory stimulation. Analyses were carried out after data pre-processing
via temporal filtering by finite-impulse-response low-pass filter and subsequent spatial
Gaussian filtering.

4.4 Conclusion & Outlook

The fundamental objective of this work is the development of a processing pipeline with
respect to VSDI image sequences. Here, the focus lies on unsupervised feature extraction
in the context of spatio-temporal response activity of neural orientation columns in cat’s
primary visual cortex.

For this task, the balance between two opposing constraints has to be established: on the
one hand, temporal efficiency of the processing algorithms despite high data dimension-
ality to ensure compability with future closed-loop experimental designs; on the other
hand, robustness of the methods especially with regard to substantial variability of signal-
and noise-related components, as well as low SNR prevalent in VSDI recordings. To this
end, a VAE architecture poses an attractive solution combining advantages of both deep
learning and probabilistic modeling, and offers a compromise in both aforementioned
constraints.
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Since neither ground truth information nor data labeling are available for real VSDI
recordings, model training and evaluation was extended to synthetic image sequences
for validating and benchmarking the implemented β-VAE model. Here, prior knowledge
about real disturbance terms and artifacts typically observed in VSDI are introduced in
the data-generating process via temporal and spatial components. The overall signal
composition was achieved in terms of a weighted linear model, by which conditioned
random fields were used as hypothetical spatio-temporal activation dynamics with similar
properties as orientation columns in V1 responding to grating stimuli.

The results of β-VAE training are fundamentally dependending on the balance between
input reconstruction quality and model regularization. Extensive parameter studies on
both synthetical as well as real VSDI sequences were carried out accordingly for finding
proper parameterizations of latent dimensionality, the latter being directly impacting the
quality of model output images, as well as the weighting of the regularization term within
the VAE loss function. The application of any data pre-processing poses an indispensable
requirement of VAE model training for the purpose of improving the SNR and reducing the
influence of dominant artifacts. Depending on the choice of pre-processing methods, the
VAE training shows visible ranges and border areas of parameter configurations in terms
of proper model fit, MSE values as well as distributions of latent encodings of prevalent
signal- and artifact-related components.

Future extensions of the synthetic data-generating model could cover new insights about
dye-related dynamics, interaction effects (e.g. due to neurovascular coupling), as well as
temporal phase shifts and latencies between individual activity centers. Further regressors
could be introduced with regards to interactions between different brain areas, which
might be expressed in the form of synchronized oscillations or travelling waves.
Extension to the VAE model, especially on temporal domain via state-space models or
recurrent neural networks, should be considered in future research.

Integrating the implemented pipeline into a closed-loop interactive approach will al-
low for investigating interactions between sensory-evoked and spontaneously emerging
activity states as well as the origin of response variability in activity patterns caused
by visual stimuli (e.g., a moving grating pattern). By conditioning the stimulation on
the spontaneous occurrence of extracted patterns and assessing their impact on evoked
activity states, it is possible to test predictions of a subtractive predictive coding framework
(Aitchison and Lengyel, 2017). This approach can lead to a better understanding of neural
coding strategies as well as the interdependence of complex internal states and responses

111



to sensory input. Moreover, these strategies enables robust reconstruction of functional
networks, their real-time tracking via sequential models as well as subsequent optimal
experimental intervention.
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Appendix A - Code Repository Overview

Table A.1: Overview of custom Python repositories. Implemented, tested and
executed in Python (v3.8). Repositories will be made available after
publication at https://www.github.com/dekili/.

Repository Version Purpose of Repository Dependencies Dependency Version
kh_tools 0.5.0 General Data Handling Matplotlib 3.4.3

VSDI (Pre-)Processing NumPy 1.19.5
Data Visualization pathlib 1.0.1

SciPy 1.7.1
simSRF 0.1.0 Generation of SRF / CRF emcee 3.0.2

gp-maps-python 0.0.3
GSTools 1.3.3
Joblib 1.1.0
Matplotlib 3.4.3
Numpy 1.19.5
OpenCV 4.5.3.56
PyVista 0.36.1

simVSDI 0.1.0 Generation of Synthetic VSDI Artifacts Matplotlib 3.4.3
Composition of Synthetic VSDI Sequences NumPy 1.19.5

OpenCV 4.5.3.56
Pandas 1.3.2
scikit-learn 0.24.2

GISMO 0.5.0 DNN Implementation h5Py 3.1.0
DNN Compiling hankel 1.2.1
Model Training imbalanced-learn 0.8.0
Model Evaluation Keras 2.6.0

Matplotlib 3.4.3
NumPy 1.19.5
OpenCV 4.5.3.56
pandas 1.3.2
pathlib 1.0.1
pillow 9.2.0
pydot 1.4.2
PyEvtk 1.5.0
SciKit-Learn 0.24.2
SciPy 1.7.1
Tensorflow-GPU 2.6.0
tqdm 4.64.0
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